Modèles et outils pour les invariances d'échelle brisées :

variations sur la transformation de Lamperti et contributions aux modèles statistiques de vortex en turbulence

Pierre BORGNAT

22 novembre 2002

Laboratoire de physique - Équipe Sisyphe (Signaux, Systèmes et Physique)

• Signal de vitesse en turbulence

 \rightarrow Le signal à différents zooms se ressemble.

- Signal de vitesse en turbulence
- \rightarrow Le signal à différents zooms se ressemble.
- \rightarrow Mais pas simplement : existence de **structures** dans un écoulement de fluide.

• Signal de vitesse en turbulence

- \rightarrow Le signal à différents zooms se ressemble.
- \rightarrow Mais pas simplement : existence de **structures** dans un écoulement de fluide.

• Caractériser les propriétés en échelle ...

- \rightarrow Le signal à différents zooms se ressemble.
- \rightarrow Mais pas simplement : existence de **structures** dans un écoulement de fluide.

- Caractériser les propriétés en échelle ...
- \rightarrow ...des zones structurées en turbulence, en particulier les **tourbillons**,
- \rightarrow ...plus généralement, d'un signal avec une similitude en échelle.

• Signal de vitesse en turbulence

- \rightarrow Le signal à différents zooms se ressemble.
- \rightarrow Mais pas simplement : existence de **structures** dans un écoulement de fluide.

- Caractériser les propriétés en échelle ...
- \rightarrow ...des zones structurées en turbulence, en particulier les **tourbillons**,
- \rightarrow ...plus généralement, d'un signal avec une similitude en échelle.

• Outil commun envisagé : analyse en terme d'échelle de Mellin.

Objectif. Outils et modèles pour l'auto-similarité (ou invariance d'échelle).

Objectif. Outils et modèles pour l'auto-similarité (ou invariance d'échelle).

 \rightarrow Paradigme largement employé en physique et traitement du signal

(depuis par exemple Mandelbrot \sim 1970).

 \rightarrow Nécessite de définir les notions sous-jacentes.

Objectif. Outils et modèles pour l'auto-similarité (ou invariance d'échelle).

 \rightarrow Paradigme largement employé en physique et traitement du signal

(depuis par exemple Mandelbrot \sim 1970).

 \rightarrow Nécessite de définir les notions sous-jacentes.

Point de départ. Traitement des signaux stationnaires.

Objectif. Outils et modèles pour l'auto-similarité (ou invariance d'échelle).

 \rightarrow Paradigme largement employé en physique et traitement du signal

(depuis par exemple Mandelbrot \sim 1970).

 \rightarrow Nécessite de définir les notions sous-jacentes.

Point de départ. Traitement des signaux stationnaires.

Solution explorée.

Relier l'auto-similaire et le stationnaire en utilisant une opération adaptée qui stationnarise le signal :

la transformation de Lamperti.

Idée. Le signal révèle la même chose à chaque instant.

Idée. Le signal révèle la même chose à chaque instant.

Définition 1. Un processus aléatoire $\{Y(t), t \in \mathbb{R}\}$ est dit stationnaire si pour tout $\tau \in \mathbb{R}$,

$$(\mathcal{S}_{\tau}Y)(t) := Y(t+\tau) \stackrel{d}{=} Y(t), \ t \in \mathbb{R}.$$

Idée. Le signal révèle la même chose à chaque instant.

Définition 1. Un processus aléatoire $\{Y(t), t \in \mathbb{R}\}$ est dit stationnaire si pour tout $\tau \in \mathbb{R}$,

$$\left(\mathcal{S}_{\tau}Y\right)(t) := Y(t+\tau) \stackrel{d}{=} Y(t), \ t \in \mathbb{R}.$$

Idée. Le signal révèle la même chose à chaque instant.

Définition 1. Un processus aléatoire $\{Y(t), t \in \mathbb{R}\}$ est dit stationnaire si pour tout $\tau \in \mathbb{R}$,

$$\left(\mathcal{S}_{\tau}Y\right)(t) := Y(t+\tau) \stackrel{d}{=} Y(t), \ t \in \mathbb{R}.$$

Idée. Le signal révèle la même chose à chaque instant.

Définition 1. Un processus aléatoire $\{Y(t), t \in \mathbb{R}\}$ est dit stationnaire si pour tout $\tau \in \mathbb{R}$,

$$(\mathcal{S}_{\boldsymbol{\tau}}Y)(t) := Y(t+\boldsymbol{\tau}) \stackrel{d}{=} Y(t), \ t \in \mathbb{R}.$$

 $\textbf{Conséquences.} \rightarrow \textbf{Covariance stationnaire}$

$$R_Y(t,s) := \mathbb{E}\left\{Y(t)\overline{Y(s)}\right\} = \gamma_Y(t-s).$$

Idée. Le signal révèle la même chose à chaque instant.

Définition 1. Un processus aléatoire $\{Y(t), t \in \mathbb{R}\}$ est dit stationnaire si pour tout $\tau \in \mathbb{R}$, $(S, V)(t) \leftarrow V(t + \tau)^{-d} V(t) = t \in \mathbb{D}$

$$\left(\mathcal{S}_{\tau}Y\right)(t) := Y(t+\tau) \stackrel{d}{=} Y(t), \ t \in \mathbb{R}.$$

 $\textbf{Conséquences.} \rightarrow \textbf{Covariance stationnaire}$

$$R_Y(t,s) := \mathbb{E}\left\{Y(t)\overline{Y(s)}\right\} = \gamma_Y(t-s).$$

 \rightarrow Analyse de Fourier

Idée. Le signal révèle la même chose à chaque instant.

Définition 1. Un processus aléatoire $\{Y(t), t \in \mathbb{R}\}$ est dit stationnaire si pour tout $\tau \in \mathbb{R}$,

$$\left(\mathcal{S}_{\tau}Y\right)(t) := Y(t+\tau) \stackrel{d}{=} Y(t), \ t \in \mathbb{R}.$$

 $\textbf{Conséquences.} \rightarrow \textbf{Covariance stationnaire}$

$$R_Y(t,s) := \mathbb{E}\left\{Y(t)\overline{Y(s)}\right\} = \gamma_Y(t-s).$$

 \rightarrow Analyse de Fourier

$$\begin{cases} \gamma_Y(\tau) = \int e^{i2\pi\nu\tau} dS_Y(\nu) \\ Y(t) = \int e^{i2\pi\nu\tau} d\tilde{Y}(\nu) \\ \mathbb{E}\left\{ d\tilde{Y}(\nu_1) \overline{d\tilde{Y}(\nu_1)} \right\} = \delta(\nu_1 - \nu_2) dS_Y(\nu_1) d\nu_2 \end{cases}$$

Définition de l'invariance d'échelle

Idée. Le signal révèle la même chose à chaque échelle.

Idée. Le signal révèle la même chose à chaque échelle.

Le signal est invariant par changement d'échelle ou dilatation $\mathcal{D}_{H,\lambda}$

$$\left(\mathcal{D}_{H,\lambda}X\right)(t) := \lambda^{-H}X(\lambda t) \stackrel{d}{=} X(t), \ t > 0.$$

Idée. Le signal révèle la même chose à chaque échelle.

Le signal est invariant par changement d'échelle ou dilatation $\mathcal{D}_{H,\lambda}$

$$\left(\mathcal{D}_{H,\lambda}X\right)(t) := \lambda^{-H}X(\lambda t) \stackrel{d}{=} X(t), \ t > 0.$$

Idée. Le signal révèle la même chose à chaque échelle.

