
HAL Id: tel-00005172
https://theses.hal.science/tel-00005172

Submitted on 1 Mar 2004

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real-Time Dynamic Simulation and 3D Interaction of
Biological Tissue: Application to Medical Simulators

Kenneth Sundaraj

To cite this version:
Kenneth Sundaraj. Real-Time Dynamic Simulation and 3D Interaction of Biological Tissue: Appli-
cation to Medical Simulators. Other [cs.OH]. Institut National Polytechnique de Grenoble - INPG,
2004. English. �NNT : �. �tel-00005172�

https://theses.hal.science/tel-00005172
https://hal.archives-ouvertes.fr

INSTITUT NATIONAL POLYTECHNIQUE DE
GRENOBLE, FRANCE

No. attribué par la bibliothèque
| | | | | | | | | | | |

THESE

pour obtenir le grade de

DOCTEUR DE L’INPG

Spécialité : Imagerie, Vision, Robotique

Préparée au laboratoire GRAVIR à l’INRIA Rhône-Alpes,
dans le cadre de l’Ecole Doctorale

Mathématiques, Sciences et Technologie de l’Information

présentée et soutenue publiquement par

Kenneth Sundaraj

le 23/01/2004

Titre

Real-Time Dynamic Simulation and 3D
Interaction of Biological Tissue : Application to

Medical Simulators

Directeur de Thèse

Christian Laugier

Composition du Jury

M. Augustin Lux Président
M. Kamal Gupta Rapporteur
M. Philippe Meseure Rapporteur
M. François Faure Examinateur
M. François Leitner Examinateur
M. Christian Laugier Directeur de thèse

ii

iii

To my mother,
To my father.

iv

Acknowledgements

It has been a long journey for me. As such, allow me to pen down more than
just a few words . . .

Being a believer, let me begin by thanking God for everything. Nothing is pos-
sible without Him.

That said and done, let me get over with the formalities . . .

I would like to firstly thank my thesis director, Christian Laugier, for his constant
support and encouragement throughout this research. Besides supervising me over
these years, he has also given me enough freedom to pursue my research indepen-
dently.

Next, I am grateful to my thesis committee members; Professor Augustin Lux
(Institut National Polytechnique of Grenoble, France), for assuming the role as presi-
dent of the committee. Professor Kamal Gupta (University of Simon Fraser, Canada)
and Associate Professor Philippe Meseure (University of Poitiers, France) for their
steadfast enthusiasm for the thesis, and for reading it meticulously. Associate Pro-
fessor François Faure (Institut National Polytechnique of Grenoble, France) and
François Leitner (Aesculap-BBraun, France) for reviewing my manuscript and their
constructive comments, and finally Christian Laugier (Research Director at INRIA,
France), who deserve commendation for his patience with the many drafts he pe-
rused conscientiously.

Many thanks also to all the numerous people in the Sharp/CyberMove/e-Motion
team, whom I had pleasure working with. They have provided me with a great
research environment and a relaxed atmosphere. In all these years, many have come
and have gone. It is almost impossible of me to thank each one of them individually,
with all of whom I developed warm friendships.

For financial support during my PhD, I would like to thank the French Ministry
of Foreign Affairs (MAE) for the research scholarship.

I am also grateful to everybody at INRIA, especially the staff who have been
both efficient and friendly. Special thanks to the project assistants; Anne Pasteur
and Veronique Roux who have guided me on more than one occasion through the
often obscure bureaucratic procedures that perplexed me. The librarians also de-

v

vi

serve no less; they have on numerous occasions helped me to find an article or book
on which I was not able to lay my hands upon.

I guess that about sums up all that has to be said, formally speaking. Now
(inevitably the most interesting part), I would like acknowledge the people (in order
of appearance) who have made this journey very special and memorable . . .

Some friends have been with me right from the beginning. That has been the
case of Diego, François and César. Their presence, friendship and cheerful good
humor have enabled me to just enjoy life at work and even after work.

My deepest gratitude to Carla and Kamel who have been like an elder sibling to
me. Their eternal and personal kindness has translated into numerous pleasurable
moments over these years.

I also appreciate the efforts of my soul-buddies, Anne and Laks, for putting up
with me during the sometimes very stressful last few months of my PhD. I can’t even
begin to imagine the pain and agony that I’ve put them through. Their patience
and serenity has helped me to keep calm and relax.

Aside from acknowledging the many friends that have made my time at Greno-
ble pleasurable, I would especially like to thank Christophe, Cedric, Veronika, Marta
and Frank for the many lovely times that we spent together.

Many thanks to all of those that have proof-read the early versions of my thesis
manuscript. They have allowed me to correct several errors in this document. Fur-
thermore, their comments and suggestions have helped me to present my work in a
more comprehensible manner. Any remaining mistakes are, of course, entirely their
responsibility.

For giving me a home away from the research lab, I thank my residence house-
mates through the years; Blandine, Pietro and Natalia.

And finally, I would like to thank my parents, all my brothers and my sister for
their love and encouragement during my absence amongst my family.

Contents

Acknowledgements v

Extended Abstract (in French) xi

1 Introduction 1

1.1 Context and Motivations . 1

1.2 Description of the Problem . 2

1.3 Goals and Contribution . 4

1.4 Thesis Outline . 5

Part I Modeling Soft Tissue 7

2 State of the Art 9

2.1 Introduction . 9

2.2 Computation Models . 10

2.2.1 Mass-Spring Network (MSN) 10

2.2.2 Elasticity Theory Method (ETM) 14

2.2.3 Finite Element Method (FEM) 16

2.2.4 Tensor-Mass Model (TMM) 18

2.2.5 Hybrid Elasticity Model (HEM) 20

2.2.6 Method of Finite Spheres (MFS) 21

2.2.7 Boundary Element Method (BEM) 22

2.2.8 Long Element Method (LEM) 24

2.3 Resolution Methods . 25

2.3.1 Static Systems . 25

2.3.2 Dynamic Systems . 27

2.4 Summary . 28

3 The Volume Distribution Method (VDM) 31

3.1 Introduction . 31

3.2 Mathematical Formulation . 32

vii

viii CONTENTS

3.2.1 Notations . 32

3.2.2 Distributed Area and Volume 34

3.2.3 Bulk Modulus . 35

3.2.4 Volumic Pressure . 35

3.2.5 Volumic Tension . 36

3.2.6 Equilibrium State . 36

3.2.7 Model Assemblage . 37

3.2.8 Anisotropic Behavior . 40

3.2.9 Stress Distribution . 41

3.2.10 Imposing Constraints . 41

3.3 System Resolution . 44

3.3.1 Linear Analysis . 44

3.3.2 Quasi-Linear Analysis . 45

3.3.3 Nonlinear Analysis . 48

3.4 Simulation Results . 49

3.5 Summary . 58

Part II Collision Detection 59

4 State of the Art 61

4.1 Introduction . 61

4.2 Software Models . 63

4.2.1 Pair Selection . 64

4.2.2 Zone of Collision . 65

4.2.3 Colliding Entities . 79

4.3 Implementation Issues . 81

4.3.1 Complexity . 81

4.3.2 Memory Storage . 82

4.3.3 Frame Coherence . 82

4.4 Hardware Models . 83

4.4.1 Z-Buffer Comparisons . 83

4.4.2 Distance Fields . 83

4.5 Summary . 84

5 Collision Detection for Medical Simulators 87

5.1 Introduction . 87

5.2 Distance Computation of Convex Objects 89

5.2.1 Description of the Algorithm 89

5.2.2 Experimental Results . 92

5.3 Distance Computation of Concave Objects 95

5.3.1 Description of the Algorithm 95

CONTENTS ix

5.3.2 Experimental Results . 96

5.4 Collision Detection of Deformable Objects 96

5.4.1 Description of the Algorithm 98

5.4.2 Experimental Results . 99

5.5 Contact Localization for Collision Treatment 100

5.5.1 Description of the Algorithm 102

5.5.2 Experimental Results . 104

5.6 Summary . 106

Part III Virtual Reality Applications 109

6 Medical Simulators 111

6.1 Introduction . 111

6.2 Echographic Thigh Exam . 112

6.2.1 Motivations . 112

6.2.2 Thigh Deformable Model . 113

6.2.3 Interaction . 115

6.2.4 Experimental Results . 119

6.2.5 Conclusion . 121

6.3 Arthroscopy Knee Reconstruction . 121

6.3.1 Motivations . 121

6.3.2 AKR using OrthoPilot . 122

6.3.3 ACL Deformable Model . 123

6.3.4 Intra-Operative Surgery . 126

6.3.5 Experimental Results . 127

6.3.6 Conclusion . 130

6.4 Summary . 131

7 Conclusion 133

7.1 Summary of Findings . 133

7.2 Analysis . 135

7.3 Perspectives . 136

APPENDICES 139

A Collision Detection Libraries 141

A.1 Convex Based Packages . 141

A.2 Polygon Soup Based Packages . 142

B ColDetect - Reference Manual 145

x CONTENTS

B.1 Introduction . 145
B.2 Installation . 146

Index of cited Authors 147

Bibliography 151

Extended Abstract (in French)

Chapitre 1 : Introduction

1.1 Contexte et Motivations

L’avènement de l’imagerie médicale a bouleversé les méthodes de travail des

médecins. Les investigations de l’informatique pour faire avancer la médecine con-

tinuent, et un champs de travail, très actif actuellement, est celui du développement

de simulateurs médicaux.

Un des objectifs de ces travaux est de proposer aux médecins des simulateurs

pour l’entrâınement à des procédures chirurgicales, de la même manière qu’il existe

des simulateurs de vol pour former les pilotes. Afin d’être réalistes, ces simulateurs

doivent évidemment intégrer des modèles mécaniques de déformation des organes.

Le défi est d’envergure, car la mécanique du vivant est loin d’être complètement

connue, du fait même de la complexité des systèmes vivants.

1.2 Description du problème

Aujourd’hui plusieurs simulateurs médicaux existent déjà. Par exemple on peut

s’initier à la laparoscopie en utilisant un simulateur doté d’un dispositif retour

d’efforts ou interagir avec un modèle mécanique de l’oeil basé sur les éléments fi-

nis. Aussi des modèles construits à partir de donnés du patient ont été proposés.

Par contre, il y a encore beaucoup de problèmes á résoudre pour avoir un sim-

ulateur de chirurgie qui soit réaliste et interactif. Tout d’abord, il faut simuler les

déformations des organes dues aux forces des outils chirurgicaux. Ces déformations

sont á la base non linéaires et sa simulation en temps réel constitue un des domaines

de recherche les plus importants dans la simulation physique des organes. Dans ce

cadre, nous nous sommes intéressés au problème de la modélisation des phénomènes

xi

xii Extended Abstract (in French)

de déformation de tissu biologique et à la détection des collisions dans un environ-

ment virtuel.

1.3 Buts et Contributions

L’objectif de ce travail porte sur la création d’un cadre pour le développement

d’un simulateur de chirurgie en réalité virtuelle. Plus particulièrement, les objectifs

sont de:

• Proposer un modèle numérique efficace et réaliste pour la simulation de tissu

mou.

• Implémenter une librairie de détection de collision pour les objets déformables.

• Explorer sa faisabilité dans un simulateur médical.

Les contributions apportées par ce travail sont les suivantes:

• Un nouveau modèle déformable pour la simulation de tissus mous - Volume

Distribution Method (VDM).

• Une librairie de détection de collision pour des simulateurs médicaux - ColD-

etect.

• Développement de simulateurs médicaux prototypes - Simulateur de chirurgie

arthroscopique du ligament du genou.

• Un ensemble d’études comparatives des différents modèles physiques et des

méthodes de détection de collision.

1.4 Organisation de la thèse

Le document est constitué de la manière suivante : le chapitre 2 présente l’état de

l’art sur les modèles physiques de tissu mou et leur résolution. Le chapitre 3 présente

ensuite un modèle développé pour la simulation de tissu biologique, en présentant

successivement les aspects liés à la formulation du modèle, à la résolution du modèle,

et au traitement des interactions physiques. Ce modèle, basé sur l’utilisation du

principe de Pascal, permet de modéliser de manière relativement satisfaisante des

corps biologiques, tout en permettant une simulation interactive. Dans le chapitre

4, nous présentons les différents algorithmes existants pour la détection de collision,

ainsi que la difficulté d’adapter ces algorithmes aux simulateurs médicaux où les

objets déformables complexes forment la base du modèle. Le chapitre 5 expose

Extended Abstract (in French) xiii

les algorithmes développés pour traiter ce problème dans le cadre des simulateurs

médicaux. Ces algorithmes présentent des caractéristiques de robustesse numérique

et d’efficacité supérieures á l’existant, et permettent de traiter des corps déformables.

Dans le chapitre 6, nous présenterons les résultats dans le cadre d’un simulateur

échographique de la cuisse humaine et d’une simulateur de chirurgie arthroscopique

du LCA (ligament croisé antérieur du genou). Enfin, le chapitre 7 présente le bilan

des études menées et expose quelques perspectives.

Partie I : Modèles Physiques de Tissu Mou

Chapitre 2 : État de l’Art

2.1 Introduction

La majorité de l’anatomie humaine est composée de tissus mous. Pour décrire le

phénomène de la déformation, le domaine de la mécanique a mis en place une base

théorique pour les milieux continus; mais pour modéliser les objets de géométrie

complexe on devra néanmoins les discrétiser en éléments pour appliquer cette théorie

de la déformation.

2.2 Modèles Numériques

2.2.1 Modèle Masses-Ressorts (MSN)

C’est le modèle le plus simple. Il consiste á modéliser l’objet par un ensemble

de points reliés entre eux par des segments. Les points représentent des masses

considérées comme ponctuelles, et les segments sont considérés comme des ressorts.

Dans le processus de simulation, á chaque itération, on calcule les forces exercées par

chaque ressort sur les deux masses situées á ses extrémités. Ces forces s’expriment

en fonction de la variation de longueur du ressort et de sa raideur. Chaque masse

ou point présente un comportement dynamique en suivant la loi de Newton:

MiÜi + DiU̇i +
∑

j

Fint
i =

∑
Rext

i (2.1)

xiv Extended Abstract (in French)

2.2.2 Modèle Élasticité (ETM)

ETM est basé sur la loi de Hooke, qui relie le tenseur d’effort au tenseur de

contrainte; il emploie une approximation discrète des opérateurs dérivés sur les points

irréguliers. Il permet l’adaptation d’espace, l’adaptation de temps et la distribution

de ressources de calcul d’une manière efficace pour assurer la stabilité numérique.

Dans cette méthode, pour un maillage géométrique donné, nous pulvérisons arbi-

trairement quelques points de prélèvement à l’intérieur. Selon la théorie d’élasticité,

pour chaque point de prélèvement, nous avons:

ρ Üi = µ (∇2Ui) + (λ + µ)
{
∇(∇ ·Ui)

}
(2.2)

où λ et µ sont des coefficients de Lamé caractérisant la rigidité du matériel, ρ est la

densité matérielle, Ü i est l’accélération d’un point et U est son déplacement.

2.2.3 Modèle Éléments Finis (FEM)

La méthode des élément finis utilise les bases de la mécanique pour la simulation

de déformations. La méthode analyse l’énergie potentielle de déformation de l’objet.

Le but est de chercher la position d’équilibre qui minimise cette énergie. Pour cela,

on découpe l’objet en sous-domaines (tétrahèdres ou hexahèdres). Sur chaque sous-

domaine, on définit un ensemble de points (les noeuds) de contrôle sur lesquels le

problème sera évalué. Ensuite on utilise des fonctions de forme qui définissent le

champ local continu en fonction des valeurs aux points de contrôle. Ce champ local

continu dépend de déformations et contraintes de l’objet. L’équation d’équilibre du

système doit être vérifiée sur chacun des éléments, ce qui va se traduire par des

équations sur chacun des noeuds. En chaque noeud on peut écrire une équation

linéaire faisant intervenir la valeur de la fonction de forme dans cette zone. En

regroupant toutes ces équations linéaires dans une matrice, on obtient un système

matriciel de type statique:

KU = R (2.3)

où K est appelée matrice de rigidité du système, et U et R sont les vecteurs rassem-

blant respectivement les déplacements et les forces externes appliquées aux noeuds.

Si on ajoute l’influence de la masse M et des amortissement D on aura un système

matriciel de type dynamique:

MÜ + DU̇ + KU = R (2.4)

Extended Abstract (in French) xv

2.2.4 Modèle Masse-Tenseur (TMM)

Le modèle de masse-tenseur discrétise l’organe virtuel avec des tétraèdres.

Comme le modèle de masse-ressort, il distribue également la masse dans l’objet

sur les noeuds i. L’équation régissant le mouvement des noeuds de maillage est

également basée sur la loi newtonienne:

Mi

d2U i

dt2
+ Di

dU i

dt
+ F int

i = 0 (2.5)

La différence avec MSN est qu’ici F int
i est obtenu par la méthode d’éléments finis

basée sur l’énergie. Par rapport au modèle de masse-ressort, le modèle de masse-

tenseur calcule la force par la mécanique des milieux continus et est donc indépendant

de la topologie de maillage. En revanche, nous savons que le modèle de masse-

ressort est sensible à la topologie de maillage. Par conséquent, quand il y a un

procédé de modification de topologie, le modèle de masse-tenseur peut donner des

résultats plus précis. Ce modèle au debut a été seulement adapté pour des petits

déplacements, mais récemment des modifications ont été faites au modèle pour de

grands déplacements en employant les tenseurs de contrainte nonlinéaires et les lois

matérielles anisotropes.

2.2.5 Modèle Élasticité Hybride (HEM)

Dans le modèle élastique hybride, il y a combinaison d’un modèle élastique quasi-

statique linéaire pré calculé avec un modèle de masse-tenseur. Ainsi, ce modèle

béneficie des bonnes propriétés des modèles combinés. Mais la précomputation

est seulement appropriée aux situations où il n’y a aucun changement de topolo-

gie. D’autre part, nous savons également qu’en employant la précomputation, nous

pouvons réaliser l’exécution en temps-interactif et obtenir des résultats précis de

déformation.

2.2.6 Modèle Sphères Finis (MFS)

La méthode de sphères finies est une méthode sans maillage. Elle a été développée

pour surmonter le problème de remaillage dans les méthodes telles FEM. Cette méth-

ode emploie un ensemble de points pour résoudre les équations régissant l’équilibre.

Cette méthode a été récemment étendue aux objets déformables. Dans un simula-

teur médical par exemple, quand un outil chirurgical touche le tissu mou virtuel,

un ensemble de points est mis localement autour de la pointe et une sphère avec

xvi Extended Abstract (in French)

un rayon fini est construite à chacun de ces points. Comme dans la méthode clas-

sique de FEM, des fonctions de forme sont employées pour rapprocher les champs

de déformation. La différence ici est que nous devons donc employer des fonctions

raisonnables á la place des polynômes. Bien que les fonctions raisonnables soient

soigneusement choisies pour augmenter l’efficacité de calcul, elles mènent toujours

à un calcul plus étendu dans la partie d’intégration. Ceci est dû à l’augmentation

des points d’interpolation utilisés dans MFS par rapport cas du polynôme normal.

C’est évidemment un inconvénient pour des applications d’interactif-temps.

2.2.7 Modèle Éléments Frontières (BEM)

Dans ce modèle, on divise la frontière de l’objet (surface) en n éléments qui

représentent les déplacements et les contraintes. Ensuite, on utilise la formulation

intégrale de frontière de Navier pour générer un système de 3n équations. Enfin, on

applique des conditions de frontière en fixant les noeuds. Pour trouver les déforma-

tions de l’objet V, il faut inverser la matrice K du système suivant:

KV = Z. (2.6)

2.2.8 Modèle Éléments Longs (LEM)

Ce modèle considère les tissus comme des objets incompressibles composés en

majeure partie de liquide (ce qui est le cas en pratique). L’objet est caractérisé par

le principe de Pascal, qui établit que, dans un fluide incompressible en équilibre,

les pressions se transmettent intégralement. L’incompressibilité du fluide implique

que la conservation du volume doit être garantie lorsqu’il y a interaction externe et

déformation de l’objet. Le comportament de l’objet est exprimé par:

KX = B (2.7)

où les déformations sont données par les changements d’état, X, sous l’influence des

forces externes (gravité, pression externe, etc.), B. K est la matrice de rigidité du

système.

2.3 Méthodes de Résolutions

Dans la section précédente on a examiné différents modèles physiques qui four-

nissent les forces intérieures à l’objet. Cela nous permettra de calculer la déformation

Extended Abstract (in French) xvii

due à une force extérieure. On pourra choisir entre deux méthodes de résolution:

statique ou dynamique. La résolution statique cherche à trouver directement une

position d’équilibre, pendant que la résolution dynamique s’intéresse à l’évolution

de la déformation dans le temps.

2.3.1 Système Statique

Étant donné que le déplacement de tous les points de l’objet modélisé est

petit une résolution linéaire est suffisante. Pour cela on doit résoudre un sys-

tème d’équations pour trouver une configuration où les forces intérieures à l’objet

s’équilibrent parfaitement avec les forces extérieures (principe des travaux virtuels).

2.3.1.1 Statique Linéaire

Ces approches utilisent les équations d’équilibre statique et ignorent les effets de

l’inertie et amortissement. Dans le cas linéaire, le problème est:

KU = R (2.8)

où K est la matrice de rigidité, u, F sont les déplacements et forces appliquées á

l’objet.

2.3.1.2 Statique Nonliéaire

Si l’objet subit une grande déformation ou une rotation, on doit prendre en

compte les non-linéarités géométriques et matérieles. Cela nous oblige à résoudre un

système non-linéaire:

K(U)U = R (2.9)

par exemple, à l’aide de la méthode de Newton-Raphson.

La méthode de Newton-Raphson nous permet de résoudre un système non-

linéaire par la résolution itérative d’un système d’équations. Cela implique que l’on

doit recalculer les forces internes et la matrice de rigidité à chaque itération. Cette

méthode est donc beaucoup plus coûteuse qu’une résolution linéaire.

2.3.2 Système Dynamique

La résolution statique cherche directement une configuration d’équilibre si elle

existe. Par contre s’il n’y a pas de configuration unique d’équilibre ou que l’on

xviii Extended Abstract (in French)

s’intéresse à l’évolution de la déformation dans le temps une analyse dynamique

s’avère nécessaire.

2.3.2.1 Intégration Newton-Euler Explicite

L’intégration explicite utilise les dérivées à la configuration courante. Mal-

heureusement ces dérivées ne sont pas constantes ce qui provoquera une solution

erronée. Il est possible de prendre en compte des dérivées d’ordre supérieur pour

obtenir une solution plus exacte, mais le pas de temps sera toujours limité par les

paramètres de rigidité, viscosité, et masse pour une intégration stable.

2.3.2.2 Intégration Newton-Euler Implicite

A la différence de l’intégration explicite, l’intégration implicite cherche à trouver

la configuration dans laquelle les dérivées vont nous ramener à l’état courant pour

un pas de temps négatif. Cela veut dire qu’on pourra toujours retourner à l’état

précédent, ce qui garantit que cette méthode d’intégration est absolument stable

(mais pas forcément exacte) indifféremment des paramètres physiques du système.

Malheureusement cette méthode nécessite la résolution d’un système non-linéaire à

chaque pas de temps, ce qui la fait très coûteuse en termes de complexité de calcul.

2.4 Bilan

Les modèles décrits présentent tous des avantages et des limitationes. Nous

présentons une analyse comparative sur les plans de la rapidité de calcul (aspect

important pour les simulations en temps réel), du réalisme physique et de la facilité

d’implantation.

Il est possible de trouver la déformation soit par une résolution statique où dy-

namique. Pour une résolution statique il faut qu’une configuration d’équilibre ex-

iste; pour des petites déformations on peut choisir un résolution linéaire, mais sinon

une résolution non-linéaire plus coûteuse est exigée. Par contre si l’évolution de

la déformation dans le temps nous intéresse, nous devrons procéder à une analyse

dynamique. La stabilité de l’intégration explicite est dépendante des paramètres

physiques du système. Cela n’est pas le cas avec une intégration implicite, mais on

doit résoudre un système non-linéaire à chaque pas de temps.

Extended Abstract (in French) xix

Chapitre 3 : Méthode de Distribution du Volume

(VDM)

La méthode VDM a été conçu pour la simulation en temps réel de tissus bi-

ologiques mous (tel que le ligament du genou) dans le cadre de gestes chirurgicaux

assistés par ordinateur. Une bonne approximation des tissus biologiques consiste à

considérer ces derniers comme des objets déformables remplis d’un fluide incompress-

ible. Notre approche est basée sur la recherche d’une solution statique (i.e. à force

résultante nulle) pour des déformations élastiques nonlinéaires. La surface de l’objet

est discrétisé par un ensemble de facettes ce qui permet de réduire la complexité du

modèle par rapport à une méthode classique tétraédrique (volumique).

3.1 Formulation Mathématique

Pour chaque noeud on définit une équation à l’équilibre sur les variables glob-

ales; l’ensemble des équations statiques, associé au Principe de Pascal et à la loi de

conservation des volumes, permet alors de définir un système d’équations dont les so-

lutions caractéristiques les déformations et les forces appliqués à l’objet. L’approche

consiste alors à:

• Construire une discrétisation surfacique de l’objet à modéliser.

• Définir les équations à l’équilibre pour chaque un des éléments en utilisant le

principe de Pascal et la loi de la conservation du volume.

• Prendre en compte les contraintes globales afin d’obtenir un comportement

globale de l’objet coherent avec les lois de la physique.

En effet le volume de l’objet est considéré comme rempli d’un fluide incompress-

ible d’une densité donnée; le comportement mécanique de l’objet est alors caracterisé

par celui des VDM de son modèle discrétisé, en applicant les deux conditions aux

limites suivants:

• Le principe de Pascal, qui établit que dans un fluide incompressible en équili-

bre, les pressions se transmettent intégralement.

• L’incompressiblité du fluide implique que la conservation du volume doit être

garantie lorsqu’il y a interaction externe et déformation de l’objet, ce qui sig-

nifie que toute déformation locale se représente sur l’ensemble de l’object. En

d’autre termes, la variation de volume des éléments modifiés par l’intérieur

doit être égale à la somme des variations de volume des autres éléments.

xx Extended Abstract (in French)

3.2 Résolution du Système

Autant la résolution statique comme l’intégration implicite nécessitent la réso-

lution d’un ou plusieurs systèmes d’équations linéaires. Une multitude d’approches

existent pour ce problème et nous avons étudié:

• Méthode de décomposition Lower-Upper pour un système linéaire.

• Méthode de Sherman-Morrison pour un système quasi-linéaire.

• Méthode de Bi-Conjugate-Gradient pour un système nonlinéaire.

3.3 Résultats Expérimentaux

On présente un ensemble de tests qui valident notre modèle pour la simulation

de tissu mou. Pour cela, les expériences essaient différentes valeurs de paramètres

physique du modèle et les différentes types de grande déformation. Enfin, nous

comparons VDM avec le modèle classique FEM.

3.4 Bilan

Nous présentons un nouveau modèle pour la simulation de tissu mous basé sur

les données comme pression et volume. Le principe de Pascal et la conservation

du volume sont utilisé comme conditions aux limites. Dans le passé une résolution

statique linéaire avait été proposé pour la simulation en temps-réel. Par contre ce

type de résolution se limite à des petits déplacements. Pour cette raison on a ajouter

une résolution statique quasi-linéaire et une résolution statique nonlinéaire qui peut

prendre en compte les grands déplacements. Les résultats expérimentaux montrent

que VDM produit des résultats satisfaisants.

Partie II : Collision Détection

Chapitre 4 : État de l’Art

4.1 Introduction

La détection de collision entre deux objets dans un environnement virtuel dy-

namique est un problème essentiel en infographie, en robotique et en géométrie

Extended Abstract (in French) xxi

algorithmique. Il est important d’éviter l’interpénétration des objets et de simuler

précisément différents phénomènes physiques afin d’améliorer le réalisme du monde

virtuel. Ainsi, il est nécessaire de détecter les collisions entre les objets polyé-

driques. Il est également primordial de déterminer le plus précisément possible les

éventuelles zones de l’objet en collision pour pouvoir fournir une simulation fidèle

d’un phénomène physique. Malheureusement les algorithmes de détection de col-

lision représentent toujours un goulot d’étranglement dans différents domaines de

simulation dynamique. Ce problème a été largement étudié dans la littérature.

Cependant peu d’algorithmes robustes et rapides sont connus pour répondre à des

requêtes d’interaction sur objets polyédriques quelconques.

Au cours du processus de détection de collision, on effectue des tests d’intersection

statique à différents instants. L’intervalle de temps entre deux tests est supposé

suffisamment petit pour que l’on ne manque pas de collisions. Ces tests d’interférence

statique (SIT) nous permettent de savoir si, à un instant t donné, deux polyèdres

ou bien deux primitives élémentaires s’intersectent. Dans cette section, on présente

la détection de collision en trois étapes:

• La phase grossière. Cette phase nous permet de sélectioner des paires d’objets

pour le test de collision.

• La phase étroit. C’est une étape d’optimisation où on ne trouve pas l’entité

exacte de la collision mais où on trouve la région où la collision peut avoir lieu.

• La phase exacte. Cette phase nous permet de connâıtre les entités exactes qui

sont en collision.

4.1.1 Détection grossière

Le but de cette étape dans l’algorithme de détection de collision est d’éliminer

rapidement les objets dont on a la certitude qu’elles n’intersectent aucun autre objet.

Les algorithmes utilisés dans cette phase utilisent généralement une approche basée

sur une décomposition spatiale.

4.1.1.1 Approche Voxels

Pour les grilles, l’espace est découpé en N cellules sur chacune des dimensions

dites voxels. Ces grilles peuvent être régulières ou adaptatives. Pour les octrees,

l’espace est découpé en huit voxels contigus et de même taille ; chacun de ces voxels

sera à son tour découpé en huit sous-voxels, et ainsi de suite, les voxels vides n’étant

pas divisés. La structure de données est donc un arbre dont les noeuds sont les

xxii Extended Abstract (in French)

voxels contenant des surfaces, et les feuilles les voxels vides ou les voxels de précision

suffisante. L’octree permet un gain de mémoire par rapport aux grilles grâce à la

moindre occupation des zones vides, qui sont en grande majorité. Cependant la

durée d’exploration est plus importante pour les octrees que pour les grilles.

4.1.1.2 Approche Arbres

Un arbre BSP est une division récursive de l’espace qui considère chaque polygone

comme un plan de coupe. Ce plan est utilisé pour classer tous les objets restant

comme étant soit devant, soit derrière ce plan. Autrement dit, quand on insère un

polygone dans l’arbre, on le classe relativement à chaque noeud fils approprié.

4.1.1.3 Approche Sweep & Prune

Cette technique semble être la plus efficace pour les environnements dynamiques

et multi-objets. Dans cet algorithme, des bôıtes englobantes fixes (objets rigides)

ou des bôıtes englobantes dynamiques (objets déformables) sont employées pour

répresenter les objets dans l’environnement virtuel. Ces bôıtes englobantes sont

alignées. Puis une technique de balayage est appliquée sur l’axe de x,y et z pour

trouver les intervalles qui s’intersectent. La présence d’une intersection dans tous

les axes indique la collision. Ces intersections sont stockées dans une liste et elles

sont assorties à chaque pas de temps pour exploiter la cohérence temporelle.

4.1.2 Détection étroite

Le but de cette étape dans l’algorithme de détection de collision est de localiser

rapidement le zone de collision. Pour cela, nous allons étudier les algorithmes de

calcul de distances et les intersection des hiérarchies des volumes englobants.

4.1.2.1 Calcul de distances

Les algorithmes de calcul de distances commencent généralement par déterminer

les plus proches éléments caractéristiques (sommet, arête, facette) de deux polyè-

dres. On peut alors calculer la distance euclidienne qui les séparent. Si cette distance

est négative, les objets s’interpénètrent. Trois méthodes efficaces ont été proposées

pour parvenir à ce résultat. Deux d’entre elles procèdent par un calcul incrémental

de la distance entre objets polygonaux convexes obtenue à partir de la distance à

Extended Abstract (in French) xxiii

l’instant précédent, alors que la troisième méthode explore la frontière des polyèdres

afin de trouver la distance minimale.

4.1.2.2 Intersection des hiérarchies des volumes englobants

Un volume englobant permet de délimiter une zone d’intérêt autour de l’objet

virtuel. Par exemple, une sphère ou une bôıte peuvent approximer une primitive

polygonale, une soupe de polygones ou un objet complet. Le problème de détection

de collision est réduit au test de superposition des deux volumes englobants, plutôt

qu’aux objets directement. Quand la complexité d’un objet augmente, une hiérarchie

de volumes englobants est utilisée. Il s’agit généralement d’un arbre de sphères ou

bien de bôıtes. Chaque volume délimite une ou plusieurs primitives géométriques.

Un ensemble de ces volumes, dit parent, délimite l’espace de toutes les primitives

géométriques de ses feuilles. Généralement, chaque volume englobant est optimisé en

termes de volume, d’aire de surface, de diamètre, etc. dans le but d’avoir la meilleure

compacité autour de la primitive encadrée. Selon les choix de conception, les feuilles

d’un arbre peuvent contenir une unique primitive géométrique ou une collection de

primitives géométriques.

4.1.3 Détection exacte

Dans la phase exacte, nous cherchons a connâıtre les entités exactes qui sont en

collision. L’interaction peut être détectée si au moins deux primitives s’intersectent.

Nous allons considérer différents types de paires de primitives : sphère/sphère,

bôıte/bôıte et triangle/triangle.

4.2 Bilan

La détection de la collision entre deux enveloppes polyédriques peut demander

un temps de calcul assez élevé. Il est donc important d’optimiser cette procédure

pour pouvoir envisager une simulation en temps-réel. Il existent plusieurs approches

pour détecter la collision ou calculer la distance entre deux enveloppes polyédriques

convexes. On comparera ces approches en termes de complexité de calcul. Mal-

heureusement pas toute l’anatomie humaine est composée d’organes convexes. Dans

certains cas il est possible de diviser un objet concave en plusieurs objets convexes et

appliquer les algorithmes présentes dans la section précédente. Sinon il faudra trou-

ver explicitement les facettes en interaction; pour éviter une complexité quadratique

xxiv Extended Abstract (in French)

différentes méthodes d’optimisation existent. Pour cela on a besoin d’adapter ces

algorithmes aux simulateurs médicaux où les objets déformables complexes forment

la base du modèle.

Chapitre 5 : Détection de Collision pour les Simu-

lateurs Medicaux

5.1 Introduction

Les algorithmes étudiés dans les parties précédentes s’attachent à résoudre ef-

ficacement un problème précis lié à une application donnée. Ainsi, beaucoup de

méthodes requièrent des propriétés géométriques (concavité, convexité) ou physiques

(rigide, déformable) sur les objets. Certaines ont besoin de pré-calculs pour être ef-

ficaces et s’appuient donc sur des structures de données intermédiaires comme par

exemple un diagramme de Voronoi, une hiérarchie de bôıtes (AABB ou OBB) ou de

sphères englobantes. D’autres méthodes nécessitent une discrétisation de l’espace

en grilles de voxels, en arbre BSP ou en octree.

