
HAL Id: tel-00004907
https://theses.hal.science/tel-00004907v1
Submitted on 19 Feb 2004 (v1), last revised 30 Jul 2012 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

L’analyse formelle des systèmes temporisés en pratique
Stavros Tripakis

To cite this version:
Stavros Tripakis. L’analyse formelle des systèmes temporisés en pratique. Autre [cs.OH]. Université
Joseph-Fourier - Grenoble I, 1998. Français. �NNT : �. �tel-00004907v1�

https://theses.hal.science/tel-00004907v1
https://hal.archives-ouvertes.fr

UNIVERSIT�E JOSEPH FOURIER { GRENOBLE 1

SCIENCES ET G�EOGRAPHIE

TH�ESE

pour le grade de

DOCTEUR DE L'UNIVERSIT�E JOSEPH FOURIER

en Informatique

pr�esent�ee et soutenue publiquement par

Stavros TRIPAKIS

16 d�ecembre, 1998

L'Analyse Formelle des Syst�emes Temporis�es
en Pratique

Membres du jury :

Gerard HOLZMANN, Rapporteur

Amir PNUELI, Rapporteur

Patrick COUSOT, Examinateur

Joseph SIFAKIS, Directeur de th�ese

Jacques VOIRON, Pr�esident

He looked towards the horizon that he had come out to
see, of which he had seen so little. Now it was quite dark.
Yes, now the western sky was as the eastern, which was
as the southern, which was as the northern.

Samuel Beckett, Watt

Remerciements

Je remercie Joseph Sifakis, mon directeur de th�ese, pour m'avoir accueilli �a Verimag et pour
m'avoir donn�e la possibilit�e de faire la recherche avec des personnes extraordinaires. Je le
remercie �egalement pour les nombreuses discussions passionantes qu'on a eues. En�n, un grand
merci pour son soutien �a tous les niveaux.

Je remercie Sergio Yovine pour son encadrement clairvoyant et e�cace. Son esprit pratique
et sa persistance infatiguable �a poser les bonnes questions m'ont �et�e utiles maintes fois. Un
grand merci aussi pour son soutien amical.

Je remercie Ahmed Bouajjani pour avoir la patience de r�epondre �a mes questions, mais
aussi pour les sorties tr�es cools en montagne.

La cause de tout cca est probablement mon ex-professeur en Cr�ete, Costas Courcoubetis,
qui a organis�e CAV'93. C'est l�a o�u mon amour pour les automates a commenc�e. Merci �a Costas
Courcoubetis.

Merci �a Marius, c'�etait un plaisir de travailler avec lui.
Merci �a Dragan pour les discussions tr�es int�eressantes, r�eelles ou virtuelles.
Merci �a Maurice pour son aide.
Je remercie Thao et Yannick, pour être, �a part de tr�es bons amis, des coll�egues de bureau

irremplaccables. J'ai pens�e beaucoup de fois que j'avais de la chance de partager avec eux une
grande partie de ma vie. Merci pour leur amiti�e et tol�erance.

Merci �a Conrado et Hassen, les rebels without a cause.
Merci �a Roberto, Eduardo et Victor, friends at �rst sight.
Merci �a Peter pour ses v�elos. Up the owers, Peter!
Merci �a Suzanne pour sa pompe et son v�elo, d�esol�e d'avoir cass�e ce dernier.
Merci �a Dimitris, Georgia, Tasos, Costas, et les autres grecs.
Kiitos paljon, joulutytt�o.
�A tous les autres membres de Verimag, et les invit�es, et �a tous ceux que j'ai forc�ement

oubli�e, un grand merci.

A��� � �o����� �����!����� ��o�& o���& �o�:

Stavros Tripakis
December 15, 1998

P.S. The quote from Beckett's \Watt" (next page) has no semantics, it is only chosen for its
beauty of syntax.

Contents

1 Introduction 7
1.1 Formal analysis of timed systems . 7
1.2 The approach and contributions of this thesis 9
1.3 Related research . 12
1.4 Organization of this document . 15

I Timed Formalisms 16

2 Preliminaries 17
2.1 Graphs . 17
2.2 Dense state spaces . 20

2.2.1 Polyhedra . 20
2.2.2 Operations on polyhedra . 21

3 Timed Automata 24
3.1 From �nite-state machines to timed automata 24
3.2 Timed automata syntax and semantics . 25
3.3 The requirement of progress in timed systems 29
3.4 Static tests for the sanity of timed automata . 32

4 Property-speci�cation Languages 34
4.1 A linear-time formalism: Timed B�uchi Automata 34
4.2 The branching-time logic TCTL . 36
4.3 A mixture of branching and linear time: the logic ETCTL�9 37
4.4 Comparison of the di�erent speci�cation languages 38

II Analysis Techniques 40

5 Abstractions for Timed Automata 41
5.1 Time-abstracting bisimulations . 43

5.1.1 De�nition . 43
5.1.2 Properties preserved by time-abstracting bisimulations 51

5.2 Abstractions based on simulations . 54
5.2.1 The Simulation Graph . 55
5.2.2 Properties preserved in the simulation graph 57
5.2.3 Clock Activity . 59

4

5.2.4 Inclusion abstraction . 62
5.2.5 Convex hull . 65
5.2.6 Combination of activity, inclusion and convex hull 66

6 Veri�cation based on Minimization 68
6.1 Minimization of Timed Automata . 68

6.1.1 Adapting for TA the partition-re�nement algorithm of [BFG+92] 69
6.1.2 A partition-re�nement technique that preserves convexity 70

6.2 Veri�cation using Quotient Graphs . 75
6.2.1 Timed B�uchi Automata model checking 75
6.2.2 CTL model checking . 77
6.2.3 TCTL model checking . 77
6.2.4 Deadlock and Timelock detection . 78
6.2.5 Combination with untimed bisimulations and simulations 78

7 On-the-y Veri�cation 80
7.1 Reachability . 80

7.1.1 Yes/No reachability . 81
7.1.2 Partial and total reachability . 83

7.2 Timed B�uchi Automata Emptiness . 84
7.2.1 Special case: strongly non-zeno TBA . 85
7.2.2 General case . 87
7.2.3 Computing states leading to accepting non-zeno runs 91

7.3 On-the-y model checking of ETCTL�9 . 92

8 Diagnostics 95
8.1 Finite runs and trails . 96
8.2 In�nite runs and trails . 98

9 Controller synthesis 105
9.1 Timed Controller Synthesis . 106

9.1.1 Controllable Timed Automata . 106
9.1.2 Parallel composition of CTA . 109

9.2 A �xpoint solution to controller synthesis . 111
9.3 On-the-y controller synthesis . 113

9.3.1 Untimed case . 114
9.3.2 Timed case . 119

III Implementation and Tools 124

10 Symbolic representation 125
10.1 Di�erence Bound Matrices . 125
10.2 Implementation of symbolic operations . 127
10.3 Representation of non-convex polyhedra using lists of DBMs 131

11 Tools 138
11.1 The model checker kronos . 139
11.2 The minimization module minim . 145
11.3 The controller-synthesis module synth-kro . 146
11.4 The connection of Kronos to Open-Caesar 150

IV Case studies and Conclusions 155

12 Case studies 156
12.1 Fischer's Mutual-Exclusion Protocol . 157
12.2 The Stari circuit . 162
12.3 Bang&Olufsen's Collision-Detection Protocol 169
12.4 Cnet's Fast-Reservation Protocol . 173
12.5 Real-time scheduling . 178
12.6 Controllers for multimedia documents . 182

12.6.1 Petri Nets with Deadlines: informal presentation 183
12.6.2 Using Petri nets with deadlines to model multimedia documents 185
12.6.3 Controller synthesis for multimedia documents 190

13 Conclusions 192

A Higher-level modeling 204
A.1 Adding �nite-domain variables to the timed-automata model 204
A.2 Modeling atomic states . 205
A.3 Petri Nets with Deadlines . 205

B Proofs 207

Chapter 1

Introduction

1.1 Formal analysis of timed systems

A timed system is a system the behavior of which depends on timing constraints. This de�nition
being too general, we restrict our attention mainly to timed systems for which timing constraints
are critical, that is, the correctness of the system depends on them. Examples of such systems
include tra�c controllers, chemical-reaction controllers, real-time operating systems and so on.
Failure of a timed system can have catastrophic consequences, therefore, it is crucial to ensure
its correctness.

Formal methods are gaining popularity as a way to establish system correctness mathemat-
ically, that is, by proving that a formal model of the system satis�es a property. As identi�ed
in [MP95b] a formal analysis framework should contain the following elements:

� A semantic model to capture the behavior of systems.

� A system-speci�cation language to describe systems.

� A property-speci�cation language to express properties that a system should satisfy.

� Techniques for analyzing systems with respect to properties.

The goal of the �eld of formal methods is to integrate such a framework in the design and
engineering process, so that the risk of building systems with faults is reduced.

To achieve its goal, it is key that a formal framework is also practical. In particular, it is
necessary that

� the models are good in practice, meaning expressive, intuitive and easy to use;

� the algorithms are e�cient, if not always, for most practical applications;

� feedback is provided to the user;

� some methodology exists for the modeling and analysis process.

Since the notion of practicality is not strictly mathematical, perhaps the only way for evaluating
a formal framework is by testing it on as many case studies as possible.

In this thesis we consider a formal framework for timed systems consisting in the following
elements.

7

y y

Semantic model: Dense Time

We consider systems which evolve in dense time, that is, the time domain is the positive reals.
Apart from qualitative properties talking about the relative order of the events (e.g., a happens
before b) this model can also directly express quantitative time properties, talking about the
delays between the occurrence of events (e.g., a happens 5 times unit before b). Delays can be
exact, bounded or unbounded. The model can also capture delays which are arbitrarily close
to a given value, thus, it is independent of a speci�c time unit or time granularity. Therefore, it
is suitable for timed systems of asynchronous nature, for instance, when modeling a controller
interacting with an environment which issues requests in arbitrary moments in time.

The state space induced by dense time is in�nite (in fact, uncountable). Nevertheless, there
exist methods to reduce this in�nite concrete space to a �nite abstract space, while preserving
most of the properties we are interested in.

System-description language: Timed Automata

We describe timed systems using timed automata (TA) [Dil89, ACD93, HNSY94], that is, non-
deterministic �nite-state automata extended with a �nite number of real-valued clocks. A TA
alternates between two modes of execution, letting time pass continuously, then taking a step
changing its discrete state.

To model a system consisting in more than one components we use a collection of TA
executing in parallel. Time is assumed to pass synchronously for all components, that is, the
clocks advance all at the same rate. The discrete steps of the automata happen asynchronously,
unless some automata need to communicate, in which case they synchronize.

Property speci�cation: Linear and Branching timed formalisms

We use a number of formalisms to express system properties. The linear-time formalism of
Timed B�uchi Automata (TBA) can specify properties as execution sequences. The branching-
time logic TCTL can specify properties as execution trees. The logic ETCTL�9 is a combination
of TBA and TCTL and strictly more expressive than both. TBA and TCTL are incomparable
in expressiveness.

We also de�ne some properties such as reachability (\does p ever hold?") and deadlock- or
timelock-freedom directly, since they cannot be expressed in the above formalisms.

Using a variety of speci�cation languages has a number of advantages. First, a larger class
of properties can be expressed. Second, the user if o�ered a better choice in deciding his or her
language of preference: a property theoretically expressible in two languages might be easier
to express in one of them, that is, in a shorter or more intuitive manner. Third, the cost and
type of output of the analysis techniques often depends on the speci�cation language.

Techniques for Veri�cation and Controller synthesis

We consider two types of analysis, namely:

� Veri�cation (or model checking): given a timed system and a property, check whether the
system satis�es the property.

� Controller synthesis: given a timed system embedded in a certain environment , and a
property restrict the system so that the property is satis�ed, no matter how the environ-
ment behaves (more about this below).

pp

Decidability and complexity of the above problems has already been studied in previous works.
Veri�cation for TA with respect to TCTL or TBA is shown to be PSPACE-hard in [Alu91,
ACD93]. Controller synthesis for TA with respect to safety properties is shown to be EXPTIME-
hard in [HK97, MPS95]. The above results are based on the region equivalence, introduced
in [Alu91, ACD93], which reduces the dense state space of a TA to a �nite graph, the region
graph. This construction has been very useful in the �eld of dense-time systems, since it shows
that TA can be essentially viewed as �nite-state automata. However, the size of the region
graph is far too large for any practical purposes. To our knowledge, there is currently no
formal-analysis tool based on the region graph.

1.2 The approach and contributions of this thesis

In order to obtain a practical framework, we develop techniques which, despite of the theoretical
di�culty of the problems, work e�ciently in practice. The main problem to solve is state
explosion, that is, the fact that the size of the state space that needs to be generated/explored
is often prohibitively large. To cope with this problem, we propose abstractions which yield in
most practical cases a �nite graph of reasonable size (many orders of magnitude smaller than
the region graph). All abstractions can be computed automatically for a given input model,
that is, no help from the user is necessary to de�ne the abstraction 1.

In the case of linear-property veri�cation, we show how generating the abstract state space
and checking the property can be done at the same time (on-the-y), and how useful feedback
can be provided in the form of concise diagnostics. In the case of branching properties and
controller synthesis the abstract graph has to be generated a-priori, but the analysis can still
be done on-the-y.

In order to demonstrate the practicality of our framework, we develop tools and treat a
number of non-trivial case studies.

Abstractions for timed systems

We de�ne a number of di�erent abstractions for timed systems and study the properties they
preserve:

� Time-abstracting bisimulations are abstractions where the quantitative aspect of time is
hidden away: we know that some time passes, but not how much. Of the three time-
abstracting bisimulations de�ned, the strong one preserves both linear and branching
properties and can also be used for controller synthesis.

� Time-abstracting simulations are abstractions where the passage of time is hidden alto-
gether, and only discrete-state changes can be observed. These abstractions are based on
the simulation graph, which is built by forward reachability and preserves all linear prop-
erties, �nite or in�nite. Weaker simulation abstractions preserve �nite linear properties
(i.e., reachability) in an exact or conservative manner.

1This is in contrast with another type of formal veri�cation techniques, called deductive, which consist in
using a set of axioms to prove that the system satis�es the property. Semi-algorithmic procedures exist to help
the user perform this task with the aid of a computer, however, since they are incomplete, the interaction with
the user is often necessary. For more information about deductive techniques the reader is referred, for instance,
to [MP95b, Sai97, BMSU97].

pp

The choice of which abstraction to use depends on:

� the property to be checked, which has to be preserved by the abstraction;

� the reduction factor of the abstraction;

� the cost of computing the abstraction.

Theoretically, all abstractions may produce a state space as large as the region graph. However,
as shown by our experiments, the reduction is in practice many orders of magnitude better.
Regarding the reduction factor of time-abstracting bisimulations compared to simulations, there
is no general rule on which is better: the results vary depending on each case. On the other
hand, simulations are usually more interesting, since they can be used for on-the-y veri�cation.

On-the-y techniques

In on-the-y veri�cation, the property is checked while the state space is generated. Therefore,
an answer can be returned as soon as possible, without necessarily generating the entire state
space. On-the-y methods are particularly useful during the �rst stages of modeling, while the
model is still under development and most of the times contains \bugs". Discovering such bugs
rapidly permits to correct the model and continue with the analysis without much cost.

In this thesis we develop on-the-y algorithms for veri�cation based on simulation abstrac-
tions. The algorithms perform reachability, deadlock and timelock detection, TBA model
checking and full ETCTL�9 model checking. We also develop an on-the-y controller-synthesis
algorithm based on strong time-abstracting bisimulation (see below).

Minimization of TA and analysis based on quotient graphs

We use time-abstracting bisimulations to reduce veri�cation and controller synthesis of timed
systems to the untimed case. In that way, we can apply a variety of e�cient classical (un-
timed) techniques and also exploit the existing tool infrastructure. Our method works in two
steps. First, we compute the system's quotient with respect to the strong time-abstracting
bisimulation. The quotient is essentially an untimed graph, which preserves the properties of
the concrete state space (for this, the property has to be taken sometimes into account while
building the quotient). Therefore, existing algorithms for untimed linear- and branching-time
model-checking can be applied on the quotient to solve the corresponding timed model-checking
problems.

The �rst step of the above approach requires generating the quotient, a process called
minimization. To solve the problem for the timed case, we adapt the generic minimization
algorithm of [BFH+92] to the TA model. The algorithm of [BFH+92] uses complementation on
sets of states. Since this operation is expensive for dense-space representations, we develop a
minimization technique which avoids complementation.

Controller synthesis

The systems we consider are often reactive, that is, they function in a certain environment.
To analyze reactive systems, we need to model both the behaviors of the system and the
environment. In the case where the environment is unpredictable (or even adversary) and the
speci�cation of the system is still incomplete (for instance, during the �rst stages of design), the

pp

analysis can be see as a game between the system and its environment: the system needs to make
the right choices so that a given property is satis�ed independently of what the environment
does. Synthesizing a controller comes down to completing the speci�cation of the system, that
is, restricting the set of possible choices to the right ones. The controller-synthesis problem is
more general than veri�cation. The techniques for controller synthesis are more sophisticated
than veri�cation techniques, thus, usually more expensive.

In this thesis we study controller-synthesis for TA, based on the results of [MPS95]. On
the theoretical level, we clarify the notion of strategy and provide de�nitions for the parallel
composition of TA in the presence of controllability.

On the practical level, we show how to implement the operators used in the �x-point
controller-synthesis algorithm of [MPS95]. We also introduce an on-the-y method in two
steps: First, we develop an algorithm for controller synthesis on untimed systems (i.e. �nite
graphs). This algorithm is on-the-y in the sense that it can return a strategy as soon as one
it is found. Then, we show how to apply the algorithm on the time-abstracting quotient graph
of a TA, to solve the problem in the timed case.

Timed diagnostics

TA veri�cation is performed by exploring abstract state spaces, thus, the diagnostics that can
be generated directly from such an exploration are also abstract. In particular, such diagnostics
usually lack timing information, which can be crucial to understanding why a property does
or does not hold. To give more precise feedback we are interested in timed diagnostics: these
correspond exactly to the semantics of TA, that is, they contain both the discrete state changes
as well as the exact time delay between two discrete transitions. We show how to compute
timed diagnostics for linear properties, both �nite and in�nite.

Implementation and Tools

Kronos is a tool-suite for the analysis of timed systems [Yov93, Oli94, Daw98, DOTY96,
BDM+98, Yov97]. Kronos uses a symbolic representation of states, in particular, boolean
combinations of simple linear constraints representing sets of possible clock values. Semantic
operations on symbolic states are implemented as syntactic transformations of these sets of
constraints.

We have implemented the algorithms developed in this thesis on top of Kronos, using its
symbolic-representation library. The functionalities added in the tool include on-the-y parallel
composition of TA, on-the-y veri�cation with respect to reachability and TBA, timed diag-
nostics, and controller synthesis for properties of invariance (\always p holds") or reachability.
We have also implemented a new module for TA minimization, called minim. The in�nite-
diagnostic generation algorithm (section 8.2) and the on-the-y controller-synthesis algorithm
for untimed graphs (section 9.3) are being currently implemented.

Following the philosophy of tools like Spin [Hol91], we have also connected Kronos to
the untimed-veri�cation software platform Open-Caesar [Gar98] which is part of the CADP
tool-suite [FGM+92]. In particular, we developed the module kronos-open which acts as a
compiler, that is, generates C-code for a particular input model. The C-code is then interfaced
to Open-Caesar's libraries, to build the �nal executable which will perform the analysis.
In the context of this work, we have developed a symbolic-representation library of variable-
dimension, where clocks can be dynamically created and deleted. Using this library, we have
been able to treat systems with more than 30 clocks.

Case studies

Using Kronos, we have treated a number of case studies, six of which are presented in this
document. Most of them are real-world case studies, namely, two industrial communication
protocols (Bang&Olufsen's protocol, Cnet's protocol), the electronic circuit Stari, and a
multimedia-document authoring language developed as part of Inria's project Opera. The
real-time scheduling case study is interesting on its own, but also for illustrating some of the
techniques for model-checking timed liveness properties (\p holds in�nitely often"). Fischer's
protocol serves as a good example for illustrating many of the techniques presented through-
out the thesis. Also, along with the Stari circuit, they represent good benchmarks to test the
capacity of the tools and perform measurements demonstrating the usefulness of the techniques.

1.3 Related research

A brief history of dense-time veri�cation

The introduction of the model of TA in the early '90s has created a new domain of research
which is still expanding.

The �rst attempt to overcome the inherent state-explosion of the region graph has given
in [HNSY94]. The method, following the framework of [Sif82], consists in computing the set
of states satisfying a TCTL formula � (called the characteristic set of �). The computation
is done recursively on the syntax of �, based on a �x-point characterization of the modal
operators of TCTL. This approach is practical, since many regions can be encoded as a single
set of constraints in a compact way. However, the method still has some important drawbacks:

� It is not on-the-y, since the �x-point computation must terminate before an answer can
be returned.

� It does not provide diagnostics, except in a very primitive form, namely, the characteristic
set of a formula. Usually what is needed as diagnostics is sample executions.

� It considers the whole potential state space, whereas what is interesting is only the reach-
able part of the state space.

� It uses complementation, which results in expensive symbolic representation of sets of
states.

As a remedy to the above, on-the-y methods have been proposed independently in [DOY94]
and [TC96]. These methods are based on forward reachability analysis (i.e., the simulation
graph). They build the reachable state space and can provide symbolic diagnostics (�nite
paths in the simulation graph). Their main drawback is that they are limited to timed safety
properties such as invariance and bounded response (\whenever p1 holds, p2 will hold after c
time units at the latest").

Parallel to the theoretical work, a number of dense-time veri�cation tools have been devel-
oped in the past few years. Kronos has been the �rst one [Yov93, Oli94, DOY94], followed by
real-time Cospan [CDCT92], Uppaal [BLL+95], RtSpin [TC96] and Timed-Cospan [AK83,
AK96]. These tools are more or less based on the same TA model, however, they di�er in their

property-speci�cation languages. All the tools perform veri�cation symbolically by represent-
ing sets of states by simple linear constraints, although di�erent techniques are sometimes used
to encode the constraints.

The existence of tools has had an important impact on the acceptance of the dense-time
approach not only by the research community, but also by industrial partners. Real-world
case studies such as those treated with Uppaal [BGK+96, HSLL97] and Kronos [TY98] have
shown that the model, the techniques and the tools have reached a degree of maturity which
makes them useful in practice.

State of the art. The �eld of dense-time veri�cation is quite active and is being continually
enriched by new results. Recent works study how partial-order reduction techniques [Val90,
GW91, Pel94] can be applied to the veri�cation of timed systems [BJLY98, BM98]. [AJ98]
exploit the symmetry of systems of a particular type, to verify them for a parameterized number
of processes. Research is also being conducted for new representation techniques for dense state
spaces [DY96, LLPY97, STA98, LWYP98]. Controller synthesis for timed systems is also a new
and quite promising �eld, especially because of the number of interesting applications involved,
such as real-time scheduling.

Other approaches

Many other formal approaches have been used for the analysis of timed systems, di�ering in
both the models and the analysis techniques. Synchronous languages such as Esterel [BB91b]
and Lustre [CPHP87] are particularly suited for systems such as synchronous circuits, which
are deterministic and work according to a global clock. An extensive bibliography exists on time
Petri nets (for instance, [Ram74, Mer74, Sif77, BD91]) and timed extensions of process algebras
(for instance, [NRSV90, BB91a, LL93]). Hybrid automata [PV94, ACH+95] are a generalization
of the TA model with real variables having more general evolution laws, de�ned by di�erential
equations. Although most of the interesting problems are undecidable for the general model,
semi-algorithms and approximative analyses can still be implemented. HyTech [HHW97] is
a tool performing analysis for hybrid automata where evolution laws are speci�ed by simple
linear di�erential equations. The graphical formalism of Statecharts has been extended with
timed and hybrid semantics in [KP92]. Timed I/O automata [LA90] provide a model and a
methodology for mathematical reasoning about timed systems.

A comparative study of the above approaches is out of the scope of this thesis. On the
other hand, it is worth discussing the following two issues, since they are directly related to our
approach and results.

Dense versus Discrete Time. There has been a long and still unsettled debate concerning
the choice of the right quantitative model for time. The criteria for choosing a time model
are essentially two: �rst, how expressive the model is, that is, how well can it describe reality;
second, how e�cient it is, that is, what is the cost of the corresponding analysis techniques.

Dense time is strictly more expressive than discrete time. Perhaps the most important
feature of dense time is the fact that it abstracts from a speci�c time quantum, since it can
model arbitrary small delays. This property is of particular practical interest in two cases.
First, when implementing a model of a timed system, the correctness of the implementation
does not depend on the speed (clock frequency) of the machine. Second, composition of timed
systems is independent of the time quantum: we only need to normalize the constants appearing

in the constraints of the components, but not their time granularities, as it would be necessary
to do in a discrete-time model.

Regarding theoretical results on expressive power, there have been a number of di�erent
discrete-time models proposed for timed systems, as well as a number of works comparing
them with dense time. Two discrete-time models are considered in [Alu91]. In the �rst, events
are bound to occur along with the clock \ticks", whereas in the second, events can occur
anywhere in the real line, but the only quantitative information is how many ticks have passed
between two events. [Alu91] compares these models to the dense-time one informally, using
the paradigm of asynchronous circuits, and argues in favor of dense time. More formal results
can be found in [HMP92, GPV94, AMP98]. A general conclusion of these results is that dense
time is strictly more expressive than discrete time. Another conclusion is that in special cases
of TA (e.g., when modeling acyclic electronic circuits) discretization preserves a restricted class
of properties (e.g., the order of events). Still, what is missing is a methodology to discretize a
given dense-time automaton, in particular, how to �nd the necessary quantum of time.

Regarding e�ciency, the discrete-time model is usually thought to be better suited, since it
admits powerful untimed veri�cation techniques such as e�cient symbolic representation [ABK+97,
BMPY97] using binary decision diagrams (BDDs) [Bry86, CBM89, BCD+90], or partial or-
ders [BD98]. This conception is true but only to some extent. First, the discrete-state tech-
niques are not always given for free: discretizing the dense-time model or directly modeling in
discrete time can result in a less compact speci�cation. In particular, models which involve
large constants can result in state explosion when treated in discrete time (see, for example, the
case study in section 12.3). Second, the synchronous nature of the passage of time sometimes
a�ects the performance of BDDs as well as partial orders, which work well in systems where
actions are as much independent as possible.

Enumerative versus Symbolic techniques. In the untimed context (and especially af-
ter the introduction of BDDs) there is a clear distinction between enumerative and symbolic
techniques:

� In enumerative techniques, each state is represented explicitly, usually as an encoded
vector on the system's variables. The state space is generated and explored state by
state.

� In symbolic techniques, a set of states is represented implicitly, usually by a formula on
system's variables: the members of the set are those states satisfying the formula. The
reachable state space is usually computed as a �x-point of the transition relation (itself
a formula) applied to the formula encoding the initial states.

Both approaches have their pros and cons. Enumerative ones are well adapted for on-the-y
veri�cation, and can easily provide fast answers and diagnostics. Symbolic ones are much more
compact, therefore resistant to state explosion.

In dense-time systems, most of the techniques are a mixture of enumerative and symbolic
avor. This is mainly due to the following reasons. First, purely enumerative techniques are
impossible, since the clock state space is dense (the most enumerative technique, based on the
region graph, would require a symbolic way to encode regions). Second, purely symbolic tech-
niques are not available yet: such techniques would combine in a homogeneous representation
continuous as well as discrete variables, since the latter are indispensable also in a timed sys-
tem. The approach of [Yov93, HNSY94] can be considered as the most symbolic of the existing

g

approaches, since it uses the most general type of constraints to represent any union of regions,
closed with respect to all set-theoretic operators. The drawback of this representation is that
it is not canonical. Therefore, although in principle it could be used to encode also discrete
variables (in a dense space), this is not e�cient.

Our approach, like the ones of [Oli94, BLL+95, TC96], is more enumerative, although not
as much as the region graph.

1.4 Organization of this document

This document is structured in four parts.
The �rst part presents the background. Chapter 2 introduces graphs and polyhedra, used

through-out the document. In chapter 3 we present our model of TA and in chapter 4 our
property-speci�cation languages.

The second part presents the analysis techniques and constitutes the core of the theoretical
results of this thesis. In chapter 5 we de�ne time abstractions and study the properies they pre-
serve. The results of this chapter are transformed into techniques for veri�cation in chapters 6
and 7. Chapter 6 shows how to compute the time-abstracting bisimulations of section 5.1 and
how to use them for model checking. Chapter 7 presents techniques which are fully on-the-y
to compute the time-abstracting simulations of section 5.2 and perform model checking at the
same time. Diagnostics and controller synthesis are presented separately in chapters 8 and 9,
respectively.

The third and fourth parts present the main practical contributions of this thesis. Chapter 10
shows how the semantic entities used in the �rst two parts can be represented e�ectively.
Chapter 11 gives an overview of the tool suiteKronos and our contributions to its development.
The case studies and experimental results are presented in chapter 12.

Regarding the readability of the document, most of the chapters depend on the de�nitions
given in the �rst part. Chapter 6 depends also on section 5.1 and chapter 7 on section 5.2.
Apart from the above dependencies, most chapters are supposed to be self-contained. No
special environment for de�nitions is used. We prefered not to use a special environment for
de�nitions, but to include them in the text. Special terms, operators and symbols appear in
emphasized font at the moment of their de�nition, and can be (hopefully) found in the index.

Part I

Timed Formalisms

16

Chapter 2

Preliminaries

General notations. Through-out this document we write R;Z;N for the sets of non-negative
reals, integers and naturals, respectively. We use variables such as x; y; z; �; t ranging over R, c
ranging over Z and i; j; k; l;m ranging over N. Labels is a �nite set of labels.

If X and Y are sets, the operations of intersection, union, complementation, set di�erence
and cartesian product are denoted X \Y;X [Y;X , X nY and X�Y , respectively. The empty
set is denoted ;. Inclusion and strict inclusion are denoted X � Y and X � Y , respectively.
Membership of x to X is denoted x 2 X. For a given order on X, minX and maxX denote
the smaller and greater element of X with respect to this order. 2X is the powerset of X, that
is, the set of all subsets of X. If X is �nite, jXj denotes its cardinal. A relation between sets X
and Y is a subset of X � Y . If v is a relation between X and Y then v�1 denotes the inverse
relation between Y and X, such that y v�1 x i� x v y. If v is a relation between X and Y ,
and v0 is a relation between Y and Z, then v � v0 is the composition of v and v0, de�ned
as the relation v00 on X and Z such that x v00 z i� there exists y 2 Y s.t. x v y and y v0 z.
For a function f : 2X 7! 2X , a �x-point of f is a set Y � X such that f(Y) = Y . The greatest
and least (with respect to set inclusion) �x-points of f are denoted �Y : f(Y) and �Y : f(Y),
respectively.

Logical and, or and not are written ^;_ and :, respectively. Implication and equivalence
are denoted) and � and are de�ned as usual.

a, b usually denote labels. a� stands for \a �nite repetition of a" (possible no a at all). a!

stands for \an in�nite repetition of a". We use the symbol1 for in�nity.

2.1 Graphs

A (directed) graph G is a pair (V;!), where V is a set of nodes and ! � V � V is a set of
edges. Sometimes the edges are labeled, that is,! � V �Labels�V , giving a labeled transition
system (LTS). In this document we use the term graph for both graphs and LTSs.

Given an edge v! u, the nodes v and u are called the predecessor and the successor of v,
respectively. preds(v) (resp. succs(v)) denotes the set of predecessors (resp. successors) of v.
A sink node is a node with no successors.

Paths, cycles, strongly-connected components. A (�nite or in�nite) path is a (�nite or
in�nite) sequence v1 ! v2 ! � � � . We say that the path visits nodes v1; v2; :::. A path of length
l from node v to node u is a �nite path v = v1 ! � � � ! vl = u; l � 1. A cycle with root v is

17

p

a path from v to itself. A cycle is called elementary if it visits no node twice, except from the
root. A cycle v1 ! � � � ! vl ! v1 can also be viewed as the in�nite path (v1 ! � � � ! vl !)!.

A subgraph G0 of G is a strongly-connected component (SCC) of G if for any node v of G0,
there is a cycle rooted at v and visiting all nodes of G0 and nothing but nodes of G0. A SCC is
maximal if it is not properly contained in any larger SCC.

Relations, preorders and simulations. Consider a graph G = (V;!). A binary relation
on G is a subset � of V � V . � is reexive if v � v for all v 2 V . � is symmetric if v � u
implies u � v for all v; u 2 V . � is transitive if v � u and u � w imply v � w, for all
v; u;w 2 V . Given two relations �1 and �2, �1 is stronger than �2 if �1 � �2.

A preorder on G is a binary relation @ � V � V on the set of nodes of G which is reexive
and transitive.

A binary relation @ on V is called a simulation on G i� for any pair v1; v2 2 V , if v1 @ v2
then for each successor u1 of v1, there exists a successor u2 of v2 such that u1 @ u2. It is easy
to see that a simulation is a preorder on G.

Equivalences, Partitions. Consider a graph G = (V;!). An equivalence � on G is a
preorder on G which is symmetric.

A partition of the set of nodes V is a set C � 2V of subsets of V such that:

1. For all C1; C2 2 C, C1 \ C2 = ;, that is, all members of C are disjoint.

2. For all v 2 V , there exists C 2 C such that v 2 C, that is, C covers V .

The members of a partition are called classes.
The following facts can be easily derived from the de�nitions:

� an equivalence � induces a partition C� of V , where for all C 2 C�, v; u 2 C i� v � u;

� inversely, a partition C induces an equivalence �C, where v �C u i� v and u belong to the
same class.

Let Props be a set of atomic propositions and let P : Props 7! 2V be a function associating
to each proposition a set of nodes of G. An equivalence � respects P if for all pairs v1; v2 2 V
such that v1 � v2, for all p 2 Props, v1 2 P (p) i� v2 2 P (p). A partition respects P if the
equivalence induced by the partition respects P .

Given two partitions C1 and C2 of V , C1 is coarser than C2 (C2 is �ner than C1) if the
equivalence induced by C2 is stronger than the one induced by C1. If C1 is coarser than C2, then
for each class C1 of C1 there exists a class C2 of C2 such that C2 � C1.

Quotient graphs. The quotient of a graph G = (V;!) with respect to a partition C is the
graph G0 = (C;!0) where C1 !0 C2 i� there exist v 2 C1; u 2 C2 such that v ! u. The
quotient graph of G with respect to an equivalence �, denoted G�, is the quotient of G with
respect to the partition induced by �. We often call G� the �-quotient of G.

p

C1 C2C2 C1

Post-stabilityPre-stability

Figure 2.1: Pre- and post-stability.

Stable partitions, Bisimulations. Consider a partition C. Given two classes C1; C2 2 C,
C1 is said to be pre-stable with respect to C2 if either C1 � preds(C2) or C1 \ preds(C2) = ;. C2

is said to be post-stable with respect to C1 if either succs(C1) � C2 or succs(C1) \C2 = ;. The
two notions of stability are illustrated in �gure 2.1. C is called pre-stable (resp. post-stable) if
all its classes are pre-stable (resp. post-stable) to one-another.

A relation � � V �V is a (strong) bisimulation i� for all pairs v1; v2 2 V such that v1 � v2,
the following conditions hold:

1. for each successor u1 of v1, there exists a successor u2 of v2 such that u1 � u2,

2. the above condition also holds if the roles of v1 and v2 are reversed.

The de�nition is illustrated in �gure 2.2 (left). We say that two nodes v and u are bisimilar if
there exists a bisimulation � such that v � u.

v1
v2

u2u1

� �

v2v1

u1

u2

� �

� �

v1 v2

u2

u1

strong

delay

observational

Figure 2.2: Strong, delay and observational bisimulation.

The following facts can be easily derived from the de�nitions:

� a bisimulation is an equivalence inducing a pre-stable partition;

� inversely, a pre-stable partition induces a bisimulation.

Weaker bisimulations. Sometimes it is useful, for re�ning or abstracting speci�cations, to
consider weaker bisimulations, which do not take into account parts of the behavior which are
internal to the system. For the purposes of this document, we consider two weaker bisimu-
lations, namely, the delay bisimulation [NMV90] and the observational bisimulation [Mil80].

p

More precisely, consider a graph G = (V;!0), labeled in Labels [f�g, where � is an internal
label. Let ! be the restriction of !0 to V � Labels � V and

�! be the restriction of !0 to
V � f�g � V . Also let

��! be the reexive, transitive closure of
�!.

A binary relation � on V is an observational (resp. delay) bisimulation i� for all pairs
v1; v2 2 V such that v1 � v2, the following conditions hold:

1. for all u1 2 V such that v1
�! u1, there exists u2 2 V such that v2

��! u2 and u1 � u2.

2. for all u1 2 V such that v1 ! u1, there exists u2 2 V such that v2
��!! ��! u2 (resp.

v2
��!! u2) and u1 � u2.

3. the above two conditions also hold if the roles of u1 and u2 are reversed.

The above de�nitions are illustrated in �gure 2.2 (middle and right).

Comparing graphs with respect to bisimulations. Consider two graphs Gi = (Vi;!i),
for i = 1; 2. The union of G1 and G2 is de�ned to be the graph G1 [G2 = (V1 [V2;!1 [!2).
If we identify two nodes v1 2 V1 and v2 2 V2 as initial nodes, then G1 and G2 are said to be
bisimilar if there exists a bisimulation on G1 [G2 so that v1 and v2 are bisimilar.

Let � be a bisimulation on a graph G and let �0 be the relation between nodes of G and
nodes of the quotient G�, such that v �0 C i� v 2 C. Then, it is easy to verify that �0 is
a bisimulation on G [G�. Thus, a graph and its quotient with respect to a bisimulation are
themselves bisimilar.

2.2 Dense state spaces

2.2.1 Polyhedra

Clocks and valuations. Let X = fx1; :::; xng be a set of variables in R. In the scope of this
document, these variables are called clocks. An X -valuation is a function v : X 7! R assigning
to each clock x a non-negative real value v(x). The set of all valuations is RX . We write 0 for
the valuation that assigns zero to all clocks. For a subset X of X , v[X := 0] is the valuation
v1 such that 8x 2 X : v1(x) = 0 and 8x 62 X : v1(x) = v(x). Intuitively, v[X := 0] is obtained
from v by resetting all clocks in X to zero and leaving the rest of the clocks unchanged. For
� 2 R, v + � is the valuation v2 such that 8x 2 X : v2(x) = v(x) + �. Intuitively, v + �
is obtained from v by advancing all clocks by the same time delay �. Similarly, � � v is the
valuation v3 such that 8x 2 X : v3(x) = � � v(x).

Hyperplanes and Polyhedra. An atomic constraint on X is an expression of the form
x � c or x � y � c, where x; y 2 X , �2 f<;�;�; >g and c 2 N. An X -valuation v satis�es
the constraint x � c if v(x) � c; v satis�es x� y � c if v(x)� v(y) � c.

An X -hyperplane is a set of valuations satisfying an atomic clock constraint. The class HX

of X -polyhedra is de�ned as the smallest subset of 2R
X

which contains all X -hyperplanes and
is closed under set union, intersection and complementation.

We often use the following notation for polyhedra: we write x < 5 for the hyperplane
de�ned by the constraint x < 5, x < 5 ^ y = 2 for the polyhedron de�ned as the intersection

p

of x < 5 and y = 2, and so on. We also write true for RX (equivalently,
V
x2X x � 0), false for ;

(equivalently,
V
x2X x < 0) and zero for f0g (equivalently, Vx2X x = 0).

Given a polyhedron � and a clock x, the predicate unbounded(x; �) is de�ned as follows:

unbounded(x; �)
def
= 8t 2 R : 9v 2 � : v(x) > t

A polyhedron � is called convex if for all v1;v2 2 �, for any 0 < � < 1, �v1+ (1� �)v2 2 �.
It is easy to show that a polyhedron is convex i� it can be de�ned as the intersection of a
�nite number of hyperplanes. On the other hand, if � is non-convex then it can be written as
�1 [� � � [�k, where �1; :::; �k are all convex. We denote the set f�1; :::; �kg by convex(�).

2.2.2 Operations on polyhedra

By de�nition, intersection, union and complementation are well-de�ned operations on polyhe-
dra. Polyhedra di�erence is de�ned via complementation as: �1 n �2 = �1 \ �2. The test for
inclusion �1 � �2 is equivalent to �1 n �2 = ;. We now de�ne some more operations which will
be used throughout this document. Examples are shown in �gure 2.3.

Convex hull. Given two X -polyhedra �1 and �2, we de�ne the convex hull of �1 and �2,
denoted �1 t �2, to be the smallest (w.r.t. set inclusion) convex X -polyhedron containing both
�1 and �2.

c-equivalence and c-closure. Given c 2 N, two valuations v and v0 are called c-equivalent
if:

� for any clock x, either v(x) = v0(x), or v(x) > c and v0(x) > c;

� for any pair of clocks x; y, either v(x) � v(y) = v0(x) � v0(y), or v(x) � v(y) > c and
v0(x)� v0(y) > c.

Given a convex X -polyhedron �, we de�ne close(�; c) to be the greatest convex X -polyhedron
� 0 � �, such that for all v0 2 � 0 there exists v 2 � and v;v0 are c-equivalent. Intuitively, � 0 is
obtained by � by \ignoring" all constraints which involve constants greater than c (�gure 2.3
displays an example).

� is said to be c-closed if close(�; c) = �.

Lemma 2.1 1. If � is c-closed then it is c0-closed, for any c0 > c.

2. If �1 and �2 are c-closed then �1 \ �2 is also c-closed.

3. For any �, there exists a constant c such that � is c-closed.

Proof: Properties 1 and 2 are easily derived from the de�nitions. For 3, we �rst prove the result
in the special case where � is convex, that is, � = �1 \� � � \ �m, where �1; :::; �m are hyperplanes.
Let c1; :::; cm be the constants appearing in the atomic constraints de�ning �1; :::; �m. It is easy
to see that �i is ci-closed, for each i = 1; :::;m. Now, if c = maxfc1; :::; cmg, then �1; :::; �m
are all c-closed and so is �. If � is non-convex, then let convex(�) = f� 01; :::; � 0kg. There exists
c01; :::; c

0
k such that � 0i is c

0
i-closed, for i = 1; :::; k. If c0 is the maximum of c01; :::; c

0
k, then �

0
1; :::; �

0
k

are all c0-closed (by property 1). Since � 0 = � 01 [� � � [� 0k, by property 2, � 0 is also c0-closed.
From now on, cmax (�) will denote the smallest constant c such that � is c-closed.

p

Lemma 2.2 For any constant c, there is a �nite number of c-closed convex X -polyhedra.

Proof: By induction on c.

Projections. Given an X -polyhedron � and a subset of clocks Y � X , we de�ne two or-
thogonal projections of � to Y . The dimension-preserving projection, denoted �=Y , is the
X -polyhedron � 0 such that:

v0 2 � 0 i� 9v 2 � : 8x 2 Y : v(x) = v0(x)

The dimension-restricting projection, denoted �cY , is de�ned identically to �=Y , except that
�cY is a polyhedron on Y instead of X . This type of projection can be extended to valuations
in a straightforward way: if v is a valuation on X , then vcY is the Y -valuation v0 such that
v0(y) = v(y) for any y 2 Y .

The operations �[Y := 0] and [Y := 0]� are de�ned as:

�[Y := 0]
def
= fv[Y := 0] j v 2 �g

[Y := 0]�
def
= fv j v[Y := 0] 2 �g

Intuitively, �[Y := 0] contains all valuations which can be obtained from some valuation in
� by resetting clocks in Y . An example is shown in the bottom-right diagram of �gure 2.3.
[Y := 0]� is the dual operation. It contains all valuations which, after resetting clocks in Y ,
yield a valuation in �. For example, for the polyhedron �2 of �gure 2.3, [fyg := 0]�2 is equal to
�2=fyg (shown in the bottom-left diagram). On the other hand, [fyg := 0]�1 is empty.

We �nally de�ne the backward and forward diagonal projections of an X -polyhedron � to
be the X -polyhedra .� and %�, respectively, such that:

v0 2 .� i� 9� 2 R : v0 + � 2 �
v0 2 %� i� 9� 2 R : v0 � � 2 �

The following result is easy to derive from the de�nitions.

Lemma 2.3 If � is convex and Y � X then �=Y ; �cY ;.�;%� are also convex.

p

�2

�1

�1 \ �2

�1 n �2

.�1

�1 t �2

�1 [�2

�2=fyg

y

y

y

y

y

y

y

y

x

x

x

x

x

x

x

y

�2[fyg := 0]

c

c

c

c

x

x

%�2

y

x

close(�1; c)

Figure 2.3: Polyhedra on fx; yg and their operations.

Chapter 3

Timed Automata

In this chapter we introduce our system-speci�cation language, timed automata. We �rst
present the model informally, through an example which will be used through-out this document
for illustrative purposes. Then we present formally the TA syntax and semantics, for a single
automaton, as well as for the parallel composition of two or more automata. A special section
is devoted to the issue of time progress (or zenoness) which is a characteristic of dense-time
systems. The �nal section is also related to the issue of progress, discussing how simple static
analysis can be applied to test the correctness of a TA model.

3.1 From �nite-state machines to timed automata

We illustrate the di�erence of TA with respect to �nite-state machines by considering of a
gate-regulation system in a railroad crossing. The example is taken from [Alu91].

The system consists of three components, namely, a gate, a controller for the gate and a
train. (A more realistic example would comprise more than one components such as trains or
gates, and possibly distributed controllers.) The informal speci�cation of the system can be
stated in natural language as follows:

The train sends a signal to the controller at least 2 time units before it enters the
crossing, stays there no more than 3 time units and sends another signal to the
controller upon exiting the crossing. The controller commands the gate to lower
exactly one time unit after it has received the approaching signal from the train
and commands the gate to rise again no more than 1 time unit after receiving the
exiting signal. The gate takes less than 1 time unit to come down and between 1
and 2 time units to come up.

The system is modeled as a set of TA, one for each component, as shown in �gure 3.1. Each
automaton has a discrete structure, namely, a set of discrete states (depicted as circles) and a set
of edges (depicted as arrows). The discrete states are supposed to capture all information about
the current status of the system, except timing information. In this example, the discrete states
are used to describe the function mode or the current condition of each of the components. For
instance, the gate can be either \up" or \down", the train can be \far" from or \near" to the
gate. The edges represent events which change the discrete state of the system. For instance,
the train \approaches" the gate changing its state from \far" to \near". Such events are taken
to be atomic and instantaneous.

24

y

raise

z � 1

lower
z = 1

z := 0

Controller

z � 1

z := 0

exit

approach
1

23

0

up

x := 0

far near

y � 2

1 � y

approach

in
x � 5

x > 2exit

Train Gate

x � 5

going up

y < 1

down
y := 0

raise

y := 0

lower
coming down

enter

Figure 3.1: The Train{Gate{Controller example.

Time passes while the system remains at the same discrete state. There are three clocks
(variables x; y; z) used to constraint the amount of time spent on discrete states and, more
generally, the amount of time that passes between two events. For instance, the upper bound
y � 2 at state \going up" of Gate, together with the fact that y is reset upon the edge \raise",
models the fact that the Gate does not spend more than 2 time units rising.

Communication of components is modeled by action synchronization. Edges which are
labeled with the same event correspond to actions which must happen simultaneously. For
instance, the fact that the train sends a signal to the controller when it is approaching the gate
is modeled by having an edge of the train automaton and an edge of the controller automaton
both labeled \approach".

A sample execution of the Train-Gate-Controller (TGC) system is shown in �gure 3.2.
Although quite simple, the TGC example illustrates two key features of TA, which distin-

guish them from �nite-state machines.

� First, some executions which would have been possible if timing constraints are ignored
are no longer valid because of their \bad timing". For instance, we can prove that in the
TGC system above, whenever the train is in the crossing the gate is down.

� Second, quantitative statements can be made about the system's durations. For instance,
we can prove that the gate never stays down for more than 5 time units.

3.2 Timed automata syntax and semantics

A timed automaton (TA) [ACD93, HNSY94] is a tuple A = (X ; Q; q0; E; invar), where:
� X is a �nite set of clocks.

y

0 2 3 4 5 6 71

far

in

near

time

0

1

2

3

raiselower

discrete state

coming down

down

going up

up

Gate

Train

Controller

approach
exit

Figure 3.2: A sample execution of the Train-Gate-Controller system.

� Q is a �nite set of discrete states.

� q0 2 Q is the initial discrete state.

� E is a �nite set of edges of the form e = (q; �; a;X; q0). q; q0 2 Q are the source and
target discrete states. a 2 Labels is a label. � is a conjunction of atomic constraints on
X de�ning a convex X -polyhedron, called the guard of e. X � X is a set of clocks to be
reset upon crossing the edge.

� invar is a function associating with each discrete state q a convex X -polyhedron called
the invariant of q.

Given an edge e = (q; �; a;X; q0), we write source(e), target(e), guard(e), label(e) and reset(e)
for q; q0; �; a and X, respectively. Given a discrete state q, we write in(q) (resp. out(q)) for the
set of edges of the form (; ; ; ; q) (resp. (q; ; ; ;)). We assume that for each e 2 out(q),
guard(e) � invar(q). cmax (A) is de�ned as the maximum of cmax (�), where � is a guard or an
invariant of A.

Back to the TGC example of �gure 3.1, the constraint y > 2 is a guard, x � 5 is an invariant
(true invariants are not shown) and x := 0 denotes the set of clocks to reset fxg.

States. A state of A is a pair (q;v), where q 2 Q is a location, and v 2 invar(q) is a valuation
satisfying the invariant of q. We write discrete(s) to denote q, the discrete part of s. The
initial state of A is s0 = (q0;0). Two states (q;v1) and (q;v2) are c-equivalent if v1 and v2 are
c-equivalent.

Transitions. Consider a state (q;v). Given an edge e = (q; �; a;X; q0) such that v 2 � and
v0 = v[reset(e) := 0] 2 invar(q0), (q;v)

e! (q0;v0) is a discrete transition of A. (q0;v0) is called
the e-successor of (q;v).

y

A time transition from (q;v) has the form (q;v)
�! (q;v + �), where � 2 R and v + � 2

invar(q) 1. For a state s = (q;v), we simply write s + � instead of (q;v + �). s + � is the

�-successor of s. The concatenation of two time transitions s
�! s+� and s+�

�0! s+�+�0 is a
time transition s

�+�0! s+�+�0. Inversely, due to the dense nature of the reals, a time transition

s
�! s+� can be split to any numberm of consecutive time transitions s

�1! s+�1
�2! � � � �m! s+�,

such that �1 + �2 + � � � + �m = �.

We write s
�! e! s0 if, either � = 0 and s

e! s0 is a discrete transition, or � > 0, s
�! s+ � is

a time transition and s+ �
e! s0 is a discrete transition.

We associate two kinds of semantics to a TA, namely, a branching-time semantics in terms
of a labeled graph and a linear-time semantics in terms of executions (runs).

Semantic graph. The semantic graph of A, denoted GA, is de�ned to be the graph which
has as nodes the states of A and two types of edges, corresponding to the discrete and time
transitions of A. Notice that GA has generally an uncountable set of nodes and uncountable
branching.

Runs. A run of A starting from state s is a �nite or in�nite sequence � = s1
�1! s1 + �1

e1!
s2

�2! s2 + �2
e2! � � � , such that s1 = s and for all i = 1; 2; :::, si + �i is the �-successor of si and

si+1 is the ei-successor of si + �i. That is, a run is a path in the semantic graph of A where
discrete transitions are taken in�nitely often and consecutive time transitions are concatenated.
The i-th point of �, denoted �(i), is de�ned to be si, for i = 1; 2; :::. The waiting delay of � at
point i, denoted delay(�; i), is de�ned to be �i. All states �(i) where the run spends no time,
that is, where delay(�; i) = 0, are called transient states. The elapsed time until point i, denoted
time(�; i), is de�ned to be the sum �j<idelay(�; j). The total elapsed time during �, denoted
time(�), is de�ned to be the limit of the sequence time(�; i), if the sequence converges and 1
otherwise.

It is worth noticing that the semantics permit discrete transitions to be taken consecutively
without any time passing in between. This is convenient sometimes for describing sequences of
actions which are atomic, or assumed to consume a negligible amount of time. However, these
sequences must be bounded, that is, the system cannot engage in a cycle (called a critical race)
where time cannot progress at all. This issue is discussed in section 3.3 below.

A state s is reachable if there exists a �nite run s0
�0! e0! � � � �l! el! sl

�! s, for l � 0. Let
Reach(A) be the set of all reachable states of A.

Parallel composition of TA. A system is usually divided in parts, therefore, it is conve-
nient (if not indispensable) to be able to describe systems compositionally, that is, as a set of
components which execute in parallel and communicate in a certain way. Our model of paral-
lelism is based on synchronous passage of time for all components and interleaving of discrete
actions. Communication is modeled via action synchronization.

More precisely, consider two TA Ai = (Xi; Qi; qi; Ei; invari), i = 1; 2, such that X1 \X2 = ;.
Let Labels i be the set of labels local to Ai, that is, Labelsi = flabel(e) j e 2 Eig, for i = 1; 2.

Given two edges ei = (qi; ai; �i;Xi; q
0
i) 2 Ei, i = 1; 2, we de�ne the following composite

edges:

1For technical convenience, we allow time transitions of zero delay, i.e., (q;v)
0
! (q;v).

y

� If a1 = a2 2 Labels1 \ Labels2, then the synchronization of e1 and e2 yields the edge

e1ke2 def
= ((q1; q2); a1; �1 \ �2;X1 [X2; (q

0
1; q

0
2))

where �1; �2 are viewed as polyhedra on X1 [X2 so that the intersection �1 \ �2 is well
de�ned.

� If ai 62 Labels1 \ Labels2 for both i = 1; 2, then the interleaving of e1 and e2 yields the
edges

e1k? def
= ((q1; q2); a1; �1;X1; (q

0
1; q2))

?ke2 def
= ((q1; q2); a2; �2;X2; (q1; q

0
2))

Syntactically, the parallel composition of A1 and A2, denoted A1kA2, is de�ned to be the
TA (X1 [X2; Q1�Q2; (q1; q2); E; invar), where, for q 2 Q1 and q

0 2 Q2, invar(q; q
0) = invar1(q)\

invar2(q0), and the set of edges E contains all composite edges of the form e1ke2, e1k?, ?ke2, for
e1 2 E1; e2 2 E2. That is, the two automata synchronize on their common labels and interleave
on their local labels.