Le signal est invariant par changement d'échelle ou dilatation $\mathcal{D}_{H,\lambda}$

$$(\mathcal{D}_{H,\lambda}X)(t) := \lambda^{-H}X(\lambda t) \stackrel{d}{=} X(t), \ t > 0.$$

Idée. Le signal révèle la même chose à chaque échelle.

Le signal est invariant par changement d'échelle ou dilatation $\mathcal{D}_{H,\lambda}$

$$(\mathcal{D}_{H,\lambda}X)(t) := \lambda^{-H}X(\lambda t) \stackrel{d}{=} X(t), \ t > 0.$$

Idée. Le signal révèle la même chose à chaque échelle.

Le signal est invariant par changement d'échelle ou dilatation $\mathcal{D}_{H,\lambda}$

Définition 2. Un processus aléatoire $\{X(t), t \ge 0\}$ est dit auto-similaire d'indice H (noté "H-ss") si pour tout $\lambda > 0$,

$$\left(\mathcal{D}_{H,\lambda}X\right)(t) := \lambda^{-H}X(\lambda t) \stackrel{d}{=} X(t), \ t > 0.$$

Conséquences. ...?

Idée. Le signal révèle la même chose à chaque échelle.

Le signal est invariant par changement d'échelle ou dilatation $\mathcal{D}_{H,\lambda}$

Définition 2. Un processus aléatoire $\{X(t), t \ge 0\}$ est dit auto-similaire d'indice H (noté "H-ss") si pour tout $\lambda > 0$,

$$\left(\mathcal{D}_{H,\lambda}X\right)(t) := \lambda^{-H}X(\lambda t) \stackrel{d}{=} X(t), \ t > 0.$$

Conséquences. ... ? -> Stationnarité et auto-similarité sont **incompatibles**

Idée. Le signal révèle la même chose à chaque échelle.

Le signal est invariant par changement d'échelle ou dilatation $\mathcal{D}_{H,\lambda}$

Définition 2. Un processus aléatoire $\{X(t), t \ge 0\}$ est dit auto-similaire d'indice H (noté "H-ss") si pour tout $\lambda > 0$,

$$\left(\mathcal{D}_{H,\lambda}X\right)(t) := \lambda^{-H}X(\lambda t) \stackrel{d}{=} X(t), \ t > 0.$$

Conséquences. ... ? \rightarrow Stationnarité et auto-similarité sont **incompatibles**

 \rightarrow Usuellement : introduire une stationnarité ailleurs (accroissements stationnaires, ondelettes, ...)

Idée. Le signal révèle la même chose à chaque échelle.

Le signal est invariant par changement d'échelle ou dilatation $\mathcal{D}_{H,\lambda}$

Définition 2. Un processus aléatoire $\{X(t), t \ge 0\}$ est dit auto-similaire d'indice H (noté "H-ss") si pour tout $\lambda > 0$,

$$\left(\mathcal{D}_{H,\lambda}X\right)(t) := \lambda^{-H}X(\lambda t) \stackrel{d}{=} X(t), \ t > 0.$$

Conséquences. ... ? \rightarrow Stationnarité et auto-similarité sont **incompatibles**

 \rightarrow Usuellement : introduire une stationnarité ailleurs (accroissements stationnaires, ondelettes, ...)

 \rightarrow Démarche proposée ici : **stationnariser** le processus.

Définition 3. Étant donné $H \ge 0$, la transformation de Lamperti \mathcal{L}_H d'un processus stochastique $\{Y(t), t \in \mathbb{R}\}$ est définie par :

 $(\mathcal{L}_H Y)(t) = t^H Y(\ln t), \ t > 0.$

Définition 3. Étant donné $H \ge 0$, la transformation de Lamperti \mathcal{L}_H d'un processus stochastique $\{Y(t), t \in \mathbb{R}\}$ est définie par :

 $(\mathcal{L}_H Y)(t) = t^H Y(\ln t), \ t > 0.$

Définition 4. Étant donné $H \ge 0$, la transformation de Lamperti inverse \mathcal{L}_H^{-1} d'un processus stochastique $\{X(t), t > 0\}$ est définie par :

 $(\mathcal{L}_{H}^{-1}X)(t) = e^{-Ht}X(e^{t}), \ t \in \mathbb{R}.$

Définition 3. Étant donné $H \ge 0$, la transformation de Lamperti \mathcal{L}_H d'un processus stochastique $\{Y(t), t \in \mathbb{R}\}$ est définie par :

 $(\mathcal{L}_H Y)(t) = t^H Y(\ln t), \ t > 0.$

Définition 4. Étant donné $H \ge 0$, la transformation de Lamperti inverse \mathcal{L}_{H}^{-1} d'un processus stochastique $\{X(t), t > 0\}$ est définie par :

$$(\mathcal{L}_H^{-1}X)(t) = e^{-Ht}X(e^t), \ t \in \mathbb{R}.$$

Théorème 1. [Lamperti, 1962]

Si $\{Y(t), t \in \mathbb{R}\}$ est un processus stationnaire alors sa transformée de Lamperti $\{(\mathcal{L}_H Y)(t), t > 0\}$ est auto-similaire d'indice H.

Définition 3. Étant donné $H \ge 0$, la transformation de Lamperti \mathcal{L}_H d'un processus stochastique $\{Y(t), t \in \mathbb{R}\}$ est définie par :

 $(\mathcal{L}_H Y)(t) = t^H Y(\ln t), \ t > 0.$

Définition 4. Étant donné $H \ge 0$, la transformation de Lamperti inverse \mathcal{L}_{H}^{-1} d'un processus stochastique $\{X(t), t > 0\}$ est définie par :

$$(\mathcal{L}_H^{-1}X)(t) = e^{-Ht}X(e^t), \ t \in \mathbb{R}.$$

Théorème 1. [Lamperti, 1962]

Si $\{Y(t), t \in \mathbb{R}\}$ est un processus stationnaire alors sa transformée de Lamperti $\{(\mathcal{L}_H Y)(t), t > 0\}$ est auto-similaire d'indice H.

Inversement, si $\{X(t), t > 0\}$ est auto-similaire d'indice H, alors sa transformée de Lamperti inverse $\{(\mathcal{L}_{H}^{-1}X)(t), t > 0\}$ est stationnaire.
Illustration : naviguer entre stationnarité et auto-similarité.

Illustration : naviguer entre stationnarité et auto-similarité.

Mouvements browniens (H = 1/2)

Illustration : naviguer entre stationnarité et auto-similarité.

Mouvements browniens (H = 1/2)

Illustration : naviguer entre stationnarité et auto-similarité.

Mouvements browniens (H = 1/2)

X(t)

Illustration : naviguer entre stationnarité et auto-similarité.

Mouvements browniens (H = 1/2)

1.5

2.5

3

3.5

5.5

4.5

X(t)

 $Y(t) = \left(\mathcal{L}_H^{-1}X\right)(t)$

Illustration : naviguer entre stationnarité et auto-similarité.

Mouvements browniens (H = 1/2)

X(t)

 $Y(t) = \left(\mathcal{L}_H^{-1}X\right)(t)$

Illustration : naviguer entre stationnarité et auto-similarité.

