N

N
N

HAL

open science

L’analyse formelle des systemes temporisés en pratique

Stavros Tripakis

» To cite this version:

Stavros Tripakis. L’analyse formelle des systémes temporisés en pratique. Autre [cs.OH]. Université

Joseph-Fourier - Grenoble I, 1998. Francais. NNT: . tel-00004907v1

HAL Id: tel-00004907
https://theses.hal.science/tel-00004907v1
Submitted on 19 Feb 2004 (v1), last revised 30 Jul 2012 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-00004907v1
https://hal.archives-ouvertes.fr

UNIVERSITE JOSEPH FOURIER — GRENOBLE 1
SCIENCES ET GEOGRAPHIE

THESE
pour le grade de
DOCTEUR DE L’UNIVERSITE JOSEPH FOURIER

en INFORMATIQUE

présentée et soutenue publiquement par

Stavros TRIPAKIS
16 décembre, 1998

L’Analyse Formelle des Systemes Temporisés
en Pratique

Membres du jury :

Gerard HOLZMANN, Rapporteur
Amir PNUELI, Rapporteur
Patrick COUSOT, Examinateur
Joseph SIFAKIS, Directeur de these
Jacques VOIRON, Président

He looked towards the horizon that he had come out to
see, of which he had seen so little. Now it was quite dark.
Yes, now the western sky was as the eastern, which was
as the southern, which was as the northern.

Samuel Beckett, Watt

Remerciements

Je remercie Joseph Sifakis, mon directeur de these, pour m’avoir accueilli a Verimag et pour
m’avoir donné la possibilité de faire la recherche avec des personnes extraordinaires. Je le
remercie également pour les nombreuses discussions passionantes qu’on a eues. Enfin, un grand
mercl pour son soutien a tous les niveaux.

Je remercie Sergio Yovine pour son encadrement clairvoyant et efficace. Son esprit pratique
et sa persistance infatiguable a poser les bonnes questions m’ont été utiles maintes fois. Un
grand merci aussi pour son soutien amical.

Je remercie Ahmed Bouajjani pour avoir la patience de répondre a mes questions, mais
aussi pour les sorties tres cools en montagne.

La cause de tout cca est probablement mon ex-professeur en Crete, Costas Courcoubetis,
qui a organisé CAV’93. C’est la ou mon amour pour les automates a commencé. Merci a Costas
Courcoubetis.

Merci a Marius, c¢’était un plaisir de travailler avec lui.

Merci a Dragan pour les discussions tres intéressantes, réelles ou virtuelles.

Merci a Maurice pour son aide.

Je remercie Thao et Yannick, pour étre, a part de tres bons amis, des collegues de bureau
irremplaccables. J’ai pensé beaucoup de fois que j’avais de la chance de partager avec eux une
grande partie de ma vie. Merci pour leur amitié et tolérance.

Merci a Conrado et Hassen, les rebels without a cause.

Merci a Roberto, Fduardo et Victor, friends at first sight.

Merci a Peter pour ses vélos. Up the flowers, Peter!

Merci a Suzanne pour sa pompe et son vélo, désolé d’avoir cassé ce dernier.

Merci a Dimitris, Georgia, Tasos, Costas, et les autres grecs.

Kiitos paljon, joulutytto.

A tous les autres membres de Verimag, et les invités, et a tous ceux que j’ai forcément
oublié, un grand merci.

Avtn n dovdaa agiuepwreTar oTOVS YOVEs [Lov.

Stavros Tripakis
December 15, 1998

P.S. The quote from Beckett’s “Watt” (next page) has no semantics, it is only chosen for its
beauty of syntax.

Contents

Introduction

1.1 Formal analysis of timed systems
1.2 The approach and contributions of this thesis
1.3 Related research o

1.4 Organization of this documento o oL

Timed Formalisms

Preliminaries

2.1 Graphs . . . oL

2.2 Dense state spaces e e
2.2.1 Polyhedra
2.2.2 Operations on polyhedra 0oL

Timed Automata

3.1 From finite-state machines to timed automata
3.2 Timed automata syntax and semantics oL
3.3 The requirement of progress in timed systems
3.4 Static tests for the sanity of timed automata 0oL

Property-specification Languages

4.1 A linear-time formalism: Timed Buchi Automata
4.2 The branching-time logic TCTL
4.3 A mixture of branching and linear time: the logic ETCTLE
4.4 Comparison of the different specification languages

Analysis Techniques

5 Abstractions for Timed Automata

5.1 Time-abstracting bisimulations o oL
5.1.1 Definition
5.1.2 Properties preserved by time-abstracting bisimulations

5.2 Abstractions based on simulations o000
5.2.1 The Simulation Graph Lo
5.2.2 Properties preserved in the simulation graph

5.2.3 Clock Activity o o

12
15

16

17
17
20
20
21

24
24
25
29
32

34
34
36
37
38

5.2.4 Inclusion abstraction
5.2.5 Convex hull

5.2.6 Combination of activity, inclusion and convex hull . .

6 Verification based on Minimization

6.1 Minimization of Timed Automata

6.1.1 Adapting for TA the partition-refinement algorithm of [BFG*92]
6.1.2 A partition-refinement technique that preserves convexity

6.2 Verification using Quotient Graphs
6.2.1 Timed Buchi Automata model checking.
6.2.2 CTL model checking
6.2.3 TCTL model checking
6.2.4 Deadlock and Timelock detection

6.2.5 Combination with untimed bisimulations and simulations

7 On-the-fly Verification

7.1 Reachability o
7.1.1 Yes/Noreachability
7.1.2 Partial and total reachability

7.2 Timed Buchi Automata Emptiness
7.2.1 Special case: strongly non-zeno TBA
7.2.2 General caseo

7.2.3 Computing states leading to accepting non-zeno runs

7.3 On-the-fly model checking of ETCTLE

8 Diagnostics

.1 VFinite runs and trails
8.2 Infinite runs and trails

9 Controller synthesis

9.1 Timed Controller Synthesis
9.1.1 Controllable Timed Automata
9.1.2 Parallel composition of CTA

9.2 A fixpoint solution to controller synthesis

9.3 On-the-fly controller synthesis
9.3.1 Untimedcase
9.3.2 Timedcase

IIT Implementation and Tools

10 Symbolic representation

10.1 Difference Bound Matrices
10.2 Implementation of symbolic operations

10.3 Representation of non-convex polyhedra using lists of DBMs

68
68
69
70
75
75
77
77
78
78

80
80
81
83
84
85
87
91
92

95
96
98

105
106
106
109
111
113
114
119

11 Tools
11.1 The model checker kronos

11.2 The minimization module minim.
11.3 The controller-synthesis module synth-kro.
11.4 The connection of KRONOS to OPEN-CAESAR v v v v v v v ..

IV Case studies and Conclusions

12 Case studies

12.1 Fischer’s Mutual-Exclusion Protocol

12.2 The STARI circuit

12.3 BANG&OLUFSEN’s Collision-Detection Protocol o o
12.4 CNET’s Fast-Reservation Protocol

12.5 Real-time scheduling . . .

12.6 Controllers for multimedia documents

12.6.1 Petri Nets with Deadlines: informal presentation

12.6.2 Using Petri nets with deadlines to model multimedia documents

12.6.3 Controller synthesis for multimedia documents

13 Conclusions

A Higher-level modeling

A.1 Adding finite-domain variables to the timed-automata model

A.2 Modeling atomic states . .
A.3 Petri Nets with Deadlines

B Proofs

138
139
145
146
150

155

156
157
162
169
173
178
182
183
185
190

192

204
204
205
205

207

Chapter 1

Introduction

1.1 Formal analysis of timed systems

A timed system is a system the behavior of which depends on timing constraints. This definition
being too general, we restrict our attention mainly to timed systems for which timing constraints
are critical, that is, the correctness of the system depends on them. Examples of such systems
include traffic controllers, chemical-reaction controllers, real-time operating systems and so on.
Failure of a timed system can have catastrophic consequences, therefore, it is crucial to ensure
its correctness.

Formal methods are gaining popularity as a way to establish system correctness mathemat-
ically, that 1s, by proving that a formal model of the system satisfies a property. As identified
in [MP95b] a formal analysis framework should contain the following elements:

o A semantic model to capture the behavior of systems.

o A system-specification language to describe systems.

o A property-specification language to express properties that a system should satisty.
o Techniques for analyzing systems with respect to properties.

The goal of the field of formal methods is to integrate such a framework in the design and
engineering process, so that the risk of building systems with faults is reduced.

To achieve its goal, it is key that a formal framework is also practical. In particular, it is
necessary that

o the models are good in practice, meaning expressive, intuitive and easy to use;
o the algorithms are efficient, if not always, for most practical applications;

o feedback is provided to the user;

e some methodology exists for the modeling and analysis process.

Since the notion of practicality is not strictly mathematical, perhaps the only way for evaluating
a formal framework is by testing it on as many case studies as possible.

In this thesis we consider a formal framework for timed systems consisting in the following
elements.

Semantic model: Dense Time

We consider systems which evolve in dense time, that is, the time domain is the positive reals.
Apart from qualitative properties talking about the relative order of the events (e.g., a happens
before b) this model can also directly express quantitative time properties, talking about the
delays between the occurrence of events (e.g., @ happens 5 times unit before b). Delays can be
exact, bounded or unbounded. The model can also capture delays which are arbitrarily close
to a given value, thus, it is independent of a specific time unit or time granularity. Therefore, it
is suitable for timed systems of asynchronous nature, for instance, when modeling a controller
interacting with an environment which issues requests in arbitrary moments in time.

The state space induced by dense time is infinite (in fact, uncountable). Nevertheless, there
exist methods to reduce this infinite concrete space to a finite abstract space, while preserving
most of the properties we are interested in.

System-description language: Timed Automata

We describe timed systems using timed automata (TA) [Dil89, ACD93, HNSY94], that is, non-
deterministic finite-state automata extended with a finite number of real-valued clocks. A TA
alternates between two modes of execution, letting time pass continuously, then taking a step
changing its discrete state.

To model a system consisting in more than one components we use a collection of TA
executing in parallel. Time is assumed to pass synchronously for all components, that is, the
clocks advance all at the same rate. The discrete steps of the automata happen asynchronously,
unless some automata need to communicate, in which case they synchronize.

Property specification: Linear and Branching timed formalisms

We use a number of formalisms to express system properties. The linear-time formalism of
Timed Biichi Automata (TBA) can specify properties as execution sequences. The branching-
time logic TCTL can specify properties as execution trees. The logic ETCTL3 is a combination
of TBA and TCTL and strictly more expressive than both. TBA and TCTL are incomparable
in expressiveness.

We also define some properties such as reachability (“does p ever hold?”) and deadlock- or
timelock-freedom directly, since they cannot be expressed in the above formalisms.

Using a variety of specification languages has a number of advantages. First, a larger class
of properties can be expressed. Second, the user if offered a better choice in deciding his or her
language of preference: a property theoretically expressible in two languages might be easier
to express in one of them, that is, in a shorter or more intuitive manner. Third, the cost and
type of output of the analysis techniques often depends on the specification language.

Techniques for Verification and Controller synthesis

We consider two types of analysis, namely:

o Verification (or model checking): given a timed system and a property, check whether the
system satisfies the property.

o Controller synthesis: given a timed system embedded in a certain environment, and a
property restrict the system so that the property is satisfied, no matter how the environ-
ment behaves (more about this below).

Decidability and complexity of the above problems has already been studied in previous works.
Verification for TA with respect to TCTL or TBA is shown to be PSPACE-hard in [Alu91,
ACD93]. Controller synthesis for TA with respect to safety properties is shown to be EXPTIME-
hard in [HK97, MPS95]. The above results are based on the region equivalence, introduced
in [Alu91, ACD93], which reduces the dense state space of a TA to a finite graph, the region
graph. This construction has been very useful in the field of dense-time systems, since it shows
that TA can be essentially viewed as finite-state automata. However, the size of the region
graph is far too large for any practical purposes. To our knowledge, there is currently no
formal-analysis tool based on the region graph.

1.2 The approach and contributions of this thesis

In order to obtain a practical framework, we develop techniques which, despite of the theoretical
difficulty of the problems, work efficiently in practice. The main problem to solve is state
explosion, that is, the fact that the size of the state space that needs to be generated/explored
is often prohibitively large. To cope with this problem, we propose abstractions which yield in
most practical cases a finite graph of reasonable size (many orders of magnitude smaller than
the region graph). All abstractions can be computed automatically for a given input model,
that is, no help from the user is necessary to define the abstraction .

In the case of linear-property verification, we show how generating the abstract state space
and checking the property can be done at the same time (on-the-fly), and how useful feedback
can be provided in the form of concise diagnostics. In the case of branching properties and
controller synthesis the abstract graph has to be generated a-priori, but the analysis can still
be done on-the-fly.

In order to demonstrate the practicality of our framework, we develop tools and treat a
number of non-trivial case studies.

Abstractions for timed systems

We define a number of different abstractions for timed systems and study the properties they
preserve:

o Time-abstracting bisimulations are abstractions where the quantitative aspect of time is
hidden away: we know that some time passes, but not how much. Of the three time-
abstracting bisimulations defined, the strong one preserves both linear and branching
properties and can also be used for controller synthesis.

o Time-abstracting simulations are abstractions where the passage of time is hidden alto-
gether, and only discrete-state changes can be observed. These abstractions are based on
the simulation graph, which is built by forward reachability and preserves all linear prop-
erties, finite or infinite. Weaker simulation abstractions preserve finite linear properties
(i.e., reachability) in an exact or conservative manner.

IThis is in contrast with another type of formal verification techniques, called deductive, which consist in
using a set of axioms to prove that the system satisfies the property. Semi-algorithmic procedures exist to help
the user perform this task with the aid of a computer, however, since they are incomplete, the interaction with
the user is often necessary. For more information about deductive techniques the reader is referred, for instance,

to [MP95b, Sai97, BMSU9T].

The choice of which abstraction to use depends on:

e the property to be checked, which has to be preserved by the abstraction;
e the reduction factor of the abstraction;

o the cost of computing the abstraction.

Theoretically, all abstractions may produce a state space as large as the region graph. However,
as shown by our experiments, the reduction is in practice many orders of magnitude better.
Regarding the reduction factor of time-abstracting bisimulations compared to simulations, there
is no general rule on which is better: the results vary depending on each case. On the other
hand, simulations are usually more interesting, since they can be used for on-the-fly verification.

On-the-fly techniques

In on-the-fly verification, the property is checked while the state space is generated. Therefore,
an answer can be returned as soon as possible, without necessarily generating the entire state
space. On-the-fly methods are particularly useful during the first stages of modeling, while the
model is still under development and most of the times contains “bugs”. Discovering such bugs
rapidly permits to correct the model and continue with the analysis without much cost.

In this thesis we develop on-the-fly algorithms for verification based on simulation abstrac-
tions. The algorithms perform reachability, deadlock and timelock detection, TBA model
checking and full ETCTL3 model checking. We also develop an on-the-fly controller-synthesis
algorithm based on strong time-abstracting bisimulation (see below).

Minimization of TA and analysis based on quotient graphs

We use time-abstracting bisimulations to reduce verification and controller synthesis of timed
systems to the untimed case. In that way, we can apply a variety of efficient classical (un-
timed) techniques and also exploit the existing tool infrastructure. Our method works in two
steps. First, we compute the system’s quotient with respect to the strong time-abstracting
bisimulation. The quotient is essentially an untimed graph, which preserves the properties of
the concrete state space (for this, the property has to be taken sometimes into account while
building the quotient). Therefore, existing algorithms for untimed linear- and branching-time
model-checking can be applied on the quotient to solve the corresponding timed model-checking
problems.

The first step of the above approach requires generating the quotient, a process called
minimization. To solve the problem for the timed case, we adapt the generic minimization
algorithm of [BFH92] to the TA model. The algorithm of [BFH192] uses complementation on
sets of states. Since this operation is expensive for dense-space representations, we develop a
minimization technique which avoids complementation.

Controller synthesis

The systems we consider are often reactive, that is, they function in a certain environment.
To analyze reactive systems, we need to model both the behaviors of the system and the
environment. In the case where the environment is unpredictable (or even adversary) and the
specification of the system is still incomplete (for instance, during the first stages of design), the

analysis can be see as a game between the system and its environment: the system needs to make
the right choices so that a given property is satisfied independently of what the environment
does. Synthesizing a controller comes down to completing the specification of the system, that
is, restricting the set of possible choices to the right ones. The controller-synthesis problem is
more general than verification. The techniques for controller synthesis are more sophisticated
than verification techniques, thus, usually more expensive.

In this thesis we study controller-synthesis for TA, based on the results of [MPS95]. On
the theoretical level, we clarify the notion of strategy and provide definitions for the parallel
composition of TA in the presence of controllability.

