
1

Hidden Software Capabilities

D. Hagimont, J. Mossière. X. Rousset de Pina, F. Saunier

Laboratoire IMAG-LSR, 2 av. de Vignate, 38610 Gières - France

Internet: Daniel.Hagimont@imag.fr

Abstract: Software capabilities are a very convenient means to protect co-
operating applications. They allow access rights to be dynamically exchanged between
mutually suspicious interacting applications.

However, in all the proposed approaches, capabilities are made available at the
programming language level, requiring application developers to wire protection
definition in the application code, which is detrimental to both flexibility and
reusability. We believe instead that capabilities should be hidden from the application
programmer, allowing protection definition and application code to be clearly separated.

In this paper, we propose a new protection model based on hidden software
capabilities, in which protection definition is completely disjoined from the application
code and described in an extended Interface Definition Language (IDL). This allows to
specify protection for existing modules and to easily change the protection policy of an
application.

This protection model can be integrated in a wide range of operating systems.
We are currently implementing it in a single address space operating system based on
distributed shared memory.

1 Introduction

Protection is a crucial aspect of distributed computing, in particular when users co-
operate using shared objects or shared memory. Several protection models have been
proposed [Organick 72, Wulf 74, Kowalski 90, Cabrera 92, Hagimont 94], among
which capability-based protection [Levy 84]. Capabilities are very convenient because of
their flexibility, allowing the implementation of various execution and protection models.

However, in all the proposed approaches (e.g. [Tanenbaum 86, Chase 94]),
capabilities are made available at the programming language level through capability
variables that are used explicitly for:

• accessing objects (mapping an object to a capability)

• changing protection domains (with a capability on the called domain’s entry point)

• transferring access rights between protection domains (passing a capability as a
parameter).

Therefore, in a protected application, the definition of protection is wired in the
application code, which necessitates a different implementation for each distinct set of access
rights associated with its execution. Moreover, protecting an already developed application
or reusing an unprotected module implies at least a partial re-implementation.

2

We believe instead that capabilities should be invisible to the programmer, in the sense
that it should be possible to define the protection policy of an application independently from
the application code. This allows the execution of the same code with different protection
policies, which ensures both economy and separation of concerns. We propose a new
protection model which is based on capabilities that are hidden from the application
programmer, and which allows defining the protection policy of an application only in terms
of the application’s interface. The idea is implemented by managing capabilities in a separate
protected layer (the operating system kernel or one of its extensions), and by providing
administrators with an extended interface definition language (IDL [OMG 91]) in which the
management of access rights can be expressed and from which adequate “protection stubs”
can be generated. This results in a system in which application code does not depend on
protection; protection-related actions (access rights checking, domain-crossing and rights
transfers) are only triggered when the application traps into the protected layer.

In this paper, we present this new protection model and its integration in the Arias
Distributed Shared Memory (DSM) system which is currently under developement in the
IMAG-LSR laboratory. However, we believe this protection model can be applied to many
other systems and we are investigating its integration in the CORBA architecture.

The paper is structured as follows. In section 2, we provide an overview of capability-
based protection and we motivate the introduction of hidden capabilities by pinpointing the
limitations of previous work. Then, we explain in section 3 how an IDL-based system can
help meeting the requirements of our protection model. Section 4 describes the integration of
this model in the Arias DSM systems. We conclude in section 5.

2 Capability-Based Protection

2 . 1 General Protection Requirements

The purpose of protection is to control the actions of system entities, called agents1,
able to produce or to propagate errors on system controlled entities, called objects. We
assume that an object is defined by the operations that access it. In a system which allows
objects to be shared between agents, protection mechanisms must control, for each agent in
the system, the objects it can access and the operations it can invoke on them. Furthermore,
the protection mechanism must be safe and flexible. Safety means ensuring that independent
entities are mutually isolated. Flexibility means that different access rights may be provided
for different operations on an object, and that access rights may be extended or restricted
depending on both the agent and the current context. Last, but not least, the protection
mechanisms must cater for mutually suspicious applications. Two categories of models have
been proposed in order to achieve these goals; those based on access lists and separated
execution contexts, and those based on capabilities and protection domains. The latter model
is usually regarded as the more flexible; we examine it in the next section.