Dans de nombreuses applications, un même objet peut être soumis à plusieurs

types de tests d’interférence. Par exemple, considérons un polyèdre représentant un

personnage évoluant dans un environnement virtuel. Si l’on s’intéresse à son dé-

placement dans le décor statique, alors nous nous ramenons à un problème de plani-

fication de mouvement où seul des tests d’interférence statique comme des calculs de

distance seront effectués. Mais, des éléments dynamiques peuvent apparâıtre dans

l’environnement virtuel, notre personnage sera alors soumis à des tests d’intersection

avec ces éléments. En cas de collision, on peut vouloir connâıtre toutes les informa-

tions de contact pour être à même de répondre à cette collision. Ainsi, on a besoin

de mettre en place un modèle générique de collision avec des structures de données

intermédiaires adaptées aux différents tests d’interférence. Pour cela, nous allons

travaillé sur les algorithmes suivantes:

• Calcul de distance entre polyèdres convexes.

• Calcul de distance entre polyèdres concaves.

• Détection de collision entre polyèdres déformables.

• Détection du volume d’interpénétration.

Extended Abstract (in French) xxv

5.1.1 Calcul de distance entre polyèdres convexes

Afin de calculer la distance entre deux polyèdres convexes, nous avons choisi

d’utiliser l’algorithme décrit dans [Sundaraj et al., 2000]. Cette implémenta-

tion repose sur l’algorithme GJK en apportant des améliorations afin d’éliminer le

problème lié à la convergence dans les cas dégénérés ainsi que l’utilisation de la

cohérence de frame améliorant la vitesse de la méthode.

5.1.2 Calcul de distance entre polyèdres concaves

Les algorithmes efficaces de calcul de distance entre deux objets se bornent bien

souvent aux objets convexes. Gilbert [Gilbert et al., 1988] et Lin et Canny

[Lin and Canny, 1991] ont présenté des algorithmes qui calculent la distance entre

deux polyèdres convexes. Chacun de ces trois algorithmes itératifs trouve des paires

de points, un sur chaque objet, tels que la distance entre ces points converge vers le

minimum. Ces algorithmes exploitent les propriétés convexes des objets et il semble

difficile de les étendre directement au cas des objets non convexes.

L’algorithme utilisé est une adaptation de l’algorithme décrit dans

[Quilan, 1994] à la structure de données décrite précédemment. De plus,

cette méthode a été améliorée puisque les conditions de descente dans la hiérarchie

sont différentes. L’idée de l’algorithme exposé est d’utiliser les méthodes de calcul

existant entre les polyèdres convexes. Pour ce faire, nous utilisons une description

du polyèdre concave par un ensemble de polyèdres convexes. Nous construisons

donc ici, une représentation de l’objet grâce à une hiérarchie de sphères englobantes.

Il convient de rappeler que dans la structure hiérarchique de bôıtes (AABB)

englobantes expliquée précédemment, les bôıtes étaient décrites par un centre et

un vecteur représentant une diagonale de l’objet. Nous pouvons donc parfaitement

mettre à profit nos résultats et notre implémentation du problème de détection de

collision dans ce cas. En effet, il nous suffit de décrire nos sphères par un centre et

un rayon. L’intérêt d’une hiérarchie de sphères et non de bôıtes est de minimiser le

nombre d’opérations et donc le temps de calcul de la distance entre deux éléments

de la structure hiérarchique englobant chacun des polyèdres concaves.

5.1.3 Détection de collision entre polyèdres déformables

Nous avons choisi d’utiliser une hiérarchie de bôıtes AABB englobantes. Sa

construction se fait par une méthode bas-haut, dans laquelle, on regroupe dans

une paire deux bôıtes minimisant le volume de leur bôıte mère. Il en résulte une

xxvi Extended Abstract (in French)

hiérarchie compacte autour de la surface de l’objet.

A chaque pas de temps, on reconstruit les bôıtes de toutes les feuilles de l’arbre

dont au moins un des points de la facette associée subi une déformation. Puis,

on propage ces changements vers les bôıtes ascendantes en effectuant une remontée

niveau par niveau dans la hiérarchie, on met à jour toute bôıte dont au moins l’une

des feuilles a été mise à jour. Notons qu’une bôıte ne peut être reconstruite que si

ses deux bôıtes filles sont traitées.

Une fois que les mises à jour éventuelles dans la hiérarchie sont effectuées pour

les deux objets, le processus de détection de collision commence. Lors de la descente

dans la hiérarchie, on utilise le test de l’axe séparateur [Gottschalk et al., 1996]

afin de déterminer les bôıtes en intersection. Si deux bôıtes sont en collision, on

vérifie si leurs bôıtes filles respectives sont deux à deux en collision. Si on est arrivé

jusqu’aux feuilles de l’arbre, on teste la possible collision entre les faces du polyèdres

qu’elles englobent. On utilise pour cela l’algorithme [Moller, 1997]. A l’issue de ce

procédé, on obtient dans le cas d’intersection entre les objets, le contour de collision

de chaque polyèdre, i.e. la liste des paires de facettes deux à deux en collision.

5.1.4 Détection du volume d’interpénétration

Il peut résulter de la collision des deux polyèdres, une interpénétration fictive

des deux objets. Ainsi, on doit déterminer le volume de contact de chacun des

objets afin de pouvoir calculer la force résultant de la collision, et en déduire les

déformations locales des objets. Afin de déterminer le volume d’interpénétration,

nous construisons deux contours qui sont à l’extérieur et à l’intérieur du contour de

collision. Enfin, nous cherchons tous les éléments en contact. Nous utilisons pour

cela l’algorithme [Sundaraj and Laugier, 2000].

5.2 Bilan

Nous avons présenté des aspects importants de la modélisation d’interactions.

Nous avons proposé un modèle de représentation hiérarchique de l’objet permettant

de répondre rapidement et précisément aux différentes requêtes d’interaction. Nous

avons proposé un algorithme de calcul de distance entre objets concaves ainsi qu’un

algorithme de détection de collision et de localisation de contact dans le cas d’objets

déformables. Ces deux méthodes sont à la fois rapide et numériquement stable.

Ces algorithmes ont été implémentés dans une librairie de détection de collision

Extended Abstract (in French) xxvii

permettant :

• de calculer les distances entre des objets convexes;

• de calculer les distances entre des objets concaves;

• de détecter les collisions entre des objets déformables;

• de fournir les éventuels volumes d’interpénétration.

Cette librairie est décrite et téléchargeable à l’url suivante:

http://www.inrialpes.fr/sharp/coldetection. Notre approche permet

donc une détection de collision plus rapide et plus stable. Elle s’applique à

des objets polyédriques sans nécessité de propriétés géométriques ou physiques

particulières puisqu’ils peuvent être convexes, concaves, rigides ou déformables.

Partie III : Applications en Réalité Virtuelle

Chapitre 6 : Simulateurs Médicaux

Dans ce chapitre, nous appliquons nos résultats dans le cadre d’un simulateur

échographique de la cuisse humaine et d’une simulateur de chirurgie arthroscopique

du LCA (ligament croisé antérieur du genou).

6.1 Simulateur Échographique

L’échographie est largement utilisée dans le milieu médical comme un moyen

pour diagnostiquer différentes pathologies de façon non-invasive et peu coûteuse.

Un exemple est la détection de thromboses veineuses. Le désavantage de cet examen

est qu’il est difficile d’apprendre à diagnostiquer correctement les pathologies, car

cela demande l’expérience acquise sur un nombre considérable de patients. Pour

cette raison nous proposons le développent d’un simulateur échographique.

Nous avons décrire les étapes suivantes pour ce simulateur:

• Modélisation de la cuisse humaine avec VDM.

• Résolution quasi-linéaire du systeme.

• Interaction - détection de collision et retour de force.

• Résultats expérimentaux.

http://www.inrialpes.fr/sharp/coldetection

xxviii Extended Abstract (in French)

6.2 Simulateur Arthroscopique

Nous avons commencé à développer un simulateur d’anthroscopie en collabora-

tion avec la societé Aesculap. Le but du simulateur est d’aider le chirugien pendant

l’opération de remplacement du ligament LCA. Le problème consiste à trouver le

placement pour le greffon en respectant des contraintes géométriques et physiques.

Afin de résoudre le problème physique du placement du ligament, nous avons mod-

élisé le greffon du LCA en utilisant le modèle VDM. Cela nous permet de trouver,

interactivement, la déformation du greffon en donnant des informations, a priori,

sur le placement du greffon.

Nous avons décrire les étapes suivantes pour ce simulateur:

• Modélisation du ligament LCA avec VDM.

• Résolution nonlinéaire du systeme.

• Interaction - détection de collision et distribution de contrainte.

• Résultats expérimentaux.

Chapitre 7 : Conclusion

Nous avons examiné différentes approches de la modélisation de tissus mous. En

particulier nous avons comparé l’utilisation des différents modèles physiques exis-

tants et les différentes méthodes de résolution numérique associées aux objets dé-

formables. Nous avons constaté que les comportements comme l’incompressibilité

ne sont pas faciles à modéliser. C’est pourquoi nous proposons ensuite un modèle

développé pour la simulation de tissu biologique, en présentant successivement les

aspects liés à la formulation du modèle, à la résolution du modèle, et au traitement

des interactions physiques. Ce modèle, basé sur l’utilisation du principe de Pascal,

permet de modéliser de manière relativement satisfaisante des corps biologiques, tout

en permettant une simulation interactive.

Pour la détection de collision, nous avons examiné différents algorithmes exis-

tants, ainsi que la difficulté d’adapter ces algorithmes aux simulateurs médicaux où

les objets déformables complexes forment la base du modèle. Nous avons ensuite

proposé les algorithmes développés pour traiter ce problème dans le cadre des sim-

ulateurs médicaux. Ces algorithmes présentent des caractéristiques de robustesse

numérique et d’efficacité supérieures à l’existant, et permettent de traiter des corps

déformables.

Extended Abstract (in French) xxix

Enfin, nous avons appliqué ces résultats dans le cadre d’un simulateur

échographique de la cuisse humaine et d’une simulateur de chirurgie arthroscopique

du LCA (ligament croisé antérieur du genou).

xxx Extended Abstract (in French)

Chapter 1

Introduction

1.1 Context and Motivations

Context. The scope of this thesis is within the framework of developing medical

simulators. Medical simulators like flight simulators are meant for training and

assisting the operator. But the current form of learning among novice physicians is

far from this. History claims that the apprenticeship of basic practices are taught

using books describing surgical procedures and techniques. This is enhanced by using

simple training equipment and if lucky, by watching or participating in operations.

This type of exchange of knowledge is commonly referred to as master apprentice.

Today, the above scenario hasn’t changed much. In many countries, graduates

from medical schools, having obtained preliminary knowledge using textbooks, are

obliged to follow a three year in-house residency at a reputable medical institution

to earn their title as a certified physician. During this residency period, there are

many disciplines where procedures are learned by actually watching certified doctors

performing on patients. They then repeat, by doing what they have seen, on the

patient that eventually walks through their office with the risk of making mistakes

owing to inexperience.

At this point we might be tempted to ask ourselves why have we not done any-

thing to avoid this situation. Why don’t we have a medical simulator that has

its purpose like a flying simulator; to train novice surgeons adequately so that no

mistakes happen during actual diagnosis. The answer to this question lies in the

crucial difference between medical simulators and flight simulators: medical simu-

lation requires that the user interact with the simulated environment, while flying

simulation requires that the pilot react to the simulated environment. It is this cru-

cial difference, along with the computational power and algorithmic complexity that

1

2 CHAPTER 1. INTRODUCTION

entails it, that has created a significant lag in the development of medical simulators.

Motivations. When we talk about developing medical simulators, the main ques-

tion that is posed to us is “Why do we need medical simulation?” The first and

foremost reason is quiet obvious; we as patients want to be cared for, not to be used

as a tool for teaching or learning. Formally speaking, it becomes a question of ethics.

The patient who has paid to be cared for, is very often unaware that he or she is

being used for other purposes. Currently the law allows this, because all forms of

teaching requires supervision under certified physicians. But the hard fact remains

the same, damage to the human body is normally irreversible or not fully recov-

erable. Simulation provides a way of avoiding this undesirable situation. Novice

physicians or surgeons can train adequately to learn a specialty before coming in

contact with patients.

In another question of ethics, we realize that in some countries, experimenting

with animals and cadavers are prohibited or will be so in the future. For example,

the European Parliament voted on the 11th of June 2002 to ban cosmetic testing on

animals. Such a move could as well extend to cadaveric experiments. On another

note, in some cultures, the local religion and belief, does not allow any form of

intervention on a cadaver. In both these cases, medical simulators have the potential

of becoming a platform for such experiments.

The costs incurred during the training of novice physicians is another important

factor. According to the American Association of Medical Colleges, the median

annual cost for training a resident is around 76,470 USD. The interesting part of

this report is that, in most developed countries, these expenses are siphoned off to

the taxpayers by respective governments in the form of some special health program

that is tabulated in the annual federal budget. In other words, the common layperson

is going to be burdened with higher taxes in the future. Yet, we cannot ignore our

responsibility to train these residents, because for all we know, we might be one of

those patients that require such care one day.

1.2 Description of the Problem

There are several key problems in the development of a medical simulator. Within

this context, we are interested in physical models for soft tissue simulation and

algorithms for collision detection in virtual environments. These require numerical

models in which all computation can be performed fast enough to sustain interactive-

time performance.

1.2. DESCRIPTION OF THE PROBLEM 3

Interactive-time performance becomes a critical aspect in the framework of sur-

gical simulation, surgical training and surgical assistance. Interactive-time means

that visual and haptic feedback can be produced at the correct frequency such that

the user does not feel any discomfort. Normally, this means that the visual feedback

needs to be at least 20Hz-30Hz while the haptic feedback around 400Hz-1KHz.

The rate at which a simulation can take place could be said to be the core

problem. This is because the state of the art for interactive soft tissue simu-

lation is not sufficiently advanced. Models that are used for simulation must

be physically realistic and possess a relatively low computational complexity. It

has been shown that physically based models have an advantage over previous

computation animation techniques. Modeling soft tissue using physically based

models has been carried out by Delingette [Delingette et al., 1999], Bro-

Nielsen [Bro-Nielsen and Cotin, 1996], Aulignac [Aulignac et al., 1999],

Meseure [Meseure and Chaillou, 2000], [Meseure et al., 2003] and Laugier

[Laugier et al., 2003]. A description of some of these methods are presented later

in this thesis.

Figure 1.1: Computer assisted surgery and medical robotics for MIS procedures.
Here, a training session for surgeons is conducted on a pig cadaver.

Another major problem of medical simulators is interaction within a virtual en-

vironment. It is well known that collision detection is a major bottleneck in many

applications that require simulation. The problem becomes more complex with

virtual organs as they are concave and deformable. Although the current perfor-

mance of computers have significantly improved, there is much to be done to achieve

large-scale interactive-time collision detection; the development of new algorithms

is still mandatory. Some important work based on collision detection of rigid con-

vex and rigid concave polyhedra can be found in Gilbert [Gilbert et al., 1988],

Moore [Moore and Wilhelms, 1988], Lin [Lin and Canny, 1991], Cameron

[Cameron, 1997], Mirtich [Mirtich and Canny, 1995], [Mirtich, 1998], Derek

4 CHAPTER 1. INTRODUCTION

[Derek and Gupta, 1996] and Lombardo [Lombardo et al., 1999]. We will

treat this aspect in more detail in a chapter of this thesis.

1.3 Goals and Contribution

• Efficient and Realistic Computational Models. We mentioned in the

previous section that the state of the art for interactive soft tissue simulation

is not adequately advanced. Numerical models are still topology dependent

and computationally expensive. Hence, the first aim of this thesis is to explore

the possibilities of finding an alternative numerical model that is physically

realistic and computationally cheap. This alternative model must at least

fulfill the following requirements:

• Physically Realistic. The model should be derived from a physical

observation. Assumptions which lead to simplification of the model will

be allowed but must be justified. This proposed model must produce a

behavior that is similar to soft tissue.

• Efficient. The proposed model must have a low computational complex-

ity such that global deformation due to an externally applied load can be

obtained in real-time.

• Efficient and Robust Collision Detection. Another important goal of

this thesis is the implementation of various algorithms for collision detection

in medical simulators. The aim here is to use a single underlying data struc-

ture such that all intersecting primitives can be obtained in real-time. Our

requirements for these algorithms would be the following:

• Efficient. The proposed methods must have low algorithmic complexity.

This will allow the use of such methods even in large-scale environments.

• Robust and Optimized. The proposed combination of algorithms must

support rigid, deformable, convex and concave polyhedral objects. Fur-

thermore, these algorithms must use an underlying data structure that

is invariant to the type of interference query. This will optimize memory

usage.

• Application to Medical Simulators. A third goal of this thesis is to imple-

ment and test our findings in a medical simulator. This application will be a

prototype for future research. The aim here is to try and integrate our findings

in a single application such that interactivity and realism is not compromised.

1.4. THESIS OUTLINE 5

Contribution. In this thesis, we have contributed the following:

• We have explored the possibility of finding an alternative physical model for

interactive-time applications. We propose a physical model that is based on

bulk variables. This physical model is in general one order of magnitude lower

in complexity with respect to the classical finite element method. Hence we

believe that this model is an interesting alternative.

• We have also written a collision detection library for deformable objects. This

library contains the proposed algorithms for medical simulators. It also has the

aim of being flexible and efficient. Optimal algorithms and data structures have

been used to ensure the interactive-time compliance is satisfied at all times.

This library is also independent of the 3D rendering module and operating

system platform.

• We have also contributed in terms of software development in this thesis. Two

prototypes medical simulators have been used as case studies; an echographic

thigh exam simulator for the human thigh and an arthroscopy knee reconstruc-

tion simulator for the replacement of torn ligaments. In these developments,

we have contributed in terms of physical models and collision detection for

interactive-time applications.

• A through state of the art in various fields have been carried out. We have

summarized them in two chapters; soft tissue modeling and collision detection.

1.4 Thesis Outline

The organization of this document is as follows; in the first part, we focus on

soft tissue modeling. We begin in chapter 2 by presenting the basic ideas and

formulations of various physical models used for soft tissue simulation. Numerical

resolution methods used to solve the governing differential equations of these models

are also presented. The complexity of the resolution method depends on whether

the system is dynamic or static, linear or nonlinear. We end this chapter with a

summary on some important aspects regarding the implementation of these models

for interactive-time applications.

In chapter 3 of the first part, we present a new physical model which we call the

Volume Distribution Method (VDM) for soft tissue simulation where volume

conservation is of paramount importance. This physical model is derived using bulk

variables like pressure and volume. Pascal’s principle and volume conservation is

used as boundary conditions in this model. The fact that this model is of one order

6 CHAPTER 1. INTRODUCTION

of magnitude lower than a classical model like the finite element method, makes it

an interesting alternative for soft tissue simulation in interactive-time applications.

We present the characteristics of this model and also discuss some possible numerical

resolution methods.

The second part of this thesis is devoted to collision detection in virtual envi-

ronments. Chapter 4 gives the relevant state of the art in this field. Most of these

algorithms have been tailored for rigid objects. Since we do not assume any a priori

information regarding the geometry or the dynamics of the object, the algorithms

presented in this chapter fall into the static interference test (SIT) group. We end

this chapter with a summary on some important aspects regarding the implementa-

tion of these algorithms for deformable objects.

Following this, in chapter 5, we present the required algorithms for collision

detection in medical simulators. Our main concern is deformable objects. To improve

efficiency and optimize hardware resources, a single underlying data structure for

various interference queries is preferred. Within this context, we present our results.

Where possible, we have improved efficiency, robustness and optimization. These

algorithms have been integrated in a library for collision detection called ColDetect.

ColDetect has been coded such that it is independent of the 3D rendering engine

and the operating system platform. To the best of our knowledge, this library is the

first of its kind for deformable objects.

Part three of this thesis is dedicated to the application of our findings in virtual

reality. We are particularly interested in interactive-time medical simulators used

for training purposes or assisting surgeons during operations. We present two case

studies in chapter 6; an echographic thigh exam simulator and an arthroscopy knee

reconstruction simulator. The thigh and the knee ligaments contain a high concen-

tration of blood. Thus volume conservation can be assumed for these soft tissue.

Hence, the VDM model is found suitable for these applications. Within this con-

text, we are interested in global deformations, collision detection and force feedback.

These must be computed and executed in interactive-time.

Finally in chapter 7, we summarize the findings of this thesis and discuss the

future directions of our research.

Part I

Modeling Soft Tissue

7

Chapter 2

State of the Art

2.1 Introduction

Human tissue is deformable. Hence, modeling this behavior is essential for ap-

plications that involve soft tissue simulation. In a medical simulator for example,

human tissue is generally represented by a geometrical model and a physical model.

Often, a combination of the two is referred to as a numerical model. Surgical simu-

lation requires that the numerical model be subjected to real-time interactive defor-

mation and haptic feedback under different gestures such as palpitate, twist, drag,

cut, suture, stapling, etc. So accurate models need to be designed to realize the

consistency between them. In other words, we need to model the physical nature

of soft tissue by using mathematical equations so that consistent deformation and

haptic feedback can be provided interactively to the user.

Soft tissue, being complex physically and geometrically, is often divided into a

set of smaller elements to facilitate analysis. Over the past fifteen years or so, many

models that are based on the concept of discrete elements have been proposed for

soft tissue; the more prominent ones being mass-spring networks (MSN), finite el-

ement method (FEM), method of finite spheres (MFS), elasticity theory method

(ETM), tensor-mass model (TMM), hybrid elasticity model (HEM), boundary el-

ement method (BEM) and recently the long element method (LEM). The main

concerns regarding these physical models are:

• Interactive-Time. The first concern is the effective modeling of soft tissue

to achieve an interactive-time surgical simulation. As mentioned above, up to

now, several models have been suggested, but none of them has been satis-

factory from the simulation point of view as yet. Since the simulated object

itself is very complicated and computation resources are limited, it is natural

9

10 CHAPTER 2. STATE OF THE ART

to consider a trade-off between physical accuracy and computation efficiency.

A compromise can be done by laying more emphasis on the areas of interest,

for example, linear elasticity, local deformation or volume conservation. So

this idea has to be implemented adaptively. This adaptation scheme has been

studied for each kind of model and still a lot of research needs to be done.

• Numerical Stability. A second concern regarding soft tissue models is the

numerical resolution scheme applied to solve these systems. Currently we find

several methods; linear static, nonlinear static, linear dynamic and nonlinear

dynamic, each being applied depending on the application and interactive-time

requirements. For example, simulating cutting and tearing generally requires

a dynamic model to accurately capture the viscoelastic properties of soft tissue

when topology changes. On the other hand, simulating large deformations or

stress-relaxation may only require at most a nonlinear static model owing to

the well-damped nature of soft tissue. In either case, the main issue of interest

is always stability and rapidity of the chosen scheme, during the entire history

of load application.

• Realism. Another concern regarding soft tissue models is realism. This corre-

sponds to identifying the physical parameters of a model such that the behavior

of the model is close to reality. This part is the most difficult as it requires a

lot of expertise and experimentation. Expertise, usually from medical profes-

sionals, is required because soft tissue needs to be alive during experimentation

so that the results obtained from them are valid and accurate.

This chapter aims to present the essential concepts of these physical models,

highlighting advantages and disadvantages. We begin with the description of these

models and we give some important examples of applications of these models. We

also look into the numerical resolution methods that have been used to solve these

systems. We end this chapter by stressing the main drawbacks that we aim to solve

which will be our main motivation to propose an alternative model for soft tissue

simulation.

2.2 Computation Models

2.2.1 Mass-Spring Network (MSN)

The method of using mass-spring networks is a physically based technique that

has been used widely and effectively to model soft tissue. This physical model

consists of a lattice structure of point masses connected by elastic links. The mass-

2.2. COMPUTATION MODELS 11

spring network is mapped onto the geometrical mesh, i.e. the masses are the vertices

and the springs are the edges of the mesh, to obtain a simulation model.

Figure 2.1: A virtual human thigh mesh and the mapping of the mass-spring phys-
ical model onto the geometrical model. Taken from [Aulignac, 2001].

This mass-spring network is then used to discretize the equations of motion. For

example, the link connecting pairs of nodes, allows the local description of the elastic

properties and consequently the displacement of the tissue. Any change of length

relative to the resting length of the spring produces an internal force between the

two connecting nodes. These internal forces are often linear but nonlinear springs

can also be used to model tissues of human organs that exhibit inelastic behavior.

In a dynamic system, Newton’s second law governs the motion of each point mass

in the lattice:

MiÜ i + DiU̇ i +
∑

j

F int
i =

∑
Rext

i (2.1)

where for each node i, U i is the position, U̇ i and Ü i are it’s velocity and acceleration,

Mi is the lumped mass, Di is the damping coefficient to model viscosity, Rext
i is the

total externally applied load vector (e.g. gravity or user exerted forces) and F int
i is

the internal force exerted by a neighboring node j to which node i is connected to

by a link (the sum
∑

is taken over all such nodes j). Generally, this internal force

is the viscoelastic response of the spring connectors and is given by :

F int
i = (λ∆d + µḋ)k (2.2)

where λ is the coefficient of rigidity of a spring connector, µ is its damping coefficient,

∆d and ḋ are the relative variation of distance and speed between the two connected

nodes and k is the unit vector joining these two nodes. Note that if we let the first

12 CHAPTER 2. STATE OF THE ART

two terms on the left-hand side of equation 2.1 equal to zero, the dynamic equation

is transformed into a static equation and the corresponding system becomes static.

Based on the equation of motion for each point, we can obtain the motion for

the entire lattice structure in matrix form:

MÜ + DU̇ + KU = R (2.3)

where M , C and K are the 3ℵ×3ℵmass matrix (ℵ is the number of nodes), damping

matrix and state matrix respectively. Note that M , C and K are diagonal and

banded due to mass being lumped at the nodes. The above second-order system can

be converted to a first-order system for the convenience of analysis or integration.

Using V = U̇ , we have:

V̇ = −M−1DV −M−1KU −M−1R (2.4)

The mass-spring network is a simple physical model with a solid mathematical

foundation and well-understood dynamics. Its computational burden is relatively

small [Aulignac, 2001] and is thus suitable for interactive-time applications. Since

the mass-spring network has a simple structure, many operations like large defor-

mations and topology modifications can be simulated easily. Furthermore, as inter-

actions in this model are local between nodes, parallel computations are possible.

Hence, it is common that we find this model in many applications involving soft

tissue.

Mass-spring networks has been widely used in 2D and 3D facial static

and dynamic animation [Waters, 1987], [Terzopoulos and Waters, 1990].

It also has been used for cloth simulation, video games and anima-

tion movies. Several methods have been suggested to avoid numer-

ical instability [Baraff and Witkin, 1992], [Baraff and Witkin, 1998],

[Desbrun et al., 1999]. A lot of research work has also been done on the mass-

spring network to improve various aspects like adaptive refinement of the parame-

ters [Hutchinson et al., 1996] and controlling the isotropy or anisotropy of the

material being simulated [Bourguignon and Cani, 2000]. Recently, Brown and

Montgomery [Brown and Montgomery, 2001] developed a simple but efficient

algorithm based on the mass-spring model for microsurgery simulation. This al-

gorithm took advantage of the locality of the deformations to reduce calculations

by using a wave-propagation technique that automatically halts computation when

deformations become insignificant. Using this algorithm, they achieved an updat-

ing frequency of 30Hz for the deformations in a suturing vessel surgery, which is

compatible with interactive-time graphic animation.

2.2. COMPUTATION MODELS 13

Figure 2.2: Facial (skin) modeling and animation by K. Waters using mass-spring
models. Taken from [Terzopoulos and Waters, 1990].

Figure 2.3: Real-time 2D topology modification of a mass-spring net-
work used to model the membrane of a virtual human liver. Taken from
[Boux-de-Casson, 2000].

14 CHAPTER 2. STATE OF THE ART

Unfortunately, this physical model has some drawbacks. When representing a

volume using binary connectors, the model can lead to several problems. Certain

constraints like volume conservation are not easily expressed in the model. Of course,

more springs will improve connectivity and thus produce a better approximation

of the volume. Thus, a volumetric object could perhaps be accurately modeled

by an infinite amount of particles and springs, but this is clearly not an option

computationally speaking. To remedy this problem, it has been proposed to add

cross springs, thereby connecting opposing corners. However, this implies that the

physical behavior of the object is intrinsically dependent on the connectivity of the

springs. When aiming for physical realism, this is clearly a handicap. Alterna-

tively [Deguet et al., 1998b] proposed the use of angular and torsion springs,

but this again is another form of topological dependency. Also, proper values for the

constants of the mass-spring network are not easy to specify and the user’s choice

remains a black art.

2.2.2 Elasticity Theory Method (ETM)

ETM is based on Hooke’s law, which relates the stress tensor and the strain ten-

sor, and it uses a discrete approximation of derivative operators on irregular sample

points [Debunne et al., 1999]. It allows space-time adaptation to distribute com-

putation resources in an efficient way and ensures numerical stability.

In this method, given a geometrical mesh, we spray arbitrarily some sampling

points inside. According to the theory of elasticity, for every sampling point, we

have:

ρ Ü i = µ (∇2U i) + (λ + µ)
{
∇(∇ ·U i)

}
(2.5)

where λ and µ are Lamé coefficients characterizing the stiffness of the material, ρ

is the material density, Ü i is the acceleration of a point and U is its displacement.

In this method, a scale-dependent umbrella operator is used to approximate the

Laplacian operator:

∇2U i =
2∑

j |Lij|

∑

j

U j −U i

|Lij|
(2.6)

where |Lij| is the distance between sample point i and corresponding neighbor-

ing points j. To provide a stable pair of operators for simulation, the gradient-of-

divergence operator is approximated in the following way:

∇(∇ ·U i) =
2∑

j |Lij|

∑

j

{
(U j −U i) · L̃ij

}
L̃ij

|Lij|
(2.7)

where L̃ij is the normalized vector of Lij.

2.2. COMPUTATION MODELS 15

The implementation of this method is straight forward just as in the mass-spring

model. The recursive process for simulation is listed as follows:

• Calculate the Laplacian and gradient-of-divergence operator;

• Calculate the acceleration of each sample point using equation 2.5;

• Integrate the acceleration over a time step ∆t to update positions and veloci-

ties.

Figure 2.4: A wide range of applications using ETM has been proposed by
[Debunne et al., 1999]. Virtual surgery simulators like laparoscopic operations
and immersive simulation of toys.

This method uses both space and time adaptation to concentrate computation

where and when required. The space refinement criterion is:

h2|∇2U | > εmax (2.8)

And the simplification criterion is:

h2|∇2U | < εmin (2.9)

where h represents the shortest distance between a particle and its neighbors. εmax

and εmax are the refinement threshold and simplification threshold respectively.

16 CHAPTER 2. STATE OF THE ART

The time adaptation is constrained by the following two inequalities:

∆t <

√
0ρ h2

λ + 2µ
(2.10)

|Ü∆t| < vmax (2.11)

where 0ρ is the material’s rest density and vmax is the threshold for velocity changes.

This method also uses internal damping to add realism and ensure numerical sta-

bility like in the mass-spring model. In [Debunne et al., 1999], the authors have

implemented a system and achieved simulation at a rate of 30Hz without haptic

feedback. But in [Debunne et al., 2001], force feedback was added to the sim-

ulation system. They showed that for a system of a few hundred sampling points,

real-time interaction with visual and haptic feedback can be achieved.

2.2.3 Finite Element Method (FEM)

Finite element method [Bathe, 1996] is the most accurate method for solving a

deformation problem under certain boundary conditions. It decomposes the object

of interest into small polygonal or polyhedral elements (typically triangles in 2D

and tetrahedras in 3D). In each of these small elements, the field of deformation

is expressed by a polynomial interpolation as a function of the deformation values

at the nodes of the element. For nonlinear analysis, which is usually the case for

soft tissue simulations, deformation for example can be measured using the Green-

Lagrange strain tensor E, that is invariant to rigid body transformations. In terms

of displacements, it is given by:

Eij =
1

2

{ ∂u

∂xi

+
∂u

∂xj

+
∂u

∂xi

∂u

∂xj

}
(2.12)

where x is the position of the node in the undeformed configuration and u is the

displacement of the node. To obtain the internal forces, a corresponding stress mea-

sure is required. The 2nd Piola-Kirchoff stress tensor is symmetric and energetically

consistent with the Green-Lagrange strain tensor. It is derived using constitutive

equations or material laws which describes the relationship between stress and strain

in a material.

Once appropriate stress and strain measures have been defined, the governing

equation of continuum mechanics is applied to each element to obtain a set of equa-

tions with deformation values and external forces as unknowns. This formulation

will be in the following static form:

KU = R (2.13)

2.2. COMPUTATION MODELS 17

where U is the nodal displacement vector, K is the state matrix of the element

assemblage and R is the load vector that includes the effects of element body forces

and the effects of the element surface traction. If inertia forces needs to be considered

for dynamic analysis, we obtain the following dynamic form:

MÜ + DU̇ + KU = R (2.14)

where M is the mass matrix and D is the damping matrix of the assemblage.

Figure 2.5: Real-time deformation of a virtual human liver using a static FEM
formulation. Taken from [Aulignac, 2001].

In the finite element method, equations 2.13 and 2.14 are obtained by integration

over the small polygons or polyhedra. These integrations are calculated using Gauss

product rules to reduce computation. Since the interpolation functions (shape func-

tions) are polynomials, we can obtain an accurate integration by using only a small

number of integration points. Usually the integration is reduced to only a small

number of multiplications and additions.

18 CHAPTER 2. STATE OF THE ART

The accuracy of the results obtained through FEM depends on the type of poly-

gon or polyhedron used and the size of it. We can increase the number of elements

(h-refinement) and/or the number of nodes of each element (p-refinement) to improve

accuracy. Note that the shape functions are chosen to ensure this property; defor-

mation results will converge to the real values as we tend to use better h-refinement

and/or p-refinement. To get a good trade-off between accuracy and computation

speed, we need to choose meshes of proper size (corresponding to the number of

elements) and a suitable number of nodes (corresponding to a type of polygon or

polyhedron).

The elements used most frequently are triangles in 2D and tetrahedras in 3D.

Usually several thousand of them are used to obtain a good result for a simple object

under simple boundary conditions. For complicated objects, under linear analysis,

we may be interested only on the parts that can be seen (the surface). It is then

possible to condense the matrix equation and apply some precomputation techniques

to reduce computation [Bro-Nielsen and Cotin, 1996].

