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Introduction

La synthese d’'images a connu au cours des dergianeés un développement impressionnant. L
amélioration du matfiel d'une part, et la conception des nouveaux algorithmes d’autre part, nous per-
mettent aujourd’hui de syn#tiser des image®alistes de &S haute quakt’

Malgré cela, beaucoup de prehes resterd résoudre. Dans ce mémoire nous allons nowrasser
principalement aux problemes cendudes images, c'est-a-dire la génération des images depuis wlenod"
géométrique bien défini. Les domaines qui nous intéressent soetidendhation de la visibildet le rendu
haute quali; le calcul de Eclairage sur les objets du modéle, le rendu interactif de ces images y compris
pour la €alitt augmergé, (les scenes mixtes, contenant fois des objetsegls et virtuels). Ces trois
domaines regroupent I'ensemble de nos travaux pendant cette période.

Dans le domaine de la visibiétanalytique nous avoretendu le travail de la #se [Dre94b] sur les
maillages de discontinutainsi que sur échantillonnage structarde I'éclairage. Ensuite nous avons in-
troduit une nouvelle structure de visibdiglobale, l&Complexe de Visibi Le complexe permet de coder
toutes les informations de visib#itd'une sehe dans I'espace des segments libres maximaux, en regrou-
pant les droites qui voient le @mie objet. Cette structure a&thsuite simplige, donnant lieu aBquelette
de Visibilitg, qui est une structure bien pluegiére en ramoire, et plus facila implémenter. Le squelette a
été d’ailleurs utili$€ pour une application de simulatioredlairage.

Nos travaux sur le calcul dedtlairage pour des snes tres complexes, se penchent sur deux aspects : le
premier concerne la complegiteométrique des snies et consist an€liorer les algorithmes de radiosité
hiérarchique ; le deuxieme essaie de surmonter les @nmuds liésa’la simulation de Eclairage dans des
environnements non-diffus, en utilisant une représentation directionnelle.

Nos travaux plusecents se concentrent sur les problénessdil rendu interactif. Nous avoresgloppé
un algorithme a base d’images poureiorer la visualisation des enes tes complexes. Pour un rendu
interactif de haute quaéthous avons introduit deux approches, unebasir la radiosit’en utilisant des
structures de données qui permettent une mise a jour rapided@idge, et une autre basée sur le lancer
de rayons qui mSentea’l'utilisateur une image approximative mais avec un tempsdetion interactif.

Pour la Ealitt augmentée enfin, nous avorsvelop@ deux approches. La preene permet I'ajout et

la manipulation d’'objets virtuels dans une sceeell€. La dewdine permet également de changer les
conditions d&clairage, d’'ajouter des lampes virtuelles etm& d’enlever des objetsels, tout en gardant
un temps de misa jour interactif.

1.1 Structure du Mémoire

Nous avons edigg trois principaux chapitres, couvrant les travaux de chagemméhApes chaque
chapitre en frapais se trouvent les articles euxemés, donnant les détails des travaux. Nous présentons



ensuite les conclusions et quelques perspectives pour I'avenir.

Les travaux dcrits dans ce srhoire sont dans leur grande majerités travaux effectués en collabo-
ration avec des caljues ou dans le cadre des stages DEA ou @=sethjue j'ai co-dirigs. Les noms de
mes collaborateurs sont cités dans les endroits apgpri’
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Calcul de haute préecision en utilisant des
meéthodes analytiques de visibilig

Les algorithmes ditlairage, connus comme algorithmes de radiosit® , ont rBussi d'une part a
produire des images contenant des ombres doucesasmpar des sourcesehdues (non-ponctuelles), et
d’autre para’ simuler de fagn satisfaisante des effets secondairesempar la diffusion de éclairage.

Les algorithmes de radiositmalgg leur suces, essaient surtout de calculer une imagédementLe
calcul de la visibili€, c’esta-dire la partie d’une source qui est visible depuisaoepteur, est central dans
tout calcul d’éclairage. La précision de ce calcul etedhinante pour la simulation d’éclairage de haute
qualité. De plus, ce calcul est généralement trés coliteux : sa conepdestilu moins li@aire par rapport
au nombre: d’objets contenus dans la scéne, pclumqueichange sourceecepteur, et il peut en avoir.

Dans ce chapitre, nous présentons nos travaux qui portent sur des algoritiesiasatje qui utilisent
des structures dites analytiquess , c’esta-dire qui donnent une réponse exacte ou trégipea la
guestion « quelle est la partie visible d’'une source depuisegepteur 2 . Dans ce cadre nous avoetg”
amenés a developper de nouvelles structures de visigitiale.

Le résultat de I'utilisation de cesetliodes est le calcul d'images de haute précision et de grande qualité
en ce qui concerne I'éclairage.

2.1 Echantillonnage structuré et Maillages de discontinuiés

Une faon efficace de repsenter la partigisibile d’'une source étendue (non ponctuelle) depuis un
point sur un ecepteur est I'utilisation denaillages de discontint Un maillage de discontinwgtpar
rapport a une sourcgdivise I'environnement en cellules (faceg qui ont une vue homaane de la source
S. Cette division résulte de la propagation desfaces de discontin@tjui génerent des changements de
la structure de la partie visible de la source.

Les deux principaux types de surfaces de discongrsotit pesene's dans la Figure 2.1, caleds$ par
notre systime de maillage de discontinait”

La vue homogene de la source depuis une face, que I'on appgltejection-arrgre> , donne la
capaci€ de calculer exactement la partie visible de la source d’un point arbitraire dans une scene, sans
avoir besoin de recalculer la visib#itthaque fois.

L'algorithme que nous avons#élopE [DF94] agtendu le travail de Heckbert [Hec92], en ajoutant le
traitement des surfaces de discontiayjtiadriques caegs par I'interaction de troiset€s de I'environne-
ment (voir Figure 2.1(b)), et I'utilisation d’'une subdivision de I'espace pour propager d’yoe é&ificace
les surfaces de discontinuitétant done’ce maillage, le calcul de la projection-amaest possible d’une
fagon trés efficace avec I'introduction d’'un algorithme local, qui ne dépend pas directement de la com-



(b)

FiG. 2.1: (a) Une surface de discontirajittieée par une aréte et un sommet (EV pour edge-vertex en
anglais). (b) Une surface de discontimuEEE (triple aréte).

plexité de la sehe. L'utilisation des statistiques des environnements typiques a permigedenthier que
les probEmes de complexatthéoriguement insurmontables, ne sont pas génants en pratique pour beaucoup
d’environnements d'irdfieur (bureaux etc.).

Les maillages calcek de cette maeie ontt ensuite utilies pour le calcul des images exactes (analy-
tiques), qui sont utiles comme images @érénce, et aussi pourezf des visualisations interactives avec
des images contenant des ombres de haute guBlitir calculer ces images rapidement nous avons utilisé
des interpolants quadratiques pour esganter la lumiere. Un exemple d’une telle image est préstams
la Figure 2.2.

FiG. 2.2: Image calcaé par 'algorithme [DF94] des maillages de disconteu@ette sene comporte
1000 polyghes d’origine.

Les maillages calcek sont indispensables pour la création d'une image exacte, pour laquelle au-
cune approximation n’est permise. Par contre, il est souvent suffisant de faire une approximation quand
la précision requise n’est pas tres importante.

Dans la poursuite des travaux aprla tlese, nous avonsegiélop@ une nethode pour la simplifica-
tion des maillages, bas sur des mthodes purement géométriques. Les expériences ont montré qu'il est
possible d’avoir une repsentation d’assez haute qualité I'éclairage en simplifiant les maillages d’'une



fagon assez importante (40-60 %) par 'emément d’aefes peu utiles du maillage. Nous avegalement

montré gu'il est suffisant d’utiliser des interpolants linéaires ou mixtesdiré/quadratique en combinant
les techniques pour lesattiodes sans ombres [DF93] avec I'approche des maillages [DF96].

Avec maillage d’origine  Avec maillage simpkfi” Maillage d’origine Maillage simplifié

FiG. 2.3: Comparaison de I'image rendu avec le maillage d’origine et 'image avec le maillagidi&me
56% en utilisant la rathode de [DF96].

FiG. 2.4: (a) Une sene comportant un objet simple et deux sources lumineuses. (b) Le maillage au sol
complet, et (c) le maillage simpldién considfant I'effet des deux sources [Dre94a].

Un exemple de cette ethode est montré dans la Figure 2.3, ou nous montrons |'effet de la réduction
de nombre d’afes du maillage par 56%.

Dans les situationswoplusieurs sourcesclairent la netne sene, il est également possible de simplifier
les maillages. Dans ce cas, il arrive souvent qaeldiirage d’a une deuxime source rende invisibles les
détails des ombres de la preamé’source, et donc le calcul dépemsur le premier maillage est gaspillé.

Pour traiter ce probleme, nous avorevdlopE une nethode [Dre94a] v 1'on calcule d’abord un
maillage tres simpli&; avec un gain de temps de calcul significatif, &t'on applique ensuite des ites
d’estimation d’erreur pour@erminer si le calcul du maillage complet escassaire localement. Cette

méthode donne des maillages simpisfj en consierant I'effet simultar’des sources multiples. Un exemple
est présemtdans la Figure 2.4.



(@) (b)

FIG. 2.5:Les maillages respectifs pour le cas de<ajuadtrees et (b) de maillage de discontinait”

2.1.1 Eclairage Global

La recherche décrite ci-dessus porte exclusivement salairage direct. L'utilisation de la richesse
d’'information existant dans la structure de la projectioneseriest plus utile encore dans le cadre de la
simulation de IEclairage global.

(8 QT/TR (b) QT/PA

(c) MD/TR (d) MD/PA

FiG. 2.6: Dans (a)-(d) nous esentons lesesultats des difffentes configurations. QT signifie maillage
<« quadtree> et MD maillage de discontinigt’ TR signifie que la visibil¢ est calculée par lancer de
rayons, et PA par la projection aare.

Enintroduisant une nouvelle structure hiérarchigbase de maillages de discontiewgt’ de projections-
arrieres nous avonsegtélop@ un outil d'investigation des sources d’erreur dans le calcul de la radiosité
hiérarchique. Cette étude a permis @dediminer I'importance de la pcision des calculs de la visibi#t
des conditions pour lesquelles un maillage ada&st aussi important [DS96].



ConsidErez par exemple les images présestdans la Figure 2.5. Dans (a) noussgritons un maillage
type « quadtrees> et (b) le nouveau maillage pour une scéne simple. Pour weressimilaire, consitez
les Bsultats pesentés de Figure 2.6 (a)-(d). Nous voyons clairement que le meilleur résultat est acquis
en utilisant a la fois les maillages de discontieuiMD) et la projection argre (PA) pour la visibilité.
Les maillages de discontineigSans visibili¢”exacte par contre, donnent des artefaess wisibles (cas (c)
MD/TR).

2.1.2 Eclairage Direct pour des Sénes Dynamiques

Un probEme particukrement important des systemesaldirage actuels est la nécessig dplacer
des objets, traitant ainsi desssEs« dynamiques- . Le déplacement interactif d’'un objet dans uneise”
éclaige en utilisant les maillages de discontiruitést pas possible avec les algorithmes existants. Cela
est dil au fait que le calcul du maillage est longm®& pour des smnes de taille magtee. Dans le cadre
du stage DEA de €line Loscos, que j'ai encaglrhous avonselielopg un algorithme de misa jour
incrementale du maillage et des projectionseags qui permet un affichage presque interactif pour des
sanes de centaines de polygones, en utilisant la cohérence spatiale etrkencetde la visibild [LD97].

(@) (b)

FiG. 2.7: (a) Le volume deaplacement. (b) Le petit objet se deplace au dessus du bureau. Chaque mise a
jour nécessite moins de deux secondes.

Pour atteindre des misagour interactives, nous utilisons unvolume de éplacement (voir Figure
2.7(a)). Le @placement de petits objets (Figure 2.7(b) et (c)) ptnetfait avec notre sthode en quelques
secondes par image.

En conclusion, la recherche memsur les maillages de discontirud”dmontré I'importance de la
précision des calculs de visibiitdans le cas dedtlairage direct mais aussi dans le cas global, ainsi que
l'importance des maillages adagtaux fronttres des ombres pour le cas des sources étendues.

2.2 Structures Analytiques pour la Visibilité Globale

La généralisation directe du calcul des projections arrieres estvelappement de structures de
donrées adaptées la description compacte de la visibiliggobale dans une sarie. Une telle structure
est I'objet de la tbse de Frédo Durand que je co-dirige avec Claude Puech.

2.2.1 Complexe de visibilie

Nous avons introduit la structure duComplexe de Visibili¢"3D » dans I'espace de droites. Le com-
plexe est de dimension quatre (une parametrisation de I'espace de droites) piidaimiedimension- pour
ordonner I'occultation [DDP96]. L'intuition derriere cette structure est de partitionner I'espace de droites
en groupes, chaque groupe contenant les droites quient > le méme objet. Pour ceci nous utilisons



I'espace des segments libres maximaux, céedlire les segments de droites qui ont leurs extresrstir
des objets.

$=0

$=T02

b)

FiG. 2.8: (a) La duali” utiliste pour la rem@Senter I'espace des droites (voir texte). (b) Le volume de
tangence d’'une sphere gz€nge en haut de la figure. Nous coreidns les diférentes directions de vue
en pointilés. En utilisant les tranches genous pouvons mieux visualiser la dualiBur chaque tranche,
nous pesentons I'axd, pouru = 0,v = 0. A l'extreme gauche, nous voyons le cas de la droite Z,

qui n’intersecte pas la sphe ; cela est représenpar volume de tangence qui n’est pas @paf 'axed.

La droiteD (la droite = 0 également), intersecte la spie’; son point dual estl'interieur du volume de
tangence (mongrpar la feche).

La paranetrisation de droites utile® est la directiofi, ¢ de la droite, ainsi que l'intersectian v sur le
plan orthogonah la droite (voir Figure 2.8(a)). La visualisation de ces structures est particulierement diffi-
cile & cause des ses 4 dimensions et demie. Nous aewetopjE une repesentation er tranches> selon
o (voir Figure 2.8(b)), qui permet la visualisation de la deatitiine faon intuitive. Dans cette visuali-
sation, I'ensemble de droites qui sont tangentes a un objet,poanstant forment un volume de forme
< cylindrigues> comme l'illustre la Figure 2.8(b). Nous appelons ce volumedleime de tangence

Pour le cas de plusieurs objets (voir Figure 2.9), les volumes de tangence s'intersectent dans I'espace
dual, repgsentant ainsi les ddfentes situations possibles. Par exemple, les droites qui sont tangentes a
deux objets correspondent a l'intersection des deux volumes de tangence.

L'espace de droites ne suffit pasepEsenter les occultations. Pour cela, nous utilisonsedgmentde
droites. Avec les volumes de tangence et la structure auxiliaire, nous powsfarisld’structure compie
du complexe. Par exemple, (voir Figure 2.9)est 'ensemble de segments guvoient> le devant de la
sphrereR (gris clair) etB 'ensemble de segments qui voient I'ané de 'autre spherk. Un cas ingressant
est le cag’, qui correspond aux segments qui sont entre les deuxrsphdans I'espace dual il s’agit de
l'intersectionA N B. Les autres cas sonedfits dans ladgende de la Figure 2.9.

Nous pouvons ainsiatrire les &ments du complexe de visibdit” une face correspond (comme le
casC du Tableai 2.1a'unéléement de dimension 4. Une face de tangence correspond aamigs d’'une
telle face, et est de dimension 3. Les autres cas sont pessentTableau 2.1. Un sommet du complexe
correspond une droite deer'o dege de liber€, car c’est une droite tangente a quatre objets.

Nous avons décrit [DDP96] d’'une facon abstraite un algorithme de construction pour le casres sc”
composées de polygones, et nous avegslément présemies modaligs d'utilisation de ces structures,
notamment pour des applications graphiques comme le calcul des facteurs de formesgtaiteidé et le
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FIG. 2.9: Le cas de deux objets. En haut, nous presentons le complexe auxiliaire. Les ensembles
sont dEcrits dans le texteD est I'ensemble de segments qui voient le devanf. d€Eomme la visibilité

est occultée paR dans cette direction) a la formeB — A. D’'une fa®n similaire, E' est 'ensemble

de segments qui voient I'agie deR. F' est I'ensemble de segments qui ne voient aucune sphére ; dans
I'espace dua]a correspond acompEmentde A U B.

Dim | Configuration| tranche enp en espace dual Nom
4 0 0 face
3 o @ face de tangence
2 90 @) face de bi-tangence
1 €€ . aréte de tritangence
0 -©g%- sommet

TAB. 2.1:Elements du Complexe de Visibilité

calcul de vue.

Une gréralisation tleorique du complexe agalement & dévelopEe pour le cas des obijets lisses et
convexes, en @sentant un algorithme de constructiosensible a la sortie [DDP97a].

2.2.2 Squelette de visibilié

Le complexe de visibil# est une famn élégante de &Crire les relations de visibiétglobale dans une
s@&ne. En contrepartie, le abén nEémoire de cette structure est teglevé, a cause de ses 4 dimensions et
demie. De plus, cette structure serait assez comgdiguimplementer, car elleoéssiterait lagsolution
d’equations de degglewe, ainsi que des calculegmétriques instables.

Pour Bpondrea’ces difficul€'s, nous avonseyelop@ une structure simplifiee, nonem« Squelette
de Visibilité » . Pour le squelette, nous ne construisons que les composantes de dimensions 0 et 1. Cette
structure a l'avantage dvViter le cait éleveé en nEmoire du complexe complet, et eremé temps a permis
son impEmentation et son utilisation pouepbndrea’ une stie de reqafes utiles de visibilé globale
[DDP97b].

La nouvelle structure est assez intuitive. Comreeri ci-dessus, les @ents de degrzro sont les
droites tangentes a quatre objets, ou quadritangentes. Pour le cas des scénes polygonales, cela correspond
aux droites tangentes a quatretas. Un exemple est illustpar la Figure 2.10(b). L'intersection de deux
surfaces de discontingitagte-sommet (commeedfit pour le cas des maillages de discontiauivoir
Figure 2.10(a)) induisent une droite qui est tangente a quatre arétes (les deux du sommet et lesedeux ar”
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FiG. 2.10: (a) La surface de discontinu#® décrit un changement de visib#ittomme le montre la vue
du dessus illus&€ en haut. (b) Une quadritangefté E définie par I'intersection de deukV et (c) le
graphe ou squelette induit par cette configuration [DDP97b].

e1 et€2).

Les surfaces de discontinuitg V' et eV qui sont adjacentes a cette droite sont deearde tri-
tangence du complexe, car elles sont tangenigesau e, et aux deux afes composant le sommgt
Nous représentons donc leéments de degré 0 et 1 du complexe par une structure de graphe : les nceuds
sont les quadritangentesgéments de degrzro, et les arcs qui lient les nceuds sont les surfaces de dis-
continuig adjacentes aux nceuds respectifs. Voir Figure 2.10(c), qui montre le nceud et les arcs du graphe
correspondant & la configuration de la Figure 2.10(b).

FiG. 2.11: Construction du squelette de visilglit_es noeuds sont calculés par lancer de rayons, ce qui
permet la étermination des adjacences et la construction du graphe (en bas de la figure).

Pouréviter le calcul instable des intersections de surfaces de discoatinaits calculons directement
les nceuds du complexe par lancer de rayons. Par exemple, on commence par le caleutmenment
de dege 0,vv (les plus simples) (Figure 2.11(a)), et appar unfuve, ou f est une face (Figure 2.11(b).
Ces deux nceuds du complexe partagent la surface de discontiauéils sont donc &5 dans le graphe
par un arc. La construction continue pour Bghementseze et vese. Malgré la forte diminution du
caolit en n€émoire par rapport au complexe de visibilité, les besoins emaire du squelette restenesr’
importants (des centaines de mega-octets pour des scenes de quelques centaines de polygones). Par rapport
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aux maillages de discontineitla construction est beaucoup plus stable; pour desesccontenant des
configurations fortementadjénéees, notre implémentation peut cependant avoir desemms.

Malgré ces proldines, les avantages de cette structure sont multiples : par rapport aux maillages de
discontinuit, elle est beaucoup plus robustéa’construction, car elle ne nécessite que des intersections
objet/rayon, au lieu d’intersections objet/surface de discontinuité (souvent quadriques); la structure en-
capsule la visibil¢” globale, car elle peut répondre aux retgs de visibilé de n’importe quelle paire
d’'objets de I'environnement; enfin la structure est flexible & la construction (contrairement a beaucoup
d’'algorithmes géortriques) car elle pourrait &tre construite localement (par exemple au dumesure
des besoins des regigs).

2.2.3 Eclairage global et Squelette de Visibilie

Dans le calcul de I'eclairage global, c’est-a-diedhange de lurere depuis les sources lumineuses, les
objets Efléchissants et les reflexions multiples, il esstimportant d’avoir un calcul pcis de la visibilig.

level 2
'
AB3 AB)
radiosity
function
Va Va Vi Va V3 Vi1 V2 )
Ve o ° ovb o e O @ O vange
—— hierarchy
light
exchanges
St 7 St S St 7

FiG. 2.12: RepeSentation cafrente et multeSolution par ondelettes. Au lieu de stocker de valeurs de
radiosig (éclairage) nous stockons la difénce.

