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Introduction

(0.1) Number theory and geometry are historically the �rst �elds of

mathematical interest and have always fascinated a lot of people. My

research of the last few years led to new properties in these two domains.

(0.2) One of the basis concepts of this thesis is polynomial congruences.

Let f 2 Z[x1; : : : ; xn] be a polynomial over the integers in n variables.

Put x = (x1; : : : ; xn). We want to study the number of solutions of

f(x) � 0 mod m in (Z=mZ)n for an arbitrary positive integer m. The

Chinese remainder theorem reduces this problem to the case that m is

a power of a prime. Let p be a �xed prime and let Mi, i 2 Z�0, be

the number of solutions of the congruence f(x) � 0 mod pi in (Z=piZ)n.

If f has no singular point in Znp, then the behaviour of the Mi is well

understood for large i because of Hensels lemma. Here Zp is the ring of

p-adic integers. The behaviour of the Mi is very complicated if f has a

singular point in Znp. Igusa's p-adic zeta function allows us to study the

singular case.

(0.3) For z in the �eld of p-adic numbers Qp , let ord z 2 Z[f+1g denote

the valuation of z, jzj = p�ord z the absolute value of z and ac z = zp�ord z

the angular component of z. Let � be a character of Z�p , i.e., a group

homomorphism � : Z�p ; :! C � ; : with �nite image. Let f be a polynomial

over Z or more generally over Zp or Qp . Let X = Znp. Igusa's p-adic zeta

function Zf;�(s) of f and � is de�ned by the p-adic integral

Zf;�(s) :=

Z
X
�(ac f(x))jf(x)js jdxj

for complex numbers s satisfying Re(s) > 0, and by meromorphic contin-

uation on the other part of C .
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Igusa's p-adic zeta function can be de�ned in a more general context.

Let K be a p-adic �eld, i.e., an extension of Qp of �nite degree. Let R be

the valuation ring of K, P the maximal ideal of R, � a �xed uniformizing

parameter for R and q the cardinality of the residue �eld R=P . For z 2 K,

let ord z 2 Z[f+1g denote the valuation of z, jzj = q�ord z the absolute

value of z and ac z = z��ord z the angular component of z. Let � be a

character of R�. Let X be an open and compact subset of Kn and let f

be a K-analytic function on X. Now Igusa's p-adic zeta function Zf;�(s)

of f and � is de�ned in the same way as before. Note that we have in

our special case above that K = Qp , R = Zp, P = pZp, � = p, q = p,

X = Znp and f 2 Qp [x1; : : : ; xn].

Let f be a polynomial over R or, more generally, an arbitrary rigid K-

analytic function on X = Rn de�ned over R, i.e., a K-analytic function

on Rn which is given by a power series over R which converges on Rn.

Igusa's p-adic zeta function of such an f has an important connection

with congruences. For i 2 Z�0 and u 2 R=P i, let Mi(u) be the number

of solutions of f(x) � u mod P i in (R=P i)n. Put Mi := Mi(0). Let e be

the conductor of �, i.e., the smallest a 2 Z>0 such that � is trivial on

1 +P a. Then the Mi+e(�
iu), u 2 (R=P e)�, describe Zf;�(s) through the

relation

Zf;�(s) =

1X
i=0

X
u2(R=P e)�

�(u)Mi+e(�
iu)q�n(i+e)q�is:

If � is the trivial character, all the Mi's describe and are described by

Zf;�(s) through the relation

Zf;�(s) = P (q�s)� P (q�s)� 1

q�s
;

where the Poincar�e series P (t) of f is de�ned by

P (t) =
1X
i=0

Mi(q
�nt)i:

Using this connection, we can obtain properties of Igusa's p-adic zeta

function from results on the number of solutions of congruences and vice

versa.

The second method in our study of Zf;�(s) uses the existence of an em-

bedded resolution of singularities of f , which is a composition of blowing-

ups. We will calculate the de�ning integral of Igusa's p-adic zeta function

on such an embedded resolution.
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(0.4) The study of Igusa's p-adic zeta function by using an embedded

resolution of singularities led to the introduction of a new geometric in-

variant.

Let f be the germ of a holomorphic function on a neighbourhood of

the origin 0 in C n which satis�es f(0) = 0 and which is not identically

zero. Let g : V ! U � C n be an embedded resolution of singularities

of a representative of f�1f0g. We denote by Ei, i 2 T , the irreducible

components of g�1(f�1f0g), and by Ni and �i � 1 the multiplicities of

f Æ g and g�(dx1 ^ � � � ^ dxn) along Ei. The (Ni; �i), i 2 T , are called

the numerical data of the embedded resolution. For I � T denote also

EI := \i2IEi and
Æ
EI := EI n ([j =2IEj). Note that V is the disjoint union

of the
Æ
EI , I � T . Let d 2 Z>0.

The local topological zeta function of f and d is de�ned as

Z
(d)
f (s) :=

X
I�T

8i2I : djNi

�(
Æ
EI \g�1f0g)

Y
i2I

1

�i + sNi
:

Here s is a complex variable and �(�) denotes the topological Euler-

Poincar�e characteristic. The candidate poles of this rational function

are the ��i=Ni, with i 2 T satisfying d j Ni. It is striking that most

candidate poles are actually not poles.

In our research, we will always take an embedded resolution g which

is a composition g1 Æ � � � Æ gt of blowing-ups gi with an appropriate centre.

The exceptional variety of gi and the strict transforms of this variety are

denoted by Ei. We will use the same notation if we have an embedded

resolution in the context of Igusa's p-adic zeta function.

(0.5) The �rst chapter is an introduction to these zeta functions. It is

written for people who are not familiar with this subject, but who have a

mathematical background. The other chapters contain my research. They

are all self contained, except Chapter 4. Chapters 2, 3 and 5 correspond

to respectively [SV], [Se1] and [Se2].

(0.6) Chapter 2 contains our study of the local topological zeta function.

We will see that it is easy to prove that for every n 2 Z�2, all the poles

of a local topological zeta function are in the interval [�n+ 1; 0[.

If n = 2 and d is �xed, we determine all values less then �1=2 which

occur as a pole of a local topological zeta function. They are all of the



x Introduction

form �1=2� 1=i with i 2 Z>1, and all these values are the pole of a local

topological zeta function with d = 1. Moreover, if the multiplicity of f at

the origin 0 2 C 2 is at least four, we will see that �1 is the only possible

pole less than �1=2. Our result implies the well known fact that the log

canonical threshold of f is never in ]5=6; 1[.

If n = 3 and d = 1, we determine all values less then �1 which occur

as a pole of a local topological zeta function. They are �1 � 1=i with

i 2 Z>1. In particular, there are no poles less than �3=2. Moreover, if

the multiplicity of f is at least three, we will see that there are no poles

less than �1. The last part will be the most diÆcult because we will have

to prove that some candidate poles are not poles.

(0.7) In Chapter 3 we study Igusa's p-adic zeta function by using the

method of embedded resolution of singularities. We obtain results which

are analogous to the ones of Chapter 2, but now for the real parts of the

poles of Igusa's p-adic zeta function.

We will have to deal with an extra diÆculty in the proof of the fact

that some candidate poles of expected order one are not poles.

For the local topological zeta function, we could use the relations between

the numerical data of Veys. If s0 is a candidate pole of Z
(d)
f (s) of expected

order one and if Ei is an exceptional variety with candidate pole s0, one

can write down easily the contribution of Ei to the residue of Z
(d)
f (s)

at the candidate pole s0. The relations of Veys allow you to prove that

this contribution is zero for some intersection con�gurations on Ei at the

stage when it is created.

For Igusa's p-adic zeta function, we also want to be able to calculate

the contribution of an exceptional variety Ei with a candidate pole s0
of expected order one to the residue of Zf;�(s) at s0 by using only our

information when Ei is created. Let s0 be a candidate pole of Zf;�(s)

of expected order one and let Ei be an exceptional variety with candi-

date pole s0. Then it is generally known that the contribution of Ei to

the residue of Zf;�(s) at s0 is equal to the principal value integral of the

Poincar�e residue of �(ac f Æ g)jf Æ gjs0 g�dx on Ei. We deduce this for-

mula again without using the terminology of principal value integrals and

Poincar�e residues. Our deduction is elementary. We will push forward

this formula to the stage when Ei is created. In the specialized termi-

nology, our result is that the contribution of Ei to the residue of Zf;�(s)

at s0 is equal to the principal value integral of the Poincar�e residue of
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�(ac f Æ g1 Æ � � � Æ gi)jf Æ g1 Æ � � � Æ gijs0 (g1 Æ � � � Æ gi)�dx on Ei.

Chapter 4 contains the calculations which are needed to obtain our

result for Igusa's p-adic zeta functions with (non-trivial) character and

n = 3.

(0.8) Chapter 5 contains results in general dimension n. Let f be a

polynomial over R or a rigid K-analytic function on Rn de�ned over R.

As in (0.3), let Mi(u) be the number of solutions of f(x) � u mod P i in

(R=P i)n and put Mi := Mi(0). Let l be the smallest real part of a pole

of Igusa's p-adic zeta function of f with trivial character. We prove that

there exists an integer a which is independent of i such that Mi is an

integer multiple of qp(n+l)i�aq for all i 2 Z�0. We explained this result

also in Chapter 3.

Together with our results of Chapter 3 in dimension two and three, we

obtain some nice divisibility properties. The statements of these prop-

erties are so easy that we tried to �nd an elementary proof, and with

success. It generalized easily to arbitrary dimension and to the more gen-

eral class of numbers Mi(u). More precisely, we will deduce that Mi(u)

is divisible by qp(n=2)(i�1)q for all i 2 Z>0 and all u 2 R=P i.
We will also prove the converse of the result two paragraphs ago: if

there exists an integer a such that Mi is an integer multiple of qp(n+l
0)i�aq

for all i 2 Z�0, then l0 � l. This statement has an analogue if we are

dealing with a character.

Let � be an arbitrary character of R�. The last two paragraphs imply

that Zf;�(s) has no poles with real part less than �n=2. This is the main

result of the last chapter. We will see that it holds for an arbitrary K-

analytic function on an open and compact subset of Kn, and not only for

rigid K-analytic functions on Rn which are de�ned over R. Moreover,

this result implies that a local topological zeta function has no poles less

than �n=2. We also give an example which shows that this bound is

optimal.





Chapter 1

Preliminaries on zeta

functions

Abstract

We give an introduction to three zeta functions: Igusa's p-adic

zeta function, the topological zeta function and the motivic

zeta function. The �rst one belongs to the domain of number

theory, the others are geometric invariants. We also try to

explain the connection between these zeta functions.

1.1 Igusa's p-adic zeta function

(1.1.1) Let K be a p-adic �eld, i.e., an extension of Qp of �nite degree.

Let R be the valuation ring of K, P the maximal ideal of R, � a �xed

uniformizing parameter for R and q the cardinality of the residue �eld

R=P . For z 2 K, let ord z 2 Z [ f+1g denote the valuation of z and

jzj = q�ord z the absolute value of z. Let f 2 R[x1; : : : ; xn] and put

x = (x1; : : : ; xn).

(1.1.2) Let Mi, i 2 Z�0, be the number of solutions of f(x) � 0 mod P i

in (R=P i)n. Note that M0 = 1. If K = Qp and f 2 Z[x1; : : : ; xn] or,

more generally, f 2 Zp[x1; : : : ; xn], it is just the number of solutions of

f(x) � 0 mod pi in f0; : : : ; pi � 1gn.
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The Poincar�e series P (t) of f is the formal power series

P (t) =
1X
i=0

Mi(q
�nt)i:

If we consider t as a complex variable, it is absolutely convergent on the

open unit disc ft j jtj < 1g � C because Mi � qni.

(1.1.3) A subset X of Kn is called open if for every x 2 X, there exists an

i 2 Z�0 such that x+ (P i)n � X. In this way, Kn becomes a topological

space. For n = 1, it is the topology on K induced by the absolute value,

and for n > 1, it is the product topology on Kn = K � � � � �K.

With this topology Kn;+ is a locally compact group. Therefore,

there exists a unique translation invariant measure � = jdxj on the Borel-

�-algebra of Kn for which �(Rn) = 1. This measure is called the Haar

measure on Kn. Integration of a complex valued function on Kn with

respect to the Haar measure is called p-adic integration.

Let i 2 Z>0. Then Rn is the disjoint union of qni cosets of (P i)n.

Because the Haar measure is translation invariant, the measure of each

of these cosets is the same. Hence, we obtain �((P i)n) = q�ni because

�(Rn) = 1 and because � is additive.

(1.1.4) Igusa's p-adic zeta function Zf (s) of f is de�ned by a p-adic

integral for complex numbers s satisfying Re(s) > 0:

Zf (s) =

Z
Rn
jf(x)js jdxj:

The integrand is the sth power of the absolute value of f(x). We will see

that Zf (s) is analytic and that it extends to a meromorphic function on

C , but until there Zf (s) is just a complex function on the right hand side

of the complex plane.

(1.1.5) Because

fx 2 Rn j ord f(x) = ig
=fx 2 Rn j f(x) � 0 mod P ig n fx 2 Rn j f(x) � 0 mod P i+1g
=

�[
a+(Pi)n2(R=Pi)n

f(a)�0modPi

a+ (P i)n
�
n
�[

a+(Pi+1)n2(R=Pi+1)n

f(a)�0modPi+1

a+ (P i+1)n
�
;

where every union is a union of disjoint sets, we obtain that

�(fx 2 Rn j ord f(x) = ig) = Miq
�ni �Mi+1q

�n(i+1):
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Moreover, it follows from this calculation that jf(x)j is a locally constant

function outside the zero locus of f . Consequently, jf(x)js is a locally

constant function, and thus continuous, outside the zero locus of f for

every complex number s. One checks easily that jf(x)js is continuous

everywhere if Re(s) > 0.

Since the de�ning integral of Igusa's p-adic zeta function is an integral

of a continuous function on a compact set, it is meaningful. Actually, this

is also clear by looking at the following explicit calculation of Zf (s):

Zf (s) =

Z
Rn
jf(x)js jdxj

=

1X
i=0

�(fx 2 Rn j ord f(x) = ig)q�is

=
1X
i=0

(Miq
�ni �Mi+1q

�n(i+1))q�is

=

1X
i=0

Miq
�niq�is �

P1
i=0Mi+1q

�n(i+1)q�(i+1)s

q�s

= P (q�s)� P (q�s)� 1

q�s
: (1.1)

Note that q�s is an analytic function of s which maps a point of the

right hand side of the complex plane to a point of the open unit disc.

Moreover, P (t) is an analytic function on the open unit disc. Therefore,

we obtain that Zf (s) is an analytic function on the right hand side of the

complex plane.

It is clear from equation (1.1) that Zf (s) depends only on q�s, i.e.,

Zf (s1) = Zf (s2) if q�s1 = q�s2 . One can observe this fact also directly by

looking at the de�ning integral. We have that q�s1 = q�s2 if and only if

s1 = s2 + 2k�
p�1= log q for some k 2 Z. Consequently, Zf (s) is periodic

with period 2�
p�1= log q.

Let t be another complex variable. Because the map ' : fs j Re(s) >

0g ! ft j 0 < jtj < 1g : s 7! t = q�s is surjective and because Zf (s)

depends only on q�s, there exists a unique function Zf (t) on ft j 0 <

jtj < 1g such that Zf (s) = Zf (t) Æ '. It follows from equation (1.1) that

Zf (t) = P (t)� P (t)� 1

t
:
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Consequently, also Zf (t) is an analytic function. Because the constant

term of P (t) is 1, we can extend Zf (t) to an analytic function on ft j jtj <
1g. If we solve the previous equation to P (t), we obtain

P (t) =
1� tZf (t)

1� t :

(1.1.6) Fix a = (a1; : : : ; an) 2 Rn. Let M 0
i be the number of solutions

of f(x) � 0 mod P i in (R=P i)n which are equal to a modulo P n =

P � � � � � P . Put Q(t) =
P1

i=1M
0
i(q

�nt)i. One obtains analogously as in

(1.1.5) that Z
a+Pn

jf(x)js jdxj = Q(t)� Q(t)� q�nt
t

;

where of course t = q�s.

Our next goal is to calculate this integral under the conditions f(a) �
0 mod P and (@f=@xj)(a) 6� 0 mod P for at least one j. We will do this

by calculating the numbers M 0
i . In the next paragraph, we will show that

M 0
i = q(i�1)(n�1). This is actually Hensel's lemma in several variables.

Fix a j 2 f1; : : : ; ng for which (@f=@xj)(a) 6� 0 mod P . Fix also

b1; : : : ; bj�1; bj+1; : : : ; bn 2 R satisfying al � bl mod P for every l 2
f1; : : : ; j � 1; j + 1; : : : ; ng. We want to count the number of solutions

y 2 R=P i�1 of

g(y) := f(b1; : : : ; bj�1; aj + �y; bj+1; : : : ; bn) � 0 mod P i:

The constant term of g as a polynomial in y is f(b1; : : : ; bj�1; aj ; bj+1; : : : ;

bn) and this is congruent to f(a) and thus to 0 mod P . The coeÆcient of y

in g is equal to �(@f=@xj)(b1; : : : ; bj�1; aj ; bj+1; : : : ; bn). This is 0 mod P

and di�erent from 0 mod P 2 because it is �(@f=@xj)(a) mod P 2. The

coeÆcient of every yk is of course in P k. Put h(y) = g(y)=�. We divide

the previous congruence by �, so we obtain that we have to count the

number of solutions y 2 R=P i�1 of

h(y) � 0 mod P i�1:

Note that h is a polynomial in which the coeÆcient of y is not in P

and in which the coeÆcients in terms of higher degree are in P . First,

we determine the solutions of h(y) � 0 mod P in R=P . Because this

is actually a linear congruence, it has one solution c1 + P . Next, we
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determine the solutions of h(y) � 0 mod P 2 in R=P 2. Therefore, we have

to determine the solutions of h(c1 + �y2) � 0 mod P 2 in R=P , which is

actually a linear congruence after we have divided by �. So we obtain

that there is one solution c2 + P 2 of h(y) � 0 mod P 2. Thereafter, we

determine the solutions of h(y) � 0 mod P 3 in R=P 3. Therefore, we have

to determine the solutions of h(c2 + �2y3) � 0 mod P 3 in R=P , which is

actually a linear congruence after we have divided by �2. If we continue

in this way, we obtain �nally that h(y) � 0 mod P i�1, and thus also

g(y) � 0 mod P i, has one solution in R=P i�1. Because we have qi�1

choices modulo P i for every bl, with l 2 f1; : : : ; j � 1; j + 1; : : : ; ng, we

obtain that M 0
i = q(i�1)(n�1).

Because we know the M 0
i , we are able to calculate Q(t):

Q(t) =

1X
i=1

M 0
iq
�niti

= q�n+1
1X
i=1

q�iti

= q�n+1
�

1

1� q�1t � 1

�
=

q�nt

1� q�1t :

Consequently, Z
a+Pn

jf(x)js jdxj = Q(t)� Q(t)� q�nt
t

=
q�nt

1� q�1t �
q�n�1t

1� q�1t
= q�n

q � 1

q

t

1� q�1t :

(1.1.7) We have obtained everything to write down the p-adic stationary

phase formula [Ig7, Theorem 10.2.1]. It is actually the trivial equalityZ
Rn
jf(x)js jdxj =

X
a+Pn2(R=P )n

Z
a+Pn

jf(x)js jdxj;

in which we replace the integrals that we know by now. These areZ
a+Pn

jf(x)js jdxj = q�n
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if f(a) 6� 0 mod P andZ
a+Pn

jf(x)js jdxj = q�n
q � 1

q

t

1� q�1t
if f(a) � 0 mod P and (@f=@xj)(a) 6� 0 mod P for at least one j 2
f1; : : : ; ng. If f(a) � 0 mod P and (@f=@xj)(a) � 0 mod P for all j,

then the integral stays unchanged in the formula.

