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R�esum�e

Cette th�ese d'habilitation contient un traitement syst�ematique des
algorithmes d'�elimination pour d�ecomposer des syst�emes arbitraires
de polynômes �a plusieurs variables en syst�emes triangulaires de dif-
f�erentes sortes (r�eguliers, simples, irr�eductibles, ou munis de pro-
pri�et�es de projection), en fournissant les d�ecompositions des ensem-
bles des z�eros associ�es. Beaucoup de ces algorithmes et les th�eories
sous-jacentes sont propos�es et d�evelopp�es par l'auteur sur la base
des travaux de J. F. Ritt, W.-t. Wu, A. Seidenberg et J. M. Thomas.
Certains algorithmes pertinents comme ceux fond�es sur les r�esul-
tants ou les bases de Gr�obner sont pass�es en revue. Des applications
de ces m�ethodes d'�elimination sont pr�esent�ees, concernant des as-
pects algorithmiques en g�eom�etrie alg�ebrique, la th�eorie des id�eaux
de polynômes, la r�esolution des syst�emes alg�ebriques, la d�emon-
stration automatique en g�eom�etrie, etc.



Dongming Wang

Elimination Methods
and Applications

INPG France � 1998



Dr. Dongming Wang
Laboratoire LEIBNIZ
Institut d'Informatique et de Math�ematiques Appliqu�ees de Grenoble
Grenoble, France



Preface

The development of polynomial elimination techniques from classical the-
ory to modern algorithms has undergone a tortuous and rugged path. This
can be observed from B. L. van der Waerden's elimination of the \elimina-
tion theory" chapter from his classic \Modern Algebra" in later editions,
A. Weil's hope to eliminate \from algebraic geometry the last traces of
elimination theory," and S. Abhyankar's suggestion to \eliminate the elim-
inators of elimination theory." The renaissance and recognition of polyno-
mial elimination owe much to the advent and advance of modern computing
technology, based on which e�ective algorithms are implemented and ap-
plied to diverse problems in science and engineering. In the last decade,
both theorists and practitioners have more and more realized the signif-
icance and power of elimination methods and their underlying theories.
Active and extensive research has contributed a great deal of new devel-
opments on algorithms and software tools to the subject, that have been
widely acknowledged. Their applications have taken place from pure and
applied mathematics to geometric modeling and robotics, and to arti�cial
neural networks.
This thesis of habilitation provides a systematic treatment of elimination

algorithms that compute various zero decompositions for systems of multi-
variate polynomials. The central concepts are triangular sets and systems
of di�erent kinds, in terms of which the decompositions are represented.
The prerequisites for the concepts and algorithms are results from basic
algebra and some knowledge of algorithmic mathematics. Some of the op-
erations and results on multivariate polynomials which are used throughout
the thesis are collected in the �rst chapter. Chaps. 2 to 5 are devoted to
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describing the algorithms of zero decomposition. We start by presenting
algorithms that decompose arbitrary polynomial systems into triangular
systems; the latter are not guaranteed to have zeros. These algorithm are
modi�ed in Chap. 3 by incorporating the projection process and GCD com-
putation so that the computed triangular systems always have zeros. Then,
we elaborate how to make use of polynomial factorization in order to com-
pute triangular systems that are irreducible. Many of the algorithms and
their underlying theories are proposed and developed by the author on
the basis of the previous work of J. F. Ritt, W.-t. Wu, A. Seidenberg and
J. M. Thomas. A brief review of some relevant algorithms including those
based on resultants and Gr�obner bases is given in Chap. 5. Elimination
methods play a special role in constructive algebraic geometry and polyno-
mial ideal theory. Chap. 6 contains investigations on a few problems from
these two areas. The last three chapters of the thesis discuss several selected
applications of symbolic elimination methods.
Most of the algorithms presented in the thesis have been implemented

by the author in the Maple system, and they are among the most e�cient
elimination algorithms available by this time. The algorithms are described
formally so that the reader can easily work out his own implementation.
Nevertheless, both theoretical complexity and practical implementation is-
sues are not addressed in the thesis.
The �rst six chapters and part of Chaps. 7{9 of this thesis are published

by Springer-Verlag Wien New York as a monograph entitled \Elimination
Methods." Part of the material was also taught by the author at RISC-Linz,
Johannes Kepler University a few times from 1989 to 1998.
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1

Polynomial arithmetic and zeros

We start by collecting some concepts, operations and properties on multi-
variate polynomials, which are fundamental and will be used throughout
the following chapters. Most of the results presented here are not proved
formally; their proofs may be found in standard textbooks on algebra.
Wherever no reference is given, the reader is advised to look up them in
van der Waerden (1950, 1953) and Knuth (1981).

1.1 Polynomials

Let R be a ring and
x1; x2; : : : ; xn

be n symbols, not in R, called indeterminates, unknowns or variables.
We often write x for x1; x2; : : : ; xn or (x1; x2; : : : ; xn). For n non-negative
integers i1; i2; : : : ; in, one can form a power product

� = xi11 x
i2
2 � � �xinn :

It is called a monomial .
Let a be an element of R, i.e., a 2 R. The formal expression

� = a� = axi11 x
i2
2 � � �xinn

is called a term and written sometimes as � = axi, where

x = (x1; : : : ; xn); i = (i1; : : : ; in):
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The above a is called the coe�cient of �. The term � is said to be non-zero
if a 6= 0.
For an n-tuple i = (i1; : : : ; in), the lth element il is denoted op(l; i).

Sometimes we write iflg for (i1; : : : ; il). Any two n-tuples i and j of non-
negative integers are said to be distinct if there is an l (1 � l � n) such
that op(l; i) 6= op(l; j). Two monomials xi and xj are distinct if so are i
and j. Let a1; : : : ; at 2 R and i1; : : : ; it be t pairwise distinct n-tuples of
non-negative integers. The �nite sum

P =
tX

l=1

alx
il (1.1.1)

is called a polynomial in the indeterminates x with coe�cients a1; : : : ; at in
R. A polynomial P is 0 if all the terms of P are 0, i.e., a1 = � � � = at = 0.
Since the term 0 can be arbitrarily added to and deleted from a polynomial,
we assume that in any non-zero polynomial P all terms are non-zero, i.e.,
a1 6= 0; : : : ; at 6= 0, and call t the number of terms of P . P is said to be a
constant if P 2 R. Let xi be a monomial. If there is an a 2 R and a 6= 0
such that the term axi appears in P , then a is called the coe�cient of P
in xi, denoted by coef(P;xi). Otherwise, coef(P;xi) is de�ned to be 0.
Let P be a non-zero polynomial as in (1.1.1) and xk an arbitrary inde-

terminate. We de�ne the degree of P in xk as

deg(P; xk) , max
1�l�t

op(k; il);

where , reads \is de�ned to be." For convenience, we de�ne deg(0; x) = �1.
The total degree of P is de�ned by

tdeg(P ) , max
1�l�t

nX
k=1

op(k; il):

A polynomial is said to be homogeneous if all its monomials have the same
total degree.

Example 1.1.1. The following is a polynomial in x1; : : : ; x4 with integer
coe�cients

F1 = x24 + x1x
2
4 � x2x4 � x1x2x4 + x1x2 + 3x2:

One sees that

coef(F1; x1x2x4) = �1; coef(F1; x2x
3
4) = 0;

deg(F1; x2) = 1; deg(F1; x4) = 2;

tdeg(F1) = 3;

and F1 is not homogeneous. ut
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Let

Q =
sX
l=1

blx
jl

be any other polynomial. The sum of P and Q is de�ned as

P +Q ,
rX
l=1

clx
kl ;

where k1; : : : ;kr are all the distinct n-tuples among i1; : : : ; it; j1; : : : ; js
and

cl = coef(P;xkl ) + coef(Q;xkl); l = 1; : : : ; r:

Form the n-tuples

kiujv = (op(1; iu) + op(1; jv); : : : ; op(n; iu) + op(n; jv));

u = 1; : : : ; t; v = 1; : : : ; s;

and let k1; : : : ;kr be all the distinct ones among them. The product of P
and Q is de�ned as

PQ ,
rX
l=1

clx
kl ;

where
cl =

X
kiujv=kl

aubv; l = 1; : : : ; r:

Theorem 1.1.1. Under the above de�nition of addition and multiplica-
tion, all the polynomials in x with coe�cients in R form a ring.

The ring of polynomials in the n indeterminates x1; : : : ; xn with coe�-
cients in R is denoted by R[x1; : : : ; xn], or R[x] for short. It is also known
as a polynomial ring derived from R by adjoining x. If R is commutative,
then so is R[x]. If, in particular, R is the integral ring Z, then R[x] is a
ring of polynomials with integer coe�cients.

Theorem 1.1.2. If R is an integral domain, then so is R[x].

Remember that n is the number of variables x. We say that the polyno-
mials are univariate if n = 1, bivariate if n = 2, and multivariate if n � 2.
Accordingly, the polynomial ring R[x] is said to be univariate, bivariate
or multivariate respectively, depending on whether n is 1, 2 or � 2. The
multivariate polynomial ring R[x] derived from R by adjoining the inde-
terminates x can also be considered as the ring R[x1][x2] � � � [xn] derived
from R by successively adjoining the indeterminates x1; x2; : : : ; xn.

Theorem 1.1.3. R[x1] � � � [xn] = R[xq1 ] � � � [xqn] = R[x], where q1 � � �qn
is an arbitrary permutation of 1 � � �n.
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Therefore, a multivariate polynomial P 2 R[x] can also be understood
as a univariate polynomial in a �xed indeterminate, for example, in xn with
coe�cients in R[x1; : : : ; xn�1]. In other words, P may be considered as an
element of R[xfn�1g][xn].
By a polynomial set we mean a �nite set of non-zero polynomials inR[x].

While speaking about a polynomial system, we refer to a pair [P;Q] of poly-
nomial sets. As a general convention, in this thesis we denote polynomials
by capital letters like P;Q; F , polynomial sets by blackboard bold letters
like P;Q;T, polynomial systems by Gothic (Fraktur) letters like P;T;S,
and sets or sequences of polynomial systems by Greek letters like 	.
In what follows, let us �x an ordering for the indeterminates

x1 � � � � � xn:
De�nition 1.1.1. For any two distinct monomials xi and xj with

i = (i1; : : : ; in); j = (j1; : : : ; jn);

we say that xi precedes xj or xj follows xi, denoted as

xi � xj or xj � xi;

if there is a k (1 � k � n) such that

in = jn; : : : ; ik+1 = jk+1 while ik < jk:

Under \�" all the monomials in x may be ordered, and so may the terms
of any non-zero polynomial in R[x]. We call \�" the purely lexicographical
ordering of monomials or terms.
In fact, any non-zero polynomial in R[x] can be written in the form

(1.1.1) with
a1 6= 0; : : : ; at 6= 0; ai 2 R;
xi1 � � � � � xit :

In this case, xi1 is called the leading monomial , a1xi1 the leading term

and a1 the leading coe�cient of P , denoted by lm(P ), lt(P ) and lc(P )
respectively. When P 62K, the biggest index p such that

deg(P; xp) = deg(xi1 ; xp) > 0

is called the class, xp the leading variable, and deg(P; xp) the leading degree
of P , denoted by cls(P ), lv(P ) and ldeg(P ) respectively. Symbolically,

lv(P ) = xcls(P ); ldeg(P ) = deg(P; lv(P )):

For any P 2 K and P 6= 0, we de�ne the class, the leading variable, and
the leading degree of P to be 0, x0, and 0 respectively, where x0 is a new
variable ordered to be � x1.
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Let P be a polynomialwith cls(P ) = p > 0, which may also be considered
as one in xp. Any other polynomial Q 2 R[x] is said to be reduced with
respect to P if deg(Q; xp) < ldeg(P ). The leading coe�cient lc(P; xp) of P
in xp is called the initial of P , denoted by ini(P ), which is a polynomial
in x1; : : : ; xp�1. The initial of any P 2 K is de�ned to be itself. For any
polynomial set P, we de�ne

ini(P), fini(P ) : P 2 Pg:
Example 1.1.2. With x1 � � � � � x4, the polynomial F1 in Example 1.1.1
may be rewritten as

F1 = x1x
2
4 + x24 � x1x2x4 � x2x4 + x1x2 + 3x2

= (x1 + 1)x24 + (�x1x2 � x2)x4 + x1x2 + 3x2:

We have
lc(F1) = 1;

lm(F1) = lt(F1) = x1x
2
4;

cls(F1) = 4; lv(F1) = x4;

ldeg(F1) = 2; ini(F1) = x1 + 1:

The polynomial
F2 = x1x4 + x3 � x1x2

is reduced with respect to F1, but neither is F1 with respect to F2. ut

1.2 Greatest common divisors, pseudo-division and
polynomial remainder sequences

Let the ring R be restricted to a unique factorization domain (abbreviated
to UFD), i.e., a commutative ring with identity. In this case, ab 6= 0 when-
ever a and b are non-zero elements of R, and every a 2 R either is a \unit"
or has a \unique" representation of the form

a = p1 � � �pt; t � 1;

where p1; : : : ; pt are \primes." Every �eld is a UFD, in which each non-zero
element is a unit and there is no prime. When R is assumed to be a UFD,
by Theorem 1.1.2 R[x] is also a UFD.
Let F and G be two polynomials in R[x], with G 6= 0. We say that G

divides F or F is divisible by G, denoted as G j F , if there exists a quotient
polynomial Q 2 R[x] such that

F = QG:

In this case, G is called a divisor of F , and F is called a multiple of G.
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De�nition 1.2.1. Let P1; : : : ; Ps be non-zero polynomials in R[x]. A poly-
nomial G 2 R[x] is called a greatest common divisor (GCD) of P1; : : : ; Ps
if G divides P1; : : : ; Ps and every common divisor of P1; : : : ; Ps divides G.
A polynomial L 2 R[x] is called a least common multiple of P1; : : : ; Ps if

all P1; : : : ; Ps divide L and L divides every common multiple of P1; : : : ; Ps.

The polynomial G in this de�nition is not unique: For any unit a, aG
is also a GCD. However, by the UFD property any two GCDs are di�erent
only by a unit factor. Hence, all the GCDs of P1; : : : ; Ps will be considered
identical. It is so also for the least commonmultiples. Let P= fP1; : : : ; Psg.

gcd(P) = gcd(P1; : : : ; Ps) and lcm(P) = lcm(P1; : : : ; Ps)

stand for any GCD and least common multiple of P1; : : : ; Ps respectively.

Example 1.2.1. Consider the polynomials

G1 = 3x24 � 3x2x4 + 6x1x4 � 3x3x4 + 3x2x3 � 6x1x3;

G2 = 6x24 + 15x1x2x4 � 6x3x4 � 15x1x2x3:

One can verify that 3x3 � 3x4 divides both G1 and G2. Actually, x4 � x3
(multiplied by any constant) is a GCD of G1 and G2. ut
Let F be a polynomial in R[x] and xk a �xed variable. While considered

as a polynomial in xk, F can be written as

F = F0x
m
k + F1x

m�1
k + � � �+ Fm;

Fi 2 R[x1; : : : ; xk�1; xk+1; : : : ; xn];
where m = deg(F; xk). In this expression, Fm�i is called the coe�cient

of F in xik and denoted by coef(F; xik) for each i. In particular, F0 is the
leading coe�cient of F in xk, denoted by lc(F; xk). Namely,

lc(F; xk) = coef(F; x
deg(F;xk)
k ):

The polynomial F � F0xmk is called the reductum of F with respect to xk
and denoted by red(F; xk). When xk = lv(F ), it is omitted in red(F; xk).
Symbolically,

lc(F; xk) , F0;

red(F; xk) , F1xm�1k + � � �+ Fm;

red(F ) , red(F; lv(F )):

Any greatest common divisor of F0; : : : ; Fm as polynomials in R[x1; : : :,
xk�1; xk+1; : : : ; xn] is called the content of F with respect to xk, denoted
by cont(F; xk). If cont(F; xk) 2 R, then F is said to be primitive with
respect to xk. For any non-zero polynomial F , F=cont(F; xk) is called the
primitive part of F with respect to xk, denoted by pp(F; xk); therefore, F
may be written as

F = cont(F; xk) � pp(F; xk):
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Lemma 1.2.1. (Gauss' lemma). The product of primitive polynomials
over a UFD is primitive.

Let F 6= 0;m = deg(F; xk) as above and G be any other polynomial of
degree l in xk. For pseudo-dividing G by F | considered as polynomials
in xk, we have a division algorithm as follows. Let R = G; Repeat the
following process until r = deg(R; xk) < m:

R F0R �R0x
r�m
k F;

where R0 = lc(R; xk). As r strictly decreases for each iteration, the pro-
cedure must terminate. Finally, one obtains two polynomials Q and R in
R[x] satisfying the relation

IqG = QF +R; (1.2.1)

where
I = lc(F; xk); q = max(l �m+ 1; 0);

deg(R; xk) < m; deg(Q; xk) = max(l �m;�1):
In case m = 0, R = 0 and Q = GlF .
The expression (1.2.1) is called a pseudo-remainder formula; Q is called

the pseudo-quotient and R the pseudo-remainder of G with respect to F in
xk, denoted by pquo(G;F; xk) and prem(G;F; xk) respectively. Actually,
the polynomials Q and R in (1.2.1) are uniquely determined by F and G.
This fact is stated as follows for late use.

Proposition 1.2.2. Let the polynomials F;G; I;Q;R and integer q be as
above. If Q0 and R0 are two polynomials in R[x] such that

IqG = Q0F +R0;

then Q0 = Q and R0 = R.

Proof. Knuth (1981, pp. 402 and 407). ut
The process of acquiring Q and R in pseudo-dividing G by F is called

a pseudo-reduction (with respect to xk). It is a fundamental operation
underlying many of the algorithms described in this thesis and thus will
play a key role in the following chapters. For this reason, let us describe the
computational process of a pseudo-remainder in the form of the following
algorithm.

Algorithm prem: R prem(G;F; x). Given two polynomialsG;F 2 R[x]
and a variable x 2 fxg, this algorithm computes a pseudo-remainder R of
G with respect to F in x.

P1. Set R G; r deg(R; x);H F; h deg(H;x); d r � h + 1.

P2. If h � r then set L lc(H;x);H red(H;x) else set L 1.
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P3. While h � r and R 6= 0 do:

P3.1. Compute T xr�hlc(R; x)H.

P3.2. If r = 0 then set R 0 else set R red(R; x).

P3.3. Compute R LR� T and set r deg(R; x); d d� 1.

P4. Return R LdR.

When xk = lv(F ), it is omitted in prem(G;F; xk). For a polynomial
set Q, prem(Q; Ti) stands for fprem(Q; Ti) : Q 2 Qg. The following simple
example illustrates the division process. More complicated calculations will
be given in the next example.

Example 1.2.2. Let

F = xy2 + 1; G = 2y3 � y2 + x2y:

With respect to y, the corresponding R and Q can be calculated as follows

2xy � x = Q

xy2 + 1
p

2y3 � y2 + x2y G

2xy3 � xy2 + x3y xG

�(2xy3 + 2y) �2yF
�xy2 + x3y � 2y �R

�x2y2 + x4y � 2xy x �R

�(�x2y2 � x) xF

x4y � 2xy + x = R:

This implies that

x2G = (2xy � x)F + x4y � 2xy + x: (1.2.2)

ut
The integer q in (1.2.1) may be determined as small as possible, provided

that the division process does not introduce fractions into Q and R. For
example, the multiplier Ld in step P4 of prem may be omitted (for some
applications). One can take q = 1 instead of 2 in (1.2.2) so that it simpli�es
to

xG = (2y � 1)F + x3y � 2y + 1:

Taking the smallest q is rather crucial for control the size expansion of
the pseudo-remainder in practical computation. Moreover, one can modify
the formula (1.2.1) by replacing Iq with Iq11 � � �Iqee , where I1; : : : ; Ie are all
the distinct irreducible factors of I (see Sect. 1.4 for the de�nition of irre-
ducibility), and choosing the smallest q1; : : : ; qe so that the corresponding
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pseudo-remainder formula still holds. For this modi�cation the determina-
tion ofR requires additional computation and thus takes more time at every
individual step. However, the modi�ed division may avoid some redundant
factors so that the subsequent computation pro�ts.

Example 1.2.3. Refer to the polynomials F1; F2; G1; G2 given in Exam-
ples 1.1.1, 1.1.2 and 1.2.1. Pseudo-dividing F1 by F2 in x4, we get the
following pseudo-remainder formula

x21F1 = QF2 +R;

where

Q = x21x4 + x1x4 � x1x3 � x3;
F = prem(F1; F2) = x1x

2
3 + x23 � x21x2x3 � x1x2x3 + x31x2 + 3x21x2:

One can also verify that

G3 = prem(G1; G2; x4)

= �45x1x2x4 � 18x2x4 + 36x1x4 + 45x1x2x3 + 18x2x3 � 36x1x3;

G0
3 = prem(F1; G2; x4)

= 6x1x3x4 + 6x3x4 � 15x21x2x4 � 21x1x2x4 � 6x2x4 + 15x21x2x3

+15x1x2x3 + 6x1x2 + 18x2;

and
cont(F1; x4) = 1;

cont(G1; x4) = cont(G2; x4) = cont(G0
3; x4) = 3;

cont(G3; x4) = 45x1x2 + 18x2 � 36x1;

pp(G3; x4) = x3 � x4:
ut

Two polynomials F;G 2 R[x] are said to be similar , denoted as F v G,
if there exist a; b 2 R, ab 6= 0, such that aF = bG.
Let the polynomials G and F be renamed P1 and P2, and assume that

deg(P1; xk) � deg(P2; xk). We form a sequence of polynomials

P1; P2; P3; : : : ; Pr

such that
Pi v prem(Pi�2; Pi�1; xk); i = 3; : : : ; r

and
prem(Pr�1; Pr; xk) = 0:

Such a sequence is called a polynomial remainder sequence (abbreviated
PRS) of G and F with respect to xk.
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From the pseudo-remainder formula and the formation of PRS one may
see that

gcd(P1; P2); gcd(P2; P3); : : : ; gcd(Pr�1; Pr); Pr

di�er from each other only by factors of polynomials inR[x1; : : : ; xk�1; xk+1,
: : : ; xn]. If P1 and P2 are both primitive with respect to xk, then

gcd(G;F ) = gcd(P1; P2) = pp(Pr; xk):

It is easy to see, on the other hand, that

gcd(G;F ) = gcd(cont(G; xk); cont(F; xk)) � gcd(pp(G; xk); pp(F; xk))

for any polynomialsG and F . It follows that the formation of PRS provides
a means for determining the GCD of two polynomials; while the determi-
nation of GCDs of more polynomials can be easily reduced to the case of
two polynomials.

Example 1.2.4. Consider the polynomials in Example 1.2.1. Calculations
using Algorithm prem show that

prem(G2; G3; x4) = 0;

G0
4 = prem(G2; G

0
3; x4)

= 2430x21x
2
2x

2
3 + 3240x31x

2
2x

2
3 � 2430x21x

3
2x3 + 864x1x2x23

�540x1x32x3 + 216x21x2x
2
3 + 1350x41x

2
2x

2
3 � 216x21x

2
2x3

�3240x31x32x3 � 1350x41x
3
2x3 + 540x1x22x

2
3 � 864x1x22x3

+1296x1x22 + 216x21x
2
2 + 6210x21x

3
2 + 5940x31x

3
2 + 1350x41x

3
2

+1620x1x32 � 648x22x3 + 648x2x23 + 1944x22;

prem(G0
3; G

0
4; x4) = 0:

Thus, G1; G2; G3 and F1; G2; G
0
3; G

0
4 are both PRS. It follows that

gcd(G1; G2) = pp(G3; x4) = x3 � x4;
gcd(F1; G2) = pp(G0

4; x4) = 1:

ut
De�nition 1.2.2. A sequence of non-zero polynomialsP1; P2; : : : ; Pr inR[x]
with

r � 2; di = deg(Pi; x); d1 � d2; Ii = lc(Pi; x)

is called the subresultant polynomial remainder sequence (subresultant PRS)
of P1 and P2 with respect to x if

Pi+2 = prem(Pi; Pi+1; x)=Qi+2; 1 � i � r � 2;

prem(Pr�1; Pr; x) = 0;
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where
Q3 = (�1)d1�d2+1; H3 = �1;
Qi = �Ii�2Hdi�2�di�1

i ;

Hi = (�Ii�2)di�3�di�2H
1�di�3+di�2

i�1 ; i = 4; : : : ; r:

In the following section we shall present several known results about
subresultants. They ensure that subresultant PRS above is well-de�ned,
i.e., Pi 2 R[x] for all i � 3 so long as P1; P2 2 R[x].

1.3 Resultants and subresultants

The resultant of two univariate polynomials F;G 2 R[x] is a form in the
coe�cients of F and G whose vanishing provides certain conditions for
these two polynomials to have common zeros for x. A common zero �x of F
and G is meant a number in some extension of the quotient �eld of R such
that F (�x) = G(�x) = 0. It will be de�ned formally in Sect. 1.5. An ideal
reference for this section is Chap. 7 in Mishra (1993).
Let F and G be of respective degrees m and l in x with m � l > 0,

written as
F = a0x

m + a1x
m�1 + � � �+ am�1x+ am;

G = b0x
l + b1x

l�1 + � � �+ bl�1x+ bl:
(1.3.1)

We form a matrix of dimension m+ l by m+ l, called the Sylvester matrix
of F and G with respect to x as follows

M =

0
BBBBBBBBBB@

a0 a1 � � � am
a0 a1 � � � am
� � � � � � � � � � � �

a0 a1 � � � am
b0 b1 � � � bl

b0 b1 � � � bl
� � � � � � � � � � � �

b0 b1 � � � bl

1
CCCCCCCCCCA
;

where the blank spaces are �lled with 0 as usual.

De�nition 1.3.1. The determinant of the Sylvester matrixM is called the
Sylvester resultant or eliminant of F and G with respect to x, denoted
res(F;G; x).

As usual we use det(�) to denote the determinant of any square matrix
�. The resultant res(F;G; x) = det(M) is homogeneous of degree l in the
ai and of degree m in the bi.

Example 1.3.1. Consider the cubic polynomial

F = ax3 + bx2 + cx+ d
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in x. The resultant R of F and its derivative

dF

dx
= 3ax2 + 2bx+ c

is also called the discriminant of F . A necessary and su�cient condition
for F to have multiple zeros is R = 0.
The 5�5 Sylvester matrixM of F and dF=dx with respect to x is shown

below

M =

0
BBBB@

a b c d 0
0 a b c d
3a 2b c 0 0
0 3a 2b c 0
0 0 3a 2b c

1
CCCCA :

Thus, the resultant of F and dF=dx with respect to x is

res(F;
dF

dx
; x) = det(M) = �a(27a2d2 � 18abcd+ 4b3d+ 4ac3 � b2c2):

ut
Lemma 1.3.1. Let F and G be as in (1.3.1). Then there exist polynomials
A;B 2 R[x] such that

AF +BG = res(F;G; x);

where deg(A; x) < deg(G; x) and deg(B; x) < deg(F; x).

A proof of this lemma can be found, for example, in van der Waerden
(1953, p. 85) or Mishra (1993, pp. 228{229). As a consequence of the above
lemma and de�nition, we have the su�ciency in the following theorem.

Theorem 1.3.2. Let F and G be as in (1.3.1). Then res(F;G; x) = 0 if
and only if either F and G have a common zero or a0 = b0 = 0.

The necessity can be proved without much di�culty (see, e.g., van der
Waerden 1953, pp. 83{84). Therefore, if one of a0 and b0 is non-zero,
res(F;G; x) = 0 is a necessary and su�cient condition for F and G to
have a common zero.
Now let Mij be the submatrix of M obtained by deleting the last j of

the l rows of F coe�cients, the last j of the m rows of G coe�cients and
the last 2j + 1 columns, excepting column m + l � i� j, for 0 � i � j < l.

De�nition 1.3.2. The polynomial

Sj(x) =

jX
i=0

det(Mij)x
i

is called the jth subresultant of F and G with respect to x, for 0 � j <
l. Here deg(Sj ; x) � j, and Rj = det(Mjj) is called the jth principal
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subresultant coe�cient (PSC ) or the jth resultant of F and G with respect
to x.
If m > l + 1, the de�nition of the jth subresultant Sj(x) and PSC Rj of

F and G with respect to x is extended as follows:

Sl(x) = bm�l�10 G; Rl = bm�l0 ; Sj(x) = Rj = 0; l < j < m � 1:

Sj is said to be defective of degree r if deg(Sj ; x) = r < j, and regular

otherwise.

It is easy to see that S0 = R0 is the resultant of F and G with respect
to x.

Theorem 1.3.3. Let F and G be two polynomials in R[x] with m =
deg(F; x) � deg(G; x) = l > 0 and Sj be the jth subresultant of F and
G with respect to x, for 0 � j < m � 1. Then there exist polynomials
Aj; Bj 2 R[x] such that

AjF +BjG = Sj ;

where deg(Aj ; x) < l � j and deg(Bj ; x) < m � j.
Proof. Mishra (1993, pp. 255{256). ut

De�nition 1.3.3. Let F and G be two polynomials in R[x] with m =
deg(F; x) � deg(G; x) = l > 0 and set

� =

�
m � 1 if m > l;
l otherwise:

Let S�+1 = F , S� = G, and Sj be the jth subresultant of F and G with
respect to x for 0 � j < �, The sequence of polynomials in R[x]

S�+1; S�; S��1; : : : ; S0

is called the subresultant chain of F and G with respect to x. It is said to
be regular if all Sj are regular, and defective otherwise.
Let

R�+1 = 1 and Rj =

�
lc(Sj ; x) if Sj is regular;
0 otherwise

for 0 � j � �:

The sequence of polynomials

R�+1; R�; : : : ; R0

is called the PSC chain of F and G with respect to x.

The PSC chain de�ned here is consistent with the PSCs in De�nition 1.3.2.
In fact, for 1 � j < � Rj above is the jth PSC, which vanishes when Sj is
defective.
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Theorem 1.3.4. (Subresultant chain). Let S�+1 and S� be two polyno-
mials in R[x] with deg(S�+1; x) � deg(S�; x) > 0 and

S�+1; S�; : : : ; S0

be the subresultant chain of S�+1 and S� with respect to x, with PSC chain

R�+1; R�; : : : ; R0:

If both Sj+1 and Sj are regular, then

R2
j+1Sj�1 = prem(Sj+1; Sj; x); 1 � j � �:

If Sj+1 is regular and Sj is defective of degree r < j, then

Sj�1 = Sj�2 = � � � = Sr+1 = 0; �1 � r < j < �;

Rj�r
j+1Sr = lc(Sj ; x)j�rSj ; 0 � r � j < �;

(�1)j�rRj�r+2
j+1 Sr�1 = prem(Sj+1; Sj; x); 0 < r � j < �:

Proof. Loos (1983, pp. 122{123) or Mishra (1993, pp. 268 and 274{283). ut
Theorem 1.3.4 provides an e�ective algorithm for constructing subresul-

tant chains by means of pseudo-division. However, in the case deg(S�+1; x) =
deg(S�; x), S�+1 is defective and thus how to obtain S��1 is not covered
by the theorem. To deal with this special case, we need the following result
which will also be used later.

Proposition 1.3.5. Let � denote a ring homomorphism of R into an-
other UFD ~R as well as its induced ring homomorphism of R[x] into ~R[x],
F;G;m; l be as in (1.3.1), and

~a0 = �(a0); ~b0 = �(b0); ~m = deg(�(F ); x); ~l = deg(�(G); x):

Then with respect to x the jth subresultant ~Sj of �(F ) and �(G) is equal

to the jth subresultant Sj of F and G multiplied by �, i.e., ~Sj = �Sj , for

0 � j < max( ~m; ~l)� 1, where

� =

8>>>><
>>>>:

1 if ~a0~b0 6= 0;

~al�
~l

0 if ~a0 6= 0 and ~b0 = 0;

~bm� ~m
0 if ~a0 = 0 and ~b0 6= 0;

0 if ~a0 = ~b0 = 0:

Proof. Corollary 7.8.2 in Mishra (1993, pp. 264{265). ut
We turn back to the subresultant chain as before and consider S�+1 as

obtained from a generic polynomial S of degree �+ 1 in x with indetermi-
nate coe�cients by specializing lc(S; x) to 0 and coef(S; xi) to coef(S�+1; x

i)
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for i = �; : : : ; 0. According to Proposition 1.3.5, S��1 is identical to the
(��1)st subresultant of S and S� with respect to x multiplied by lc(S�; x).
It follows that

S��1 = lc(S�; x)prem(S�+1; S�; x):

From Theorem 1.3.4 and the above discussions, we derive the following
algorithm for computing subresultant chains.

Algorithm SubresChain: S SubresChain(F;G). Given two polynomials
F;G 2 R[x] with deg(F; x) � deg(G; x) > 0, this algorithm computes the
subresultant chain S of F and G with respect to x.

S1. Set m deg(F; x); l deg(G; x). If l < m then set j m� 1 else set
j l. Set

Sj+1 F; Sj G; Rj+1 1; � j:

S2. If Sj = 0 then set r � 1 else set r deg(Sj ; x). Set Sk 0 for
k = j � 1; j � 2; : : : ; r+ 1.

S3. If 0 � r < j then compute

Sr lc(Sj ; x)
j�rSj=R

j�r
j+1:

If r � 0 then return

S [S�+1; S�; : : : ; S0]

and the algorithm terminates.

S4. If r = m = l then set I lc(G; x) else set I 1. Compute

Sr�1 Iprem(Sj+1; Sj; x)=(�Rj+1)
j�r+2:

Set j r � 1; Rj+1 lc(Sj+1; x) and go back to S2.

Example 1.3.2. Let

F = �x4 � z3x2 + x2 � z4 + 2z2 � 1;

G = x4 + z2x2 � r2x2 + z4 � 2z2 + 1:

Application of SubresChain yields the following subresultant chain of F and
G with respect to x:

F; G; �Hx2; H2x2; (z4 � 2z2 + 1)H3; (z4 � 2z2 + 1)2H4;

where H = z3�z2+r2�1. Now, � = 4; S4; S2; S0 are regular and S5; S3; S1
are defective of degrees 4; 2; 0 respectively. ut
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De�nition 1.3.4. Let S�+1 and S� be two polynomials inR[x] with deg(S�+1,
x) � deg(S�; x) > 0 and

S : S�+1; S�; : : : ; S0

be the subresultant chain of S�+1 and S� with respect to x. A �nite se-
quence

d1; d2; : : : ; dr

of steadily decreasing non-negative integers is called the block indices of S
if d1 = � + 1, each Sdi is regular for 2 � i � r, and for any 0 � j � � and
j 62 fd2; : : : ; drg Sj is defective.
The sequence of regular subresultants

Sd2 ; : : : ; Sdr

is called the subresultant regular subchain (SRS) of S�+1 and S� with re-
spect to x.

The subresultant chain S possesses interesting block structures charac-
terized by its block indices d1; : : : ; dr. The �rst block consists of the single
term S�+1. For any 2 � i � r, we have

Sdi 6= 0; Sdi v Sdi�1�1 and Sdi�1�2 = � � � = Sdi+1 = 0:

Namely, the ith non-zero block of S can be put in the form

Sdi�1�1; 0; : : : ; 0; Sdi ;

where Sdi�1�1 v Sdi and di�1 � 1 � di. If dr > 0, then

Sdr�1 = � � � = S0 = 0;

this is the last block, called the zero block , of S. The block structure of S
is illustrated in Fig. 1.
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d1

d2

dr

S�+1
S�

S0
Fig. 1

The following theorem establishes the relationship between subresultant
PRS and subresultant chains and shows that subresultant PRS is well-
de�ned (see De�nition 1.2.2).

Theorem 1.3.6. Let S�+1; S�; : : : ; S0 and d1; d2; : : : ; dr be as in De�ni-
tion 1.3.4. Then the sequence of polynomials

Sd1 ; Sd1�1; Sd2�1; : : : ; Sdr�1�1

is the subresultant PRS of S�+1 and S� with respect to x.

Proof. Collins (1967) or Mishra (1993, pp. 272{273). ut
It is easy to see that

S�+1; S�; Sd3 ; : : : ; Sdr

is also a PRS of S�+1 and S� with respect to x. Thus, the SubresChain algo-
rithm may be modi�ed to compute PRS, subresultant PRS and resultants
of polynomials.

Example 1.3.3. As a more complicated example, consider

P1 = 729y6 � 1458x3y4 + 729x2y4 � 4158xy4 � 1685y4 + 729x6y2

�1458x5y2 � 2619x4y2 � 4892x3y2 � 297x2y2 + 5814xy2

+427y2 + 729x8 + 216x7 � 2900x6� 2376x5+ 3870x4

+4072x3 � 1188x2 � 1656x+ 529;

P2 = 2187y4 � 4374x3y2 � 972x2y2 � 12474xy2 � 2868y2 + 2187x6

�1944x5 � 10125x4 � 4800x3 + 2501x2 + 4968x� 1587:
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The subresultant chain S of P1 and P2 with respect to y is

S6 = P1;

S5 = P2;

S4 = 2187P2;

S3 = 1549681956x2(�8748x3y2 � 8262x2y2 � 8478xy2 + 498y2 + 2187x6

�7776x5 � 18252x4+ 4812x3 + 4787x2 � 540x� 2766);

S2 = �1944x2F1F2S3;
S1 = 12050326889856x6F1F2F

2
3F

2
4 ;

S0 = 8033551259904x8F 4
3F

4
4 ;

where
F1 = 18x� 1;

F2 = 81x2 + 81x+ 83;

F3 = 81x2 + 18x+ 28;

F4 = 729x4 + 972x3� 1026x2 + 1684x+ 765:

Hence, the block indices of S are 6; 4; 2; 0, and

S6; S5; S3; S1

is a subresultant PRS of P1 and P2 with respect to y. The polynomials
above are written in factorized form for brevity and readability.
If, for instance, x is specialized to 1=18, then F1 becomes 0. Let

�Sj = Sj jx= 1
18
; j = 6; : : : ; 0:

Then, �S1 = �S2 = 0 and �S0; �S3 are both constants. Thus the block indices
of the specialized subresultant chain are 6; 4; 0. An application of Proposi-
tion 1.3.5 ensures that the jth subresultant of �S6 and �S5 with respect to y
is identical to �Sj for each j. Hence �S6; �S5; �S3 is a subresultant PRS of �S6
and �S5 with respect to y. ut
Resultant-based elimination theory is one of the classical in constructive

algebra and has wide applications in modern computer algebra and geome-
try. The idea and its development owe to L. Euler, �E. B�ezout, A. L. Dixon,
A. Cayley, and J. J. Sylvester, among others. Two easy references are van
der Waerden (1950, 1953) and Chap. 7 in Mishra (1993). In Sect. 5.4 of
this thesis, we shall explain another formulation of univariate resultants
and introduce multivariate resultants as well as various related elimination
techniques.
The often-mentioned modern references to the concept, theory and al-

gorithms of subresultants include Collins (1967, 1971), Brown and Traub
(1971), Knuth (1981), Loos (1983) and the early approach of W. Habicht.
Here we want to point out the earlier work by Thomas (1937, 1946) in
which the concept was also introduced.
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1.4 Field extension and factorization

Let R be a UFD. A polynomialF 2 R[x] is said to be irreducible over ~R �
R if it cannot be written as the product of two non-constant polynomials in
~R[x]. Otherwise, F is said to be reducible over ~R. Over R, any polynomial
can be factorized as the product of irreducible polynomials uniquely up to
a constant factor.
Now let K be the quotient �eld of R. One simplest, concrete example

of R is the ring Z of integers, where K becomes the rational number �eld
Q. According to a lemma of Gauss (see van der Waerden 1953, p. 73), if a
polynomial in R[x] factors overK, so does it over R. It is therefore appro-
priate to deal with factorization over K instead of R. A very fundamental
problem is to factorize a given polynomial in K[x] as the product of ir-
reducible polynomials in K[x]. This conceptually simple problem is by no
means trivial as far as practical computation is of concern. Nevertheless,
powerful algorithms have been well developed (see Knuth 1981, pp. 420{441
for instance) and implemented in popular computer algebra systems. We
shall feel free to use such algorithms and software systems when polynomial
factorization over K is necessary.
In Chap. 4 of this thesis is also needed factorization of polynomials in

K[x] over algebraic extension �elds of K. Let us explain this precisely as
follows.
Let � be an element in some extension �eld ~K of K, but not in K.

Denote by K(�) the set of all rational functions F (�)=G(�), where F and
G are both polynomials in � with coe�cients in K and G(�) is non-zero in
~K. Then under the operations of ~K , K(�) constitutes a �eld containing
K, called a simple extension �eld obtained from K by adjoining �. If, for
any univariate polynomial A 2K[y], A(�) 6= 0, then � is a transcendental

number overK andK(�) is called a transcendental extension �eld obtained
fromK by adjoining �. In this case, K(�) is also called a rational function
�eld of K.
Next we turn to the case when there exist polynomials A 2 K[y] such

that A(�) = 0. Let A be one of such polynomials which have minimal degree
m in y. Now, � is an algebraic number over K, K(�) is called an algebraic

extension �eld obtained fromK by adjoining �, and m is called the degree
of � or K(�) over K. The polynomial A is obviously irreducible over K.
It is called an adjoining polynomial of �.
Let F (�)=G(�) be an arbitrary number in K(�). Since G(�) 6= 0 and

A 2 K[y] is irreducible over K, G and A do not have any common zero.
This implies that res(G;A; y) 2K is non-zero. By Lemma 1.3.1, there are
polynomials K;L 2K[y] such that

KG+ LA = 1; (1.4.1)

where deg(L; y) < deg(G; y); deg(K; y) < deg(A; y) = m. Dividing FK by
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A leads to the following remainder formula

FK = QA+ R; (1.4.2)

where Q;R 2 K[y] and deg(K; y) < m. From the expressions (1.4.1) and
(1.4.2), one gets

F

G
= R+ (

FL

G
�Q)A:

As A(�) = 0, it follows that

F (�)

G(�)
= R(�):

Therefore, an arbitrary number inK(�) can be represented as a polynomial
of � whose degree is less than or equal tom�1. The representation is unique
and can be constructively determined via algebraic operations.
Note that � is only a symbol and in general it cannot be given explicitly.

What we are usually given is the irreducible polynomial A, by means of
which � is de�ned. In view of this we shall denote K(�) simply by K(y)
when the adjoining polynomial A is mentioned.
Now consider a sequence of r (> 1) polynomials

A1(y1); A2(y1; y2); : : : ; Ar(y1; : : : ; yr);

in which Ai 2K[y1; : : : ; yi] and deg(Ai; yi) � 1 for each i. Such a sequence
satis�es the property that each Ai, considered as a polynomial in yi, is
irreducible over the algebraic extension �eld

Ki =K(y1) � � � (yi�1) = K(y1; : : : ; yi�1)

with A1; : : : ; Ai�1 as adjoining polynomials, respectively. Therefore, we
have a sequence of algebraic extension �elds K1; : : : ;Kr . For each i the
ordered set

A i = [A1; : : : ; Ai]

of adjoining polynomials will be called an irreducible ascending set , and
Ki an algebraic extension �eld of K with adjoining ascending set A i .
Let A r and Kr be as before and a polynomial F 2 K [y1; : : : ; yr; y],

considered as �F 2 Kr[y], be reducible over Kr. Then an irreducible fac-
torization of �F is of the form

�F = �F1 � � � �Ft;
in which each �Fi 2Kr [y] is irreducible overKr , and t � 2. We shall see in
Sect. 4.1 that there are polynomialsF1; : : : ; Ft; Q1; : : : ; Qr 2K [y1; : : : ; yr; y]
and D 2K [y1; : : : ; yr] such that

I(DF � F1 � � �Ft) =
rX

i=1

QiAi;



1.5 Zeros and ideals 21

where I is a power product of lc(Ai; yi). Alternatively the factorization of
F is written as

DF
:
= F1 � � �Ft

over the extension �eldKr . The problem of algebraic factorization amounts
to constructing the polynomialsF1; : : : ; Ft fromF and A r , for which several
algorithms are available. Two of them will be explained in Sect. 9.4.

Example 1.4.1. Refer to the polynomials in Examples 1.1.1, 1.2.1, 1.2.3 and
1.2.4. Over Q, F1 and G

0
3 are both irreducible, and G1; G2; G3; G

0
4 are all

reducible and have the following factorizations

G1 = 3(x4 � x3)(x4 � x2 + 2x1);

G2 = 3(x4 � x3)(2x4 + 5x1x2);

G3 = �9(x4 � x3)(5x1x2 + 2x2 � 4x1);

G0
4 = �54x2(25x31x2 + 35x21x2 + 10x1x2 + 4x1 + 12)

�(�x1x23 � x23 + x1x2x3 + x2x3 � x1x2 � 3x2):

Let

A = 2x21x
2
2 + 2x1x

2
2 � 2x21x2;

F = x1x
2
3 + x23 � x21x2x3 � x1x2x3 + x31x2 + 3x21x2:

Both A and F are irreducible over Q. Over the extension �eld Q(x1; x2),
where x1 is a transcendental element and x2 an algebraic element with
adjoining polynomial A, the polynomial F can be factorized as

F
:
= (x1 + 1)(x3 � 2x1x2 + x1)(x3 + x1x2 � x1):

ut

1.5 Zeros and ideals

LetK be an arbitrary �eld of characteristic 0 andK[x] the ring of polyno-
mials in the indeterminates x = (x1; : : : ; xn) with coe�cients in K. Let ~K
be an arbitrary extension �eld ofK. Any n-tuple �x = (�x1; : : : ; �xn) of num-
bers in ~K is called a point of the a�ne n-space An over ~K. Let P 2K[x]
be a polynomial. The point �x is called a zero of P or alternatively a so-

lution of the polynomial equation P = 0 if P (�x) = 0, that is, P vanishes
when �x1; : : : ; �xn are substituted respectively for x1; : : : ; xn.
LetP = [P;Q] be a polynomial system. If an n-tuple of numbers in ~K is a

common zero of all the polynomials in Pbut not a zero of any polynomial
in Q, it is called a zero of P or a solution of the system of polynomial
equations P= 0 and inequations Q 6= 0. We may speak about the set of all
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zeros of P which is denoted by Zero(P) or Zero(P=Q). Symbolically, it is
de�ned as

Zero(P=Q),
�
�x 2 ~K

n
:
P (�x) = 0; Q(�x) 6= 0;
8P 2 P;Q2 Q

�
:

We simply write Zero(P) for Zero(P=Q) when Q � K n f0g. In this case,
Zero(P) is the set of all common zeros of the polynomials in P. Sometimes,
we write Zero(P=Q) for Zero(P=fQg) and Zero(P=Q) for Zero(fPg=Q), etc.
It is easy to see that

Zero(P=Q) = Zero(P=
Y
Q2Q

Q) = Zero(P) n Zero(
Y
Q2Q

Q):

And, for any polynomial sets H;Pi;Qi,

Zero(P=Q) =
[
i

Zero(Pi=Qi)

implies that

Zero(P[ H=Q) =
[
i

Zero(Pi[ H=Qi);

Zero(P=Q[ H) =
[
i

Zero(Pi=Qi[ H):

The components ai of a zero of a polynomial, a polynomial set or a poly-
nomial system | which are numbers of ~K | may be still in K. In order
to make the involved �eld ~K explicit, we shall sometimes call the zero (so-
lution) de�ned above a ~K-zero ( ~K-solution) or an extended zero (extended
solution). Accordingly, we use the notations ~K-Zero(P), ~K-Zero(P=Q), etc.
Unless speci�ed otherwise, Zero(P) = ; is always meant in any extension

of the ground �eldK , and so is Zero(P) 6= ; in some extension �eld ofK.
Let P= fP1; : : : ; Psg � K[x] be a (non-empty) polynomial set. Form

the following in�nite set of polynomials:

I = f
sX

i=1

QiPi : Q1; : : : ; Qs 2K[x]g:

Theorem 1.5.1. I is an ideal in K[x].

The ideal I formed above is called a polynomial ideal generated by
P1; : : : ; Ps or simply by P, denoted by Ideal(P). P1; : : : ; Ps and Pare called
the generators and generating set for I, respectively, and are said to form
a �nite basis for I. Let the de�nition of zeros be extended naturally to
in�nite sets of polynomials. It is easy to see that

Zero(Ideal(P)) = Zero(P):
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According to Hilbert's �nite basis theorem, one knows that for any subset I
ofK [x], if it is an ideal, then there is a �nite non-empty set Pof polynomials
such that I = Ideal(P).
Let I be any ideal in K[x]. The set of polynomials

fF 2K[x] : Fm 2 I for some integer m � 1g
forms an ideal, called the radical ideal of I and denoted by Rad(I) or
sometimes by

p
I. It is easy to see that

Zero(
p
I) = Zero(I):

1.6 Hilbert's Nullstellensatz

A polynomial ideal I is called a unit ideal if it can be generated by the
constant polynomial 1.

Theorem 1.6.1. Every polynomial ideal I �K[x] which has no zero, i.e.,
Zero(I) = ;, in any extension �eld of K is a unit ideal.

This theorem may be restated as

Theorem 1.6.2. If the polynomials P1; : : : ; Ps 2 K[x] have no common
zero, i.e., Zero(fP1; : : : ; Psg) = ;, in any extension �eld of K, then there
exist polynomialsQ1; : : : ; Qs 2K[x] such that the following identity holds

1 = Q1P1 + � � �+QsPs:

Proof. Van der Waerden (1950, p. 5). ut
Theorem 1.6.2 may be regarded as a special case of Hilbert's Nullstel-

lensatz:

Theorem 1.6.3. (Nullstellensatz). Let P= fP1; : : : ; Psg be a polynomial
set and P a polynomial in K[x]. If Zero(P) � Zero(P ), then there exist
polynomials Q1; : : : ; Qs 2K [x] such that

P q = Q1P1 + � � �+ QsPs

holds for some integer q > 0.

For a proof of this theorem, one uses the well-known trick of Rabinowitsch
by reducing it to the case of Theorem 1.6.2 (see van der Waerden 1950,
p. 6). In detail, under the hypothesis of the theorem, P1; : : : ; Ps; P z � 1
have no common zero, where z is a new variable. By Theorem 1.6.2 there
are polynomials H1; : : : ;Hs;H 2K [x; z] such that

1 = H1P1 + � � �+HsPs +H(Pz � 1):
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Replacing z in this equality by 1=P and multiplying it by some power
of P to clean out the denominators, one immediately gets the identity in
Theorem 1.6.3.
The containment relation Zero(P)� Zero(P ), which means that P van-

ishes at every common zero of P1; : : : ; Ps, is written sometimes as

P jZero(P) = 0: (1.6.1)

By Theorem 1.6.3 and the de�nition of radical ideals, (1.6.1) is equivalent
to

P 2
p
Ideal(P):

Let () stand for \if and only if." The following theorem is a conse-
quence of the above results.

Theorem 1.6.4. Let P be a polynomial set in K[x] and I = Ideal(P).
Then

P 2
p
I () 1 2 Ideal(P[ fPz � 1g) () Zero(P[ fPz � 1g) = ;;

where z is a new variable.



2

Zero decomposition of polynomial
systems

From now on we come to describe elimination algorithms that decompose
arbitrary systems of multivariate polynomials into special systems of tri-
angular form | the theme of this thesis. Meanwhile, various zero relations
between the given and the constructed systems will be established. In this
chapter are presented three kinds of di�erent yet related algorithms which
compute such decompositions of relatively coarse form.

2.1 Triangular systems

Let K be a computable �eld of characteristic 0. The rational number �eld
Q is a concrete example of K. A polynomial set is a �nite set of non-zero
polynomials in K[x]. By a polynomial system in K[x] we mean a pair
[P;Q] of polynomial sets with which the set Zero(P=Q) is of concern. In
other words, we are concerned with the solutions of a system of polynomial
equations P= 0 and inequations Q 6= 0.
In what follows, the number of elements of a �nite set Sis denoted jSj.

It is also called the length of S. An ordered set is written by enclosing
its elements in a pair of square brackets. For any non-empty ordered set
T= [T1; : : : ; Tr] and 1 � i � r, the following symbols are often used:

op(i;T), Ti; Tfig , [T1; : : : ; Ti]:

If S= [S1; : : : ; Ss] is another ordered set which has no intersection with T,
we de�ne

S[T, [S1; : : : ; Ss; T1; : : : ; Tr]:
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S[ T and T[ Sare distinguished when they are considered as ordered
sets. In other words, the ordering is preserved for union of non-intersecting
ordered sets. If one or both ofSandTare usual sets, then so isS[T= T[S.
De�nition 2.1.1. A �nite non-empty ordered set of non-constant polyno-
mials in K[x]

T= [T1; T2; : : : ; Tr]

is called a triangular set or a non-contradictory quasi-ascending set if

cls(T1) < cls(T2) < � � � < cls(Tr):

Any triangular set can be written in the following form

T=

2
664
T1(x1; : : : ; xp1);

T2(x1; : : : ; xp1; : : : ; xp2);
� � � � � �

Tr(x1; : : : ; xp1 ; : : : ; xp2; : : : ; xpr)

3
775 ; (2.1.1)

where
0 < p1 < p2 < � � � < pr � n;
pi = cls(Ti); xpi = lv(Ti); i = 1; : : : ; r:

Let Tbe a triangular set as in (2.1.1) and P any polynomial. P is said to
be reduced with respect to T if P is reduced with respect to every T 2 T,
i.e., deg(P; xpi) < ldeg(Ti) for all i. The polynomial

R = prem(� � �prem(P; Tr); : : : ; T1);

denoted simply by prem(P;T), is called the pseudo-remainder of P with re-
spect toT. From the expression (1.2.1), one can easily deduce the following
pseudo-remainder formula

Iq11 � � �Iqrr P =
rX
i=1

QiTi + R; (2.1.2)

where each qi is a non-negative integer and

Ii = ini(Ti); Qi 2K[x]; i = 1; : : : ; r:

Apparently, prem(P;T) = P when P is reduced with respect to T. For any
polynomial set P, prem(P;T) stands for fprem(P;T) : P 2 Pg.
Example 2.1.1. Recall F1; F2 in Example 1.1.1 and let

F3 = x3x4 � 2x22 � x1x2 � 1;

F4 = prem(F1; F2):
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F4 has been calculated in Example 1.1.2. F3 is reduced with respect to F1,
but not so is F1 with respect to F3. Also, neither of F2 and F3 is reduced
with respect to the other. With respect to x1 � � � � � x4,

T1 = [F4; F2]

is clearly a triangular set. Both F1 and F3 are not reduced with respect to
T1. One can verify that

F6 = prem(F1;T1) = 2x1x22 + 2x21x
2
2 � 2x21x2 + x21 + x1;

prem(F3;T1) = 0:

ut
In the following de�nition and hereafter, the ordering is preserved for

di�erence of ordered sets in the natural way. For example, [a; b; c; d]n[a; c] =
[b; d].

De�nition 2.1.2. A polynomial system [T;U] inK [x] is called a triangular
system if T is a triangular set and I(�x) 6= 0 for any I 2 ini(T) and �x 2
Zero(T=U).
A triangular system [T;U] is said to be �ne if 0 62 prem(U;T). It is said

to be reduced if every T 2T[U is reduced with respect to Tn [T ].
Lemma 2.1.1. For any triangular system [T;U] and polynomialP inK[x],
if prem(P;T) = 0 then Zero(T=U)� Zero(P ).

Proof. Let �x 2 Zero(T=U). By de�nition, I(�x) 6= 0 for any I 2 ini(T). From
the pseudo-remainder formula (2.1.2) one sees that P (�x) = 0. ut

De�nition 2.1.3. A triangular set T�K[x] is said to be �ne or reduced if
[T; ini(T)] is �ne or reduced, respectively.
A reduced triangular set is also called a non-contradictory ascending set .
A triangular set Tis called a non-contradictory weak-ascending set if for

every T 2T, ini(T ) is reduced with respect to Tn [T ].
Any set of a single non-zero constant is called a contradictory (quasi-,

weak-) ascending set .

Note that the pseudo-remainder of any polynomial with respect to a
contradictory ascending set is 0.

Example 2.1.2. Let x1 � x2 � x3 and T= [x1 � 2; (x21 � 4)x3 + x2]. T is
a triangular set, but it is not �ne. [T;fx1; x1 � 2g] is a triangular system
(not �ne), but not so is [T; fx1+ 2g]. The triangular set

[x21 � 2; x22 � 2x1x2 + 2; (x2 � x1)x3 + 1]

is both �ne and reduced, so it is a non-contradictory ascending set. ut
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It is easy to show that if [T;U] is a �ne triangular system, then either T
is �ne or Zero(T=U) = ;.
Lemma 2.1.2. Let F 2 K[x] and G 2K [x; y] be two polynomials. Then

prem(coef(G; yk); F; x) 6= 0 () coef(prem(G;F; x); yk) 6= 0 (2.1.3)

for any 1 � k � deg(G; y).

Proof. Let I = lc(F; x);m = deg(F; x); l = deg(G; y) and G be written as

G = Gly
l + Gl�1y

l�1 + � � �+ G0; Gi 2K[x]:

Set
Ri = prem(Gi; F; x); i = 0; 1; : : :; l:

Corresponding to the pseudo-remainder formula (1.2.1), one has

IqiGi = QiF +Ri; qi = max(deg(Gi; x)�m+ 1; 0); (2.1.4)

for each i. Let

q = max(deg(G; x)�m + 1; 0) = max
0�i�l

qi:

Multiplying the remainder formula in (2.1.4) by yiIq�qi for each i and
adding the resulting formulae together, we obtain

IqG = (
lX

i=0

Iq�qiQiy
i)F +

lX
i=0

Iq�qiRiy
i:

By Proposition 1.2.2,

Iq�qlRly
l + Iq�ql�1Rl�1y

l�1 + � � �+ Iq�q0R0 = prem(G;F; x):

It follows that

coef(prem(G;F; x); yk) = Iq�qkRk = Iq�qkprem(coef(G; yk); F; x)

for any 1 � k � l. Clearly, I 6= 0; (2.1.3) is therefore proved. ut
The following is an obvious consequence of Lemma 2.1.2.

Corollary 2.1.3. Let T� K[x] be a triangular set and P 2 K[x; y] be
any polynomial, where y is a new indeterminate. Then

prem(coef(P; yk);T) 6= 0 () coef(prem(P;T); yk) 6= 0

for any 1 � k � deg(P; y).
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Lemma 2.1.4. From any �ne triangular set T� K[x] one can compute
a reduced triangular set T� such that

Zero(T�=ini(T�)) = Zero(T=ini(T)): (2.1.5)

Proof. Let T= [T1; : : : ; Tr] with

pi = cls(Ti); Ii = ini(Ti); i = 1; : : : ; r:

The case r = 1 is trivial, so we may assume r > 1 and set

Tfi�1g = [T1; : : : ; Ti�1];

T �i = prem(Ti;Tfi�1g); i = 2; : : : ; r:

T�fig = [T1; T �2 ; : : : ; T
�
i ];

As Tfi�1g does not involve the variables xpi ; : : : ; xn, by Corollary 2.1.3 we
have

cls(T �i ) = pi; ldeg(T
�
i ) = ldeg(Ti); 2 � i � r:

Hence, T� is a reduced triangular set.
To show (2.1.5), write down the following formula corresponding to

(2.1.2)

T �i = Iqi11 � � � Iqi;i�1

i�1 Ti +
i�1X
j=1

QijTj ; 2 � i � r: (2.1.6)

Let �xfpi�1g 2 Zero(Tfi�1g=ini(Tfi�1g)). By (2.1.6), we have

�T �i = Iqi11 (�xfpi�1g) � � � Iqi;i�1

i�1 (�xfpi�1g) �T2;

where

�Ti = Ti(�x
fpi�1g; xpi�1+1; : : : ; xpi); �T �i = T �i (�x

fpi�1g; xpi�1+1; : : : ; xpi):

Thus, �T �i and �Ti have the same set of zeros for xpi�1+1; : : : ; xpi. As this is
true for any i � 2, it follows that

Zero( �T �i =ini(
�T �i )) = Zero( �Ti=ini( �Ti));

and hence

Zero(T�fig=ini(T�fig)) = Zero(Tfig=ini(Tfig)):

With i = r, (2.1.5) is therefore established. ut

Remark 2.1.1. Let [T;U] be a �ne triangular system with Zero(T=U) 6= ;.
In this case, T is also �ne as noted above. Therefore, we can compute a
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reduced triangular set T� such that (2.1.5) holds. Let U� = prem(U;T�);
then

Zero(T�=U�) = Zero(T�=ini(T�) [U�) = Zero(T=ini(T)[U) = Zero(T=U):

This is to say, one can compute from [T;U] a reduced triangular system
[T�;U�] such that

Zero(T�=U�) = Zero(T=U): (2.1.7)

The main objective of this chapter is to describe algorithms that de-
compose any given polynomial system P into �nitely many �ne triangular
systems T1; : : : ;Te such that

Zero(P) =
e[

i=1

Zero(Ti): (2.1.8)

We assign e = 0 when Zero(P) = ; is veri�ed.

2.2 Characteristic-set-based algorithm

The concept of characteristic sets was introduced by Ritt (1932, 1950)
for (di�erential) polynomial ideals in the context of his work on di�eren-
tial algebra. However, this concept and the algorithmic method proposed
by Ritt drew little attention until 1978 when W.-t. Wu realized that the
constructive algebraic tools underlying his method of mechanical theorem
proving in geometry appeared already in Ritt's two books. Since then, Wu
has considerably developed Ritt's work by removing his analytic arguments
using continuity and limit, etc., by adapting the concept and method for
polynomial sets instead of ideals, and by demonstrating its powerfulness
in various geometric applications. For instance, Wu dropped irreducibility ,
a major requirement in Ritt's process, so that a characteristic set can be
e�ectively constructed from an arbitrary polynomial set. Wu's insight and
extensive work have stimulated a great deal of research interest and ac-
tivity on the subject. These altogether have contributed to the theoretical
development of the method and made it more e�cient and appropriate for
practical applications. The characteristic-set-based algorithms presented in
this thesis owe much to Wu (1984, 1986a, 1987, 1989a, 1994).

Ritt-Wu's characteristic sets

De�nition 2.2.1. For two non-zero polynomials F and G inK[x], F is said
to have a lower rank than G, which is denoted as

F � G or G � F;
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if either cls(F ) < cls(G), or cls(F ) = cls(G) > 0 and ldeg(F ) < ldeg(G). In
this case, G is said to have a higher rank than F .
If neither F � G nor G � F , F and G are said to have the same rank ,

denoted as F � G.
We write F - G for \F � G or F � G," and similarly for \%."

Example 2.2.1. Recall F1; F2; F3 in Examples 1.1.2 and 2.1.1. With x1 �
� � � � x4, we have

cls(F1) = cls(F2) = cls(F3) = 4;

ldeg(F1) = 2; ldeg(F2) = ldeg(F3) = 1:

It follows that
F3 � F2; F2 � F1:

ut
De�nition 2.2.2. For two triangular sets

T= [T1; : : : ; Tr]; T0 = [T 01; : : : ; T
0
r0 ];

Tis said to have a higher rank than T0, which is denoted as

T� T0 or T0 � T;
if either (a) or (b) below holds:

(a) There exists a j � min(r; r0) such that

T1 � T 01; : : : ; Tj�1 � T 0j�1; while Tj � T 0j;
(b) r0 > r and

T1 � T 01; : : : ; Tr � T 0r:

In this case, T0 is said to have a lower rank than T. If neither T� T0 nor
T0 � T, Tand T0 are said to have the same rank , denoted as T� T0. In
this case,

r = r0; and T1 � T 01; : : : ; Tr � T 0r :
Example 2.2.2. Let the polynomialsF1; : : : ; F4 be as in Examples 1.1.2 and
2.1.1, and

F5 = prem(F3; F2) = �x23 + x1x2x3 � 2x1x
2
2 � x21x2 � x1:

Then
T1 = [F4; F2]; T2 = [F5; F2]; T3 = [F4; F1]

are reduced triangular sets. T1 and T2 have the same rank which is lower
than that of T3, i.e.,

T1 � T2 � T3:

ut
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The above-de�ned \-" is a partial order, under which the collection of
all triangular sets is partially ordered. Thus, for any set of triangular sets
one is free to talk about the notion of minimal ascending set if it exists.

Lemma 2.2.1. Let

T1 % T2 % : : : % Tk % � � �

be a sequence of triangular sets whose ranks never increase. Then there
exists a k0 such that Tk � Tk0 for all k � k0.
Proof. Let Tk = op(1;Tk) and rk = jTkj for each k (recall that op(i;Tk)
denotes the i-th element of Tk). Then

T1 % T2 % � � � % Tk % � � � :

In other words, for any k either cls(Tk+1) < cls(Tk), or

cls(Tk+1) = cls(Tk) > 0 and ldeg(Tk+1) � ldeg(Tk):

As both class and degree are non-negative integers, there exists an index
k1 such that Tk � Tk1 for all k � k1.
If there is a k01 � k1 such that rk = 1 for all k � k01, then the lemma

is clearly true. Otherwise, there exists a k01 � k1 such that rk � 2 for all
k � k01. Let T 0k = op(2;Tk) for k � k01; then

T 0k01
% T 0k01+1 % � � � % T

0
k % � � � :

As before there exists a k2 � k01 such that T 0k � T 0k2 for all k � k2.
If rk � 2 for all k � k2, the lemma is already proved. Otherwise, there

exists a k02 � k2 such that rk � 3 for all k � k02. In this case, we may
consider T 00k = op(3;Tk) and form a sequence of polynomials with non-
increasing ranks. As rk � n for all k, proceeding in this way one should
stop at some r and k0 such that

rk = r; op(r;Tk) � op(r;Tk0); 8k � k0:

It follows that Tk � Tk0 for all k � k0, and the lemma is proved. ut
Consider any non-empty polynomial set P. Let � be the set of all as-

cending sets contained in P. Since each single polynomial forms by itself an
ascending set, � 6= ;. Any minimal ascending set of � is called a basic set

of P. Such a basic set exists and can be determined as follows.
Starting with P= F1, one chooses a polynomial, say B1, of lowest rank

from F1. If cls(B1) = 0, then [B1] is already a basic set of P. Otherwise, let

F2 = fF 2 F1 n fB1g : F is reduced wrt B1g:
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If F2 = ;, then [B1] is a basic set of F1 = P. From the choice of B1 all
the polynomials in F2 have rank higher than that of B1. Now, let B2 be a
polynomial in F2 of lowest rank and

F3 = fF 2 F2 n fB2g : F is reduced wrt B2g:
If F3 = ;, then [B1; B2] is a basic set of P. Otherwise, choose from F3 a
polynomial B3 of lowest rank and proceed as before. As

cls(B1) < cls(B2) < cls(B3) < � � � � n;
the procedure must terminate in a �nite number of steps. Finally, a basic
set of P is constructed.
Let wrt stand for \with respect to." The above process can be described

as the following algorithm.

Algorithm BasSet: B BasSet(P). Given a non-empty polynomial set
P�K[x], this algorithm computes a basic set B of P.

B1. Set F P, B ;.
B2. While F 6= ; do:

B2.1. Let B be an element of F with lowest rank.

B2.2. Set B B [ [B].
B2.3. If cls(B) = 0 then set F ; else set

F fF 2 F n fBg : F is reduced wrt Bg:

A basic set of P is contradictory if and only if Pcontains a constant. In
this case Algorithm BasSet terminates at the �rst iteration of the while-
loop. See Example 2.2.3 for examples of basic sets.

De�nition 2.2.3. An ascending set C is called a characteristic set of a non-
empty polynomial set P�K [x] if

C � Ideal(P); prem(P;C) = f0g:
Here, a characteristic set of P is de�ned �a la Wu. Ritt's de�nition of

a characteristic set is for the ideal I (generated by P) and requires that
prem(I; C ) = f0g; thus for computing C one has to consider its irreducibil-
ity as in Sect. 4.1 or use alternative algorithms (see Mishra 1993, Sect. 5.6).

Proposition 2.2.2. Let C = [C1; : : : ; Cr] be a characteristic set of any
polynomial set P�K[x] and

Ii = ini(Ci); Pi = P[ fIig; i = 1; : : : ; r;

I= ini(C ) = fI1; : : : ; Irg:



34 2. Zero decomposition of polynomial systems

Then

Zero(C=I)� Zero(P)� Zero(C ); (2.2.1)

Zero(P) = Zero(C=I)[
r[

i=1

Zero(Pi) (2.2.2)

in K or any extension �eld of K.

Proof. Since C � Ideal(P), Zero(P)� Zero(C ).
On the other hand, for any P 2 Pthere are non-negative integers qi and

polynomials Qi such that

Iq11 � � � Iqrr P =
rX

i=1

QiCi:

It follows that
Zero(C=I)� Zero(P):

This is true clearly for K or any extension �eld of K. Thus, (2.2.1) is
proved.
Note that the zeros of Pwhich make the vanishing of some Ii are con-

sidered additionally as those of Pi. (2.2.2) is obtained with ease. ut
Now we are ready to present the characteristic set algorithm of Ritt-

Wu, which points out how to construct a characteristic set from any given
polynomial set.

Algorithm CharSet: C  CharSet(P). Given a non-empty polynomial set
P�K[x], this algorithm computes a characteristic set C of P.

C1. Set F P,R P.
C2. While R 6= ; do:

C2.1. Compute C BasSet(F).
C2.2. If C is contradictory then set R ; else compute

R prem(F n C ; C ) n f0g
and set F F [R.

In order to show the termination of this algorithm, let us �rst prove the
following lemma.

Lemma 2.2.3. Let P � K[x] be a non-empty polynomial set having a
basic set

B = [B1; B2; : : : ; Br];

where cls(B1) > 0. If B is a non-zero polynomial reduced with respect to
B , then P[ fBg has a basic set of rank lower than that of B .
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Proof. Let P+ = P[ fBg. If cls(B) = 0, then [B] is a basic set of P+
and has rank lower than that of B . Suppose otherwise cls(B) = p > 0.
As B is reduced with respect to B , there exists an i (1 � i � r) such
that p � cls(Bi), and p > cls(Bi�1) when i > 1. Moreover, in the case
p = cls(Bi), deg(B; xp) < ldeg(Bi). Hence

[B1; B2; : : : ; Bi�1; B]

is an ascending set contained in P+ and has rank lower than that of B . The
basic set of P+ has therefore rank lower than that of B . ut
Proof of CharSet. Algorithm CharSet may be sketched as follows:

P= F1 � F2 � � � � � Fm
[ [ [
B1 B2 � � � Bm = C
R1 R2 Rm = ;

(2.2.3)

where
Ri = prem(Fi n B i ; B i ) n f0g;
Fi+1 = Fi [Ri

and B i is a basic set of Fi for each i.

Termination. We need to show that the while-loop has only �nitely many
iterations, i.e., to show the �niteness ofm in the sketch (2.2.3). If some B i is
contradictory, the algorithm terminates obviously.Otherwise, by Lemma2.2.3
B i+1 � B i for all i. Hence, B1 � B2 � � � �. By Lemma 2.2.1, such a sequence
is composed of a �nite number of terms. In other words, m is �nite and
thus the algorithm must terminate.

Correctness. From the formula (2.1.2) one knows that for any polynomial
F 2 Fi, prem(F; B i ) 2 Ideal(B i [ fFg). It follows that

Ideal(Fi+1) = Ideal(Fi) = Ideal(P)

for each i. Therefore,

C = Bm � Fm � Ideal(P):

As Rm = ;, we have

prem(Fm ; C ) = prem(Fm n C ; C ) [ prem(C ; C ) = f0g:

By de�nition, C is a characteristic set of P. The proof is complete. ut
The above procedure of acquiring a characteristic set C from P is called

well-ordering principle and is attributed to Ritt by Wu (1984, 1986a).
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Example 2.2.3. Let P= fF1; F2; F3g with
F1 = x1x

2
4 + x24 � x1x2x4 � x2x4 + x1x2 + 3x2;

F2 = x1x4 + x3 � x1x2;
F3 = x3x4 � 2x22 � x1x2 � 1:

These polynomials already appeared in Examples 1.1.2 and 2.1.1. The se-
quence of polynomial sets and their basic sets corresponding to those in
the sketch (2.2.3) are as follows:

P= F1 = fF1; F2; F3g � F2 = fF1; : : : ; F5g � F3 = fF1; : : : ; F6g
[ [ [
B1 = [F2] B2 = [F4; F2] B3 = [F6; F4; F2] = C
R1 = fF4; F5g R2 = fF6g R3 = ;;

where F4; F5; F6 are given in Examples 1.1.1 and 2.2.2. Hence, the last
basic set B3 is a characteristic set C of P. Let the polynomials F6; F4; F2
be renamed C1; C2; C3 and copied here for easy reference:

C = [C1; C2; C3]

=

2
64
x1(2x1x22 + 2x22 � 2x1x2 + x1 + 1);

x1x
2
3 + x23 � x21x2x3 � x1x2x3 + x31x2 + 3x21x2;

x1x4 + x3 � x1x2

3
75 :

The initials of C1; C2; C3 are

I1 = 2x1(x1 + 1); I2 = x1 + 1; I3 = x1:

Clearly, I1 6= 0 implies that I1I2I3 6= 0, since both I2 and I3 are factors of
I1. So only the initial I1 has to be further considered. Let P1 and P2 be
the enlarged polynomial sets obtained from Pby adjoining x1 + 1 and x1
respectively, i.e.,

P1 = P[ fx1 + 1g; P2 = P[ fx1g:
We have the following zero relation

Zero(P) = Zero(C =I1) [ Zero(P1) [ Zero(P2): (2.2.4)

ut
It is important to remark that, during the computation of characteris-

tic sets using CharSet, there appear inevitably some super
uous factors of
initials. These factors should be removed in order to control the growth of
polynomial size. The appearance of super
uous factors during the compu-
tation of polynomial remainder sequence was discovered by Collins (1967).
Such factors appearing in the computation of characteristic sets was studied
in Li (1989a).



2.2 Characteristic-set-based algorithm 37

De�nition 2.2.4. An ascending set C is called a Q-modi�ed characteristic

set of a non-empty polynomial set P�K[x] if

Zero(P=Q)� Zero(C ); prem(P; C) = f0g;
where Q is a polynomial set.
The pre�x Q- is omitted when Q�K.

Let Algorithm CharSet be modi�ed by allowing the removal of polyno-
mial factors during the computation and denote the resulting algorithm by
ModCharSet. Then the output of ModCharSet consists of an ascending set
C and a set F of distinct removed factors F1; : : : ; Ft. It is clear to see that C
is an F-modi�ed characteristic set of the input polynomial set P. Moreover,
the zero relation (2.2.2) can be modi�ed accordingly as

Zero(P) = Zero(C=I)[
r[

i=1

Zero(Pi) [
t[

j=1

Zero(Qj); (2.2.5)

where Pi = P[ fIig;Qj = P[ fFjg. Furthermore, let H1; : : : ;Hq be any
choice of polynomials such that Zero(;=H1 � � �Hq) = Zero(;=I[ F). Then
(2.2.5) can be replaced by

Zero(P) = Zero(C=I)[
q[

k=1

Zero(P[ fHkg): (2.2.6)

The inevitable occurrence of initial factors often renders the appearing
polynomials too large to be manageable. The incessant trial for removing
such factors often costs much computing time.

Remark 2.2.1. Weak-basic sets and quasi-basic sets may be de�ned sim-
ilarly. The algorithms for computing a weak-basic set and a quasi-basic
set B of any polynomial set P can be obtained from Algorithm BasSet by
replacing the last line with

F fF 2 F n fBg : cls(F ) > cls(B); ini(F ) is reduced wrt Bg
and

F fF 2 F n fBg : cls(F ) > cls(B)g
respectively. Lemma 2.2.3 and the speci�cation of CharSet are still true
when basic set is replaced by weak-basic set or quasi-basic set, and the
corresponding weak-ascending set or quasi-ascending set C computed as in
CharSet is called a weak-characteristic set or quasi-characteristic set of P
respectively.
Let a �ne triangular set also be called a non-contradictory W-ascending

set . Any set comprising a single non-zero polynomial of class 0 is a contra-
dictory W-ascending set . A W-ascending set is called an ascending chain in
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weak sense in Chou (1988) and Chou and Gao (1990b); the notion W-prem
is also introduced therein. It is easy to see that Algorithm CharSet can also
be modi�ed to compute the corresponding W-characteristic sets by replac-
ing ascending set and basic set with the corresponding W-ascending set
and W-basic set.
We shall see that the method of characteristic sets in the standard sense

is theoretically more complete than that in the other senses.

Zero decomposition

Let us turn back to the zero relation (2.2.2). As each Ii is reduced with
respect to C , by Lemma 2.2.3 any basic set of the polynomial set Pi[C has
rank lower than that of C . Note that Zero(Pi [ C ) = Zero(Pi). Therefore,
in proceeding further with each Pi[ C as Pby means of CharSet, one may
arrive after a �nite number of steps at a zero decomposition of the form

Zero(P) =
e[

i=1

Zero(C i=Ii); (2.2.7)

in which C i is an ascending set and Ii = ini(C i ) for each i.