In order to give the semantic correspondence of A1kA2, we consider the semantic graphs G1

and G2 of A1 and A2, respectively. The parallel composition of G1 and G2, denoted G1kG2, is
de�ned to be the smallest graph G such that:

1. (s10; s
2
0) is a node of G, where si0 is the initial state of Ai, i = 1; 2.

2. If (s1; s2) is a node of G and si
�! si + � is an edge of Gi, for i = 1; 2, then (s1; s2)

�!
(s1 + �; s2 + �) is an edge of G.

3. If (s1; s2) is a node of G and s1
e1! s01 (resp. s2

e2! s02) is an edge of G1 (resp. G2)
such that label(e1) 62 Labels2 (resp. label(e2) 62 Labels1) then (s1; s2)

e1! (s01; s2) (resp.
(s1; s2)

e2! (s1; s
0
2)) is an edge of G.

4. If (s1; s2) is a node of G and si
ei! s0i is an edge of Gi, for i = 1; 2, such that label(e1) =

label(e2) then (s1; s2)
e1ke2! (s01; s

0
2) is an edge of G.

The second rule says that an amount of time � passes in the composite TA only if both com-
ponents can delay � time units. The third rule says that local actions happen independently
(interleaving). The fourth rule says that common actions happen simultaneously (synchroniza-
tion).

The following lemma relates the syntactic parallel composition of TA with the parallel
composition of their semantic graphs. The proof comes easily from the de�nitions.

Lemma 3.1 The semantic graph of A1kA2 is identical to the parallel composition of the se-
mantic graphs of A1 and A2.

Since runs are paths in the semantic graph, the semantic correspondence of syntactic parallel
composition can be directly extended to runs.

q p g y

3.3 The requirement of progress in timed systems

Reactive systems are supposed to execute forever 2, which is referred to as the requirement of
progress.

In untimed systems, progress coincides with absence of deadlocks, that is, states with no
successors. In timed systems, there are two types of possible evolutions from a state, namely,
taking a discrete transition or letting time pass. Accordingly, there are two requirements of
progress here: First, it should be possible to take discrete transitions in�nitely often (discrete
progress). Second, it should be possible to let time pass in�nitely often, and this without upper
bound (time progress). Notice that the requirement of time progress is stronger than one might
expect, that is, not only time should be able to pass, but it should also diverge. The time
progress requirement is based on our intuition about the physical world we are trying to model,
summarized in the following hypothesis:

Any physical process, no matter how fast, cannot be in�nitely fast.

The above hypothesis implies that:

1. only a �nite (possibly unbounded) number of events can occur in a certain (positive)
amount of time;

2. only a bounded number of events can occur in zero time.

These two requirements are formalized below under the concepts of non-zenoness and absence
of critical races, respectively.

Zeno runs. Consider an in�nite run � such that time(�) 6= 1, that is, there exists t 2 R

such that for all i, time(�; i) < t. Such a run is called zeno, and corresponds to a pathological
situation, since it violates the �rst of the above time-progress requirements. As an example,

consider the TA A1 shown in �gure 3.3. Its run (q0; x = 1)
1

2! a! (q0; x = 1:5)
1

4! a! (q0; x =
1:75) � � � is zeno. In fact, any run of A1 taking a-transitions forever is zeno.

Let NonZenoRuns(s) denote the set of all non-zeno runs starting from s.

q0 q1

c

x := 0
x � 2

b

a

A1 A2

x := 0
x � 1
x := 0

x � 1

q0 q1

c

b

x � 2
x � 1x := 0

a

Figure 3.3: A TA with timelocks (left) and a strongly non-zeno TA (right).

2This is a convenient simplifying hypothesis, which does not result in loss of generality: if the system can
terminate execution in some legal end state, the latter can be transformed to a state which has in�nite executions
by adding to it a \dummy" self-loop transition.

q p g y

Deadlocks, Timelocks and Critical races. Deadlocks are states violating the discrete-
progress requirement. Formally, a state s of a TA A is a deadlock if there is no delay � 2 R and

edge e 2 E such that s
�! e! s0. A is deadlock-free if none of its reachable states is a deadlock.

Timelocks are states violating the time-progress requirement. Formally, a state s is a time-
lock if all in�nite runs starting from s are zeno. A is timelock-free if none of its reachable states
is a timelock.

Notice that a deadlock is not necessarily a timelock, neither the reverse. For example, the
TA A1 of �gure 3.3 is deadlock-free, but all its states (q0; 1 < x � 2) are timelocks since they
are bound to stay to q0 taking forever a-transitions. On the other hand, if the a-edge was
missing, these states would be deadlocks but not timelocks, since they would have no in�nite
runs starting from them at all.

A in�nite run � = s1
�1! e1! s2

�2! e2! � � � is a critical race if the following conditions hold:

1. All states of � are transient from some point on, that is, 9i : 8j > i : �j = 0.

2. � cannot be transformed to a non-transient run, that is, there exists no run �0 = s1
�0
1! e1!

s02
�0
2! e2! � � � such that 8i : 9j > i : �0j > 0.

Critical races correspond to executions violating the second time-progress requirement above.
They are not simply zeno runs where time does not pass at all from some point on. Indeed,
a critical race cannot be transformed to a (possibly zeno) run where time does pass, even by
in�nitesimal quantities. A timelock-free TA can have critical races, as shown in �gure 3.4.
The two TA execute asynchronously in parallel. The sequence of actions abcdabcd � � � in the
composed system corresponds to a critical race, since not time is allowed to pass at all from
one b to the next a and from one d to the next c. On the other hand, the sequence acbdacbd � � �
can allow time to progress after every c action.

d

c y = 0

y := 0

x = 0a

b x := 0
k

Figure 3.4: A system with critical races.

Strongly non-zeno TA. Consider a TA A. A structural loop of A is a sequence of distinct
edges e1 � � � em such that target(ei) = source(ei+1), for all i = 1; :::;m (the addition i + 1 is
modulo m). A is called strongly non-zeno if for every structural loop there exists a clock x and
some 0 � i; j � m such that:

1. x is reset in step i, that is, x 2 reset(ei); and

2. x is bounded from below in step j, that is, (x < 1) \ guard(ej) = false.

Intuitively, this means that at least one unit of time elapses in every loop of A. For example,
the TA A2 of �gure 3.3 is strongly non-zeno (this would not be the case if any of the guards
x � 1 was missing).

Strong non-zenoness is interesting since it dispenses us with the burden of ensuring time
progress. In particular, checking progress is reduced to checking deadlock-freedom, as shown

q p g y

below. Another nice characteristic of strong non-zenoness is that it is preserved by parallel
composition, so that it can be e�ciently checked on large systems.

Lemma 3.2 1. If A is strongly non-zeno then every in�nite run of A is non-zeno.

2. If A;A0 are strongly non-zeno, so is AkA0.

Proof: For the �rst part, let � = s1
�1! e1! s2

�2! e2! � � � be an in�nite run of A. Since A has only
a �nite number of edges, there exist some i1; i2; :::; im such that ei1ei2 � � � eim form a structural
loop and � takes in�nitely often every discrete transition eij . There exist also a clock x and
j1; j2 2 fi1; i2; :::; img such that x 2 reset(ej1) and (x < 1) \ guard(ej2) = ;. Now, each time
� takes an ej1 -transition, clock x is reset to 0. The next time � takes an ej2-transition, at
least 1 time unit has passed, since x must be greater or equal to 1 for ej2 to be taken. Since
ej1- and ej2-transitions are taken in�nitely often, an in�nite number of 1-time-unit delays are
accumulated, thus � is non-zeno.

For the second part, observe that any structural loop of AkA0 corresponds to a structural
loop of A, A0, or both. Therefore, any structural loop of AkA0 satis�es the conditions of part
1, which implies that AkA0 is strongly non-zeno.

As a corollary of part 1 of the above lemma, a strongly non-zeno TA is also timelock-free.

Remark 3.3 When modeling a system, it is often the case that some of its components are
untimed, that is, they can be modeled using simple �nite-state machines without clocks. These
components can be considered strongly non-zeno by convention, so that their parallel composition
with the rest of the system does not a�ect the strong non-zenoness of the global system.

The meaning of di�erent variants of zenoness. Concerning system modeling, the mean-
ing of zenoness can be summarized as follows:

� Deadlocks, timelocks and critical races correspond to modeling errors, since any TA as-
sumed to capture the behavior of a reactive system correctly should act in�nitely often,
not block time and execute a bounded number of actions in zero time.

� TA which are not strongly non-zeno model systems where an unbounded number of events
can occur in a �nite amount of time. For example, the TA A1 on �gure 3.3 can perform an
unbounded number of a-transitions in 2 time units. Such systems are useful sometimes,
for instance, when modeling a sender which can emit messages arbitrarily fast.

� Strongly non-zeno TA model systems where only a bounded number of events can occur
in a �nite amount of time. For example, the TA A2 on �gure 3.3 can perform at most
two a-transitions in 2 time units. Most systems in practice are strongly non-zeno.

Concerning veri�cation, the impact of zenoness can be summarized as follows:

� Methods to ensure absence of deadlocks, timelocks and critical races should be available
so that one gains con�dence in the correctness of the model. In section 3.4 we give static
tests guaranteeing the absence of the above errors. In sections 6.2.4, 7.1.1 and 7.1.2 we
present run-time detection techniques for deadlocks and timelocks.

� Model checking algorithms should ignore zeno runs when verifying a property. For exam-
ple, the two TA in �gure 3.3 do not have the same untimed behaviors, since a! corresponds
to a non-zeno run of A2 but only to zeno runs of A1.

y

3.4 Static tests for the sanity of timed automata

We propose su�cient but not necessary conditions to ensure absence of deadlocks, timelocks
and critical races in a TA. These conditions are static, that is, they take into account the discrete
structure of the TA but not the reachable state space in the presence of timing constraints.
This is why the conditions are not necessary: an untimed behavior of the TA which does not
satisfy the conditions might not be valid when the timing constraints are considered.

Deadlocks. Before presenting a static test, we characterize deadlock-freedom of a TA A by
a local condition on the reachable states of A. Let q be a discrete state of A and de�ne:

free(q)
def
=

[
e2out(q)

.
�
guard(e) \

�
[reset(e) := 0]invar(target(e))

��

Intuitively, free(q) containts all states with discrete part q, which can let some time pass and
take a discrete transition exiting q. Then, it is easy to see the following.

Lemma 3.4 A is deadlock-free i� 8(q;v) 2 Reach(A) : v 2 free(q).

Based on this characterization, a su�cient static condition for deadlock-freedom is provided
by the following lemma.

Lemma 3.5 If for each discrete state q of A and for all e 2 in(q), ((guard(e))[reset(e) :=
0]) \ invar(q) � free(q), then A is deadlock-free.

Notice that the above condition is not compositional , that is, two TA might satisfy the
condition while their parallel composition does not.

Timelocks. A su�cient condition for timelock-freedom is strong non-zenoness, by part 1 of
lemma 3.2. Checking that a system of TA is strongly non-zeno can be done compositionally,
by part 2 of the same lemma. By de�nition, the test for strong non-zenoness is static.

Critical races. Let A be a TA with set of edges E and set of clocks X . Informally, A has
no critical races if no structural loop of A can be \covered" by one or more segments, each of
which does not let time pass at all. This is illustrated in �gure 3.5, where the loop

e1! e2! can
be covered by

e1! e2! (where x forbids time to pass) and
e2! e1! (where y forbids time to pass). If

such loops do not exist then absence of critical races can be guaranteed.

q1 q2
y = 0

x := 0 e2

e1 x = 0

y := 0

Figure 3.5: A structural loop generating a critical race.

More formally, given an edge e and a clock x, we say that x is reset in e if x 2 reset(e)
and that x is zero-bounded in e if guard(e) � (x = 0). Then, consider a structural loop

y

q1
e1! � � � qm em! q1. For 1 � i; j; k � m, de�ne the ternary relation <m (i; j; k) (j \is between i

and k modulo m) such that, either i < k and i � j < k or i < j � k, or i � k and i � j � m
or 1 � j � k. For example, if m > 2 then <m (1; 2;m) and <m (2;m; 1).

Lemma 3.6 A has no critical races if in every structural loop
e1! � � � em!, there exists 1 � i � m

such that for any clock x which is zero-bounded in ek, 1 � k � m, there exists 1 � j � m such
that <m (i; j; k) and x is reset in ej.

Unfortunately, parallel composition does not preserve the absence of critical races, as can be
seen in the example of �gure 3.4: although both TA shown in the �gure are critical-race-free,
their parallel composition has the critical race corresponding to the sequence of actions (abcd)!.

The test of lemma 3.6 can be costly, since the number of structural loops is exponential on
the number of discrete states of a TA, and the latter grows also exponentially with the number
of component TA. A cheaper solution is to check for each automaton A in a system of TA
that no atomic constraint of the form x = 0 appears in any structural loop of A. Then, it is
guaranteed that the composite system satis�es the same condition, which implies the one of
lemma 3.6.

Relation to the literature

TA were �rst introduced in [Dil89, Lew90, AD90]. Our TA model di�ers from the one of [AD90]
in that it uses invariants and permits a bounded number of discrete transitions to happen in
zero time. Our model is also di�erent from the one of [HNSY94] in that it requires an in�nite
number of discrete transitions in every in�nite run, whereas theirs permits executions where
the TA stays forever in the same discrete state. The de�nition we adopted in this thesis is more
general, since it permits to distinguish between the following cases:

(1) an event a occurs eventually but we do not know when; and
(2) an event a may never occur.
We model case (1) by having an edge labeled a going out of a discrete state with invariant

true. We model case (2) by adding a \dummy" self-loop edge to the state. Using the de�nition
of [HNSY94], case (1) cannot be modeled since a true invariant implies that there exists an
in�nite run staying forever in the corresponding state.

Invariants have been introduced in [HNSY94] to model time-progress conditions. Some
weaknesses of the model with respect to parallel composition of TA have been �rst identi�ed
in [SY96]. Since then, a new model has been proposed which expresses the urgency information
on transitions rather than states, using so-called deadlines [BS97, Bor98, BST98].

The notion of non-zenoness was introduced at the same time as TA. [Yov93, HNSY94]
introduce the notion of well-timed systems to capture deadlock and timelock freedom, without,
however, distinguishing between deadlocks and timelocks. To our knowledge, critical races have
not been de�ned previously.

Chapter 4

Property-speci�cation Languages

In the previous chapter we have introduced the formalism of TA for the description of timed
systems. In this chapter we present formalisms to express properties of timed systems. We
consider two types of formalisms, namely, linear- and branching-time.

In linear time, properties are viewed as sets of executions, so that speci�cations are eval-
uated on runs. In branching time, properties are viewed as sets of execution trees, so that
speci�cations are evaluated on the semantic graph. The two views are incomparable, that is,
there are properties expressed in linear time but not in branching time and vice-versa. On
the other hand, safety properties (\p always holds"), which can capture most-frequently used
properties like invariance and bounded response, are expressible in both linear and branching
time.

In this thesis we consider both linear-time properties, expressed by Timed B�uchi Automata,
and branching-time properties, expressed by the logic TCTL. We also consider the automata-
based logic ETCTL�9 which is strictly more expressive than both TBA and TCTL.

4.1 A linear-time formalism: Timed B�uchi Automata

Timed B�uchi automata have been introduced in [Alu91] as a real-time extension of B�uchi
automata [B�uc62].

Syntax and semantics. A timed B�uchi automaton (TBA) is a tuple B = (A;F), where
A = (X ; Q; q0; E; invar) is a TA and F � Q is a set of repeating discrete states.

The notions of states, transitions and runs of TA are easily extended to TBA. A state s of B
is called repeating if discrete(s) is repeating. A run � of B is called accepting if � visits repeating
states in�nitely many times, that is, for all i there exists j > i such that discrete(�(j)) 2 F .
B is said to have trivial acceptance condition if for every accepting run � of B, � remains in
F from some point on, that is, there exists i such that for all j > i, discrete(�(j)) 2 F . The
language of B, denoted Lang(B), is the set of all accepting, non-zeno runs of B starting from
its initial state. The emptiness problem for a TBA B consists in deciding whether its language
is empty, and if not, provide an accepting, non-zeno run.

Let A0 be a TA with set of discrete states Q0. Also let P : Q 7! 2Q
0

be a function associating
to each discrete state of B a set of discrete states of A0. A run �0 of A0 satis�es B with respect
to P , written �0 j=P B, if there exists a run � 2 Lang(B) such that for all i = 0; 1; ::::

1. delay(�0; i) = delay(�; i).

34

2. discrete(�0(i)) 2 P (discrete(�(i))).
Condition 1 says that the two runs take their discrete steps at the same time. Condition 2
ensures that at any time instant the discrete state of A0 meets the requirements speci�ed by
the discrete state of B. Notice that, by de�nition, only non-zeno runs of A0 satisfy B.

A0 satis�es B if there exists a run starting from the initial state of A0 satisfying B.

Remark 4.1 Our de�nition of TBA satisfaction is based on language intersection (i.e., there
exists an execution of the system which is in the language of the TBA) rather than the usual
automata-theoretic de�nition based on language inclusion (i.e., every execution of the system
is in the language of the TBA). Since (non-deterministic) TBA are not closed under comple-
mentation, the problem of inclusion is generally undecidable [Alu91]. However, the problem of
intersection is decidable.

De�ning TBA satisfaction as a problem of language intersection implies that if we want to
prove that all behaviors of a system A satisfy a property �, then we have to use a TBA B:�

expressing the negation of �: a behavior is in the language of B:� i� it does not satisfy �. Then,
all the behaviors of A satisfy � i� A does not satisfy B:�. For most interesting properties, B:�

can easily be found in practice (actually, it is sometimes more intuitive to construct a TBA
expressing the negation of the property than the property itself).

Examples of property speci�cation. TBA can be used to express a property either di-
rectly, or via its negation. Two examples are shown in �gure 4.1. The liveness property \there
exists an execution where p holds in�nitely often" is modeled by the (untimed) B�uchi automa-
ton B1, expressing the property directly. On the other hand, the bounded-response property
\every instance of p1 is followed by an instance of p2 within at most k time units" is modeled
indirectly by the TBA B2, expressing the negation of the property. Notice that B2 has trivial
acceptance condition, but not B1.

ptrue truep1 ^ :p2 :p2true

x := 0 x > k

B1 B2

Figure 4.1: Examples of (timed) B�uchi automata.

The above examples show the main di�erence between our de�nition of satisfaction of TBA
and the usual de�nition of satisfaction of untimed linear formalisms. Instead of requiring that
all behaviors of the system satisfy the property speci�ed by the TBA, we require that at least
one of them does so (see also discussion at the end of the chapter). This implies that when we
have to express a property of the form \in all behaviors of the system � holds", we have to �nd
a TBA which speci�es :�, so that the above property holds i� the system does not satisfy the
TBA.

Reducing TBA satisfaction to TBA emptiness. As usual, the problem of checking
whether a TA A satis�es a TBA speci�cation B can be reduced to the problem of checking
whether the synchronous product of A and B, denoted A�B, has an empty language.

g g

Formally, letA be (X ; Q; q0; E; invar) and B = (X 0; Q0; q00; E
0; invar0; F). Also let P : Q0 7! 2Q

be a proposition-labeling function as before. A �B is de�ned only if q0 2 P (q00), as the TBA
(X [X 0; Q00; (q0; q00); E

00; invar00; F 00), where:

� Q00 = f(q; q0) 2 Q�Q0 j q 2 P (q0)g.
� E00 contains all composite transitions eke0 such that e 2 E, e0 2 E0, source(e) 2 P (source(e0))
and target(e) 2 P (target(e0)).

� invar00(q; q0) = invar(q) \ invar0(q0).

� F 00 = (Q� F) \Q00.

It is easy to see that if s00
�0! e0

0! s01 � � � is a run in Lang(B) and s0
�0! e0! s1 � � � is a run of A

satisfying B, then (s0; s00)
�0!e0ke00! (s1; s01) � � � is a run in Lang(A � B). Inversely, any run in

Lang(A�B) can be \projected" in two runs � and �0 such that � satis�es �0. Then:

Lemma 4.2 A satis�es B i� the language of A�B is non-empty.

4.2 The branching-time logic TCTL

Timed Computation Tree Logic has been introduced in [ACD93] as a real-time extension of the
branching-time logic CTL [EC81].

Syntax and semantics. Let I denote the set of all intervals of R of the form [c; c0], [c; c0),
(c; c0], (c; c0), (c;1) and [c;1), where c; c0 2 N. A formula in TCTL is de�ned according to the
following syntax:

� ::= true j p j :� j � _ � j 9�UI � j 8�UI �
where p 2 Props is an atomic proposition and I 2 I is an interval.

Let A be a TA with set of discrete states Q. Also let P : Props 7! 2Q be a function associ-
ating to each atomic proposition a set of discrete states of A. TCTL formulae are interpreted
over states of A. Given a formula � and a state s, the satisfaction relation s j=P � is de�ned
inductively on the syntax of � as follows (we omit the subscript P for simplicity):

s j= true

s j= p i� discrete(s) 2 P (p)
s j= :�1 i� not s j= �1
s j= �1 _ �2 i� s j= �1 or s j= �2

s j= 9�1 UI �2 i� 9� = s
�1! e1! � � � s.t. time(�) =1 and

9i : �j�i�j 2 I and �(i) + �i j= �2 and
8j < i : 8� � �j : �(j) + � j= �1 _ �2

s j= 8�1UI �2 i� 8� = s
�1! e1! � � � s.t. time(�) =1 :

9i : �j�i�j 2 I and �(i) + �i j= �2 and
8j < i : 8� � �j : �(j) + � j= �1 _ �2

Intuitively, s satis�es the formula 9�1 UI �2 if there exists a non-zeno run � starting from s and
a point along the run such that the time spent until that point belongs to the interval I, �2

g g 9

holds at that point and �1 holds continuously until that point. The interpretation for 8�1UI �2
di�ers only in the quanti�cation over runs starting from s: here it is required that all such
runs meet the conditions. The interpretation of boolean operators, atomic propositions, and
the trivial formula true is straightforward.

The following abbreviations are de�ned:

93I �
def
= 9 trueUI �

83I �
def
= 8 trueUI �

82I �
def
= :93I :�

92I �
def
= :83I :�

We also simplify notation for intervals, for instance, we write 93�5 � instead of 93[0;5] � and
82 � instead of 82[0;1) �.

We say that the TA A satis�es a formula � if the initial state of A satis�es �.

Examples of property speci�cation. We now give some examples of TCTL formulae.
The invariance property \p always holds" can be expressed by the formula 82 p. The formula
82[3;5] p requires that p holds only during the interval [3; 5]. Bounded response is expressed
by the formula 82 (p1) 83�k p2) (the TBA B2 of �gure 4.1 models precisely the negation of
this formula). Finally, the escape-possibility property stating that \it is always possible for p
to hold" can be expressed by the formula 82 93 p.

CTL. It is useful to identify an interesting subclass of TCTL, namely, CTL, the untimed
subclass of TCTL containing all formulae with trivial subscript interval [0;1).

4.3 A mixture of branching and linear time: the logic

ETCTL�9
The logic ETCTL�9 (extended TCTL�9) [BLY96] is a real-time version of the automata-based
logic ECTL� introduced in [HT87]. ETCTL�9 is more expressive than both TCTL and TBA
(see next section). Intuitively, ETCTL�9 can be seen as an extension of TBA where, instead
of associating with each discrete state of the TBA a simple atomic proposition, we associate a
general sub-formula. That is, ETCTL�9 is an extension of TBA with nesting.

Formally, the syntax of ETCTL�9 is as follows:

� ::= true j p j :�1 j �1 _ �2 j 9B(�1; : : : ; �n)

where p 2 Props is an atomic proposition and B is a TBA with set of discrete states Q =
fq1; :::; qng.

The semantics of ETCTL�9 is a combination of those of TCTL and TBA. ETCTL�9 formulae
are interpreted over states of a TA A. The satisfaction rules are as for TCTL in the case of
atomic propositions and boolean formulae, and similar to those of TBA for the type of formulae
9B(�1; : : : ; �n). Informally, a state s satis�es 9B(�1; : : : ; �n) if there is a run �0 of A starting
from s and a run � in the language of B, such that �0 and � execute synchronously and at each
point in time the state of �0 satis�es the sub-formula speci�ed by the discrete state of �.

p p g g

Formally, let A be a TA with set of discrete states Q0 and P : Props 7! 2Q
0

be a function
mapping each atomic proposition to a set of discrete states of A. The satisfaction relation j=P

between a state s of A and an ETCTL�9 formula � is de�ned inductively on the syntax of � as
follows (we omit the subscript P for simplicity):

s j= true

s j= p i� discrete(s) 2 P (p)
s j= :�1 i� not s j= �1
s j= �1 _ �2 i� s j= �1 or s j= �2

s j= 9B(�1; :::; �n) i� 9s0 �0! e0
0! s1 � � � 2 NonZenoRuns(s) :

9(qj0;vj0) �0! e0! (qj1;vj1) � � � 2 Lang(B) :
8i : 8� � �i : si + � j= �ji

As we shall see in the section that follows, ETCTL�9 is strictly more expressive than both TBA
and TCTL.

4.4 Comparison of the di�erent speci�cation languages

ETCTL�9 subsumes both TBA and TCTL. Consider the case of TBA �rst. Let B be a TBA with
set of discrete states Q = fq1; :::; qng, A be a TA with set of discrete states Q0 and P : Q 7! 2Q

0

be a function mapping a discrete state of B to a set of discrete states of A. Then, we de�ne
Props to be a set of atomic propositions fp1; :::; png and P 0 : Props 7! 2Q

0

to be such that
P 0(pi) = P (qi), for i = 1; :::; n. It is easy to see that A j=P B i� A j=P 0 9B(p1; :::; pn).

As for TCTL, [BLY96] prove that any TCTL formula � can be translated to an ETCTL�9
formula. The translation is done recursively on the syntax of � and has complexity linear on the
size of �. As an example, �gure 4.2 shows how the TCTL formulae 9�1 U�k �2 and 8�1U�k �2
can be translated to the ETCTL�9 formulae 9B1(�1; �2; true) and :9B2(:�2;:(�1 _ �2); true),
respectively.

�1 true
x := 0

x � k

�2

x := 0

x > k

x � k

:�2
true

:(�1 _ �2)

B2B1

translating 8�1U�k �2translating 9�1 U�k �2
Figure 4.2: Translating TCTL to ETCTL�9.

Some remarks are worth making concerning the translation of TCTL to ETCTL�9.
First, a universally-quanti�ed formulae such as 8 is translated to :9B(� � �), where B

expresses the negation of the property expressed by . For example, the TBA B2 above
expresses the property: \there exists a run which either fails to satisfy �2 before k time units,
or fails to satisfy �1 continuously until �2 becomes true".

p p g g

Second, for some nested TCTL formulae, more e�cient translations can be found than the
ones given by the formal translation algorithm. In particular, such TCTL formulae can be
captured by ETCTL�9 formulae without nesting (i.e., to TBA), modulo negation. For example,
82 (p1) 83�k p2) is translated to :9B2(true; p1 ^:p2;:p2; true), where B2 is the TBA on the
right of �gure 4.1.

Third, notice that both TBA in �gure 4.2 have trivial acceptance conditions. In fact, this is
true for any TBA appearing in an ETCTL�9 formula obtained from the translation of a TCTL
formula. This is important in practice for ETCTL�9 model checking: the latter is based on
TBA emptiness, which can be solved more e�ciently for TBA with trivial acceptance (see
section 7.2).

We �nally turn to the comparison of TBA and TCTL. The two formalisms are incomparable
in expressiveness, a fact that has to do with the linear nature of TBA and the branching nature
of TCTL, rather than their timed features. In particular, the CTL formula 82 93 p cannot be
captured by any TBA. On the other hand, the BA B1 of �gure 4.1 cannot be captured by any
TCTL formula. These results are direct extensions of the results for linear- and branching-time
incomparability in the untimed case, which can be found, for instance, in [Lam80, EH86].

Relation to the literature

TBA were used for the speci�cation of timed properties in [Alu91], based on the classical
automata-theoretic de�nition of language inclusion. TCTL has also been introduced in [Alu91],
although with a slightly di�erent de�nition of satisfaction using sequences of intervals of the
real line mapped to states. Our de�nition is closer to the one of [HNSY94], with the di�erence
that not any path of the semantic graph is considered, but only those where discrete transitions
are taken in�nitely often (i.e. runs).

ETCTL�9 is introduced in [BLY96].
A large number of other timed logics exist in the literature. For a survey, the reader is

referred to [AH92].
Regarding the debate between linear and branching time [Lam80, Lam83, EL85, EH86],

it seems to be slightly out-of-date, although there is still no consensus as to which view is
better. For the reasons mentioned in the introduction, we believe that the two views are really
complementary, therefore, both are necessary.

Part II

Analysis Techniques

40

Chapter 5

Abstractions for Timed Automata

The semantics of TA are given in terms of an in�nite (dense) state-space. On the other hand,
automatic veri�cation methods require �nite (but also reasonably-sized) state spaces. Con-
sequently, analysis techniques for TA rely on abstractions of the in�nite semantic graph to a
�nite domain. Apart from reducing the state space, an abstraction also leads to loss of infor-
mation. The stronger the abstraction, the less the information lost but also the less important
the state-space reduction. The crucial question then is to what extent to abstract in order to
preserve properties of interest and at the same time keep automatic analysis feasible.

We �rst recall some generalities on abstractions and introduce them in the timed context.

Abstractions for TA. In the context of this thesis, an abstraction is a relation between the
concrete state space of a TA and an abstract space. The concrete space is the semantic graph.
The states forming the abstract space are sets of concrete states, called symbolic states. We
consider abstractions based on:

� Bisimulations: the abstract states form a partition of the concrete states, that is, the
abstraction is a function. We de�ne a strong and two weak time-abstracting bisimulations,
where exact delays in time transitions are abstracted away. We also recall the region
equivalence of [ACD93] and show that it is a strong time-abstracting bisimulation. We
prove that all time-abstracting bisimulations preserve TBA emptiness, and that the strong
one also preserves CTL (by extension TCTL). These results are modulo non-zenoness,
which can be characterized syntactically in symbolic paths.

� Simulations: here, the abstract states might be overlapping, that is, the abstraction
is a relation. We de�ne the simulation graph, where time transitions are eliminated
altogether. On top of the simulation graph, we de�ne three weaker abstractions, based
on clock activity, symbolic state inclusion and convex hull. These abstractions can be
also combined to yield better reduction. The simulation graph, possibly with activity,
preserves TBA emptiness. Inclusion preserves TBA emptiness in a conservative way and
reachability in an exact way. Convex hull preserves TBA emptiness and reachability
conservatively.

All abstractions yield in practice much smaller state spaces than the region graph. The advan-
tage of bisimulations is that they preserve more properties. On the other hand, they have to be
computed a-priori, before veri�cation can be applied, as shown in chapter 6. The advantage of
the simulations is that they can be computed during the veri�cation of the property, yielding
on-the-y techniques (chapter 7).

41

Before presenting the abstractions and the preservation results, we de�ne formally symbolic
states and their semantic successor and predecessor operations.

Symbolic states and operations

Consider a TA A. A set of states of A is called a symbolic state.
Let S be a symbolic state and e an edge of A. We de�ne the following operations on S:

time-succ(S)
def
= fs j 9 s0 2 S; � 2 R : s0

�! sg
time-pred(S)

def
= fs j 9 s0 2 S; � 2 R : s

�! s0g
disc-succ(e; S)

def
= fs j 9 s0 2 S : s0 e! sg

disc-pred(e; S)
def
= fs j 9 s0 2 S : s e! s0g

In words, time-succ(S) is the set of all time-successors of states in S and disc-succ(e; S) are
the e-successors of S. The meaning of time-pred() and disc-pred() is symmetrical.

A zone is a symbolic state S such that:

1. all states of S are associated with the same discrete state, i.e., for all s; s0 2 S, discrete(s) =
discrete(s0); and

2. the set of valuations fv j 9(q;v) 2 Sg is a convex X -polyhedron �.

We often write (q; �) for the zone S. Also, we use false to denote the empty zone.
Let S1 be a zone, S2 a symbolic state, e an edge and c a natural constant. We de�ne the

following successor and predecessor operations:

post(e; S1; c)
def
= close

�
time-succ

�
disc-succ(e; S1)

�
; c
�

pre(e; S2)
def
= disc-pred

�
e; time-pred(S2)

�

where we write close((q; �); c) instead of (q; close(�; c)). Intuitively, post(e; S1; c) contains all
states (and their c-equivalents) that can be reached from some state in S1, by taking an e-
transition, then letting some time pass; pre(e; S2) contains all states that can reach some state
in S2 by taking an e-transition, then letting some time pass.

The following result says that zones are preserved by the above successor and predecessor
operations.

Lemma 5.1 If S is a zone, then time-succ(S), time-pred(S), disc-succ(e; S), disc-pred(e; S),
post(e; S; c) and pre(e; S) are also zones.

Proof: Let S = (q; �). Using the de�nitions of polyhedral operations (section 2.2.2), it is easy

g

to prove the following equalities:

�[Y := 0] = (�=Y) \ (
^
x2Y

x = 0)

[Y := 0]� = (� \ (
^
x2Y

x = 0))=Y

time-succ(q; S) =
�
q;%� \ invar(q)

�
time-pred(q; S) =

�
q;.� \ invar(q)

�

disc-succ(e; S) =

8<
:
�
q0;
�
(� \ �e)[X := 0]

�
\ invar(q0)

�
; if e = (q; �e; ;X; q0)

;; otherwise

disc-pred(e; S) =

8<
:
�
q0; �e \ ([X := 0]�)

�
; if e = (q0; �e; ;X; q)

;; otherwise

The result follows from the fact that polyhedral operations preserve convexity (lemma 2.3) and
close(�; c) is by de�nition convex.

5.1 Time-abstracting bisimulations

Time-abstracting bisimulations are equivalences which abstract away from the quantitative
aspect of time: we know that some time passes, but not how much.

Before giving the formal de�nition, we give the intuition through an example. Consider the
two systems shown in �gure 5.1. The TAA on the left of the �gure has two discrete transitions to
states satisfying propositions p1 and p2 respectively. The �rst transition is possible immediately
and remains possible for one time unit, while the second is possible only after two time units
and remains possible forever. The graph G on the right of the �gure describes as system which
can either move to p1, or wait some time (modeled by the transition labeled �) and go to a
state where no discrete transition is possible. Then, after some more time, it moves to a state
from which it can go to p2.

The two systems can be considered equivalent modulo statements of the form: \p1 can be
reached immediately while p2 can be reached only after letting some time pass and meanwhile
there is a point when no action is possible". This statement does not impose any exact quanti-
tative timing requirements, apart from \letting some time pass". On the other hand, it imposes
conditions on discrete-state changes. This is the idea behind time-abstracting equivalences: ex-
act delays are abstracted away while information on the discrete-state changes of the system is
retained. We formalize this in the sequel.

5.1.1 De�nition

The Strong Time-Abstracting Bisimulation

Consider a TA A with set of edges E. A binary relation � on the states of A is a strong
time-abstracting bisimulation (STaB) if for all states s1 � s2, the following conditions hold:

1. if s1
e1! s3, for some e1 2 E, then there exists e2 2 E such that s2

e2! s4 and s3 � s4;

g

x := 0
x � 2

p1

p2 p1

x � 1

q0

q1

q2

� �

p2

A G

Figure 5.1: Two time-abstracting bisimilar systems.

2. if s1
�1! s3 then there exists �2 2 R such that s2

�2! s4 and s3 � s4;

3. the above conditions also hold if the roles of s1 and s2 are reversed.

The de�nition is illustrated in �gure 5.2 (left). The states s1 and s2 are said to be STa-bisimilar.
In general, two TA A1 and A2 are said to be STa-bisimilar if there exists a STaB � on the
states of A1 and A2, such that s10 � s20, where s

i
0 is the initial state of Ai.

strong

delay

observational

e1 e2 e1

e2 e2

� �

�0

�2�1 �2�1 �2�1

e1

s1 s2

s4s3

s1

s3 s4

s3 s4 s3 s4

s1 s2s2s1

s3 s3

s1 s2s2s1

s4

s4

s2

Figure 5.2: Time-abstracting bisimulations.

Consider again the example of �gure 5.1, and a STaB respecting atomic propositions p1 and
p2. The greatest such bisimulation, say �, induces �ve classes, namely, (q0; x � 1), (q0; 1 <
x < 2), (q0; x � 2), (q1; true) and (q2; true). In fact, the graph G of �gure 5.1 is essentially the
�-quotient of A, where time edges are represented symbolically in a compact form (� edges).
This is explained in more detail below.

Time-Abstracting Quotient Graphs

According to the general de�nition of quotients (section 2.1), the STa-quotient of a TA A is a
graph whose nodes are symbolic states (the classes induced by the STaB) and whose edges are

g

0: (far, up, 0, true)
1: (near, up, 1, x � 1 ^ z = 1)
2: (near, up, 1, z < 1 ^ x < y + 1 ^ x � z)
3: (near, coming down, 2, y < 1 ^ x � y + 1 ^ x < z + 2)
4: (near, down, 2, 2 < x ^ x � 5)
5: (near, down, 2, x � 2)
6: (in, down, 2, x � 5)
7: (far, down, 3, z � 1)
8: (far, going up, 0, y = 1)
9: (far, going up, 0, 1 < y � 2)
10: (far, going up, 0, y = 0)
11: (far, going up, 0, 0 < y < 1)
12: (near, going up, 1, x � 1 ^ 1 � y ^ y � 2 ^ z = 1)
13: (near, going up, 1, 1 � y ^ z < 1 ^ y < x+ 2 ^ x � z ^ y � z + 1)
14: (near, going up, 1, y � 2 ^ x � z ^ z + 1 < y)
15: (near, going up, 1, y < 1 ^ x � y ^ z < x+ 1 ^ y = z)
16: (near, going up, 1, y < 1 ^ x � z ^ z < y)

Table 5.1: The nodes of the STa-quotient of �gure 5.3.

of two types: C1
e! C2, for some edge e of A, when states in C2 are e-successors of states in

C1; or C1
�! C2, for some � 2 R, when C2 contains a �-successor of some state in C1.

To be used for algorithmic analysis, quotients must have a �nite representation. Later we
shall prove that the number of classes induced by a STaB is always �nite, implying that the
quotient has a �nite number of nodes. As for the in�nite sets of timed edges, they can be

represented symbolically using a single edge labeled � . For instance, all edges (q0; x � 1)
�!

(q0; 1 < x < 2) in the example above are replaced by (q0; x � 1)
�! (q0; 1 < x < 2). Also,

we eliminate � -edges which can be obtained by reexive, transitive closure. Thus, there is no
edge (q0; x � 1)

�! (q0; x � 1), neither (q0; x � 1)
�! (q0; x � 2). These edges are omitted for

reasons of economy, but most importantly, so that classical (untimed) veri�cation techniques
can be applied to quotient graphs without modi�cation. The technique is explained in detail
in section 6.2.

In the sequel we write C1 ! C2 for two classes C1 and C2 if either C1
�! C2 or C1

e! C2 for
some edge e.

Example. The STa-quotient of the TGC system of section 3.1 is shown in �gure 5.3. The
nodes of the graph are detailed in table 5.1. The quotient has been generated using the min-
imization technique of section 6.1.2, implemented in the module minim (section 11.2). The
graph has been drawn using the module bcg edit of the CADP tool suite. In the CADP graph
format, � is denoted \i" (for \internal" or \invisible").

Weak Time-Abstracting Bisimulations

We now de�ne two weaker time-abstracting bisimulations. The time-abstracting delay bisimu-
lation or TadB (resp. time-abstracting observational bisimulation or TaoB) is a binary relation
� on the states of A, such that for all pairs s1 � s2, the following conditions hold:

g

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16

UP

APPROACH

UP

LOWER

UP

i

i

i

DOWN

i

ENTER

i

EXIT

RAISE

APPROACH

UP

i

APPROACH

UP

APPROACH

i

APPROACH

i

Figure 5.3: The STa-quotient graph of the Train{Gate{Controller example.

g

1. if s1
e1! s3, for some e1 2 E, then there exist e2 2 E and � 2 R (resp. �; �0 2 R) such that

s2
�! e2! s4 (resp. s2

�! e0! �0! s4) and s3 � s4;

2. if s1
�1! s3 then there exists �2 2 R such that s2

�2! s4 and s3 � s4;

3. the above conditions also hold if the roles of s1 and s2 are reversed.

The de�nitions are illustrated in �gure 5.2 (middle and right). The notions of bisimilar states
or TA and quotient graphs are straightforward to extend to weak TaBs. The quotient graph
of the TA of �gure 5.1 modulo the greatest TadB or TaoB respecting p1 and p2 is shown in
�gure 5.4. The induced classes are (q0; x � 1), (q0; x > 1), (q1; true) and (q2; true). Notice that
states (q0; 1 < x < 2) are bisimilar to states (q0; x � 2) since they can let time pass and take a
discrete transition to q2.

p1

�

p2

q0 q0

q1 q2

x > 1x � 1

Figure 5.4: Tad- and Tao-quotient graph of the TA of �gure 5.1.

Example. The Tao-quotient of the TGC system of section 3.1 is shown in �gure 5.5. In fact,
the graph has been obtained from the STa-quotient of �gure 5.3, further reduced with respect
to the untimed observation bisimulation. This is explained in detail in what follows.

Obtaining the weak TaBs from the strong TaB

Weak TaBs correspond to the composition of strong TaB with the (untimed) delay and obser-
vational bisimulations de�ned in section 2.1. More precisely, consider a TA A and its semantic
graph G. Let �ta be a strong time-abstracting bisimulation on G. Also let G� be the graph
obtained by G by replacing all labels � 2 R on the time transitions of G by � . Let �delay (resp.
�obs) be the greatest delay (resp. observational) bisimulation on G� .

Lemma 5.2 �delay � �ta (resp. �obs � �ta) is a time-abstracting delay (resp. observational)
bisimulation on G.

Proof: We only prove the result for �delay � �ta . The proof for �obs � �ta is similar. For
simplicity, we write s! s0 if s

e! s0 for some edge e.
Let (s1; s2) 2 �delay � �ta , i.e., s1 �delay s and s �ta s2, for some state s. Now, assume that

s1 ! s01. From the fact that s1 �delay s, there exist s
��! s00 ! s0 such that s01 �delay s

0. Observe

that s
��! s00 implies s

�! s00, for some � 2 R (this is by de�nition of the graph G�). From the

fact that s �ta s2, there exist s2
�2! s002 such that s00 �ta s

00
2. Thus, there exist s

00
2 ! s02 such that

s0 �ta s
0
2. Summarizing, we have s2

�2!! s02 such that (s01; s
0
2) 2 �delay � �ta. The case of time

transitions is similar.

g

4

0

5 16

2 7

3

UP

DOWN

APPROACH

ENTER

UP

EXIT

APPROACH

RAISE

LOWER

Figure 5.5: The Tao-quotient graph of the Train{Gate{Controller example.

g

Inversely, assume that s2
�2! s02. From the fact that s �ta s2, there exist s

�! s0 such that

s0 �ta s
0
2. Observe that s

�! s0 implies s
�! s0. From the fact that s1 �delay s, there exist

s1
��! s01 such that s01 �delay s

0. Now, s1
��! s01 implies s1

�1! s01, for some �1 2 R, and we have
(s01; s

0
2) 2 �delay � �ta. The case of discrete transitions is similar. This completes the proof.

The above result is used in section 6.2, where we show how to compute the weak Ta-
quotient of a TA from its STa-quotient and how to compare two TA with respect to weak TaBs
by comparing their STa-quotients with respect to weak untimed bisimulations.

Comparison of the three TaBs

Given a TA A, let �tao, �tad and �ta be the greatest TaoB, TadB and STaB on A, respectively.
By de�nition, �ta��tad��tao, that is, �ta is stronger than �tad which is in turn stronger than
�tao. We now show that the above inclusions are strict. The example of �gures 5.1 and 5.4
shows that �tad 6��ta.

To see that �tao 6��tad , consider the TA of �gure 5.6 and assume that �ta and �tao respect
propositions p1 and p2. First, observe that both �tad and �tao distinguish states (q2; x � 1)
and (q2; x > 1). Now, �tad distinguishes states (q1; true) and (q01; x > 1), since the latter can
move to (q2; x > 1) by a discrete transition, whereas the former cannot. On the other hand,
�tao does not distinguish these states, since (q1; true) can more to (q2; x > 1) by taking the
discrete transition and then delaying until x > 1.

q1

x > 1

q2

q3 q4

p1 p2

x := 0x := 0

q0
x > 1

q01

Figure 5.6: Example showing that TadB is strictly stronger than TaoB.

The Region equivalence: a strong time-abstracting bisimulation

The region equivalence has been introduced in [ACD93] in order to prove decidability of TA
model checking. The equivalence has two important properties: �rst, it preserves all formalisms
presented in the previous chapter; second, it induces a �nite partition of the state space. Here
we show that the region equivalence is a strong TaB. This implies in particular that the quotient
of a TA A with respect to the greatest STaB, TadB or TaoB de�ned on A is �nite.

Informally, two states (q;v) and (q;v0) are region equivalent if v and v0 agree on the integral
parts of all clock values and have the same ordering of the fractional parts of all pairs of clock
values.

g

More formally, let b�c (the integral part of �) be the greatest integer smaller than �, for
� 2 R. Let h�i (the fractional part of �) be � � b�c. Consider a TA A with set of clocks X
and let c � cmax (A). Two X -valuations v and v0 are region equivalent, denoted v 'c v

0 if they
satisfy the following conditions:

1. For each clock x, either bv(x)c = bv0(x)c or both v(x) and v0(x) are greater than c.
2. For all pairs of clocks x; y, either bv(x)� v(y)c = bv0(x)� v0(y)c or both di�erences
v(x)� v(y) and v0(x)� v0(y) are greater than c.

It can be checked that 'c is indeed an equivalence relation, independently of c. The equivalence
classes induced by 'c are called regions. Part of the region space for two clocks x; y and c = 2
is shown in �gure 5.7.

1 2

1

2

0

y

x

1 < x < y < 2

x = 2 ^ y = 1

x > 2 ^ 0 < y < 1 ^ x� y > 2

x > 2 ^ x = y

Figure 5.7: A partition of the clock space in 54 regions.

The region equivalence can be extended to states of A so that (q;v) is equivalent to (q0;v0)
if q = q0 and v 'c v

0. Then, we have the following result.

Lemma 5.3 The region equivalence is a strong time-abstracting bisimulation.

Proof: Let (q;v) 'c (q;v0). Observe that:

1. for any c-closed X -polyhedron � (in particular, any guard or invariant of A), v 2 � i�
v0 2 �;

2. for any set of clocks X � X , v[X := 0] ' v0[X := 0];

3. for any � � 0 there exists �0 � 0 such that v + � ' v0 + �0.

Now, if (q;v)
e! (q1;v1) is a discrete transition, then (q;v0)

e! (q1;v01) is also a discrete tran-
sition, since both v and v0 satisfy guard(e). Also, (q1;v1) ' (q1;v01), since v[reset(e) := 0] '
v0[reset(e) := 0]. Let (q;v)

�! (q;v + �) be a time transition. There exists �0 � 0 such that
v+ � ' v0+ �0. v0 and v0+ �0 satisfy invar(q), since v and v+ � do. v0+ �00 satis�es invar(q) for

any �00 < �0, by convexity of invar(q). Thus, (q;v0)
�0! (q;v0+ �0) is also a time transition.

Using a combinatorial argument, [ACD93] have shown that the number of regions has the
following upper bound:

n! � 2n � (2c + 2)n

g

where n = jX j is the number of clocks. In fact, the lower bound is on the same order of
magnitude, which implies that the number of regions is too large for any practical purpose.
For example, the TGC system of section 3.1 has a region space in the order of 104 regions per
discrete state.

As a corollary of lemma 5.3 and the above upper bound, we conclude that the quotient of
a TA with respect to the greatest STaB (thus, also TadB, TaoB) is �nite.

c-equivalence: a strong time-abstracting bisimulation

The preservation results of section 5.2, and the correctness of the algorithms of chapters 7 and 8
depends on the following result.

Lemma 5.4 Let A be a TA and c � cmax (A). Then, c-equivalence is a strong time-abstracting
bisimulation.

Proof: Observe that c-equivalence is stronger than the region equivalence. The result follows
by lemma 5.3.

The intuition is that the values of those clocks which have grown greater than cmax (A)
are not relevant, since there is no guard or invariant of A which can distinguish between such
values. Therefore, adding cmax (A)-equivalent states to the set of reachable states of A would
not a�ect the satisfaction of any property.

5.1.2 Properties preserved by time-abstracting bisimulations

In this section we show that all TaBs preserve linear-time properties, while only the strong
TaB preserves branching-time properties. The results are modulo non-zenoness, that is, they
hold only for strongly non-zeno systems. For the general case, we give necessary and su�cient
conditions guaranteeing non-zenoness in quotient graphs. These conditions are \syntactic",
that is, they apply on the structure of the nodes and edges of the graph, and resemble the
conditions for strong fairness of [MP95b].

We start by presenting the fundamental property of Ta-quotient graphs.

Pre-stability. Pre-stability is a property of quotients induced by TaBs, similar to the one
holding in quotients induced by untimed bisimulations (section 2.1). The di�erence is that
there are two types of timed pre-stability, depending on whether a class is a discrete or time
successor of another class. More precisely, consider a TA A, a TaB � on A and two classes C1

and C2 in the �-quotient graph of A. Then, by de�nition:

� If C1
�! C2 then for each state s1 2 C1 there exists s2 2 C2 such that s1

�! s2, for some
� 2 R.

� If C1
e! C2, for some edge e, then:

{ if � is a STaB then for each state s1 2 C1 there exists s2 2 C2, such that s1
e! s2;

{ if � is a TadB then for each state s1 2 C1 there exist � 2 R, s2 2 C2, such that

s1
�! e! s2;

g

{ if � is a TaoB then for each state s1 2 C1 there exist �1; �2 2 R, s2 2 C2, such that

s1
�1! e! �2! s2.

The pre-stability property related to strong TaBs is illustrated in �gure 5.8.

C2C1

s2 s2

C1 C2

e

e �

�

s1 s1

Figure 5.8: Pre-stability in strong time-abstracting bisimulations.

Non-zenoness. TaBs do not preserve non-zenoness. Figure 5.9 presents a counter-example:
although TA A1 and A2 are STa-bisimilar, only A1 has non-zeno runs. This is not surprising,
since TaBs are insensitive to exact delays. However, we can still use the information contained
in the equivalence classes induced by the bisimulation, as well as in the edges of the TA, to
check whether there is a clock blocking time or not. This motivates the following de�nitions.

x � 1

A1 A2

x � 1

x := 0

pp

Figure 5.9: Time-abstracting bisimulations do not preserve non-zenoness.

First, we extend the predicate unbounded(x; S), for a clock x and a symbolic state S, as
follows:

unbounded(x; S)
def
= 8t 2 R : 9(q;v) 2 S : v(x) > t

Now, let G� be the quotient graph of a TA A with respect to a TaB � and let � = C1 !
C2 ! � � � be an in�nite path in G�. � is called non-zeno if for each clock x 2 X :

� either x is reset in�nitely often in �, that is, 8i � 1 : 9j > i; e 2 E : Cj
e! Cj+1 ^ x 2

reset(e),

� or x remains unbounded in � from some point on, that is, 9i � 1 : 8j > i : unbounded(x;Cj).

As we prove below, non-zeno paths correspond to non-zeno runs, and vice versa.

Linear-time preservation. In this paragraph we show how runs are related to symbolic
paths. Given a path � = C1 ! C2 ! � � � of G� and a run � = s1 ! s2 ! � � � , we say that � is
inscribed in � if for all i � 1:

� si 2 Ci,

g

� if Ci
�! Ci+1 then there exists � > 0 such that si

�! si+1,

� if Ci
e! Ci+1 then si

e! si+1.

Lemma 5.5 Every run (resp. non-zeno run) � is inscribed in a unique path (resp. non-zeno
path) � in G�. Inversely, if � = C1 ! C2 ! � � � is a path (resp. non-zeno path) in G� then
for all s1 2 C1 there exists a run (resp. non-zeno run) � starting from s1 and inscribed in �.

Proof: A straightforward modi�cation of the proof of lemma 3.35 of [Alu91].

This result will be used in section 6.2.1 to show how to perform TBA model checking on
quotient graphs.

Branching-time preservation. Only the strong TaB preserves branching-time properties.
For simplicity, we consider here the untimed fragment of TCTL, CTL. The extension for full
TCTL is given in section 6.2.2.

We �rst need to prove an important property of STaB related to the passage of time.

Consider a TA A and a STaB � on A. Given a time transition of A, s
�! s+ �, and m di�erent

classes C1; :::; Cm, we say that the transition traverses C1; :::; Cm if:

1. s 2 C1 and s+ � 2 Cm.

2. For all 0 < �0 < �, there exists 1 � i � m such that s+ �0 2 Ci.

Figure 5.10 presents an example of a time transition traversing three classes C1; C2; C3.

C4

C3

C2

�

C1

Figure 5.10: A time transition traversing classes C1; C2; C3.

Lemma 5.6 1. Any time transition traverses a unique (�nite) number of classes.

2. If s � s0 then for any time transition s
�! s+ �, there exists a time transition s0

�0! s0+ �0

such that s+ � � s0 + �0 and the two transitions traverse the same classes.

Proof: For the �rst part, consider a time transition s
�! s + � and let m be the number of

di�erent \points" 0 < �1 < � � � < �m < � such that s+ �i and s+ �i+1 belong to di�erent classes
(there is a �nite number of such points since the quotient is �nite). The proof is by induction
on m. If m = 0, then s; s + � 2 C1, for some class C1. We shall show that for all 0 < �1 < �,
s + �1 2 C1. Assume the opposite, i.e., s + �1 2 C2 for some C2 6= C1. Then, since C1

�! C2

(from the fact that s
�1! s+ �0) and C2

�! C1 (from the fact that s+ �1
���1! s+ �), we can build

an in�nite sequence C1
�! C2

�! C1
�! C2 � � � . But this is not possible, since we assumed � to

be weaker than the region equivalence 'c and after the upper bound c all states are equivalent.
The induction step is straightforward.

