
A Java-based system support

for distributed applications on the Internet

D. Hagimont1, D. Louvegnies2

SIRAC Project
INRIA, 655 av. de l’Europe, 38330 Montbonnot Saint-Martin, France

Abstract: We have implemented a service for the development of distributed
cooperative applications on the Internet. This service provides the abstraction of a
distributed shared object space. The objects managed by the applications are
transparently shared between the client nodes, so that the application developer can
program as in a centralized setting.

One of the main characteristics of cooperative applications is that data must be copied
to the accessing nodes, at least to be displayed and sometimes modified. So our
service relies on object caching. It provides the same abstraction and interface as the
RMI service of Java, but it extends the functionality by allowing shared objects to be
cached on the accessing nodes. Objects are copied on demand to the requesting nodes
and are cached until invalidated by the coherency protocol.

This service has been implemented on top of Java. It has been evaluated by
comparison with RMI using a benchmark and validated by porting an existing mail
browser application.

1. Introduction

Support for cooperative distributed applications is an important direction of computer
systems research, involving developments in operating systems as well as in programming
languages. In the 80's, a model has emerged for the support of cooperative distributed
applications, that of a distributed shared universe organized as a set of objects. Distributed object-
oriented systems such as Emerald Black87], Clouds [Dasgupta90] or Guide [Hagimont94] belong
to this class of systems. More recently, the growth of the Internet, which is now used daily for
cooperation, logically leads to the deployment of distributed cooperative applications over the
Internet.

Today, distributing applications on the Internet is closely linked with the Web (essentially
URLs) and Java. This is mainly because they provide a global naming scheme and machine
independent code (to deal with heterogeneity). Therefore, a first step to provide distributed shared
objects on the Internet was Java-RMI [Wollrath96] which provides remote method invocation
between Java objects. Remote object references may be exchanged and a mechanism called object
serialization allows distributed programs to exchange copies of objects (as in
Sun RPC [rpcgen88]). However, using the RMI facilities, distributed applications are based on the
client-server architecture which does not allow objects to be cached and therefore accessed
locally. It is possible to manage object replicas using the object serialization facility, but the
coherence between the replicas has to be explicitly managed by the application programmer. We
believe that object caching is one of the key features required by cooperative applications,
especially over the Internet, where latency and bandwidth are highly variable.

In order to assist the programmer, we propose a new system service called Javanaise which
implements the abstraction of a distributed shared Java object space. This service provides the

1 INRIA (Institut National de Recherche en Informatique et Automatique

2 Université Joseph Fourier, Grenoble

same abstraction and interface as the RMI service of Java, but it extends the functionality by
allowing shared objects to be cached on the accessing node. Objects are copied on demand to the
requesting nodes and are cached until invalidated by the coherency protocol. With this system
support, the programmer can develop his application as if it were to be executed in a centralized
configuration. Then, the application can be configured for a distributed setting without any (or
with minor) modification to the application source code. This configuration is performed by
annotating the interfaces of the objects that are distributed, specifying the synchronization and
consistency protocols to apply to these objects. A prototype of this service has been implemented
on top of Java and consists in a proxy generator which is used to generate indirection objects
(proxies) for the support of dynamic binding, and a few system classes that implement
consistency protocols and synchronization functions.

The main advantages of the Javanaise service are:
• Dynamic deployment. Applications are dynamically deployed to the client nodes from

the node that hosts the application; thus we do not require applications to be installed on
a machine prior to execution.

• Caching. Our system support allows shared Java objects to be cached on cooperating
nodes, thus enabling local invocation on distributed objects and reducing latency. This is
one of the key requirements of cooperative applications.

• Transparency. A distributed cooperative application can be developed as if it were to be
run centralized. Distribution and synchronization are programmed separately from the
application code. This also enables adaptation of existing centralized applications in
order to run distributed.

The rest of the paper is structured as follows. In section 2, we provide an overview of the
Java environment which introduces the Java features used in the rest of the paper. We present in
section 3 the general motivations for the Javanaise environment. Section 4 presents the overall
design choices for this system support. Section 5 describes the implementation principles and the
prototype on top of Java is described in section 6. Our experience and evaluation of the prototype
is reported in section 7. After a discussion of related work in section 8, we conclude in section 9.

2. The Java environment

In this section, we recall the aspects of the Java environment [Arnold96, Sun96] that are
relevant to our experiment.

Java is a C++ like object-oriented programming language which is used to generate
programs that can be executed on a portable runtime environment that runs on almost every
machine type. Since Java is very popular and well known, we will only describe the features used
in our experiment.

Code mobility
A key feature of Java is code mobility. Java allows classes to be dynamically loaded from

remote nodes. Such mobility of code requires code portability and security enforcement in order
to confine error propagation. Code portability is provided by interpretation of byte code. The
javac compiler does not generate machine code, but a code which is common to (and
independent of) any type of hardware and which is interpreted by the runtime of the language
during execution. Security is mainly enforced by the safety of the Java language. The Java
language does not allow direct access to the address space of the program. Objects are not
manipulated through pointers, but through language level references that cannot be forged. A
program can only obtain a Java reference in return of an object creation or as a parameter of an
object invocation.

Java code mobility is now widely used for the Web. Most of the Web browsers includes a
Java virtual machine and an HTML page can include some references to Java programs called
Applets. When the HTML page is downloaded by a browser, the Java program is executed by the
Java machine embedded in the Web browser.

Polymorphism and dynamic binding
Another important aspect of Java that we used is polymorphism. Polymorphism refers to

the ability to define Interfaces (or types) and classes separately. An interface is a definition of the
signatures of the methods of a class, which is independent from any implementation. An interface
can therefore be implemented by several classes. It is possible to declare a variable whose type is
an interface and which can reference objects from different classes that implement the same
interface.

Java also implements dynamic binding, which is crucial to mobile code. Dynamic binding
means the ability to determine at run-time the code to be executed for a method invocation. Since
Java allows classes to be dynamically loaded, a variable of an interface type can be assigned to a
reference that points to an object, whose class was loaded dynamically. Java postpones the binding
of the code (of this variable) until invocation time, thus allowing dynamically loaded classes to be
executed.

Object serialization
Java also provides in its last release an object serialization feature [Riggs96] which allows

instances to be exchanged between different runtimes. This feature provides a means for
translating a graph of objects into a stream of bytes which can be sent as a message over the
network or written into a file on disk. The receiver of the message or the reader of the file can
deserialize the byte stream, i.e. rebuild the graph of objects. The Java references within the graph
are changed, but the structure of the graph is preserved.