The reduction of f modulo P , which is denoted by f , is obtained by

reducing all the coeÆcients of f modulo P and is thus a polynomial over

the �nite �eld Fq . Note that f(a) � 0 mod P if and only if f(a) = 0 in

Fq and that (@f=@xj)(a) � 0 mod P if and only if (@f=@xj)(a) = 0 in

Fq . Here, a 2 Fnq is obtained by reducing every component of a modulo

P . Note also that a singular point of a polynomial is by de�nition a zero

of the polynomial and of all its partial derivatives of the �rst order. For

example, every point is a singular point of the zero polynomial.

The p-adic stationary phase formula can sometimes be used to cal-

culate Igusa's p-adic zeta function. I illustrate this with the polyno-

mial f = x1x2 + x23. We �rst calculate the number of solutions of

f = x1x2 + x23 = 0 over the �nite �eld Fq . If x2 6= 0, this is a linear

equation in x1 for every x3 2 Fq . Such an equation has one solution.

There are thus q(q � 1) solutions for which x2 6= 0. If x2 = 0, then

x3 = 0 and x1 is an arbitrary element of Fq . There are thus q solutions

for which x2 = 0. We obtain that x1x2 + x23 = 0 has q(q � 1) + q = q2

solutions over Fq . There is only one singular point of x1x2 + x23 = 0 over

Fq . Indeed, the system of equations f = x1x2+x23 = 0, @f=@x1 = x2 = 0,

@f=@x2 = x1 = 0 and @f=@x3 = 2x3 = 0 only has (0; 0; 0) as solution

over Fq . Note that this is also the case if we work in characteristic 2. The

p-adic stationary phase formula states thatZ
R3

jx1x2 + x23js jdxj = (q3 � q2)q�3 + (q2 � 1)q�3
q � 1

q

t

1� q�1t
+

Z
P 3

jx1x2 + x23js jdxj:

If we apply the coordinate transformation R3 ! P 3 : (x1; x2; x3) 7!
(�x1; �x2; �x3) to the last integral, we obtainZ

P 3

jx1x2 + x23js jdxj =

Z
R3

j�x1�x2 + �2x23js q�3jdxj

= q�3t2
Z
R3

jx1x2 + x23js jdxj:
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The integral we want to calculate appears in the last expression. Conse-

quently, we get a functional equation. Solving this gives us

Z
R3

jx1x2 + x23js jdxj =
q � 1

q

1� q�3t
(1� q�1t)(1� q�3t2) :

In more diÆcult examples, one applies the p-adic stationary phase

formula several times until one gets a system of equations in several unde-

termined functions from which Igusa's p-adic zeta function can be solved.

It is an open problem whether this is always possible.

(1.1.8) Now I explain how Hoornaert obtained in her Ph.D. thesis (see

also [DH]) a formula for Igusa's p-adic zeta function of polynomials which

are non-degenerated over Fq with respect to their Newton polyhedron.

This is in some sense a very large class of polynomials and consequently

an interesting class for checking conjectures. It was also useful in my

research: at some points it made me clear what I could expect and what

certainly not. Indeed, the formula is in terms of the Newton polyhedron

of f and is therefore very interesting to construct examples, which can

be calculated explicitly by using the formula or the computer program of

Hoornaert and Loots [HL] based on it.

Let f(x) =
P

!2Zn�0
a!x

! =
P

!2Zn�0
a!x

!1
1 � � � x!nn be a non-zero poly-

nomial over R with f(0) = 0. Here Zn�0 is the abbreviated notation for

(Z�0)
n. Let supp(f) = f! 2 Zn�0 j a! 6= 0g. The Newton polyhedron

�(f) of f is de�ned as the convex hull in Rn�0 of the set [!2supp(f)!+Rn�0 .

The intersection of �(f) with a supporting hyperplane is called a face of

�(f) and a facet is a face of dimension n � 1. If � is a face of �(f),

we de�ne f� (x) =
P

!2� a!x
!. We say that f is non-degenerated over

Fq if not any of the polynomials f and f� , with � a face of �(f), has a

singularity in (F�q )n.

Let � be a face of �(f). Let 
1; : : : ; 
i be the facets of �(f) which

contain � . Let v1; : : : ; vi be the vectors in Zn�0 n f(0; : : : ; 0)g of minimal

length which are perpendicular to respectively 
1; : : : ; 
i. Then �� =

f�1v1 + � � � + �ivi j �i 2 R>0g is called the cone associated to � . One

proves that Rn�0 n f(0; : : : ; 0)g is the disjoint union of the �� .

For x = (x1; : : : ; xn) 2 Rn, we denote (ordx1; : : : ; ordxn) simply by

ordx. We have



8 Chapter 1. Preliminaries on zeta functions

Zf (s) =

Z
Rn
jf(x)js jdxj

=
X
k2Zn�0

Z
x2Rn

ord x=k

jf(x)js jdxj

=

Z
(R�)n

jf(x)js jdxj+
X
�

X
k2Zn

�0
\��

Z
x2Rn

ord x=k

jf(x)js jdxj:

Let M�(f) (resp. M� ) be the number of solutions of f (resp. f� ) in

(F�q )n.

Because f is non-degenerated over Fq we have that f has no singular-

ities in (F�q )n, and consequentlyZ
(R�)n

jf(x)js jdxj = ((q � 1)n �M�(f))q
�n +M�(f)q

�n q � 1

q

t

1� q�1t

=

�
q � 1

q

�n
�M�(f)q

�n 1� t
1� q�1t :

Let � be a face of �(f). Let k 2 Zn�0\�� . One proves that the function

� : �(f) ! R : x = (x1; : : : ; xn) 7! k � x = k1x1 + � � � + knxn reaches

it minimum exactly on the points of � . This minimum is denoted by

m(k). Put �(k) = k1 + � � �+ kn. We apply the coordinate transformation

' : (u1; : : : ; un) 7! (�k1u1; : : : ; �
knun). Then '�jdxj = q��(k)jduj and

'�1(fx 2 Rn j ordx = kg) = (R�)n. Because '�(x!) = �k�!u! and

because � reaches its minimum m(k) exactly on the points of � , we can

write '�(f(x)) = �m(k)(f� (u) +�f�;k(u)), where f�;k is a polynomial over

R. Because f is non-degenerated over Fq we have that f� , and thus also

f� + �f�;k, has no singularities in (F�q )n. Therefore,Z
x2Rn

ord x=k

jf(x)js jdxj =

Z
(R�)n

j�m(k)(f� (u) + �f�;k(u))js q��(k)jduj

= q��(k)tm(k)

Z
(R�)n

jf� (u) + �f�;k(u)js jduj

= q��(k)tm(k)

��
q � 1

q

�n
�M� q

�n 1� t
1� q�1t

�
:

The part between the brackets does not depend on the choice of k 2
Zn�0 \�� . We have thus thatX

k2Zn�0\��

Z
x2Rn

ord x=k

jf(x)js jdxj
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is equal to0@ X
k2Zn�0\��

q��(k)tm(k)

1A��q � 1

q

�n
�M�q

�n 1� t
1� q�1t

�
:

One can prove thatX
k2Zn�0\��

q��(k)tm(k) =
A(t)

(1� q��(v1)tm(v1)) � � � (1� q��(vi)tm(vi))
;

where A(t) is a polynomial which can be calculated explicitly and where

v1; : : : ; vi are the vectors in Zn�0nf(0; : : : ; 0)g of minimal length which are

perpendicular to the facets that contain � .

The formula we obtained has important consequences. If f is non-

degenerated over Fq , it follows from the formula that Zf (s) has a mero-

morphic continuation to C . Moreover, we can read the candidate poles

of this meromorphic continuation from the Newton polyhedron of f . The

real part of a candidate pole is �1 or of the form ��(v)=m(v) with v a

vector which is perpendicular to a facet � of �(f). One checks directly

that ��(v)=m(v) = �1=t0, where t0 is the intersection of the supporting

hyperplane of � with the diagonal f(t; : : : ; t) j t 2 Rg of Rn .

(1.1.9) All Igusa's p-adic zeta functions we have met so far are rational

functions of t. This is true in general. We now give the idea behind the

proof. For more details, see [Ig7] or Chapter 3.

To calculate integrals, one often tries to �nd a coordinate transfor-

mation such that the integral can be calculated easily in the new coordi-

nates. Here, the appropriate coordinates lie on an embedded resolution

of (f; dx), which always exists by Hironaka's theorem [Hi]. Hironaka ac-

tually proved that there exists a composition of blowing-ups which is an

embedded resolution of (f; dx).

Let g : Y ! Rn be an embedded resolution of (f; dx). Note that Y

is a K-analytic manifold. Let b be an arbitrary point of Y . Then there

exist analytic coordinates y = (y1; : : : ; yn) on a neighbourhood V of b,

non-vanishing K-analytic functions "; � on V and integers Ni � 0, �i � 1

for every i 2 f1; : : : ; ng such that on V

f Æ g = "
nY
i=1

yNii and g�dx = �
nY
i=1

y�i�1i dy:
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Because j"j and j�j are locally constant functions, we can �nd a neigh-

bourhood of b on which the integralZ
Y
jf Æ gjs jg�dxj

is of the form

j"(b)jsj�(b)j
Z
(P k)n

nY
i=1

jyijNis+�i�1 jdyj:

Note that Zf (s) is a �nite sum of such integrals because Y is compact.

Because the variables are separated, the integral is the product of integrals

in one variable which can be calculated without a problem:Z
P k
jyijNis+�i�1 jdyij = q � 1

q

q�k(Nis+�i)

1� q�Nis��i :

We have proved that Zf (t) is a rational function of t of the form

Zf (t) =
A(t)Q

j2J(1� q��j tNj ) ;

where A(t) is a polynomial. Indeed, a possible power of t in the denomi-

nator can be cancelled because we saw in (1.1.5) that Zf (t) is an analytic

function on the open unit disc. Because P (t) = (1 � tZf (t))=(1 � t), we

obtain that also P (t) is a rational function of t.

Since Zf (t) is a rational function of t, we have that Zf (s) has a mero-

morphic continuation to C . From now on, Igusa's p-adic zeta function

Zf (s) of f is the meromorphic continuation of the function we considered

before. Note that some facts of (1.1.5) such as the periodicity of Zf (s)

and the relation between Zf (t) and P (t) extend to this larger context.

The candidate poles of Zf (s) are of the form

� �j
Nj

+
2k�
p�1

Nj log q
;

with k 2 Z and j 2 J . Some of these candidate poles are poles and others

aren't because they cancel with A(q�s).

(1.1.10) Let us now formulate a theorem of Denef [De1]. Let F be a

number �eld. Let OF be the ring of integers in F . Let f 2 OF [x1; : : : ; xn].
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We consider f as a polynomial function on X = (F alg cl)n. Let g : Y �
X � Pm(F alg cl) ! X be an algebraic embedded resolution of f which is

de�ned over F .

A p-adic completion of F is a completion with respect to a prime ideal

of OF . If K is an extension of �nite degree of a p-adic completion, then

the embedded resolution g induces an embedded resolution gK : YK �
Kn�Pm(K)! Kn of (f; dx) by using the same equations for YK and by

using the same rule for gK .

For almost all p-adic completions of F we have the following. Let K

be an extension of �nite degree of this p-adic completion. Let R be the

valuation ring of K, P the maximal ideal of R and K �= Fq the residue

�eld R=P . Let gK : YK ! Kn be the embedded resolution induced by

g. Let Ei, i 2 TK , be the K-irreducible components of g�1K (f�1f0g). Let

Ni be the multiplicity of Ei in the divisor of f Æ gK on YK and let �i � 1

be the multiplicity of Ei in the divisor of g�Kdx on YK . Let YK (resp. Ei,

i 2 T ) denote the reduction modulo P of YK (resp. Ei). Then

Zf (s) = q�n
X
I�TK

CI
Y
i2I

q � 1

q�i+sNi � 1
;

where CI = cardfa 2 YK(K) j a 2 Ei if and only if i 2 Ig. Remark that

Zf (s) depends on K.

Denef actually proves that this holds for a p-adic completion with

respect to the prime ideal � if g : Y ! X has good reduction modulo

�. Remark also that the formula can be formulated directly in terms of

g : Y ! X by using the F -irreducible components of g�1(f�1f0g) and

by using reduction modulo �.

(1.1.11) We will also consider some generalizations of the previous de�-

nition of Igusa's p-adic zeta function.

Let f 2 K[x1; : : : ; xn]. Let � be a character of R�, i.e., a group

homomorphism � : R�; :! C � ; : with �nite image. Put formally �(0) =

0. For z 2 K, let ac z = z��ord z be the angular component of z. Igusa's

p-adic zeta function Zf;�(s) of f and � is de�ned by the p-adic integral

Zf;�(s) =

Z
Rn
�(ac f(x))jf(x)js jdxj

for s 2 C satisfying Re(s) > 0, and on the other part of the complex

plane by meromorphic continuation.
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Moreover, if f is an arbitrary K-analytic function on an open and

compact subset X of Kn, then the meromorphic continuation of

Zf;�(s) =

Z
X
�(ac f(x))jf(x)js jdxj;

where Re(s) > 0, is also called Igusa's p-adic zeta function of f and �.

(1.1.12) The monodromy conjecture is one of the most important reasons

for the study of the poles of Igusa's p-adic zeta function. For a polyno-

mial f over a number �eld, this conjecture of Igusa asserts a connection

between the poles of Igusa's p-adic zeta function and the topology of the

map f : (C n ; f�1f0g) ! (C ; 0). Moreover, the striking fact that most

candidate poles of Zf;�(s) are actually not poles would be elucidated if

this monodromy conjecture is true. We now state the conjecture.

Let F be a number �eld. Let f 2 F [x1; : : : ; xn]. For almost all p-adic

completions K of F we have the following for any character � of R�. If s

is a pole of Zf;�(s), then exp(2�
p�1 Re(s)) is an eigenvalue of the local

monodromy of f at some complex point of f�1f0g.

(1.1.13) Finally, I want to enumerate some di�erent methods which can

be used to study Igusa's p-adic zeta function. Some of them can be used

to obtain a general statement, others study a special class of functions f .

1. One can use the relation between Zf;�(s) and the number of solu-

tions of congruences. Results for the number of solutions of congru-

ences can have implications for Zf;�(s).

2. One can use an embedded resolution of (f; dx). Especially embed-

ded resolutions which are a composition of blowing-ups with well

chosen centra can be very useful.

3. One can use the formula of Denef to obtain results for polynomials

with good reduction modulo P .

4. One can use the formula of Hoornaert to obtain results for poly-

nomials which are non-degenerated over Fq with respect to their

Newton polyhedron.

5. One can study the class of polynomials which are a relative invariant

of a prehomogeneous vector space.

6. One can use p-adic cell decomposition. Denef used this method for

example to obtain another proof of the rationality of Zf;�(t).
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1.2 Topological and motivic zeta function

(1.2.1) Let f : (C n ; 0) ! (C ; 0) be the germ of a holomorphic function

(resp. f 2 C [x1 ; : : : ; xn]). We will always assume that f is di�erent from

0. Let g : Y ! X � C n (resp. g : Y ! C n) be an embedded resolution

of singularities of a representative f : X ! C (resp. of f : C n ! C ). We

denote by Ei, i 2 T , the irreducible components of g�1(f�1f0g), and by

Ni and �i � 1 the multiplicities of f Æ g and g�dx along Ei. The (Ni; �i),

i 2 T , are called the numerical data of the embedded resolution. For

I � T , we denote EI := \i2IEi and
Æ
EI := EI n ([j =2IEj). Note that Y is

the disjoint union of the
Æ
EI with I � T .

(1.2.2) To the germ f : (C n ; 0) ! (C ; 0) of a holomorphic function we

associate the local topological zeta function

Ztop;0;f (s) :=
X
I�T

�(
Æ
EI \g�1f0g)

Y
i2I

1

�i + sNi
:

To a polynomial f 2 C [x1 ; : : : ; xn] we associate the global topological

zeta function

Ztop;gl;f(s) :=
X
I�T

�(
Æ
EI)

Y
i2I

1

�i + sNi
:

In both cases, s is a complex variable and �(�) denotes the topological

Euler-Poincar�e characteristic. Of course, one has to prove that the ex-

pressions on the right hand side do not depend on the chosen embedded

resolution. This remarkable fact was �rst proved as follows by Denef and

Loeser in [DL1]. For a polynomial f over the ring of integers OF of a num-

ber �eld F , take a completion K of F such that the formula in (1.1.10)

holds for all extensions of this completion. Using p-adic interpolation, we

can consider the global topological zeta function as the limit for e ! 0

of Igusa's p-adic zeta functions of f over certain non-rami�ed extensions

of degree e over K. One has to use a cohomological interpretation of the

numbers CI , which is provided by Grothendieck's trace formula. To treat

the other cases, one has to do more.

Note that one can also de�ne a twisted version of the local and global

topological zeta function for every d 2 Z�2. The de�nition is exactly the

same as above, except for the fact that the sum runs only over subsets I

of T for which d j Ni for every i 2 I.
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(1.2.3) We are interested in the poles of these zeta functions. The can-

didate poles are the ��i=Ni, i 2 T . Some of them are poles, others

are not. We are going to discuss the case n = 2. Let Ei, i 2 T , be

an exceptional curve. We have thus Ei �= P1. Let Ej, j 2 J , be the

irreducible components of g�1(f�1f0g) which are di�erent from Ei and

which intersect Ei. Suppose that ��j=Nj 6= ��i=Ni, which is equivalent

to �j := �j � (�i=Ni)Nj 6= 0, for every j 2 J . Actually, we assume thus

that the sum of the terms in the de�nition of the topological zeta function

for which i 2 I has a candidate pole ��i=Ni of expected order one. The

contribution R of Ei to the residue at the candidate pole ��i=Ni is by

de�nition the residue of this sum at ��i=Ni. Note that R = 0 if and only

if this sum has not a pole in ��i=Ni.

Everything we write down from now on is for the local topological

zeta function Ztop;0;f (s) associated to the germ f : (C 2 ; 0) ! (C ; 0) of a

holomorphic function. One obtains easily that

R =
1

Ni

0@�(
Æ

Efig) +
X
j2J

��1j

1A : (1.2)

We will prove that this is equal to zero if J contains one or two elements.

Therefore, we need a relation between the �j, j 2 J .

We give here a deduction of Veys which uses intersection theory. Note

that we may assume that f is a polynomial because there exists a degree

from which the terms do not in
uence the embedded resolution and the

numerical data. Because div(f Æ g) =
P

j2T NjEj is a principal divisor,

we obtain that (
P

j2T NjEj) � Ei = 0. Because Ej � Ei = 1 if j 2 J and

Ej � Ei = 0 if j 62 J [ fig, we getX
j2J

Nj = �NiE
2
i : (1.3)

Here, E2
i is the self intersection of Ei on Y . Because div(g�dx) =

P
j2T (�j

�1)Ej is the canonical divisor, we obtain from the adjunction formula

that (
P

j2T (�j � 1)Ej) �Ei = �2�E2
i . Hence, we getX

j2J

(�j � 1) + 2 = ��iE2
i : (1.4)

Relation (1.4) minus �i=Ni times relation (1.3) gives us a relation between
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the �j : X
j2J

(�j � 1) + 2 = 0: (1.5)

We are now able to prove thatR = 0 if J contains one or two elements.

If J = f1g contains one element, then it follows from relation (1.5) that

�1 = �1. We obtain from (1.2) that

R =
1

Ni

�
1 +

1

�1

�
= 0:

If J = f1; 2g contains two elements, then it follows from (1.5) that �1 +

�2 = 0. We obtain from (1.2) that

R =
1

Ni

�
0 +

1

�1
+

1

�2

�
=

1

Ni

�
�2 + �1
�1�2

�
= 0:

We have treated the easy part of the following theorem. The other

part is more diÆcult and is proved in [Ve5].

Theorem. We have that s0 is a pole of Ztop;0;f(s) if and only if s0 =

��i=Ni for some exceptional curve Ei intersecting at least three times

other components, or s0 = �1=Nj for some irreducible component Ej of

the strict transform of f�1f0g.