De�nition 2.2.5. A �nite set or sequence 	 of (weak-) ascending sets C 1 ; : : :,
C e is called a (weak-) characteristic series of a polynomial set P in K[x] if
(2.2.7) holds and prem(P; Ci) = f0g for every i.
If 	 = ;, it is meant that e = 0 and thus Zero(P) = ;.

Algorithm CharSer: 	 CharSer(P). Given a non-empty polynomial set
P�K[x], this algorithm computes a characteristic series 	 of P.

C1. Set � fPg, 	 ;.
C2. While � 6= ; do:

C2.1. Let F be an element of � and set � � n fFg.
C2.2. Compute C CharSet(F).

C2.3. If C is non-contradictory then set

	 	 [ fCg;
� � [ fF [ C [ fIg : I 2 ini(C ) nKg:

Actually, this algorithm computes from P a multi-branch tree, called
a decomposition tree of P. The tree has root associated with P and its
characteristic set C and is branched at each node by forming enlarged
polynomial sets with adjunction of initials and their characteristic sets.
Such a decomposition tree is shown in Fig. 2.
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Fig. 2

Example 2.2.4. Let P= fF1; F2; F3g and C be the characteristic set of Pas
in Example 2.1.1. One can easily compute a characteristic set C 1 of P1[C
and C 2 of P2[ C as follows

C 1 = [x1 + 1; x2; x23 � 1; x4 � x3];
C 2 = [x1; 2x22 + 1; x3; x24 � x2x4 + 3x2]:

Observe that all the initials of the polynomials in C 1 and C 2 are constant.
We obtain therefore a characteristic series 	 = fC ; C 1 ; C 2g of P which
furnishes a zero decomposition of the form

Zero(P) = Zero(C=I1 ) [ Zero(C 1) [ Zero(C 2):

ut
Remark 2.2.2. Let C be a characteristic set of P� K[x] and P any poly-
nomial in K [x] reduced with respect to C . Neither the basic set nor the
characteristic set of P[fPg necessarily has rank lower than that of C . For
example, let

P= fx21; x21 + x1; x1x2; x2x3g:
With x1 � x2 � x3,

B = [x21; x1x2]; C = [x1; x2x3]

are a basic set and a characteristic set of P, respectively. Now x2 is reduced
with respect to C . However, the basic set of P[fx2g has the same rank as
B .
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As another example, consider the polynomial set

P= fx21 � x22; x21 � 2x22; x
2
2g:

A characteristic set of P is C = [x21; x
2
2]. Clearly, x1x2 is reduced with

respect to C . Now, [x31; x1x2] is a characteristic set of P[ fx1x2g and has
a higher rank than C .
These two examples explain why C cannot be omitted from F[C [fIg in

the last line of CharSet. However, under the assumption that a basic set B
of P is always chosen as a basic set of P� � Pwhen any basic set of P� has
the same rank as B , the various characteristic series algorithms discussed
in this and later sections are still guaranteed to terminate when F [ fIg is
used instead of F [ C [ fIg.
Remark 2.2.3. Algorithm CharSer works as well in the weak- and quasi-
sense. In other words, a weak- or quasi-characteristic series of a polyno-
mial set may be computed by using the algorithm in altering respectively
characteristic sets to weak- and quasi-characteristic sets. However, in the
quasi-sense the algorithm is no longer guaranteed to terminate.
During the computation of characteristic series, numerous branches of

the decomposition tree may be produced due to the recursive generation
of enlarged polynomial sets. Some of these branches are completely redun-
dant and should be removed. Various techniques have been developed for
controlling the expansion of branches (see Chou and Gao 1990b and Wang
1995a). For example, in Fig. 2, if the subtree with root at somePi is already
computed, then any branch Pj which contains Pi as a subset need not be
further considered.

Generalization and extensions

In Algorithm CharSet, each enlarged polynomial set Fi+1, as shown in the
sketch (2.2.3), is the union of Fi and Ri. This results in rapid expansion of
Fi+1 as i increases. To reduce computational expenses, one strategy is to
let Fi+1 just be the union of B i and Ri and check �nally whether all the
polynomials in P have pseudo-remainder 0 with respect to the last basic
set. This strategy was proposed in Wu (1987, 1989a). In the �rst half of
this subsection, we formulate this strategy as a generalized characteristic
set algorithm which may lead to several variants of the standard one.

De�nition 2.2.6. Let P be a non-empty polynomial set in K[x]. Any as-
cending set which is contained in Ideal(P) and has rank not higher than
that of any basic set of P is called a medial set of P.
A medial set M of P is a characteristic set of P if prem(P;M) = f0g.
Apparently, any basic set itself is a medial set of P. The characteristic

set mentioned here is consistent with that in De�nition 2.2.3.
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Lemma 2.2.4. Let a non-empty polynomial set P�K [x] have medial set

M = [M1;M2; : : : ;Mr];

where cls(M1) > 0. If M is a non-zero polynomial reduced with respect to
M , then any medial set M+ of the polynomial set P+ = P[M [ fMg has
rank lower than that of M .

Proof. Let B+ and B� be basic sets of P+ and P[ M , respectively. Then
B� - M . If B� � M , then M is reduced with respect to B� . Hence, by
De�nition 2.2.6 and Lemma 2.2.3 we have

M+ - B+ � B� � M :
If B� � M , then

M+ - B+ - B� � M
holds. Therefore, in either case M+ � M . ut
Let GenCharSet denote the algorithm obtained from CharSet by replacing

step C2.1 therein with

C2.1. Compute a medial set C of F.

Theorem 2.2.5. Algorithm GenCharSet terminates and its speci�cation is
correct; that is, it computes a characteristic set C of any given non-empty
polynomial set P.

Proof. Algorithm GenCharSet has the same structure as CharSet. While
replacing each B i by an arbitrary medial set M i of Fi, and letting each
enlarged polynomial set Fi+1 be Fi[Ri[M i , we should get a sketch similar
to (2.2.3), but each M i is no longer a subset of Fi. Then, the termination of
GenCharSet is guaranteed by Lemmas 2.2.1 and 2.2.4. From the formation of
each Fi and the pseudo-remainder formula, the correctness is easily proved
by an argument similar to the correctness proof of CharSet. ut
By taking di�erent medial sets, one may get di�erent variants of Al-

gorithm CharSet. In particular, if basic set is taken as medial set, then
GenCharSet is identical to CharSet. Now let CharSetN denote the algorithm
obtained from CharSet by replacing F [ R in the last line with C [ R.
Then CharSetN computes a medial set of the input polynomial set. While
replacing step C2.1 in GenCharSet by

C2.1. Compute C  CharSetN(F).

one obtains immediately a modi�cation of CharSet as mentioned at the
beginning of this subsection.

If one intends to compute triangular sets only, the algorithm may have
plenty of scope for variation.Various modi�cations of CharSet lead naturally
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to modi�cations of the characteristic series algorithms, for which we omit
the details. The reader may also refer to Chou (1988), Ko (1988) and Chou
and Gao (1990b) and other relevant work for variants, modi�cations and
extensions.
Let [P;Q] be a polynomial system. From (2.2.7) one obtains the following

zero decomposition

Zero(P=Q) =
e[

i=1

Zero(C i=Ii[Q); (2.2.8)

in which C i is an ascending set and Ii = ini(C i ) for each i. In (2.2.8), one
can delete the component Zero(C i=Ii[Q) when 0 2 prem(Q; Ci ) for some
i. So we may assume that 0 62 prem(Q; Ci ) for any i. Moreover, one can
replace Ii[Q in (2.2.8) by D i = Ii[ prem(Q; Ci) for each i, so that

Zero(P=Q) =
e[

i=1

Zero(C i=D i ); (2.2.9)

where each [C i ; D i ] is clearly a �ne triangular system.

De�nition 2.2.7. A �nite set or sequence 	 of (�ne) triangular systems
T1; : : : ;Te in K[x] is called a (�ne) triangular series. It is called a (�ne)
triangular series of a polynomial system P in K[x] if (2.1.8) holds.
A (�ne) triangular series of [P;;] is also called a (�ne) triangular series

of the polynomial set P.
	 is called a characteristic series of P = [P;Q] if (2.1.8) holds and

prem(P;Ti) = f0g for every i.
When 	 = ;, it is understood that Zero(P) = ;.
Clearly, the set of �ne triangular systems [C 1 ; D1 ]; : : : ; [Ce ; D e ] in (2.2.9)

is a characteristic series of [P;Q].

Remark 2.2.4. Weak-medial sets and quasi-medial sets may be similarly
de�ned. The corresponding weak- or quasi-characteristic sets can be com-
puted by the algorithm obtained from GenCharSet by replacing medial set
with weak-medial set or quasi-medial set. One can also compute weak-
characteristic series from polynomial sets or polynomial systems by devis-
ing similar algorithms.

Remark 2.2.5. A (weak-, quasi-) medial set computed by CharSetN from P
is called a (weak-, quasi-) N-characteristic set of P. For a (weak-, quasi-)
N-characteristic set C , the zero relations (2.2.5) and (2.2.6) no more hold;
we only have

Zero(P)� Zero(C ):

It is worth noting that (weak-, quasi-) N-characteristic sets are sometimes
su�cient for applications such as solving systems of algebraic equations.
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If, in particular, C has only �nitely many zeros, whether every zero of C is
also a zero of P can be veri�ed by evaluation.

Remark 2.2.6. To determine whether a (weak-, quasi-) N-characteristic set
C is indeed a (weak-, quasi-) characteristic set, one has to follow Algorithm
GenCharSet to verify whether all the polynomials in the input set have
pseudo-remainder 0 with respect to C . Experiments show that in most
cases the pseudo-remainders are 0, i.e., GenCharSet terminates after the
�rst iteration of the while-loop. The veri�cation of 0 pseudo-remainders
often takes a great amount of computing time. There are some strategies
which can be used to partially avoid the veri�cation of 0 pseudo-remainders.
This is done by examining the factor-relations of some initials and removed
factors (see Wang 1992b).

Most of the algorithms presented in this thesis have been implemented
by the author in Maple, a popular computer algebra system. In particular,
a package that implements a number of characteristic-set-based algorithms
has been publicly available with the Maple share library since early 1991.
The current version of the package can be obtained via WWW as:

http://www-leibniz.imag.fr/ATINF/Dongming.Wang/charsets-2.0.tar.Z

This thesis focuses on the development of theory and algorithms. Imple-
mentation issues will not be discussed, neither will any experimental timing
statistics and comparison among the algorithms be provided. The reader
may consult relevant research publications for more information. Neverthe-
less, a number of remarks are given as tips for e�cient implementation of
the algorithms. In general, one can skip reading the remarks if only the
theoretical aspect is of concern.

2.3 Seidenberg's algorithm re�ned

The goal of this section is to present a decomposition algorithm that splits
polynomial systems whenever pseudo-division is performed. Using this algo-
rithm, triangular series are computed instead of characteristic series. One
advantage of this is that the veri�cation of 0 remainders is completely
avoided. We employ a pure top-down elimination from xn to x1 which is
essentially due to Seidenberg (1956a, 1956b). In comparison, the elimina-
tion in CharSet may be considered as performed simultaneously for all the
variables.
As a triangular set, not necessarily �ne, may not be well behaved, it is

impossible to set up the whole theory for characteristic sets in the quasi-
sense. Characteristic sets computation in the standard or the weak-sense
often leads to rapid increase of polynomial size. For in this case, any poly-
nomial or its initial has to be reduced with respect to the others in an
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ascending set. To control the increase of polynomial size and for other rea-
sons, we use triangular system [T;U], in which prem(I;T) for all I 2 ini(T)
are collected, together with other polynomials, as U.
Moreover, computing a characteristic set of P[ fIg as in CharSer may

have to perform pseudo-divisions which have been done already in the way
of computing the characteristic set C of P. In other words, there may be
repeated computation of pseudo-remainders which is unnecessary. To avoid
such repetition and to keep maximal amount of information for subsequent
computation, we shall retain partially triangularized systems using the data
structures of triplets and quadruplets.
Before describing the elimination algorithm, let us �rst prove the follow-

ing simple lemma.

Lemma 2.3.1. Let T be a non-constant polynomial with ini(T ) = I and
[P;Q] a polynomial system in K[x], and R= prem(P; T )n f0g. Then
Zero(P[ fTg=Q) = Zero(R[ fTg=Q[ fIg) [ Zero(P[ fI; red(T )g=Q):

(2.3.1)

Proof. For every polynomial P 2 P, pseudo-dividing P by T in xi leads to
a pseudo-remainder formula of the form

IqP = AT +R; (2.3.2)

where A;R 2K[x] and the integer q > 0. For any

�x 2 Zero(P[ fTg=Q);
we have

T (�x) = 0 and P (�x) = 0; 8P 2 P;
so R(�x) = 0 for all R 2 R. Clearly, Q(�x) 6= 0 for all Q 2 Q. If I(�x) 6= 0,
then

�x 2 Zero(R[ fTg=Q[ fIg): (2.3.3)

Otherwise, we have I(�x) = 0 and thus red(T )(�x) = 0; therefore

�x 2 Zero(P[ fI; red(T )g=Q): (2.3.4)

This shows that the left-hand side is contained in the right-hand side of
(2.3.1). To show the opposite, one sees that if �x satis�es (2.3.4), then
T (�x) = 0 and thus �x 2 Zero(P[ fTg=Q). Otherwise, let (2.3.3) hold.
By (2.3.2) we have P (�x) = 0 for all P 2 P, so �x 2 Zero(P[ fTg=Q) as
well. ut
For any integer 1 � i � n and polynomial set P, the set of those poly-

nomials in Pwhich involve the variables x1; : : : ; xi only is denoted by P(i).
Symbolically,

P(i) , P\K[x1; : : : ; xi]:
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Moreover, let
P[i] , PnP(i); Phii , P(i) nP(i�1):

For any polynomial system P = [P;Q], de�ne

P(i) , [P(i);Q(i)]; Phii , [Phii;Qhii]:

A polynomial set P is said to be of level i, denoted as level(P) = i, if
P � K[x1; : : : ; xi] and Phii 6= ;, i.e., i is the smallest integer such that
P�K[x1; : : : ; xi]. The level of P is also called the level of P.
Now we introduce a data structure called triplet which will be used in

the presentation of several algorithms.

Data structure. A triplet of level i (1 � i � n) is a list [P;Q;T] of three
elements, where

(a) [P;Q] is a polynomial system of level i in K[x];

(b) T, if non-empty, is a triangular set in K [x] with T(i) = ;.
When speaking about a polynomial system [P;Q], we are concerned with

Zero(P=Q). Trivially,Pmay be written as P= P(i)[P[i] for every i. It may
happen that, for some i, P(i) is of level i and P[i] can be ordered as a
triangular set T. In this case, [P(i);Q;T] is a triplet, with which Zero(P(i)[
T=Q) is of concern.
Our elimination procedure will start with a triplet [P;Q;T] with T= ;.

The variables xi are eliminated and the obtained, triangularized polynomi-
als are adjoined to Tsuccessively for i = n; n� 1; : : : ; 1.
Let i be a positive integer and [P;Q] a polynomial system of level i.

Clearly, F = Phii 6= ; and every polynomial in F has class i. We want
to eliminate the variable xi for the polynomials in F, so that after the
elimination only one polynomial has class i. For this purpose, let us take
one polynomial T from F which has minimal degree in xi and pseudo-divide
all the polynomials in F n fTg by T in xi. Meanwhile, ini(T ) is assumed
to be non-zero and the case in which ini(T ) happens to be 0 is considered
disjunctively by replacing T with ini(T ) and red(T ). Then, we reset F to
be fTg [ prem(F; T ) n f0g and repeat the above process. In this way, we
shall �nally get a single polynomial T in F which has class i and a set of
other polynomial systems of level � i.
The procedure explained above is described in the following algorithmic

form.

Algorithm Elim: [T;F;G ;�] Elim(P;Q; i). Given an integer i > 0 and
a polynomial system [P;Q] of level i in K[x], this algorithm computes a
polynomial T of class i, a polynomial system [F;G ] of level � i � 1 and a
set � of polynomial systems of level � i such that

Zero(P=Q) = Zero(F [ fTg=G) [
[

[P�;Q�]2�

Zero(P�=Q�): (2.3.5)
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E1. Set T  0, F P, G Q, � ;.
E2. While Fhii 6= fTg do:
E2.1. Let T be an element of Fhii with minimal degree in xi.

E2.2. Set
� � [ f[F n fTg [ fred(T ); ini(T )g;G ]g;
G G [ fini(T )g:

E2.3. Compute F fTg [ prem(F; T ) n f0g.
E3. Set F F n fTg.

Proof. Since P is of level i, initially Fhii is neither empty nor equal to
fTg = f0g. One sees clearly that every substep of E2 terminates. As in each
iteration of this while-loop deg(T; xi) decreases at least by 1, after a �nite
number of steps all the non-zero pseudo-remainders of the polynomials in
F with respect to T will have class < i. Then, the set Fhii becomes fTg
and the while-loop terminates.
The zero relation (2.3.5) follows from repeated application of the relation

(2.3.1) in Lemma 2.3.1. ut
Note that step E2.2 can be skipped when ini(T ) is a constant, and the

pseudo-remainders need be computed in step E2.3 actually only for the
polynomials in F[i�1] n fTg.
Example 2.3.1. The following polynomial set

P= fx31 � x6 � x� y; x8 � z; x10� tg;

popularized by L. Robbiano (according to C. Traverso and L. Donati), was
considered in Wang (1993). Here and later on it will be used to illustrate
several algorithms. One may observe that Pis already a triangular set with
respect to the variable ordering x � y � z � t. But, for our purpose, we
order the variables as t � z � y � x.
To see how Elim works, consider the polynomial system [P;;] of level 4

as input. Initially, set

T  0; F P; G ;; � ;

in step E1.
Now come to the while-loop. First, take T = x8 � z from F[3] = F in

step E2.1 which has minimal degree 8 in x and initial I = 1. Since I is a
constant, we can skip step E2.2. Pseudo-dividing the two other polynomials
in F = Pby T , one gets two non-zero pseudo-remainders

R1 = z3x7 � x6 � x� y; R2 = zx2 � t;
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where lv(R1) = lv(R2) = x. So in step E2.3, update F fT;R1; R2g.
For the second loop, take T = R2 from F[3] = F in step E2.1 which has

minimal degree 2 in x and initial I = z. In step E2.2, set

� f[fx8 � z;R1; z;�tg; ;]g; Q fzg:
Similarly, pseudo-dividing the two other polynomials in F by T = R2 yields
the pseudo-remainders

R3 = �z5 + t4; R4 = t3z3x� z3x� z3y � t3

with lv(R3) = z and lv(R4) = x. Then set F fR2; R3; R4g in step E2.3.
For the third loop, set T  R4 in step E2.1, where deg(R4; x) = 1 <

deg(R2; x) and the initial t3z3�z3 of R4 is simpli�ed by z 2 Q to I = t3�1.
In step E2.2 is added the polynomial system

[fR2; R3;�z3y � t3; t3 � 1g; fzg]
to � and the polynomial t3 � 1 to Q. Pseudo-dividing R2 by T = R4, we
have

R5 = prem(R2; R4) = z6y2 + 2t3z3y � t7z5 + 2t4z5 � tz5 + t6

with lv(R5) = y. Finally, set F fR4; R3; R5g and the while-loop termi-
nates.
The algorithm terminates after deleting T from F in step E3. The output

consists of T = R4, the polynomial system

[F;G ] = [fR3; R5g; fz; t3 � 1g]
and the set � of 2 other polynomial systems. ut
Now, let us explain how to decompose a polynomial system [P;Q] into

triangular systems by using Elim as the main subalgorithm. This is done
by performing an elimination top-down from xn to x1. More concretely, for
each xi, i = n; : : : ; 1, one proceeds as follows.
If Phii = ; then go for next i. Otherwise, let T 2 Phii have minimal

degree in xi. Then

P= 0;Q 6= 0 ()
�
P� = 0; I = 0; red(T ) = 0; Q 6= 0; or
prem(P; T ) = 0; T = 0; Q 6= 0; I 6= 0;

where
P� = Pn fTg; I = ini(T ):

Therefore we have

Zero(P=Q) = Zero(P�[ fI; red(T )g=Q)
[Zero(prem(P; T )[ fTg=Q[ fIg)

= � � � (repeat recursively)

=
e[

i=1

Zero(Ti=Ui):
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The above sketch is made precise in the following algorithm.

Algorithm TriSer: 	 TriSer(P;Q). Given a polynomial system [P;Q] in
K[x], this algorithm computes a �ne triangular series 	 of [P;Q].

T1. Set 	 ;, � f[P;Q; ;]g.
T2. While � 6= ; do:

T2.1. Let [F;G ;T0] be an element of � and set � � n f[F;G ;T0]g.
T2.2. Compute [T;U;
] PriTriSys(F;G ).

T2.3. Set

� � [ f[F�;G� ;T�[T0] : [F�;G� ;T�] 2 
g:
If T[T0 6= ; then set 	 	 [ f[T[T0;U]g.

The subalgorithm PriTriSys is described as follows.

Algorithm PriTriSys: [T;U;
] PriTriSys(P;Q). Given a polynomial sys-
tem [P;Q] inK[x], this algorithm computes a �ne triangular system [T;U]
and a set 
 of triplets such that

Zero(P=Q) = Zero(T=U)[
[

[P�;Q�;T�]2


Zero(P� [T�=Q�):

P1. Set T ;, F P,U Q, 
 ;.
P2. For i = level(P); : : : ; 1 do:

P2.1. If F\K n f0g 6= ; then the algorithm terminates. If level(F) < i
then go to P2 for next i.

P2.2. Compute [T;F;U;�] Elim(F;U; i) and set


 
 [ f� [ [T] : � 2 �g:

P2.3. Compute U prem(U; T ).

P2.4. If 0 2 Uthen the algorithm terminates else set T [T ][T.

In step T2 of TriSer, the set � of triplets increases and decreases, and
meanwhile the triangular systems [T;U] are produced. This procedure ter-
minates when � becomes empty. Within the while-loop, for each triplet
[F;G ;T] of level ` taken from � the variables are eliminated, successively
from x` to x1, by the subalgorithm Elim.
As before, when Zero(P=Q) = ; is detected in TriSer, we have e = 0 and

	 = ;.
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Example 2.3.2. Let us recall Example 2.3.1 and illustrate TriSer with the
input system [P;;]. The sets 	 and � are initially set to ; and f[P; ;; ;]g,
respectively.
Consider the while-loop. First, the only triplet in � is taken and deleted

from� in step T2.1. We turn to PriTriSys in step T2.2; �rst iterate for i = 4.
Call of Elim in step T2.2.2 yields the polynomial T = R4, the polynomial
system

[F;G ] = [fR3; R5g; fz; t3 � 1g]
and the set � as given in Example 2.3.1. Thus, two triplets are formed
from the two polynomial systems of � and are added to �.
Since the two polynomials in G have leading variables � x, the execution

of step T2.2.3 is trivial and does not update the value of any variable. In
step T2.2.4, set T [R4].
For i = 3 and 2, the polynomials R5 and R3 in F are chosen as T in

step T2.2.2, respectively, and no elimination is necessary. As the pseudo-
remainders of the two polynomials in G with respect to R5 and R3 are
themselves, G is not updated in step T2.2.3. Therefore, we obtain the �rst
triangular system [T1;U1] with

T1 = [R3; R5; R4]; U1 = fz; t3 � 1g;
which is added to 	 in step T2.3.
Now there are two triplets in � which remain to be considered. For the

�rst [fT;R1; z;�tg; ;; ;], the two polynomials T;R1 have leading variable
x, of which R1 has lower degree 7 and initial z3  z. Here and elsewhere,
 stands for \simpli�ed to." One may split the computation to two cases
according as z = 0 and z 6= 0 by strictly following the described algorithm,
which is somewhat complicated. Actually, we may simplify T and R1 by
z = 0 and t = 0 and make the resulting polynomials squarefree. Then, the
second triangular set T2 = [t; z; y; x] is obtained immediately, with U2 = ;.
For the other triplet

[F;G ;T] = [fR3; R2;�z3y � t3; t3 � 1g; fzg; ;];
the polynomials

R2; �z3y � t3; R3; t3 � 1

have leading variables x; y; z; t, respectively, and thus already constitute a
triangular set. Hence, we get

T3 = [t3 � 1; R3;�z3y � t3; R2]; U3 = fzg:
ut

Proof of TriSer Termination. We only need to prove that the while-loop
terminates. For any triplet  taken from � in step T2.1 of TriSer, let F be
the �rst component of  and P� the �rst component of some polynomial
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system in � produced by Elim from  . Then, from the replacement of T
by its initial and reductum in step E2.2 of Elim one sees clearly that either

level(P�) < level(F); or level(P�) = level(F) = `:

In the latter case, the minimal degree in x` of the polynomials in P�h`i
is less than that of the polynomials in Fh`i . Since both level and degree
are positive integers, any steadily decreasing sequence of levels or minimal
degrees is �nite. Therefore, the while-loop can only have �nitely many
iterations. This proves the termination of TriSer.

Correctness. Let us view Algorithm TriSer as for computing a multi-branch
tree T starting from its root with which the triplet [P;Q; ;] is associated
(see Fig. 3).
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Set P = [P;Q]. With each node or leaf i of T , a triplet [Pi;Qi;Ti] is
associated such that after the execution of every step1 of TriSer the zero
relation

Zero(P) =
[

i over all leaves of T

Zero(Pi[Ti=Qi) (2.3.6)

is preserved. This is because the relation (2.3.1) implies that

Zero(P[T=Q) = Zero(F[fTg[T=G)[
[

[P�;Q�]2�

Zero(P�[T=Q�) (2.3.7)

for any T, and because Zero(F[fTg[T=G) remains unchanged when step
T2.2.3 is executed. The branches are generated clearly by the subalgorithm

1For steps T2.2.2 and T2.2.3, the polynomial T is taken into account of the
triplet in process. Namely, Pi corresponds to F [ fTg.
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Elimwith the zero relation (2.3.1) and thus (2.3.7) above preserved. We can
of course cut those leaves i for which Pi contains a non-zero constant or
Qj contains 0 at any time. If all the leaves are cut o�, then Zero(P) = ;.
Otherwise, when the algorithm terminates, Pi is empty for every leaf i of
T . In this case, the corresponding pair Ti = [Ti;Ui] = [Ti;Qi] is obtained
and the zero decomposition (2.3.6) has the form (2.1.8).
Next we show that each [Ti;Ui] is a �ne triangular system, viz.,

ini(T )(�x) 6= 0; for any T 2Ti; �x 2 Zero(Ti=Ui);

and 0 62 prem(Ui;Ti). Let Ti = [T1; : : : ; Tr] with

ini(Tj) = Ij ; cls(Tj) = pj; j = 1; : : : ; r:

One sees that each Ij is adjoined in step E2.2 of Elim to the set G . Since
cls(Ij) < pj, Ij remains in G after the execution of T2.2.3 and T2.2.4 for
iteration i = pj. In the next iteration i = pj�1, Ij will be replaced by its
pseudo-remainder (which is non-zero, for otherwise this leaf is cut away)
with respect to Tj�1. This pseudo-remainder will further be replaced by its
non-zero pseudo-remainder with respect to Tj�2 in the iteration i = pj�2,
and so on. Therefore,

prem(Ij ;Ti) = prem(Ij; [T1; : : : ; Tj�1])

is contained in Ui for all j. From the pseudo-remainder formula (2.1.2),
one knows that any zero of Ij which is also a zero of Ti must be a zero of
prem(Ij ;Ti) 2 Ui. Hence, Ij(�x) 6= 0 for every j and �x 2 Zero(Ti=Ui).
Since all the polynomials inUi are actually the non-zero pseudo-remainders

of some initials of polynomials with respect to Ti, one sees that 0 62
prem(Ui;Ti) for every i. Therefore, each [Ti;Ui] is a �ne triangular sys-
tem and the proof is complete. ut
Algorithm TriSer implements the strategies of top-down elimination and

splitting mentioned at the beginning of this section. It is structurally simple
and practically e�ective. Note that the second component of a triangular
system computed by TriSer may contain numerous polynomials, which in-
creases the solution size of the problem. Fortunately, this drawback will
disappear when the computed �ne triangular systems are made regular,
simple or irreducible (see Theorems 3.4.6, 4.3.11 and 5.1.11).
By TriSer the decomposition tree as in Fig. 3 is computed depth-�rst.

When the basic ideas of the algorithm are understood, one can design the
corresponding breadth-�rst algorithm without essential di�culty.

De�nition 2.3.1. Any (�ne) triangular system computed by the algorithm
PriTriSys from a polynomial system P in K[x] is called a (�ne) principal
triangular system of P.

Proposition 2.3.2. Let P � K[x] and [T;U] be a principal triangular
system of [P; ;]. Then Tis a quasi-medial set of P.
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Proof. It is clear that T� Ideal(P) and T is a quasi-ascending set. So we
only need to prove that Thas rank not higher than that of any quasi-basic
set B of P, i.e., T- B . For this purpose, let

B = [B1; : : : ; Bs]; T= [T1; : : : ; Tr]

and pi = cls(Bi). Since B1 2 P and cls(B1) = p1, Php1i 6= ; and thus
T contains an element of class p1. This implies that cls(T1) � cls(B1).
If cls(T1) < cls(B1), then T� B and the proposition is already proved.
Otherwise, cls(T1) = cls(B1). From the elimination for each i, one knows
that ldeg(T1) � ldeg(B1). Hence either T1 � B1 or T1 � B1. In the former
case, the proposition is proved. Suppose otherwise the latter happens.
Similarly, Tshould contain a polynomial of class p2 and thus cls(T2) �

cls(B2), etc. Using the same argument, one knows that either there is a
j � min(r; s) such that

T1 � B1; : : : ; Tj�1 � Bj�1; while Tj � Bj ;

or
s = r; and T1 � B1; : : : ; Tr � Br :

In any case, T- B and the proposition is proved. ut

Remark 2.3.1. It appears that Algorithm TriSer may produce a large num-
ber of branches. Nevertheless, the branch problem here is actually not more
serious than that in CharSer. This is partially because for many of the
branches produced, the corresponding polynomial systems have no zeros.
In this situation, more polynomials in the second component of a poly-
nomial system, higher possibility is created to discard the system. Some
analysis shows that the number of involved pseudo-divisions for the tri-
angularization process in TriSer is similar to that in CharSer. Due to the
advantages explained before, the computation for every individual branch
in TriSer is less expensive. However, at the implementation level heuristic
detection of redundant components is always necessary and pro�table.

2.4 Subresultant-based algorithm

The decomposition algorithmTriSerS presented in this section has the same
functionality and employs the same strategies of splitting and top-down
elimination as TriSer. For the di�erence: TriSerS is based on computing
subresultant chains. Let us recall the theory of subresultants and the re-
lations between PRS and subresultant chains reviewed in Sect. 1.3. It has
been widely recognized that forming subresultant chains is one of the most
e�cient ways to compute PRS. In our case, the process allows in particular
to decompose any polynomial system into simple systems (see Sect. 3.3).
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First we demonstrate how the computation of subresultant chains is incor-
porated into TriSerS as the core operation.
The subresultant chain of two polynomials has the well-known block

structure as shown in Theorem 1.3.4 and Fig. 1 which has been exten-
sively studied, for example, in Collins (1967), Brown and Traub (1971),
Loos (1983) and Mishra (1993). For our purpose, it is su�cient to use the
existing results without entering into details of the theory of subresultants.
As before, let R be a commutative ring with identity and K a �eld of
characteristic 0. For the decomposition algorithms based on subresultant
chains, the following lemma is of particular importance.

Lemma 2.4.1. Let S�+1 and S� be two polynomials inR[x] with deg(S�+1,
x) � deg(S�; x) > 0 and

S�+1; S�; : : : ; S0

be the subresultant chain of S�+1 and S� with respect to x, with PSC chain

R�+1; R�; : : : ; R0:

Then for any 1 � i � �,
Si 6= 0; Si�1 = � � � = S0 = 0() Ri 6= 0; Ri�1 = � � � = R0 = 0:

Proof. Corollary 7.7.9 in Mishra (1993, p. 262). ut
Recall the SRS

Sd2 ; : : : ; Sdr

of S�+1 and S� with respect to xk in De�nition 1.3.4. We rename these
regular subresultants H2; : : : ;Hr and set P1 = S�+1; P2 = S�. Clearly,
H2 v P2. As before, xfig stands for x1; : : : ; xi or (x1; : : : ; xi), and similarly
for �xfig, etc.

Lemma 2.4.2. Let P1 and P2 be two polynomials inK[xfkg] with deg(P1,
xk) � deg(P2; xk) > 0, H2; : : : ;Hr be the SRS of P1 and P2 with respect
to xk, I = lc(P2; xk), and Ii = lc(Hi; xk) for i = 2; : : : ; r. Then

(a) for any 2 � i � r and �xfk�1g 2 Zero(fIi+1; : : : ; Irg=IIi),
gcd(P1(�x

fk�1g; xk); P2(�x
fk�1g; xk); xk) = Hi(�x

fk�1g; xk):

(b)

Zero(fP1; P2g=I) =
r[

i=2

Zero(fHi; Ii+1; : : : ; Irg=IIi): (2.4.1)

Proof. (a) Let S : S�+1; S�; : : : ; S0 be the subresultant chain of P1 = S�+1
and P2 = S� with respect to xk, with PSC chain

R�+1; R�; : : : ; R0
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and block indices d1; d2; : : : ; dr. Then, Hi = Sdi and Ii = Rdi for 2 � i � r.
By De�nition 1.3.4, for any 0 � j � � and j 62 fd2; : : : ; drg, Sj is

defective, so Rj is identically zero. Let

�xfk�1g 2 Zero(fIi+1; : : : ; Irg=IIi):
Then Rj(�xfk�1g) = 0 for 0 � j � di � 1. Set

�Sj = Sj(�xfk�1g; xk); 0 � j � �+ 1;

�Pi = Pi(�xfk�1g; xk); i = 1; 2;

�Hi = Hi(�xfk�1g; xk); 2 � i � r:
(2.4.2)

By Lemma 2.4.1,
�Sdi�1 = � � � = �S0 = 0

and �Hi = �Sdi is a non-zero polynomial in xk. Note that the specialization of
xfk�1g to �xfk�1g induces a homomorphism that maps the coe�cients of P1
and P2 in xk to numbers in some extension �eld ofK . By Proposition 1.3.5,
each �Sj may di�er from the jth subresultant of �P1 and �P2 with respect
to xk at most by a factor of some power of I(�xfk�1g) 6= 0. According to
Theorem 1.3.4 about the block structure of subresultant chains, there exists
an integer d, di � d � �, such that �Sd v �Sdi . It follows from Theorem 1.3.6
that �Sd is similar to the last polynomial in the subresultant PRS of �P1 and
�P2 with respect to xk. Therefore,

gcd( �P1; �P2; xk) = �Sd v �Sdi = �Hi:

(b) For any �xfk�1g 2 Zero(;=I), there must be an i (2 � i � r) such that

Ii(�x
fk�1g) 6= 0; Ii+1(�x

fk�1g) = � � � = Ir(�x
fk�1g) = 0:

Thus, according to (a)

�Hi = gcd( �P1; �P2; xk);

where �Hi and �P1; �P2 are as in (2.4.2). The zero relation follows immediately.
ut

Lemma 2.4.2 (a) may be simply stated as: gcd(P1; P2; xk) = Hi when
Ii+1 = 0; : : : ; Ir = 0 and IIi 6= 0 for any 2 � i � r. A similar wording will
be used for squarefreeness in later chapters.
Now, we show how to decompose a polynomial system [P;Q] in K[x]

into triangular systems by using subresultant chains. Again, let us perform
a top-down elimination for xk, k = n; : : : ; 1.
If, trivially, Phki = ;, then proceed for next k. Consider the simple case
jPhkij = 1 and let P 2 Phki with I = ini(P ). Then

P= 0;Q 6= 0 ()
(
P= 0;Q 6= 0; I 6= 0; or

Pn fPg = 0; I = 0; red(P ) = 0;Q 6= 0:
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Here two subsystems are produced. For the �rst, we have obtained a single
polynomial P in xk whose initial is assumed to be non-zero, so the process
can continue for next k. For the second, the minimal degree in xk of the
polynomials of class k has decreased. So we can assume that the subsystem
may be dealt with by induction.
Now come to the more general case jPhkij > 1. Let P1; P2 2 Phki with P2

having minimal degree in xk and compute the SRS H2; : : : ;Hr of P1 and
P2 with respect to xk. Let I = lc(P2; xk) and Ii = lc(Hi; xk) for 2 � i � r
as in Lemma 2.4.2. Then

P= 0;Q 6= 0 ()

8>>>><
>>>>:

P2 = 0; I = 0; red(P2) = 0; Q 6= 0; or"
P12 = 0;Hi = 0;

Ii+1 = 0; : : : ; Ir = 0

Q 6= 0; I 6= 0;
Ii 6= 0

�

for some 2 � i � r;
where

P2 = Pn fP2g; P12 = Pn fP1; P2g:
It follows that

Zero(P=Q) = Zero(P2[ fI; red(P2)g=Q)[
r[
i=2

Zero(P12[ fHi; Ii+1; : : : ; Irg=Q[ fI; Iig)

= � � � (repeat recursively)

=
e[

i=1

Zero(Ti=Ui):

What has been explained above can be formalized as the following algo-
rithm.

Algorithm TriSerS: 	 TriSerS(P;Q). Given a polynomial system [P;Q]
in K[x], this algorithm computes a �ne triangular series 	 of [P;Q].

T1. Set � f[P;Q; n]g, 	 ;.
T2. While � 6= ; do:
T2.1. Let [T;U; `] be an element of � and set � � n f[T;U; `]g.
T2.2. For k = `; : : : ; 1 do:

T2.2.1. If Thki = ; then go to T2.2.3 else repeat:

T2.2.1.1. Let P2 be an element of Thki with minimal degree in xk
and set

� � [ f[Tn fP2g [ fini(P2); red(P2)g;U; k]g;
U U[ fini(P2)g:
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If jThkij = 1 then go to T2.2.2. Otherwise, let P1 be an
element of Thki n fP2g.

T2.2.1.2. Compute the SRS H2; : : : ;Hr of P1 and P2 with respect
to xk and set Ii lc(Hi; xk) for 2 � i � r. If cls(Hr) < k
then set �r r � 1 else set �r r.

T2.2.1.3. Set

� � [ f[Tn fP1; P2g [ fHi; Ii+1; : : : ; Irg;
U[ fIig; k] : 2 � i � �r � 1g;

T Tn fP1; P2g [ fHr;H�rg;
U U[ fI�rg:

T2.2.2. Compute U prem(U; P2; xk).
T2.2.3. If T\K n f0g 6= ; or 0 2 Uthen go to T2.

T2.3. Set 	 	 [ f[T;U]g, with Tordered as a triangular set.

Proof. The algorithm adopts a top-down elimination from xn to x1. For
each xk, a single polynomial P2 of class k is �rst produced from Thki so
long as Thki 6= ; (step T2.2.1); this polynomial is then used to reduce the
polynomials in U (step T2.2.2). There are two kinds of splitting in the
algorithm. One is performed in step T2.2.1.1 according as the initial of
the considered polynomial vanishes or not: either it is assumed to be non-
vanishing or the polynomial is replaced by the initial and the reductum.
The other kind of splitting is performed for SRS elimination in step T2.2.1.3
according to Lemma 2.4.2. At each time of splitting, one produced system
(corresponding to the case i = r in Lemma 2.4.2) (b) is taken to update
the current system [T;U] and the others are added to �. As in any case of
splitting a polynomial system P into subsystems Pi the zero relation

Zero(P) =
[
i

Zero(Pi)

is preserved, the decomposition (2.1.8) is obtained eventually. In view of
steps T2.2.2 and T2.2.3, each computed triangular system as Ti in (2.1.8)
is �ne.
The termination of the algorithm is guaranteed because in each case of

splitting, new polynomial systems are generated from the current system in
two ways: either replacing one polynomial by another having lower degree in
their common leading variable, or replacing two polynomials by one having
the same class k. For the latter, some polynomials of class smaller than k
may be added. Step T2.2.1 terminates obviously, as in each repetition two
polynomials P1; P2 2 Thki are replaced by one H�r of class k and sometimes
plus a polynomialHr of class < k (see T2.2.1.3). ut
The polynomial set in the following example, considered initially by

M. Bronstein, can be found in Wu (1987b), Chou and Gao (1992), and
Wang (1998).
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Example 2.4.1. Let P= fP1; P2; P3g with
P1 = x2 + y2 + z2 � r2;
P2 = xy + z2 � 1;

P3 = xyz � x2 � y2 � z + 1

and r � z � x � y.
First assume that ini(P2) = x 6= 0 and compute the subresultant chain

of P3; P2 and of P1; P2, respectively, with respect to y. We obtain P3; P2; F
and P1; P2; G with

F = �x4 � z3x2 + x2 � z4 + 2z2 � 1;

G = x4 + z2x2 � r2x2 + z4 � 2z2 + 1:

Thus, P2; F and P2; G are the SRS of P3; P2 and P1; P2 respectively. It
follows that

gcd(P3; P2; y) = gcd(P1; P2; y) = P2

when F = G = 0 and x 6= 0. From the subresultant chain of F and G
calculated in Example 1.3.2, one sees that the SRS of F and G with respect
to x is

G; H2x2; (z4 � 2z2 + 1)2H4;

where H = z3 � z2 + r2 � 1. Hence,

gcd(F;G; x) =

�
G when H = 0;
x2 when z4 � 2z2 + 1 = 0;H 6= 0:

Since x is assumed to be non-vanishing, the latter case is discarded. There-
fore, we get a �ne triangular system [T1;U1] with

T1 = [H;G;P2]; U1 = fxg:
For the case x = 0, a new polynomial set is generated by replacing P2 with
ini(P2) = x and red(P2) = z2 � 1. Following the same procedure, one can
obtain from this polynomial set the second triangular system [T2; ;] with

T2 = [r4 � 4r2 + 3; z + r2 � 2; x; y2 � r2 + 1]:

It follows that
Zero(P) = Zero(T1=x) [ Zero(T2):

ut
Example 2.4.2. By using TriSerS the polynomial set P in Example 2.3.1
can be decomposed into the following reduced triangular systems

T1 = [[�z5 + t4; T2; T3]; ft(t3� 1); zg];
T2 = [[t; z; y; x]; ;]
T3 = [[t(t3 � 1);�z5 + t; tzy2 + 2z3y + 1; zx2 � t]; fzg];
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where

T2 = �tzy2 � 2z3y + t8 � 2t5 � t3 + t2; T3 = t4x� tx� ty � z2;
such that

Zero(P) =
3[

i=1

Zero(Ti):

For comparing the triangular set in T1 with T1 = [R3; R5; R4] in Exam-
ple 2.3.2, we note that

t3T2 = prem(R5; R3; z); �t3T3 = prem(z2R4; R3; z):

ut
Example 2.4.3. Let P= fP1; P2; P3g with

P1 = z(x2 + y2 � c) + 1;

P2 = y(x2 + z2 � c) + 1;

P3 = x(y2 + z2 � c) + 1:

This set of polynomials, originating from a paper by V. W. Noonburg, has
been considered in Gao and Chou (1992), and Wang (1998). Under the
variable ordering c � z � y � x, P can be decomposed by using TriSerS

into 7 �ne triangular systems [T1;U1]; : : : ; [T7;U7] such that

Zero(P) =
7[

i=1

Zero(Ti=Ui);

where

T1 = [2cz4 � 2z3 � c2z2 � 2cz � 1; (cz + 1)y + cz2 � z; 2z2x+ cz + 1];

T2 = [2z4 � 3cz2 + z + c2; zy � z2 + c; x� z];
T3 = [z3 � cz � 1; (z2 � c)y2 + y � cz2 + z + c2; yx� z2 + c];

T4 = [2z4 � 3cz2 + z + c2; (2z3 � 2cz + 2)y � cz2 � z + c2; P3];

T5 = [2z3 � cz + 1; y � z; 2z2x� cx+ 1];

T6 = [c; 2z3 + 1; y � z; 2z2x+ 1];

T7 = [4c3 � 27; 9z + 2c2; 6cy2 � 9y � 4c2; 3yx+ 2c];

U1 = fc; z; cz + 1g;
U2 = fz; z2 � c; 2z2 � cg;
U3 = fz2 � c; yg;
U4 = fz2 � c; z3 � cz + 1; z3 � cz � 1g;
U5 = fz; 2z2 � cg;
U6 = fzg;
U7 = fc; yg:



2.4 Subresultant-based algorithm 59

In computing these triangular systems, some intermediate polynomialswere
factorized over Q. See Remark 2.4.2. ut
Two slightly di�erent data structures are adopted for Algorithms TriSer

and TriSerS. We do so mainly to follow our early idea on the algorithm
design and to show the two possibilities. It is possible to use the data
structure of one algorithm for the other.

Remark 2.4.1. For the implementation of TriSer and TriSerS, some details
have to be taken into account for the sake of e�ciency. For example, a
polynomial system [P;Q] is readily found to have no zero whenever Pcon-
tains a non-zero constant or 0 2 Q. Any factor of a polynomial in P, when
it occurs as a factor in some polynomial in Q, may be removed, and so
may any such factor of other polynomials in Q. Heuristic reduction and
simpli�cation of some polynomials by the others should be adopted. The
usual GCD and squarefree decomposition may be used in combination with
the conditional GCD and squarefree computation. Here is a more technical
trick: for any [P;Q], when jPh1ij � 2, Zero(P=Q) is likely empty and the
emptiness may be tested �rst by computing the GCD of the polynomials
in Ph1i.

Remark 2.4.2. To reduce cost for computing triangular series using CharSer,
TriSer or TriSerS, polynomial systems may be split by heuristically factoriz-
ing some intermediate polynomials at appropriate stage. If some polynomial
in a polynomial set Pcan be factorized, for instance, into two polynomials
and thus [P;Q] can be split into two polynomial systems, say [P0;Q] and
[P00;Q], such that

Zero(P=Q) = Zero(P0=Q)[ Zero(P00=Q);

then one may proceed to decompose [P0;Q] and [P00;Q], respectively, in-
stead of [P;Q]. Polynomial factorization is expensive in general, but making
proper use of it may improve the e�ciency of the decomposition algorithms.
This issue will be treated in more detail in Chap. 4.

As we have seen in the previous sections, the procedures for comput-
ing decomposition (2.1.8) with �ne triangular systems are not complex.
However, a �ne triangular system may have \undesired behavior," so much
more sophisticated algorithms will be developed in the following chapters
for computing various kinds of triangular systems that have better behav-
ior.
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3

Projection and simple systems

The �ne triangular systems computed by Algorithms CharSer, TriSer and
TriSerS are not necessarily perfect . In other words, those triangular systems
which have no zero are not necessarily detected. This issue is to be treated
in this and the following chapters. To get some primitive idea, let us look
at the following example.

Example 3.0.1. Consider the �ne triangular set T= [T1; T2; T3] with

T1 = x2 + u;

T2 = y2 + 2xy � u;
T3 = (x+ y)z + 1

and u � x � y � z. Now I = ini(T3) = x + y. We want to verify whether
Zero(T) = ;. For this, there are four di�erent techniques available.
Factorization. To understand the \undesired behavior" of T, let us observe
that T2 factors as

T2
:
= (y + x)2 = I2

over Q(u; x) with minimal polynomial T1 for x. It is then obvious that T
has no zero.

Projection. Instead of algebraic factorization, we calculate

prem(I2; T2) = x2 + u = T1;

where deg(T2; y) = 2 is taken for the exponent of I. Thus the same conclu-
sion is reached.
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Squarefree decomposition. As another way, let us form

prem(T2;
@T2
@y

) = �4(x2 + u) = �4T1:

This says that T2 is the square of some polynomial T when T1 = 0. T can
be easily determined to be I = y + x. Therefore, one can conclude that T
has no zero.

GCD computation. Finally, we compute

prem(T2; I2) = �(x2 + u) = �T1:

It follows that I is the GCD of T2 and I when T1 = 0. So Zero(T) = ; is
veri�ed as well. ut
Our aim in what follows is to develop the above techniques into system-

atic algorithms. This is done �rst by incorporating projection into some
algorithms. In Sects. 3.3 and 5.1, we shall consider the problem by means
of other devices, for which the concepts of simple systems and regular sys-
tems will play a role. The perfectness of triangular systems may also be
guaranteed when one arrives at an irreducible decomposition, the central
theme of Chap. 4.

3.1 Projection

Let a polynomial system [P;Q] in K[x1; : : : ; xn] be given. We want to
eliminate the variables xn; : : : ; xk+1 (0 � k < n) and to obtain �nitely
many other polynomial systems [P1;Q1]; : : : ; [Pe;Qe] inK[x1; : : : ; xk] such
that

Zero(P=Q) 6= ; ()
e[

i=1

Zero(Pi=Qi) 6= ;:

When k = 0, Zero(P=Q) 6= ; if and only if there exists an i such that
Pi n f0g = ; and 0 62 Qi. It is also expected that for any

(�x1; : : : ; �xk) 2
e[

i=1

Zero(Pi=Qi)

one can �nd �xk+1; : : : ; �xn in some extension �eld ~K ofK such that (�x1; : : :,
�xn) 2 Zero(P=Q). An elimination procedure meeting these two require-
ments only is relatively simple. However, the algorithms to be presented
in Sect. 3.2 are somewhat involved mainly because we also want to es-
tablish the zero relationship between the given system and the eliminated
(triangular) systems.
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Basic lemmas

Recall the notations P(i);P[i] and Phii introduced in Sect. 2.3. We continue
writing xfig for x1; : : : ; xi or (x1; : : : ; xi) with x = xfng, and similarly
�xfig for �x1; : : : ; �xi or (�x1; : : : ; �xi), etc. Unless stated otherwise, ~K always
denotes some extension �eld of K .
For any �x1; : : : ; �xi 2 ~K, the set of polynomials obtained from Pby sub-

stituting �x1; : : : ; �xi respectively for x1; : : : ; xi is denoted by Ph�x;ii. Symbol-
ically,

Ph�x;ii , Pjxfig=�xfig = Pjx1=�x1;:::;xi=�xi :

For any polynomial system P = [P;Q], we have

Ph�x;ii , [Ph�x;ii;Qh�x;ii]:

De�nition 3.1.1. For any polynomial system P inK[x] and 1 � i � n�1,
the projection of Zero(P) onto xfig is de�ned to be

ProjxfigZero(P) ,
�
�xfig 2 ~K

i
:
9�xi+1; : : : ; �xn 2 ~K
such that �x 2 Zero(P)

�
:

Moreover, we de�ne
ProjxZero(P) , Zero(P)

for the extreme case i = n, and

ProjZero(P) ,
� ; if Zero(P) = ;;
f0g otherwise

for the extreme case i = 0.

It is easy to see that

ProjxfigZero(P) 6= ; () Zero(P) 6= ;:

And, for i elements �x1; : : : ; �xi 2 ~K ,

�xfig 2 ProjxfigZero(P) () Zero(Ph�x;ii) 6= ;:

For any polynomial system P = [P;Q], if P[i] = Q[i] = ;, then obviously
ProjxfigZero(P) = Zero(P).

Lemma 3.1.1. Let [P;Q] be a polynomial system of level � i in K [x].
Suppose that Q[i] 6= ; and let H1; : : : ;Hh be all the polynomials in Q[i].
Denote, by Hl1; : : : ;Hlml

, all the non-zero coe�cients of the monomials in
Hl with respect to those variables which are � xi. Then

ProjxfigZero(P=Q) =
[

1�j1�m1;:::;1�jh�mh

Zero(P=Qj1���jh); (3.1.1)
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Zero(P=Q) =
[

1�j1�m1 ;:::;1�jh�mh

Zero(P=Q0
j1���jh

); (3.1.2)

where
Qj1���jh = Q(i) [ fH1j1; : : : ;Hhjhg;
Q0
j1���jh = Q[ fH1j1; : : : ;Hhjhg:

Proof. We �rst prove (3.1.1). For any �xfig 2 ProjxfigZero(P=Q), by def-
inition there exist �xi+1; : : : ; �xn 2 ~K such that �x 2 Zero(P=Q). Clearly,
Hl(�x) 6= 0 and thus

Hl1(�x
fig); : : : ;Hlml

(�xfig)

cannot be all 0 for each l; let j0l be any integer such that Hlj0
l
(�xfig) 6= 0.

Then

�xfig 2 Zero(P=Qj0
1
���j0

h
): (3.1.3)

In the other direction, if �xfig belongs to the right-hand side of (3.1.1), then
there must be some indices j01; : : : ; j

0
h such that (3.1.3) holds. Therefore,

Hl(�x
fig; xi+1; : : : ; xn) 6� 0

for all l, so there are �xi+1; : : : ; �xn 2 ~K such that H1 � � �Hh(�x) 6= 0. This
implies that Hl(�x) 6= 0 for each l. Hence, �x 2 Zero(P=Q) and thus �xfig 2
ProjxfigZero(P=Q).
To show (3.1.2), one �rst sees that the right-hand side is obviously con-

tained in the left-hand side. This is simply because

Zero(P=Q0
j1���jh) � Zero(P=Q)

for each set of j1; : : : ; jh. On the other hand, for any �x 2 Zero(P=Q) let j0l
be any integer such that Hlj0

l
(�xfig) 6= 0 for each l as before. Then

�x 2 Zero(P=Q0
j01���j

0
h
)

and thus �x belongs to the right-hand side of (3.1.2). ut

Remark 3.1.1. The zero relations (3.1.1) and (3.1.2) in Lemma 3.1.1 can be
complicated by replacing Pon the right-hand side with P[ Hj1 ���jh , where

Hj1 ���jh = fHlj : 0 � j � jl � 1; 1 � l � hg n f0g

andHl0 = 0 for l = 1; : : : ; h. This is considered of practical interest because
the more polynomials in the system the easier the elimination may be, in
particular, when the system has no zero. This modi�cation of the zero
relations would lead the subalgorithm ProjA described in Sect. 3.2 to a
more complicated version.
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Lemma 3.1.2. Let T be a polynomial in K[x] with

cls(T ) = i > 0; ini(T ) = I; ldeg(T ) = d;

and [P;Q] a polynomial system of level ` � i � 1 with level(Q)� i.
(a) If Qhii = ;, then for any ` � j � i� 1

ProjxfjgZero(P[ fTg=Q[ fIg) = ProjxfjgZero(P=Q[ fIg): (3.1.4)

(b) Suppose that Qhii 6= ; and let H1; : : : ;Hh be all the polynomials in
Qhii. Set

R = prem((H1 � � �Hh)
d; T ); Q0 = Q(i�1)[ fI;Rg:

Then, for any ` � j � i� 1

ProjxfjgZero(P[ fTg=Q[ fIg) = ProjxfjgZero(P=Q
0); (3.1.5)

Zero(P[ fTg=Q[ fIg) = Zero(P[ fTg=Q0): (3.1.6)

Proof. (a) In this case, all the polynomials in Q have class < i, i.e., Q �
K[xfi�1g]. The left-hand side is obviously contained in the right-hand side
of (3.1.4). For the other direction, consider any ` � j � i� 1 and

�xfjg 2 ProjxfjgZero(P=Q[ fIg):
By de�nition there exist �xj+1; : : : ; �xi�1 2 ~K such that �xfi�1g 2 Zero(P=Q[
fIg). According to the fundamental theorem of algebra, T (�xfi�1g; xi) has
a zero �xi 2 ~K for xi. Thus, �xfig belongs to the left-hand side of (3.1.4).
(b) To prove (3.1.5), �rst consider any

�xfjg 2 ProjxfjgZero(P[ fTg=Q[ fIg): (3.1.7)

Then there exist �xj+1; : : : ; �xi 2 ~K such that

T (�xfig) = 0; I(�xfi�1g) 6= 0; H1 � � �Hh(�x
fig) 6= 0:

By the pseudo-remainder formula

Is(H1 � � �Hh)
d = AT + R (3.1.8)

for some integer s � 0, we have R(�xfig) 6= 0. Therefore, �xfig 2 Zero(P=Q0),
which implies that

�xfjg 2 ProjxfjgZero(P=Q0): (3.1.9)

Now let (3.1.9) hold; then there exist �xj+1; : : : ; �xi 2 ~K such that �xfig 2
Zero(P=Q0). Note that, while T;H1; : : : ;Hh are regarded as polynomials in
K(xfi�1g)[xi], T contains a factor not occurring in any of H1; : : : ;Hh if
and only if R 6= 0. Since R(�xfig) 6= 0, T (�xfi�1g; xi) must contain a factor,
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say T 0, which is not a factor of any Hl(�x
fi�1g; xi), 1 � l � h. Hence, there

must be an ~xi in some algebraic extension �eld of K(�xfi�1g) and thus of
K such that

T (�xfi�1g; ~xi) = 0 while H1 � � �Hh(�x
fi�1g; ~xi) 6= 0

(actually, any zero of T 0 does). Therefore,

(�xfi�1g; ~xi) 2 Zero(P[ fTg=Q[ fIg);
so (3.1.7) holds. This completes the proof of (3.1.5).
Finally, from the formula (3.1.8) it is easy to see that under the condition

I 6= 0, H1 � � �Hh 6= 0 if and only if R 6= 0. Hence (3.1.6) holds true. ut

Projection for triangular systems

De�nition 3.1.2. A triangular system T in K[x] is said to be perfect over
~K (�K) if ~K-Zero(T) 6= ;.
A triangular set T� K [x] is said to be perfect over ~K if [T; ini(T)] is

perfect over ~K.
A triangular set or system inK[x] is said to be perfect (without reference

to any speci�c �eld) if it is perfect over some suitable extension of K .

Consider a �ne triangular system [T;U] with

T= [T1; : : : ; Tr]:

Let cls(Ti) = pi for each i; clearly, 0 < p1 < � � � < pr � n. In general, for
each i and any

�xfpig 2 Zero(Tfig=U(pi))

the existence of �xpi+1; : : : ; �xn 2 ~K such that �x 2 Zero(T=U) is not guar-
anteed. In other words,

[T[pi]h�x;pii;U[pi]h�x;pii]

is not necessarily perfect. We explain how to deal with this situation by
means of projection exhibited in Lemmas 3.1.1 and 3.1.2. Here, projection
is meant to carry out the task in either of the following two cases A and
B. It is considered �rst with respect to Tr .

Case A. If pr = n, this case is skipped. If pr < n and U[pr] = ;, then
proceed with case B below. Suppose, otherwise, that pr < n and U[pr] 6= ;.
LetH1; : : : ;Hh be all the polynomials inU[pr] and denote, byHl1; : : : ;Hlml

,
all the non-zero coe�cients of the monomials in Hl with respect to those
variables which are � xpr for each l. Then, by Lemma 3.1.1

Zero(T=U) =
[

1�j1�m1;:::;1�jh�mh

Zero(T=Uj1���jh); (3.1.10)
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where

Uj1���jh = U[ fH1j1; : : : ;Hhjhg:
To simplify notations, let

J = fj1 � � �jh : 1 � j1 � m1; : : : ; 1 � jh � mhg;

i.e., J is the set of indices of Uj1���jh . Then, for any �xfprg 2 Zero(T=U(pr)),

there exist �xpr+1; : : : ; �xn 2 ~K such that H1 � � �Hh(�x) 6= 0 if and only if

H1j1 � � �Hhjh(�x
fprg) 6= 0 for some j1 � � �jh 2 J :

Or equivalently, we have

ProjxfprgZero(T=U) =
[
j2J

Zero(T=U(pr)
j ):

Case B. Consider each triangular system [T;Uj], j 2 J , and note that

Zero(T=Uj [ ini(T)) = Zero(T=Uj). If U
hpri
j = ;, then

Projxfpr�1gZero(T=Uj) = Zero(Tfr�1g=U(pr�1)
j )

according to Lemma 3.1.2 (a). In this case, proceed next for Tr�1.

Otherwise, let K1; : : : ;Kk be all the polynomials in Uhpri
j . Compute

R = prem((K1 � � �Kk)
ldeg(Tr); Tr); U0

j =Uj nUhpri
j [ fRg:

IfR = 0, then Zero(T=Uj) = ; and the triangular system [T;Uj] is removed.
In the case R 6= 0, application of Lemma 3.1.2 (b) yields

Projxfpr�1gZero(T=Uj) = Projxfpr�1gZero(Tfr�1g=U0(pr)
j );

Zero(T=Uj) = Zero(T=U0j): (3.1.11)

Combining (3.1.10) and (3.1.11) results in

Zero(T=U) =
[
j2J

Zero(T=U0j):

Meanwhile, we have

Proj
xfpr�1gZero(T=U) =

[
j2J

Proj
xfpr�1gZero(Tfr�1g=U

0(pr)
j ):

The above projection cases A and B can be repeated for each triangular

system [Tfr�1g;U0(pr)
j ] with respect to Tr�1, and so forth. In this way, either
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all the split triangular systems are removed and thus Zero(T=U) = ;, or a
�nite sequence of polynomial sets U�

1; : : : ;U�
s are �nally obtained such that

Zero(T=U) =
s[

i=1

Zero(T=U�i): (3.1.12)

In particular, when projection is needed only for xn; : : : ; xk+1, let i be
such that pi < k + 1 � pi+1. Then, the projection is performed �rst for
both cases A and B with respect to Tr; : : : ; Ti+1, and �nally for case A with
p = k in addition. Then

ProjxfkgZero(T=U) =
s[

i=1

Zero(T(k)=U�(k)
i ):

De�nition 3.1.3. Let T = [T;U] be a �ne triangular system in K[x] and k
a non-negative integer. T is said to possess

� the projection property of dimension k if

Zero(T(i)) � ProjxfigZero(T) (3.1.13)

holds for i = k and all i 2 fcls(T ) : T 2T; cls(T ) > kg;
� the strong projection property of dimension k if (3.1.13) holds for all
k � i < n.

When the dimension is not mentioned, it is meant that k = 0.

Lemmas 3.1.1 and 3.1.2 ensure that the above-computed triangular sys-
tems [T;U�j], 1 � j � s, all possess the projection property of dimension
k.
We do not describe the above projection procedure for triangular systems

as a formal algorithm because it is a special case of Algorithm TriSerP in
Sect. 3.2. Case A here is so designed that projection is performed once for all
the variables xn; : : : ; xpr+1. This is mainly for some practical consideration.
Of course, one can modify the procedure in order to project for one variable
each time (see Remark 3.2.1).
For an arbitrary polynomial system P, using CharSer, TriSer or TriSerS

one can compute a �ne triangular series 	 of P. If 	 = ;, then Zero(P) =
;. Otherwise, for each T = [T;U] 2 	 one can project for xn; : : : ; xk+1
to determine the polynomial sets corresponding to U�

i in (3.1.12). When
Zero(T) = ;, it will be detected in the way of projection. Thus, either
Zero(T) = ; is detected for all T 2 	, or a zero decomposition of the form

Zero(P) =
e[

i=1

Zero(Ti)
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is �nally reached, such that

ProjxfkgZero(P) =
e[

i=1

Zero(T(k)i )

and each Ti is a �ne triangular system possessing the projection property

of dimension k. In fact, for any �xfkg 2 Zero(T(k)i ) the zeros of T
[k]h�x;ki
i for

xk+1; : : : ; xn can be successively determined from the triangular system.
As a consequence,

Zero(Ph�x;ki) 6= ;:
Therefore, the requirements we have speci�ed at the beginning of this sec-
tion are all satis�ed. In particular, when k = 0, Zero(P) = ; if and only if
e = 0.

Example 3.1.1. Consider the triangular set T1 = [T1; T2; T3] with

T1 = z3 � z2 + r2 � 1;

T2 = x4 + z2x2 � r2x2 + z4 � 2z2 + 1;

T3 = xy + z2 � 1;

which have been computed in Example 2.4.1. We want to project [T1; fxg]
with k = 0. No projection is needed with respect to T3. To project with
respect to T2, compute

R = prem(x4; T2) = R1x
2 +R2;

where R1 = �z2 + r2 and R2 = �z4 + 2z2 � 1. Thus, [T1; fxg] is split to
[T1; fR1; Rg]; [T1; fR2; Rg]:

For projection with respect to T1, we need compute

R�
1 = prem(R3

1; T1)

= (�3r4 + 5r2 � 3)z2 � (3r4 � 4r2 + 1)z + r6 � 4r4 + 6r2 � 2;

R�
2 = prem(R3

2; T1)

= (�8r2 + 4r6 � 6r4 + 11)z2 � (12r4 � 29r2 + 17)z

�r8 � 4r6 + 16r4 � 11r2 � 1:

Replacing R1 and R2 in the two triangular systems by R�
1 and R

�
2 respec-

tively, we obtain

T1 = [T1; fR�
1; Rg]; T2 = [T1; fR�

2; Rg]:
As all the coe�cients of R�

i with respect to r and z are constants, no further
splitting is needed for each Ti. Therefore,

Zero(T1=x) = Zero(T1) [ Zero(T2)
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and each Ti possesses the projection property. In particular, for any (�r; �z) 2
Zero(T1=R

�
i ),

Zero([ �T2; �T3]=x) 6= ;;
where �Ti = Tijr=�r;z=�z for i = 1; 2; 3. Nevertheless, the original [T1; fxg]
does not satisfy this property. This can be seen easily by taking �r = �z = 1;
then

�T1 = R�
1jr=�r;z=�z = R�

2jr=�r;z=�z = 0; �T2 = x3; �T3 = xy:

It follows that (1; 1) 2 Zero(T1) and (1; 1) 62 Zero(T1=R�
i ). Now,

Zero([ �T2; �T3]=x) = ;:

Finally, we note that projection of T3 = [T2; ;] in Example 2.4.1 does not
modify the triangular system. Therefore, the polynomial set Pgiven there
can be decomposed into three triangular systems T1;T2;T3 such that

Zero(P) =
3[

i=1

Zero(Ti)

and each Ti possesses the projection property. ut
Refer to Remark 3.1.1 and Hj1 ���jh de�ned therein. If the modi�cation

indicated there is incorporated into the above projection process for [T;U],
then in the corresponding places Tshould be replaced by T[Hj , j 2 J . In
this case, one obtains the projection method ofWu (1990). Usually,T[Hj is
no more a triangular set, so its triangular series has to be further computed.
For this reason, Hj was also abandoned by Gao and Chou (1992).

The projection case B is clearly expensive when Uhpri
j 6= ;. For the

pseudo-remainder

prem(
Y

K2Uhpri
j

K ldeg(Tr); Tr)

is di�cult to compute. This projection process can be considerably im-

proved by eliminating polynomials from Uhpri
j via GCD computation and

normalization. See the concepts of regular systems and normal triangular

sets and their computation in Sects. 5.1 and 5.2.
We shall see in Sect. 3.2 how the projection process explained above can

be e�ectively embedded into Algorithm TriSer, so that one does not need
to compute a triangular series before projection.

3.2 Zero decomposition with projection

Refer to the data structure of triplet introduced in Sect. 2.3. Quadruplet
is de�ned now to help understand the algorithms presented in this section.
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Data structure. A quadruplet of level i (1 � i � n) is a list [P;Q;T;U] of
four elements such that [P;Q;T] is a triplet, level(Q) = q � p, and U is a
polynomial set in K[x] with U(q) = ;, where

p =

�
cls(op(1;T)) if T 6= ;;
n otherwise:

(3.2.1)

For any polynomial system [P;Q], one may write Pand Q as

P= P(i)[P[i]; Q= Q(q) [Q[q]

for some i and q such that level(P(i)) = i,P[i] can be ordered as a triangular
set T, and q = level(Q(q)) � p, where p is de�ned in (3.2.1). Let U= Q[q].
Then, [P(i);Q(q);T;U] is a quadruplet, with which Zero(P(i)[T=Q(q)[U)
is of concern.
The subalgorithmProjA below implements Lemma3.1.1. The polynomial

system [P;Q] is split by projection into �nitely many subsystems, of which
one is separated as [P;Q0;T;U0] (in step P2.4) and the others are put into
�. Those polynomials corresponding to H1; : : : ;Hh in Lemma 3.1.1 are
moved from Q to U, forming the output sets Q0 and U0 (in step P1).

AlgorithmProjA: [Q0;U0;�] ProjA(P;Q;T;U; i).Given an integer i > 0
and a quadruplet [P;Q;T;U] of level i, this algorithm computes a polyno-
mial set Q0 of level � i, a polynomial set U0 = U[ Q[i], and a set � of
quadruplets of level i such that

ProjxfigZero(P=Q) = Zero(P=Q0) [
[

[P;Q�;T;U0]2�

Zero(P=Q�); (3.2.2)

Zero(P=Q) = Zero(P=Q0[Q[i]) [
[

[P;Q�;T;U0]2�

Zero(P=Q�[Q[i]); (3.2.3)

where level(Q�) � i.

P1. Set Q0 Q(i), U0 U[Q[i], � ;.
P2. If Q[i] 6= ; then do:

P2.1. Let H1; : : : ;Hh be all the polynomials in Q[i].

P2.2. For l = 1; : : : ; h do:

P2.2.1. Compute

Vl fxj : deg(Hl; xj) > 0; i < j � ng:

P2.2.2. Let Hl be the set of all the non-zero coe�cients of Hl with
respect to Vl. If Hl \K 6= ;, then set ml 1;Hl1 1 else
let Hl1; : : : ;Hlml

be all the polynomials in Hl.
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P2.3. Form

� f[P;Q0[fH1j1; : : : ;Hhjhg;T;U0] : 1 � j1 � m1; : : : ; 1 � jh � mhg:
P2.4. Set

Q0 Q0[ fH11; : : : ;Hh1g; � � n f[P;Q0;T;U0]g:

Proof. No recursive loop is involved in this algorithm, so the termination is
obvious.
To see (3.2.2) and (3.2.3), we �rst note that in step P2.2.2, if Hl\K 6= ;,

then Hl has at least one coe�cient which is a non-zero constant. In this

case, for any �xfig 2 ~K
i
there always exist �xi+1; : : : ; �xn 2 ~K such that

Hl(�x) 6= 0, so one does not need to consider the coe�cients of Hl with
respect to Vl. In other words, Hl is not needed. This is treated by simply
taking ml = 1 and Hl1 = 1.
Except for this minor modi�cation, [P;Q0] here corresponds to the sub-

system in Lemma 3.1.1 for the indices j1 = 1; : : : ; jh = 1, while the [P;Q�]'s
put into � correspond to the subsystems in Lemma 3.1.1 for all the other
indices. Therefore, (3.2.2) and (3.2.3) are actually an alternative form of
(3.1.1) and (3.1.2) in Lemma 3.1.1. ut
Now, we are ready to present the elimination algorithm with projection.

This algorithm is modi�ed from TriSer by: (i) replacing the reduction step
P2.3 in PriTriSys with step T2.2.4 below for the projection case B in which
there are polynomials of class i but no polynomial of class > i to be \pro-
jected;" (ii) inserting two steps T2.2.3 and T2.3 for the projection case A
in which there are polynomials of classes > i to be \projected."

AlgorithmTriSerP: 	 TriSerP(P;Q; k).Given a polynomial system [P;Q]
in K[x] and an integer k (0 � k < n), this algorithm computes either an
empty set 	 that means Zero(P=Q) = ;, or a �nite non-empty set

	 = f[P1;Q1;T1;U1]; : : : ; [Pe;Qe;Te;Ue]g;
where each [Pi;Qi;Ti;Ui] is a quadruplet of level � k with level(Qi) � k,
such that

(a)

Zero(P=Q) =
e[

i=1

Zero(Pi[Ti=Qi [Ui); (3.2.4)

(b)

ProjxfkgZero(P=Q) =
e[

i=1

Zero(Pi=Qi); (3.2.5)

(c) for any 1 � i � e and
j 2 fkg [ fcls(T ) : T 2Tig; (�x1; : : : ; �xj) 2 Zero(Pi[T(j)

i =Qi [U(j)
i );
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[T[j]h�x;ji
i ;U[j]h�x;ji

i ] is a perfect triangular system, and thus so is [Ti;Ui].

T1. Set 	 ;, � f[P;Q; ;; ;]g.
T2. While � 6= ; do:
T2.1. Let [F;G ;T;U] be an element of � and set

� � n f[F;G ;T;U]g; ` level(F):

T2.2. For { = `; : : : ; k + 1 do:

T2.2.1. If F \K n f0g 6= ; then go to T2. If level(F) < { then go to
T2.2 for next {.

T2.2.2. Compute [T;F;G ;�] Elim(F;G ; {) and set

� � [ f� [ [T;U] : � 2 �g:
T2.2.3. Compute

[G ;U;�] ProjA(F [ fTg;G;T;U; {)
and set � � [�.

T2.2.4. If G [{�1] 6= ; then compute

G G ({�1) [ fprem(
Y

G2G[{�1]

Gldeg(T ); T )g:

T2.2.5. If 0 2 G then go to T2 else set T [T ][T.
T2.3. Compute

[G ;U;�] ProjA(F;G ;T;U; k)

and set � � [�.
T2.4. Set 	 	 [ f[F;G ;T;U]g.

We may assume that Pi \ K n f0g = ; and 0 62 Qi for each  i =
[Pi;Qi;Ti;Ui] 2 	. For, otherwise, Zero(Pi [Ti=Qi[Ui) = ; and  i can
be simply deleted from 	. If k = 0, then Zero(P=Q) 6= ; if and only if
e � 1. Hence, when k = 0 and e � 1, Pinf0g = ; and [Ti;Ui] possesses the
projection property for all 1 � i � e.
Example 3.2.1. See Example 2.3.2. Let k = 0 and perform the elimination
with projection. For z 2 U1, we need compute in step T2.2.4 the pseudo-
remainder of z5, instead of that of z, with respect to R3. It is �t4  t, so
U1 is replaced by ft; t3 � 1g. Similarly, for z 2 U3 we need compute the
pseudo-remainder of z5 with respect to R3, which is �t4  t, and then
the pseudo-remainder of t3 with respect to t3 � 1, which is the constant
1. Hence, U3 is simpli�ed to ;. The projection steps T2.2.3 and T2.3 are
trivially executed for this example. ut
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Proof of TriSerP Termination. De�ne, for any polynomial system [P;Q], a
triple

Index(P=Q), hd; `; pi;
where

d = minfdeg(P; x`) : P 2 Ph`ig;
` = level(P);
p = max(`; level(Q)):

We order two triples as hd1; `1; p1i � hd2; `2; p2i if
p1 < p2; or

p1 = p2 while `1 < `2; or

p1 = p2; `1 = `2 while d1 < d2:

For a quadruplet  taken from 	 in step T2.1 of TriSerP, let F;G be
the �rst two components of  and P�;Q� the two components of some
polynomial system in � produced by Elim or the �rst two components of
some quadruplet in � produced by ProjA from  . Then we always have

Index(P�=Q�) � Index(F=G ):

Since each component of the triple Index(P=Q) is a positive integer, any
steadily decreasing sequence of such index triples is �nite. Therefore, the
while-loop of TriSerP has only �nitely many iterations. The termination is
proved.

Correctness. This is to show that the computed 	 satis�es the properties
(a), (b) and (c) in the speci�cation of TriSerP.

(a) Similar to TriSer, Algorithm TriSerP can also be viewed as for com-
puting a multi-branch tree T . With the root of T , the quadruplet [P;Q;;;;]
is associated, and with each node or leaf i, a quadruplet [Pi;Qi;Ti;Ui] is
associated such that after the execution of every step of TriSerP the zero
relation (2.3.6), when Qi on the right-hand side is replaced by Qi [ Ui,
is preserved. To see this, one only need note that in the present case, the
branches are generated also by the subalgorithm ProjA with the zero rela-
tion (3.2.2) preserved, while (3.2.2) implies that

Zero(P[T=Q[U) = Zero(P[T=G [U)[
[

[P;Q�;T;U]2�

Zero(P[T=Q�[U0);

where U0 = U[Q[i]. Zero(F[fTg[T=G[U) also remains unchanged when
step T2.2.4 is executed.
Cutting those leaves i of T for which Pi contains a non-zero constant

or 0 2 Qi and assuming that not all the leaves are cut o�, we obtain the
zero decomposition (3.2.4). From the correctness proof of TriSer, one sees
clearly that [Ti;Ui] here is also a triangular system.
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(b) First let �xfkg 2 ~K
k
belong to the right-hand side of (3.2.5); then

there is an i such that �xfkg 2 Zero(Pi=Qi). By property (c) to be proved,
there exist �xk+1; : : : ; �xn 2 ~K such that

(�xk+1; : : : ; �xn) 2 Zero(Th�x;kii =Uh�x;ki
i ):

Hence
�x 2 Zero(Pi[Ti=Qi[Ui): (3.2.6)

By (3.2.4), �x 2 Zero(P=Q). It follows that

�xfkg 2 ProjxfkgZero(P=Q): (3.2.7)

Now suppose that (3.2.7) holds, so there exist �xk+1; : : : ; �xn 2 ~K such
that �x 2 Zero(P=Q). By (3.2.4), there must be an i such that (3.2.6) holds.
In particular, we have

�xfkg 2 Zero(Pi=Qi) �
e[

i=1

Zero(Pi=Qi):

Thus, (3.2.5) is proved.