For part 2 of the lemma, let C1; :::; Cm be the classes traversed by s
�! s + �. The proof

is again by induction on m. If m = 1, then s � s + � and it su�ces to take �0 = 0. For the
sake of simplicity, instead of proving the general induction step, we assume that m = 2, that

is, s
�! s + � traverses classes C1; C2. The extension to any m > 1 is easy using the induction

hypothesis.
We have: s; s0 2 C1, s + �; s + �0 2 C2, for some �0. We want to show that for all �01 < �0,

s0 + �01 2 C1 [C2. Assume this is not the case, that is, s0 + �01 2 C and C is di�erent from

C1; C2. Since s0 � s, there exists s
�1! s+ �1 such that s+ �1 2 C. From the fact that s

�! s+ �
traverses C1; C2 and condition 2 of the de�nition of traversal, it must be that �1 > �. Thus,

C2
�! C (from the fact that s+ �

�1��! s+ �1). On the other hand, C
�! C2 (from the fact that

s0 + �01
�0��0

1! s + �0). As previously, we can build an in�nite sequence C2
�! C

�! C2
�! C � � � ,

contradicting the hypotheses.

We are now ready to prove the main result, namely, CTL preservation.

Lemma 5.7 Let A be a strongly non-zeno TA and � be a strong time-abstracting bisimulation
on A. For any CTL formula � and any pair of states s � s0, s j= � i� s0 j= �.

Proof: The proof is by induction on the syntax of �. The basis comes directly from the
hypothesis that � respects P . The interesting induction steps are for � = 8�1U �2 or � =
9�1 U �2. We only consider the latter case, the former being similar.

Assume that s j= 9�1 U �2. Then, there exists a non-zeno run � = s
�1! e1! � � � and some

point i along � such that �(i) + �i j= �2 and for all j < i, � � �j, �(j) + � j= �1 _ �2.
From the fact that s � s0, we can build a run �0 = s0

�0
1! e0

1! � � � , such that sj � s0j and
sj + �j � s0j + �0j, for all j. From the strongly non-zeno hypothesis, �0 is non-zeno. From the
induction hypothesis, �0(i) + �0i j= �2 and for all j < i, �0(j) + �0j j= �1 _ �2. It remains to show
that �0(j) + �0 j= �1 _ �2, for all �0 � �0j. By lemma 5.6, for any �0 � �0j, there exists � � �j such
that s0j + �0 � sj + �. The result follows from the induction hypothesis.

The assumption for strong non-zenoness is indispensable, as can be seen by the example of
�gure 5.9, where the two TA are bisimilar, however, only A1 satis�es the CTL formula 92 p.

Regarding the two weaker time-abstracting bisimulations, they do not generally preserve
CTL. Figure 5.11 gives a counter-example. The TA shown in the top-left part of the �gure
yields the Tad-quotient shown in the bottom. The CTL formula 9 (93 p1)U p2 is satis�ed at
state s2 = (q1; x = 2:5; y = 0:7) (in fact, at all states (q1; x � y > 1 ^ y � 2)) but not at state
s1 = (q1; x = 1:5; y = 0:7) (in fact, at no state (q1; 0 � x� y � 1 ^ y � 2)) although s2 and s1
are Tad-bisimilar. As a corollary, CTL is not preserved by TaoB either, since TaoB is weaker
than TadB.

5.2 Abstractions based on simulations

In these abstractions, only information about discrete transitions is kept, while time transitions
are completely ignored. Intuitively, every abstract state S is \closed" under the passage of time,

q0 q1

q2

q3

y := 0

x > 3

y � 2

2

x

y

x := 0

y := 0

p1

p2

(93 p1) (:93 p1, :p2)
(q0; x = y) (q1; x � y ^ y � 2)

(q3; true) (q2; true)

�
(q1; x � y > 2)

(p1) (p2)

1

321

s2s1

Figure 5.11: Weak time-abstracting bisimulations do not preserve CTL.

that is, if a concrete state s belongs to S then so do all the time successors of s.
Simulation abstractions are based on the notion of simulation graph, a forward-reachability

graph where nodes are zones and successor nodes are obtained using the post() operator.

5.2.1 The Simulation Graph

Consider a TA A. In the rest of this section, we assume that c is a natural constant greater or
equal to cmax (A).

The simulation graph of A with respect to c, denoted SG(A; c), is the smallest graph (in
terms of nodes and set inclusion among nodes) such that:

1. time-succ(S0) is a node of SG(A; c), where S0 = (q0; zero);

2. if S is a node of SG(A; c) and e is an edge of A, then S0 = post(e; S; c) is a node of
SG(A; c) and S

e! S0 is an edge of SG(A; c).

The following lemma shows that the above de�nition yields a �nite graph.

Lemma 5.8 For any TA A and any constant c, SG(A; c) is �nite.

Proof: By de�nition, all nodes in SG(A; c) are c-closed. The result is then obtained by
lemma 2.2 and the fact that the discrete states and edges of A are �nite.

In the worst case, the nodes of the simulation graph can be as many as the classes induced
by the region equivalence. In practice, however, the size of the simulation graph is orders of
magnitude less. For example, the simulation graph of the TGC system (section 3.1) is shown
in �gure 5.12. The nodes are detailed in table 5.2. The simulation graph has 11 zones, made
up of 8 distinct discrete-state vectors and 11 distinct polyhedra. The number of regions for the
same system would be in the order of 104 per discrete-state vector (although not all of them
would be reachable).

0

4

8

1

5

9 10

2

6

3

7

APPROACH

LOWER

DOWN

ENTER

EXIT

RAISE

UP APPROACH

APPROACH UP

LOWER LOWER

Figure 5.12: The simulation graph of the Train{Gate{Controller example.

0: (far, up, 0, x = y = z)
1: (near, up, 1, x = z � 1 ^ x � y)
2: (near, coming down, 2, 1 � x = z = y + 1 ^ y < 1)
3: (near, down, 2, 1 � x = z � 5 ^ x = y + 1)
4: (in, down, 2, 2 < x = z � 5 ^ x = y + 1)
5: (far, down, 3, z � 1 ^ z + 2 < x � z + 5 ^ x = y + 1)
6: (far, going up, 0, y � 2 ^ z + 2 < x � z + 5 ^ y � z � y + 1)
7: (far, up, 0, 1 � y ^ z + 2 < x � z + 5 ^ y � z � y + 1)
8: (near, going up, 1, x = z � 1 ^ x � y � 2)
9: (near, up, 1, x = z � 1 ^ x+ 1 � y)
10: (near, up, 1, x = z � 1 ^ x � y � x+ 2)

Table 5.2: The nodes of the simulation graph of �gure 5.12.

5.2.2 Properties preserved in the simulation graph

The simulation graph preserves linear-time properties. As in the case of TaBs, non-zenoness is
not preserved, however, we give necessary and su�cient syntactic conditions for the existence
of non-zeno runs in paths of the simulation graph.

We start by presenting the fundamental property of the simulation graph.

Post-stability. Consider a TA A and an edge S1
e! S2 in the simulation graph SG(A; c). By

de�nition of post(), we have the following two post-stability properties in the simulation graph:

� for any state s1 2 S1, if s1
e! �! s2, then s2 2 S2;

� for any state s02 2 S2, there exist s1 2 S1, � 2 R and s2 2 S2 such that s1
e! �! s2,

s2 � � 2 S2, and s2; s02 are c-equivalent.

The properties are illustrated in �gure 5.13. The arrow
e! drawn in solid line corresponds to

the symbolic edge S1
e! S2. The arrows drawn in dashed lines correspond to semantic discrete

or timed transitions.
Notice that, due to the second property above, simulation-graph post-stability is stronger

than general post-stability (section 2.1). Also notice that pre-stability is not a simulation-graph
property: indeed, there might be states in S1 which have no e-successors at all (states (q;v)
where v 62 guard(e)).

s1

S1

s2 � �
e

�
s2

S2

e

Figure 5.13: Post-stability in the simulation graph.

Non-zeno paths. The example of �gure 5.9 can be re-used for showing that the simulation
graph does not preserve non-zenoness: although TA A1 and A2 generate the same simulation
graph, only A1 has non-zeno runs. As in the case of TaBs, we give a syntactic de�nition
of non-zenoness. Call a path in the simulation graph a zone path. An in�nite zone path
� = S1

e1! S2
e2! � � � is called non-zeno if for each clock x 2 X :

� either x is reset in�nitely often in �, that is, 8i : 9j > i : x 2 reset(ej),

� or x remains unbounded in � from some point on, that is, 9i : 8j > i : unbounded(x; �j)^
unbounded(x; guard(ej)).

Linear-time preservation. Runs are related to zone paths in a similar way as runs are
related to paths in quotient graphs (lemma 5.5). Consider a (�nite or in�nite) zone path

� = (q1; �1)
e1! (q2; �2)

e2! � � � . A run � = (q1;v1)
�1! (q1;v01)

e1! (q2;v2)
�2! (q2;v02)

e2! � � � is said
to be inscribed in � if for all i = 1; 2; :::, vi;v

0
i 2 �i.

Lemma 5.9 Every run (resp. non-zeno run) of A is inscribed in a unique path (resp. non-zeno
path) in SG(A; c). Inversely, for every path (resp. non-zeno path) � in SG(A; c), there is a
run (resp. non-zeno run) inscribed in �.

Sketch of proof: The idea behind the proof is illustrated in �gure 5.14. The proof shows a
zone path S1 ! (S2 ! S3 !)!, ending in a cycle (zones are depicted as large ellipses). Each
zone can be seen as a set of regions (depicted as small circles). When two zones are connected
by an edge, say, S2 ! S3, this means that some region in S2 has a discrete successor region in
S3. Also, some regions in a zone might have time successors in the same zone. By the post-
stability property of the simulation graph, starting from any region in any zone and following
edges backwards, we inevitably �nd a cycle of regions (for instance, trying to move backwards
starting from the upper-most region of S3, we �nd a cycle visiting the two lower-most regions of
S2 and S3). A cycle of regions implies the existence of an in�nite run, according to lemma 5.5.
The complete proof is given in the appendix.

S2S1 S3

Figure 5.14: Why in every zone cycle there is an inscribed in�nite run.

The main di�erence of the above result with the one of lemma 5.5 is that, given a node
S in a zone path �, there exists a run inscribed in � starting from some states in S, but not
necessarily all of them.

Lemma 5.9 implies the existence of two simulations between the semantic graph of a TA A
and its simulation graph, one for each direction. The relation 2 between states of A and nodes
of SG(A; c) is a simulation in the sense that for each run � starting from a state s, there exists

a zone S such that s 2 S and � is inscribed in a path starting from S. The inverse relation is
also a simulation, in the sense that for each path � starting from a zone S, there exists a state
s 2 S and a � starting from s, such that � is inscribed in �.

These results will be used in chapter 7 for performing on-the-y di�erent types of analysis,
namely, reachability, deadlock and timelock detection, and TBA and ETCTL�9 model checking.

Branching-time non-preservation. We use the same counter-example for weak TaBs (the
TA of �gure 5.11) to show that CTL is not preserved by the simulation graph. Recall that states
(q1; x�y > 1^y � 2) satisfy the formula 9 (93 p1)U p2 while states (q1; 0 � x�y � 1^y � 2)
do not. However, all these states are \merged" in a single node (q1; true) in the simulation
graph, shown in �gure 5.15.

(q1; true)
(q3; true)

(q2; true)
(q0; x = y)

(p1)

(p2)
(93 p1)

Figure 5.15: The simulation graph of the TA of �gure 5.11.

5.2.3 Clock Activity

This abstraction considers clocks only when they are usefully counting time (we say that they
are active). Intuitively, a clock is active from the point where it is reset up to all points where
it is tested (in a guard or invariant of the TA), without being reset meanwhile. Inactive clocks
do not a�ect the behavior of the TA, thus, they can be ignored.

More formally, consider a TA A = (X ; Q;E; q0; invar), where X = fx1; :::; xng. Given a
discrete state q 2 Q, the set of clocks tested in q, clocks(q) � X , is de�ned to be the set of
clocks x such that x is constrained either in invar(q) or in guard(e), for some edge e 2 out(q).

The function act : Q 7! 2X , associating with each location q the set of active clocks in
q, is de�ned as the least �x-point of the following system of equations (one equation for each
location q):

act(q) = clocks(q) [[
(q; ; ; ;q0)2E

act(q0) nX

Intuitively, x is active in q i� it is either tested in q or it is active in a discrete state q0 which
can be reached from q by a sequence of edges, so that x is never reset along the sequence.

As an example, consider the Train{Gate{Controller system shown in �gure 3.1. The activity
functions for each of the three TA of the system are as follows:

Train: act(far) = fg
act(near) = act(in) = fxg

Gate: act(up) = act(down) = fg
act(going up) = act(coming down) = fyg

Controller: act(0) = act(2) = fg
act(1) = act(3) = fzg

0: (far, up, 0,)
1: (near, up, 1, x = z � 1)
2: (near, coming down, 2, 1 � x = y + 1 ^ y < 1)
3: (near, down, 2, 1 � x � 5)
4: (in, down, 2, 2 < x � 5)
5: (far, down, 3, z � 1)
6: (far, going up, 0, y � 2)
7: (near, going up, 1, x = z � 1 ^ x � y � x+ 2)

Table 5.3: The zones of the activity graph of �gure 5.16.

It is interesting to see that none of the clocks is active all the time. For instance, clock y of
the gate serves only at states \going up" or \coming down", where it is necessary to count the
time needed for these operations.

An algorithm to compute act is given in [DY96]. This algorithm works on the syntactic
structure of the automaton (i.e., discrete states and edges) and can be used compositionally to
compute the active clocks of the parallel composition of two or more TA. More precisely, let
A1 and A2 be two TA with disjoint sets of clocks X1 and X2, and sets of discrete states Q1; Q2,
respectively. Let acti : Qi 7! 2Xi, be the activity function of Ai, for i = 1; 2. Then, it is easy
to prove that the activity function of A1kA2 is the function act : Q1 � Q2 7! 2X1[X2, de�ned
as follows:

act(q1; q2) = act1(q1) [act2(q2)

Consider a TA A with set of discrete states Q and set of clocks X . Given an activity function
act : Q 7! 2X , the activity abstraction with respect to act is de�ned to be the function �act

mapping each zone (q; �) in the simulation graph of A to the zone (q; �cact(q)). That is, all
inactive clocks are projected away, so that the dimension of the polyhedron associated to q is
reduced from X to act(q).

The activity graph of A with respect to �act , denoted AG(A; c), is de�ned as follows:

� For each node S of SG(A; c), �act (S) is a node of AG(A; c).

� For each edge S1
e! S2 of SG(A; c), �act (S1)

e! �act (S2) is an edge of AG(A; c).

The activity graph of the TGC system is shown in �gure 5.16 (notice that it is smaller than
the simulation graph of the same system). The zones are shown in table 5.3. Observe that no
polyhedron is associated to node 0, since no clocks are active in the initial discrete-state vector.

Properties preserved in the activity graph

The activity graph preserves the same properties as the simulation graph. The only slight
di�erence is in the de�nitions of post-stability, non-zeno symbolic paths, and inscription of
runs to paths, due to the fact that the clock space induced by activity has variable dimension.
We make explicit these di�erences in what follows.

Post-stability. Let A be a TA with set of clocks X . Consider an edge S1
e! S2 in AG(A; c),

where Si = (qi; �i), i = 1; 2 (recall that �i is a polyhedron on act(qi)). Post-stability here is
expressed as follows:

4

0

5

1

6

2

7

3

UP

EXIT

APPROACH

RAISE

LOWER
UP

DOWNAPPROACH

ENTER

Figure 5.16: The activity graph of the Train{Gate{Controller example.

� for any state v1 2 �1, if there exist X -valuations v01;v
0
2 such that (q1;v01)

e! �! (q2;v02)
and vi = v0icact(qi), i = 1; 2, then v2 2 �2;

� for any v2 2 �2, there exist v1 2 �1 and X -valuations v01;v
0
2;v

00
2, such that:

{ vi = v0icact(qi), for i = 1; 2.

{ v02 and v
00
2 are c-equivalent.

{ (q1;v01)
e! �! (q2;v002), for some � 2 R.

The above property is proved directly from the de�nitions. The di�erence with simulation-
graph post-stability is that v1;v2 are dimension-restricting projections of the \real" valuations
v01;v

0
2.

Non-zeno paths. An in�nite path � = (q1; �1)
e1! (q2; �2)

e2! � � � in AG(A; c) is called non-
zeno if for each clock x 2 X :

� either x is active and reset in�nitely often in �, that is, 8i : 9j > i : x 2 act(qj) ^ x 2
reset(ej),

� or x remains active and unbounded in � from some point on, that is, 9i : 8j > i : x 2
act(qj) ^ unbounded(x; �j) ^ unbounded(x; guard(ej)).

Relating runs to symbolic paths. A run � = (q1;v1)
�1! (q1;v1 + �1)

e1! � � � is said to be
inscribed in a path (q1; �1)

e1! � � � of the activity graph, if for all i � 1, there exists v0i 2 �i such
that v0i + �i 2 �i and v0i = vicact(qi).

Based on the above de�nitions, lemma 5.9 can be easily re-proven for the activity graph.

Lemma 5.10 Every run (resp. non-zeno run) of A is inscribed in a unique path (resp. non-
zeno path) in AG(A; c). Inversely, for every path (resp. non-zeno path) � in AG(A; c), there
is a run (resp. non-zeno run) inscribed in �.

5.2.4 Inclusion abstraction

The inclusion abstraction is intended to preserve reachability. It is based on the following
observation: if for two zones S1 and S2, S1 � S2, then S1 can be ignored, since any state in S1

belongs also to S2 and any successor of S1 is also a successor of S2.
More precisely, let Z be a set of zones. A total function �inc : Z 7! Z is an inclusion

abstraction on Z if for any S 2 Z, S � �inc(S).
Now, consider a TA A and let �inc be an inclusion abstraction on the set of nodes of the

simulation graph of A. The inclusion graph of A with respect to �inc, denoted IG(A; c), is
de�ned as follows:

� For each node S of SG(A; c), �inc(S) is a node of IG(A; c).

� For each edge S1
e! S2 of SG(A; c), �inc(S1)

e! �inc(S2) is an edge of IG(A; c).

Returning to the TGC example, observe that in the simulation graph of �gure 5.12, zones
9 and 10 are subsets of zone 1. Then, we can de�ne an inclusion abstraction that maps zones
9 and 10 to 1 and every other zone to itself. This abstraction induces the inclusion graph of
�gure 5.17, which contains two nodes less than the simulation graph.

8

4

0

5

1

6

2

7

3

DOWN

LOWER

UP

UP

EXIT

RAISE

APPROACH

APPROACH

APPROACH

ENTER

Figure 5.17: The inclusion graph of the Train{Gate{Controller example.

Optimal inclusion. According to the de�nition above, there might be many inclusion ab-
stractions possible for a given simulation graph. For the previous example, we could have
eliminated only one of the nodes 9 and 10 instead of both, and this would still be a valid
abstraction. An inclusion abstraction �inc is said to be optimal if for any other inclusion ab-
straction �0inc, �inc[Z] � �0inc[Z], where �[�] denotes the image of a relation �. For the previous
example, the abstraction merging both 9 and 10 to 1 is optimal.

It is easy to prove that an optimal inclusion abstraction always exists (since the simulation
graph is �nite), although it might not be unique (since a zone can be a subset of more than
one incomparable zones). The reason why we have not considered just optimal inclusion ab-
stractions is that they cannot be always computed on-the-y: �nding which zone is included
in which other should be done while the simulation graph is generated, which depends on the
order of traversal of the graph (see also discussion in section 7.1 about on-the-y generation of
abstract graphs).

Properties preserved in the inclusion graph

Inclusion preserves linear properties in a conservative manner and reachability in an exact
manner, modulo c-equivalence. More precisely:

Lemma 5.11 1. For each state s 2 Reach(A) there exists a node S in IG(A; c) such that
s 2 S. Inversely, for each s 2 S, there exists a c-equivalent state s0 2 Reach(A).

2. Every run (resp. non-zeno run) of A is inscribed in a unique path (resp. non-zeno path)
in IG(A; c).

The proof of the lemma follows directly from the properties below:

� (Post-stability): If S1
e! S2 is an edge of IG(A; c), then for each s1 2 S1, if s1

e! �! s2
then s2 2 S2.

� Every node S of IG(A; c) is also a node of SG(A; c), therefore, there exists a zone path
S0

e0! � � �S.
� For any path � = S1

e1! � � �Sl in SG(A; c), there exists a path �0 = S01
e1! � � �S0l in

IG(A; c), such that Si � S0i, for i = 1; :::; l. Moreover, if � is non-zeno, then �0 is also
non-zeno.

q1

q0

b

y � 1
y := 0

x := 0
y := 0

x � 10

a
b

b

(q0; y + 1 � x � 10)

a

(q0; x = y � 10)

(q1; y + 1 � x � y + 10)

a

(q1; x = y)

Figure 5.18: A TA and its inclusion graph.

Lemma 5.11 will be used in section 7.1 to check reachability. To see that the inverse of part
2 of the lemma does not always hold, look at the example of �gure 5.18. In any run of the TA
the a-transition is taken at most 10 times, however, in the inclusion graph it can be taken an
unbounded number of times.

5.2.5 Convex hull

The convex-hull abstraction is intended to be an over-approximation of the set of reachable
states. The idea is to perform a forward reachability analysis, as in the simulation graph, but
keep a single zone (q; �) for each discrete state q. If another zone (q; � 0) is found reachable,
then � is updated to � t � 0 (notice that � [� 0 is not generally convex, so, replacing � by � [� 0
in (q; �) doesn't yield a zone).

More precisely, consider a TA A with set of discrete states Q. The convex-hull graph of A,
denoted CHG(A; c), is de�ned to be the smallest graph (in terms of nodes and set inclusion
among nodes) such that:

� All nodes of CHG(A; c) are c-closed zones.

� For each q 2 Q, CHG(A; c) has at most one node (q; �).

� For each node S in SG(A; c), CHG(A; c) has a node S0 � S.

� For each node S in CHG(A; c) and each edge e such that post(e; S; c) 6= false, CHG(A; c)
has a node S0 � post(e; S; c) and an edge S

e! S0.

In other words, CHG(A; c) is generated by taking the \closure" of SG(A; c) with respect to
the convex-hull and post() operators. By the fact that all nodes of CHG(A; c) are c-closed
and lemma 2.2, CHG(A; c) is �nite. The convex-hull abstraction, denoted �ch , is the function
mapping each node (q; � 0) of SG(A; c) to the (unique) node (q; �) of CHG(A; c).

As an example, the convex-hull graph of the TGC system is identical to its optimal inclusion
graph (�gure 5.17). Notice that no unreachable states are added in this case.

Properties preserved in the convex-hull graph

The convex-hull graph preserves linear properties and discrete-state reachability in a conserva-
tive manner. More precisely, we have the following result.

Lemma 5.12 1. For each state s 2 Reach(A) there exists a node S in CHG(A; c) such that
s 2 S.

2. Every run (resp. non-zeno run) of A is inscribed in a unique path (resp. non-zeno path)
in CHG(A; c).

The result follows directly from the post-stability of CHG(A; c), namely, that for each edge

S1
e! S2 of CHG(A; c), for each s1 2 S1, if s1

e! �! s2 then s2 2 S2.
Lemma 5.12 is used in checking reachability, for instance, of error states. Since the convex-

hull graph is an over-approximation of the concrete state space, this method can mainly be
used in proving that some discrete state q is not reachable: if q is not reachable in the abstract
graph, it is certainly not reachable in the concrete graph either; on the other hand, if q is
reachable in the abstract graph, no conclusion can generally be made (a partial remedy to this
is discussed in section 7.1).

Reachability TBA CTL (TCTL)
Strong TaB p p p
Weak TaBs p p �
Simulation graph p p �
Activity p p �
Inclusion p conservatively �
Convex hull conservatively conservatively �

Table 5.4: Summary of property preservation by abstractions.

5.2.6 Combination of activity, inclusion and convex hull

Apart from being applied separately on top of the simulation graph of a TA, the activity,
inclusion and convex-hull abstractions can be also combined, in order to give a better reduction
of the state space.

There are two meaningful combinations, obtained by applying activity on top of either
the inclusion or the convex-hull graph. The activity-inclusion graph (resp. activity-convex-
hull graph) is de�ned similarly to AG(A; c) with the di�erence that �act is replaced by the
composition �act � �inc (resp. �act � �ch).

The rest of the possible combinations are either not well-de�ned (for instance, applying �rst
activity and then inclusion is not possible, since activity changes the dimension of polyhedra) or
not interesting (for instance, applying inclusion on top of convex hull or the inverse is identical
to applying just convex hull).

Concerning the properties preserved by the two combined abstractions, the activity-inclusion
graph preserves all properties preserved in the inclusion graph, while the activity-convex-hull
graph preserves all properties preserved in the convex-hull graph. These results can be derived
easily by combining the preservation properties of activity, inclusion and convex hull.

Summary of preservation results

Table 5.4 summarizes the preservation results of this chapter. The sign p means that the
abstraction preserves the corresponding class of properties and � means that it does not. The
note \conservatively" means that the abstraction preserves the property only in one direction,
i.e.

� for reachability, if a state is reachable in the concrete system then it is also reachable in
the abstract one;

� for TBA, if the concrete system has a non-empty language then the abstract graph has a
non-zeno accepting cycle.

All results are modulo non-zenoness. The results of the column for CTL also hold for TCTL,
modulo the construction described in section 6.2.2.

Relation to the literature

The abstract interpretation framework for program analysis using abstractions has been intro-
duced in [CC77], and has been used extensively for model checking in the untimed context

(see, for instance, [CGL94, LGS+95, DGG97]). This framework is quite powerful, however,
when used for model-checking of in�nite-state systems, an abstraction towards a �nite domain
is not easy to �nd. It is often the responsibility of the user to de�ne the abstraction, which can
be a non-trivial task requiring a lot of intuition in the input model. For instance, [TAKB96]
study timed simulations and propose a compositional approach to prove that a timed system
simulates another one, by applying assume-guarantee proof rules on the system components.
However, no methodology is provided for �nding the right system simulating a given one.

The time-abstracting observational bisimulation has been introduced in [LY93]. The authors
study TaoB from an algebraic point of view, proving that it is a congruence with respect to the
real-time process calculus of [Yi90]. Its properties with respect to logical formalisms are not
examined. The strong TaB has been introduced in [TY96]. Stronger timed bisimulations not
abstracting away from exact time delays have been studied in the literature, often associated
to extensions of real-time process calculi (see, for instance, [RR88, NRSV90, �C92]).

The simulation graph has been introduced independently in Kronos [Oli94] and Rt-

Spin [TC96], along with c-closure. In fact, the latter operation is necessary only to ensure
that the simulation graph is �nite, therefore, in practice, it is an option of the forward reacha-
bility algorithm. Inclusion has been used implemented independently in the reachability anal-
ysis of Kronos and Uppaal [BGK+96]. Convex-hull abstractions have been also used for
approximate reachability analysis by [Hal93, WTD94, WT95, Bal96]. Clock activity has been
introduced in [DY96]. These techniques have been formalized in the framework of abstractions
in [DT98]. A related approach can be found in [SV96]. [AIKY92] present a technique based on
over-approximations: the method consists in attempting to prove the property on an abstract
system where some clocks are ignored; if this attempt fails, then clocks are re-introduced pro-
gressively until either the property is proven on the abstract system, or all the clocks have been
re-introduced.

Chapter 6

Veri�cation based on Minimization

In this chapter we show how the time-abstracting bisimulations introduced in section 5.1.1
can be used for veri�cation. The goal is to demonstrate how classical (untimed) veri�cation
techniques can be used also for verifying timed systems.

More precisely, given a system described as a TA A, the following cases are possible:

� If the speci�cation of A is given in terms of a TBA B, model-checking A against B is
reduced to checking the �-quotient of A�B for emptiness; � can be any TaB, since they
all preserve linear properties.

� If the speci�cation of A is given in terms of a CTL formula �, model-checking A against
� is reduced to model-checking the STa-quotient of A against �. If � is a TCTL formula,
it is transformed to a CTL formula, A is extended with a set of auxiliary clocks, and the
same technique applies (see section 6.2.2).

� If the speci�cation of A is given behaviorally, that is, in terms of another (timed or
untimed) automaton A0, then checking that A and A0 are bisimilar with respect to a TaB
is reduced to checking that their STa-quotients are bisimilar with respect to an untimed
bisimulation.

In any of the above cases, the Ta-quotient of A needs to be computed. For reasons of e�-
ciency, we are interested in the minimal quotient, that is, the one corresponding to the greatest
bisimulation. Computing the minimimal quotient is called minimization and is dealt with in
section 6.1. Then, in section 6.2 we show how Ta-quotients can be used for veri�cation, in any
of the three cases discussed above.

6.1 Minimization of Timed Automata

Based on the fact that a bisimulation induces a pre-stable partition and vice versa (section 2.1),
minimization is done by partition re�nement : given an (untimed) graph G = (V;!), we com-
pute the coarsest pre-stable partition of V , starting from an initial partition C and successively
re�ning it until it becomes pre-stable. Re�ning C consists in choosing two classes C1; C2 such
that C1 is unstable with respect to C2, and then replacing C1 by C1\preds(C2) and C1npreds(C2).

A partition-re�nement algorithm [PT87] is shown in �gure 6.1. The algorithm takes as
input the initial partition C0 and computes the coarsest stable partition which is �ner than C0.

68

Refine (C0) f
C := C0 ;
while (9C1; C2 2 C : C1 \ preds(C2) 62 fC1; ;g) do
CC1

:= fC1 \ preds(C2); C1 n preds(C2)g ;
C := (C n fC1g) [CC1

;
end-while

return (C) ;
g

Figure 6.1: A simple partition-re�nement algorithm.

C0 can be either fV g (the entire set of nodes) or a partition of V respecting a set of atomic
propositions.

The algorithm of �gure 6.1 does not take into account class reachability. A class is reachable
if it contains at least one reachable node. In the above algorithm, the �nal partition is pre-
stable with respect to all classes, whether or not reachable. The minimal-model generation
algorithm (MMGA) proposed in [BFH+92] combines re�nement and reachability, by re�ning
only reachable classes and updating reachability information meanwhile 1.

The MMGA is shown in �gure 6.2. It starts with an initial partition C0 and uses three
sets of classes, namely, the current partition C, the set of reachable classes Access � C (the
initial node is v0) and the set of stable classes Stable � C. If there exists a reachable class C1

which may be unstable (i.e., C1 2 Access n Stable), the algorithm attempts to re�ne it. If it
succeeds, C1 is removed from C, replaced by its two sub-parts. Otherwise, C1 is inserted in
Stable . The sets Access and Stable are updated accordingly. In the �rst case, all predecessor
classes of C1 which were stable are considered unstable, thus, are removed from Stable . Also,
a sub-part of C1 is considered unreachable, unless it contains the initial node. In the second
case, a single-step reachability is performed, to add to the reachable classes all successors of
the newly-found stable class.

6.1.1 Adapting for TA the partition-re�nement algorithm of [BFG+92]

MMGA can be adapted to in�nite state spaces, assuming that they admit e�ective represen-
tations of classes and decision procedures for computing intersection, set-di�erence and prede-
cessors of classes, and testing whether a class is empty. For termination, it must be ensured
that a pre-stable partition always exists.

The state space of TA falls in this category, with the di�erence that there are two types of
predecessors, corresponding to discrete and time transitions of the TA. Taking this observation
into account, the adapted algorithm called time-abstracting MMGA (TA-MMGA) is shown in
�gure 6.3.

In TA-MMGA, the initial partition C0 is a set of symbolic states. The test for stability of
a class S1 is done in two phases: �rst stability is checked with respect to time-successors and

1There exists two alternatives, namely, either to perform re�nement followed by reachability to keep only
reachable classes, or to compute the set of reachable states �rst and then re�ne it. The drawback of the �rst
approach is that unreachable classes are uselessly re�ned, while in the second approach, computing the set of
reachable states might lead to explosion if a compact representation is not available, like in the case of TA.

ReachRefine (C0) f
C := C0 ;
Access := fC 2 C0 j v0 2 Cg ;
Stable := fg ;
while (9C1 2 Access n Stable) do
if (9C2 2 C : C1 \ preds(C2) 62 fC1; ;g) then
CC1

:= fC1 \ preds(C2); C1 n preds(C2)g ;
Access := (Access n fC1g) [fC 2 CC1

j v0 2 Cg ;
Stable := Stable n fC 0 2 C j C 0 \ preds(C) 6= ;g ;
C := (C n fC1g) [CC1

;
else

Stable := Stable [fC1g ;
Access := Access [fC 0 2 C j C \ preds(C 0) 6= ;g ;

end-if

end-while

return (Access) ;
g

Figure 6.2: The Minimal Model Generation Algorithm [BFH+92].

then with respect to discrete successors. The updates of sets Stable and Access are modi�ed
accordingly.

TA-MMGA is parameterized by the discrete-predecessor function disc-pred�, so that it can
be used for re�nement with respect to any TaB. The function is de�ned as follows:

disc-pred�(S)
def
=

8><
>:
S
e2E disc-pred(e; S); for the STa-quotientS
e2E time-pred(disc-pred(e; S)); for the Tad-quotientS
e2E time-pred(disc-pred(e; time-pred(S))); for the Tao-quotient

The de�nition of disc-pred� corresponds to the de�nition of the three TaBs, since the STaB
distinguishes states according to their immediate discrete successors, while in the weak TaBs a
delay can be a�orded before or after the discrete transition.

Correction of the algorithm follows from the de�nitions of the above predecessor operators.
Termination is ensured by lemma 5.3: in the worst case, the algorithmwill generate the partition
induced by the region equivalence.

6.1.2 A partition-re�nement technique that preserves convexity

The main drawback of TA-MMGA is that set-di�erence of symbolic states is an expensive
operation to implement. Indeed, this operation is reduced to complementation of polyhedra
which is exponential in the number of clocks, as shown in section 10.3. We show how to
avoid complementation by starting from an initial partition of the state space in zones and
applying a re�nement technique that preserves zones, i.e., convexity of polyhedra. The idea is
the following. Each time a zone S is to be re�ned, it is re�ned with respect to either all its
discrete successors by some edge e, or all its time-successors. If all successor classes are zones,
then S will be \split" in a number of sub-zones, and all we need to make sure is that these
sub-zones are disjoint and cover S.

TimeAbstractingReachRefine (C0; disc-pred�()) f
C := C0 ;
Access := fS 2 C0 j (q0;0) 2 Sg ;
Stable := fg ;
while (9S1 2 Access n Stable) do
/* First test stability w.r.t. time transitions */
if (9S2 2 C : S1 \ time-pred(S2) 62 fS1; ;g) then
CS1 := fS1 \ time-pred(S2); S1 n time-pred(S2)g ;
Access := (Access n fS1g) [fS 2 CS1 j (q0;0) 2 Sg ;
Stable := Stable n fS 2 C j S \ time-pred(S1) 6= ;g

n fS 2 C j S \ disc-pred�(S1) 6= ;g ;
C := (C n fS1g) [CS1 ;

/* Then test stability w.r.t. discrete transitions */
else if (9S2 2 C : S1 \ disc-pred�(S2) 62 fS1; ;g) then
CS1 := fS1 \ disc-pred�(S2); S1 n disc-pred�(S2)g ;
Access := (Access n fS1g) [fS 2 CS1 j (q0;0) 2 Sg ;
Stable := Stable n fS 2 C j S \ time-pred(S1) 6= ;g

n fS 2 C j S \ disc-pred�(S1) 6= ;g ;
C := (C n fS1g) [CS1 ;

else

Stable := Stable [fS1g ;
Access := Access [fS 2 C j S1 \ time-pred(S) 6= ;g

[fS 2 C j S1 \ disc-pred�(S) 6= ;g ;
end-if

end-while

return (Access) ;
g

Figure 6.3: The Time-Abstracting Minimal Model Generation Algorithm.

More formally, consider a TAA and let S and S0 be two symbolic states ofA. The continuous
time predecessors of S0 to S are de�ned as follows:

until(S; S0)
def
= fs 2 S j 9� 2 R : s+ � 2 S0 ^ 8�0 < � : s+ �0 2 S [S0g

Intuitively, until(S; S0) contains all states of S which can let time pass and reach S0, contin-
uously staying in S, that is, without traversing other classes in-between. We say that S has
immediate time successors in S0 if until(S; S0) 6= ;. For an example of until(), look at �gure 6.4.
The result of until(S; S1) is empty, whereas until(S; S2) = S. Also, we have until(S2; S1) = S4,
until(S2; S3) = S5, and so on.

y

S

S2

S1

S3

initially
(C = fS; S1; S2; S3g)

x

y

S4

S5

x

after time-split(S2; C)
(C0 = fS; S1; S4; S5; S3g)

S6

S7

y

x

after time-split(S; C0)
(C00 = fS6; S7; S1; S4; S5; S3g)

Figure 6.4: Re�nement with respect to immediate time-successors.

The following lemma shows that until() preserves convexity.

Lemma 6.1 If S and S0 are zones then until(S; S0) is a zone.

Proof: Let S = (q; �), S0 = (q; � 0) and until(S; S0) = (q; � 00) (in all other cases until(S; S0) = ;).
We have to show that if v1;v2 2 � 00 then v = �v1 + (1 � �)v2 2 � 00, for any 0 < � < 1.
v1;v2 2 � 00 implies that v1;v2 2 � and there exist �1; �2 2 R such that v1 + �1;v2+ �2 2 � 0 and
8�01 < �1; �

0
2 < �2 : v1 + �01;v2 + �02 2 � [� 0.

Let � = ��1+(1��)�2. Then, v+� = �(v1+�1)+(1��)(v2+�2), implying that v+� 2 � 0,
since � 0 is convex. We have to show that 8�0 < � : v + �0 2 � [� 0. Given �0 < �, we can write
�0 as ��3 + (1 � �)�4, for some �3 � �1 and �4 � �2. We have v1 + �3;v2 + �4 2 � [� 0. If both
v1 + �3;v2 + �4 2 � or v1 + �3;v2 + �4 2 � 0, we are done, since � and � 0 are both convex.

Consider the case v1+ �3 2 � and v2+ �4 2 � 0 (the case v1+ �3 2 � 0 and v2+ �4 2 � is sym-
metrical). Let be the smallest positive real such that v2+�4� 2 � or v1+�3+(1� 1

�
) 2 � 0.

Assume the �rst case (notice that only one of the cases is possible). We have v1+�5;v2+�6 2 �,
for �6 = �4 � and �5 = �3 + (1 � 1

�
). Moreover, �0 = ��5 + (1 � �)�6, which means that

v+ �0 = �(v1 + �5) + (1� �)(v2 + �6). By convexity of �, v + �0 2 �.

Now, let X be the clocks of A and Q its discrete states. A convex partition respecting A is
a �nite partition C of Q� RX in zones, such that for any (q; �) 2 C:

� either � � invar(q) or � \ invar(q) = ; (i.e., C respects the invariants of A);

� for all e 2 out(q), either � � guard(e) or � \ guard(e) = ; (i.e., C respects the guards of
A).

Given a class S of C and an edge e of the TA, we de�ne the following re�nement functions:

time-split(S; C) def
= funtil(S; S0) 6= ; j S0 2 Cg

disc-split(S; e; C) def
= fS \ disc-pred(e; S0) 6= ; j S0 2 Cg

Intuitively, time-split() and disc-split() re�ne S with respect to immediate time-successors and
e-successors, respectively.

Using these split functions, we develop the convex TA-MMGA, shown in �gure 6.5. The
algorithm takes as input a convex partition C0 respecting A and computes the coarsest partition
Access which is �ner than C0, such that: (1) all classes in Access are zones and contain at least
one reachable state; (2) Access induces a STaB. To prove this formally, we need to show that:

1. �rst, the current partition C is stable i� no splits are successful, that is, for any S 2 C
and any edge e, disc-split(S; e; C) 2 ffSg; ;g and time-split(S; C) 2 ffSg; ;g;

2. second, each time S is split in a number of subsets, these are disjoint and they cover S
(i.e., their union gives S).

For the �rst point above, it is obvious that if a split is successful then C is unstable. Inversely, by
de�nition, if no discrete split is possible then S is stable with respect to its discrete successors.
For the time-successors, a similar fact is not generally true: time-split(S; C) might yield ; even
if S is unstable with respect to a class S1. However, this is possible only if S1 does not contain
any immediate time successors of S, that is, if there is at least one class S2 traversed between
S and S1 (see �gure 6.4 for an example). Then, eventually, S2 will be e�ectively split, and the
re�nement will be propagated to S.

The second of the above points is proven by the following lemma.

Lemma 6.2 Each of time-split(S; C) and disc-split(S; e; C) forms a partition of S in zones.

Proof: Consider C1 = time-split(S; C) �rst. By lemma 6.1, all members of C1 are zones. It
remains to show that they are disjoint and that their union yields S. Let Si 2 C1, Si =
until(S; S 0i), where S

0
i 2 C, for i = 1; 2. Since C is a partition, S, S01 and S02 are all disjoint.

Assume s 2 S1 \ S2. For i = 1; 2, there exist �i 2 R such that s+ �i 2 S0i and 8�0i < �i : S [S0i.
Observe that �1 6= �2, since S01 and S

0
2 are disjoint. Without loss of generality, assume �1 < �2.

We have that s+�1 2 S01 and s+�1 2 S[S02, that is, either s+�1 2 S01\S or s+�1 2 S01\S02, which
contradicts the fact that S, S 01 and S

0
2 are all disjoint. This proves that S1 and S2 are disjoint.

Now, let s 2 S. We can �nd � 2 R and S0 2 C such that s+ � 2 S0 and 8�0 < � : s+ �0 2 S [S0
(since C is a �nite partition). By de�nition, s 2 until(S; S0).

ConvexStrongTimeAbstractingReachRefine (C0) f
C := C0 ;
Access := fS 2 C0 j s0 2 Sg ;
Stable := fg ;
while (9S 2 Access n Stable) do
/* First try to re�ne w.r.t. time transitions */
CS := time-split(S; C) ;
/* If S is stable w.r.t. time transitions,
try to re�ne w.r.t. discrete transitions */

if (CS 2 ffSg; ;g) then
for each (e 2 E) do
CS := disc-split(S; e; C) ;
if (CS 62 ffSg; ;g) then break ;

end for each

end if

if (CS 6= fSg) then
Access := (Access n fSg) [fS0 2 CS j s0 2 S0g ;
Stable := (Stable n fS0 j until(S0; S) 6= ;g)

n fS0 j 9e 2 E : S0 \ disc-pred(e; S) 6= ;g ;
C := (C n fSg) [CS ;

else

Stable := Stable [fSg ;
Access := Access [fS0 j until(S; S0) 6= ;g

[fS0 j 9e 2 E : S \ disc-pred(e; S0) 6= ;g ;
end-if

end-while

Access := f(q; �) 2 Access j � � invar(q)g ;
return (Access) ;

g

Figure 6.5: A partition-re�nement algorithm preserving convexity.

g Q p

Now, consider C2 = disc-split(S; e; C), for some edge e. By lemma 5.1, all members of C2 are
zones. By the distributivity of disc-pred over union (disc-pred(e; S1 [S2; e) = disc-pred(e; S1) [
disc-pred(e; S2)) members of C2 cover S. It remains to show that they are disjoint. Let Si 2 C2,
Si = S \ disc-pred(e; S0i), where S

0
i 2 C, for i = 1; 2. Since C is a partition, S01 and S02 are

disjoint. Assume s 2 S1 \ S2. Recall that the e-successor of s, say s0, is unique. Since
s 2 disc-pred(e; S01) \ disc-pred(e; S02), it must be that s0 2 S01 \ S02, which contradicts the fact
that S01 and S

0
2 are disjoint.

It should be noted that the greatest STaB with respect to an arbitrary initial partition does
not generally induce a convex partition. This is why the convex TA-MMGA must be initialized
with a convex partition respecting the TA in question, although this partition might be �ner
than necessary (for instance, to respect a set of atomic propositions). The bene�t of avoiding
complementation outweighs the overhead of having a �ner partition at the end.

The convex TA-MMGA has been implemented in the Kronos module minim, discussed in
section 11.2.

6.2 Veri�cation using Quotient Graphs

Quotient graphs are essentially untimed graphs, since all quantitative-time information has
been abstracted away. Therefore, the existing infrastructure in algorithms and tools for untimed
veri�cation can be exploited, in order to treat timed systems as a particular case of untimed
systems. The purpose of this section is to show how this can be done using STa-quotient graphs.
For the sake of brevity, we do not consider weak Ta-quotients. The latter can be generated
from STa-quotients using untimed minimization techniques (section 6.2.5) and can be used in
the place of STa-quotients for TBA model checking or deadlock detection.

First, we make explicit how the STa-quotient graph G of a TA A is computed from the
result returned by the convex TA-MMGA:

� The set of nodes of G is the set of classes Access returned by the algorithm.

� If for two distinct classes S1; S2 2 Access, until(S1; S2) 6= ;, then S1
�! S2 is an edge of G.

� If for two distinct classes S1; S2 2 Access and an edge e, S1 \ disc-pred(e; S2) 6= ;, then
S1

e! S2 is an edge of G.

As explained in section 5.1.1, G does not contain any � -edges which can be obtained by reexive,
transitive closure (for instance, there are no � -self-loops). The interest of this construction will
become clear in section 6.2.2 below, where we describe how to perform CTL model-checking on
STa-quotients.

6.2.1 Timed B�uchi Automata model checking

Consider a TA A, a TBA B and a function P associating to each discrete state of B a set of
discrete states of A. We want to check whether A satis�es B with respect to P . By lemma 4.2,
this comes down to checking whether the language of A�B is non-empty.

Now, consider a STaB � on A�B, such that:

� � respects P : if (q1; q01;v1) � (q2; q02;v2) then q01 2 P (q1) i� q02 2 P (q2);

g Q p

� � respects the set of repeating states of B: if (q1; q01;v1) � (q2; q02;v2) then q1 is a repeating
state i� q2 is a repeating state.

Let G be the �-quotient of A�B. A node of G is called repeating if it contains only repeating
states. Notice that if a node is not repeating then it contains no repeating states, by the fact
that � respects the repeating states.

A SCC of G is called non-zeno if for each clock x of A �B, either x is reset in some edge
of the SCC or x is unbounded in all nodes of the SCC.

Lemma 6.3 A � B has a non-empty language i� G has a maximal SCC which is non-zeno
and contains a repeating node.

Proof: Let � be a non-zeno accepting run of A�B. By lemma 5.5, � is inscribed in a non-zeno
path � in G. Since G contains a �nite number of nodes, � de�nes a cycle �, and since � is
non-zeno, � is non-zeno. Since � is accepting, � contains a repeating node. Now, consider
the maximal SCC containing �. This SCC contains also the repeating node of �. Moreover,
all clocks reset in � are also reset in the SCC. Now, let x be a clock not reset in �, thus x
is unbounded in every node of �. By the pre-stability property of G, we conclude that x is
unbounded in every node of the SCC. Otherwise, let C

e! C 0 be such that x is unbounded in
C and bounded in C 0, say by a constant c. Let s = (q; q0;v) 2 C be such that v(x) > c. Since
the value of a clock cannot decrease except if reset to zero and x is not reset in e, s has no
discrete successor in C 0, which violates the fact that C is pre-stable with respect to C 0. Thus,
the SCC is also non-zeno.

Inversely, let G0 be a non-zeno maximal SCC of G containing a repeating node. Let x be a
clock not reset in G0, thus, x must be unbounded in all nodes of G0. Now, we can build a cycle
� which visits the repeating node of G0 and at least one edge resetting a clock which is reset in
G0. Since any other clock not reset in � is unbounded in all nodes of �, � is non-zeno, and we
can extract from it a non-zeno accepting run, using lemma 5.5.

Based on the above result, the following algorithm is derived for checking A j=P B:

1. Generate the STa-quotient G of A�B. This is done using the convex TA-MMGA, starting
from an initial convex partition respecting A�B, P and the repeating states of A�B.

2. Use an on-the-y algorithm (for example, the one of [Tar72]) to �nd all maximal SCCs of
G. For each SCC found, check whether it is non-zeno and whether it contains a repeating
node. If so, A satis�es B and the SCC can be output as diagnostics. If no such SCC is
found, then A does not satisfy B.

Regarding complexity, the SCC search is linear in the size of the STa-quotient, which can be
exponential in the number of clocks, as well as in the number of components making up A.
Consequently, the bottle-neck of the algorithm is the generation of the quotient, which has to
be done before-hand.

In practice, generating G is done using the module minim, presented in section 11.2. For
the SCC search, one can use a number of linear-time veri�cation tools, such as Spin [Hol91],
Cospan [HK89] or tlv [PS96], after interfacing the output of minim to their input format.

g Q p

6.2.2 CTL model checking

Consider a TA A, a CTL formula � on a set of atomic propositions Props and a function P
mapping each atomic proposition to a set of discrete states of A. We want to check whether A
satis�es �. We assume that A is deadlock-free and strongly non-zeno.

Let � be a STaB on A respecting P , that is, if (q1;v1) � (q2;v2) then q1 2 P (p) i� q2 2 P (p),
for any p 2 Props. Let G be the �-quotient of A. A formula is said to hold in a node C of G
if it is satis�ed in some state of C (by lemma 5.7, this implies that the formula is satis�ed in
any state of C).

To check A j=P �, we use the function ctl-eval(�), which computes all nodes of G where �
holds. The function is de�ned recursively on the syntax of �, as shown below:

ctl-eval(p) = fC j 9(q;v) 2 C : q 2 P (p)g
ctl-eval(�1 _ �2) = ctl-eval(�1) _ ctl-eval(�2)
ctl-eval(9�1 U �2) = �C : ctl-eval(�2) [(ctl-eval(�1) \ preds(C))
ctl-eval(8�1U �2) = �C : ctl-eval(�2) [(ctl-eval(�1) n preds(C))

At the end of the algorithm, it is checkedwhether the initial node of G is contained in ctl-eval(�).
The following lemma proves correctness of the model-checking procedure (the proof is given in
the appendix).

Lemma 6.4 C 2 ctl-eval(�) i� for all s 2 C, s satis�es �.

A number of branching-time veri�cation tools can be used for performing CTL model-
checking on G, such as the evaluator module of CADP, or smv [BCD+90]. Not all of these
tools use the �x-point technique described above. Other CTL model-checking algorithms exist,
for example, exploring the graph using a SCC search, also compatible with STa-quotients. For
an example of CTL model-checking on STa-quotients, the reader is referred to the case study
of section 12.1.

6.2.3 TCTL model checking

TCTL model checking can be reduced to CTL model checking using a technique similar to
the one used in [Alu91, ACD93] for the region graph. The idea is the following. Given a TA
A to be checked against a TCTL formula �, �rst we extend A with a set of clocks, to obtain
a new automaton A+; then we transform � to a CTL formula �CTL; �nally, we generate the
STa-quotient of A+ and model check it against �CTL, as described in the previous section.

More precisely, Q and X be the set of discrete states and set of clocks of A. Also let
I1; :::; Im be the set of non-trivial intervals appearing in �. A+ has exactly the same structure
as A, except that it has an augmented set of clocks X+ = X [fy1; :::; ymg. The set of atomic
propositions Props is also augmented with two propositions, namely, pyj=0 and pyj2Ij , for each
j = 1; :::;m. Finally, the formula � is transformed to �CTL recursively as follows:

p is transformed to p
:�0 is transformed to :�0CTL
�0 _ �00 is transformed to �0CTL _ �00CTL
9�0UIj �00 is transformed to pyj=0) 9�0CTL U (�00CTL ^ pyj2Ij)
8�0UIj �00 is transformed to pyj=0) 8�0CTLU (�00CTL ^ pyj2Ij)

g Q p

Now, let � be a STaB on A+, respecting the proposition function P as previously, but also
all intervals I1; :::; Im, as well as the constraints yj = 0, j = 1; :::;m. For instance, if [c; c0) is an
interval and (q1;v1) � (q2;v2), then for all j = 1; :::;m, c � v1(yj) < c0 i� c � v2(yj) < c0 and
v1(yj) = 0 i� v1(yj) = 0. The function ctl-eval() can be extended for atomic propositions of the
form pyj=0 and pyj2Ij in a straightforward way, for instance, ctl-eval(pyj=0) returns the set of all
nodes C containing a state (q;v) such that v(yj) = 0. Then it is easy to prove the following.

Lemma 6.5 (q;v) j= � i� there exists a state (q;v+) of A+ such that if C is the class of
(q;v+) in G then C 2 ctl-eval(�CTL).

Notice that v is a X -valuation while v+ is an X+-valuation. This means that, in practice, if
we want the states of A which satisfy �, then we have to eliminate clocks fy1; :::; ymg. This can
be done by projecting each node C in ctl-eval(�CTL) to C 0 = CcX . Then C 0 contains all states
of A satisfying �.

6.2.4 Deadlock and Timelock detection

Consider a TA A and let G be the quotient of A with respect to a STaB �.
Concerning deadlocks, we can easily prove the following, using the de�nition of a deadlock

and the pre-stability property of �.
Lemma 6.6 A is deadlock-free i� there is no reachable sink node in G.

We can use this lemma for deadlock-detection: �rst, we generate the STa-quotient G of A and
then we perform a DFS on G looking for sink nodes. More interestingly, the two steps can be
combined so that sink nodes are reported on-the-y during the construction of G. This can be
done by a straightforward modi�cation of the convex TA-MMGA.

Concerning timelocks, by lemma 3.2, if A is strongly non-zeno, then it is also timelock-free.
Otherwise, we can use the following result of [Yov93, HNSY94].

Lemma 6.7 A is timelock-free i� it satis�es the TCTL formula 82 93�1 true.

Therefore, if A is not strongly non-zeno, we can test whether it is timelock-free by checking
it against 82 93�1 true. This can be done using the TCTL model-checking procedure of the
previous section.