On the whole, FEM has too heavy a computation burden to achieve accu-

rate and interactive-time results. Generally, FEM is not suitable for interactive-

time applications for the present CPU capacity. But if there is no topology

changes, it is possible to obtain real-time deformations by using precomputation

[Dimaio and Salcudean, 2002]. Nevertheless this is limited to small deforma-

tions which can be a handicap for soft tissue simulations. But recently, Mendoza

and Laugier [Mendoza and Laugier, 2003] have proposed an implementation of

an explicit formulation of FEM taking into account large deformations and topology

changes. They managed to perform cutting on a virtual human liver by considering

human behavior and limiting stress conditions.

2.2.4 Tensor-Mass Model (TMM)

The tensor-mass model (TMM) discretizes the virtual organ with conformal

tetrahedras [Cotin, 1997]. Just like the mass-spring model, it also distributes the

mass in the object to lumped masses on the mesh nodes i. The governing equation

for the motion of the mesh nodes is also based on the Newtonian Law:

Mi

d2U i

dt2
+ Di

dU i

dt
+ F int

i = 0 (2.15)

The difference here with respect to MSN is that F int
i is obtained through the energy-

based finite element method. The computation of this linear elastic force can be

decomposed into four steps:

2.2. COMPUTATION MODELS 19

• Define the interpolation equations that give the displacement vector at a point

inside tetrahedra Tk as a function of the four nodal displacement vectors U i.

• Express the elastic energy Wk, of a tetrahedra as a function of these four nodal

displacement vectors.

• Compute the elastic force F int
i,Tk

produced by tetrahedra Tk which is applied to

node i using Wk.

• Add all the F int
i,Tj

produced by the neighboring tetrahedras j connected to node

i to obtain F int
i .

After the first three steps above, we can obtain the force F int
i,Tk

applied on node

i within each tetrahedra Tk.

F int
i,Tk

=
3∑

l=0

K
Tk

il U l,Tk
(2.16)

where l are the nodes within tetrahedra Tk and the set K
Tk

il are the state matrices

or tensors. K
Tk

il can be computed as follows:

K
Tk

il =
1

36VTi

[
λk

(
nl,Tk

nT
i,Tk

)
+ µk

(
ni,Tk

nT
l,Tk

)
+ µk

(
nl,Tk

ni,Tk

)
I3×3

]
(2.17)

where for tetrahedra Tk, VTk
is its volume, nl,Tk

and ni,Tk
are the normal vectors of

its surfaces and λk and µk are its Lamé coefficients.

Mesh at Rest Position

Linear TMM Deformation Nonlinear TMM Deformation

Figure 2.6: Deformation obtained using the linear and nonlinear TMM model. The
rest position of the mesh is indicated. Taken from [Picinbono et al., 2002].

From these discussions, we can see that F int
i is computed locally since it is only

related to the tetrahedras connected to node i. When compared to the mass-spring

model, the tensor-mass model computes force by continuum mechanics and therefore

20 CHAPTER 2. STATE OF THE ART

is independent of the mesh topology. In contrast, we know that the mass-spring

model is sensitive to mesh topology. Hence, when there is a topology modification

procedure, the tensor-mass model can give more accurate results. The initially

proposed tensor-mass model only accommodated small displacements, but recently

Picinbono [Picinbono et al., 2002] made modifications to the model for large

displacements by using nonlinear strain tensors and anisotropic material laws.

2.2.5 Hybrid Elasticity Model (HEM)

In the hybrid elastic model (HEM) [Cotin et al., 1999], there is a combination

of a quasi-static precomputed linear elastic model and a tensor-mass model (TMM).

Thus, HEM takes advantage of the good properties of the combined models. We

have mentioned earlier that precomputation is only suitable for situations where

there are no changes in topology. On the other hand, we also know that by using

precomputation, we can achieve interactive-time performance and obtain accurate

deformation results.

In this dual model coexistence structure, different models share some common

boundaries. One model may provide boundary conditions for the other. Since

different models are used, there may be some artifacts in the areas close to the

common boundaries between different models. But if we choose two models with

similar theoretical foundations, it is possible for us to reduce these artifacts such

that they are negligible. As to the behavior of HEM, since the two models follow

the same physical law; Hooke’s Law, so the combination of these two models should

behave exactly as a global linear elastic model. Here we note that the combination of

other models are also possible for a hybrid model system [Tseng and Lin, 2000].

In [Cotin et al., 2000], the hybrid elastic model is used to simulate a hep-

atectomy surgical procedure. HEM is used as the global model in which TMM is

used for the parts where there is a cut or tear operation, and a quasi-static precom-

puted linear elastic FEM model for the part that there is no cut or tear operations.

Similar to TMM, the quasi-static precomputation model is only suitable for small

deformations. The main difference between the quasi-static precomputation model

and the tensor-mass model is that the displacement vector of the elements in the

former is calculated by a continuous finite element method, which is more accurate,

while in the latter, it is obtained through a discrete lumped mass method, which

is less accurate. The artifacts close to the common boundaries of the two kinds of

model are very small and are unperceivable to the human eye. So this model is a

good model for specific surgical simulators meant for training cut or tear operations

that are simulated by removing material. But one drawback of this model is that it

2.2. COMPUTATION MODELS 21

Figure 2.7: Cotin in [Cotin et al., 1999] has applied the HEM to a virtual
human liver. In the above application, a predefined cutting section is identified.
Then this part is modeled using TMM and the remaining portions of the liver is
modeled using linear elastic FEM. Condensation and precomputation are used to
solve the linear elastic FEM parts while TMM allows resolution of systems with
topology modifications.

is only suitable for global small deformations.

2.2.6 Method of Finite Spheres (MFS)

Method of finite spheres (MFS) is a complete meshless method. It was developed

by S. De and K. J. Bathe [De and Bathe, 2001] to overcome the remeshing burden

in methods like FEM. This method uses a set of points instead of meshes to solve

the governing equations of equilibrium.

This method has recently been extended for deformable objects. In a medi-

cal simulator for example, when a surgical tool touches the virtual soft tissue, a

set of points is sprinkled locally around the tool tip and a sphere with a finite ra-

dius is built at each sprinkled point. Just as in the classical FEM method, shape

functions are used to approximate the deformation fields. The difference here is

that in the MFS method, we have to use rational functions instead of polynomials.

Although the rational functions are carefully chosen to enhance the computation

efficiency [De and Bathe, 2001], they still lead to more extensive computation

in the integration part. This is due to the increase in interpolation points used in

MFS as compared to the normal polynomial case. This is obviously a disadvantage

for interactive-time applications. Although J. Kim et al. in [Kim et al., 2002a]

22 CHAPTER 2. STATE OF THE ART

claimed that the method of finite spheres could produce reasonably good local defor-

mation, comparable to FEM, it is still not so convincing that this method can give

interactive-time and accurate global deformation results in complex meshes. This is

because in their experiments, the number of the points used in their simulation is far

too small compared to that in the finite element method (about 40 times less). For

MFS to be really applicable in interactive-time applications, more progress needs to

be made to reduce the computation burden.

2.2.7 Boundary Element Method (BEM)

One of the recent research work on simulating accurate deformation has

been done by James and Pai using boundary elements for deformable objects

[James and Pai, 1999]. They propose to use a quasi-static method to model defor-

mations by describing how the object interacts with the environment at its boundary

Γ. For example, in figure 2.8 the object Ω is subjected to two displacement boundary

conditions; Γi, displacements due to user interaction and Γc, displacements condi-

tioned by some fixed contact. The remaining boundary parts of the object Γf , are

free to move.

����

Γ
Γ

Γ
x

u

Γc

f
f i

Ω

Figure 2.8: Boundary element method notations.

In this model, when an object is deformed, a displacement U of a point x ∈ Ω

occurs. This deformation is based on linear elasticity governed locally by Navier’s

equation which is a generalization of Hooke’s law and it can be written as:

NU + X = 0 (2.18)

where N is a linear second-order differential operator, and X is a term due to body

forces, like gravity, acting everywhere in the object. The boundary conditions, along

with Navier’s equation, constitute the boundary value problem (BVP). To determine

2.2. COMPUTATION MODELS 23

the displacement vector U , and the traction vector T , on the boundary of the body,

they use a boundary integral formulation of Navier’s equation expressed as:

∫

Γ

U ?(x, y) p(y) dΓ(y) +

∫

Ω

U ?(x, y) b(y) dΩ(y) (2.19)

where the elements of the matrix function U ?(x, y) are denoted as [U ?
ij] and they

represent the displacement in direction j at a field point y. This displacement is due

to a unit load applied in each of the i directions at point x.

Figure 2.9: Examples of deformations obtained using the boundary element method.
Taken from [James and Pai, 1999].

The boundary element method can be summarized in the following steps:

• Discretize the boundary Γ into a set of ℵ non-overlapping elements whose

degrees of freedom represent the displacements and traction that are piecewise

interpolated between the element’s nodal points.

• Apply the integral equation 2.19 at each of the ℵ boundary nodes. This gener-

ates a system of 3ℵ equations involving 3ℵ nodal displacements and 3ℵ nodal

traction of the form:

HU = GT (2.20)

where H and G are 3ℵ × 3ℵ dense (non-sparse) matrices.

24 CHAPTER 2. STATE OF THE ART

• Apply boundary conditions of the desired BVP by fixing nodal values (either

displacements U or traction T). The final linear system of 3ℵ equations is

transformed to

KV = Z (2.21)

where the unknown boundary values are placed on the left-hand side.

The solution of this matrix system is executed using a quasi-static resolution ap-

proach. A drawback in this method is the loss of accuracy when modeling soft tissue

since it is based on linear elasticity and no consideration is made to accommodate

large displacements. The application of this method for calculating force feedback is

explained in detail in [James and Pai, 2001] which is an advantage in this method

for haptic simulation.

2.2.8 Long Element Method (LEM)

Long element method views the objects as two-dimensional distributed elements

filled with an uncompressible fluid. The advantage of this method is that the num-

ber of the elements is one order of magnitude less than in a discretization based on

tetrahedral or cubic elements [Costa and Balaniuk, 2001b]. In the static long

element method, each element is assumed to be filled with fluid. But at the same

time, each element is also assumed to obey Hooke’s Law in the axial direction. Pas-

cal’s principle and the law of conservation of volume are used as boundary conditions

to establish the state of equilibrium.

L

L

LONG ELEMENT
BASE OF

LONG ELEMENT
SURFACE OF

A F NODES

∆

(a) (b) (c)

Figure 2.10: (a) A long element. (b) Cylinderical mesh with discretized surface.
(c) Cylinder represented by long elements in 1D.

A problem with this method is the error in the discretization when the object un-

dergoes large deformation resulting in inconsistent results and the absence of volume

2.3. RESOLUTION METHODS 25

conservation. A naive solution would be to discretize the object at each simulation

interval but this is clearly not an efficient option, computationally speaking. So the

validity of the long element method for interactive-time appliacations is doubtful

although some of its assumptions are reasonable. Many aspects of this approach

still remains to be explored.

2.3 Resolution Methods

In the preceding sections, we presented some of the common physical models

used to represent biological tissue. They are formulated in two ways; linear and

nonlinear, resulting in a matrix system of equations. In this section, we briefly look

at techniques used to resolve these systems. Details about the convergence criteria

and rate of convergence have been omitted because they are not the primary concern

of this thesis. We recall that for both the linear and nonlinear models, a static and

dynamic formulation is possible.

2.3.1 Static Systems

A static system is obtained when inertia and viscoelastic effects can be neglected.

This happens when the frequency of excitation is lower than roughly one-third of

the structure’s natural frequency. The physical model is then characterized by the

following matrix system:

KU = R (2.22)

where K is the constant state matrix, U is the displacement vector and R is the

load vector.

2.3.1.1 Linear Static

A linear static system is obtained when the state matrix K is constant through-

out the entire history of load application. Typically, this means small strains and

displacements. Two methods can be used to solve this system; direct solution tech-

niques and iterative solution methods [Press et al., 1992].

In the direct solution technique, the number of operations can be determined

exactly. Preconditioning is often done to improve computational efficiency. Several

techniques exist for such operations; Lower-Upper Decompositions (LUD), Cholesky

Factorization (CF) etc. The efficiency of these algorithms depends on factors like

nodal numbering and sparsity.

26 CHAPTER 2. STATE OF THE ART

In large systems however, a direct solution can require a large storage space and

computation time. Hence, an iterative method is more appropriate. Two important

techniques for this purpose is the Gauss-Seidel method and the Conjugate-Gradient

method. In both cases, the rate of convergence depends on the initial displacement

vector U used and the condition number of the matrix K.

2.3.1.2 Nonlinear Static

Linear analysis is only valid for small strains and displacements. Typically this

excludes deformations of more then five percent or rotation. Beyond this we have

to take into account nonlinearities. We can differentiate between:

• Material Nonlinearity. Real materials are nonlinear. The constitutive rela-

tionship between strain and stress must be taken into account.

• Geometric Nonlinearity. When the solid undergoes large variations in

shape or rotation, the stiffness matrix will change.

Hence the state matrix, K, is now a function of the displacements U :

K(U) U = R (2.23)

This gives rise to a nonlinear problem since we can no longer just inverse the state

matrix K to find a solution for an external force being applied. Therefore we must

resort to a nonlinear solution technique.

A numerical scheme frequently used to solve this system is the Newton-Raphson

iterative method [Bathe, 1996]. In this method, at each iteration, an out-of-balance

load vector is calculated. This vector produces an increment in the displacement

vector. Iteration is continued until either vectors becomes sufficiently small. Mathe-

matically, the procedure is described as follows, where i = 1, 2, 3, . . . is the sequence

of iteration.

∆Ri−1 = R−Ri−1

Ki−1 ∆U i = ∆Ri−1

U i = U i−1 + ∆U i (2.24)

An important observation in this method is the choice for updating the state

matrix K. Three schemes exist for doing this; the choice depending on the accuracy

sought after and computation time constraint (interactiveness) [Aulignac, 2001].

2.3. RESOLUTION METHODS 27

2.3.2 Dynamic Systems

A dynamic system is obtained when inertia and viscoelastic effects are included.

The equations of equilibrium of a dynamic system is governed by the following matrix

system:

MÜ + DU̇ + KU = R (2.25)

where as usual, M , D, and K are the mass, damping and state matrix. Ü , U̇ , and

U are the nodal acceleration, velocity and displacement matrix. R is the external

load vector.

We can restate this problem as a second-order differential equation:

Ü = M−1(−DU̇ −KU + R) (2.26)

If the mass is lumped at the nodes, the mass matrix is diagonal and therefore easily

invertible. Since matrices D and K are not constant, the differential equation

is nonlinear. Hence, there is no analytical solution to this problem. However, a

variety of numerical integration techniques exist to compute position and velocity as

a function of time. The simplest method for finding the change in state with respect

to time is the Newton-Euler method. It finds the next state by following the current

derivative during one ∆t. We can then forward integrate in time the system using

an explicit or implicit method.

2.3.2.1 Explicit Newton-Euler Integration

Once the the external load vector R is known it becomes possible to evaluate

the change in velocity and position of the system:

U̇
t+∆t

= U̇
t
+ ∆t Ü

t

U t+∆t = U t + ∆t U̇
t (2.27)

where the method is termed explicit because the derivative is evaluated for the

current state. The explicit Newton-Euler integration method takes no notice of

changing derivatives. It is actually a truncated Taylor series, discarding all but the

first two terms. This means the Newton-Euler method is only correct if the first time

derivative is constant. Otherwise, larger the time-step, the larger the error is as well.

This accumulating error is observed in objects that are not highly elastic. For these

objects, the ordinary differential equations are stiff, resulting in poor stability and

requiring the numerical integrator to take very small time-steps.

28 CHAPTER 2. STATE OF THE ART

2.3.2.2 Implicit Newton-Euler Integration

To get around the problem of stiff ordinary differential equations, an implicit

Newton-Euler integration can be used. Implicit methods are different; the change

in state is calculated by the derivative at the next state. Hence equation 2.27 may

be rewritten as the two following equations:

U̇
t+∆t

= U̇
t
+ ∆t Ü

t+∆t

U t+∆t = U t + ∆t U̇
t+∆t (2.28)

where if we let y be any required state and f(y) the derivative, then we have the

following for a general linearized system:

f(yt) = λyt (2.29)

Then equation 2.28 can be restated as follows:

yt+∆t = yt + ∆t f(yt+∆t)

= yt + ∆t λyt+∆t

=
yt

1− λ∆t
(2.30)

Thus at the new state the derivative will take you back to where you came from.

The system is therefore reversible in time and hence, completely stable. Hence

by linearizing equation 2.25, using an iterative method for example, we can solve

analytically for the position after a given time-step ∆t. Other variations that con-

centrate on optimizing this technique are also available. A recent work in this aspect

is [Hilde et al., 2001].

2.4 Summary

In this chapter, we have presented the important physical models used for soft

tissue modeling. Amongst these models, FEM and TMM have the most realistic

results due to their solid mathematical and physical foundation.

FEM is a continuous model, but is not a purely continuous model. The discrete

component in this method lies in the meshing step, which causes the deformation

field to be only continuous across the mesh boundaries. FEM is accurate only when

the discontinuity of the derivative of the deformation field across the mesh boundaries

is negligible.

TMM is a semi-continuous model. The interactions are calculated on a con-

tinuous base (elasticity theory). The material mass is lumped onto the vertices of

2.4. SUMMARY 29

the mesh to establish the motion equations. For small deformations, it can replace

mass-spring model. But it is not suitable for large deformations. Quasi-static pre-

computed elastic method is actually an energy based finite element method. It is

also only suitable for small deformations. Combined with the tensor-mass model, it

forms a hybrid model, which can take advantage of pre-computations.

MSN is a complete discrete model in which the continuous material is discretized

into lumped masses and the distributed interactions are discretized into springs.

Due to the discretization of both the two aspects, mass-spring model is the simplest

and easiest to implement, and it can handle all kinds of the interactions between the

surgeon and the organs. However, a simple model is not necessary an efficient model.

The constraints for a continuous system sometimes is not easy to be transformed

into constraints for the corresponding discrete system, which means the mass-spring

model is not efficient in handling some constraints, like volume conservation for

example.

ETM is a complete continuous model. The key point in this elasticity theory

method is the approximation of Laplacian operator and divergence of gradient op-

erator by a umbrella operator. If this approximation were good for human organ

deformations, the elasticity theory method would be an efficient model.

BEM and LEM has its advantage in haptic rendering applications because the

traction vector is obtained directly from the solution of the system. Furthermore,

LEM is interesting due to the presence of a reduced and sparse state matrix.

We also briefly presented MFS, a meshless method, which has recently made

appearance as a soft tissue model. Essentially, MFS is a method very close to FEM.

The main difference is that MFS is a meshless method and the shape functions

are rational functions instead of polynomials. Unfortunately, the complexity of its

resolution technique has restricted its application to non-complex simulations.

Besides MFS, all the models generally map a physical model onto a volumetric

geometrical model to achieve maximum realistic simulation. Thus the size of the

state matrix K is dependent on the number of nodes but sparse to some extent

(depending on topology). By condensation, the size of K is reduced but becomes

dense. A reduced and sparse K is of course the ideal outcome. Hence, at this point,

we are motivated to try and find a new model that satisfies this criteria.

We also presented various resolution methods for the physical models. We showed

that dynamic implicit nonlinear analysis requires the update and factorization of the

state matrix K which can be computationally very expensive. An exception is in

the dynamic explicit nonlinear analysis, and hence we find that this technique is

30 CHAPTER 2. STATE OF THE ART

most favorable. But as we mentioned before, the problem here is the choice of the

time-step which has to be adaptive so that numerical stability is ensured throughout

the entire history of load application. This compounds to recalculating the K of

the system. Thus, a static resolution seems favorable because we avoid stability

problems. Furthermore, since soft tissue is well-damped, viscoelastic effects can

be neglected. Thus a static nonlinear analysis should suffice. But static nonlinear

analysis still requires the evaluation of K at each interval. Our immediate response

to this question is that if an ideal K can be found (small and sparse), an iterative

method can be used for a fast evaluation of the inverse of K.

MSN ETM FEM MFS HEM TMM BEM LEM

I FFF FFF F F FF F FF FFFF

R F FF FFFF FFF FF FFFF FF FF

Table 2.1: Comparison of various soft tissue physical models. Interactivity (I)
against Realism (R).

We end of this chapter by tabulating a comparison between these models. They

are summarized in table 2.1. The main drawback in most of these models is the

complexity of the models which is significant for interactive-time applications. For

static simulations, this could be due to the absence of a reduced and sparse state

matrix K. This has been our main motivation to explore another possible soft tissue

model. Within this context, we take the LEM model as our starting point. In the

next chapter, we present the formulation and results of this new physical model. This

model must be suitable for soft-tissue simulation in interactive-time applications.

Chapter 3

The Volume Distribution Method
(VDM)

3.1 Introduction

In the previous chapter, we saw some common physical models for deformable

objects. These models were carefully adapted to model deformable objects and their

physical parameters tuned for a specific application. This is normally the case, be-

cause there is no absolute model that can possibly represent every real phenomenon

associated with deformable objects. These models were briefly presented and their

qualities analyzed and compared. FEM has been known to be most realistic, but

nevertheless, it is computationally expensive and unsuitable for interactive-time ap-

plications. We finally concluded by emphasizing that for interactive-time applica-

tions, a deformable physical model that is physically realistic, numerically stable

and computationally cheap is desirable.

The objective of this chapter is to present the work done on a new physical model

initially developed in our research group for deformable objects that we hope will

satisfy the above mentioned goals. This new model is called the Volume Distri-

bution Method (VDM) which has been inspired from the Long Element Method

(LEM) [Costa and Balaniuk, 2001b], [Costa and Balaniuk, 2001a],

[Sundaraj et al., 2001] and [Sundaraj and Laugier, 2002]. We are inter-

ested in deformable objects which have an elastic skin as surface and are filled with

an incompressible fluid. Soft tissue can be considered as such an object. Let us take

the liver for example, it is composed of three major parts; an elastic skin called

Capsule of Glisson as the surface, the Parenchyma which is the interior and is full

of liquid (≈ 95% blood) and a complex vascular network designated to irrigate

the liver. These observations allow us to make some soft assumptions about the

31

32 CHAPTER 3. THE VOLUME DISTRIBUTION METHOD (VDM)

behavior of the liver. For example, due to the high content of blood in the liver,

it is possible to deduce that the liver is incompressible i.e. the liver conforms to

a change in shape but not to a change in volume. The elastic capsule indicates a

behavior that obeys some form of Hook’s Law.

This chapter begins with the basic formulation of the VDM model. First, we will

explain how a deformable object is transformed from a continuum to a discretized

VDM object. Then, we shall formulate the equations of equilibrium for VDM. We

then consider the resolution of these equations for linear (small deformation) and

nonlinear (large deformation) analysis. Finally, before we conclude, we present some

experimental results.

3.2 Mathematical Formulation

We begin by giving a formal description of this model. VDM is a surface based

method that allows the computation of a global deformation vector produced by

an external load vector. It only requires the surface to be discretized with the

inside being transparent to the model. The interior of the object is assumed to be

filled by some incompressible fluid. This fluid acts as the medium that transfers the

change in energy experienced by the deformable object due to a change in state from

equilibrium.

3.2.1 Notations

Node

Facet

Afacet

Figure 3.1: A deformable object with the surface discretized and a zoomed view of
the surface. The interior of this object is filled with some incompressible fluid.

3.2. MATHEMATICAL FORMULATION 33

In this section, we describe the mathematical formulation of the VDM model

[Sundaraj et al., 2003]. Consider the triangulaire surface mesh of a deformable

object as shown in figure 3.2 filled by some incompressible fluid. Let us now suppose

that this surface is composed of ℵ vertices, which we will from now on refer to as

nodes.

Figure 3.2: Volume Distribution Method (VDM) notations.

Let us now define the following notations for our deformable object. These

notations (see figure 3.2) are for a node i, on the surface of our deformable object:

• Volumic Pressure, Pvp - The pressure experienced by a node due to the dis-

placement of the node.

• Volumic Tension, Pvt - The pressure experienced by a node due to the dis-

placement of neighboring nodes.

• Contact Pressure, Pcp - The pressure experienced by a node due to contact.

• Fluid Pressure, Pfluid - The pressure exerted by the incompressible fluid.

• Environment Pressure, Pep - The pressure exerted by the surroundings of the

deformable object.

• Bulk Modulus, Bi - The ratio of pressure of node i, to the fractional volume

compression of node i (equivalent to normal stress).

• Connectivity Bulk Modulus, Bij - The ratio of pressure of node i, to the frac-

tional volume compression between node i and j (equivalent to shear stress).

• Area, A - The total surface area of the deformable object.

• Volume, V - The total volume of the deformable object.

• Distributed Area, Ai - The area assigned to a node i.

• Distributed Volume, Vi - The volume assigned to a node i.

34 CHAPTER 3. THE VOLUME DISTRIBUTION METHOD (VDM)

• Facet Area, A
facet - The area of a facet.

• Displacement Vector, ∆Li - The displacement vector of a node i.

3.2.2 Distributed Area and Volume

A facet

A facet

3

Node i

Facet

(a) (b) (c)

A
i

Figure 3.3: (a) The above facet has 3 nodes and area A
facet. (b) This area is

distributed equally to each node, A
facet/3. (c) In the presence of neighboring facets,

the sum is taken over all neighbors to obtain the distributed area of a node i, Ai.

Let us first derive Ai and Vi. Consider a deformable object with a discretized

surface. Each node i is connected to j neighboring facets. These neighboring facets

each have surface area A
facet
j . Within each facet, A

facet is distributed to each of the

it’s nodes equally. This is graphically shown in figure 3.3. The distributed area for

each node i is then obtained as follows:

Ai =
∑

j

(A
facet
j

3

)
(3.1)

∑

i

|Ai| = A (3.2)

Once the area has been distributed, the volume can be distributed as well. Given

the total volume of the geometrical mesh model as V and the total surface area A,

we chose to distribute the volume as a function of the distributed area Ai. Then,

the distributed volume for each node i is obtained as follows:

Vi =
|Ai|V

A
(3.3)

3.2. MATHEMATICAL FORMULATION 35

∑

i

Vi = V (3.4)

3.2.3 Bulk Modulus

The bulk modulus for a node Bi and the connectivity bulk modulus Bij are

the physical parameters of the object being modeled. These values are generally

obtained from experiments or from the literature. The physical definition of bulk

P P

V’ V’

P = Pressure

V = Volume

P

P

P
P

P

VV

(a) (b)

Figure 3.4: Physical definition of (a) bulk modulus and (b) connectivity bulk mod-
ulus.

modulus can be understood by considering a piece of material of volume V such

as the one shown in figure 3.4. Given a change in pressure acting on this piece

of material, a change of volume will be observed in this material. Then, the bulk

modulus B can be defined as follows:

B =
∆P
∆V

V

(3.5)

where ∆V = V − V ′. The physical meaning of connectivity bulk modulus can then

be defined as the same influence to a change in volume, but this time in the presence

of a neighboring piece of material.

3.2.4 Volumic Pressure

Consider a force per unit area applied to a node i on the surface of our deformable

object. This force produces deformation. However, deformation of a node induces

volumic change. Now, by introducing bulk modulus Bi for this node, we have:

Pvp =
Bi

Vi

∆Vi (3.6)

36 CHAPTER 3. THE VOLUME DISTRIBUTION METHOD (VDM)

where ∆Vi, the volumic change, is our measure of strain and Vi is the volume asso-

ciated to a node. Now volumic pressure can alternatively be written in the following

form:

Pvp = Ki∆Vi (3.7)

where Ki = Bi

Vi
. Note that Ki is dependent on Vi. We have derived the volumic

pressure for a node.

3.2.5 Volumic Tension

Consider now a group of neighboring nodes. These nodes are linked topologically

by the surface of our deformable object. This surface is elastic and to represent this

in 3D, a difference in volumic change can be used (similar to a difference in length

for the 1D case).

In this case, volumic tension Pvt can be written as:

Pvt =
∑

j

Bij

Vi

(
∆Vi −∆Vj

)
(3.8)

for all neighboring node j of node i. Bij is the connectivity bulk modulus constant

between node i and j. Note that we have not made any assumptions on the nature

of elasticity between nodes, they can in general be of linear elasticity as in this case

or of nonlinear elasticity.

3.2.6 Equilibrium State

The equilibrium state within a node is obtained by considering the following:

Pext = Pint (3.9)

where Pext is the external pressure and Pint is the internal pressure.

The external pressure associated to a node is affected by the surrounding envi-

ronmental pressure Pep and by the stress due to volumic change:

Pext = Pep + Pvp (3.10)

while the internal pressure is due to pressure of the incompressible fluid Pfluid and

the effects of gravity Pgravity:

Pint = Pfluid + Pgravity

= Pfluid + ρgδ (3.11)

3.2. MATHEMATICAL FORMULATION 37

where ρ is the density of the incompressible fluid and δ is the measured hydrostatic

distance of the node due to the contained fluid in our deformable object.

By considering neighboring nodes, equilibrium is attained by including effects

from the volumic tension. Hence equation 3.10 becomes:

Pext = Pep + Pvp + Pvt (3.12)

3.2.7 Model Assemblage

To obtain the VDM model assemblage, we formulate and group the equations

for the state of equilibrium of each node on the surface:

Pext = Pint (3.13)

where by substituting equation 3.11 and equation 3.12, we get:

Pep + Pvp + Pvt = Pfluid + Pgravity (3.14)

Applying this equation to a group of ℵ nodes, the following can be written using

index notations:

Bi

Vi

∆Vi +
∑

j

Bij

Vi

(
∆Vi −∆Vj

)
−∆Pi = ρigδi ∀ i = 1 . . .ℵ (3.15)

where:

∆Pi = Pfluidi
− Pepi

(3.16)

and j indicates all neighboring nodes for each node i.

We will now use the following theorem as a boundary condition:

THEOREM 1. Pascal’s Principle states that a change in pressure ∆P , exerted

on an enclosed static fluid, is transmitted undiminished throughout this medium and

acts perpendicularly on the surface of the container.

By applying Pascal’s Principle which gives constant change in pressure through-

out the deformable object, the index i can be removed from ∆Pi. By doing this, the

following set of equations is obtained:

Bi

Vi

∆Vi +
∑

j

Bij

Vi

(
∆Vi −∆Vj

)
−∆P = ρigδi (3.17)

Since the fluid is incompressible, we can add another boundary condition to our

set of equations. The incompressibility of the fluid imposes the constraint that the

38 CHAPTER 3. THE VOLUME DISTRIBUTION METHOD (VDM)

volume of the deformable object is maintained at all times. By applying the principle

of conservation of volume:
ℵ∑

i

∆Vi = 0 (3.18)

Equation 3.17 and equation 3.18 are then rewritten such that ∆Li appears as

the variable instead of ∆Vi. This is done by using the following equation:

∆Vi = Ai ∆Li + Li ∆Ai (3.19)

If Ai is assumed to be known throughout the history of load application, then ∆Ai

is null and equation 3.19 is reduced to:

∆Vi = Ai ∆Li (3.20)

We now have ℵ+ 1 equations and ℵ+ 1 unknowns; ∆Li for i = 1 . . .ℵ and ∆P .

These ℵ+ 1 equations can be written in the following matrix form:

K∆L = R (3.21)

The matrix K is the state matrix of the VDM assemblage, ∆L is the deformation

vector matrix and the load vector assemblage R consists the hydrostatic pressure

terms, Pgravity.

Model Illustration Example. To illustrate this assemblage, let us take a de-

formable tetrahedra with 4 nodes as an example. Given the volume V and surface

area A of this tetrahedra, we can distribute them to the nodes as previously defined.

2
3

4

1

Figure 3.5: A deformable tetrahedra with 4 nodes. Each node is connected to every
other node. Each node also has a distributed area Ai and volume Vi.

Now, the following is obtained, for example, for node 1:

3.2. MATHEMATICAL FORMULATION 39

Volumic Pressure:

Pip1
=

B1

V1

(
A1∆L1

)
(3.22)

Volumic Tension:

Pvt1 =
B12

V1

(
A1∆L1 −A2∆L2

)
+

B13

V1

(
A1∆L1 −A3∆L3

)

+
B14

V1

(
A1∆L1 −A4∆L4

)
(3.23)

Now by formulating the equilibrium state for node 1, the following is obtained:

B1A1

V1

∆L1 +
B12A1

V1

∆L1 +
B13A1

V1

∆L1 +
B14A1

V1

∆L1

−
B12A2

V1

∆L2 −
B13A3

V1

∆L3 −
B14A4

V1

∆L4

−∆P = ρ1gδ1 (3.24)

Similarly, the equation for node 2, 3 and 4 can be derived. Then the constraint on

volume for this deformable tetrahedra can be written as follows:

A1 ∆L1 + A2 ∆L2 + A3 ∆L3 + A4 ∆L4 = 0 (3.25)

By grouping all these equations, the state matrix K, the displacement matrix ∆L

and the load matrix R can be written as follows, where the subscript j is used to

indicate summation over all neighboring nodes:

K =

B1A1

V1

+
B1jA1

V1

−B12A2

V1

−B13A3

V1

−B14A4

V1

−1

−B21A1

V2

B2A2

V2

+
B2jA2

V2

−B23A3

V2

−B24A4

V2

−1

−B31A1

V3

−B32A2

V3

B3A3

V3

+
B3jA3

V3

−B34A4

V3

−1

−B41A1

V4

−B42A2

V4

−B43A3

V4

B4A4

V4

+
B4jA4

V4

−1

A1 A2 A3 A4 0

∆L =

∆L1

∆L2

∆L3

∆L4

∆P

R =

ρ1gδ1

ρ2gδ2

ρ3gδ3

ρ4gδ4

0

(3.26)

Each of this matrix is then decomposed in the respective x, y and z components.

The resulting state matrix K is sparse and diagonally banded.

40 CHAPTER 3. THE VOLUME DISTRIBUTION METHOD (VDM)

3.2.8 Anisotropic Behavior

In the previous chapter, we mentioned that the TMM model has been used

to model anisotropic behavior. Anisotropy refers to the fact that deformation is

experienced in a preferred direction. Soft tissue that are made up of nonhomogeneous

material, for example fibers, exhibit this behavior. Some examples of soft tissue that

fall into this category are muscles, ligaments and tendons.

The VDM model can also be used to characterize anisotropic behavior. By

varying the bulk modulus Bi and the connectivity bulk modulus Bij associated to

each node, deformation can be preferred in a particular direction as compared to

another. This can be explained by noting that in the presence of an external load,

a change in volume is experienced. This change in volume is distributed uniformly

to the other parts of the surface by the pressure experienced by the incompressible

fluid. Since, by definition, the bulk modulus relates pressure to the fractional change

in volume, it can be used to control the amount of volume distributed, and hence

deformation.

In practice, the bulk modulus Bi and the connectivity bulk modulus Bij are

tuned based on the characteristics of the simulated material, for example, fibers are

only allowed to deform in their respective fibrous orientation.