Mouvements browniens (H = 1/2)

X(t)

Réinterprétation du Théorème de Lamperti

Réinterprétation du Théorème de Lamperti

La transformation de Lamperti garantit essentiellement l'équivalence unitaire des opérateurs $\mathcal{D}_{H,\lambda}$ et \mathcal{S}_{τ} .

$$\mathcal{L}_{H}{}^{-1}\mathcal{D}_{H,\lambda}\mathcal{L}_{H}=\mathcal{S}_{\ln\lambda} \quad ext{et} \quad \mathcal{L}_{H} \ \mathcal{S}_{ au} \ \mathcal{L}_{H}{}^{-1}=\mathcal{D}_{H,e^{ au}}$$

Réinterprétation du Théorème de Lamperti

La transformation de Lamperti garantit essentiellement l'équivalence unitaire des opérateurs $\mathcal{D}_{H,\lambda}$ et \mathcal{S}_{τ} .

$$\mathcal{L}_{H}^{-1}\mathcal{D}_{H,\lambda}\mathcal{L}_{H} = \mathcal{S}_{\ln\lambda} \quad \text{et} \quad \mathcal{L}_{H} \mathcal{S}_{\tau} \mathcal{L}_{H}^{-1} = \mathcal{D}_{H,e^{\tau}}$$

De même, la transformation met en regard :

La transformation de Lamperti garantit essentiellement l'équivalence unitaire des opérateurs $\mathcal{D}_{H,\lambda}$ et \mathcal{S}_{τ} .

$$\mathcal{L}_{H}^{-1}\mathcal{D}_{H,\lambda}\mathcal{L}_{H} = \mathcal{S}_{\ln\lambda} \quad \text{et} \quad \mathcal{L}_{H} \mathcal{S}_{\tau} \mathcal{L}_{H}^{-1} = \mathcal{D}_{H,e^{\tau}}$$

De même, la transformation met en regard :

• les descriptions des propriétés d'un signal en fonction de l'échelle

La transformation de Lamperti garantit essentiellement l'équivalence unitaire des opérateurs $\mathcal{D}_{H,\lambda}$ et \mathcal{S}_{τ} .

$$\mathcal{L}_{H}^{-1}\mathcal{D}_{H,\lambda}\mathcal{L}_{H} = \mathcal{S}_{\ln\lambda} \quad \text{et} \quad \mathcal{L}_{H} \mathcal{S}_{\tau} \mathcal{L}_{H}^{-1} = \mathcal{D}_{H,e^{\tau}}$$

De même, la transformation met en regard :

• les descriptions des propriétés d'un signal en fonction de l'échelle

• les descriptions des propriétés d'un signal en temps

La transformation de Lamperti garantit essentiellement l'équivalence unitaire des opérateurs $\mathcal{D}_{H,\lambda}$ et \mathcal{S}_{τ} .

$$\mathcal{L}_{H}^{-1}\mathcal{D}_{H,\lambda}\mathcal{L}_{H} = \mathcal{S}_{\ln\lambda} \quad \text{et} \quad \mathcal{L}_{H} \mathcal{S}_{\tau} \mathcal{L}_{H}^{-1} = \mathcal{D}_{H,e^{\tau}}$$

De même, la transformation met en regard :

• les descriptions des propriétés d'un signal en fonction de l'échelle

• les descriptions des propriétés d'un signal en temps

[→] domaine **connu** (méthodes et modèles de l'analyse des signaux stationnaires, temps-fréquence,...)

La transformation de Lamperti garantit essentiellement l'équivalence unitaire des opérateurs $\mathcal{D}_{H,\lambda}$ et \mathcal{S}_{τ} .

$$\mathcal{L}_{H}^{-1}\mathcal{D}_{H,\lambda}\mathcal{L}_{H} = \mathcal{S}_{\ln\lambda} \quad \text{et} \quad \mathcal{L}_{H} \mathcal{S}_{\tau} \mathcal{L}_{H}^{-1} = \mathcal{D}_{H,e^{\tau}}$$

De même, la transformation met en regard :

• les descriptions des propriétés d'un signal en fonction de l'échelle

 \rightarrow outils envisagés ici : construits sur la transformée de Mellin.

• les descriptions des propriétés d'un signal en temps

 \rightarrow domaine **connu** (méthodes et modèles de l'analyse des signaux stationnaires, temps-fréquence,...)

La description en transformée de Mellin

• Justifier le formalisme de Mellin.

La description en transformée de Mellin

• Justifier le formalisme de Mellin.

$$(\mathbf{M}x)(H + i2\pi\beta) = (\mathbf{F}\mathcal{L}_H^{-1}x)(\beta)$$

avec les définitions

$$\begin{cases} (\mathbf{F}y)(\nu) = \int_{-\infty}^{+\infty} y(t)e^{-i2\pi\nu t} dt \\ (\mathbf{M}x)(H+i2\pi\beta) = \int_{0}^{\infty} x(t)t^{-H}t^{-i2\pi\beta-1} dt \end{cases}$$

La description en transformée de Mellin

• Justifier le formalisme de Mellin.

$$(\mathbf{M}x)(H + i2\pi\beta) = (\mathbf{F}\mathcal{L}_H^{-1}x)(\beta)$$

avec les définitions

$$\begin{cases} (\mathbf{F}y)(\nu) = \int_{-\infty}^{+\infty} y(t)e^{-i2\pi\nu t} dt \\ (\mathbf{M}x)(\mathbf{H} + i2\pi\beta) = \int_{0}^{\infty} x(t)t^{-\mathbf{H}}t^{-i2\pi\beta-1} dt \end{cases}$$

• Elle opère une décomposition en échelle de Mellin β

La description en transformée de Mellin

• Justifier le formalisme de Mellin.

$$(\mathbf{M}x)(H + i2\pi\beta) = (\mathbf{F}\mathcal{L}_H^{-1}x)(\beta)$$

avec les définitions

$$\begin{cases} (\mathbf{F}y)(\nu) = \int_{-\infty}^{+\infty} y(t)e^{-i2\pi\nu t} dt \\ (\mathbf{M}x)(H+i2\pi\beta) = \int_{0}^{\infty} x(t)t^{-H}t^{-i2\pi\beta-1} dt \end{cases}$$

- Elle opère une décomposition en échelle de Mellin β
- \rightarrow Chirps de Mellin $t^{H+i2\pi\beta}$ sont les fonctions propres de l'opération de changement d'échelle.

```
Schéma de réflexion - utiliser \mathcal{L}_H
```

Schéma de réflexion - utiliser \mathcal{L}_H

Pour les processus auto-similaires

• Covariances caractérisées en $R_X(t,s) := \mathbb{E}\left\{X(t)\overline{X(s)}\right\} = (ts)^H c_X(t/s)$

et $c_X(e^{\tau})$ est une fonction de corrélation.

Pour les processus auto-similaires

• Covariances caractérisées en $R_X(t,s) := \mathbb{E}\left\{X(t)\overline{X(s)}\right\} = (ts)^H c_X(t/s)$

et $c_X(e^{\tau})$ est une fonction de corrélation. $c_X(t/s) = \gamma_{\mathcal{L}_H} - 1_X(t-s)$

Pour les processus auto-similaires

• Covariances caractérisées en $R_X(t,s) := \mathbb{E}\left\{X(t)\overline{X(s)}\right\} = (ts)^H c_X(t/s)$

et $c_X(e^{\tau})$ est une fonction de corrélation. $c_X(t/s) = \gamma_{\mathcal{L}_H} - 1_X(t-s)$

• Analyse spectrale de Mellin.