Each instance of a class which implements the Serializable interface can be serialized. Two
inherited methods writeObject and readObject define, respectively, the default behavior for
serializing and deserializing an object. By default, all the objects that are referenced from a
serialized object are serialized (they must implement the Serializable interface). In order to
control the serialization process, it is possible to override these methods by specifying which fields
of the object should be transferred and reassigned when the object is rebuilt. This makes it
possible, for instance, to stop the serialization recursion.

Garbage collection
The Java runtime environment also includes a garbage collector which retains reachable

objects. Each object is preserved by the Java runtime as long as it is reachable by at least one
execution thread in the virtual machine. If an object is not reachable anymore, all the resources
(mainly memory) allocated for that object are collected by the runtime and may be reused for
other objects. Garbage collection is transparent to user programs, which only have to deal with
object references. Java keeps track of all the Java references which point to one object and the
object is garbage-collected when the last reference to the object is reassigned.

Access to system level resources
Java provides access to resources managed at the operating system level such as files or

network connections. In particular, Java allows a program to open, read and write files and to store
the result of a serialization into a file, therefore managing persistent Java objects on disk. Classes
for binding to a remote machine port are also provided, both through a socket interface or
through the HTTP protocol in order to query a Web server.

Remote method invocation
Java provides a service called RMI which allows for objects to be invoked from a remote

Java virtual machine. A class may be defined as being a Remote class, which means that instances
of this class may be invoked remotely. RMI provides a stub compiler which generates stubs and
skeletons from Remote classes definitions. A name server (called Registry) allows a remote object
reference to be exported on one site. Then, a client Java program on any machine can fetch this
reference and remotely invoke a method on the object. Subsequently, other remote references
may be returned to the client as parameter of this invocation.

An important characteristic of RMI is that the interface of a Remote class is restricted to
include Java reference parameters to either Remote object or Serializable objects. Passing a
Remote object reference ensures that the object can be invoked from any other machine; the

object is thus passed by reference. Passing a Serializable object reference allows RMI to provide a
copy of the object; the object is thus passed by value.

3. Motivation

The main motivation for Javanaise is to provide adequate support for developing and
executing cooperative applications on the Internet. Cooperative applications aim at assisting the
cooperation between a set of users involved in a common task. An example of cooperative
application is a structured editor which allows documents to be shared concurrently by remote
users. We implemented such a distributed editor in a former project [Decouchant93].

Cooperative applications are characterized by a large amount of shared data structures
which are browsed or edited by cooperating users connected from remote workstations. Since
these data structures should be copied to the accessing nodes, at least to be displayed and
sometimes to be modified, a caching strategy should be used. Defining the unit of sharing and
consistency is the key issue to efficiency.

Another important motivation for Javanaise is to allow remote access to applications without
requiring them to be installed on the machine prior to execution. An alternative to installation is
to allow these applications to be freely downloaded on a Java virtual machine (just like applets),
thus benefiting from a dynamic deployment of the applications with the guarantee that the
application cannot corrupt the local host, thanks to Java's type safety. Dynamic deployment of
applications also allow users to access the same application (including some persistent data) from
any machine connected to the Internet, as long as a Java virtual machine runs on that machine.

Finally, we want to allow programmers to develop applications as if they were to be run
centralized. We want to minimize the impact of distribution on application development. Thus, a
programmer should be able to develop, debug and test its application on a single machine, and
then after a simple configuration step, run it distributed using our system support. Porting an
existing centralized application should also be simple and require only minor modifications to the
source code.

The three motivations described above (caching, easy administration, easy development)
constitute the guideline which leads us to the design of Javanaise.

4. Basic design choices

This section presents our design choices for the Javanaise system support. Their translation
to implementation principles is presented in the section that follows.

4. 1. Managing clusters
The main problem we have to solve is to efficiently manage distributed replicas of Java

objects while keeping distribution transparent to the application programmer:
• Managing object replicas requires mechanisms for faulting on objects, invalidating and

updating objects in order to ensure consistency. These mechanisms should be hidden to
the application programmer, who should only manipulate Java references as if every
object were local.

• Previous experiments with the management of distributed fine grained objects have
shown that efficiency is closely linked with object clustering [Hagimont94]. A cluster of
objects is a group of objects which is supposed to be coarser grain (than a single object).
Therefore, since system mechanisms are generally applied to coarse grained resources
(e.g. IOs), they are applied to clusters, thus factorizing the costs of these mechanisms for
all the objects within a cluster. However, clustering works well only if objects co-located
within the same cluster are effectively closely related.

The mechanisms we want to factorize are naming, binding and consistency mechanisms. In
order to be able to dynamically bind a reference to a remote object, we need to associate a unique
name with each object, thus allowing the object to be located and copied to the requesting node.

In order to implement object binding3, we need to manage indirection objects that allow object
faults to be triggered if the reference is not yet bound. In order to manage objects consistency, we
need to exchange messages between cooperating nodes to invalidate and update copies according
to a consistency model.

Managing clusters of objects is a means for amortizing these costs (indirection objects,
messages) over a group of objects that are inter-dependent. Inter-dependence means here that if
one object of the group is accessed, most of the objects included in the group are likely to be
used in the near future.

4. 2. Application dependent clustering
Our previous experiments with object clustering (in the Guide system [Hagimont94]) relied

on a system support that allows any object to be stored in any cluster. The system exports to
applications a cluster management interface allowing objects to be stored in or migrated to any
cluster. From the programmer's point of view, managing clustering is complex and most of the
time leads to a default policy which is inefficient and does not actually use the flexibility of the
clustering interface.

In Javanaise, our goal is to allow application specific clustering policies while keeping it
transparent to the application programmer. We propose to implement what we call application
dependent clustering. This approach is inspired by the observation that cooperative applications
tend to manage logical graphs of objects in their data structures. For example, a cooperative
structured editor manages chapters that are composed of sections, themselves composed of
subsections and paragraphs. We claim that some of these graphs should be managed as clusters by
the system since they correspond to closely related objects according to the application semantics.