Model Illustration Example. To demonstrate the changes in the formulation,

let us once again take the deformable tetrahedra for example. The state matrix K

for the 4 nodes is given as follows:

K =

B1A1

V1

+
B1jA1

V1

−B12A2

V1

−B13A3

V1

−B14A4

V1

−1

−B21A1

V2

B2A2

V2

+
B2jA2

V2

−B23A3

V2

−B24A4

V2

−1

−B31A1

V3

−B32A2

V3

B3A3

V3

+
B3jA3

V3

−B34A4

V3

−1

−B41A1

V4

−B42A2

V4

−B43A3

V4

B4A4

V4

+
B4jA4

V4

−1

A1 A2 A3 A4 0

(3.27)

If we do not want node 2 to move due to the internal pressure and node 4 to

move due to volumic tension from node 1, we set B2 =∞ and B41 =∞. Then the

3.2. MATHEMATICAL FORMULATION 41

state matrix K becomes:

K =

B1A1

V1

+
B1jA1

V1

−B12A2

V1

−B13A3

V1

−B14A4

V1

−1

−B21A1

V2

∞
−B23A3

V2

−B24A4

V2

−1

−B31A1

V3

−B32A2

V3

B3A3

V3

+
B3jA3

V3

−B34A4

V3

−1

∞
−B42A2

V4

−B43A3

V4

B4A4

V4

+
B4jA4

V4

−1

A1 A2 A3 A4 0

(3.28)

3.2.9 Stress Distribution

Stress σ, is a function of strain, and strain in the VDM model is a function of

volumic change ∆V . Hence for a node i, stress can be measured by calculating the

net volumic change of the node with respect to its neighbors j:

σi =
Bi

Vi

(
∆Vi −

∑

j

∆Vj

)

=
Bi

Vi

(
Ai ∆Li −

∑

j

Aj ∆Lj

)
(3.29)

3.2.10 Imposing Constraints

Once the state matrix K has been obtained, in the presence of constraints, the

respective nodes in K has to be modified. We identify four types of constraints as

shown in figure 3.6, that can be subjected to our deformable object.

FREE : Nodes that belong to this group are free to move. These nodes are not

subjected to an external force and hence have Pcp = 0. Thus, they are governed by

the following equation:

Bi

Vi

(
Ai ∆Li

)
+
∑

j

Bij

Vi

(
Ai ∆Li −Aj ∆Lj

)
−∆P = ρigδi (3.30)

CONTACT : Nodes that belong to this group are subjected to an external load

vector which can be modeled as a contact pressure Pcp. Hence, these nodes are

42 CHAPTER 3. THE VOLUME DISTRIBUTION METHOD (VDM)

Deformable Object

fixed

free

contact

constrained

External Force

Surgical
Tool

Figure 3.6: A resting deformable object that is touched by a finger and manipulated
by a tool. The following constraints manifest in this deformable object; FIXED:
nodes that do not move, FREE: nodes that are free to move, CONTACT: nodes that
are subjected to an external force, CONSTRAINED: nodes that are subjected to a
displacement vector.

governed by the following equation:

Bi

Vi

(
Ai ∆Li

)
+
∑

j

Bij

Vi

(
Ai ∆Li −Aj ∆Lj

)
−∆P = ρigδi + Pcpi

(3.31)

FIXED : Nodes in this group are fixed. They have null displacement vector

and hence do not move during the simulation. To enforce this constraint during

simulation, a penalty method is applied to the respective nodes. In this method,

for a desired null displacement of node i, a penalizing term α � 0 is added to the

diagonal term Kii in the state matrix and Ri = 0.

Kii = α , Ri = 0 (3.32)

Model Illustration Example. Let us take our deformable tetrahedra as an ex-

ample again. If node 3 is fixed, then the following is obtained in the state matrix

3.2. MATHEMATICAL FORMULATION 43

and load vector:

K =

B1A1

V1

+
B1jA1

V1

−B12A2

V1

−B13A3

V1

−B14A4

V1

−1

−B21A1

V2

B2A2

V2

+
B2jA2

V2

−B23A3

V2

−B24A4

V2

−1

−B31A1

V3

−B32A2

V3

∞
−B34A4

V3

−1

−B41A1

V4

−B42A2

V4

−B43A3

V4

B4A4

V4

+
B4jA4

V4

−1

A1 A2 A3 A4 0

R =

ρ1gδ1

ρ2gδ2

0
ρ4gδ4

0

(3.33)

CONSTRAINED : The nodes belonging to this last group are subjected or

constrained to a known displacement vector C. This happens when the nodes of

our deformable object is fixed to a moving part. Again, to enforce this constraint, a

penalizing term α� 0 is added to the diagonal term Kii and Ri = αC.

Kii = α , Ri = αC (3.34)

Model Illustration Example. Again, if node 1 in our deformable tetrahedra is

temporarily attached to a tool and thus constrained by a displacement C of the tool,

then the state matrix and load vector will be as follows:

K =

∞
−B12A2

V1

−B13A3

V1

−B14A4

V1

−1

−B21A1

V2

B2A2

V2

+
B2jA2

V2

−B23A3

V2

−B24A4

V2

−1

−B31A1

V3

−B32A2

V3

B3A3

V3

+
B3jA3

V3

−B34A4

V3

−1

−B41A1

V4

−B42A2

V4

−B43A3

V4

B4A4

V4

+
B4jA4

V4

−1

A1 A2 A3 A4 0

R =

αC

ρ2gδ2

ρ3gδ3

ρ4gδ4

0

(3.35)

44 CHAPTER 3. THE VOLUME DISTRIBUTION METHOD (VDM)

3.3 System Resolution

In the previous section, the mathematical foundations of the VDM model was

presented. The system of equations describing the equilibrium of the system was

derived. In this section, we are interested in the methods of solving this set of

equations for linear and nonlinear static analysis. A static analysis is sufficient

because soft tissue is known to be well-damped and thus the viscoelastic effects

can be neglected. Furthermore, a static resolution does not suffer from numerical

instabilities related to the convergence of dynamic systems.

3.3.1 Linear Analysis

The linear analysis amounts to calculating small deformations and small strains

due to external loads. Let us recall the equation of equilibrium of the VDM model

once again:

Bi

Vi

(
Ai∆Li

)
+
∑

j

Bij

Vi

(
Ai∆Li −Aj∆Lj

)
−∆P = ρigδi (3.36)

where i = 1 . . .ℵ and ∆P = Pfluid − Pep. For small deformations, we assume that

the area A
facet of our facets do not change. Hence, the boundary conditions can be

reduced such that:
ℵ∑

i

Ai ∆Li = 0 (3.37)

Property : If |∆Li| < ε ∀ i, then Ai can be considered constant and the state

matrix K is constructed only once in the beginning. This matrix is reused at

each time step. The problem K∆L = R is then solved optimally using standard

numerical methods to obtain a solution.

Numerical Resolution : A technique that is frequently used to precondition the

state matrix K is the lower-upper (LU) decomposition. In this method, we suppose

that K can be written as:

LU = K (3.38)

where L and U are the lower and upper triangular elements of K. In the case of

our deformable tetrahedra, we have a 5× 5 state matrix and the LU decomposition

3.3. SYSTEM RESOLUTION 45

will be as follows:

(
L11 0 0 0 0

L21 L22 0 0 0

L31 L32 L33 0 0

L41 L42 L43 L44 0

L51 L52 L53 L54 L55

)(
U11 U12 U13 U14 U15

0 U22 U23 U24 U25

0 0 U33 U34 U35

0 0 0 U44 U45

0 0 0 0 U55

)
=

(
K11 K12 K13 K14 K15

K21 K22 K23 K24 K25

K31 K32 K33 K34 K35

K41 K42 K43 K44 K45

K51 K52 K53 K54 K55

)

(3.39)

By using the decomposition LU = K and after substitution into K∆L = R,

we get:

K∆L = (LU)∆L = L(U∆L) = R (3.40)

We first solve for the vector Y such that:

LY = R (3.41)

and then solve:

U∆L = Y (3.42)

Since K is constant, hence the matrices L and U are also constant. Thus, these

matrices are also precomputed. The pseudo-code of this resolution procedure is

described in algorithm 1.

Data : K, the state matrix and R, the external load vector

Result: ∆L, the nodal displacement vector

begin
A←−K

B ←− R

if (LU = A) then
while (|B| 6= 0) do

LY = B

U∆L = Y

end

Algorithm 1: Resolution of K∆L = R using a linear approach.

3.3.2 Quasi-Linear Analysis

The analysis presented earlier is only valid for small deformations and small

strains (< 10%) where we assume that Ai is constant. For well-damped soft tissue,

this is perhaps a valid assumption for small deformations. However, for other kinds

46 CHAPTER 3. THE VOLUME DISTRIBUTION METHOD (VDM)

of large deformations, this assumption becomes invalid and volume conservation

needs to be restated as follows:

ℵ∑

i

(
Ai∆Li + Li∆Ai

)
= 0 (3.43)

Properety : In this case, Ai is the nonlinear term and it has to be updated

regularly. In the quasi-linear analysis, a selective method is used to update the

nonlinear terms. Since the nonlinear Ai terms appear in almost all the nonzero

terms of K, a choice has to be made on which terms that needs to be updated. To

ensure that volume is conserved during our simulation, it is imperative that equation

3.43 is satisfied at all times. This is done by updating the Ai terms at each time-

step. These terms only appear in the bottom row of matrix K, allowing us to use

an optimal method to solve the system.

Numerical Resolution : The Sherman-Morrison (SM) method can be used for

this purpose. In this method, we suppose that the inverse matrix of the initial state

matrix K−1 has been found. This can be done using any numerical method. Then

the solution to the system is given as follows:

∆L = K−1R (3.44)

Since K is updated at each time-step with the new Ai terms, K−1 has to be

recomputed to obtain a new solution. Now, given a change to our original matrix

K of the form:

K 7−→ (K + u⊗ v) (3.45)

where in our case, vector u is a unit vector and v is the components of the error

vector that must be added, then the desired change in the inverse is given by:

K−1 7−→K−1 +
{K−1 · u} ⊗ {(K−1)T · v}

1 + (K−1 · u)
(3.46)

Model Illustration Example. Let us take our deformable tetrahedra as an ex-

ample. It has a 5× 5 state matrix and an initial distributed area denoted as A
0
i . At

each time-step, Ai of each node can be recalculated as follows:

Ai 7−→ (A0
i + ∆Ai) (3.47)

3.3. SYSTEM RESOLUTION 47

Then, for this tetrahedra, the vectors u and v are given as follows:

u =

0
0
0
0
1

v =
[

∆A1 ∆A2 ∆A3 ∆A4 0
]

(3.48)

Now by using the state matrix of our deformable tetrahedra as given in equation

3.33 and by updating with these u and v vectors, we obtain the following:

B1A
0
1

V1

+
B1jA

0
1

V1

−B12A
0
2

V1

−B13A
0
3

V1

−B14A
0
4

V1

−1

−B21A
0
1

V2

B2A
0
2

V2

+
B2jA

0
2

V2

−B23A
0
3

V2

−B24A
0
4

V2

−1

−B31A
0
1

V3

−B32A
0
2

V3

B3A
0
3

V3

+
B3jA

0
3

V3

−B34A
0
4

V3

−1

−B41A
0
1

V4

−B42A
0
2

V4

−B43A
0
3

V4

B4A
0
4

V4

+
B4jA

0
4

V4

−1

A
0
1 A

0
2 A

0
3 A

0
4 0

+

0
0
0
0
1

⊗
[

∆A1 ∆A2 ∆A3 ∆A4 0
]

=

B1A
0
1

V1

+
B1jA

0
1

V1

−B12A
0
2

V1

−B13A
0
3

V1

−B14A
0
4

V1

−1

−B21A
0
1

V2

B2A
0
2

V2

+
B2jA

0
2

V2

−B23A
0
3

V2

−B24A
0
4

V2

−1

−B31A
0
1

V3

−B32A
0
2

V3

B3A
0
3

V3

+
B3jA

0
3

V3

−B34A
0
4

V3

−1

−B41A
0
1

V4

−B42A
0
2

V4

−B43A
0
3

V4

B4A
0
4

V4

+
B4jA

0
4

V4

−1

A
0
1 + ∆A1 A

0
2 + ∆A2 A

0
3 + ∆A3 A

0
4 + ∆A4 0

(3.49)

Hence, adding the matrix u ⊗ v to the original state matrix is equivalent to

updating the bottom row of K with the new distributed areas. The pseudo-code of

this resolution procedure is described in algorithm 2.

48 CHAPTER 3. THE VOLUME DISTRIBUTION METHOD (VDM)

Data : K, the state matrix and R, the external load vector

Result: ∆L, the nodal displacement vector

begin
Given K 7−→ (K + u⊗ v)
A←−K

B ←− R

while (|B| 6= 0) do
Compute Error Vector v

Compute K−1

Solve ∆L = K−1R

end

Algorithm 2: Resolution of K∆L = R using a quasi-linear approach.

3.3.3 Nonlinear Analysis

In the nonlinear analysis, all nonlinear terms are updated at each time-step. This

amounts to simulating large deformations and large strains. In this case, for large

systems, a simple inversion or preconditioning of the state matrix at each time-

step may be computationally expensive for interactive-time applications. However,

the rapid increase in computational power has popularized iterative methods as a

resolution scheme.

Property : The basic idea behind this iterative method is the minimization of the

residual ri at each iteration i, defined as:

ri = R−K∆Li (3.50)

It can be shown that this guarantees exact convergence for linear systems of equation

in at most n iterations, where n is the size of the linear system. However, due to

floating point errors, exact convergence is improbable in practice and the solution is

obtained when the error drops below a defined tolerance.

Numerical Resolution : We chose the Bi-Conjugate Gradient (BCG) iterative

method as the optimal resolution scheme. This method is attractive for large sparse

systems because only the nonzero terms of the state matrix is stored; hence minimal

memory. For real-time solution of very large systems, even a solution in n iterations

may be too expensive. However, in interactive-time applications the solution ∆L

only changes minimally from one time-step to another. Then, by using the previous

result of the displacement vector as the starting guess for ∆L0, we can achieve

3.4. SIMULATION RESULTS 49

dramatic gains in speed after finding the first solution. The number of iterations

needed to minimize the error below a certain tolerance is very much smaller than

the value of n. The pseudo-code of this iterative resolution procedure is described

in algorithm 3.

Data : K, the state matrix and R, the external load vector

Result: ∆L, the nodal displacement vector

begin
A←−K

B ←− R

while (|B| 6= 0) do
while (|∆Li+1| − |∆Li| > ε) do

Improve ri = B −A∆Li

Improve Estimated Solution ∆Li+1

end

Algorithm 3: Resolution of K∆L = R using an iterative approach.

3.4 Simulation Results

In this section we presents the simulation results of the VDM model. We present

the following aspects:

• Anisotropic Behavior

• Stress Distribution

• Comparison with FEM

Anisotropic Behavior. To test this behavior, we compared deformation curves

of three points on a cube at rest that were placed on the xy, xz and yz planes

respectively (see figure 3.7). In this test, a force was applied to compress the cube

at rest. We first allowed deformation in all directions. We then changed the bulk

modulus to observe the behavior of the cube. The results from the deformation

curves show that the VDM model respects the imposed anisotropic constraints.

From the results shown in figure 3.8, we can see that the cube behaves differently

when the bulk modulus is changed. In the first test, the displacement of points B

and C coincide. This is because of the uniform bulk modulus. Hence, these points

should move equally to maintain conservation of volume. In the second test, point

50 CHAPTER 3. THE VOLUME DISTRIBUTION METHOD (VDM)

Y

Z

X

A

BC

Figure 3.7: A test cube at rest was used as an example for the anisotropic behavior
test. 3 test points were chosen; A on the xy-plane, B on the xz-plane and C on
the yz-plane. The bottom part of the cube is at rest and fixed. A force to compress
to cube was applied along the z-axis. The displacement vectors of the 3 test points
normal to their respective planes were observed.

B is on the xz-plane which has bulk modulus set to infinity. From the displacement

curves, point B is seen to have nearly zero displacement. On the other hand, point C

has a larger displacement vector in time. This is due to the constraint of conservation

of volume. In the last test, deformation was preferred in the y-direction. This is

observed in the displacement curve of point B by comparing with the first test. Point

C however, has a smaller displacement vector to maintain volume conservation. We

note that point A has a constant displacement curve in all the three tests. This is

due to the constraint of type contact applied to this node. In conclusion, by changing

the bulk modulus that is associated to the nodes, deformation can be preferred in a

particular direction.

Stress Distribution. To plot the stress distribution in our VDM model, we used

the cube at rest as an example again (see figure 3.9). This time, a force to compress

the cube was applied and deformation was allowed in all directions without prefer-

ence. Three test points were used to observe the magnitude of stress of the cube.

The results are presented.

The results in figure 3.10 show that the stress experienced by the cube due

to volumic tension is indeed dependent on the displacement and the distributed

3.4. SIMULATION RESULTS 51

X

Z

Y

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4 5 6 7 8

m
ag

ni
tu

de
 o

f d
is

pl
ac

em
en

t v
ec

to
r

(m
)

t(ms)

A
B
C

(a)

X

Z
Y

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4 5 6 7 8

m
ag

ni
tu

de
 o

f d
is

pl
ac

em
en

t v
ec

to
r

(m
)

t(ms)

A
B
C

(b)

X

Y

Z

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4 5 6 7 8

m
ag

ni
tu

de
 o

f d
is

pl
ac

em
en

t v
ec

to
r

(m
)

t(ms)

A
B
C

(c)

Figure 3.8: (a) Compression with uniform bulk modulus. (b) The bulk modulus
along the x-direction was set to infinity. (c) The bulk modulus of the cube was set
such that deformation is preferred in the y-direction.

52 CHAPTER 3. THE VOLUME DISTRIBUTION METHOD (VDM)

X

Y

Z

A

B

C

(a)

X

Z

Y

(b)

Figure 3.9: (a) A test cube at rest was used as an example for the stress distribution
test. 3 test points were chosen; A, B and C on the xz-plane. The bottom part of the
cube is at rest and fixed. A force to compress to cube was applied along the z-axis.
The magnitude of stress in the x, y and z directions were observed. (b) This cube at
rest with its bottom fixed was compressed using a force along the z-direction.

surface area. In other words, they are a function of volumic change. The stress

in the x-direction is very minimal for all the test points because these points have

displacement vectors with small x-components. On the other hand, since all the

test points have significant displacement in the other directions, stress is observed

to increase in the y and z directions. Point C has almost zero stress in the z-

direction because during compression, this point has minimum distributed area in

this direction. For the stress in the y-direction, point A has minimum stress. This

is due to the fact that this point is constrained not to move in this direction. On

the other hand, points B and C are displaced in the y-direction but point B has a

higher stress which is due to the higher net volumic change experienced as compared

to point C.

Comparison with FEM. To investigate the accuracy of the VDM model, we

decided to compare it with a well known classical model like the FEM model. In

these experiments, two beam mesh as shown in figure 3.11 with similar rigidity

characteristics was used. One end of the beam was fixed and the other end was

subjected to a displacement vector describing various types of large deformations.

The final configuration of the beam was observed and the displacement vectors of

several points along the beam was compared.

3.4. SIMULATION RESULTS 53

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6 7 8

S
tr

es
s-

x(
P

a)

t(ms)

A
B
C

(a)

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8

S
tr

es
s-

y(
P

a)

t(ms)

A
B
C

(b)

0

50

100

150

200

250

300

350

400

450

500

0 1 2 3 4 5 6 7 8

S
tr

es
s-

z(
P

a)

t(ms)

A
B
C

(c)

Figure 3.10: (a) Stress distribution along the x-direction. (b) Stress distribution
along the y-direction. (c) Stress distribution along the z-direction.

54 CHAPTER 3. THE VOLUME DISTRIBUTION METHOD (VDM)

Y

Z X

C

B

A

Fixed End

Force Applied
At This End

Figure 3.11: A test beam with one end fixed was used as an example for the com-
parison test. 3 test points were chosen; A, B and C along the y-axis. A force to
deform the beam was applied. 3 types of deformation were tested; stretching, bending
and twisting. The displacement vectors of the 3 test points were compared.

From the results, we can see that there is a difference in the behavior of the

nodes but the general shape of the beam seem to be identical. We observed the

difference from one tine step to another. In the first test for stretching, a systematic

increase of about 5% in the average error of the curves are observed for all the test

points. When a force to bend the beam was applied, a constant systematic increase

of about 2% in the average error is observed between all the test points. Twisting

was applied in the last test where again a systematic increase of about 5% in the

average error of the curves are observed for all the test points.

The difference between the models is nevertheless expected. FEM is a volumic

model as compared to VDM which is surface based. Also, the physical parameters of

FEM and VDM are not easily matched. The error in the rigidity constant is another

source of error in the results. It is unclear how a deformable beam would behave

under externally applied forces. But, we would like to note that realism was rather

observed in the VDM model. At each time-step, we calculated the volume of the

beam of the two models and found that volume conservation was rather observed in

the VDM model. In conclusion, there is a difference between the two models, but if

we would like to observe volume conservation, VDM seems to be a better choice.

3.4. SIMULATION RESULTS 55

X

Z
Y

(a)

Z
Y

X

(b)

-0.5

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12

di
sp

la
ce

m
en

t-
y

t(ms)

VDM-A
VDM-B
VDM-C
FEM-A
FEM-B
FEM-C

(c)

Figure 3.12: Stretching of a beam with one end fixed and a force applied along the
y-axis at the other end. Final configuration of the beam with the, (a) VDM model
and (b) FEM model. (c) The variation of the magnitude of the displacement vector
of the 3 test points.

56 CHAPTER 3. THE VOLUME DISTRIBUTION METHOD (VDM)

X

Y

Z

(a)

X

Z

Y

(b)

-0.5

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3 3.5 4

di
sp

la
ce

m
en

t-
x

t(ms)

VDM-A
VDM-B
VDM-C
FEM-A
FEM-B
FEM-C

(c)

Figure 3.13: Bending of a beam with one end fixed and a force applied along the x-
axis at the other end. Final configuration of the beam with the, (a) VDM model and
(b) FEM model. (c) The variation of the displacement vector of the 3 test points.

3.4. SIMULATION RESULTS 57

X

Y

Z

(a)

X

Y

Z

(b)

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.5 1 1.5 2 2.5 3 3.5 4

th
et

a(
ra

di
an

s)

t(ms)

VDM-A
VDM-B
VDM-C
FEM-A
FEM-B
FEM-C

(c)

Figure 3.14: Twisting of a beam with one end fixed and a force applied to rotate
along the xz-plane at the other end. Final configuration of the beam with the, (a)
VDM model and (b) FEM model. (c) The variation of the displacement vector of
the 3 test points.

58 CHAPTER 3. THE VOLUME DISTRIBUTION METHOD (VDM)

3.5 Summary

In this chapter we have presented VDM, a new physical model suitable for soft

tissue simulation. This model is surface based, hence it’s complexity is in general one

order of magnitude lower than a classic volumic model like FEM. VDM uses bulk

variables like pressure, volume and bulk modulus as model parameters. Pascal’s

principle and volume conservation are used as boundary conditions.

A key feature of VDM is the absence of discretization of the interior. Any surface

based polygonal mesh can be used as input data. An advantage in the medical field

is that these types of triangulaire meshes are common. They are obtained from

segmented MRI images. The required parameters for the VDM model like volume

and area of the facets are easily extracted from these polygonal mesh.

The intrinsic parameters in VDM for soft tissue depends on the organ being sim-

ulated. If for example, a liver is being modeled, it being 95% irrigated by blood,

requires only the density ρ and bulk modulus B of blood. Such parameters can

be obtained from the literature. Furthermore, experiments to determine these val-

ues can be conducted for verification purposes. These advantages make VDM an

interesting alternative for soft tissue simulation.

We have also presented three possible resolution methods for static analysis of

soft tissue simulation using the VDM model. A static analysis is sufficient in many

cases as soft tissue is known to be well damped and the viscoelastic effects can be ne-

glected. The linear analysis is suitable for soft tissue undergoing small deformation.

There are many examples of medical simulation that restrict deformation within a

linear analysis. The quasi-linear analysis allows a quick resolution technique for any

deformation with volume conservation as the main aspect. In this method there is

a trade-off between the computational time and realism. On the other hand, the

nonlinear method allows us to solve for large deformations and large strains without

much loss of accuracy. Since it is an iterative method, the accuracy of the results

depend on the size of the system solved and the constraint of interactive-time in the

application concerned.

Experimental results to show the behavior of the VDM model has been pre-

sented. We showed results from anisotropic behavior, stress distribution and large

deformations like stretching, bending and twisting. Finally, we compared the VDM

model with the classical FEM model for various types of deformations using a simple

beam mesh.

Part II

Collision Detection

59

Chapter 4

State of the Art

4.1 Introduction

Interaction between virtual objects within a dynamic environment is inevitable.

Even more, these interactions must be detected and treated at interactive rates.

Hence, 3D collision detection techniques that are fast, robust and efficient are re-

quired. Since the user going to interact with the virtual environment, in ways which

we do not know a priori, these techniques must be able to support various types

of scenarios like contact, fictive interpenetration, large deformation, self-collision,

topology modification, etc.

In the last few years, many techniques that have their roots in the field of com-

putational geometry, computer graphics and robotics have been proposed as solu-

tions. These techniques can be grouped into four different interference approaches

[Jimenez et al., 2001]; space-time volume, swept volume, multiple checks and

trajectory parameterization. The task of choosing which sort of technique depends

normally on three important factors; efficiency, robustness and flexibility. It is

interesting to note that the first three techniques mentioned require a static inter-

ference test (SIT) algorithm as a basic test.

For interactive animation and simulation, the best SIT algorithm is desired. This

is currently a problem, because most of the existing algorithms treat specific cases

under specific conditions. For example, some algorithms can only be applied to a

set of points that define the convex hull of the object; which is a problem because

most deformable bodies are concave. Hence, the best algorithm, fit for any case is

almost impossible. A naive but possible solution, would be to have different imple-

mentations for various scenarios with a corresponding algorithm, but this is clearly

not an option, computationally speaking. Hence, the next best solution, would be

61

62 CHAPTER 4. STATE OF THE ART

to settle for a compromise between efficiency, robustness and flexibility. However,

interactivity and accuracy must not be lost at the expense of this compromise.

In general, SIT algorithms are developed with the following characteristics:

• Efficiency. The efficiency of an algorithm is not necessarily a function of its

complexity. It also depends on the frequency of its application. Thus, an in-

telligent strategy is required to decide when and where the interference test

should be executed. Several strategies have been developed to this end and we

shall see this in the proceeding sections. Some of the important techniques of

this selection phase is by using lower time bounds, distance computation algo-

rithms, hierarchical object representations, orientation based pruning criteria,

and space partitioning schemes.

• Robustness. Robustness is another important criterion of algorithms in dy-

namic simulators. Anatomical meshes that are obtained from segmentation of

3D scanned images are often complex and degenerate. These meshes are often

put through a cleaning-up phase to remove bad data like overlapping facets

and unwanted points. The final mesh, although topologically correct, may

still contain some undesirable features like approximately coplanar vertices,

degenerate facets, etc. As a consequence, collision detection algorithms must

be shaped not only by the application itself, but also by the challenging inputs

arising in practice.

• Flexibility. In an application, flexibility largely delimits the kind of algo-

rithms that can be applied. For example, efficient algorithms used for collision

detection of convex rigid bodies becomes useless in medical simulation where

the objects are deformable. Algorithms that are intended for deformable bod-

ies based on a fixed bounding volume representation becomes useless when the

deformable object undergoes large deformation. Hence, specific algorithms

under specific conditions will not suffice. An algorithm which unifies various

interactions under one data structure is required. This subsequently has a

direct effect on memory usage and efficiency.

In this chapter, we will try to give a comprehensive overview of the general

approaches pertaining to the SIT technique. Here, we note that since our work

has been concentrated on treating polyhedral polygons soups (vertices, edges and

facets) as the input data, we will only present previous works that use similar input

data. In addition, we exclude all work that use dynamic and kinematic variables

(we only consider geometrical data). We also assume without loss of generality that

neighborhood topology can be calculated with respect to the input data. When

possible, we will highlight some of the well-known algorithms that originate from

4.2. SOFTWARE MODELS 63

these approaches. In the end of this chapter, we will summarize and reiterate the

need for a unifying algorithm, that exploits the trade-off between efficiency and

computation time.

4.2 Software Models

In a general virtual environment where rigid or deformable objects are present,

the general approach for collision detection in the animation or simulation domain

is divided into three phases:

• Broad Phase. In this first optimization phase, pairs of objects which are

probably in collision are selected. These pairs will then be tested for inteference.

The algorithms used in this phase are mostly based on spatial decomposition.

• Narrow Phase. This phase does not compute the exact colliding entities for

a pair of objects, but it gives a rough idea about the region within each object

where a collision might exist. This region is called the zone of collision and

the algorithms in the phase are mostly based on object decomposition. Again,

this is another optimization phase.

• Exact Phase. This last phase obtains the exact colliding entities, if it exists.

The algorithms in this phase check for intersection between two polygons.

Figure 4.1: The general approach for collision detection in the animation and
simulation domains.

64 CHAPTER 4. STATE OF THE ART

4.2.1 Pair Selection

The aim of the broad phase in the collision detection algorithm is to quickly

eliminate parts of the virtual environment where interaction could not be possible.

In other words, the most probable pairs of objects that could be in collision are

selected. The SIT algorithms in this phase normally use a spatial decomposition

approach.

Voxel Approach. The algorithms based on this approach decomposes the

space into uniform or adaptive grids or cells which are also known as voxels

[Garcia-Alonso et al., 1994]. A common voxel approach that have been widely

used are octrees [Hamada and Hori, 1996], [Derek and Gupta, 1996]. These

cells generally never overlap, never extend beyond the space of their parent and

their union always cover their parent space. An exception here is Loose-Trees

[Ulrich, 2000] in which the octree cells are made to overlap.

1 2 3 4 5

1

2

3

4

5

6 7

A

B

V

Figure 4.2: Voxels in the grid are associated to objects A and B. If a common
voxel is not found (like in this case), there can be no interaction, else a collision
might exist and a further resolution check can be performed.

For example, we can set up a grid of equal-sized boxes (see figure 4.2) over the

workspace. For each box in this grid, we can store a list of the objects that intersect

the voxel. Since a single object may be stored in the list of many voxels, the size of

the resulting data structure could be large in comparison with the size of the input

data. Processing a collision query is done by identifying common voxels between a

4.2. SOFTWARE MODELS 65

pair of objects. If a common voxel is found, then the pair of objects, associated with

each of these voxels is further processed to determine interaction. An absence of a

common voxel indicates no probable pair of objects.

Tree Approach. Another simple approach to representing spatial

data is the binary space partition (BSP) tree [Naylor et al., 1990],

[Thibault and Naylor, 1987]. It consists of selecting an arbitrary object

from the virtual environment, and making it the root of the tree. Next, a plane

spanned by this object is used to divide the rest of the virtual environment into two

sets: front and back. Objects crossing this plane are split. This process is repeated

recursively with the front and back sets, creating the front and back subtrees

respectively. An incremental approach to construct this tree is also possible. The

major disadvantage of this method is that BSP trees are hard to maintain for

dynamic scenes.

Sweep & Prune Approach. This technique [Cohen et al., 1995] seems to be

the most efficient for dynamic and multi body environments. In this algorithm, fixed

bounding cubes (rigid objects) or dynamic bounding cubes (deformable objects) are

used to globally bound the objects in the virtual environment. These bounding cubes

are axis-aligned. Then a sweep and prune technique is applied to check overlap in

the x,y and z axis. The presence of an overlap in all axes indicate collision. These

overlaps are stored in a list and they are sorted at each time-step to exploit temporal

coherence.

4.2.2 Zone of Collision

After a pair of objects has been selected by the broad phase for collision testing,

the narrow phase is in charge of finding a region within these objects, where collision

could be present. Distance computation can be used to any convex hull data set; a

single convex rigid object or the convex decomposition of a concave rigid object. For

deformable objects though, an underlying data structure is often used if interaction

is to be detected accurately and efficiently. In the literature, the bounding volume

approach is widely used as the underlying data structure to find the zone of collision.

At the end of this stage, the list of pairs of possibly interacting primitives are passed

on to the exact phase.

The aim of this section is to present a review of the following methods:

• Collision detection between rigid objects using distance computation.

66 CHAPTER 4. STATE OF THE ART

• Collision detection between deformable objects using bounding volume hierar-

chies.

4.2.2.1 Collision Detection between Rigid Objects

Distance Calculation. The main idea behind this technique is to determine the

closest features of two polyhedra, and then compute the euclidean distance between

them. If this distance is positive, then there can be no interaction, otherwise, in-

teraction can be confirmed. So far, three efficient methods have been proposed to

compute the closest features. Two of them proceed by expanding an incremental

representation in the direction of the minimum distance, while the third navigates

along the boundaries of the polyhedra to find the closest features. These methods

are described in the following paragraphs.

Dobkin and Kirkpatrick (DK).

Principle : In the DK algorithm [Dobkin and Kirkpatrick, 1990], the poly-

hedra P with vertices V (P) is preprocessed to build a hierarchical representation

H(P) = Pi, . . . , Pk, i = 1, . . . , k. At each time-step, a closest point search proce-

dure is executed. Every step in the closest points search procedure corresponds to a

level in the hierarchical representation.

In this algorithm, preprocessing is done as follows:

• The lowest level P1, is chosen to consist the original polyhedra and similarly

the highest level Pk, is a d-simplex.

• At each level, vertices are removed such that Pi+1 ∈ Pi and V (Pi+1) ∈ V (Pi)

for 1 ≤ i < k

• The vertices V (Pi)−V (Pi+1) form an independent set (i.e. , are not adjacent)

at each hierarchical level.

• The corresponding edge and face adjacency relationships are updated at each

level.

In the first step, the closest points of two tetrahedras (the highest level in the

hierarchy) are trivially determined. Now, if we consider the direction of the segment

that joins the closest points found at a given step, two planes perpendicular to this

direction that touch each polyhedron can be determined. These planes bound the

zone where the next closest pair has to be searched for. The intersection of this zone

with the polyhedra expanded at the next level may consist of either two simplices,

4.2. SOFTWARE MODELS 67

one simplex or the empty set. If the closest points are not the same as in the previous

step, then at least one of them belongs to one of these simplices. Therefore, every

search step is restricted to at most two simplices. Interference is detected implicitly

when the separation between these simplices turns out to be null.

For two polyhedra with n and m vertices, the complexity of the preprocessing

stage is O(n+m). Using this hierarchical polyhedral representation, since the num-

ber of steps is bounded by log n ∗ log m, minimum distance computation can be

performed in optimal O(log n ∗ log m) time. Figure 4.3 shows an example of this

algorithm applied to a simple polyhedra represented in this hierarchical representa-

tion.

