Le cycle de l'eau dans le manteau terrestre apport de la modélisation numérique

Guillaume RICH/ARD

sous la direction de Marc MONNEREAU et Michel RABINOWICZ

Le 17 décembre 2003 Observatoire Midi-Pyrénées

Convection mantellique et tectonique des plaques

Zone de subduction : une porte d'entrée

D'après Schmidt & Poli, Earth. Planet. Sci. Lett., 1998

Introduction

Quelques effets de l'eau dans le manteau

- ✤ Sur la température de fusion
- Sur les changements de phases minéralogiques
- ✤ Sur l'élasticité
- Sur la viscosité
- Sur la rhéologie (water weakening)

Les différentes formes de l'eau dans le manteau

✤ Dans les fluides

Molécule d'eau H₂O

Les différentes formes de l'eau dans le manteau

✤ Dans les fluides

Molécule d'eau H₂O

Dans les minéraux hydratés

Radicaux -OH

Les différentes formes de l'eau dans le manteau

✤ Dans les fluides

Molécule d'eau H₂O

Dans les minéraux hydratés

Radicaux -OH

Dans les minéraux nominalement anhydres

Ion H^+

La solubilité de l'eau dans le manteau

D'après site Internet HYDROSPEC

Problématique :

La carte de solubilité peutelle être assimilée à une carte de concentration ?

Introduction

Influences des sauts de solubilité sur la distribution d'eau dans le manteau

Coefficients de partition de 10 et 100LÉpaisseur du manteau (km) $K_{\rm H}$ Diffusivité de l'eau (m²s⁻¹)[H]Concentration en eau (ppm)

Effet de la convection sur la distribution d'eau

Coefficient de partition de 100 u_z vitesse d'advectionzprofondeur K_H Diffusivité de l'eau[H]Concentration en eau

Effet de la convection sur la distribution d'eau

Effets de l'épaisseur du changement de phase

Conditions initiales et homogénéisation

Comportement de l'eau entrant dans le manteau

Coefficients de partition 10 et 100 Vitesse de surface moyenne 5 cm/an K_{H} Diffusivité de l'eau $10^{-6} \text{ m}^2\text{s}^{-1}$ H₂0 Concentration en eau

Temperature

Équations de conservation de la masse

$$\frac{\partial \rho_{f} \phi}{\partial t} + \vec{\nabla} \cdot \phi \vec{V}_{f} = \vec{\Gamma}$$

$$\frac{\partial \rho_{m} (1 - \phi)}{\partial t} + \vec{\nabla} \cdot (1 - \phi) \vec{V}_{m} = -\vec{\Gamma}$$

 $+(P_m - P_f)V\phi = 0$

Équations de conservation de la quantité de mouvement

$$-\phi(\vec{\nabla}P_f - \rho_f\vec{g}) + \vec{\nabla}\cdot\phi\vec{\tau}_f - \mu\frac{\phi^2}{k_{(\phi)}}(\vec{V}_f - \vec{V}_m) = 0$$

$$-(1 - \phi)(\vec{\nabla}P_m - \rho_m\vec{g}) + \vec{\nabla}\cdot(1 - \phi)\vec{\tau}_m - \mu\frac{\phi^2}{k_{(\phi)}}(\vec{V}_f - \vec{V}_m)$$

Migration de fluide dans le manteau profond

K

Équations de conservation de la masse

$$\frac{\partial \rho_{f} \phi}{\partial t} + \vec{\nabla} \cdot \phi \vec{V}_{f} = \vec{\Gamma}$$

$$\frac{\partial \rho_{m} (1 - \phi)}{\partial t} + \vec{\nabla} \cdot (1 - \phi) \vec{V}_{m} = -\vec{\Gamma}$$

$$\frac{dP}{\kappa} = \frac{d\rho}{\rho}$$
Incompressibilité des 2 phases

Équations de conservation de la quantité de mouvement

$$-\phi(\vec{\nabla}P_f - \rho_f\vec{g}) + \vec{\nabla} \cdot \phi\vec{\tau}_f - \mu \frac{\phi^2}{k_{(\phi)}}(\vec{V}_f - \vec{V}_m) = 0$$

$$-(1 - \phi)(\vec{\nabla}P_m - \rho_m\vec{g}) + \vec{\nabla} \cdot (1 - \phi)\vec{\tau}_m - \mu \frac{\phi^2}{k_{(\phi)}}(\vec{V}_f - \vec{V}_m)$$

$$\rightarrow$$

 $+(\underline{P}_m-\underline{P}_f)\nabla\phi=0$

Équations de conservation de la masse

$$\frac{\partial \rho_{f} \phi}{\partial t} + \vec{\nabla} \cdot \phi \vec{V}_{f} = \vec{\Gamma}$$

$$\frac{\partial \rho_{m} (1 - \phi)}{\partial t} + \vec{\nabla} \cdot (1 - \phi) \vec{V}_{m} = -\vec{\Gamma}$$