(c) Let F;G ;T;Uand T be as in TriSerP. We �rst show two assertions:

(A) If step T2.2.3 is executed for some {, then after the execution, for any
(�x1; : : : ; �x{) 2 Zero(F [ fTg=G),

Zero(Th�x;{i=Uh�x;{i) 6= ;; (3.2.8)

(B) If step T2.2.4 is executed for some {, then after the execution, for any
j, level(F) � j � { � 1, and (�x1; : : : ; �xj) 2 ProjxfjgZero(F=G ),

Zero([T ][Th�x;ji=Uh�x;ji) 6= ;: (3.2.9)

If 0 2 G , then Zero(F=G ) = ;. In this case, the property is trivial and need
not be considered.

To avoid confusion of notations, the quadruplet [F;G ;T;U] in what fol-
lows will always be referred to before the execution of the step under dis-
cussion, and the corresponding components after the execution, if updated,
will be referred to with the superscript star �. The proof proceeds by in-
duction on jTj.
Case (i). T= ;.
(A) Let  and  � be the quadruplets corresponding to [F;G ;T;U] before

and after the execution of step T2.2.3 in TriSerP, respectively. Then

 = [F;G ; ;; ;];  � = [F;G� ; ;;U�];
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where U� = G [{] . Let �xf{g 2 Zero(F [ fTg=G� ). By (3.2.2), there exist
�x{+1; : : : ; �xn 2 ~K such that

�x 2 Zero(F [ fTg=G):
Since U� � G , U (�x) 6= 0 for any U 2 U�. Hence, �x 2 Zero(;=U�) and
(3.2.8) holds.
(B) Now, we have

 = [F;G ; ;;U];  � = [F;G� ; ;;U];
where

G� =
�
G ({�1) [ fprem(QG2G[{�1]Gldeg(T ); T )g if G [{�1] 6= ;;
G otherwise:

In both cases, for any level(F) � j � {� 1 and �xfjg 2 ProjxfjgZero(F=G � ),
by (3.1.4) and (3.1.5), and noting that Zero(T=G [fini(T )g) = Zero(T=G),
there exist �xj+1; : : : ; �x{ 2 ~K such that

�xf{g 2 Zero(F [ fTg=G): (3.2.10)

Now for (3.2.10), by (A) above there exist �x{+1; : : : ; �xn 2 ~K such that
�x 2 Zero(;=U). Therefore, �x 2 Zero([T ]=U) and (3.2.9) holds.

Case (ii). T 6= ;.
By induction we suppose that the property in (B) is satis�ed after the

execution of step T2.2.4 for { = p, where p = cls(op(1;T)). Observe that
steps T2.2.5 and T2.2.1 are trivial, the execution of step T2.2.2 does not
update Tand U, and for this step any zero of [F� [ fTg;G� ] is also a zero
of [F;G ] by (2.3.5). Hence, we have the following (B0) which corresponds
to (B) for j = level(F):

(B0) If step T2.2.2 is executed for some {, then after the execution, for any
(�x1; : : : ; �x{) 2 Projxf{gZero(F [ fTg=G),

Zero(Th�x;{i=Uh�x;{i) 6= ;:
(A) In this case, we have

 = [F;G ;T;U];  � = [F;G� ;T;U�];

where U� = U[G[{] . For any �xf{g 2 Zero(F[fTg=G� ), according to (3.2.2)
there exist �x{+1; : : : ; �xp 2 ~K such that

�xfpg 2 Zero(F [ fTg=G):
Therefore, by (B0) there exist �xp+1; : : : ; �xn 2 ~K such that �x 2 Zero(T=U).
Since U�(p) = G [{] � G ,

�x 2 Zero(T=U�(p)[U) = Zero(T=U�);



3.2 Zero decomposition with projection 77

so (3.2.8) holds.
(B) Similar to (B) in case (i), for any level(F) � j � { � 1 and �xfjg 2

Zero(F=G � ), by (3.1.4) and (3.1.5), and noting that Zero(T=G[fini(T )g) =
Zero(T=G), there exist �xj+1; : : : ; �x{ 2 ~K such that

�xf{g 2 Zero(F [ fTg=G):

By (A) in case (ii) above, there exist �x{+1; : : : ; �xn 2 ~K such that

�x 2 Zero(T=U):

Hence, �x 2 Zero([T ] [ T=U) and (3.2.9) holds as well. By now the two
assertions (A) and (B) have been proved.
Next, we show that after the execution of step T2.3, (3.2.8) holds for any

�xf{g 2 Zero(F=G ).
If T= ;, then step T2.2 is trivially executed and the execution of step

T2.3 is the same as that of step T2.2.3 for { = k in (A) of case (i), noting
that the polynomial T does not play any special role in ProjA. Therefore,
for any �xfkg 2 Zero(F=G� ), there are �xk+1; : : : ; �xn 2 ~K such that �x is not
a zero of any polynomial in U� � G . Hence, �x 2 Zero(;=U�) and (3.2.8)
holds.
If T 6= ;, then step T2.2.4 must have been executed before, say for

{ = p > k, where p = cls(op(1;T)). Now the execution of step T2.3 is
the same as that of step T2.2.3 for { = k in (A) of case (ii). Therefore,
for any �xfkg 2 Zero(F=G � ), there exist �xk+1; : : : ; �xn 2 ~K such that �x 2
Zero(T=U�), so (3.2.8) holds as well.
Clearly, the �nal [F;G ;T;U] is some  i = [Pi;Qi;Ti;Ui] 2 	 in the

speci�cation of TriSerP. In the way of computing  i, step T2.2.4 must have
executed for all { 2 fcls(T ) : T 2Tig and { = k. From the splitting process
and the zero relations that are preserved between the original and the split

systems, we know that any [Pi [ T(j)
i ;Qi [ U(j)

i ] is produced from some
corresponding [F [ fTg;G ] as in the assertion (A) for { = j such that any

(�x1; : : : ; �xj) 2 Zero(Pi[T(j)
i =Qi[U(j)

i )

is also a zero of [F [ fTg;G]. Therefore, it follows from (A) that

Zero(T[j]h�x;ji
i =U[j]h�x;ji

i ) 6= ;:

In other words, [T[j]h�x;ji
i ;U[j]h�x;ji

i ] is perfect for any j 2 fkg[ fcls(T ) : T 2
Tig. Since

Zero(Th�x;kii =Uh�x;ki
i ) 6= ; =) Zero(Ti=Ui) 6= ;;

by de�nition the triangular system [Ti;Ui] is also perfect.
This completes the correctness proof of TriSerP. ut
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Remark 3.2.1. The second \if-condition" in step T2.2.1 of TriSerP may be
modi�ed so that projection step T2.2.3 is also executed when level(F) < i.
Then, ProjA is called for every i and Vl in step P2.2.1 contains xi only for
each call. This may simplify the presentation and proof slightly. In this case,
properties (b) and (c) in the speci�cation may be modi�ed accordingly:

(b0) for any k � j < n,

Projxfjg =
e[

i=1

Zero(Pi[T(j)
i =Qi[U(j));

(c0) for any 1 � i � e and

k � j < n; �xfjg 2 Zero(Pi [T(j)
i =Qi[U(j));

[T[j]h�x;ji
i ;U[j]h�x;ji

i ] is a perfect triangular system, and thus so is [T[j]
i ;U

[j]
i ].

If k = 0, then each [Ti;Ui] possesses the strong projection property.
However, if splitting also occurs when level(F) < i 6= k, there is a critical
drawback: Elim in step T2.2.2 may be called repeatedly for the same F.

Remark 3.2.2. The projection step T2.2.4 can be modi�ed by using a more
complicated procedure as follows. Instead of forming

prem(
Y

G2G[{�1]

Gldeg(T ); T );

after squarefreeing T one computes the GCD of T and each polynomialG 2
G [{�1] with respect to xi, say by pseudo-division, and deletes it as a factor
from T and G. After the deletion of all such common divisors, the GCD of
T and every polynomial in G [{�1] should be 1. Then, Zero(T=G [{�1]) 6= ; if
and only if T is of positive degree in xi (see Seidenberg 1956a). Along with
computing the GCD's, the system is split into �nitely many other systems
so that the necessary zero relations are preserved. This technique will be
re
ected in Algorithm SimSer. In fact, another projection algorithm can be
derived from SimSer.

Algorithm TriSerP provides a quanti�er elimination procedure and thus
a decision procedure for the existential theory of algebraically closed �elds.
As a corollary of this algorithm, we have the following projection theorem.

Theorem 3.2.1. (Projection theorem of elimination theory | a�ne case).
Let fFi(x;y) : 1 � i � sg be a set of �nite conjunctions of polynomial equa-
tions and inequations over K in the variables

x = (x1; : : : ; xn); y = (y1; : : : ; ym):

Then there is a �nite set of Gj (x) of which each one is a �nite conjunc-
tion of polynomial equations and inequations over K having the following
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property: for every point �x = (�x1; : : : ; �xn) of the a�ne space V
n over some

extension �eld ~K ofK there is a point �y = (�y1; : : : ; �ym) of the a�ne space
Wm over some algebraic extension �eld of ~K such that (�x; �y) satis�es at
least one of the Fi(x;y) if and only if �x satis�es one of the Gj (x).

One proof of this theorem, contained in the classical decision method of
A. Tarski, was clari�ed by Jacobson (1974, Sect. 5.4, pp. 305{306). Another
proof appeared in Seidenberg (1956a, 1956b). A recent proof was given by
Wu (1990).
For every polynomial system [Pi;Qi] in (3.2.4), one can further com-

pute its triangular series using Algorithm CharSer, TriSer or TriSerS. The
corresponding zero decompositions may be merged with (3.2.4). As a con-
sequence, there is an algorithm which computes, for any polynomial system
[P;Q] and integer 0 � k < n, a set 	 which is either empty, that means
Zero(P=Q) = ;, or of the form

f[P1;Q1;T1;U1]; : : : ; [Pe;Qe;Te;Ue]g
such that (a), (b) and (c) in the speci�cation of TriSerP are all satis�ed
and moreover each [Pi[Ti;Qi[Ui] is a (�ne) triangular system possessing
the projection property of dimension k, where Pi is ordered as triangular
set. In this case, we call n � k the dimension of projection and say that
the elimination is performed with full projection if the dimension is n, and
without projection if the dimension is 0.

Example 3.2.2. Let P= fP1; : : : ; P4g with
P1 = (x� u)2 + (y � v)2 � 1;

P2 = v2 � u3;
P3 = 2v(x � u) + 3u2(y � v);
P4 = (3wu2 � 1)(2wv � 1):

This set of polynomials was communicated by P. Vermeer from the Depart-
ment of Computer Science, Purdue University in April 1990. It has been
used as a test example in Wang (1993).
Under the variable ordering x � y � u � v � w, P can be decomposed

by TriSerP with projection for w; v; u into 5 �ne triangular systems Ti =
[Ti;Ui] such that the zero decomposition (2.1.8) holds with Q = ; and
e = 5, and each Ti possesses the (strong) projection property of dimension
2. Listed below are the triangular sets Ti and the corresponding Ui which
will be used in Example 9.1.6.

T1 = [T11; T12; P3; P4];

T2 = [T21; T22; T23; P3; P4];

T3 = [T31; T32; T33; P3; P4];

T4 = [T41; y; 12xu+ 2u� 9x2 � 2x+ 9; v2 + u2 � 2xu+ x2 � 1; P4];

T5 = [x; 729y4 � 956y2 � 529; u(85u� 81y2 + 72); u(3uv+ 2v � 3uy); P4];
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where

T11 = 729y6 � (1458x3� 729x2 + 4158x+ 1685)y4

+(729x6 � 1458x5� 2619x4� 4892x3 � 297x2 + 5814x+ 427)y2

+729x8 + 216x7� 2900x6 � 2376x5 + 3870x4 + 4072x3 � 1188x2

�1656x+ 529;

T12 = [2187y4 � 6(729x3 + 162x2 + 2079x+ 478)y2 + 2187x6 � 1944x5

�10125x4 � 4800x3 + 2501x2 + 4968x� 1587]u+ 4x2T32;

T21 = 243x2 + 36x+ 85;

T22 = 10460353203y6� 6377292(8523x+ 4535)y4

+648(155380149x+ 61648)y2 � 16(2250218592x� 1609630283);

T23 = (81y2 + 162x3 � 36x2 � 154x� 72)u+ 72x3 � 4x2;

T31 = (81x2 + 18x+ 28)(729x4+ 972x3 � 1026x2 + 1684x+ 765);

T32 = 27(18x� 1)y2 + 243x4 + 756x3 � 270x2 + 124x+ 279;

T33 = �T21u2 + T23;

T41 = 27x4 + 4x3 � 54x2 � 36x+ 23;

and

U1 = fx; y; T21; ini(T12); T32;
729(2187x6� 1134x5 � 7326x4 + 4144x3+ 2015x2� 6498x� 2268)y4

�2(1594323x9+ 2007666x8+ 2591595x7+ 6800112x6� 12642075x5

+2179818x4+ 4872429x3� 12546172x2� 7821216x� 1084104)y2

+1594323x12+ 590490x11� 12328119x10� 6466230x9+ 22602402x8

+8733636x7� 22926870x6+ 11418356x5+ 35613711x4+ 1579842x3

�13321235x2� 318366x+ 1199772g;
U2 = fx; y; 4194x� 935;�6561y2 + 16344x+ 4132; 1162261467xy4

�26244(35676x� 79985)y2 � 40(61438590x+ 29843347)g;
U3 = fx; y; T21; 8474827586184x5� 6240413571255x4+ 7521969157884x3

+2321430215166x2+ 3035377934972x+ 1281758320845; 18x� 1; Ug;
U4 = f9x2 + 2x� 9; 6x+ 1; x3 + 54x2 + 27x� 52g;
U5 = fy; 5653y2 � 2116; Ug:
The polynomial U in U3 and U5 is somewhat too large to be produced

here. It is irreducible of degrees 15; 10; 1 in x; y; u respectively and consists
of 91 terms.
A triangular series of Pcan also be computed easily by TriSer or TriSerS

with respect to the same variable ordering. One may obtain with TriSer

5 �ne triangular systems in which the triangular sets are the same as the
above Ti, and with TriSerS 4 �ne triangular systems in which some of the
triangular sets are slightly di�erent from the corresponding Ti above. ut
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Applications of projection include solving parametric algebraic systems,
automatic derivation of locus equations, implicitization of parametric ob-
jects and determining existence conditions of singularities which will be
discussed in Sects. 7.1, 7.3 and 7.4.

3.3 Decomposition into simple systems

In this section, we introduce the concept of simple systems, which possess
other nice properties than those of perfect triangular systems. We extend
Algorithm TriSerS to compute such simple systems. For any polynomial
system P = [P;Q], de�ne

�P = P[Q:
Recall the notations xfig , (x1; : : : ; xi) and �xfig , (�x1; : : : ; �xi), etc.
For any P 2 K[xfkg] and �xfk�1g in some extension �eld ~K of K, the

polynomial P (�xfk�1g; xk) is said to be squarefree with respect to xk if

gcd(P (�xfk�1g; xk);
@P

@xk
(�xfk�1g; xk); xk) 2 ~K :

For example, x22 � x1 is squarefree with respect to x2 for x1 = 1, but not
for x1 = 0.

De�nition 3.3.1. A pair S = [T; ~T] of triangular sets in K [x] is called a
simple system if

(a) T\ ~T= ; and �S can be reordered as a triangular set;

(b) for every P 2 �S of class p and any �xfp�1g 2 Zero(S(p�1)),

ini(P )(�xfp�1g) 6= 0 and P (�xfp�1g; xp) is squarefree

with respect to xp.

A triangular set T� K[x] is said to be simple or called a simple set if
there exists another triangular set ~Tsuch that [T; ~T] is a simple system.

While talking about a triangular system T, we sometimes say that T is
simple. Naturally, this means that T is a simple system. The concept of
simple systems is due to Thomas (1937, Chap. VI). What he called a simple
system is a reduced primitive simple system in our de�nition.

Example 3.3.1. Let P= fP1; P2; P3g with
P1 = x22 � x1;
P2 = x2x

3
3 � 2x1x

2
3 + x23 + x1x2x3 � 2x2x3 + x1;

P3 = x2x3x4 + x4 + x1x3 + x2

and x1 � � � � � x4. The polynomials P1; P2; P3 are all irreducible over Q.
One sees that
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� ini(P1) = 1; I2 = ini(P2) = x2 and I3 = ini(P3) = x2x3 + 1,

� T= [P1; P2; P3] is a triangular set,

� T = [T;fI2; I3g] is a �ne and reduced triangular system.

However, T is not a simple system. First, cls(I3) = cls(P2) and cls(I2) =
cls(P1), so condition (a) is violated. Second, one may verify that P2 has a
factorization

P2
:
= (x2x3 + 1)(x3 � x2)2

over Q(x1; x2) with x2 having minimal polynomial P1. Thus, P2 is not
squarefree with respect to x3 for any (x1; x2) 2 Zero(P1=I2). ut
Example 3.3.2. The polynomials and triangular systems are as in Exam-
ple 2.4.1. [T2;U2] is not a simple system because y2�r2+1 is not squarefree
with respect to y when r = �1 2 Zero(T ), where

T = r4 � 4r2 + 3:

Since lv(G) = x 2 U1 and thus T1[U1 cannot be ordered as a triangular
set, [T1;U1] is not a simple system either.
As further illustration, consider T = [T1; fTg], which is triangular sys-

tem. This can be veri�ed as follows: ini(P2) = x = 0 and T1 = 0 only if
z = �1 and r = �1 or r2 = 3. This is possible only if T = 0. Hence, if
T= 0 and T 6= 0, then x 6= 0. For T, condition (a) is satis�ed. However,
neither is T a simple system because H is not squarefree with respect to z,
for example, when 27r2�31 = 0 (noting that 27r2�31 and T are relatively
prime). ut
De�nition 3.3.2. A triangular system T in K[x] is said to be primitive if

every P 2 �T is primitive with respect to its leading variable.

Lemma 3.3.1. Let [T;~T] be a simple system in K[x] and

T� = [pp(T; lv(T )) : T 2T]; ~T� = [pp(T; lv(T )) : T 2 ~T]:

Then [T�; ~T�] is a primitive simple system such that

Zero(T�=~T�) = Zero(T=~T):

Proof. Note that the primitive part of any polynomial has the same class as
the polynomial itself, so T�, ~T� andT�[ ~T� can all be ordered as triangular
sets. Hence, we only need to see that for any T 2 T[ ~Tof class p and

�xfp�1g 2 Zero(T(p�1)=~T(p�1));

cont(T; xp)(�xfp�1g) 6= 0 and thus cont(T; xp) can be removed from T . This
is obvious because cont(T; xp) is a divisor of ini(T ), while ini(T )(�xfp�1g) 6=
0 by de�nition. ut
In view of this lemma,we shall feel free to make simple systems primitive,

in particular for example calculations.
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Lemma 3.3.2. Let P1 and P2 be two polynomials inK[xfkg] with deg(P1,
xk) � deg(P2; xk) > 0, H2; : : : ;Hr be the SRS of P1 and P2 with respect
to xk and

I = lc(P2; xk); Ii = lc(Hi; xk); 2 � i � r:
Let P;Q�K [xfk�1g] be two polynomial sets and assume that

I(�xfk�1g) 6= 0 and P2(�x
fk�1g; xk) is squarefree

with respect to xk for any �xfk�1g 2 Zero(P=Q). Then

Zero(P[ fP2g=Q[ fP1g) =
r[

i=2

Zero(P[Pi=Q[ fIig); (3.3.1)

where Pi = fpquo(P2;Hi; xk); Ii+1; : : : ; Irg for each i.
Proof. For any �xfk�1g 2 Zero(P=Q), there must be an i (2 � i � r) such
that

Ii(�x
fk�1g) 6= 0; Ii+1(�x

fk�1g) = � � � = Ir(�x
fk�1g) = 0:

According to Lemma 2.4.2 (a),

Hi(�x
fk�1g; xk) = gcd(P1(�x

fk�1g; xk); P2(�x
fk�1g; xk); xk):

The zero relation (3.3.1) is established. ut
Observe that on the right-hand side of (3.3.1),P1 does not appear and the

only polynomial of class k is pquo(P2;Hi; xk) for each i. In this sense, the
polynomialP1 is eliminated by means of splitting. The purpose of splitting
in the following lemma is to make an arbitrary polynomial squarefree.

Lemma 3.3.3. Let P be a polynomial in K[xfkg] with deg(P; xk) > 1
and I = lc(P; xk), H2; : : : ;Hr be the SRS of P and its derivative @P=@xk
with respect to xk, and

H�
2 = H2; H�

i =
Hi

I
; 3 � i � r; Ii = lc(H�

i ; xk); 2 � i � r:

Then

Zero(P=I) =
r[

i=2

Zero(fQi; Ii+1; : : : ; Irg=IIi); (3.3.2)

Zero(;=PI) =
r[
i=2

Zero(fIi+1; : : : ; Irg=QiIIi); (3.3.3)

where Qi = pquo(P;H�
i ; xk) for each i. Moreover, Qi(�x

fk�1g; xk) is square-
free with respect to xk for any 2 � i � r and

�xfk�1g 2 Zero(fIi+1; : : : ; Irg=IIi):
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Proof. Obviously, lc(@P=@xk; xk) = deg(P; xk)I. It is also easy to see
from the de�nition of subresultants that I divides Hi for 3 � i � r.
As a fundamental fact in algebra, we know that for any 2 � i � r and
�xfk�1g 2 Zero(fIi+1; : : : ; Irg=IIi),

P (�xfk�1g; xk)= gcd(P (�x
fk�1g; xk);

@P

@xk
(�xfk�1g; xk); xk)

is squarefree with respect to xk and has the same set of zeros as P (�xfk�1g; xk)
for xk. The squarefreeness of Qi(�xfk�1g; xk) with respect to xk and the zero
relations (3.3.2) and (3.3.3) follow from this fact and Lemma 2.4.2 (a). ut

De�nition 3.3.3. A �nite set or sequence of simple systems S1; : : : ;Se in
K[x] is called a simple series. It is called a simple series of a polynomial
system P if the following zero decomposition holds

Zero(P) =
e[

i=1

Zero(Si): (3.3.4)

A simple series of [P; ;] is also called a simple series of the polynomial set
P.

The algorithm below is devised to compute a simple series of any given
polynomial system. It employs an elimination process again top-down from
xn to x1 with splitting, modi�ed from Algorithm TriSerS. For each xk (in
the for-loop S2.2), there are four major steps:

S2.2.1 producing from Thki 6= ; a single polynomial P2 of class k;

S2.2.2 making P2 squarefree with respect to xk;

S2.2.3 eliminating the polynomials from ~Thki 6= ; by P2;
S2.2.4 producing a single polynomial P1 squarefree with respect to xk from

~Thki 6= ;.
There are three kinds of splitting performed:

(i) in steps S2.2.1.1 and S2.2.4.1 according as the initial of the considered
polynomial vanishes or not (either the initial is assumed to be non-
vanishing or the polynomial is replaced by its initial and reductum);

(ii) in steps S2.2.1.3 and S2.2.3.2 according to Lemmas 2.4.2 (b) and 3.3.2
for basic elimination;

(iii) in steps S2.2.2.2 and S2.2.4.3 according to Lemma 3.3.3 for square-
freeness.
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Algorithm SimSer: 	 SimSer(P;Q). Given a polynomial system [P;Q]
in K[x], this algorithm computes a simple series 	 of [P;Q].

S1. Set � f[P;Q; n]g;	 ;.
S2. While � 6= ; do:

S2.1. Let [T; ~T; `] be an element of � and set � � n f[T; ~T; `]g.
S2.2. For k = `; : : : ; 1 do:

S2.2.1. While Thki 6= ; do:
S2.2.1.1. Let P2 be an element of Thki with minimal degree in xk

and set

� � [ f[Tn fP2g [ fini(P2); red(P2)g; ~T; k]g;
~T ~T[ fini(P2)g:

If jThkij = 1 then go to S2.2.2 else take a polynomial P1
from Thki n fP2g.

S2.2.1.2. Compute the SRS H2; : : : ;Hr of P1 and P2 with respect
to xk and set Ii lc(Hi; xk) for 2 � i � r. If cls(Hr) < k
then set �r r � 1 else set �r r.

S2.2.1.3. Set

� � [ f[Tn fP1; P2g [ fHi; Ii+1; : : : ; Irg;
~T[ fIig; k] : 2 � i � �r � 1g;

T Tn fP1; P2g [ fHr;H�rg;
~T ~T[ fI�rg:

S2.2.2. If Thki = ; then go to S2.2.4. If deg(P2; xk) = 1 then go to
S2.2.3 else:

S2.2.2.1. Compute the SRS H2; : : : ;Hr of P2 and its derivative
@P2=@xk with respect to xk and set

H�
2 H2; H�

i  Hi=ini(P2); i = 3; : : : ; r;

Ii lc(H�
i ; xk); i = 2; : : : ; r:

If ~Thki = ; then set �k k � 1 else set �k k.

S2.2.2.2. Set

� � [ f[Tn fP2g [ fpquo(P2;H�
i ; xk); Ii+1; : : : ; Irg;

~T[ fIig; �k] : 2 � i � r � 1g;
T Tn fP2g [ fpquo(P2;H�

r ; xk)g;
~T ~T[ fIrg;
P2 pquo(P2;H�

r ; xk):



86 3. Projection and simple systems

S2.2.3. While ~Thki 6= ; and cls(P2) = k do:

S2.2.3.1. Let P1 be a polynomial in ~Thki, compute the SRS H2; : : :,
Hr of P1 and P2 if deg(P1; xk) � deg(P2; xk), or of P2
and P1 otherwise, with respect to xk and set Ii lc(Hi; xk)
for 2 � i � r.

S2.2.3.2. Set

� � [ f[Tn fP2g [ fpquo(P2;Hi; xk); Ii+1; : : : ; Irg;
~Tn fP1g [ fIig; k] : 2 � i � r � 1g;

T Tn fP2g [ fpquo(P2;Hr; xk)g;
~T ~Tn fP1g [ fIrg;
P2 pquo(P2;Hr; xk):

S2.2.4. If ~Thki 6= ; then:
S2.2.4.1. Set

P1 
Q

P2~Thki P;

� � [ f[T[ fini(P1)g; ~Tn ~Thki[ fred(P1)g; k]g;
~T ~T[ fini(P1)g:

If deg(P1; xk) = 1 then go to S2.2.5.

S2.2.4.2. Compute the SRS H2; : : : ;Hr of P1 and its derivative
@P1=@xk with respect to xk and set

H�
2 H2; H�

i  Hi=ini(P1); i = 3; : : : ; r;

Ii lc(H�
i ; xk); i = 2; : : : ; r:

S2.2.4.3. Set

� � [ f[T[ fIi+1; : : : ; Irg; ~Tn ~Thki[
fpquo(P1;H�

i ; xk); Iig; k � 1] : 2 � i � r � 1g;
~T ~Tn ~Thki [ fpquo(P1;H�

r ; xk); Irg:

S2.2.5. Set T Tn f0g; ~T ~Tn (K n f0g). If T\K 6= ; or 0 2 ~T
then go to S2.

S2.3. Set 	 	 [ f[T; ~T]g, with Tand ~Tordered as triangular sets.

Proof. Correctness. Let us �rst note that the interchange of P1 and P2 in
step S2.2.3.1 when deg(P1; xk) < deg(P2; xk) does not cause any problem.
To see this, we claim that Lemma 2.4.2 (a) is still valid when I is set to
lc(P1; xk) instead of lc(P2; xk). The leading coe�cient I need be considered
as shown in the proof because the subresultants may di�er by a factor of
some power of I when the coe�cients of P1 and P2 with respect to xk
are specialized. According to Proposition 1.3.5, it does not matter which
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leading coe�cient of P1 and P2 is taken as I and assumed to be non-
vanishing. Therefore, (3.3.1) in Lemma 3.3.2 still holds when deg(P1; xk) <
deg(P2; xk) and H2; : : : ;Hr is the SRS of P2 and P1 with respect to xk
(while I remains unchanged). [It may happen that

I2(�x
fk�1g) = � � � = Ir(�x

fk�1g) = 0

for some �xfk�1g 2 Zero(;=I) (cf. the proof of Lemma 3.3.2). In this case,
P1(�xfk�1g; xk) � 0, so Zero(P2=P1I) = ;. Hence, the case need not be
considered.]
Next we see that in each case of splitting in SimSer, one split system is

taken to update the current system [T; ~T]; this system corresponds to that
for i = r in (2.4.1) and (3.3.1){(3.3.3), with an exception: for i = r � 1 in
(2.4.1) when deg(Hr; xk) = 0. The other split systems are added to �. By
(2.4.1) and (3.3.1){(3.3.3) and the evident zero relation for the �rst kind
of splitting, an associated zero decomposition of the form

Zero(P=Q) =
[
�

Zero(P�=Q�)

holds all the time, where the union ranges over all the split systems. Thus
the decomposition (3.3.4) with P = [P;Q] should be obtained eventually.
The computed pairs of ordered polynomial sets in 	 are simple systems by
de�nition.
Termination. One �rst notes that steps S2.2.1 and S2.2.3 terminate ob-

viously because in each loop of S2.2.1 two polynomials P1; P2 2 Thki are
replaced by one H�r of class k (see S2.2.1.3), and in each loop of S2.2.3 one
polynomial P1 2 ~Thki is deleted (see S2.2.3.2). In any case of splitting, the
split polynomial systems are obtained from the current system either by
replacing one or two polynomials with another having lower degree in their
common leading variable xk (as in most of the cases), or by replacing two
or more polynomials with a single one of the same class k (as in S2.2.1.3
when �r = 2 and in S2.2.4.3 when j~Thkij > 1), sometimes having polynomi-
als of classes < k added as well. Hence, the while-loop S2 has only �nitely
many iterations. ut

Remark 3.3.1. Steps S2.2.2.1 and S2.2.2.2 in SimSer can be skipped when
P2 is any of the pquo(P2;H

�
i ; xk) produced in S2.2.2.2 or the pquo(P2;Hi; xk)

produced in S2.2.3.2 previously, because in this case P2 is known to be con-
ditionally squarefree with respect to xk.

The strategies mentioned in Remark 2.4.1 should also be implemented to
avoid unnecessary computations for TriSerP and SimSer. Some further re-
duction may sometimes simplify simple systems and make the result more
canonical. For example, one can require that simple systems be made prim-
itive and reduced. This issue will be addressed in Sect. 5.2, though the
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settlement does not contribute much to the theoretical development and
practical application of the method.
One motivation for computing simple systems comes from the work of

Thomas (1937). The functionality and some individual steps of SimSer is
similar to that of Thomas' method. However, the algorithm here is de-
scribed di�erently in terms of structure and elementary operations.

Example 3.3.3. Let P; Pi;T be as in Example 3.3.1 and

T0 = [P1; x2x3 + 1]; T00 = [x1; : : : ; x4]:

Then, by using SimSer, P can be decomposed into three reduced simple
systems

[[P1; x3 � x2; x4 + x2]; [x1(x1 + 1)]]; [T0; [x1]]; [T00; ;]: (3.3.5)

The procedure proceeds roughly as follows. Let

[T; ~T] [fP1; P2; P3g; fx2; I3g] = T:

P3 is linear and thus squarefree with respect to x4. To make P2 squarefree
with respect to x3, compute the SRS of P2 and @P2=@x3 with respect to
x3, which is

@P2
@x3

; 2x2H1; 4x2H2;

where H1 is a polynomial of degree 1 in x3 and H2 a polynomial of class 2.
Observing that x2 2 ~T, there are two cases: (i) H2 6= 0 and P2 is squarefree
with respect to x3, and (ii) H2 = 0; I = ini(H1) 6= 0 and P2 is replaced
by pquo(P2;H1; x3) which is squarefree with respect to x3. For the sake of
simplicity, we point out thatH2 contains P1 as a factor. Hence, by following
the procedure the �rst case will be discarded and for the second case H2

need not be added to T. Therefore, set

[T; ~T] [fP1;H3; P3g; [x2; I3; I]];
in which H3 = pquo(P2;H1; x3) has 42 terms and degree 2 in x3 and I has
5 terms and degree 2 in x2.
Next we want to eliminate I3 from ~Tby H3. For this purpose, compute

the SRS of H3 and I3 with respect to x3: I3;H4, where H4 is a polynomial
of 20 terms, also containing P1 as a factor, so gcd(H3; I3; x3) = I3 when
x1 6= 0. Thus, set

[T; ~T] [fP1;H5; P3g; fx1; x2; Ig];
in which H5 = pp(pquo(H3; I3; x3); x3) consists of 11 terms.
Now P1 is squarefree with respect to x2 and both gcd(P1; x2; x2) and

gcd(P1; I; x2) are constants when x1(x1 + 1) 6= 0. Therefore, a simple sys-
tem [fP1;H5; P3g; fx1(x1 + 1)g] is obtained. Finally, replacing H5 and P3
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respectively by

pp(prem(H5; P1; x2); x3) = x3 � x2;
pp(prem(P3; [P1; x3 � x2]); x3) = x4 + x2;

we arrive at the �rst reduced primitive simple system in (3.3.5).
Considering the polynomial sets obtained from P by replacing P2 and

P3 respectively with their initials and reductums and following the same
procedure, one will get the two other reduced simple systems.
Remark incidentally that by TriSerS, Pmay be decomposed into three

�ne triangular systems T; [T0; fx2g]; [T00; ;]. ut

Example 3.3.4. Let Pbe as in Example 2.4.1 and the polynomialsH;G;P2
there be renamed T1; T2; T3:

T1 = z3 � z2 + r2 � 1;

T2 = x4 + z2x2 � r2x2 + z4 � 2z2 + 1;

T3 = xy + z2 � 1:

In addition, let

T = r8 � 6r6 + 71r4 � 62r2 � 67:

A simple series of P computed by SimSer consists of 9 simple systems
[T1; ~T1]; : : : ; [T9; ~T9] with

T1 = [T1; T2; T3];

T2 = [r2 � 1; z � 1; x; y];

T3 = [r2 � 1; z; x4� x2 + 1; xy � 1];

T4 = [r2 � 3; z + 1; x2 � 2; y];

T5 = [r2 � 3; z + 1; x; y2 � 2];

T6 = [r2 � 3; z2 � 2z + 2; T2; T3];

T7 = [27r2 � 31; 9z2 � 3z � 2; 27x4+ (9z � 25)x2 � 13z + 17; 9xy+ 3z � 7];

T8 = [T; (r4 + 14r2 + 15)z + 3r4 + 13r2 � 4;

(z2 + z + 1)x2 + z5 + z4 � z3 � 3z2 + z + 1; T3];

T9 = [T; (34r6 + 155r4 + 482r2 + 292)z2 � (107r6 + 165r4 + 807r2 + 433)z

+205r6 � 484r4 + 779r2 + 760; T2; T3];

~T1 = [(r2 � 1)(r2 � 3)(27r2 � 31)T ];

~T2 = � � � = ~T9 = ;:

In computing the series, we did not make use of polynomial factorization.
The output is somewhat simpler when the occurring polynomials are fac-
torized. ut
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Example 3.3.5. A simple series of the polynomial set P given in Exam-
ple 2.4.3 computed by SimSer with respect to the same variable ordering
consists of 13 simple systems [T1; ~T1]; : : : ; [T13; ~T13], where T1; : : : ;T7 are
as in Example 2.4.3 and

T8 = [H1; 36z
3 � 8c2z2 � 42cz + 81;H4; P3];

T9 = [H1; 2cz + 3; 2c2y2 � 3cy � 9; 3yx+ 2c];

T10 = [2c3 � 27; 2c2z2 + 3cz � 9; y � z; 2y2x� xc+ 1];

T11 = [H2;H3;H4; P3];

T12 = [H2;H3; zy � z2 + c; x� z];
T13 = [H2; 54(1938466c3+ 138253)z3 � 16c2(440494c3+ 31419)z2

�9c(4103430c3+ 292663)z � 3(7980362c3+ 569169);

(cz + 1)y + cz2 � z; P3];

~T1 = ~T2 = [cH2]; ~T3 = [H1]; ~T4 = [cH1H2]; ~T5 = [2c3 � 27];

~T6 = � � � = ~T13 = ;;
H1 = 4c3 � 27;

H2 = 8c6 � 378c3 � 27;

H3 = 36(18c3 + 1)z3 + 8c2(10c3 + 3)z2 � 2c(250c3 + 9)z � 9(290c3 + 21);

H4 = (z3 � cz + 1)y + z4 � 2cz2 + c2:

For obtaining the simple series, factorization overQ has been done for some
of the intermediate polynomials. ut
Computing simple series is expensive in general, mainly because of the

high price that has to be carried to make polynomials squarefree and to
eliminate inequation polynomials. In practice, it is even preferable to com-
pute irreducible triangular series instead, making use of powerful routines
available for polynomial factorization. This will be explained in Chap. 4.

3.4 Properties of simple systems

The signi�cance of introducing simple systems may be seen partially from
the properties that are stated and proved in this section. Let �K denote the
algebraic closure of the ground �eld K.

Theorem 3.4.1. Let S be a simple system in K[x]. Then for any 1 <
k � n and

�xfk�1g 2 Zero(S(k�1))

there exist �xk; : : : ; �xl 2 ~K such that �xflg 2 Zero(S(l)) for all k � l � n. In
particular, S is perfect over �K.
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Proof. Let S = [T; ~T] and �S be reordered as a triangular set [T1; : : : ; Tr],
with

pi = cls(Ti); di = ldeg(Ti); Ii = ini(Ti); 1 � i � r:
Clearly, for every pair k � l there exist i and s � 0 such that

pi�1 < k � pi; pi+s�1 < l � pi+s:
Let

�xfk�1g 2 Zero(S(k�1)):

If s = 0 and l < pi, then take arbitrary �xk; : : : ; �xl 2 K. In this case, we
have

�xflg 2 Zero(S(l))

and the theorem is already proved. Otherwise, take any �xk; : : : ; �xpi�1 2K.
By de�nition,

Ii(�x
fpi�1g) 6= 0 and �Ti = Ti(�x

fpi�1g; xpi) is squarefree

with respect to xpi . Thus, �Ti has di distinct zeros in ~K for xpi . If Ti 2 T,
then take any of the di zeros for xpi . If Ti 2 ~T, then take an element of K
other than the di zeros of �Ti for xpi .
If s = 1 and l < pi+1, then take arbitrary �xpi+1; : : : ; �xl 2K; we have

�xflg 2 Zero(S(l)):

Otherwise, take arbitrary �xpi+1; : : : ; �xpi+1�1 2K respectively for xpi+1; : : :,
xpi+1�1. Similarly,

Ii+1(�x
fpi+1�1g) 6= 0 and �Ti+1 = Ti+1(�x

fpi+1�1g; xpi+1) is squarefree

with respect to xpi+1 . Accordingly, �Ti+1 is a polynomial of degree di+1 in

xpi+1 and has di+1 distinct zeros in ~K for xpi+1 .

Proceeding in this way, we shall construct a zero �xflg of S(l), and the
theorem is proved. ut

Corollary 3.4.2. Every simple system possesses the strong projection prop-
erty.

Therefore, SimSer provides another method for solving parametric alge-
braic systems.

Theorem 3.4.3. Let P be any polynomial system inK[x] and 	 a simple
series of P. Then

(a) Zero(P) = ; if and only if 	 = ;;
(b) Zero(P) is �nite if and only if jTj= n and ~T= ; for every [T; ~T] 2 	.



92 3. Projection and simple systems

Proof. (a) follows from (3.3.4) and Theorem 3.4.1.
(b) For any [T;~T] 2 	, if jTj = n, then ~T= ; and Tcan be written as

[T1; : : : ; Tn] with cls(Ti) = i. Let di = ldeg(Ti). Then, T1 has d1 distinct
zeros in ~K for x1, and for any of these d1 zeros T2 has d2 distinct zeros
in ~K for x2, and so on. Therefore, Thas a �nite set of d1 � � �dn distinct
zeros. If jTj< n, then there exists a k such that Thki = ;. Thus, the scope
of xk in Zero(T=~T) is ~K when ~Thki = ;, and is ~K minus a �nite number
of elements otherwise. In any case, Zero(T=~T) is in�nite. By (3.3.4), (b) is
proved. ut
According to Theorem 3.4.3, one can apply SimSer to determine the

solvability of any system of polynomial equations and inequations (with
no need of polynomial factorization). In other words, the algorithm gives
a solution to the decision problem in elementary algebra and geometry
over algebraically closed �elds. It is clear from the above proof that, when
Zero(P) is �nite, the exact number of zeros can be counted according to the
leading degrees of the polynomials in T; all the zeros can be successively
computed from T.

Theorem 3.4.4. For any simple system [T; ~T] and polynomial P inK [x],

Zero(T=~T) � Zero(P ) () prem(P;T) = 0:

Proof. Let
prem(P;T) = 0 and �x 2 Zero(T=~T):

By de�nition, ini(T )(�x) 6= 0 for any T 2T. Hence, according to the pseudo-
remainder formula (2.1.2) we have P (�x) = 0. The \(=" part of the theorem
is proved.
Now suppose that Zero(T=~T) � Zero(P ). We want to show that

R = prem(P;T) = 0:

For this purpose, let S = [T; ~T] and �S be reordered as a triangular set
[T1; : : : ; Tr] with

cls(Ti) = pi; di = ldeg(Ti); 1 � i � r:
For any �xfpr�1g 2 Zero(S(pr�1)) and arbitrary �xpr+1; : : : ; �xn 2 ~K, let

x̂pr = (�xfpr�1g; xpr ; �xpr+1; : : : ; �xn):

Then Tr(x̂pr ) has dr distinct zeros for xpr . By the pseudo-remainder for-
mula (2.1.2), Zero(S) � Zero(R). Thus, R(x̂pr ) also has dr distinct zeros

for xpr when Tr 2T; and any xpr 2 ~K other than the dr zeros of Tr(x̂pr )

is a zero of R(x̂pr ) when Tr 2 ~T. As deg(R; xpr) < dr when Tr 2 T, the
coe�cients Ri of R, considered as a polynomial in xpr , must be all zero

for �xfpr�1g 2 Zero(S(pr�1)) and arbitrary �xpr+1; : : : ; �xn 2 ~K. Namely,
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Zero(S(pr�1)) � Zero(Ri) for each i. As Tr�1(�x
fpr�1�1g; xpr�1) has dr�1

distinct zeros for xpr�1 and deg(Ri; xpr�1) < dr�1 when Tr�1 2 T, the co-
e�cients of every Ri, considered as a polynomial in xpr�1 , are all zero for
any

�xfpr�1�1g 2 Zero(S(pr�1�1))

and arbitrary �xpr�1+1; : : : ; �xpr�1; �xpr+1; : : : ; �xn 2 ~K.
Continuing the argument for Tr�2; : : : ; T1, we shall see that the coe�-

cients of R, considered as a polynomial in xp1 ; : : : ; xpr , are all zero when
any set of values is substituted for the other (parametric) variables. This
implies that R � 0, and the proof is complete. ut
As a corollary of the above theorem, we have the following result.

Corollary 3.4.5. For any simple set Tand polynomial P in K [x],

Zero(T=ini(T))� Zero(P ) () prem(P;T) = 0:

Proof. From the remainder formula, it is easy to see that prem(P;T) = 0
implies that Zero(T=I) � Zero(P ). As T is a simple set, there exists a ~T
such that [T; ~T] is a simple system. From the de�nition of simple systems,
one knows that

Zero(T=~T) � Zero(T=I):

Hence, by Theorem 3.4.4, if Zero(T=I)� Zero(P ) then prem(P;T) = 0. ut
Theorem 3.4.4 together with Algorithm SimSer provides a solution to

the radical ideal membership problem. It can also be used to prove the
following properties about simple series.

Theorem 3.4.6. Let [P;Q] be a polynomial system inK [x] and 	 a sim-
ple series of [P;Q]. Then

(a) prem(P;T) = f0g and 0 62 prem(Q;T) for every [T; ~T] 2 	;
(b)

Zero(P=Q) =
[

[T;~T]2	

Zero(T=ini(T)[Q): (3.4.1)

Proof. (a) Let [T; ~T] 2 	; then Zero(T=~T) � Zero(P=Q). It follows that
Zero(T=~T) � Zero(P) and Zero(T=~T) 6� Zero(Q) for any Q 2 Q. Hence,
by Theorem 3.4.4 we have prem(P;T) = f0g and prem(Q;T) 6= 0 for any
Q 2 Q.
(b) By (a) just proved and the pseudo-remainder formula, the right-hand

side is contained in the left-hand side of (3.4.1). On the contrary, let �x 2
Zero(P=Q). Then there is a [T; ~T] 2 	 such that �x 2 Zero(T=~T). Clearly,
�x is not a zero of any polynomial in ini(T). Hence �x 2 Zero(T=ini(T)[Q),
i.e., �x belongs to the right-hand side of (3.4.1). ut
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Corollary 3.4.7. Any simple series of a polynomial system P is a W-
characteristic series of P.

Theorem 3.4.8. Let S1 = [T1; ~T1] and S2 = [T2; ~T2] be two simple sys-
tems in K [x] with Zero(S1) � Zero(S2).

(a) Then prem(T2;T1) = 0 for all T2 2T2.

For any 1 � k � n:
(b) If �S

hki
1 = ; then �S

hki
2 = ;;

(c) Assume that ~Thkii 6= ; and let Ti 2 ~Thkii for i = 1; 2. Then

prem(T1;T
(k�1)
1 [ [T2]) = 0:

Proof. (a) follows from Theorem 3.4.4.
(b) Note that for any 1 � k � n

Zero(S(k)
1 ) � Zero(S(k)

2 );

and the scope of xk in Zero(S
(k)
i ) is ~K for any �xed �xfk�1g 2 Zero(S(k�1)

i )

if and only if �Shki
i = ; for i = 1; 2. Hence, �Shki

1 = ; implies that �Shki
2 = ;.

(c) Let T�(k)1 =T(k�1)
1 [ [T2]; then [T�(k)1 ; ~T(k�1)

1 ] is a simple system. And

any zero of [T�(k)1 ; ~T(k�1)
1 ] for which T1 6= 0, if exists, is also a zero of S

(k)
1

and thus ofS(k)
2 . The existence of such a zero would lead to a contradiction.

Therefore,

Zero(T�(k)1 =~T(k�1)
1 ) � Zero(T1)

and the conclusion follows from (a). ut

Theorem 3.4.9. Let [T1; ~T1] and [T2; ~T2] be two simple systems inK [x].
Then Zero(T1=~T1) = Zero(T2=~T2) if and only if the polynomials in T1[ ~T1

and in T2 [ ~T2 can be put in a one-to-one correspondence such that for
any corresponding polynomials T1 and T2 either T1 2 T1 and T2 2 T2, or
T1 2 ~T1 and T2 2 ~T2, and

prem(I2T1 � I1T2;T1) = prem(I2T1 � I1T2;T2) = 0;

where Ii = ini(Ti) for i = 1; 2.

Proof. We only need to prove the necessity. First of all, the leading variables
must be exactly the same for the two systems [T1; ~T1] and [T2; ~T2]. For the

scope of a leading variable xk in Zero(T(k)
1 =~T(k)

1 ) is a proper subset of ~K

for any �xed �xfk�1g 2 Zero(T(k�1)
1 =~T(k�1)

1 ), whereas in Zero(T(k)
2 =~T(k)

2 ) a

free variable xk may take any element of ~K. Therefore, any T1 2Thki1 [ ~Thki1
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corresponds to a T2 2 Thki2 [ ~Thki2 (1 � k � n), and vice versa. Thus, for
any k and

�xfk�1g 2 Zero(T(k�1)
1 =~T(k�1)

1 ) = Zero(T(k�1)
2 =~T(k�1)

2 );

T1(�x
fk�1g; xk) and T2(�x

fk�1g; xk) are squarefree with respect to xk and
have the same set of zeros for xk. This implies that

T1 2Thki1 () T2 2Thki2 ;

I2(�xfk�1g) � T1(�xfk�1g; xk)� I1(�xfk�1g) � T2(�xfk�1g; xk) = 0:

The result is established by Theorem 3.4.4. ut

Lemma 3.4.10. From any simple system S in K[x], one can compute a
reduced simple system S� such that Zero(S) = Zero(S�).

Proof. According to the remark following Lemma 2.1.4, one can compute
a reduced triangular system S� such that Zero(S) = Zero(S�). We need
to show that S� is a simple system. Referring to the proof of Lemma 2.1.4
and the remark and notations therein with ~T= Uand ~T� =U�, one knows
that

cls(T �i ) = cls(Ti) = pi; ldeg(T �i ) = ldeg(Ti) = di; 2 � i � r:

Hence, �S� can be ordered as a triangular set and T �i (�x
fpi�1g; xpi) has the

same set of di distinct zeros as Ti(�xfpi�1g; xpi) for xpi and is squarefree
with respect to xpi for any

�xfpi�1g 2 Zero([T1; T �2 ; : : : ; T �i�1]=~T(pi�1))

and 2 � i � r. Similarly, for any T 2 ~Tof class p, let T � = prem(T;T�);
then cls(T �) = p and T �(�xfp�1g; xp) has the same set of distinct zeros as
T (�xfp�1g; xp) for xp, and is squarefree with respect to xp for any

�xfp�1g 2 Zero(T�(p�1)=~T(p�1)):

Therefore, [T�; ~T�] is a reduced simple system. ut
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4

Irreducible zero decomposition

Polynomial factorization is not required theoretically for the algorithms
described in the previous two chapters. Nevertheless, available factoring
programs have been e�cient enough to be used to enhance the performance
of elimination algorithms. It is a good strategy to incorporate polynomial
factorization (even over algebraic extension �elds) in the implementation of
such algorithms. In this chapter, we elaborate how triangular systems can
be further decomposed by making use of factorization in order to compute
zero decompositions possessing better properties. For our exposition some
of the material from Wu (1984) and Chap. 4 of Wu (1994) will be used
without explicit mention.

4.1 Irreducibility of triangular sets

De�nition 4.1.1. A triangular set T�K[x] is said to be quasi-irreducible
if every polynomial in T is irreducible over the ground �eld K.
A triangular system [T;U] in K[x] is said to be quasi-irreducible if T is

quasi-irreducible.

Using polynomial factorization overK, one has no di�culty to compute
zero decompositions of the forms (2.2.7) and (2.1.8) with all triangular sets
quasi-irreducible. This is done by splitting the corresponding polynomial
systems when polynomials are factorized. More concretely, for any poly-
nomial system [P;Q], if P1; : : : ; Pt are all the irreducible factors of some



98 4. Irreducible zero decomposition

polynomial P 2 P, we have

Zero(P=Q) =
t[

j=1

Zero(Pj=Q); (4.1.1)

where
Pj = Pn fPg [ fPjg; 1 � j � t:

As a subalgorithm of IrrTriSer to be presented in Sect. 4.2, let us modify
Algorithm TriSer to QuaIrrTriSer with the following speci�cation:

AlgorithmQuaIrrTriSer: 	 QuaIrrTriSer(P;Q;T).Given a triplet [P;Q;T]
with [T;Q] constituting a quasi-irreducible triangular system and all the
polynomials in Q reduced with respect to T, this algorithm computes a �-
nite set 	 of �ne quasi-irreducible triangular systems [T1;U1]; : : : ; [Te;Ue]
such that

Zero(P[T=Q) =
e[

i=1

Zero(Ti=Ui): (4.1.2)

As before, 	 = ; when Zero(P[ T=Q) = ; is detected. In the case
T = ;, QuaIrrTriSer decomposes any polynomial system [P;Q] into �ne
quasi-irreducible triangular systems. Algorithm QuaIrrTriSer is obtained
from TriSer by replacing T1 with

T10. Set 	 ;, � f[P;Q;T]g.
and T2.2.3 with

T2.2.30. Compute all the irreducible factors F1; : : : ; Ft of T over K
and set �G  G .

T2.2.300. For | = 1; : : : ; t do:

T2.2.3.1. Compute �G 0 prem(�G ; F|).
T2.2.3.2. If | = 1 then set G �G 0 , T  F|. Otherwise, if 0 62 �G 0

then set � � [ f[F; �G 0 ; [F|] [T0]g.

Proof. For the modi�cation of step T1 to T10, we note that P[ T here
corresponds to the set P in the input of TriSer, while the cases in which the
initials of the polynomials in Thappen to be zero need not be considered
because [T;Q] is a triangular system. Actually, any triplet from � in TriSer

is of the same form as the input triplet to QuaIrrTriSer. For the modi�cation
of step T2.2.3 to T2.2.30, the polynomial T produced by Elim is factorized
over the ground �eld K and the polynomial system is then split into sub-
systems by replacing T with its factors. One sees that for any triplet |
say [F�;G� ;T�] | produced in step T2.2.3.2, level(F�) < level(F), where
F is the �rst component of the corresponding triplet taken form � in step
T2.1 (see the termination proof of TriSer). Hence, Algorithm QuaIrrTriSer

terminates as well.
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To see the correctness of this algorithm, one only need be aware of the
zero relation (4.1.1) for splitting of polynomial systems via factorization.
(4.1.2) is proved by the same argument as for the proof of (2.1.8) in Al-
gorithm TriSer. Since the corresponding T is replaced by its irreducible
factors, by de�nition Ti is quasi-irreducible and thus so is [Ti;Ui] for each
i. [Ti;Ui] is �ne because all the polynomials in Ui are actually the pseudo-
remainders of some polynomials (and thus are reduced) with respect to
Ti. ut
A passing remark: those Fj whose classes are < i are factors of the initial

of T and thus need not be considered. Consequently, the corresponding
triplets can be deleted from the set �.

Example 4.1.1. Recall Examples 2.3.1 and 2.3.2, and apply AlgorithmQua-

IrrTriSer to the triplet [P;;;;] of level 4. It is easy to verify that all the
polynomials in the triangular sets T1 andT2 produced by Algorithm TriSer

are irreducible. However, the �rst polynomial t3 + 1 in T3 is reducible and
factors as the product of two polynomials

t � 1 and T1 = t2 + t+ 1:

Hence, in QuaIrrTriSer [T3;U3] is split into two triangular systems [T03;U0
3]

and [T003;U00
3] with

T03 = [T1;�z5 + t4;�z3y � t3; zx2 � t];
T003 = [t� 1;�z5 + t4;�z3y � t3; zx2 � t];
U0
3 = U00

3 = fzg:
ut

Let a triangular set Tbe written in the form (2.1.1) and the leading vari-
ables xp1 ; : : : ; xpr be renamed y1; : : : ; yr. Denote all the xi in fx1; : : : ; xngn
fxp1; : : : ; xprg by u1; : : : ; ud, abbreviated to u. Clearly, d + r = n; we call
u1; : : : ; ud the parameters and y1; : : : ; yr the dependents of T. Then Tcan
be written as

T=

2
664
T1(u; y1);

T2(u; y1; y2);
� � � � � �

Tr(u; y1; y2; : : : ; yr)

3
775 : (4.1.3)

Let K0 be the transcendental extension �eld K(u) =K(u1; : : : ; ud) of K
acquired by adjoining u1; : : : ; ud. We de�ne inductively the irreducibility

and generic zeros of Tas follows.

De�nition 4.1.2. A �ne triangular set T containing only one polynomial
T1(u; y1) is said to be irreducible if T1 is irreducible as a polynomial in
K0[y1]. In this case, let �1 be a zero of T1 in some algebraic extension �eld
of K0; then (u; �1) is called a generic zero of T.
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Suppose that the irreducibility and generic zeros of any �ne triangular
set of length < r have already been de�ned.
A �ne triangular setTof length r > 1 as in (4.1.3) is said to be irreducible

if the �ne triangular set

Tfr�1g = [T1; : : : ; Tr�1]

is irreducible with a generic zero (u; �1; : : : ; �r�1), and the polynomial

�Tr = Tr(u; �1; : : : ; �r�1; yr) 2Kr�1[yr ]

is irreducible over Kr�1, where Kr�1 = K0(�1; : : : ; �r�1) is the algebraic
extension �eld acquired from K0 by adjoining �1; : : : ; �r�1. In this case,
let �r be a zero of �Tr in some algebraic extension �eld of Kr�1; then
(u; �1; : : : ; �r) is called a generic zero of T.
A �ne triangular system [T;U] is said to be irreducible ifTis irreducible.

Let Tas in (4.1.3) be an irreducible triangular set with (u; �1; : : : ; �r)

as a generic zero. For the sake of brevity, we sometimes write �fig for
(u; �1; : : : ; �i) with � = �frg. It is convenient to call T1; : : : ; Tr adjoining

polynomials and Tan adjoining triangular set of the extension �eld Kr =
K(�). Evidently, any generic zero � ofTcan be considered as a point of the

linear space ~K
n
. The above d = juj, the number of parameters, is called

the dimension of T, denoted by dim(T).
If a �ne triangular set Tas above is reducible, then there is a k such that

Tfk�1g is irreducible with a generic zero

�
fk�1g = (u; �1; : : : ; �k�1)

and the polynomial

�Tk = Tk(�
fk�1g; yk) 2Kk�1[yk]

is reducible over Kk�1 =K(�fk�1g). Let an irreducible factorization of �Tk
in Kk�1[yk] be given by

�Tk = H1 � � �Ht;

in which each Hi 2Kk�1[yk] is irreducible overKk�1 and t � 2. As the co-
e�cients coef(Hi; y

j
k) are all elements ofKk�1 and thus can be expressed as

the quotients of polynomials in �fk�1g. By reducing fractions to a common
denominator, one gets an expression of the form

�D �Tk = �F1 � � � �Ft;
where

D 2K[u; y1; : : : ; yk�1]; Fi 2K[u; y1; : : : ; yk];

�D = D(�fk�1g) 2 Kk�1; �Fi = Fi(�
fk�1g; yk) 2Kk�1[yk]:
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The polynomialD may be assumed to be reduced with respect to Tfk�1g,
and so may each Fi with respect to Tfkg.
Consider yk as a free variable, renamed v. Then

�
�fk�1g = (v;u; �1; : : : ; �k�1)

is a generic zero of Tfk�1g � K[v;u; y1; : : : ; yk�1]. Let

G = F1 � � �Ft �DTk 2K[v;u; y1; : : : ; yk�1]:

Since �D �Tk = �F1 � � � �Ft, we haveG(��fk�1g) = 0. It follows from Lemma4.3.1
that prem(G;Tfk�1g) = 0, so there are non-negative integers s1; : : : ; sk�1
and polynomials Q1; : : : ; Qk�1 2K[v;u; y1; : : : ; yk�1] such that

Is11 � � �Isk�1

k�1 G = Is11 � � �Isk�1

k�1 (F1 � � �Ft �DTk) =
k�1X
i=1

QiTi;

or

Is11 � � �Isk�1

k�1 F1 � � �Ft =
kX
i=1

QiTi: (4.1.4)

In the above, yk is renamed to help understand the application of Lemma4.3.1.
The renaming does not have any actual e�ect. The polynomials Qi are all
in the variables u; y1; : : : ; yk.
We summarize the discussions as the following lemma.

Lemma 4.1.1. There is an algorithm which determines

(a) whether a �ne triangular set T�K[u;y] is irreducible or not;

and if not:

(b) an integer k such that the triangular set Tfk�1g formed by the �rst

k � 1 terms of T is irreducible with �fk�1g as a generic zero, while the
polynomial Tk(�

fk�1g; yk) is reducible over Kk�1 =K(�fk�1g);

(c) an irreducible factorization of Tk of the form

DTk
:
= F1 � � �Ft (4.1.5)

over Kk�1, where the polynomials

D 2K[u; y1; : : : ; yk�1]; Fi 2K[u; y1; : : : ; yk]; 1 � i � t;

are all reduced with respect to Tfk�1g and the dot equality means that
prem(DTk � F1 � � �Ft;Tfk�1g) = 0.

Let the algorithm indicated in Lemma 4.1.1 be speci�ed as follows.
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Algorithm Factor: [k;D;F] Factor(T). Given a �ne triangular set T�
K[x], this algorithm computes an integer k, a polynomial D and a �nite
set F of polynomials in K[x] such that 0 � k � jTj and
(a) if k = 0 then T is irreducible;

(b) if k = 1 then T is reducible, jFj > 1, the �rst polynomial T1 of class
p1 in Thas a factorization T1 =

Q
F2FF overK0 =K(x1; : : : ; xp1�1), and

each F 2 F �K0[xp1] is irreducible over K0;

(c) if k > 1 then T is reducible, Tfk�1g is irreducible, jFj > 1, the kth
polynomial Tk in Thas a factorization DTk

:
=
Q

F2FF over the extension

�eld Kk�1 of K with adjoining triangular set Tfk�1g, and each F 2 F �
Kk�1[xpk] is irreducible over Kk�1.

In the above speci�cation (c), the extension �eld Kk�1 is obtained from
K in a slightly di�erent way:

Kk�1 =K(x1; : : : ; xpk�1);

where xpj = lv(Tj) is considered as an algebraic element with adjoining
polynomial Tj for 1 � j � k�1, and the other xi are adjoined as transcen-
dental elements. We shall refer to polynomial factorization over algebraic
extension �elds as algebraic factorization for short. See Sect. 9.4 for a brief
introduction to two algorithms of algebraic factorization.

4.2 Decomposition into irreducible triangular
systems

From the formula (4.1.4) the following decomposition lemmamay be easily
established.

Lemma 4.2.1. Let a polynomial set Phave a medial set

T= [T1; : : : ; Tr]

with
cls(T1) > 0; Ii = ini(Ti); 1 � i � r:

Assume that Tis reducible, so there is a k such that Tk has an irreducible
factorization into polynomials F1; : : : ; Ft as of the form (4.1.5). Then the
following zero decomposition holds

Zero(P) =
k�1[
i=1

Zero(Pi) [
t[

j=1

Zero(Qj); (4.2.1)

where Pi = P[ fIig and Qj = P[ fFjg for each i and j.
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Proof. Any zero of either Pi or Qj is obviously a zero of P. Conversely, any
zero of P is a zero of the Ti. By (4.1.4), it is also a zero of some Ii or Fj,
and thus a zero of some Pi or Qj. ut
As in Lemma 4.2.1 each Ii is already reduced with respect to Tand each

Fj is assumed to be reduced with respect to Tk and hence also reduced
with respect to T, any medial set of the polynomial set Pi [ C or Qj [ C
has rank lower than that of Tby Lemma 2.2.4. Therefore, in proceeding
with each Pi [ C or Qj [ C as P to get further zero decomposition of the
form (4.2.1), we shall arrive at a decomposition of the same form (2.2.7)
with all C i irreducible.
A characteristic series or triangular series 	 is said to be irreducible if

every ascending set or triangular system in 	 is irreducible. The following
algorithm points out how to construct an irreducible characteristic series
from any given polynomial set P.

Algorithm IrrCharSer: 	 IrrCharSer(P).Given a non-empty polynomial
set P� K[x], this algorithm computes an irreducible characteristic series
	 of P.

I1. Set � fPg, 	 ;.
I2. While � 6= ; do:

I2.1. Let F be an element of � and set � � n fFg.
I2.2. Compute C CharSet(F).

I2.3. If C is non-contradictory then:

I2.3.1 Compute [k;D;G] Factor(C ).
I2.3.2 If k = 0 then set

	 	 [ fCg;
� � [ fF [ C [ fIg : I 2 ini(C ) nKg

else set

� � [ fF [ C [ fIg : I 2 ini(C fk�1g) nKg
[ fF [ C [ fGg : G 2 Gg:

Example 4.2.1. Refer to Example 2.2.3. It is easy to check that the �rst
polynomialC1 in the characteristic set C therein is irreducible over Q(x1).
To decide whether C is irreducible, one needs to verify whether the second
polynomialC2 in C is irreducible over the extension �eldQ(x1; �) with � an
extended zero of C1. Application of any method of algebraic factorization
should con�rm that

C2
:
= (x1 + 1)(x3 � 2x1x2 + x1)(x3 + x1x2 � x1)
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over Q(x1; �). Let

P1 = P[ fx1g; P3 = P[ fx3 � 2x1x2 + x1g;
P2 = P[ fx1 + 1g; P4 = P[ fx3 + x1x2 � x1g:

By Lemma 4.2.1, we have the following decomposition

Zero(P) =
4[
i=1

Zero(Pi):

The characteristic sets C 1 and C 2 of P1[ C and P2[ C have already been
given in Example 2.2.4. P3[ C and P4[ C have their characteristic sets

C 3 = [C1; x3 � 2x1x2 + x1; x1(x4 + x2 � 1)];

C 4 = [C1; x3 + x1x2 � x1;�x1(x4 � 2x2 + 1)];

respectively. The factor x1 of the third polynomials in C 3 and C 4 can be
simply removed; let the obtained ascending sets be denoted by C 3 and C 4
still.
Let us check whether the four ascending sets C 1 ; : : : ; C4 are irreducible;

both C 3 and C 4 are indeed so because all of their polynomials are linear
in their leading variables. One can �nd that the third polynomial in C 1
factors as

x23 � 1 = (x3 � 1)(x3 + 1);

and so does the fourth polynomial in C 2 as

x24 � x2x4 + 3x2
:
= (x4 + x2 � 1)(x4 � 2x2 + 1)

over the algebraic extension �eld Q(x2) with adjoining polynomial 2x22+ 1
for x2. By Lemma 4.2.1 again, we have further decompositions with the
corresponding irreducible ascending sets as follows

C 01 = [x1 + 1; x2; x3 + 1; x4 + 1];

C 001 = [x1 + 1; x2; x3 � 1; x4� 1];

C 02 = [x1; 2x22 + 1; x3; x4 + x2 � 1];

C 002 = [x1; 2x22+ 1; x3; x4 � 2x2 + 1]:

Thus, an irreducible characteristic series fC 01 ; C 001 ; C 02 ; C 002 ; C3 ; C 4g of P is
�nally obtained, with as associated zero decomposition

Zero(P) = Zero(C 01 ) [ Zero(C 001 ) [ Zero(C 02)
[Zero(C 002 ) [ Zero(C 3=x1 + 1) [ Zero(C 4=x1 + 1):

ut
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Remark 4.2.1. Irreducible weak-ascending sets can be de�ned as well, but
neither can irreducible quasi-ascending sets. Algorithm IrrCharSer can also
be used to compute irreducible weak-characteristic series of polynomial sets
by modifying the corresponding notions.

Remark 4.2.2. A triangular set in which all the polynomials other than
the �rst are linear in their leading variables is said to be quasilinear . The
characteristic set of a general polynomial set happens quite often to be
quasilinear. This may be observed from the feature of the characteris-
tic set algorithm, in which pseudo-division is the principal operation. Let
R = prem(G;F; x); normally, deg(R; x) = deg(F; x) � 1, i.e., the divided
polynomial G is reduced to a remainder polynomial R of degree one less
than that of the dividing polynomial F . The frequent occurrence of quasi-
linearity allows us to argue that, for computing irreducible characteristic
series, algebraic factorization is not needed for the �rst characteristic set in
the normal case. This gives one explanation of why irreducible decomposi-
tion is practically feasible, noting that in general the �rst characteristic set
is the most complex one in terms of size. During the computation of char-
acteristic series the adjunction of initials often destroys the quasilinearity
of characteristic sets of the enlarged polynomial sets, unfortunately. There-
fore, algebraic factorization is often required for verifying the irreducibility
of these characteristic sets.

Lemma 4.2.2. Let [T;U] be a �ne triangular system in K[x]. Assume
that T is reducible, so there exists a k such that the kth term Tk of T
has an irreducible factorization into polynomials F1; : : : ; Ft as of the form
(4.1.5). Then the following zero decomposition holds

Zero(T=U) =
t[

i=1

Zero(Ti=U[ fDg) [ Zero(fDg [T=U); (4.2.2)

where Ti =Tn fTkg [ fFig for each i.
Proof. For any �x 2 Zero(T=U), we have Tk(�x) = 0, so there must be an i
such that Fi(�x) = 0. If D(�x) 6= 0, then

�x 2 Zero(Ti=U[ fDg):
Otherwise, �x 2 Zero(fDg [ T=U). Hence, in any case �x belongs to the
right-hand side of (4.2.2).
On the other hand, let �x be contained in the right-hand side of (4.2.2).

If �x 2 Zero(fDg [T=U), then �x 2 Zero(T=U) obviously. Otherwise, there
is an i such that

�x 2 Zero(Ti=U[ fDg);
so Fi(�x) = 0 and D(�x) 6= 0. It follows from (4.1.5) that Tk(�x) = 0. There-
fore �x 2 Zero(T=U). ut
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Remark 4.2.3. If, in particular, D 2 K or dim(Tfk�1g) = 0, then (4.2.2)
may be simpli�ed to

Zero(T=U) =
t[

i=1

Zero(Ti=U):

This is trivial for D 2K. If dim(Tfk�1g) = 0, then by Proposition 4.3.10,
we have

Zero(fDg [T=U) = ;; Zero(Ti=U[ fDg) = Zero(Ti=U):

The following algorithm generalizes Algorithm IrrCharSer. The strategy
it employs is adapted fromWu (1986a) and is somewhat di�erent from that
used in IrrCharSer.

Algorithm IrrCharSerE: 	 IrrCharSerE(P;Q). Given a polynomial sys-
tem [P;Q] in K [x], this algorithm computes an irreducible characteristic
series 	 of [P;Q].

I1. Set � f[P;Q]g, 	 ;.
I2. While � 6= ; do:

I2.1. Let [F;G ] be an element of � and set � � n f[F;G ]g.
I2.2. Compute C CharSet(F).

I2.3. If C is non-contradictory then:

I2.3.1. Set

I ini(C ) nK; � � [ f[F [ C [ fIg;G ] : I 2 Ig:
I2.3.2. Compute [k;D;H] Factor(C ). If k = 0 then go to I2.3.3.

Set

� � [ f[C n fop(k; C )g [ fHg;G [I[ fDg] : H 2 Hg
[ f[F [ fDg;G [ I]g

and go to I2.

I2.3.3. Compute D prem(G [ I;C). If 0 62 D then set

	 	 [ f[C ; D ]g:

Since for each branch of the decomposition tree the basic sets of the
successively adjoined polynomial sets are of steadily decreasing ranks, the
above algorithm terminates obviously. It correctness follows from the pre-
vious discussions.
Let the natations be as in Lemma 4.2.2 and Ui = prem(U[ fDg;Ti)

(where the pseudo-division need be performed actually only with respect
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to Tfkgi = [T1; : : : ; Tk�1; Fi]). If 0 2 Ui for some i, then the corresponding
component in (4.2.2) can be simply removed. For those components in
which Ui does not contain 0, it is easy to see that [Ti;Ui] is still a �ne

triangular system and, in particular,Tfkgi is irreducible for each i. Moreover,
all Ti have the same set of parameters as T.
The polynomial set fDg [Tmay no longer be in triangular form, yet it

can be further triangularized by applying Algorithm QuaIrrTriSer to

[fT1; : : : ; Tq; Dg;U; [Tq+1; : : : ; Tr]];
where q is the biggest index such that cls(Tq) � cls(D).
In step D2.2.3 of the following algorithm, the ordering is preserved nat-

urally for ordered set collection. For instance, if S = [1; : : : ; 10], then
[i 2S: 4 � i < 8; 2 j i] = [4; 6].

Algorithm Decom: [	;�] Decom(T;U). Given a �ne quasi-irreducible
triangular system [T;U] in K[x], this algorithm computes two sets

	 = f[T1;U1]; : : : ; [Te;Ue]g;
� = f[P1;Q1;T�1]; : : : ; [Ph;Qh;T�h]g

such that

Zero(T=U) =
e[

i=1

Zero(Ti=Ui) [
h[

j=1

Zero(Pj [T�j=Qj); (4.2.3)

where each [Ti;Ui] is an irreducible triangular system, Ti has the same set
of parameters as Tand [Pj;Qj;T�j] is a triplet with [T�j;Qj] constituting a
�ne quasi-irreducible triangular system. Zero(T=U) = ; is detected when
	 = � = ;.
D1. Set � ;, r jTj. If r = 1 then set 	 f[T;U]g and the algorithm

terminates else set 
 f[[op(1;T)];Tn [op(1;T)];U]g.
D2. For { = 2; : : : ; r do:

D2.1. Set 	 ;.
D2.2. For each [T0;T00;U0] 2 
 do:

D2.2.1. Set T  op(1;T00), T00 T00 n [T ].
D2.2.2. Compute [k;D;F] Factor(T0[[T ]). If k = 0 then set D 1,

F fTg.
D2.2.3. Set

T� [T 0 2T0: cls(T 0) � cls(D)];

T+ [T 0 2 T0: cls(T 0) > cls(D)]:

If D 62K and T� = ; or dim(T�) > 0 then set

� � [ f[T�[ fDg;U0;T+ [ [T ][T00]g; U0 U0[ fDg:
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D2.2.4. For each F 2 F do:

D2.2.4.1. Set U00 prem(U0;T0[ [F ]).
D2.2.4.2. If 0 62U00 then set 	 	 [ f[T0[ [F ];T00;U00]g.

D2.3. Set 
 	.

D3. Set 	 f[T0;U0] : [T0; ;;U0] 2 	g.

Proof. There is no recursive loop involved in this algorithm, so the termina-
tion is trivial. The correctness of the algorithm follows from Lemma 4.2.2
and Remark 4.2.3. ut
By the way, the integer k in the factorization step D2.2.2 is known to be

0 or { because T0 is irreducible of length { � 1.

Example 4.2.2. Consider the triangular system [T03;U0
3] produced in Exam-

ple 4.1.1. One may verify that the second polynomial in T03 factors as

� z5 + t
:
= (z + t+ 1)T2 (4.2.4)

over the algebraic extension �eld obtained from Q with T1 as adjoining
polynomial, where

T2 = �z4 + tz3 + z3 � tz2 � z + t+ 1

and T1 = t2+t+1 as in Example 4.1.1. By replacing the polynomial�z5+t
with its two factors respectively, one obtains two triangular systems [T�3;U�

3]
and [T��3 ;U��

3 ] with

T�3 = [T1; z + t + 1; T3; T4]; T��3 = [T1; T2; T3; T4];

U�
3 = ft+ 1g; U��

3 = fzg;
where

T3 = �z3y � t3; T4 = zx2 � t:
Since T3 is linear in y (and thus irreducible), we need only to test whether T4
is irreducible over the successive algebraic extension �elds Q(t; z) obtained
from Q with [T1; z + t + 1] and with [T1; T2] as adjoining triangular sets,
respectively. Using algebraic factorization, one may determine that it is
reducible and can be factorized as

T4
:
= �(t + 1)(x+ t)(x� t); (4.2.5)

T4
:
=

z

D
T 04T

00
4 (4.2.6)

respectively, where

D = 4tz3 + 2z3 + tz2 + 2z2 + tz � 2z + 3t;

T 04 = z3x+ z2x+ tx+ x+ tz3 + z3 + z2 � z + 2t+ 1;

T 004 = tz3x+ 2z3x� tz2x+ tzx+ tx+ x� tz3 � z3 � tz � t
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and the factors t + 1, z and the denominator are viewed as elements
of Q(t; z). Replacing T4 in T�3 and T��3 respectively by the two factors
whose leading variables are x, we obtain four irreducible triangular sys-
tems [T3i;U3i] with

T31 = [T1; z + t+ 1; T3; x+ t]; T32 = [T1; z + t+ 1; T3; x� t];
T33 = [T1; T2; T3; T 04]; T34 = [T1; T2; T3; T 004 ];

U31 = U32 = ft+ 1g; U33 = U34 = fzg:
Thus, [T03;U

0
3] is decomposed into a set 	 of 4 irreducible triangular systems

[T31;U31]; : : : ; [T34;U34].
The polynomial corresponding to D in (4.1.5) is equal to 1 for (4.2.4)

and (4.2.5). For the factorization (4.2.6), since the irreducible triangular set
[T1; T2] corresponding to T� is of dimension 0, by Proposition 4.3.10 the
adjunction of D into the triangular set need not be considered. Therefore,
� = ;. ut

Algorithm IrrTriSer: 	 IrrTriSer(P;Q).Given a polynomial system [P;Q]
inK [x], this algorithm computes an irreducible triangular series 	 of [P;Q].

I1. Set 	 ;, � f[P;Q; ;; 0]g.
I2. While � 6= ; do:

I2.1. Let [F;G ;T;m] be an element of � and set � �nf[F;G ;T;m]g.
I2.2. Compute 	0 QuaIrrTriSer(F;G ;T).

