Voronoi diagrams of semi-algebraic sets - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2003

Voronoi diagrams of semi-algebraic sets

Résumé

Most of the curves and surfaces encountered in geometric modelling are defined as the set of solutions of a system of algebraic equations and inequalities (semi-algebraic sets). Many problems from different fields involve proximity queries like finding the (nearest) neighbours or quantifying the neighbourliness of two objects.

The Voronoi diagram of a set of sites is a decomposition of space into proximal regions. The proximal region of a site is the locus of points closer to that site than to any other one. Voronoi diagrams allow one to answer proximity queries after locating a query point in the Voronoi zone it belongs to. The dual graph of the Voronoi diagram is called the Delaunay graph. Only approximations by conics can guarantee a proper order of continuity at contact points, which is necessary for guaranteeing the exactness of the Delaunay graph.

The theoretical purpose of this thesis is to elucidate the basic algebraic and geometric properties of the offset to an algebraic curve and to reduce the semi-algebraic computation of the Delaunay graph to eigenvalues computations. The practical objective of this thesis is the certified computation of the Delaunay graph for low degree semi-algebraic sets embedded in the Euclidean plane.

The methodology combines interval analysis and computational algebraic geometry. The central idea of this thesis is that a (one time) symbolic preprocessing may accelerate the certified numerical evaluation of the Delaunay graph conflict locator. The symbolic preprocessing is the computation of the implicit equation of the generalised offset to conics. The reduction of the Delaunay graph conflict locator for conics from a semi-algebraic problem to a linear algebra problem has been possible through the use of the generalised Voronoi vertex (a concept introduced in this thesis).

The certified numerical computation of the Delaunay graph has been possible by using an interval analysis based library for solving zero-dimensional systems of equations and inequalities (ALIAS). The certified computation of the Delaunay graph relies on theorems on the uniqueness of a root in given intervals (Kantorovitch, Moore-Krawczyk). For conics, the computations get much faster by considering only the implicit equations of the generalised offsets.
La majorité des courbes et surfaces rencontrées dans la modélisation géométrique sont définies comme l'ensemble des solutions d'un système d'équations et d'inéquations algébriques (ensemble semi-algébrique). De nombreux problèmes dans différentes disciplines scientifiques font appel à des requètes de proximité telles que la recherche du ou des voisins les plus proches ou la quantification du voisinage de deux objets.

Le diagramme de Voronoï d'un ensemble d'objets est une décomposition de l'espace en zones de proximité. La zone de proximité d'un objet est l'ensemble des points plus proches de cet objet que de tout autre objet. Les diagrammes de Voronoï permettent de répondre aux requètes de proximité après avoir identifié la zone de proximité à laquelle le point objet de la requète appartient. Le graphe dual du diagramme de Voronoï est appelé le graphe de Delaunay. Seules les approximations par des coniques peuvent garantir un ordre de continuité approprié au niveau des points de contact, ce qui est nécessaire pour garantir l'exactitude du graphe de Delaunay.

L'objectif théorique de cette thèse est la mise en évidence des propriétés algébriques et géométriques élémentaires de la courbe déplacée d'une courbe algébrique et de réduire le calcul semi-algébrique du graphe de Delaunay à des calculs de valeurs propres. L'objectif pratique de cette thèse est le calcul certifié du graphe de Delaunay pour des ensembles semi-algébriques de faible degré dans le plan euclidien.

La méthodologie associe l'analyse par intervalles et la géométrie algébrique algorithmique. L'idée centrale de cette thèse est qu'un pré-traitement symbolique unique peut accélérer l'évaluation numérique certifiée du détecteur de conflits dans le graphe de Delaunay. Le pré-traitement symbolique est le calcul de l'équation implicite de la courbe déplacée généralisée d'une conique. La réduction du problème semi-algébrique de la détection de conflits dans le graphe de Delaunay à un problème d'algèbre linéaire a été possible grâce à la considération du sommet de Voronoï généralisé (un concept introduit dans cette thèse).

Le calcul numérique certifié du graphe de Delaunay a été éffectué avec une librairie de résolution de systèmes zéro-dimensionnels d'équations et d'inéquations algébriques basée sur l'analyse d'intervalles (ALIAS). Le calcul certifié du graphe de Delaunay repose sur des théorèmes sur l'unicité de racines dans des intervalles donnés (Kantorovitch et Moore-Krawczyk). Pour les coniques, les calculs sont accélérés lorsque l'on ne considère que les équations implicites des courbes déplacées.
Fichier principal
Vignette du fichier
tel-00005932.pdf (1.84 Mo) Télécharger le fichier
tel-00005932.ppt (841 Ko) Télécharger le fichier
Format : Autre
Loading...

Dates et versions

tel-00005932 , version 1 (20-04-2004)
tel-00005932 , version 2 (09-12-2004)
tel-00005932 , version 3 (09-03-2005)

Identifiants

  • HAL Id : tel-00005932 , version 3

Citer

François Anton. Voronoi diagrams of semi-algebraic sets. Modeling and Simulation. University of British Columbia, 2003. English. ⟨NNT : ⟩. ⟨tel-00005932v3⟩

Collections

TDS-MACS
190 Consultations
776 Téléchargements

Partager

Gmail Facebook X LinkedIn More