1 Usually implemented by processes or threads.

3

2 . 2 The Capability Model

The capability model is based on the concepts of capability, protection domain and
inter-domain invocation capability.

2.2.1 Capabilities

A capability is a token that identifies an object and contains access rights that define the
allowed operations on that object. In order to access an object, an agent must own a
capability on that object. When an object is created, a capability is returned to the creator and
usually contains full rights on the object. The capability can thus be used to access the
object, but can also be copied and passed to another agent, providing it with access rights on
that object. When a capability is copied, the rights associated with the copy can be restricted,
in order to limit the rights given to the receiving agent.

2.2.2 Domains

Domains are protection environments that are defined in order to allow agents’ rights
to evolve in a controlled fashion. A domain is characterized by the set of capabilities it
contains, which defines an access window on the global object space, including other
domains. At a given time, an agent executes in exactly one domain and can only perform
those operations authorized by the capabilities included in that domain. An application may
be composed of several domains. Thus, domains provide isolation between independent
entities within an application.

An agent may move to a different protection domain in order to change its rights
according to the current needs, by performing a cross-domain invocation. In order to control
this invocation, each domain D exports an interface, which specifies the subset of its
operations that can be invoked from other domains. Each of those operations is called an
entry-point of domain D, and is actually implemented by a procedure for which D has a
capability. The invocation of an entry-point of a domain D is a protected operation, which is
permitted only from those domains which include a special capability on D, called an inter-
domain invocation capability, or for short a domain capability. In the following section, we
analyze the rights that a domain capability must include.

2.2.3 Domain Capabilities

A call on a domain entry-point may include parameters; therefore, the invoked
operation must receive enough rights on the parameters to be able to execute successfully.
We assume that the domain capability not only permits the invocation of its target domain-
entry point, but also specifies the rights which have to be transferred from the current
domain to the target domain and conversely.

The rights needed depend on the specification of the entry-point parameters, which
may include data and procedures.

• Data. Data may be passed by value or by reference. In the first case, the data is
copied in the invoked domain and no rights need to be passed. But, in the second
case, the caller domain must give rights on the referenced data. These rights must

4

be greater or equal than those needed by the invoked entry-point to process the
data. Generally, if the principle of mutual suspicion is respected, the rights
provided by the caller are exactly the rights requested by the callee. Furthermore, if
the data is a result parameter, the caller domain must accept the installation of a new
capability either within itself (if it trusts the computation carried out by the callee
domain) or in an other domain it specifies.

• Procedure (or method). As for data, there are two ways of passing a procedure as a
parameter: by value (i.e. copying executable code), or by reference (i.e. passing a
pointer to the procedure). But the risk of having the procedure used as a Trojan
horse would compel most of the time the callee domain to request the right to
invoke the procedure in another domain rather than the right to process it directly.
This means that the capability associated with a procedure parameter must be a
domain capability rather than a simple execute capability. In turn, this domain
capability must specify all the rights needed by the procedure to execute
successfully. For the reasons already given, if the procedure parameter is a result
parameter, the caller domain will only give the right to install a domain capability in
itself when the operation returns.

For input parameters, the callee domain specifies the rights it needs and the caller
domain the rights it offers; conversely, for output parameters, the callee domain specifies the
rights it offers and the caller domain the rights it accepts. The construction of a domain
capability and its installation in a domain can be done only when the offered rights include
the needed rights. The rights transferred must be identical to the rights needed. Furthermore
the caller should have the possibility to specify the domain in which the capabilities
associated with the results have to be installed.

In order to illustrate capability based protection, let us consider the case of a Print
procedure, exported by a printing server, that allows a client to print out a file (Figure 1).
We assume that the client trusts the printing server.