I2.3. For each [T;U]2 	0 do:

If jTj> m then compute [ �	; ��] Decom(T;U) and set

	 	 [ �	; � � [ f[�P; �Q; �T; jTj] : [�P; �Q; �T] 2 ��g:

Proof. To see the termination of the while-loop I2, consider any [F;G ;T;m]
taken from � in step I2.1 and [�P; �Q; �T; �m] added to � in step I2.3. Then
we have �m > m. Since �m is the number of polynomials in a triangular set
and thus cannot be greater than n, the while-loop must terminate.
Now we show that, for each [T;U] 2 	0 as in step I2.3, if jTj � m then

Zero(T=U) = ;. When this is done, the correctness of IrrTriSer follows from
the zero relations (4.1.2) and (4.2.3).
Let [T;U]2 	 as in step I2.3. Then for any triplet [�P; �Q; �T] generated in

Decom from [T;U], �P is enlarged from an irreducible triangular set T� by
adjoining a single polynomialD. Moreover, [T�; �Q] is a triangular system.
From the formation of the triplet in D2.2.3 of Decom one sees that

cls(D)

(
< cls(T ); 8T 2Tj;

� cls(T ); 8T 2T�;
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jT�j + jTjj = jTj and D is reduced with respect to T�. Let the quasi-
irreducible triangular systems computed by QuaIrrTriSer from �P; �Q; �T be
[T�1;U�

1]; : : : ; [T�h;U
�
h]. Then each T�i can be written as T0i[Tj such that

Zero(�P=�Q) =
h[
i=1

Zero(T0i=U
�
i):

According to Theorem 6.1.11, if jT�i j � jTj then [T�i ;U
�
i ] is not perfect, i.e.,

Zero(T�i=U
�
i) = ;, for each i. This proves what we wanted and thus the

correctness of the algorithm. ut
Excluding the case jTj � m in step I2.3 is crucial for the termination

of IrrTriSer. We guess that this case never happens, but we cannot �nd a
proof. If it is indeed so, then the algorithm may be slightly simpli�ed by
not considering the fourth element m and the correctness becomes obvious.
When the \if"-condition in I2.3 is not imposed, the termination of the
algorithm may be proved by requiring that in the algebraic factorization
of T in D2.2.2 of Decom the polynomialD does not involve any dependent
of T0. The requirement can be satis�ed if some additional computation is
performed for algebraic factorization.

Example 4.2.3. Let us look at the triangular systems in Examples 2.3.2
and 4.1.1. Trivially, [T2;U2] is irreducible. Algebraic factorization shows
that [T1;U1] is also irreducible. As we have seen in Example 4.2.2, [T03;U0

3]
can be decomposed into 4 irreducible triangular systems. It is easy to see
that [T003;U

00
3] is reducible, because substitution of t = 1 into the second

polynomial of T003 yields z
5 � 1 which is reducible. In fact, this triangular

system can also be decomposed by Algorithm Decom into four irreducible
triangular systems [T35;U35]; : : : ; [T38;U38] with

T35 = [t� 1; z � 1; y + 1; x� 1];

T36 = [t� 1; z � 1; y + 1; x+ 1];

T37 = [t� 1; z4 + z3 + z2 + z + 1; z3y + 1; x� z2];
T38 = [t� 1; z4 + z3 + z2 + z + 1; z3y + 1; x+ z2];

U35 =U36 = ;;
U37 =U38 = fzg:

We omit the details for this decomposition.
In summary, the original polynomial set Pis decomposed into a sequence

of 10 irreducible triangular systems [T1;U1]; [T2;U2]; [T31;U31]; : : : ; [T38,
U38] such that

Zero(P) = Zero(T1=U1) [ Zero(T2=U2) [
8[

j=1

Zero(T3j=U3j):
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By Theorem 4.3.11, eachUi in the above decomposition may be substituted
by ini(Ti). As jT2j = jT3jj = 4 (the number of variables) for 1 � j � 8, we
have

Zero(Ti=ini(Ti)) = Zero(Ti); i = 2; 31; : : : ; 38;

according to Proposition 4.3.10. Therefore,

Zero(P) = Zero(T1=ini(T1)) [ Zero(T2) [
8[

j=1

Zero(T3j): (4.2.7)

ut
Example 4.2.4. As further illustration, let us take a more complicated poly-
nomial system P = [fP1; P2; P3g; fx3g], where

P1 = x3(x25 � x24 + 2x1x4 � x21) + 2x1(x1 � x4)x5;
P2 = x3(x25 � x24 + 2x2x4 � x22) + 2x2(x2 � x4)x5;
P3 = x3[(x1 � x6)(x2x6 + x23) + (x2 � x6)(x1x6 + x23)]:

With respect to the variable ordering x1 � � � � � x6,P may be decomposed
into 7 (reduced) irreducible triangular sets Ti such that

Zero(P) =
7[
i=1

Zero(Ti=ini(Ti) [ fx3g); (4.2.8)

where

T1 = [T1; T2; T3];

T2 = [T1; T2; T
0
3];

T3 = [x2 + x1; x
2
3 + x21; x4; x5 � x3];

T4 = [x2 + x1; x
2
4 � x23 � x21; x5 � x3; x6];

T5 = [x2 + x1; x4; x3x
2
5 + 2x21x5 � x21x3; x6];

T6 = [x2 � x1; T 02; x6 � x1];
T7 = [x2 � x1; T 02; x1x6 + x23];

T1 = 4x44 � 8(x2 + x1)x34 � 4(x23 � x22 � 3x1x2 � x21)x24
+4(x2x

2
3 + x1x

2
3 � x1x22 � x21x2)x4 � (x22 + 2x1x2 + x21)x

2
3;

T2 = 2(x4 � x2 � x1)x5 � 2x3x4 + (x2 + x1)x3;

T 02 = x3x
2
5 � 2x1(x4 � x1)x5 � x3x24 + 2x1x3x4 � x21x3;

T3 = (x2 + x1)x6 + 2x24 � 2(x2 + x1)x4;

T 03 = (x2 + x1)x6 � 2x24 + 2(x2 + x1)x4 + 2x23 � 2x1x2:

ut



112 4. Irreducible zero decomposition

4.3 Properties of irreducible triangular systems

In what follows, we write zfig for (u; y1; : : : ; yi) and �
fig for (u; �1; : : : ; �i)

with z = zfrg and � = �frg. Obviously, z is a permutation of x. The
following lemma is taken from Wu (1994, pp. 174{175).

Lemma 4.3.1. Let T be an irreducible triangular set in K[z] with a
generic zero �. Then, for any polynomial P 2K[z],

prem(P;T) = 0 () P (�) = 0:

Proof. Let T= [T1; : : : ; Tr] as in (4.1.3) with

Ii = ini(Ti); di = ldeg(Ti); 1 � i � r;

and � be of the form
� = (u; �1; : : : ; �r):

As before, Kk =K(�fkg). We �rst prove the following assertion:

(A) If R 2K[z] is reduced with respect to Tand R(�) = 0, then R � 0.

Note that �r is an extended zero of the polynomials

�R = R(�fr�1g; yr); �Tr = Tr(�
fr�1g; yr) 2Kr�1[yr ]:

As �Tr is irreducible over Kr�1 and deg(R; yr) < dr, �R � 0. Hence, all the
coe�cients of �R as a polynomial in yr are identically equal to 0, viz.,

Ri(�
fr�1g) = coef( �R; yir) � 0; 0 � i < dr:

Similarly, �r�1 is an extended zero of the polynomials

�Ri = Ri(�
fr�2g; yr�1); �Tr�1 = Tr�1(�

fr�2g; yr�1) 2Kr�2[yr�1]:

Since R is reduced with respect toT, so is each Ri. Therefore, deg(Ri; yr�1)
< dr�1. This and the irreducibility of �Tr�1 over Kr�2 imply that �Ri � 0
for every i. It follows that the coe�cients of �Ri in yr�1 are all identically
0, and thus so are the coe�cients of Ri in yr�1 when z

fr�2g is substituted

by �fr�2g.
The above argument may be continued for Tr�2; : : : ; T1. In this way, we

shall see that all the coe�cients of R as a polynomial in K0[y1; : : : ; yr]
must be identically 0. Therefore, R � 0 and assertion (A) is proved.
To complete the proof of Lemma 4.3.1, let R = prem(P;T). Then there

are integers si � 0 and polynomials Qi such that

Is11 � � �Isrr P =
rX

i=1

QiTi +R: (4.3.1)
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As Ti(�) = 0, plunging � into the formula (4.3.1) yields

I1(�)
s1 � � � Ir(�)srP (�) = R(�):

Since each Ii is a non-zero polynomial reduced with respect to T, Ii(�) 6= 0
by assertion (A). Hence,

P (�) = 0 () R(�) = 0 () R = 0:

The second \() " above is ensured by assertion (A) because R is reduced
with respect to T. The proof is complete. ut

De�nition 4.3.1. Let P be any polynomial andT= [T1; : : : ; Tr ] a triangular
set in K[x]. The polynomial

res(P;T), res(� � � res(P; Tr; lv(Tr)); : : : ; T1; lv(T1))
is called the resultant of P with respect to T.

Clearly, R = res(P;T) does not involve lv(Ti) for any i. When the vari-
ables x are renamed u and y with yi = lv(Ti) as before, we have R 2K [u].

Lemma 4.3.2. LetT= [T1; : : : ; Tr] be a triangular set and P a polynomial
in K [z], and R = res(P;T). Then in K[z] one can determine polynomials
Q and Q1; : : : ; Qr such that

QP = Q1T1 + � � �+QrTr + R: (4.3.2)

If Tis irreducible with a generic zero

� = (u; �1; : : : ; �r)

and prem(P;T) 6= 0, then

R(u) 6= 0; Q(�) 6= 0:

Proof. The �rst half of the lemma is a direct consequence of Lemma 1.3.1.
To prove the second half, let

Rr = res(P; Tr; yr); Ri = res(Ri+1; Ti; yi); i = r � 1; : : : ; 1;

where yi = lv(Ti) for each i and R1 = R. Since T is irreducible and
prem(P;T) 6= 0, P (�) 6= 0 by Lemma 4.3.1. On the other hand,

�Tr = Tr(�
fr�1g; yr)

is irreducible over K(�fr�1g) and Tr(�) = �Tr(�r) = 0. Thus, the two

polynomials P (�fr�1g; yr) and �Tr cannot have a common zero for yr in any

extension �eld of K(�fr�1g). Therefore,

Rr(�
fr�1g) 6= 0:
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As Tr�1(�
fr�2g; yr�1) is irreducible over K(�fr�2g) and Tr�1(�

fr�1g) = 0,
we have

Rr�1(�
fr�2g) 6= 0

for the same reason. Continuing this argument, �nally we shall have

R(u) = R1(u) 6= 0:

Plunging � into the polynomials in (4.3.2), one immediately gets Q(�) 6= 0.
The lemma is proved. ut
See Wu (1994, pp. 175{177) for another proof of Lemma 4.3.2. The fol-

lowing theorem and its proof are adapted from the same book by Wu
(pp. 189{190).

Theorem 4.3.3. Every irreducible triangular system in K[x] is perfect
over the algebraic closure �K of K .

Proof. Let [T;U] be an irreducible triangular system with T= [T1; : : : ; Tr]
written in the form (4.1.3), and let

Ii = ini(Ti); 1 � i � r; and V =
Y
U2U

U:

As prem(Ii;Tfi�1g) 6= 0, by Lemma 4.3.2 there exist polynomialsQi; Qij 2
K[zfi�1g] such that

Ri = QiIi �
i�1X
j=1

QijTj 2K [u]

and Ri 6= 0 for each i. Since prem(U;T) 6= 0 for any U 2 U, prem(V;T) 6= 0
according to Lemma 4.3.1. Again, by Lemma 4.3.2 there are polynomials
H;Hi 2K[z] such that

R = HV �
rX
i=1

HiTi 2 K[u]; (4.3.3)

and R 6= 0. Hence, there exists a point

�u = (�u1; : : : ; �ud) 2Kd

such that
R1(�u) � � �Rr(�u)R(�u) 6= 0:

Such �u may be chosen as a rational point.
Now we proceed to determine numbers �yi 2 �K by induction such that

the point

�z = (�u; �y1; : : : ; �yr) 2 �K
d+r
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satis�es the relations

Ti(�z
fig) = 0; Ii+1(�z

fig) 6= 0: (4.3.4)

First of all, let

�T1 = T1(�u; y1) 2 K[y1]; �I1 = I1(�u) 2K :

Since
Q1(�u)I1(�u) = R1(�u) 6= 0;

�I1 6= 0 and �T1 is a polynomial in y1 of degree � 1. Thus, one can take a
number �y1 from some algebraic extension �eld of K such that

�T1(�y1) = 0; or T1(�z
f1g) = 0:

As
R2 = Q2I2 � Q21T1; R2(�z

f1g) = R2(�u) 6= 0;

we have I2(�zf1g) 6= 0. So (4.3.4) holds for i = 1.
Suppose that we have already found �y1; : : : ; �yi satisfying (4.3.4) and want

to �nd �yi+1.
Let

�Ti+1 = Ti+1(�z
fig; yi+1) 2K0[yi+1];

where K0 is some algebraic extension of K containing �y1; : : : ; �yi. The lead-
ing coe�cient of �Ti+1 as a polynomial in yi+1 is

Ii+1(�z
fig) 6= 0:

Hence, one can choose a number �yi+1 in some algebraic extension of K 0

and thus of K such that �Ti+1(�yi+1) = 0 or Ti+1(�zfi+1g) = 0. Therefore,

Ri+2 = Qi+2Ii+2 �
i+1X
j=1

Qi+2 jTj ;

Ri+2(�zfi+1g) = Ri+2(�u) 6= 0;

and
T1(�z

fi+1g) = T1(�z
f1g) = 0; : : : ; Ti+1(�z

fi+1g) = 0

imply immediately that
Ii+2(�z

fi+1g) 6= 0:

Finally, plunging the above-constructed �z into (4.3.3) one sees that V (�z) 6=
0, and thus �z is a zero of [T;U]. This completes the proof of the theorem.

ut

Corollary 4.3.4. Every irreducible triangular set in K[x] is perfect over
the algebraic closure �K of K .
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Corollary 4.3.5. Any irreducible triangular set and system in K [x] are
perfect.

As a matter of fact, Corollary 4.3.5 can be established without using
Theorem 4.3.3. For any generic zero of an irreducible triangular set T is a
zero of [T; ini(T)] and any �ne triangular system [T;U] in some extension
�eld of K.

Corollary 4.3.6. Let 	 be an irreducible triangular series of any polyno-
mial system P in K[x]. Then

Zero(P) = ; () 	 = ;:
Proposition 4.3.7. Any irreducible triangular set is a simple set inK [x].

Proof. Let T= [T1; : : : ; Tr] be an irreducible triangular set written in the
form (4.1.3) with

Ii = ini(Ti); T 0i =
@Ti
@yi

; 1 � i � r;

and let
D = I1 � � �IrT 01 � � �T 0r:

As prem(Ii;T) 6= 0 and prem(T 0i ;T) 6= 0 for each i, prem(D;T) 6= 0. By
Lemma 4.3.2, there are polynomials Q;Qi 2K [z] such that

R = res(D;T) = QD �
rX
i=1

QiTi 6= 0 (4.3.5)

and R 2K[u]. Let
~Tt = sqfr(R);

where sqfr(R) denotes the product of all the distinct irreducible factors of
R over K (i.e., the greatest squarefree divisor of R) and the index t is to
be determined as follows. Construct t� 1 polynomials

~Ti�1 = sqfr(ini( ~Ti)res( ~Ti;
@ ~Ti
@upi

; upi)); i = t; : : : ; 2;

such that

~T0 = ini( ~T1)res( ~T1;
@ ~T1
@up1

; up1) 2K;

where upi = lv( ~Ti) and ~Ti 6= 0 for each i. Let ~T= [ ~T1; : : : ; ~Tt]. We want to

show that [T; ~T] is a simple system. From the construction of ~Ti, it is easy
to see that

ini( ~Ti)(�u
fpi�1g) 6= 0 and ~Ti(�u

fpi�1g; upi) is squarefree
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with respect to upi for any �ufpi�1g 2 Zero(;=~Tfi�1g).
Now let

�zfi�1g = (�u; �yfi�1g) 2 Zero(Tfi�1g=~T):
Clearly, R(�zfi�1g) = R(�u) 6= 0. To see the squarefreeness of Ti(�z

fi�1g; yi)
with respect to yi, let us proceed to derive a contradiction by supposing the
opposite: Ti(�zfi�1g; yi) and T 0i (�z

fi�1g; yi) have a common divisor of degree
� 1 in yi. Then there exists a �yi 2 ~K such that

Ti(�z
fig) = T 0i (�z

fig) = 0:

It follows that
D(�zfig; �yi+1; : : : ; �yr) = 0

for any �yi+1; : : : ; �yr 2 ~K . Clearly, this is also true if Ii(�zfi�1g) = 0.
On the other hand, since T is irreducible, by Corollary 4.3.5 there exist

�yi+1; : : : ; �yr 2 �K such that

Ij(�z) 6= 0; Tj(�z) = 0; j > i:

Plunging �z into (4.3.5), one sees that D(�z) 6= 0. This leads to a contradic-
tion. Hence,

Ii(�z
fi�1g) 6= 0 and Ti(�z

fi�1g; yi) is squarefree

with respect to yi. Thus [T; ~T] is a simple system, and the proposition is
proved. ut
Another simpler proof of this proposition is provided by Lemma 4.4.1.
Roughly speaking, a simple set is a triangular set Tin which each poly-

nomial of class p is squarefree with respect to xp over every extension �eld
obtained from K with an irreducible component of Tfp�1g as adjoining
triangular set. Note that an irreducible triangular system is not necessarily
a simple system. This can be seen from the triangular system [T1; fTg] in
Example 3.3.2: it is not a simple system, though T1 is irreducible.
As a consequence of Corollary 3.4.5 and Proposition 4.3.7, we have:

Corollary 4.3.8. For any irreducible triangular set Tand polynomial P
in K[x],

Zero(T=ini(T))� Zero(P ) () prem(P;T) = 0:

The following corollary corresponds to Theorem 3.4.4.

Corollary 4.3.9. For any irreducible triangular system [T;U] and poly-
nomial P in K[x],

Zero(T=U)� Zero(P ) () prem(P;T) = 0:
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Proof. As Zero(T=U) � Zero(T=ini(T)), the direction \(=" follows from
Corollary 4.3.8.
For the other direction, let � be a generic zero of T. For any U 2 U, as

prem(U;T) 6= 0, by Lemma 4.3.1 U (�) 6= 0. This implies that

� 2 Zero(T=U)� Zero(P )

and thus P (�) = 0. Applying Lemma 4.3.1 again, we have prem(P;T) = 0.
ut

Proposition 4.3.10. Let Tbe an irreducible triangular set and P a poly-
nomial in K[x] with prem(P;T) 6= 0. If dim(T) = 0, then

Zero(fPg [T) = ;; Zero(T=I) = Zero(T);

where I= ini(T).

Proof. The �rst equality follows from Lemma 4.3.2, and the second is ob-
vious by noting that

Zero(T) = Zero(T=I)[
[
I2I

Zero(fIg [T):

ut
In zero decompositions of the form (2.2.8) computed using characteristic

sets, Zero(C i=ini(C i ) [Q) is placed instead of Zero(Ti=Ui) in the zero de-
composition associated to a triangular series, where each C i is an ascending
set having the properties that prem(P;Ci ) = f0g and 0 62 prem(Q; Ci ). In
general there is no guarantee that prem(P;Ti) = f0g, however. And each
Uimay contain many more polynomials than ini(C i )[Q does. It is remark-
able that the property prem(P;Ti) = f0g is recovered when the triangular
series is irreducible or simple.
Parallel to Theorem 3.4.6 for simple series, let us state the properties

for irreducible triangular series as the following theorem. Here property (a)
is easily proved by applying Corollary 4.3.9, while the proof of (b) is an
analogy to that of Theorem 3.4.8 (b).

Theorem 4.3.11. Let 	 be an irreducible triangular series of any poly-
nomial system [P;Q] in K[x]. Then

(a) prem(P;T) = f0g and 0 62 prem(Q;T) for any [T;U]2 	.
(b)

Zero(P=Q) =
[

[T;U]2	

Zero(T=ini(T)[Q): (4.3.6)

If dim(T) = 0, then Zero(T=ini(T) [ Q) in (4.3.6) can be simpli�ed to
Zero(T=Q).
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Proof. (a) Let [T;U] 2 	; then Zero(T=U) � Zero(P=Q). Hence, for all
P 2 Pand Q 2 Q:

Zero(T=U)� Zero(P ); Zero(T=U) 6� Zero(Q);

and it thus follows from Corollary 4.3.9 that

prem(P;T) = 0; prem(Q;T) 6= 0:

(b) By (a) and the pseudo-remainder formula, any x belonging to the
right-hand side of (4.3.6) is contained in the left-hand side. On the contrary,
let �x 2 Zero(P=Q). By de�nition there is a [T;U] 2 	 such that �x 2
Zero(T=U). Since [T;U] is a triangular system, I(�x) 6= 0 for any I 2 ini(T).
Hence �x 2 Zero(T=ini(T) [ Q), i.e., �x belongs to the right-hand side of
(4.3.6). If dim(T) = 0, by Proposition 4.3.10 Zero(T=ini(T)[ Q) may be
simpli�ed to Zero(T=Q). ut
Property (a) in Theorem 4.3.11 is satis�ed by each irreducible triangular

system T, no matter whether or not the other triangular systems in 	
are irreducible. It can be used to avoid some veri�cations of the 0 pseudo-
remainder in decomposition algorithms based on characteristic sets.

Corollary 4.3.12. Any irreducible triangular series of a polynomial sys-
tem P in K[x] is an irreducible W-characteristic series of P.

Some of the results stated in this section are consequences of the prop-
erties about simple systems shown in Sect. 3.4. Most of the other results
newly proved for irreducible triangular sets or systems also hold or can be
generalized for simple sets or systems when the corresponding notions are
appropriately substituted. These include the properties in Lemmas 4.3.1
and 4.3.2, Theorem 4.3.3, and Proposition 4.3.10. A generalization of The-
orem 4.3.3 will be given as Theorem 5.1.12. The generalization of other
results will be discussed somewhere else.

4.4 Irreducible simple systems

A simple system is said to be irreducible or prime if it is irreducible as a
triangular system. We want to decompose any polynomial system P into
irreducible simple systems. This may be achieved by �rst decomposing P
into irreducible triangular systems Ti and then computing simple systems
from each Ti.
To explain the process in detail, consider an irreducible triangular system

[T;U] and let

U0 = f @T

@lv(T )
: T 2Tg



120 4. Irreducible zero decomposition

and
R= fsqfr(res(U;T)) : U 2U[U0g:

Since T is irreducible and prem(U;T) 6= 0 for every U 2 U[ U0, any
polynomial R 2 R is non-zero and does not involve the dependents of T
and

Zero(T=U) = Zero(T=R)[
[
R2R

Zero(T[ fRg=U):

Compute a simple series [T1; ~T1]; : : : ; [Tq; ~Tq] of [;;R]. There must be some
Ti which is empty. This is because for every variable xk occurring in some
polynomial in R there exist values of the other variables such that R 6= 0
for all R 2 R and in�nitely many values of xk. If all Ti are non-empty,
then there exists an xk occurring in some polynomial in R such that for
any �xed values �x1; : : : ; �xk�1; �xk+1; : : : ; �xn of the other variables

�x 2
q[

i=1

Zero(Ti=~Ti) = Zero(;=R)

holds only for �nitely many values �xk of xk. This leads to a contradiction.
Suppose that T1; : : : ;Tl (l � q) are all those Ti which are empty. Then,

Zero(T=U) =
l[

i=1

Zero(T=~Ti)[
q[

i=l+1

Zero(T[Ti=~Ti)[
[
R2R

Zero(T[fRg=U):

Note the fact that Ti[T for i > l and T[ fRg for R 2 R are all enlarged
from Tby adjoining at least one polynomial which does not involve any
dependent of T.
We want to show that [T; ~Ti] is an irreducible simple system for 1 � i � l.

For this purpose, consider a �xed i (� 1 and � l) and a polynomial T 2T
of class p. Let

�xfp�1g 2 Zero(T(p�1)=~T(p�1)
i );

then R(�xfp�1g; xp; : : : ; xn) 6= 0 for all R 2 R. It follows from the construc-
tion of R that ini(T )(�xfp�1g) 6= 0 and

T (�xfp�1g; xp);
@T

@xp
(�xfp�1g; xp)

do not have any commondivisor of degree � 1 in xp. Therefore, T (�x
fp�1g; xp)

is squarefree with respect to xp. Note that [;; ~Ti] is simple and any poly-

nomial in ~Ti does not involve the dependents of T. Hence [T; ~Ti] is simple.
What has been explained above may be summarized as the following

lemma. One of its consequences is Proposition 4.3.7.

Lemma 4.4.1. From any irreducible triangular system [T;U] inK[x], one
can compute a �nite number of triangular sets ~T1; : : : ; ~Tl and polynomial
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systems [F1;U1]; : : : ; [Fm;Um] with Fj 6= ; such that each [T; ~Ti] is an
irreducible simple system, every polynomial in Fi does not involve the de-
pendents of Tand

Zero(T=U) =
l[

i=1

Zero(T=~Ti) [
m[
j=1

Zero(T[ Fj=Uj):

Now consider an arbitrary polynomial systemP and let [T1;U1]; : : : ; [Tt;Ut]
be an irreducible triangular series ofP. For each [Ti;Ui], one can determine
triangular sets ~Ti1; : : : ; ~Tili and polynomial systems [Fi1;Ui1]; : : : ; [Fimi

;Uimi
]

with Fik 6= ;, according to Lemma 4.4.1, such that

Zero(Ti=Ui) =
li[
j=1

Zero(Ti=~Tij) [
mi[
k=1

Zero(Ti[ Fik=Uik);

where each [Ti; ~Tij] is simple and deg(F; lv(T )) = 0 for every F 2 Fik and
T 2Ti.
One may decompose each polynomial system [Ti [ Fik ;Uik] into irre-

ducible triangular systems [T�ij;U
�
ij] and apply Lemma 4.4.1 to each ob-

tained [T�ij;U
�
ij], and so on. As T is irreducible and deg(F; lv(T )) = 0 for

any F 2 Fik and T 2 Ti, jT�ijj > jTij. Hence, the recursive process must
terminate. Finally, P will be decomposed into �nitely many irreducible
simple systems. In other words, we have the following theorem.

Theorem 4.4.2. There is an algorithm which computes, from any given
polynomial systemP inK[x], a �nite number of irreducible simple systems
S1; : : : ;Se such that

Zero(P) =
e[

i=1

Zero(Si):

The above theoretical approach may have undesirable performance. It
has been so explained mainly for simplicity and ease of termination proof.
In practice, one may compute directly a simple series of each irreducible
triangular system [Ti;Ui] and then examine which of the obtained sim-
ple systems are already irreducible. For the reducible ones, one decompose
them further into irreducible triangular systems, and so forth. In this way,
P should also be decomposed into irreducible simple systems, but the ter-
mination is not evident.

Example 4.4.1. Consider the irreducible triangular systems in (4.2.7). As
dim(T2) = dim(T3j) = 0 for 1 � j � 8, it is easy to see that each [Ti; ;] is
a simple system for i = 2; 31; : : : ; 38. Now recall the triangular set

T1 =

2
64
�z5 + t4;

z6y2 + 2t3z3y � t7z5 + 2t4z5 � tz5 + t6;

(t3 � 1)z3x� z3y � t3

3
75 ;
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where t � z � y � x. The factors of the initials and derivatives of the three
polynomials which need be considered are t3 � 1; z and z3y + t3. As

sqfr(res(z;T1)) = t; sqfr(res(z3y + t3;T1)) = t(t3 � 1);

we can take R = ft; t3 � 1g. A simple series of [;;R] consists of a single
simple system [;; ~T1], where ~T1 = [t(t3 � 1)]. Therefore, an irreducible
simple system [T1; ~T1] is obtained. Computing directly a simple series of
[T1; ini(T1)] yields the same result. In any case, we have

Zero(P) = Zero(T1=~T1) [ Zero(T2) [
8[

j=1

Zero(T3j):

ut
As an alternative to decompose P into irreducible simple systems, one

can compute a simple series of P �rst. Each of the obtained simple systems
may be further decomposed into irreducible triangular systems by using
Algorithm Decom. However, these triangular systems are not necessarily
simple, and from them simple systems have to be determined by using a
technique similar to the one exhibited above. This approach has obvious
disadvantages. The computation of simple series is very expensive, due
to the high price of making polynomials squarefree. Apparently, the cost is
spent in vain when the polynomials �nally have to be factorized. Therefore,
we do not pursue any further in this direction.
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Various elimination algorithms

It is somewhat unusual to postpone the presentation of important elimina-
tion methods based on resultants and Gr�obner bases to this later chapter.
The main reason for this is that these methods are already well-known,
fully described in standard textbooks and are widely accessible. In order
to reduce overlap with existing materials in the literature, we shall not in-
troduce the methods in detail and be satis�ed by only giving them a brief
review. Most formal proofs will be omitted.
As the reader may have been aware, our emphasis is placed mainly on a

systematic treatment of elimination techniques based on pseudo-division.
The objective is to establish various decompositions of zero sets (rather
than ideals) of multivariate polynomials. This attempt is continued in part
of this chapter.

5.1 Regular systems

Roughly speaking, a regular system is a simple system without the re-
quirement on squarefreeness. We want to modify the subresultant-based
algorithms described in Chaps. 2 and 3 to decompose any polynomial sys-
tem into regular systems. It will also be shown that the decomposition can
be computed by using an alternative algorithm.

De�nition 5.1.1. A triangular system [T;U] in K [x] is said to be regular
or called a regular system if for any 1 � k � n:
(a) either Thki = ; or Uhki = ;;
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(b) I(�xfk�1g) 6= 0 for any I 2 ini(Uhki) and

�xfk�1g 2 Zero(T(k�1)=U(k�1)):

A triangular set T is said to be regular or called a regular set if there
exists a polynomial set U such that [T;U] is a regular system.
A triangular series 	 is called a regular series if every T 2 	 is a regular

system.
	 is called a regular series of a polynomial system P if it is a regular

series and
Zero(P) =

[
T2	

Zero(T):

A regular series of [P; ;] is also called a regular series of the polynomial
set P.

In the above de�nition, condition (b) is also satis�ed for every I 2
ini(Thki) as [T;U] is a triangular system. For example, with respect to
the ordering x � y, [xy � 1] is a regular set because [[xy � 1]; fxg] is a
regular system; but neither is T= [x2� 1; (x+ 1)y � 1]. For [T;;] is not a
triangular system by de�nition, while U= ; is the only possible set such
that condition (a) holds.
For convenience, sometimes ; is also regarded as a regular set. Refer to

Sect. 3.1: for triangular systems, projection is rather easy.

Subresultant-based algorithm

The following algorithm RegSer is an extension of TriSer. It may also be
considered as simpli�ed from SimSer. The algorithm decomposes any poly-
nomial system into �nitely many regular systems, where the elimination
strategy for the equation-polynomials is almost the same as that employed
in TriSer. The main new ingredient is step R2.2.3 in which the polynomial
P2 of class k obtained in step R2.2.2 is used to eliminate the inequation-
polynomials from Uhki 6= ;. Roughly speaking, the elimination is realized
by computing SRS and removing GCDs.

Algorithm RegSer: 	 RegSer(P;Q). Given a polynomial system [P;Q]
in K[x], this algorithm computes a regular series 	 of [P;Q].

R1. Set � f[P;Q; n]g;	 ;.
R2. While � 6= ; do:
R2.1. Let [T;U; `] be an element of � and set � � n f[T;U; `]g.
R2.2. For k = `; : : : ; 1 do:

R2.2.1. Set T Tn f0g;U Un (K n f0g). If T\K 6= ; or 0 2 U
then go to R2. If Thki = ; then go to R2.2.4.
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R2.2.2. Repeat:

R2.2.2.1. Let P2 be an element of Thki with minimal degree in xk
and set

� � [ f[Tn fP2g [ fini(P2); red(P2)g;U; k]g;
U U[ fini(P2)g:

If jThkij = 1 then go to R2.2.3 else take a polynomialP1
from Thki n fP2g.

R2.2.2.2. Compute the SRS H2; : : : ;Hr of P1 and P2 with respect
to xk and set Ii lc(Hi; xk) for 2 � i � r. If cls(Hr) < k
then set �r r � 1 else set �r r.

R2.2.2.3. Set

� � [ f[Tn fP1; P2g [ fHi; Ii+1; : : : ; Irg;
U[ fIig; k] : 2 � i � �r � 1g;

T Tn fP1; P2g [ fHr;H�rg;
U U[ fI�rg:

R2.2.3. While Uhki 6= ; and cls(P2) = k do:

R2.2.3.1. Let P1 be a polynomial inUhki; compute the SRSH2; : : :,
Hr of P1 and P2 if deg(P1; xk) � deg(P2; xk), or of P2
and P1 otherwise, with respect to xk, and set Ii lc(Hi; xk)
for 2 � i � r.

R2.2.3.2. Set

� � [ f[Tn fP2g [ fpquo(P2;Hi; xk); Ii+1; : : : ; Irg;
U[ fIig; k] : 2 � i � r � 1g;

T Tn fP2g [ fpquo(P2;Hr; xk)g;
P2 pquo(P2;Hr; xk):

If cls(Hr) < k then set U Un fP1g [ fIrg else set
U U[ fIrg.

R2.2.4. If Uhki 6= ; then for each P1 2Uhki do:

� � [ f[T[ fini(P1)g;Un fP1g [ fred(P1)g; k]g;
U U[ fini(P1)g:

R2.3. Set 	 	 [ f[T;U]g, with Tordered as a triangular set.

The termination and correctness of RegSer may be proved by a similar
argument to the proof of those of SimSer. We only need to note the fol-
lowing. Recall Lemma 3.3.2 and drop the assumption that P2(�x

fk�1g; xk)
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is squarefree with respect to xk for �x
fk�1g 2 Zero(P=Q). Corresponding to

(3.3.1) therein is the zero relation

Zero(P[ fP2g=Q[ fP1g) =
r[

i=2

Zero(P[Pi=Q[ fP1; Iig):

Clearly, cls(Hi) = k holds for 2 � i � r� 1 but not necessarily for i = r. If
cls(Hr) < k, then Ir = Hr and

Zero(P[Pr=Q[ fP1; Irg) = Zero(P[ fpquo(P2; Ir; xk)g=Q[ fIrg)
= Zero(P[ fP2g=Q[ fIrg);

i.e., the polynomialP1 may be eliminated. Otherwise, the process may con-
tinue, for example, by computing the SRS of pquo(P2;Hi; xk) and P1 with
respect to xk for each i. This procedure will terminate eventually because
the degree of pquo(P2;Hi; xk) is less than that of P2 in xk when cls(Hi) = k.
Roughly speaking, the conditional GCD of P2 and P1 is removed from P2
by using pquo recursively until no such factors can be removed; then P1 is
eliminated.

Example 5.1.1. The polynomial set Pin Example 2.4.1 may be decomposed
by RegSer into 4 regular systems [Ti;Ui] such that

Zero(P) =
4[

i=1

Zero(Ti=Ui);

where
T3 = [r4 � 4r2 + 3;�z2 + r2z � z � r2 + 1; F; P2];

U1 = fr4 � 4r2 + 3g; U2 = U3 = U4 = ;;
T1;T2 and F; P2 are as in Example 2.4.1, and T4 as in Example 3.3.4.
To give more details, let T1; T2; T3 denote the three polynomials in T1

successively. Compute the SRS of x = ini(T3) and T2 with respect to x;
let R be the last polynomial in the subchain (which is identical to the
resultant of x and T2 with respect to x). The inequation-polynomial in U1

is acquired as the last in the SRS of squarefreed R and T1 with respect to
z. In splitting according to the SRS are generated some new polynomial
systems, from which the two regular sets T3 and T4 are obtained. ut
Example 5.1.2. Recall the polynomial set P and variable ordering given
in Example 3.2.2. A regular series of P computed by RegSer consists of 6
regular systems [T1;U1]; [T2; ;]; : : :; [T6; ;], where the triangular sets Ti are
either the same as or very similar to those listed in Example 3.2.2 and U1

contains x and two other univariate polynomials that are T31 and T41 in
Example 3.2.2. ut
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Algorithm based on generalized GCD

De�nition 5.1.2. Let T = [T;U] be an arbitrary triangular system inK [x].
A zero (�1; : : : ; �n) of T is said to be regular if either �i = xi, or xi is a
dependent of T for any 1 � i � n.
When T is regular, any regular zero of T is also called a regular zero of

T.

As usual, we write �fig for �1; : : : ; �i or (�1; : : : ; �i) with � = �fng. The
set of all regular zeros of T or T is denoted RegZero(T) or RegZero(T).
Apparently, RegZero(T) � Zero(T).

Proposition 5.1.1. The regular zeros of any regular set are well-de�ned.
In other words, for any two regular systems [T;U1] and [T;U2],

RegZero(T=U1) = RegZero(T=U2):

Proof. Let � 2 RegZero(T=U1). First, consider any U 2 U2 of smallest
class p. Clearly xp is a parameter of T by de�nition, so �p = xp is an

indeterminate. Therefore, U (�fpg) = 0 implies that ini(U )(�fp�1g) = 0.

Since [T;U2] is a regular system, by de�nition ini(U )(�fp�1g) 6= 0. It follows

that U (�fpg) 6= 0.

Now suppose that Uhii
2 6= ;, and U (�fi�1g) 6= 0 for all U 2U(i�1)

2 . Then

�fi�1g 2 Zero(T(i�1)=U(i�1)):

Consider any U 2 Uhii
2 . By de�nition, xi is a parameter of Tand �i = xi.

As [T;U2] is regular, ini(U )(�
fi�1g) 6= 0. For the same reason as above, we

have U (�fig) 6= 0. Hence, by induction U (�) 6= 0 for all U 2 U2. This shows
that � 2 RegZero(T=U2); thereby RegZero(T=U1) � RegZero(T=U2). The
other direction is proved by the same argument. ut

Corollary 5.1.2. For any regular system [T;U] and regular zero � of T,
U (�) 6= 0 for all U 2U.
If Tis written as

T= [T1(u; y1); : : : ; Tr(u; y1; : : : ; yr)]; (5.1.1)

then any regular zero of T has the form

� = (u; �1; : : : ; �r) 2 Zero(T); (5.1.2)

where �i 2 ~K �K(u) for each i.

Lemma 5.1.3. Every perfect triangular system inK [x] has a regular zero.
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Proof. Let T = [T;U] be a perfect triangular system and write Tas

T= [T1(u; y1); : : : ; Tr(u; y1; : : : ; yr)]

as before with

Ii(u; y1; : : : ; yi�1) = ini(Ti); 1 � i � r; V =
Y
U2U

U:

Since I1(u) 6= 0 inK(u), T1(u; y1) must have zeros for y1 in some suitably
chosen algebraic extension �eld ~K of K(u). Because T is perfect, V can
vanish only at some but not all of these zeros. For, otherwise, any zero of
T1 for specialized values of u is also a zero of V and thus T is not perfect.
Therefore, the zero set

Z1 = f(u; �y1) : �y1 2 ~K; T1(u; �y1) = 0; V (u; �y1; y2; : : : ; yr) 6= 0g
is not empty.
For any (u; �y1) 2 Z1, by the de�nition of a triangular system I2(u; �y1) 6=

0 and thus T2(u; �y1; y2) has zeros for y2 in some algebraic extension �eld
~K. For the same reason, V may vanish at (u; �y1; �y2) only for some but not
all (u; �y1) 2 Z1 and �y2 2 Zero(T2(u; �y1; y2)). In other words,

Z2 =
(
(u; �y1; �y2) :

(u; �y1) 2 Z1; �y2 2 ~K; T2(u; �y1; �y2) = 0;

V (u; �y1; �y2; y3; : : : ; yr) 6= 0

)
6= ;:

The above reasoning may continue for T3; T4 and so on. In this way, a
regular zero of T will �nally be constructed and the lemma is proved. ut
The algorithms presented below are adapted from Kalkbrener (1993).

They are somewhat complicated by the cross-calling. The basic idea here
is to compute GCDs modulo regular sets with splitting on demand.

Algorithm Split: [�;�] Split(T; P; k). Given an integer k (1 � k � n),
a polynomial P and a regular set T in K[xfkg], this algorithm computes
two sets � and � of regular sets in K[xfkg] such that

RegZero(T)\ Zero(P ) =
[
T�2�

RegZero(T�);

RegZero(T=P ) =
[
T�2�

RegZero(T�):

S1. Compute 
 GenGCD(T(k�1);Thki [ fPg; k).
S2. If Thki = ; then set

� fS: [S; G]2 
; G = 0g; � fS: [S;G]2 
; G 6= 0g
and the algorithm terminates.
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S3. Let F be the only element of Thki and set

� 
�
S[ [pquo(F;G; xk)] : [S; G]2 
; cls(G) = k;

deg(G; xk) < deg(F; xk)

�
;

� fS[ [G] : [S;G]2 
; cls(G) = kg;
� fS[ [F ] : [S;G]2 
; cls(G) < kg [ fop(2; Split(S; P; k)) : S2 �g:

Refer to De�nition 6.2.2 for the saturation sat(T) of any triangular set
T. Zero(sat(T)) represents the union of the irreducible algebraic varieties
whose generic points are regular zeros of T.

Algorithm GenGCD: 
 GenGCD(T;P; k). Given an integer k (1 � k �
n), a polynomial set P� K[xfkg] and a regular set T� K [xfk�1g], this
algorithm computes a �nite set 
 of pairs [T1; G1]; : : : ; [Tl; Gl], with each
Ti a regular set in K[xfk�1g] and Gi a polynomial in K [xfkg], such that

(a)

RegZero(T) =
l[

i=1

RegZero(Ti);

(b) for any 1 � i � l and �fk�1g 2 RegZero(Ti),

Gi 6= 0 =) lc(Gi; xk)(�
fk�1g) 6= 0

and Gi(�
fk�1g; xk) is a GCD of the polynomials in Ph�;k�1i with respect to

xk;

(c) Zero(sat(Ti)) \ Zero(P)� Zero(Gi) for any 1 � i � l.
G1. If k = 1; or P= ;; or k > 1, jPj= 1 and op(1; Split(T; lc(op(1;P); xk),

k � 1)) = ; then set


 

8>>><
>>>:

f[;; 0]g when k = 1 and P= ;;
f[;; gcd(P)]g when k = 1 and P 6= ;;
f[T; 0]g when k > 1 and P= ;;
f[T; op(1;P)]g when k > 1 and jPj= 1

and the algorithm terminates.

G2. Let P be an element of Pwith minimal degree in xk, set

P0 Pn fPg [ fred(P; xk)g n f0g
and compute

[�;�] Split(T; lc(P; xk); k � 1);

P00 fPg [ prem(P; P; xk) n f0g;

 

[
S2�

GenGCD(S;P0; k) [
[
S2�

GenGCD(S;P00; k):
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Algorithm RegSer� : 	 RegSer�(T;P; k). Given an integer k (1 � k �
n), a non-empty polynomial set P � K[xfkg] and a regular set T �
K[xfk�1g], this algorithm computes a set 	 of regular sets in K [xfkg]
such that

(a)

Zero(sat(T))\ Zero(P)�
[
T�2	

Zero(sat(T�)) � Zero(P); (5.1.3)

(b) for any T� 2 	, either
RegZero(T�(k�1)) � RegZero(T); or jT�(k�1)j < jTj:

R1. If k = 1 then set

	 
� ; when gcd(P) 2K;
f[gcd(P)]g otherwise

and the procedure terminates.

R2. Compute


 GenGCD(T;P; k);
� S

[S;G] 2 

G 6= 0

RegSer�(S(k�2);S[k�2] [ flc(G; xk)g; k � 1);

	 fS: [S;G]2 
; G = 0g [ fS[ [G] : [S;G]2 
; cls(G) = kg[S
S2�RegSer

�(S;P; k):

When T= ;, (5.1.3) leads to
Zero(P) =

[
T�2	

Zero(sat(T�)): (5.1.4)

Hence, with T= ; and k = n, Algorithm RegSer� decomposes any polyno-
mial set P�K [x] into a �nite set 	 of regular sets such that (5.1.4) holds.
In general, (5.1.4) does not imply that

Zero(P) =
[
T�2	

Zero(T�=ini(T�)): (5.1.5)

However, one may observe from the algorithms that (5.1.5) does hold for
any 	 computed by RegSer� from T= ;, P and k = n. Therefore, 	 can
be taken as a regular series of the polynomial set P.
The correctness and termination proofs for the above algorithms involve

some technical arguments, for which new notations and terminologies may
have to be introduced. We omit the details and refer to Kalkbrener (1993).
The interested reader may also work out his own proofs. Kalkbrener (1994)
extended the algorithm to decompose radicals of polynomial ideals into
primes | the equivalent problem of decomposing algebraic varieties into
irreducible components will be discussed in Sect. 6.2.
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Properties

When a regular zero � is written in the form (5.1.2), �fig stands alterna-

tively for u; �1; : : : ; �i or (u; �1; : : : ; �i) with � = �frg as before.

Proposition 5.1.4. Let T as in (5.1.1) be a regular set. Then for any

1 � i � r � 1 and �fig 2 RegZero(Tfig),

ini(Ti+1)(�
fig) 6= 0: (5.1.6)

Proof. As Tis regular, there exists a Usuch that [T;U] is a regular system.

In particular, U� K [u]. For any 1 � i � r � 1, let �fig 2 RegZero(Tfig).
Clearly, U (�fig) 6= 0 for any U 2 U. As [T;U] is a triangular system, (5.1.6)
holds by de�nition. ut

Proposition 5.1.5. For any regular set Tand polynomial P in K[x],

res(P;T) 6= 0 () P (�) 6= 0 for any � 2 RegZero(T):

Proof. (=)) Let the variables x be renamed so thatTis written in the form
(5.1.1). If there exists a � 2 RegZero(T) such that P (�) = 0, then plunging
� into (4.3.2) in Lemma 4.3.2 yields R = res(P;T) = 0. This contradicts
the assumption that R 6= 0.
((=) Let

R1 = R1(z
fr�1g) = res(P; Tr; yr)

and

�
fr�1g 2 RegZero(Tfr�1g):

As T is regular, by Proposition 5.1.4 we have ini(Tr)(�
fr�1g) 6= 0. If

R1(�
fr�1g) = 0, then P (�fr�1g; yr) and Tr(�

fr�1g; yr) have a common zero
�r for yr . This is impossible because

� 2 RegZero(T); P (�) = 0

contradict with the hypothesis that P (�) 6= 0 for any � 2 RegZero(T).
Hence R1(�

fr�1g) 6= 0 for any �fr�1g 2 RegZero(Tfr�1g).
Next, consider R2 = res(R1; Tr�1; yr�1) and use the same argument. We

shall see that R2(�
fr�2g) 6= 0 for any �fr�2g 2 RegZero(Tfr�2g). In this

way, one will �nally arrive at R(u) = Rr(u) 6= 0. The proof is complete. ut
Since any simple set is regular, Proposition 5.1.5 holds as well when T

is a simple set. From Propositions 5.1.4 and 5.1.5, the following result is
obtained.

Corollary 5.1.6. For any regular or simple set T� K[x] and any I 2
ini(T), res(I;T) 6= 0.
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The conclusion in the above corollary is also a su�cient condition for
any triangular set to be regular. This is stated as follows.

Lemma 5.1.7. Let T= [T1; : : : ; Tr] be a triangular set in K[x] and as-
sume that

res(ini(Ti);Tfi�1g) 6= 0; 2 � i � r:
Then Tis regular.

Proof. Let

R1 = ini(T1)
rY
i=2

res(ini(Ti);Tfi�1g);

then R1 is not equal to 0 and does not involve any lv(Ti). Let Ri = ini(Ri�1)
for i = 2; : : : ; t such that Rt is a constant. It is easy to verify by de�nition
that

[T;fR1; : : : ; Rtg]
is a regular system. The lemma follows immediately. ut
Let Tbe any triangular set in K[x]. Summarizing the above results, we

have the equivalence of the following conditions:

(a) Tis regular;

(b) res(I;T) 6= 0 for any I 2 ini(T);
(c) For any 1 � k � n� 1, T(k) is regular and

I(�fkg) 6= 0 for I 2 ini(Thk+1i) and all �
fkg 2 RegZero(T(k)):

Therefore, either of the conditions (b) and (c) above may be taken for the
de�nition of a regular set as well. In fact, they have been used respectively
to de�ne the equivalent concepts of proper ascending chains in Yang and
Zhang (1994) and regular chains in Kalkbrener (1993). Condition (b) may
be regarded as an e�ective criterion to check whether a given triangular set
is regular. The results of Proposition 5.1.5, Corollary 5.1.6 and Lemma5.1.7
are also given in Yang and Zhang (1994).
The following proposition follows from the speci�cation of Algorithm

Split and the de�nition of saturation.

Proposition 5.1.8. Let Tbe a regular set and P a polynomial in K [x].
Then

(a)

P (�) 6= 0 for any � 2 RegZero(T) () RegZero(T)\ Zero(P ) = ;
() op(1; Split(T; P; n)) = ;;

(b)

Zero(sat(T))� Zero(P ) () RegZero(T)� Zero(P )

() op(2; Split(T; P; n)) = ;:
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In contrast with Theorem 3.4.4 and Corollary 4.3.9, we have the following
theorem. The proof of this theorem as well as Theorem 5.1.11 below requires
a result given late in Sect. 6.2 (see De�nition 6.2.3 and Theorem 6.2.4).

Theorem 5.1.9. For any regular system [T;U] and polynomialP inK [x],
Zero(T=U)� Zero(P ) if and only if there exists an integer d > 0 such that
prem(P d;T) = 0.

Proof. The su�ciency follows obviously from the pseudo-remainder formula
and the de�nition of regular systems.
To show the necessity, suppose that Zero(T=U)� Zero(P ), let

V =
Y
U2U

res(U;T);

and write T in the form (5.1.1) with ini(Ti) = Ii and ldeg(Ti) = di for
1 � i � r. Then, V 2 K[u], V 6= 0 (according to Corollary 5.1.2 and
Proposition 5.1.5), and

Zero(T=V ) � Zero(T=U)� Zero(P )

(by Lemma 4.3.2). It follows that Zero(T=VP ) = ;. We complete the proof
of the theorem by proving the following assertion with induction on r:

(A) For any regular set Tand non-zero polynomials V 2 K[u] and P 2
K[u; y1; : : : ; yr] as above, if Zero(T=VP ) = ; then there exists an integer
d > 0 such that prem(P d;T) = 0.

Consider �rst the case r = 1 and let R = prem(P d1 ; T1). Denote all the
non-zero coe�cients of R in y1 by R1; : : : ; Rl. According to Lemmas 3.1.1
and 3.1.2 (b), Zero(;=V Rj) = ; for all j. This implies that Rj � 0 for
1 � j � l; therefore, R � 0 and the assertion is proved.
Now suppose that (A) holds for any regular set T with jTj < r; we

proceed to prove (A) for jTj= r > 1. Let

Tfr�1g = [T1; : : : ; Tr�1]; Jr�1 = I1 � � � Ir�1; R = prem(P dr ; Tr);

and denote all the non-zero coe�cients of R in yr by R1; : : : ; Rl. Again by
Lemmas 3.1.1 and 3.1.2 (b), Zero(Tfr�1g=V Rj) = ; for all j. By the induc-
tion hypothesis, there exists an integer kj > 0 such that prem(R

kj
j ;Tfr�1g)

= 0 for each j. Thus, there exists an integer sj � 0 such that

J
sj
r�1R

kj
j 2 Ideal(Tfr�1g); 1 � j � l:

Set

k = max
1�j�l

kj; s = max
1�j�l

sj ;
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then Jsr�1R
k 2 Ideal(T). On the other hand, R = prem(P dr ; Tr) implies

that there exists an integer qr � 0 such that Iqrr P
dr � R 2 Ideal(fTrg).

Hence

Jsr�1I
qrk
r P drk = Jsr�1R

k + Jsr�1(I
qr
r P

dr �R)[(Iqrr P dr)k�1 + � � �+ Rk�1]

2 Ideal(T):

Let d = drk and q = max(s; qrk). Then (I1 � � �Ir)qP d 2 Ideal(T), so P d 2
sat(T). By Theorem 6.2.4, P d 2 p-sat(T), wherefore prem(pd;T) = 0. The
proof is complete. ut

Corollary 5.1.10. For any regular set T and polynomial P in K [x],
Zero(T=ini(T)) � Zero(P ) if and only if there exists an integer d > 0
such that prem(P d;T) = 0.

Proof. The su�cient condition is obvious, so we only need to prove the
necessity. As Tis regular, there exists a polynomial set U�K [x] such that
[T;U] is a regular system and Zero(T=U) � Zero(T=ini(T)). If
Zero(T=ini(T)) � Zero(P ), then Zero(T=U) � Zero(P ). In view of The-
orem 5.1.9, there exists an integer d > 0 such that prem(P d;T) = 0. ut
The reader should compare the following with Theorems 3.4.6 and 4.3.11.

Theorem 5.1.11. Let [P;Q] be a polynomial system inK[x] and [T1;U1],
: : : ; [Te;Ue] a regular series of [P;Q]. Then:

(a) there exists an integer d > 0 such that prem(P d;Ti) = 0 for all P 2 P
and 1 � i � e;
(b) for any integersm > 0, 1 � i � e and polynomialQ 2 Q, prem(Qm;Ti)
6= 0;

(c)

Zero(P=Q) =
e[

i=1

Zero(Ti=ini(Ti) [Q): (5.1.7)

Proof. (a) From De�nition 5.1.1, we know that

Zero(P=Q) =
e[

i=1

Zero(Ti=Ui);

so Zero(Ti=Ui) � Zero(P=Q)� Zero(P) for each i. By Theorem 5.1.9, there
exists an integer dPi > 0 such that prem(P dPi ;Ti) = 0 for any P 2 Pand
1 � i � e. It follows that P dPi 2 sat(Ti). Let

d = max
P 2P

1 � i � e

dPi:
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We have P d 2 sat(Ti), and thus prem(P d;Ti) = 0 for all P 2 P and
1 � i � e according to Theorem 6.2.4.
(b) Suppose otherwise that there exist m > 0, 1 � i � e and Q 2 Q such

that prem(Qm;Ti) = 0. Then

Zero(Ti=Ui) � Zero(Ti=ini(Ti)) � Zero(Q):

This contradicts the fact that Zero(Ti=Ui) � Zero(P=Q).
(c) By (a) and the pseudo-remainder formula, the right-hand side is

clearly contained in the left-hand side of (5.1.7).
Now, let Ji =

Q
T2Ti

ini(T ) for each i and consider any �x 2 Zero(P=Q).
Then there exists an i such that

�x 2 Zero(Ti=Ui) � Zero(Ti=fJig [Q):

Hence, �x belongs to the right-hand side of (5.1.7). The theorem is proved.
ut

In view of Theorem 5.1.11 (c), it is proper to call T1; : : : ;Te a regular

series of Pwhen [T1;U1]; : : : ; [Te;Ue] is a regular series of P.
Let T = [T;U] be a regular system and write T in the form (5.1.1) with

ini(Ti) = Ii for each i. Let

R =
Y
U2U

res(U;T) 2K[u]:

Then, R 6= 0 by Corollary 5.1.2 and Proposition 5.1.5, and

Zero(T=R)� Zero(T):

Clearly, I1(u) 6= 0 and thus T1 has a zero �1 for y1 in K(u). By Propo-
sition 5.1.4, I2(u; �1) 6= 0. Therefore T2(u; �1; y2) has a zero �2 for y2 in
K(u)(�1). It follows from Proposition 5.1.4 that I3(u; �1; �2) 6= 0. Contin-
uing in this way, one can obtain a regular zero (u; �1; : : : ; �r) of [T; fRg]
and thus of T. Hence T is perfect.
Furthermore, one can construct a zero of T with specialized values �u of

u. In other words, we have the following.

Theorem 5.1.12. Any regular system inK[x] is perfect over the algebraic
closure �K of K.

Proof. Let [T;U] be a regular system with T= [T1; : : : ; Tr] and

cls(Ti) = pi; ini(Ti) = Ii; 1 � i � r:

Obviously, there exists an

�xfp1�1g 2 Zero(;=U(p1�1)):
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As [T;U] is a triangular system, I1(�x
fp1�1g) 6= 0. Hence, T1(�x

fp1�1g; xp1)
has a zero �xp1 in some algebraic extension of K for xp1 . Since Uhp1i = ;
and ini(U )(�xfj�1g) 6= 0 for any U 2 Uhji, �xfj�1g 2 Zero(T1=U(j�1)) and
j = p1 + 1; : : : ; p2 � 1, one can choose �xp1+1; : : : ; �xp2�1 in

�K such that

�xfp2�1g 2 Zero(T1=U(p2�1)):

Thus, I2(�xfp2�1g) 6= 0 because [T;U] is a triangular system. Therefore,
T2(�xfp2�1g; xp2) has a zero �xp2 in some algebraic extension of K for xp2 .
Continuing in this way, we shall �nally construct a zero �x of [T;U], so
Zero(T=U) 6= ; in �K . ut
We may list some corollaries of this theorem as follows.

Corollary 5.1.13. Any regular set T�K [x] is perfect.

Proof. As T is regular, there exists a polynomial set U such that [T;U] is
regular and thus Zero(T=U) 6= ;. The corollary is proved by observing that
Zero(T=U)� Zero(T=ini(T)). ut

Corollary 5.1.14. For any polynomial system P inK[x], Zero(P) = ; if
and only if any regular series of P is empty.

Corollary 5.1.15. Let P = [P;Q] be a polynomial system and P a poly-
nomial inK[x], and let 	 and 	� be any regular series ofP and [P;Q[fPg],
respectively. The following are equivalent:

(a) Zero(P) � Zero(P );

(b) 	� = ;;
(c) op(2; Split(T; P; n)) = ; for all T2 	.
Several results will be proved in the following chapter for arbitrary trian-

gular sets. From those results, special properties such as unmixed-dimension-
ality for regular systems may be obtained.
Let Tas in (5.1.1) be a regular set with di = ldeg(Ti) and d = d1 � � �dr;

T is perfect. If T is irreducible, then it has d distinct regular zeros which
are also called generic zeros of Tand generate the same extension �eld of
K. If T is simple and reducible, then it has d distinct regular zeros which
generate more than one extension �eld of K of the same transcendence
degree. If T is reducible but not simple, then it has less than d distinct
regular zeros which generate one or more extension �elds of K of the same
transcendence degree.
The above remarks may help understand the di�erence among regular

set, simple set and irreducible triangular set. The term \regular zero" which
was introduced by Kalkbrener (1993) for a regular set is used here for an
arbitrary triangular system. It can be understood as \generic zero," but
this notion has been used in algebraic geometry exclusively for irreducible
varieties and the corresponding irreducible triangular sets.
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5.2 Canonical triangular sets

One gain of introducing regular sets is Theorem 5.1.12, which ensures the
non-emptiness of Zero(T=ini(T)) for any triangular set T that is regular
and may be reducible. Now, we want to impose more restrictions, but not
irreducibility, on triangular sets in order to make them canonical.

De�nition 5.2.1. A triangular system [T;U] in K[x] is said to be normal
if

deg(I; lv(T )) = 0 for any T 2T and I 2 ini(T[U):
A triangular set Tis said to be normal if [T; ini(I)] is normal.

In other words, the initial of any polynomial in a triangular system [T;U]
does not involve the dependents of T. A normal triangular set is called a
p-chain in Gao and Chou (1992). When T is normal, it is quite trivial to
perform projection for [T; ini(I)] (see Sect. 3.1). The following algorithm
exhibits how to compute a normal simple set from any simple set.

Algorithm Norm: [T�;F] Norm(T). Given a simple set T� K[x], this
algorithm computes a normal simple set T� and a polynomial set F such
that

Zero(T=~T) = Zero(T�=~T[ F) [
[
F2F

Zero(T[ fFg=~T)

and deg(F; lv(T )) = 0 for any F 2 F and T 2T, where ~Tis any triangular
set that makes [T; ~T] a simple system.

N1. Let the polynomials in Tbe T1; : : : ; Tr and set F ;.
N2. For i = r; : : : ; 2 do:

N2.1. Compute
R res(ini(Ti); [T1; : : : ; Ti�1])

and a polynomial Q such that

Q1T1 + � � �+Qi�1Ti�1 + Q � ini(Ti) = R

for some Q1; : : : ; Qi�1 2K[x].

N2.2. Compute
T �i = R � lv(Ti)ldeg(Ti) + Q � red(Ti):

If R 62K and sqfr(R) -
Q

F2ini(T)[FF then set F F [ fRg.
N3. Set T� [T1; T �2 ; : : : ; T

�
r ].

Proof. Let T= [T1; : : : ; Tr] with

pi = cls(Ti); Ii = ini(Ti); di = ldeg(Ti); 1 � i � r;
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and

Ri = res(Ii; [T1; : : : ; Ti�1]); 2 � i � r:
SinceTis simple, by Corollary 5.1.6Ri is a non-zero polynomial not involv-
ing the variables xp1 ; : : : ; xpi�1 for each i. In other words, deg(Ri; xpj ) = 0
for any pair of i and j. By Lemma 4.3.2, there are polynomials Qij and Qi

such that
i�1X
j=1

QijTj + QiIi = Ri; 2 � i � r: (5.2.1)

Let
T �i = Rix

di
pi + Qi � red(Ti); 2 � i � r;

T� = [T1; T �2 ; : : : ; T
�
r ];

F = fR2; : : : ; Rrg:
If Ri 2K or every irreducible factor of Ri is a divisor of some polynomial
in ini(T) or another Rj for j 6= i, then Ri is not needed and can be deleted

from F. Let ~T be any triangular set such that [T; ~T] makes up a simple
system. We now show that

Zero(T=~T) = Zero(T�=~T[ F) [
r[

i=2

Zero(T[ fRig=~T): (5.2.2)

For this purpose, consider any i and let

�xfpi�1g 2 Zero([T1; : : : ; Ti�1]=~T(pi�1) [ F):

One knows from (5.2.1) that

Qi(�x
fpi�1g)Ii(�x

fpi�1g) = Ri(�x
fpi�1g) 6= 0;

so after xfpi�1g is substituted by �xfpi�1g

T �i = QiTi = Gix
di
pi + Qi � red(Ti)

has the same set of di distinct zeros as Ti for xpi (and thus is squarefree
with respect to xpi). It follows that

Zero(T=~T[ F) = Zero(T�=~T[ F)

and thus the zero relation (5.2.2) holds.
Apparently, T� is normal (but [T�; ~T[F] is not necessarily a simple sys-

tem). It remains to show thatT� is a simple set. In fact, one can construct a
triangular set ~T� from ~T[F such that [T�; ~T�] is a simple system. The con-
struction proceeds as follows. Let R = R2 � � �Rr. We repeat the following
until R 2K:
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1. If there exists a T 2 ~Tsuch that cls(T ) = cls(R) then set

R RT; ~T ~Tn fTg:

2. Compute ~R sqfr(R) and set

~T ~T[ f ~Rg; R ini( ~R) � res( ~R; @ ~R

@lv( ~R)
; lv( ~R)):

Let ~T� be the �nal ~Tordered as a triangular set. Then it is not di�cult
to verify that [T�; ~T�] is a simple system by de�nition (see the proof of
Proposition 4.3.7 for a similar veri�cation). Therefore,T� is a normal simple
set. ut

Lemma 5.2.1. From any normal simple set T� K [x], one can compute
a normal, reduced and primitive simple set T� such that

Zero(T=ini(T)) = Zero(T�=ini(T)):

Proof. Let T= [T1; : : : ; Tr] and

T �i = pp(prem(Ti;Tfi�1g); lv(Ti)); 2 � i � r:
As T is normal, T �i is clearly well-de�ned and primitive with cls(T �i ) =
cls(Ti). Set

T� = [T1; T
�
2 ; : : : ; T

�
r ]:

Then T� is reduced and primitive, and the zero relation is easily veri�ed.
ut

Remark 5.2.1. The normal simple set T� and polynomial set F computed
from a simple set Tby Algorithm Norm possess the following property: For
any polynomial G and triangular set ~Twith [T; ~T] a simple system,

Zero(T�=~T[ F) � Zero(G) () prem(G;T) = 0:

The property holds still when T� is made reduced and primitive according
to Lemma5.2.1. The proof is an analogy to the proof of Theorem 3.4.4. One
needs to note that all the polynomials in F do not involve the dependents
of T�.

In fact, Algorithm Norm works as well for any regular set T, with respect
to which the resultant R of any I 2 ini(T) never vanishes identically. One
can also try to normalize an arbitrary triangular set T, but there is no
guarantee to succeed. The following alternative algorithm does the job and
returns a normalized triangular set when successful. It always succeeds
when Tis regular, simple or irreducible.
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AlgorithmNormG: [T�;F] NormG(T).Given a triangular setT�K [x],
this algorithm computes a pair [T�;F] such that either T� = Fail (in this
case the algorithm fails), orT� is a normal triangular set and F a polynomial
set satisfying

Zero(T=F) � Zero(T�); Zero(T�=ini(T�)) � Zero(T=ini(T)): (5.2.3)

N1. Let the polynomials in T be T1; : : : ; Tr and set F ;; T �r  Tr. If
r = 1 then set T� [T �1 ] and the procedure terminates.

N2. For i = r � 1; : : : ; 1 do:

N2.1. Set I ini(T �r ). If cls(I) < cls(Ti) then go to N3 else set y lv(Ti).

N2.2. Compute R gcd(Ti; I; y) and a polynomial Q such that R =
PTi + QI for some P 2 K[x].

N2.3. If cls(R) < cls(Ti) then go to N2.4. Otherwise, compute

D Remo(
Ti
R
;R; y)

and set F F[fRg. If cls(D) = cls(Ti) then set Ti D else set
T� Fail and the procedure terminates.

N2.4. Set
T �r  R � lv(T �r )ldeg(T

�
r ) + Q � red(T �r ):

N3. Compute
[T?;F?] NormG([T1; : : : ; Tr�1]):

If T? = Fail then set T� Fail else set

F F [ F? ; T� T?[ [T �r ]:

The simple subalgorithm Remo is given below.

Algorithm Remo: H Remo(F;G; xk). Given two polynomials F and G
in K[x] and a variable xk, this algorithm computes a polynomial H such
that gcd(H;G; xk) does not involve xk.

Set R gcd(F;G; xk).

If deg(R; xk) = 0 then set H F else computeH Remo(F=R;G; xk).

Proof. For NormG the termination is obvious, so we only need to show its
correctness. As in the algorithm, let jTj= r; then r = 1 is a trivial case.
For r > 1, assume that step N2 has iterated for i = r � 1; : : : ; k+ 1 and

let the current values of F and Tbe denoted ~F and

~T= [T1(z
f1g); : : : ; Tr�1(z

fr�1g); T �r (z
frg)]
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respectively, where zfig stands for (u; y1; : : : ; yi) with z = zfrg as usual.
Then (5.2.3) holds when F and T� are replaced by ~F and ~Trespectively.
Now consider N2 for iteration i = k. Let Ij = ini(Tj) for 1 � j � r � 1

and I = ini(T �r ); then I 2 K[zfkg]. If cls(I) < cls(Tk), then proceed the
iteration for i = k�1. Suppose, otherwise, that cls(I) = cls(Tk). There are
two cases:

Case 1. Tk and I are relatively prime with respect to yk = lv(Tk), i.e.,
R = gcd(Tk; I; yk) 2 K [zfk�1g]. This is similar to the case handled by
Norm. One can determine polynomials P;Q 2K[zfkg] such that

PTk +QI = R 2K[zfk�1g]: (5.2.4)

Writing T �r as T �r = Iydr +red(T �r ) and multiplying both sides of (5.2.4) by
ydr , one gets

QT �r = Rydr +Q � red(T �r )� PTkydr ; (5.2.5)

where d = ldeg(T �r ). Set

T̂r = Rydr +Q � red(T �r ):

Evidently, lv(T̂r) = lv(T �r ) = yr . This implies that

T̂= [T1; : : : ; Tr�1; T̂r]

is a triangular set. We want to show that

Zero(~T) � Zero(T̂); Zero(T̂=ini(T̂)) � Zero(~T=ini(~T)):

Since T̂r can be written as a linear combination of Tk and T �r with poly-
nomial coe�cients, the �rst relation holds obviously. Note that ini(T̂r) = R.

Hence, for any �z 2 Zero(T̂=ini(T̂)) one has

Tj(�z) = 0; Ij(�z) 6= 0; 1 � j � r � 1;

I(�z) 6= 0; R(�z) 6= 0:

From (5.2.5) and the determination of T̂r , one sees that Q(�z)T �r (�z) = 0.
On the other hand, Q(�z)I(�z) 6= 0 by (5.2.4). It follows that

T �r (�z) = 0; I(�z) 6= 0:

Therefore, �z 2 Zero(~T=ini(~T)) and the second zero relation is proved.

Case 2. Tk and I are not relatively prime with respect to yk. In this case,
they have a common divisor whose leading variable is yk. Let us simply
remove all possible factors of R, the GCD of Tk and I with respect to
yk, from Tk as done by the subalgorithm Remo and denote the obtained
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polynomial by D. If cls(D) < cls(Tk), then the algorithm terminates with
T� = Fail returned. Otherwise,

T0 = [T1; : : : ; Tk�1; D; Tk+1; : : : ; Tr�1; T
�
r ];

is a triangular set. Thus,

Zero(~T=R) � Zero(T0); Zero(~T=ini(~T)) = Zero(T0=ini(T0)):

As D and I now are relatively prime with respect to yk, the problem is
reduced, by regarding T0 as ~T, to Case 1. Therefore, one can determine a
T̂and F̂ such that

Zero(~T=F̂) � Zero(T0) � Zero(T̂);

Zero(T̂=ini(T̂)) � Zero(T0=ini(T0)) = Zero(~T=ini(~T)):

Hence, in any case the iteration step N2 either fails with T� = Fail or
produces a sequence of triangular sets T=Tr; : : : ;T1 and polynomial sets
Fr�1; : : : ;F1 satisfying

Zero(Tr=Fr�1) � Zero(Tr�1); : : : ;Zero(T2=F1) � Zero(T1);

Zero(T1=ini(T1)) � � � � � Zero(Tr�1=ini(Tr�1)) � Zero(Tr=ini(Tr)):

Setting �F = Fr�1 [ � � � [ F1, we have

Zero(T=�F) = Zero(Tr=�F) � Zero(T1);

Zero(T1=ini(T1)) � Zero(Tr=ini(Tr)) = Zero(T=ini(T)):

Let
T1 = [T 01; : : : ; T

0
r]; T01 = [T 01; : : : ; T

0
r�1]:

Observe that ini(T 0r) 2K[u]. Since T01 contains r� 1 polynomials, one can
compute, if not fail, a �ne normal triangular set T? and a polynomial set
F? by induction as in step N3 such that

Zero(T01=F
?) � Zero(T?); Zero(T?=ini(T?)) � Zero(T01=ini(T

0
1)):

Now, let T� = T? [ [T 0r] and F = �F [ F? . Then the zero relations in
(5.2.3) hold. As we wanted, all the initials of the polynomials in T� are
now in K[u]; therefore, they are all reduced with respect to T�. In other
words, T� is a �ne triangular set and the correctness of the algorithm is
proved. ut

Remark 5.2.2. For the normal triangular set T� computed from any trian-
gular set Tby Norm or NormG, there is no guarantee that

Zero(T=ini(T)) = Zero(T�=ini(T�));
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even if T is simple. This is why the additional polynomial set F need be
computed by Norm. Consider, for example,

T= [x22 + x1; (x3 � x2)x4 + 1]:

It is a simple set with respect to x1 � � � � � x4 because S = [T; [x1; x3�x2]]
is a simple system. T is also irreducible. Normalization of Tyields

T� = [x22 + x1; (x
2
3 + x1)x4 + x3 + x2]:

Now

Zero(T=ini(T)) = Zero(T=(x3�x2)) 6= Zero(T�=(x23+x1)) = Zero(T�=ini(T�)):

This may be seen by verifying that

(�1; 1;�1; 1
2
) 2 Zero(T=(x3� x2)); but 62 Zero(T�=(x23 + x1)):

In fact, Tmay be decomposed into two normal simple sets T� and

T0 = [x22 + x1; x3 + x2; 2x1x4 + x2]

such that

Zero(T=(x3� x2)) = Zero(T�=(x23 + x1)) [ Zero(T0=x1):

Also, one cannot get a normal simple system S� from S such that

Zero(S) = Zero(S�):

S may decompose into two normal simple systems

S� = [T�; [x1; x23 + x1]]; S0 = [T0; [x1]]

such that

Zero(S) = Zero(S�) [ Zero(S0):

However, if T is regular, simple or irreducible, then Tand T� have the
same set of regular or generic zeros. This can be easily proved by using the
fact that the resultant R computed in N2.1 of Norm does not vanish at any
regular zero of T.

A polynomial P is monic if lc(T ) = 1. A polynomial set P is said to be
monic if every P 2 P is monic.

De�nition 5.2.2. A triangular set T� K[x] is said to be canonical if it is
normal, simple, reduced, primitive and monic.
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The de�nition of a canonical triangular set here is similar to but slightly
stronger than that of a triangular set given in Lazard (1991). For example,

[x21 � 1; (x2 � x1)x3 + 1]

is a triangular set by Lazard's de�nition, but it is not canonical by De�ni-
tion 5.2.2.
Now consider any polynomial set P. One knows how to compute simple

systems [T1; ~T1]; : : : ; [Tt; ~Tt] from Pusing Algorithm SimSer such that

Zero(P) =
t[

i=1

Zero(Ti=~Ti):

By Algorithm Norm and Lemma 5.2.1, one can compute, from each simple
set Ti, a reduced, normal, and primitive simple set T�i and a polynomial
set Fi such that

Zero(Ti=~Ti) = Zero(T�i=~Ti[ F) [
[
F2Fi

Zero(Ti[ fFg=~Ti):

Applying SimSer to each polynomial system [Ti[fFg; ~Ti], one may obtain
other reduced, normal, and primitive simple sets and the corresponding
zero decompositions. Since each F 2 Fi does not involve the dependents
of Ti, the �rst triangular set in any simple system from a simple series of
[Ti[fFg; ~Ti] should contain more polynomials thanT. Hence, the recursive
process must terminate. Finally one should reach a zero decomposition of
the form

Zero(P) =
e[

i=1

Zero(Ti=~Ti); (5.2.6)

where each triangular set Ti is normal, simple, reduced and primitive. Ac-
cording to Remark 5.2.1, prem(P;Ti) = 0 for any P 2 P.A simple reasoning
similar to the proof of Theorem 3.4.6 shows that each ~Ti in (5.2.6) can be
replaced by ini(Ti). For every T 2 Ti, it is trivial to make T monic: one
divides T by lc(T ). The following theorem is therefore established.

Theorem 5.2.2. There is an algorithmwhich computes, from any polyno-
mial set P�K [x], a �nite number of canonical triangular sets T1; : : : ;Te
such that

Zero(P) =
e[

i=1

Zero(Ti=ini(Ti)):

The above zero decomposition is not necessarily minimal . Some redun-
dant zero sets may be removed by using Corollary 3.4.5.

Example 5.2.1. Refer to the polynomial set P in Example 2.4.1 and its
simple series in Example 3.3.4. The simple sets Ti are normal only for
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i = 2; 4; 5 but not for the others. Let us �rst consider T1 = [T1; T2; T3],
where

T1 = z3 � z2 + r2 � 1;

T2 = x4 + z2x2 � r2x2 + z4 � 2z2 + 1;

T3 = xy + z2 � 1:

One sees that ini(T1) = ini(T2) = 1 and ini(T3) = x. It is easy to verify
that

R = res(x; [T1; T2]) = (r2 � 1)2(r2 � 3)2 = xQ+Q1T1 +Q2T2;

where

Q = �x(x2+ z2� r2)(r4z2�2r2z2+2z2�2r4z+3r2z� z+3r4�7r2+4):

All irreducible factors of R are divisors of the only polynomial in ~T1 (see
Example 3.3.4), so R is not needed. Hence, the output F from Norm(T1) is
empty, and T is normalized to

T�1 = [T1; T2; T
�
3 ]

with T �3 = Ry + Q(z2 � 1) such that

Zero(T1=~T1) = Zero(T�1=U1):

Reducing T �3 by T2 and T1 and taking the primitive part of the remainder,
we have

T̂3 = pp(prem(T �3 ; [T1; T2]); y)

= (r4 � 4r2 + 3)y � z2x3 + r2zx3 � zx3 � r2x3 + x3 + r2z2x

�z2x� r4zx+ 2r2zx � zx+ 2r2x� 2x:

T̂3 is monic, so T̂1 = [T1; T2; T̂3] is canonical triangular set.
Observe that for the other abnormal simple sets, the corresponding resul-

tants Ri are all constants. This is because jTij = 4, the number of variables,

for i > 1. Therefore, one can obtain a canonical triangular set T̂i from each
Ti for i = 3; 6; : : : ; 9. The polynomials in these canonical triangular sets
should all have constant initials. In particular, T̂i = Ti for i = 2; 3; 5.
Thus, we have

Zero(P) = Zero(T̂1=(r
2 � 1)(r2 � 3)) [

9[
i=2

Zero(T̂i):

This decomposition is not minimal: Zero(T̂i) can be removed for i =
3; 4; 6; : : :; 9. In other words, the summation index i ranges only for 2 and
5, viz.