6.2.5 Combination with untimed bisimulations and simulations

The untimed bisimulations introduced in section 2.1, namely, strong, delay, and observational
bisimulation, can be combined with TaBs for a number of reasons:

1. For computing the weak Ta-quotients of a TA A. If G is the STa-quotient of A, then, by
lemma 5.2, the Tad- (resp. Tao-) quotient of A is the quotient of G with respect to the
delay (resp. observational) bisimulation.

2. For comparing two TA A1 and A2 with respect to a TaB . If G1; G2 are the STa-quotients
A1; A2, then A1 and A2 are STa-bisimilar i� G1 and G2 are bisimilar with respect to
the strong bisimulation (again, this is justi�ed by lemma 5.2). Similarly, A1 and A2 are
Tad- (resp. Tao-) bisimilar i� G1 and G2 are bisimilar with respect to the delay (resp.
observational) bisimulation.

g Q p

The �rst approach is useful for reducing furthermore the size of the quotient graph, while
preserving a set of properties (e.g., linear properties). The second approach is applied for
behavioral veri�cation, where the speci�cation of a system A1 is not given in terms of a formula,
but in terms of another system A2. Then, it is required that A1 should behave \like" A2, where
the notion of \like" is captured formally by a bisimulation or simulation. Typically, A1 is
the TA modeling the system and A2 is a (timed or untimed) automaton corresponding to the
speci�cation.

Instead of the delay or observational bisimulations, a number of other untimed bisimulations
or simulations can be also used, such as the safety bisimulation [Mou93]. Although we have
not thoroughly studied the properties preserved when combining such relations with STaBs,
we have often used them in practice, to get a better reduction of the model and gain intuition
in its behavior.

Regarding the algorithms used in approaches 1 and 2 above, minimization with respect to
untimed bisimulations can be done using the MMGA or the algorithm of �gure 6.1. Comparison
of two graphs for bisimilarity can be also reduced to minimizing their union graph, and then
checking whether their initial nodes belong to the same class. A more e�cient on-the-y
comparison method has been proposed in [FM91]. All these algorithms have been implemented
in the module aldebaran, part of the untimed-veri�cation tool-suite CADP. Figure 11.3 in
section 11.2 summarizes the connection of minim to CADP. Sections 12.1 and 12.2 provide
examples of the combination of time-abstracting and untimed bisimulations for veri�cation.

Relation to the literature

A straightforward adaptation of the algorithm of [BFH+92], for the time-abstracting delay
bisimulation is given in [ACH+92]. Another generic minimization algorithm is proposed in [LY92],
and is adapted for timed systems in [YL93]. Our algorithm is inspired from both above works,
in particular, the idea to avoid complementation is borrowed from [YL93], however, our solution
is di�erent. Experimental results from an implementation of the algorithms of [ACH+92, YL93]
are given in [ACD+92]. In section 12.1 we compare these results to ours.

Chapter 7

On-the-y Veri�cation

In this chapter we propose veri�cation techniques based on the simulation graphs introduced
in section 5.2. These techniques are entirely on-the-y, that is, the property is checked while
the graph is being generated. They can be applied for discrete-state reachability, deadlock and
timelock detection, TBA model-checking and full ETCTL�9 model-checking.

The algorithms for reachability and TBA model-checking have been implemented in Kro-
nos (chapter 11) and used in a number of case studies (chapter 12).

7.1 Reachability

Reachability is the most widely used type of analysis, since, �rst, it is su�cient for expressing
a large class of interesting properties such as invariance and bounded-response, and second, it
is not expensive to implement.

For simplicity, we consider reachability of discrete states of a TA A. This is not less general
than checking reachability of a set of states of A speci�ed by a zone (q; �): we can always
transform A to a new TA A0 with an extra discrete state q0 and an extra edge (q; �; ; ;; q0), and
check whether q0 is reachable in A0.

More precisely, if Q is the set of discrete states of A, given a set of target discrete states
Q̂ � Q, we consider three problems of reachability:

� Yes/No reachability: check whether there exists (q;v) 2 Reach(A), such that q 2 Q̂.
� Partial reachability: given a set of initial states represented as a zone S, �nd S0 � S, such
that every state in S0 can reach some target state (q;v); q 2 Q̂.

� Total reachability: given a set of initial states represented by a zone S, �nd the largest
subset S0 � S, such that no state in S0 can reach any target state (q;v); q 2 Q̂.

Yes/No reachability, examined in section 7.1.1, can be applied to verify properties of the
form 93 p, where p is an atomic proposition 1. It can also be applied to deadlock detection.

Partial and total reachability, examined in section 7.1.2, are used as intermediate steps for
verifying properties of the form 82 93 p. More precisely, partial reachability can be iteratively

1Formally speaking, none of the speci�cation languages de�ned in chapter 4 can generally capture reachable
states. This is because the latter are de�ned by �nite runs, whereas formalisms such as TBA and TCTL are
evaluated over in�nite (in fact, non-zeno) runs. For instance, if all states of a TA A where p holds are deadlocks,
then 93 p is not satis�ed by A, although some of these states might be reachable.

80

y

applied for solving total reachability. Then, a nested application of yes/no reachability and
total reachability is used for model checking 82 93 p. As an application, we show how this
technique can be used for timelock detection.

All algorithms presented in this section are based on a depth-�rst generation and exploration
of a simulation graph, possibly combinedwith the activity, inclusion or convex-hull abstractions,
or their combinations (section 5.2). In the sequel, we use � to denote the abstraction used; �
can be the identity function 1 (if we are using just the simulation graph), or one of �act , �inc,
�ch , �act � �inc and �act � �ch .

7.1.1 Yes/No reachability

The algorithm for yes/no reachability is shown in �gure 7.1. It is based on a depth-�rst (DF)
procedure Reach�, parameterized by the abstraction � used. Depending on �, functions post�,
store�, is visited� and return� are instantiated di�erently, and this is how the �-graph is
generated on-the-y.

The instantiations are shown in the lower part of the �gure. Activity is implemented by
coupling �act to the post function. Inclusion and convex hull are implemented by managing
di�erently the set of visited nodes Visit . Given a successor S0 of the current node, the test
is visited decides whether S0 is to be considered a new node or not. Normally, S0 is new if it
is not in Visit , except when inclusion or convex hull is used: in that case, S0 is new if it is not
a subset of a node already in Visit .

When a new node is found, procedure store updates the set Visit . The new node is inserted
in Visit , except when convex hull is used: in that case, a single node (q; �) is kept per discrete
state q and when a new node (q; � 0) is found, (q; �) is replaced by (q; � t � 0).

return� gives a non-conclusive answer in case convex hull is applied.
It is worth making the following remarks.

� The algorithm can be easily extended to provide diagnostics. The DF procedure is often
implemented using a stack to eliminate recursion. During execution of the algorithm, the
stack contains the symbolic path currently explored. From such a path, we can extract
more detailed diagnostics (i.e. a �nite run) as shown in chapter 8.

� In the case of a hit during a convex-hull search, we can do better than just return a
\maybe" answer. Since the stack contains the sequence of edges e1; :::; el forming the
path currently explored, we can generate the exact zone path corresponding to these
edges, using normal post operations. If the whole path can be generated (up to l), then
Q̂ is indeed reachable even in the simulation graph. Otherwise, the search can continue.
If only non-valid path are found during execution of the algorithm, a \maybe" answer is
returned at the end. Indeed, a \no" answer cannot be returned since valid paths might
exist, but are missed in the convex-hull search.

� The inclusion abstraction computed is not necessarily optimal. Indeed, given two zones
S1 � S2, we cannot tell in advance which one is going to be visited �rst: this depends on
the DFS order, which is a-priori unknown. If S1 is visited after S2, it will be merged with
the latter, otherwise, both zones will be present in the inclusion graph.

The yes/no reachability algorithm has been implemented in Kronos (see chapter 11) and
used in a number of case studies, like the ones presented in sections 12.3 and 12.4.

y

YesNoReach� (S1; Q̂) f
Visit := fg ;
c := cmax (A) ;
return Reach� (S1) ;

Reach� (S) f
if (discrete(S) 2 Q̂) then return� ;
store� (S) ;
for each (e 2 out(q)) do
S0 := post�(e; S; c) ;
if (S0 6= ; and not is visited�(S0)) then
Reach� (S0) ;

end for each

return \No" ;
g

g

is visited�((q; �))
def
=

(
(q; �) 2 Visit ; if � 2 f1; �actg
9(q; � 0) 2 Visit : � � � 0; otherwise

post�
def
=

(
�act � post; if � 2 f�act ; �act � �inc; �act � �chg
post; otherwise

store�((q; �))
def
=

8><
>:

Visit := Visit n f(q; � 0)g
[f(q; � t � 0)g; if � 2 f�ch ; �act � �chg

Visit := Visit [f(q; �)g; otherwise

return�
def
=

(
return \Maybe"; if � 2 f�ch ; �act � �chg
return \Yes"; otherwise

Figure 7.1: An abstraction-parameterized algorithm for Yes/No reachability.

y

Application: deadlock detection

Consider a TA A = (X ; Q; q0; E; invar). Checking that A is deadlock-free can be reduced to
yes/no reachability in a new TA A0 = (X ; Q [fq0g; q0; E [E0; invar0), where q0 62 Q and:

� For each q 2 Q, and each � 2 convex(free(q)), E0 contains an edge (q; �; a; ;; q0).
� invar0(q) = invar(q), if q 2 Q, and invar0(q0) = true.

Intuitively, the above construction adds a number of out-going edges to each discrete state q.
These auxiliary edges serve as escape actions: whenever the automaton reaches a deadlock state
(where in A it would normally block) it can take an escape transition and move to the error
state q0. By lemma 3.4, it is easy to see that A is deadlock-free i� q0 is reachable in A0.

7.1.2 Partial and total reachability

For these two problems, we cannot use convex-hull abstractions, since they only preserve reach-
able states conservatively. Thus, throughout this section, � denotes any abstraction except the
convex-hull abstractions �ch and �act � �ch .

Partial reachability by pre-stabilization

The yes/no reachability algorithm can be modi�ed to solve partial reachability. Let S1 be an

initial zone and let Reach�(S1) be successful, �nding a path � = S1
e1! � � � el�1! Sl hitting the

target states. We de�ne the zones S0i, for i = 1; :::; l:

S 0l
def
= Sl

S 0i
def
= Si \ pre(ei; S

0
i+1); i = l � 1; :::; 1

By de�nition of pre(), every state in S01 leads to some state in Sl. Moreover, S01 cannot be empty,
due to post-stability of �. Thus, S01 is indeed an answer to partial reachability. The technique
is called pre-stabilization and S01 is denoted pre-stable-root(�). We call Partial Reach�(S1; Q̂)
the procedure obtained by modifying Reach, so that it returns pre-stable-root(�) if it �nds a
path � reaching the target states, and ; otherwise.

Total reachability

Partial Reach does not solve the problem of total reachability: although no state s 2 S1 n S01
can reach Q̂ following a run

e1! � � � el�1! , there might exist another run starting from s and
reaching Q̂. Consequently, in order to make sure that no states in S1 n S01 can reach Q̂, we
have to repeat the partial reachability procedure starting from S00 = S1 n S01. Since S00 is not
necessarily a zone, it has to be \split" into a number of zones and Partial Reach has to be
called separately for each one of them.

The complete algorithm for total reachability is shown in �gure 7.2. It takes as input an
initial zone S1 and a set of target discrete states Q̂ and returns the set of states in S1 which
cannot reach Q̂. This set (not necessarily convex) is represented as a set of zones Z. For
notational convenience, we write convex((q; �)) instead of f(q; � 0) j � 0 2 convex(�)g.

p

TotalReach� (S1; Q̂) f
Z := fS1g ;
c0 := cmax (A) ;
while (9S = (q; �) 2 Z) do
Visit := fg ;
c := maxfc0; cmax (�)g ;
S0 := Partial Reach�(S; Q̂) ;
Z := (Z n fSg) [convex(S n S0) ;

end while

return Z ;
g

Figure 7.2: An algorithm for total reachability.

Application: timelock detection

Timelocks can be detected using a nested reachability: at the outer level, a yes/no reachability
is performed to generate the abstract graph node by node; for each node S, an inner-level total
reachability is performed, to compute the subset of S where time is blocked. The algorithm is
inspired from the fact that timelock-freedom is equivalent to model-checking the TCTL formula
82 93�1 true (see section 6.2.4).

More precisely, consider a TA A = (X ; Q; q0; E; invar). De�ne the TA A0 = (X [fzg; Q [
fq0g; q0; E [E0; invar0), where z 62 X , q0 62 Q and:

� For each q 2 Q, E0 contains an edge (q; z � 1; a; ;; q0).
� invar0(q) = invar(q), if q 2 Q, and invar0(q0) = true.

In words, A0 has an escape edge from each discrete state of A leading to an auxiliary sink state
q0, provided that the value of the auxiliary clock z is at least 1.

The algorithm for timelock-detection is shown in �gure 7.3. The outer-most reachability
procedure, TimelockReach, is identical to procedure Reach of �gure 7.1, except that the set of
target states Z is generated dynamically. Z is a set of zones fS1; :::; Skg, such that each Si is
a subset of the current zone S, and their union contains all states of S from which not even
one time unit can elapse. Z is built using the inner-most total reachability. Notice that the
outer-most reachability is performed on A, while the inner-most reachability is performed on
A0.

7.2 Timed B�uchi Automata Emptiness

By lemma 4.2, checking whether a TA A satis�es a TBA B comes down to checking language
emptiness of A�B. In this section we show how TBA emptiness can be checked on-the-y on
abstract graphs, based on the preservation results of section 5.2. In the algorithms presented in
the sequel, we assume that the abstraction used is either the zone or activity graph, since they
preserve linear properties in an exact manner (lemmas 5.9 and 5.10). The same algorithms
can be used on the inclusion or convex-hull graphs in a conservative manner: if the abstract

p

TimelockDetect� (S1) f
Visit := fg ;
c := cmax (A) ;
return TimelockReach� (S1) ;

TimelockReach� (S) f
Z := TotalReach�A0(S \ z = 0; fq0g) ;
if (Z 6= ;) then return \Timelock found" ;
Visit := Visit [fSg ;
for each (e 2 out(q)) do
S0 := post�(e; S; c) ;
if (S0 6= ; and not is visited�(S0)) then
TimelockReach� (S0) ;

end for each

return \No timelocks" ;
g

g

Figure 7.3: Nested reachability for timelock detection.

graph is empty, then the concrete TBA has an empty language, otherwise, no conclusion can
be made.

We distinguish four cases altogether, depending on whether the system is strongly non-zeno
and/or has trivial acceptance conditions. Strong non-zenoness dispenses us with the burden
of checking time progress, thus, we are left with checking discrete acceptance conditions. This
can be generally done using a maximal-SCC search, while in the case of trivial acceptance
conditions, a simple DFS su�ces.

In the general case of systems which are not strongly non-zeno, checking time-progress
is reduced to a search for non-maximal SCCs, similar to the algorithms for strong fairness
proposed in [EL85, LP85] 2. This search can be expensive, thus, we also propose sound but
generally incomplete algorithms based on a simple DF search.

In sections 7.2.1 and 7.2.2 we give the algorithms for TBA emptiness. These are essentially
yes/no algorithms, which can be extended to provide diagnostics. In section 7.2.3 we prepare
the ground for ETCTL�9 model-checking (presented in section 4.3). Using a pre-stabilization
technique similar to the one for partial reachability, we extend the yes/no emptiness algorithm
to compute all states leading to runs in the language of the TBA.

7.2.1 Special case: strongly non-zeno TBA

Consider a strongly non-zeno TBA B with set of repeating states F . Let G be the zone or
activity graph of B. A cycle of G is called accepting if it contains a repeating node.

Lemma 7.1 A strongly non-zeno TBA B has a non-empty language i� its simulation or ac-
tivity graph G has an elementary accepting cycle.

2Recently, more e�cient algorithms have been proposed in [HT96].

p

StrongNonZenoness TrivialAcceptance Emptiness� (S1) f
Visit := ffalseg ;
Stack := fg ;
c := cmax (B) ;
return ReachCycle� (S1) ;

ReachCycle� (S) f
Visit := Visit [fSg ;
for each (e 2 out(discrete(S))) do
S0 := post�(e; S; c) ;
if (S0 62 Visit) then
Stack := Stack [fS0g ;
ReachCycle� (S0) ;
Stack := Stack n fS0g ;

else if (S0 2 Stack and 8(q; �) 2 Stack : q 2 F) then
return \B is non-empty" ;

end if

end for each

return \B is empty" ;
g

g

Figure 7.4: A DFS for strongly non-zeno, trivial-acceptance TBA emptiness.

Proof: By lemma 3.2, all runs of B are non-zeno, thus, by lemma 5.9, every in�nite path
in G is non-zeno. Since G has a �nite number of nodes, B is non-empty i� G has an accept-
ing cycle, from which we can always extract an elementary sub-cycle which is also accepting.

We present two algorithms for elementary accepting cycles, depending on whether the ac-
ceptance conditions are trivial or not. In the �rst case, a simple DFS su�ces. Otherwise, a
maximal-SCC search or the doubly-nested DFS of [CVWY92] has to be used. Although the
three algorithms have the same worst-case complexity (linear in the size of G), the DFS algo-
rithms are preferable, since they can be implemented with a lower memory cost and can usually
provide an answer faster.

Trivial acceptance

In this case we are looking for an elementary cycle visiting nothing but repeating nodes. Such
a cycle can be found using the DFS of �gure 7.4. To see that no accepting cycle is missed, let
� = S1

e1! � � � Sl el! S1 be such a cycle. Without loss of generality, we assume that S1 is the �rst
node visited, with respect to depth-�rst order and that � is elementary (if not, an elementary
subcycle �0 of � can be extracted and all nodes of �0 are also repeating). Then, if � is missed,
this is due to the DFS stopping upon an already visited node Si for some 1 < i � l. But this
means that Si is visited before S1 which contradicts the hypothesis.

p

General acceptance

In this case we are looking for a cycle visiting at least one repeating node. Such a cycle cannot
be generally found with a simple DFS. For example, consider the TBA B1 of �gure 7.5. The
simulation graph of this automaton is isomorphic to its discrete structure, that is, has four zones
(i; x � 1), for i = 1; 2; 3; 4. Assume that the nodes are visited in this order during the DFS:
1; 2; 3; 4 (the order of visit is arbitrary, depending on the input format). Then, the accepting
cycle 1 ! 4 ! 2 ! 3 ! 1 is missed, because when exploring the successor 2 of 4 the search
stops since �nding that 2 is already visited.

The solution is to use a search for a maximal SCC containing at least one repeating node,
or the double-DFS of [CVWY92] looking for a repeating node that has a cycle back to itself.
The complexity of both algorithms is linear in the size of the graph. In practice, the double-
DFS algorithm can be implemented e�ciently using an extra bit per stored state, to indicate
whether the state has been visited only in the outer DFS or also the inner one [Hol91]. Thus,
the \real" cost of the algorithm is in the worst case twice the cost of a simple DFS, in time and
memory. The SCC algorithm is usually more costly in practice.

x := 0

23

1 4

x := 0

3

1 4

B1 B2

x � 1 x � 1

x � 1x � 1

x � 1x � 1

x = 1
x � 1 x � 1

2

Figure 7.5: A DFS can sometimes miss an accepting cycle (B1) or a non-zeno cycle (B2).

7.2.2 General case

If the system is not strongly non-zeno, we have to �nd an in�nite path � satisfying two progress
requirements, namely, discrete acceptance and non-zenoness. Since G has a �nite number of
nodes, �nding � is reduced to a search for an accepting non-zeno cycle in G 3. Two questions
must be answered. First, do elementary cycles su�ce ? Second, if they do su�ce, how can
they be found ? Elementary cycles are important, since they are easier to �nd. However, as we
shall see below, elementary cycles su�ce only in the case of trivial acceptance. Moreover, even
in that case, a simple DFS is not enough since it does not generally �nd all elementary cycles.

Incomplete algorithms

The idea is to modify the algorithms of the previous section, so that each time an accepting cycle
is found, it is tested for non-zenoness, using the syntactic conditions of page 58. If the cycle is
non-zeno then a counter-example to the emptiness of the TBA has been found, otherwise the
search continues.

3Non-zeno cycles are de�ned syntactically, like non-zeno paths, since a cycle de�nes an in�nite path.

p

Unfortunately, this gives sound but incomplete algorithms: if a non-zeno accepting cycle
is found then the TBA is non-empty; if no accepting cycle is found then the TBA is empty;
otherwise (i.e., if only zeno accepting cycles are found) no conclusion can be made. For example,
assume a DFS on the TBA B2 of �gure 7.5 visits nodes in the order 1; 2; 3; 4. Then, the single
non-zeno cycle 1 ! 4! 2! 3! 1 is missed during the search 4.

Although incomplete, these algorithms are still worth applying, since they are much less
expensive than complete ones, as we shall see below.

Complete algorithms

Let B be a TBA and G be its zone or activity graph. A SCC G0 of G is called accepting if it
contains at least one repeating node. G0 is called non-zeno if for each clock x of A�B, either
x is reset in some edge of G0 or x is unbounded in all nodes of G0.

Lemma 7.2 A (general) TBA B has a non-empty language i� its simulation or activity graph
G has a non-zeno, accepting SCC.

The proof of the above result is similar to the one of lemma 6.3, with an important di�erence,
however: since pre-stability is not a property of G, we cannot ensure the existence of a maximal
non-zeno SCC. Since the number of general (non-maximal) SCCs in a graph can be exponential,
it is not e�cient to check every one of them.

In the paragraphs that follow, we try to remedy this by giving three di�erent sound and
complete algorithms for emptiness:

� An adaptation of the strong-fairness model-checking algorithm of [EL85, LP85]: the
algorithm �nds all accepting maximal SCCs, and computes for each one of them the
greatest (possibly empty) non-zeno sub-SCC.

� A full DFS: the algorithm �nds all elementary accepting cycles, and checks each one of
them for non-zenoness. The method works only for trivial acceptance.

� An algorithm based on weak fairness: it transforms B to a new TBA where every accept-
ing run is guaranteed to be also non-zeno. Thus, the problem is reduced to the strong
non-zenoness case.

A strong-fairness SCC algorithm. This is a straightforward application of lemma 7.2.
Using the algorithm of [Tar72], we construct on-the-y the maximal SCCs of G. For each
maximal SCC (V;!), we call procedure AcceptingNonZenoSCC of �gure 7.6, which returns the
greatest accepting and non-zeno SCC contained in (V;!), if it exists, otherwise returns ;.

The algorithm works recursively. First, it removes all nodes and edges which can \block"
a clock x not reset by any edge in !. If nothing is removed, this implies that x is unbounded
in the SCC, thus, the latter is non-zeno. Otherwise, the maximal SCCs of the new graph are
found and the procedure is called recursively. Since the complexity of �nding maximal SCCs
is linear in the size of the graph and at least one node is removed at each recursive search, the
algorithm's complexity is quadratic in the size of the quotient graph.

4We should point out that, although in this example the double-DFS of [CVWY92] would �nd the non-zeno
cycle, this is not the case in general.

p

AcceptingNonZenoSCC ((V;!)) f
if (V does not contain any repeating node) then
return ; ;

else if (9x : 8 e! : x 62 reset(e)) then
V 0 := V n f(q; �) 2 V j :unbounded(x; �)g ;
!0 :=! nf e!j :unbounded(x; guard(e))g ;
if (V 0 = V ^!0=!) then return (V;!) ;
for each (maximal SCC G0 of (V 0;!0)) do
G00 := AcceptingNonZenoSCC (G0) ;
if (G00 6= ;) then
return G00 ;

end for each

return ; ;
end if

g

Figure 7.6: An algorithm to check whether a SCC is accepting and non-zeno.

A full DFS for trivial acceptance. The problem with the incomplete algorithms is that
a DFS which stops whenever a visited node is encountered does not �nd all cycles. This can
be remedied by using a DFS which stops only when a newly-created node is already in the
stack. In this case, all elementary cycles are found during the search. The modi�ed search is
shown in �gure 7.7 (we assume that the procedure is-non-zeno() performs the syntactic test for
non-zenoness of a cycle).

The correctness of this algorithm is based on the lemma below (the proof is given in the
appendix).

Lemma 7.3 A graph has a non-zeno cycle i� it has an elementary non-zeno cycle.

Lemma 7.4 A (general) TBA B with trivial acceptance condition is non-empty i� its simula-
tion or activity graph has an elementary non-zeno cycle visiting exclusively repeating nodes.

Proof: A corollary of lemmas 7.2 and 7.3.

Notice that lemma 7.4 does not hold for non-trivial acceptance. A counter-example is shown
in �gure 7.8. The �gure presents a TBA (left) and its simulation graph (right). Neither of the
two elementary cycles in the simulation graph is both accepting and non-zeno, although their
combination is.

Since the full-DFS of �gure 7.7 �nds all elementary non-zeno cycles, it is sound and complete
for trivial-acceptance TBA. The algorithm has a quite high time complexity: the number of
elementary cycles is exponential in the number of nodes in a graph. On the other hand, the
algorithm has a low memory cost: only a stack is used to store the path currently explored.

A weak-fairness solution. We reduce the problem to the strong-non-zenoness case, by
transforming the TBA B to a TBA B0 such that all accepting runs of B 0 are non-zeno 5. More

5The construction of B0 is inspired from the fair product construction of BA [Cho74, Hol91].

p

TrivialAcceptance Emptiness� (S1) f
Stack := fg ;
c := cmax (B) ;
return ReachCycle� (S1) ;

ReachCycle� (S) f
for each (e 2 out(discrete(S))) do
S0 := post�(e; S; c) ;
if (S0 = false) then continue ;
if (S0 62 Stack) then
Stack := Stack [fS0g ;
ReachCycle� (S0) ;
Stack := Stack n fS0g ;

else if (8(q; �) 2 Stack : q 2 F and is-non-zeno(Stack)) then
return \B is non-empty" ;

end if

end for each

return \B is empty" ;
g

g

Figure 7.7: A full DFS for trivial-acceptance TBA emptiness.

(q0; true)

(q2; x � 1)(q1; true)
x := 0

q0q1 q2

x � 1

Figure 7.8: Elementary cycles do not su�ce for non-trivial acceptance conditions.

p

precisely, let B = (X ; Q; q0; E; invar; F). Then B0 is de�ned to be the TBA (X [fzg; Q �
f0; 1g; (q0; 0); E0; invar0; F � f1g), where z is an auxiliary clock not in X and:

� For each edge (q; �; a;X; q0) 2 E, E0 has an edge ((q; 0); �; a;X; (q0; 0)). If q 2 F , then E0

has also the edges ((q; 0); z � 1; tp; fzg; (q; 1)) and ((q; 1); �; a;X; (q0; 0)).

� invar0(q; i) = invar(q), for i = 0; 1.

Intuitively, each discrete state is extended with a boolean ag to memorize whether time has
progressed or not. When the system is on a repeating state q 2 F , a time-progress transition
(tp) can be issued, setting the ag. Any outgoing transition from q unsets the ag. The
repeating states of B0 are of the form (q; 1), where q 2 F .

Then, any run visiting (q; 1) in�nitely often must also execute tp-transitions in�nitely often:
since at least one time unit passes between two successive tp-transitions, the run is non-zeno.
Also notice that any accepting non-zeno run of B can be transformed to an accepting run of
B0 by \inserting" tp-transitions every now and then. Thus, we have the following result.

Lemma 7.5 A TBA B has a non-empty language i� there is an elementary accepting cycle in
the simulation or activity graph of B0.

The techniques of section 7.2.1 can be used to �nd accepting cycles in the abstract graph of B0.

7.2.3 Computing states leading to accepting non-zeno runs

On-the-y ETCTL�9 model checking is based on an extension of the TBA-emptiness algorithms
presented so far: instead of just checking whether a TBA B has an empty language, we compute
states which lead to runs in the language of B. More precisely, given an initial zone S, we are
interested in computing a subset (resp. the largest subset) S0 � S, such that from each state
s 2 S0 there is a run in Lang(B). We refer to the two problems as partial and total TBA-
emptiness, respectively.

Similar to the case of partial and total reachability, the solution lies in the pre-stabilization
technique, adapted for cycles. More precisely, let � = S1

e1! � � �Sl el! S1 be a cycle in the zone
or activity graph of B. We de�ne the following system of equations, for i = 1; :::; l:

S 0i = Si \ pre(ei; S
0
i+1)

where addition is taken modulo l. Based on lemma 5.9, we can prove that the above system of
equations has a greatest �x-point where none of the zones S0i is empty.

This �x-point de�nes a sequence �0 = S 01
e1! � � �S0l el! S01 such that S0i is both pre-stable with

respect to S0i+1 and post-stable with respect to S0i�1. Thus, from every state in S01 there exists
an in�nite run � inscribed in (�0)!.

Then, procedure Partial Emptiness works as follows:

� Apply one of the emptiness algorithms of sections 7.2.1 or 7.2.2 for �nding non-zeno
accepting cycles.

� Each time a path ending in a cycle is found, � = �0�, pre-stabilize �, then pre-stabilize
�0 with respect to the pre-stable root of �.

� Return pre-stable-root(�).

Procedure Total Emptiness is de�ned similarly to Total Reach: given an initial zone S, it
repeatedly calls Partial Emptiness to compute S0 � S, then S00 � S n S0, and so on, until no
more states in S can lead to accepted runs.

y g 9

7.3 On-the-y model checking of ETCTL�9
ETCTL�9 model checking is performed by a recursive procedure etctl-eval, which takes as input
a TA A, an initial symbolic state S of A and an ETCTL�9 formula �, and returns the greatest
subset S0 � S, such that all states in S0 satisfy �. The non-trivial case comes when � is of the
form 9B(�1; :::; �m), where an adaptation of the procedure for total TBA-emptiness is applied
on the product A � B. Compared to the Total Emptiness procedure of section 7.2.3, the
generation of the abstract graph of A�B di�ers in two points:

1. The post() operator is modi�ed to take into account satisfaction of the sub-formulae
�1; :::; �m of B. More precisely, when computing a successor of S as S0 = post(e; S; c), we
keep only those states in S0 which satisfy the sub-formula corresponding to the discrete
state of B in S0. This is done by a recursive call to etctl-eval.

2. Due to point 1, the nodes of the abstract graph are no longer zones, but have the form
(q; �), where � can be a non-convex polyhedron. This does not a�ect any of the de�nitions
or preservation properties of abstract graphs.

In order to introduce the modi�ed post() operator, we need a de�nition �rst. Given two
symbolic states S; S0 of a TA, we de�ne the dual of the until operator:

since(S0; S)
def
= fs 2 S j 9� 2 R : s� � 2 S0 ^ 8�0 < � : s� �0 2 S0 [Sg

Intuitively, since(S0; S) contains all states of S which can be reached by S0 by letting time pass,
continuously staying in S 0.

The model-checking algorithm is shown in �gure 7.9. When a formula of the form 9B(�1; :::; �m)
is to be model-checked, the abstract graph of A � B, say G, is explored. If XA and XB are
the sets of clocks of A and B, then the nodes of G have the form (q; qi; �), where q and q0 are
discrete states of A and B, and � is a polyhedron on XA [XB.

S is a symbolic state of A. S1 is the initial node of G, where all clocks of B are initialized
to zero. The result of the search is also a symbolic state of A�B, thus, it has to be projected
on the state space of A before being returned.

The procedure Total Emptiness uses as successor operator the function etctl-post(). Given
a symbolic state S, etctl-post() computes the symbolic successors of S, S2, as before. Now, S2

has the form (q; qi; �), for some i = 1; :::;m. Not all states in S2 satisfy the sub-formula �i
speci�ed by B (�i is denoted sub-formula(S) in �gure 7.9). To compute these states, etctl-eval
is called recursively. Finally, the since() operator is called to eliminate all states in S3 which
cannot be continuously reached by an e-successor of S.

Relation to the literature

On-the-y veri�cation on the simulation graph has been introduced independently in [DOY94,
TC96], These works consider only safety properties such as invariance and bounded response,
which are reduced to reachability. To our knowledge, simulation graphs have not been previ-
ously used for deadlock or timelock detection, neither for checking emptiness. ETCTL�9 model-
checking has been �rst presented in [BTY97], along with experimental results on the fddi
protocol [Jai94] comparing the �x-point TCTL model-checking algorithm of Kronos with the
on-the-y algorithm. The formula veri�ed was of the form 83 p (\inevitably p holds"). The
results are shown in table 7.1 (n is the number of processes, ? stands for \out-of-memory" and

y g 9

etctl-eval (S; �) f
case (�)

true : return S ;
p : return f(q;v) 2 S j q 2 P (p)g ;
:�1 : return etctl-eval(S; �1) ;
�1 _ �2 : return etctl-eval(S; �1) [etctl-eval(S; �2) ;
9B(�1; :::; �m) : Visit := fg ;

Stack := fg ;
c := maxfcmax (A); cmax (B)g ;
S1 := S \ Tx2XB x = 0 ;
(q; q0; �) := Total Emptiness(A�B;S1) ;
return (q; �cXA) ;

end case

g

etctl-post(e; S; c) f
S1 := disc-succ(e; S) ;
S2 := post(e; S; c) ;
let S2 = (q; qi; �) ;
S3 := etctl-eval((q; �cXA); �i) \ S2 ;
return since(S1; S3) ;

g

Figure 7.9: ETCTL�9 model checking.

S2

S1

S3 since(S1; S3)

Figure 7.10: Illustration of the etctl-post() operator.

y g 9

n fix-point on-the-fly

symbolic states time (sec) memory (Mbytes)
4 y 1786 53 2
5 y 5834 180 4
6 ? 18476 1388 9
7 ? 57538 4813 25.8

Table 7.1: Experimental results on fddi.

y sign stands for \out-of-time-and-patience" { more than 1 hour of computation). Notice that
the type of formula veri�ed is the most expensive to compute using the �x-point method. On
the other hand, the on-the-y technique is also less favored in this case, where the property
holds and the whole state-space is generated.

[SS95] propose a local model-checking algorithm for strongly non-zeno systems with respect
to timed �-calculus. The algorithm works by generating on-the-y a symbolic graph, however,
it is necessary to re�ne the nodes of the graph, which involves back-tracking. No experimental
results are presented. An on-the-y algorithm based on the region graph is given in [HKV96].

Chapter 8

Diagnostics

When checking a system against a property, a simple yes/no answer is often not satisfactory.
Diagnostics are any kind of supplementary information (for instance, states, executions or sets
of these) which helps the user understand why veri�cation fails or succeeds. Diagnostics are
important for the following reasons:

� Without them no con�dence in the system's model can be gained. For instance, in case
the property is not satis�ed by the model, it might be that it is not the system which is
wrong, but the modeling.

� Even if the model is correct, the fault of the system cannot be easily located without any
guidance.

In the case of TA, there is a need for timed diagnostics, containing information both about
the discrete state changes of the system, as well as the exact time delay between two discrete
transitions. These delays can be essential to the understanding of a sample behavior of the
system.

The algorithms presented in the previous chapters work on abstract graphs, therefore, they
can only provide diagnostics in the form of symbolic paths. In this chapter we show how timed
diagnostics can be computed for �nite or in�nite linear-time properties. Timed diagnostics are
given in one of the equivalent forms of runs or timed trails (de�ned below). We treat the cases
of �nite and in�nite diagnostics in separate sections, since the techniques for computing them
are di�erent. First, we de�ne timed trails.

Timed trails. Consider a TA A and a (�nite or in�nite) run � = s0
�0! e1! s1

�1! e1! � � � . The
timed trail (trail, for short) corresponding to � is the (�nite or in�nite) sequence (e0; �0)(e1; �0+
�1) � � � . That is, the trail keeps count of the global time along the run and records at what time
each discrete transition is taken.

The trail contains all the information necessary to reconstruct its run. A trail (e0; t0)(e1; t1) � � �
corresponds to the run (q0;v0)

�0! e1! (q1;v1)
�1! e1! � � � , where q0 = source(e0), v0 = 0, �0 = t0,

and:

qi+1 = target(ei)

vi+1 = (vi + �i)[reset(ei)]

�i+1 = ti+1 � ti

95

8.1 Finite runs and trails

In the �nite case, timed diagnostics are extracted from symbolic paths. That is, our approach
is in two steps. First, use a algorithm such as those presented in chapters 6 and 7 to generate

a diagnostic path � = S1
e1! � � � el�1! Sl, where for each i = 1; :::; l, Si is a zone (qi; �i). Then,

build a run � = s1
�1! e1! � � � �l�1! el�1! �l! sl, such that � is inscribed in �. There are two cases to

consider:

� If � is pre-stable (e.g., a path of a STa-quotient graph), then the run is built in a forward
way: initially we choose s1 2 S1, then successively we �nd �1 2 R; s2 2 S2 such that

s1
�1! e1! s2, and so on.

� If � is post-stable (e.g., a path of a simulation graph), then the run is built in two passes,
�rst backwards and then forwards:

{ Backward pass: initially we choose sl 2 Sl and then successively �nd �i 2 R; si 2 Si,
for i = l� 1; :::; 1, such that si

�i! ei! s0i+1, for some s0i+1 which is c-equivalent to si+1.

{ Forward pass: starting from s1 2 S1, we compute s0i, for i = 2; :::; l, based on �i; ei.

The �nal run is s1
�1! e1! s02

�2! e2! � � � s0l.
Intuitively, the backward pass generates an invalid run which might contain some \jumps"
among c-equivalent states. The forward pass corrects the run by \adjusting" the clocks
which have grown greater than cmax (A).

Before describing the forward and backward constructions in detail, we show how choosing a
state in a zone (q; �) can be done e�ectively. In fact, this comes down to extracting a valuation
v 2 �. In the sequel, we assume that the set of clocks is X = fx1; :::; xng.

Extracting valuations from polyhedra

An k-incomplete valuation is a valuation v on fx1; :::; xkg. We say that v can be completed in
� if there exists an X -valuation v0 2 �, such that v0(xj) = v(xj), for all j � k. Completing v
in � means �nding such a v0. Notice that we permit k = 0, so that completing a 0-incomplete
valuation in � means extracting a valuation from �.

Lemma 8.1 Given a convex X -polyhedron � and a k-incomplete valuation v, it takes O(n2)
time to complete v in �, or �nd that this is not possible.

The proof of the lemma is given in section 10.2, since the complexity of the operation generally
depends on the data structure used to represent �.

Forward pass

It su�ces to describe the construction for one step, that is, given a pre-stable edge S1 ! S2

and s1 2 S1, how to �nd s2 2 S2, such that s1 ! s2. The construction can then be repeated l
times to yield the whole run. The type of the transition s1 ! s2 depends on the type of the
edge S1 ! S2.

First, consider the case S1
e! S2, that is, S1 � disc-pred(e; S2). Let Si = (qi; �i), for i = 1; 2.

Let v1 2 �1. By pre-stability, v1 satis�es guard(e), thus, if we let v2 = v1[reset(e) := 0], we
have (q1;v1)

e! (q2;v2).

Second, consider the case S1
�! S2, that is, until(S1; S2) = S1. Let Si = (q; �i), for i = 1; 2.

For simplicity, we write until(�1; �2).

Lemma 8.2 Consider two convex X -polyhedra �1; �2 such that until(�1; �2) = �1. For any
v1 2 �1, we can �nd in time O(n) some � 2 R such that v1 + � 2 �2.
As before, the proof of the lemma is given in section 10.2. The construction follows immediately,

since we have (q;v1)
�! (q;v2).

Regarding the complexity of building the whole run, observe that each step takes time either
O(n2) or O(n). Since the step is repeated l times, the whole run can be constructed in time
O(l � n2).

Backward-then-forward passes

Backward. As before, it su�ces to show how the computation is done for a single step, say,
(q1; �1)

e! (q2; �2). That is, given v2 2 �2, we shall show how to compute � 2 R and v1 2 �1

such that (q1;v1)
e! �! (q2;v02), and v2;v

0
2 are c-equivalent.

Finding � can be done by \pulling v2 backward in time", until some clock reset in e reaches
0. More precisely, if reset(e) = ; then we let � = 0, otherwise we let � = v2(x), for some
x 2 reset(e).

Now, let v3 = v2 � �. By de�nition, we have v3 2 �2 and (q2;v3)
�! (q2;v2). It remains to

�nd v1 2 �1 such that (q1;v1)
e! (q2;v4) and v4 and v3 are c-equivalent, which implies that

v4 + � and v2 are also c-equivalent.
Without loss of generality, we assume that there exists 0 � k � n such that the clocks

x1; :::; xk are not reset in e and for each j = 1; :::; k, v2(xj) � c.
First, v1 should satisfy guard(e). Moreover, since clocks x1; :::; xk are not reset in e, they

should have the same value in v1 and v3. Then, we let v be a k-incomplete valuation, such
that v(xi) = v3(xi), for i = 1; :::; k. Using lemma 8.1, we can complete v in �1 \ guard(e). This
is always possible, by the second part of the post-stability property in the simulation graph.

Therefore, we de�ne v1 to be the completed valuation. If we let v4 = v1[reset(e) := 0], we
have:

� for i = 1; :::; k, v4(xi) = v3(xi);

� for i = k + 1; :::; n,

{ if xi 2 reset(e), then v4(xi) = v3(xi) = 0,

{ otherwise, v4(xi) > c and v3(xi) > c.

That is, v4 and v3 are c-equivalent.
Regarding the complexity of the backward pass, observe that for each step, it takes O(n)

time to �nd the delay � and O(n2) time to complete the valuation 1. Therefore, the whole pass
can be performed in time O(l � n2).

1Completing a valuation in the intersection of more than one polyhedra, say, �1 \ � � � \ �m, multiplies the
complexity of the operation by only a constant factor m.

Forward pass. This pass is easy. We start from s1 = (q1;v1), as computed in the backward
pass. Then, for i = 1; :::; l+ 1, we compute v0i by \adjusting" vi as follows.

� v01 = v1;

� for i = 2; :::; l+ 1, v0i = (v0i�1[reset(ei) := 0]) + �i.

Using lemma 5.4 and induction on l, it is easy to prove that the resulting run is valid, that is,

(qi;v0i)
ei! �i! (qi+1;v

0
i+1), for all i = 1; :::; l.

The complexity of the forward pass is O(l � n). Therefore, the complexity of computing the
whole run is O(l � n2).

Example. Consider the simple TA shown in �gure 8.1. We are interested in reachability of
the target zone (q3; true) from the initial zone (q1; x = y). Let e1 be the edge from q1 to q2
and e2 the edge from q2 to q3. The algorithm of �gure 7.1 succeeds, returning the zone path
(q1; x = y)

e1! (q2; y = x+ 2)
e2! (q3; y > x+ 2). Notice that for this example c = 2 and before

applying close(), the polyhedron associated to q3 is y = x+ 4.
For the backward pass, we start by choosing v3 2 y > x+ 2, say, v3 = (x = 0; y = 3). This

gives �3 = 0. Then, we must complete a 0-incomplete valuation in y = x + 2 ^ x = 2, which
gives us v2 = (x = 2; y = 4). Since x is reset in e1, we get �2 = 2. Finally, we have to complete
a 0-incomplete valuation in y = x ^ x = 2, which gives us v1 = (x = 2; y = 2). At the end of

the backward pass, we have the sequence (q1; x = 2; y = 2)
e1! (q2; x = 0; y = 2)

2! (q2; x =
2; y = 4)

e2! (q3; x = 0; y = 3). This is not a valid run, since there is a \jump" of clock y on the
e2-transition.

The forward pass adjusts v3 to v
0
3 = (x = 0; y = 4), yielding the �nal (valid) run: (q1; x =

2; y = 2)
e1! (q2; x = 0; y = 2)

2! (q2; x = 2; y = 4)
e2! (q3; x = 0; y = 4)

0! (q3; x = 0; y = 4).

q1 q2 q3
x := 0

x = 2

x := 0

x = 2

x

y

the zone at q1 the zone at q2 the zone at q3

x

y

x

y2

2

2

2 2

2

y = x+ 2 y > x+ 2x = y

Figure 8.1: An example for �nite diagnostics.

8.2 In�nite runs and trails

In�nite diagnostics must have a �nite representation. This is possible if the in�nite run (or
trail) is periodic. This is not always the case, as can be seen in the example of �gure 8.2: in all

y < 1

y := 0

x = 1

x := 0
x � 1y < 1

q0 q1

Figure 8.2: A TA having no periodic runs.

in�nite runs of the TA in the �gure, the di�erence y� x at state q0 keeps increasing, so that a
periodic run cannot exist (notice that the system is not zeno).

The problem with the previous example lies on the presence of the strict constraint y < 1.
As it turns out, if we restrict ourselves to TA with no such constraints, then periodic trails
(thus, also runs) always exist, as we show below. For the rest of this section, we consider TA
where guards and invariants are de�ned by atomic constraints of the form x � c or x � c.

Our approach is as follows. We start from a zone path ending in a cycle:

� = S0
e0! � � � el�1! (Sl

el! � � � el+m! Sl)
!

This path can be returned as symbolic diagnostic by one of the algorithms of section 7.2. Based
on this path, we construct a trail

(e0; t0) � � � (el�1; tl�1)(el; t0l) � � � (el+m; t0l+m)(el; t1l) � � �
which is periodic, that is, for each k = 1; 2; :::, tkl �tk�1l = tk+1

l �tkl . The trail can be transformed
to an in�nite run as described in the beginning of the chapter.

The technique for building the periodic trail is called constraint induction. Intuitively, it
works in two phases as follows. The �rst phase computes a �x-point of a set of constraints on
variables corresponding to the time stamps t0l ; :::; t

1
l ; :::; t

1
l+m, that is, the �rst two \iterations"

of the trail. At each iteration of the �x-point, the constraints induced by the second iteration
are transposed to the �rst iteration. Computation stops when a stabilized set of constraints
is obtained. During the second phase, a solution is computed for the �rst two iterations such
that it can be extended to a periodic solution. We now formally describe the technique.

q0
x1 � 4 ^ x2 � 2

x1 := 0

x3 := 0
x3 � 3
x2 := 0

q1 q2

q3

x2 := 0

Figure 8.3: A cycle for constructing a periodic trail.

First, we associate real variables z0; :::; zl�1 to the time stamps t0; :::; tl�1, and y0; :::; y2m�1
to t0l ; :::; t

0
l+m�1; t

1
l+m; :::; t

1
l+m�1. Let Y denote the set of variables fy0; :::; y2m�1g. Then, we

build a system of linear constraints J on Y as follows:

� J has the constraints y0 � � � � � y2m�1.

� If clock x is reset in el+i and x � c is an atomic constraint of guard(el+j), for 0 � i < j � m,
and x is not reset between i and j, then J has the constraint yj � yi � k.

� If clock x is reset in el+i and x � k is an atomic constraint of guard(el+j), for 0 � j � i �
m, and x is not reset between i and j (circularly), then J has the constraint yj+m�yi � k.

Thus, J is a set of constraints on the �rst two iterations of the cycle. For example, the loop of
�gure 8.3 yields the following system of constraints:

y0 � y1 � y2 � y3 � y4 � y5;

J : y3 � y0 � 4;

y3 � y1 � 2;

y4 � y2 � 3

Since J is a system of constraints on real variables, it can be viewed as a convex polyhedron on
Y , de�ned by the intersection of atomic constraints like the ones above. Thus, in the sequel, we
apply polyhedra operations on J . We also use the operation of variable substitution, J [y := z],
de�ned as usual.

The next step is to stabilize J to a system of constraints Ĵ, such that Ĵ contains all solutions
of Y which can be extended to an in�nite set of time stamps de�ning an in�nite trail. The
idea is as follows. If there were an in�nite number of variables y0; y1; :::, each one associated to
one time stamp t0l ; t

0
l+1; :::, then we would have an in�nite system of constraints (see �gure 8.4).

Some of the constraints in this system can be combined to yield stronger constraints. For
instance, from constraints y3 � y0 � 4 and y3 � y1 � 2 we can deduce

y1 � y0 � 2 (�)
This is an extra piece of information on iteration 1, obtained using information on both itera-
tions 1 and 2. Now, we can \shift" the \constraint window" from iterations 1 and 2 to iterations
2 and 3, and infer the constraint

y4 � y3 � 2 (��)
which is identical to (�), up to renaming. Notice that (��) is not deduced explicitly but is
obtained from (�) simply by renaming. This is the idea of constraint induction, namely, to
transpose the amount of information obtained for iteration 1 to iteration 2.

� 2

� � �

time
� 4 � 4

� 2

2nd iteration 3rd iteration

� 3� 3

1st iteration

y0 y1 y2 y3 y4 y5 y6 y7

Figure 8.4: The loop of �gure 8.3, developed.

Having obtained constraints such as (��), they can be \re-injected" into J to strengthen
it, permitting to deduce stricter constraints on iteration 1. The process is repeated until no
stricter constraints can be deduced 2.

2Notice that J cannot become unsatis�able, since this would violate the assumption that there exists an
in�nite path �. In a more general setting where we start directly from the structural loop of the TA, this would
also be possible, meaning that there is no in�nite trail corresponding to this cycle of edges.

Formally, J is strengthened iteratively as follows:

J0 = J
J i+1 = J i \ ((J i=fy0;:::;ym�1g)[y0 := ym; :::; ym�1 := y2m�1])

J i=fy0;:::;ym�1g corresponds to the amount of information obtained on iteration 1, and the sub-
stitution [y0 := ym; :::; ym�1 := y2m�1] corresponds to transposing this information to iteration
2.

The lemma below proves that the above process terminates. The proof is given in the
appendix.

Lemma 8.3 There exists i such that J i+1 = J i.

Let Ĵ denote the stabilized J i. For the example above, the process terminates after two steps,
yielding the following set of constraints (represented as a square matrix where the constant c
of the constraint yj � yk � c corresponds to element j; k):

y0 y1 y2 y3 y4 y5
y0 0 0 0 �2 �3 �3
y1 2 0 0 �2 �3 �3
y2 3 3 0 �1 �3 �3
y3 4 4 4 0 0 0
y4 6 6 6 2 0 0
y5 7 7 7 3 3 0

The next step is to augment Ĵ with the constraints on the \tail" of the cycle, S0
e0! � � � el�1! .

More precisely, we build the system of constraints J� such that:

� J� has all the constraints of Ĵ .

� J� has the constraints z0 � z1 � � � � � zl�1 � y0.

� If clock x is reset in ei, for 0 � i < l and x � c is a constraint of guard(ej), for 0 � j < l
(resp. l � j < l + m), and x is not reset between i and j, then J� has the constraint
zj � zi � c (resp. yj�l � zi � c).

� If x � k is a constraint of guard(ej), for 0 � j < l (resp. l � j < l +m), and clock x is
not reset before j, then J� has the constraint zj � c (resp. yj�l � c). This is because
clocks are assumed to be reset to zero initially.

For the example of �gure 8.3, J� has all the constraints of Ĵ plus z0 � y0 and y0 � z0 � 2.
Notice that J� cannot be unsatis�able since this would violate the assumption that there

exists an in�nite path �. The following lemma shows how to choose a solution of J� which can
be then extended to an in�nite sequence of time stamps.

Lemma 8.4 J� admits a solution v : fz0; :::; zl�1; y0; :::; y2m�1g 7! R such that for all 0 �
i; j < m, v(yi)� v(yj) = v(ym+i)� v(ym+j). The solution can be e�ectively computed in time
O((m+ l)2).

Proof: We assume that ci;j is the bound of yi � yj in J�, that is, all constraints of J� on
variables in Y are of the form yi � yj � ci;j. Similarly, we assume that constraints on one
variable from Y and one variable from fz0; :::; zl�1g are of the form di;j � yi � zj � ei;j, for
0 � i < 2m; 0 � j < l.

From the fact that J� is satis�able, we have the following set of hypotheses:

ci;j � ci;l + cl;j; for all 0 � i; j; l < 2m (8.1)

di;j � ei;j; for all 0 � i < 2m; 0 � j < l (8.2)

Now, let Y1 = fy0; :::; ym�1g and Y2 = fyl; :::; y2m�1g, From the de�nition of J�, it follows
that J�=Y2 � (J�=Y1)[Y1 := Y2], that is, every solution of J�=Y2 is a solution of (J�=Y1)[Y1 := Y2].
Thus, we have a second set of hypotheses:

ci+m;j+m � ci;j; for all 0 � i; j < m (8.3)

We are now ready to present the construction of v̂. For simplicity, we write zi = t, yj = t0,
and so on, instead of v̂(zi) = t, v̂(yj) = t0.

First, we set z0 = 0 and choose values for z1; :::; zl�1 (as shown by lemma 8.1) so that the
projection J�cfz0;;:::;zl�1g is satis�ed.

Then, we choose y0 such that:

80 � j < l : d0;j + zj � y0 � e0;j + zj

Such a value can always be chosen according to hypotheses 8.2.
Next, we choose ym such that:

80 � i < m : y0 � ci;m+i � ym � y0 + cm+i;i

To see that such a value can always be chosen, let the minimum of cm+i;i be at i0 and the
maximum of �ci;m+i be at j0. Then:

cm+j0;m+i0 � cj0;i0 from hypotheses 8.3
� cj0;m+j0 + cm+j0;m+i0 + cm+i0;i0 from hypotheses 8.2

which directly implies �cj0;m+j0 � cm+i0;i0.
We continue by choosing, for each i = 1; :::;m� 1, a pair of values yi and ym+i such that

ym+i� yi = ym� y0. Moreover, yi and ym+i are chosen so that they satisfy the constraints with
any previously chosen yj and ym+j , for 0 � j < i. Finally, yi should satisfy the constraints with
zk, for 0 � k < l. More precisely, for all 0 � k < l, 0 � j < i, we need:

di;k � yi � zk � ei;k
�cj;i � yi � yj � ci;j

�cm+j;i � yi � ym+j � ci;m+j

�cj;m+i � ym+i � yj � cm+i;j

�cm+j;m+i � ym+i � ym+j � cm+i;m+j

Replacing ym+i and ym+j by yi + (ym � y0) and yj + (ym � y0), respectively, we get:

zk + di;k � yi � zk + ei;k
yj � cj;i � yi � yj + ci;j

yj + (ym � y0)� cm+j;i � yi � yj + (ym � y0) + ci;m+j

yj � (ym � y0)� cj;m+i � yi � yj � (ym � y0) + cm+i;j

yj � cm+j;m+i � yi � yj + cm+i;m+j

The second line can be omitted, because the �fth line imposes stricter bounds, since cm+i;m+j �
ci;j (hypotheses 8.3).