Dans le contexte de I'algorithme de la radie§itE TGB84] et plus petigment de la radiogthiérarchique
[HSA91], le calcul de la visibil”est souvent la partie la plus lourde dwttstal de la simulation (voir
également paragraphe 3.2.1). Le squelette de vigilphbt'af une structure tout a fait adageté ce calcul,
car elle nous fournit une description corafa de toutes les relations de visildldans une sie.

Pour exploiter ces promés du squelette, nous avons étendu le squelette pour pouvoir calculer des
informations de visibili€"aux sommets introduits par une subdivision de ¢émeriginale[DDP99]. D’'une
fagcon semblable aux méthodes de maillage de discontinuitis reSentons Bclairage par des maillages
irreguliers. Nous représentons également le transfert de lumiére par des liens face (polygone)-sommet; ce
calcul peugtre fait analytiquement par les informations fournies par le complexe.

Contrairement aux méthodespédentes, nous avor#& conduita utiliser des triangulations hiérarchiques,
pour permettre I'élaboration d’une méthokiérarchiquede simulation de Bclairage. La rathode d’on-
delettes« paresseuses [SDS96] aet adaptea ces fins. La construction est illusepar la Figure
2.12; en stockant la déifence au lieu de la valeur declairage (radiosité), nous pouvons maintenir une
repesentation multi€solution. En particulier, nous n’avons pas besoin desssmter par des valeurs mul-
tiples lesechanges entre les sourcesaetliffhtes (par exemplg etS, vers les sommets,, v, etc. dans le
cas de la Figure 2.12). Nous maintenons également des liens entre polygonegqien €l ‘'une surface
doit étre subdivisé. Cette dCision est prise en utilisant les informations fournies par le squelette sur la
visibilite entre deux polygones, ainsi que par des camatibns I€esa la perception humaine [War94].

Le résultat de notre nouvel algorithme est le calcul d'images de haute qualité pour des scénes compor-
tant des configurations de luerg difficilesa simuler par des algorithmesguédents, comme deseses
éclaiges par plusieurs sources (Figure 2.13) ou deseseclaiges principalement par la lueri indirecte,
c’est-a-dire par le biais d’un ou plusieurs reflexions (Figure 2.14).
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(d)

FiG. 2.13: Scéne comportant plusieurs lenas (a) image finale, (b) les discontinuités inserées. (c) et (d)
vue de pes du sol [DDP99].

2.3 Discussion

Nos travaux de 1994 a 1999 sur legtimddes analytiques de visibdipour le calcul &clairage ont
donre lieu a plusieurs algorithmes atde nouvelles structures regentant la visibilé; pour I'€clairage
direct d'abord et ensuite pour I'éclairage global.

Ces n&thodes ont donné des images de grande guakirfois méme exactes, ce qui etagstdifficile,
ou méme impossible, auparavant. De plus, elles ont ddien’a une meilleure comghension des facteurs
importants pour la quabtd’image (le maillage, le calcul de la visibdjt” qui récessitaient une solution
analytique du prol@me de la visibili€"pour I'éclairage.

Malgré ces progres importants, plusieurs pesh€s intressants demeurent pour I'avenir. Nous men-
tionnons les deux qui nous semblons les plus importants :

— La place némoire.Les structures du complexe et du squelette de visthdlitht trop coliteuses en
place n€moire (des centaines de mega-octets pour des centaines de polygones). Poeneles sc’
d’'une complexi¢” du « monde Eel > il est indispensable de développer de nouvelles méthodes,
soit hiérarchiques, soik paresseuses afin de permettre I'utilisation de ces structures pour des
problemes eels.

— La robustesseTous les calculs eCrits dans ce chapitre comportent des composantes géométriques,
trés sensibles aux configuratiorsg&néees. Il est possible qu'une approcherarchiqueevoqiee
ci-dessus, puissre utili€e pour permettre a ces algorithmes et ces structures de donner une réponse
approximative, mais calrénte. La dfinition de la visibili€ approximative, et de ce qui est une
réponse cohérente, restent des questioesaasantes et difficiles.

Par la suite, nousetrirons une tout autre approche aux peohés de Eclairage, qui consisgne pas
essayer de trouver une solution exacte, nadisiter rapidement deseseés de grande complexité, d'une
fagon approximative.
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FIG. 2.14: Sceneclaie par la lumiére indirecte (a) image finale, (b) les discontisuitsees. (c) maillage

2.4 Articles
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2.4.1 Structured Penumbral Irradiance Computation (IEEE TVCG’96)
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Structured Penumbral Irradiance Computation

George Drettakis, Eugene Fiume

Abstract—A definitive understanding of irradiance behavior in penum-  We have also gathered statistics on the frequency of the differ-
bral regions has been hard to come by, mainly due to the computational ex- ant configurations affecting penumbral irradiance.

pense of determining the visible parts of an area light source. Consequently, .
sampling strategies have been mostly ad hoc, and evaluation of the resulting Our StUdy has lead to the deveIOpmem of two algorlthms that

approximations has been difficult. In this paper, the structure of penumbral ~ €Xploit the properties of irradiance in the penumbra. In the
irradiance is investigated empirically and numerically. This study has been first, the number of edges in the discontinuity mesh is reduced

made feasible by the use of the discontinuity mesh and tfgckprojectionan \yith ot significant deterioration of image quality, while the sec-
efficient data structure representing visibility in regions of partial occlusion.

Regions of penumbrae in which irradiance varies non-monotonically are ©Nd algqrithm ghoo.ses appropriate interpo-lant degree§ (linearor
characterized empirically, and numerical tests are performed to determine quadratic) again with only moderate quality degradation. Nu-

the frequency of their occurrence. This study inspired the development merical and visual results for both are presented and discussed.
of two algorithms for the construction of interpolating approximations to

ing the interpolant domain, and he other agoritim chooses among lnear, - PREVIOUS WORK IN SAMPLING AND SHADOW
quadratic, and mixed interpolants based on irradiance monotonicity. Re- COMPUTATIONS
sults from numerical tests and images are presented that demonstrate good . . . L
performance of the new algorithms for various realistic test configurations. Approximate and compact representations of illumination or
irradiance (impinging light power/area), are useful for the ef-
ficient display of illumination for direct lighting and are also
necessary for the purposes of global illumination algorithms,
such as those developed in radiosity-based approaches (e.g., [6],
[17]). In early global illumination algorithms, piecewise con-
N scenes illuminated with area light sources, regions of patant representations were used for radiosity or irradiance, but
tial occlusion openumbraeadily occur. Understanding howit quickly became clear that this representation was insufficient.
illumination varies within these regions is both important ands an alternative, higher order methods have been since pro-
difficult. Itis important since such an understanding allows us pwsed for the solution process (i.e., the light transport phase of
pick both a suitable sampling strategy, and a good way to cogiebal illumination algorithms) with the use of approximation
pactly represent illumination in the penumbra, using piecewissehemes that are of higher degree [31], [16], [34].
polynomial functions for example. These representations can be
used for fast high-quality rendering of scenes with area sourc@s, Observed Properties of Irradiance
and are important in global illumination calculations (e.g., [16], Campbell and Fussell [3] observed that irradiance in a penum-
[21], [34], [12]). However, gaining an understanding of irrapral region can exhibit multiple minima and maxima. Numer-
diance behavior in the penumbra is difficult because the prabal optimization was used to determine these critical points.
lem reduces to determining how the visible part of the sourgampieri [29] and Lischinski et al. [22] segmented the penum-
changes as one moves from one partially occluded point to @fal domain by the mesh generated solely from visual events
other. These changes depend on the interaction of the edgesgied by planar discontinuity surfaces including a source edge
vertices in the environment; analyzing this geometric interacti@i vertex. They then postulated that within each face or cell
is a non-trivial problem. In addition, determining the visible pagf this mesh the irradiance varies little. A subsequent adaptive
of the source at any pointis expensive if done naively. subdivision step was however used when large irradiance dis-
Thebackprojectiorand thediscontinuity meshre data struc- crepancies were observed.
tures that permit efficient calculation of the visible portions of In [9] we proposed that the structure of illumination should
a polygonal light source in a penumbra. In polyhedral envbe studied in more detail in the hope that a better understanding
ronments, the irradiance contribution of each portion can @uld lead to more efficient and accurate sampling strategies.
computed analytically using standard techniques. However, $Bgch a structure-driven approach for unoccluded (i.e., shadow-
overall irradiance at a point is the sum of all such contributionee) environments lit by area light sources was presented in
and can exhibit visually-significant variations over a small rg¢i1]; we conjectured that the illumination from convex polyg-
gion. By performing a thorough empirical study of penumbralnal light sources is unimodal, and an effective structured sam-
irradiance behavior, it is possible to glean insights that can pkng algorithm based on this conjecture was developed. The
exploited in an efficient approximation. Doing so has alloweglgorithm first finds the overall maximum of the irradiance func-
us to isolate the causes of multiple extrema in the penumbtian over the surface, if it exists, and then segments the function
into convex and concave regions along two axes passing through

George Drettakis is at IMAGIS/GRAVIR-INRIA, BP 53, Grenoble Cedex Sthe maximum. A mixed quadratic/linear interpolant is fit to the
F-38041, FRAN(_:E. IMAGIS is a joint research project of CNRS_, INRIA, UJFi, adiance function satisfving tight and relevant error bounds
INPG. Part of this work was performed when George Drettakis was a PhlH ying ug :

student at the University of Toronto. . o ) o
Eugene Fiume is at the Department of Computer Science, University Bf Discontinuity Meshing and Backprojections

Toronto, Toronto, Ont. CANADA M5S 1A4. h isibl . : | | ligh f
E-mail: George. Drettakis@nag.fr or The visible regions of a polygonal area light source from a

el f @gp. t oront 0. edu point are polygons whose vertices are either formed by the pro-
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Fig. 1. A Complete Disc. Mesh and Backprojection Instance

jection of scene edges onto the source, or are vertices of the orig-
inal light source. Abackprojection instancat, or induced by, a
point P, with respect to a source, is the set of polygons forming
the visible parts of the source at that point (e.g., the gray region
on the source in Fig. 1). THeackprojectionn a region is a data
structure containing the set of ordered lists of emitter vertices
and edge pairs such that at every pdiin that region, the pro-
jection throughP of these elements onto the plane of the source (b)
form the backprojection instance t[10]. Fig. 2. (a) EV and (b) EEE discontinuity surfaces.
Given a polygonal light source and polygonal scene, the
partition of the scene into regions having the same backprojec-

tion is thecomplete discontinuity mesdf o (shown as a yellow g giscontinuity surfacemito the environment. These surfaces
mesh in Fig. 1)._ A region of the complete mes_h Wlth ﬁme are of two typesEV surfacesvhich are planar “wedges” caused
backprojection is daceof the mesh. At any poinP within a = py the interaction of an edge and a vertex (Fig. 2(a)), BEE
mesh face, the backprojection instance can be efficiently detglitaceswhich are ruled quadric surfaces caused by the inter-
mined by projecting_the scene edgesin the backprojection strdeszion of three edges (Fig. 2(b)). Algorithms to compute the
ture through the poin®” to find the coordinates of the relevankqyivalent problem in computer vision, that of computing the
points. An _exa_mple of a scene, its dlscc_mtlnwty mesh, a”da§pect graph, have been proposed among others, by [15] and
backprojection instance (the shaded region on the source) gaf. An algorithm which computes an equivalent structure for
be seen Fig. 1. The backprojection instance corresponds to\m‘?oility was presented in [30]. An algorithm specifically for
white spot marked® under the drawer. _ shadow computation with good theoretical complexity bounds
_Early proposals to compute shadows involved numerous teglis heen proposed by Stewart and Ghali [27]. A extension and
nigues dealing with point sources, as well as approximate 30i|H1‘pIementation of this approach was presented in [28].
tions for linear or area sources (see [33] for a good survey). Thisrha authors have developed and implemented a fast, practical
_research naturally lead to the computati(_)n of partial discontiniye, o rithm for computing the complete discontinuity mesh with
!ty meshes. In [24] the extremal boundaries were computed, tha kprojections ([8] and [10]). All relevant visual events are
is the boundary between umbra and penumbra as well as theery treated and the algorithm displays fast running times
boundary between penumbra and light for simple geometrigs.ie number of objects in the scene, for scenes of moderate

To compute backprojection instances where required, the lighjynjexity. This approach has recently been used to develop
source was intersected with thatireenvironment each time, 10 5 pierarchical global illumination algorithm permitting accurate

Qeterming the'visible part of the source. The expense of CO.".]RHEIbility calculations using backprojections [12].

ing exactirradiance values in the penumbrawas thus prohibitive.

Campbell an.d Fussell [2] first computed Shadovy bqundaries [9_r General Discontinuity Meshing and the Irradiance Jaco-

complex environments using BSP trees from point light sources, bian

and then extended the method to compute the extremal bound-

aries for area sources in [3]. Chin and Feiner [4] performed aln the work presented in [10] certain special cases (such as

similar computation, and also presented an extension to akdzE surfaces consisting exclusively of edges of the environ-

sources in [5]. Additional lines of the mesh, interior to thenent) had not been implemented. The work reported here is

penumbrae, were computed in [22] again using BSP trees, &a$ed on a complete implementation which includes all possi-

in [19] using a two-dimensional visibility algorithm. In all theseble configurations of discontinuity surfaces. We have also de-

approaches, computing the exact visible portion of the sourcevatoped techniques to treat various degenerate cases of discon-

a given point involves a visibility computation requiring the intinuity surfaces which arise in general environments, permitting

tersection of all the scene objects, since the complete mesh thastreatment of scenes with arbitrary positioning of the source

not been computed; thus the backprojection is not unique witteind scene objects.

each mesh face. Another important addition to structured sampling for unoc-
The computation of the complete mesh is performed by castuded environments and discontinuity meshing is the use of the
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Fig. 4. A singular vertex

backprojection instance is shown in grey on the light source in
Fig. 3(a) and a concave example is shown in Fig. 3(b), which
are both simple. An example of a disconnected backprojection
Fig. 3. (a) Convex, (b) concave and (c) disconnected backprojection instanégs.shown m_ Flg. 3(©)- . . .
Singularities As noted in [29] and [22], irradiance along a

surface is singular at points at which two surfaces touch. Thus at
a vertex in the mesh joining faces of umbra, penumbra and light,
%}e irradiance is multi-valued and is defined as a limit depending
on the direction from which the vertex is approached. A singular
vertex is shown in Fig. 4, while the graph on the right shows the
variation of the irradiance values on three lines joining at the
singular vertex.

irradiance Jacobian as presented by Arvo [1]. This formulati
permits the analytic computation of the gradient of irradiance
a cost equivalent to the cost of irradianiig) wherep is a point
of a surface. In particular we can compute and si€p). If
we wish to determine the derivatidé /dt of irradiancel (t) in a
certain directiori, we simply performv [ - u to obtain the cor-
re.sponding value. This calculation re_nQers the structured San- Empirical Characterization of Penumbral Irradiance Be-
pling approach of [11] much more efficient and accurate, since havior

the need for numerical approximation of the derivatives is obvi-

ated. Arvo presented a formulation for partially occluded points, A set of empirical tests were performed within the penumbra
which allows efficient computation of analytic derivatives, afor moderately complex scenes. These tests attempted to isolate
presented above. In the work presented here the backprojectionfigurations that cause local extrema. Three influential factors
data structure is used, which provides all the information necedfecting the appearance of extrema were identified:

sary for the computation in [1]. « Backprojection typavithin the mesh faces of interest; this
can cause simple irradiance extrema within a mesh face but
lll. PROPERTIES OHRRADIANCE FUNCTIONS IN also opposite extrema along different directions in the face.

PENUMBRAL REGIONS « Interaction with unoccluded area# particular when un-

Given the complete discontinuity mesh and the backprojec- occluded irradiance increases and the visible part of the
tion, the exact value of irradiance at any point in the penumbra source decreases simultaneously or vice-versa.
can be efficiently determined. It thus becomes possible to pers Position of irradiance maximuralong mesh edges with a
form a careful empirical study of irradiance in the penumbra, constant backprojection instance.
even for moderately complex scenes. We shall now present thewhat follows we present examples for each category with
results of an empirical study that isolates key configurations tret illustration of the backprojection instance shown in grey on
induce significant variations in penumbral irradiance. We muite source, and a corresponding graph illustrating the irradiance
be aware of these configurations when constructing approxinvariation along a line on the floor (shown as a thick white line).
tions. Snapshots of such observations are shown in the figuvés briefly discuss the effects of each configuration on irradiance
which include the mesh and backprojection geometries, as weadhavior.
as analytically computed irradiance and first derivative valuesDisconnected or Concave Backprojectiorl§ the backpro-
and numerically computed second and third derivatives. Befgeetion in a face (or along an edge) is not simple, it is likely that
discussing the results of the experiments, we define some timere exists a line in the face or an edge for which the irradiance
portant scene properties. will display one or more maxima. lllumination in a region with

Backprojection TypeThe backprojection of a face is said taa disconnected backprojection containingolygons is equiv-
be convexor concavdf every instance of the backprojection inalent to illumination fromn separate unoccluded light sources,
that face is itself a convex or concave polygonal subset of thrd may have up ta maxima. Non-monotonic behavior in this
source, respectively. In addition, a backprojection of a facedase may cause “troughs” in the irradiance function, as shown
disconnected every instance of the backprojection in that facen Fig. 5(top), from the overlap of two “tail” regions [11] of the
consists of more than one polygon, while itsgnple if every irradiance function due to a disconnected backprojection with
instance consists of only one polygon. An example of a convstances containing two polygons. Similar non-monotonic be-
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Fig. 5. (top) Irradiance minimum from disconnected backprojection (bottorkjg. 6. (top) Interaction with unoccluded regions. (bottom) Constant backpro-
Opposite extrema within a face. jection instance.

havior may occur in faces or along mesh edges that have cond&98" the polygonal source defined by the backprojection in-
backprojections. stance, shown shaded on the rectangular source. This maximum

Faces with concave or disconnected backprojections, partiG@? P€ seen in the irradiance plot on the right.

larly in the presence of light source edges that are very long, can . L . .
cause the existence of opposite extrema (i.e. a minimum anﬁ'a Scene Statistics and Identification of Non-monotonic Irradi-
maximum) along different directions in a face. An example is 2M1¢®
shown in Fig. 5(bottom). In this case the maximum is causedA test program has been written which analyses the behavior
because the corresponding edge in the mesh ends in a lightgfarradiance in a set of scenes. The goal is to determine whether
gion (see below), while the trough is caused because this fagadiance tends to be monotonic within a single face of the dis-
has a concave backprojection. continuity mesh. This has obvious implications in the necessity
Interaction with Unoccluded Region€onsider a line in the for additional adaptive subdivision, but also in the development
mesh that does not lie on the external penumbral boundary b&error bounds in radiosity calculations [21].
tween light and shadow but has however one endpoint in lightThe set of scenes considered consists of a simple desk model
(i.e. an unoccluded region, also calletight region). An ex- in a simple configuration (e.g., Fig. 6) containing 73 polygons
ample is shown as a thick white line in the mesh of Fig. 6(topand a more complex configuration including drawers (145 poly-
The visible area of the source increases along this line, as it ggesis) which cause complex visibility interactions (e.g, Fig. 9).
from penumbra to light, since a smaller portion of the sour¢®r each of the two geometries, the light source was placed in
becomes occluded. As a consequence the irradiance on atiim@ different positions. Six of these are shown in Fig. 9. In
is generally increasing as the region of light is approached. Tagdition two different light sources were tested, namely a small
unoccluded illumination along this line may be increasing dight source (Fig. 7(a)) and a elongated light source, which be-
decreasing. If the unoccluded illumination is decreasing (ashaves in a manner similar to a linear source (Fig. 7(b)) These
Fig. 6(top)), the irradiance in the penumbra, which tends to bgo source types where tested on both desk geometries (with
an increasing function, will smoothen as it approaches the unagd without drawers). Finally a larger scene was tested, con-
cluded regions. Again, this can result in non-monotonic behawining two complex desks and two chairs containing 373 poly-
ior, although it is necessarily a local maximum. gons (Fig. 8), which was used to confirm the more exhaustive
Position of Maximum from a Constant Backprojection Inexamples with the multiple source positions. These scenes will
stance Consider a scene that is illuminated by a polygonalso be used to compare the relative performance of the new
source, and in which the complete discontinuity mesh of thafructured sampling algorithms proposed in later sections (see
source has been computed. For some edges in the mesh Séetion VII-A).
backprojection remains constant along that edge. Thus thét is important to note that the tests performed using these
analysis used for unoccluded sources in [11] can be used stienes are of course not definitive. Nonetheless, all types of
rectly. For example, the edge shown as a thick line in Figisibility events occur in these scenes (EV, EEE, D1 [13] and
6(bottom) contains the maximum of the irradiance functioother degenerate configurations) and in addition relatively com-
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Scene | e [T enm [BONM T fi | fa | Jeone
Average values over 9 runs
Simple Desk | 721.9 | 25.1 35 231 0.9 11
Desk Drawers| 2386.1 | 157.6 6.6 33.7 | 42.2 81.7
Average over 2 runs
Small Source | 906.0 | 73.5 8.1 285 | 125 325
Long Source | 1449.0 | 114.5 7.9 27.5| 30.5 56.5
Single run
Big Scene | 8661.0] 7460 86 [ 78.0] 374.0] 294.0

(b) TABLE |

) . . MESH EDGE MONOTONICITY OF PARTIALLY OCCLUDED FACES
Fig. 7. (a) Image with small source (b) Image with elongated source

uate% and%. If these values are of opposite sign, we
consider that the irradiance along the linex@d¢ monotonic. If

the derivative values are of the same sign, we consider the irra-
diance along this line monotonic.