Client Printing server

Print procedure

file_capa

File

interface

file_capa

1

2

Print

Figure 1. A printing server

The Print procedure needs to execute in supervisor mode in order to access the device
driver associated with the printer, but this privilege is not granted to the clients. Therefore,
the Print procedure executes in a separate protection domain, and a domain capability is
delivered (when the printer is installed) to the clients, providing them with a means to invoke

5

the protected procedure. When a client wants to print out a file, the Print procedure needs to
get read rights on this file; therefore the user will, at invocation time (1), pass a read-only
capability on the file (file_capa) to the printer protection domain. This capability allows the
Print procedure to read the contents of the file (2).

Client Printing server
file_capa

File

interface

file_capa

1

2

error_capa

interface
3Error_handler error_capa

Print

Error_handler

Print procedure

procedure

Figure 2. Domain capability parameter passing

Usually, the printing of the file executes asynchronously, the Print procedure
returning before the completion of the printing. In order to illustrate capability parameter
passing, let us assume that the Print procedure allows the client to pass an error handling
procedure to the printing server, to be called in case the printing fails (Figure 2). Since the
printing server does not trust the client, this procedure must be executed in the client
protection domain. Therefore, when the client invokes the Print procedure, a domain
capability (error_capa) is passed (1) to the server. If the printing fails, the error_capa
capability is used to invoke the Error_handler procedure in the client protection domain (3).

2 . 3 Implementations of Capabilities

Capability-based systems have evolved from hardware capabilities to software
capabilities. We briefly recall the principles of both implementations, and we then present
the requirements we place on our capability-based protection model.

Hardware Capabilities

Early attempts to manage protection by means of capabilities were based on specific
hardware. Several capability-based hardware addressing systems [England 75],
[Wilkes 79] were built for the management of protected shared objects.

These systems are characterized by the way objects are addressed at run time. The
machine has a set of capability registers. Operands in memory are addressed in a machine
instruction through a capability register. Therefore, capabilities are both used for addressing
and for protecting objects. In order to ensure their protection, capabilities are grouped in
hardware-protected segments called C-lists.

6

These machine and system architectures were very popular in the 70s, but the
standardization of the hardware and the widespread use of the Unix system stopped the
trend towards capability based architectures.

Software Capabilities

In a second step, software capability based systems were designed on standard
hardware, capabilities being protected by encryption. In these systems, the standard
addressing mechanism of the underlying hardware (i.e. virtual addresses) is used for
addressing objects, and capabilities are only used for object protection and access control.

A first example is the Amoeba system [Tanenbaum 86], based on the client-server
paradigm. A server is a protection domain in which objects are accessible using their virtual
addresses. An object is managed by exactly one server. A server can create and export
domain capabilities to other servers, allowing external processes to enter the server to invoke
operations on objects within the server. Interaction between clients and servers is message-
based. A process that invokes an operation on an object in a distant server sends a message
to the server, passing the capability for the operation. The receiving server checks if the
capability is valid and, if so, performs the operation. In order to prevent clients from forging
rights on objects, exported capabilities are encrypted, and may only be interpreted by the
server. Capabilities can be passed as parameters of method invocations, allowing rights to
be transferred between servers.

Another example is the Opal single address space system [Chase 94]. The main
difference with Amoeba is that objects in Opal may be shared between several protection
domains. A process in one protection domain can either map an object locally using an
object capability, or enter another domain using a domain capability called a portal.

Software capability based systems are very well suited for the development of
protection applications; however, as shown in the following section, current systems lack
flexibility.

Hidden Capabilities

In all software capability based systems, capabilities are made available at the
programming language level through capability variables that are used explicitly for:

• accessing objects (mapping an object to a capability)

• changing protection domains (with a capability on the called domain’s entry point)

• transferring access rights between protection domains (passing a capability as a
parameter).