As previously, we have to ensure that such a value for yi exists. We show that this is the case
by induction on i. We only consider two of the possible cases for the minimum and maximum
of right-hand and left-hand values in the constraints above, respectively. The rest of the cases
are similar.

As a �rst case, suppose that the minimum of the right-hand values is yj1 + cm+i;m+j1 and
that the maximum of the left-hand values is yj2 � (ym � y0) � cj2;m+i. We have to prove that
yj2 � (ym � y0)� cj2;m+i � yj1 + cm+i;m+j1 . The proof is as follows:

yj2 � yj1 � (ym � y0) = yj2 � ym+j1 + ym+j1 � yj1 � (ym � y0)
= yj2 � ym+j1 from the construction of ym+j1 ; yj1
� cj2 ;m+j1 from the induction hyp.
� cj2 ;m+i + cm+i;m+j1 from hyp. 8.2

which directly implies the result.
As a second case, suppose that the minimumof the right-hand values is yj1�(ym�y0)+cm+i;j1

and that the maximum of the left-hand values is yj2 + (ym � y0) � cm+j2 ;i. We have to prove
that yj2 + (ym � y0) � cm+j2 ;i � yj1 � (ym � y0) + cm+i;j1 . The proof is as follows:

yj2 + (ym � y0)� yj1 + (ym � y0) = yj2 � ym+j2 + (ym � y0) + ym+j2 � yj1 + (ym � y0)
= ym+j2 � yj1 + (ym � y0)
= ym+j2 � yj1 + ym+i � yi
= (ym+j2 � yi) + (ym+i � yj1)
� cm+j2 ;i + cm+i;j1

which directly implies the result.
Regarding the time complexity of the construction of v̂, we have the following: �rst, choos-

ing values for z0; :::; zl�1 can be done in O(l2); second, each time a value is chosen for some
yi, we need the minimum and maximum of at most 2 � (m + l) values, which can be found
in O(m + l); this is done m times. Therefore, the whole solution can be assembled in time
O((m+ l)2).

For the example of �gure 8.3, we �nd the solution: (z0 : 0; y0 : 2; y1 : 4; y2 : 5; y3 : 6; y4 :
8; y5 : 9). Observe that y3 � y0 = y4 � y1 = y5 � y2 = 4.

From v̂, we can build the periodic trail such that:

ti = v(zi); for i = 0; :::; l� 1
tkj = v(yj) + k � (v(ym+j)� v(yj)); for j = 0; :::;m� 1; k = 0; 1; :::

In our example, this gives the in�nite trail:

(e0; 0)(e1; 2)(e2; 4)(e3; 5)(e1; 6)(e2; 8)(e3; 9)(e1; 10)(e2; 12)(e3; 13) � � �
yielding the in�nite run:

(q0; x1 : 0; x2 : 0; x3 : 0)
e0�!

(q1; x1 : 0; x2 : 0; x3 : 0)
2�! e1�! (q2; x1 : 0; x2 : 2; x3 : 2)

2�! e2�! (q3; x1 : 2; x2 : 0; x3 : 4)
1�! e3�!

(q1; x1 : 3; x2 : 1; x3 : 0)
1�! e1�! (q2; x1 : 0; x2 : 2; x3 : 1)

2�! e2�! (q3; x1 : 2; x2 : 0; x3 : 3)
1�! e3�!

(q1; x1 : 3; x2 : 1; x3 : 0)
1�! e1�! � � �

Relation to the literature

To our knowledge, the techniques presented in this chapter are new. Finite diagnostics have
been considered independently in [LPY95], however, only the existence of a run inscribed in
a symbolic path is stated and no method is given on how to extract the run. Moreover, the
symbolic reachability of [LPY95] does not contain the c-closure operation. This makes the
extraction of runs simpler, but without c-closure termination is not generally ensured.

Recently, [AKV98] have developed an algorithm which, given a sequence of edges, produces
a corresponding run, if one exists. This algorithm has complexity O(l � n2) as ours, and can
also be used to extract a �nite concrete diagnostic from a symbolic path.

The �nite-diagnostic algorithm has been implemented in the tool profounder (section 11.4)
and has been used to provide diagnostics in a number of case studies (see, for instance, sec-
tion 12.3). The in�nite-diagnostic algorithm is currently under implementation.

Chapter 9

Controller synthesis

Reactive systems are supposed to work in a certain environment which has to be part of the
model to be analyzed. To avoid confusion, in this chapter we use the term controller to refer
to the system without its environment, and the term closed system to refer to the system
composed with its environment.

The environment can be controllable, that is, cooperative or deterministic, or uncontrollable,
that is, unpredictable or even adversary. For example, when human interaction or physical
measurements are involved, we have an uncontrollable environment. When the environment is
simply another system with known behavior, it is controllable.

The controller, in turn, can be complete or incomplete. In the former case the speci�cation
is �xed: for example, when modeling an existing communication protocol or distributed algo-
rithm 1. In the latter case, the speci�cation corresponds to an intermediate design phase where
some parameters still remain to be �xed, for instance, how much time should an operation last,
or in which order a set of tasks are to be scheduled.

controllable

complete Controller

uncontrollable

Environment

VERIFICATION
(Model Checking)

SYNTHESIS
CONTROLLER

incomplete

Figure 9.1: The problem space of veri�cation and controller synthesis.

According to the above classi�cation, the problem space is divided into four regions, as
illustrated in �gure 9.1. The veri�cation techniques that we have presented thus far are su�cient
to treat three of these regions. In particular:

� The TGC example of section 3.1 falls in the upper-left region of the classi�cation: the
environment consists of the train and the gate, which have unpredictable delays of staying
in the crossing, rising and lowering. The Controller here is completely speci�ed. Thus,
all that remains to be done is to verify whether all behaviors of the closed system satisfy

1However, this does not imply that the speci�cation is deterministic.

105

y

a given property. The quanti�cation \all behaviors" implies that the property holds no
matter what the environment does.

� The scheduling case study presented in section 12.5 falls in the lower-right region of
the classi�cation: the environment here is deterministic, since the periods and execution
delays of the tasks are �xed. On the other hand, the controller (scheduler) is incomplete,
since the order of execution of the tasks is not a-priori determined. Completing the
scheduler means �nding a sample execution scenario where all tasks are served, which
can be expressed as a property of the form \there exists a behavior where ...". In general,
completing an incomplete controller with controllable environment can be done using
model checking to �nd a set of behaviors (or states) satisfying a given property.

There exists a class of problems which cannot be reduced to veri�cation, namely, incom-
plete controllers with uncontrollable environment (upper-right region in the �gure). Here,
the controller's non-determinism corresponds to the possible design choices, where as the non-
determinism of the environment corresponds to our uncertainty about the latter. To take
into account this di�erence in semantics, the actions of the closed system are explicitly distin-
guished by labeling those which belong to the controller as controllable and those belonging to
the environment as uncontrollable 2.

The problem of controller synthesis consists in restricting the controllable actions so that
the closed system satis�es a given property, independently of the uncontrollable actions (these
are not modi�ed). This restriction of the controller's non-determinism is called a strategy.

In this chapter we study the controller-synthesis problem for timed systems, with respect
to two kinds of properties, namely, invariance and reachability. After de�ning the problem
formally (section 9.1), we present two di�erent approaches to solve it:

� The �rst approach consists in computing symbolically a set of states, as a �x-point of a
pre() operator, modi�ed to take into account controllability. Then, the strategy is com-
puted by restricting the controller to the above set of states. This approach is presented
in section 9.2.

� In the second approach, the problem is reduced to the untimed case: �rst, we present an
on-the-y algorithm for controller synthesis on �nite graphs; then, we adapt this algorithm
for the STa-quotient of a timed system. This approach is presented in section 9.3.

The motivation of the second approach comes from the fact that the �x-point computation
involves an expensive predecessor operator using complementation. Moreover, it computes the
maximal strategy, while usually it su�ces to exhibit just one strategy. The on-the-y algorithm
takes advantage of this fact, returning the �rst strategy (or counter-strategy) as soon as it is
found.

9.1 Timed Controller Synthesis

9.1.1 Controllable Timed Automata

A controllable timed automaton (CTA) [MPS95] is a TA whose set of edges E is partitioned
into two disjoint sets Ec and Eu. The latter correspond to the controllable and uncontrollable

2This assumes that the controller and the environment never synchronize. In section 9.1.2 we consider the
general case, showing how to compose controllable and uncontrollable actions.

y

discrete actions of the closed system, respectively.
Consider again the TGC example of section 3.1. To make the example interesting for

controller synthesis, we slightly modify it, as shown in �gure 9.2: �rst, a delay of at least 1
time unit is put between the departure of a Train from the crossing and the arrival of the next;
second, the Controller is made less deterministic, by allowing it to issue the \lower" command
to the gate at any time between 0 and 3 time units after receiving the \approach" signal.

Regarding the Train and Gate automata as being the environment, we can represent the
above system as a CTA, shown to the lower part of the �gure. This CTA corresponds to the
parallel composition of the three automata, where edges are marked either controllable or un-
controllable. The distinction is made depending on whether the edges correspond to commands
issued by the Controller (e.g., \lower" or \raise") or actions/responses of the environment (e.g.,
\in" or \up"). In the �gure, controllable edges are drawn by dashed lines.

Strategies

The semantics of a CTA A are given in terms of strategies. Intuitively, a strategy is a sub-graph
of the semantic graph of A, obtained by restricting the choices of the controller while preserving
the choices of the environment.

More formally, let G be the semantic graph of A and s be a node of G. A strategy of A
starting from s is a sub-graph Strat of G satisfying the following conditions:

1. s is a node of Strat .

2. If s
�! s+ � is an edge of Strat then for all �0 < �, s+ �0 is a node of Strat and s

�0! s+ �0

is an edge of Strat .

3. For each node s of Strat, if there exist � 2 R and e 2 Eu such that s
�! e! s0, then:

� either s
�! s+ � and s+ �

e! s0 are edges of Strat ,

� or there exist �0 < � and e0 2 Ec, such that s
�0! s+ �0 and s+ �0

e0! s00 are edges of
Strat .

Intuitively, condition 2 ensures continuity of time transitions. Condition 3 makes sure that the
controller does not \cheat", that is, if the environment can make a move after some delay �
then this move must be included in the strategy, unless if the controller can make its move
earlier, in some �0 < �.

We can use TA notation to represent strategies. For example, a possible strategy of the
CTA of �gure 9.2 is obtained by replacing the constraint z � 3 in the invariant of discrete state
1 by z � 2. This corresponds to the Controller deciding to make its move sooner, in particular,
at most 2 time units (instead of 3) after receiving the \approach" signal.

Winning strategies and controller-synthesis problem

We are interested in strategies preserving reachability and invariance. In the case of invariance,
the controller tries to keep the closed system inside a set of \safe" states. In the case of
reachability, the controller tries to lead the closed system to a set of \target" states. In the
sequel, we make the simplifying assumption that all successors of the target states are also
target states.

More formally, consider a strategy Strat and a set of states Ŝ.

y

1

3

5 6

4

2

1110

0

9

raise

z � 1
z := 0

Controller

z := 0

exit

approach
1

23

0

z � 3

lower

8

7x � 5 ^ y < 1

x > 2
x � 5

up

exit

exit

down

lower
y := 0

x > 2

x � 5 ^ y � 2 ^ z � 3

x � 5 ^ z � 3

x > 2

x > 2

x � 5

x := z := 0

y � 1

y � 1up

y � 1

up

x � 5 ^ y < 1
y := 0
lower

down

z := 0

y < 1 ^ z � 1

x � 1

approach

x � 1

y � 2

x := 0

far near

in
x � 5

x > 2exit

Train

x � 5

approach
x � 1

downenter

up

y � 2

Gate

going up

y < 1

down
y := 0

raise

y := 0

lower
coming down

1 � y
up

x := z := 0

approach

z := 0

z � 1

raise
y := 0

down

enter

enter

enter

enter

Figure 9.2: The composite CTA for the TGC system.

y

� Strat is said to be winning with respect to Ŝ-invariance (or, Strat stays in Ŝ) if all nodes
of Strat belong to Ŝ.

� Strat is said to be winning with respect to Ŝ-reachability (or, Strat leads to Ŝ) if for any

path s0
�0! e0! s1

�1! e1! � � � in Strat , there exists some i = 0; 1; :::, such that si 2 Ŝ.
A state s is called winning with respect to Ŝ-invariance (resp. Ŝ-reachability) if there exists a
strategy starting from s which leads to Ŝ (resp. leads to Ŝ).

The controller-synthesis invariance (resp. reachability) problem for a CTA A and a set of
states Ŝ is to �nd whether there exists a strategy of A starting from its initial state, which is
winning with respect to Ŝ-invariance (resp. Ŝ-reachability). In case a winning strategy exists,
we would also like to compute it. In case it does not exist, we would like a counter-strategy as
diagnostics.

Consider again the TGC example. The strategy obtained by changing z � 3 to z � 2 is
not winning with respect to the invariance property 82 (in) down) (this property states that
whenever the train is in the crossing the gate is down). The property is satis�ed in all discrete
states except 2, 4 and 11.

9.1.2 Parallel composition of CTA

As for TA, we shall de�ne the parallel composition of two CTA. Before giving the formal
de�nitions, let us explain intuitively what the meaning of parallel composition is, in particular,
where does it di�er with respect to the TA case.

Given the fact that we have two types of discrete edges, namely, controllable and uncon-
trollable, we have three possibilities regarding the controllability status of an edge obtained by
two component-edges by synchronization:

� Either both component-edges are controllable: In this case, the synchronization is sup-
posed to model either the cooperation of two actions of the controller, or a command
of the controller to a component of its environment which waits passively to receive a
message.

� Or one of the component-edges is controllable and the other uncontrollable: In this case,
the synchronization is supposed to model an immediate response of the controller to an
action of the environment.

� Or both component-edges are uncontrollable: This is considered as a meaningless synchro-
nization, since it imposes a constraint on two actions which are triggered independently
by the environment. Therefore, we disallow two uncontrollable edges to synchronize.

We have already applied the above rules informally, when composing the TGC system in the
examples of the previous section. For instance, the synchronization of edges labeled \approach"
between the Train and the Controller belongs to the second case above, thus, it has been marked
uncontrollable. The synchronization of edges labeled \lower" between the Controller and the
Gate belongs to the �rst case, thus, it has been marked controllable.

We now formalize the above rules. Consider two CTA Ai = (Xi; Qi; qi; Ei; invari), i = 1; 2,
such that X1 \ X2 = ;. Let Labels1;Labels2 � Labels be the sets of labels used by A1 and A2

respectively. We assume that for any pair e1 2 Eu
1 ; e2 2 Eu

2 , label(e1) 6= label(e2).
Consider two strategies Strat1 and Strat2 ofA1 andA2 respectively. The parallel composition

of Strat1 and Strat2 is de�ned to be:

y

� The graph G = Strat1kStrat2, where Strat1 and Strat2 are viewed as semantic graphs, if
the following conditions hold:

1. For each node (s1; s2) of G, if s1
e1! s01 is an edge of Strat1 and e1 2 Eu

1 then
(s1; s2)

e! (s01; s2) is an edge of G, where e = e1 or e = e1ke2 for some e2 2 E2.

2. For each node (s1; s2) of G, if s2
e2! s02 is an edge of Strat2 and e2 2 Eu

2 then
(s1; s2)

e! (s1; s02) is an edge of G, where e = e2 or e = e1ke2 for some e1 2 E1.

� Empty, otherwise.

Intuitively, conditions 1 and 2 require that no uncontrollable actions are missed during syn-
chronization.

k

(b)

(a)

q1 q2q3 q4

(q1; q2) (q3; q4)

ec eu

z := 0

z = 0
eu ecq

Figure 9.3: Syntactic parallel composition of CTA.

The de�nition of parallel composition of CTA at the semantic level (in terms of strategies),
is not very useful for practical purposes. Therefore, we need to de�ne its syntactic counter-
part. This is not as straightforward as in the case of TA because of the di�erent nature of
controllable and uncontrollable edges. Indeed, if e 2 Ec and e0 2 Eu, we cannot say that eke0
is either controllable or uncontrollable. Therefore, syntactic composition of a controllable and
an uncontrollable edge does not make sense for CTA.

In order to deal with this problem, we shall introduce auxiliary discrete states in the compos-
ite CTA and simulate the immediate response of the controllable action to the uncontrollable
one. This idea is illustrated in �gure 9.3. Part (a) shows a controllable edge ec and an uncon-
trollable edge eu which have to be composed syntactically and part (b) shows the result. q is an
auxiliary discrete state and z an auxiliary clock. eu happens �rst, and has to be immediately
followed by ec. This is ensured by resetting z before entering q and having z = 0 as the invariant
of q.

More formally, consider the two CTA A1 and A2 above. Their parallel composition, denoted
A1kA2, is de�ned to be the TA (X ; Q; (q1; q2); Ec [Eu; invar), such that:

� X = X1 [X2 [fzg, for z 62 X1 [X2.

� Q = Q1�Q2 [Q1�Q0
2[Q0

1�Q2, where Q0
i contains one member for each edge ei 2 Eu

i .

� Ec contains all composite edges e1ke2, e1k?, ?ke2, such that e1 2 Ec
1; e2 2 Ec

2.

� Eu contains all edges e1k?, ?ke2, such that e1 2 Eu
1 ; e2 2 Eu

2 .

p y

� If ei = (qi; �i; a;Xi; qi+1) 2 Ei, i = 1; 2, such that e1 2 Ec
1 and e2 2 Eu

2 , then E
u contains

the edge ((q1; q2); �2; a;X2 [fzg; (q1; q02)) and Ec contains the edge ((q1; q02); �1 ^ z =
0; a;X1; (q3; q4)), where q02 2 Q0

2.

� If ei = (qi; �i; a;Xi; qi+1) 2 Ei, i = 1; 2, such that e1 2 Eu
1 and e2 2 Ec

2, then E
u contains

the edge ((q1; q2); �1; a;X1 [fzg; (q01; q2)) and Ec contains the edge ((q01; q2); �2 ^ z =
0; a;X2; (q3; q4)), where q01 2 Q0

1.

� If qi 2 Qi, q0i 2 Q0
i, for i = 1; 2, then invar(q1; q2) = invar1(q1) \ invar2(q2), invar(q1; q02) =

invar1(q1) \ z = 0 and invar(q01; q2) = invar2(q2) \ z = 0.

Then, we can prove the following result 3.

Lemma 9.1 A1kA2 has a strategy i� Ai have strategies Strat i, i = 1; 2 and the parallel com-
position of Strat1 and Strat2 is not empty.

9.2 A �xpoint solution to controller synthesis

In this section we present a �rst approach to solving controller synthesis, based in the results
of the paper [MPS95]. The approach follows the spirit of model checking using �x-points of
symbolic operators [Yov93, HNSY94]. The idea is to adapt the pre() operator to take into
account controllability.

Controllable predecessors

Consider a CTA A with set of edges E = Eu [Ec. Given a symbolic state S of A, we de�ne
the following controllable-predecessor operators:

controlled-pre(S)
def
= fs j 9� 2 R; e 2 E; s0 2 S : s �! e! s0

^
8�u 2 R : if 9eu 2 Eu; su 62 S : s �u! eu! su

then 9�c < �u; ec 2 Ec; sc 2 S : s �c! ec! scg

Intuitively, if a state s belongs in controlled-pre(S) then:

� s can reach S in one step (time passage plus discrete transition);

� if the environment, starting from s, can lead the system out of S after some time �u, then
the controller can act earlier and lead the system to S.

In section 10.2 we show how controlled-pre() can be computed e�ectively, either by using
a straightforward reduction to more basic operators, or by a special technique of quanti�er
elimination. Both ways are costly since they involve non-convex polyhedra.

3In fact, a much stronger result holds, namely: for each strategy Strat of A1kA2 there exist strategies Strat1
and Strat2 of A1 and A2 such that Strat and Strat1kStrat2 are equivalent, and vice versa. Equivalence is taken
modulo elimination of the auxiliary clock z and all auxiliary discrete states Q1�Q0

2 [Q
0

1�Q2 in the composite
CTA A1kA2.

p y

Fix-point characterization of winning states

The following lemma is a result of [MPS95].

Lemma 9.2 A state is winning with respect to Ŝ-invariance i� it belongs to the greatest �x-
point:

�S : Ŝ \ controlled-pre(S)

A state is winning with respect to Ŝ-reachability i� it belongs to the least �x-point:

�S : Ŝ [controlled-pre(S)

The operator controlled-pre() is monotonic, that is, S1 � S2 implies controlled-pre(S1) �
controlled-pre(S2). Thus, by Tarski's theorem [Tar55], the �x-points of lemma 9.2 always exist
and can be computed using the algorithms shown below:

StaysInFixpointSynthesis (Ŝ) LeadsToFixpointSynthesis (Ŝ)
f f
S0 := Ŝ ; S0 := Ŝ ;
repeat repeat

Si+1 := Si \ controlled-pre(Si) ; Si+1 := Si [controlled-pre(Si) ;
until (Si+1 = Si) until (Si+1 = Si)
return (Si) ; return (Si) ;

g g
The above �x-point algorithms have been implemented in the module synth-kro of Kronos
(see section 11.3). Running synth-kro on the TGC example of �gure 9.2 with respect to the
invariance property 82 (in) down) gives the following set of winning states (for simplicity,
some unreachable winning states are not shown):

(far, up, 0, true)
_ (near, up, 1, x � 1 ^ z =� 3)
_ (near, coming down, 2, y < 1 ^ x � y + 1)
_ (near, down, 2, x � 5)
_ (in, down, 2, x � 5)
_ (far, down, 3, x = 0 ^ z � 1)
_ (far, going up, 0, y � 2 ^ x � y)
_ (near, going up, 1, y � 2 ^ x+ 1 � y ^ z � y + 1)

Restricting the CTA to its winning states

Solving the controller-synthesis problem for a CTA A (independently of invariance or reachabil-
ity) means computing the set of winning states, say, S�, and then checking whether the initial
state s0 belongs to S�. If s0 2 S�, then we can use S� to exhibit a winning strategy, which
will be represented as a new TA A1. A1 is the largest (in terms of states) sub-automaton of A,
obtained by restricting A so that the \bad" choices of the controller are eliminated, while the
choices of the environment are not a�ected at all. The set of states of A1 is exactly S�, thus,
its semantic graph is the largest winning strategy.

More precisely, let A = (X ; Q; q0; Ec [Eu; invar), where Q = fq1; :::; qmg. S� can be written
as (q1; �1) [� � � [(qm; �m), where �i is an X -polyhedron, for i = 1; :::;m. Then, A1 is de�ned as
(X ; Q; q0; Ec

1 [Eu
1 ; invar1), where:

y y

� If e = (qi; �; a;X; qj) 2 Eu and �\�i 6= false, then Eu
1 contains the edge (qi; �\�i; a;X; qj).

� If e = (qi; �; a;X; qj) 2 Ec and � \ �i \ pre(e; Sj) 6= false, then Ec
1 contains the edge

(qi; � \ �i \ pre(e; Sj); a;X; qj).

� For each qi 2 Q, invar1(qi) is de�ned to be invar(qi) \ Si \ time-pred(
S
e2E1

guard(e)).

Back to the TGC example, the restricted CTA with respect to the previously computed set
of winning states is shown in �gure 9.4.

1

3

5 6

10

0

9

8
x > 2

x � 5

up

exit

x � 5

x := z := 0

y � 1

y � 1up

y := 0
lower

down

z := 0

x � 1

approach

x � 1

x � 1 ^ z � 3

y < 1 ^ x � y + 1

x := z := 0

approach

y � 2 ^ x+ 1 � y ^ z � y + 1
y � 2 ^ x � y

raise
y := 0

x = 0 ^ z � 1

enter

Figure 9.4: Restricting the CTA of �gure 9.2 with respect to winning states.

9.3 On-the-y controller synthesis

The high cost of the controlled-pre() operator used in the �x-point method presented above
motivates the need for a less expensive approach. Here, we follow the philosophy of chapter 6
and reduce the problem to the untimed case. First, we present an on-the-y algorithm for
controller synthesis in untimed graphs. Then, we show how to use this algorithm on the STa-
quotient of a CTA, to solve timed controller synthesis. Although the whole approach is only
\half" on-the-y, since the STa-quotient has to be generated a-priori, we believe it to be more
practical, because it avoids costly operations as complementation altogether and can return a
winning strategy as soon as it is found.

In the sequel, we �rst introduce the method in the context of untimed discrete-state systems
and then present its extension to dense-time systems.

y y

9.3.1 Untimed case

The method is based on two on-the-y synthesis algorithms, for invariance and reachability.
We have developed these algorithms for untimed systems, that is, graphs with controllable and
uncontrollable transitions. The algorithms are based on a DFS similar to the one used for
reachability analysis (see section 7.1). However, they di�er in the following points:

� Instead of searching for paths in a graph, we are looking for sub-graphs: the reason is
that a strategy has a branching instead of linear structure.

� A simple depth-�rst pass does not su�ce, and back-tracking is necessary sometimes to
update information about the controllability status of nodes.

Before presenting the algorithms, we introduce controller synthesis in the untimed setting and
re-de�ne the notions of strategy and winning strategy.

Untimed controller synthesis

We consider a �nite graph G = (V;!), the edges of which are partitioned in two disjoint sets
c! and

u!, representing the controllable and uncontrollable transitions, respectively. If v
c! w

(resp. v
u! w) then w is called a controllable (resp. uncontrollable) successor of v. We assume

that G does not contain any sink nodes.
A strategy of G from an initial node v0 is a subgraph Strat of G such that:

1. v0 is a node of Strat .

2. For each node v of Strat , if v
u! w is an edge of G then w is a node of Strat and v

u! w
is an edge of Strat .

3. For each node v of Strat, there is an edge v
c! w of Strat.

The de�nition di�ers from the one for the timed case, since it requires that the controller has a
move from every node. As will become clear below, this requirement is technically convenient
for adapting the method to the timed case. Moreover, we do not loose in generality. Indeed,
consider a node v which has only uncontrollable successors. In our setting, there can be no
strategy from v, whereas in a less restrictive setting there could be a strategy including all
(uncontrollable) successors of v. However, we can do the following \trick": change the status
of one (any) of the uncontrollable successors of v to controllable. Then, we can also obtain a
strategy in the restrictive setting.

This transformation can be performed in general when a node v has only uncontrollable
successors. One of them, say w, is chosen randomly and is marked controllable. This does not
increase the choices of the controller, since, being in v, it can only chose w as its controllable
successor. The choices of the environment are not restricted either, since a controllable successor
must be chosen, thus, w will certainly be included in a strategy from v.

Now, consider a subset of nodes V̂ � V .

� Strat is winning with respect to V̂ -invariance (or, Strat stays in V̂) if every node of Strat
belongs to V̂ .

� Strat is winning with respect to V̂ -reachability (or, Strat leads to V̂) if for any path
v0 ! v1 ! � � � in Strat, there exists some i = 0; 1; :::, such that vi 2 V̂ .

y y

A node v is called winning if there exists a winning strategy from v. In the sequel, we make the
following simplifying hypothesis for a set V̂ of target nodes for reachability: for every v 2 V̂ , v
has no uncontrollable successors and v is a controllable successor of itself.

Given a set of nodes W � V , de�ne predsc(W) = fv j 9w 2 W : v
c! wg and predsu(W) =

fv j 9w 2 W : v
u! wg. The following result is the untimed version of lemma 9.2.

Lemma 9.3 A node v is winning with respect to V̂ -invariance i� it belongs to the greatest
�x-point:

�W : V̂ \ (predsc(W) n predsu(W))

A state is winning with respect to V̂ -reachability i� it belongs to the least �x-point:

�W : V̂ [(preds(W) n predsu(W))

In words, the �rst part of the lemma says that v is winning i� v 2 V̂ , every uncontrollable
successor of v is winning, and at least one controllable successor of v is winning. The second
part says that v is winning i� either v 2 V̂ , or every uncontrollable successor of v is winning
and at least one successor of v is winning.

The on-the-y synthesis algorithms

Based on lemma 9.3 we derive two algorithms for computing a winning strategy (if one exists)
with respect to invariance or reachability. The algorithms are shown in �gures 9.5 and 9.6,
respectively. Both of them are based on a DFS where nodes are markedwith their controllability
status while they are visited. Sets Maybe, No and Yes are used to store visited nodes and
represent their marks. The algorithms also use a set of edges Strat representing the winning
strategy. The set of edges NegStrat in the algorithm for invariance represents the counter-
example \strategy" of the environment, in case a winning strategy for the controller does not
exist. In the case of reachability, such a special structure is not needed, since the explored
graph is also the counter-example.

In the algorithm for invariance, a node is initially marked maybe, until it is found that
it cannot be winning, where-upon its mark is updated to no. Dually, in the algorithm for
reachability, a node is initially marked maybe, until it is found that it is winning, where-upon
its mark is updated to yes.

Intuitively, the invariance algorithm works as follows. Procedure Reach explores the graph
in depth-�rst order. For each newly visited node v, the uncontrollable successors of v are
explored �rst. If not all of them are winning then v cannot be winning either, and control
moves to procedure UndoMaybe (line 1). Otherwise, its controllable successors are explored by
procedure CheckControllable (line 2). If none of them is winning then again v cannot be
winning. Procedure UndoMaybe updates a node v which was falsely assumed to be winning, as
well as all predecessors of v, since their computed strategies are no longer valid. In particular,
all uncontrollable predecessors of v are not winning. Also, if w is a controllable predecessor of
v, then a new controllable successor should be found for w (line 10). This is done by procedure
CheckControllable, which explores the remaining controllable successors of v.

At the end of the algorithm, and if the answer is not no, then the sub-graph represented
by the set of edges Strat contains the winning strategy. If the answer is no, then NegStrat
contains a counter-example, that is, a \counter-strategy" showing that the controller has no
way to avoid the environment leading the system to a bad state.

y y

OnTheFlyStrategyStaysIn (v; V̂) f
No :=Maybe := fg ;
Strat := NegStrat := fg ;
Controllable := fv1 c! v2 j v1; v2 2 V g ;
if (Reach(v) = no) then return \No strategy exists" ;
else return \Found strategy Strat" ;

Reach(v) f
if (v 2 No or v 62 V̂) then return no ;
if (v 2 Maybe) then return maybe ;
Maybe :=Maybe [fvg ; /* new node */

for each (v
u! w) do

if (Reach(w) = no) then

NegStrat := NegStrat [fv u! wg ;
goto FAIL ; (1)

end if

if (CheckControllable(v) 6= no) then

Strat := Strat [fv u! v0 j v0 2 V g ; (2)
return maybe ;

else

NegStrat := NegStrat [fv c! wg ;
end if

FAIL:

UndoMaybe(v) ;
return no ;

g
CheckControllable(v) f
while (9v c! w 2 Controllable) do (3)

Controllable := Controllable n fv c! wg ;
if (Reach(w) 6= no) then (4)

Strat := Strat [fv c! wg ; (5)
return maybe ;

end if

end while

return no ; (6)
g
UndoMaybe(v) f /* Update from Maybe to No */
Maybe :=Maybe n fvg ; (7)
No := No [fvg ; (8)
while (9w 2 Maybe : w! v 2 Strat) do
Strat := Strat n fw ! vg ; (9)
NegStrat := NegStrat [fw! vg ;
if (w

u! v) then (10)
UndoMaybe(w) ;

else if (CheckControllable(v) = no) then
UndoMaybe(w) ;

end while

g
g

Figure 9.5: On-the-y controller synthesis for invariance.

y y

The algorithm for reachability works in a dual manner. A di�erence is that edges which are
inserted in Strat are no longer removed. A node v is inserted in Yes (procedure UndoMaybe)
only if all its uncontrollable successors are already in Yes and it has at least one successor.
When v is inserted in Yes , its predecessors are also updated: if v was the \missing" successor
for a node w to be winning, then procedure UndoMaybe is called recursively for w. Another
di�erence from the algorithm for invariance is that here the counter-example strategy is not
explicitly shown: this is because the explored graph itself is a counter-example.

Termination of both algorithms is guaranteed by the fact that the graph is �nite. The
complexity is linear in the size of the graph. For invariance, each node and edge is considered
at most twice: one time when they are inserted in Maybe or Strat and possibly a second time to
be removed. Reachability is similar, except that edges are considered at most once. Correctness
of the algorithms is proven in lemmas 9.4 and 9.5.

Lemma 9.4 The algorithm of �gure 9.5 computes a winning strategy starting from a node v
and staying in V̂ i� such a strategy exists.

Proof: First notice that for any visited node v, Reach(v) returns no i� at that point in the
execution of the algorithm, v 2 No.

We prove the following facts by induction on the number of nodes:

1. If v 2 No or v 62 V̂ then at the end of the algorithm there is no edge in Strat having as
target v.

2. If v 2 Maybe at the end of the algorithm then Strat contains a winning strategy from v.

3. If v 2 No then there exists no winning strategy from v.

For fact 1, observe that all edges w ! v are removed from Strat whenever v is inserted in No
(line 9). Also, if v 62 V̂ then Reach(v) returns no and no edge leading to v is ever inserted in
Strat (line 4).

For fact 2, let v 2 Maybe at the end of the algorithm. We shall prove that all uncontrollable
edges from v and at least one controllable edge are in Strat . When v is visited by Reach(v),
CheckControllable(v) returns maybe (line 2), otherwise v would be removed fromMaybe (line
7). At this point all uncontrollable edges and at least one controllable edge from v are inserted
in Strat (lines 2 and 5). During the algorithm, an edge is removed (line 9) only if a successor
of v is inserted in No. This edge cannot be uncontrollable since v would also be inserted in No
(line 10). The removed controllable edge is replaced by another controllable edge since the call
to CheckControllable(w) returns maybe. Having shown that all uncontrollable edges from v
and at least one controllable edge are in Strat, we can conclude by fact 1 that all successors by
these edges are also inMaybe. By the induction hypothesis, all these successors have a winning
strategy, and the result follows by lemma 9.3.

For fact 3, let v 2 No. Notice that the only procedure inserting nodes in set No is UndoMaybe
(line 8). This means that during Reach(v), control has reached point FAIL. Then, either there
exists v

u! w such that w 2 No (line 1), or for all v
c! w, w 2 No (lines 3 and 6). In both

cases lemma 9.3 applies, showing that no winning strategy exists from v.
Facts 2 and 3 settle the \if" and \only if" parts of the proof, respectively.

The following lemma proves correctness for the reachability algorithm. The proof is given
in the appendix.

y y

OnTheFlyStrategyLeadsTo (v; V̂) f
Yes :=Maybe := fg ;
Strat := fg ;
if (Reach(v) = yes) then return \Found strategy Strat" ;
else return \No strategy exists" ;

Reach(v) f
if (v 2 Yes or v 2 V̂) then return yes ;
if (v 2 Maybe) then return maybe ;
Maybe :=Maybe [fvg ; /* new node */

for each (v
u! w) do

if (Reach(w) 6= yes) then return maybe ; (1)
if (CheckControllable(v) = yes) then (2)
UndoMaybe(v) ; (3)
return yes ;

end if

return maybe ;
g

CheckControllable(v) f
for each (v

c! w) do
if (Reach(w) = yes) then

Strat := Strat [fv c! wg ; (4)
return yes ;

end if

return maybe ;
g

UndoMaybe(v) f /* Update from Maybe to Yes */
Maybe :=Maybe n fvg ;
Yes := Yes [fvg ;
Strat := Strat [fv u! v0 j v0 2 V g ; (5)

while (9w 2 Maybe : w! v ^ 8w u! v0 : v0 2 Yes) do

if (w
c! v) then (6)

Strat := Strat [fw c! vg ; (7)
UndoMaybe(w) ;

else if (CheckControllable(w) = yes) then (8)
UndoMaybe(w) ;

end if

end while

g
g

Figure 9.6: On-the-y controller synthesis for reachability.

y y

Lemma 9.5 The algorithm of �gure 9.6 computes a winning strategy starting from v and
leading to V̂ i� such a strategy exists.

An example showing that the algorithms are on-the-y is given in the following section.

9.3.2 Timed case

We are now going to use the algorithms of the previous section to synthesize controllers for
CTA. Consider a CTA A with set of edges E = Ec [Eu. Let � be a STaB on A and let
G� = (C;!�) be the �-quotient of A. Recall that !� is a labeled transition relation, so that
if C !� C 0 for two classes C;C 0 2 V , then either C

e!� C 0 for some edge e 2 E (i.e., C 0

contains the e-successors of C), or C
�!� C

0 (i.e., C 0 contains the immediate time successors of
C).

From G� we build the graph G = (C; c! [u!), where
c! and

u! are as follows:

� If C
e!� C

0 for some edge e 2 Ec (resp. e 2 Eu) then C
c! C 0 (resp. C

u! C 0) is an edge
of G.

� If C
�!� C

0 then C
c! C 0 is an edge of G.

� If, at the end of the above two steps, a node C has no out-going edge C
c! C 0, then some

edge C
u! C 00 is removed arbitrarily, and C

c! C 00 is added.

In other words, discrete transitions do not change controllability status, while time transitions
are considered controllable. The intuition behind this choice is the following:

� If a node C has no � -successor, then the controller has no other choice but wait for the
environment to make a move (recall that the system is assumed deadlock-free). If more
than one uncontrollable moves are possible, marking arbitrarily one of them controllable,
does not a�ect the existance of winning strategies, as explained above.

� If a node C has a � -successor C 0 then

{ If C has no controllable successor, then it has no choice but wait, that is, move to
C 0.

{ If C has at least one controllable successor C 00, then the controller can choose either
to move to C 00 or wait, which corresponds to choosing C 0 as its move.

We claim that the above construction is enough to reduce timed controller synthesis to the
untimed case. Let Ĉ � C be a set of nodes of G and consider the set of states Ŝ = [fC j C 2 Ĉg.
Also let s be a state of A and C be the class of s in C.
Lemma 9.6 There is a winning strategy of A with respect to Ŝ starting from a state s i� there
is a winning strategy of G with respect to Ĉ starting from C, where C is the class of s.

Proof: We prove the result for the invariance case. The proof for reachability is similar.
First assume that C is not winning. We shall prove by induction on the number of nodes

in G that no state s 2 C has a winning strategy. By lemma 9.3, either C 62 Ĉ, or there exists
C

u! C 0 and C 0 has no winning strategy, or for all C
c! C 00, C 00 has no winning strategy. In

the �rst case, s 62 Ŝ. In the second case, by de�nition of G, C
e! C 0 for some e 2 Eu. Thus,

y y

s
e! s0 for some s0 2 C 0 and from the induction hypothesis, s0 has no winning strategy. In the

third case, by de�nition of G, there is no C 00 having a winning strategy and either C
�! C 00 or

C
e! C 00 for some e 2 Ec. Thus, there exist no � 2 R, e 2 Ec such that s

�! e! s0 and s0 has a
winning strategy.

For the \only if" part of the proof, assume that there is a winning strategy Strat� starting
from C and let s 2 C. Consider the (possibly in�nite) semantic graph Strat reachable by s and
inscribed in Strat�. It is easy to see that Strat satis�es the four conditions of the de�nition
of a strategy. Moreover, all states in Strat belong to Ŝ since all classes in Strat� belong to Ĉ.
Thus, Strat is a winning strategy.

The strategy of G corresponds to a strategy of A given in symbolic form. At each symbolic
state (class) the controller chooses either to let time pass (� -edge) or make a move (e-edge). In
the latter case, the move can also be delayed (that is, the strategy is not time-deterministic)
as long as the system remains in the same symbolic state.

Example. We illustrate the on-the-y algorithm for invariance on the modi�ed TGC example
of �gure 9.2. The graph G corresponding to this system is shown in �gure 9.7. Edges labeled
\C" correspond to � -edges (self-loops are not shown, for simplicity). All edges except those
labeled \C", \lower" or \raise" are uncontrollable.

As previously, we are interested in computing a controller so that the closed system satis�es
the invariance 82 (in) down). The implication (in) down) holds at all nodes of G except
nodes 5 and 9. Executing the algorithm of �gure 9.5 on G, we obtain the strategy shown in
�gure 9.8. Assuming that in procedure CheckControllable, \C" labeled edges are explored
last 4, then apart from the portion corresponding to the computed strategy, the rest of the
graph is not explored at all, which shows that the algorithm is on-the-y.

The nodes of the strategy of �gure 9.8 are the zones shown below:

0: (far, up, 0, x < 1)
1: (far, up, 0, x � 1)
4: (near, up, 1, x � 1 ^ z < x+ 1)
8: (near, coming down, 2, y < 1 ^ x � y + 1 ^ x < z + 2)
10: (near, down, 2, 2 < x � 5)
11: (near, down, 2, x � 2)
12: (in, down, 2, x � 5)
16: (far, down, 3, x = 0 ^ z � x)
18: (far, going up, 0, x � 1 ^ 1 � y � 2)
20: (far, going up, 0, x < 1 ^ x = y)
24: (near, going up, 1, y � 2 ^ x+ 1 � y ^ z < x+ 1)

Notice that the set of states de�ned by the zones above is contained in the set of winning states
computed with the �x-point method of section 9.2. Consequently, we can restrict the original
CTA with respect to the above states, and get a TA corresponding to the closed system.

4This a good heuristic, since \C"-edges come from � -transitions, and choosing another controllable successor
means attempting �rst the policy where the controller acts as soon as possible. Most of the times this is a good
policy.

y y

17

0 181

20 19

2

21

3

22

4 5

23

6

24

7

25

8

10

9

11 12

13 14

1516

DOWN

C

C

C

raise

C

ENTER C

C

UP lower

EXIT

raise

APPROACH

ENTER

DOWNDOWN

ENTER

C

UP

DOWN

C

APPROACH

lower

C

UP

DOWN

APPROACH

C

lower

DOWN

UP

C

C

EXIT

raise

C

lower

Figure 9.7: The STa-quotient of the CTA of �gure 9.2, used for on-the-y controller synthesis.

y y

0 181

20

4

24

8

1011 12 16C

raise

C

ENTER EXIT

APPROACH

APPROACH

UP

DOWN

UP

C

lower

Figure 9.8: A strategy for the graph of �gure 9.7.

y y

Relation to the literature

Controller synthesis is close to the theory of games. In the domain of formal methods, pioneering
have been the works of [RW87, PR89], who studied the problem in the untimed case. In the
timed case, [HW91] use the framework of [RW87] to solve controller synthesis for deterministic
TA and [MPS95] present a symbolic �x-point algorithm for general TA. To our knowledge, on-
the-y algorithms for controller-synthesis have not been proposed elsewhere. We are not aware
of any de�nition of (semantic or syntactic) parallel composition in the presence of controllability
either. A �rst version of the de�nition of strategies has been joint work with K. Altisen [Alt98].

Part III

Implementation and Tools

124

Chapter 10

Symbolic representation

The most important part in the implementation of the algorithms presented in the previous
chapters is the representation of symbolic states and their operations. Any symbolic state can
be written as a union of the form (q1; �1) [� � � [(qm; �m), where each qi is a discrete state and
each �i is a polyhedron, for i = 1; :::;m. We choose a straightforward representation for discrete
states by their index i 2 f1; :::;mg. It remains to show how polyhedra can be represented.

In this thesis we have given emphasis on the usage of convex polyhedra, whenever possible.
This is because they admit a space-e�cient data structure, namely, a (n+ 1)� (n+ 1) square
matrix, for n clocks, and time-e�cient operations, of constant-time complexity to worst-case
complexity O(n3). Whenever it is necessary to use non-convex polyhedra (for instance, in the
synthesis algorithm of section 9.2), we represent them by lists of matrices (i.e., unions of convex
polyhedra).

In the rest of this chapter, we consider a set of clocks X = fx1; :::; xng.

10.1 Di�erence Bound Matrices

Bounds

A bound is a pair (c;�) where c 2 Z[f1g and �2 f<;�g. The usual order < on integers can
be extended to members of Z[f1g so that c <1 for any c 2 Z. Then, a total order is de�ned
on bounds, where (c;�) is stricter than (c0;�0) if either c < c0 or c = c0 and �=<, �0=�. We
write (c;�) < (c0;�0) to denote the fact that (c;�) is stricter than (c0;�0) and (c;�) � (c0;�0)
if either (c;�) < (c0;�0) or the two bounds are identical. The two greatest bounds with respect
to this order, namely, (1; <) and (1;�) are said to be trivial. We also de�ne an order between
real numbers and bounds. If � is a (negative or positive) real and (c;�) a bound, then we write
� � (c;�) if, either �=< and � < c, or �=� and � � c.

The minimumof two bounds (c;�) and (c0;�0), denoted min((c;�); (c0;�0)), is (c;�) if (c;�
) � (c0;�0) and (c0;�0) otherwise. The addition of (c;�) and (c0;�0), denoted (c;�) + (c0;�0),
is de�ned to be the bound (c+ c0;�00), where �00 is < if one of �;�0 is < and � otherwise. The
complement of (c;�) is the bound (c0;�0) such that (c;�)+ (c0;�0) = (0; <). For instance, the
complement of (5; <) is (�5;�). The rounding of a bound (c;<) (resp. (c0;�)) is de�ned to
be the bound (c;�) (resp. (c0;�)). Let round() denote the rounding operator on bounds.

125

DBMs and representation of convex polyhedra

A di�erence bound matrix (DBM) [Dil89] of dimension n is a (n+ 1)� (n+ 1) square matrix
M , the elements of which are bounds. For 0 � i; j � n, we write M(i; j) for the element of M
in row i and column j.

The idea behind the representation of a convex polyhedron by a DBM M is that each
elementM(i; j) will encode the upper bound of the clock di�erence xi � xj. For example, the
atomic constraint xi � xj < 5 will be encoded as M(i; j) = (5; <), while xi � xj � 3 will be
encoded as M(j; i) = (�3;�). Row and column 0 are used to encode bounds on single clocks,
for instance, xi < 5 is encoded as M(i; 0) = (5; <) and xi � 3 as M(0; i) = (�3;�).

More formally, consider a convex X -polyhedron � = �1 \ � � � \ �m, where �1; :::; �m is a set of
hyperplanes. � is represented by a DBM M of dimension n, such that:

� If some �k is de�ned by an atomic constraint of the form xi � xj < c (resp. xi � xj � c)
then M(i; j) = (c;<) (resp. M(i; j) = (c;�)).

� If some �k is de�ned by an atomic constraint of the form xi � xj > c (resp. xi � xj � c)
then M(j; i) = (�c;<) (resp. M(j; i) = (�c;�)).

� If some �k is de�ned by an atomic constraint of the form xi < c (resp. xi � c) then
M(i; 0) = (c;<) (resp. M(i; 0) = (c;�)).

� If some �k is de�ned by an atomic constraint of the form xi > c (resp. xi � c) then
M(0; i) = (�c;<) (resp. M(0; i) = (�c;�)).

� All other elements of M are set to (1; <).

For example, if n = 2, the polyhedron x1 � 2 ^ x2 > 3 can be represented by the DBM:

x0 x1 x2
x0 (0;�) (1; <) (�3; <)
x1 (2;�) (0;�) (1; <)
x2 (1; <) (1; <) (0;�)

Inversely, any DBM M of dimension n de�nes a convex polyhedron � on fx1; :::; xng, such that

� =
\

1�i6=j�n

xi � xj �M(i; j) \ \
1�i�n

(xi �M(i; 0) \ xi � �M(0; i))

For example, the DBM
x0 x1 x2

x0 (0;�) (1; <) (�3; <)
x1 (2;�) (0;�) (�1; <)
x2 (1; <) (1; <) (0;�)

represents the same polyhedron as above, namely, x1 � 2 ^ x2 > 3.
On the other hand, the DBM

x0 x1 x2
x0 (0;�) (1; <) (�3; <)
x1 (2;�) (0;�) (1; <)
x2 (1; <) (0;�) (0;�)

represents the empty polyhedron, since the conjunction of constraints x1 � 2^x2 > 3^x2 � x1
is unsatis�able.

p y p

Canonical representation

As it becomes obvious from the above examples, two or more di�erent DBMs might represent
the same polyhedron. In order to be able to reduce semantic operations on polyhedra to
syntactic DBM transformations, but also for e�ciency reasons, we are interested in a canonical
representation, where two DBMs represent the same polyhedron i� they are identical.

For this, we de�ne the following partial order on DBMs of the same dimension n:

M1 �M2 i� 80 � i; j � n : M1(i; j) �M2(i; j)

Then, it can be easily shown that for any DBM M representing a non-empty polyhedron �,
there exists a DBM M 0 representing � and such that for all M 00 representing �, M 0 �M 00. M 0

is called the canonical form (or minimal form) of M .
It remains to �nd a canonical form for DBMs representing the empty polyhedron (for short,

empty DBMs). Since there are many empty DBMs, one of them can be chosen by convention.
For instance, we can agree that the empty DBM of dimension n, denoted M;, is the following:
M;(i; j) = (0; <), for any i; j = 0; :::; n. Then, it su�ces to be able to identify, given a DBM,
whether it is empty or not and, in case it is, to replace it by M;. Detecting whether a DBM is
empty can be done while computing its canonical form, as described in the section that follows.

10.2 Implementation of symbolic operations

Canonical form

This operation is used to check whether a DBM is empty, and if not, to transform it to its
canonical counter-part.

The idea is to view a DBMM of dimension n as a ow graph with n+1 nodes numbered 0
to n and (n+1) � (n+1) edges, where the edge from i to j has cost M(i; j). The cost of a path
i1; i2; :::; im, denoted cost(i1; i2; :::; im), is the bound M(i1; i2) +M(i2; i3) + � � � +M(im�1; im).
Then, it can be shown that M is empty i� there exists a cycle i = i1; i2; :::; im = i such that
cost(i1; i2; :::; im) < (0;�). Otherwise, M is equal to its canonical form i� for all 0 � i; j � n,
there exists no path i = i1; i2; :::; im = j such that cost(i1; i2; :::; im) < cost(i; j).

Thus, in order to compute the canonical form of M , we can use a shortest-path algorithm,
like Floyd-Warshall's all-pairs shortest-path algorithm (�gure 10.1). The complexity of the
operation is O(n3). In the sequel, we denote cf(M) the canonical form of M . Unless explicitly
mentioned, all DBMs in the sequel are assumed to be in canonical form.

c-closure

Given a a DBM M representing a polyhedron �, the c-closure of �, close(�; c), is represented
by the DBM M 0, where, for 0 � i 6= j � n:

� if M(i; j) > (c;�) then M 0(i; j) = (1; <);

� if M(i; j) + (c;�) < (0;�) then M 0(i; j) = (�c;<);
� otherwise M 0(i; j) =M(i; j).

p y p

canonical form (M)
f
for k = 0; :::; n do

for i = 0; :::; n do

for j = 0; :::; n do

M(i; j) := min(M(i; j);M(i; k) +M(k; j)) ;
if (M(i; i) < (0;�)) then returnM; ;

end for

returnM ;
g

Figure 10.1: Floyd-Warshall's all-pairs shortest-path algorithm.

That is, an upper bound such as x � c0, where c0 > c, is replaced by x < 1 (�rst line of the
de�nition). Also, a lower bound such as x � c0, where again c0 > c, is replaced by x > c. All
other bounds remain unchanged 1.

Intersection

Given two DBMs M1 and M2 of dimension n, we de�ne min(M1;M2) to be the DBM M
such that M(i; j) = min(M1(i; j);M2(i; j)), for all 0 � i; j � n. Then, if M1 and M2 repre-
sent the polyhedra �1 and �2, respectively, the polyhedron �1 \ �2 is represented by the DBM
cf(min(M1;M2)).

Test for inclusion

The polyhedron represented by M1 is included in the polyhedron represented by M2 i� 80 �
i; j � n : M1(i; j) �M2(i; j).

Orthogonal projections

Let M be a DBM representing the X -polyhedron � and let X � X be a set of clocks, X =
fxi1; :::; ximg. Then, �=X is represented by the DBM cf(M1), where:

M1(i; j) =

(
(1; <); if i or j 2 fi1; :::; img
M(i; j); otherwise

The dimension-restricting projection �cX is represented by a DBM of dimension m, where
the indices are re-arranged to map to i1; :::; im instead of 1; :::;m. This can be achieved by a
bit of hacking: since the elements of the diagonal of a DBM are useless (they encode the trivial
constraint xk�xk � 0, for k = 1; :::; n) they can be used to store the values of i1; :::; im, so that
no extra memory is required.

1We should note that in the actual version of Kronos, the implementation of close() is more sophisticated:
instead for a single constant c, closure can be computed with respect to a number of constants ci;j, for each pair
0 � i 6= j � n. This generalization does not a�ect the theoretical results of the previous chapters. Moreover,
it results in more e�cient analysis, since the bounds for each clock (or pair of clocks) are closed \as soon as
possible", thus yielding a smaller number of polyhedra during generation of graphs with post().

p y p

Diagonal projections

If M is a DBM representing the X -polyhedron �, then %� and .� are represented by DBMs
M1 and cf(M2), respectively, where:

M1(i; j) =

(
(1; <); if j = 0
M(i; j); otherwise

M2(i; j) =

(
(0;�); if i = 0
M(i; j); otherwise

Continuous time successors and predecessors

We describe the implementation of until(S1; S2) in the special case where Si are zones, that is,
Si = (q; �i), for i = 1; 2, where �i is a convex polyhedron 2. This special case of until() is used
in the convex TA-MMGA (section 6.1.2). For simplicity, we write until(�1; �2).

Intuitively, there are three cases to consider:

1. Either �1 \ �2 6= ;, in which case until(�1; �2) = time-pred(�1 \ �2) \ �1 (�gure 10.2(a)).
2. Or �1 \ �2 = ; and for every clock, either its upper bound in �1 is greater than its lower

bound in �2 (e.g., x � 4 in �1 and x � 3 in �2), or these bounds are complementary (e.g.,
y � 4 in �1 and y > 4 in �2) This case, illustrated in �gure 10.2(b), can be reduced to
the �rst case above, by rounding strict bounds and then taking the intersection and time
predecessors as before. For the above example, rounding y > 5 and taking the intersection
with �1 yields 3 � x � 4 ^ y = 5.

3. Or none of the above, in which case until(�1; �2) = ; (�gure 10.2(c)).

4

3 4

y

x

�2

�1

until(�1; �2) y

x

�1

�2

y

x

�1

�2

until(�1; �2)

(b)(a) (c)

Figure 10.2: Three examples of the until() operator.

More precisely, ifM1 and M2 are the DBMs representing �1 and �2, the DBM of until(�1; �2)
is computed by the algorithm shown in �gure 10.3.