 $\Xi_X(\beta) = (\mathbf{M}c_X)(H + i2\pi\beta)$

Pour les processus auto-similaires

• Covariances caractérisées en $R_X(t,s) := \mathbb{E}\left\{X(t)\overline{X(s)}\right\} = (ts)^H c_X(t/s)$ et $c_X(e^{\tau})$ est une fonction de corrélation. $c_X(t/s) = \gamma_{\mathcal{L}_H}^{-1} (t-s)$

• Analyse spectrale de Mellin.

$$\Xi_X(\beta) = (\mathbf{M}c_X)(H + i2\pi\beta) \qquad (\mathbf{F}\gamma_Y)(\nu) = \Gamma_Y(\nu)$$

Pour les processus auto-similaires

- Covariances caractérisées en $R_X(t,s) := \mathbb{E}\left\{X(t)\overline{X(s)}\right\} = (ts)^H c_X(t/s)$
 - et $c_X(e^{\tau})$ est une fonction de corrélation. $c_X(t/s) = \gamma_{\mathcal{L}_H} 1_X(t-s)$
- Analyse spectrale de Mellin.

$$\Xi_X(\beta) = (\mathbf{M}c_X)(H + i2\pi\beta) \qquad (\mathbf{F}\gamma_Y)(\nu) = \Gamma_Y(\nu)$$
$$= \Gamma_{\mathcal{L}_H}^{-1}(\beta)$$

Pour les processus auto-similaires

• Covariances caractérisées en $R_X(t,s) := \mathbb{E}\left\{X(t)\overline{X(s)}\right\} = (ts)^H c_X(t/s)$ et $c_X(e^{\tau})$ est une fonction de corrélation. $c_X(t/s) = \gamma_{\mathcal{L}_H}^{-1} (t-s)$

• Analyse spectrale de Mellin.

$$\Xi_X(\beta) = (\mathbf{M}c_X)(H + i2\pi\beta) \qquad (\mathbf{F}\gamma_Y)(\nu) = \Gamma_Y(\nu)$$
$$= \Gamma_{\mathcal{L}_H}^{-1}(\beta)$$

• Décomposition (de type Cramér)...

$$X(t) = \int_{-\infty}^{+\infty} t^{H+i2\pi\sigma} \mathrm{d}\xi(\sigma)$$
de processus *H*-ss : d $\xi(\sigma)$ décorrélés

$$Y(t) = \int e^{i2\pi ft} d\xi(f)$$

...pour un processus stationnaire : $\mathrm{d}\xi(f)$ décorrélés

$$\mathbb{E}\left\{\mathrm{d}\xi(\beta)\overline{\mathrm{d}\xi(\sigma)}\right\} = \Xi_X(\beta)\ \delta(\beta - \sigma)\mathrm{d}\beta\mathrm{d}\sigma$$

Filtres covariants en échelle

Définition 5. – Un système covariant en échelle \mathcal{G} commute avec toute dilatation

 $\mathcal{GD}_{H,\lambda} = \mathcal{D}_{H,\lambda}\mathcal{G} \qquad (\forall \lambda > 0) (\forall H \in \mathbb{R}).$

Filtres covariants en échelle

Définition 5.– Un système covariant en échelle \mathcal{G} commute avec toute dilatationfiltre

 $\mathcal{GD}_{H,\lambda} = \mathcal{D}_{H,\lambda}\mathcal{G} \qquad (\forall \lambda > 0) \ (\forall H \in \mathbb{R}) \ .$ Filtre linéaire covariant – convolution multiplicative

 $(\mathcal{G}X)(t) = \int_0^{+\infty} g(t/s)X(s)\mathrm{d}s/s.$

Propriété principale – préserve l'auto-similarité.

filtre LTI \mathcal{H}

$$\mathcal{HS}_{ au} = \mathcal{S}_{ au}\mathcal{H}$$

$$(\mathcal{H}Y)(t) = \int_{-\infty}^{+\infty} h(t-s)Y(s)\mathrm{d}s$$

... préserve la stationnarité.

Filtres covariants en échelle

Définition 5. – Un système covariant en échelle G commute avec toute dilatation

 $\mathcal{GD}_{H,\lambda} = \mathcal{D}_{H,\lambda}\mathcal{G} \qquad (\forall \lambda > 0) \ (\forall H \in \mathbb{R}) \ .$ Filtre linéaire covariant – convolution multiplicative

$$(\mathcal{G}X)(t) = \int_0^{+\infty} g(t/s)X(s)\mathrm{d}s/s.$$

Propriété principale – préserve l'auto-similarité.

filtre LTI \mathcal{H}

$$\mathcal{HS}_{ au} = \mathcal{S}_{ au}\mathcal{H}$$

$$\mathcal{H}Y)(t) = \int_{-\infty}^{+\infty} h(t-s)Y(s)\mathrm{d}s$$

... préserve la stationnarité.

Relations de filtrage en échelle. $X(t) = (\mathcal{G}A)(t)$.

$$\longrightarrow c_X(\lambda) = \int_0^\infty c_g(\lambda/u) c_A(u) du/u$$

avec la corrélation de Mellin

$$c_g(\lambda) := \int_0^\infty g(\lambda u) g(u) u^{-2H} \mathrm{d}u/u.$$

Représentation en sortie de filtre

Représentation en sortie de filtre

Représentation générale d'un signal *H*-ss.

$$X(t) = \int_0^{+\infty} g(t/s) \mathrm{d}V(s)/s,$$

dV(t) bruit blanc transformé de Lamperti

$$\mathbb{E}\left\{\mathrm{d}V(t)\mathrm{d}V(s)\right\} = \sigma^2 t^{2H+1}\delta(t-s)\mathrm{d}t\mathrm{d}s$$

Représentation en sortie de filtre

Représentation générale d'un signal *H*-ss.

$$X(t) = \int_0^{+\infty} g(t/s) \mathrm{d}V(s)/s,$$

dV(t) bruit blanc transformé de Lamperti

$$\mathbb{E}\left\{\mathrm{d}V(t)\mathrm{d}V(s)\right\} = \sigma^2 t^{2H+1}\delta(t-s)\mathrm{d}t\mathrm{d}s$$

Corrélation de Mellin pour les processus *H*-ss.

$$X(t) = \int_0^\infty g(t/s) \mathrm{d}V(s)/s,$$

implique alors

$$c_X(\lambda) = \sigma^2 \lambda^{-H} \int_0^\infty g(\lambda u) g(u) u^{-2H} du/u$$

Exemple du modèle de Noret

Exemple du modèle paramétrique de Noret

• Solution de l'équation de Langevin lampertisée :

 $tdX(t) + (\alpha - H)X(t)dt = dV(t) = t^{H+1/2}dB(t)$
Exemple du modèle de Noret

Exemple du modèle paramétrique de Noret

• Solution de l'équation de Langevin lampertisée :

$$tdX(t) + (\boldsymbol{\alpha} - \boldsymbol{H})X(t)dt = dV(t) = t^{\boldsymbol{H} + 1/2}dB(t)$$

• Représentation intégrale $(g(u) = u^{H-\alpha} \text{ si } u > 1)$

$$X_{\boldsymbol{\alpha},\boldsymbol{H}}(t) = \int_0^t (t/s)^{\boldsymbol{H}-\boldsymbol{\alpha}} \mathrm{d}V(s)/s$$

Exemple du modèle de Noret

Exemple du modèle paramétrique de Noret

• Solution de l'équation de Langevin lampertisée :

$$tdX(t) + (\alpha - H)X(t)dt = dV(t) = t^{H+1/2}dB(t)$$

• Représentation intégrale $(g(u) = u^{H-\alpha} \text{ si } u > 1)$

$$X_{\boldsymbol{\alpha},H}(t) = \int_0^t (t/s)^{H-\boldsymbol{\alpha}} \mathrm{d}V(s)/s$$

 \rightarrow modèle *H*-ss d'ordre 1, à deux paramètres.

$$R_{X_{\alpha,H}}(t,s) = \sigma^2(ts)^H \left(\frac{s}{t}\right)^{-\alpha}$$
 si $s > t$.