Step 1

Step 3

Minimum Distance Vector

Half−Space Planes

Expanded Polygons

Step 2

Step 4

Figure 4.3: In the DK algorithm, the closest features are found by searching only
those parts of the hierarchy (expanded polygons) that intersects with the half-space
defined by the planes obtained from the minimum distance vector at each level.

Gilbert, Johnson and Keerthi (GJK).

Principle : This algorithm [Gilbert et al., 1988] calculates the distance be-

tween two convex envelope defined by two sets of points X and Y . It returns the

value of this distance in the case where there exists a separation between the two

envelopes, otherwise it gives an approximation of the interpenetration distance.

68 CHAPTER 4. STATE OF THE ART

To understand this algorithm, we begin with some mathematical notations. The

convex envelope of a set of points X, (CX) is given by:

CX =
n∑

i=1

λixi : xi ∈ X, λi ≥ 0, λ1 + λ2 + . . . + λn = 1 (4.1)

The euclidean distance between two convex envelopes is defined as follows:

d(CX , CY) = min{|x− y|, x ∈ CX , y ∈ CY } (4.2)

This distance is equal to the distance between the Minkowski difference of X and

Y and the origin of the reference frame O. The Minkowski difference CX 	 CY , is

defined as follows:

CX 	 CY = {z : z = x− y, x ∈ CX , y ∈ CY } (4.3)

Hence, we have:

d(CX , CY) = min{|z| : z ∈ CX 	 CY } (4.4)

The Minkowski difference of two convex polyhedra is a convex polyhedra. To com-

pute the distance between CX 	 CY and O, we introduce the support function H

defined for any set Z by:

HZ(η) = max{z · η : z ∈ Z} (4.5)

where z · η is the projection of point z on axis η. This means that the function

H gives the furthest projection of a point in the direction of η. The point M Z (z

of Z) which is closest to O is closest in one direction and furthest in the opposite

direction. Hence this point satisfies the following:

|z|2 +HZ(−z) = 0 (4.6)

In other words, in the GJK algorithm, to calculate the distance between the

convex envelopes of two sets of points X and Y , we compute the distance between

CX	CY and O. The step that takes most of the processing time is the computation

of CX 	 CY . This normally takes n ∗m operations where n and m is the number

of points in X and Y respectively. This complexity can be reduced by the following

interesting property of h:

hCX	CY
(η) = hCX

(η)− hCY
(η) (4.7)

Now, using this property, the computation of hCX	CY
only requires n+m operations.

Nevertheless, the number of iterations actually executed depends on the initial choice

of Z0. In the worst case, n+m iterations are executed; which gives GJK a complexity

of O(n + m).

Taking the polyhedra in figure 4.4 as an example for a compact set Z, to find

the point closest to O, we proceed as follows:

4.2. SOFTWARE MODELS 69

v3

O

v1

z0

z2
z1

v2

v4

v5

Figure 4.4: In this example, the GJK algorithm converges in three iterations

• We start with a initial set of points Zk = z1, z2, . . . , zm. For k = 0, Z0 is

constructed with any three non-aligned points in 2D or any four non-coplanar

points in 3D.

• We then determine the point νk of Zk which is the closest to O. This can be

done is a very efficient way by using Johnson’s algorithm [Johnson, 1987].

• If |νk|
2 +HZ(−νk) = 0, then νk is the point of CZ closest to O.

• Else, Zk+1 = Ẑk ∪ SZ where SZ is a solution of hZ(ν) and Ẑk ⊂ Zk is reduced

by m elements. SZ also satisfies SZ ∈ CẐk
. We reiterate from the second step.

Several extensions have been done to the GJK algorithm for specific applications.

Some of the main ones are described in the following:

Enhanced GJK (EGJK) : Cameron in [Cameron, 1997] showed that in the

case where the two objects move continuously, for small changes, the new closest

points will be in the neighborhood of the previously obtained closest point. In such

cases, with some preprocessing done to the objects to gather information about

neighborhood topology, it is possible that by using Zk obtained from the previous

iteration, the complexity can be reduced to O(1). The technique is referred to as

hill-climbing.

Joukhadar and Laugier (JL) : This algorithm [Joukhadar et al., 1996]

gives the negative distance1 between two convex envelopes sets X and Y . This

negative distance can be used as a measure of fictive interpenetration when X and

1The distance between two polyhedra is called positive when the two polyhedra do not intersect.
When they do, their negative distance is the length of the smallest translation vector required to
separate them.

70 CHAPTER 4. STATE OF THE ART

A

B

N2

B

A

N3

B

A A

B

B

A

B

A

N0

N1

N1

N2

Figure 4.5: To find the negative distance using the JL algorithm, we separate A
and B using the direction N i−1 such that the convex envelopes are not in collision.
Then we apply the GJK algorithm to obtain N i. In this example N 4 = N 3, hence
the negative distance is given by N 4 −N 3.

Y are in collision. According to this algorithm, to find the negative distance, we

proceed as follows:

• We start by first separating X and Y using the last contact direction N .

• We apply the GJK algorithm to obtain a new contact direction N ′.

• If N == N ′, then the negative distance is |N | − |N ′|. Else N = N ′ and we

reiterate from step 1.

At each iteration i, the value of |N i| is closer to |N i−1|. Thus, this algorithm

converges after a fixed number of iterations to obtain N . The complexity of this al-

gorithm is O{k(m+n)} where k is the number of iterations required for convergence.

Figure 4.5 shows an example.

ISA-GJK : This algorithm [Van der Bergen, 1999] incorporates the GJK

4.2. SOFTWARE MODELS 71

algorithm with some modifications. The key argument for these modifications is

that GJK has a tendency to generate simplices that are progressively more oblong

i.e. , closer to being affinely dependent, as the number of iterations k increase. Hence

the error in the minimum distance vector νk cannot be easily estimated.

This algorithm estimates the error in νk by maintaining a lower bound for Z.

This lower bound is the signed distance from the origin to the supporting plane

HZ{−νk, (νk · η)}, which is given by the following:

δk =
νk · η

|νk|
(4.8)

This is a proper lower bound since for positive δk, the origin lies in the positive

half-space, whereas CX 	 CY is located in the negative half-space. But this lower

bound may not be monotonic in k, i.e. it is possible that δj < δi for some j > i.

Hence the following is used as the lower bound which is often tighter than δk:

µk = max{0, δ0, δ1, . . . , δk} (4.9)

Given ε, a tolerance for the absolute error in |νk|, the algorithm terminates as soon

as |νk| − µk ≤ ε.

Another important modification in this algorithm is the use of a test (called the

Separating Axis Test) to speed up the terminating conditions of GJK. The basis of

this improvement is that if two objects do not collide, we do not have to explicitly

calculate the distance between them to ascertain this. We merely need to know

whether the distance is equal to zero or not. Thus, the lower bound δk can be used

as a terminating parameter to return non-intersection.

The lower bound is positive iff:

νk · η > 0 (4.10)

i.e. νk is a separating axis of X and Y . In general GJK needs fewer iterations to find

a separating axis for a pair of non-intersecting objects than to compute an accurate

approximation of z:

lim
k→∞

νk = z (4.11)

In conclusion, besides requiring fewer iterations in the case of non-intersecting

objects, this algorithm performs better because the value of |νk| is not required to

be calculated or initialized. The computation of |νk| involves evaluating a square-

root, which is an expensive operation. Hence, a single iteration of this algorithm

is significantly cheaper than the original GJK. This package is also more robust

because the error in the minimum distance vector is better quantified.

72 CHAPTER 4. STATE OF THE ART

EPA-GJK : Van der Bergen in [Van der Bergen, 2001] has proposed another

method to compute the negative distance between convex polytopes. He used an

algorithm called the expansion polytope algorithm (EPA) to calculate the minimum

translation vector required to separate two convex polytopes.

Lin and Canny (LC).

Principle : This algorithm [Lin and Canny, 1991] also calculates the two closest

features of two convex polygon soup, X and Y with p and q features (vertex, edge

and facet) respectively. The basic idea of this algorithm is the concept of a voronoi

region. Every feature of a polyhedron is associated one such region, consisting of all

the points that are closer to it than to any other feature. In each iteration, we apply

a local criteria to verify if the characteristic features (the closest feature at the end

of each iteration are called characteristic features) contain the closest points. This

is done as follows:

• The closest point of the characteristic features in sets X and Y are first calcu-

lated.

• If the closest point in the characteristic feature of X is inside the voronoi region

of the characteristic feature of Y , and the closest point in the characteristic

feature of Y is inside the voronoi region of the characteristic feature of X, then

the closest point of the characteristic features are indeed the closest points of

X and Y .

• Else using neighborhood topology, a new characteristic feature in X and Y is

found. The new updated features must be closer than the previous features

and we reiterate from the first step.

At any one time, since the closest point of a characteristic feature is tested against

the voronoi region of another characteristic feature, only three possibilities can exist;

point/point, point/edge and point/facet. The voronoi region of a point, edge and

facet of a polyhedra is shown in figure 4.6.

The complexity of this algorithm is linear with respect to the total number of

features; in other words O(p + q). Again, as with GJK, this complexity depends on

the initial choice of features. In the case where the closest features of the previous

time-step are re-used and the objects have not moved much, this algorithm runs in

O(1) time.

In conclusion, this algorithm has a similar complexity as with GJK. However, in

contrast to GJK, this algorithm requires some preprocessing to gather information

4.2. SOFTWARE MODELS 73

The Tested Point

The Voronoi Region

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

P

P

P

EDGE

FACET

VERTEX

Figure 4.6: Voronoi regions for a point, edge and facet of a convex polyhedra. The
point P which is the closest point of the characteristic feature of another object is
tested against these regions.

about neighborhood topology. Furthermore, this algorithm only gives the two closest

features in the case where there is a separation between the two convex envelopes. If

the objects are in collision, this algorithm enters into an infinite loop. To remedy this

problem, the notion of pseudo voronoi regions [Ponamgi et al., 1995] to define

voronoi regions that are interior to the object has been used to determine if the

objects intersect or not. Several extensions have also been done to the LC algorithm

in the following implementation:

V-Clip : This algorithm [Mirtich, 1998] is a robust implementation of the

LC algorithm with some minor changes. Instead of calculating the closest points

of the two characteristic features at each iteration, some simple clipping operations

together with scalar derivative tests are used as replacements. The code is simple

and its implementation does not require the specification of any numerical tolerance.

V-Clip also handles the case where the polyhedra interpenetrates. The complexity

of this algorithm is similar to LC; O(1) time.

The general idea behind this algorithm is called Voronoi Clipping which is pre-

sented in an example shown in figure 4.7. In this example, once edge E is clipped

(points P and Q are identified), the next step would be to determine if the closest

point on E to F lies within K ⊇ VR(X), where K is the convex region spanned by

the planes that define VR(X), and if not, how to update F (in this case, edges M

and N are the potential candidates).

Updating the features is done by checking the signs of the derivative of the

distance function between E and F noted as DE,F at P and Q. If N 6= ∅ and

DE,F (P) > 0 then F is updated to N , else if M 6= ∅ and DE,F (Q) < 0 then F is

74 CHAPTER 4. STATE OF THE ART

F

E

P

Q

N

MV−E

V−FE−E

E−F

V−V E2

E1

(a) (b)

Figure 4.7: (a) Possible state transitions of the V-Clip algorithm between
vertex(V), edge(E) and facet(F). (b) The clipping of the edge(E) spanned from E1
to E2 against the facet F . Edge E intersects VR(F) at two planes at points P and
Q respectively. These points also give the neighboring features for state transition,
edges M and N . Taken from [Mirtich, 1998].

updated to M . Similar distance functions exist for other possible combinations of

features. For degenerate cases where the distance function is not differentiable, the

algorithm simply reports penetration indicating intersection between edge E and

the other feature.

We note that not all possible combinations appear in this algorithm. Geometri-

cally speaking, for convex polyhedra, the minimum distance can always be expressed

between two features of type V − V , V − E, V − F and E − E. E − F can always

be reduced to features of a lower dimension. Since the solution for a vertex against

voronoi planes of V ,E or F is trivial, the only difficulty is when an edge is checked

against a V ,E or F . An F almost never appears (see figure 4.7).

DEEP : Kim et al. in [Kim et al., 2002b] has also improved on the LC

algorithm to calculate the negative distance. This algorithm incrementally seeks an

optimal solution by walking on the surface of the Minkowski sum (of the objects)

which is constructed by using Gauss maps.

Lower & Upper Bounds. This technique is applicable to any two general polyhe-

dras that is represented by a bounding volume hierarchy. In [Quilan, 1994] a sphere-

tree is used while in [Johnson and Cohen, 1998], [Johnson and Cohen, 1999]

4.2. SOFTWARE MODELS 75

an LUB-Tree is used. The main advantage here is that a convex decomposition of

the objects are not required. The key principle in these algorithms is to descend the

bounding volume hierarchy using lower and upper bounds on the distance as the

criteria without exploring all the nodes in each hierarchy.

4.2.2.2 Collision Detection between Deformable Objects

Bounding Volume (BV) Hierarchy Approach. A bounding volume encloses

the virtual object of interest. For example, it can be an sphere or a box enclosing a

primitive polygon, a set of polygons or a complete object. The collision problem is

simplified to determining whether the two bounding volumes (rather than the two

objects) overlap. When the complexity of the object increases a bounding volume

hierarchy is used. A volume hierarchy is a tree of bounding volumes, such as spheres

or boxes. Each volume encloses a or several geometric primitive. A set of these

volumes, called a parent, spatially encloses all the geometric primitives covered by

its leaf nodes. Generally, each bounding volume in the hierarchy is optimized in

terms of volume, surface area, diameter, etc. with the aim of having a tight fitting

around the enclosed primitive. Depending on the choice of design, the leaves of a

BV tree may contain a unique geometric primitive, or a collection of primitives. A

survey regarding these aspects have been made in [Ehmann and Lin, 2001].

The tightness or fit of a bounding volume has a dramatic effect on the over-

all effectiveness of the bounding-volume hierarchy. A tighter fit usually results

in smaller number of overlap tests while requiring a slightly more expensive

overlap test. The overlap test used will depend on the type of the hierarchy;

axis-aligned bounding boxes (AABBs) [Van der Bergen, 1997], arbitrary ori-

ented bounding boxes (OBBs) [Gottschalk et al., 1996], or sphere hierarchies

[Hubbard, 1996]. Since the overlap test for spheres is trivial, we concentrate our

discussion on boxes as BVs.

There are two major decisions to be made when using a box as a bounding-

volume; choosing the orientation of the box to get the best fit and choosing how

to split the children. OBBs are normally oriented using the statistical principal

components as the axes (eigenvalues of the covariance matrix of the vertex distribu-

tion). On the other hand AABBs are oriented parallel to the local axis frame (see

figure 4.8). The partitioning of the children depends on the choice of construction;

top-bottom or bottom-top. Normally, bottom-top hierarchy building strategy is con-

sidered flexible and top-bottom is considered efficient, but various sibling merging

rules and child partitioning exist that makes this comparison very qualitative. As

a general rule of thumb, the efficiency of a BV hierarchy is evaluated using the

76 CHAPTER 4. STATE OF THE ART

AABB

OBB

SPHERE

Figure 4.8: Bounding volume hierarchies. Bounding spheres have the worst fit but
the fastest overlap test, AABBs have better fit but more overlap tests are required,
OBBs have the best fit and require the least number of overlap tests. We note that
both the AABB and OBB share the same cost of a overlap test.

following criterion [Gottschalk et al., 1996]:

T = (N × B) + (P × C) (4.12)

where T is the total cost function for interference detection, N is the number of

bounding volume pair overlap tests, B is the cost of testing a pair of bounding

volume for overlap, P is the number of primitive pairs tested for interference and C

is the cost of testing a pair of primitives for interference. To lower N and P , the

bounding volume should fit the original model as tightly as possible. To lower B, the

algorithm used for the box/box overlap test should be optimal. C is minimum if the

best algorithm for facet/facet interference is used. An interesting result concerning

the choice of algorithm for the box/box overlap test is given in table 4.1.

But a bottle neck is the continuous deformation of deformable bodies. This

implies that the precomputed data has to be recalculated as and when necessary

4.2. SOFTWARE MODELS 77

Separating Axis Closest Feature Linear
Test (SAT) (LC/GJK) Programming

5− 7 µs 45− 105 µs 180− 230 µs

Table 4.1: Performance of Box Overlap Algorithms. Taken from
[Gottschalk et al., 1996].

online. A direct consequence is the increased computation burden that slows down

the simulation to a point that interactive-time requirements cannot be satisfied.

Not much work has been significantly reported as remedies to this prob-

lem. The most recent propositions to solve this problem comes from

[Van der Bergen, 1997] and [Larsson and Moller, 2001]. In both these arti-

cles, a bounding volume hierarchy of type AABB is used as the underlying structure

of the deformable object. It is reported that the cost of updating an OBB tree

seems much more costly than an AABB tree (about 3 times more). Hence AABB

is a suitable choice when issues related to updating the hierarchy is concerned. The

two main techniques involved in modifying a hierarchy is as follows:

• Rebuilding. This process is the entire reconstruction of the tree from parent

to child (top-bottom) or child to parent (bottom-top).

• Refitting. This process only changes the affected bounding volumes. The

changes are then propagated from node to node until the root or leaf is reached.

Algorithm of Van der Bergen.

Principle : Van der Bergen in [Van der Bergen, 1997] proposes a fast method

to update the AABBs using the refitting technique. It is reported that a top-bottom

approach is used to build the hierarchy. This refitting algorithm can be summarized

by the following steps:

• The bounding boxes of the affected leaves are first recomputed.

• Each parent of these bounding boxes is then recomputed in a bottom-top order.

Refitting in an AABB tree can be sometimes disadvantages. Due to the relative

position changes of primitives after deformation, the boxes in a refitted tree may

have a higher degree of overlap than the boxes in a rebuilt tree. The overhead of

recursive function calls are minimized by using an array of nodes where the internal

child node’s index number is greater than its parent’s index number. In this way,

the internal nodes are refitted properly by iterating over the array in reversed order.

78 CHAPTER 4. STATE OF THE ART

A comparison of performance shows that AABB trees are refitted and rebuilt in less

that 5% and 33% respectively of the time taken to rebuild OBB trees.

Algorithm of Larsson & Moller.

Principle : In [Larsson and Moller, 2001] the updating process for an

AABB tree is slightly improved. The basic idea is similar to that of

[Van der Bergen, 1997] but instead of doing a bottom-top update sequence, an

intermediate level in the hierarchy is chosen as the starting point for the update

process. Hence, to update the necessary bounding volumes in the hierarchy after

deformation, a combination of an incremental bottom-top and a selective top-bottom

is used. This is referred to as an hybrid-update.

2

5

4

1

3

Figure 4.9: Example of a hybrid tree update method, combining the bottom-top and
top-bottom strategy. Taken from [Larsson and Moller, 2001].

This algorithm can be summarized by the following steps:

• For a tree with depth n, the first n/2 levels are updated using the bottom-top

strategy.

• The remaining levels are examined during collision traversal where, when non-

updated nodes are reached, they can be either updated top-bottom as needed

or a specific number of levels in the child trees can be updated bottom-top.

An example is shown in figure 4.9, where the three top-most levels (1 to 3) are

updated bottom-top and the remaining levels (4 and 5) are updated on the fly as

and when necessary. In this example, there are a total of 31 nodes, but only 11 of

them are updated (those that are shaded).

4.2. SOFTWARE MODELS 79

Other Works.

Some of the other related works that have some relation to deformable ob-

jects are [Hubbard, 1996], [Quilan, 1994], [Meseure and Chaillou, 1997] and

[Davanne et al., 2002] which are based on spheres as the bounding volume. In

these works, not much attention has been given to cases where the hierarchies are

updated except in [Davanne et al., 2002], where a combination of voxel grids

and spheres are used as the underlying data structure.

4.2.3 Colliding Entities

In the exact phase, the SIT algorithm that is used to obtain the colliding en-

tities is the intersecting test. Interaction can be detected if at least two primi-

tives intersect. We shall consider three pairs of primitives; sphere/sphere, box/box

and triangle/triangle. These pairs are considered because they appear in the final

checking-phase of most of the collision detection algorithms which is explained in

the next section.

Sphere/Sphere.

Principle : The sphere-sphere intersection is the most simplest and fastest. Given

two spheres A and B with radius rA and rB respectively, intersection is confirmed

when:

|pA − pB| < rA + rB (4.13)

where p denotes position.

Triangle/Triangle.

This test is important because most of the geometrical data that is obtained

from MRI segmented images are surface based triangulaire meshes. Furthermore,

rendering hardwares are generally tailored for triangles, which is another reason

for the common use of triangulaire meshes. Hence, an efficient intersection test

between triangulaire primitives which are commonly referred to as facets is essential.

Currently, the most efficient intersection test that is used between two facets to

determine interaction is the algorithm by [Moller, 1997].

Principle : The basic idea in this algorithm is to determine the existence of a

line that intersects the two triangles. If such a line is found, then the intervals of

intersections are compared to determine if the triangles intersect. Figure 4.10 will

help clarify the concept of intersection of intervals on LAB.

80 CHAPTER 4. STATE OF THE ART

Lab Lab
Ib

Ia Ia

Ib

Ta

Tb

Ta

Tb

Pa

Pb

Pa

Pb

(b)(a)

Intersection Interval

Intersection Interval

Intersection Line

Figure 4.10: Collision detection between triangle Ta and Tb on planes Pa and Pb

respectively. (a) The intervals Ia and Ib overlap, hence intersection. (b) No overlap
detected on the intersection line Lab, hence no intersection.

In this algorithm, the procedure to determine intersection between facet A and

B is as follows:

• Compute plane equation of facet B, PB.

• If all points of facet A are on the same side of PB, exit.

• Else, compute plane equation of facet A, PA.

• If all points of facet B are on the same side of PA, exit.

• Else, ∃ an intersection line LAB that passes through A and B.

• Project LAB onto largest axis and compute interval IA and IB that defines

LAB ∩ (A ∪B).

• If IA ∩ IB 6= ∅, A and B intersect, else A and B do not intersect; exit.

Box/Box.

The box/box intersection test is another important test. Hierarchies built

using bounding boxes require this test to descend the bounding volume tree.

The fastest algorithm for this procedure is the Separating Axis Test (SAT)

[Gottschalk et al., 1996].

4.3. IMPLEMENTATION ISSUES 81

Principle : The basic idea in this algorithm is the detection of a separating axis

between the two boxes. It can be shown that 15 axial projections are sufficient to

determine the contact status of two arbitrarily positioned and oriented boxes. For

these 15 axes, in the worst case about 200 operations are executed. Note that during

execution, not all 15 axes are checked. The algorithm exits upon the detection of

the first separating axis.

4.3 Implementation Issues

In the previous sections, we saw how the basic SIT algorithms have been im-

plemented in various routines and applied to solve different problems. Another

important aspect that is interesting to consider is the cost involved in implementing

these procedures. We discuss and make comparisons with respect to three criteria:

• Complexity

• Memory Storage

• Frame Coherence

4.3.1 Complexity

The complexity involved in most the mentioned applications is in the or-

der of O(N) where N is the number of elementary primitives. An exception is

the application to calculate distance between rigid convex objects or decompo-

sitions of rigid convex objects where the complexity is reduced to constant time

[Gilbert et al., 1988], [Lin and Canny, 1991]. Distance calculation between

concave objects that are represented by bounding volume hierarchies such as the

work in [Quilan, 1994] only give a worst case performance (screening all the nodes).

This is because the performance of this algorithm depends on where actually the

points that realize the minimum distance is located and how long it will take to

descend each hierarchy tree to arrive at these respective points. Supposing that

the best SIT algorithm is used to determine descent, then the complexity of the

algorithm becomes a function of the way these hierarchies are constructed and the

resolution of each hierarchy, which is entirely user dependent.

82 CHAPTER 4. STATE OF THE ART

4.3.2 Memory Storage

Distance calculation between convex objects using [Gilbert et al., 1988] re-

quires the least memory. The only requirement is the points that make up the convex

hull of the object. On the other hand, the algorithm by [Lin and Canny, 1991]

and the modifications proposed by [Mirtich, 1998] require additional topology in-

formation to be stored and available as the minimum input data. With the current

progress in memory manufacturing and mass production, the cost and size of mem-

ory required may be negligible, but nevertheless for comparison sake, it is a point

worth noting. For all the other type of applications, BV’s are required to be stored.

Assuming a fixed number to nodes ℵ in the trees to facilitate comparison, sphere

trees require only the center and radius to be stored for each node. The same ap-

plies for the AABB tree where the center and diagonal of each box is stored. Hence,

for both cases, storage is of order O(ℵ). On the other hand, OBB trees requires

an addition local 3x3 orientation matrix R to be stored for each node which leads

to a storage of order O(ℵ + ℵ ∗ R). For large-scale models or environments, this

amount of storage can be significantly large. For each parent, pointers to their re-

spective children are required for descent. Memory storage for this stage is of the

order O(ℵ ∗Q) where Q is the number of children of each parent. In some cases, an

additional pointer to the parent is also required. The total cost of memory in this

stage is of order O(ℵ) for this case.

4.3.3 Frame Coherence

Frame coherence refers to the fact that if the simulated environment does

not change much between one time-step to another, then there exists a coher-

ence between them. This coherence can be exploited in the simulated frames for

detecting interaction. Algorithms to calculate distance [Gilbert et al., 1988],

[Lin and Canny, 1991] have made provisions to exploit frame coherence in the

case when the objects move very little. The assumption here is that between two

time-steps, the closest features either remain the same or lie in the neighborhood of

the previous closest features. Hence, at each iteration, the previous closest features

are used as the starting point of these algorithms which enables them to converge

much faster. In [Van der Bergen, 1999], the fact that the computation of the

distance is not necessarily required to determine interaction is exploited for frame

coherence. In this case, instead of using closest features, the separating axis is cached

at each iteration.

4.4. HARDWARE MODELS 83

4.4 Hardware Models

Alternatively, an approach for detecting interaction between objects is by using

the graphics hardware.

4.4.1 Z-Buffer Comparisons

The first proposed idea is if two objects share some common drawn volume, then

these objects are in collision. This drawn volume is measured by using the Z-buffer of

the graphics card. The Z-buffer contains a measure of depth with respect to the view-

ing plane i.e. the notion of object volume. Lombardo in [Lombardo et al., 1999]

proposed such a scheme for deformable and rigid objects of rectangular shape. It

makes use of the OpenGL hardware functions to detect the polygons within a bound-

ing box. This approach may be very fast due to hardware acceleration but it imposes

very strict conditions on the type of possible interactions: the shape of one of the

objects is limited by the type of bounding box that OpenGL can construct. Besides

the method is highly dependent of the configuration of the system, and performance

can be lost while changing to another PC-class/MS Windows graphics environment

[Vepstas, 1996].

Another similar idea but applied to two oriented bounding boxes is presented

in [Baciu et al., 1998]. In this work, the concept of minimal overlapping region

(MOR) is presented. A soft assumption that the objects are convex is used. Hence,

concave objects are assumed to be decomposed in convex subobjects. In this al-

gorithm, the frame buffer and Z-buffer are examined to determine interaction. An

important part of this algorithm is the possibility of finding the contact points by

finding the overlapping regions of bounding boxes.

4.4.2 Distance Fields

A second idea that has been recently proposed is the use of distance fields gener-

ated by voronoi diagrams [Hoff et al., 2001], [Hoff et al., 2002]. A distance

field specifies the minimum distance to a shape for all points in the field. In this

algorithm, an image-space proximity query is used to detect interactions between

concave objects. These queries operate on a uniform grid of sample points in regions

of space containing potential interactions. The graphics hardware pixel frame-buffer

is used as the grid and the queries become pixel operations. As such, this algorithm

gives dramatically different results for different pixel resolution which is clearly a

handicap in accuracy.

84 CHAPTER 4. STATE OF THE ART

On the other hand, recent contributions handle multi-object and self-collisions

by making various manipulations to the stencil, frame and Z-buffers along with

the accelerated computation of distance fields. It is also reported that this algorithm

can return the closest points, magnitude and direction of penetration and separation.

Nevertheless, to avoid excessive load, a geometric localization step (like in the coarse

phase previously mentioned) is used to localize regions of potential collision or as

a trivial rejection stage. Hence, the system is rather a hybrid approach; combining

software and hardware.

4.5 Summary

In this chapter, we have presented some important aspects of collision detection.

By considering no a priori information on the motion of the virtual objects, we

believe SIT is the optimal method to detect interference. To efficiently apply the

SIT algorithms for collision detection, three phases are executed; broad, narrow and

exact.

In the broad phase, pairs of objects to be tested for collision are selected. The

main idea here has been to use a spatial decomposition approach. An important

algorithm in this phase for dynamic and multi body environment is the Sweep-Prune

technique.

We then presented two important techniques in the narrow phase category; dis-

tance calculation and bounding volume interference. The main aim here is to zoom

directly to the most probable areas where collision could be present. Distance com-

putation can be effectively used between any two convex hull. Several important

algorithms to this end and their respective improved variations were described in

detail, namely DK, GJK, EGJK, ISA-GJK, JL, EPA-GJK, LN, V-Clip and DEEP.

These algorithms exploited the convexity of the objects to either decide interaction

by using minimum distance or by detecting the absence of a separating plane. In

these algorithms, the main concern was robustness and speed. However, for de-

formable objects, an underlying data structure is often used to speed up collision

detection. The common form of data structure used are bounding volumes. We

have concentrated on the details about using sphere, axis-aligned boxes and oriented

boxes as the bounding volume. Two algorithms that have been used to update this

hierarchy have been presented.

In the exact phase, we presented algorithms for intersection test between spheres,

boxes and triangles. These, we believe are the common elementary primitives that

appear in the geometrical model of an object.

4.5. SUMMARY 85

We also presented some hardware models for collision detection. These tech-

niques are very graphics hardware and operating system based. Currently, hardware

based models have not been used extensively in the simulation and animation field.

But medical simulators require these routines be adaptable for deformable bodies

such that they are extremely efficient, robust and optimized. We have seen that

currently the main idea here is to update the underlying data structure. To this

effect, we concluded by stressing that for deformable objects, the AABB hierarchy

is best suited (less compact than OBB but much easily updated) and presented

some algorithms that update this type of hierarchy. Furthermore, the currently

available packages (see appendix A) which have implemented some of these routines

do not consider concave objects or deformable objects (see figure 4.11). No single

library has been specifically designed for medical simulators taking into account the

constraints of deformable objects. Another point worth noting is that no library has

considered collision treatment as a simulation stage following collision detection for

deformable objects. The is partly because collision treatment for deformable objects

is still a complex field.

Figure 4.11: The exisiting collision detection libraries and their characteristics
(note that this list is not exhaustive).

In the next chapter, we will present the requirements of a collision detection li-

brary for medical simulators. Our considered objects are all concave and deformable.

Our aim is to propose a single underlying data structure that can handle efficiently

86 CHAPTER 4. STATE OF THE ART

interference of deformable objects. Another aim is to have routines that are robust

and efficient.

Chapter 5

Collision Detection for Medical
Simulators

5.1 Introduction

In the previous chapter, we presented the state of the art in collision detection

limited to the case of static interference tests (SIT). We concluded that no single

collision detection library is currently available for medical simulators where the

main concern is interaction between deformable objects. In this chapter, we focus

on presenting the algorithms for collision detection in medical simulators.

Medical simulators imposes somewhat a different virtual environment. Firstly,

the objects are deformable and are continuously deforming. Hence, algorithms that

are efficient are required. Secondly, the resolution of each object in terms of the

number of facets is very high; very often in the thousands. In this case, optimized

algorithms are required. Thirdly, since the nature of these applications are life

related, robust algorithms are desired.

In such an application, the following combination of pairs of objects that needs

testing can be found:

• Rigid objects - for example, between surgical tools.

• Rigid and deformable objects - for example, between a surgical tool and a

virtual organ.

• Deformable objects - for example, between virtual organs.

Besides this geometrical restriction, no additional hypothesis has been made on the

trajectory or velocity of the object. The movement of the objects in a medical

simulator cannot be predicted with enough accuracy as the motion of the surgeon

87

88 CHAPTER 5. COLLISION DETECTION FOR MEDICAL SIMULATORS

and the behavior of the organs are very complex in nature. Given two objects to be

tested, the SIT routines in a medical simulator must be able to handle the following

situations:

• Collision detection between two rigid (convex or concave) objects.

• Collision detection between a rigid (convex or concave) object and a deformable

object.

• Collision detection between two deformable objects.

We have mentioned before that for rigid convex objects, collision detection can be

done by calculating the distance between the polygonal meshes. For rigid concave

objects, we assume that the object can be represented by its convex decomposition.

Thus distance computation can be applied to this convex decomposition. The best

method so far for collision detection between deformable objects is to detect inter-

ference between primitives. This is done efficiently by applying the coarse and exact

phases as mentioned in the previous chapter.

After collision detection, collision treatment follows. But this stage requires de-

tecting all the primitives that are in contact. Primitives in contact are the primitives

that make up the volume of fictive interpenetration. We call these primitives con-

tact elements. Most of the collision detection libraries only report a yes or no to the

interference state of two objects, the do not provide the contact elements that are

required in the collision treatment phase.

In this chapter, we detail out the algorithms for collision detection in medical

simulators. In such an application, the frequency of collision detection is very high,

for example the organs in the human body are almost always in contact. Thus, these

algorithms have to be robust, efficient and optimized. The following algorithms will

be presented:

• Distance computation of rigid convex objects.

• Distance computation of rigid concave objects.

• Collision detection of deformable objects.

• Contact localization for collision treatment.

We have implemented all these algorithms under a single library for collision detec-

tion in medical simulators which is called ColDetect (see appendix B). This library

uses the AABB hierarchy as the underlying data structure. This hierarchy has been

constructed bottom-top with volume minimization as the criteria to combine the

boxes at each level.

5.2. DISTANCE COMPUTATION OF CONVEX OBJECTS 89

5.2 Distance Computation of Convex Objects

The algorithm [Sundaraj et al., 2000] presented in this section computes the

minimum distance between two convex envelopes of objects X and Y .

Problem. Although algorithms that compute the minimum distance exist, there

are still ares where we can improve aspects like efficiency and robustness.

Proposed Solution. The main idea behind this algorithm is to descent the dis-

tance gradient. This is done by alternatively forming simplexes (point, edge or facet)

of each object such that at each iteration, the formed simplexes are more closer (by

computing the distance) to each other. The simplexes are updated at each iteration

by using the support function and optimized local methods are used to compute the

distance between simplexes. Since the distance gradient has a single local minimum,

convergence is expected after several iterations.

5.2.1 Description of the Algorithm

General Procedure. In this section, we will explain how our algorithm is exe-

cuted. We assume that the convex envelopes of objects X and Y , both described in

a global frame, are initially separated. We proceed as follows:

• We begin with two random points, one from each object. They will be the

initial simplex denoted as SX and SY and the initial witness point denoted as

WX and WY .