Checking whether a clock is unbounded in a convex polyhedron

Given a DBMM representing the X -polyhedron � and a clock xi 2 X the predicate unbounded(xi; (q; �))
is implemented by the test M(i; 0) = (1; <).

2The case where S1 and S2 are not associated with the same discrete state is trivial, since the result of until()
is empty.

p y p

until (M1;M2)
f
r := 0 ;
for i = 1; :::; n do

if (M1(i; 0) +M2(0; i) < (0;�)) then
if (M1(i; 0) + round(M2(0; i)) = (0;�) ^ r 6= 1) then
M2(0; i) := round(M2(0; i)) ;
r := 2 ;

else if (round(M1(i; 0) +M2(0; i) = (0;�) ^ r 6= 2) then
M1(i; 0) := round(M1(i; 0)) ;
r := 1 ;

else returnM; ;
end for

M := time-pred(cf(min(M1;M2))) ;
return cf(min(M;M1)) ;

g

Figure 10.3: The algorithm for computing until() on DBMs.

Extracting valuations from convex polyhedra (proof of lemma 8.1)

We recall lemma 8.1, used in building diagnostics (chapter 8).

Given a convex X -polyhedron � and a k-incomplete valuation v, it takes O(n2) time
to complete v in �, or �nd that this is not possible.

We now give the proof.
Let M be the DBM representing � and let M(i; j) = (ci;j;�i;j, for 0 � i; j � n. For

i = 0; :::; k, we de�ne:

�i =

(
0; if i = 0
v(xi); if 1 � i � k

Then, for i = k + 1; :::; n, we choose �i such that:

80 � j < i : �cj;i �j;i �i �i;j ci;j

If such a �i cannot be chosen for some i, then v cannot be completed. Otherwise, we let
v0(xi) = �i, for i = 1; :::; n. It is easy to see that v0 2 �.

Regarding complexity, in the worst case we have i = 0, meaning that we have to perform
n � (n� 1) + n comparisons and additions of bounds.

Finding time successors (proof of lemma 8.2)

We recall lemma 8.2, used in building diagnostics (chapter 8).

Consider two convex X -polyhedra �1; �2 such that until(�1; �2) = �1. For any v1 2 �1,
we can �nd in time O(n) some � 2 R such that v1 + � 2 �2.

p p y g

We now give the proof.
Let Mi be the DBM representing �i, i = 1; 2. For i = 1; :::; n, let ci (resp. di) be the

constant of the bound M1(i; 0) (resp. M2(i; 0)). De�ne �1 to be the minimum of ci�v1(xi), for
i = 1; :::; n. Intuitively, �1 is the minimum delay necessary for v1 to reach the \border" of �1.

Now, if v1 + �1 62 �1 (this implies that the bound de�ning �1 was strict), then by de�nition
of until(), v1 + �1 2 �2 and we are done.

If v1+�1 2 �1 (this implies that the bound de�ning �1 was �), then de�ne �2 = mini=1;:::;nf1
2 �

(di�v1(xi)� �1)g. Intuitively, �1 is the minimum delay necessary for v1 to reach the \border"
of �2. It is easy to show that v1 + �1 + �2 2 �2, thus, we can let � = �1 + �2.

10.3 Representation of non-convex polyhedra using lists

of DBMs

Non-convex polyhedra do not admit an obvious e�cient canonical representation. Instead, we
present here a non-canonical representation (the one currently implemented inKronos), where
a non-convex polyhedron is represented by a list of DBMs.

More precisely, if � is a polyhedron, then it can be written as a union of convex polyhedra
� = �1[� � �[�k. Now, ifMi is the DBM representing �i, � is represented by the list fM1; :::;Mkg.

This representation is not canonical, since there exist many possible ways to decompose �
(notice, however, that each DBM Mi; i = 1; :::; k, is in canonical form). Moreover, there exists
no obvious order with respect to which these decompositions can be compared, so that the
\best" can be chosen. For instance, the polyhedron shown in �gure 10.4 can be decomposed in
at least three possible ways, and it is not clear which is the best, if one exists. Finally, even if
such an order is de�ned, say, by convention 3, the canonicalization procedure will almost surely
be at least as expensive as the algorithms we present below.

y

x

y

x

y

x

Figure 10.4: A non-convex polyhedron and three possible decompositions into convex polyhe-
dra.

In the following paragraphs, we show how operations on symbolic states can be reduced
to operations on non-convex polyhedra, which are in turn implemented as transformations of
DBM lists.

Complementation

This is the only operation which does not preserve convexity, i.e., that can create a non-convex
polyhedron from a convex one. Given a non-convex polyhedron � = �1[�2, we have � = �1\�2,

3This can always be done since we are talking about �nite systems of linear constraints.

p p y g

therefore, it su�ces to consider complementation of convex polyhedra.
Assume that � is convex and let � = �1\� � �\�k, where �i is an X -hyperplane, for i = 1; :::; k.

We have: � = �1 [� � � [�k. Now, notice that the complement of an X -hyperplane is an X -
hyperplane: for instance, the complement of x � 4 is x > 4, and the complement of x� y � 4
is y � x < �4. Since an X -hyperplane is a convex polyhedron, � is expressed as a �nite union
of convex polyhedra, therefore, it can be represented by a list of DBMs fM1; :::;Mkg, whereMi

represents �i.
An example is shown in �gure 10.5: � is a convex polyhedron on fx; yg and � is the union of

six convex polyhedra, one for each of the constraints x � c1, y � c2, c3 � x, c4 � y, x� y � c5,
y � x � c6, where �2 f�; <g and c1; :::; c6 are integer constants.

x

��

x

y
y

Figure 10.5: Complementation of convex polyhedra.

In order to computeM1; :::;Mk from the DBMM corresponding to �, we have to complement
all non-trivial bounds of M . More precisely, let X = fx1; :::; xng be the set of clocks and let
(c1;�1); :::; (ck;�k) be the set of non-trivial bounds of M , that is, for each l = 1; :::; k, there
exist 0 � il; jl � n such that (cl;�l) = M(il; jl). Notice that k is at most n(n + 1). Now, let
(c0l;�0

l) be the complement of (cl;�l). Then, for l = 1; :::; k, Ml is the canonical form of the
DBM M 0

l , such that M 0
l (il; jl) = (c0l;�0

l) and M
0
l (i; j) = (1; <) if i 6= il or j 6= jl.

It is worth noticing that with this construction some redundant DBMs might be created.
For instance, if � = x � 2 ^ y � 1, then, using the above technique gives four polyhedra for �,
namely, x > 2, y > 1, x � y > 2 and y � x > 1. However, the last two are redundant, since
x� y > 2 � x > 2 and y � x > 1 � y > 1. Then a simple improvement of the above method
is to test, for each newly created DBM Ml, whether it is included in any of M1; :::;Ml�1. This
method requires n(n� 1) tests for inclusion (which can be done more e�ciently than in O(n2)
time, however, given the special form of M1; :::;Mk).

Intersection

Consider two polyhedra � = �1 [� � � [�k and � 0 = � 01 [� � � [� 0l , represented by fM1; :::;Mkg and
fM 0

1; :::;M
0
lg, respectively. Their intersection is equal to

� \ � 0 =
[

1�i�k;1�j�l

�i \ � 0j

Then, � \ � 0 can be represented by a list of at most k � l DBMs, one for each convex polyhedron
�i \ � 0j.

p p y g

Test for inclusion

Inclusion is reduced to intersection and complementation. Testing � � � 0 comes down to
checking � \ � 0 = ;. This is done by computing the list of DBMs representing � \ � 0 and
checking that the canonical form of each one of them is M;.

Projections

From the fact that existential quanti�cation distributes over union, taking any type of projection
of a polyhedron � = �1 [� � � [�k comes down to computing the projection of each of �1; :::; �k,
and then taking their union.

Continuous time successors and predecessors

We show how to compute until(�1; �2) and since(�1; �2) in the general case, where �1; �2 can be
non-convex 4. By de�nition:

until(�1; �2) = fv 2 �1 j 9� : v+ � 2 �2 ^ 8�0 < � : v+ � 2 �1 [�2g
since(�1; �2) = fv 2 �2 j 9� : v� � 2 �1 ^ 8�0 < � : v� � 2 �1 [�2g

By the distributivity of existential quanti�cation over union, we can easily prove that until() is
union-distributive on its second argument [Yov93, Oli94, Alt98]:

until(�1; �2 [� 02) = until(�1; �2) [until(�1; �
0
2)

Thus, we can assume that �2 is convex. [Alt98, Oli94] prove that:

until(�1; �2) = �1 \ (.�2) n
�
.
�
(.�2) n (�1 [�2)

��

For since(), we can similarly prove the following:

since(�1; �2) = �2 \ (%�1) n
�
%
�
(%�1) n (�1 [�2)

��

This means that the two operators can be computed using more basic operations. No-
tice, however, that two complementations are required in each case, in order to compute the
polyhedra di�erences.

Controllable predecessors

The following lemma shows how controlled-pre() can be reduced to more basic operators.

Lemma 10.1 Consider a symbolic state S and let:

Sc =
[
e2Ec

pre(e; S)

Su =
[

e2Eu

pre(e; S)

U =
[

e2Eu

pre(e; S)

4For simplicity, we write until(�1; �2) instead of until((q; �1); (q; �2)) and similarly for since().

p p y g

Then:

controlled-pre(S) = (U \ Sc) [until(U;U \ Sc) [
�
time-pred(U) \ time-pred(Su)

�
Proof: Intuitively:

� Sc represents the states which can lead to S by a controllable discrete transition.

� Su represents the states which can lead to S by an uncontrollable discrete transition.

� U represents the states which can lead out of S by an uncontrollable discrete transition.
Call these the immediately bad states.

� U represents the temporarily safe states, from which the environment does not have an
immediate bad move.

� time-pred(U) represents the safe states, from which the environment does not have a bad
move, neither immediately, nor after letting any time pass.

Then, the controllable predecessors of S can be computed as the union of three sets:

� U \Sc represents the immediately good states, that is, temporarily safe states from which
the controller can lead the system to S immediately.

� until(U;U \ Sc) represents all states which can let time pass and reach an immediately
good state, while continuously passing from temporarily safe states.

� time-pred(U) \ time-pred(Su) represents all safe states which have some predecessor in S.

Special thanks go to Karine Altisen who had the patience to �nish the proof.

The implementation of controlled-pre() suggested by the above lemma is not the best from
the point of view of e�ciency, since it involves many complementations, namely, three comple-
mentations for S, U and time-pred(U), plus two more to compute until() as shown above.

A more e�cient way to implement controlled-pre() would be to eliminate quanti�ers directly,
according to the de�nition of the operator (section 9.2). This idea has been exploited in [Alt98]
to develop an alternative algorithm for computing controlled-pre(). Here, we only present the
intuition behind the method through an example. The reader is referred to [Alt98] for more
details.

We �rst de�ne the following binary operator on symbolic states:

while-not(S1; S2)
def
= fs j 9� : s+ � 2 S2 ^ 8�0 < � : s+ �0 62 S1g
= fs j 9� : s+ � 2 S2^ 6 9�0 < � : s+ �0 2 S1g

Then, computing controlled-pre(S) can be reduced to computing

Lemma 10.2 Consider a symbolic state S and let:

Sc =
[
e2Ec

pre(e; S)

Su =
[

e2Eu

pre(e; S)

U =
[

e2Eu

pre(e; S)

p p y g

Then:

controlled-pre(S) = (Sc [Su) n while-not(Sc; U)
Proof: From the de�nition of controlled-pre() (section 9.2):

controlled-pre(S) = fs j 9� 2 R; e 2 E; s0 2 S : s �! e! s0g
\
fs j 8�u 2 R : (9eu 2 Eu; su 62 S : s �u! eu! su))

(9�c < �u; ec 2 Ec; sc 2 S : s �c! ec! sc)g
= (Sc [Su)

\
fs j 8�u 2 R : (9eu 2 Eu; su 62 S : s �u! eu! su))

(9�c < �u; ec 2 Ec; sc 2 S : s �c! ec! sc)g
= (Sc [Su)

n
fs j 9�u 2 R : (9eu 2 Eu; su 62 S : s �u! eu! su) ^

(6 9�c < �u; ec 2 Ec; sc 2 S : s �c! ec! sc)g
= (Sc [Su) n while-not(Sc; U)

The above implementation of controlled-pre() is preferable to the one of lemma 10.1, since
it uses only two complementations.

Example of direct quanti�er elimination. We now present a simple example showing how
while-not(�1; �2) is computed by direct elimination of quanti�ers. Let �1 = 3 � x � 5^2 � y � 4
and �2 = 2 � x � 4 ^ 3 � y � 5. We use the notation �i(x; y) to denote the set of linear
constraints on x and y associated with �i, for i = 1; 2. For example, �2(x; y) is the set of
constraints:

2 � x � 4
3 � y � 5

�3 � x� y � 1

whereas �1(x+ �; y + �) is the set of constraints:

3 � x+ � � 5
2 � y + � � 4

�1 � x� y � 3

Now, while-not(�1; �2) is de�ned as:

while-not(�1; �2) = 9� � 0 : �2(x+ �; y + �)^ 6 90 � �0 � � : �1(x+ �0; y + �0)

Eliminating the variable �0 from the set of constraints �1(x+ �0; y+ �0) ^ 0 � �0 � �, we obtain
the following set of constraints:

3 � � � x � 5
2 � � � y � 4
�1 � x� y � 3

p p y g

Taking the negation of the above set, together with the constraints �2(x+�; y+�) and � � 0, we
obtain the disjunction of two di�erent sets of constraints (the rest are trivially unsatis�able):

2 � x+ � � 4
3 � y + � � 5

�3 � x� y � 1
3� � < x

0 � � � 1
or

2 � x+ � � 4
3 � y + � � 5

�3 � x� y � 1
4 < y
0 � � � 1

After elimination of � in each of the above sets of constraints, we obtain:

x < 3
y � 5

�3 � x� y � 0

or
1 < x � 4
4 < y � 5

�3 � x� y � 0

Thus, the result of while-not(�1; �2) is the union of two convex polyhedra �3 and �4, corresponding
to each of the above sets of constraints. The example is illustrated in �gure 10.6.

y

x

y

�1

�2

x

�3

2 3 4 5 1 2 3 4 5

1

2

3

4

55

4

3

2

1

1

�4

Figure 10.6: Direct quanti�er elimination example.

Relation to the literature

DBMs have been introduced in [Dil89], along with the basic operations of canonicalization,
intersection and projection. Most of the rest of the DBM operations described in this chapter,
as well as the DBM-list polyhedra implementation, have been implemented by S.Yovine [Yov93],
A.Olivero [Oli94] and C.Daws [Daw98]. The technique for direct quanti�er elimination has been
implemented by K.Altisen [Alt98].

p p y g

Regarding optimizations, in the current implementation of Kronos, auxiliary information
is stored in each DBM indicating which bounds are redundant, in the sense that they can be
deduced by the rest (non-redundant bounds). This permits faster complementation [Daw98].
Along this direction, [LLPY97] compute a minimal form of non-redundant bounds in a poly-
hedron, and use a list of non-redundant constraints for its representation.

Chapter 11

Tools

Kronos
1 is a tool suite for the analysis of real-time systems. It has been developed at

Verimag since 1992 [Yov93, DOY94, DOTY96, Yov97, BDM+98]. The current state of the
tool is illustrated in �gure 11.1. The upper part of the �gure (enclosed in dotted box) represents
what can be called the \�rst generation" ofKronos, consisting in a collection of modules acting
as interpreters, that is, performing the analysis directly on their input model. As of today, the
modules of Kronos are the following:

� ptg computes the parallel composition of a set of TA syntactically;

� kronos performs TCTL, TBA and reachability model checking (see section 11.1 below);

� minim computes the quotient graph of a TA with respect to the strong time-abstracting
bisimulation;

� synth-kro performs controller synthesis for invariance and reachability, using the �x-
point method of section 9.2;

� optikron computes the set of active clocks per discrete state of a TA (i.e., the function
act() of section 5.2.3), and accordingly optimizes the number of clocks using renaming
and cross-clock assignments (see [Daw98] for more details).

The input language of these modules is the basic TA model, that is, �nite-state automata with
clocks, communicating by label synchronization.

The C-code generator module, called kronos-open, represents the next generation of Kro-
nos. It is based on the compiler philosophy of Spin [Hol91], followed byOpen-Caesar [Gar98].
Given an input model, kronos-open produces C-code which can be in turn compiled to vari-
ous executables, which perform the analysis for the speci�c input model. The interest behind
this approach is that it permits to take advantage of the particularities of each input model
in order to generate optimized code. Another di�erence from the �rst-generation tools is that
kronos-open accepts a richer input language, namely, TA extended with bounded discrete
variables and shared-variable or message-passing communication.

As part of the work for this thesis, we have contributed to the development of Kronos by:

� extending kronos with a module computing the parallel composition of a set of TA on-
the-y;

1Named after the Titan of ancient Greek mythology, often indiscernible with chronos, which in Greek means
\time".

138

C-code generator: kronos-open

Variable-dimension DBM library

Polyhedra library

Syntactic Parallel Composition: ptg

Model Checker: kronos

Minimization: minim

Controller synthesis: synth-kro

Clock optimization: optikron

Figure 11.1: The modules of the Kronos tool suite.

� extending kronos with a module for TBA model checking and reachability based on
abstractions, which uses the on-the-y parallel-composition module above;

� implementing the module minim;

� implementing the prototype version of synth-kro;

� implementing a library of variable-dimension DBMs, to be used when activity abstraction
is applied during the analysis;

� implementing kronos-open: to date, it produces code for TBA model checking and
reachability and uses the variable-dimension DBM module above.

For the extensions of kronos and the implementation of minim and synth-kro, we have used
the parser and DBM library ofKronos, developed by S.Yovine, A.Olivero and C.Daws. For the
implementation of kronos-open, we have used the parser of smi, developed by M.Bozga [Boz97].
The implementation of synth-kro has been completed by K.Altisen.

In the following sections, we present kronos, minim, synth-kro and kronos-open.

11.1 The model checker kronos

The functionalities of kronos are shown in �gure 11.2. The tool operates in one of following
basic modes:

1. Full-TCTL model checking (top of �gure): the system to be veri�ed is given as a TA A
(�le .tg) and the property as a TCTL formula � (�le .tctl). The tool computes the set
of states of A satisfying � (i.e., the characteristic set of �). The output is given in terms
of a symbolic state. Since the input is given as a single TA, in case of a system consisting
of more than one components, they should be statically composed before the analysis.

2. Safety-TCTL model checking (second from top in the �gure): using forward reachability
analysis based on simulation graphs, this mode can treat a sub-class of TCTL formulae,
such as invariance (82 p) and bounded response (82 (p1) 83�c p2)). The input system
is given as a single TA, as in the previous mode. The output is a yes/no answer possibly
accompanied by a symbolic diagnostic trace.

3. Reachability-TCTL model checking (third from top in the �gure): this mode is used to
check reachability of discrete states 2 using abstractions and on-the-y parallel composi-
tion of the input system, which is given as a collection of TA. The property is given as
a state formula, that is, a boolean expression of atomic propositions. As previously, a
yes/no answer is returned, plus a symbolic diagnostic trace whenever reachability holds.

4. TBA model checking (bottom of �gure): the property here is given in terms of a TBA, the
discrete states of which are labeled with boolean expressions of atomic propositions on the
system. As in previous mode, parallel composition is computed on-the-y. Diagnostics
are reported in terms of symbolic paths ending in a cycle. The implemented technique is
based on the double-DFS algorithm of [CVWY92] to �nd non-zeno, accepting cycles. As
explained in section 7.2 this technique is sound but generally incomplete.

Function modes 3 and 4 have been implemented as part of this thesis. We now give examples
of their usage, for the veri�cation of the TGC system of section 3.1. The input .tg �les (text)
for the three automata are shown below:

/* Train.tg */

#states 3

#trans 3

#clocks 1 X

state: 0

prop: far

invar: true

trans:

true => approach; reset{X}; goto 1

state: 1

prop: near

invar: X<=5

trans:

X>2 => in; reset{}; goto 2

state: 2

prop: in

invar: X<=5

trans:

X<=5 => exit; reset{}; goto 0

2Any safety property can be reduced to (negation of) reachability. For this, it is sometimes necessary to use
an auxiliary automaton to monitor the system and move to an error state whenever the property is violated.

kronos .trail

TA A1k � � �kAn:

kronos .trace

.tctlformula �:
TCTL state

TA A1k � � �kAn:

� � �

� � �

Abstraction

TCTL safety
formula �: .tctl

kronos .trace

Abstraction

.tctl

kronos .eval

TCTL formula �:

TA A:

TA A:

TBA B:

.tg .tg

.tg

.tg .tg

.tg

.tg

and zone path
Yes/No answer

satisfying/violating �

Yes/No answer
and zone path
satisfying/violating �

Set of states
satisfying �

Yes/No answer and
non-zeno, accepting cycle
of (A1k � � �kAn)� B

Figure 11.2: The function modes of the model checker kronos.

/* Gate.tg */

#states 4

#trans 4

#clocks 1 Y

state: 0

prop: up

invar: true

trans:

true => lower; reset{Y}; goto 1

state: 1

prop: coming_down

invar: Y<1

trans:

Y<1 => down; reset{}; goto 2

state: 2

prop: down

invar: true

trans:

true => raise; reset{Y}; goto 3

state: 3

prop: going_up

invar: Y<=2

trans:

Y>=1 => up; reset{}; goto 0

/* Controller.tg */

#states 4

#trans 4

#clocks 1 Z

state: 0

prop: c0

invar: true

trans:

true => approach; reset{Z}; goto 1

state: 1

prop: c1

invar: Z<=1

trans:

Z=1 => lower; reset{}; goto 2

state: 2

prop: c2

invar: true

trans:

true => exit; reset{Z}; goto 3

state: 3

prop: c3

invar: Z<=1

trans:

Z<=1 => raise; reset{}; goto 0

We would like to check the formula 82 (in) down), stating that whenever the train is in
the crossing, the gate is down. For this, it su�ces to check that the state formula (in^:down)
is not reachable. The property can be veri�ed by running kronos as follows:

kronos -R "in and not down" Train.tg Gate.tg Controller.tg

...

Building synchronization tables...

Using breadth-first search with max symbolic-states set size: 1000

Reachability failed.

Full state space explored: 11 states. Max depth reached: 9

The tool reports that reachability has failed, meaning that invariance holds.
As a second example, consider the bounded-response property \whenever the gate is down,

it comes up at most 6 time units later". We can verify this property using a TBA encoding
the negation of the property, similar to TBA B2 of �gure 4.1. The .tg �le for this automaton
(buchi bounded.tg) is shown below:

/* Timed Buchi automaton testing bounded response */

#states 4

#trans 4

#clocks 1 W

state: 0

invar: true

trans:

true => go; reset{ W }; goto 1

state: 1

prop: down

invar: true

trans:

true => wait; reset{}; goto 2

state: 2

prop: not up

invar: true

trans:

W>6 => error; reset{}; goto 3

state: 3

prop: accept

invar: true

trans:

true => accept; reset{}; goto 3

Then, we can run kronos as follows:

kronos train.tg gate.tg control.tg buchi_bounded.tg

...

Building synchronization tables...

On-the-fly model checking by Buchi acceptance.

Using depth-first search with max stack depth: 1000

Search for acceptance cycles successful.

Sample scenario dumped in file: buchi_bounded.trail

State space explored: 19 states. Max depth reached: 18

The tool reports a counter-example of length 17, meaning that the property does not hold.
In fact, we can get a shorter counter-example by limiting the size of the DFS stack to 12:

kronos train.tg gate.tg control.tg buchi_bounded.tg -STACK 12

...

Building synchronization tables...

On-the-fly model checking by Buchi acceptance.

Using depth-first search with max stack depth: 12

Search for acceptance cycles successful.

Sample scenario dumped in file: buchi_bounded.trail

State space explored: 13 states. Max depth reached: 11

The buchi bounded.trail �le is shown below:

Path reaching cycle (length: 10)

0: < 0, 0, 0, 0, X=Y and X=Z and X=W >

--- APPROACH --->

1: < 1, 0, 1, 0, X=1 and Z=1 and 1<=W and X<=Y and Y=W >

--- LOWER --->

2: < 1, 1, 2, 0, 1<=X and X<2 and X=Y+1 and X=Z and X<=W >

--- DOWN --->

3: < 1, 2, 2, 0, 1<=X and X<2 and X=Y+1 and X=Z and X<=W >

--- GO --->

4: < 1, 2, 2, 1, 2<X and X<=5 and X=Y+1 and X=Z and X<W+2 and W+1<=X >

--- WAIT --->

5: < 1, 2, 2, 2, 2<X and X<=5 and X=Y+1 and X=Z and X<W+2 and W+1<=X >

--- IN --->

6: < 2, 2, 2, 2, X<=5 and 3<W and X=Y+1 and X=Z and W+1<=X >

--- EXIT --->

7: < 0, 2, 3, 2, Z<=1 and 4<W and X=Y+1 and X<=Z+5 and Z+4<X and W+1<=X >

--- RAISE --->

8: < 0, 3, 0, 2, Y<=2 and 6<W and X<=Z+5 and W+1<=X and Y<Z and Z<=Y+1

and Z+3<W >

--- ERROR --->

9: < 0, 3, 0, 3, 1<Y and Y<=2 and 6<=W and X<=Z+5 and W+1<=X and Z<=Y+1

and Y+4<W >

--- UP --->

Cycle (length: 0)

10: < 0, 0, 0, 3, 1<Y and 6<=W and X<=Z+5 and W+1<=X and Z<=Y+1 and Y+4<W >

--- ACCEPT --->

... back to node 10 ...

11.2 The minimization module minim

Figure 11.3 illustrates the usage of the module minim. The tool takes as input a TA 3 and
outputs its STa-quotient. Optionally, the initial partition can also be given as input. By
default the initial partition consists in a set of zones (q; �1); :::; (q; �m) for each discrete state q,
where �1; :::; �m is the canonical decomposition of the guards of edges leaving q: for each zone
�i and each guard, �i is either included in the guard or has an empty intersection with it. For
example, if x � 1 and y > 2 are the guards, we would obtain four zones, namely, x � 1^y > 2,
x � 1 ^ y � 2, x < 1 ^ y > 2 and x < 1 ^ y � 2.

The output comes in a various set of formats, including the (untimed) labeled graph format
.aut of CADP and an extended TA format .mtg to represent � -transitions. Typically, the
.aut graphs produced by minim are given as input to aldebaran, in order to be re-minimized
or compared with respect to various (untimed) bisimulations or simulations. They can also
be visualized (when they are reasonably small) using the module bcg edit, or model checked
against �-calculus formulae using the module evaluator.

For example, the STa-quotient of the TGC system (�gure 5.3) can be minimized with respect
to the observational equivalence, yielding the following graph (in .aut format):

des (0, 9, 8)

(0, APPROACH,2)

(1, APPROACH,7)

(1, UP,0)

(2, LOWER,3)

(3, DOWN,4)

(4, IN,5)

(5, EXIT,6)

(6, RAISE,1)

(7, UP,2)

3Actually, minim accepts as input the parsed .tg �le. The parsing is done by kronos.

y y

According to lemma 5.2, this graph is the Tao-quotient of the TGC system. We can use
bcg edit to visualize and transform the graph, which can then be output in postscript format,
shown in �gure 5.5.

minimTA A:

.mtg

.aut

Initial partition

of A

.tg

STa-quotient
{ Comparison/Minimization

w.r.t. untimed bi-/simulations
(aldebaran)

(evaluator)
{ �-calculus model checking
{ Visualization (bcg edit)

CADP tool suite:

Figure 11.3: The minimization module minim.

11.3 The controller-synthesis module synth-kro

This module is presented in �gure 11.4. It takes as input:

� a TA in .tg format (the special label U is used to mark uncontrollable edges);

� a TCTL formula in .tctl format, of the form 82 � (invariance) or 93 � (reachability),
where � is a boolean expression on atomic propositions.

The tool produces two output �les:

� a .eval �le containing the set of winning states;

� (if the above set is non-empty) a .tg �le specifying the restriction of the input TA to the
set of winning states, as described in section 9.2.

The TGC example of �gure 9.2 is speci�ed by the TA shown below:

/* Timed graph generated for the parallel composition of:

automaton 0: train.tg

automaton 1: gate.tg

automaton 2: control.tg

*/

#states 12

#trans 17

.eval
States of A
satisfying �

Restricted automaton
.tg of the closed system.tctl

.tg

synth-kro

TCTL formula �:
(82 or 93)

TA A:

Figure 11.4: The controller-synthesis module synth-kro.

y y

#clocks 3

X /* train */

Y /* gate */

Z /* control */

state: 0 /* vector state: < 0, 0, 0 > */

prop: FAR UP C0

invar: TRUE

trans:

1<=X => U__ APPROACH ; RESET{ X Z }; goto 1

state: 1 /* vector state: < 1, 0, 1 > */

prop: NEAR UP C1

invar: X<=5 and Z<=3

trans:

2<X and X<=5 => U__ IN ; reset{}; goto 2

Z<=3 => LOWER ; RESET{ Y }; goto 3

state: 2 /* vector state: < 2, 0, 1 > */

prop: IN UP C1

invar: X<=5 and Z<=3

trans:

Z<=3 => LOWER ; RESET{ Y }; goto 4

state: 3 /* vector state: < 1, 1, 2 > */

prop: NEAR COMING_DOWN C2

invar: X<=5 and Y<1

trans:

2<X and X<=5 => U__ IN ; reset{}; goto 4

Y<1 => U__ DOWN ; reset{}; goto 5

state: 4 /* vector state: < 2, 1, 2 > */

prop: IN COMING_DOWN C2

invar: X<=5 and Y<1

trans:

Y<1 => U__ DOWN ; reset{}; goto 6

X<=5 => U__ EXIT ; RESET{ X Z }; goto 7

state: 5 /* vector state: < 1, 2, 2 > */

prop: NEAR DOWN C2

invar: X<=5

trans:

2<X and X<=5 => U__ IN ; reset{}; goto 6

state: 6 /* vector state: < 2, 2, 2 > */

prop: IN DOWN C2

y y

invar: X<=5

trans:

X<=5 => U__ EXIT ; RESET{ X Z }; goto 8

state: 7 /* vector state: < 0, 1, 3 > */

prop: FAR COMING_DOWN C3

invar: Y<1 and Z<=1

trans:

Y<1 => U__ DOWN ; reset{}; goto 8

state: 8 /* vector state: < 0, 2, 3 > */

prop: FAR DOWN C3

invar: Z<=1

trans:

Z<=1 => RAISE ; RESET{ Y }; goto 9

state: 9 /* vector state: < 0, 3, 0 > */

prop: FAR GOING_UP C0

invar: Y<=2

trans:

1<=Y and Y<=2 => U__ UP ; reset{}; goto 0

1<=X => U__ APPROACH ; RESET{ X Z }; goto 10

state: 10 /* vector state: < 1, 3, 1 > */

prop: NEAR GOING_UP C1

invar: X<=5 and Y<=2 and Z<=3

trans:

2<X and X<=5 => U__ IN ; reset{}; goto 11

1<=Y and Y<=2 => U__ UP ; reset{}; goto 1

state: 11 /* vector state: < 2, 3, 1 > */

prop: IN GOING_UP C1

invar: X<=5 and Y<=2 and Z<=3

trans:

1<=Y and Y<=2 => U__ UP ; reset{}; goto 2

Running synth-kro on the above TA and the TCTL formula 82 (in) down), yields the
following restricted TA:

/* closed system for AB(IN impl DOWN) */

#states 12

#trans 17

#clocks 3 X Y Z

state: 0

prop: C0 UP FAR

y y

invar: TRUE

trans:

1<=X => APPROACH U__; RESET{ X Z } ; goto 1

state: 1

prop: UP C1 NEAR

invar: X<=1 and Z<=3

trans:

2<X and X<=5 => U__ IN; RESET{} ; goto 2

X<=1 and Z<=3 => LOWER; RESET{ Y } ; goto 3

state: 2

prop: UP C1 IN

invar: false

trans:

false => LOWER; RESET{ Y } ; goto 4

state: 3

prop: NEAR C2 COMING_DOWN

invar: X<=5 and Y=1 or Y<=1 and X<=Y+1

trans:

2<X and X<=5 => U__ IN; RESET{} ; goto 4

Y<=1 => U__ DOWN; RESET{} ; goto 5

state: 4

prop: IN C2 COMING_DOWN

invar: false

trans:

Y<1 => U__ DOWN; RESET{} ; goto 6

X<=5 => U__ EXIT; RESET{ X Z } ; goto 7

state: 5

prop: NEAR C2 DOWN

invar: X<=5

trans:

2<X and X<=5 => U__ IN; RESET{} ; goto 6

state: 6

prop: IN C2 DOWN

invar: X<=5

trans:

X<=5 => U__ EXIT; RESET{ X Z } ; goto 8

state: 7

prop: FAR COMING_DOWN C3

invar: false

trans:

Y<1 => U__ DOWN; RESET{} ; goto 8

state: 8

prop: FAR DOWN C3

invar: X=0 and Z<=1

trans:

X=0 and Z<=1 => RAISE; RESET{ Y } ; goto 9

state: 9

prop: C0 FAR GOING_UP

invar: Y<=2 and X<=Y or 1<=Y and Y<=2 and Y<=X+1 or 1<=Y and Y<=2 and X<=Y+8

trans:

1<=Y and Y<=2 => U__ UP; RESET{} ; goto 0

1<=X => APPROACH U__; RESET{ X Z } ; goto 10

state: 10

prop: C1 NEAR GOING_UP

invar: Y<=2 and X+1<=Y and Z<=Y+1 or Z<=3 and X+2<=Z and Y+1<=Z and Z<=Y+2

trans:

2<X and X<=5 => U__ IN; RESET{} ; goto 11

1<=Y and Y<=2 => U__ UP; RESET{} ; goto 1

state: 11

prop: C1 IN GOING_UP

invar: false

trans:

1<=Y and Y<=2 => U__ UP; RESET{} ; goto 2

Notice that only controllable edges have restricted guards, for instance, the edge LOWER of
state 1 �nds its guard restricted from z � 3 to x � 1 ^ z � 3. Also notice that the discrete
states which are eliminated by the synthesis algorithm have invariant false.

11.4 The connection of Kronos to Open-Caesar

In this section we describe the code-generator kronos-open which interfaces Kronos to the
veri�cation platform Open-Caesar. The steps of the veri�cation process using kronos-open

are illustrated in �gure 11.5 and explained in the following paragraphs.

Input

The input is given as a Lotos-like expression specifying the system components and their chan-
nel connections (�le .exp). For example, the .exp �le for the Bang&Olufsen case study
(section 12.3) is shown below:

Lotos-Behavior

(

.c

Open-Caesar

library

Variable-dimension
DBM library C compiler

(script)

profounder

generator

exhibitor

evaluator

xsimulator

Yes/No answer and
diagnostic untimed run

.exp

regular expression

�-calculus formula

.aut

.acc
Hit/Repeat
states:

analysis choice
kronos-open

Yes/No answer and
diagnostic timed run or cycle

Figure 11.5: The usage of the module kronos-open.

Bus

|[zero, one]|

(

(

(Sender_A |[a_check]| Detector_A)

|[a_frame, a_new_pn, a_reset]|

FrameGen_A

)

|||

(

(Sender_B |[b_check]| Detector_B)

|[b_frame, b_new_pn, b_reset]|

FrameGen_B

)

)

)

|||

Observer

In the above expression, names such as Bus, Sender A, etc, denote the TA of the system.
For each of these names there is a .aut �le containing the description of the TA. Names such
as zero, one, etc, are channels, used for communication between di�erent components. Com-
munication takes place through synchronization of two or more components. To specify which

components synchronize on which channels, the notation |[...]| is used, for instance, the
Bus synchronizes with the rest of the system on channels |[zero, one]|.

Apart from clocks, the TA can have boolean, bounded-integer, and enumerative-type vari-
ables. There is an associated .types �le containing type de�nitions, such as:

enum msg {m0, m1, m2, m3, m4, m5, m6, m7, m8, m9, m10}

The variables and the structure of each TA are speci�ed in the corresponding .aut �le.
Part of this �le for the TA Sender A is shown below:

/* variable declaration */

a_c : clock

a_pf : bool

a_pn : bool

a_s1 : bool

a_s2 : bool

a_msg : msg

...

atomic : bool

\index{states!atomic}

/* the TA */

des(0,34,19)

/* start */

(0, [~atomic] send a_go a_c:=0, 1)

/* idle */

(1, [(~atomic) and (a_c=781)] send a_start_frame atomic:=true a_c:=0, 2)

/* atomic:ex_start */

(2, [(a_c<=0) and (~b_start)] send b_silent atomic:=false, 3)

(2, [(a_c<=0) and b_start] send b_sends atomic:=false, 4)

/* ex_silence1 */

(3, [(~atomic) and (a_c=2343)] receive a_zero a_c:=0, 1)

(3, [(~atomic) and (a_c=2343)] receive a_one a_c:=0, 6)

/* other_started */

(4, [(~atomic) and b_start and (a_c=3124)] send b_sends a_c:=0, 4)

(4, [(~atomic) and (~b_start) and (a_c=3124)] send b_silent a_c:=0, 3)

/* atomic:goto_idle (removed) */

/* ex_silence2 */

(6, [(~atomic) and (a_c=781)] receive a_zero a_c:=0, 1)

(6, [(~atomic) and (a_c=781)] receive a_one a_c:=0, 7)

/* transmit */

(7, [(~atomic) and (a_c=781)] send a_frame a_err:=e0 a_diff:=false

a_pf:=true atomic:=true a_c:=0, 8)

...

/* until_silence */

(16, [(~atomic) and (a_c=781)] receive a_zero a_c:=0, 16)

(16, [(~atomic) and (a_c=781)] receive a_one a_c:=0, 17)

/* hold */

(17, [(~atomic) and (a_c=28116)] send a_hold a_res:=r0 a_c:=0, 1)

/* jam */

(18, [(~atomic) and (a_c=25000)] send a_jam a_pn:=true

a_start:=false a_res:=r0 a_c:=0, 7)

/* invariants */

[1, a_c<=781]

[2, ~atomic]

[3, a_c<=2343]

[4, a_c<=3124]

...

[17, a_c<=28116]

[18, a_c<=25000]

Code generation

kronos-open creates a .c �le which implements the on-the-y generation of the simulation
graph of the input model. The core of the .c �le consists of the data structures to represent
symbolic states (zones) and edges, and the implementation of post(). More precisely:

� A record-like data structure is used to represent zones. The structure has a separate
�eld for each discrete variable, plus an additional �eld for the convex polyhedron. The
size of each discrete-variable �eld is the number of bits necessary to encode the type of
the variable. The �eld for the polyhedron is a pointer to a variable-dimension DBM.
The implementation for the latter is parameterized by the maximal number of clocks
(depending on the input model) and is contained in a separate library.

� There is a C function to produce the initial zone.

� post() is implemented by a set of C-functions:

{ Two functions for each edge e: the �rst one takes as input a zone and returns its
intersection with the guard of e; the second function performs the assignments on

the discrete variables and applies the clock-reset and time-passage operators to the
DBM.

{ An iterator function which takes as input a zone and generates its successors one by
one. The out-going edges of the zone are computed on-the-y, based on information
stored about the possible channel synchronizations of the input model.

It is worth noticing the main bene�t of the compiler approach, compared to the interpreter one:
guards, asssignments and clock resets are transformed directly to C code, which results in more
e�cient execution, than having generic functions for the above operations. In particular, when
these operations are trivial (e.g., true guard, no assignment) they can be completely skipped.

On the other hand, the approach has the potential disadvantage of explosion of the size of
the .c �le generated, in case there is a very large number of transitions in the input model.
Luckily, this is rarely the case, since these are high-level transitions: at the TA level, not at the
graph level.

Final output

After the .c �le has been generated, it is compiled and linked to the Open-Caesar and DBM
libraries using a script. As a result, we obtain an executable program performing a certain type
of analysis. An option given to the script tells it which type of analysis is to be performed, that
is, which type of executable is to be generated. Currently, the following types of executables
are available:

� xsimulator performs user-guided simulation in a window-based environment.

� generator builds the simulation graph of the system in untimed labeled graph .aut

format.

� profounder performs reachability analysis or TBA emptiness. It takes as supplementary
input a .acc �le specifying the discrete states to be reached (hit states) or the repeating
states (repeat states). In case of reachability, profounder can generate timed diagnostics
using the method described in section 8.1.

� exhibitor searches for a �nite untimed trail matching an input regular expression.

� evaluator performs �-calculus model checking.

Relation to the literature

Apart from Kronos, perhaps the most successful tool for dense-time veri�cation is Up-
paal [LPY97]. To our knowledge, synth-kro is currently the only tool for dense-time controller
synthesis.

Part IV

Case studies and Conclusions

155

Chapter 12

Case studies

We have used our models and tools to treat a number of case studies. In this chapter, we
present �ve of them. The criteria for choosing them have been related to their illustrative
power, but also their proper interest. More precisely:

� Fischer's mutual-exclusion protocol is a well-known benchmark, demonstrating the per-
formance capabilities of the tools, but also serving as a good illustration of the analysis
techniques introduced in the previous.

� Two case studies have to do with modeling and veri�cation of real-world protocols, namely,
a collision-detection protocol of Bang&Olufsen and a bandwidth-reservation protocol
of Cnet. The results we obtain have revealed inconsistencies in both protocols.

� The last two case studies of real-time scheduling and multimedia-document controllers
show how formal techniques can be used not only to check correctness of such systems (i.e.,
schedulability), but also compute solutions (i.e., schedulers). In the real-time scheduling
example, computing a scheduler can be done using model checking. In the case of multi-
media documents, we use controller synthesis. This case study is also a real-world one.

The general conclusions from our experiments can be summarized as follows:

� TA are a useful and powerful model, able to express systems of quite general type, in-
cluding a number of real-world systems, within a satisfactory level of abstraction.

� The logical formalisms are also general enough to express a variety of problems, from
classical veri�cation, to the automatic generation of schedulers. Diagnostics are also
essential from this point of view.

� The tools, although prototypes and developed in a non-professional manner, are mature
enough to handle models of realistic size (e.g., systems with more than 10 clocks, symbolic
graphs of size 106 to 107 nodes), in a reasonable amount of time (a few hours).

Experimentation is not only a way to evaluate models, techniques and tools, but also an
important source of feedback for improving them. In fact, many of our analysis techniques and
tool features have been motivated by the case studies.

One of the lessons learned from our experience is that TA is a low-level model: realistic
systems are usually more complex, both in their discrete structure and their interaction mech-
anisms. In particular, they have richer data types and control-ow commands resembling those

156

of a programming language; they also communicate using higher-level primitives like broad-
cast, one-to-one handshake, interrupts, or waiting. These features often constitute the largest
part of the system (in terms of lines of speci�cation, or any similar measure), while the timing
constraints, although essential to the functioning of the system, are the smallest part.

Consequently, in order to enhance the usability of tools, the basic TA model has to be
extended with higher-level features. The kronos-openmodule follows this direction, accepting
as input TA extended with discrete variables and a variety of communication mechanisms such
as shared variables and one-to-many message passing. The theoretical results of the previous
chapters are not a�ected by these extensions which can be seen as \syntactic sugar", directly
encoded in the discrete structure (discrete states and edges) of the basic formal model. The
details can be found in appendix A.

12.1 Fischer's Mutual-Exclusion Protocol

This is a well-known example in the literature of real-time veri�cation, introduced in [AL91].
The protocol is a good benchmark for testing the capacity of tools, since it is parameterized by
the number of processes involved and can be easily expanded to generate models of very large
size. It is also a good example for illustrating many of the analysis techniques presented in the
previous chapters, namely, minimization, CTL model checking on the quotient graph, usage of
untimed bisimulations, on-the-y reachability on abstract graphs and timed diagnostics. In the
rest of this section, we �rst present the protocol, then describe the techniques used and �nally
show performance results obtained using Kronos.

Description. The system is composed by a set of n processes (identical up to renaming),
plus a shared variable last ranging from 0 to n. Process i behaves as follows: after remaining
idle for some time, it checks whether the common resource is free (test last = 0) and if so, sets
last to i. Then it waits for some time and, making sure that last is still equal to i, enters the
critical section. If last is not equal to i (meaning that some other process has requested access
meanwhile) then process i has to retry later.

tryingi

seti
xi := 0
last := i

xi � �

last := 0
exiti

idlei

xi := 0

last = 0
tryi

retryi
last 6= i
xi > �
xi := 0

criticali enteri

xi > �
waitingi

last = i

Figure 12.1: Fischer's Mutual-Exclusion Protocol.

The TA for process i is shown in �gure 12.1. The timing assumptions of the protocol are
two: �rst, each process sets last to its id no later than � time units after it has tested last = 0;
second, each process waits at least � time units before checking that last equals its own id, and

entering the critical section. To model these constraints, we use one clock per process. Notice
that the clock is active only at states \trying" and \waiting".

� and � are parameters of the system, instantiated to constants when doing veri�cation.
The correctness of the protocol depends on the values, in fact, it can be shown that mutual
exclusion holds i� � � �.

Veri�cation. There is a number of properties that our model must satisfy.
First, we must test for absence of deadlocks and timelocks (there is no problem of critical

races since no constraint of the form xi = 0 appears in the system). Observe that each struc-
tural loop in the TA modeling process i (there are two such loops, one from \idlei" back to itself
and one between \tryingi" and \waitingi") satis�es the conditions of strong non-zenoness (30).
By lemma 3.2, the system is strongly non-zeno and it su�ces to guarantee deadlock-freedom
to deduce timelock-freedom. In fact, we prove a stronger property, namely, absence of live-
locks, that is, states where at least one process is blocked while the rest can possibly continue
execution. This can be expressed by the following CTL formula:

82 93 (last = 0 ^ ^
1�i�n

idlei)

The formula states that it is always possible for the system to reach its initial state. It is easy to
see that in the initial state all processes can execute, which, together with the above property,
implies absence of timelocks.

To verify the formula, we �rst apply minimization to generate the STa-quotient of the system
(section 6.1) and then model-checking to verify the formula on the quotient (section 6.2.2). The
�rst step is performed by the module minim, and the second step by the tool evaluator. The
STa-quotient (for n = 2, � = 1, � = 2) is shown in �gure 12.2. It is easy to see that the system
is livelock-free.

The second property to verify is mutual exclusion, that is, the fact that at most one process
is in its critical section at any time. That is, we are checking the reachability of_

1�i6=j�n

criticali ^ criticalj

For this property we apply the on-the-y reachability analysis on simulation graphs, as proposed
in section 7.1.

Using kronos, we have experimented with values of n up to 9 processes, and various val-
ues of � and �. Whenever � � �, mutual exclusion was proven to hold, independently of
the abstraction used. That is, the above set of states has been found unreachable, even in
approximative analysis using the convex-hull abstraction.

Whenever � < �, mutual exclusion is violated. To get precise diagnostics, we use the
executable profounder (generated by kronos-open, see section 11.4). For instance, when
n = 2;� = 7;� = 11, we get the counter-example run:

<0, 0, last=0> - 0 - <0, 0, last=0> -- x2:=0 "try2" -->

<0, 1, last=0, x2:0> - 0 - <0, 1, last=0, x2:0> -- x1:=0 "try1" -->

<1, 1, last=0, x2:0, x1:0> - 0 - <1, 1, last=0, x2:0, x1:0> -- x2:=0 "set2" -->

<1, 2, last=2, x2:0, x1:0> - 8 - <1, 2, last=2, x2:8, x1:8> -- "enter2" -->

<1, 2, last=2, x1:8> - 0 - <1, 2, last=2, x1:8> -- x1:=0 "set1" -->

<2, 3, last=1, x1:8> - 8 - <2, 3, last=1, x1:16> -- "enter1" -->

<3, 3, last=1>

17

0

18

1

20 19

2

21

3

4

5

6

7

8

9 10

11

12

13

14

15

16

i

 TRY1

 ENTER1

 TRY2

 EXIT2

i

 SET1

 EXIT1

 TRY2

 RETRY1

 TRY1

 TRY2

 SET2

 TRY1

 ENTER1

 RETRY2

i

 RETRY1

 SET1

 SET2

 SET2

 ENTER2

 SET1

i

 RETRY2

 EXIT1

 SET2 SET1

 EXIT2

 ENTER2

Figure 12.2: The STa-quotient of Fischer's protocol (n = 2;� = 1;� = 2).

4

0 12

3

EXIT1

i

EXIT2

i

ENTER1ENTER2

Figure 12.3: The observational-quotient of the graph of �gure 12.2 (after hiding).

n Size of TA Size of quotient time (sec)
states edges classes edges

4 752 2240 629 2146 3
5 3552 12640 3501 15705 51
6 16320 67200 22085 122804 1000
7 73620 321000 too large input TA

Table 12.1: Minimization results for Fischer's protocol.

The output is shown verbatim as produced by profounder: each line shows a state taking
a time transition followed by a discrete one. Each state contains the values of the control
locations of each process (from 0 for \idle", 1 for \trying", 2 for \waiting" and 3 for \critical"),
the value of last and the clock valuation. Notice that valuations vary in dimension, according
to which clocks are active at each state, for instance, in the initial and �nal state no clocks are
active, in the second

Mutual exclusion can be veri�ed also by combining TaBs with untimed bisimulations, as
proposed in section 6.2.5. Having obtained the STa-quotient of the system (�gure 12.2), we
\hide" (i.e., replace by �) all labels but \enter" and \exit" and then re-minimize the graph with
respect to the observational bisimulation. This step is performed by the tool aldebaran. The
resulting graph is shown in �gure 12.3. Mutual exclusion can be deduced by merely observing
this graph.

Results and performance. The minimization results are shown in table 12.1. minim has
been able to generate the STa-quotient for up to 6 processes. For 7 processes the product
automaton was too big to be parsed by kronos. Notice that the number of nodes and edges
in the quotient increases with a greater exponential rate than in the product TA. The last
column of the table shows the CPU time for minimization (excluding syntactic composition
and parsing, which took about 20 seconds for 6 processes). The memory consumption was
about 100 Mbytes for 6 processes.

The results of reachability are shown in �gure 12.4. The diagrams display the size of
simulation graphs 1, in linear (a) and logarithmic scale (b). Notice that �act and �act � �inc

yield the same state space. Some conclusions that can be made from these results are the

1Only the number of nodes is shown, since the edges are not stored, apart from the edges of the current DFS
path.

4 5 6 7 8 9 10 11 12

Number of processes

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

2200000

N
u

m
b

er
 o

f
zo

n
es

(a)

simulation graph
act (inc + act)
inc
ch
ch + act

4 5 6 7 8 9 10

Number of processes

100

1000

10000

100000

1000000

N
u

m
b

er
 o

f
zo

n
es

(b)

simulation graph
act (inc + act)
inc
ch
ch + act

Figure 12.4: Number of zones in simulation graphs for Fischer's protocol.

following:

1. Combination of abstractions is de�nitely useful in absolute terms. For instance, using
activity reduces the size of the graph from 106 to less than 2 � 105 nodes, for 6 processes.

2. The convex-hull abstraction radically reduces the state space, permitting to handle up to
9 processes.

3. The size of the graphs grows exponentially, even when convex hull is used.

A remark needs to be made concerning clock activity. Notice that in each process i, the clock is
active in two out of four discrete states, namely, states \tryingi" and \waitingi". Also, a system
of n processes has n clocks in total. During our analysis, we have measured the distribution
of active clocks in the reachable state space, that is, the percentage of reachable zones for any
number of active clocks from 0 to n. The results show that only in about 50% of the state
space all clocks were active. About 40% of the reachable nodes had n�1 active clocks, and the
remaining 10% had less than n � 1 active clocks. These results are not impressive, compared
to the ones for the Stari circuit, presented in section 12.2.

Regarding performance of reachability, the largest graph contained more than 106 zones. It
has been generated on a Sparc-station 20 with 224 Mbytes of main memory in 2 hours of CPU
time, consuming 180 Mbytes.

Comparison with other results in the literature. Fischer's protocol has been a popu-
lar benchmark in the literature of timed veri�cation. [ACD+92] apply two TA minimization
algorithms to the protocol. The results of their experiments show that minim performs much
better: they manage to generate the quotient graph for only up to 4 processes in about 500
seconds (compared to only 3 seconds for minim). We have also used version 2:17 of Uppaal
(dating March 1998) to check reachability of error states. The results show that Kronos
performs much better: for 5 processes, Uppaal takes 30 minutes to explore the whole state

space, with all the reduction options enabled. Kronos needs only 37 seconds for exactly the
same input model. Recently, [STA98] use a novel technique to represent partitions as trees of
atomic constraints, and apply it for model checking. They present results on Fischer's protocol
which are better than Kronos (e.g., 100 seconds for 6 processes, instead of 1000 seconds with
Kronos).

Due to its symmetric structure, Fischer's protocol can admit even more e�cient or general
solutions. In particular, [KLL+97] have veri�ed a simple acyclic version of the protocol for up
to 50 processes using a formula-quotienting technique. [AJ98] have veri�ed an abstraction of
the protocol parameterized by the number n of processes, for any n. These techniques cannot
be directly compared to ours, since they exploit the protocol's symmetry and use simpli�ed
input models.

12.2 The Stari circuit

Stari [Gre97] is a circuit for synchronous communication between a transmitter and a receiver
through an asynchronous FIFO bu�er. The bu�er makes the system tolerant to time-varying
skew between the transmitter and receiver clocks. An internal handshake protocol using ac-
knowledgments prevents data loss or duplication inside the queue.

Description. The functioning of Stari is based on a rather simple idea. The bu�er must be
initialized to be (approximately) half-full. During each global period one value is inserted to
the bu�er by the transmitter and one value is removed by the receiver. Due the complementary
nature of these actions no control is required to prevent queue underow or overow. Short-
term uctuations in the clock rates of the transmitter and the receiver are handled by inserting
or removing more items from the queue.

Following the Stari model proposed in [TB97], we represent the boolean values true and
false by dual rail encoding (�gure 12.5). An auxiliary empty value is needed to distinguish
between the case of two consecutive identical values and the case of one value maintained
during more than one clock cycle. The transmitter is constrained to send sequences of true
and false where each two occurrences of these values are separated by an occurrence of empty.
Stari consists of a linear array of n identical stages, each capable of storing a data value X.