Au-delà de l'invariance en échelle complète

Élargir le schéma de réflexion

Au-delà de l'invariance en échelle complète

Élargir le schéma de réflexion

• B- Brisure partielle : $(\mathcal{D}_{H,\lambda}X) \cong X$ ou $(\mathcal{D}_{H,\lambda}X) \equiv X$ pour *certaines* dilatations

periodicité en échelle

• B- Brisure partielle : $(\mathcal{D}_{H,\lambda}X) \cong X$ ou $(\mathcal{D}_{H,\lambda}X) \equiv X$ pour *certaines* dilatations

 \rightarrow Développement : **DSI** étudiée comme image de la **cyclostationnarité**

• B- Brisure partielle : $(\mathcal{D}_{H,\lambda}X) \cong X$ ou $(\mathcal{D}_{H,\lambda}X) \equiv X$ pour *certaines* dilatations

 \rightarrow Développement : **DSI** étudiée comme image de la **cyclostationnarité**

• B- Brisure complète : $(\mathcal{D}_{H,\lambda}X) \neq X$ à chaque instant

• B- Brisure partielle : $(\mathcal{D}_{H,\lambda}X) \cong X$ ou $(\mathcal{D}_{H,\lambda}X) \equiv X$ pour *certaines* dilatations

 \rightarrow Développement : **DSI** étudiée comme image de la **cyclostationnarité**

• B- Brisure complète : $(\mathcal{D}_{H,\lambda}X) \neq X$ à chaque instant

Enjeu = décrire l'évolution en échelle et en temps des propriétés.

• B- Brisure partielle : $(\mathcal{D}_{H,\lambda}X) \cong X$ ou $(\mathcal{D}_{H,\lambda}X) \equiv X$ pour *certaines* dilatations

 \rightarrow Développement : **DSI** étudiée comme image de la **cyclostationnarité**

• B- Brisure complète : $(\mathcal{D}_{H,\lambda}X) \neq X$ à chaque instant

Enjeu = décrire l'évolution en échelle et en temps des propriétés.

→ Outils généraux de type temps-échelle de Mellin. Exemple : Spectre Wigner invariant en échelle.

• B- Brisure partielle : $(\mathcal{D}_{H,\lambda}X) \cong X$ ou $(\mathcal{D}_{H,\lambda}X) \equiv X$ pour *certaines* dilatations

 \rightarrow Développement : **DSI** étudiée comme image de la **cyclostationnarité**

• B- Brisure complète : $(\mathcal{D}_{H,\lambda}X) \neq X$ à chaque instant

Enjeu = décrire l'évolution en échelle et en temps des propriétés.

→ Outils généraux de type temps-échelle de Mellin. Exemple : Spectre Wigner invariant en échelle.

• C- Brisure de l'opérateur de changement d'échelle.

$$\left(\mathcal{D}^{\mathsf{brise}}X\right)\equiv X$$

Que faire?

• Auto-similarité locale en temps

- Auto-similarité locale en temps
- Invariance en échelle et taille finie

- Auto-similarité locale en temps
- Invariance en échelle et taille finie

 \rightarrow Bornes sur les zones où des lois / invariances d'échelle peuvent tenir.

- Auto-similarité locale en temps
- Invariance en échelle et taille finie

 \rightarrow Bornes sur les zones où des lois / invariances d'échelle peuvent tenir.

- Auto-similarité locale en temps
- Invariance en échelle et taille finie
- \rightarrow Bornes sur les zones où des lois / invariances d'échelle peuvent tenir.

 \rightarrow i) limites extérieures au modèle de description en échelle.

- Auto-similarité locale en temps
- Invariance en échelle et taille finie

 \rightarrow Bornes sur les zones où des lois / invariances d'échelle peuvent tenir.

 \rightarrow i) limites extérieures au modèle de description en échelle.

 \rightarrow ii) limites internes aux modèles : bornes à inclure dans les dilatations

- Auto-similarité locale en temps
- Invariance en échelle et taille finie

 \rightarrow Bornes sur les zones où des lois / invariances d'échelle peuvent tenir.

 \rightarrow i) limites extérieures au modèle de description en échelle.

 \rightarrow ii) limites internes aux modèles : bornes à inclure dans les dilatations

Idée développée par Nottale (relativité d'échelle, 1992), puis Dubrulle et Graner (1996).

Formalisme pour les échelles bornées

• Le champ X(t) est représenté par $U_X(s) = \ln \frac{X(t_0 e^s)}{X_0}$ où $s = \ln \frac{t}{t_0}$.

Formalisme pour les échelles bornées

- Le champ X(t) est représenté par $U_X(s) = \ln \frac{X(t_0 e^s)}{X_0}$ où $s = \ln \frac{t}{t_0}$.
- Dilatation usuelle est alors représentée par

$$(\mathcal{D}_{H,e^{\mu}}U_X)(s) = U_X(s+\mu) - H\mu$$

Formalisme pour les échelles bornées

- Le champ X(t) est représenté par $U_X(s) = \ln \frac{X(t_0 e^s)}{X_0}$ où $s = \ln \frac{t}{t_0}$.
- Dilatation usuelle est alors représentée par

$$(\mathcal{D}_{H,e^{\mu}}U_X)(s) = U_X(s+\mu) - H\mu$$

• Effet de taille finie : pris en compte en "limitant" l'échelle à l'intervalle $]s_-, s_+[$

Formalisme pour les échelles bornées

• Le champ X(t) est représenté par $U_X(s) = \ln \frac{X(t_0 e^s)}{X_0}$ où $s = \ln \frac{t}{t_0}$.

• Dilatation usuelle est alors représentée par

$$(\mathcal{D}_{H,e^{\mu}}U_X)(s) = U_X(s+\mu) - H\mu$$

• Effet de taille finie : pris en compte en "limitant" l'échelle à l'intervalle $]s_-, s_+[$ \rightarrow loi de composition sur un intervalle fini

$$s_1 \odot s_2 := \frac{s_1 + s_2 - s_1 s_2 (1/s_- + 1/s_+)}{1 - s_1 s_2/s_- s_+}$$

Loi de composition de Lorentz
Formalisme pour les échelles bornées

• Le champ X(t) est représenté par $U_X(s) = \ln \frac{X(t_0 e^s)}{X_0}$ où $s = \ln \frac{t}{t_0}$.

• Dilatation usuelle est alors représentée par

$$(\mathcal{D}_{H,e^{\mu}}U_X)(s) = U_X(s+\mu) - H\mu$$

• Effet de taille finie : pris en compte en "limitant" l'échelle à l'intervalle $]s_-, s_+[$ \rightarrow loi de composition sur un intervalle fini

$$s_1 \odot s_2 := \frac{s_1 + s_2 - s_1 s_2 (1/s_- + 1/s_+)}{1 - s_1 s_2/s_- s_+}$$

Loi de composition de Lorentz

 \rightarrow Introduire le morphisme de groupe S_{\odot}^{-1} entre $(]s_{-}, s_{+}[, \odot)$ et $(\mathbb{R}, +)$

Formalisme pour les échelles bornées

• Le champ X(t) est représenté par $U_X(s) = \ln \frac{X(t_0 e^s)}{X_0}$ où $s = \ln \frac{t}{t_0}$.