In Javanaise, a cluster is an application-defined graph of Java objects. A cluster is identified
by a Java reference to a first object (called a cluster object) and the graph that defines the cluster
is composed of all the Java objects that are accessible from the cluster object (the transitive
closure). The boundaries of this graph are defined by the leaves of the graph and by the
references to other cluster objects. A reference to another cluster object is called an inter-cluster
reference (Figure 1). The Java objects within a cluster are called local objects.

cluster1 cluster2

inter-cluster
reference

Figure 1. Management of clusters
A cluster object is an instance of a class (defined by the programmer) which has been

defined (when the application is configured to be run distributed) as being a cluster class. Only
interfaces of cluster objects are exported to other cluster objects, which means that the interface of
a cluster object may only include methods whose reference parameters are references to cluster
objects. Therefore, local objects in one cluster are only accessible from objects within the cluster.

At this step, it is important to notice that RMI implicitly enforces application dependent
clustering. Indeed, since RMI imposes that any reference parameter in the interface of a Remote
class is a reference to a Remote object, a Remote object is completely equivalent to a cluster
object. A Remote object can create many local (non-remote) objects but cannot export references
to these local objects.

3 without modification to the Java virtual machine

With RMI, as for Javanaise, configuring the application for distribution consists in
specifying which classes are Remote (resp. Cluster). Then, only Remote objects are globally
visible and the applications only pay for objects declared Remote.

The basic difference between Javanaise and RMI is that Javanaise provides cluster caching.
This means that a cluster is loaded on the client node the first time it is used, and then accessed
locally. Furthermore, Javanaise enforces objects consistency whenever objects are cached on
different machines, as will be shown in the next section.

4. 3. Application programming
The programmer develops applications using the Java language without any language

extension nor system support classes (libraries). An application can be debugged and tested
locally (on one machine).

Configuring the application for distribution first consists in specifying which classes are
cluster classes (just like an RMI user specifies which classes are Remote). The configurator should
take into account the data structures managed in the application, i.e. the links between the classes
that compose the application. However, this separation between the configuration and the
application code makes it possible to experiment with different configurations for the same
application without any modification to the application. However, we claim that logical groupings
already exist in most cooperative applications.

Since an application is developed centralized, it does not deals with synchronization and
consistency problems. A second step in the configuration is to associate a synchronization and a
consistency protocol with each cluster. This is done at the level of the interfaces of the cluster
classes. The interfaces of the cluster classes are annotated with keywords that define the
consistency and synchronization protocols associated with the clusters.

At the moment, we have only implemented a single writer / multiple readers protocol. In the
interface of a cluster, it is possible to associate a mode (reader or writer) with each method. When
the method is invoked on a cluster instance, a lock in that mode is taken and a consistent copy of
the cluster is brought to the local host. However, we will experiment with different
consistency/synchronization protocols in the near future.

5. Implementation principles

Here, we describe the implementation principles used to manage distributed shared clusters
of Java objects.

5. 1. Managing cluster binding
Since a cluster is a graph of Java objects, clusters may be copied dynamically to a

requesting node using the Java serialization mechanism.
The problem is to manage dynamic binding of references to objects that may be fetched

dynamically from remote nodes. Since the unit of naming and caching is the cluster, we have to
provide a mechanism for dynamic binding of inter-cluster references.

cluster1 cluster2

proxy-out

cluster object

Figure 2. Binding of inter-cluster references
Our implementation relies on intermediate objects called proxies [Shapiro86] which are

transparently inserted between the referenced cluster and the cluster which contains the reference
(Figure 2). A proxy contains a Java reference that points to the referenced cluster object if it is

already there and null if not. It also contains a unique name associated with the cluster, allowing
the cluster to be located and a copy to be brought on the local host.

The class of the proxy object is generated from the interface of the cluster class to which it
points. This proxy implements the same interface as the cluster object. Each method invocation is
forwarded to the actual cluster object if the reference is already bound, i.e. if the Java reference in
the proxy is not null. If this Java reference is null, then a function of the runtime system is
invoked in order to check whether the cluster is already cached (subsequently to the binding of
another inter-cluster reference). A copy of the cluster is fetched if required and the Java reference
in the proxy object is updated.

In the following, we call this proxy a proxy-out object. Proxy-out objects are stored in the
cluster which contains the reference to the cluster.

5. 2. Managing cluster consistency and synchronization
First, the problem is to manage invalidates and updates of clusters according to a

consistency protocol. In this section, we only describe the mechanism that we used, independently
from the consistency protocol which is applied.

A cluster can be invalidated on one node (Java virtual machine) simply by assigning to null
the Java references in the proxy-out objects that reference the cluster. All the Java objects
included in the invalidated cluster are then automatically garbage collected by the Java runtime.
However, instead of dynamically looking for all the proxy-out objects that point to the invalidated
cluster (which would be complex and inefficient), we decided to manage another type of proxy
called proxy-in object, which is inserted between the proxy-out object and the cluster it points to
(Figure 3). A proxy-in object is stored in the cluster which is referenced. Similarly to proxy-out
objects, a proxy-in object forwards method invocations to the referenced cluster if its internal Java
reference is not null. If this Java reference is null, then a function of the runtime system is
invoked in order to fetch a consistent copy of the cluster and the Java reference in the proxy-in
object is updated.

cluster1 cluster2

proxy-out

proxy-in

Figure 3. Consistency of cluster objects
Then, a cluster invalidation on one node simply consists in assigning to null the Java

reference in its associated proxy-in object.
Therefore, we deal with two kinds of cluster faults:
• proxy-out faults. When the Java reference in a proxy-out object is null, a copy of the

referenced cluster is fetched. This copy of the cluster includes a proxy-in object
pointing to the cluster object.

• proxy-in faults. When the Java reference in a proxy-in object is null, a copy of the
referenced cluster is fetched. This copy of the cluster does not include a copy of the
proxy-in object which is already there.

In both cases, the consistency protocol may require the cluster to be invalidated on some
other nodes, using its proxy-in object on that node.

At this point, we are able to invalidate and update clusters for consistency management.
With the mechanisms described above, we can manage strong consistency for a cluster, ensuring
that only one copy of the cluster is accessible on one node.

However, in most cases, a synchronization scheme is associated with the consistency
protocol. For example, this is the case for the entry consistency protocol [Bershad93] which
allows applications to lock objects and guarantees objects coherence only when a lock is taken.
Such a synchronization scheme can be implemented in the proxy-in object.

In our prototype, we allow an access mode (reader or writer) to be associated with each
method in a cluster interface, which means that a lock on the cluster must be taken before
entering the method. This locking strategy in managed in the proxy-in object which knows which
lock is being held on the current node. An invalidation on one node is in this case a lock request
to the proxy-in object, that may block until all locks are released on that object.