On the practical level, we show how to implement the operators used in the fix-point
controller-synthesis algorithm of [MPS95]. We also introduce an on-the-fly method in two
steps: First, we develop an algorithm for controller synthesis on untimed systems (i.e. finite
graphs). This algorithm is on-the-fly in the sense that it can return a strategy as soon as one
it is found. Then, we show how to apply the algorithm on the time-abstracting quotient graph
of a TA, to solve the problem in the timed case.

Timed diagnostics

TA verification is performed by exploring abstract state spaces, thus, the diagnostics that can
be generated directly from such an exploration are also abstract. In particular, such diagnostics
usually lack timing information, which can be crucial to understanding why a property does
or does not hold. To give more precise feedback we are interested in timed diagnostics: these
correspond exactly to the semantics of TA, that is, they contain both the discrete state changes
as well as the exact time delay between two discrete transitions. We show how to compute
timed diagnostics for linear properties, both finite and infinite.

Implementation and Tools

KRONOS is a tool-suite for the analysis of timed systems [Yov93, 0li94, Daw98, DOTY96,
BDM'98, Yov97]. KRONOS uses a symbolic representation of states, in particular, boolean
combinations of simple linear constraints representing sets of possible clock values. Semantic
operations on symbolic states are implemented as syntactic transformations of these sets of
constraints.

We have implemented the algorithms developed in this thesis on top of KRONOS, using its
symbolic-representation library. The functionalities added in the tool include on-the-fly parallel
composition of TA, on-the-fly verification with respect to reachability and TBA, timed diag-
nostics, and controller synthesis for properties of invariance (“always p holds”) or reachability.
We have also implemented a new module for TA minimization, called minim. The infinite-
diagnostic generation algorithm (section 8.2) and the on-the-fly controller-synthesis algorithm
for untimed graphs (section 9.3) are being currently implemented.

Following the philosophy of tools like SPIN [Hol91], we have also connected KRONOS to
the untimed-verification software platform OPEN-CAESAR [Gar98] which is part of the CADP
tool-suite [FGM*92]. In particular, we developed the module kronos-open which acts as a
compiler, that is, generates C-code for a particular input model. The C-code is then interfaced
to OPEN-CAESAR’s libraries, to build the final executable which will perform the analysis.
In the context of this work, we have developed a symbolic-representation library of variable-
dimension, where clocks can be dynamically created and deleted. Using this library, we have
been able to treat systems with more than 30 clocks.

Case studies

Using KRONOS, we have treated a number of case studies, six of which are presented in this
document. Most of them are real-world case studies, namely, two industrial communication
protocols (BANG&OLUFSEN’s protocol, CNET’s protocol), the electronic circuit STARI, and a
multimedia-document authoring language developed as part of INRIA’s project OPERA. The
real-time scheduling case study is interesting on its own, but also for illustrating some of the
techniques for model-checking timed liveness properties (“p holds infinitely often”). Fischer’s
protocol serves as a good example for illustrating many of the techniques presented through-
out the thesis. Also, along with the STARI circuit, they represent good benchmarks to test the
capacity of the tools and perform measurements demonstrating the usefulness of the techniques.

1.3 Related research

A brief history of dense-time verification

The introduction of the model of TA in the early '90s has created a new domain of research
which is still expanding.

The first attempt to overcome the inherent state-explosion of the region graph has given
in [HNSY94]. The method, following the framework of [Sif82], consists in computing the set
of states satisfying a TCTL formula ¢ (called the characteristic set of ¢). The computation
is done recursively on the syntax of ¢, based on a fix-point characterization of the modal
operators of TCTL. This approach is practical, since many regions can be encoded as a single
set of constraints in a compact way. However, the method still has some important drawbacks:

e It is not on-the-fly, since the fix-point computation must terminate before an answer can
be returned.

o [t does not provide diagnostics, except in a very primitive form, namely, the characteristic
set of a formula. Usually what is needed as diagnostics is sample executions.

o [t considers the whole potential state space, whereas what is interesting is only the reach-
able part of the state space.

o It uses complementation, which results in expensive symbolic representation of sets of
states.

As aremedy to the above, on-the-fly methods have been proposed independently in [DOY94]
and [TC96]. These methods are based on forward reachability analysis (i.e., the simulation
graph). They build the reachable state space and can provide symbolic diagnostics (finite
paths in the simulation graph). Their main drawback is that they are limited to timed safety
properties such as invariance and bounded response (“whenever p; holds, p; will hold after ¢
time units at the latest”).

Parallel to the theoretical work, a number of dense-time verification tools have been devel-
oped in the past few years. KRONOS has been the first one [Yov93, Oli94, DOY94], followed by
real-time CospaN [CDCT92], UppPAAL [BLL*95], RrSPIN [TC96] and Timed-CospaN [AKS3,
AK96]. These tools are more or less based on the same TA model, however, they differ in their

property-specification languages. All the tools perform verification symbolically by represent-
ing sets of states by simple linear constraints, although different techniques are sometimes used
to encode the constraints.

The existence of tools has had an important impact on the acceptance of the dense-time
approach not only by the research community, but also by industrial partners. Real-world
case studies such as those treated with UpPAAL [BGKT96, HSLL97] and IKXRONOS [TY98] have
shown that the model, the techniques and the tools have reached a degree of maturity which
makes them useful in practice.

State of the art. The field of dense-time verification is quite active and is being continually
enriched by new results. Recent works study how partial-order reduction techniques [Val90,
GWOI1, Pel94] can be applied to the verification of timed systems [BJLY98, BM9g]. [AJ9§]
exploit the symmetry of systems of a particular type, to verify them for a parameterized number
of processes. Research is also being conducted for new representation techniques for dense state
spaces [DY96, LLPY97, STA98, LWYP98]. Controller synthesis for timed systems is also a new
and quite promising field, especially because of the number of interesting applications involved,
such as real-time scheduling.

Other approaches

Many other formal approaches have been used for the analysis of timed systems, differing in
both the models and the analysis techniques. Synchronous languages such as ESTEREL [BB91b]
and LUSTRE [CPHPS87] are particularly suited for systems such as synchronous circuits, which
are deterministic and work according to a global clock. An extensive bibliography exists on time
Petri nets (for instance, [Ram74, Mer74, Sif77, BD91]) and timed extensions of process algebras
(for instance, [NRSV90, BB91a, L1.93]). Hybrid automata [PV94, ACHT95] are a generalization
of the TA model with real variables having more general evolution laws, defined by differential
equations. Although most of the interesting problems are undecidable for the general model,
semi-algorithms and approximative analyses can still be implemented. HYTEcH [HHW97] is
a tool performing analysis for hybrid automata where evolution laws are specified by simple
linear differential equations. The graphical formalism of Statecharts has been extended with
timed and hybrid semantics in [KP92]. Timed I/O automata [LLA90] provide a model and a
methodology for mathematical reasoning about timed systems.

A comparative study of the above approaches is out of the scope of this thesis. On the
other hand, it is worth discussing the following two issues, since they are directly related to our
approach and results.

Dense versus Discrete Time. There has been a long and still unsettled debate concerning
the choice of the right quantitative model for time. The criteria for choosing a time model
are essentially two: first, how expressive the model is, that is, how well can it describe reality;
second, how efficient it is, that is, what is the cost of the corresponding analysis techniques.
Dense time is strictly more expressive than discrete time. Perhaps the most important
feature of dense time is the fact that it abstracts from a specific time quantum, since it can
model arbitrary small delays. This property is of particular practical interest in two cases.
First, when implementing a model of a timed system, the correctness of the implementation
does not depend on the speed (clock frequency) of the machine. Second, composition of timed
systems is independent of the time quantum: we only need to normalize the constants appearing

in the constraints of the components, but not their time granularities, as it would be necessary
to do in a discrete-time model.

Regarding theoretical results on expressive power, there have been a number of different
discrete-time models proposed for timed systems, as well as a number of works comparing
them with dense time. Two discrete-time models are considered in [Alu91]. In the first, events
are bound to occur along with the clock “ticks”, whereas in the second, events can occur
anywhere in the real line, but the only quantitative information is how many ticks have passed
between two events. [Alu91] compares these models to the dense-time one informally, using
the paradigm of asynchronous circuits, and argues in favor of dense time. More formal results
can be found in [HMP92, GPV94, AMP98|. A general conclusion of these results is that dense
time is strictly more expressive than discrete time. Another conclusion is that in special cases
of TA (e.g., when modeling acyclic electronic circuits) discretization preserves a restricted class
of properties (e.g., the order of events). Still, what is missing is a methodology to discretize a
given dense-time automaton, in particular, how to find the necessary quantum of time.

Regarding efficiency, the discrete-time model is usually thought to be better suited, since it
admits powerful untimed verification techniques such as efficient symbolic representation [ABK97,
BMPY97] using binary decision diagrams (BDDs) [Bry86, CBM89, BCD*90], or partial or-
ders [BD98]. This conception is true but only to some extent. First, the discrete-state tech-
niques are not always given for free: discretizing the dense-time model or directly modeling in
discrete time can result in a less compact specification. In particular, models which involve
large constants can result in state explosion when treated in discrete time (see, for example, the
case study in section 12.3). Second, the synchronous nature of the passage of time sometimes
affects the performance of BDDs as well as partial orders, which work well in systems where
actions are as much independent as possible.

Enumerative versus Symbolic techniques. In the untimed context (and especially af-
ter the introduction of BDDs) there is a clear distinction between enumerative and symbolic
techniques:

e In enumerative techniques, each state is represented explicitly, usually as an encoded
vector on the system’s variables. The state space is generated and explored state by
state.

e In symbolic techniques, a set of states is represented implicitly, usually by a formula on
system’s variables: the members of the set are those states satisfying the formula. The
reachable state space is usually computed as a fix-point of the transition relation (itself
a formula) applied to the formula encoding the initial states.

Both approaches have their pros and cons. Enumerative ones are well adapted for on-the-fly
verification, and can easily provide fast answers and diagnostics. Symbolic ones are much more
compact, therefore resistant to state explosion.

In dense-time systems, most of the techniques are a mixture of enumerative and symbolic
flavor. This is mainly due to the following reasons. First, purely enumerative techniques are
impossible, since the clock state space is dense (the most enumerative technique, based on the
region graph, would require a symbolic way to encode regions). Second, purely symbolic tech-
niques are not available yet: such techniques would combine in a homogeneous representation
continuous as well as discrete variables, since the latter are indispensable also in a timed sys-
tem. The approach of [Yov93, HNSY94] can be considered as the most symbolic of the existing

approaches, since it uses the most general type of constraints to represent any union of regions,
closed with respect to all set-theoretic operators. The drawback of this representation is that
it is not canonical. Therefore, although in principle it could be used to encode also discrete
variables (in a dense space), this is not efficient.

Our approach, like the ones of [01i94, BLLT95, TC96], is more enumerative, although not
as much as the region graph.

1.4 Organization of this document

This document is structured in four parts.

The first part presents the background. Chapter 2 introduces graphs and polyhedra, used
through-out the document. In chapter 3 we present our model of TA and in chapter 4 our
property-specification languages.

The second part presents the analysis techniques and constitutes the core of the theoretical
results of this thesis. In chapter 5 we define time abstractions and study the properies they pre-
serve. The results of this chapter are transformed into techniques for verification in chapters 6
and 7. Chapter 6 shows how to compute the time-abstracting bisimulations of section 5.1 and
how to use them for model checking. Chapter 7 presents techniques which are fully on-the-fly
to compute the time-abstracting simulations of section 5.2 and perform model checking at the
same time. Diagnostics and controller synthesis are presented separately in chapters 8 and 9,
respectively.

The third and fourth parts present the main practical contributions of this thesis. Chapter 10
shows how the semantic entities used in the first two parts can be represented effectively.
Chapter 11 gives an overview of the tool suite KRONOS and our contributions to its development.
The case studies and experimental results are presented in chapter 12.

Regarding the readability of the document, most of the chapters depend on the definitions
given in the first part. Chapter 6 depends also on section 5.1 and chapter 7 on section 5.2.
Apart from the above dependencies, most chapters are supposed to be self-contained. No
special environment for definitions is used. We prefered not to use a special environment for
definitions, but to include them in the text. Special terms, operators and symbols appear in
emphasized font at the moment of their definition, and can be (hopefully) found in the index.

Part 1

Timed Formalisms

16

Chapter 2

Preliminaries

General notations. Through-out this document we write R, Z, N for the sets of non-negative
reals, integers and naturals, respectively. We use variables such as x,y, z, §, ¢ ranging over R, ¢
ranging over Z and 1, j, k, [, m ranging over N. Labels is a finite set of labels.

If X and Y are sets, the operations of intersection, union, complementation, set difference
and cartesian product are denoted X NY, X UY, X, X\ Y and X x Y, respectively. The empty
set is denoted (). Inclusion and strict inclusion are denoted X C Y and X C Y, respectively.
Membership of = to X is denoted x € X. For a given order on X, min X and max X denote
the smaller and greater element of X with respect to this order. 2% is the powerset of X, that
is, the set of all subsets of X. If X is finite, | X| denotes its cardinal. A relation between sets X
and Y is a subset of X x Y. If C is a relation between X and Y then C~' denotes the inverse
relation between Y and X, such that y C~! 2 iff z C y. If C is a relation between X and Y/,
and C' is a relation between Y and Z, then C o ' is the composition of C and C’, defined
as the relation C” on X and Z such that @ C” z iff there exists y € ¥ s.t. # C y and y C’ 2.
For a function f : 2% s 2% a fiz-point of f is a set Y C X such that f(Y) =Y. The greatest
and least (with respect to set inclusion) fix-points of f are denoted Y . f(V) and vY . f(Y),
respectively.

Logical and, or and not are written A,V and —, respectively. Implication and equivalence
are denoted = and = and are defined as usual.

a, b usually denote labels. a* stands for “a finite repetition of «” (possible no a at all). a*
stands for “an infinite repetition of a”. We use the symbol oo for infinity.

2.1 Graphs

A (directed) graph G is a pair (V,—), where V is a set of nodes and — C V x V is a set of
edges. Sometimes the edges are labeled, that is, = C V' x Labels x V| giving a labeled transition
system (LTS). In this document we use the term graph for both graphs and LTSs.

Given an edge v — u, the nodes v and u are called the predecessor and the successor of v,
respectively. preds(v) (resp. succs(v)) denotes the set of predecessors (resp. successors) of v.
A sink node is a node with no successors.

Paths, cycles, strongly-connected components. A (finite or infinite) path is a (finite or
infinite) sequence vy — vy — ---. We say that the path visits nodes vy, vq,.... A path of length
[from node v to node u is a finite path v = vy = -+ = vy = w,{ > 1. A cycle with root v is

17

a path from v to itself. A cycle is called elementary if it visits no node twice, except from the
root. A cycle vy — --+ — v; — vy can also be viewed as the infinite path (v; — -+ — v; —)%.

A subgraph G’ of (i is a strongly-connected component (SCC) of G if for any node v of (¢,
there is a cycle rooted at v and visiting all nodes of G and nothing but nodes of . A SCC is
mazximal if it 1s not properly contained in any larger SCC.

Relations, preorders and simulations. Consider a graph G = (V,—). A binary relation
on (G is a subset ~ of V x V. ~is reflexive if v ~ v for all v € V. ~ is symmetric if v ~ u
implies v ~ v for all v,u € V. ~ is transitive if v ~ u and v ~ w 1Mply v ~ w, for all
v,u,w € V. Given two relations ~1 and ~y, ~q is stronger than ~q if ~; C ~,.

A preorder on (G is a binary relation — C V x V on the set of nodes of ¢ which is reflexive
and transitive.

A binary relation C on V' is called a simulation on G iff for any pair vy,vy € V., if vy C vy
then for each successor u; of vy, there exists a successor uy of vy such that uy C ug. It is easy
to see that a simulation is a preorder on G.

Equivalences, Partitions. Consider a graph G = (V,—). An equivalence ~ on G is a
preorder on G which is symmetric.
A partition of the set of nodes V is a set C C 2V of subsets of V such that:

1. For all Cy,Cy € C, Cy N Cy =0, that is, all members of C are disjoint.
2. For all v € V| there exists C' € C such that v € (', that is, C covers V.

The members of a partition are called classes.
The following facts can be easily derived from the definitions:

e an equivalence ~ induces a partition Cy of V', where for all C' € Cy, v,u € C iff v & u;

~?

e inversely, a partition C induces an equivalence /¢, where v ~¢ u iff v and u belong to the
same class.

Let Props be a set of atomic propositions and let P : Props —+ 2" be a function associating
to each proposition a set of nodes of (G. An equivalence ~ respects P if for all pairs vy, vy € V
such that vy & vy, for all p € Props, v € P(p) iff vy € P(p). A partition respects P if the
equivalence induced by the partition respects P.

Given two partitions C; and Cy of V, Cy is coarser than Cy (Cy is finer than Cp) if the
equivalence induced by C, is stronger than the one induced by C;. If C; is coarser than C,, then
for each class C; of C; there exists a class (5 of Cy such that Cy C (.