 $+(P_m - P_f)\nabla \phi = 0$

$$\delta P = P_m - P_f$$
$$\vec{S} = \phi (\vec{V}_f - \vec{V}_m)$$
$$\vec{C} = (1 - \phi)\vec{V}_m + \phi \vec{V}_f$$
$$\frac{d\phi}{dt} = \frac{\partial\phi}{\partial t} + \vec{C} \cdot \vec{\nabla}\phi$$

12

Équations de conservation de la quantité de mouvement

$$-\phi(\vec{\nabla}P_f - \rho_f\vec{g}) + \vec{\nabla} \cdot \phi\vec{\tau}_f - \mu \frac{\phi^2}{k_{(\phi)}}(\vec{V}_f - \vec{V}_m) = 0$$

$$-(1 - \phi)(\vec{\nabla}P_m - \rho_m\vec{g}) + \vec{\nabla} \cdot (1 - \phi)\vec{\tau}_m - \mu \frac{\phi^2}{k_{(\phi)}}(\vec{V}_f - \vec{V}_m)$$

$$\frac{d\phi}{dt} - \frac{(1-\phi)\phi}{\kappa} \frac{d\delta P}{dt} + \vec{\nabla} \cdot \frac{k_{(\phi)}}{\mu} (1-\phi) [\vec{\nabla}\delta P - \delta\rho \vec{g}] = \frac{(1-\phi)\rho_m + \phi\rho_f}{\rho_m \rho_f} \vec{\Gamma}$$

$$\frac{d\phi}{dt} = -\phi(1-\phi)\frac{\delta P}{\mu+\eta}$$

$$\frac{d\phi}{dt} - \frac{(1-\phi)\phi}{\kappa} \frac{d\delta P}{dt} + \vec{\nabla} \cdot \frac{k_{(\phi)}}{\mu} (1-\phi) [\vec{\nabla}\delta P - \delta\rho \vec{g}] = \frac{(1-\phi)\rho_m + \phi\rho_f}{\rho_m \rho_f} \vec{\Gamma}$$

Migration de fluide dans le manteau profond

Équation de porosité (de fermeture)

$$\frac{d\phi}{dt} = -\phi(1-\phi)\frac{\delta P}{\mu+\eta} + \frac{\dot{\Gamma}}{\rho_m}$$

$$\frac{d\phi}{dt} - \frac{(1-\phi)\phi}{\kappa} \frac{d\delta P}{dt} + \vec{\nabla} \cdot \frac{k_{(\phi)}}{\mu} (1-\phi) [\vec{\nabla}\delta P - \delta\rho \vec{g}] = \frac{(1-\phi)\rho_m + \phi\rho_f}{\rho_m \rho_f} \vec{\Gamma}$$

Équation de porosité (de fermeture)

14

Équation de pression

Équation de porosité (de fermeture) adimensionnée

 $\frac{d\phi}{dt}$ =

$$\frac{d\phi}{dt} = -\phi\delta P + B\dot{\Gamma}$$

$$L = \sqrt{\frac{\eta k_{(\phi)}}{\mu \phi_0}}$$
Longueur d'onde de compaction
 $\tau = \frac{\phi_0}{\rho_f} \dot{\Gamma}_0$
Echelle de temps
Nombre de Deborah
$$De = \frac{\eta}{\tau \kappa}$$
Nombre de compaction
$$G = \frac{\delta \rho g L \tau}{\eta}$$
Nombre de source
$$B = \frac{\rho_f}{\rho_m}$$

$$\phi \left[De \frac{d\delta P}{dt} + \delta P \right] - \vec{\nabla} \cdot \phi^3 \left\{ \vec{\nabla} \delta P - G \frac{\vec{g}}{g} \right\} = -(1 - B)\vec{\Gamma}$$

Migration de fluide dans le manteau profond

Conséquences du changement de volume

$$\frac{d\phi}{dt} = -\phi\delta P + B\dot{\Gamma}$$

$$\phi \left[\underbrace{De}_{dt} \frac{d\delta P}{dt} + \delta P \right] - \frac{\partial}{\partial x} (\phi^{3} \frac{\partial}{\partial x} \delta P) = -(1 - B)\Gamma$$

Migran

Migration de fluide dans le manteau profond

Conséquences du changement de volume

$$dt \phi[\underline{De}\frac{d\delta P}{dt} + \delta P] - \frac{\partial}{\partial x}(\phi^{3}\frac{\partial}{\partial x}\delta P) = -(1-B)I$$

Conséquences du changement de volume

$$\frac{d\phi}{dt} = -\phi\delta P + B\dot{\Gamma}$$
$$\phi [De\frac{d\delta P}{dt} + \delta P] - \frac{\partial}{\partial x}(\phi^3 \frac{\partial}{\partial x}\delta P) = -(1 - B)I$$

$$\frac{d\phi}{dt} = -\phi\delta P + B\dot{\Gamma}$$

$$\phi\delta P - \frac{\partial}{\partial z}(\phi^{3}\frac{\partial}{\partial z}\delta P) - G\frac{\partial}{\partial z}\phi^{3} = 0$$

Migration de fluide dans le manteau profond

0.473

Migration de fluide dans le manteau profond

0.050

50.0

Mouvements à grande échelle

Fonction de courant Ψ

Temperature

Contraintes compressives maximum σ_1

Fracturation et migration dans les failles

Mouvements à grande échelle

Fonction de courant ψ

Ecart de densite (δρ)

- Différence de densité matrice 'mouillée'- matrice 'sèche'
- Mouvement d'ensemble de la matrice, Diapirisme

Forme des courants résultants de l'interaction entre une bulle de faible densité et un courant convectif descendant

En résumé

✤ Les études sur l'eau peuvent apporter des contraintes importantes dans la plupart des disciplines des sciences de la Terre.