We have chosen to test the irradiance along all the edges of
the mesh on penumbral (i.e., partially occluded) faces, and also
along the diagonals of the penumbral faces connecting two ver-
tices of a mesh face not belonging to the same mesh edge. We
thus have two tables of statistics for edges (Table I) and for diag-
onals (Table II), which repoeveragevalues from the 9 different
light source positions for “Simple Desk” and “Desk and Draw-
ers”, average of two runs (both geometries) for “Long Source”
and “Small Source” and a single run for “Big Scene”. We con-
sidered testing faces for monotonicity (i.e. the faces for which
either an edge or a diagonal are non-monotonic), but it was ob-
Fig. 8. Big Scene served in test runs that the statistics for faces are very similar to
those for the diagonals (Table II).

The monotonicity test is not infallible: edges which are non-

plex shadow behaviors can be observed (e.g., in the regionsB@notonic may be ignored because of a change of sign in the
low the open drawers or the shadows caused by the back ofdesivative in the edge interior. We have however run tests com-
chairs). As a consequence we believe that the trends identifig@ling the approach presented above with an exhaustive test of
in this experimental study are a strong indication of irradian@® samples of the derivative on each edge, which show that for
behavior in the penumbra for interior scenes. We restrict otfte scenes in question the simple monotonicity test is accurate
approach to a single source, since multiple sources presentfi@i-85% of the tests, which we judged to be satisfactory. De-
merous specific issues (as pointed out in [7]). veloping other signatures for nonmonotonicity is an interesting

Given a line embedded in a receiver plane, defined by t@@€n problem. _ _
endpointy; andp;, we consider the irradiance as it varies along N Table I, the fielde, is the average number of edges neigh-
this line as a functiorf (¢) of a single parameter (in a mannePOring at least one mesh face in penumiyg, is the number

similar to that presented previously). In this case we can ev8f-€dges along which the irradiance is non-monotonic, while
“%NM” indicates the percentage of edges with non-monotonic

irradiance. The breakdowfl, f4, feone, Shows the number of

the edges with non-monotonic irradiance that neighbor a face
respectively in light, with a disconnected backprojection or a
concave backprojection. To classify an edge, both neighbor-
ing faces are tested, and the edge is designated as either light,

el -
disconnected or concave, in that order, if either neighbor is in
the appropriate category. For Table I, similar statistics are re-
ported, but for the diagonat®ntainedn faces with correspond-

ing properties, withd, and d,,, the total number of penum-
bral diagonals and those with non-monotonic irradiance respec-
tively, while f4, feonc, are the number of the diagonals with
non-monotonic irradiance inside a face respectively with a dis-
connected backprojection or a concave backprojection.

From these tablesitis clear that irradiance is monotonic along
a large majority of edges (more than 92%) of the mesh, consis-
tently, even for different source types and more complex geom-

Fig. 9. 6 of the 9 light positions used
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Scene | dp | daum [ BNM [ fu | feone
Average values over 9 runs
Simple Desk | 665.3 | 189.6 | 28.5 74.4 | 1151
Desk Drawers| 2181.1 | 150.0 6.9 43.8 | 106.2
Average over 2 runs
Small Source | 7045 | 61.0 8.7 13.0 48.0
Long Source | 1366.5| 219.0 | 16.0 65.0 | 154.0
Single run
Big Scene | 8116.0] 776.0] 9.6 [ 438.0] 338.0

(b)

TABLE Il
MESH DIAGONAL MONOTONICITY IN PARTIALLY OCCLUDED FACES

etry. Similarly, irradiance is monotonic along a large majority
of the diagonals. The disparity in Table Il between the “Simple
Desk” and the “Desk Drawers” scenes is due to the fact that, in
.the abgence of drawers which involves less complex V'S't?'“Bf . 10. (a) Unoccluded Structured Sampling (b) Combination with Disconti-
interactions, and consequently larger mesh faces, more signifi-nuity Mesh (c) Triangulation
cant irradiance variation is observed.

Finally, we can see that a majority of edges or diagonals with
non-monotonic irradiance neighbor, or are contained in, faa%

th di d backoroiecti ulted in reconstruction problems on the boundaries between
wit |sgqnnecte or concave backprojections, as suggesteqysq bounding boxes of penumbral zones and the unoccluded
the empirical study presented above.

zones [8].
C. Discussion We have since developed a simpler approach, which appears

- .. .. . toavoid these problems. We begin by applying the structured
The statistics presented above are meant as a first |nd|cat|ogé)rtnp"ng algorithm on the receiver polygon as if it where unoc-

the behavior of iradiance in penumbral regions. In future Wog,qe . using the algorithm of [11] (see also Section II-A). This
geometrica priori determination of which regions of penumbraog its in a segmentation such as that shown in Fig. 10(a).

display non-monotonic behavior should be performed (S|m|IarIn the new approach used here we simply insert the lines of

in spiri_t to the discontinuity *ranking” approach presented "Subdivision up to the border of the penumbra and light (Fig.

ce_rllﬂy n [38]3' tsh indicate that irradi 10(b)). In the quadrilateral regions of the mesh entirely in light
ese first measurements however indicate that IradianC@ e - o ngiry et bi-quadratic tensor product interpolants. In the re-

largely monotonic within regions of equivalent visibility. Suc ions of penumbra and the regions between regular light regions

piecewise monotonic functions, especially those for which t nd penumbra we perform a constrained Delaunay triangulation

values_ do not d!ﬁer 5|gn|f|§:antly,l are good candu_:lates for IOW%Ilowing [32]. We then construct triangular bi-quadratic inter-
order interpolation, specifically linear or quadratic. The expe olants on the resulting triangles (Fig. 10(c))

ments presented below will indicate that this is sufficient in geh- It is however clear that this construction is too expensive. The

eral, obviating the need for cubic interpolants as proposedslir%e of the discontinuity mesh faces are often small. In addition,
[26], for a large class of scenes.

in many cases the variation of irradiance in the faces (as well as

In the following section we will present an algorithm for edg.ﬁq L . oo
R . . eir size) is so small that linear or even constant approximations
elimination, and an algorithm for degree selection. The fact that

irradiance in the penumbra is largely monotonic motivates tRe- largely sufficient. These facts, supported by the empirical

e :
need to simplify the mesh: if the function is well behaved %nd numerical st_udy present_ed above, 'e"?‘d us to th_e develop-
A .- o : nt of two algorithms, allowing the reduction of the size of the
coarser subdivision is sufficient. The empirical observations o . C
. . . . mesh, and the use of lower degree polynomial approximations
which factors are important in the penumbra also influenced the
: S . - resented below.
construction of the edge elimination algorithm. Similarly th8
locally WeII_—beha_ved nature of penumbral |r_rad|ance sugge t_s Adaptive Subdivision
the use of linear interpolation wherever possible, leading to thé
algorithm for degree selection. Overall, the subdivision effected by the complete discontinu-
ity mesh appears sufficiently fine for the construction of inter-
polants. In some scenes however, large faces can occur, over
which irradiance may vary significantly (e.g., the face contain-
In [10] and [8] we presented a first attempt at combining thieg the thick white edge in Fig. 6(bottom)). As noted by
structured sampling approach developed for unoccluded enkampieri [29], adaptive subdivision can be required in such
ronments and discontinuity meshing. This method consistiages.
of the collection of mesh faces in penumbra into “penumbral We apply two simple criteria. The first requires that an edge
groups” which were enclosed in a bounding box and then codefined by two pointg; andp;, for which |I(p:) — I(pp)| > e,
bined with the subdivision induced by finding the maximuris subdivided. The toleranceis user-defined. The second re-
and the inflection points as described in [11]. This approaghires the subdivision of every edge for whittp;)I(p) = 0,

IV. COMBINING UNOCCLUDED STRUCTURED SAMPLING
AND DISCONTINUITY MESHING
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wheref(t) is the first derivative. In this manner, edges with non- Y — N

monotonic irradiance are subdivided. In practice, these criteria | e Madiance — |

result in reasonable triangulations. 2nd Defiv=-e...
Adaptive subdivision is always performed before any simpli-

fication or degree selection (see below).

3+ 4

V. INTERPOLANTDOMAIN CONSTRUCTION FOR
PENUMBRAL REGIONS

The problem of constructing an interpolant for irradiance in
a general scene can be split into the construction of interpolan P ‘ P
for regions that are unoccluded, and into the construction of i 0 010203 0 o angs 2001
terpolants for regions in partial shadow. The former is treated 05—
using the extension of the methods of [11] for unoccluded envi- L —
ronments as described above, while the determination of inte o 2D
polants for penumbral regions is presented next. There are tw
aspects to the interpolant definition: the determination of the dd
mains on which the interpolants are defined, and the choice 1
basis functions, including their degree. We will start with the
determination of domains.

I L R

051 J

sk B

A. Constraints on Interpolant Domains N

2 L L
0 0102 03040506070809 1
distance on edge

As mentioned above, the complete discontinuity mesh and t
accompanying backprojection information is a natural segmen- Fig. 11. Discontinuities (top) large “jump” (bottom) small “jump”
tation of the irradiance function over a surface. Edges in this
mesh represent discontinuities either of value, or of first or sec-
ond derivative. Characterizations of these discontinuities can[B2]. The basis functions used (presented in Section VI-B) are
found in [20], [19], [22], [29]. linear, quadratic or mixed linear/quadratic Lagrange interpolat-
Value discontinuities occur only where objects touch, anflg polynomials.
therefore the boundary of such regions delineates areas in which
the irradiance function has value zero, because they are cdin- A Mesh Reduction Algorithm

pletely hidden from the light. Discontinuities of second deriva- As mentioned above, faces of the discontinuity mesh can be
tive (or first derivative when degenerate events occur) ocCur Uyyiirarily small and may also have edges with high aspect ra-
side regions of penumbra. These discontinuities constitute {); | addition, the triangulation of concave regions can result
majority of edges in the discontinuity mesh. The geometry gf yjangles that are very small or that have small angles. For
the mesh is complicated: itincludes highly irregular regions th@fe construction of piecewise smooth interpolant domains, it is
can be small, concave and with small angles between edges (§&&ap|e to reduce the number of such triangles as much as pos-
Fig. 13(d)). The mesh constrains the construction of interpolaifie | arger triangles, and triangles with roughly-equal interior
domains, since some of these edges of discontinuity need ta,3g|es are more stable numerically, and in addition provide the
maintained to achieve high quality reconstruction of irradianCgenefit of a better theoretical error estimate. Specifically, con-
The relative importance of the discontinuities is difficult (Qiger 4 six-point quadratic interpolant on a triangle, and the irra-

assess without significant numerical computation. Some of g ce functionf. The max norm in an intervéd, b] is defined
second derivative “jumps” can be small, while others can Bg fol1ows [25]: ’

quite large. In some cases the effect on the actual irradiance
function is more evident (Fig. 11(bottom)) while in others the || f(2)]] = maz,<o<s| fz)]. (1)
effect is negligible (Fig. 11(top)). In addition, irradiance in o

very small regions cannot display extremely large differenceshollowing [25], the error bound with respect to the max norm
value, because the shape of the polygons in the backprojecfienan interpolant y is:

instances cannot change much, and neither can the (point-to-

area) form-factors that determine the value of irradiance at any 1f = syl < 8‘M3 h3 )
point in a face. ~ sinf

To accommodate the highly irregular nature of the faces o rep, is the longest edge of the triangle, ahis the smallest
the mesh, triangles are selected as the domains over which 8|6 of the triangle. The constaht is equal to the maximum
construct interpolants. - Specifically, a proper triangulation gfe of the first, second and third derivative piwithin the

the penumbralldomair? is performed. A. triangulaﬁtiﬁn = triangle. In general:
{Ty, T4, ..., Ty} into n trianglesT; is properif each pair of tri-
angles intersect at a vertex, a complete side or not at all, and M, = maz{||D*f||,|D?*fll,...,||D"f||}. (3)

the union of all triangles equals the domain (Prenter [25]). In .
a manner similar to that for irregular regions in light, we usehereD"f is thei’th derivative of f. In the case of unoccluded
a constrained Delaunay triangulation of the original mesh fagdamination, and for some of the faces in the penumbra, the
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Fig. 12. Absolute values of third derivative in the mesh faces along the thifig. 13. (a) Image and (b) mesh before reduction (c) detail image (d) detail
white lines. mesh before reduction

magnitude of the third derivative is many times larger than thgr[ees are identified. Edges are removed from the concave face

of the irradiance itself, rendering Eq. (2) somewhat meanin the corresponding small face has area below the tolerance. If

less (thfh _does not ’.‘ec_essa”'y imply that_the a_tpproxmaﬂondﬁ the faces around the vertex can be removed, the remaining
poor). This is shown in Fig. 12(top) where irradiance along tnﬁﬂconnected edge is also removed from the mesh.

thick white line in the i_mage Is pIott_ed in_the graph. Hovv_eve_r, Eliminating Small FacesAfter the concave faces have been
there are other faces in the mesh in which the third der'vat'}/r%ated, anumber of small faces that have arealess than the max-

IS small, and thus the size of the smalles_t ar@lmn pl.ay an imum may still remain. For each such face the following proce-
important role in the quality of the approximation achieved. I(rllure is applied:
d :

Fig. 12(bottom) the absolute value of the third derivative is con-
sistently smaller than the irradiance value. renove_smal | _face( Face f )
{
B.1 An Area-Based Edge Elimination Algorithm sort all edges e of f
by area of nei ghboring face
for each edge e in sorted list do
if can_renmove( e ) then
renove_edge( e );
return;
endi f
done

For the reasons outlined above it is desirable to eliminate all
overly small faces in the mesh. A smaller mesh size is desirable
in general, among other reasons because it allows the irradiance
function to be represented with a smaller number of triangular
interpolants. This allows faster rendering and is also important
when such a representation is used for light transfer simulation
(see [12], [8]). In the results it will be shown that a large mes}h
reduction with negligible error is achievable.

Our guiding strategy is to remove all faces that have area
less thamar ea-t ol % of the largest face, whe ea- t ol The procedurean_r emove( e ) determines whether the
is a user defined tolerance. When eliminating edges from tremoval of the edge is possible. The following rules are applied:
mesh, corresponding faces are deleted. It is therefore necest. No edge of the boundary between umbra and penumbra is
sary to maintain the backprojection information, together with  removed.
the geometry of the deleted faces in the resulting merged face2. No edge of the boundary between umbra and light is re-
This information can be discarded after the construction of the moved.
interpolants if the exact solution is no longer desired. 3. Ifthe removal of an edge results in a convex face becoming

Eliminating Concavities It is often the case that the tip of concave, it will not be removed.

a smaller face will bite into a larger face, creating a concavitifter this procedure is applied, all remaining unconnected edges
For the reasons outlined above, it is desirable to eliminate swarle removed from the remaining face. After an edge is deleted,
faces. Each concave face is visited, and the vertices for whitle tail and head vertex are searched to determine if the edge
the two edges on the face form an angle greater than 180 drtended into the neighboring faces. If it did, the neighboring
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To achieve the construction of mixed linear/quadratic inter-
polants, it is first necessary to characterize the edges of the mesh
and the edges interior to the faces with a required degree of inter-
polation. Each edge or face is designated as linear or quadratic,
and the appropriate basis function is assigned to each triangle of
the face, maintaining™ continuity.

A. Selecting a Degree for the Triangular Domains

The choice of degree required on an edge of the discontinu-
ity mesh (DM) or a triangle edge in the interior of a DM face
is determined by whether or not irradiance along it is mono-
tonic, and whether the difference between irradiance values at
the endpoints is larger than a user-defined tolerdmaesar -

t ol . The algorithm first determines monotonicity on each edge
using the same approach as that presented in Section I1I-B. An
edge is then marked “constant” if the difference of irradiance at
its endpointsis zero and “linear” if it is less thehnear - t ol .
Otherwise it is marked “quadratic”.

As can be seen from the statistics presented in Section IlI-
B, a large proportion of non-monotonic edges are adjacent to
faces with disconnected and concave backprojections. Edges
() (d) neighboring a light face (i.e. a face of the mesh in an unoccluded
region), and mesh edges that include the maximum of irradiance
©n also be non-monotonic. For edges of triangles interior to
faces, similar properties hold. Specifically, faces with concave
or disconnected backprojections, as well as faces neighboring
edges are removed, if such a removal does not violate rulegight regions often display non-monotonic behavior.

3. The removal process (concavity and small face removal) isOnce each edge of the triangular domains has been classified
repeated until all faces that are smaller than the tolerance age'constant”, “linear” or “quadratic”, a triangular basis function
removed, or until no more faces can be removed. is selected and the coefficients (irradiance values) are calculated

Polygon rendering hardware on an SGI Indigo 2 XZ was useg the triangle vertices and appropriate interior points. In Fig.
to generate images in Fig. 13 to 15. In Fig. 13 part of “Big5 the same scene as that of Fig. 13 is rendered after the appli-
Scene” is shown using the combined structured and discontimtion of the degree selection algorithm. Notice that the visual
ity mesh algorithm (Section IV) before mesh reduction, whilguality of interpolation is still high despite the fact that 58.3%
in Fig. 14, the same scene and mesh are shown after reductigirthe interpolants are linear. The red lines show the edges of
Although the mesh has been reduced by 56.0% of the origifisé mesh that have been assigned linear interpolants, while the
faces before reduction, the quality of interpolation is still googreen lines show edges with quadratic interpolants. The choice
The reduction of the mesh is shown in detail in Fig. 14(d), coraf basis functions and their construction is described in the fol-
pared to Fig. 13(d). The images with a reduced mesh, eMgiing section.
when looking at details (Fig. 14(c) vs. Fig. 13(c)) are still of
acceptable quality. B. Basis Function Design

Fig. 14.  (a) Image and (b) mesh after 56.0% reduction (c) detail image
detail of reduced mesh

The basis functions chosen to interpolate the irradiance are
triangular Lagrange polynomials. For triangles in which all
three edges are linearly interpolated, the method of plates is used

Once the triangular domains have been constructed, we h@y@onstruct a linear basis function over the triangle. For this in-
to choose suitable basis functions and then calculate the cogffinolant the formal error bound is given by [25]:

cients to construct the interpolant. The empirical and numerical

analysis presented in Section Ill suggests that for many cases maz | f(p) — sn(p)| < 4Mzh® (4)

in the penumbra, linear interpolation of irradiance is sufficient.

Thus the interpolants constructed by our algorithm are chosgheref is the irradiance function angdy is the interpolant, and

to be of low degree: linear, quadratic or mixed. h and M- are as in Egs. (2) and (3). For triangles on which all
Because the complete mesh has been computed, the umédales are of degree 2, a six-point interpolant is used [25]. The

regions are well defined. On these domains, constant basis fugrcer bound for this interpolant was given in Eq. (1).

tions are used with a value of zero. For this step, the computaAs a consequence of degree selection, there are triangles

tion of the complete mesh is a necessity, since boundaries of thewhich some edges are linear and some are quadratic (see

umbra are often (EEE-induced) curved edges, which were még. 16(a) which follows the model of [25]). A special lin-

computed by previous discontinuity meshing algorithms (e.gar/quadratic basis function was designed to guarantee value

[22], [19]) although they have been treated for a different appliontinuity across such interpolants. For a given vertex, the six-

cation in [30]. point bi-quadratic interpolant is used, which interpolates the

VI. CONSTRUCTINGINTERPOLANTS FORPENUMBRAL
REGIONS
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Fig. 15. Image and mesh degree selection (58.3% of edges are linear shown in Fig. 17. Singular vertex interpolant construction
red)

w1 NiS is an approximation, since it would be necessary to com-
pute the limit values of irradiance along each edge to determine
the exact range of irradiance in each triangle. The midpoint ver-
tex in the tensor product is assigned the average of these two
values. In this fashion a continuous representation is constructed
for the irradiance around a singularity.