Quotient graphs. The quotient of a graph GG = (V, —) with respect to a partition C is the
graph ' = (C,—') where €7 —' Cy iff there exist v € C,u € C3 such that v — u. The
quotient graph of G with respect to an equivalence a2, denoted G, is the quotient of &G with
respect to the partition induced by ~. We often call G, the ~-quotient of G.

Pre-stability Post-stability

Figure 2.1: Pre- and post-stability.

Stable partitions, Bisimulations. Consider a partition C. Given two classes Cy,C5 € C,
(1 is said to be pre-stable with respect to Cy if either €'y C preds(Cy) or € Npreds(Cy) = 0. Cs
is said to be post-stable with respect to Cy if either suces(Cy) C Cy or suces(Cy) N Cy = (0. The
two notions of stability are illustrated in figure 2.1. C is called pre-stable (resp. post-stable) if
all its classes are pre-stable (resp. post-stable) to one-another.

A relation 2 C V x V' is a (strong) bisimulation iff for all pairs vy, vy € V such that vy & vy,
the following conditions hold:

1. for each successor u; of vy, there exists a successor uy of vy such that uy; & us,
2. the above condition also holds if the roles of v; and vy are reversed.

The definition is illustrated in figure 2.2 (left). We say that two nodes v and u are bisimilar if
there exists a bisimulation & such that v & w.

U2 01

rrrrrrr e

Uy Uz Uy Uy

strong 2

7_*

3

observational

delay

Figure 2.2: Strong, delay and observational bisimulation.

The following facts can be easily derived from the definitions:

e a bisimulation is an equivalence inducing a pre-stable partition;

e inversely, a pre-stable partition induces a bisimulation.
Weaker bisimulations. Sometimes it is useful, for refining or abstracting specifications, to
consider weaker bisimulations, which do not take into account parts of the behavior which are

internal to the system. For the purposes of this document, we consider two weaker bisimu-
lations, namely, the delay bisimulation [NMV90] and the observational bisimulation [Mil80].

More precisely, consider a graph G' = (V, —'), labeled in Labels U {7}, where 7 is an internal
label. Let — be the restriction of —' to V' x Labels x V and = be the restriction of —' to
V x {7} x V. Also let 73 be the reflexive, transitive closure of 2.

A binary relation &~ on V is an observational (resp. delay) bisimulation iff for all pairs
vy, v9 € V such that v; & vy, the following conditions hold:

1. for all u; € V such that v; = uq, there exists uy € V such that v, 7 uy and u; & ug.

2. for all u; € V such that vy — wuy, there exists uy € V such that vy LAY uy (resp.

Uy N ug) and uy & uz.
3. the above two conditions also hold if the roles of u; and uy are reversed.

The above definitions are illustrated in figure 2.2 (middle and right).

Comparing graphs with respect to bisimulations. Consider two graphs G; = (Vi, =),
for ¢ = 1,2. The union of (G; and (3 is defined to be the graph G; UGy = (V4 UV, —1 U —).
If we identify two nodes vy € Vi and vy € V5 as initial nodes, then G; and (G5 are said to be
bisimilar if there exists a bisimulation on 7 U (G5 so that v; and v, are bisimilar.

Let ~ be a bisimulation on a graph G and let &' be the relation between nodes of G' and
nodes of the quotient G, such that v &~ C' iff v € C'. Then, it is easy to verify that &' is
a bisimulation on G U G5. Thus, a graph and its quotient with respect to a bisimulation are
themselves bisimilar.

2.2 Dense state spaces

2.2.1 Polyhedra

Clocks and valuations. Let X = {xy,...,2,} be a set of variables in R. In the scope of this
document, these variables are called clocks. An X -valuation is a function v : X — R assigning
to each clock = a non-negative real value v(z). The set of all valuations is RY. We write 0 for
the valuation that assigns zero to all clocks. For a subset X of X', v[X := 0] is the valuation
vy such that Vo € X . vi(z) =0 and Vo & X . vi(x) = v(a). Intuitively, v[X := 0] is obtained
from v by resetting all clocks in X to zero and leaving the rest of the clocks unchanged. For
d € R, v+ 4 is the valuation vy such that Vo € X . vy(x) = v(z) + 4. Intuitively, v + ¢
is obtained from v by advancing all clocks by the same time delay 4. Similarly, § - v is the
valuation vs such that Vo € X' . vs(z) = 6 - v(z).

Hyperplanes and Polyhedra. An atomic constraint on X is an expression of the form
T ~coraxsy~c where x,y € X, ~€ {<, <, >,>} and ¢ € N. An X-valuation v satisfies
the constraint @ ~ ¢ if v(x) ~ ¢; v satisfies @ Sy ~ ¢ if v(z) &v(y) ~ c.

An X -hyperplane is a set of valuations satisfying an atomic clock constraint. The class Hy
of X-polyhedra is defined as the smallest subset of 2R" which contains all X-hyperplanes and
is closed under set union, intersection and complementation.

We often use the following notation for polyhedra: we write + < 5 for the hyperplane
defined by the constraint « < 5, + < 5 Ay = 2 for the polyhedron defined as the intersection

of z < 5 and y = 2, and so on. We also write true for R? (equivalently, A cy z > 0), false for 0
(equivalently, A,cy * < 0) and zero for {0} (equivalently, A,cy x = 0).
Given a polyhedron ¢ and a clock «, the predicate unbounded(z, () is defined as follows:

unbounded(z,() ¥ VieR.3Ivel.v(z)>t

A polyhedron (is called convex if for all vy, vy € (, for any 0 < 6 < 1, vy + (1 &d)vs € C.
It is easy to show that a polyhedron is convex iff it can be defined as the intersection of a

finite number of hyperplanes. On the other hand, if ¢ is non-convex then it can be written as
(1 U--- Uk, where (i, ..., (j are all convex. We denote the set {(1,...,(x} by convex(().

2.2.2 Operations on polyhedra

By definition, intersection, union and complementation are well-defined operations on polyhe-
dra. Polyhedra difference is defined via complementation as: ¢; \ (2 = {; N (5. The test for
inclusion (; C (, is equivalent to (; \ (= . We now define some more operations which will
be used throughout this document. Examples are shown in figure 2.3.

Convex hull. Given two X-polyhedra (; and (3, we define the conver hull of (; and (3,
denoted (3 U (3, to be the smallest (w.r.t. set inclusion) convex X-polyhedron containing both

1 and Ca.

c-equivalence and c-closure. Given ¢ € N, two valuations v and v’ are called c-equivalent

if:
e for any clock z, either v(x) = v'(x), or v(z) > ¢ and v/(z) > ¢

e for any pair of clocks x,y, either v(z) &v(y) = v/(z) &V/(y), or v(a) &v(y) > ¢ and
V() &vi(y) > c

Given a convex X-polyhedron ¢, we define close((,¢) to be the greatest convex X-polyhedron
(" O (, such that for all v/ € (' there exists v € (and v, Vv’ are c-equivalent. Intuitively, (’ is
obtained by ¢ by “ignoring” all constraints which involve constants greater than ¢ (figure 2.3
displays an example).

(is said to be c-closed if close((,¢) = (.

Lemma 2.1 1. If ¢ is c-closed then it is ¢'-closed, for any ¢ > c.
2. If (1 and (s are c-closed then (4 N (s is also c-closed.
3. For any (, there exists a constant ¢ such that (is c-closed.

Proof: Properties 1 and 2 are easily derived from the definitions. For 3, we first prove the result
in the special case where (is convex, that is, (= (; N---N(,, where (1, ..., (,, are hyperplanes.
Let ¢, ..., ¢, be the constants appearing in the atomic constraints defining (y, ..., (. It is easy
to see that (; is ¢;-closed, for each ¢ = 1,...,m. Now, if ¢ = max{¢i,...,¢,}, then (i,...,(n
are all ¢-closed and so is (. If ¢ is non-convex, then let convex(() = {(],...,(;}. There exists
¢y ..., ¢ such that (! is ¢i-closed, for ¢ = 1, ..., k. If ¢ is the maximum of ¢/, ..., ¢}, then (], ..., (},
are all ¢-closed (by property 1). Since (' = (] U---U (;, by property 2, ¢’ is also ¢-closed. =
From now on, ¢, (¢) will denote the smallest constant ¢ such that ¢ is e-closed.

Lemma 2.2 For any constant ¢, there is a finite number of c-closed convex X -polyhedra.

Proof: By induction on c. []

Projections. Given an X-polyhedron ¢ and a subset of clocks Y C X, we define two or-
thogonal projections of (to Y. The dimension-preserving projection, denoted (/y, is the
X-polyhedron (' such that:

vied iff FIvel.VeeY . v(z)=v'(x)

The dimension-restricting projection, denoted (|y, is defined identically to (/y, except that
(]y is a polyhedron on Y instead of A'. This type of projection can be extended to valuations
in a straightforward way: if v is a valuation on X, then v|y is the Y-valuation v’ such that
v/(y) = v(y) for any y € Y.

The operations ([Y := 0] and [V := 0]¢ are defined as:

(V=0 ¥ {v[y:=0]|ved}
[Y:=0]¢ = {v|v[Y:=0]€(}

Intuitively, ([Y" := 0] contains all valuations which can be obtained from some valuation in
¢ by resetting clocks in Y. An example is shown in the bottom-right diagram of figure 2.3.
[Y := 0]C is the dual operation. It contains all valuations which, after resetting clocks in Y,
yield a valuation in (. For example, for the polyhedron ¢, of figure 2.3, [{y} := 0](; is equal to
(2/(yy (shown in the bottom-left diagram). On the other hand, [{y} := 0]¢; is empty.

We finally define the backward and forward diagonal projections of an X'-polyhedron (to
be the X-polyhedra /' (and (, respectively, such that:

vie /¢ it 3deR.vi+5e(
vie ¢ i FeR.viede(

The following result is easy to derive from the definitions.

Lemma 2.3 [f (is convex and Y C X then (/y,(|y, ¢, ¢ are also conver.

1

o

G2

1 NG

/

CW

UG

B}

X

/" close((y, ¢)

¢

N

G/)

C T
T

Cz[{y} = 0]

X

s
T

Figure 2.3: Polyhedra on {x,y} and their operations.

Chapter 3

Timed Automata

In this chapter we introduce our system-specification language, timed automata. We first
present the model informally, through an example which will be used through-out this document
for illustrative purposes. Then we present formally the TA syntax and semantics, for a single
automaton, as well as for the parallel composition of two or more automata. A special section
is devoted to the issue of time progress (or zenoness) which is a characteristic of dense-time
systems. The final section is also related to the issue of progress, discussing how simple static
analysis can be applied to test the correctness of a TA model.

3.1 From finite-state machines to timed automata

We illustrate the difference of TA with respect to finite-state machines by considering of a
gate-regulation system in a railroad crossing. The example is taken from [Alu91].

The system consists of three components, namely, a gate, a controller for the gate and a
train. (A more realistic example would comprise more than one components such as trains or
gates, and possibly distributed controllers.) The informal specification of the system can be
stated in natural language as follows:

The train sends a signal to the controller at least 2 time units before it enters the
crossing, stays there no more than 3 time units and sends another signal to the
controller upon exiting the crossing. The controller commands the gate to lower
exactly one time unit after it has received the approaching signal from the train
and commands the gate to rise again no more than 1 time unit after receiving the
exiting signal. The gate takes less than 1 time unit to come down and between 1
and 2 time units to come up.

The system is modeled as a set of TA, one for each component, as shown in figure 3.1. Each
automaton has a discrete structure, namely, a set of discrete states (depicted as circles) and a set
of edges (depicted as arrows). The discrete states are supposed to capture all information about
the current status of the system, except timing information. In this example, the discrete states
are used to describe the function mode or the current condition of each of the components. For
instance, the gate can be either “up” or “down”, the train can be “far” from or “near” to the
gate. The edges represent events which change the discrete state of the system. For instance,
the train “approaches” the gate changing its state from “far” to “near”. Such events are taken
to be atomic and instantaneous.

24

far near up coming down
approach

z:=0

enter

z <1
approach
z:=0
) lower
ralse .=
exit
3 2
z:=0
z <1
Controller

Figure 3.1: The Train—Gate—Controller example.

Time passes while the system remains at the same discrete state. There are three clocks
(variables x,y, z) used to constraint the amount of time spent on discrete states and, more
generally, the amount of time that passes between two events. For instance, the upper bound
y < 2 at state “going up” of Gate, together with the fact that y is reset upon the edge “raise”,
models the fact that the Gate does not spend more than 2 time units rising.

Communication of components is modeled by action synchronization. FEdges which are
labeled with the same event correspond to actions which must happen simultaneously. For
instance, the fact that the train sends a signal to the controller when it is approaching the gate
is modeled by having an edge of the train automaton and an edge of the controller automaton
both labeled “approach”.

A sample execution of the Train-Gate-Controller (TGC) system is shown in figure 3.2.

Although quite simple, the TGC example illustrates two key features of TA, which distin-
guish them from finite-state machines.

e First, some executions which would have been possible if timing constraints are ignored
are no longer valid because of their “bad timing”. For instance, we can prove that in the
TGC system above, whenever the train is in the crossing the gate is down.

e Second, quantitative statements can be made about the system’s durations. For instance,
we can prove that the gate never stays down for more than 5 time units.
3.2 Timed automata syntax and semantics

A timed automaton (TA) [ACD93, HNSY94] is a tuple A = (X, Q, qo, E,invar), where:

e X is a finite set of clocks.

discrete state

n

Train near

far

;

: exit
approach ’

Controller

3
2 i

1 J—T
0

lower

raise
going up "

down
Gate)
coming down

up

0 1 2 3 4 5 6 7 time

Figure 3.2: A sample execution of the Train-Gate-Controller system.

() is a finite set of discrete states.

go € () is the initial discrete state.

E is a finite set of edges of the form e = (¢,(,a,X,q¢"). ¢,¢ € Q are the source and
target discrete states. a € Labels is a label. (is a conjunction of atomic constraints on
X defining a convex X-polyhedron, called the guard of e. X C A& is a set of clocks to be
reset upon crossing the edge.

e invar is a function associating with each discrete state ¢ a convex X-polyhedron called
the invariant of q.

Given an edge e = (¢q,(,a, X, ¢'), we write source(e), target(e), guard(e), label(e) and reset(e)
for ¢,q¢',(,a and X, respectively. Given a discrete state ¢, we write in(q) (resp. out(q)) for the
set of edges of the form (_,_,_,_,q) (resp. (¢,-, -, -,-)). We assume that for each e € out(q),
guard(e) C invar(q). ¢mna:(A) is defined as the maximum of ¢,,4,(¢), where (is a guard or an
invariant of A.

Back to the TGC example of figure 3.1, the constraint y > 2 is a guard, x < 5 is an invariant
(true invariants are not shown) and := 0 denotes the set of clocks to reset {«}.

States. A state of A is a pair (¢,V), where ¢ € @) is a location, and v € invar(q) is a valuation
satisfying the invariant of ¢. We write discrete(s) to denote ¢, the discrete part of s. The
initial state of Ais sg = (qo,0). Two states (¢, v1) and (g, va) are c-equivalent if v; and vy are
c-equivalent.

Transitions. Consider a state (¢,v). Given an edge e = (q,(,a, X,q’) such that v € ¢ and
v’ = vireset(e) := 0] € invar(¢'), (¢,v) = (¢, V') is a discrete transition of A. (¢',v’') is called
the e-successor of (q,v).

A time transition from (q,v) has the form (g, v) RN (q,v+9d), where § € Rand v+ 4 €
invar(q) '. For a state s = (¢, V), we simply write s 4+ § instead of (¢,v + §). s+ d is the

§-successor of s. Thse concatenation of two time transitions s —5> s+4d and s+4 i/> s+d+45 1sa
time transition s &% s+8+4'. Inversely, due to the dense nature of the reals, a time transition

S i> s+ can be split to any number m of consecutive time transitions s 5# s+d; 54 . 5—m> s+9,
such that §; + 89 +---+6,, = 4.

We write s 55 s’ if, either § = 0 and s = s’ is a discrete transition, or § > 0, s s 8is
a time transition and s + § = s’ is a discrete transition.

We associate two kinds of semantics to a TA, namely, a branching-time semantics in terms
of a labeled graph and a linear-time semantics in terms of executions (runs).

Semantic graph. The semantic graph of A, denoted (G4, is defined to be the graph which
has as nodes the states of A and two types of edges, corresponding to the discrete and time
transitions of A. Notice that G4 has generally an uncountable set of nodes and uncountable
branching.