(1.2.4) The topological zeta function involves the topological Euler-Poin-

car�e characteristic. This invariant is quite rough: sometimes one wants to

detect more. Now we introduce the universal Euler characteristic, which

is the �nest invariant with the following properties of the topological

Euler-Poincar�e characteristic: �(X) = �(Y ) if X is isomorphic to Y and

�(X n Y ) = �(X)��(Y ) if Y is a closed subvariety of X. This universal

Euler characteristic is the class of an algebraic variety in the Grothendieck

ring of algebraic varieties over C . We �rst recall this notion, which we

will give relative to an arbitrary �eld of characteristic zero.

Let k be a �eld of characteristic zero. An algebraic variety over k

is in this paragraph a reduced separated scheme of �nite type over k.

An algebraic variety is thus not necessarily irreducible. Let G be the

free abelian group generated by the symbols [V ], where V is an alge-

braic variety over k. Let N be its subgroup generated by f[V ] � [V 0] j
V is isomorphic to V 0 over kg [ f[V ] � [V n W ] � [W ] j W is a closed

k-subvariety of V g. The Grothendieck ring K0(Vark) of algebraic vari-

eties over k is the quotient group G=N . Its ring structure is determined
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by [V ] � [W ] := [V �W ]. We set L := [A 1
k ] and we denote by Mk the

localization of K0(Vark) with respect to L.

(1.2.5) If f : (C n ; 0)! (C ; 0) is the germ of a holomorphic function, the

local motivic zeta function of f is the following element of MC [[t]]:

Zmot;0;f (t) = L�n
X
I�T

[
Æ
EI \g�1f0g]

Y
i2I

(L � 1)L��i tNi

1� L��i tNi
:

If f 2 C [x1 ; : : : ; xn] is a polynomial over C , the global motivic zeta

function of f is the following element of MC [[t]]:

Zmot;gl;f (t) = L�n
X
I�T

[
Æ
EI ]

Y
i2I

(L � 1)L��i tNi

1� L��i tNi
:

These motivic zeta functions are de�ned intrinsically by Denef and Loeser

in [DL2]. In this paper, they obtained the previous expressions which are

in terms of an embedded resolution.

Note that 1 � L��i tNi is a unit in MC [[t]] and that its inverse is

1=(1 � L��i tNi) = 1 + L��i tNi + L�2�i t2Ni + � � �. We can consider these

motivic zeta functions as an element of the localization of the polynomial

ring MC [t] with respect to the set f1 � L��i tNi j i 2 Tg or to the set

f1� L�a tb j a; b 2 Z>0g. These localizations are subrings of MC [[t]].

(1.2.6) The topological zeta functions are specializations of the motivic

zeta functions. This gives us another proof of the fact that the expressions

in the de�nitions of the topological zeta functions are independent of the

chosen embedded resolution.

We now explain how Ztop;gl;f(s) can be seen as a specialization of

Zmot;gl;f(t). First we specialize Zmot;gl;f(t) to the Hodge zeta function

ZHod;gl;f(t):

ZHod;gl;f (t) = (uv)�n
X
I�T

H(
Æ
EI)

Y
i2I

(uv � 1)(uv)��i tNi

1� (uv)��itNi
:

Here, H(V ) 2 Z[u; v] represents the Hodge polynomial of the algebraic

variety V . This polynomial codes important information of the mixed

Hodge theory of V . It is an Euler characteristic at an intermediate level:

the elements of the Grothendieck ring specialize to Hodge polynomials
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and one can specialize these further to the topological Euler-Poincar�e

characteristic by putting u = v = 1.

Let s 2 Z�0. Then

ZHod;gl;f((uv)�s) = (uv)�n
X
I�T

H(
Æ
EI)

Y
i2I

(uv � 1)(uv)��i�sNi

1� (uv)��i�sNi

= (uv)�n
X
I�T

H(
Æ
EI)

Y
i2I

uv � 1

(uv)�i+sNi � 1

= (uv)�n
X
I�T

H(
Æ
EI)

Y
i2I

1

1 + uv + � � �+ (uv)�i+sNi�1

We apply the topological Euler-Poincar�e characteristic to this expres-

sion. So we have to replace H(
Æ
EI) by �(

Æ
EI) and H(L) = uv by 1. We

obtain the function

Z�0! C : s 7!
X
I�T

�(
Æ
EI)

Y
i2I

1

�i + sNi
: (1.6)

This function is independent of the embedded resolution and can be ex-

tended uniquely to a rational function on C , which is

Ztop;gl;f (s) =
X
I�T

�(
Æ
EI)

Y
i2I

1

�i + sNi
:

We used Hodge polynomials to deduce that (1.6) is independent of

the embedded resolution. I try to clarify why this is crucial by giving a

slightly di�erent deduction. We want to consider Zmot;gl;f(L�s), but we

can not give sense to this in MC . We deal with this problem as follows.

Suppose that we have two embedded resolutions. Then

L�n
X
I�T

[
Æ
EI ]

Y
i2I

(L � 1)L��i tNi

1� L��i tNi
= L�n

X
I0�T 0

[
Æ
EI0 ]

Y
j2I0

(L � 1)L��j tNj

1� L��j tNj
:

We bring the denominators to the other side, so we get a polynomial

identity in which we make the substitution t = L�s for s 2 Z�0. If we

apply now the topological Euler-Poincar�e characteristic, we get the trivial

identity 0 = 0 because (L � 1)jT j+jT
0j is a factor of each side and because

�(L � 1) = 0. We have to cancel (L � 1)jT j+jT
0j before we apply the

topological Euler-Poincar�e characteristic, but this is a problem because
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we do not know that L � 1 is not a zero divisor in MC . However, if

we specialize �rst to the Hodge polynomials, we can cancel H(L � 1) =

uv � 1 because Z[u; v]uv is an integral domain. Thereafter, we apply the

topological Euler-Poincar�e characteristic and we bring every factor to its

original side to obtain (1.6).

(1.2.7) If we work relative to a number �eld, there exists a connection

between the motivic zeta function and Igusa's p-adic zeta function.

Let F be a number �eld. Let f 2 OF [x1; : : : ; xn] be a non-zero poly-

nomial. Let g : Y ! C n be an embedded resolution of f : C n ! C which

is de�ned over F . We denote by Ei, i 2 T , the F -irreducible components

of g�1(f�1f0g), and by Ni and �i � 1 the multiplicities of f Æ g and g�dx

along Ei. For I � T , we denote EI := \i2IEi and
Æ
EI := EI n ([j =2IEj).

The global motivic zeta function Zmot;gl;f(t) is in this context an element

of MF [[t]], and is given by the same expression as in (1.2.4).

Let � be a prime ideal of OF such that the statement in (1.1.10)

holds for the p-adic completion of F with respect to �. Let K be an

extension of �nite degree of this p-adic completion. Let R be the val-

uation ring of K and let P be the maximal ideal of R. Let q be the

number of elements of the residue �eld OF =� and let e 2 Z�1 be such

that R=P �= Fqe . For an algebraic variety X over F , let X be the re-

duction modulo � and let X(Fqe ) be the Fqe -rational points of X. Be-

cause card(X(Fqe )) = card(Y (Fqe )) if X �=F Y and card(X n Y (Fqe )) =

card(X(Fqe )) � card(Y (Fqe )) if Y is a closed F -subvariety of X, we can

de�ne card(�(Fqe )) for � 2 K0(VarF ) in an obvious way. We have that

card((��)(Fqe )) = card(�(Fqe ))card(�(Fqe )) for �; � 2 K0(VarF ) and

that it induces a notion of cardinality on MF . Because of (1.1.10), we

obtain Igusa's p-adic zeta function by specialization.

(1.2.8) The weak factorization conjecture is proved recently (see [AKMW]

or [W l]) and can be used to obtain the independence of the embedded

resolution of the global topological and the global motivic zeta function.

The weak factorization theorem states the following. Let f : X 9 9 K Y

be a proper birational map between non-singular algebraic varieties X

and Y over an algebraically closed �eld of characteristic zero, which is an

isomorphism over an open set U . Then f can be factored as

X = X0
f0
9 9 KX1

f1
9 9 K� � � fn�19 9 KXn = Y;
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where each Xi is a non-singular algebraic variety and fi is a blowing-up

or blowing-down at a smooth centre which is an isomorphism over U .

Moreover, if X n U and Y n U are divisors with normal crossings, then

each Di := XinU is a divisor with normal crossings and fi is a blowing-up

or blowing-down at a smooth centre which has normal crossings with the

components of Di.

(1.2.9) Example. Let f = x5z2 + x8y2 + x11. We used the computer

program of Hoornaert and Loots [HL] to compute Igusa's p-adic zeta

function of f and the global topological zeta function of f .

Let K = Qp . If p � 3 mod 4, we obtained that �1=2 is a pole of

Zf (s). If p � 1 mod 4 we obtained that �1=2 is not a pole of Zf (s). In

both cases, there are poles with real part �1=2 and with imaginary part

between 0 and 2�
p�1= log p.

Because �1=2 is a pole of in�nitely many p-adic �elds Qp , we have

that Zmot;gl;f(t) has a pole in�1=2. However, we obtained that Ztop;gl;f (s)

has not a pole in �1=2. For the de�nition of a pole of the motivic zeta

function, see [RV2].

1.3 Historical note

The study of these zeta functions has a rich history. Igusa's p-adic zeta

function was introduced in 1965 by Weil [We] because he wanted to prove

the convergence of the Eisenstein-Siegel series. The basis properties of

this zeta function were �rst studied by Igusa ([Ig1], [Ig2], [Ig3]). He

also used Zf (s) to solve a conjecture of Borevich and Shafarevich. They

introduced the Poincar�e series P (t) in the 1950's and they conjectured

the rationality of it [BS]. Igusa proved the rationality of P (t) �rst in

[Ig2] and in [Ig3] he gave the proof of this fact which we have seen before

and which is much easier. See [De2] for more information and for further

developments on Igusa's p-adic zeta function.

In the early 1990's Denef and Loeser introduced the topological zeta

function [DL1]. They obtained this invariant as a limit of Igusa's p-adic

zeta functions. In 1998 they de�ned the motivic zeta function [DL2].

This invariant specializes to the topological zeta function and is de�ned

intrinsically.





Chapter 2

The topological zeta

function for curves and

surfaces

Abstract

We study the local topological zeta function associated to a

complex function that is holomorphic at the origin of C 2 (re-

spectively C 3 ). We determine all possible poles less than �1=2

(respectively �1). On C 2 our result is a generalization of the

fact that the log canonical threshold is never in ]5=6; 1[. Sim-

ilar statements are true for the motivic zeta function.

2.1 Introduction

(2.1.1) Let f be the germ of a holomorphic function on a neighbour-

hood of the origin 0 in C n which satis�es f(0) = 0 and which is not

identically zero. Let g : V ! U � C n be an embedded resolution of a

representative of f�1f0g. We denote by Ei, i 2 T , the irreducible compo-

nents of g�1(f�1f0g), and by Ni and �i� 1 the multiplicities of f Æ g and

g�(dx1 ^ � � � ^dxn) along Ei. The (Ni; �i), i 2 T , are called the numerical

data of the resolution (V; g). For I � T denote also EI := \i2IEi and
Æ
EI := EI n ([j =2IEj).

This chapter corresponds to [SV].
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The set of germs of holomorphic functions on a neighbourhood of

0 2 C n will be denoted by On.

(2.1.2) To f one associates the local topological zeta function

Zf (s) = Ztop;0;f (s) :=
X
I�T

�(
Æ
EI \g�1f0g)

Y
i2I

1

�i + sNi
:

Here s is a complex variable and �(�) denotes the topological Euler-

Poincar�e characteristic. The remarkable fact that Zf (s) does not depend

on the chosen resolution was �rst proved in [DL1] by expressing it as a

limit of Igusa's p-adic zeta functions.

(2.1.3) The log canonical threshold c0(f) of f at 0 2 C n is by de�nition

the supremum of the set fc 2 Q j the pair (C n ; c div f) is log canonical

in a neighbourhood of 0g. We can describe it (see [Ko2, Proposition 8.5])

in terms of the embedded resolution (V; g) as c0(f) = minf�i=Ni j i 2
Tg. In particular, this minimum is independent of the chosen resolution.

Consequently, �c0(f) is the largest candidate pole of Zf (s). The log

canonical threshold has already been studied in various papers of Alexeev,

Ein, Koll�ar, Kuwata, Mustat��a, Prokhorov, Reid, Shokurov and others; in

particular, the sets

Tn := fc0(f) j f 2 Ong;
with n 2 Z>0, are the subject of interesting conjectures.

It is natural to investigate whether more quotients��i=Ni, i 2 T , yield

invariants of the germ of f at 0. Of course, the whole set f��i=Ni j i 2 Tg
depends on the chosen resolution (for n = 2, however, one could consider

such a set associated to the minimal resolution), but its subset consisting

of the poles of Zf (s) is an invariant of f . Philosophically, these poles are

induced by `important' components Ei, which occur in every resolution.

For n 2 Z>0, we de�ne the set Pn by

Pn := fs0 j 9f 2 On : Zf (s) has a pole in s0g:

The case n = 1 is trivial: T1 = f1=i j i 2 Z>0g and P1 = f�1=i j i 2 Z>0g.

(2.1.4) When n = 2, it is known that T2\]5=6; 1[= ; (see [Ku1] or [Re]).

Because it follows from [Ve5] that �c0(f) is a pole (and thus the largest

pole) of Zf (s), the statement P2\]� 1;�5=6[= ; would be a remarkable
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generalization. It is in fact not hard to prove this generalization. In this

article, we will prove more:

P2\]�1;�1=2[ = f�1=2 � 1=i j i 2 Z>1g (2.1)

= f�1;�5=6;�3=4;�7=10; : : :g:

We will also see that �1 is the only possible pole less than �1=2 if f has

multiplicity at least four.

(2.1.5) Koll�ar proved in [Ko1] that T3\]41=42; 1[= ;. It turns out that

there is no analogous result for P3. In fact, we will give examples of zeta

functions with poles in ]�1;�41=42[ which are, moreover, arbitrarily near

to �1. On the other hand, we prove the analogue of (2.1), which appears

to be

P3\]�1;�1[ = f�1� 1=i j i 2 Z>1g: (2.2)

In particular, there are no poles less than �3=2. Moreover, if the multi-

plicity of f is at least three, we will see that there are no poles less than

�1. The last part will be the most diÆcult because we will have to prove

that some candidate poles are not poles.

(2.1.6) In general, we expect for n � 2 that

Pn\]�1;�(n� 1)=2[= f�(n� 1)=2 � 1=i j i 2 Z>1g:

We will see that for n � 2, it is easy to prove that

Pn\]�1;�n+ 1[= ;:

2.2 Curves

(2.2.1) We will determine P2\] � 1;�1=2[. Let f be the germ of a

holomorphic function on a neighbourhood of the origin 0 in C 2 which

satis�es f(0) = 0 and which is not identically zero. Let (V; g) be the

minimal embedded resolution of f�1f0g. Write g = g1 Æ � � � Æ gt as a

composition of blowing-ups gi, i 2 Te := f1; : : : ; tg. The exceptional

curve of gi and also the strict transforms of this curve are denoted by

Ei. The irreducible components of f�1f0g and their strict transforms are

denoted by Ej , j 2 Ts.
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(2.2.2) The dual (minimal) embedded resolution graph of f�1f0g is ob-

tained as follows. One associates a vertex to each exceptional curve in the

minimal embedded resolution (represented by a dot), and to each branch

of the strict transform of f�1f0g (represented by a circle). One also asso-

ciates to each intersection an edge, connecting the corresponding vertices.

The fact that Ei has numerical data (Ni; �i) is denoted by Ei(Ni; �i).

(2.2.3) Let Ei be an exceptional curve and let Ej, j 2 J , be the compo-

nents that intersect Ei in V . Set �j = �j � (�i=Ni)Nj for j 2 J . Then

we have the relation X
j2J

(�j � 1) + 2 = 0; (2.3)

which was �rst proved by Loeser in [Lo1], and later more conceptually by

the second author in [Ve2].

Suppose that �j 6= 0, which is equivalent to ��i=Ni 6= ��j=Nj , for all

j 2 J . Then one computes easily that the contribution R of Ei to the

residue of Zf (s) at the candidate pole ��i=Ni is

1

Ni

0@�(
Æ

Efig) +
X
j2J

��1j

1A : (2.4)

From (2.3) and (2.4) it follows that R = 0 if J contains one or two

elements. This is the easy part of the following theorem. The other part

is more diÆcult and is proved in [Ve5].

(2.2.4) Theorem. We have that s0 is a pole of Zf (s) if and only if

s0 = ��i=Ni for some exceptional curve Ei intersecting at least three

times other components, or s0 = �1=Nj for some irreducible component

Ej of the strict transform of f�1f0g.

The following lemma is obtained by elementary calculations.

(2.2.5) Lemma. Suppose that we have blown up k times but we do

not yet have an embedded resolution. Let P be a point of the strict

transform of f�1f0g with multiplicity � in which we do not yet have

normal crossings. Let gk+1 be the blowing-up at P .
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(a) Suppose that two exceptional curves Ei and Ej contain P . Then

the new candidate pole ��k+1=Nk+1 = �(�i + �j)=(Ni +Nj +�) is larger

than minf��i=Ni;��j=Njg.
(b) Suppose that exactly one exceptional curve Ei contains P and that

� � 2. ThenEk+1 has numerical data (Ni+�; �i+1) and�(�i+1)=(Ni+�)

is between �1=� and ��i=Ni.

(c) Suppose that exactly one exceptional curve Ei contains P and that

� = 1. Note that the two curves are tangent at P because we do not have

normal crossings at P . Let gk+2 be the blowing-up at Ei\Ek+1. Because
the strict transform of f�1f0g does not intersect Ek+1 after this blowing-
up, we do not have to blow up at a point of Ek+1 anymore. Because Ek+1
is intersected once, it follows from (2.2.3) that the contribution of Ek+1
to the residue at the candidate pole ��k+1=Nk+1 is zero. The numerical

data of Ek+2 are (2Ni + 2; 2�i + 1), and �(2�i + 1)=(2Ni + 2) is between

�1=2 and ��i=Ni.

(2.2.6) Suppose that after some blowing-ups, we do not have normal

crossings at a point P . Suppose also that the candidate poles associated

to the exceptional curves through P are all larger than or equal to �1=2.

Then it follows from the above lemma that the components above P in

the �nal resolution do not give a contribution to a pole less than �1=2.

Corollary. Zeta functions of singularities of multiplicity at least four do

not have a pole in ]�1;�1=2[nf�1g.
Indeed, every exceptional curve in the minimal embedded resolution of

f�1f0g lies above a point of E1 (considered in the stage when it is cre-

ated), which has a candidate pole larger than or equal to �1=2.

(2.2.7) To deal with multiplicity two and three, we will study an `easier'

element of O2 with the same zeta function. We mention two methods to

obtain a simple function with this property.

Method 1. (See [Ku2]) Let f 2 On have multiplicity d and let fd be the

homogeneous part of degree d in the Taylor series of f . Let N 2 Z>d.

Take a maximal set V of homogeneous polynomials of degree larger than

d and at most N which are linearly independent in the quotient vector

space On=(@fd=@x1; : : : ; @fd=@xn). Then f is holomorphically equivalent

to fd +
P

ui2V
aiui +', for some ai 2 C and some ' 2 On which satis�es

mult(') > N .
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Remark. (i) The similar statement in [Ku2, Lemma 3.2] is not correct;

some homogeneity condition is needed.

(ii) Let f�1f0g have an isolated singularity at the origin and suppose

that we have an embedded resolution which is an isomorphism outside

this singularity. Then ' does not in
uence the embedded resolution and

the numerical data if N is big enough. Consequently, to calculate the

local topological zeta function, we can omit ' if we take N big enough.

Note that when n = 2, f�1f0g has an isolated singularity at 0 if and only

if f is reduced and mult(f) � 2.