• Dilatation usuelle est alors représentée par

$$(\mathcal{D}_{H,e^{\mu}}U_X)(s) = U_X(s+\mu) - H\mu$$

• Effet de taille finie : pris en compte en "limitant" l'échelle à l'intervalle $]s_-, s_+[$ \rightarrow loi de composition sur un intervalle fini

$$s_1 \odot s_2 := \frac{s_1 + s_2 - s_1 s_2 (1/s_- + 1/s_+)}{1 - s_1 s_2/s_- s_+}$$

Loi de composition de Lorentz

→ Introduire le morphisme de groupe S_{\odot}^{-1} entre $(]s_{-}, s_{+}[, \odot)$ et $(\mathbb{R}, +)$ et S_{\otimes}^{-1} entre $(]U_{-}, U_{+}[, \otimes)$ et $(\mathbb{R}, +)$

Formalisme pour les échelles bornées

• L'opérateur de dilatation devient

$$(\mathcal{D}_{H,\mu}^{fs}U_X)(s) = U_X(s \odot \mu) \otimes g(\mu)$$

Formalisme pour les échelles bornées

• L'opérateur de dilatation devient

$$(\mathcal{D}_{H,\mu}^{fs}U_X)(s) = U_X(s \odot \mu) \otimes g(\mu)$$

 $'' \otimes g(\mu) \sim -H\mu''$ $''s \odot \mu \sim s + \mu''$

Formalisme pour les échelles bornées

• L'opérateur de dilatation devient

$$(\mathcal{D}_{H,\mu}^{fs}U_X)(s) = U_X(s \odot \mu) \otimes g(\mu)$$

$${'' \otimes g(\mu) \sim -H\mu'' \atop {''s \odot \mu \sim s + \mu''}}$$

Stationnarisation pour les invariances avec taille finie

Formalisme pour les échelles bornées

• L'opérateur de dilatation devient

$$(\mathcal{D}_{H,\mu}^{fs}U_X)(s) = U_X(s \odot \mu) \otimes g(\mu)$$

$${}'' \otimes g(\mu) \sim -H\mu'' \\ {}''s \odot \mu \sim s + \mu''$$

Stationnarisation pour les invariances avec taille finie

• On construit la transformation qui préserve la correspondance

$$\left(\mathcal{L}_{H}^{fs}\right)^{-1}\mathcal{D}_{H,\mu}^{fs}\mathcal{L}_{H}^{fs} = \mathcal{S}_{S_{\odot}^{-1}(\mu)}$$

Formalisme pour les échelles bornées

• L'opérateur de dilatation devient

$$(\mathcal{D}_{H,\mu}^{fs}U_X)(s) = U_X(s \odot \mu) \otimes g(\mu)$$

$${}'' \otimes g(\mu) \sim -H\mu'' \\ {}''s \odot \mu \sim s + \mu''$$

Stationnarisation pour les invariances avec taille finie

• On construit la transformation qui préserve la correspondance

$$\left(\mathcal{L}_{H}^{fs}\right)^{-1}\mathcal{D}_{H,\mu}^{fs}\mathcal{L}_{H}^{fs} = \mathcal{S}_{S_{\odot}^{-1}(\mu)}$$

avec
$$(\mathcal{L}_{H}^{fs}Y)(t) = \exp S_{\otimes} \{\ln Y(S_{\odot}^{-1}(\ln t)) + HS_{\odot}^{-1}(\ln t))\}$$

au lieu de
$$(\mathcal{L}_{H}Y)(t) = \exp\{\ln Y(\ln t) + H\ln t\}$$

Auto-similarité avec taille finie

• Fonctions invariantes d'échelle au sens de \mathcal{D}^{fs}

$$(\mathcal{D}_{g,\mu}^{fs}U^{fsi})(s) = U^{fsi}(s)$$

Auto-similarité avec taille finie

• Fonctions invariantes d'échelle au sens de \mathcal{D}^{fs}

$$(\mathcal{D}_{g,\mu}^{fs}U^{fsi})(s) = U^{fsi}(s) = U^{fsi}(0) \otimes \frac{-g(s)}{1 - g(s)(1/U_+ + 1/U_-)}$$

Auto-similarité avec taille finie

• Fonctions invariantes d'échelle au sens de \mathcal{D}^{fs}

$$(\mathcal{D}_{g,\mu}^{fs}U^{fsi})(s) = U^{fsi}(s) = U^{fsi}(0) \otimes \frac{-g(s)}{1 - g(s)(1/U_+ + 1/U_-)}$$

Auto-similarité avec taille finie

• Fonctions invariantes d'échelle au sens de \mathcal{D}^{fs}

$$(\mathcal{D}_{g,\mu}^{fs}U^{fsi})(s) = U^{fsi}(s) = U^{fsi}(0) \otimes \frac{-g(s)}{1 - g(s)(1/U_+ + 1/U_-)}$$

• Processus auto-similaires à invariance bornée

$$U^{fsi}(s) \stackrel{d}{=} (\mathcal{D}^{fs}_{g,\mu} U^{fsi})(s)$$

Auto-similarité avec taille finie

• Processus auto-similaires à invariance bornée

$$U^{fsi}(s) \stackrel{d}{=} (\mathcal{D}^{fs}_{g,\mu} U^{fsi})(s)$$

Auto-similarité avec taille finie

• Processus auto-similaires à invariance bornée

$$U^{fsi}(s) \stackrel{d}{=} (\mathcal{D}^{fs}_{g,\mu} U^{fsi})(s)$$

$$D_t \vec{v} = \partial_t \vec{v} + \underbrace{(\vec{v} \cdot \vec{\nabla})\vec{v}}_{\text{terme non-linéaire}} = -\frac{1}{\rho} \vec{\nabla} p + \underbrace{\nu \Delta \vec{v}}_{\text{terme visqueux}}$$

$$D_t \vec{v} = \partial_t \vec{v} + \underbrace{(\vec{v} \cdot \vec{\nabla})\vec{v}}_{\text{terme non-linéaire}} = -\frac{1}{\rho} \vec{\nabla} p + \underbrace{\nu \Delta \vec{v}}_{\text{terme visqueux}}$$

$$\mathsf{Re} = \frac{[\mathsf{non-linéaire}]}{[\mathsf{visqueux}]} = \frac{UL}{\nu}$$

$$D_t \vec{v} = \partial_t \vec{v} + \underbrace{(\vec{v} \cdot \vec{\nabla})\vec{v}}_{\text{terme non-linéaire}} = -\frac{1}{\rho}\vec{\nabla}p + \underbrace{\nu\Delta\vec{v}}_{\text{terme visqueux}}$$

$$\mathsf{Re} = \frac{[\mathsf{non-linéaire}]}{[\mathsf{visqueux}]} = \frac{UL}{\nu} \gg 1$$

$$\operatorname{Re} = \frac{[\operatorname{non-linéaire}]}{[\operatorname{visqueux}]} = \frac{UL}{\nu} \gg 1$$

Théorie de Kolmogorov (1941)

Pour les accroissements de vitesse : $\delta \vec{v}(\vec{l}, \vec{r}) = \vec{v}(\vec{l} + \vec{r}) - \vec{v}(\vec{r})$.