In the Amoeba system, capabilities are used explicitly to invoke objects managed by a
server. Capabilities are also explicitly exchanged as parameters when an invocation takes
place between two servers. In the Opal system, capabilities are used in the application code
to attach (i.e map) segments in protection domains; a process uses portals in the same way to
enter a new domain. Therefore, in these systems, the definition of protection is wired in the
application code; as a consequence, a different implementation of the same code is needed
for each distinct set of access rights associated with it. Moreover, protecting an already

7

developed application or reusing an unprotected module entails at least a partial re-
implementation.

This drawback - managing capabilities in the application code - has already been
partially addressed in a few systems. For instance, in Opal, it is possible to force a trap into
the system when an object is not yet mapped in the current protection domain, and to have
the object automatically mapped if a capability for that object is associated with the protection
domain. The advantage of this scheme is that only object names (virtual addresses in Opal)
have to be managed at the application level if the object can be mapped locally. Furthermore,
Opal allows a portal (i.e. an inter-domain invocation capability) to be hidden from
applications behind a proxy object [Shapiro 86]. However, with this approach, the same
object cannot, with one protection setting, be called locally and, with another setting, be
invoked in another protection domain. Moreover, capability parameters passed to the target
protection domain must be specified in the application code.

We believe that it is possible to go one step further and to make application code
completely independent from capabilities. We believe - and our implementation is described
in the following sections - that applications should only see virtual addresses or names;
access control is ensured by the system, using capabilities, cross-domain invocations when
needed, and cross-domain capability transfers as required.

If the current protection domain contains a capability for the target operation, then the
operation is performed locally. If it does not, but the domain contains a domain capability
(associated with the target operation), then the same access should trigger a domain
crossing, allowing the operation to be executed in the target domain.

One of the main problems is then to allow capability parameters to be exchanged
between protection domains while keeping code independent from protection. From now
on, we assume that an operation on an object has a procedural form. We show in section 3
that capability transfer rules can be expressed using an Interface Definition Language (IDL),
that allows the generation of adequate system code for capability passing and control.

3 Expressing Protection with an IDL

In this section, we present how an interface definition language can be extended in
order to specify the protection policy associated with an application.

3 . 1 Motivations

IDLs are generally associated with Remote Procedure Call (RPC [Birrell 84]). An
IDL is used to specify the interface of a service, allowing the stub generation for the
marshalling of parameters.

The key feature we are using here is that an interface is defined separately from the
code of the application. Just like an interface is associated with an entry point in a remote
server, an interface can be associated with a domain capability which is an entry point in the
target protection domain. This interface would actually exist anyway if protection was
implemented by a client-server system.

8

Therefore, our proposal is to specify capability transfer rules in an interface definition
associated with each domain capability.

3 . 2 The Protection-enhanced IDL

Let us recall that an entry point of a domain is defined by a procedural interface (see
example in section 2.2.3). This interface is associated with the domain capability that gives
access to the domain. We propose to use an IDL to define the procedural interface to a
domain. This IDL is extended to specify protection rules that define the capabilities which
must accompany object names transmitted as parameters. Note that this specification is
associated with a domain capability and is completely separated from the application code.

The interface of a domain capability including protection statements is called a
Protected Procedure Interface (PPI). We now examine the contents of a PPI.

To meet all its requirements, a PPI should allow:

• the called domain to control the capabilities that enter (at call time) and leave (on
return) the domain,

• the caller domain to control the capabilities that leave (at call time) and enter (on
return) the domain.

Therefore, to fully control the access rights, both the called and the caller domains
must define PPIs that correspond to their respective requirements; then the system has to
match these requirements in order to check their compatibility. This matching is done when
the domain capability is installed in the caller protection domain; it fails if the PPIs are not
compatible.

As stated in section 2.2, the called domain needs to specify the minimal rights it needs
for in-parameters and the maximal rights it accepts to give for out-parameters. On the other
side, the caller domain specifies the maximal rights for in-parameters and the minimal rights
for out-parameters. The result of the matching process is to install in the calling domain a
capability specifying the entry point to be called and the rights required on parameters by the
caller and the callee. At execution time, the addresses of effective parameters are used to
search the two domains for a set of capabilities including the required rights.