A special case occurs when the light source touches a differ-
Fig. 16. Linear/quadratic basis functions. ent object. In this case we simply displace the vertex slightly so
that we can apply the analytical point-to-area form-factor (e.g.,

[1]) to determinel ;4 -
value 1 at the vertex of interest and the line passing through
the values), 2,1 along the linear edge. This basis function i®. Error Bounds for the Triangular Interpolants
depicted in Fig. 16(b). These samples are of course reused ofthe theoretical error bounds for the linear and quadratic tri-
neighboring triangles. angular interpolants have been given in Egs. (2) and (4). These
For triangles with one linear edge, two linear/quadratic bgpunds are conservative, since they depend on the maximal
sis functions are used at the vertices of the linear edge, whiggnitude of the derivatives within the domain of interest. In
the remaining vertex is assigned a quadratic basis function, ajfine faces of the discontinuity mesh the derivatives are suffi-
two quadratic basis functions along the quadratic edges. A {gently small to permit these bounds to be meaningful. Identify-
tal of 5 function (irradiance) values are required for the triangjgg these cases however is expensive, and not a practical way of
with one linear edge, since we require one value at each Vert@Xsessing quality.
plus two values at the midpoints of the edges characterized agor faces with monotonic irradiance, a simple error bound is
quadratic. given from the maximum difference between irradiance values
For triangles with two linear edges, all vertices have lingt the three points of the polygon. The error bouaf the

ear/quadratic basis functions, and an additional quadratic bagtgrpolants v, on triangles over which irradiance is monotonic,
function is defined at the point along the quadratic edge. A tofglgiven as:

of 4 function values are required for this interpolant.

linear . (x2,y2,112) __
- (x3,y3,0) T

(a) (b)

. . . B = mam|f(pl) - f(pj)|, i,j = 1,2,3. (6)
C. An Interpolant for Triangles at a Singularity
It is important to note that since we do not guarantee correct

A typical singular vertex will have many edges joining at th%onotonicity characterization, in terms of our algorittims a
point, as described in Section Ill. The value at the vertex | uristic rather than a strict bound
defmed as a limit of fchg funct_|on as it approaches the SINQUATE o hounds have not been strictly established for faces with
point, and therefore it is multi-valued. To represent this using,, qnotonic irradiance for which adaptive subdivision has

interpolants, as suggested by Tampieri [29], we use degeneﬁac; been performed. However, for such faces with a single ex-
tensor product interpolants. Nonetheless, the multiple value mum, the quality of the interpolant can be estimated closely
irradiance at this vertex must be approximated. To achieve trB?/' the maximum of3 in Eq. (6) and the maximum difference

the total angld, of the triangles neighboring the vertex is first the irradiance values of the interior points along each edge of

computed. ) L ) the triangle used in the quadratic interpolant construction.
The value of the unoccluded illumination at the singular ver-

tex L,,q, IS calculated next. For triangle whose edges join-  VIl. NUMERICAL TESTS ANDQUALITY EVALUATION
ing at the singularity form anglé;, (see Fig. 17) the values of
irradiance for the bi-quadratic tensor products along the e
corresponding to the singular point are assumed to vary in

To evaluate the quality of the algorithms for mesh reduc-
fen and degree selection we ran the algorithms on the “Sim-
p% Desk” and “Desk Drawers” scenes for the 9 light positions

interval: 1, iy as described in Section IlI-B, as well as the two geometries for
I _i’ I i (5) “Small” and “Long” light source configurations and finally “Big
e ; Oror " ; Otot ] Scene” with two desks and two chairs. All images used for the



numerical evaluation (Tables Il to VII) were computed using
ray-casting, with the value of the visible point at each pixel be-
ing determined by evaluating the interpolant of calculating the
exact backprojection (for the reference images). To measure
error we use two error metrics: an area-weighted object-space
square root error and an image-based square root error.

For the object-space error we compute a set of sampling
points {p;} on each facef; of the mesh, both in penumbra
and in light. Definel(p) to be the irradiance on a surface at
point p and I (p) the approximation constructed by piecewise
linear/quadratic interpolation. We ha¥&faces in the scene and
each facef; has areal;. The object space errey; is thus given

Scene | €os |

€is

Average over 9 runs

Simple Desk | 0.019 | 0.461
Desk Drawers| 0.025 | 0.664

Average over 2 runs

Small Source | 0.015 | 0.716
Long Source | 0.024 | 1.623

Single run

Big Scene | 0.004 | 0.851

TABLE Il

ERROR FORCOMBINED ALGORITHM

as: |

€os =

1 & A& 2
mZ;Z([(M) — I(p;)) (7)
i =0

The error metrie, s has the same units as irradiance (power per

area). We also compute a reference image with analytic radi-

Scene | ny | n'y [ %Red. | €s | €is |
Average over 9 runs

Simple Desk | 344.9 | 244.1 29.2 | 0.016 | 0.052

Desk Drawers| 1025.4| 673.0 344 | 0.019 | 0.076
Average over 2 runs

Small Source | 421.5 | 260.5 38.2 | 0.018 | 0.444

Long Source | 647.0 | 385.0 40.5 | 0.106 | 0.808

Single run

ance value# (i, j) and an approximate imagé(i,j) using the

Big Scene

[ 3840.0 ] 2529.0]

341 [ 0.016] 1.260

interpolants. The image-based eregrfor ani x nj image, is
given as:

TABLE IV

MESHREDUCTION: AREA TOLERANCEO.01 (1%)

(8)

o \/Zz"'zg‘f' (B(,j) — B(i,j)?

ninj

The error metric;, is in pixel value differences and thus varies

between 0 and 255. We computg for three difference view-

points, the first is the view shown in Fig. 9, the second is similar
to the image in Fig. 13 and a third which is a view on the other

[ Scene | ny | n'y [ %Red. | €s | €is |

Average over 9 runs

Simple Desk | 344.9 | 159.9 53.6 | 0.021 | 0.067

Desk Drawers| 1025.4| 375.0 63.4 | 0.021 | 0.102
Average over 2 runs

Small Source | 421.5 | 187.0 55.6 | 0.028 | 0.854

Long Source | 647.0 | 237.0 63.4 | 0.099 | 1.129

Single run

side of the desk. For “Big Scene” the view of Fig. 8 is also used.

Big Scene

[ 3840.0] 1689.0 |

56.0 | 0.022] 3.946

A. Results for Mesh Reduction and Degree Selection Algo-
rithms

Results are presented next in Tables Il to VII. Table 11l gives
the results for the simple combination of structured sampling

TABLE V

MESHREDUCTION: AREA TOLERANCEO.09 (9%)

with discontinuity meshing, Tables IV,V show the statistics for

the mesh reduction algorithm, while Tables VI, VII shows the

results for the degree selection approach.

In Tables IV,V,ny is the original number of faces in the mesh,

andn'; is the reduced numbet,; ande;, are as defined above
and% Red.is the percentage reduction of the number of faces.

In Tables V1,VII, n., is the number of edges with quadratic in-

terpolantsy,; is the number of edges with linear interpolants,
and% Lin. the percentage of edges with linear interpolants.

The mesh reduction achieved is satisfactory (between 29% to
63%), while the error is globally low. Similarly, the number
of edges characterized as linear is high (from 27% to 69.1%),

allowing the use of cheaper, lower degree polynomial inter-

polants. Object-space erreg; is low, growing slightly more
than in other cases for mesh reduction in the case of the long

light source (Table 1V), for which the tolerance value results in

higher mesh reduction. Image space eggiis also low, since

it is less than a unit RGB pixel value for almost cases of mesh

[ Scene | neq | ng [ %LN | €s | €s |
Average over 9 runs
Simple Desk | 1049.7 | 396.0 27.4 | 0.002 | 0.051
Desk Drawers| 1909.2 | 1526.4 | 44.4 | 0.004 | 0.075
Average over 2 runs
Small Source | 863.0 | 993.5 53,5 | 0.012 | 1.348
Long Source | 1426.5| 866.0 37.8 | 0.012 | 0.813
Single run
Big Scene | 4736.0] 6630.0] 58.3 [ 0.004] 0.865
TABLE VI
DEGREESELECTION TOLERANCE0.001
[ Scene | neq | ng [%LN | es | €s |
Average over 9 runs
Simple Desk | 1780.2 | 1111.1| 38.4 | 0.019 | 0.063
Desk Drawers| 2982.0 | 3889.3 | 56.6 | 0.024 | 0.097
Average over 2 runs
Small Source | 1702.5| 2010.5| 54.1 | 0.030 | 1.348
Long Source | 2327.5| 2257.5| 49.2 | 0.121 | 1.124
Single run

reduction or degree selection for the simple scene, and in the or-

Big Scene

[ 2443.0] 8923.0 |

89.3 [ 0.021] 0.955

der less than 4 RGB pixel values for mesh reduction of the big
scene (Table V).

We next present a first visual comparison of the images pre-
sented in Sections VI and V by showing the difference images

TABLE VII

DEGREESELECTION TOLERANCEQ.008
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| Scene | tor | tm [ typ [ ts [ 827 [ ] complete discontinuity mesh is much larger than required for

Stpie Desk |20 Avi?gg °Ve'299f§”5 G A A satisfactory reconstruction. However, there are cases in which
Desk Drawers| 116.56 | 73.83 | 33.68 | 120 | 1.04 | 074 the reconstruqnon quality can.degrade, partlcula_rly when small
Average over 2 runs faces are left in the mesh which force the creation of small or

Small Source | 23.55 | 18.61 [ 1.88 [ 0.97 [ 0.23 | 0.17 elongated triangles. Further geometric manipulation of the mesh

Long Source | 56.56 | 40.46 | 10.75 | 0.80 | 0.49 | 0.36 can be used to eliminate these artifacts. One issue that is more
Single run difficult to address is that of animation. No provisionis currentl

Big Scene | 649.22| 440.60 | 175.05] 2.14 | 13.33] 9.24 ; ) . NOp ently
ABLEVIN made for consistency in mesh reduction, and thus over animated

sequences flickering can occur as the mesh changes from frame
to frame. This should be addressed in the context of a more
general incremental meshing algorithm for animation.

For degree selection, the results are also encouraging. With a
good percentage of linear interpolants (30-70%) the increase in
error is small, both in object and image space. Nonetheless, the
method can be improved by incorporating some criterion based
on the possible visible impact of the degree reduction, to avoid
occasionally objectionable artifacts. This will require the use of
perceptual error metrics.

TIMING RESULTS

VIIl. SUMMARY AND DISCUSSION

An empirical and numerical study of irradiance in penumbral
regions has been presented. Such a study was previously im-
Fig. 18. Difference images (x20) for: (a) simple interpolant (b) reduced meeraCtlCa‘I due to the expense of ?Omp”,“”g irradiance values in

the penumbrae. The use of the discontinuity mesh and the back-

projection now makes such a study possible. It was found that in
multiplied by a factor of 20. As can be seen in Figs. 18 and 18e majority of cases, irradiance in the penumbra is monotonic
the differences are limited and small in magnitude (a dark pix@hd thus amenable to reconstruction by linear or quadratic in-
signifies no difference, and a totally white pixel a difference ¢érpolants. Configurations that cause the appearance of extrema
255 pixel levels in all three channels). or irregular behavior were characterized. This study offers a

Finally, timing results are presented in Table VIII. All timingetter understanding of irradiance behavior in regions of partial
are in CPU seconds on an SGI Indy R5000 processor runnipeglusion, and guided the construction of an interpolating, inter-
at 150Mhz. The value;,; is the total time spent to create thepolating, piecewise polynomial representation.
mesh, triangulate and construct the interpolamtsis the mesh  For the construction of the interpolant domains, the complete
construction timeg,,, is the backprojection calculation timg, discontinuity mesh is used as a starting point. The faces of the
is the cost of structured sampling (as in [11] but using irradianogesh are triangulated, and the irradiance information is stored
gradients [1])#2-°! is the cost of the edge removal algorithm focompactly with the mesh. The observations made from the em-
an area tolerance of 0.01 (1%) affd® is the removal time for pirical study suggested that many of the edges in the mesh are
areatolerance of 0.09 (9%). As can be seen from these statistics,actually required for satisfactory reconstruction of illumina-
the cost of the edge removal algorithm is negligible comparedtion in the penumbra. A mesh reduction algorithm is thus intro-

the total cost of the algorithm. duced, based on the removal of faces with small area and faces
_ . . that cause concave regions in the mesh.
B. Discussion of Numerical and Visual Results The observations of the empirical study also suggest that in

The mesh reduction a|g0rithm has presented good results mny cases |ineal’ interp0|ati0n iS Sufﬁcient fOI’ i”umination re-
the scenes tested. For satisfactory mesh reduction (30-609@))struction in the penumbra. An algorithm was presented

the increase in error is in general minimal, indicating that tihich characterizes the edges in the mesh and the triangulation
as requiring linear or quadratic degree polynomials to achieve

high quality reconstruction. A set of basis functions was de-
signed that allows the use of mixed degree polynomials for re-
construction.

Numerical tests were performed for a suite of moderately
complex environments in which complicated shadow structures
appear. The results show that both the mesh reduction and the
degree selection algorithm can be applied without significant
degradation of quality in the reconstruction.

This paper is a first attempt at comprehending irradiance be-
havior in penumbral regions. Much more work remains to be
done. More detailed studies are needed of the geometric con-
ditions leading to irradiance extrema in the penumbra. This
will hopefully lead to a priori algorithms which will allow the

Fig. 19. Difference image (x20) after degree selection.
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casting only of those discontinuity surfaces which contribute to4] ziv Gigus, John Canny, and Raimund Seidel. Efficiently computing and

significant illumination changes. In this manner the mesh will
be simplified overall, and the meshing will be computationalrlelhs]

cheaper. Such work will also result in much more reliable al

effective error bounds, which are indispensable for global illu-
mination algorithms [21]. The hierarchical global iIIuminatioqle]
algorithm incorporating discontinuity meshing and backprojec-
tions presented in [12] can use the mesh reduction approaciuin
a straightforward manner. A first attempt at simplification in the
presence of multiple sources was presented in [7], and evidently
more work needs to be performed in combining the differeR#l
simplification strategies, in particular for the application of dis-

continuity meshing to global illumination [23], [12].
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Simplifying the Representation of Radiance from
Multiple Emitters

George Drettakis

iIMAGIS / IMAG *

In recent work radiance function properties and discontinuity meshing have been
used to construct high quality interpolants representing radiance. Such approaches do
not consider the combined effect of multiple sources and thus perform unnecessary
discontinuity meshing calculations and often construct interpolants with too fine subdi-
vision. In this research we present an extended structured sampling algorithm that treats
scenes with shadows and multiple sources. We then introduce an algorithm which sim-
plifies the mesh based on the interaction of multiple sources. For unoccluded regions an
a posteriori simplification technique is used. For regions in shadow, we first compute
the maximal umbral/penumbral and penumbral/light boundaries. This construction fa-
cilitates the determination of whether full discontinuity meshing is required or whether
it can be avoided due to the illumination from another source. An estimate of the error
caused by potential simplification is used for this decision. Thus full discontinuity mesh
calculation is only incurred in regions where it is necessary resulting in a more compact
representation of radiance.

1 Sampling lllumination from Multiple Sources

To accurately render scenes illuminated by area light sources, it is necessary to represent
the illumination on surfaces by a simpler, approximating function, even when consider-
ing only direct illumination. Piecewise polynomial interpolants are often chosen for this
purpose. Such representations are an essential requirement for global illumination com-
putation, in particular for the finite-element style approaches (e.g. [Zatz93, GSCH93]),
which extend the radiosity-based method [CoGr85].

In the interpolant construction algorithms presented to date, much effort has been
devoted to correctly treating shadow boundaries and identifying the behaviour of ra-
diance. These methods have thus achieved high quality representation of illumination
using simple functions. However, despite the significant advances in the field, little has
been done to actually compensate for the cumulative effects of illumination from mul-
tiple emitters, be they light sources or secondary reflectors.

The importance of identifying these interactions is easy to see: when a single source
is present, it may cast a detailed shadow which may require significant computation to

*IMAGIS is a joint research project of CNRS/INRIA/UJF/INPG. Postal address: B.P. 53, F
38041 Grenoble Cedex 9, France. E-m@dor ge. Drett aki s@ nmag. fr.
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represent correctly. However, if a second source illuminates the same region in an un-
obstructed fashion, the shadow will be “washed out” leaving little need for the detailed
representation. This phenomenoniis illustrated in Fig. 7(a) and (b) (see colour section),
in which one and two sources illuminate the environment respectively.

In this paper we propose a solution to this problem, by extending the techniques de-
veloped for discontinuity meshing and structured sampling [DrFi93, DrFi94, Dret94].
Throughout we consider only environments of diffusely reflecting surfaces lit by dif-
fusely emitting sources. In the following section we present relevant previous work; we
then present the extended structured sampling approach. We then briefly describe the
two-pass discontinuity meshing algorithm which incurs the cost of full discontinuity
meshing only in the regions required. In the sections that follow, we describe the sim-
plification criteria for two sources, first for the intersection of unoccluded regions and
then for the intersection of penumbral/unoccluded regions. For both cases we present
first results of a prototype implementation. We then present the extension to multiple
sources and summarise the results of the paper.

2 Previous Work

In previous work, the approximations used to represent radiance or radiosity have gen-
erally been guided by the requirements of the global illumination calculations. A sim-
pler approach to constructing radiance representations is to examine illumination from
a single emitter. The first such approach, in which the nature or structure of radiance
for unoccluded regions is examined, was presented by Campbell and Fussell [Camp91].
They observed that radiance for these environments displays a single maximum. This
idea was extended by Drettakis and Fiume [DrFi93], who constructed quadratic or lin-
ear interpolants tensor-product interpolants which can be shown to satisfy tight error
bounds.

It has recently been shown that the computation of shadow boundaries, which are
subsequently used to guide interpolant construction, is fundamental for high quality ap-
proximation of illumination. The first such work was performed in [Camp91] in which
the boundary between penumbral and unoccluded regions was computed. The resulting
mesh was then used to build an approximation of radiance of constant-radiance triangu-
lar elements. Similar work was performed by Chin and Feiner [ChFe92]. Lischinski et
al. [LiTG92] were the first to consider discontinuity surfaces interior to the penumbra,
that signify a change in the topological view of the light source (e.g. the appearance or
disappearance of a vertex or an edge in the visible portion of the source). They sub-
sequently built a triangulation of the receiver surfaces based on the subdivision of this
mesh, and constructed quadratic interpolants over these triangles. A different algorithm
was presented by Heckbert [Heck92], in which a similar mesh is computed. Lischinski
etal. [LiITG92] also merged the meshes from multiple sources, but no simplification was
attempted. In this paper we extend the approach developed in [DrFi94, Dret94]. In this
approach theomplete discontinuity mesh calculated: the environment is segmented
into regions (meslffaces, in which the topological structure of the visible region of
the source does not change. An abstract representation of the visible part of source,
called abackprojectionis stored with each face. An example of such a mesh is shown
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Fig.1. (&) Mesh and Backprojection (b) Segmentation into Light and Penumbra and
(c)Triangular/Tensor Product Interpolants

in Fig. 1(a), where the backprojection of the point marked with a cross is shaded on
the source. In [Dret94], the complete mesh is used to construct linear and quadratic in-
terpolants representing radiance in the penumbra. In addition, the structured sampling
approach of [DrFi93] was extended ([Dret94]) to handle environments with shadows in
the following way. First all regions of shadow are identified and enclosed in a bounding
box. Such a regular region enclosing a region of penumbral and umbral faces is called a
penumbral groupThe remaining parts of the receivers (which are unoccluded) are seg-
mented into parallelograms (Fig. 1(b)) on which the structured sampling algorithm is
used to create tensor-product interpolants as in [DrFi93] (Fig. 1(c)). Notice in Fig. 1(c)
how in the regions of penumbratriangular interpolants are used, while in the unoccluded
regions sparse tensor product representations suffice.

3 Extending Structured Sampling for Multiple Emitters

For the purpose of computing reference images in scenes with multiple sources, the
discontinuity mesh from each source can be computed independently, and stored with
the surface. When rendering using ray-casting, each mesh is queried, the backprojec-
tion retrieved for each mesh corresponding to each source and the exact radiance value
computed.

To obtain the merged mesh due to several sources, the meshes corresponding to each
source are combined. This is performed simply by adding the faces of one mesh into
the other. If two light regions with tensor-products are combined, the merged region
will contain tensor-product interpolants, while in ever other case (penumbra or umbra
combined with penumbra, penumbra or umbra combined with unoccluded) the resulting
mesh faces will be triangulated and a combined interpolant built.

By using the structured algorithm in [DrFi93] the radiance function in unoccluded
regions for each source is split into regions in which the radiance is well behaved. The
algorithm then creates quadratic interpolants and guarantees that the interpolants satis-
fies tight error bounds. Thus, the combined illumination function over the intersection
of two light regions will continue to satisfy these error bounds. Similarly, for the other
regions the combination of triangular or tensor-product interpolants is also guaranteed
to give high quality results, since the regions have been segmented based on the com-
plete discontinuity mesh.
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Because of the guaranteed error bounds for the interpolants representing unoccluded
illumination, we can safely use these approximations in our calculations for simplifica-
tion (see below), instead of the more expensive direct illumination calculation.

4 Two-Pass “On Demand” Discontinuity Meshing

The main cost of the complete discontinuity meshing algorithm is due to the relatively
large number of discontinuity surfaces that must be traced in the environment. In ad-
dition, it is necessary to search for the existence of discontinuity surfaces (either edge-
vertex wedges (EV) or triple-edge quadric surfaces (EEE)), formed by edges and ver-
tices not on the source. To reduce the cost of this computation, we must reduce the
number of surfaces traced into the environment.

To do this we separate the mesh computation into two phases: first, the computation
of the boundary between light and penumbra, and an estimate of the region between
umbra and penumbra, and second the full computation of all discontinuity surfaces
interior to the penumbranly when required. We call the boundary between penumbra
and light the maximal boundary, and the boundary between umbra and penumbra the
minimal boundary. The combined maximal and minimal boundary is calleeiXtnemal
boundary.