5. 3. Managing reference parameter passing
In the interface of a cluster object, methods may only have reference parameters that are

references to cluster objects. When such a reference is passed at execution time, the system must
ensure that a reference which enters a cluster will point to a proxy-out object. This is ensured by
the proxy-out objects for onward parameters and the proxy-in objects for backward parameters
(Figure 4).

cluster1 cluster2

cluster3

c3 = c2.meth()

(3)

(4)

(2)

(1)

Figure 4. Parameter passing
In Figure 4, a local object in cluster1 (1) performs an invocation (c3 = c2.meth()) on

cluster2. The invoked method returns a Java reference stored in cluster2 (2), which is a reference
to cluster3. In order to be able to store a reference to cluster3 in cluster1, the system must create a
proxy-out which points to cluster3 (3). This proxy-out object is created by the proxy-out in
cluster1 which is associated with the reference to cluster2 (4).

An onward reference parameter would be managed similarly by the proxy-in object in
cluster2.

When managing proxy-out objects for entering parameters in a cluster, we need to
guarantee that all the references to a cluster C within the cluster point to the same proxy-out
object. This is especially important when comparing two variables that contain cluster references
(within one cluster). To do this, we manage in each cluster a table which registers the proxy-out
objects which already exist in the cluster. When a reference enters the cluster and if an associated
proxy-out object already exists in the cluster, then this proxy-out object is used and no additional
proxy-out object is created. Therefore, we avoid having two proxy-out objects associated with the
same external reference in one cluster.

6. Prototype on Java

We have implemented a prototype of this system support and we describe it in this section.

6. 1. Overall architecture
The overall architecture is illustrated on Figure 5.

Javanaise
client

Javanaise
server

code and
clusters

Javanaise
client

Java
runtime

Java
runtime

Java
runtime

Home
Site

mobile code
and clusters

deployment

shared
objects

Figure 5. Architecture
In our prototype, we assume that the code of Javanaise, the code of the application and the

persistent clusters are stored on a node called the Home Site of the application. The code of
Javanaise and the code of the application are dynamically deployed to the client nodes when the
application is invoked. An application is made available on the Home Site through a Web server
and identified and located with a URL. The application is launched using an Applet viewer, the
code of the application and of Javanaise being downloaded on client nodes just like an Applet.
Clusters are then fetched on demand by the requesting nodes and shared following the
consistency protocol.

The Javanaise system support consists of:
• the proxy generator which generates proxy-out and proxy-in classes from the interface

of a cluster. Proxy-out and proxy-in classes provide mechanisms for reference binding
and consistency management.

• some system primitives (Javanaise client) that are available on the client nodes and used
by the proxies on these nodes. Javanaise client maintains a table of the clusters
(proxy-in objects) that are already present on the local host.

• some system code (Javanaise server) that participates in the binding and consistency
protocols on the home site. The Javanaise server maintains a table which registers the
locations and locks held for all the clusters.

6. 2. Generation of proxies
Proxies are generated from the interface of a cluster class using a proxy generator. Let's see

the Java code skeleton of the proxy-out and proxy-in classes generated from the cluster interface
below.

public class Cluster1 implements Cluster1_itf {

public void method1 (Cluster2_itf obj); : read

public Cluster3_itf method2 (); : write

}

This definition4 describes the interface of the cluster class Cluster1 which implements the
Cluster1_itf interface. Two methods are defined, the first one taking a onward reference parameter
and the second returning a reference parameter. The first method requires a read lock before
execution and the second a write lock.

Below is the proxy-out class generated from the above interface definition. The name of
this class is actually Cluster1, because when a program manipulate a reference to a Cluster1
instance, it is in fact a reference to a proxy-out object which implements the same interface.

public class Cluster1 implements Cluster1_itf {

int object_id;

Proxy_in_Cluster1 proxy_in;

public Cluster1 () {

proxy_in = new Proxy_in_Cluster1();

object_id = proxy_in.my_id();

}

public void method1 (Cluster2 obj) {

if (proxy_in == null)

proxy_in = (Proxy_in_Cluster1) javanaise_client.get_proxy_in(object_id, read);

proxy_in.method1(obj);

}

public Cluster3 method2 () {

if (proxy_in == null)

proxy_in = (Proxy_in_Cluster1) javanaise_client.get_proxy_in(object_id, write);

Cluster1 p = proxy_in.method2();

p = clone_proxy-out(p); // clone proxy-out for backward parameter

return p;

}

}

This class defines two instance variables, object_id which is the unique identifier of the
object the proxy-out refers to, and proxy-in which points to the proxy-in object. The identifier is
unique in the context of the application; our prototype currently manages distributed shared
objects for applications stored on a single Home Site, but it can be extended to manage different
Home Sites simply by using URLs.

The first method is the constructor. When a user program invokes the creation of a Cluster1
object, it actually creates a proxy-out object which in turns creates a proxy-in object which creates
the real instance of Cluster1 (see below in the proxy-in class). If a constructor with parameters is
defined, a constructor is generated accordingly in the proxy-out and proxy-in classes and
implements the same interface.

The two other methods check the binding of the reference to the cluster. If the reference
has not already been bound, Javanaise client is invoked is order to get a copy of the cluster

4 In the current prototype, proxy classes are generated from a text definition of the interface of the class.

In the next prototype, we will generate our proxies directly from the actual class object, as RMI does.

(including the proxy-in object) with a lock in the corresponding mode5. Then the invocation is
forwarded to the proxy-in object.

Notice that the method2 method returns a reference to a Cluster3 instance. The reference
returned by this method is a reference to a proxy-out object in the invoked cluster. Then, we must
create a clone of this proxy-out object, which will be stored in the cluster receiving the reference.
This clone gets created only if a proxy-out object for the received reference does not yet exist in
the receiving cluster. The table which registers the existing proxy-out objects in the cluster is
stored in the cluster itself. In this code skeleton, we omitted the code related to the management of
this table (to keep it readable).