✤ Les phénomènes convectifs sont dominants par rapport aux phénomènes diffusifs dans le manteau terrestre.

✤ L'existence d'une phase fluide liée à l'exsolution d'eau au niveau du changement de phase spinel-postspinel (660 km) devrait stopper au niveau du changement de phase la majorité de l'eau advectée à cette profondeur par les plaques subductantes.

✤ L'estimation expérimentale des paramètres dans le manteau inférieur devrait permettre de mieux contraindre les phénomènes.

Sur Terre

Modèle de filtre à eau au sommet de la zone de transition

D'après Bercovici & Karato, Nature, 2003

Ailleurs ...

The Interior of Venus

© Copyright 2000 by Calvin J. Hamilton

Vénus

Mars

$$\frac{d\phi}{dt} - \frac{(1-\phi)\phi}{\kappa} \left[\frac{d\delta P}{dt} - \vec{S} \cdot \vec{\nabla}\delta P\right] + \frac{(1-\phi)}{\kappa} \vec{S} \cdot \vec{\nabla}P_f + \vec{\nabla} \cdot (1-\phi)\vec{S}$$
$$= \frac{(1-\phi)\rho_m + \phi\rho_f}{\rho_m \rho_f} \vec{\Gamma}$$

$$\vec{S} = \vec{\nabla} \cdot \frac{k_{(\phi)}}{\mu} (1 - \phi) \left\{ \vec{\nabla} \delta P - \delta \rho \vec{g} \right\}$$

Migration de fluide dans le manteau profond

$$\phi \left[\frac{1}{\kappa} \frac{d\delta P}{dt} + \frac{\delta P}{\eta_s}\right] - \vec{\nabla} \cdot \frac{k(\phi)}{\eta_f} \left\{ \vec{\nabla} \delta P - \delta \rho \, \vec{g} + \vec{\nabla} \cdot \vec{\tau}_s - \delta P \vec{\nabla} \phi - \vec{\nabla} \sigma \alpha \right\}$$
$$= \frac{(1 - \phi)\delta \rho}{\rho_m \rho_f} \dot{\Gamma}$$

$$\frac{d\phi}{dt} = -\phi\delta P + B\dot{\Gamma}$$

 $De = \frac{\eta_m}{\eta_m}$ Nombre de Deborah τκ $G = \frac{\delta \rho L \tau}{2}$ η_m $B = \frac{\rho_m}{\rho_m}$ ρ_f $T_{S} = \frac{\sigma a \alpha_0 \sigma}{\sigma}$ η_m

Nombre de compaction Nombre de source Nombre de tension superficielle

$$\phi [De \frac{d\delta P}{dt} + \delta P] - \vec{\nabla} \cdot \phi^n \left\{ \vec{\nabla} \delta P - G \frac{\vec{g}}{g} + \vec{\nabla} \cdot \vec{\tau}_s \right\} + Ts \vec{\nabla} \cdot \phi^{n-1} \vec{\nabla} \phi$$
$$= -(1 - B) \dot{\Gamma}$$

ERUPTION DU MAGMA AU FOND DE L'OCEAN

CROUTE VITREUSE = magma trempé ayant le contenu en H₂O du magma avant éruption C_L

 $\begin{array}{c} MAGMA \\ \text{contenu en } H_2O: 0,1{<}C_L{<}0,5 \ \% \end{array}$

TRANSPORT DE L'EAU EN SOLUTION DANS LE MAGMA

H₂O EST INCOMPATIBLE entre préférentiellement dans le magma Les péridotites perdent H₂O

FUSION PARTIELLE

PERIDOTITE

ROCHE SOURCE DES BASALTES H_2O est en solution dans les minéraux concentration $50 < C_0 < 500$ ppm

CONNAISSANT C_L ON DEDUIT C₀ PAR : C₀ = $(D + F(1 - D))C_L$ où F est le taux de fusion et D le coefficient de partage de l'eau entre roche et magma

L= 100 km Faible viscosité de la zone d'exsolution

$$\frac{d\phi}{dt} = -\phi\delta P + B\dot{\Gamma}$$

$$\phi\delta P - \frac{\partial}{\partial z}(\phi^{3}\frac{\partial}{\partial z}\delta P) - G\frac{\partial}{\partial z}\phi^{3} = 0$$

Sur Terre

Modèles expliquant l'anisotropie sismique sous la discontinuité 660 km D'après Wookey et al., Nature, 2002

Modèle de filtre à eau au sommet de la zone de transition

D'après Bercovici & Karato, Nature, 2003