Zero(P) = Zero(T̂1=(r
2 � 1)(r2 � 3)) [ Zero(T2) [ Zero(T5):

ut
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In the above example, a number of redundant simple sets are computed,
normalized and �nally removed in order to arrive at a canonical zero de-
composition. A crucial question is how to avoid computing such redundant
simple sets or systems. A complete answer to this question is not easy, but
in practice one must develop e�ective strategies to detect the redundant
components as early as possible. When e�ciency is of concern, one is ad-
vised to compute irreducible triangular series rather than simple series. A
canonical zero decomposition can be obtained more easily via the former
than via the latter. As we have mentioned early, simple series is of value
more theoretically than practically.
The normalization process may also be incorporated into SimSer and

other decomposition algorithms. Moreover, resultant computation can be
substituted by subresultant computation; the latter has been used in sev-
eral algorithms including SimSer and RegSer. Actually, one can design an
algorithm that computes, from any polynomial set, a simple or regular se-
ries with all simple or regular systems therein normal. For each normal
simple or regular system [T; ~T], one can also require that every polynomial
P 2 T[ ~Tdoes not involve the dependents of Tn [P ]. We do not go any
further in this direction.
Another algorithm is presented in Lazard (1991) to decompose polyno-

mial sets into canonical triangular sets. It makes use of incremental compu-
tations over �eld extensions and is rather involved. A technical description
of the algorithm is provided without formal proof in the above-mentioned
reference.

5.3 Gr�obner bases

The method of Gr�obner bases introduced by Buchberger (1965) provides
another powerful device for polynomial elimination. It has been well studied
and described in great detail in several books including Adams and Lous-
taunau (1994), Becker and Weispfenning (1993), Cox et al. (1992, Chap. 2),
and Mishra (1993, Chaps. 2 and 3), so we have no intention to give another
comprehensive exposition. We shall be satis�ed by only giving a brief review
of the method with emphasis on its elimination aspects.
With a �xed variable ordering, one may introduce di�erent admissible

term orderings for monomials. Two commonly used examples of them are
the total degree and purely lexicographical orderings. For our purpose of
variable elimination, we shall use the purely lexicographical term ordering
which has been explained in Sect. 1.1. Some of the notations used below are
also given there. All the polynomials mentioned in this section are assumed
to be in K[x].
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Buchberger's algorithm

De�nition 5.3.1. Let Pbe a polynomial set and G any polynomial inK [x].
G is said to be reducible with respect to Pif there exist a polynomialP 2 P
and a monomial � such that coef(G; � � lm(P )) 6= 0. If no such P and �
exist, G is said to be reduced or in normal form with respect to P.

If G is reducible with respect to P, then one can �nd a polynomialP 2 P
with the monomial � � lm(P ) maximal (with respect to the term ordering)
such that

G = b � � � P +H;

where

b =
coef(G; � � lm(P ))

lc(P )
:

This is a one-step reduction of G to H so that one term of G is eliminated.
In other words, the monomial � � lm(P ) does not appear in H.
If H is reducible with respect to P, then one can reduce H to another

polynomial in the same way by choosing P; b and �. As the reduction is a
Noetherian relation, such a process will terminate. That is, after a �nite
number of reduction steps, the obtained polynomialR will be reduced with
respect to P. In this case, one gets a remainder formula of the form

G =
sX

j=1

QjPj +R; (5.3.1)

in which Pj 2 P, Qj ; R 2 K[x] and R is reduced with respect to P. The
polynomialR is called the remainder or normal form of G with respect to
Pand denoted rem(G;P). The procedure for getting R from G is called a
reduction of G with respect to P. As usual, for any Q�K[x]

rem(Q;P), frem(Q;P) : Q 2 Qg:

Example 5.3.1. Consider the following polynomials

P1 = x1x4 + x3 � x1x2;
P2 = 2x24 � 2x3x4 + 5x1x2x4 � 5x1x2x3;

G = x1x
2
4 + x24 � x1x2x4 � x2x4 + x1x2 + 3x2:

The terms in P1; P2 and G are ordered according to the purely lexicograph-
ical ordering. In symbol, we have

lm(P1) = x1x4; lm(P2) = x24; lm(G) = x1x
2
4

and

lc(P1) = lc(G) = 1; lc(P2) = 2:
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Set P= fP1; P2g. G is clearly reducible with respect to P. For example, we
have

G = b � � � lm(P1) +H

with
b = �1; � = x2;

H = x1x
2
4 + x24 � x2x4 + x2x3 � x1x22 + x1x2 + 3x2:

Here, the monomial x1x2x4 does not appear in H. In the above reduction,
the monomial is not maximal with respect to the term ordering. To select
the maximal monomial, one has to reduce the leading term x1x

2
4 in G �rst.

The following is a reduction of G to its remainder with respect to P:

G = x4P2 +H1; H1 =
1

2
P2 +H2; H2 = �5

2
P1 +H3;

where

H1 = x24 � x3x4 � x2x4 + x1x2 + 3x2;

H2 = �5
2
x1x2x4 � x2x4 + 5

2
x1x2x3 + x1x2 + 3x2;

H3 = �x2x4 + 5

2
x1x2x3 +

5

2
x2x3 � 5

2
x1x

2
2 + x1x2 + 3x2:

Now H3 is reduced with respect to P, so no further reduction is possible.
Therefore,

R = rem(G;P) = H3 = G+
5

2
P1 � (x4 +

1

2
)P2:

ut
In general the remainder R is not unique; that is, di�erent choices of

Pj from P in (5.3.1) may produce di�erent remainders. Those polynomial
sets, with respect to which the remainders of any polynomial are always
the same, are of special signi�cance.

De�nition 5.3.2. A polynomial set G � K[x] is called a Gr�obner basis if
and only if the remainder rem(G;G) is unique for all G 2K[x].
G is called a Gr�obner basis of a polynomial set P�K [x] or for Ideal(P)

if G is a Gr�obner basis and

Ideal(P) = Ideal(G ):

De�nition 5.3.3. The S-polynomial of two non-zero polynomials F and G
in K[x] is de�ned to be

spol(F;G) , � � F � lc(F )

lc(G)
� � �G;

where � and � are monomials such that

lm(F ) � � = lm(G) � � = lcm(lm(F ); lm(G)):
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Example 5.3.2. For the polynomials P1 and P2 in Example 5.3.1, we have

spol(P1; P2) = �1 � P1 � lc(P1)

lc(P2)
� �2 �P2

= x1x3x4 + x3x4 � 5

2
x21x2x4 � x1x2x4 +

5

2
x21x2x3;

where �1 = x4 and �2 = x1. ut
Theorem 5.3.1. A polynomial set G � K [x] is a Gr�obner basis if and
only if

rem(spol(F;G);G) = 0 for any F;G 2 G :
This theorem provides an algorithmic characterization of Gr�obner bases.

Whether a polynomial set P is Gr�obner basis can be tested by considering
only �nitely many pairs of polynomials in P. On the basis of Theorem 5.3.1
we are ready to describe the following algorithm due to Buchberger (1965,
1985).

Algorithm GroBas: G GroBas(P). Given a non-empty polynomial set
P�K[x], this algorithm computes a Gr�obner basis G of P.

G1. Set G P, � ffF;Gg : F 6= G;F;G 2 Pg.
G2. While � 6= ; do:
G2.1. Let fF;Gg be an element of � and set � � n ffF;Ggg.
G2.2. Compute R rem(spol(F;G);G).
G2.3. If R 6= 0 then set

� � [ ffR;Gg : G 2 Gg ; G G [ fRg:

The above algorithm for computing Gr�obner bases may be sketched as
follows:

P= G1 � G2 � � � � � Gm = G
�1 �2 � � � �m

R1 R2 � � � Rm = ;
(5.3.2)

where
�1 = ffF;Gg : F 6= G;F;G 2 Pg

and

Ri = rem(��i;Gi ) n f0g with jRij = 1 for some ��i � �i;

�i+1 = �i n ��i [ fspol(R;G) : G 2 G ig;
G i+1 = G i [Ri

for 1 � i � m� 1. The algorithm terminates at the mth step with

Rm = rem(�m;Gm ) n f0g = ;:
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The correctness that G = Gm is a Gr�obner basis of P follows from The-
orem 5.3.1. To see the termination, one considers the sequence of ideals

Ideal(F1) � Ideal(F2) � � � � � Ideal(Fi) � � � � ;

where Fi is the set of leading monomials of the polynomials in G i and G i is
enlarged from P for the ith time. The inclusions in the above sequence are
proper, so by Hilbert's theorem on ascending chains of ideals in K[x] the
sequence must be �nite. See Buchberger (1985), Adams and Loustaunau
(1994, pp. 42{43), and Becker and Weispfenning (1993, pp. 213{215) for
more details.
A polynomial set P is said to be reduced if every polynomial P 2 P

is monic and reduced with respect to Pn fPg. The following algorithm
computes, from any Gr�obner basis, the unique reduced Gr�obner basis (see
Theorem 5.3.3).

Algorithm RedGroBas: G� RedGroBas(G ). Given a G�obner basis G �
K[x], this algorithm computes the reduced G�obner basis G� of G .

R1. Set P G ;G � ;.

R2. While P 6= ; do:

R2.1. Select a polynomial G 2 Pand set P Pn fGg.
R2.2. If lm(P ) - lm(G) for all P 2 P[ G� then set G� G� [ fGg.

R3. While G� is not reduced do:

R3.1. Select a G 2 G� which is reducible with respect to G� nfGg and
set G� G� n fGg.

R3.2. Compute R rem(G;G� ). If R 6= 0 then set G� G� [ fRg.

R3. Set G� fG=lc(G) : G 2 G�g.

We refer to Becker and Weispfenning (1993, pp. 203{204 and 216{217)
for the proof of this algorithm.

Example 5.3.3. Recall the polynomials in Example 5.3.1 and let

P3 = x3x4 � 2x22 � x1x2 � 1:

The reduced Gr�obner basis of fP1; G; P3g with respect to the purely lexi-
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cographical term ordering determined by x1 � � � � � x4 is

G =

2
6666666666664

x1x
2
2 + x22 � x1x2 +

1

2
x1 +

1

2
;

x23 � x1x2x3 � 2x22 + x21x2 + 2x1x2 � 1;

x1x4 + x3 � x1x2;

x22x4 +
1

2
x4 � x22x3 + x2x3 � 1

2
x3 � x32 �

1

2
x2;

x3x4 � 2x22 � x1x2 � 1;

x24 � x2x4 � 2x22 + 3x2 � 1

3
7777777777775
:

The reader may compare this Gr�obner basis with the characteristic set in
Example 2.1.1.
With the same variable and term ordering, a Gr�obner basis of fP1; P2; P3g

consists of 9 polynomials. These polynomials are quite large and are not
listed here. ut
Algorithm GroBas is not optimized and thus not practically e�cient.

Several improved versions of the algorithm exist. Such improved algo-
rithms take into account of criteria for optimal selection of pairs for the
S-polynomial formation, additional reduction and detection of unnecessary
S-polynomials before they are produced. Moreover, some alternative algo-
rithms have also been developed for Gr�obner bases computation. We do
not pursue any further on these developments and refer to the previously
cited books on the theory and method of Gr�obner bases.

Properties

A Gr�obner basis G not containing any constant can be written as

G =

2
666666666666664

G1(x1; : : : ; xp1);
� � �

Gq1(x1; : : : ; xp1);
Gq1+1(x1; : : : ; xp1 ; : : : ; xp2);
� � �

Gq2 (x1; : : : ; xp1 ; : : : ; xp2);
� � � � � �

Gqr�1+1(x1; : : : ; xp1 ; : : : ; xp2; : : : ; xpr);
� � �

Gqr (x1; : : : ; xp1; : : : ; xp2 ; : : : ; xpr)

3
777777777777775

;

where
0 < p1 < p2 < � � � < pr � n;
pi = cls(Gqi�1+1) = � � � = cls(Gqi);

xpi = lv(Gqi�1+1) = � � � = lv(Gqi); 1 � i � r:
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The above form is exhibited vis-�a-vis (2.1.1).
In what followswe list some of the nice properties of Gr�obner bases, which

have closer relevance with polynomial elimination, the theme of this thesis.
The reader may refer to the previously mentioned works for elaborations
of many other properties.

Theorem 5.3.2. The following properties are equivalent:

(a) G is a Gr�obner basis in K[x];

(b) For all F and G in K[x],

F �G 2 Ideal(G ) () rem(F;G) = rem(G;G);

(c) Every non-zero polynomial F 2 Ideal(G) is reducible with respect to
G ;

(d) For every non-zero polynomial F 2 Ideal(G), there exists a polyno-
mial G 2 G such that lm(G) j lm(F );
(e) For all F 2K[x],

F 2 Ideal(G ) () F =
X
G2G

HGG with lm(F ) = max
G2G

lm(HG) � lm(G);

(f)

Ideal(flt(G) : G 2 Gg) = Ideal(flt(G) : G 2 Ideal(G )g):
Proof. Theorem 6.1 in Buchberger (1985), Theorem 1.6.2 in Adams and
Loustaunau (1994, pp. 32{33) and Proposition 5.38 in Becker and Weispfen-
ning (1993, pp. 207{208). ut
The signi�cance of introducing reduced Gr�obner bases lies partially on

the fact that for any polynomial ideal, its reduced Gr�obner basis is unique.
In other words, we have the following theorem.

Theorem 5.3.3. Let G1 and G2 be reduced Gr�obner bases of two poly-
nomial sets P1 and P2 in K [x], respectively. If Ideal(P1) = Ideal(P2), then
G1 = G2 .

Proof. Theorem 6.3 in Buchberger (1985), Theorem 1.8.7 in Adams and
Loustaunau (1994, pp. 48{49), or Theorem 5.43 in Becker andWeispfenning
(1993, p. 209). ut
For any polynomial set P� K [x], let GB(P) denote the unique reduced

Gr�obner basis of P.

Corollary 5.3.4. Let Pbe any polynomial set in K[x]. Then

Zero(P) = ; () GB(P) = [1]:
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Proof. If Zero(P) = ;, then 1 2 Ideal(P) according to Theorem 1.6.2. It
follows that Ideal(P) = Ideal(f1g). Hence, by Theorem 5.3.3

GB(P) = GB(f1g) = [1]:

On the other hand, GB(P) = [1] implies that Zero(P) = Zero([1]) = ;. ut
The following elimination property of Gr�obner bases, observed �rst by

W. Trinks, can be easily proved. It is of particular importance for successive
zero determination and will also play a crucial role in the following chapter.

Theorem 5.3.5. Let G be a Gr�obner basis over K with respect to the
purely lexicographical term ordering determined by x1 � � � � � xn. Then
for any 1 � i � n

Ideal(G ) \K[xfig] = Ideal(G \K[xfig]); (5.3.3)

where the ideal on the right-hand side is formed in K[xfig].

Proof. The right-hand side is obviously contained in the left-hand side of
(5.3.3). To show the other direction, let G 2 Ideal(G) \ K [xfig]; then
rem(G;G) = 0. Note that in the reduction of G to 0 all the polynomi-
als involve only the variables xfig. Thus, in the corresponding remainder
formula (5.3.1) we have

R = 0; Pj 2 G \K[xfig]; Qj 2K [xfig]:

Hence G belongs to the right-hand side of (5.3.3). ut

Gr�obner series

Let G 2 G be a polynomial reducible over K and has a factorization
G = G1G2. Let Pi = G [fGig and G i be a Gr�obner basis of Pi for i = 1; 2.
Then the following zero decomposition holds

Zero(G) = Zero(G1) [ Zero(G2 ):

Regarding each G i as G and continuing in this way, one shall �nally get a
decomposition of the form

Zero(P) =
e[

i=1

Zero(G i ); (5.3.4)

where G i is a Gr�obner basis and all the polynomial in G i are irreducible
over K for each i.
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De�nition 5.3.4. A �nite set or sequence 	 of Gr�obner bases G1 ; : : : ;Ge is
called a Gr�obner series of a polynomial set P in K[x] if the zero decom-
position (5.3.4) holds.
A �nite set or sequence 	 of polynomial systems [G1 ; D1 ]; : : : ; [Ge ; D e ] is

called a Gr�obner series of a polynomial system P in K[x] if

Zero(P) =
e[

i=1

Zero(G i=D i)

and each G i is a Gr�obner basis.
	 is said to be quasi-irreducible if all the polynomials in G i are irreducible

over K for 1 � i � e.
Example 5.3.4. The last polynomial in the Gr�obner basis G in Exam-
ple 5.3.3 is reducible over Q. Splitting G according to the factorization
of this polynomial, one may get two Gr�obner bases

G1 = [2x22 + 2x1x22 � 2x1x2 + x1 + 1; x3 � 2x1x2 + x1; x4 + x2 � 1];

G2 = [2x22 + 2x1x22 � 2x1x2 + x1 + 1; x3 + x1x2 � x1; x4 � 2x2 + 1]

such that
Zero(fP1; G; P3g) = Zero(G1 ) [ Zero(G2):

Refer to Examples 5.3.1 and 5.3.3 for P1; P2; P3 and G. A Gr�obner series
of fP1; P2; P3g consists of the following two Gr�obner bases2

6666664

x21x
2
2 + 4x1x22 + 2x22 + x31x2 + 2x21x2 + x1x2 + x21 + 2x1 + 1;

x1x3 + x3 � x1x2;
x2x3 + x1x

2
2 + 2x22 + x21x2 + x1x2 + x1 + 1;

x23 � 2x22 � x1x2 � 1;

x4 � x3

3
7777775
;

�
25x31x

2
2 + 10x21x

2
2 + 8x22 + 4x1x2 + 4; 2x3 � 5x21x2 � 2x1x2; 2x4 + 5x1x2

�
:

ut

5.4 Resultant elimination

This section summarizes the main elimination techniques using resultants.
Our presentation is based on the materials in Chionh and Goldman (1995),
Kapur and Lakshman (1992), and van der Waerden (1950, Chap. XI).

Resultants revisited

The Sylvester resultant has been introduced in Sect. 1.3. Hereinbelow is
described another formulation of univariate resultants due to �E B�ezout
and A. Cayley, and its extention to the bivariate case by Dixon (1908).
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B�ezout-Cayley resultant

Consider two univariate polynomials F;G 2 R[x] of respective degrees m
and l in x with m � l > 0 as in Sect. 1.3. Let � be a new indeterminate.
The determinant

�(x; �) =

���� F (x) G(x)
F (�) G(�)

����
is a polynomial in x and �, and is equal to 0 when x = �. So x � � is a
divisor of �. The polynomial

�(x; �) =
�(x; �)

x� �
has degree m � 1 in � and is symmetric with respect to both x and �. As
�(�x; �) = 0 for any �x 2 Zero(fF;Gg) no matter what value � has, all the
coe�cients of � as a polynomial in �, Bi(x) = coef(�; �i), are 0 at x = �x.
Consider the following m polynomial equations in x:

B0(x) = 0; : : : ; Bm�1(x) = 0; (5.4.1)

the maximumdegree of the Bi in x is m�1. Any common zero of F and G
is a solution of (5.4.1), and the equations in (5.4.1) have a common solution
if the determinant R of the Bi's coe�cient matrix is 0.
The determinant R of the m � m matrix is called the B�ezout-Cayley

resultant of F and G with respect to x. It is identical to the Sylvester
resultant de�ned in Sect. 1.3 when m = l, and has an extraneous factor
lc(F; x)m�l when m > l. Note that the Sylvester resultant of F and G with
respect to x was formulated as the determinant of an (l + m) � (l + m)
matrix.

Example 5.4.1. Consider the univariate quartic polynomial

F = x4 + x1x
3 + x2x

2 + x3x+ x4:

We want to compute the discriminant of F with respect to x, which is
de�ned to be the resultant of F and its derivative

G =
dF

dx
= 4x3 + 3x1x

2 + 2x2x+ x3:

Following the above method, we �rst compute

� =
1

x� �

����� F (x) G(x)

F (�) G(�)

����� = G�3 +B2�
2 + B1�+B0;

where

B2 = 3x1x3 � (2x2 � 3x21)x
2 � (3x3 � 2x1x2)x� 4x4 + x1x3;

B1 = 2x2x3 � (3x3 � 2x1x2)x2 � (4x4 + 2x1x3 � 2x22)x� 3x1x4 + x2x3;

B0 = x3x
3 � (4x4 � x1x3)x2 � (3x1x4 � x2x3)x� 2x2x4 + x23:



156 5. Various elimination algorithms

By equating the coe�cients of the monomials of � in � to 0, one gets four
equations

G = 0; B2 = 0; B1 = 0; B0 = 0:

Considered as homogeneous linear equations in the unknowns x3; x2; x1; x0,
they have a common solution if and only if the determinant of the coe�cient
matrix is 0, viz.

R =

��������
4 3x1 2x2 x3
3x1 �2x2 + 3x21 �3x3 + 2x1x2 �4x4 + x1x3
2x2 �3x3 + 2x1x2 �4x4 � 2x1x3 + 2x22 �3x1x4 + x2x3
x3 �4x4 + x1x3 �3x1x4 + x2x3 �2x2x4 + x23

��������
= 256x34 � 192x1x3x24 � 128x22x

2
4 + 144x21x2x

2
4 � 27x41x

2
4

+144x2x23x4 � 6x21x
2
3x4 � 80x1x22x3x4 + 18x31x2x3x4 + 16x42x4

�4x21x32x4 � 27x43 + 18x1x2x33 � 4x31x
3
3 � 4x32x

2
3 + x21x

2
2x

2
3

= 0:

The above determinant which is the discriminant of F will be used in
Example 9.3.10. ut

Dixon bidegree resultant

The formulation of B�ezout-Cayley resultants may be extended to three
polynomials F;G and H of bidegree (l;m) in two variables x and y and
other restricted cases. This was shown by Dixon (1908). Here, bidegree
means that the polynomials F;G;H 2 R[x; y] have total degree l +m in
x and y but only degree l in x and m in y. Let us consider this case. The
determinant

�(x; y; �; �) =

������
F (x; y) G(x; y) H(x; y)
F (�; y) G(�; y) H(�; y)
F (�; �) G(�; �) H(�; �)

������
vanishes when one replaces � by x, or � by y. It follows that (x��)(y��) j
�. Hence

�(x; y; �; �) =
�(x; y; �; �)

(x� �)(y � �)
is a polynomial in x; y; �; � with

deg(�; �) = 2l � 1; deg(�; x) = l � 1;

deg(�; �) = m� 1; deg(�; y) = 2m� 1:

Since �(�x; �y; �; �) = 0 for any (�x; �y) 2 Zero(fF;G;Hg) no matter what �
and � are, the coe�cients Dij = coef(�; �i�j ) for 0 � i � 2l � 1 and 0 �
j � m� 1 have common zeros for x and y, which contain Zero(fF;G;Hg).
Consider

Dij(x; y) = 0 (0 � i � l � 1; 0 � j � 2m � 1)
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as 2lm homogeneous linear equations in the 2lm monomials

xiyj (0 � i � l � 1; 0 � j � 2m� 1):

In matrix form, we have

�(x; y; �; �) = (xl�1y2m�1 � � �y2m�1 � � �xl�1 � � �1)D

0
BBBBBBBBBBB@

�2l�1�m�1

...
�m�1

...
�2l�1

...
1

1
CCCCCCCCCCCA
;

where D is the coe�cient matrix of the Dij . The matrix D and the de-
terminant R of D are called the Dixon matrix and the Dixon resultant of
fF;G;Hg with respect to x and y, respectively.
For arbitrary three polynomialsF;G;H 2 R[x; y], one can also construct

the corresponding Dixon matrix D in a similar way. In this case, D is not
necessarily square, or even it is square, but may be singular, i.e., det(D) =
0. So the method does not work in general. However, as far as the Dixon
matrixD is square and non-singular, the determinant of D di�ers only by
a constant factor from the usual resultant, and is called the Dixon resultant

of fF;G;Hg with respect to x and y. The following example is provided as
an illustration.

Example 5.4.2. Consider the binary cubic polynomial

F (x; y) = y2 + a1xy + a3y � x3 � a2x2 � a4x� a6:

The resultant R of

P= fF; @F
@x

;
@F

@y
g

with respect to x and y is also called the discriminant of F ; R = 0 gives a
necessary and su�cient condition for the cubic curve F (x; y) = 0 to have
singularities (see Sect. 9.3). If R 6= 0, then F (x; y) = 0 is an elliptic curve.
To obtain R, one �rst computes the polynomial �(x; y; �; �) which con-

sists of 45 terms and can be written as

(xy y x2 x 1)

0
BBBBBB@

0 6 0 3a1 3a3

6 a21 + 4a2 6a1 d24 d25

0 0 �6 d34 d35

3a1 3a3 2a21 � 4a2 d44 d45

3a3 2a2a3 � a1a4 2a1a3 � 2a4 d54 d55

1
CCCCCCA

0
BBBBBB@

��

�

�2

�

1

1
CCCCCCA
;
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where
d24 = a31 + 4a1a2 + 3a3;

d25 = a21a3 + 2a2a3 + a1a4;

d34 = �a21 � 4a2;

d35 = �a1a3 � 2a4;

d44 = �a21a2 � 4a22 + 5a1a3 + 4a4;

d45 = �a1a2a3 + 3a23 � 2a2a4 + 6a6;

d54 = a1a2a3 + 3a23 � a21a4 � 2a2a4 + 6a6;

d55 = 2a2a23 � 2a1a3a4 � 2a24 + a21a6 + 4a2a6:

The determinant of the 5� 5 matrix

R = 18(72a2a23a4 + 288a2a4a6 + 72a21a4a6 � 8a21a
2
2a

2
3 � 12a41a2a6

+8a21a2a
2
4 + 36a1a2a33 � 30a21a

2
3a4 + 36a31a3a6 � 96a1a3a24

�48a21a22a6 � a41a2a23 + a51a3a4 + a41a
2
4 � a61a6 + a31a

3
3

+16a1a22a3a4 + 144a1a2a3a6 + 8a31a2a3a4 � 64a34 � 27a43
+16a22a

2
4 � 216a23a6 � 432a26 � 64a32a6 � 16a32a

2
3)

consists of 26 terms and is the Dixon resultant of Pwith respect to x and
y. It can be written as

R = 18(�b22b8 � 8b34 � 27b26 + 9b2b4b6);

where
b2 = a21 + 4a2; b4 = a1a3 + 2a4; b6 = a23 + 4a6;

b8 = a21a6 + 4a2a6 � a1a3a4 + a2a
2
3 � a24:

These are familiar expressions in the arithmetic of elliptic curves. ut
We do not go further with Dixon's method for three equal-degree polyno-

mials and other cases, nor its recent generalizations. The interested reader
may refer to Dixon (1908), Chionh and Goldman (1995), Kapur and Lak-
shman (1992), Kapur and Saxena (1995), and references therein for more
information and technical discussions.

Multivariate resultants

In this subsection we explain Macaulay's method that constructs a resultant
from any n homogeneous polynomials in n variables; so several variables
are eliminated at once. This is clearly a generalization of univariate and
bivariate resultants. Again, we proceed to form a system of m linear equa-
tions in m monomials which may be considered as unknowns. This will be
done by the dialytic method which takes certain monomials as multipliers
for the polynomials.
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Macaulay matrix

Consider a set of n homogeneous polynomials, P = fP1; : : : ; Png, in n
variables x = (x1; : : : ; xn) with di = tdeg(Pi). Let

d = 1 +
nX
i=1

(di � 1)

and
M = fxi11 � � �xinn : i1 + � � �+ in = dg:

Then

m = jMj =
�
d+ n� 1

n� 1

�
:

We want to multiply each polynomial Pi by appropriate monomials to
generate m equations in m monomials of degree d. For this purpose, let

M1 = f�=xd11 : xd11 j �; � 2Mg;
Mi = f�=xdii : xdii j �; � 2 Mn fxdjj �j : �j 2Mj ; 1 � j � i� 1gg;

2 � i � n:
Set mi = jMij for 1 � i � n. Macaulay (1964, pp. 7{8) showed that

m1 + � � �+mn = m:

In fact,
M = fxdii �i : �i 2 Mi; 1 � i � ng:

Now, we form a square matrix M of dimension m � m as follows. Let
the columns of M be labeled by the monomials in M. And, let the �rst
m1 rows be labeled by the monomials inM1, the next m2 rows be labeled
by the monomials inM2, and so forth. In each row ofM labeled by the
monomial � 2 Mi, �ll in the coe�cient coef(�Pi; �) under the column
labeled by � for all � 2M (observing that tdeg(�Pi) = d). The matrixM
so constructed is called the Macaulay matrix of P1; : : : ; Pn, or of P, with
respect to x.

Macaulay resultant

Let Ni be the set of those monomials inMi which are divisible by x
dj
j for

at least one j, where 2 � i + 1 � j � n. If all the Ni are empty, then set
N to be the trivial matrix (1) of dimension 1� 1. Otherwise, let N be the
minor of M whose columns are labeled by the monomials in

fxdii �i : �i 2 Ni; 1 � i � n� 1g;
and whose rows are labeled by the monomials in

N1 [ � � � [ Nn�1:
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The determinant of M is a polynomial homogeneous in the coe�cients of
each Pi. Assume that the determinant ofN is non-zero (see Remark 5.4.2).
The quotient

R =
det(M)

det(N)

is de�ned to be the Macaulay resultant of P1; : : : ; Pn or of Pwith respect
to x.
The above discussions are recapitulated in the form of the following al-

gorithm.

Algorithm MacRes: R MacRes(P). Given a set P = fP1; : : : ; Png of
n homogeneous polynomials in n variables x with coe�cients in K, this
algorithm computes the Macaulay resultant R of Pwith respect to x.

M1. Set
di tdeg(Pi); i = 1; : : : ; n;

d 1 +
Pn

i=1(di � 1);

M fxi11 � � �xinn : i1 + � � �+ in = dg;
T  M;

M ;:
M2. For i = 1; : : : ; n do:

M2.1. Set
S f� 2 T : xdii j �g;
Mi f�=xdii : � 2 Sg;
T  T n S:

M2.2. Compute
M M [ f�Pi : � 2Mig:

M3. For i = 1; : : : ; n� 1 do:

Ni f� 2Mi : 9j; i + 1 � j � n; such that x
dj
j j �g:

M4. Let M be the coe�cient matrix of the polynomials in M with the
monomials inM as unknowns and set

N  N1 [ � � � [ Nn�1:

If N = ; then set N (1) else let N be the minor of M whose rows
are labeled by the monomials in N and whose columns are labeled
by the monomials in

fxdii �i : �i 2 Ni; 1 � i � n� 1g:
Return R det(M)= det(N).
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Example 5.4.3. Consider the following set Pof three polynomials in three
variables with indeterminate coe�cients

P1 = a11x
2
1 + a12x1x2 + a13x1x3 + a22x

2
2 + a23x2x3 + a33x

2
3;

P2 = b11x
2
1 + b12x1x2 + b13x1x3 + b22x

2
2 + b23x2x3 + b33x

2
3;

P3 = c1x1 + c2x2 + c3x3:

Using the above notations, we have

d1 = d2 = 2; d3 = 1; d = 3; m = 10:

The Macaulay matrix M of dimension 10 � 10 together with the labeled
monomials is shown below

0
BBBBBBBBBBBBBB@

x31 x21x2 x21x3 x1x
2
2 x1x2x3 x1x

2
3 x32 x22x3 x2x

2
3 x33

x1 a11 a12 a13 a22 a23 a33 0 0 0 0
x2 0 a11 0 a12 a13 0 a22 a23 a33 0
x3 0 0 a11 0 a12 a13 0 a22 a23 a33
x1 b11 b12 b13 b22 b23 b33 0 0 0 0
x2 0 b11 0 b12 b13 0 b22 b23 b33 0
x3 0 0 b11 0 b12 b13 0 b22 b23 b33
x1x2 0 c1 0 c2 c3 0 0 0 0 0
x1x3 0 0 c1 0 c2 c3 0 0 0 0
x2x3 0 0 0 0 c1 0 0 c2 c3 0
x23 0 0 0 0 0 c1 0 0 c2 c3

1
CCCCCCCCCCCCCCA

:

It is constructed as follows.
As the monomials labeled on the �rst three columns of M are divisible

by x21, we haveM1 = fx1; x2; x3g. Multiplying P1 by the xi inM1 respec-
tively and �lling in the corresponding coe�cients, one obtains the �rst 3
rows ofM. The monomials labeled on the fourth, the sixth, and the seventh
columns of M are divisible by x22, soM2 = fx1; x2; x3g. Thus, the next 3
rows are obtained by �lling in the coe�cients of x1P2; x2P2; x3P2 respec-
tively. Dividing the remaining four monomials labeled on the columns by
x3 yields

M3 = fx1x2; x1x3; x2x3; x23g:
Accordingly, the last four rows are obtained by �lling in the coe�cients of
�P3 for � 2M3.
The determinant ofM is a polynomial consisting of 432 terms in aij; bij

and ck. To see the corresponding minor N of M, one may �nd that

N1 = N2 = fx3g:
Taking the third and the eighth columns, and the third and the sixth rows
of M, produces N as follows

�x21x3 x22x3

x3 a11 a22
x3 b11 b22

�
:
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The Macaulay resultant of P, a polynomial consisting of 234 terms in
aij; bij and ck, is �nally obtained by taking the quotient det(M)= det(N).

ut

The following theorem lists some important properties about Macaulay
resultants.

Theorem 5.4.1. Let P= fP1; : : : ; Png be a set of n homogeneous poly-
nomials in K [x], R the Macaulay resultant of P (with respect to x), and
0 = (0; : : : ; 0). Then

(a) R = 0 if and only if Zero(P)% f0g;
(b) R is irreducible over the algebraic closure of K and invariant under

linear coordinate transformations | thus R = 0 is the smallest necessary
condition for Zero(P)% f0g;
(c) R is homogeneous and has degree

Q
1 � j � n
j 6= i

dj in the coe�cients of

each Pi, where di = tdeg(Pi) for 1 � i � n;
(d) If Pi = FG for some 1 � i � n, then R is the product of the Macaulay

resultants R1 of Pn fPig[ fFg and R2 of PnfPig[ fGg with respect to x.

Proof. Sects. 7{11 in Macaulay (1964, pp. 8{15). ut

Remark 5.4.1. Macaulay (1921) gave an improved algorithm for construct-
ing the resultant of Pwhen all the Pi have the same degree, i.e., d1 = � � � =
dn. In this case, the dimensions of the corresponding matrices are made
smaller; see Chionh and Goldman (1995). Macaulay's methods mainly deal
with sets of homogeneous polynomials and their zeros in projective space
Pn. For non-homogeneous polynomial sets, one has to homogenize the poly-
nomials before applying the methods. Zeros at in�nity may be included and
have to be handled separately if one is only interested in a�ne zeros.

Remark 5.4.2. The Macaulay resultant as a quotient of two determinants
is de�ned if the submatrix N is non-singular. The condition is satis�ed \in
general," or when the polynomials have indeterminate coe�cients. For spe-
cialized polynomials, the theoretical approach is to compute the Macaulay
resultant R of the polynomials with indeterminate coe�cients and then
evaluate R by specializing the coe�cient values. However, this is not prac-
tically feasible because of the large size of R even for polynomials of small
degree. To compute R with specialized coe�cients, one may encounter the
situation in which N is singular. To deal with this in practice, more ad-
vanced techniques such as perturbation are required (see the end of this
section).
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Resultant systems and u-resultants

Resultant system

Write xfig for x1; : : : ; xi with x = xfng as before and let

P= fP1; : : : ; Psg
be a �nite set of s (� 2) polynomials in K [x]. We want to determine
another polynomial set R= fR1; : : : ; Rrg � K[xfn�1g] (with the variable
xn eliminated) and establish some zero relation between Pand R.
For this purpose, let

di = deg(Pi; xn); 1 � i � s; and d = max
1�i�n

di

and construct a new polynomial set F = fF1; : : : ; Ftg from Pby replacing
those Pi for which di < d with xd�din Pi and (xn � 1)d�diPi so that the
polynomials in F have the same degree d in xn and Zero(F) = Zero(P).
With respect to xn, we form the resultant R of the two polynomials

F1u1 + � � �+ Ftut; F1v1 + � � �+ Ftvt;

where u = (u1; : : : ; ut) and v = (v1; : : : ; vt) are new indeterminates. Clearly,
R is a polynomial in xfn�1g and u;v. Consider R as polynomial in u and
v only and let its non-zero coe�cients be R1; : : : ; Re. The polynomial set
R = fR1; : : : ; Reg � K [xfn�1g] is called a resultant system of P with
respect to xn. It is empty when R � 0. According to van der Waerden
(1950, p. 1), the above method of constructing resultant systems is due to
L. Kronecker.

Theorem 5.4.2. Let R be a resultant system of any polynomial set P�
K[x] with respect to xn, and �xfn�1g 2 ~K

n�1
. Then, �xfn�1g 2 Zero(R) if

and only if either

Zero(Ph�x;n�1i) 6= ;; or �xfn�1g 2 Zero(flc(P; xn) : P 2 Pg):
Proof. Let

Fu = F1u1 + � � �+ Ftut; Fv = F1v1 + � � �+ Ftvt

and F as above. Since Fu is independent of v and so is Fv of u, every com-
mon divisor of Fu and Fv must be independent of u and v and thus divides
F1; : : : ; Ft. Conversely, any common divisor of F1; : : : ; Ft also divides Fu
and Fv. Therefore,

Zero(F) 6= ; () Zero(fFu; Fvg) 6= ;:
Let R = res(Fu; Fv; xn) and �xfn�1g 2 ~K

n�1
. By Theorem 1.3.2, R(u;v,

�xfn�1g) = 0 if and only if either Fu(u; �x
fn�1g) and Fv(v; �x

fn�1g) have a
common zero for xn, or

lc(Fu; xn)(u; �x
fn�1g) = lc(Fv; xn)(v; �x

fn�1g) = 0;
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and thus if and only if

Zero(Ph�x;n�1i) = Zero(fF1; : : : ; Ftgjxfn�1g=�xfn�1g ) 6= ;;

or

�xfn�1g 2 Zero(flc(P; xn) : P 2 Pg):

As u and v are indeterminates, R(u;v; �xfn�1g) = 0 if and only if all the
coe�cients of R considered as a polynomial in u and v vanish at xfn�1g =
�xfn�1g, i.e., �xfn�1g 2 Zero(R). ut

Example 5.4.4. Let P= fP1; P2; P3g with

P1 = x� rt; P2 = y � rt2; P3 = z � r2

and x � y � z � t � r. These polynomials will appear again in Exam-
ple 9.1.5. To compute a resultant system of Pwith respect to r, we �rst
form the following polynomials

G1 = rP1; G2 = (r � 1)P1; G3 = rP2; G4 = (r � 1)P2; G4 = P3:

The resultant R of

G1u1 + � � �+ G5u5 and G1v1 + � � �+ G5v5

with respect to r is a polynomial consisting of 710 terms in x; y; z; t and the
indeterminates ui; vj. By collecting all the coe�cients of R in ui and vj ,
one gets a resultant system of P, which contains 76 polynomials in x; y; z
and t. ut

As remarked in van der Waerden (1950, p. 2), if one of the formal leading
coe�cients of Pi, say lc(P1; xn), does not vanish, then the construction of F
is not needed and the resultant system may be obtained simply by forming
the resultant of P1 and v2P2 + � � �+ vnPn instead.
For Example 5.4.4 above, lc(P3; r) = �1 6= 0, so we only need to compute

R = res(P3; v1P1 + v2P2; r)

= �x2v21 � 2xyv1v2 � y2v22 + zt2v21 + 2zt3v1v2 + zt4v22:

Collecting the coe�cients of R as a polynomial in v1 and v2, one obtains a
much simpler resultant system of Pas follows

R= fzt2 � x2; zt4 � y2; 2zt3 � 2xyg: (5.4.2)
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Zero determination

Now we explain how to determine all zeros of an arbitrary polynomial set
P= fP1; : : : ; Psg by using resultant systems. Following van der Waerden
(1950, p. 3), one can assume that P contains one polynomial with non-
vanishing leading coe�cient with respect to xn. If the assumption does
not hold, it may be brought about as follows. Leaving out the trivial case
in which all Pi vanish identically, we assume, without loss of generality,
that Pn does not vanish identically. Under this hypothesis, introduce the
following variable transformation

x1 = z1 + u1zn;

� � � � � �
xn�1 = zn�1 + un�1zn;
xn = unzn;

where u = (u1; : : : ; un) are indeterminates or some special values to be
determined later. This transformation maps Pn to a polynomial whose
leading coe�cient with respect to xn is a non-vanishing polynomial in u.
One can take any values fromK or some extension �eld of K for u as far
as the leading coe�cient does not vanish.
Let Rn = P and assume that Rn contains one polynomial having non-

vanishing leading coe�cient with respect to xn. Compute a resultant sys-

tem Rn�1 �K[xfn�1g] of Rn. Then, Zero(R
h�x;n�1i
n ) 6= ; for any �xfn�1g 2

Zero(Rn�1). In fact, all the zeros can be obtained from the GCD of the

polynomials in Rh�x;n�1i
n with respect to xn.

Therefore, the problem is reduced to determining the zeros of Rn�1.
Again, we can assume that Rn�1 contains one polynomial whose leading
coe�cient with respect to xn�1 does not vanish and compute a resultant
system Rn�2 �K [xfn�2g] of Rn�1, and so on. In this way, two cases may
happen: the process either stops at the ith step with i � n and Rn�i = f0g,
or continues until R0 is computed and it contains a non-zero constant. In
the latter case, Zero(P) = ;. For the former, one can determine successively
the zeros for xn�i+1; : : : ; xn from the resultant systems Rn�i+1; : : : ;Rn by
replacing x1; : : : ; xn�i with arbitrary values. The number of zeros is �nite
if and only if i = n. If some linear variable transformations have been made
in the process of elimination, the zeros of the original polynomial set may
be recovered by transforming back to the original variables.
In view of the complexity of computing resultant systems, the above-

described method is however not practically applicable. The successive
elimination is rather straightforward, but the variable transformations nec-
essary for making the hypothesis satis�ed complicate the process. We do
not go further to give an algorithmic presentation of the method. Instead,
the previous example is recalled for illustration.

Example 5.4.5. Refer to Example 5.4.4. For R in (5.4.2), we take a simple
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variable transformation z = w + t. Then the three polynomials in R are
mapped to

Q1 = (w + t)t2 � x2 = t3 +wt2 � x2;
Q2 = (w + t)t4 � y2 = t5 +wt4 � y2;
Q3 = 2(w + t)t3 � 2xy = 2t4 + 2wt3 � 2xy;

whose leading coe�cients with respect to t are all constants. The resultant
of Q1 and v2Q2 + v3Q3 with respect to t is R1R2 with

R1 = x5 � y3 � xy2w;
R2 = y3v32 + 6xy2v22v3 � xy2wv32 � 4x2ywv22v3 + 12x2yv2v23

�4x3wv2v23 + 8x3v33 + x5v32 ;

from which the following resultant system of fQ1; Q2; Q3g with respect to
t is obtained:

R1 = f(x5 + y3 � xy2w)R1; 4x
2(3y � xw)R1; 2xy(3y � 2xw)R1; 8x

3R1g:
Since all the polynomials inR1 have a commondivisor, any resultant system
of R1 with respect to any of the variables x; y; w should be equal to f0g.
For any given values of x and y, the zeros for w; t and r can be successively

computed from R1;R and P respectively. The zeros for z are obtained as
the corresponding w + t. In the generic case, x and y are regarded as
indeterminates, and thus xy 6= 0. The GCD of the four polynomials in R1

is R1. Solving R1 = 0 for w, one gets

w =
x5 � y3
xy2

:

Substituting this solution into Q1; Q2; Q3 and computing their GCD, one
�nds the only solution for t: t = y=x. Now the zero for z can be recovered:
z = w + t = x4=y2. Substituting the solution for z and t into the original
polynomials in P and computing their GCD, one �nally obtains the only
solution for r: r = x2=y. Therefore, the only zero of P for z; t; r in terms of
generic x and y is determined as

(
x2

y2
;
y

x
;
x2

y
):

ut

Solvability criteria

Using the Macaulay resultant, we have established solvability criteria for
n homogeneous polynomials in n variables. In what follows an algebraic
criterion is derived for the solvability of an arbitrary set of homogeneous
polynomial equations by using resultant systems.
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In the rest of this section, x stands for n + 1 variables x0; x1; : : : ; xn
with xfig = (x0; x1; : : : ; xi); similar abbreviations are used with �x, u, �,
etc. Let P1; : : : ; Ps be homogeneous non-constant polynomials in x. They
always have the \trivial" zero 0 = (0; : : : ; 0) at least. So the criterion should
be for the existence of non-trivial zeros of P= fP1; : : : ; Psg. The following
approach based on Kronecker's method of successive elimination is due to
H. Kapferer (see van der Waerden 1950, p. 7).
Form the resultant system R� K[xfn�1g] of Pwith respect to xn ac-

cording to the method explained above without the linear variable trans-
formation. We now show that

Zero(P)% f0g () Zero(R)% f0g (5.4.3)

in some extension �eld of K.
Let di = tdeg(Pi) for 1 � i � s. Consider �rst the case in which the

coe�cients coef(Pi; xdin ) do not all vanish. Then by Theorem 5.4.2, for every
non-trivial zero �xfn�1g of R, Ph�x;n�1i has at least one zero �xn for xn. The
zero �x of course cannot be trivial. Conversely, every non-trivial zero �x of
P gives rise to a zero �xfn�1g of R, which cannot be trivial either since
�xfn�1g = 0 would lead immediately to �xn = 0 (noting that each Pi is
homogeneous).
If coef(Pi; xdin ) vanishes for all i, then R= ; according to Theorem 5.4.2.

Hence, R has a non-trivial zero, say (1; : : : ; 1). In this case, (0; : : : ; 0; 1) is
a non-trivial zero of Pas the terms Pi with the highest power of xn are all
omitted. This proves (5.4.3).
Now the polynomials in R, if any, are homogeneous in xfn�1g and one

can form a resultant system of R with respect to xn�1. Let this elimina-
tion process continue for xn�1; : : : ; x1. Finally, a �nite set of homogeneous
polynomials in x0

R1x
k1
0 ; : : : ; Rtx

kt
0 (5.4.4)

will be obtained. These polynomials have a non-trivial zero if and only if
R1 = � � � = Rt = 0.
Clearly, R1; : : : ; Rt are polynomials in the coe�cients of the Pi. From

their construction, it is easy to show that they are homogeneous in the
coe�cients of every individual Pi (see van der Waerden 1950, p. 8). The
set of polynomials R1; : : : ; Rt is also called a resultant system of P1; : : : ; Ps
or of Pwith respect to x. It may be empty: in this case t = 0.
Summing up the above discussions, we have the following.

Theorem 5.4.3. From any set P of homogeneous polynomials in x with
indeterminate coe�cients u, one can determine a �nite set Rof polynomials
in K [u] such that for any special values �u of u in an arbitrary extension
�eld of K

�u 2 Zero(R) () Zero(Pju=�u) % f0g:
The polynomials in Rare homogeneous in the coe�cients of every individ-
ual polynomial in P.
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The resultant system R of Pmay contain numerous polynomials. Theo-
rem 5.4.1 implies that, when jPj= s = n+1 (the number of variables), the
single Macaulay resultant is su�cient. In general no condition for solvabil-
ity is necessary if s < n+ 1.

u-resultant

Consider a set of n homogeneous polynomials

P= fP1; : : : ; Png �K[x]:

Let di = tdeg(Pi) for 1 � i � n and

Pu = x0u0 + x1u1 + � � �+ xnun;

where u = (u0; u1; : : : ; un) are n + 1 new indeterminates.

De�nition 5.4.1. The Macaulay resultant Ru of the n + 1 homogeneous
polynomials

P1; : : : ; Pn; Pu

with respect to the n+1 variables x is called the u-resultant of P1; : : : ; Pn
or of Pwith respect to x.

The u-resultant may also be de�ned for an arbitrary set of s (not neces-
sarily n) homogeneous polynomials in x that has only �nitely many zeros
(van der Waerden 1950, pp. 15{16). For n = 2, it can be constructed alter-
natively by using the bivariate resultant (Chionh and Goldman 1995).
Let Ru be the u-resultant of P, a set of n homogeneous polynomials in

K[x], with respect to x. If Ru � 0, then Zero(P) is in�nite. Otherwise, Ru

is a polynomial homogeneous in u of degree D = d1 � � �dn by Theorem 5.4.1
(c). In this case, Ru can be factorized into linear factors:

Ru =
DY
j=1

(�0ju0 + �1ju1 + � � �+ �njun)

over some algebraic extension �eld of K. Thus,

(�0j; �1j; : : : ; �nj) 2 Zero(P) (5.4.5)

for any 1 � j � D. On the contrary, if (5.4.5) holds, then

u0�0j + u1�1j + � � �+ un�nj

must be a factor of Ru. This gives a method for the exact determination
of Zero(P) as well as the multiplicity of each zero (as the degree of the
corresponding linear factor).
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To see the correctness of the method, consider any

�x = (�x0; �x1; : : : ; �xn) 2 Zero(P):
For any �u = (�u0; �u1; ; : : : ; �un) satisfying

�x0�u0 + �x1�u1 + � � �+ �xn�un = 0; (5.4.6)

the linear equation P�u = 0 represents a hyperplane passing through the
point �x. It follows that

�x 2 Zero(P[ fP�ug):
Hence, R�u = 0 by Theorem 5.4.1 (a). As this is true for any �u satisfying
(5.4.6),

�x0�u0 + �x1�u1 + � � �+ �xn�un

is a factor of Ru by the divisibility of polynomials.
For any linear factor

L = �0u0 + �1u1 + � � �+ �nun

of Ru, we call the number of all those linear factors (including L itself)
of Ru, which di�er from L only by constant factors (in some algebraic
extension of K), the multiplicity of

(�0; �1; : : : ; �n) 2 Zero(P):

As a consequence, we have the following constructive version of B�ezout's
theorem.

Theorem 5.4.4. Let P be a set of n homogeneous polynomials in K [x].
Then either Zero(P) is in�nite, or the sum of the multiplicities of all �x 2
Zero(P) is equal to

Q
P2Ptdeg(P ).

If the given polynomials Pi are non-homogeneous but ordinary ones in
n variables x1; : : : ; xn, one can introduce a new variable x0 to homogenize
them. Let the obtained set of homogeneous polynomials be

~P= f ~P1; : : : ; ~Png:
Unlikely to cause confusion, the u-resultant Ru of ~P is also said to be the
u-resultant of P. Ru may be used to determine Zero(P) as well. This is
illustrated by the following example.

Example 5.4.6. Find the intersection of the circle and ellipse given respec-
tively by

P1 = x21 + x22 � 2 = 0;

P2 = x21 + 6x22 � 3 = 0:
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We do so by computing the u-resultant R of fP1; P2g with respect to x1
and x2. By de�nition, R is the Macaulay resultant of

~P1 = x21 + x22 � 2x20;

~P2 = x21 + 6x22 � 3x0;

Pu = u0x0 + u1x1 + u2x2;

where x0 is introduced to homogenize P1 and P2. R may be obtained from
the Macaulay resultant computed in Example 5.4.3 with x3 = x0 by substi-
tuting aij; bij with the corresponding numerical coe�cients of ~P1; ~P2 and
ci with ui. One can �nd that

R = 25u40 � 90u20u
2
1 � 10u20u

2
2 + 81u41 � 18u21u

2
2 + u42;

which can be factorized to

(
p
5u0 + 3u1 + u2)(

p
5u0 + 3u1� u2)(

p
5u0� 3u1+ u2)(

p
5u0 � 3u1 � u2):

From the linear factors, one gets the four points of intersection

(
3p
5
;
1p
5
); (

3p
5
;� 1p

5
); (� 3p

5
;
1p
5
); (� 3p

5
;� 1p

5
):

ut
The above method of determining Zero(P) based on computing the u-

resultant Ru of P is applicable only if Ru 6� 0, i.e., Zero(~P) is �nite. It
may happen that Zero(P) is �nite, but not so is Zero(~P). In other words, P
may have in�nitely many zeros at in�nity. Thus, Ru may be identically 0
even if Zero(P) is �nite. When this happens, Zero(P) is said to have excess
components at in�nity. For example, let

P= fx1(x1 + � � �+ xn)� 1; : : : ; xn(x1 + � � �+ xn)� 1g;
Zero(P) consists of two (a�ne) zeros

(
1p
n
; : : : ;

1p
n
); (� 1p

n
; : : : ;� 1p

n
)

and has an excess component at in�nity given by x1 + � � � + xn = 0 for
n � 2. The u-resultant Ru of Pis zero when n � 3. In the case n = 2, Ru is
non-zero because the homogenized polynomial set ~Phas only �nitely many
zeros.
To deal with such sets of non-homogeneous polynomials which have

�nitely many a�ne zeros with excess components at in�nity, one may em-
ploy a modi�ed version of the method which permits to �nd all the a�ne
zeros. The modi�cation explained below is due to J. F. Canny, A. L. Chis-
tov and D. Yu. Grigor'ev according to Kapur and Lakshman (1992).
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Consider an arbitrary set of n polynomials,P= fP1; : : : ; Png �K[x1; : : :,
xn]. Let ~Pi be the homogenization of Pi by x0 and

Fi = ~Pi + vxdii

for 1 � i � n, and let

Fu = (u0 + v)x0 + u1x1 + � � �+ unxn;

where v is a new variable. Compute the Macaulay resultant Ru = Ru(v;u)
of F1; : : : ; Fn; Fu, regarded as homogeneous polynomials in x0; x1; : : : ; xn;
Ru is called the generalized characteristic polynomial of Pwith respect to
x1; : : : ; xn. Now consider Ru as a polynomial in v, written in the following
form

Ru = vq + Rq�1v
q�1 + � � �+Rkv

k;

where k � 0 and the Ri are polynomials in K[u]. If k = 0, then Rk is the
same as the u-resultant Ru of P. However, if P has excess components at
in�nity, then k > 0. In this case, the trailing coe�cient Rk shares a nice
property with Ru: Rk may be factorized into linear factors

Rk =
Y
j

(�0ju0 + �1ju1 + � � �+ �njun)

over some algebraic extension �eld of K and thus

(�0j; �1j; : : : ; �nj) 2 Zero(~P)

for each j. On the contrary, if (�x1; : : : ; �xn) 2 Zero(P), then

u0 + �x1u1 + � � �+ �xnun

is a divisor of Rk. This provides a way to recover all the a�ne zeros of P
even in the presence of excess components at in�nity.

Remark 5.4.3. Computing full u-resultants and thus complete generalized
characteristic polynomials is almost impossible for polynomial sets of mod-
erate size. For practical computation of zeros, one may construct the u-
resultant for specialized values of some of the indeterminates ui, so that
the zeros for some of the variables are determined �rst. Techniques of this
type come from recent research. For more details, the interested reader may
consult relevant publications by J. F. Canny, Y. N. Lakshman, and their
co-workers.
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6

Computational algebraic geometry and
polynomial ideal theory

Among the fundamental objects studied in algebraic geometry are algebraic
varieties which are aggregates of common zeros of polynomial sets, viewed
as points in an a�ne space. In contrast, ideals generated by polynomial sets
are typical examples dealt with in commutative algebra. Elimination algo-
rithms provide powerful constructive tools for many problems in these two
related areas. In this chapter, we investigate some computational aspects
of a few such problems.

6.1 Dimension

As in the previous chapters, all considered polynomials are in n variables
x with coe�cients in a �xed �eld K of characteristic 0 unless stated oth-
erwise.

De�nition 6.1.1. The dimension of a perfect triangular set T� K [x] is
de�ned to be

dim(T), n� jTj:
It is also called the dimension of any perfect triangular system [T;U] in
K[x].

Lemma 6.1.1. One can compute an irreducible triangular series 	 of any
perfect triangular system T in K[x] such that

dim(T) = max
T�2	

dim(T�):
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Proof. Applying AlgorithmDecom to T = [T;U], one can obtain [T1;U1]; : : :,
[Te;Ue] and [P1;Q1;T01]; : : : ; [Ph;Qh;T0h] such that (4.2.3) holds and each
irreducible triangular set Ti has the same set of parameters as Tand thus
dim(Ti) = dim(T). We assume that in all the algebraic factorization of T
in D2.2.2 of Decom the polynomial D is so chosen that does not involve
the dependents of T0. Then each Pj in (4.2.3) is obtained actually from a
triangular set T�j by adjoining a single polynomial Dj . Moreover, T�j has
the same set of parameters as Tand Dj involves only these parameters.
Let

[�Tj1; �Uj1]; : : : ; [�Tjtj; �Ujtj]

be a triangular series of fDjg and T�jl = �Tjl [T�j [T0j for l = 1; : : : ; tj.
Then

Zero(Pj [T0j=Qj) =

tj[
l=1

Zero(T�jl=Qj [ �Ujl);

each T�jl can be ordered as a triangular set and Tjl = [T�jl;Qj [ �Ujl] is a
triangular system. If Tjl is perfect, then dim(Tjl) < dim(T). Now consider
each of the perfect triangular systems Tjl as [T;U] and proceed as above
recursively. The procedure will terminate �nally to give an irreducible tri-
angular series 	 of T. This proves that

dim(T) � max
T�2	

dim(T�):

It remains to be shown that e 6= 0. By Lemma 5.1.3, T has a regular zero
�. If e = 0, then the number of parameters of T� is smaller than that of
T for any [T�;U�] 2 	. Hence, � cannot be a zero of any such triangular
system [T�;U�]. This derives a contradiction, so e > 0 and the lemma is
proved. ut

Corollary 6.1.2. For any irreducible triangular series 	 of a perfect tri-
angular system T in K[x],

dim(T) = max
T�2	

dim(T�):

Proof. Compute an irreducible triangular series �	 of T according to Lemma
6.1.1 such that

dim(T) = max
�T2�	

dim(�T):

Clearly, [
�T2�	

Zero(�T) =
[
T�2	

Zero(T�) (6.1.1)

holds. If
max
�T2�	

dim(�T) > max
T�2	

dim(T�);
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then there exists a �T 2 �	 such that dim(�T) > dim(T�) for all T� 2 	. Let
� 2 RegZero(�T). It follows that � cannot be a zero of any T� 2 	. This
contradicts with (6.1.1). For the same reason, max�T2�	 dim(�T) cannot be
smaller than maxT�2	 dim(T�). Therefore,

dim(T) = max
�T2�	

dim(�T) = max
T�2	

dim(T�)

and the proof is complete. ut

Lemma 6.1.3. Any perfect triangular system in K[x] is also perfect over
the algebraic closure of K .

Proof. Let T be a perfect triangular system and 	 an irreducible triangular
series of T; then 	 6= ;. Let T� 2 	. By Theorem 4.3.3 T� has a zero in
the algebraic closure �K ofK. It is also a zero of T. Hence T is perfect over
�K. ut

Corollary 6.1.4. Any triangular system in K[x] is perfect if and only if
it is perfect over the algebraic closure of K.

Theorem 5.1.12 can also be considered as a corollary of Lemma 6.1.3.
A new notation: ITS(P) stands for an irreducible triangular series of any

polynomial set or system P in K[x].

Lemma 6.1.5. Let 	1 and 	2 be two triangular series in K[x], with all
triangular systems in 	1 and 	2 perfect, such that[

T12	1

Zero(T1) =
[

T22	2

Zero(T2):

Then

max
T12	1

dim(T1) = max
T22	2

dim(T2):

Proof. Note that

	�
i =

[
Ti2	i

ITS(Ti); i = 1; 2;

are two irreducible triangular series such that[
T12	�

1

Zero(T1) =
[

T22	�
2

Zero(T2):

By Corollary 6.1.2 we have

max
Ti2	i

dim(Ti) = max
Ti2	i

max
T�
i
2ITS(Ti)

dim(T�i ) = max
T2	�

i

dim(T)
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for i = 1; 2. Repeating the reasoning in the proof of Corollary 6.1.2 shows
that

max
T12	�

1

dim(T1) = max
T22	�

2

dim(T2):

This implies that

max
T12	1

dim(T1) = max
T22	2

dim(T2):

ut
As a consequence of this lemma, we have the following.

Corollary 6.1.6. Let 	 be any triangular series of a perfect triangular
system T in K[x], with all triangular systems in 	 perfect. Then

dim(T) = max
T�2	

dim(T�):

By Lemma 6.1.5, the following de�nition is proper.

De�nition 6.1.2. Let P be a polynomial system inK[x] with Zero(P) 6= ;,
and 	 any triangular series of P, with all triangular systems in 	 perfect.
The dimension of P is de�ned to be

Dim(P) ,max
T2	

dim(T):

Dim([P;;]) is also called the dimension of P.

Remark 6.1.1. The notation Dim is used to distinguish the dimension of a
polynomial set/system from that of a triangular set/system. Consider, for
example,

T= [x(x� 1); xy + u; xz � u]
in 4-dimensional space with u � x � y � z. As a polynomial set, T is
clearly of dimension 2. However,Tas a triangular set is perfect of dimension
4� jTj= 1. Hence

Dim(T) = 2 6= 1 = dim(T):

Now we introduce a few concepts related to algebraic varieties or man-
ifolds which are geometric objects de�ned by zeros of sets of algebraic
equations in an n-dimensional space.

De�nition 6.1.3. Let V be a collection of points in an n-dimensional a�ne
space An

~K
with coordinates x over some extension �eld ~K ofK. V is called

an (a�ne) algebraic variety , or simply a variety , if there is a polynomial
set P�K[x] such that V = Zero(P). We call P the de�ning set and P= 0
the de�ning equations of V.
A variety V1 is called a subvariety of another variety V2, which is denoted

as V1 � V2, if any point in V1 is also in V2. A variety V1 is called a true

subvariety of V2 if V1 � V2 and V1 6= V2.
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De�nition 6.1.4. A variety V � An
~K
is said to be irreducible if it cannot

be expressed as the union of two true subvarieties V1 and V2 of V. In this
case, the de�ning set of V is also said to be irreducible.
Any point � of an algebraic variety V over some extension ofK , which is

such that every polynomial annulled by � vanishes on V, is called a generic
point of V.
De�nition 6.1.5. Let an algebraic variety V � An

~K be de�ned by the poly-
nomial set P� K[x] and V 6= ;. The dimension of P is also called the
dimension of V or Zero(P). Symbolically,

Dim(V) = Dim(Zero(P)) = Dim(P):

The dimension of a non-empty algebraic variety is one of the fundamental
invariants that characterize the variety. The de�nition given here is equiv-
alent to those in standard books of algebraic geometry. This can be seen
from the following fact which will be proved in the next section. From each
irreducible triangular set T in an irreducible triangular series 	 of P, one
can construct an irreducible algebraic variety VT� V = Zero(P) such that
any generic zero of Tis a generic point of VTand

V =
[
T2	

VT:

Therefore, Dim(VT) = dim(T) coincides with the dimension of VTde�ned
in algebraic geometry, and so does Dim(V) = Dim(P).

De�nition 6.1.6. An irreducible component of an algebraic variety V � An
~K

is an irreducible subvariety W of V. Any de�ning polynomial set of W is
also called an irreducible component of the de�ning set P� K[x] of V.
W is said to be irredundant if it is not contained in another irreducible
subvariety of V.
In what follows we recall several results on dimension from algebraic

geometry (see, for instance, Hartshorne 1977, pp. 7{8 and 48). Some of
them can be easily proved by using triangular series. We omit the proofs.
The interested reader may work out them as exercises.

Proposition 6.1.7. An irreducible polynomial set P� K[x] has dimen-
sion n � 1 if and only if Zero(P) = Zero(P ), where P is a non-constant
polynomial irreducible over K .

Proposition 6.1.8. Let P be an irreducible polynomial set and P any
polynomial inK [x] with Zero(P) 6� Zero(P ). If Zero(P[fPg) 6= ;, then all
the irredundant irreducible components ofP[fPg have the same dimension
Dim(P)� 1, and thus so does P[ fPg itself.
See Wu (1994, pp. 186{187) for a proof of the above lemma in weak form:

Dim(P[ fPg) < Dim(P).
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Proposition 6.1.9. Let P�K[x] be any polynomial set with Zero(P) 6=
;. Then every irredundant irreducible component of P has dimension �
n� jPj. In particular,

Dim(P)� n� jPj:
Proposition 6.1.10. [A�ne Dimension Theorem] Let P1;P2 � K[x] be
two irreducible polynomial sets of dimensions s1; s2 respectively. Then ev-
ery irredundant irreducible component of P1 [ P2 has dimension � s1 +
s2 � n, and thus so does P1[P2 itself.

Theorem 6.1.11. Let Tbe a regular set and P any polynomial in K[x]
such that P (�) 6= 0 for any � 2 RegZero(T), and 	 a triangular series of
[T[fPg; ini(T)]. Then either T is not perfect or dim(T) < dim(T) for each
T 2 	.
Proof. By Lemma 4.3.2, R = res(P;T) is a non-zero polynomial not involv-
ing the dependents of T. Therefore, T[ [R] can be ordered as a triangular
set T�. Either T� is not perfect or dim(T�) = dim(T)� 1. On the other
hand,

Zero(T[ fPg=ini(T))� Zero(T�=ini(T)):

If T� is not perfect, then Zero(T�=ini(T)) = ;. Hence, every T 2 	 is not
perfect. Otherwise, we have

Dim([T[ fPg; ini(T)])� dim(T�) = dim(T)� 1 < dim(T):

Hence, for each T 2 	 either T is not perfect or dim(T) < dim(T). The
lemma is proved. ut
This theorem holds true when T is irreducible and prem(P;T) 6= 0. For

any irreducible triangular set T is regular, and P (�) 6= 0 for any generic
zero � of Tif and only if prem(P;T) 6= 0 (see Lemma 4.3.1). The theorem
is also valid if 	 is a triangular series of [T[fPg;Q], where Q is such that
I(�x) 6= 0 for any I 2 ini(T) and �x 2 Zero(T[ fPg=Q).

6.2 Decomposition of algebraic varieties

Decomposing given algebraic varieties into irreducible or equidimensional
components is a fundamental task in classical algebraic geometry and has
various applications in modern geometry engineering. Among such applica-
tions we can mention two: one in computer-aided geometric design where
the considered geometric objects are desired to be decomposed into simpler
subobjects and the other in automated geometry theorem proving where
the con�guration of the geometric hypotheses needs to be decomposed in
order to determine on which components the geometric theorem holds true.
In view of the relationship between varieties and ideals, a decomposition

of an algebraic variety will lead to one of the radical of the corresponding
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ideal, and vice versa. So the two kinds of decomposition are presented and
mixed together in this section.

Ideal saturation for triangular sets

De�nition 6.2.1. Let I be an ideal and F a polynomial in K[x]. The sat-
uration of I with respect to F is the in�nite set

I : F1 , fP 2 K[x] : F qP 2 I for some integer q > 0g:
It is easy to verify by de�nition that I : F1 is an ideal. This can also be

seen from the following lemma.

Lemma 6.2.1. Let P be a polynomial set and F a polynomial in K [x],
andP� = P[fzF�1g, where z is a new variable. Then P 2 Ideal(P�)\K[x]
if and only if there exists an integer q > 0 such that F qP 2 Ideal(P).
Proof. Let P 2 Ideal(P�)\K[x]; then there are polynomialsQi; Q 2K[x; z]
such that

P =
X
Pi2P

QiPi + Q(zF � 1):

In the above equality, z is arbitrary, so we can substitute z by 1=F . Cleaning
the denominators of the substituted equality, one gets an expression of the
form

F sP =
X
Pi2P

Q�
iPi

for some integer s � 0 and polynomials Q�
i 2K[x]. It follows that F qP 2

Ideal(P), where q = max(s; 1) > 0.
On the other hand, if F qP 2 Ideal(P) for some integer q > 0, then

(zF )qP 2 Ideal(P�) �K[x; z]:

Hence

P = (zF )qP � [(zF )q � 1]P

= (zF )qP � (zF � 1)[(zF )q�1 + � � �+ 1]P 2 Ideal(P�):
ut

The following lemma and Lemma 6.2.1 are parallel, and so are their
proofs.

Lemma 6.2.2. Let Pbe a polynomial set and F1; : : : ; Ft be t polynomials
in K[x], and

P? = P[ fziFi � 1 : 1 � i � tg;
where z1; : : : ; zt are new variables. Then P 2 Ideal(P?) \K[x] if and only
if there exist integers q1 > 0; : : : ; qt > 0 such that F q1

1 � � �F qt
t P 2 Ideal(P).
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Proof. Let P 2 Ideal(P?) \ K [x]; then there are polynomials Qi;Hj 2
K[x; z1; : : : ; zt] such that

P =
X
Pi2P

QiPi +
rX

j=1

Hj(zjFj � 1):

This equality holds for arbitrary z1; : : : ; zt, wherefore one can substitute zj
by 1=Fj for each j. Cleaning the denominators of the obtained expression
(and multiplying the result by Fi when necessary), we have

F q1
1 � � �F qt

t P =
X
Pi2P

Q�
iPi 2 Ideal(P);

in which q1 > 0; : : : ; qt > 0 and Q�
i 2 K[x].

Conversely, let F q1
1 � � �F qt

t P 2 Ideal(P) for some integers q1 > 0; : : : ; qt >
0. Then

(z1F1)
q1 � � � (ztFt)qtP 2 Ideal(P?) �K[x; z1; : : : ; zt]:

The left-hand side of this expression can be written as

[(z1F1 � 1) + 1]q1 � � � [(ztFt � 1) + 1]qtP =
tX

i=1

Ri(ziFi � 1) + P;

where Ri 2 K[x; z1; : : : ; zt]. This implies that P 2 Ideal(P?) \K[x], and
the lemma is proved. ut

Lemma 6.2.3. Let I be an ideal generated by P and F a polynomial in
K[x]; F1; : : : ; Ft be t factors of F such that F1 � � �Ft 6= 0 () F 6= 0;

P� = P[ fzF � 1g; P? = P[ fziFi � 1 : 1 � i � tg;
where z; z1; : : : ; zt are new variables; and G� ;G? be the Gr�obner bases
of P� in K[x; z] and of P? in K[x; z1; : : : ; zt] with respect to the purely
lexicographical ordering determined with xl � z and xl � zj , respectively.
Then

I : F1 = Ideal(P�) \K[x] = Ideal(G� \K[x])

= Ideal(P?) \K[x] = Ideal(G? \K[x]):

Proof. The �rst equality is a corollary of Lemma 6.2.1. The two equalities
on the right-hand side follow from the elimination property of Gr�obner
bases (see Theorem 5.3.5). So we only need to show that

Ideal(P�) \K[x] = Ideal(P?) \K[x]:

This is proved if, for any P 2 K[x], there exists an integer q > 0 such
that F qP 2 I if and only if there exist integers q1 > 0; : : : ; qt > 0 such
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that F q1
1 � � �F qt

t P 2 I. This is obvious because each Fi is a factor of F and
F1 � � �Ft 6= 0 () F 6= 0. ut
In fact, for the Gr�obner bases computation any compatible ordering in

which xi11 � � �xinn � z does. The above technique of computing saturation
bases was introduced independently by several researchers, for example,
Gianni et al. (1988), Chou et al. (1990), and Wang (1989).
There is another method for determining a �nite basis for any I : F1

that may be more e�cient in practice. The method proceeds by computing
the bases for the ideal quotients I : F k with k increasing from 1. A basis
for I : F1 is obtained when I : F k = I : F k+1 for some k; in this case
I : F k = I : F1. See De�nition 6.4.2 and Lemma 6.4.1.

De�nition 6.2.2. Let Tbe any triangular set in K[x]. The saturation of T
is the ideal

sat(T), Ideal(T) : J1;

where J =
Q

T2Tini(T ).

Let Pbe a �nite basis for sat(T); the following relation is obvious

Ideal(T)� sat(T) = Ideal(P):

De�nition 6.2.3. Let Tbe any triangular set in K[x]. The p-saturation of
Tis the in�nite set

p-sat(T), fP 2K[x] : prem(P;T) = 0g:

Theorem 6.2.4. For any regular set T�K[x], sat(T) = p-sat(T).

Proof. Let P 2 p-sat(T) and J =
Q

T2Tini(T ); then prem(P;T) = 0.
By the remainder formula (2.1.2), there is an exponent q � 0 such that
JqP 2 Ideal(T). It follows from De�nitions 6.2.1 and 6.2.2 that P 2 sat(T).
To show the other direction, write Tas

T= [T1; : : : ; Tr]

with Ii = ini(Ti) and Ji = I1 � � � Ii for 1 � i � r. Then, for any P 2 sat(T)
there exist an integer q > 0 and polynomials Qi 2K[x] such that

JqrP = Q1T1 + � � �+ QrTr : (6.2.1)

We now prove the following assertion by induction on r:

(A) If P 2 sat(T) is reduced with respect to T, then P � 0.

If r = 1, then (6.2.1) becomes Jq1P = Q1T1. This is possible only if Q1 �
0. For P is reduced with respect to T1, and thus ldeg(T1) > deg(P; lv(T1)).
Therefore, P � 0.
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Suppose that (A) holds for any regular set Tof length < r. We proceed
to prove it for r = jTj> 1. Let

xpr = lv(Tr); dr = ldeg(Tr); m = deg(Qr; xpr ) � �1:
In case Qr 6= 0, consider the coe�cients

Fr = lc(Qr; xpr ); Fi = coef(Qi; x
m+dr
pr ); 1 � i � r � 1:

Since T1; : : : ; Tr�1 do not involve xpr and P is reduced with respect to Tr ,

r�1X
i=1

FiTi + FrIr = coef(
rX

i=1

QiTi; x
m+dr
pr

) = coef(JqrP; x
m+dr
pr

) = 0: (6.2.2)

Multiplying (6.2.1) by Ir and using (6.2.2), we have

Jqr IrP = Q0
1T1 + � � �+Q0

rTr ; (6.2.3)

where

Q0
i = IrQi � TrFixmpr ; 1 � i � r � 1; Q0

r = Irred(Qr; xpr ):

The right-hand side of (6.2.3) has the same form as that of (6.2.1), while
deg(Q0

r; xpr) < m = deg(Qr; xpr). If Q
0
r 6= 0, then we proceed in the same

way to get
Jqr I

2
rP = Q00

1T1 + � � �+ Q00
rTr

with deg(Q00
r ; xpr) < deg(Q0

r; xpr). This process must terminate at some
point, so that

Jqr�1I
s
rP = Q�

1T1 + � � �+Q�
r�1Tr�1 (6.2.4)

holds for some integer s � q and polynomials Q�
i 2K[x].

Since T is regular, by Lemma 4.3.2 and Proposition 5.1.5 there exist
polynomials H;Hi 2K [x] such that

HIsr +H1T1 + � � �+Hr�1Tr�1 = S = res(Isr ;T
fr�1g) 6= 0: (6.2.5)

Multiplying (6.2.4) by H and using (6.2.5), we obtain

Jqr�1SP = �Q1T1 + � � �+ �Qr�1Tr�1;

where �Qi = HQ�
i+J

q
r�1HiP for 1 � i � r�1. Therefore, SP 2 sat(Tfr�1g).

As S does not involve the dependents of T, SP is reduced with respect to
Tfr�1g. By the induction hypothesis, SP � 0; this implies that P � 0.
Assertion (A) is proved.
To complete the proof of Theorem 6.2.4, consider any P 2 sat(T) and let

R = prem(P;T); R is reduced with respect to T. As Ti 2 sat(T) obviously
for each i, from the pseudo-remainder formula we know that R 2 sat(T).
According to Assertion (A) above, R � 0. Hence P 2 p-sat(T). ut
The following is a direct consequence of Theorem 6.2.4.
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Corollary 6.2.5. Let Tbe any regular set inK[x] and Pa �nite basis for
sat(T). Then Tis a (weak-) characteristic set of P.

In fact, one can state a result stronger than Corollary 6.2.5: Any regular
set T is a (weak-) characteristic set of the ideal sat(T) in Ritt's de�nition
(see Mishra, 1993, pp. 174{176 and Ritt, 1950, pp. 4{5).
For any irreducible triangular set T, Theorem 6.2.14 asserts that sat(T)

is a prime ideal. For any F 2 K [x], if prem(F;T) 6= 0, then F 62 sat(T)
according to Theorem 6.2.4 and thus sat(T) : F1 = sat(T) by de�nition.
This result is generalized in the following lemma for regular sets.

Lemma 6.2.6. Let Tbe a regular set and F any polynomial in K [x]. If
res(F;T) 6= 0, then sat(T) : F1 = sat(T).