For example, let us consider again the printer example described in section 2.2.3. The
client protection domain can enter the server protection domain using a domain capability.
Then, the PPI associated with this domain capability is the following:

operation Print (
in obj_capa(read) object-type file,
in dom_capa(interface) proc-type error_handling,

);

This PPI is the one specified by the server. Object-type represents the type of an
object name (e.g. a virtual address). The server requires an object capability with at least
read rights with the parameter file. The server also requests a domain capability to be passed
with object error_handling. For this domain capability, the server is the caller and the client
the callee; interface is the PPI that expresses the requirements of the client for this domain

9

capability parameter. When the effective domain capability is passed (for the formal
parameter error_handling), the system will look for a capability containing a capability
compatible with interface.

Separately, the client domain can specify its own PPI (for the Print entry point) that
will be matched to the server’s PPI when the capability is installed in the client protection
domain.

3 . 3 Extensions to the IDL

In order to demonstrate the power of expressing protection rules with an IDL, we now
present some possible extensions that we plan to include in our implementation.

3.3.1 Management of Complex Structures

The first extension is related to the management of complex structures. The IDL can be
enriched to allow the transfer of a set of capabilities, associated with a complex structure.

With current IDLs, it is easy to specify that a linked list structure has to be passed as a
parameter of an invocation. The stub generated from the interface will, at run time, follow
pointers and transmit all the objects included in the list, and finally rebuild the list in the
remote environment.

We propose to use the same mechanism in order to transfer a set of capabilities
associated with a complex structure such as a linked list. Just like an IDL declaration can
specify the transfer of a linked list, the following PPI specifies the transfer of the capabilities
on the objects contained in a linked list:

type list-type =
record

obj_capa(read) object-type file;
obj_capa(read) list-type next;

end ;
operation Print (

in obj_capa(read) list-type list_of_file);

In the same way than a stub generated by an RPC compiler does [rpcgen 88], the list-
type structure will be searched recursively in order to collect the capabilities that must be
transferred. In the example, the PPI specifies the transfer of read rights on the objects in the
list and on the linkage structures of the list. It is then used to transmit a list of file objects to
the Print operation.

3.3.2 Administration of Protection Domains

In order to provide functions for the administration of capabilities in protection
domains, we plan to manage lists of capabilities. A symbolic name is associated with a list
of capabilities and a list may be included in a list, allowing the domain administrator to
organize access rights in a domain as a hierarchy like directory trees in the Unix system.

10

Thus, in order to facilitate the administration of capabilities, the IDL can be extended
to allow the installation of capabilities in this environment. When a PPI specifies the transfer
of a capability to a protection domain, it is then possible to control where the capability
should be installed in that protection domain.

In the following example, two operations are defined for the management of a library.
When a document is registered in the library, the capability on the document is stored in the
bib_doc_list list.

operation Biblio_Register (
in obj_capa(rights) doc-type doc install bib_doc_list,
out String[10] refbib);

On the other side, the IDL can also allow the administrator to place restrictions on
capabilities leaving the domain. The client domain that accepts the domain capability
associated with this PPI can specify the following PPI, meaning that only capabilities from
the export_doc_list list may leave the client domain.

operation Biblio_Register (
in obj_capa(rights) doc-type doc from export_doc_list,
out String[10] refbib);

The system matches these two PPIs when the domain capability is installed in the
client domain.

3 . 4 Programming with Hidden Capabilities

In this section, we illustrate the use of hidden capabilities and PPIs for the
development of a protected application based on existing software components.

Let us consider the case of a desktop application that is composed of several reused
modules such as: the library and printer modules mentioned previously, tools for the
administration of the local host and others. The Desktop manager uses the interfaces of these
modules, but these modules may also reference each other (Figure 3).

administration
tools

Printer library

Desktop manager

Figure 3. Inter-module references

11

In this figure, arrows denote module references. For example, the Desktop manager
uses procedures exported by the library, the administration tools and the printer modules.