• The support vector, SVXY = WX − WY is constructed. Using the support

function, by sweeping in the direction of SVXY , a support point that forms a

new simplex in Y is obtained, SY .

• The optimized local methods are then used to solve the minimum distance

between WX and the new SY . This minimum distance is denoted as Dub and

has a upper-bound norm dub.

• The features that realize the minimum distance are updated and the points

that give the minimum distance are updated as the new witness points WX

and WY .

• Again, using the support function, by sweeping in the direction of −Dub, a

support point in X is obtained. The vector between this support point and a

point in SY is constructed. The dot product between this vector and Dub is

denoted as Dlb and has a lower-bound norm dlb.

90 CHAPTER 5. COLLISION DETECTION FOR MEDICAL SIMULATORS

• If (dub − dlb) < (ε ∗ dub), then Dub is indeed the minimum distance vector, and

we exit the algorithm.

• Else, SVY X = WY −WX is constructed with the new witness point WY and

the process is repeated in object X from the second step.

We note here that with some neighboring adjacency information of the objects, the

cost of computing a support point of a convex polyhedra can be reduced to almost

constant time. This technique is well known as hill-climbing and has been imple-

mented in our algorithm. Our experiments were carried out with this option avail-

able. With this option, our algorithm has a complexity of order O(1), i.e. constant

time when the witness points are reused at each call.

Support Function. The support function H defined for any set Z is given by:

HZ(η) = max{z · η : z ∈ Z} (5.1)

where z · η is the projection of point z in the direction of η. η is called the support

vector. This means that the function H gives the furthest projection of a point in

the direction of η. The result of the furthest projection gives us the support point.

Optimized Local Methods. Since the only possible simplex pairs that appear in

the MS algorithm is point-point, point-edge and point-facet, we only need to formu-

late efficient and robust methods to solve them. The advantage of using optimized

methods is that we arrive at the solution for each possible feature pair with at most

performing one division. Except for the point-point case, the others need detailed

analysis. We begin with the analysis of point-point.

• Point-Point : The divisionless distance function Q, between point P0 and P1

is given by:

Q = |P0 − P1| (5.2)

• Point-Edge : Let the point be P . The edge, E can be expressed as a line

segment by:

E(t) = B + tM (5.3)

where B is a point on the line, M is the line direction with t ∈ [0, 1]. If

|M |2 ≤ ε, where ε is a user defined value to denote minimum edge length,

5.2. DISTANCE COMPUTATION OF CONVEX OBJECTS 91

then t = 0 and we consider the edge as a point and use point-point analysis.

Otherwise, let:

t′ = M · (P −B)

t′′ = M ·M (5.4)

The distance function Q(t), from point P to the edge E is given as:

Q(t) =

|P − (B + M)| if t′ > 1, t′′ < t′

|P −B| if t′ ≤ 0

|P − (B + t′

t′′
M)| otherwise

(5.5)

The operation t′

t′′
is left to the end and is only performed if necessary.

• Point-Facet : The problem of finding the minimum distance between a point

P and a facet F , defined as:

F (s, t) = B + sE0 + tE1 (5.6)

where E0 and E1 are two edges of the facet, (s, t) ∈ R = {(s, t) : s ∈ [0, 1], t ∈

[0, 1], s + t ≤ 1} is obtained by computing (s′, t′) ∈ R corresponding to a

point on the facet closest to P . Let a = E0 ·E0, b = E0 ·E1, c = E1 ·E1, d =

E0 · (B − P), e = −E1 · (B − P) and f = (B − P) · (B − P). If ac− b2 < µ,

where µ is a user defined value, then the two edges of the facet are not linearly

independent and we will then treat the facet as an edge and use point-edge to

solve the problem. Else, the minimum squared-distance function is given as:

Q(s, t) = |E0(s)− E1(t)|
2

= as2 + 2bst + ct2 + 2ds + 2et + f (5.7)

The aim is to minimize Q(s, t) in R. The method to obtain the minimum

distance for each region can be obtained by examining the values of a . . . f .

But, we would like to note that at most one division is computed with the

denominator as ac− b2.

Collision Detection. Collision is detected when a separating plane cannot be

identified at any moment during the execution of the algorithm. This is verified

when the distance between a witness point W and the simplex S is computed. Let

the support vector be denoted as SV and the support point obtained by sweeping

in the direction of the support vector be denoted as SP . A separating plane exists

between W and S iff:

SV · SP > 0 (5.8)

for all instances of S.

92 CHAPTER 5. COLLISION DETECTION FOR MEDICAL SIMULATORS

Robustness. Depending on the kind of features that we cache at each iteration,

the local distance method will calculate the minimum distance between these features

and if necessary, update the cached features. It is at this stage that we ensure

robustness. The updated features are verified if they are stable or not. A feature

that is stable must meet a certain criteria. For example, an edge must have a certain

minimum length and a facet must have a minimum area and non-parallel edges. If

the formed feature is not stable, there could only be two possibilities; the object

size is too small (can be considered as a point) or the feature of that object is too

small (descent is not possible). In either case we terminate immediately without

moving on to the verification stage. If the feature is stable, then we apply our

local distance methods to get the distance. If this distance is not the minimum, we

proceed to the other object and repeat the process. Such a method ensures that all

the features formed are entirely stable. Then our local distance methods have no

problems getting the distance values. Hence, the entire approach becomes stable.

Terminating Conditions. The algorithm exits for four main reasons:

• Minimum distance is too large to be of interest: dlb > µ

• Minimum distance is too small that collision is assumed: dub − dlb < ε ∗ dub

• Objects are identified to be in collision.

• The cached features are not stable indicating that further descent is not pos-

sible.

The lower bound on the minimum distance gives us the first expression to exit,

where µ is a value that indicates separation. The second expression to exit is given

by the difference between the lower and upper bounds, where ε is a value that

denotes relative precision and is machine dependent. The third exiting condition is

the absence of a separating axis. The fourth and final condition is related to the

robust test applied to the cached features.

5.2.2 Experimental Results

We present some experimental results here to compare our algorithm. We com-

pared the execution times of the algorithm with Cameron’s enhanced EGJK hill-

climbing algorithm1. The objects tested are randomly generated convex polyhedra.

For a pair of objects, one is placed at the origin while we apply a continuous transla-

tion or rotation to the other object through little incremental displacements vectors.

1The code used was downloaded from http://www.comlab.ox.ac.uk/~cameron/distances.html

http://www.comlab.ox.ac.uk/~cameron/distances.html

5.2. DISTANCE COMPUTATION OF CONVEX OBJECTS 93

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 50 100 150 200 250 300 350 400 450 500 550

t (
s)

Number of Points (each polyhedra)

EGJK
MS

Figure 5.1: EGJK vs MS: Execution time for continuous translation without track-
ing (memory) information.

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0 50 100 150 200 250 300 350 400 450 500 550

t (
s)

Number of Points (each polyhedra)

EGJK
MS

Figure 5.2: EGJK vs MS: Execution time for continuous translation with tracking
(memory) information.

94 CHAPTER 5. COLLISION DETECTION FOR MEDICAL SIMULATORS

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t (
s)

Rotational Velocity

EGJK
MS

Figure 5.3: EGJK vs MS: Evolution of the time for a continuous rotation with
different rotational velocities (x-axis).

Figure 5.1 shows how the timings evolve with increasing object complexity. When

no tracking information is used we obtain a linear relationship between complexity

and execution time in both the algorithms. However, when making use of this

tracking information, the time is almost constant (0.36s on average) for the EGJK

algorithm. On the other hand, with our approach the time increase is slower with

rising complexity of the objects, and the near-constant time drops to 0.24s on aver-

age. This can be seen in figure 5.2. For the experimental results shown in figure 5.3

we placed two objects with 50 points each a given distance apart and then applied

a continuous rotation to one of them. The plot shows how the timings evolve for

different rotational velocities. Tracking information is used, of course. We observe

that our approach gives lower timings even at high rotational speeds as compared to

the EGJK method. These results were obtained using a SGI-Octane 195MHz, and

the code was compiled using the CC compiler with -Ofast optimization. However,

some caution should be taken when interpreting these results since they represent a

purely practical analysis.

5.3. DISTANCE COMPUTATION OF CONCAVE OBJECTS 95

5.3 Distance Computation of Concave Objects

The algorithm that we present has been inspired from [Quilan, 1994]. In this

section, an algorithm that computes the minimum distance between two concave

objects X and Y represented by an AABB hierarchy is detailed.

Problem. Minimum distance computation can be used for collision detection be-

tween rigid concave objects. Normally, the underlying data structure used is a

convex decomposition or a sphere tree [Quilan, 1994]. We on the other hand have

opted to represent our concave object using an AABB hierarchy. Hence, a method

to compute the minimum distance between two AABB trees is required.

Proposed Solution. The main idea in this algorithm is to descend the hierarchy

using a minimum distance criteria between the bounding boxes without exploring all

the facets (bounding box leaves) of each object. If the minimum distance between

two nodes is greater than a reference value, then the children will not be explored

any further. A point to note is that the choice to descend the tree is of paramount

importance to ensure efficiency. It is in this sense that we differ from [Quilan, 1994].

We have decided to descend to the child that is closer to the root of the other object.

The assumption here is that the child closer to the root of the other object has more

probability of being nearer, as the root of the hierarchy corresponds to the largest

enveloping bounding box. We have found this to produce more efficient results.

5.3.1 Description of the Algorithm

In this section, we will explain how our algorithm is executed. We assume that

the concave objects X and Y , both described in a global frame, are represented by

an AABB underlying data structure hierarchy. We proceed as follows:

• We initialize the reference distance to ∞.

• We descend the two AABB trees to search for a leaf bounding box pair that

has minimum distance inferior to this reference value. The minimum distance

between the corresponding facets is determined using the algorithm presented

in section 5.2.

• If we find a leaf pair facets that have null minimum distance, collision is de-

tected and we exit the algorithm. Else, the reference value is updated to the

current minimum distance value and we continue searching.

96 CHAPTER 5. COLLISION DETECTION FOR MEDICAL SIMULATORS

• If the found minimum distance between nodes is greater of equal to the refer-

ence value, we stop further descent between these nodes.

• Else, the reference value is updated and we continue searching until a leaf

bounding box is reached.

• Searching stops when descent is not possible.

5.3.2 Experimental Results

We initially tested our algorithm with several complex meshes, the execution

times are tabulated in table 5.1. We then used a single complex mesh with various

different resolutions with a fixed orientation. The time taken to localize the pair of

bounding boxes that realize the minimum distance is shown in figure 5.5. From the

results, we can conclude that the execution time is approximately linear to the time

taken to search the AABB hierarchy, which is expected. It there are n leaf nodes,

we can expect n interior nodes of the tree with a maximum depth of n levels and a

minimum depth of log n levels, depending on how well the tree is balanced. Hence,

in the ideal case we have a complexity of O(n log n) and in the worst case, we have

a complexity of O(n2).

Mesh No. of Vertices No. of Facets Execution Time (ms)

Tea Pot 530 1024 6.43
Liver (simplified) 402 800 6.012
Liver (original) 1691 3366 11.625
Femur Bone 1998 3992 20.426

Table 5.1: Execution time for distance calculation between two identical meshes.

5.4 Collision Detection of Deformable Objects

The proposed algorithm in this section, is responsible of detecting collision and

updating the AABB hierarchy in an efficient and fast method. This algorithm works

on two deformable objects X and Y that have an AABB underlying data structure.

Problem. Updating the underlying data structure is of paramount importance

to the accuracy of collision detection in deformable objects. The time spent to do

this has to be minimized. Hence, an efficient manner is required for this purpose.

We recall that our AABB hierarchy underlying data structure has been constructed

5.4. COLLISION DETECTION OF DEFORMABLE OBJECTS 97

Figure 5.4: Distance calculation between two deformable meshes. The used meshes
have each one 800 facets and 402 vertices. The execution time is on average about
30ms. The time was obtained using codes written for a Java3D platform.

0

0.005

0.01

0.015

0.02

0.025

0 500 1000 1500 2000 2500 3000 3500 4000

t (
s)

Number of facets (each polyhedra)

Our Approach with AABB

Figure 5.5: Execution time for distance calculation between a single mesh of various
resolution with a fixed orientation.

98 CHAPTER 5. COLLISION DETECTION FOR MEDICAL SIMULATORS

bottom-top and volume minimization has been used as the criteria to combine the

boxes at each level. This gives us a compact but not necessarily equilibrium hierarchy

around the surface of the object. Given such a tree, the aim is to update this tree

without rebuilding or refitting the entire hierarchy.

Proposed Solution. The main idea of this algorithm is the updating of the

bounding boxes without exploring all the facets of each object and without explor-

ing the entire tree. This is done by firstly reconstructing the boxes of all the leaves

which have at least one of its vertices subjected to deformation. This change is then

propagated to the parent box at each level. A parent box is only updated if at least

one of it’s child has been updated and this is done only after all it’s child has been

already treated. It is in this sense that we differ from [Van der Bergen, 1997] and

[Larsson and Moller, 2001]. In the earlier, all the nodes are revisited, in con-

trary to ours. This is due to the fact that their hierarchy is constructed top-bottom

using a subdivision criteria. In the latter, an approximated update of the AABB

hierarchy is constructed, unlike ours where the exact hierarchy is maintained at all

times.

5.4.1 Description of the Algorithm

Let the deformation vector of the two deformable bodies be known at each time-

step. To detect collision, we proceed as follows:

• We reconstruct the boxes of all the leaves for both the bodies which have at

least one of its vertices subjected to deformation.

• We determine the nodes of type parent that must be updated. Recall that a

bounding box is defined by a center and a diagonal. Hence, a bounding box

is defined by it’s maximum and minimum limits in each axis. In this case, a

parent need only be updated if and only if it’s limits are affected by the limits

of it’s children.

• The affected parents are updated in a bottom-top approach only after all of

the children are treated. This avoids revisiting the parents.

• Once updating is completed for both objects, a search for interference is started

between the two updated AABB trees. The bounding box leaves that are in

intersection are stored in a list to be further treated.

Once we have localized all possible pairs of bounding box pairs that intersect between

the two objects, we examine the corresponding facets using the algorithm presented

5.4. COLLISION DETECTION OF DEFORMABLE OBJECTS 99

for the intersection test between triangles in chapter 4 to determine the presence

of interference. These facets are stored in another list to be used in the collision

treatment phase.

5.4.2 Experimental Results

The results of our experiments are presented in this section. In table 5.2, we

applied our algorithm on various complex meshes with a randomly applied deforma-

tion vector. In figure 5.7, we took a single mesh of fixed resolution and applied a

random deformation vector to various number of nodes. The graph shows the time

taken to update the AABB hierarchy. From the results in the shown graph, we can

conclude that the execution time, as expected, is linear to the number of affected

nodes in the AABB hierarchy.

Mesh No. of Vertices No. of Facets Execution Time (ms)

Tea Pot 530 1024 7.867
Liver (simplified) 402 800 9.917
Liver (original) 1691 3366 27.858
Femur Bone 1998 3992 28.762

Table 5.2: Execution time for the update process of the underlying AABB hierarchy
of different meshes for a randomly applied deformation vector.

Figure 5.6: Example of the updating process of the AABB hierarchy. The used
mesh has 800 facets and 402 vertices.

100 CHAPTER 5. COLLISION DETECTION FOR MEDICAL SIMULATORS

0

0.005

0.01

0.015

0.02

0.025

0.03

0 500 1000 1500 2000 2500 3000 3500 4000

t (
s)

Number of affected nodes

Our Approach with AABB

Figure 5.7: Evolution of the time for the updating process of a fixed resolution mesh
with a random deformation vector applied to various number of nodes.

5.5 Contact Localization for Collision Treatment

We will present in this section an algorithm [Sundaraj and Laugier, 2000],

to localize the fictive zone of interpenetration. The primitives that form this zone

are called contact elements and they are used during collision treatment.

Problem. Most of the collision detection algorithms that we have mentioned in

the previous chapter, generally return only intersecting elements and not all the

contact elements. By contact elements, we mean elements that are not intersecting

but nevertheless are interior to an object (see figure 5.8). Collision treatment can

then be applied to these elements if we know their extent of deformation. This

extent of deformation, for example can be the measure of fictive interpenetration of

each contact element.

Proposed Solution. The main idea of this algorithm is by first locating the con-

tour of the zone of interpenetration which is the set of all intersecting facet pairs.

Following this, a recursive search for all the contact elements can be done using the

5.5. CONTACT LOCALIZATION FOR COLLISION TREATMENT 101

contour. To avoid searching in the wrong areas, thereby optimizing this process, we

construct an inner and a outer boundary which is interior and exterior respectively

to the contour. These boundaries will serve as the search limit. Finally, we search

for all the contact elements. In doing so, we actually have formed the two colli-

sion surfaces which envelopes the volume of interpenetration. These surfaces will be

highlighted in our results. Flowchart 5.9 shows the different stages of this algorithm.

Time t+ t∆

Intersecting
Elements

Contact
Elements

(a) (b) (c)

Time t

Figure 5.8: (a) At time t, the spheres are not intersecting. (b) At time t + ∆t,
the spheres are intersecting. The available collision detection algorithms return the
intersecting elements. (c) Our algorithm returns the contact elements; elements that
are not in intersection with other primitives but nevertheless interior to each other.

Contour of Collision

Inner / Outer Boundary

Contact Elements

Figure 5.9: Flowchart showing how to arrive at detecting all contact elements.

102 CHAPTER 5. COLLISION DETECTION FOR MEDICAL SIMULATORS

5.5.1 Description of the Algorithm

In this section, we will explain how our algorithm is executed. We assume that

the deformable objects have an AABB underlying data structure. We proceed as

follows:

• Contour of Collision. To get the collision contour, we use algorithm pre-

sented in section 5.4 to localize all the pairs of facets that are intersecting.

Figure 5.10 shows an example of our algorithm on two convex objects. This

step is linear in time with respect to the number of collision pairs.

Figure 5.10: The collision contour of the smaller sphere is shaded.

• Inner and Outer Boundary. Our aim here is to construct an inner and outer

boundary which is interior and exterior respectively to the collision contour.

The outer boundary server as a limit to the collision surface. In other words,

facets beyond this limit need not be considered in the search for the contact

elements. The inner boundary then serves as the starting point to start search-

ing. Consider a collision pair, (FAi , FBj) whose normals are oriented towards

the outside.

DEFINITION 1. We denote PAi and PBj as the planes formed by FAi and

FBj respectively.

5.5. CONTACT LOCALIZATION FOR COLLISION TREATMENT 103

DEFINITION 2. We denote E+

Ai and E−
Ai the half-space in R

3 defined by the

plane PAi; similarly we denote, E+

Bj and E−
Bj the half-space in R

3 defined by the

plane PBj . The positive half-space denotes exterior and the negative half-space

denotes interior.

DEFINITION 3. A neighboring facet FAi′ or FBj′ of a collision pair

(FAi , FBj) is labeled as exterior to the collision contour if:

FAi′ ⊂ E+

Bj

FBj′ ⊂ E+

Ai (5.9)

DEFINITION 4. Similarly, a neighboring facet FAi′ or FBj′ of a collision

pair (FAi , FBj) is labeled as interior to the collision contour if:

FAi′ ∈ E−
Bj

FBj′ ∈ E−
Ai (5.10)

Note that the inner boundary list has a more tighter constraint when compared

to the outer boundary list. In other words, a facet cannot appear on both the

list, elimination has to take place in the inner boundary list due to the tighter

constraint. This step is linear time with respect to the number of collision

pairs in the contour of collision. Figure 5.11 shows the detection of the inner

and outer boundary facets for a concave and convex object in collision. Note

that the facets that have been localized only belong to a single list.

Outer
Boundary

Collision
Contour

Inner
Boundary

Figure 5.11: Inner and outer boundary detection with respect to the collision con-
tour for the concave object.

104 CHAPTER 5. COLLISION DETECTION FOR MEDICAL SIMULATORS

• Contact Elements. We use the inner boundary facet list as the starting point

to search for all contact elements. We recursively search all neighboring facets

of each inner boundary facet. If these facets do not appear in the contour list

or the outer boundary list, then we consider them as a contact element. This

step is linear with respect to the number of inner boundary facets. Figure 5.12

shows an example of this recursive search output.

Figure 5.12: Contact elements (shaded) detection of a cube and a sphere.

Generally, the entire algorithm is linear with respect to the number of contact

elements, i.e. O(p) where p is the number of contact elements, which is proportional

to the volume of interpenetration, depending on the extent of discretization. Once

we have localized all the contact elements, we actually have the two collision surfaces

that encompass the volume of fictive interpenetration. The volume can be used as a

measure of fictive interpenetration to calculate the collision forces F c by the penalty

method [Deguet et al., 1998b], [Deguet et al., 1998a]:

F c =

{
(−λv − µv̇)k if v > 0
0 otherwise

(5.11)

where λ is the rigidity factor of the collision, µ is a damping factor (which represent

the rate of dissipation of energy), v the volume of interpenetration between these

two objects, and k is the contact direction. This force is supposed to act on the

inertial center of the fictive interpenetration volume.

5.5.2 Experimental Results

We tested our algorithm on several complex meshes (see table 5.3). The execution

time as a function of the number of contact elements was investigated. The results

are shown in figure 5.14. The experiments were run through to the final stage of the

algorithm, that is from collision detection until all contact elements were localized.

5.5. CONTACT LOCALIZATION FOR COLLISION TREATMENT 105

Figure 5.13: Example of the detection of the volume of interpenetration using
algorithm. The used mesh has 800 facets and 402 vertices.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 100 200 300 400 500 600

t (
s)

Number of total contact elements

Tea Pot
Human Liver
Femur Bone

Figure 5.14: Evolution of the time for a complete detection of the zone of fictive
interpenetration as a function of the number of contact elements for various meshes.

106 CHAPTER 5. COLLISION DETECTION FOR MEDICAL SIMULATORS

Mesh Number of Vertices Number of Facets

Tea Pot 530 1024
Human Liver 1691 3366
Femur Bone 1998 3992

Table 5.3: Details of the meshes used for testing the algorithm.

From the results, we can conclude that the complexity of this algorithm is indeed

linear with respect to the number of contact elements. Even for high resolution

meshes, interactive-time compliance can be met. The timings for this experiment

were obtained on a Pentium-4 1.2GHz machine. These experiments were run on a

Java3D platform.

5.6 Summary

In this chapter, we have presented various algorithms for collision detection of

rigid and deformable bodies. These algorithms have the main aim of being effi-

cient, optimized and robust such that it can be used in interactive-time medical

interventions.

We firstly presented a new algorithm for distance computation between rigid

convex objects. This algorithm has a complexity of constant time i.e. O(1) in the

best case. We have compared this algorithm with the EGJK algorithm and found

it to be more efficient. We have also improved the robustness of this algorithm by

using local methods to compute distance between simplexes.

We then presented an algorithm for distance computation between rigid concave

objects. We have opted to use an AABB hierarchy as the underlying data structure

to solve this problem. Within this context, we have improved on the descending

criteria in this algorithm. This has improved the execution time of the algorithm.

We have also optimized memory usage by using a compact data structure to represent

the AABB tree.

Following this, we presented an algorithm for collision detection of deformable

objects. This algorithm uses an AABB hierarchy as the underlying data structure

for collision detection. We have already mentioned that for deformable objects the

AABB tree is the most efficient. This hierarchy is constructed using a bottom-top

approach. The main contribution in this algorithm is the updating of the AABB tree

in an efficient manner. This is done by verifying and only visiting the nodes of the

tree that must be updated. Hence, the complexity of this algorithm is a function of

5.6. SUMMARY 107

the number of affected nodes (nodes that must be updated) in the AABB hierarchy.

In the case where fictive interpenetration is allowed and the user would like to

have all the contact elements as input data to the collision treatment phase, we

have presented an algorithm to localize all contact elements. This algorithm has

the complexity which is linear to the number of contact elements. Using all the

contact elements, the fictive volume of interpenetration can be used as a measure of

deformation to compute the collision forces.

These algorithms have been implemented in a collision detection library called

ColDetect. ColDetect is described in appendix B and can be downloaded from the

following website http://www.inrialpes.fr/sharp/coldetection. This library

has also been integrated successfully into our 3D dynamic simulator, AlaDyn3D and

is independent of the 3D rendering engine and the operating system platform.

http://www.inrialpes.fr/sharp/coldetection

108 CHAPTER 5. COLLISION DETECTION FOR MEDICAL SIMULATORS

Part III

Virtual Reality Applications

109

Chapter 6

Medical Simulators

6.1 Introduction

In the previous parts, we presented two important aspects of medical simulators;

physical models for soft tissue simulations and algorithms for collision detection.

Indeed, medicine is one of the major application areas for virtual reality (VR). The

medical application of VR was stimulated by the need of medical staff to visualize

complex medical data, particularly during surgery, for surgery planning and for

medical training. Needless to say, medical planning and training has been one area

in which VR has made a significant contribution. The development of commercial

and prototype medical simulators is a testimony to this.

In this chapter, we present the application of our findings in two prototype medi-

cal simulators. We shall conduct two case studies; an echographic thigh exam (ETE)

simulator and an arthroscopy knee reconstruction (AKR) simulator. In the earlier,

the trainee pushes an echographic probe gently on the thigh and stops when suffi-

cient resistance is felt. Hence, our main concern here is global small deformation

and force feedback. In the latter, the surgeon wishes to know the deformation of the

knee ligament and the amount of contact with it’s surroundings. In this case, our

main concern is global large deformations and collision detection.

We begin this chapter by presenting the ETE training simulator with empha-

sis on the new physical model, collision detection and haptic feedback integration.

Then the details regarding the development of a medical simulator for AKR will be

presented. In this part, we will explain the procedure of automatically and intra-

operatively generating the physical model of the ligament according to the patient

acquired anatomy and knee kinematics. We end this chapter with a discussion of

the results.

111

112 CHAPTER 6. MEDICAL SIMULATORS

6.2 Echographic Thigh Exam

6.2.1 Motivations

The exam of the thigh using ultrasound is called an echographic thigh exam. A

common exam is the echography of the thigh to detect a thrombosis in the vein. A

thrombosis is the formation of blood clot formed from platelets and other elements

which may obstruct the flow of blood in the vessel. It may also travel to other areas

of the body. A healthy vein will compress under the influence of an external force,

while a vein affected by thrombosis will only partially or hardly compress, depending

on the stage in the evolution of the illness. The medical professional executes the

diagnosis by applying a pressure on the thigh with an echographic probe. From the

instantaneous echographic images of the vein, the presence of a thrombosis can be

ascertained.

The learning process of this procedure is somehow long and only after approx-

imately 1000 echographic exams an acceptable competence in acquired. The first

500 exams will have to be carried out under the supervision of an experienced prac-

titioner. However, learning this procedure can be much quicker and improved by

using a virtual environment as an alternative form of training tool. With a dedicated

medical simulator for the examination of the thigh, an interactive and 3D virtual

thigh model can be created, where medical professionals can manipulate the virtual

surgical tools with an haptic interface and train adequately before coming in contact

with patients.

Figure 6.1: The developed ETE prototype. The user interacts with the virtual thigh
using an haptic interface.

Indeed, these motivations were the reason why our research group developed a

prototype echographic training simulator [Aulignac, 2001] using mass-spring net-

6.2. ECHOGRAPHIC THIGH EXAM 113

work (MSN) as the physical model of the thigh (see figure 6.1). But this model only

produced local deformations and force feedback was produced using a simple method.

Now, we would like to explore the feasibility of using the VDM physical model in

this simulator. This is due to the fact that the thigh can be considered to consist

mainly of muscles and blood. Within this context, we investigate interactive-time

global small deformations and realistic force feedback reproduction.

6.2.2 Thigh Deformable Model

Graphical Model. Since the main aim of the simulator is for the purpose of

training, the use of a generic mesh of a human leg as the graphical model is more

than sufficient. This generic model is divided into two parts; the thigh and the

rest of the leg. To accelerate the graphical rendering procedure, the lower part of

the leg is considered fixed. Thus, this data is transfered only once to the graphics

hardware, and consequently, hardware acceleration can be used to render them. The

thigh however is deformable and has to be simulated in interactive-time. Moreover,

a complete generic leg mesh is used so that the trainee can have an increased sense of

realism and also have landmarks for orientation in the virtual environment. Figure

6.2 shows the used generic model of the thigh.

Top Upper Part
(touched)

(fixed)
Lower Part

Lower Upper Part
(not touched)

Figure 6.2: Decomposition of the lower and upper parts of the leg. The top part of
the thigh is divided into two parts; the area touched by the practitioner and vice-versa.

Physical Model. We were inspired to patch a VDM model on the geometric mesh

of the thigh. As mentioned before, VDM is used to model objects filled by some

incompressible fluid, which seems to be a good approximation for soft biological

114 CHAPTER 6. MEDICAL SIMULATORS

tissue (see figure 6.3). In contrast to the model proposed by [Aulignac, 2001], we

have not limited the movements of the lower upper part of the thigh.

FREE NODES

FLUID

Lower Part
of the thigh

Upper Part

of the thigh

INCOMPRESSIBLE

FREE NODES

Figure 6.3: The VDM model of the thigh.

For the upper part of the geometrical mesh, the VDM model is used as the phys-

ical model. Given the geometrical model, the distributed volume Vi and distributed

area Ai can be extracted. Then, each node i which is connected to neighboring

nodes j is governed by the following equation:

Bi

Vi

(
Ai∆Li

)
+
∑

j

Bij

Vi

(
Ai∆Li −Aj∆Lj

)
−∆P = ρigδi (6.1)

and the following boundary condition:

ℵ∑

i

∆Vi =
ℵ∑

i

(
Ai∆Li + Li∆Ai

)
= 0 (6.2)

where for each node i, Bi is the bulk modulus, Bij is the connectivity bulk modulus,

∆Li is the displacement vector, ρi is the associated density, g is the gravitational

constant and δi is the hydrostatic distance. This physical model is mapped directly

onto our surface based geometrical model of the upper part of the thigh.

Parameter Estimation. The parameters of the VDM model namely the bulk

modulus Bi, and the connectivity bulk modulus Bij need to be estimated so that

we can have reasonable accuracy in our results. We decided to use the data from

the literature as our source. We assumed that the human thigh is full of blood

(incompressible) and contains mainly muscles. The human skin was considered as

the elastic container of our VDM model. The parameters used during the simulation

are shown in table 6.1.

6.2. ECHOGRAPHIC THIGH EXAM 115

Table 6.1: Physical data of the virtual human thigh

Surface Area (S) 225000 mm2

Volume (V) 8835730 mm3

Resolution (Q) 260 elements
Density (ρ) - Blood 1055 kgm−3

Bulk Modulus (Bi) - Muscle 2.7 x 109 Nm−2

Connectivity Bulk Modulus (Bij) - Skin 1.4 x 106 Nm−2

System Resolution. In this application, normally the surgeon places the patient

on a table before examining the thigh. In this case, the nodes of the mesh in the

lower upper part of the thigh are fixed and do not move due to contact with the

table. The nodes on the top upper part of the knee that are in contact with the

echographic probe are constrained to move according to the probe. These respective

nodes i∗upperthigh and i∗lowerthigh are constrained by the following equations:

K∗
iilowerthigh

= α, R∗
ilowerthigh

= 0 (6.3)

K∗
iiupperthigh

= α, R∗
iupperthigh

= αCprobe (6.4)

where α� 0.

A quasi-linear analysis using the Sherman-Morrison method which has been pre-

sented earlier is used to solve the system. Since we only expect small deformation

in an echographic thigh exam, a quasi-linear analysis is sufficient. This can be ex-

plained from the force-displacement measurements taken by [Aulignac, 2001] (see

figure 6.4). For small displacements, a linear relationship is observed. Hence, the

state matrix K is formed in the beginning and inversed. As we have shown before,

the VDM model gives us ℵ+1 equations and ℵ+1 unknowns: ∆Li from i = 1 . . .ℵ

and ∆P . This system can be written in the form K∆L = R where K is the sparse

state matrix of the virtual thigh, ∆L is the displacement vector of the nodes and R

is the external load vector. Given the displacement of the echographic probe during

examination, the deformation of the thigh is computed in real-time and the bottom

row of the state matrix is updated. The pseudo-code for this resolution procedure

is given in algorithm 2 of chapter 3.

6.2.3 Interaction

In the previous section, we mapped a physical model onto a deformable geo-

metrical model. During an echographic exam of the thigh, besides interactive-time

116 CHAPTER 6. MEDICAL SIMULATORS

(a)

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

Displacement (mm)

F
or

ce
 (

N
)

Measure data vs LEM model

o Measured data

Measured Data

Interpolated Data

(b)

Figure 6.4: (a) Acquisition of thigh physical parameters using a robot with force
sensors. (b) The circles show the experimental data obtained from a real thigh. The
curves are the obtained from the model using a linear square error estimation method.

deformation, realistic force feedback is required. Force feedback is felt by the user

due to interaction of the virtual thigh with a virtual echographic probe. In this

section, we explain how force feedback is produced.

In the architecture of the prototype developed, deformation of the thigh is han-

dled by the simulation loop and the force feedback to the user is handled by the haptic

loop. To ensure visual and tactile realism, the simulation loop and haptic loop must

be updated at 30Hz and 1KHz respectively. Due to the difference in update rates

between the two loops, a deformable buffer model [Mendoza et al., 2003]

that shares a common memory area is used to ensure stability. This buffer model

is in the haptic loop. It is a local representation of the virtual object at the area of

contact. Figure 6.5 shows the concept of this dual thread architecture.

Collision Detection. The collision detection routine is embedded in the simula-

tion loop and is thus updated at a rate of 30Hz. To avoid computational overhead

in this loop, the virtual echographic probe was modeled as a rigid convex cylinder.

The algorithm in section 5.4 is used to detect all colliding facets and then we localize

the zone of interpenetration by using the algorithm in section 5.5. The facets in this

6.2. ECHOGRAPHIC THIGH EXAM 117

FLUID

1 KHz

PHYSICAL
MODEL

MODEL
BUFFER

CONSTRUCTION

Contact Area

Virtual Probe

Common Memory Area

30 Hz

UPDATE

Simulation LOOP

Haptic LOOP

Figure 6.5: The physical model is reduced to a buffer model at the area of contact
[Mendoza et al., 2003]. The two threads in the dual architecture are indepen-
dent; each controlled by a different loop. Both loops share a common memory area.

zone of interpenetration are transfered to the common memory area at a rate of

30Hz. Figure 6.6 shows an example of detecting and localizing contact between a

virtual echographic probe and a virtual thigh.

Force Feedback. Our simulation runs at approximately 30Hz on a PC-Linux

450MHz. At each time-step, we check for collision, calculate deformation and update

the position of the vertices of the deformable thigh. The common memory area is also

updated at this frequency and the stored primitives are used to form the deformable

buffer model. In this section, we present our approach of using this deformable

buffer model to render haptic forces to the user. From our experience, this problem

is divided into three phases; CONSTRUCT, UPDATE and LINK.