Below is the generated proxy-in class. The proxy-in class also defines a variable object_id
for the unique identifier of the object and a variable object which points to the real cluster
instance. It also contains a variable lock which indicates the lock that is held on the local host on
this cluster (read, write or none).

public class Proxy-in_Cluster1 implements Cluster1_itf {

int object_id;

Real_Cluster1 object;

int lock;

int num_readers;

public Proxy_in_Cluster1 () {

object = new Real_Cluster1();

object_id = javanaise_client.register_id(this);

num_readers = 0;

}

public void method1 (Cluster2 obj) {
if ((object == null) || (lock == none)) {

object = (Real_Cluster1) javanaise_client.get_object(object_id, read);

lock = read;

}

Cluster2 p = clone_proxy_out(obj); // clone proxy-out for onward parameter

num_readers ++;

object.method1(p); // effective call

num_readers --;

if ((lock == read) && (num_readers == 0)) {

javanaise_client.release_lock(object_id, read);

lock = none;

}

}

public Cluster3 method2 () {

if ((object == null) || (lock != write)) {

object = (Real_Cluster1) javanaise_client.get_object(object_id, write);

lock = write;

}

object.method1(obj); // effective call

javanaise_client.release_lock(object_id, write);

}

}

5 The locking mode is specified here in order to get both the copy of the cluster and the lock on that cluster in a

single request.

The constructor of the proxy-in class creates the real instance of Cluster1 which has been
renamed in Real_Cluster1 (by the proxy generator) since the proxy-out class has been renamed
in Cluster1. Then, Javanaise client is invoked in order to allocate a unique object identifier6. A
reference to the proxy-in object is passed in order to initialize Javanaise internal tables (detailed
below).

The two methods checks whether a copy of the cluster with the requested lock is present. If
not, a copy and/or a lock are requested to Javanaise client. The locking policy currently
implemented allows multiple readers and one writer at a time.

A lock held on a cluster is managed in the proxy-in object of the cluster. The proxy-in
object invokes Javanaise client in order to request the lock. The proxy-in object also includes
primitives (upcalls not present in the above skeleton) that may be invoked by Javanaise client in
order to check the status of the lock on the cluster and block a lock request from a remote node
until the lock is explicitly released. The methods in the proxy-in object which manipulate the lock
variable are synchronized.

6. 3. Management of consistency and synchronization
In order to manage consistency and synchronization, two tables are maintained, one in

Javanaise client and one in Javanaise server.
First, in Javanaise server, we need to be able to locate any cluster and any lock. ServerTable

is a table which keeps track of all the clusters that have an image in memory (see next section for
clusters stored on disk). This table associates with each cluster (known by its object_id) the
locations (node addresses) of all the images of the cluster in memory. If the cluster is in read
mode, the table gives a list of the nodes that obtained a read lock on the cluster. If the cluster is in
write mode, the table gives the address of the node which hosts the unique copy.

This table is used in order to locate one copy (in read mode) or the last copy of the cluster.
When a collision on a lock occurs (the cluster is locked in write mode), the request is sent to the
writer node and Javanaise client responds only when the lock is released.

The second table (ClientTable) is managed in Javanaise client. This table records the
clusters that are cached on the local host. This table associates with each cluster (object_id) the
Java reference to the proxy-in object which represents the cluster. Using the ClientTable,
Javanaise client can check the status of the cluster on this node and wait for a lock to be released
by the proxy-in object (with the release_lock primitive).

All the interactions between Javanaise clients and Javanaise server are based on message
passing using the socket interface. A message always includes a header object which describes the
message type. This header may be followed by (i.e. point to) a cluster object which is a graph of
Java objects. These objects, the header and the cluster, are serialized in order to obtain a flat string
of bytes which is sent on the socket. In order to be serializable, each object of the application
must implement the Serializable Java interface, which means that it inherits default methods that
are invoked to serialize the object. The default serialization behavior is to flatten the object state
and to do it recursively following every Java reference in the object state. To stop this recursion,
we redefined these serialization methods for the proxy-out objects : we only save the object_id
field of the object and reset to null the Java reference when the object is deserialized.

6. 4. Management of persistence
In Javanaise, clusters are persistent, which means they survive the application that created

them. Clusters are stored on disk on the Home Site of the application, one file per cluster. Recall
that each cluster is identified with an object_id (an integer) which is a unique identifier.

In Javanaise server, the ServerTable keeps track of all the clusters that have an image in
memory on one of the client hosts. When a cluster is requested and the cluster is not represented

6 In the current prototype, this allocation is forwarded to Javanaise server which ensure the identifier

uniqueness.

in memory, the cluster is read from its storage file. The byte stream read from the file is
deserialized and sent to the requesting client (and the ServerTable updated). When an application
terminates on a client node and if some modified clusters are no longer used (cached on any
node), they are serialized and copied back to their storage files on the Home Site.

6. 5. Deployment of an application
Applications in Javanaise are deployed dynamically to the client nodes just like Applets. A

Javanaise application is made available as an Applet through a Web server and a client typically
starts the application using an Applet viewer. This Applet contains the main entry point of the
program.

An initialization primitive is provided, which initializes the Javanaise environment, but also
returns a Java reference to a name server object. This name server allows symbolic names to be
associated with Cluster objects' references. The register method registers a cluster reference with a
given symbolic name and the lookup method returns the cluster reference associated with a
symbolic name. In the implementation, passing a cluster reference to the register method is
actually passing a proxy-out object reference to the name server (which registers a copy of the
proxy-out object). Getting a cluster reference from the name server is actually getting a
proxy-out object.

We have described the prototype of the Javanaise runtime we have implemented on top of
Java. In the rest of the paper, we relate our work to previous experiments and conclude with our
continuation perspectives.

7. Experience and Evaluation

In this section, we present our evaluation of the Javanaise service. This evaluation consists
of three steps. First, we measured the costs of basic operations in order to be able to understand
precisely what is happening in the system and to better explain our other measurements. Second,
to compare globally Javanaise with RMI, we designed and implemented a variant of the well-
known Cattell benchmark [Cattell92], which roughly consists in a traversal of a distributed graph.
Finally, to demonstrate the adequacy of the platform, we have ported an existing (centralized)
application to Javanaise.

All the performance figures below were measured on a pair of Bull-Estrella machines based
on PowerPC 604 machines (100 Mhz) running AIX and we used the JDK 1.1.2 version of the
Java Virtual Machine. These machines are connected through a 10 Mbit Ethernet network7.

In this section, we will use the term "object" to designate a Javanaise cluster or an RMI
Remote object.

7. 1. Basics costs
Table 6 gives the costs of the basic operations that are relevant to our experiment.