Method 2. (Weierstrass Preparation Theorem) If f(z1; : : : ; zn�1; w) =

f(z; w) 2 On is not identically zero on the w-axis, then f can be written

uniquely as f = (we + a1(z)w
e�1 + � � � + ae(z))h, where ai(z) 2 On�1

satis�es ai(0) = 0 and h 2 On satis�es h(0) 6= 0.

Because h(0) 6= 0, the resolutions and the local topological zeta functions

of f and we + a1(z)we�1 + � � �+ ae(z) are the same. After an appropriate

coordinate transformation, the desired form will appear. For example,

the coordinate transformation (z; w) 7! (z; w� a1(z)=e) cancels the term

a1(z)we�1.

(2.2.8) Example. Let f 2 O2 have multiplicity three and let f3 = y3 +

xy2 = y2(y + x). First we illustrate method 1. Because @f3=@x = y2

and @f3=@y = 3y2 + 2xy, we get (@f3=@x; @f3=@y) = (y2; xy). Therefore,

we set V = fx4; x5; : : : ; xNg, and we obtain that f is holomorphically

equivalent to a function of the form y3+xy2+a4x
4+ � � �+aNx

N +g(x; y),

with mult(g(x; y)) > N . If all ai can be taken zero for every N , then f is

holomorphically equivalent to y3+xy2. If there exists an ai di�erent from

zero, which is the reduced case, the form above will allow us to calculate

the local topological zeta function of f .

Now we illustrate method 2. By the Weierstrass Preparation Theo-

rem, we may work with a function of the form y3+a1(x)y2+a2(x)y+a3(x),

with mult(a1(x)) = 1, mult(a2(x)) � 3 and mult(a3(x)) � 4. One can

check that there exists a coordinate transformation (x; y) 7! (x; y�k(x))

such that the function becomes of the form y3 + b1(x)y2 + b3(x), with

mult(b1(x)) = 1 and mult(b3(x)) � 4. After another coordinate transfor-

mation, we get the form y3 + xy2 + g(x), with mult(g(x)) � 4.
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(2.2.9) Theorem. We have

P2 \
�
�1;�1

2

�
=

�
�1

2
� 1

i

���� i 2 Z>1

�
and every local topological zeta function has at most one pole in the

interval ]� 1;�1=2].

Proof. (a) Suppose that mult(f), the multiplicity of f at the origin of C 2 ,

is equal to two. Then f is holomorphically equivalent to y2 or y2 +xk for

some k 2 Z>1. If it is y2, the only pole of Zf (s) is �1=2. If k = 2, the

only pole of Zf (s) is �1. If k is odd, write k = 2r + 1. After r blowing-

ups, the strict transform of f�1f0g is non-singular and tangent to Er.

The numerical data of Ei, i = 1; : : : ; r, are (2i; i+ 1). To get the minimal

embedded resolution, we now blow up twice. The dual resolution graph is

: : :s s s s s s

c

E1 E2 E3 Er Er+2 Er+1

and the numerical data are E1(2; 2), E2(4; 3), E3(6; 4), : : : , Er(2r; r+ 1),

Er+1(2r + 1; r + 2) and Er+2(4r + 2; 2r + 3).

If k is even and larger than 2, write k = 2r. By easy calculations we

obtain the dual resolution graph

: : :s s s s s��
�

HHH

c

c

E1 E2 E3 Er�1 Er

and the numerical data E1(2; 2), E2(4; 3), E3(6; 4), : : : , Er�1(2r � 2; r)

and Er(2r; r + 1).

Because �(2r + 3)=(4r + 2) = �1=2 � 1=(2r + 1) and �(r + 1)=(2r) =

�1=2 � 1=(2r), it follows from (2.2.4) that

fs0 j 9f 2 O2 : mult(f) = 2 and Zf (s) has a pole in s0g
=

�
�1

2
� 1

i

���� i 2 Z>1

�
[
�
�1

2

�
:

Note that Newton polyhedra could also be used to deal with (a), see

[DL1].

(b) Suppose that mult(f) = 3. Up to an aÆne coordinate trans-

formation, there are three cases for f3.
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(b.1) Case f3 = xy(x+ y). After one blowing-up we get an embedded

resolution. The poles of Zf (s) are �1 and �2=3 = �1=2� 1=6.

(b.2) Case f3 = y2(y + x). According to example 2.2.8, we may sup-

pose that f = y3 + xy2 + g(x), where g(x) is a holomorphic function in

the variable x of multiplicity k � 4. If g(x) = 0, the poles of Zf (s) are

�1 and �1=2. Now consider the case when k is odd. Write k = 2r + 1.

After r blowing-ups we get an embedded resolution with dual resolution

graph

: : :c s s s s��
�

HHH

c

c

E1 E2 Er�1 Er

and with numerical data E1(3; 2), E2(5; 3), : : : , Er�1(2r � 1; r) and

Er(2r + 1; r + 1).

If k is even, write k = 2r. After r + 1 blowing-ups we get

: : :s s s s s s

c c

E1 E2 E3 Er�1 Er+1 Er

and E1(3; 2), E2(5; 3), E3(7; 4), : : : , Er�1(2r � 1; r), Er(2r; r + 1) and

Er+1(4r; 2r + 1).

The poles appearing in (b.2) are in the desired set because �(r+1)=(2r+

1) = �1=2 � 1=(4r + 2) and �(2r + 1)=(4r) = �1=2� 1=(4r).

(b.3) Case f3 = y3. We may suppose that f is of the form

y3 + a4x
4 + b3yx

3 + a5x
5 + b4yx

4 + a6x
6 + b5yx

5 + � � � ;

where ai; bi 2 C . If f = f3 = y3 then the only pole of Zf (s) is �1=3.

Otherwise there is an integer r � 1 such that after blowing up r times

and always taking the charts determined by gi(x; y) = (x; xy), we get

(g1 Æ � � � Æ gr)�dx^ dy = xrdx^ dy and f Æ g1 Æ � � � Æ gr = x3r(y3 + a3r+1x+

b2r+1yx+a3r+2x
2+b2r+2yx

2+a3r+3x
3+� � �), with a3r+1; b2r+1; a3r+2; b2r+2

and a3r+3 not all zero. The equation of Er in this chart is x = 0 and

the numerical data of Er are (3r; r + 1). The zero locus of y3 + a3r+1x+

b2r+1yx + a3r+2x
2 + b2r+2yx

2 + a3r+3x
3 + � � � is the strict transform of

f�1f0g. Note that it intersects only Er at this stage.
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(b.3.i) If a3r+1 6= 0, we obtain after blowing up three more times the dual

resolution graph

: : :s s s s s

c

E1 Er Er+3 Er+2 Er+1

and the numerical date Er(3r; r+1), Er+1(3r+1; r+2), Er+2(6r+2; 2r+3)

and Er+3(9r + 3; 3r + 4). The pole �(3r + 4)=(9r + 3) is in the interval

] � 1;�1=2] if and only if r = 1, and in this case the pole is equal to

�1=2 � 1=12.

(b.3.ii) If a3r+1 = 0 and b2r+1 6= 0, calculations give us

: : :s s s s

c c

E1 Er Er+2 Er+1

and the numerical date Er(3r; r + 1), Er+1(3r + 2; r + 2) and Er+2(6r +

3; 2r + 3). The pole �(2r + 3)=(6r + 3) is in the interval ]�1;�1=2] if

and only if r = 1, and in this case the pole is equal to �1=2� 1=18.

(b.3.iii) If a3r+1 = b2r+1 = 0 and a3r+2 6= 0, we get the dual resolution

graph

: : :s s s s s

c

E1 Er Er+2 Er+3 Er+1

and the numerical data Er(3r; r+1), Er+1(3r+2; r+2), Er+2(6r+3; 2r+3)

and Er+3(9r + 6; 3r + 5). The pole �(3r + 5)=(9r + 6) is in the interval

] � 1;�1=2] if and only if r = 1, and in this case the pole is equal to

�1=2 � 1=30.

(b.3.iv) The last case is a3r+1 = b2r+1 = a3r+2 = 0 and (b2r+2 6= 0 or

a3r+3 6= 0).

If y3 + b2r+2yx
2 + a3r+3x

3 is a product of three distinct linear factors, we

get an embedded resolution after one blowing-up. The numerical data of

Er+1 are (3r + 3; r + 2) and �(r + 2)=(3r + 3) =2]�1;�1=2[.

If y3 + b2r+2yx
2 +a3r+3x

3 is not a product of three distinct linear factors,

then it is equal to y3 +xy2 after an aÆne coordinate transformation that

does not change the equation x = 0 of Er. Let gr+1 be the blowing-up
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at the origin of the chart we consider. The strict transform of f�1f0g
only intersects the exceptional curve Er+1, which has numerical data

(3r+ 3; r+ 2). Because �(r+ 2)=(3r+ 3) � �1=2 for all r, it follows from

(2.2.4) and (2.2.6) that Zf (s) has no pole in ] �1;�1=2[ di�erent from

�1.

(c) Suppose that mult(f) � 4. We explained in (2.2.6) that Zf (s)

has no pole in ]�1;�1=2[ di�erent from �1. �

(2.2.10) We now present a similar result for the following generalized

zeta functions [DL1]. The case d = 2 is used in the next section. To

f 2 On and d 2 Z>0 one associates the local topological zeta function

Z
(d)
f (s) = Z

(d)
top;0;f (s) :=

X
I�T

8i2I : djNi

�(
Æ
EI \g�1f0g)

Y
i2I

1

�i + sNi
:

For n; d 2 Z>0, we set

P(d)
n := fs0 j 9f 2 On : Z

(d)
f (s) has a pole in s0g:

Consequently, Zf (s) = Z
(1)
f (s) and Pn = P(1)

n .

(2.2.11) Let Ei be an exceptional curve and let Ej , j 2 J , be the com-

ponents that intersect Ei in V . ThenX
j2J

Nj � 0 (mod Ni); (2.5)

see, e.g., [Lo1] or [Ve3]. Fix d 2 Z>0 and suppose that d j Ni. Let

Jd � J be the subset of indices j satisfying d j Nj. Suppose that �j :=

�j � (�i=Ni)Nj is di�erent from 0 for all j 2 Jd. Then the contribution R
of Ei to the residue of Z

(d)
f (s) at the candidate pole ��i=Ni is

1

Ni

0@�(
Æ

Efig) +
X
j2Jd

��1j

1A : (2.6)

This contribution is zero if J contains one or two indices. Indeed, if J

contains one element, relation (2.5) implies that J = Jd. Therefore, the

contribution R is the same as in the case d = 1 and by (2.2.3) we get
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R = 0. If J contains two elements, relation (2.5) implies that Jd = J or

Jd = ;. If Jd = J , we obtain R = 0 analogously as in the previous case.

If Jd = ;, we get R = 0 because the Euler-Poincar�e characteristic of a

projective line minus two points is zero.

(2.2.12) Theorem. Let f 2 O2 and d 2 Z>1. Then

P(d)
2 \

�
�1;�1

2

�
=

�
�1

2
� 1

i

���� i 2 Z>2 and djlcm(2; i)

�
:

Proof. We use the notation and the calculations of (2.2.9). First we

consider the candidate pole ��j=Nj , j 2 Ts. Because Ej has numerical

data (Nj ; 1), the candidate pole ��j=Nj is less than �1=2 if and only if

Nj = 1, and in this case d - Nj.

(a) Suppose that mult(f) = 2. So f is holomorphically equivalent

to (i) y2 or (ii) y2 + xk for some k 2 Z>1. In case (i) with d = 2 the only

pole of Z
(d)
f (s) is �1=2. In case (i) with d > 2 and in case (ii) for k = 2,

we obtain that Z
(d)
f (s) is identically zero.

If k = 2r+ 1, we obtain from (2.2.11) and the consideration above about

Ej , j 2 Ts, that only the candidate pole associated to Er+2 can be a pole.

So we have to compute the residue at the candidate pole�1=2�1=(2r+1).

If d - Nr+2, then R = 0. If djNr, djNr+1 and djNr+2, then d = 1 and we

have a contradiction. If djNr, djNr+2 and d - Nr+1 (which is equivalent

to d = 2), then the contribution R is r=(2r + 1) and this is not zero

because r � 1. If djNr+1, djNr+2 and d - Nr, then R = 1=(4r + 2). If

djNr+2, d - Nr and d - Nr+1, then R = �1=(4r + 2). We conclude that

�1=2 � 1=(2r + 1) is a pole of Z
(d)
f (s) if and only if dj4r + 2.

If k = 2r, r � 2, only the candidate pole associated to Er can be a pole.

If d - Nr, then R = 0. If djNr and djNr�1, then R = (r � 1)=(2r) 6= 0. If

djNr and d - Nr�1, then R = �1=(2r). Consequently, �1=2� 1=(2r) is a

pole of Z
(d)
f (s) if and only if dj2r.

Remark that we have proved that

fs0 j 9f 2 O2 : mult(f) = 2 and Z
(d)
f (s) has a pole in s0g n f�1=2g

=

�
�1

2
� 1

i

���� i 2 Z>2 and d j lcm(2; i)

�
:
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(b) Suppose that mult(f) = 3.

(b.1) Case f3 = xy(x + y). We get that �1=2 � 1=6 is a pole if and

only if dj3 (which is equivalent to d = 3). This is consistent with the

claim because 3 j lcm(2; 6).

(b.2) Case f3 = y2(x+ y). If g(x) = 0, then Z
(d)
f (s) is identically zero

(for every d � 2).

If k = 2r + 1, only the candidate pole associated to Er can be a pole.

If djNr, then d - Nr�1 because d > 1 and because Nr and Nr�1 are

odd numbers with di�erence 2. Consequently, if dj2r + 1, then R =

�1=(2r + 1) 6= 0.

If k = 2r, the only candidate pole which can be a pole is ��r+1=Nr+1. If

djNr+1 and djNr�1, then d = 1, which is a contradiction. So we have to

consider two cases. If djNr+1, d - Nr and d - Nr�1, then R = �1=(4r).

If djNr+1, djNr and d - Nr�1, then R = 1=(4r). We obtain that �1=2 �
1=(4r) is a pole if and only if dj4r.

(b.3) Case f3 = y3. We get analogously that if we have a pole, it is of

the desired form. Remark that we only have to consider the case r = 1

in (b.3.i), (b.3.ii) and (b.3.iii).

(c) Suppose that mult(f) � 4. As before we get that Z
(d)
f (s) has

no pole less than �1=2. �

2.3 Surfaces

In this section, we prove the following theorem.

(2.3.0) Theorem. We have

P3\]�1;�1[=

�
�1� 1

i

���� i 2 Z>1

�
:

Moreover, if f 2 O3 has multiplicity three or more, then Zf (s) has no

pole less than �1.

Remark. (i) It is a priori not obvious that the smallest value of P3 is

�3=2. This is in contrast to the fact that it easily follows from Lemma

2.2.5 that the smallest value of P2 is �1.

(ii) In (2.3.3.9) we give functions fk 2 O3 of arbitrary multiplicity such

that Zfk(s) has a pole in sk, where (sk)k is a sequence of real numbers

larger than �1 and converging to �1. In particular, P3\]�1;�41=42[6= ;,
which is in contrast to T3\]41=42; 1[= ;.
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2.3.1 On candidate poles which are not poles

(2.3.1.1) Let f be the germ of a holomorphic function on a neighbour-

hood of the origin 0 in C 3 which satis�es f(0) = 0 and which is not

identically zero. Let Y be the zero set of f . Fix an embedded resolution

g : Xt ! X0 � C 3 for Y which is an isomorphism outside the singu-

lar locus of Y and which is a composition g1 Æ � � � Æ gt of blowing-ups

gi : Xi ! Xi�1 with irreducible non-singular centre Di�1 and exceptional

variety E
(0)
i satisfying for i = 0; : : : ; t� 1:

(a) the codimension of Di in Xi is at least two;

(b) Di is a subset of the strict transform of Y under g1 Æ � � � Æ gi;
(c) the union of the exceptional varieties of g1 Æ � � � Æ gi has only normal

crossings with Di, i.e., for all P 2 Di, there are three surface germs

through P which are in normal crossings such that each exceptional

surface germ through P is one of them and such that the germ of

Di at P is the intersection of some of them;

(d) the origin 0 of C 3 is an element of (g1 Æ � � � Æ gi)Di; and

(e) Di contains a point in which (g1 Æ � � � Ægi)�1Y has not normal cross-

ings.

Note that such a resolution always exists by Hironaka's theorem [Hi].

(2.3.1.2) Fix an exceptional variety E
(0)
i . The strict transform Ei of

E
(0)
i in Xt is obtained by a �nite succession of blowing-ups hj , j 2 Te :=

f1; : : : ;mg,

E
(0)
i

h1 � E(1)
i

h2 � � � �E(j�1)
i

hj � E(j)
i � � �

hm�1 � E
(m�1)
i

hm � E(m)
i = Ei

with centre Pj�1 2 E
(j�1)
i and exceptional curve C

(j)
j . The irreducible

components of the intersection of E
(0)
i with irreducible components of

(g1 Æ � � � Æ gi)�1Y di�erent from E
(0)
i are denoted by C

(0)
j , j 2 Ts. The

strict transform of C
(k)
j in E

(l)
i is denoted (whenever this makes sense) by

C
(l)
j and we set Cj = C

(m)
j . Note that h := h1 Æ � � � Æ hm is an embedded

resolution of [j2TsC(0)
j . For each j 2 T := Ts [ Te the curve Cj is an

irreducible component of the intersection of Ei with exactly one other

component of g�1Y . Let this component have numerical data (Nk; �k)

and set �j = �k � (�i=Ni)Nk.
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(2.3.1.3) Suppose that E
(0)
i � (g1 Æ � � � Æ gi)�1f0g and that �j 6= 0 for

every j 2 T . The contribution R of Ei to the residue of Zf (s) at the

candidate pole ��i=Ni is

1

Ni

0@X
I�T

�(
Æ
CI)

Y
j2I

��1j

1A ; (2.7)

where
Æ
CI denotes the subset (\j2ICj) n ([j 62ICj) of Ei. Note that

Æ
C;=

Ei n ([j2TCj). We now state some relations between the �j , which will

allow us to prove that this contribution is identically zero (i.e. zero for

any value of the alphas) for many intersection con�gurations on E
(0)
i .

(2.3.1.4) To the creation of E
(0)
i � (g1 Æ � � � Æ gi)�1f0g in the resolution

process we associate the relationX
j2Ts

dj(�j � 1) + 3� dimDi�1 = 0; (2.8)

where dj , j 2 Ts, is the degree of the intersection cycle C
(0)
j � F on F

for a general �bre F of gijE(0)
i

: E
(0)
i ! Di�1 over a point of Di�1. In

particular, when Di�1 is a point, we have that E
(0)
i
�= P2 and that dj is

just the degree of the curve C
(0)
j . To the blowing-up hj we associate the

relation

�j =
X

k2Ts[f1;:::;j�1g

�k(�k � 1) + 2; (2.9)

where �k, k 2 Ts[f1; : : : ; j�1g, is the multiplicity of Pj�1 on C
(j�1)
k . See

[Ve2] for more general statements in arbitrary dimensions and for proofs.

(2.3.1.5) Now we proceed in the same way as in [Ve4] for Igusa's p-

adic zeta function. One can easily verify that the number (2.7) does not

change when we do an extra blowing-up hm+1 at a point Pm 2 E(m)
i and

when we associate to the new exceptional curve a number � using (2.9).

Because of this observation, one can compute R if one has the curves

C
(0)
j , j 2 Ts, on E

(0)
i together with the associated values �j as follows.

Compute the minimal embedded resolution of [j2TsC(0)
j and compute the

alpha associated to an exceptional curve using (2.9). By putting these

data in (2.7), we get R.
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(2.3.1.6) Example. Suppose that E
(0)
i is the exceptional variety of a

blowing-up at a point and suppose that the intersection con�guration on

E
(0)
i consists of three projective lines C

(0)
j , j 2 Ts := fa; b; cg, all passing

through the same point P . Suppose that �j 6= 0 for all j 2 T . The

minimal embedded resolution l : W ! E
(0)
i is the blowing-up at P . By

abuse of notation, we denote the exceptional curve by C1 and the strict

transform of C
(0)
j , j 2 Ts, by Cj .

