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Introduction

La synthèse d’images a connu au cours des derni`eres ann´ees un développement impressionnant. L’
amélioration du mat´eriel d’une part, et la conception des nouveaux algorithmes d’autre part, nous per-
mettent aujourd’hui de synth´etiser des images r´ealistes de tr`es haute qualit´e.

Malgré cela, beaucoup de probl`emes restent `a résoudre. Dans ce mémoire nous allons nous int´eresser
principalement aux problèmes durendudes images, c’est-à-dire la génération des images depuis un mod`ele
géométrique bien défini. Les domaines qui nous intéressent sont la d´etermination de la visibilit´e et le rendu
haute qualit´e, le calcul de l’éclairage sur les objets du modèle, le rendu interactif de ces images y compris
pour la réalité augment´ee, (les scènes mixtes, contenant `a la fois des objets r´eels et virtuels). Ces trois
domaines regroupent l’ensemble de nos travaux pendant cette période.

Dans le domaine de la visibilit´e analytique nous avons ´etendu le travail de la th`ese [Dre94b] sur les
maillages de discontinuit´e ainsi que sur l’´echantillonnage structur´e de l’éclairage. Ensuite nous avons in-
troduit une nouvelle structure de visibilit´e globale, leComplexe de Visibilité. Le complexe permet de coder
toutes les informations de visibilit´e d’une sc`ene dans l’espace des segments libres maximaux, en regrou-
pant les droites qui voient le mˆeme objet. Cette structure a ét´e ensuite simplifi´ee, donnant lieu auSquelette
de Visibilit́e, qui est une structure bien plus l´egère en m´emoire, et plus facile `a implémenter. Le squelette a
été d’ailleurs utilisé pour une application de simulation d’´eclairage.

Nos travaux sur le calcul de l’´eclairage pour des sc`enes très complexes, se penchent sur deux aspects : le
premier concerne la complexit´e géométrique des sc`enes et consiste `a améliorer les algorithmes de radiosité
hiérarchique ; le deuxième essaie de surmonter les probl`emes liés `a la simulation de l’´eclairage dans des
environnements non-diffus, en utilisant une représentation directionnelle.

Nos travaux plus r´ecents se concentrent sur les problèmes li´es au rendu interactif. Nous avons d´eveloppé
un algorithme à base d’images pour am´eliorer la visualisation des sc`enes très complexes. Pour un rendu
interactif de haute qualit´e nous avons introduit deux approches, une bas´ee sur la radiosit´e en utilisant des
structures de données qui permettent une mise à jour rapide de l’´eclairage, et une autre basée sur le lancer
de rayons qui pr´esente `a l’utilisateur une image approximative mais avec un temps de r´eaction interactif.
Pour la réalité augmentée enfin, nous avons d´eveloppé deux approches. La premi`ere permet l’ajout et
la manipulation d’objets virtuels dans une scène r´eelle. La deuxi`eme permet également de changer les
conditions d’éclairage, d’ajouter des lampes virtuelles et mˆeme d’enlever des objets r´eels, tout en gardant
un temps de mise `a jour interactif.

1.1 Structure du Mémoire

Nous avons r´edigé trois principaux chapitres, couvrant les travaux de chaque th`eme. Après chaque
chapitre en franc¸ais se trouvent les articles eux-mˆemes, donnant les détails des travaux. Nous présentons
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ensuite les conclusions et quelques perspectives pour l’avenir.
Les travaux d´ecrits dans ce m´emoire sont dans leur grande majorit´e des travaux effectués en collabo-

ration avec des coll`egues ou dans le cadre des stages DEA ou des th`eses que j’ai co-dirig´es. Les noms de
mes collaborateurs sont cités dans les endroits appropri´es.
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2

Calcul de haute pŕecision en utilisant des
méthodes analytiques de visibilit́e

Les algorithmes d’´eclairage, connus comme� algorithmes de radiosité� , ont réussi d’une part à
produire des images contenant des ombres douces caus´ees par des sources ´etendues (non-ponctuelles), et
d’autre partà simuler de fac¸on satisfaisante des effets secondaires caus´es par la diffusion de l’´eclairage.

Les algorithmes de radiosit´e, malgré leur succ`es, essaient surtout de calculer une imagerapidement. Le
calcul de la visibilité, c’est-à-dire la partie d’une source qui est visible depuis un r´ecepteur, est central dans
tout calcul d’éclairage. La précision de ce calcul est d´eterminante pour la simulation d’éclairage de haute
qualité. De plus, ce calcul est généralement très coûteux : sa complexit´e est au moins lin´eaire par rapport
au nombren d’objets contenus dans la scène, pourchaquéechange source-r´ecepteur, et il peut en avoirn2.

Dans ce chapitre, nous présentons nos travaux qui portent sur des algorithmes d’´eclairage qui utilisent
des structures dites� analytiques� , c’est-à-dire qui donnent une réponse exacte ou très pr´eciseà la
question :� quelle est la partie visible d’une source depuis un r´ecepteur ?� . Dans ce cadre nous avons ´eté
amenés à developper de nouvelles structures de visibilit´e globale.

Le résultat de l’utilisation de ces m´ethodes est le calcul d’images de haute précision et de grande qualité
en ce qui concerne l’éclairage.

2.1 Echantillonnage structuŕe et Maillages de discontinuit́es

Une façon efficace de repr´esenter la partievisibile d’une source étendue (non ponctuelle) depuis un
point sur un récepteur est l’utilisation demaillages de discontinuité. Un maillage de discontinuit´e par
rapport a une sourceSdivise l’environnement en cellules (oufaces) qui ont une vue homog`ene de la source
S. Cette division résulte de la propagation dessurfaces de discontinuité qui génèrent des changements de
la structure de la partie visible de la source.

Les deux principaux types de surfaces de discontinuit´e sont présentés dans la Figure 2.1, calcul´ees par
notre syst`eme de maillage de discontinuit´e.

La vue homogène de la source depuis une face, que l’on appelle� projection-arrière� , donne la
capacité de calculer exactement la partie visible de la source d’un point arbitraire dans une scène, sans
avoir besoin de recalculer la visibilit´e chaque fois.

L’algorithme que nous avons d´eveloppé [DF94] aétendu le travail de Heckbert [Hec92], en ajoutant le
traitement des surfaces de discontinuit´e quadriques caus´ees par l’interaction de trois arˆetes de l’environne-
ment (voir Figure 2.1(b)), et l’utilisation d’une subdivision de l’espace pour propager d’une fac¸on efficace
les surfaces de discontinuité.Étant donn´e ce maillage, le calcul de la projection-arri`ere est possible d’une
façon très efficace avec l’introduction d’un algorithme local, qui ne dépend pas directement de la com-
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(a) (b)

FIG. 2.1: (a) Une surface de discontinuit´e, créée par une arête et un sommet (EV pour edge-vertex en
anglais). (b) Une surface de discontinuit´e EEE (triple arête).

plexité de la sc`ene. L’utilisation des statistiques des environnements typiques a permis de d´eterminer que
les problèmes de complexit´e théoriquement insurmontables, ne sont pas gênants en pratique pour beaucoup
d’environnements d’int´erieur (bureaux etc.).

Les maillages calcul´es de cette mani`ere ontété ensuite utilis´es pour le calcul des images exactes (analy-
tiques), qui sont utiles comme images de r´eférence, et aussi pour cr´eer des visualisations interactives avec
des images contenant des ombres de haute qualit´e. Pour calculer ces images rapidement nous avons utilisé
des interpolants quadratiques pour repr´esenter la lumière. Un exemple d’une telle image est présent´e dans
la Figure 2.2.

FIG. 2.2: Image calcul´ee par l’algorithme [DF94] des maillages de discontinuit´e. Cette sc`ene comporte
1000 polygônes d’origine.

Les maillages calcul´es sont indispensables pour la création d’une image exacte, pour laquelle au-
cune approximation n’est permise. Par contre, il est souvent suffisant de faire une approximation quand
la précision requise n’est pas très importante.

Dans la poursuite des travaux apr`es la thèse, nous avons d´eveloppé une méthode pour la simplifica-
tion des maillages, bas´ee sur des m´ethodes purement géométriques. Les expériences ont montré qu’il est
possible d’avoir une repr´esentation d’assez haute qualit´e de l’éclairage en simplifiant les maillages d’une
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façon assez importante (40-60 %) par l’enl`evement d’arˆetes peu utiles du maillage. Nous avons ´egalement
montré qu’il est suffisant d’utiliser des interpolants linéaires ou mixtes lin´eaire/quadratique en combinant
les techniques pour les m´ethodes sans ombres [DF93] avec l’approche des maillages [DF96].
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Avec maillage d’origine Avec maillage simplifi´e Maillage d’origine Maillage simplifié

FIG. 2.3: Comparaison de l’image rendu avec le maillage d’origine et l’image avec le maillage simplifi é de
56% en utilisant la m´ethode de [DF96].

FIG. 2.4: (a) Une sc`ene comportant un objet simple et deux sources lumineuses. (b) Le maillage au sol
complet, et (c) le maillage simplifi´e en consid´erant l’effet des deux sources [Dre94a].

Un exemple de cette m´ethode est montré dans la Figure 2.3, où nous montrons l’effet de la réduction
de nombre d’arˆetes du maillage par 56%.

Dans les situations o`u plusieurs sources ´eclairent la mˆeme sc`ene, il est également possible de simplifier
les maillages. Dans ce cas, il arrive souvent que l’´eclairage dˆu à une deuxi`eme source rende invisibles les
détails des ombres de la premi`ere source, et donc le calcul dépens´e pour le premier maillage est gaspillé.

Pour traiter ce problème, nous avons d´eveloppé une méthode [Dre94a] o`u l’on calcule d’abord un
maillage très simplifi´e, avec un gain de temps de calcul significatif, et o`u l’on applique ensuite des crit`eres
d’estimation d’erreur pour d´eterminer si le calcul du maillage complet est n´ecessaire localement. Cette
méthode donne des maillages simplifi´es, en consid´erant l’effet simultan´e des sources multiples. Un exemple
est présent´e dans la Figure 2.4.
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(a) (b)

FIG. 2.5:Les maillages respectifs pour le cas de (a)� quadtree� et (b) de maillage de discontinuit´e.

2.1.1 Éclairage Global

La recherche décrite ci-dessus porte exclusivement sur l’´eclairage direct. L’utilisation de la richesse
d’information existant dans la structure de la projection-arri`ere est plus utile encore dans le cadre de la
simulation de l’éclairage global.

(a) QT/TR (b) QT/PA

(c) MD/TR (d) MD/PA

FIG. 2.6: Dans (a)-(d) nous pr´esentons les r´esultats des diff´erentes configurations. QT signifie maillage
� quadtree� et MD maillage de discontinuit´e. TR signifie que la visibilit´e est calculée par lancer de
rayons, et PA par la projection arri`ere.

En introduisant une nouvelle structure hiérarchique `a base de maillages de discontinuit´e et de projections-
arrières nous avons d´eveloppé un outil d’investigation des sources d’erreur dans le calcul de la radiosité
hiérarchique. Cette étude a permis de d´eterminer l’importance de la pr´ecision des calculs de la visibilit´e et
des conditions pour lesquelles un maillage adapt´e est aussi important [DS96].
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Considérez par exemple les images présent´ees dans la Figure 2.5. Dans (a) nous pr´esentons un maillage
type� quadtree� et (b) le nouveau maillage pour une scène simple. Pour une sc`ene similaire, consid´erez
les résultats pr´esentés de Figure 2.6 (a)-(d). Nous voyons clairement que le meilleur résultat est acquis
en utilisant à la fois les maillages de discontinuit´e (MD) et la projection arrière (PA) pour la visibilité.
Les maillages de discontinuit´e sans visibilité exacte par contre, donnent des artefacts tr`es visibles (cas (c)
MD/TR).

2.1.2 Éclairage Direct pour des Sc̀enes Dynamiques

Un problème particulièrement important des systèmes d’´eclairage actuels est la nécessit´e de déplacer
des objets, traitant ainsi des sc`enes� dynamiques� . Le déplacement interactif d’un objet dans une sc`ene
éclairée en utilisant les maillages de discontinuit´e n’est pas possible avec les algorithmes existants. Cela
est dû au fait que le calcul du maillage est long, mˆeme pour des sc`enes de taille mod´erée. Dans le cadre
du stage DEA de C´eline Loscos, que j’ai encadr´e, nous avons d´eveloppé un algorithme de mise `a jour
incrémentale du maillage et des projections arri`eres qui permet un affichage presque interactif pour des
scènes de centaines de polygones, en utilisant la cohérence spatiale et la coh´erence de la visibilit´e [LD97].

(a) (b) (c)

FIG. 2.7: (a) Le volume de d´eplacement. (b) Le petit objet se deplace au dessus du bureau. Chaque mise à
jour nécessite moins de deux secondes.

Pour atteindre des mises `a jour interactives, nous utilisons un� volume de d´eplacement� (voir Figure
2.7(a)). Le déplacement de petits objets (Figure 2.7(b) et (c)) peut ˆetre fait avec notre m´ethode en quelques
secondes par image.

En conclusion, la recherche men´ee sur les maillages de discontinuit´e a démontré l’importance de la
précision des calculs de visibilit´e dans le cas de l’´eclairage direct mais aussi dans le cas global, ainsi que
l’importance des maillages adapt´es aux frontières des ombres pour le cas des sources étendues.

2.2 Structures Analytiques pour la Visibilité Globale

La généralisation directe du calcul des projections arrières est le d´eveloppement de structures de
données adaptées `a la description compacte de la visibilitéglobaledans une sc`ene. Une telle structure
est l’objet de la th`ese de Frédo Durand que je co-dirige avec Claude Puech.

2.2.1 Complexe de visibilit́e

Nous avons introduit la structure du� Complexe de Visibilité 3D� dans l’espace de droites. Le com-
plexe est de dimension quatre (une paramètrisation de l’espace de droites) plus une� demi-dimension� pour
ordonner l’occultation [DDP96]. L’intuition derrière cette structure est de partitionner l’espace de droites
en groupes, chaque groupe contenant les droites qui� voient� le même objet. Pour ceci nous utilisons
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l’espace des segments libres maximaux, c’est-`a-dire les segments de droites qui ont leurs extremit´es sur
des objets.

θ
u

v
D

y
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z

t
ϕ

ϕ=π/2

θ=0

θ=-π/2

ϕ=0

v

uθ

θ=π/2

ϕ

ϕ=π/2
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ϕ1

ϕ2
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ϕ2

D

D

(a) (b)

FIG. 2.8: (a) La dualit´e utilisée pour la repr´esenter l’espace des droites (voir texte). (b) Le volume de
tangence d’une sphère, pr´esentée en haut de la figure. Nous consid´erons les différentes directions de vue
en pointillés. En utilisant les tranches de', nous pouvons mieux visualiser la dualit´e. Sur chaque tranche,
nous présentons l’axe�, pouru = 0; v = 0. À l’extr ême gauche, nous voyons le cas de la droite' = �

2
,

qui n’intersecte pas la sph`ere ; cela est représent´e par volume de tangence qui n’est pas coup´e par l’axe�.
La droiteD (la droite' = 0 également), intersecte la sph`ere ; son point dual est `a l’intérieur du volume de
tangence (montr´e par la flèche).

La paramètrisation de droites utilis´ee est la direction�; ' de la droite, ainsi que l’intersectionu; v sur le
plan orthogonal `a la droite (voir Figure 2.8(a)). La visualisation de ces structures est particulièrement diffi-
cile à cause des ses 4 dimensions et demie. Nous avons d´eveloppé une repr´esentation en� tranches� selon
' (voir Figure 2.8(b)), qui permet la visualisation de la dualit´e d’une fac¸on intuitive. Dans cette visuali-
sation, l’ensemble de droites qui sont tangentes à un objet, pour' constant forment un volume de forme
� cylindrique� comme l’illustre la Figure 2.8(b). Nous appelons ce volume levolume de tangence.

Pour le cas de plusieurs objets (voir Figure 2.9), les volumes de tangence s’intersectent dans l’espace
dual, représentant ainsi les diff´erentes situations possibles. Par exemple, les droites qui sont tangentes à
deux objets correspondent à l’intersection des deux volumes de tangence.

L’espace de droites ne suffit pas `a représenter les occultations. Pour cela, nous utilisons dessegmentsde
droites. Avec les volumes de tangence et la structure auxiliaire, nous pouvons d´efinir la structure compl`ete
du complexe. Par exemple, (voir Figure 2.9),A est l’ensemble de segments qui� voient� le devant de la
sphèreR (gris clair) etB l’ensemble de segments qui voient l’arri`ere de l’autre sphèreL. Un cas intéressant
est le casC, qui correspond aux segments qui sont entre les deux sph`eres ; dans l’espace dual il s’agit de
l’intersectionA \B. Les autres cas sont d´ecrits dans la l´egende de la Figure 2.9.

Nous pouvons ainsi d´ecrire les él´ements du complexe de visibilit´e : une face correspond (comme le
casC du Tableai 2.1) `a unélément de dimension 4. Une face de tangence correspond aux extr´emités d’une
telle face, et est de dimension 3. Les autres cas sont présent´es au Tableau 2.1. Un sommet du complexe
correspond `a une droite de z´ero degré de liberté, car c’est une droite tangente à quatre objets.

Nous avons décrit [DDP96] d’une façon abstraite un algorithme de construction pour le cas des sc`enes
composées de polygones, et nous avons ´egalement présent´e les modalit´es d’utilisation de ces structures,
notamment pour des applications graphiques comme le calcul des facteurs de formes pour l’´eclairage et le
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uθ
A B C D E F

L

R

FIG. 2.9: Le cas de deux objets. En haut, nous presentons le complexe auxiliaire. Les ensemblesA à C
sont décrits dans le texte.D est l’ensemble de segments qui voient le devant deL. Comme la visibilité
est occultée parR dans cette direction,D a la formeB � A. D’une façon similaire,E est l’ensemble
de segments qui voient l’arri`ere deR. F est l’ensemble de segments qui ne voient aucune sphère ; dans
l’espace dual c¸a correspond aucompĺementdeA [ B.

Dim Configuration tranche en' en espace dual Nom

4 face

3 face de tangence
2 face de bi-tangence

1 arête de tritangence

0 sommet

TAB . 2.1:Éléments du Complexe de Visibilité

calcul de vue.
Une généralisation th´eorique du complexe a ´egalement ét´e développée pour le cas des objets lisses et

convexes, en pr´esentant un algorithme de construction� sensible à la sortie� [DDP97a].

2.2.2 Squelette de visibilit́e

Le complexe de visibilit´e est une fac¸on élégante de d´ecrire les relations de visibilit´e globale dans une
scène. En contrepartie, le coˆut en mémoire de cette structure est très ´elevé, à cause de ses 4 dimensions et
demie. De plus, cette structure serait assez compliqu´ee à implementer, car elle n´ecessiterait la r´esolution
d’équations de degr´e élevé, ainsi que des calculs g´eométriques instables.

Pour répondre `a ces difficultés, nous avons d´eveloppé une structure simplifiée, nomm´ee� Squelette
de Visibilité� . Pour le squelette, nous ne construisons que les composantes de dimensions 0 et 1. Cette
structure a l’avantage d’´eviter le coût élevé en mémoire du complexe complet, et en mˆeme temps a permis
son implémentation et son utilisation pour r´epondre `a une s´erie de requˆetes utiles de visibilit´e globale
[DDP97b].

La nouvelle structure est assez intuitive. Comme d´ecrit ci-dessus, les él´ements de degr´e zéro sont les
droites tangentes à quatre objets, ou quadritangentes. Pour le cas des scènes polygonales, cela correspond
aux droites tangentes à quatre arˆetes. Un exemple est illustr´e par la Figure 2.10(b). L’intersection de deux
surfaces de discontinuit´e arête-sommet (comme d´ecrit pour le cas des maillages de discontinuit´e - voir
Figure 2.10(a)) induisent une droite qui est tangente à quatre arêtes (les deux du sommet et les deux arˆetes
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FIG. 2.10: (a) La surface de discontinuitéeV décrit un changement de visibilit´e comme le montre la vue
du dessus illustr´ee en haut. (b) Une quadritangenteV EE définie par l’intersection de deuxEV et (c) le
graphe ou squelette induit par cette configuration [DDP97b].

e1 ete2).
Les surfaces de discontinuitée1V et e2V qui sont adjacentes à cette droite sont des arˆetes de tri-

tangence du complexe, car elles sont tangentes àe1 ou e2 et aux deux arˆetes composant le sommetV .
Nous représentons donc les ´eléments de degré 0 et 1 du complexe par une structure de graphe : les nœuds
sont les quadritangentes, ´eléments de degr´e zéro, et les arcs qui lient les nœuds sont les surfaces de dis-
continuité adjacentes aux nœuds respectifs. Voir Figure 2.10(c), qui montre le nœud et les arcs du graphe
correspondant à la configuration de la Figure 2.10(b).
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FIG. 2.11: Construction du squelette de visibilit´e. Les noeuds sont calculés par lancer de rayons, ce qui
permet la d´etermination des adjacences et la construction du graphe (en bas de la figure).

Pouréviter le calcul instable des intersections de surfaces de discontinuit´e, nous calculons directement
les nœuds du complexe par lancer de rayons. Par exemple, on commence par le calcul d’un ´evénement
de degré 0,vv (les plus simples) (Figure 2.11(a)), et apr`es par unfve, oùf est une face (Figure 2.11(b).
Ces deux nœuds du complexe partagent la surface de discontinuitéve, et ils sont donc li´es dans le graphe
par un arc. La construction continue pour les ´evénementsve3e et ve3e. Malgré la forte diminution du
coût en mémoire par rapport au complexe de visibilité, les besoins en m´emoire du squelette restent tr`es
importants (des centaines de mega-octets pour des scènes de quelques centaines de polygones). Par rapport
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aux maillages de discontinuit´e, la construction est beaucoup plus stable ; pour des sc`enes contenant des
configurations fortement d´egénér´ees, notre implémentation peut cependant avoir des probl`emes.

Malgré ces probl`emes, les avantages de cette structure sont multiples : par rapport aux maillages de
discontinuité, elle est beaucoup plus robuste `a la construction, car elle ne nécessite que des intersections
objet/rayon, au lieu d’intersections objet/surface de discontinuité (souvent quadriques) ; la structure en-
capsule la visibilité globale, car elle peut répondre aux requˆetes de visibilité de n’importe quelle paire
d’objets de l’environnement ; enfin la structure est flexible à la construction (contrairement à beaucoup
d’algorithmes géom´etriques) car elle pourrait être construite localement (par exemple au fur et `a mesure
des besoins des requˆetes).

2.2.3 Éclairage global et Squelette de Visibilit́e

Dans le calcul de l’éclairage global, c’est-à-dire l’´echange de lumi`ere depuis les sources lumineuses, les
objets réfléchissants et les reflexions multiples, il est tr`es important d’avoir un calcul pr´ecis de la visibilité.

level 2

va v1 vb
v2

S1 S2

∆B2

radiosity
function

triangle
hierarchy

light
exchanges

level 1

va v1 vb

S1 S2

∆B1
level 0

va vb

S1 S2

v3

∆B3

FIG. 2.12: Repr´esentation coh´erente et multir´esolution par ondelettes. Au lieu de stocker de valeurs de
radiosité (éclairage) nous stockons la diff´erence.

Dans le contexte de l’algorithme de la radiosit´e [GTGB84] et plus pr´ecisément de la radiosit´e hiérarchique
[HSA91], le calcul de la visibilit´e est souvent la partie la plus lourde du coˆut total de la simulation (voir
également paragraphe 3.2.1). Le squelette de visibilit´e paraˆıt une structure tout à fait adapt´eeà ce calcul,
car elle nous fournit une description compl`ete de toutes les relations de visibilit´e dans une sc`ene.

Pour exploiter ces propri´etés du squelette, nous avons étendu le squelette pour pouvoir calculer des
informations de visibilité aux sommets introduits par une subdivision de la sc`ene originale[DDP99]. D’une
façon semblable aux méthodes de maillage de discontinuit´e, nous repr´esentons l’´eclairage par des maillages
irréguliers. Nous représentons également le transfert de lumière par des liens face (polygone)-sommet; ce
calcul peutêtre fait analytiquement par les informations fournies par le complexe.

Contrairement aux méthodes pr´ecédentes, nous avons ´eté conduits `a utiliser des triangulations hiérarchiques,
pour permettre l’élaboration d’une méthodehiérarchiquede simulation de l’´eclairage. La m´ethode d’on-
delettes� paresseuses� [SDS96] aété adapt´ee à ces fins. La construction est illustr´ee par la Figure
2.12 ; en stockant la diff´erence au lieu de la valeur de l’´eclairage (radiosité), nous pouvons maintenir une
représentation multi-r´esolution. En particulier, nous n’avons pas besoin de repr´esenter par des valeurs mul-
tiples leséchanges entre les sources diff´erentes (par exempleS1 etS2 vers les sommetsva, vb etc. dans le
cas de la Figure 2.12). Nous maintenons également des liens entre polygones, pour d´ecider si une surface
doit être subdivis´ee. Cette d´ecision est prise en utilisant les informations fournies par le squelette sur la
visibilit é entre deux polygones, ainsi que par des consid´erations liéesà la perception humaine [War94].

Le résultat de notre nouvel algorithme est le calcul d’images de haute qualité pour des scènes compor-
tant des configurations de lumi`ere difficilesà simuler par des algorithmes pr´ecédents, comme des sc`enes
éclairées par plusieurs sources (Figure 2.13) ou des sc`eneséclairées principalement par la lumi`ere indirecte,
c’est-à-dire par le biais d’un ou plusieurs reflexions (Figure 2.14).
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(a) (b)

(c) (d)

FIG. 2.13: Scène comportant plusieurs lumi`eres (a) image finale, (b) les discontinuités inserées. (c) et (d)
vue de près du sol [DDP99].

2.3 Discussion

Nos travaux de 1994 à 1999 sur les m´ethodes analytiques de visibilit´e pour le calcul d’´eclairage ont
donné lieu à plusieurs algorithmes et `a de nouvelles structures repr´esentant la visibilit´e, pour l’éclairage
direct d’abord et ensuite pour l’éclairage global.

Ces méthodes ont donné des images de grande qualit´e, parfois même exactes, ce qui etait tr`es difficile,
ou même impossible, auparavant. De plus, elles ont donn´e lieu à une meilleure compr´ehension des facteurs
importants pour la qualit´e d’image (le maillage, le calcul de la visibilit´e), qui nécessitaient une solution
analytique du probl`eme de la visibilité pour l’éclairage.

Malgré ces progrès importants, plusieurs probl`emes intéressants demeurent pour l’avenir. Nous men-
tionnons les deux qui nous semblons les plus importants :

– La place ḿemoire.Les structures du complexe et du squelette de visibilit´e sont trop coûteuses en
place mémoire (des centaines de mega-octets pour des centaines de polygones). Pour des sc`enes
d’une complexité du� monde réel� il est indispensable de développer de nouvelles méthodes,
soit hiérarchiques, soit� paresseuses� afin de permettre l’utilisation de ces structures pour des
problèmes réels.

– La robustesse.Tous les calculs d´ecrits dans ce chapitre comportent des composantes géométriques,
très sensibles aux configurations d´egénér´ees. Il est possible qu’une approche hi´erarchique, ´evoquée
ci-dessus, puisse ˆetre utilisée pour permettre à ces algorithmes et ces structures de donner une réponse
approximative, mais coh´erente. La d´efinition de la visibilité approximative, et de ce qui est une
réponse cohérente, restent des questions int´eressantes et difficiles.

Par la suite, nous d´ecrirons une tout autre approche aux probl`emes de l’éclairage, qui consiste `a ne pas
essayer de trouver une solution exacte, mais `a traiter rapidement des sc`enes de grande complexité, d’une
façon approximative.
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(a)

(b) (c)

FIG. 2.14: Scène ´eclairée par la lumière indirecte (a) image finale, (b) les discontinuit´es inser´es. (c) maillage

2.4 Articles
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Structured Penumbral Irradiance Computation
George Drettakis, Eugene Fiume

Abstract—A definitive understanding of irradiance behavior in penum-
bral regions has been hard to come by, mainly due to the computational ex-
pense of determining the visible parts of an area light source. Consequently,
sampling strategies have been mostly ad hoc, and evaluation of the resulting
approximations has been difficult. In this paper, the structure of penumbral
irradiance is investigated empirically and numerically. This study has been
made feasible by the use of the discontinuity mesh and thebackprojection, an
efficient data structure representing visibility in regions of partial occlusion.
Regions of penumbrae in which irradiance varies non-monotonically are
characterized empirically, and numerical tests are performed to determine
the frequency of their occurrence. This study inspired the development
of two algorithms for the construction of interpolating approximations to
irradiance: one algorithm reduces the number of edges in the mesh defin-
ing the interpolant domain, and the other algorithm chooses among linear,
quadratic, and mixed interpolants based on irradiance monotonicity. Re-
sults from numerical tests and images are presented that demonstrate good
performance of the new algorithms for various realistic test configurations.

I. I RRADIANCE PROPERTIES INSCENES WITHPARTIAL

OCCLUSION

I
N scenes illuminated with area light sources, regions of par-
tial occlusion orpenumbrareadily occur. Understanding how

illumination varies within these regions is both important and
difficult. It is important since such an understanding allows us to
pick both a suitable sampling strategy, and a good way to com-
pactly represent illumination in the penumbra, using piecewise-
polynomial functions for example. These representations can be
used for fast high-quality rendering of scenes with area sources,
and are important in global illumination calculations (e.g., [16],
[21], [34], [12]). However, gaining an understanding of irra-
diance behavior in the penumbra is difficult because the prob-
lem reduces to determining how the visible part of the source
changes as one moves from one partially occluded point to an-
other. These changes depend on the interaction of the edges and
vertices in the environment; analyzing this geometric interaction
is a non-trivial problem. In addition, determining the visible part
of the source at any point is expensive if done naively.

Thebackprojectionand thediscontinuity meshare data struc-
tures that permit efficient calculation of the visible portions of
a polygonal light source in a penumbra. In polyhedral envi-
ronments, the irradiance contribution of each portion can be
computed analytically using standard techniques. However, the
overall irradiance at a point is the sum of all such contributions,
and can exhibit visually-significant variations over a small re-
gion. By performing a thorough empirical study of penumbral
irradiance behavior, it is possible to glean insights that can be
exploited in an efficient approximation. Doing so has allowed
us to isolate the causes of multiple extrema in the penumbra.

George Drettakis is at iMAGIS/GRAVIR-INRIA, BP 53, Grenoble Cedex 9,
F-38041, FRANCE. iMAGIS is a joint research project of CNRS, INRIA, UJF,
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We have also gathered statistics on the frequency of the differ-
ent configurations affecting penumbral irradiance.

Our study has lead to the development of two algorithms that
exploit the properties of irradiance in the penumbra. In the
first, the number of edges in the discontinuity mesh is reduced
without significant deterioration of image quality, while the sec-
ond algorithm chooses appropriate interpolant degrees (linear or
quadratic) again with only moderate quality degradation. Nu-
merical and visual results for both are presented and discussed.

II. PREVIOUS WORK IN SAMPLING AND SHADOW

COMPUTATIONS

Approximate and compact representations of illumination or
irradiance (impinging light power/area), are useful for the ef-
ficient display of illumination for direct lighting and are also
necessary for the purposes of global illumination algorithms,
such as those developed in radiosity-based approaches (e.g., [6],
[17]). In early global illumination algorithms, piecewise con-
stant representations were used for radiosity or irradiance, but
it quickly became clear that this representation was insufficient.
As an alternative, higher order methods have been since pro-
posed for the solution process (i.e., the light transport phase of
global illumination algorithms) with the use of approximation
schemes that are of higher degree [31], [16], [34].

A. Observed Properties of Irradiance

Campbell and Fussell [3] observed that irradiance in a penum-
bral region can exhibit multiple minima and maxima. Numer-
ical optimization was used to determine these critical points.
Tampieri [29] and Lischinski et al. [22] segmented the penum-
bral domain by the mesh generated solely from visual events
caused by planar discontinuity surfaces including a source edge
or vertex. They then postulated that within each face or cell
of this mesh the irradiance varies little. A subsequent adaptive
subdivision step was however used when large irradiance dis-
crepancies were observed.

In [9] we proposed that the structure of illumination should
be studied in more detail in the hope that a better understanding
would lead to more efficient and accurate sampling strategies.
Such a structure-driven approach for unoccluded (i.e., shadow-
free) environments lit by area light sources was presented in
[11]; we conjectured that the illumination from convex polyg-
onal light sources is unimodal, and an effective structured sam-
pling algorithm based on this conjecture was developed. The
algorithm first finds the overall maximum of the irradiance func-
tion over the surface, if it exists, and then segments the function
into convex and concave regions along two axes passing through
the maximum. A mixed quadratic/linear interpolant is fit to the
irradiance function satisfying tight and relevant error bounds.

B. Discontinuity Meshing and Backprojections

The visible regions of a polygonal area light source from a
point are polygons whose vertices are either formed by the pro-
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Fig. 1. A Complete Disc. Mesh and Backprojection Instance

jection of scene edges onto the source, or are vertices of the orig-
inal light source. Abackprojection instanceat, or induced by, a
pointP , with respect to a source, is the set of polygons forming
the visible parts of the source at that point (e.g., the gray region
on the source in Fig. 1). Thebackprojectionin a region is a data
structure containing the set of ordered lists of emitter vertices
and edge pairs such that at every pointP in that region, the pro-
jection throughP of these elements onto the plane of the source
form the backprojection instance atP [10].

Given a polygonal light source� and polygonal scene, the
partition of the scene into regions having the same backprojec-
tion is thecomplete discontinuity meshof � (shown as a yellow
mesh in Fig. 1). A region of the complete mesh with thesame
backprojection is afaceof the mesh. At any pointP within a
mesh face, the backprojection instance can be efficiently deter-
mined by projecting the scene edges in the backprojection struc-
ture through the pointP to find the coordinates of the relevant
points. An example of a scene, its discontinuity mesh, and a
backprojection instance (the shaded region on the source) can
be seen Fig. 1. The backprojection instance corresponds to the
white spot markedP under the drawer.

Early proposals to compute shadows involved numerous tech-
niques dealing with point sources, as well as approximate solu-
tions for linear or area sources (see [33] for a good survey). This
research naturally lead to the computation of partial discontinu-
ity meshes. In [24] the extremal boundaries were computed, that
is the boundary between umbra and penumbra as well as the
boundary between penumbra and light for simple geometries.
To compute backprojection instances where required, the light
source was intersected with theentireenvironment each time, to
determine the visible part of the source. The expense of comput-
ing exact irradiance values in the penumbra was thus prohibitive.
Campbell and Fussell [2] first computed shadow boundaries for
complex environments using BSP trees from point light sources,
and then extended the method to compute the extremal bound-
aries for area sources in [3]. Chin and Feiner [4] performed a
similar computation, and also presented an extension to area
sources in [5]. Additional lines of the mesh, interior to the
penumbrae, were computed in [22] again using BSP trees, and
in [19] using a two-dimensional visibility algorithm. In all these
approaches, computing the exact visible portion of the source at
a given point involves a visibility computation requiring the in-
tersection of all the scene objects, since the complete mesh has
not been computed; thus the backprojection is not unique within
each mesh face.

The computation of the complete mesh is performed by cast-

            

(a)            

(b)

Fig. 2. (a) EV and (b) EEE discontinuity surfaces.

ing discontinuity surfacesinto the environment. These surfaces
are of two types:EV surfaceswhich are planar “wedges” caused
by the interaction of an edge and a vertex (Fig. 2(a)), andEEE
surfaceswhich are ruled quadric surfaces caused by the inter-
action of three edges (Fig. 2(b)). Algorithms to compute the
equivalent problem in computer vision, that of computing the
aspect graph, have been proposed among others, by [15] and
[14]. An algorithm which computes an equivalent structure for
visibility was presented in [30]. An algorithm specifically for
shadow computation with good theoretical complexity bounds
has been proposed by Stewart and Ghali [27]. A extension and
implementation of this approach was presented in [28].

The authors have developed and implemented a fast, practical
algorithm for computing the complete discontinuity mesh with
backprojections ([8] and [10]). All relevant visual events are
properly treated and the algorithm displays fast running times
in the number of objects in the scene, for scenes of moderate
complexity. This approach has recently been used to develop
a hierarchical global illumination algorithm permitting accurate
visibility calculations using backprojections [12].

C. General Discontinuity Meshing and the Irradiance Jaco-
bian

In the work presented in [10] certain special cases (such as
EEE surfaces consisting exclusively of edges of the environ-
ment) had not been implemented. The work reported here is
based on a complete implementation which includes all possi-
ble configurations of discontinuity surfaces. We have also de-
veloped techniques to treat various degenerate cases of discon-
tinuity surfaces which arise in general environments, permitting
the treatment of scenes with arbitrary positioning of the source
and scene objects.

Another important addition to structured sampling for unoc-
cluded environments and discontinuity meshing is the use of the
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(a) (b)            

(c)

Fig. 3. (a) Convex, (b) concave and (c) disconnected backprojection instances.

irradiance Jacobian as presented by Arvo [1]. This formulation
permits the analytic computation of the gradient of irradiance at
a cost equivalent to the cost of irradianceI(p) wherep is a point
of a surface. In particular we can compute and storerI(p). If
we wish to determine the derivativedI=dt of irradianceI(t) in a
certain direction�u, we simply performrI � �u to obtain the cor-
responding value. This calculation renders the structured sam-
pling approach of [11] much more efficient and accurate, since
the need for numerical approximation of the derivatives is obvi-
ated. Arvo presented a formulation for partially occluded points,
which allows efficient computation of analytic derivatives, as
presented above. In the work presented here the backprojection
data structure is used, which provides all the information neces-
sary for the computation in [1].

III. PROPERTIES OFIRRADIANCE FUNCTIONS IN

PENUMBRAL REGIONS

Given the complete discontinuity mesh and the backprojec-
tion, the exact value of irradiance at any point in the penumbra
can be efficiently determined. It thus becomes possible to per-
form a careful empirical study of irradiance in the penumbra,
even for moderately complex scenes. We shall now present the
results of an empirical study that isolates key configurations that
induce significant variations in penumbral irradiance. We must
be aware of these configurations when constructing approxima-
tions. Snapshots of such observations are shown in the figures
which include the mesh and backprojection geometries, as well
as analytically computed irradiance and first derivative values
and numerically computed second and third derivatives. Before
discussing the results of the experiments, we define some im-
portant scene properties.

Backprojection Type. The backprojection of a face is said to
beconvexor concaveif every instance of the backprojection in
that face is itself a convex or concave polygonal subset of the
source, respectively. In addition, a backprojection of a face is
disconnectedif every instance of the backprojection in that face
consists of more than one polygon, while it issimple, if every
instance consists of only one polygon. An example of a convex

            

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ir
ra

di
an

ce

distance on edge

Line 1
Line 2
Line 3

Fig. 4. A singular vertex

backprojection instance is shown in grey on the light source in
Fig. 3(a) and a concave example is shown in Fig. 3(b), which
are both simple. An example of a disconnected backprojection
is shown in Fig. 3(c).

Singularities. As noted in [29] and [22], irradiance along a
surface is singular at points at which two surfaces touch. Thus at
a vertex in the mesh joining faces of umbra, penumbra and light,
the irradiance is multi-valued and is defined as a limit depending
on the direction from which the vertex is approached. A singular
vertex is shown in Fig. 4, while the graph on the right shows the
variation of the irradiance values on three lines joining at the
singular vertex.

A. Empirical Characterization of Penumbral Irradiance Be-
havior

A set of empirical tests were performed within the penumbra
for moderately complex scenes. These tests attempted to isolate
configurations that cause local extrema. Three influential factors
affecting the appearance of extrema were identified:

� Backprojection typewithin the mesh faces of interest; this
can cause simple irradiance extrema within a mesh face but
also opposite extrema along different directions in the face.

� Interaction with unoccluded areas; in particular when un-
occluded irradiance increases and the visible part of the
source decreases simultaneously or vice-versa.

� Position of irradiance maximumalong mesh edges with a
constant backprojection instance.

In what follows we present examples for each category with
an illustration of the backprojection instance shown in grey on
the source, and a corresponding graph illustrating the irradiance
variation along a line on the floor (shown as a thick white line).
We briefly discuss the effects of each configuration on irradiance
behavior.

Disconnected or Concave Backprojections. If the backpro-
jection in a face (or along an edge) is not simple, it is likely that
there exists a line in the face or an edge for which the irradiance
will display one or more maxima. Illumination in a region with
a disconnected backprojection containingn polygons is equiv-
alent to illumination fromn separate unoccluded light sources,
and may have up ton maxima. Non-monotonic behavior in this
case may cause “troughs” in the irradiance function, as shown
in Fig. 5(top), from the overlap of two “tail” regions [11] of the
irradiance function due to a disconnected backprojection with
instances containing two polygons. Similar non-monotonic be-
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Fig. 5. (top) Irradiance minimum from disconnected backprojection (bottom)
Opposite extrema within a face.

havior may occur in faces or along mesh edges that have concave
backprojections.

Faces with concave or disconnected backprojections, particu-
larly in the presence of light source edges that are very long, can
cause the existence of opposite extrema (i.e. a minimum and a
maximum) along different directions in a face. An example is
shown in Fig. 5(bottom). In this case the maximum is caused
because the corresponding edge in the mesh ends in a light re-
gion (see below), while the trough is caused because this face
has a concave backprojection.

Interaction with Unoccluded Regions. Consider a line in the
mesh that does not lie on the external penumbral boundary be-
tween light and shadow but has however one endpoint in light
(i.e. an unoccluded region, also called alight region). An ex-
ample is shown as a thick white line in the mesh of Fig. 6(top).
The visible area of the source increases along this line, as it goes
from penumbra to light, since a smaller portion of the source
becomes occluded. As a consequence the irradiance on a line
is generally increasing as the region of light is approached. The
unoccluded illumination along this line may be increasing or
decreasing. If the unoccluded illumination is decreasing (as in
Fig. 6(top)), the irradiance in the penumbra, which tends to be
an increasing function, will smoothen as it approaches the unoc-
cluded regions. Again, this can result in non-monotonic behav-
ior, although it is necessarily a local maximum.

Position of Maximum from a Constant Backprojection In-
stance. Consider a scene that is illuminated by a polygonal
source, and in which the complete discontinuity mesh of that
source has been computed. For some edges in the mesh, the
backprojection remains constant along that edge. Thus the
analysis used for unoccluded sources in [11] can be used di-
rectly. For example, the edge shown as a thick line in Fig.
6(bottom) contains the maximum of the irradiance function
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Fig. 6. (top) Interaction with unoccluded regions. (bottom) Constant backpro-
jection instance.

from the polygonal source defined by the backprojection in-
stance, shown shaded on the rectangular source. This maximum
can be seen in the irradiance plot on the right.

B. Scene Statistics and Identification of Non-monotonic Irradi-
ance

A test program has been written which analyses the behavior
of irradiance in a set of scenes. The goal is to determine whether
irradiance tends to be monotonic within a single face of the dis-
continuity mesh. This has obvious implications in the necessity
for additional adaptive subdivision, but also in the development
of error bounds in radiosity calculations [21].

The set of scenes considered consists of a simple desk model
in a simple configuration (e.g., Fig. 6) containing 73 polygons
and a more complex configuration including drawers (145 poly-
gons) which cause complex visibility interactions (e.g, Fig. 9).
For each of the two geometries, the light source was placed in
nine different positions. Six of these are shown in Fig. 9. In
addition two different light sources were tested, namely a small
light source (Fig. 7(a)) and a elongated light source, which be-
haves in a manner similar to a linear source (Fig. 7(b)) These
two source types where tested on both desk geometries (with
and without drawers). Finally a larger scene was tested, con-
taining two complex desks and two chairs containing 373 poly-
gons (Fig. 8), which was used to confirm the more exhaustive
examples with the multiple source positions. These scenes will
also be used to compare the relative performance of the new
structured sampling algorithms proposed in later sections (see
Section VII-A).

It is important to note that the tests performed using these
scenes are of course not definitive. Nonetheless, all types of
visibility events occur in these scenes (EV, EEE, D1 [13] and
other degenerate configurations) and in addition relatively com-
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(a) (b)

Fig. 7. (a) Image with small source (b) Image with elongated source

            

Fig. 8. Big Scene

plex shadow behaviors can be observed (e.g., in the regions be-
low the open drawers or the shadows caused by the back of the
chairs). As a consequence we believe that the trends identified
in this experimental study are a strong indication of irradiance
behavior in the penumbra for interior scenes. We restrict our
approach to a single source, since multiple sources present nu-
merous specific issues (as pointed out in [7]).

Given a line embedded in a receiver plane, defined by two
endpointspt andph, we consider the irradiance as it varies along
this line as a functionI(t) of a single parameter (in a manner
similar to that presented previously). In this case we can eval-

                                    

                                    

Fig. 9. 6 of the 9 light positions used

Scene ep enm %NM fl fd fconc
Average values over 9 runs

Simple Desk 721.9 25.1 3.5 23.1 0.9 1.1
Desk Drawers 2386.1 157.6 6.6 33.7 42.2 81.7

Average over 2 runs
Small Source 906.0 73.5 8.1 28.5 12.5 32.5
Long Source 1449.0 114.5 7.9 27.5 30.5 56.5

Single run
Big Scene 8661.0 746.0 8.6 78.0 374.0 294.0

TABLE I

MESH EDGE MONOTONICITY OF PARTIALLY OCCLUDED FACES

uatedI(pt)

dt
and dI(ph)

dt
. If these values are of opposite sign, we

consider that the irradiance along the line isnot monotonic. If
the derivative values are of the same sign, we consider the irra-
diance along this line monotonic.

We have chosen to test the irradiance along all the edges of
the mesh on penumbral (i.e., partially occluded) faces, and also
along the diagonals of the penumbral faces connecting two ver-
tices of a mesh face not belonging to the same mesh edge. We
thus have two tables of statistics for edges (Table I) and for diag-
onals (Table II), which reportaveragevalues from the 9 different
light source positions for “Simple Desk” and “Desk and Draw-
ers”, average of two runs (both geometries) for “Long Source”
and “Small Source” and a single run for “Big Scene”. We con-
sidered testing faces for monotonicity (i.e. the faces for which
either an edge or a diagonal are non-monotonic), but it was ob-
served in test runs that the statistics for faces are very similar to
those for the diagonals (Table II).

The monotonicity test is not infallible: edges which are non-
monotonic may be ignored because of a change of sign in the
derivative in the edge interior. We have however run tests com-
paring the approach presented above with an exhaustive test of
20 samples of the derivative on each edge, which show that for
the scenes in question the simple monotonicity test is accurate
for 85% of the tests, which we judged to be satisfactory. De-
veloping other signatures for nonmonotonicity is an interesting
open problem.

In Table I, the fieldep is the average number of edges neigh-
boring at least one mesh face in penumbra,enm is the number
of edges along which the irradiance is non-monotonic, while
“%NM” indicates the percentage of edges with non-monotonic
irradiance. The breakdownfl, fd, fconc, shows the number of
the edges with non-monotonic irradiance that neighbor a face
respectively in light, with a disconnected backprojection or a
concave backprojection. To classify an edge, both neighbor-
ing faces are tested, and the edge is designated as either light,
disconnected or concave, in that order, if either neighbor is in
the appropriate category. For Table II, similar statistics are re-
ported, but for the diagonalscontainedin faces with correspond-
ing properties, withdp and dnm the total number of penum-
bral diagonals and those with non-monotonic irradiance respec-
tively, while fd, fconc, are the number of the diagonals with
non-monotonic irradiance inside a face respectively with a dis-
connected backprojection or a concave backprojection.

From these tables it is clear that irradiance is monotonic along
a large majority of edges (more than 92%) of the mesh, consis-
tently, even for different source types and more complex geom-
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Scene dp dnm %NM fd fconc
Average values over 9 runs

Simple Desk 665.3 189.6 28.5 74.4 115.1
Desk Drawers 2181.1 150.0 6.9 43.8 106.2

Average over 2 runs
Small Source 704.5 61.0 8.7 13.0 48.0
Long Source 1366.5 219.0 16.0 65.0 154.0

Single run
Big Scene 8116.0 776.0 9.6 438.0 338.0

TABLE II

MESH DIAGONAL MONOTONICITY IN PARTIALLY OCCLUDED FACES

etry. Similarly, irradiance is monotonic along a large majority
of the diagonals. The disparity in Table II between the “Simple
Desk” and the “Desk Drawers” scenes is due to the fact that, in
the absence of drawers which involves less complex visibility
interactions, and consequently larger mesh faces, more signifi-
cant irradiance variation is observed.

Finally, we can see that a majority of edges or diagonals with
non-monotonic irradiance neighbor, or are contained in, faces
with disconnected or concave backprojections, as suggested by
the empirical study presented above.

C. Discussion

The statistics presented above are meant as a first indication of
the behavior of irradiance in penumbral regions. In future work
geometrica priori determination of which regions of penumbra
display non-monotonic behavior should be performed (similar
in spirit to the discontinuity “ranking” approach presented re-
cently in [18]).

These first measurements however indicate that irradiance is
largely monotonic within regions of equivalent visibility. Such
piecewise monotonic functions, especially those for which the
values do not differ significantly, are good candidates for lower
order interpolation, specifically linear or quadratic. The experi-
ments presented below will indicate that this is sufficient in gen-
eral, obviating the need for cubic interpolants as proposed in
[26], for a large class of scenes.

In the following section we will present an algorithm for edge
elimination, and an algorithm for degree selection. The fact that
irradiance in the penumbra is largely monotonic motivates the
need to simplify the mesh: if the function is well behaved a
coarser subdivision is sufficient. The empirical observations of
which factors are important in the penumbra also influenced the
construction of the edge elimination algorithm. Similarly the
locally well-behaved nature of penumbral irradiance suggests
the use of linear interpolation wherever possible, leading to the
algorithm for degree selection.

IV. COMBINING UNOCCLUDED STRUCTURED SAMPLING

AND DISCONTINUITY MESHING

In [10] and [8] we presented a first attempt at combining the
structured sampling approach developed for unoccluded envi-
ronments and discontinuity meshing. This method consisted
of the collection of mesh faces in penumbra into “penumbral
groups” which were enclosed in a bounding box and then com-
bined with the subdivision induced by finding the maximum
and the inflection points as described in [11]. This approach
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Fig. 10. (a) Unoccluded Structured Sampling (b) Combination with Disconti-
nuity Mesh (c) Triangulation

resulted in reconstruction problems on the boundaries between
these bounding boxes of penumbral zones and the unoccluded
zones [8].

We have since developed a simpler approach, which appears
to avoid these problems. We begin by applying the structured
sampling algorithm on the receiver polygon as if it where unoc-
cluded, using the algorithm of [11] (see also Section II-A). This
results in a segmentation such as that shown in Fig. 10(a).

In the new approach used here we simply insert the lines of
subdivision up to the border of the penumbra and light (Fig.
10(b)). In the quadrilateral regions of the mesh entirely in light
we construct bi-quadratic tensor product interpolants. In the re-
gions of penumbra and the regions between regular light regions
and penumbra we perform a constrained Delaunay triangulation
following [32]. We then construct triangular bi-quadratic inter-
polants on the resulting triangles (Fig. 10(c)).

It is however clear that this construction is too expensive. The
size of the discontinuity mesh faces are often small. In addition,
in many cases the variation of irradiance in the faces (as well as
their size) is so small that linear or even constant approximations
are largely sufficient. These facts, supported by the empirical
and numerical study presented above, lead us to the develop-
ment of two algorithms, allowing the reduction of the size of the
mesh, and the use of lower degree polynomial approximations
presented below.

A. Adaptive Subdivision

Overall, the subdivision effected by the complete discontinu-
ity mesh appears sufficiently fine for the construction of inter-
polants. In some scenes however, large faces can occur, over
which irradiance may vary significantly (e.g., the face contain-
ing the thick white edge in Fig. 6(bottom)). As noted by
Tampieri [29], adaptive subdivision can be required in such
faces.

We apply two simple criteria. The first requires that an edge
defined by two pointspt andph for which jI(pt)� I(ph)j > �,
is subdivided. The tolerance� is user-defined. The second re-
quires the subdivision of every edge for which_I(pt) _I(ph) = 0,
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where _I(t) is the first derivative. In this manner, edges with non-
monotonic irradiance are subdivided. In practice, these criteria
result in reasonable triangulations.

Adaptive subdivision is always performed before any simpli-
fication or degree selection (see below).

V. I NTERPOLANT DOMAIN CONSTRUCTION FOR

PENUMBRAL REGIONS

The problem of constructing an interpolant for irradiance in
a general scene can be split into the construction of interpolants
for regions that are unoccluded, and into the construction of in-
terpolants for regions in partial shadow. The former is treated
using the extension of the methods of [11] for unoccluded envi-
ronments as described above, while the determination of inter-
polants for penumbral regions is presented next. There are two
aspects to the interpolant definition: the determination of the do-
mains on which the interpolants are defined, and the choice of
basis functions, including their degree. We will start with the
determination of domains.

A. Constraints on Interpolant Domains

As mentioned above, the complete discontinuity mesh and the
accompanying backprojection information is a natural segmen-
tation of the irradiance function over a surface. Edges in this
mesh represent discontinuities either of value, or of first or sec-
ond derivative. Characterizations of these discontinuities can be
found in [20], [19], [22], [29].

Value discontinuities occur only where objects touch, and
therefore the boundary of such regions delineates areas in which
the irradiance function has value zero, because they are com-
pletely hidden from the light. Discontinuities of second deriva-
tive (or first derivative when degenerate events occur) occur in-
side regions of penumbra. These discontinuities constitute the
majority of edges in the discontinuity mesh. The geometry of
the mesh is complicated: it includes highly irregular regions that
can be small, concave and with small angles between edges (see
Fig. 13(d)). The mesh constrains the construction of interpolant
domains, since some of these edges of discontinuity need to be
maintained to achieve high quality reconstruction of irradiance.

The relative importance of the discontinuities is difficult to
assess without significant numerical computation. Some of the
second derivative “jumps” can be small, while others can be
quite large. In some cases the effect on the actual irradiance
function is more evident (Fig. 11(bottom)) while in others the
effect is negligible (Fig. 11(top)). In addition, irradiance in
very small regions cannot display extremely large differences in
value, because the shape of the polygons in the backprojection
instances cannot change much, and neither can the (point-to-
area) form-factors that determine the value of irradiance at any
point in a face.

To accommodate the highly irregular nature of the faces in
the mesh, triangles are selected as the domains over which to
construct interpolants. Specifically, a proper triangulation of
the penumbral domain is performed. A triangulation� =
fT0; T1; :::; Tng into n trianglesTi is proper if each pair of tri-
angles intersect at a vertex, a complete side or not at all, and
the union of all triangles equals the domain (Prenter [25]). In
a manner similar to that for irregular regions in light, we use
a constrained Delaunay triangulation of the original mesh faces
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Fig. 11. Discontinuities (top) large “jump” (bottom) small “jump”

[32]. The basis functions used (presented in Section VI-B) are
linear, quadratic or mixed linear/quadratic Lagrange interpolat-
ing polynomials.

B. A Mesh Reduction Algorithm

As mentioned above, faces of the discontinuity mesh can be
arbitrarily small and may also have edges with high aspect ra-
tios. In addition, the triangulation of concave regions can result
in triangles that are very small or that have small angles. For
the construction of piecewise smooth interpolant domains, it is
desirable to reduce the number of such triangles as much as pos-
sible. Larger triangles, and triangles with roughly-equal interior
angles are more stable numerically, and in addition provide the
benefit of a better theoretical error estimate. Specifically, con-
sider a six-point quadratic interpolant on a triangle, and the irra-
diance functionf . The max norm in an interval[a; b] is defined
as follows [25]:

jj f(x) jj = maxa�x�bj f(x) j: (1)

Following [25], the error bound with respect to the max norm
for an interpolantsN is:

jj f � sN jj �
8 M3

sin �
h3; (2)

whereh is the longest edge of the triangle, and� is the smallest
angle of the triangle. The constantM3 is equal to the maximum
value of the first, second and third derivative off within the
triangle. In general:

Mn = maxfjjD1f jj; jjD2f jj; :::; jjDnf jjg: (3)

whereDif is thei’th derivative off . In the case of unoccluded
illumination, and for some of the faces in the penumbra, the
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Fig. 12. Absolute values of third derivative in the mesh faces along the thick
white lines.

magnitude of the third derivative is many times larger than that
of the irradiance itself, rendering Eq. (2) somewhat meaning-
less (which does not necessarily imply that the approximation is
poor). This is shown in Fig. 12(top) where irradiance along the
thick white line in the image is plotted in the graph. However,
there are other faces in the mesh in which the third derivative
is small, and thus the size of the smallest angle� can play an
important role in the quality of the approximation achieved. In
Fig. 12(bottom) the absolute value of the third derivative is con-
sistently smaller than the irradiance value.

B.1 An Area-Based Edge Elimination Algorithm

For the reasons outlined above it is desirable to eliminate all
overly small faces in the mesh. A smaller mesh size is desirable
in general, among other reasons because it allows the irradiance
function to be represented with a smaller number of triangular
interpolants. This allows faster rendering and is also important
when such a representation is used for light transfer simulation
(see [12], [8]). In the results it will be shown that a large mesh
reduction with negligible error is achievable.

Our guiding strategy is to remove all faces that have area
less thanarea-tol% of the largest face, wherearea-tol
is a user defined tolerance. When eliminating edges from the
mesh, corresponding faces are deleted. It is therefore neces-
sary to maintain the backprojection information, together with
the geometry of the deleted faces in the resulting merged face.
This information can be discarded after the construction of the
interpolants if the exact solution is no longer desired.

Eliminating Concavities. It is often the case that the tip of
a smaller face will bite into a larger face, creating a concavity.
For the reasons outlined above, it is desirable to eliminate such
faces. Each concave face is visited, and the vertices for which
the two edges on the face form an angle greater than 180 de-

                        

(a) (b)                        

(c) (d)

Fig. 13. (a) Image and (b) mesh before reduction (c) detail image (d) detail
mesh before reduction

grees are identified. Edges are removed from the concave face
if the corresponding small face has area below the tolerance. If
all the faces around the vertex can be removed, the remaining
unconnected edge is also removed from the mesh.

Eliminating Small Faces. After the concave faces have been
treated, a number of small faces that have area less than the max-
imum may still remain. For each such face the following proce-
dure is applied:

remove_small_face( Face f )
{

sort all edges e of f
by area of neighboring face

for each edge e in sorted list do
if can_remove( e ) then

remove_edge( e );
return;

endif
done

}

The procedurecan remove( e ) determines whether the
removal of the edge is possible. The following rules are applied:

1. No edge of the boundary between umbra and penumbra is
removed.

2. No edge of the boundary between umbra and light is re-
moved.

3. If the removal of an edge results in a convex face becoming
concave, it will not be removed.

After this procedure is applied, all remaining unconnected edges
are removed from the remaining face. After an edge is deleted,
the tail and head vertex are searched to determine if the edge
extended into the neighboring faces. If it did, the neighboring
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(a) (b)                        

(c) (d)

Fig. 14. (a) Image and (b) mesh after 56.0% reduction (c) detail image (d)
detail of reduced mesh

edges are removed, if such a removal does not violate rules 1-
3. The removal process (concavity and small face removal) is
repeated until all faces that are smaller than the tolerance are
removed, or until no more faces can be removed.

Polygon rendering hardware on an SGI Indigo 2 XZ was used
to generate images in Fig. 13 to 15. In Fig. 13 part of “Big
Scene” is shown using the combined structured and discontinu-
ity mesh algorithm (Section IV) before mesh reduction, while
in Fig. 14, the same scene and mesh are shown after reduction.
Although the mesh has been reduced by 56.0% of the original
faces before reduction, the quality of interpolation is still good.
The reduction of the mesh is shown in detail in Fig. 14(d), com-
pared to Fig. 13(d). The images with a reduced mesh, even
when looking at details (Fig. 14(c) vs. Fig. 13(c)) are still of
acceptable quality.

VI. CONSTRUCTING INTERPOLANTS FORPENUMBRAL

REGIONS

Once the triangular domains have been constructed, we have
to choose suitable basis functions and then calculate the coeffi-
cients to construct the interpolant. The empirical and numerical
analysis presented in Section III suggests that for many cases
in the penumbra, linear interpolation of irradiance is sufficient.
Thus the interpolants constructed by our algorithm are chosen
to be of low degree: linear, quadratic or mixed.

Because the complete mesh has been computed, the umbral
regions are well defined. On these domains, constant basis func-
tions are used with a value of zero. For this step, the computa-
tion of the complete mesh is a necessity, since boundaries of the
umbra are often (EEE-induced) curved edges, which were not
computed by previous discontinuity meshing algorithms (e.g.,
[22], [19]) although they have been treated for a different appli-
cation in [30].

To achieve the construction of mixed linear/quadratic inter-
polants, it is first necessary to characterize the edges of the mesh
and the edges interior to the faces with a required degree of inter-
polation. Each edge or face is designated as linear or quadratic,
and the appropriate basis function is assigned to each triangle of
the face, maintainingC0 continuity.

A. Selecting a Degree for the Triangular Domains

The choice of degree required on an edge of the discontinu-
ity mesh (DM) or a triangle edge in the interior of a DM face
is determined by whether or not irradiance along it is mono-
tonic, and whether the difference between irradiance values at
the endpoints is larger than a user-defined tolerancelinear-
tol. The algorithm first determines monotonicity on each edge
using the same approach as that presented in Section III-B. An
edge is then marked “constant” if the difference of irradiance at
its endpoints is zero and “linear” if it is less thanlinear-tol.
Otherwise it is marked “quadratic”.

As can be seen from the statistics presented in Section III-
B, a large proportion of non-monotonic edges are adjacent to
faces with disconnected and concave backprojections. Edges
neighboring a light face (i.e. a face of the mesh in an unoccluded
region), and mesh edges that include the maximum of irradiance
can also be non-monotonic. For edges of triangles interior to
faces, similar properties hold. Specifically, faces with concave
or disconnected backprojections, as well as faces neighboring
light regions often display non-monotonic behavior.

Once each edge of the triangular domains has been classified
as “constant”, “linear” or “quadratic”, a triangular basis function
is selected and the coefficients (irradiance values) are calculated
at the triangle vertices and appropriate interior points. In Fig.
15 the same scene as that of Fig. 13 is rendered after the appli-
cation of the degree selection algorithm. Notice that the visual
quality of interpolation is still high despite the fact that 58.3%
of the interpolants are linear. The red lines show the edges of
the mesh that have been assigned linear interpolants, while the
green lines show edges with quadratic interpolants. The choice
of basis functions and their construction is described in the fol-
lowing section.

B. Basis Function Design

The basis functions chosen to interpolate the irradiance are
triangular Lagrange polynomials. For triangles in which all
three edges are linearly interpolated, the method of plates is used
to construct a linear basis function over the triangle. For this in-
terpolant the formal error bound is given by [25]:

max j f(p) � sN (p) j � 4M2h
2 (4)

wheref is the irradiance function andsN is the interpolant, and
h andM2 are as in Eqs. (2) and (3). For triangles on which all
edges are of degree 2, a six-point interpolant is used [25]. The
error bound for this interpolant was given in Eq. (1).

As a consequence of degree selection, there are triangles
for which some edges are linear and some are quadratic (see
Fig. 16(a) which follows the model of [25]). A special lin-
ear/quadratic basis function was designed to guarantee value
continuity across such interpolants. For a given vertex, the six-
point bi-quadratic interpolant is used, which interpolates the
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Fig. 15. Image and mesh degree selection (58.3% of edges are linear shown in
red)

(b)

linear

quadratic

(x3, y3, 0)

(x2, y2, 1/2)
(x1, y1, 1)

(a)

Fig. 16. Linear/quadratic basis functions.

value 1 at the vertex of interest and the line passing through
the values0; 1

2
; 1 along the linear edge. This basis function is

depicted in Fig. 16(b). These samples are of course reused on
neighboring triangles.

For triangles with one linear edge, two linear/quadratic ba-
sis functions are used at the vertices of the linear edge, while
the remaining vertex is assigned a quadratic basis function, and
two quadratic basis functions along the quadratic edges. A to-
tal of 5 function (irradiance) values are required for the triangle
with one linear edge, since we require one value at each vertex,
plus two values at the midpoints of the edges characterized as
quadratic.

For triangles with two linear edges, all vertices have lin-
ear/quadratic basis functions, and an additional quadratic basis
function is defined at the point along the quadratic edge. A total
of 4 function values are required for this interpolant.

C. An Interpolant for Triangles at a Singularity

A typical singular vertex will have many edges joining at that
point, as described in Section III. The value at the vertex is
defined as a limit of the function as it approaches the singular
point, and therefore it is multi-valued. To represent this using
interpolants, as suggested by Tampieri [29], we use degenerate
tensor product interpolants. Nonetheless, the multiple values of
irradiance at this vertex must be approximated. To achieve this,
the total angle�tot of the triangles neighboring the vertex is first
computed.

The value of the unoccluded illumination at the singular ver-
tex Lmax is calculated next. For trianglei, whose edges join-
ing at the singularity form angle�i, (see Fig. 17) the values of
irradiance for the bi-quadratic tensor products along the edge
corresponding to the singular point are assumed to vary in the
interval: "

Lmax

j�1X
i=0

�i

�tot
; Lmax

jX
i=0

�i

�tot

#
: (5)

            

Fig. 17. Singular vertex interpolant construction

This is an approximation, since it would be necessary to com-
pute the limit values of irradiance along each edge to determine
the exact range of irradiance in each triangle. The midpoint ver-
tex in the tensor product is assigned the average of these two
values. In this fashion a continuous representation is constructed
for the irradiance around a singularity.

A special case occurs when the light source touches a differ-
ent object. In this case we simply displace the vertex slightly so
that we can apply the analytical point-to-area form-factor (e.g.,
[1]) to determineLmax.

D. Error Bounds for the Triangular Interpolants

The theoretical error bounds for the linear and quadratic tri-
angular interpolants have been given in Eqs. (2) and (4). These
bounds are conservative, since they depend on the maximal
magnitude of the derivatives within the domain of interest. In
some faces of the discontinuity mesh the derivatives are suffi-
ciently small to permit these bounds to be meaningful. Identify-
ing these cases however is expensive, and not a practical way of
assessing quality.

For faces with monotonic irradiance, a simple error bound is
given from the maximum difference between irradiance values
at the three points of the polygon. The error boundB of the
interpolantsN , on triangles over which irradiance is monotonic,
is given as:

B = max jf(pi) � f(pj) j; i; j = 1; 2; 3: (6)

It is important to note that since we do not guarantee correct
monotonicity characterization, in terms of our algorithmB is a
heuristic rather than a strict bound.

Error bounds have not been strictly established for faces with
non-monotonic irradiance for which adaptive subdivision has
not been performed. However, for such faces with a single ex-
tremum, the quality of the interpolant can be estimated closely
by the maximum ofB in Eq. (6) and the maximum difference
of the irradiance values of the interior points along each edge of
the triangle used in the quadratic interpolant construction.

VII. N UMERICAL TESTS ANDQUALITY EVALUATION

To evaluate the quality of the algorithms for mesh reduc-
tion and degree selection we ran the algorithms on the “Sim-
ple Desk” and “Desk Drawers” scenes for the 9 light positions
as described in Section III-B, as well as the two geometries for
“Small” and “Long” light source configurations and finally “Big
Scene” with two desks and two chairs. All images used for the
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numerical evaluation (Tables III to VII) were computed using
ray-casting, with the value of the visible point at each pixel be-
ing determined by evaluating the interpolant of calculating the
exact backprojection (for the reference images). To measure
error we use two error metrics: an area-weighted object-space
square root error and an image-based square root error.

For the object-space error we compute a set of sampling
points fpjg on each facefi of the mesh, both in penumbra
and in light. DefineI(p) to be the irradiance on a surface at
point p and Î(p) the approximation constructed by piecewise
linear/quadratic interpolation. We haveF faces in the scene and
each facefi has areaAi. The object space error�os is thus given
as:

�os =

vuut 1P
Ai

FX
i

Ai

n

nX
j=0

(Î(pj) � I(pj))
2 (7)

The error metric�os has the same units as irradiance (power per
area). We also compute a reference image with analytic radi-
ance valuesE(i; j) and an approximate imagêE(i; j) using the
interpolants. The image-based error�is for ani� nj image, is
given as:

�is =

sPni

i

Pnj

j (E(i; j) � Ê(i; j))2

ni nj
(8)

The error metric�is is in pixel value differences and thus varies
between 0 and 255. We compute�is for three difference view-
points, the first is the view shown in Fig. 9, the second is similar
to the image in Fig. 13 and a third which is a view on the other
side of the desk. For “Big Scene” the view of Fig. 8 is also used.

A. Results for Mesh Reduction and Degree Selection Algo-
rithms

Results are presented next in Tables III to VII. Table III gives
the results for the simple combination of structured sampling
with discontinuity meshing, Tables IV,V show the statistics for
the mesh reduction algorithm, while Tables VI, VII shows the
results for the degree selection approach.

In Tables IV,V,nf is the original number of faces in the mesh,
andn0

f is the reduced number,�os and�is are as defined above
and% Red.is the percentage reduction of the number of faces.
In Tables VI,VII,neq is the number of edges with quadratic in-
terpolants,nel is the number of edges with linear interpolants,
and% Lin. the percentage of edges with linear interpolants.

The mesh reduction achieved is satisfactory (between 29% to
63%), while the error is globally low. Similarly, the number
of edges characterized as linear is high (from 27% to 69.1%),
allowing the use of cheaper, lower degree polynomial inter-
polants. Object-space error�os is low, growing slightly more
than in other cases for mesh reduction in the case of the long
light source (Table IV), for which the tolerance value results in
higher mesh reduction. Image space error�is is also low, since
it is less than a unit RGB pixel value for almost cases of mesh
reduction or degree selection for the simple scene, and in the or-
der less than 4 RGB pixel values for mesh reduction of the big
scene (Table V).

We next present a first visual comparison of the images pre-
sented in Sections VI and V by showing the difference images

Scene �os �is

Average over 9 runs
Simple Desk 0.019 0.461
Desk Drawers 0.025 0.664

Average over 2 runs
Small Source 0.015 0.716
Long Source 0.024 1.623

Single run
Big Scene 0.004 0.851

TABLE III

ERROR FORCOMBINED ALGORITHM

Scene nf n0

f %Red. �os �is

Average over 9 runs
Simple Desk 344.9 244.1 29.2 0.016 0.052
Desk Drawers 1025.4 673.0 34.4 0.019 0.076

Average over 2 runs
Small Source 421.5 260.5 38.2 0.018 0.444
Long Source 647.0 385.0 40.5 0.106 0.808

Single run
Big Scene 3840.0 2529.0 34.1 0.016 1.260

TABLE IV

MESH REDUCTION: AREA TOLERANCE0.01 (1%)

Scene nf n0

f %Red. �os �is

Average over 9 runs
Simple Desk 344.9 159.9 53.6 0.021 0.067
Desk Drawers 1025.4 375.0 63.4 0.021 0.102

Average over 2 runs
Small Source 421.5 187.0 55.6 0.028 0.854
Long Source 647.0 237.0 63.4 0.099 1.129

Single run
Big Scene 3840.0 1689.0 56.0 0.022 3.946

TABLE V

MESH REDUCTION: AREA TOLERANCE0.09 (9%)

Scene neq nel % Lin. �os �is

Average over 9 runs
Simple Desk 1049.7 396.0 27.4 0.002 0.051
Desk Drawers 1909.2 1526.4 44.4 0.004 0.075

Average over 2 runs
Small Source 863.0 993.5 53.5 0.012 1.348
Long Source 1426.5 866.0 37.8 0.012 0.813

Single run
Big Scene 4736.0 6630.0 58.3 0.004 0.865

TABLE VI

DEGREESELECTION TOLERANCE0.001

Scene neq nel % Lin. �os �is

Average over 9 runs
Simple Desk 1780.2 1111.1 38.4 0.019 0.063
Desk Drawers 2982.0 3889.3 56.6 0.024 0.097

Average over 2 runs
Small Source 1702.5 2010.5 54.1 0.030 1.348
Long Source 2327.5 2257.5 49.2 0.121 1.124

Single run
Big Scene 2443.0 8923.0 89.3 0.021 0.955

TABLE VII

DEGREESELECTION TOLERANCE0.008
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Scene ttot tm tbp tss t0:01r t0:09r

Average over 9 runs
Simple Desk 21.40 15.43 2.98 0.79 0.16 0.16
Desk Drawers 116.56 73.83 33.68 1.20 1.04 0.74

Average over 2 runs
Small Source 23.55 18.61 1.88 0.97 0.23 0.17
Long Source 56.56 40.46 10.75 0.80 0.49 0.36

Single run
Big Scene 649.22 440.60 175.05 2.14 13.33 9.24

TABLE VIII

T IMING RESULTS

                        

Fig. 18. Difference images (x20) for: (a) simple interpolant (b) reduced mesh.

multiplied by a factor of 20. As can be seen in Figs. 18 and 19
the differences are limited and small in magnitude (a dark pixel
signifies no difference, and a totally white pixel a difference of
255 pixel levels in all three channels).

Finally, timing results are presented in Table VIII. All timings
are in CPU seconds on an SGI Indy R5000 processor running
at 150Mhz. The valuettot is the total time spent to create the
mesh, triangulate and construct the interpolants,tm is the mesh
construction time,tbp is the backprojection calculation time,tss
is the cost of structured sampling (as in [11] but using irradiance
gradients [1]),t0:01r is the cost of the edge removal algorithm for
an area tolerance of 0.01 (1%) andt0:09r is the removal time for
area tolerance of 0.09 (9%). As can be seen from these statistics,
the cost of the edge removal algorithm is negligible compared to
the total cost of the algorithm.

B. Discussion of Numerical and Visual Results

The mesh reduction algorithm has presented good results for
the scenes tested. For satisfactory mesh reduction (30-60%),
the increase in error is in general minimal, indicating that the

            

Fig. 19. Difference image (x20) after degree selection.

complete discontinuity mesh is much larger than required for
satisfactory reconstruction. However, there are cases in which
the reconstruction quality can degrade, particularly when small
faces are left in the mesh which force the creation of small or
elongated triangles. Further geometric manipulation of the mesh
can be used to eliminate these artifacts. One issue that is more
difficult to address is that of animation. No provision is currently
made for consistency in mesh reduction, and thus over animated
sequences flickering can occur as the mesh changes from frame
to frame. This should be addressed in the context of a more
general incremental meshing algorithm for animation.

For degree selection, the results are also encouraging. With a
good percentage of linear interpolants (30-70%) the increase in
error is small, both in object and image space. Nonetheless, the
method can be improved by incorporating some criterion based
on the possible visible impact of the degree reduction, to avoid
occasionally objectionable artifacts. This will require the use of
perceptual error metrics.

VIII. S UMMARY AND DISCUSSION

An empirical and numerical study of irradiance in penumbral
regions has been presented. Such a study was previously im-
practical due to the expense of computing irradiance values in
the penumbrae. The use of the discontinuity mesh and the back-
projection now makes such a study possible. It was found that in
the majority of cases, irradiance in the penumbra is monotonic
and thus amenable to reconstruction by linear or quadratic in-
terpolants. Configurations that cause the appearance of extrema
or irregular behavior were characterized. This study offers a
better understanding of irradiance behavior in regions of partial
occlusion, and guided the construction of an interpolating, inter-
polating, piecewise polynomial representation.

For the construction of the interpolant domains, the complete
discontinuity mesh is used as a starting point. The faces of the
mesh are triangulated, and the irradiance information is stored
compactly with the mesh. The observations made from the em-
pirical study suggested that many of the edges in the mesh are
not actually required for satisfactory reconstruction of illumina-
tion in the penumbra. A mesh reduction algorithm is thus intro-
duced, based on the removal of faces with small area and faces
that cause concave regions in the mesh.

The observations of the empirical study also suggest that in
many cases linear interpolation is sufficient for illumination re-
construction in the penumbra. An algorithm was presented
which characterizes the edges in the mesh and the triangulation
as requiring linear or quadratic degree polynomials to achieve
high quality reconstruction. A set of basis functions was de-
signed that allows the use of mixed degree polynomials for re-
construction.

Numerical tests were performed for a suite of moderately
complex environments in which complicated shadow structures
appear. The results show that both the mesh reduction and the
degree selection algorithm can be applied without significant
degradation of quality in the reconstruction.

This paper is a first attempt at comprehending irradiance be-
havior in penumbral regions. Much more work remains to be
done. More detailed studies are needed of the geometric con-
ditions leading to irradiance extrema in the penumbra. This
will hopefully lead to a priori algorithms which will allow the
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casting only of those discontinuity surfaces which contribute to
significant illumination changes. In this manner the mesh will
be simplified overall, and the meshing will be computationally
cheaper. Such work will also result in much more reliable and
effective error bounds, which are indispensable for global illu-
mination algorithms [21]. The hierarchical global illumination
algorithm incorporating discontinuity meshing and backprojec-
tions presented in [12] can use the mesh reduction approach in
a straightforward manner. A first attempt at simplification in the
presence of multiple sources was presented in [7], and evidently
more work needs to be performed in combining the different
simplification strategies, in particular for the application of dis-
continuity meshing to global illumination [23], [12].
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Simplifying the Representation of Radiance from
Multiple Emitters

George Drettakis

iMAGIS / IMAG ?

In recent work radiance function properties and discontinuity meshing have been
used to construct high quality interpolants representing radiance. Such approaches do
not consider the combined effect of multiple sources and thus perform unnecessary
discontinuity meshing calculations and often construct interpolants with too fine subdi-
vision. In this research we present an extended structured sampling algorithm that treats
scenes with shadows and multiple sources. We then introduce an algorithm which sim-
plifies the mesh based on the interaction of multiple sources. For unoccluded regions an
a posteriori simplification technique is used. For regions in shadow, we first compute
the maximal umbral/penumbral and penumbral/light boundaries. This construction fa-
cilitates the determination of whether full discontinuity meshing is required or whether
it can be avoided due to the illumination from another source. An estimate of the error
caused by potential simplification is used for this decision. Thus full discontinuity mesh
calculation is only incurred in regions where it is necessary resulting in a more compact
representation of radiance.

1 Sampling Illumination from Multiple Sources

To accurately render scenes illuminated by area light sources, it is necessary to represent
the illumination on surfaces by a simpler, approximating function, even when consider-
ing only direct illumination. Piecewise polynomial interpolants are often chosen for this
purpose. Such representations are an essential requirement for global illumination com-
putation, in particular for the finite-element style approaches (e.g. [Zatz93, GSCH93]),
which extend the radiosity-based method [CoGr85].

In the interpolant construction algorithms presented to date, much effort has been
devoted to correctly treating shadow boundaries and identifying the behaviour of ra-
diance. These methods have thus achieved high quality representation of illumination
using simple functions. However, despite the significant advances in the field, little has
been done to actually compensate for the cumulative effects of illumination from mul-
tiple emitters, be they light sources or secondary reflectors.

The importance of identifying these interactions is easy to see: when a single source
is present, it may cast a detailed shadow which may require significant computation to

? iMAGIS is a joint research project of CNRS/INRIA/UJF/INPG. Postal address: B.P. 53, F-
38041 Grenoble Cedex 9, France. E-mail:George.Drettakis@imag.fr.
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represent correctly. However, if a second source illuminates the same region in an un-
obstructed fashion, the shadow will be “washed out” leaving little need for the detailed
representation. This phenomenon is illustrated in Fig. 7(a) and (b) (see colour section),
in which one and two sources illuminate the environment respectively.

In this paper we propose a solution to this problem, by extending the techniques de-
veloped for discontinuity meshing and structured sampling [DrFi93, DrFi94, Dret94].
Throughout we consider only environments of diffusely reflecting surfaces lit by dif-
fusely emitting sources. In the following section we present relevant previous work; we
then present the extended structured sampling approach. We then briefly describe the
two-pass discontinuity meshing algorithm which incurs the cost of full discontinuity
meshing only in the regions required. In the sections that follow, we describe the sim-
plification criteria for two sources, first for the intersection of unoccluded regions and
then for the intersection of penumbral/unoccluded regions. For both cases we present
first results of a prototype implementation. We then present the extension to multiple
sources and summarise the results of the paper.

2 Previous Work

In previous work, the approximations used to represent radiance or radiosity have gen-
erally been guided by the requirements of the global illumination calculations. A sim-
pler approach to constructing radiance representations is to examine illumination from
a single emitter. The first such approach, in which the nature or structure of radiance
for unoccluded regions is examined, was presented by Campbell and Fussell [Camp91].
They observed that radiance for these environments displays a single maximum. This
idea was extended by Drettakis and Fiume [DrFi93], who constructed quadratic or lin-
ear interpolants tensor-product interpolants which can be shown to satisfy tight error
bounds.

It has recently been shown that the computation of shadow boundaries, which are
subsequently used to guide interpolant construction, is fundamental for high quality ap-
proximation of illumination. The first such work was performed in [Camp91] in which
the boundary between penumbral and unoccluded regions was computed. The resulting
mesh was then used to build an approximation of radiance of constant-radiance triangu-
lar elements. Similar work was performed by Chin and Feiner [ChFe92]. Lischinski et
al. [LiTG92] were the first to consider discontinuity surfaces interior to the penumbra,
that signify a change in the topological view of the light source (e.g. the appearance or
disappearance of a vertex or an edge in the visible portion of the source). They sub-
sequently built a triangulation of the receiver surfaces based on the subdivision of this
mesh, and constructed quadratic interpolants over these triangles. A different algorithm
was presented by Heckbert [Heck92], in which a similar mesh is computed. Lischinski
et al. [LiTG92] also merged the meshes from multiple sources, but no simplification was
attempted. In this paper we extend the approach developed in [DrFi94, Dret94]. In this
approach thecomplete discontinuity meshis calculated: the environment is segmented
into regions (meshfaces), in which the topological structure of the visible region of
the source does not change. An abstract representation of the visible part of source,
called abackprojection, is stored with each face. An example of such a mesh is shown
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Fig. 1. (a) Mesh and Backprojection (b) Segmentation into Light and Penumbra and
(c)Triangular/Tensor Product Interpolants

in Fig. 1(a), where the backprojection of the point marked with a cross is shaded on
the source. In [Dret94], the complete mesh is used to construct linear and quadratic in-
terpolants representing radiance in the penumbra. In addition, the structured sampling
approach of [DrFi93] was extended ([Dret94]) to handle environments with shadows in
the following way. First all regions of shadow are identified and enclosed in a bounding
box. Such a regular region enclosing a region of penumbral and umbral faces is called a
penumbral group. The remaining parts of the receivers (which are unoccluded) are seg-
mented into parallelograms (Fig. 1(b)) on which the structured sampling algorithm is
used to create tensor-product interpolants as in [DrFi93] (Fig. 1(c)). Notice in Fig. 1(c)
how in the regions of penumbra triangular interpolants are used, while in the unoccluded
regions sparse tensor product representations suffice.

3 Extending Structured Sampling for Multiple Emitters

For the purpose of computing reference images in scenes with multiple sources, the
discontinuity mesh from each source can be computed independently, and stored with
the surface. When rendering using ray-casting, each mesh is queried, the backprojec-
tion retrieved for each mesh corresponding to each source and the exact radiance value
computed.

To obtain the merged mesh due to several sources, the meshes corresponding to each
source are combined. This is performed simply by adding the faces of one mesh into
the other. If two light regions with tensor-products are combined, the merged region
will contain tensor-product interpolants, while in ever other case (penumbra or umbra
combined with penumbra, penumbra or umbra combined with unoccluded) the resulting
mesh faces will be triangulated and a combined interpolant built.

By using the structured algorithm in [DrFi93] the radiance function in unoccluded
regions for each source is split into regions in which the radiance is well behaved. The
algorithm then creates quadratic interpolants and guarantees that the interpolants satis-
fies tight error bounds. Thus, the combined illumination function over the intersection
of two light regions will continue to satisfy these error bounds. Similarly, for the other
regions the combination of triangular or tensor-product interpolants is also guaranteed
to give high quality results, since the regions have been segmented based on the com-
plete discontinuity mesh.
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Because of the guaranteed error bounds for the interpolants representing unoccluded
illumination, we can safely use these approximations in our calculations for simplifica-
tion (see below), instead of the more expensive direct illumination calculation.

4 Two-Pass “On Demand” Discontinuity Meshing

The main cost of the complete discontinuity meshing algorithm is due to the relatively
large number of discontinuity surfaces that must be traced in the environment. In ad-
dition, it is necessary to search for the existence of discontinuity surfaces (either edge-
vertex wedges (EV) or triple-edge quadric surfaces (EEE)), formed by edges and ver-
tices not on the source. To reduce the cost of this computation, we must reduce the
number of surfaces traced into the environment.

To do this we separate the mesh computation into two phases: first, the computation
of the boundary between light and penumbra, and an estimate of the region between
umbra and penumbra, and second the full computation of all discontinuity surfaces
interior to the penumbraonly when required. We call the boundary between penumbra
and light the maximal boundary, and the boundary between umbra and penumbra the
minimal boundary. The combined maximal and minimal boundary is called theextremal
boundary.

4.1 Extremal Boundary Approximation

The computation of the maximal boundary can be performed exactly, since it is formed
exclusively by EV surfaces [Camp91]. Thus these events can be identified in constant
time for each object, and subsequently propagated into the environment. The minimal
boundary can include EEE events [Tell92], which can be treated by the method de-
scribed in [DrFi94].

As an example consider the scene shown in Fig. 2. On the left we see the full dis-
continuity mesh, and on the right the extremal boundary.

Fig. 2.Complete Mesh vs. Extremal Boundary

The number of discontinuity surfaces traced through the environment is thus re-
duced significantly. In addition, since no internal detail of the mesh is computed, all
non-emitter events are ignored, and the search time for such events is eliminated.
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The computation time for the extremal boundary is significantly reduced compared
to the computation of the full mesh. In Table 1 we compare the cost of complete dis-
continuity meshing to the cost of the extremal boundary for the scenes shown in Fig.
1 and Fig. 2, as well as two other more complex scenes. As we can see, the cost of
the complete mesh computation is three to four times higher than the just the extremal
boundary. It is thus evident that large gains can be achieved if the complete mesh need
be computed only when required.

Table 1.Computation time for Complete Mesh and Extremal Boundary

Scene Polygons Complete Extremal Ratio Complete/
Mesh Boundary Boundary

Box Scene 14 0.74 sec 0.16 sec 4.6
Table Scene 36 1.01 sec 0.31 sec 3.2
Desk Scene 182 17.20 sec 4.42 sec 3.8
Desk & Chair Scene 288 35.20 sec 9.20 sec 3.8

4.2 Local Complete Mesh Construction

As discussed earlier, one of the goals of the approach presented here is to compute
portions of the discontinuity mesh only when necessary. The discontinuity meshing al-
gorithm presented in ([Dret94, DrFi94]) is particularly well suited to such an extension.

Given a convex region defined on a receiver for which the complete mesh is desired,
a convex volume defined by the source and that region is defined. Using the same spatial
subdivision structure as in [DrFi94], the objects contained in this volume can be found
efficiently.

To create the full meshlocally in the desired region of the receiver, the discontinuity
meshing algorithm of [DrFi94] is applied using only the objects within the volume. In
this manner, a much smaller number of discontinuity surfaces are traced (only those cor-
responding to edges and vertices of the selected objects), and the number and expense
of searches for non-emitter events is also limited.

5 Simplification Criteria

In this section we discuss the simplification criteria used when two meshes are com-
bined. In Section 6 we show how this applies to an arbitrary number of sources.Consider a sourceS1 and a sourceS2. We assume that we have computed the ex-
tremal boundaries for the discontinuity mesh for each source, that the environment has
been segmented into parallelogram regions of light and penumbra/umbra. We also as-
sume that the structured sampling algorithm has been applied, subdividing the regions
of light. In each such unoccluded region a biquadratic tensor product interpolant has
been built, which represents the radiance function accurately within strict error bounds.
We call each such mesh the simplified mesh for sourceS. In Fig. 3 we show the sim-
plified mesh for each source for the scene of Fig. 7 (see colour section).

Given the two meshes,M1 andM2 respectively, we proceed to “add”M2 intoM1.
Merging is performed this way purely for reasons of algorithmic simplicity. There are
three cases that must be treated:
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Fig. 3.Simplified Meshes for Box Scene

1. Merging light faces ofM1 with light faces ofM2.
2. Merging light faces of one mesh with penumbral faces of the other.
3. Merging penumbral faces of one mesh with penumbral faces of the other.

For the first case, since we have the structured representation in the form of tensor prod-
uct interpolants for both meshes, we use an a posteriori error estimation to determine
whether simplification can be performed. For the second case, we determine the regions
of the penumbral group for which complete meshing is necessary. For the third case we
currently perform no simplification.

5.1 Light-Light Simplification

The simplest case is the insertion of an unoccluded (light) faceF2 of M2, into the mesh
M1. The meshM1 is searched to find all faces contained inside the boundary of the face
F2 being added. Call these facesff1; f2; :::; fng. Within each such light facefi of mesh
M1, a (structured) biquadratic interpolants1i (x; y) has been defined. Correspondingly,
the structured interpolant inF2 is s2

2
(x; y).

To determine whether simplification is possible, we proceed to construct two bi-
quadratic interpolants: first a high quality representation of the combined radiance with
the region ofF2, denoteds\(x; y) and second a simplified representation,~s(x; y). The
error incurred by the simpler interpolant (compared to the high-quality interpolant) is
used to determine whether simplification can be achieved.

The high-quality interpolants\(x; y) is defined as follows, in a piecewise fashion
over eachfi (this is the interpolant created when combining the meshes as in Section
3):

s\ = s2
2
(x; y) + s1i (x; y); (x; y) 2 fi (1)

Since the interpolantssji (x; y); j = 1; 2 already constructed are good approxima-
tions of the actual radiance function,s\(x; y) is considered to be an accurate approxi-
mation of the combined function over the entire domainF2 = [fi.

The second interpolant~s(x; y) is defined overF2 as a simple 9-point biquadratic
tensor product, for which the midpoints are used as internal defining nodes. The nodal
values are found by queryings\(x; y).
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To determine whether the combined illumination from two sources can be repre-
sented accurately by the simplified interpolant~s(x; y), we use standard approximation
theoretic error estimate [Pren89]. As a first approach we compute theL2-norm of the
difference of the simplified and the accurate interpolants.

For theL2-norm the following quantity is computed:

L2 =

sZ Z
F2

(~s(x; y)� s\(x; y))
2
dxdy (2)

This integral is computed in a piecewise fashion over each tensor product domain
fi. Since both~s(x; y) ands\(x; y) are quadratic functions, the integral of Eq.(2) can
be computed analytically. In practice, the analytic expression is large and numerically
unstable, so a two-dimensional Gauss-Legendre quadrature rule is used. In many cases,
the quadrature can give exact results.

If the L2-norm is less than a user-specified tolerance, the edges of the facesfi are
removed, and radiance in the domain ofF2 is represented by the simplified interpolant
~s(x; y).

In Fig. 4, we show the result of the simplification criteria applied to a scene of two
sources with no shadows. In Fig. 4(a) the original mesh is shown. From Fig. 4(b) it
can be seen that T-vertices have been introduced into the mesh. To ensureC0 conti-
nuity, T-vertices are treated as “slave-nodes”. First all interpolants of simplified faces
are constructed. For each T-vertex, the corresponding value of the neighbouring simpli-
fied interpolant replaces the previously assigned nodal value. In Fig. 8(a) (in the colour

Fig. 4. (a) Original Unoccluded Mesh, and (b) Simplified Mesh

section) we show the image rendered using the original full mesh interpolant. In Fig.
8(b) the result of the construction of the continuous interpolants for the simplified mesh
is shown. As can be seen, the resulting images show little difference. However, a more
graded variation between simplified and unsimplified regions would be beneficial, using
a form of restricted meshing.

5.2 Light-Penumbra Simplification

Consider a penumbral group of a meshMP caused by sourceSP and a set of light
faces of the meshML caused by sourceSL, which are contained or cut the penumbral
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group. We wish to add the light faces into the meshMP , and to determine the regions of
the penumbral group for which the complete discontinuity mesh must be computed. In
contrast to the light-light case, we do not have an accurate representation of the radiance
in the penumbra.

To determine whether detailed mesh computation is required, we first construct a
medium quality approximation̂s\(x; y) to the radiance in the penumbra, using the ex-
tremal boundary, within each light face ofML. This piecewise approximation takes into
account the extremal boundaries of the various sources, and its use is equivalent to the
accurate interpolants\(x; y) for the light-light case. We then construct the simplified
interpolant by defining a single biquadratic tensor product~s(x; y). The simplification
criteria used are the same as in the light-light case.

The construction of̂s\(x; y) proceeds as follows. We first construct an independent
mesh defined by the bounding box of the penumbral group. We then add in the extremal
boundary of the group of meshMP . We show this construction for the box scene and the
penumbral group of one source in Fig. 5(a) (refer to Fig. 3(a) and Fig. 7 (colour section)
to understand the geometry). In this way, a coarse segmentation of the penumbral group
into regions of light, penumbra and umbra has been achieved.

For each vertex inserted into the independent mesh the appropriate illumination
value due to sourceSP is assigned. For the vertices on the maximal boundary or in
the unnoccluded regions this is the direct unoccluded illumination fromSP and for the
points on the minimal boundary the value is 0. We then insert all the light faces ofML

umbra

penumbra
light

Fig. 5. Mesh for Error Testing: (a) Maximal/Minimal Boundary of penumbral group ofMP , (b)
Light faces ofML added, (c) Triangulation (domain ofŝ\(x; y))

that intersect or are contained in the penumbral group boundary (Fig. 5(b)). For the
resulting vertices the value of unoccluded illumination is retrieved from the appropriate
interpolants ofML, but it is then necessary to add the appropriate (penumbral) value due
to the sourceSP . For regions of umbra and light (due to sourceSP ) this can be found
simply. For vertices in regions within the penumbra however it is necessary to retrieve
an estimate of the radiance value. This can be achieved by estimating the derivative
value of radiance (see below).