4.1 Extremal Boundary Approximation

The computation of the maximal boundary can be performed exactly, since it is formed
exclusively by EV surfaces [Camp91]. Thus these events can be identified in constant
time for each object, and subsequently propagated into the environment. The minimal
boundary can include EEE events [Tell92], which can be treated by the method de-
scribed in [DrFi94].

As an example consider the scene shown in Fig. 2. On the left we see the full dis-
continuity mesh, and on the right the extremal boundary.

Fig. 2. Complete Mesh vs. Extremal Boundary

The number of discontinuity surfaces traced through the environment is thus re-
duced significantly. In addition, since no internal detail of the mesh is computed, all
non-emitter events are ignored, and the search time for such events is eliminated.
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The computation time for the extremal boundary is significantly reduced compared
to the computation of the full mesh. In Table 1 we compare the cost of complete dis-
continuity meshing to the cost of the extremal boundary for the scenes shown in Fig.
1 and Fig. 2, as well as two other more complex scenes. As we can see, the cost of
the complete mesh computation is three to four times higher than the just the extremal
boundary. It is thus evident that large gains can be achieved if the complete mesh need
be computed only when required.

Table 1. Computation time for Complete Mesh and Extremal Boundary

Scene Polygons Complete| Extremal|Ratio Complete/
Mesh |Boundary] Boundary

Box Scene 14 0.74 sec| 0.16 sec 4.6

Table Scene 36 1.01 sec| 0.31 sec 3.2

Desk Scene 182 17.20 sec| 4.42 sec 3.8

Desk & Chair Scene 288 | 35.20 sec| 9.20 sec 3.8

4.2 Local Complete Mesh Construction

As discussed earlier, one of the goals of the approach presented here is to compute
portions of the discontinuity mesh only when necessary. The discontinuity meshing al-
gorithm presented in ([Dret94, DrFi94]) is particularly well suited to such an extension.

Given a convex region defined on a receiver for which the complete mesh is desired,
a convex volume defined by the source and that region is defined. Using the same spatial
subdivision structure as in [DrFi94], the objects contained in this volume can be found
efficiently.

To create the full meslocally in the desired region of the receiver, the discontinuity
meshing algorithm of [DrFi94] is applied using only the objects within the volume. In
this manner, a much smaller number of discontinuity surfaces are traced (only those cor-
responding to edges and vertices of the selected objects), and the number and expense
of searches for non-emitter events is also limited.

5 Simplification Criteria

In this section we discuss the simplification criteria used when two meshes are com-

bingshgiGecHsLANE, ShAY Ay iSapnlieaie@nathiltanemEubeiophpatseaRe ex-
tremal boundaries for the discontinuity mesh for each source, that the environment has
been segmented into parallelogram regions of light and penumbra/umbra. We also as-
sume that the structured sampling algorithm has been applied, subdividing the regions
of light. In each such unoccluded region a biquadratic tensor product interpolant has
been built, which represents the radiance function accurately within strict error bounds.
We call each such mesh the simplified mesh for sogtce Fig. 3 we show the sim-
plified mesh for each source for the scene of Fig. 7 (see colour section).

Given the two meshed/; and M, respectively, we proceed to “add?; into M.
Merging is performed this way purely for reasons of algorithmic simplicity. There are
three cases that must be treated:
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Fig. 3. Simplified Meshes for Box Scene

1. Merging light faces of\/; with light faces ofM,.
2. Merging light faces of one mesh with penumbral faces of the other.
3. Merging penumbral faces of one mesh with penumbral faces of the other.

For the first case, since we have the structured representation in the form of tensor prod-
uct interpolants for both meshes, we use an a posteriori error estimation to determine
whether simplification can be performed. For the second case, we determine the regions
of the penumbral group for which complete meshing is necessary. For the third case we
currently perform no simplification.

5.1 Light-Light Simplification

The simplest case is the insertion of an unoccluded (light) facaf 1/,, into the mesh

M, . The meshV/; is searched to find all faces contained inside the boundary of the face
F, being added. Call these facgh, f, ..., fn}. Within each such light fac§ of mesh

M, a (structured) biquadratic interpolasitz, y) has been defined. Correspondingly,
the structured interpolant if is s3(x, y).

To determine whether simplification is possible, we proceed to construct two bi-
quadratic interpolants: first a high quality representation of the combined radiance with
the region ofF;, denotedsn(z,y) and second a simplified representatidfn, y). The
error incurred by the simpler interpolant (compared to the high-quality interpolant) is
used to determine whether simplification can be achieved.

The high-quality interpolani (z, y) is defined as follows, in a piecewise fashion
over eachf; (this is the interpolant created when combining the meshes as in Section
3):

sn = s3(z,y) + s; (z,y), (z,y) € fi (1)

Since the interpolants{(m,y),j = 1,2 already constructed are good approxima-
tions of the actual radiance functiosh (z, y) is considered to be an accurate approxi-
mation of the combined function over the entire dom&in= U f;.

The second interpolastx, y) is defined overF, as a simple 9-point biquadratic
tensor product, for which the midpoints are used as internal defining nodes. The nodal
values are found by querying,(z, y).
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To determine whether the combined illumination from two sources can be repre-
sented accurately by the simplified interpolat, y), we use standard approximation
theoretic error estimate [Pren89]. As a first approach we computBstmorm of the
difference of the simplified and the accurate interpolants.

For theL,-norm the following quantity is computed:

Ly = ¢ /[ (a,p) = 3ol )) oy )

This integral is computed in a piecewise fashion over each tensor product domain
fi. Since boths(z,y) andsn(z,y) are quadratic functions, the integral of Eq.(2) can
be computed analytically. In practice, the analytic expression is large and numerically
unstable, so a two-dimensional Gauss-Legendre quadrature rule is used. In many cases,
the quadrature can give exact results.

If the Lo-norm is less than a user-specified tolerance, the edges of theffaaes
removed, and radiance in the domainfefis represented by the simplified interpolant
$(z,y).

In Fig. 4, we show the result of the simplification criteria applied to a scene of two
sources with no shadows. In Fig. 4(a) the original mesh is shown. From Fig. 4(b) it
can be seen that T-vertices have been introduced into the mesh. To éfscoati-

nuity, T-vertices are treated as “slave-nodes”. First all interpolants of simplified faces
are constructed. For each T-vertex, the corresponding value of the neighbouring simpli-
fied interpolant replaces the previously assigned nodal value. In Fig. 8(a) (in the colour

Fig. 4. (a) Original Unoccluded Mesh, and (b) Simplified Mesh

section) we show the image rendered using the original full mesh interpolant. In Fig.
8(b) the result of the construction of the continuous interpolants for the simplified mesh
is shown. As can be seen, the resulting images show little difference. However, a more
graded variation between simplified and unsimplified regions would be beneficial, using

a form of restricted meshing.

5.2 Light-Penumbra Simplification

Consider a penumbral group of a mekfp caused by sourc8p and a set of light
faces of the mesh/;, caused by sourcg;,, which are contained or cut the penumbral
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group. We wish to add the light faces into the mégh, and to determine the regions of

the penumbral group for which the complete discontinuity mesh must be computed. In
contrast to the light-light case, we do not have an accurate representation of the radiance
in the penumbra.

To determine whether detailed mesh computation is required, we first construct a
medium quality approximatiof(z, y) to the radiance in the penumbra, using the ex-
tremal boundary, within each light face bf,. This piecewise approximation takes into
account the extremal boundaries of the various sources, and its use is equivalent to the
accurate interpolant~ (z, y) for the light-light case. We then construct the simplified
interpolant by defining a single biquadratic tensor prodifet y). The simplification
criteria used are the same as in the light-light case.

The construction ofn (z, y) proceeds as follows. We first construct an independent
mesh defined by the bounding box of the penumbral group. We then add in the extremal
boundary of the group of mesWi . We show this construction for the box scene and the
penumbral group of one source in Fig. 5(a) (refer to Fig. 3(a) and Fig. 7 (colour section)
to understand the geometry). In this way, a coarse segmentation of the penumbral group
into regions of light, penumbra and umbra has been achieved.

For each vertex inserted into the independent mesh the appropriate illumination
value due to sourc8p is assigned. For the vertices on the maximal boundary or in
the unnoccluded regions this is the direct unoccluded illumination fgrand for the
points on the minimal boundary the value is 0. We then insert all the light fackg,of

-

penumbra \

i } t ;

Fig. 5. Mesh for Error Testing: (a) Maximal/Minimal Boundary of penumbral grougt$, (b)
Light faces ofM, added, (c) Triangulation (domain &f(z, y))

that intersect or are contained in the penumbral group boundary (Fig. 5(b)). For the
resulting vertices the value of unoccluded illumination is retrieved from the appropriate
interpolants of\/,, but it is then necessary to add the appropriate (penumbral) value due
to the sourc&p. For regions of umbra and light (due to soutsg) this can be found
simply. For vertices in regions within the penumbra however it is necessary to retrieve
an estimate of the radiance value. This can be achieved by estimating the derivative
value of radiance (see below).

The resulting combined mesh is then triangulated (Fig. 5(c)), and the piecewise
elements of the interpoladt (z, y) are built. Interior nodal values are computed either
directly (if in a region of light or umbra) from the appropriate interpolantd4p and
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Mp, or are averages of the neighbouring nodes if the node is within the penumbra.

For each region corresponding to a light faEg, the interpolant(z,y) is con-
structed. This interpolant is a simple 9-point bi-quadratic Lagrange interpolant. The
values for nodes corresponding to vertices in the combined mesh have already been as-
signed and those that remain are found by querying the interplgnty). We then
compute thel.o-norm error in the same manner as for the unoccluded case for the tri-
angles ofs(z, y) which lie in umbra or penumbra. The integral is computed over each
triangle included in the domain of the light faég . If the L, error is less than the pre-
defined tolerance, the edgesigf are inserted intd/p, the extremal boundary edges
contained inFy, are removed from the mesWp and radiance within this region is
represented by the simplified interpolant.

If the error is greater than the user specified tolerance, the region of the original
light face is marked as requiring further meshing. After processing all light faces, the
complete mesh is locally computed only for the regions required.

5.3 First Implementation and Discussion

To verify the algorithm, we have implemented the light-penumbra simplification by
first computing the complete mesh, and then simplifying the mesh where appropriate.
The full construction of the extremal boundary and the simplification algorithm have
been implemented as described above, with the exception of the local backprojection
estimate. Instead, for the light-face vertices within penumbra, the exact penumbral ra-
diance is retrieved from the (complete) mesh of souige

As mentioned above, for the penumbral regions only the portions of the simplified
mesh in penumbra or umbra are taken into consideration fak{kh@rm computation.
As noted in [Dret94], edges leading to a singular vertex display a particularly rapid
variation. To correctly account for this, in faces for which singular edges exist the light
faces are also considered in thg-norm calculation.

The results of the implementation are shown in Fig. 6. We first show the unsimpli-
fied combined mesh (a), and then the simplified mesh for tolerance values 0.005 and
0.001 respectively (b) and (c). The corresponding shaded images are shown in Fig.
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Fig. 6. (a2) Unsimplified Combined Mesh and Simplified Mesh for (b) Tolerance 0.005 and (c)
0.001

9(a),(b) in the colour section. The results of a more complicated test are shown in Fig.
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??t0 ??. The complete mesh and resulting image are shown in??jgand the reduced
meshes and images in Fig2and?? for tolerances equal to 0.1 and 0.005 respectively.

Overall the method shows promising first results. Little difference can be seen in
the simplified images compared to complete mesh image for the simple scene (Fig. 7
(b)), and the simplification appears to occur in desirable regions of the mesh as the
tolerance grows. Similarly the simplified images for the table sceneTRi§?) appear
to maintain relatively high quality, since simplification occurs in the regions in which
the detail of the penumbra is not very important.

In the tests performed it can be seen that the use of.theorm can sometimes
cause undesirable simplification (e.g., the shadow boundary of the front leg in Fig.
??(a)). A possible solution is to maintain the extremal boundary instead of substituting
with a tensor product.

5.4 Penumbral Radiance Estimates

Given the maximal and minimal boundary we propose here an estimate of the radiance
at any point in the penumbra using local backprojection information. By construction,
the minimal or maximal edges of the discontinuity mesh include information about the
local change of the backprojection. Thus a good estimate of the radiance at @point
known to be in penumbra, can be found by approximation.

To perform this approximation we first find the edge on the minimal boundary for
which the two endpoints are closest ®o We then calculate the backprojection into
the penumbra locally in a direction defined by the midpoint of the minimal edge and
the pointP. Given the backprojection, we estimate the radiance derivative, then build a
Hermite cubic from the values and the derivative estimates, and determine the radiance
value atP using the cubic. Experimental verification will determine the quality of this
approach.

6 Treating Multiple Sources

The simplification algorithm begins by computing the extremal boundary for each of the
n sources in the scene. The light regions are computed, and the structured algorithm run
for each surface. The result is a list of simplified meshes for each suffate:. M, }.
The algorithm proceeds by merging the first two meshes. The combined Megh
then merged with mesh/; etc.

For apair{ M., M} we firstinsert the light faces af; into the mesh . If alight face
of M; contains exclusively light faces @i/, or there is a parallelogram subregion of
M; with this property, the light-light simplification is applied. The penumbral regions of
both meshes are then visited, and the simplification algorithm is run for each penumbral
group. A list of regions marked as “potentially requiring meshing” is stored, together
with a pointer to the appropriate source. In addition, the interpdlafit, y) is stored
and used in subsequent tests for error bound checking. If a subsequent source eliminates
the need for the meshing, the corresponding regions are deleted from the list. Atthe end
of this process, there will be a list of regions for which the complete mesh is applied.
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7 Conclusions

In this paper we have presented an algorithm which allows more compact representation
of radiance due to multiple emitters based on careful error analysis, and allows the cost
of discontinuity meshing to be deferred until it is required.

To achieve this goal, thés-norm is used to compare an accurate representation
of radiance over a domain with a simpler one. When the simpler interpolant satisfies a
given error tolerance, it is used. For regions with unobstructed views of all sources, this
is performed as an a posteriori step. For regions in penumbra for one source and light
for another, a low-quality discontinuity mesh is first computed, and an approximation
to radiance built, which is then compared to a simpler interpolant. Results of a first
implementation show promising reduction of the mesh, and good quality images when
using the simplified interpolant.

For the future, it is extremely interesting to apply these ideas to complex envi-
ronments with many sources, to determine the savings, both in the representation of
unoccluded regions, but more importantly in the computation time for discontinuity
meshing. The subsequent step is the usage of these algorithms in a global illumination
context, since for secondary reflection the need for complete meshing is highly unlikely.
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Fig. 8. Images for (a) Original and (b) Simplified Unoccluded Meshes

Fig. 9. Images of Simplified Meshes (a) Tolerance = 0.005, (b) Tolerance = 0.001
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Accurate Visibility and Meshing Calculations
for Hierarchical Radiosity

George Drettakis, Franes Sillion
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Abstract: Precise quality control for hierarchical lighting simulations is still a
hard problem, due in part to the difficulty of analysing the source of error and
to the close interactions between different components of the algorithm. In this
paper we attempt to address this issue by examining two of the most central com-
ponents of these algorithmésibility computation and theesh We first present

an investigation tool in the form of a new hierarchical algorithm: this algorithmic
extension encapsulates exact visibility information with respect to the light source
in the form of thebackprojectiondata structure, and allows the usedigconti-

nuity meshesn the solution hierarchy. This tool permits us to study separately
the effects of visibility and meshing error on image quality, computational ex-
pense as well as solution convergence. Initial experimental results are presented
by comparing standard quadtree-based hierarchical radiosity with point-sampling
visibility to the approaches incorporating backprojections, discontinuity meshes
or both.

1 Introduction

Hierarchical simulation techniques have received a lot of attention in research envi-
ronments, but their practical use remains impaired by the difficulty of controlling the
speed/accuracy tradeoff on which they are based. Error control and solution accuracy
issues have been studied to a certain extent for global illumination algorithms [12, 1].
These studies provided a useful categorization of possible error sources, and offered a
general framework for error-driven hierarchical refinement. Nonetheless, little has been
done in terms of investigating the different causes of error in Hierarchical Radiosity
(HR) in particular, and very little is currently known about the quantitative effects on
error of different algorithmic choices used during the lighting simulation.

In this paper we attempt to address this problem by providing recommendations,
based on theoretical discussion and initial experimental results. We will concentrate
our efforts on meshing and visibility computation strategies. We begin by presenting
a non-exhaustive list of important algorithmic components in HR and we mention the
algorithms that have been proposed to improve these aspects of the simulation. For most
of these factors, the precise impact on image or solution quality, as well as possible
interactions between them, has not been thoroughly studied.

Important components of the HR simulation algorithm Broadly speaking, two main
categories of factors affecting simulation can be identified (following [difcretisa-
tion, concerning mainly issues of mesh construction and data structuresparpl-
tation which involves the aspects of the algorithm related to form-factor and visibility
computation as well as refinement strategy and convergence.

*IMAGIS is a joint research project of CNRS/INRIA/INPG/UJF. Postal address: B.P. 53,
F-38041 Grenoble Cedex 9, France. Contact E-n&eibr ge. Drett aki s@ mag. fr.



Discretisation

Meshing strategy HR relies on the ability to evaluate interactions (energy transfers)
at different levels of a hierarchy in the description of the scene. Previous algorithms
typically used simple recursive subdivision structures such as the quadtree to repre-
sent hierarchical meshes. Another approach consists of compudisgantinuity mesh

(DM) for much improved representation of direct illumination.

Mixed meshes Simple hierarchical structures such as quadtrees are easy to imple-
ment and compact to store, because they rely on implicit information. However they are
not suited to some geometrical or topological situations such as the representation of
shadow boundaries. Mixed meshes with both triangles and quadrilaterals can therefore
be used, and must provide access to connectivity information.

Computation

Visibility calculation Many radiosity implementations to date use point sampling to
evaluate visibility factors. Discontinuity meshes, when equipped with the associated
visibility information (backprojection) can provide exact visibility computation for di-
rect illumination.

Refinement Strategy Refinement criteria (sometimes called “oracles”) are the core of
the HR formulation. Many different criteria have been devised, using varying amounts
of information. Possible variables for the refinement decisions are form factor estimates,
visibility status, estimate of form factor variance, estimate of radiosity transfer, etc.

Point or Area-based form-factor computation As shown by the work of Wallace

et al.[20] for progressive refinement radiosity, higher-quality solutions can be obtained
when computing radiosity directly at mesh vertices. Area-to-area form factors require
an extrapolation/interpolation step which effectively smoothes out some of the defects
in the solution but also “blurs” the computed solution in ways which are difficult to
quantify.

Convergence The benefits of HR really become apparent when a global solution is
sought, i.e. with all interreflection effects. HR convergence is an issue that has received
limited attention and it is not known whether some of the choices mentioned above have
a significant impact on convergence.

2 Previous Work

2.1 Discontinuity meshing and backprojections

Discontinuity meshing ([9, 12, 5]) has been used to a certain extent for global illumi-
nation and HR calculations, but the meshes used have alwaygbeé@l since they

do not capture EEE and other important discontinuity surfaces. A result of this sim-
plification is thatbackprojectiongdefined in e.g. [3, 16, 18]) cannot be computed by
these algorithms. Backprojections are data structures permitting efficient determination
of the visible part of the source anywhere in the penumbra, thus effectively eliminat-
ing all visibility calculation error with respect to the light sources. Backprojections can
only be computed together with the complete discontinuity mesh (i.e. including EEE
and degenerate events), and thus have never been used so far in the context of HR.
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2.2 Combination of HR and DM

The most relevant approach to our work is that of Lischinski et al. [12]. In their work
a global solution is computed using a BSP tree. When a node is split, an appropriate
discontinuity line is chosen. A local pass is subsequently used for display, during which
analytic visibility (mainly for primary sources) is computed using an expensive polygon
clipping operation (as in [10, 17]). The main difference with the method we present here
is the fact that exact visibility was not taken into account during the solution process
and thus the different factors (visibility, meshing) affecting error could not be isolated or
analysed. Gatenby and Hewitt [5] also developed a hierarchical solution for progressive
refinement, but little was presented in terms of solution quality evaluation.

2.3 Error estimation and control

A detailed theoretical presentation of error analysis was developed by Arvo et al [1].
According to their classification, we will be dealing witliscretisation error(mesh-

ing) andcomputational error(visibility calculations). For both types of error, little is
known in practice or in quantitative terms. Lischinski et al. [11] have also developed an
approach based on error bounds for HR. The approach we present here could be inte-
grated into a system of this type, providing tighter upper and lower bounds in the most
difficult cases, those of partial visibility.

3 Efficient combination of HR and backprojections

The first step to allow experimental comparisons of the effect of meshing and visibility
calculations on the solution, is the introduction of a new algorithm incorporating back-
projections (i.e. exact visibility calculations) and the complete discontinuity mesh in
HR. Other than backprojections, this new algorithm constructs a full hierarchy on the
input surfaces by clustering the elements of the discontinuity mesh. This allows the use
of quadtrees in unoccluded regions as opposed to the use of BSP trees everywhere as in
previous partial DM solutions ([12]), while using irregular triangles in shadow regions.

3.1 Accurate visibility computation using backprojections

Given a three-dimensional scene we construct the full discontinuity mesh (with EEE
and degenerate events) which has the following property: each cell or face of the mesh
contains a data structure called a backprojection which fully describes the partial vis-
ibility of the source at each point within the mesh face [3, 16]. An example of such a
mesh is shown in Fig. 1(a).