Proof. Obviously, sat(T) � sat(T) : F1. To show the opposite direction,
let R = res(F;T) and Tbe written in the form (5.1.1). Then R 6= 0 and
R 2K[u]. By Lemma 4.3.2, there exists a polynomialQ 2K[u; y1; : : : ; yr]
such that QF �R 2 Ideal(T)� sat(T). Now consider any P 2 sat(T) : F1.
By de�nition, there exists an integer q > 0 such that F qP 2 sat(T). It
follows that

RqP = QqF qP � (QF � R)[(QF )q�1 + � � �+Rq�1]P 2 sat(T):

Let H = prem(P;T); it is then easy to see from the pseudo-remainder
formula that RqH 2 sat(T). By Theorem 6.2.4, RqH 2 p-sat(T) and thus
prem(RqH;T) = 0. Since R 2 K[u] does not involve the dependents of T
and H is reduced with respect to T, we have RqH = prem(RqH;T) = 0.
It follows that prem(P;T) = H = 0, so P 2 p-sat(T) = sat(T). The proof
is complete. ut

Proposition 6.2.7. Let [T;U] be a regular system in K[x] and V =Q
U2UU . Then

Ideal(T) : V 1 = sat(T): (6.2.6)

Proof. Let I = Ideal(T) and J =
Q

T2Tini(T ). Since [T;U] is regular,
res(V;T) 6= 0. From Lemma 6.2.6 and De�nition 6.2.1 one knows that

sat(T) = sat(T) : V 1 = (I : J1) : V1 = I : (JV )1:

As J(�x) 6= 0 for any �x 2 Zero(T=V ), Zero(T[fJg)� Zero(V ). By Hilbert's
Nullstellensatz, there exists an exponent s > 0 and a polynomialQ 2K[x]
such that V s �QJ 2 I. Consider any P 2 I : (JV )1; then there exists an
integer q > 0 such that (JV )qP 2 I. It follows that

V (s+1)qP = V q(V s �QJ)[V s(q�1) + � � �+ (QJ)q�1]P + Qq(JV )qP 2 I:

This implies that P 2 I : V1.
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On the other hand, I : V1 � I : (JV )1 by de�nition. It is thus proved
that

sat(T) = I : (JV )1 = I : V 1:

ut
As a consequence of (6.2.6), we have

Zero(Ideal(T) : V 1) = Zero(sat(T)):

Unmixed decomposition

Refer to the zero decomposition (2.2.7) which provides a representation of
the variety V de�ned by P in terms of its subvarieties determined by C i .
However, each Zero(C i=Ii) is not necessarily an algebraic variety; it is a
quasi-algebraic variety . In what follows, we shall see how a corresponding
variety decomposition may be obtained by determining, from each C i , a
�nite set of polynomials.

Theorem 6.2.8. LetPbe a non-empty polynomial set inK [x] andT1; : : : ;Te

a (weak-) characteristic series or a regular series of P. Then

Zero(P) =
e[

i=1

Zero(sat(Ti)): (6.2.7)

Proof. IfT1; : : : ;Te is a (weak-) characteristic series ofP, then prem(P;Ti) =
f0g for each i; otherwise, by Theorem 5.1.11 (a) there exists an inte-
ger d > 0 such that prem(P d;Ti) = 0 for all P 2 P and 1 � i � e.
In any case, it is easy to see from the pseudo-remainder formula that
Zero(sat(Ti)) � Zero(P).
Now let Ji =

Q
T2Ti

ini(T ) for each i. By de�nition and Theorem 5.1.11
(c), we have

Zero(P) =
e[

i=1

Zero(Ti=Ji):

Hence, for any �x 2 Zero(P) there exists an i such that �x 2 Zero(Ti=Ji).
Let P be any polynomial in sat(Ti). Then there exists an integer q > 0
such that Jqi P 2 Ideal(Ti). It follows that Ji(�x)

qP (�x) = 0. As Ji(�x) 6= 0,
we have P (�x) 6= 0. This implies that �x 2 Zero(sat(Ti)). The theorem is
proved. ut
The following result used by Chou and Gao (1990b) provides a useful

criterion for removing some redundant subvarieties in the decomposition
(6.2.7) without computing their de�ning sets.
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Lemma 6.2.9. Let Pand Ti be as in Theorem 6.2.8. If jTjj > jPj, then

Zero(sat(Tj)) �
[

1 � i � e
i 6= j

Zero(sat(Ti));

thus Zero(sat(Tj)) can be deleted from (6.2.7).

Proof. As jTjj > jPj, dim(Tj) < n � jPj. By Proposition 6.1.9 and Theo-
rem 6.2.10, Zero(sat(Tj)) is a redundant component of Zero(P). ut

De�nition 6.2.4. An algebraic variety is said to be unmixed or equidimen-
sional if all its irredundant irreducible components have the same dimen-
sion.

The following theorem is due to Gao and Chou (1993).

Theorem 6.2.10. Let Tbe any triangular set in K[x]. If Tis not perfect
then sat(T) =K [x]; ifTis perfect then Zero(sat(T)) is an unmixed variety
of dimension n� jTj.
Proof. Let J =

Q
T2Tini(T ). If T is not perfect, then Zero(T) � Zero(J).

By Theorem 1.6.3, there exists an integer q > 0 such that Jq 2 Ideal(T).
Thus, JqP 2 Ideal(T) for any P 2 K[x]. It follows that any P 2 K[x] is
contained in sat(T), so sat(T) =K[x].
Now suppose that Tis perfect and let C 1 ; : : : ; C e be an irreducible char-

acteristic series of T. Set

� = fi : jC i j � jTj; 1� i � eg; �� = fi 2 �: prem(J; C i ) 6= 0g:

By Theorem 6.2.8 and Lemma 6.2.9, we have

Zero(T) =
[
i2�

Zero(sat(C i )): (6.2.8)

According to Corollary 6.1.2,

max
i2��

dim(C i ) = dim(T) = n� jTj:

Whence, �� 6= ; and dim(C i ) = dim(T) for all i 2 ��. From (6.2.8) one
sees that

Zero(T=J) =
[
i2��

Zero(sat(C i )=J):

This implies that

Zero(sat(T)) =
[
i2��

Zero(sat(C i ) : J1):
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Let i 2 �� be �xed. Since C i is irreducible and prem(J; C i ) 6= 0, sat(C i ) :
J1 = sat(C i ) according to Lemma 6.2.6 or the remark thereinbefore. Note
that Zero(sat(C i )) has dimension n � jTj for each i 2 ��. It is thereby
proved that Zero(sat(T)) is unmixed of dimension n � jTj. ut
Recall that any regular, simple or irreducible triangular set Tis perfect,

so sat(T) = p-sat(T) and its variety is unmixed of dimension n� jTj.
In (6.2.7), for each i let Pi be a �nite basis for sat(C i ) which can be

determined by computing a Gr�obner basis according to Lemma 6.2.3. If
sat(C i ) = K[x], then the constant 1 is contained in (the Gr�obner basis
of) Pi. Let us assume that such Pi is simply removed. Thus, a variety
decomposition of the following form is obtained:

Zero(P) =
e[

i=1

Zero(Pi): (6.2.9)

By Theorem 6.2.10, each Pi de�nes an unmixed algebraic variety.
Let Vi = Zero(Pi); then the decomposition (6.2.9) can be rewritten as

V = V1 [ � � � [ Ve: (6.2.10)

This decomposition may be contractible; that is, some variety may be a
subvariety of another. Some of the redundant subvarieties may be easily
removed by using Lemma 6.2.9. The following lemma points out how to
remove all redundant components in order to get an irredundant unmixed
decomposition.

Lemma 6.2.11. Let G be a Gr�obner basis and Pan arbitrary polynomial
set in K[x]. If every polynomial in P has remainder 0 with respect to G ,
then Zero(G) � Zero(P).

Proof. Since every polynomial in P has remainder 0 with respect to G ,
Ideal(P)� Ideal(G ). It follows that Zero(G ) � Zero(P). ut
The method for decomposing an algebraic variety into unmixed compo-

nents explained above can be described in the following algorithmic form.

Algorithm UnmVarDec: 	 UnmVarDec(P). Given a non-empty poly-
nomial set P�K[x], this algorithm computes a �nite set 	 of polynomial
sets P1; : : : ;Pe such that the decomposition (6.2.9) holds, it is irredundant,
and each Pi de�nes an unmixed algebraic variety.

U1. Compute � CharSer(P) and set 	 ;.
U2. While � 6= ; do:

U2.1. Let C be an element of � and set � � n fCg. If jC j > jPj then
go to U2.
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U2.2. Compute a �nite basis for sat(C ) according to Lemma 6.2.3, let
it be given as a Gr�obner basis G and set 	 	 [ fGg.

U3. While 9G ;G � 2 	 such that rem(G ;G � ) = f0g do:
Set 	 	 n fG�g.

The termination of the algorithm is obvious. The variety decomposition
(6.2.9) and the unmixture of each Zero(Pi) is guaranteed by Lemma 6.2.3
and Theorem 6.2.10. That (6.2.9) is irredundant follows fromLemma6.2.11.
For an arbitrary regular set T, sat(T) is not necessarily radical. It is so

when Tis a simple set.

Theorem 6.2.12. For any simple set T � K[x], the ideal p-sat(T) is
radical.

Proof. Let P q 2 p-sat(T); then
Zero(T=I)� Zero(P q) = Zero(P );

so by Corollary 3.4.5, we have prem(P;T) = 0. Hence, P 2 p-sat(T) and
p-sat(T) is radical. The theorem is proved. ut
Therefore, if � in step U1 of UnmVarDec is a simple series of Pcomputed

by Algorithm SimSer, then Ii = Ideal(Pi) is radical for each Pi 2 	. This
suggests the following ideal decomposition

p
I =

e\
i=1

Ii;

where I = Ideal(P) and each Ii is radical and unmixed.
The removal of redundant subvarieties by examining the containment

relations among the corresponding Gr�obner bases has the drawback that
one component can be removed only if the corresponding Gr�obner basis has
already been computed. The following lemma provides another criterion for
removing redundant components.

Lemma 6.2.13. Let T be a regular set in K[x] and P a �nite basis
for sat(T). If P� is a polynomial set such that prem(P�;T) = f0g, then
Zero(P)� Zero(P�).

Proof. Since T is regular and prem(P�;T) = f0g, P� � p-sat(T) = sat(T).
It follows that

Zero(P) = Zero(sat(T))� Zero(P�):

ut
Using Theorem 6.2.12 and Lemma 6.2.13, we can modify Algorithm Un-

mVarDec as follows.
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Algorithm UnmRadIdeDec: 	 UnmRadIdeDec(P). Given a non-empty
polynomial set P� K[x], this algorithm computes a �nite set 	 of poly-
nomial sets P1; : : : ;Pe such that the decomposition (6.2.9) holds, it is irre-
dundant, and each Pi generates a radical and unmixed ideal.

U1. Compute � SimSer(P) and set

� fT: jTj � jPj; [T; ~T] 2 �g; 	 ;:

U2. While � 6= ; do:
U2.1. Let Tbe an element of � of highest dimension and set � � n

fTg.
U2.2. Compute a �nite basis for sat(T) according to Lemma 6.2.3, let

it be given as a Gr�obner basis G and set 	 	 [ fGg.
U2.3. While 9T� 2 � such that prem(G ;T�) = f0g do:

Set � � n fT�g.

U3. While 9G ;G � 2 	 such that rem(G ;G � ) = f0g do:
Set 	 	 n fG�g.

Note that a variety V1 can be a true subvariety of the other variety V2
only if Dim(V1) � Dim(V2). The choice ofTis step U2.1 and the detection
in step U2.3 allow to remove some redundant components before their
de�ning sets are computed. The last step U3 aims at removing those radical
ideals which contain other ideals of the same dimension. It ensures that the
obtained decomposition is irredundant. Inspecting the algorithmic steps,
one may see that for any simple series � computed by SimSer there should
never exist G ;G 0 2 	 of the same dimension such that rem(G ;G 0 ) = f0g,
i.e., Ideal(G) � Ideal(G 0). However, the containment may happen for an
arbitrary simple series �.
Together with ideal intersection computation, Algorithm UnmVarDec

provides a method for �nding a generating set of
p
I for any ideal I with

given generating set. The algorithms for computing simple series and Gr�ob-
ner bases do not require polynomial factorization in theory, so neither does
the algorithm for computing unmixed decompositions.

Irreducible decomposition

We come to decompose an arbitrary algebraic variety de�ned by a poly-
nomial set into a family of irreducible subvarieties. This is done with an
analogy to the unmixed decomposition of P, requiring additionally that the
characteristic series � is irreducible. Then any �nite basis for sat(C i ) will
de�ne an irreducible variety with any generic zero of C i as its generic point.
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De�nition 6.2.5. An ideal I �K[x] is said to be prime if whenever F;G 2
K[x] and FG 2 I, either F 2 I or G 2 I.
Theorem 6.2.14. For any irreducible triangular set T� K[x], the ideal
p-sat(T) is prime.

Proof. Let � be a generic zero of T; then

prem(P;T) = 0 () P (�) = 0

for any P 2K [x] by Lemma4.3.1. Let FG 2 p-sat(T).Then prem(FG;T) =
0, so

F (�)G(�) = 0:

It follows that either F (�) = 0 or G(�) = 0; that is, either prem(F;T) = 0
or prem(G;T) = 0. In other words, either F 2 p-sat(T) or G 2 p-sat(T).
Therefore, p-sat(T) is prime. ut
When sat(T) = p-sat(T) is prime, its �nite basis is called a prime basis

ofTand denoted by PB(T). Then the variety de�ned by PB(T) should have
any generic zero of Tas its generic point.

Proposition 6.2.15. Let T1 and T2 be two irreducible triangular sets in
K[x] which have the same set of generic zeros. Then sat(T1) = sat(T2).

Proof. Since T1 and T2 are irreducible and have the same set of generic ze-
ros, they have the same set of parameters and prem(T2;T1) = prem(T1;T2) =
f0g by Lemma 4.3.1. Thus

Ideal(T2) � sat(T1); Ideal(T1) � sat(T2):

Consider any polynomial P 2K[x]. If P 62 sat(T2), then prem(P;T2) 6= 0.
According to Lemma 4.3.2, there exists a polynomial Q 2K[x] such that

QP � R 2 Ideal(T2); where R = res(P;T2):

This implies that QP � R 2 sat(T1). Since prem(R;T1) = R 6= 0, R 62
sat(T1). Thus, P cannot be contained in sat(T1). This proves that sat(T1) �
sat(T2).
As T1 and T2 are symmetric, the same argument shows that sat(T2) �

sat(T1). The proof is complete. ut
The conclusion in Proposition 6.2.15 still holds when T1 and T2 are

simple sets having the same set of regular zeros. The proof of this needs a
generalization of Corollary 3.4.5: for any simple set Tand polynomial P in
K[x],

RegZero(T)� Zero(P ) () prem(P;T) = 0:
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Proposition 6.2.16. Let T1 and T2 be two triangular sets inK[x] which
have the same set of parameters, and T2 be irreducible. If prem(T2;T1) =
f0g, then T1 is also irreducible and has the same set of generic zeros as T2;
thus sat(T1) = sat(T2).

Proof. SinceT1 andT2 have the same set of parameters, they can be written
as

Ti = [Ti1(u; y1); : : : ; Tir(u; y1; : : : ; yr)]; i = 1; 2:

As prem(T2;T1) = f0g, we have prem(T21; T11) = 0. Thus, the irreducibil-
ity of T21 implies that T11 is also irreducible over K0 = K(u) and T11
di�ers from T21 only by a factor inK0. Similarly, prem(T22; [T11; T12]) = 0.
Now T21 is irreducible over K1 =K0(y1) with adjoining polynomial T21 or
T11 for y1. From the pseudo-remainder formula, we know that T12 divides
T22 over K1, so T12 di�ers from T22 only by a factor in K1.
Continuing with this argument, we shall see that T1k and T2k di�er only

by a factor in the algebraic extension �eld Kk�1 =K0(y1; : : : ; yk�1) with

adjoining triangular set Tfk�1g1 or Tfk�1g2 and thus have the same set of
zeros for yk in Kk�1, 1 � k � r. Hence, T1 is also irreducible and has the
same set of generic zeros as T2. By Proposition 6.2.15, sat(T1) = sat(T2).

ut
Proposition 6.2.16 generalizes a result in Chou and Gao (1990b); in the

same paper the following is also proved.

Proposition 6.2.17. Let T1 and T2 be two triangular sets in K[x], of
which T1 is irreducible. If prem(T2;T1) = f0g and 0 62 prem(ini(T2);T1),
then sat(T2) � sat(T1).

Proof. For any P 2 sat(T2), by de�nition there exists an integer q > 0 such
that Jq2P 2 Ideal(T2), where J2 =

Q
T2T2

ini(T ). As T1 is irreducible and
prem(T2;T1) = f0g, Ideal(T2) � sat(T1). It follows that J

q
2P 2 sat(T1).

Since sat(T1) is prime and 0 62 prem(ini(T2);T1) implies that Jq2 62 sat(T1),
we have P 2 sat(T1). Therefore, sat(T2) � sat(T1). ut
By Theorem 6.2.14, to determine the prime basis of Tone only needs to

�nd the generators for Ideal(T?) \K[x], by computing a Gr�obner basis of
T? according to Lemma 6.2.3.
Let each Ti in (6.2.7) be irreducible. Then we have the following zero

decomposition

Zero(P) =
e[

i=1

Zero(PB(Ti)):

Now, each PB(C i ) which can be exactly determined by using Gr�obner bases
de�nes an irreducible algebraic variety and we have thus accomplished an
irreducible decomposition of the variety V de�ned by P.
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This decomposition is not necessarily minimal. The redundant subva-
rieties can be removed by using Proposition 6.2.17 and Lemma 6.2.13 or
6.2.11, so one can get a minimal irreducible decomposition.
Let us modify step U1 in Algorithm UnmRadIdeDec as follows:

U1. Compute an irreducible characteristic series � of P by Algorithm
IrrCharSer, IrrCharSerE or IrrTriSer and set � fT2 � : jTj � jPjg,
	 ;.

Furthermore, delete from UnmRadIdeDec the detection step U3 (which is
not needed when the ideals are prime). Let the resulting algorithm be
named IrrVarDec; it has the following speci�cation:

Algorithm IrrVarDec: 	 IrrVarDec(P). Given a non-empty polynomial
set P� K[x], this algorithm computes a �nite set 	 of polynomial sets
P1; : : : ;Pe such that the decomposition (6.2.9) holds, it is minimal, and
each Pi de�nes an irreducible algebraic variety.

Example 6.2.1. Let the algebraic variety V be de�ned by P= fP1; P2; P3g,
where

P1 = 3x3x4 � x22 + 2x1 � 2;

P2 = 3x21x4 + 4x2x3 + 6x1x3 � 2x22 � 3x1x2;

P3 = 3x23x4 + x1x4 � x22x3 � x2:
:

With x1 � � � � � x4, Pmay be decomposed into 2 irreducible triangular
sets T1 and T2 such that

Zero(P) = Zero(T1=2x2 + 3x21) [ Zero(T2=x2);

where

T1 = [T1; T2; 2x2x4 + 3x21x4 � 2x22 � 3x1x2];

T2 = [x1; 2x3� x2; 3x2x4 � 2x22 � 4];

T1 = 2x42 � 12x21x
3
2 + 9x1x32 � 9x41x

2
2 + 8x1x22 � 8x22 + 24x31x2

�24x21x2 + 18x51 � 18x41;

T2 = 2x2x3 + 3x21x3 � x22:

To obtain an irreducible decomposition of V, we determine the prime bases
from T1 and T2 by computing the respective Gr�obner bases G1 ;G2 of

T1[ fz(2x2 + 3x21)� 1g; T2[ fx2z � 1g

according to Lemma 6.2.3. The Gr�obner bases may be found to consist of
8 and 4 polynomials respectively. Let Vi = G i \K[x1; : : : ; x4] and Vi =
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Zero(Vi) for i = 1; 2. We have

V1 =

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

T1;

27x41x3 � 27x31x3 + 2x32 � 15x21x
2
2 + 9x1x22 + 8x1x2

�8x2 + 12x31 � 12x21;

T2;

12x1x
2
3 � 12x23 � 9x21x3 � 2x1x

2
2 + 3x22 + 4x21 � 4x1;

x1x4 � 2x1x3 + 2x3 � x2;
x2x4 + 3x21x3 � 3x1x3 � x22;
P1

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

and V2 = T2 such that

V = V1 [ V2:

One can check with ease that this decomposition is minimal. ut

Example 6.2.2. Consider the algebraic curve de�ned by

P=

(
3x2 � 4y2 + z2 + 4xz � 8yz � 4x+ 1;

x2 + 2y2 + xz + 2yz � 2x� y � 3z

)
;

which is the intersection of 2 algebraic surfaces in 3-dimensional space.
With the variable ordering z � y � x, this curve may be decomposed into
2 irreducible components de�ned by

P1 = f2y � 1; x+ zg;

P2 =

8>>>>>><
>>>>>>:

50y3 + 140zy2 � 5y2 + 94z2y � 58zy � 24y � 6z3

�74z2 � 42z � 5;

zx+ 2x� 10y2 � 14zy + 3y + z2 + 9z + 1;

5yx � 13x+ 70y2 + 99zy � 29y � 6z2 � 75z � 9;

x2 � 4x+ 12y2 + 16zy � 4y � z2 � 12z � 1

9>>>>>>=
>>>>>>;
;

the �rst is a line and the second is a twisted cubic. Except for points on the
plane z+2 = 0, the third and the fourth polynomial in P2 can be removed.
The cubic contains 1 real and 2 complex points

(2;
1

2
;�2); (2� 3

5

p�7; 13
5
;�2)

on the plane z + 2 = 0. The real parts of the two curves for �5 � x � 5
are plotted in Fig. 4.
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Fig. 4 ut
Example 6.2.3. As a more complicated example, consider the algebraic va-
riety de�ned by the following �ve polynomials

P1 = a20a11 + a21 + a11a02 + 3a03;

P2 = 54a20a03 + 9a20a11a02 � 9a21a02 � 9a11a12 � 18a30a11 � 2a311;

P3 = 18a30a03 � 9a220a03 + 3a30a11a02 + 3a20a02a21 + 3a20a12a11

�3a21a12 � 3a30a21 � 2a211a21;

P4 = 3a30a21a02 + 3a30a11a12 + 3a20a21a12 � 18a20a30a03 � 2a11a
2
21;

P5 = 9a30a21a12 � 27a230a03 � 2a321:

Let P= fP1; : : : ; P5g and the variable ordering be !1 : a21 � a11 � a30 �
a20 � a03 � a02 � a12. Under !1, P can be decomposed into 9 irreducible
triangular sets Ti such that

Zero(P) =
9[

i=1

Zero(Ti=ini(Ti));

where

T1 = [9a211a
3
30 + 2a221a

2
11a30 + 2a421; a21a11a20 � a211a30 + a221; P1; P2];

T2 = [729a630+ 81a211a
5
30 � 243a221a

4
30 + 36a221a

2
11a

3
30 + 4a421a

2
11a30 + 4a621;

I2a20 + 2a21a11(81a
4
30 + 27a211a

3
30 � 9a221a

2
30 � 2a221a

2
11a30 � 6a421)a30;

T3; P1; P2];

T3 = [a21; a11; a03];

T4 = [a21; a30; a20; a11a02 + 3a03; 9a12+ 2a211];

T5 = [a21; a30; 9a220 + 2a211; a11a02 + 3a03 + a11a20;�9a11a12 + 9a11a20a02

+54a20a03 � 2a311];

T6 = [a11; 9a230+ a221; a20; 3a03 + a21; a02; a12 + 3a30];

T7 = [a11; 9a230� 2a221; a
2
20 + 3a30; 3a03+ a21; a02 + 2a20; a12 + 2a220 + 6a30];
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T8 = [32a811+ 981a221a
4
11 � 324a421; T; 729a

3
21a20 � 64a711 � 2034a221a

3
11; T3; P1; P2];

T9 = [4a811 + 36a221a
4
11 � 81a421; T; 1114656730a

5
11a20 � 2077680789a221a11a20

+1576363572a21a
4
11 � 2938274496a321; T3; P1; P2];

T = �(128a1211 � 2430a221a
8
11 + 6885a421a

4
11 � 8748a621)a

2
11a30

+3a221(972a
6
21� 675a411a

4
21 + 570a811a

2
21 � 80a1211);

T3 = I3a03 + 9a311a
3
20 + 27a311a30a20 + 2a511a20 + 4a21a411 + 9a321;

I2 = 81a211a
5
30 � 54a221a

2
11a

3
30 � 18a421a

2
30 + 4a621;

I3 = 27(a21a11a20 � a211a30 + a221):

For i = 6; : : : ; 9, the triangular setTi contains more than 5 polynomials and
thus need not be considered for the variety decomposition by Lemma 6.2.9.
Let Vi be the prime basis of Ti under the ordering !1 for i = 3; 4; 5.
Obviously T3 already de�nes an irreducible variety, so V3 = T3. It re-
mains to determine the prime bases from T1;T2;T4 and T5 according to
Lemma 6.2.3. One may �nd that V4 = T4 and V5 is the same as the set
obtained by replacing the last polynomial in T5 with

9a12 + 9a20a02 � 2a211:

A prime basis of T1 under !1 contains 20 polynomials. To reduce the num-
ber of elements, we compute a Gr�obner basis of this prime basis with respect
to another variable ordering !2 : a20 � a11 � a02 � a30 � a21 � a12 � a03.
The new basis V1 consists of 10 polynomials as follows

V1 =

2
6666666666666666666666666666666666664

81a330 + 72a211a
2
30 + 16a411a30 + 90a220a

2
11a30 + 4a220a

4
11 + 18a420a

2
11;

6a20a211a21 + 9a320a21 � 9a11a230 � 4a311a30 + 9a220a11a30 + 2a220a
3
11

+9a420a11;

9a30a21 + 4a211a21 + 9a220a21 + 18a20a11a30 + 2a20a311 + 9a320a11;

a221 + a20a11a21 � a211a30;
9a320a12 � 6a20a11a02a21 � 12a220a11a21 + 9a02a230 + 18a20a230

+4a211a02a30 � 9a220a02a30 + 8a20a211a30 � 2a220a
2
11a02 � 2a320a

2
11;

9a11a12 + 9a02a21 + 18a20a21 + 18a11a30 + 9a20a11a02 + 2a311
+18a220a11;

9a30a12 + 9a220a12 � 4a11a02a21 � 8a20a11a21 + 18a230 � 9a20a02a30

+2a211a30 � 2a20a
2
11a02 � 2a220a

2
11;

9a21a12 � 6a211a21 � 18a220a21 + 9a11a02a30 � 18a20a11a30 � 4a20a
3
11

�18a320a11;
81a212 + 81a20a02a12 � 162a220a12 + 108a11a02a21 + 216a20a11a21

�324a230 � 81a202a30 + 162a20a02a30 � 72a211a30 + 54a20a211a02

�4a411 + 36a220a
2
11;

P1

3
7777777777777777777777777777777777775

:
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As for T2, the di�cult case, let Ti denote the ith polynomial of T2 and Ii
the initial of Ti for 1 � i � 5. The non-constant initials are

I2; I3; and I4 = I5 = a11:

Thus, it is necessary to determine a prime basis from T2 by computing a
Gr�obner basis of the enlarged polynomial set, for instance, T2 [ fz1I4 �
1; z2I3� 1; z3I2� 1g or T2[fzI2I3I4� 1g. Nevertheless, the Gr�obner basis
cannot be easily computed in either case. We have tried some of the most
powerful Gr�obner bases packages without success. For this reason, we apply
Norm to normalize T2 to get another triangular set T�2: it is obtained from
T2 by replacing T2 and T3 respectively with

T �2 = �4a321a11a20 + 81a430 + 9a211a
3
30 � 9a221a

2
30 + 6a221a

2
11a30 � 2a421;

T �3 = 972a721a03 + 729(2a411+ 27a221)a
2
11a

5
30 + 81(2a811+ 9a221a

4
11 � 81a421)a

4
30

�648a221(a411 + 9a221)a
2
11a

3
30 + 9a221(8a

8
11 + 180a221a

4
11 + 81a421)a

2
30

�36a421(2a411 + 27a221)a
2
11a30 + 2a421(4a

8
11 + 90a221a

4
11 + 243a421):

T�2 andT2 have the same set of generic zeros, so the prime bases constructed
from them de�ne the same irreducible algebraic variety. T�2 possesses the
property that the initials of its polynomials only involve the parameters
a21 and a11.
A prime basis of T�2 can be easily determined by computing the cor-

responding Gr�obner basis with respect to the variable ordering !1 or !2
according to Lemma 6.2.3. The basis under !2 contains 9 elements and is
as follows

V2 =

2
666666666666666666666664

81a320a
2
02 + 16a411a02 + 108a220a

2
11a02 + 324a420a02 + 20a20a411

+144a320a
2
11 + 324a520;

144a211a30 + 729a220a30 + 81a320a02 + 16a411 + 144a220a
2
11 + 405a420;

4a02a30 + 5a20a30 + a220a02 + a320;

4a11a21 + 27a20a30 + 2a20a211 + 9a320;

18a02a21 + 36a20a21 � 18a11a30 + 9a20a11a02 � 2a311;

972a20a30a21 + 324a320a21 � 1296a11a230 � 405a220a11a30

+81a320a11a02 + 16a511 + 108a220a
3
11 + 243a420a11;

144a221 + 1296a230� 81a220a30 � 81a320a02 � 16a411 � 144a220a
2
11

�405a420;
6a12 + 18a30+ 3a20a02 + 2a211 + 12a220;

P1

3
777777777777777777777775

:

It is easy to verify that both Zero(V4) and Zero(V5) are subvarieties of
Zero(V1). Therefore, the variety de�ned by P is decomposed into three
irreducible subvarieties de�ned by V1;V2 and V3. Symbolically,

Zero(P) = Zero(V1) [ Zero(V2) [ Zero(V3); (6.2.11)
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where Zero(Vi) is irreducible for i = 1; 2; 3. ut
The above example comes from the qualitative study of plane di�erential

systems. We shall discuss the background and use the obtained decompo-
sition in Sect. 9.5.

Division of varieties

We now show how to remove a subvariety from a given algebraic variety
by division. This is a generalization of the division of one polynomial by
another. Such a division is particularly useful for polynomial factorization
in which a factor can readily be removed from the polynomial being factor-
ized when the factor is found. However, the removal of subvarieties appears
much more di�cult computationally. The removing technique can be in-
corporated into the decomposition algorithms according to the following
theorem.

Theorem 6.2.18. Let Pand Q= fF1; : : : ; Ftg be two polynomial sets in
K[x] with Zero(Q)� Zero(P) and I be the ideal generated by

P[ fzF1 + � � �+ ztFt � 1g in K [x; z] (6.2.12)

or by

P[ fz1F1 + � � �+ ztFt � 1g in K [x; z1; : : : ; zt]; (6.2.13)

where z; z1; : : : ; zt are new variables. Then

Zero(P) = Zero(Q)[ Zero(I \K[x]): (6.2.14)

Proof. Consider the case in which

I = Ideal(P[ fzF1 + � � �+ ztFt � 1g):
Let �x 2 Zero(P). For any P 2 I \K[x], there exists a polynomial Q 2
K[x; z] such that

P � Q(zF1 + � � �+ ztFt � 1) 2 Ideal(P)�K [x; z]:

Hence
P (�x) = Q(�x; z)[zF1(�x) + � � �+ ztFt(�x) � 1] (6.2.15)

for arbitrary z. Suppose that �x 62 Zero(Q). Then there exists some j such
that Fj(�x) 6= 0. So there is a �z 2 ~K such that �zF1(�x)+� � �+�ztFt(�x)�1 = 0.
Plunging �z into (6.2.15), we get P (�x) = 0. Therefore, Zero(P)� Zero(Q)[
Zero(I \K[x]).
To show the opposite, let �x 2 Zero(I\K[x]). Obviously, for z 2K[x; z]

and any P 2 P
Zero(P)� Zero(P (zF1 + � � �+ ztFt)):
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By Hilbert's Nullstellensatz (Theorem 1.6.3), there is an exponent q > 0
such that

P q(zF1 + � � �+ ztFt)
q 2 Ideal(P)�K[x; z]:

It follows that

P q + P q[(zF1 + � � �+ ztFt)
q�1 + (zF1 + � � �+ ztFt)

q�2 + � � �+ 1]

�(zF1 + � � �+ ztFt � 1) 2 Ideal(P)�K[x; z];

so that P q 2 I. Since P does not involve z, P q 2 I\K[x]. Hence, P q(�x) = 0
and thus P (�x) = 0. This proves that Zero(I \K[x]) � Zero(P).
The case in which I = Ideal(P[ fz1F1 + � � � + ztFt � 1g) is proved

analogously, observing that if F1(�x); : : : ; Ft(�x) are not all 0, then there
exist �z1; : : : ; �zt such that �z1F1(�x) + � � �+ �ztFt(�x) � 1 = 0, and P q(z1F1 +
� � �+ ztFt)q 2 Ideal(P)�K[x; z1; : : : ; zt] for some integer q > 0. ut
This theorem suggests a way to remove any subvariety Zero(Q) from the

given variety Zero(P) by determining a �nite basis H for the ideal I\K [x].
The latter can be done, for instance, by computing a Gr�obner basis of
(6.2.12) or of (6.2.13) with respect to the purely lexicographical ordering
determined by xj � z or xj � zl together with its elimination property
(Theorem 5.3.5). Thus, decomposing Zero(P) is reduced to decomposing
Zero(Q) and Zero(H). We have tested this technique. Nevertheless, the
Gr�obner bases computation in this case is too ine�cient and we had no
gain from the experiments. One can make use of the technique only when
a more e�ective procedure for determining the �nite bases is available.
In fact, the removal of Zero(Q) from Zero(P) corresponds to computing

the quotient Ideal(P) : Ideal(Q) (see De�nition 6.4.2). The latter can be
done by a possibly more e�cient algorithm described in Cox et al. (1992,
pp. 193{195).

6.3 Ideal and radical ideal membership

A fundamental problem in polynomial ideal theory is membership test, that
is, to determine whether a given polynomial belongs to an ideal with given
generators. One of the most remarkable applications of Gr�obner bases is
an algorithmic solution to this problem. In concrete term, we state the
following theorem.

Theorem 6.3.1. Let P � K [x] be a polynomial set and G a Gr�obner
basis of P. Then for any polynomial P 2K [x],

P 2 Ideal(P) () rem(P;G) = 0:

The theorem follows from the de�nition of a Gr�obner basis of P and
Theorem 5.3.2 (b).
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Corollary 6.3.2. Let P;Q�K[x] be two polynomial sets and G a Gr�ob-
ner basis of P. Then

Ideal(Q)� Ideal(P) () rem(Q;G) = f0g:
Example 6.3.1. Consider the following two polynomials

G1 = x1x
2
4 + x2x3 � 3x1x

2
2 + 3x1x2 � x1;

G2 = 2x2x4 + x3 � 2x1x
2
2 � 2x2 � 1;

and letPbe as in Example 2.2.3. A Gr�obner basis G ofPhas been computed
in Example 5.3.1. One can verify that rem(G1;G) = 0 and rem(G2;G) 6= 0.
Hence, G1 2 Ideal(P), G2 62 Ideal(P) and Ideal(fG1; G2g) 6� Ideal(P). ut
In contrast to membership test of polynomial ideals, there are a number

of methods for solving the membership problem of radical ideals. We sum-
marize the various methods introduced previously in this thesis in the form
of the following theorem. Let SS(P) and RS(P) stand for any simple series
and regular series of a polynomial set or system P in K[x], respectively.

Theorem 6.3.3. Let P be any polynomial andPa polynomial set inK [x],
and P� = P[ fzP � 1g, where z is a new variable. Then the following are
equivalent:

(a) P 2pIdeal(P);

(b) Zero(P)� Zero(P );

(c) GB(P�) = [1];

(d) ITS([P; fPg]) = ITS(P�) = ;;
(e) SS([P;fPg]) = SS(P�) = ;;
(f) RS([P;fPg]) = RS(P�) = ;;
(g) TriSerP(P;fPg) =TriSerP(P�) = ;;
(h) prem(P;T) = 0 for all T2 ITS(P).

(i) prem(P;T) = 0 for all [T; ~T] 2 SS(P);

(j) op(2; Split(T; P;n)) = ; for all T2 RS(P).

Proof. Note that Zero(P) � Zero(P ) if and only if Zero(P=P ) = ; if and
only if Zero(P�) = ;.
(a) () (b): Theorem 1.6.3 and the de�nition of

p
Ideal(P).

(b) () (c): Corollary 5.3.4.

(b) () (d): Corollary 4.3.6.
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(b) () (e): Theorem 3.4.3 (a).

(b) () (f): Corollary 5.1.15.

(b) () (g): Algorithm TriSerP (c).

(b) () (h): De�nition 2.2.7 and Corollary 4.3.9.

(b) () (i): Theorem 3.4.4.

(b) () (j): Corollary 5.1.15. ut
Direct consequences of the above theorem are various methods for ex-

amining containment relationship between algebraic varieties.

Example 6.3.2. Recall the polynomial set Pin Example 2.2.3 and the poly-
nomials G1 and G2 in Example 6.3.1. As the characteristic set of P[ fz �
G1 � 1g with respect to the ordering x1 � � � � � x4 � z is contradictory,
G1 2

p
Ideal(P) (in this case further decomposition is not required). To

determine that
G2 62

p
Ideal(P) (6.3.1)

according to Theorem 6.3.3 (d), an irreducible decomposition is however
needed.
The same conclusion can be reached by using other algorithms. When

(6.3.1) is determined by using Theorem 6.3.3 (h), one also knows that
the membership relation does not hold for the components C 01 ; C 002 and C 4
(which are given in Example 4.2.1). ut
Example 6.3.3. Let the ideal I be generated by three polynomials

P1 = def � abc;
P2 = 4e2f + 3a2c;

P3 = 175bd2ef + 192ad3f � 108b3ce:

With respect to the total degree ordering determined by b � d � a � e �
f � c,
G = [4b3e2c+3b2daec; 4baec+3da2c;�108b3ec+175b2dac+192d3af; P2; P1]
is a Gr�obner basis for I. Let

G = 8b2ac� 20bdef � 9d2af:

One may verify that rem(G;G) 6= 0 and rem(G2;G) = 0. Hence, G 62 I and
G 2 pI. The conclusion G 2 pI can be drawn in di�erent ways by using
other methods according to Theorem 6.3.3. ut
An important application of radical ideal membership test is to auto-

mated theorem proving in geometry. This will be discussed in detail in
Chap. 8.
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6.4 Primary decomposition of ideals

Decomposing polynomial ideals into primary components is very classical in
commutative algebra. In this section, we explain how to construct a primary
decomposition of any polynomial ideal from an irreducible decomposition
of the corresponding algebraic variety. The techniques of localization and
extraction we use are suggested by Shimoyama and Yokoyama (1996).

De�nition 6.4.1. The intersection of two ideals I and J in K[x], denoted
as I \ J, is the set of polynomials which belong to both I and J.

De�nition 6.4.2. Let I and J be two ideals in K[x]. The in�nite set of
polynomials

I : J , fF 2K[x] : FG 2 I for all G 2 Jg
is called the ideal quotient of I by J.

It is easy to show that in K[x] the intersection of two ideals is an ideal,
and so is their quotient (see, e.g., Cox et al. 1992, pp. 185 and 193). Clearly,
I : J contains I. For any polynomial F , we write I : F instead of I :
Ideal(fFg).
Lemma 6.4.1. Let I be an ideal and F a polynomial in K[x], and let k
be an integer � 1. Then

I : F1 = I : F k () I : F k = I : F k+1:

As a consequence, the minimal k can be determined by computing I : F i

with i increasing from 1.

Proof. Exercise in Cox et al. (1992, p. 196). ut

De�nition 6.4.3. An ideal I � K[x] is said to be pseudo-primary if
p
I is

prime.
I is said to be primary if FG 2 I and F 62 I imply that there exists an

integer q > 0 such that Gq 2 I.
De�nition 6.4.4. Let I be an ideal in K[x] and fug a subset of fxg. fug
is called a maximally independent set modulo I if

I \K[u] = f0g; and I \K[u; x] 6= f0g; 8x 2 fxg n fug:
Lemma 6.4.2. Let I be a prime ideal in K [x] and G a Gr�obner basis
for I with respect to any admissible ordering. Then fug is a maximally
independent set modulo I if and only if

lm(G ) \mon(u) = ;; and lm(G) \mon(u; x) 6= ;; 8x 2 fxg n fug;
where lm(G ) = flm(G) : G 2 Gg and mon(u) denotes the set of all the
monomials in u, and similarly for mon(u; x).
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Proof. De�nition A.9 and LemmaA.12 in Shimoyamaand Yokoyama(1996).
ut

From the irreducible variety decomposition (6.2.10) or (6.2.9), one im-
mediately gets the following decomposition of the radical ideal generated
by P

p
I =

e\
i=1

Ii;

where I = Ideal(P) and Ii = Ideal(Pi) for each i. From the algorithmic
construction, one also knows that each Pi is given as a Gr�obner basis and
Ii is prime. In what follows, we shall construct a pseudo-primary ideal
Ji such that Ii is the prime ideal associated with Ji for 1 � i � e. An
additional ideal I� will also be constructed, so that we have the following
decomposition

I =
e\

i=1

Ji \ I�: (6.4.1)

If e = 1, then I is already pseudo-primary. Now assume that e > 1, take a
polynomial Sij 2 Pj n Ii for each pair i 6= j, and let

Si =
Y

1 � j � e
j 6= i

Sij

for each i. Then Ji = I : S1i is the pseudo-primary ideal we wanted to
determine. To obtain the additional ideal I�, let ki be an integer such that
I : Skii = Ji for each i. Then

I� = Ideal(P[ fSk11 ; : : : ; Skee g):
From each pseudo-primary ideal J generated by a Gr�obner basis G , one

can determine a primary ideal by extraction as follows.
Let fug be a maximally independent set modulo

p
J which can be com-

puted according to Lemma 6.4.2 and fyg = fxgnfug. Compute a Gr�obner
basis �G of G with respect to the purely lexicographical ordering ! deter-
mined with uj � yl for any uj 2 fug; yl 2 fyg and the extractor

F = lcm(flc(G) : G 2 �G g);
where lc(G) is the leading coe�cient of G considered as a polynomial in
K(u)[y] with respect to the ordering !.
Let �J = Ideal(G ) : F1. According to Lemma 6.4.1, one can compute an

integer k such that
Ideal(G ) : F k = �J:

Thus
J = �J \ Ideal(G [ fF kg);
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and �J is a primary ideal.
Applying the above process to the ideal I� and Ideal(G [ fF kg) recur-

sively, we shall get further decompositions of the form (6.4.1). This proce-
dure will terminate, resulting in an ideal decomposition of the form

I =
h\
i=1

Ji;

where each Ji is primary.
The above decomposition procedure is presented in the form of the fol-

lowing algorithm.

Algorithm PriIdeDec: 	 PriIdeDec(P). Given a non-empty polynomial
set P� K[x], this algorithm computes a �nite set 	 of polynomial sets
P1; : : : ;Ph such that

Ideal(P) =
h\
i=1

Ideal(Pi)

and Ideal(Pi) is primary for each i.

P1. Set � fPg, 	 ;.
P2. While � 6= ; do:

P2.1. Let F be an element of � and set � � n fFg.
P2.2. Compute a set of de�ning sets F1; : : : ;Fe (given as Gr�obner

bases) from F by Algorithm IrrVarDec. If e = 0 then go to P2.

P2.3. For i = 1; : : : ; e do:

P2.3.1. Set S ;. If e = 1 then set S 1;G F1 and go to P2.3.3.
Otherwise, select Sj 2 Fj n Ideal(Fi) for 1 � j � e and j 6= i
and set

S 
Y

1 � j � e
j 6= i

Sj :

P2.3.2. Compute a �nite basis for Ideal(F) : S1 according to Lemma6.2.3
and let it be given as a Gr�obner basis G .

P2.3.3. Compute amaximally independent set fugmodulo Ideal(Fi)
according to Lemma 6.4.2 and let fyg fxg n fug.

P2.3.4. Compute a Gr�obner basis �G of G with respect to the purely
lexicographical ordering ! determined with uk � yl for any
uk 2 fug; yl 2 fyg and the extractor

F = lcm(flc(G) : G 2 �G �K(u)[y]g)

with respect to the ordering !.
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P2.3.5. Compute a �nite basis for Ideal(G) : F1 according to Lemma6.2.3,
let it be given as a Gr�obner basis G� , and set

	 	 [ fG�g:
P2.3.6. Compute two integers k and l according to Lemma 6.4.1

such that

Ideal(G) : F k = Ideal(G� ); Ideal(F) : Sl = Ideal(G )

and set

� � [ fG [ fF kgg; S S[ fSlg:
P2.4. Set � � [ fF [Sg.

The interested reader may refer to Shimoyama and Yokoyama (1996)
for a formal proof of PriIdeDec and various techniques and strategies to
improve the algorithm.

Example 6.4.1. The ideals generated by P in Examples 6.2.1, 6.2.2 and
6.3.1 are all radical and each of them contains two primary components.

ut
Example 6.4.2. The ideal I given in Example 6.3.3 may be decomposed
into 8 primary ideals I1; : : : ; I8 (with respect to the variable ordering b �
d � a � e � f � c). The generating sets for Ii and their associated prime
ideals are shown below.

Ii
Generating set for
Ii

prime associated
with Ii

I1 [a; e] [a; e]

I2 [f; c] [f; c]

I3 [a2; F1; ae; e2; P1; F 2
2 ] [a; e; F2]

I4 [a2; 27be� 64da; ae; e2; 27b2c� 64d2f; P1] [a; e; 27b2c� 64d2f ]

I5 [F1; F2; P1; F3] [F1; F2; P1; F3]

I6 [F 3
1 ; F1f; f

2; F2; P1; F3; F1c; fc; c
2] [F1; f; c]

I7 [d2; F1e; de
2; e3; dc; P1; F3; ec; c

2] [d; e; c]

I8

2
664
b8; b7a; b6a2; b5a3; b4a4; b3a5; b2a6; ba7; a8;
b2F1; aF1; b

6f; b5af; b4a2f; b3a3f; b2a4f;
ba5f; a6f; F1f; b

4f2; b3af2; b2a2f2; ba3f2;
a4f2; b2f3; baf3; a2f3; f4; bF2; P1; F3; F2f

3
775 [b; a; f ]

In the above table,

F1 = 4be+ 3da; F2 = 4b2c+ 3d2f; F3 = 3a2c+ 4e2f

and P1 is given in Example 6.3.3. ut
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Remark 6.4.1. Finally, we point out that the various decomposition algo-
rithms developed in this thesis enjoy evident parallel features and can be
easily parallelized. Most of the algorithms compute decomposition trees,
for which di�erent branches can be treated individually by parallel pro-
cessors. Discussions on the aspects of parallel computation are beyond the
scope of this thesis, but it is almost sure that the power of these algorithms
will be multiplied when they are brought to suitably parallelized versions
and implemented on parallel machines. Some preliminary experiments on
parallelizing some of the characteristic-set-based algorithms utilizing work-
station networks were reported in Wang (1991b).
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Solving polynomial systems

Elimination methods have diverse applications in many areas of science,
engineering and industry. A full account of such applications could be the
contents of a book. The applications discussed in this and the following
chapters are for a few selected problems, of which some are geometry-
related.

7.1 Principles

The various zero decompositions presented in the previous chapters apply
naturally to solving systems of polynomial equations and inequations. We
give a few theorems | which are consequences of already proved results
| as principles for polynomial system solving. Applications of the general
methods to some non-trivial examples will be discussed in the following
sections.
All the polynomials in what follows are assumed to be in x = (x1; : : : ; xn)

with coe�cients in K = Q(u) = Q(u1; : : : ; ud) unless speci�ed otherwise.
We are now concerned with systems of simultaneous polynomial equations
and inequations of the form

P1 = 0; : : : ; Ps = 0; Q1 6= 0; : : : ; Qt 6= 0: (7.1.1)

Let P= fP1; : : : ; Psg, Q = fQ1; : : : ; Qtg and P = [P;Q]. We often write
(7.1.1) simply as

P= 0; Q 6= 0: (7.1.2)
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The system (7.1.1) or (7.1.2) is said to be solvable in some �eld ~K �K if
it has solutions in ~K.

Lemma 7.1.1. Let [T;U] be a triangular system in K [x] with jTj = n.
Then

T= 0; U 6= 0 (7.1.3)

has at most �nitely many solutions in any extension �eld of K . All the
solutions of (7.1.3) in K can be exactly computed.
If, in particular, d = 0, then all the solutions of (7.1.3) in R and in C

can be approximately computed.

Proof. As jTj= n, the ith polynomial Ti in Tcan be written in the form

Ti = Ti(x1; : : : ; xi)

with lv(Ti) = xi. Hence x1 = �x1 is solution of T1 for x1 in K in and only
if x1 � �x1 is a divisor of T1 over K. Therefore, all the solutions of T1 for
x1 in K can be found by computing all the linear factors of T1 over K.
If for any solution x1 = �x1 of T1 = 0 there is a U 2 U such that

U (�x1; x2; : : : ; xn) = 0, then (7.1.3) has no solution in K. Otherwise, con-
sider those solutions x1 = �x1 of T1 for which U (�x1; x2; : : : ; xn) 6= 0 for any
U 2 U. The polynomial T2(�x1; x2) is clearly in K[x2], so all the solutions
of T2(�x1; x2) for x2 in K can be found in the same way by computing all
the linear factors of T2(�x1; x2) over K.
If for any solution x1 = �x1; x2 = �x2 of T1 = 0; T2 = 0 and I2 6= 0 there ex-

ists a U 2Usuch that U (�x1; �x2; x3; : : : ; xn) = 0, then (7.1.3) has no solution
inK. Otherwise, we take those solutions for which U (�x1; �x2; x3; : : : ; xn) 6= 0
for any U 2 U. Then the polynomial T2(�x1; �x2; x3) is in K [x3] and all the
solutions of T2(�x1; �x2; x3) for x3 in K can be found by computing all the
linear factors of T3(�x1; �x2; x3) over K .
In this way, we shall either end up with the conclusion that (7.1.3) has

no solution, or �nd all the solutions of (7.1.3) in K .
When d = 0, K becomes the rational number �eld Q. In the case, the

univariate polynomials Ti all have rational coe�cients. Thus, one can solve
T1 for x1 in R or C approximately by any numerical method.
If for any solution x1 = �x1 of T1 = 0 there is a U 2 U such that

U (�x1; x2; : : : ; xn) = 0 approximately, then T = 0 has no solution in R or
C approximately. Otherwise, we consider such solutions x1 = �x1 of T1 for
which U (�x1; x2; : : : ; xn) 6= 0 for any U 2 Uand solve T2(�x1; x2) for x2 in
R or C approximately. In other words, the problem of solving polynomial
systems is reduced to that of solving univariate polynomial equations or
inequations. The latter can be done in R or C approximately by known
methods of numerical analysis. ut
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Lemma 7.1.2. Let [T;U] be a regular system, or a simple system, or an
irreducible triangular system, or a triangular system possessing the pro-
jection property in K [x]. Then the system (7.1.3) must have solutions in
some extension �eld ofK. If the number of solutions is �nite, then jTj= n.

Proof. The �rst claim follows from Theorems 3.4.1, 4.3.3 and 5.1.12, and
De�nition 3.1.3.
If jTj< n, then in�nitely many �u can be chosen for the parameters u of

Tso that [T;U]ju=�u remains perfect (see, e.g., the proofs of Theorems 4.3.3
and 5.1.12). So, in this case (7.1.3) has an in�nite number of solutions in
the algebraic closure of K . ut
For any triangular setT, [T; ini(T)] is a (special) triangular system. Thus,

the above two lemmas lead to the consequent results for triangular sets.
Moreover, if T= [T1; : : : ; Tn] and any solution of Tfig = 0 does not make
the vanishing of all the coe�cients of Ti+1 for every i, then T= 0 also has
at most a �nite number of solutions in any extension �eld of K.

Theorem 7.1.3. Let 	 be a regular series, or simple series, or irreducible
triangular series of any polynomial system [P;Q] in K[x], or a triangular
series of [P;Q] computed by Algorithm TriSerP with k = 0. Then:

(a) (7.1.2) has no solution in any extension �eld of K if and only if
	 = ;;
(b) (7.1.2) has at most �nitely many solutions if and only if jTj= n for

every [T;U] 2 	. In this case, the solutions of (7.1.2) may be found by
means of computing the solutions of T= 0;U 6= 0 for all [T;U]2 	.
Proof. (a) Theorem 3.4.3 (a), Corollaries 4.3.6 and 5.1.14, and TriSerP (a)
and (c).
(b) Lemmas 7.1.1 and 7.1.2; see also Theorem 3.4.3 (b). ut
The process of solving arbitrary systems of polynomial equations and in-

equations by reducing them to triangular systems generalizes the Chinese
matrix method (Boyer 1968, pp. 218{219) and the well-known Gaussian
elimination for sets of linear equations. A Gr�obner basis is not necessarily
a triangular set, but the elimination property of Gr�obner bases (Theo-
rem 5.3.5) ensures the separation of variables. So the solutions to a set of
polynomial equations can be found from its Gr�obner basis (under the lex-
icographical ordering), possibly with some additional GCD computations.
For details, see the reference given below.

Theorem 7.1.4. LetPbe a polynomial set inK[x] and G = GB(P).Then:

(a) P = 0 has no solution in any extension �eld of K if and only if
G = [1];

(b) P = 0 has at most �nitely many solutions if and only if for all i
(1 � i � n) there exist an integer mi and a polynomial Gi 2 G such that
lm(Gi) = xmi

i ;
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(c) If P= 0 has only �nitely many solutions and G is computed with
respect to the purely lexicographical term ordering, then all the solutions
inK can be exactly computed from G . If moreover d = 0, then can all the
solutions in R and C be computed approximately from G as well.

Proof. (a) Corollary 5.3.4.
(b) Method 6.9 in Buchberger (1985).
(c) Method 6.10 in Buchberger (1985) and Lemma 7.1.1. ut

Theorem 7.1.5. Let 	 be a simple series of P in Q[u;x], or a triangular
series of P computed by Algorithm TriSerP with projection for xn; : : : ; x1
(i.e., k = d) and assume that 	 6= ;. Then
(a) for any [T;U] 2 	 and �u 2 ~Q

d
(where ~Q � Q), the system

(TnQ[u])ju=�u = 0; (UnQ[u])ju=�u 6= 0

has solutions for x in C if and only if u = �u is a solution of

T\Q[u] = 0; U\Q[u] 6= 0;

(b)

ProjuZero(P) =
[
T2	

ProjuZero(T) =
[

[T;U]2	

Zero(T\Q[u]=U\Q[u]):

Proof. (a) follows from (b).
(b) Corollary 3.4.2, De�nition 3.3.3, and TriSerP (b). ut

7.2 Solving zero-dimensional systems

From the results shown in the preceding section, one can determine whether
a given polynomial system is zero-dimensional by computing its regular
series, simple series, irreducible triangular series, or Gr�obner basis. If the
system is zero-dimensional and thus has only �nitely many solutions, all
the solutions can be computed exactly or approximately from the series
or Gr�obner basis. In what follows are presented some concrete examples,
illustrating how zero-dimensional systems may be solved in practice.

Example 7.2.1. We start with a small system of polynomial equations8>>><
>>>:

x1x2 � 1 = 0;

x23 + bx1x2 = 0;

bx1x3 + x22 � x1 = 0;

bx2x3 � x2 + x21 = 0:

(7.2.1)
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Let Pbe the set of the four polynomials on the left-hand side of (7.2.1) and
the variables be ordered as b � x1 � x2 � x3. From P:

� A characteristic series computed by CharSer consists of two ascending
sets

C 1 = [b3+4; x31+1; x1x2�1; 2x3+ b2]; C 2 = [b; x31�1; x1x2�1; x3]:

� A triangular series computed by TriSerS consists of two triangular
systems [C1 ; fb; x1g] and [C2 ; fxg]. When computed by TriSer, the
series consists of [T1; fb; x1g] and [T2; fxg] with
T1 = [b3 + 4; x31 + 1; x1x2 � 1; bx3� 2]; T2 = [b; x31� 1; x2 � x21; x3];
where T1 di�ers from C 1 only in their fourth elements, and so does
T2 from C 2 in their third elements.

� A regular series computed by RegSer and a simple series computed
by SimSer are the same, consisting of [T1; ;] and [C 2 ; ;].
� A Gr�obner basis of P is

G = [b5 + 4b2; 2x31 � b3 � 2; 2x2 � b3x21 � 2x21; 2bx3 + b3; x23]:

In any of the above cases, one can �nd all the 12 solutions of (7.2.1) for
b; x1; x2; x3 successively from the triangularized polynomial sets. These so-
lutions [b; x1; x2; x3] are listed below

[0; 1; 1; 0]; [0;��;��; 0]; [0;��;��; 0];

[�
;�1;�1;�

2

2
]; [�
; �; �;�


2

2
]; [�
; �; �;�


2

2
];

[�
;�1;�1; �

2

2
]; [�
; �; �;

�
2

2
]; [�
; �; �;

�
2

2
];

[�
;�1;�1; �

2

2
]; [�
; �; �;

�
2

2
]; [�
; �; �;

�
2

2
];

where

� =
1�p�3

2
; � =

1 +
p�3
2

; 
 = 3
p
4:

ut
The problem of solving the system of three polynomial equations con-

sidered in the following example was posted as a challenge by Raymond
Hemmecke from the Department of Informatics, University of Leipzig. They
arrived at the system while dealing with tilting e�ects on a double pendu-
lum. For easy numerical computations, they are interested in �nding the
minimal polynomial F in p alone such that, for any real root �p of F , the
system has real solutions.
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Example 7.2.2. Let P= fP1; P2; P3g, where
P1 = F1y

8 � 4xy7 + F2y
6 � 4y5x+ 2[(19p+ 7)x2 + 19p� 7]y4 + 4xy3

+F2y2 + 4xy + F1;

P2 = �F3y10 + 2(px4 + 8x2 � p)y9 � F4y8 + 8(3px4 + 4x2 � 3p)y7

�F5y6 + 76p(x4 � 1)y5 + F5y
4 + 8(3px4 � 4x2 � 3p)y3 + F4y

2

+2(px4 � 8x2 � p)y + F3;

P3 = �[G1 � 2(p� 4)x6 � 48x4 + 2(p+ 4)x2]y18 �H1y
17

�[G2 � 2(99p� 20)x6 + 272x4 + 2(99p+ 20)x2]y16 �H2y
15

�[G3 � 16(135p+ 12)x6 + 2688x4 + 48(45p� 4)x2]y14 �H3y
13

�[G4 � 32(237p+ 40)x6 + 8192x4 + 32(237p� 40)x2]y12 �H4y
11

�[G5 � 4(1969p+ 668)x6 + 13472x4+ 4(1969p� 668)x2]y10 �H5y
9

+[G5 + 4(151p+ 668)x6 � 13472x4 � 4(151p� 668)x2]y8 �H4y
7

+[G4 � 160(11p� 8)x6 � 8192x4 + 160(11p+ 8)x2]y6 �H3y
5

+[G3 � 16(11p� 12)x6 � 2688x4 + 16(11p+ 12)x2]y4 �H2y
3

+[G2 � 2(43p+ 20)x6 � 272x4 + 2(43p� 20)x2]y2 �H1y

+G1 � 2(9p+ 4)x6 + 48x4 + 2(9p� 4)x2;

and

F1 = (p + 1)x2 + p� 1; F2 = 4[(3p+ 2)x2 + 3p� 2];

F3 = 2px(x2 + 1); F4 = 22px(x2 + 1); F5 = 52px(x2 + 1);

G1 = (p + 1)px8 � 2p2x4 + (p � 1)p;

H1 = 4p[(p� 3)x6 + (p� 5)x4 � (p+ 5)x2 � p� 3]x;

G2 = (23p+ 19)px8 � 46p2x4 + (23p� 19)p;

H2 = 16p[(6p� 7)x6 + (6p� 5)x4 � (6p+ 5)x2 � 6p� 7]x;

G3 = 4(49p+ 32)px8 � 392p2x4 + 4(49p� 32)p;

H3 = 16p[(55p+ 1)x6 + 11(5p� 3)x4 � 11(5p+ 3)x2 � 55p+ 1]x;

G4 = 4(179p+ 86)px8 � 1432p2x4 + 4(179p� 86)p;

H4 = 16p[9(26p+ 15)x6 + (234p� 379)x4 � (234p+ 379)x2

�9(26p� 15)]x;

G5 = 6(133p+ 39)px8 � 1596p2x4 + 6(133p� 39)p;

H5 = 8p[(867p+ 511)x6 + (867p� 1399)x4 � (867p+ 1399)x2

�867p+ 511]x:

Note that P1; P2; P3 consist of 24; 26; 172 terms respectively. We want to
determine a squarefree polynomial F in p such that each irreducible factor
of F has at least one real root and for each real root �p of F , Pjp=�p has real
zeros for x and y. Also expected to be given are the triangular sets from
which the real zeros can be computed approximately.
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With respect to the variable ordering y � x � p, an irreducible triangular
series of Pcomputed by IrrTriSer consists of 6 irreducible triangular sets, of
which three contain the polynomial y2+1 and one contains y4+6y2+1; so
these four triangular sets obviously have no real zero. One of the remaining
two triangular sets is simple: [y; x; p� 1]. So for p = 1 the polynomial set
P has zero (0; 0) for (x; y). The other triangular set T consists of three
polynomials:

T1 = 5y26 + 119y24 � 1026y22 � 33198y20 � 73569y18 + 330381y16

�826956y14 + 801228y12 � 541965y10+ 98593y8 � 14738y6

�1086y4 + 73y2 � 5;

T2 = 2800229949440x2

�(554715797135y24+ 13245948695838y24

�112783397552632y20� 3691969096634086y18

�8453054312182633y16+ 35984613145186252y14

�88904017316023032y12+ 81944347139116756y10

�53872365946917715y8+ 7072365366548726y6

�1416438227076176y4� 34613922094542y2

�27445391662739)yx
�2800229949440;

and T3 = P1. In order to get a polynomial in p fromT, we compute a mod-
i�ed characteristic set C of T; C is irreducible and comprises the following
three polynomials with large integer coe�cients:

C1 = 891956372701184p26+ 20681857299540430848p24

�70356081438769503909p22+ 271682250699555756151p20

�352622918902513898391p18+ 269322942095440399641p16

�161495209483939229280p14+ 68524380500279748288p12

�19025554366923988992p10+ 3272908595517318656p8

�337374627314737152p6+ 22759224799248384p4

�932001922220032p2+ 25389989167104;

C2 = C22y
2 + C20;

C3 = C31yx� 127pC30;

with

C22 = 97596069285814673617066118316032p24

+2263021199504486735034281169688730256p22

�6445128413689655108167040863584775863p20
+26212422127959978004215590111392754659p18
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�24188175706696847911672006783733784096p16
+16615541447884461140451486478479619488p14

�8670364071094253213057783138290887552p12
+2844615722290334148560991584871727104p10

�535852172105963925589608448535918592p8
+57733782999568794064532852443996160p6

�4006630547637705936521457045307392p4
+166718638115384143626225139384320p2

�4653369315611714838187251073024;
C20 = 5190332949513881277892021747712p24

+120352816228986627112501468145817456p22

�312280408157439555186048343596998793p20
+1317721164143429048825672081647752397p18

�961242947684448643010631887677341816p16
+674404246899577504198017002592901344p14

�327559558971080229743822480554897536p12
+94819899239384626079409119905130496p10

�16628288137479442591930684997449728p8
+1726044837932534863836342246121472p6

�117151089195602183499827194920960p4
+4806199355471889403131827257344p2

�131821769666765033493404581888;
C31 = 37180685754903476153120456704p25

+24706314470648654886471303168p24

+862124500562923861565527409183232p23

+572876529608495972342085018633648p22

�2625859311677581377286792763494332p21
�1730408184448766074577801102200038p20
+10435038269778664042912098963387254p19

+6896470694766188219200982578632831p18

�11093066044325708367270080030892672p17
�7214490734073783049965212394082929p16
+7747608910891368241052159204122656p15

+5037485491901043179104189690450800p14

�4243165118882995892452318320458880p13
�2757459581652024395694746068269312p12
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+1517129008176375659586012812502528p11

+989332732038604692490901481473280p10

�304696265967449832058967795165184p9
�199762630410549896488774599141888p8
+33881392401694597659493187411968p7

+22271692235350864758592015650816p6

�2410501311591366398832035856384p5
�1588600788508295375916088000512p4
+101466217158638789838225801216p3

+66933864467214475735656824832p2

�2909343961680813477533843456p
�1925267368125917549668663296;

C30 = 54773131021899663538651136p24

+1270045527117656047383591766272p22

�3927302324324801265181215734139p20
+15484046099200925967336906647011p18

�16867149760322976518797526099412p16
+11404354396199128317753925881432p14

�6134178436693360267186668138720p12
+2155054429737018937187335296384p10

�424467937326630860512467795456p8
+46757697001909599373780649984p6

�3296965851301491475364683776p4
+138312759565055121045946368p2

�3922536354990693960515584:
Since Tand C are both irreducible of dimension 0 and Zero(C ) � Zero(T),
we have Zero(C ) = Zero(T). The idea of using the ordering y � x � p
�rst is due to L. Yang, who solved this challenging system using a di�erent
method.
The polynomial C1 has four real roots �
�;�
; 
; 
� isolated as follows

�
� 2 [�1;�3
4
]; �
 2 [��;��]; 
 2 [�; �]; 
� 2 [ 3

4
; 1];

where

� =
4968916493678842742821555

4�
;

� =
9937832987357685485643109

8�
;

� = 2417851639229258349412352:
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Let D(p) = �4C22C20, the discriminant of C2 with respect to y; it is a
polynomial of 25 terms and degree 48 in p. Clearly, C2jp=�p has real zeros
if and only if D(�p) � 0. D also has four real roots

�r1 2 [�a;�b]; �r2 2 [�c;�d]; r2 2 [d; c]; r1 2 [b; a];
where

a =
4968916493678842742821559

4�
;

b =
9937832987357685485643117

8�
;

c =
9937832987357685485641801

8�
;

d =
1242229123419710685705225

�
:

The two negative roots are very close, and so are the two positive ones.
Note that c < b. It is easy to verify that

a <
3

4
and D(�3

4
) < 0;

so C2 has no real zero for y when p = �
�.
Since c < � and � < a, we have

�
 2 (�r1;�r2) and 
 2 (r2; r1):

Moreover, D(��) > 0. It follows that D(�
) > 0. On the other hand, the
irreducibility of C ensures that C22(�
) 6= 0. This implies that C2 has two
real zeros for y when p = �
. Actually, the four real zeros for y may be
isolated from the above T1.
As C3 is linear in x, the existence of its real zeros for x is obvious. In

summary, C has four sets of real zeros for (p; y; x):

(�
;��y; �x1); (�
; �y;��x1); (
;��y;��x2); (
; �y; �x2):

The approximate values of 
, �y and �xi up to 55 digits are provided below


 = 0:5137739236207634508235369242764404138533394611706909720;

�y = 4:039111690022120746338973698640265000020327915708411949;

�x1 = 1:366677459515899426474889444590010456177004304359982719;

�x2 = 0:7317015386748363688691362102473370621081618037430149163:

Therefore, the minimalpolynomialF we wished to determine is (p�1)C1.
The original polynomial set P has �ve sets of real zeros, in which p takes
three of the �ve real roots of F . ut
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The following example shows how to solve zero-dimensional polynomial
systems over any functional �eld of Q.

Example 7.2.3. Consider the following system of 8 polynomial equations

P1 = u3g00 + u3h00 + u23 + u22 � u21 = 0;

P2 = h11 + g11 = 0;

P3 = h10 + g10 = 0;

P4 = h01 + g01 = 0;

P5 = u3g00h10 + u3g10h00 + u21u3g01h11 + u21u3g11h01 � 2u41g11h11

�2u21g10h10 � 2u1u2g10h10 � 2u31u2g11h11 = 0;

P6 = 2u1u2u3g01h11 � 2u21u3g11h01 � 2u21u3g01h11 + 2u1u2u3g11h01

+u23g01h10 + u23g00h11 + u23g11h00 + u23g10h01 � 2u21u3g11h10

�2u21u3g10h11 � 2u1u2u3g10h11 � 4u21u
2
2g11h11 � 2u1u2u3g11h10

+4u41g11h11 = 0;

P7 = u21g01h01 + u21g10h10 + u41g11h11 + g00h00 + u21 = 0;

P8 = u3g01h00 + 2u1u2g01h01 � 2u21g01h01 + u3g00h01

+2u31u2g11h11 + u21u3g10h11 � 2u41g11h11 + u21u3g11h10 = 0:
(7.2.2)

We want to �nd one solution of (7.2.2) for hij and gij in Q(u1; u2; u3).
To achieve this, let us compute a modi�ed weak-characteristic set C of
fP1; : : : ; P8g with respect to the variable ordering

h01 � h11 � h10 � h00 � g01 � g00 � g11 � g10:
It is found that

C =

2
66666666666666664

4u21h
2
01 � u22 � 2u1u2 � u21;

u1(u2 + u1)h11 � u3h01;
(u2 + u1)h10 + (u2 � u1)h01;
2u3h01h00 + 2u12u3h11h10 + 2u31(u2 � u1)h211

+2u1(u2 � u1)h201 + (u23 + u22 � u21)h01;
g01 + h01;

u3g00 + u3h00 + u23 + u22 � u21;
g11 + h11;

g10 + h10

3
77777777777777775

;

which is quasilinear. The �rst polynomial in C factors over Q into

(2u1h01 � u2 � u1)(2u1h01 + u2 + u1):

The only initial not in Q(u1; u2; u3) is h01. Thus, two solutions are found
easily from the triangular set by solving univariate linear equations. We
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list one of the solutions as follows for later use:

g11 =
u3
2u21

;

h11 = � u3
2u21

;

g01 =
u1 + u2
2u1

;

h01 = �u1 + u2
2u1

;

g10 =
u1 � u2
2u1

;

h10 = �u1 � u2
2u1

;

g00 =
2u21 � 2u22 � u23

2u3
;

h00 = �u3
2
:

(7.2.3)

By computing a triangular, characteristic or Gr�obner series ofP, one may
see that (7.2.2) has no other solution for hij and gij in Q(u1; u2; u3). ut

7.3 Solving systems of positive dimension

The polynomial system in the following example arises from the dynam-
ical system of a chaotic attractor considered by E. Lorenz. It has been
investigated by Liu (1989) and Gao and Chou (1992).

Example 7.3.1. Consider the polynomial equations

P1 = x2(x3 � x4) � x1 + c = 0;

P2 = x3(x4 � x1) � x2 + c = 0;

P3 = x4(x1 � x2) � x3 + c = 0;

P4 = x1(x2 � x3) � x4 + c = 0:

Let P= fP1; : : : ; P4g and c � x1 � � � � � x4. P can be decomposed by
IrrTriSer into 13 irreducible triangular sets. With normalization by NormG,
IrrTriSer may compute 11 normal irreducible triangular sets Ti such that

Zero(P) = Zero(T1=F1F2) [
11[
i=2

Zero(Ti);

where
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T1 =

2
66666666666666666666666666666666666666666664

2x81 � 2(c� 4)x71 � 4(c� 4)x61 � 4(c+ 3)(c� 2)x51
�(3c2 + 3c� 26)x41 � (c3 + c2 � 20)x31 + (c2 + c+ 12)x21
+(c3 + 3c2 + 4)x1 + 2c2 + c + 1;

F1F2x2 + 2(c4 + 8c3 � 8c2 � 8c� 1)x71
�2(c5 + 5c4 � 23c3 + 31c2 + 30c+ 4)x61
�2(c5 � 6c4 � 27c3 + 67c2 + 54c+ 7)x51
�2(2c6 + 17c5 � 35c4 � 34c3 + 104c2 + 73c+ 9)x41
+(c6 + 39c5 + 78c4 + 2c3 � 239c2 � 137c� 16)x31
�(c7 + 10c6 � 12c5 � 16c4 + 73c3 + 190c2 + 82c+ 8)x21
+(c7 + 14c6 � 2c5 � 17c4 � 45c3 � 90c2 � 34c� 3)x1

+3c5 � 37c4 � 28c3 � 20c2 + c + 1;

F1F2x3 + 2(c4 + 3c3 + c2 + 9c+ 2)x71
�2(c5 � 2c4 � 13c3 � 3c2 � 32c� 7)x61
�2(3c5 � 5c4 � 21c3 � 19c2 � 58c� 12)x51
�2(2c6 + 11c5 � 14c4 � 14c3 � 40c2 � 81c� 16)x41
�(7c6 + 30c5 � 36c4 � 68c3 � 125c2 � 162c� 30)x31
�(c7 + 11c6 + 23c5 � 62c4 � 79c3 � 123c2 � 105c� 18)x21
�(c7 + 7c6 � 10c5 � 73c4 � 65c3 � 69c2 � 54c� 9)x1

+(c+ 1)(19c4 + 33c3 + 15c2 + 11c+ 2);

P4

3
77777777777777777777777777777777777777777775

;

T2 = [2x21 � 2x1 � c+ 1; x2 + x1 � 1; x3 � x1; x4 + x1 � 1];

T3 = [x1 � c; x2 � c; x3 � c; x4 � c];
T4 = [F1; x1 + 2; x2 + 2c+ 1; x3 + 2c+ 1; x4 � c];
T5 = [F1; x1 � c; x2 + 2; x3 + 2c+ 1; x4+ 2c+ 1];

T6 = [F1; x1 + 2c+ 1; x2 � c; x3 + 2; x4+ 2c+ 1];

T7 = [F1; x1 + 2c+ 1; x2 + 2c+ 1; x3 � c; x4 + 2];

T8 =

2
66664
F2;

8x1 + F;

4x22 � (c3 + 12c2 � 3c� 2)x2 + c3 + 12c2 � c+ 4;

8x3 � 2(c3 + 12c2 � 3c+ 2)x2 � (c� 1)(c2 + 12c+ 3); P4

3
77775 ;

T9 =

2
6666664

F2;

4x21 � 2(c� 1)x1 � c3 � 12c2 + 3c+ 2;

8x2 + F;

2x3 + (c3 + 12c2 � 2c+ 5)x1 + 2;

P4

3
7777775
;
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T10 =

2
6666664

F2;

4x21 + (c2 + 8c+ 3)x1 + c3 + 13c2 + 3c+ 3;

8x2 + (3c3 + 37c2 + 5c+ 3)x1 + 2(c2 + 12c� 5)c;

8x3 + F;

P4

3
7777775
;

T11 =

2
6666664

F2;

4x21 � (c3 + 12c2 � 3c� 2)x1 + c3 + 12c2 � c+ 4;

8x2 � 2(c3 + 12c2 � 3c+ 2)x1 � (c� 1)(c2 + 12c+ 3);

8x3 � (c+ 1)(c2 + 12c� 1)(x1 + 1);

P4

3
7777775
;

F1 = 2c2 + 2c+ 1;

F2 = c4 + 12c3 � 2c2 + 4c+ 1;

F = c3 + 11c2 � 13c+ 9:

From these triangular sets, one sees that the given polynomial system is
of dimension 1 and thus has in�nitely many solutions for c; x1; : : : ; x4. For
any given value of c, the system has only �nitely many solutions. All such
solutions can be computed from the Ti.
Compared with the above results, one may �nd that some of the p-chains

given in Gao and Chou (1992) are redundant. Let G1 be the prime basis
of T1. It follows from Lemma 6.2.9 that

Zero(P) = Zero(G1) [ Zero(T2) [ Zero(T3):

ut
For any polynomial P 2 K[x] we use an index triple [t lv(P ) ldeg(P )]

to characterize P , where t is the number of terms of P .
The polynomial setPin the following example, communicated to S. R. Cza-

por and K. O. Geddes by G. Fee, may be found in Wang (1993b).