The resulting combined mesh is then triangulated (Fig. 5(c)), and the piecewise
elements of the interpolantŝ\(x; y) are built. Interior nodal values are computed either
directly (if in a region of light or umbra) from the appropriate interpolants inML and
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MP , or are averages of the neighbouring nodes if the node is within the penumbra.
For each region corresponding to a light faceFL, the interpolant~s(x; y) is con-

structed. This interpolant is a simple 9-point bi-quadratic Lagrange interpolant. The
values for nodes corresponding to vertices in the combined mesh have already been as-
signed and those that remain are found by querying the interpolantŝ\(x; y). We then
compute theL2-norm error in the same manner as for the unoccluded case for the tri-
angles of~s(x; y) which lie in umbra or penumbra. The integral is computed over each
triangle included in the domain of the light faceFL. If theL2 error is less than the pre-
defined tolerance, the edges ofFL are inserted intoMP , the extremal boundary edges
contained inFL are removed from the meshMP and radiance within this region is
represented by the simplified interpolant.

If the error is greater than the user specified tolerance, the region of the original
light face is marked as requiring further meshing. After processing all light faces, the
complete mesh is locally computed only for the regions required.

5.3 First Implementation and Discussion

To verify the algorithm, we have implemented the light-penumbra simplification by
first computing the complete mesh, and then simplifying the mesh where appropriate.
The full construction of the extremal boundary and the simplification algorithm have
been implemented as described above, with the exception of the local backprojection
estimate. Instead, for the light-face vertices within penumbra, the exact penumbral ra-
diance is retrieved from the (complete) mesh of sourceSP .

As mentioned above, for the penumbral regions only the portions of the simplified
mesh in penumbra or umbra are taken into consideration for theL2-norm computation.
As noted in [Dret94], edges leading to a singular vertex display a particularly rapid
variation. To correctly account for this, in faces for which singular edges exist the light
faces are also considered in theL2-norm calculation.

The results of the implementation are shown in Fig. 6. We first show the unsimpli-
fied combined mesh (a), and then the simplified mesh for tolerance values 0.005 and
0.001 respectively (b) and (c). The corresponding shaded images are shown in Fig.

Fig. 6. (a) Unsimplified Combined Mesh and Simplified Mesh for (b) Tolerance 0.005 and (c)
0.001

9(a),(b) in the colour section. The results of a more complicated test are shown in Fig.
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?? to ??. The complete mesh and resulting image are shown in Fig.??, and the reduced
meshes and images in Fig.??and?? for tolerances equal to 0.1 and 0.005 respectively.

Overall the method shows promising first results. Little difference can be seen in
the simplified images compared to complete mesh image for the simple scene (Fig. 7
(b)), and the simplification appears to occur in desirable regions of the mesh as the
tolerance grows. Similarly the simplified images for the table scene (Fig.??, ??) appear
to maintain relatively high quality, since simplification occurs in the regions in which
the detail of the penumbra is not very important.

In the tests performed it can be seen that the use of theL2-norm can sometimes
cause undesirable simplification (e.g., the shadow boundary of the front leg in Fig.
??(a)). A possible solution is to maintain the extremal boundary instead of substituting
with a tensor product.

5.4 Penumbral Radiance Estimates

Given the maximal and minimal boundary we propose here an estimate of the radiance
at any point in the penumbra using local backprojection information. By construction,
the minimal or maximal edges of the discontinuity mesh include information about the
local change of the backprojection. Thus a good estimate of the radiance at a pointP ,
known to be in penumbra, can be found by approximation.

To perform this approximation we first find the edge on the minimal boundary for
which the two endpoints are closest toP . We then calculate the backprojection into
the penumbra locally in a direction defined by the midpoint of the minimal edge and
the pointP . Given the backprojection, we estimate the radiance derivative, then build a
Hermite cubic from the values and the derivative estimates, and determine the radiance
value atP using the cubic. Experimental verification will determine the quality of this
approach.

6 Treating Multiple Sources

The simplification algorithm begins by computing the extremal boundary for each of the
n sources in the scene. The light regions are computed, and the structured algorithm run
for each surface. The result is a list of simplified meshes for each surface:fM1; ::Mng.
The algorithm proceeds by merging the first two meshes. The combined meshMc is
then merged with meshM3 etc.

For a pairfMc;Mjgwe first insert the light faces ofMj into the mesh . If a light face
of Mj contains exclusively light faces ofMc, or there is a parallelogram subregion of
Mj with this property, the light-light simplification is applied. The penumbral regions of
both meshes are then visited, and the simplification algorithm is run for each penumbral
group. A list of regions marked as “potentially requiring meshing” is stored, together
with a pointer to the appropriate source. In addition, the interpolantŝ\(x; y) is stored
and used in subsequent tests for error bound checking. If a subsequent source eliminates
the need for the meshing, the corresponding regions are deleted from the list. At the end
of this process, there will be a list of regions for which the complete mesh is applied.
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7 Conclusions

In this paper we have presented an algorithm which allows more compact representation
of radiance due to multiple emitters based on careful error analysis, and allows the cost
of discontinuity meshing to be deferred until it is required.

To achieve this goal, theL2-norm is used to compare an accurate representation
of radiance over a domain with a simpler one. When the simpler interpolant satisfies a
given error tolerance, it is used. For regions with unobstructed views of all sources, this
is performed as an a posteriori step. For regions in penumbra for one source and light
for another, a low-quality discontinuity mesh is first computed, and an approximation
to radiance built, which is then compared to a simpler interpolant. Results of a first
implementation show promising reduction of the mesh, and good quality images when
using the simplified interpolant.

For the future, it is extremely interesting to apply these ideas to complex envi-
ronments with many sources, to determine the savings, both in the representation of
unoccluded regions, but more importantly in the computation time for discontinuity
meshing. The subsequent step is the usage of these algorithms in a global illumination
context, since for secondary reflection the need for complete meshing is highly unlikely.
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Fig. 8. Images for (a) Original and (b) Simplified Unoccluded Meshes

Fig. 9. Images of Simplified Meshes (a) Tolerance = 0.005, (b) Tolerance = 0.001
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Accurate Visibility and Meshing Calculations
for Hierarchical Radiosity

George Drettakis, Franc¸ois Sillion
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Abstract: Precise quality control for hierarchical lighting simulations is still a
hard problem, due in part to the difficulty of analysing the source of error and
to the close interactions between different components of the algorithm. In this
paper we attempt to address this issue by examining two of the most central com-
ponents of these algorithms:visibility computation and themesh. We first present
an investigation tool in the form of a new hierarchical algorithm: this algorithmic
extension encapsulates exact visibility information with respect to the light source
in the form of thebackprojectiondata structure, and allows the use ofdisconti-
nuity meshesin the solution hierarchy. This tool permits us to study separately
the effects of visibility and meshing error on image quality, computational ex-
pense as well as solution convergence. Initial experimental results are presented
by comparing standard quadtree-based hierarchical radiosity with point-sampling
visibility to the approaches incorporating backprojections, discontinuity meshes
or both.

1 Introduction

Hierarchical simulation techniques have received a lot of attention in research envi-
ronments, but their practical use remains impaired by the difficulty of controlling the
speed/accuracy tradeoff on which they are based. Error control and solution accuracy
issues have been studied to a certain extent for global illumination algorithms [12, 1].
These studies provided a useful categorization of possible error sources, and offered a
general framework for error-driven hierarchical refinement. Nonetheless, little has been
done in terms of investigating the different causes of error in Hierarchical Radiosity
(HR) in particular, and very little is currently known about the quantitative effects on
error of different algorithmic choices used during the lighting simulation.

In this paper we attempt to address this problem by providing recommendations,
based on theoretical discussion and initial experimental results. We will concentrate
our efforts on meshing and visibility computation strategies. We begin by presenting
a non-exhaustive list of important algorithmic components in HR and we mention the
algorithms that have been proposed to improve these aspects of the simulation. For most
of these factors, the precise impact on image or solution quality, as well as possible
interactions between them, has not been thoroughly studied.

Important components of the HR simulation algorithm Broadly speaking, two main
categories of factors affecting simulation can be identified (following [1]):discretisa-
tion, concerning mainly issues of mesh construction and data structures, andcompu-
tation which involves the aspects of the algorithm related to form-factor and visibility
computation as well as refinement strategy and convergence.

? iMAGIS is a joint research project of CNRS/INRIA/INPG/UJF. Postal address: B.P. 53,
F-38041 Grenoble Cedex 9, France. Contact E-mail:George.Drettakis@imag.fr.



Discretisation

Meshing strategy HR relies on the ability to evaluate interactions (energy transfers)
at different levels of a hierarchy in the description of the scene. Previous algorithms
typically used simple recursive subdivision structures such as the quadtree to repre-
sent hierarchical meshes. Another approach consists of computing adiscontinuity mesh
(DM) for much improved representation of direct illumination.

Mixed meshes Simple hierarchical structures such as quadtrees are easy to imple-
ment and compact to store, because they rely on implicit information. However they are
not suited to some geometrical or topological situations such as the representation of
shadow boundaries. Mixed meshes with both triangles and quadrilaterals can therefore
be used, and must provide access to connectivity information.

Computation

Visibility calculation Many radiosity implementations to date use point sampling to
evaluate visibility factors. Discontinuity meshes, when equipped with the associated
visibility information (backprojection) can provide exact visibility computation for di-
rect illumination.

Refinement StrategyRefinement criteria (sometimes called “oracles”) are the core of
the HR formulation. Many different criteria have been devised, using varying amounts
of information. Possible variables for the refinement decisions are form factor estimates,
visibility status, estimate of form factor variance, estimate of radiosity transfer, etc.

Point or Area-based form-factor computation As shown by the work of Wallace
et al.[20] for progressive refinement radiosity, higher-quality solutions can be obtained
when computing radiosity directly at mesh vertices. Area-to-area form factors require
an extrapolation/interpolation step which effectively smoothes out some of the defects
in the solution but also “blurs” the computed solution in ways which are difficult to
quantify.

Convergence The benefits of HR really become apparent when a global solution is
sought, i.e. with all interreflection effects. HR convergence is an issue that has received
limited attention and it is not known whether some of the choices mentioned above have
a significant impact on convergence.

2 Previous Work

2.1 Discontinuity meshing and backprojections

Discontinuity meshing ([9, 12, 5]) has been used to a certain extent for global illumi-
nation and HR calculations, but the meshes used have always beenpartial since they
do not capture EEE and other important discontinuity surfaces. A result of this sim-
plification is thatbackprojections(defined in e.g. [3, 16, 18]) cannot be computed by
these algorithms. Backprojections are data structures permitting efficient determination
of the visible part of the source anywhere in the penumbra, thus effectively eliminat-
ing all visibility calculation error with respect to the light sources. Backprojections can
only be computed together with the complete discontinuity mesh (i.e. including EEE
and degenerate events), and thus have never been used so far in the context of HR.
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2.2 Combination of HR and DM

The most relevant approach to our work is that of Lischinski et al. [12]. In their work
a global solution is computed using a BSP tree. When a node is split, an appropriate
discontinuity line is chosen. A local pass is subsequently used for display, during which
analytic visibility (mainly for primary sources) is computed using an expensive polygon
clipping operation (as in [10, 17]). The main difference with the method we present here
is the fact that exact visibility was not taken into account during the solution process
and thus the different factors (visibility, meshing) affecting error could not be isolated or
analysed. Gatenby and Hewitt [5] also developed a hierarchical solution for progressive
refinement, but little was presented in terms of solution quality evaluation.

2.3 Error estimation and control

A detailed theoretical presentation of error analysis was developed by Arvo et al [1].
According to their classification, we will be dealing withdiscretisation error(mesh-
ing) andcomputational error(visibility calculations). For both types of error, little is
known in practice or in quantitative terms. Lischinski et al. [11] have also developed an
approach based on error bounds for HR. The approach we present here could be inte-
grated into a system of this type, providing tighter upper and lower bounds in the most
difficult cases, those of partial visibility.

3 Efficient combination of HR and backprojections

The first step to allow experimental comparisons of the effect of meshing and visibility
calculations on the solution, is the introduction of a new algorithm incorporating back-
projections (i.e. exact visibility calculations) and the complete discontinuity mesh in
HR. Other than backprojections, this new algorithm constructs a full hierarchy on the
input surfaces by clustering the elements of the discontinuity mesh. This allows the use
of quadtrees in unoccluded regions as opposed to the use of BSP trees everywhere as in
previous partial DM solutions ([12]), while using irregular triangles in shadow regions.

3.1 Accurate visibility computation using backprojections

Given a three-dimensional scene we construct the full discontinuity mesh (with EEE
and degenerate events) which has the following property: each cell or face of the mesh
contains a data structure called a backprojection which fully describes the partial vis-
ibility of the source at each point within the mesh face [3, 16]. An example of such a
mesh is shown in Fig. 1(a).

The availability of the backprojections allows us to determine at a low cost the visi-
ble part of the source and thus the analytical value of the differential form-factordFx;S ,
from any pointx in the penumbra to the sourceS. Because no visibility calculation is
needed, an accurate estimate of the form factor value is available cheaply during refine-
ment. As we will see below, the exact value is also used to determine irradiance values
at vertices within the mesh.

3.2 Mixed triangle-quadrilateral meshes

The discontinuity meshing approach presented in [3, 4] constructs a mixed, non-hierarchical
mesh containing triangles in penumbra and in irregular regions of light, and quadrilat-
erals in large regions of light. The goal here is to create a hierarchy suitable for HR
solutions, starting with the DM.
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To this end, quadtrees should be used where possible (in particular in unnoccluded
regions) due to their simplicity and ease of use, while irregular triangular meshes should
be used around shadow boundaries.

The mixed mesh structure poses certain problems of connectivity, since inhomo-
geneous mesh elements co-exist. In particular, neighbour-finding is handled by adding
simple adjacency information at the vertices of the original mesh. When a quadrilateral
or a triangle are subsequently subdivided, regular quadtrees or regular triangle hier-
archies are created. An example of an initial mesh (before subdivision) for our test
scene is shown in Figure 1(b) (see next section for the construction algorithm); the
same mesh subdivided after iterating is shown in Figure 4(b). When searching for a
neighbour within a regular mesh (triangular or quadrilateral) implicit neighbourhood
relationships are maintained, and when crossing a shared edge, the neighbourhood in-
formation stored at the vertex is used to find the appropriate quadtree or triangle mesh.
We climb up the hierarchy until the parent maintaining the appropriate information is
found.

3.3 Constructing a true hierarchy from the discontinuity mesh

For each receiver containing a penumbral or umbral zone, after the discontinuity mesh-
ing and triangulation steps, we have a set of triangles corresponding to this partially lit
or occluded region. To construct a hierarchy we attach these triangles at appropriate lev-
els of a standard quadtree, such that in unoccluded regions illumination is represented
with the regular quadtree structure.

Fig. 1. (a) Discontinuity mesh and (b) HR/DM mesh for a test scene

Quadtree Subdivision We start by recursively subdividing the receiver using a stan-
dard quadtree. If a child of the quadtree contains no partially lit or occluded region,
initial subdivision (i.e. the subdivision performed before BF-refinement) terminates.
The unoccluded quadtree leaf elements are also inserted into a temporary face-edge-
vertex data structuremesh. If on the other hand a child contains part of the penumbra
or umbra, subdivision continues until a predefined maximal depth is reached.
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When no more subdivision is possible, the penumbral/lit boundary edges are in-
serted intomesh. When this process is complete,mesh contains a set of faces corre-
sponding to the completely unoccluded quadtree leaves, and a (usually highly irregular)
face between the leaves and the penumbra/lit boundary. This face is triangulated, and
the resulting triangles are then added to the list of penumbral/umbral triangles.

The final step requires “clustering” of these triangles (both original penumbra tri-
angles from DM as well as the new triangles in lit regions) frommesh so that they can
be correctly attached to an appropriate level of the quadtree.

“Clustering” for Penumbral and boundary regions To perform the clustering step,
a 3D clustering bottom-up construction ([15]) is adapted to 2D. A multi-level grid is
constructed, such that the smallest grid cell has the size of a maximal depth quadtree
leaf. Each level of the grid is visited, and triangles entirely contained in a cell at a given
level of the grid are attached to the corresponding quadtree inner node (if it exists). The
triangles contained in a given cell at a given level are grouped to form an internal node.
This node is then inserted at the appropriate level higher in the multi-level grid, if it is
contained in a cell at that level. The contents of this grid cell will in turn be attached to
the appropriate level of the quadtree.

In this manner we have a mixed hierarchy which starts at the root as a normal
quadtree, and has children which may be regular quadtree subdivisions, or agglomer-
ations of triangles or individual triangles (in the case of elongated triangles which can
occur in the context of discontinuity meshing). An example is shown in Figure 1(b).

It must be noted that due to the bottom-up construction, we have the ability to insert
the entireDM into the hierarchy (as is done here). In many cases simplification should
probably be performed, but the generality of the method permits maximal flexibility.

4 Impact of algorithmic choices on solution and image quality

In this section we revisit the different algorithmic components of HR mentioned in the
introduction, and discuss their relevance. This discussion serves both as a first attempt
to investigate the influence these factors have on the solution as well as on each other,
and as motivation for the experimental approach developed in the following section.

4.1 Meshing strategy

The use of quadtrees has many advantages: the structure is simple to handle and ma-
nipulate, it allows implicit neighbour finding operations, and provides well shaped ele-
ments which is important in the context of any numerical approximation ([13]). Interpo-
lation and extrapolation operations are also readily performed in these structures since
elements respect regular ratios. Nonetheless, the very regularity of the quadtree struc-
ture hides its inadequacy in representing high-frequency irregular information such as
shadow boundaries.

Discontinuity meshing provides an appropriate solution to the problems of visual
representation of shadow boundaries. The problems with such meshes are however nu-
merous. Other than the issues related to numerical accuracy in construction [19], these
meshes tend to contain far too many elements ([4]), and they result in badly formed tri-
angles which pose problems for interpolation/extrapolation operations as well as being
formally unadaptable to finite element approaches ([13]). It is difficult to determine a
priori when the use of such meshes is advisable in the context of HR.
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4.2 Visibility calculation

In traditional HR approaches, visibility is computed by ray-casting between two patches
p andq. A form-factor disc approximation is then multiplied by the fraction of rays
blocked, which is used as a visibility estimate. This approximation influences the form-
factor estimation as well as refinement, and has repercussions which are difficult to
isolate.

Given the mesh and backprojections, two important changes can be incorporated
into the treatment of the direct illumination links: characterisation of links as partial,
occluded or unoccluded (in the spirit of [19]) can be performed accurately immediately
after the discontinuity meshing step and the calculation of irradiance values at the ver-
tices during the solution is exact. The estimate of area-to-area form-factors can also be
significantly improved since each sample of the kernel function is calculated with the
exact visible portion of the source.

4.3 Direct Illumination at Vertices for HR

In standard HR (using a piecewise constant approximation), irradiance is ”pushed”
down the hierarchy to the leaf nodes ([6, 14]). This irradiance is then converted to
radiosity which is subsequently extrapolated to the vertices of the leaves and ”pulled”
up the hierarchy. If the backprojections are available, we can compute exact irradiance
values due to light sources at all vertices very cheaply, since no visibility computation
is required (points are either in a penumbral (or umbral) mesh face or in light). It is
thus only natural to skip the ”push” step for the light source, and simply evaluate the
exact irradiance at the vertices of the mesh. These values are then averaged, resulting
in a radiosity value assigned to the leaf, and then ”pulled” in the normal manner up
the hierarchy. We note that this direct shading should only be performed at the vertices
originally in the discontinuity mesh, or for vertices on hierarchy leaves with a link to
the source (in the current implementation it is performed at all vertices).

This approach has a double advantage of producing visually accurate results (see
Figure 5(iv) in Colour Section) while simultaneously providing a highly accurate, hier-
archical representation of direct illumination, which will, hopefully, result in an overall
higher quality global illumination simulation.

4.4 Refinement criteria

In traditional HR approaches, “BF” refinement has been used, which essentially re-
quires a link between two surface elements to be refined if their mutual form-factor
multiplied by the power on the link is larger than a threshold [8]. The philosophy of
this approach is to reduce the respective size of the elements on the two sides of a link,
thus reducing visibility error since all interactions tend to be either occluded or visible
([19]), and reducing “integration error” of the area form-factor integral since the ker-
nel varies. Another approach involves a “smoothness” criterion for the kernel used in
Wavelet-based HR ([7]).

When exact visibility is available, neither of these criteria is entirely satisfactory.
Since we can cheaply determine the visible part of the source, we could apply a (point-
to-area) form-factor variation criterion (this is similar is spirit to the “smoothness” cri-
terion). Subdivision will be thus better adapted to the variation of irradiance on the
receiver, since the source in never subdivided.
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4.5 Convergence

The issue of convergence is rarely addressed in HR research. Following the original
definition and structure of the algorithm [8], we define convergence as a sequence of
iterations involving a Refine step followed by an (optional) loop of Gather-Push/Pull
operations until the result is no longer modified. The iteration terminates when no new
links are created (“convergence”).

One of the issues we wish to investigate is the effect of meshing strategy and visibil-
ity on the rate of convergence. Intuitively it seems that a good representation of direct
illumination and accurate visibility computations should improve the convergence rate.

5 Comparison of some strategies and initial experimental results

The new algorithm presented in Section 3 provides an environment that allows a first
investigation of the relative effect of meshing and visibility error on image and solution
quality.

5.1 Experimental configurations

Four different algorithmic configurations are considered: (i) HR, using regular quadtree
subdivision and ray-cast visibility calculation (QT/RT), (ii) HR regular quadtree sub-
division and using backprojections (QT/BP), (iii) HR with full discontinuity meshing
and ray-cast visibility (DM/RT) and finally (iv) HR with full discontinuity meshing and
backprojections (DM/BP).

Comparing (i) and (ii) quantifies the effect of visibility error in form-factor com-
putation, and the resulting effect on the solution. Comparing (i) and (iii) demonstrates
the importance of the use of the discontinuity mesh as a basis for the subdivision in
HR. Finally, the combined effect of the mesh and accurate visibility becomes evident
by comparing configuration (iv) to the others.

Two test environments “Desk+Chair” (Fig. 1) and “Books” (Figure 5 in the colour
section) with specific points of view have been chosen. The scenes are lit by large light
sources giving rise to large regions of penumbra (which favours the use of backpro-
jections). In addition, the “Books” scene contains many regions of small fine shadow,
for which discontinuity meshing is advantageous. There are 133 polygons (268 distinct
edges) in “Desk+Chair” and 241 polygons (484 distinct edges) in “Books”.

A reference solution is computed for both scenes, using a standard quadtree subdi-
vided very finely, and run to convergence with a very small tolerance value. We compute
anL1 error on the pixel RGB values.

(a) QT/RT (b) QT/BP (c) DM/RT (d) DM/BP

Fig. 2. “Desk+Chair” images
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5.2 Quality evaluation and test suites

For each run we present the total computation timett to convergence, the final number
of leaves at convergencelc and theL1 image errore after convergence for the given tol-
erance. We also report (where applicable) DM construction timetdm ((ii)-(iv)) triangle
clustering timetc ((iii) and (iv)) and the numberldm of leaf elements after the mixed
hierarchy construction but before subdivision ((iii) and (iv)). All reported timings are
on an SGI R4400 Indigo 2 at 150 Mhz.

For the two scenes, we have attempted to maintain approximately the same num-
ber of elements, to provide a “fair” comparison. This requires the judicious choice of
parameters BF-�, minimum area size and the visibility factor as defined in [8]. The re-
sulting images for “Books” are shown in colour in Figure 5, while small versions of
“Desk+Chair” are shown in Figure 2. Meshes for “Desks+Chair” are shown for illus-
tration in Fig. 4 for cases QT/BP and DM/BP. The numerical results are summarised in
Table 1.

Solution tt (s) tdm (s) tc (s) ldm lc e tt (s) tdm(s) tc (s) ldm lc e

(i) QT/RT 413.6 - - - 39116.7 838.1 - - - 87599.2
(ii) QT/BP 531.3 71.4 - - 36502.8 1076.6 394.5 - - 81684.2
(iii) DM/RT 604.9 71.4 98.5336545026.0 1332.8 394.5 95.0592983208.2
(iv) DM/BP 310.1 71.4 98.5324439823.0 782.7 394.5 95.0577569693.7

Table 1.Test results: (left) “Desk+Chair” and (right) “Books”

5.3 Results of Experimental Study

The test results presented above are by no means definitive or complete. The nature of
experimental work is such that it is difficult to come to concrete conclusions from a
set of given tests. Nonetheless, we believe that the results presented provide interesting
insight into the problems related to visibility and meshing in the context of HR.

For both scenes we see that DM/BP provides the most computationally efficient
solution, despite the overhead of mesh creation and hierarchy construction. The image
quality is always better (Fig. 2, and Colour Fig. 5), and numerically accuracy is either
better or on a par with all available alternatives. In the case of fine shadow features, the
discontinuity mesh is particularly advantageous.

Visibility Visibility accuracy is of predominant importance. Solution (ii) QT/BP is nu-
merically the most accurate for “Desk+Chair”, but DM/BP is visually superior (see Fig.
2, 5). DM/BP is however more accurate numerically for “Books”. The use of backpro-
jections enhances numerical and visual quality more than the use of DM alone. The
visual quality of QT/BP can be very high, as is the case for “Desk+Chair”.

Convergence In Fig. 3 we compare theL1 image error at each iteration for the two
scenes. The accuracy of the visibility computation appears to directly influence con-
vergence. Solution (ii) has the best behaviour for “Desk+Chair”, but the DM is more
important for “Books”, for which the DM/BP solution has the lowest error. In the case
where QT/BP is numerically better, the difference is insignificant.
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Meshing Discontinuity meshing without exact visibility results in visual artifacts, and
is computationally expensive. This is particularly evident for “Desk+Chair” (Fig. 2).
Previous algorithms avoided this problem by using “final gather” type approaches [12]

Nonetheless, the irregular meshes produced add a high overhead in the global so-
lution, simply by the shear number of leaf elements at the outset (Table 1) (a similar
observation was made by Lischinski et al. [12]). An obvious remedy is to investigate
the use of simplification techniques for meshing (e.g., [2, 4]), while maintaining the
original backprojection information for visibility computations.
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Fig. 3. Convergence for different approaches (a) “Desk+Chair” (b) “Books”

(a) Quadtree HR + Backprojections (b) DM/HR + Backprojections

Fig. 4.Test suite mesh images

6 Conclusions

We have presented a first approach to investigating sources of error due to visibility
computation and meshing strategies. A list of important factors affecting HR compu-
tations was presented and discussed. To facilitate experimental investigation we intro-
duced a new hierarchical radiosity algorithm which incorporates backprojections (and
thus exact visibility with respect to the source) and discontinuity meshes.
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This approach has permitted the comparison of standard quadtree-based HR using
traditional point-sampling for visibility with the case where visibility is calculated with
backprojections, HR discontinuity mesh with point sampling and finally HR disconti-
nuity meshing with backprojections.

A number of interesting observations were made from an experimental study relat-
ing the different effects of the use of analytic visibility (backprojections) and discon-
tinuity meshes for HR light transport. Overall, it was observed that visibility accuracy
is much more important than the use of meshing. Nonetheless, DM with BPs adds to
overall visual quality. Many more experimental tests are required to confirm the obser-
vations made here as well as to investigate other aspects of the solution process.

Numerical difficulties and robustness problems are inherent in all discontinuity
meshing approaches. A comprehensive solution to this problem is being pursued for
scenes of moderate complexity. A algorithm to simplify discontinuity meshes for the
mixed hierarchy is also currently being investigated.

AcknowledgementsThe first author thanks Xavier Pueyo for initial discussions on the subject.
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Abstract
Interactive rendering of soft shadows (or penumbra) in scenes with moving objects is a challenging problem.
High quality walkthrough rendering of static scenes with penumbra can be achieved using pre-calculated discon-
tinuity meshes, which provide a triangulation well adapted to penumbral boundaries, and backprojections which
provide exact illumination computation at vertices very efficiently. However, recomputation of the complete mesh
and backprojection structures at each frame is prohibitively expensive in environments withchanging geometry.
This recomputation would in any case be wasteful: only a limited part of these structures actually needs tobe
recalculated. We present a novel algorithm which uses spatial coherence of movement as well as the rich visibility
information existing in the discontinuity mesh to avoid unnecessary recomputation after object motion. In partic-
ular we isolate all modifications required for the update of the discontinuity mesh by using an augmented spatial
subdivision structure and we restrict intersections of discontinuity surfaces with the scene. In addition, we develop
an algorithm which identifies visibility changes by exploiting information contained in the planar discontinuity
mesh of each scene polygon, obviating the need for many expensive searches in 3D space. A full implementation
of the algorithm is presented, which allows interactive updates of high-quality soft shadows for scenes of moderate
complexity. The algorithm can also be directly applied to global illumination.

Keywords: Illumination, soft shadows, incremental update, discontinuity meshing, backprojection, dynamic
scenes.

1. Introduction

High quality rendering for scenes lit byarea light sources
is an important component of any lighting system. Such dis-
play is typically performed using ray-casting to successfully
render the soft shadows orpenumbra1. An alternative ap-
proach is the use of discontinuity meshing with backpro-
jections. Thediscontinuity meshprovides an initial decom-
position of the scene which is used to create a subdivision
into simple polygons, whose edges are well adapted to the
penumbra contours and the discontinuities of illumination in
the interior of partially shaded regions2; 3. The computation
of the full discontinuity mesh (capturing all illumination dis-
continuities due to the light source) permits the calculation

† E-mail: fCeline.Loscosj George.Drettakisg@imag.fr
‡ iMAGIS is a joint research project of CNRS/INRIA/UJF/INPG.

of backprojections2; 4. The backprojection structure encodes
exact visibility of any point in the scene with respect to the
light source, thus providingexact illumination (irradiance)
values at the vertices of the subdivision and at any point in
the penumbra. Very high quality rendering of soft shadows
can be achieved in this manner, using a polygonal decom-
position on a graphics hardware pipeline. We are therefore
able to interactively visualise scenes with accurate soft shad-
ows on graphics workstations as long as the objects in the
scene do not move. If the geometry changes, existing algo-
rithms require the complete recomputation of the disconti-
nuity mesh and the backprojections, which is prohibitively
expensive, and definitely precludes user interaction.

In this paper we present an algorithm which allows inter-
active rendering of high quality shadows for scenes where
objects move, which we calldynamicscenes. Our new al-
gorithm is based on discontinuity meshing and backpro-

c
 The Eurographics Association 1999. Published by Blackwell Publishers, 108 Cowley
Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA 02148, USA.



jections, thus providing accurate soft shadows for interac-
tive display. To achieve interactive update rates for dynamic
scenes, the algorithm exploits spatial coherence of the re-
quired modifications to the data structures related to shadows
and the local nature of changes in the discontinuity mesh.
This locality is encoded in the rich structure of the disconti-
nuity mesh, which permits us to identify the visibility events
by simply examining the planar discontinuity mesh on the
polygons.

This novel algorithm is useful in several contexts. Since
primary illumination is dominant in many situations, high
quality direct lighting with soft shadows can be used as a
standalone interactive visualisation program offering a much
higher level of realism compared to traditional point-source
interactive lighting systems. In addition the algorithm can be
used as a first interactive design phase before a global illu-
mination solution, for object placement and general model-
ing in a scene. Although we treat only direct illumination,
this approach can be applied in the context of global illumi-
nation. Our method thus opens an interesting avenue of re-
search for combined discontinuity meshing/hierarchical ra-
diosity approaches such as those previous presented5; 6, in
the context of dynamic scenes.

The strategy adopted to achieve interactive display of soft
shadows with moving objects is based on two main compo-
nents: (i) intelligent data structures which localise and thus
accelerate access to changing visibility information and (ii)
an efficient update algorithm which takes into account both
spatial coherence and visibility information contained in the
mesh. After presenting related previous work in Section 2,
we present the data structures used in Section 3 and the in-
cremental shadow update algorithm is described in Section
4. We next present the results of the implementation in Sec-
tion 5. In Section 6 we discuss future work and conclude.

2. Previous work

2.1. Illumination in Dynamic Scenes

Most previous work in illumination for dynamic environ-
ments has concentrated on global solutions. Some research
has been performed in ray-tracing (e.g.,7), which is specif-
ically related to the view-dependent nature of ray-tracing,
and is thus unsuitable for rendering approaches based on in-
teractive visualisation using current graphics hardware.

The output of radiosity algorithms was used very early
on with graphics hardware, permitting realistic interactive
walkthroughs albeit with the restriction to static environ-
ments. The first attempt to remove this restriction was the
approach of Baum8, in which motion was predetermined
and the region of space affected was preprocessed to accel-
erate the calculation of form-factors for each frame.

More involved approaches, based on the progressive re-
finement radiosity algorithm were presented by George et

al. 9, and also Chen et al.10. In these approaches moving
shadows were treated by re-shooting energy to remove them
from their previous positions, shooting negative energy to
reinstate them elsewhere. Modifications in the environment
had to be ordered by a queue due to the nature of progressive
refinement. Special attention was paid to efficiently treating
shadows due to direct illumination. A more involved data
structure for maintaining shadow form-factor lists has been
presented11 for progressive refinement radiosity.

A first approach for hierarchical radiosity has been pre-
sented12. A similar approach was presented by Shaw13. In
this work, a “motion volume” was used to identify the links
affected by the displacement of an object.

2.2. Discontinuity Meshing for High-Quality
Illumination

For polygonal scenes lit by area sources, discontinuity mesh-
ing 14; 15; 2; 4, was introduced to improve the quality of ren-
dering for scenes containing soft shadows. To create the dis-
continuity mesh with respect to a source,discontinuity sur-
facesare cast into the environment. These surfaces are the
interaction of an edge and a vertex (EV surface) or three
edges (EEE surface16; 17). The reader unfamiliar with dis-
continuity surfaces is strongly encouraged to refer to the ap-
propriate references16; 2; 4. Algorithms which treat all such
events16; 2; 4, can then incrementally compute thebackpro-
jectiondata structure, which encodes all visibility informa-
tion with respect to the source.

A first approach for dynamic environments rendering us-
ing discontinuity meshing with BSP trees was developed for
point light sources by Chrysanthou and Slater18.

Worral et al. have presented a new approach for area
sources19. In their method, illumination is computed on a tri-
angulated discontinuity mesh in the context of a progressive-
refinement radiosity method. The discontinuity mesh ver-
tices are updated by taking into account certain visibility
changes. Triangular mesh coherence is maintained and ra-
diance values are updated for each triangle of the mesh by
shooting the irradiance difference compared to the previ-
ous mesh. An interesting criterion is introduced, determin-
ing whether a change in visibility occurs in the mesh. This
approach is limited toEV discontinuity surfaces, with ver-
tex V on the source. Moreover, the focus of Worral et al.’s
work is the update of the triangulation, whose cost is min-
imal compared to the casting of discontinuity surfaces, es-
pecially in complex environments. It is important to note
that the approach presented in19, computes an incomplete
mesh, sinceEEE and other important discontinuity sur-
faces are ignored. As a consequence, backprojections can-
not be computed. Visibility must thus either be approximated
(e.g., by ray-casting), or be calculated by clipping the entire
scene against the source, which is extremely expensive. Such
visibility computation typically dominates the computation
time 5.
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In contrast, our new approach is totally different, since the
complete discontinuity mesh and backprojections are incre-
mentally updated at each frame. The exact visible part of
the source can thus be determined very cheaply at any point
in the penumbra, without a visibility calculation, since this
information is encoded with the backprojections2. Thus at
every frame, we have exact (analytical) irradiance values for
all the vertices in the mesh. Before presenting the complete
algorithm, we describe important data structures used in the
algorithm.

3. Data Structures for Efficient Update

In this section we present the data structures used to accel-
erate the update of shadows in dynamic scenes. In what fol-
lows we define asstaticthe edges and vertices which belong
to static objects, i.e. objects which do not move. The ob-
ject that moves will be referred to as thedynamicobject. We
define asdynamicedges and vertices which belong to the
dynamic object. As a consequence, we calldynamic discon-
tinuity surfaces, theEV or EEE surfaces which are defined
by at least one edge or vertex of the dynamic object, and
static discontinuity surfacesthose which are defined entirely
by static edges or vertices. Finally, ameshedge ormeshver-
tex, is a two-dimensional edge or vertex which is part of the
planar discontinuity mesh calculated on each scene polygon.
We use awinged-edgedata structure used to store the mesh
and access it efficiently2. The deletion of mesh edges can
thus be performed locally and rapidly, as well as the incre-
mental update of backprojections.

The three data structures used to localise and thus ac-
celerate access to information which modifies visibility and
thus shadow calculations at each frame, are the following:
(a) discontinuity surface storage in the spatial subdivision
structure, (b) the motion volume and (c) intersection lists for
modified discontinuity surfaces.

3.1. Storage of the Discontinuity Surfaces in the Spatial
Subdivision

The scene is decomposed into a regular grid20, used for effi-
cient casting of discontinuity surfaces2. Each voxel contains
the list of polygons that cut it. In addition to this we add the
list of discontinuity surfaces which intersect the voxel. This
list is created on-the-fly, during the propagation of disconti-
nuity surfaces. An example of this list is shown in Fig. 1.

The lists of discontinuity surfaces associated with each
voxel allow the rapid identification of all visibility events
affecting an area of space, by simply traversing the corre-
sponding voxels. As a consequence, we can perform efficient
incremental updates in the region of a moving object.

The storage overhead of the lists is small (between 65 and
300 Kb) for the test scenes presented in the results (see Sec-
tion 5), which use a moderately-sized grid (15x15x15).

Figure 1: Discontinuity surfaces in a voxel (see also colour
section).

3.2. Construction of a Motion Volume

The region of space for which visibility is affected by the
motion of an object is entirely limited by themaximal
(i.e. delimiting the frontier between light and penumbra)
edge-vertex (EV) discontinuity surfaces defined by the light
source and the polyhedron of the moving object for the ini-
tial and the final position. In addition there is no change in
visibility in the region of space between the dynamic object
and the light. As an illustration see Fig. 2, where the max-
imal discontinuity surfaces are shown as the dark grey sur-
faces, containing all interior discontinuity surfaces, such as
that shaded in light grey.

Penumbra

Maximal surfaces

Discontinuity surface
internal

Source

Dynamic object

Figure 2: The maximal surfaces are shown in dark grey and
the interior surfaces in light grey. Notice that the maximal
surfaces encompass all the others.

Given this property, we can define a simplified approxi-
mation to the exact volume in space affected by the motion
which we call amotion volume. This volume is delimited
by a plane parallel to the source above the uppermost side
(i.e. closest to the source) of the dynamic object, a plane
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Intersection of
maximal surfaces Dynamic object

Source

Dynamic object

Intermediate volume

Out plane

Source

Position 1

Position 2

Complete motion volume

 (d)

 (b) (a)

Source

Motion volume

 (c)

Position 1

Motion volume
after movement

Motion volume
before movement

Position 2

Figure 3: Motion Volume construction: (a) The maximal surfaces of the dynamic object are intersected with the outplane: a
plane parallel to the source, and tangent to the bounding volume of the scene. The 2D bounding box of the contour of the
maximal surfaces (dark grey segment on the outplane) is found. A four-plane volume is then constructed with the 2D bounding
box of the source. (b) The volume is cut by a plane parallel to the source above the object, (c) Volumes for position before and
after the move (d) Complete motion volume.

parallel to the source plane which is completely outside the
scene, and four planes surrounding the maximal surfaces
(see Fig. 3(a)-(b)).

In our current implementation three volumes are created.
One for the first position of the object, one for the final posi-
tion, and one that is the bounding volume of the two previous
volumes (see Fig. 3(c)-(d)). Since we consider a small dis-
crete motion at each frame, we currently use the bounding
volume as the motion volume for updates. For larger dis-
placements, the use of the two independent volumes would
be more appropriate since their intersections would be small
or inexistant. Otherwise the bounding volume would include
too much unchanged space.

Note that this construction does not limit the dynamic ob-
ject motion in any way. At any frame, the previous and cur-
rent positions are available, and thus the user may interact
freely with the dynamic object. Given the construction of
the bounding volume, this motion can be of any type (trans-
lation, rotation), a scale operation, or a discrete curved tra-
jectory.

3.3. Storage of Intersection Information with the
Discontinuity Surfaces

The casting time for the discontinuity surfaces is mainly con-
centrated in the testing and intersection parts of the casting
operation. Due to the richness of information already in the
mesh, we can avoid a large part of this cost by storing some
additional information with the discontinuity surfaces.

Consider the case of movement shown in Fig. 4(a) and
(b), corresponding respectively to the position of the dy-
namic object before and after the move. We know that the
only possible change in visibility for surfaces such as those
shown in Fig. 4 can be caused by the dynamic object. As a
consequence we do not need to search or intersect the dis-
continuity surface with any other object in the environment
at each frame. If the dynamic object were moving away from
the discontinuity surface after Fig. 4(a) it is evident that we
would not need to recompute the intersection of the discon-
tinuity surface with the environment, nor recompute the vis-
ibility on the surface.

The intersections of the polygons with the discontinuity
surface are storedbeforevisibility processing. An example
is shown in Fig. 5(a). Notice that after visibility processing,
which occurs as a 2D operation in the plane of the discon-
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(a) (b)

Figure 4: Dynamic object motion (a) the dynamic object (floating parallelepiped) does not cut the static EV discontinuity
surface, (b) the object moves forward and cuts the discontinuity surface.

Discontinuity surface

Intersections

Scene polygons

i1

i4

i3

i2

Discontinuity surface

Intersections after
visibility

Scene polygons

Figure 5: Intersection information storage (a) the intersections i1; i2; i3; i4 (in dark grey) are stored with the discontinuity
surface before visibility computation. (b) the actual intersections (in light grey) after the visibilitycomputation performed in the
plane of the discontinuity surface.

tinuity surface (or 2-D parametric space forEEE), the in-
tersections are changed, resulting in the final mesh edges in-
serted in the discontinuity mesh (e.g., two mesh edges for
the floor - see Fig. 5(b)).

This list is stored with the discontinuity surface. For ex-
ample the listi1; i2; i3; i4 in Fig. 5(a) is stored with theEV
surface shown. When treating a static discontinuity surface
at a given frame, we only perform a new intersection with the
dynamic object. We thus avoid the cost of searching for and
performing intersections with all the other (static) objects in
the scene.

3.4. Input Scenes

As shall be seen later, we will be identifying visibility
changes based on information in the mesh (see Section 4.3).
In order to find all visibility changes, input scenes need to
be closed environments. This ensures that all discontinuity
surfaces have intersections with at least one scene polygon
at any time. This guarantees that all the information required
can be found in the mesh.

Considering only such scenes is not a strong restriction,
since open environments can easily be changed by enclosing
the scene in a box.
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In addition, we suppose that the area source cannot move
since the entire mesh would have to be updated. Techniques
such as the Visibility Skeleton21 are probably more appro-
priate for this type of update, and will undoubtedly lead to
efficient discontinuity mesh and backprojection algorithms
for moving sources (see also Section 6).

4. Update Algorithm

Given the storage of discontinuity surfaces in the spatial sub-
division structure, the creation of the motion volume and the
storage of intersections with the discontinuity surfaces, we
can now present the machinery required to perform efficient
updates of the discontinuity mesh and backprojections.

The shadow update algorithm needs to perform the fol-
lowing steps: (a) identify the volume of space modified,
and collect related discontinuity surfaces which need to be
updated (functionfindChangedSpaceAndDS); (b) identify
and process the region modified on each input polygon; (c)
identify the visibility changes for each modified discontinu-
ity surface (functionfindAndProcessVisibilityChanges); (d)
cleanup the parts of the mesh which are invalid within each
region; (e) update the mesh, and finally (f) update the shad-
ows and the illumination.

In this manner we will have performed the necessary up-
dates in the parts of the discontinuity mesh affected, and
thus the soft shadows will correspond to the new position of
the object. Both spatial coherence using the motion volume,
and the information in the mesh are used to identify poten-
tial changes in visibility. Note that after these updates, the
discontinuity mesh and backprojections are entirely recom-
puted, and the values of irradiance in the penumbra correct.
We examine each step of the algorithm in detail.

4.1. Identification of Affected Discontinuity Surfaces
and Mesh Region

We first identify (using the grid) all discontinuity surfaces
and polygons contained in the motion volume. The disconti-
nuity surfaces concerned are inserted into a listDSd for the
dynamic surfaces, andDSs for the static surfaces. The inter-
sectionR2d of the volume with each polygon is then com-
puted, as shown in Fig. 6(a). The intersectionsR2d of the
volume with the polygons concerned are outlined in Fig. 6(b)
in white. This two-dimensional polygonR2d is in effect the
modified region for each input polygon.

4.2. Processing of Mesh Edges in Modified Regions

Due to the winged-edge data structure used to store the
mesh, we can efficiently identify the mesh edges which are
modified. In particular, we find the mesh face containing a
corner ofR2d and search all neighbouring faces recursively
until no mesh edges crossing or contained inR2d can be
found.

processModifiedEdges() f
foreach input polygonp

Poly2dR2d = modified region ofp
foreach mesh edgee in R2d

if e is dynamic
adde to dynEdgeDelList

else if shouldDeleteStatic(e )
adde to statEdgeDelList

g

Figure 7: Modified Mesh Edge Processing

For each mesh edge we identify those which need to be
deleted. All dynamic mesh edges will be removed, as well
as the static mesh edges for which a change in visibility
occurs, with respect to the dynamic object. More precisely
shouldDeleteStatic(e) is true only if the discontinuity sur-
face associated to the edgee intersects the dynamic object at
its initial or its final position. The corresponding static dis-
continuity surfaces are marked as changed. This process is
summarised in Fig. 7, and detailed in what follows.

After processing the edges in the modified regions, we
have two listsdynEdgeDelListandstatEdgeDelListwhich
are the mesh edges to be removed when the information they
contain is no longer needed.

4.3. Finding and Processing the Visibility Changes in
the Modified Regions

Recall that the routinef indChangedSpaceAndDS() returns
two lists which give us all the discontinuity surfaces passing
through the motion volume:DSs for the static discontinuity
surfaces andDSd containing the dynamic discontinuity sur-
faces.

For each surface, we identify the related visibility changes
and perform the appropriate updates required to reflect the
dynamic object motion. The process is summarised in Fig. 8.

4.3.1. Static Discontinuity Surfaces

For each static discontinuity surface which is on the listDSs

and has been marked changed, we compute new intersec-
tions with the polygons of the dynamic object, if such in-
tersections exist. Note that a static discontinuity surface may
intersect the dynamic object in its upper part, between an ob-
ject vertex and the source edge, resulting in no mesh edges
because of the object occlusion. Therefore a discontinuity
surface may interact with the dynamic object without being
detected by the previous mesh traversal. The use of theDSs

list is thus very important because it avoids the cost of an
object-space search. With this list, we are able to consider
such surfaces.

We then modify the intersection list of the discontinuity
surface by either adding, deleting or modifying the informa-
tion encapsulating the intersections of the surface with dy-
namic object.
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(a) (b)

Figure 6: (a) Intersection of motion volume with polygons (see also colour section), (b) modified regions R2d, (in white).

findAndProcessVisibilityChanges() f
processStaticSurfaces(DSs)
processDynamicSurfaces(DSd )

g
processDynamicSurfaces(list DSd) f

foreach surfaceds in DSd

if ds is EV
processEV(ds)

...
g

Figure 8: Finding and Processing Visibility Changes

4.3.2. Dynamic Discontinuity Surfaces

For dynamic discontinuity surfaces, we can easily see that
their intersections with the scene polygons always change.
In addition, the motion of the dynamic object can result in a
change in the visibility configuration of each surface with re-
spect to the static objects (new intersections, disappearance
of intersections etc.). Much relevant information is contained
in the mesh, and most notably is related to the static mesh
edges. We thus avoid the cost of the search of intersections
for each dynamicEV surface, involving an expensive traver-
sal of many objects in the scene.

The treatment ofEV surfaces was inspired by Worrall et
al. 19 who analyze the intersection of two edges of a mesh
and decide whether a change in visibility occurs. In their
work, a change occurs if the two corresponding discontinuity
surfaces of the mesh edges share the same source vertex. We
extend this idea to all types ofEV edges and present a novel
solution for the case of dynamicEEE surfaces.

EV Surfaces:Consider the example given in Fig. 9: the
dynamic object (the small object on the right), has a dynamic
EV surface related to the source vertexV. Initially it does
not cut the static (larger) object. When moving inwards, the

dynamicEV surface will intersect the corner of the static
object. This can be detected of course in three-dimensions,
but this would imply a costly search in space. Instead, we
can directly identify this change in the discontinuity mesh.
Consider the mesh edgeed corresponding to theEV surface,
shown in grey in Fig. 10(a). Due to the motion, the edgeed
will traverse the mesh vertexv (Fig. 10). The mesh vertexv
is due the crossing of the mesh edges (in white), caused by
two staticEV discontinuity surfaces, due to thesamesource
vertexV (Fig. 9(b)). Because of this traversal of a mesh edge
generated by the same source vertex, we know that there is
a visibility change concerning the dynamicEV surface, and
that it is due to the static object in question.

To determine all such traversals, we need to perform a
search in the mesh related to each dynamic discontinuity sur-
face. For each dynamic discontinuity surface, we have stored
the list of intersections with the polygons of the scene, for
the previousposition of the dynamic object. We will thus
traverse this intersection list, and for each polygon which
was intersected, we will find the region defined by the in-
tersection points of the surface with the polygon, before and
after the move. These correspond to the endpoints ofed be-
fore (Fig. 9(a)) and after (Fig. 9(b)) the move. Within this
region, we identify all static mesh edges. We again use the
adjacency information of the winged-edge data structure to
access these mesh edges rapidly. This is the reason why we
do not remove any mesh edges before this step in the algo-
rithm.

We then test to see if the conditions for a change in visi-
bility are satisfied: that is whether the vertexVs or the edge
Es of the corresponding staticEV are the same as the edgeE
or vertexV of the dynamic discontinuity surfaceevDs. This
process is summarised in Fig. 11 for the case of aEVsrc sur-
face (with vertexV on the source and edgeE on the dynamic
object). TheEsrcV (edge on source, vertex on dynamic ob-
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(a)

(b)

Figure 9: The small object is dynamic, moving towards the
larger object. Dynamic EV discontinuity surface: (a) before
the move there is no intersection with the static object, (b)
after the move the dynamic surface intersects the static ob-
ject.

ject) case is treated similarly, by considering the equality of
the generating edgeE with Es as well as the two vertices
defining the edge.

If a visibility change is identified, the dynamic discontinu-
ity surface is intersected with the corresponding static object,
and its intersection list is updated. The same process could
be applied to non-emitterEV surfaces.

EEE Surfaces. ForEEEsurfaces an algorithm which finds
all visibility modifications from the mesh is much more in-
volved, due to the complications implied by their curved
nature. Nonetheless, we are capable of determining when
a EEE surface will be created, maintained or destroyed, in
particular for the case in which the discontinuity surface has

(a)

(b)

Figure 10: Dynamic discontinuity surfaces treatment: (a)
the EV discontinuity surface of Fig. 9 results in edge ed in
the mesh. In (b) we see its new position. The modified search
region for EV is defined by the two positions of ed. Since the
vertex v is crossed, a visibility change has occurred.

one edge on the source (this is the most common type of
EEE surface). This allows us to avoid a costly search for
EEE surfaces related to the source, which is otherwise re-
quired at each frame.

To understand this, consider the twoEV surfaces in
Fig. 12(a), created by a source polygon edge, a polygon
edge on the dynamic object and a static polygon edge.
When the dynamic object moves, the surfaces will inter-
sect (Fig. 12(b)), and thus twoEEE surfaces will be cre-
ated. One such surface is shown in Fig. 12(c) with edges E
of the source (adjacent to V), E1 and E2. The secondEEE
surface is built with E1, E2 and the second edge E’ adja-
cent to V. These changes can be determined easily. When
testingEVsrc changes we check to see if the dynamic sur-
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(a) (b) (c)

Figure 12: (a) Two EV surfaces which do not intersect (b) Intersection of the EV surfaces (c) One of the two EEE surfaces
created. Figures replicated in the colour section.

processEV( DiscSurfaceevDs) f
updateDStoNewPosition(evDs)
foreach intersectionoldDsi of evDs

newDsi= evDs!
computeNewIntersection(dsi! polygon())

Poly2dp2dds =
findRegionAffected(oldDsi, newDsi)

switch (evDs!type() )
case :EVsrc

findVisibilityChange(p2dd s, evDs)
...

g
findVisibilityChangeEVsrc

(Poly2dp2d, DiscSurfaceevDs) f
EdgeE = evDs!edge(),Es

VertexV = evDs!vertex(),Vs

foreach mesh edgeem in p2d
DiscSurfacedss = em!getDiscSurface()
Es = dss!edge()
Vs = dss!vertex()
if Vs == V f

P = polygon containing edgeEs

updateIntersection(evDs, P)
checkForEEE()

g
g

Figure 11: Finding Visibility Changes for Dynamic Discontinuity
Surfaces

face crosses a static surface generated by the same vertex.
The creation of the twoEEE surfaces is performed by the
routinecheckForEEE(see Fig. 11).

4.4. Edge Cleanup, Mesh and Illumination Update

After processing all mesh edges in the modified region and
identifying potential visibility changes we no longer need
the mesh edges which will be modified. We thus traverse

the listsdynEdgeDelListandstatEdgeDelListand remove
the edges from the mesh within the modified region. The
winged edge data-structure allows us to perform all removal-
insertion operations efficiently and locally within the mesh.
Adjacency information is accessed directly from the edge
pointers stored in the aforementioned lists. After removal,
we are ready to perform the visibility updates required for
the static and dynamic surfaces which require them.

We first visit every modified surface ofDSs andDSd, and
perform a two-dimensional visibility operation on the dis-
continuity surface. This operation is a fast sweep algorithm
which processes the intersection information stored with the
discontinuity surface. Recall that this information always
corresponds to the geometric statebeforevisibility process-
ing. This operation costs much less than a complete re-cast
of a discontinuity surface which would involve a search in
3D and the re-intersection with the scene objects.

Once the visibility is performed, we insert the segments
into the discontinuity mesh. These segments are thus cor-
rectly updated for occlusion.

We now have a discontinuity mesh which is completely
up to date with respect to the new position of the dynamic
object. We simply update the backprojection information in
the faces which were modified. These faces were marked
during the deletion and insertion of mesh edges. We incre-
mentally traverse the faces changed and update the back-
projections concerned. The same incremental algorithm as
that presented in17; 2; 4 is used. Since the number of modi-
fied faces is small, we can efficiently compute all the exact
visibility information in the penumbra very efficiently.

The final step required is the update of the mesh vertex
illumination values, which again is restricted to the mesh
faces modified. This operation is again very efficient, since
the backprojections compactly encodecompleteand exact
visibility information. We thus rapidly compute exact irra-
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diance values on the vertices in the penumbra which have
changed.

It is important to note that the result of the update algo-
rithm is not an approximation: at every frame, the solution
is exact, and results in a mesh computed as if we were per-
forming the entire re-computation of the discontinuity mesh
and the backprojections.

5. Implementation and Results of the Update Algorithm

We have implemented the update algorithm and tested it on
an Indigo2 R4400 running at 150MHz. The three test scenes
are shown in Fig. 13. The scenes contain respectively 145,
307 and 475 polygons. The dynamic object is a box floating
above the desk and its movement is given as four consecutive
positions. We perform two different tests. The motion for
Test 1 is shown in the sequence of Fig. 17, the motion for
Test 2 in Fig. 18.

In Table 1tTS corresponds to the time which is required
if the entire discontinuity mesh is to be recalculated at each
frame. The timetTD is the total time spent by our algorithm
to update the mesh and the backprojections, as well as the il-
lumination. All times are in seconds. The columnsshows the
speedup (ratio betweentTSandtTD). The additional memory
overhead for the storage of the intersection lists is on average
19 Kb for Scene 1, 46 Kb for Scene 2 and 60 Kb for Scene
3, in what concerns Test 1, and 17 Kb for Test 2.

As we can see, the update times are interactive for Test
1, between 1.2 seconds per frame for the simplest scene and
(containing 145 polygons), to 2.5 seconds/frame for the most
complex scene containing almost 500 polygons. In addition,
notice that the additional memory required is small (less than
50Kb) for Scene 2. For Scene 3 (475 polygons) speedup can
reach 90 times, compared to the recomputation of the com-
plete mesh at each frame.

The localisation of the modified space has the benefit that
the cost of the update algorithm does not depend heavily on
the complexity of the rest of the scene. Notice that update
times seem to grow sub-linearly with respect to scene com-
plexity (number of polygons).

In Test 2 (performed only on Scene 1), a different move-
ment of the dynamic object is performed, with greater in-
teraction with the other objects (see Fig. 18). The visibility
complexity is thus augmented by the number of static sur-
faces treated and the complication of the mesh. Notice that
the update takes between 1.3 and 2.7 seconds. The additional
cost is thus not overwhelming.

Our implementation is definitely unoptimised, and we
thus believe that significantly improved update rates could
be achieved by fine-tuning.

6. Summary, Discussion and Future work

The algorithm presented here provides accurate soft shadow
updates for dynamic scenes at interactive rates. We first pre-
sented data structures that provide rapid access to relevant
information, by exploiting spatial coherence. These struc-
tures permit local treatment of the visibility update. The in-
herent structure of the discontinuity mesh was then used to
find and update local changes of visibility for both static and
dynamic discontinuity surfaces.EV and EEE surfaces are
treated in this manner. Finally, backprojections and lighting
are efficiently updated exclusively in the parts of the mesh
which have changed. Thus at each frame, analytic irradiance
values are computed, resulting in high quality soft shadows.

Large scenes (more than several thousand polygons) can-
not be directly treated with the implementation presented
here. This is mainly due to problems of numerical precision.
Numerical robustness problems occur during the computa-
tion of the intersections between objects and discontinuity
surfaces and also during the calculation of the arrangement
of the line segments forming the winged-edge data structure.
Both problems can be addressed by adopting a symbolic
computation approach based onextremal stabbing linesas
described in the context of the Visibility Skeleton (VS)21.
All discontinuity surface/object intersection calculations can
be replaced by the extremal stabbing lines, and the adjacency
information available in the VS can be used to overcome the
problems of the topological construction.

Other improvements of the our method should also be in-
vestigated. In particular, the use of a uniform grid, although
simple to program, is definitely inefficient for more complex
scenes. The use of a recursive grid or an octree type structure
should provide interesting results.

Furthermore, depending on the movement of the object,
we could also use individual volumes for the two posi-
tions and apply the algorithm presented for each. If the ob-
ject moves only a little, we can use the bounding volume,
whereas if the object moves a lot, resulting in negligible
overlap between the initial and final volumes, it is probably
better to use the two volumes.

More importantly, this paper opens a direction of research
which will lead to an algorithm which limits the updates
only to those strictly necessary. The incremental method pre-
sented for dynamic surfaces indicates a potential for such
an approach. What is needed for this type of algorithm is
an exhaustive classification of all events which occur in the
discontinuity mesh in time, and the corresponding actions
which must be taken. Optimality may thus be achieved by
developing a “sweep” algorithm in time. Approaches simi-
lar to the Visibility Complex22 or the more recent Visibility
Skeleton21 will prove useful in this direction.

Finally, the algorithm developed here should prove
very useful in the context of mixed hierarchical radios-
ity/discontinuity meshing approaches6. In particular, a
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(a) (b) (c)

Figure 13: (a) Scene 1 (b) Scene 2 (c) Scene 3. Figures replicated in the colour section.

Pos. tTS tTD s

Pos 1 57.67 1.36 42.4
Pos 2 57.86 1.25 46.3
Pos 3 58.13 1.24 46.9
Pos 4 58.55 1.27 46.1

tTS tTD s

122.33 1.79 68.3
123.91 1.81 68.5
125.16 1.91 65.5
125.97 1.99 63.3

tTS tTD s

222.51 2.33 89.4
225.75 2.35 79.7
227.60 2.48 84.3
230.22 2.46 85.3

Results for Test1: Scene 1 (145 polygons) Scene 2 (307 polygons) Scene 3 (475 polygons)

Pos. tTS tTD s

Pos 1 58.74 1.29 45.5
Pos 2 60.53 1.91 31.7
Pos 3 61.24 2.23 27.5
Pos 4 61.69 2.66 23.2

Results for Test 2 (Scene 1)

Table 1: Results for the Update Algorithm.

method similar to that described in13 could be combined
with our approach to achieve interactive updates for global
illumination.
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(a) (b)

Figure 14: (a) Discontinuity surfaces in a voxel, (b) Intersection of motion volume with scene polygons

(a) (b)

(c)

Figure 15: (a) Two EV surfaces which do not intersect (b) Intersection of the EV surfaces (c) One of the two EEE surfaces
created
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(a) (b) (c)

Figure 16: (a) Scene 1 (b) Scene 2 (c) Scene 3

                                                

(a) (b) (c) (d)

Figure 17: Test 1: (a) position 1 (b) position 2 (c) position 3 (d) position 4

                                    

(a) (b) (c)

Figure 18: Test 2: (a) position 1 (b) position 3 (c) position 4
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The 3D visibility complex :
a new approach to the problems of accurate visibility.

Frédo Durand, George Drettakis and Claude Puech

iMAGIS ?

Abstract: Visibility computations are central in any computer graphics applica-
tion. The most common way to reduce this expense is the use of approximate ap-
proaches using spatial subdivision. More recently analytic approaches efficiently
encoding visibility have appeared for 2D (the visibility complex) and for cer-
tain limited cases in 3D (aspect graph, discontinuity meshes). In this paper we
propose a new way of describing and studying the visibility of 3D space by a
dual space of the 3D lines, such that all the visibility events are described. A
new data-structure is defined, called the3D visibility complex, which encapsu-
lates all visibility events. This structure is global and complete since it encodes
all visibility relations in 3D, and is spatially coherent allowing efficient visibility
queries such as view extraction, aspect graph, discontinuity mesh, or form factor
computation. A construction algorithm and suitable data structures are sketched.

Keywords: visibility, visibility complex, spatial coherence, discontinuity meshing,
form factor

1 Introduction

Visibility calculations are central to any computer graphics application. To date, no
approach has been presented to encode all visibility information in a 3D scene.

In this paper we will present a new approach, which we call the3D visibility com-
plex, which encodes all visibility information contained in a three dimensional scene.
This research is in a preliminary phase, since an implementation has not yet been un-
dertaken, but we believe that the importance and potential use of such a structure justify
its presentation even at the stage of conception.

Related works The first attempts to cope with the cost of visibility computations in-
volved space partitioning structures but they provided only local visibility information.
Arvo and Kirk [1] subdivide the 5D ray-space for ray-tracing. Teller [13] uses the 5D
Plcker duality to compute the antipenumbra cast by an area light source. He also de-
veloped algorithms for scenes naturally divided into cells [15] where the visibility is
propagated through portals. In computer vision theaspect graph[7, 6] has been devel-
oped to group all the viewpoints for which an object has the same “aspect”. An aspect
changes along visibility events which are the same as for the discontinuity meshing
techniques [8]. These techniques have thus been extended withbackprojections[3, 12]
to provide the aspect of the source. Recently, efficient data structures have been devel-
oped for the 2D case [10, 5] and have inspired our research, although the new approach

? Laboratoire GRAVIR /
IMAG. iMAGIS is a joint research project of CNRS/INRIA/INPG/UJF. Postal address: B.P.
53, F-38041 Grenoble Cedex 9, France. Contact E-mail:Frederic.Durand@imag.fr.



has been developed from scratch with the specifically three-dimensional problem in
mind.

2 Description of the 3D Visibility Complex

In this discussion we will consider scenes of general convex objects, but the concepts
will also be given for the polygonal scenes where appropriate. Visibility will be defined
in terms of ray-objects intersections. If we consider the objects to be transparent, a ray
is not blocked and all the objects a line intersects must be considered. If however we
want to take occlusions into account, we will consider maximal free segments which are
segments having no intersection with the inside of the objects and whose length is max-
imal (their two extremities lie on the boundary of two objects or are at infinity). In what
follows we will often refer to them simply assegments. Segments can be interpreted
as rays which canseethe two objects on their extremities. A 3D line can be collinear
to many segments, separated by the objects the line intersects. In this paper, we will
introduce concepts first in terms of line visibility (where all the objects intersected by
a line are considered) and then in terms of segment visibility (where the occlusions are
taken into account).

We wish to group the segments (or the lines) which see the same objects. A partition
of the set of segments into connected components according to their visibility is thus
required. Since sets of segments are not intuitive objects, we will try to represent them in
a dual space which will afford a better understanding of intricate visibility relationships.
A suitable duality will thus be used for the purposes of illustration and presentation.

2.1 Duality

We have chosen to decompose the 4 dimensions of line space into two dimension of
direction (the spherical coordinates(�; ') of the director vector of the lines) and a
projection(u; v) onto the plane perpendicular to the line and going through the origin.
The axes of the planes are chosen such asu is alongt ^ y 2. The intersections of a
line with two parallel planes could also be used. Nonetheless, we believe that such an
approach makes the interpretation of lines sharing one coordinate harder.

Visualizing 4D space is very hard. It can be seen as a moving 3D world with the 4th
dimension being time. One approach is to use slices (in this paper we will fix' = ct)
which can be seen as frames in time. Such a slice will be called a'-slice. Since each
slice will be a 3D space(�; u; v), it will sometimes be useful to cut one more time
and consider' and� constant. We will obtain a 2D slice where onlyu andv vary,
composed of all the lines which are parallel and have the direction(�; '). Such a slice
will be called a�'-slice. These 2D�'-slices are easier to handle and visualize. They
justify in part the choice of the duality because they can be interpreted as orthographic
projections of the scene.

2.2 Tangency curves

Line Visibility Visibility changes when a line becomes tangent to an object. The set
of lines tangent to one object is a 3-D set in the 4D dual space. This means, more
intuitively, that a line has 3 degrees of freedom to stay tangent to one object. We will
call the dual of the set of lines tangent to an object thetangency volumeof this object.

2 Discontinuities occur at' = ��

2
, but since we use this duality for the purpose of presentation

and visualization we can ignore them without loss of generality.
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Fig. 1. (a) Duality (b) Tangency Volume of a sphere. The� axis (u = 0, v = 0) is shown for
each'-slice providing a better 3D visualization. In the left-hand'-slice, which corresponds to
the discontinuity in the duality for' = �

2
, the “cylinder” just turns around the� axis. The lineD

intersects the object and has its dual inside the tangency volume.

Figure 1b shows a representation of the tangency volume of a sphere. For each'-
slice, the set of tangents is a sort of 2D “cylinder”, forming a 3D structure in the 4D dual
space. If we consider a 2D�'-slice (horizontal in figure 1b) the set of tangents sharing
that direction is a circle in the dual space. This is general: because of the definition of
u andv, the set of tangents to one object in one direction is the outline of the object in
this direction.

If a line has its dual on the tangency volume, it is tangent to the object. If the dual
is inside the 4D set bounded by the tangency volume, it intersects the object, similarly
to lineD on figure 1b.

Segment Visibility Let us now consider visibility with occlusion. A line which in-
tersects the object is collinear to at least two segments, one before and one after the
object.

Consider a�'-slice such as that on the lower left of figure 2. The sets of lines that
intersect and that do not intersect the object are bounded by the outline of the object.
For segment visibility we have to consider the segments that see the front of the object
and those that see its back. Since such segments are collinear to the same line, they are
projected on the same point in the 4D line dual space. Consequently the set of segments
that see the front and the set of segments that see the back of the object are projected
onto the same position of the 4D dual space as shown in the right of figure 2. The
outline, which is the set of tangents to the object for the chosen� and', is incident to
the three sets (front, back and no intersection). This means that a segment tangent to
the object has topological neighbours that do not intersect the objects, some that see the
front, and some that see the back.
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To differentiate the segments, we add a pseudo-dimension. It is not a continuous
dimension since we just have to sort all the collinear segments. If we impose� = ct,
' = ct andv = ct, the sets of segments can be represented by a graph3 shown on
the lower right. Each tangent corresponds to a vertex of the graph. This graph is a 1D
structure embedded in 2D. Similarly, for a�'-slice, the sets of segments are represented
by a 2D structure embedded into 3D. We call the partition of the segments of direction
(�; ') according to their visibility theauxiliary complexfor (�; ') (see also figure 4).

In a similar manner, a'-slice is in fact a 3D structure embedded into 4D, and the
sets of segments is a 4D space embedded into 5D.

front

back

do not intersect

intersect

do not intersect

front

back

front

back

scene

dual θϕ-slice

slice for v=ct of
the θϕ-slice

line visibility segment visibility

Fig. 2. Visibility for � = ct and' = ct. If we consider lines (on the left), visibility can be
described by a planar structure (below). But if we consider segments (on the right) we have
different levels on this plane depending on the side of the object. The set of segments whichdo
not intersect and the sets of those that intersect the front or the back of the object share the same
boundary, the tangents to the object which correspond to its outline. Recall that the Auxiliary
Complex shown on the lower right is a 2D structure embedded into 3D, i.e. it is “empty “, since
the points outside the surfaces have no meaning.

2.3 Bitangents

Line Visibility Now consider two objects. If a line has its associated dual point inside
the tangency volumes of both objects, it intersects them both. The tangency volumes
give us a partition of the dual space of the 3D lines according to the objects they inter-
sect. We call this partition thedual arrangement. Its faces are 4D sets of lines which
intersect the same objects. They are bounded by portions of the tangency volumes which
are 3D. The intersection of two tangency volumes is a 2D set corresponding to the lines
tangent to the two objects (bitangents).

For a'-slice the set of bitangents is a space curve (shown as dashed line in figure 3
on the two'-slices on the right). It corresponds to the intersection of the two “cylinders”

3 It is in fact an embedding of a graph since the points on the edges also have a meaning
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which are the'-slices of the tangency volumes. The slice of a 4D face is a volume
corresponding to the intersection of the inside of the two cylinders.
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Fig. 3. Dual arrangement for two spheres.

Segment visibility An auxiliary complex for two objects is shown on figure 4 for a
given direction. It is still delimited by the outline of the objects, but for example the
outline of the upper sphere has no influence on the setB of segments that see the back
of the lower sphere. Note that the two bitangents (shown in fat black lines) are incident
to all faces.

Figure 5 is a'-slice for ' = 0 of all the faces of the scene composed of two
spheres of figure 3. The view in a given direction is shown on the left of the cylinders,
and we consider the associated auxiliary complex shown six times on the top of the
schema. Each time, a face is hatched and a volume is drawn below which corresponds
to the'-slice of the face of the visibility complex at' = 0. Note that the union of
these volumes is more than the entire 3D space, since a'-slice of the complex is a 3D
structure embedded into 4D.

2.4 Tritangents

Consider now a scene of three objects. A line tangent to the three objects has its dual
at the intersection of the three tangency volumes. A set of connected tritangents is a 1D
set in the 4D dual space. Its projection on a' -slice is a point. The set of tritangents can
be also interpreted as the intersection of the three sets of bitangents.
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scene θϕ-slice of the dual space of the segments
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Fig. 4. Auxiliary Complex for two spheres. Recall that the auxiliary complex is a 2D structure
embedded in 3D. In the lower representation, only the points on the surfaces represented are
associated with segments. In the upper view, the faces of the auxiliary complex have been moved
out to make their incidences easier to understand.

v

uθ
A B C D E F

L

R

Fig. 5.'-slice for' = 0 of the faces of the visibility complex of the previous scene.A is the set
of segments that see the front ofR, B is the set of segments that see the back ofL. C is the set
of segments betweenL andR. It can be interpreted as the intersection of set of lines that seeL
and the set of lines that seeR, and in the dual space it has the shape ofA \ B. D is the set of
segments that see the front ofL. Since the visibility is occluded byR in this direction,D has the
shape ofB � A. Similarly,E is the set of segments that see the back ofR. Finally,F is the set
of segments that see none of the two spheres. It is the complement ofA [B.
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Figure 6 shows part of the visibility complex of a scene of three spheres. On the
'-slice' = 0 two orthographic views of the scene for� = 0 (View 0) and for� = �2
(View 2) are drawn next to the corresponding� in the'-slice. The setF of segments
that see the spheresR andB is shown by its two slicesF0 andF'1. Note that it is the
intersection of the tangency volume ofR andB minus the tangency volume ofG. The
tritangents are the points in white. Note also that because of the occlusion by the sphere
G, lines that are bitangents of theR andB do not correspond to bitangent segments.
This is shown in figure 7 which is a zoomed view of the'-slice' = 0. The set of
bitangentsB0 is cut because bitangent lines such asD intersectG and correspond to
no bitangent segment. We can thus see that the tritangentT0 andT 0

0
are the intersection

of the'-slices of the three tangency volumes, and are also incident to the three sets of
bitangentsB0,B0

0
andB00

0
.

Note that a scene does not necessarily contain tritangents in the general case.
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Fig. 6. Visibility Complex of a scene of three spheres.

3 Data Structure and Storage Complexity

3.1 Overview of the Data Structure

We have defined the dual arrangement which is the partition of the lines of the 3D space
into connected components according to the objects they intersect. It is a 4D structure.
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Fig. 7.Zoomed view of the'-slice' = 0.

Similarly, the 3D visibility complex is the partition of the maximal free segments
of 3D space into connected components according to the objects they touch. It is a 4D
structure embedded into 5D. The dimensions and incidences of the boundaries of the
faces are summarised in table 3.1.

Note that the elements of the visibility complex and those of the dual arrangement
are not the same. A line can be tangent to two objects and correspond to no bitangent
segment because of occlusions.

In the general case, a scene can have a degenerate visibility complex with no vertex
and no tritangency edge.

Dim Scene configuration'-slice in the dual space Name

4 face

3 tangency face
2 bitangency face

1 tritangency edge

0 vertex

Table 1.Elements of the visibility complex

3.2 Polygonal case

In the case of polygonal scenes, the outlines of the objects can be decomposed into
edges and vertices. Consequently the tangency volumes of a polygon can be divided
into sets of lines going through the edges which are 3D sets, and sets of lines going
through the vertices which are 2D sets. A 2D component of the complex corresponds
to a segment touching two edges, or to a segment touching one vertex of a polygon.
In the same manner, the 1-faces of the complex correspond to segments going through
three edges (theEEE events of the aspect graphs or of the discontinuity mesh) or to
segments going through an edge and a vertex (theEV events). Vertices of the complex
can beEEEE orEEV orV V events. In particular a line (or a segment) going through
the vertex of a polygon can be interpreted as being tangent to the two edges incident to
this vertex.
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In the polygonal case the visibility complex is always non-degenerate since there
are alwaysV V vertices andEV 1-faces.

3.3 Complexity

In the general case, there exist convex objects for which the number of faces of the
complex is unbounded. However, in the polygonal case, the storage complexity of the
visibility complex isO(n4), wheren is the number of edges of polygons. This com-
plexity depends strongly on the configuration of the scene. We show below that the
proposed construction algorithm isO(n logn.

As mentioned in the introduction, practical experience with discontinuity meshing
has shown that the scenes studied in computer graphics tend to have more optimistic
visibility complexity than that predicted by the theoretical worst case [3].

4 Applications of the approach

4.1 View computation

A view around a point is defined by the extremities of the set of segments going through
this point. The set of segments going through a point is a 2D surface in the dual space
(u andv can be expressed withsin(�) andsin(')). The view can be expressed as the in-
tersection of the visibility complex with this surface. Each face intersected corresponds
to an object seen. An intersection with a tangency volume corresponds to an outline in
the image. The ray-tracing algorithm is equivalent to a sampling of such a surface.

In figure 8, the surface described by the lines going through viewpointV is rep-
resented by its'-slices which are curves. The intersections of these curves with the
tangency volumes are the points of the view on the outline of the objects, such asD1,
D2, D3, D4 andD5. However,all the intersections do not necessarily correspond with
an outline since the objects are not transparent, and points such asD0 must not be taken
into account. Consider the'-slice' = 0 and the sliceV0 of the lines going through
V with ' = 0. Figure 9 shows the'-slices of the faces of the visibility complex and
their traversal. We traverse the visibility complex up and down alongV0. Initially, the
segments see nothing, since we are in the faceF . At D1, we leave faceF and have to
chose between faceA andE. SinceV lies in the front of the sphereR, we now traverse
A fromD1 toD2.D0 lies on no boundary of faceA and is thus not considered. We then
traverse faceD and finally faceF again. Once the'-slice has been traversed, the in-
tersections with the boundaries of the faces are maintained while' is swept. Visibility
changes will appear whenV' meets a bitangency edge or a new tangency volume.

For a walkthrough, the view can be maintained since the events where the visibility
changes correspond to intersections of the surface described byV with the 1-faces
of the visibility complex. This approach is similar to the one described in [2] where
conservative visibility events are lazily computed.

4.2 Form-Factors

The form factorFij
4 involved in radiosity computation is the proportion of light that

leaves patchiwhich arrives at patchj. It can be expressed as the measure of lines which
intersecti andj divided by the measure of lines which intersecti. In the dual space,
it is the measure of the faceFij divided by the measure of the inside of the tangency
volume ofi. See [9] [4] for the equivalent interpretation of the form factors with the 2D
visibility complex.
4 The same notation is used for the form factor and for the face betweeni andj though the form

factor is a scalar and the face is a set of segments.
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4.3 Other applications

The 1-faces of the visibility complex correspond to the visibility events of the aspect
graph. The complex can thus help in its construction. The complexity of the aspect
graph isO(n6) though the visibility complex is “only”O(n4) because the aspect graph
is an arrangement of theO(n3) 1-faces of the complex.

In the same way, the 1-faces inside the tangency volume of the scene correspond to
the discontinuity surfaces of the discontinuity meshing methods. The visibility complex
gives all the events to compute a discontinuity mesh where all the objects are considered
as sources.

In the context of hierarchical radiosity, whenever a link between two objectsi and
j is to be refined the boundary of the faceFij of the visibility complex provides all the
visibility information pertinent to this energy exchange. This information can be used to
effect progressive discontinuity meshing and to improve the quality of the form-factor
calculation.

5 Implementation

We give here a general outline for the implementation of this data structure for scenes
of polygons. The development of the actual implementation will present technical dif-
ficulties which we have not yet addressed. We simply sketch an outline of the form the
data structure will have and give a general idea of how the construction will proceed.

5.1 Data Structure

To represent the 3D visibility complex, we can use a polytope structure. Eachk-face
has pointers to its boundaries (faces of a lower dimension) and to the faces of a larger
dimension it is adjacent to. A tangency face has for example a list of the bitangency
face of its boundary, and three pointers to its adjacent faces. For eachk-face we also
store the two objects it can see and the objects to which its segments are tangent.

5.2 Algorithm

We present here the outline of an algorithm to build the visibility complex. It consists
of a direct enumeration of the vertices of the complex inspired by [6], and then a sweep
of these vertices.

All the potentialO(n3) EV andEEE events are first enumerated, and we then
compute the intersection of the corresponding discontinuity surfaces with then objects
of the scene. This gives us all the vertices of the visibility complex which are then sorted
in ' and stored in a priority queue.

We then maintain a'-slice of the complex during the sweep of the vertices. For
each vertex swept we link all thek-faces incident to this vertex.

The algorithm presented isO(n4 logn), but experience in the field of discontinuity
meshing and backprojections has shown that the cost can be much reduced thanks to
accelerations techniques [3]; the number ofEEE actually considered is usually far less
thann3.
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6 Conclusions

We have presented a new approach for visibility computation and described a power-
ful data-structure which encapsulates all the visibility information in a 3D scene. The
dual space used affords a better understanding of the visibility events, which have been
presented in detail. Moreover, this representation gives all the relations of adjacency
between these events.

The 3D visibility complex is a very promising data structure for numerous com-
puter graphics applications: we have briefly outlined its potential use for the visibility
computation of a view, its use in form-factor computations and discontinuity meshing
as well as the computation of aspects or backprojections.

We have presented a first outline of the data structure and a construction algorithm.
Current work focuses on the completion of the algorithm and the data structure and its
subsequent implementation for polygonal scenes.

It is nonetheless evident that the when applied to large scenes, the 3D visibility com-
plex will suffer from combinatorial growth in storage. To cope with this combinatorial
complexity, two strategies will be explored. Lazy construction can allow the compu-
tation of only the most important visibility events and faces of the visibility complex
when they are actually needed by the application. A hierarchical extension of the 3D
visibility complex will be studied.

Finally the visibility complex, like its 2D equivalent, seems very promising for dy-
namic environments due to its inherently coherent construction.
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Frédo Durand, George Drettakis and Claude Puech

iMAGISy- GRAVIR/IMAG - INRIA

Abstract

Many problems in computer graphics and computer vision require
accurateglobal visibility information. Previous approaches have
typically been complicated to implement and numerically unstable,
and often too expensive in storage or computation. The Visibility
Skeleton is a new powerful utility which can efficiently and accu-
rately answer visibility queries for the entire scene. The Visibility
Skeleton is amulti-purposetool, which can solve numerous differ-
ent problems. A simple construction algorithm is presented which
only requires the use of well known computer graphics algorithmic
components such as ray-casting and line/plane intersections. We
provide an exhaustive catalogue of visual events which completely
encode all possible visibility changes of a polygonal scene into a
graph structure. The nodes of the graph are extremal stabbing lines,
and the arcs are critical line swaths. Our implementation demon-
strates the construction of the Visibility Skeleton for scenes of over
a thousand polygons. We also show its use to compute exact visible
boundaries of a vertex with respect to any polygon in the scene, the
computation of global or on-the-fly discontinuity meshes by con-
sidering any scene polygon as a source, as well as the extraction of
the exact blocker list between any polygon pair. The algorithm is
shown to be manageable for the scenes tested, both in storage and
in computation time. To address the potential complexity problems
for large scenes, on-demand or lazy contruction is presented, its
implementation showing encouraging first results.

Keywords: Visibility, Global Visibility, Extremal Stabbing Lines,
Aspect Graph, Global Illumination, Form Factor Calculation, Dis-
continuity Meshing, View Calculation.

1 INTRODUCTION

Ever since the early days of computer graphics, the problems of
determining visibility have been central to most computations re-
quired to generate synthetic images. Initially the problems ad-
dressed concerned the determination of visibility of a scene with
respect to a given point of view. With the advent of interactive
walkthrough systems and lighting calculations, the need forglobal
visibility queries has become much more common. Many exam-
ples of such requirements exist, and are not limited to the domain

yiMAGIS is a joint research project of CNRS/INRIA/UJF/INPG.
iMAGIS/GRAVIR, BP 53, F-38041 Grenoble Cedex 09 France. E-mail:
fFrederic.Durand|George.Drettakis|Claude.Puechg@imag.fr
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of computer graphics. When walking through a complex building,
real-time visualization algorithms require the information of which
objects are visible to limit the number of primitives rendered, and
thus achieve better frame rates. In global illumination computa-
tions, the dominant part of any calculation concerns the determi-
nation of the proportion of light leaving surfaces and arriving at
surfacer. This determination depends heavily on the relative oc-
clusion of the two objects, requiring the calculation of which parts
of s are visible fromr. All such applications need detailed data
structures which completely encode global visibility information;
previous approaches have fallen short of this goal.

1.1 Motivation

The goal of the research presented here is to show that it is possi-
ble to construct a data structure encompassing all global visibility
information and to show that our new structure is useful for a num-
ber of different applications. We expect the structure we present
to be of capital importance for any application which requires de-
tailed visibility information: the calculation and maintenance of
the view around a point in a scene, the calculation of exact form-
factors between vertices and surfaces, the computation of disconti-
nuity meshes between any two pairs of objects in a scene as well as
applications in other domains such as aspect graph calculations for
computer vision etc.

Previous algorithms have been unable to provide efficient and
robust data structures which can answer global visibility queries
for typical graphics scenes. In what follows we present a new data
structure which can provideexactglobal visibility information. Our
structure, called theVisibility Skeleton, is easy to build, since its
construction is based exclusively on standard computer graphics al-
gorithms, i.e., ray casting and line-plane intersections. It is amulti-
purposetool, since it can be used to solve numerous different prob-
lems which require global visibility information; and finally it is
well-adapted toon-demandor lazyconstruction, due to the locality
of the construction algorithm and the data structure itself. This is
particularly important in the case of complex geometries.

The central component of the Visibility Skeleton arecritical
linesandextremal stabbing lines, which, as will be explained in de-
tail in what follows, are the foci of all visibility changes in a scene.
All modifications of visibility in a polygonal scene can be described
by these critical lines, and a set ofline swathswhich are necessarily
adjacent to these lines. In this paper we present the construction of
the Skeleton, and the implementations of several applications. As
an example, consider Fig. 1(a), which is a scene of 1500 polygons.
After the construction of the skeleton, many different queries can
be answered efficiently. We show the view from the green selected
point to the left wall which only required 1.4 ms to compute; in Fig.
1(b), the complete discontinuity mesh on the right wall is generated
by considering the screen of the computer as an emitter which re-
quired 8.1 ms.

After a brief overview of previous work (Section 1.2), we will
provide a complete description of all possible nodes, and all the
adjacent line swaths in Section 2. In Section 3 the construction al-
gorithm and the actual data structure are described in detail. The
results of our implementation are then presented in Section 4, giv-
ing the complete construction of the Visibility Skeleton for a suite
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(a) (b)

Figure 1: (a) Exact computation of the part of the left wall as seen
by the green vertex. (b) Complete discontinuity mesh on the right
wall when considering the computer screen as source.

of test scenes. We show how the Skeleton is then used to provide
exact point-to-surface visibility information for any vertex in the
scene, to calculate the complete discontinuity mesh between any
two surfaces in the scene, extract exact blocker lists between two
objects, and compute all visibility interactions of one object with all
other objects in a scene, which could be used for dynamic illumina-
tion updates in scenes with moving objects. Section 5 addresses the
issues arising when treating more complex scenes, and in particular
we present a first attempt at on-demand construction. The results of
the implementation show that this allows significant speedup com-
pared to the complete algorithm. In Section 6 we sketch how the
structure can be extended to environments in which objects move,
as well as other potential extensions, and we conclude.

1.2 Previous Work

Many researchers in computer graphics, computational geometry
and computer vision have addressed the issue of calculating global
visibility. We present here a quick overview of closely related pre-
vious work, which is of course far from exhaustive.

Interest in visibility structures in computer graphics was ex-
pressed by Teller [26], when presenting an algorithm for the cal-
culation of anti-penumbra. This work was in part inspired by
the wealth of research in computer vision related to theaspect
graph (e.g., [21, 10, 9]). The work of Teller is closely related to
the development of discontinuity meshing algorithms (pioneered
by [14, 17]). These algorithms lead to structures closely resem-
bling the aspect graph which contain visibility information (back-
projections) with respect to a light source [5, 24]. Discontinuity
meshes have been used in computer graphics to calculate visibility
and improve meshing for global illumination calculations [18, 6].
Nonetheless, these structures have always been severely limited by
their inability to treat visibility between objects other than the pri-
mary light sources. This is caused by the fact that the calculation
of the discontinuity mesh with respect to a source is expensive and
prone to numerical robustness problems.

An alternative approach to calculating visibility between two
patches for global illumination has been proposed by Teller and
Hanrahan [27]. In this work a conservative algorithm is pre-
sented which answers queries concerning visibility between any
two patches in the scene but does not provide exact visibility in-
formation. In addition, this approach provides tight blocker lists of
potential occluders between a patch pair. Information on the po-
tential occluders between a patch pair is central in the design of
any refinement strategy for hierarchical radiosity [12]. The ability
to determine analytic visibility information between two arbitrary
patches would render practical the error bound refinement strategy
of [16], which requires this information.

In computational geometry, the problem of visibility has been
extensively studied in two dimensions. The visibility complex [22]
provides all the information necessary to compute global visibility.
This was successfully used in a 2D study of the problem applied
to radiosity [19]. A similar structure in 3D, called theasp, has
been presented in computer vision by Plantinga and Dyer [21], to
allow the computation of aspect graphs. This structure provides the
information necessary to compute exact visibility information. A
related, but more efficient structure called the 3D visibility com-
plex [7] has been proposed. Both structures have remained at the
theoretical level for the full 3D perspective case which is the only
case of interest for 3D computer graphics, despite partial imple-
mentations of orthographic and other limited cases for theasp[21].
Other related work in a computational geometry framework can be
found in [15, 20].

Moreover, most of the work done on static visibility does not
easily extend to dynamic environments. Most of the time, motion
volumes enclosing all the positions of the moving objects are built
[3, 8, 23].

2 THE VISIBILITY SKELETON

The new structure we will present addresses many of the shortcom-
ings of previous work in global visibility. As mentioned earlier,
the emphasis is on the development of a multi-purpose tool which
can be easily used to resolve many different visibility problems, a
structure which is easy and stable to build and which lends itself to
on-demand construction and dynamic updates.

In what follows, we will consider only the case of polygonal
scenes.

2.1 Visual Events

In previous global visibility algorithms, in particular those relating
to aspect graph computations (e.g., [21, 10, 9]), and to antipenum-
bra [26] or discontinuity meshing [5, 24], visibility changes have
been characterized bycritical lines setsor line swathsand byex-
tremal stabbing lines.

Following [20] and [26], we define an extremal stabbing line to
be incident on four polygon edges. There are several types of ex-
tremal stabbing lines, including vertex-vertex (orV V ) lines, vertex-
edge-edge (orV EE) lines, and quadruple edge (orE4) lines. As
explained in Section 2.3.1, we will also consider here extremal lines
associated to faces of polyhedral objects.

A swath is the surface swept by extremal stabbing lines when
they are moved after relaxing exactly one of the four edge con-
straints defining the line. The swath can either be planar (if the line
remains tight on a vertex) or a regulus, whose three generator lines
embed three polygon edges.

We callgenerator elementsthe vertices and edges participating
in the definition of an extremal stabbing line.

We start with an example: after traversing anEV line swath
from left to right as shown in Figure 2(a), the vertex as seen from
the observer will lie upon the polygon adjacent to the edge and
no longer upon the floor. This is a visibility change (often called
visibility event). The topology of the view is modified whenever
the vertex and the edge are aligned, that is, when there is a line
from the eye going through bothe andv.

ThisEV line swath is a one dimensional (1D) set of lines, pass-
ing through the vertexv and the edgee1, thus it has one degree of
freedom (varying for example over the edgee). When two such
EV surfaces meet as in Figure 2(b) a unique line is defined by the
intersection of the two planes defined by theEV surfaces. This line
is an extremal stabbing line; it has zero degrees of freedom.

In what follows we will develop the concepts necessary to avoid
any direct treatment of the line swaths themselves since sets of lines
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Figure 2: (a) While the eye traverses the line swathV E, the vertex
v passes over the edgee. (b) Two line swaths meet at an extremal
stabbing line (c) and induce a graph structure

or the surfaces described by these sets are difficult to handle, in
part because they can be ruled quadrics. All computations will be
performed by line – or ray – casting in the scene.

We will be using the extremal stabbing lines to encode all vis-
ibility information, by storing a list of all line swaths adjacent to
each extremal stabbing line. In our first example of Figure 2(b), the
V EE line ve1e2 is adjacent to the two1D elementsve1 andve2
described above; i.e., the swathsve1 andve2. Additional adjacen-
cies for theV EE line ve1e2 are implied by the interaction ofve2
ande1 (Fig 3(a)).

To complete the adjacencies of aV EE line, we need to consider
theEEE line swaths related to the edgese4 ande2, and the two
edgese4 ande3 which are adjacent to the vertexv (Fig. 3(b) and
(c)).

The simple construction shown above introduces the fundamen-
tal idea of the Visibility Skeleton: by determining all the appropri-
ate extremal stabbing lines in the scene, and by attaching all adja-
cent line swaths, we can completely describe all possible visibility
relationships in a 3D scene. They will be encoded in a graph struc-
ture as shown on Fig.3, to be explained in Section 2.3.2. Consider
the example shown in Fig.3(a): The node associated to extremal
stabbing lineve1e2 is adjacent in the graph structure to the arcs
associated with line swathsve1, ve10 andve2.

2.2 The 3D Visibility Complex, the Asp
and the Visibility Skeleton

The Visibility Complex[7], is a structure which also contains all
relevant visibility information for a 3 dimensional scene. It is also
based on the adjacencies between visibility events and considers
sets of maximal free segments of the scene (these are lines limited
by intersections with objects).

The zero and one-dimensional components of the visibility com-
plex are in effect the same as those introduced above, which we
will be using for the construction of the Visibility Skeleton. Similar
constructions were presented (but not implemented to our knowl-
edge for the complete perspective case) for theaspstructure [21]
for aspect graph construction.

In both cases, higher dimensional line sets are built. For the
visibility complex in particular, faces of 2, 3 and 4 dimensions are
considered. For example, the set of lines tangent to two objects
has 2 degrees of freedom, those tangent to one object 3 degrees of

freedom, etc. (see [7] for details).
These sets and their adjacencies could theoretically be useful for

some specific queries such as view computation or dynamic up-
dates, for example in some specific worst cases such as scenes com-
posed of grids aligned and slightly rotated. In such cases, almost all
objects occlude each other and the high number of line swaths and
extremal stabbing lines makes the grouping of lines into higher di-
mensional sets worthwhile.

TheVisibility Complexandaspare intricate data-structures with
complicated construction algorithms since they require the con-
struction of a4D subdivision. In addition they are difficult to tra-
verse due to the multiple levels of adjacencies. Our approach is
different: we have developed a data structure which is easy to im-
plement and easy to use.

These facts also explain the nameVisibility Skeleton, since our
new structure can be thought of as the skeleton of the complete
Visibility Complex.

2.3 Catalogue of Visual Events
and their Adjacencies

The Visibility Skeleton is a graph structure. The nodes of the
graph are the extremal stabbing lines and the arcs correspond to
line swaths. In this section (and in Appendix 7.1) we present an ex-
haustive list of all possible types of arcs and nodes of the Visibility
Skeleton.

2.3.1 1D Elements: Arcs of the Visibility Skeleton

In Figure 4, we see the four possible types of1D elements: an
EV line swath (shown in blue), anEEE line swath (shown in
purple) and two line swaths relating a polygonal face (F ) to one
of its vertices (Fv) or an edge of another polygon(FE) (both are
shown in blue). In the upper part of the figure we show the view
(with changes in visibility), as seen from a viewpoint located above
the scene and, from left to right in front of, on, or behind the line
swath.