• Hypothèse centrale : **Auto-similarité** dans la zone inertielle

Théorie de Kolmogorov (1941)

Pour les accroissements de vitesse : $\delta \vec{v}(\vec{l}, \vec{r}) = \vec{v}(\vec{l} + \vec{r}) - \vec{v}(\vec{r})$.

• Hypothèse centrale : **Auto-similarité** dans la zone inertielle, $H = \frac{1}{3}$

$$\delta \vec{v}(\lambda \vec{l}, \vec{r}) \stackrel{d}{=} \lambda^H \delta \vec{v}(\vec{l}, \vec{r}).$$

Théorie de Kolmogorov (1941)

Pour les accroissements de vitesse : $\delta \vec{v}(\vec{l}, \vec{r}) = \vec{v}(\vec{l} + \vec{r}) - \vec{v}(\vec{r})$.

• Hypothèse centrale : Auto-similarité dans la zone inertielle,

$$H = \frac{1}{3}$$

$$\delta \vec{v}(\lambda \vec{l}, \vec{r}) \stackrel{d}{=} \lambda^H \delta \vec{v}(\vec{l}, \vec{r}).$$

• Conséquence : **spectre** attendu,

$$E(k) \sim \overline{\epsilon}^{2/3} k^{-5/3}.$$

Théorie de Kolmogorov (1941)

Pour les accroissements de vitesse : $\delta \vec{v}(\vec{l}, \vec{r}) = \vec{v}(\vec{l} + \vec{r}) - \vec{v}(\vec{r})$.

• Hypothèse centrale : **Auto-similarité** dans la zone inertielle, $H = \frac{1}{2}$

$$\delta \vec{v}(\lambda \vec{l}, \vec{r}) \stackrel{d}{=} \lambda^H \delta \vec{v}(\vec{l}, \vec{r}).$$

• Conséquence : **spectre** attendu,

$$E(k) \sim \overline{\epsilon}^{2/3} k^{-5/3}.$$

• *H*-ss **ou** spectre en $k^{-5/3}$

 \rightarrow nécessitent une structure **singulière** de la vitesse au cours du temps.

Géométrie des écoulements et tourbillons

Meunier, Leweke et al. (IRPHE, 2000)

Géométrie des écoulements et tourbillons

Meunier, Leweke et al. (IRPHE, 2000)

Géométrie des écoulements et tourbillons

Meunier, Leweke et al. (IRPHE, 2000)

Caractérisation des objets?

• Plonger dans les modèles de vortex.

Caractérisation des objets ?

• Plonger dans les modèles de vortex.

Modèle des vortex de Lundgren (1982)

• Plonger dans les modèles de vortex.

Modèle des vortex de Lundgren (1982)

• Études de singularités géométriques oscillantes.

• Plonger dans les modèles de vortex.

Modèle des vortex de Lundgren (1982)

• Études de singularités géométriques oscillantes. $|t - t_0|^h g\left(\frac{1}{|t - t_0|^{\beta}}\right)$

• Plonger dans les modèles de vortex.

Modèle des vortex de Lundgren (1982)

• Études de singularités géométriques oscillantes. $|t - t_0|^h g\left(\frac{1}{|t - t_0|^{\beta}}\right)$

• Plonger dans les modèles de vortex.

Modèle des vortex de Lundgren (1982)

• Études de singularités géométriques oscillantes. $|t - t_0|^h g\left(\frac{1}{|t - t_0|^\beta}\right)$

Géométries et statistiques
Géométries et statistiques

Singularité oscillante / Géométrie

Géométries et statistiques

Singularité oscillante / Géométrie

Signal aléatoire / Statistique

Géométries et statistiques

Singularité oscillante / Géométrie

Signal aléatoire / Statistique

Même spectre en loi de puissance (ici proche de $k^{-5/3}$)

Géométries et statistiques

Singularité oscillante / Géométrie

Signal aléatoire / Statistique

• Intérêt des vortex de Lundgren

Collection statistique d'objets organisés \Rightarrow spectre en $k^{-5/3}$.

Ébauche du problème sur une allée de von Kármán

Ébauche du problème sur une allée de von Kármán

Description statistique à base d'objets

• Reformulation de la solution de Lundgren dans un formalisme de Mellin.

$$D_t \vec{\omega} = \partial_t \vec{\omega} + (\vec{v} \cdot \vec{\nabla}) \vec{\omega} = (\vec{\omega} \cdot \vec{\nabla} \vec{v}) + \nu \Delta \vec{\omega}$$

Description statistique à base d'objets

• Reformulation de la solution de Lundgren dans un formalisme de Mellin.

$$D_t \vec{\omega} = \partial_t \vec{\omega} + (\vec{v} \cdot \vec{\nabla}) \vec{\omega} = (\vec{\omega} \cdot \vec{\nabla} \vec{v}) + \nu \Delta \vec{\omega}$$

$$\partial_t \omega_2 + \frac{1}{r} \left(\partial_\theta \psi_2 \partial_r \omega_2 - \partial_r \psi_2 \partial_\theta \omega_2 \right) = \nu \Delta \omega_2.$$

Description statistique à base d'objets

• Reformulation de la solution de Lundgren dans un formalisme de Mellin.

$$D_t \vec{\omega} = \partial_t \vec{\omega} + (\vec{v} \cdot \vec{\nabla}) \vec{\omega} = (\vec{\omega} \cdot \vec{\nabla} \vec{v}) + \nu \Delta \vec{\omega}$$

$$\partial_t \omega_2 + \frac{1}{r} \left(\partial_\theta \psi_2 \partial_r \omega_2 - \partial_r \psi_2 \partial_\theta \omega_2 \right) = \nu \Delta \omega_2.$$

Description statistique à base d'objets

• Reformulation de la solution de Lundgren dans un formalisme de Mellin.

$$D_t \vec{\omega} = \partial_t \vec{\omega} + (\vec{v} \cdot \vec{\nabla}) \vec{\omega} = (\vec{\omega} \cdot \vec{\nabla} \vec{v}) + \nu \Delta \vec{\omega}$$

$$\partial_t \omega_2 + \frac{1}{r} \left(\partial_\theta \psi_2 \partial_r \omega_2 - \partial_r \psi_2 \partial_\theta \omega_2 \right) = \nu \Delta \omega_2.$$

$$\begin{cases} \omega_2(r,\theta;t) = \sum_n \int d\beta Z_n(\beta,t) r^{i2\pi\beta} e^{in\theta} \\ \psi_2(r,\theta;t) = \sum_n \int d\beta Y_n(\beta,t) r^{2+i2\pi\beta} e^{in\theta} \end{cases}$$

Description statistique à base d'objets

• Reformulation de la solution de Lundgren dans un formalisme de Mellin.

Équation pour la vorticité $\vec{\omega} = \vec{\nabla} \wedge \vec{v}$.

$$D_t \vec{\omega} = \partial_t \vec{\omega} + (\vec{v} \cdot \vec{\nabla}) \vec{\omega} = (\vec{\omega} \cdot \vec{\nabla} \vec{v}) + \nu \Delta \vec{\omega}$$

$$\partial_t \omega_2 + \frac{1}{r} \left(\partial_\theta \psi_2 \partial_r \omega_2 - \partial_r \psi_2 \partial_\theta \omega_2 \right) = \nu \Delta \omega_2.$$

$$\begin{cases} \omega_2(r,\theta;t) = \sum_n \int d\beta Z_n(\beta,t) r^{i2\pi\beta} e^{in\theta} \\ \psi_2(r,\theta;t) = \sum_n \int d\beta Y_n(\beta,t) r^{2+i2\pi\beta} e^{in\theta}. \end{cases}$$

 \rightarrow Équations d'évolutions pour $Z_n(\beta, t)$ et Y_n .