�
�
�
�
�
�

@
@

@
@

@
@

-

W E
(0)
i
�= P2

l

Ca Cb Cc

C1
P
s

C
(0)
a

C
(0)
b

C
(0)
c

By relations (2.8) and (2.9) we have �a +�b +�c = 0 and �1 = �a +�b+

�c � 1 = �1, respectively. Now we can calculate the contribution R of

the strict transform of E
(0)
i in Xt to the residue of Zf (s) at the candidate

pole ��i=Ni:

R =
1

Ni

0@X
I�T

�(
Æ
CI)

Y
j2I

��1j

1A
=

1

Ni

�
�1� 1

�1
+

1

�a
+

1

�b
+

1

�c
+

1

�1�a
+

1

�1�b
+

1

�1�c

�
= 0:

We stress that R is zero for any possible values of �a, �b and �c.

2.3.2 Multiplicity two

(2.3.2.1) Let f be the germ of a holomorphic function on a neighbour-

hood of the origin 0 in C n which satis�es f(0) = 0, and let F be the germ

of the holomorphic function f + x2n+1 on a neighbourhood of the origin 0

in C n+1 . Then the following equality is obtained in [ACLM], see also the

Thom-Sebastiani principle in [DL3]:

ZF (s) =
1

2s+ 1
+

s(2s+ 3)

2(s+ 1)(2s + 1)
Zf

�
s+

1

2

�
� 3s

2(s+ 1)
Z
(2)
f

�
s+

1

2

�
:
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(2.3.2.2) Proposition. The set

fs0 j 9f 2 O3 : mult(f) = 2 and Zf (s) has a pole in s0g \ ]�1;�1[

is equal to �
�1� 1

i

���� i 2 Z>1

�
:

Proof. Let f be an element of O3 with multiplicity two. Up to an aÆne

coordinate transformation, the part of degree two in the Taylor series of f

is equal to x2, x2 +y2 or x2 +y2+z2. Using (2.2.7), we may suppose that

f is of the form x2 + g(y; z) with g(y; z) 2 O2. The formula in (2.3.2.1)

and the result for curves imply that every pole of Zf (s) less than �1 is

of the form �1 � 1=i, i 2 Z>1. For the other inclusion, we remark that

the poles of the local topological zeta function associated to x2 + y2 + zi,

i � 2, are �1� 1=i and �1. �

(2.3.2.3) Our next goal is to give a sequence of poles larger than �1 and

converging to �1. Keeping in mind the formula in (2.3.2.1), we try to

�nd functions fk 2 O2 such that Zfk(s) has a pole in sk, where (sk)k is a

sequence of real numbers larger than �1=2 and converging to �1=2. Set

fk = x3y2 + xk for k � 5.

We obtain the following equalities after some calculations:

Zf2r+4(s) =
3s2 + 2rs+ 8s+ 2r + 3

(4rs+ 8s+ 2r + 3)(3s + 1)(s+ 1)
;

Z
(2)
f2r+4

(s) =
1

4rs+ 8s+ 2r + 3
;

Zf2r+3(s) =
3s2 � rs� 2s� r � 1

(2rs+ 3s+ r + 1)(3s + 1)(s + 1)
;

Z
(2)
f2r+3

(s) = 0:

Now we use the formula in (2.3.2.1) to calculate the local topological zeta

function of Fk := fk + z2. We obtain for even and odd k that

ZFk(s) =
(6k � 6)s2 + (15k � 5)s+ 10k � 5

(6s+ 5)(s+ 1)(2ks + 2k � 1)
:

Finally, we make the substitution s = �(2k�1)=(2k) in the numerator in

order to check that this value, which converges to �1 if k goes to in�nity,
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is a pole. We obtain

(k � 1)(k � 3)(2k � 1)

2k2
:

This value never becomes zero because k � 5. Therefore, �(2k� 1)=(2k)

is always a pole of ZFk(s).

Remark. In particular, we obtain that P3\]� 1;�41=42[6= ;, which is in

contrast to T3\]41=42; 1[= ;.

2.3.3 Multiplicity larger than two

(2.3.3.1) Let f be the germ of a holomorphic function on a neighbour-

hood of the origin 0 in C 3 which satis�es f(0) = 0 and which is not

identically zero. Let Y be the zero set of f . Fix an embedded resolution

g for Y which is a composition of blowing-ups gij : Xi ! Xj with irre-

ducible non-singular centre Dj and exceptional surface Ei as in (2.3.1.1).

Denote the irreducible components of Y by Ei, i 2 Ts. The strict trans-

form of a variety Ei by a succession of blowing-ups will be denoted in the

same way. The numerical data of Ei are (Ni; �i).

(2.3.3.2) The following table gives the numerical data of Ei. In the

columns, the dimension of Dj is kept �xed. In the rows, the number of

exceptional surfaces throughDj is kept �xed. So Ek, El and Em represent

exceptional surfaces that contain Dj. The multiplicity of Dj on the strict

transform of Y is denoted by �Dj .

Dj is a point P Dj is a curve L

/ (�P ; 3) (�L; 2)

Ek (Nk + �P ; �k + 2) (Nk + �L; �k + 1)

Ek and El (Nk + Nl + �P ; �k + �l + 1) (Nk + Nl + �L; �k + �l)

Ek, El and Em (Nk + Nl +Nm + �P ; �k + �l + �m) /

(2.3.3.3) Lemma. Suppose that mult(f) � 3. If there is no exceptional

surface through Dj , then ��i=Ni � �1.

Proof. The case that the centre Dj is a point P through which no ex-

ceptional surface passes can only occur in the �rst blowing-up because of

condition (d) in (2.3.1.1) and because the inverse image of 0 in Xj is con-

tained in the union of the exceptional surfaces in Xj . Since mult(f) � 3,
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we have in this case ��i=Ni = �3=�P = �3=mult(f) � �1.

If the centre Dj is a curve L contained in no exceptional surface, then

�L � 2 because our embedded resolution is an isomorphism outside the

singular locus of Y . Consequently, we get in this case ��i=Ni = �2=�L �
�1. �

(2.3.3.4) Suppose that Dj is contained in at least one exceptional sur-

face and that the candidate poles associated to the exceptional surfaces

that pass through Dj are larger than or equal to �1. Then the table

in (2.3.3.2) implies that also ��i=Ni � �1, unless Dj is a non-singular

point P of the strict transform of Y through which only one exceptional

surface E0 passes and ��0=N0 = �1. Suppose that we are in this situa-

tion. Denote the unique irreducible component of the strict transform of

Y which passes through P by Ea. Consider now a small enough neigh-

bourhood Z0 of P on which Ea is non-singular such that, if we restrict the

blowing-ups gij to the inverse image of Z0, we get an embedded resolution

h = h1 Æ � � � Æ hs for the germ of Ea [E0 at P which is a composition of

blowing-ups hi : Zi ! Zi�1, i 2 f1; : : : ; sg, with irreducible non-singular

centre D0
i�1 := Di�1\Zi�1 and exceptional surface E0

i := Ei\Zi satisfying

for i = 0; : : : ; s� 1:

(a) the codimension of D0
i in Zi is at least two;

(b) D0
i is a subset of E0

a := Ea \ Zi;
(c) [l2f0;1;:::;igE0

l has only normal crossings with D0
i, where E0

0 := E0 \
Z0;

(d) the image of D0
i under h1 Æ � � � Æ hi contains P ; and

(e) if Di = D0
i, then Di contains a point where there are not normal

crossings.

Note that it can happen that gij is an isomorphism on the inverse image

of Z0. Because we did not specify the indices in (2.3.3.1), we were able to

get a nice notation here. Note also that Di = D0
i if Di is a point. From

now on, we study the resolution h : Zs ! Z0 for the germ of Ea [E0 at

P .

(2.3.3.5) Lemma. If Di = D0
i, then Di is a subset of E0

0.

Proof. Note that Di has to lie in an exceptional surface because E0
a is non-

singular and because an embedded resolution is an isomorphism outside

the singular locus of Y .
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First we consider the case that Di = D0
i is a point contained in

exceptional surfaces di�erent from E0
0 and in the surface E0

a. The union

of these surfaces has normal crossings at Di because E0
a, considered as a

subset of Z0, is non-singular. This is in contradiction with (e). Note that

it can thus not happen that E0
a and three exceptional surfaces di�erent

from E0
0 have a point in common.

The case that Di = D0
i is a curve contained in exactly two exceptional

surfaces di�erent from E0
0 and in the surface E0

a cannot occur because E0
a

is a non-singular subset of Z0 and therefore these three surfaces should

have normal crossings.

Finally we study the case that Di = D0
i is a curve contained in one

exceptional surface E0
j di�erent from E0

0 and in E0
a. Condition (c) implies

that every point of Di is contained in at most one exceptional surface dif-

ferent from E0
j . Moreover, such an exceptional surface has to be transver-

sal to Di. This implies that there are normal crossings at every point of

Di, which is in contradiction with (e). Therefore, this case cannot occur.

�

(2.3.3.6) Lemma. Suppose that mult(f) � 3. Then we have �i � Ni+1

for every exceptional surface Ei, i 2 f1; : : : ; sg. Moreover, �i = Ni + 1 if

and only if Di�1 is a point and the numerical data of every exceptional

surface Ej di�erent from E0 and through Di�1 satisfy �j = Nj + 1.

Proof. The proof is by induction on i. Since �0 = N0, we have that

�1 = N1 + 1. Suppose now that �j � Nj + 1 for every exceptional surface

Ej through Di�1.

Case 1: Di�1 is a point. We obtain from (2.3.3.5) that Di�1 is a subset

of E0
0. Because �0 = N0 and because every other exceptional surface Ej

through Di�1 satis�es �j � Nj + 1, the table of (2.3.3.2) gives us that

�i � Ni + 1.

Case 2: Di�1 is a curve. If Di�1 6= D0
i�1, then D0

i�1 6� (h1 Æ
� � � Æ hi�1)�1P and therefore we get as in the beginning of (2.3.3.4) that

��i=Ni � �1. If Di�1 = D0
i�1, one computes from (2.3.3.2) and the

previous lemma that ��i=Ni � �1.

We have now proved the �rst part of the lemma. Using this �rst part

and the table of (2.3.3.2), we get the second part. �

(2.3.3.7) Lemma. If mult(f) � 3 and if the numerical data of Ei
satisfy �i = Ni + 1, then ��i=Ni 6= ��j=Nj for every exceptional surface
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Ej that intersects Ei at some stage of the resolution process.

Proof. Let Ej be an exceptional surface that intersects Ei at some stage

of the resolution process. If Ej is created before Ei, then Ej contains the

point Di�1. Otherwise, Ej is created by a blowing-up at a point of Ei or

by a blowing-up along a curve.

If Ej is created by a blowing-up along a curve, then ��j=Nj � �1

and, consequently, ��i=Ni 6= ��j=Nj . Now we consider the case that Ej
contains the point Di�1. There is no problem if �j � Nj. Consequently,

suppose that �j = Nj + 1. From the table in (2.3.3.2), we get Nj < Ni.

Therefore, ��i=Ni = �(Ni + 1)=Ni > �(Nj + 1)=Nj = ��j=Nj . The case

that Ej is created by a blowing-up at a point of Ei is treated analogously.

�

(2.3.3.8) Proposition. If mult(f) � 3, then no pole of Zf (s) is less

than �1.

Proof. Suppose that mult(f) � 3.

We have only to consider exceptional surfaces with a candidate pole

less than �1. Recall from (2.3.3.6) that ��i=Ni < �1 if and only ifDi�1 is

a point and all exceptional surfaces through the point Di�1 di�erent from

E0 have a candidate pole less than �1. We will determine all possible

intersection con�gurations on such surfaces just after their creation.

If ��i=Ni � �1 and ��i+1=Ni+1 < �1, then the blowing-ups along

Di�1 and Di commute with each other. Therefore, we may assume that

there is a k (larger than zero because ��1=N1 < �1) such that ��i=Ni <

�1 for 1 � i � k and ��i=Ni � �1 for k < i � s.
The intersection con�guration on E1 consists of one projective line,

which is the intersection with E0 and Ea. The points of Z1 in which we

do not have normal crossings and which lie above P are those on this

projective line. This implies the following statement for i = 2:

If Q is a point of Zi�1, i 2 f2; : : : ; kg, in which we do not have

normal crossings and which lies above P (so consequently Q

is a point of E0, of one or two other exceptional surfaces and

of Ea), then there exists an exceptional surface El through Q

with the property E0 \El = Ea \El.

(�)

We prove this statement by induction on i. Suppose that it is true for

i = j 2 f2; : : : ; k � 1g. We give the proof for i = j + 1. The statement



2.3 Surfaces 41

follows from the induction hypothesis for points not on Ej , because a

blowing-up is an isomorphism outside the exceptional surface. Therefore,

we prove it for points on Ej. By the induction hypothesis applied to the

point Dj�1, we obtain that there exists an exceptional surface El through

Dj�1 such that E0\El = Ea\El in Zj�1. But then E0\El = Ea\El in

Zj , which solves the problem for the point E0 \El \Ej . There are other

points on Ej in which we do not have normal crossings if and only if Ea
is tangent to E0 in Dj�1. In this case, the points in which we do not have

normal crossings are the points of E0 \Ej . Because E0 \Ej = Ea \Ej ,
we are done.

Because the centre of a blowing-up satis�es the conditions of the

statement, we obtain that the possible intersection con�gurations are the

following con�gurations of lines in P2: (i) one line; (ii) two lines; (iii)

three lines through one point; (iv) three lines in general position; and (v)

three lines through one point and a fourth line not through that point.

For all these con�gurations, we can calculate as in (2.3.1.6) that the

contribution to the residue is 0. The second author has done this already

in [Ve4] for Igusa's p-adic zeta function. The point is that (�) excludes

the con�guration consisting of four lines in general position, for which

this contribution is not zero. Note also that we need here that the alphas

are not zero, a fact we proved in (2.3.3.7). �

(2.3.3.9) In (2.3.2.3), we found functions fk 2 O3 of multiplicity two

such that Zfk(s) has a pole in sk, where (sk)k is a sequence of real num-

bers larger than �1 and converging to �1. Here we construct for every

n � 0 functions fk 2 O3 of multiplicity n + 2 with this property. We

use the formula obtained by Denef and Loeser in [DL1, Th�eor�eme 5.3],

which expresses the local topological zeta function of a non-degenerated

polynomial in terms of its Newton polyhedron. Fix n � 0 and set

fk = xnz2 + x3+ny2 + xk for k � n+ 4. Then

Zfk(s) =

(�2n2 � 6n)s3 + (n2 + 3kn� 4n+ 6k � 6)s2

+(�4n2 + 4kn� 7n+ 15k � 5)s� 10n + 10k � 5

(6s+ 2ns+ 5)(s+ 1)(2ks+ 2k � 2n� 1)(ns+ 1)
:

Consequently, �(2k� 2n� 1)=(2k) is a pole if and only if it is not a zero

of the numerator. So we make the substitution s = �(2k � 2n� 1)=(2k)

in the numerator and obtain

(k � 1� 2n)(k � n� 3)(2k � 2n� 1)(2n2 � 2kn+ n+ 2k)

4k3
:
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Because k � n+ 4, this is zero if and only if k = 1 + 2n. Thus we have

found for any multiplicity larger than one a sequence with the desired

property.

2.4 Arbitrary dimension

(2.4.0) Theorem. Let n � 2. Then we have

Pn\]�1;�n+ 1[= ;:

Proof. Let f be the germ of a holomorphic function on a neighbourhood

of the origin 0 in C n which satis�es f(0) = 0 and which is not identically

zero. Let Y be the zero set of f . Fix an embedded resolution g : Xt !
X0 � C n for Y which is an isomorphism outside the singular locus of Y

and which is a composition g1 Æ� � � Ægt of blowing-ups gi : Xi ! Xi�1 with

irreducible non-singular centre Di�1 and exceptional variety Ei satisfying

for i = 0; : : : ; t� 1:

(a) the codimension of Di in Xi is at least two;

(b) Di is a subset of the strict transform of Y under g1 Æ � � � Æ gi;
(c) the union of the exceptional varieties of g1 Æ � � � Æ gi has only normal

crossings with Di;

(d) the origin 0 of C n is an element of (g1 Æ � � � Æ gi)Di; and

(e) Di contains a point in which (g1 Æ � � � Ægi)�1Y has not normal cross-

ings.

Note that such a resolution always exists by Hironaka's theorem [Hi].

We prove that all candidate poles are larger than or equal to �n+ 1.

Let i 2 f1; : : : ; tg. Suppose that ��j=Nj � �n+1 for every j 2 f1; : : : ; i�
1g. We prove that ��i=Ni � �n+ 1.

Case 1. If the centre Di�1 of the blowing-up gi is not contained in

an exceptional variety, then the multiplicity �Di�1 of Di�1 on the strict

transform of Y is larger than or equal to two because g is an isomorphism

outside the singular locus. So Ni � 2 and �i � n and consequently,

��i=Ni � �n=2 � �n+ 1.

Case 2. Suppose that there are r � 1 exceptional varieties with

numerical data (N1;i; �1;i); : : : ; (Nr;i; �r;i) which contain the k-dimensional

centre Di�1. Then

� �i
Ni

= ��1;i + � � � + �r;i + n� k � r
N1;i + � � �+Nr;i + �Di�1

� �n+ 1
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because ��1;i=N1;i � �n + 1, : : : , ��r;i=Nr;i � �n + 1 and �(n � k �
r)=�Di�1 � �n+ 1. �

2.5 Other zeta functions

(2.5.1) Denef and Loeser in [DL2] associate to a polynomial its motivic

zeta function, which is a much �ner invariant than its topological zeta

function. Instead of the usual topological Euler-Poincar�e characteristic, it

involves the so-called universal Euler characteristic of an algebraic variety,

i.e. its class in the Grothendieck ring.

We recall this notion. The Grothendieck ring K0(VarC ) of complex

algebraic varieties is the free abelian group generated by the symbols [V ],

where V is a variety, subject to the relations [V ] = [V 0], if V is isomorphic

to V 0, and [V ] = [V nW ] + [W ], if W is closed in V . Its ring structure is

given by [V ] � [W ] := [V �W ]. We set L := [A 1
C

] and denote by MC the

localization of K0(VarC ) with respect to L.

(2.5.2) In [DL2] the motivic zeta function is more generally de�ned for

a regular function f on a smooth algebraic variety X, with respect to

a subvariety W of X; we refer the reader to [DL2, section 2] for this

de�nition. One can easily verify that the construction is still valid for a

germ f of a holomorphic function at 0 2 C n when W = f0g; we denote

this (local) motivic zeta function by Zmot;0;f(s). Then, with the notation

of (2.1.1), the formula of [DL2, Theorem 2.2.1] yields that

Zmot;0;f (s) = L�n
X
I�T

[
Æ
EI \g�1f0g]

Y
i2I

L � 1

L�i+sNi � 1
:

Here L�s should be considered as a variable, and this expression lives in

a localization of the polynomial ring MC [L�s ].

(2.5.3) The motivic zeta function Zmot;0;f (s) specializes to Ztop;0;f (s)

[DL2, subsection 2.3], but also to various `intermediate level' zeta func-

tions. An important one uses Hodge polynomials. Recall that the Hodge

polynomial of a complex algebraic variety V is

H(V ) = H(V; u; v) :=
X
p;q

0@X
i�0

(�1)ihp;q
�
Hi
c(V; C )

�1Aupvq 2 Z[u; v];
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where hp;q
�
Hi
c(V; C )

�
is the rank of the (p; q)-Hodge component of the

ith cohomology group with compact support of V . The zeta function of

f on this level is

ZHod;0;f (s) = (uv)�n
X
I�T

H

�
Æ
EI \g�1f0g

�Y
i2I

uv � 1

(uv)�i+sNi � 1
;

here (uv)�s is a variable, and this zeta function lives, e.g., in the �eld of

rational functions in (uv)�s over Q(u; v).