Note that the interaction of an edgee and a vertexv can corre-
spond to manyve arcs of the skeleton. These arcs are separated by
nodes. Consider, for example, arcsve1 andve10 adjacent to node
ve1e2 in Fig. 3(a).

2.3.2 0D Elements: Nodes of the Visibility Skeleton

As explained in Section 2.1, two line swaths which meet define
an extremal stabbing line, which in the Visibility Skeleton is the
node at which the arcs meet. This section presents a list of the
configurations creating nodes and their corresponding adjacencies.
A figure is given in each case.

The simplest node corresponds to the interaction of two vertices
shown in Figure 5(a).

The interaction of a vertexv and two edgese1 ande2 can re-
sult in two configurations, depending on the relative position of the
vertex with respect to the edges. The first node was presented pre-
viously in Figure 3 and the second is shown in Figure 5(b).

The interaction of four edges is presented in Figure 6, together
with the six corresponding adjacentEEE arcs. Face related nodes
are given in detail in the appendix:EFE, FEE, FF ,E andFvv
(see Fig. 18 to 19).

3 DATA STRUCTURE
AND CONSTRUCTION ALGORITHM

Given the catalogues of nodes and arcs presented in the previous
section, we can present the details of a suitable data structure to
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Figure 3: (a) An additionalEV line swath is adjacent to the extremal stabbing line, (b) (c) and twoEEE line swaths
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Figure 4: (a) Same as Fig. 1(a). (b) In front of theEEE line swath the edgee2 is visible, on the swath the edges meet at a point and behind
e2 is hidden. (c) In front of theFV we see the front side ofF , on the swath we see a line and behind we see the other side ofF . (d) TheFE
swath is similar to theFV case.

represent the Visibility Skeleton graph structure, as well as the al-
gorithm to construct it.

Preliminaries: Our scene model provides the adjacencies be-
tween vertices, edges and faces. Before processing the scene, we
traverse all vertices, edges and faces, and assign a unique number
to each. This allows us to index these elements easily. In addition,
we consider all edges to be uniquely oriented. This operation is ar-
bitrary (i.e., the orientation does not depend on the normal of one
of the two faces attached to the edge), and facilitates consistency in
the calculations we will be performing.

3.1 Data Structure

The simplest element of the structure is the node. TheNode struc-
ture contains a list of arcs, and pointers to the polygonal facesFup
andFdown (possibly void) which block the corresponding extremal
stabbing line at its endpointsPup andPdown.

The structure for anArc is visualized in the Fig.7(a). The arc
represented here (swath shown in blue) is anEV line set. There are
two adjacent nodesNstart, Nend, represented as red lines. All the
adjacency information is stored with the arc. Details of the struc-
turesNode andArc are given in Fig. 7(b).

To access the arc and node information, we maintain arrays of

balanced binary search trees corresponding to the different type of
swaths considered. For example, we maintain an arrayev of trees
of EV arcs (see Fig.7(b)). These arrays are indexed by the unique
identifiers of the endpoints of the arcs. These can be faces, vertices
or edges (if the swath is interior, that is if the lines traverse the
polyhedron).

This array structure allows us to efficiently query the arc infor-
mation when inserting new nodes and when performing visibility
queries. The balanced binary search tree used to implement the
query structure is ordered by the identifiers of the generators and
by the value oftstart.

3.2 Finding Nodes

Before presenting the actual construction of each type of node, we
briefly discuss the issue of “local visibility”. As has been presented
in other work (e.g., [10]), for any edge adjacent to two faces of a
polyhedron, the negative half-space of a polygonal face is locally
invisible. Thus when considering interactions of an edgee, we do
not need to process any other edgee0 which is “behind” the faces
adjacent toe. This results in the culling of a large number of poten-
tial events.
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Figure 7: Basic Visibility Skeleton Structure.

3.2.1 Trivial Nodes

The simplest nodes are theV V , Fvv andFe nodes. For these, we
simply loop over the appropriate scene elements (vertices, edges
and faces). The appropriate lines are then intersected with the scene
using a traditional ray-caster to determine if there is an occluding
object between the related scene elements, in which case no ex-
tremal stabbing line is reported. Otherwise it gives the elements

and points at the extremities of the lines, and thus the appropriate
location in the overall arc tree array.

3.2.2 VEE and EEEE Nodes

We consider two edges of the sceneei andej . All the lines going
through two segments are within an extended tetrahedron (or dou-
ble wedge) shown in Fig. 8, defined by four planes. Each one of
these planes is defined by one of the edges and an endpoint of the
other.

To determine the vertices of the scene which can potentially gen-
erate aV EE or EVE stabbing line, we need only consider ver-
tices within the wedge. If a vertex of the scene is inside the double
wedge, there is a potentialV EE orEVE event.

We next consider a third edgeek of the scene. Ifek cuts a plane
of the wedge, aV EE or EVE node is created. If edgeek of the
scene intersects the plane of the double wedge defined by edgeei
and vertexv of ej , there is aveiek or eivek event (Fig. 8(a)).

We next proceed to the definition of theE4 nodes. The inter-
sections ofek and the planes of the double wedgerestrict the third
edgeek. To compute a line going throughei, ej , ek we need only
consider the restriction ofek to the double wedge defined byei
andej . This process is re-applied to restrict a fourth edgeel by
the wedge ofei andej , by that ofei andek and by that ofej and
ek. This multiple restriction process eliminates a large number of
candidates.

Once the restriction is completed, we have twoEEE line sets,
those passing throughel, ei andej and those passing throughel,
ei andek. A simple binary search is applied to find the point on
el (if it exists) which defines theE4 node. We perform this search
for a pointP of el by searching for the root of the angle formed by
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Figure 8: (a) (b) VEE enumeration andEEE restriction. (c)E4

computation: find the root of the angle of the lines going through
ejekel and that throughelekei.

the two lines defined by the intersection of the plane(P; ei) with ej
and withek. This is shown on Fig.8(c).

A more robust algorithm such as the one given in [28] could be
used, but the simpler algorithm presented here seems to perform
well in practice. This is true mainly because we are not searching
for infinite stabbing lines, but for restricted edge line segments. The
potentialV EE andE4 enumeration algorithm is given in Fig. 9.

We have developed an acceleration scheme to avoid the enumer-
ation of all the triples of edges. For each pair of edges, we reject
very quickly most of the third potential edges using a regular grid.
Instead of checking if each cell of the grid intersects the extended
tetrahedron, we use the projection on the three axis-aligned planes.
For each such plane, we project the extended tetrahedron (which
gives us an hourglass shape), and we perform the actual edge-
tetrahedron intersection only for the edges contained in the cells
whose three projections intersect the three pixelized hourglasses.

3.2.3 Non-Trivial Face Nodes

To calculate the non-trivial face-related nodes, we start by intersect-
ing the plane of each facef1 with every edge of the scene. For edges
intersecting the face we attempt to create anFvE node (Fig.18).

For each pair of intersections, we search for aFEE node. To do
this we determine if the line joining the two intersections intersects
the facef1. The last operation required is the verification of the
existence of anFF node. This case occurs if the faces adjacent to
the edge of the intersection cause anFF . The construction for the
FEE andFF nodes is described in Fig. 10 (a).

3.3 Creating the Arcs

The creation of the arcs of the Visibility Skeleton is performed si-
multaneously with the detection of the nodes. When inserting a
new node, we create all the adjacent arcs from the corresponding
catalogue presented in Section 2.3.2. For each of these arcsa we
calculate the arc parametert corresponding to the node to be in-
serted, and proceed as explained in Fig.12. We then access the list
of arcs in the Skeleton with the same extremities (thus in the same
list of the array) and which have the same generator elements (ver-
tices and edges) as the arca. If the value oft indicates that the node
is contained in the arc, we determine whether this node is the start
of the end node of the arc. This is explained in more detail in the
following paragraph. If this position is already occupied we split

the arc, else we assign the node the corresponding extremity of the
arc. This process is summarized in Fig. 11.

We have seen above that each time an arc adjacent to a node is
considered, we have to know if it is itsstart nodeor itsend node. In
some cases this operation is trivial, for example for av1v2 node and
one if its adjacentv1e arcs, we simply determine ifv2 is the starting
vertex ofe. In other cases, this can be more involved, especially for
theE4 case. This case and the necessary criteria for the other cases
are summarized in Table 2 in the Appendix.

In Fig. 12, we illustrate the construction algorithm. Initially
a trivial vve node is created. The second node identified isvfe,
which is adjacent the arcve. Thus the arcve is adjacent to both
vve andvfe. The third node to be created isvee3. When this node
is inserted, we realize that the start node forve already exists, and
we thus split theve arc. This splitting operation will leave the end
of theve arc connected tovve undefined. The final insertion shown
is ve2e which will fill an undefined node previously generated.

4 IMPLEMENTATION
AND FIRST APPLICATIONS

We have completed a first implementation of the data structure de-
scribed. We have run the system on a set of test scenes, with varying
visibility properties. In its current form, we have successfully com-
puted the Visibility Skeleton for scenes up to 1500 polygons.

In what follows we first present Visibility Skeleton construction
statistics for the different test scenes used. We then proceed to
demonstrate the flexible nature of our construction, by presenting
the use of our data structure to efficiently answer several different
global visibility queries.

4.1 Implementation and Construction Statistics

Our current implementation requires convex polyhedra as input.
However, this is not a limitation of the approach since we use poly-
hedral adjacencies simply for convenience when performing local
visibility tests.

We treat touching objects by detecting this occurrence and
slightly modifying the ray-casting operation. We also reject copla-
nar edge triples. Other degeneracies such as intersecting edges are
not yet treated by the current implementation.

We present statistics on the size of our structure and construc-
tion time in Table 1. Evidently, these tests can only be taken as an
indication of the asymptotic behavior of our algorithm. As such,
we see that our test suite indicates quadratic growth of the memory
requirements and super-quadratic growth of the running time. In
particular, for the test suite used, the running time increases with
n2:4 on average, wheren is the number of polygons.

The V EE nodes are the most numerous. There are approxi-
mately a hundred times fewerE4 nodes, even though theoretically
there should be an order of magnitude more.

We believe that the memory requirements could be greatly de-
creased by an improved implementation of the arrays of trees. Cur-
rently, a large percentage of the memory required is used by these
arrays (e.g. for scene (d) of Table 1., the arrays need 53.7Mb out
of a total 135Mb). Since these arrays are very sparse (e.g. 99.3%
empty for scene (d)), it is clear that storage requirements can be
greatly reduced.

In the case of densely occluded scenes, the memory require-
ments grow at a slower rate, on average much closer to linear than
quadratic with respect to the number of polygons. As an exam-
ple, we replicated scene (a) 2, 4 and 8 times, thus resulting in
isolated rooms containing a single chair each. The memory re-
quirements (excluding the quadratic cost of the arrays) are 1.2Mb,
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Figure 9: Enumeration of Potential VEE and E4 Nodes.

Find Face Nodesf
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compute the intersection of the edgee with the plane off1
foreach intersectionPi
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Figure 10: Finding Face Nodes.

2.8Mb, 8.6Mb and 17.3Mb, for respectively 78, 150, 300 and 600
polygons.

The theoretical upper bounds are very pessimistic,O(n4) in size
because every edge quadruple can have two lines going through it
[28], andO(n5) in time because such potential extremal stabbing
lines have to be ray-cast with the whole scene. But such bounds oc-
cur only in uncommon worst case scenes such as grids aligned and
rotated or infinite lines. It is clear that our construction algorithm
would be very inefficient for such cases. More efficient construc-
tion algorithms are possible, but these approaches suffer from all
the problems described previously in Section 2.2.

In what concerns the robustness of the computation, previous as-
pect graph and discontinuity meshing algorithms depend heavily
on the construction of the arrangement (of the mesh or aspect graph
“cells”), as the algorithm progresses. In the construction presented
here, this is not the case since all operations are completely local.
Since we perform ray-casting and line-plane intersections, the num-
ber of potential numerical problems is limited. Degeneracies can
occasionally cause some problems, but due to the locality, this does
not effect the construction of the Skeleton elsewhere. More efficient
sweep-based algorithms are particularly sensitive to such instabil-
ities, since an error in one position in space can render the rest of
the construction completely incorrect and inconsistent.

4.2 Point-to-Area Form-Factor for Vertices

The calculation of point-to-area form factors has become central in
many radiosity calculations. In most radiosity systems, point-to-
area calculations are used to approximate area-to-area calculations
[4, 2], and in others the actually point-to-area value is computed at
the vertices [29].

In both theoretical [16] and experimental [6] studies, previous

research has shown that error of the visibility calculation is a pre-
dominant source of inaccuracies. This is typically the case when
ray casting is used. Lischinski et al. [16] have developed a very
promising approach to bounding the error committed during light
transfer for hierarchical radiosity. For it to be useful for general
environments, access is required to the exact visibility information
between a point on one element with respect to the polygon face it
is linked to. This information is inherently global, since a pair of
linked elements can containany two surface elements of the scene.

The Visibility Skeleton in its initial form can answer this query
exactly and efficiently for the original vertices of the input scene.

To calculate the view of a polygonal face from a vertexv, with
respect to a facef , we first access all theEV arcs of the skeleton
related to the facef . This is simply the traversal of the line of our
global two-dimensional array of arcs, indexed byf . For each entry
of this list (many of which are empty), we search for theEV arcs
related tov. TheseEV arcs are exactly the visible boundary off
seen fromv.

An example is shown in Fig. 13(a) and (b) For scene (b), con-
taining 312 and 1488 polygons, the extraction of the point-to-area
boundary takes respectively 1.2 ms and 1.5 ms (all query time are
given without displaying the result).

4.3 Global and On-The-Fly Discontinuity Meshing

In radiosity calculations, it is often very beneficial to subdivide the
mesh of a surface by following some [14, 18], or all [6] of the dis-
continuity surfaces between two surfaces which exchange energy.
The partial [14, 17] or complete [5, 24] construction of such meshes
has in the past been restricted to the discontinuity mesh between a
source (which is typically a small polygon) and the receivers (which
are the larger polygons of the scene). For all other interactions be-
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Creation of a Visibility Skeleton Node

f

foreach adjacent arcn
computet
foreacharca with same extremities and same generators

if a! tstart < t < a! tend

AddNodeToArc(n, a)
if no arc found

create new Arc
g

AddNodeToArc(Noden, Arc a)
f

pos = decideStartOrEnd(n, a)
if pos in a undefined

setpos ton
else

split a into two parts
g

Figure 11: Node Creation
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Figure 12: Example of node insertions: (a) Insertion nodevve. (b) Insertion of nodefve. Arc ve has now two ending nodes. (c) Insertion of
nodeve3e. Arc ve is split. (c) Insertion of nodeve4e, the two arcsve have their actual adjacent nodes.

tween surfaces of scenes, the algorithmic complexity and the inher-
ent robustness problems related to the construction of these struc-
tures has not permitted their use [25].

For many secondary transfers in an environment, the construc-
tion of a global discontinuity mesh (i.e., from any surface (emit-
ting/reflecting) to any other receiving surface in a scene), can aid in
the accuracy of the global visibility computation. This was shown
in the discontinuity driven subdivision used by Hardt and Teller
[13]. In their case, the discontinuity surfaces are simply intersected
with the scene polygons, and thus visibility on the line swath is not
computed. With the Visibility Skeleton, the complete global dis-
continuity mesh between two surfaces can be efficiently computed.

To efficiently perform this query, we add an additional two-
dimensional arrayDM(i; j), storing all the arcs from facefi to
fj . Insertion into this array of lists and well as subsequent access is
performed in constant time. To extract the discontinuity mesh be-
tween to surfacesfi andfj we simply access the entryDM(i; j),
and traverse the corresponding list. In Fig. 14(a), the complete
discontinuity mesh between the source and the floor is extracted
in 28.6 ms. The mesh caused by the small lamp on the table in
Fig 14(b) was extracted in 1.3 ms (note that the arrangement is not
built).

The resulting information is a set of arcs. These arcs can be used
as in Hardt and Teller to guide subdivision, or to construct the ar-
rangement of the discontinuity mesh on-the-fly, to be used as in [6]
for the construction of a subdivision which follows the discontinu-
ities. The adjacency information available in the Skeleton arcs and
nodes should permit a robust construction of the mesh arrangement.

4.4 Exact Blocker Lists, Occlusion Detection and
Efficient Initial Linking

When considering the interaction between two surfaces, it is of-
ten the case that we wish to have access to the exact list of blocker
surfaces hiding one surface from the other. This is useful in the con-
text of blocker list maintenance approaches such as that presented
by Teller and Hanrahan [27].

The Visibility Skeleton can again answer this query exactly and
efficiently. In particular, we use the global arrayDM(i; j), and
we traverse the related arcs. All the polygons related to the inter-
vening arcs are blockers. It is important to note that this solution
results in theexactblocker list, in contrast with all previous meth-
ods. Consider the example shown in Fig. 13(c) where we compute
the occluders between the left ceiling lamp and the floor in 4 ms.

The shaft structure [11] would report all objects on the table
though they are hidden by the table. In this case the Visibility Skele-
ton reports the exact set of blockers.

When constructing the Visibility Skeleton, we compute all the
mutually visible objects of the scene: if two object see each other,
there will be at least one extremal stabbing line which touches them
or their edges and vertices. This is fundamental for hierarchical ra-
diosity algorithms since it avoids the consideration of the interac-
tion of mutually visible objects in the initial linking stage.

Similarly, the Skeleton allows for the detection of the occlusions
caused by an object. This can be very useful for the case of a mov-
ing objectm allowing the detection of the form factors to be re-
computed. To detect if the form factorFij has to be recomputed
we perform a query similar to the discontinuity mesh between two
polygons: we traverseDM(i; j) and search for an arc caused by
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a b c d e f g

Scene
Polygons 84 168 312 432 756 1056 1488
Nodes (�103) 7 37 69 199 445 753 1266
Arcs (�103) 16 91 165 476 1074 1836 3087
Construction 1 s 71 s 12 s 74 37 s 07 1 min 39 s 5 min 36 s 14 min 36 s 31 min 59
Memory (Mb) 1.8 9 21 55 135 242 416

Table 1: Construction statistics (all times on a 195Mhz R10000 SGI Onyx 2). Storage is scene dependent and can be greatly reduced.

(a) (b) (c)

Figure 13: (a) Part of the scene visible from a vertex of the airplane. (b) Part ofthe floor seen by a vertex of the right-hand light source. (c)
List of occluding blockers between the left light source and the floor. Note that the objects on the table that are invisible from the floor are
not reported as blockers.

an element (vertex, edge or face) ofm. This gives us the limits of
occlusions ofm betweenfi andfj . Moreover, by considering all
the arcs of the skeleton, we report all the form factors to be recom-
puted, and not a superset. Fig 14(c) shows the occlusions caused by
the body of the plane between the screen and the right wall. This
computation required 1.3 ms.

5 DEALING WITH SPATIAL COMPLEX-
ITY: ON-DEMAND CONSTRUCTION

We propose here an on-demand orlazyscheme to compute visibil-
ity information only where and when needed. For example, if we
want the discontinuity mesh between two surfaces, we just need to
compute the arcs of the complex related to these two faces, and for
this we only need to detect the nodes between these two faces.

The key for this approach is the locality of the Visibility Skeleton
construction algorithm. We only compute the nodes of the complex
where needed. The fact that some arcs might have missing nodes
causes no problem since no queries will be made on them. Later on,
other queries can appropriately link the missing nodes with those
arcs.

Two problems must be solved: determination of what is to be
computed, and determination of what has already been computed.

We propose two approaches: a source driven computation, and
an adaptive subdivision of ray-space in the spirit of [1].

In the context of global illumination, the information related to
“sources” (emitters or reflectors) is crucial. Thus the part of the vis-
ibility skeleton we compute in an on-demand construction is related

to lines cutting the sources. The event detection has to be modified:
every time a double wedge or a face does not cut the source, the pair
of edges or the face is discarded, and if a potential node is detected,
the ray-casting is performed only if the corresponding critical line
cuts the source.

We use our grid-acceleration scheme here too: for each first
edge, an edge pair is formed only for the edges that lie inside the
hourglass defined by the source and the first edge.

When considering many sources one after the other, we also have
to detect nodes already computed. If the sources are small, it is not
worth rejecting double wedges, and only the final ray-casting and
node insertion can be avoided (in our implementation they account
for a third of the running time). We can perform a “final computa-
tion” if we want all the nodes that have not yet been computed: we
just test before ray-casting if the critical line cuts one of the sources.

For scene (g) of Table 1, the part of the Visibility Skeleton with
respect to one of the sources is computed in 4 min. 15 s. instead of
31 min. 59 s. for the entire scene.

When the number of sources becomes large, most of the time
would be spent in checking if lines intersect the sources or if they
have already been subdivided. If we need visibility information
only between two objects, not between an object and the whole
scene, we propose the use of ray classification of [1] together with
the notions of dual space of [7] to build the visibility skeleton only
where and when needed. The idea (which is not currently imple-
mented) is to parameterize the lines of the 3D space (which is a
set in 4D space), for example by their direction and projection on
a plane or by their intersections with two parallel planes. We then
perform a subdivision of the space of lines with a simple scheme
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(a) (b) (c)

Figure 14: (a)The complete discontinuity mesh with respect to the right source. (b) Discontinuity mesh between the lamp and the table. (c)
Limits of the occlusions caused by a part of the plane between the computer screen and the right wall.

(e.g., grid, hierarchical subdivision) and compute the nodes of the
complex located inside a given cell of this subdivision.

6 CONCLUSIONS AND FUTURE WORK

We have presented a new data structure, called theVisibility Skele-
ton, which encodes all global visibility information for polygonal
scenes. The data structure is a graph, whose nodes are the extremal
stabbing lines generated by the interaction of edges and vertices
in the scene. These lines can be found using standard computer
graphics algorithms, notably ray-casting and line-plane intersec-
tions. The arcs of the graph are critical line sets or swaths which
are adjacent to nodes. The key idea for simplicity was to treat the
nodes and deduce the arcs using the full catalogues of all possible
nodes and adjacent arcs we have presented for polygonal scenes.
A full construction algorithm was then given, detailing insertion of
nodes and arcs into the Skeleton.

We presented an implementation of the construction algorithm
and several applications. In particular, we have used the Skeleton
to calculate the visible boundary of a polygonal face with respect to
a scene vertex, the discontinuity mesh between any two polygons
of the scene, the exact list of blockers between any two polygons,
as well as the complete list of all interactions of a polygon with all
other polygons of the scene.

The implementation shows that despite unfavorable asymptotic
complexity bounds, the algorithm is manageable for the test suite
used, both in storage and in computation time. In addition, we have
developed and implemented a first approach to on-demand or lazy
construction which opens the way to hierarchical and progressive
construction techniques for the Skeleton.

The use of our implemented system shows the great wealth of
information provided by the Visibility Skeleton. Only a few of the
many potential applications were presented here, and we believe
that there are many computer graphics (and potentially computer
vision) domains which can exploit the capacities of the Skeleton.

In future work many issues remain to be investigated. From a
theoretical point of view, the most challenging problems are the de-
velopment of a hierarchical approach so that the Visibility Skeleton
can be used for very complex scenes as well as the resolution of all
theoretical issues for the treatment of dynamic scenes. Some of the
problems for the dynamic solution are sketched in Fig 15. Adapt-
ing the algorithm to curved objects requires the enumeration of all
relevant events and definitely has many applications.

Finally the field of applications must be extended: exact point to

area form-factor from any point on a face, aspect graph construc-
tion, and incorporation into a global illumination algorithm.
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7 Appendix

7.1 Complete Catalogue of FACE Adjacencies

Face related events are adjacent toFE elementsFv elements as
well asEEE arcs when two non-coplanar edges are involved.

The interaction of a face with two edges is shown in Fig. 16, the
interaction of a face a vertex and an edge is shown in Fig. 18 and
finally the interaction of two faces is shown in Fig. 17.
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Figure 18: AFvE node.

7.2 Details of the Construction to find the Orien-
tation of Arcs

Finding the correct extremity of an arc when inserting a node is cru-
cial for the construction algorithm to function correctly. We present
here the most complex case, which is the insertion of anE4 node.

Consider the nodee1e2e3e4 shown in Fig. 19, and the adjacent
arce1e2e3. The question that needs to be answered is whether the
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Figure 15: The edge moving from right to left causes aV EV temporal visibility event which is the meeting of twoEV with the the two
same extremities and with a common element (here the edgee). Four nodes are created, theEV arcs are split into three parts and eight arcs
are created. These events and the topological visibility changes are local in the visibility skeleton.
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Figure 16: AnEFE node.

nodee1e2e3e4 is the start or the end node of this arc. To answer
this query, we examine the movement of the linel going through
e1, e2 and e3, when moving one1. The side ofe4 to which we
move will determine whether we are a start or an end node.

Consider the infinitesimal motiond~�1 on e1. The corresponding
point of e3 on theEEE will lie on the intersection of the plane
defined bye2 and the defining point one1. The motion ofd~�1 on
e1 corresponds to a rotation of� =

~�1:~n

d1
of the plane arounde2.

Symmetrically, this rotation corresponds to the motiond~�3 on e3

and we have� =
d ~�3:~n

d3
, by angle equality. Thus,d~�3 = ~e3

d3 ~d�1:~n

d1 ~e3:~n
.

Now we want to obtaind~�4, the infinitesimal motion of the line
going through the three edges arounde4. We consider the line as
being defined by its origin one1 and by its unnormalized direction
vector ~dir from e1 to e3. For the motiond~�1 of the origin, the
direction vector of moves byd~�3 � d~�1, and thusd~�4 = d~�1 +

d4
d3�d1

(d~�3 � ~e1).

The sign of(~�4 � ~e4): ~node determines on which side ofe4 the
line l will move.

The adjacencies also depend on the face related to the edges
which are visible from the other edges. The other cases are sim-
pler and summarized in Table 2.
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The 3D Visibility Complex: a unified data-structure for global visibility
of scenes of polygons and smooth objects

Frédo Durand, George Drettakis and Claude Puech
iMAGIS-GRAVIR/INRIA �

Abstract

In this paper we describe a unified data-structure, the3D
Visibility Complexwhich encodes the visibility informa-
tion of a 3D scene of polygons and smooth convex ob-
jects. This data-structure is a partition of the maximal free
segments and is based on the characterization of the topo-
logical changes of visibility along critical line sets. We
show that the sizek of the complex is
(n) andO(n4)
and we give an output sensitive algorithm to build it in time
O((n3 + k) logn).

This theoretical work has already been used to define a
practical data-structure, theVisibility Skeletondescribed in
a companion paper.

1 Introduction

Visibility is a crucial issue; motion planning in robotics, ob-
ject recognition in computer vision, lighting simulation or
view maintenance in computer graphics are some examples
where global visibility computations are required. The no-
tion of ”coherence” is often cited as the key to treat these
problems efficiently and not restart every computation from
scratch, but its characterization is not straightforward.

The usual space-subdivision methods do not translate the
line nature of visibility, since a line of sight intersects many
cells of any subdivision.

Computational geometers have characterized sets of lines
in space by using Pl¨ucker duality. It is an oriented pro-
jective 5D dual space in which lines of space are natu-
rally and linearly embedded (lines intersecting a given line
are associated with hyperplanes). Its main drawback is the
necessity of an intersection with the Pl¨ucker hypersurface
[CEG+96, Pel90]. The scenes considered have always been
polygonal and are mainly restricted to isothetic or c-oriented
polygons. (In fact there exists a few results on ray-shooting
with spheres involving parametric search without Plücker

� Laboratoire GRAVIR / IMAG. iMAGIS is a joint research project
of CNRS/INRIA/INPG/UJF. Postal address: B.P. 53, F-38041 Greno-
ble Cedex 9, France. Contact E-mail:Frederic.Durand@imag.fr.
http://www-imagis.imag.fr

coordinates [MS97]). These techniques have been used
by Teller in computer graphics to compute the antipenum-
bra cast by an area light source through polygonal portals
[Tel92]. The problem with these methods is that intersec-
tions of lines with the entire scene are considered; occlusion
is not really treated.

In computer vision, theaspect graphhas been developed
to characterize the viewpoints from which the scene has the
same topological aspect. The viewing space (S2 for ortho-
graphic projection,R3 for perspective projection) is parti-
tioned alongvisual events. Construction algorithms have
been developed for polygons and algebraic objects, both for
orthographic and perspective projection, and some of them
have been implemented; see [EBD92] for a good survey. A
main drawback of aspect graphs is their size:O(n6) for or-
thographic projection, andO(n9) for perspective projection.

To build the aspect graph, Plantinga and Dyer [PD90] de-
fined an intermediate data structure called theasp. For the
orthographic case, it is a partition of the 4D space of ori-
ented lines of space according to the first object they hit,
and for the perspective case it is a partition of the 5D space
of oriented half lines (rays). This approach has been limited
to polygonal scenes. It was applied to maintain views, but
the degrees of freedom allowed by the implementation were
limited to rotation along a predefined axis [PDS90].

In lighting simulation, researchers have computed the dis-
continuities of the lighting function (which correspond to
the limits of umbra and penumbra) also calleddisconti-
nuity meshes. This characterizes the visibility of a light
source. Initially only a subset of discontinuities where com-
puted (e.g., [LTG93]), followed by algorithms computing
all the discontinuities, together with a structure, theback-
projection, which encodes the topological aspect of the light
source[DF94, SG94]. These approaches are nonetheless re-
stricted to a single light-source at a time.

Recently, a data-structure which encodes all the visibil-
ity information of a 2D scene called theVisibility Complex
has been defined [PV96]. This structure is a partition of the
set of maximal free segments according to the object they
touch. Optimal construction algorithms have been devel-
oped for smooth convex objects [PV96] as well as polygons
[Riv97] and used for lighting simulation [ORDP96].
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In [DDP96] we introduced the3D Visibility Complexfor
scenes of convex smooth objects (the polygonal case was
simply mentioned). AnO(n4 logn) brute-force algorithm
was roughly sketched, and applications for lighting simula-
tion, walkthroughs and aspect graph computation were pro-
posed.

In this paper, we present a unified version of the 3D vis-
ibility complex for scenes of polygons and smooth convex
objects. It is based on a complete catalogue of critical line
sets which are lines where visibility changes. We derive
bounds for the size of the complex and present an output
sensitive construction algorithm.

Moreover, the formalism described in this article has been
used to develop and implement a global visibility data-
structure called theVisibility Skeleton[DDP97]. It is a sim-
plified version of the 3D visibility complex for polygonal
scenes built using a brute-force algorithm.

2 Scenes and maximal free segments

We consider scenes of polygons and algebraic smooth con-
vex objects. Concave objects and piecewise smooth objects
are beyond the scope of this article but could be handled
by considering other critical line sets described by the the-
ory of singularity [PPK92, Rie87]. The algebraic objects
are assumed to have bounded degree. In what follows,n

represents the overall complexity of the scene which is the
total number of objects, polygons, edges and vertices. The
objects are assumed to be in general position; degeneracy
issues are not addressed in this paper.

In this work we do not consider lines but maximal free
segments to take occlusion efficiently into account. Intu-
itively, a segment represents a class of rays, and we want
to group the rays that “see” the same objects. Since many
segments can be collinear, we need a fifth dimension to dis-
tinguish them. But it is not a continuous dimension: there is
only a finite number of segments collinear to one line. See
figure 1(a) where a 2d equivalent is shown. The segmentsa

andb are collinear, t is tangent to the object and is adjacent
to segments above and below the object. Topologically we
have a branching structure represented in fig. 1 for parallel
segments. Note that almost everywhere the graph is locally
1-dimensional. Similarly in 3D, the segment space is a 4D
space embedded in 5D. This can be seen as a unification of
the spaces used by Plantinga and Dyer [PD90]: in the ortho-
graphic case they deal with a 4D space and in the perspective
case with a 5D space.

We use the same parameterization for lines as [PD90,
DDP96]: they are represented by two coordinates of direc-
tion, the angles� (azimuth) and' (elevation) which are the
spherical coordinates of the director vector, and the coordi-
nates(u; v) of the projection onto the plane perpendicular
to the line and going through the origin (the axes of of the
plane are chosen such asu is orthogonal to both the direc-
tor vector and the vertical). See figure 1(b). Note that if'
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Figure 1: (a) 2D equivalent of the segment space: Parallel
segments in the scene and local topology with branchings.
(b) Parameterization of lines in space.

is fixed we obtain all the lines contained in a set of parallel
planes. We call it a'-slice. If we also fixv, we obtain the
lines of a plane in which� andu are the polar coordinates.
We call it a'v-slice.

3 Critical segments

We define a segment to be in general position if it touches
objects only at its extremities. A segment that touches ob-
jects in its interior will be calledcritical. At such an inter-
section there is alocal event. If a segment touches more
than one object in its interior, we call this amultilocal event.
Critical segments are grouped intocritical segment sets. The
dimension of such a set can be seen as the number of degrees
of freedom a segment has to keep the events. We can also
refer to the codimension of such a set, which is the com-
plement to the dimension of the space (the number of fixed
degrees of freedom).

For the class of scenes we consider, there are two kinds of
local events: tangency events and vertex events. The object
or the vertex are called thegeneratorsof the event. To stay
tangent to an object, a segment has three degrees of free-
dom. It is of codimension 1. It is of course the same when
a segment goes through the edge of a polygon. We call this
aT event from tangency (also referred to asE from edge in
the aspect graph or discontinuity meshing literature which
deals with polygonal scenes). A segment that goes through
a vertex has two degrees of freedom (rotation), and thus has
codimension 2. We call it aV event.

The combination of many local events causes a multilocal
event, and the codimensions are added. We use the notation
+ to describe such a combination. For example, a segment
that is tangent to an object and that goes through a vertex
belongs to aT+V critical line set of codimension1+2 = 3

(it is a 1D set).
There is also a different kind of multilocal event that was

not described in [DDP96]. A segment can be tangent to two
objects and belong to one of their common tangent planes.
In this case, the common tangent plane adds one codimen-
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sion and we use the notation++. For exampleT + +T

critical segment sets have codimension1 + 1 + 1 = 3 (1D
set). (One may think of the example of two parallel cylin-
ders and notice that lines contained in a bitangent plane have
two degrees of freedom. This case is not considered here
because it is degenerated.) These events are crucial for dy-
namic maintenance of views, aspect graphs and discontinu-
ity meshes. For example a sphere hidden behind another
sphere will appear when their outlines are tangent, that is
when the viewpoint lies on aT ++T segment.

Each local event corresponds to an algebraic equation: a
line tangent to an algebraic object or going through a ver-
tex. A set of critical segments can thus be associated with
the connected set of lines verifying the corresponding set of
equations.

Events caused by faces are considered asT + T events
since they involve two edges. In the same way, segments
going through an edge areV +V events. The reason why the
case of vertices (which could be seen as two edges events) is
distinguished is that they introduce “discontinuities” at the
end of edges and require a specific treatment as we shall see
in section 5.4.

4 The 3D Visibility Complex

The 3D visibility complexis the partition of maximal free
segments of 3-space into connected components according
to the objects they touch. Its faces of dimension 4 are max-
imal connected components of segments in general position
with the two same objects at their extremities.

The different faces of lower dimension correspond to crit-
ical segments as summarized in table 1.

Theorem 1 The size of the 3D visibility complex is
(n)
andO(n4) wheren is the complexity of the scene.

Proof (sketched)

The number of(k+1)-faces adjacent to ak-face is bounded.
For example a1-faceT1+T2+T3 is adjacent to five2-faces:
two facesT1+T2 (there are two different faces because one
extremity of the segments can lie on the object tangent atT2
or not. See [DDP96]),T1 + T3 and twoT2 + T3.

Each4-face is adjacent to at least one3-face, a3-face to
at least one2-face, and a2-face to at least one1-face. We
just sketch the demonstration. For a given faceF of the
complex, we consider the associated critical line setS. This
set of lines contains a line setS0 with one more codimen-
sion (one of the lines tangent to one object is also tangent
to a second object, one of the lines tangent to two objects
belongs to one of their common tangent plane, and one line
going through a vertex is tangent to an object). Consider a
continuous path from the line associated with a segments

of F to one ofS0, and the corresponding continuous path
over the segments. If all the segments of this path have the

Dimension Type Configuration

3 T

2 T+T

V

1 T+T+T

T++T

T+V

0 T+T+T+T

T++T+T

T+T+V

V+V

Table 1: faces of the visibility complex.

(a) (b)

Figure 2: (a) Scene with anO(n) Visibility Complex (b)
Scene with anO(n4)Visibility Complex (an example ofT+
T + T + T critical line is shown).

same extremities,F is adjacent to the face with one more
codimension associated withS, otherwise when the extrem-
ity changes there is a tangency local event and one more
codimension.

Note that a1-face may be adjacent to no0-face (we give
an example below of a scene without a0-face).

So the size of the complex is bounded by the number of
1-faces which are not adjacent to a0-face plus the number
of 0-faces. For each kind of events, the number of possible
systems of algebraic equations depends on the number of
objects implicated, theT + T + T + T critical line sets are
thus the most numerous withO(n4).

We show in figure 2(a) an example of a scene with a vis-
ibility complex of sizeO(n): there is oneT ++T face for
each pair of neighbour spheres. Note there is no0-face in
that case. The scene in figure 2(b) is the same as in [PD90]
and has anO(n4) visibility complex. There are two “grids”,
each one composed of two very slightly distant orthogonal
sets ofn

4
parallel rectangles (this is also valid with thin el-

lipsoids). Consider a rectangle in each of the four sets: there
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Figure 3: (a) Parameterization of the directions. (b) Initialv

sweep (c)' sweep.

is always aT + T + T + T critical segment.
Visual events considered in the aspect graph literature

[EBD92, PD90] correspond to the1-faces of the visibility
complex. For example the topology of a view changes when
a vertex and an edge are aligned from the viewpoint. The as-
pect graph is in fact the arrangement of those events in the
viewing space. This explains its size:O(n6) in the ortho-
graphic case where the viewing space isS2 andO(n9) in
the perspective case where the viewing space isR3.

In [DDP97] we presented a data-structure called theVisi-
bility Skeletonwhich corresponds to the graph of the0 and
1-faces of the visibility complex. First experiments with a
few typical computer-graphics scenes show that the number
of these faces (and thus the size of the complex) is about
quadratic in the number of input polygons.

5 Output-sensitive sweep

Our algorithm is a double sweep with a preprocessing phase.
First the scene is swept by a horizontal plane and a 2D Visi-
bility Complex [PV96] of the'v-slice is maintained (figure
3(b)). We then sweep' (figure 3(c)), but some0-faces can
not be detected during this sweep and have to be prepro-
cessed.

5.1 Sweeping the initial slice

To build the initial'-slice, we first maintain a'v-slice of
the 3D visibility complex which corresponds to the 2D vis-
ibility complex [PV96] of the sweeping plane. We briefly
review the 2D visibility complex. It is the partition of the
segments of the planes according to the objects they touch.
Its 2D faces are connected components of segments touch-
ing the same objects (they are'v-slices of the4-faces of the
3D visibility complex). They are bounded by edges which
correspond to segments tangent to one object ('v slices of
the3-facesT ) and vertices which are free bitangents of the
2D scene ('v-slices of2-facesT +T ). Since a view around
a point corresponds to the extremities of the segments go-
ing through this point, it corresponds to the traversal of the
2D visibility complex along the 1D path of these segments.
The object seen changes when the path traverses a new face,
which occurs at an edge of the 2D complex. In the case

Figure 4: When the first vertex of a polyhedron is swept, the
2D view is computed in the sweeping plane and is restricted
for each edge adjacent to the vertex by considering the angle
formed by the direction of the two adjacent polygons.

of a polygon, the chain of edges of the 2D complex going
through one of its vertices is the view around this vertex.

The 2D visibility complex has to be updated when the
sweeping plane is tangent to an object or contains a vertex
and when three 2D slices of objects share a tangent.

When the sweeping plane starts intersecting an object, we
have to “insert” this object in our 2D complex. This is done
by computing a view around the point of tangency or around
the vertex using the current 2D visibility complex. This can
be done inO(v logn) wherev is the size of the view using
the techniques described in [Riv97]. When the path of this
view crosses an edge of the 2D complex it corresponds to a
newT + T or V + T face of our 3D complex. In the case
of the first vertex of a polygon, the view has to be restricted
for each edge of the polyhedron, corresponding to the view
seen by a vertex of the 2D slice (see figure 4).

Symmetrically, when an object stops intersecting the
sweeping plane, the corresponding faces of the 2D visibil-
ity complex are collapsed. These faces are those along the
chains of edges corresponding to segments tangent to this
object. Their removal can be done inO(v) wherev is again
the size of the view.

When a vertex in the middle of a polyhedron is encoun-
tered the 2D views around the points corresponding to the
edges under the vertex have to be merged, and then the view
around this vertex has to be restricted for each edge above
the vertex, in the same manner as first vertex sweep-events,
see figure 5. Each operation is linear in the size of each
view.

As the plane moves, three slices of objects can share a tan-
gent (corresponding to aT+T+T face of the 3D complex),
in which case the 2D visibility complex is updated using the
technique of [Riv97]. Basically, for each bitangent we com-
pute the value ofv where it will become tangent to a third
object and store these sweep-events in our queue which re-
quires timeO(logn) whenever a bitangent is created.

Finally, a bitangent of the 2D complex can correspond
to a common tangent plane. For each bitangent, we com-
pute the value ofv for which it will lie on a bitangent plane
and insert this sweep-event in the queue. Of course, these
sweep-events have to be discarded if the bitangent is col-
lapsed before.
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Figure 5: Fusion-restriction of a view around edges when a
vertex is swept

5.2 Principle of the' sweep

We now have computed a'-slice of the 3D visibility com-
plex. It is the partition of the segments contained in the set
of horizontal planes. In this'-slice,1-faces of the complex
have dimension 0,2-faces have dimension 1, and so on.

During the'-sweep (fig. 8(c)) we maintain this'-slice
as well as a priority queue of sweep-events. In what follows,
we will only describe the update of the1-faces of the visibil-
ity complex, the update of the upper dimensional is done at
each sweep-event using a catalogue of adjacencies of the
1-faces which for reason of place cannot be given here.
As stated before, the number of adjacent upper-dimensional
faces is bounded; their update does not affect the complex-
ity.

We first prove that some sweep-events are regular: a 1D
component of the'-slice is collapsed as its two extremities
merge. These sweep-events can be detected by computed
for each 1D component of the'-slice the value of' for
which it will collapse. We will then study the case of irreg-
ular sweep-events.

5.3 Regular0-faces

Consider aT1 + T2 + T3 + T4 segments with extremities
O0 andO5 and elevation angle'0 (fig. 6). Consider the1D
critical line setT1 + T2 + T3. We locally parameterize it by
' and call itl('). The ruled surface described byl(') cuts
O4 at '0. Two 1-faces of the complex are associated with
l('), one for' < '0 and one for' > '0; one hasO5 at
its extremity, the otherO4. It is the same forT2 + T3 + T4.
Moreover the two1-faces before'0 are adjacent to a2-face
T2 + T3. In the'-slice, this2-face is a 1D set bounded by
the slices ofT1 + T2 + T3 andT2 + T3 + T4. This 1D set
collapses at'0, it is thus a regular sweep-event. It can be
detected by considering the adjacentT +T +T faces in the
'-slice and maintaining a priority queue.

The T + +T + T faces can be handled the same way
because they are adjacent to a pair ofT ++T and a pair of

O1

O2

O3

O4ϕ0

T1+T2+T3+T4

T1+T2+T3

T1+T2+T3

O5

O0

Figure 6:T + T + T critical line set adjacent to aT + T +

T + T critical line.

ϕ0V1

V2

O1

O2

Figure 7: None of theT + V critical segment sets adjacent
to thisV + V critical segment exist before'0

T + T + T 1-faces, and the faces of a pair are associated
with the same line set.

5.4 Irregular 0-faces

Unfortunately, all the0-faces are not regular sweep-events.
TheT + T + V andV + V events cannot be detected in
this way. The main reason is that vertices represent discon-
tinuities at the end of edges, and we have no guarantee that
a 1-face adjacent to such a0-face exists for' < '0. See
figure 7 where the fourT + V faces appear at'0; this cor-
responds in the dual space to situation (b) of fig. 8.

These events thus have to be preprocessed by considering
all theV V pairs and all the Object-Object-V triplets.

Fortunately, at least one slice of an adjacent2-face exists
before such0-faces appear (faceV1 in fig 7). The proof is
omitted from this version. This face is found using a search
structure over the 1D components of the'-slice ordered by
their generators. The0-face is then tested for occlusion: we
test if the generators (V2 here) lies between the extremities
(O1 andO2) of the2-face. It can then be inserted.

5.5 Non monotonic1-faces

There is another kind of irregular sweep-event. A1-face of
the complex can appear during the sweep without a0-face
event. This is obviously the case forT + +T events since
they can be adjacent to no0-face, but this can also be the
case forT + T + T events. Consider the associated line
set, it is not necessarily monotonic with respect to' (see
fig. 8(c)). These sweep-events also have to be preprocessed
and inserted in the'-slice with a search over the 1D com-
ponents.
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Figure 8: Different sweep-events represented in the dual
space. TheT + T + T + T event (a) is regular, but the
V + V event (b) has to be preprocessed as well as the null
derivative with respect to' of theT + T + T events (c).

5.6 Complexity of the algorithm

Theorem 2 The visibility complex can be built in time
O((k + n3) logn) wheren is the complexity of the scene,
andk the number of0-faces of the complex.

During the initial v sweep, each view computation re-
quires timeO(v logn) wherev is the size of the view. A
view corresponds to the number of3-faces of the 3d visibil-
ity complex adjacent to the appearing/disappearing2 faces.
The total cost is thus bounded byO(k logn). Each tritan-
gent event requires timeO(log n), here again the cost is
bounded byO(k logn).

During the' sweep, each regular event requiresO(logn)

to maintain the priority queue.
The preprocessing of the other0-faces and non-

monotonic 1-faces requires the enumeration of all the
triplets of objects and the insertion of the computed faces
in the priority queue, it is thereforeO(n3 logn).

The output-sensitive nature of this algorithm is very
important since experiments on a few polygonal scenes
[DDP97] have shown that the number ofT + T + T + T

segments which is responsible of the theoreticalO(n4) is in
fact much less than the number ofT + T + V segments.

6 Conclusions and future work
We have introduced a unified data structure, the 3D visibility
complex, which encodes the global visibility informations
for 3D scenes of polygons and convex smooth objects. Its
sizek is 
(n) andO(n4) and we have presented an output-
sensitive algorithm to build the structure in timeO((n3 +

k) logn).
Future work includes the use of the visibility complex to

maintain views around a moving viewpoint, a study of the
events involved by concave and piecewise smooth objects,
the development of a better construction algorithm, and the
incremental update of the visibility complex when an object
is moved, added or removed.
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Fast and Accurate Hierarchical Radiosity
Using Global Visibility

Frédo Durand, George Drettakis and Claude Puech
iMAGIS - GRAVIR / IMAG - INRIA

Recent hierarchical global illumination algorithms permit the generation of images with a high degree of realism.
Nonetheless, appropriate refinement of light transfers, high quality meshing and accurate visibility calculation
can be challenging tasks. This is particularly true for scenes containing multiple light sources and scenes lit
mainly by indirect light. We present solutions to these problems by extending a global visibility data structure,
the Visibility Skeleton. This extension allows us to calculate exact point-to-polygon form-factors at vertices
created by subdivision. The structure also provides visibility information for all light interactions, allowing
intelligent refinement strategies. High-quality meshing is effected based on a perceptually-based ranking strategy
which results in appropriate insertions of discontinuity curves into the meshes representing illumination. We
introduce a hierarchy of triangulations which allows the generation of a hierarchical radiosity solution using
accurate visibility and meshing. Results of our implementation show that our new algorithm produces high
quality view-independent lighting solutions for direct illumination, for scenes with multiple lights and also scenes
lit mainly by indirect illumination.

Categories and Subject Descriptors: I.3.7 [Computing Methodologies]: Computer Graphics—Three-Dimensional
Graphics and Realism

General Terms: Global Illumination, Global Visibility

Additional Key Words and Phrases: Hierarchical Radiosity, Form Factor Calculation, Discontinuity Meshing,
Hierarchical Triangulation, Perception

1. INTRODUCTION AND PREVIOUS WORK

Recent advances in global illumination, such as hierarchical radiosity [Hanrahan et al.
1991] and its combination with discontinuity meshing [Lischinski et al. 1993] have resulted
in high quality lighting simulations. These lighting simulations areview independentand
are suitable for walkthroughs. The quality of the resulting illumination is important every-
where in the scene, since the user can, for example, approach a shadow of an object and
see its details.

Despite the high quality of existing techniques, certain aspects of these algorithms are
still suboptimal. In particular, deciding when a light-transfer isrefinedappropriately, and
thus computed with higher precision is a hard decision; current algorithms ([Hanrahan
et al. 1991; Lischinski et al. 1994; Gibson and Hubbold 1996] etc.) include methods based
on error bounds which in many cases prove insufficient. Creating ameshto represent light-
ing variations accurately (notably for shadows) is hard; discontinuity meshing approaches
[Lischinski et al. 1993; Drettakis and Sillion 1996] have proposed some solutions for these

iMAGIS is a joint research project of CNRS/INRIA/UJF/INPG.
Address: iMAGIS/GRAVIR, BP 53, F-38041 Grenoble Cedex 09 France
fFredo.Durand|George.Drettakis|Claude.Puechg@imag.fr
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issues which are however often limited in their applicability. Recent approaches (e.g.,
[Christensen et al. 1996; Ureña and Torres 1997]) avoid this problem by performing a
view-dependent, ray-casting “final gather”; view-independence and the capacity for in-
teractive display and walkthroughs are thus sacrificed. Accuratevisibility calculation is
also fundamentally hard, since we have to consider the potential interaction between all
polygons in the scene for global illumination.

The above three problems,visibility, refinementandmeshingare accentuated in the fol-
lowing two lighting configurations: scenes lit by multiple sources and scenes lit mainly by
indirect illumination. In this paper we present a new algorithm which addresses the three
shortcomings mentioned above. For all three problems, refinement, meshing and visibil-
ity previous approaches lack information on accurateglobal visibility relationships in the
scene. This information is provided by theVisibility Skeleton[Durand et al. 1997]. To
achieve our goal, we first extend the Skeleton to provide visibility information at vertices
resulting from subdivision of the original input surfaces. The extended Skeleton allows
the fast computation of exact point-to-polygon form-factors for any point-polygon pair in
the scene. In addition, all visibility information (blockers and all discontinuity surfaces) is
available for any polygon-polygon pair.

This global visibility information allows us to develop an intelligent refinement strategy,
since we have knowledge of visibility information forall light transfers from the outset.
We canrank discontinuity surfaces between any two hierarchical elements (polygons or
patches resulting from their subdivision), using perceptually-based techniques [Gibson and
Hubbold 1997]; thus only discontinuities which are visually important are considered. An
appropriate mesh is created using these discontinuities; illumination is represented very ac-
curately resulting in high-quality, view-independent meshes. To achieve this in the context
of a hierarchical radiosity algorithm, we have introduced a hierarchy of triangulations data
structure. Radiosity is gathered and stored at vertices, since the extended Skeleton provides
us with the exact vertex-to-polygon form-factor. An appropriate multi-resolution push-pull
procedure is introduced. The high-quality mesh, the exact form-factor calculation and the
hierarchical triangulation result in lighting simulation with accurate visibility.

Our approach is particularly well-suited for the case of multiple sources since the discon-
tinuity ranking operates simultaneously onall light energy arriving at a receiver. Indirect
illumination is also handled very well, since visibility information, and thus the refinement
and meshing strategies as well as the form-factor computation apply equally well to all
interactions, i.e., both direct (from the sources) and indirect (reflected light). Examples of
these two cases are shown in Fig. 1. In Fig. 1(a) we see a scene lit by 10 separate light
sources, where the multiple shadows are visible but the mesh complexity is reasonable (see
Table 2, in Section 7.2). In Fig. 1(b) we see a room lit mainly by indirect lighting; notice
the high quality shadows created entirely by indirect light (e.g., on the far wall from the
books and lamp).

1.1 Previous Work

The new algorithm we present here is in a certain sense an extension of hierarchical radios-
ity, using visibility structures, advanced meshing techniques and perceptually-based subdi-
vision. We briefly review hierarchical radiosity methods, accurate visibility techniques and
related visibility-based refinement for lighting algorithms and finally perceptually-based
refinement for illumination.
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(a) (b)

Fig. 1. Images computed using our new hierarchical radiosity algorithm based on the extended Visibility Skele-
ton and hierarchical triangulations. (a) A scene with multiple sources. The skeleton construction took 2min 23s
and the lighting simulation 8min. (b) A scene mainly lit by indirect light. The skeleton construction took 4min
12s and the lighting simulation 6min 58s. Note the shadows caused by indirect illumination, cast by the books on
the back wall.

1.1.1 Hierarchical radiosity . The hierarchical radiosity algorithm [Hanrahan et al. 1991]
allows efficient calculation of global illumination. Lighting calculations are limited to a
user-specified level of accuracy, by means of hierarchically subdividing the polygons in
the scene into a quadtree, and creating light-transfer “links” at the appropriate levels of the
hierarchy. In the original hierarchical radiosity solution [Hanrahan et al. 1991], radiosity
is considered constant over each quadtree element. The rectangular nature of the quadtree,
and the constant reconstruction result in the need for very fine subdivision for high quality
image generation (high quality shadows etc.).

Higher-order (non-constant) methods have also been introduced, notably in the context
of wavelet-based solutions [Gortler et al. 1993]. The wavelet-based radiosity solutions
presented to date typically operate on discontinuous bases, resulting in visible discontinu-
ities if the solution is displayed directly (e.g., [Christensen et al. 1996]). Zatz [Zatz 1993]
used a Galerkin-type method and shadow masks to improve the quality of the shadows
generated. To avoid the problem of discontinuous representations the “final gather” step
was introduced by [Reichert 1992] and used for wavelet solutions (e.g., [Christensen et al.
1996]). A final gather step consists of creating a ray-cast image, by querying the object-
space visibility and lighting information to calculate illumination at each pixel [Ure˜na and
Torres 1997]. This approach allows the generation of high quality images from a coarse
lighting simulation, at an additional (frequently high) cost. The solution thus becomes
view-dependent, and interactive display and walkthrough capability are lost.

More recently, Bekaertet al. have presented an efficient algorithm which combines hier-
archical radiosity and Monte-Carlo radiosity [Bekaert et al. 1998]. However, the stochastic
nature of the algorithm makes it difficult to refine along shadow boundaries.

1.1.2 Accurate Visibility and Image Quality.The accurate calculation of visibility in
a lighting simulation is essential: both the numerical quality of the simulation and the
visual quality of the resulting image depend on it. The exact computation of visibility
between two patches in a scene or between a patch and a point requires the treatment of
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visual events. Visual events are caused at boundaries in a scene where the visibility of one
object changes with respect to a point of view. Such events occur at visibility boundaries
generated by the interaction between vertices and edges of the environment (see Section
2). In the case of the view of a light source, these boundaries correspond to the limits of
umbra and penumbra. By choosing certain of these boundaries and using them to guide the
(irregular) mesh structure,discontinuity meshinglighting algorithms have been introduced
resulting in more visually accurate images (e.g., [Heckbert 1992; Lischinski et al. 1992]).

In the vision literature, visual events have been extensively studied [Plantinga and Dyer
1990; Gigus et al. 1991]. Theaspect graphstructure completely encodes all visibility
events in a scene. The determination of the visible part of an area light source in computer
graphics is exactly the calculation of the aspect of the light at a given point. Algorithms
performing this operation by building the complete discontinuity mesh and thebackpro-
jectiondata structure (encoding the source aspect) have been presented (e.g., [Teller 1992;
Drettakis and Fiume 1994; Stewart and Ghali 1994]). The full discontinuity mesh and
backprojection allows the computation of the exact point-to-area form-factor with respect
to an area light source. Nonetheless, these methods suffer from numerical problems due
to the required intersections between the discontinuity surfaces and the scene polygons,
complicated data-structures to represent the highly irregular meshes and excessive compu-
tational requirements. The Visibility Complex [Durand et al. 1996] and its simplification,
the Visibility Skeleton [Durand et al. 1997], present complete,globalvisibility information
between any pair of polygons. We have chosen to use the Visibility Skeleton because of
its flexibility, relative robustness (compared to discontinuity meshing) and ease-of-use. A
review of necessary machinery from the Skeleton used here is presented in Section 2.

1.2 Visibility-Based Refinement Strategies for Radiosity

In the Hierarchical Radiosity algorithm, mesh subdivision is effected through link refine-
ment. The original algorithm used aBFV criterion (radiosity times form-factor modulated
by a visibility factorV for partially occluded links). The resulting meshes are often too
fine in unoccluded regions, and do not always represent fine shadow details well.

Refinement strategies based on error bounds [Lischinski et al. 1994; Gibson and Hub-
bold 1996] have improved the quality of the meshes and the simulation compared to the
BFV criterion. Conservative visibility determination in architectural scenes [Teller and
Hanrahan 1993], accurately characterises links asvisible, invisibleor partially visible. This
triage guides subdivision, allowing finer subdivision in partially illuminated regions.

Discontinuity meshing clearly improves the visual quality of images generated by light-
ing simulation [Lischinski et al. 1992; Heckbert 1992; Drettakis and Fiume 1994], since
the mesh used to represent illumination follows the actual shadow boundaries, instead of
finely subdividing a quadtree which attempts to approximate the boundary. One problem
is the extremely large number of discontinuities. Tampieri [Tampieri 1993] attempted to
limit the number of discontinuity lines inserted, by sampling the illumination along the
discontinuities and only inserting those with radiosity values differing more than anprede-
fined threshold. In the context of progressive refinement radiosity, Stuerzlinger [Sturzlinger
1994], only inserted discontinuities at a second level of a regular quadrilateral adaptive
subdivision, once a ray-casting step has classified the region as important. The only dis-
continuities inserted were those due to the blocker identified by the ray caster.

Several methods combining discontinuity meshing with hierarchical radiosity have been
presented [Lischinski et al. 1993; Drettakis and Sillion 1996; Hardt and Teller 1996; Boua-
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touch and Pattanaik 1995]. Hardt and Teller [Hardt and Teller 1996] present an approach in
which potential discontinuities from all surfaces are considered, without actually intersect-
ing them with the blockers. Potential discontinuities are ranked, and those deemed most
important are inserted and the lowest level of the quadtree. In [Drettakis and Sillion 1996]
the backprojection information is used in the complete discontinuity mesh creating a large
number of small triangles. Exact form-factors of the primary source are then computed at
the vertices of these triangles. The triangles are then clustered into a hierarchy. Standard
[Hanrahan et al. 1991] constant-element hierarchical radiosity follows. The previously
cited problems of discontinuity meshing, the expensive clustering step and the fact that the
inner nodes of the hierarchy often overlap, limit the applicability of this approach to small
models. The only other hierarchical radiosity method with gathering at vertices is that of
Martin et al. [Martin et al. 1997], which requires a radiosity value at each vertex, and a
complex push procedure.

The algorithm of Lischinskiet al. [Lischinski et al. 1993] is much more complete and
relevant to our work. The basis of this approach is to separate the light simulation and
rendering steps. This idea is similar in spirit to the use of a “final gather” step. Lischinski
et al.first compute a “global pass” by creating 2D BSP trees on scene polygons subdivided
by choosing important discontinuities exclusively due to the primary sources. The 2D BSP
tree often incurs long splits and consequently long or thin triangles, which are inappro-
priate for high quality lighting simulation. The second, view independent, “local pass”
recomputes illumination at the vertices of a triangulated subdivision of the leaf elements of
the BSP tree. To achieve high quality images, the cost of triangulation and shading (light
recomputation at vertices using “method D” [Lischinski et al. 1993] ), is higher than that
of the actual lighting simulation (if we ignore the initial linking step).

1.3 Perceptually Based Refinement

Recently, perceptually-based error metrics have been used to reduce the number of el-
ements required to accurately represent illumination (e.g., [Gibson and Hubbold 1997;
Hedley et al. 1997]). Tone-reproduction approaches [Tumblin and Rushmeier 1993; Ward
1994] are used to map calculated radiosity values to display values which convey a per-
ceptual effect closer to that perceived by a real world viewer. Since display devices have
limited dynamic range compared to real world luminance values, the choice of this map-
ping is very important. The tone reproduction mappings of [Tumblin and Rushmeier 1993;
Ward 1994] depend on two parameters: a world adaptation level which corresponds loosely
to the brightness level at which a hypothetical observer’s eye has adapted, and a display
adaptation level which corresponds to the brightness displayed on the screen. Choice of
these parameters affects what will be displayed, and, more importantly, which differences
in radiosities will actually be perceptible in the final image. Most notably, one can define
a “just noticeable difference” using this mapping. In the context of lighting, a just no-
ticeable difference would correspond to the smallest difference in radiosity values, which
once transformed via tone reproduction, will be visible to the viewer of the display. Dis-
play adaptation is typically a fixed value (e.g., half the maximum display luminance [Ward
1994]), while the world adaptation level can be chosen in a number of different ways.
Using static adaptation [Gibson and Hubbold 1997], one uses an average which is in-
dependent of where the observer is looking, while dynamic adaptation (which is closer to
reality) changes depending on where the observer is looking. Gibson and Hubbold [Gibson
and Hubbold 1997] use tone reproduction to guide subdivision in a progressive refinement
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radiosity approach, thus allowing a subdivision only if the result will be “just noticeable”.
Hedley et al. [Hedley et al. 1997], in a similar spirit, use a tone mapping operator

to determine whether a discontinuity should be inserted into a lighting simulation mesh.
This is performed by sampling across the discontinuity (in a manner similar to that of
Tampieri [Tampieri 1993]), but also orthogonally across the discontinuities. This results in
an important reduction of discontinuities without loss of visual quality.

1.4 Paper Overview

Previous algorithms surveyed above provide view-independent lighting simulations which
are acceptable for many situations. In particular, quadtree based hierarchical radiosity
provides fast solutions of moderate quality, even for scenes mainly lit indirectly. Nonethe-
less, in walkthroughs the observer often approaches regions of shadow, and in these cases
the lack of shadow precision is objectionable. Previous approaches based on disconti-
nuity meshing alleviate this problem for direct lighting, but rapidly become impractical
for scenes with many lights, or for which indirect lighting is dominant. Their limitations
are due to the sheer number of discontinuity surfaces that need to be considered when
computing indirect illumination and the complexity of the meshes which result. These is-
sues are discussed in [Lischinski et al. 1992] and [Tampieri 1993]. The solutions adopted
to date have restricted the use of discontinuity information to those from primary light
sources [Lischinski et al. 1993; Drettakis and Sillion 1996]; for subsequent light bounces
(secondary, tertiary etc.), approximate ray-casting approaches are used for visibility com-
putations in light transfer.

The new algorithm presented here allows the generation of accurate shadows for a more
general class of scenes, including those with dominant indirect illumination. To achieve
this goal we extend the Visibility Skeleton to support view calculation at vertices resulting
from subdivision, and to use a link-based storage mechanism which is more adapted to
a hierarchical radiosity approach. This extended structure is presented in Section 2. The
resulting structure allows us to select and insert discontinuity lines for all light transfers,
and to calculate exact point-to-area form-factors rapidly, using the visibility information
provided. These choices required us to develop a new hierarchical radiosity algorithm,
with gathering at vertices, based on embeddedhierarchical triangulationsallowing the
mesh to follow discontinuity lines. The details of this structure, and the novel push-pull
algorithm are presented in Section 3. In Section 4 we present the new hierarchical ra-
diosity algorithm using accurate global visibility and we present the new point-polygon
and polygon-polygon link data structures. In Section 5 we present the corresponding re-
finement processes and the visibility updates required for their use. In Section 6 polygon
subdivision and the perceptually-based refinement criterion are described. We then present
results of our implementation, as well as a discussion of relative limitations and advantages
of our approach, and we conclude.

2. THE VISIBILITY SKELETON

The Visibility Skeleton [Durand et al. 1997] is a data structure encoding all the global
visibility relationships in a 3D scene. It is based on the notion ofvisibility events.

A visibility event is the locus of a topological change in visibility. An example is shown
in Fig. 2(a) (taken from [Durand et al. 1997]). When the viewpoint moves from left to
right, vertexv as seen from the observer will no longer lie on the floor, and will now be on
the polygon adjacent to edgee. We say that there is a topological change in the view from
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Fig. 2. (a) AnEV line swath, (b) TheVEE node is adjacent to two line swaths (c) The graph structure induced
(Figure taken from Durandet al. [Durand et al. 1997])

A visibility event is a 1D set of lines: in Fig. 2(a) theEV event is the set of lines going
throughv ande; it can be parameterized by the abscissa one. We call the surfaces swept
by such sets of linesline swaths. Such swaths are caused by the interaction of an edge and
a vertex (EV swaths) or three edges (EEE) swaths.

The extremities of these 1D line sets are lines with no degrees of freedom: theextremal
stabbing lines. These are lines passing through four edges of the scene. Examples are
vertex-vertex (VV) lines passing through two vertices, vertex-edge-edge (VEE) lines pass-
ing through two edges and a vertex (see for example Figure 2(b)) or 4-edge (E4) lines
passing through four edges.

This construction naturally defines a graph in line-space. The nodes are the extremal
stabbing lines and the arcs are the line swaths. The nodes of the graph are adjacent to a
certain number of arcs (swaths), which are defined in a catalogue for each type of node
[Durand et al. 1997]. Fig. 2(b) shows the adjacencies of aVEEextremal stabbing line and
two EV critical line swaths. The graph structure induced, consisting of a node and the two
arcs, is shown in Fig. 2(c).

Efficient access to the visibility information is provided by means of ann2 array (where
n is the number of objects in the scene) indexed by the polygons at the extremities of the
swaths: A cell of the array indexed by polygons(P;Q) stores in a search tree all the line
swaths whose extremities lie onP andQ.

Thevisibility skeletonis the graph of line swaths and extremal stabbing lines together
with the array of search trees.

The construction of the Skeleton proceeds as a set of nested loops over the edges and
vertices of the scene to determine the nodes (extremal stabbing lines). First simple cases
(e.g., VV) are found, and subsequent loops over the edges allow the identification ofVEE
andE4 nodes.
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Once a potential extremal stabbing line is detected, it is tested for occlusion using ray-
casting. If an object lies between its generators, it is discarded. Otherwise a node is created.
The ray-casting operation also provides the extremities of the node.

Once a node is created, its neighbourhood in the graph is updated using the catalogue of
adjacent arcs. If an adjacent arc has already been created (because of its other extremity) it
is just linked to the new node; otherwise it is created and linked. The array of search trees
is used for efficient search of the existing arcs.

It is important to note that the line swaths are not actually constructed geometrically:
only the extremal stabbing lines are involved in the geometric construction. This makes
the algorithm more robust, since only ray-casting is needed, as opposed to traditional dis-
continuity meshing which requires complicated swath-polygon intersections [Drettakis and
Fiume 1994].

2.1 Extensions to the Visibility Skeleton

2.1.1 Memory requirements.The storage of the arcs of the Skeleton in a two dimen-
sional array incurs anO(n2) cost in memory. In the scenes presented in [Durand et al.
1997] half of the memory was used for the array, in which more than 95% of the cells were
empty! It is even more problematic when the scene is highly occluded such as in the case
of a building where each room sees a only fixed number of other rooms: the number of arcs
is only O(n). Moreover, for our lighting simulation, we will need to subdivide the initial
polygons into sub-patches and incrementally compute visibility information between some
pairs of sub-patches, but not all.

For these reasons we store the set of critical line swaths between two polygons on the
polygons themselves. Each polygonP stores a balanced binary tree; each node of this tree
contains the set of arcs betweenP and another polygonQ. This set is itself organized in a
search tree (see Figure 3). Each set of arcs is referenced twice, once onP and once onQ.
In the same manner, each vertexV has a search tree containing the sets of arcs betweenV
and a polygonQ (which represents the view ofQ from V). These sets of arcs are closely
related to the notion oflinks in hierarchical radiosity as we will see in Section 4.2.

For the scenes presented [Durand et al. 1997], this approach results in an average mem-
ory saving of about 30%. Moreover, we have ran our modified version of the visibility
skeleton on a set of scenes consisting of a room replicated 2, 4, and 8 times, showing
roughly linear memory growth for the skeleton. Using a binary tree instead of an array
incurs an additionalO(logn) time access cost, but this was not noticeable in our tests.

2.1.2 Visibility Information at Vertices from Subdivision.To permit the subdivision of
surfaces required to represent visual detail (shadows etc.) on scene polygons, visibility
skeleton information must be calculated on the triangles created by the subdivision and the
corresponding interior vertices. The process is presented in detail in Section 5.

Since the visibility information is now stored on polygons and vertices (instead of in a
2D array), the generalization to subdivided polygons is straightforward. On each sub-patch
or sub-vertex, we store the visibility information only for the patches it interacts with.

2.2 Treating Degenerate Configurations

Computational geometry often makes the assumption that the scenes considered are in a
“general configuration”. Unfortunately, computer graphics scenes are very often highly
degenerate: many points are aligned, segments or faces are parallel or coplanar and objects
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Fig. 3. Summary of the visibility skeleton structure. Each polygon stores a search tree indexed by the polygons
it can see. For each pair of polygons, a search tree of visibility events is stored.

touch each other.
This results in degenerate visibility events;e.g., VVV extremal stabbing lines passing

through three aligned vertices, orE5 stabbing lines going through five edges.
These degenerate configuration cause duplicate line swaths and result in numerical in-

stabilities in the occlusion test of a potential extremal stabbing line. This line may then be
randomly discarded. Inconsistencies can thus appear in the neighbourhood of the corre-
sponding nodes of the graph. A consistent policy has to be chosen to include these nodes
and their adjacent arcs or not.

We first have to identify the occurrence of these problems. When a potential extremal
stabbing line is tested for occlusion, we also check for grazing objects. This requires a
simple modification to the point-in-polygon test used for the ray-casting occlusion test of
the potential extremal stabbing lines. We thus detect the intersection with a silhouette edge
or vertex.

We also have to deal with the aforementioned degenerate extremal stabbing lines. A
first possibility is to explicitly create a catalogue of all these degeneracies. This approach
however quickly makes the implementation intractable because of the large number of
different cases. We have chosen to always consider the simplest configuration, that is the
one in which we have the smallest number of visual events. For example, if four edges
E1, E2, E3 andE4 are parallel in that order, we consider thatE2 occludesE1 and thenE3

occludesE2 etc. The configurations to be treated are thus simpler and correspond to the
standard Skeleton catalogue of events. The problems of numerical precision are treated
using a consistentε threshold for equality and zero tests.

3. IRREGULAR HIERARCHICAL TRIANGULATIONS FOR ILLUMINATION

In previous work (e.g., [Heckbert 1992; Lischinski et al. 1992]) it has been shown that
the creation of a mesh well adapted to the discontinuities in illumination results in images
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of high visual quality. Incorporating such irregular meshes into a hierarchical radiosity
algorithm presents an important challenge. As mentioned in Section 1.1.2, most previous
algorithms [Lischinski et al. 1993; Drettakis and Sillion 1996] addressing this issue have
restricted the treatment of discontinuities to those due to direct (primary) illumination.

The core of the problem is that two conflicting goals are being addressed: that of a simple
regular hierarchy, permitting straightforward manipulations and neighbor finding and that
of an essentially irregular mesh, required to represent the discontinuity information. The
first goal is typically achieved using a traditional quadtree structure [Hanrahan et al. 1991]
and the second typically by a BSP-type approach [Lischinski et al. 1993].

In previous approaches, discontinuity information and accurate visibility were incorpo-
rated into constant-element hierarchical radiosity algorithms. In the case of the Skeleton,
this would be wasteful, since we have all the necessary information to computeexactform-
factor from any polygon in the scene to any vertex (see Section 5 to see how this is also
true for vertices resulting from subdivision). Gathering to vertices introduces one impor-
tant complication: contrary to elements whose level in the hierarchy is clearly defined,
vertices are shared between hierarchy levels.

As a solution to the above issues, we introduce hierarchical triangulations for hierarchi-
cal radiosity. Our approach has two major advantages over previous hierarchical radiosity
methods: (i) it adapts well to completely irregular meshes and this in a local fashion (tri-
angulations contained in triangulations), avoiding the artifacts produced by splitting edges
of a 2D BSP tree and (ii) it allows gathering to vertices by a “lazy wavelets”-type (or sub-
sampling) construction (see the book by Stollnitzet al. [Stollnitz et al. 1996] pp 102–104
and 152–154). It preserves a linear approximation to radiosity during the gather and the
push process of the solution.

(a) (b) (c) (d)

Fig. 4. Hierarchical Triangulation Construction. Notice how the triangles are overall well shaped but also well
adapted to local detail. (a) Scene geometry: the leftmost polygon is illuminated by the area source on the right
pointing leftwards. (b) First level of subdivision for the leftmost polygon (green). (c) Second level (blue). (d)
third level (red).

3.1 Hierarchical Triangulation Construction

Our hierarchical triangulation construction has been inspired by that of de Floriani and
Puppo [De Floriani and Puppo 1995]. As in their work we start with an initial triangulation,
which is a constrained Delaunay triangulation (CDT). The CDT allows the insertion of
constrained edges into the triangulation, which are not modified to satisfy the Delaunay
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property and thus remain “as is”. Each triangle of the initial triangulation can be subdivided
into a sub-triangulation, and so on recursively. At each level, a CDT is maintained.

An example of such a construction is shown in Figure 4, clearly showing the first advan-
tage mentioned above. As we can see, the triangulation maintains well-shaped triangles
everywhere in the plane, while providing fine details in the regions where this is necessary.
The representation of such detail induces irregular subdivision at the finer levels.

Our hierarchical triangulation is “matching”, in the sense that edges split across two
levels of a triangulation are done so at the same point on the edge. At the end of each
subdivision step an “anchoring” operation is performed by adding the missing points in the
neighboring triangles, thus resulting in a conforming triangulation across levels required
for the push phase of hierarchical radiosity.

(a) (b) (c)

"matching"

(d)

Fig. 5. The “matching” constraint for the Hierarchical Triangulation. The sequence shows subsequent segment
insertions. The dashed lines show the insertions performed to enforce the “matching” constraint.

As mentioned above, vertices are shared between different levels of the triangulation.
The initial level of a triangulation is anHPolygon, which contains anHTriangulationchild
once subdivided, where the prefixH represents the hierarchical nature of the construction.

To transmit neighborhood information between levels (for the matching operation), we
use a specialHEdgestructure. AnHEdgeis shared between hierarchy levels by all edges
which correspond to the same segment. It contains pointers to subHEdge’s when it is
subdivided. To perform a matching operation we determine whether the edge on which
we insert a pointp has already been split. We then add the new points corresponding to
the previously split vertices, and split theHEdgeat the pointp. The neighbouring triangle
can thus identify the newly inserted sub-HEdge’s from the sharedHEdge. For example,
in Figure 5, after the subdivision of the lower left triangle in Fig. 5(a), theHEdgeshared
between the two triangles notifies the upper right triangle that the edge has been split, and
facilitates the matching operation as shown in Fig. 5(b).

3.2 Linear Reconstruction of Illumination using Hierarchical Triangles

The second advantage, that of linear reconstruction of illumination across irregular meshes,
requires the use of a “lazy-wavelet” or “sub-sampling” type construction. Lazy wavelets
provide an elegant formalism for a simple approach: a piecewise linear approximation is
refined through the addition of new sampling points [Stollnitz et al. 1996].
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As mentioned above, in our hierarchical triangulation representation of radiosity, ver-
tices will be shared between hierarchy levels. As a consequence, traditional push-pull
procedures [Hanrahan et al. 1991] cannot be directly applied.

To understand why, consider the 1D example shown in Fig. 6. Segmentvavb is illumi-
nated by two light sourcesS1 andS2. Assume that initially both light transfers are refined,
and vertexv1 is added. This results in the configuration of level 1 (Fig. 6). The light trans-
fer with S2 is further refined with the addition ofv2 on the right, thus splitting segment
v1vb. Finally, the light transfer fromS1 is refined on the left, with the addition ofv3.

To determine the light contribution ofS1 in the interval[v1;vb] we interpolate between
the values transfered byS1! v1 andS1! vb, which are “represented” at level 1. However,
for light S2, we must interpolate in the subinterval[v1;v2] using the transfers determined
by S2! v1 andS2! v2, and in the subinterval[v2;vb] using the values determined by
S2! v2;S2! vb, all of which are “represented” at level 2. Thusv1 is shared between
level 1 and level 2. As a consequence traditional push-pull procedures with gathering at
elements rather than vertices cannot work, since they require that an element clearly belong
to a certain hierarchy level.

level 2

va v1 vb
v2

S1 S2

∆B2

radiosity
function

triangle
hierarchy

light
exchanges

level 1

va v1 vb

S1 S2

∆B1
level 0

va vb

S1 S2

v3

∆B3

Fig. 6. Consistent multiresolution representation with lazy wavelets. Instead of storing radiosity values, we
store the difference of the radiosity values at refined vertices.
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A naive solution would be to duplicate vertexv1 to differentiate exchanges simulated
at different levels of the hierarchy. This however is not sufficient, since it is unclear how
to perform the push operation. In particular, assume that we had one representation of
v1 for level 1 and one for level 2. It is unclear where the transfersS1! v1 andS2! v1

should be stored. IfS1! v1 is stored at level 1, we can interpolate correctly in the interval
[v1;vb] to perform the push onto vertexv2. However the value will no longer be available
at level 2 to enable the interpolation betweenv3 andv1. In a symmetrical manner, we need
S2! v1 to perform the interpolation at level 1 for the interval[va;v1] and the push onv3,
and at level 2 for the interpolation in the interval[v1;v2]. With gathering at vertices and
linear interpolation, it no longer makes sense to speak of a transfer at a given level of the
hierarchy.

We use lazy wavelets to provide a solution to these problems. Instead of storing the
actual radiosity value, at refined vertices we store theradiosity differenceas shown in Fig.
6. This is the difference between the radiosity value at the current level and the interpolated
value of the immediate ancestor. This provides a multi-resolution representation, since
certain light transfers are refined more in the appropriate regions with the addition of new
links.

The push procedure is then straightforward: To compute the total radiosity at a vertex,
we interpolate the value of its ancestor, and add the radiosity difference. We obtain the total
value at this vertex, which is thus recursively pushed down the hierarchy in a breadth-first
manner.

This construction is directly applicable to the 2D case, by using barycentric coordinates
(or bilinear for quadrilaterals) for the interpolation. We thus can simply perform a push
operation on a hierarchical triangulation with gathering at the vertices.

Note however that it is slightly more involved to compute the difference of a light trans-
fer than the total light transfer. Section 4.2.2 will deal with this problem through the use of
“negative” links.

The pull computation is simpler, since we pull values to the triangles. At each triangle
leaf, the value given is simply the average of values at the vertices (after the push). An
intermediate node receives as a value the area-weighted average of its children triangles,
as in standard hierarchical radiosity.

The advantages of this approach are that we can now create a consistent multi-resolution
representation of radiosity over the hierarchical triangulation, while gathering at vertices.
In addition, the push operation maintains a linear reconstruction of the radiosity function
down to the leaf level.

4. VISIBILITY-DRIVEN HIERARCHICAL RADIOSITY:
ALGORITHM AND DATA STRUCTURES

The hierarchical triangulation structure is one of the tools required to effect visibility-
driven hierarchical radiosity. In particular, we can efficiently represent the irregular light-
ing discontinuities in a hierarchical structure. In addition, the information contained in
the extended Visibility Skeleton providesexactand global visibility information. As a
consequence, we can compute exact (analytical) area-to-point form factors for any light
transfer, direct (primary) or indirect. The information contained in the Skeleton arcs (i.e.
the visibility events affecting any light transfer) also allows the development of intelligent
refinement criteria, again for any exchange of light.

In what follows we present our new algorithm which uses the extended Skeleton and the
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hierarchical triangulations for efficient refinement and accurate light transfer.

4.1 Algorithm Outline

Our new algorithm is outlined in Fig. 7. It begins with the creation of the Visibility Skeleton
for the given scene, using the improved link-based approach (Section 2.1.1). After this step,
we have all the information available to calculate form-factors from each polygon to each
(initial model) vertex in the scene. In addition, polygon-polygon visibility relationships
are available directly from the skeleton, thus obviating the need for initial linking (i.e. only
necessary links are created). After computing the form-factors of the initial polygons to
the initial vertices, a “gather” step is performed to the vertices, followed by a “push-pull”
process. In practice we perform a fixed number of iterations; however it would be possible
to iterate to convergence, since these iterations are not computationally expensive.

Note that even at this very initial phase, the form-factors at the vertices of the scene are
exact. To bootstrap subdivision, we first insert the maxima of the light source illumination
functions into large receiver polygons (procedureinsertMaxima(), see also Section 6.2).

visibilityDrivenHR
f

computeSkeleton() // compute the Visibility Skeleton
computeCoarseLighting()// 3 gather push-pull
insertMaxima() // insert the maxima of light sources into meshes
while( !converged() ) do

subdividePolygons() // Refine the polygons using visibility info
refineLinks() // Refine the links using visibility info
gatherAtVertices() // Gather at the vertices of the Hierarchical Triangulation
pushPull()

endwhile
g

Fig. 7. Visibility Driven Hierarchical Radiosity

Once the system has been initialized in this manner, we begin discontinuity based sub-
division (subdividePolygons()) and link refinement (refineLinks()). Using the global visi-
bility information, we are capable of subdividing surfaces by following “important” dis-
continuities. After the completion of each subdivision/refinement step, a gather/push-pull
operation is performed, resulting in a consistent multi-resolution representation of light in
the scene.

In the following discussion we use the terms “source” and “receiver” for clarity. A
source is any polygon in the scene which emits or reflects light. For secondary or tertiary
illumination, for example, “sources” will be polygons other than the primary light sources
(e.g., the walls, ceiling or floor of a room).

In the rest of this section, we present the link data structures and discuss issues related to
form-factor calculation and multi-resolution link representation. In Section 5 we describe
the refinement process for links, and the details of visibility updates; in Section 6 we
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present the polygon subdivision strategy and the perceptually-based refinement criterion
used to effectively perform the subdivision.

4.2 Link Data Structures and Form-Factors

The central data structures used for our lighting solution are the links used to perform
subdivision and light transfers. In contrast to previous hierarchical radiosity methods, two
distinct link types are defined: point-polygon links which are used to gather illumination
at vertices, and polygon-polygon links, which are used to make refinement decisions and
to maintain visibility information while subdividing.

P

source

receiver

blocker

EV swath

classLinkPtPolyf
List<Arcs> Arcs
PolygonSrc
float FF

g

(a) (b)

Fig. 8. (a) A point-polygon link used to gather illumination at vertexP. Note that all the arcs of the skeleton
betweenP and the polygonsourceare stored with the link,e.g., theEV swath shown. (b) The corresponding data
structure.

4.2.1 Point-Polygon Links.As mentioned above, the skeleton provides all the informa-
tion required to calculate the exact area-to-point form-factor from any polygon in the scene
to any vertex. By updating the view information as shall be discussed below (Section 5.3),
we extend this capacity to new vertices created by subdivision.

There are numerous advantages to calculating illumination at vertices. When computing
radiosity at patch centers, the result can be displayed as flat shaded polygons. To provide
a more visually pleasing result, the radiosity values are usually firstextrapolatedto the
patch vertices and then interpolated. Inevitably, this introduces many artifacts in the ap-
proximation of the original radiosity function. In addition, it is much cheaper and simpler
to compute exact polygon-to-vertex form-factors than polygon-to-polygon form-factors.
Computing radiosity at vertices was first introduced by Wallaceet al. [Wallace et al. 1989]
in the context of progressive refinement radiosity. For hierarchical radiosity, the fact that
vertices can be shared between different levels renders gathering at vertices more compli-
cated.

A point-polygon link and the corresponding data structure are shown in Fig. 8. The
point-polygon links are stored at each vertex of the hierarchical triangulations. A point-
polygon link stores the form-factor calculated, as well as the arcs of the visibility skeleton
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(visibility events of the view) between the point and the polygon. An example is shown in
Fig. 8, where theEV swath is stored with the link between pointP and the source polygon.

source

receiver

blocker

N

γ0

γ1
γ2

γ3

R2
R1

R0

R3

P

Fig. 9. Geometry for the calculation of a form factor

The point-area form factor is computed analytically using the formula ine.g. [Baum
et al. 1989]. Consider Fig. 9.

FP;source=
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The sum is evaluated using the arcs of the skeleton stored in the point-polygon link.~Ri

and~Ri+1 correspond to the two nodes (extremal stabbing lines) of the arc.
Fig 10 shows an example of form-factor computation with the Visibility Skeleton; the

computation is exact. For comparison, the average (relative) error is given using ray-
casting and a jittered grid sampling on the source (both the kernel and visibility are evalu-
ated by Monte-Carlo). Note that 36 rays are needed to have a mean error of 10%; numerical
error on the form-factor is being measured. As expected from stratified sampling the con-
vergence rate is aboutO(n�

3
4 ) [Mitchell 1996], since the function to be integrated is only

piecewise continuous because of the visibility term. In Section 7.2.1 we will show the
effect of this accuracy on the image quality.

4.2.2 Multi-Resolution Link Representation.To maintain the multi-resolution represen-
tation of radiosity in the hierarchical triangulation, we require the representation of∆B as
described in Section 3.2, for the push phase of the push-pull procedure.

When a new vertex is inserted into a receiver polygon, “negative links” are created, from
the source to the three vertices of the triangle containing the newly inserted vertex†. These
links allow the direct computation of∆B as follows:

∆B = Bl � ∑
i=0::2

ci Bi
nl; (1)

whereBl is the radiosity gathered from the positive link,Bi
nl is the radiosity gathered

from the negative links andci are the barycentric coordinates of vertexPi . An example of
negative links is shown in Fig. 11(b).

†In practice, these are simply pointers to the previously existing links.
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Skeleton 4 rays 16 rays 36 rays 64 rays 100 rays
time 0.07ms 0.5ms 1.7ms 3.8ms 6.7ms 10.4ms
error 0 50% 20 % 9.6% 7.6% 4.6 %

Fig. 10. Example of Form-Factor computation from the white point on the floor to the area light source using the
visibility skeleton and ray-casting with jittered sampling. The hidden part of the source is hatched. The Visibility
skeleton timing does not include the visibility update (about 0.13ms per link on average for this image).

source

receiver

(a)

source

receiver

(b)

negative
links

P0

P1

P2

Fig. 11. (a) A newly inserted point (in black) and the point-polygon link to the source; the vertex points to the
(b) three new negative links to the source used for the∆B representation.

The entire gather/push-pull process is illustrated in Fig. 12. Note that the fieldchild of
anHPolygonis the associated triangulation.

4.2.3 Polygon-Polygon Links.The polygon-polygon link is used mainly to determine
how well the light transfer is represented, in a manner similar to that of the links in previous
hierarchical radiosity algorithms. This information is subsequently used in the refinement
process as described below.

A polygon-polygon link stores visibility information via pointers to the point-polygon
links (two sets of three links for a polygons pair) between each polygon and the vertices of
the other polygon. A polygon-polygon link is illustrated in Fig. 13, with the corresponding
point-polygon links from the source to the receiver.
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Gather ()
f

for each vertexv
∆Bv= gather(positive linksv) - gather(negative linksv)

g
Push(HPolygon poly)
f

if child(poly) == NULL return
for each vertexv in triangulation child(poly)

Bv= ∆Bv+ interpolation (poly, v)
for each trianglet in triangulation child(poly)

Push(t)
g
Pull (HPolygon poly)
f

if child(poly) == NULL
Bpoly= average ofBv, for all v vertex of poly
return

for each trianglet in triangulation child(poly)
Pull(t)

Bpoly=average ofBt , for all t in child(poly)
g

Fig. 12. Gather and push-pull

source

receiver

source

receiver

(b)(a)

classLinkPolyPolyf
List<LinkPtPoly> ptPolyLinks
PolygonSrc

g

(c)

Fig. 13. (a) A polygon-polygon link used to estimate illumination transfer between two polygons (b) The
polygon-polygon links store pointers to the 6 corresponding point-polygon links: 3 of them (source! receiver)
are shown here (c) The corresponding data structure.

Note that in the case of a subdivided polygon, all the neighboring triangles of a vertexv
share all the point-polygon links related tov.

5. LINK REFINEMENT

Now that the link data structures have been described in detail, we can present the link
refinement algorithm. Note that the process is slightly more involved than in the case of
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standard hierarchical radiosity (e.g., [Hanrahan et al. 1991]), because the subdivision is not
regular and the existence of the two link types requires some care to ensure that all updates
are performed correctly. This section describes how the links are actually refined.

5.1 Refinement overview

Consider a light exchange from a source polygon to a receiver polygon. Because we gather
radiosity from the polygon at the vertices, two kinds of refinement can be necessary.

—Source-refinementif the radiosity variation over the source polygon is too high,

—Receiver-refinementif the sampling on the receiver is too coarse.

The link refinement algorithm is straightforward: for each polygon and each of its
polygon-polygon links, the link is tested for refinement. If the test fails, the link is refined
and the new point-polygon and polygon-polygon links are created. Finally, the visibility
of the link is updated. The refinement test uses a perceptually-based refinement criterion,
based on the visibility information contained in the extended Skeleton (see Section 6.4).
Note that since we compute exact point-to-area form factors, the source refinement cannot
be caused by the inaccuracy of the form-factor computation. It can only happen because
the radiosity of the source is not uniform, i.e., if a receiver-refinement has occured on the
source in another exchange.

(a)

source

receiver

source

receiver

(b)

new polygon-
polygon link

source

receiver

(c)

Fig. 14. Receiver refinement: (a) Original polygon-polygon link (b) Insertion of a point on the receiver and one
of the three new polygon-polygon links created (c) The additional point-polygon link to the source.

5.2 Source and Receiver Refinement

The first type of refinement is that of a source. If the representation of radiosity across the
source is considered insufficient for the given transfer (i.e., the variation of radiosity is too
high across the source), the link will be refined. Note that the geometric subdivision of
the source has occured at a previous iteration, typically due to shadowing. New polygon-
polygon links are created between the original receiver and the sub-triangles of the source.
New point-polygon links are created for each vertex and each source sub-triangle, and the
corresponding visibility data is correctly updated (see Section 5.3).

The second type of refinement is that of the receiver. For example, in Fig. 14, a point
is added to the receiver. As a consequence, the triangulation is updated and three new
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polygon-polygon links are added. One of these is shown in Fig. 14(b). In addition, a
new point-polygon link is created, from the point added on the receiver to the source
(Fig. 14(c)).

5.3 Visibility Updates

Each refinement operation requires an equivalent update in the visibility information con-
tained in the point-polygon links. We again distinguish the two main cases, source refine-
ment and receiver refinement.

(a) (b)

source

receiver

blocker

source

receiver

PP

source
source

blocker

blocker

blocker

Fig. 15. Source visibility updates. The dashed arrows (lower part) represent the limits of the visible part of the
source used to compute the form-factors. (a) The point-polygon link before subdivision and below the corre-
sponding view of the source (b) One of the 4 new point-polygon links due to subdivision and the four new views.
The black circles correspond to new nodes of the Skeleton.

In the case of source refinement we need to update the existing visibility information
contained in the new point-polygon links. Since the visibility information of such a link
can be represented by the view of the source from the receiver point of the link, all that
needs to be done is the update of the link with respect to the new source sub-triangles. For
example, in Fig. 15(a) the original view from pointP is shown in the lower part of the
figure. Once the polygon-polygon link is subdivided, four new views are computed, shown
in the lower part of Fig. 15(b). The new point-polygon links now contain the references
to the skeleton arcs (swaths), corresponding to the parts of the view affected. For example
the leftmost source sub-triangle is completely unoccluded fromP and thus no arcs are
stored. For the others, the intersections of the previously existing arcs and the source sub-
triangles result in new skeleton nodes (corresponding to the black circles in Fig. 15(b)). The
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corresponding arcs are then subdivided. The new nodes are adjacent to these subdivided
arcs. Note that all visibility/view updates are performed in 2D.

Refining a receiver is more involved. When adding a point to a polygon, a new view
needs to be computed. We use the algorithm of the Skeleton construction which is robust.
The only difference is that we use the blocker lists defined by the arcs stored in the initial
point-polygon links instead of the entire model. Since the number of polygons in any given
blocker list is relatively small, the cost of computing the new view is low. An example is
shown in Fig. 16(a)-(b), where the pointP is added to the receiver. In Fig. 16(b) we see
the point and the new point-polygon link, and in Fig. 16(c) the newly calculated view is
illustrated. The black circles correspond to newly created nodes of the skeleton.

The case of full visibility is detected using the information contained in the polygon-
polygon links. The visibility update is then optimized: no new arc is computed and the
unoccluded form-factor is used, thus saving time and memory.

(a) (c)

source

receiver

blocker

source

receiver

(b)

P

source

Fig. 16. Receiver visibility updates: (a) The initial configuration. Blocker information is contained in the
source-receiver link. (b) A point is added to the receiver, creating a new point-polygon link. (c) The new view of
the source computed atP. The blocker lists are updated using this computation.

(a) (b) (c)
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vnew
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(d)
vini

vnew
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???

Fig. 17. Receiver refinement with visibility events (this solution was not implemented). (a) We start with a view
at one of the initial vertices. (b) We walk across the receiver to the new vertex. Here we cross avseb event. vs

begins to be hidden by the blocker. (c) We obtain the view at the new vertex. (d) In the case of touching objects,
no information can be kept while crossing the interface between the two objects.
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5.4 Alternative Visibility Updates

Visibility updates could be performed using the information encoded in the Skeleton, start-
ing from the view at one of the initial vertices, then walking to the new vertex and updating
the view each time a visibility event is crossed (see Fig. 17). This method is however hard
to implement, and suffers from robustness problems if the visibility events are not crossed
in a coherent (if not exact) order. Moreover, the case of touching objects complicates the
problem furthermore since no information can be kept while walking “under” a touching
object.

vr

vb

vs

e

source

receiver

discontinuity

Fig. 18. Degeneracy due to discontinuity meshing. The receiver is split along discontinuityvse, causing a
degeneratevsvbvr extremal stabbing line.