Example 7.3.2. Let P= fP1; : : : ; P4g, where

P1 = 2(b� 1)2 + 2(q � pq + p2) + c2(q � 1)2 � 2bq + 2cd(1� q)(q � p)
+2bpqd(d� c) + b2d2(1� 2p) + 2bd2(p� q) + 2bdc(p� 1)

+2bpq(c+ 1) + (b2 � 2b)p2d2 + 2b2p2 + 4b(1� b)p+ d2(p � q)2;
P2 = d(2p+ 1)(q � p) + c(p+ 2)(1� q) + b(b� 2)d+ b(1� 2b)pd

+bc(q + p� pq � 1) + b(b+ 1)p2d;

P3 = �b2(p� 1)2 + 2p(p� q) � 2(q � 1);

P4 = b2 + 4(p� q2) + 3c2(q � 1)2 � 3d2(p� q)2 + 3b2d2(p � 1)2

+b2p(p� 2) + 6bdc(p+ q + pq � 1):
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Consider b as a parameter and order the other variables as p � d � c � q.
An irreducible triangular series of P, which may be easily computed by
IrrTriSer, consists of two irreducible triangular sets. One of them is very
simple:

[p� 1; d; bc+ 2; q� 1];

the other consists of four polynomials, of which the �rst three have the
following index triples

[625 p 23]; [373 d 1]; [17 c 1];

and the last is P3.
For computing triangular series over Q (i.e., b is not considered as a

parameter), we have tried di�erent algorithms under several variable or-
derings without success. The occurring polynomials are very large and the
computation cannot be completed within a reasonable limit of time. ut

7.4 Solving parametric systems

Consider systems of polynomial equations and inequations of the form
(7.1.1), with u = (u1; : : : ; ud) as parameters and coe�cients in Q. We
want to identify the parametric values for which the considered system has
solutions for the unknowns xi over some extension �eld of Q and to com-
pute such solutions. Note that this is di�erent from the situation such as
in Example 7.2.3, where u1; u2; u3 are treated as transcendental elements
and never take any speci�c values.
Theorem 7.1.5 permits us to solve any parametric polynomial system: by

computing simple systems or triangular systems with projection, one knows
for what values of the parameters u the system P= 0;Q 6= 0 has solutions
for the unknowns x (cf. Gao and Chou 1992). For any given parametric
values �u, the solutions may be computed from or represented by the simple
or triangular systems

[(TnQ[u])ju=�u; (UnQ[u])ju=�u]; [T;U]2 	;

where 	 is as in Theorem 7.1.5.

Remark 7.4.1. Let P = [P;Q]. The algorithm TriSerP with projection is
somewhat complicated mainly to preserve the zero decomposition

Zero(P) =
e[

i=1

Zero(Ti=Ui):

It can be simpli�ed if one only needs to identify the parametric values

�u 2 ~Q
d
for which the polynomial system obtained from P by substituting
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�u for u has zeros for the unknowns xk; such zeros for xk are represented

by and can be computed from the triangular systems [T[0]
i ;U

[0]
i ].

It is easy to see that any zero of P must be a zero of some [Ti;Ui], and
whether a computed zero of [Ti;Ui] is also a zero of P by direct veri�-
cation. However, to ensure that any zero of [Ti;Ui] is necessarily a zero
of P without veri�cation, one has to collect the polynomials in U[k] as in
ProjA and eventually adding them to the corresponding Ui (it is possible
to eliminate some polynomials from Ui via GCD computation).
For example, let P = x2 � u2 and D = x � u with u as a parameter.

Then

ProjuZero(P=D) = ProjuZero(;=prem(D2; P )) = ProjuZero(;=uD)
= Zero(;=u):

Now, Zero(P=u) 6= Zero(P=D) because (1; 1) is contained in Zero(P=u) but
not in Zero(P=D). This shows that the polynomialD cannot be abandoned
during the projection. Keeping D, we have

Zero(P=[u;D]) = Zero(P=D);

so that for any �u 2 Zero(;=u) the system

x2 � �u2 = 0; x� �u 6= 0

has solutions for x, which can be computed form the above (triangularized)
system.
A method similar to TriSerP has been proposed by Wu (1990), Gao and

Chou (1992) via characteristic sets computation. The issue explained above
is not correctly handled in Gao and Chou (1992), however.

Example 7.4.1. (Buchberger 1985; Gao and Chou 1992). Solve

8>>><
>>>:

P1 = x4 � a4 + a2 = 0;

P2 = x4 + x3 + x2 + x1 � a4 � a3 � a1 = 0;

P3 = x3x4 + x1x4 + x2x3 + x1x3 � a3a4 � a1a4 � a1a3 = 0;

P4 = x1x3x4 � a1a3a4 = 0

for x1 � � � � � x4 as unknowns with a1 � � � � � a4 as parameters.
Using IrrTriSer and NormG, we may compute an irreducible triangular

series of P = fP1; : : : ; P4g with normalization; the series consists of the
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following nine irreducible normal triangular sets

T1 = [Ix1 � a1a3; Ix2 + (I � a1)(I � a3); x3 � a4; x4 � I];
T2 = [Ix1 � a1a4; Ix2 � a2(I � a1); x3 � a3; x4 � I];
T3 = [Ix1 � a3a4; Ix2 � a2(I � a3); x3 � a1; x4 � I];
T4 = [a1; I; x2 + x1 � a2; x3 � a3; x4];
T5 = [a1; I; x2 + x1 � a3; x3 � a2; x4];
T6 = [a2; a4; x2 + x1 � a1; x3 � a3; x4];
T8 = [a2; a4; x2 + x1 � a3; x3 � a1; x4];
T8 = [a3; I; x2 + x1 � a1; x3 � a2; x4];
T9 = [a3; I; x2 + x1 � a2; x3 � a1; x4];

where I = a4 � a2, such that

Zero(P) =
3[
i=1

Zero(Ti=I) [
9[

i=4

Zero(Ti):

From the above Ti, it is easy to identify for which values of a1; : : : ; a4
the original system of equations P= 0 has solutions for x1; : : : ; x4. Such
solutions for any given parametric values can be exactly computed from
the triangular sets (in which every polynomial is linear with respect to its
leading variable).
The system of equations can also be solved by computing a triangular

series with projection using TriSerP, or a simple series using SimSer. The
projected triangular series is similar to the irreducible one, while the simple
series contains more triangular sets and thus is more complicated. We do
not produce them here. ut
Example 7.4.2. Refer to the polynomial set P and its decomposition into
simple systems in Example 3.3.5. It is not di�cult to verify thatS13

j=1 Zero(T
�(1)
j =U�(1)

j ) =
S5
j=1 Zero(;=U�

j) [ Zero(H1) [ Zero(H2)

[Zero(c) [ Zero(2c3 � 27) = ~K:

Hence, the system of polynomial equations P = 0 has solutions for any
value of c, considered as a parameter. When a concrete value of c is given,
the solutions for z; y; x may be determined from the corresponding simple
systems. ut
From the triangular systems computed with projection/normalization

and/or simple systems given previously, the following parametric systems
may be solved: 8>>><

>>>:

(x� u)2 + (y � v)2 � 1 = 0;

v2 � u3 = 0;

2v(x� u) + 3u2(y � v) = 0;

(3wu2 � 1)(2wv � 1) = 0
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with x � y as parameters and u � v � w as unknowns (Example 3.2.2);8><
>:

x2 + y2 + z2 � r2 = 0;

xy + z2 � 1 = 0;

xyz � x2 � y2 � z + 1 = 0

with r as a parameter and z � y � x as unknowns (Examples 3.1.1 and
3.3.4); 8><

>:
z(x2 + y2 � c) + 1 = 0;

y(x2 + z2 � c) + 1 = 0;

x(y2 + z2 � c) + 1 = 0

with c as a parameter and z � y � x as unknowns (Example 3.3.5);

8>>><
>>>:

x2(x3 � x4) � x1 + c = 0;

x3(x4 � x1) � x2 + c = 0;

x4(x1 � x2) � x3 + c = 0;

x1(x2 � x3) � x4 + c = 0

with c as a parameter and x1 � � � � � x4 as unknowns (Example 7.3.1).



8

Automated geometry theorem proving
and discovering

Since the pioneering work of Wu (1978), automated theorem proving in
geometry has been an active area of research for two decades. There is a
rich literature on the subject. We recommend the comprehensive exposition
by Wu (1994) for thoroughly understanding his method and the subject
and the popular book by Chou (1988) for an easy presentation and many
examples. The reader may also look at the survey by Wang (1996b) and
references therein for the state-of-the-art.

8.1 Elementary approach

Most of the successful methods for proving geometric theorems developed
by Wu and his followers are algebraic in character. They can be considered
as one major application of the various elimination techniques presented in
the preceding chapters. The �rst step of proving geometric theorems using
algebraic methods is to algebraize the geometric problems in question. For
this purpose, one chooses a coordinate system and denotes the coordinates
of points as well as other involved geometric entities like areas of triangles
and squares of distances by the indeterminates x1; : : : ; xn. Then the hy-
potheses and the conclusions of most geometric theorems can be expressed
by means of polynomial equations (=), inequations ( 6=) and inequalities
(�; <) in x1; : : : ; xn. This is illustrated by the following example.

Example 8.1.1. (Simson's theorem). From a point D draw three perpen-
diculars to the three sides of an arbitrary triangle ABC. Then the three
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perpendicular feet P;Q and R are collinear if and only if D lies on the
circumscribed circle of 4ABC.

 D 

 A  B 

 C 

 P 

 Q 

 R 

Fig. 5

Consider the \if" part of the theorem. Without loss of generality, we
take a Descartes coordinate system with AB as its �rst axis and the per-
pendicular bisector of AB as its second axis. Let the points be assigned
coordinates as follows

A(�x1; 0); B(x1; 0); C(x2; x3); D(x4; x5);

P (x4; 0); Q(x6; x7); R(x8; x9):

Then the hypothesis of the theorem consists of the following relations:

� D lies on the circumscribed circle of 4ABC

() H1 = x1x3x
2
5 � x1(x23 + x22 � x21)x5 + x1x3(x

2
4 � x21) = 0;

� Q is the foot of the perpendicular drawn from point D to line AC

()
(

H2 = (x2 + x1)(x6 � x4) + x3(x7 � x5) = 0;

H3 = (x2 + x1)x7 � x3(x6 + x1) = 0;

� R is the foot of the perpendicular drawn from point D to line BC

()
(

H4 = (x2 � x1)(x8 � x4) + x3(x9 � x5) = 0;

H5 = (x2 � x1)x9 � x3(x8 � x1) = 0:

Note that

� P is the foot of the perpendicular drawn from D to AB

is ensured by the special choice of the coordinates for point P .
Someone careful might observe that the theorem may become meaning-

less if the triangle ABC is 
at. This degenerate case can be ruled out:
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� The three points A;B;C are not collinear

() D1 = x1x3 6= 0:

The exclusion of this degenerate case is not substantial. We will see that
non-degeneracy conditions may be found automatically by Wu's method.
The conclusion of the theorem to be proved is:

� The three points P;Q;R are collinear

() G = (x6 � x4)x9 � x7(x8 � x4) = 0:
ut

The algebraic expressions of most ordinary geometric relations like collin-
earity, perpendicularity and congruence involve only polynomial equations
| an observation made by Wu that is of special signi�cance for the theory
and methods of geometry theorem proving. Also for this reason, we are
able to restrict our consideration to an important class of theorems, called
theorems of equality type, in which the algebraic formulation of any theo-
rem involves only polynomial equations and inequations. The class is large
enough to cover very many non-trivial and interesting theorems, though it
may exclude some theorems in which order relations are involved.

Remark 8.1.1. As pointed out by Wu (1994, pp. vi{vii), there are inherent
di�culties along the path to arrive at the algebraization and coordina-
tization of a geometry starting from its axiom system. Fortunately, such
di�culties for the usual Euclidean geometry do not appear seriously that
one must overcome. This is because of our knowledge about the real number
system and the standard techniques of analytic geometry. It is for this rea-
son that one may be supposed to know how to transform ordinary geometric
relations into algebraic expressions by introducing coordinate systems as
in analytic geometry, without going through the correctness proof of the
algebraization.

The algebraic formulation of Simson's theorem in Example 8.1.1 is of
equality type. However, with this formulation one may fail in proving the
logical implication (HYP ) CON). For in the statement of a geometric
theorem the considered �gures are usually implicitly assumed to be in a
generic position. For example, while speaking about a triangle, we mean
a real triangle which does not degenerate into a line or a point. In the
above formulation, this degenerate case has been excluded a priori , but
other degenerate cases may still be included that might make the implica-
tion (HYP ) CON) logically false. Therefore, one has to determine some
subsidiary (non-degeneracy) conditions so that the theorem becomes true
under these conditions. We do not give a precise de�nition of degenerate
cases and non-degeneracy conditions here. Actually, it is rather di�cult
to give such a de�nition because of the uncloseness of stating geometric
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theorems and the di�erent understandings of the word \degenerate." For
the moment the reader is only assumed to have a rough impression on the
concept of degeneracy. More explanations will be given later.
Let ^, _ and) denote the logical \and," \or" and \imply" respectively.

We propose the following algebraic formulation for the decision problem of
geometry theorem proving.

Formulation �. Suppose that we are given a geometry G, a geometry-
associated �eld K of characteristic 0 and an appropriate coordinate system
O under which a correspondence between statements in G and algebraic
expressions over K may be established. Let the hypothesis of a theorem
>> in G be expressed under O as a �nite set of polynomial equations and
inequations

HYP :

(
H1(x) = 0; : : : ;Hs(x) = 0;

D1(x) 6= 0; : : : ; Dt(x) 6= 0
(8.1.1)

(where each Di = 0 corresponds usually to a degenerate case determined a

priori from some analysis or observation of the theorem), and the conclu-
sion be expressed as a single polynomial equation

CON : G(x) = 0: (8.1.2)

All the polynomials are in the indeterminates x = (x1; : : : ; xn) | which are
coordinates of points and other geometric entities involved in the theorem
| with coe�cients in K. Decide

(a) whether the formula

(8x)[H1(x) = 0^� � �̂ Hs(x) = 0^D1(x) 6= 0^� � �̂ Dt(x) 6= 0 =) G(x) = 0]
(8.1.3)

is valid; and if not,

(b) �nd \appropriate" subsidiary conditions D�
1(x) 6= 0; : : : ; D�

t�(x) 6= 0
so that the formula

(8x)[H1(x) = 0 ^ � � � ^Hs(x) = 0 ^D1(x) 6= 0 ^ � � � ^Dt(x) 6= 0^
D�
1(x) 6= 0 ^ � � � ^D�

t�(x) 6= 0 =) G(x) = 0]

becomes valid over K or some extension �eld of K.

The additional inequations D�
j (x) 6= 0 are determined to ensure the

con�guration of the geometric hypotheses to be in a generic position. In
the proof algorithms presented below,

P= fH1; : : : ;Hsg; Q= fD1; : : : ; Dtg:
For any geometric statement or theorem >>, we write
� HC(>>) for \the hypothesis of >> is self-contradictory;"
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� NC(>>) for \>> is not con�rmed;"

� True(>>)=SC for \>> is true under the subsidiary conditions SC."

It is possible that the subsidiary conditions are not explicitly provided; in
this case SC is not set to any value. If SC = ; then the theorem >> is
universally true; otherwise, >> is conditionally true.
The following elementary method is very e�cient for con�rming geomet-

ric theorems, in particular when N-characteristic sets and principal trian-
gular systems are used.

Algorithm ProverA: HC, True=SC, or NC ProverA(P;Q; G). Given the
algebraic form >> : P= 0 ^ Q 6= 0 ) G = 0 of a geometric theorem of
equality type, this algorithm either proves True(>>)=SC, or reports HC(>>)
or NC(>>).
P1. Compute a (quasi-, weak-) medial set Tof Pover K by CharSetN or

PriTriSys. If Tis contradictory or 0 2 prem(Q;T) then report HC(>>)
and the algorithm terminates.

P2. Compute R prem(G;T). If R � 0 then let I1; : : : ; Ir be all the
distinct irreducible factors of the polynomials in ini(T) which do not
divide any Di, set

SC I1 6= 0 ^ � � � ^ Ir 6= 0

and return True(>>)=SC else report NC(>>).

The above P1 and P2 may be replaced alternatively by the following
three steps, in which Gr�obner bases are used.

P10. Compute a Gr�obner basis G of P[ fD1z1 � 1; : : : ; Dtzt � 1g over K
with respect to the purely lexicographical term ordering determined
by x1 � � � � � xn � z1 � � � � � zt, where z1; : : : ; zt are new indeter-
minates. If 1 2 G then report HC(>>) and the algorithm terminates.

P20. Compute R rem(G;G). If R � 0 then return True(>>)=; and the
algorithm terminates.

P30. Take a quasi-basic set of G : B BasSet(G ), and compute R prem
(R; B). If R � 0 then let I1; : : : ; Ir be all the distinct irreducible
factors of the polynomials in ini(B ) which do not divide any Di, set

SC I1 6= 0 ^ � � � ^ Ir 6= 0

and return True(>>)=SC else report NC(>>).
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The termination of this and other algorithms in later sections is obvious,
so the proofs are given only for their correctness.

Proof. As the medial set T of P computed by CharSetN or PriTriSys is
contained in Ideal(P), P= 0 implies that T= 0. Let �x 2 Zero(P=Q); then
there exists a �zi in some extension �eld ofK such that Di(�x)�zi�1 = 0 for
1 � i � t. It follows that G(�x) = 0 for any

G 2 G \K[x] � Ideal(P[ fD1z1 � 1; : : : ; Dtzt � 1g);

wherefore P= 0 and Q 6= 0 imply that G \K [x] = 0. Thus, the theorem
>> is universally true when

rem(G;G) = rem(G;G \K[x]) � 0:

By the pseudo-remainder formula, if R � 0 then

T= 0 ^ ini(T) 6= 0 =) G = 0;

this is also true when T is replaced by B . Note that B � G . Hence >> is
conditionally true under the subsidiary conditions SC when R � 0. ut
The medial set T in ProverA may also be F-modi�ed, while the cases in

which F = 0 for F 2 F have to be handled separately. The following two
steps, which are necessary for implementing a geometry theorem prover,
are not included in the algorithms presented in this section.

P0. This is a preprocess that translates the geometric statement of a
theorem into the algebraic form. It can be done automatically by im-
plementing a translator for some commonly used geometric relations.

P1. This is a postprocess that interprets the algebraic subsidiary condi-
tions geometrically and determine which conditions are non-degener-
acy ones. In most cases, the interpretation can be done easily and
automatically (see, e.g., Chou 1988 and Wang 1996a). Whether a
subsidiary condition is a non-degeneracy condition may be seen from
its geometric meaning, dimension analysis, etc.

It is a key insight of Wu that most geometric theorems are true only
under subsidiary conditions. Without predetermining all such conditions
the two steps P10 and P20 can prove only a limited number of theorems.
Adding non-degeneracy conditions to the hypotheses is a good heuristic for
geometric theorem proving using Gr�obner bases. So one should �gure out
such conditions in the way of formulating a geometric theorem. However, in
practice it is not realistic to predetermine all the possible non-degeneracy
conditions to make every geometric theorem rigorously stated; the inclusion
of all the conditions also makes the hypotheses tedious and leads to high
computational complexity.
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In order to deal with subsidiary conditions e�ectively and to speak about
genericness we may separate the variables x into parameters and geometric
dependents. The former are free variables which can take arbitrary values,
while the latter are constrained by the geometric conditions. The sepa-
ration can be done rather easily when the geometric theorem is stated
constructively step by step. Assume that all the parameters u are cor-
rectly identi�ed from x. Then any inequation in u can be considered as a
non-degeneracy condition. So in this case the medial sets, principal trian-
gular systems or Gr�obner bases may all be computed over K(u), i.e., only
with respect to the geometrically dependent variables. Thus the theorem
is proved to be true under some non-degeneracy conditions which are not
necessarily provided, and step P30 may be skipped when Gr�obner bases are
used (see Kutzler and Stifter 1986).
Whether or not the theorem is true in a degenerate case can be deter-

mined by using the same method, regarding the degeneracy condition as
an additional hypothesis of the theorem.
Unless explicitly stated, the Gr�obner bases mentioned in the examples

of this chapter are always with respect to the purely lexicographical term
ordering (plex) determined by the indicated variable ordering. For the sake
of e�ciency one can choose other elimination orderings instead. In some
situation, the total degree term ordering is su�cient.

Example 8.1.2. Refer to Example 8.1.1 and let P= fH1; : : : ;H5g. With
respect to the ordering x1 � � � � � x9, a weak-N-characteristic set of P is

C =

2
6666664

I1x
2
5 � x1(x23 + x22 � x21)x5 + x1x3(x24 � x21);

I2x6 � I3x3x5 � I23x4 + x1x
2
3;

I3x7 � x3(x6 + x1);

I4x8 � I5x3x5 � I25x4 � x1x23;
I5x9 � x3(x8 � x1)

3
7777775
;

where

I1 = x1x3; I2 = x23 + I23 ; I3 = x2 + x1; I4 = x23 + I25 ; I5 = x2 � x1
are the initials of the �ve polynomialsC1; : : : ; C5 in C respectively. Clearly,
prem(Ii; C ) is non-zero for 1 � i � 5, and so is prem(D1; C ). It is easy to
verify that prem(G; C ) = 0, so the theorem is proved to be true under the
subsidiary conditions Ii 6= 0 for 2 � i � 5. The geometric meanings of the
four conditions, interpreted automatically by GEOTHER (Wang 1996a),
are as follows:

� I2 6= 0() AC is non-isotropic;

� I3 6= 0() AC is not perpendicular to AB;

� I4 6= 0() BC is non-isotropic;
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� I5 6= 0() AB is not perpendicular to BC.

One can examine whether the theorem is true in each of the degenerate
cases by taking Ii = 0 as a new hypothesis. Consider the case I3 = 0 for
example. Let

P� = fH1; : : : ;H5; I3g:
Then the hypothesis consists of P� = 0 and D1 6= 0. A characteristic set of
P� with the same ordering is

C � =

2
666666664

x2 + x1;

x25 � x3x5 + x24 � x21;
x6 + x1;

x7 � x5;
(x23 + 4x21)x8 + 2x1x3x5 � 4x21x4 � x1x23;
(x23 + 4x21)x9 � x23x5 + 2x1x3x4 � 2x21x3

3
777777775

with some factors x1 and x3 removed. Since prem(G; C� ) = 0, the theorem
is also true in this case under the non-degeneracy condition x23 + 4x21 6= 0
(i.e., the line BC is non-isotropic).
One can verify the other degenerate cases one by one in the same way.

A systematic treatment as will be presented below is to compute a zero
decomposition for [P;fx1; x3g] and see for which components the conclusion
holds. One should �nally conclude that only the �rst and the third non-
degeneracy conditions are necessary.
A Gr�obner basis G of Punder the same variable ordering consists of 17

polynomials, and rem(G;G) = G 6� 0. Now G has quasi-basic set iden-
tical to C (up to a sign for some polynomials). According to the above
veri�cations, the theorem is proved to be true under the non-degeneracy
conditions I2 � � �I5 6= 0.
With respect to x5 � � � � � x9 a Gr�obner basis of P is

G� = [C1=x1; C2; G3; C4; G5];

where
G3 = I2x7 � x23x5 � I3x3(x4 + x1);

G5 = I4x9 � x23x5 � I5x3(x4 � x1);
and C1; C2; C4; I2; : : : ; I4 are as above. One can verify that rem(x1x3;G� ) 6=
0 and rem(G;G� ) = 0. It follows that the theorem is true under some non-
degeneracy conditions. ut
The above method with variation has been implemented by several re-

searchers (Chou 1988, Ko and Hussain 1985, Kusche et al. 1987, Wang
and Gao 1987, and Wu 1984). A large number of geometric theorems | in-
cluding Steiner's theorem (generalized), Morley's trisector theorem and the
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recently con�rmed conjecture of Th�ebault presented in Sect. 8.4 | have
been proved by using di�erent implementations; some interesting \new"
theorems were also discovered (see, e.g., Wu 1984, 1994; Chou 1988; Wang
1995c and Sect. 8.5).

8.2 Complete method

We must note that Formulation � is not �ne. First of all, there was no
requirement on verifying the consistency of the hypothesis HYP before de-
termining the validity of (8.1.3). If some Hi, for instance, is a non-zero
constant, then Hi = 0 itself is contradictory. In this case, (8.1.3) is al-
ways a true formula. Second, no de�nition has been given for what we call
\appropriate" and \subsidiary conditions." Apparently, adding D�

j 6= 0 to
HYP should not exclude interesting cases of the theorem. In particular, ev-
eryD�

j = 0 should not be a consequence of HYP, i.e., the addition ofD�
j 6= 0

to HYP does not destroy the consistency. However, it is not easy, theoret-
ically and computationally, to completely examine the consistency of the
hypothesis and to enforce the above-mentioned requirement be ful�lled for
the found subsidiary conditions.
The purpose of �nding non-degeneracy conditions in the context of geo-

metric theorem proving is to rule out some degenerate cases in which the
theorem becomes false or meaningless. This aims at proving theorems even
if their algebraic formulations are not logically complete due to the miss-
ing of such conditions. The problem of missing conditions is caused by the
imprecise nature of human beings in expressing geometric problems and
the rigorlessness of the axiom system of geometry. In practice, one may
add conditions to get rid of some degenerate cases, but it is di�cult and
impossible to predetermine all such cases.
Even though non-degeneracy conditions have been taken into account,

one may still have troubles in proving geometric theorems according to For-
mulation�. The reason is: some ambiguities corresponding to the reducibil-
ity of geometric con�gurations may occur when geometric statements are
transformed into polynomial expressions. Let us come to the following ex-
ample.

Example 8.2.1. The bisectors of the three angles of an arbitrary triangle,
three-to-three, intersect at four points.

Let the triangle be 4ABC, the two bisectors of \A and \B intersect
at point D, and the bisector of \C meet line AB at point E. We need to
show that D lies on CE.
To simplify calculation, and without loss of generality, we take the coor-

dinates of the points as

A(x1; 0); B(x2; 0); C(0; x3); D(x4; x5); E(x6; 0):
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 A  B 

 C 

 D  ’ 

 D 

 E 

Fig. 6

The hypothesis of the theorem consists of the following three relations

HYP :

8>>>>>>>><
>>>>>>>>:

H1 = x3[x25 � (x4 � x1)2]� 2x1x5(x4 � x1) = 0;

� DA is the bisector of \CAB

H2 = x3[x25 � (x4 � x2)2]� 2x2x5(x4 � x2) = 0;

� DB is the bisector of \ABC

H3 = x3[(x1 � x6)(x23 + x2x6) + (x2 � x6)(x23 + x1x6)] = 0:

� EC is the bisector of \BCA

Here, the equality of tangent of angles is used to express the equality of
angles. We add the the condition

D1 = x3 6= 0; � C does not lie on AB

to eliminate the trivial degenerate case. The conclusion to be proved is

CON : G = x3x4 + x5x6 � x3x6 = 0: � D lies on CE

ut
At �rst sight, one might not see any problem in the above formulation.

Looking over the theorem and its formulation carefully, one may be aware
of the fact that the bisectors may be internal and external; both of them are
represented by the same polynomial equations. Without using inequalities,
the two kinds of bisectors cannot be distinguished from each other. If the
bisector of one angle of 4ABC is external and those of the two others are
internal, then the three bisectors are certainly not concurrent. So the theo-
rem could not be proved to be generically true with the above formulation.
To deal with this situation, let us slightly modify the formulation (cf. Wu
1994, pp. 197{199).

Example 8.2.2. Instead of the collinearity of D;C and E, we may prove
that

CON� :

G� = [x1(x5 � x3) + x3x4][x3(x5 � x3)� x2x4]
+[x2(x5 � x3) + x3x4][x3(x5 � x3)� x1x4] = 0:

� DC is the bisector of \BCA
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Then point E need not be introduced, and the third relation H3 = 0 in
Example 8.2.1 becomes redundant. Now the 4 possibilities for which the
three bisectors are not concurrent have been excluded. ut
Ambiguities of this kind also appear inherently in other geometric re-

lations like trisection of angles and contact of circles and may be dealt
with using inequalities. They give rise to the reducibility of the quasi-
algebraic variety V de�ned by the hypothesis of the geometric theorem
when the hypothesis is expressed by using equations and inequations only
(in unordered geometry). In a natural formulation of the theorem that
does not take non-degeneracy conditions and ambiguities into account, the
conclusion-equation holds true usually only for some components of V.
Those components for which the theorem is false have to be excluded ei-
ther as degenerate cases or as the unwanted cases that have been included
due to the ambiguities indistinguishable in the algebraic formulation.
Although there are special techniques dealing with reducibility (see, e.g.,

Wu 1986c, Wang and Gao 1987), a complete and systematic treatment of
the problem is to decompose V into irreducible components.

Formulation �. Let G, K and O be as in Formulation �, and let the
hypothesis of a theorem >> in G be expressed under O as a �nite set of
polynomial equations and inequations (8.1.1), and the conclusion be ex-
pressed as one polynomial equation (8.1.2). Set P = fH1; : : : ;Hsg and
Q= fD1; : : : ; Dtg. Decide
(a) whether Zero(P=Q) = ;; and if not,

(b) on which components of Zero(P=Q)G vanishes (and thus >> is true).

More precisely, let 	 be a regular series of [P;Q] and de�ne the set of
regular zeros of [P;Q] to be

RegZero(P=Q),
[
T2	

RegZero(T):

Then problem (b) consists in separating RegZero(P=Q) into

Z+ = f� 2 RegZero(P=Q) : G(�) = 0g; and

Z� = f� 2 RegZero(P=Q): G(�) 6= 0g:
The theorem >> is universally true if and only if Z� = ; and Z+ 6= ;.
If Z+ = ; and Z� 6= ;, we say that \>> is generically false," which is
denoted by False(>>). Otherwise, >> is conditionally true. The subsidiary
conditions SC are provided by excluding those components of Zero(P=Q)
for which >> is generically false.

The following algorithm is directed to Formulation �.

Algorithm ProverB: HC, True=SC, or False ProverB(P;Q; G). Given
the algebraic form >> : P= 0 ^Q 6= 0 ) G = 0 of a geometric theorem
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of equality type, this algorithm either proves True(>>)=SC, or determines
False(>>), or reports HC(>>).
P1. Compute a characteristic series or triangular series 	 of [P;Q] over

K by CharSer, TriSer, or TriSerS. If 	 = ; then report HC(>>) and the
algorithm terminates.

P2. Let all the triangular systems in 	 be [T1;U1]; : : : ; [Te;Ue]. Compute

Ri prem(G;Ti); 1 � i � e;

and set

� fi : Ri 6� 0; 1 � i � eg; Z 
[

1 � i � e
i 62 �

Zero(Ti=Ui):

If � = ; then (
report HC(>>) when Z = ;;
return True(>>)=; otherwise

and the algorithm terminates.

P3. Compute an irreducible triangular series 	i of [Ti;Ui] overK by De-

com, IrrCharSer, or IrrCharSerE for each i 2 � and set 	� S
i2� 	i.

If 	� = ; then(
report HC(>>) when j�j = e or Z = ;;
return True(>>)=; otherwise

and the algorithm terminates.

P4. Let [T�1;U
�
1]; : : : ; [T

�
e�;U

�
e�] be all the irreducible triangular systems in

	�. Compute

R�
j prem(G;T�j); 1 � j � e�;

and set �� fj : R�
j 6� 0; 1 � j � e�g.

If �� = ; then return True(>>)=; and the algorithm terminates.

If j�j = e or Z = ;, and j��j = e� then return False(>>) and the
algorithm terminates.

P5. Set

SC 
^
j2��

(
_
T2Tj

T 6= 0 _
_

U2Uj

U = 0)

and return True(>>)=SC.
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Proof. The triangular series 	 and 	� give rise to a zero decomposition

Zero(P=Q) = Z [ Z+ [ Z�

such that
Z [ Z+ � Zero(G);

G(�) 6= 0; 8� 2 Z� that is regular;

where

Z+ =
[

1 � j � e�

j 62 ��

Zero(T�j=U
�
j); Z� =

[
j2��

Zero(T�j=U
�
j):

Note that T�j is irreducible for 1 � j � e�. Thus,
Zero(P=Q) = ; () Z = ; and 	� = ;:

Suppose that Zero(P=Q) 6= ;. Then the theorem is universally true, i.e.,
Zero(P=Q) � Zero(G), if and only if �� = ;, It is generically false if
and only if j�j = e or Z = ; and j��j = e�. Otherwise, the theorem is
conditionally true under the subsidiary conditions SC. ut

Remark 8.2.1. For the sake of practical e�ciency some redundant triangu-
lar systems, for example those [T;U] for which jTj> jPj, should be removed
from 	 and 	i in ProverB (see Lemma 6.2.9). The algorithm starts by
computing a triangular series, not an irreducible one, mainly for bypassing
unnecessary (algebraic) polynomial factorization. It may be simpli�ed by
computing directly an irreducible triangular series of [P;Q]. The computa-
tion of triangular series in the algorithmmay also be performed overK(u)
when the parameters u are correctly identi�ed from the variables x and
the theorem is considered only for the non-degenerate cases.

To con�rm theorems, one may also employ a refutational approach that
veri�es the inconsistence of the hypothesis-relations with the negation of
the conclusion-equation. In Algorithm ProverC below, an irreducible (pro-
jected) triangular series of [P;Q[fGg] is computed. Assume for simplicity
that x1; : : : ; xd are the parameters and xd+1; : : : ; xn the geometric depen-
dents, which are correctly speci�ed. We use a bar over SC to indicate that
the subsidiary conditions have been identi�ed as non-degeneracy condi-
tions. Thus, True(>>)=SC means that \the theorem >> is generically true
under the non-degeneracy conditions SC." And, we can talk about \>> is
not generically true," which is denoted by NGT(>>). It means that there
exist �xd+1; : : : ; �xn in some algebraic extension �eld of K(xfdg) such that
(xfdg; �xd+1; : : : ; �xn) is a zero of [P;Q] but not a zero of G.

Algorithm ProverC: HC, True=SC, or NGT ProverC(P;Q;G). Given the
algebraic form >> : P = 0 ^ Q 6= 0 ) G = 0 of a geometric theorem
of equality type, this algorithm either proves True(>>)=SC, or determines
NGT(>>), or reports HC(>>).



236 8. Automated geometry theorem proving and discovering

P1. Determine whether Zero(P=Q) = ; in �K by AlgorithmTriSerP, SimSer,
RegSer, RegSer�, IrrCharSer, IrrCharSerE, or IrrTriSer. If so, then report
HC(>>) and the algorithm terminates.

P2. Compute over K a triangular series 	 of [P;Q[ fGg] by TriSerP

with projection for xn; : : : ; xd, or an irreducible triangular series 	 of
[P;Q[ fGg] by IrrCharSer, IrrCharSerE, or IrrTriSer.

If 	 = ; then return True(>>)=; and the algorithm terminates.

Let [T1;U1]; : : : ; [Te;Ue] be all the triangular systems in 	. IfT(d)
i 6= ;

for all 1 � i � e then let D�
i be any polynomial in T(d)

i , set

SC 
ê

i=1

D�
i 6= 0;

and return True(>>)=SC else return NGT(>>).

Proof. If 	 = ;, then Zero(P=Q[ fGg) = ;. It follows that

Zero(P=Q)� Zero(G);

so the theorem is universally true. If T(d)
i 6= ; for all 1 � i � e, then

according to the selection of D�
i we have

Zero(P=Q[ fD�
1; : : : ; D

�
e ; Gg) = ;:

This implies that

Zero(P=Q[ fD�
1; : : : ; D

�
eg) � Zero(G):

Hence, the theorem is conditionally true under the subsidiary conditions

SC. Otherwise, there exists an i, 1 � i � e, such that T(d)
i = ;. Note that

[Ti;Ui] is perfect, and thus has a regular/generic zero �. Now

� 2 Zero(P=Q[ fGg);

so � is a zero of [P;Q] but not a zero of G. Therefore, the theorem is not
generically true. ut
As an alternative, one may determine the vacancy of Zero(P=Q) and the

subsidiary conditions under which [P;Q[ fGg] has no zero by computing
Gr�obner bases according to Theorem 6.3.3 (c) (see also Kapur 1988 and
Winkler 1990). This is in contrast with ProverA in which the conclusion-
polynomial is directly reduced to 0 by using the Gr�obner basis of the
hypothesis-polynomial set.

Algorithm ProverD. The same speci�cation as that of ProverA.
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P1. Compute a Gr�obner basis G0 of

fH1; : : : ;Hs; D1z1 � 1; : : : ; Dtzt � 1g
over K with respect to any admissible term and variable ordering,
where z1; : : : ; zt are new indeterminates. If 1 2 G0 then report HC(>>)
and the algorithm terminates.

P2. Compute a Gr�obner basis G of G0 [fGz�1g over K with respect to
the purely lexicographical term ordering determined by x1 � � � � �
xn � z1 � � � � � zt � z, where z is another new indeterminate. If
1 2 G then return True(>>)=; and the algorithm terminates.

P3. For each D 2 G do:

If D 2K [xfdg] and D 62 fH1; : : : ;Hsg then:
Compute a Gr�obner basis G� of

fH1; : : : ;Hs; D1z1 � 1; : : : ; Dtzt � 1; Dz � 1g
under any admissible term and variable ordering. If 1 62 G�
then set SC D 6= 0, return True(>>)=SC and the algorithm
terminates.

P4. Return NC(>>).
A drawback of Algorithms ProverC and ProverD arises from the extra

veri�cation of consistency in step P1. So the computations in steps P1 and
P2 should be combined through implementation.

8.3 Illustration with examples

In this subsection we use the formulations in Examples 8.2.1{8.2.2 and
Steiner's theorem to illustrate di�erent aspects of proving geometric theo-
rems using the algorithms described above.

Example 8.3.1. See Examples 8.2.1 and 8.2.2. Determine when the follow-
ing algebraic form of the theorem is true

(8x1; : : : ; x5)[H1 = 0 ^H2 = 0 ^D1 6= 0 =) G� = 0]:

Using ProverA

Compute a characteristic set C ofP= fH1;H2gwith respect to the ordering
x1 � � � � � x5: C = [D�

1x3C1; D
�
1C2] with

C1 = 4x44 � 8 �Dx34 � 4(x23 � x1x2 � �D2)x24 + 4 �D(x23 � x1x2)x4 � �D2x23;

C2 = 2D�
2x5 � x3(2x4 � x2 � x1)
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and
D�
1 = x2 � x1; D�

2 = x4 � x2 � x1; �D = x2 + x1:

The initials of the two polynomials in C are

I1 = 4D�
1x3; I2 = 2D�

1D
�
2

respectively. Simple computation shows that prem(G�; C ) = 0. Hence, the
theorem is proved to be true under the subsidiary conditions

D�
1 6= 0; D�

2 6= 0:

The �rst condition has evident geometric meaning: A and B do not coin-
cide, so it can be considered as a non-degeneracy condition.
To see whether the theorem is true when D�

2 = 0, we form an enlarged
set P� = P[fD�

2g of hypothesis-polynomials. Proceeding in the same way,
one should prove that the theorem is also true in this case under the non-
degeneracy condition D�

1 6= 0.
In the above proof, the consistency of the hypothesis is not examined.

For the examination, one has to see whether

Zero(P=x3D�
1D

�
2) = Zero(C =x3D�

1D
�
2) = ;:

Using ProverB

Instead of verifying the degenerate cases one by one, we compute a charac-
teristic series of [P;fx3g] in order to determine when the theorem is true.
With the same variable ordering, the series consists of three ascending sets

C 1 = [C1; C2];

C 2 = [D�
1; C

0
2];

C 3 = [x22 � x21; D�
2; x3x

2
5 � 2x1x2x5 � x21x3];

where C1; C2; D
�
1; D

�
2 are given above and

C0
2 = x3x

2
5 � 2x1(x4 � x1)x5 � x3(x4 � x1)2:

As prem(G�; C1 ) = 0, the theorem is true for C 1 . However, prem(G�; C i ) 6=
0 for i = 2; 3. It is easy to verify that C 2 is irreducible and C 3 is reducible.
Therefore, the theorem is not true for C 2 , and one does not know whether
it is true for C 3 without going further.
It is trivial to see the consistency of the hypothesis, i.e., Zero(P=x3) 6= ;,

because Zero(C 2=ini(C 2) [ fx3g) 6= ;, for instance.
If x22� x21 2 C 3 is factorized as to compute an irreducible zero decompo-

sition, one can get three irreducible ascending sets, of which one is

C 30 = [x2 + x1; x4; x3x
2
5 + 2x21x5 � x21x3];
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and the two others are identical to C 1 and C 2 . For computing the decom-
position factorization does not need to be over algebraic extension �elds.
It is again easy to verify that prem(G�; C30 ) = 0.
Therefore, we can conclude that the hypothesis of the theorem is consis-

tent, the theorem is true under the non-degeneracy condition

x2 � x1 6= 0 _C0
2 6= 0;

and in the degenerate case x2 � x1 = C0
2 = 0 the theorem is not true.

Here the disjunction of inequations is used to represent the non-degeneracy
condition. This is to keep the excluded part of Zero(P=x3) (for which the
theorem is false) minimal. One may take D�

1 = x2 � x1 6= 0 as the non-
degeneracy condition for simplicity, but this condition also excludes, for
example, the degenerate case x1 = x2 = x4 6= 0; x5 = 0 in which the
theorem is true.
By Theorem 6.2.8, we have

Zero(P=x3) = Zero(PB(C 1)=x3) [ Zero(PB(C 2 )=x3):
Therefore, the geometric con�guration | quasi-algebraic variety | de�ned
by the hypothesis is decomposed into two irreducible components. The
conclusion-polynomial G vanishes on one of them but not on the other.
Hence, the theorem is true only for one component | the case in which
4ABC is located in a generic position. The other component for which the
theorem is false corresponds to the case when 4ABC degenerates.

Using ProverC

Instead of Zero(P=x3), let us compute an (irreducible) decomposition for
Zero(P=x3G�) under the same variable ordering: we get the ascending set
C2 given above,

C 300 = [x2 � x1; x4 � 2x1; x3x
2
5 � 2x21x5 � x21x3];

and two polynomials

G2 = x3H(x4 � 2x1)[(x4 � 2x1)x5 � x3(x4 � x1)];
G300 = x1x3H;

where H = x23 + x21, such that

Zero(P=x3G�) =
[

i=2;300

Zero(C i=Gi):

One sees that x2�x1 is contained in both of the ascending sets. If we assume
x2 6= x1 and consider it as a non-degeneracy condition of the theorem, then
Zero(P=x3G�) becomes empty; i.e., Zero(P=(x2�x1)x3G�) = ;. Hence, the
theorem is proved to be true under the given non-degeneracy condition
x3 6= 0 and the found non-degeneracy condition x2 � x1 6= 0. ut
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Example 8.3.2. Refer to Example 8.2.1. We want to show that

(8x1; : : : ; x6)[H1 = 0 ^H2 = 0 ^H3 = 0 ^ x3 6= 0 =) G = 0]:

For this purpose, let P= fH1;H2;H3g.
Using ProverB

With respect to x1 � � � � � x6, a characteristic set of P (with two factors
x3 and x2�x1 removed during the computation) is C = [C1; C2; C3], where

C3 = H3 = �Dx26 + 2(x23 � x1x2)x6 � �Dx23

and C1; C2; �D are as in Example 8.3.1. Now prem(G; C ) 6= 0, so one cannot
tell if the theorem is true or not. It is then necessary to determine whether
C is irreducible or not. By the methods explained in Sect. 9.4, one may �nd
that over the extension �eld Q(x1; : : : ; x4) | where x1; x2; x3 are adjoined
to Q as transcendental elements and x4 an algebraic element with C1 as
minimal polynomial | C3 is reducible and factors as

C3
:
=

( �Dx6 + 2x24 � 2 �Dx4)( �Dx6 � 2x24 + 2 �Dx4 + 2x23 � 2x1x2)
�D

: (8.3.1)

In fact, decomposing [P; fx3g] results in 7 irreducible triangular sets T1; : : :,
T7 as given in Example 4.2.4. One may verify that prem(G;Ti) = 0 for
i = 1; 3; 5, but not for the others.
Moreover, from the obtained triangular sets one can compute an irre-

ducible decomposition of the quasi-algebraic variety de�ned by [P; fx3g],
into 4 irreducible components. This decomposition actually corresponds to
(4.2.8) with T3;T4;T5 removed. It follows that the theorem is true only for
the component that corresponds to T1. The component corresponding to
T2 represents the cases such as two bisectors are internal whereas the third
is external, which are not degenerate cases at all. The remaining two com-
ponents for which the theorem is false can be interpreted as corresponding
to some degenerate cases.
If we specify x1; x2; x3 as parameters (as to ensure 4ABC to be generic)

and x4; x5; x6 as geometric dependents and consider any inequations in
x1; x2; x3 as non-degeneracy conditions of the theorem, then an irreducible
decomposition may be computed over the functional �eld Q(x1; x2; x3).
The inequations can be collected as to give the exact non-degeneracy con-
ditions during the computation if desirable. In this case, the irreducible
characteristic series contains only the two triangular sets T1 and T2; now
prem(G;T1) = 0 and prem(G;T2) 6= 0. Hence, the theorem is generically
true for one component and false for the other, and thus is conditionally
true.

Using ProverC
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Now compute an irreducible characteristic series for [P;fx3; Gg], yielding
one irreducible ascending set, that is T2 in Example 4.2.4, with a polyno-
mial

G2 = �Dx3D
�
2G

such that
Zero(P=x3G) = Zero(T2=G2) 6= ;:

Without further consideration and analysis, it is hardly possible to �gure
out from this ascending set whether the theorem is true or false. Similarly,
if one computes an irreducible triangular series for P[ fx3Gz � 1g (with
respect to x4 � x5 � x6 � z), then the series contains only one triangular
set that is T2[ [T4] with

T4 = x3[2x
2
4 � 2 �Dx4 � x23 + x1x2]z �D�

2

such that

Zero(P[ fGz � 1g) = Zero(T2[ [T4]=ini(T2[ [T4])):

From this decomposition one cannot conclude the conditional truth of the
theorem either. This is why ProverC is considered incomplete. There is some
possibility for determining the conditional truth of the theorem via a de-
tailed analysis of the computed ascending set, for example, by interpreting
its polynomials geometrically. In general this type of analysis is di�cult.

ut
Algebraic factorization may be avoided for Example 8.3.2 when re
ection

of points is used instead of bisection of angles to formulate the theorem.
See Wu (1994, pp. 199{201) for details.
The examples above and in Sect. 8.4 should illustrate the following point:

For a given geometric theorem there are numerous ways to state it and to
formulate it algebraically. The proof methods work in principle no matter
how the theorem is formulated, but di�erent formulations may produce
very di�erent proofs and thus have remarkable e�ect in practice. Appro-
priate algebraic formulations may considerably reduce the computational
complexity, may yield a simple proof of the theorem that appears beyond
the applicability of a method, and may bypass some time-consuming steps
in the algebraic algorithm.

Example 8.3.3. (Steiner's theorem; Wang 1994, 1995c). Let ABC0, BCA0

and CAB0 be three equilateral triangles drawn all inward or all outward
on the three sides of an arbitrary triangle ABC. Then the three lines AA0,
BB0 and CC0 are concurrent (see Fig. 7).

Without loss of generality, let the points be located as

A(0; 0); B(1; 0); C(u1; u2); C0(y1; y2); A0(y3; y4); B0(y5; y6):
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 A  B 

 C 

 C  ’ 

 B  ’ 

 A  ’ 

Fig. 7

Then the theorem can be transformed into the following algebraic form

HYP :

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

H1 = 2y1 � 1 = 0; � jAC0j = jBC0j
H2 = y21 + y22 � 1 = 0; � jAC0j = jABj
H3 = y23 + y24 � u21 � u22 = 0; � jAB0j = jACj
H4 = y23 + y24 � (y3 � u1)2 � (y4 � u2)2 = 0; � jAB0j = jCB0j
H5 = (y5 � 1)2 + y26 � (u1 � 1)2 � u22 = 0; � jBA0j = jBCj
H6 = (y5 � 1)2 + y26 � (y5 � u1)2

�(y6 � u2)2 = 0;
� jBA0j = jCA0j

D1 = u2 6= 0; � C is not on AB

CON :

8><
>:

G� = (y1y4 � u1y4 � u1y2y3 + u2y1y3 + u1y2 � u2y1)y6
+(u1y2 � y2 � u2y1 + u2)y4y5 = 0:

� AA0; BB0 and CC0 are concurrent

Here the square of distance is used instead of distance to avoid radicals and
the case in which 4ABC degenerates into a line is eliminated by D1 6= 0.
The variables u1; u2 are regarded as parameters which are arbitrary, and
y1; : : : ; y6 are geometric dependents constrained by the algebraic conditions
Hi = 0 for 1 � i � 6.
Set

P= fH1; : : : ;H6g; Q= fu2g; Q� = fu2; G�g
and order the variables as u1 � u2 � y1 � � � � � y6. Using ProverB, we
compute an irreducible decomposition for Zero(P=Q) over Q. The output
	 of IrrTriSer consists of 9 triangular systems [Ti;Ui], so we have

Zero(P=u2) =
9[

i=1

Zero(Ti=u2); (8.3.2)
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where
T1 = [T1; T2; T3; T4; T5; T6];

T2 = [T1; T2; T
0
3; T4; T

0
5; T6];

T3 = [T1; T2; T
0
3; T4; T5; T6];

T4 = [T1; T2; T3; T4; T
0
5; T6];

T5 = [u22 + u21; T1; T2; T4; T5; T6];

T6 = [u22 + u21; T1; T2; T4; T
0
5; T6];

T7 = [u22 + u21 � 2u1 + 1; T1; T2; T3; T4; T6];

T8 = [u22 + u21 � 2u1 + 1; T1; T2; T 03; T4; T6];

T9 = [2u1 � 1; 4u22 + 1; T1; T2; T4; T6];

T1 = 2y1 � 1;

T2 = 4y22 � 3;

T3 = 2y3 � 2u2y2 � u1;
T 03 = 2y3 + 2u2y2 � u1;
T4 = 2u2y4 + 2u1y3 � u22 � u21;
T5 = 2y5 + 2u2y2 � u1 � 1;

T 05 = 2y5 � 2u2y2 � u1 � 1;

T6 = 2u2y6 + 2u1y5 � 2y5 � u22 � u21 + 1:

Hence the hypotheses of the theorem are consistent. To see for which com-
ponents the theorem is true, we compute prem(G;Ti) for 1 � i � 9. From
this, one may �nd that the theorem is true only for T1 and false for all the
other components. Therefore, the theorem is conditionally true with the
subsidiary condition given as

9̂

i=2

(
_
T2Ti

T 6= 0 _ u2 = 0):

When the theorem is considered for T1, we have T1 = � � � = T6 = 0 and
u2 6= 0. Hence, the above subsidiary condition can be simpli�ed to

T 03 6= 0 ^ T 05 6= 0 ^ u22 + u21 6= 0 ^ u22 + (u1 � 1)2 6= 0:

If the variables u1 and u2 are speci�ed as parameters, then

u22 + u21 6= 0 ^ u22 + (u1 � 1)2 6= 0

is clearly a (minimal) non-degeneracy condition for the theorem, as it is
composed of polynomial inequations in u1 and u2 only. Under this non-
degeneracy condition the components T5; : : : ;T9 are all excluded. There-
fore, the decomposition, if computed over Q(u1; u2), should become

Zero(P=u2) = Zero(P) =
4[

i=1

Zero(Ti):



244 8. Automated geometry theorem proving and discovering

This can be con�rmed by computing the decomposition directly. From ei-
ther of the two decompositions together with the pseudo-remainder veri�-
cation, we can conclude that the theorem is not generically true.
The geometric meanings of the two inequations for the non-degeneracy

condition are easy to explain:AC and BC are both non-isotropic. However,
neither T 03 = 0 nor T 05 = 0 corresponds to a degenerate case of the theorem,
so the subsidiary condition T 03 6= 0^T 05 6= 0 cannot be considered as a non-
degeneracy condition. It turns out to be non-trivial to explain the geometric
meaning of this condition merely from the two polynomials.
Note that T 03; T

0
5 are taken from the (non-degenerate) triangular sets as

to exclude three components in the irreducible decomposition. Since for
any given values of u1 and u2, the values of y1; : : : ; y6 for each component
can be determined from the corresponding triangular set, the geometric
meaning of each component can be observed by some geometric means
such as drawing a �gure. This would help us understand the ambiguity
of drawing triangles on a segment. It is not di�cult to �gure out that
T 03 = 0 if and only if one of 4ABC0 and 4CAB0 is drawn inward and the
other outward, and T 05 = 0 if and only if one of 4ABC0 and 4BCA0 is
drawn inward and the other outward. The theorem is true if and only if
4ABC0;4CAB0 and 4BCA0 are drawn all inward or all outward.
Using ProverC, we compute an irreducible decomposition for Zero(P=Q�)

over Q and obtain 8 triangular sets, which are T2; : : : ;T9 as given above.
If the decomposition is computed over Q(u1; u2), one gets the 3 triangular
sets T2;T3;T4. From either of the two decompositions, one can reach the
same conclusion that the theorem is not generically true. ut
The formulation of Steiner's theorem in the above example using square

of distance is straightforward, where we have encountered the reducibility
problem because on which side of a line an equilateral triangle is drawn
cannot be easily distinguished. Using vector rotation in which orientation
is taken into account, we can give a simple formulation of Steiner's theorem
in a generalized form as shown below. With this formulation, the machine
proof becomes quite trivial.

Example 8.3.4. (Steiner's theorem generalized). Let ABC0,BCA0 andCAB0

be three similar isosceles triangles drawn all inward or all outward on the
three sides of an arbitrary triangle ABC. Then the three lines AA0, BB0

and CC0 are concurrent.

As 4ABC0,4BCA0 and 4CAB0 are similar, their altitudes are propor-
tional to the lengths of the corresponding bases jABj, jBCj and jCAj. Let
the ratio be � and the six points be located as

A(0; 0); B(x1; 0); C(x2; x3); A
0(x4; x5); B

0(x6; x7); C
0(x8; x9):

To avoid the problem of reducibility, we consider the point A0 as the end
of the vector starting from the midpoint of B and C with length equal to
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�jBCj and the same direction as the vector obtained by rotating
�!
BC 90�

anticlockwise. Similarly, the points B0 and C0 are so constructed. Then the
hypothesis of the theorem may be expressed as8>>>>>>>><

>>>>>>>>:

H1 = 2x4 � (x1 + x2) + 2�x3 = 0;

H2 = 2x5 � x3 + 2�(x1 � x2) = 0;

H3 = 2x6 � x2 � 2�x3 = 0;

H4 = 2x7 � x3 + 2�x2 = 0;

H5 = 2x8 � x1 = 0;

H6 = x9 � �x1 = 0:

 A  B 

 C 

 C  ’ 

 B  ’ 
 A  ’ 

Fig. 8

The polynomial set T= [H1; : : : ;H6] is already a triangular set and a plex
Gr�obner basis with respect to !3 � � � x4 � � � � � x9. The conclusion of
the theorem is

G = [(x2 � x1)x4x7 � x2x5(x6 � x1)]x9 + [(x1x5 � x3x4)x7
+x3x5(x6 � x1)]x8 � x1(x2x5 � x3x4)x7 = 0:

It is easy to verify that prem(G;T) = rem(G;T)� 0, and 1 is contained in
the reduced Gr�obner basis of T[fGz� 1g. So the theorem is proved to be
true universally. ut

8.4 More examples

To show the power of the algorithms described in Sects. 8.1 and 8.2, we
present a few more geometric theorems and their machine proofs. These
theorems are well-known and are proved automatically in the matter of sec-
onds. For some of them, polynomial factorization over algebraic extension
�elds is used.
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Let us �rst recall one of the most surprising and beautiful theorems in
elementary geometry that was discovered around 1899 by F. Morley. The
�rst automated proof of Morley's theorem in the generalized form stated
below is attributed to Wu (1984), who worked out a tricky and elegant
algebraic formulation. Since then, several simpli�ed machine proofs of the
theorem have been given by other researchers (Chou 1988 andWang 1995c).

Example 8.4.1. (Morley's theorem; Chou 1988,Wang 1995c, andWu 1984).
The neighboring trisectors of the three angles of an arbitrary triangle in-
tersect to form 27 triangles in all, of which 18 are equilateral.

 R  Q 

 B 

 A 

 P 

 C 

Fig. 9

Following Wu (1984), the hypothesis of the theorem consists of

\ABC = 3\PBC; \ACB = 3\PCB; tan2 � = 3;

\ABR = \PBC; \ACQ = \PCB; \BAR = \QAC;

\CBP + \PCB +\BAR � � mod 2�;

and the conclusion to be proved is

\QPR = \RQP =
�

3
:

Let x6 = tan � and take the coordinates of the points as

A(x4; x5); B(x1; 0); C(x2; 0); P (0; x3); Q(x10; x9); R(x8; x7):

Then, by taking tangent for the equalities of angles both the hypothesis
and the conclusion of Morley's theorem can be expressed as polynomial
equations with index triples

[6 x5 1]; [6 x5 1]; [2 x6 2]; [9 x8 1]; [9; x10 1]; [41 x10 1]; [40 x8 1]

and

[9 x10 1]; [10 x10 1]

with respect to the variable ordering x1 � � � � � x10. The theorem can
be easily proved by ProverA. For example, a plex Gr�obner basis of the
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hypothesis-polynomial set under x4 � � � � � x10 consists of 7 polynomials
with index triples

[7 x4 1]; [9 x5 1]; [2 x6 2]; [10 x7 1]; [13 x8 1]; [10 x9 1]; [13 x10 1]:

The remainders of the conclusion-polynomials with respect to this Gr�obner
basis are 0. Therefore, the theorem is proved to be true under some possible
non-degeneracy conditions which are not explicitly provided.
Without using Wu's trick, let us consider a natural formulation of the

theorem, where the hypothesis consists of

\ABC = 3\PBC; \ACB = 3\PCB; \CAB = 3\RAB;

\ABR = \PBC; \ACQ = \PCB; \BAR = \QAC

and the conclusion to be proved is

jPQj = jPRj; jPQj = jQRj:
Let the coordinates of the points be chosen as

A(y2; y1); B(u1; 0); C(u2; 0); P (0; 1); Q(y6; y5); R(y4; y3):

The hypothesis and the conclusion can both be expressed as polynomial
equations with index triples

� hypothesis: [6 y2 1]; [6 y2 1]; [191 y4 3]; [9 y4 1]; [9; y6 1]; [41 y6 1];

� conclusion: [6 y6 2]; [6 y6 2]

with respect to the variable ordering y1 � � � � � y6. The set H of hypothesis-
polynomials can be decomposed over Q(u1; u2) into two irreducible trian-
gular sets

T= [T1; T2; T3; T4; T5; T6];

T� = [T1; T2; T �3 ; T4; T5; T6];

where

T1 = Iy1 � ��;
T2 = �(y2 � u2) + u2(u22 � 3)y1;

T3 = Iy23 � 4u1(u1� + 4u2)y3 + 4u21�;

T4 = 2u1y4 + (u21 � 1)y3 � 2u21;

T5 = f[�u32 + u31� + (7u1u2 + 3)(u2 + u1)]y3 � 2u1(u
2
1 + 1)�gy5

�2�u2(u22 + 1)y3;

T6 = (y2 + u2y1 � u2)(y6 � u2)� (u2y2 � y1 � u22)y5;
T �3 = Iy3 + 2u1(u2 � u1)�;

I = �u22 + 8u1u2 � u21 + 3;

� = 3u21 � 1; � = 3u22 � 1:
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In computing the zero decomposition, no algebraic factorization is needed.
The pseudo-remainders of the conclusion-polynomials are both 0 with re-
spect to T, but not 0 with respect to T�. Therefore, under some non-
degeneracy conditions the algebraic form of the theorem is true for one
component and false for the other.
In the tricky formulation of Wu, the constraint

\CBP +\PCB + \BAR � � mod 2�

with tan2 � = 3 is imposed. After the addition of this to H the component
T� is then excluded, so that only T remains. Therefore, we may arrive at
the same conclusion as Wu without using his trick in the formulation.
Note that T3 is of degree 2 and T �3 of degree 1 in y3. This can be ex-

plained roughly as follows. After the trisectors are �xed for two angles of
the triangle, the trisectors for the third angle would have three possibilities
in forming the triangle PQR. T3 corresponds to two of these possibilities for
which 4PQR is equilateral, and T 03 corresponds to the third possibility for
which 4PQR is not equilateral in general. To see the former more clearly,
let us introduce a new variable y0 and add T0 = y20 � 3 to H . Then T3
can be factorized, over Q(u1; u2; y0) with y0 having adjoining polynomial
T0, as (9.4.7) so fT0g [T1 can be further decomposed into two irreducible
triangular sets

T0 = [T0; T1; T2; T 03; T4; T5; T6];

T00 = [T0; T1; T2; T 003 ; T4; T5; T6]:

We may prove, instead of jPQj = jPRj and jPQj = jQRj, the conclusions
tan2\QPR = 3 and tan2\PQR = 3 which can be written as

(tan\QPR+ y0)(tan\QPR� y0) = 0;

(tan\PQR+ y0)(tan\PQR� y0) = 0:

It is easy to verify that tan\QPR+ y0 = 0 and tan\PQR� y0 = 0 are
true for T0, and so are tan\QPR� y0 = 0 and tan\PQR+ y0 = 0 for T00.
That is, for both of the components that correspond to the two possibilities
of T3 in forming4PQR the theorem is true.
By means of polynomial factorization, H can also be decomposed over

Q(u1; u2) into two plex Gr�obner bases G1 and G2 such that

Zero(H) = Zero(G1) [ Zero(G2 );

where

G1 =

2
64
T1; G2; T3; T4;

u1cy5 + au2y3 � 2u1u2(u2 + u1);

2u1cy6 � ady3 + 2u1(u1d� 2u2)

3
75 ;
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G2 =

2
6664
T1; G2; T

�
3 ;

Iy4 � 3bu32 � 2u1c � 7u21u2 � u2;
Iy5 � 2�u2(u2 � u1);
Iy6 � 3u31d� 7u1u22 � 2au2 � u1

3
7775 ;

G2 = Iy2 � 8u1u2(u2 + u1);

a = u21 + 1; b = u21 � 1; c = u22 + 1; d = u22 � 1:

It may be easily veri�ed that the remainders of the two conclusion-polynomials
are both 0 with respect to G2 , but not 0 with respect to G1 . Therefore, un-
der some non-degeneracy conditions the theorem is true for one component
and false for the other. This re
ects the fact that among the 27 triangles
18 are equilateral and not so are the other 9. ut
Example 8.4.2. (Th�ebault-Taylor's theorem; Chou 1988, Wang 1995c, Wu
1986c, Yang, Zhang and Hou 1993). Given a triangle ABC and a point D
on the side BC, let C2 be any Th�ebault circle with center T tangent to
the circumscribed circle C0 of the triangle and the lines AD and BC. Then
among the inscribed and escribed circles of ABC there is just one C1 with
center I such that TI passes through the center of another Th�ebault circle
C3 tangent to C0 and AD;BC.

We use the algebraic formulation given in Yang, Zhang and Hou (1993), in
which the hypothesis set H consists of 7 polynomials with index triples

[11 x1 2]; [35 x2 2]; [35 x3 2]; [3 x4 1]; [3 x5 1]; [12 x6 1]; [13 x7 1]

and the conclusion consists of a single polynomial G with index triple
[11 x7 1] in the variables u1 � u2 � u3 � x1 � � � � � x7. H can be de-
composed over Q(u1; u2; u3) into four irreducible triangular sets T1; : : : ;T4

with
T1 = [T1; T2; T3; T4; : : : ; T7];

T3 = [T1; T 02; T3; T4; : : : ; T7];

T2 = [T1; T2; T
0
3; T4; : : : ; T7];

T4 = [T1; T 02; T
0
3; T4; : : : ; T7];

T1 = 4u21u
4
2x

2
1 � (2u22u3 � 
 + 2u21u

2
2)(2u

2
1u

2
2u3 + u21
 � 2u22);

T2 = 2u2adx2 + 2u1u2�(x1 + u3) + �;

T3 = 2u2adx3 � 2u1u2�(x1 � u3) + �;

T4 = u1u2x4 � ab;
T5 = u1u2x5 � cd;
T6 = 2u21[u

2
2(x5 + x4)� �]x6 � u21
(x5 + x4) + �(u41 + 1);

T7 = abcdx7 + [2u21u
2
2x5 + cd(u21u

2
2 + 1)]x6 � u21
x5 + u42 � u41;

T 02 = 2u2bcx2 � 2u1u2�(x1 + u3) + �;

T 03 = 2u2bcx3 + 2u1u2�(x1 � u3) + �;
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a = u1u2 + 1; b = u1u2 � 1; c = u1 + u2; d = u1 � u2;
� = u22 � 1; � = u42 � 1; 
 = u42 + 1; � = (u21 + 1)�2:

The pseudo-remainder of G is 0 with respect to T1, but not 0 with respect
to T2;T3 and T4. Hence, the algebraic form of the theorem is true for one
component and false for all the others. The largest polynomial occurring
in the reduction of the proof contains 168 terms. More than half of the
computing time was spent for the two algebraic factorizations (9.4.8) and
(9.4.9) given in Sect. 9.4. ut
Example 8.4.3. (Steiner-Lehmus' theorem; Wu and L�u 1985). Any triangle
ABC whose two internal bisectors jAA0j and jBB0j are equal is an isosceles
triangle.

Without loss of generality, let the coordinates of the points be located as

A(�1; 0); B(1; 0); C(x1; x2); A0(x3; x4); B0(x5; x6):

Then the hypothesis of the theorem consists of8>>>>>>>>>>><
>>>>>>>>>>>:

H1 = x2x
2
4 + 2(x1 + 1)(x3 + 1)x4

�x2(x3 + 1)2 = 0; � \CAA0 = \A0AB

H2 = x2x
2
6 + 2(x1 � 1)(x5 � 1)x6

�x2(x5 � 1)2 = 0; � \ABB0 = \B0BC

H3 = (x1 + 1)x6 � x2(x5 + 1) = 0; � B0 is on AC

H4 = (x1 � 1)x4 � x2(x3 � 1) = 0; � A0 is on BC

H5 = x26 + (x5 � 1)2 � x24 � (x3 + 1)2 = 0: � jAA0j = jBB0j

The problem is to decide when G = x1 = 0, i.e., jACj = jBCj. With
the ordering x1 � � � � � x6, fH1; : : : ;H5g can be decomposed over Q by
IrrCharSer into 15 irreducible ascending sets and by IrrTriSer into 21 irre-
ducible triangular sets. There are 6 ascending sets in which x2 is contained.
These ascending sets correspond to the degenerate case in which A;B;C
are collinear. Among the remaining 9 ascending sets, four contain x1 as
their �rst polynomials, so the algebraic form of the theorem is true for
these components and false for the others.
For the zero decomposition, several algebraic factorizations have to be

computed. Two of them are given as (9.4.10) and (9.4.11) in Sect. 9.4. ut
The above examples demonstrate the signi�cance of algebraic factoriza-

tion in geometric theorem proving, for which polynomials needed to be
factorized as well as the adjoining polynomials are usually quadratic. The
degree is low mainly because the geometric theorems considered so far only
involve �gures like triangles and circles whose algebraic character is no more
than quadratic and the algebraic formulations are often made carefully and
simple to avoid polynomials of high degree. If one does not take good care
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of algebraic formulation or geometric �gures with algebraic character of
high order are considered, polynomials may have to be factorized over al-
gebraic extension �elds with adjoining polynomials of degree greater than
2. This can be seen from the factorization (8.3.1) and the example given
below.

Example 8.4.4. (Feuerbach's theorem; Wu 1994). The nine-point circle of
any triangle is tangent to the inscribed and escribed circles of the triangle.

Referring to the algebraic formulation given in Wu (1994, pp. 201{205),
one can easily verify that the conclusion polynomialG there can be factor-
ized over Q and the set of hypothesis-polynomials can be decomposed over
Q(x1; x2; x3) (with no need of algebraic factorization) into four irreducible
ascending sets. With respect to each ascending set, there is one and only one
of the pseudo-remainders of the four factors of G that is identically equal to
0. This phenomenon can be easily explained from a geometric point of view.
We have tried a more natural algebraic formulation di�erent from Wu's. In
our case, the set of hypothesis-polynomials can be decomposed into four
irreducible ascending sets, too, over the corresponding rational function
�eld and a similar phenomenon appears. However, with our formulation
algebraic factorizations have to be performed for the irreducible zero de-
composition. Two of the factorizations are given as (9.4.3) and (9.4.4) in
Sect. 9.4. ut

8.5 Discovering geometric theorems

In the case of theorem proving, there is a known conclusion whose truth
one wishes to con�rm. Now consider another situation where we want to
derive some possible conclusion or relation we do not know. We discuss two
example applications of elimination methods to deal with the situation.
We want to derive automatically algebraic unknown relations among

some geometric entities, where an adequate description of the geometric
hypotheses among the geometric entities is given. The idea is �rst to al-
gebraize the geometric hypotheses as a set of polynomial equations and
equations, then to compute a triangular set, triangular series or Gr�obner
basis of the corresponding polynomial set using an appropriate variable
ordering and �nally to get the desired relations from the triangularized
sets. A typical example is the automated derivation of Qin-Heron formula
(representing the area of a triangle in terms of its three sides).
The problem of deriving unknown algebraic relations and its solution

may be formulated in the form of the following algorithm.

Algorithm Discover: HC, NO, or R Discover(P;Q). Given a set HYP of
geometric hypotheses expressed as a system of polynomial equations and
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inequations
P= fP1(u;x); : : : ; Ps(u;x)g = 0;

Q= fQ1(u;x); : : : ; Qt(u;x)g 6= 0

in two sets of geometric entities u = (u1; : : : ; ud) and x = (x1; : : : ; xn) with
coe�cients in K and given a �xed integer k, without loss of generality,
say k = 1, this algorithm either reports HC(HYP), or determines whether
there exists a polynomial relation R(u; x1) = 0 between u and x1 such
that Zero(P=Q)� Zero(R), and if so, �nds such a R(u; x1); otherwise, the
algorithm reports No.

D1. Compute over K a (quasi-, weak-) medial set T of P by CharSetN

or PriTriSys, or a Gr�obner basis T of P[ fQ1z1 � 1; : : : ; Qtzt � 1g
with respect to the purely lexicographical ordering under u1 � � � � �
ud � x1 � � � � � xn � z1 � � � � � zt, where z1; : : : ; zt are new
indeterminates. IfT\K 6= ; or 0 2 prem(Q;T) then return HC(HYP)
and the algorithm terminates.

D2. Set Th1i T\ (K[u; x1] nK[u]). If T is a Gr�obner basis computed
in D1 then go to D4. If there exists a polynomial R(u; x1) 2 Th1i
and T\K [u] is empty or irreducible as a triangular set, then return
R(u; x1) and the algorithm terminates.

D3. Compute an irreducible triangular series 	 = fT1; : : : ;Teg of [P;Q]
over K. If 	 = ; then return HC(HYP) and the algorithm terminates.
Set

Th1ii  Ti\ (K[u; x1] nK[u]); 1 � i � e:
If for every 1 � i � e there exists a polynomialRi(u; x1) 2 Th1ii then
return

R(u; x1) 
eY

i=1

Ri(u; x1)

else return NO. The algorithm terminates.

D4. If Th1i 6= ; then return the polynomial R(u; x1) 2 Th1i that has
minimal degree in x1 else return NO.

Proof. The equality R(u; x1) = 0, if computed, is clearly a polynomial
relation between u and x1. Since Tis a medial set computed by CharSetN

or PriTriSys fromPor a Gr�obner basis of P� = P[fQ1z1�1; : : : ; Qtzt�1g,
T� Ideal(P�). It follows that Zero(P=Q)� Zero(R).

If there exists an i, 1 � i � e, such that Th1ii = ;, then x1 is a parameter
of Ti. In this case, the scope of x1 in Zero(P=Q) for a �xed u = �u covers
any extension �eld of K. Hence, there is no algebraic relation between u

and x1 in general. It is so when Tis a Gr�obner basis of Pand Th1i = ;. ut



8.5 Discovering geometric theorems 253

In the case of using Gr�obner bases, the consistency of HYP is not com-
pletely examined in Discover; it is when Q = ; or Ideal(Q) is radical. The
following postprocess may be incorporated into the algorithm.

D1. When NO is returned, analyze the computed irreducible triangular
series or Gr�obner basis, and try to get possible relations by providing
appropriate subsidiary conditions of the form Di 6= 0 and adding the
Di to Q to exclude some components.

The triangular sets/series and the Gr�obner bases may also be computed
overQ(u) when the variables u are speci�ed to be independent parameters.
Then, any case in which u are constrained by a polynomial equation is con-
sidered as a degenerate case. The algorithm either detects the dependency
of u or derives a relation that holds generically; it does not necessarily hold
in the degenerate cases.

Example 8.5.1. (Qin-Heron's formula; Wu 1986b, Chou and Gao 1990a,
Wang 1995b). Determine the area � of an arbitrary triangle ABC in terms
of its three sides a; b; c.

a

C

A

b

cB

Fig. 10

Let the vertices of the triangle be located as A(x1; 0); B(0; 0); C(x2; x3).
Then the geometric hypotheses may be expressed as the following polyno-
mial equations

HYP :

8>>><
>>>:

H1 = x21 � c2 = 0; � c = jABj
H2 = x22 + x23 � a2 = 0; � a = jBCj
H3 = (x2 � x1)2 + x23 � b2 = 0; � b = jACj
H4 = x23x

2
1 � 4�2 = 0: � � = 1

2 jABj � jADj
Let P= fH1; : : : ;H4g and the variables be ordered as a � b � c � � �
x1 � x2 � x3. It is easy to compute a principal triangular system [T;U] of
P:

T= [R;H1; T;H2]; U= fx1g;
where

R = 16�2 + c4 � 2b2c2 � 2a2c2 + b4 � 2a2b2 + a4;

T = 2x1x2 � c2 + b2 � a2:
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Actually, Tis a weak-characteristic set of P. A Gr�obner basis of P is

G = [R;H1; 2c
2x2 � (c2 � b2 + a2)x1; T;H2]:

In either case R = 0 gives the algebraic relation we wanted to derive. Let
p = (a+ b+ c)=2; we have

�2 = p(p� a)(p� b)(p� c):
This is the well-known Qin-Heron formula (Wu 1986b). ut
Example 8.5.2. (Brahmagupta's formula; Chou and Gao 1990a,Wang 1995b).
Let ABCD be a cyclic quadrilateral. Determine the signed area of the ori-
ented quadrilateral ABCD in terms of its four sides.

D

C

A

B

Fig. 11

Let the coordinates of the points be chosen as

A(0; 0); B(a; 0); C(x1; x2); D(x3; x4);

and
b = jBCj; c = jCDj; d = jDAj:

Denote the sum of the signed areas of 4ABC and 4ACD by �. Then the
conditions relating these geometric entities can be expressed as8>>>>>><

>>>>>>:

H1 = x22 + x21 � 2ax1 � b2 + a2 = 0;

H2 = x24 � 2x2x4 + x23 � 2x1x3 + x22 + x21 � c2 = 0;

H3 = x24 + x23 � d2 = 0;

H4 = ax2x
2
4 � a(x22 + x21 � ax1)x4 + ax2x

2
3 � a2x2x3 = 0;

H5 = x1x4 � x2x3 + ax2 � 2� = 0:

We wish to �nd a relation among a; : : : ; d and �. To this end, set P =
fH1; : : : ;H5g and compute a quasi-N-characteristic set C of Pwith respect
to the ordering a � � � � � d � � � x1 � � � � � x4: C may be found to
contain �ve polynomials with the following index triples

[46 � 4]; [35 x1 1]; [6 x2 1]; [10 x3 1]; [4 x4 1];
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with three factors a; x1 and F = d2 + c2 � b2 � a2 removed during the
computation. Thus, we have the following zero relation

Zero(P=ax1F ) � Zero(C ):

It may be veri�ed with ease that ax1F = 0 corresponds to some degener-
ate cases of the geometric problem. The �rst polynomial R in C may be
factorized as

R = (R0 + 8abcd)(R0� 8abcd);

where

R0 = 16�2 + d4 � 2(c2 + b2 + a2)d2 + c4 � 2(b2 + a2)c2 + (b2 � a2)2:
Therefore, we get the algebraic relation R = 0 under some non-degeneracy
conditions. In fact, by computing a characteristic series we have veri�ed
that R = 0 holds in all the degenerate cases; namely, the relation follows
from the geometric hypotheses universally.
A Gr�obner basis of Punder � � x1 � � � � � x4 may be found to consist

of �ve polynomials with index triples

[46 � 4]; [26 x1 1]; [13 x2 1]; [26 x3 1]; [13 x4 1]:

The �rst polynomial in the basis is identical to the above R. Hence, the
same relation R = 0 is derived without much di�culty. That R = 0 holds
universally may be veri�ed, for instance, by computing a Gr�obner basis of
H [ fRz � 1g over Q with respect to the total degree term ordering; 1 is
contained in the basis.
Set p = (a + b + c + d)=2; R = 0 leads to either of the following two

equalities
�2 = (p � a)(p� b)(p� c)(p� d);
�2 = p(p� a� b)(p� a � c)(p� a� d):

The �rst, which is the known Brahmagupta's formula, gives the real result
when the number t of positive variables among a; : : : ; d is even; and so does
the second when t is odd (see Chou and Gao 1990a). ut
Example 8.5.3. Consider the geometric problem in Example 8.5.2. The the-
orem can be \discovered" in a di�erent way as follows. Motivated by the
Qin-Heron formula, we may conjecture that the Brahmagupta formula
holds for an arbitrary oriented quadrilateral ABCD. In other words, we
wish to show that

(8a; b; c; d; x1; : : : ; x4;�)[H1 = 0 ^H2 = 0 ^H3 = 0 ^H5 = 0

=) R0 + 8abcd = 0];

where the polynomials are as in Example 8.5.2. The conjecture is clearly
true when two of the pointsA;B;C;D coincide. If it is true not for arbitrary
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A;B;C;D, there should exist some relation which keeps the four points
constrained. So we order one of the variables a; x1; : : : ; x4 at the beginning
of the increasing queue, e.g.,

x4 � � � b � c � d:

With respect to this variable ordering, a plex Gr�obner basis G of

fH1;H2;H3;H5; R0 + 8abcdg

maybe easily computed. One �nds that G contains the polynomial (H4=a)
2.