The availability of the backprojections allows us to determine at a low cost the visi-
ble part of the source and thus the analytical value of the differential form-fég}os,
from any pointz in the penumbra to the sourée Because no visibility calculation is
needed, an accurate estimate of the form factor value is available cheaply during refine-
ment. As we will see below, the exact value is also used to determine irradiance values
at vertices within the mesh.

3.2 Mixed triangle-quadrilateral meshes

The discontinuity meshing approach presented in [3, 4] constructs a mixed, non-hierarchical
mesh containing triangles in penumbra and in irregular regions of light, and quadrilat-
erals in large regions of light. The goal here is to create a hierarchy suitable for HR
solutions, starting with the DM.
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To this end, quadtrees should be used where possible (in particular in unnoccluded
regions) due to their simplicity and ease of use, while irregular triangular meshes should
be used around shadow boundaries.

The mixed mesh structure poses certain problems of connectivity, since inhomo-
geneous mesh elements co-exist. In particular, neighbour-finding is handled by adding
simple adjacency information at the vertices of the original mesh. When a quadrilateral
or a triangle are subsequently subdivided, regular quadtrees or regular triangle hier-
archies are created. An example of an initial mesh (before subdivision) for our test
scene is shown in Figure 1(b) (see next section for the construction algorithm); the
same mesh subdivided after iterating is shown in Figure 4(b). When searching for a
neighbour within a regular mesh (triangular or quadrilateral) implicit neighbourhood
relationships are maintained, and when crossing a shared edge, the neighbourhood in
formation stored at the vertex is used to find the appropriate quadtree or triangle mesh.
We climb up the hierarchy until the parent maintaining the appropriate information is
found.

3.3 Constructing a true hierarchy from the discontinuity mesh

For each receiver containing a penumbral or umbral zone, after the discontinuity mesh-
ing and triangulation steps, we have a set of triangles corresponding to this paittially |
or occluded region. To construct a hierarchy we attach these triangles at appropriate lev-
els of a standard quadtree, such that in unoccluded regions illumination is represented
with the regular quadtree structure.

Fig. 1. (a) Discontinuity mesh and (b) HR/DM mesh for a test scene

Quadtree Subdivision We start by recursively subdividing the receiver using a stan-
dard quadtree. If a child of the quadtree contains no partially lit or occluded region,
initial subdivision (i.e. the subdivision performed before BF-refinement) terminates.
The unoccluded quadtree leaf elements are also inserted into a temporary face-edge-
vertex data structureesh. If on the other hand a child contains part of the penumbra

or umbra, subdivision continues until a predefined maximal depth is reached.
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When no more subdivision is possible, the penumbral/lit boundary edges are in-
serted intomesh. When this process is completegesh contains a set of faces corre-
sponding to the completely unoccluded quadtree leaves, and a (usually highly irregular)
face between the leaves and the penumbra/lit boundary. This face is triangulated, and
the resulting triangles are then added to the list of penumbral/umbral triangles.

The final step requires “clustering” of these triangles (both original penumbra tri-
angles from DM as well as the new triangles in lit regions) fnmes h so that they can
be correctly attached to an appropriate level of the quadtree.

“Clustering” for Penumbral and boundary regions To perform the clustering step,

a 3D clustering bottom-up construction ([15]) is adapted to 2D. A multi-level grid is
constructed, such that the smallest grid cell has the size of a maximal depth quadtree
leaf. Each level of the grid is visited, and triangles entirely contained in a cell at a given
level of the grid are attached to the corresponding quadtree inner node (if it exists). The
triangles contained in a given cell at a given level are grouped to form an internal node.
This node is then inserted at the appropriate level higher in the multi-level grid, if it is
contained in a cell at that level. The contents of this grid cell will in turn be attached to
the appropriate level of the quadtree.

In this manner we have a mixed hierarchy which starts at the root as a normal
guadtree, and has children which may be regular quadtree subdivisions, or agglomer-
ations of triangles or individual triangles (in the case of elongated triangles which can
occur in the context of discontinuity meshing). An example is shown in Figure 1(b).

It must be noted that due to the bottom-up construction, we have the ability to insert
the entire DM into the hierarchy (as is done here). In many cases simplification should
probably be performed, but the generality of the method permits maximal flexibility.

4 Impact of algorithmic choices on solution and image quality

In this section we revisit the different algorithmic components of HR mentioned in the
introduction, and discuss their relevance. This discussion serves both as a first attempt
to investigate the influence these factors have on the solution as well as on each other,
and as motivation for the experimental approach developed in the following section.

4.1 Meshing strategy

The use of quadtrees has many advantages: the structure is simple to handle and ma-
nipulate, it allows implicit neighbour finding operations, and provides well shaped ele-
ments which is important in the context of any numerical approximation ([13]). Interpo-
lation and extrapolation operations are also readily performed in these structures since
elements respect regular ratios. Nonetheless, the very regularity of the quadtree struc-
ture hides its inadequacy in representing high-frequency irregular information such as
shadow boundaries.

Discontinuity meshing provides an appropriate solution to the problems of visual
representation of shadow boundaries. The problems with such meshes are however nu-
merous. Other than the issues related to numerical accuracy in construction [19], these
meshes tend to contain far too many elements ([4]), and they result in badly formed tri-
angles which pose problems for interpolation/extrapolation operations as well as being
formally unadaptable to finite element approaches ([13]). It is difficult to determine a
priori when the use of such meshes is advisable in the context of HR.
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4.2 Visibility calculation

In traditional HR approaches, visibility is computed by ray-casting between two patches
p andgq. A form-factor disc approximation is then multiplied by the fraction of rays
blocked, which is used as a visibility estimate. This approximation influences the form-
factor estimation as well as refinement, and has repercussions which are difficult to
isolate.

Given the mesh and backprojections, two important changes can be incorporated
into the treatment of the direct illumination links: characterisation of links as partial,
occluded or unoccluded (in the spirit of [19]) can be performed accurately immediately
after the discontinuity meshing step and the calculation of irradiance values at the ver-
tices during the solution is exact. The estimate of area-to-area form-factors can also be
significantly improved since each sample of the kernel function is calculated with the
exact visible portion of the source.

4.3 Direct lllumination at Vertices for HR

In standard HR (using a piecewise constant approximation), irradiance is "pushed”
down the hierarchy to the leaf nodes ([6, 14]). This irradiance is then converted to
radiosity which is subsequently extrapolated to the vertices of the leaves and "pulled”
up the hierarchy. If the backprojections are available, we can compute exact irradiance
values due to light sources at all vertices very cheaply, since no visibility computation
is required (points are either in a penumbral (or umbral) mesh face or in light). It is
thus only natural to skip the "push” step for the light source, and simply evaluate the
exact irradiance at the vertices of the mesh. These values are then averaged, resulting
in a radiosity value assigned to the leaf, and then "pulled” in the normal manner up
the hierarchy. We note that this direct shading should only be performed at the vertices
originally in the discontinuity mesh, or for vertices on hierarchy leaves with a link to
the source (in the current implementation it is performed at all vertices).

This approach has a double advantage of producing visually accurate results (see
Figure 5(iv) in Colour Section) while simultaneously providing a highly accurate, hier-
archical representation of direct illumination, which will, hopefully, result in an overall
higher quality global illumination simulation.

4.4 Refinement criteria

In traditional HR approaches, “BF” refinement has been used, which essentially re-
quires a link between two surface elements to be refined if their mutual form-factor
multiplied by the power on the link is larger than a threshold [8]. The philosophy of
this approach is to reduce the respective size of the elements on the two sides of a link,
thus reducing visibility error since all interactions tend to be either occluded or visible
([19]), and reducing “integration error” of the area form-factor integral since the ker-
nel varies. Another approach involves a “smoothness” criterion for the kernel used in
Wavelet-based HR ([7]).

When exact visibility is available, neither of these criteria is entirely satisfactory.
Since we can cheaply determine the visible part of the source, we could apply a (point-
to-area) form-factor variation criterion (this is similar is spirit to the “smoothness” cri-
terion). Subdivision will be thus better adapted to the variation of irradiance on the
receiver, since the source in never subdivided.
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4.5 Convergence

The issue of convergence is rarely addressed in HR research. Following the original
definition and structure of the algorithm [8], we define convergence as a sequence of
iterations involving a Refine step followed by an (optional) loop of Gather-Push/Pull
operations until the result is no longer modified. The iteration terminates when no new
links are created (“convergence”).

One of the issues we wish to investigate is the effect of meshing strategy and visibil-
ity on the rate of convergence. Intuitively it seems that a good representation of direct
illumination and accurate visibility computations should improve the convergence rate.

5 Comparison of some strategies and initial experimental results

The new algorithm presented in Section 3 provides an environment that allows a first
investigation of the relative effect of meshing and visibility error on image and solution
quality.

5.1 Experimental configurations

Four different algorithmic configurations are considered: (i) HR, using regular quadtree
subdivision and ray-cast visibility calculation (QT/RT), (ii) HR regular quadtree sub-
division and using backprojections (QT/BP), (iii) HR with full discontinuity meshing
and ray-cast visibility (DM/RT) and finally (iv) HR with full discontinuity meshing and
backprojections (DM/BP).

Comparing (i) and (ii) quantifies the effect of visibility error in form-factor com-
putation, and the resulting effect on the solution. Comparing (i) and (iii) demonstrates
the importance of the use of the discontinuity mesh as a basis for the subdivision in
HR. Finally, the combined effect of the mesh and accurate visibility becomes evident
by comparing configuration (iv) to the others.

Two test environments “Desk+Chair” (Fig. 1) and “Books” (Figure 5 in the colour
section) with specific points of view have been chosen. The scenes are lit by large light
sources giving rise to large regions of penumbra (which favours the use of backpro-
jections). In addition, the “Books” scene contains many regions of small fine shadow,
for which discontinuity meshing is advantageous. There are 133 polygons (268 distinct
edges) in “Desk+Chair” and 241 polygons (484 distinct edges) in “Books”.

A reference solution is computed for both scenes, using a standard quadtree subdi-
vided very finely, and run to convergence with a very small tolerance value. We compute
an L, error on the pixel RGB values.

(@) QT/RT (b) QT/BP (c) DM/RT (d) DM/BP

Fig. 2. “Desk+Chair” images
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5.2 Quality evaluation and test suites

For each run we present the total computation thgte convergence, the final number
of leaves at convergenéeand theL, image erroe after convergence for the given tol-
erance. We also report (where applicable) DM construction tyne((ii)-(iv)) triangle
clustering timet.. ((iii) and (iv)) and the numbetly,,, of leaf elements after the mixed
hierarchy construction but before subdivision ((iii) and (iv)). All reported timings are
on an SGI R4400 Indigo 2 at 150 Mhz.

For the two scenes, we have attempted to maintain approximately the same num-
ber of elements, to provide a “fair” comparison. This requires the judicious choice of
parameters BF; minimum area size and the visibility factor as defined in [8]. The re-
sulting images for “Books” are shown in colour in Figure 5, while small versions of
“Desk+Chair” are shown in Figure 2. Meshes for “Desks+Chair” are shown for illus-
tration in Fig. 4 for cases QT/BP and DM/BP. The numerical results are summarised in
Table 1.

[ Solution [t (S)[tam (S)tec (S) lam [ 1 Te] [ t:(S) [tam(S)tc (S lam | I e ]
(i) QT/RT [413.9 - - -139116.7 838.1 - - -|87599.2
(i) QT/BP |531.3 71.4 -136502.8 1076.6 394.5 -|81684.2

(i) DM/RT[604.9 71.4 98.5336545026.0 1332.§ 394.5 95.05929832(8.2
(iv) DM/BP|310.1 71.4 98.5324439823.0 782.1 394.3 95.05775969693.7

Table 1. Test results: (left) “Desk+Chair” and (right) “Books”

5.3 Results of Experimental Study

The test results presented above are by no means definitive or complete. The nature of
experimental work is such that it is difficult to come to concrete conclusions from a
set of given tests. Nonetheless, we believe that the results presented provide interesting
insight into the problems related to visibility and meshing in the context of HR.

For both scenes we see that DM/BP provides the most computationally efficient
solution, despite the overhead of mesh creation and hierarchy construction. The image
quality is always better (Fig. 2, and Colour Fig. 5), and numerically accuracy is either
better or on a par with all available alternatives. In the case of fine shadow features, the
discontinuity mesh is particularly advantageous.

Visibility Visibility accuracy is of predominantimportance. Solution (ii) QT/BP is nu-
merically the most accurate for “Desk+Chair”, but DM/BP is visually superior (see Fig.
2, 5). DM/BP is however more accurate numerically for “Books”. The use of backpro-
jections enhances numerical and visual quality more than the use of DM alone. The
visual quality of QT/BP can be very high, as is the case for “Desk+Chair”.

Convergence In Fig. 3 we compare thé; image error at each iteration for the two
scenes. The accuracy of the visibility computation appears to directly influence con-
vergence. Solution (ii) has the best behaviour for “Desk+Chair”, but the DM is more
important for “Books”, for which the DM/BP solution has the lowest error. In the case
where QT/BP is numerically better, the difference is insignificant.
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Meshing Discontinuity meshing without exact visibility results in visual artifacts, and

is computationally expensive. This is particularly evident for “Desk+Chair” (Fig. 2).
Previous algorithms avoided this problem by using “final gather” type approaches [12]

Nonetheless, the irregular meshes produced add a high overhead in the global so-

lution, simply by the shear number of leaf elements at the outset (Table 1) (a similar
observation was made by Lischinski et al. [12]). An obvious remedy is to investigate
the use of simplification techniques for meshing (e.g., [2, 4]), while maintaining the
original backprojection information for visibility computations.

N
a

DM/BP o

= N
@ o
%

i
S)
T

L1 Image error
L1 Image error

a
T

Lo o o o o 0 0o o0 o o o

oo

. .
4 6 8 4 6 8 10 12 14
Iteration number Iteration number

Fig. 3. Convergence for different approaches (a) “Desk+Chair” (b) “Books”

(a) Quadtree HR + Backprojections (b) DM/HR + Backprojections

Fig. 4. Test suite mesh images

6 Conclusions

We have presented a first approach to investigating sources of error due to visibility
computation and meshing strategies. A list of important factors affecting HR compu-
tations was presented and discussed. To facilitate experimental investigation we intro-
duced a new hierarchical radiosity algorithm which incorporates backprojections (and
thus exact visibility with respect to the source) and discontinuity meshes.
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This approach has permitted the comparison of standard quadtree-based HR using
traditional point-sampling for visibility with the case where visibility is calculated with
backprojections, HR discontinuity mesh with point sampling and finally HR disconti-
nuity meshing with backprojections.

A number of interesting observations were made from an experimental study relat-
ing the different effects of the use of analytic visibility (backprojections) and discon
tinuity meshes for HR light transport. Overall, it was observed that visibility accuracy
is much more important than the use of meshing. Nonetheless, DM with BPs adds to
overall visual quality. Many more experimental tests are required to confirm the obser-
vations made here as well as to investigate other aspects of the solution process.

Numerical difficulties and robustness problems are inherent in all discontinuity
meshing approaches. A comprehensive solution to this problem is being pursued for
scenes of moderate complexity. A algorithm to simplify discontinuity meshes for the
mixed hierarchy is also currently being investigated.

AcknowledgementsThe first author thanks Xavier Pueyo for initial discussions on the subject.
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Fig. 5. Results of the four selected combinations for the “Books” image.
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Abstract

Interactive rendering of soft shadows (or penumbra) in scenes with moving objects is a challenging problem.
High quality walkthrough rendering of static scenes with penumbra can be achieved using pre-calculated discon-
tinuity meshes, which provide a triangulation well adapted to penumbral boundaries, and backprojecticims whi
provide exact illumination computation at vertices very efficiently. However, recomputatios anfplete mesh

and backprojection structures at each frame is prohibitively expensive in environmentheasithing geometry.

This recomputation would in any case be wasteful: only a limited part of these structures actually nbeds to

recalculated. We present a novel algorithm which uses

spatial coherencevefmant as well as the rich visibility

information existing in the discontinuity mesh to avoid unnecessary recomputation after objext. irofiartic-

ular we isolate all modifications required for the update of the discontinuity mesh by using an augmentad spati
subdivision structure and we restrict intersections of discontinuity surfaces with the scene. In addition, we develop
an algorithm which identifies visibility changes by exploiting information contained in the planar discontinuity
mesh of each scene polygon, obviating the need for many expensive searches in 3D space. A full atiplement

of the algorithm is presented, which allows interactive updates of high-quality soft shadows for scenes of moderate
complexity. The algorithm can also be directly applied to global illumination.

Keywords: Illumination, soft shadows, incremental update, discontinuity meshing, backprojection, dynamic

scenes.

1. Introduction

High quality rendering for scenes lit tgrealight sources

is an important component of any lighting system. Such dis-
play is typically performed using ray-casting to successfully
render the soft shadows penumbral. An alternative ap-
proach is the use of discontinuity meshing with backpro-
jections. Thediscontinuity mesiprovides an initial decom-
position of the scene which is used to create a subdivision
into simple polygons, whose edges are well adapted to the
penumbra contours and the discontinuities of illumination in
the interior of partially shaded regioAS. The computation

of the full discontinuity mesh (capturing all illumination dis-
continuities due to the light source) permits the calculation

T E-mail: {Celine.Losco$ George.Drettakis@imag.fr
t imMAGIS s a joint research project of CNRS/INRIA/UJF/INPG.

(© The Eurographics Association 1999. Published by Blackwell Publishers, 108 Cowley
Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA 02148, USA.

of backprojections. 4. The backprojection structure encodes
exact visibility of any point in the scene with respect to the
light source, thus providingxactillumination (irradiance)
values at the vertices of the subdivision and at any point in
the penumbra. Very high quality rendering of soft shadows
can be achieved in this manner, using a polygonal decom-
position on a graphics hardware pipeline. We are therefore
able to interactively visualise scenes with accurate soft shad-
ows on graphics workstations as long as the objects in the
scene do not move. If the geometry changes, existing algo-
rithms require the complete recomputation of the disconti-
nuity mesh and the backprojections, which is prohibitively
expensive, and definitely precludes user interaction.

In this paper we present an algorithm which allows inter-
active rendering of high quality shadows for scenes where
objects move, which we catlynamicscenes. Our new al-
gorithm is based on discontinuity meshing and backpro-



jections, thus providing accurate soft shadows for interac- al. 9, and also Chen et al0. In these approaches moving
tive display. To achieve interactive update rates for dynamic shadows were treated by re-shooting energy to remove them
scenes, the algorithm exploits spatial coherence of the re- from their previous positions, shooting negative energy to
quired modifications to the data structures related to shadows reinstate them elsewhere. Modifications in the environment
and the local nature of changes in the discontinuity mesh. had to be ordered by a queue due to the nature of progressive

This locality is encoded in the rich structure of the disconti-
nuity mesh, which permits us to identify the visibility events
by simply examining the planar discontinuity mesh on the
polygons.

This novel algorithm is useful in several contexts. Since
primary illumination is dominant in many situations, high
quality direct lighting with soft shadows can be used as a
standalone interactive visualisation program offering a much
higher level of realism compared to traditional point-source
interactive lighting systems. In addition the algorithm can be
used as a first interactive design phase before a global illu-
mination solution, for object placement and general model-
ing in a scene. Although we treat only direct illumination,
this approach can be applied in the context of global illumi-
nation. Our method thus opens an interesting avenue of re-
search for combined discontinuity meshing/hierarchical ra-
diosity approaches such as those previous presérfieinh
the context of dynamic scenes.

The strategy adopted to achieve interactive display of soft
shadows with moving objects is based on two main compo-
nents: (i) intelligent data structures which localise and thus
accelerate access to changing visibility information and (ii)
an efficient update algorithm which takes into account both
spatial coherence and visibility information contained in the
mesh. After presenting related previous work in Section 2,

we present the data structures used in Section 3 and the in-

cremental shadow update algorithm is described in Section
4. We next present the results of the implementation in Sec-
tion 5. In Section 6 we discuss future work and conclude.

2. Previous work
2.1. lllumination in Dynamic Scenes

Most previous work in illumination for dynamic environ-

refinement. Special attention was paid to efficiently treating
shadows due to direct illumination. A more involved data
structure for maintaining shadow form-factor lists has been
presented! for progressive refinement radiosity.

A first approach for hierarchical radiosity has been pre-
sented2. A similar approach was presented by SHawin
this work, a “motion volume” was used to identify the links
affected by the displacement of an object.

2.2. Discontinuity Meshing for High-Quality
lllumination

For polygonal scenes lit by area sources, discontinuity mesh-
ing 14152.4 was introduced to improve the quality of ren-
dering for scenes containing soft shadows. To create the dis-
continuity mesh with respect to a sourdéscontinuity sur-
facesare cast into the environment. These surfaces are the
interaction of an edge and a vertex\( surface) or three
edges EEE surfacel6 17). The reader unfamiliar with dis-
continuity surfaces is strongly encouraged to refer to the ap-
propriate referencet 2 4. Algorithms which treat all such
eventsl6 2.4, can then incrementally compute thackpro-
jection data structure, which encodes all visibility informa-
tion with respect to the source.