Runs. A run of A starting from state s is a finite or infinite sequence p = s LIy s14+ 0 S
S kLY s34+ 0, 3 -+ such that sy = s and for all i = 1,2, ..., s; + &; is the d-successor of s; and
8;41 1s the e;-successor of s; + ¢;. That is, a run is a path in the semantic graph of A where
discrete transitions are taken infinitely often and consecutive time transitions are concatenated.
The i-th point of p, denoted p(7), is defined to be s;, for 1 = 1,2,.... The waiting delay of p at
point i, denoted delay(p, 1), is defined to be ;. All states p(i) where the run spends no time,
that is, where delay(p, i) = 0, are called transient states. The elapsed time until point i, denoted
time(p,), is defined to be the sum X,.,delay(p,j). The total elapsed time during p, denoted
time(p), is defined to be the limit of the sequence time(p, 1), if the sequence converges and oo
otherwise.

It is worth noticing that the semantics permit discrete transitions to be taken consecutively
without any time passing in between. This is convenient sometimes for describing sequences of
actions which are atomiec, or assumed to consume a negligible amount of time. However, these
sequences must be bounded, that is, the system cannot engage in a cycle (called a eritical race)
where time cannot progress at all. This issue is discussed in section 3.3 below.

A state s is reachable if there exists a finite run sg Sqeq . 543 8 A s, for [> 0. Let
Reach(A) be the set of all reachable states of A.

Parallel composition of TA. A system is usually divided in parts, therefore, it is conve-
nient (if not indispensable) to be able to describe systems compositionally, that is, as a set of
components which execute in parallel and communicate in a certain way. Our model of paral-
lelism is based on synchronous passage of time for all components and interleaving of discrete
actions. Communication is modeled via action synchronization.

More precisely, consider two TA A; = (X}, Q;, qi, Fs,invar;), i = 1,2, such that X3 N Xy = 0.
Let Labels; be the set of labels local to A;, that is, Labels; = {label(e) | e € E;}, for i = 1,2.

Given two edges ¢, = (¢, a:,(, Xi,q)) € Ei, 1 = 1,2, we define the following composite
edges:

!For technical convenience, we allow time transitions of zero delay, i.e., (¢,v) RN (q,v).

o If ay = ay € Labels; N Labelsy, then the synchronization of e; and e, yields the edge

def
erllea = ((q1,42), a1, G N G, Xi U Xo, (1,43))

where (1, (s are viewed as polyhedra on A} U X, so that the intersection (3 N (y is well
defined.

o If a; & Labels; N Labelsy for both « = 1,2, then the interleaving of e; and ey yields the
edges

def
€1HJ_ = ((q17q2)7a17C17X17(QLQZ))

def
J—H€2 = ((Q17Q2)7a27§27X27(%aqg))

Syntactically, the parallel composition of A; and A,, denoted A;||Asz, is defined to be the
TA (X UX,, Q1 X Q2,(q1,¢2), E,invar), where, for ¢ € Q1 and ¢ € Q)s, invar(q,¢’) = invary(g) N
invary(q'), and the set of edges F contains all composite edges of the form ey ||e, e1]| L, L|ez, for
e1 € By, ey € Ey. That is, the two automata synchronize on their common labels and interleave
on their local labels.

In order to give the semantic correspondence of A;|| Az, we consider the semantic graphs G
and Gy of Ay and As, respectively. The parallel composition of Gy and Gy, denoted G1||Gy, is
defined to be the smallest graph G such that:

1. (s}, s%) is a node of (¢, where s is the initial state of A;, 1 = 1,2.
2. If (s1,82) is a node of GG and s; N si + ¢ is an edge of G, for i = 1,2, then (sq,35) N
(s1 4+ 8,82+ d) is an edge of G.

3. If (s1,52) is a node of (G and s; =5 st (resp. s; = sb) is an edge of G (vesp. ()
such that label(e;) ¢ Labelsy (resp. label(ey) € Labels;) then (sq,s5) = (s},s2) (resp.
(51,82) =3 (s1,54)) is an edge of G.

4. If (s1,s2) is a node of (¢ and s; = s! is an edge of G, for i = 1,2, such that label(e;) =
label(es) then (s1,s2) 61'—'52 (s, s5) is an edge of G.

The second rule says that an amount of time ¢ passes in the composite TA only if both com-
ponents can delay ¢ time units. The third rule says that local actions happen independently
(interleaving). The fourth rule says that common actions happen simultaneously (synchroniza-
tion).

The following lemma relates the syntactic parallel composition of TA with the parallel
composition of their semantic graphs. The proof comes easily from the definitions.

Lemma 3.1 The semantic graph of A1||Az is identical to the parallel composition of the se-
mantic graphs of Ay and A,.

Since runs are paths in the semantic graph, the semantic correspondence of syntactic parallel
composition can be directly extended to runs.

3.3 The requirement of progress in timed systems

Reactive systems are supposed to execute forever 2, which is referred to as the requirement of
progress.

In untimed systems, progress coincides with absence of deadlocks, that is, states with no
successors. In timed systems, there are two types of possible evolutions from a state, namely,
taking a discrete transition or letting time pass. Accordingly, there are two requirements of
progress here: First, it should be possible to take discrete transitions infinitely often (discrete
progress). Second, it should be possible to let time pass infinitely often, and this without upper
bound (time progress). Notice that the requirement of time progress is stronger than one might
expect, that is, not only time should be able to pass, but it should also diverge. The time
progress requirement is based on our intuition about the physical world we are trying to model,
summarized in the following hypothesis:

Any physical process, no matter how fast, cannot be infinitely fast.
The above hypothesis implies that:

1. only a finite (possibly unbounded) number of events can occur in a certain (positive)
amount of time;

2. only a bounded number of events can occur in zero time.

These two requirements are formalized below under the concepts of non-zenoness and absence
of critical races, respectively.

Zeno runs. Consider an infinite run p such that time(p) # oo, that is, there exists t € R

such that for all ¢, time(p,7) < £. Such a run is called zeno, and corresponds to a pathological

situation, since it violates the first of the above time-progress requirements. As an example,
1

=

consider the TA A; shown in figure 3.3. Its run (go,z = 1) 29 (g0, = 1.5) =5 (qo, v =
1.75) - -+ is zeno. In fact, any run of A; taking a-transitions forever is zeno.
Let NonZenoRuns(s) denote the set of all non-zeno runs starting from s.

x>1 x>1
a ¢ @ 2:=0 € 2:=0
Q b Q b
r:=0 N r <1 an r:=0 N au
x <2 x <2
Ay Ay

Figure 3.3: A TA with timelocks (left) and a strongly non-zeno TA (right).

?This is a convenient simplifying hypothesis, which does not result in loss of generality: if the system can
terminate execution in some legal end state, the latter can be transformed to a state which has infinite executions
by adding to it a “dummy” self-loop transition.

Deadlocks, Timelocks and Critical races. Deadlocks are states violating the discrete-
progress requirement. Formally, a state s of a TA A is a deadlock if there is no delay § € R and
edge e € F such that s Sh s Als deadlock-free if none of its reachable states is a deadlock.

Timelocks are states violating the time-progress requirement. Formally, a state s is a time-
lock if all infinite runs starting from s are zeno. A is timelock-free if none of its reachable states
is a timelock.

Notice that a deadlock is not necessarily a timelock, neither the reverse. For example, the
TA A; of figure 3.3 is deadlock-free, but all its states (go, 1 < @ < 2) are timelocks since they
are bound to stay to ¢o taking forever a-transitions. On the other hand, if the a-edge was
missing, these states would be deadlocks but not timelocks, since they would have no infinite
runs starting from them at all.

A infinite run p = s NN S2 B2 ... s a eritical race if the following conditions hold:

1. All states of p are transient from some point on, that is, 31 . Vj > ¢ . 4; = 0.

. . . 5 e
2. p cannot be transformed to a non-transient run, that is, there exists no run p’ = s; ——

5’2%3 such that Vi . 35 > 4. 67 > 0.

Critical races correspond to executions violating the second time-progress requirement above.
They are not simply zeno runs where time does not pass at all from some point on. Indeed,
a critical race cannot be transformed to a (possibly zeno) run where time does pass, even by
infinitesimal quantities. A timelock-free TA can have critical races, as shown in figure 3.4.
The two TA execute asynchronously in parallel. The sequence of actions abedabed - -+ in the
composed system corresponds to a critical race, since not time is allowed to pass at all from
one b to the next a and from one d to the next ¢. On the other hand, the sequence acbdacbhd - - -
can allow time to progress after every ¢ action.

a =10 c y=20
) »Q:Q

b r:=0 d y:=0

Figure 3.4: A system with critical races.

Strongly non-zeno TA. Consider a TA A. A structural loop of A is a sequence of distinct
edges e --- e, such that target(e;) = source(e;y1), for all ¢ = 1,...,m (the addition ¢ + 1 is
modulo m). A is called strongly non-zeno if for every structural loop there exists a clock x and
some 0 < 1,7 < m such that:

1. x is reset in step ¢, that is, « € reset(e;); and
2. x is bounded from below in step 7, that is, (x < 1) N guard(e;) = false.

Intuitively, this means that at least one unit of time elapses in every loop of A. For example,
the TA Aj of figure 3.3 is strongly non-zeno (this would not be the case if any of the guards
x > 1 was missing).

Strong non-zenoness is interesting since it dispenses us with the burden of ensuring time
progress. In particular, checking progress is reduced to checking deadlock-freedom, as shown

below. Another nice characteristic of strong non-zenoness is that it is preserved by parallel
composition, so that it can be efficiently checked on large systems.

Lemma 3.2 1. If A is strongly non-zeno then every infinite run of A is non-zeno.
2. If A, A" are strongly non-zeno, so is Al|A".

Proof: For the first part, let p = s LN S2 2% ... be an infinite run of A. Since A has only
a finite number of edges, there exist some 11,13, ..., 2, such that e; e;, - - - e;, form a structural
loop and p takes infinitely often every discrete transition ¢;,. There exist also a clock x and
J1,J2 € {i1,12, ..., 1} such that = € reset(e;,) and (z < 1) Nguard(ej,) = 0. Now, each time
p takes an ej -transition, clock = is reset to 0. The next time p takes an e;,-transition, at
least 1 time unit has passed, since x must be greater or equal to 1 for e;, to be taken. Since
ej,- and ej,-transitions are taken infinitely often, an infinite number of 1-time-unit delays are
accumulated, thus p is non-zeno.

For the second part, observe that any structural loop of A||A’ corresponds to a structural
loop of A, A’, or both. Therefore, any structural loop of A|lA’ satisfies the conditions of part

1, which implies that A||A’ is strongly non-zeno. [|

As a corollary of part 1 of the above lemma, a strongly non-zeno TA is also timelock-free.

Remark 3.3 When modeling a system, it is often the case that some of its components are
untimed, that is, they can be modeled using simple finite-state machines without clocks. These
components can be considered strongly non-zeno by convention, so that their parallel composition
with the rest of the system does not affect the strong non-zenoness of the global system.

The meaning of different variants of zenoness. Concerning system modeling, the mean-
ing of zenoness can be summarized as follows:

e Deadlocks, timelocks and critical races correspond to modeling errors, since any TA as-
sumed to capture the behavior of a reactive system correctly should act infinitely often,
not block time and execute a bounded number of actions in zero time.

e TA which are not strongly non-zeno model systems where an unbounded number of events
can occur in a finite amount of time. For example, the TA A; on figure 3.3 can perform an
unbounded number of a-transitions in 2 time units. Such systems are useful sometimes,
for instance, when modeling a sender which can emit messages arbitrarily fast.

e Strongly non-zeno TA model systems where only a bounded number of events can occur
in a finite amount of time. For example, the TA A, on figure 3.3 can perform at most
two a-transitions in 2 time units. Most systems in practice are strongly non-zeno.

Concerning verification, the impact of zenoness can be summarized as follows:

e Methods to ensure absence of deadlocks, timelocks and critical races should be available
so that one gains confidence in the correctness of the model. In section 3.4 we give static
tests guaranteeing the absence of the above errors. In sections 6.2.4, 7.1.1 and 7.1.2 we
present run-time detection techniques for deadlocks and timelocks.

e Model checking algorithms should ignore zeno runs when verifying a property. For exam-
ple, the two TA in figure 3.3 do not have the same untimed behaviors, since a* corresponds
to a non-zeno run of A, but only to zeno runs of Aj.

3.4 Static tests for the sanity of timed automata

We propose sufficient but not necessary conditions to ensure absence of deadlocks, timelocks
and critical races in a TA. These conditions are static, that is, they take into account the discrete
structure of the TA but not the reachable state space in the presence of timing constraints.
This is why the conditions are not necessary: an untimed behavior of the TA which does not
satisfy the conditions might not be valid when the timing constraints are considered.

Deadlocks. Before presenting a static test, we characterize deadlock-freedom of a TA A by
a local condition on the reachable states of A. Let ¢ be a discrete state of A and define:

free(q) U v (guard(e) N ([reset(e) = O]invar(target(e))))

eeout(q)

Intuitively, free(q) containts all states with discrete part ¢, which can let some time pass and
take a discrete transition exiting g. Then, it is easy to see the following.

Lemma 3.4 A is deadlock-free iff V(q,v) € Reach(A) . v € free(q).

Based on this characterization, a sufficient static condition for deadlock-freedom is provided
by the following lemma.

Lemma 3.5 If for each discrete state ¢ of A and for all e € in(q), ((guard(e))[reset(e) :=
0]) Ninvar(q) C free(q), then A is deadlock-free.

Notice that the above condition is not compositional, that is, two TA might satisfy the
condition while their parallel composition does not.

Timelocks. A sufficient condition for timelock-freedom is strong non-zenoness, by part 1 of
lemma 3.2. Checking that a system of TA is strongly non-zeno can be done compositionally,
by part 2 of the same lemma. By definition, the test for strong non-zenoness is static.

Critical races. Let A be a TA with set of edges £ and set of clocks X'. Informally, A has
no critical races if no structural loop of A can be “covered” by one or more segments, each of
which does not let time pass at all. This is illustrated in figure 3.5, where the loop 33 can
be covered by <53 (where x forbids time to pass) and 3% (where y forbids time to pass). If
such loops do not exist then absence of critical races can be guaranteed.

r:=0 ey

Figure 3.5: A structural loop generating a critical race.

More formally, given an edge e and a clock x, we say that = is reset in e if © € reset(e)
and that x is zero-bounded in e if guard(e) C (x = 0). Then, consider a structural loop

@S qm B qi. For 1 <14,5,k < m, define the ternary relation <,, (i,7,k) (j “is between i
and k£ modulo m) such that, eitheri < kand i < j<kori<j<kori>kandi<j<m
or 1 <j < k. For example, if m > 2 then <,, (1,2, m) and <,, (2,m,1).

Lemma 3.6 A has no critical races if in every structural loop = -+ 23, there exists 1 <1 <m
such that for any clock x which is zero-bounded in e, 1 < k < m, there exists 1 < 3 < m such
that <., (1,7,k) and = is reset in e;.

Unfortunately, parallel composition does not preserve the absence of critical races, as can be
seen in the example of figure 3.4: although both TA shown in the figure are critical-race-free,
their parallel composition has the critical race corresponding to the sequence of actions (abed)”.

The test of lemma 3.6 can be costly, since the number of structural loops is exponential on
the number of discrete states of a TA, and the latter grows also exponentially with the number
of component TA. A cheaper solution is to check for each automaton A in a system of TA
that no atomic constraint of the form = = 0 appears in any structural loop of A. Then, it is
guaranteed that the composite system satisfies the same condition, which implies the one of
lemma 3.6.

Relation to the literature

TA were first introduced in [Dil89, Lew90, AD90]. Our TA model differs from the one of [AD90)]
in that it uses invariants and permits a bounded number of discrete transitions to happen in
zero time. Our model is also different from the one of [HNSY94] in that it requires an infinite
number of discrete transitions in every infinite run, whereas theirs permits executions where
the TA stays forever in the same discrete state. The definition we adopted in this thesis is more
general, since it permits to distinguish between the following cases:

(1) an event a occurs eventually but we do not know when; and

(2) an event ¢ may never occur.

We model case (1) by having an edge labeled a going out of a discrete state with invariant
true. We model case (2) by adding a “dummy” self-loop edge to the state. Using the definition
of [HNSY94], case (1) cannot be modeled since a true invariant implies that there exists an
infinite run staying forever in the corresponding state.

Invariants have been introduced in [HNSY94] to model time-progress conditions. Some
weaknesses of the model with respect to parallel composition of TA have been first identified
in [SY96]. Since then, a new model has been proposed which expresses the urgency information
on transitions rather than states, using so-called deadlines [BS97, Bor98, BST98].

The notion of non-zenoness was introduced at the same time as TA. [Yov93, HNSY94]
introduce the notion of well-timed systems to capture deadlock and timelock freedom, without,
however, distinguishing between deadlocks and timelocks. To our knowledge, critical races have
not been defined previously.

Chapter 4

Property-specification Languages

In the previous chapter we have introduced the formalism of TA for the description of timed
systems. In this chapter we present formalisms to express properties of timed systems. We
consider two types of formalisms, namely, linear- and branching-time.