5.5 Treating Degeneracies

Subdividing along discontinuities induces degenerate viewpoints. For example in Fig. 18,
we subdivide the receiver along the discontinuityvse. The view fromvr has a degener-
atevsvbvr extremal stabbing line. To treat it coherently, we store with each vertex of the
triangulation the extremal stabbing line which caused it (which is possibly null). This is
a simpler and more robust alternative to the ray-casting modified for grazing objects de-
scribed in Section 2.2. The treatment of the degeneracy then proceeds in the same manner.

A different alternative would have been to slightly perturb the point position to avoid
those degeneracies. Two reasons have prevented us from doing so. First, discontinuity
meshing allows us to delimit regions of umbra (full occlusions), regions of full visibility,
and regions of penumbra. The two first region types require coarser subdivision than the
latter. If we perturb the point position, some regions which should have been totally in the
umbra will have a very small part in the penumbra, and need more subdivision. Second,
point perturbation would cause numerical precision problems.

6. POLYGON SUBDIVISION

We have now seen how link and visibility information is updated during the light propaga-
tion process. Evidently, link updates are a consequence of arefinementdecision, based on
an appropriate criterion. We have chosen to use aperceptually-basedrefinement criterion.



� 143

In what follows, we first review basic concepts of perceptual mapping which we use for
our refinement criteria. We next present the polygon subdivision process, and then detail
the perceptually based refinement criterion which we have used for our algorithm.

6.1 Perceptual Just Noticeable Difference

The work in the field of perception provides us with two important features. First, it per-
mits the conversion of radiometric quantities into displayable colors while preserving the
subjective impression a viewer would have when observing the real scene. Second, it al-
lows us to use error thresholds related to the error an observer is able to perceive, which
are thus easy to set.

The human eye can deal with a very high dynamic range, while computer displays are
usually limited to a 1 to 100cd=m2 range [Gibson and Hubbold 1997]. The eye adapts itself
according to the luminosity of the scene being looked at. This explains why we are able to
see dark night scenes as well as very luminous sunny scenes. The tone mapping operation
deals with the transformation of high range radiometric quantities into low range display
colors, while trying to provide the viewer with the same impression as the real scene. One
obvious and simple method is to divide all quantities by the maximum radiosity of the
scene. The problem with this approach is that if the light source intensity is halved, the
scene will look exactly the same, though we would expect it to seem darker.

Fig. 19. Effect of Ward’s tone-mapping on the same scene with different light source intensities. Note how
details remain perceptible while the impression of darkness or luminosity is preserved.

Ward’s contrast preserving tone mapping operator [Ward 1994] deals with this problem.
A simple scaling factors f is used for the whole scene which depends on the maximal
displayable luminanceLdmax and the world adaptation levelLwa which is usually the log-
arithmic average of the scene luminosity without primary light sources. In what follows,
all intensities are expressed incandelas=meter2 (a candelais a lumen=steradian[Ward
1994]). The scaling factors f is then given by

s f =
1

Ldmax

�
1:219+(Ldmax=2)0:4

1:219+L0:4
wa

�2:5

.
Fig. 19 demonstrates the effect of this operator on a given scene with different source

intensities.
We use a technique similar to that of Gibsonet al. to compute the adaptation level [Gib-

son and Hubbold 1997]. We use a static adaptation level which is the average radiosity of
the scene. However, since we use hierarchical radiosity as opposed to progressive radios-
ity, we do not have to rely on an estimate involving the average luminance and reflectance.
Instead, at any step we use the average radiosity value of the polygons of the scene. This
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is why we start the radiosity computation with several gather steps to compute a coarse
estimate of the light distribution.

The use of a global static adaptation level is only a coarse approximation of the human
visual system adaptation. As shown by Gibsonet al. it gives a fairly good estimate of the
dynamic adaptation level [Gibson and Hubbold 1997]. More elaborate solutions could be
explored, such as the use of local adaptation levels computed using the average radiosity
in the neighbourhood of an object, and more involved tone-mapping operators could also
be used [Tumblin and Rushmeier 1993; Ferwerda et al. 1996] but this is beyond the scope
of this article.

Once the tone mapping operation has been applied, the admissible error can be set as a
given percentage of the maximum displayable intensityLdmax. Psychovisual studies [Gib-
son and Hubbold 1997; Murch 1987] have shown that the human eye is able to distinguish
a difference of 2%: this is thejust noticeable difference. We will call the allowed error
εpercep, and in practice we will useεpercep= 2% for all our refinement criteria.

subdividePolygons()f
for each polygonr and each poly-poly links to r

if shouldRefineLink(s; r)
refine source

for each polygonr and each poly-poly links to r
if shouldRefineLink(s; r)

if iteration< 3
regularSubdivision( r )// perform grid-like subdivision

else
find and insert discontinuities inr

complete subdivision at this level// create sub-triangles in meshes
g

Fig. 20. Polygon Subdivision

6.2 Polygon Subdivision

Our experiments have shown that subdividing along the discontinuities during the first
few subdivisions results in the creation of triangles with poor aspect ratios, inducing very
visible artifacts. For this reason, subdivision of the polygons is performed using a two step
strategy:

—During the first two subdivisions:The polygons are subdivided in a regular grid-like
manner. In particular, a regular grid is created as a function of size of the polygon being
subdivided.

—During the third and subsequent subdivisions:Insert shadow discontinuities or other
illumination detail. Discontinuities are added as constrained edges, and result in a mod-
ified triangulation.

This approach is similar in spirit to the approaches of Stuerzlinger [Sturzlinger 1994]
and Hardt and Teller [Hardt and Teller 1996] where the discontinuity meshing is, however,
used for display purposes only. The polygon subdivision algorithm is outlined in Figure
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20. In contrast to standard hierarchical radiosity, we cannot subdivide the polygons on-the-
fly when a link needs subdivision, because polygon subdivision is not uniform and has to
be performed along discontinuity curves. For this reason, we first consider all the polygon-
polygon links for a given polygon to decide if it requires subdivision, and to determine
which discontinuities will be inserted. After all discontinuities for a given receiver have
been inserted, the CDT is completed.

6.3 Maxima insertion

If we consider the radiosity of a light source as a function defined over a receiver, it has
been shown that subdividing a mesh used to represent illumination at the maximum of the
function can increase the accuracy of the radiosity solution [Drettakis and Fiume 1993].
We thus first compute the maxima of the unoccluded radiosity functions of the light sources
before the first refinement.

The maxima are computed only for important light-transfers (estimated using the disk-
disk formula [Hanrahan et al. 1991] and the perceptual metric). Given a receiver and a
polygon considered as a source, we use a gradient-descent algorithm to locate the max-
imum. Once the maximum is found, we compute the contribution of the source at this
point; if it is aboveεpercepthe maximum is stored to be subsequently inserted in the mesh.
The radiosity of the receiver polygon is updated to take this maximum into account. That
is, a gather is performed at the maximum (before a link is created from it) to obtain a better
estimate of the light distribution that will be used for the first refinement.

The maxima are inserted as a separate initial step during the first subdivision. The points
of the regular subdivision which are too close to a maximum are not inserted. An example
was shown in Fig. 4(b), where the maximum corresponds to the point on the lower left
which is not exactly on the grid. We thus obtain nearly regular meshes with well shaped
triangles.

The maxima-search process is applied iteratively to take indirect illumination into ac-
count. The insertion of maxima of indirect sources is very important for example in Fig.
23, where the table (illuminated by the lamp) is the most important light source for the
upper part of the left wall.

6.4 Refinement Criterion

We distinguish two refinement criteria (ororacles): a radiometric criterion which accounts
for the variation of the unoccluded radiosity, and a visibility (discontinuity) criterion.
Moreover, the discontinuity criterion also guides the choice of the discontinuity curves
to be inserted.

The radiometric oracle estimates if the linear interpolation of the light transfer is “accu-
rate enough”. We sample the unoccluded form-factor (see [Baum et al. 1989] and Section
4.2.1) at the center of the patch and at the edge mid-points, and compare this to the lin-
early interpolated value. If the perceptually transformed difference is larger thanεpercep,
we proceed with subdivision.

The principle of our visibility oracle is to estimate (as a percentage of the maximum
displayable intensity) the “shadow amount” cast by the blockers, that is the radiosity that
would be transfered without the blocker. Our refinement criterion thus has three steps:
unoccluded estimate, “shadow amount” estimate and “shadow sharpness” estimate.

Consider a receiver and a source. Recall that a source is any polygon in the scene,
considered as a source at this step of the refinement process. In what follows we refer to
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D(r)
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Fig. 21. Refinement criterion geometry

Fig. 21, for the definition of all geometric quantities.
First, we compute an estimate of the unoccluded light transferBunoc using the disk-disk

formula [Hanrahan et al. 1991]. As above, if the estimate is less thanεpercep, the link will
not be subdivided.

Second, we consider each visibility event between the source and the receiver, and es-
timate the “shadow amount”. To do this, we estimate the part of the source potentially
hidden by the blocker by using the projected diameter of the blocker on the source to
estimate its projected umbra:

Dpro j(b) = D(b)�
l2
l1

.
The estimated percentage of occlusion is then:

occlu=
π
4Dpro j(b)2

Areasource
,

(clamped to 1). The “shadow amount” is:

shadow= Bunoc�occlu

.
If shadowis belowεpercep, the visibility event is ignored.
Third, we estimate the sharpness of the shadow. The extent of the zone of penumbra is

approximated by projecting the diameter of the source onto the receiver:

D(penumbra) = D(s)�
l1
l2

.
If the size of the receiver is bigger than the zone of penumbra, then the receiver may

contain regions where the source is completely visible, and regions where the blocker
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projects entirely on the source. In the latter case, the fraction of occlusion is maximal and
approximated byocclu. The variation of radiosity on the receiver is thus equal toshadow.
Otherwise, we make the approximation that the radiosity varies linearly in the penumbra,
and the variation of radiosity on the receiver is then:

∆(B) =
�

shadow i f D(penumbra)> D(r)
shadow�D(r)=D(penumbra) otherwise

All the links containing visibility events with∆(B) > εpercep will be subdivided. As
explained above, in the first two iterations subdivision will be regular. During the thirdand
later iterations, subdivision is performed by inserting the discontinuities with the highest
∆(B). This is theranking phase of our algorithm, similar in spirit to that of [Hardt and
Teller 1996].

∆(B) is computed usingl1 andl2 at the two extremities of the visibility event, and taking
the maximum. Note that the evaluation of these oracles is very rapid since the links and
events are pruned as soon as we can decide that they will not cause subdivision.

7. IMPLEMENTATION AND RESULTS

7.1 Implementation

We have used the C++ Visibility Skeleton implementation of [Durand et al. 1997], with the
extensions and changes described in Section 2. The scene polyhedra are represented using
a winged-edge data-structure and a pre-processing step is performed to detect touching
objects, which is a necessary step for the treatment of degeneracies.

The hierarchical triangulation has been incorporated into the same system. We use the
public domain implementation of [Guibas and Stolfi 1985] by Dani Lischinski [Lischinski
1994] for the constrained Delaunay triangulation. Each subdivided polygon contains a
triangulationQuadMesh.

On our test scenes, the algorithm spends most of its time on the visibility update, espe-
cially the calculation of the views at new vertices for the receiver refinement. For example,
for the Desk scene of Fig. 22, for the last iteration, the computation of the criterion and the
refinement of the mesh took 15 seconds, updating the visibility took 64 seconds, and the
gather/push-pull took 2.5 seconds.

We have chosen not to use textures in our examples since they usually hide the accuracy
of the lighting simulation.

7.2 Results

We present results for four different scenes. The first scene is a simple “Desk” scene,
containing 438 polygons and two large, powerful light sources (see Fig. 22). This scene
is used to illustrate the general functionality of our algorithm. The second scene contains
the same geometry, but with 8 additional small, powerful light sources. The two large light
sources have been turned down in intensity; we call this scene “Many Lights” (see Fig. 23).
This scene shows how our approach treats the case of multiple light sources effectively.
The third scene has been chosen to demonstrate the performance of our algorithm for
mainly indirect lighting. We chose a common example of a bedroom lit exclusively by a
small downwards-pointing, bed-side lamp. Most of the room is lit indirectly; this scene
is called “Indirect” (see Fig. 25). Finally, simply in the interest of showing a completely
different type of scene, we show the result of our approach on a “Village” scene, containing
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buildings and cars. The scene is lit overhead by a rectangular light (see Fig. 28). In what
follows we present various performance statistics as well as an informal comparison with
hierarchical radiosity using quadtree subdivision, but with improved refinement and error
bound strategies ([Gibson and Hubbold 1996; Lischinski et al. 1994]).

All times presented are in seconds on an R10000 195 MHz Silicon Graphics Onyx 2
workstation.

Before presenting the results for the complete algorithm, we present some interesting
statistics concerning the importance of accurate visibility for form-factor computation.

Image
Method exact (Skeleton) 16 rays
Total time 1min 19 1min 17

Image
Method 36 rays 64 rays
Total time 2min 02 3min 04

Table 1. Importance of the form-factor accuracy on a small scene of 246 polygons. The number of rays for the
indirect illumination is set to 4, while only the number used for direct illumination varies. In inset we show in
false color the difference with the skeleton solution in the perceptually uniformCIE L*a*b* color space.

7.2.1 Importance of accurate visibility.We have run some tests with approximate visi-
bility to judge the importance of the exact computation of the form-factors on the quality
of the images. We have slightly modified our implementation to compute the form-factors
using ray-casting on a jittered grid sampling of the source. In Table 1, the same method
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is used for discontinuity-based mesh subdivision for all cases shown. It is performed us-
ing the Skeleton, and the cost of the skeleton construction and update is not included in the
ray-casting timings, which report exclusively the cost of form-factor computation. As men-
tioned before (Fig. 10), inexact form-factor computation introduces significant error. The
visual consequences of this can be seen in Table 1. Moreover, the computation overhead is
significant if high quality is required because at least 64 rays are needed per form-factor.

Note that the effect on the images is particularly dramatic, because the subdivision in-
duced by the discontinuity meshing is not uniform. The thin triangles introduce very visible
artifacts. These results confirm those observed in [Drettakis and Sillion 1996].

Scene Pol Skel 1st 2nd 3rd Total Mem(ini/tot) links tris
Desk 444 2min 08 22s 16s 1min 14 4min 40/200MB 378K 46K
Many 492 2min 23 2min 38 55s 4min 27 10min 23 47/365MB 1546K 104K
Bed 534 4min 12 1min 25 58s 4min 35 11min 10 56/400MB 383K 43K
Village 312 45s 12s 7s 24s 1min 28 15/43MB 134K 28K

Table 2. Timing and memory results for the test scenes. The memory statistics shown are the initial memory
usage for the skeletonbeforeany subdivision, and the total memory used after the subdivision for lighting.

7.2.2 General Solution.The images of Fig. 22 show the initial steps of the algorithm
as described previously. Fig. 22(a) is the result of three gather steps on the initial unsub-
divided scene. Note that at this point we already have a very crude approximation of the
global distribution of illumination in the scene, since the form-factors at the vertices are
exact. In Fig. 22(b) we see the first step which is a regular grid together with the maxima
of the light sources inserted into the mesh. Fig. 22(c) and (d) show the evolution of the
algorithm after two iterations. The shaded images without the meshes are shown in (d). In
(e) we show the discontinuities actually inserted. Note that these include discontinuities
for all light transfers (direct and indirect) and that their number is much lower than that for
a discontinuity meshing type approach (about 40% of the discontinuities caused by direct
sources have been inserted).

In Table 2 we show the statistics of scenes computed using our method. For the “Desk”
scene, we see that the total solution, including illumination, requires 4 minutes of com-
putation. The quality of the solution is very high, including well-defined shadows on all
surfaces. Note high quality shadows on the chairs and the table. The total number of
point-polygon links is 378,746, and the number of leaf triangles is 46,058.

7.2.3 Treating Many Lights.One scene type for which our approach performs partic-
ularly well is that of multiple sources. This is demonstrated by our second test scene
containing 10 lights and the same geometry as “Desk”. Fig. 23(a) shows an overview of
the scene as rendered by our new approach, and Fig. 23(c) shows a closeup of the floor.
The shadows due to the multiple sources are well represented in the areas when appropri-
ate. The perceptually based ranking algorithm has correctly chosen the discontinuities that
are of importance, since the combined influence of all sources is taken into account. This
is shown by the small number of discontinuities present on the floor in Fig. 23(d). From
Table 2 we see that 1.5 million links were used in this scene and the total computation
time was 10 minutes 23 seconds. Only 10% of the direct discontinuity segments have been
inserted.
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2min08 (skeleton calculation) 22s (1st iteration) 16s (2nd iteration)
(a) (b) (c)

1min 14s (4th iteration with discontinuities)
(d) (e)

(f) (g)

Fig. 22. Initial Desk Scene. In (a) we show the initial, unsubdivided scene. In (b) we show the first step which
includes the grid and the maxima, in (c) we show the second iteration and (d) show the results of the third iteration
which includes the discontinuity meshing. (e) shows the discontinuities actually inserted. (f) and (g) show the
hierarchical triangular mesh (first level in green, second in blue, and third in red).
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(a) (b)

(c) (d)

Fig. 23. Many Lights scene: (a) the final image, (b) the discontinuities actually inserted. (c) and (d) a closeup
view of the floor.

As an informal comparison, we have compared to an implementation of hierarchical
radiosity with clustering with the refinement proposed by Gibson and Hubbold [Gibson
and Hubbold 1996] using the error bound propagation of Lischinskiet al. [Lischinski et al.
1994]. For the Many lights scene computation with 1 million links, the computation time is
almost 2 hours (Table 3). In addition, the quality of the results is lower, since the multiple
shadows are much less sharp, or even missing (see Fig. 24). A much larger number of links
would be necessary to compute an image of similar quality to Fig. 23 using hierarchical
radiosity. Note that despite the fact that this method uses approximately the same number
of elements (110Kvs. 104K for our method), the quality of the resulting images is much
lower.

Scene Pol 1st 2nd 3rd 4th Total Mem links elems
Many 492 1 hr 25 22 min 10 min - 1 hr 57 147 Mb 1098K 110K
Bed 534 11 min 37 min 6 min 25s. 54 min 94 Mb 903K 32K

Table 3. Comparative Timing and memory results for the test scenes using Hierarchical Radiosity with error
bounds [Lischinski et al. 1994] and Gibson and Hubbold [Gibson and Hubbold 1996] refinement.
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(a) (b) (c)

Fig. 24. Hierarchical Radiosity comparative results for Many Lights scene: (a) the final mesh, (b) a general
view of the rendered scene (c) a closeup view of the floor.

7.2.4 Indirect Illumination. Accurate and efficient computation for indirect lighting is
another challenge for our approach. It is for this type of scene that we see the power of
our accurate form-factor and discontinuity ranking method. Previous approaches require
significantly longer computation time to achieve this level of precision for secondary illu-
mination.

This is illustrated with our third test scene (Fig. 25 and 26), in which light arrives from
the bedside lamp which is pointing downwards only (no light leaves from the sides or the
top of the lamp). Thus everything in the room above the level of the lamp is lit indirectly.

The algorithm uses a relatively small number of point-polygon links (383,715), and
manages to represent shadows generated by secondary illumination. Notice for example
the shadows of the right hand lamp or the books on the far wall in Fig. 25(d); these are
caused by illumination of light bouncing off the bedside table and the bed.

Another informal comparison is presented, using the same algorithm as described above
(based on [Gibson and Hubbold 1996; Lischinski et al. 1994]). Using almost a million
links, hierarchical radiosity takes a slightly less than one hour, and produces lower quality
results (see Fig. 27(a) and (b)).

Moreover, the advantages of our linear lazy-wavelet representation are well illustrated
on the overall view of the hierarchical radiosity solution. The left part of the back wall
is much lighter than the right part, with a strong discontinuity inbetween revealing the
quadtree nature of the mesh. This is because interpolation is applied as a post-process at
the finest level of subdivision; exchanges simulated at higher level are thus not correctly
interpolated.

7.2.5 Village Scene.A final scene of a village is shown in Fig. 28, to show that the
algorithm can be used for different scene types. Here the scene is lit overhead by a rectangle
and also by the head and rear lights of the cars.

8. DISCUSSION

Our new approach shows promising results in what concerns the representation of accurate
shadows, in particular for the cases of multiple sources and indirect lighting. However,
the method presented is not without limitations. We believe that it is worthwhile to review
what we consider to be the most important limitations and drawbacks as well as the most
important advantages and contributions of our approach.
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(a) (b) (c)

(d)

(e) (f)

Fig. 25. Indirect lighting scene: (a) Initial solution, (b) first iteration (c) second iteration (d) final image (e)
discontinuities inserted (the discontinuities inserted on the front wall are represented though this wall is backface-
culled) (f) hierarchical triangulation.
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(a) (b)

(c) (d)

Fig. 26. Indirect lighting scene: (a) and (b) closeup of the right wall (c) and (d) closeup of the back wall. The
lower part of the wall is directly illuminated by the left lamp (which is not visible on this image), while the upper
part is indirectly illuminated by the left table. Note the indirect shadows cast by the books and the right lamp.

8.1 Limitations

Two major limitations of this work can be identified, the first is high memory consumption
and the second is numerical robustness problems of the algorithms used.

The memory usage of the skeleton data structure is high, and can often have quadratic
growth in the number of input polygons, depending on the how complex the visibility
relations are between polygons. Even for simple environments, our method uses very large
amounts of memory (see Table 2). To make our approach practical for large scenes, it is
evident that we need to adopt one or a combination of the following strategies: lazy or on-
demand skeleton construction, divide-and-conquer strategies (similar toe.g., [Hardt and
Teller 1996]) or a clustering approach allowing a multi-resolution representation. Some
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(a)

(b) (c)

Fig. 27. Hierarchical Radiosity comparative results for Indirect Lighting scene: (a) the final image, (b) and (c)
a closeup view of the right-hand wall.

ideas in these direction can be found in the Section 9 on future work.
Numerical robustness and the treatment of degenerate cases are important issues. De-

spite the simplicity of the construction algorithm which is based on ray-casting for node
determination, degenerate cases can cause problems. As discussed in Section 2.2 we have
been able to reliably treat most of these. Nonetheless, in the case of subdivision, many vi-
sual events coincide, causing problems of coherence both for the ray-tracing step (for node
creation) and the adjacency determination. These problems are particularly evident in the
case of view updates. A coherent and consistent treatment of degeneracies is planned, but
is a research topic in itself and beyond the scope of this paper (see Section 9). Insertion
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(a) (b)

Fig. 28. Village scene (a) final image (b) discontinuities actually inserted

of points in the mesh also causes problems, especially during subdivision due to numerical
imprecision. Symbolic calculations instead of numerical intersections could potentially
resolve most of these problems.

8.2 Advantages

The visibility-driven hierarchical radiosity algorithm introduced here has many advan-
tages. First we achieve visually accurate shadows using discontinuities and exact point-
to-polygon form-factors, for both direct and indirect illumination. The new hierarchy of
triangulations data-structure, the novel two link types and the multi-resolution point-area
link representation allow accurate linear reconstruction of radiosity over irregular meshes.
The global treatment of visibility and discontinuities permits the definition of an efficient
refinement oracle. Using a perceptually based method to estimate shadow importance, our
refinement algorithm has proven to be very efficient for previously hard-to-handle scenes
such as scenes lit with multiple light sources and scenes lit mainly by indirect light. As
part of an informal comparison, we have seen that Hierarchical Radiosity uses more com-
putation time to produce much lower quality results, as would be expected.

Approaches such as that of [Lischinski et al. 1993] based on discontinuity meshing
have difficulty with large numbers of light sources, since the number of discontinuities
becomes unmanageable very quickly. This has consequences both on computation time
and on robustness in the construction of the discontinuity mesh. For similar reasons, no
discontinuity-basedhierarchicallighting algorithm has been proposed previously in which
discontinuities are treated for indirect light transfers.

9. CONCLUSION AND FUTURE WORK

We have presented a new hierarchical radiosity algorithm using the extended Visibility
Skeleton. We have extended the Skeleton by replacing then2 table representation of the
nodes and arcs by a structure of hierarchical links from polygons to polygons (and ver-
tices to polygons). We have introduced update algorithms permitting the maintenance of
consistent views at vertices added to a polygon due to subdivision, as well as the resulting
sub-faces.

These extensions result in a powerful data structure which permits the computation of
exact point-to-polygon form-factors for any vertex/polygon pair in the scene, and which
provides detailed visibility information between any (sub)polygon-(sub)polygon pair.
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We have introduced a novel hierarchical radiosity algorithm using this structure, based
on a “lazy wavelet” or “sub-sampling” type multi-resolution representation. The basic data
structure used is a non-uniform hierarchical triangulation, which consists of a hierarchy of
embedded constrained Delaunay triangulations. By maintaining radiosity differences at
subdivided vertices, we introduce a linear “push” step, resulting in higher quality radiosity
reconstruction at the leaves. A new, perceptually-based, discontinuity driven refinement
criterion has also been introduced, resulting in hierarchical subdivision of surfaces well
adapted to shadow variations. The results of our implementation show that we can generate
accurate high-quality, view-independent solutions efficiently. The results also show that
our approach is particularly well suited to previously hard-to-handle cases such as multiple
light sources and scenes lit almost entirely by indirect illumination.

Future Work

As was the case with the initial Skeleton work [Durand et al. 1997], memory usage remains
the major limitation of the visibility skeleton. It is clear that a clustering-type approach is
required, which will allow us to apply our algorithm to the parts of the scene where it is
required. The idea would be to compute a visibility skeleton inside each cluster and ap-
proximate visibility skeletons between clusters. The challenge is to define this approximate
skeleton, since clusters are not opaque objects.

Moreover, we believe that this clustering approach is a promising way of solving the
robustness problem. If the objects are grouped into clusters of a given size, it is easier to
set an epsilon for the computations inside this cluster and decide which error is acceptable.
In addition, since the number of objects would be almost constant inside clusters, specific
verification algorithms could be applied.

The advantage of the skeleton construction is that it is local, and thus can be built in a
“lazy” or even “on-demand” fashion. Using to-be-defined criteria, we could compute only
the parts of the visibility skeleton related to “important” light transfers. This information
could be deleted once used, thus dramatically reducing the memory requirements.

The skeleton could also be used for Monte-Carlo methods. In the case of standard
Monte-Carlo techniques, the inherent random nature of the sampling makes it hard to take
coherence into account. However, more recent approaches such as quasi Monte-Carlo
radiosity [Keller 1996], photon maps [Jensen 1996] or Metropolis light transport [Veach
and Guibas 1997] could be coupled with the skeleton for a better exploration of the path
space.

Extending the skeleton and the resulting illumination algorithm to dynamic scenes is
another promising research direction. The notion of visual events can be extended to tem-
poral visual events, for example when one line goes through five edges of the scene.

ACKNOWLEDGMENTS

We wish to thank Seth Teller for the discussions we had about visibility, Dani Lischinski
for his insights on radiosity and discontinuity meshing, and Franc¸ois Sillion and Cyril Soler
for all their answers about hierarchical radiosity. This research was funded in part by the
European Union ARCADE Reactive LTR project #24944.

References

BAUM , D. R., RUSHMEIER, H. E., AND WINGET, J. M. 1989. Improving ra-
diosity solutions through the use of analytically determined form-factors. In J. LANE



158 �

Ed., Computer Graphics (SIGGRAPH ’89 Proceedings), Volume 23 (July 1989), pp.
325–334.
BEKAERT, P., NEUMANN , L., NEUMANN , A., SBERT, M., AND WILLEMS , Y.
1998. Hierarchical monte carlo radiosity. In G. DRETTAKIS AND N. MAX Eds.,
Eurographics Rendering Workshop 1998(New York City, NY, June 1998). Eurograph-
ics: Springer Wein.
BOUATOUCH, K. AND PATTANAIK , S. N. 1995. Discontinuity Meshing and Hi-
erarchical Multiwavelet Radiosity. In W. A. DAVIS AND P. PRUSINKIEWICZ Eds.,
Proceedings of Graphics Interface ’95(San Francisco, CA, May 1995), pp. 109–115.
Morgan Kaufmann.
CHRISTENSEN, P. H., STOLLNITZ , E. J., SALESIN, D. H., AND DEROSE, T. D.
1996. Global illumination of glossy environments using wavelets and importance.
ACM Transactions on Graphics 15, 1 (Jan.), 37–71. ISSN 0730-0301.
DE FLORIANI , L. AND PUPPO, E. 1995. Hierarchical triangulation for multires-
olution surface description geometric design.ACM Transactions on Graphics 14, 4
(Oct.), 363–411. ISSN 0730-0301.
DRETTAKIS, G. AND FIUME , E. 1993. Accurate and consistent reconstruction of
illumination functions using structured sampling.Computer Graphics Forum (Euro-
graphics ’93) 13, 3 (Sept.), 273–284.
DRETTAKIS, G. AND FIUME , E. 1994. A fast shadow algorithm for area light
sources using backprojection. In A. GLASSNER Ed., Proceedings of SIGGRAPH ’94
(Orlando, Florida, July 24–29, 1994), Computer Graphics Proceedings, Annual Con-
ference Series (July 1994), pp. 223–230. ACM SIGGRAPH: ACM Press. ISBN 0-
89791-667-0.
DRETTAKIS, G. AND SILLION , F. 1996. Accurate visibility and meshing calcula-
tions for hierarchical radiosity. In X. PUEYO AND P. SCHRÖDER Eds.,Eurographics
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rates. In X. PUEYO AND P. SCHRÖDER Eds.,Eurographics Rendering Workshop 1996
(New York City, NY, June 1996), pp. 71–80. Eurographics: Springer Wein. ISBN 3-
211-82883-4.
HECKBERT, P. 1992. Discontinuity meshing for radiosity.Third Eurographics
Workshop on Rendering, 203–226.
HEDLEY, D., WORRALL, A., AND PADDON, D. 1997. Selective culling of dis-
continuity lines. In J. DORSEY AND P. SLUSALLEK Eds.,Rendering Techniques ’97
(8th EG workshop on Rendering, Saint Etienne, France, June 1997), pp. 69–81. Springer
Verlag.
JENSEN, H. W. 1996. Global illumination using photon maps. In X. PUEYO AND
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Éclairage pour des sc̀enes de grande complexité

Les algorithmes d´eveloppés en image de synth`ese ne sont r´eellement applicables ques’ils sont capables
de traiter des sc`enes de grande complexité. Plus nous sommes capables de traiter des sc`enes complexes,
plus il est possible d’atteindre une performance interactive. En ce qui concerne le rendu et la simulation
de l’éclairage, la complexité a plusieurs formes : La complexit´e géométrique, c’est-`a-dire le nombre d’ob-
jets dans une sc`ene, ou la complexit´e photométrique, c’est-`a-dire la simulation de diff´erents ph´enomènes
d’éclairage, comme la r´eflection spéculaire, la r´efraction etc, ou les sources non-diffuses comme le soleil.

Nous avons étudié les deux aspects de la complexité pour le rendu, en commençant par la complexité
géometrique et ensuite en d´eveloppant des algorithmes pour l’éclairage non-diffus. Pour la complexité
géometrique, nos travaux se distinguent entre le travail sur les structures de donn´ees, surtout pour le tracer
de rayons, et ensuite sur des travaux sur la radiosit´e pour les sc`enes très complexes.

3.1 Structures de Donńees Híerarchiques pour le lancer de Rayons

Pour tout algorithme traitant des sc`enes complexes, il est souvent utile d’avoir une structure de sub-
division spatiale, permettant de localiser une op´eration dans l’espace de façon efficace. Dans cet esprit,
en collaboration avec le doctorant Fr´edéric Cazals et son directeur de th`ese Claude Puech, nous avons
développé une structure de donn´ees adapt´ee aux environnements tr`es complexes (des centaines de mil-
liers d’objets) pour le lancer de rayons. Dans la nouvelle méthode [CDP95] nous présentons une approche
diff érente des algorithmes pr´ecédents en construisant une structure par la segmentation des donn´ees en
groupes d’objets de mˆeme taille, ensuite le regroupement des objets de la mˆeme taille qui sont proches et
enfin la construction d’une structure hi´erarchique de grilles contenant les objets regroup´es. Ceci est illustré
dans la Figure 3.1(a), o`u l’on montre une structure de grille r´ecursive� traditionnelle� et dans (b) o`u nous
montrons la nouvelle structure de la hi´erarchie de grilles uniformes.

La structure construite donne des r´esultats tr`es satisfaisants par rapport aux structures pr´ecédentes en
termes de m´emoire utilisée ainsi qu’en temps de calcul. Dans la Figure 3.2 nous montrons les r´esultats des
tests sur des mod`eles d’un bâtiment composé de plusieurs cuisines (donc contenant des objets avec une
grande différence d’échelle). Le nombre des polygones est montré sur l’axe horizontal. Nous voyons que
le temps de rendu de la nouvelle structure est au mˆeme niveau que la structure de grille r´ecursive, mais en
utilisant toujours moins de m´emoire.

Enfin, contrairement aux approches pr´ecédentes, la nouvelle structure ne n´ecessite pas la d´efinition de
plusieurs param`etres de construction, ce qui facilite son utilisation.

Avec mon doctorant Eric Paquette (co-dirig´e en co-tutelle par Pierre Poulin `a l’université de Montréal),
nous avons d´eveloppé une nouvelle structure de données pour traiter le rendu par lancer de rayons pour des
scènes contenant plusieurs sources de lumi`ere [PPD98]. Cette structure est illustr´ee dans la Figure 3.3. Une
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FIG. 3.2: (a) Temps du rendu et (b) mémoire en MB pour le mod`ele de plusieures cuisines [CDP95]

structure type� octree� de sources est construite à partird’un ensemble des sources ponctuelles. Chaque
nœud intérieur représente les enfants par une source ponctuelle ayant une intensit´e et une position ´egales à
la moyenne des enfants. Un critère d’erreur a ´eté développé pour choisir le niveau de la hi´erarchie utilisé
pour faire le rendu à un point.

SceneHierarchy

cluster:

virtual light:

empty cluster:

FIG. 3.3: La Hiérarchie de Sources Lumineuses pour le tracer de rayons de sc`enes contenant des milliers
de lumières [PPD98].

La hiérarchie des sources lumineuses est particuli`erement bien adaptée pour des sc`enes contenant plu-
sieurs milliers de sources. Des exemples sont les rues éclairées la nuit, les arbres de No¨el etc. Pour des
scènes de ce type, nous avons effectu´e des tests ; les r´esultats sont pr´esentés dans la Figure 3.4 o`u nous
observons une augmentation de temps de calcul quasi-logarithmique avec le nombre de sources (axe hori-
zontal).
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FIG. 3.4: Comportement logarithmique de la méthode de la hi´erarchie de sources lumineuses.

3.2 Algorithmes Hiérarchiques d’éclairage

La radiosité hiérarchique introduite en 1991 [HSA91], a marqué un tournant dans les algorithmes
d’éclairage, car elle permettait le traitement de l’´eclairage global d’une manière beaucoup plus efficace que
les approches pr´ecédentes [CGIB86, CCWG88]. Dans nos recherches, nous avons abordé des probl`emes
li ésà ces algorithmes, dans le but de leur am´elioration en temps de calcul et utilisation de m´emoire.

La radiosité hiérarchique comporte plusieurs étapes. D’abord, desliens de transfert d’énergie sont
établis entre les surfaces de la scène. Ensuite, un crit`ere d’erreur guide ce qu’on appelle le� raffine-
ment� de ces liens ; une fois le niveau de raffinement d´ecidé, la lumière est transport´eeà travers les liens
(� gather� en anglais). En dernière ´etape, une repr´esentation multi ´echelle est maintenue, en parcourant
la hiérarchie de haut en bas (en� poussant� les valeurs de radiosit´e vers les feuilles de la hiérarchie) et de
bas en haut en moyennant les valeurs de bas en haut (� push-pull� ).

3.2.1 Étude et Améliorations de la Radiosit́e Hiérarchique
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FIG. 3.5: Temps passé dans chaque ´etape de la radiosité hi´erarchique [HSD94].

Avec le doctorant Nicolas Holzshuch et son directeur Franc¸ois Sillion nous avons d’abord ´etudié le
comportement de l’algorithme de la radiosit´e hiérarchique, et ensuite développ´e un nouvel algorithme qui
apporte deux am´eliorations importantes `a la méthode originale de la radiosit´e hiérarchique [HSD94].

Dans le contexte de l’étude, nous avons constaté que la plupart du temps de la solution est pass´e dans
les calculs de visibilit´e (voir Figure 3.5).

En ce qui concerne les am´eliorations, l’étape de complexitéO(n2) d’établissement des liens ´energétiques
entre chaque paire d’objets est retard´ee enévitant l’établissement d’un lien jusqu’au moment o`u cela de-
vient nécessaire. En pratique, de nombreux liens potentiels ne deviennent jamais significatifs, le r´esultat
étant une accél´eration important du temps de calcul. La deuxième am´eliorationévite la subdivision inutile
du maillage en utilisant un crit`ere de similarit´e entre facteurs de formes (la mesure d’´echange d’´energie
entre surfaces). Cette am´elioration est illustr´ee dans la Figure 3.6.
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1. Radiosité Hiérarchique 2. Le maillage d’origine

3. Algorithme Amélioré 4. Le maillage reduit

FIG. 3.6: Résultats de l’algorithme de réduction des liens.

Pour éviter complètement l’étape de l’´etablissement initial des liens, il existe une autre approche :
regrouper des objets engroupes(� clusters� en anglais) et traiter les ´echanges ´energétiques entre les
groupes au lieu de traiter chaque surface ou objet indépendamment [Sil95].

La complexité de cette g´enéralisation est telle, qu’il devient maintenant difficile `a comprendre comment
déterminer les paramètres n´ecessaires pour effectuer une simulation d’´eclairage. Dans le cadre d’un projet
européen (ARCADE ESPRIT #24944), nous avons effectu´e uneétude exp´erimentale sur des sc`enes types,
tirées d’utilisations industriels [HDSD99].

Cetteétude porte sur les diff´erents algorithmes de construction de clusters (KDT et variantes, et des
algorithmes bas´es sur la proximité des objets). Si on montre le graphe du temps de calcul de la solution
(en augmentant la qualit´e requise par l’utilisateur) par rapport `a l’erreur qui résulte, nous observons que
diff érentes sc`enes ont des comportements différents (voir Figure 3.7). Nous n’avons pas pu conclure sur
tous les aspects des algorithmes, mais nous avons pu constater que pour deux types de sc`enes, les scènes
avec les objets� organisés � , comme les bureaux (sc`enes OFFICE et VRLAB de la Figure 3.7) et les
� soupes de polygones� (scènes AIRCRAFT et CAR de la Figure 3.7), diff´erents algorithmes semblent
convenir plus ou moins. Le scènes de type� organisées� sont mieux trait´ees par les algorithmes examinés.
Le scènes de type� organisées� sont mieux trait´ees par les algorithmes examinés.
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FIG. 3.7: Time-error curves

3.2.2 Visibilité Multi-r ésolution

Nous avons étendu (en collaboration avec Franc¸ois Sillion) la méthode de� clustering� en développant
une nouvelle approche pour la mesured’erreur pour la simulation de l’´eclairage en utilisant des� traits� im-
portants d’une image : les régions d’ombre caus´ees par des objets qui cachent la lumière.

La géométrie consiste en un groupe de
cubes comme ceci devant un mur. Nous
ne montrons que les ombres sur le mur
en bas. La taille des cubes contenus dans
le groupe augmente de gauche `a droite.
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9.51 10.7 11.0 10.5
FIG. 3.8: Comparaison de solutions approximatives en utilisant des clusters avec des tailles de cubes
diff érentes. Haut : images de référence (´eclairage du mur) Milieu : images approximatives en utilisant
un maillage� grossier� . Bas : Erreur dans la normeL2. Notez que les quatre images ont une valeur d’er-
reurL2 similaire, et qu’elle cachent toutes de l’information de l’´eclairage. La taille variable des� traits� ,
n’est pas donnée par cette mesure d’erreur.

Les méthodes d’estimation d’erreur pr´ecédentes sont incapables de distinguer l’erreur en fonction de la
taille de traits. Par exemple, dans la Figure 3.8, nous voyons que la normeL2 ne donne aucune information
sur la taille de traits cach´ee par l’approximation. Nous avons d´eterminé un nouveau critère d’erreur qui
a conduit au d´eveloppement d’un nouvel algorithme. Cet algorithme utilise la structure hi´erarchique de
regroupement pour le calcul de la visibilit´e : quand l’utilisateur ne veut pas d’ombres plus d´etaillées pour
une taille sp´ecifiée, la transmission moyenne du groupe d’objets est utilisée au lieu de faire un test de
visibilit é pour chaque objet contenu. La conséquence est une acc´elération assez importante du temps de
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FIG. 3.9: Résultats pourl’algorithme de visibilité multirésolution[SD95].

FIG. 3.10: Des sc`enes de tests utilis´ees par le nouvel algorithme de réduction de mémoire pour la radiosité
hiérarchique [GD99].

calcul en fonction de la qualité requise [SD95]. Pour comprendre les r´esultats, regardez la Figure 3.9 ; de
gauche `a droite, nous augmentons la taille de trait que l’utilisateur veut absolument préserver. L’erreur
L2, montrée en colonnes sombres en arrière plan, donne différentes valeurs d’erreur pour chaque groupe
de cubes ; la nouvelle mesure d’erreur donne `a peu près la même valeur, ce qui permet `a l’algorithme de
constater que, pour la taille de trait choisi, l’approximation est acceptable pour l’utilisateur.

3.2.3 Ŕeduction de la ḿemoire utilisée par la Radiosit́e Hiérarchique

Un autre aspect tr`es important concernant l’utilisation de la radiosit´e hiérarchique, même avec le clus-
tering, est la consommation mémoire. Pour traiter des scènes typiques d’aujourd’hui, contenant plusieurs
centaines de milliers d’objets, les besoins en m´emoire peuvent ˆetre tropélevés par rapport `a la capacit´e de
mémoire des ordinateurs disponibles.

La consommation mémoire peut se distinguer en deux parties : la m´emoire utilisée par les liens, et la
mémoire utilisée par la hiérarchie elle-mˆeme (pointeurs vers les enfants, valeurs de radiosit´e etc.). Avec
mon doctorant Xavier Granier (que je co-dirige avec Claude Puech), nous avons d´eveloppé un nouvel
algorithme, capable de traiter des sc`enes des centaines de milliers d’objets (voir Figure 3.10).

Notre nouvelle approche consiste `a définir un nouveau cadre pour la solution de la radiosit´e hiérarchique,
en mettant ensemble les ´etapes de� refine� ,� gather� , et� push-pull� , ce qui permet `a la foisà éviter
le stockage des liens (voir ´egalement [SSSS98]), et le stockage de la hi´erarchie. Un exemple est montré
dans la Figure 3.11, où l’on voit dans (b) que les enfants du nœudr1 ne sont pas stock´es. Le contenu des
enfants der1 dans la hiérarchie est remplac´e par une texture.
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FIG. 3.11: La subdivision de liens. Quand le lienr3! r1 est raffiné, les liens vers les enfants ne sont pas
établis, et par cons´equent la sous-hi´erarchie peut ˆetre simplifée.

3.3 Traitement de la Complexit́e Photoḿetrique

L’algorithme de la radiosit´e hiérarchique a ´eté développé surtout pour les environnementsdiffus. L’hy-
pothèse principale dans ces scènes est que toutes les sources de lumière ´emettent de la mˆeme fac¸on,
indépendamment de la direction, et que toutes les surfaces réfl´echissent da la mˆeme façon dans toutes
les directions. Cette hypoth`ese est tr`es contraignante, car il n’existe pas dans la nature ni de sources ni de
surfaces avec ces propriétés. Malgr´e des résultats souvent impressionnants, dans la présence de sources ou
de matériaux fortement non-diffus (les m´etaux ou les surfaces polies par exemple), les images de radiosité
n’arrivent pas à donner une impression de r´ealisme.

Pour ceci, la recherche en simulation de l’éclairage s’est orientée r´ecemment vers des solutions qui
tiennent compte de ces phénomènes. Nous avons exploré ces questions à la fois pour la repr´esentation des
matériaux non-diffus et pour l’´eclairage des scènes de l’ext´erieur comprenant le soleil.

FIG. 3.12: Simulation avec un� cluster� , de surface speculaire, ´eclairé d’en haut [SDS95] : (a) une
distribution de l’intensit´e radiante du cluster selectionn´e, (b) image finale.

FIG. 3.13: La même scene que Fig. 3.12. L’´eclairage arrive de coté. Comparez les deux image et notez le
changement de l’éclairage secondaire sur le mur et dans l’ombre sur le sol.

167



3.3.1 L’éclairage non-diffus

Nous avons d´eveloppé une première solution [SDS95] de représentation directionnelle pour les objets
avec réflectance non-diffus, dans le cadred’un algorithme de radiosit´e hiérarchique avec� clustering� .

En particulier, nous stockons l’intensité radiante sortante (voir Figure 3.12), par une repr´esentation
d’harmoniques sphériques. La lumi`ere incidente n’est pas stockée au niveau des nœuds intérieurs de la
hiérarchie : elle est directement� poussée� , vers les feuilles, o`u elle est imm´ediatement r´efléchie et
stockée dans les fonctions directionnelles. Nous avons ´egalement développ´e une solution permettant la
représentation directionnelle de la visibilit´e volumique. Cette représentation permet le changement de l’as-
pect de l’ombre sur le sol dans la Figure 3.13.

Cette méthode etait une premi`ere démonstration de la faisabilit´e d’une telle approche dans le contexte
de la radiosit´e hiérarchique avec clustering. Une approche similaire a ´eté également développ´ee par Chris-
tensen et al [CLSS97]. La m´ethode souffre particulièrement de la consommation m´emoire et du temps de
calcul, en partie dˆu au parcours r´epétitif de la hiérarchie pendant la r´eflexion immédiate.

Max level 3 4

N/A

Haar

Reference

FIG. 3.14: Comparaison de la solution non-adaptative (N/A) et Haar.

Plus récemment, nous nous sommes attaqu´esà ces probl`emes [SSG+99], en introduisant deux nou-
velles solutions : (i) le stockage directionnel de la lumière incidente par une structure de fonction Dirac
appelée� échantillons d’éclairage� , (illumination samplesen anglais), et (ii) l’utilisation d’une base
d’ondelettes Haar pour le stockage de l’´eclairage sortant. Ces travaux ont ét´e effectués avec nos partenaires
européen (M. Stamminger, A. Scheel, F. Perez-Cazorla, et F. Sillion et X. Granier d’iMAGIS) dans le cadre
du projet Europ´een SIMULGEN, dont j’ai ét´e le coordonnateur pour la première phase, et le responsable
iMAGIS/GRAVIR pour la deuxième.

Max Distr Triangles Time
Level N/A Haar N/A Haar

3 2878 782K 640K 510 s 722 s
4 2878 3127K 1829K 731 s 1125 s

TAB . 3.1: Comparaison de la représentation Non-adaptative (N/A) et Haar montrant le nombre fonctions
directionnelles utilis´ees (DirDistr) et le temps de calcul Max Level et le niveau maximal de subdivision.
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FIG. 3.15: Maison ´eclairée par le soleil et
le ciel.
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FIG. 3.16: Mains de cot´e avec visualisation
des liens vers le ciel.

Cette nouvelle solution offre une meilleure qualit´e d’ éclairage non-diffus avec un stockage moindre.
Par exemple, nous voyons dans la Figure 3.14 qu’une base non-adaptative (dans ce contexte une base
constante, mais les harmoniques sphériques sont dans la même categorie) avec un niveau de subdivision
� 3� , n’arrive pas `a bien repr´esenter les� taches� , de lumière sur le sol, mais la solution Haar y arrive.
Il est intéressant de voir le Tableau 3.1, o`u on voit que les niveaux de subdivision� 3� utilise à peu près la
même mémoire pour les deux approches, mais Haar donne une meilleur image. Au niveau de subdivision
� 4 � , même si la repr´esentation non-adaptative donne un meilleure r´esultat que pour le niveau� 3 � ,
elle nécessitent deux fois plus de mémoire que le Haar.

3.3.2 L’éclairage de sc̀enes d’exterieur

Une solution, hi´erarchique pour des scènes complexes d’ext´erieur,éclairées par le soleil et le ciel a
également ét´e développée [DSSD97]. Ces travaux ont ´eté effectués durant un stage ERASMUS (dir. F.
Sillion) de K. Daubert et H. Schirmacher de l’universit´e d’Erlangen.

L’id ée de cette approche etait de repr´esenter le soleil comme une source directionnelle, ce qui a
nécessit´e des modifications dans l’algorithme de raffinement, et de repr´esenter le ciel d’une fac¸on hiérarchique.
Un exemple de cette repr´esentation hi´erarchique est donné dans la Figure 3.16 où l’on voit une visualisation
des différents niveaux de liens vers le ciel. L’image Figure 3.15 montre un exemple d’une solutioncalculée
par cette m´ethode.

3.4 Discussion

Dans ce chapitre nous avons pr´esenté nos travaux sur les méthodes d’éclairage pour les scènes com-
plexes. Ces m´ethodes sont des méthodesapproximativespar opposition aux méthodesanalytiquesdu cha-
pitre précédent.

Nous avons apport´e des am´eliorations sur les calculs de radisiot´e, à la fois pour la visibilit´e et pour la
mémoire utilisée. Ensuite nous avons étudié les probl`emes de la gén´eralisation de la m´ethode de radiosité
à des cas non-diffus.

Pour ces derniers cas, nous avons reussi à faire des simulations d’´eclairage non-diffuse pour des petites
scènes allant jusqu’à quelques milliers de polygones. Nous croyons par contre que cette limitation est
inhérenteà ces approches (qui peuvent ˆetre malgré tout utiles pour certaines applications), car la quantité
d’information qui doitêtre stock´ee est trop grande. C’est pour ceci que nous croyons que c’est dans les
domaines du rendu à base d’images et le rendu par tracer de rayons que se trouvent les solutions pour les
phénomènes photométriquement complexes.
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Auteurs : Fréderic Cazals, George Drettakis et Claude Puech
Actes : Congrès Eurographics’95
Date : septembre 1995

171



172



Filtering, Clustering and Hierarchy Construction:
a New Solution for Ray-Tracing Complex Scenes

Frédéric Cazals,1 George Drettakis,1;2 Claude Puech1
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Abstract

Data structures that handle very complex scenes (hundreds of thousands of objects) have in the past either been
laboriously built by hand, or have required the determination of unintuitive parameter values by the user. It is
often the case that an incorrect choice of these parameters can result in greedy memory requirements orseverely
degraded performance. As a remedy to this problem we propose a new data structure which is fully automatic
since it does not require the user to determine any input parameters. The structure is builtby first filtering the
input objects by size, subsequently applying a clustering step to objects of the same size andfinally building
a hierarchy of uniform grids (HUG). We then show that this data structure can be efficiently constructed.
The implementation of theHUG shows that the new structure is stable since it’s memory requirements grow
linearly with the size of the scene, and that it presents a satisfactory compromise between memory usage and
computational efficiency. A detailed comparison with previous data structures is also presented in the results.

1. Introduction

Dealing with very complex scenes is one of the major challenges for current computer graphics research. To
facilitate manipulation of such environments it is necessary to develop spatial subdivision structures which al-
low the implementation of efficient searching algorithms for such applications as rendering (with ray-tracing or
radiosity-style methods), collision detection in animation and also for interactive environments (virtual reality
etc.).

One of the more challenging aspects of creating such structures is the treatment of scenes which contain
large changes in scale, for example the model of a building, which at successive levels of scale contains the
walls, the rooms, the doors, windows and furniture, and finally the small detail objects such as the knobson a
television or a phone. For such scenes it is often the case that the complexity of the geometry is to be found in
the smaller scales (e.g., thousands of polygons for the models of household appliances).

The data structure we introduce in this paper represents a new approach, by firstfiltering the input objects by
size, thenclusteringobjects of the same size and finally constructing a hierarchy of uniform grids. Our structure
is fully automatic since the user does not need to specify any parameters, and is thus capable of treating large
scenes efficiently, without the need for time-consuming experimentation to determine unintuitive parameters.

1.1. Previous Structures for Highly Complex Scenes

From the very first presentation of the ray-tracing algorithm1, it became clear that a spatial subdivision structure
is required to cope with the millions of rays which are intersected with the objects in the environment. In the
early algorithms hierarchies of bounding boxes were used1; 2. These methods have been extended to more
generalised bounding volumes3; 4; 5. BSP trees6 and regular subdivisions of space are also popular in dealing
with the ray-tracing problems7. Octree structures have been used8, as well as uniformly subdivided grids9; 10.

In a few of the previously cited papers very large environments have been treated. Most notably Snyder and
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Barr10 handled scenes with millions of polygons, but user intervention was required to construct the hierarchical
data structure. Large environments have also been treated by recursively subdividing uniform grids11 and also
for modelling12.

1.2. Complexity analysis

The performance of spatial subdivision data structures is notoriously difficult to analyse. Some previous work
has been done however13; 14; 15. In this section we present a more careful look at some of the spatial subdivision
structures which in practice have been used with success16; 17. We are particularly interested in the following
classes of spatial subdivision structures:uniform grids, recursive gridsandoctrees(i.e., object-octrees).

x
y

x
y

Figure 1: (a) Uniform grid / uniform distribution (b) Uniform grid / non uniform distribution

1.2.1. Uniform grids

Uniform grids are built by subdividing the sides of the bounding box� of the scene, along thex; y; z-axes into
nx, ny andnz subdivisions. Each element of this subdivision is called avoxel. In each voxel a pointer toward
the items intersecting it is stored.

Choosingnx = ny = nz = 3
p
n yieldsn voxels. This results in practically ”optimal” performance if the

objects of the sceneO are scattered uniformly in�. An example of such a situation is shown in Figure 1(a).
Nevertheless, if some voxels contain too many objects the uniform grid data structure will fail,since when a
ray traverses a highly populated voxel too many ray-objects intersection tests are performed (Figure 1(b)).

A typical remedy used in practice are higher subdivision factorsnx; ny; nz, but the time gained by avoiding
ray-object intersections is eventually lost by the additional cost of voxel traversals. This approach is also limited
by the rapidly increasing memory requirements. In addition arbitrary subdivision parameters are difficult to use
since experimentation is necessary to find the best trade-off of ”cost of the intersections” vs. ”cost of traversal”.
Another alternative is a recursive data structure, discussed next.

1.2.2. Recursive grids

Jevans11 proposed a solution in which each voxel containing a number of pointers greater than MAXP (where
MAXP stands for MAXimum number of Polygons), is recursively subdivided. In the tests presented11, the same
subdivision factors are used for every recursive subdivision (e.g.nx = ny = nz = 10). As a consequence the
memory requirements grow explosively.

Jansen16; 17 proposes an adaptive subdivision criterion, which we will call the3
p criterion in what follows.

This approach consists in settingnx = ny = nz = 3
p
ni for voxels that containni > MAXP items. In practice

it seems that this choice works quite well. Nonetheless, several questions remain: is there an optimal termination
condition MAXP ? If such a condition exists, does it avoid the problem of explosive memory growth ?

These questions are still unanswered in computer graphics, but have received some attentionin the theory of
search and sort bucket-like data structures18. We discuss a brief outline of this work in the following.

Suppose we want to store a set of real numbersfx1 : : : xng that are known to belong to the real interval� =
[a; b]. The usual bucket-like data structures operate as follows:(i) subdivide� into n intervals of equal length
(ii) in all the buckets where the number of points is> b (with b a constant between 4 and 10 generally) subdivide
and iterate recursively. Since thefxig are assumed to be independent realisations of random variables, theorems
assert that(i) for most random variables”Two levels are as good as any”19 i.e at depth 2 most of the buckets
contain less thanb points(ii) the number of buckets necessary to storen is 3Mn whereM is the maximum of
the probability density.
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These theoretical results (mainly in one dimension) provide important intuition into theexpected behaviour
of recursive grids for very complex three-dimensional scenes in which large scale changes occur.

y
x level 3

level 2

level 1
level 1

x

y
level 2

Figure 2: (a) Recursive grid (b) Hierarchy of Uniform Grids

A first conclusion is that the hierarchy should not be very deep and that it is possible to restrict the memory
cost more efficiently than when using a constant subdivision factor. A major difference however is that points
in one dimension are not shared between buckets. For the three dimensional case in which the contentsofO are
polygons, such overlap may occur. This has two important negative consequences:
- Suppose there areN polygons that are coplanar and the common voxel intersection of which is non-empty.

If N> MAXP, the recursion will not terminate.
- The number of references towards an object might be large: see the ”long” item on Figure 2(a), that runs

across 5 buckets.

1.2.3. Octrees

Octrees8 can be viewed as a special case of recursive grids for which subdivision into eight sub-voxels is
performed at every step. Their advantage is a natural adaptation to the geometric complexity of a scene and
the fact that special optimisation can be performed for ray-traversal. Their main drawbacks are that a hierarchy
of large depth may be created, a penalty of traversing the hierarchy is often incurred and that duplication of
objects in lists is frequent.

1.3. Towards a better solution

Given the discussion above, we can now put our proposed solution in context. The steps of thenew algorithm
are summarised as follows:

1. Gather the objects into subsets of similar size.
2. Foreach group of objects of similar size, group the neighbours intoclusters.
3. Construct a grid with the3p criterion for each cluster.
4. Construct a hierarchy of these grids.

The data structure we introduce can thus be seen as a recursive grid where unnecessary intermediate levels
and multiple references towards items of different sizes are suppressed. An example of aHUG is shown in
Figure 2(b) for the setO of Figure 2(a).

The filtering and clustering steps effect abottom-upconstruction of the data structure, in the sense we that
start with the objects and by grouping them, we construct a hierarchical data structure. This is in strong contrast
with all other automatic methods which subdivide their structure adaptively in atop-downmanner (there do
however exist previous methods which construct hierarchies manually20; 21). As we shall see in Section 3 the
use of such top-down methods can result in significant additional memory cost.

2. A New Structure: the Hierarchy of Uniform Grids

For the purposes of our construction we consider thebounding boxesof objects. In this manner our structure
does not depend on the object type (e.g., polygons, bicubic surfaces etc.). In what follows we thus use the words
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object and bounding box interchangeably. We define the following properties of objects:(i) the lengthof an
object that will be its diameter(ii) theprojectionof an object along an axis that will be a line segment on that
axis(iii) a distance functiond(s1; s2) between segments(iv) a distance functiond(o1; o2) between objects. For
a pair of objects or segmentsA;B, anda; b points ofA andB respectively, the distance function is defined
asd(A;B) = inf distance(a; b),8a 2 A and8b 2 B. Finally, given the lengthsD =fd1; :::; dng of all the
objects fromO we will note dinf = inf i lengthi anddsup = supi lengthi. Thusdinf is the length of the
shortest item, anddsup is the length of the longest item.

2.1. Filtering the Objects by Size

Definition 1 (Filter of lengths) Given a setO of objects, we call filterF a strictly increasing sequence of
positive real numbersff1; :::; fmg such thatdinf 2 [f1; f2) anddsup 2 [fm�1; fm). A level of the filterF
is an interval[fi; fi+1). Define also (i)�fk = (fk + fk+1)=2 the average length of levelk (ii) Lk the set of all
objects fromO the lengths of which2 [fk; fk+1).

The filter is used as follows: foroi 2 O we determine the position oflength(oi) in F by a binary search.
The filtering operation costsO(n log m) and yields at mostm � 1 non empty levels. If we consider the
kernel-estimated density22 cf

D
from the setD computing a good filter is a difficult problem. For typical com-

puter graphics scenes this density contains a few peaked modes (because the complexity of the scene lies in
the small objects that have similar sizes) and the filter can be determined by searching these modes on a his-
togram. In practice we subdivide the histogram into a given number of slices (e.g. three), such that each slice
contains the same number of points of the histogram (see also Tsai and Chen23). This results in very satisfactory
performance.

To give a precise idea of the filtering process, the following images show the result of filtering the scene
kitchen which is used in Section 3 for the experimental study (see Figures 10(a) and 10(b)). Because of the
intuition ”Two levels are as good as any”, we computed a three level filter thus gathering objects in groups of
three sizes.

(a) (b)

Figure 3: Showing filter levels (a) Level 0 (small objects) (b) Level 2 (big objects)

However, gathering the objects by homogeneous size is not sufficient: consider for example in Figure 10(a)
the items corresponding to the bowl on the table and the coffee-pot on the counter: we cannot build asingle
uniform grid to store these two sets of objects without being faced with the problems mentioned in Section
1.2.1. We therefore wish to isolate two clusters of objects, one for the bowl and one for the coffee-pot.

2.2. Clustering Objects of the Same Size

2.2.1. Projections and clusters

Given a set of objectsO , finding a partition ofO into clusters according to a given criterion is a well stud-
ied topic of statistics. Unfortunately, the best clustering methods that do not presuppose the final numberof
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clusters24; 25 are�(n2)-space and�(n2 logn)-time. For very large environments such a cost is unacceptably
high. To see why, consider the algorithm step at which a new item is added to the previously computed clusters.
This step requires testing this item against all the clusters in order to find the best fit.

As an alternative to this ”grouping” method, we choose a ”divisive” approach illustrated below. Consider for
example Figure 4 where we would like to construct three clustersA;B andC from the setA [ B [ C. An
appropriate necessary condition for two objects to belong to the same cluster is that their projections alongthe
two x; y axis themselves form a cluster. The idea is therefore to successively examine the projections of the
items alongx; y andz and then to split the initial input into sub-groups that cannot form a cluster. As will be
seen, working with the projections enables us to compute clusters which are somewhat more restricted, but in
a more efficient manner.

x

y

B

C

A

Figure 4: A collection of clusters

Definition 2 (�-connectivity - �-cSet) Two objectsoi andoj are called�-connectedwhere� 2 IR�+ if their
distanced(oi; oj) < �. If they belong to the same levelk of the filterF , let �k be the� associated to levelk.
We callconnectivity coefficient� a strictly positive real number, and we set�k = � �fk. A setO is said to be
�-connected or a�-cSet if8 i 2 1::n there exists aj 6= i such thatd(oi; oj) < �.

Two items belong to the same cluster if the distance separating them is less than a small ”percentage” of their
relative length (which is nearly the same since the items belong to the same filter level). In practice� is set to a
small number (e.g.,� = :01). The performance of the algorithm is not sensitive to the choice of�. Varying its
value between .00125 to .08 resulted in practically no change in the performance of the structure constructed
for the test scenes of Section 3.

Definition 3 (Property �xyz, potential cluster and cluster)A setO is said to be�x or to have property�x
if the objects’ projections along axisx form a�-cSet. The opposite will be noted��x. Thus a set�x�yz will have
the property�x, ��y and�z .O is said to be a potential cluster if it has property� along one or two axis, and a
cluster if it is�xyz. By CPC we denote either a cluster or a potential cluster.

In Figure 4, we see that neitherA [ B nor A [ C are clusters since these two sets are respectively��xy
and�x�y. It is important to understand that�-cSets are formed independently for each of the one-dimensional
projections allowing the correct isolation of clusters.

2.2.2. The Clustering Algorithm

The clustering algorithm consists of two parts: (a)Isolate that finds the subsets ofdataSetthat verify the
necessary condition alongaDirection, and (b)Cluster3dwhich computes the clusters usingIsolate. The input
of the algorithm is an array of objectsdataSet, and more precisely all the items located between two indices
n1 andn2 of this array. The information recorded for each cluster or potential cluster ( CPC ) is:(i) a pair of
indicesindex1 andindex2: all the items contained in the arraydataSetbetween those indices belong to the
same CPC(ii) a flagdir indicating the last direction where property� has been checked (1 forx, 2 fory, 3 for
z) (iii) a counterstableindicating how many directions have property� (thus a CPC is a cluster ifstable = 3).

The output is a stackstackOfCPCof CPC . Recall that the projection of objectoi along a given direction is
notedsi (s for segment). The two endpoints of segmentsi are notedsi:left andsi:right.
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Algorithm Isolate
Variables
dataSet: array[n1::n2] of objects
aDir: flag indicating which direction is processed (x, y or z)
stackOfCPC: stack of CPC
pc: a CPC

Algorithm

funct Isolate(dataSet; n1; n2; aDir; stackOfCPC)
pc PopstackOfCPC

Sort objectsdataSet[n1; n2]
by increasing leftmost point alongaDir

pc:index1 = n1; pc:dir = aDir;
for i = n1 + 1 to n2 do

if d(si; si�1) < �k

then if (si�1:right > si:right)
then exchange(si; si�1) fi

else
pc:index2 = i� 1;
Pushpc onstackOfCPC;
pc:index1 = i; pc:dir = aDir fi

od
pc:index2 = i; Pushpc onstackOfCPC;

2

5

3

1 4

Figure 5: Algorithm Isolate

Proposition 1Algorithm Isolate runs inO(n log n)

PROOF

- The sort step ensures that when a new segment is inserted, the necessary condition has to be checked between
the left point of this segment and segments located on its left. In Figure 5 the segments are thereforeinserted
according to their indices.

- The swap operationif si�1:right > si:right is such that whensi+1 will be inserted, the rightmost point
of the previously inserted segments will be the right point of the segment on its left. For example (Figure 5)
when 4 is inserted, the test is performed with 1 and not with 3.

- These two conditions guaranteeO(1) operations per insertion and the algorithm therefore runs inO(n logn)
because of the sort step.

4
Given the algorithmIsolate, we can present the complete clustering algorithm in three dimensions:Isolate

is successively applied in the direction of the three axes until sets of itemsstable(i.e. not modified by successive
calls toIsolate alongx, y andz) are found. Since we know we will get at mostn clusters, we use an array of
sizen as a ”double stack” as follows: the bottom part of the array contains the stack of potential clusters that
are computed byIsolate, and the top part contains the stack of final clusters. In other words, once a potential
cluster is found to be�xyz, it is popped from the bottom stack and pushed on the top stack. These two stacks
grow in opposite directions, but we are sure they never overlap since we use an array of sizen and at any time
we know there are at mostn clusters (potential and final).
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Algorithm Cluster3d

Environment
stackOfCPC: array used as a ”double” stack storing
the potential clusters and the final clusters
Algorithm

pc:index1 = 1; pc:index2 = n; pc:dir = 0;
Pushpc on bottom stack
while bottom stack is not emptydo

begin
pc Pop a potential cluster on bottom stack;
aDir = (pc:dir + 1)%3;
Isolate(dataSet; pc:index1; pc:index2; aDir; stackOfCPC);
if top cluster on bottom stack is stable

then begin
Pop this cluster;
Push it on the top stack

end fi
end

x

y

d1

d3

h1

h2

h3

d2

Figure 6: S0

x

y

d1

d3

h2

h3

d2

Figure 7: S1

Proposition 2The complexity of algorithmCluster3d is output sensitive and the best and worst case complex-
ities are
(n log n) andO(n2 log n), respectively.

PROOF
To see the lower bound, supposeIsolate along the first direction, having processedx, finds that no two items
can be put into the same cluster.Cluster3d then stops and returnsn clusters of one item.

The upper bound is somewhat more involved. The worst case will occur for a setS, such that each application
of Isolate along each direction results in the removal of one item from a cluster. This can occur at most
O(card(S)) times, and thus the cost is

Pn�1
i=1 O(i log i) = O(n2 logn).4

As an example consider Figures 6 and 7 where the the setS is composed of two kinds of segments, horizontal
and diagonal. The circles show the projection of the endpoints along each axis.
- The setS0 =fh1, h2, h3, d1, d2, d3 g is �x.
- Isolate alongy removesh1. The resulting new setS1 = S0 - h1 is ��xy.
- Isolate alongx removesd1 fromS1 andS2 is �x�y.
- As a consequenceh2; d2; h3 are successively removed.

For all our experiments, the ratio
P

All the sorts steps(Ni logNi)=n logn was computed (withNi the cardinal
of subsets treated byIsolate). For these test cases the value of the ratio belongs to the interval[3:; 5:], thus
providing a strong indication that the running time is close to the lower bound complexity. Figure 8 shows some
clusters computed from the level containing the smallest objects of the scenekitchen.

2.2.3. Gridding the clusters

Oncen objects of the same size have been gathered in a cluster, we have to construct a uniform grid to store
the cluster. Taking3

p
n subdivisions along each axis givesn buckets but does not guaranteeO(1) objects per

bucket. An alternative choice of subdivision parameter would benx = �([i=1::nPx(oi))=�i=1::n(Px(oi)),
wherePx is the projection ofoi on thex�axis and� is the Lebesgue measure (in this case length). This is the
measure of the overlappings along an axis, i.e., the length of the union of the projections divided by the average
length of the projections. Unfortunately, for some setsO this can givenx = ny = nz = O(n) resulting in
O(n3) buckets. Such memory cost would render the structure unusable in practice. The previously described
3
p criterion is therefore used: the gridding of a cluster ofn objects contains exactlyn voxels. An exception is
made for cluster containing the largest object where experiments have shown that2n voxels lead to a substantial
improvement. Determining optimalnx; ny; nz remains an open problem.
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2.3. Creating the Hierarchy of Grids

Suppose that we have now filtered the items ofO and the clusters of all the non-empty levels have been
computed. In addition for each cluster the subdivision parameters have been determined. We also create a
single cluster, calledWorld, the bounding box of which contains the objects of the higher level of the filter
(large objects) and which also covers all the bounding boxes of lower levels clusters. The construction of the
HUG is given below, performed top-down for the filter levels. This must be not be confused with the top-
down adaptive subdivision of recursive grids and octrees, which completely determines the form of those data
structures. For theHUG, the bottom-up filtering and clustering define the form of the structure.

2.3.1. Algorithm

Algorithm
proc CreateHUG

create the highest level cluster gridding and store its objects
for all the others filter levels, in decreasing orderdo

for each cluster of the leveldo
create the cluster gridding and store its objects
recursively insert this gridding in the hierarchy

od
od.

Let us consider the following example where the filter has 3 levels, levels 1, 2 and 3 respectively containing
the clusters 1a and 1b, 2 and 3 (the grids are represented with continuous lines, and the items stored in each
grid in dashed lines), shown in Figure 9.

Figure 8: Some level 0 clusters in kitchen

1b

3

2

1a

Figure 9:HUG construction

- We first create grid 3, which contains the whole scene.
- Next we create grid 2. A pointer towards grid 2 is inserted in each voxel it intersects.
- Next grid 1a. Since it intersects voxel (3,2) of grid 3, which contains a sub-grid, we try to insert grid 1a into

the subgrid (grid 2). Since grid 1a is contained in grid 2, we store a pointer towards 1a in voxels (2,1) and
(2,2) of grid 2 and return.

- Finally grid 1b. Since voxel (4,2) of grid 3 already contains a sub-grid, we try the recursiveinsertion. But
grid 2 does not contain grid 1b and we set a pointer towards 1b in voxel (3,2) of grid 2 and voxel (4,2) of
grid 3.

2.3.2. Traversal of the structure for ray-casting

The traversal of theHUG is performed as follows. When a ray enters the gridWorld, the starting voxel is found
in the same manner as for uniform grids9. First we intersect the ray with every object contained in this voxel,
and we then recursively visit each subgrid referenced in this voxel. After returning from the recursion we visit
the next voxel along the ray path. Note that if an intersection is found the ray-traversal will stop in the same
manner as for uniform grids.
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3. Implementation, Results and Comparative Study

We have fully implemented the filtering, clustering and hierarchical construction of theHUG. In addition
we have implemented recursive grids and simulated octrees in the same manner as Jevans and Wyvill11. The
environment used wasOORT, which is a public domain ray-tracer26, using the uniform grid implementation
of Amanatides and Woo9 adapted to C++. It must be noted that once uniform grids were adapted to C++,
the implementation of recursive grids and octrees was performed simply by creating a subclass. The complete
filtering and clustering algorithms are also relatively simple to implement, with the entire source forthese
operations being less than 1500 lines of C++. Thus, given access to an existing ray-tracer already containing
regular grids, implementing theHUG is a relatively simple endeavour.

Finally, since the same code base was used for the three kinds of hierarchies (recursive grids, octrees,HUG),
the performance comparisons are ”fair”.

Figure 10: (a) A close-up view of the kitchen scene (b) 6 kitchens

3.1. Experiments

We used two sets of test scenes, constructed from a main model of kitchen:
(1) A kitchen with additional detail objects (bowls, teapots and stacks of plates) added to augment the com-
plexity of the scene (the basic model is shown in Figure 10(a)).
(2) A set of rooms of increasing complexity (2, 4, 6 and 8 rooms) obtained by replicating the kitchen, in what
amounts to a building model (see Figure 10(b)). Even though a replicated model is not particularly realistic,
we believe that the essential geometric characteristics of a typical building model are well represented, since
in each room a large amount of detail exists. Even though it may appear that rotating the kitchens with respect
to each other may have generated a more interesting distribution of objects, the resulting clusters would not
change significantly because of our use of minimum distance (see the beginning of Section 2) in the clustering
of bounding boxes. The differences in scale are quite significant, since object lengths vary from .001m to 40m.

The data structures used for comparison with theHUG were the recursive grid and the octree with 3 different
values for MAXP (50, 100 and 150) and theHUG. We do not mention the uniform grid, the rendering time
of which quickly becomes 10 times worse than those of the other data structures. Lastly, the experiments were
run for a 200x200 ray-cast image (no reflections), and the parameters of interest shown above are the rendering
time in seconds, the megabytes used by the data structures, and the ratio�1 = number of voxels / number of
items. The memory usage in megabytes was measured using thesbrk system call. The preprocessing times
(construction of the structures), were of the same order for all the structures.

3.2. Analysis

The experimental results are shown in Figures 11-13. The horizontal axes display the number of polygons in
the scenes used. We first examine the performance of octrees, then recursive grids and finally theHUG.

Octrees. As one can see (3 upper curves of Figures 11(a)-(b)) the rendering times for octrees are worse than the
other structures, while the number of voxels are much smaller than the other data structures. The total amount of
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memory used is however larger. This apparent contradiction is due to severe memory fragmentation problems.
These problems result from the straightforward implementation of octrees in our testbed. It is possible that
the fragmentation could be avoided to a large extent by using a stack of static memory to allocate thelists. In
addition the number of voxels is lower than for other data structures since the percentage ofempty voxels is
much smaller.

On the other hand, despite these considerations concerning memory management, the cause of inferior per-
formance is due to the the depth of the hierarchy: from 10 levels for the ”one kitchen” to about 15-20 for the
”many kitchens.”
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Figure 11: Render time - (a) One kitchen Render time - (b) Many kitchens.
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Figure 12: MBytes - (a) One kitchen and (b) Many kitchens.
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Figure 13: (a) �1 - One kitchen (b)�1 - Many kitchens.

Recursive grids. The intuition given by the one dimensional ”bucket”-like data structures (section 1.2.2) appears
to be verified for the recursive grids: the depth is low (in fact at most 5 in our case). This leads to moderately
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high memory requirements but good computational performance. The value of MAXP affects both memory
and running time: for the first set of scenes (Figure 11(a)), MAXP=50 (recGrid 50) leads to a rendering time
3.5 times faster than MAXP=150 (recGrid 150). For the second set of scenes, the choice of MAXP=50 which
also gives the best rendering time, requires 30% more memory than MAXP=150.

HUG. TheHUG performs well on both sets of scenes, with running times that are between those ofrecGrid 50
and recGrid 150, while always using less memory. As an example, for the largest scene of 300,000 polygons,
theHUG uses 40 MBytes andrecGrid 50uses 60 MBytes. It is interesting to note that on a workstation with
180 Mb of real memory, swapping began to occur for all test runs which are reported to use more than 50Mb.
Thus for the largest of the scenes tested, the only practically usable structure was theHUG. Both octrees and
recursive grids vary significantly depending on the choice of the MAXP parameter, which often leads them to
use significantly more memory and also to display degraded performance.

In summary, we can say theHUG displays stable behaviour both in terms of computational performance
and memory, for both sets of scenes tested. Its memory requirements are the lowest of the 3 data structures
studied (within the limitations of the comparative octree implementation), and its performance is similar to
that of the recursive grids, depending on the choice of the termination condition. Thus the overall benefit of
the new structure is the fact that automatic construction without the need for user-defined parameters provides
consistent, satisfactory performance.
4. Conclusions and Future Work

We believe that the new approach we have presented is the first step in the development of data structures
which have predictable behaviour for very complex scenes without the need for user-tunable parameters. We
first discuss the limitations of the approach as presented and some ideas for future work, and we then summarise
and conclude.
4.1. HUG restrictions and Future Work

Suppose the initial sceneO is composed of two kinds of objects: some big objects that will give the structure of
the biggest grid, and a great many ”small” objects that are so far from one another that the clustering algorithm
will return as many clusters (up to a constant factor) as small objects. In this case, each voxel of the big grid
will contain many references towards small clusters: the cluster and its gridding have been devised for the
items themselves, not for the sub-grids, and if this number is too high, the direct access to the grid structure
is lost. A more general clustering algorithm should therefore be used, for instance computing the Voronoi
diagram of the small objects, a cluster being in this case a connected set of Voronoi cells having approximately
the same volume. More generally, whenever the density of objects and the density of sub-grids in a cluster
are significantly different, two different data structures should be used. It must be noted however that a small
number of uniformly distributed small objects will not affect the performance of the gridWorld.

In addition, finding an optimal (or at least a provably good) value for MAXP is an extremely interesting
avenue of research. The question is however difficult, and will require analysis of scenes based on statistical
properties. It may also be possible to use theHUG, which provides automatic clustering of the input data-set,
in animation and in ”multi-precision” rendering.
4.2. Summary and Conclusion

In this paper we have introduced a novel approach to the construction of a spatial data structure for very
complex scenes. We first group objects of the same size, and then create clusters of neighbouring objects in the
same size group. An appropriately subdivided uniform grid is then placed around each cluster and aHierarchy
of UniformGrids is constructed. We have shown that this construction can be performed efficiently.

The main advantages of the new structure are that: (a) it is fully automatic since it is constructed bottom-up
by grouping objects and thus does not require the determination of any user-tunable parameters or termination
conditions (b) it adapts well to very complex scenes without problems of memory usage other structures have
when built for complex scenes and (c) it provides a good compromise between speed and memory usage since
it uses less memory overall than all other structures (given the limitations of the comparative implementation)
and performs satisfactorily in terms of execution speed.
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Abstract
We introduce a new data structure in the form of a light hierarchy for efficiently ray-tracing scenes with many
light sources. An octree is constructed with the point light sources in a scene. Each node represents all the light
sources it contains by means of a virtual light source. We determine bounds on the error committed with this
approximation to shade a point, both for the cases of diffuse and specular reflections. These bounds are then used
to guide a hierarchical shading algorithm. If the current level of the light hierarchy provides shading of sufficient
quality, the approximation is used, thus avoiding the cost of shading for all the light sources contained below this
level. Otherwise the descent into the light hierarchy continues.

Our approach has been implemented for scenes without occlusion. The results show important acceleration
compared to standard ray-tracing (up to 90 times faster) and an important improvement compared to Ward’s
adaptive shadow testing.

Keywords: Image synthesis, rendering, ray-tracing, hi-
erarchy, illumination, reflection, Phong, bounds, clustering,
octree.

1. Introduction

Realistic rendering has been a major goal of computer
graphics from its very outset. Many powerful rendering ap-
proaches such as ray-tracing1, radiosity-based methods2; 3,
and stochastic ray-tracing or Monte Carlo methods4 have
been presented over the last two decades, resulting in im-
ages of impressive realism. For most existing commercial
rendering systems (for animations, film special effects, post-
production, advertising, etc.), ray-tracing remains the ren-
dering algorithm of choice. In such environments, scenes
containing a large number of geometric primitives as well
as a large number of light sources are common. Everyday
scenes with a large number of light sources include shopping
malls, chandeliers, city streets at night, etc. In addition, more

§ iMAGIS is a joint research project of CNRS/INRIA/UJF/INPG.

complex light sources such as extended area sources, shades
over a light source, or special sources to simulate flames are
often required; they are typically approximated as a large
collection of simpler point light sources.

The rendering of these scenes is a challenge to computer
graphics, due to the number of light sources and the com-
plex illumination that results, especially when we consider
their combined rather than individual effect. In this paper
we address the problem of efficient rendering of such scenes
by introducing a new data structure, representing the light
sources by a light hierarchy.

1.1. Motivation

Despite advances in the treatment of scenes containing a
large number of geometric primitives using spatial subdi-
vision techniques (octrees5, grids6, hierarchies of bounding
volumes7, etc.), little has been done to accelerate ray-tracing
of scenes with many light sources.

For scenes with hundreds or thousands of light sources,
shading and shadowing calculations (rays sent to the light
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sources) quickly become the dominant cost of the rendering
process. As a result, lighting designers and other users of
rendering systems are forced to crudely approximate inter-
esting and complex lighting behavior with only a very small
number of simple light sources.

The work on spatial subdivision and hierarchical algo-
rithms for lighting calculations8, hierarchical approaches
coupled with clustering9; 10, and spatial subdivision have al-
lowed the acceleration of lighting calculation for scenes con-
taining a large number of polygons. A natural application of
the same hierarchical concepts is the development and use of
the light hierarchy for ray-tracing which we present in this
paper.

1.2. Contributions

The goal of our approach is twofold: to provide efficient ray-
tracing of scenes with many light sources with minimum loss
of image quality, and to provide an intuitive quality param-
eter based on consistent error bounds for all the approxima-
tions made.

To achieve this goal in a comprehensive manner, we have
restricted our attention to direct illumination from point light
sources using lambertian (diffuse) and Phong11 (specular)
reflection models. Such assumptions are common in most
commercial uses of ray-tracing systems.

Our solution involves the development of error bounds to
evaluate the maximum potential error produced by the ap-
proximation. In this paper, we develop an algorithm which
exploits the hierarchy and the bounds for the shading under
direct illumination of scenes without occlusion. The results
of our algorithm in this context (see Section 5) show that
our light hierarchy significantly speeds up shading for scenes
with many light sources.

It is interesting to note that in computer graphics research,
an initial solution to an illumination problem is often pre-
sented for the unoccluded case (e.g., for radiosity12 or hier-
archical radiosity13), which then led to complete solutions
including shadows (hemi-cube radiosity14 and hierarchical
radiosity with shadows8). The study and introduction of a
comprehensive solution without occlusion is an important
step in the necessary understanding of the problem, leading
subsequently to an algorithm including shadows.

For a given 3D point being shaded, traversal of the light
hierarchy allows us to determine the effect on shading of
intermediate nodes (representing potentially large numbers
of light sources contained beneath the current level of the
light hierarchy). As a consequence, we can completely avoid
shadowing calculations for certain such nodes (i.e., avoiding
shadowing for many light sources), or identify those light
sources or sets of light sources which have the largest im-
pact on final shading. To better underline the potential of our
approach, after presenting the algorithm and the results of

the implementation, we will also discuss our ideas on the
treatment of shadows in Section 6.

2. Previous and Related Work

There is an extensive literature on the research dedicated to
speeding up shadow calculations using spatial coherence and
subdivision.15 Most of these approaches however are highly
dependent on the number of light sources, and are thus un-
suitable for scenes with many light sources.

Some algorithms have nonetheless addressed the case of
scenes with many light sources. Bergeron16 defines a sphere
of influence around each point light source. The radius of
each sphere is related to its light source intensity. Any ob-
ject outside a sphere of influence can ignore the contribution
of this point light source for both shading and shadowing.
This method is efficient in many cases, but will fail for nu-
merous light sources of low intensity because of the smaller
radius of the spheres. Objects outside these spheres will ig-
nore them all, even though the combined contribution of all
light sources together may produce an important illumina-
tion effect. Another such situation occurs when several point
light sources are used to simulate a complex light source.
Improving the approximation typically requires increasing
the number of point light sources, each of them individually
emitting a smaller proportion of the complex light global in-
tensity. With spheres of influence, the radii would then re-
duce, and the overall scene illumination would decrease as
the complex light representation would be improved. This is
illustrated in Fig. 1.

incorrect illumination

Figure 1: Problem associated with the spheres of influence

Ward17 presents a different approach where a sorted list
of light source contributions is maintained. The main idea
is to calculate the potential contribution of each light source
at every point to shade (without considering visibility), and
to use this estimation to sort the list of light sources. The
ordered list is traversed and thus the real contribution (in-
cluding visibility calculation) of the most important light
sources is computed first. If the sum of the potential contri-
butions of the remaining light sources is smaller than a pre-
determined percentage of the sum of all real contributions
computed so far, the traversal stops. This method performs
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SceneHierarchy

cluster:

virtual light:

empty cluster:

Figure 2: Example of light hierarchy

well for a moderate number of light sources, and is the most
suitable algorithm to date for the treatment of scenes with
many sources. However as the number of light sources in-
creases, the cost of sorting the contributions (at each pixel)
of all these light sources can become an important factor
of the total rendering cost for scenes where the geometri-
cal complexity is smaller than the illumination complexity.
An extensive comparison of our approach to that of Ward’s
is presented in Section 5.

Shirley et al.4 divide light sources into two categories:
bright (important) and dim (less important). This selection
is performed as a preprocess, and is based on an approach
similar to the sphere of influence. A sampling probability
is then assigned to each bright light source, and a unique
probability is assigned to all the dim light sources. If a large
number of rays are shot per pixel, this method can be very ef-
fective. However, as with all Monte Carlo approaches, noise
due to insufficient sampling can appear in the rendered im-
ages. Moreover, since the dim light source to be sampled
is chosen randomly, an unsuitable partitioning into dim and
bright light sources can greatly increase the amount of noise.

In radiosity-based methods, work has been performed in
clustering objects for light-transfer calculations9; 10. These
methods do not treat light sources separately, since they at-
tempt to treat global illumination, and thus any surface is a
light source in later iterations. As a consequence, these meth-
ods typically will not perform very well, since (primary)
light sources are often clustered with the other objects of the
scene, and no light-specific hierarchy is actually built.

Houle and Fiume18 store an emission map in a multi-
resolution structure (quadtree) to efficiently resample a con-
tinuously varying emission distribution. However this struc-
ture is only valid over a 2D planar surface, and as such can-
not easily be extended for independent light sources arbi-

trarily distributed in 3D space without losing its hierarchical
nature.

Stam and Fiume19 simulate flames with a set of multi-
resolution particles. To shade a point illuminated by their
flames, the illumination is computed at two adjacent levels
of the flame hierarchy, starting from the top. When the differ-
ence in illumination is larger than a preset threshold, the pro-
cess continues at the immediately superior resolution. This
hierarchical structure is efficient for flames consisting of a
large number of particles. An early stop can however occur
when the difference between two adjacent levels is small, but
would be significant with a higher resolution. This is due to
the fact that no bound on the approximation is provided.

3. Hierarchy of Point Light Sources

As mentioned in the introduction, a hierarchical data struc-
ture representing the point light sources in the scene is re-
quired to achieve our goals of efficient and consistent treat-
ment of scenes with many light sources.

3.1. Octree Light Hierarchy

We have chosen to encode the light sources in an octree
structure for the simplicity and compactness of its represen-
tation and its hierarchical nature.

The light hierarchy is stored separately from the ray-
tracing acceleration structure used for the ray-object inter-
sections (in our case also an octree). This choice has the ad-
vantage of creating a tighter bounding box around the light
sources. The disadvantage resides in the fact that interac-
tion between objects and light sources has to be treated sep-
arately. For the needs of our algorithm, we have found this
solution to be satisfactory.

The leaf nodes of the octree store zero, one, or more point
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light sources. Intermediate nodes are composed of eight chil-
dren nodes. Every node keeps an approximate representation
of the light sources contained at the current or at lower levels.
In particular,virtual light sourcesstored at the nodes repre-
sent the set of light sources contained beneath this node. In
Fig. 2, we show an example of such a point light hierarchy.

3.2. Light Hierarchy Construction

The creation of the light hierarchy begins by finding the axis-
aligned bounding box of all the point light sources in the
scene. This box is the root of our hierarchy. The hierarchy is
subsequently subdivided in an octree fashion, until each un-
subdivided octree cell contains less than a preset maximum
number of light sources or a maximum subdivision depth is
reached.

Once the octree has been subdivided, we proceed with the
calculation of the representation of the virtual light sources.
The virtual light source is simply a point light source, placed
at a position corresponding to the weighted average of the
light sources it represents. The weights are proportional to
intensity of each real or virtual point light source over the
sum of these intensities.

For tighter bounds on the approximation errors explained
in the next section, we compute at each node of the octree
the smallest axis-aligned bounding box of all the point light
sources it represents. We call it theminimal bounding box.
Table 1 summarizes this construction.

4. Shading with the Hierarchical Light Structure

Once the light hierarchy is built, the goal is to develop an al-
gorithm allowing us to use the approximate representations
(virtual light sources) where appropriate. We will thus avoid
the cost of shading (and potentially shadowing) with each
light source in the scene. To achieve this goal we need cri-
teria allowing us to choose when the approximate shading
gives a satisfactory result, thus permitting us to terminate
our descent into the light hierarchy.

In what follows we first present some necessary prelim-
inaries on shading for ray-tracing, and then proceed to de-
scribe the error bounds developed for the diffuse and specu-
lar cases. These error bounds are then used as the criteria to
perform the actual shading. The algorithms for the shading
are described for each case.

4.1. Preliminaries

A common shading formulation divides the reflection as a
combination of diffuse (pure lambertian) reflection and spec-
ular (directional) reflection. One such popular model sug-
gested by Phong11 is shown in Fig. 3, and can be expressed
as

I =
m

∑
i=1

Si fatti Ii
�

kd(~N �~Li)+ks(~Ri �~E)
n
�

(1)

where
I = light radiance going from the light to the viewer

and passing byp,
i = ith light source,

m = number of light sources,
S= visibility factor of the light source,

fatt= attenuation of light from the light source,
Ii = intensity of light sourcei,

kd = diffuse reflection coefficient of the surface,
~N = surface normal atp,
~L = vector fromp to the light source,
ks = specular reflection coefficient of the surface,
~R = mirror reflection of the vector~L at p with

respect to~N,
~E = vector fromp towards viewer,
n = roughness coefficient.

All the vectors are normalized.

We first derive some bounds for the diffuse reflection, and
then present the bounds for the specular reflection.

4.2. Diffuse Reflection

We slightly simplify the formulation for clarity, replacing the
termsS= 1 (unoccluded case) andfatt = 1=d2 whered is the
distance from the light source to pointp. We also replace the
dot products using the identities :

cos(θ) = ~N �~L

cos(θi) = ~N �~Li

The light reflected by a diffuse surface illuminated bym
point light sources can be computed as:

I =
m

∑
i=1

Ii
1

d2
i

kd cos(θi) : (2)

By taking a single virtual point light source approximating
all m point light sources, we compute:

Iapprox=

 
m

∑
i=1

Ii

!
1
d2 kd cos(θ) : (3)

N
L

R

E
p

Figure 3: Phong reflection model
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Intensity Iv = ∑m
i=1 Ii

Position Pv = (∑m
i=1 PikIik1)=(∑m

i=1kIik1)

Dispersion Bmin= AxisAlignedBox((min(Pxi);min(Pyi);min(Pzi));
(max(Pxi);max(Pyi);max(Pzi)) )

Table 1: Cluster attributes

4.2.1. Error Bound for the Diffuse Model

Given the expressions of the exact and the approximate il-
lumination at a point, we need to develop a bound on the
error committed by the approximation. This bound must be
tight and efficient to evaluate so it can guide a hierarchical
shading algorithm at a reasonable cost. In particular, we are
looking for a function∆Iabs such that for any point to shade

∆Iabs� jI � Iapproxj :

To derive a suitable expression, we first define a few vari-
ables:

∆di = di �d

∆θi = θi �θ
∆dmax= diag

∆θmax= arctan
�

∆dmax
d�∆dmax

�
wherediag is the largest diagonal of the minimal bounding
box at a node of the light octree. These quantities are illus-
trated in Fig. 4 and 5.

L

E
p

N

d

Li

di

i

Figure 4: Important quantities for the diffuse reflection
model

The following inequalities can then be applied to derive
the desired bound:

0� ∆dmax< d

(0;0;0) � kd; Ii

0� θ;θi � π=2

0� cos(θ);cos(θi)� 1:

minimal axis-aligned
bounding box

voxel

p

max

dmax
d

Figure 5: Bounds on the quantities related to a cluster

By bounding the approximate intensity between a mini-
mal and a maximal intensity,Imin andImax, ∆Iabs becomes:

∆Iabs= max(Iapprox� Imin; Imax� Iapprox) :

The derivation of the bound from these equations and in-
equalities is given in Appendix A. The bound on the error
produced by approximating the diffuse reflection at a point
p by a single virtual point light source at a node of our octree
structure is:

∆Iabs= kdIvmax

�
cos(θ)

d2 �
max(0;cos(θ)�∆θmax)

(d+∆dmax)
2 ;

min(1;cos(θ)+∆θmax)

(d�∆dmax)
2 �

cos(θ)
d2

�
: (4)

The cost of computing this error and the actual illumina-
tion using the virtual light source is about the same as that
of computing the illumination due to three to four point light
sources. The bound is therefore useful when the approxima-
tion replaces the evaluation of the illumination from at least
three point light sources.

4.2.2. Diffuse Shading using the Light Hierarchy

Equation 4 tells us when a node of the light hierarchy is
below the desired threshold. This means the virtual light
source associated with this node could replace all the point
light sources below this node. However if the traversal of the
light hierarchy stops at several nodes, while each individual
bound can be below the threshold, their sum might not be.

If the sum of the errors associated with the voxels stored in
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the error list is greater than the threshold, we treat the nodes
with the highest error at a lower level. We continue this pro-
cess until the sum of the errors is below the threshold. This
way we ensure that our absolute error bound is respected.

The algorithm in Fig. 6 illustrates how the light hierarchy
is used to compute the shading.