(1) Java method invocation 1.45 microsecs

(2) RMI invocation 4.00 millisecs

(3) Javanaise invocation (cold) 5.00 millisecs

(4) Javanaise invocation (hot) 4.50 microsecs

Table 6. Basic costs
Line 3 gives the cost of a method invocation in Javanaise in the case the object (a cluster) is

remote, i.e. not yet cached locally (cold invocation). We made this measurement with a small

7 Our measurements were done on a local area network in order to be able to compare Javanaise with RMI

without network performance variation.

object size (75 bytes). This operation involves fetching a copy of the object from the remote site,
installing it on the local host and invoking the method of the cached copy. This must be
compared to the cost of invoking the same object with RMI (line 2). A Javanaise cold invocation
is slightly more expensive than a RMI invocation. However, line 4 shows that it will be amortized
if the same object is invoked more than once; while the cost of a RMI invocation remains the
same, the cost of a Javanaise invocation falls down to 4.5 microseconds. The difference between
the cost of a Javanaise hot invocation (line 4) and the cost of a Java method invocation (line 1) is
due to the traversal of our two proxies.

0

0 , 1

0 , 2

0 , 3

0 , 4

0 , 5

0 , 6
0

1
0

5

2
8

5

1
0

0
5

3
8

8
5

1
5

4
0

5

object size in bytes

ti
m

e

in

s
e

c
o

n
d

s

graph of objects

array of bytes

Figure 7. Javanaise method invocation for different object sizes
Since the cost of a Javanaise cold method invocation is highly dependent on the size of the

remote object (a cluster), we measured it for different object sizes. The results are given on
Figure 7. In order to know the cost due to object serialization, we performed the measurements
with, for each object size, the object being an array of bytes and the object being a binary tree of
small Java objects (the overall tree being the same size). The results indicate that object
serialization is very expensive and that a better implementation of object serialization could
greatly improve Javanaise performance.

However, the impact of objects sizes on Javanaise performance is not critical. Recall that we
aim at supporting cooperative applications, for which most of the data structures should be copied
to the accessing nodes (at least to be displayed and sometimes to be modified). An
implementation of such an application using RMI would anyway copy these data to the accessing
node.

7. 2. Cattell Benchmark
The main motivation for Javanaise is to implement object replication on the client nodes

since this is one of the key features required by cooperative applications. However, for the
performance evaluation of our system support, we wanted to compare it to RMI for a general
purpose workload which does not have strong requirements on object caching.

To perform a global comparison of Javanaise and RMI, we designed and implemented a
variant of the Cattell benchmark, a benchmark used by practitioners of database systems. This
application implements a traversal of a graph of 5000 nodes in which each node has three
children nodes and the traversal is done down to seven levels (a total of 3280 nodes are visited).
The nodes are equally distributed on two sites. The three children nodes are randomly chosen
with a probability of 70% to belong to its father's site8.

8 Notice that a lower locality of inter-site references would benefit to Javanaise.

This benchmark has been implemented both on top of RMI and Javanaise. Notice that we
did not change any line of source code, but we processed the same code with both the RMI and
Javanaise stub generators. In both cases, the nodes are created on the two sites. With RMI, using a
reference to a remote object implies a remote method invocation to that site. With Javanaise, using
a reference to a remote object implies bringing a copy of the object on the local host and
invoking the method locally.

(1) RMI 6.4 seconds

(2) Javanaise (cold) 29 seconds

(3) Javanaise (hot) 19 milliseconds

Table 8. Results of the Cattell benchmark
Table 8 presents the results. In this benchmark the object size is 75 bytes. The results are

very disappointing for Javanaise for a cold start. It performs 5 times slower than RMI. This
inefficiency has two main reasons:

• first, the object graph has a high percentage of inter-object references which are local to
one site (70%). This implies that when a remote object (on site 2) is brought to the
accessing site (on site 1), its children on node 2 become remote and will have to be
fetched. With RMI, when the remote object is invoked (on node 2), its children on
node 2 are local and their invocations are very efficient.

• second, we observed that since many nodes are visited, it happens that some nodes are
visited several times (i.e. the object is visited while already loaded) and this is one of the
key condition to Javanaise efficiency. In the previous test-bed, we measured that in the
average, object are reused 1.54 times. Increasing the amount of reused objects would
advantage Javanaise. This is illustrated on Figure 9. In order to vary the amount of reuse
of objects, we varied the depth of the traversal of the graph. The consequence is that, for
a depth of 9, objects are reused about 6 times in the average.

0

2 0

4 0

6 0

8 0

100

120

140

160

180

5 6 7 8 9 1 0

depth of the graph

ti
m

e

in

s
e

c
o

n
d

s

Javanaise

RMI

Figure 9. Cattell benchmark with different ratios of reused objects
The results show that according to the amount of reused objects in the graph, Javanaise

can perform better than RMI for the first (cold) travel in the graph.
In conclusion, while this benchmark does not correspond to the typical cooperative

applications we are targeting, it shows that the performance of Javanaise is within the same order
of magnitude as standard Java-RMI and can even perform better for a general purpose workload,
especially when objects are intensively reused. In the near future, we plan to study how caching

and remote invocation could be combined in order to use the most efficient mechanism
according to the application structure.

7. 3. Porting an existing application
In this section, we describe our experience on porting an existing centralized application

to Javanaise in order to allow access to it from any remote machine.
The application is a graphical mail browser using a POP server to get the electronic mail.

This application consists of 10700 lines of Java code. It provides traditional facilities such as
folders for messages. When a user reads and sends messages, he may archive the messages in
different folders and browse old messages in his folders. In the original centralized application, all
the messages and the folders are stored in files on the site where the application is installed. This
application is supposed to be launched only on that site.

Our goal is to allow remote access to this application from any machine connected to the
Internet9. With today's technology, this can be achieved in two ways:

• redirecting the application display from the application site to the screen of the
connection site (the site from which the user connects). This solution is not acceptable if
the distance between the two sites is very long. The amount of messages sent to update
the display on the connection site would slow down the application.

• run the application locally (at the connection site) and use the POP server to bring the
new messages to the running application. Using this solution, it is not possible to browse
or archive messages in folders which are stored on the application site. Moreover, it
would require the application to be installed on the connection site.

More generally, systems and applications do not currently allow users to keep their working
space available while they are on the move. Javanaise can be used to provide such facility10.

By supporting this application on top of Javanaise, the application can be deployed to any
machine on which a Java virtual machine runs, without any prior installation of the application.
Furthermore, Javanaise allows remote access to the folder environment of the user, the user's
folders being copied to the connection site on demand.