X true false empty
X.t 1 0 0
X.f 0 1 0

Figure 12.5: Dual rail encoding.

The operation principle of a stage k can be summarized as follows: it may copy its predeces-
sor value (Xk := Xk�1) when its successor has already copied (and acknowledged) its current
value (Xk = Xk+1). Using the dual rail encoding of data values, such a behavior can be achieved
using two Muller C-elements that hold the X:t and X:f components, and one NOR gate for
computing the acknowledgment (�gure 12.6).

A Muller C-element works as follows: when the two inputs become identical, after some delay
the output takes on their value, otherwise the output maintains its previous value. Consider,
for example, a situation where stages k and k + 1 hold the empty value, stage k � 1 the true

Xk:f

Xk:t

Ackk+1

C

C

Xk�1:t

Ackk

Xk�1:f

Figure 12.6: Stage k of Stari.

value and Ackk+1 = 0. When Ackk+1 becomes 1, the C-element for Xk:f remains unchanged
at 0 because its inputs are di�erent (i.e. Ackk+1 = 1, Xk�1:f = 0). However, both the inputs
of the C-element for Xk:t are equal to 1 (Ackk+1 = Xk�1:t = 1), and after some delay, it will
switch to 1. This way the true value has been copied from stage k � 1 to stage k.

Modeling. The correct functioning of Stari depends on the timing characteristics of the
gates (the time it takes, say, for a C-element to switch) and its relation with the central clock
period and the skew between the receiver and transmitter. We model the uncertainty concerning
the delay associated with gates using the bi-bounded delay model, that is, we associate with
every gate an interval [l; u] indicating the lower and upper bounds for its switching delay (see
[Lew89, BS94, MP95a, AMP98] for the exact de�nitions).

Following [MP95a] we can model any logical gate with a delay [l; u] using a timed automaton
with 4 states (0-stable, 0-excited, 1-stable and 1-excited) and one clock. In particular, each
stage of Stari is modeled by the three timed automata of �gures 12.7, 12.8 and 12.9.

Xk:t = 1 Xk:t = 1

Ck:t < uC
Xk�1:t = Ackk+1 = 0 = Ck:t := 0

Xk�1:t = 1 _Ackk+1 = 1

Xk�1:t = 1_
Ackk+1 = 1

Yk:t = 1Yk:t = 0

Xk:t = 0

Ck:t < uC

Xk:t = 0Xk�1:t = Ackk+1 = 1 = Ck:t := 0

Xk�1:t = 0 _Ackk+1 = 0
Xk�1:t = 0_
Ackk+1 = 0

Yk:t = 0 Yk:t = 1

Ck:t � lC^

Xk�1:t = 0^
Ackk+1 = 0

Ck:t � lC^

Xk�1:t = 1^
Ackk+1 = 1

Figure 12.7: The timed automaton for the C-element Xk:t

Xk:f = 1 Xk:f = 1

Ck:f < uC
Xk�1:f = Ackk+1 = 0 = Ck:f := 0

Xk�1:f = 1 _Ackk+1 = 1

Xk�1:f = 1_
Ackk+1 = 1

Yk:f = 1Yk:f = 0

Xk:f = 0

Ck:f < uC

Xk:f = 0Xk�1:f = Ackk+1 = 1 = Ck:f := 0

Xk�1:f = 0 _Ackk+1 = 0
Xk�1:f = 0_
Ackk+1 = 0

Yk:f = 0 Yk:f = 1

Ck:f � lC^

Xk�1:f = 0^
Ackk+1 = 0

Ck:f � lC^

Xk�1:f = 1^
Ackk+1 = 1

Figure 12.8: The timed automaton for the C-element Xk:f

Ackk = 1 Ackk = 1

Ck:a < uN
Xk:t = 1 _Xk:f = 1 = Ck:a := 0

Xk:t = Xk:f = 0

Xk:t = 0
Xk:f = 0

ackk = 1ackk = 0

Ackk = 0

Ck:a < uN

Ackk = 0Xk:t = Xk:f = 0 = Ck:a := 0

Xk:t = 1 _Xk:f = 1
Xk:t = 1_
Xk:f = 1

ackk = 0 ackk = 1

Ck:a � lN^

(Xk:t = 1_
Xk:f = 1)

Ck:a � lN^

Xk:t = 0^
Xk:f = 0

Figure 12.9: The timed automaton for the NOR gate Ackk

Let us look at the automaton of �gure 12.7 which models the X:t component of the kth

stage. Its state is characterized by two boolean variables Xk:t, Yk:t, the former stores the gate
output and the latter stores the gate internal value, i.e. the value to which the gate \wants" to
go after the delay. The stable states are those in which Xk:t = Yk:t. The conditions for staying
and leaving stable states are complementary and do not depend on clock values: for example,
the automaton leaves state (0; 0) and goes to the unstable state (0; 1) exactly when both its
inputs are 1. During this transition the clock variable Ck:t is reset to zero. The automaton can
stay at (0; 1) as long as Ck:t < uC and can change its output and stabilize in (1; 1) as soon as
Ck:t � lC, where [lC; uC] is the delay interval associated with a C-element. The automaton for
the X:f component (�gure 12.8) is exactly the same (with di�erent inputs) and the automaton
for the NOR gate (�gure 12.9) is similarly characterized by two boolean variables Ackk, ackk,
a clock variable Ck:a and a delay bounded by [lN ; uN].

In addition to the automata for modeling the stages, we need two more automata for the
transmitter and the receiver. The transmitter is modeled as a 3-state automaton (�gure 12.10).
At each clock cycle it puts a value at the input ports of the �rst stage (X0:t andX0:f), according
to the convention that every pair of data items is separated by an empty item. Moreover, the
transmission can be done with some skew with respect to the global (perfect) period, bounded
by the sT constant, that is, the actual time of transmission can be anywhere in the interval
[p� sT ; p + sT].

put true

put false

put empty

X0:t := 1

X0:f := 1 X0:t := 0

put empty

x := 0
if (skew > 0) then y := 0
skew := skew + 1

Assignments at all edges:

X0:f := 0

Clock invariant at all states: x < p + sT
Clock guard at all edges: x � p� sT

Figure 12.10: The transmitter.

The receiver is a 1-state automaton (�gure 12.11) which reads the current output value (i.e.
Xn:t and Xn:f) and acknowledges the reception by modifying Ackn+1 according to whether or
not Xn is empty. As in the transmitter, a skew bounded by sR is allowed.

In order to forbid the receiver and transmitter skews to accumulate during successive cycles,
we use a discrete variable skew 2 f�1; 0; 1g. Whenever either the receiver or the transmitter
lag too far behind one another (i.e., skew 6= 0), they re-synchronize by resetting both their
clocks to zero. Notice, however, that their relative skew can vary non-deterministically from
one cycle to another. This is more general than assuming a �xed skew given in advance, or a
�xed skew chosen at start-up from a given interval.

The transitions of the automata are annotated by action names such as put and get whose
role is explanatory { they have no e�ect on the functioning of the system.

A �nal remark needs to be made concerning the activity of clocks in the model. First notice
that an n-stage Stari requires 3n+1 TA for the timed gates (i.e., C-elements or NOR gates),

y := 0
if (skew < 0) then x := 0
skew := skew � 1

get empty

get false

p� sR � y ^Xn:t = 1
Ackn+1 := 0

y � p+ sR
p � sR � y ^Xn:f = 1

Ackn+1 := 0 get true

p� sR � y ^Xn:t = Xn:f = 0 =
Ackn+1 := 1

Assignments at all edges:

Figure 12.11: The receiver.

plus 2 TA for the transmitter and receiver. This totals 3(n + 1) clocks and 6n + 2 boolean
variables. Now, the basic building block used to model a timed gate is a four-state TA with
one clock (�gures 12.7, 12.8 and 12.9). Observe that the clock is active in only two of the four
states, namely, in the unstable states. This information is crucial for the success of veri�cation,
as we shall see below.

Veri�cation. The following two properties need to be proved to ensure the correct operation
of the Stari circuit:

� Each data value output by the transmitter must be inserted in the bu�er before the next
one.

� A new value must be output by the bu�er before each acknowledgment from the receiver.

These are �nite-execution (i.e., safety) properties, meaning that they are preserved in the
activity graph. Then, to verify the model we �rst generate its activity graph, and then minimize
the latter with respect to the untimed observational bisimulation, after hiding all actions except
put and get. As an example, a model of 3 stages generates the minimized graph shown in
�gure 12.12. It is easy to see that this graph corresponds to the ideal bu�er implementation,
satisfying the above two properties.

Results and performance. We have managed to verify Stari for up to 8 stages, with the
following parameters: lC = lN = 2; uC = uN = 4; p = 12; sT = sR = 1. Figure 12.13 shows
the time performance and the number of symbolic states generated for each number of stages.

The most interesting thing in this example concerns the activity of clocks. Indeed, a straight-
forward analysis without taking into account this information is doomed to state explosion, due
to the fact that the number of clocks grows quite quickly with the number of stages (for 8 stages,
there is a total of 27 clocks). We have measured the distribution of active clocks in the state
space, that is, for each number of clocks k, the number of the number of DBMs of dimension k.
The results con�rm our expectations that only a small fraction of clocks are necessary at any
time. For instance, in the case of 8 stages, at most 8 clocks were active, and this in less than
4% of the total number of DBMs generated (�gure 12.14). In more than 85% of the symbolic

8

4

0 5

1

6

2

7

3

PUT FALSE PUT TRUE

GET EMPTY

GET EMPTY

PUT FALSE PUT TRUE

PUT EMPTY

GET FALSE

GET FALSE

GET TRUE

PUT EMPTY

PUT EMPTY

GET TRUE

GET EMPTY

Figure 12.12: 3-stage Stari.

states, only 6 to 8 clocks were necessary. The shape of the distribution is the same for any
other number of stages and also if we measure it with respect to the number of symbolic states
instead of number of DBMs.

Relation to the literature. [Gre97] gave a deductive proof of Stari's correctness. This
proof, although aided by a theorem prover, requires a lot of intervention and creativity from
a user who understands why Stari works. [HBAB93] provided an automatic proof using a
di�erent methodology based on timed Petri nets, for which they developed an algorithm to
calculate the time separation between events. [TB97] model the stages as TA and then prove,
using techniques developed in [TAKB96], that every stage can be abstracted into a single 5-
state automaton with one clock. Using this abstract model and the tool Timed-Cospanthey
were able to verify an 8-stage Stari. Using the detailed model they could not verify more than
3 stages.

The same model as the one presented here, but interpreted in discrete time, is treated
in [BMS99]. Based on the results of [AMP98] the discrete-time model is shown to be a conser-
vative approximation of the dense-time one and a discrete-time version of Kronos based on
BDDs is used to verify the circuit for up to 18 stages. This large gap in performance with respect
to the DBM-based results presented above is probably due to the huge size of the discrete state
space (224): using DBMs, discrete variables are enumerated, whereas using BDDs all variables
(including clocks) are handled uniformly, which results in more compact representation.

3 4 5 6 7 8

number of stages

1

10

100

1000

10000

ti
m

e
(i

n
se

co
nd

s)

3 4 5 6 7 8

number of stages

1000

10000

100000

1000000

nu
m

be
r

of
 s

ym
bo

li
c

st
at

es

3 4 5 6 7 8

number of stages

1000

10000

100000

nu
m

be
r

of
 D

B
M

s

Figure 12.13: Experimental results for Stari.

0 3 6 9 12 15 18 21 24 27

number of active clocks

0

10

20

30

40

D
B

M
s

(%
 o

ve
r

to
ta

l:
 5

86
47

9)

Figure 12.14: The distribution of active clocks in an 8-stage Stari.

12.3 Bang&Olufsen's Collision-Detection Protocol

This is an industrial case study, involving a protocol developed by Bang&Olufsen. It has
been �rst analyzed using the veri�cation-tool Uppaal. The results of this analysis have been
presented in [HSLL97].

We have treated the same case study with kronos-open, using the detailed description of the
protocol contained in [HSLL97]. The TA models of kronos-open and Uppaal are essentially
the same, so that translating the speci�cation of [HSLL97] to kronos-open format was almost
straightforward.

The motivation for re-treating the same example has been twofold. First, being an industrial
case study, it represents a good benchmark for any formal-analysis tool aspiring to be used in
practice. Moreover, the results of our analysis have been unexpected, since we have found an
error not reported in [HSLL97]. Second, from a methodological point of view, the protocol
demonstrates the advantage of polyhedra-based techniques for the analysis of TA, as opposed
to discretization techniques such as [AMP98]. (This point is discussed in more detail in what
follows.)

We shall only give a brief description of the protocol here, rather insisting on the modeling
issues involved. For a detailed description, the reader is referred to [HSLL97].

Bus
zero

one

zero

one

Aframe BNewPn

Sender B

Detector B

Observer

BresetANewPn Areset Bframe

Detector A

Sender A

Acheck Bcheck

observe

Frame generator A Frame generator B

Figure 12.15: Bang&Olufsen's protocol: general architecture.

Brief description and modeling. The role of the protocol is to ensure collision detection
in a distributed environment of components exchanging messages through a common multiple-
access bus. The system modeled has two transmission components A and B (identical up to
renaming) and the bus. Since we are interested only in the collision-detection protocol, the
reception components are not modeled. A and B consist each of 3 sub-components, namely,
the sender, the detector and the frame generator. The sender handles transmission of messages,
which are grouped in frames. The latter are generated by the frame generator. The detector is
responsible for collision detection.

The components along with their communication channels are shown in �gure 12.15 (the
observer is not part of the system itself, but is added to monitor the system for possible errors,
as we explain below). Communication is done by binary rendez-vous, that is, a component

sending on a channel C synchronizes with a component receiving on C (in this case the rendez-
vous serves only for synchronization, that is, no particular message is exchanged). For instance,
the Bus component synchronizes on channel \zero" with either Senders A or B (only one at
the time), which models the sender polling the value 0 from the bus.

The timing constraints of the system concern the frequency of senders' polling on the bus,
the encoding of messages and the waiting delay required before retransmitting after a collision.
For instance, a sender samples the value of the bus (1 for high voltage, 0 for low voltage) twice
every 781 micro-seconds. Also, there are 5 di�erent types of messages and the i-th message is
encoded by the presence of a 1 on the bus, for 2 � 1562 � i micro-seconds. Finally, the jamming
signal, after a collision, is a continuous 1 on the bus for 25 milli-seconds.

Each component is modeled as an automaton: senders A and B are modeled by timed
automata whereas the rest of the automata are untimed. Figure 12.16 shows the TA for
sender A. It is roughly divided in three parts, enclosed in dashed boxes: the upper part takes
care of initialization when the sender attempts to transmit; the middle part models normal
transmission; the lower part models the actions taken upon collision detection.

The �gure is only intended to give an impression of the complexity of the case study and
the modeling issues involved. More precisely, the Uppaal model uses:

� 18 boolean variables, 4 bounded-integer variables and 4 enumerative-type variables, rang-
ing in sets of up to twenty di�erent values. For example, variable A Pf (�gure 12.16) is
boolean while A err ranges in f0; 1; 2g.

� Binary-rendez-vous communication.

� Atomic control states (drawn in dashed lines in �gure 12.16). These states are transient,
that is, if an automaton is in an atomic state, then no time passes. Moreover, when an
automaton enters an atomic state, it has to exit before any other automaton can take a
discrete step.

kronos-open supports discrete variables and rendez-vous communication directly. Atomic
states are not supported by kronos-open directly. They can be modeled using an auxiliary
boolean variable and a clock, as described in appendix A.2.

Perhaps the most interesting part of the protocol is its timing constraints. Duration con-
stants vary from 40 micro-seconds to 0:5 seconds and have no common divisor (�gure 12.16).
This implies a very small time quantum of one micro-second, which results in very large con-
stants in guards and invariants. Consequently, enumerative approaches based on discretization
can lead to state explosion, since time units have to be counted one-by-one.

Veri�cation. The protocol must ensure collision detection, that is, if a frame sent by a sender
is destroyed by the other sender (collision), then both senders shall detect this. In order to
state this requirement formally, we have to make clear what does it mean for a frame to be
destroyed and when is a collision detected. For simplicity, we formalize the requirement just
for sender A. The case of B is symmetric.

According to [HSLL97], collision happens when the boolean expression

�col
def
= :(A Pf , A S 1 ^ A Pn , A S 2)

evaluates to false at the moment A S 2 is assigned (transition from control state 11 to 12 in
�gure 12.16). A collision is detected when the result of the detector automaton (called by signal
\Acheck !") is A res = 1 or A res = 2, whereupon the sender emits an \Areset !" signal.

1

14

16 17

18

11

x := 0

A Pn := true

A res := 0

A start := false

x � 25000

x := 0

A Pn := true

Areset !

zero ?
x := 0

x = 781

one ?

A stop

A res = 0

A S1 := false

zero ?

:A eof

A err := 0

Aframe ! x = 781

A Pf := true
x � 781

x = 781

zero ?

x := 0

x = 2343

one ?:B start

x = 3124

x � 3124

B start

x = 3124

x := 0

B start

x = 781

x = 50000

x := 0

x � 50000

A eof

x := 0

x := 0

x � 781

:A eof

one ?

A S1 := true

x � 781

x � 781
A res := 0

x � 28116

x = 2343
zero ?x := 0

:B start

A Pn := A Pf

x � 2343

1213

4

15

5

6

78

9

2 3

A S2 := false A S2 := true

one ?zero ?

x = 781 x = 781

x � 781

A err = 0x = 40ANewPn !

A err > 0x = 40

A Pn := true

10x � 40

x := 0

x = 781
x := 0

x = 28116

one ?x = 781

x = 25000

A di� := false

A res = 2

x = 781

x := 0

A Pn := false

Areset !

A res = 1

x = 781

x := 0

:A stop

Done !

Acheck ! observe !

Figure 12.16: Bang&Olufsen's example: the TA for sender A.

Now we can model the requirement in terms or reachability of the \error" state of the
observer automaton shown in �gure 12.17. The observer starts at its left-most state and moves
to its middle state when a collision happens. If the collision is detected before the the sender
�nishes transmitting (modeled by signal \Done !") then the observer returns to its initial state,
otherwise it goes to the error state.

Areset ?

Done ?

Done ?

error

:�col

Observe ?

Observe ?

�col

Observe ?

Figure 12.17: Bang&Olufsen's example: the observer automaton.

Results and performance. [HSLL97] present two versions of the protocol: the initial version
contains an error (Uppaal provides an abstract counter-example); then, the frame-generator
automaton is slightly modi�ed and the authors of [HSLL97] claim this version to be correct.
However, we have found a counter-example in both versions, using the profounder executable
generated by kronos-open (see section 11.4).

As in [HSLL97], in order to obtain a fast answer, we have used a simpli�ed model of the
protocol, where not the whole variety of messages could be generated. This does not a�ect the
veri�cation results in any way, since the model has the data-independence property [Wol86].
That is, the behaviors of the protocol do not depend, for a certain type of message, on the
values of this messages. Therefore, although the message can have more than one values, we
can assume that it always has the same value. In any case, the behaviors of the simpli�ed model
are a subset of the behaviors of the complete model, therefore, any counter-example produced
in the former will also be valid in the latter.

The complete diagnostic run for the simpli�ed \corrected" model is 1951 discrete/timed
steps long. Here, we show only its head and its tail 2:

<> - 0 - <> -- b_c:=0 "b_go" -->

<b_c:0> - 40 - <b_c:40> -- a_c:=0 "a_go" -->

<a_c:0, b_c:40> - 741 - <a_c:741, b_c:781> -- b_c:=0 "b_start_frame" -->

<a_c:741, b_c:781> - 40 - <a_c:781, b_c:821> -- "a_silent" -->

<a_c:781, b_c:40> - 0 - <a_c:781, b_c:40> -- a_c:=0 "a_start_frame" -->

<a_c:781, b_c:40> - 2303 - <a_c:3084, b_c:2343> -- "b_silent" -->

<a_c:2303, b_c:2343> - 0 - <a_c:2303, b_c:2343> -- b_c:=0 "b_one" -->

<a_c:2303, b_c:2343> - 40 - <a_c:2343, b_c:2383> -- a_c:=0 "a_one" -->

<a_c:2343, b_c:40> - 741 - <a_c:3084, b_c:781> -- b_c:=0 "b_one" -->

<a_c:741, b_c:781> - 40 - <a_c:781, b_c:821> -- a_c:=0 "a_one" -->

<a_c:781, b_c:40> - 741 - <a_c:1522, b_c:781> -- b_c:=0 "b_frame" -->

2There are too many discrete variables, thus, only the clock valuation is shown for each state. Clocks a c

and b c correspond to senders A and B, respectively. The initial valuation is trivial since no clocks are initially
active. In the second valuation, only b c is active.

...

<a_c:741, b_c:781> - 40 - <a_c:781, b_c:821> -- "b_observe_ok" -->

<a_c:781, b_c:40> - 0 - <a_c:781, b_c:40> -- "b_stopped" -->

<a_c:781, b_c:40> - 0 - <a_c:781, b_c:40> -- a_c:=0 "a_zero" -->

<a_c:781, b_c:40> - 741 - <a_c:1522, b_c:781> -- "a_diff_pf_s1" -->

<a_c:741, b_c:781> - 0 - <a_c:741, b_c:781> -- "a_stopped" -->

<a_c:741, b_c:781> - 0 - <a_c:741, b_c:781> -- b_c:=0 "b_nocol" -->

<a_c:741, b_c:781> - 40 - <a_c:781, b_c:821> -- "b_pf0" -->

<a_c:781, b_c:40> - 0 - <a_c:781, b_c:40> -- "b_zero" -->

<a_c:781, b_c:40> - 0 - <a_c:781, b_c:40> -- "b_new_pn" -->

<a_c:781, b_c:40> - 0 - <a_c:781, b_c:40> -- a_c:=0 "a_nocol" -->

<a_c:781, b_c:40> - 40 - <a_c:821, b_c:80> -- "a_pf0" -->

<a_c:40, b_c:80> - 0 - <a_c:40, b_c:80> -- "a_zero" -->

<a_c:40, b_c:80> - 0 - <a_c:40, b_c:80> -- "a_new_pn" -->

Intuitively, the error seems to be due to the following reasons:

1. The two senders start transmitting with a di�erence of exactly 40 �-seconds. Due to this
fact and the way the sampling of the bus is performed, collision remains undetected until
the last message of the frame is sent.

2. In the last message of the frame (a message signaling end-of-frame) the collision detection
procedure is disarmed. This can be seen in the tail of the diagnostic run above: instead of
the action a check calling the collision detection procedure, we see the action a stopped,
which means that boolean variable A stop is set. Therefore, collision is not detected by
A. The situation is the same for sender B.

Regarding performance, the counter-example for the simpli�edmodel is produced by profounder
in 25 seconds on a Sparc 20. To further test the capacity of the tool, we have built the en-
tire simulation graph of the complete model, using generator (section 11.4). The graph has
9195634 nodes and 9509928 edges and was generated on a PC at 166 MHz with 512 Mbytes
of main memory, consuming 15 minutes of CPU time and 300 Mbytes. The results obtained
in [HSLL97] using Uppaal were similar, for instance, 30 minutes of CPU and 90 Mbytes were
necessary for the generation of the simulation graph of the complete model.

12.4 Cnet's Fast-Reservation Protocol

This is an industrial case study concerning a protocol for bandwidth reservation in ATM (asyn-
chronous transfer mode) networks. The protocol is called Fast-Reservation Protocol with De-
layed Transmission (frp-dt) and it has been developed by Cnet at Lannion in the beginning
of the '90s [BT92, Tra93]. Since then, the protocol has become a standard [ABT97].

Our modeling is based on the protocol speci�cation in SDL (system description language)
and discussions with the designers during a visit of one week in Cnet. Initially, the proto-
col had been modeled in the basic TA language and veri�ed with kronos (results published
in [TY98]). Recently, we have treated a more general and detailed model of the protocol, using
kronos-open. This is the model we present here.

The results of the original analysis showed some inconsistency in the protocol, claimed to
be already known by the engineers of Cnet. The recent analysis con�rmed the previous results
and provided more precise diagnostics.

Description. In ATM networks, clients negotiate with the network manager on the so-called
quality-of-service parameters, in particular, on bandwidth allocation. If the latter has to be
�xed upon connection establishment, then often the peak transmission rate has to be assumed
for the client, resulting in poor resource management. frp-dt o�ers an alternative, permitting
dynamic modi�cation of the transmission rate within a small amount of time (essentially the
end-to-end round-trip delay).

The general scheme of an end-to-end connection managed by frp-dt is shown in �g-
ure 12.18. It consists of two clients, two frp-dt units (FRPU) and a number of switching
elements (SE). Control messages ow in both directions, while data ow in one direction. Here
we assume that data ow from left to right, thus, the left client is the sender and the right
client the receiver.

Control ow
Data ow

Left FRPU

(Receiver)
Right Client

SE1

Right FRPU

req; cong
ack ; rej

ack ; rej reqreq

ack ; rej

abort

req; cong

� � � SEn

Left Client
(Sender)

ack ; rej

req
ack ; rej

req
ack ; rej

ack ; rej

req; cong

abort

Figure 12.18: General scheme of an end-to-end connection managed by frp-dt.

In our study we consider mainly control ow, for simplicity and tractability. Concerning
data ow, we only consider the data transmission rate (rate, for short) which can be either
low, medium, or high. Control messages are parameterized by the rate and are of �ve types,
namely, req (to request a rate modi�cation), ack , rej (to acknowledge or reject a request),
cong (to signal congestion, that is, inability to accept request) and abort (to abort a request).
Figure 12.18 shows which types of messages are exchanged between which components.

The connection starts in a stable state, when all components agree on the same rate r.
When a client wishes to change the rate to, say r0, it sends a req(r0) message to its FRPU 3.
The latter forwards the message to the network, which propagates it through the SEs along the
connection. If the request is for an increase of the current rate and all the SEs have the capacity
to respond, the request arrives unaltered to the peer FRPU, which informs its client and sends
back an acknowledgment ack (r0). The acknowledgment passes through all SEs con�rming the
change of rate from r to r0. When the client who has originated the request receives ack (r0) it
also changes from r to r0 and the connection is back to a stable state.

3It may seem strange that the receiver can also request an increase of the rate. This is possible in some
applications where the destination can inform the source that it is now able to accept more data.

Two things can go wrong. Either a message can be lost. Or a SE cannot accept the request
due to lack of capacity. This is possible only if there is a request for a rate r0 strictly higher than
r. In this case, the SE forwards a cong(r0) request. When the peer FRPU receives cong(r0) it
sends back rej (r0). The latter passes through all SEs canceling the rate change.

Lost messages are handled by the FRPU using timeouts, where-upon the request is re-
transmitted. If no reply is received after a number of attempts, an abort(r0) message is returned
to the client.

One last remark needs to be made. The right direction has a higher priority than the left
one, in the following sense: if a right-request is received while a left-request is pending, the
latter is abandoned; also, if a left-request is received while a right-request is pending, the former
is ignored. This asymmetry has nothing to do with politics, but mirrors the fact that the client
that receives the data should have the command over their transmission rate.

Modeling. If n is the number of SEs in the connection, then 2n + 3 automata are required
to model the system: an untimed automaton for each SE, two untimed automata for the left
and right clients, two TA the left and right FRPU, and one TA for each physical link between
two adjacent SEs. The sender automaton is shown in �gure 12.19. The receiver automaton is
almost the same and it is not shown. Figure 12.20 shows the TA for the left FRPU. The TA
for the right FRPU or for a SE are almost the same and are not shown. Figure 12.21 shows
the TA modeling the physical link.

waitingstable

? req(r0)
r := r0

r := r0

r := r0? req(r0)

? ack (r0)

? abort(r0)

? rej (r0)

! req(r0)

Figure 12.19: The sender client of the frp-dt example.

In the �gures, variables msg , r, r0 and r00 are local in the automata they appear. msg
ranges in freq; ack ; rej ; congg and r, r0 and r00 range in flow, medium, highg. The value of r is
the current rate of the connection, while r0 stores the value of the rate requested by a pending
request. In the case of the left FRPU (�gure 12.20), the variable r00 is used to store the response
of the adjacent SE. The rate carried by such a response can be di�erent than the requested
rate r0, for instance, due to previous requests arriving from the peer, or due to message loss.
In case the request is acknowledged or the right side requests a new rate, r00 is assigned to r.

In general, each automaton is connected to four rendez-vous channels, for each side (left or
right) and each direction (input or output). The sender and receiver automata are connected
to only two channels each. `!' and `?' denote transmission and reception, respectively. For
example, \ToSE ! req(r)" means \send message req(r) to channel ToSE", while \ToSE ? req(r0)"
means \receive from channel ToSE a message of type req() and store its rate value to variable r0".
Since we are talking about rendez-vous channels, the above two actions synchronize, resulting
in the value of variable r being a�ected to r0.

Notice that in the sender automaton, channel names are omitted since there is no ambiguity.
Also, in the TA of �gure 12.21, `? msg ' stands for reception of any message from any input
channel, modeling loss.

3

FromSE ? req(r0)

ToClient ! req(r0)

ToSE ! ack (r0) FromClient ?req(r0)

ToSE ! req(r0)
x := 0; i := 1

x � TO

i := i+ 1
ToSE ! req(r0)
x = TO ^ i < m

ToClient ! abort(r0)
x = TO ^ i = m

1

02

5

4

6

ToClient ! msg(r0)
msg 2 frej ; congg

x � TO

FromSE ? cong(r0)

ToSE ! rej (r0)

FromSE ? msg(r00)

msg 2 fack ; reqg
r := r00ToClient ! msg(r00)

ToSE ! msg(r00)

Figure 12.20: The left FRPU of the frp-dt example.

The parameter m is the number of attempts to re-transmit before aborting. TO and � are
also parameters modeling the timeout and link-propagation delays, respectively.

As in the case study of the previous section, we use atomic states to model operations that
are assumed to consume no time. In �gure 12.20 atomic states are drawn in dashed lines. For
instance, when the FRPU receives a req(r0) message from the left-most SE (edge from state 0
to 1), it propagates the request to the client (edge from 1 to 2) and acknowledges to the SE
(edge from 2 to 0) in zero time.

We also assume that the SE have no bu�ers, that is, they forward any message they receive
right away. If a message is already present in the link, the new message is lost (notice, however,
that a message might be lost even if the link is free).

z := 0

ToLeft ! msg

? msg

z := 0

ToRight ! msg

FromLeft ? msg

z = �
z � �

FromRight ? msg
? msg? msg

z � �
z = �

Figure 12.21: A physical link in the frp-dt example.

Veri�cation. Since the modeling is quite complex, the �rst property to be checked is deadlock-
freedom. (Timelock-freedom is ensured by the fact that structural loops consume a strictly
positive amount of time, either the round-trip or the timeout delay, thus, the system is strongly
non-zeno.)

The main property to be checked is consistency, informally stated as follows:

If the connection is in a stable state, then the sender and the receiver agree on the
current transmission rate.

Consistency is a safety property, thus, it can reduced to checking reachability or error states.
An error state is such that all automata are in their initial control states, and the variable r of
the sender di�ers from the one of the receiver.

Results and performance. We have used the profounder option of kronos-open to per-
form reachability of error states. In profounder format, target states are speci�ed by a boolean
expression in a .acc �le (see section 11.4). In our case this �le is as follows:

hit : (rate_s<>rate_rcv) /\ (Sender:0=0) /\ (Receiver:0=0)

/\ (FRPUleft:0=0) /\ (FRPUright:0=0) /\ (SE1:0=0) /\ (SE2:0=0) ;

Running profounder, we �nd that the frp-dt is inconsistent. On a model of 2 SEs, with
TO = 10, � = 2 and m = 1, the tool generates a counter-example of 22 steps in 5 seconds.

tim
e

2

2

2

Left FRPU SE1 SE2 Receiver

lost

Sender Right FRPU

req(medium)

rej (high)rej (medium)

cong(high)

ack (medium)

req(high)

Figure 12.22: The message chart of the counter-example trail proving frp-dt inconsistency.

The diagnostic run is shown in the form of a message-chart in �gure 12.22. The vertical
direction (top to bottom) represents the passage of time. The components of the system are
listed horizontally. The arrows represent the propagation of messages among the components,
with the tail of the arrow representing the moment of transmission and the head of the arrow
the moment of reception (thus, a horizontal arrow means that the transmission takes no time).

The error lies in the fact that the acknowledgment to a request might be lost somewhere in
the middle of the connection, so that one part of the SEs consider the request acknowledged,
whereas the rest consider it still pending. Then, a new request which fails might reset the last
part of the SEs to the old rate value, whereas the SEs which have acknowledged the request
remain on the new rate value.

In the particular counter-example, the initial rate is low. Then, a request for medium rate
is propagated from left to right and is acknowledged, however, the ack () message is lost in the

g

transmission between SE2 and SE1. At this point, SE2 has updated its current rate to medium,
while SE1 has current rate low and pending rate medium. Then, a new request originates from
the right for high rate, but is not accepted by SE1, which propagates a congestion message and
goes back to its initial state. The left FRPU receives the congestion message and informs both
its client and the peer FRPU of the rejection of their requests. At this point, SE2 and the right
FRPU and client have their rates set to medium, whereas SE1 and the left FRPU and client
have their rates set to low.

The engineers of Cnetwere already aware of the above behavior. According to them, it
does not represent a problem, since �rst, message losses in ATM networks occur rarely, and
second, a monitoring procedure periodically \resets" the connection to a consistent rate.

To test further the capacity of kronos-open, we have experimented generating the entire
simulation graph for various values of the parameters. The largest case was for n = 3 (3 SEs
and 2 links), TO = 10, � = 2 and number of attempts m = 1: the complete graph comported
15488084 nodes and 23961733 edges and was generated in about 1 hour of CPU time.

It is worth noting that there is an impressive state-explosion in this example due to the
number of di�erent rate values. If we assume that only 2 such values are possible, say \low"
and \high", then for the previous parameters, the size of the graph drops to 113566 nodes and
167707 edges, a reduction of more than 130 times ! It is worth noting, however, that this might
be a too strong abstraction, since the protocol does not satisfy the criteria of data independence
of [Wol86], since the behavior of the SEs actually depends on the rate values: the SEs do not
refuse a request for a lower rate, although they can refuse a request for a higher rate. It is not
clear, either, that three di�erent rate values su�ce (although our intuition says so). However,
since adding more possible values only increases the number of possible behaviors, it is certain
that any incorrect behaviors contained in the model with three values will also be contained in
richer models.

12.5 Real-time scheduling

This case study concerns the problem of computing statically a scheduler for a set of periodic
tasks with \hard" real-time constraints. In short, checking schedulability of a set of periodic
tasks is reduced to checking non-emptiness of a TBA (section 7.2). Computing the scheduler
means �nding a non-zeno accepting cycle.

The case study is interesting for two reasons. First, it shows how model-checking can be
used instead of synthesis, in a simple setting where the environment is deterministic. Second,
it illustrates the use of kronos for TBA model checking.

Description. We consider a �nite number of tasks T1; :::; Tn. Task Ti has period �i, that is,
it becomes ready for execution every �i time units. Ti also has a deadline �i, that is, it must
complete its execution at most �i after the moment it becomes ready. The execution delay of
Ti is �i time units. We assume that �i � �i � �i, for each i = 1; :::; n. The behavior of Ti is
shown in �gure 12.23.

All tasks are executed in a single processor which serves one task at a time and does not
allow preemption, that is, the execution of a task cannot be interrupted and resumed later. We
also assume that all tasks become ready simultaneously the �rst time. Of the above simplifying
assumptions, the only signi�cant one is preemption: indeed, modeling preemption a-priori

g

�i (period)

deadline
expires

execution execution
endsstarts

task becomes
ready againready � � �

time

�i

�itask becomes

Figure 12.23: Behavior of a periodic task with deadline.

requires a model where clocks can be \frozen" and resumed, which is not in the class of TA 4.
The other assumptions are not essential: their omission is discussed at the end of the section.

The problem is to check whether the tasks are schedulable, that is, whether there exists
an (in�nite) order of execution where all tasks are executed in�nitely often and all timing
constraints are respected. Such an order of execution is called a scheduler. If the tasks are
schedulable, we are interested in computing a scheduler.

Modeling. The system is modeled by n TA, one for each task, plus a global boolean variable
free modeling the fact that the processor is free or occupied. The TA for Ti is shown in
�gure 12.24. The automaton has three control states labeled \waiti" (the task has become
ready and waits to be served), \usei" (the task is using the processor) and \sleepi" (the task
has �nished execution and hasn't become ready yet). Clock yi counts the computation delay.
Clock xi counts the period and also makes sure the deadline is not violated.

waiti
xi � �i

usei
sleepi

xi � �i ^ yi � �i
yi = �i

�nishi

xi � �i

yi := 0
free := false

free
startiwakei

free := true
xi = �i

xi := 0

Figure 12.24: Modeling a periodic task with deadline as a TA.

Checking schedulability and computing schedulers. We solve the problem by checking
whether the system satis�es an (untimed) BA. In fact, we present two solutions, which di�er in
the speci�cation of the BA. The �rst one uses a BA with general type of acceptance conditions.
Based on an observation about the structure of our system, the second solution uses a trivial
BA with a single state and edge, thus, is more e�cient.

4In fact, such a model is not generally decidable.

g

As a straightforward solution, we can use a cyclic BA like the one shown in �gure 12.25,
which speci�es all acceptable schedulers for two tasks T1 and T2. An accepting run of the
protocol passes in�nitely often from both states labeled use1 and use2, meaning that both tasks
are executed in�nitely often. Notice that, due to the two intermediate states labeled true,
there is not implicit requirement on the number of times that T1 is served relatively to T2, for
instance, the scheduler which serves T2 twice as much as T1 is allowed by the BA. In general,
for n tasks, we have to use a similar cyclic BA with 2n discrete states and 2n transitions.

use2

use1

truetrue

Figure 12.25: A BA specifying schedulability of two tasks.

The above solution is not very satisfactory, since it reduces the problem to checking empti-
ness of a TBA with general acceptance conditions, and this can be expensive, as discussed
in section 7.2. Observe, however, that the system is strongly non-zeno: indeed, the TA for
each task is strongly non-zeno (exactly �i time units pass at each loop) and so is their parallel
composition (lemma 3.2). By the same lemma, every in�nite run of the system is non-zeno.
Moreover, observe that in every in�nite run, all tasks are served in�nitely often. Indeed, if the
TA for a task i was blocked in a discrete state then time could not progress because of the
invariant, and the run would be zeno.

true

Figure 12.26: A trivial BA for �nding non-zeno executions.

The above observations imply that the tasks are schedulable i� there exists an in�nite run.
Existence of such a run is speci�ed by the trivial BA shown in �gure 12.26. To check whether
the system satis�es this BA we can check emptiness of their synchronous product using the
technique of section 7.2.1 for trivial acceptance. In fact, it is even unnecessary to compute the
synchronous product of the system's TA A and the above BA: their product is A itself, viewed
as a TBA with all its discrete states marked repeating.

In case the tasks are schedulable, a sample in�nite run is a scheduler. The scheduler must
of course have a �nite representation, so the run must be periodic. According to the results of
section 8.2 such a run exists in this case (since there are no strict bounds) and can be computed
using the constraint-induction technique. This is not necessary, however, because the period
and execution delay of each task are �xed. Therefore, the schedule can be completely derived

g

by the execution order of the tasks, which corresponds to the cycle found by the emptiness
algorithm.

Results and performance. Using the TBA-emptiness option of kronos, we have experi-
mented with di�erent values for n; �i; �i; �i. For instance:

� For n = 2 and
i �i �i �i
1 3 2 1
2 6 3 1

the tasks are schedulable and kronos returns almost instantaneously the sample scheduler
shown in �gure 12.27.

� For n = 6 and
i �i �i �i
1 10 5 1
2 20 10 2
3 15 10 5
4 20 15 10
5 12 11 7
6 17 9 1

the tasks are not schedulable. kronos explores a graph of 484 nodes in 23 seconds of
CPU time consuming 4 Mbytes of memory in a Sparc-station 20.

Generally, the performances are good, however, we should note that in real-world scheduling
problems the number of tasks is often greater by an order of magnitude or more, and the
same is true concerning the parameters �; � and �. In order for the tool to be used in such an
environment, speci�c methods have to be developed such a heuristics for best-�rst search, or a
pre-processing of the model to make periods more homogeneous.

start1 �nish1 start2 wake1 �nish2 start1

�nish1 start1 wake2

start2 �nish1

wake1

Figure 12.27: A scheduler for two tasks.

Possible extensions of the model. Dealing with more than one processors is trivial: if we
havem processors at our disposal, we just have to replace the boolean variable free by a counter
initially set to m, decremented each time a process starts execution and incremented each time
a process �nishes. Then, a process can only start when the counter is strictly positive.

The assumption of tasks becoming ready synchronously the �rst time can also be easily
removed by adding an extra initial control location to the TA of each task i, and a starting
edge which goes to state \waiti" after resetting xi to zero.

12.6 Controllers for multimedia documents

This is another real-world application, from the domain of multimedia. It concerns the language
Madeus for the speci�cation of multimedia documents, developed as part of the Inria project
Opera [JLSIR97].

A multimedia document consists of a set of media objects and a set of constraints specifying
the temporal and spatial relations between objects. (In this work, we restrict our attention to
temporal relations). Objects are either basic (video clip, audio clip, image, text, button, etc) or
composite. Basic objects are either controllable, meaning that they start and �nish according
to commands of a controller, or uncontrollable, meaning that they are started by the controller,
but stop according to commands of the environment. The controller in this case may be the
program executing the document. The environment can be the viewer of the document (a
human user), the media source which o�ers unpredictable delays of deliverability, and so on.

Given aMadeus speci�cation of a document, the problem consist in checking whether it is
executable and if so, in computing a controller. The application is interesting for the following
reasons:

� It represents a real problem, which could not be handled by people of the �eld of multi-
media using classical methods such as linear programming 5. Instead, the problem can
be formulated as a reachability synthesis problem for CTA.

� It required a considerable amount of e�ort to develop a framework for modeling multi-
media documents. In particular:

{ To capture the hierarchical nature and parallel execution of documents in a con-
venient way, we have modeled them as Petri nets with deadlines (PND) [BST98].
PND serve only as an intermediate description language, since they can be directly
translated to TA. The details of the translation can be found in appendix A.3. In
this section, PND are only presented informally.

{ To capture some of the Madeus operators for building composite objects, we have
introduced two new synchronization schemes, based on interrupts and waiting.

Description. We consider a �nite set of basic objects, each having a beginning, an end and
a duration. The latter represents the amount of time the corresponding medium is active, for
example, the amount of time a video clip is displayed on the screen, or the time elapse from
the point a button is shown one the screen until the moment it is pressed. Durations can be
non-�xed, belonging to a duration interval of the form [low ; up] or [low ;1), where low ; up 2 N

and low � up,
The duration of an uncontrollable object is determined by the environment, while the dura-

tion of a controllable object is determined by the controller. For example, a button is naturally
uncontrollable: its duration is determined by the user clicking on the button. On the other
hand, a still image is usually controllable: its duration can be adjusted so that the execution
of the rest of the document is done smoothly.

5Indeed, in the presence of uncontrollability, the problem cannot be reduced to solving a system of linear
constraints. This is because, variables need to be quanti�ed existentially or universally, depending on whether
they correspond to controllable or uncontrollable objects. However, the order of the quanti�ers depends on the
execution sequence chosen, and cannot be �xed a-priori in a single system of constraints.

Composite objects are speci�ed hierarchically using a set of binary operators. Intuitively, if
o1; o2 are objects, then:

� o1 meets o2 is the composite object which begins by launching o1, launches o2 as soon as
o1 terminates and ends when o2 terminates.

� o1 equals o2 is the composite object which begins by launching o1 and o2 simultaneously
and terminates when both o1 and o2 terminate. The two objects must be able to terminate
simultaneously, otherwise the speci�cation is inconsistent.

� o1 parmin o2 is the composite object which begins by launching o1 and o2 simultaneously
and terminates as soon as one of them terminates.

� o1 parmax o2 is the composite object which begins by launching o1 and o2 simultaneously
and terminates when the last one of them terminates.

� o1 master o2 is the composite object which begins by launching o1 and o2 simultaneously
and terminates when o1 (the master) terminates.

Notice that the equals operator, apart from building a composite object, also imposes a tem-
poral constraint on its arguments, namely, that they �nish at the same time.

12.6.1 Petri Nets with Deadlines: informal presentation

For readers who are familiar with Petri nets, a PND can be viewed as a 1-safe Petri net extended
with a �nite number of clocks (like a TA is a �nite automaton extended with clocks). Each
transition of the PND has a guard and a set of clocks to be reset. The semantics are similar to
those of TA: a state of a PND is a pair of a marking and a clock valuation; a discrete transition
consists in �ring a transition of the net, consuming and producing the corresponding tokens,
and resetting some clocks; �nally, time can pass in a marking as long as it can pass in every
place having a token.

For readers not familiar with Petri nets, a PND is similar to a TA, with the di�erence that
more than one discrete states (called places) can be active at the same time. An active place
is said to have a token. A set of active places is called a marking.

As an example, consider the simple PND shown in the top of �gure 12.28. In the initial
marking the active places are q1 and q2. Firing transition e1 requires two tokens, one in each
place q1 and q2. Upon �ring transition e1, the tokens of places q1 and q2 are consumed, a token
is produced in place q3, and clock x is reset to zero. An amount of time passes at this marking
(q3 is active), between two and �ve time units. Then, transition e2 is �red and in the new
marking the active places are q4 and q5.

In our case the number of tokens remains bounded in any execution of the PND, so that
the latter can be translated to a TA. The discrete structure of the TA corresponds to the
marking graph of the PND, that is, all possible markings and transitions between them. The
TA corresponding to the PND of the above example is shown in the bottom of �gure 12.28.

A PND can also be extended for controllability, by simply dividing its transitions into
controllable and uncontrollable. The TA corresponding to such a PND is a CTA.

e2e1

q1

q2

q4

q5

after �ring e1

after �ring e2

the TA corresponding to the PND

x := 0

2 � x � 5
x � 5

2 � x � 5

initial marking

x := 0

q3

x � 5

Figure 12.28: A simple PND (top), �ring transitions (middle) and the corresponding TA (bot-
tom)

12.6.2 Using Petri nets with deadlines to model multimedia docu-
ments

For a given a document o, we construct a PND which is supposed to capture all possible
executions of o, if any exist. The construction is recursive on the syntax of o, that is, if o is
made up of two sub-documents o1 and o2, we �rst construct the PND for o1 and o2, and then
combine them to form the PND for o. To take controllability into account, each transition of
the PND is marked as either controllable or uncontrollable.

The PND for a basic object o with duration interval [low ; up] is shown in �gure 12.29(a).
It has three places, two transitions, and a clock x counting its duration (we assume a di�erent
clock for each basic object). The transition labeled \start" is controllable, whereas the one
labeled \�nish" is controllable if o is controllable, and uncontrollable otherwise.

The PND for a sub-document oi

� has a single initial place with one token;

� has a single �nal place;

� has a controllable initial transition, labeled starti, which resets a set of clocks Xi and has
trivial guard;

� has a �nal (controllable or uncontrollable) transition, labeled �nishi, with guard �i, reset-
ting no clocks;

� has a \body" of places and (controllable or uncontrollable) transitions;

� is acyclic, that is, has no structural loop.

The general form of this PND is shown in �gure 12.29(b). Notice that the PND for a basic
object matches the above general pattern.

start

x := 0

�nish

(a)

low � x � up

� � � � � �

(b)

Xi := 0

starti

�i

�nishi

x � up

Figure 12.29: Modeling multimedia documents as PND: basic object (a) and general form of
composite object (b).

Assuming that the PND for objects o1 and o2 have this form, the PND for o1 meets o2
is constructed as shown in �gure 12.30. The construction consists simply in merging the �nal

transition of the PND for o1 with the initial transition of the PND for o2. The merged transition
inherits the controllability status of the �nal transition of the PND for o1. All other transitions
keep their controllability status.

� � � � � �

X1 := 0

� � � � � �

�nishstart

�2X2 := 0

�1

Figure 12.30: The PND for meets.

The PND for o1 equals o2 is shown in �gure 12.31. Its initial transition is built by merging
the initial transitions of the two sub-PND for o1 and o2. To make sure that o1 and o2 �nish
at the same time, we introduce two auxiliary clocks z1 and z2 which are reset in the �nal
transitions of the two sub-PND and and tested to zero in the �nal transition of the composite
PND. The initial and �nal transitions of the composite PND are controllable 6, whereas all
other transitions keep their controllability status.

� � � � � �

� � � � � �

X1 [X2 := 0

start
�1

�2

�nish

z1 := 0

z2 := 0

z1 = z2 = 0

Figure 12.31: The PND for equals.

The PND for o1 parmin o2 is shown in �gure 12.32. To model interruption, we employ a
macro-notation �a la Statecharts []: a transition connected to the body of a PND is called a
macro-transition. It representes a set of transitions, one for each possible marking of the PND's
body. In that way, when the macro-transition is �red, the body of the PND is \emptied",
modeling interruption. Each macro-transition inherits the controllability status of the �nal
transition of the corresponding sub-PND. The initial and �nal transitions of the composite
PND are controllable. z is an auxiliary clock.

The PND for o1 parmax o2 is shown in �gure 12.33. Its construction is supposed to model
waiting and uses an auxiliary clock z as well as some auxiliary places. Intuitively, when one
of the two underlying PND �nishes execution, it checks immediately whether the other PND

6In fact, the �nal transition is time-deterministic, since it has a punctual guard z = 0, so, marking it
uncontrollable would not matter.

� � � � � �

� � � � � �

X1 [X2 := 0 �2
z := 0

�1
z := 0

�nish

start

z = 0

Figure 12.32: The PND for parmin.

has also �nished. If this is the case, the token goes to the one-before-�nal place, and in zero
time, to the �nal place. Otherwise, the token goes to one of the middle auxiliary places, and
the PND waits for the other one to �nish. Regarding controllability, all new transitions are
controllable, while the old ones keep their controllability status.

� � � � � �

� � � � � �

X1 [X2 := 0

start

z := 0

z := 0

�1

�2

z := 0

z := 0

�nish

z = 0

z = 0

z = 0

Figure 12.33: The PND for parmax.

Finally, the PND for o1 master o2 is shown in �gure 12.34. Its construction is a combination
of interruption and waiting, as those for the operators parmin and parmax. Again, all new
transitions are controllable, while the old ones keep their controllability status.

Optimizations

Straightforward as it is, the above construction admits a number of optimizations, to reduce
the number of places, transitions and clocks in the �nal PND.

First of all, the speci�cation can be pre-processed: assume that a sub-document o is made up
of two basic objects o1 and o2 which are both controllable, with duration intervals [low i; upi], for
i = 1; 2, respectively. Then, o can be replaced by a single basic object with duration interval:

� � � � � �

� � � � � �

X1 [X2 := 0 �2

�1
z := 0start

z := 0

�nish

z = 0

z = 0

z := 0

Figure 12.34: The PND for master.

� [low1 + low 2; up1 + up2], if o = o1 meets o2,

� [max(low 1; low 2);min(up1; up2)], if o = o1 equals o2 (in case the interval is empty, the
speci�cation is inconsistent),

� [min(low 1; low 2);min(up1; up2)], if o = o1 parmin o2,

� [max(low 1; low 2);max(up1; up2)], if o = o1 parmax o2,

� [low1; up1], if o = o1 master o2.

Other optimizations can be performed directly on the constructed PND, or the resulting
TA. For instance, clocks can be re-used so that a new clock is not introduced for every sub-
document: this is possible by applying the optikron module to compute clock activities and
then identify two or more clocks which are never active at the same time.

A concrete example: the Greeting card

To illustrate the construction presented above, we model a concrete document provided by the
Madeus group. The document models an animated greeting card.

The card starts o� with a spoken and written invitation for pressing a button. When the
button is pressed the text \Merry Christmas" appears accompanied by Christmas music. The
texts \and" and \Happy New Year" follow, the latter accompanied by another piece of music.
At the end, the text \Smith" moves over the screen. After displaying the word \and", an
animation is executed. When it ends, the text \family" appears and moves over the screen.
Finally, the two textual elements \family" and \Smith" come to stop synchronously, one above
the other. In parallel to all this, a sequence of background pictures is displayed. It ends with
a photo of the family Smith.

The basic objects involved in the document are the following:

Ready /* text */ [1;1) controllable;
Intro /* audio */ [8;1) controllable;
Go /* button */ [0; 9] uncontrollable;
XmasT /* text */ [4; 10) controllable;
XmasM /* audio */ [5; 7] uncontrollable;
And /* text */ [2; 5] controllable;
Smiley /* animation */ [3; 4] uncontrollable;
Family /* text */ [5; 15] controllable;
YearT /* text */ [5; 15] controllable;
Smith /* text */ [5; 15] controllable;
YearM /* audio */ [5; 7] controllable;
Pict1 /* picture */ [4; 5] controllable;
Pict2 /* picture */ [4; 5] controllable;
Pict3 /* picture */ [4; 5] controllable;
Pict4 /* picture */ [4; 5] controllable;
Photo /* picture */ [4; 5] controllable;

The speci�cation is given by the following expression:

Background := Pict1 meets Pict2 meets Pict3 meets Pict4 meets Photo
Beginning := Go master (Ready parmax Intro)
Next := (XmasT parmin XmasM) meets

((And meets (YearT parmin YearM) meets Smith) equals
(Smiley meets Family)

)
Card := Background equals (Beginning meets Next)

After pre-processing, we end up with the simpli�ed speci�cation:

Card := Photos equals
(Go meets (XmasT parmin XmasM) meets
(AYS equals (Smiley meets Family))
)

where \Photos" and \AYS" are controllable basic objects, corresponding to composite objects
\Background" and \And meets (YearT parmin YearM) meets Smith", respectively. The du-
ration intervals of \Photos" and \AYS" are:

Photos [20; 25] controllable;
AYS [12; 27] controllable;

The PND for the above speci�cation is shown in �gure 12.35. Places are labeled with the
name of the corresponding basic objects (places with no name are auxiliary). Uncontrollable
transitions are drawn in dashed lines. After optimizing the usage of clocks, we end up with three
clocks: x counts the duration of \Photos"; y counts the duration of \XmasT" and \XmasM",
then of \Smiley", and �nally of \Family"; z counts the duration of \AYS" and also serves as
an auxiliary clock for modeling \XmasT parmin XmasM".

x := 0 y := 0

z := 0

z = 0

y := 0

End

�nishstart

Family

5 � y � 7
z := 0

y := z := 0 AYS

x � 9

Go

Photos
x � 25

y � 15

z � 27

4 � y � 10

y � 4

y � 3Smiley

20 � x � 25 ^
5 � y � 15 ^
12 � z � 27

XmasM

XmasT

Figure 12.35: The PND for the greeting card example.