HierarchicalIllumination( Point p, Voxel v )
{
if v.Empty()
return( 0 )

if v.NumberOfSources()� 3
return( SimpleIllumination( p, v.sources ) )

EvaluateIv;kd;d;∆dmax;θ;∆θmax from p and v.

if ∆dmax> d
// We cannot evaluate our bound if∆dmax> d.
return( IlluminationAtLowerLevel( p, v ) )

error = DiffuseBound(Iv;kd;d;∆dmax;θ;∆θmax)

// Compare with diffuse error threshold
if error< Tdiffuse

AddToErrorList( v, error )
return( 0 )

else
return( IlluminationAtLowerLevel( p, v ) )

}

IlluminationAtLowerLevel( Point p, Voxel v )
{
if v.Subdivided()
8 v.voxelChild

sum += HierarchicalIllumination( p, v.voxelChild )
return( sum )

else
return( SimpleIllumination( p, v.sources ) )

}

Figure 6: Illumination algorithm using light hierarchy for
diffuse surfaces

4.3. Specular Reflection

Specular reflection is mostly associated with highlights on
surfaces. The light reflected by a specular surface illumi-
nated bym point light sources can be computed as:

I =
m

∑
i=1

Ii
1

d2
i

kscosn(αi) : (5)

Phong specular reflection has the form of a specular lobe
cosn(α), wheren controls the “eccentricity” of the lobe. The
larger the value ofn, the smaller the simulated roughness of
the surface, and the sharper and narrower the highlights.

We consider here specular reflections off surfaces with a

high roughness coefficient (values ofn > 20). Specular re-
flections with a low roughness coefficient could be handled
with an algorithm similar to the diffuse one.

For specular surfaces with a high roughness coefficient,
typically very few light sources will contribute significantly
to the illumination at a particular point. We can therefore
use the light hierarchy to quickly identify the important light
sources. Our approach is based on computing the maximal
potential contribution of a voxel of light sources. Only those
voxels with a potential contribution greater than a specified
specular thresholdTspecwill be treated at a finer level.

4.3.1. Error Bound for the Specular Model

We need to compute the maximal potential contribution of
a voxel. It is derived from the Phong equation in a similar
way to that of the diffuse error bound. Again, the complete
derivation of this bound is given in Appendix A. The maxi-
mal specular contribution corresponds to

maxC= Ivks
(min(cos(α)+∆αmax;1))n

(d�∆dmax)
2 (6)

where∆αmax is computed in the same way as∆θmax and
cos(α) = ~R�~E.

4.3.2. Specular Shading using the Light Hierarchy

Starting at the root of the light hierarchy, if the maximal po-
tential contribution of a voxel is greater thanTspec, we open
that voxel and treat its children. If the potential contribution
is belowTspec, we add the voxel to the list of ignored con-
tributions. After the traversal of the light hierarchy is com-
pleted, we check the list of ignored contributions to ensure
that its sum is lower thanTspec. As for the diffuse reflection,
we then recompute the hierarchical illumination of the nodes
with the larger maximal contribution at a lower level. This
process is repeated until the sum of the ignored contribu-
tions is lower thanTspec. When the threshold is respected, the
maximal error present in the image will be equal or smaller
to it. Choosing a very smallTspec results in no visual arti-
facts.

Instead of ignoring the contributions of these voxels, we
could adopt an approach similar to Ward17, and add an ap-
proximation of the contribution of these voxels based on the
illumination of their virtual light sources. This way, the re-
sulting error would be smaller and we could use a larger
threshold resulting in greater speedups. While reducing the
error, this would not change the value of the bound. The av-
erage error would be smaller, but the maximal error would
stay the same.

4.4. Combined Diffuse and Specular Reflections

To handle surfaces with both diffuse and specular reflec-
tions, the two algorithms are mainly executed independently.
Some calculations as well as the traversal of the hierarchy
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are shared, but the main parts of the algorithms are treated
separately. The rendering times are a little less than the sim-
ple sum of both times, but are still proportional to it.

5. Results

5.1. Basic Test Scenes

We have developed a set of test scenes which allows us
to evaluate our approach in several different configurations,
while keeping a low intersection cost between rays and the
scene made of only a few polygons. The three main scenes
treated are shown in the following (the names subsequently
used are in quotes): the first is an image of “Light Strings”
lighting a street (Fig. 7(a)); the second is a scene lit by light
sources forming the “U de M” logo (Fig. 7(b)); and the last
is a simple scene illuminated by a “Cluster” of light sources
(Fig. 7(c)). The rendering of this last scene is done with the
camera on the left, just behind the light sources. In our tests,
the rendering of this scene occurs with the light sources be-
ing invisible. All the light sources in one scene have equal
intensities.

We present results on variations of these scenes containing
a number of light sources ranging from 64 to 16384. This is
done by increasing the density of the light sources in each
case.

For all the specular tests, the roughness factor we use is
n= 200.

In the result tables presented below, we show the cost of
standard ray-tracing with octree acceleration (RT), the cost
of Ward’s (Ward ) method17, the cost of the light hierarchy
method (LH ), and the speedup achieved by our method over
the ray-tracing method (SU). Our implementation of Ward’s
method is slightly different than the one presented in his
paper17 to ensure that, as with our algorithm, it has an ab-
solute error bound.

For each test, the error thresholds (diffuse and specular)
we use are 1% RGB or(2:55;2:55;2:55) RGB for images
quantized in[0::255]. Since the actual error is smaller than
the threshold, the test runs result in images that are visually
indistinguishable from those computed with the traditional
ray-tracing. The maximal observed error at a pixel is(1;1;1)
RGB for all the images and the average pixel error is negli-
gible since it is less than(0:02;0:02;0:02) RGB.

5.2. Diffuse Case

In Table 2 we present the results of our algorithm for dif-
fuse surfaces. Compared to standard ray-tracing, we see that
the light hierarchy achieves important speedups (up to 90
times faster). For a high number of light sources (greater
than 1024), we are consistently faster than Ward’s method.
It should be noted that with Ward’s method, the increase in
rendering time does not seem to be logarithmic. In compari-
son, our method shows a logarithmic increase in time for the

Light StringsandU de M scenes, as can be seen in Fig. 8.
The more linear behavior of theClusterscene indicates that

            

Figure 8: Logarithmic behavior of the light hierarchy
method

for this scene, more light sources are required before reach-
ing the “plateau” part of the logarithmic curve.

Scene RT Ward LH SU

Light Strings
64 lights 11.4 70.2% 91.2% 1.1

256 lights 87.5 70.3% 73.5% 1.4
1024 lights 550.6 68.3% 42.4% 2.4
4096 lights 2716.3 70.8% 18.4% 5.4

16384 lights 13157.1 72.5% 5.7% 17.6
U de M

64 lights 14.8 64.9% 85.1% 1.2
256 lights 108.6 60.0% 44.4% 2.3

1024 lights 632.6 57.8% 16.2% 6.2
4096 lights 3114.9 58.7% 4.2% 23.6

16384 lights 14609.3 59.5% 1.1% 90.1
Cluster

64 lights 8.6 107.0% 95.3% 1.0
256 lights 33.9 112.4% 90.9% 1.1

1024 lights 136.1 119.6% 74.1% 1.3
4096 lights 545.5 127.6% 47.0% 2.1

16384 lights 2179.6 135.6% 33.5% 3.0

Table 2: Results for the algorithm treating diffuse surfaces.
All timings in seconds on a R10000 SGI computer. Notice
how our method (LH) outperforms Ward’s approach as the
number of light sources increases.

5.3. Specular Case

In Table 3 we present the results of our algorithm for the
cases above using the specular algorithm. We see that the
light hierarchy achieves an impressive speedup compared to
simple ray-tracing (at least 6.4 times faster), and that it is
always faster than both the ray-tracing and Ward’s method.
Compared to Ward’s approach we also achieve significant
speedup: up 32 times faster.
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(a) “Light Strings”

            

(b) “U de M”

            

(c) “Cluster”

Figure 7: The three different test scenes

Scene RT Ward LH SU

Light Strings
64 lights 12.8 26.6% 15.6% 6.4

256 lights 93.5 17.2% 8.3% 12.0
1024 lights 575.4 13.1% 6.3% 15.8
4096 lights 2815.3 12.3% 5.0% 20.1

16384 lights 13549.3 11.5% 3.9% 26.0
U de M

64 lights 17.1 25.1% 7.0% 14.2
256 lights 117.9 16.1% 3.1% 32.8

1024 lights 670.2 12.5% 1.8% 55.4
4096 lights 3261.5 11.5% 1.3% 76.4

16384 lights 15195.3 11.0% 1.1% 91.6
Cluster

64 lights 10.4 39.4% 5.8% 17.3
256 lights 41.0 43.7% 3.4% 29.3

1024 lights 164.1 49.7% 2.6% 39.1
4096 lights 656.7 56.0% 2.3% 43.8

16384 lights 2632.3 62.4% 1.9% 51.6

Table 3: Results for the algorithm treating specular sur-
faces. All timings in seconds on a R10000 SGI computer.
Notice how our method (LH) outperforms Ward’s approach
everywhere.

5.4. Discussion of Results

Overall, from tables 2 and 3 we see that the light hierarchy
can provide a very important speedup in computation times
compared to Ward’s approach and to ray-tracing.

The difference in speedup provided by the diffuse and
specular algorithms is explained by the fact that, for highly

specular surfaces, no shading computations need to be done
for many of the pixels. For the diffuse case, most of the pix-
els have a large illumination value thus a large error to com-
pensate by using lower levels. Using lower levels demands
more work since we need to process more virtual or real light
sources.

The Clusterscene shows less interesting results than the
two other scenes for the diffuse case. As said before, more
light sources are needed to reach the “plateau” part of the
logarithmic curve. This result seems surprising for a scene
with so well placed light sources. In fact, the light sources
are not so well placed. They reside in a small cube, but in
that cube, they are almost uniformly distributed. This results
in a hierarchy that is extremely well balanced, with most of
its nodes at a particular level containing the same number
of light sources. This obviously results in a hierarchy with
fewer levels. When using the hierarchical rendering, we will
be often forced to completely calculate the illumination of
a node since we do not have a finer representation for it.
Uniform distribution of light sources also means that for a
given level, we will have many nodes with few light sources
compared to many light sources in few (non-empty) nodes
if the distribution of light sources is not uniform (as in the
Light StringsandU de M scenes). For the same number of
light sources, we will have to sum the potential error of many
voxels for theClusterscene compared to theLight Strings
andU de Mscenes.

It is interesting to look at what happens when we increase
the threshold. As it increases, voxels higher in the hierarchy
are used to compute the shading. At a certain point, the re-
sulting illumination shows discontinuities due to the choice
of different levels of the hierarchy. Fig. 9 shows the resulting
artifacts. To reduce these discontinuities, linear interpolation
between the two levels could be used instead. The thresh-
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(a) Rendering

            

(b) Error

Figure 9: Artifacts related to the increase of the diffuse threshold. (a) is the actual image while (b) is the error image. The
intensity and contrast of the error image have been adjusted such that black represents no error and white the maximal error
that occured in this image, (59, 59, 59) RGB.

old we are using for our tests can still be increased without
resulting in the artifacts present in Fig. 9. While keeping a
maximal error of (1, 1, 1) RGB, we can increase the thresh-
old to cut the rendering time of our tests by half. If fact, our
threshold is approximately ten times greater than the actual
(maximal) error. This is obviously conservative, but tolera-
ble. Increasing the threshold increases the potential error in
the image and the rendering speed. Fig. 9 for example, shows
a speed up of ten compared to simple ray tracing with only
64 light sources. This is about 9 times faster than the result
of Table 2.

6. Possible Extensions to Handle Occlusions

As mentioned in the introduction, the algorithms and data
structures we present here treat the case of unoccluded illu-
mination only. The goal of our paper is thus to present the
principles of the light hierarchy and demonstrate, through
experimental results, that the potential for speedup is very
important. Nonetheless, it is clear that the utility of the light
hierarchy will be much more widespread when occlusion is
treated completely. For this reason, we present next our first
ideas on the treatment of shadows.

We also list other improvements to the algorithms pre-
sented as well as interesting new research directions.

6.1. Treating Shadows

The work presented here shows very encouraging results for
illumination without occlusion. In the presence of shadows,

one can only hope to have more important gains from the
use of the light hierarchy, since the cost of each light ray is
multiplied by the cost of the actual ray intersection with the
scene.

Even though our error bounds do not include shadow
information, the maximum contribution (upper bound) is
nonetheless valid, since shadowing can only reduce this con-
tribution. We can thus use our hierarchical illumination al-
gorithm as a basis of a solution for shadows. The problems
of determining a lower bound, or at least an estimate of the
minimum contribution, as well as the more delicate issue of
preservation of shadow shapes have to be treated separately.

6.1.1. Volumetric Soft Shadows

An approach for using the light hierarchy for scenes with
shadows could consist in using the hierarchy when a cluster
of light sources is entirely visible from a given 3D point to
shade. To do this, we need to make a decision on whether a
voxel of the light hierarchy at a given level is completely un-
occluded, completely occluded, or partially visible from the
3D point. In the first case, we use the algorithms presented
above in Section 3; in the second case we do not need to
shade at all; for the partially visible case, we must descend
into the light hierarchy.

Algorithms for consistent visibility determination have
been presented for other problems (e.g., shafts by Haines and
Wallace20, or conservative triage by Teller and Hanrahan21).
What is unclear for these approaches is whether the cost of
the visibility determination would make the gains of the light
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hierarchy negligible or even useless. This research direction
is nonetheless worthy of further investigation.

As an alternative, we can use an approximation to visibil-
ity determination by using the ideas presented in the work of
Sillion22 on volumetric visibility. Without going into details,
we can represent the visibility characteristics of a cluster by
a set of extinction coefficients, permitting us to avoid ray-
intersections with the contents of the cluster of objects.

6.2. Hierarchy Construction and More General Models

The light hierarchy currently used is constructed very rapidly
since we simply subdivide an octree. It is possible that more
involved clustering approaches, such as that described in the
work of Cazalset al.23, which take into account certain ge-
ometric properties of the items being clustered (in our case
the light sources), could result in improved performance.

The approach described here is not restricted to the sole
use of ray-tracing direct light. The central ideas and concepts
of our approach could be applied to improve on the cluster-
ing of light sources in radiosity-based algorithms.

7. Conclusions

The introduction of a new data structure in the form of a
light hierarchyprovides an efficient solution to the problem
of ray-tracing scenes with many light sources. We have cho-
sen to create an octree hierarchy of the light sources in a
scene which is maintained independently of the rest of the
geometry. Intermediate nodes of the light hierarchy approx-
imate the illumination due to the light sources contained in
the children octree voxels, by means ofvirtual light sources.

Error bounds on the error committed when using the vir-
tual light sources were presented, both for the diffuse and
the specular cases. Based on these bounds, the shading cal-
culation at each visible point is performed by a hierarchical
descent in the light hierarchy. When the descent ceases at a
given hierarchical level, we avoid the cost of shading with
all the light sources contained below that level, resulting in
significant speedup.

To carefully evaluate the ideas and develop a deeper un-
derstanding of the issues involved, we have currently re-
stricted our algorithm to the case of unoccluded scenes. The
results for a set of such test scenes show very encouraging
speedup, of up to 90 times for both diffuse and specular sur-
faces.

We believe that the introduction of the light hierarchy for
ray-tracing, in conjunction with the error bounds and the hi-
erarchical descent open a very promising research direction
for efficient rendering of scenes with many light sources.
The development of the complete solution including shad-
ows could lead to significant acceleration of the rendering
times when scenes with complex geometry would be used.
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Appendix A: Derivation of the bounds

Diffuse bound

We first state few useful rules:

0< y;0< ε) jxj

y >
jxj

y+ε (7)

cos(φ)�1jσj � cos(φ+σ) � cos(φ)+1jσj (8)

cos(θi) =min(1;cos(θi)) = max(0;cos(θi)) : (9)

We approximate the minimal diffuse illumination by:
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The same way, we approximate the maximal diffuse illu-
mination by:
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From there, the bound on the error is the maximum be-
tween Iapprox� Imin and Imax� Iapprox. Re-arranging few
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terms gives:

∆Iabs= kdIv max
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Specular bound

The specular bound is simply an approximation of the max-
imal specular illumination:
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An Efficient Progressive Refinement Strategy for
Hierarchical Radiosity

Nicolas Holzschuch, François Sillion, George Drettakis

iMAGIS / IMAG ?

A detailed study of the performance of hierarchical radiosity is presented, which
confirms that visibility computation is the most expensive operation. Based on the anal-
ysis of the algorithm’s behavior, two improvements are suggested. Lazy evaluation of
the top-level links suppresses most of the initial linking cost, and is consistent with a
progressive refinement strategy. In addition, the reduction of the number of links for
mutually visible areas is made possible by the use of an improved subdivision criterion.
Results show that initial linking can be avoided and the number of links significantly
reduced without noticeable image degradation, making useful images available more
quickly.

1 Introduction

The radiosity method for the simulation of energy exchanges has been used to produce
some of the most realistic synthetic images to date. In particular, its ability to render
global illumination effects makes it the technique of choice for simulating the illumi-
nation of indoor spaces. Since it is based on the subdivision of surfaces using a mesh
and on the calculation of the energy transfers between mesh elements pairs, the basic
radiosity method is inherently a costly algorithm, requiring a quadratic number of form
factors to be computed.

Recent research has focused on reducing the complexity of the radiosity simulation
process. Progressive refinement has been proposed as a possible avenue [1], whereby
form factors are only computed when needed to evaluate the energy transfers from a
given surface, and surfaces are processed in order of importance with respect to the
overall balance of energy. The most significant advance in recent years was probably
the introduction of hierarchical algorithms, which attempt to establish energy transfers
between mesh elements of varying size, thus reducing the subdivision of surfaces and
the total number of form factors computed [4, 5].

Since hierarchical algorithms proceed in a top-down manner, by limiting the sub-
division of input surfaces to what is necessary, they first have to establish a number
of top-level links between input surfaces in an “initial linking” stage. This results in
a quadratic cost with respect to the number of input surfaces, which seriously impairs

? iMAGIS is a joint research project of CNRS/INRIA/UJF/INPG. Postal address: B.P. 53, F-
38041 Grenoble Cedex 9, France. E-mail:Nicolas.Holzschuch@imag.fr.
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the ability of hierarchical radiosity systems to deal with environments of even moder-
ate complexity. Thus a reformulation of the algorithm is necessary in order to be able
to simulate meaningful architectural spaces of medium complexity (several thousands
of input surfaces). To this end the questions that must be addressed are: What energy
transfers are significant? When must they be computed? How can their accuracy be
controlled?

The goal of the research presented here is to extend the hierarchical algorithm into
a more progressive algorithm, by identifying the calculation components that can be
delayed or removed altogether, and establishing improved refinement criteria to avoid
unnecessary subdivision. Careful analysis of the performance of the hierarchical algo-
rithm on a variety of scenes shows that the visibility calculations dominate the overall
compute time.

Two main avenues are explored to reduce the cost of visibility calculations: First, the
cost of initial linking is reduced by delaying the creation of the links between top-level
surfaces until they are potentially significant. In a BF refinement scheme this means for
instance that no link is established between dark surfaces. In addition, a form factor be-
tween surfaces can be so small that it is not worth performing the visibility calculation.

Second, experimental studies show that subdivision is often too high. This is a con-
sequence of the assumption that the error on the form factor is of magnitude comparable
to the form factor itself. In situations of full visibility between surfaces, relatively large
form factors can be computed with good accuracy.

2 Motivation

To study the behaviour of the hierarchical algorithm, we ran the original hierarchical
program [5] on a set of five different interior environments, varying from scenes with
simple to moderate complexity (from 140 to 2355 input polygons). The scenes we used
were built in different research efforts and have markedly different overall geometric
properties. By using these different scenes, we hope to identify general properties of
interior environments. We thus hope to avoid, or at least moderate, the pitfall of unjusti-
fied generalisation that oftens results from the use of a single scene or a class of scenes
with similar properties to characterise algorithm behaviour. The scenes are:“Full of-

Table 1.Description of the five test scenes.

Name n Description

Full Office 170 The original office scene
Dining room 402 A table and four chairs
East room 1006Two desks, six chairs
West room 1647Four desks, ten chairs
Hevea 2355An hevea tree with three light sources
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fice”, which is the original scene used in [5],“Dining room” , which is “Scene 7” of the
standard set of scenes distributed for this workshop,“East room” and “West room”,
which are scenes containing moderately complex desk and chair models, and finally
“Hevea” , a model of a hevea tree in a room. Table 1 gives a short description and the
number of polygonsn for each scene. Please refer to colour section (Figs. 1, 3, 5 and
9-12) for a computed view of the test scenes.

2.1 Visibility

The first important observation we make from running the algorithm on these test scenes
is the quantification of the cost of visibility calculations in the hierarchical algorithm. As
postulated in previous work [9, 6], visibility computation represents a significant pro-
portion of the overall computation time. In the graph shown in Fig. 1, the percentages
of the computation time spent in each of the five main components of the hierarchi-
cal algorithm are presented. “Push-pull” signifies the time spent traversing the quadtree
structure associated with each polygon, “Visibility” is the time spent performing vis-
ibility calculations, both for the initial linking step and subsequent refinement, “Form
Factors” is the time spent performing the actual unoccluded form factor approxima-
tion calculation, “Refine” is the time spent updating the quadtree for refinement, and
finally “Gather” shows the cost of transferring energy across the links created between
quadtree nodes (interior or leaves) [5]. The graph in Fig. 1 shows that visibility calcula-
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Fig. 1. Relative time spent in each procedure.

tions dominate the computation in the hierarchical algorithm2. Of course this is relative
to the algorithm used. A better approach, e.g. with a pre-processing step, as in Teller et
al. [9] could probably reduce the relative importance of visibility.

2 In its current version, the program uses a fixed number of rays to determine the mutual visibility
between two polygons. The cost of visibility computation is thus roughly proportional to the
number of rays used. In the statistics shown here, 16 rays were used, a relatively small number.
Using more rays would increase the percentage of time devoted to visibility tests.
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2.2 Initial Linking

The second important observation concerns the actual cost of the initial linking step. As
mentioned in the introduction, this cost is at least quadratic in the number of polygons,
since each pair of input polygons has to be tested to determine if a link should be
established. Since this step is performed before any transfer has commenced, it is a
purely geometric visibility test, in this instance implemented by ray-casting. The cost
of this test for each polygon pair can vary significantly, depending on the nature of
the scene and the type of ray-casting acceleration structure used. In all the examples
described below, a BSP tree is used to accelerate the ray-casting process.

Table 2.Total computation time and cost of initial linking (in seconds).

Name n Total TimeInitial Linking

Full office 170 301 5.13
Dining room 402 4824 436
East room 1006 587 194
West room 1647 1017 476
Hevea 2355 4253 1597

Table 2 presents timing results for all test scenes. The total computation time is
given for ten steps of the multigridding method described by Hanrahan et al [5].3.

These statistics show that the cost of initial linking grows significantly with the
number of polygons in the scene. The dependence on scene structure is also evident,
since the growth in computation time betweenEast roomandWest roomis actually
sublinear, while on the other hand the growth of the computation time betweenWest
roomandHeveadisplays greater than cubic growth in the number of input polygons.
For all tests of more than a thousand polygons, it is clear that the cost of initial linking
becomes overwhelming. Invoking this cost at the beginning of the illumination com-
putation is particularly undesirable, since a useful image cannot be displayed before
its completion. Finally, we note that recent improvements of the hierarchical radiosity
method by Smits et al. [8] and Lischinski et al. [6] have allowed significant savings in
refinement time, but still rely on the original initial linking stage. Thus initial linking
tends to become the most expensive step of the algorithm4.

Another interesting observation can be made concerning the number of top-level
links (links between input polygons) for which the product BF never becomes greater
than the refinement threshold"refine over the course of the ten refinement steps5. Figure 2

3 The k’th step of the multigridding method is typically implemented as the k’th “bounce” of
light: the first step performs all direct illumination, the second step all secondary illumination,
the third all tertiary illumination etc.

4 For example Lischinski et al. report a refinement time of 16 minutes for an initial linking time
of 2 hours and 16 minutes.

5 This is the" used in the original formulation.
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shows the percentage of such links during the first ten iterations. A remarkably high
percentage of these links never becomes a candidate for refinement: after 10 steps,
between 65% and 95% of the links have not been refined. A significant number of those
links probably have very little impact on the radiosity solution.
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Fig. 2. Percentage of links for which BF does not exceed"refine.

What can be concluded from the above discussion? First, if the initial linking step
can be eliminated at the beginning of the computation, a useful solution becomes avail-
able much more quickly, enhancing the utility of the the hierarchical method. Second, if
the top-level links are only computed when they contribute significantly to the solution,
there is the potential for large computational savings from eliminating a large number
of visibility tests.

2.3 Unnecessary Refinement

The third important observation made when using the hierarchical algorithm is that un-
necessary subdivision is incurred, especially for areas which do not include shadow
boundaries. This observation is more difficult to quantify than the previous two. To
demonstrate the problem we present an image of theDining roomscene, and the cor-
responding mesh (see colour section, Fig. 1 and 2). The simulation parameters were
"refine = 0:5 andMinArea = 0:001.

As can be seen in Fig. 2 in the colour section, the subdivision obtained with these
parameters is such that acceptable representation of the shadows is achieved in the
penumbral areas caused by the table and chairs. However, the subdivision on the walls is
far higher than necessary: the illumination over the wall varies very smoothly and could
thus be represented with a much coarser mesh. In previous work it was already noted
that radiance functions in regions of full illumination can be accurately represented
using a simple mesh based on the structure of illumination [2].

If this unnecessary subdivision is avoided, significant gains can be achieved since
the total number of links will be reduced, saving memory, and since an attendant reduc-
tion of visibility tests will result, saving computation time.
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3 Lazy Evaluation of the Top-level Interactions

In this section a modification of the hierarchical algorithm is proposed, which defers the
creation of links between top-level surfaces until such a link is deemed necessary. The
basic idea is to avoid performing any computation that does not have a sizable impact on
the final solution, in order to concentrate on the most important energy transfers. Thus
it is similar to the rationale behind progressive refinement algorithms. At the same time
it remains consistent with the hierarchical refinement paradigm, whereby computation
is only performed to the extent required by the desired accuracy.

To accomplish this, a criterion must be defined to decide whether a pair of surfaces
should be linked. In our implementation we use a specific threshold"linkon the product
BF. Top-level links are then createdlazily, only once the linking criterion is met during
the course of the simulation.

3.1 Description of the Algorithm

In the original hierarchical radiosity algorithm, two polygons are either mutually in-
visible, and thus do not interact, or at least partially visible from each other and thus
exchange energy. We introduce a second qualification, whereby a pair of polygons is
eitherclassifiedor unclassified. A pair will be markedclassifiedwhen some informa-
tion is available regarding its interaction. Initially, all pairs of polygons are marked as
unclassified.

At each iteration, all unclassified pairs of polygon are considered: First their radios-
ity is compared to"link. If they are bright enough, we check (in constant time) if they are
at least partially facing each other. If not, the pair is marked as classified and no link is
created. If they are facing, we compute an approximation of their form factor, without a
visibility test. If the product of the form factors and the radiosity is still larger than"link,
we mark the pair of polygons as classified, and compute the visibility of the polygons. If
they are visible, a link is created using the form factors and visibility already computed.
Thus a pair of polygons can become classified either when a link is created, or when
the two polygons are determined to be invisible. Figure 3 shows a pseudo-code listing
of both the Initial Linking phase and the Main Loop in the original algorithm [5] and
Fig. 4 gives the equivalent listing in our algorithm.

The threshold"linkused to establish top-levels interactions is not the same as the
threshold used for BF refinement,"refine. The main potential source of error in our algo-
rithm is an incomplete balance of energy. Since energy is transfered across links, any
polygon for which some top-level links have not been created is retaining some energy,
which is not propagated to the environment.

When recursive refinement is terminated because the product BF becomes smaller
than"refine, a link is always established, which carries some fraction of this energy (the
form factor estimate used in the comparison against"refine is an upper bound of the form
factor). On the other hand, when two top-level surfaces are not linked because the prod-
uct BF is smaller than"link, all the corresponding energy is “lost”. It is thus desirable
to select a threshold such that"link < "refine. In the examples shown below we used
"link = "refine=5.
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Initial Linking
for eachpair of polygons(p; q)

if p andq are facing each other
if p andq are at least partially visible from each other

link p andq
Main Loop
for eachpolygonp

foreach link l leavingp
if B � F > "refine

refinel
foreach link l leavingp

gatherl

Fig. 3. The Original Algorithm

Initial Linking
for each pair of polygons(p; q)

record it as unclassified
Main Loop

for eachunclassified pair of polygons(p; q)
if p andq are facing each other

if Bp > "link or Bq > "link

compute the unoccluded FF
if B � F > "link

link p andq
record(p; q) as classified

elserecord(p; q) as classified
for eachpolygonp

for each link l leavingp
if B � F > "refine

refinel
for each link l leavingp

gatherl

Fig. 4. Pseudo-code listing for our algorithm

The classified/unclassified status of all pairs of input surfaces requires the storage
of n(n�1)

2
bits of information. We are currently working on compression techniques to

further reduce this cost6.

3.2 Energy Balance

Since radiosity is mainly used for its ability to model light interreflection, it is important
to maintain energy consistency when modifying the algorithm. An issue raised by the
lazy linking strategy is that “missing” links, those that have not been created because

6 The storage cost for the classified bit represents 62 kb for a thousand surfaces, 25 Mb for
twenty thousand surfaces.
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they were deemed insignificant, do not participate in energy transfers. Thus each gather
step only propagates some of the energy radiated by surfaces.

If the corresponding energy is simply ignored, the main result is that the overall level
of illumination is reduced. However a more disturbing effect can result for surfaces that
have very few (or none) of their links actually established: these surfaces will appear
very dark because they will receive energy only from the few surfaces that are linked
with them.

The solution we advocate in closed scenes is the use of anambient termsimilar to
the one proposed for progressive refinement radiosity [1]. However the distribution of
this ambient term to surfaces must be based on the estimated fraction of their interaction
with the world that is missing from the current set of links. The sum of the form factors
associated with all links leaving a surface gives an estimate of the fraction of this sur-
face’s interactions that is actually represented. Thus, in a closed scene, its complement
to one represents the missing link. Using this estimate to weight the distribution of the
ambient energy, the underestimation of radiosities can be partially corrected: surfaces
that have no links will use the entire ambient term, whereas surfaces with many links
will be only marginally affected.

However, since form factors are based on approximate formulas, the sum of all
form-factors can differ from one, even for a normally linked surface. This comes from
ourBF refinement strategy: we accept that the form-factor on a link between two dark
surfaces be over-estimated, or under-estimated. This may results in energy loss, or cre-
ation. If the error we introduced by not linking some surfaces is of the same order – or
smaller – than the one due to our lack of precision on the form-factor estimation, using
the ambient term will not suffice to correct the energy inbalance.

To quantify the influence of those errors on the overall balance of energy, we com-
pute the following estimate of the incorrect energy:

EET =
X
p

j1� FpjBpAp (1)

whereAp is the area of polygonp, Bp its radiosity andFp the sum of the form factors
on all links leavingp. This can be compared to the total energy present in the scene:

ET =
X
p

BpAp (2)

Figure 5 shows a plot of the ratioEET =ET for theDining Roomscene and theFull
Office, for both the original algorithm and our algorithm. Note that the error can be
significant, but is mainly due to the original algorithm.

4 Reducing the Number of Links

The refinement of a link is based on the estimation of an associated error bound. Various
criteria have been used that correspond to different error metrics, including the error in
the form factor [4], the error in the radiosity transfer [5], and the impact of the error in
the radiosity transfer on the final image [8].
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Fig. 5. Incorrect EnergyEET =ET

All these criteria implicitly assume that the error in the form factor estimate is equiv-
alent to the magnitude of the form factor itself. While this is true for infinitesimal quan-
tities, in many instances it is possible to compute a reasonable estimate of a relatively
large form factor. In particular this is true in situations of full visibility between a pair
of surfaces.

Consider two patchesp andq. A bi-directionnal link between them carries two form
factor estimatesFp;q andFq;p. If we refine the link by dividingp in smaller patchespi
of areaAi (e.g. in a quadtree), the definition of the form factor

Fu;v =
1

Au

Z
Au

Z
Av

G(dAu; dAv)dAudAv (3)

whereG is a geometric function, implies that the new form factors verify:

Fp;q =
1

Ap

 X
i

AiFpi;q

!
(4)

Fq;p =
X
i

Fq;pi (5)

These relations only concern the exact values of the form factors. However they
can be used to compare the new form factor estimates with the old ones, and determine
a posterioriwether refinement was actually required. If the sum of theFq;pi is close
to the oldFq;p, and they are not very different from one another, little precision was
gained by refiningp. Moreover, ifFp;q is close to the average of theFpi;q, and theFpi;q

are not too different from one another, then the refinement process did not introduce
any additional information. In this case we forcep andq to interact at the current level,
since the current estimates of form factors are accurate enough.

In our implementation we only allow reduction of links in situations of full visibility
between surfaces. We compute the relative variation of the children form factors, which
we test against a new threshold"reduce. We also check that the difference between the
old form factorFp;q and the sum of theFpi;q , and the difference betweenFq;p and the
average of theFq;pi are both smaller than"reduce.
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If we noteFu;v our current estimation of the form-factor between two patchesu and
v, and assuming we want to refine a patchp in pi, we note:

Fmin
p;q = mini(Fpi;q) Fmin

q;p = mini(Fq;pi )

Fmax
p;q = maxi(Fpi;q) Fmax

q;p = maxi(Fq;pi )

F 0

p;q =
1
Ap

(
P

iAiFpi;q) F 0

q;p =
P

i Fq;pi

and we refinep if any of the following is true:

Fmax

p;q
�Fmin

p;q

Fmax

p;q

> "reduce

Fmax

q;p
�Fmin

q;p

Fmax

q;p

> "reduce

jF 0

p;q
�Fp;qj

F 0

p;q

> "reduce

jF 0

q;p
�Fq;pj

F 0

q;p

> "reduce

The decision to cancel the subdivision of a link is based purely on geometrical
properties, therefore it is permanent. The link is marked as “un-refinable” for the entire
simulation.

The check whether a link is worth refining involves the computation of form factor
estimates to and from all children of patchp. Thus the associated cost in time is similar
to that of actually performing the subdivision. If a single level of refinement is avoided
by this procedure, there will be little gain in computation time, but the reduction in
the number of links will yield memory savings. But if link reduction happens “early
enough”, several levels of refinement can be avoided. In our test scenes, an implemen-
tation of this algorithm reduced significantly the number of quadtree nodes and links
(see Fig. 6), with a slightly smaller reduction in computation time because of the cost
of the extra form factor estimates (see Fig. 7).

5 Results

5.1 Lazy Linking

Figures 3 in coulour section shows the same scene as in Fig. 1, computed using the
lazy linking strategy of Sect. 3. Note that it is visually indistinguishable from its orig-
inal counterpart. Figure 4 plots the absolute value of the difference between these two
images.

5.2 Reduction of the Number of Links

To measure the performance of the reduction criterion, we computed the ratio of the
number of quadtree nodes (surface elements) obtained with this criterion, to the number
of nodes obtained with the original algorithm. The graph in Fig. 6a plots this ratio
against the number of iterations. Note that an overall reduction by nearly a factor of two
is achieved for all scenes. Figure 6b shows a similar ratio for the number of links. This
global reduction of the number of objects involved leads to a similar reduction of the
memory needed by the algorithm, thus making it more practical for scenes with more
polygons.
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Fig. 6. Percentage of nodes and links left after reduction.

Figure 7 shows the ratio of the computation times using the improved criterion and
the original algorithm. The reduction of the number of links has a dramatic impact on
running times, with speedups of more than50%.
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Fig. 7. Percentage of computation time using link reduction.

Figure 5 and 6 in colour section shows the image obtained after link reduction. Note
the variation in the mesh on the walls, and the similarity of the shaded image with the
ones in Figs. 1 and 3. Figure 7 plots the absolute value of the difference between the
image produced by the original algorithm and the image obtained after link reduction.
Note that part of the differences are due to the lazy linking strategy of Sect. 3. So Fig-
ure 8 shows the difference between lazy linking and reduction of the number of links.

5.3 Overall Performance Gains

Timing results are presented in Table 3. As expected, a significant speedup is achieved,
particularly for complex scenes. For all scenes, ten iterations with lazy linking took less
time to compute than the first iteration alone with the original algorithm. Finally, using
lazy linking and reduction produces a useful image in a matter of minutes even for the
most complex scenes in our set.
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Table 3.Time needed for ten iterations (and time for producing the first image).

Name n Original Algorithmwith Lazy Linking. . . and Reduction

Full office 170 301 s (242 s) 287 s (234 s) 43 s (30 s)
Dining room 402 4824 s (4191 s)4051 s (3911 s)657 s (552 s)
East room 1006 587 s (378 s) 377 s (191 s)193 s (59 s)
West room 16471017 s (752 s) 514 s (277 s)270 s (101 s)
Hevea 23554253 s (2331 s)1526 s (847 s)543 s (122 s)

6 Conclusions and Discussion

We have presented the results of an experimental study conducted on a variety of scenes,
showing that visibility calculations represent the most expensive portion of the compu-
tation. Two improvements of the hierarchical algorithm were proposed. The first modi-
fication creates top-level linkslazily, only when it is established that the proposed link
will have a definite impact on the simulation. With this approach the hierarchical algo-
rithm still remains quadratic in the number of input surfaces, but no work and very little
storage is devoted to the initial linking phase. The resulting algorithm is more progres-
sive in that it produces useful images very quickly. Note that the quadratic cost in the
number of input surfaces can only be removed by clustering methods [7].

An improved subdivision criterion was introduced for situations of full visibility
between surfaces, which allows a significant reduction of the number of links.

Future work will include the simplification of the hierarchical structure due to mul-
tiple sources and subsequent iterations. A surface that has been greatly refined because
it receives a shadow from a given light source can be fully illuminated by a second
source, and the shadow become washed in light.

Better error bounds, both on form factor magnitude and global energy transfers,
should allow even greater reduction of the number of links. Accurate visibility algo-
rithms can be used to this end, by providing exact visibility information between pairs
of surfaces.

7 Acknowledgments

George Drettakis is a post-doc hosted by INRIA and supported by an ERCIM fellow-
ship. The hierarchical radiosity software was built on top of the original program kindly
provided by Pat Hanrahan.

References

1. Cohen, M. F., Chen, S. E., Wallace, J. R., Greenberg, D. P.: A Progressive Refinement Ap-
proach to Fast Radiosity Image Generation.SIGGRAPH(1988) 75–84



Progressive Refinement Strategy for Hierarchical Radiosity 213

2. Drettakis, G., Fiume, E.: Accurate and Consistent Reconstruction of Illumination Functions
Using Structured Sampling. Computer Graphics Forum (Eurographics 1993 Conf. Issue)
273–284

3. Goral, C. M., Torrance, K. E., Greenberg, D. P., Bataille, B.: Modeling the Interaction of
Light Between Diffuse Surfaces.SIGGRAPH(1984) 213–222

4. Hanrahan, P. M., Salzman, D.: A Rapid Hierarchical Radiosity Algorithm for Unoccluded
Environments.Eurographics Workshop on Photosimulation, Realism and Physics in Com-
puter Graphics, June 1990.

5. Hanrahan, P. M., Salzman, D., Auperle, L.: A Rapid Hierarchical Radiosity Algorithm.
SIGGRAPH(1991) 197–206

6. Lischinski, D., Tampieri, F., Greenberg, D. P.: Combining Hierarchical Radiosity andDis-
continuity Meshing.SIGGRAPH(1993)

7. Sillion, F.: Clustering and Volume Scattering for Hierarchical Radiosity calculations.Fifth
Eurographics Workshop on Rendering, Darmstadt, June 1994 (in these proceedings).

8. Smits, B. E., Arvo, J. R., Salesin, D. H.: An Importance-Driven RadiosityAlgorithm. SIG-
GRAPH (1992) 273–282

9. Teller, S. J., Hanrahan, P. M.: Global Visibility Algorithm for Illumination Computations.
SIGGRAPH(1993) 239–246



214 Nicolas Holzschuch, Franc¸ois Sillion, George Drettakis

1. The Original Algorithm 2. The Grid Produced

3. With Lazy Linking 4. Diff. Between 1. and 3. (�8)

5. With Link Reduction 6. The Grid Produced



Progressive Refinement Strategy for Hierarchical Radiosity 215

7. Diff. Between 1. and 5. (�8) 8. Diff. Between 3. and 5. (�8)

9. Full Office 10. East Room

11. West Room 12. Hevea



216



3.5.4 Feature-Based Control of Visibility Error : A Multiresolution Clustering
Algorithm for Global Illumination” (SIGGRAPH’95)

Auteurs : Franc¸ois Sillion et George Drettakis
Actes : Congr`es SIGGRAPH’95
Date : aoˆut 1995

217



218



Feature-based Control of Visibility Error:
A Multi-resolution Clustering Algorithm

for Global Illumination

François Sillion1 George Drettakis2

1CNRS 2ERCIM-INRIA
iMAGIS

B.P. 53, 38041 Grenoble Cedex 9, France.

Abstract

In this paper we introduce a new approach to controlling error in
hierarchical clustering algorithms for radiosity. The new method
ensures that just enough work is done to meet the user’s quality
criteria. To this end the importance of traditionally ignored visi-
bility error is identified, and the concept offeaturesis introduced
as a way to evaluate the quality of an image. A methodology to
evaluate error based on features is presented, which leads to the de-
velopment of amulti-resolution visibilityalgorithm. An algorithm
to construct a suitable hierarchy for clustering and multi-resolution
visibility is also proposed. Results of the implementation show that
the multi-resolution approach has the potential of providing signifi-
cant computational savings depending on the choice of feature size
the user is interested in. They also illustrate the relevance of
the feature-based error analysis. The proposed algorithms are well
suited to the development of interactive lighting simulation systems
since they allow more user control. Two additional mechanisms to
control the quality of a simulation are presented: The evaluation of
internal visibility in a cluster produces more accurate solutions for
a given error bound; a progressive multi-gridding approach is intro-
duced for hierarchical radiosity, allowing continuous refinement of
a solution in an interactive session.
Keywords: Visibility error, Clustering, Feature-based error met-
ric, Multi-resolution visibility, Hierarchical radiosity, Progressive
multi-gridding, Global Illumination.

1 Introduction

Modern global illumination algorithms allow the precise simu-
lation of interreflection effects, penumbrae caused by extended
light sources, and subtle shading variations caused by complex re-
flectance properties [2, 15]. Lighting simulation systems operate
under very tight and often contradictory constraints: users typi-
cally require guaranteed and easily controllable precision levels,
with maximum speed for interactive design. An important goal of
rendering research is thus to enable the user to reduce the solution
error where such reduction is deemed desirable, while at the same
time limiting the time spent to achieve this reduction.

iMAGIS is a joint research project of CNRS, INRIA, INPG and UJF.
Email: [Francois.Sillion|George.Drettakis]@imag.fr.

Unfortunately, the algorithmic complexity of radiosity methods
(quadratic in the number of objects) in effect impairs their use for
scenes containing more than a few thousands objects, while Monte-
Carlo methods are unable to provide low and medium-quality solu-
tions without too much noise. Therefore means must be found to
focus the effort on the most important parts of the calculation.

This paper presents new algorithms and criteria that together al-
low very fine and efficient user control of the perceived quality of
a solution. This is accomplished by first acknowledging the im-
portance ofvisibility error, and using the concept offeaturesto
evaluate the quality of a solution. This leads to the introduction of
multi-resolution visibility, which allows precise control of the qual-
ity vs. time tradeoff. Additional mechanisms are then discussed to
control the quality of a simulation in a working system.

Previous work: error-driven computation and visibility

The introduction of the hierarchical radiosity algorithm [5] was a
major step towards the design of practical lighting simulation sys-
tems. First, it reduces the overall resource requirements for a given
solution. Second, it uses a surface subdivision criterion as an ex-
plicit control mechanism. This criterion embodies the priorities
used to guide the simulation, as it directs the computational effort
to “areas of interest”, introducing a natural tool for error estimation.

Hierarchical radiosity (HR) remains quadratic in the number of
input objects (since each pair of objects must be linked before hi-
erarchical subdivision begins), and therefore is not suited to large
collections of small objects.Clustering, the operation of grouping
objects together into composite objects that can interact, provides a
means to eliminate the quadratic complexity term. Such clustering
can be performed manually [11, 7] or automatically [16, 13].

Historically, subdivision criteria for HR first consisted of simple
bounds on either the form factor or the exchange of radiosity be-
tween two surface patches [5], under the assumption that the error
incurred is proportional to the magnitude of the transfer. Using the
concept of importance these bounds can be made dependent on the
user’s interest for each region [17]. However such bounds tend to
be quite conservative and thus produce unnecessary subdivision [6].

Recent work has attempted to characterize possible sources of
error in global illumination [1], and establish error bounds on ra-
diosity solutions [8]. These error bounds can then be used in the
subdivision criterion of a hierarchical algorithm. Since the estima-
tion of the error is decoupled from that of the actual transfer, sub-
division can be avoided in regions where significant transfers take
place without much error, resulting in better focus of the computa-
tional expense.

Existing error controls however typically ignore visibility as a
possible source of error, or simply increase the error estimate by
a constant factor in situations of partial visibility. Trivial bounds



of 0 (total occlusion) and1 (total visibility) are often used. While
these bounds are always valid, their use results in unnecessary work
being done to narrow down other error bounds by increasing the
subdivision. Global visibility algorithms can be used to exploit
the structure of architectural scenes and produce guaranteed visi-
bility information [18], but they are not suited to large collections
of independent objects. For exchanges between surfaces,disconti-
nuity meshingalso provides explicit visibility information, and in-
deed considerably improves the efficiency of HR [10]. However
for Monte-Carlo or clustering approaches it is either impossible or
impractical to calculate analytic visibility and error bounds must
be used. For exchanges between clusters, an approximate visibility
estimate can be derived using equivalent volume extinction proper-
ties [13], but the error introduced in the process has not yet been
analyzed.

Visibility error is admittedly difficult to evaluate, since the com-
putation of visibility itself is a costly process. Still, controlling this
source of error is imperative since the quality of shadows plays a
significant role in determining the user’s perception of image qual-
ity. In complex environments where clustering is most useful, a
dominant part of computation time is spent in visibility calculations
involving small, geometrically complex objects. Resulting visibil-
ity variations produce fine detail shadows, which may be of little
interest to the user, or may be lost in the implicit averaging over a
surface patch.

Paper overview

The preceding discussion has shown that a key issue in designing
efficient lighting simulation systems is to provide adequate con-
trol mechanisms to ensure that just enough work is done to meet
the user’s quality criteria. It appears that control of visibility error
has not yet been attempted, despite its great potential for tighten-
ing global bounds and reducing computation costs. The goal of this
paper is twofold: first, a new approach to visibility error estimation
is proposed, based onfeatures, that legitimates the use of amulti-
resolution visibilityalgorithm. Second, quality control mechanisms
are discussed for interactive simulation systems development.

We begin in Section 2 with the introduction of features to eval-
uate image quality, and show why existing error metrics are in-
capable of determining when a given level of detail is satisfacto-
rily represented. A simple metric is then proposed to illustrate
how to take into account the user’s interest in a minimalfeature
size. This leads to Section 3 where we explain how to compute
multi-resolution visibility information using a spatial hierarchy
augmented with equivalentextinctionproperties. Selection of a hi-
erarchical level for visibility computation can then be based on the
resulting feature size on the receiver. In this paper an application to
clustering algorithms is discussed, but multi-resolution visibility is
equally promising for Monte Carlo techniques. The construction of
a suitable hierarchy is discussed in Section 4. In Section 5 we show
that the multi-resolution visibility algorithm successfully generates
images (currently for isotropic clusters) in which only selected
features sizes are accurately represented, resulting in computa-
tional savings. Section 6 presents more quality controls for clus-
tering algorithms, specifically intra-cluster visibility determination
in linear time and progressive multi-gridding. We conclude in Sec-
tion 7.

2 Feature-Based Error Analysis

To a large extent the quality of an image is judged based on how
well features of different sizes are represented. It is not easy to
characterize what constitutes an illumination feature. For the pur-
poses of this paper, we will consider image features to be the con-

nected regions of varying illumination related to shadows (regions
in umbra or penumbra).

2.1 L
p metrics are inadequate for “feature detection”

A major difficulty for accurate lighting simulation is that in general
the exact solution is not known at the time of computation. Thus the
estimation of the error in a proposed approximation is particularly
difficult, and must rely on the computation of error bounds for all
algorithmic operations. Even in the case where an exact solution
is available, it is not a simple task to define the quality of a given
approximation. This is done by choosing a particular error metric
to quantify the distance between an approximate solution and the
true solution. A “good” metric should therefore convey a sense of
the user’s requirements. A central observation in this paper is that
when simulating a complex scene, the user is typically interested
in capturing illumination variations down to a certain scale. Very
small details are not as important, or at least not in all areas of the
scene. We strive to define a control mechanism that will avoid any
work that would only generate such small details.

In each column below a cluster of cubes similar to
this one is placed between a light source and a wall.
The size of the cubes increases from left to right.

                                                

                                                

9.51 10.7 11.0 10.5

Figure 1: Comparison of approximate illumination solutions using
different clusters. Top: reference images (illumination of the wall).
Middle: approximate images using a coarse mesh. Bottom:L2

error norms. Note that the four images have similarL2 error values,
and all hide some illumination information. However the varying
size of the missing features cannot be discovered.

Figure 1 illustrates the issue by showing shadows cast on a wall
by four different groups of objects. Four approximate images, all
computed using the same mesh size, are shown below the “exact”
images. Consider a user who is interested in shadows of a specific
size, e.g. those of the image on the extreme right, but is satisfied
by the averaging of the smaller, detailed shadows on the left1. The
user thus does not wish more work to be done for the detail shad-
ows, but wishes to have a more accurate representation at the larger
scale. The subdivision criterion used in a HR algorithm for instance
should be capable of halting the subdivision for the left-hand group,
while ordering further computation for the group on the right. Thus
an error measure should distinguish between the four cases.

Traditional error metrics are incapable of making such a distinc-
tion. As an example consider the commonly used family of error
metrics expressing the distance between a reference functionf and

1Perhaps a more realistic example would be a situation where a user is
viewing an office scene from the doorway, and in which accurate shadows
for chairs and desks are important, but averaged, low quality shadows from
details such as pens on a desk are satisfactory.
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an approximate functionbf as theLp norm

kbf � fkp =

�Z
jbf(x)� f(x)j

p
dx

� 1
p

Lp norms simply add error contributions from all points on a sur-
face (or in an image), and do not take into account higher-level
properties of the radiance distributions, such as the size and shape
of illumination features. This is illustrated by the similar values ob-
tained for the four groups in Figure 1. Appendix A shows that in
fact for a point light source theL1 or L2 error introduced by aver-
aging all visibility variations depends only on the average visibility,
and not on the size or shape of the shadows.

2.2 A proposal for an error metric based on feature size

Our hypothesis is that illumination features (shadows or bright ar-
eas) are important only as far as they have a significant visual im-
pact. Therefore it is possible to define afeature sizeon a receiving
surface, and decide that features smaller than that size are “unim-
portant”: their absence should not contribute to the error.

In the remainder of the paper we refer to the radiosity function
over a surface as an “image”. This terminology should not mask
the important fact that the entire discussion takes place in three-
dimensional object space. In order to demonstrate the relevance of
the feature-based approach, we assume for now that we have access
to all the information in a reference solution. The multi-resolution
visibility technique of Section 3 will show how the ideas developed
here can still be used in the absence of such a reference.

A simple error metric based on features is defined by segment-
ing the imagef into two components by means of afeature mask
Fs

(f; x): a binary function that equals one at pointsx that belong
to a “feature” (of size greater thans) of functionf . Computation of
feature masks from the reference solution is described in the next
section. For points in the mask region we compute anLp norm of
the difference between the approximate function and the reference
function. For points outside the feature mask, we are content with
an average value (since features present there are smaller thans).
Thus in our current implementation we compute average values at
each point, for both the approximate and reference functions, using
a box filter of sizes around the point of interest, and compute an
Lp norm of the difference between the averages.

The feature-based error metric (FBEM) is summarized by the
following formula, wherefs represents the filtered version off :

kbf � fksp =

�Z
jbfs(x)� fs(x)jp [1�F

s
(f; x)] dx

+

Z
jbf(x)� f(x)j

p
F

s
(f; x)dx

� 1
p

(1)

2.3 Examples

Table 1 shows the FBEM values computed for the four groups of
Figure 1 and different values of the minimum feature sizes. The
object-space size of typical shadows in these images is respectively
11, 16.5, 22 and 31. For smalls values, all FBEM values are high
since the metric is equivalent to anL2 metric in the limit ofs = 0.
As s increases, FBEM values decrease more rapidly for the groups
containing smaller objects, as expected. There appears to be a resid-
ual error of about3 due to the mesh size used for the approximate
solutions.

Assume the user is interested in clearly seeing features of size
30 or greater, while being content with an average for all features
smaller that this size. The extreme right-hand image of Figure 1

Feature size:

                                                

5 14.76 16.34 17.25 17.31
16 9.37 12.24 15.76 15.80
24 4.78 6.50 9.06 14.74
30 4.23 3.16 6.90 13.37
40 3.65 2.33 3.35 6.94

Table 1: Feature-based error metric (FBEM) for the four approxi-
mate images of Figure 1 and five different feature sizes. The four
measures are equivalent for small feature sizes, and decrease at dif-
ferent rates as a function ofs. Images are shown again for clarity.

requires more work since the FBEM value fors = 30 is high.
The approximation for the other three images is deemed satisfactory
since the error is low.

Thus, using the FBEM presented above, it is possible to reveal
the presence of features greater than a given threshold in the ap-
proximate images, opening the way for selective subdivision based
on the user’s minimum feature size of interest. Of course this could
not be usedas is in a subdivision criterion for HR, since it uses
a reference solution, but it is useful fora posteriorivalidation of
control mechanisms.

2.4 Computation of feature masks

According to the definition of features given above, computing a
feature mask amounts to identifying connected regions of “signifi-
cant” size. Mathematical morphology provides tools to isolate fea-
tures based on their size [12]. Consider a binary image, represent-
ing for example the characteristic function of an object. We define
the action of anErosionoperator as follows: all points outside the
object (white) are untouched. All points inside the object that have a
neighbor outside become white. All other points remain black. An
Expansionoperator is defined similarly by including in the objects
all outside points that have a neighbor in the object. Figure 2 shows
a reference image and images obtained after a number of erosions
(top) or expansions (middle).

                                                                        

                                                                        

0 3 6 9 12 15
                                                                        

Figure 2: Effect of repeated applications of the erosion (top), ex-
pansion (middle) and combined erosions/expansion (bottom) oper-
ations on a binary image. The reference image appears in the left
column, and the number of applications of the operators increases
from left to right. For the bottom row we applyn erosions followed
by n expansions.

Clearly an object of diameter2d will disappear afterd erosions
are applied in sequence. Thus applying a sequence ofn erosions
followed byn expansions will successfully eliminate all small re-
gions, but keep larger regions (slightly modifying their shape in the
process). This process is illustrated in the bottom row of Figure 2.

Computing the effect of the erosion operator on a binary image
is straightforward using bitwise operations: the result is the logical
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OR of the image and the four translated copies of itself (by one
pixel) in the+x, �x, +y and�y directions. For the expansion
operator the logical operator AND is used.

In our examples, the original binary image is computed by
recording all areas of the receiver that have a partial or occluded
view of the light source. This expensive operation was performed
only once during the creation of the reference image. Feature masks
are computed by applying the proper number (p=2 for a feature size
of p) of successive erosions and expansions to eliminate unwanted
features. Figure 3 shows some feature masks for the four groups
used above.

Original mask F Size 12 F Size 18 F Size 24
                                                

                                                

                                                

                                                

Figure 3: Some feature masks for the images in Figure 1.

3 A Multi-resolution Visibility Algorithm

In the previous section we presented the concept of afeature size
and introduced an error metric which permits the evaluation of im-
age quality determined by how well illumination features are rep-
resented. We now use these fundamental concepts to develop a
multi-resolution(MR) visibility algorithm. With this algorithm, ex-
pensive high quality visibility calculations are only performed when
they are expected to help in the accurate representation of features
deemed “interesting” by the user.

Hierarchical spatial subdivision structures are often used in the
calculation of global illumination algorithms, in particular when
form-factor estimation is performed with ray-tracing [19, 4, 5, etc.].
In radiosity clustering algorithms the hierarchy of clusters is also
used for radiometric calculations, by letting clusters represent their
contents for some energy transfers [13, 16]. The followingmulti-
resolution visibilityalgorithm naturally extends previous clustering
approaches by allowing clusters to also represent their contents in
some visibility calculations. If a specific feature sizes has been
chosen, it is unnecessary to consider the contents of a cluster for
visibility if these contents will produce features smaller thans.

3.1 Approximate visibility computation between clus-
ters using an extinction model

Let us assume that we have grouped all objects in the scene into
a hierarchy of clusters. Approximate visibility calculations can be
performed using an analogy between clusters and absorbing vol-
umes [13]. The approximation (asymptotically exact for homoge-
neous isotropic clusters when the size of the objects goes to zero)

consists of associating anextinction coefficient� with each clus-
ter. The transmittance function between two pointsP andQ in the
scene is then given by

T (P;Q) = e

�

Z
PQ

�(u)du

= e

�

X
i2C(PQ)

�ili

whereC(PQ) is the set of clusters traversed by the ray joiningP and
Q, �i is the extinction coefficient of clusteri, andli is the length
traveled inside clusteri by the ray.

Extinction coefficients express the probability that a random ray
is intercepted in the cluster, and are computed as

�i =

P
j
Aj

4Vi

where the area of all surface patches contained in clusteri is
summed and divided by the cluster’s volume. Since a surface con-
tributes to the extinction of only one cluster, the attenuation due to
overlapping clusters is correctly obtained by adding their extinction
contributions.

3.2 Multi-Resolution Visibility

In the rest of this section we consider the emitter-blocker-receiver
configuration shown in Figure 4, which consists of two surfaces, the
emitterE and the receiverR, in two-dimensions. This restriction is
for presentation purposes only and is removed later.

E

R

B

A E

R

B
A

(a) (b)

Figure 4: Definition of shadow features created by a blocker. (a)
The umbra region is unbounded since the blocker is larger than the
emitter: there is always an umbral region on the receiver. (b) For
some positions of the blocker the receiver has no umbral region.

If a blocker (which for now we also consider to be a surface)
is placed between the emitter and the receiver,umbraandpenum-
bra regions are created in space. Depending on the position of the
blocker, there may or may not be an umbral region on the receiver.
(Figure 4). Given the definition discussed above the size of the um-
bral zone on the receiver –AB in Figure 4(a)–, if it exists, is the
feature size.

The blocker may actually be a hierarchical representation of a
collection of objects (acluster) as pictured in Figure 5(a). In this
case, at each level of the hierarchy an extinction coefficient is stored
allowing the approximate calculation of the attenuation of a ray if
it passes through the cluster, as described previously.

Multi-resolution visibilitycan be performed by avoiding the de-
scent into the hierarchy after a certain level. When the required
conditions are met the extinction coefficient is used instead, thus
avoiding the intersection of the ray with all the descendants of this
cluster. Evidently, the effect is that visibility is no longer exact, but
an average estimation of transmittance. It is here that a large po-
tential gain in computation time can be achieved. In scenes where
the small detail objects (e.g., models of phones, keyboards, small
objects on a desk etc.), comprise the largest part of the geometric
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complexity, the intersection with these objects can quickly become
the overwhelming expense of visibility (and overall) computation.
By considering the higher level clusters for visibility computation
instead of the numerous contents, when such a choice is dictated by
the chosen feature size, this expense can be completely avoided.

E

R

E

R

C
D

(a) (b)

A

B

Figure 5: Visibility estimation through a cluster. (a) the blocker is a
hierarchy of clusters. (b) an “equivalent blocker” is used to estimate
the maximum feature size on the receiver.

Recall the discussion in Section 2 in which the user wishes to
accurately represent all features of size greater thans on the re-
ceiver. To achieve this, all that is required is to descend sufficiently
far into the hierarchy so that the large shadows are accurately cal-
culated, while performing the approximate calculation for small,
detail shadows.

To facilitate such a choice each cluster is augmented with a de-
scription of the maximum blocker sizeBSIZE of its contents (we
give a precise definition of this in the following section). It then
suffices to place a fictitious blocker of sizeBSIZE, at the center
of the actual cluster –CD in Figure 5(b). The descent in the clus-
ter hierarchy can be terminated if the projected umbral region of
the fictitious blocker (AB in Figure 5) is smaller than the chosen
feature sizes.

Contiguous regions which let light traverse must also be consid-
ered as feature creators since a feature can be considered “negative”
(umbra in a bright region), or “positive” (lit areas inside a dark re-
gion). We thus extend our definition of features from Section 2
by definingBSIZEto be the maximum of the connected regions of
light or shadow. This is consistent with the symmetric expression
of visibility error with respect to umbra and light presented in Ap-
pendix A.

3.3 Characterization of a Cluster for MR Visibility

All that is required in order to apply the preceding algorithm is the
determination ofBSIZE for each cluster. The restriction to two-
dimensions is now lifted, and the treatment for three-dimensional
clusters is described. For now clusters are assumed to contain ob-
jects placed so that the cluster density can be considered isotropic,
and thus does not depend on the direction of incidence of a ray.

The goal is to determine a representative size for a blocking clus-
ter, which will allow the calculation of the maximum feature size
given a specific emitter-receiver configuration. At first glance it
may seem natural to takeBSIZEto be the size of the largest object
contained in the cluster. However there is one important consider-
ation: it is theconnected regionof shadow on the receiver which
we wish to consider. Furthermore, as discussed above, the regions
of light potentially blocked by the contents of the clusterand the
regions of light which pass through must be considered separately.

A preprocessing step is performed to calculateBSIZE for all
clusters in the hierarchy. For each cluster, all the contained ob-
jects are orthographically projected into a binary image. This oper-
ation is performed for a given cluster and a given direction, result-
ing in aview-independentcharacterization. The consequence of the
isotropic cluster assumption is that a single orthographic projection
is sufficient. For non-isotropic clusters theBSIZEparameter is a
function of the direction of interest. A simple solution in that case
would be to interpolate from a number of sampled directions. Our

current research focuses on more efficient representations for such
directional information [14].

The erosion and expansion operators from Section 2.4 are then
used to compute the maximum sizes for blockers and free regions
inside a cluster. Erosions (respectively expansions) are computed
until all objects have disappeared (respectively until all free space
has disappeared). Thenumberof erosion or expansion operations
defines the value ofBSIZEfor the blocked and free regions respec-
tively. In our implementation we do the projections, erosions and
expansions using Graphics hardware.

4 A Hierarchical Structure for Clustering and
Multi-Resolution Visibility

Previous automatic clustering approaches have used spatial data
structures developed for ray-tracing (hierarchical bounding boxes
[3] were used in [16], while in [13] a K-D tree was used). In
this section we show that given the calculation of average visibility
based on extinction coefficients in the manner of [13], it is bene-
ficial to develop a special-purpose hierarchical data structure, such
that the resulting clusters have properties suitable for cluster-based
hierarchical radiosity and multi-resolution visibility.

By definition, clusters are constructed torepresentas accurately
as possible the collection of objects they contain. By introduc-
ing computation of visibility using extinction coefficients and also
multi-resolution visibility, apart from the representation of energy
transfer of the contained objects as a whole, the clusters also need
to correctly represent the transmission properties of the collection
of contained objects.

These two modes of representation place different constraints on
the cluster hierarchy. From the point of view of energy exchanges,
good clusters allow tight bracketing of radiance or visibility func-
tions (thus surfaces with similar orientation that do not shadow each
other are preferred). From the point of view of visibility approxi-
mation, good clusters are ones for which the extinction property
is plausible (thus homogeneous isotropic clusters are preferred).
Given these constraints, we have identified two key properties for
clusters: (a)proximity and (b)homogeneityof the contained ob-
jects. Maintaining proximity is a natural way to group objects when
the cluster is used to represent radiative transfers. Also, for multi-
resolution computation it is important that objects contained in a
cluster are close so that the averaging performed does not introduce
unacceptable artifacts. Homogeneity here means that we want a
cluster to group objects of similar size, and is crucial for the result-
ing quality of the average visibility computation.

As a simple measure of proximity, we use the percentage of
empty space resulting from a clustering operation (i.e., the addi-
tion of an object or a cluster to another cluster). Thus we prefer
clusters in which the empty space is minimized.

To efficiently group objects of similar size we use a hierarchy of
n levels of uniform grids. We start with level 0, which is a single
voxel the size of the bounding box of the scene and then at each
level i we create a grid which is subdivided into2i voxels along
each axis. We then insert each object into the level for which its
bounding box fits the voxel size.

Once these grids have been constructed, we start at the lowest
level n, containing the smallest objects. We group the objects en-
tirely contained in each voxel, by attempting to minimize the empty
space, in accordance to the proximity criterion described above. In
addition, objects which are very small compared to the grid size are
grouped into an appropriate cluster, even if the resulting cluster is
largely empty. Once all the voxels of a level have been treated, we
attempt to add the objects not entirely contained in a single voxel at
this level to the clusters already constructed, again using the same
criteria. We then insert the clusters created to the grid of the level
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immediately above, and iterate.
Once the cluster hierarchy has been created, the data structure is

augmented with average transmission behavior by propagating the
average extinction values up the hierarchical structure as in [13].
When multi-resolution visibility is used, theBSIZE estimation
is also performed for each cluster in the hierarchy in the manner
described in Section 3.

Figure 6 presents results obtained with the new hierarchy us-
ing first a surface visibility algorithm similar to that of [16], and
then the average visibility proposed in [13]. The scene consists of
5380 polygons. It is interesting to observe the significant time gain
achievable by the average visibility algorithm given a suitable hi-
erarchy (we observe a factor of 4), while approximate shadows are
preserved.

            

Surface vis: 1 216 s.

            

Volume vis: 376 s.

Figure 6: Timings (in seconds) using the new hierarchy construc-
tion. Throughout the paper all timing information was obtained on
an Indigo R4000 computer.

Constructing a suitable hierarchy for cluster-based hierarchical
radiosity with extinction and multi-resolution visibility is a difficult
problem. The results indicate that the first solution presented here,
based on proximity and homogeneity, results in the construction of
hierarchies well suited to approximate and multi-resolution visibil-
ity calculations.

5 Results of multi-resolution visibility

We have implemented the hierarchy construction, the calculation of
BSIZEand the multi-resolution visibility algorithm in a hierarchical
radiosity clustering testbed.

To evaluate the results of the multi-resolution visibility approach
we have computed images of test environments using different val-
ues for the feature sizes of interests on a receiver.

The first test scene is shown in Figure 7 (left). It contains the
four clusters used in Section 2 and a light source (in yellow). The
right-hand image is the illumination obtained on the back wall and
serves as a reference image. For all these images visibility was al-
ways computed solely using extinction properties (thus we do not
attempt to characterize the error introduced by averaged transmis-
sion visibility itself).

Figure 8 shows four images, where the desired feature size pa-
rameter (see Section 2.2) is changed. For each image the compu-
tation time in seconds is given. A very low error threshold was
used to ensure that the mesh density was maximal for all images.
Thus the decrease in computation time as the desired feature size
becomes larger measures the speedup in the visibility calculation.

We next show that multi-resolution visibility is consistent with
the feature-based error metric (FBEM) from Section 2.2, by com-
puting the FBEM for the images described above. Although the
four clusters have been grouped in a single image for simplicity, we

            

3D view of test scene. Reference sol. (2069 s).

Figure 7: Reference image used in the error comparisons.

apply the error metric only on the region of the image correspond-
ing to each cluster, to obtain an FBEM value for each of the four
groups.

For the four images, we show for each cluster the value ofL2

error norm (back row) and the value of the FBEM for a feature size
s equal to that used in the MR Visibility algorithm. We note that as
we increases theL2 norm for all clusters increases, as more and
more averaging is being performed. Still the increase appears later
for larger objects, as expected. The FBEM values are always of
similar magnitude, despite the fact that very different levels of av-
eraging are being used in different clusters in a given image. This
shows that the multi-resolution visibility algorithm accomplishes
its purpose: given a desired feature size, it ensures that the corre-
sponding FBEM remains low while allowing time gains.

Figure 9 shows that even greater speedups can be achieved when
a medium error threshold allows MR visibility to reduce the amount
of subdivision. The explicit incorporation of MR visibility in refine-
ment criteria is a promising path for further acceleration.

6 Control of Image Quality for Clustering

Recent algorithms separate the computation of high-quality images
into two phases: a coarse quality global illumination calculation
is first performed using elaborate algorithms such as discontinuity
meshing or clustering in aglobal pass. A view-dependent, poten-
tially very expensivelocal passfollows [9, 16]. This local pass is
typically a ray-casting operation: at each pixel the energy from all
the links is collected, allowing the calculation of high-quality shad-
ows. The cost of this local pass is often many times larger than that
of the light-transfer calculation using clusters. In essence this pass
may eradicate all computation time benefit achieved by using the
clusters in the first place, and exclude any possibility for interactiv-
ity with quality and error control.

In contrast, we maintain a “progressive refinement” philosophy,
by providing explicit quality controls, allowing computational cost
to be focused on desired characteristics of the resulting image. The
first component of this approach is the multi-resolution visibility
presented above. This technique, coupled with the use ofimpor-
tance [17] to assign appropriate feature sizes to different objects
could plausibly replace the global/local pass approach while afford-
ing more interactivity. We present next two supplementary quality
controls: first, the correct treatment of intra-cluster visibility and
second, progressive multi-gridding permitting rapid interactive re-
sponse for hierarchical radiosity.
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Feature size: 2.0 (1984 s). Feature size: 2.8 (1648 s). Feature size: 3.5 (1459 s). Feature size: 5.0 (1356 s).

Figure 8: Results for the multiresolution visibility algorithm.

                                    

Figure 9: Increasing the desired fea-
ture size reduces both the amount of
subdivision and the cost of visibility
computations. (left) Fsize =0, 621s.
(middle) Fsize =4, 245s. (right)
Fsize =8, 148s. Tree courtesy of
CIRAD, modelled with 7967 poly-
gons using AMAP.

6.1 Intra-cluster visibility

Previous clustering algorithms compute a bound on energy transfer
that ignores visibility (bound of 1 on the visibility error), both be-
tween the two clusters but also in the distribution of light on each
side [16, 13]. This potentially results in light leaks at the scale of
the cluster. This behavior is not only visually displeasing but also
flawed: since bounds are computed on irradiance values, that irra-
diance is distributed to many surfaces which should be shadowed,
thereby creating energy.

If visibility information inside the cluster with respect to a source
cluster can be computed (with some approximation) in time linear
in the number of contained objects, the overall time and space com-
plexity ofO(s log s) for clustering is not modified [16].

We propose the use of an item buffer to quickly evaluate this
visibility. The cluster’s contents are projected in the direction of the
light source using a z-buffer to determine visible surfaces from that
direction. By counting instances of an item number in the buffer
we obtain an estimate of the projected area of each patch visible
from the direction of the source. This is used as the projected area
in kernel calculations when computing energy bounds. Note that
the resolution of the item-buffer can be adapted to the contents of
each cluster, provided we know the size of the smallest object in
each cluster. Thus the aliasing problems inherent to the item-buffer
approach can be reduced. The same technique is also used at the
other end of a link, to evaluate the energy leaving a cluster.

In the images of Figure 10 we present an example where a link
(shown in purple) has been created from the light source to a clus-
ter of books. Ignoring intra-cluster visibility (left) results in the
creation of energy since all books are fully illuminated. Using the
visibility buffer to modulate the energy distribution (right), energy
is preserved while improving the appearance of the image.

6.2 Progressive multi-gridding

In hierarchical radiosity algorithms subdivision is controlled by an
error threshold on individual interactions. A global bound on er-

                        

Figure 10: Results of introducing intra-cluster visibility.

ror is difficult to determine and it is consequently difficult for the
user to choose an error threshold so as to achieve a certain quality.
The problem is exacerbated with clustering, since the subdivision
of links is amortized with time, and thus successive iterations may
become much more expensive as the allowed error decreases. This
sharp and unpredictable increase in iteration time may then destroy
interactivity.

As a remedy we develop aprogressive multi-griddingapproach.
By analyzing the distribution of error bounds on the links created,
we can predict how many of these links would survive a given de-
crease in the error threshold, and thus estimate the time required
for a subsequent iteration with the new error threshold. In a manner
more intuitive to the user the amount of computation can be speci-
fied (in the form of a maximum number of links to refine) and the
system proceeds to deduce the new threshold to use for hierarchical
refinement.

This analysis can be performed at a marginal cost by recording
a histogram of the distribution of error bounds computed. Specif-
ically, the interval between0 and the current error threshold" is
divided into a number of bins, each associated with a counter. Ev-
ery time a link is created (or left unchanged) during the hierarchical
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subdivision procedure, we increment the counter for the bin cor-
responding to the link’s error bound. At the start of the next pro-
gressive multi-gridding iteration, the new error threshold is chosen
such that the sum of all counter for bins with higher error levels is
less than a user-specified limitk. This effectively chooses an error
threshold such that at mostk links are refined. This multi-gridding
algorithm does not accelerate the computation but guarantees a con-
tinuous update of the simulation.

7 Conclusions

Important advances towards the goal of providing interactive sys-
tems capable of treating very complex environments have been
made by hierarchical radiosity and clustering algorithms. Nonethe-
less several important shortcomings of previous approaches were
identified in this paper: (a) visibility error is typically ignored, (b)
traditional error metrics do not allow the user to specify a desired
level of detail and (c) progressive refinement of the simulation is
difficult to achieve.

In this paper we introduced a new approach to error estimation
based on illuminationfeatures, which allows the user to choose a
level of detail relevant to a given simulation. The quality of a so-
lution then relates to how well features of the user-determined size
have been represented.

The principles introduced by the feature-based analysis were
used to develop amulti-resolution visibility algorithm. The hier-
archy constructed for clustering contains transmission information
as in [13] and is further augmented with an estimate of the largest
equivalent blocker size from its contents. This information is used
to limit the cost of visibility calculations. An algorithm which ef-
ficiently constructs a suitable hierarchy was also presented. The
results of the implementation for isotropic environments show sig-
nificant computational speedup using MR visibility when the user
does not require the accurate representation of small features.

Two additional quality control mechanisms were introduced:
intra-cluster visibilitywhich corrects potential light-transfer error
suffered by previous clustering algorithms, andprogressive multi-
gridding which is essential for interactive clustering systems.

We believe that the introduction of feature-based error and qual-
ity evaluation is an important step which will lead to significant ac-
celeration of global illumination algorithms. Multi-resolution visi-
bility is an example of such an achievement.

In future work the extension of our approach to non-isotropic en-
vironments must be completely developed. Promising first results
in representing directional information for clustering have been ob-
tained [14]. We have not yet addressed the analysis of error
caused by the use of extinction coefficients and the effect of visi-
bility correlations between clusters and their contents. Research in
these areas is extremely important for the development of reliable
quality controls. It will be interesting to observe the results of
the application of our approach to Monte Carlo methods. A more
in-depth study of feature-based error metrics must be performed.
Finally better algorithms for hierarchy construction should be in-
vestigated.
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A Visibility error using L
1 and L2 norms

Consider a patchP illuminated by a point source at pointy. To quantify the visibil-
ity error on the receiver patch, we compute theL1 andL2 norms of the difference
between the visibility functionv(x; y) defined forx 2 P , and its average value�v
over patchP . If P+ is the region of patchP that receives light,�v is equal to the ratio
of the areas ofP+ andP . Separating the integrals into one overP+ and one over
(P � P+), we find

kv � �vk1 = 2�v (1 � �v) (2)

and similarly for theL2 norm

kv � �vk2 =

p
�v(1� �v) (3)

Note that both estimates only depend on the average visibility across patchP ,
not on the distribution of the visibility function. Also note the dependency in�v(1 �

�v), yielding a small error for either almost complete occlusion or almost complete
visibility.
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Abstract
Memory consumption is a major limitation of current

hierarchical radiosity algorithms, including those using
clustering. To overcome this drawback we present a new
algorithm which reduces the storage required for both
the hierarchy of subdivided elements and the links rep-
resenting light transfers. Our algorithm is based on a
link hierarchy, combined with a progressive shooting al-
gorithm. Links are thus stored only when they might
transfer energy at subsequent iterations. The push-pull
and refine/gather steps of hierarchical radiosity are then
combined, allowing the simplification of subtrees of the
element hierarchy during refinement. Subdivided poly-
gons replaced by textures and groups of input objects
contained in clusters may be deleted. A memory con-
trol strategy is then used, forcing links to be established
higher in the link hierarchy, limiting the overall mem-
ory used. Results of our implementation show significant
reduction in memory required for a simulation, without
much loss of accuracy or visual quality.

Key words: global illumination, hierarchical radiosity
with clustering, memory consumption.

1 Introduction

Global illumination algorithms have made great progress
in recent years. With the use of hierarchical radios-
ity (HR) [8] and clustering [14, 12], global illumination
can be simulated for large models, resulting in solutions
which are appropriate for real-time walkthroughs. These
solutions are typically used for interior design, television
and entertainment (virtual sets etc.), and “digital mock-
ups”. The widespread use of radiosity solutions results in
the need to simulate large environments; scenes of mil-
lions of initial (input) polygons are now common, and
present a challenge to existing radiosity algorithms.

Despite the impressive advances in computation time
and control of the simulation precision, hierarchical ra-
diosity methods still require large amounts of memory.
Hierarchical radiosity with clustering requires the use of
memory-intensive data-structures:hierarchical elements

which contain numerous fields and thelinkswhich repre-
sent the light transfers at different levels of precision. An
initial polygonal model which fits in main memory be-
fore the simulation may require several times more mem-
ory for the global illumination solution, making such a
solution infeasible.

Despite important efforts to reduce memory used by
global illumination solutions [18, 5, 17], no overall
framework has been proposed which allows the control
of memory usage for both the element hierarchy and the
links, and which maintains the advantage of the represen-
tation of global light transfer.

The new approach we present here first develops a
novel framework, based on the line-space, or link, hier-
archy [4], and a progressive shooting approach. By mod-
ifying the link refine, light gather and push-pull steps of
hierarchical radiosity, we reduce both the memory used
by the links, and the memory of theelement hierarchy
itself. Subdivision on surfaces is replaced by textures,
and initial polygons contained in clusters can be removed
in a view-dependent manner. A memory control mecha-
nism is applied to the link hierarchy during the modified
refine/gather/push-pull: based on user defined memory
limits, links are established at higher levels in the link hi-
erarchy, reducing the storage due to links, and permitting
the removal of subdivided elements on polygons.

2 Previous Work

The treatment of complex scenes has been a challenge for
global illumination since its outset. Progressive refine-
ment radiosity algorithms [3] have produced simulations
of complex environments [1]. The main drawback of pro-
gressive refinement is the lack of control of global error,
since it is impossible to determine whether the global il-
lumination has been properly accounted for.

Hierarchical radiosity [8] is an efficient algorithm
which performs light transfers at appropriate levels of ac-
curacy, by subdividing the environment into hierarchical
elements and establishing light-transferlinksbetween the
elements at the appropriate level. Then2 “initial link-
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ing” step (n is the number of polygons in the scene) ren-
ders the approach impractical for large scenes. For cer-
tain environments (especially building interiors), parti-
tioning schemes based on visibility can allow the treat-
ment of very large databases [18]. The advent of cluster-
ing [14, 12, 7] made the treatment of large databases pos-
sible in the general case. In particular the largest model
treated by a radiosity algorithm to date (to the authors
knowledge) is in the order of 258,000 input polygons us-
ing hierarchical radiosity with clustering, coupled with a
parallel and distributed system [5]. A completely differ-
ent approach involves the use of stochastic methods. One
recent example is [2], which also includes a thorough bib-
liography. Due to the fundamental differences compared
to finite-element approaches, we do not consider this di-
rection further.

The storage of links for hierarchical radiosity is re-
quired since at each iteration light is transported across
all links. Typically, irradiance on all elements is set to
zero, and a gather step follows using the radiosity on
each element. Irradiance is thus gathered at all levels
of the hierarchy fromall links, and then pushed to the
leaves. Radiosity is then pulled up the hierarchy. Will-
mott and Heckbert [19] observed that wavelet radios-
ity (which is hierarchical radiosity possibly with higher-
order basis functions) uses a prohibitively large amount
of memory, especially for the storage of links.

As a response to this observation, Stamminger et al.
[17] developed an approach to “get rid of links”. They use
a “shooting” approach, which stores an additional “un-
shot radiosity” variable at each hierarchy element, in the
spirit of progressive refinement. The storage of all links
is thus no longer required once unshot radiosity is trans-
ported across it. A fixed-size cache of links is created,
and links are inserted in a sorted manner into the cache
based on the energy they transport. If a link is not in the
cache, it is recomputed, possibly leading to expensive re-
cursive refinement. In addition, the global representation
of all light exchanges is lost. Complex secondary interac-
tions may thus result in significant additional refinement
operations.

3 Motivation and Overview

By running “standard” hierarchical radiosity, we have ob-
served that the memory used by the element hierarchy is
often on a par or more than that required by the link data
structures. This is particularly true for cases in which the
link refinementε threshold value is high, and thus many
links remain at the level of clusters. In general, the stor-
age of linksvs. hierarchy elements is heavily dependent
on scene type and the values of the various simulation
parameters.

As a consequence, we present a new formulation al-
lowing the reduction of memory for both links and the
element hierarchy. The reduction of memory used by
links is achieved while maintaining a coherent represen-
tation of overall light transfer (in Section 4). This repre-
sentation, achieved through the line-space hierarchy, en-
ables the introduction of an algorithm which allows us
to replace entire subtrees of the element hierarchy dur-
ing subdivision (Section 5). This allows the replacement
of subdivided elements by textures and of entire groups
of clustered input elements by a simpler representation.
The memory control mechanism is then described (Sec-
tion 6), which enables our approach to significantly re-
duce memory used by links and subdivided elements by
forcing links to be established high in the link hierarchy.
Implementation issues and results are presented in Sec-
tion 7, and we conclude.

4 Controlling Memory used for Links

As mentioned above (Section 2), links in hierarchical ra-
diosity need to be stored since they are used at each it-
eration for the gather step. If we use “unshot radiosity”,
there is no longer a need for all these links. Intuitively,
links from the sources, which are often numerous, do not
need to be stored. Once the energy has been transferred
from the light sources to the receiver surfaces, their util-
ity ends. For subsequent links, we have two choices: we
either can “predict” when links would be useful in the
future, and thus not store them, or delete links in the sub-
sequent iteration when we determine that they no longer
transport energy. We choose the latter approach, since it
is unclear how to achieve reliable prediction of link util-
ity.

To be able to remove unnecessary links, i.e. links from
sources and links deleted in subsequent iterations, we will
use the line-space hierarchy, which stores the history of
link creation. This has the advantage that a full descrip-
tion of light exchanges in the scene always exists, albeit at
lower accuracy. This is an important difference between
our approach and that of [17], and can be particularly use-
ful in the context of dynamic environments [4] or when
using importance [15].

4.1 A “Shooting” Algorithm
To achieve a hierarchical radiosity algorithm in which we
can avoid the storage of links, we store an additional “un-
shot” radiosity field, in the spirit of the progressive re-
finement algorithm [3]. To initialise the system, we set
the radiosity and the unshot radiosity equal to the emit-
tance of each leaf element (i.e. not the clusters). Thus
initially only sources have radiosity and unshot radiosity.
Unshot radiosities are then pulled up the hierarchy. Fi-
nally, radiosities are set to the value of unshot radiosity at
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Figure 1:Line-space hierarchy basics

every level.
At each iteration, we gather unshot radiosity into ir-

radiance, and push irradiance down the hierarchy, setting
unshot radiosity to zero. Unshot radiosity is then reflected
at the leaves, and added into the radiosity values. Unshot
radiosities are averaged while pulling, and added to the
radiosity values at every level. This algorithm and the er-
ror analysis are similar to those developed by Stamminger
et al. [17], showing that this algorithm is equivalent to
that of “standard” hierarchical radiosity.

4.2 The line-space hierarchy
The line-space hierarchy as defined in [4], is a hierar-
chy in link space. We use the terms line-space hierarchy
and link hierarchy interchangeably, since we are not in-
terested in the shafts attached to links as in [4].

The link hierarchy maintains the history of link sub-
division, in the form ofpassivelinks. For example, in
Figure 1 link lp, between hierarchy elementsr ande is
subdivided. In a traditional hierarchical radiosity context,
this link is deleted. When maintaining a link hierarchy,
we store the linklp, and the linksl1 andl2 are considered
“children links” of lp. Links transferring energy will be
called “active links”. In our examplel1 andl2 are active
links. The passive linklp no longer corresponds to a real
light transfer, but still maintains its form-factor (which
required an expensive visibility query to obtain its value),
so that if it is re-established in the future as active, it in-
curs no expense.

4.3 Refinement with Link Removal
Recall that we want to maintain the representation of all
energy exchanges and allow the deletion of unnecessary
links. To achieve this, we modify the refine and gather
steps of traditional hierarchical radiosity. As in previous
work [4], we combine refine and gather steps.

In our algorithm, each potential link is first tested
against therefinement criterion. If we use the∆BFAcrite-
rion, we decide whether the link has enough (unshot) en-
ergy to perform the transfer at this level. A new criterion

c

root

c

root
l1

l3l3

l1

l4l4

l5

 is established as a passive linkl3 is tested for creation and rejectedl5

active links
passive links
links tested for creation
consistency links

c

root

l1

l3

l4

l5

is established for consistencyl5

Figure 2:Creating links for consistency at recursion return.l4
and l5 are children of the passive linkl3 in the link hierarchy
sense.

is added which is thecreation criterion, deciding whether
this link should be created, i.e., stored. Currently, the cre-
ation criterion simply does not create links from lights
sources. More involved criteria are possible. Using the
memory control mechanism discussed later, many other
links are also not created, with the light transfer occuring
on-the-fly during the recursion.

In addition, we remove links which no longer trans-
fer energy. During refine/gather, instead of traversing the
element hierarchy itself, we traverse the line-space hier-
archy. While descending this hierarchy, we examine the
current link. First we test the link against the refinement
criterion. If it does not require further refinement, we
gather irradiance across this link. We then test the link
against the creation criterion. If it satisfies this test, we
establish the link as anactivelink.

If refinement is required, we descend to the children
of the link (subdividing when necessary), until the refine-
ment condition test allows us to stop. The important step
of our approach is performed when returning from this re-
cursion. If no child link has been created, we test whether
the current linkL verifies the creation criterion. If it does,
L is established as an active link; all links belowL, cre-
ated in previous iterations, are now deleted.

If children links exist, we establishL as a passive link.
To maintain consistency, we traverse the immediate chil-
dren in the line-space hierarchy to ensure that a consistent
representation is formed, and create additional links if re-
quired. This may be necessary due to link removal. See
Figure 2 for an illustration of this case, while the entire
algorithm is summarised in Figure 3.
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RefineAndGather(Link L)
// Descent
if L satisfies the refinement criterionthen

// end recursion
add the irradiance transported to the receiver
if L verifies creation criterionthen

L is stored as an active link
else

for all childrenl of L do
RefineAndGather(l)
// return of the recursion
calculate Form-Factor ofL from its children
if there is no child link ofL then

if L verifies creation criterionthen
L is stored as an active link
delete all previous children links

else
L is established as a passive link
children links are established

as active links for consistency

Figure 3:The RefineAndGather Algorithm

Recursive form-factor calculation
An interesting advantage of theRefineAndGatheralgo-
rithm is that we can recursively calculate form-factors,
and in particular form-factors of clusters.

We can consider two different cases, depending on
whether the receiverr or the emittere is subdivided:

1. The emitter is subdivided:Fre= ∑ j2child(e) Fr j

2. The receiver is subdivided:Fre=
1
Ar

∑ j2child(r) A jFje,

where child-parent relationships of form-factors are those
of corresponding links in the line-space hierarchy sense.

For clusters which do not contain participating media,
the following formulation can be applied:

Frr =
1
Ar

∑
i2child(r)

∑
j2child(r)

AiFi j

In this case, the self-link corresponding toFrr (see also
[12]), will be quite precise, and in certain cases will actu-
ally be exact (e.g. polygons which are “backfacing” each
other as in the case of a sphere for example). As seen
in the algorithm of Figure 3 this calculation can be inte-
grated simply into theRefineAndGatheralgorithm, and
thus may significantly improve the precision of computa-
tion, especially at the level of clusters.

5 Controlling Memory of Element Hierarchies

As mentioned in the introduction, our goal is to reduce
memory for both links and theelement hierarchy. In ad-
dition, since we have removed a large number of links,
the actual subdivision of the hierarchy is often no longer

s

root

r1 r2 r3

s

root

r1 r2
r3

(a) initial system (b) first iteration

simplification
(elements removed)

consistency links
passive links

current node
push-pull

Figure 4: Self-link subdivision: the root self-link is subdi-
vided. Note that some links are not drawn for clarity.

useful for the light simulation itself. It remains nonethe-
less necessary for the display of the lighting simulation
result; however all the information related to the hierar-
chical representation for the simulation can be discarded
and a much cheaper representation can be adopted, which
is appropriate for display.

At an abstract level, we require a mechanism allowing
the removal of parts of the hierarchyduring refinement.
The alternative, which would involve complete refine-
ment and subdivision followed by the removal of the hier-
archy, is inappropriate. Such an approach suffers from the
fact that the subdivided element hierarchy may consume
all available memory. A new refine-gather-push/pull loop
is required, integrating the push-pull step with theRe-
fineAndGather approach described previously.

Once the abstract mechanism is in place, we can re-
place the hierarchy subtree marked as “disposable” with
an appropriate representation. In our case, we have cho-
sen to replace the subdivision of surfaces by textures, and,
as a first approximation, simplify clusters by removing
their contained children.

5.1 Hierarchy Simplification/Refinement Algorithm
We perform an integrated refine-gather-push/pull step
with a traversal of link space. We thus start at the root
of the link hierarchy, which is the root self-link, and pro-
ceed with link refinement.

We need to ensure two basic conditions: (a) that we
perform a push-pull operation onlyonceat each hier-
archy node, and (b) that when we perform a push-pull
operation, all links arriving at this node must have been
treated.

To do this we identify three different cases which we
treat separately: (i) self-links, (ii) receiver subdivision
and (iii) emitter subdivision. We use an example to il-
lustrate how each case is treated.

Consider Figure 4(a), showing a scene consisting of
senders and three receiversr1-r3. At the outset, only the
root self-link exists. This link is split, and all pairs of ob-
jects are linked for consistency (see discussion above in
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Figure 5: (a) The split receiver case and (b) the split sender
case.

Section 4.3). We visit the children links in order; whenr1

is being considered as a receiver, we examine all links ar-
riving at r1. A RefineAndGather operation will be per-
formed on the links! r1, resulting in the creation of
subdivided nodes to represent the illumination.

All other links arriving atr1 will be treated in order.
Assume that the last link is the linkr3! r1, as in Figure
4(b). At this point a push-pull operation is performed on
noder1 and its children. Since no links are created, the
subdivision ofr1 is removed and replaced by a suitable
representation.

At the second iteration, all receiversr i have positive
unshot radiosity and thus will also act as emitters. Con-
sider the case shown in Figure 5(a). The current node
is r1, and we are considering the last link arriving atr1

which transfers light fromr3. The refinement criterion
decides thatr1 should be subdivided. In this case, when
we treat the last linkr3! r1 arriving at the receiverr1,
we perform a push-pull operation on all the children of
the current receiverr1.

The remaining case is that of a split emitter. In Fig-
ure 5(b) the current receiver node isr2 and the emitter is
r3. The refinement criterion requiredr3 to be subdivided.
Assume that the linkr3! r2 is the last link arriving atr2

(Fig. 5(b)). The push-pull operation will be performed
on r2 when we treat the linkr31! r2 (i.e., the last link
arriving at r2). Thus all links arriving atr2 have been
treated.

This process is summarised in Figure 6. Note that in
practice a temporary variable is used during the return of
the pull procedure, so that the current radiosity values are
not changed.

This abstract framework allows the replacement ofany
subtree of the hierarchy by an appropriate representation
during subdivision. Since the hierarchy of the scene is
complete, i.e. surfaces and clusters are all contained in a
single root cluster, in principle we can replace as much of
the hierarchy as we see fit, assuming that this replacement
is appropriate.

RefineGatherAndPushPull(
Link L, Element R, Element S, IrradianceDown I)

if L must be refined then
choose element to split
if R is splitthen

return RefineGatherAndPushPullRcv(L,R,S,I)
else ifS is splitthen

return RefineGatherAndPushPullEmit(L,R,S,I)
else

return R! PushPull(I);

RefineGatherAndPushPullRcv(
Link L, Element R, Element S,IrradianceDown I)

Radiosity of R is set to Zero();
for r child of R

l = potential link from S to r;
R! Radiosity += r! AreaFactor�

RefineGatherAndPushPull(l,r,S,I+R!Irradiance);
R! Radiosity /= R! AreaFactor;
if R has links but its children do not

replace subdivision of R
return R! Radiosity;

RefineGatherAndPushPullEmit(
Link L, Element R, Element S, IrradianceDown I)

while c not the last child of S
l = potential link from c to R;
RefineAndGather(r,R,c);

l = potential link from c to R;
return RefineGatherAndPushPull(l,R,c,I);

Figure 6:Refine Gather and Push-Pull algorithm

In practice, we can easily replace the hierarchy which
is due to subdivision on a polygon surface, since the un-
derlying geometry remains the same. We will show next
how to do this by replacing subdivided elements by tex-
tures (recall the case ofr1 in Figure 6(a)). Related ideas
have been used in different contexts in [16, 9, 10].

Replacing initial scene geometry (i.e., simplifying
clusters and their contents) is much more involved. Many
potential solutions can be found, all of which require
the use of some geometry simplification technique (i.e.
image-based [13], volumetric [11] or mult-resolution rep-
resentations [6] etc.). Investigating these alternatives is
beyond the scope of this paper. Instead, we will present
a simple first solution, by representing the cluster as a
point for ligh-transfer, and as a shaded bounded box for
display.