In linear time, properties are viewed as sets of executions, so that specifications are eval-
uated on runs. In branching time, properties are viewed as sets of execution trees, so that
specifications are evaluated on the semantic graph. The two views are incomparable, that is,
there are properties expressed in linear time but not in branching time and vice-versa. On
the other hand, safety properties (“p always holds”), which can capture most-frequently used
properties like invariance and bounded response, are expressible in both linear and branching
time.

In this thesis we consider both linear-time properties, expressed by Timed Biichi Automata,
and branching-time properties, expressed by the logic TCTL. We also consider the automata-
based logic ETCTLE which is strictly more expressive than both TBA and TCTL.

4.1 A linear-time formalism: Timed Buchi Automata

Timed Biichi automata have been introduced in [Alu9l] as a real-time extension of Biichi
automata [Biic62].

Syntax and semantics. A timed Bichi automaton (TBA) is a tuple B = (A, F'), where
A= (X,0Q,q,FE, invar) is a TA and F' C @Q is a set of repeating discrete states.

The notions of states, transitions and runs of TA are easily extended to TBA. A state s of B
is called repeating if discrete(s) is repeating. A run p of B is called accepting if p visits repeating
states infinitely many times, that is, for all ¢ there exists j > ¢ such that discrete(p(j)) € F.
B is said to have triwial acceptance condition if for every accepting run p of B, p remains in
F from some point on, that is, there exists ¢ such that for all j > i, discrete(p(j)) € F. The
language of B, denoted Lang(B), is the set of all accepting, non-zeno runs of B starting from
its initial state. The emptiness problem for a TBA B consists in deciding whether its language
is empty, and if not, provide an accepting, non-zeno run.

Let A’ be a TA with set of discrete states Q’. Also let P : Q — 29" be a function associating
to each discrete state of B a set of discrete states of A’. A run p’ of A’ satisfies B with respect
to P, written p’ Ep B, if there exists a run p € Lang(B) such that for all = 0,1, ...:

1. delay(p’,) = delay(p,).

34

2. discrete(p’(7)) € P(discrete(p(7))).

Condition 1 says that the two runs take their discrete steps at the same time. Condition 2
ensures that at any time instant the discrete state of A’ meets the requirements specified by
the discrete state of B. Notice that, by definition, only non-zeno runs of A’ satisfy B.

A’ satisfies B if there exists a run starting from the initial state of A’ satisfying B.

Remark 4.1 Our definition of TBA satisfaction is based on language intersection (i.e., there
exists an execution of the system which is in the language of the TBA) rather than the usual
automata-theoretic definition based on language inclusion (i.e., every execution of the system
is in the language of the TBA). Since (non-deterministic) TBA are not closed under comple-
mentation, the problem of inclusion is generally undecidable [Alu91]. However, the problem of
intersection is decidable.

Defining TBA satisfaction as a problem of language intersection implies that if we want to
prove that all behaviors of a system A satisfy a property ¢, then we have to use a TBA B4
expressing the negation of ¢: a behavior is in the language of By iff it does not satisfy ¢. Then,
all the behaviors of A satisfy ¢ iff A does not satisfy B-,. For most interesting properties, By
can eastly be found in practice (actually, it is sometimes more intuitive to construct a TBA
expressing the negation of the property than the property itself).

Examples of property specification. TBA can be used to express a property either di-
rectly, or via its negation. Two examples are shown in figure 4.1. The liveness property “there
exists an execution where p holds infinitely often” is modeled by the (untimed) Biichi automa-
ton By, expressing the property directly. On the other hand, the bounded-response property
“every instance of p; is followed by an instance of p; within at most & time units” is modeled
indirectly by the TBA B,, expressing the negation of the property. Notice that By has trivial
acceptance condition, but not Bj.

‘ —0 Qx_o ng

true true D1 /\ P P2 true

Bl B2

Figure 4.1: Examples of (timed) Biichi automata.

The above examples show the main difference between our definition of satisfaction of TBA
and the usual definition of satisfaction of untimed linear formalisms. Instead of requiring that
all behaviors of the system satisfy the property specified by the TBA, we require that at least
one of them does so (see also discussion at the end of the chapter). This implies that when we
have to express a property of the form “in all behaviors of the system ¢ holds”, we have to find
a TBA which specifies —¢, so that the above property holds iff the system does not satisfy the
TBA.

Reducing TBA satisfaction to TBA emptiness. As usual, the problem of checking
whether a TA A satisfies a TBA specification B can be reduced to the problem of checking
whether the synchronous product of A and B, denoted A x B, has an empty language.

Formally, let A be (X, Q, qo, E,invar) and B = (X', Q’, ¢, E',invar’, I'). Alsolet P : Q'+ 2
be a proposition-labeling function as before. A x B is defined only if g0 € P(q), as the TBA
(XY UX', Q" (qo,q,), E” invar”, F"), where:

¢ Q"={(g:4) €@ *x Q[g€ P(d)}.

e £ contains all composite transitions e||€’ such that e € E, ¢ € L', source(e) € P(source(e’))
and target(e) € P(target(¢’)).

e invar’(q,q) = invar(q) Ninvar'(q).

o [M"=(QxF)NQ".

It is easy to see that if s 5 gy -+ is a run in Lang(B) and sg % Sp+-- is a run of A
satisfying B, then (s, sp) ge(ﬂfo (s1,81) - is a run in Lang(A x B). Inversely, any run in

Lang(A x B) can be “projected” in two runs p and p’ such that p satisfies p’. Then:

Lemma 4.2 A satisfies B iff the language of A X B is non-empty.

4.2 The branching-time logic TCTL

Timed Computation Tree Logic has been introduced in [ACD93] as a real-time extension of the

branching-time logic CTL [EC81].

Syntax and semantics. Let Z denote the set of all intervals of R of the form [¢, ¢/, [¢,),
(¢,d], (e,¢), (¢,00) and [¢,00), where ¢, ¢ € N. A formula in TCTL is defined according to the
following syntax:

¢ u= true [p | 2o [oV | UG | VOl

where p € Props is an atomic proposition and [€ 7 is an interval.

Let A be a TA with set of discrete states Q). Also let P : Props — 29 be a function associ-
ating to each atomic proposition a set of discrete states of A. TCTL formulae are interpreted
over states of A. Given a formula ¢ and a state s, the satisfaction relation s =p ¢ is defined
inductively on the syntax of ¢ as follows (we omit the subscript p for simplicity):

s |= true
skEp iff discrete(s) € P(p)
s Edy iff not s E ¢

s o1V oy iff s orsk o

sEJ0 U Py iff Elpzsge#---st time(p) = oo and
i . ¥;;6; € [and p(i) + 6; |E ¢ and
Vi<i. N6<68 . p(j)+08k= bV

sEVOU Py iff ‘v’pzsgg---st time(p) = oo
i . ¥j<;6; € I and p(1) + 9 |—qb2 and
Vi<i.Vo<6;.p(j)+ 6 d1V oo

Intuitively, s satisfies the formula 3 ¢y Us ¢, if there exists a non-zeno run p starting from s and
a point along the run such that the time spent until that point belongs to the interval I, ¢,

holds at that point and ¢; holds continuously until that point. The interpretation for ¥V ¢ Uy ¢
differs only in the quantification over runs starting from s: here it is required that all such
runs meet the conditions. The interpretation of boolean operators, atomic propositions, and
the trivial formula true is straightforward.

The following abbreviations are defined:

3016 X Jtruell; &
VO def Vtrueld; ¢
VO ¢ £ =300
ERP e TR

We also simplify notation for intervals, for instance, we write 30«5 ¢ instead of 3Oy 5 ¢ and
VO ¢ instead of VO o) ¢.
We say that the TA A satisfies a formula ¢ if the initial state of A satisfies ¢.

Examples of property specification. We now give some examples of TCTL formulae.
The invartance property “p always holds” can be expressed by the formula VO p. The formula
VOps5 p requires that p holds only during the interval [3,5]. Bounded response is expressed
by the formula VO (p; = VO p2) (the TBA B, of figure 4.1 models precisely the negation of
this formula). Finally, the escape-possibility property stating that “it is always possible for p
to hold” can be expressed by the formula VO 3 p.

CTL. It is useful to identify an interesting subclass of TCTL, namely, CTL, the untimed
subclass of TCTL containing all formulae with trivial subscript interval [0, 00).

4.3 A mixture of branching and linear time: the logic
ETCTLS

The logic ETCTLY (extended TCTLE) [BLY96] is a real-time version of the automata-based
logic ECTL* introduced in [HT87]. ETCTL is more expressive than both TCTL and TBA
(see next section). Intuitively, ETCTL3 can be seen as an extension of TBA where, instead
of associating with each discrete state of the TBA a simple atomic proposition, we associate a
general sub-formula. That is, ETCTL] is an extension of TBA with nesting.

Formally, the syntax of ETCTL] is as follows:

¢ n= true | p | =gy | &1V oy | AB(P1s. .., 00)

where p € Props is an atomic proposition and B is a TBA with set of discrete states () =
{qlv) QN}

The semantics of ETCTL3 is a combination of those of TCTL and TBA. ETCTL3 formulae
are interpreted over states of a TA A. The satisfaction rules are as for TCTL in the case of
atomic propositions and boolean formulae, and similar to those of TBA for the type of formulae
AB(é1, ... ,¢,). Informally, a state s satisfies 3B(¢1, ..., ¢,) if there is a run p’ of A starting
from s and a run p in the language of B, such that p’ and p execute synchronously and at each
point in time the state of p’ satisfies the sub-formula specified by the discrete state of p.

Formally, let A be a TA with set of discrete states Q" and P : Props — 22" be a function
mapping each atomic proposition to a set of discrete states of A. The satisfaction relation =p
between a state s of A and an ETCTL3 formula ¢ is defined inductively on the syntax of ¢ as
follows (we omit the subscript p for simplicity):

s = true

skEp iff discrete(s) € P(p)
s | -y iff not s |E ¢y

sE @1V o il s ¢ ors =g

s = dAB(¢1, .) iff - dsg %i s1+-+ € NonZenoRuns(s) .
Haio- Vi) 5% (@i, viy) -+ € Lang(B) .

As we shall see in the section that follows, ETCTLY is strictly more expressive than both TBA
and TCTL.

4.4 Comparison of the different specification languages

ETCTL3 subsumes both TBA and TCTL. Consider the case of TBA first. Let B be a TBA with
set of discrete states Q = {q1, ..., ¢, }, A be a TA with set of discrete states Q' and P : Q — 29’
be a function mapping a discrete state of B to a set of discrete states of A. Then, we define
Props to be a set of atomic propositions {py,....,p,} and P’ : Props — 29" to be such that
P'(p;) = P(q:), for i = 1,...,n. It is easy to see that A Ep B iff A Ep IAB(p1, ...y pn)-

As for TCTL, [BLY96] prove that any TCTL formula ¢ can be translated to an ETCTLj
formula. The translation is done recursively on the syntax of ¢ and has complexity linear on the
size of ¢. As an example, figure 4.2 shows how the TCTL formulae 3¢, U<y ¢y and V ¢y U<y, ¢
can be translated to the ETCTLS formulae 3B (1, 2, true) and —IBy(—g2, ~(d1 V ¢2), true),

respectively.

Bl B2

translating 3 ¢ U<y, P2 translating V ¢ U<y ¢2

Figure 4.2: Translating TCTL to ETCTL3.

Some remarks are worth making concerning the translation of TCTL to ETCTL3.

First, a universally-quantified formulae such as Vi is translated to =3B(---), where B
expresses the negation of the property expressed by . For example, the TBA B, above
expresses the property: “there exists a run which either fails to satisfy ¢, before £ time units,
or fails to satisfy ¢y continuously until ¢ becomes true”.

Second, for some nested TCTL formulae, more efficient translations can be found than the
ones given by the formal translation algorithm. In particular, such TCTL formulae can be
captured by ETCTL3 formulae without nesting (i.e., to TBA), modulo negation. For example,
VO (p1 = VO<k p2) is translated to =3By (true, py A —=pa, —pa, true), where Bj is the TBA on the
right of figure 4.1.

Third, notice that both TBA in figure 4.2 have trivial acceptance conditions. In fact, this is
true for any TBA appearing in an ETCTL3 formula obtained from the translation of a TCTL
formula. This is important in practice for ETCTL3 model checking: the latter is based on
TBA emptiness, which can be solved more efficiently for TBA with trivial acceptance (see
section 7.2).

We finally turn to the comparison of TBA and TCTL. The two formalisms are incomparable
in expressiveness, a fact that has to do with the linear nature of TBA and the branching nature
of TCTL, rather than their timed features. In particular, the CTL formula VO 3 p cannot be
captured by any TBA. On the other hand, the BA B; of figure 4.1 cannot be captured by any
TCTL formula. These results are direct extensions of the results for linear- and branching-time
incomparability in the untimed case, which can be found, for instance, in [Lam80, EH86].

Relation to the literature

TBA were used for the specification of timed properties in [Alu91], based on the classical
automata-theoretic definition of language inclusion. TCTL has also been introduced in [Alu91],
although with a slightly different definition of satisfaction using sequences of intervals of the
real line mapped to states. Our definition is closer to the one of [HNSY94], with the difference
that not any path of the semantic graph is considered, but only those where discrete transitions
are taken infinitely often (i.e. runs).

ETCTLS is introduced in [BLY96].

A large number of other timed logics exist in the literature. For a survey, the reader is
referred to [AH92].

Regarding the debate between linear and branching time [Lam80, Lam83, EL85, EHS86],
it seems to be slightly out-of-date, although there is still no consensus as to which view is
better. For the reasons mentioned in the introduction, we believe that the two views are really
complementary, therefore, both are necessary.

Part 11

Analysis Techniques

40

Chapter 5

Abstractions for Timed Automata

The semantics of TA are given in terms of an infinite (dense) state-space. On the other hand,
automatic verification methods require finite (but also reasonably-sized) state spaces. Con-
sequently, analysis techniques for TA rely on abstractions of the infinite semantic graph to a
finite domain. Apart from reducing the state space, an abstraction also leads to loss of infor-
mation. The stronger the abstraction, the less the information lost but also the less important
the state-space reduction. The crucial question then is to what extent to abstract in order to
preserve properties of interest and at the same time keep automatic analysis feasible.

We first recall some generalities on abstractions and introduce them in the timed context.

Abstractions for TA. In the context of this thesis, an abstraction is a relation between the
concrete state space of a TA and an abstract space. The concrete space is the semantic graph.
The states forming the abstract space are sets of concrete states, called symbolic states. We
consider abstractions based on:

o Bisimulations: the abstract states form a partition of the concrete states, that is, the
abstraction is a function. We define a strong and two weak time-abstracting bistmulations,
where exact delays in time transitions are abstracted away. We also recall the region
equivalence of [ACD93] and show that it is a strong time-abstracting bisimulation. We
prove that all time-abstracting bisimulations preserve TBA emptiness, and that the strong
one also preserves CTL (by extension TCTL). These results are modulo non-zenoness,
which can be characterized syntactically in symbolic paths.

o Simulations: here, the abstract states might be overlapping, that is, the abstraction
is a relation. We define the simulation graph, where time transitions are eliminated
altogether. On top of the simulation graph, we define three weaker abstractions, based
on clock activity, symbolic state inclusion and conver hull. These abstractions can be
also combined to yield better reduction. The simulation graph, possibly with activity,
preserves TBA emptiness. Inclusion preserves TBA emptiness in a conservative way and
reachability in an exact way. Convex hull preserves TBA emptiness and reachability
conservatively.

All abstractions yield in practice much smaller state spaces than the region graph. The advan-
tage of bisimulations is that they preserve more properties. On the other hand, they have to be
computed a-priori, before verification can be applied, as shown in chapter 6. The advantage of
the simulations is that they can be computed during the verification of the property, yielding
on-the-fly techniques (chapter 7).

41

Before presenting the abstractions and the preservation results, we define formally symbolic
states and their semantic successor and predecessor operations.

Symbolic states and operations

Consider a TA A. A set of states of A is called a symbolic state.
Let S be a symbolic state and e an edge of A. We define the following operations on S:

(5|35 €85,5eR. &5 s}
“ (s|35€8,6eR. s>)

)
)
) def
)

time-succ(S
time-pred(S
disc-succ(e, S

disc-pred(e, S

= {s|3deS.s5 s}
Y 135 el. 555

In words, time-succ(.S) is the set of all time-successors of states in .S and disc-succ(e, S) are
the e-successors of S. The meaning of time-pred() and disc-pred() is symmetrical.
A zone is a symbolic state S such that:

1. all states of S are associated with the same discrete state, i.e., for all s,s" € S, discrete(s) =
discrete(s’); and

2. the set of valuations {v | 3(¢q,v) € S} is a convex X-polyhedron (.