The main modification we made to this application concerns the storage of persistent data,
i.e. the set of folders and the address book managed by the application. These data structures are
kept persistent thanks to Javanaise persistence facilities, without requiring explicit saves/loads
to/from files by the application. We just had to remove this function from the original code. The
graphical interface of the application and its interface with the POP server were kept unchanged.
The architecture of the application is described in Figure 10.

On the Home site of the application, an entry point of the application is registered in the
Javanaise name server. This entry point is a Java reference to the Javanaise object which is the root
of the application. From this root object, all the objects which compose the application are
accessible. The code of the application is composed of the graphical interface of the application
and two packages which respectively manage the address book of the user and his folders. The
code of the application and the classes that compose the Javanaise runtime are mobile, i.e. they
are dynamically deployed to the accessing node at execution time. The address book and the
folders are Javanaise objects that are loaded from files (on the Home site) on demand and copied
dynamically to the requesting node.

9 Provided that the user is authenticated with a login password.

10 Even if this application is not a real cooperative application, allowing remote access to a user's

applications is a very important feature which has the same requirements as cooperative applications. Moreover,

since Javanaise manages distributed shared objects, an user can launch his mail browser from home, without

quitting the first instance of the application running on his office workstation.

Folders Address
Book

Home site Entry Point

Site X

Connection via http

Folders
Management

 Graphical
interface
(Applet)

Javanaise

Address Book
Management

Mobile code

Figure 10: architecture of the mail application
In this application, a mail message is composed of two parts. The first contains the header

of the message, including the sender, the date and the subject of the message. The second part
contains the body of the message. A folder has a name and contains a set of messages. Folders
and messages are Javanaise objects. A folder object contains references (inter-cluster references)
to the message objects that implement the messages stored in this folder.

In order to be able to display a folder, including its message headers, without having to
download all the messages, we had to adapt the application as follows. A message header is
replicated; it is stored in the message it belongs to and also in the folder in which the message
resides. Hence, when a folder is displayed, it is possible to show the headers of the messages
included in this folder without having to download all the messages. The messages are effectively
downloaded when the user chooses to display the individual message.

Except for the two modifications described above (relying on Javanaise persistence and
replicating message headers in folders), the code of the application is kept unchanged. We just
had to specify which classes are Javanaise clusters and to use our stub generator in order to allow
clusters to be dynamically loaded on the accessing node.

To conclude this section, it has been very easy to port this application on top of Javanaise. It
took actually two days to complete this port. We are currently continuing these experiments and
working on porting a cooperative editor which will allow cooperation between multiple users at
the same time.

8. Related work

In this section, we first relate our work to current projects which address the issues of
supporting distributed applications on the Internet. Then, we compare Javanaise to older projects
which can be seen as Javanaise's ancestors.

A first attempt to provide distributed shared objects on the Internet is Java-RMI
[Wollrath96] which provides remote method invocation between Java objects. A Java program can
query a Web server with a URL in order to obtain a Java reference. A stub is dynamically loaded
and bound to the application, thus allowing remote invocation on the referenced object.
Additional object references may be returned and are similarly dynamically bound to remote
instances. A mechanism called object serialization allows distributed programs to exchange copies
of objects. However, using the RMI facilities, distributed applications are based on the client-
server architecture which does not allow objects to be cached and therefore accessed locally. It is

possible to manage object replicas using the object serialization facility, but the coherence
between the replicas has to be explicitly managed by the application programmer.

One of the emerging paradigm for structuring applications over the Internet is agent-based
programming [MAF97]. An agent is roughly a process with its own context, including code and
data, that may travel among several sites in order to perform its task. Generally, an agent can
invoke objects exported either by the servers it visits or by other agents running on these servers.
This paradigm seems very adequate for information search engines or electronic commerce, but it
does not provide support for information sharing between remote machines. Mobile agents are
relevant to Javanaise since Javanaise applications are dynamically deployed on remote nodes just
like agents do.

Another approach for sharing Java objects on the Internet is the management of distributed
shared tuple spaces. Several projects (JavaSpaces [Sun97], Jada [Ciancarini97]) proposed Java
toolkits that implement this abstraction, inspired by the Linda language. Cooperation between
distributed applications is achieved via tuple spaces. By exchanging tuples through tuple spaces,
applications can exchange data or synchronize. Access to a tuple space is performed using a set
of operations which allow tuples to be inserted, extracted or read from the tuple space. The
drawback of this approach is that every cooperation with any remote application must be
explicitly implemented using the set of tuple management primitives. We believe that application
level objects should be implicitly shared between applications, as in the Corba (or RMI)
philosophy.

W3Objects [Ingham95] is a project which aims at defining an object-oriented framework
for developing distributed application on the Internet. They propose to extend the Web using
object-orientation techniques in order to make the integration of complex resources and services
feasible. Their proposals mainly rely on extensions to HTTP in order to provide remote object
invocation between heterogeneous resources. This idea is very promising since it is open to the
integration of a wide range of already existing applications, but it does not address the issue of
caching which is one of the most difficult in the Web.

Most of the work described in this paper was influenced by the ideas developed in the
Guide project [Hagimont94], a former project of the proposing team. The Guide system aimed at
providing a distributed shared object space for the development of cooperative applications on a
local area network. Memory management in the Guide system was structured in two layers: the
storage memory composed of permanent objects stored in clusters on distributed disks and the
execution memory composed of clusters in use (i.e. mapped) by running applications. In Guide,
a cluster was mapped on the accessing node at first use of an object stored in the cluster.
Subsequent accesses from other nodes to this cluster's objects were forwarded to and performed
on that mapping node using a traditional remote invocation scheme. Object clustering was
managed by applications using the interface exported by the runtime environment. Therefore,
compared to the Javanaise runtime, Guide was not managing distributed replicas of clusters and it
let applications manage their own clustering policies, which led to inefficient default clustering
policies. Instead, Javanaise, which targets distributed applications on the Internet, relies on clusters
caching on the client nodes and its clustering policy is implicitly derived from the applications
structures.

The design of Javanaise was also influenced by the Perdis European project [Shapiro97]
which aims at providing a distributed shared memory (DSM) based system support for
cooperative applications (in the area of the building industry) on large scale networks. However,
with a DSM, object sharing between heterogeneous sites with dynamic deployment of applications
is much more difficult and it is not addressed in the framework of the Perdis project.