5.2 Replacing Polygon Subdivision by Textures

The data structure of a hierarchical element correspond-
ing to an input polygon contains information about its
children, radiosity, unshot radiosity and irradiance as well
as link information. We create such a node which has a
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(a) (b)
Figure 7: (a) 1st iteration: the illumination detail of the floor
and wall polygons is represented by a texture (i.e. no hierar-
chical subdivision exists on these polygons). (b) 2nd iteration,
some re-splitting occurrs. The elements share the same texture.

special texture attached to it. This texture corresponds to
the values of the subdivided initial polygon.

The texture is a two-dimensional array of the float-
ing point values of radiosity. In addition a second ar-
ray which represents unshot radiosity is created in the
same manner. These two arrays are stored with the in-
put polygon. When displaying the polygon, the floating
point array is converted to a texture appropriate for dis-
play on the graphics hardware. In subsequent iterations,
the polygon may be resubdivided (see Figure 7), but the
texture array is not replicated. The sub-elements are sim-
ply assigned correct texture (sub)coordinates. Note that
we could gain memory by using a more compact repre-
sentation for these textures.

Irradiance need not be explicitly stored as a texture,
since it is only needed during push-pull, and thus is a tem-
porary variable created during the push phase and freed
at the end of the pull step for a given subtree of the hier-
archy.

The gather and push-pull operations are applied in the
normal manner to each entry of the radiosity and un-
shot radiosity arrays, thus maintaining the same quality
solution, without the overhead of the hierarchical data
structures. In our system, ignoring the memory required
for the original geometry, a quadrilateral hierarchical ele-
ment costs around 200 bytes, including children pointers,
parametric coordinates, radiosity and irradiance fields,
list of links pointer, and vertex geometry and color, used
for display of intermediate results. Note that our imple-
mentation is in C++, incurring additional storage over-
head.

5.3 Replacing Cluster Contents
As a first approach, we have chosen a simple replace-
ment strategy for clusters. For the lighting simulation
[12], clusters are considered to be a single point sam-
ple of radiosity (typically at the center of the cluster). If
theRefineGatherAndPushPullalgorithm decides that a
subtree based at a cluster is suitable for simplification,
we remove the children surfaces from the cluster. Clus-
ters are simplified as for polygons and if their projection
covers less than a pre-defined number of pixels.

The simplified cluster stores a single value for each of
radiosity, irradiance and unshot radiosity. For display, we
use the bounding box shaded with the colour value of the
clusters radiosity. Since the simplified node is a leaf of
the element hierarchy, it stores a reflectance value, and
irradiance pushed down to it is reflected at the level of the
cluster. Finally, we treat the simplified cluster bounding
box as a volumetric element, with a (scalar) extinction
coefficient in the manner of [12].

In contrast to polygon subdivision replacement, this
approach is view-dependent and does not produce exactly
the same solution as the “standard” approach. It is pre-
sented here simply to demonstrate that the element re-
placement can be performed atanylevel of the hierarchy.
More involved simplification could be used to achieve
better results (see Section 8).

6 Memory Control Mechanism

The algorithm presented above will reduce memory used
by links and the hierarchy. A certain number of links are
however still created (in particular all links for consis-
tency and links transporting indirect light), resulting in a
peak in memory usage, typically at the second iteration
(recall that no links from sources are stored). It is thus
important to be able to control the total amount of mem-
ory required as much as possible, in the same spirit as the
cache strategy of [17].

Instead of an explicit cache, we simply use the link hi-
erarchy to directly limit the memory used by links. This
is done by modifying the link creation criterion (see Sec-
tion 4.3): before creating a link we test to see whether
the link is above a certain level in the link hierarchy. The
cut-off level is estimated based on the memory the user
wishes to use, and an estimation of the average number
of links in the link hierarchy below this level. This has the
consequence of moving active links higher up in the hi-
erarchy. Recall that the light transfers of links which are
not stored are performed on-the-fly during the traversal
of the link hierarchy.

Nonetheless, a complete representation of all light ex-
changes is maintained, albeit at a coarser level. Clearly,
a more involved method could be used to tightly control
the actual memory used by the links and appropriately
modify the cut-off level of link creation.

An important consequence of moving links up the hi-
erarchy is that large element hierarchy subtrees become
candidates for removal. If the texture replacement only is
used, very few surfaces are actually subdivided. Remov-
ing the clusters will further remove hierarchy subtrees,
but in a view-dependent manner.
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Figure 8: Image generated by the original HRC algorithm for
the Medium Hall scene.

7 Implementation and Results

We have implemented the algorithm described previ-
ously as part of our hierarchical radiosity system. We
present results of our implementation, and compare them
to a “standard” BFA hierarchical radiosity with clustering
(HRC) approach.

We have tested our approach of three scenes. This
is a sequence of three “halls” containing 85,000 to
676,000 initial polygons each. These are called “Simple”,
“Medium” and “Complex Hall” respectively and abbre-
viatedSH, MH andCH. Examples of the hall scenes are
shown in Figures (8, 9). We first show the statistics for
the reference “standard” HRC solutions in Table 1.

Test Scene SH MH CH
input polys 65K 169K 676K

meminit 39MB 77MB 309MB
memclust 7MB 15MB 59MB

links 3.5M 7.5M 4.4M
polysub 137K 203K 2.5M
memhier 23MB 40MB 500MB
memlink 94MB 202MB 118MB

Time 1h30mn 4h07mn 4h15mn

memtot 156MB 320MB 927MB

Table 1: Statistics for the reference “standard” radiosity so-
lution. meminit is the total initial memorybeforethe solution,
memclust is the part used by clusters,links is the number of links
at the end of the solution, andpolysub is the number of hierar-
chical polygonal elements.memhier is the memory used by the
hierarchy (excluding initial polygons), andmemlink that used by
the links.Timeis the total computation time;memtot is the total
memory used, including the initial memory.

In Table 2 we show the results of our algorithm with
texture replacement of subdivision only (no cluster re-
duction is performed), where the memory control target
has been set to about 30% of initial memorymeminit .
Clearly, our algorithm achieves significant overall sav-
ings in memory, the overall gains varying from 73 to 88%
(excluding initial memory). It is important to note that

Figure 9: Image generated by the replacement by textures al-
gorithm for the Complex Hall scene.

Test Scene SH MH CH
memlink 1.5MB 1.8MB 11.3MB

memhier+tex 13.3MB 29MB 155MB
links 55K 67K 426K

polysub 22K 3K 7.7K
gainlink 98% 99% 90%
gainhier 42% 27% 70%
gainmem 87% 88% 73%

Time 1h07mn 2h51mn 5h39mn

memtot 58.3MB 112MB 501MB

Table 2:Results of our algorithm. Notation is as in Table 1, ex-
ceptmemhier+tex which is the memory used by the hierarchy and
the textures (excluding initial polygons), andgainlink, gainhier,
gainmemwhich are the percent memory gains for link, hierarchy
and overall respectively (excluding initial memory).

scenes with very large memory consumption, can now
be treated with much less memory (e.g., 501MB instead
of 927MB; initial memory is 309MB). The computation
time is comparable or even less than that of the standard
solution. This is mainly due to the improved form-factor
calculation, which reduces the values of many cluster
self-link form-factors resulting in a slightly lower num-
ber of gather operations overall. The complexCH scene
has fewer light sources in each room, resulting in a lower
number of overall links, and a faster computation time.

Finally we present an example of the cluster reduction
algorithm (Figure 10) showing very few artifacts. Here
the memory gain was 80% mainly due to the links, since
most of the objects are not subdivided in this scene.

(a) (b)

Figure 10:Scene containing 43,000 polygons. (a) the original
image and (b) the image generated with cluster reduction.
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8 Conclusions and Future Work

We have presented a novel algorithm for controlling the
memory consumption for hierarchical radiosity with clus-
tering. We show how we can reduce the memory used by
both the element hierarchy and the light-transport links.
To do this, we introduce a new algorithm for the refine-
gather-push/pull loop, which removes unnecessary links
and permits the removal of a subtree of the element hi-
erarchy during subdivision. The algorithm is based on
the link or line-space [4] hierarchy, thus preserving the
overall representation of global light transfers. Using this
representation, our memory control algorithm can calcu-
late global illumination solutions on a limited memory
budget, by moving light transfers higher in the link hi-
erarchy (in effect representing them in a more imprecise
manner). The results of our implementation show that we
can achieve significant savings in real memory consump-
tion with little loss of visual quality or precision in the
simulation of light.

In future work, we need to investigate more sophisti-
cated memory control mechanisms, taking the memory
consumption of the hierarchy directly into account. This
would require storing parts of the hierarchy (clusters and
surfaces) to disk during the computation, when the al-
gorithm requires removal of the corresponding sub-tree.
If, in addition, we can perform the first iteration of light
transfer while reading in the scene, we could apply the
simplification techniques described in this paper “on-the-
fly” during the loading of the scene file. As a result, it
should be possible to simulate environments of arbitrary
size on any computer. This entire approach will probably
require reorganizing the the order of lighting computa-
tions and sophisticated disk handling routines.

We believe that the ideas in this paper can be used with
more appropriate representations for simplified clusters.
These could take the form of image-based or volumetric
primitives, or multi-resolution geometric simplifications.
Finally, it will also be interesting to develop strategies to
predict the utility of a link in future iterations reducing
storage requirements of links.
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Abstract
The calculation of radiant energy balance in complex scenes has been made possible by hierarchical radiosity
methods based onclusteringmechanisms. Although clustering offers an elegant theoretical solution by reducing
the asymptotic complexity of the algorithm, its practical use raises many difficulties, and may result in image
artifacts or unexpected behavior. This paper proposes a detailed analysis of the expectations placed on clustering
and compares the relative merits of existing, as well as newly introduced, clustering algorithms. This comparison
starts from the precise definition of various clustering strategies based on a taxonomy of data structures and
construction algorithms, and proceeds to an experimental study of the clustering behavior for real-world scenes.
Interestingly, we observe that for some scenes light is difficult to simulate even with clustering. Our results lead
to a series of observations characterizing the adequacy of clustering methods for meeting such diverse goals as
progressive solution improvement, efficient ray casting acceleration, and faithful representation of object density
for approximate visibility calculations.

1. Introduction and Motivation

In scenes with great geometric complexity containing hun-
dreds of thousands or even millions of polygons global il-
lumination algorithms require the grouping, or clustering,
of the individual primitives. In this way light exchanges
can be treated at the level of the clusters and thus the
computational complexity of the radiosity solution becomes
manageable14; 12. Unfortunately, approximations made by hi-
erarchical radiosity algorithms using clustering are very sen-
sitive to the quality of the cluster hierarchy. Due to the com-
plexity of the algorithms and data structures (by definition
we are working with very complex models), no experimen-
tal analysis of the behavior of clustering algorithms has been
undertaken today. Willmott and Heckbert15 provided an in-
spiring study for progressive refinement radiosity and hier-
archical radiosity without clustering, but evidently this study
was restricted in the type of scene considered.

In this practice-and-experience paper, we investigate clus-
tering algorithms for hierarchical radiosity in a practical con-
text. In particular, we have chosen an experimental approach,
by comparing the performance of different clustering algo-
rithms. We have concentrated our attention on models pro-
vided by real-world applications, in an attempt to uncover
problems which real users of radiosity will encounter.

We propose a taxonomy of clustering algorithms, based
both on the type of data structure used, and the type of con-
struction algorithm. We then proceed to define requirements
for a clustering algorithm. In particular, a clustering algo-
rithm should provide the user with an intuitive time-quality
tradeoff: the more time is spent on a solution, the better the
quality of the solution. Several other desirable properties are
also identified, such as limiting the overlap of clusters, op-
timizing the “tightness” of the fit of clusters around objects
and appropriate size of the clusters with respect to the con-
tained objects.

Once the requirements have been defined, we proceed
with a series of experiments run on models used mainly in
real-world applications. Various parameters are measured,
including the image quality for varying simulation param-
eters, the cluster construction time, the quality of the hierar-
chy using different criteria and the speed of ray-tracing for
each cluster hierarchy.

The results of these experiments have allowed us to ob-
serve a number of interesting properties of clustering, which
are discussed in detail. This in-depth study of clustering
leads to the understanding that there exists no universal,
ideal clustering method, while explaining the relative mer-
its of various approaches.

c
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2. A Taxonomy of Clustering Algorithms

Clustering for hierarchical radiosity was introduced by Smits
et al. 14 and Sillion11; 12. Clustering algorithms can be clas-
sified by considering two aspects important to their usage:

1. The choice of data structure used. Broadly speaking, two
categories have been presented: regular, typically axis-
aligned subdivisions of space and hierarchies of bound-
ing volumes (HBV), which are more closely adapted to
the object geometry. Examples of such structures include
k-d trees and Octrees. Hybrids have also been proposed
but have not been used to date in clustering for radiosity.

2. The type of construction algorithm. Again, two basic cat-
egories have been used: top-down and bottom-up con-
struction.

2.1. Data Structure Choices

The data structures used for clustering have been mostly in-
herited from traditional spatial subdivision structures used in
graphics.

2.1.1. Octrees andk-d Trees

Regular structures such as octrees ork-d trees have several
advantages:

� They are fast to build (see Section 5.2), and easy to con-
struct since the form of the clusters is (nearly always) pre-
defined.

� They can provide fast ray-tracing since they use tradi-
tional ray-traversal mechanisms (see Section 5.2).

Their disadvantages are not specific to clustering for illumi-
nation, but due to the rather inflexible nature of their con-
struction:

� Objects which intersect cell boundaries do not have a triv-
ial placement in the tree. As a consequence a heuristic
needs to be determined to place the object at an appropri-
ate level.

� The tree can be very deep if the scene contains objects
with large differences in scale.

� Since the shape of sub-clusters is prescribed by the sub-
division mechanism, many empty clusters can be created.
These clusters consume memory and resources since they
are considered in all radiosity operations.

� Cluster boundaries do not tightly fit the set of contained
objects, resulting in poor-quality estimates of the optical
density, for the volumetric estimation of visibility12.

The first clustering algorithm to usek-d trees for illumina-
tion was presented by Sillion11. This approach uses a tradi-
tional, axis-alignedk-d tree into which objects are inserted.
The strategy chosen for placement of objects intersecting
cell boundaries is to put objects at the lowest level entirely
containing them. For many models, this can have very neg-
ative consequences since a large number of objects can end

up at very high levels in the hierarchy, with adverse effects
on computation speed. Since the refinement algorithm must,
when refining a link to a cluster, create new links for each
of its children, a high branching factor may result in long
computational times.

2.1.2. Hierarchy of Bounding Volumes

Algorithms based on bounding volumes hierarchies have
been used by several researchers14; 13; 7. These algorithms
use rectangular axis-aligned bounding boxes, and share the
following qualities:

Advantages:

� If built correctly, the cluster hierarchy adapts well to the
organization of the scene into individual objects (possibly
each having its own sub-cluster hierarchy).

� An “intuitive” hierarchy can be produced for a scene with
very different object sizes, without creating empty clus-
ters.

� Clusters can be made to tightly fit their contents.

Disadvantages:

� Overlapping clusters are generally unavoidable.
� Bad clusters often result when the scene is considered as

a set of individual polygons, without taking advantage of
the object structure (e.g., clusters mixing parts of different
nearby objects).

Hybrid data structures have also been developed for clus-
tering objects in different domains (notably for ray-tracing
acceleration). Cazalset al. 2; 3 construct hierarchies of uni-
form grids, and Klimazewskiet al. 10 present a similar ap-
proach. These methods are however designed to optimize
ray-tracing by constructing regular grid structures, and are
thus unsuitable “as is” for clustering. Some ideas however,
in particular those concerning grouping of objects, by Cazals
et al. 2; 3, could be applied in part to future clustering algo-
rithms.

2.2. Construction Algorithms

In this section we re-visit the algorithms described above by
construction algorithm type. The basic approaches are top-
down and bottom-up construction. We will briefly discuss
some issues of manual clustering, which is often used in in-
dustry and even in research.

2.2.1. Top-down Clustering

Typical top-down construction algorithms include thek-d
tree (KDT) construction used by Sillion12. An initial cell is
created, and objects are subsequently added into the cell by
appropriately subdividing the cell so that the object “fits” in
a sub-cell. As mentioned above, objects crossing cell bound-
aries are placed high up in the hierarchy.
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Christensenet al. 4 build a hierarchy of bounding vol-
umes starting with the bounding box of the entire scene.
The bounding box is split into eight octants. For each sur-
face contained in this bounding box, if the size of the object
is smaller than that of an octant, the object is inserted into
the octant containing its centroid. Otherwise, the object is
attached as a direct child of the cluster at this level. A new
bounding box of each octant is computed, and the algorithm
continues recursively in the same manner. In this paper we
refer to this algorithm and data structure as TF-OCT (“tight-
fitting octree”).

2.2.2. Bottom-up Clustering

Bottom-up construction of clusters is inherently more com-
plex, since it requires the examination of the existing objects
and their mutual spatial relationships. Since it is in a cer-
tain sense an optimization process, the complexities of algo-
rithms suited to such constructions rapidly become quadratic
or higher in the number of objects to be processed.

Smitset al. 14 mention they use a “modified Goldsmith-
Salmon algorithm” without describing the specifics14. Sil-
lion and Drettakis employ a hierarchy of regular grids to fil-
ter the objects and clusters in order of increasing size, and
produce candidate clusters based on spatial proximity13. The
same algorithm is used by Gibson and Hubbold7. In the rest
of this paper we refer to this method as PROXI, for “Prox-
imity clustering”.

Note that as we choose to group objects based on a mini-
mization function (e.g., minimize the volume of the clusters
created with respect to the objects being inserted)13; 7, an op-
timal solution requires an exhaustive test of all the combina-
tions of groupings of the objects being considered. Clearly,
this expense is extremely costly. A more appropriate group-
ing approach could be that of Cazalset al3.

2.2.3. Manual Construction

The difficulty of clustering is such that automatic methods
are not able to treat all scenes effectively. As a consequence
user intervention is inevitable at some stage in the process.
Examples of such intervention are the definition of “natural
clusters” such as those defined by the group of polygons be-
longing to a single “object” (a chair for example) or a logical
group such as the set of all objects on top of a desk. The spe-
cial case of touching objects is also important, since it is a
way of defining object hierarchies.

Some of these interventions can be handled at input (of-
ten the set of objects defining a chair object is defined as a
group by the modeling program and then instanced). Such
information should be incorporated by the clustering system
and used to its advantage when available. Other cases are
much harder (e.g., the “objects on the desk” case, or touch-
ing objects).

2.3. Improved Approaches

An extended version of KDT, which we call OBT for “Over-
lapping Binary Tree”, was derived as an attempt to merge
some of the benefits of Christensen’s octree construction and
the binary trees obtained with KDT. The algorithm is very
similar to the KDT construction, but here, objects crossing
the cell boundaries are pushed down in the hierarchy only if
the ratio of their size and the considered cell size, is higher
than an overlap parameter which can be set by the user (when
set to 0, a KDT hierarchy is obtained). The clusters pro-
duced by this algorithm can be larger than those of KDT,
and therefore may overlap, but the parameter provided gives
us control on the maximum potential overlap between adja-
cent clusters. Specifically, for a given value of the overlap
parameterλ, the following relations are true:

� maximal size of the KDT cell to which an object of size S
is assigned:

x=
2S
λ

� maximal overlap between two adjacent OBT clusters of
original size d:

o=
8
3

λd

These relations ensure that large clusters will not be over-
whelmed by large (and spatially sparse) collections of small
objects.

As a consequence, the OBT algorithm produces a deeper
hierarchy than KDT, and thus even more empty clusters. In
order to get rid of empty clusters, we developed another al-
gorithm that uses an auxiliary OBT hierarchy to build HBV
clusters in a second pass. In this second step, we keep only
the bounding box of the contents (objects and child clus-
ters) of each non-empty OBT cluster. Therefore, each cluster
in the obtained HBV hierarchy will have at most two child
clusters. We call the resulting new structure and algorithm
OKDT (Overlapping KDT).

Unfortunately, OKDT proved to be unable to separate ob-
jects formed of thin, long polygons, such as cylinders, be-
cause they were unlikely to be inserted deep in the hierar-
chy. As a consequence, several clusters contain too many
surfaces. This had adverse consequences on ray-casting and
refinement time (average branching factor being central for
hierarchical algorithms). Therefore, in order to improve our
algorithm we also tried applying a PROXI clusterisation pro-
cess on each cluster containing more than a dozen poly-
gons. We call this algorithm OKDT-P (Overlapping KDT
with Proximity second pass).

3. Requirements for a Clustering Algorithm

The most important goal for a good clustering algorithm is
to group the objects in a way which represents light transfer
to or from the group in the most faithful manner. At the heart
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of the hierarchical radiosity algorithm is the assumption that
it is possible to replace a “complete” calculation by a sim-
pler one, performed using simplified representations such as
clusters. This idea can only be exploited if the resulting sim-
plification only introduces modest perturbations in the cal-
culation.

Unfortunately, a precise definition, or even a set of quanti-
tative yardsticks allowing us to evaluate the quality of such a
representation do not currently exist. Instead, a set of heuris-
tics have been developed by various researchers in this do-
main (e.g.4; 13; 7). Considering the existing body of work, we
can identify two sets of desirable properties for a clustering
technique: those affecting the quality of the simulation, and
those affecting the overall efficiency of the applications.

3.1. Requirements Regarding the Quality of the Results

We outline below some of the required properties in order to
arrive at a satisfactory simulation of light transfer:

1. Monotonicity with respect to light transfer precision. If a
light transfer previously represented at a certain level be-
comes represented at a finer level of the cluster hierarchy,
the precision of the light transfer should be increased. If
we consider the Time-error graph obtained by plotting the
computation time as a function of the solution error, for
different tolerance thresholds, we would like to obtain a
smooth and monotonicfunction.

2. Overlapping clusters should be avoided as much as pos-
sible. Overlapping is problematic mainly because it im-
plies the treatment of the transfer of light of a volume
to itself, which is difficult to represent and to express in
terms of the hierarchical radiosity formalism. This is es-
pecially true in the case where error bounds are estimated
to drive the hierarchical refinement.

3. The nature of object group shapes should be preserved
as much as possible. Clusters which contain large re-
gions of empty space and scattered small objects should
be avoided. Although this may seem evident, many auto-
matic clustering algorithms have trouble respecting this
requirement.

4. Objects should always belong to a cluster of “appropri-
ate" size, with respect to their own dimensions. This re-
quirement is difficult to quantify, but is especially impor-
tant in the context of approximate visibility calculation,
where the attenuation of light passing through clusters is
estimated based on a volumetric analogy. This analogy
relies on the calculation of an optical density for each
cluster, which is only meaningful for clusters with well-
distributed (i.e. "random") collections of similarly-sized
objects11.

3.2. Efficiency Considerations

Considering the major impact of cost considerations on the
usability of clustering radiosity systems, particular attention
must be paid to the two following aspects:

3.2.1. Building the Hierarchy

First, we are of course concerned about the efficiency of hier-
archy construction. Even though the actual clustering phase
is generally a preprocess, and can sometimes be stored with
the model, it is still preferable to have efficient construction
algorithms:

� Fast cluster construction is important in the mod-
elling/design stage where the model changes significantly
and thus long clustering times hinder lighting experimen-
tation.

� For extremely large models it may be impractical to store
an additional high-overhead data structure describing the
cluster hierarchy.

� Finally, the application of hierarchical radiosity with clus-
tering to dynamically changing environments5 may re-
quire at least a partial rebuild of the cluster hierarchy at
interactive rates.

3.2.2. Acceleration of Ray Casting

Another important problem is the potential use of the clus-
ter hierarchy as a supporting data structure to accelerate ray
casting queries. Such queries are used for image generation
or more often, in the case of radiosity, for visibility calcu-
lations when computing form-factors. Indeed, ray casting is
the method of choice for visibility estimation in hierarchi-
cal radiosity, because the hierarchical algorithm fragments
the calculation into a large number of individual queries,
each relative to a different emitter/receiver pair9. Global ap-
proaches such as hemi-cube calculations are therefore inap-
propriate for hierarchical radiosity.

The requirements of ray-tracing acceleration are often
contradictory with those of clustering for illumination. For
example, structures which minimise the number of intersec-
tions on average in a statistical sense, such as the algorithm
of Goldsmith and Salmon8, result in clusters which contain
elongated bounding boxes containing large empty spaces.
These clusters are inappropriate for light transfer estimation
or optical density estimation, as outlined above.

A possible solution is the creation of two separate struc-
tures, one for clustering and one for ray-tracing acceleration.
This however would be undoubtedly far too expensive in
memory for very large models. In practice, we have observed
that the performance cost implied by the use of the clustering
structure for ray acceleration is most often acceptable. Some
comparative results concerning the performance of various
cluster hierarchies as ray tracing accelerators are presented
in Section 5.

4. Experimental methodology for evaluation clustering
algorithms

4.1. Methodology

As stated earlier, clustering is necessary to make the illumi-
nation computation of industrial scenes tractable. Its most

242



important drawback is that it makes error control very diffi-
cult, where it would be necessary to allow fast solutions to
be calculated with an acceptable precision. Given the previ-
ously described clustering algorithms, we need to determine
the critical parameters for their behavior.

Until now, most of the scene models used in the litera-
ture were designed by researchers for research purpose. We
feel that performing our study on such scenes would have in
some way "hidden" most of the problems involved by clus-
tering. In raw “industrial” scenes, poor quality initial mesh-
ing, dense distribution of objects or randomly ordered poly-
gons can make clustering algorithms barely usable.

Thus, our approach has been to perform a sufficient num-
ber of experiments on a set of complex, "real life" scenes
in order to understand and compare each algorithms behav-
ior in terms of quality-versus-time tuning. We limited the
range of our experiments to fairly coarse and fast calcula-
tions where the impact of clustering is significant.

4.2. Clustering Strategies Studied

The following table summarizes the set of clustering strate-
gies considered in this paper.

PROXI: Proximity cluster. Bottom-up construction af-
ter size filtering.

OKDT: Overlappingk-d tree. Top-down allowing par-
tial overlap.

OKDT-P: Overlappingk-d tree with limited branching.
OKDT modified to re-cluster cells with many
children, using PROXI locally.

TF-OCT: Tight-fitting octree. Top-down, layer-by-layer
octree construction, with re-fitting of octree
cell before subdivision.

We did not submit the KDT algorithm to our tests because
our experience with it proved that its average branching fac-
tor was far too high for it to be usable with scenes as large
as the one we used.

4.3. Test Scenes Chosen

We performed our tests on four different scenes, shown in
Figure 1. Three of them are rather large industrial-type mod-
els while the fourth one is provided as a comparison to show
that clustering usually behaves very well when applied to
small scenes designed for research purposes. We have taken
these scenes as representative scenes for the clustering prob-
lem, allowing us to identify the different problems of the
algorithms which we will test.

AIRCRAFT (184,456 polygons)
Model of an aircraft cabin (courtesy of LightWork Design
Ltd). All objects have been tessellated into (rather small)
triangles to account for the rounded shapes.

VRLAB (30,449 polygons)

A virtual reality lab with two floors and mostly over-
head lighting (courtesy of Fraunhofer Institut für Graphis-
che Datenverarbeitung). This scene has a mixture of large
polygons, likely to be subdivided, and very small patches
(on chairs and desktop computers).

CAR (216,157 polygons)
A model of a car interior with very small details, lit by a
single overhead console fixture (courtesy of BMW).

OFFICE (5,260 polygons)
A model of a simple office scene. This model is much
smaller than the other three and is provided to show that
clustering performs well on this kind of small scene usu-
ally found in the literature.

4.4. Tests Performed

For each of these scenes, and for each clusterizer we decided
to run the following experiments, designed to measure key
aspects of clustering:

� Data structure quality : We listed the number of clusters
in the hierarchy, as well as the average number of sur-
faces and clusters in each cluster node. These figures are
needed to estimate both the memory cost of the hierarchy
(compared to the cost of the actual geometry of the scene)
and its efficiency for hierarchical radiosity. Recall that the
computation speed of cluster based hierarchical radiosity
depends on the average branching factor because the re-
finement algorithm must, when refining a link to a cluster,
create new links for each child of this cluster.

� Measure of time needed to build the cluster hierarchy.
� Solution quality: To evaluate image quality we chose

to use a "visual quality" error evaluation on images ob-
tained for a given set of viewpoints rather than a view-
independant error metric since we want to study the vi-
sual quality rather than the accuracy of the energy trans-
fer quantities. Images were compared to reference images
(resulting from a maximum precision calculation) using
the following metric: we transform all pixels from RGB
space into chromaticity space XYZ. The global image er-
ror is then theL2 norm of the pixel-by-pixel difference
image between the current and the reference image, eval-
uated in CIELUV space6.

� Algorithm usability : To study the "quality versus time"
behavior of each algorithm, we rendered each scene us-
ing each clustering algorithm, changing only the param-
eters controlling our refinement process (we used a BF-
like refinement algorithm9, and an error-bound based re-
finement, both of them showed similar behavior on clus-
ters), measuring the time needed and evaluating the result-
ing image quality using the method previously described.
Since we are interested in the effects of the cluster hier-
archy, we do not perform tests on very precise solutions,
which involve only surface-to-surface energy exchanges.
Instead, we chose our refinement parameters in such a
way that the proportion of energy gathered through links
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VRLAB

CAR (courtesy of BMW)

OFFICE

Figure 1: The four test scenes.
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Figure 2: Time-error curves

involving clusters is significant (most of the time varying
between 30% and 100%).

� Ray casting acceleration: As we said in Section 3.2.2, we
have seen that it is desirable to use the cluster hierarchy
as an acceleration structure to answer visibility requests
(see Section 3.2). We decided to test the efficiency of each
structure for ray-casting. Therefore, we chose 100,000
random pairs of surfaces in each scene, and measured the
total time needed to search for a possible occlusion be-
tween each pair.

We also ran a separate set of experiments to evaluate the
efficiency of the cluster hierarchy when using approximated
volumetric visibility 12. This alternative to classical exact
visibility computation accelerate rendering times when pre-
cise shadow area determination is not needed. Instead of the
previously defined scenes, we used a model of several trees
(Figure 5) representative of some applications where an av-
erage representation of light transfers may be sufficient. It
is also a good test case for the volumetric visibility algo-
rithm: the set of leaves being a good approximation of a tur-
bid media. We calculated the images using each clustering
algorithm and then compared the difference with a reference
image obtained using exact surface visibility.

5. Results

In this section, we present a number of observations drawn
from the tests explained previously. We begin with an anal-
ysis of the quality aspects of the simulations, looking at
the evolution of our error measure with the user-defined er-
ror tolerance. We then consider in more detail the capacity
of different clustering techniques to assist visibility calcu-
lations, with a particular emphasis on computational effi-
ciency.

We ran all algorithms on a Silicon Graphics computer
(MIPS R10000 at 250 MHZ) with 4GB of memory.

5.1. Evolution of Solution Error

Recall from Section 3 that a major demand on the clustering
mechanism (together with the chosen refinement strategy) is
that the evolution of computation time and solution quality
should be regular and monotonic as the user changes the er-
ror tolerance (Figure 3). Ideally, this would result in a very
regular and monotonic time/error curve. Such curves are pre-
sented in Figure 2 for the four test scenes.

Looking at the four Time-error curves, we see two very
different types of behaviors: for the OFFICE and VRLAB
scenes, all curves are regular and fairly monotonic, whereas
for AIRCRAFT and CAR the variation of error is more er-
ratic. Indeed, looking at a plot of error as a function of the
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Reference TF-OCT PROXI

Figure 4: Example solutions exhibiting different (visual) forms of error (see also color plate).

user-supplied error tolerance, we find that the error in the so-
lution does not always decrease as we reduce the tolerance.
Because of limited space, we present only the error plots for
AIRCRAFT and CAR (Figure 3); the corresponding curves
for OFFICE and VRLAB are monotonically decreasing.

Why can the error increase when we decrease our toler-
ance? this unfriendly behavior occurs when links refined as
a result of the error tolerance change produce a less accu-
rate representation of radiosity exchanges. This is largely
a question of refinement criteria, but is also influenced by
the clustering strategy, as well as the distribution of objects
in the scene. We observe that our scenes can be classified
into two types: AIRCRAFT and CAR consist of many small
polygons, because of a previous tessellation of the objects.
VRLAB and OFFICE, on the other hand, contain objects of
varying size, from large walls to small furniture components.
Based on our experience and the results of the above experi-
ments, we observe that clustering algorithms have more dif-
ficulty with the first type of scene (“polygon soup”). This
is especially true of AIRCRAFT because 3D space is very
densely populated, resulting in many interactions between
clusters which are not separated by a significant distance.
These interactions also present a particular challenge to the
refinement criterion.

As an illustration of the typical errors created in an ap-
proximate solution for such scenes, consider the images in
Figure 4. The two approximate solutions have a similar error
under our measure, yet they appear quite different visually.
The solution using TF-OCT clusters exhibits marked radios-
ity variations along axis-aligned boundaries, corresponding
to the octree cells; on the other hand, the solution using
PROXI shows a high variance of radiosity and a speckle pat-
tern, due to the fact that nearby small objects can belong to
many different and overlapping clusters, with markedly dif-
ferent radiosities.

5.2. Performance and Visibility Calculation with
Clusters

We now consider the performance behavior of the cluster-
ing strategies in terms of construction time and as auxiliary
structures for visibility calculations.

Construction Time

As explained in Section 2.2, bottom-up construction is a very
expensive process since it amounts to an optimization proce-
dure.

Observed computation times for the construction of the
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cluster hierarchies support this prediction: the PROXI clus-
tering strategy construction is always much slower than
OKDT and TF-OCT, which operate top-down on simple re-
cursive subdivision schemes. These two techniques always
take less than 1% of the PROXI time. Interestingly, OKDT-P
takes between 20% and 80% of the PROXI time, depending
on the distribution of objects in the scene.

Approximate Visibility Calculations

The acceleration of visibility calculations usingequivalent
extinction propertiesof the clusters has been proposed by
Sillion12. In this approach, the transmittance factor between
two points in the scene is evaluated by considering the en-
tire segment between the points, and its intersections with
all clusters, then combining the corresponding attenuation
values, in an analogy with partially absorbing volumes. This
method, also adopted by Christensenet al. 4, is often faster
than true ray casting using the surfaces, because of the
smaller number of clusters and the ease of computation of
ray-cluster intersections.

We computed approximate visibility using clusters in a
scene dominated by direct lighting (from the sun), as shown
in Figure 5. In this case, the shadow pattern on the floor is
essentially an “X-ray image” of the cluster hierarchy, which
greatly helps in the comprehension of the cluster distribu-
tion.

We observe a clear hierarchy in terms of shadow qual-
ity, in the order PROXI (best, notice high quality of trunk
shadows), OKDT-P, OKDT, TF-OCT (poorest). Please see
images in color section. This is consistent with the intuitive
notion that PROXI starts from the objects and build clus-
ters bottom-up, thereby building clusters that are very tight
around the objects.

OKDT (and TF-OCT even more so) exhibits some incor-
rect shadows of large, blocky clusters, due to the constraints
in the spatial subdivision. In this respect, OKDT-P effec-
tively improves on OKDT, with a better fit around the objects
and more precise shadows.

Ray Casting Acceleration

Interestingly, the computation times shown in Figure 5 in-
crease with the quality of the shadows. This is consistent
with the general observation that hierarchical structures with
lower branching factors have more hierarchical levels and
perform better for ray tracing acceleration.

This reasoning is supported by the analysis of cluster
statistics on our test scenes. Figure 6 shows the variation of
the following three quantities with the clustering technique,
for each test scene:

� total number of clusters
� average number of child elements per cluster

� performance of ray tracing acceleration. This is measured
by shooting a large number (100,000) of random rays
through the scene and computing ray-surface intersec-
tions.

We first observe an obvious inverse correlation between
the total number of clusters and the average number of chil-
dren. In addition, TF-OCT has the largest branching fac-
tor for the cluster hierarchy because of its octal subdivision
scheme. OKDT also has a fairly high number of children on
average, because its construction mechanism offers no way
to control this branching factor. Conversely, PROXI has a
built-in mechanism limiting the number of children of any
given cluster (this operates by grouping objects into overlap-
ping sub-clusters). Therefore it exhibits the lowest branch-
ing factor. OKDT-P is intermediate, as expected, because by
construction it avoids clusters with many children, handing
them to the PROXI clusterizer. Still it avoids the overall large
number of clusters of PROXI. A consistent best performer in
terms of acceleration is therefore OKDT-P.

Finally, we note the conflicting nature of the two desires
for (a) efficient ray tracing acceleration and (b) suitability for
radiosity calculations (compare Figure 6 and Figure 2).

6. Conclusions and Future Work

We have presented an experimental analysis of clustering al-
gorithms for hierarchical radiosity. A taxonomy of clustering
algorithms was proposed, followed by a set of requirements
for a good clustering algorithm. Guided by these require-
ments, we developed an experimental methodology based on
an image-space quality measure. Extensive tests were run on
scenes for the most part developed in real-world application
contexts.

Drawing concrete conclusions from experimental tests
such as those performed here is always a delicate task.
Nonetheless, there are certain elements which we believe are
clear enough to be singled out:

Clustering works well in many cases: in particular, for
scenes containing objects of different sizes and a suffi-
cient number of large initial surfaces (walls, floors etc.),
all the clustering algorithms tested appear to perform well.
The Time-error graphs are smooth and monotonic for these
cases, presenting the user with an intuitive time-quality
tradeoff.

For scenes containing many small objects (“polygon
soup”), existing clustering algorithms are less well-behaved.
In particular, more time spent computing a solution does not
always result in higher quality (see Section 5.1). This is even
more troublesome since the scenes in question are typical
of industrial “real-world” models, which are often the result
of a fine tessellation of some unspecified and unrecoverable
modeling format. It is clear that a new approach is required
to treat such models, in order to build a hierarchy that fol-
lows the definition of objects. Reconstruction of individual
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Reference image.

PROXI (629 s) OKDT-P (402 s)

OKDT (281 s) TF-OCT (166 s)

Figure 5: Influence of the clustering method on approximate visibility calculations (see also color plate).
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Figure 6: Statistics on the cluster hierarchies

objects is possible based on connectivity and surface proper-
ties, and multi-resolution object models could be developed
to provide a hierarchy of representations.

Of the clustering algorithms tested, the hierarchical
bounding volumes (PROXI) approach seems to have the
most predictable behavior in almost all cases. In particu-
lar, the Time-error curve is almost always monotonic and
smooth. In addition, due to the nature of construction, it fits
objects more tightly, which is a desirable property for clus-
tering. However the overhead for PROXI is significant if not
prohibitive in most cases: a much longer construction time
(compared to all others tested), longer solution times, and
in some cases a higher absolute error for very approximate
simulations.

In terms of ray-casting cost, it appears that OKDT-P is
the most rapid structure. Thus, if ray-casting cost is an is-
sue (for example in interactive updates where efficiency is
paramount), this may be the clustering algorithm of choice.

Finally, in terms of the quality of approximate visibility, a
clear hierarchy was found with the following order PROXI
(best), OKDT-P, OKDT, TF-OCT (poorest).

We hope these first conclusions will be useful to re-
searchers and developers who wish to use clustering for hi-
erarchical radiosity. Clearly, much remains to be done in this
domain.

The error metric adopted for our tests is one of many pos-
sibilities. It is evident that different applications have differ-
ent notions of error (for example in lighting design where
an exact measure of energy prevails over image quality), and
these different requirements will lead to different choices for
clustering. These issues must be further investigated.

The initial, first-order, classification of scene “type” with
respect to their behavior in the context of a clustering algo-
rithm is an interesting avenue of research. Ideally, extensive
experimentation would allow us to determine which algo-
rithm is suitable for a given scene. This is however a very
ambitious task, so even initial results would be worthy of
further research.

The development of a novel clustering approach treating
scenes containing many small unrelated polygons is also an
interesting challenge.

To conclude, we believe that our analysis has shown the
utility of clustering for many cases, identified some weak-
nesses of current algorithms and identified certain important
properties of each algorithm with respect to their suitability
for different tasks.
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A Clustering Algorith m for Radiance
Calculation In General Environments

FrançoisSillion, GeorgeDrettakis? , Cyril Soler

iMAGIS ??

Abstract: This paper introduces an efficient hierarchical algorithm capable of
simulating light transfer for complex scenescontaining non-diffuse surfaces. The
algorithm stems from a new formulation of hierarchical energy exchanges be-
tween object clusters, based on the explicit representation of directional radio-
metric distributions. This approach permits the simplified evaluation of energy
transfers and error bounds between clusters. Representation and storage issues
are central to this type of algorithm: we discuss the different choices for repre-
senting directional distributions, and the choice between explicit storage or im-
mediate propagation of directional information in the hierarchy. The framework
presented is well suited to a multi-resolution representation, which may in turn
significantly alleviate the storage problems. Results from an implementation are
presented, indicating the feasibility of theapproach and itscapacity to treat com-
plex scenes.

1 Int roduction

The hierarchical radiosity algorithm permits the efficient computation of radiosity so-
lution within well-understood error-bounds. Its main limitation is the “initial-linking”
step, which for scenes of diffuse polygons adds a quadratic computational cost. As
a consequence the algorithm is unusable for large environments. Recently presented
clustering algorithmsfor hierarchical solutions [10, 6], avoid thequadratic cost by first
clustering the environment and then refining theclusters.

Nonetheless, littl e work has been performed for non-diffuse environments. Two-
passalgorithms[9, 11] and ageneral solution using directional representations[7] have
treated more general environments in the context of progressive refinement radiosity.
A hierarchical solution to general environmentshas also been proposed [1], but in the
case of that algorithm the initial linking cost becomesO(n3) in the number of initial
polygons, making it unusableeven for moderately complex scenes.

Theprocessingof complex environmentswith general reflectorsisanecessity, since
almost all interesting scenescontain at least some percentageof non-diffusematerials.
In this paper we present a framework which provides the necessary machinery for the
treatment of non-diffuse environments in the context of a hierarchical clustering algo-
rithm. This framework is a natural extension of previous clustering methods since, as
noted before[6], clustersdo not behaveas isotropic scatterers, even if composed solely
of diffuse surfaces. It is based on the representation of radiant intensity by directional
distribution functions, and extends the spirit presented in [7] to hierarchical clustering.
The result is the first efficient hierarchical algorithm permitting the efficient of com-
plex, non-diffuseenvironments. In addition, this representation affordsasmooth transi-
tion between the representation at the level of (non-diffuseand diffuse) surfaces to the
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level of clusters. Finally, the framework opens the way to an efficient multi-resolution
representation of light properties for clusters.

In contrast with previous clustering approaches our new method is based on the
storageof directional propertieswith theclusters. Thisapproach requires the reconsid-
eration of some of the quantities previously used since we are now dealing with direc-
tional energy exchangesbetween clusters. In Section 2 we characterise the directional
propertiesof clusterswhich areused in our solution. In Section 3we introducethenew
algorithm which is based on the directional representation, in Section 4 we discuss the
issues pertaining to possible approaches to storing directional distributionsand in Sec-
tion 5 we present some implementation issues and some first results. We conclude in
Section 6with adiscussion of limitationsand the directionsfor futureresearch.

2 Characterization of directional energy transfer

As outlined above, we wil l be treating the light leaving and impinging on clusters as a
functionof direction. Inparticular wewant tobeableto storeandmanipulatedirectional
functionsto characterizetheradiant behaviour of acluster. In thissection wediscussthe
physical quantities used, their representation and their relation to traditional radiosity
variables.

For the most general discussion of directional light transfer, we consider light leav-
ing thecluster, light impinging on thecluster, and light passing through thecluster. We
also introduce a particular directional function useful for the expression of energy ex-
changes with distributions. In the remainder of this paper we wil l denotea direction in
space by a unit vector, with the convention that~urepresents an outgoing direction and
~van incident direction (See Fig. 1).

uv

dω

Fig.1. Notations used for directional functions.

2.1 Outgoing Light

For thedescription of light leaving thecluster, weuse radiant intensity, I , representing
power per unit solid angle. At a point x on a surface, radiant intensity is related to
radianceby the following formula:

dI(x;~u ) = L(x;~u ) dA (~u� ~n) ; (1)

where~nis thesurfacenormal anddA is thedifferential surfaceareaaround pointx. In
thecase of adiffusesurfacewith radiosityB, radiant intensity is thusgiven by

dI(x;~u ) =
B

�
dA (~u� ~n) :
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2.2 Incoming Light

For light arrivingonacluster, weusethestandard (incoming) radiancequantity, defined
astheamount of power receivedper unit areaperpendicular to thedirectionof incidence
and per unit solid angle.

With thisdefinition, if thedistribution of incident radianceat pointx isE(x;~v ), the
incomingflux density per unit solid angleon asurfaceplaced atx with normal direction
~nis

Es(x;~v ) = E(x;~v ) (~ v� ~ n) (2)

2.3 The Tangent-sphere function

In Equations 1 and 2 above, thescalar productsmust beunderstood asbeing zero if the
surface is not facing the right direction. For notational convenience we represent this
extended scalar product as a function of ~u. Let us define the tangent-sphere function
T~n(~u) for a direction~nby

T~n(~u) =

�
~ u� ~ n if ~u� ~n� 0

0 Otherwise (3)

As shown in Fig. 2 thesurfacegiven in spherical coordinatesbyr = T~n(~u) has the
shapeof asphere tangent to the planeorthogonal to ~n.

n

Fig.2. Tangent-Sphere function.

Using this function, Equations 1 and 2can berewritten as

I(x;~u ) = L(x;~u ) dAT ~n(~u) (4)

and
Es(x;~v ) = E(x;~v ) T~n(~v) (5)

2.4 Extinction properties

The transmission propertiesof object clusterscan bediscussed using a fruitful analogy
with semi-transparent volumeswith optical extinction properties. Previouswork along
this linehasproposed to computeequivalent isotropic extinction coefficients for object
clustersbased on thetotal areathey contain [6] (� = A=4V , whereA is thetotal surface
areaof theobjects in thecluster andV is its volume).

In thegeneral approachpresentedherewelif t theisotropicassumption and compute
for each cluster adirectional extinction coefficient, used to evaluatetheattenuation of a
light beam traversing thecluster in agiven direction. Thetotal projected areain agiven
direction can be precomputed and stored with each cluster. It is given by the following
sum over thesurfacescontained in thecluster:
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A(~v) =
X
i

AiT~ ni
(~ v) (6)

A directional extinction coefficient is then obtained with the following formula:

�(~v) =
A(~ v)

V
(7)

�(~v) is used as in [6] to compute approximate transmission through a cluster, as it
represents the rate of attenuation per unit length in the direction of interest. Note that
the factor of 4 from the isotropic formula is no longer present, since it accounted for
the averaging over all directions. Plate 1 (see Appendix) shows results obtained with
directional extinction.

2.5 Light Scattering

For now we only consider the transformation of incoming light into outgoing light to
take place at surfaces. We assume that a surfaceoriented in direction~nis placed at the
origin. The surface is small enough for all distributions to be safely assumed constant
across its surface. One difficulty in expressing the general light scattering equation is
that surface scattering is best described in a coordinate system that is local to the sur-
face. Let us define a linear transformationM~nsuch that~u0 =M~n~uis the unit vector
representing thedirection of ~uin acoordinatesystem attached to thesurface. Asshown
in Fig. 3, both vectorsarealigned, they simply havedifferent coordinatesbecause they
areexpressed in different framesof reference.

n u’
u

Fig.3. Notations for the scattering equation.

Surfacescattering In thisparagraphweexpressall directionsin thesurfacecoordinate
system. Theradiance leaving thesurface in adirection~u0 is given by

L(~u0) =

Z
~ v0

2
+

Es(~ v0)�bd(~u
0; ~v0)d!~v0 (8)

whereEs(~v
0)d!~v0 is the incident flux density on the surface from the differential solid

angled!~v0 around direction~v0.
+ is theupper hemisphere(abovethesurface).
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Expressing radiant intensity from incident radiance We now wish to express the
scattering equation using the directional quantities defined above, and in a general
(world) coordinate system, not tied to any particular surface. This simply requires a
number of coordinate transformations usingM~n. Combining Equations 4 and 8, we
can express the radiant intensity leaving a surface in direction~uas

I(~u) = A T~ n(~ u) L(~ u) (9)

= A T~ n(~ u) L(M~ n~ u) (10)

= A T~ n(~ u)

Z
~ v02
+

Es(~ v0)�bd(M~n~u;~v
0)d!~v0 : (11)

Using Equation 5 and changing the integration variable to bea unit vector in thehemi-
sphereabovetheoriented surface,~v=M�1

~n
~v0, wehave

I(~u) = A T~ n(~ u)

Z
~ v2M

�1

+

E(~ v)T~ n(~ v)�bd(M~n~u;M~n~v)d!~v (12)

Ideal diffusecase For ideal diffusesurfaces, theBRDF isa constant, and Equation 12
reducesto

I(~u) = A T~ n(~ u)
�d

�

Z
~ v2M

�1

+

E(~ v)T~ n(~ v)d!~v (13)

Theintegral in Equation 13 representsthe total incident flux density (irradiance) on
thesurface.

3 A Cluster-Based Illuminatio n Algorith m for General Scenes

Existing radiosity clustering algorithmscan be adapted to work with directional infor-
mation, with littl e modification as described in this section. We assume here that the
reader is familiar with hierarchical radiosity and clustering algorithms [3, 10, 6]. In
these methods, a hierarchical subdivision structure of 3D space is used to collect sur-
facesinto clusters. Themain ideaof thenew general clustering algorithm is to associate
to each cluster or surface a number of directional distributions representing its radiant
properties. The scattering equation (12) must then be evaluated for each surface, using
theappropriate incident radianceand radiant intensity distributions.

3.1 Form factor

Since we are using a radiant intensity distribution on the emitter, the estimation of
energy transfer between a pair of objects is slightly different than with usual radiosity.
Transfer estimatesareneeded in two stagesof ahierarchical radiosity algorithm. First, a
bound on the total energy transfer between two objects (or clusters) must be computed
during the link refinement stage. Second, the actual energy transfer takes place in a
gathering stage, where the incoming energy iscomputed acrosseach link.

The notion of “form factor” used in our algorithm is redefined from purely algo-
rithmic considerations: the form factor associated to each link is the scalar quantity by
which theradiant intensity valueof an emitter must bemultiplied to obtain the incident
irradiance (power per unit area perpendicular to the direction of propagation) on the
receiver.
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This quantity is simply derived from the expression of radiant intensity and irradi-
ance, and is

Fpq =

Z
p

Z
q

1

r2
dpdq (14)

3.2 Lin k refinement

For the purpose of making a refinement decision, a hierarchical subdivision criterion
must be defined. Our preliminary implementation uses an estimate of the energy trans-
ferred between two objectsq andp (objects can be surfaces or clusters [6]). To obtain
this estimate we select two sample points in p andq, yielding a direction~u. Multiply-
ing Iq(~u) with the “form-factor”Fpq we obtain an incident irradiance contribution on
p from direction~v= �~u, denoted by Epq . Note that, in a manner similar to Lischin-
ski at al’s work [5], an actual bound on this transfer can be computed, provided we
store not only the average radiant intensity but also the maximum radiant intensity for
each object. To obtain an energy value from incident irradiance requires a multiplica-
tion by thetotal projected areaof thecluster’scontents in direction~v,A(~v), introduced
in Section 2.4. Our estimate of the energy contribution of the link betweenq andp is
thus

P = Ap(~v)Epq (15)

= Ap(�~u)Iq(~u)Fpq (16)

Note that the previous discussion ignores intra-cluster visibility issues. These are
not treated in thispaper, although recent work showsthat it ispossibleto integratetheir
effect with reasonablecost [8]. It is interesting to note the benefit of storing the radiant
intensity in the form of a directional distribution, since the transfer estimate does not
require the interrogation of the cluster contents. This represents a potential gain over
previoushierarchical clustering algorithms[6, 10].

3.3 Gather

Dueto thechange in quantitiesused to represent and store light, the traditional process
of gathering across linked clustersor surfacesmust beappropriately modified.

One of the most important choices to be made when representing directional prop-
erties in ahierarchy of clusters, iswhich propertiesto storeexplicitly at all levels in the
hierarchy and which to store implicitly by pushing them down to the level at which ad-
ditional storage cost is incurred. In particular the efficient treatment of incident energy
contributions requires some attention. We consider here two alternatives, and discuss
their relativemerits.

Storing an incident radiance distri bution The simplest directional clustering algo-
rithm isprobably onewhereincomingradianceisstored with each cluster, together with
(outgoing) radiant intensity. The main advantageof this approach is that theamount of
work performed for each link in the gathering phase is fixed, and does not depend on
theclusters’ complexity. This“constant-time” transfer computation, combined with the
linear number of links with respect to the total number of surfaces [3, 10], results in a
clustering algorithm with linear asymptotic complexity.

Unfortunately, storing incoming radianceisdifficult and expensive. First,in thecon-
text of our framework wewant to use acontinuous, directional function representation.
Incoming radiance is inherently discontinuous, as for instance the contribution of a
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given source is non-zero only for directions reaching the source. This difficulty can be
eliminated by estimating a continuous approximation to each source’s contribution to
the incident radiance.

Consider again the transfer from q to p. Since our refinement criterion has estab-
lished thelink at thislevel, it isreasonableto assumethat thetransfer iswell represented
by a point-to-point calculation. An estimation of the error incurred by this assumption
must evidently beundertaken in the future. The incident ir radiance onp is obtained as
explained in Section 3.2. This irradiancecan bespread acrossthesolid anglesubtended
by q, using a simple parametric filter in the shape of a peak. We are investigating the
use of rotatedcosn(�) distributions as convolution filters. Clearly however this opera-
tion involvesa significant additional computational cost.

In addition, explicit storageimpliestheneed for an expensiveconvolutionoperation
when pushing the incoming radiance down the hierarchy of clusters. At the transition
from clustersto surfacestheconversion from incident radianceto radiant intensity must
beperformed, asshown in Equations12 for thegeneral caseand 13 for thediffusecase.
Again this impliessignificant additional computation.
Immediate propagation of incoming contributions An alternative to storage of in-
coming radiance is to explicitly push incoming light down the hierarchy at each gather
operation. To perform this we no longer consider radiance, but ir radiance, computed
as in Section 3.2. This quantity, accompanied by the incoming direction~vis pushed
down the cluster hierarchy by simple addition. This irradiance is the termE(~v)d!~vin
Equation 12. At the surface level we need only evaluate Equation 12, replacing the in-
tegral by an “impulse” from direction~v, with the surface irradiance valueEpqT~n(~v).
Thissurfaceirradianceisused to scale thesurface’sBRDF, which reducesto aconstant
for diffusesurfaces.

3.4 Push/Pull
In our implementation we have chosen the option of immediate pushing of incoming
radianceasopposed to storing thequantity asadirectional function. Thusthetraditional
Push-Pull operation only needs to perform the “Pull” portion, since the “Push” occurs
at the gathering stage. Since radiant intensity is a power quantity, the radiant intensity
of a cluster is obtained from that of its sub-clustersby simplesummation. The result is
a combined directional function representing the total radiant intensity of thecluster.

4 Representation of Directional Distri butions
Several storageschemeshavebeen investigated in thecontext of simulating non-diffuse
radiant exchanges. A major difficulty in selecting a representation is to achievethebest
possible balance between the storage cost of each option and its suitability given a
number of algorithmic requirements. Any finite representation of directional functions
is based on the selection of a number of basis functions. The representation of a distri-
bution then consistsof its coordinatevector in the chosen basis.

Previous algorithms employ for example constant basis functions defined over the
cells of a “global cube” [4], or spherical harmonics basis functions up to a prescribed
order [2, 7]. The global cube approach has the advantage of simplicity, first because it
is very easy to manipulate, but also because function products can be evaluated easily
(since the basis functions have non-overlapping support). However it is inherently a
discontinuousrepresentation, proneto disturbing rendering artifacts.

Spherical harmonics, on the other hand, always producecontinuous functions. But
they arenon-zeroover theentirehemisphere, making thecomputationof functionprod-
ucts much moreexpensive.
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4.1 Spherical Harmonics

In our implementation we use spherical harmonics basis functions. These form an or-
thogonal basis of the set of distributions on the unit sphere. This infinite collection of
basis functions is typically denoted by Yl;m(�;� ) where0 � l < 1 and�l � m � l.
In direct analogy with aFourier seriesin onedimension, any square-integrablefunction,
f(�;� ), can be expressed in thisbasis, with a set of scalar coefficientsCl;m.

An approximaterepresentation of a directional function isobtained by storing only
the first few coefficients of this decomposition, up to a given maximum level. BRDFs
can beencoded by such vectorsof coefficients for use in a radiosity simulation [7].

Representation of diffuse surfaces using Tangent-Sphere functions In the diffuse
case, all radiant intensity distributions are combinations of oriented Tangent-sphere
functions(seeEquation 13).

Thedecomposition of T~n(~u) into spherical harmonicscan becomputed for a given
direction~n. The simple shape of this function allows a very good approximation with
only 9 coefficients (l � 2). Thecoefficientsof thisdecomposition are thus functionsof
~n, and they can themselvesbedecomposedusing spherical harmonicsof ~n. Thisdouble
decomposition was already used by Westin et al. to represent anisotropic BRDFs [12].
In our case it is stored in a data file, since the Tangent-sphere function is always the
same.

Thespherical harmonicsrepresentationof T~n(~u) isobtained by evaluating thevalue
of each coefficient for the direction~n. Since this only depends on the surface orienta-
tion, it isonly performed once in theprogram, and is then stored with thepolygon (and
thusshared by all hierarchical elementson thesurface).

Computation of thescattering integral If incident radianceisstored with theclusters,
theintegral in Equation 12 must beevaluated at each cluster-surfaceinterface. Thecon-
volution of incident radianceand theBRDF isquitecostly to compute, especially since
function productsare difficult to expresswith spherical harmonicscoefficients. We are
currently investigating an efficient algorithm to compute such convolutions, based on
the use of recurrence relations, and the observation that the integral of a function is
represented by it’s (l = 0;m = 0) coefficient.

5 Implementation and First Results

Wehaveimplementedtherepresentationof radiant intensity andtheequivalent push/pull
operation in our testbed clustering system. As described abovewe have used spherical
harmonics for the representation of directional functions. Our implementation is still
preliminary in the sense that for now a limited number of orientations are allowed for
non-diffuse surfaces. The color plates in the appendix demonstrate the versatility and
high potential of themethod.

5.1 Directional properties for clustersof diffuse surfaces

We first consider theanisotropic behaviour of clusterscontaining only diffusesurfaces.
Plate 2 shows an example with over 6,000 surfaces. The ceiling receives no primary
illumination, and is only illuminated by light reflected by the cluster. We see that the
pattern of light on theceiling isdisplaced with respect to thevertical direction.

Asan indication to thereader of therelativecost of thestorageof directional radiant
intensity, comparisonsare made to imagesgenerated using the algorithmspresented in
[6, 8], in which directional functions are not used. Since the refinement criteria are no
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longer the same, we set our subdivision threshold so that the two executions result in
similar number of links refined for two iterations. The following table gives the com-
putation time(in seconds) and memory cost (in Mb) for directional (dir) and traditional
(trad) clustering algorithms.

Name PolygonsTime(dir) Time(trad)Mem. (dir) Mem. (trad)
Simple 13 29.6 24.0 8.5 4.7
Cubes 6000 140.0 46.1 13.4 6.9

We see that the computation time for the directional approach is between 20% to 3
timeshigher. Thiscan beexplained by theadditional expense in combining the tangent
sphere functions and the directional representations of radiant intensity. The compar-
isons are given only as an indication; in the resulting images for theCubes scene the
directional algorithm obtains a much higher quality representation of the secondary il-
lumination on the ceiling (see Plate 2).

Thememory requirementsfor thedirectional representationareapproximately twice
that of the traditional clustering approach. These numbers are more meaningful since
they arenot affected asmuch by thedifferent refinement criteria. If thegrowth factor is
close to the indicated factor of two, this implies that memory utilization does not pose
a major problem for our approach, since even very complex scenes wil l not require
unmanageableamountsof memory.

5.2 Results for general reflectors

Plates3 and 4 show simulationsperformedwith acluster of glossy surfaces. Both direc-
tional reflection and directional attenuation aredemonstrated, by illuminating thescene
from two different directions. Plate 5 illustratestheview-dependent character of radiant
intensity distributions, with two different views of the same scene. Computation times
for all these imagesrangefrom 17 to 103 seconds.

6 Discussion and Conclusions

We have presented a general framework for the hierarchical representation of energy
exchangestaking into account thenon-uniformdirectional behavior of surfacesand ob-
ject clusters. Although conceptually simple, this approach raises a number of practical
issues, which wediscussbelow.

Benefits and limitation s of the Approach The explicit representation of directional
radiant functions for object clusters has several important benefits. First, it allows a
smooth integration of non-diffusereflectorsin aclustering algorithm. Second, if incom-
ing radiance is stored explicitly, it reduces the asymptotic complexity of the clustering
algorithm. Third, theconsiderationof directional extinctionpropertiesgreatly improves
theapplicability of theapproximatetransmission calculation based on thevolumeanal-
ogy. Finally, themethod allowsthesimulation of non-isotropicscattering volumeswith
arbitrary phase functions. In practice we consider that the most useful feature is the
ability to mix diffuseand non-diffusereflectors in asceneat amoderateadditional cost.
In particular theoverhead costs for diffusereflectorsremain reasonable, whileallowing
much moreaccuratetransfersbetween clusters. Wetend to prefer theoption of implicit
storagefor incident radiance, since it appearsvery difficult to do away completely with
any traversal of thehierarchy during thegatheringstage. For instance, theconsideration
of intra-cluster visibility is much easier when each contribution is pushed down to the
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surfaces[8]. Theefficient representation of directional functionsisadifficult issue. For
general reflectors many spherical harmonics coefficients may be needed, resulting in
high storageand computation costs.
Futur e directions A major area of research for future work is the investigation of
multi-resolution representations of directional functions. It may be possible to store
different levels of detail at each cluster, instead of storing a complete distribution ev-
erywhere. This would dramatically lower the storage costs, while allowing true multi-
resolution visibilit y computation through object clusters [8]. Another interesting direc-
tion is the computation (and storage) of complete scattering functions for all clusters.
These wil l allow the direct transformation of incoming radiance to radiant intensity,
similar to a volumic phase function. However the storage costs for such bidirectional
phase functionsmay be prohibitive.
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(a)

(b) (c)

Plate 1. Using directional visibility information: (a) representation of the directional extinction
coefficient for the cluster of slanted objects. (b) Simulation showing the varying attenuation in
the shadow area. (c) Simulation using isotropic extinction: note the uniform attenuation in the
shadow area.

Plate 2. Solution for a scene with 6000 diffuse surfaces. (a) directional and (b) non-directional
clustering.
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Plate 3. Simulation with a cluster of specular reflectors (overhead illumination): (a) distribution
of radiant intensity for the selected cluster. (b) final image.

Plate 4. Simulation of the same scene (with illumination coming from the side). Comparing to
Plate 3, note the change in secondary illumination and the change in the cluster’s shadow.

Plate 5. Two views of a scene with glossy surfaces (floor and table top). Note the differences in
the appearance of the non-diffuse surfaces.
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Abstract
The ability to perform interactive walkthroughs of global
illumination solutions including glossy effects is a chal-
lenging open problem. In this paper we overcome certain
limitations of previous approaches. We first introduce a
novel, memory- and compute-efficient representation of
incoming illumination, in the context of a hierarchical ra-
diance clustering algorithm. We then represent outgoing
radiance with an adaptive hierarchical basis, in a manner
suitable for interactive display. Using appropriate refine-
ment and display strategies, we achieve walkthroughs of
glossy solutions at interactive rates for non-trivial scenes.
In addition, our implementation has been developed to be
portable and easily adaptable as an extension to existing,
diffuse-only, hierarchical radiosity systems. We present
results of the implementation of glossy global illumina-
tion in two independent global illumination systems.

Key words: global illumination, glossy reflection, inter-
active viewing

1 Introduction

Real-world scenes contain materials with different re-
flective properties, varying from matte (diffuse) to shiny
(glossy or specular). Global illumination research has
made great advances for the treatment of diffuse envi-
ronments in the recent years, in particular with the ad-
vent of the Hierarchical Radiosity (HR) algorithm [7]
and the subsequent introduction of clustering [18, 15].
It is now possible to compute global illumination solu-
tions of complex diffuse environments and perform inter-
active walkthroughs. Interactivity is achieved using the
polygonal model which is appropriately subdivided into
sub-polygons to capture shadows and lighting variations.
Since the environments are diffuse, no updates are neces-
sary at each frame, and the polygons are drawn as is. In
contrast, scenes containing glossy surfaces cannot yet be
treated in an interactive context. To generate images with
glossy surfaces, ray-tracing based approaches are typi-
cally used, such as theRADIANCE system [27] or path-

tracing algorithms (e.g.,[11, 23]). Some finite element
approaches have been presented, but can only treat trivial
scenes (e.g., [13, 1]) or require a second, ray-casting pass
to generate an image [3]. Two approaches have been pro-
posed which are capable of interactive viewing [16, 25],
but they are limited in their capacity to treat non-trivial
environments and reflective behaviours.

We present a novel solution which allows interactive
viewing of globally illuminated glossy scenes. To reach
this goal, we use a finite element representation of outgo-
ing radiance at surfaces or clusters. This representation
is used at each frame to evaluate the radiance leaving a
glossy surface and reaching the eye, permitting interac-
tive viewing.

A novel representation of incoming radiance in the
form of a structure calledIllumination Samplesis pre-
sented, which is efficient both in memory and computa-
tion time. This structure replaces an explicit (and costly)
finite-element representation of incoming radiance by
sets of relevant point samples.

Furthermore, we demonstrate the importance and ben-
efits of using an adaptive hierarchical representation of
outgoing radiance improving on both computation time
and memory consumption compared to previous ap-
proaches such as [16]. Our algorithm produces high qual-
ity glossy global illumination solutions which can be di-
rectly rendered for interactive walkthroughs, without the
need for expensive second-pass final gather as in [3].

2 Previous Work

Most previous work in glossy illumination has been cen-
tered around ray-tracing. These start with distributed ray-
tracing [28, 5] and the rendering equation [9] in the late
eighties. A large body of research ensued focusing on
Monte-Carlo stochastic algorithms. The goal of this re-
search was to reduce the noise in the solutions, introduced
by the stochastic nature of the Monte-Carlo methods
(e.g. [22, 11, 14]). Monte-Carlo algorithms that proved to
be useful in other research areas were successfully trans-
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ferred to the global illumination problem [10, 24].
In parallel, several multi-pass methods have been de-

veloped which combine the advantages of ray-tracing and
radiosity-style calculations [17]; others have integrated
radiosity calculations a stochastic process [2]. TheRA-
DIANCE system [27], particle tracing [12] and photon-
maps [8] are also interesting since they collect samples of
illumination either on surfaces or in a separate structure,
and use a ray-cast or trace to render the final image.

“Pure” finite element approaches for glossy illumina-
tion have appeared in two main flavours: three-point ap-
proaches [1, 13] and finite-element approaches using di-
rectional distributions [16, 3]. We concentrate on the last
two methods in more detail, since they are closer to our
new algorithm.

2.1 Wavelets and Final Gather

Christensen et al. [3] extended the wavelet methods
which have been used for radiosity [29, 6, 4] to a radiance
clustering algorithm. However, it still suffers from some
computationally expensive steps which hinder interactive
viewing. Patches store a radiance distribution which is
represented using a four dimensional wavelet basis ac-
counting for spatial and directional variations. Comput-
ing the transport coefficients involves evaluating a six-
dimensional integral which is computationally expensive.
Importance driven refinement reduces the number of in-
teractions drastically; but the solution becomes view de-
pendent and consequently cannot be used for interactive
viewing.

Higher order wavelet bases were also investigated,
which provide a sparser transport coefficient matrix and
deliver smoother representations. However, the integra-
tions are so complex that the authors resorted to the Haar
basis with a smoothing final gather step, which is very
time consuming and view dependent.

2.2 Radiance Clustering

The Radiance Clustering approach (RC) developed by
Sillion et al. [16], used spherical harmonics to store ex-
iting radiant intensityI on the hierarchical elements of a
subdivision of the original scene. An “immediate-push”
algorithm is used, which, during the gather operation of
light across links, “pushes” the contribution all the way
to the leaves. At the leaves, radiant intensityI is stored
as a spherical harmonic function; the new contribution is
reflected and added into this function.

The result can be visualised directly by sampling the
spherical harmonic representations ofI at each frame.
Direct visualisation (i.e. with no acceleration) was per-
formed for simple scenes; since for each frame radiance
is evaluated at each vertex or leaf element, frame rates
are not optimal. Furthermore, spherical harmonics are a

non-hierarchical representation, and the number of coef-
ficients used is fixed in advance. As a result, there is no
control over the level of detail required to represent the
directionally dependent glossy illumination.

Our new algorithm provides solutions to the above
problems and also reduces memory and time consump-
tion. We start with an improved representation of in-
coming radiance, which avoids the memory overhead and
multiple hierarchy passes of the “immediate-push” so-
lution. In particular we introduceIllumination Samples
which are an appropriate point sample set representation
of incoming light. We then proceed with an adaptive hi-
erarchical representation of outgoing radiance using Haar
wavelets, which is well-suited to interactive viewing, and
allows smooth control of the memory/quality tradeoff.
This avoids the problems of non-adaptive representations
which are either not sufficiently accurate or too memory-
consuming. Appropriate directional refinement and sim-
ple heuristics for accelerated viewing are also introduced.

3 The Illumination Samples Algorithm

The goal of the new Illumination Samples algorithm is to
extend an existing Hierarchical Clustering algorithm to
also handle non-diffuse surfaces. Inter-surface light prop-
agation is the same for diffuse and non-diffuse environ-
ments, with the difference that in a non-diffuse setup di-
rectional information about incident light must be main-
tained for a following glossy reflection step.

As in [16], patches and clusters are assumed to have no
spatial extent. They store a hierarchical directional dis-
tribution for outgoing radiance which will be described
separately in Section 4. In contrast to [3], our new algo-
rithm does not differentiate between clusters and patches
concerning the representation of exitant light.

3.1 Bounded Propagation
Our approach is based on the radiosity clustering method
described in [20, 21], which can handle flat and curved
surfaces as well as clusters in a uniform manner. Bound-
ing boxes around the objects are used to bound the set
of interacting directions. With this information, bounds
on the form factor and exitant radiance at the sender are
computed, delivering minimum and maximum values for
the received radiosity. The difference is used to decide
whether to refine a link.

This bounded radiosity approach can be applied to
radiance computations easily, since the propagation of
light, i.e. the transformation of exitant to incident light,
is independent of material properties. The only differ-
ence lies in the evaluation of bounds on the radiance of
the sender, which is even easier if we have a directional
distribution for the sender’s exitant radiance. However,
since this exitant radiance representation is only approxi-
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mate, the resulting bounds are no longer conservative.

3.2 Incident Light

One way to integrate the directional information is to
explicitly compute a finite element representation of it.
In [3], each incident light contribution computed during
propagation is projected separately onto a basis for in-
coming light (for clusters). This is rather costly (in mem-
ory and time) and results in significant blurring of inci-
dent light, which can exhibit very strong variations.

An alternative is to reflect incident light contributions
immediately after they have been computed [16], while
their direction of incidence is still known. The reflec-
tion responses are then projected in finite element bases
separately. This method circumvents the need to store
the incident light, but the storage consumption is not re-
duced: two representations of exitant radiance are needed
for the push/pull phase. In addition, this method is com-
putationally expensive, because of the high number of
BRDF evaluations, and the multiple hierarchy traversals
involved in the immediate projection.

Our proposed solution is to combine the approaches
of incident light representation and immediate reflection.
We attach incident light to a receiving patch in the form
of Illumination Samples. Light propagation is computed
similarly to HR by refining links until each link repre-
sents what amounts to constant light power. Instead of
simply summing the irradiance values at the receiver, an
Illumination Sample with the direction to the sender and
the transported irradiance is added to the receiver for each
link. At the end of the propagation step, the illumination
in the scene is represented as a set of point samples, dis-
tributed over the scene hierarchy.

3.3 Push/Pull and Reflection

A push step as in HR is needed to create a consistent
representation of the incident light at the leaves, i.e. all
light received by inner nodes is propagated to the children
by passing its Illumination Samples downwards. After-
wards, each leaf has a large set of Illumination Samples
describing its entire incident light field. Note that the
number of hierarchy traversals is much smaller than in
Radiance Clustering [16], where each sample is pushed
down separately.

After the push step, the incident light has to be re-
flected according to theobject’s BRDF. Because Illumi-
nation Samples correspond to Dirac impulses, the reflec-
tion is an impulse response of the BRDF, i.e. it is the
BRDF with a fixed incident light direction multiplied by
the irradiance of the sample. The complete reflection is
the sum of the impulse responses to each Illumination
Sample. Therefore the BRDF must be evaluated once for
each Illumination Sample to obtain the reflected radiance

in a particular direction.

Using an adaptive directional distribution described
below, reflected light is projected onto an adaptive, hi-
erarchical directional basis to obtain the new exitant light
for each patch. These representations are then averaged
bottom-up to obtain the distributions for inner nodes.

3.4 Shooting

With a gathering iteration scheme, the number of Illumi-
nation Samples and thus the time for push/pull increases
from iteration to iteration. With a shooting scheme in the
spirit of [19] this can be avoided. This requires an addi-
tional directional representation ofunshot radiance, but it
also avoids the storage and reflection of all Illumination
Samples.

3.5 Error Analysis

Note that in our approach propagation and reflection are
completely decoupled. Propagation computation does
not consider the reflection properties of the receiver,
which would allow the computation of incident light at
a highly glossy patch more accurately than in the diffuse
case. The spatial refinement of the patches is done during
propagation, while the refinement level of the directional
distributions is chosen during reflection. This distinction
does not impose a problem on convergence, but it results
in memory/computation savings.

Illumination Samples can be interpreted as Dirac-
peaks from a particular direction describing incident light
and are thus somewhat similar to the photons in the Pho-
ton Map approach of Jensen et al. [8]. However, Photon
maps are not deterministic and their usage for lighting
simulation is very different from ours.

With respect to a standard norm, with Dirac-peaks
no convergent representation can be obtained. On the
other hand, the Dirac-representation is only used to com-
pute the reflection integral. From another point of view,
this representation can be seen as intermediate data in a
delayed numerical integration, where each Illumination
Sample is a temporarily stored integration sample. So
as long as the BRDF is numerically integrable, the com-
puted reflection will converge.

4 Adaptive Representation of Outgoing Radiance
for Interactive Display

To produce the finite-element solutions suitable for inter-
active display, we store outgoing light in the form of di-
rectional distributions attached to surfaces or clusters. As
in Radiance Clustering [16], objects are assumed to have
no spatial extent. Instead of the four dimensional radi-
ance only the 2Dradiant intensitydistribution is stored
with each object.
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4.1 Directional Representations
For the representation of directional radiant intensities,
we have implemented and examined two options: First,
a uniform subdivision of the direction space, where each
distribution is represented by a fixed number of coeffi-
cients (non-adaptive basis) 1. Second, we implemented
an adaptive representation using Haar Wavelets.

The non-adaptive basis is more useful for smooth dis-
tributions, because all operations on the fixed subdivision
basis are simple and fast. The adaptive Haar basis is bet-
ter suited for strongly varying functions, because it can
use more basis functions in the interesting regions and
fewer in smooth regions. However, operations such as
the evaluation of the distribution or addition of two dis-
tributions are more expensive.

“Non-adaptive” Representation
For a non-adaptive basis, we use a uniform subdivision
of the direction space. To accomplish this task, a tetrahe-
dron is subdivided. We thus obtain 4n+1 triangles if the
level of subdivison isn. Since the number of vertices is
lower than the number of triangles (this is 2�4n

+2), we
decided to store 3 floats for RGB only at the vertices.

Haar Representation
For the Haar representation, the domain of directions is
parameterized by points on an octahedron. The vertices
of the octahedron are selected to lie on the main axes,
so each face corresponds to one octant of the directional
domain. Simple sign considerations of a direction deliver
the corresponding octahedron face.

A hierarchy of basis functions is built by assigning a
first level basis function to each of the eight faces of the
octahedron. These are then subdivided hierarchically in
the usual manner.

In order to quickly compute an adaptive representation,
a top-down approach was chosen. Assume that the func-
tion to be projected isf . For each of the first eight basis
functions, f is sampled at the triangle corners and at its
center. If f is almost constant over the triangle, the sam-
ple values will only vary slightly. For highly varyingf ,
one can expect a wide range of function samples. Thus
the difference between minimum and maximum sample
is considered. If it is too large, the four finer basis func-
tions partitioning the domain are considered recursively.

This top-down approach runs into problems iff has
a sharp peak inbetween the samples. We alleviate this
problem by enforcing a minimum subdivision level in the
hope that the resulting sampling is dense enough to not
miss any peaks.

1This allows a comparison with [16]; to be complete we should have
tested with spherical harmonics. Since no solution for general surface
orientation currently exists, we used the “non-adaptive” basis.

There are several possibilities to decide whether the
difference is too large. For the algorithm described in
this paper, the difference is compared with the midpoint
value, i.e. a maximumpercentagedeviationε with re-
spect to the center value is allowed. This turned out to
be beneficial for our case (see Section 5.1); for other set-
tings, different criteria can be used.

Comparison

To see the differences involved in using Haar or non-
adaptive representations, consider the following example,
which is an empty room (the geometry is taken from the
RADIANCE test scene “Soda Shoppe” [26]).

Max level 3 4

N/A

Haar

Reference

Figure 1:Comparison of the non-adaptive (N/A) vs. Haar.

Max Distr Triangles Time
Level N/A Haar N/A Haar

3 2878 782K 640K 510 s 722 s
4 2878 3127K 1829K 731 s 1125 s

Table 1:Comparison of Non-adaptive (N/A) and Haar basis for
Radiance Clustering, showing the number of directional func-
tions used and the computation time. Max Level is the maxi-
mum level of subdivision.

The reference image was computed using a path-tracer
using next-event estimation [11]. The images in Figure 1
were generated using Radiance Clustering, with the non-
adaptive and Haar basis (see Section 5 for more details on
rendering). The “Max Level” parameter corresponds to
the maximum permitted level of subdivision. Clearly, the
non-adaptive basis fails to correctly represent the high-
lights on the glossy floor for maximum subdivision level
3. For maximum level 4, the result is improved, but at the
cost of 4 times more memory (see Table 1). In contrast,

272



the Haar basis uses less than three times as much memory
for an “equivalent” improvement in quality. However, the
Haar basis also takes more time. The reason is that arith-
metic operations on the regular constant subdivision are
of course simpler and faster.

This example demonstrates that for highly glossy
scenes, small highlights can only be captured with the
adaptive basis or a very fine non-adaptive basis repre-
sentation, which in turn requires large amounts of mem-
ory. More importantly, the user, who has limited mem-
ory, can only change the quality in large “quanta”, and
often will not be able to get a satisfactory result before
running out of memory. Adaptive bases, such as Haar,
alleviate this problem. However, the uniformity of the
non-adaptive basis results in a smoother, more regular
distribution, which becomes especially visible during in-
teractive viewing.

5 Interactive Display

After the computation of a global illumination solution
using Illumination Samples, we have a representation of
outgoing radiant intensity, stored in the directional distri-
bution function. At each frame during interactive display,
we need to evaluate radiance for every glossy hierarchi-
cal leaf element in the direction of the viewpoint. This
implies two requirements: (i) subdivision of the direc-
tional distributions appropriately so that a visually pleas-
ing representation of glossy effects is produced and (ii)
acceleration of the display process to avoid the cost of
the evaluation of radiance at each element at every frame.

5.1 Refinement Issues for Display

Recall that we have decoupled directional subdivision, in
the form of the Haar-based directional distribution func-
tions, and the spatial subdivision, in the form of the “tra-
ditional” hierarchical radiosity element hierarchy. To dis-
play the solution, we interpolate radiance in the view di-
rection by evaluating the directional distribution on each
element. If subdivision in direction space is performed
arbitrarily, the difference in subdivision of the direc-
tional function between neighbouring patches may be too
abrupt.

This is the case for example if we compare absolute
value differences between the center and the vertices
of the triangles of the directional subdivision to decide
whether to subdivide. The use of relative (percentage)
differences avoids this problem since we approximate the
form of the function, which varies more slowly across
neighbours. The artifacts due to the absolute refinement
can be seen in Figure 2.

Figure 2: Artifacts when using the “absolute” refiner (left),
which are absent when using the “relative” refiner (right).

5.2 Interactive Rendering
For efficient display we separate objects into two lists, so
that diffuse objects can be rendered once and redisplayed
in efficient, display-list mode. The other list, of glossy
reflectors, is updated appropriately at each frame and dis-
played in immediate mode. The accelaration achieved
obviously depends on the percentage of diffuse surfaces
in the scene. For the scenes tested we achieve update rates
varying from a few frames per second to a few seconds
per frame for more complex scenes.

To achieve smooth shading for glossy surfaces, we add
a field to the data structure associated with vertices in the
hierarchy of elements. For planar surfaces, this field is
updated during push-pull in a manner slightly different to
that of radiosity; i.e. for a vertex belonging to a leaf ele-
ment or to an edge, the radiant intensity is summed with
the radiant intensity stored at the vertex. Since radiant in-
tensity is in Watts/sr (see [16]), at display time we divide
by the area of the surrounding elements.

The special case of indexed face-sets is treated sepa-
rately. Indexed face-sets are common modelling primi-
tives, and often result from the tesselation of curved ob-
jects such as spheres or cylinders. The advantage of such
a primitive is that vertices are shared between adjacent
elements. We can thus avoid the storage of the additional
directional distribution at the vertices.

Each vertex stores the list of polygonal elements which
share it. Its color is then the average radiant intensity of
these polygons (i.e.I evaluated at the centers of the ele-
ments in the viewing direction). For more efficient dis-
play, we evaluate this color once per vertex for a given
direction. Also, we recompute the color only if the direc-
tion changes “sufficiently” i.e. greater than a user-defined
ε threshold. This allows the control of the quality/update
rate tradeoff.

6 Implementation and Results

One major goal of our approach was the development of a
solution which can be considered a simple “add-on” to an
existing hierarchical radiosity system. We implemented
the algorithm on two very different rendering architec-
tures, namelyBRIGHT (iMAGIS) and VISION (Uni-
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versity of Erlangen).
We have tested our implementation on several test

scenes, shown in Figures 3 and 6. The scenes in Figure 3
were used for the interactive viewing test inBRIGHT.
The first scene shows three light sources colored red,
green and blue, illuminating a very glossy, small reflec-
tor. This reflector in turn indirectly illuminates a dif-
fuse wall. The second scene is a glossy sphere illumi-
nated by a small source and a glossy floor. These in
turn produce indirect glossy effects on the lower part of
the sphere and the diffuse ceiling. Finally, the “Simple
soda” scene is a simplified version of the “Soda Shoppe”
scene. InBRIGHT, we require tesselation of all objects
initially, which results in a high number of initial objects;
in VISION, objects are not initially tesselated. This ex-
plains the low number of initial objects in the complete
“Soda Shoppe” scene, used for Figure 6.

6.1 Radiance Clustering vs. Illumination Samples

In BRIGHT we have implemented both Radiance Clus-
tering (RC) and the Illumination Samples (IS) approach.
We have compared running time and memory usage for
the RC and IS approaches. The threshold value has the
same meaning for both approaches, since we are using a
“relative” refiner. Visual inspection also shows that the
resulting images are equivalent for the same parameter
values. All timings are on a 195Mhz R10k SGI worksta-
tion.

3 Lights Sphere S. Soda

Figure 3:Test scenes using illumination samples
.
6.2 Memory Consumption

In Table 2 we show the memory statistics for the test
scenes used. In particular we list the different scenes with
theε accuracy threshold (see Section 4.1), and the corre-
sponding number of directional distribution basis func-
tions used for the solution by the Radiance Clustering
(RC) and Illumination Samples (IS) approach. The right-
most column shows the percent gain of the illumination
samples approach.

Memory usage is clearly reduced using Illumination
Samples compared to the Radiance Clustering approach
for all scenes. The gain varies from 37 % to 41% in
the best case. This is mainly due to the fact that Radi-
ance Clustering requires the additional intermediate di-
rectional distribution functions to be able to correctly per-

ε m/M IS RC
3 Lig. 0.5 1/3 8618 13866 38%
3 Lig. 0.1 1/3 8820 14068 37%
3 Lig. 0.5 1/4 27306 43510 37%
3 Lig. 0.5 1/5 79218 125944 37%
Sph. 0.5 1/3 2114324 3598720 41%
Soda 0.5 1/3 2097534 3339794 37%

Table 2:Gain inmemoryusage from the use of the Illumination
Samples algorithm.ε is the accuracy threshold and m/M the
min/max levels.

form the push-pull operation (see Section 2.2).

6.3 Computation Time
In Table 3 we show the computation time statistics for the
test scenes used. In particular we list the different scenes
with theε threshold, and the corresponding computation
time for the solution by the two approaches (RC and IS).
The rightmost column shows the percent memory gain of
the illumination samples approach.

ε m/M IS RC
3 Lig. 0.5 1/3 44.6 s 90.1 s 50%
3 Lig. 0.1 1/3 44.2 s 90.0 s 51%
3 Lig. 0.5 1/4 49.3 s 95.5 s 48%
3 Lig. 0.5 1/5 58.6 s 105.3 s 44%
Sph. 0.5 1/3 4167.1 s 6492.9 s 34%
Soda 0.5 1/3 5207.6 s 7117.4 s 27%

Table 3:Gain incomputation timefrom the use of the Illumi-
nation Samples algorithm.ε is the accuracy threshold and m/M
are the min/max levels.

For all scenes the illumination samples approach pro-
vides a speedup of at least 27%. This is mainly due to the
reduction in the number of hierarchy traversals, and also
the reduction in the number of triangles used to represent
the directional distributions as discussed above.

As expected and confirmed by the experimental re-
sults, the Illumination Samples approach reduces both
memory and computation time with respect to Radiance
Clustering. The images produced by both approaches are
essentially indistinguishable.

6.4 Visual Quality/Comparisons
We qualitatively compare the visual quality of the images
of Radiance Clustering and Illumination Samples with
those from a path-tracer or theRADIANCE system. The
path-tracer tests are rendered using an in-house imple-
mentation of the next-event estimation [11]. In Fig. 4 and
5 we show the reference path-tracer orRADIANCE im-
ages and the corresponding Illumination Samples images
together with the computation times for the test scenes.

There are several interesting observations that we can
infer from these examples:
1) In the case of the three light scene,RADIANCE runs
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Reference Illumination Samples

Radiance 6537s 59s

Radiance 1303s 4167s

Figure 4: Reference solutions (RADIANCE) compared to IS
solutions for three lights and sphere scenes.

Reference Illumination Samples

Path Tracer 51873s 5208s

Figure 5: Simple Soda reference solution (path-tracer at
455x364 resolution) compared to IS solution.

into sampling problems. Even after more than an hour
and a half of computation it does not converge. In con-
trast, illumination samples achieves a solution in less than
a minute, which is in addition viewable from any direc-
tion interactively2.

2) The computation times of IS are either lower or in
the same order of magnitude as those of the reference
solutions. The important thing to remember is that the
IS solutions can be viewedinteractively, while the refer-
ence (path-tracer or Radiance) require the same amount
of time (tens of minutes or even hours) foreveryimage.

3) Path-tracing images are very noisy. The “smooth-
shaded” solutions produced by IS do not suffer from this
problem. Despite being approximate, the smooth-shaded
images are therefore much better suited to interactive ap-
plications, where noise and flickering are very distracting.

We thus believe that our approach has great promise,
since it can be used to generate low to moderate quality
solutions for glossy environments, as well as produce so-
lutions suitable for interactive viewing.

2A bi-directional path-tracer, or photon-map which would consider
the reflection as a caustic may generate better results.

6.5 A More Complex Scene

As a last test we applied the Illumination Sample method
to a more complex scene, the Soda Shoppe, one of the
RADIANCE test scenes. Our version consists of 1,644
initial patches, several of which are non-planar, including
the spherical light sources. About one third of the patches
are non-diffuse. Since bounded form factor computation
is used [20], no initial tessellation of these objects was
necessary, which would have increased the initial com-
plexity significantly. The scene is not yet really complex
in the sense of an industrial-size model, but sufficiently
non-trivial to impose severe problems on previous finite-
element radiance methods.

The solution shown in Figure 6 was computed with
the implementation ofVISION, which incorporates the
“shooting” solution described previously (Section 3.5).
It was obtained in 8,488 seconds and contains 29,138
final patches. 91% of the computation time was spent
on propagation, which in turn is dominated by visibil-
ity (97%), only 9% was used for push/pull including the
reflection. 743,284 links were computed, resulting in
29,138 patches. Note that the usedVISION implemen-
tation does not yet incorporate smooth reconstruction ca-
pabilities, so that the patch boundaries are clearly visible.

Figure 6: A solution to the glossy soda shoppe, computed in
8,488 seconds.

By far most of the computation is spent on visibility, as
with diffuse radiosity computation. This indicates that we
were able to reduce the overhead introduced by explicitly
storing directional illumination information to reasonable
levels. The more costly push/pull step was expected,
but it is interesting to notice that it still requires only
about 10% of the overall computation for this particu-
lar scene. For other scenes with more glossy objects, this
percentage is somewhat larger, although always “reason-
ably small”. Note that this is only true for using shooting
instead of gathering! For gathering the push/pull times
can increase significantly.

7 Conclusions
We have presented a novel solution to global illumination
simulation for glossy environments. Our new algorithm
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is an important step towards interactive walkthroughs of
globally illuminated glossy scenes: (i) We introduced the
Illumination Samplesalgorithm which represents incom-
ing light more accurately and efficiently, both in memory
and computation time. (ii) We have used an adaptive hi-
erarchical finite-element basis to store outgoing light, in
a manner suitable for interactive viewing. This allows
fine control of the memory/quality tradeoff, which was
not possible in previous solutions. (iii) These algorithms
can be implemented with marginal effort over an exist-
ing hierarchical radiosity system, by confining the modi-
fications to a small number of phases and data structures.
(iv) Interactive viewing of the glossy global illumination
solutions is achieved by suitably refining the directional
representation of outgoing light and accelerating the dis-
play process.

Our solution however is still quite memory-consuming
requiring in the order of tens of Mbytes for the smallest
scenes and hundreds of Mbytes for the more complex.

To remedy these problems we need to generalise the
multi-resolution nature of our solution. Notably we will
introduce a multi-resolution representation of outgoing
light, which will allow significant savings in memory at
the cost of lower visual quality. This approach will re-
quire a novel representation as well as a novel refinement
algorithm. This representation can be used both for the
actual lighting simulation as well as for display.
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Hierarchical Lighting Simulation for Outdoor Scenes

Katja Daubert, Hartmut Schirmacher?

François X. Sillion, George Drettakis??

iMAGIS ???

Laboratoire GRAVIR/IMAG-INRIA

Abstract: Lighting algorithms for outdoor scenes suffer from the sheer geo-
metric and lighting complexity of such environments. In this paper we introduce
an efficient,hierarchical solution to the problem of outdoor illumination. Data
structures and sampling algorithms are presented, permitting the integration of
complex and natural objects in a hierarchical radiosity simulation system. This
new approach allows the hierarchical simulation of radiant energy exchanges in
outdoor scenes for the first time, including terrain and botanical models as well
as sunlight and skylight. This is accomplished by providing the necessary tools
to treat terrain meshes as a hierarchy of light-exchanging objects, as well as an
efficient hierarchical representation for the sky dome. In addition, refinement cri-
teria are adapted to the particular characteristics of natural lighting. Results of
our implementation are presented including naturally-lit images of terrain-maps,
trees and buildings.

1 Introduction

Rendering technology has made tremendous progress in the last decade, and it has be-
come possible to perform simulations of light exchanges for moderately complex envi-
ronments, yielding images of impressive realism. These algorithms exploit hierarchical
solution methods to correctly account for secondary illumination and result in view-
independent solutions. A vast majority of this research has been concentrated on indoor
scenes.

As realistic simulated images receive more widespread attention, new potential ap-
plications for lighting simulations constantly appear, and present new challenges for
state-of-the-art technology. One such challenge is the accurate and efficient simulation
of lighting effects foroutdoorscenes. Such simulations are needed for instance in visual
simulation applications for various driving or flight simulators, for visual site planning
in the context of architectural projects or urban modeling, or for the simulation of radi-
ant exchanges in vegetation with applications in remote sensing or in the simulation of
botanical processes.

Outdoor scenes tend to be especially challenging to simulate, because they present
a combination of several difficulties that are poorly handled by existing radiosity algo-
rithms, and in particular hierarchical solution methods.

First, outdoor scenes exhibit great geometric complexity: on the one hand, the sheer
scale of outdoor scenes is significantly larger than that of indoor scenes. Furthermore,
outdoor scenes often contain natural objects (terrain or trees) that have complex shapes.
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A second major challenge with outdoor scenes is the complexity of the illumination
itself. Natural illumination (i.e. from the sun and the sky) has specific properties such
as the concentration of a very large energy flux in a small solid angle (from the sun),
and the fact that the sky effectively “surrounds” all objects. These properties require
particular care when sampling for illumination simulation. Moreover, because outdoor
scenes are always complex, efficient algorithms must be developed, since brute force
approaches are bound to be intractable.

In this paper we propose solutions to the problems of geometric complexity and nat-
ural lighting. Our approach is based onhierarchical lighting algorithms, which permit
efficient and elegant solutions. In particular, we show that complex geometry can be
handled using a generic hierarchical surface description mechanism in the context of a
clustering algorithm. This mechanism is integrated into an object-oriented framework,
and its generic nature opens the way for the definition of other hierarchical objects for
lighting simulation (such as complex meshes representing curved surfaces). We intro-
duce appropriate representation, sampling and refinement machinery for hierarchical
treatment of natural lights (sun and skylight). The resulting system is, to our knowl-
edge, the first capable of providinghierarchical lighting solutions of complex outdoor
scenes.

2 Previous work

Previous work in lighting simulation for outdoor scenes has been restricted mainly to
the modeling of natural light. Similarly, the treatment of the geometric complexity,
specifically for the problems posed by certain outdoor structures has received limited
attention. We briefly review the relevant literature.