(2.5.4) As in [RV2] we de�ne the poles of ZHod;0;f (s) to be the real num-

bers s0 such that (uv)�s0 is a pole of ZHod;0;f (s), considered as rational

function in (uv)�s. Then we have the following.

Theorems 2.2.9 and 2.3.0 are still valid with Zf (s) = Ztop;0;f (s) re-

placed by ZHod;0;f (s) and Pn = fs0 j 9f 2 On : ZHod;0;f (s) has a pole

in s0g. The proofs are the same as before; they essentially just use the

`geometry' of a resolution.

A good de�nition of poles of Zmot;0;f (s) is not immediately clear, due

to the fact that MC could have zero divisors (at present this is an open

question). Using the de�nition of [RV2] for real poles, Theorems 2.2.9

and 2.3.0 are also valid for Zmot;0;f (s).

(2.5.5) One could and should also wonder whether there are analogous

results for Igusa's p-adic zeta function. This problem is studied in the

following chapter.



Chapter 3

Igusa's p-adic zeta function

Abstract

Let K be a p-adic �eld. We explore Igusa's p-adic zeta func-

tion, which is associated to a K-analytic function on an open

and compact subset of Kn. First we deduce a formula for

an important coeÆcient in the MacLaurin series of this mero-

morphic function at a candidate pole. Afterwards we use this

formula to determine all values less than �1=2 for n = 2 and

less than �1 for n = 3 which occur as the real part of a pole.

3.1 Introduction

(3.1.1) Let K be a p-adic �eld, i.e., an extension of Qp of �nite degree.

Let R be the valuation ring of K, P the maximal ideal of R and q the

cardinality of the residue �eld R=P . For z 2 K, let ord z 2 Z [ f+1g
denote the valuation of z and jzj = q�ord z the absolute value of z.

(3.1.2) Let f be a K-analytic function on an open and compact subset

X of Kn and put x = (x1; : : : ; xn). Igusa's p-adic zeta function of f is

de�ned by

Zf (s) =

Z
X
jf(x)js jdxj

for s 2 C , Re(s) � 0, where jdxj denotes the Haar measure on Kn, so

This chapter corresponds to [Se1].
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normalized that Rn has measure 1. Igusa proved that it is a rational

function of q�s, so that it extends to a meromorphic function Zf (s) on C

which is also called Igusa's p-adic zeta function of f .

(3.1.3) This zeta function has an interesting connection with number

theory. Let f be a K-analytic function on Rn de�ned by a power series

over R which is convergent on the whole of Rn. Let Mi be the number of

solutions of f(x) � 0 mod P i in (R=P i)n. All the Mi's are described by

Zf (s) through the relation

Zf (s) = (1� qs)P (q�s) + qs;

where the Poincar�e series P (t) of f is de�ned by

P (t) =

1X
i=0

Mi(q
�nt)i:

Remark that P (t) is a rational function of t because Zf (s) is a rational

function of q�s.

(3.1.4) The poles of Zf (s) are an interesting object of study because

they are related to the monodromy conjecture (1.1.12) and because they

determine the asymptotic behaviour of the Mi. The poles with largest

real part give the largest contribution to the Mi. In this paper we are

concerned with the smallest real part l of a pole of Zf (s). A non-trivial

consequence of the fact that the Mi are integers is that l is larger than

or equal to �n. Our main results are stated in the next paragraph and

sharpen this bound by using a completely di�erent method. This better

bound has number theoretic consequences because the knowledge of l

gives us interesting information about the Mi: there exists an a 2 Z such

that Mi is divisible by qp(n+l)i�aq for all i (for which (n + l)i � a � 0).

This is proved in Section 3.5. Remark that a is independent of i and that

the number in the exponent is the smallest integer larger than or equal

to (n+ l)i� a.

Let FKn denote the set of all K-analytic functions de�ned on an ar-

bitrary open and compact subset of Kn. For n 2 Z>0, we de�ne the set

PKn by

PKn := fs0 j 9f 2 FKn : Zf (s) has a pole with real part s0g:
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In this article, we will prove for n = 2 that

PK2 \]�1;�1=2[ = f�1=2 � 1=i j i 2 Z>1g
= f�1;�5=6;�3=4;�7=10; : : :g:

Moreover, if f has not a singular point of multiplicity two or three, we

will see that there are no poles with real part smaller than �1=2 and

di�erent from �1.

For n = 3, we prove that

PK3 \]�1;�1[ = f�1� 1=i j i 2 Z>1g:

In particular, there are no poles with real part smaller than �3=2. More-

over, if f has not a singular point of multiplicity two, we will see that

there are no poles with real part smaller than �1. We will have to prove

that some candidate poles of expected order one are not poles. The ge-

ometric part of this proof is analogous to the one in Section 2.3 for the

topological zeta function. We will prove that some contributions to the

residue of Zf (s) at a candidate pole of expected order one are zero. In

Section 3.2 we develop a method to calculate the contribution of an ex-

ceptional variety Ei with a candidate pole s0 of expected order one to the

residue of Zf (s) at s0 by using only our information when Ei is created.

In general, we expect that PKn \]�1;�(n� 1)=2[= f�(n� 1)=2 � 1=i j
i 2 Z>1g. One can easily show that

PKn \]�1;�n+ 1[= ;

if n � 2. The proof is analogous to the one in Section 2.4 for the local

topological zeta function.

(3.1.5) Let f 2 K[x1; x2]. Consider f as a polynomial over Kalg cl. Sup-

pose that the minimal embedded resolution g of f�1f0g � (Kalg cl)2 is

de�ned over K, i.e., all irreducible components of g�1(f�1f0g) over Kalg cl

and all points in the intersection of two such components are de�ned over

K. Then it is generally known that an exceptional curve which is inter-

sected once or twice does not contribute to the residues of its candidate

poles with expected order 1. Because Kalg cl �= C , we can use the calcu-

lations in Section 2.2 to conclude that the real part of a pole of Zf (s) is

of the form �1=2 � 1=i, i 2 Z>1, if it is smaller than �1=2.
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Let f 2 K[x1; x2; x3]. Consider f again as a polynomial over Kalg cl �=
C . Suppose that f has not a singular point of multiplicity two. Suppose

that there exists an embedded resolution g of f�1f0g � (Kalg cl)3 ' C 3

for which the induced embedded resolution of the germ at each point P of

C 3 satis�es the conditions in (2.3.1.1), which is de�ned over K and which

has good reduction modulo P (see [De1, Section 2]). Then the vanishing

results in [Ve4] based on the relations on Veys and the calculations in

Section 2.3 imply that Zf (s) has no pole with real part smaller than �1.

Consequently, starting from Chapter 2, it is rather easy to deal with

polynomials which allow an appropriate embedded resolution. However it

is very diÆcult to verify the existence of such an embedded resolution for

a concrete function f . In a lot of cases there does not exist an embedded

resolution which is de�ned over K, and if it exists, the condition of good

reduction modulo P is very hard to check. This gives us a strong moti-

vation to study the general case. In this article there are no constraints

on f : we will not require that g is de�ned over K and that g has good

reduction modulo P .

3.2 The tool for our vanishing results

(3.2.1) Let K be a p-adic �eld. Let x = (x1; : : : ; xn) be the coordinates

of Kn. Let f be a K-analytic function on an open and compact subset

X of Kn. An embedded resolution g : Y ! X of (f; dx) consists of

a K-analytic manifold Y , a proper K-analytic map g and a �nite set

fEi j i 2 Tg of closed submanifolds of Y of codimension one with a pair

of positive integers (Ni; �i), called numerical data, assigned to each Ei
such that

1. the union of the Ei is equal to g�1(f�1f0g),
2. the restriction Y n g�1(f�1f0g) ! X n f�1f0g is a K-bianalytic

map,

3. for every point b of Y , if E1; : : : ; Ek are all the Ei that contain b,

there exists a chart (V; y = (y1; : : : ; yn)) around b with yi, 1 � i � k,

an equation of Ei on V such that

f Æ g = "

kY
i=1

yNii and g�dx = �

kY
i=1

y�i�1i dy

on V for non-vanishing K-analytic functions " and � on V .
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Let Y be a n-dimensional K-analytic manifold, ! a K-analytic di�er-

ential n-form on Y and h a K-analytic function on an open subset U of

Y . We say that a chart (V; y) on Y is a good chart for (h; !) if V � U ,

h = "
Qk
i=1 y

Ni
i on V and ! = �

Qk
i=1 y

�i�1
i dy on V for k 2 f0; : : : ; ng,

Ni 2 Z>0, �i 2 Z>0 and non-vanishing K-analytic functions "; � on V .

We say that (h; !) has normal crossings at a point P 2 U if there exists

a good chart for (h; !) around P . So when we say normal crossings, we

mean normal crossings over K.

Let f be a K-analytic function on an open and compact subset X of

Kn. Let Y be an n-dimensional K-analytic manifold and g : Y ! X a

K-analytic map which is a composition of blowing-ups along K-analytic

closed submanifolds which are contained in the zero locus of the pullback

of f . In this situation we have the following. If y = (y1; : : : ; yn) is a

system of local parameters at P 2 Y such that f Æ g = "
Qk
i=1 y

Ni
i for

k 2 f0; : : : ; ng, Ni 2 Z>0 and " a unit in the local ring at P , then

g�dx = �
Qk
i=1 y

�i�1
i dy for �i 2 Z>0 and � a unit in the local ring at P .

Consequently we will talk in this context about an embedded resolution

of f instead of (f; dx) and about normal crossings of f Æ g at P instead

of (f Æ g; g�dx). Although the condition on f Æ g does not imply the

condition on g�dx globally, we will talk about a good chart for f Æ g
instead of (f Æ g; g�dx) in this context.

(3.2.2) Let g : Y ! X be an embedded resolution of (f; dx). We study

Igusa's p-adic zeta function Zf (s) by calculating the integral on the res-

olution Y :

Zf (s) =

Z
X
jf(x)jsjdxj

=

Z
Y
jf Æ gjsjg�dxj:

Because j"j and j�j are locally constant functions on each chart and

because Y is a compact K-analytic manifold, we can choose a �nite set

J of good charts (V; y) for (f Æ g; g�dx) such that j"j and j�j are constant

on each chart, the V 's form a partition of Y and for each chart (V; y) we

have y(V ) = P j := P j1 � � � � � P jn for some j = (j1; : : : ; jn) 2 (Z�0)
n

depending on (V; y). Remark that we may even require that j1 = � � � = jn
and that this value does not depend on the chart, but we will not do this.
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Because Y is a �nite disjoint union of the V 's, we obtain

Zf (s) =
X

(V;y)2J

Z
V
j(f Æ g)(y)jsjg�dxj:

We can calculate these integrals very explicitly because we know in

the one variable case thatZ
P j
jxj��1 jdxj = q � 1

q

q�j�

1� q��

for a complex number � with Re(�) > 0 (the integral is not de�ned if

Re(�) � 0) and because j"j and j�j are constant on each chart:

Z
V
j(f Æ g)(y)jsjg�dxj =

Z
V
j"jsj�j

kY
i=1

jyijNis+�i�1jdyj

=

Z
P j
j"jsj�j

kY
i=1

jyijNis+�i�1jdyj

= j"jsj�j
kY
i=1

Z
P ji
jyijNis+�i�1jdyij

nY
i=k+1

Z
P ji
jdyij

= j"jsj�jq�
Pn
i=k+1 ji

�
q � 1

q

�k kY
i=1

q�ji(Nis+�i)

1� q�Nis��i :

This shows that Zf (s) is a rational function of q�s. Moreover, these

calculations imply that the integralZ
V
j(f Æ g)(y)jsjg�dxj

is de�ned if and only if Re(s) > maxf��i=Ni j 1 � i � kg. Consequently,

the integral Z
X
jf(x)jsjdxj

is de�ned if and only if Re(s) > maxf��i=Ni j i 2 Tg. We obtain also

from this calculation that every pole of Zf (s) is of the form

� �i
Ni

+
2k�
p�1

Ni log q
;
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with k 2 Z and i 2 T . These values are called the candidate poles of

Zf (s). If i 2 T is �xed, the values ��i=Ni + (2k�
p�1)=(Ni log q), k 2 Z,

are called the candidate poles of Zf (s) associated to Ei.

Let s0 be a candidate pole of Zf (s). Because the poles of 1=(1 �
q�Nis��i) have order one, we de�ne the expected order m = m(s0) of s0
as the highest number of Ei's with candidate pole s0 and with non-empty

intersection. The order of s0 is of course less than or equal to m. It is

less than m if and only if b�m, which is de�ned by the MacLaurin series

b�m
(s� s0)m +

b�m+1

(s� s0)m�1 + � � �+ b0 + b1(s� s0) + � � �

of Zf (s) at s0, is equal to zero. Remark that a candidate pole of expected

order one is a pole if and only if b�1 6= 0.

(3.2.3) Fix a uniformizing parameter � for R. For z 2 K let ac z :=

z��ord z be the angular component of z. Let � be a character of R�, i.e.,

a homomorphism � : R� ! C � with �nite image. Put formally �(0) = 0.

The generalized Igusa's p-adic zeta function of f is now de�ned by

Zf;�(s) =

Z
X
�(ac f(x))jf(x)js jdxj

for s 2 C , Re(s) � 0.

In the one variable case we have now thatZ
P j
�(ac x)jxj��1 jdxj =

(
q�1
q

q�j�

1�q�� if � = 1

0 if � 6= 1

for a complex number � with Re(�) > 0. The integral is not de�ned if

Re(�) � 0.

Because �(ac ") is a locally constant function on each chart, we can

choose a �nite set J of good charts (V; y) for (f Æ g; g�dx) such that j"j,
j�j and �(ac ") are constant on each chart, the V 's form a partition of Y

and for each chart (V; y) we have y(V ) = P j for some j = (j1; : : : ; jn) 2
(Z�0)

n. Analogously as in (3.2.2) we obtain

Zf;�(s) =
X

(V;y)2J

Z
V
�(ac (f Æ g)(y))j(f Æ g)(y)js jg�dxj

=
X

(V;y)2J

�(ac ")j"jsj�jq�
Pn
i=k+1 ji

kY
i=1

Z
P ji
�Ni(ac yi)jyijNis+�i�1 jdyij:
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This implies that Zf;�(s) is again a rational function of q�s, so that it

extends to a meromorphic function Zf;�(s) on C . The integralZ
X
�(ac f(x))jf(x)js jdxj

is de�ned if and only if Re(s) > maxf��i=Ni j i 2 Tg. We obtain that

every pole of Zf;�(s) is of the form ��i=Ni + (2k�
p�1)=(Ni log q), with

k 2 Z and i 2 T such that �Ni = 1. These values are called the candidate

poles of Zf;�(s). Obviously, we associate only candidate poles to Ei if

�Ni = 1. The expected order m = m(s0) of a candidate pole s0 of

Zf;�(s) is the highest number of Ei's with candidate pole s0 (thus also

with �Ni = 1) and with non-empty intersection.

Remark that everything we have done up till now is well known. More

details can be found for example in [Ig7].

(3.2.4) Let X be an open and compact subset of Kn. Let �; f; f1; : : : ; fl
be K-analytic functions on X. Let ai; bi, 1 � i � l, be non-negative

integers. We associate to these data the zeta function

Z(s1; : : : ; sl) =

Z
X
�(ac f)j�jjf1ja1s1+b1 : : : jfljalsl+bl jdxj;

which is de�ned on a set U that contains all points (s1; : : : ; sl) 2 C l with

Re(si) � �bi=ai if fi vanishes on X and si arbitrary if fi does not vanish

on X. Loeser [Lo2] already studied this zeta function. By looking at an

embedded resolution of �ff1 : : : fl, one proves analogously as in (3.2.2)

that Z(s1; : : : ; sl) is a rational function of q�s1 ; : : : ; q�sl . Consequently,

it extends to a meromorphic function on C l , which we also denote by

Z(s1; : : : ; sl). As before, we can also obtain an explicit description of U ,

which turns out to be an open subset of C l .

The meromorphic continuation of a function h will be denoted by

[h]mc and the evaluation of this meromorphic continuation in the point

s = s0 of the domain will be denoted by [h]mc
s=s0 .

In our study of Igusa's p-adic zeta function, we will have to deal with

expressions of the form�Z
X
�(ac f)j�jjf1ja1s+b1 : : : jfljals+bl jdxj

�mc

s=s0

:
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The zeta function in more complex variables can be used to modify this

expression. If U \ f(s1; : : : ; sl) 2 C l j s1 = s0g 6= ;, then�Z
X
�(ac f)j�jjf1ja1s+b1 jf2ja2s+b2 : : : jfljals+bl jdxj

�mc

s=s0

=

�Z
X
�(ac f)j�jjf1ja1s1+b1 jf2ja2s2+b2 : : : jfljalsl+bl jdxj

�mc

s1=���=sl=s0

=

�Z
X
�(ac f)j�jjf1ja1s0+b1 jf2ja2s+b2 : : : jfljals+bl jdxj

�mc

s=s0

:

We explain the �rst equality. The composition of the map

A : C ! C l : s 7! (s; : : : ; s)

with the meromorphic function Z : C l ! C which sends (s1; : : : ; sl) 2 U
to Z

X
�(ac f)j�jjf1ja1s1+b1 : : : jfljalsl+bl jdxj

is a meromorphic function on C which is equal to the meromorphic func-

tion �Z
X
�(ac f)j�jjf1ja1s+b1 : : : jfljals+bl jdxj

�mc

because they agree on an open subset of C . Consequently, the �rst equal-

ity is nothing more than (Z ÆA)(s0) = Z(A(s0)). For the second equality,

we have to use the map

B : C ! C l : s 7! (s0; s; : : : ; s):

(3.2.5) Let f be a K-analytic function on an open and compact subset

X of Kn and let g : Y ! X be an embedded resolution of (f; dx) as in

(3.2.1). For I � T denote EI = \i2IEi. Let � be a character of R�. Let

s0 be a candidate pole of Zf;�(s) and let m be its expected order. Let EI ,

I 2 S, be all the non-empty intersections of m varieties Ei, i 2 T , with

candidate pole s0 (and thus also with �Ni = 1). Fix I 2 S and suppose

for the ease of notation that I = f1; : : : ;mg. Let W1 and W2 be open

and compact subsets of Y which satisfy EI \ W1 = EI \W2 6= ; and

which do not meet any EK , K 2 S n fIg. Then the contribution of W1

to b�m and the contribution of W2 to b�m are the same because they are

both equal to the contribution of W1 \W2 to b�m. Consequently we can
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speak of the contribution of EI \W1 = EI \W2 to b�m. In particular,

the contribution of EI to b�m is well de�ned.

Consider a set J of disjoint compact charts (V; y) that intersect EI ,

that cover EI and that are disjoint with all EK , K 2 S n fIg. This set J

is necessarily �nite and the contribution of EI to b�m is the sum over J

of the contributions

lim
s!s0

(s� s0)m
�Z

V
�(ac (f Æ g)(y))j(f Æ g)(y)jsjg�dxj

�mc

of V to b�m.

We introduce some notation. Let (V; y) be a chart. We have that

y = (ym+1; : : : ; yn) determines a chart on the closed submanifold V of

V de�ned by y1 = � � � = ym = 0. Denote dym+1 ^ � � � ^ dyn by dy. It

is a volume form on V . If j = (j1; : : : ; jn) 2 (Z�0)
n, then we denote

P jm+1 � � � � � P jn by P j.