We often write (g, () for the zone S. Also, we use false to denote the empty zone.
Let S7 be a zone, Sy a symbolic state, e an edge and ¢ a natural constant. We define the
following successor and predecessor operations:

post(e, Sy, ¢) et cIose(time—succ(disc—succ(e,Sl)),c)
pre(e, S3) & disc—pred(e,time—pred(Sg))

where we write close((q, (), c) instead of (g, close((,¢)). Intuitively, post(e, Si,¢) contains all
states (and their c-equivalents) that can be reached from some state in 57, by taking an e-
transition, then letting some time pass; pre(e, S3) contains all states that can reach some state
in S, by taking an e-transition, then letting some time pass.

The following result says that zones are preserved by the above successor and predecessor
operations.

Lemma 5.1 If S is a zone, then time-succ(S), time-pred(S), disc-succ(e,), disc-pred(e, S),
post(e, S, ¢) and pre(e, S) are also zones.

Proof: Let S = (¢,(). Using the definitions of polyhedral operations (section 2.2.2), it is easy

to prove the following equalities:

(V=0 = ((/pn(N\xz=0)

zeY

Y :=0¢ = (N(Az=0))/¥

zeY

time-succ(q, S) = (q,/‘g‘”ﬂinvar(q))
time-pred(q, S) = (q,/fﬂ invar(q))

disc-succ(e, 5) = @(q’, ((C NN = 0]) N invar(q’)), if e=1(q,¢,-X,q)

otherwise

disc-pred(c, 5) = { @(q/, G OIX = 00)), if e = (g2 Gy X

The result follows from the fact that polyhedral operations preserve convexity (lemma 2.3) and
close((, ¢) is by definition convex. [|

5.1 Time-abstracting bisimulations

Time-abstracting bisimulations are equivalences which abstract away from the quantitative
aspect of time: we know that some time passes, but not how much.

Before giving the formal definition, we give the intuition through an example. Consider the
two systems shown in figure 5.1. The TA A on the left of the figure has two discrete transitions to
states satisfying propositions p; and p, respectively. The first transition is possible immediately
and remains possible for one time unit, while the second is possible only after two time units
and remains possible forever. The graph i on the right of the figure describes as system which
can either move to p;, or wait some time (modeled by the transition labeled 7) and go to a
state where no discrete transition is possible. Then, after some more time, it moves to a state
from which it can go to ps.

The two systems can be considered equivalent modulo statements of the form: “p; can be
reached immediately while p; can be reached only after letting some time pass and meanwhile
there is a point when no action is possible”. This statement does not impose any exact quanti-
tative timing requirements, apart from “letting some time pass”. On the other hand, it imposes
conditions on discrete-state changes. This is the idea behind time-abstracting equivalences: ex-
act delays are abstracted away while information on the discrete-state changes of the system is
retained. We formalize this in the sequel.

5.1.1 Definition
The Strong Time-Abstracting Bisimulation

Consider a TA A with set of edges K. A binary relation &~ on the states of A is a strong
time-abstracting bisimulation (STaB) if for all states s; & sy, the following conditions hold:

1. if 51 = s3, for some e; € E, then there exists e, € F such that s, 3 s, and s3 ~ s4;

P1 P2
A G

Figure 5.1: Two time-abstracting bisimilar systems.

2. 1f s 5# s3 then there exists d; € R such that s 54 84 and s3 & sy;
3. the above conditions also hold if the roles of s; and sy are reversed.

The definition is illustrated in figure 5.2 (left). The states s; and s, are said to be STa-bisimilar.
In general, two TA A; and A, are said to be STa-bisimilar if there exists a STaB ~ on the
states of A; and Ay, such that s} a2 s2, where s is the initial state of A,.

St S2 St S2 St S2
5 i i 5 (sll l 5 &l l 5
S3 S4 S3 S4 S3 7T S4
S1 ... S9 S1 ... S9 S1 ... S9
€1 J l/ €9 €1 \L (S el\L (S

83 T 54 53 . 53
) €9 €9
¢ e
strong 5
delay
S4
observational

Figure 5.2: Time-abstracting bisimulations.

Consider again the example of figure 5.1, and a STaB respecting atomic propositions p; and
p2. The greatest such bisimulation, say a, induces five classes, namely, (qo,z < 1), (qo,1 <
< 2), (o, >2), (qq,true) and (g2, true). In fact, the graph G of figure 5.1 is essentially the
~-quotient of A, where time edges are represented symbolically in a compact form (7 edges).
This is explained in more detail below.

Time-Abstracting Quotient Graphs

According to the general definition of quotients (section 2.1), the STa-quotient of a TA A is a
graph whose nodes are symbolic states (the classes induced by the STaB) and whose edges are

0: (far, up, 0, true)
I: (near, up, I, ©<1Az=1)
2: (near, up, I, z<lAhz<y+lAx<z)
3: (near, comingdown, 2, y<lAz<y+lAz<z+2)
4: (near, down, 2, 2<aNha<bh)
5: (near, down, 2, x<2)
6: (in, down, 2, x<5)
7. (far, down, 3, z<1)
8 (far, going up, 0, y=1)
9: (far, going up, 0, 1<y<2)
10: (far, going up, 0, y=0)
11: (far, going up, 0, 0<y<l)
12: (near, going up, I, e <IANLI<yAny<2Az=1)
13: (near, going up, I, 1<ynz<lAy<a+2hz<zAy<z+41)
14: (near, going up, I, y<2Ahaz<zAz+1<y)
15: (near, going up, I, y<lhz<yAhz<z+1lAy=z2)
16: (near, going up, I, y<lhnz<zAz<y)

Table 5.1: The nodes of the STa-quotient of figure 5.3.

of two types: C; = (,, for some edge e of A, when states in C, are e-successors of states in

C'y; or Cy A (5, for some ¢ € R, when (y contains a é-successor of some state in (.

To be used for algorithmic analysis, quotients must have a finite representation. Later we
shall prove that the number of classes induced by a STaB is always finite, implying that the
quotient has a finite number of nodes. As for the infinite sets of timed edges, they can be

represented symbolically using a single edge labeled 7. For instance, all edges (g, @ < 1) LN
(90,1 < < 2) in the example above are replaced by (go,z < 1) = (qo,1 < < 2). Also,
we eliminate T-edges which can be obtained by reflexive, transitive closure. Thus, there is no
edge (qo,z < 1) 5 (go,x < 1), neither (go,z < 1) = (go,x > 2). These edges are omitted for
reasons of economy, but most importantly, so that classical (untimed) verification techniques
can be applied to quotient graphs without modification. The technique is explained in detail
in section 6.2.

In the sequel we write C; — Cy for two classes Cy and Cy if either Cy = Cy or €7 = € for
some edge e.

Example. The STa-quotient of the TGC system of section 3.1 is shown in figure 5.3. The
nodes of the graph are detailed in table 5.1. The quotient has been generated using the min-
imization technique of section 6.1.2, implemented in the module minim (section 11.2). The
graph has been drawn using the module bcg_edit of the CADP tool suite. In the CADP graph
format, 7 is denoted “i” (for “internal” or “invisible”).

Weak Time-Abstracting Bisimulations

We now define two weaker time-abstracting bisimulations. The time-abstracting delay bisimu-
lation or TadB (resp. time-abstracting observational bisimulation or TaoB) is a binary relation
~ on the states of A, such that for all pairs s; /&~ s, the following conditions hold:

Figure 5.3: The STa-quotient graph of the Train—Gate—Controller example.

1. if s5; = s3, for some e; € E, then there exist e; € I and § € R (resp. 4,6" € R) such that
S9 RN S4 (resp. Sq NI s4) and s3 R 845

2. 1f s LIy s3 then there exists d; € R such that s 5 84 and s3 & sy;
3. the above conditions also hold if the roles of s; and sy are reversed.

The definitions are illustrated in figure 5.2 (middle and right). The notions of bisimilar states
or TA and quotient graphs are straightforward to extend to weak TaBs. The quotient graph
of the TA of figure 5.1 modulo the greatest TadB or TaoB respecting p; and py is shown in
figure 5.4. The induced classes are (g0, ® < 1), (g0, > 1), (¢1,true) and (gq, true). Notice that
states (qo, 1 < @ < 2) are bisimilar to states (qo, > 2) since they can let time pass and take a
discrete transition to ¢s.

xz <1 x>1

()=
OO

Figure 5.4: Tad- and Tao-quotient graph of the TA of figure 5.1.

Example. The Tao-quotient of the TGC system of section 3.1 is shown in figure 5.5. In fact,
the graph has been obtained from the STa-quotient of figure 5.3, further reduced with respect
to the untimed observation bisimulation. This is explained in detail in what follows.

Obtaining the weak TaBs from the strong TaB

Weak TaBs correspond to the composition of strong TaB with the (untimed) delay and obser-
vational bisimulations defined in section 2.1. More precisely, consider a TA A and its semantic
graph . Let x4, be a strong time-abstracting bisimulation on . Also let G, be the graph
obtained by i by replacing all labels § € R on the time transitions of G by 7. Let & 4e14y (resp.
A ,p5) be the greatest delay (resp. observational) bisimulation on (.

Lemma 5.2 gy 0 Ry (TESP. Rgps 0 Ry,) s a time-abstracting delay (resp. observational)
bisimulation on (.

Proof: We only prove the result for /240,y 0 /.. The proof for =, 0 /4, is similar. For
. €
simplicity, we write s — s" if s = s’ for some edge e.

Let (81,82) € Rgetay O Rotq, 1€, 81 Rgelay § and s A%y, Sz, for some state s. Now, assume that

51 — s1. From the fact that sy /gy 5, there exist s 7% " = &' such that 81 R getay 8’ Observe
that s =5 s” implies s KN s, for some § € R (this is by definition of the graph G). From the
fact that s ~, sq, there exist s, kLY sy such that s” a2, s§. Thus, there exist s — s/, such that

.. § .
s’ &2y, sh. Summarizing, we have sy —— s} such that (s],s}) € Rgeay © ~yy. The case of time
transitions is similar.

Figure 5.5: The Tao-quotient graph of the Train—Gate—Controller example.

Inversely, assume that s, 54 sh. From the fact that s v, sg, there exist s 2 & such that
s~y sh. Observe that s N implies s = s'. From the fact that s; R gelay S, there exist

o T* . . §
sy — s such that s| ~geay 8. Now, sy — s| implies s; — s}, for some ¢; € R, and we have
(81,85) € Rgetay 0 ~4q. The case of discrete transitions is similar. This completes the proof. m

The above result is used in section 6.2, where we show how to compute the weak Ta-
quotient of a TA from its STa-quotient and how to compare two TA with respect to weak TaBs
by comparing their STa-quotients with respect to weak untimed bisimulations.

Comparison of the three TaBs

Given a TA A, let ~24,,, A4 and =¥y, be the greatest TaoB, TadB and STaB on A, respectively.
By definition, ~;, Crs;,s CR40, that is, /2, is stronger than /2,4 which is in turn stronger than
Rotao. We now show that the above inclusions are strict. The example of figures 5.1 and 5.4
shows that ~s;,qZ=2,.

To see that a4, £~144, consider the TA of figure 5.6 and assume that ~;, and =s,, respect
propositions p; and ps. First, observe that both s,y and ~,, distinguish states (g2, < 1)
and (g2, ¢ > 1). Now, ms;, distinguishes states (qi,true) and (¢j,x > 1), since the latter can
move to (gz,x > 1) by a discrete transition, whereas the former cannot. On the other hand,
Rotqo does not distinguish these states, since (¢q,true) can more to (gs,@ > 1) by taking the
discrete transition and then delaying until = > 1.

Figure 5.6: Example showing that TadB is strictly stronger than TaoB.

The Region equivalence: a strong time-abstracting bisimulation

The region equivalence has been introduced in [ACD93] in order to prove decidability of TA
model checking. The equivalence has two important properties: first, it preserves all formalisms
presented in the previous chapter; second, it induces a finite partition of the state space. Here
we show that the region equivalence is a strong TaB. This implies in particular that the quotient
of a TA A with respect to the greatest STaB, TadB or TaoB defined on A is finite.

Informally, two states (¢, v) and (g, v') are region equivalent if v and v’ agree on the integral
parts of all clock values and have the same ordering of the fractional parts of all pairs of clock
values.

More formally, let |§] (the integral part of §) be the greatest integer smaller than ¢, for
d € R. Let () (the fractional part of §) be § & [d§]. Consider a TA A with set of clocks X
and let ¢ > ¢pae(A). Two X-valuations v and v’ are region equivalent, denoted v ~, v’ if they
satisfy the following conditions:

1. For each clock x, either |v(z)| = |v/(x)] or both v(x) and v'(x) are greater than c.

2. For all pairs of clocks x,y, either |v(z) &v(y)| = [V/(z) ©V'(y)] or both differences
v(z) &v(y) and v/(z) &V'(y) are greater than c.

It can be checked that ~, is indeed an equivalence relation, independently of ¢. The equivalence
classes induced by ~. are called regions. Part of the region space for two clocks =,y and ¢ = 2
is shown in figure 5.7.

1<:1:<y<2
)
) £|£|4x>2/\x_y
| élélé r=2Ay=1
/|/|/ ES2N0<y<lAzoy>?2
0

Figure 5.7: A partition of the clock space in 54 regions.

The region equivalence can be extended to states of A so that (¢, V) is equivalent to (¢’, v’)
if g = ¢ and v ~, v'. Then, we have the following result.

Lemma 5.3 The region equivalence is a strong time-abstracting bisimulation.

Proof: Let (¢,v) ~. (¢, Vv’). Observe that:

1. for any c-closed X-polyhedron ((in particular, any guard or invariant of A), v € (iff
v e (;

2. for any set of clocks X C X, v[X := 0] = v/[X :=0];
3. for any & > 0 there exists ¢’ > 0 such that v + 6 ~ v/ + 4.

Now, if (q,v) = (g1, V1) is a discrete transition, then (g, v') = (g1, v}) is also a discrete tran-
sition, since both v and v’ satisfy guard(e). Also, (q1,vi) =~ (q1,V}), since v[reset(e) := 0] ~
v'[reset(e) := 0]. Let (¢,v) KN (¢, v + &) be a time transition. There exists §' > 0 such that
v+ ~v 44 vand v/ + ¢ satisfy invar(q), since v and v+ do. v’ + 6” satisfies invar(q) for

any 8" < ¢, by convexity of invar(q). Thus, (¢,v’) LN (¢, v+ &) is also a time transition. m

Using a combinatorial argument, [ACD93] have shown that the number of regions has the
following upper bound:

nl-2"-(2¢+2)"

where n = |X| is the number of clocks. In fact, the lower bound is on the same order of
magnitude, which implies that the number of regions is too large for any practical purpose.
For example, the TGC system of section 3.1 has a region space in the order of 10* regions per
discrete state.

As a corollary of lemma 5.3 and the above upper bound, we conclude that the quotient of
a TA with respect to the greatest STaB (thus, also TadB, TaoB) is finite.

c-equivalence: a strong time-abstracting bisimulation

The preservation results of section 5.2, and the correctness of the algorithms of chapters 7 and 8
depends on the following result.

Lemma 5.4 Let A be a TA and ¢ > ¢pap(A). Then, c-equivalence is a strong time-abstracting
bisimulation.

Proof: Observe that c-equivalence is stronger than the region equivalence. The result follows
by lemma 5.3.]

The intuition is that the values of those clocks which have grown greater than ¢, (A)
are not relevant, since there is no guard or invariant of A which can distinguish between such
values. Therefore, adding ¢, (A)-equivalent states to the set of reachable states of A would
not affect the satisfaction of any property.

5.1.2 Properties preserved by time-abstracting bisimulations

In this section we show that all TaBs preserve linear-time properties, while only the strong
TaB preserves branching-time properties. The results are modulo non-zenoness, that is, they
hold only for strongly non-zeno systems. For the general case, we give necessary and sufficient
conditions guaranteeing non-zenoness in quotient graphs. These conditions are “syntactic”,
that is, they apply on the structure of the nodes and edges of the graph, and resemble the
conditions for strong fairness of [MP95b].

We start by presenting the fundamental property of Ta-quotient graphs.

Pre-stability. Pre-stability is a property of quotients induced by TaBs, similar to the one
holding in quotients induced by untimed bisimulations (section 2.1). The difference is that
there are two types of timed pre-stability, depending on whether a class is a discrete or time
successor of another class. More precisely, consider a TA A, a TaB =~ on A and two classes (;
and Cy in the ~-quotient graph of A. Then, by definition:

o If C; 5 (), then for each state s; € Cy there exists s, € C5 such that s 2 82, for some
d€eR.

o If O} 5 (y, for some edge e, then:

— if & is a STaB then for each state s; € (' there exists s, € (Y, such that s; = sy;

— if &~ is a TadB then for each state s; € (| there exist § € R, s, € (3, such that
S1 i>—6> 5923

— if ~ is a TaoB then for each state s; € () there exist §;,d, € R, s, € (s, such that
S1 g—%g S9.

The pre-stability property related to strong TaBs is illustrated in figure 5.8.