2.1 Previous Work in Natural Lighting

Much work has been done on modeling daylight with different atmospheric effects and
designing global illumination models including such light sources. Several models with
different complexity were proposed to compute skylight intensities [1, 13, 8, 7, 3]. The
public domain systemRadiance[20] provides source code (“gensky” and “skybright”)
to compute sky luminance using the CIE standard sky distribution model [1] for a given
setup of hour, day, month, position on earth, and several weather-specific parameters.
The sun position can also be specified directly by providing the solar angles.

To represent the skylight distribution, Nishita et al. [13] proposed a fixed set of band
sources. In [3] subsampled band sources are inserted where the skylight distribution
varies strongly, resulting in a representation with adaptive precision.

To speed up the time consuming integration of bands for global illumination, Tadamura
et. al [19] use a regularly subdivided parallelepiped in a hemicube-like manner to de-
termine the skylight contribution including visibility.

For indoor lighting, a set of “interface” surfaces can be used to represent the skylight
coming through the windows of a room. In [9] the skylight contribution on window
sample points is calculated in a preprocessing step and then window patches are used
as area light sources for global illumination. This method is of course limited to indoor
scenes.

The most closely related approach to our solution is that of M¨uller et al. [12]. In
their algorithm the skylight distribution is directly stored in a set of radiosity patches
which are placed far away from the rest of the scene to satisfy error bounds. This is
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achieved by the use of a regular subdivision of the sky hemisphere. The sky patches are
then used for shooting in the first iteration of the radiosity simulation. Their method is
based on the progressive refinement radiosity algorithm. The initial shooting phase is
expensive (computation time of three hours was reported for a scene of 47,500 patches),
but permits rapid change of the sky lighting condition, by storing a list of form-factors.

2.2 Treating Complex Geometry

Many outdoor models, such as terrains or mesh structures resulting from scanned-data,
or complex man-built structures (bridges, dams etc.) are typically represented with com-
plex meshes. Level-of-detail approaches for the treatment of such complex geometries
are well known in the modeling community (e.g., [14, 4]). Despite this wealth of algo-
rithms, the hierarchical treatment of these mesh structures has not previously found its
way into lighting simulation algorithms.

2.3 Limitations of the Previous Approaches

The vast majority of previously described natural lighting algorithms require time con-
suming preprocessing steps. The method proposed in [12] is the first to integrate the sky
as a radiosity object, but however a fixed subdivision is used. This is a severe restriction,
lacking the benefits of both hierarchical solution [6] and clustering [18] for skylight ob-
jects. This also results in expensive calculations and lack of an overall representation
of global illumination. To achieve efficient integration of natural lighting in a radiosity
system, it is important first to provide multiresolution representations of natural lights,
and also to ensure that the entire sky is always taken into account. It is important to note
that when progressive refinement radiosity is used, this condition forces us to shoot en-
ergy fromall sky patches, at a significant expense, before any meaningful solution can
be obtained.

Similarly, in the case of complex meshes representing outdoor structures, a true hi-
erarchical representation is required. A generic clustering algorithm [18, 16] applied
to the polygons constituting the mesh would however be unsuitable, since we would
lose all neighbouring information amongst mesh elements, needed for the smooth re-
construction of the radiosity function.

3 Unified Lighting Framework

As was presented in [18], a natural complete framework for hierarchical radiosity with
clusters can be based on the concept of an abstractHierarchical Elementor H-element.
These elements can be clusters (groups of objects) or surfaces. In the context of an
object-oriented system, this abstract class hierarchy permits the definition of generic
operators (refine, gather, push-pull) on H-elements, thus entirely defining the hierarchi-
cal radiosity process.

We briefly overview the central concepts in what follows, which will allow the
reader to understand the extensions required to seamlessly integrate the new features
required for outdoor scenes.
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3.1 Hierarchical Elements

At the heart of our hierarchical simulation framework is the identification of a scene
with a completehierarchy ofH-elements, connected bylinks which represent light ex-
changes. The hierarchy is complete in the sense that its highest level encompasses the
entire scene. H-elements can be of different nature, such as clusters (i.e., groups of
objects), or portions of surfaces, but they all share a number of properties and char-
acteristics, allowing the specification of many computational operations at an abstract
level. H-elements all possess radiosity and reflectance information, as well as a set of
links representing energy received at their level of the hierarchy. Specialised H-elements
dealing with the specifics of clusters, or polygons, are obtained by subclassing the ab-
stract level and overloading appropriate functionality.

3.2 Computational Operators

In the case of our clustering approach, input objects (e.g., surfaces, meshes etc.) are first
grouped into clusters, and an initial self-link of the root node to itself is established. This
link is a (very coarse) representation of all energy transfers in the scene. To achieve the
desired quality of lighting simulation, the following sequence of operations needs to be
performed [17, 2, 18].

1. Links between H-elements are first refined using arefinement engine, resulting in
the subdivision of the corresponding H-elements where appropriate. This is de-
scribed in more detail in the following paragraph.

2. Once the refinement process is complete, links exist between H-elements at various
levels. Irradiance is now transported (gathered) across these links.

3. To maintain a consistent view of radiosity at every level of the hierarchy, irradiance
is pushed (added) down the hierarchy, and radiosity is pulled (averaged) up.

4. After an appropriate number of iterations of the refine-gather-push/pull operations,
the subdivided H-elements are displayed using the computed radiosity values.

Each one of these steps is defined at the highest possible, and thus most abstract,
level of the class hierarchy. For operations such as gather and push-pull, few parts of
the process require the definition of specialised methods.

3.3 Hierarchical Refinement Engine

The refinement engine (or ”refiner”) is the core of the hierarchical lighting simulation
process. The refiner operates on links between two hierarchical elements.

The refiner first estimates how well the link represents the light transfer in question.
This is typically performed by an error based criterion with respect to a user-defined
tolerance. An example is the “BF” (radiosity times form-factor) criterion [6] Improved
approaches exist [10, 5], using upper and lower bounds on the energy transfer across
the link. If the link is judged of insufficient quality, it is refined, and thus one of the
H-elements is typically subdivided, resulting in the creation ofsub-links.

The estimation of the error criteria, and the subsequent gather operation on a link
requires the calculation of an estimate of the form-factor between two H-elements or the
irradiance received on an element due to the illumination from the other. This in turn re-
quires an appropriate sampling of a kernel function involving the position, orientation,
distance and relative visibility of the two elements. As shown in [18] the calculation
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of form factors can be expressed at an abstract level using virtual functions with spe-
cialised behaviour for clusters or surfaces. A typical refiner therefore operates solely on
H-elements and relies on virtual functions to perform the necessary subdivision (split).

In what follows, we show how the treatment of generic complex meshes and natural
lighting can be integrated into this unified framework.

4 Geometry

4.1 Dealing with Geometric Complexity of Outdoor Scenes

For many outdoor scenes, we are presented with complex mesh representations (ter-
rains, large man-made structures etc.). A simple, direct solution would be to pass these
elements in an unstructured manner to a clustering algorithm [18]. As mentioned pre-
viously, this could result in inappropriate groupings of surfaces since the implicit mesh
structure and connectivity information is lost. In addition, this would encumber the sys-
tem with a large total number of polygons, even in the case where a vast majority are
never lit or never participate in lighting.

We present a solution to this problem in the form of a general structure which en-
capsulates hierarchical mesh information. The power of this structure is its ability to
hide the complexity of the geometric object (e.g., a terrain mesh or a tensor-product
spline surface), by presenting a generic hierarchical interface. As hierarchical subdivi-
sion becomes necessary, the structure uses the hidden geometric complexity to create
finer hierarchically subdivided levels. As an additional benefit, at the lowest level of
subdivision the structure reverts to classical regular subdivision (e.g., quadtrees), with
all the advantages this implies in terms of implicit representation and information shar-
ing.

4.2 A Generic Hierarchical Mesh Structure

The definition of a generic hierarchical mesh class may include information permitting
subdivision up to a “finest” level. For example, a terrain mesh will be given as an array
of vertices describing its finest level of detail. Our generic interface hides this complex
geometric information in what concerns the lighting simulation.

In our generic structure no mesh element uses all the geometric information (e.g.,
vertex array for terrains) constituting the mesh, since each element is approximated
using only a small subset. Nevertheless each element has access to the geometric detail
data. When subdivided, a mesh element at a given level constructs child elements which,
by using more detailed geometric information, are a better local approximation of the
mesh.

After each consecutive split, more geometric detail is used by each child element
leading to a stage where finer geometric detail is no longer available in the original data.
To allow for finer detail the splitting process does not construct additional mesh objects
but regular hierarchical polygon elements (quadtrees) instead. This is possible in the
context of our uniform framework because meshes and polygons are both derived from
a single abstract hierarchical surface class.

Generic Surface OperationsTo successfully integrate generic mesh operations into
our hierarchical radiosity system, we need to be able to maintain all connectivity infor-
mation at every level of the hierarchy. In addition, the regular (e.g., quadtree or trian-
gular) structures created below the finest level of mesh subdivision must be able to find
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their neighbours across boundaries. An example is shown in the case of quadtrees in
Fig. 1, although a similar problem exists for smooth surfaces etc.

To deal with this problem, we define an abstract classgeneric edge, allowing us to
have a unified interface for neighbour finding, independent of the actual type of mesh
in question. Generic edges are defined in an appropriately chosenparameter space, e.g.
the mapping of the grid of terrain point data to the interval[0; 1]2. Neighbourhood
information is most notably needed to correctly perform per-vertex shading (Gouraud
shading), and to correctly maintain a restricted subdivision when splitting elements.

A generic edge is defined by two points in parameter space which we call itssupport
and parameters on this support defining the beginning and end of the generic edge. Dur-
ing mesh element subdivision, generic edges are defined between the newly constructed
children.

Q Q

QQQM

Q Q

QM

Fig. 1. A sequence of splitting operations, starting with one quad mesh (QM) and resulting in
quadrilaterals (Q), which are subdivided into regular quadtrees. Connectivity is preserved across
boundaries ateachlevel of the hierarchy, due to the generic edge structure.

Neighbour Finding and T-vertex Detection Given the generic edge structure, neigh-
bour finding can be correctly performed using the hierarchical mesh representation.
Consider a patch with a generic edgee consisting of the supports and the parameter
interval [t0 : t1]. To find the appropriate neighbouring patch sharinge, the following
steps are performed:

1. Step up the mesh element hierarchy until the current element is using the edgee0,
consisting ofs and the parameters zero and one.

2. There must be a sibling of that patch sharinge0, which would not have been con-
structed otherwise. Find this sibling.

3. Step down the sibling’s hierarchy to find the smallest element sharing the entire
interval[t0 : t1] of s.

Given this neighbourhood finding process, we can easily perform mesh restriction
and T-vertex identification [15], thus allowing correct colour interpolation across ver-
tices at different levels in the hierarchical mesh.

5 Natural Lighting

The incorporation of natural light sources is of course a key requirement for the creation
of realistic simulations in outdoor scenes. The first problem to address is modeling these

284



sources. For outdoor scenes with moderate scale (such as a house or some part of a city)
the sun can be modeled as a parallel source, and the sky is considered a hemispherical
source at infinity.

In order to fully integrate sunlight and skylight in a hierarchical radiosity process
with clustering, these light sources must become integral hierarchical elements which
provide the same interface as the other elements in the simulation [18]. Thus we need
to define corresponding H-elements (using specialised classes) which can “split” (be
subdivided) to create child elements which represent the source in more detail and with
less approximation error.

In addition, particular attention must be paid to the sampling mechanisms used for
these sources, for the calculation of energy transfer and form factor estimates. For in-
stance, form factor formulas based on distance calculations cannot be used directly with
sources placed at infinity.

5.1 Hierarchical Representation of Skylight

The subdivision of the sky dome is done by a quadtree representation of the hemi-
sphere’s parameter space, expressed by the altitudeu and the azimuthv. u is the angle
above the horizon, andv denotes the angle in the plane west from south (see Fig. 2).
The initial sky patch is the whole hemisphere,(u; v) 2 [0; �=2] � [0; 2�]. Every hier-
archical sky patch is therefore defined by a parameter range, and the constant radiance
value associated with that range. Note that sky patches are characterised byradianceas
opposed to radiosity, since they have no area and are positioned at an infinite distance.

The radiance is computed by sampling any given skylight distribution at a fine level
of detail and creating a pyramidal representation of the averages of the sampled values.
If an element is split, it retrieves the associated radiance value from the pyramid. If
an element splits below the finest level of the pyramid, a new value is obtained by
subsampling.

The skylight intensity values can also be modulated by a texture. The texture value is
simply applied every time the skylight is sampled. When using monochromatic skylight
models like the one provided byRadiance[20], the texture can be used to assign colours
and draw clouds which will affect the simulation results.

Assuming full visibility, the contribution of a sky patchq with parameter range
[u0; u1] �[v0; v1] to the irradiance on a given scene elementp is obtained as follows:

�L
(p)
i

= Rp;qSp
qJq (1)

whereRp;q isp’s receiver factor,Sp isp’s scale factor,
q is the solid angle subtended

by q when viewed from the any point of the scene, andJ denotes radiance.R andS
depend onp’s element type: For surfaces,R is the cosine between the surface normal
and the line through the two elements’ samples andS is 1. For volumes and clusters,R
is 1 andS is 1=4 [18]. In the case of partial visibility, a multiplicative correction factor
is applied to model the fraction of mutual visibility [6].

The solid angle
q is given by


p = (v1 � v0) � (sinu1 � sinu0): (2)
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5.2 Parallel Sources and Sunlight

Parallel sources are easy to implement because they never need to be split, and the
irradiance cast on an element is just the source’s flux density modified by the receiver’s
orientation and element type (receiver and scale factor). We thus obtain the irradiance
of a parallel lightq on a scene elementp as follows (again assuming full visibility):

�L
(p)
i
= Rp;qSp�q (3)

where�q denotes the source’s flux density.
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y

Fig. 2. Parameter space for a skylight object
with u andv denoting altitude and azimuth

Fig. 3. Initial links for a scene with a
skylight and a sunlight object

5.3 Adapting the Refinement Process

We refer to sunlight and skylight as “external” light sources because they are placed
outside the scene geometry: therefore they are not included in the extent of the top-level
cluster of the scene hierarchy, and their effect is not represented by the top-level “self-
link” of the root cluster. To take into account the effect of external light sources, at the
beginning of the simulation one link from each external light source to the scene’s root
cluster is created (in addition to the top-level self-link). In the presence ofn external
lights, the simulation would thus start withn + 1 initial links. At this stage, the link
from the skylight is established from the toplevel sky description. Figure 3 shows an
initial link setup for a scene with sunlight and skylight.

Next, a refiner is called to recursively examine and subdivide these links. Because a
refiner typically uses generic sampling routines to query the geometry of the elements
considered, some modifications are needed to properly cope with external light sources.
In particular, for special sources such as sunlight and skylight, the estimation and com-
putation of irradiance must be left to the sender. In this way we can ensure that for
ordinary surface-to-surface links the well-established form factor formulae are used to
compute irradiance, and for external sources our new formulae are applied. Thus, the
refinement engine does not need to know the type of the objects interacting with each
other and uses a generic refinement procedure.
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6 Results

The methods for hierarchical treatment of natural light sources and of terrain meshes
have been implemented in BRIGHT, a hierarchical radiosity system with clustering,
using a BF refinement engine. The skylight intensities and colours were computed us-
ing parts of theRadiancesoftware system by Greg Ward [20] and modulating these
monochromatic values by a texture. Any other skylight model could be used instead.
All timings are on a Silicon Graphics Indy R5000 (150Mhz) machine.

6.1 Terrain

Figure 4 shows a terrain mesh illuminated by a sky dome and a parallel sunlight in the
morning of a day in August. The radiosity solution for Figure 4 took about 16 minutes.
The terrain scene is built from 30,373 polygons. The hierarchical subdivision resulted
in 90,899 links and 33,967 leaf elements.

6.2 Natural Lighting

Figure 5 shows a house and several trees on a smaller terrain mesh. The total number
of input polygons is 20,260. The scene is illuminated only by a hierarchical skylight
object. The house casts (soft) shadows which are caused by the brighter parts of the
sky.

If the same scene is also lit by a parallel sunlight source as in Figure 6, the shadows
become sharper and the trees begin to cast shadows on the house walls and the ground.
Fig. 7 shows the same scene from a different direction. Note the bright area in the sky
which produced the subtle shadows of Fig. 5.

The hierarchical solution for Fig. 5–7 resulted in around 49,017 links and required
approximately ten minutes. There are a total of 64,674 leaf elements. By selecting a
higher error tolerance, our hierarchical algorithm can compute a coarser approxima-
tion of the natural illumination in the same scene in 148 seconds, using a total of only
1800 links (see Fig. 8) and resulting in less than 30,000 leaf elements, but maintaining
comparatively good visual quality.

It is interesting to visualise the hierarchical structure of the solution by displaying
the links to different levels of the hierarchy. Sky patches with low intensity are linked
quite high up in the hierarchy (Fig. 9).

7 Conclusions

A new hierarchicalsolution to the problems of efficient and accurate outdoor lighting
has been presented. A hierarchical abstraction was introduced, permitting the integra-
tion of moderately complex outdoor objects (such as terrain maps) and natural lighting
(sky- and sun-light) into a unified hierarchical illumination framework.

In particular, an object-oriented approach was introduced to treat complex mesh
structures using generic operators. The problem of hierarchically sampling the sky
dome was then addressed and an appropriate refinement strategy described. These two
contributions allow the treatment of complex, naturally-lit outdoor scenes, based on
clustering and hierarchical radiosity, resulting in efficient and accurate lighting simula-
tions.
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In contrast to the only previous radiosity-based approach to outdoor lighting [12],
our new method requires computation times for scenes of comparable size which are
lower than those reported in [12]. More importantly, the hierarchical nature of our new
algorithm ensures that global illumination effects are always accounted for at the chosen
level of approximation, which is not possible in the progressive-refinement approaches
previously used.

In future work, we will be investigating the use of the generic mesh framework
for general complex mesh structures, which will require the correct definition of the
parameterisation for non-regular structures. In terms of natural lighting, the sampling
and refinement processes can be greatly improved, in the spirit of the error-based ap-
proaches of [11] or [5]. This will result in higher quality images with a smaller number
of links and consequently lower computation times.
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Fig. 4.Terrain, lit by sky-dome and sun.

            

Fig. 5. House, lit by sky-dome only.
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Fig. 6. House lit by sky-dome and sun.

            

Fig. 7.House from left, view towards the sun.

            

Fig. 8.House, computed with less detail.

            

Fig. 9. Entire wall linked to large sky patches.
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4

Algorithmes interactifs :
rendu à base d’images, rendu haute qualit́e et

environnements mixtes, ŕeels-virtuels

Dans les chapitres pr´ecédents, nous nous sommes int´eressés au départ aux algorithmes permettant le
rendu de haute qualit´e, et ensuite au rendu par simulation de l’ éclairage pour des scènes de grande com-
plexité. Pour les solutions de radiosité, et en partie pour les solutions pour les environnements non-diffus
présentées dans le chapitre préc´edent, nous pouvons nous d´eplacer dans la sc`ene, mais nous ne pouvons
pas la modifier. Ceci est une forme d’interactivit´e limitée.

Dans ce chapitre, nous présentons nos travaux plus recents, qui ont tous un but commun, celui du rendu
interactif. Nous commencons par le rendu à base d’images, qui permet un rendu simple (sans ´eclairage)
mais pour des sc`enes très complexe tel qu’une ville par exemple. Ensuite, nous pr´esentons deux approches
diff érentes pour un éclairage interactif de haute qualit´e. La première est une am´elioration de la radiosit´e,
et l’autre une m´ethode pour un rendu interactif en utilisant le lancer de rayons. Enfin nous concluons
avec nos travaux dans un domaine nouveau et prommeteur, qui permet le rendu interactif pour des sc`enes
mixtes, contenant à la fois des objets r´eels et des objets virtuels. Ce travail nécessite bien entendu des
outils emprunt´es à la vision par ordinateur pour la reconstruction géometrique. Nous montrons que la
combinaison de ces approches avec la radiosit´e et d’autres algorithmes tels que la g´enération de textures
par exemple, nous permet d’interagir dans des environnements mixtes.

4.1 Rendu Interactif à Base d’Images

Pour arriverà faire un rendu interactif des scènes contenant des centaines de milliers voire des millions
d’objets. Une solution est de remplacer de la g´eométrie par des images. Ces techniques ont beaucoup
emprunté aux algorithmes d´eveloppés en vision par ordinateur.

Avec François Sillion et son stagiaire DEA B. Bodelet, nous avons développ´e un algorithme pour
l’affichage efficace de sc`enes urbaines [SDB97]. Durant le déplacement d’un observateur sur une rue, la
partie du mod`ele de la ville qui n’est pas voisine des pˆatés de maisons environnants est repr´esentée par
des images. Ceci est illustr´e par la Figure 4.1. En haut nous voyons le modèle complet ; à gauche nous
montrons l’image depuis le point de vue courant et à droite une vue d’ensemble, pour rendre compte de la
complexité totale de la sc`ene. Au milieu nous voyons l’imposteur, qui repr´esente la g´eométrie lointaine ;
la vue d’ensemble montre qu’il ne s’agit que d’une petite partie de la sc`ene totale. Enfin en bas, nous
montrons la vue de l’utilisateur (toujours `a gauche), qui montre que l’imposteur plus la géom´etrie locale
donnent une image très proche de celle du d´epart, même apr`es des d´eplacements du point de vue.
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Modèle complet
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Local + Imposteur
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FIG. 4.1: Principes de la construction d’un imposteur.À gauche nous montrons la vue pour un utilisateur se
promenant dans la rue.À droite en haut nous montrons cette position par une flêche.À droite nous voyons
la vue d’ensemble.

En ajoutant de l’information de profondeur et de l’information de disparité, nous construisons un� im-
posteur� , c’est-à-dire un maillage 3D repr´esentant la partie ´eloignée. Cette approche est illustr´ee par la
Figure 4.2, o`u nous voyons la texture de d´epart (a), l’image de profondeur (b), un contour extrait par des
méthodes standard de Vision (c), ainsi que les lignes de disparit´e (d).À partir de ces lignes une triangulation
est faite (e).

Contrairement aux méthodes pr´ecédentes de rendu à base d’images, ces imposteurs restent valables
pour plusieurs positions de l’observateur, grâce au rendu 3D et à l’information de profondeur li´ee au
maillage. Ceci est montr´e dans la Figure 4.2 (f) où l’image est rendue d’un point de vue autre que ce-
lui du départ. Nous voyons que la coupole est bien cachée, ce qui montre clairement les effets de parallaxe.
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(a) Imposteur (texture) (b) Image de profondeur (c) Contour exterieur
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(d) - Lignes de disparité (e) - Triangulation (f) - Autre vue

FIG. 4.2: Illustration des ´etapes de la construction de l’imposteur. La dernière image montre l’imposteur
rendu d’un autre point de vue. Les effets de parallaxe sont visibles.

4.2 Rendu Interactif de Haute Qualité

Le renduà base d’images pr´esenté précédemment n’est pas directement adapt´e à un rendu de haute
qualité, comprenant en particulier des effets d’´eclairage global.

Dans la suite, nous développons deux approches très distinctes pour approcher ce but. La premi`ere
se base sur une am´elioration des algorithmes de radiosit´e hiérarchique, en utilisant toute la panoplie des
algorithmes et des structures de donn´ees nécessaires à ces m´ethodes. La deuxième présente une approche
très différente, s’appuyant exclusivement sur le rendu par lancer de rayons.

Une discussion des avantages et inconv´enients de chaque méthode sera pr´esentée au paragraphe 4.4.

4.2.1 Radiosit́e Interactive pour des Sc̀enes Dynamiques

Une limitation majeure des algorithmes pr´ecédents de radiosit´e est le fait que le d´eplacement d’un objet
entraˆıne un coˆut de calcul de l’éclairage très ´elevé, souvent ´egal à celui n´ecessaire pour cr´eer la première
image. Même avec les algorithmes de clustering ce coˆut est de l’ordre de dizaines des minutes, ce qui exclut
l’utilisation interactive.

En partant de l’algorithme de clustering, nous avons ajouté une nouvelle repr´esentation hi´erarchique de
l’espace de segments de droites contenus dans des liens entre deux objets. Ceci est illustr´e par la Figure
4.3, où nous montrons comment un lien est subdivis´e. Les relations parent-enfants dans l’espace de droites
ne sont pas cod´ees sépar´ement ; elles sont contenues dans la hi´erarchie d’éléments, (Fig. 4.3 (c) et (d)).

Nous identifions l’espace modifi´e par le déplacement d’un objet en mouvement, par une travers´ee effi-
cace de cette nouvelle hiérarchie. Les liens énergétiques affect´es sont ainsi identifi´es, permettant leur mise
à jour rapide. Ceci est illustr´e par la Figure 4.4(b).

La solution de radiosit´e (représentée hiérarchiquement) est également mise `a jour, en restreignant les
modifications dans la partie de la hi´erarchie d’objets et clusters véritablement affectée. Un exemple est
montré dans la Figure 4.4(c). Pour y arriver, nous avons introduit une num´erotation de la hiérarchie ´evitant
ainsi de multiples parcours, qui ajoutaient un coˆut inacceptable.

Notre algorithme permet ainsi `a l’utilisateur d’interagir avec une sc`ene un d´eplaçant des objets, avec un
temps de re-calcul de l’´eclairage rapide. Ce re-calcul permet un affichage de quelques images par seconde
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(a) (b)

(c) (d)

FIG. 4.3: Nous illustrons une hi´erarchie del’espace de segments : (a) le lien d’originelp (que l’on montre
en faisceau) est subdivisé, cr´eant ainsi quatre sous-liens (b), qui sont les enfants delp dans l’espace de
droites. Les liens subdivisés (c) et les liens enfants (d) sont cod´es par la hiérarchie g´eometrique elle-mˆeme.
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(c)

FIG. 4.4: Cet exemple contient une 14,572 polygones d’entr´ee. La chaise dans la pi`ece de droite se d´eplace
vers la droite (a) - (b). La mise `a jour nécessite autour de 0.3 secondes. Dans (b) nous montrons les liens
identifiés comme modifi´es, et en (c) la partie de la hi´erarchie marqu´ee comme� changé� . Notez que
plusieurs milliers d’objets dans la pi`ece de gauche ne sont pas affect´es.

pour des sc`enes de dizaines de milliers d’objets d’entrée [DS97], tout en traitant l’´eclairage global. Nous
avons enfin introduit une m´ethode simple pour contrˆoler le temps de mise `a jour requis par l’algorithme à
chaque pas de temps.

Grâceà notre nouvel algorithme, il est pour la premi`ere fois envisageable d’utiliser un rendu `a base de
solution de radiosit´e pour des applications interactives, comme le design, les maquettes virtuelles etc.

4.2.2 Rendu Interactif par Tracer de Rayon

Traditionnellement les syst`emes interactifs de rendu sont limit´es par la vitesse des algorithmes produi-
sant des images. La plupart du temps, comme c’est le cas pour tous les algorithmes d´ecrits préc´edemment
dans ce document, nous calculons toujours une image compl`ete. Les accél´erations portent sur les moyens
d’y parvenir plus rapidement, souvent en utilisant des structures de données coˆuteuses et compliqu´ees.

La nouvelle approche [WDP99] pr´esentée dans ce paragraphe (d´eveloppée dans le cadre du postdoc de
Bruce Walter) se distingue de ce mod`ele en s´eparant la mise `a jour de l’image de l’algorithme de rendu.
Ainsi, une procédure s´eparée, appel´e procédure d’affichage s’occupe de la production de l’image. Cette
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FIG. 4.5: (a) La boucled’interaction classique, limitée par la vitesse de l’algorithme de rendu. (b) La boucle
modifiée, en utilisant lerender cacheoù on sépare le temps de mise `a jour de la vitesse du rendu.

image est cr´eée avec l’information partielle, fournie d’une fac¸on asynchrone par le système de rendu. Ces
deux modèles d’interaction graphique sont opposés dans les Figures 4.5(a) et (b).

Un autre aspect très diff´erent de cette approche par rapport aux algorithmes pr´esentés dans les chapitres
et paragraphes pr´ecédents, est que cette m´ethode se base sur les algorithmes de rendu pixel-par-pixel, et
notamment le tracer de rayons. L’avantage de cette approche est que le problème du rendu devient un
problème d’échantillonnage; nous pouvons donc appliquer des méthodes de reconstruction puissantes pour
rendre une image approximative mais acceptable avec peu d’´echantillons.

FIG. 4.6: Exemple de la reconstruction d’une image : Les points projet´es (gauche) sont filtrés par la
méthode d’exclusion par profondeur (depth-cull) (milieu) et par interpolation (droite). Le r´esultat final
est l’impression d’opacit´e et occlusion acceptable.

Le processus est montré dans la Figure 4.6. Un tampon (render cache) de points est stocké pendant un
mouvement du point de vue ou des objets. Pour g´enérer une image, les points sont projet´es sur l’écran,
et il y a forcément certains pixels sur lesquels aucun point ne se proj`ette, et certains pixels sur lesquels
plusieurs points se projettent. De plus, certains points qui sont cach´es par rapport au point de vue actuel
restent visibles, car le point correspondant qui se trouvedevantne se trouve pas dans le tampon. Le r´esultat
de cette premi`ere étape est `a gauche dans la Figure 4.6.

Pour corriger les artefacts dˆus aux erreurs d’occultation, nous regardons les pixels voisins d’un point.
Si la majorité de ses voisins n’ont pas la même profondeur, nous rejetons le point. Le résultat est une nette
amélioration de la qualit´e de l’image (Figure 4.6 milieu).

Enfin, un lissage est appliqué aux pixels, dans un voisinage de 3x3 pixels, en n’utilisant que les pixels
avec un point projet´e. Le résultat final est dans la Figure 4.6 `a droite.

Resteà trouver quels pixels sont `a re-échantillonner pour l’image suivante.Étant donné qu’au départ
nous supposons que l’algorithme de rendu ne peut fournir qu’un nombre faible d’´echantillons par image
pour un rythme de rendu de plusieurs images par seconde, il est très important de demander des points aux
pixels ou ils seront le plus utiles. Il est ´egalement important de bien ´etaler les échantillons sur l’ensemble
de l’écran pour ne pas avoir une d´egradation trop ´evidente dans une r´egion de l’image.
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FIG. 4.7: L’image (gauche), l’image de priorit´e (milieu) et l’image après l’algorithme dedithering. L’utili-
sateur est en train de se d´eplacer en haut à gauche, et les r´egions de haute priorité sont celles pr´ecédemment
cachées. L’algorithme dedithering utilisé arriveà la fois à bien ´etaler les échantillons demand´es sur toute
l’image, et les concentrer plus dans les r´egions o`u ils sont utiles.

Pour faire ceci, en parall`ele avec la cr´eation de l’image, nous g´enérons une� image de priorité� (voir
Figure 4.7 milieu). Apr`es un algorithme de� dithering� transforme cette image de niveau de gris en image
binaire. Les pixels blancs sont les ´echantillons demand´es au syst`eme de rendu.

Le résultat de cet algorithme est la possibilit´e d’atteindre pr`es de 10-15 images par secondes, sur des
images de résolution de 256x256 à 512x512 avec une qualit´e montrée dans la Figure 4.8. Plus de r´esultats
et des séquences interactives enregistr´ees se trouvent `a http ://www-imagis.imag.fr/Publications/walter.

FIG. 4.8: Images d’une s´erie d’utilisations interactives durender cache. Notez que toutes les images sont
créées par lancer de rayons, `a l’exception de l’image en bas `a droite, qui est cr´eée par tracer de chemins.
Dans cette dernière image on distingue les effets des caustiques (sous les sph`ere en verre), très coˆuteux à
produire habituellement.

4.3 Réalité Augment́ee

Un domaine qui évolue énorm´ement est celui de la r´ealité augmentée. Nous nous intéressons parti-
culièrement `a l’éclairage commun, c’est-à-dire les effets d’éclairage dˆus aux interactions des objets r´eels
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FIG. 4.9: La photo de la sc`ene originale, utilis´ee pour l’extraction de la r´eflectance.

et synthétiques (ombre portée par un objet synthétique sur un objet r´eel par exemple).
Ce domaine a suscité un certain nombre de travaux récemment, notamment par l’équipe de l’université

de Berkeley [Deb98, YDMH99]. Ces travaux sont orientés principalement vers la cr´eation� off-line � des
scènes mélang´ees avec les effets de l’´eclairage commun, pour la production des images fixes ou des anima-
tions. Dans nos travaux, nous avons insist´e principalement sur l’aspect interactif : notre but est de donner la
capacité à l’utilisateur d’interagir avec une scène mixte, r´eelle-virtuelle, tout en ayant les effets d’éclairage
commun (ombre entre objets réels-virtuels, effets de lumi`ere des sources r´eelles et virtuelles etc.).

Éclairage Commun pour la Ŕealité Augment́ee

Les développements r´ecents dans le domaine de la vision par ordinateur [FRL+97] permettent la
modélisation facile à base d’images. En collaboration avec le projet ROBOTVIS `a l’INRIA Sophia-Antipolis
nous avons utilis´e leur syst`eme pour construire un modèle approximatif d’une scène r´eelle. Pour la sc`ene
de la Figure 4.9, nous montrons la g´eométrie dans la Figure 4.10(a).

En se basant sur ce mod`ele et en utilisant les résultats de la radiosit´e dynamique pr´esentée précédemment
(paragraphe 4.2.1), nous avons d´eveloppé une premi`ere méthode simple, permettant le d´eplacement inter-
actif des objets virtuels dans une sc`ene réelle avec des effets d’´eclairage commun [DRB97].

En utilisant des m´ethodes d´eveloppées par Fournier et al. [FGR93], nous utilisons une estimation très
simple de la r´eflectance de la sc`ene. Ensuite nous avons d´eveloppé une méthode permettant la repr´esentation
de l’éclairage r´eel dans la scène (r´eelle) modélisée. Ceci est fait par la subdivision du modèle approximatif
par le raffinement de la radiosit´e hiérarchique (voir Figure 4.10(b).

Une fois cette repr´esentation faite, nous sommes en position d’utiliser l’algorithme dynamique de
[DS97] pour ajouter ou d´eplacer des objets synth´etiques dans une repr´esentation d’une sc`ene réelle. L’ajout
des objets synthétiques change forc´ement le maillage utilis´e par la solution de radiosit´e comme le montre
la Figure 4.10(c).

Notre implémentation montre que nous pouvons d´eplacer interactivement des objets synth´etiques ainsi
que les effets d’éclairage commun (par exemple une ombre sur une table r´eelle créée par l’objet virtuel),
montré par la Figure 4.11.

Dans cette m´ethode, nous utilisons le rendu direct du r´esultat de la radiosit´e, c’est-à-dire les éléments
de la solution (voir Figure 4.10(c) par exemple). Nous modulons leur couleur par un facteur de rapport
entre la radiosit´e avant la modification de la sc`ene et la valeur de la radiosité apr`es la modification.

Les limitations de cette approche sont nombreuses : notamment, la seule modification possible est
l’ajout et le déplacement d’un objet virtuel et nous ne pouvons pas modifier les intensités des source lu-
mineuses réelles, ni ajouter des sources virtuelles. De plus, le rendu direct des ´eléments de la radiosit´e ne
donne pas toujours un r´esultat de tr`es bonne qualit´e.

Le problème central est dans l’estimation de la réflectance. Dans la m´ethode qui vient d’ˆetre décrite,
nous n’estimons pas une r´eflectance véritablement ; une valeur est simplement prise directement des pixels
l’image. Comme le rendu se fait exclusivement par un rapport de valeurs, ceci donne un r´esultat convain-
cant. Mais si on souhaite changer la lumi`ere réelle, il est n´ecessaire d’avoir une estimation de la r´eflectance.
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FIG. 4.10: (a) La radiosité, repr´esentantl’éclairage réel de la scène. (b) Le maillage correspondant. (c) La
radiosité modifiée après l’ajout de l’objet virtuel.
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FIG. 4.11: (a) Rendu avec ´eclairage commun. Comparez avec Fig. 4.9 ; l’objet sur la table est virtuel, et
donne une ombre sur la table r´eelle. (b) L’objet virtuel se déplace vers la gauche ; la mise `a jour nécéssite
2.5 secondes.
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Ce problème est particulièrement difficile ; nous avons retenu une approche, dans le cadre de la th`ese
de Céline Loscos (que je co-dirige avec Claude Puech) qui se base sur de multiples images d’entrée
[LFD+99]. Dans ce travail nous avons utilis´e des techniques de l’universit´e de Montréal pour la reconstruc-
tion géométrique avec la collaboration de M-C. Frasson et P. Poulin ; B. Walter et X. Granier d’iMAGIS
ont également participé.

En particulier, nous prenons plusieurs images du même point de vue, mais en d´eplaçant une source
de lumière connue. Comparez par exemple Figure 4.12, `a gauche, la premi`ere et la deuxième ligne. Nous
voyons que les ombres ont un placement diff´erent, car la lumière a ét´e déplacée.

View 1 Reflectance 1 Confidence 1

View 2 Reflectance 2 Confidence 2

Merged Reflectance

FIG. 4.12: Deux des sept images de radiance utilis´ees (gauche), les images de confiance (droite), et les
images de réflectance (centre). Les valeurs sombres de confiance correspondent à une confiance basse. La
réflectance moyenne est montrée en bas.

Deux ensembles d’images sont pris : celles avec le point de vue unique, mais en d´eplaçant la source,
et celles utilisées pour la reconstruction géométrique. Une fois la géom´etrie reconstruite (en utilisant le
système développéà l’université de Montréal [POF98]), nous estimons la réflectance pour chaque point de
vue. Pour estimer la réflectance, nous tenons compte de la lumière directe depuis la source (pour chaque po-
sition) et de la lumi`ere indirecte en utilisant un terme ambiant. Le r´esultat est une image de� reflectance� ,
comme on peut le voir dans la Figure 4.12, colonne du milieu.

Une fois l’estimation de la r´eflectance de chaque point de vue faite, nous faisons une moyenne pond´erée
de ces estimations. Notamment, nous donnons une valeur de� confiance� à chaque pixel de r´eflectance
par point de vue. Cette valeur est mise `a la valeur de la visibilit´e au départ, donc ´elevée pour les régions
éclairées, et basse pour les régions en ombre. Ensuite nous appliquons une série de filtres pour compenser
les imprécisions de modélisation : nous étendons les régions d’ombre par un filtre min. Après nous appli-
quons un filtre de lissage pour ´eviter le passage rapide entre zone de haute confiance `a des zones de basse
confiance. Enfin nous appliquons un filtre de valeurs éloignées de la moyenne (outliers) pour compenser
les effets sp´eculaires, que nous ne modélisons pas. Le r´esultat de ce processus peut ˆetre observ´e dans la
colonne de droite de la Figure 4.12, o`u l’on voit les images de confiance apr`es le filtrage. Nous faisons
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ensuite une moyenne des réflectances individuelles, pond´erées par la confiance, ce qui donne l’image de
réflectance finale, montr´ee en bas de la Figure 4.12.

Une fois ce pre-traitement fait, nous initialisons un syst`eme de radiosit´e hiérarchique pour calculer
l’ éclairage indirect, d’une façon semblable `a celle de la m´ethode pr´ecédente. Pour le rendu, nous utilisons
le tracer de rayons pour le calcul de l’éclairage direct, et la radiosit´e pour obtenir la valeur de l’´eclairage
indirect. Pour des mises à jour rapides, nous identifions les régions de l’´ecran modifiées pour l’éclairage
direct d’une fac¸on efficace, en projetant la boˆıte englobante de l’objet d´eplacé et en utilisant la structure
hiérarchique des shafts (comme pour la méthode pr´ecédente).

Des résultats de cette m´ethode sont montrés dans la Figure 4.13 Plus de r´esultats et des s´equences
interactives enregistr´ees se trouvent `a http ://www-imagis.imag.fr/ Celine.Loscos/relight.html.

(a) (b)

(c) (d)

FIG. 4.13: Un exemple d’éclairage commun. (a) Image reprojetée sans modification, (b) enl`evement de la
porte (qui nécessite 2.9 sec. r´esolution 512x340). (c) Ajout d’une chaise virtuelle en 3.4 sec. et (d) d’une
source virtuelle (6.6 sec.).

4.4 Discussion

Dans ce chapitre nous avons pr´esenté des travaux sur le rendu interactif. Notre travail se concentre
surtout sur le rendu interactif de haute qualit´e, en utilisant deux approches, la radiosit´e et le lancer de
rayons et ´egalement sur la r´ealité augment´ee.

4.4.1 Rendu Haute Qualit́e

Les avantages de la m´ethode de radiosit´e sont liés d’abord sur la rapidité du calcul, surtout pour
l’ éclairage indirect ; ensuite sur le fait que les cartes d’accél´eration graphique peuvent ˆetres utilisées pour
l’affichage, permettant un rendu interactif pour des sc`enes assez complexes.

Par contre plusieurs inconv´enients peuvent être constat´es : l’algorithme de radiosit´e est souvent limité
à des sc`enes diffuses (les am´eliorations décrites dans le chapitre pr´ecédent ne permettant que certains cas
limit és de comportement non-diffus ; des structures de données lourdes en mémoire sont n´ecessaires, par
la nature de l’algorithme d’´eléments-finis ; enfin la gestion des problèmes de raffinement est souvent tr`es
complexe, et peut avoir des r´esultats tr`es visibles sur la qualit´e de la solution.
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Les méthodes de lancer de rayons, ont le grand avantage de ne pas ˆetre restreintes aux ph´enomènes
d’éclairage qui peuvent ˆetre simulés ; de plus, aucune structure de donn´ees type maillage n’est n´ecessaire.
Dans le cadre du� render cache� nous arrivons à conserver ces propri´etés favorables, tout en ayant un
temps de rendu interactif.

Les inconvénients par contre sont surtout le temps de calcul ´elevé, en particulier pour l’´eclairage in-
direct. Dans le cadre du� render cache� nous pouvons ´egalement noter que malgr´e des d´ebuts très pro-
metteurs, des artefacts inacceptables subsistent encore, et que pour l’instant la r´esolution de l’image reste
limit ée.

4.4.2 Ŕealité Augment́ee

La méthode récente [LFD+99], donne des r´esultats tr`es prometteurs. Les limitations par contre sont
d’abord liéesà la qualité de la réflectance estim´ee et la restriction `a un point de vue fixe. Les deux questions
sont discut´ees dans les perspectives du chapitre suivant.

4.5 Articles
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4.5.1 Efficient Impostor Manipulation for Real-Time Visualization of Urban Sce-
nery (EG’97)

Auteurs : Franc¸ois X. Sillion, George Drettakis et Benoit Bodelet
Actes : Congrès Eurographics’97
Date : septembre 1997
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EUROGRAPHICS’97 / D. Fellner and L. Szirmay-Kalos
(Guest Editors)

Volume 16, (1999), Number 3

Efficient Impostor Manipulation for
Real-Time Visualization of Urban Scenery

François Sillion, George Drettakis, Benoit Bodelet

iMAGIS † – GRAVIR/IMAG - INRIA. B.P. 53, F-38041 Grenoble Cedex 9.

Abstract
Urban environments present unique challenges to interactive visualization systems, because ofthe huge complex-
ity of the geometrical data and the widely varying visibility conditions. This paper introduces a new framework
for real-time visualisation of such urban scenes. The central concept is that of a dynamic segmentation of the
dataset, into a local three-dimensional model and a set of impostors used to represent distant scenery. A seg-
mentation model is presented, based on inherent urban structure. A new impostor structure is introduced,derived
from the level-of-detail approach. Impostors combine three-dimensional geometry to correctly model large depth
discontinuities and parallax, and textures to rapidly display visual detail. We present the algorithms necessary for
the creation of accurate and efficient three-dimensional impostors. The implementation ofour algorithms allows
interactive navigation in complex urban databases, as required by many applications.
Keywords: Visualization of large datasets, Image-based rendering, Image caching, Impostors, Urban scenes.

1. Introduction

Visualisation of urban environments is an exciting domain,
with a growing number of important applications. Examples
of such use includecity planning, such as the visualisation
of South Central Los Angeles, built and visualised by the
UCLA School of Architecture for city planning1, naviga-
tion aid systems for automobiles, driving and flight simula-
tors for civilian and military use, climate and environmen-
tal studies, virtual tourism and education etc. The sheer size
of the data required to represent a city presents particularly
challenging problems for visualisation. In addition, the spe-
cial structure of cities introduces additional difficulties: the
volume of data visible from a given point can change drasti-
cally, from densely occluded (e.g., only a few neighbouring
buildings visible), to panoramic views (e.g., from a hilltop)
where millions of geometric primitives are visible.

Since all of the applications mentioned above require real-
time feedback, rendering such large data sets using tradi-
tional techniques, such as frustum culling, is problematic.
In this sense, the problem of urban visualisation can be seen

† iMAGIS is a joint research project of CNRS, INRIA, INPG and
UJF. Contact E-mail:Francois.Sillion@imag.fr.

as a challenge of performingappropriategeometric simpli-
fication. Two contrasting approaches to simplification have
recently become popular, either for visualisation or other ap-
plications. The first tendency targets the reduction of the ge-
ometric complexity of individual objects. These approaches
often implicitly assume the availability of connectivity infor-
mation, used to maintain a consistent topology2. Such infor-
mation is not readily available for most urban data. Simpli-
fication methods which do not preserve topology can make
it difficult to control appearance properties such as color3.
In addition, geometric simplification algorithms are rarely
view-dependent, and thus inappropriate for walkthrough-
type applications. The second approach assumes that no in-
formation is available other than a set of geometric prim-
itives. As a consequence, complex geometry is substituted
with an image“impostor”, or “cache”4; 5; 6 . The latter ap-
proaches have given impressive results, but are restricted in
the type of scene they can treat, since they typically fail for
densely occluded environments, and suffer from the fact that
the number of frames for which these image impostors are
valid is very limited due to the problems of parallax.

The new algorithm we present here introduces a solution
which combines the strong points of both approaches, and
exploits the specific nature of urban landscapes. On the one
hand, we use the idea of image impostors, taking advantage

c
 The Eurographics Association 1999. Published by Blackwell Publishers, 108 Cowley
Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA 02148, USA.



of the capabilities of texture for rapid display of detail infor-
mation, and on the other hand we introduce the idea of im-
postors augmented withthree-dimensionalinformation, al-
lowing longer cache life, and largely resolving the parallax
problem. In addition, we provide a subdivision model of ur-
ban scenes, based on the inherent city structure, resulting in
a segmentation scheme which is much better adapted than
frustum culling. This segmentation provides a full three-
dimensional model for the local neighbourhood (or “near
field”), and the use of the augmented impostors for more
distant landscape. The availability of the full 3D model for
the near field can be very important, especially if operations
such as collision detection (e.g., for games) or a faithful
simulation of the illumination (interreflections for example)
are required. The implementation of our new algorithm al-
lows real-time visualisation of very large urban data-bases;
the new three-dimensional impostor method results in longer
cache life, and the capacity to treat parallax in many cases.

2. Previous work

The focus of most previous related work has been on the
development of algorithms for visualisation of large scenes,
notably based on database partitioning and culling, on level-
of-detail approaches, and image-based rendering.

2.1. Database partitioning and visibility culling

The first algorithms for accelerating visualisation of large ar-
chitectural models can be traced to the early stages of com-
puter graphics research7; 8. Airey et al., Teller and S´equin,
Luebke and Georges9; 10; 11, use spatial subdivision and at-
tempt to precompute visibility relationships within a com-
plex building scene. The central idea of these approaches is
to predict the visible part of a scene for the next few frames,
thus reducing the number of primitives which must be ren-
dered. This is achieved using intelligent memory manage-
ment and viewer motion prediction.

A different approach involved the hierarchical Z-buffer al-
gorithm, which uses Z-buffer pyramids to rapidly eliminate
occluded parts of the scene12. Finally, the issue of constant-
frame rate for visualisation of complex environments has
been addressed by Funkhouseret al.13. A computational ge-
ometry approach was presented in14, in which large occlud-
ers are dynamically identified as the user moves and used to
perform culling using an octree structure. This method suc-
cessfully eliminates large portions of the model which are
invisible but requires large occluders.

2.2. Image-based rendering

The idea of replacing full three-dimensional models by a
rendered image can be traced back to the idea of environ-
ment maps15. Their direct application to rendering was
used by Chen and Williams16, using range-images. This ap-
proach allowed limited motion around a viewpoint by using

pre-rendered images of the scene, which was then used to
substitute three-dimensional rendering on low-end comput-
ers. More involved approaches include the use of panoramic
images used in Quicktime-VR17 and plenoptic modelling
18. These methods allow the choice of different viewpoints,
and are noteworthy in the fact that they allow limited three-
dimensional navigation of real scenes.

Maciel and Shirley introduced the idea of image “impos-
tors”. In their work, a hierarchy of a three-dimensional com-
plex model is created; on the faces of the bounding boxes
images of the cluster contents are created. These images can
be used to replace the contents when this representation is
judged sufficient. In other approaches19; 5; 6 images of distant
scenery are cached, and replace complex geometry based on
an image discrepancy criterion: when an image replacing
complex distant geometry is no longer accurate, the cache
is invalidated. The Talisman20 approach moves in the same
direction.

Finally, the idea of representing three-dimensional scenes
as a light-field was presented by21; 22. In such approaches the
complexity of the geometry contained in a scene is relatively
unimportant, andslicesof this representation are extracted to
generate images.

2.3. Shortcomings of previous approaches

The approaches briefly summarised above have resulted in
the efficient visualisation of large data sets, in the case of
partitioning and culling for environments which are always
densely occluded (such as building interiors), or on the con-
trary for environments which are never densely occluded in
the near-field for the image caching methods.

Inherently, urban environments require the treatment of
dense occlusion in the near-field, and that of potentially
large data-sets in the distant landscape. The urban data-space
segmentation scheme, in conjunction with the new three-
dimensionally augmented impostors provides a powerful so-
lution to this challenge.

The dynamic octree culling approach using large occlud-
ers14 could be used as a first stage in our approach, but does
not address the case where large amounts of 3D geometry
are visible in the distance.

3. An efficient model for urban navigation

Urban models have several distinct properties, unlike other
data sets. In general, they have very high geometric com-
plexity, typically requiring very large datasets to represent
even the simplest neighbourhood. In addition, even though
at the street level there is a high degree of occlusion, it is
often the case that the amount of data visible can change
abruptly and unpredictably. This occurs for example when
turning from a narrow street into a large open square with a
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(a) (b)

Figure 1: Example view of an urban scene. (a) from the street level, (b) from higher up, looking in the sameoverall direction
(See also the color section at the end of this volume).

view to a hill. Furthermore, urban models are typically quite
large, since they extend over several square kilometers.

As a consequence of these properties, traditional meth-
ods such as frustum culling are not very well adapted to the
needs of urban visualisation. Consider for example the scene
depicted in Figure 1: the model is constructed from poly-
hedral data representing a 2km�3km area of Paris around
Montmartre (courtesy of IGN) and consists of 140,800 poly-
gons (note that this rather large number of primitives still
only allows a crude geometrical description of the build-
ings).

The image on the left shows a view taken from street level;
clearly only few of the objects are actually visible, but sim-
ple culling strategies cannot decide what is relevant for this
view and must consider the entire depth of the scene within
the frustrum. In this example frustrum culling selects 45,200
polygons, which still far exceeds the real-time capabilities
of current mid-range computers. The full depth complexity
of the model can be estimated on the right-hand image taken
from above.

Note that culling away objects based on the distance to
the viewpoint would not be a good idea since it would elimi-
nate landmarks such as the church in the background. There-
fore a difficult character of urban scenes becomes apparent
with this example: while much of the complexity is typically
hidden (for ground views) due to important occlusion, some
directions let the user view objects at far distances.

In the new approach presented here we use the idea of alo-
cal neighbourhood, which has a natural interpretation in the
context of urban landscapes. Cities are organised by streets
and blocks, and can thus be directly segmented into a local

region (for example the blocks adjacent to the street we are
moving on) and a distant landscape which contains the rest
of the city geometry.

The central principle of our approach is to maintain full
three-dimensional geometric information of the local neigh-
borhood, while maintaining an approximate view of the dis-
tant landscape, which we call animpostor. We will be using
inherent urban structure to guide this segmentation and the
partitioning, as well as to aid in building and maintaining the
accuracy of the impostors.

A straightforward approach implementing these ideas
would be the use of textures, as impostors, potentially with
the aid of some hierarchical structure4. However, such an
approach suffers from the constant need to update the image
caches which have become invalid due to parallax.

A more promising solution consists in using additional
three dimensional information to create augmented impos-
tors, containing for example depth information, contours of
the sky-scape etc. These 3D impostors have longer “cache
life”, compared to simple texture-based approaches and
are more accurate since the additional information can be
used to control their validity. Furthermore, the segmentation
based on the urban structure potentially allows us to select
the number and location of impostors in an optimal fashion.

This approach gives us the additional benefit of having
more control over the error committed with respect to depth,
while maintaining the advantage of textures which capture
fine, but distant, detail very compactly. The principles intro-
duced above are illustrated in Figure 2, where we show the
local model associated with a selected viewer configuration.
An impostor is constructed to complement the local model
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for nearby viewpoints. The images on the right clearly show
the three-dimensional nature of the impostor.

3.1. Segmentation of the city model

As mentioned above, we propose the segmentation of the
model into a nearby local neighbourhood, and more distant
landscape, represented by impostors. The segmentation will
typically be based on natural urban subdivision (“blocks” di-
vided by streets for example).

We note that the directions along which distant objects
can be visible usually correspond to streets or non-built ar-
eas, which can be extracted from an analysis of the urban
database. Impostors can therefore be associated to these “im-
portant” directions, so that they reproduce exact views at
well-chosen vantage points in the city, for a given resolu-
tion. This segmentation will also permit the combination of
distant views in an efficient manner, based on the topolog-
ical relationships in the arrangement of impostors, further
enhancing the “cache-lifetime” of the impostors.

We consider an interactive application in which the user
navigates in the urban scene. At any time the viewer location,
and direction of sight, are known. Segmenting the model ac-
tually means that we partition the space of viewer position
and direction of sight into a number of cells, each possess-
ing all the necessary data to quickly render images for view-
ers in the corresponding neighborhood. Note that the word
“neighborhood” here should conceptually refer to a portion
of a five-dimensional space (position and direction). How-
ever in practice the segmentation operates in spaces of fewer
dimenions thanks to the very high structure of urban data.

In the remainder of this paper, we will use the following
terminology. For each cell, we define:

� The local modelas a fraction of the scene 3D model, ex-
tracted from the complete model using an appropriate seg-
mentation technique.

� Thedistant modelas the remainder of the 3D scene.
� An Impostor as a textured three-dimensional object used

to render distant geometry.

Each cell can possess one or more impostors as needed.
The essence of the rendering algorithm is then to always
draw the combination of the impostors of the current cell
and its local model, to obtain a view of the entire model.

The desirable characteristics for a segmentation of the
model are therefore primarily linked to its ability to repre-
sent distant landscape for cells that are as large as possible
(to minimize their number), using the simplest possible im-
postors (to minimize their cost) and with the smallest pos-
sible image error (to avoid annoying artifacts). In particular,
the use of a local 3D model and a set of impostors raises
the issue of the boundary region between the models. Mis-
alignement of the two boundaries results in “cracking” prob-
lems which should be minimized. It is very important to fol-

low the structure of the urban landscape to perform the seg-
mentation:k�d trees, quadtrees or other regular structures
are not well suited to this task since they will not produce
meaningful chunks of data.

3.2. Definition of three-dimensional impostors

A three-dimensional impostor is initially based on the gener-
ation of an image which captures small details of the distant
urban landscape in the form of texture information, and ex-
actly complements the view of the currentcell’s local model
for a specific vantage point.

Nonetheless, additional three-dimensional information
should be stored with the image from the outset. This is
necessary to perform appropriate deformations of the image
when the user moves around the initial vantage point, and
therefore allow cells to reach a certain size. Instead of de-
forming, or morphing, the texture image, we can also build
from it a collection of three-dimensional elements, which
can then be visualised efficiently just like other 3D data.

The main issue for the generation of optimal impostors
is the determination of what should be represented as 3D in-
formation, and what can be safely left as texture information.
3D information is needed to correctly reproduce parallax ef-
fects as the user moves and portions of the distant model
occlude other portions. However, small geometric details on
facades, for instance, need not be integrated in the 3D infor-
mation. Thus the addition of three-dimensional information
to the impostors can be thought of as a constrained form of
geometric simplification, whereby an initial dense mesh (the
initial impostor image) is simplified to reduce polygon count
while approximating the data within a given tolerance.

Considering that a “simplified mesh” has been created on
the impostor image, this mesh can be reprojected in 3D by
means of the depth information from a z-buffer, yielding a
3D textured polygonal mesh.

Important desirable properties for impostors therefore
center on the ability to reconstruct an accurate view of the
distant landscape in a neighborhood around the initial van-
tage point where the impostor was created. For this we need
rich texture information and the relevant 3D structure to
recreate important parallax effects, but the 3D complexity
should be minimized to avoid excessive costs. The trade-
off between geometric and texture detail has been discussed
elsewhere23, in the context of a single object. Simple and
accurate validity criteria are also needed to keep reconstruc-
tion error in the final image under control. In particular, the
“cracking” problem mentioned above should be carefully
monitored. In this respect, we see that using simple planar
impostors, or image caches5; 6, is not a viable solution be-
cause we always render large portions of the model on an
impostor.
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Complete model

                        

Local model

                        

Distant model

                        

Impostor

                        

Local + Impostor

                        

Figure 2: Principles of model segmentation and use of an impostor. The left column shows views created for a user walking in
a street (the viewer location is indicated by the arrow in the top right image). The right-hand column shows a bird’s eye view of
the scene (See also color section).
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4. Practical algorithms

The principal ideas outlined above have been used to guide
the development of several practical algorithms in our urban
visualisation system. We present below the algorithm used
to segment an urban model based on street connectivity data
and a construction method for three-dimensional impostors.

These approaches are not necessarily the most efficient,
but provide a first solution to the specific requirements of the
visualisation of complex urban environments. We have im-
plemented all the algorithms presented next in our prototype
system, with satisfactory results, which will be presented in
the following section.

In our current implementation, we have decided to focus
on urban navigation for pedestrians or land vehicles. This
particularity is important in that it means that there is a lot
of occlusion by nearby buildings along the streets, therefore
the directions in which distant landscape is visible are well
identified. Flying over a city (for games or other simulation
applications) would require different segmentations or dif-
ferent sets of impostors. Note that the difficulty would not
arise from the fact that distant objects are visible, but rather
from the inability to easily predict in which direction this
happens.

4.1. Segmentation of the model

A user walking or driving on the ground is typically con-
strained to a network of streets, therefore this defines a sub-
set of the model where the viewpoint can be. We can safely
restrict our algorithms to the creation of impostors that let us
recreate views for such possible points.

Visibility in a street is typically blocked sideways by ad-
jacent buildings, but can extend quite far away in the direc-
tions of the street endpoints, or above the adjacent build-
ings/ground (“local” skyline).

Figure 3: Blocks adjacent to the current street are selected
to compose the local model.

A graph of the network of streets is first constructed. In
our prototype implementation, this graph is created from
auxiliary data depicting the geometry of the streets in Paris.
While this data allows us to quickly build a topological struc-
ture, an equivalent graph can easily be constructed by hand
for a given urban dataset. It is indeed probably desirable to
build the graph from the geometrical data, since the use of
an independent geometry file actually revealed several mis-
alignment problems, with streets running through houses etc.

The graph is represented internally using a classical
winged-edge data structure, allowing fast navigation in the
streets, as well as easy access to “neighboring” geometri-
cal information. The area of interest is therefore treated as
a 2D polyhedron, whose faces are city blocks (and point to
appropriate buildings and landmarks) and whose edges are
portions of streets.

We define a cell of the segmented model as an oriented
edge of the street graph. Topological information is then
used to extract the local 3D model around a point (a street)
as the set of blocks “near” that street. The simplest definition
of “near” is that blocks must touch the current street segment
(Figure 3). We use this definition in our implementation.
Other definitions can be used, in particular to ensure smooth
transitions between cells as the viewer moves through the
database. In particular, a pointwise notion of connectivity,
counting as adjacent all blocks sharing a graph vertex, seems
important around the endpoints of a street segment. We are
currently investigating better segmentations using this no-
tion. Obviously the chosen selection mechanism should de-
pend on the particular morphology of the city model at hand:
short and curved street segments place particular require-
ments in terms of impostor life span, compared to long and
straight streets.

Because visibility of distant objects is in practice mostly
limited to the directions of the street ends, we associate two
impostors with each street (one with each cell, i.e. a directed
edge in the graph). This implicitly assumes a densely built
environment, where visibility is blocked by buildings along
each side of the street.

4.2. Impostor creation

Recall that the goal of the three-dimensional impostor con-
struction is a representation which maintains the advantages
of a texture-based image cache, while at the same time con-
taining richer information related to depth and contouring.
This additional data permits the reuse of the impostors for
many more frames than in traditional image-caching. In our
implementation, impostors are created either off-line as a
pre-process, or on demand when the user enters a new area of
the model. Since impostors are associated to edges, there are
twice as many impostors as streets in the model. The main
stages of our construction algorithm are listed below, and
illustrated by the images in Figure 4. Please refer to these
images while reading this section.
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(a) - Impostor texture (b) - Depth Image

                        

(c) - External contour (d) - Depth disparity lines

                        

(e) - Impostor triangulation (f) - Other view

Figure 4: Illustration of the steps taken to create an impostor. The last image shows the impostorrendered from a different
viewpoint and demonstrates the appearance changes due to parallax (See also color section).
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The successive steps of the impostor creation algorithm are:

1. Create an image of the distant scenery (to be used as the
impostor texture).

2. Save the corresponding depth image (contents of thez-
buffer).

3. Extract the external contour of the image.
4. Identify the significant depth disparity contours.
5. Perform a constrained triangulation of the impostor.
6. Store the list of 3D triangles along with the texture image.

Creation of the impostor image

We begin by generating an image of the distant landscape
(that is, the entire model of which the “local” model has been
removed) from a given point of view (Fig. 4-a). In our case
we create the view from the edge origin, looking towards the
other end. We also temporarily extract a depth image from
the z-buffer (Fig. 4-b).

Identification of important features

A standard image-processing contour extraction based on
thresholding is then applied to the image to separate actual
relevant data from the background24. While the separation
from an empty background (such as for the skyline) is trivial,
care must be taken that some distant portions of the model
can be visiblefrom below, because we are only considering
the distant model, and therefore the ground description of
the local model is missing from the rendered data. We use a
special color to identify the bottom face of ground elements,
and use this information in our contour extraction algorithm.

The resulting contour captures all the details of typical
city sky-scapes, including spires, rooftops etc (Fig. 4-c), to
the resolution of the computed image, and is referred to as
theexternalcontour.

The external contour can be considered to be a two-
dimensional polygon in the image-plane used for render-
ing (although there may of course be multiple contours,
the structure of urban landscapes, with the presence of the
ground, is such that in the vast majority of cases there is a
single contour in the image. Therefore we will always speak
of “the” contour, but our algorithms apply to all available
contours). We want to subdivide this polygon into simple
polygons such as triangles in the plane, which can then be
reprojected in 3D. Because our goal is to allow the recre-
ation of parallax in the impostor, we next identify lines of
maximal depth discrepancy (Fig. 4-d).

This is accomplished by creating a depth discrepancy im-
age from the depth image. Depth discrepancy is defined here
as the maximum difference between the depth at a pixel and
that of its neighbors. We then extract “interesting” contours
(after a thresholding operation to select pixels with an im-
portant discrepancy) and fit a set of line segments to the re-
sulting contours.

In practice, we apply the following simple algorithm iter-
atively, until no more pixels with a depth discrepancy above
a given threshold are available:

1. Find pixel with largest discrepancy.
2. Follow chain of pixels until we are blocked by the exter-

nal contour or the discrepancy falls below the threshold.
3. Compute a polygonal approximation of the chain.

Triangulation and 3D reprojection

The external contour and the discrepancy lines provide the
important information needed to recover parallax effects
within the impostor. To avoid precision issues as well as ex-
treme triangle aspect ratios, we augment the impostor with
a set of points selected on a regular grid within the exter-
nal contour to impose a minimal sampling density. Finally
we perform a constrained Delaunay triangulation of all these
points, with the constraint that all external contour segments
and all discrepancy line segments be included in the triangu-
lation 25 (Fig. 4-e).

All vertices of the triangulation are then reprojected in 3D
using the information of the depth image, and the resulting
set of 3D triangles, together with the corresponding texture
image, constitutes the impostor. Texture coordinates for each
triangle vertex are simply the image coordinates of the cor-
responding pixel location.

A view of the impostor from a viewpoint other than the
point of creation is shown in Fig. 4-e. Note the parallax ef-
fects, when the most distant buildings become obscured by
nearby ones. This effect is obtained exclusively from the per-
spective rendering of the 3D triangles composing the impos-
tor.

5. Results

We present in Figure 5 comparative images for different
viewer positions in the same area. Notice first the overall
quality of the images in the central column, produced by the
combination of the local 3D model and the impostor (com-
pare to the right-hand column rendered using the complete
3D model). The images in this central column are produced
at a sustained rate of between 11 and 19 frames per second,
while a complete 3D rendering only achieves between 1 and
2.5 frames per second (using frustrum culling and thePer-
formerhigh-performance graphics library).

Second, the three-dimensional impostors succeed in pro-
viding an accurate view of distant landscape, taking into
account some parallax changes. Note in particular how the
church towers in the background correctly recede behind the
closer buildings.

Finally a small amount of cracking is visible when the
user comes very close to the boundary between the local
model and the impostor. This suggests that more work is
needed to keep all errors under complete control.
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Figure 5: Images extracted from an interactive tour of the Montmartre area. An sustained frame rate of about 15 fps was
obtained. In the left column the impostor was colored to make it visible. The center column shows the view displayed during
interactive navigation. The right-hand column is a reference view rendered using the entire model (1 to 2 fps). Note the self-
masking effects within the impostor, due to the evolution of parallax: in particularthe church in the background disappears
behind the closest buildings as the viewer moves forward (See also color section).
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Note that since the life time of impostors corresponds to
the time the user spends in a given street, impostors remain
active in areas whose size exceeds several tens of meters.

5.1. Performance

The results of our implementation are quite satisfactory. The
algorithm achieves over 11 frames per second for the Mont-
martre model (recall that this is a model of around 140,000
polygons). All timings were computed on an SGI Indigo2

200 MHz R4400 computer. We observe that the speedup
value is only an indication, very much dependent on the
complexity of the data. A more complex model containing
more detail information on the facades in the form of ge-
ometry, for instance, would not affect the complexity of the
impostors, and may produce even greater acceleration fac-
tors.

In terms of space, a typical impostor, starting with a tex-
ture image of 512x512, results in about 1,000 polygons. This
is much less than the typicalvisiblegeometric complexity of
the distant model. The average size of the local model is ap-
proximately 4,000 polygons, therefore the total amount of
3D geometry being drawn at any given time is reduced to
about 5k polygons.

The creation of an impostor takes about 12 seconds on
the above computer, of which the initial offscreen render-
ing takes approximately 10. These figures could therefore
be greatly reduced using hardware rendering (for instance
with the pixel buffer mechanism available in recent SGI soft-
ware). All of these operations can be seen as preprocessing,
and can be stored with the model.

The above model has 1168 edges. Precomputing and stor-
ing all the impostor images clearly represents a significant
expense. While the calculation time can be largely amor-
tized by later usage, memory requirements are potentially
large. However we observe that very little of this memory is
needed at any given time, since very few impostors are ac-
tive. A concurrent process can therefore be used to pre-fetch
impostors in a neighborhood of the viewer.

6. Conclusions and Future Directions

This paper introduces a new framework for the efficient seg-
mentation and visualisation of urban landscapes. The central
idea is the efficient segmentation of the urban model based
on inherent city information (such as streets and blocks),
resulting in two distinct sub-sets at each frame: the local
neighbourhood and distant scenery. We use the full three-
dimensional model to render the local neighbourhood, thus
providing detailed geometric information to the viewer. For
distant scenery, we introduce “impostors” of the complex
data set, augmented with appropriate three-dimensional in-
formation. These impostors are initially based on an image-
view of the distant scenery; the contour(s) of the building

sky- and ground-line are extracted, as well as lines of depth
discrepancy. The result is polygonalised and reprojected into
three-dimensional space using the depth-buffer information.
As a consequence, the impostor can be used for a much
larger number of frames than previous image-caching tech-
niques. In addition, parallax distortions can be captured to a
certain extent.

We have implemented our new approach, achieving near
real-time visualisation of an real complex urban model. We
have shown how important sky-line features (rooftops, spires
etc.) are preserved using our 3D impostors, and that parallax
effects such as mutual occlusion of two buildings contained
in the impostor, are sucessfully rendered.

Much research remains to be done. One important issue is
the improvement of transitions between cells of segmented
models. In the current approach, the impostors are com-
pletely correct at the view points for which they were gen-
erated. One approach would consist in morphing between
impostors. We are currently investigating solutions to this
problem, based on storing different views at edge endpoints,
and developing appropriate combination algorithms.

Segmentation models should take advantage of the char-
acteristics of urban structure. Different cities, built in differ-
ent parts of the world in different cultures, can have distinct
properties. For example, the sky-scraper sky-lines of North-
American cities differ from the large boulevards and monu-
ments of Paris. Such characteristics have an important influ-
ence on occlusion and the regularity of visibility changes.

An important issue is the error measure used to deter-
mine the validity range for impostors. The addition of three-
dimensional information adds different types of distortion,
but due to its richer nature can provide improved discrep-
ancy measure compared to simple pixel differences of image
caches.

Although the problem of cracking is greatly diminished
using 3D impostors, it has not been completely eliminated.
Different possibilities exist, such as sharing boundaries or
vertices between the model and the impostor. Better heuris-
tics can be used to extract relevant data in impostors, e.g.,
using decimation techniques.

Finally, we hope that the insight gained by studying ur-
ban visualization, and designing algorithms tailored to this
application, will prove useful in developping more general
solutions to the issue of impostor usage for the visualization
of very large databases.
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Abstract

Interactively manipulating the geometry of complex, globally il-
luminated scenes has to date proven an elusive goal. Previous
attempts have failed to provide interactive updates of global illu-
mination and have not been able to offer well-adapted algorithms
controlling the frame rate. The need for such interactive updates
of global illumination is becoming increasingly important as the
field of application of radiosity algorithms widens. To address this
need, we present a novel algorithm which provides interactive up-
date rates of global illumination for complex scenes with moving
objects. In the context of clustering for hierarchical radiosity, we
introduce the idea of an implicitline-space hierarchy. This hier-
archy is realized by augmenting the links between hierarchical ele-
ments (clusters or surfaces) withshafts, representing the set of lines
passing through the two linked elements. We show how line-space
traversal allows rapid identification of modified links, and simulta-
neous cleanup of subdivision no longer required after a geometry
move. The traversal of line-space also limits the amount of work
required to update and solve the new hierarchical system after a
move, by identifying the modified paths in the scene hierarchy. The
implementation of our new algorithm allows interactive updates of
illumination after object motion for scenes containing several thou-
sand polygons, including global illumination effects. Finally, the
line-space hierarchy traversal provides a natural control mechanism
allowing the regulation of the tradeoff between image quality and
frame rate.

Keywords: Global illumination, Dynamic environments, Hierar-
chical radiosity, Form-factors, Interactivity, Frame-rate control.

1 Introduction

The use of realistic global illumination is becoming more and more
widespread. As a consequence, users demand more flexibility, and
better interaction with lighting systems. Ideally, a user would like
to be able to interact with a scene and interactively perceive at least
some degree of global illumination effects. A major limitation of
current systems is the inability to move or change geometry in a
scene, with simultaneous update of global illumination effects. Ap-
plications such as virtual studios, tele-conferencing in virtual envi-
ronments, driving simulators etc., all require interactive manipula-

yiMAGIS is a joint research project of CNRS/INRIA/UJF/INPG. Ad-
dress: iMAGIS/GRAVIR, BP 53, F-38041 Grenoble Cedex 09 France.
Email: fGeorge.Drettakis|Francois.Silliong@imag.fr

tion of the scene geometry, without loss of important illumination
information.

Although significant advances have been made towards accel-
erating radiosity calculations for changing geometry [7, 4, 11], all
previous approaches fail to provide interactive global illumination
updates even for moderately complex scenes, and do not provide a
way to control the quality/speed tradeoff for interactive display. The
new solution we present uses the subdivision of line-space implied
by the link structure of hierarchical radiosity to achieve efficient
interactive radiosity updates for scenes of moderate complexity.

The goal of our approach is to provide a unified framework
which will allow a user of a hierarchical radiosity system to move
objects in a lighting simulation, and interactively perceive global
illumination changes. We also provide a mechanism permitting the
user to sacrifice quality for speed, but still maintain at least some of
the important visual cues due to global illumination.

In any hierarchical radiosity system, and in particular a
clustering-based approach, the elements of the scenes are linked
together following the potential interactions of light between such
pairs. These links induce a subdivision of the line-space of the
scene, or more accurately the space of line-segments, following the
flow of light between scene elements. We augment links with an ex-
plicit representation of all lines passing between two elements via
a shaft[9]. In particular, when an object moves, we can efficiently
identify the parts of the system which are modified, by hierarchi-
cally descending in this line-space. This traversal permits efficient
cleanup of the mesh where subdivision is no longer needed because
of geometry changes, and allows us to mark the paths in the hier-
archy which are modified. As a consequence, fast resolution of the
modified part of the system of equations is achieved. Finally, the
line-space hierarchy provides a natural way to control the expense
incurred at every frame. This is achieved by limiting the descent
into line-space by the time available at each frame.

We present an implementation of these ideas which shows that,
using the line-space hierarchy we can achieve interactive updates of
illumination (2-3 frames per second) for scenes of moderate com-
plexity (up to about 14,500 input polygons). This includes the treat-
ment of scenes almost exclusively lit by secondary illumination.

2 Context and Previous Work

The fact that the movement of an object often causes limited
changes to a global illumination solution became evident early
on in graphics research, in particular for “radiosity” algorithms.
Several algorithms have been proposed which deal specifically
with changes to geometry, and their evolution follows closely the
progress of radiosity solutions. In what follows we present a brief
overview of these methods.

2.1 Progressive radiosity solutions

The initial “full-matrix” radiosity solution [8], led to the develop-
ment of an algorithm which took advantage of coherence properties
of the hemi-cube, used to calculate form-factors [3]. This solution
suffered from all the limitations of full-matrix radiosity (including
quadratic storage and lack of adaptive subdivision), and most no-
tably was limited to predetermined trajectories. Despite these draw-
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backs, this algorithm is noteworthy in the insight that form-factor
changes can be limited spatially, by means of a swept volume re-
stricting the part of space affected by the move.

The advent of progressive refinement solutions led to the de-
velopment of two similar approaches which took advantage of the
“shooting” process of radiosity propagation [4, 7]. By treating all
object movements as deletions and re-insertions in the scene, shad-
ows were removed by re-shooting energy, and new shadows were
correctly inserted where appropriate by shooting “negative energy”.
This approach achieved impressive update times for direct illumi-
nation, even though global updates remained very expensive. An
improvement to these methods was developed by M¨uller et al. [11],
who added an intelligent data structure maintaining shadow-lists ac-
celerating potentially modified interactions between surfaces. The
main drawback of all these approaches is due to the fact that they are
based on progressive refinement, for which the global energy bal-
ance is hard to control. In addition these methods cannot achieve
interactive update rates (several frames per second) for scenes of
moderate size or larger.

2.2 Hierarchical radiosity solutions

Some of the limitations of progressive refinement solutions can be
addressed in the context of hierarchical radiosity. An overall “snap-
shot” of the global energy balance is maintained in the link struc-
ture, and the corresponding hierarchy. When an object moves, a
limited number of links, and thus a limited part of the hierarchy, are
modified. This can be seens by examining the block form-factor
matrices resulting from hierarchical subdivision. In Fig. 1(a) the
chair has just moved to the right. The block form-factor matrix
(collapsed up to a certain hierarchical level for display) is shown
in Fig. 1(b), “warmer” colors representing larger values of form-
factors. The matrix in Fig. 1(c) represents the difference in the ma-
trices produced by the move. As we can see, few regions of the
matrix change.            

            

(a) (b)                        

(c) (d)

Figure 1: The chair in (a) has moved to the right. The block form-
factor matrix is shown in (b), color coded (see text), before motion.
In (c) we show the difference (dark blue = no change); (d) zoom of
the modified matrix area, yellow blocks are the links shown in (a).

By zooming into a modified region (Fig. 1(d)), we realize that the
changes are due to the moving shadow of the chair. In particular the
region of the matrix selected in Fig. 1(d) corresponds to the element

shown in red in Fig. 1(a), and the yellow blocks are a collapsed
representation of the links arriving at this element.

Two first solutions have been developed exploiting hierarchical
radiosity for dynamic environments. Forsyth et al. [6] present the
idea of “promoting” and “demoting” links based on a refinement
criterion which moves links up and down in the hierarchy, depend-
ing on the position of the objects at each frame. This is similar to
the idea of “ghost” links presented by Shaw [12]. A first approach
to the problems incurred by changes in visibility was presented in
Shaw’s work, by introducing special “shadow” links connected to
the source and containing blocker information. A final optimisa-
tion was presented by which a “motion volume” is built with the
bounding planes of the two positions of the dynamic object; All
links are then tested against this volume to determine if they may
have changed or not.

2.3 Shortcomings of previous methods

The algorithms for hierarchical radiosity in dynamic environments
described above achieve significant improvement over the progres-
sive refinement approaches developed earlier. Nonetheless, interac-
tive updates rates are not achievable using these methods, especially
for complex scenes, and since they were developed using traditional
hierarchical radiosity, the quadratic cost of initial linking presents
an important obstacle to their practical use.

More importantly, all previous approaches lack a unified mecha-
nism which can rapidly identify the part of the system modified and
at the same time control the simulation quality/time tradeoff in a
coherent manner. In what follows we show that theline-space hier-
archy, exploited by accessing the links attached to the scene hierar-
chy, provides this functionality. We will show how the hierarchical
traversal of line-space allows rapid identification of the parts of the
system which change, provides an efficient mechanism to update
the hierarchy, and finally allows fine control of the quality/speed
tradeoff for dynamic environments.

2.4 Objectives: user interaction with the scene

We assume that any object in the scene can be chosen to be dy-
namic. The only restriction is that each potential dynamic object
must be included in a cluster of its own. When the user selects a
dynamic object, the corresponding cluster is attached to the root of
the hierarchy.

Changing the dynamic object during the simulation is not too
complicated, since we can identify the links which were affected by
the previous and the new dynamic object. This can be performed
efficiently by traversing line space as described later, updating the
links and the corresponding visibility information. Since the dy-
namic object clusters are attached to the root, a change in the object
chosen can be accompanied by a re-insertion into the cluster hier-
archy.

Once the object is chosen, the user can freely interact with the
object to change its position (for example by translation or rota-
tion). At each frame, all that is required is the previous and current
position of the dynamic object bounding box. What is required next
is to identify the links of the system whose shaft cuts either of these
bounding boxes.

3 Hierarchical Line-Space Traversal

To rapidly identify the necessary modifications of the global illu-
mination system of equations, we need a data structure which will
isolate the parts of space which are affected by the motion of an ob-
ject. Theline-space hierarchywe introduce is such a representation
encoded using the traditional link structure of hierarchical radiosity.
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3.1 Introduction to the Line-Space Hierarchy

In the original hierarchical radiosity algorithm [10], the scene, as
well as subsequent subdivision, is represented as a hierarchy. In
addition, when the clustering algorithm is used, the polygons of the
scene are grouped together to form a complete hierarchical repre-
sentation of the environment. We will refer to such an element as
an H-elementhe (Hierarchical element [13]), be it a cluster or a
surface element. This scene hierarchy is augmented bylink infor-
mation, which is used to represent radiant exchanges between two
H-elements of this hierarchy. A typical hierarchical solution pro-
cess proceeds byrefining the links: when the link is considered to
insufficiently or incorrectly represent the light transfer, the element
is subdivided and sub-links are created [10, 15]. The decision to
subdivide is based on a “subdivision criterion” which may be based
on error-estimation or magnitude of energy transfer across a link.
We will refer to a “refiner”, which is the module responsible for the
refinement operation.

We represent the set of light paths in a hierarchical manner by
augmenting the link structure. The shaft shown for example in Fig.
2(a) represents the entire set of lines which pass between the two
elements. More precisely, this is the set ofline segmentsrather than
infinite lines. For simplicity however, we will use the termline-
space hierarchythroughout this paper. In this respect, we build a
coarse approximation to structures which encode visibility informa-
tion of maximal free segments such as the visibility complex [5].

...

(a) (b)

(c) (d)

Figure 2: We show here a line space hierarchy: (a) the original link
lp (shown as a shaft) is subdivided, resulting in four sub-links (b),
which are the line-space children oflp. P-links (c) and the subse-
quent children links (d) are embedded in the H-element hierarchy.

When a link is subdivided, the four resulting links can be con-
sidered as children of the original link, Fig. 2(b). To store this hier-
archy, subdivided links are not discarded, and are stored aspassive
links or p-links with the H-elements. Thus our new link hierarchy
is actuallyembeddedin the H-element hierarchy itself. For exam-
ple, the thick black line in Fig. 2(c) corresponds to a (subdivided)
p-link, and the four thick lines in Fig. 2(d) to the four resulting
links. These ideas are related to the approach developed by Teller
and Hanrahan [17], where a similar link hierarchy was used to in-
crementally maintain blocker lists, as well as the “ghost-link” idea
[12] or link “demotion/promotion” approach [6].

3.2 Data structures

To explicitly work in line-space, we need a representation of the set
of lines between surfaces. One possibility would be the approach
using Plücker coordinates as was presented by Teller [16], or the
intercepts of lines on two parallel planes [1]. Another approach
would be that of ray-classification [2].

We have preferred to use theshaftstructure [9] for its simplic-
ity, and because it is well defined and easy to manipulate for the
case when one endpoint of a link is a bounding box. In addition

the shaft structure permits efficient intersection tests with bound-
ing boxes, which is an operation central to the algorithms presented
below. Since our algorithm operates in the context of clustering ra-
diosity, this allows the use of the same structure for links between
any combination of cluster and surface element. Another interest-
ing aspect of the shaft representation is that shafts are truncated,
and thus operate on linesegments, as opposed to infinite lines.

The line-space hierarchy is built during the traditional refinement
process of clustering hierarchical radiosity. The list of links arriv-
ing at a H-element is stored on the element itself, as well as all the
p-links (see Figs. 2 and 3) Both active links and p-links are aug-
mented with the shaft corresponding to the part of line-space they
respectively cover.
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Figure 3: Numbering of the H-element hierarchy into index ranges.

One final component is required to allow efficient traversal the
line-space hierarchy. Consider a given passive linklps ! r, stored
at H-elementr and emanating from H-elements. Since this p-link
has been subdivided, it is possible that the elements has been sub-
divided also. In addition, what originally was the p-links ! r

is now a set of links at possibly different levels of the hierarchy,
emanating from children ofs, also at different levels. Links orig-
inating from other sources may also co-exist on the elementr and
its children. To be able to quickly identify the links which are chil-
dren oflps ! r, we need to be able to tell if a given link originates
from an H-element which is a child ofs. To avoid repeated traver-
sals of the hierarchy which become overwhelmingly expensive, we
apply a numbering scheme of all hierarchical elements. In partic-
ular, we traverse the entire hierarchy once at the beginning of the
lighting simulation process, and assign an interval to each node,
corresponding to the largest possible number of children which can
be created. This number can be calculated based on the value of the
area thresholdA� [10], which limits the size of the smallest sur-
face. To see this, consider the partially subdivided hierarchy shown
in Fig. 3, where subdivided nodes are represented with solid lines.
The index ranges assigned to each node correspond to the maximum
subdivision which can possibly be incurred, shown as the complete
tree, where currently unsubdivided nodes are shown with dashed
lines.

3.3 Traversing Line-Space

Consider that we are situated on a given H-elementhe of the hierar-
chy and we wish to traverse the part of line space related to a p-link
arriving athe. To effect the line-space descent, we need to visit
exclusively the children links of the passive link considered. Each
passive linklp is connected to a source nodes, which has a corre-
sponding index range following the numbering scheme elaborated
above. To visit the line-space children oflp, we descend to each
H-element childc of the current nodehe, and examine only those
passive links originating froms or s’s children, arriving atc. These
are the links attached to a node with an index within the interval of
the index ofs.

For example, in Fig. 3, we are at receiver noder. P-link lp is the
thick dashed line. When descending to its line-space children, we
visit for example H-elementc. The only links we consider however
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are those emanating from H-element in the range[5� 8], i.e., chil-
dren of the original H-elements, linked by lp. This procedure is
summarized in Fig. 4.

traverseLineSpace(H-elementhe, IndexRangeind)
f

for each p-linklp of he
// find the “source” nodeq
H-elementq = lp!LinkedNode()
if ( ind containsq!IndexRange() )

for each childc of he
// limit traversal to the index ofq
traverseLineSpace(c, q!Index )

g

Figure 4: Hierarchical Line Space Traversal

3.4 Efficient illumination update

To perform an update we first need to find the links affected by
object motion. We consider as potentially changed the links whose
shaftsare touched by the bounding box of thedynamic object(i.e.,
the object which moves) before or after the move. After motion, the
subdivision of parts of the hierarchy (for example due to shadow
motion) may no longer be needed. We need to identify these parts
of the hierarchy and perform the cleanup.

For the links which have been thus identified, new form-factor
values need to be computed, since visibility may have changed with
respect to the dynamic object. We call this operationlink update.

To perform form-factor update efficiently, we maintain two-part
occlusion information with each link: occlusion with respect to the
dynamic object, and occlusion with respect to the rest of the scene.
Thus at each frame, visibility is checked only with respect to the
dynamic object. This information must of course be updated when
we change dynamic objects; a line traversal to find the sub-spaces
affected by the old and new object suffices to achieve this. Also,
when a new link is created, its visibility with the rest of the scene is
computed (but not for reinstated p-links).

After link update, it may be the case that certain links have to
be refined, in particular when a visibility change occurs. The new
values of the radiosity need to be computed and gathered on the
links. The hierarchical system must then be updated to reflect the
new position of the moving object. Finally the new system must be
solved. The line-space hierarchy provides the necessary mechanism
to efficiently perform all of the above steps. We thus summarize our
new approach as follows:

1. Find the links potentially changed by traversing line-space
and remove subdivision unnecessary due to geometry change;

2. Update the modified links and refine where necessary;

3. Solve the hierarchical system efficiently.

Step (1) occurs during the line-space traversal, resulting in the
information necessary to perform steps (2) and (3).

4 Rapid Identification of Modified Links and
Subdivision Cleanup

We next show how line-space traversal can be used to rapidly iden-
tify the links which have potentially changed. This traversal allows
simultaneous removal of subdivision which is no longer required
due to the new position of the moving object.

4.1 Finding the modified links efficiently

To find the modified links, the line-space traversal can be thought
of as “zooming-in” to the region of space which has changed. The
traversal algorithm starts at the root of the hierarchical elements (a
cluster whose extent is the bounding volume of the scene), and de-
scends recursively. At a given hierarchical nodehe, we visit all its
passive links. For each such p-linklp, we determine whether its
corresponding line-space (represented by the shaft), was affected
by the object motion. This is performed by testing the link shaft
against the previous and current positions of the dynamic object.
If the link was affected, we will potentially descend into its corre-
sponding line-space. Given the new position of the dynamic object,
we first test whether passive linklp would no longer satisfy the sub-
division criteria; this could occur for example if the p-link was par-
tially occluded by the previous position of the dynamic object, but
is completely unoccluded in the new position. If this is the case, the
link can be reinstated as active, and the descent into the line-space
hierarchy is stopped. If, on the other hand, the passive linklp is
maintained, the line-space children oflp are visited, and the same
process is applied recursively.

Finally, when the traversal of the passive links ofhe is complete,
we examine all of the active links corresponding to the current part
of line space (links originating froms or s’s children) to determine
if they are affected by the object motion. If this is the case, i.e., the
active link shaft cuts the dynamic object before or after the move, it
is added to a list of candidates for update and potential refinement.
An example of a candidate list is shown in Fig. 5(b); notice that few
of the numerous links describing energy exchanges in the left room
or with the left wall of the right-hand office appear in this list.

4.2 Cleanup of unnecessary subdivision

The traversal described above also provides the benefit of cleaning
up unneeded refinement in the same step as the determination of the
links which need to be updated. In particular when we have decided
that a p-linklp (linked to H-elements) on H-elementhe does not
merit refinement due to the new position of the dynamic object, we
can remove the entire set of links and p-links which are (line-space)
children oflp. This is performed by descending to the children of
H-elementhe and removing all passive and active links linked tos

and its children. After this removal, if there are no links remaining
on any of the children ofhe (or its intermediate nodes), the sub-
division is cleaned up. A similar approach to subdivision cleanup
presented in [12] required a special pass, and multiple hierarchy
passes to mark attached sources and their children.

The line space traversal is summarized in Fig. 6. In this algo-
rithm, notice that when a potential change is found (either for a
p-link re-installation or the required update of an link), the cor-
responding H-element is marked changed. For example, the H-
elements marked “changed” are shown in red in Fig. 5(c). This will
be used in what follows to limit the system solution at each frame.
In addition, this approach is particularly efficient in the context of a
clustering algorithm, since the number of links is limited.

5 Fast System Solution By Hierarchy Pruning

The line-space traversal algorithm described above results in fast
identification of the links which need to be refined and at the same
time allows the un-refinement of unnecessary subdivision. Once
this step has been performed, we need to update the links which are
changed, and potentially refine certain links. This additional refine-
ment will be required for example around new shadow boundaries.
Once these steps are complete, we have a complete hierarchical sys-
tem which is ready to be resolved. In hierarchical radiosity [10, 15],
system resolution is performed by performing complete sweeps of
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(a) (b) (c)

Figure 5: This example contains 14,572 input polygons. The chair in the right-hand room moves to the right (a)- (b). The average update
time is approximately .3 s. In (b) we show the links modified and in (c) the parts of the hierarchy affected by the move and marked “changed”
by the line-space traversal. Note how the several thousand surfaces of the left-hand room are unaffected.

findModifiedLinks(H-elementhe, IndexRangeind)
f

for each p-linkpl of he f
H-elementq = pl!LinkedNode() // “source” node
if ( ind containsq!IndexRange()

and affectedByMotion(pl!Shaft())f
if ( wouldBeRefined(pl ) ) f

for each childc of he
// limit traversal to the index ofq
findModifiedLinks(c, q!IndexRange() )
if a child changed

he!setChanged()
g

else
reInstateLink(pl )
he!setChanged()

g

g

// if any links ofhe are modified they are added
// to the list of links to refine, andhe is marked changed
checkAddLinks(he )

g

Figure 6: Efficient Modified Link Identification

the hierarchy:GatherandPush-Pull. In the context of clustering
[13], irradiance is gathered through the links onto the H-elements;
this irradiance is subsequently pushed down the hierarchy. Finally,
the radiosity values are computed at the leaves, and pulled up the
hierarchy to provide the new solution.

Such an approach was used for a dynamic solution in [12] for
example. For large scenes containing thousands of input polygons,
these multiple sweeps of the hierarchy result in an unacceptable
overhead in an interactive context. Furthermore, such complete hi-
erarchy traversal is unnecessary: only a small number of elements
has actually been changed.

In what follows, we show that we can perform aGatherexclu-
sively for links which have been affected by object motion, during
link update. The line-traversal algorithm returns a list of links po-
tentially changed. The form-factors for these links are recomputed
to reflect the new position of the dynamic object. This update oper-
ation may result in the need for certain links to be refined.

Once the refinement is complete, the global solution can be effi-
ciently performed. In particular the marking of the changed paths
performed during line-space traversal allows us to limit thePush-
Pull to the subsections of the hierarchy which have been modified,
for one bounce of illumination. Subsequent bounces may poten-
tially be required but can also be treated efficiently.

There is one essential assumption for the following discussion:
we assume that before any motion is performed, the system has run
to convergence. We define a solution as converged when no more
links can be refined for the given error threshold, and the energy
balance has been computed using all links.

5.1 Link update and in-placeGather

Once a link has been identified by the line-space traversal algorithm
as potentially changed, we need to update its form-factor value.
There are two possibilities: either the link has changed little and
as a consequence it will not be refined or the link has changed in a
way which requires further subdivision.

In the first case we need to modify the irradiance of the receiving
patch by the difference of the previous irradiance and the current ir-
radiance. For sources and receiverr,Bs the radiosity of H-element
s, F k the form-factor before the move andF k+1 the form-factor
after the move, this difference is simply:

Idiff = Bs (F
k+1

� F
k) (1)

For clusters, we also need to distribute the irradiance down to the
cluster contents.

When refinement occurs, we need to remove the irradiance
which arrived at the receiving node from the previous transfer on
the link. After subdivision, the new irradiance will be transferred
when the sub-links are established. For elementr, the irradianceIr
becomes:

I
k+1
r = I

k
r � F

k
Bs (2)

After subdivision, the new links will be established at a different
level in the hierarchy, and we then simply add in the new irradiance.
We thus avoid theGathersweep of the hierarchy.

5.2 Non-recursive refinement for modified links

At each frame, certain links will be identified as requiring refine-
ment. This typically occurs when the dynamic object touches a link
shaft for the first time. Previous hierarchical radiosity (e.g., [10])
performed recursive refinement of links. In such an approach, when
a link is refined, we immediately attempt to refine its children and
so on recursively until subdivision is no longer possible given the
current subdivision criteria.

For the requirements of controlling the solution, we need to
achieve two goals: (a) refine the most important links first and (b)
potentially truncate the refinement process if we wish to limit the
amount of time spent for a frame. The latter point becomes essential
for the time/quality control algorithm presented in Section 6.1.