Suppose that (V; y) is a compact chart such that E1; : : : ; Em have

equations y1 = 0; : : : ; ym = 0 respectively, and such that

f Æ g = �

mY
i=1

yNii and g�dx = �

mY
i=1

y�i�1i dy

on V , for K-analytic functions � and � on V with j�j, j�j and �(ac�)

independent of y1; : : : ; ym. Remark that a good chart (V; y) for (f Æ
g; g�dx) in which j"j, j�j and �(ac ") are constant satis�es this condition

for � = "
Qk
i=m+1 y

Ni
i and � = �

Qk
i=m+1 y

�i�1
i . Remark also that V =

V \EI . Suppose also that y(V ) is of the form P j with j = (j1; : : : ; jn) 2
(Z�0)

n. Then

lim
s!s0

(s� s0)m
�Z

V
�(ac (f Æ g)(y))j(f Æ g)(y)jsjg�dxj

�mc

= lim
s!s0

(s� s0)m
"Z

P j
�(ac�)j�jsj�j

mY
i=1

�Ni(ac yi)jyijNis+�i�1jdyj
#mc

=

 
mY
i=1

lim
s!s0

(s� s0)
�Z

P ji
jyijNis+�i�1jdyij

�mc
!�Z

P j
�(ac�)j�jsj�jjdyj

�mc

s=s0

=

 
mY
i=1

q � 1

qNi log q

!�Z
V
�(ac�)j�jsj�jjdyj

�mc

s=s0

:

We have derived that the last expression is the contribution of V to

b�m. Consequently, the only aspect of the chart (V; y) it depends on is
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V . In the next section we will see that we do not have to require that

j�j, j�j and �(ac�) are independent of y1; : : : ; ym and that we are in an

embedded resolution to have this independence.

(3.2.6) Suppose that g : Y = Yt ! X = Y0 is a composition g1 Æ � � � Æ gt
of blowing-ups gi : Yi ! Yi�1. Suppose that each gi is a blowing-up along

a K-analytic closed submanifold of codimension larger than one which

has only normal crossings with the union of the exceptional varieties of

g1 Æ � � � Æ gi�1. Let I = f1; : : : ;mg 2 S as in (3.2.5). Let r 2 f0; : : : ; tg.
Suppose that EI already exists in Yr and that the Ei, i 2 I, intersect

transversally in Yr. Remark that the last condition is satis�ed if all the

Ei, i 2 I, are exceptional. We will write EI � Yr if we want to stress that

we consider EI as a subset of Yr.

We call a chart (V; y) a good chart for EI � Yr if (V; y) is a chart on

Yr such that V intersects EI and such that y1 = 0; : : : ; ym = 0 are the

equations of respectively E1; : : : ; Em on V .

Let (V; y) be a good compact chart for EI � Yr. Then we have

f Æ g1 Æ � � � Æ gr = �

mY
i=1

yNii and (g1 Æ � � � Æ gr)�dx = �

mY
i=1

y�i�1i dy

on V , for K-analytic functions � and � on V .

We will now prove that the only aspect of the chart (V; y) that�Z
V
�(ac�)j�jsj�jjdyj

�mc

s=s0

(3.1)

depends on is V .

Let (W; z) be another chart on Yr such that V = W and such that

z1 = 0; : : : ; zm = 0 are the equations of respectively E1; : : : ; Em on W .

We may suppose that V = W because we can restrict them both to

V \W . For every i 2 f1; : : : ;mg there exists a non-vanishing K-analytic

function fi on V such that yi = fizi because yi and zi are equations of

the same Ei. Thus

f Æ g1 Æ � � � Æ gr = �

mY
i=1

(fizi)
Ni

= �

 
mY
i=1

fNii

!
mY
i=1

zNii
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and

(g1 Æ � � � Æ gr)�dx = �

mY
i=1

(fizi)
�i�1 det

�
@y

@z

�
dz

= �

 
mY
i=1

f�i�1i

!
det

�
@y

@z

� mY
i=1

z�i�1i dz:

We have to prove that (3.1) is equal to"Z
V
�(ac�)j�jsj�j

 
mY
i=1

�Ni(ac fi)jfijNis+�i�1
!����det

�
@y

@z

����� jdzj
#mc

s=s0

:(3.2)

In (3.1) we have that jdyj = jdet(@y=@z)jjdzj. Recall that �Ni = 1 for

i 2 f1; : : : ;mg. Because fi, i 2 I, is a non-vanishing function, we may

replace each jfijNis+�i�1 in (3.2) by jfijNis0+�i�1 according to (3.2.4), and

this is equal to jfij�1 because Nis0 + �i = 0 for i 2 I. Consequently, we

have to prove that�Z
V
�(ac�)j�jsj�j

����det

�
@y

@z

����� jdzj�mc

s=s0

=

"Z
V
�(ac�)j�jsj�j

mY
i=1

jfij�1
����det

�
@y

@z

����� jdzj
#mc

s=s0

:

Because (@y=@z) is equal to0BBBBBBBBBB@

f1 + z1
@f1
@z1

� � � z1
@f1
@zm

z1
@f1

@zm+1
� � � z1

@f1
@zn

...
. . .

...
...

. . .
...

zm
@fm
@z1

� � � fm + zm
@fm
@zm

zm
@fm
@zm+1

� � � zm
@fm
@zn

@ym+1

@z1
� � � @ym+1

@zm

@ym+1

@zm+1
� � � @ym+1

@zn
...

. . .
...

...
. . .

...
@yn
@z1

� � � @yn
@zm

@yn
@zm+1

� � � @yn
@zn

1CCCCCCCCCCA
;

we obtain that�
det

�
@y

@z

��
z1=���=zm=0

=

" 
mY
i=1

fi

!
det

�
@y

@z

�#
z1=���=zm=0

:

Consequently we have proved our statement.
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(3.2.7) Data and notations. Let f be a K-analytic function on an open

and compact subset X of Kn. Let � be a character of R�. Let g : Y =

Yt ! X = Y0 be an embedded resolution of (f; dx) as in (3.2.1) which is a

composition g1 Æ � � � Æ gt of blowing-ups gi : Yi ! Yi�1. Suppose that each

gi is a blowing-up along a K-analytic closed submanifold of codimension

larger than one which has only normal crossings with the union of the

exceptional varieties of g1Æ� � �Ægi�1. Let s0 be a candidate pole of Zf;�(s)

and let m be its expected order. Let b�m be de�ned by the MacLaurin

series

b�m
(s� s0)m +

b�m+1

(s� s0)m�1 + � � �+ b0 + b1(s� s0) + � � �

of Zf;�(s) at s0. For I � T , denote the intersection in Y of the Ei � Y ,

i 2 I, by EI . Let EI , I 2 S, be all the non-empty intersections in Y of m

varieties Ei, i 2 T , with candidate pole s0 (and thus also with �Ni = 1).

Fix I 2 S and suppose for the ease of notation that I = f1; : : : ;mg. Let

r 2 f0; : : : ; tg. Suppose that EI already exists in Yr and that the Ei,

i 2 I, intersect transversally in Yr.

De�nition. The contribution of an open and compact subset U of EI �
Yr to b�m is the contribution of the strict transform of U in Y to b�m.

Remark. The contribution of EI to b�m is not necessarily equal to the

contribution of a `very small' neighbourhood of EI � Yr to b�m, because

it can happen that an EK , K 2 S n fIg, lies above EI � Yr.
Data and notations. Let (V; y) be a good compact chart for EI � Yr, i.e.,

(V; y) is a chart on Yr such that V is compact and intersects EI and such

that y1 = 0; : : : ; ym = 0 are the equations of respectively E1; : : : ; Em on

V . Write

f Æ g1 Æ � � � Æ gr = �

mY
i=1

yNii and (g1 Æ � � � Æ gr)�dx = �

mY
i=1

y�i�1i dy

on V , for K-analytic functions � and � on V . We have that y =

(ym+1; : : : ; yn) determines coordinates on the closed submanifold V =

V \EI which is de�ned by y1 = � � � = ym = 0. Consider the volume form

dy = dym+1 ^ � � � ^ dyn on V .

Proposition. The contribution of V to b�m is equal to 
mY
i=1

q � 1

qNi log q

!�Z
V
�(ac�)j�jsj�jjdyj

�mc

s=s0

:
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Notation. For the ease of notation, the �rst factor of this contribution

will be denoted by �:

� :=
mY
i=1

q � 1

qNi log q
:

Proof. We proved in (3.2.5) that the proposition is true if we are working

on the embedded resolution, thus if r = t. Note that gr+1 Æ � � � Æ gt is a

composition of a �nite number of blowing-ups. Therefore, it is enough to

prove the formula on Yr under the assumption that it is true on Yr+1. So

we want to prove that the contribution of V to b�m is equal to 
mY
i=1

q � 1

qNi log q

!�Z
V
�(ac�)j�jsj�jjdyj

�mc

s=s0

: (3.3)

We have that (3.3) is equal to 
mY
i=1

q � 1

qNi log q

!"Z
g�r+1(V )

�(ac g�r+1�)jg�r+1�jsjg�r+1�jjg�r+1dyj
#mc

s=s0

; (3.4)

where g�r+1(V ) denotes the strict transform of V under gr+1. On the

other hand, the contribution of V to b�m is equal to the contribution of

g�r+1(V ) to b�m. Consequently, we have to prove that the contribution of

g�r+1(V ) to b�m is equal to (3.4).
Because the centre of gr+1 does not contain EI and has only normal

crossings with E1[ � � �[Em, we may suppose that gr+1 is the blowing-up
along y1 = � � � = ya = ym+1 = � � � = yb = 0, where 0 � a � m < b � n.
The transformation

(z1; : : : ; zn) 7! (z1zb; : : : ; zazb; za+1; : : : ; zm; zm+1zb; : : : ; zb�1zb; zb; zb+1; : : : ; zn)

determines coordinates z on an open subset O of Yr+1. If we permute

ym+1; : : : ; yb, it represents another transformation which determines co-

ordinates on another open subset of Yr+1; the open subsets we obtain in

this way cover g�r+1(V ).

Let W be an open and compact subset of O that intersects EI � Yr+1.
Then (W; z) is a good chart for EI � Yr+1. It is enough to prove that the

contribution of W to b�m is equal to � times�Z
W
�(ac g�r+1�)jg�r+1�jsjg�r+1�jjg�r+1dyj

�mc

s=s0

:
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Because

f Æ g1 Æ � � � Æ gr+1 = g�r+1�

 
mY
i=1

zNii

!
z
Pa
i=1Ni

b

and

(g1 Æ � � � Æ gr+1)�dx = g�r+1�

 
mY
i=1

z�i�1i

!
z
Pa
i=1(�i�1)

b zb�m�1+ab dz

= g�r+1�

 
mY
i=1

z�i�1i

!
z
Pa
i=1 �i

b zb�m�1b dz;

it follows from our assumption that the contribution of W to b�m is equal

to � times�Z
W
�(ac g�r+1�)jg�r+1�jsjg�r+1�jjzbj

Pa
i=1(Nis+�i)jzbjb�m�1jdzj

�mc

s=s0

:

We can use (3.2.4) to simplify this expression because we know thatNis0+

�i = 0 for i 2 f1; : : : ; ag and that b � m � 1 � 0. Because moreover

g�r+1dy = zb�m�1b dz, we obtain that the contribution of W to b�m is

equal to � times�Z
W
�(ac g�r+1�)jg�r+1�jsjg�r+1�jjg�r+1dyj

�mc

s=s0

:

This had to be proved. �

Alternative proof. Let F be the closed subset of EI � Yt that contains

the points at which � = gt Æ � � � Æ gr+1 : Yt ! Yr is not K-bianalytic.

Let (Bn)n2Z�0 be a decreasing sequence of open and compact subsets of

EI � Yt such that \n2Z�0Bn = F . Note that �(F ) is a closed subset of Yr
and that \n2Z�0�(Bn) = �(F ). Note also that for every neighbourhood

O of F (respectively �(F )), there exists a positive integer n such that

Bn � O (respectively �(Bn) � O).

Let J be a set of good compact charts (W; z) for EI � Yt such that

the W 's form a partition of ��1(V ). Let s 2 C with Re(s) > 0. ThenZ
V
�(ac�)j�jsj�jjdyj = lim

n!1

Z
V n�(Bn)

�(ac�)j�jsj�jjdyj

= lim
n!1

X
(W;z)2J

Z
WnBn

�(ac�z)j�zjsj�zjjdzj

=
X

(W;z)2J

Z
W
�(ac�z)j�zjsj�z jjdzj:
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The �rst equality holds because

lim
n!1

Z
V \�(Bn)

�(ac�)j�jsj�jjdyj = 0:

Indeed, the measure of V \�(Bn) for jdyj decreases to zero if n!1 and

the real and the complex part of the integrand are bounded for complex

numbers s satisfying Re(s) > 0. The last equality is obtained by using the

same argument. We have written �z and �z to stress that these functions

depend on the chart. For the second equality, we have to use that the

W 's form a partition of ��1(V ), that � : Yt ! Yr is a K-bianalytic map

on a neighbourhood of W n Bn in Yt for every (W; z) 2 J and that the

contribution is independent of the chosen coordinates, a fact we explained

in (3.2.6).

Finally, we evaluate the meromorphic continuation in s = s0 and we

obtain:�Z
V
�(ac�)j�jsj�jjdyj

�mc

s=s0

=
X

(W;z)2J

�Z
W
�(ac�z)j�zjsj�z jjdzj

�mc

s=s0

:

This had to be proved. �

(3.2.8) Let Tt be the set of all j 2 T n I for which Ej intersects EI in

Yt. Let Fj , j 2 Tt, be the intersection of Ej and EI in Yt. We have that

Fj has codimension one in EI � Yt. The set of all j, j 2 Tt, for which

(gr+1 Æ � � � Æ gt)(Fj) has also codimension one in EI � Yr will be denoted

by Tr. For j 2 Tr we denote (gr+1 Æ � � � Æ gt)(Fj) also by Fj and we put

�j = Njs0 + �j.

Let (V; y) be a good chart for EI on Yr on which Fj , j 2 Tr, is given

by y1 = � � � = ym = ym+1 = 0. Write

�(0; : : : ; 0; ym+1; : : : ; yn) = y
Nj;r
m+1h1

and

�(0; : : : ; 0; ym+1; : : : ; yn) = y
�j;r�1
m+1 h2

with h1 and h2 not divisible by ym+1. We denote Nj;rs0 + �j;r by �j;r.

We deduce now the relations that will be used later. In this paragraph

we suppose that m = 1 and that EI = Er is created by the blowing-up at
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a point P of Yr�1. Suppose that there exists a chart (V; y) centred at P

on which f Æg1Æ� � �Ægr�1 is given by a power series with lowest degree part

a homogeneous polynomial for which every irreducible factor over Kalg cl

is de�ned over K and for which the zero locus in Pn�1 of every irreducible

factor (over Kalg cl) contains a non-singular point de�ned over K. Remark

that these conditions are satis�ed if the lowest degree part is a product of

linear factors de�ned over K. Write f Æg1Æ� � �Ægr�1 = e
�Q

j2Tr
f
Nj;r
j

�
+�

and (g1 Æ � � � Æ gr�1)�dx = �
�Q

j2Tr
f
�j;r�1
j

�
dy, where fj is the equation

of Fj � Er in the homogeneous coordinates (y1 : � � � : yn) on Er � Yr,

e 2 K�, � is a power series with multiplicity larger than the degree of

the homogeneous polynomial
Q
j2Tj

f
Nj;r
j and � is a K-analytic function

which does not vanish at P . Because the multiplicity of f Æ g1 Æ � � � Æ gr�1
at P is equal to Nr, we obtain the �rst relation:X

j2Tr

(degFj)Nj;r = Nr: (Relation 1)

Our second relation will involve the �j;r, j 2 Tr. There will appear di�er-

ential forms with rational exponents in the calculations. One can make

sense to this by considering them as an element of a tensor power of the

module of rational di�erential forms (see [Ja2]), but we will not give de-

tails here. Let i 2 f1; : : : ; ng. We look at the chart (O; z = (z1; : : : ; zn))

on Yr for which gr(z1; : : : ; zn) = (z1zi; : : : ; zi�1zi; zi; zi+1zi; : : : ; znzi). We

have then that

f Æg1 Æ� � � Ægr = zNri

0@e Y
j2Tr

fj(z1; : : : ; zi�1; 1; zi+1; : : : ; zn)Nj;r + zi
� Æ gr
zNr+1i

1A
and

(g1Æ� � �Ægr)�dx= z�r�1i (�Ægr)
0@Y
j2Tr

fj(z1; : : : ; zi�1; 1; zi+1; : : : ; zn)�j;r�1

1Adz:
Consequently the Poincar�e residue of (f Æg1 Æ� � � Ægr)��r=Nr(g1 Æ� � � gr)�dx
on EI � Yr (see [Ja2]) is equal to

e��r=Nr�(P )
Y
j2Tr

fj(z1; : : : ; zi�1; 1; zi+1; : : : ; zn)�j;r�1dz;
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so that the canonical divisor of Er is
P

j2Tr
(�j;r�1)Fj . Because we know

that the degree of the canonical divisor on Er �= Pn�1 is�n, we obtain the

second relation:
(Relation 2)

X
j2Tr

(degFj)(�j;r � 1) = �n:

Remark that the condition on the lowest degree part of f Æ g1 Æ � � � Æ gr�1
has to be satis�ed because otherwise some terms on the left hand side are

missing. We need the two relations which we just derived in Section 3.3.

In the next paragraph we will deduce that �j;r = �j and that Nj;r � Nj

(mod Nr) so that we obtainX
j2Tr

(degFj)Nj � 0 (mod Nr)

and X
j2Tr

(degFj)(�j � 1) = �n:

One can �nd these relations in a more general form in [Ve2], [Ve3] and

[Ve6].

We prove that �j;r = �j for j 2 Tr. Because gr+1 Æ � � � Æ gt is a

composition of a �nite number of blowing-ups, it is enough to prove that

�j;r = �j;r+1. If the centre of gr+1 does not contain Fj, then Nj;r = Nj;r+1

and �j;r = �j;r+1 so that we are done. If the centre of gr+1 contains Fj , we

may suppose that gr+1 is the blowing-up along y1 = � � � = ya = ym+1 = 0,

where 0 < a � m. The relevant chart is determined by the transformation

(z1; : : : ; zn) 7! (z1zm+1; : : : ; zazm+1; za+1; : : : ; zm; zm+1; : : : ; zn):

Because

f Æ g1 Æ � � � Æ gr+1 = g�r+1�

 
mY
i=1

zNii

!
z
Pa
i=1Ni

m+1

and

(g1 Æ � � � Æ gr+1)�dx = g�r+1�

 
mY
i=1

z�i�1i

!
z
Pa
i=1 �i

m+1 dz;

we have to prove that Nj;rs0+�j;r = (Nj;r+
Pa

i=1Ni)s0+(�j;r+
Pa

i=1 �i).

This follows from the fact that Nis0 + �i = 0 for i 2 f1; : : : ; ag. Remark

that it follows also from these calculations that

Nj;r � Nj mod gcd(N1; : : : ; Nm):
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(3.2.9) Example. We give an illustration which is easy and well known.

Let f = x21 + x22. Let X = Zp � Zp. We want to determine the poles of

Igusa's p-adic zeta function associated to f . Notice that �1 is a square

in Qp if and only if �1 is a square Z=(p) and p 6= 2.

If �1 is a square in Qp , then (f; dx) has already normal crossings. We

obtain a good chart for (f; dx) by applying the coordinate transformation

(y1; y2) 7! ((y1 + y2)=2; (y1 � y2)=(2a)), where a denotes a square root of

�1. Because jaj = 1 we obtain

Z
Zp�Zp

jx21 + x22jsjdx1 ^ dx2j =
Z
Zp�Zp

jy1y2jsjdy1 ^ dy2j:

Consequently, the only candidate poles of Zf (s) are the values �1 +

(2k�
p�1)=(log p), k 2 Z. All these candidate poles are poles because

b�2 = ((p� 1)=(p log p))2 for each candidate pole.