The code of these modules is completely independent from protection specifications.
The administrator defines the capabilities associated with the objects managed by the
application. These capabilities may allow some of these modules to execute locally, i.e. in
the protection domain of the user, but it may also force the execution of some other modules
in separate protection domains in order to protect internal data from untrusted users.

The code of the desktop application and the modules will always use objects as if they
were available locally; the management of access rights is defined by the installation of
capabilities in the involved protection domains and by the specifications of the PPIs.

In order to clarify this, let’s give some details about the communication between the
desktop and the administration tools (Figure 4).

Administration tools Desktop manager

list_users

add_user

remove_user

invocations

root

administrator

user

agents

Figure 4. Protection independent invocation code

When the Desktop manager is used in root mode, it is executed in a domain containing
object capabilities for the three entry points (list_users, add_user, remove_user) that will be
invoked in that domain (assuming the root user knows what he is doing). When the Desktop
manager is used by a system administrator, then it is activated in a domain containing
domain capabilities for the three entry points, allowing administration tools to be executed in
a secure environment. When the Desktop manager is used by a regular user, only a domain
capability for the list_users entry point will be provided.

We conclude this section by pointing out a more intuitive advantage of hidden
capabilities. The separation of the implementation code from the protection policy definition
makes the application more easy to maintain.

12

4 Integration in an Operating System

In this section, we describe the integration of our protection model within an operating
system: the Arias single address space distributed shared memory system, which is currently
under development.

We first describe the characteristics of the system that are needed for comprehension,
and then present the integration in this system.

4 . 1 The Arias Design

Arias is a single address space operating system based on the Distributed Shared
Memory (DSM) paradigm. Arias is currently under development and is being integrated in
the AIX Unix system.

In Arias’ memory, the unit of allocation is the segment. A segment is a contiguous set
of pages that is dynamically allocated for applications’ needs. All segments are persistent;
they are shared between the Unix processes that are running in the distributed system.

The segments are managed in a single address space. At creation time, each segment is
associated with a unique virtual address. Subsequently, each segment is always accessible at
that virtual address, thus avoiding the need for any name translation at execution time.

Arias’ segments are dynamically mapped in the address spaces of user level processes.
At the first use of a segment (i.e. at the first access to a virtual address in the segment) in a
Unix process, an addressing error event is delivered to the local Unix kernel. In response to
this event, the kernel maps the segment in the address space of the process and then restarts
the execution. The segment can be either a data segment or a code segment.

4 . 2 Integration of the Protection Model

Our first implementation decision is to store control informations within the Unix
kernel space. This kernel space is an area in the distributed shared memory which is
accessible from each machine in the system. A capability is implemented by a pair composed
of access rights and a pointer to the segment. The capabilities in a domain are regrouped in a
table called a domain descriptor.

The implementation of the protection model is used to control the accesses to segments
by agents associated with user level processes. For this purpose:

• a protection domain is implemented by a Unix process,

• an agent is implemented by a thread in a process (a different thread per protection
domain).

For efficiency reasons, access control has to take place at the first access to an object
and we intend to use Unix exceptions to detect and process such an access. Initially, no
segment is mapped in the virtual space of the process implementing a domain.

When an agent tries to access a data segment through a virtual address, an exception
occurs. In response to this event, a capability for the segment is searched for in the domain

13

descriptor. If the search succeeds, the segment is mapped in the process virtual space with
the rights defined in the capability. If the search fails, a protection exception is returned to
the agent.

In the case of a code segment, and if the domain descriptor contains a capability with
the right “execute”, then the segment is mapped in the current process in the same way as
before. If a domain capability is associated with the segment, then a cross domain call is
forced. We implement this call in the same way as an RPC: with each domain capability, we
associate a stub for the procedure, which calls a system primitive, passing the effective
parameters to the kernel. If necessary, the kernel will create a new process and a thread in
this process to resume the execution of the agent. Thus, the call to the external domain is
implemented by a call to a stub mapped in the current domain. The stub is “compiled” from
the IDL description and is mapped at first call like any ordinary object.