Figure 5.8: Pre-stability in strong time-abstracting bisimulations.

Non-zenoness. TaBs do not preserve non-zenoness. Figure 5.9 presents a counter-example:
although TA A; and A, are STa-bisimilar, only A; has non-zeno runs. This is not surprising,
since TaBs are insensitive to exact delays. However, we can still use the information contained
in the equivalence classes induced by the bisimulation, as well as in the edges of the TA, to
check whether there is a clock blocking time or not. This motivates the following definitions.

Figure 5.9: Time-abstracting bisimulations do not preserve non-zenoness.

First, we extend the predicate unbounded(z,5), for a clock x and a symbolic state S, as
follows:

unbounded(zx, S) L ovieR. (g, v)e S . v(x)>1

Now, let G5 be the quotient graph of a TA A with respect to a TaB ~ and let 7 = '} —
Cy — - -+ be an infinite path in G. 7 is called non-zeno if for each clock = € X

e cither x is reset infinitely often in 7, that is, Vi > 1.3 >i,e€ E.C; S Cipy A €
reset(e),

e or x remains unbounded in 7 from some point on, that is, 3¢ > 1. V5 > i . unbounded(z, C;).

As we prove below, non-zeno paths correspond to non-zeno runs, and vice versa.

Linear-time preservation. In this paragraph we show how runs are related to symbolic
paths. Given a path m = (] — €y — -+ of Gy and a run p = s; — s9 — - -+, we say that p s
inscribed in w if for all ¢+ > 1:

° SZ'ECZ',

o if C; = C;yy then there exists § > 0 such that s; &N Sit1s
o if C; 5 Ciyy then s; = s,44.

Lemma 5.5 Fvery run (resp. non-zeno run) p is inscribed in a unique path (resp. non-zeno
path) m in Gy. Inversely, if m = Cy — Cy — -+ is a path (resp. non-zeno path) in Gy then
for all sy € Cy there exists a run (resp. non-zeno run) p starting from sy and inscribed in .

Proof: A straightforward modification of the proof of lemma 3.35 of [Alu9l]. |

This result will be used in section 6.2.1 to show how to perform TBA model checking on
quotient graphs.

Branching-time preservation. Only the strong TaB preserves branching-time properties.
For simplicity, we consider here the untimed fragment of TCTL, CTL. The extension for full
TCTL is given in section 6.2.2.

We first need to prove an important property of STaB related to the passage of time.

Consider a TA A and a STaB ~ on A. Given a time transition of A, s st d, and m different
classes (1, ..., C,,, we say that the transition traverses Cy,...,C,, if:

1. seCyand s+ 6 € C,,.
2. For all 0 < ¢" < 4, there exists 1 < ¢ < m such that s + ¢’ € C,.

Figure 5.10 presents an example of a time transition traversing three classes Cy, Cy, Cs.

/

Cs

Figure 5.10: A time transition traversing classes Cy, Cy, Cs.

Lemma 5.6 1. Any time transition traverses a unique (finite) number of classes.

2. If s & s’ then for any time transition s st d, there exists a time transition s LGN
such that s + & =~ s’ + &' and the two transitions traverse the same classes.

Proof: For the first part, consider a time transition s Sy s+ & and let m be the number of
different “points” 0 < d; < -+ < 4, < 4 such that s+ J; and s+ 6,41 belong to different classes
(there is a finite number of such points since the quotient is finite). The proof is by induction
on m. If m =0, then s,s 4+ ¢ € Cy, for some class C';. We shall show that for all 0 < §; < 4,
s+ 6, € C1. Assume the opposite, i.e., s + 3§ € Cy for some (y # Cy. Then, since C; = C,
(from the fact that s 5# s44¢') and Cy NN (from the fact that s+ d; 5_—5>1 s44), we can build

an infinite sequence C; = Cy = Cy = Oy ---. But this is not possible, since we assumed ~ to
be weaker than the region equivalence ~. and after the upper bound c¢ all states are equivalent.
The induction step is straightforward.

For part 2 of the lemma, let (', ..., C,, be the classes traversed by s % s+68. The proof
is again by induction on m. If m = 1, then s & s+ 4 and it suffices to take 8’ = 0. For the
sake of simplicity, instead of proving the general induction step, we assume that m = 2, that
is, $ S s+ 6 traverses classes C1,C5. The extension to any m > 1 is easy using the induction
hypothesis.

We have: s,s" € Cy, s+ 6,5+ " € Cy, for some ¢'. We want to show that for all 47 < ¢,
s+ 97 € €1 Uy Assume this is not the case, that is, s’ +] € C and C is different from

'y, (. Since s’ & s, there exists s 5# s+ 47 such that s +8; € C. From the fact that s LI +46
traverses Cq, 'y and condition 2 of the definition of traversal, it must be that 4; > 4. Thus,

Cy = C (from the fact that s + ¢ 130 +41). On the other hand, C' 5 (4 (from the fact that
s+ 4] 5;;;1 s+ ¢'). As previously, we can build an infinite sequence Cy = C 5 Cy 55 C' -+

contradicting the hypotheses. []

We are now ready to prove the main result, namely, CTL preservation.

Lemma 5.7 Let A be a strongly non-zeno TA and = be a strong time-abstracting bisimulation
on A. For any CTL formula ¢ and any pair of states s = s', s = ¢ iff s' = ¢.

Proof: The proof is by induction on the syntax of ¢. The basis comes directly from the
hypothesis that ~ respects P. The interesting induction steps are for ¢ = VU ¢y or ¢ =
o1 U ¢2. We only consider the latter case, the former being similar.

Assume that s = 3¢ U p2. Then, there exists a non-zeno run p = s 2% . and some
point ¢ along p such that p(i) + 6; = ¢2 and for all j < i, § < 6, p(3) +0 | ¢1 V .

From the fact that s ~ s/, we can build a run p’ = 4 gl -+, such that s; ~ s% and
sj +6; =~ s + ¢, for all j. From the strongly non-zeno hypothesis, p is non-zeno. From the
induction hypothesis, p'(i) + 6] |= @2 and for all j < i, p'(j) + &} = ¢1 V ¢2. It remains to show
that p'(j) +6" = @1 V ¢, for all & < 6%, By lemma 5.6, for any ¢’ < §%, there exists § < §; such
that 3; + 0" ~ s; + 9. The result follows from the induction hypothesis.]

The assumption for strong non-zenoness is indispensable, as can be seen by the example of
figure 5.9, where the two TA are bisimilar, however, only A; satisfies the CTL formula 30 p.

Regarding the two weaker time-abstracting bisimulations, they do not generally preserve
CTL. Figure 5.11 gives a counter-example. The TA shown in the top-left part of the figure
yields the Tad-quotient shown in the bottom. The CTL formula 3 (3O py) U py is satisfied at
state sy = (g, @ = 2.5,y = 0.7) (in fact, at all states (¢, <y > 1 Ay < 2)) but not at state
s1=(qr,x = 1.5,y = 0.7) (in fact, at no state (¢1,0 < x <y < 1 Ay < 2)) although s2 and sy
are Tad-bisimilar. As a corollary, CTL is not preserved by TaoB either, since TaoB is weaker

than TadB.

5.2 Abstractions based on simulations

In these abstractions, only information about discrete transitions is kept, while time transitions
are completely ignored. Intuitively, every abstract state S is “closed” under the passage of time,

Z

O
0 @y::() o

Yy :

(3<>P1)

P
[(qoal‘ = y)H(ql,:L‘ ZyNy < Q)H(ql,x >y > 2)]

(ﬁ5|<> P, ﬁpz)

/

(g3, true)) (p1) (q2,true) J (p2)

Figure 5.11: Weak time-abstracting bisimulations do not preserve CTL.

that is, if a concrete state s belongs to S then so do all the time successors of s.
Simulation abstractions are based on the notion of simulation graph, a forward-reachability
graph where nodes are zones and successor nodes are obtained using the post() operator.

5.2.1 The Simulation Graph

Consider a TA A. In the rest of this section, we assume that ¢ is a natural constant greater or
equal to ¢pa(A).

The simulation graph of A with respect to ¢, denoted SG(A,¢), is the smallest graph (in
terms of nodes and set inclusion among nodes) such that:

L. time-succ(Sy) is a node of SG(A,¢), where Sy = (qo, zero);

2. if S is a node of SG(A,c) and e is an edge of A, then S’ = post(e, S, ¢) is a node of
SG(A,c) and S = S is an edge of SG(A,c).

The following lemma shows that the above definition yields a finite graph.
Lemma 5.8 For any TA A and any constant ¢, SG(A,c) is finite.

Proof: By definition, all nodes in SG(A,¢) are c-closed. The result is then obtained by
lemma 2.2 and the fact that the discrete states and edges of A are finite. |

In the worst case, the nodes of the simulation graph can be as many as the classes induced
by the region equivalence. In practice, however, the size of the simulation graph is orders of
magnitude less. For example, the simulation graph of the TGC system (section 3.1) is shown
in figure 5.12. The nodes are detailed in table 5.2. The simulation graph has 11 zones, made
up of 8 distinct discrete-state vectors and 11 distinct polyhedra. The number of regions for the
same system would be in the order of 10 per discrete-state vector (although not all of them

would be reachable).

Figure 5.12: The simulation graph of the Train—Gate—Controller example.

0: (far, up, 0, z=y=2z)

I: (near, up, I, e=z<1Az<y)

2: (near, comingdown, 2, 1>ax=z=y+1Ay<l)

3: (near, down, 2, 1>e=z<bANx=y+1)

4: (in, down, 2, 2<a=z<bANx=y+1)

5: (far, down, 3, z<1Az42<a<z4+bANe=y+1)

6: (far, going up, 0, y<2Az42<a<z45ANy<z<y+1)
7. (far, up, 0, 1<yAz4+2<a<z45ANy<z<y+1)
8: (near, going up, I, v=z<1AN2<y<2)

9: (near, up, I, =z<1Ax+1<y)

10: (near, up, I, =z<1ANe<y<ax+2)

Table 5.2: The nodes of the simulation graph of figure 5.12.

5.2.2 Properties preserved in the simulation graph

The simulation graph preserves linear-time properties. As in the case of TaBs, non-zenoness is
not preserved, however, we give necessary and sufficient syntactic conditions for the existence
of non-zeno runs in paths of the simulation graph.

We start by presenting the fundamental property of the simulation graph.

Post-stability. Consider a TA A and an edge S; < S, in the simulation graph SG(A, ¢). By
definition of post(), we have the following two post-stability properties in the simulation graph:

e for any state s; € 57, if s NN 82, then s, € Ss;

o for any state s, € Sy, there exist s; € 51, 6 € R and sy € 55 such that s; NN S,
S &0 € 99, and sy, s, are c-equivalent.

The properties are illustrated in figure 5.13. The arrow - drawn in solid line corresponds to
the symbolic edge S; — S;. The arrows drawn in dashed lines correspond to semantic discrete
or timed transitions.

Notice that, due to the second property above, simulation-graph post-stability is stronger
than general post-stability (section 2.1). Also notice that pre-stability is not a simulation-graph
property: indeed, there might be states in S; which have no e-successors at all (states (g, v)

where v ¢ guard(e)).

Figure 5.13: Post-stability in the simulation graph.

Non-zeno paths. The example of figure 5.9 can be re-used for showing that the simulation
graph does not preserve non-zenoness: although TA A; and A, generate the same simulation
graph, only A; has non-zeno runs. As in the case of TaBs, we give a syntactic definition
of non-zenoness. Call a path in the simulation graph a zone path. An infinite zone path

T=25 395, 3 ... is called non-zeno if for each clock = € A’
e cither x is reset infinitely often in 7, that is, Vi . 37 > ¢ . a € reset(e;),

e or x remains unbounded in 7 from some point on, that is, 3¢ . Vj > ¢ . unbounded(x, (;) A

unbounded(x, guard(e;)).

Linear-time preservation. Runs are related to zone paths in a similar way as runs are

related to paths in quotient graphs (lemma 5.5). Consider a (finite or infinite) zone path
e e) e 5 e . .

™= (QDCI) — (q27C2) -+ Arun P = (QDVl) - (QIvvll) — (qQ7V2) = (Q%V/Z) = -+ s said

to be inscribed in 7 if for all ¢ = 1,2, ..., v;, vl € (.

Lemma 5.9 Fuvery run (resp. non-zeno run) of A is inscribed in a unique path (resp. non-zeno
path) in SG(A,c). Inversely, for every path (resp. non-zeno path) m in SG(A,c), there is a
run (resp. non-zeno run) inscribed in .

Sketch of proof: The idea behind the proof is illustrated in figure 5.14. The proof shows a
zone path S; — (53 — S5 —)¥, ending in a cycle (zones are depicted as large ellipses). Each
zone can be seen as a set of regions (depicted as small circles). When two zones are connected
by an edge, say, S; — 53, this means that some region in Sy has a discrete successor region in
S3. Also, some regions in a zone might have time successors in the same zone. By the post-
stability property of the simulation graph, starting from any region in any zone and following
edges backwards, we inevitably find a cycle of regions (for instance, trying to move backwards
starting from the upper-most region of 53, we find a cycle visiting the two lower-most regions of
Sy and S5). A cycle of regions implies the existence of an infinite run, according to lemma 5.5.
The complete proof is given in the appendix. []

Sl SQ 53

Figure 5.14: Why in every zone cycle there is an inscribed infinite run.

The main difference of the above result with the one of lemma 5.5 is that, given a node
S in a zone path m, there exists a run inscribed in 7 starting from some states in S, but not
necessarily all of them.

Lemma 5.9 implies the existence of two simulations between the semantic graph of a TA A
and its simulation graph, one for each direction. The relation € between states of A and nodes
of SG(A,¢) is a simulation in the sense that for each run p starting from a state s, there exists

a zone S such that s € S and p is inscribed in a path starting from S. The inverse relation is
also a simulation, in the sense that for each path 7 starting from a zone S, there exists a state
s € S and a p starting from s, such that p is inscribed in 7.

These results will be used in chapter 7 for performing on-the-fly different types of analysis,
namely, reachability, deadlock and timelock detection, and TBA and ETCTLZ model checking.

Branching-time non-preservation. We use the same counter-example for weak TaBs (the
TA of figure 5.11) to show that CTL is not preserved by the simulation graph. Recall that states
(q1,x <y > 1 Ay < 2) satisfy the formula 3 (3O py) U py while states (1,0 <z sy < 1Ay <2)
do not. However, all these states are “merged” in a single node (¢i,true) in the simulation
graph, shown in figure 5.15.

(El<> Pl)

[(6107 T = y)H(ql, true)

Figure 5.15: The simulation graph of the TA of figure 5.11.

5.2.3 Clock Activity

This abstraction considers clocks only when they are usefully counting time (we say that they
are active). Intuitively, a clock is active from the point where it is reset up to all points where
it is tested (in a guard or invariant of the TA), without being reset meanwhile. Inactive clocks
do not affect the behavior of the TA, thus, they can be ignored.

More formally, consider a TA A = (X,Q, E, qo,invar), where X' = {xy,...,2,}. Given a
discrete state g € @), the set of clocks tested in ¢, clocks(¢q) C X, is defined to be the set of
clocks @ such that x is constrained either in invar(q) or in guard(e), for some edge e € out(q).

The function act : @) — 2%, associating with each location ¢ the set of active clocks in
q, is defined as the least fix-point of the following system of equations (one equation for each
location ¢):

act(q) = clocks(q) U U act(d)\ X
(CR—=2

Intuitively, x is active in ¢ iff it is either tested in ¢ or it is active in a discrete state ¢’ which
can be reached from ¢ by a sequence of edges, so that = is never reset along the sequence.

As an example, consider the Train—Gate—Controller system shown in figure 3.1. The activity
functions for each of the three TA of the system are as follows:

Train: act(far) = {}
act(near) = act(in) = {z}
Gate: a
act(going up) = act(coming down) = {y}

(
(
ctEup) = act(down) = {}
(
(

Controller: act %) =act(2) = {}
act(l) = act(3) = {z}

0: (far, up, 0,)

I: (near, up, I, =2<1)

2: (near, coming down, 2, l>ax=y+1Ay<]1)

3: (near, down, 2, 1>a2<5)

4: (in, down, 2, 2<a<5h)

5: (far, down, 3, z2<1)

6: (far, going up, 0, y<2)

7: (near, going up, I, z=z<1ANe<y<ax+2)

Table 5.3: The zones of the activity graph of figure 5.16.

It is interesting to see that none of the clocks is active all the time. For instance, clock y of
the gate serves only at states “going up” or “coming down”, where it is necessary to count the
time needed for these operations.