• CONSTRUCT : Upon contact, the primitives (W) in the zone of fictive

interpenetration are transfered to the haptic loop through the shared memory

area. The state matrix Kbuffer for these primitives is then formed and inversed.

118 CHAPTER 6. MEDICAL SIMULATORS

Figure 6.6: The virtual echographic probe is modeled as a cylinder with a known
surface area at the tip. Upon contact, all the interaction primitives are localized
using the algorithm in section 5.5 and transfered to the common memory area.

Since the number of facets in this loop is limited, this process is fast. To further

improve computational speed, we can first test the maximum size of K buffer

that can be inversed in the haptic loop. This will then give us the maximum

number of primitives W allowed for transfer. If memory is not a constraint,

the inverse matrix for the entire set of possible primitives can be precalculated

and stored. This look-up table is then used to get the inversed elements when

contact is detected. We assume that the set W does not change much during

the simulation due to the slow gesture of the surgeon.

• UPDATE : The simulation loop updates the deformable buffer model in the

haptic loop at 30Hz. Locally, within the haptic loop, there are several processes

being executed at 1KHz:

1. Collision detection between the virtual echographic probe and the de-

formable buffer model defined by the set W .

2. Modifying the Rbuffer matrix.

3. Resolution of the problem: Kbuffer∆Lbuffer = Rbuffer.

These processes must not be interrupted when the buffer model is updated.

This is done by keeping a copy of shared data. An important observation in

this phase is that the values are written at 30Hz but read at 1KHz by the

different loop threads. To avoid read-write problems, a flag is used to indicate

if the values are safe to be read. When the buffer model is being updated,

the copied data is temporarily used in the haptic loop. Upon completion, the

copied data is switched with the updated data.

6.2. ECHOGRAPHIC THIGH EXAM 119

• LINK : The problem Kbuffer∆Lbuffer = Rbuffer is solved in the haptic loop to

obtain the deformation vector ∆Lbuffer. But as we have mentioned before, in

the VDM model, the last component in this deformation vector is the change

in pressure ∆Pbuffer. Since the number of elements in the simulation loop and

haptic loop differ, ∆Pbuffer will not be the real change in pressure experienced

by the deformable thigh. Since the fluid is incompressible, we can approximate

the rendered haptic force to the user ∆Phaptic by the following definition:

∆Pbuffer Vbuffer = ∆Pthigh Vthigh (6.5)

where ∆Pthigh = ∆Phaptic is the real change in pressure experienced by the full

physical model. Vbuffer and Vthigh are the distributed volumes (total sum) of

the nodes in the respective haptic and simulation loop. By using P = |F |/|A|,

the rendered force to the user at 1KHz is then obtained using:

∆Phaptic = ∆Pthigh =
∆Pbuffer Vbuffer

Vthigh

F haptic =
∆Pbuffer Vbuffer Ahaptic

Vthigh

(6.6)

where Ahaptic is the distributed area (total sum) of all the elements in the

haptic loop. Since this force is derived from the buffer model, it is computed

at 1KHz.

6.2.4 Experimental Results

We used the echographic thigh simulator originally developed by Aulignac in

[Aulignac, 2001] to test the VDM thigh model and the VDM deformable buffer

model. The visual-haptic platform uses a PC-Linux 450MHz Intel processor with

256Kb of RAM connected to a haptic interface type PHANToM. The virtual probe

was positioned using the haptic interface, at various different points. At each of

these points, the probe was used to push perpendicularly to the surface. We did this

because in an echographic thigh exam, this is the standard procedure.

Deformation. In these experiments, the deformation obtained using the VDM

model is satisfactory because volume conservation of the thigh was observed through-

out the entire history of deformation. Although this is not the main physical char-

acteristic of the thigh, our aim was to observe volume conservation, global small

deformations and stability in the numerical resolution methods. A corresponding

deformed echographic image has also been successfully produced at all points and

orientations (see figure 6.7).

120 CHAPTER 6. MEDICAL SIMULATORS

Figure 6.7: Quasi-linear simulation of the human thigh with echographic image
integration.

Force Feedback. Figure 6.8 shows the curve of the force obtained by the physical

model and the haptic force during the contact process. In this experiment, the user

gently pushed the virtual probe at one of the points on the surface of the thigh mesh

with an arbitrarily displacement vector in a quasi-sinusoidal form of motion. It is

possible to see that the force obtained from the physical loop is not continuous while

the force obtained from the buffer model is continuous and approximates the force

produced by the physical model. The close approximation of the two curves, show

that we have correctly approximated the force produced in the full physical model

and the reduced buffer model.

100 300

Samples

4

8

16

20

24

28

0

Force

200 400 500

Physical Model

Buffer Model

Figure 6.8: The curve of the force produced by the buffer model in the haptic
loop shows a smooth behavior (1KHz) while the force from the physical model is
discontinous (30Hz). The value of both the curves are approximately the same.

6.3. ARTHROSCOPY KNEE RECONSTRUCTION 121

6.2.5 Conclusion

We have presented the application of the VDM physical model in an echographic

thigh exam simulator. We have investigated global small deformations and faithfull

force feedback. We have found that the volume of the thigh has been conserved

throughout the entire history of load application. Feedback to the user has been

continuous and realistic. There are nevertheless some shortcomings in this prototype.

The applied VDM model has been tested in a limited context. This is because we

assumed that the medical professional moves the probe perpendicular to the surface

of the thigh. This is nevertheless the normal practice in an echographic thigh exam.

Furthermore, for validation purposes, we only had measured data for perpendicular

movements. It would be interesting to extend the VDM thigh model to an arbitrary

displacement case. For this new measurements must be obtained to verify the results.

6.3 Arthroscopy Knee Reconstruction

6.3.1 Motivations

The replacement of an injured anterior cruciate ligament (ACL) using minimum

invasive techniques is called an arthroscopy knee reconstruction (AKR). The ACL

(see figure 6.9) is the primary stabilizer of the knee joint which is frequently injured

by a twisting or pivoting movement. Left untreated, an ACL injury can allow a

process of deterioration and dysfunction of the knee to occur. The replacement

of the damaged ACL with a strong biologic substitute is necessary to restore this

primary stabilizing structure of the knee. To perform this, a natural graft is first

harvested, then two bone tunnels are drilled in the tibia and the femur. Finally, the

graft is inserted inside these tunnels and fixed using interference screws. A wrong

positioning of one or both tunnels can easily lead to a failure of the graft. As the

ACL graft geometry does not fit the original ACL shape, the goal, when placing the

graft, is to obtain an isometric behavior for it during knee flexion.

However, because only a small area of the graft section is isometric, even

in the best case, the graft is subjected to stress during flexion, and may fail if

this stress is above its failure threshold. Therefore, the application developed

[Sundaraj et al., 2003] has the goal of automatically generate, intra-operatively,

a dynamic physical model of the graft in order to be able to predict failure in case

of too high stress during flexion before the tunnels are drilled. Since the ACL graft

contains mainly of blood and elastic fibers, the VDM physical model can be consid-

ered a suitable choice. This model must be built and used during surgery. We aim to

122 CHAPTER 6. MEDICAL SIMULATORS

(a) (b) (c)

Figure 6.9: (a) The knee joint anatomy with extension on the left and flexion on the
right, (1)Patella (2)Femur (3)ACL (4)Meniscus (5)Collateral Ligament (6)Patella
Tendon (7)Tibia. (b) Bone-Tendon-Bone ACL graft harvesting, (1)Patella Tendon
(2)Patella (3)Tibial Tubercule. (c) ACL graft insertion and fixation using screws,
(1)Femur (2)ACL Graft (3)Tibia.

avoid tibial or femoral tunnel positions which will lead to failure of the graft, due to

high stress during knee flexion. Within this context, we investigate interative-time

global deformations of the graft and collision detection with the surroundings which

are the main factors that contribute to stress in the graft.

6.3.2 AKR using OrthoPilot

Aesculap’s OrthoPilot CT-Free navigation system is compounded by a computer,

a localizer (a Polaris1 Infrared Camera) and two foot-switches as shown in figure

6.10. This system helps surgeons to find the tibia and femur tunnels positions and

orientation in order to avoid impingement while providing isometric graft positioning

[Saragaglia et al., 2003], [Eichhorn, 2002].

To use this system, firstly, markers are placed on the tibia and the femur in order

to localize the bones. Following this, specific additional landmarks are acquired by

the surgeon. The leg’s kinematics is also acquired, by performing a flexion-extension

motion. With these measurements, the surgeon queries the OrthoPilot system for

the best possible configuration to navigate the tibia and femur drill guides such that

the graft is isometric and there is no impingement with the surroundings. Isometric

positioning refers to the insertion areas on the tibial and femoral bones that maintain

a constant length of the ACL graft during flexion. Dessenne in [Dessenne, 1996] has

shown that these isometric areas presents an ellipsoid shape. In the current system,

the tunnel sites are navigated in order to have the most isometricity between the

1Polaris camera are built by Northern Digital Inc.

6.3. ARTHROSCOPY KNEE RECONSTRUCTION 123

Figure 6.10: The Aesculap OrthoPilot workstation.

posterior side of the tibial tunnel and the anterior side of the femoral tunnel. This

choice seems to be most appropriate from the surgical point of view.

This system has been used in the operating room for more than 90 times, and has

proven it’s usefulness for precise ACL graft replacement. But the correct isometric

insertion areas are very much smaller than the graft cross-sectional area (isometric

insertion areas are often less than 5mm2 and a graft cross-sectional area is about

50mm2). That is to say that, even if it is implanted over the isometric insertion areas,

the graft is subjected to stress during leg flexion. Hence, there is a need to model

the physical behavior of the ACL graft in order to know if it will be subjected to

high stresses during knee flexion. This model must be generated intra-operatively,

produce physically realistic deformation and must be simulated in interactive-time.

6.3.3 ACL Deformable Model

Geometrical Model. The geometrical model of the virtual ACL graft comes from

the patient. During the ACL reconstruction procedure, the surgeon begins by an

arthroscopic inspection of the knee joint. This examination allows the surgeon to

practice, if necessary, meniscus resection and to remove the damaged remaining

pieces of the torn ACL (on tibia and femur sides). Then, the graft is harvested.

The graft may be compounded by a piece of bone, taken from the patella, a piece

of the patella tendon and a piece of bone taken on the tibia (see figure 6.9). Other

types of grafts can be used, according to the choice of the surgeon. Once the graft

has been harvested, it’s measurements can be determined. We note that this step is

124 CHAPTER 6. MEDICAL SIMULATORS

per operation. The harvested graft is generally a beam shape deformable object.

This object is then discretized according to the surgeon’s choice. Given the planned

orientation of the graft with respect to the patient’s knee bones, the two ends of the

graft are modified to reflect the positioning with respect to the generic femur and

tibia bones (see figure 6.12). This is done by tapering off both the ends of the graft

according to the surgeon’s choice. A tapered virtual ACL graft is shown in figure

6.11.

Figure 6.11: The virtual ACL graft seen from various views. The extreme left view
is the original ACL graft without modifications.

Figure 6.12: Positioning of the virtual ACL graft with respect to the generic tibia
and femur seen from various views.

Physical Model. The VDM model is used as the physical model for the ACL

graft. Given the geometrical model, the distributed volume Vi and distributed area

Ai can be extracted. Then, each node i which is connected to neighboring nodes j

is governed by the following equation:

Bi

Vi

(
Ai∆Li

)
+
∑

j

Bij

Vi

(
Ai∆Li −Aj∆Lj

)
−∆P = ρigδi (6.7)

and the following boundary condition:

ℵ∑

i

∆Vi =
ℵ∑

i

(
Ai∆Li + Li∆Ai

)
= 0 (6.8)

6.3. ARTHROSCOPY KNEE RECONSTRUCTION 125

where for each node i, Bi is the bulk modulus, Bij is the connectivity bulk modulus,

∆Li is the displacement vector, ρi is the associated density, g is the gravitational

constant and δi is the hydrostatic distance. This physical model is mapped directly

onto our surface based geometrical model of the virtual ACL graft.

Parameter Estimation. This is the most difficult part of our work. The param-

eters of the VDM model namely the bulk modulus Bi, and the connectivity bulk

modulus Bij need to be estimated so that we can have reasonable accuracy in our

results. Since we do not have any means and expertise to really conduct experiments

to determine these values on the operated patients, we had to resort to data available

in the literature. We considered that the ACL graft is full of blood (incompressible)

and contains mainly elastic fibers. A problem here is that we had to match physical

parameters that were only available for finite element models of high complexity to

our VDM model. We used [Pioletti, 1998] and [Tumer and Engin, 1993] as

sources. The parameters are shown in table 6.2.

Table 6.2: Physical data of the virtual ACL graft

Height (H) 5 mm
Width (W) 10 mm
Cross-Section Area (A) 50 mm2

Length (L) 25 mm
Surface Area (S) 850 mm2

Volume (V) 1250 mm3

Resolution (Q) 138 elements
Density (ρ) - Blood 1055 kgm−3

Bulk Modulus (Bi) - Ligament 0.3 x 106 Nm−2

Connectivity Bulk Modulus (Bij) - Fiber 4.0 x 103 Nm−2

Angle of Flexion (θ) 0◦ − 90◦

System Resolution. Due to the nature of the simulated environment, the two

ends of the virtual ACL graft is subjected to constraints. The end which is in contact

with the femur is fixed while the other end is subjected to the displacement of the

tibia bone, Ctibia. These respective nodes i∗femur and i∗tibia are constrained by the

following equations:

K∗
iifemur

= α, R∗
ifemur

= 0 (6.9)

K∗
iitibia

= α, R∗
itibia

= αCtibia (6.10)

126 CHAPTER 6. MEDICAL SIMULATORS

where α� 0.

A nonlinear analysis using the Bi-Conjugate Gradient (BCG) method which has

been presented earlier is used to solve the system. The distributed area Ai is updated

at each time-step. As we have shown before, the VDM model of the ACL graft gives

us ℵ+1 equations and ℵ+1 unknowns: ∆Li from i = 1 . . .ℵ and ∆P . This system

can be written in the form K∆L = R where K is the sparse state matrix of the

virtual ACL graft, ∆L is the displacement vector of the nodes and R is the external

load vector. Given the displacement of the tibia during flexion, the deformation

of the ACL is computed at each time-step. The pseudo-code for this resolution

procedure is given in algorithm 3 of chapter 3.

6.3.4 Intra-Operative Surgery

Data Acquisition. The first step in using the simulator is getting the dimensions

of the virtual ACL graft. This is obtained from the harvested graft taken off the

patella tendon of the patient. These dimensions are fed into the simulator to generate

a virtual geometrical mesh of the ACL graft. Then the VDM physical model is

mapped onto the geometrical model.

Then specific landmarks and the patient’s leg kinematics are acquired by the sur-

geon (see figure 6.13) [Saragaglia et al., 2003], [Eichhorn, 2002]. The kine-

matic acquisition is actually a set of spatial transformations obtained at 1.5◦ inter-

vals, from the tibial marker to the femoral one. Each marker is a set of diodes, fixed

to the bone using a screw. As the markers positions are surgeon dependent, it not

possible to know them a priori. Each marker’s position and orientation can be read

using the infra-red camera. This information is fed into the OrthoPilot system to

obtain the planned positions and orientations of the tunnels. This information is

then used to adjust the previously generated geometric model of the graft such that

the virtual ACL graft is oriented correctly with respect to the patient’s femur and

tibia.

Interactive-Time Diagnostic. Diagnostic is done in real-time by checking the

state of the virtual ACL graft for the entire knee flexion using the graphical user

interface of the AKR medical simulator as shown in figure 6.14. This interface

is a dynamic simulator developed within our research team called AlaDyn3D. It

will be linked to the OrthoPilot system through a serial interface for data transfer.

The simulator consists of two views; one for the graphical view of deformation and

another for the surgeon to manipulate the simulation.

6.3. ARTHROSCOPY KNEE RECONSTRUCTION 127

Figure 6.13: Acquisition of specific landmarks on the right and the patient’s knee
kinematics on the left. The markers can be seen attached to the bones.

During surgery, the surgeon basically has two options; he/she can either start

the simulation by clicking on the Animation button of the AKR control view or

he/she can flex the tibia using the Flexion slide. Both options flex the tibia at

an 1.5◦ interval, the difference being automatic or manual. Similar procedures are

applied if the surgeon wishes to rotate the tibia with respect to the femur using the

Rotation slide. If the surgeon is not happy with the results of the stress state of the

virtual ACL graft for a particular angle of flexion, he/she can inquire OrthoPilot for

another suitable position and orientation of the ACL graft. The new data is fed into

the AKR simulator and the process is repeated until the surgeon finds an optimal

configuration.

Figure 6.14: The AKR medical simulator. A generic mesh of the femur and tibia
is included so that the surgeon can better visualize the ACL graft. Stress distribution
of the ACL ligament is represented by a color code.

6.3.5 Experimental Results

To test our model, the virtual ACL graft with its ends fixed at the femoral and

tibial tunnels outlets, was subjected to a sample set of transformations obtained from

OrthoPilot’s database. The acquired leg kinematics is used as position boundary

128 CHAPTER 6. MEDICAL SIMULATORS

conditions for the physical model. We will assume that only the tibia moves with

respect to the femur during flexion. We note here that OrthoPilot has already been

successfully used in more that 90 operations. A sample configuration of the planned

position and orientation of the ACL graft was also obtained from this system.

Deformation and Stress. In figure 6.15 and figure 6.16, we show the results

given by our dynamic simulator. We would like to note that the bones of the knee

joint are not acquired by the system because this is a CT-Free procedure. The

system only generates the ACL graft mesh. We included these bones to show the

site of the virtual ACL graft with respect to a patient’s knee. To better visualize the

simulation, we have found that it is better to include a generic mesh of the femur

and tibia. At each transformation of angle 1.5◦, the deformation and the stress state

of the ACL was calculated and analyzed to know if the failure threshold has been

reached. Thus it is possible to know where the graft will fail, and for which angle of

flexion.

Figure 6.15: Deformation at 10◦, 20◦ and 30◦. 3 views are shown; knee in flexion,
ACL graft deformation state and the stress state.

6.3. ARTHROSCOPY KNEE RECONSTRUCTION 129

Figure 6.16: Deformation at 40◦, 50◦, 60◦, 70◦, 80◦ and 90◦. 3 views are shown;
knee in flexion, ACL graft deformation state and the stress state.

130 CHAPTER 6. MEDICAL SIMULATORS

Collision Detection. A major reason for the failure of the graft is stress due

to contact with the bones and surroundings. We have currently omitted the sur-

roundings in our collision detection test. We have tested the interaction between the

deformable ACL graft and the rigid bones using the algorithms presented in chap-

ter 5. Our aim is to observe the change in the area of contact given the planned

position and orientation of the graft. The results are shown in figure 6.17:

Figure 6.17: Collision detection at 10◦, 20◦, 30◦, 40◦, 50◦, 60◦, 70◦, 80◦ and 90◦

(from left to right). The change in contact area is observed to be very minimal.

6.3.6 Conclusion

From the mesh configuration and stress state in figure 6.15 and figure 6.16, we

can deduce that the graft is stressed at the tibia and femur end the most. This was

found to be correct by comparing results from Pioletti in [Pioletti, 1998] and with

discussions with surgeons. But Pioletti used a simplified geometrical model of the

real ACL ligament constructed from femurial and tibial insertion sites. We on the

other hand are interested in the ACL graft, whose dimensions are known for each

6.4. SUMMARY 131

patient. A point to note is that since the graft is bigger than the real ligament,

more areas are subjected to stress. This is because of the difference between the real

isometric area and the area occupied by the graft. Furthermore, the difference in

size causes the graft to be more in contact with the knee bones and the surroundings

during flexion. This contact also causes stress. The deformation of the ACL graft

seems consistent with the predicted results whereby there is very little change in

the length of the graft. There is also very little change in volume observed during

flexion.

6.4 Summary

In this chapter, we have presented the results of our findings in two medical

simulators; an echographic thigh exam (ETE) simulator and an arthroscopy knee

reconstruction (AKR) simulator.

Echographic Thigh Exam (ETE). We have implemented a VDM model of the

human thigh in an ETE simulator. This model has been calibrated using physical

parameters available in the literature. The VDM model is suitable for the thigh

because the thigh consists mainly of muscles (blood); hence volume conservation

can be assumed. This echographic thigh simulator has been constructed using a

dual thread architecture. This architecture has been chosen to solve the problem

of different update rates between the physical loop (30Hz) and haptic loop (1KHz).

These two loops share a common memory area.

The solution to the interactive-time deformation problem is solved by the phys-

ical loop at 30Hz. We believe that this deformation is satisfactory and find that

volume of the thigh is conserved throughout the entire history of load application.

The deformation vector has been obtained using a quasi-linear resolution approach

tailored for nonlinear applications. The algorithms for this approach has been pre-

sented. Furthermore, we have shown that the physical loop is in charge of collision

detection and the transfer of colliding primitives to the shared memory area.

A deformable buffer model constructed from the colliding primitives in the shared

memory area has been integrated in the haptic loop. We divided the simulation in

this loop into three parts; CONSTRUCT, UPDATE and LINK. The tasks assigned

for each of these stages had been explained. With proper care, we have shown how to

avoid read/write problems that may cause trembling at the user end. We have shown

how to link the feedback force (to the user) obtained from the buffer model to the

feedback force in the physical model. The matching process has been satisfactory.

132 CHAPTER 6. MEDICAL SIMULATORS

Arthroscopy Knee Reconstruction (AKR). We have presented the develop-

ment of a prototype AKR simulator tailored for a CT-Free procedure. The virtual

ACL graft in this simulator has been implemented using the VDM model. This

model has been calibrated using physical parameters available in the literature. The

VDM model is suitable for the ACL graft because it is known that the ACL liga-

ment undergoes very little change in volume during flexion. Furthermore, since our

application requires interactive-time compliance, a computationally fast model like

VDM is very appropriate.

A graphical user interface has also been designed for the surgeon. This interface

is user friendly and allows the surgeon to have the maximum possible information

during surgery. More particularly, the surgeon will have information about the state

of stress of the ACL graft and the shape of deformation. This will enable the surgeon

to predict if the planned position is acceptable or not. If the planned position is

unsatisfactory for a specific angle of flexion or the deformation of the graft is such

that too much friction with the surroundings is expected, the surgeon can query the

OrthoPilot system for a new planned position. In addition, we have integrated a

generic femur and tibia bone mesh into our prototype to help the surgeon better

visualize the positioning of the ACL graft and the state of deformation. We find

that the surgeon can better decide and is more comfortable when the generic bones

are present. The graft is better visualized in 3D when it is rotated in space together

with the bones.

The solution to the interactive-time deformation problem is solved by the phys-

ical loop at 30Hz. We believe that this deformation is satisfactory and find that

volume of the ACL is conserved throughout the entire history of tibia flexion. The

deformation vector has been obtained using a static nonlinear approach tailored for

applications involving large deformations. The fact that the ACL graft exhibits

negligible viscoelastic behavior, prompts us to use a static resolution method in-

stead of a dynamic approach. The resulting system is maintained numerically stable

throughout the simulation. The algorithms for this approach has been presented.

Furthermore, we have presented interactive-time collision detection between the de-

formable ACL graft and the rigid generic bones.

Chapter 7

Conclusion

7.1 Summary of Findings

Soft Tissue Model. We have presented and examined various physical models

that have been used for soft tissue simulations. In particular, we have been inter-

ested in the complexity of the models and realism. It is clear that there exists a

trade-off between speed and accuracy. By recognizing that soft tissue obeys the law

of conservation of volume, we proposed a new physical model; the Volume Distri-

bution Method (VDM), for soft tissue simulation. This new model is derived from

bulk variables like pressure and volume. In terms of complexity, this new model is

one order of magnitude lower than classical volumic models like the finite element

method (FEM). We have also shown that VDM can be used to model properties like

anisotropic and large deformations. Three different techniques for static resolution

have been examined. We believe that a static resolution is sufficient for soft tissue

simulation because this type of material is well-damped and hence viscoelastic effects

can be neglected.

Collision Detection. Medical simulators require interaction with the practi-

tioner. Hence, we studied collision detection between complex polygonal models

and a virtual tool. In general, this is an expensive and time-consuming task. Since

the objects being simulated is deformable and the motion of the surgeon is not known

a priori, we examined different static interference tests (SIT) for collision detection.

In these form of tests, an underlying data structure is often used to lower the compu-

tational overhead. Thus, we proposed a single underlying data structure for various

types of interference queries. We find that the computational overhead cost of updat-

ing a single underlying data structure will significantly improve the interactive-time

compliance of the application. We also proposed two original algorithms for distance

133

134 CHAPTER 7. CONCLUSION

computation and contact localization. The performance, importance and benefits of

these algorithms have been presented. We have further integrated these algorithms

into a single library which is independent of the 3D rendering engine and the oper-

ating system platform. The codes written for this library is available for download

and has been integrated and tested on various 3D simulators.

Application to Medical Simulators. We have integrated our findings in two

prototype medical simulators; an echographic thigh exam (ETE) simulator and an

arthroscopy knee reconstruction (AKR) simulator. In the earlier, we were interested

in global small deformations and faithful haptic feedback while in the latter we were

interested in global large deformations. Collision detection was investigated in both

cases.

In the ETE simulator, based on assumption that the thigh exhibits volume con-

servation, we examined the feasibility of using the VDM model to represent the

human thigh. In this context, we tried to identify and match physical parameters

for our VDM model. This was done using the data obtained from the literature.

The simulation was then done using a quasi-linear static analysis, owing to the fact

that this procedure normally consists of very delicate motions and that the human

thigh is well-damped. Validation was done by comparing the results against pre-

viously measured forces due to the deformation of the thigh using a force sensor.

The interaction of the virtual probe and the simulated thigh was handled by our

collision detection library, ColDetect. This library was also responsible for localizing

the contact elements that would be part of the collision treatment process. Within

this context, we investigated the suitability of the VDM model to produce faithful

haptic feedback.

The details for a prototype CT-Free AKR simulator has also been presented. In

this application, the surgeon needs to know the optimal configuration to position

the anterior cruciate ligament (ACL) graft. Typically, a navigationless procedure

is executed. In this case, the surgeon places the graft in the original insertion sites

of the torn ACL. If navigation is present, a purely geometrical reasoning is used to

best position the ACL graft. But since the shape of the ACL graft is unlike the

original ACL, the graft will be subjected to additional stress during flexion. Hence,

the aim of this simulator is to help the surgeon decide the best placement such that

failure due to too high a stress is avoided. We have contributed to this procedure

by adding a physical constraint to the geometrical one. The VDM model of the

ACL graft allows the surgeon to inquire online the stress state of the graft given a

planned configuration. With this model, the surgeon has the possibility to visualize

deformation and stress distribution of the ACL graft. The model is realistic, obtained

7.2. ANALYSIS 135

preoperatively and is simulated in real-time. A user friendly graphical user interface

has also been designed. This interface is easy to understand and easy to use because

the surgeons do not have any free hands to touch the computer during surgery. In

fact, our first prototype is very simple in the sense that the model is hidden, because

the surgeon only cares about the result: “Is the ACL graft well placed or not?” and

not about the underlying models used by the system.

7.2 Analysis

The ultimate issue that we would like to address is the feasibility of an interactive-

time medical simulator. Two major distinct problems is envisaged; realism and

rapidity. Realism cannot be compromised because surgeons are going to be trained

on these simulators or assisted by these simulators. If their hands-on experience is

far from reality, then training becomes useless. Rapidity is required to ensure no

sense of discomfort; visually or tactically. Deformation and force feedback has to be

computed fast enough such that the practitioner gets the impression that the virtual

environment is real.

In this context, this thesis has concentrated on physical models for soft tissue

and collision detection for medical simulators. The choice of the used physical model

must be based on the targeted application. Do we require speed or accuracy? Ideally

of course, we would want both. However, if this is impossible to achieve because

of the computational overheads, we must carefully examine the tradeoffs between

accuracy and speed. For example, in the echographic simulator, the points of con-

cern were interactive-time global deformation and force feedback. Accuracy in the

deformation was compromised by using a quasi-linear analysis supported by the fact

that only small deformations were foreseen. On the other hand, in the arthroscopy

knee simulator, global large deformations were expected. Hence a complete nonlin-

ear analysis was carried out. But, speed was not entirely compromised. The VDM

model being less complex, allowed us to retain the speed required for interactive-time

compliance.

But medical simulators are not limited to purely simulation. In many cases,

interaction with the practitioner is inevitable. With regards to this, collision detec-

tion becomes a significant issue. The problem here is that, very often, algorithms

dedicated to this problem are too restrictive. These algorithms often break down

when complex situations are encountered. The reason for this is the overhead cost

in maintaining the underlying data structure used for collision detection. Thus, the

goal in this case would be to have maximum flexibility with minimum computa-

136 CHAPTER 7. CONCLUSION

tional cost. The state of the art in this field suggests that a single underlying data

structure must be exploited to the maximum to achieve optimal cost. This has been

the aim of this thesis. An efficient data structure that optimizes memory and an

efficient method of manipulating hierarchies is required. We have presented several

algorithms to this end.

In conclusion, we have proposed an alternative physical model for soft tissue sim-

ulation and implemented a collision detection library suitable for medical simulators.

Our findings have allowed us to investigate the feasibility of developing prototype

simulators for relevant medical procedures. It is here that our main contributions

lies; the analysis of these methods in terms of accuracy and computational complex-

ity are essential towards the building of virtual medical simulator. Hence, we hope

that future work involving feedback from medical professionals and clinical tests will

permit us to extend this work in order to eventually provide an efficient training

tool for practitioners.

7.3 Perspectives

There is still a lot of work that can be done to contribute to the development of

medical simulators. We list a few future directions here:

Algorithms. Various algorithms that are part of a medical simulator can be im-

proved. The conception of new numerical resolution methods and collision detection

algorithms are still mandatory. In particular multi-grid solvers or successive over-

relaxation techniques could offer an interesting alternative to the conjugate gradients

solvers used in this work for nonlinear analysis. While exponential improvements in

computing power have contributed to the development of today’s processing capa-

bilities, computing power alone does not account for the dramatic expansion of the

field, nor will future improvements in computer hardware be a sufficient springboard

to enable the development of the medical simulators described in this thesis. De-

velopment will require continued research in new algorithms and the mathematical

sciences of physical models of soft tissue, fields that have contributed greatly to the

biomedical domain and will continue to do so.

Parallelism. A possible direction of future work would be to advance in the de-

velopment of low-cost, high performance computation systems based on PC clusters,

specifically for the medical VR area. We foresee that many of the procedures for sim-

ulating physical systems can be parallelized. In particular the linear solvers and the

7.3. PERSPECTIVES 137

calculation of the internal forces would be suitable candidates. The purpose of this

research would be to reduce the computational costs associated to various processes

by developing methods to simplify mathematical formulations and the distribution

of computing resources, taking into consideration simultaneously issues like accu-

racy and realism. Another purpose would be to develop mechanisms for algorithm

parallelization which will allow using a computer cluster for tasks like real-time col-

lision detection in surgical simulation environments, with possible changes in object

geometry depending on the operation of the surgical instruments or real-time haptic

response computation in arthroscopy environments.

Medical Imaging. Many of the envisioned innovations in this thesis are funda-

mentally dependent on medical imaging. Equations that link imaging measurements

to quantities of interest must be sufficiently complex to be realistic and accurate and

yet simple enough to be interactive-time compliant. The development of mathemat-

ical methods for producing images from projections thus also requires a capability

for overcoming errors or artifacts of the reconstruction method that arise from dif-

ferent sources, and much remains to be done. The result is the need for approximate

reconstruction strategies or the use of accurate generic models. In addition, mathe-

matical models and computer simulation of deforming images plays an essential role

in allowing the mathematician and physicist to critically evaluate new ideas in the

emerging field of dynamic biomedical imaging.

Software Development. A realistic medical simulator is still far from reality.

But nevertheless, some commercial products and prototypes have been made for

certain procedures. Needless to say, there is still much work to be done. An area

of paramount interest is the identification of parameters of the different variables

of the physical models for soft tissue simulation. This requires collaboration with

medical professionals and researchers from the biomechanical field. The expertise of

the graphics and computer science community cannot be spared because complex

environments will consist of millions of polygons and will require real-time rendering,

physically realistic behavior, numerically stable simulation and fast collision detec-

tion. It is clear that the knowledge required to produce a realistic medical simulator

is very broad; it needs the integration of several disciplines. Within this context, the

increase in collaboration amongst the surgical simulation community is a favorable

sign that medical simulation will indeed not remain as a myth but become reality

in the near future.

138 CHAPTER 7. CONCLUSION

APPENDICES

139

Appendix A

Collision Detection Libraries

A.1 Convex Based Packages

Convex packages rely on objects being convex or composed of convex pieces.

There are two main classes of algorithms that are used for convex polyhedral prox-

imity query. One is the Voronoi region based Lin-Canny (LC) algorithm and its

derivatives. Another one is the simplex-based Gilbert-Johnson-Keerthi (GJK) algo-

rithm and its derivatives.

1. EGJK - http://www.comlab.ox.ac.uk/cameron/distances.html

This is an implementation of the GJK algorithm by S. Cameron which cal-

culates the distance between convex polyhedra. Interference is detected when

the distance is zero. This implementation also gives an approximation of the

negative distance which is a measure of interpenetration.

2. I-Collide - http://www.cs.unc.edu/ geom/I COLLIDE/index.html

This is the original LC implementation. I-Collide is an interactive and exact

collision detection library for large environments composed of convex polyhe-

dra . Many non-convex polyhedra may be decomposed into a set of convex

polyhedra, which may then be used with this library. I-Collide uses the closest

features tracking algorithm and exploits coherence (the property of a simula-

tion to change very little between consecutive time steps) and the properties of

convexity to achieve very fast collision detection which is exact to the accuracy

of the input models.

3. V-Clip - http://www.merl.com/projects/vclip/

The Voronoi Clip, or V-Clip, algorithm is a low-level collision detection algo-

rithm for polyhedral objects. The V-Clip library is a C++ implementation of

141

142 APPENDIX A. COLLISION DETECTION LIBRARIES

this algorithm, with facilities for constructing and manipulating geometries.

The source code is freely distributed for educational, research and non-profit

purposes. V-Clip operates on polyhedral objects which may be nonconvex or

even disconnected. It returns the closest points between objects and the dis-

tances between them. If the objects penetrate, it returns a penetration depth.

V-Clip requires the application to specify nonconvex or disconnected objects

as hierarchies of convex pieces. When called on disjoint nonconvex objects,

V-Clip returns a lower bound on the actual distance between the objects.