A first approach for dynamic environments rendering us-
ing discontinuity meshing with BSP trees was developed for
point light sources by Chrysanthou and Sldter

Worral et al. have presented a new approach for area
sources?. In their method, illumination is computed on a tri-
angulated discontinuity mesh in the context of a progressive-
refinement radiosity method. The discontinuity mesh ver-
tices are updated by taking into account certain visibility
changes. Triangular mesh coherence is maintained and ra-
diance values are updated for each triangle of the mesh by
shooting the irradiance difference compared to the previ-

ments has concentrated on global solutions. Some researchous mesh. An interesting criterion is introduced, determin-

has been performed in ray-tracing (e4,,which is specif-
ically related to the view-dependent nature of ray-tracing,

and is thus unsuitable for rendering approaches based on in-

teractive visualisation using current graphics hardware.

The output of radiosity algorithms was used very early
on with graphics hardware, permitting realistic interactive
walkthroughs albeit with the restriction to static environ-
ments. The first attempt to remove this restriction was the
approach of Baun§, in which motion was predetermined
and the region of space affected was preprocessed to accel
erate the calculation of form-factors for each frame.

More involved approaches, based on the progressive re-
finement radiosity algorithm were presented by George et

70

ing whether a change in visibility occurs in the mesh. This
approach is limited td&V discontinuity surfaces, with ver-
texV on the source. Moreover, the focus of Worral et al.'s
work is the update of the triangulation, whose cost is min-
imal compared to the casting of discontinuity surfaces, es-
pecially in complex environments. It is important to note
that the approach presentedf computes an incomplete
mesh, sinceEEE and other important discontinuity sur-
faces are ignored. As a consequence, backprojections can-
not be computed. Visibility must thus either be approximated

(e.g., by ray-casting), or be calculated by clipping the entire
scene against the source, which is extremely expensive. Such
visibility computation typically dominates the computation
time>.



In contrast, our new approach is totally different, since the
complete discontinuity mesh and backprojections are incre-
mentally updated at each frame. The exact visible part of
the source can thus be determined very cheaply at any point
in the penumbra, without a visibility calculation, since this
information is encoded with the backprojectichsThus at
every frame, we have exact (analytical) irradiance values for
all the vertices in the mesh. Before presenting the complete
algorithm, we describe important data structures used in the
algorithm.

3. Data Structures for Efficient Update

In this section we present the data structures used to accel-
erate the update of shadows in dynamic scenes. In what fol-
lows we define astaticthe edges and vertices which belong
to static objects, i.e. objects which do not move. The ob-
ject that moves will be referred to as thgnamicobject. We
define asdynamicedges and vertices which belong to the
dynamic object. As a consequence, we dgthamic discon-
tinuity surfacestheEV or EEE surfaces which are defined
by at least one edge or vertex of the dynamic object, and
static discontinuity surfacebose which are defined entirely
by static edges or vertices. Finallyreeshedge omeshver-

tex, is a two-dimensional edge or vertex which is part of the
planar discontinuity mesh calculated on each scene polygon.
We use avinged-edgelata structure used to store the mesh
and access it efficientl§. The deletion of mesh edges can
thus be performed locally and rapidly, as well as the incre-
mental update of backprojections.

The three data structures used to localise and thus ac-
celerate access to information which modifies visibility and
thus shadow calculations at each frame, are the following:
(a) discontinuity surface storage in the spatial subdivision
structure, (b) the motion volume and (c) intersection lists for
modified discontinuity surfaces.

3.1. Storage of the Discontinuity Surfaces in the Spatial
Subdivision

The scene is decomposed into a regular gidised for effi-
cient casting of discontinuity surfacésEach voxel contains
the list of polygons that cut it. In addition to this we add the
list of discontinuity surfaces which intersect the voxel. This
list is created on-the-fly, during the propagation of disconti-
nuity surfaces. An example of this list is shown in Fig. 1.

The lists of discontinuity surfaces associated with each
voxel allow the rapid identification of all visibility events
affecting an area of space, by simply traversing the corre-
sponding voxels. As a consequence, we can perform efficient
incremental updates in the region of a moving object.

Figure 1: Discontinuity surfaces in a voxel (see also colour
section).

3.2. Construction of a Motion Volume

The region of space for which visibility is affected by the
motion of an object is entirely limited by theaximal
(i.e. delimiting the frontier between light and penumbra)
edge-vertexKEV) discontinuity surfaces defined by the light
source and the polyhedron of the moving object for the ini-
tial and the final position. In addition there is no change in
visibility in the region of space between the dynamic object
and the light. As an illustration see Fig. 2, where the max-
imal discontinuity surfaces are shown as the dark grey sur-
faces, containing all interior discontinuity surfaces, such as
that shaded in light grey.

Discontinuity surface

interng| ——

mSource

A
N\
/R

Q Dynamic object

Maximal surfac/es/

Penumbra

Figure 2: The maximal surfaces are shown in dark grey and

the interior surfaces in light grey. Notice that the maximal

surfaces encompass all the others.

Given this property, we can define a simplified approxi-
mation to the exact volume in space affected by the motion

The storage overhead of the lists is small (between 65 and which we call amotion volume This volume is delimited
300 Kb) for the test scenes presented in the results (see Secby a plane parallel to the source above the uppermost side

tion 5), which use a moderately-sized grid (15x15x15).
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(i.e. closest to the source) of the dynamic object, a plane



Intermediate VO|UFE\‘

Intersection of
maximal surfaces

| Dynhamic object

Out plane—

(@)

Motion volume
before movement

Motion volume
after movement

AN

stz

Motion volume

\Source

~Dynamic object

(b)

Complete motion volume

2\source

Position 2

Figure 3: Motion Volume construction: (a) The maximal surfaces of the dynamic object are intersectetendtitplane: a

plane parallel to the source, and tangent to the bounding volume of the scene. The 2D bounding box of the contour of the

maximal surfaces (dark grey segment on the outplane) is found. A four-plane volume is themctedstith the 2D bounding
box of the source. (b) The volume is cut by a plane parallel to the soumeeahe object, (c) Volumes for position before and

after the move (d) Complete motion volume.

parallel to the source plane which is completely outside the
scene, and four planes surrounding the maximal surfaces
(see Fig. 3(a)-(b)).

In our current implementation three volumes are created.
One for the first position of the object, one for the final posi-
tion, and one that is the bounding volume of the two previous
volumes (see Fig. 3(c)-(d)). Since we consider a small dis-

3.3. Storage of Intersection Information with the
Discontinuity Surfaces

The casting time for the discontinuity surfaces is mainly con-
centrated in the testing and intersection parts of the casting
operation. Due to the richness of information already in the
mesh, we can avoid a large part of this cost by storing some
additional information with the discontinuity surfaces.

Consider the case of movement shown in Fig. 4(a) and

crete motion at each frame, we currently use the bounding (P). corresponding respectively to the position of the dy-

volume as the motion volume for updates. For larger dis- Namic object before and after the move. We know that the
placements, the use of the two independent volumes would ONly possible change in visibility for surfaces such as those
be more appropriate since their intersections would be small Shown in Fig. 4 can be caused by the dynamic object. As a

or inexistant. Otherwise the bounding volume would include ¢onsequence we do not need to search or intersect the dis-
too much unchanged space. continuity surface with any other object in the environment

at each frame. If the dynamic object were moving away from
the discontinuity surface after Fig. 4(a) it is evident that we
would not need to recompute the intersection of the discon-
tinuity surface with the environment, nor recompute the vis-
ibility on the surface.

Note that this construction does not limit the dynamic ob-
ject motion in any way. At any frame, the previous and cur-
rent positions are available, and thus the user may interact
freely with the dynamic object. Given the construction of The intersections of the polygons with the discontinuity
the bounding volume, this motion can be of any type (trans- surface are storedeforevisibility processing. An example
lation, rotation), a scale operation, or a discrete curved tra- is shown in Fig. 5(a). Notice that after visibility processing,
jectory. which occurs as a 2D operation in the plane of the discon-
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() (b)
Figure 4: Dynamic object motion (a) the dynamic object (floating parallelepiped) does not cut the static EV disitpnti

surface, (b) the object moves forward and cuts the discontinuity surface.

Discontinuity sun‘ace\
Intersections after

visibility

Discontinuity surface

Intersections

Figure 5: Intersection information storage (a) the intersectiongs,i3,i4 (in dark grey) are stored with the discontinuity
surface before visibility computation. (b) the actual intersections (in light grey) after the visimlityputation performed in the
plane of the discontinuity surface.

tinuity surface (or 2-D parametric space f6EE), the in- 3.4. Input Scenes
tersections are changed, resulting in the final mesh edges in-
serted in the discontinuity mesh (e.g., two mesh edges for
the floor - see Fig. 5(b)).

As shall be seen later, we will be identifying visibility
changes based on information in the mesh (see Section 4.3).
In order to find all visibility changes, input scenes need to
be closed environments. This ensures that all discontinuity
surfaces have intersections with at least one scene polygon
at any time. This guarantees that all the information required
can be found in the mesh.

This list is stored with the discontinuity surface. For ex-
ample the listiq,io,i3,is in Fig. 5(a) is stored with th&V
surface shown. When treating a static discontinuity surface
at a given frame, we only perform a new intersection with the
dynamic object. We thus avoid the cost of searching forand  Considering only such scenes is not a strong restriction,
performing intersections with all the other (static) objects in since open environments can easily be changed by enclosing
the scene. the scene in a box.
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In addition, we suppose that the area source cannot move
since the entire mesh would have to be updated. Techniques
such as the Visibility Skeletoft are probably more appro-
priate for this type of update, and will undoubtedly lead to
efficient discontinuity mesh and backprojection algorithms
for moving sources (see also Section 6).

4. Update Algorithm

Given the storage of discontinuity surfaces in the spatial sub-
division structure, the creation of the motion volume and the
storage of intersections with the discontinuity surfaces, we
can now present the machinery required to perform efficient
updates of the discontinuity mesh and backprojections.

The shadow update algorithm needs to perform the fol-
lowing steps: (a) identify the volume of space modified,
and collect related discontinuity surfaces which need to be
updated (functionfindChangedSpaceAndRSb) identify
and process the region modified on each input polygon; (c)
identify the visibility changes for each modified discontinu-
ity surface (functionfindAndProcessVisibilityChangeqd)
cleanup the parts of the mesh which are invalid within each
region; (e) update the mesh, and finally (f) update the shad-
ows and the illumination.

In this manner we will have performed the necessary up-
dates in the parts of the discontinuity mesh affected, and
thus the soft shadows will correspond to the new position of
the object. Both spatial coherence using the motion volume,
and the information in the mesh are used to identify poten-
tial changes in visibility. Note that after these updates, the
discontinuity mesh and backprojections are entirely recom-
puted, and the values of irradiance in the penumbra correct
We examine each step of the algorithm in detail.

4.1. ldentification of Affected Discontinuity Surfaces
and Mesh Region

We first identify (using the grid) all discontinuity surfaces
and polygons contained in the motion volume. The disconti-
nuity surfaces concerned are inserted into aDiSj for the
dynamic surfaces, ardS; for the static surfaces. The inter-
sectionRyq of the volume with each polygon is then com-
puted, as shown in Fig. 6(a). The intersectidtyg of the
volume with the polygons concerned are outlined in Fig. 6(b)
in white. This two-dimensional polygoRyq is in effect the
modified region for each input polygon.

4.2. Processing of Mesh Edges in Modified Regions

Due to the winged-edge data structure used to store the
mesh, we can efficiently identify the mesh edges which are
modified. In particular, we find the mesh face containing a
corner ofRyq and search all neighbouring faces recursively
until no mesh edges crossing or containedRiy can be
found.
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processModifiedEdge§ {
foreach input polygonp
Poly2dRyy = modified region ofp
foreach mesh edgein Ry
if eis dynamic
addeto dynEdgeDelList
else if shouldDeleteStaticé )
addeto statEdgeDelList

}

Figure 7: Modified Mesh Edge Processing

For each mesh edge we identify those which need to be
deleted. All dynamic mesh edges will be removed, as well
as the static mesh edges for which a change in visibility
occurs, with respect to the dynamic object. More precisely
shouldDeleteStat(e) is true only if the discontinuity sur-
face associated to the edgmtersects the dynamic object at
its initial or its final position. The corresponding static dis-
continuity surfaces are marked as changed. This process is
summarised in Fig. 7, and detailed in what follows.

After processing the edges in the modified regions, we
have two listsdynEdgeDelLisandstatEdgeDelLiswhich
are the mesh edges to be removed when the information they
contain is no longer needed.

4.3. Finding and Processing the Visibility Changes in
the Modified Regions

Recall that the routindindChangedS paceAndDSreturns
two lists which give us all the discontinuity surfaces passing
through the motion volumeDS; for the static discontinuity
surfaces an@S; containing the dynamic discontinuity sur-
faces.

For each surface, we identify the related visibility changes
and perform the appropriate updates required to reflect the
dynamic object motion. The process is summarised in Fig. 8.

4.3.1. Static Discontinuity Surfaces

For each static discontinuity surface which is on theDiS§g

and has been marked changed, we compute new intersec-
tions with the polygons of the dynamic object, if such in-
tersections exist. Note that a static discontinuity surface may
intersect the dynamic object in its upper part, between an ob-
ject vertex and the source edge, resulting in no mesh edges
because of the object occlusion. Therefore a discontinuity
surface may interact with the dynamic object without being
detected by the previous mesh traversal. The use dd&e

list is thus very important because it avoids the cost of an
object-space search. With this list, we are able to consider
such surfaces.

We then modify the intersection list of the discontinuity
surface by either adding, deleting or modifying the informa-
tion encapsulating the intersections of the surface with dy-
namic object.
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Figure 6: (a) Intersection of motion volume with polygons (see also colour section), (b) modified regiprigRvhite).

findAndProcessVisibilityChanges) { dynamicEV surface will intersect the corner of the static
processStaticSurfacé3$;) object. This can be detected of course in three-dimensions,
processDynamicSurfaces%y) but this would imply a costly search in space. Instead, we
} can directly identify this change in the discontinuity mesh.
processDynamicSurfaceist DS;) { Consider the mesh edgg corresponding to thEV surface,
foreach surfacedsin DSy shown in grey in Fig. 10(a). Due to the motion, the edge
if dsis EV will traverse the mesh vertex(Fig. 10). The mesh vertex
processEV(s) is due the crossing of the mesh edges (in white), caused by
} two staticEV discontinuity surfaces, due to tsamesource
vertexV (Fig. 9(b)). Because of this traversal of a mesh edge
Figure 8: Finding and Processing Visibility Changes generated by the same source vertex, we know that there is

a visibility change concerning the dynani®/ surface, and
that it is due to the static object in question.

4.3.2. Dynamic Discontinuity Surfaces
To determine all such traversals, we need to perform a

For dynamic discontinuity surfaces, we can easily see that search in the mesh related to each dynamic discontinuity sur-
their intersections with the scene polygons always change. face. For each dynamic discontinuity surface, we have stored
In addition, the motion of the dynamic object can resultina he jist of intersections with the polygons of the scene, for
change in the visibility configuration of each surface withre- o previousposition of the dynamic object. We will thus
spect to the static objects (new intersections, disappearanceyrayerse this intersection list, and for each polygon which
of intersections etc.). Much relevant information is contained a5 intersected. we will find the region defined by the in-
in the mesh, and most notably is related to the static mesh tesection points of the surface with the polygon, before and
edges. We thus avoid the cost of the search of intersections 4fter the move. These correspond to the endpoinis, dfe-

for each dynamiEV _surface, involving an expensive traver- o1 (Fig. 9(a)) and after (Fig. 9(b)) the move. Within this
sal of many objects in the scene. region, we identify all static mesh edges. We again use the

The treatment oEV surfaces was inspired by Worrall et~ adjacency information of the winged-edge data structure to
al. 12 who analyze the intersection of two edges of a mesh access these mesh edges rapidly. This is the reason why we
and decide whether a change in visibility occurs. In their d0 not remove any mesh edges before this step in the algo-
work, a change occurs if the two corresponding discontinuity rithm.
surfaces of the mesh edges share the same source vertex. We
extend this idea to all types &V edges and present a novel
solution for the case of dynamiEEE surfaces.

We then test to see if the conditions for a change in visi-

bility are satisfied: that is whether the vertéxor the edge

Es of the corresponding stati€V are the same as the edge
EV SurfacesConsider the example given in Fig. 9: the or vertexV of the dynamic discontinuity surfacaDs This

dynamic object (the small object on the right), has a dynamic process is summarised in Fig. 11 for the case BVg. sur-

EV surface related to the source veriéxInitially it does face (with verteX/ on the source and ed@eon the dynamic

not cut the static (larger) object. When moving inwards, the object). TheEgV (edge on source, vertex on dynamic ob-
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EV mesh edge e,

(b) (b)

Figure 9: The small object is dynamic, moving towards the Figure 10: Dynamic discontinuity surfaces treatment: (a)
larger object. Dynamic EV discontinuity surface: (a) before the EV discontinuity surface of Fig. 9 results in edgeire

the move there is no intersection with the static object, (b) the mesh. In (b) we see its new position. The modified search
after the move the dynamic surface intersects the static ob- region for EV is defined by the two positions gf 8ince the
ject. vertex v is crossed, a visibility change has occurred.

ject) case is treated similarly, by considering the equality of One edge on the source (this is the most common type of

the generating edgE with Es as well as the two vertices EEE surface). This allows us to avoid a costly search for
defining the edge. EEE surfaces related to the source, which is otherwise re-

N . " o ) quired at each frame.
If a visibility change is identified, the dynamic discontinu-

ity surface is intersected with the corresponding static object, _ To understand this, consider the tvieV surfaces in
and its intersection list is updated. The same process could Fig. 12(a), created by a source polygon edge, a polygon
be applied to non-emittdV surfaces. edge on the dynamic object and a static polygon edge.
When the dynamic object moves, the surfaces will inter-
EEE SurfacedrorEEE surfaces an algorithm which finds  sect (Fig. 12(b)), and thus twWBEE surfaces will be cre-
all visibility modifications from the mesh is much more in-  ated. One such surface is shown in Fig. 12(c) with edges E
volved, due to the complications implied by their curved of the source (adjacent to V), E1 and E2. The sedb&dE
nature. Nonetheless, we are capable of determining when surface is built with E1, E2 and the second edge E’ adja-
a EEE surface will be created, maintained or destroyed, in cent to V. These changes can be determined easily. When
particular for the case in which the discontinuity surface has testingEVs,c changes we check to see if the dynamic sur-
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Figure 12: (a) Two EV surfaces which do not intersect (b) Intersection of the EV surfaces (c) One of the two EEE surfaces
created. Figures replicated in the colour section.

processE\( DiscSurfacesvDs) { the listsdynEdgeDelLisandstatEdgeDelListind remove
updateDStoNewPositiorgvDs) the edges from the mesh within the modified region. The
foreach intersectionoldDsi of evDs winged edge data-structure allows us to perform all removal-
newDsi= evDs— insertion operations efficiently and locally within the mesh.
computeNewlIntersectiodi — polygon()) Adjacency information is accessed directly from the edge
Poly2d p2dys =

pointers stored in the aforementioned lists. After removal,
we are ready to perform the visibility updates required for
the static and dynamic surfaces which require them.

findRegionAffectedgld Dsi, newDsi)

switch (evDs—type() )

case :EVgc

findVisibilityChangep2dg s, evDs) We first visit every modified surface &S; andDSy, and

perform a two-dimensional visibility operation on the dis-
continuity surface. This operation is a fast sweep algorithm
which processes the intersection information stored with the
discontinuity surface. Recall that this information always
corresponds to the geometric stheforevisibility process-

findVisibilityChange E Vg ¢
(Poly2d p2d, DiscSurfaceevDs) {
EdgeE = evDs—edge() Es
VertexV = evDs—vertex(),Vs

foreach mesh edgen in p2d ing. This operation costs much less than a complete re-cast
DiscSurfaceds; = em —getDiscSurface() of a discontinuity surface which would involve a search in
Es = dss —edge() 3D and the re-intersection with the scene objects.
?}{S\:/d_sic\fnexo Once the visibility is performed, we insert the segments
s == . . o
P = polygon containing edgEs into the discontinuity mgsh. These segments are thus cor-
updatelntersectioa¢Ds P) rectly updated for occlusion.
checkForEEE() We now have a discontinuity mesh which is completely
} up to date with respect to the new position of the dynamic
} object. We simply update the backprojection information in
Figure 11: Finding Visibility Changes for Dynamic Discontinuity the_faces Wh'Ch_ were m_Od'f'e,d' These faces were m_arked
Surfaces during the deletion and insertion of mesh edges. We incre-

mentally traverse the faces changed and update the back-
projections concerned. The same incremental algorithm as

*that presented iA’2 4 is used. Since the number of modi-
fied faces is small, we can efficiently compute all the exact
visibility information in the penumbra very efficiently.

face crosses a static surface generated by the same verte
The creation of the twd EE surfaces is performed by the
routinecheckForEEKsee Fig. 11).

The final step required is the update of the mesh vertex
illumination values, which again is restricted to the mesh
After processing all mesh edges in the modified region and faces modified. This operation is again very efficient, since
identifying potential visibility changes we no longer need the backprojections compactly encodempleteand exact
the mesh edges which will be modified. We thus traverse visibility information. We thus rapidly compute exact irra-

4.4. Edge Cleanup, Mesh and Illumination Update
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diance values on the vertices in the penumbra which have
changed.