An algorithm to compute act is given in [DY96]. This algorithm works on the syntactic
structure of the automaton (i.e., discrete states and edges) and can be used compositionally to
compute the active clocks of the parallel composition of two or more TA. More precisely, let
Ay and A, be two TA with disjoint sets of clocks A} and &5, and sets of discrete states ()1, ()2,
respectively. Let act; : Q; — 2%, be the activity function of A;, for 7 = 1,2. Then, it is easy
to prove that the activity function of A;||A, is the function act : Q; x Qy + 21192 defined
as follows:

act(q1, ¢2) = acti(q1) U acta(qa)

Consider a TA A with set of discrete states () and set of clocks X'. Given an activity function
act : Q — 2%, the activity abstraction with respect to act is defined to be the function o,
mapping each zone (g,() in the simulation graph of A to the zone (q,(]act(y))- That is, all
inactive clocks are projected away, so that the dimension of the polyhedron associated to ¢ is
reduced from X to act(q).

The activity graph of A with respect to a,.¢, denoted AG(A,c), is defined as follows:

e For each node S of SG(A,c), aget(5) is a node of AG(A,c).
e For each edge S| = Sy of SG(A,), auet(S1) = et (S2) is an edge of AG(A,c).

The activity graph of the TGC system is shown in figure 5.16 (notice that it is smaller than
the simulation graph of the same system). The zones are shown in table 5.3. Observe that no
polyhedron is associated to node 0, since no clocks are active in the initial discrete-state vector.

Properties preserved in the activity graph

The activity graph preserves the same properties as the simulation graph. The only slight
difference is in the definitions of post-stability, non-zeno symbolic paths, and inscription of
runs to paths, due to the fact that the clock space induced by activity has variable dimension.
We make explicit these differences in what follows.

Post-stability. Let A be a TA with set of clocks X. Consider an edge S; < Sy in AG(A, ¢),
where S; = (¢, (i), 1 = 1,2 (recall that ¢; is a polyhedron on act(g;)). Post-stability here is
expressed as follows:

Figure 5.16: The activity graph of the Train—Gate—Controller example.

e for any state vy € (y, if there exist X-valuations vi, v} such that (¢, v}) 55 (g2, v5)
and V; = V;J act(q)s 1= 1,2, then Vo € §2;

o for any vy € (3, there exist vi € (4 and X-valuations vi, v}, v}, such that:
— v} and v} are c-equivalent.
- (g1, V) LN (g2, Vv5), for some ¢ € R.

The above property is proved directly from the definitions. The difference with simulation-
graph post-stability is that vy, vy are dimension-restricting projections of the “real” valuations
v, vh.

Non-zeno paths. An infinite path 7 = (¢1,(1) = (g2, () = -++ in AG(A,¢) is called non-

zeno if for each clock x € X':

e cither x is active and reset infinitely often in 7, that is, Vo . 37 > i . @ € act(¢;) Az €
reset(e;),

e or z remains active and unbounded in 7 from some point on, that is, 31 . Vy > 1 .z €
act(g;) A unbounded(z, ;) A unbounded(z, guard(e;)).

Relating runs to symbolic paths. A run p = (¢1,v1) 2N (qi,vi+31) 3 -+ is said to be
inscribed in a path (q1,(;) = --- of the activity graph, if for all i > 1, there exists v/ € (; such
that V; + 52 - Q and V; = ViJ act(q):

Based on the above definitions, lemma 5.9 can be easily re-proven for the activity graph.

Lemma 5.10 Fvery run (resp. non-zeno run) of A is inscribed in a unique path (resp. non-
zeno path) in AG(A,c). Inversely, for every path (resp. non-zeno path) m in AG(A,c), there
is @ run (resp. non-zeno run) inscribed in .

5.2.4 Inclusion abstraction

The inclusion abstraction is intended to preserve reachability. It is based on the following
observation: if for two zones S7 and S,, 57 C S5, then 57 can be ignored, since any state in 5}
belongs also to S, and any successor of 57 is also a successor of 5.

More precisely, let Z be a set of zones. A total function aj,. : Z — Z is an nclusion
abstraction on Z if for any S € Z, 5 C a;,.(5).

Now, consider a TA A and let a;,. be an inclusion abstraction on the set of nodes of the
simulation graph of A. The inclusion graph of A with respect to .., denoted IG(A,¢), is
defined as follows:

e For each node S of SG(A,c), an.(5) is a node of IG(A,e¢).
e For each edge S; = Sy of SG(A,), @ine(S1) = @ine(S2) is an edge of IG(A, c).

Returning to the TGC example, observe that in the simulation graph of figure 5.12, zones
9 and 10 are subsets of zone 1. Then, we can define an inclusion abstraction that maps zones
9 and 10 to 1 and every other zone to itself. This abstraction induces the inclusion graph of
figure 5.17, which contains two nodes less than the simulation graph.

APPRDACH

Figure 5.17: The inclusion graph of the Train—Gate—Controller example.

Optimal inclusion. According to the definition above, there might be many inclusion ab-
stractions possible for a given simulation graph. For the previous example, we could have
eliminated only one of the nodes 9 and 10 instead of both, and this would still be a valid
abstraction. An inclusion abstraction aj,. is said to be optimal if for any other inclusion ab-

aine|Z] € o [Z], where o] denotes the image of a relation «. For the previous

M 7
straction o' e

mne?
example, the abstraction merging both 9 and 10 to 1 is optimal.

It is easy to prove that an optimal inclusion abstraction always exists (since the simulation
graph is finite), although it might not be unique (since a zone can be a subset of more than
one incomparable zones). The reason why we have not considered just optimal inclusion ab-
stractions is that they cannot be always computed on-the-fly: finding which zone is included
in which other should be done while the simulation graph is generated, which depends on the
order of traversal of the graph (see also discussion in section 7.1 about on-the-fly generation of

abstract graphs).

Properties preserved in the inclusion graph

Inclusion preserves linear properties in a conservative manner and reachability in an exact
manner, modulo c-equivalence. More precisely:

Lemma 5.11 1. For each state s € Reach(A) there exists a node S in IG(A,¢) such that
s € S. Inversely, for each s € S, there exists a c-equivalent state s € Reach(A).

2. Fvery run (resp. non-zeno run) of A is inscribed in a unique path (resp. non-zeno path)

in IG(A,c).
The proof of the lemma follows directly from the properties below:

e (Post-stability): If S; = S, is an edge of IG(A,c), then for each s; € Sy, if s; NN S9
then s4 € 5.

e Every node S of IG(A,¢) is also a node of SG(A,c), therefore, there exists a zone path
Sop % ... 8.

e For any path # = §; = ---5 in SG(A,¢), there exists a path 7/ = 5] & ... 57 in
IG(A,), such that S; C 57, for ¢ = 1,...,]. Moreover, if 7 is non-zeno, then 7’ is also

nomn-zeno.

b

(gy+1<e<y+10)

Figure 5.18: A TA and its inclusion graph.

Lemma 5.11 will be used in section 7.1 to check reachability. To see that the inverse of part
2 of the lemma does not always hold, look at the example of figure 5.18. In any run of the TA
the a-transition is taken at most 10 times, however, in the inclusion graph it can be taken an
unbounded number of times.

5.2.5 Convex hull

The convex-hull abstraction is intended to be an over-approximation of the set of reachable
states. The idea is to perform a forward reachability analysis, as in the simulation graph, but
keep a single zone (g¢,() for each discrete state ¢. If another zone (g, (') is found reachable,
then ¢ is updated to ¢ U ¢’ (notice that ¢ U (' is not generally convex, so, replacing ¢ by ¢ U ¢’
in (g,() doesn’t yield a zone).

More precisely, consider a TA A with set of discrete states (). The convex-hull graph of A,
denoted CHG(A,c), is defined to be the smallest graph (in terms of nodes and set inclusion
among nodes) such that:

e All nodes of CHG(A, ¢) are c-closed zones.
e For each ¢ € Q, CHG(A, ¢) has at most one node (g, ().
e For each node S in SG(A,c¢), CHG(A,c) has a node 5" 2 S.

e For each node S in CHG(A, ¢) and each edge e such that post(e, S, ¢) # false, CHG(A, ¢)
has a node S’ D post(e, S, ¢) and an edge S = 5.

In other words, CHG(A,¢) is generated by taking the “closure” of SG(A,¢) with respect to
the convex-hull and post() operators. By the fact that all nodes of CHG(A,¢) are c-closed
and lemma 2.2, CHG(A,¢) is finite. The convez-hull abstraction, denoted .y, is the function
mapping each node (¢, (") of SG(A,¢) to the (unique) node (g, () of CHG(A,¢).

As an example, the convex-hull graph of the TGC system is identical to its optimal inclusion
graph (figure 5.17). Notice that no unreachable states are added in this case.

Properties preserved in the convex-hull graph

The convex-hull graph preserves linear properties and discrete-state reachability in a conserva-
tive manner. More precisely, we have the following result.

Lemma 5.12 1. For each state s € Reach(A) there exists a node S in CHG(A, ¢) such that
s€S.

2. Fvery run (resp. non-zeno run) of A is inscribed in a unique path (resp. non-zeno path)

in CHG(A,c).

The result follows directly from the post-stability of CHG(A, ¢), namely, that for each edge
S; = Sy of CHG(A, ¢), for each 51 € Sy, if 54 NN 3o then s, € S5.

Lemma 5.12 is used in checking reachability, for instance, of error states. Since the convex-
hull graph is an over-approximation of the concrete state space, this method can mainly be
used in proving that some discrete state ¢ is not reachable: if ¢ is not reachable in the abstract
graph, it is certainly not reachable in the concrete graph either; on the other hand, if ¢ is
reachable in the abstract graph, no conclusion can generally be made (a partial remedy to this
is discussed in section 7.1).

Reachability TBA CTL (TCTL)
Strong TaB N N N
Weak TaBs N v/ X
Simulation graph V/ v/ X
Activity N N X
Inclusion v/ conservatively X
Convex hull conservatively | conservatively X

Table 5.4: Summary of property preservation by abstractions.

5.2.6 Combination of activity, inclusion and convex hull

Apart from being applied separately on top of the simulation graph of a TA, the activity,
inclusion and convex-hull abstractions can be also combined, in order to give a better reduction
of the state space.

There are two meaningful combinations, obtained by applying activity on top of either
the inclusion or the convex-hull graph. The activity-inclusion graph (resp. activity-convex-
hull graph) is defined similarly to AG(A,c) with the difference that o, is replaced by the
composition uet 0 Qine (TESP. Aot 0 Q).

The rest of the possible combinations are either not well-defined (for instance, applying first
activity and then inclusion is not possible, since activity changes the dimension of polyhedra) or
not interesting (for instance, applying inclusion on top of convex hull or the inverse is identical
to applying just convex hull).

Concerning the properties preserved by the two combined abstractions, the activity-inclusion
graph preserves all properties preserved in the inclusion graph, while the activity-convex-hull
graph preserves all properties preserved in the convex-hull graph. These results can be derived
easily by combining the preservation properties of activity, inclusion and convex hull.

Summary of preservation results

Table 5.4 summarizes the preservation results of this chapter. The sign |/ means that the
abstraction preserves the corresponding class of properties and x means that it does not. The
note “conservatively” means that the abstraction preserves the property only in one direction,
ie.

e for reachability, if a state is reachable in the concrete system then it is also reachable in
the abstract one;

o for TBA, if the concrete system has a non-empty language then the abstract graph has a
non-zeno accepting cycle.

All results are modulo non-zenoness. The results of the column for CTL also hold for TCTL,
modulo the construction described in section 6.2.2.

Relation to the literature

The abstract interpretation framework for program analysis using abstractions has been intro-
duced in [CCT77], and has been used extensively for model checking in the untimed context

(see, for instance, [CGL94, LGST95, DGGI7]). This framework is quite powerful, however,
when used for model-checking of infinite-state systems, an abstraction towards a finite domain
is not easy to find. It is often the responsibility of the user to define the abstraction, which can
be a non-trivial task requiring a lot of intuition in the input model. For instance, [TAKB96]
study timed simulations and propose a compositional approach to prove that a timed system
simulates another one, by applying assume-guarantee proof rules on the system components.
However, no methodology is provided for finding the right system simulating a given one.

The time-abstracting observational bisimulation has been introduced in [LY93]. The authors
study TaoB from an algebraic point of view, proving that it is a congruence with respect to the
real-time process calculus of [Yi90]. Its properties with respect to logical formalisms are not
examined. The strong TaB has been introduced in [TY96]. Stronger timed bisimulations not
abstracting away from exact time delays have been studied in the literature, often associated
to extensions of real-time process calculi (see, for instance, [RR88, NRSV90, 692]).

The simulation graph has been introduced independently in KrRONOS [0Oli94] and RrT-
SPIN [TC96], along with c-closure. In fact, the latter operation is necessary only to ensure
that the simulation graph is finite, therefore, in practice, it is an option of the forward reacha-
bility algorithm. Inclusion has been used implemented independently in the reachability anal-
vsis of KRONOS and UpPAAL [BGKT96]. Convex-hull abstractions have been also used for
approximate reachability analysis by [Hal93, WTD94, WT95, Bal96]. Clock activity has been
introduced in [DY96]. These techniques have been formalized in the framework of abstractions
in [DT98]. A related approach can be found in [SV96]. [AIKY92] present a technique based on
over-approximations: the method consists in attempting to prove the property on an abstract
system where some clocks are ignored; if this attempt fails, then clocks are re-introduced pro-
gressively until either the property is proven on the abstract system, or all the clocks have been
re-introduced.

Chapter 6

Verification based on Minimization

In this chapter we show how the time-abstracting bisimulations introduced in section 5.1.1
can be used for verification. The goal is to demonstrate how classical (untimed) verification
techniques can be used also for verifying timed systems.

More precisely, given a system described as a TA A, the following cases are possible:

o If the specification of A is given in terms of a TBA B, model-checking A against B is
reduced to checking the ~-quotient of A x B for emptiness; ~ can be any TaB, since they
all preserve linear properties.

o If the specification of A is given in terms of a CTL formula ¢, model-checking A against
¢ is reduced to model-checking the STa-quotient of A against ¢. If ¢ is a TCTL formula,
it is transformed to a CTL formula, A is extended with a set of auxiliary clocks, and the
same technique applies (see section 6.2.2).

e If the specification of A is given behaviorally, that is, in terms of another (timed or
untimed) automaton A’ then checking that A and A" are bisimilar with respect to a TaB
is reduced to checking that their STa-quotients are bisimilar with respect to an untimed
bisimulation.

In any of the above cases, the Ta-quotient of A needs to be computed. For reasons of effi-
ciency, we are interested in the minimal quotient, that is, the one corresponding to the greatest
bisimulation. Computing the minimimal quotient is called minimization and is dealt with in
section 6.1. Then, in section 6.2 we show how Ta-quotients can be used for verification, in any
of the three cases discussed above.

6.1 Minimization of Timed Automata

Based on the fact that a bisimulation induces a pre-stable partition and vice versa (section 2.1),
minimization is done by partition refinement: given an (untimed) graph G = (V, —), we com-
pute the coarsest pre-stable partition of V', starting from an initial partition C and successively
refining it until it becomes pre-stable. Refining C consists in choosing two classes (', Cy such
that Cy is unstable with respect to Cy, and then replacing C; by CiNpreds(Cy) and Cy\preds(Cs).

A partition-refinement algorithm [PT87] is shown in figure 6.1. The algorithm takes as
input the initial partition Cy and computes the coarsest stable partition which is finer than Cy.

68

Refine (Cp) {
C:=Cy;
while (3C1,Cy € C . Cy N preds(Cy) € {C1,0}) do
Ce, :={C1 Npreds(Cy), C1\ preds(Cy)} ;
Ci= €\ {C1 D) UC, ;
end-while
return (C) ;

}

Figure 6.1: A simple partition-refinement algorithm.

Co can be either {V} (the entire set of nodes) or a partition of V respecting a set of atomic
propositions.

The algorithm of figure 6.1 does not take into account class reachability. A class is reachable
if it contains at least one reachable node. In the above algorithm, the final partition is pre-
stable with respect to all classes, whether or not reachable. The minimal-model generation
algorithm (MMGA) proposed in [BFH192] combines refinement and reachability, by refining
only reachable classes and updating reachability information meanwhile .

The MMGA is shown in figure 6.2. It starts with an initial partition Cy and uses three
sets of classes, namely, the current partition C, the set of reachable classes Access C C (the
initial node is vg) and the set of stable classes Stable C C. If there exists a reachable class C4
which may be unstable (i.e., C; € Access \ Stable), the algorithm attempts to refine it. If it
succeeds, (' is removed from C, replaced by its two sub-parts. Otherwise, C is inserted in
Stable. The sets Access and Stable are updated accordingly. In the first case, all predecessor
classes of ('; which were stable are considered unstable, thus, are removed from Stable. Also,
a sub-part of C is considered unreachable, unless it contains the initial node. In the second
case, a single-step reachability is performed, to add to the reachable classes all successors of
the newly-found stable class.

6.1.1 Adapting for TA the partition-refinement algorithm of [BFG92]

MMGA can be adapted to infinite state spaces, assuming that they admit effective represen-
tations of classes and decision