4. SOLID - http://www.win.tue.nl/ gino/solid/

This is a library for collision detection of 3D objects undergoing rigid motion

and deformation. SOLID is designed to be used in interactive 3D graph-

ics applications, and is especially suited for collision detection of objects and

worlds described in VRML. It is an implementation of GJK. Frame coherence

is exploited by maintaining a set of pairs of proximate objects and caching

separating axes for these pairs. SOLID also computes penetration depth. De-

formation is allowed but only for transformations that keep the objects convex.

It also requires QHULL to compute the convex hull of an object.

5. Q-Collide - http://www.stanford.edu/ kelchung/collision library.html

This library presents a simple and exact collision detection algorithm for con-

vex polytopes. The algorithm finds quickly a separating plane between two

polytopes if they are non-colliding, or else reports collision and the pair of clos-

est points between them if it cannot possibly find a separating plane. In the

case of non-collision, the separating plane found for one time frame is cached

as a witness for the next time frame; this use of time coherence further speeds

up the algorithm in dynamic applications. Both temporal and geometric co-

herence are exploited to make this algorithm run in expected constant time

empirically.

A.2 Polygon Soup Based Packages

Polygon soup packages operate on lists of triangles. They typically create a hi-

erarchy of bounding volumes whose leaf nodes are the triangles themselves. The hi-

erarchies are composed of spheres, AABB’s (Axis-Aligned Bounding Boxes), OBB’s

(Oriented Bounding Boxes), SSV’s (Sphere-Swept Volumes), or k-DOP’s (k-Discrete

Oriented Polytopes). These packages are designed to handle rigid motion but some

may be adapted to work based upon deformable objects as well.

A.2. POLYGON SOUP BASED PACKAGES 143

1. SWIFT++ - http://www.cs.unc.edu/ geom/SWIFT++/download.shtml

This algorithm is an improved LC implementation. Provides sweep and

prune bounding box support and employs outer bounding hierarchies to

speedup walking. Performance can be made independent of motion coherence.

SWIFT++ allows objects composed of convex pieces and has been shown to

be very robust.

2. ColDet - http://photoneffect.com/coldet/

This library is an effort to provide a free collision detection library for generic

polyhedra. Its purpose is mainly for 3D games where accurate detection is

needed between two non-simple objects. It provides exact point of collision,

plus the pair of triangles that collided and also supports timeout setting, to

limit detection time.

3. PQP - http://www.cs.unc.edu/ geom/SSV/

The Proximity Query Package is a library for performing proximity queries

on a pair of geometric models composed of triangles. This package uses SSV

bounding volumes and computes three types of interference; intersection de-

tection, tolerance verification, and exact and approximate minimum distance

computation. PQP takes some advantage of coherence.

4. RAPID - http://www.cs.unc.edu/ geom/OBB/OBBT.html

This library is a robust and accurate polygon interference detection library for

large environments composed of unstructured models. It uses OBB bounding

volumes. It is applicable to polygon soups - models which contain no adjacency

information, and obey no topological constraints. The models may contain

cracks, holes, self-intersections, and nongeneric (e.g. coplanar and collinear)

configurations. It is numerically robust - the algorithm is not subject to con-

ditioning problems, and requires no special handling of nongeneric cases (such

as parallel faces).

5. V-Collide - http://www.cs.unc.edu/ geom/V COLLIDE/

This package used the RAPID library but unlike RAPID, it supports many

simultaneous objects. V-Collide keeps track of where objects are, so that if

objects do not move between queries their locations need not be resupplied to

the collision detection system On the other hand, V-Collide only reports when

pairs of objects collide and not the distance between them.

6. QuickCD - http://www.ams.sunysb.edu/ jklosow/quickcd/QuickCD.html

QuickCD is a general-purpose collision detection library, capable of performing

fast and exact collision detection on highly complex models. No assumption

144 APPENDIX A. COLLISION DETECTION LIBRARIES

is made about the structure of the input. QuickCD robustly handles un-

structured inputs consisting of a polygon soups. No adjacency information

is needed; the models are only specified as a collection of triangles. The li-

brary is based upon constructing hierarchies of discrete orientation polytopes,

or k-dops, which are convex polytopes whose facets have normals from a given

discrete set of k vectors, to approximate the input models.

7. H-Collide - http://www.cs.unc.edu/ geom/H COLLIDE

H-Collide is a framework for fast and accurate collision detection for haptic

interaction. It consists of a number of algorithms and a system specialized

for computing contact(s) between the probe of the force-feedback device and

objects in the virtual environment. To meet the stringent performance re-

quirements for haptic interaction, we use an approach that specializes many

earlier algorithms for this application. this library utilizes spatial decompo-

sition, bounding volume hierarchy based on OBB-Trees and frame-to-frame

coherence.

Appendix B

ColDetect - Reference Manual

B.1 Introduction

ColDetect is a library for collision detection, exact distance computation, and

contact localization of three-dimensional polygonal objects. These objects can be

concave or convex, rigid or deformable. It is numerically robust - the algorithm is

not subject to conditioning problems, and requires no special handling of nongeneric

cases. ColDetect has been implemented in standard C++ and relies heavily on STL

in order to be as fast and memory efficient. Currently it compiles under GNU g++

version 2.95 and 3.2. It provides a very simple API. The main features of ColDetect

is as follows:

• Computing distance between convex objects

• Computing distance between concave objects

• Computing distance between convex and concave objects

• Collision detection between concave and convex rigid objects

• Collision detection between concave and convex deformable objects

• Contact localization between concave and convex rigid objects

• Contact localization between concave and convex deformable objects

• Frame coherence is exploited

• Real time algorithms

• C++ implementation

• Portable library

145

146 APPENDIX B. COLDETECT - REFERENCE MANUAL

B.2 Installation

These installation instructions apply to UNIX/Linux systems and assumes that

you have root access. Upon installation, the ColDetect library for collision detection

for medical simulators will be obtained. If you have to alter or modify any steps in

order to install on your computer configuration, or if these instructions are not clear

or if these instructions do not work , please email Kenneth.Sundaraj@inrialpes.fr

with the details. To install, do the following:

• Download the file coldetection− < V ERSION > .tar.bz2 from the site

http://www.inrialpes.fr/sharp/coldetection and substitute the ColD-

etect version number for < V ERSION >

• Expand the above files into the directory that will be used for compiling,

e.g. bzip2 − dc coldetection− < V ERSION > .tar.bz2 | tar xf −

• Change to the directory where you have expanded the files,

e.g. cd /usr/src/coldetection− < V ERSION >

• This step does not apply to a native Windows OS build. After reading about all

the available options in configure.usage, type: ./configure [−−OPTION [=

V ALUE]...][CONFIGURATION]

• Type make

• Switch to the root user and type: make install

If you installed the library in a specific directory, you have to set the include and

library paths accordingly.

http://www.inrialpes.fr/sharp/coldetection

Index of cited Authors

A
Amantides, J. A. 65

Aulignac, D. . 3, 11, 12, 17, 26, 89, 112,

114, 115, 119

Ayache, N. 3, 19–21

B
Baciu, G. 83

Balaniuk, R. 24, 31

Baraff, D. 12

Barr, A. 12, 14, 16

Bathe, K. J. 16, 21

Bourguignon, D. 12

Boux-de-Casson, F. 121, 122, 126

Bro-Nielsen, M. 3, 18

Brown, J. 12

C
Cameron, S. 3, 69

Cani, M. P. 4, 12, 14, 16, 83

Canny, J. F. 3, 72, 81, 82

Cavusoglu, M. C. 3

Chaillou, C. 3, 28, 79

Chaussard, C. 122, 126

Cohen, E. 74

Cohen, J. D. 65

Costa, I. F. 24, 31

Cotin, S. 3, 18, 20, 21

D

Davanne, J. 3, 79

De, S. 21

Debunne, G. 14, 16

Deguet, A. 14, 104

Delingette, H. 3, 19–21

Derek, J. 4, 64

Desbrun, M. 12, 14, 16

Dessenne, V. 122

Dimaio, S. P. 18

Dobkin, D. 66

E
Ehmann, S. A. 75

Eichhorn, J. 122, 126

Engin, A. 125

F
Flaquer, J. 64

France, L. 3

G
Garcia-Alonso, A. 64

Gilbert, E. G. 3, 67, 81, 82

Gottschalk, S. 75–77, 80

Gupta, K. 4, 64

H
Hamada, K. 64

Hewitt, T. 12

147

148 INDEX OF CITED AUTHORS

Hilde, L. 3, 28

Hoff, K. 83

Hori, Y. 64

Hubbard, P. M. 75, 79

Hutchinson, D. 12

J
James, D. 22–24

Jimenez, P. 61

Johnson, D. E. 74

Johnson, D. W. 3, 67, 69, 81, 82

Joukhadar, A. 14, 69, 104

K
Keerthi, S. S. 3, 67, 81, 82

Kim, J. 21

Kim, Y. J. 74

Kirkpatrick, D. 66

L
Larsson, T. 77, 78, 98

Laugier, C. . 3, 14, 18, 31, 69, 100, 104,

116, 117, 121

Lenoir, J. 3

Lin, J. Y. 20

Lin, M. C. 3, 65, 72–77, 80–83

Liss, P. 122, 126

Lombardo, J. C. 4, 83

M
Manocha, D. 65, 73–77, 80, 83

Mazer, E. 89

Mendoza, C. 3, 18, 116, 117

Meseure, P. 3, 28, 79

Mirtich, B. 3, 73, 74, 82

Moller, T. 77–79, 98

Montgomery, K. 12

Moore, M. 3

N
Naylor, B. F. 65

Neyret, F. 4, 83

P
Pai, D. 22–24

Picinbono, G. 19, 20

Pioletti, D. 125, 130

Ponamgi, M. K. 65, 73

Preston, M. 12

Q
Quilan, S. 74, 79, 81, 95

S
Salcudean, S. E. 18

Saragaglia, D. 122, 126

Sauteron, D. 122, 126

Schröder, P. 12

Serrano, N. 64

Srinivasan, M. A. 21

Sun, H. 83

Sundaraj, K. . . 3, 31, 89, 100, 116, 117,

121

T
Terzopoulos, D. 12

Thibault, W. C. 65

Thomas, F. 61

Torras, C. 61

Triquet, F. 3

Tseng, D. C. 20

INDEX OF CITED AUTHORS 149

Tumer, S. 125

U
Ulrich, T. 64

V
Van der Bergen, G. . . 70, 72, 75, 77, 78,

82, 98

Vepstas, L. 83

W
Wabbi, A. 69

Waters, K. 12, 13

Wilhelms, J. 3

Witkin, A. 12

Wong, W. 83

Z
Zaferakis, A. 83

150 INDEX OF CITED AUTHORS

Bibliography

[Aulignac, 2001] Aulignac, D. (2001). Modelisation de l’interaction avec des

objets déformables en temps-réel pour des simulateurs medicaux . PhD thesis,

Institute Nationale Polytechnique de Grenoble, France.

[Aulignac et al., 1999] Aulignac, D., Laugier, C., and Cavusoglu,

M. C. (1999). Towards a realistic echographic simulator with force feedback.

In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and

Systems .

[Baciu et al., 1998] Baciu, G., Wong, W., and Sun, H. (1998). Hardware

assisted virtual collisions. In Proceedings of the ACM Symposium on Virtual

Reality Software and Technology .

[Baraff and Witkin, 1992] Baraff, D. and Witkin, A. (1992). Dynamic

simulation of non-penetrating flexible bodies. In Computer Graphics .

[Baraff and Witkin, 1998] Baraff, D. and Witkin, A. (1998). Large steps

in cloth simulation. In Computer Graphics .

[Bathe, 1996] Bathe, K. J. (1996). Finite Element Procedures . Prentice Hall.

[Bourguignon and Cani, 2000] Bourguignon, D. and Cani, M. P. (2000).

Controlling anisotropy in mass-spring systems. In Proceedings of EACG Confer-

ence on Eurographics .

[Boux-de-Casson, 2000] Boux-de-Casson, F. (2000). Simulation Dynamique

de Corps Biologiques et Changements de Topologie Interactifs (in French). PhD

thesis, Université de Savoie, France.

[Bro-Nielsen and Cotin, 1996] Bro-Nielsen, M. and Cotin, S. (1996).

Real-time volumetric deformable models for surgery simulation using finite ele-

ments and condensation. In Proceedings of EACG Conference on Eurographics .

151

152 BIBLIOGRAPHY

[Brown and Montgomery, 2001] Brown, J. and Montgomery, K. (2001).

A microsurgery simulation system. In Proceedings of Medical Image Computing

and Computer Assisted Intervention - MICCAI .

[Cameron, 1997] Cameron, S. (1997). Enhancing GJK: Computing minimum

penetration distances between convex polyhedra. In Proceedings of IEEE Inter-

national Conference on Robotics and Automation.

[Cohen et al., 1995] Cohen, J. D., Lin, M. C., Manocha, D., and Pon-

amgi, M. K. (1995). I-COLLIDE: An interactive and exact collision detection

system for large-scale environments. In Proceedings of ACM SIGGRAPH Sympo-

sium on Interactive 3D Graphics .

[Costa and Balaniuk, 2001a] Costa, I. F. and Balaniuk, R. (2001a). LEM

- An approach for real time physically based soft tissue simulation. In Proceedings

of IEEE International Conference on Robotics and Automation.

[Costa and Balaniuk, 2001b] Costa, I. F. and Balaniuk, R. (2001b).

Static solution for real time deformable objects with fluid inside. In ERCIM

News .

[Cotin, 1997] Cotin, S. (1997). Modèles anatomiques déformables en temps réel

(in French). PhD thesis, Université de Nice, France.

[Cotin et al., 1999] Cotin, S., Delingette, H., and Ayache, N. (1999).

Real-time elastic deformations of soft tissues for surgery simulation. In IEEE

Transactions on Visualizations and Computer Graphics .

[Cotin et al., 2000] Cotin, S., Delingette, H., and Ayache, N. (2000). A

hybrid elastic model allowing real-time cutting, deformations and force-feedback

for surgery training and simulation. Journal of Visual Computer .

[Davanne et al., 2002] Davanne, J., Messure, P., and Chaillou, C.

(2002). Stable haptic interaction in a dynamic virtual environment. In Proceedings

of IEEE/RSJ International Conference on Intelligent Robots and Systems .

[De and Bathe, 2001] De, S. and Bathe, K. J. (2001). The method of finite

spheres: A summary of recent developments. In Proceedings of MIT Conference

on Computational Fluid and Solid Mechanics .

[Debunne et al., 1999] Debunne, G., Desbrun, M., Barr, A., and Cani,

M. P. (1999). Interactive multiresolution animation of deformable models. In

Proceedings of EACG Conference on Eurographics .

BIBLIOGRAPHY 153

[Debunne et al., 2001] Debunne, G., Desbrun, M., Cani, M. P., and

Barr, A. (2001). Dynamic real-time deformations using space and time adaptive

sampling. In Computer Graphics .

[Deguet et al., 1998a] Deguet, A., Joukhadar, A., and Laugier, C.

(1998a). A collision model for deformable bodies. In Proceedings of IEEE/RSJ

International Conference on Intelligent Robots and Systems .

[Deguet et al., 1998b] Deguet, A., Joukhadar, A., and Laugier, C.

(1998b). Models and algorithms for the collision of rigid and deformable bod-

ies. In Proceedings of the Workshop on the Algorithmic Foundations of Robotics .

[Delingette et al., 1999] Delingette, H., Cotin, S., and Ayache, N.

(1999). A hybrid elastic model allowing real-time cutting, deformations and force-

feedback for surgery training and simulation. In Proceedings of CGS Conference

on Computer Animation.

[Derek and Gupta, 1996] Derek, J. and Gupta, K. (1996). Octree-based

hierarchical distance maps for collision detection. Journal of Robotics Systems .

[Desbrun et al., 1999] Desbrun, M., Schröder, P., and Barr, A. (1999).

Interactive animation of structured deformable objects. In Proceedings of Graphics

Interface.

[Dessenne, 1996] Dessenne, V. (1996). Gestes Médicaux-Chirurgicaux Assistés

par Ordinateur: Applications à la Ligamentoplastie du Genou et la Chirurgie

Orthognastique (in French). PhD thesis, Université Joseph Fourier, France.

[Dimaio and Salcudean, 2002] Dimaio, S. P. and Salcudean, S. E. (2002).

Simulated interactive needle insertion. In Proceedings of International Symposium

on Haptic Interfaces for Virtual Environment and Teleoperator System.

[Dobkin and Kirkpatrick, 1990] Dobkin, D. and Kirkpatrick, D. (1990).

Determining the separation of preprocessed polyhedra - A unified approach. In

Lecture Notes in Computer Science, volume 443. Springer-Verlag.

[Ehmann and Lin, 2001] Ehmann, S. A. and Lin, M. C. (2001). Accurate and

fast proximity queries between polyhedra using convex surface decomposition. In

Proceedings of the EACG Conference on Eurographics .

[Eichhorn, 2002] Eichhorn, J. (2002). Navigation und Robotik in der Gelenk

und Wirbelsäulenchirurgie. Konermann.

154 BIBLIOGRAPHY

[Garcia-Alonso et al., 1994] Garcia-Alonso, A., Serrano, N., and

Flaquer, J. (1994). Solving the collision detection problem. In IEEE Transac-

tions on Computer Graphics and Applications .

[Gilbert et al., 1988] Gilbert, E. G., Johnson, D. W., and Keerthi,

S. S. (1988). A fast procedure for computing the distance between objects in

three-dimentional space. In Proceedings of IEEE International Conference on

Robotics and Automation.

[Gottschalk et al., 1996] Gottschalk, S., Lin, M. C., and Manocha,

D. (1996). OBB-Tree: A hierarchical structure for rapid interference detection.

In Proceedings of ACM SIGGRAPH .

[Hamada and Hori, 1996] Hamada, K. and Hori, Y. (1996). Octree based ap-

proach to real-time collision-free path planning for robot manipulator. In Proceed-

ings of IEEE 4th International Workshop on Advanced Motion Control (AMC).

[Hilde et al., 2001] Hilde, L., Meseure, P., and Chaillou, C. (2001). A

fast implicit integration method for solving dynamic equations of movement.

In Proceedings of ACM Symposium on Virtual Reality Software & Technology

(VRST) Conference.

[Hoff et al., 2001] Hoff, K., Zaferakis, A., Lin, M. C., and Manocha,

D. (2001). Fast and simple 2D geometric proximity queries using graphics hard-

ware. In Procceedings of ACM Symposium on Interactive 3D Graphics .

[Hoff et al., 2002] Hoff, K., Zaferakis, A., Lin, M. C., and Manocha,

D. (2002). Fast 3D geometric proximity queries between rigid and deformable

models using graphics hardware acceleration. Technical report, University of

North Carolina.

[Hubbard, 1996] Hubbard, P. M. (1996). Approximating polyhedra with spheres

for time-critical collision detection. In ACM Transactions on Graphics .

[Hutchinson et al., 1996] Hutchinson, D., Preston, M., and Hewitt, T.

(1996). Adaptive refinement for mass/spring simulation. In Proceedings of EACG

Conference on Eurographics .

[James and Pai, 1999] James, D. and Pai, D. (1999). Accurate real-time de-

formable objects. In Proceedings of ACM SIGGRAPH .

[James and Pai, 2001] James, D. and Pai, D. (2001). A unified treatment of

elastostatic contact simulation for real-time haptics. Journal of Haptics-e.

BIBLIOGRAPHY 155

[Jimenez et al., 2001] Jimenez, P., Thomas, F., and Torras, C. (2001).

3D Collision Detection: A Survey. Journal of Computers and Graphics .

[Johnson and Cohen, 1998] Johnson, D. E. and Cohen, E. (1998). A frame-

work for efficient minimum distance computations. In Proceedings of IEEE Inter-

national Conference on Robotics and Automation.

[Johnson and Cohen, 1999] Johnson, D. E. and Cohen, E. (1999). Bound

coherence for minimum distance computations. In Proceedings of IEEE Interna-

tional Conference on Robotics and Automation.

[Johnson, 1987] Johnson, D. W. (1987). The optimisation of robot motion in

the presence of obstacles . PhD thesis, University of Michigan, USA.

[Joukhadar et al., 1996] Joukhadar, A., Wabbi, A., and Laugier, C.

(1996). Fast contact localisation between deformable polyhedra in motion. In

Proceedings of CGS Conference on Computer Animation.

[Kim et al., 2002a] Kim, J., De, S., and Srinivasan, M. A. (2002a). Compu-

tationally efficient techniques for real time surgical simulation with force feedback.

In Proceedings of International Symposium on Haptic Interfaces for Virtual En-

vironment and Teleoperator System.

[Kim et al., 2002b] Kim, Y. J., Lin, M. C., and Manocha, D. (2002b).

DEEP: dual space expansion for estimating penetration depth between convex

polytopes. In Proceedings of IEEE International Conference on Robotics and Au-

tomation.

[Larsson and Moller, 2001] Larsson, T. and Moller, T. (2001). Collision

detection for continuously deforming bodies. In Proceedings of EACG Conference

on Eurographics .

[Laugier et al., 2003] Laugier, C., Mendoza, C., and Sundaraj, K.

(2003). Towards a realistic medical simulator using virtual environments and hap-

tic interaction. In Jarvis, R. A. and Zelinsky, A., editors, Robotics Research,

volume 6 of Springer Tracts in Advanced Robotics (STAR). Springer-Verlag.

[Lin and Canny, 1991] Lin, M. C. and Canny, J. F. (1991). A fast algo-

rithm for incremental distance calculation. In Proceedings of IEEE International

Conference on Robotics and Automation.

[Lombardo et al., 1999] Lombardo, J., Cani, M. P., and Neyret, F.

(1999). Real-time collision detection for virtual surgery. In Proceedings of CGS

Conference on Computer Animation.

156 BIBLIOGRAPHY

[Mendoza and Laugier, 2003] Mendoza, C. and Laugier, C. (2003). Sim-

ulating soft tissue cutting using finite element models. In Proceedings of IEEE

International Conference on Robotics and Automation.

[Mendoza et al., 2003] Mendoza, C., Sundaraj, K., and Laugier, C.

(2003). Faithfull haptic feedback in medical simulators. In Siciliano, B. and

Dario, P., editors, Experimental Robotics , volume 5 of Springer Tracts in Ad-

vanced Robotics (STAR). Springer-Verlag.

[Meseure and Chaillou, 1997] Meseure, P. and Chaillou, C. (1997). De-

formable body simulation with adaptive subdivision and cutting. In Proccedings

of Winter School of Computer Graphics (WSCG) Conference.

[Meseure and Chaillou, 2000] Meseure, P. and Chaillou, C. (2000). A

deformable body model for surgical simulation. Journal of Visualization and

Computer Animation.

[Meseure et al., 2003] Meseure, P., Davanne, J., Hilde, L., Lenoir, J.,

France, L., Triquet, F., and Chaillou, C. (2003). A physically-based vir-

tual environment dedicated to surgical simulation. In Proceedings of International

Symposium on Surgery Simulation and Soft Tissue Modeling .

[Mirtich, 1998] Mirtich, B. (1998). V-Clip: Fast and robust polyhedral collision

detection. In ACM Transactions on Graphics .

[Mirtich and Canny, 1995] Mirtich, B. and Canny, J. F. (1995). Impulse

based simulation of rigid bodies. In Proceedings of ACM SIGGRAPH Symposium

on Interactive 3D Graphics .

[Moller, 1997] Moller, T. (1997). A fast triangle-triangle intersection test.

Journal of Graphics Tools .

[Moore and Wilhelms, 1988] Moore, M. and Wilhelms, J. (1988). Colli-

sion detection and response for computer animation. In Computer Graphics .

[Naylor et al., 1990] Naylor, B. F., Amantides, J. A., and Thibault,

W. C. (1990). Merging BSP trees yields polyhedral set operations. In Proceedings

of ACM SIGGRAPH .

[Picinbono et al., 2002] Picinbono, G., Delingette, H., and Ayache, N.

(2002). Nonlinear and anisotropic elastic soft tissue models for medical simulation.

In Proceedings of IEEE International Conference on Robotics and Automation.

BIBLIOGRAPHY 157

[Pioletti, 1998] Pioletti, D. (1998). Viscoelastic Properties Of Soft Tissues:

Application to Knee Ligaments and Tendons . PhD thesis, Ecole Polytecnique

Federale de Lausanne, Switzerland.

[Ponamgi et al., 1995] Ponamgi, M. K., Manocha, D., and Lin, M. C.

(1995). Incremental algorithms for collision detection between general solid mod-

els. In Proceedings of ACM Symposium on Solid Modeling .

[Press et al., 1992] Press, W. H., Flannery, B. P., Teukolsky, S. A.,

and Vetterling, W. T. (1992). Numerical Recipes in C . Cambridge University

Press.

[Quilan, 1994] Quilan, S. (1994). Efficient distance computation between non-

convex objects. In Proceedings of IEEE International Conference on Robotics and

Automation.

[Saragaglia et al., 2003] Saragaglia, D., Sauteron, D., Chaussard, C.,

Boux-de-Casson, F., and Liss, P. (2003). Orthopilot assisted anterior cruci-

ate ligament reconstruction analysis of tunnel positioning in 12 cases. In Proceed-

ings of Internal Conference on Computer Assisted Orthopaedic Surgery .

[Sundaraj et al., 2000] Sundaraj, K., Aulignac, D., and Mazer, E.

(2000). A new algorithm for computing minimum distance. In Proceedings of

IEEE/RSJ International Conference on Intelligent Robots and Systems .

[Sundaraj and Laugier, 2000] Sundaraj, K. and Laugier, C. (2000). Fast

contact localisation of moving deformable polyhedras. In Proceedings of IEEE

International Conference on Automation, Robotics, Control and Vision.

[Sundaraj and Laugier, 2002] Sundaraj, K. and Laugier, C. (2002). Phys-

ically realistic simulation of large deformations using LEM for interactive applica-

tions. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots

and Systems .

[Sundaraj et al., 2003] Sundaraj, K., Laugier, C., and Boux-de-

Casson, F. (2003). Intra-Operative CT-Free examination system for anterior

cruciate ligament reconstruction. In Proceedings of IEEE/RSJ International Con-

ference on Intelligent Robots and Systems .

[Sundaraj et al., 2001] Sundaraj, K., Laugier, C., and Costa, I. F.

(2001). An approach to LEM modelling: Construction, collision detection and

dynamic simulation. In Proceedings of IEEE/RSJ International Conference on

Intelligent Robots and Systems .

158 BIBLIOGRAPHY

[Terzopoulos and Waters, 1990] Terzopoulos, D. and Waters, K.

(1990). Physically-based facial modeling analysis and animation. Journal of Vi-

sualization and Computer Animation.

[Thibault and Naylor, 1987] Thibault, W. C. and Naylor, B. F. (1987).

Set operations on polyhedra using Binary Space Partioning trees. In Proceedings

of ACM Computer Graphics .

[Tseng and Lin, 2000] Tseng, D. C. and Lin, J. Y. (2000). A hybrid physical

deformation modeling for laparoscopic surgery simulation. In Proceedings of IEEE

International Conference of the Engineering on Medicine and Biology Society .

[Tumer and Engin, 1993] Tumer, S. and Engin, A. (1993). Three body seg-

ment dynamic model of the human knee. Journal Of Biomechanical Engineering .

[Ulrich, 2000] Ulrich, T. (2000). Game Programming Gems , chapter Loose Oc-

trees. Charles River Media.

[Van der Bergen, 1997] Van der Bergen, G. (1997). Efficient collision detec-

tion of complex deformable models using AABB trees. Journal of Graphic Tools .

[Van der Bergen, 1999] Van der Bergen, G. (1999). A fast and robust GJK

implementation for collision detection of convex objects. Journal of Graphic Tools .

[Van der Bergen, 2001] Van der Bergen, G. (2001). Proximity queries and

penetration depth computation on 3D game objects. In Proceeding of Game De-

velopers Conference.

[Vepstas, 1996] Vepstas, L. (1996). High performance graphics hardware design

requirements. Technical report, http://linas.org/linux/graphics.html.

[Waters, 1987] Waters, K. (1987). A muscle model for animating three dimen-

sional facial expression. In Proceedings of ACM SIGGRAPH .

BIBLIOGRAPHY 159

Real-Time Dynamic Simulation and 3D Interaction of
Biological Tissue : Application to Medical Simulators

The advent of medical imaging and new operating techniques has revolutionized the
working methods of medical professionals. This change requires physicians and sur-
geons to undergo additional training. This is why the development of appropriate
tools, like medical simulators, is of paramount importance. Within this context,
we focus our work on physical modeling of soft tissue deformations and collision
detection in virtual environments. First, we present various physical models and
the numerical resolution methods associated with deformable objects. We then pro-
pose a new model developed for soft tissue simulation, by successively presenting
the aspects related to the formulation of the model, the resolution of the model, and
the treatment of the physical interactions. This model, based on Pascal’s principle,
allows us in a relatively simple way to represent biological tissue, thus making it
possible for interactive simulation. Next, we present various existing algorithms for
collision detection, as well as the difficulty in adapting these algorithms in medical
simulators where complex deformable objects form the base of the simulated envi-
ronment. We then propose the algorithms developed in our work to deal with this
problem within the framework of the medical simulators. These algorithms have bet-
ter numerical robustness and are optimized, allowing us to treat deformable bodies
effectively. We apply our results within the framework of an echographic simulator
of the human thigh and a simulator for the arthroscopic reconstruction of the ACL
(anterior cruciate ligament of the knee).

Keywords : Medical Simulation, Deformable Models, Collision Detection.

Simulation Dynamique en Temps-Réel et Interaction 3D de
Tissu Biologique : Application aux Simulateurs Médicaux

L’avènement de l’imagerie médicale et de nouvelles techniques opératoires a
bouleversé les méthodes de travail des médecins. Mais ce changement nécessit-
era une formation renforcée des praticiens et chirurgiens. C’est pourquoi le dével-
opment d’outils appropriés comme les simulateurs médico-chirurgicaux se fait de
plus en plus ressentir. Dans ce cadre, nous nous sommes intéressés au problème
de la modélisation des phénomènes de déformation de tissu biologique et à la dé-
tection des collisions dans un environment virtuel. Dans un premier temps, nous
présentons les différents modèles physiques existants et les différentes méthodes de
résolution numérique associées aux objets déformable. Nous proposons ensuite un
modèle développé pour la simulation de tissu biologique, en présentant successive-
ment les aspects liés à la formulation du modèle, à la résolution du modèle, et au
traitement des interactions physiques. Ce modèle, basé sur l’utilisation du principe
de Pascal, permet de modéliser de manière relativement satisfaisante des corps bi-
ologiques, tout en permettant une simulation interactive. Dans un deuxième temps,
nous présentons les différents algorithmes existants pour la détection de collision,
ainsi que la difficulté d’adapter ces algorithmes aux simulateurs médicaux où les ob-
jets déformables complexes forment la base du modèle. Nous proposons ensuite les
algorithmes développés pour traiter ce problème dans le cadre des simulateurs médi-
caux. Ces algorithmes présentent des caractéristiques de robustesse numérique et
d’efficacité supérieures á l’existant, et permettent de traiter des corps déformables.
Nous appliquons ces résultats dans le cadre d’un simulateur échographique de la
cuisse humaine et d’une simulateur de chirurgie arthroscopique du LCA (ligament
croisé antérieur du genou).

Mots Clés : Simulation Médicale, Modèles Déformables, Détection de Collision.

	Acknowledgements
	Contents
	Extended Abstract (in French)
	1 Introduction
	1.1 Context and Motivations
	1.2 Description of the Problem
	1.3 Goals and Contribution
	1.4 Thesis Outline

	Part I Modeling Soft Tissue
	2 State of the Art
	2.1 Introduction
	2.2 Computation Models
	2.2.1 Mass-Spring Network (MSN)
	2.2.2 Elasticity Theory Method (ETM)
	2.2.3 Finite Element Method (FEM)
	2.2.4 Tensor-Mass Model (TMM)
	2.2.5 Hybrid Elasticity Model (HEM)
	2.2.6 Method of Finite Spheres (MFS)
	2.2.7 Boundary Element Method (BEM)
	2.2.8 Long Element Method (LEM)

	2.3 Resolution Methods
	2.3.1 Static Systems
	2.3.2 Dynamic Systems

	2.4 Summary

	3 The Volume Distribution Method (VDM)
	3.1 Introduction
	3.2 Mathematical Formulation
	3.2.1 Notations
	3.2.2 Distributed Area and Volume
	3.2.3 Bulk Modulus
	3.2.4 Volumic Pressure
	3.2.5 Volumic Tension
	3.2.6 Equilibrium State
	3.2.7 Model Assemblage
	3.2.8 Anisotropic Behavior
	3.2.9 Stress Distribution
	3.2.10 Imposing Constraints

	3.3 System Resolution
	3.3.1 Linear Analysis
	3.3.2 Quasi-Linear Analysis
	3.3.3 Nonlinear Analysis

	3.4 Simulation Results
	3.5 Summary

	Part II Collision Detection
	4 State of the Art
	4.1 Introduction
	4.2 Software Models
	4.2.1 Pair Selection
	4.2.2 Zone of Collision
	4.2.3 Colliding Entities

	4.3 Implementation Issues
	4.3.1 Complexity
	4.3.2 Memory Storage
	4.3.3 Frame Coherence

	4.4 Hardware Models
	4.4.1 Z-Buffer Comparisons
	4.4.2 Distance Fields

	4.5 Summary

	5 Collision Detection for Medical Simulators
	5.1 Introduction
	5.2 Distance Computation of Convex Objects
	5.2.1 Description of the Algorithm
	5.2.2 Experimental Results

	5.3 Distance Computation of Concave Objects
	5.3.1 Description of the Algorithm
	5.3.2 Experimental Results

	5.4 Collision Detection of Deformable Objects
	5.4.1 Description of the Algorithm
	5.4.2 Experimental Results

	5.5 Contact Localization for Collision Treatment
	5.5.1 Description of the Algorithm
	5.5.2 Experimental Results

	5.6 Summary

	Part III Virtual Reality Applications
	6 Medical Simulators
	6.1 Introduction
	6.2 Echographic Thigh Exam
	6.2.1 Motivations
	6.2.2 Thigh Deformable Model
	6.2.3 Interaction
	6.2.4 Experimental Results
	6.2.5 Conclusion

	6.3 Arthroscopy Knee Reconstruction
	6.3.1 Motivations
	6.3.2 AKR using OrthoPilot
	6.3.3 ACL Deformable Model
	6.3.4 Intra-Operative Surgery
	6.3.5 Experimental Results
	6.3.6 Conclusion

	6.4 Summary

	7 Conclusion
	7.1 Summary of Findings
	7.2 Analysis
	7.3 Perspectives

	APPENDICES
	A Collision Detection Libraries
	A.1 Convex Based Packages
	A.2 Polygon Soup Based Packages

	B ColDetect - Reference Manual
	B.1 Introduction
	B.2 Installation

	Index of cited Authors
	Bibliography