It is important to note that the result of the update algo-
rithm is not an approximation: at every frame, the solution
is exact, and results in a mesh computed as if we were per-
forming the entire re-computation of the discontinuity mesh
and the backprojections.

5. Implementation and Results of the Update Algorithm

We have implemented the update algorithm and tested it on
an Indigo2 R4400 running at 150MHz. The three test scenes
are shown in Fig. 13. The scenes contain respectively 145,
307 and 475 polygons. The dynamic object is a box floating
above the desk and its movement is given as four consecutive
positions. We perform two different tests. The motion for
Test 1 is shown in the sequence of Fig. 17, the motion for
Test 2 in Fig. 18.

In Table 1ttg corresponds to the time which is required
if the entire discontinuity mesh is to be recalculated at each
frame. The timérp is the total time spent by our algorithm
to update the mesh and the backprojections, as well as the il-
lumination. All times are in seconds. The colusshows the
speedup (ratio betweengandttp). The additional memory
overhead for the storage of the intersection lists is on average
19 Kb for Scene 1, 46 Kb for Scene 2 and 60 Kb for Scene
3, in what concerns Test 1, and 17 Kb for Test 2.

As we can see, the update times are interactive for Test

6. Summary, Discussion and Future work

The algorithm presented here provides accurate soft shadow
updates for dynamic scenes at interactive rates. We first pre-
sented data structures that provide rapid access to relevant
information, by exploiting spatial coherence. These struc-
tures permit local treatment of the visibility update. The in-
herent structure of the discontinuity mesh was then used to
find and update local changes of visibility for both static and
dynamic discontinuity surface&V and EEE surfaces are
treated in this manner. Finally, backprojections and lighting
are efficiently updated exclusively in the parts of the mesh
which have changed. Thus at each frame, analytic irradiance
values are computed, resulting in high quality soft shadows.

Large scenes (more than several thousand polygons) can-
not be directly treated with the implementation presented
here. This is mainly due to problems of numerical precision.
Numerical robustness problems occur during the computa-
tion of the intersections between objects and discontinuity
surfaces and also during the calculation of the arrangement
of the line segments forming the winged-edge data structure.
Both problems can be addressed by adopting a symbolic
computation approach based extremal stabbing lineas
described in the context of the Visibility Skeleton (V38)

All discontinuity surface/object intersection calculations can
be replaced by the extremal stabbing lines, and the adjacency
information available in the VS can be used to overcome the
problems of the topological construction.

Other improvements of the our method should also be in-
vestigated. In particular, the use of a uniform grid, although
simple to program, is definitely inefficient for more complex

1, between 1.2 seconds per frame for the simplest scene andScenes. The use of arecursive grid or an octree type structure

(containing 145 polygons), to 2.5 seconds/frame for the most
complex scene containing almost 500 polygons. In addition,

notice that the additional memory required is small (less than

50Kb) for Scene 2. For Scene 3 (475 polygons) speedup can
reach 90 times, compared to the recomputation of the com-
plete mesh at each frame.

The localisation of the modified space has the benefit that
the cost of the update algorithm does not depend heavily on
the complexity of the rest of the scene. Notice that update
times seem to grow sub-linearly with respect to scene com-
plexity (number of polygons).

In Test 2 (performed only on Scene 1), a different move-
ment of the dynamic object is performed, with greater in-
teraction with the other objects (see Fig. 18). The visibility
complexity is thus augmented by the number of static sur-
faces treated and the complication of the mesh. Notice that

should provide interesting results.

Furthermore, depending on the movement of the object,
we could also use individual volumes for the two posi-
tions and apply the algorithm presented for each. If the ob-
ject moves only a little, we can use the bounding volume,
whereas if the object moves a lot, resulting in negligible
overlap between the initial and final volumes, it is probably
better to use the two volumes.

More importantly, this paper opens a direction of research
which will lead to an algorithm which limits the updates
only to those strictly necessary. The incremental method pre-
sented for dynamic surfaces indicates a potential for such
an approach. What is needed for this type of algorithm is
an exhaustive classification of all events which occur in the
discontinuity mesh in time, and the corresponding actions
which must be taken. Optimality may thus be achieved by
developing a “sweep” algorithm in time. Approaches simi-

the update takes between 1.3 and 2.7 seconds. The additionaly to the Visibility Complexe2 or the more recent Visibility

cost is thus not overwhelming.

Our implementation is definitely unoptimised, and we
thus believe that significantly improved update rates could
be achieved by fine-tuning.
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Skeletorr! will prove useful in this direction.

Finally, the algorithm developed here should prove
very useful in the context of mixed hierarchical radios-
ity/discontinuity meshing approachés In particular, a
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Figure 13: (a) Scene 1 (b) Scene 2 (c) Scene 3. Figures replicated in the colour section.

(©

Pos. tts ttp S tts ttp S tts ttp S

Pos1l 57.67 136 424 122.33 1.79 68.3 22251 233 894
Pos2 5786 1.25 46.3 12391 1.81 685 22575 235 79.7
Pos3 58.13 1.24 46.9 125.16 191 655 227.60 2.48 84.3
Pos4 5855 1.27 46.1 125,97 1.99 63.3 230.22 246 85.3

Results for Testl: Scene 1 (145 polygons)

Scene 2 (307 polygons)

Scene 3 (475 polygons)

Pos. tts ttp S

Pos1l 58.74 129 455
Pos2 6053 191 31.7
Pos3 61.24 223 275
Pos4 61.69 266 23.2

Results for Test 2 (Scene 1)

Table 1: Results for the Update Algorithm.

method similar to that described # could be combined
with our approach to achieve interactive updates for global
illumination.
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Figure 14: (a) Discontinuity surfaces in a voxel, (b) Intersection of motion volume with scene polygons

(b)

(©

Figure 15: (a) Two EV surfaces which do not intersect (b) Intersection of the EV surfaces (c) One of the two EEE surfaces
created
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(b)
Figure 16: (a) Scene 1 (b) Scene 2 (c) Scene 3

(b)
Figure 17: Test 1: (a) position 1 (b) position 2 (c) position 3 (d) position 4

(d)

(@) (b) (©

Figure 18: Test 2: (a) position 1 (b) position 3 (c) position 4
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2.4.5 The 3D Visibility Complex, a new approach to the problems of accurate visi-
bility (EGRW’96)

Auteurs : Fedo Durand, George Drettakis et Claude Puech
Actes : 6th Eurorgraphics Workshop on Rendering
Date : juin 1996
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The 3D visibility complex :
a new approach to the problems of accurate visibility.

Frédo Durand, George Drettakis and Claude Puech

tMAGIS *

Abstract: Visibility computations are central in any computer graphics applica-
tion. The most common way to reduce this expense is the use of approximate ap-
proaches using spatial subdivision. More recently analytic approaches efficiently
encoding visibility have appeared for 2D (the visibility complex) and for cer-
tain limited cases in 3D (aspect graph, discontinuity meshes). In this paper we
propose a new way of describing and studying the visibility of 3D space by a
dual space of the 3D lines, such that all the visibility events are described. A
new data-structure is defined, called @B visibility complex which encapsu-
lates all visibility events. This structure is global and complete since it encodes
all visibility relations in 3D, and is spatially coherent allowing efficient visibility
queries such as view extraction, aspect graph, discontinuity mesh, or form factor
computation. A construction algorithm and suitable data structures are sketched.

Keywords: visibility, visibility complex, spatial coherence, discontinuity meshing,
form factor

1 Introduction

Visibility calculations are central to any computer graphics application. To date, no
approach has been presented to encode all visibility information in a 3D scene.

In this paper we will present a new approach, which we calBibevisibility com-
plex which encodes all visibility information contained in a three dimensional scene.
This research is in a preliminary phase, since an implementation has not yet been un-
dertaken, but we believe that the importance and potential use of such a structure justify
its presentation even at the stage of conception.

Related works The first attempts to cope with the cost of visibility computations in-
volved space partitioning structures but they provided only local visibility information.
Arvo and Kirk [1] subdivide the 5D ray-space for ray-tracing. Teller [13] uses the 5D
Plcker duality to compute the antipenumbra cast by an area light source. He also de-
veloped algorithms for scenes naturally divided into cells [15] where the visibility is
propagated through portals. In computer visiondbpect grapli7, 6] has been devel-

oped to group all the viewpoints for which an object has the same “aspect”. An aspect
changes along visibility events which are the same as for the discontinuity meshing
techniques [8]. These techniques have thus been extendebauitprojection$3, 12]

to provide the aspect of the source. Recently, efficient data structures have been devel-
oped for the 2D case [10, 5] and have inspired our research, although the new approach

* Laboratoire GRAVIR /
IMAG. iIMAGIS is a joint research project of CNRS/INRIA/INPG/UJF. Postal address: B.P.
53, F-38041 Grenoble Cedex 9, France. Contact E-Reiéder i c. Dur and@ nmag. fr.



has been developed from scratch with the specifically three-dimensional problem in
mind.

2 Description of the 3D Visibility Complex

In this discussion we will consider scenes of general convex objects, but the concepts
will also be given for the polygonal scenes where appropriate. Visibility will be defined
in terms of ray-objects intersections. If we consider the objects to be transparent, a ray
is not blocked and all the objects a line intersects must be considered. If however we
want to take occlusions into account, we will consider maximal free segments which are
segments having no intersection with the inside of the objects and whose length is max-
imal (their two extremities lie on the boundary of two objects or are at infinity). In what
follows we will often refer to them simply asegmentsSegments can be interpreted

as rays which caseethe two objects on their extremities. A 3D line can be collinear

to many segments, separated by the objects the line intersects. In this paper, we will
introduce concepts first in terms of line visibility (where all the objects intersected by
a line are considered) and then in terms of segment visibility (where the occlusions are
taken into account).

We wish to group the segments (or the lines) which see the same objects. A partition
of the set of segments into connected components according to their visibility is thus
required. Since sets of segments are not intuitive objects, we will try to representthemin
a dual space which will afford a better understanding of intricate visibility relationships.
A suitable duality will thus be used for the purposes of illustration and presentation.

2.1 Duality

We have chosen to decompose the 4 dimensions of line space into two dimension of
direction (the spherical coordinaté®, p) of the director vector of the lines) and a
projection(u, v) onto the plane perpendicular to the line and going through the origin.
The axes of the planes are chosen such &salongt A y 2. The intersections of a
line with two parallel planes could also be used. Nonetheless, we believe that such an
approach makes the interpretation of lines sharing one coordinate harder.

Visualizing 4D space is very hard. It can be seen as a moving 3D world with the 4th
dimension being time. One approach is to use slices (in this paper we wjll fix:t)
which can be seen as frames in time. Such a slice will be calledl&ce. Since each
slice will be a 3D spacéf, u,v), it will sometimes be useful to cut one more time
and considerp andf constant. We will obtain a 2D slice where onlyandv vary,
composed of all the lines which are parallel and have the dire¢fign). Such a slice
will be called ady-slice. These 2[¥-slices are easier to handle and visualize. They
justify in part the choice of the duality because they can be interpreted as orthographic
projections of the scene.

2.2 Tangency curves

Line Visibility Visibility changes when a line becomes tangent to an object. The set
of lines tangent to one object is a 3-D set in the 4D dual space. This means, more
intuitively, that a line has 3 degrees of freedom to stay tangent to one object. We will
call the dual of the set of lines tangent to an objecttémgency volumef this object.

% Discontinuities occur ap = +Z, but since we use this duality for the purpose of presentation
and visualization we can ignore them without loss of generality.
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Fig. 1. (a) Duality (b) Tangency Volume of a sphere. Thexis « = 0, v = 0) is shown for
eachy-slice providing a better 3D visualization. In the left-hapeslice, which corresponds to
the discontinuity in the duality fop = 7, the “cylinder” just turns around thgaxis. The lineD
intersects the object and has its dual inside the tangency volume.

Figure 1b shows a representation of the tangency volume of a sphere. Fas-each
slice, the set of tangents is a sort of 2D “cylinder”, forming a 3D structure in the 4D dual
space. If we consider a 2@p-slice (horizontal in figure 1b) the set of tangents sharing
that direction is a circle in the dual space. This is general: because of the definition of
u andw, the set of tangents to one object in one direction is the outline of the object in
this direction.

If a line has its dual on the tangency volume, it is tangent to the object. If the dual
is inside the 4D set bounded by the tangency volume, it intersects the object, similarly
to line D on figure 1b.

Segment Visibility Let us now consider visibility with occlusion. A line which in-
tersects the object is collinear to at least two segments, one before and one after the
object.

Consider &y-slice such as that on the lower left of figure 2. The sets of lines that
intersect and that do not intersect the object are bounded by the outline of the object.
For segment visibility we have to consider the segments that see the front ofi¢ioé ob
and those that see its back. Since such segments are collinear to the same line, they are
projected on the same pointin the 4D line dual space. Consequently the set of segments
that see the front and the set of segments that see the back of the object are projected
onto the same position of the 4D dual space as shown in the right of figuree2. Th
outline, which is the set of tangents to the object for the chésamd p, is incident to
the three sets (front, back and no intersection). This means that a segment tangent to
the object has topological neighbours that do not intersect the objects, some that see the
front, and some that see the back.
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To differentiate the segments, we add a pseudo-dimension. It is not a continuous
dimension since we just have to sort all the collinear segments. If we intpeset,
¢ = ct andv = ct, the sets of segments can be represented by a grahbwn on
the lower right. Each tangent corresponds to a vertex of the graph. This graph is a 1D
structure embedded in 2D. Similarly, fofa-slice, the sets of segments are represented
by a 2D structure embedded into 3D. We call the partition of the segments of direction
(8, ¢) according to their visibility theuxiliary compleXor (6, ) (see also figure 4).

In a similar manner, &-slice is in fact a 3D structure embedded into 4D, and the
sets of segments is a 4D space embedded into 5D.

line visibility segment visibility
ron
scene
acl
do not intersect do not intersect

dual8¢-slice ° ‘ ¢ ¢ back

| | | |
| | |
slice for v=ct of
theB¢-slice

front

back

Fig. 2. Visibility for § = ¢t andy = ct. If we consider lines (on the left), visibility can be
described by a planar structure (below). But if we consider segments (on the right) we have
different levels on this plane depending on the side of the object. The set of segmentglavhich

not intersect and the sets of those that intersect the front or the back of the object share the same
boundary, the tangents to the object which correspond to its outline. Recall that the Auxiliary
Complex shown on the lower right is a 2D structure embedded into 3D, i.e. it is “empty “, since
the points outside the surfaces have no meaning.

2.3 Bitangents

Line Visibility Now consider two objects. If a line has its associated dual point inside
the tangency volumes of both objects, it intersects them both. The tangency volumes
give us a partition of the dual space of the 3D lines according to the objects they inter
sect. We call this partition thdual arrangementlts faces are 4D sets of lines which
intersect the same objects. They are bounded by portions of the tangency volumes which
are 3D. The intersection of two tangency volumes is a 2D set corresponding to the lines
tangent to the two objects (bitangents).

For ap-slice the set of bitangents is a space curve (shown as dashed line in figure 3
on the twop-slices on the right). It corresponds to the intersection of the two “cylinders”

% Itis in fact an embedding of a graph since the points on the edges also have a meaning
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which are thep-slices of the tangency volumes. The slice of a 4D face is a volume
corresponding to the intersection of the inside of the two cylinders.

Fig. 3. Dual arrangement for two spheres.

Segment visibility An auxiliary complex for two objects is shown on figure 4 for a
given direction. It is still delimited by the outline of the objects, but for example the
outline of the upper sphere has no influence on thé3seft segments that see the back

of the lower sphere. Note that the two bitangents (shown in fat black lines) are incident
to all faces.

Figure 5 is ap-slice forp = 0 of all the faces of the scene composed of two
spheres of figure 3. The view in a given direction is shown on the left of the cylinders,
and we consider the associated auxiliary complex shown six times on the top of the
schema. Each time, a face is hatched and a volume is drawn below which corresponds
to the p-slice of the face of the visibility complex g = 0. Note that the union of
these volumes is more than the entire 3D space, sigeslie of the complex is a 3D
structure embedded into 4D.

2.4 Tritangents

Consider now a scene of three objects. A line tangent to the three objects has its dual
at the intersection of the three tangency volumes. A set of connected tritangents is a 1D
set in the 4D dual space. Its projection op sslice is a point. The set of tritangents can

be also interpreted as the intersection of the three sets of bitangents.
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scene 0¢-slice of the dual space of the segments
Auxiliary complex

Fig. 4. Auxiliary Complex for two spheres. Recall that the auxiliary complex is a 2D structure
embedded in 3D. In the lower representation, only the points on the surfaces represented are
associated with segments. In the upper view, the faces of the auxiliary complex have been moved
out to make their incidences easier to understand.

A

Fig. 5. ¢-slice forp = 0 of the faces of the visibility complex of the previous sceAds the set
of segments that see the frontBf B is the set of segments that see the back .of' is the set
of segments betweeh and R. It can be interpreted as the intersection of set of lines thalsee
and the set of lines that sé& and in the dual space it has the shapeldh B. D is the set of
segments that see the frontfof Since the visibility is occluded bR in this direction,D has the
shape ofB — A. Similarly, E is the set of segments that see the bacRoFinally, F' is the set
of segments that see none of the two spheres. It is the complemdnt @ .
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Figure 6 shows part of the visibility complex of a scene of three spheres. On the
p-slice p = 0 two orthographic views of the scene = 0 (View 0) and forf = 6,
(View 2) are drawn next to the correspondihin the p-slice. The sett” of segments
that see the spherégandB is shown by its two slice$, andF,;. Note that it is the
intersection of the tangency volume Bfand B minus the tangency volume 6f. The
tritangents are the points in white. Note also that because of the occlusion by the sphere
G, lines that are bitangents of tife and B do not correspond to bitangent segments.
This is shown in figure 7 which is a zoomed view of theslice p = 0. The set of
bitangentsB, is cut because bitangent lines suchlaitersectGG and correspond to
no bitangent segment. We can thus see that the tritaffgeartdT;, are the intersection
of the p-slices of the three tangency volumes, and are also incident to the three sets of
bitangentsBy, Bj, andBy;.

Note that a scene does not necessarily contain tritangents in the general case.

Fig. 6. Visibility Complex of a scene of three spheres.

3 Data Structure and Storage Complexity

3.1 Overview of the Data Structure

We have defined the dual arrangement which is the partition of the lines of the 3D space
into connected components according to the objects they intersect. It is a 4D structure.
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Fig. 7. Zoomed view of thep-slicep = 0.

Similarly, the 3D visibility complex is the partition of the maximal free segments
of 3D space into connected components according to the objects they touch. It is a 4D
structure embedded into 5D. The dimensions and incidences of the boundaries of the
faces are summarised in table 3.1.

Note that the elements of the visibility complex and those of the dual arrangement
are not the same. A line can be tangent to two objects and correspond to no bitangent
segment because of occlusions.

In the general case, a scene can have a degenerate visibility complex with no vertex
and no tritangency edge.

Dim|Scene configuratigm-slice in the dual spate Name
4 OEO 0 face
3 (2R @ tangency face
2 CLT) O bitangency face
1 A o tritangency edge
0 f& vertex

Table 1. Elements of the visibility complex

3.2 Polygonal case

In the case of polygonal scenes, the outlines of the objects can be decomposed into
edges and vertices. Consequently the tangency volumes of a polygon can be divided
into sets of lines going through the edges which are 3D sets, and sets of lines going
through the vertices which are 2D sets. A 2D component of the complex corresponds
to a segment touching two edges, or to a segment touching one vertex of a polygon.
In the same manner, the 1-faces of the complex correspond to segments going through
three edges (th& EE events of the aspect graphs or of the discontinuity mesh) or to
segments going through an edge and a vertexftfieevents). Vertices of the complex
canbeEEEE or EEV or V'V events. In particular a line (or a segment) going through
the vertex of a polygon can be interpreted as being tangent to the two edges incident to
this vertex.
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In the polygonal case the visibility complex is always non-degenerate since there
are alwayd/V vertices andE'V 1-faces.

3.3 Complexity

In the general case, there exist convex objects for which the number of faces of the
complex is unbounded. However, in the polygonal case, the storage complexity of the
visibility complex isO(n?*), wheren is the number of edges of polygons. This com-
plexity depends strongly on the configuration of the scene. We show below that the
proposed construction algorithm@¥n log n.

As mentioned in the introduction, practical experience with discontinuity meshing
has shown that the scenes studied in computer graphics tend to have more optimistic
visibility complexity than that predicted by the theoretical worst case [3].

4 Applications of the approach

4.1 View computation

A view around a point is defined by the extremities of the set of segments going through
this point. The set of segments going through a point is a 2D surface in the dual space
(v andv can be expressed witin () andsin(p)). The view can be expressed as the in-
tersection of the visibility complex with this surface. Each face intersected corresponds
to an object seen. An intersection with a tangency volume corresponds to an outline in
the image. The ray-tracing algorithm is equivalent to a sampling of such a surface.

In figure 8, the surface described by the lines going through viewpoiigt rep-
resented by itgp-slices which are curve