To achieve this, when refining a link, the resulting refined sub-
links are added to a heap. The refiner then extracts the link with
the highest potential power transfer for refinement, thus achieving
goal (a). The refiner keeps track of the number of links it still needs
to refinenl, and the numbernr of links already refined. When the
sum ofnl andnr exceed the limit fixed by the subdivision process,
the refinement is terminated. Thenl form-factors of the remain-
ing links are then updated to correspond to the new position of the
dynamic object, and established at the given level without being
refined.
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5.3 Global solution

Once the line-space traversal and the refinement are complete, we
have a new hierarchy for which the irradiance at each node cor-
responds to the new position of the object. In addition, we have
marked as “changed” all the elements in the hierarchy which have
been modified, as well as all the paths in the hierarchy leading to
these elements. The only remaining step is thePush-Pullprocess of
the hierarchical solution which will result in the correct hierarchical
representation of radiosity at every level of the hierarchy.

As mentioned earlier, we exploit the information of the paths
and elements marked “changed”, to accelerate thePush-Pullsince
it will only be performed on a small part of the hierarchy.

5.3.1 Single Bounce

We modify thePush-Pullprocedure to visit only the parts of the
hierarchy which are modified. At a given node, we check if it is
marked “changed”: if it is we proceed as normal, descending to the
children, and if not we use the radiosity already calculated at this
level instead of continuing the hierarchy descent. This procedure is
summarized in the pseudo-code of Fig. 7.

Spectrum partialPushPull(Helement* he, Spectrum IrradDown)
f

Spectrum RadUp
if he!changed()f // normal PushPull

if ( he!isLeaf() )
RadUp = ComputeLeafRad

else foreachchild c of he
RadUp += partialPushPull(c, IrradDown + he!Irrad())

g

else// use previous values
RadUp = he!Radiosity()

he!Radiosity = RadUp
return RadUp

g

Figure 7: Partial Push-Pull

This update algorithm will result in a system which is updated
to reflect the new position of the dynamic object. This new state
includes changes to all links, for directand indirect illumination.
In most cases, this is largely sufficient, since it represents a system
which in many cases has converged. This solution always provides
updated shadows due to primary illumination, as well as for some
shadows due to indirect illumination.

5.3.2 Subsequent bounces of illumination

It may be the case however that the system has changed sufficiently
so that subsequent iterations are needed to achieve convergence.
Consider the example of a dark room with a door (initially closed)
opening to a bright corridor (see Fig. 10). When opening the door,
some direct light will flow into the room due to links which will
be refined. If the previous algorithm were to be used as described
above, certain light transfers would not occur (e.g., from the floor
to the ceiling), since the radiosity values in the hierarchy would not
be modified until after the call topartialPushPull.

To determine the modified links, we perform a partial traversal
of the hierarchy, visiting only the elements marked “changed” by
the line-space traversal. At each H-elementhe, the H-elements it
is linked to are stored, that is the H-elements for whichhe acts as
a “source.” In addition, we store the old value of radiosity, corre-
sponding to the previous dynamic object position. Thus at every
H-element changed by the first bounce, we can calculate the differ-
ence in irradiance, and perform an in-place gather to the receiving
node as described above. Some links may need to be refined, and
as such are inserted into the heap. Subsequent refinement is then

performed, followed by a new partial push pull. Care must be taken
to re-initialize the “changed” markings of every node, as well as the
old value of radiosity after each iteration. In particular, H-elements
updated by the difference in irradiance are marked as “changed”
as well as their parents and children. The difference in global ef-
fects is generally limited, and thus the extents of these updates is
not very large, even for cases where global illumination effects are
very important (e.g., Fig. 10).

6 Controlling Simulation Time and
Rendering Quality

The solution presented above allows rapid updates for scene of
moderate complexity. Nonetheless, the update rate can be too slow
for certain applications where 1 or 2 frames per second is simply
not acceptable. In addition, for very complex scenes, we need to be
able to provide the user with the choice of “give me N frames per
second, with the best possible quality.”

The limitation of the algorithm presented above is that there is no
control on the number of links that need to be updated. Thus, if the
dynamic object moves into a part of space which contains a large
number of links, the line-space traversal will create a large candi-
date list. A large amount of time will thus be required to update the
form-factors of these links, and to potentially refine some of them.

To avoid this problem we present an algorithm that updates as
much of the modified link hierarchy as possible, in the sense of
a user-defined time limit, and unrefines the rest. This can be per-
formed naturally with the aid of the line-space hierarchy, and is very
much in the spirit of the original hierarchical radiosity approach.

6.1 Controlled update algorithm

To achieve a controlled update time the user first selects a target
frame rate. The system then calculates the number of link updates
that it can perform in a given frame. Thus we consider as our “time”
or cost unit, the time required for a link update.

To achieve the control of the number of link updates, and adapt
the hierarchy to the desired frame rate, we first calculate the number
of child links and p-links for each p-link in the hierarchy. This is
performed while traversing line-space to find modified links, as pre-
sented above in Fig. 4, and “pulling” the number of links resulting
from the subdivision of each p-link.

To perform the link update, we traverse line-space for a second
time. During this sweep, we only traverse the parts of the hierarchy
actually modified.

The update control algorithm is very similar to the line space
traversal. The important difference is that we always update the
links of the current nodefirst. We are thus assured that the state of
the hierarchy above the current nodehe is correctly up to date. This
is an essential requirement, since we can not otherwise truncate the
update without incurring inconsistencies. The time spent updating
links of this node is subtracted from the remaining time.

We then compute the minimum amount of work required if we
are to descend in line-space. This is equal to the total of all line-
space children active and passive links arriving at the children of
he. If this number is larger than the remaining “time”, we cannot
guarantee that we will be able to update the remaining sub-links
in the allotted time. In this case, we reinstate the appropriate p-
links of he and cleanup underlying links (and remove subdivision
if necessary). We then stop the descent.

If we can still descend, we continue the traversal of line-space.
We assign to each child the fraction of time calculated as follows.
We sum the total numberncl of children links stored with each p-
link of he, in the current index range. The fraction assigned to each
child c of he is the number of active sub links ofpl arriving atc
plus the number of active sub links belowc, also stored during the
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push-pull of line-space. This can be seen as a local and adaptive
form of progressive multi-gridding [14].

controlledUpdate(Helementhe, IndexRangeind, int remainingCost )
f

updateLinks(he)
remainingCost = remainingCost� links updated
plinkCost = number of children p-links and links inind range
if pLinkCost � remainingCost f

for each p-linklp of he
H-elementq = lp !LinkedNode() // “source” node
if ind containsq !IndexRange()

for each childc of he with c !changed()
cost = fraction of child links oflp in c
controlledUpdate(c, q !IndexRange(),cost )

g

else
update and reinstate all p-links ofhe in ind range

g

Figure 8: Controlled Update Algorithm

A very important feature of this controlled update strategy is that
no matter how much time is allocated for the update, a consistent
solution is computed. This is due to the fact that the set of links
always completely covers the entire line space. The availability of
a completehierarchy is a benefit of using hierarchical clusters. In
other words, the algorithm ensures that all possible energy transfers
are accounted for, although they may be included in links very high
up the hierarchy (probably as a significant approximation, induc-
ing some error). This consistency comes in contrast to all previous
approaches to incremental updates of radiosity solutions, and is an
important asset for many practical applications.                        

(a) (b)
                        

(c) (d)

Figure 9: The chair is the dynamic object, moving to the right, with
no additional bounces. Update rates (a)-(b) average .5s. In (c) and
(d) the same motion is shown with time/quality tradeoff, limited to
330 link updates per frame. The average update takes .3s.

6.2 Maintaining consistent quality

The controlled line-space descent presented above performs well
for many configurations. Nonetheless, due to the quadtree nature

of the subdivision on surfaces, it is often the case that new refine-
ment does not occur as desired. In particular we may notice that
subdivision is not propagated across quadtree edges.

To counter this problem, we influence link refinement. Consider
a p-link inserted into the heap for refinement because the dynamic
object cuts its shaft, and that there was no interaction in the position
at the previous frame. In this case, we increase the key used to sort
elements in the heap, making refinement of this link more probable.

7 Implementation and Results

We have implemented the new algorithms on a clustering hierarchi-
cal radiosity algorithm following [13]. The modules for line-space
traversal and all modified refinement routines required around 5000
additional lines of C++. All test results are reported on an Indigo 2
Impact, with an R4400 processor at 200MHz.

7.1 Basic algorithm

The first example is a single scene containing 5,405 polygons
shown in Fig. 9, with four light sources. For this scene, we show
one chair moving to the right, which is an object containing 870
polygons. The update rates are close to 0.5 seconds per frame,
which can be satisfactory in many cases. The breakdown of the
computation time for the first move for example is: 0.08 s. for line-
space traversal, 0.40 s. for link update/refinement and 0.05 s. for
partial push-pull.                        

(a) (b)                        

(c) (d)

Figure 10: In this example, a door opens onto a dark room (5,295
polygons). Additional bounces are performed, and global illumi-
nation is updated. Updates takes (a)-(b): 3.20 s.; (b)-(c): 3.47 s.;
(c)-(d): 2.52 s.

The second example is shown in Fig. 10, where the additional it-
erations are required. Initially the room is completely black. While
the door is gradually opened, global illumination is rapidly updated.
We see that a reasonable representation of global illumination is
provided with update rates of around 3 seconds per frame. For the
second update for example, the single bounce took a total of 2.15
seconds and the subsequent two bounces 0.55 and 0.5 seconds each.

The third example shows that we can handle complex geome-
try without significant degradation in speed. In Fig. 5, we have a
scene with 14,572 input polygons, with the chair in the right-hand
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room moving to the right. The update takes around 0.6s. per frame,
but sometimes improves to 0.2s per frame (5 fps) when the chair
traverses “sparse” regions of line-space (i.e. with few links).

7.2 Time/quality tradeoff

The controlled update algorithm was tested on the scene used pre-
viously to demonstrate the basic approach. In Fig. 9(c) and (d)
we present the output of the algorithm for a selected value of 330
link updates per frame, which results in an average update rate of
approximately .3 seconds/frame. The shadows are of lower qual-
ity compared to the image shown in Fig. 9, but are still definitely
usable.

7.3 Higher quality movement

Our approach is also well adapted if the user requires higher quality,
and is prepared to wait longer (several seconds). An example is
shown in Fig. 11, where an update takes about 4 s., but we see that
the quality of shadows is improved compared to Fig. 9. To achieve
this, we simply decrease the� threshold for BF refinement [10].

8 Conclusions and Future Work

We have presented a new framework for the efficient calculation of
incremental changes of global illumination using hierarchical ra-
diosity. This set of algorithms allows interactive updates of the
lighting solutions in scenes with moving geometry. The heart of
our approach is the introduction of aline-spacehierarchy associ-
ated with the links between scene elements. This hierarchy is dis-
tinct from, but related to, the hierarchy of surfaces and clusters in
the scene, and can be traversed efficiently using the implicit corre-
spondence between the two hierarchies. In terms of data structures,
the main addition with respect to hierarchical radiosity is the intro-
duction of shaft structures representing a portion of line segment
space associated to each link.

The line-space traversal algorithm is beneficial in many respects.
First, it allows the fast identification of the links that should be
modified in response to object motion. These links are collected
to accelerate later processing. In addition, it permits simultaneous
cleanup of object subdivision that has become unnecessary due to
visibility changes induced by object motion. The line-space traver-
sal marks the modified parts of the hierarchy, resulting in an accel-
erated solution of the modified system.                        

Figure 11: Higher-quality solution, 4 s. per frame on average.

The set of links marked during line-space traversal embodies all
of the form factor changes in the scene, although at a hierarchical
level which may not be sufficiently detailed for the desired accu-
racy. Hierarchical refinement of these links is carried out in a non-
recursive manner, using a set of refinement criteria to resolve fine
radiosity variations and shadow details. The marking mechanism
results in a very fast solution of the updated system of equations.

Finally, the line-space hierarchy also provides a natural mech-
anism to control the time/quality tradeoff for incremental updates,
by constantly monitoring the expected cost of refinement operations

and ensuring that the refinement budget is not exceeded. The na-
ture of the refinement algorithm ensures that the solution is always
consistent in that it takes into account all possible energy transfers
in the scene, although possibly at high hierarchical levels.

Future work includes the design of improved quality control
mechanisms. The very notion of solution quality is difficult to de-
fine. For instance, it is well accepted that the presence of shadows
for moving objects is an important visual cue for understanding ob-
ject location and motion, but these shadows need not necessarily
be very precise. Recent work on accelerated approximate shadow
calculations using the hierarchy of clusters and feature-based error
metrics may be applicable to dynamic updates [14].

Finally, more involved visibility structures, which provide de-
tailed line-space information, such as the Visibility Complex [5],
will probably be very useful for dynamic updates of illumination.
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Abstract.
Interactive rendering requires rapid visual feedback. Therender cacheis a new
method for achieving this when using high-quality pixel-oriented renderers such
as ray tracing that are usually considered too slow for interactive use. The ren-
der cache provides visual feedback at a rate faster than the renderer can generate
complete frames, at the cost of producing approximate images during camera and
object motion. The method works both by caching previous results and reproject-
ing them to estimate the current image and by directing the renderer’s sampling
to more rapidly improve subsequent images.
Our implementation demonstrates an interactive application working with both
ray tracing and path tracing renderers in situations where they would normally
be considered too expensive. Moreover we accomplish this using a software only
implementation without the use of 3D graphics hardware.

1 Introduction

In rendering, interactivity and high quality are often seen as competing and even mu-
tually exclusive goals. Algorithms such as ray tracing [29] and path tracing [14] are
widely used to produce high-quality, visually compelling images that include complex
effects such as reflections, refraction, and global illumination. However, they have gen-
erally been considered too computationally expensive for interactive use.

Interactive use has typically been limited to lower-quality, often hardware accel-
erated rendering algorithms such as wireframe or scan-conversion. While these are
perfectly adequate for many applications, often it would be preferable to achieve inter-
activity while preserving, as much as possible, the quality of a more expensive renderer.
For example, it is desirable to use the same renderer when editing a scene as will be
used for the final images or animation.

The goal of this work is to show how high quality ray-based rendering algorithms
can be combined with the the high framerates needed for interactivity, using only a level
of computational power that is widely and cheaply available today. Once achieved, this
creates a compelling visual interface that users quickly find addictive and are reluctant
to relinquish. In the typical visual feedback loop, as illustrated in Figure 1(a), the
expense of the renderer often strictly limits the achievable framerate2.

The render cacheis a new technique to overcome this limitation and allow inter-
active rendering in many cases where this was previously infeasible. The renderer is
shifted out of the synchronous part of the visual feedback loop and a new display pro-
cess introduced to handle image generation as illustrated in Figure 1(b). This greatly

1
iMAGIS is joint project of CNRS, INPG, INRIA and Universit´e Joseph Fourier.

2In this paper we will use framerate to mean the rate at which the renderer or display process can produce
updated images. This is usually slower than the framerate of the display device (e.g., a monitor or CRT).

327



renderer

application

display proc

render
cache

application

renderer useruser

imageimage

asynchronous
interface

(a) (b)

Fig. 1. (a) The traditional interactive visual feedback loop where the framerate is limited by the
speed of the renderer. (b) The modified loop using therender-cachewhich decouples display
framerate from the speed of the renderer.

reduces the framerate’s dependence on the speed of the renderer. The display process,
however, does not replace the renderer and depends on it for all shading computations.

The display process caches recent results from the renderer as shaded 3D points,
reprojects these to quickly estimate the current image, and directs the renderer’s future
sampling. Reprojection alone would result in numerous visual artifacts, however, many
of these can be handled by some simple filters. For the rest we introduce several strate-
gies to detect and prioritize regions with remaining artifacts. New rendering samples
are concentrated accordingly to rapidly improve subsequent images. Sampling patterns
are generated using an error diffusion dither to ensure good spatial distributions and to
mediate between our different sampling strategies.

The render cache is designed to make few assumptions about the underlying ren-
dering algorithm so that it can be used with different renderers. We have demonstrated
it with both ray tracing [29] and path tracing [14] rendering algorithms and shown that
it allows them to be used interactively using far less computational power than was
previously required. Even when the renderer is only able to produce a low number
of new samples or pixels per frame (e.g., 1/64th of image resolution), we are able to
achieve satisfactory image quality and good interactivity. Several frames taken from an
interactive session are shown in Figure 2.

1.1 Previous Work

The render cache utilizes many different techniques and ideas to achieve its goal of
interactivity including progressive refinement for faster feedback, exploiting spatio-
temporal image coherence, using reprojection to reuse previously results, image space
sparse sampling heuristics, decoupling rendering and display framerates, and paral-
lel processing. The contribution of the render cache is to show how these ideas can
be adapted and used simultaneously in a context whereinteractivity is considered of
paramount importance, in a way that is both novel and effective.

One way to provide faster visual feedback and enhanced interactivity is to provide
the user with approximate intermediate results rather than waiting for exact results to
be available. This is often known as progressive refinement and has been used by many
researchers (e.g., the “golden thread” of [3] or progressive radiosity [9]).

Many researchers have explored ways to exploit spatio-temporal image plane coher-
ence to reduce the computational costs in ray tracing sequences of images. With a fixed
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Fig. 2. Some frames from an interactive editing session using the render cache. The user is given
immediate feedback when changing the viewpoint or moving objects such as the mug and desk
lamp in this ray traced scene. While there are some visual artifacts, object positions are rapidly
updated while other features such as shadows update a little slower. The user can continue to edit
and work without waiting for complete updates. On a single processor, this session ran at�5fps
and lasted about one minute. No graphics hardware acceleration was used. See Appendix for
larger color images.

camera, changing materials or moving objects can be accelerated by storing partial or
complete ray trees (e.g., [25, 13, 6]).

Sequences with camera motions can be handled by storing the rendered points and
reprojecting onto the new camera plane. There are several inherent problems with
reprojection including that the mapping is not a bijection (some pixels have many
points map to them and some have none), occlusion errors (if the reprojected point
is actually behind an occluding surface in the new view), and non-diffuse shading (a
point’s color may change when viewed from a different angle). Many different strate-
gies for mitigating these problems have been proposed in the image-based literature
(e.g., [8, 18, 17, 16, 26]), which relies heavily on reprojection.

Reprojection has also been used in ray tracing to accelerate the generation of anima-
tion sequences (e.g., [2, 1]). These methods save considerable computation by repro-
jecting data from the previous frame and only recomputing pixels which are potentially
still incorrect. At a high level their operations are similar to those of the render cache
but their goal (i.e. computing exact frames) is different. Our goal of interactivity re-
quires the use of fast reconstruction heuristics that work reasonably well even in the
presence of inexact previous frames and a prioritized sparse sampling scheme to best
choose the limited number of pixels that can be recomputed per frame.

Sparse or adaptive image space sampling strategies (e.g., [21, 19, 11, 5]) can greatly
reduce ray tracing costs. While most work has concentrated on generating single im-
ages, some researchers have also considered animations (e.g., using a uniform random
sampling to detect changed regions [2] or uniform deterministic sampling in an inter-
active context [4]). The render cache introduces a new sampling strategy that combines
several different pixel update priority schemes and uses an error diffusion dither [10] to
mediate between our conflicting goals of a uniform distribution for smooth image re-
finement and concentrating samples in important regions for faster image convergence.

Parallel processing is another way to accelerate ray tracing and global illumination
rendering (e.g., see [24] for one survey). Massive parallel processing can be used to
achieve interactive ray tracing (e.g., [20, 22]), but this is an expensive approach. A bet-
ter alternative is to combine parallel processing with intelligent display algorithms. For
example, Parker et. al. [22] who used frameless rendering [4] to increase their fram-
erate, could benefit from the render cache which produces better images and requires
significantly fewer rays per frame.

The Post-Rendering 3D Warp [16] is an alternative intelligent display process. It
displays images at a higher framerate than that of the underlying renderer by using
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Fig. 3. The display process: The render cache receives and caches sample points from the ren-
derer, which are then projected onto the current image plane. The results are filtered bythe depth
culling and interpolation steps to produce the displayed image. A priority image is also generated
which is used to choose which new samples will be requested from the renderer.

image warping to interpolate from neighboring (past and future) rendered frames. One
drawback is that the system must predict far enough into the future to render frames
before they are needed for interpolation. This is trivial for a pre-scripted animation, but
extremely difficult in an interactive context.

Another example is the “holodeck” [15] which was designed as a more interac-
tive front end for Radiance [28]. It combines precomputation, reprojection, and online
uniform sampling to greatly increase interactivity as compared to the Radiance system
alone. Unlike the render cache though, it is not designed to handle dynamic scenes or
long continuous camera motions and uses a less sophisticated sampling strategy.

2 Algorithm Overview

Our display process is designed to be compatible with many different renderers. The
main requirement is that the renderer must be able to efficiently compute individual rays
or pixels. Thus, for example, ray tracing like renderers are excellent candidates while
scan conversion renderers are not. The display process provides interactive feedback
to the user even when the renderer itself is too slow or expensive to produce complete
images at an interactive rate (though the number of visual artifacts will increase if the
renderer would take more than a few seconds to produce a full image).

There are several essential requirements for our display process. It must rapidly
generate approximations to the current correct image based on the current viewpoint
and the data in the render cache. It must control which rays or samples are rendered next
to rapidly improve future images. It also must manage the render cache by integrating
newly rendered results, and discarding old data when appropriate or necessary.

Image generation consists of projection, depth culling, and interpolation/smoothing
steps. Rendered points from the cache are first projected onto the current view plane.
We try to enforce correct occlusion both within a pixel by using a z-buffered projection,
and among neighboring pixels using the depth culling step. The interpolation step fills
in small gaps in the often sparse point data and produces the displayed image.
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Fig. 4. The fields in the render cache and point
image. Each point or element in the render
cache contains a 3D location, a color, and an
object id all provided by the renderer. They
also have an age which is incremented each
frame and an image id field which tells which
pixel (if any) this point currently maps to. Each
pixel in the point image contains a depth, a
color, a priority, and the cache id of the point
(if any) that is currently mapped to this pixel.

Fig. 5. Results of z-buffered point projection
for a simple scene containing a white plane be-
hind two diffuse spheres. The points generated
for one viewpoint (left) are projected on the im-
age plane for a new viewpoint (right). Notice
that there are many gaps where no point pro-
jected onto a particular image (shown as black)
and some points of the lighter plane are showing
through gaps in the darker sphere points which
should be occluding them.

Simultaneously, the display process also builds apriority image to guide future
sampling. Because we expect that only a small subset of pixels can be rendered per
frame, it important to direct the rendered sampling to maximize their benefit. Each pixel
is given a priority value based on the relative value of rendering a new sample at that
pixel. We then use an error diffusion dither [10] to choose the new samples to request.
Using a dither both concentrates more samples in important regions and ensures that
the samples are well spaced and distributed over the entire image. A diagram of the
display process steps is shown in Figure 3.

3 Image Generation

Images are generated in our display process by projecting rendered points from the
render cache onto an augmented image plane calledpoint image(see Figure 4 for cor-
responding data fields). The projection step consists of a transform based on the current
camera parameters as specified by the application program and z-buffering to handle the
cases when more than one point maps to the same pixel. Whenever a point is mapped
to a pixel, their corresponding data fields (see Figure 4) are updated appropriately in-
cluding writing the point’s color, depth, and a priority based on its age to the pixel.

The raw results of such a projection will contain numerous artifacts as illustrated
in Figure 5. We handle some of the simpler kinds of artifacts using some filters while
relying our sampling algorithm and newly rendered samples to resolve the more dif-
ficult artifacts in future frames. We have deliberately chosen to use only fast, simple
techniques and heuristics in our system to keep its computational requirements both as
light and consistent as possible.

3.1 Depth Culling and Smoothing/Interpolation

Some of the points, though formerly visible, may currently lie behind an occluding sur-
face (e.g., due to object or camera motion). Visual artifacts, such as surfaces incorrectly
“showing through” other surfaces, occur if such points are not removed (see Figure 6).
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Fig. 6. Image reconstruction example: The raw projected points image (left) from Figure 5 is
filtered by our depth-cull (middle) and interpolation (right) to produce an image that gives the
correct impression that the surfaces are opaque and continuous.

Projection only removes occluded points if a point from the occluding surface maps to
the same pixel. We remove more occluded points using a depth culling heuristic that
searches for points whose depth is inconsistent with their neighbors.

Each pixel’s 3x3 neighborhood is examined and an average depth computed, ig-
noring neighboring pixels without points. If the point’s depth is significantly different
from this average, then it is likely that we have points from different surfaces and that
the nearer surface should now be occluding the farther one. Based on this assumption,
we remove the point (i.e. we treat it as if no point had mapped to this pixel) if its depth
is more than some threshold beyond the average depth (currently we use 10%). This
heuristic both correctly removes many points which should have been occluded and
falsely removes some genuinely visible points near depth discontinuity edges. Fortu-
nately the incorrect removal artifacts are largely hidden by the interpolation step.

Next we use an interpolation and smoothing filter to fill in small gaps in the point
image (see Figure 6). For each pixel, we again examine its 3x3 neighborhood and
perform a weighted average3 of the corresponding colors. The weights are 4, 2, and 1
for center, immediate neighbor, and diagonal neighbors respectively, and pixels without
points receive zero weight. This average becomes the pixel’s displayed color except
when there are no points in the neighborhood making the average invalid. Such pixels
either retain the color they had in the previous frame or are displayed as black depending
on the user’s preference.

The quality of the resulting image depends on how relevant the cached points are to
the current view. Actions such as rapid turning or moving through a wall can temporar-
ily degrade image quality significantly. Fortunately the sparse sampling and interpola-
tion tend to quickly restore image quality. Typically the image quality becomes usable
again by the time that just one tenth of the cache has been filled with relevant points.

4 Sampling

Choosing which samples the renderer should compute next is another essential function
of the display process. Since we expect that the number of new samples computed per
frame to be much smaller than the number of pixels in the displayed image (typically
by a factor between 8 and 128), it is important to optimize the placement of these sparse

3As described the system performs some slight smoothing even in fully populated regions. If this is
considered objectionable, smoothing could easily be disabled at those pixels that had a point map to them.
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Fig. 7. A image produced by the display process (left) along with its corresponding priority im-
age (middle) and the dithered binary image specifying which sample locations will be requested
next from the renderer. In this case the user is moving toward the upper left and the highpriority
regions are due to previously occluded regions becoming visible. Note that the dithering algo-
rithm causes new samples to be concentrated in these high priority regions while staying well
spaced and distributed over the entire image region.

samples. Samples are chosen by first constructing a grayscale samplingpriority image
and then applying an error diffusion dither algorithm. We use several heuristics to give
high priority to pixels that we suspect are likely to contain visual artifacts.

The priority image is generated simultaneously with image reconstruction. Each
point in the render cache has an age which starts at zero and is incremented each frame.
When a point in the render cache maps to a pixel, that pixel’s priority is set based on
the point’s age. This reflects the intuition that it is more valuable to recompute older
samples since they are more likely to have changed. The priority for other pixels is
set during the interpolation step based on how many of their neighbors had points map
to them. Pixels with no valid neighbors receive the maximum possible priority while
pixels with many valid neighbors receive only a medium priority. The intuition here is
that it is more important to sample regions with lower local point densities first.

Choosing sampling locations from the priority image is equivalent to turning a
grayscale image into a binary image. We want our samples to have a good spatial distri-
bution so that the image visually refines in a smooth manner by avoiding the clumping
of samples and ensuring that they are distributed over the whole image. We also want
to concentrate more samples in high priority regions so that the image converges more
quickly. A uniform distribution would not properly prioritize pixels, and a priority
queue would not ensure a good spatial distribution. Instead we utilize a simple error
diffusion dithering algorithm [10] to create the binary sample image (see Figure 7).
The dithering approach nicely mediates between our competing sampling goals at the
cost of occasionally requesting a low priority pixel.

In our implementation, scanlines are scanned in alternating directions and the pri-
ority at each pixel compared to a threshold value (total priority / # samples to request).
If above threshold, this pixel is requested as a sample and the threshold subtracted from
its priority. Any remaining priority is then propagated, half to the next pixel and half to
the corresponding pixel on the next scanline.

4.1 Premature Aging

By default, points age at a constant rate, but it is often useful to prematurely age points
that are especially likely to be outdated or obsolete. Premature aging encourages the
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system to more quickly recompute or discard these points for better performance.
A good example is our color change heuristic. Often a new sample is requested

for a pixel which already contains a point. We consider this aresample, record the old
point’s index in the sample request, and ensure that the requested ray passes exactly
through the 3D location4 of the old point. We can then compare the old and new colors
of resampled pixels to detect changes (e.g., due to changes in occlusion or lighting).
If there is a significant change, then it is likely that nearby pixels have also changed.
Therefore, we prematurely age any points that map to nearby pixels. In this way we
are able to automatically detect regions of change in the image and concentrate new
samples there. Another example is that we prematurely age points which are not visible
in the current frame since it is likely that they are no longer useful.

4.2 Renderer and Application Supplied Hints

While we want our display process to work automatically, we also want to provide
ways for the renderer and application to optionally provide hints to increase the dis-
play process’ effectiveness. For example, the renderer can flag some points as being
more likely to change than others and thus should be resampled sooner. The display
process then ages these points at a faster rate. Some possible candidates are points on
a moving objects, points in their shadows, or points which are part of a specular high-
light. Together with the resample color change optimization, this can greatly improve
the display process’s ability to track the changes in such features.

The noise inherent in Monte Carlo renderers can cause the display process to falsely
think that a sample’s color has changed significantly during resampling. Falsely trig-
gering the color change heuristic can prematurely age still valid points and wastefully
concentrate samples in this region. To avoid this, the renderer can provide a hint that
specifies the expected amount of noise in a result. This helps the display process to
distinguish between significant color changes and variation simply due to noise.

We have also added a further optimization to help with moving objects. The appli-
cation can provide rigid body transforms (e.g., rotation or translation) for objects. The
display process then updates the 3D positions of points in the render cache with the
specified object identifiers. This significantly improves the tracking of moving objects
as compared to resampling alone though resampling is still necessary.

4.3 Cache Management Strategy

We use a fixed size render cache that is slightly larger than the number of pixels to be
displayed. Thus each new point or sample must overwrite a previous one in the cache.
The fixed size cache helps keep the computational cost low and constant. In dynamic
environments, this also ensures that any stale data will eventually be discarded.

New points or samples that are resamples of an old point (see above) simply over-
write that point in the cache. Since the old point is highly likely to be either redundant
or outdated, this simple strategy works well.

For other new points, we would like to find some no longer useful point to overwrite.
One strategy is to replace the oldest point in the cache as it is more likely to be obsolete.
However, we decided that doing this exactly would be unnecessarily expensive. Instead
we examine a subset of the cache (e.g., groups of 8 points in a round robin order) and
replace the oldest point found.

4Otherwise requested rays are generated randomly within the pixel to reduce aliasing and Moiré patterns.
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5 Implementation and Results

We have implemented our display process and a simple test application that allows us to
change viewpoints and move objects. The display process communicates with renderers
using a simple abstract broker interface. This abstract interface allows us to both easily
work with different renderers (two ray tracers and two path tracers so far) and to utilize
parallel processing by running multiple instances of the renderers simultaneously. The
broker collects the sample requests from the display process, distributes them to the
renderers when they need more work and gathers rendered results to be returned to the
display process. It is currently written for shared memory parallel processing using
threads, though a message passing version for distributed parallel processing is also
feasible.

The render mismatch ratio is a useful measure of the effectiveness of the render
cache and our display process. We define this ratio as the number of pixels in a frame
divided by the number of new samples or pixels produced by the renderer per frame.
It is render cache’s ability to handle higher mismatch ratios that allows us to achieve
interactivity while using more expensive renderers and/or less computational power.

Working with a mismatch ratio of one is trivial; render and display each frame.
Mismatch ratios of two to four can easily be handled using existing techniques such as
frameless rendering [4]. The real advantage and contribution of the render cache is its
ability to effectively handle higher mismatch ratios. In our experience, the render cache
works well for mismatch ratios up to 64 and can be usable at even higher ratios. In many
cases this allows us to achieve much greater interactivity with virtually no modification
to the renderer. Performance in particular cases will of course depend on many factors
including the absolute framerate, scene, renderer, and user task.

5.1 Results

Our current implementation runs on Silicon Graphics workstations using software only
(i.e. we do not use any 3D graphics hardware). Our experience shows that the render
cache can achieve interactive ray tracing even on single processor systems whose pro-
cessing power to equivalent to that of today’s PC computers. Specialized or expensive
hardware is not required, though we can also exploit the additional rendering power of
parallel processing when available.

Timings for the display process running on a 195Mhz R10000 processor in an SGI
Origin 2000 are shown in Table 1. The display process can generate a 256x256 frame in
0.07 seconds for a potential framerate of around 14 frames per second. In a uniprocessor
system, the actual framerate will be lower because part of the processors time must also
be devoted to the renderer. In this case, we typically split the processors time evenly
between the display process and the renderer for a framerate of around 7 fps. Even on
a multiple processor machine it may be desirable to devote less than a full processor to
the display process in order to increase the number of rendered samples produced.

Using larger images is trivial though it reduces the framerate. The time to produce
each frame scales roughly linearly with the number of pixels to be displayed since all
the data structures sizes and major operations are linear in the number of pixels.

We have tested the render cache in various interactive sessions using both ray trac-
ing [29] and path tracing [14] renderers and on machines ranging from one to sixty
processors. Some images from example sessions are shown in Figures 2 and 8 (see
color plates in Appendix) and videos are available on our web page5.

5http://www-imagis.imag.fr/Publications/walter
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Initialize buffers 0.0046 secs
Point projection 0.0328 secs
Depth cull 0.0085 secs
Interpolation 0.0139 secs
Display image 0.0027 secs
Request new samples0.0053 secs
Update render cache 0.0027 secs
Total time 0.0705 secs

Table 1. Timings for the display process’ generation of a 256x256 image produced on a single
195Mhz R10000 processor. The display process is capable of producing about 14 frames per
second in this case, though the actual framerate may be slower if part of the processors time is
also devoted to renderering.

In all cases tested, the render cache provides a much more interactive experience
than any other method using the same renderers that we are aware of (e.g., [22, 4]). The
reprojection correctly tracks motion and efficiently reuses relevant previously rendered
samples. While there are visual artifacts in individual frames, the prioritized sparse
sampling smoothly refines the images and allows us to quickly recover from actions
that make the previous samples irrelevant (e.g., walking through a wall). We still rely
on the renderer for all shading calculations and need it to produce an adequate number
of new samples per frame. Compared to previous methods though, we require far fewer
new samples per frame to maintain good image quality.

All the sessions shown in Figure 8 used 320x320 resolution and ran at around 8 fps.
The first three sessions used ray tracing and between two and four R10000 processors.
An image from a sequence where the user walks through a door in Greg Larson’s cabin
model is shown in the upper left. In the upper right, an ice cream glass has just been
moved in his soda shoppe model, and its shadows are in the process of being updated.
In the lower left, the camera is turning to the right in a scene with many ray traced
effects including extensive reflection and refraction.

The lower right of Figure 8 shows a path tracing of Kajiya’s original scene. Path
tracing simulates full global illumination and is much more expensive. The four proces-
sor version (shown) is no longer really adequate as too few new samples are rendered
per frame resulting in more visual artifacts. Nevertheless, interactivity is still much bet-
ter than it would be without the render cache. We have demonstrated good interactivity
even in this case when using a sixty processor machine.

6 Conclusions

The render cache’s modular nature and generic interfaces allows it to be used with a
variety of different renderers. It uses simple and fast algorithms to guarantee a fast
consistent framerate and is designed for interactivity even when rendered samples are
expensive and scarce. Reprojection and filtering intelligently reuse previous results to
generate new images and a new directed sampling scheme tries to maximize the benefits
of future rendered results.

Our prototype implementation has shown that we can achieve interactive framerates
using software only for low but reasonable resolutions. We have also shown that it can
enable satisfactory image quality and interactivity even when the renderer is only able
to produce a small fraction of new pixels per frame (e.g., between 1/8 and 1/64 of
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the pixels in a frame). We have also demonstrated it working with both ray tracing
and path tracing and efficiently using parallel processors ranging from two to sixty
processors. Moreover, we have shown the render cache can handle dynamic scenes
including moving objects and lights.

We believe that the render cache has the potential to significantly expand the use
of ray tracing and related renderers in interactive applications and provide interactive
users with a much wider selection of renderers and lighting models to choose from.

6.1 Future Work

There are many ways in which the render cache can be further improved. Higher fram-
erates and bigger images are clearly desirable and will require more processing power.
With its fixed-size regular data structures and operations, the render cache could benefit
from the small-scale SIMD instructions that are becoming common (e.g., AltiVec for
PowerPC and SSE for Pentium III). It is also a good target for graphics hardware ac-
celeration as its basic operations are very similar to those already performed by current
graphics hardware (e.g., 3D point projection, z-buffering, and image filtering).

The lack of good anti-aliasing is one clear drawback of the render cache as presented
here. Unfortunately since anti-aliasing is highly view dependent, we probably do not
want to include anti-aliasing or area sampling within individual elements in the render
cache [8]. This leaves supersampling as the most obvious solution though this will
considerably increase the computational expense of the display process.

Although the render cache works well for renderer mismatch ratios up to 64, more
work is needed to improve its performance at higher ratios. Some of the things that will
be needed are interpolation over larger spatial scales, better very sparse sampling, and
methods to prematurely evict obsolete points from the render cache.

Because the render cache works largely in the image plane, it is an excellent place to
introduce perceptually based optimizations and improvements. Some examples include
introducing dynamic tone mapping models (e.g., [27, 23]) or using perceptual based
sampling strategy (e.g., [5]).

We also like to see our display process used with a wider variety of renderers such
as Radiance [28], bidirectional path tracing, photon maps[12], and the ray-based gather
passes of multipass radiosity methods [7].
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Fig. 2. Some frames from a render cache session. See main text for more detail.

Fig. 8. Some example images captured from interactive sessions. Some approximation artifacts
are visible but the overall image quality is good. All scenes are ray traced except the lower right
which is path traced. In the upper right image we have just moved the ice cream glass and you
can see its shadow in the process of being updated on the table top.
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4.5.4 Interactive Common Illumination for Computer Augmented Reality (EGRW’97)

Auteurs : George Drettakis and Luc Robert and Sylvain Bugnoux
Actes : 8th Eurographics Workshop on Rendering
Date : juin 1997
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Interactive Common Illumination for
Computer Augmented Reality

George Drettakis *, Luc Robert **, Sylvain Bougnoux **

? iMAGIS/GRAVIR-INRIA, ?? ROBOTVIS

Abstract: The advent of computer augmented reality (CAR), in which computer
generated objects mix with real video images, has resulted in many interesting
new application domains. Providingcommon illuminationbetween the real and
synthetic objects can be very beneficial, since the additional visual cues (shad-
ows, interreflections etc.) are critical to seamless real-synthetic world integra-
tion. Building on recent advances in computer graphics and computer vision, we
present a new framework to resolving this problem. We address three specific as-
pects of the common illumination problem for CAR: (a) simplification of camera
calibration and modeling of the real scene; (b) efficient update of illumination
for moving CG objects and (c) efficient rendering of the merged world. A first
working system is presented for a limited sub-problem: a static real scene and
camera with moving CG objects. Novel advances in computer vision are used for
camera calibration and user-friendly modeling of the real scene, a recent inter-
active radiosity update algorithm is adapted to provide fast illumination update
and finally textured polygons are used for display. This approach allows interac-
tive update rates on mid-range graphics workstations. Our new framework will
hopefully lead to CAR systems with interactive common illumination without
restrictions on the movement of real or synthetic objects, lights and cameras.

1 Introduction

Computer augmented reality (CAR) is a booming domain of computer graphics re-
search. The combination of virtual or synthetic environments with real video images
(RVI) has lead to many new and exciting applications. The core research in this area
concentrates on the problems related to registration and calibration for real-time sys-
tems (see for example [3, 4]). Since many of these problems are still largely unresolved,
little attention has been given to the problems of the interaction ofilluminationbetween
the real and synthetic scenes.

Pioneering work in this domain has been performed by Fournier et al. [15]. This
work (see Section 2.3 for a brief review), has shown how the computation of common
illumination between the real and synthetic scene results in a greatly improved graphical
environment with which the user can interact. The use of real video images eliminates
the need to model complex environments in great detail, and, by nature, provides a
realistic image to the user. In what concerns common illumination, the introduction of
virtual objects in a real scene becomes much more natural and convincing when light
exchanges between real and synthetic objects (such as shadows and interreflections) are
present in the composite images presented to the user.

In this work we present a new common illumination framework, by addressing the
following three stages: (a) camera calibration and modeling, (b) common illumination

? iMAGIS is a joint research project of CNRS/INRIA/INPG/UJF. Postal address: B.P. 53,
F-38041 Grenoble Cedex 9, France Contact E-mail:George.Drettakis@imag.fr

?? INRIA, BP93 06902 Sophia-Antipolis, Cedex, France, E-mail:Luc.Robert@inria.fr



updates and (c) rendering. The goal is to build a system which can compute common
illumination at interactive update rates. The work reported here is in preliminary form;
as such we have restricted the configuration we will be treating to the case of moving
computer generated objects in a static real scene viewed by a static camera.

By using advanced vision techniques, we have replaced the tedious and inaccu-
rate manual modeling process with a flexible and precise vision-based approach. This
method allows us to model the real scene to the level of detail required, and to extract
camera parameters simply and automatically. We use fast hierarchical [17, 25, 26] and
incremental update [9] techniques for radiosity, permitting interaction with virtual ob-
jects in the CAR environment. Interactive update rates (a few seconds per frame) of the
mixed real/synthetic environment, including common illumination is achieved by using
a texture-based rendering approach on suitable hardware. We believe that the combina-
tion of advances in vision, illumination and graphics provides a framework which will
lead to general interactive common illumination for CAR.

2 Previous and Related Work

2.1 Reconstruction of 3D models From Images

A number of techniques have been proposed for producing 3D models from images in
photogrammetry and computer vision. The photogrammetry approach mostly focuses
on accuracy problems, and the derived techniques produce three-dimensional mod-
els of high quality [2]. However, they generally require significant human interaction.
Some commercial products, such asPhotomodeler, already integrate these techniques.
In computer vision, a number of automatic techniques exist for computing structure
from stereo or motion (e.g., [8, 21, 11]). With these techniques, the three-dimensional
models are produced much more easily, but they are less accurate, potentially contain-
ing a small fraction of gross errors.

Alternate representations have been proposed for realistic rendering from images.
With image interpolation techniques [12, 22, 24], the scene is represented as a depth
field, or equivalently, as a set of feature correspondences across two reference images.
Although these implicit 3D representations are suited to rendering, they are not adapted
to our framework since we needcomplete3D data to perform radiosity computation.

Some recent approaches have been proposed to reduce the effort in the production
of explicit 3D models of high quality, either by imposing constraints on the modeled
scene [7], or by combining automatic computer vision processes with human interaction
[13]. We follow this last approach in this paper.

2.2 Computer Augmented Reality

Much work has recently been performed in the domain of computer augmented real-
ity. The main body of this research concentrates on the requirements of real-time sys-
tems [3]. In terms of illumination, these systems provide little, if any, common lighting
information. Examples of work including some form of shadowing between real and
synthetic objects are presented in [27] and [20].

Common illumination requires full 3D information, and thus should use explicit
modeling of the real world objects. Similar requirements exist for the resolution of
occlusion between real and virtual objects (e.g., [4]).
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The wealth of excellent research in this domain will undoubtedly be central in the
future work in common illumination (see Section 6.1). For now however, we concen-
trate on the issues directly related to illumination. The reader interested in an in-depth
survey should refer to [3].

2.3 Radiosity and Common Illumination for CAR

In what follows, we consider the following configuration: we have an imageI , which
we call the “target image”, and, using techniques developed below, a set of geometric
elements approximating the scene. All quantities related to the image will be noted “:̂ ”.
The most closely related previous research in common illumination is that of Fournier et
al. [15]. We will be adopting many of the conventions and approximations used in that
approach. In [15] many basic quantities are defined in a rather ad-hoc manner using
information taken from imageI . The average reflectivity of the scenê� is selected
arbitrarily. This can also be set as the average pixel value.

Once a value for̂� is set, theoverall reflectivity factorR is defined as:

R =
1

1� �̂
: (1)

The concept of “ambient radiosity” [6],̂BA is then used, permitting a first estimation
of the exitance valuesEi of the sources:

B̂A =
R
P

all iEiAiP
all iAi

; (2)

whereEi is the exitance of each objecti andAi its area. Another approximation of̂BA

is given by:

B̂A =

P
all xy pxy

N�̂
; (3)

wherepxy is the intensity of the pixelxy of the target imageI , andN the total number
of pixels of I . Equations (2) and (3) allow us to approximate the values ofEi if we
know the number and area of the real sources.

Fournier et al. also proposed a first approximation of the radiosity on each geometric
elementi, which we callB̂i, which is the average value of the pixel intensities covered
by elementi.

In our approach, we improve the ease of modeling, as well as the lighting update
and final display speeds compared to [15]. Nonetheless, to achieve these improvements,
we sacrifice certain advantages of Fournier et al.’s system: we currently can only handle
a static camera and real scene, and the quality of rendering may be slightly degraded
compared to that obtained by ray-traced correction to a real image. Such degradation
is mainly due to slight texture/polygon misalignment. However, since this paper is an
attempt at defining a new approach to common illumination, we consider the above
mentioned shortcomings as challenges for future research (Section 6.1).
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3 Semi-Automatic Image-Driven Modelling Using Computer Vision

In this section we describe the creation of the three-dimensional model using vision-
assisted techniques. We first compute the intrinsic parameters of the camera (focal
length, aspect ratio) by using an image of a calibration pattern. Twelve images are then
used to automatically build a set of panoramic images. The relative positions/orientations
of the cameras are then computed, based on point correspondences. We thus construct
a geometric model of the room by computer-vision assisted, image-based interaction.
Finally, textures are extracted and de-warped automatically. The whole process took
approximately 4 hours for the scene shown in Figure 1.

3.1 Camera Calibration Using a Target

The intrinsic parameters of the camera (see [10] for more details about the imaging
geometry of cameras) are computed using the calibration technique described in [23].
We need to take one image of a non-planar calibration pattern, i.e., a real object with
visible features of known geometry. With minimal interaction (the user only needs to
click the approximate position in the image of 6 reference points), an estimate of the
camera parameters is computed. This estimate is then refined by maximising, over the
camera parameters, the sum of the magnitudes of the image gradient at the projections
of a number of model points.

The output of the process is a3� 4 matrix, which is decomposed as the product of
a matrix of intrinsic parameters and a4� 4 displacement (rotation, translation) matrix
(computation described in [10]).

3.2 Image Acquisition and Mosaicing

Though the minimum number of viewpoints for stereo reconstruction is two, we ac-
quired images from four distinct viewpoints for better accuracy of the reconstructed 3D
geometry. The viewpoints lie approximately at the vertices of a 1-meter-wide vertical
square in one corner of the room.

To enlarge the field-of-view, we built panoramic images using mosaicing [28, 19].
At each viewpoint, we took three left-to-right images with an overlap of approximately
50% between two consecutive images. During this process, we were very careful at each
viewpoint not to translate the camera but restrict motion to rotation. This guarantees that
there exist linear projective transformations which warp the left and right images onto
the center one.

For each triple of images, we computed these transformations automatically [30].
The two warped images and the center images were then “pasted” on the same plane.
An example of mosaic is shown in Figure 1.

3.3 Computation of the Relative Geometry of the Cameras

In the next stage, we estimate the relative geometry of all the cameras, i.e., the rotations
R1i and translationst1i of all cameras with respect to, say, the first one. For this, we
identify corresponding points across the images. This is done in a semi-manual manner.
Using the systemtotalcalib developed at ROBOTVIS (Figure 2), the user first
clicks on a reference point in one image. The system then searches for matches in the
other images, using window-based cross-correlation. This is shown in Figure 2 (a), with
the annotated white points. The matches proposed correspond to the regions which are

348



(a) (b) (c)            

Fig. 1.Three original images, and the resulting mosaic (see text and also Colour Section).
                        

(a) (b)

Fig. 2. (a) A totalcalib session; matched points are shown in white and are annotated. (b)
Selection of the regions to reconstruct (e.g., the white polygon on the table-top).

most similar to the image around the reference point. In most cases these points indeed
represent the same object as the reference point. If not, the user can manually correct
the errors.

Based on the point correspondences, we compute the fundamental matricesF1i (see
appendix 7) using the non-linear method described in [29]. The minimum number of
correspondences is 8 in theory, but for better accuracy we used about 30 points spread
over the whole scene (see Figure 2).

FromF1i and the intrinsic parameters, we then derive, using the technique described
in [18], the rotationR1i and translationt1i. In fact, each translation is known only up
to a scale factor, which corresponds to choosing an arbitrary unit for distances in space.
Translationt1i(i > 2) is rescaled with respect tot12 by using point correspondences
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visible in images 1,2 andi and comparing space distances computed with image pairs
(1; 2) and(1; i).

From this initial estimate, we then run a non-linear minimisation process known as
bundle adjustmentin photogrammetry [2], which refines the estimate of the rotations
and translations. We end up with an estimate of rotations and translations of all cameras
with respect to the first camera.

3.4 Building the 3D Model and Extracting/De-warping the Textures

To build the polygons of the three-dimensional model, we first define the geometry of
their vertices using the same semi-automatic technique. Their 3D coordinates are then
obtained by inverting the projection equations. This process is known asreconstruction
in computer vision orintersectionin photogrammetry. We then manually define the
topology of the polygons by selecting and connecting vertices in the images (see Figure
2(b)). The resulting model is stored in a standard 3D format.

For each polygon, we finally compute a texture image by de-warping the original
image and bringing it back to the plane of the polygon. In this process, the resolution
of the texture image can be chosen arbitrarily, as well as the directions of the axes of
texture coordinates. Thex-axis is chosen parallel to the longest edge of the polygon,
which in most cases maximises the fraction of the texture image which lies inside the
polygon and will be actually rendered. The choice of the texture resolution is based on
the following criterion: when projecting one pixel of the texture image onto the refer-
ence image, one should obtain a small quadrilateral whose dimensions are all smaller
than one pixel. This guarantees that the final synthesized images have approximately
the same level of detail as the initial ones.

4 A Fast Hierarchical Method for Common Illumination

Recent advances in global illumination technology allow us to calculate the lighting
efficiently, using hierarchical radiosity [17], clustering [25, 26] and incremental update
methods [9]. To initialise the system, the calculation of certain basic parameters is re-
quired. We adopt many of the conventions used by Fournier et al. [15], adapting them
appropriately to the application and the requirements at hand.

Two main stages are required: (a) initialisation of basic parameters such as exitance
values for the real sources, radiosity and reflectance for the real video image (RVI)
objects, and (b) the creation of a full hierarchical radiosity system, including the cluster
hierarchy and “line-space” hierarchy of links and shafts required for the incremental
solution.

4.1 Initialising the Basic Parameters

As discussed in Section 2.3 the basic approximations proposed in [15] can be used to
estimate the set of parameters required to create a hierarchical representation of the
(real) light transfer in the CAR scene. In the same spirit as this approach, we define the
reflectance of each patchi to be:3

3 This is easier to calculate than the neighbourhood in [15].
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�̂i =
B̂i

B̂A

� �̂ (4)

Note that during subdivision,̂Bi is updated to reflect the average intensity of the
pixels covered by the newly subdivided sub-element. The calculation ofB̂i is performed
by rendering the polygon textured with the corresponding part of the target (real) image
I into an offscreen buffer and averaging the resulting pixel values. Once the newB̂i is
computed for the child element, the value�̂i is updated.

It is important to note that this approach is a coarse approximation, since we cannot
distinguish between shadows and obstacles in the image. Since we are simply com-
puting an overall correction to illumination, we accept this approximation for now, but
resolving this issue is definitely part of required future work.

Since we have an initial geometric model of the real sources, we can easily estimate
their exitance. If (as is the case in the examples presented in Section 5), we have sources
of equal power and area, the relations of equations (2) and (3) suffice to approximateEi.
If on the other hand we have a larger number of different sources, we need to estimate
their value. This can be done easily by creating a link hierarchy using theB̂i’s and
simply pullingB̂ up the hierarchy. If we havem sources, by selectingm elements we
havem equations giving us a good approximation of theEi’s.

4.2 Creating a Hierarchical Radiosity System

Once the values ofEi and�i are estimated (we set�i = �̂i for each surface element),
we have everything we need to perform a normal hierarchical radiosity iteration. Con-
sider for example Figure 3(a), which shows the radiosity calculation for the real scene
previously presented in Figure 1(b). Note that we only useone image of the mosaic
(Figure 1(b) in our case) from which to extract textures.

The refinement stage of hierarchical radiosity proceeds as usual, and is left to run to
“convergence”, i.e. when the radiosity values no longer change much. Once completed,
we have what we call anoriginal value for the radiosities of all real objects. We store
this value, ~Bi, on each hierarchical element (cluster, surface or sub-patch). The value
~Bi is a (relative) representation of the illumination due to real sources.

The next step is the addition of computer generated objects. This is performed by
adapting the methods described in [9]. We thus group the synthetic objects into “nat-
ural” clusters (i.e. a chair or a desk lamp) and we add them into the scene. To update
the existing hierarchical radiosity system, we use the line-space traversal approach to
efficiently identify the links affected by the CG object being inserted, and we incremen-
tally perform the appropriate modification to illumination. As a result all patches now
have a (possibly modified) radiosity valueBi.

4.3 Display

To achieve interactive update rates, we need to display the result of the combination
of real and synthetic environments at interactive rates. This requirement precludes the
use of the ray-casting approach of [15]. Our solution is to exploit the real-time texture
capacities currently available on mid- and high-range graphics workstations.

To display the effects of a change due to the interference of a CG object with an RVI
object, we simply modulate the texture by the ratio:Bi=

~Bi. This operation requires the
capacity to modulate “positively” and “negatively”, so we must coherently re-scale this
ratio to always lie between zero and one.
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4.4 Interactive Common Illumination of CG Objects in a Real Scene

Using an implicit hierarchical description of the line segment space contained between
hierarchical elements, we can rapidly identify the links modified [9]. This is achieved
by keeping a hierarchy of shaft structures [16] associated with the links and inactive (or
passive) refined links.

In the case of the CAR application, special treatment is required to ensure that
lighting effects created by CG objects are well represented. The refinement process is
thus adapted to reflect this, by imposing finer subdivision for shadows or additional
illumination due to the interaction of CG objects with the real scene (see Figure 3(c)).                                    

Fig. 3. (a) The radiosity~B computed by the initialisation phase of the algorithm. (b) The corre-
sponding mesh. (c) The radiosityB and the mesh after the addition of the CG object.

                        

Fig. 4. (a) The complete CAR rendering using RVI texture polygons for display, including the
CG object. (b) The CG object moves to the left: update takes 2.5 seconds. (See Colour Section).

5 Results

The RVI scene we have used was modeled with 98 input polygons. This is a coarse
representation, but sufficient for the example we wish to show here. We have a total
of 4 512x512 textures (for the walls and floor), and 2, 2 and 6 textures of resolution
256x256, 128x128 and 64x64 respectively, for the detail objects of the scene.

In Figure 3(a) we show the result of the initialisation step where the geometry is
displayed using the original radiosity~Bi. Notice the low level of subdivision. The cor-
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responding mesh is shown in Figure 3(b). After subdivision, the number of leaf elements
is 512.

In Figure 4(a) we show the complete CAR image, including the CG object, and the
corresponding shadow on the table top in the foreground. Notice how the mesh (Figure
4(b)) is much finer in the regions affected by the computer graphics object, with a total
of 905 leaf elements.

The addition of the CG object took 2.8 seconds. When moving the dynamic object
(see Figure 4), the update to illumination requires on average 2.5 seconds, on an Indigo
2, R4400 200Mhz High-Impact.

6 Future Work and Conclusions

The methodology we presented here was intended, as mentioned above, as a first step
in a new direction for the treatment of common illumination for CAR. We thus consider
it important to indicate why we believe that our framework is a suitable starting point
for the treatment of more general configurations.

The ultimate goal is to have seamless, real-time mixing of real and synthetic scenes,
with shared realistic illumination. There is a lot of work to be done before this goal can
be achieved, much of which is related to hardware, vision, registration and sensing (see
[3] for more detail). We concentrate here on the issues directly or indirectly related to
common illumination and display.

6.1 Future Work

The first restriction to lift is that of a static camera. As a first step, we will be using
pre-recorded real video sequences and attempt to mix real and synthetic scenes. Several
problems result from this, notably camera calibration and correct rendering.

To deal with the problem of camera calibration, a first approach could be to use a
set of “keyframes” for which the process described in this paper is applied, and to use
point-tracking techniques to update the projective matrices as we move from one point
to the other.

For rendering, the problem is posed by the fact that different de-warped textures
will be associated with the same geometry at different viewpoints. Simple interpolation
schemes will not work, since the occlusion configuration will have changed. Thus an
obstacle elimination scheme will have to be developed, using known vision techniques
enhanced with the available 3D and lighting information.

A different restriction to overcome is to permit motion of CG light sources. This
requires an adaptation of the incremental update method [9], most notably in what con-
cerns the representation of direct lighting shadows and corresponding refinement. The
motion of real sources will result in similar problems.

Moving real objects is also an important challenge. In the context of pre-recorded
sequences, much of the difficulty will be overcome by the explicit 3D modeling of the
object. The removal of real objects is also an interesting challenge, and will require the
use of some of the techniques developed for the treatment of the texture de-warping
problem, in particular to effect a “removal” of a real object. Image-based rendering
approaches [5] may prove useful here as well.

The move to real-time video acquisition and common illumination will be the great-
est challenge of all. We believe that the knowledge and experience acquired in resolving
the problem for pre-recorded sequences will prove extremely fruitful for the develop-
ment of a solution working in real time.
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6.2 Shortcomings of the Current Approach

Despite the encouraging first results, there are a several shortcomings in the approach
presented here.

In the system presented we have not shown the addition of virtual lights. This is not
too hard to achieve, but requires some modification to the incremental update approach,
since the addition of a light source typically affects a large part of the environment. In
addition, special attention must be taken in the re-scaling of the image before display
since the addition of a source can add an order (or orders) of magnitude to the radiosity
values of the scene.

In the lighting simulation phase we should use the variation of the RVI texture to
aid refinement, and distinguish between variation due to occluding objects and shadows.
The use of the obstacle removal techniques for textures can aid in this (see Section 6.1).

The refinement process is central: the modulation of the RVI textures by the changes
in visibility is unforgiving. If a partially visible link is too far up the hierarchy, the
resulting “spread shadow” is very visible, and spoils the effect of seamless real/synthetic
merging. Since in synthetic-only environments these effects can usually be ignored,
little has been previously done to address these issues.

The estimation of the initial parameters is also a major problem. The current esti-
mations are very much ad-hoc. Nonetheless, what is important is not the precision of
the approximation (since we are adding fictional objects, there is no “correct” solution),
but the effect of more accurate choices which could result in more convincing results.

6.3 Conclusions

We have introduced a new framework for dealing with the problem of common illumi-
nation between real and synthetic objects and light sources in the context of computer
augmented reality. We first use state-of-the-art vision techniques to calibrate cameras
and estimate projection matrices, as well as recent image-based modeling approaches
to create a model of the real environment. We then use rapid incremental hierarchical
radiosity techniques to insert computer generated objects and manipulate them interac-
tively. To achieve interactive display we use radiosity-modulated textures.

We have developed a working system for the restricted case of a static camera and
static real environment. The prototype system we present shows that it is possible to
create convincing CAR environments in which CG objects can be manipulated interac-
tively. Compared to previous work in common illumination (notably [15]), our frame-
work allows easier modeling and calibration, faster illumination updates and rapid dis-
play of CAR scenes.

Nonetheless, much more remains to be done. We have briefly discussed some possi-
ble future research paths, by removing the restrictions one by one, to achieve interactive
common illumination for first a moving camera, then moving lights and finally mov-
ing real objects. We will initially be investigating these issues for pre-recorded video
sequences, before taking the plunge into real-time acquisition.

In conclusion, we believe that the use of advanced, user-friendly image-based vision
approaches to modeling and camera calibration, in conjunction with rapid incremen-
tal lighting and texture-based rendering, are a promising avenue leading to interactive
common illumination for CAR. It will probably be a long time before we can interact
naturally with virtual objects or creatures in our living room, but any solution to such a
goal necessarily requires real-time common illumination.
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7 Appendix: Epipolar geometry

In the general case of one or two cameras observing a non-planar scene from two different view-
points, the three-dimensional geometry of the scene and of the cameras can be characterised by
theepipolar geometryof the cameras, a purely projective geometric property which depends only
on the configuration of the cameras. It tells us that given one point in one image, we can draw a
line in the second image on which the corresponding point (i.e., the point representing the same
physical point in space) necessarily lies. The epipolar geometry is captured by a3 � 3 singular
matrix called thefundamental matrix[14]: Two image pointsm1;m2 represent the same point
in space if and only if

m2

T
F12m1 = 0 (5)

The fundamental matrix is related to the intrinsic and extrinsic parameters of the two cameras:

A
T

2 F12A1 = [t]�R (6)

whereR = R1R
T

2 ; t = �R1R2
T
t2 + t1 represent the inter-camera motion and[t]� is the

antisymmetric matrix such that8x; [t]�x = t�x.
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The fundamental matrix can be computed from point correspondences in the images, without
knowing anything about the intrinsic parameters of the cameras (focal length, aspect ratio, etc.).
Robust programs which automatically perform this computation [29] are now publicly available4.

4 ftp://krakatoa.inria.fr/pub/robotvis/BINARIES
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Fig. 5.The mosaic resulting from 3 original images. Textures are extracted using one image only.                        

Fig. 6. (a) The complete CAR rendering using the RVI texture polygons for display, including the
CG object (b) The CG object has moved to the left: the update takes 2.5 seconds.
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Interactive Virtual Relighting and Remodeling
of Real Scenes

Céline Loscosy, Marie-Claude Frassonyz, George Drettakisy,
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B.P. 53, F-38041 Grenoble, Cedex 9, France

zDépartement d’informatique et de recherche opérationnelle, Université de Montréal

Abstract. Lighting design is often tedious due to the required physical manipu-
lation of real light sources and objects. As an alternative, we present an interactive
system tovirtually modify the lighting and geometry of scenes with both real and
synthetic objects, including mixed real/virtual lighting and shadows.
In our method, real scene geometry is first approximately reconstructed from
photographs. Additional images are taken from a single viewpoint with a real
light in different positions to estimate reflectance. A filtering process is used to
compensate for inaccuracies, and per image reflectances are averaged to generate
an approximate reflectance image for the given viewpoint, removing shadows in
the process. This estimate is used to initialise a global illumination hierarchical
radiosity system, representing real-world secondary illumination; the system is
optimized for interactive updates. Direct illumination from lights is calculated
separately using ray-casting and a table for efficient reuse of data where appro-
priate.
Our system allows interactive modification of light emission and object positions,
all with mixed real/virtual illumination effects. Real objects can also be virtually
removed using texture-filling algorithms for reflectance estimation.

1 Introduction

Designing the illumination of real environments has always been a difficult task. Light-
ing design for home interiors for example, is a complex undertaking, requiring much
time and effort with the manipulation of physical light sources, shades, reflectors, etc.
to create the right ambiance. In addition other physical objects may need to be moved
or otherwise changed. The problem is even more complex on movie sets or exterior
lighting design. The fundamental trial-and-error nature of the relighting process makes
it painful and often frustrating; more importantly, the requirements of constructing and
moving real objects and light sources make testing many different potential designs
often impossible.

Ideally, we would like to perform such processes entirely synthetically. The lighting
designer would simply photograph the environment to be relit and/or remodeled, and
then create the different conditions by computer simulation so that they can be evaluated
appropriately.

Evidently, such a goal is very hard to accomplish. In this paper we provide first solu-
tions to a subset of this goal, inspired by techniques developed for computer augmented
reality, and common illumination between the real and the synthetic scenes [2, 10].

Our method starts with a preprocess, in which real geometry is reconstructed from

1iMAGIS is joint project of CNRS, INPG, INRIA and Université Joseph Fourier.
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a series of photos [20], taken from several different viewpoints. A second set of im-
ages (which we callradiance images) are taken from afixedviewpoint with a real light
source in different positions. The geometry and radiance images are used to extract an
approximate reflectance at each pixel for the given point of view. Because reflectance
is harder to estimate in shadowed regions, we try to have each visible surface point
unshadowed in at least one image. We compensate for geometric and photometric im-
precision by filtering and combining results from the individual radiance images. The
result of this new approach is an acceptable estimate of reflectance, called areflectance
image; in the process, shadows are removed in a satisfactory manner.

Our main goal is to provideinteractivemanipulation of mixed real and virtual envi-
ronments with common illumination. To achieve this we have separated the calculation
of direct and indirect illumination. The reflectance image is used to initialise a hierar-
chical radiosity system with clustering [23], optimized for dynamic updates [6]. This
structure is used for rapid updates ofindirect light, while direct light is computed on a
pixel-by-pixel basis. For direct light many components can be pre-computed and cached
in a table for rapid use, and in other cases the changes are limited to small regions of
screen space, permitting interactive updates. Working on a pixel-by-pixel basis results
in high quality direct shadows and also facilitates the removal of real objects, since we
can simply manipulate the reflectance image using texture generation methods.

It is important to note outright that we do not attempt to extractaccuratereflectance
values. The goal is to achieveconvincingrelighting at interactive rates. To this end we
can ignore inaccuracies and small artifacts, if the overall effect is believable.

2 Previous work

A large body of literature exists in computer vision on reconstructing 3D scenes from
photos [8]. However the quality of the extracted 3D models has only recently become
satisfactory for computer graphics applications with the presentation of interactive sys-
tems such asPhotomodeler[19], REALISE[9, 15], Façade[4], and others [20]. While
they all include some form of texture extraction and mapping, none treat the extraction
of surface properties and re-illumination. Satoet al.[21] present a system to extract 3D
geometry, texture, and surface reflectance, but it is limited to controlled environments.

With the development of an ever increasing number of computer augmented reality
applications, it becomes important to handle the common illumination between real and
synthetic scenes. While some previous papers [10, 5] present preliminary solutions,
they all require significant user intervention and are limited in different ways in the
lighting or geometric conditions they can treat. Recent developments toFaçade[2]
include surfaces property extraction, but rendering times of theRadiance[24] system
used for image generation are far from interactive.

Nakamaeet al.[18] developed a solution for merging virtual objects into back-
ground photographs, and estimated the sun location to simulate common illumination
effects in outdoor environments. More recently Yu and Malik [27] proposed a solution
to virtually modify the illumination with different virtual positions of the sun in outdoor
scenes.

Loscos and Drettakis [16, 17] have developed an approach to remove shadows, thus
enabling synthetic relighting. This technique attempts to remove shadows by computing
the best possible approximation using a single image. Despite successful results for
certain cases, certain visual artifacts remain in the shadow regions.

In our method, as mentioned in the introduction, we separate direct lighting, which
can be easily computed for each pixel, from indirect, or global lighting. Since we will

360



Fig. 1. The 7 radiance images used for the example presented in this paper.

be interactively modifying the scene, we need to be able to update the global illumina-
tion rapidly. To do this, we have used some of the ideas developed by Shaw [22] and
Drettakis and Sillion [6].

Removal of real objects from a reconstructed scene requires some form of hole-
filling in the real images/textures containing the real objects being removed. Heeger
and Bergen [13] have developed a method to synthesize texture images given a texture
sample. They use a series of linear filters to analyse the sample and create a texture that
matches the sample appearance. Their method is successful on “stochastic” textures
(e.g., stucco) but fails on “deterministic” textures (e.g., bricks). El-Maraghi [7] has
provided a public domain implementation of their algorithm.

Igehy and Pereira [14] integrate a composition step into the Heeger and Bergen
algorithm in order to “erase” flaws (e.g., stains or undesired features) from images.
They manually create a mask which indicates which part of the image is to be covered
by the synthesized texture and which part keeps its original texture.

3 Overview of the Method

Our goal is to allow interactive synthetic relighting and remodeling of real environments
including both removing real lights or objects, and adding virtual ones. To accomplish
this, we need to build approximate geometric and reflectance models of the environment
and quickly estimate the illumination in modified configurations. We also want our
method to be tolerant of measurement and modeling errors in order to work on a broad
class of environments. Our process consists of several preprocessing steps followed by
an interactive relighting session.

We begin by taking two sets of photographs of the target environment. The first is
taken from multiple viewpoints under normal lighting conditions and is used to build
an approximate geometric model provided by our photomodeling system [20]. The
second set is taken from the fixed viewpoint that will be used during the interactive
editing session. These photos use controlled lighting that consists of a single known
light source that is moved between photos. We typically use between 5 and 7 such
photos (e.g., Fig. 1). This second set, which we will refer to as theradiance images, is
used to estimate the reflectance on all the visible surfaces.

To recreate sharp shadows, the direct lighting is estimated on a per pixel basis from
the fixed viewpoint using ray casting. For each pixel we store its corresponding 3D
point and surface, its estimated local reflectance, and its visibility and form-factors to
each light. This structure is illustrated in Fig. 2.

Each radiance image is used to estimate the reflectances at each pixel, but may be
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Fig. 2. A per pixel data structure is stored for the interactive view as well as for each radiance
image. The visibility to each lightVi , the form-factor to each lightFi , the estimated reflectance
at this pixelRi, and the confidence levelKi of the pixel are stored for each radiance imagei. The
interactive view stores the merged reflectanceR, the ambient term̂B, theobject’s surface ID and
the 3D point corresponding to each pixel.

unreliable in some regions such as shadows. We generate a more robust reflectance
estimator by assigning a confidence for each estimate and combining them from the
multiple images accordingly. If we remove real objects, we also estimate the reflectance
in regions of the image that become visible. This is accomplished by adapting a texture-
filling algorithm.

Once the geometric and reflectance models are extracted, they are used to initialise
an hierarchical radiosity system that enables dynamic simulation of the indirect lighting
in the environment.

After completing these preprocessing steps, we are ready to interactively model and
relight our scene. When we modify the lighting or the geometry of the scene (either real,
virtual or both), we efficiently update direct and indirect light. The regions of the image
for which direct illumination must be recomputed are efficiently identified in screen
space using polygon ID maps and the shaft data structures used for dynamic global
illumination. These same structures also allow efficient recomputation of indirect light.

4 Preprocessing

The main goal of the preprocessing steps is to initialise the data structures that will be
used during the interactive session. First surface reflectance at each pixel is estimated,
and a pixel-based data structure for precomputed direct lighting quantities is initialised.
Finally the hierarchical radiosity system is set up for rapid indirect lighting updates.

The process begins by building a geometric model of the environment using our
photomodeling system [20]. The user specifies a set of corresponding points in the
set of photographs taken from multiple viewpoints. The system uses these to solve
for the camera parameters and 3D positions of the points. The user connects these
points together into polygons to form a geometric model of the scene and can specify
additional constraints to improve the model. All further processing uses the radiance
images, with the light source positions measured by the user.
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4.1 Pixel Data Structure

The radiance images are all taken from the fixed viewpoint that we will use in our
interactive remodeling session. The physical light source we used is a simple garden
light covered by white semi-transparent paper to achieve a more diffuse effect. Using a
fixed viewpoint simplifies the capture of the real scene (since we need a small number
of images); in addition working in image space allows more efficient data structures to
be used for display, and generally simplifies the algorithms developed.

Much of the computation is done on a per pixel basis for this viewpoint using an
augmented pixel data structure. At each pixel we store (see Fig. 2):

� The 3D pointP which projects to the center of this pixel
� The polygon ID of the visible surface containing this point
� The form-factorFi to each light source from this point
� The visibility Vi to each light source from this point
� The estimated surface reflectanceR at this point

We create one such data structure for each radiance image plus an additional one
for interactive use which also stores the indirect radianceB̂ estimated by the radiosity
system for this point. The radiance images additionally store a confidenceKi (� 1) at
each pixel which indicates how reliable we think its reflectance estimate is.

The polygon ID and 3D pointP are obtained by using an item buffer [25] and z-
buffer depth values. The form-factorFi is computed using a standard point-to-polygon
technique [1]. The visibilityVi is the fraction of the light source which is visible from
point P and is estimated by ray casting from the point to the light source. The number
of rays is varied adaptively from 4 to 64, with the higher number being used in regions
of penumbra. Initially, confidenceKi is set equal toVi , since we have less confidence in
regions in shadow.

4.2 Reflectance Recovery Algorithm

If we assume that our surfaces are diffuse then there is a simple relation between the
radianceL seen by a pixel in the camera, the reflectanceR at pointP, and the incident
light on pointP given by:

L = R

 
∑
i

FiViEi + B̂

!
(1)

whereEi is the emittance of lighti, FiViEi is the direct illumination due to lighti and
B̂ accounts for all indirect light. The emittance value is currently set arbitrarily, and an
appropriate scaling factor applied to compensate during display.

If all the quantities in question were available and exact, we could solve exactly for
the reflectance at each pixel using a radiance imagei with its single light source via:

Ri =
T�1

(Ci)

FiViEi + B̂
(2)

whereCi is the pixel color recorded by the camera andT() is the response function of
the camera. This function was unavailable for our camera2 so we have used a simple
scaling factor, though it could be accurately estimated using the method of Debevec and
Malik [3].

2A Kodak DC260 digital camera.
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View 1 Reflectance 1 Confidence 1

View 2 Reflectance 2 Confidence 2

Merged Reflectance
Fig. 3. Two of the seven radiance image views (left), the confidence images (right), and the
resulting reflectance (center), extracted using Eq.(2). Dark values are for lower confidences. The
merged reflectance is shown at the bottom.

As a first approximation to indirect lightinĝB, we have used an ambient term equal
to the average image color times a user specified average reflectance [10]. The resulting
reflectance gives satisfactory results for our test cases, although more involved indirect
lighting calculations may be necessary in other contexts when more accurate reflectance
is needed. Some experiments were performed with an iterative approach to reflectance
estimation using our radiosity solution, without much improvement in the reflectance
estimate. Nonetheless, this is clearly a topic of future work.

Because of the many approximations in our system including the geometry, indirect
light, and diffuse assumption, we know that our reflectance estimates will sometimes be
quite inaccurate (e.g., in shadow regions where the indirect term dominates). We com-
pensate for this by combining the reflectance estimates from multiple radiance images
to form a much more robust reflectance estimator.

For each radiance imagei, we also estimate our confidenceKi for each pixel re-
flectance estimate. The computation ofKi values is explained in next section. The
merged pixel reflectance is formed by a weighted average of individual reflectance es-
timates:

R =
∑n

i=0 Ki�Ri

∑Ki
(3)

4.3 Filtering Confidence Values

As mentioned above, we initially set the confidence equal to the visibilityV with re-
spect to the light source, to reflect the fact that our reflectances are often inaccurate in
shadow regions where indirect light dominates. However there are also other condi-
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tions that can cause inaccurate reflectance estimates including geometric error, specular
highlights, saturation in the camera, and even the movable light source being visible in
some images. We use a series of filters to try to identify and reduce the confidence in
such problem regions.

Near shadow boundaries visibilityV depends heavily on the exact geometry con-
figuration and thus may be unreliable due to inaccuracies in our reconstructed model.
To reflect this, we first expand low confidence regions using a 5� 5 minimum filter
where the pixels confidence is replaced by the minimum confidence in its neighbor-
hood. Abrupt changes in the confidence can also cause objectionable artifacts in the
combined results, therefore we next apply a 5�5 smoothing filter.

Lastly, to detect other problem regions, we apply an outlier filter. For each pixel,
we compute the median of its high confidence reflectance estimates (e.g., those with
Ki > 0:75) from the individual radiance images. Estimates which differ by more than
a user supplied threshold from this median are assumed to be outliers and have their
confidence set to zero. This allows to automatically detect and discount problem regions
such as specular highlights and the light source tripod which is visible in some radiance
images. Afterwards another smoothing filter (3�3) is applied. Examples of resulting
confidence images are shown in Fig. 3 for two views.

Once the confidences have been computed, we combine the reflectance estimates
using Eq. (3). The result is more robust and contains fewer artifacts than any of the
individual reflectance estimates from the radiance images as shown in Fig. 3.

4.4 Texture Filling for Real Object Removal

Removing a real object from the scene leaves a gap, or previously invisible region, for
which we need reflectance estimates. We fill in this missing information using texture
synthesis in a technique similar to Igehy and Pereira [14]. We use El-Maraghi’s [7]
implementation of Heeger and Bergen’s [13] texture synthesis in our system.

To synthesize the textures needed, we extract a texture sample from thereflectance
imagefrom every polygon that now covers the region to fill. The extraction of the
sample is currently done manually, but we are experimenting with automatic extraction
procedures. This sample is fed to the synthesis algorithm which generates a texture of
the same size as the region to fill. The generated texture is applied to the reflectance
using a masking process, described in Section 5.3. The generated textures are stored
for objects marked as “removable” accelerating the interactive remodeling operations.

It should be noted that texture generation is performed on the reflectance image and
is thus not hindered by shadows or lighting variations during the object removal. The
reprojection of the shadows with the new scene will generate a correct image of the
scene without the real object.

4.5 Initialising the Hierarchical Radiosity System

To bootstrap the hierarchical radiosity system, the reflectance values recovered by Eq.
(3) are reprojected onto the corresponding polygons, initialising the reflectance values.
For the polygons invisible in the image used for the interactive session, we take a sample
of the texture during the photomodeling session and get an average value using Eq. (2).
For parts of polygons invisible from the fixed viewpoint, we use an average reflectance
value computed from the visible parts.

With this approximation, a first radiosity solution is computed by our system, using
an implementation of hierarchical radiosity with clustering [23]. The subdivision is set
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(a) (b)

Fig. 4. (a) The original view of the scene and (b) the corresponding radiosity mesh used to
simulate indirect light and dynamic updates; note the coarse subdivision.

to a relatively coarse level since such a level is sufficient for computing indirect light,
which varies slowly. An example mesh is shown in Fig. 4(b).

Recall that direct effects, including direct shadows, are treated separately for dis-
play. Direct light is however computed by the radiosity system, but simply ignored for
display. The subdivision is fixed at the beginning of the process to a minimum area
threshold. Nonetheless, we maintain the hierarchical nature of the radiosity algorithm,
since links are established at different levels of the hierarchy, using a “standard” BF
refiner [12]. Thus we will only need to update links and the radiosity values when
performing interactive modifications.

5 Interactive Modification of Scene Properties

Once the reflectance has been computed for each pixel and the radiosity system set up,
we can perform interactive modification of scene properties. The modifications that our
system permits are related to lighting and geometry. The former includes changing a
real light or adding virtual lights; the latter includes adding and moving virtual objects
and removing real objects.

The web pagehttp://www-imagis.imag.fr/Membres/Celine.Loscos/relight.html, con-
tains high-resolution images and online movie sequences of interactive sessions. All
timing results reported below have been taken on a SGI R10000 195Mhz processor.

5.1 Modifying Illumination

When we modify a light source emittance, two operations need to be performed:

� For indirect illumination, we need to compute a new radiosity solution. Given that
the subdivision and the link structure are fixed after the initial solution, updating
indirect illumination simply requires a few successive sweeps of the hierarchy to
“gather” and “push-pull” [12] radiosity and is very fast (less than .05 seconds in
our test scenes, since their polygon count is low).

� For display, the direct lighting component is recomputed at each pixel. Indirect
illumination is displayed using hardware smooth-shading of the elements of the
hierarchical radiosity subdivision, which are then blended into the final image.
This results in the addition of the indirect irradianceB̂ at each pixel.

In the pixel structure, we have stored the visibility and form-factor with respect to each
light source. Thus the computation of the direct component is very rapid.
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When displaying an image, we compute the following color at each pixel:

C = R

 
∑

s=0::ns

FsVsEs+ B̂

!
(4)

for thens (real or virtual) light sources in the scene. Before inserting any virtual light
source, the scene is lit only with its original light (ns= 0). Shadows arereprojecteddue
to the visibility termVs, since they have been removed from the reflectance.

An example is shown in Fig. 5. The original photo is shown in (a), reprojected
initial lighting conditions in (b), and we show the addition of a virtual light source in
(c). The entire update for adding the virtual light takes 3.1 seconds broken down as
follows: visibility 2.5 sec., shaft/radiosity operations 0.4 sec., indirect light blending
and other 0.2 sec. Recall that in the case of the light source insertion, we are required
to updateall the pixels of the image. During dynamic updates, we cast a small number
of rays to the light sources, resulting in aliased shadows. An additional “shadow clean-
up” could be performed when the user stops modifying the scene, with a higher shadow
sampling rate.

5.2 Modifying Scene Geometry

To allow interactivity when adding, removing or moving objects and lights, we maintain
a shaft data structure [11], inspired from the work of Drettakis and Sillion [6]. Updating
the entire table requires in the order of a few minutes for visibility values, especially
when using many rays per light source; using the method described below reduces this
time to fractions of a second.

A hierarchical shaft [11] data structure is constructed from the first radiosity so-
lution, and corresponds to each light transfer link. When we add an object it is first
attached to the root cluster of the scene; links are established to the light sources as
appropriate, based on the refinement criterion, and visibility information is computed.

The hierarchy of shafts is used for two purposes: (a) to identify the pixels for which
direct illumination has changed (i.e., the shadow regions of the new object); and (b) to
identify the links for which visibility needs to be updated (i.e., all links whose shaft is
cut by the new object), for both direct and indirect light transfers.

To achieve the above, we descend the hierarchy of shafts, finding those intersected
by the new object. The hierarchical elements attached to the end of a shaft originating at
a light source are marked as “changed”. While descending, the visibility of the modified
links is updated. With all necessary links updated, we recompute a radiosity solution
with only gather and push-pull steps.

The pixel data structure is then updated and displayed. The bounding box of the
initial and final position of the moving object are first projected onto the image-plane,
limiting the region of the screen directly affected by the motion. For this region a new
item buffer is performed, and the pixels under the previous object position are found
as well as those under the new position, since the polygon IDs will have changed. For
these pixels, reflectances are kept to the original values for the “uncovered” pixels and
updated to that of the virtual object for the newly covered pixels. New form-factors and
visibility values are then computed for all the pixels changed in the modified region.

For the pixels associated with patches tagged as “changed”, visibility with respect
to the sources is recomputed. These are not as localized as the directly affected pixels,
but their number is often small.

The entire pixel table is then traversed to update the indirect illumination value at
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each pixel, based on the new global illumination calculation; again, this is performed
with hardware rendering of the hierarchical radiosity patches.

When inserting a new light source, the form-factor and visibility with respect to the
source need to be computed for every pixel.

When removing an object, we perform a similar process. We delete every link and
all corresponding shaft structures of the removed object.

When moving an object, the process is equivalent, but we do not have to delete the
links. We just have to update the information (form-factors and visibilities). Shafts due
to the moving object are deleted and reconstructed with its new position.

In Fig. 5(d) we show the insertion of a virtual object in a scene lit with the original
light and an added virtual light source. The insertion requires 1 sec., of which visibility
accounts for .5 sec., shafts .1 sec. and the rest .4 sec. When moving the virtual object,
we achieve update rates of about 1 sec. per frame, with a similar breakdown to that of
the object insertion (Fig. 5(e)).

5.3 Removing Real Objects

When the user chooses to remove an object, she indicates the object to the system.
Similarly to virtual objects, we knowexactlywhich region of the screen will have to
be filled, since the correspondences between polygons and pixels are known through
the polygon IDs stored in the pixel data structures. We automatically create two masks
corresponding to this region: a weight mask and a texture mask [14]. At first, each
contains “1” over the region to fill and “0” elsewhere. We extend the weight mask a few
pixels to compensate for inaccuracies in the removed object geometry (to avoid leaving
any color from the removed object in the image).

The object is then removed from the scene and a new item buffer is performed to
update the polygon IDs. The polygon IDs present in the region to be filled indicate
from which polygons we have to extract textures. The texture mask is filled with these
new IDs and the weight mask is blurred around its “0/1” borders. This allows the
composition of the synthesized texture with the texture from the image: when the mask
is 0, the color of the pixel will be the color in the reflectance image, when the mask is 1
the color will be taken from the synthesized texture and a fractional weight will allow a
smooth transition from the synthesized texture to the original image (e.g., the original
colors present in the image).

The reflectance is then updated for the pixels affected, as well as the visibility and
form-factors, as in the case of virtual object motion/removal. Results of object removal
are shown in Fig. 6.

A second example of real object removal is shown in Fig. 7. In the context of
an interior redesign, we may want to remove doors for example, which is hard to do
in the real world. This is shown Fig. 7(b). Note that due to approximate reflectance
estimation, the texture generation results in slightly visible discontinuities. A virtual
object has been added in (c) and a different lighting configuration created in (d).

6 Conclusion

We have presented a new approach to synthetic relighting and remodeling of real en-
vironments. Our approach is based on a preprocessing step to recover approximate
reflectance properties from a sequence of radiance images. Radiance images are taken
from a fixed viewpoint with varying illumination (i.e., different positions of the same
light source), using a simplified reconstructed model of the scene. Using the informa-
tion in the images and the 3D reconstructed model, we create reflectance images for
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each light position by estimating direct illumination and light source visibility as well
as indirect light. The reflectance images are merged by a weighted average based on
the confidence level we have in the reflectance at each pixel in each radiance image. In
our case, this is based on visibility (points in shadow have low confidence); a filtering
step is applied to compensate for errors in geometric reconstruction and illumination
computation.

After the reconstruction has been performed we can interactively modify scene
properties. This is achieved by efficiently identifying regions of the screen which need
updating, and performing a pixel-by-pixel update for direct light. Indirect lighting is
treated separately with an efficient hierarchical radiosity structure, optimized for dy-
namic updates.

In our implementation we can virtually modify real light intensity, insert and move
virtual objects, and even remove real objectsinteractively. Despite inevitable artifacts,
the quality of the images is sufficient for the purposes of interactive lighting design and
limited remodeling.

Independently to our work, Yuet al.[26] have recently developed more robust tech-
niques for reflectance estimation, including specular effects in particular. These are
based on capturing images of the entire scene, and computing radiosity to estimate the
reflectance using clever iterative methods and high-dynamic range images. We believe
that our approach can benefit from such improved reflectance estimation (for example
to remove the artifacts in texture generation in Fig. 7) as well as for the reflectance
of objects which are not visible in the radiance image. On the other hand, we believe
that both our interactive approach, especially for global illumination, as well as our
confidence maps could be useful for such approaches.

In future work, using the high dynamic range radiance images of Debevec and Malik
[3] will allow us to achieve more accurate reflectance extraction. Once we have more
confidence in the original radiance most of the errors in the reflectance estimation will
be due to indirect light. The hierarchical radiosity framework has the added advantage
that it can be used to bound indirect illumination errors and thus should allow us to
achieve better results.

We also need to investigate ways to allow motion of the viewpoint, which is cur-
rently an important limitation of our approach. Also, the texture generation approaches
we have used are limited to stochastic textures. With some user intervention, it may be
possible to achieve satisfactory results with deterministic textures also.

From a more practical point of view, we can add the synthetic motion of real objects
simply into our system. A view-independent texture of the real object is required, which
can be provided by our photomodeling system, as well as a modified rendering routine.
As was discussed in the results, the largest expense in the updates is the calculation of
visibility for direct lighting. These calculations can be easily parallelized, and we hope
to achieve good speedups in a parallel version, enhancing interactivity.
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(a) (b) (c)

(d) (e)
Fig. 5. (a) The original radiance image (photo). (b) Original reprojected lighting conditions, dis-
played using the recomputed direct and indirect components, (c) a virtual light has been inserted
into the scene adding the light took 3.1 seconds (for 400x300 resolution). (d) A virtual object has
been inserted into the scene with both lights on; adding the object required 1 sec. (e) Moving the
virtual object requires 1.1 sec.

(a) (b) (c) (d)
Fig. 6. Texture filling examples for real object removal. (a) Initial reflectance image (b) The
laptop is removed. The laptop was removed entirelysyntheticallysince no additional image was
captured. (c) The original relit image. (d) The relit image after removal. Removal of the laptop
took 0.7 sec., since generated textures are pre-computed for “removable” objects.

(a) (b)

(c) (d)

Fig. 7. A second real object removal example. (a) The original relit image, (b) the relit image
after removal of the door, which took 2.9 sec., for a resolution of 512x341. (c) A virtual chair has
been added to the scene, requiring 3.4 sec., and (d) a virtual light added (needing 6.6 sec.).372



5

Conclusion et Perspectives

Nous avons d´eveloppé trois thèmes principaux dans ce m´emoire : les calculs haute pr´ecision passant par
la définition et l’utilisation des structures de donn´ees de visibilité ; les calculs de l’´eclairage pour des sc`enes
de grande complexit´e (géométrique et photométrique) et enfin sur des algorithmes de rendu interactifs, pour
le rendu à base d’image, de haute qualité et pour des sc`enes mixtes, r´eelles-virtuelles.

Nous allons tenter de résumer notre contribution dans chaque thème :

– En ce qui concerne les calculs de haute qualit´e pour la visibilité, dans un premier temps nous avons
étendu les travaux, d´eveloppés pendant ma th`ese sur les maillages de discontinuit´e. Nous avons
appliqué ces maillages dans le cadre plus gén´eral d’un algorithmed’échantillonnage structuré, qui
essaie de concentrer les ´echantillons utilis´es pour la repr´esentation de la lumi`ere là où ils sont utiles ;
les maillages de discontinuit´e ontété aussi utilis´es pour l’éclairage global et pour des mises `a jour
interactives pour l’´eclairage direct.

Dans un deuxi`eme temps, dans le cadre de la th`ese de Fr´edo Durand, nous avons effectu´e uneétude
approfondie des propri´etés de la visibilité globale, c’est-`a-dire des relations de visibilit´e de chaque
objet par rapport à chaque autre. Cette étude `a donné lieu à des avanc´ees importantes, notamment
dans la d´efinition d’une structure g´enérale leComplexe de Visibilité ainsi que sa simplification pra-
tiquele Squelette de Visibilité qui aété ensuite utilis´e pour une application d’éclairage global.

– Sur les algorithmes d’´eclairage pour des sc`enes très complexes nous avons essay´e d’éliminer le coût
de la simulation, en nous attaquant au cœur du probl`eme, c’est-`a-dire le raffinement et la visibilit´e.
Nous avons également propos´e une solution pour r´eduire le coˆut mémoire de cette méthode. Pour
les scènes non-diffuses, nous avons d´eveloppé des solutions bas´ees sur le stockage de la radiance
sortante par des fonctions directionnelles discr`etes et hiérarchiques.

– Pour le rendu interactif, nous avons d´eveloppé un algorithme de rendu à base d’images ; deux algo-
rithmes de rendu interactif haute qualit´e ontété également introduits, en utilisant la radiosit´e et le
lancer de rayons. Nous avons enfin pr´esenté deux nouvelles méthodes pour la r´ealité augment´ee en
tenant compte de l’´eclairage commun entre objets r´eels et virtuels.

Ces travaux ont soulev´e beaucoup de questions sur les méthodes choisies pour résoudre les probl`emes
de visibilité, de l’éclairage, du rendu interactif et de la r´ealité augment´ee.

Pour la visibilité analytique il est clair que les limitations principales des m´ethodes d´eveloppées sont la
robustesse des calculs et la consommation m´emoire qui est trop ´elevée. Les deux facteurs sont critiques pour
le passage `a l’échelle : nous ne pouvons pas traiter de� vraies� scènes d’une taille habituelle (centaines
de milliers ou millions d’objets) sans que ces deux questions soient r´esolues.

Pour les m´ethodes de radiosit´e hiérarchique, il est clair que la r´eduction de m´emoire et le traitement de
la visibilité sont des questions très importantes ; les problèmes qui demeurent sont surtout li´es aux critères
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de raffinement. La gestion de scènes non-diffuses est ´egalement tr`es importante, mais les contraintes de
mémoire des méthodes d´eveloppées ici semblent empˆecher pour cette voie le passage `a l’ échelle.

Les travaux sur les méthodes de rendu interactif et la r´ealité augmentée sont de premiers pas dans des
domaines qui sont en train de démarrer. Le problème de la lenteur des algorithmes d’éclairage global par
tracer de rayons demeure, ainsi que les probl`emes d’images haute r´esolution pour la solution interactive du
� render cache� .

5.1 Perspectives

Le résumé présenté ci-dessus montre les voies que nous comptons explorer dans l’avenir.
Nous nous intéressons au développement des solutions robustes et hi´erarchique pour la visibilit´e analy-

tique. Nous espérons ainsi pouvoir calculer d’une fac¸on hiérarchique et paresseuse le squelette de visibilité
pour des sc`enes de taille r´ealiste. Une voie prometteuse sera sans doute une approche hiérarchique qui
consistera `a calculer un squelette localement pour des groupes ou clusters d’objets et ensuite calculer un
squelette entre les groupes. Les problèmes qui sont posés sont nombreux, car il s’agit de d´efinir la visibilité
approximative. Nous pensons que ca sera sans doute une quantité fortement dépendante de l’application.

Pour l’éclairage nous nous orientons vers les solutions g´enérales, qui pourront traiter des scènes non-
diffuses. Nous sommes en train d’examiner deux voies possibles : la premi`ere utilisera la radiosit´e hiérarchique
avec clustering pour la partie diffuse et le tracer de particules pour le spéculaire, et la deuxi`eme sera une
nouvelle approche stochastique, qui peut être vue comme une suite de l’algorithme de�Metropolis� .

Nous espérons que la premi`ere méthode permettra ´egalement le contrˆole de la qualité, d’une fac¸on
similaire à la méthode de la radiosit´e, c’est-à-dire par des bornes d’erreur qui peuvent ˆetre spécifiées par
l’utilisateur. La deuxième méthode sera sans doute ´etroitement liéeà l’approche du� render cache� dans
le but d’obtenir un système d’éclairage global g´enéral interactif.

La réalité augmentée est un domaine en pleine expansion, et les travaux d’éclairage commun ne com-
mencent gu`ereà être utilisés. Dans un premier temps nous espérons surmonter les restrictions `a un seul
point de vue et `a une réflectance diffuse, ´eventuellement en utilisant des m´ethodes semblables `a celles
de l’équipe de Berkeley [YDMH99]. Nous espérons ´egalement appliquer ces m´ethodes aux scènes de
l’extérieur,éventuellement dans le contexte d’une application archéologique, en collaboration avec la Fon-
dation du Monde Hellénique (www.fhw.gr).
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