• Transfert en échelle

• Transfert en échelle

• Transfert en échelle

• Transfert en échelle

• Transfert en échelle

De la forme
$$\frac{\partial}{\partial t}Z_n(\beta,t) \sim \text{convolution de } Z_n(\gamma,t)$$
 par un noyau de transfert.

• Transfert en échelle

De la forme
$$\frac{\partial}{\partial t}Z_n(\beta,t) \sim \text{convolution de } Z_n(\gamma,t)$$
 par un noyau de transfert.

• Transfert en échelle

De la forme
$$\frac{\partial}{\partial t}Z_n(\beta,t) \sim \text{convolution de } Z_n(\gamma,t)$$
 par un noyau de transfert.

 \rightarrow Décrit les bonnes propriétés de **migration en échelle** des vortex.

Limitations de l'approche

Différents problèmes compliquent l'exploitation pour les expériences ce formalisme.

- Manque de caractérisation précise des objets seuls.
 - \rightarrow C'est une **classe** de solutions.

Limitations de l'approche

Différents problèmes compliquent l'exploitation pour les expériences ce formalisme.

- Manque de caractérisation précise des objets seuls.
 - \rightarrow C'est une **classe** de solutions.

- Éléments irréductibles de la solution ?
 - \rightarrow Migration au cours du temps vers les petites échelles.

Limitations de l'approche

Différents problèmes compliquent l'exploitation pour les expériences ce formalisme.

- Manque de caractérisation précise des objets seuls.
 - \rightarrow C'est une **classe** de solutions.

Éléments irréductibles de la solution ?
→ Migration au cours du temps vers les petites échelles.

Tentatives d'utiliser des représentations mixtes (temps-fréquence ou échelle)
→ Ecueils pour séparer des objets complexes mélangés...

• Outils "à la Lamperti - Mellin"

 $\rightarrow \text{Constituent une approche pratique pour l'analyse de l'auto-similarité}$

• Outils "à la Lamperti - Mellin"

→ Constituent une approche **pratique** pour l'analyse de l'auto-similarité (estimateurs, modèles paramétriques, temps discret et traitement numérique).

• Outils "à la Lamperti - Mellin"

→ Constituent une approche **pratique** pour l'analyse de l'auto-similarité (estimateurs, modèles paramétriques, temps discret et traitement numérique).

 \rightarrow Développements possibles

• Outils "à la Lamperti - Mellin"

→ Constituent une approche **pratique** pour l'analyse de l'auto-similarité (estimateurs, modèles paramétriques, temps discret et traitement numérique).

- \rightarrow Développements possibles
 - systématiser les transformées "à la Lamperti" pour les brisures de symétries générales.
 - traitement des images (2D !) auto-similaires.

• Outils "à la Lamperti - Mellin"

→ Constituent une approche **pratique** pour l'analyse de l'auto-similarité (estimateurs, modèles paramétriques, temps discret et traitement numérique).

- \rightarrow Développements possibles
 - systématiser les transformées "à la Lamperti" pour les brisures de symétries générales.
 - traitement des images (2D !) auto-similaires.
- Perspectives en **turbulence**?

• Outils "à la Lamperti - Mellin"

→ Constituent une approche **pratique** pour l'analyse de l'auto-similarité (estimateurs, modèles paramétriques, temps discret et traitement numérique).

- \rightarrow Développements possibles
 - systématiser les transformées "à la Lamperti" pour les brisures de symétries générales.
 - traitement des images (2D !) auto-similaires.
- Perspectives en **turbulence**?

 \rightarrow Faiblesse prédictive des théories à vortex pour la vitesse.

• Outils "à la Lamperti - Mellin"

→ Constituent une approche **pratique** pour l'analyse de l'auto-similarité (estimateurs, modèles paramétriques, temps discret et traitement numérique).

- \rightarrow Développements possibles
 - systématiser les transformées "à la Lamperti" pour les brisures de symétries générales.
 - traitement des images (2D !) auto-similaires.
- Perspectives en **turbulence**?
 - \rightarrow Faiblesse prédictive des théories à vortex pour la vitesse.
 - \rightarrow Chercher la signature de la géométrie dans de nouvelles expériences.

• Outils "à la Lamperti - Mellin"

→ Constituent une approche **pratique** pour l'analyse de l'auto-similarité (estimateurs, modèles paramétriques, temps discret et traitement numérique).

- \rightarrow Développements possibles
 - systématiser les transformées "à la Lamperti" pour les brisures de symétries générales.
 - traitement des images (2D !) auto-similaires.
- Perspectives en **turbulence**?
 - \rightarrow Faiblesse prédictive des théories à vortex pour la vitesse.
 - \rightarrow Chercher la signature de la géométrie dans de nouvelles expériences.
- Réflexions sur les invariances d'échelle brisées en physique.
 - $\rightarrow \text{Invariance d'échelle discrète}$

• Outils "à la Lamperti - Mellin"

→ Constituent une approche **pratique** pour l'analyse de l'auto-similarité (estimateurs, modèles paramétriques, temps discret et traitement numérique).

- \rightarrow Développements possibles
 - systématiser les transformées "à la Lamperti" pour les brisures de symétries générales.
 - traitement des images (2D !) auto-similaires.
- Perspectives en **turbulence**?
 - \rightarrow Faiblesse prédictive des théories à vortex pour la vitesse.
 - \rightarrow Chercher la signature de la géométrie dans de nouvelles expériences.
- Réflexions sur les invariances d'échelle brisées en physique.

 \rightarrow Invariance d'échelle discrète : croissance, fracture,

• Outils "à la Lamperti - Mellin"

→ Constituent une approche **pratique** pour l'analyse de l'auto-similarité (estimateurs, modèles paramétriques, temps discret et traitement numérique).

- \rightarrow Développements possibles
 - systématiser les transformées "à la Lamperti" pour les brisures de symétries générales.
 - traitement des images (2D !) auto-similaires.
- Perspectives en **turbulence**?
 - \rightarrow Faiblesse prédictive des théories à vortex pour la vitesse.
 - \rightarrow Chercher la signature de la géométrie dans de nouvelles expériences.
- Réflexions sur les invariances d'échelle brisées en physique.

 \rightarrow Invariance d'échelle discrète : croissance, fracture, turbulence.

• Outils "à la Lamperti - Mellin"

→ Constituent une approche **pratique** pour l'analyse de l'auto-similarité (estimateurs, modèles paramétriques, temps discret et traitement numérique).

- \rightarrow Développements possibles
 - systématiser les transformées "à la Lamperti" pour les brisures de symétries générales.
 - traitement des images (2D !) auto-similaires.
- Perspectives en **turbulence**?
 - \rightarrow Faiblesse prédictive des théories à vortex pour la vitesse.
 - \rightarrow Chercher la signature de la géométrie dans de nouvelles expériences.
- Réflexions sur les invariances d'échelle brisées en physique.
 - \rightarrow Invariance d'échelle discrète : croissance, fracture, turbulence.
 - \rightarrow Auto-similarité de taille finie : phénomènes critiques.