Our work on Javanaise can also be related to another object-based system of the 80s which
is the Clouds system [Dasgupta90]. Clouds provides essentially the same paradigm as Guide, i.e. a
distributed shared object space, but it differs by the management of object granularity. Clouds
objects are coarse-grained since an object is implemented by a virtual address space. Clouds
objects are developed using the CC++ (Clouds C++) language, but Clouds allows the management
of finer grained objects (C++ objects) within a Clouds object [Dasgupta91]. Therefore, Clouds
objects can be compared to Javanaise clusters which contain finer grained Java objects.

Javanaise can be seen as a grant child of these systems. Its main contribution is to study the
application of a similar paradigm (a distributed shared object space) to cooperative applications
on the Internet. This paradigm has been integrated into the Java world in order to allow dynamic
deployment of shared applications to the client hosts.

9. Conclusion and Perspectives

In this paper, we have presented our experience with providing a runtime environment for
the development of cooperative application on the Internet. In our environment, applications are
developed using the Java language, and made available on the Internet through a Web server just
like an Applet. Applications are dynamically deployed on client nodes, thanks to Java mobile
code, and the Java objects managed by the applications are transparently shared between
application instances.

In order to allow for efficient object caching on client nodes, our runtime manages clusters
of Java objects, the cluster being the unit of sharing, caching and consistency. Clusters are
persistent and stored on disk on the Home Site of the application. Clusters are copied on demand
to the client nodes and shared following a specified consistency and synchronization protocol.

We have implemented a prototype of the Javanaise runtime, composed of a preprocessor
which generates the required proxy classes from the interfaces of cluster classes, and of system
classes which manage consistency of cluster replicas cached on client nodes. Our prototype has
been evaluated by comparison with RMI using a benchmark and validated by porting an existing
mail browser application.

A first perspective of this work is to continue the evaluation of our service through the
support of full scale cooperative applications. We have identified several applications that we plan
to port on top of Javanaise. Otherwise, we would like to investigate the integration of other
mechanisms within Javanaise.

In particular, we would like to:
• combine the invocation of clusters replicas locally and the invocation of clusters

remotely using an RMI-like mechanism. The choice between these two mechanisms
should be based on the semantic of the cluster objects, the amount of write sharing, or
the amount of references to that cluster within the application.

• allow disconnected operation of applications on top of Javanaise. Javanaise should be
extended in order to tolerate non-coherent replicas and to reconcile them when
application instances reconnect.

Bibliography
[Arnold96] K. Arnold and J. Gosling. The Java Programming Language, Addison-Wesley, 1996.

[Bershad93] B. N. Bershad, M. J. Zekauskas, and W. A. Sawdon, "The Midway Distributed Shared Memory System",
Proc. 38th IEEE Computer Society International Conference (COMPCON'93), pp. 528--537, February 1993.

[Black87] A. Black, N. Hutchinson, E. Jul, H. Levy, L. Carter, “Distribution and abstract types in Emerald", IEEE
Transactions on Software Engineering, 13(1), January 1987.

[Cattell92] R. G. G. Cattell and J. Skeen, "Object Operation Benchmark", ACM Transactions on Database Systems,
17(1), March 1992.

[Ciancarini97] P. Ciancarini, D. Rossi, "Jada: A Coordination Toolkit for Java", Technical Report C, Department of
Computer Science, University of Bologna, Italy, 1997.

[Dasgupta90] P. Dasgupta, R. Chen, S. Menon, M. Pearson, R. Ananthanarayanan, U. Ramachandran, M. Ahamad,
R. LeBlanc, W. Appelbe, J. Bernabeu-Auban, P. Hutto, M. Khalidi, C. Wilkenloh, "The Design and
Implementation of the Clouds Distributed Operating System", Computing Systems, 3(1), pp. 11-45,
Winter 1990.

[Dasgupta91] P. Dasgupta, R. Ananthanarayanan, S. Menon, A. Mohindra, M. Pearson, "Language and Operating
System Support for Distributed Programming in Clouds", Proceedings of the 2nd Symposium on Experiences with
Distributed and Multiprocessor Systems (SEDMS), March 1991.

[Decouchant93] D. Decouchant, V. Quint, M. Riveill, I. Vatton, Griffon: A Cooperative, Structured, Distributed
Document Editor, (93-20), Bull-IMAG, May 1993.
http://sirac.imag.fr/~hagimont/papers/93-20-griffon-RT.ps.gz

[Hagimont94] D. Hagimont, P.Y. Chevalier, A. Freyssinet , S. Krakowiak, S. Lacourte, J. Mossière et X. Rousset de
Pina, "Persistent Shared Object Support in the Guide System: Evaluation & Related Work", Ninth Conference on
Object-Oriented Programming, Systems, Languages and Applications (OOPSLA), Portland, October 1994.

[Ingham95] D. Ingham, M. Little, S. Caughey, S. Shrivastava, "W3Objects: Bringing Object-Oriented Technology
to the Web", 4th International World-Wide Web Conference, Boston, December 1995.

[MAF97] Mobile Agent Facility Specification, OMG TC Document orbos/97-09-20, September 1997.

[Riggs96] R. Riggs, J. Waldo, A. Wollrath, K. Bharat "Pickling State in the Java System", Computing Systems,
9(4), pp. 313-329, Fall 1996.

[rpcgen88] rpcgen - An RPC Protocol Compiler, Sun Microsystem, Inc., 1988.

[Shapiro86] M. Shapiro. Structure and Encapsulation in Distributed Systems: The Proxy Principle, Proc. of the 6th
International Conference on Distributed Computing Systems, pp. 198-204, 1986.

[Shapiro97] M. Shapiro, S. Kloosterman, F. Riccardi, "PerDiS - a Persistent Distributed Store for Cooperative
Applications", Proceedings of the 3rd Cabernet Plenary Workshop, IRISA Rennes, France, April 1997.

[Sun96] Sun Microsystems, “JDK 1.1 Documentation”, Sun Microsystems.
URL: http://www.javasoft.com/products/jdk/1.1/docs/index.html

[Sun97] Sun Microsystems, “JavaSpace Specification”, Sun Microsystems.
URL: http://chatsubo.javasoft.com/javaspaces/index.html

[Wollrath96] A. Wollrath, R. Riggs, J. Waldo, "A Distributed Object Model for the Java System", Computing
Systems, 9(4), pp. 291-312, Fall 1996.

