

Dérivés fluorés des différentes variétés allotropiques du carbone - Synthèse, caractérisation et application aux matériaux d'électrode

21 Janvier 2002

Première partie: Composés d'intercalation du graphite avec des oxyfluorures de métaux de transition

Deuxième partie: Composés nanotubes-fluorures inorganiques: Synthèse et caractérisation

Troisième partie: Etude de la fluoration du C₇₀: Synthèse, caractérisation et propriétés électrochimiques

Quatrième partie: Carbones désordonnés obtenus par divers modes de réduction de CF_x

Formes allotropiques du carbone

Diamant

Graphite

Fullerènes

Nanotubes

Composés carbonés fluorés

Fluor

Graphite

Fluoration, intercalation de fluorures

Fullerénes C₆₀, C₇₀, ...

Nanotubes (SWNT ou MWNT)

Fluoration, intercalation de fluorures entre les molécules Fluorures Fluoration, intercalation de fluorures?

> **Applications électrochimiques** (électrodes positives)

Graphite

Composés d'intercalation du graphite avec des oxyfluorures de métaux de transition

Composés d'intercalation du graphite

Deux étapes:

Elaboration du précurseur: C.I.G-fluorure

Obtention du composé oxygéné

Synthèse sous fluor

Synthèse dynamique

 $F_2 + MF_n$

Graphite

F₂

Métal

Graphite + Oxyfluorure

Synthèse statique

Caractérisation du précurseur composés d'intercalation graphite-fluorures

Substitution F/O

 $HMDSO = (CH_3)_3 SiOSi(CH_3)_3$

Fluorure

 $C_x MF_n(s) + y HMDSO(l) \longrightarrow C_x MO_y F_{n-2y}(s) + 2y (CH_3)_3 SiF(g)$

Oxyfluorure

 $C_x MO_m F_n(s) + y HMDSO(l) \longrightarrow C_x MO_{m+y} F_{n-2y}(s) + 2y (CH_3)_3 SiF(g)$

Caractérisation du composé échangé

Caractérisation du composé échangé

C_{20,5}MoO_{2,5}F

Caractérisation du composé échangé

Mécanisme

Deuxième étape: Echange fluor-oxygène

Comportement électrochimique

Composé	OCV (V/Li ⁺ -Li)	Capacité de la première
		decharge (IIIAI/g) pour E > 1 V
C _{20,5} MoO _{2,5} F	3,5	80
C ₂₄ WO _{2,3} F _{1,4}	4,1	90
C ₁₉ NbO ₂ F	3,1	90
$C_{18}VO_{2,2}F_{0,6}$	3,6	50
C ₁₉ (VCrO _{4,6} F _{1,8}) _{0,5}	4,0	420

1- Réduction des feuillets graphitiques

 $C^{\delta^+} + xe^- \longrightarrow C^{(\delta-x)^+}$

2-Réduction du métal

 $MO_yF_{n-2y} + x'Li^+ + x'e^- \longrightarrow Li_xMO_yF_{n-2y}$

3- Une combinaison de 1 et 2

Conclusion

Echange incomplet, mélange d'oxylluorures et d'oxydes

Mécanismes électrochimiques

Composés nanotubes-fluorures inorganiques

Nanotubes

Nanotubes multiparois (MWNT)

Synthétisés au LTPCM de Grenoble par voie catalytique: dismutation de CO sur catalyseur Cobalt sur alumine à 500°C

Présence de particules catalytiques après la synthèse (Cobalt et alumine)

Purification

Purification

Elimination du catalyseur (Co) et du support (Al₂O₃) + Ouverture des extrémités

Traitement thermique sous air

Influence du traitement

L'intercalat

Recherche d'une interaction forte avec le réseau hôte (échange électronique)

B

Utilisation d'un acide de Lewis de type fluorure

Synthèse des composés CNT / MF_n

Fixation des halogénures fortement dépendante des conditions de synthèse

DRX

Intercalation non observée

Intercalation observée¹⁰

Un transfert de charge effectif

- L'intercalation provoque l'apparition d'une contribution paramagnétique
- Spins localisés sur les atomes de carbone
- MWNT purifiés: pas de signal

Origine de l'échange électronique

Oxydation des plans graphitiques selon: $\delta C + \delta (1/2 F_2 + MF_n) \rightarrow \delta C^+ + \delta MF_{n+1}^ \delta C + \delta/2 (F_2 + MF_n) \rightarrow \delta C^+ + \delta/2 MF_{n+2}^2$

Espèces intercalaires anioniques

ATG

Conclusion

Essais electrochimiques: incomplets

Etude de la fluoration du C₇₀

Structure du C₇₀

Symétrie D_{5h} de la molécule Cinq types de carbone différents Structure hexagonale (température ambiante) a=1,07 nm et c=1,715 nm 25 hexagones 12 pentagones

Fluoration à l'ambiante

Grande dispersion en composition

Synthèse sous atmosphère de fluor

Composé blanc

Action directe du fluor sur le C₇₀

 $C_{70} + F_2 \xrightarrow{3 \text{ heures}} C_{70}F_x$

x déterminé par XPS

Formule déterminée :C₇₀F₅₆

Spectroscopie Infra Rouge

Affinement par la méthode de Rietveld

Diffractogrammes X expérimental Diffractogrammes X calculés et calculé

Raie 220 intensité directement proportionnelle au taux de fluor

Electrochimie (électrolyte solide)

Electrochimie (électrolyte solide)

Voltamétrie cyclique à 1.5 mV/min

Electrochimie (électrolyte solide)

Décharge galvanostatique ($i = 10 \mu A$)

Conclusion

Taux de fluoration supérieur et melleure cristal Inité que pour une synthèse à basse température

Faible dispersion en composition

ropriétés électrochimiques

Carbones désordonnés obtenus par divers modes de réduction de fluorures de graphite

Deux types de CF_x utilisés

basse température CFBT1 (CF_{0,86}), CFBT2 (CF_{0,9}) CFBT2T (CF_{0,9}) ionocovalent

haute température CFHT (CF₁) covalent

Réduction chimique (KOH), thermique ou électrochimique

Effets de la réduction

Diffractogrammes X des précurseurs utilisés

CFHT

a) CFBT1b) CFBT2c) CFBT2T

Effets de la réduction (chimique et thermique) Obtention d'une structure de type carbone désordonné

a) CFBT1-KOHb) CFBT1-550c) CFHT-KOHd) CFHT-610

a) CFBT2-KOH b) CFBT2-600 c) CFBT2T-KOH d) CFBT2T-570

Propriétés électrochimiques

Courbes de cyclage électrochimiques caractérisées par différents phénomènes

Premier cycle

Propriétés électrochimiques

Courbes de cyclage électrochimiques caractérisées par différents phénomènes

CFBT2-KOH

Deuxième cycle

Propriétés électrochimiques

Courbes de cyclage électrochimiques caractérisées par différents phénomènes

Premier cycle

Deuxième cycle

CFBT2-réduit par voie électrochimique

Porosité

Adsorption

Taille des pores

 $S = 25 \text{ m}^{2}/\text{g}$

CFBT2-600

DRX après décharge électrochimique

E = 3 V, première charge

E = 0 V,première décharge

Avant décharge

CFBT2-600

Conclusion

Mécanismes électrochimiques

Conclusion générale - Perspectives

Etudes complémentaires