12.6.3 Controller synthesis for multimedia documents

The �rst step in the analysis of a multimedia document is to generate its PND and translate it
into a CTA. For the greeting-card example, the PND of �gure 12.35 is translated into the CTA
of �gure 12.36. Notice that, due to the special structure of the PND, the CTA is also acyclic,
with a single �nal discrete state (in fact, a sink state). We label this state \End".

Photos
XmasT
XmasMGo

Photos
x := 0

start

y := 0

y � 7

y � 3
y := 0

y � 4 ^ z � 27

z := 0

z := 0

y � 5

y � 4

z = 0

y := 0

x � 9
x � 9

x � 20 ^ y � 5 ^ z � 12

�nish
End

x � 25 ^ y � 15 ^ z � 27

Smiley

Photos

Family

Photos

AYS

AYS

Figure 12.36: The CTA for the greeting card example.

Checking executability of the document means solving controller synthesis for reachability
of \End". If a winning strategy exists, it corresponds to the document's controller.

We have used synth-kro to compute a controller for the example above. As explained in
section 9.2, the tool computes the set of winning states and returns the restriction of the initial
CTA to the winning states. Execution takes only a few seconds.

The restricted CTA representing the controller is shown in �gure 12.37. Essentially, it di�ers
from the initial CTA in the allowed choices for the controller at state \Photos,XmasT,XmasM".
The additional invariant x � 13 shows that control is adaptive: if the environment is late then
the controller must react earlier than usual. For example, if the button \Go" is pressed at

x = 8:5, then \XmasM" is interrupted by \XmasT" at y = 4:5 the latest, so that the invariant
x � 13 is not violated. The initial CTA could fail in this case, since the only invariant at state
\Photos,XmasT,XmasM" is y � 7.

Photos
XmasT
XmasMGo

Photos
x := 0

start

y := 0

y � 3
y := 0

y � 4 ^ z � 27

z := 0

y � 5

z = 0

y := 0

x � 9
x � 9

x � 20 ^ y � 5 ^ z � 12

�nish
End

Smiley

Photos

Family

Photos

AYS

AYS

z := 0

y � 4
x � 1 ^

x � 25 ^ y � 15 ^ z � 27 ^
y + 5 � x � y + 20 ^
x� 13 � z � x+ 7 ^
z � 22 � y � z + 3

x � 13 ^ y � 7

Figure 12.37: The restricted CTA for the greeting card example.

Relation to the literature

Madeus is inspired from the logic of intervals [All83], with the addition of interruption and
waiting operators. The speci�cation of multimedia documents been previously considered
in [SDdSS94], using a complicated model of time Petri nets with many di�erent operators
for transition synchronization. PND can capture this model, as shown in [BST98], and can also
be used for veri�cation and synthesis.

Chapter 13

Conclusions

We have presented a complete formal framework for the analysis of timed systems. Our focus
has been on practicality. On the model level, we have adopted the existing model of dense-
time automata, believing it to be especially suitable for asynchronous timed systems. As
speci�cation languages, we have chosen both linear- and branching-time formalisms covering a
large spectrum of quantitative-time properties.

We have provided an analysis methodology based on abstractions which reduce the state
space of TA, while preserving properties of interest. These abstractions are de�ned automati-
cally, that is, no e�ort is required from the user to invent them. We have shown how to compute
the abstractions e�ciently, in some cases combining them with the analysis on-the-y. We have
presented a method for providing concrete diagnostics as feedback to the user. We have treated
both problems of veri�cation and controller synthesis. For the latter, we have introduced a
framework for syntactic and semantic parallel composition of timed systems in the presence of
controllability and have developed an on-the-y controller-synthesis algorithm.

Concretely, we have implemented tools for timed veri�cation and controller synthesis. The
input of these tools is given in terms of parallel compositions of TA extended with bounded
discrete variables. This extension makes the model quite practical for case studies. The parallel
composition of the automata and the discrete state space are generated on-the-y. The types
of analysis that can be performed by the tools go from simple reachability, deadlock- and
timelock-detection, to linear- and branching-time model-checking with concrete diagnostics, to
controller synthesis.

Experimentation has not only been a way to evaluate the methods and tools, but also
a source of inspiration. We have treated a number of case studies including communication
protocols, asynchronous circuits, real-time schedulers and multimedia controllers. Most of the
case studies come from the industrial world and all of them have non-trivial modeling and
analysis complexity. Our analysis has been helpful: inconsistencies were found in the cases of
Bang&Olufsen's and Cnet's protocols and a real schedulability problem has been solved in
the case of multimedia documents. Experimental results show that the new techniques bring
a signi�cant improvement in performance, often orders of magnitude better than previous
attempts.

Perspectives

In his concluding remarks, [Alu91] sets hopes for a practical veri�cation of timed systems, and
beyond. Seven years later, the �eld seems to be a bit closer to these goals: real-world case

192

studies of non-trivial modeling and analysis complexity have been treated using non-industrial
tools; techniques for tackling the state explosion problem have been and are being devised; a
prototype tool for dense-time controller synthesis exists, with practical experiments which are
quite encouraging.

Still, a long way remains in order for such a framework to become common practice in the
industrial world. In the near future, the following research directions seem quite promising:

� E�cient schemes for symbolic representation: a homogeneous way to represent discrete
and continuous variables is still missing. Such a representation scheme is important to
have, since most practical timed systems include a signi�cant part of discrete variables.

� Application-oriented techniques: although quite general, TA are a relatively low-level
model. A number of higher-level timed languages are currently used as a front-end to
TA which are then used for the analysis. For example, Kronos has been interface to
Aorta [BHKR95], Grafcet [MLP96], ET-Lotos [Her98] and Shift [AGS96].

In order to achieve better usability for domain-speci�c applications, restrictions of the
model and optimization of the algorithms can be envisaged. In this direction, kronos-open
may be a useful start, since it is based on the compiler philosophy, where particularities
of the domain can be taken into account.

� Composition of timed systems: the TA model still lacks a robust theory of composi-
tion, which would avoid deadlocks but also preserve the independency of the urgency
requirements of each of the components. Following [SY96], work is in progress to de�ne
such a theory [BS97, BST98, Bor98]. It still remains to see how analysis techniques can
be extended to take into account such composition frameworks. A more ambitious goal
concerns compositional veri�cation of timed systems, where properties proven in the com-
ponents of a system can be assembled to a property that holds in the global system. The
work of [TAKB96] is in this direction.

Bibliography

[ABK+97] E. Asarin, M. Bozga, A. Kerbrat, O. Maler, A. Pnueli, and A. Rasse. Data struc-
tures for the veri�cation of timed automata. In Proc. of the Intl. Workshop on
Hybrid and Real-Time Systems, 1997.

[ABT97] DTR/NA 52809: Resource Management Procedures and Cases of their Possible
Usages, part 1, ABT/DT : protocol procedures. ETSI, NA4, September 1997.

[ACD+92] A. Alur, C. Courcoubetis, D. Dill, N. Halbwachs, and H. Wong-Toi. An implemen-
tation of three algorithms for timing veri�cation based on automata emptiness. In
RTSS'92. IEEE, 1992.

[ACD93] R. Alur, C. Courcoubetis, and D.L. Dill. Model checking in dense real time. Infor-
mation and Computation, 104(1):2{34, 1993.

[ACH+92] R. Alur, C.Courcoubetis, N. Halbwachs, D.L. Dill, and H. Wong-Toi. Minimization
of timed transition systems. In 3rd Conference on Concurrency Theory CONCUR
'92, volume 630 of Lecture Notes in Computer Science, pages 340{354. Springer-
Verlag, 1992.

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. Ho, X. Nicollin, A. Oliv-
ero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theo-
retical Computer Science, 138:3{34, 1995.

[AD90] R. Alur and D. Dill. Automata for modeling real-time systems. In 17th ICALP,
LNCS 443, 1990.

[AGS96] A.Deshpande, A. G�oll�u, and L. Semenzato. The Shift programming language
and run-time system for dynamic networks of hybrid automata. Technical report,
PATH, 1996.

[AH92] R. Alur and T.A. Henzinger. Logics and models of real time: a survey. In Real
Time: Theory in Practice, LNCS 600, 1992.

[AIKY92] R. Alur, A. Itai, R.P. Kurshan, and M. Yannakakis. Timing veri�cation by suc-
cessive approximation. In Proceedings of the 4th Workshop on Computer-Aided
Veri�cation, Lecture Notes in Computer Science. Springer-Verlag, 1992.

[AJ98] P. Abdulla and B. Jonsson. Verifying networks of timed processes. In Tools and
Algorithms for the Construction and Analysis of Systems '98, Lisbon, Portugal,
volume 1384 of LNCS. Springer-Verlag, 1998.

194

[AK83] S. Aggarwal and R.P. Kurshan. Modelling elapsed time in protocol speci�cation. In
H. Rudin and C.H. West, editors, Protocol Speci�cation, Testing and Veri�cation,
III, pages 51{62. Elsevier Science Publisers B.V., 1983.

[AK96] R. Alur and R.P. Kurshan. Timing analysis in COSPAN. In Hybrid Systems III,
LNCS 1066, 1996.

[AKV98] R. Alur, R.P. Kurshan, and M. Viswanathan. Membership questions for timed and
hybrid automata. In RTSS'98, 1998.

[AL91] M. Abadi and L. Lamport. An old-fashioned recipe for real time. In REX workshop
\Real-time: theory in practice", number 600 in LNCS, pages 1{27. Springer-Verlag,
1991.

[All83] J.F. Allen. Maintaining knowledge about temporal intervals. Communications of
the ACM, 26(11):832{843, November 1983.

[Alt98] K. Altisen. G�en�eration automatique d'ordonnancements pour syst�emes temporis�es.
Technical report, M�emoire de DEA, Ensimag, Grenoble, 1998. In french.

[Alu91] Rajeev Alur. Techniques for Automatic Veri�cation of Real-Time Systems. PhD
thesis, Department of Computer Science, Stanford University, 1991.

[AMP98] E. Asarin, O. Maler, and A. Pnueli. On the discretization of delays in timed
automata and digital circuits. In Concur'98, 1998.

[Bal96] F. Balarin. Approximate reachability analysis of timed automata. In Proc. 17th
IEEE Real-Time Systems Symposium, 1996.

[BB91a] J.C.M. Baeten and J.A. Bergstra. Real-time process algebra. Formal Aspects of
Computing, 3(2):142{188, 1991.

[BB91b] A. Benveniste and G. Berry. The synchronous approach to reactive and real-time
systems. IEEE Proceedings, 79:1270{1282, September 1991.

[BCD+90] J.B. Burch, E.M. Clarke, D.Dill, L.J. Hwang, and K.L. McMillan. Symbolic model
checking: 1020 states and beyond. In 5th LICS, pages 428{439. IEEE, 1990.

[BD91] B. Berthomieu and M. Diaz. Modeling and veri�cation of time-dependent systems
using time Petri nets. IEEE Transactions on Software Engineering, 17(3):259{273,
1991.

[BD98] D. Bo�sna�cki and D. Dams. Integrating real time into spin: A prototype imple-
mentation. In Proceedings of the FORTE/PSTV XVIII Conference. Chapman and
Hall, 1998.

[BDM+98] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kronos: a
model-checking tool for real-time systems. In CAV'98, 1998.

[BFH+92] A. Bouajjani, J.C. Fernandez, N. Halbwachs, P. Raymond, and C. Ratel. Minimal
state graph generation. Science of Computer Programming, 18:247{269, 1992.

[BGK+96] J. Bengtsson, W. Gri�oen, K. Kristor�ersen, K. Larsen, F. Larsson, P. Pettersson,
and W. Yi. Veri�cation of an audio protocol with bus collision using Uppaal. In
CAV'96, LNCS 1102, 1996.

[BHKR95] S. Bradley, W. Henderson, D. Kendall, and A. Robson. Validation, veri�cation and
implementation of timed protocols using AORTA. In P. Dembinski and Sredniawa
M, editors, Proc. 15th PSTV, Warsaw, Poland, June 1995. IFIP, Chapman & Hall.

[BJLY98] J. Bengtsson, B. Jonsson, J. Lilius, and W. Yi. Partial order reductions for timed
systems. In 9th International Conference on Concurrency Theory, 1998.

[BLL+95] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi. Uppaal { a tool
suite for automatic veri�cation of real-time systems. In 4th DIMACS Workshop on
Veri�cation and Control of Hybrid Systems, 1995.

[BLY96] A. Bouajjani, Y. Lakhnech, and S. Yovine. Model Checking for Extended Timed
Temporal Logics. In Proc. Intern. Symp. on Formal Techniques in Real Time and
Fault Tolerant Systems (FTRTFT'96). LNCS 1135, 1996.

[BM98] W. Belluomini and C. Myers. Veri�cation of timed systems using partially ordered
sets. Technical report, University of Utah, 1998.

[BMPY97] M. Bozga, O. Maler, A. Pnueli, and S. Yovine. Some progress in the symbolic
veri�cation of timed automata. In Proc. of the 8th Conference on Computer-Aided
Veri�cation, 1997.

[BMS99] M. Bozga, O. Maler, and S.Tripakis. E�cient veri�cation of timed automata using
dense and discrete time semantics. Submitted to CAV'99, 1999.

[BMSU97] N. Bj�rner, Z. Manna, H. Sipma, and T. Uribe. Deductive veri�cation of real-time
systems using STeP. In ARTS'97, LNCS, 1997.

[Bor98] S. Bornot. De la composition des syst�emes hybrides. PhD thesis, Universit�e Joseph
Fourrier de Grenoble, 1998. In french.

[Boz97] M. Bozga. SMI: An open toolbox for symbolic protocol veri�cation. Technical
report, Verimag, March 1997.

[Bry86] R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Trans. on Computers, 1986.

[BS94] J. Brzozowski and C. Seger. Asynchronous Circuits. Springer, 1994.

[BS97] S. Bornot and J. Sifakis. Relating time progress and deadlines in hybrid systems.
In International Workshop, HART'97, pages 286{300, Grenoble, France, March
1997. Lecture Notes in Computer Science 1201, Spinger-Verlag.

[BST98] S. Bornot, J. Sifakis, and S. Tripakis. Modeling urgency in timed systems. In
Compositionality, LNCS 1536, 1998. To appear.

[BT92] P.E. Boyer and D.P. Tranchier. A reservation principle with applications to the
atm tra�c control. Computer Networks and ISDN Systems, 24:321{334, 1992.

[BTY97] A. Bouajjani, S. Tripakis, and S. Yovine. On-the-y symbolic model checking for
real-time systems. In Proc. of the 18th IEEE Real-Time Systems Symposium, San
Francisco, CA, pages 232{243. IEEE, December 1997.

[B�uc62] J.R. B�uchi. On a decision method in restricted second-order arithmetic. In Pro-
ceedings of the International Congress on Logic, Methodology, and Philosophy of
Science 1960, pages 1{12. Stanford University Press, 1962.

[CBM89] O. Coudert, C. Berthet, and J. C. Madre. Veri�cation of synchronous sequential
machines based on symbolic execution. In International Workshop on Automatic
Veri�cation Methods for Finite State Systems, Grenoble. LNCS 407, Springer Ver-
lag, 1989.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a uni�ed lattice model for static
analysis of programs by construction or approximation of �xpoints. In 4th ACM
Symp. POPL, 1977.

[CDCT92] C. Courcoubetis, D. Dill, M. Chatzaki, and P. Tzounakis. Veri�cation with real-
time COSPAN. In Proceedings of the Fourth Workshop on Computer-Aided Veri-
�cation, Lecture Notes in Computer Science. Springer-Verlag, 1992.

[CGL94] E. Clarke, O. Grumberg, and D. Long. Model checking and abstraction. ACM
Transactions on Programming Languages and Systems, 1994.

[Cho74] Y. Choueka. Theories of automata on !-tapes: A simpli�ed approach. Journal of
Computer and System Sciences, 8(2):117{141, April 1974.

[CPHP87] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. Lustre: a declarative language
for programming synchronous systems. In 14th ACM Symp. POPL, 1987.

[CVWY92] C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory e�cient al-
gorithms for the veri�cation of temporal properties. Formal Methods in System
Design, 1:275{288, 1992. A preliminary version appeared in the proceedings of
CAV'90 (also in Springer Verlag LNCS).

[Daw98] C. Daws. M�ethodes d'analyse de syst�emes temporis�es: de la th�eorie �a la pratique.
PhD thesis, Institut National Polytechnique de Grenoble, 1998. In french.

[DGG97] D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive systems.
ACM Transactions on Programming Languages and Systems, 1997.

[Dil89] D.L. Dill. Timing assumptions and veri�cation of �nite-state concurrent systems. In
J. Sifakis, editor, Automatic Veri�cation Methods for Finite State Systems, Lecture
Notes in Computer Science 407, pages 197{212. Springer{Verlag, 1989.

[DOTY96] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool KRONOS. In Hy-
brid Systems III, Veri�cation and Control, volume 1066 of LNCS, pages 208{219.
Springer-Verlag, 1996.

[DOY94] C. Daws, A. Olivero, and S. Yovine. Verifying ET-LOTOS programs with KRO-
NOS. In D. Hogrefe and S. Leue, editors, Proc. 7th. IFIP WG G.1 International
Conference of Formal Description Techniques, FORTE'94, pages 227{242, Bern,
Switzerland, October 1994. Formal Description Techniques VII, Champan & Hall.

[DT98] C. Daws and S. Tripakis. Model checking of real-time reachability properties using
abstractions. In Tools and Algorithms for the Construction and Analysis of Systems
'98, Lisbon, Portugal, volume 1384 of LNCS. Springer-Verlag, 1998.

[DY96] C. Daws and S. Yovine. Reducing the number of clock variables of timed automata.
In Proc. 17th IEEE Real-Time Systems Symposium, RTSS'96, 1996.

[EC81] E.A. Emerson and E. Clarke. Design and synthesis of synchronization skeletons
using branching-time temporal logic. In Workshop on Logic of Programs. LNCS
131, 1981.

[EH86] E.A. Emerson and J.Y. Halpern. \sometimes" and \not never" revisited: On
branching versus linear time temporal logic. ACM journal, 33(1):151{178, 1986.

[EL85] E. Emerson and C. Lei. Modalities for model checking: Branching time logic strikes
back. In 12th ACM Symp. POPL, 1985.

[FGM+92] J.Cl. Fernandez, H. Garavel, L. Mounier, A. Rasse, C. Rodriguez, and J. Sifakis.
A tool box for the veri�cation of lotos programs. In 14th International Conference
on Software Engineering, 1992.

[FM91] J.Cl. Fernandez and L. Mounier. \On the y" veri�cation of behavioural equiv-
alences and preorders. In Springer Verlag, editor, Workshop on Computer-Aided
Veri�cation, Aalborg University, Denmark, LNCS 575, 1991.

[Gar98] H. Garavel. Open-Caesar: An open software architecture for veri�cation, simu-
lation and testing. In Tools and Algorithms for the Construction and Analysis of
Systems '98, Lisbon, Portugal, LNCS 1384. Springer-Verlag, 1998.

[GPV94] A. G�oll�u, A. Puri, and P. Varaiya. Discretization of timed automata. In 33rd CDC,
1994.

[Gre97] M. Greenstreet. Stari: Skew tolerant communication. IEEE Transactions on
Computers, 1997.

[GW91] P. Godefroid and P. Wolper. Using partial orders for the e�cient veri�cation of
deadlock freedom and safety properties. In 4th CAV, July 1991.

[Hal93] N. Halbwachs. Delay analysis in synchronous programs. In 5th Conference on
Computer-Aided Veri�cation. LNCS 697, 1993.

[HBAB93] H. Hulgaard, S. Burns, T. Amon, and G. Borriello. Practical applications of an
e�cient time separation of events algorithm. In ICCAD'93, 1993.

[Her98] Christian Hernalsteen. Speci�cation, Validation and Veri�cation of Real-Time Sys-
tems in ET-LOTOS. PhD thesis, Universit�e Libre de Bruxelles, 1998.

[HHW97] T. Henzinger, P.-H. Ho, and H. Wong Toi. HyTech: A model checker for hybrid
systems. Software Tools for Technology Transfer, 1, 1997.

[HK89] Z. Har'El and R. Kurshan. Automatic veri�cation of coordinating systems. In
CAV, LNCS 407, 1989.

[HK97] T. Henzinger and P. Kopke. Discrete-time control for rectangular hybrid automata.
In ICALP '97, 1997.

[HKV96] T. Henzinger, O. Kupferman, and M. Vardi. A Space-E�cient On-the-Fly Algo-
rithm for Real-Time Model-Checking. In CONCUR'96. LNCS 1119, 1996.

[HMP92] T. Henzinger, Z. Manna, , and A. Pnueli. What good are digital clocks? In
ICALP'92, LNCS 623, 1992.

[HNSY94] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking
for real-time systems. Information and Computation, 111(2):193{244, 1994.

[Hol91] G. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, 1991.

[HSLL97] K. Havelund, A. Skou, K. Larsen, and K. Lund. Formal modelling and analysis of
an audio/video protocol: An industrial case study using Uppaal. In Proceedings
of the 18th IEEE Real-Time Systems Symposium San Francisco, CA, pages 2{13,
December 1997.

[HT87] T. Hafer and W. Thomas. Computation Tree Logic CTL� and Path Quanti�ers in
the Monadic Theory of the Binary Tree. In ICALP'87. LNCS 267, 1987.

[HT96] M.R. Henzinger and J.A. Telle. Faster algorithms for the nonemptiness of street
automata and for communication protocol prunning. In Proceedings of the 5th
Scandinavian Workshop on Algorithm Theory, pages 10{20, 1996.

[HW91] G. Ho�mann and H. Wong Toi. The input-output control of real-time discrete
event systems. In 30th IEEE Conf. on Decision and Control, 1991.

[Jai94] R. Jain. FDDI handbook: high-speed networking using �ber and other media.
Addison-Wesley, 1994.

[JLSIR97] M. Jourdan, N. Laya�ida, L. Sabry-Ismail, and C. Roisin. An integrated authoring
and presentation environment for interactive multimedia documents. In Proc. of
the 44th Conference on Multimedia Modelling, Singapore, November 1997. World
Scienti�c Publishing.

[KLL+97] Kristo�ersen, F. Laroussinie, K. Larsen, P. Petterson, and W. Yi. A compositional
proof of a real time mutual exclusion protocol. In Proc. of the 7th Intl. Conf. on
the Theory and Practice of Software Development, 1997.

[KP92] Y. Kesten and A. Pnueli. Timed and hybrid statecharts and their textual rep-
resentation. In Formal Techniques in Real-Time and Fault-Tolerant Systems 2nd
International Symposium, volume 571 of LNCS, 1992.

[LA90] N.A. Lynch and H. Attiya. Using mappings to prove timing properties. In 9th
ACM Symp. on Principles of Distributed Computing, pages 265{280, 1990.

[Lam80] L. Lamport. Sometimes is sometimes \not never"{ on the temporal logic of pro-
grams. In 7th ACM Symp. POPL, pages 174{185, 1980.

[Lam83] L. Lamport. What good is temporal logic? In R.E.A. Mason, editor, Information
Processing 83: Proceedings of the Ninth IFIP World Computer Congress, pages
657{668. Elsevier Science Publishers, 1983.

[Lew89] H.R. Lewis. Finite-state analysis of asynchronous circuits with bounded temporal
uncertainty. Technical report, Harvard University, 1989.

[Lew90] H. Lewis. A logic of concrete time intervals. In 5th IEEE Symp. LICS, 1990.

[LGS+95] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving
abstractions for the veri�cation of concurrent systems. Formal Methods in System
Design, 1995.

[LL93] G. Leduc and L. L�eonard. A timed LOTOS supporting dense time domain and
including new timed operators. In Formal Description Techniques V, pages 87{102,
1993.

[LLPY97] K. Larsen, F. Larsson, P. Pettersson, and W. Yi. E�cient veri�cation of real-time
systems: Compact data structure and state-space reduction. In Proceedings of
the 18th IEEE Real-Time Systems Symposium San Francisco, CA, pages 14{24,
December 1997.

[LP85] O. Lichtenstein and A. Pnueli. Checking that �nite state concurrent programs
satisfy their linear speci�cation. In 12th ACM Symp. POPL, pages 97{107, New
Orleans, January 1985.

[LPY95] K. Larsen, P. Pettersson, and W. Yi. Diagnostic model-checking for real-time
systems. In 4th DIMACS Workshop on Veri�cation and Control of Hybrid Systems,
1995.

[LPY97] K. Larsen, P. Petterson, and W. Yi. Uppaal in a nutshell. Software Tools for
Technology Transfer, 1(1/2), October 1997.

[LWYP98] K. Larsen, C. Weise, W. Yi, and J. Pearson. Clock di�erence diagrams. Technical
Report Nr 98/99, ISSN 0283-0574, DoCS, Uppsala University, August 1998.

[LY92] D. Lee and M. Yannakakis. Online minimization of transition systems. In ACM
Symp. on Theory of Computing, 1992.

[LY93] K. Larsen and W. Yi. Timed abstracted bisimulation: implicit speci�cation and
decidability. In Proc. MFPS'93, 1993.

[Mer74] P. Merlin. A study of the recoverability of computer systems. Master's thesis,
University of California, Irvine, 1974.

[Mil80] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in
Computer Science. Springer-Verlag, 1980.

[MLP96] L. Marc�e, D. L'Her, and P. Le Parc. Modelling and veri�cation of temporized
GRAFCET. In Proc. CESA IMACS, Lille, France, July 1996.

[Mou93] L. Mounier. M�ethodes de V�eri�cation de Sp�eci�cations Comportementales : �etude
et mise en �uvre. PhD thesis, Universit�e Joseph Fourrier de Grenoble, 1993. In
french.

[MP95a] O. Maler and A. Pnueli. Timing analysis of asynchronous circuits using timed
automata. In CHARME'95, LNCS 987, 1995.

[MP95b] Z. Manna and A. Pnueli. Temporal Veri�cation of Reactive Systems: Safety.
Springer-Verlag, New York, 1995.

[MPS95] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for
timed systems. In STACS '95, 1995.

[NMV90] R. De Nicola, U. Montanari, and F.W. Vaandrager. Back and forth bisimulations.
Technical report, CWI, Netherlands, May 1990.

[NRSV90] X. Nicollin, J.-L. Richier, J. Sifakis, and J. Voiron. ATP: an Algebra for Timed
Processes. In IFIP TC 2, 1990.

[Oli94] A. Olivero. Mod�elisation et analyse de syst�emes temporis�es et hybrides. PhD thesis,
Institut National Polytechnique de Grenoble, 1994. In french.

[Pel94] D. Peled. Combining partial order reductions with on{the{y model checking. In
6th CAV, june 1994.

[PR89] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In ACM Symp.
POPL, 1989.

[PS96] A. Pnueli and E. Shahar. A platform for combining deductive and algorithmic ver-
i�cation. In Proc. 8th Conference Computer-Aided Veri�cation, CAV'96, Rutgers,
NJ, volume 1102 of LNCS, 1996.

[PT87] R. Paige and R. Tarjan. Three partition re�nement algorithms. SIAM Journal on
Computing, 16(6), 1987.

[PV94] A. Puri and P. Varaiya. Decidability of hybrid systems with rectangular di�erential
inclusions. In CAV'94, LNCS 818, 1994.

[Ram74] C. Ramchandani. Analysis of asynchronous concurrent systems by petri nets. Tech-
nical Report MAC TR-120, MIT, 1974.

[RR88] G.M. Reed and A.W. Roscoe. A timed model for Communicating Sequential Pro-
cesses. Theoretical Computer Science, 58:249{261, 1988.

[RW87] P. Ramadge and W. Wonham. Supervisory control of a class of discrete event
processes. SIAM J. Control Optim., 25(1), January 1987.

[Sai97] Hassen Saidi. The Invariant-Checker : Automated deductive veri�cation of reactive
systems. In Proceedings of the 9th Conference on Computer-Aided Veri�cation,
CAV'97. Springer Verlag, 1997.

[SDdSS94] P. S�enac, M. Diaz, and P. de Saqui-Sannes. Toward a formal speci�cation of
multimedia scenarios. Annals of telecomunications, 49(5-6):297{314, 1994.

[Sif77] J. Sifakis. Use of petri nets for performance evaluation. In Measuring, modelling
and evaluating computer systems, pages 75{93. North-Holland, 1977.

[Sif82] J. Sifakis. A uni�ed approach for studying the properties of transition systems.
Theoretical Computer Science, 18, 1982.

[SS95] O. Sokolsky and S. Smolka. Local Model Checking for Real-Time Systems. In
CAV'95. LNCS 939, 1995.

[STA98] R. Spelberg, H. Toetenel, and M. Ammerlaan. Partition re�nement in real-time
model checking. In Formal Techniques in Real-Time and Fault-Tolerant Systems,
Lyngby, Denmark, volume 1486 of LNCS. Springer-Verlag, 1998.

[SV96] J. Springintveld and F. Vaandrager. Minimizable timed automata. In B. Jons-
son and J. Parrow, editors, Proc. of the 4th International Symposium on Formal
Techniques in Real Time and Fault Tolerant Systems (FTRTFT'96), volume 1135
of Lecture Notes in Computer Science, pages 130{147, Uppsala, Sweden, 1996.
Springer-Verlag.

[SY96] J. Sifakis and S. Yovine. Compositional speci�cation of timed systems. In 13th
Annual Symposium on Theoretical Aspects of Computer Science, STACS'96, pages
347{359, Grenoble, France, February 1996. Lecture Notes in Computer Science
1046, Spinger-Verlag.

[TAKB96] S. Tasiran, R. Alur, R.P. Kurshan, and R. Brayton. Verifying abstractions of timed
systems. In CONCUR'96, LNCS 1119, 1996.

[Tar55] A. Tarski. A lattice theoretical �x-point theorem and its applications. Paci�c
Journal of Mathematics, 5:285{310, 1955.

[Tar72] R. Tarjan. Depth �rst search and linear graph algorithms. SIAM Journal on
Computing, 1(2):146{170, 1972.

[TB97] S. Tasiran and R.K. Brayton. Stari: A case study in compositional and hierar-
chical timing veri�cation. In CAV'97, LNCS 1254, 1997.

[TC96] S. Tripakis and C. Courcoubetis. Extending promela and spin for real time. In
TACAS'96, Passau, Germany, volume 1055 of LNCS. Springer-Verlag, 1996.

[Tra93] D.P. Tranchier. Fast Reservation Protocol / DT : Multiplexage statistique dans les
re'seaux ATM. PhD thesis, Universit�e de Rennes I, 1993.

[TY96] S. Tripakis and S. Yovine. Analysis of timed systems based on time{abstracting
bisimulations. In Proc. 8th Conference Computer-Aided Veri�cation, CAV'96, Rut-
gers, NJ, volume 1102 of LNCS, pages 232{243. Springer-Verlag, July 1996.

[TY98] S. Tripakis and S .Yovine. Veri�cation of the Fast-Reservation Protocol with De-
layed Transmission using the tool Kronos. In 4th IEEE Real-Time Technology and
Applications Symposium, Denver, Colorado, June 1998.

[�C92] K. �Cer�ans. Decidability of bisimulation equivalence for parallel timer processes.
In Proceedings of the Fourth Workshop on Computer-Aided Veri�cation, Lecture
Notes in Computer Science, 1992.

[Val90] A. Valmari. Stubborn sets for reduced state space generation. LNCS 483, 1990.

[Wol86] Pierre Wolper. Expressing interesting properties of programs in propositional tem-
poral logic. In Proc. 13th ACM Symp. POPL, pages 184{192, St. Petersburgh,
January 1986.

[WT95] H. Wong-Toi. Symbolic Approximations for Verifying Real-Time Systems. PhD
thesis, Stanford University, 1995.

[WTD94] H. Wong-Toi and D.L. Dill. Approximations for verifying timing properties. In The-
ories and Experiences for Real-Time System Development. World Scienti�c Pub-
lishing, 1994.

[Yi90] W. Yi. Real-time behavior of asynchronous agents. In Concur'90, LNCS 458, 1990.

[YL93] M. Yannakakis and D. Lee. An e�cient algorithm for minimizing real-time tran-
sition systems. In Fifth Conference on Computer-Aided Veri�cation, LNCS 697,
Elounda, Greece, june 1993.

[Yov93] S. Yovine.M�ethodes et outils pour la v�eri�cation symbolique de syst�emes temporis�es.
PhD thesis, Institut National Polytechnique de Grenoble, 1993. In french.

[Yov97] S. Yovine. Kronos: a veri�cation tool for real-time systems. Software Tools for
Technology Transfer, 1997.

Appendix A

Higher-level modeling

A.1 Adding �nite-domain variables to the timed-automata

model

We show how the model of TA can be extended with discrete variables of �nite domains without
a�ecting the theoretical results. In fact, we can view this extension as pure \syntactic sugar"
since the extended model can be translated to the basic TA model.

Let Q = K1 � � � � � Km, where K1; :::;Km are �nite domains. The extended TA model
(ETA) is similar to a guarded-command language. Each ETA has:

� a �nite set of clocks X ,

� a set of variables f�1; :::; �mg, �i ranging in Ki, for i = 1; :::;m,

� an initial assignment of the variables q0 2 Q,
� a �nite set of commands: each command has the form (� ^ f(�)) a�! (X; g(�)), where:

{ (� ^ f(�)) is the guard of the command, decomposed in a convex X -polyhedron �
(the clock guard) and a boolean function f on Q (the discrete guard);

{ a is the label of the command;

{ (X; g(�)) is the assignment of the command, decomposed in a set of clocks to be reset
X and a function g : Q 7! Q (the discrete assignment).

� an invariant function invar associating to each q 2 Q a convex X -polyhedron invar(q).

Notice that the control states are not explicit, however, they can be modeled by adding a special
variable representing the \program counter".

Translating an ETA to a TA A is straightforward. The set of discrete states of A is Q
and the initial state is q0. The invariant of A is invar(). For each q 2 Q and each command
(� ^ f(�)) a�! (g(�);X) such that f(q) = true, A has an edge (q; �; a;X; g(q)).

We have already used ETA informally in the case studies. Most of the times, the above
translation to TA has not been necessary, since the new generation of Kronos, kronos-open,
works directly with ETA and builds the discrete state space on-the-y.

204

g

A.2 Modeling atomic states

We show how to model atomic states using auxiliary variables. For simplicity, we consider TA
extended with boolean variables. The latter can be encoded in the discrete structure of the TA
as described in appendix A.1.

Informally, the semantics of atomic states for a network of TA are as follows:

1. while some automaton is in an atomic state, time stops;

2. when an automaton A enters an atomic state, it has to exit before any other automaton
can take a discrete step.

Atomic states are sometimes useful for compact speci�cations. In particular, they correspond to
the \committed locations" of Uppaal, and have been used in modeling the Bang&Olufsen
protocol (section 12.3). Since Kronos does not support atomic states directly, we have used
the modeling method described below.

We introduce an auxiliary global boolean variable atom and an auxiliary global clock z (a
single boolean variable and a single clock su�ce, no matter how many the atomic states are).
The invariant that must hold during execution is that atom is set i� some automaton is in an
atomic state and that the time spend in atomic states is zero.

For each automaton A in the global system, if e = (q; ; ; q0) is an edge of A, then:

� If q is not atomic, then we add the boolean guard :atom to e.

� If q is atomic, then we add the clock guard z = 0 to e.

� If q0 is atomic, then we add the assignment atom := true and the clock reset z := 0 to e.

� If q0 is not atomic, then we add the assignment atom := false to e.

The construction is illustrated in �gure A.1.

z = 0
atom := false

z := 0
:atom

:atomkkatomic:

Figure A.1: Modeling atomic states with an auxiliary boolean variable and clock.

A.3 Petri Nets with Deadlines

An 1-safe Petri net is a pair (P;P0;T) where
� P is a �nite set of places. A subset of P is called a marking. P0 � P is the initial marking.

� T � 2P � 2P is a �nite set of transitions.

Adopting standard Petri-net terminology, given a marking P 0, we say that there is a token in
place q when q 2 P 0. Places can be viewed as local states of processes. Given (P1;P2) 2 T ,
places in P1 and P2 are the input and output places of the transition. We say that the transition
consumes tokens from each place in P1 and produces tokens in each place in P2. A transition
with more than one input places represents a synchronization of several processes.

A Petri Net with Deadlines (PND) [BST98] consists of:

� An 1-safe Petri net (P;P0;T).
� A �nite set of clocks X .

� A function h mapping each transition (P1;P2) 2 T into a tuple (�; a;X), where � is a
convex X -polyhedron, a is a label and X is a subset of X .

� A function invar mapping each place into a convex X -polyhedron.

The above PND de�nes a TA (X ; 2P ;P0; E; invar
0), where:

� E = f(P1; �; a;X;P2) j (P1;P2) 2 T ^ h(P1;P2) = (�; a;X)g;
� invar0(P1)

T
q2P1 invar(q).

In other words, the discrete structure of the TA corresponds to the marking graph of the PND:
the discrete states of the TA are PND markings and its edges are PND transitions. As for the
invariant, intuitively, the de�nition above makes sure that time can pass in a marking i� it can
pass in every place in the marking.

Appendix B

Proofs

Proof of lemma 5.9.

Let � = s0
�0! s00

e1! s1 � � � be a run of A. By de�nition, s00 2 time-succ(fs0g). For i = 1; 2; :::,
de�ne Si = post(ei; Si�1; c), where S0 = time-succ(fs0g. By de�nition, for all i = 1; 2; :::,
si 2 disc-succ(ei; Si�1) and s0i 2 time-succ(disc-succ(ei; Si�1)), thus, s0i 2 post(ei; Si�1; c) (since
close(S; c) � S). Then, � = S0

e1! S1 � � � is a valid zone path, since no Si is empty. If � is zeno
then � is zeno (the argument is similar to the one in the proof of lemma 5.5).

Inversely, let � be a zone path. For simplicity, we assume that � is ultimately periodic, that
is, � = �0(�)!, where � is a cycle (this case covers also �nite paths). Let � = S1

e1! � � �Sl el! S1.
Choose some sl 2 Sl and let Cl be the region of sl. By the post-stability property, there exist

s0l 2 Sl; sl�1 2 Sl�1 such that sl�1 el! �l! s0l and sl; s
0
l are c-equivalent. Observe that c-equivalence

implies region-equivalence, thus, s0l 2 Cl and Cl�1
el! C 0

l

�! Cl, where C 0
l is some region and

Cl�1 is the region of sl�1. We can continue backwards along the cycle in the same way, �nding
predecessor regions C 0

l�1; Cl�2; :::; C1; C
0
l; C

1
l ; :::, and so on. Observe that C 0

i; Ci have non-empty
intersection with Si. Since there is a �nite number of regions, after a bounded number of
iterations we encounter a region we have already seen before, that is, we have found a cycle of
regions. This de�nes an in�nite path of regions, and we can use lemma 5.5 to extract a run �
from it. By de�nition, � is inscribed in the original path �. Also, if � is non-zeno it is easy to
verify that the region path is also non-zeno, therefore, � can be chosen non-zeno.

The proof can be extended to an in�nite path � which is not ultimately periodic: since
the simulation graph is �nite, � must visit nodes in a SCC from some point on. We apply
the backward-propagation technique above to the nodes of the SCC visited in�nitely often by
�. This yields a SCC of regions, thus, we can \map" � upon an in�nite path of regions, from
which a run is extracted as before.

Proof of lemma 6.4.

The proof is by induction on the syntax of �. The basis (� is an atomic proposition) comes
from the fact that � respects P . The case for �1 _ �2 is trivial.

Consider the case where � is of the form 9�1 U �2. Assume that C 0 2 ctl-eval(�), C 2
ctl-eval(�1) and C

�! C 0. Let s 2 C. There exists � such that s
�! s + � and s + � 2 C 0. By

induction, s + � satis�es � and s satis�es �1. Now, for any �0 < �, s + �0 2 C [C 0 (here we
use the fact that C 0 are the immediate time successors of C). By lemma 5.7 and the fact that
s+ �0 is STa-bisimilar either to s or s+ �, we have s+ �0 j= �1 or s+ �0 j= �, thus, s j= �. The
case C

e! C 0 is similar.

207

Now, consider the case where � is of the form 8�1U �2. Let C 62 ctl-eval(�). Since A
is deadlock-free, there is an in�nite path in G, � = C ! C1 ! � � � , and some i, such that
Ci 62 ctl-eval(�1) and for all j < i, Cj 62 ctl-eval(�2). Also remark that � contains only a �nite
number of � -transitions, since there are no � -self-loops in G. Finally, � is non-zeno, since A is
strongly non-zeno. Thus, by lemma 5.5, we can extract from � a non-zeno run which falsi�es
8�1U �2.

Proof of lemma 7.3.

Only one of the directions is non-trivial. Let � be a non-zeno cycle.
Repeat: Is � elementary ? If yes, we are done.
Otherwise, � visits at least one node S twice, thus, can be divided in two sub-cycles �1 and

�2 rooted at S. We distinguish two cases.

Case 1: there exist two clocks x and y such that x is reset in �1 but not in �2 and y is reset
in �2 but not in �1. Let

e1! S1 be the last edge before S where x is reset in �1. We have that
S1 � (x � y), thus, from post-stability and the fact that y is not reset between S1 and S, we
obtain S � (x � y). Reasoning symmetrically on �2, we obtain S � (y � x) and from the two
facts, we have that S � (x = y).

Now, let � be a non-zeno run inscribed in �. Whenever � passes through S1, its valuation
is such that x = 0. It should also be that y = 0, since when � passes through S it is x = y and
the di�erence between x and y is not changed between S1 and S (none of the clocks is reset).
Reasoning symmetrically on �2, we obtain that x = y = 0 each time � passes through S2. Then,
no time elapses from S1 to S2, since y is not reset anywhere between. No time elapses from S2

to S1 since x is not reset anywhere between. Thus, no time elapses at all along the run. We
have a contradiction since � was assumed non-zeno.

Case 2: the negation of case 1. There must be a sub-cycle among �1; �2 which resets all
clocks that are reset in �. Without loss of generality, we assume that so does �1. Every clock
not reset in � remains unbounded in �, thus, also in �1, so that the latter is non-zeno. Then,
update � to �1 and goto Repeat.

Since cycles are �nite structures, the process cannot be repeated ad in�nitum. It eventually
terminates yielding an elementary cycle.

Proof of lemma 8.3.

We assume that all constraints are in normalized form y�y0 � c, where c 2 Z[f1g. The proof
is by contradiction, assuming that there is a constraint y�y0 � c which is strengthened in�nitely
often, that is, c decreases without lower bound. Since the operation which \destabilizes" the
set of constraints is variable substitution (after each step the set of constraints is �xed), we can
assume that y � y0 � c is a constraint of the �rst iteration, that is, y; y0 2 fy0; :::; ym�1g.

In order for c to decrease, there should be a \path" of constraints y�w1 � c0, w1�w2 � c1,
..., wk � y0ck, where w1; :::; wk 2 Y , such that c0 + � � � + ck < c (so that we get y � y0 =
y�w1+w1�w2+ � � �+wk � y0 � c0 + � � �+ ck). Now, there should be at least one constraint
of the second iteration, say, wj �wj+1 � cj , which is also strengthened in�nitely often. This is
because after each step the set of constraints is �xed and there is a �nite number of constraint
paths like the one above.

Since wj ; wj+1 are variables of the second iteration and y0 is a variable of the �rst iteration,
there are two implicit constraints y0 � wj � 0 and y0 � wj+1 � 0. From the latter we conclude
that cj+1+ � � �+ ck � 0, otherwise we would have 0 = y0�wj+1+wj+1�y0 = y0�wj+1+wj+1�
wj+2+ � � �+wk � y0 � 0 + cj+1+ � � �+ ck < 0, and the set of constraints would be inconsistent.
Thus, there is a constant c0 such that 0 � c0 � cj+1 + � � � + ck and wj+1 � y0 � c0 from some
point on in the �x-point computation. (Notice that c0 cannot increase, since at each iteration
the constraints are strengthened.)

Now, since wj � wj+1 is strengthened in�nitely often, there exists some point in which
wj � wj+1 � �(c0 + 1). At this point, we have 0 = y0 � wj + wj � wj+1 + wj+1 � y �
0 � (c0 + 1) + c0 = �1, which implies that the set of constraints is inconsistent, contradicting
our initial assumption.

Proof of lemma 9.5.

First notice that for any visited node v, Reach(v) returns yes i� at that point in the execution
of the algorithm, v 2 Yes .

For a node v 62 V̂ , we prove the following facts, by induction on the number of nodes:

1. If v 2 Maybe at the end of the algorithm then there exists no winning strategy from v.

2. If v 2 Yes then at the end of the algorithm Strat contains a winning strategy from v.

For fact 1, we shall prove that either there exists v
u! w such that w 2 Maybe, or for all

v
c! v0, v0 2 Maybe. The result follows from the induction hypothesis and lemma 9.3. Now,

at the moment when v is �rst visited by Reach(v) and its successors are explored, either some
uncontrollable successor of v is in Maybe (line 1) or no controllable successor of v is in Yes (line
2). Otherwise, v would be inserted in Yes (line 3). If, during the algorithm, some successor of
v is moved from Maybe to Yes , so that the above condition ceases to hold, then v would be
updated by procedure UndoMaybe (line 6 or 8).

For fact 2, observe that for a node v to be inserted in Yes , procedure UndoMaybe has to
be called and this is done after having passed either line 4 or line 7, where a controllable edge
from v is inserted in Strat . Moreover, all uncontrollable edges from v are inserted in Strat
by UndoMaybe (line 5). Thus, by the induction hypothesis and lemma 9.3, Strat is a winning
strategy.

Facts 1 and 2 settle the \if" and \only if" parts of the proof, respectively.

Index

Ec, see controllable edges
Eu, see controllable edges
. , see projection
�, 17
k, see composition
% , see projection
1, 17
c, see projection
=, see projection
[Y := 0]�, 22
�[Y := 0], 22

abstractions, 9, 41, 66
acceptance, 34, 86, 87
accepting runs, 34
active clocks, see clock-activity abstraction
activity graph, see clock-activity abstraction
AG(�; �), see clock-activity abstraction
all-pairs shortest-path algorithm, 127
asynchronous, 8

interleaving, 27
atomic constraints, 20

BDD, see binary decision diagrams
binary decision diagrams, 14, 167
bisimulation, 41
bisimulations, 19

delay, 19
observational, 19
strong, 19

bounded response, 12, 34, 35, 37
bounds, 125
branching time, 8, 36

semantics of TA, 27

CADP, 11, 145, 150
canonical decomposition, 145
canonical form, 127
c-closure, see cequivalent
c-equivalent, 21, 26, 42, 57, 60, 127
cf(), 127
channels, 151
characteristic set of a formula, 12, 139

CHG(�; �), see convex-hull abstraction
classes, see equivalences
clock-activity abstraction, 59, 66, 81
clocks, 20
close(�; �), see cequivalent
closed system, 105
cmax (A), 26
cmax (�), 21
coarser, see partitions
compiler, 138
complementation, 17, 20, 70, 75, 79, 106, 113,

131
composite

edges, TA, see composition
objects, 182, 185

composition, 27, 109
of relations, 17

constraint induction, 99
controllable

edges, 106, 109
environment, 105
timed automata, 106

controller, see controller synthesis
controller synthesis, 8, 10, 105

on-the-y, 114
controlled-pre(�), 111, 133
convex, 21, 83
convex hull, 21
convex-hull abstraction, 65, 66, 81
convex-hull graph, see convex-hull abstraction
cost(), 127
critical races, 30
CTL, see TCTL
ctl-eval, 77
cycles, 17

accepting, 85
elementary, 17
non-zeno, 87
root, 17

data independence, 172, 178
DBM, see di�erence bound matrix

210

deadlocks, 29, 30, 32, 83
delay(�; �), 27
dense time, 8, 13
depth-�rst search, 80, 85{88
DFS, see depth-�rst search
diagnostics, 11, 95
di�erence bound matrix, 126
dimension of DBM, 126

variable, 128, 138, 153
dimension-preserving projection, see projection
dimension-restricting projection, see projection
direct quanti�er elimination, 134
disc-pred�(�), 70
discrete(�), 26
discrete time, 13
disc-pred(�; �), 42
disc-succ(�; �), 42
disc-split(�; �), 73

elementary cycles, see cycles
elimination of quanti�ers, see direct quanti�er

elimination
emptiness, 34, 35, 84

partial, total, 91
environment, see controller synthesis
equivalences, 18
escape possibility, 37
ETCTL�9, 37, 92
etctl-eval(�; �), 92
etctl-post(�; �; �), 92
extracted diagnostics, see inscribed runs

false, 21, 42
�ner, see partitions
�x-points, 17
free(�), 32, 83

game, see controller synthesis
graph, 17

quotients, see quotients
guard(�), 26

hyperplanes, 20

IG(�; �), see inclusion abstraction
inclusion abstraction, 62, 66, 81
inclusion graph, see inclusion abstraction
inclusion of polyhedra, 128
in(q), 26
inscribed runs

as diagnostics, 96

in activity graph, 62
in simulation graph, 58

interleaving, see asynchronous
interpreter, 138
intersection, 17, 20

language, 39
of polyhedra, 128

intervals, 36
I, 36
invar(�), see invariants
invariance, 11, 34, 37
invariants, 26, 33
inverse relation, 17

Kronos, 11, 138
kronos, 138, 139
kronos-open, 138, 150

labeled transition system, see graph
labels, 17

local, 27
Labels, 17
label(�), 26
language

emptiness, see emptiness
of automaton, 34
property-speci�cation, 7, 8, 34
system-speci�cation, 7, 8, 24

Lang(�), 34
linear time, 8, 34

semantics of TA, 27
liveness, 12, 35

of time, see time progress

minim, 138, 145
minimal-model generation algorithm, 69
minimization, 68
MMGA, see minimal-model generation algorithm
model checking, 8
monotonic, 112
�, 17

non-zeno strongly-connected components, see

strongly-connected components
�, 17

on-the-y, 10, 80, 114
Open-Caesar, 11, 150
optikron, 138
optimal inclusion, see inclusion abstraction
out(q), 26

parallel composition, see composition
partial reachability, see reachability
partition, 145

convex, 73
re�nement, see minimization

partitions, 18
path

symbolic, non-zeno, 58, 62
zone, 58

paths, 17
periodic (runs, trails), 98
polyhedra, 20, 125

canonical form, 127
convex, 21, 126
operations, 21, 127
representation, 126

post(�; �; �), 42
post-stability, 19, 57, 60, 64, 65
pre(�; �), 42
pre-stability, 19, 57
pre-stabilization, 83, 91
predecessors, 17

continuous time, 72
controllable, 111, 114
discrete, 42
time, 42

preds(�), 17
pre-stable-root(�), 83
progress, see time progress
projection

backward (.), 22, 129
dimension-preserving (=), 22, 128
dimension-restricting (c), 22, 128
forward (%), 22, 129

qualitative time, 8
quanti�er elimination, see direct quanti�er elim-

ination
quantitative time, 8
quotients, 18, 75

minimal, see minimization

reachability, 80
reactive systems, 10, 105
re�nement, see minimization
region equivalence, 9, 14, 41, 49
region graph, see region equivalence
repeating

states, 34
reset(�), 26
root of cycle, see cycles

round(�), 125
run, 27
runs

accepting, see accepting runs
zeno, 29

safety, 34
satisfaction

of ETCTL�9, 37
of TBA, 34, 35
of TCTL, 36

SCC, see strongly-connected components
SG(�; �), see simulation graph
shortest-path algorithm, 127
simulation, 41
simulation graph, 55
simulations, 18
since(�; �), 92, 133
sink nodes, 17
source(�), 26
split functions, 73
state explosion, 9
states, 26

atomic, 170, 176, 205
c-equivalent, 26
discrete, 26
reachable, 27
repeating, see repeating states
target, see target states
transient, 27

strategy, 11, 107
strong-fairness algorithm, 88
strongly non-zeno, 29{32, 85
strongly-connected components, 17, 85, 87, 88

non-zeno, 76
structural loop, 30
successors, 17

controllable, 114
discrete, 26, 42
immediate time, 72
time, 26, 42

succs(�), 17
symbolic

representation, 11
symbolic states, 42
synchronization, 25, see composition, 109
synchronous

languages, 13
product, 35
time passage, 8, 27

transitions, see composition
synthesis, see controller synthesis
synth-kro, 138, 146

TA, see timed automata
target(�), 26
target states

in profounder format, 177
in controller synthesis, 107
in reachability, 80, 83, 84
in synthesis, 114

TBA, see timed B�uchi automata
TCTL, 36, 77
time

dense, 13
discrete, 13
qualitative, 8
quantitative, 8

time(�), 27
time(�; �), 27
time progress, 29{31, 33

transition (tp), see weak-fairness algorithm
time-abstracting bisimulations, 41
time-abstracting simulations, 41
time-progress conditions, see invariants
timed automata, 25
timed B�uchi automata, 34
timed systems, 7
timed trails, see trails
timelocks, 30, 32, 84
time-pred(�), 42
time-split(�; �), 73
time-succ(�), 42
total reachability, see reachability
trails, 95
transitions, 26

discrete, 26
time, 26

trivial
acceptance, 34, 86
bounds, 125, 132
intervals, 37, 77

true, 21

unbounded(�; �), 21, 58, 129
uncontrollable, see controllable
union, 17

of graphs, 20
of polyhedra, 131

until(�; �), 72, 129, 133

valuation
k-incomplete, 96

valuations, 20
c-equivalent, see cequivalent
extracting from polyhedra, 96, 130

veri�cation, 8, 105

weak-fairness algorithm, 88, 89
while-not(�), 134
winning strategy, see strategy

yes/no reachability, see reachability

zeno runs, see runs
zenoness, see time progress
zero, 21
zones, 42