In consequence,

H1 = 0; H2 = 0; H3 = 0; H5 = 0; R0 + 8abcd = 0

imply that H4 = 0. Hence, the conjecture holds only if H4 = 0, i.e.,
A;B;C;D are concyclic. One may verify that the conjecture becomes true
indeed when H4 = 0 is added to the hypothesis. In this way, the theorem
about Brahmagupta's formula is rediscovered. ut
Example 8.5.4. (Poncelet's theorem). Let R be the radius of the circum-
scribed circle and r the radius of the inscribed circle of an arbitrary triangle,
and let d be the distance between the centers of the two circles. Determine
the relation among R; r and d.

 D 

 A  B 

 C 

 H 

 r 

 R 

 d 

Fig. 12

Let ABC be an arbitrary triangle, D and H be the incenter and circum-
center of 4ABC and the coordinates be assigned as

A(x1; 0); B(x2; 0); D(0; x3); C(x4; x5); H(x6; x7):

Now the geometric hypotheses are:

� C lies on the re
ection line of AB with respect to AD

() H1 = (x2 � x1)[(x23 � x21)x5 � 2x1x3(x4 � x1)] = 0;
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� C lies on the re
ection line of BA with respect to BD

() H2 = (x2 � x1)[(x23 � x22)x5 � 2x2x3(x4 � x2)] = 0;

� H is the circumcenter of 4ABC

()
(

H4 = (x2 � x1)(2x6 � x2 � x1) = 0;

H3 = 2x5x7 + 2x4x6 � 2x2x6 � x25 � x24 + x22 = 0;

� r is the radius of the inscribed circle of4ABC =) H5 = r2�x23 = 0;

� R is the radius of the circumcircle of 4ABC

=) H6 = R2 � x27 � (x6 � x1)2 = 0;

� d = jDHj =) H7 = d2 � (x7 � x3)2 � x26 = 0.

Assume that 4ABC does not degenerate into a line, so that

(x2 � x1)x5 6= 0:

Computing a plex Gr�obner basis G of

fH1; : : : ;H7; (x2 � x1)z1 � 1; x5z2 � 1g

with respect to d � x2 � � � � � x7 � z1 � z2, one �nds that there is one
polynomial G in G which involves d;R; r only:

G = d4 � 2d2R2 + R4 � 4R2r2 = (d2 �R2 + 2Rr)(d2 �R2 � 2Rr):

Hence, the geometric hypotheses imply that G = 0. In the above derivation,
we have not used the implicit assumption that R > 0 and r > 0. Moreover,
it is obvious that R > d because the inscribed circle is contained in the
circumcircle of 4ABC. Therefore, we have

R2 � 2Rr = d2:

This is the great Poncelet theorem; it has been rediscovered automatically
by using Discover. ut
The results in the above two examples can also be derived easily by

computing triangular sets/systems instead of Gr�obner bases.



258 8. Automated geometry theorem proving and discovering



9

Other applications

9.1 Implicitization of parametric objects

Geometric objects like curves and surfaces may be represented algebraically
by implicit equations or parametric equations. The advantage of each rep-
resentation depends upon the type of problems to be solved. In geometric
modeling, one often needs to convert one representation into the other. The
rational parametrization of a geometric object in an n-dimensional a�ne
space may be represented as

x1 =
P1(y)

Q1(y)
; : : : ; xn =

Pn(y)

Qn(y)
;

where y = (y1; : : : ; ym) are parametric variables. The problem of implicit-
ization amounts to �nd the implicit equations in x which de�ne the same
geometric object as the parametrized representation does. This can be done
by using the following algorithm. The incorporation of projection into im-
plicitization algorithms was suggested �rst by Li (1989b).

Algorithm Impli:	 Impli(P;Q).Given two sets of polynomialsP1; : : : ; Pn
and Q1; : : : ; Qn in K[y], where Q1 � � �Qn 6= 0 and m � n, this algorithm
computes a �nite set 	 of polynomial systems [P1;Q1]; : : : ; [Pe;Qe] inK[x]

such that for any �x = (�x1; : : : ; �xn) 2 ~K
n
,

�x 2
e[

i=1

Zero(Pi=Qi) ()
9 �y 2 ~K

m
such that

�x1 =
P1(�y)

Q1(�y)
; : : : ; �xn =

Pn(�y)

Qn(�y)
:
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I1 Let
P fP1 � x1Q1; : : : ; Pn � xnQng;
Q fQ1; : : : ; Qng;
P� P[ fz1Q1 � 1; : : : ; znQn � 1g

and x1 � � � � � xn � y1 � � � � � ym. Compute a triangular series 	
of [P;Q], or a Gr�obner series 	 of P� under the purely lexicographical
term ordering, with projection for y and z1; : : : ; zn.

I2 Remove redundant sets from
S

[T;U]2	 Zero(T\K[x]=U\K[x]), sim-

plify it and let the obtained zero set be
Se
i=1 Zero(Pi=Qi). Then return

	 f[P1;Q1]; : : : ; [Pe;Qe]g:

Proof. By the de�nition of triangular and Gr�obner series and the projection
property of [T;U]2 	. ut

Example 9.1.5. (Buchberger 1987, Wu 1989a, and Wang 1995b). Consider
the parametric surface in 3-dimensional a�ne space de�ned by the following
equations

x = rt; y = rt2; z = r2:

Let P= fx � rt; y � rt2; z � r2g. A Gr�obner basis G of Pwith respect to
z � y � x � t � r can be easily computed:

G = [x4 � zy2; zyt � x3; xt� y; zt2 � x2; yr � x2; xr� zt; tr� x; r2 � z]:
The equation x4 � zy2 = 0 resulted from G appears to be the implicit
equation of the surface, but it does not strictly meet the speci�cation of
the implicitization problem as remarked by Buchberger (1987). For the y-
axis is a solution to this implicit equation, whereas it does not appear in
the surface de�ned by the parametric representation.
To get the exact implicit equations by projection, we adjoin x | the

initial of the third and the sixth polynomial in G which have lowest degree
1 in their leading variables | to P, compute the Gr�obner basis of the
obtained polynomial set and proceed further. Finally, one may get two
additional Gr�obner bases

G1 = [y; x; t; r2� z]; G2 = [z; y; x; r];

such that
Zero(P) = Zero(G=x) [ Zero(G1 ) [ Zero(G2 ):

Thus

Projz;y;xZero(P)
= Projz;y;xZero(G=x) [ Projz;y;xZero(G1) [Projz;y;xZero(G2)

= Zero(y2z � x4=xyz) [ Zero(fx; yg) [ Zero(fx; y; zg)
= Zero(y2z � x4=xy) [ Zero(fx; yg):
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This implies that the implicit equations are

(y2z � x4 = 0 ^ xy 6= 0) _ (x = 0 ^ y = 0):

Now compute a characteristic series ofPwith respect to the same variable
ordering: it consists of three ascending sets

C 1 = [x4 � zy2; xt� y; yr � x2];
C 2 = G1 ; C 3 = G2 :

Projecting the corresponding zero sets, one obtains the same implicit equa-
tions for the surface. ut

Example 9.1.6. Find the implicit form (in the variables x and y) of the
curve given by the following set of equations

(x� u)2 + (y � v)2 � 1 = 0;

v2 � u3 = 0;

2v(x� u) + 3u2(y � v) = 0;

(3wu2 � 1)(2wv � 1) = 0:

This is a formulation of an o�set to the curve y2 � x3 = 0. It has appeared
in Example 3.2.2, where a triangular series with projection for w; v; u under
the variable ordering x � y � u � v � w has been computed. Also listed
there are the 5 triangular systems [Ti;Ui] contained in the series. Thus, the
implicit equations may be given as

5_
i=1

(T(2)
i = 0 ^U(2)

i 6= 0); (9.1.1)

where T(2)
i = Ti \Q[x; y] and U(2)

i = Ui\Q[x; y] for each i. However, the
equations (9.1.1) are rather tedious. We show how they can be simpli�ed

considerably. First of all, computing a regular series of [T(2)
i ;U(2)

i ] one �nds

that all the polynomials in U(2)
i can be eliminated for i = 2; : : : ; 5. In other

words,

Zero(T(2)
i =U(2)

i ) = Zero(T(2)
i ); 2 � i � 5:

A regular series of [T(2)
1 ;U(2)

1 ] comprises three regular systems [T1j;U1j]
with T11 = [T11] and

T12 = [T41; coef(T11; y
6)y4 + coef(T11; y

4)y2 + coef(T11; y
2)];

T13 = [T31; 729(18x� 1)y2 � 39366x4 � 26244x3 � 60993x2� 32868x� 13381];

U11 = fx; T21; T31; T41g; U12 = U13 = ;:
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See Example 3.2.2 for the polynomials T11; T21, etc. It is easy to verify that

Z1 = Zero(fT21; T11g=x) = Zero(T2);

Z2 = Zero(fT31; T11g=xT21) = Zero(T3) [ Zero(T13);

Z3 = Zero(fT41; T11g=xT21T31) = Zero(T4) [ Zero(T12):

It follows that

Zero(T11=x) = Z1 [Z3 [ Z3 [ Zero(T11=U11) =
4[
i=1

Zero(T(2)
i =U(2)

i ):

Therefore,

5[
i=1

Zero(T(2)
i =U(2)

i ) = Zero(T11=x) [ Zero(T(2)
5 )

and thus the implicit equations (9.1.1) are simpli�ed (with E = T11) to:

E = 729x8 + 216x7 + 729x6y2 � 2900x6� 1458x5y2 � 2376x5

�2619x4y2 + 3870x4 � 1458x3y4 � 4892x3y2 + 4072x3

+729x2y4 � 297x2y2 � 1188x2 � 4158xy4 + 5814xy2

�1656x+ 427y2 � 1685y4 + 729y6 + 529 = 0;

x 6= 0

(9.1.2)

or
x = 0; 729y4 � 956y2 � 529 = 0: (9.1.3)

These equations may also be derived by computing a characteristic series
with projection. A characteristic set of P is easy to compute, but the com-
putation of characteristic series may take much time.
One can examine that the �rst equation E = 0 in (9.1.2) becomes

(y2 � 1)(729y4 � 956y2 � 529) = 0

when x = 0. However, (0; 1) and (0;�1) which are solutions of E = 0 do
not lie on the parametric curve (i.e., there are no corresponding u; v and
w such that the parametric equations are satis�ed). This is why one needs
(9.1.3) instead of (9.1.2) in the case of x = 0. In summary, we have:

� Any point (x; y) on the curve de�ned by the parametric equations is
a point on the curve de�ned by the implicit equation E = 0.

� Any point (x; y) other than (0; 1) and (0;�1) on the curve de�ned
by the implicit equation E = 0 is a point on the curve de�ned by the
parametric equations.

ut
Related to the implicitization of parametric objects, there are several

other problems such as the independency of parameters, the propriety of
parametrization and the inversion problem. They can also be treated by
using elimination methods.
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9.2 Automatic derivation of locus equations

The method of formula derivation may be generalized to derive the locus
equations of a motion whose geometric description is given. The di�erence
is that now one needs to determine one or several sets of algebraic relations
between n variables x = (x1; : : : ; xn) and u, and projection is required.
By locus equations we mean a system or the disjunction of several sys-

tems of polynomial equations and inequations in x with u as parameters
such that not only the system is a formal consequence of the geometric
hypotheses, but also for any point on the locus there is at least one con�g-
uration which satis�es the geometric hypotheses.
Before stating the problem and its solution in the form of an algorithm,

let us make the following convention. For any set union S =
S
A2� SA,

by removing redundant sets from S we mean determining a subset �0 of
� such that

S
A2�n�0 SA = S. By simplifying S we mean �nding another

set 
 such that
S
A2
 SA = S and

S
A2
 SA as a representation of S is

simpler than
S
A2� SA. We have indicated in Sect. 6.2 some possibilities of

removing redundant zero sets. Other techniques have been given in some
implementation-related articles, for example, Chou and Gao (1990b) and
Wang (1995a). A satisfactory discussion on how to simplify the union of
zero sets is much beyond the scope of this section. See Examples 9.1.5 and
9.1.6 for two concrete instances of such simpli�cation.

Algorithm Derive: 	 Derive(P;Q). Given a set HYP of geometric con-
straints expressed as a system of polynomial equations and inequations

P= fP1(u;x;y); : : : ; Ps(u;x;y)g = 0;

Q= fQ1(u;x;y); : : : ; Qt(u;x;y)g 6= 0

in u;x and y for a point x = (x1; : : : ; xn) to move in an n-dimensional a�ne
space An

K , where u = (u1; : : : ; ud) is a set of (geometric) parameters and
y = (y1; : : : ; ym) a set of other geometric entities, this algorithm computes
a �nite set 	 of polynomial systems

[P1;Q1]; : : : ; [Pe;Qe]

in K(u)[x] such that

(a) for any (�x; �y) 2 Zero(P=Q), there exists an i, 1 � i � e, such that
�x 2 Zero(Pi=Qi);

(b) for any 1 � i � e and any �x 2 Zero(Pi=Qi) there exists a �y 2 ~K
m

such that
(�x; �y) 2 Zero(P=Q):

The disjunction
e_

i=1

(Pi = 0 ^Qi 6= 0)
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is called the locus equations of point x (in terms of u).

D1. Compute a characteristic, triangular, or Gr�obner series 	 of [P;Q]
with projection for y with respect to the variable ordering

x1 � � � � � xn � y1 � � � � � ym:

If 	 = ;, i.e., Zero(P=Q) = ;, then either the geometric conditions
are self-contradictory, or the motion is free (i.e., for any �x there is a �y
such that (�x; �y) 2 Zero(P=Q), so the locus �lls up the whole space);
thus the procedure terminates.

D2. Remove redundant sets from[
[T;U]2	

Zero(T\K(u)[x]=U\K(u)[x]);

simplify it and let the obtained zero set be
Se
i=1 Zero(Pi=Pi). Return

	 f[P1;Q1]; : : : ; [Pe;Qe]g:

Proof. It follows from the de�nition of characteristic/triangular/Gr�obner
series and the projection property of [T;U]2 	. ut
In D1 the series 	 may also be computed in K[u;x;y]. Actually, one

needs to perform the elimination only for y because it is su�cient when
one has already obtained the equations and inequations in u and x| they
do not have to be in triangular form.

Example 9.2.7. Let a plane intersect the four edges AB;AC;DC and DB
of a tetrahedron ABCD at points E;F;G and H respectively such that
EFGH is a parallelogram. Determine the locus equations of the center O
of =��=

��
EFGH.

D

C

A

B
E

F
G

OO
F

O

H

Fig. 13
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Let the points be located as

A(0; 0; 0); B(u1; 0; 0); C(u2; u3; 0); D(u4; u5; u6); E(y1; 0; 0);

F (y2; y3; 0); G(y4; y5; y6); H(y7; y8; y9); O(X;Y; Z):

We have the following relations

H1 = u2y3 � u3y2 = 0; � F lies on AC

H2 = u4y6 � u2y6 � u6y4 + u2u6 = 0;
H3 = u4y5 � u2y5 � u5y4 + u3y4 + u2u5

�u3u4 = 0;

9=
; � G lies on CD

H4 = u4y8 � u1y8 � u5y7 + u1u5 = 0;
H5 = u4y9 � u1y9 � u6y7 + u1u6 = 0;

�
� H lies on BD

H6 = y7 � y4 + y2 � y1 = 0;
H7 = y8 � y5 + y3 = 0;
H8 = y9 � y6 = 0;

9=
; �

�!
FE=

�!
GH

H9 = 2X � y4 � y1 = 0;
H10 = 2Y � y5 = 0;
H11 = 2Z � y6 = 0:

9=
; � O is the center

of =��=
��
EFGH

Let P= fH1; : : : ;H11g and the variables be ordered as

X � Y � Z � y1 � � � � � y9:

Either of the characteristic, triangular and Gr�obner series of P contains
only one element (triangular system, ascending set or Gr�obner basis). Pro-
jection onto X;Y; Z yields the �rst and the same two polynomials of the
corresponding set:

P1 = 2(u3 � u5)X � 2(u1 + u2 � u4)Y + (u1 + u2)u5 � u3u4;
P2 = 2u6X + 2(u1 + u2 � u4)Z � (u1 + u2)u6:

This is because all the initials are in the parameters ui. Hence the locus
equations are P1 = 0^P2 = 0, which represents the intersection line of the
two planes de�ned by P1 = 0 and P2 = 0 respectively. ut

Example 9.2.8. (Biarcs; Wang 1995b). Given two points A and B of two
di�erent circular arcs which have given tangent directions at A and B,
determine the locus of an intermediate point M at which the two circular
arcs join together with a common tangent.
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 D  A 

 M 

 B 

 C  1 
 C  2 

Fig. 14

This example originates from a book by A.W. Nutbourne and R. R. Mar-
tin (see Wang 1995b), in which one branch of the locus is proved to be a
circle using technical derivations. Here, we show how to derive the locus
automatically by using elimination methods. Let us choose the point coor-
dinates as

A(0; 0); D(u1; 0); B(u2; u3); M (X;Y ); C1(0; x1); C2(x2; x3):

From the geometric conditions we get the following relations

HYP :

8>>>>>><
>>>>>>:

H1 = (u2 � u1)(x2 � u2) + u3(x3 � u3) = 0; � BC2 ? BD
H2 = X2 + (x1 � Y )2 � x21 = 0; � jC1Aj = jC1M j
H3 = (x2 � u2)2 + (x3 � u3)2 � (x2 �X)2

�(x3 � Y )2 = 0;
� jC2Bj = jC2M j

H4 = X(x3 � x1) + x2(x1 � Y ) = 0: � M lies on C1C2

Let P= fH1; : : : ;H4g and X � Y � x1 � x2 � x3. A characteristic series
of Pconsists of three ascending sets, of which the largest comprises

R = u3(X2 + Y 2)2 � 2u1u3X(X2 + Y 2) + 2(u1u2 � u22 � u23)(X2 + Y 2)Y

+(2u1u2 � u22 � u23)u3(X2 � Y 2) + 2(u32 � u1u22 + u2u
2
3 + u1u

2
3)XY;

and other three polynomials having index triples [3 x1 1]; [12 x2 1] and
[6 x3 1]. The two simpler ascending sets are

[X � u2; Y � u3; 2u3x1 � u23 � u22;�x2 + u2; x3 � u3];
[X;Y; x1; [4 x2 1]; [5 x3 1]]:

Projection of the three onto X;Y results in

fRg; fX � u2; Y � u3g; fX;Y g:
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The last two polynomial sets correspond respectively to the points B and
A which are actually on the curve R = 0, so they are redundant. Therefore,
R = 0 is the locus equation of point M that we wanted to derive.
A triangular series of Pcomputed with projection for x3; x2; x1 is similar

to the characteristic series above. A Gr�obner basis of P consists of R and
other 6 polynomials with index triples

[20 x1 1]; [3 x1 1]; [39 x2 1]; [12 x2 1]; [22 x2 1]; [6 x3 1]:

By computing further Gr�obner bases and projection, the same locus equa-
tion R = 0 can be derived as well.
Using an extension of FactorA (Sect. 9.4 and Wang 1987), one can fac-

torize R into the following two polynomials

R1 = (X � u1 � �
2

)2 + (Y � � + u2�

2u3
)2 � �(u1u2 + �)

2(u1 � u2 + �)
;

R2 = (X � u1 + �

2
)2 + (Y � � � u2�

2u3
)2 � �(u1u2 + �)

2(u2 � u1 + �)
;

where

� =
p
u23 + (u1 � u2)2 = jBDj;

� = u1u2 � u21 + �2:

Hence the locus ofM has two components for any �xed u1; u2; u3. R1 = 0
and R2 = 0 represent two circles �I1 and �I2 passing through A and B,
whose centers I1; I2 and radii are readily determined. We thought that
one of the circles corresponds to the biarc of convex shape, and the other
to the biarc of S-shape; this is not true. The situation seems to be more
complicated. We have observed how the two circles �C1 and �C2 centered
at C1 and C2 contact at M along the locus circles �I1 and �I2 with
numerical simulation for a particular case u1 = �40; u2 = 55; u3 = 80 (see
Fig. 15). The circle �I1 is divided by the two lines AD and BD into four
arcs, and so is �I2. �C1 and �C2 are tangent externally when M moves
along two opposite arcs on �I1 or �I2, and internally otherwise. In the
latter case, �C1 is inside �C2 when M moves along one of the two arcs,
and so is �C2 inside �C1 when M moves along the other. It remains to be
an interesting geometric question to show whether this is always true.
The method works also for establishing locus equations for the space

biarcs. We omit the details.
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Fig. 15 ut

9.3 Existence conditions and detection of
singularities

The study of singularities is not only a classical topic in algebraic geometry
but also of importance for modern geometric applications. For example,
while tracing an algebraic curve, one �rst has to detect all the singular
points at which numeric methods do not work well. While studying the
kinematic behavior of a robot motion, one has to determine the singular
con�gurations as in this situation the robot arm has di�culties to move.We
explain how to establish the su�cient and necessary conditions for paramet-
ric algebraic hypersurfaces to have singularities of an arbitrary multiplicity
and to depict the structure of the singular varieties by computing their
irreducible decomposition, or all the singular points when they are �nite.
An algebraic hypersurface H in an n-dimensional projective space Pn or

a�ne space An is an algebraic variety of dimension n� 1 given by a single
homogeneous polynomial equation F (x0;x) = 0 or \ordinary" polynomial
equation F (x) = 0. It is called an algebraic curve and an algebraic surface

respectively for n = 2; 3. A point (�x0; �x) of H in Pn is said to be of mul-
tiplicity p if all the partial derivatives of order < p of F vanish at (�x0; �x),
but some of order p do not, i.e.,

@rF

@xr00 @x
r1
1 : : :@xrnn

(�x0; �x) = 0 for all r0 + r1 + � � �+ rn = r < p;

@rF

@xr00 @x
r1
1 : : :@xrnn

(�x0; �x) 6= 0 for some r0 + r1 + � � �+ rn = r = p:
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A point �x of H in An is said to be of multiplicity p if

@rF

@xr11 : : : @xrnn
(�x) = 0 for all r1 + � � �+ rn = r < p;

@rF

@xr11 : : : @xrnn
(�x) 6= 0 for some r1 + � � �+ rn = r = p:

Any point of multiplicity p � 2 is called a singular point of H.

Algorithm SinConP: 	 SinConP(F; p). Given the homogeneous poly-
nomial equation F (x0;x) = 0 in K[t; x0;x] of an algebraic hypersurface H
in Pn with t = (t1; : : : ; tm) as parameters, this algorithm computes a set
	 of n+ 1 polynomial sets P0; : : : ;Pn �K[t] such that H has singularities

of multiplicity � p+ 1 for t = �t 2 ~K
m
if and only if

�t 2
n[
i=0

Zero(Pi):

S1 Set

D f @pF

@xr00 @x
r1
1 : : : @xrnn

: r0 + r1 + � � �+ rn = pg:

Compute a Gr�obner basis G i of D jxi=1 with respect to the purely
lexicographical ordering determined by t1 � � � � � tm � x0 � � � � �
xn for 0 � i � n.

S2 Let Pi G i \K [t] for 0 � i � n and 	 fP0; : : : ;Png.

Proof. Suppose that H has a singular point �x of multiplicity � p + 1 for
some t = �t; then (�t; �x) 2 Zero(D ). The trivial zero 0 is not counted, so
there exists an i, 0 � i � n, such that �xi 6= 0. It follows that

(�t;
�x0
�xi
; : : : ;

�xi�1
�xi

; 1;
�xi+1
�xi

; : : : ;
�xn
�xi
) 2 Zero(D jxi=1) = Zero(G i ):

Hence
�t 2 Zero(G i \K[t]) = Zero(Pi): (9.3.4)

On the other hand, let (9.3.4) hold for some i, 0 � i � n; assume without
loss of generality that i = 0. Then

�t 2 Zero(Ideal(G0 ) \K[t]) = Zero(Ideal(D jx0=1) \K[t]):

LetRbe the resultant system of D with respect to x0;x. FromLemma 1.3.1
and the construction of R in Sect. 5.4, one knows that, for any R 2 R, there
exists an integer k such that Rxk0 2 Ideal(D ). This can also be seen from
(5.4.4) and van der Waerden (1950, p. 8). Hence,

Zero(Ideal(D jx0=1) \K[t]) � Zero(R); 8R 2 R:
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It follows that R(�t) = 0 for all R 2 R. By Theorem 5.4.3, D jt=�t has a
non-trivial zero �x in some extension �eld of K(�t) for x. In other words,
H has a singular point �x of multiplicity � p + 1 for t = �t. The proof is
complete. ut
Now consider hypersurfaces in the a�ne space An. Let F be a polynomial

inK[x] of total degree m, and Fi be the homogeneous part of total degree
i of F for 0 � i � m. We de�ne

@F

@1
, Fm�1 + 2Fm�2 + � � �+mF0

and accordingly the successive derivatives of higher order of F with respect
to 1. It is easy to verify the following Euler relation

@F

@1
= mF �

nX
i=1

xi
@F

@xi
:

Algorithm SinConA: 	 SinConA(F; p). Given the polynomial equation
F (x) = 0 in K[t;x] of an algebraic hypersurface H in An with t =
(t1; : : : ; tm) as parameters, this algorithm computes a �nite set 	 of poly-
nomial systems [P1;Q1]; : : : ; [Pe;Qe] in K[t] such that H has singularities

of multiplicity � p+ 1 for t = �t 2 ~K
m
if and only if

�t 2
e[

i=1

Zero(Pi=Qi):

S1 Set

D f @pF

@1r0@xr11 : : :@xrnn
: r0 + r1 + � � �+ rn = pg:

Compute a triangular series 	 of D with projection for x with respect
to the variable ordering t1 � � � � � tm � x0 � � � � � xn. If 	 = ;,
then H has no singularity for any t and the procedure terminates.

S2 Remove redundant sets from
S

[T;U]2	Zero(T\K [t]=U\K[t]), sim-

plify it and let the obtained zero sets be
Se
i=1 Zero(Pi=Qi). Return

	 f[P1;Q1]; : : : ; [Pe;Qe]g:

Proof. By the de�nition of triangular series and the projection property of
[T;U]2 	. ut

Remark 9.3.1. Together with projection, triangular series may also be used
to determine the conditions for projective hypersurfaces, and so may Gr�ob-
ner bases for a�ne hypersurfaces.
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In case the hypersurface H has singular points of multiplicity� p+1 for
some specialized t, the structure of the singular variety may be described
by computing its irreducible decomposition, from which the dimension of
each component is readily determined. When the singular points are �-
nite, computing all of them amounts to solving systems of triangularized
polynomial equations and inequations.
The necessary and su�cient conditions for H to have singularities of exact

multiplicity p + 1 and the structure of the corresponding singular variety
for specialized t may be easily determined when these have been done for
multiplicity � p+ 1: one simply introduces inequations.

Example 9.3.9. Consider the projective algebraic surface in P3 de�ned by
the equation

F = x30 + x31 + x32 + x33 + 3ax0x1x2 + 3bx1x2x3 = 0:

The set of four �rst partial derivatives of F with the constant 3 removed is

D = fax1x2 + x20; bx2x3 + ax0x2 + x21; bx1x3 + ax0x1 + x22; x
2
3 + bx1x2g:

Computing the Gr�obner bases of D jxi=1 for 0 � i � 3, one �nds that there
is one and only one polynomial

� = a6 � 2a3b3 + b6 + 2a3 + 2b3 + 1

involving variables a and b only in all the four bases. Hence the projective
surface has a singular point if and only if � = 0. By the same method one
may �nd that the surface has no singularity of multiplicity � 3.
Consider in particular the case when x0 is replaced by 1:

�F = F jx0=1 = 1 + x31 + x32 + x33 + 3ax1x2 + 3bx1x2x3 = 0

de�nes an algebraic surface in 3-dimensional a�ne space. With the ordering
a � b � x1 � x2 � x3, a characteristic series of

D0 = f@
�F

@1
;
@ �F

@x1
;
@ �F

@x2
;
@ �F

@x3
g

consists of two ascending sets

C 1 = [�; 2a3x31 + b3 � a3 + 1; ax1x2 + 1; 2a2bx3 + b3 + a3 + 1];

C 2 = [a3 + 1; b; x31� 1; ax1x2 + 1; x23]:

Projecting Zero(C i ) onto a; b for i = 1; 2, we have

Proja;bZero(D0 ) = Proja;bZero(C 1=abx1) [ Proja;bZero(C 2=ax1)
= Zero(�=ab(a3 � b3 � 1)) [ Zero(fa3 + 1; bg=a)
= Zero(�=a):
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Therefore, the surface �F = 0 has singular points if and only if � = 0
and a 6= 0. Using the same method, one can �nd that the surface has no
singularity of multiplicity � 3.
Take, for instance, a = b = �1= 3

p
4, which satis�es the condition obtained

in either case. Thus the surface must have singular points. To determine all
the points, one simply substitutes the values of a; b into the characteristic
series or Gr�obner bases. From them all the three singular points may be
easily found as follows

[1; 3
p
2; 3
p
2; 1];

[1;�
3
p
2(
p
3i + 1)

2
;

3
p
2(
p
3i � 1)

2
; 1];

[1;
3
p
2(
p
3i� 1)

2
;�

3
p
2(
p
3i + 1)

2
; 1]:

If we take a = 1, then there are four values of b such that � = 0. For each
of them the surface has three singular points. All these points have been
found in Example 7.2.1. ut
Example 9.3.10. For the univariate quartic equation

F = x4 + x1x
3 + x2x

2 + x3x+ x4 = 0 (9.3.5)

with indeterminate coe�cients x1; x2; x3 and x4, the discriminant �F of F
has been computed in Example 5.4.1. It is a polynomial of total degree 6.
�F = 0 de�nes an algebraic hypersurface, called the discriminant surface
of F , in 4-dimensional a�ne space. Let us investigate its singularities. The
existence of singular points, for example (0; : : : ; 0), is obvious. For the set
of four �rst partial derivatives of �F , an irreducible characteristic series
consists of three ascending sets

C 1 = [8x2 � 3x21; 16x3 � x31; 256x4� x41];
C 2 = [8x3 � 4x1x2 + x31; 64x4� 16x22 + 8x21x2 � x41];
C 3 = [108x23� 108x1x2x3 + 27x31x3 + 32x32 � 9x21x

2
2; 12x4� 3x1x3 + x22]:

They are of dimensions 1; 2 and 2 respectively. Since the initials of all the
polynomials in C 1 ; C2 ; C3 are constants, each ascending set itself de�nes
an irreducible algebraic variety. We have thus accomplished an irreducible
decomposition of the singular variety of the discriminant surface as well.
With some inspection, one may �nd that

� C 1 = 0 () (9.3.5) has a quadruple root;

� C 2 = 0 () (9.3.5) has two double roots;

� C 3 = 0 () (9.3.5) has a triple root.
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The remaining points on the discriminant surface correspond to (9.3.5)
having only one double root. This can also be con�rmed by elimination:
for example, collecting the coe�cients of F � (x2 � ax � b)2 in x yields
a set P of 4 polynomials in xi and a; b. C 2 may obtained by computing a
characteristic set or series of Pwith respect to x1 � � � � � x4 � a � b.
Furthermore, one may check with ease that the pseudo-remainders of

the second partial derivatives of �f are all 0 with respect to C 1 , but not
with respect to C 2 and C 3 . Hence the zeros, and in fact only those zeros,
of C 1 are singular points of multiplicity � 3 of the discriminant surface.
The origin (0; : : : ; 0) is the only singular point of multiplicity > 3 | it
is of multiplicity 6. It is also easy to verify that Zero(C 1) � Zero(C i ) for
i = 2; 3; actually,

Zero(C 1) = Zero(C 3 ) \ Zero(C 3):
Hence, Zero(C 1) is a redundant component that can be removed from the
decomposition.
Note incidentally that if the quintic is considered instead of quartic,

the computation becomes much more complicated. We have tried the case
without success. ut

9.4 Algebraic factorization

The �rst method

Let u1; : : : ; ud be d transcendental elements (indeterminates), abbreviated
u, and K0 = Q(u1; : : : ; ud) be the extension �eld obtained from Q by
adjoining u1; : : : ; ud. For every 1 � i � r, Ki = K0(�1; : : : ; �i) denotes
the algebraic extension �eld obtained from K0 by adjoining successively
the algebraic elements �1; : : : ; �i, where �i has adjoining polynomial Ai 2
Ki�1[yi]. As usual, let yfig stand for y1; : : : ; yi with y = yfrg. When
the polynomials Ai are explicitly given, we simply write K0(yfig) for K i

without introducing the �i. Assume without loss of generality that Ai 2
K0[yfig] for each i. Then A = [A1; : : : ; Ar] forms an irreducible adjoining
ascending set of the �eld Kr for y (see Sect. 1.4).
Our �rst algebraic factoring method may be described as follows.

Algorithm FactorA: F � FactorA(F; A ). Given an irreducible ascending
set A = [A1; : : : ; Ar] � K0[y] and a polynomial F 2 K0[y; y] of degree
m > 1, irreducible over K0 and reduced with respect to A , this algorithm
factorizes F into the product F � of irreducible factors over Kr = K0(y)
with adjoining ascending set A for y.

F1. If m is even then set �m m=2 else set �m (m� 1)=2.

F2. For s = 1; : : : ; �m do:
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F2.1. Let di ldeg(Ai) for 1 � i � r and t m� s. Set
G ys + g1y

s�1 + � � �+ gs; H yt + h1y
t�1 + � � �+ ht;

where

gi 
P

0 � kl � dl � 1
1 � l � r

gik1���kry
k1
1 � � �ykrr ;

hj 
P

0 � kl � dl � 1
1 � l � r

hjk1���kry
k1
1 � � �ykrr ;

1 � i � s;
1 � j � t:

and gik1���kr ; hjk1���kr are new indeterminates. Let the total num-
ber of gik1���kr and hjk1���kr beM [which is equal to (s+t)d1 � � �dr],
and rename these indeterminates x1; : : : ; xM .

F2.2. Expand R F � lc(F; y) �G �H, compute R prem(R; A ) and
equate the coe�cients of all the monomials of R in y and y to 0.
Let the obtained set ofM polynomial equations inK0[x1; : : : ; xM ]
be 8>><

>>:
P1(x1; : : : ; xM) = 0;

P2(x1; : : : ; xM) = 0;
� � � � � �

PM(x1; : : : ; xM) = 0:

(9.4.1)

F2.3. Solve the equations (9.4.1) for x1; : : : ; xM in K0 by any of the
methods presented in Chap. 7. If (9.4.1) has no solution in K0

then go back to F2 for next s. Otherwise, let x1 = �x1; : : : ; xM =
�xM be any solution of (9.4.1), set

G Gjx1=�x1;:::;xM=�xM ; H Hjx1=�x1;:::;xM=�xM

and go to F4 [in this case F is factorized as F
:
= lc(F; y) �G �H

over Kr].

F3. Return F � F [which is irreducible over Kr] and the algorithm ter-
minates.

F4. Factorize G and H over Kr and return

F � lc(F; y) � FactorA(G; A ) � FactorA(H; A ):

Proof. It is obvious. ut
In the above algorithm, algebraic factoring is reduced to solving polyno-

mial equations. In other words, whether F can be factorized into G and
H over Kr is equivalent to whether (9.4.1) has a solution for x1; : : : ; xM
in K0. Hu and Wang (1986) explained how the solvability and solutions
can be determined by using the method of characteristic sets with Gauss'
lemma.
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Example 9.4.1. Consider the following three polynomials

H1 = u3y
2
1 + 2u1u2y1 + 2u21y1 � u21u3;

H2 = u3y
2
2 � 2u1u2y2 + 2u21y2 � u21u3;

H3 = u3y
2
3 � u23y3 � u22y3 + u21y3 � u21u3

(see Example 9.4.3). Let K0 = Q(u1; u2; u3). We �rst examine the ir-
reducibility of H2 over K1 = K0(y1), where y1 is an algebraic element
having adjoining polynomial H1. For this purpose, let

G = y2 + g1y1 + g0;

H = y2 + h1y1 + h0:

Then

R = prem(H2 � lc(H2; y2) �G �H;H1; y1) = R1y1y2 + R2y2 + R3y1 +R4;

where
R1 = u3(g1 + h1);

R2 = u3(g0 + h0) + 2u1(u2 � u1);
R3 = �2u1(u2 + u1)g1h1 + u3(g1h0 + g0h1);

R4 = u3(u21g1h1 + g0h0 + u21):

Let P = fR1; : : : ; R4g. To determine whether P = 0 has a solution for
g1; g0 and h1; h0 in K0, we compute, for instance, a characteristic series of
Punder g0 � h0 � h1 � g1: it consists of two quasilinear ascending sets

C 1 =

2
6664
u3(u23 + �2)g20 + 2u1�(u23 + �2)g0 � 4u31u2u3;

u3h0 + u3g0 + 2u1�;

u1�h1 + u3g0 + u1�;

u1�g1 � u3g0 � u1�

3
7775 ;

C 2 = [u3g20 + 2u1�g0 � u21u3; u3h0 + u3g0 + 2u1�; h1; g1];

where
� = u2 + u1; � = u2 � u1:

The �rst polynomial in C 1 and in C 2 are both irreducible over Q, so neither
the system C 1 = 0^ ini(C 1) 6= 0 nor C 2 = 0^ ini(C 2 ) 6= 0 has a solution in
K0. Hence, the polynomial H2 is irreducible over K1.
Now we want to factorize H3 over K2 =K1(y2), with adjoining polyno-

mial H2 for y2. Proceeding in a similar way, let

G = y3 + g11y1y2 + g01y2 + g10y1 + g00;

H = y3 + h11y1y2 + h01y2 + h10y1 + h00:

The polynomial

R = prem(H3 � ini(H3) �G �H; [H1;H2])
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consists of 46 terms. Equating the coe�cients of R in y1; y2; y3 to 0, one
obtains a set of 8 polynomial equations (7.2.2) given in Example 7.2.3. A
solution to (7.2.2) for hij and gij has been found as in (7.2.3). Therefore,
H3 is factorized as

H3
:
=

(2u21y3 � F � u21u3) � [2u21u3y3 + u3F � u21(u23 + 2u22 � 2u21)]

4u41
;

(9.4.2)
where

F = u3y1y2 + u1(u2 + u1)y2 � u1(u2 � u1)y1:
ut

The second method

The key idea underlying this method is the reduction of polynomial factor-
ization over algebraic extension �elds to that over Q via linear transforma-
tion and characteristic sets computation. Let A = [A1; : : : ; Ar];Ki and F
be as in FactorA. Set

A + = [A1; : : : ; Ar; F ]:

With respect to y1 � � � � � yr � y, A + is clearly an ascending set and
F is irreducible over Kr if and only if A + is irreducible. While speaking
that G is a factor of F over Kr, we always mean that deg(G; y) > 0
(i.e., G is not a number in Kr). G is said to be a true factor of F if
0 < deg(G; y) < deg(F; y).
Assume that one knows how to factorize polynomials over K0. The fol-

lowing lemma guarantees the correctness of the factoring algorithm de-
scribed below.

Lemma 9.4.1. Let A and F be as above, c1; : : : ; cr be r integers,

�F = F jy=y�c1y1�����cryr ;
and �C be an ascending set in any characteristic series of �A = A [ [ �F ] over
K0 with respect to y � y1 � � � � � yr. Let �C be the �rst polynomial in �C
and

C = �Cjy=y+c1y1+���+cryr :
If �C is perfect, then j�C j = r+1. If �C is moreover irreducible, then the GCD
of F and C is irreducible over Kr.

Proof. Since A is irreducible and F is reduced with respect to A ,

Dim(�A ) = Dim(A [ [F ]) = 0:

If �C is perfect, then dim(�C ) = 0. It follows that j�C j = r + 1.
Let (�;�) = (�; �1; : : : ; �r) be any generic zero of �C ; then (�;�) 2

Zero(�A ). Hence, there exists an irreducible factor �G of �F over Kr such
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that �G(�;�) = 0; (�;�) is a generic zero of A [ [ �G]. By Lemma 4.3.1,
prem( �C; A [ [ �G]) = 0. It follows that G = �Gjy=y+c1y1+���+cryr is a divisor
of C over Kr .
Let �H be another irreducible factor of �F that is distinct from �G over

Kr. Then there exists an �0 in some extension �eld of Kr such that

�H(�0;�) = 0; �G(�0;�) 6= 0; 8� 2 Zero(A ):

We claim that prem( �C; A [ [ �H]) 6= 0. For, otherwise, C(�0) = 0, and one
can �nd a �0 such that (�0;�0) 2 Zero(�C ) � Zero(A [ [ �G]). This would lead
to a contradiction. Hence, �H cannot be a divisor of �C over Kr.
Let �C be factorized as �C

:
= �D �G over Kr. Then �C � �D �G 2 sat(A ). It

remains to be shown that �G is not a divisor of �D over Kr.
Since prem( �G; A ) 6= 0, by Lemma 4.3.2 there exists a polynomial Q 2

K0[y;y] such that

Q �G�R 2 Ideal(A ) � sat(A ); where R = res( �G; A ) 6= 0; R 2K0[y];

and Q(�;�) 6= 0 for any (�;�) 2 Zero(A [ [ �G]). As any zero of �C is a zero
of A [ [ �G], any zero of �C is also a zero of R. This implies that �C j R, so
there exists a T 2K0[y] such that R = T �C. It follows that

Q �G� T �D �G 2 sat(A ):

Because sat(A ) is prime and �G 62 sat(A ), Q� T �D 2 sat(A ). Thus, for any
(�;�) 2 Zero(A [ [ �G])

Q(�;�)� �D(�;�)T (�) = 0:

Note that Q(�;�) 6= 0. If �G is a divisor of �D over Kr, then �D(�;�) = 0.
This is a contradiction. Therefore, �G - �D and �G is the GCD of �F and �C
over Kr. The lemma is proved. ut
We continue using the above notations and let �C = [ �C0; �C1; : : : ; �Cr] be

a characteristic set of �A and �J =
Qr

i=1 ini(
�Ci). Suppose that �C is perfect,

so �C0 2K0[y]. Take an irreducible factor �C of �C0 over K0 which does not
divide �J , if any, and compute a GCD G of F and C = �Cjy=y+c1y1+���+cryr
over Kr . In any case, it would be su�cient if G is a true factor of F over
Kr. Otherwise, we check whether �C is quasilinear. If so, then

[ �C; prem( �C1; �C); : : : ; prem( �Cr; �C)]

is an irreducible ascending set contained in a characteristic series of �A .
Thus, G is an irreducible factor of F over Kr according to Lemma 9.4.1.
So what we need is to get a �C which is quasilinear and perfect. The linear
transformation y y�c1y1�� � ��cryr with random integers ci is introduced
to make �C quasilinear.
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The GCD of F and C over Kr can be obtained from/as the last polyno-
mial in any characteristic set of A [fF;Cg. Moreover, possible true factors
of F may be constructed by computing over Kr the GCDs of F with the
irreducible factors of �J jy=y+c1y1+���+cryr . The chance to obtain such factors
is higher when C is quasilinear.
There is an important practical issue: the factorization of F over Kr is

unique only up to a \constant" factor in Kr which is represented here as
a polynomial in u and y. The size of each factor of F may be dramatically
a�ected by such a constant. Let G be an irreducible factor of F , which
may be assumed, without loss of generality, to be in Q[u;y; y]. In general,
lc(G; y) involves both the variables u and y. By using Algorithm Norm

or NormG, one can normalize G by A to get another polynomial G� 2
Q[u;y; y] such that lc(G�; y) 2 Q[u] and G� di�ers from G only by a
factor in Kr. In many cases G� is much simpler than G, but the opposite
is also true in many other cases. Heuristic use of normalization of this kind
may improve the e�ciency of FactorB considerably.

Algorithm FactorB: F � FactorB(F; A ). Given an irreducible ascending
set A = [A1; : : : ; Ar] � K0[y] and a polynomial F 2 K0[y; y] irreducible
over K0 and reduced with respect to A , this algorithm factorizes F into
the product F � of irreducible factors over Kr = K0(y) with adjoining
ascending set A for y.

F1. Set A � [A : ldeg(A) > 1; A 2 A ]. If A � = ; or deg(F; y) � 1 then
return F and the algorithm terminates. Otherwise, let yp1 � � � � � yps
be the leading variables of the polynomials in A � and set 
 ;.

F2. Choose a set of integers [c1; : : : ; cs] 62 
; set 
 
 [ f[c1; : : : ; cs]g
and

�F F jy=y�c1yp1�����csyps :
Compute a characteristic set �C of A �[f �Fgwith respect to the variable
ordering y � yp1 � � � � � yps . If j�C j 6= s + 1 then go back to F2. Let
Ibe the set of all irreducible factors (over K0) of the polynomials in
ini(�C ) and F the set of those irreducible factors (over K0) of the �rst
polynomial in �C which do not divide any polynomial in I.

F3. If �C is quasilinear then go to F4. If jFj � 1 then go to F2 else set
I I[ F and F ;.

F4. Set
G F;

P ;;
F Fjy=y+c1yp1+���+csyps ;
I Ijy=y+c1yp1+���+csyps :

For each P 2 F [ Iwhile deg(G; y) > 1 do:
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Compute a GCD FP of G and P overKr with heuristic normal-
ization. If 0 < deg(FP ; y) < deg(G; y) then set G G=FP over
Kr and P P[ fFPg.

If P 6= ; then return

F � 
Y

P2P[fGg

FactorB(P; A � )

and the algorithm terminates. If �C is quasilinear and F 6= ; then
return F � F else go to F2.

The correctness of FactorB follows from Lemma9.4.1. It is not easy to see
whether the algorithm always terminates, i.e., whether a perfect quasilinear
characteristic set can be produced in a �nite number of steps. Fortunately,
the probability of obtaining a quasilinear characteristic set by a random
choice of integers c1; : : : ; cs in step F2 is 1. This is because in general

deg(prem(P;Q; x); x) = deg(Q; x)� 1;

while prem is the principal operation in the characteristic set algorithm.
So in practice, termination has never been a problem for us.
An immediate variation in FactorB is to compute instead a characteristic

series in step F2. The irreducible factors of F are determined from those
ascending sets in the series whose irreducibility can be easily veri�ed. The
ordering for the variables y; yp1 ; : : : ; yps may be arbitrary as long as y is
arranged with the lowest order. As the purpose of this step is to produce
polynomials inK0[y] by successive elimination of the variables, other elim-
ination methods may be used as well. In fact, Algorithm FactorB can be
considered as a variant of the method of Trager (1976) based on resultant
computation.
The two algorithms described above are of su�cient generality. If the

transcendental elements u do not appear in the adjoining polynomials Ai,
the factorization can be viewed as performed over the usually called alge-

braic number �eld Q(y). If u appear the Ai, the factorization is performed
over the algebraic function �eld Kr. In this case the algorithm is relatively
slow, mainly because the involvement of u greatly increases the complexity
of variable elimination and GCD computation.

Example 9.4.2. During the computation of the irreducible decomposition
in Example 8.3.3, several polynomials have to be factorized over algebraic
extension �elds. We take one of them as an example: factorize

F = 4y25 � 4u1y5 � 4y5 � 3u22 + u21 + 2u1 + 1

over Q(u1; u2; y2) with y2 having adjoining polynomial A = 4y22 � 3.
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Substituting y5 in F by y5 + y2, we have

�F = F jy5=y5+y2
= 4[y25 + (2y2 � u1 � 1)y5 + y22 � (u1 + 1)y2]� 3u22 + u21 + 2u1 + 1:

A characteristic set of f �F;Ag with respect to the ordering y5 � y2 is
C = [C1; �F �A];

in which C1 factors over Q into (C0 + 6u2)(C0 � 6u2) with

C0 = 4y25 � 4(u1 + 1)y5 � 3u22 + u21 + 2u1 � 2:

Let us take the �rst factor of C1 and substitute y5 back by y5 � y2. The
resulting polynomial is

D = 4[y25 � (2y2 + u1+ 1)y5 + y22 + (u1+ 1)y2]� 3u22 + 6u2 + u21 + 2u1 � 2:
To �nd a GCD of D and F over Q(u1; u2; y2), we compute a characteristic
set �C of fD;F;Ag with respect to the ordering y2 � y5:

�C = [A; 4y2y5 � 2(u1 + 1)y2 � 3u2]:

The second polynomial F1 in �C is a true factor of F over Q(u1; u2; y2).
Removing this factor from F , one obtains the other true factor

F2 = pquo(F; F1; y5) = 4y2y5 � 2(u1 + 1)y2 + 3u2:

Therefore, F is factorized as the product F1F2=3 over Q(u1; u2; y2). ut
Remark 9.4.1. Here are some heuristics which may be useful for imple-
menting algebraic factoring algorithms. The �rst is a result from algebraic
number theory: Let A 2K [x] and F 2K[y] be two irreducible polynomials
of degrees m in x and l in y, respectively. If m and l are relatively prime,
then F is always irreducible over the algebraic extension �eld K(x) with
A as adjoining polynomial for x.
Secondly, let A 2K[x] and F 2K[y] be two polynomials irreducible over

K, and let ~A and ~F be the homogenization of A and F by z with respect
to x and y, respectively. Let ~R = prem( ~F ; ~A; z) with I = lc( ~A; z) such that
Iq ~F = ~Q ~A+ ~R for some integer q � 0. Then any factorization of R = ~Rjz=1
overK divided by Iq is a factorization (not necessarily complete) of F over
the algebraic extension �eld K(x) with A as adjoining polynomial for x.
This is obvious by plunging z = 1 into the pseudo-remainder formula.
There is more possibility for R to be reducible when ~R does not contain
the variable z.
The homogenization above is not needed if A and F involve a transcen-

dental element. To be precise, let A 2K [u; x] and F 2K[u; y] be two irre-
ducible polynomials with deg(F; u) � deg(A; u) > 0. Let R = prem(F;A; u)
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with I = lc(A; u) such that IqF = QA+R for some integer q � 0. Then any
factorization of R over K divided by Iq , upon reducing the higher powers
of x in each component by A, is a factorization (not necessarily complete)
of F over the extension �eld K(u; x) with u a transcendental element and
A the adjoining polynomial for x.

Examples from geometry theorem proving

As we have seen from the examples in Sect. 8.4, algebraic factorization is
required to deal with the reducibility problem in geometry theorem proving
when \natural" algebraic formulations are used. Note that most of the
reducibility cases can be avoided by some tricky formulations which takes
into account of geometric information. One does not need to utilize such
tricks when the e�cient factoring routines are available. Moreover, the
proof of a statement may be �gured out even if its algebraic formulation
does not precisely correspond to the geometric statement and thus is not
a theorem in the logical sense. This will help us understand the geometric
ambiguity re
ected in the algebraic form of the theorem. Here let us recall
the theorem about incenter and excenters.

Example 9.4.3. Refer to Example 8.2.1 and take coordinates for the three
vertices of 4ABC as

A(�u1; 0); B(u1; 0); C(u2; u3):

A B

C

A

B

C

’

’

’

x

y

Fig. 16

Let the three bisectors of the angles A;B;C meet the y-axis at

A0(0; y1); B0(0; y2); C0(0; y3)

respectively. Then the hypothesis of the theorem consists of

\CAA0 = \A0AB; \ABB0 = \B0BC; \BCC0 = \C0CA

and the conclusion to be proved is: the three lines AA0; BB0; CC0 are con-
current. By taking tangent for the equalities of the angles the hypothesis
conditions correspond to three polynomial equations

H1 = 0; H2 = 0; H3 = 0;
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the polynomials H1;H2;H3 are given in Example 9.4.1. With the variable
ordering y1 � y2 � y3, these polynomials already form a characteristic set
C = [H1;H2;H3]. Direct veri�cation shows that the pseudo-remainder of
the conclusion polynomialC with respect to C is non-zero. In order to prove
the theorem, we need to examine the reducibility of C . This involves �rst
checking the reducibility of H2 over K1 = Q(u1; u2; u3; y1), where y1 is an
algebraic element having adjoining polynomialH1. It is veri�ed that H2 is
irreducible over K1. Next, we check whether H3 is reducible over K2 =
K1(y2), where y2 is an algebraic element having adjoining polynomialH2.
It has been found in Example 9.4.1 that H3 can be factorized as (9.4.2).
Using the factorization, C is immediately decomposed over Q(u1; u2; u3)
into two irreducible components. The algebraic form of the theorem is true
on one component and false on the other. This corresponds to the geometric
fact that among the 8 sets of three (internal or external) bisectors of the
three respective angles, the bisectors in 4 sets are concurrent at four points
and those in the other sets are not. ut
In what follows is provided a list of algebraic factorizations required for

the geometry examples in Sect. 8.4 (cf. Wang 1994).

� Let Q(u1; u2; y1) be an extension �eld of Q obtained by adjoining the
transcendental elements u1; u2 and algebraic element y1 with minimal
polynomial

y41 � �y21 + u21:

where � = u22 + u21 + 1. We have the following factorizations over
Q(u1; u2; y1):

16u22y
2
9 � �2 + 4u21

:
= (4u2y9 + 2y21 � �)(4u2y9 � 2y21 + �);

(9.4.3)
16u22(y1 + u1)y210 � 32u22y

3
1 + 16u1u22y

2
1

+[u22(7u
2
2 + 6u21 + 22)� (u21 � 1)2]y1

�u1[u22(u22 + 2u21 + 18) + (u21 � 1)2]

:
=
y1 + u1
u21

(4u1u2y10 +H)(4u1u2y10 �H);

(9.4.4)

where
H = 4y31 � 6u1y

2
1 � 4(u22 + 1)y1 + u1(�+ 4):

� For computing (8.3.2) in Example 8.3.3, several polynomials had to
be factorized over algebraic extension �elds. One of the factorizations
is

4y25 � 4(u1 + 1)y5 � 3u22 + 2u1 + u21 + 1
:
= T5T

0
5 (9.4.5)

over Q(u1; u2; y2) with adjoining polynomial 4y22 � 3 for y2; the fac-
toring details have been given in Example 9.4.2. Here is another fac-
torization over the same extension �eld Q(u1; u2; y2):

4y23 � 4u1y3 � 3u22 + u21
:
= T3T

0
3: (9.4.6)
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� Let T3 and I be as in Example 8.4.1; then

T3
:
=
T 03T

00
3

I
=

[H + 2u1(u
2
2 + 1)y0][H � 2u1(u

2
2 + 1)y0]

I
(9.4.7)

over Q(u1; u2; y0) with y
2
0 � 3 as adjoining polynomial for y0, where

H = Iy3 � 2u1(3u1u
2
2 + 4u2 � u1):

� For the irreducible decomposition in Example 8.4.2, the following
algebraic factorizations are required:

4u42(2u
2
1x1 �H)x22 � 4�2abcdx2

��2[2u21��2x1 + 2u21
u3 � 4(�
 + u21)u
2
2u3 � �� ��2]

:
=
u22(2u

2
1x1 �H)

abcd
T2T

0
2;

(9.4.8)

4u42(2u
2
1x1 +H)x23 + 4�2abcdx3

��2[2u21��2x1 � 2u21
u3 + 4(�
 + u21)u
2
2u3 + �� ��2]

:
=
u22(2u

2
1x1 +H)

abcd
T3T

0
3

(9.4.9)

over Q(u1; u2; u3; x1) with x1 having adjoining polynomial T1, where

H = 2u21u3 +
��;

�� = u22 + 1; �� = u41 � 1; �
 = u41 + 1;

and a; b; c; d; �; 
; T2; T 02; T3; T
0
3 are as in Example 8.4.2.

� The following algebraic factorizations are needed for computing the
zero decomposition in Example 8.4.3:

2x23 + 2x3 � 1
:
=

1

2
(2x3 � 3x2 + 1)(2x3 + 3x2 + 1) (9.4.10)

over Q(x2) with adjoining polynomial 3x22 � 1 for x2, and

x25 � x1x5 � x5 + 4x1 + 5

:
=

(4x5 � x1x2 + 5x2 � 2x1 � 2)(4x5 + x1x2 � 5x2 � 2x1 � 2)

16
(9.4.11)

over Q(x1; x2) with adjoining ascending set

[x21 � 6x1 � 11; x1x
2
2 + 3x22 + 52x1 + 76]

for x1 and x2.
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9.5 Center conditions for certain di�erential
systems

Problem

Consider plane autonomous di�erential systems of center and focus type

dx

dt
= y + P (x; y);

dy

dt
= �x+Q(x; y); (9.5.1)

where P (x; y) and Q(x; y) are polynomials beginning with terms of total
degree > 1 in x and y with indeterminate coe�cients u = (u1; : : : ; ue). As
explained in Wang (1991a), one can compute a locally positive polynomial
L(x; y) 2 Q[u; x; y] and polynomials v3; v5; : : : ; v2j+1; : : : 2 Q[u] such that
the di�erential of L(x; y) along the integral curve of (9.5.1) is of the form

dL(x; y)

dt
= v3y

4 + v5y
6 + � � �+ v2j+1y

2j+2 + � � � ;

where v2j+1 is called the jth Liapunov constant of (9.5.1).
The origin, a singular point of (9.5.1), is said to be a center for (9.5.1)

if and only if
v3 = v5 = � � � = v2j+1 = � � � = 0:

The necessary and su�cient conditions given in this way require in�nitely
many equations v2j+1 = 0; j = 1; 2; : : : in a �nite number of indeterminates.
The polynomial ideal generated by v3; v5; : : : ; v2j+1; : : : in Q[u] has �nite
bases. Hence for any P and Q of given total degree m there exists an Nm

such that v3; v5; : : : ; v2Nm+1 form such a basis, but we do not know any
upper bound for Nm.
On the other hand, there are other methods for deriving center condi-

tions. The explicit expressions of the conditions for a number of concrete
systems have been obtained. Unfortunately, many of the conditions are er-
roneous and incomplete. In the next subsection we show how elimination
methods can be used to examine the correctness of the conditions and to
establish the relationship among di�erent sets of conditions.
The computation and manipulation of Liapunov constants relate to and

are useful for several other problems such as distinguishing between center
and focus, searching for higher order foci and constructing limit cycles (the
second part of Hilbert's 16th problem) in the qualitative theory of di�er-
ential equations. The study of these problems forms an entire subject of
mathematics. Some of the treatments require solving polynomial equations,
determining whether a polynomial equation follows from a system of poly-
nomial equations and inequations, and simplifying a polynomial by using a
set of polynomial relations etc., and thus elimination techniques may have
applications therein. They are not discussed here. In this section, we only
explain some aspects of the problem with reference to a particular class of
cubic di�erent systems.
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Kukles' system

In what follows, we present a classical example of 1944 to illustrate the
application. The author began investigating this example in 1986; the same
example has also been studied by several other researchers since our results
were published. However, the problem is still unsolved and the example
remains challenging.
Let us consider a class of cubic di�erential systems, calledKukles' system,

which is the particular case of (9.5.1) with

P (x; y) = 0;

Q(x; y) = a20x
2 + a11xy + a02y

2 + a30x
3 + a21x

2y + a12xy
2 + a03y

3:
(9.5.2)

Kukles (1944) showed that in this case the origin is a center \if and only
if" one of the following conditions holds:

� = a30a
2
11 + a21� = 0;

� = (3a03�+ �2 + a12a
2
11)a21 � 3a03�2 � a12a211� = 0;


 = �+ a20a11 + a21 = 0;

� = 9a12a211 + 2a411 + 9�2 + 27a03� = 0;

(K1)

a03 = � = � = 
 = 0; (K2)

a03 = a11 = a21 = 0; (K3)

a03 = a02 = a20 = a21 = 0; (K4)

where � = a02a11+3a03. The above conditions have been commonly recog-
nized and used in standard textbooks (e.g., Nemytskii and Stepanov 1960).
Recent research interest and activity on Kukles' system started in the later
1980s when Jin and Wang (1990) discovered, by using the methods of Gr�ob-
ner bases and characteristic sets, the following example

a20 6= 0; a11 = 0; a02 = �2a20; a30 = �a
2
20

3
;

a221 =
a420
2
; a12 = 0; a03 = �a21

3

(JW)

which is not covered by Kukles' conditions. Our computations suggested
that for this example the origin is a center and thus Kukles' conditions are
incomplete; the incompleteness was soon con�rmed by Christopher and
Lloyd (1990). Afterwards, several papers were published to give other ex-
amples and to establish the complete conditions. For example, Lloyd and
Pearson (1992) together with C. J. Christopher found the following set of
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conditions:

�1 = 81a320a02 � 2(18a211r � 4a411 � 27a211a
2
20 � 81a420) = 0;

�2 = 9�a30 + 36a211r + 8a411 + 90a211a
2
20 + 243a420 = 0;

�3 = �a21 � a20a11(27r � 2a211 � 9a220) = 0;

�4 = 81a220�a12 + 2a211(144a
2
11r � 567a420� 270a211a

2
20 + 243a220r � 32a411) = 0;

�5 = 3�a03 + a11(a02� + 27a20r + 14a20a211 + 72a320) = 0;
(CLP)

where
� = 16a211 + 81a220;

�0 = 162a211r
2 � (2a211 + 9a220)

3 = 0;

a20a11 6= 0:

On the other hand, the incompleteness of Kukles' conditions was already
pointed out independently by Cherkas (1978). Cherkas investigated Kukles'
system with a di�erent approach and derived the following set of conditions
instead of (K1):


 = 0;

�1 = 6a20a03 + a20a11a02 � a21a02 � a11a12 � 2a30a11 � 2

9
a311 = 0;

�2 = 6a30a03 � 3a220a03 + a30a11a02 + a20a02a21 + a20a12a11

�a21a12 � a30a21 � 2

3
a211a21 = 0;

�3 = a30a21a02 � 6a20a30a03 + a30a11a12 + a20a21a12 � 2

3
a11a

2
21 = 0;

�4 = a30a21a12 � 3a230a03 �
2

9
a321 = 0:

(C1)
which contain the conditions (JW). He also proved that, for a03 = 0, his
conditions coincide with Kukles'.
Since center conditions may be derived by using di�erent methods as

noted above, among the obtained conditions there are some equivalent or
containment relations which cannot be observed without involving heavy
computations. For Kukles' system, one can easily verify that the third
condition (K3) is contained in both (K1) and (K2), so it is redundant. An
irreducible decomposition of (K1) consists of two components, of which one
is (K3).
To examine the relation between (K1) and (C1), we may compute an ir-

reducible decomposition of the variety de�ned by (C1). The decomposition
has been given in detail as Example 6.2.3.
From (6.2.11) and the decomposition of (K1) into irreducible compo-

nents, one can see that two components of (C1) coincide with the two
components of (K1). The third component of new conditions is given by
V2 = 0. The following examines the relationship between this set of condi-
tions and (CLP).
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Let P� = f�0; : : : ; �5g. Computing a characteristic set of P� or a trian-
gular series of [P�; fa20; a11; �g] with respect to the ordering !2 � r, one
may �nd that

Zero(P�=a20a11�) = Zero(T�=a20a11�)

with T� = [ �T1; : : : ; �T6], where �T1, �T2 and �T3 are the �rst, the second and
the fourth polynomial in V2, �T5 = 
, and

�T4 = 243a320a12 + 2(16a211 + 27a220)a11a21 � 4a20(2a211 + 9a220)a
2
11;

�T6 = �27a20a11r + 3(2a211 + 27a220)a21 + a20(2a211 + 9a220)a11:

On the other hand, rem( �T4;V2) = 0 and prem(V2;T�) = f0g. Hence,

Zero(V2=a20a11�) = Zero([ �T1; : : : ; �T5]=a20a11�):

Let a stand for (a20; a11; a02; a30; a21; a12; a03). It follows that

Zero(V2=a20a11�) = fa j (a; r) 2 Zero(P�=a20a11�)g:

This shows that the conditions

V2 = 0; a20a11� 6= 0

are equivalent to (CLP) with � 6= 0. Note that � 6= 0 is implied by a20a11 6=
0 over R. Therefore, (CLP) is a subset of (C1) and thus a rediscovery of
Cherkas' conditions.
V2 = 0 is simpli�ed to the center conditions (JW) and

a20 = a11 = a30 = a21 = a12 = a03 = 0 (9.5.3)

when a11 = 0, and to the conditions (9.5.3) and

a20 = a02 = a21 = a12 = a03 = 0; 9a30 + a211 = 0 (K0)

when a20 = 0. (9.5.3) is contained in Kukles' conditions (K1), (K2) and
(K3), and so is (K0) in (K4). As a consequence, all the center conditions for
Kukles' system discovered by Christopher, Lloyd, Pearson and the author
are already covered by the conditions V2 = 0. In summary, we have the
following.

Theorem 9.5.1. The set of center conditions (C1) holds if and only if one
of the following four sets of conditions holds: (K0), (K1), (JW) and (CLP).

Therefore, the three sets of conditions (C1), (K2) and (K4) cover all the
known center conditions for Kukles' system.
Our computational approach has given rid to the independent discovery

of the incompleteness of Kukles' conditions and the non-trivial relations
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among the di�erent sets of center conditions known so far. The derivations
for Kukles' system show that this work depend heavily on the systematic
use of elimination methods.
Having Cherkas' conditions (C1) does not prevent one from investigating

Kukles' system further. This is because there are doubts about Cherkas'
method. The author found that some conditions derived by him for other
di�erential systems also appear to be incomplete. The incompleteness has
been con�rmed by N. G. Lloyd and J. M. Pearson.

Derivation of center conditions

The problem of deriving necessary center conditions can be reduced par-
tially to decomposing large polynomial systems, for which the major com-
putational tools used are elimination techniques based characteristic sets,
Gr�obner bases and resultants. The derivation has proved to be thorny and
intractable because the occurring polynomials are too large in terms of
degree and number of terms to be manageable.
Computationally, one takes a suitable N , form the polynomial set

PN = fv3; v5; : : : ; v2N+1g;
and simplify or solve PN = 0 to obtain the necessary conditions for the
origin to be a center. The su�ciency of the conditions, i.e., PN = 0 implies
that v2j+1 = 0 for all j > N , is proved separately using sophisticated
mathematical techniques.
We have implemented a program called DEMS in Fortran, Scratchpad II

and Maple for computing Liapunov constants from any di�erential systems
of center and focus type. For Kukles' system, the �rst Liapunov constant
is v3 = 
=3. To simplify calculations, we replace a21 in (9.5.2) by

�(3a03 + a11a02 + a11a20):

Then v3 = 0 and the next 8 Liapunov constants computed by DEMS may
be characterized as follows:

v5 v7 v9 v11 v13 v15 v17 v19
Number of terms 13 49 131 292 577 1046 1775 2859
Total degree 4 6 8 10 12 14 16 18
MLIC 2 4 6 9 13 17 22 27

where MLIC stands for \Maximum length of integer coe�cients." These
polynomials are made available in Maple format via World Wide Web from
http://www-leibniz.imag.fr/ATINF/Dongming.Wang/PEAA/Wang.html.
The Kukles problem is reduced partially to simplifying the conditions given
by PN = 0 and examining their relationships with the existing center con-
ditions.
It seems still unknown whether (C1), (K2) and (K4) cover all the cen-

ter conditions for Kukles' system. According to Theorem 4.1 in Lloyd and
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Pearson (1992) and the result of the previous section, there are no cen-
ter conditions of positive dimension other than (C1), (K2) and (K4) for
Kukles' system. In fact, Lloyd and Pearson conjectured that there are no
other center conditions at all. The di�culties of searching for the complete
conditions are caused by the involved large-scale polynomial computations.
Despite this, one often gets encouraged by seeing some hope to �nd new
conditions when coming to manipulate the polynomials which are large and
appear to follow some bizarre yet regular patterns.
From the known center conditions for Kukles' system, one sees that the

algebraic variety Zero(PN) should become reducible for a su�ciently big
N . So a natural idea is to decompose PN into irreducible components.
However, elementary application of the previously mentioned elimination
algorithms to PN would fail due to the size of the polynomials in PN. The
reducibility occurs and thus splitting PN into subsystems becomes possi-
ble as N increases. When splitting happens, one gets smaller subsystems
and thus the involved computations become easier. Unfortunately, the size
of v2N+1 expands rapidly as N increases. So a big N would cause some
problem as well.
We have taken N = 7 and made several attempts including interactive

elimination to decompose the polynomial set P7 into irreducible triangular
systems without success. Decomposing P7 and establishing the complete
center conditions for Kukles' system are still challenging problems that
remain open.
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Bibliographic notes

Although we have tried to acknowledge source of the material and work in
the text wherever they are used, it is possible that in some cases credits were
forgotten or not properly given to the original authors. We apologize for
any inadequate omission and unawareness. Here are some additional notes
on history and bibliography, of which some were not provided because of
interference or loose relevance with the context, and the others are repeated
for emphasis.

General

Elimination theory has been developed in the West since the 18th century.
Early methods are attributed to Euler (1980) and �E. B�ezout, while the
best known are the method of Gauss (1873) for sets of linear equations
and the dialytic method of Sylvester (1904) for sets of general polynomial
equations. The former is fundamental and has been used in many di�erent
domains; the latter started at studying algebraic invariants and was further
developed as the theory of resultants through the British school: A. Cayley,
A. L. Dixon, F. S. Macaulay, and others.
The method of triangularizing sets of linear equations, named after Gauss,

was also described in the ancient Chinese collection \Chiu Chang Suan

Shu" (Nine chapters on the mathematical art, abbreviated Chiu Chang

hereafter) which appeared early in the �rst century and was commentated
by Hui Liu in 260 AD. The book Chiu Chang was designed by �rst asking
a daily life question and then giving an answer together with a method for
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deriving the answer. The example of solving the following set of 3 linear
equations, extracted from the eighth chapter (Fang Chhêng Shu | the way
of calculating by tabulation), is one of the 246 problems included in the
book: 8><

>:
3x+ 2y + z = 39;

2x+ 3y + z = 34;

x+ 2y + 3z = 26:

The method given in the Chiu Chang proceeds by �rst placing the coe�-
cients and constant terms of the equations in a matrix form and then reduc-
ing the matrix with column operations to another triangular matrix. The
latter represents the equations 36z = 99, 5y+z = 24, and 3x+2y+z = 39,
from which the values of z, y, and x are successively found with ease. See
Boyer (1968, pp. 218{219), Needham (1959, pp. 24{28) and van der Waer-
den (1983, pp. 47{49) for more details.
Fang Chhêng Shu illustrated by 18 problems deals with sets of simul-

taneous linear equations in an arbitrary number of unknowns, using both
positive and negative numbers. The last problem, involving four equations
and �ve unknowns, foreshadows indeterminate equations. The method de-
scribed in Chiu Chang is systematic and e�ective and has the same algo-
rithmic feature as that proposed by C. F. Gauss in 1826. In view of this
fact and the anonymity of Chiu Chang , the method was called China-Gauss
elimination by W.-t. Wu. In fact, it has already been known as Chinese
matrix method in mathematical history (see Boyer 1968, p. 248). Several of
the algorithms described in this thesis can be considered as generalizations
of the China-Gauss elimination.
The most widely known elimination methods of solving simultaneous

algebraic equations of high degree and problems about the solvability of
such systems are those based on resultants. The exploration of general
elimination methods in China is also of long standing. By the 13th century,
Chinese algebraists had already developed a method, called Ssu Yuan Y�u

Chien (Precious mirror of the four elements), that can solve sets of polyno-
mial equations of high degree in four variables. Polynomial arithmetic and
elimination are among the most important achievements of Chinese ancient
mathematics. The methods then developed were used not only for e�cient
resolution of algebraic equations but also as algebraic tools for systematic
treatment of geometric problems.
We conclude these general notes by reproducing the following interesting

quotation of Taoist paradoxes from Needham (1959, p. 47).

By moving the expressions upwards and downwards, and from side to side,
by advancing and retiring, alternating and connecting, by changing, divid-
ing and multiplying, by assuming the unreal for the real and using the imag-
inary for the true, by employing di�erent signs for positive and negative,
by keeping some and eliminating others and then changing the positions of



Bibliographic notes 293

the counting-rods, by attacking from the front or from one side, as shown
in the four examples | he �nally succeeds in working out the equations
and roots in a profound yet natural manner � � �

I-Chi Tsu, Preface to the Ssu Yuan Y�u Chien by Shih-Chieh Chu (1303)

Chap. 1

Although the material in this chapter was taken from various sources, the
reader may �nd most of the concepts and results from van der Waerden
(1950, 1953) and Knuth (1981). The presentation of subresultants is based
largely on Chap. 7 of Mishra (1993).

Chaps. 2{4

The concept and method of characteristic sets were introduced by Ritt
(1932, 1950) for di�erential polynomial ideals. It was W.-t. Wu who real-
ized the power of Ritt's method in the later 1970s and has considerably
re�ned and developed it for polynomial sets (instead of ideals). In particu-
lar, Wu dropped the irreducibility requirement so that characteristic sets of
arbitrary polynomial sets can be de�ned and computed in di�erent senses.
Extensive work on the subject has been done by Wu himself (1984, 1986a,
1987, 1989a, 1994), members of his group (MMRC 1987{1996), Chou and
Gao (1990b, 1993), Gallo and Mishra (1991), and Wang (1992b, 1995a).
The presentation of the characteristic set method in this thesis is based on
Wang (1989) and Wu (1994).
The elimination algorithms described in Sects. 2.3 and 3.2 root in the

elimination theory of Seidenberg (1956a, b). The adaption and re�nement
were made by the author (Wang 1993). The notion of simple systems is due
to Thomas (1937). The decomposition algorithms using SRS in Sects 2.4
and 3.3 are also proposed by us (Wang 1998), for which the exposition of
Mishra (1993, Chap. 7) on subresultants has been helpful.
The contents of Sects. 4.1{4.3 come mostly fromWu (1984, 1986a, 1994)

and Wang (1993).

Chap. 5

The concept of regular sets was introduced independently by Kalkbrener
(1993) under the name of regular chains and by Yang and Zhang (1994)
under the name of proper ascending chains. Related work has also been
done by Gao and Chou (1993). The algorithm based on SRS for computing
regular series is given in Sect. 5.1 for the �rst time, and so are some of
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the properties about regular systems proved. The inclusion of Sect. 5.2 is
motivated by the work of Lazard (1991).
The Gr�obner basis method was invented by Buchberger (1965). Most

of the material in Sect. 5.3 originates from Buchberger (1985). The his-
tory and extensive literature on Gr�obner bases are covered by Adams and
Loustaunau (1994), Becker and Weispfenning (1993).
The base of Sect. 5.4 is van der Waerden (1950, Chap. XI), Kapur and

Lakshman (1992), and Chionh and Goldman (1995), which contain a lot of
historical and bibliographic information.

Chap. 6

Methods for computing prime bases of irreducible ascending sets were sug-
gested by Chou et al. (1990), Wang (1989b), Wu (1989b) and Ritt (1950).
The technique of using Gr�obner bases to construct saturation bases is also
contained in Gianni et al. (1988). Irreducible decomposition of algebraic
varieties was investigated in Wang (1989, 1992). The presentation of un-
mixed decomposition is based partially on the work done by Kalkbrener
(1993), and Chou and Gao (1990b, 1993), with some generalizations.
The algorithmof primary ideal decomposition is attributed to Shimoyama

and Yokoyama (1996).

Chap. 8{9

Many researchers have worked on and contributed to automated geometry
theorem proving; see Wang (1986b) and

http://www-leibniz.imag.fr/ATINF/Dongming.Wang/GRBib

for a long list of references. We ought to mention Wu (1978, 1984, 1986c,
1994) and the work done by his students (Wang and Gao 1987; MMRC

1987{1996), Chou (1988), Kapur (1988), and Kutzler and Stifter (1986),
just to name a few. In particular, Chou (1988) contains 512 geometric the-
orems which were proved by an implementation based on Wu's method and
the Gr�obner bases method. Zero decompositions were used for geometric
theorem proving by Ko (1988), Chou and Gao (1990a), and Wang (1995c).
Automated discovery/derivation of unknown relations was initiated by

Wu (1986b) and Chou (1987); further work was carried out by Chou and
Gao (1990a) and Wang (1995b).
The implicitization of parametric objects was investigated by various

researchers; see Buchberger (1987), Gao and Chou 1991), and Li (1989) for
background and literature information.
Several other geometric applications of eliminationmethods can be found

in Buchberger (1987), Wang (1985b) and MMRC (1987{1996).
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