5 Conclusion and Perspectives

We have presented a novel protection model based on hidden software capabilities.
The main advantage of the model is that it separates protection definition from
implementation code, thus enhancing modularity and flexibility.

This protection model defines two types of capabilities: object capabilities that allow
objects to be dynamically mapped, and domain capabilities that force cross-domain
invocations when protected operations are called. In order to control capability parameters
exchanges between protection domains, an extended IDL is used to define a Protected
Procedure Interface (PPI) associated with each domain capability. This PPI specifies the
capabilities that should be passed with object name parameters, and is used to generate the
code used at run-time.

From the point of view of an application developer, the main benefit of our proposal is
the ability to experiment different protection schemes without any modification or
recompilation of the source code. From the point of view of the system implementer, this
protection model can be integrated in an operating system as a separate module; the only
hook to the kernel is through the exception based detection mechanism.

This protection model can be integrated in a wide range of operating systems. For
example, we have outlined its integration in the Arias single address space distributed shared
memory system. Arias and our protection model are currently being implemented with the
help of the facilities provided by the AIX kernel. The protection model will be evaluated in
this framework.

Finally, we are also studying how an object based distributed architecture such as
CORBA could benefit from this protection model.

Acknowledgments:
P. Dechamboux, J. Han, A. Knaff and E. Pérez-Cortés contributed to the design of the Arias system,

including the work described in this paper. We would like to extend special thanks to S. Krakowiak for his

helpful comments and careful readings of the paper.

This work was partially supported by CNET (France Télécom).

14

Bibliography

[Birrell 84] A. D. Birrell, B. J. Nelson. Implementing Remote Procedure Calls, ACM Transactions on
Programming Languages and Systems, 2(1), February 1984.

[Cabrera 92] L.-F. Cabrera, A. W. Luniewski, J. W. Stamos. Fine-Grained Access Control in a
Transactional Object-Oriented System, Computing Systems, 5(3), Summer 1992.

[Chase 94] J. S. Chase, H. M. Levy, M. J. Feeley, E. D. Lazowska. Sharing and Protection in a Single-
Address-Space Operating System, ACM Transactions on Computer Systems, 12(4), pp. 271-307,
November 1994.

[England 75] D. M. England. Capability, Concept, Mechanism and Structure in System 250, RAIRO-
Informatique (AFCET), Vol 9, pp. 47-62, September 1975.

[Hagimont 94] D. Hagimont. Protection in the Guide Object-Oriented Distributed System, Proc. of the
8th European Conference on Object-Oriented Programming, pp. 280-298 , July 1994.

[Kowalski 90] O. C. Kowalski, H. Härtig. Protection in the BirliX Operating System, Proc. of the 10th
International Conference on Distributed Computing Systems, pp. 160-166, May 1990.

[Levy 84] H. M. Levy. Capability-Based Computer Systems, Digital Press, 1984.

[OMG 91] OMG. The Common Object Request Broker: Architecture and Specification, OMG Document
Number 91.12.1, Revision 1.1, December 1991.

[Organick 72] E.I. Organick. The Multics System: an Examination of its Structure, MIT Press, 1972.

[rpcgen 88] rpcgen - An RPC Protocol Compiler, Sun Microsystem, Inc., 1988.

[Shapiro 86] M. Shapiro. Structure and Encapsulation in Distributed Systems: The Proxy Principle, Proc.
of the 6th International Conference on Distributed Computing Systems, pp. 198-204, 1986.

[Tanenbaum 86] A. S. Tanenbaum, S. J. Mullender, R. Van Renesse. Using Sparse Capabilities in a
Distributed Operating System, Proc. of the Sixth IEEE International Conference on Distributed
Computing Systems, pp. 558-563, 1986.

[Wilkes 79] M.V. Wilkes, R. M. Needham. The Cambridge CAP Computer and its Operating System,
North Holland, 1979.

[Wulf 74] W.A. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, F. Pollack. Hydra: The
Kernel of a Multiprocessor Operating System, Communications of the ACM, 17(6), June 1974.