If �1 is not a square in Qp , then (f; dx) has not normal crossings

at the origin. We obtain an embedded resolution after one blowing-up

g. Remark that the zero locus of f contains only the origin and that

the zero locus of f Æ g is equal to the exceptional curve E of g. We will

use the two charts on the blowing-up determined by (y1; y2) 7! (y1y2; y2)

and (z1; z2) 7! (z1; z1z2). The sets f(y1; y2) j y1 2 Zp ; y2 = 0g and

f(z1; z2) j z1 = 0 ; z2 2 pZpg form a partition of E. The candidate poles

of Zf (s) are sk = �1 + (2k�
p�1)=(2 log p), k 2 Z, and each b�1 is equal

to

�
p� 1

2p log p

�0@"Z
Zp

jy21 + 1jsjdy1j
#mc

s=sk

+

"Z
pZp

j1 + z22 jsjdz2j
#mc

s=sk

1A :

If p 6= 2, we have that j1 + x2j = 1 for every x 2 Zp, so that b�1 =

(p2 � 1)=(2p2 log p). If p = 2, we have that j1 + x2j = 1 for every x 2 2Z2

and j1 + x2j = 1=2 for every x 2 1 + 2Z2, so that b�1 = 1=(2 log 2) if k is

even and b�1 = 0 if k is odd.

Remark that Igusa's p-adic zeta function of x21 +x22 can be calculated

completely elementarily in all the cases.
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3.3 The vanishing results

3.3.1 Curves

Let X be an open and compact subset of K2. Let f be a K-analytic

function on X. Let g : Y ! X be an embedded resolution of f . Write

g = g1 Æ � � � Æ gt : Y = Yt ! X = Y0 as a composition of blowing-ups

gi : Yi ! Yi�1, i 2 f1; : : : ; tg. The exceptional curve of gi and also the

strict transforms of this curve are denoted by Ei. Let � be a character of

R�.

Proposition. Let r 2 f1; : : : ; tg and let P 2 Yr�1 be the centre of the

blowing-up gr. Suppose that the expected order of a candidate pole s0
associated to Er is one. Suppose that there exists a chart (V; y = (y1; y2))

centred at P on which f Æ g1 Æ � � � Æ gr�1 is given by a power series with

lowest degree part a (non-constant) monomial. Then the contribution of

Er to the residue b�1 of Zf;�(s) at s0 is zero.

Remark. This proposition is essentially well known. Our proof di�ers

slightly from the ones in [Ig5] and [Lo1] because we will calculate the

contribution of Er to b�1 just after the creation of Er instead of on the

embedded resolution. We incorporate this proof here because the same

technique will be used in the proof of the more diÆcult result of Section

3.3.2.

Proof. We may suppose that (V; y) is a chart centred at P such that

f Æ g1 Æ � � � Æ gr�1 = eyk1y
l
2 + � and (g1 Æ � � � Æ gr�1)�dx = �yc�11 yd�12 dy with

k; l 2 Z�0, c; d 2 Z>0, e 2 K� and �; � K-analytic functions satisfying

�(0; 0) 6= 0 and mult(�) > k + l. We consider here the case that k and l

are both not zero. The case that k or l is zero can be treated analogously.

We look at the chart (O; z = (z1; z2)) on Yr for which gr(z1; z2) =

(z1; z1z2). Then

f Æ g1 Æ � � � Æ gr = zk+l1

 
ezl2 + z1

�(z1; z1z2)

zk+l+11

!
and

(g1 Æ � � � Æ gr)�dx = �(z1; z1z2)z
c+d�1
1 zd�12 dz:

Remark that the equation of Er is z1 = 0, that Nr = k + l and that

�r = c + d. Using the notation of (3.2.8), let Tr = f1; 2g and let F1 be
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the origin of this chart. The contribution to b�1 of an open and compact

subset A of Er which is contained in O is equal to�
q � 1

qNr log q

��Z
A
�(ac e)�l(ac z2)jejsj�(0; 0)jjz2 jls+d�1jdz2j

�mc

s=s0

:

Let (O0; z0 = (z01; z
0
2)) be the chart on Yr for which gr(z

0
1; z

0
2) =

(z01z
0
2; z

0
2). The origin of this chart is the point F2. Analogously as before,

we obtain that the contribution to b�1 of an open and compact subset B

of Er which is contained in O0 is equal to�
q � 1

qNr log q

��Z
B
�(ac e)�k(ac z01)jejsj�(0; 0)jjz01 jks+c�1jdz01j

�mc

s=s0

:

Because �Nr = 1 (otherwise there are no candidate poles associated

to Er) and because k+ l = Nr, we have that �k = 1 if and only if �l = 1.

Case 1: �k = �l = 1. Then the contribution of Er to b�1 is equal to

�(ac e)jejs0 j�(0; 0)j(q � 1)

qNr log q

times �Z
R
jz2jls+d�1jdz2j

�mc

s=s0

+

�Z
P
jz01jks+c�1jdz01j

�mc

s=s0

=
q � 1

q

1

1� q��1 +
q � 1

q

q��2

1� q��2

=

�
q � 1

q

��
1� q��2 + q��2 � q��1��2

(1� q��1)(1 � q��2)
�

= 0:

The last equality follows from �1 +�2 = 0, which is Relation 2 of (3.2.8).

Case 2: �k 6= 1 and �l 6= 1. Then the contribution of Er to b�1 is

equal to zero because both terms in the sum�Z
R
�l(ac z2)jz2jls+d�1jdz2j

�mc

s=s0

+

�Z
P
�k(ac z01)jz01jks+c�1jdz01j

�mc

s=s0

are equal to zero. �
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3.3.2 Surfaces

Let X be an open and compact subset of K3. Let f be a K-analytic

function on X. Let g : Y = Yt ! X = Y0 be an embedded resolution of

f which is a composition g1 Æ � � � Æ gt of blowing-ups gi : Yi ! Yi�1 with

centre a K-analytic closed submanifold which has only normal crossings

with the union of the exceptional surfaces in Yi�1 and with exceptional

surface Ei.

Proposition. Let r 2 f1; : : : ; tg and let P 2 Yr�1 be the centre of

the blowing-up gr. Suppose that the expected order of a candidate pole

s0 associated to Er is one. Suppose that there exists a chart (V; y =

(y1; y2; y3)) centred at P on which f Æ g1 Æ � � � Æ gr�1 is given by a power

series with lowest degree part of the form eyk1y
l
2y
m
3 (y1+y2)

n, with e 2 K�

and k; l;m; n 2 Z�0. Then the contribution of Er to the residue b�1 of

Zf (s) at s0 is zero.

Proof. We may suppose that f Æg1 Æ� � � Ægr�1 = eyk1y
l
2y
m
3 (y1+y2)

n+� and

(g1Æ� � �Ægr�1)�dx = �ya�11 yb�12 yc�13 (y1+y2)
d�1dy with a; b; c; d 2 Z>0 and

�; � K-analytic functions satisfying �(0; 0) 6= 0 and mult(�) > k+l+m+n.

Remark that at least one of the numbers a; b; d is equal to 1. We consider

here the case that k; l;m and n are all di�erent from zero. The other

cases are treated analogously. Let Tr = f1; 2; 3; 4g and suppose that Fi,

i 2 f1; 2; 3g, is given by yi = 0 and that F4 is given by y1 + y2 = 0 in the

homogeneous coordinates (y1 : y2 : y3) on Er � Yr.
We look at the chart (O; z=(z1; z2; z3)) on Yr for which gr(z1; z2; z3) =

(z1z3; z2z3; z3). Then

f Æ g1 Æ � � � Æ gr = zk+l+m+n
3

 
ezk1z

l
2(z1 + z2)

n + z3
�(z1z3; z2z3; z3)

zk+l+m+n+1
3

!
and

(g1 Æ � � � Æ gr)�dx = �(z1z3; z2z3; z3)z
a�1
1 zb�12 za+b+c+d�23 (z1 + z2)

d�1dz:

Remark that the equation of Er is z3 = 0, that Nr = k + l +m+ n and

that �r = a+b+c+d�1. The contribution to b�1 of an open and compact

subset A of Er which is contained in O is equal to � = (q�1)=(qNr log q)

times�Z
A
jejsj�(0; 0; 0)jjz1 jks+a�1jz2jls+b�1jz1 + z2jns+d�1jdz1 ^ dz2j

�mc

s=s0

:
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Let (O0; z0 = (z01; z
0
2; z

0
3)) be the chart on Yr for which gr(z

0
1; z

0
2; z

0
3) =

(z01z
0
2; z

0
2; z

0
2z
0
3). Analogously as before, we obtain that the contribution

to b�1 of an open and compact subset B of Er which is contained in O0

is equal to � times�Z
B
jejsj�(0; 0; 0)jjz01 jks+a�1jz03jms+c�1jz01 + 1jns+d�1jdz01 ^ dz03j

�mc

s=s0

:

Let (O00; z00 = (z001 ; z
00
2 ; z

00
3 )) be the chart on Yr for which gr(z

00
1 ; z

00
2 ; z

00
3 ) =

(z001 ; z
00
1z

00
2 ; z

00
1z

00
3 ). Analogously as before, we obtain that the contribution

to b�1 of an open and compact subset C of Er which is contained in O00

is equal to � times�Z
C
jejsj�(0; 0; 0)jjz002 jls+b�1jz003 jms+c�1j1 + z002 jns+d�1jdz002 ^ dz003 j

�mc

s=s0

:

Now we take A = P � P , B = P �R and C = R�R. Because these

sets form a partition of Er, the contribution to b�1 of Er is the sum of

the three contributions above.

We have to prove that the contribution to b�1 of Er is equal to zero, so

we have to prove that

(�)

�Z
A
jz1jks+a�1jz2jls+b�1jz1 + z2jns+d�1jdz1 ^ dz2j

�mc

s=s0

+

�Z
B
jz01jks+a�1jz03jms+c�1jz01 + 1jns+d�1jdz01 ^ dz03j

�mc

s=s0

+

�Z
C
jz002 jls+b�1jz003 jms+c�1j1 + z002 jns+d�1jdz002 ^ dz003 j

�mc

s=s0

is equal to zero.

To calculate the �rst term in (�), we partition A into

A1 = f(z1; z2) 2 P � P j ord z1 > ord z2g
=

G
i2Z>0

f(z1; z2) j ord z1 > ord z2 = ig

A2 = f(z1; z2) 2 P � P j ord z1 < ord z2g
=

G
i2Z>0

f(z1; z2) j i = ord z1 < ord z2g

A3 = f(z1; z2) 2 P � P j ord z1 = ord z2g
=

G
i2Z>0

f(z1; z2) j ord z1 = ord z2 = ig
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The contribution of A1 to the �rst term in (�) is equal to"
1X
i=1

Z
P i+1

 Z
P inP i+1

jz1jks+a�1jz2jls+b�1jz1 + z2jns+d�1jdz2j
!
jdz1j

#mc

s=s0

=

"
1X
i=1

q � 1

q
q�iq�i(ls+b�1)q�i(ns+d�1)

Z
P i+1
jz1jks+a�1jdz1j

#mc

s=s0

=

"
1X
i=1

q � 1

q
q�iq�i(ls+b�1)q�i(ns+d�1)

q � 1

q

q�i(ks+a)

qks+a � 1

#mc

s=s0

=

"�
q � 1

q

�2 1

qks+a � 1

1X
i=1

q�i(ks+a+ls+b+ns+d�1)

#mc

s=s0

=

"�
q � 1

q

�2 1

(qks+a � 1)(qks+a+ls+b+ns+d�1 � 1)

#mc

s=s0

=

�
q � 1

q

�2 1

(q�1 � 1)(q�1+�2+�4�1 � 1)
: (3.5)

Analogously, we obtain that the contribution of A2 to the �rst term in

(�) is equal to �
q � 1

q

�2 1

(q�2 � 1)(q�1+�2+�4�1 � 1)
: (3.6)

The contribution of A3 to the �rst term in (�) is equal to"
1X
i=1

Z
(P inP i+1)2

jz1jks+a�1jz2jls+b�1jz1 + z2jns+d�1jdz1 ^ dz2j
#mc

s=s0

=

"
1X
i=1

q�i(ks+a�1)q�i(ls+b�1)
Z
(P inP i+1)2

jz1 + z2jns+d�1jdz1 ^ dz2j
#mc

s=s0

=

"
1X
i=1

q�i(ks+a+ls+b�2)
Z
P inP i+1

�Z
�z2+P i+1

jz1 + z2jns+d�1jdz1j

+

Z
(P inP i+1)n(�z2+P i+1)

jz1 + z2jns+d�1jdz1j
!
jdz2j

#mc

s=s0
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=

"
1X
i=1

q�i(ks+a+ls+b�2)

Z
P inP i+1

q � 1

q

q�i(ns+d)

qns+d � 1
+
q � 2

q
q�iq�i(ns+d�1)jdz2j

#mc

s=s0

=

"
1X
i=1

q�i(ks+a+ls+b�2)

q � 1

q
q�i

 
q � 1

q

q�i(ns+d)

qns+d � 1
+
q � 2

q
q�i(ns+d)

!#mc

s=s0

=

"�
q � 1

q

�2 1

qns+d � 1

1X
i=1

q�i(ks+a+ls+b+ns+d�1)

+
q � 1

q

q � 2

q

1X
i=1

q�i(ks+a+ls+b+ns+d�1)

#mc

s=s0

=

�
q � 1

q

�2 1

(q�4 � 1)(q�1+�2+�4�1 � 1)
(3.7)

+

�
q � 1

q

��
q � 2

q

�
1

q�1+�2+�4�1 � 1
: (3.8)

The second term of (�) is equal to�Z
P
jz1jks+a�1jz1 + 1jns+d�1jdz1j

Z
R
jz3jms+c�1jdz3j

�mc

s=s0

=

�Z
P
jz1jks+a�1jdz1j

Z
R
jz3jms+c�1jdz3j

�mc

s=s0

=

�
q � 1

q

�2 1

(q�1 � 1)(1 � q��3) : (3.9)

The third term of (�) is equal to�Z
R
jz2jls+b�1j1 + z2jns+d�1jdz2j

Z
R
jz3jms+c�1jdz3j

�mc

s=s0

=

��Z
Rn(P[�1+P )

jz2jls+b�1j1 + z2jns+d�1jdz2j

+

Z
P
jz2jls+b�1j1 + z2jns+d�1jdz2j+

Z
�1+P
jz2jls+b�1j1 + z2jns+d�1jdz2j

�
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�Z
R
jz3jms+c�1jdz3j

��mc

s=s0

=

��
1� 2

q
+

Z
P
jz2jls+b�1jdz2j+

Z
�1+P

j1 + z2jns+d�1jdz2j
�

�Z
R
jz3jms+c�1jdz3j

��mc

s=s0

=

�
1� 2

q
+
q � 1

q

1

q�2 � 1
+
q � 1

q

1

q�4 � 1

��
q � 1

q

1

1� q��3
�

=

�
q � 1

q

��
q � 2

q

�
1

1� q��3 (3.10)

+

�
q � 1

q

�2 1

(q�2 � 1)(1 � q��3) (3.11)

+

�
q � 1

q

�2 1

(q�4 � 1)(1 � q��3) : (3.12)

Relation 2 of (3.2.8) is �1 + �2 + �3 + �4 � 1 = 0, so that we obtain

1

q�1+�2+�4�1 � 1
+

1

1� q��3 =
1� q��3 + q�1+�2+�4�1 � 1

(q�1+�2+�4�1 � 1)(1� q��3)
=

q�1+�2+�3+�4�1 � 1

(q�1+�2+�4�1 � 1)(q�3 � 1)

= 0;

and consequently (3:5) + (3:9) = 0. Analogously, we obtain that (3:6) +

(3:11) = (3:7) + (3:12) = (3:8) + (3:10) = 0. Consequently, the contribu-

tion of Er to b�1 is equal to zero. �

Remark. (i) If k; l;m and n are not all di�erent from zero, then the same

calculations are valid. Now, Tr � f1; 2; 3; 4g and Fi, i 2 Tr, is given by

the same equation as before. If i 2 f1; 2; 3; 4gnTr , we have to put formally

�i = 1.

(ii) Suppose that we are in the same situation as in the proposition and

let � be an arbitrary character of R�. Then one can show that the

contribution of Er to the residue b�1 of Zf;�(s) at s0 is zero. The proof

consists of very long calculations involving character sums. This will

appear in Chapter 4.
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3.4 Determination of the smallest poles

The main ideas and results of this section have the same 
avour as those

in Chapter 2, where the local topological zeta function is studied. How-

ever it is here sometimes more complicated because the �eld K is not

algebraically closed.

3.4.1 Curves

(3.4.1.1) In this section we will determine PK2 \] � 1;�1=2[. Let f

be a K-analytic function on an open and compact subset of K2 and let

g be the minimal embedded resolution of f . The poles of Zf (s) with

real part less than �1=2 and di�erent from �1 are only associated to

exceptional curves. Consequently, these poles are completely determined

by the germs of f at the points where f has not normal crossings. It is

thus suÆcient to study the germs of K-analytic functions at the origin,

which will be identi�ed with the convergent power series. The set of all

convergent power series in the variables x and y is classically denoted by

K<<x; y>>.

(3.4.1.2) Let f 2 K<<x; y>>. Let g : Y ! X be the minimal embedded

resolution of a representative of f . Write g = g1 Æ � � � Æ gt : Y = Yt !
X = Y0 as a composition of blowing-ups gi : Yi ! Yi�1, i 2 f1; : : : ; tg.
The exceptional curve of gi and also the strict transforms of this curve

are denoted by Ei. Let T be as in (3.2.1) and obviously we suppose that

f1; : : : ; tg � T .

Let k 2 f1; : : : ; tg. Let P 2 Yk be a point on an exceptional curve,

i.e., a point which is mapped to the origin under the map g1 Æ � � � Æ gk.

The strict transform of f around P is de�ned as the germ at P of the K-

analytic function f Æ g1 Æ � � � Æ gk divided by the highest possible powers of

local equations of exceptional curves through P . Remark that the strict

transform of f around P is de�ned modulo the germ of a K-analytic

function which does not vanish at P as a factor.

We call a complex number `a candidate pole of Zf (s)' if it is a candi-

date pole associated to an Ei, i 2 T , satisfying 0 2 g(Ei). A candidate

pole of Zf (s) is called a pole of Zf (s) if there exists an arbitrarily small

neighbourhood of 0 for which it is a pole.

The following lemma is trivial.
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(3.4.1.3) Lemma. Suppose that we have blown up k times but we

do not yet have an embedded resolution. Let P be a point at which

f Æ g1 Æ � � � Æ gk has not normal crossings. Let � be the multiplicity in P of

the strict transform of f around P and let gk+1 be the blowing-up at P .

(a) Suppose that two exceptional curves Ei and Ej contain P . Then

��k+1=Nk+1 is equal to �(�i + �j)=(Ni +Nj + �) and this is larger than

minf��i=Ni;��j=Njg.
(b) Suppose that exactly one exceptional curve Ei contains P and that

� � 2. ThenEk+1 has numerical data (Ni+�; �i+1) and�(�i+1)=(Ni+�)

is between �1=� and ��i=Ni.

(c) Suppose that exactly one exceptional curve Ei contains P and

that � = 1. Note that the two curves are tangent at P because we do not

have normal crossings at P . Let gk+2 be the blowing-up at Ei \ Ek+1.
Remark that we do not have to blow up at a point of Ek+1 anymore. The

numerical data of Ek+2 are (2Ni + 2; 2�i + 1), and �(2�i + 1)=(2Ni + 2)

is between �1=2 and ��i=Ni. Let s0 be a candidate pole associated to

Ek+1. Because s0 is not a candidate pole associated to Ek+2, which is

a consequence of ��k+1=Nk+1 6= ��k+2=Nk+2, the contribution of Ek+1
to the coeÆcient b�2 in the MacLaurin series of Zf (s) at s0 is zero. It

follows from the proposition in Section 3:3:1 that Ek+1 does not give a

contribution to the residue b�1 of Zf (s) at s0.

(3.4.1.4) Suppose that after some blowing-ups, the pullback of f has not

normal crossings at a point P . Suppose also that the real parts of the

candidate poles associated to the exceptional curves through P are all

larger than or equal to �1=2. Then it follows from the above lemma that

the components above P in the �nal resolution do not give a contribution

to a candidate pole with real part less than �1=2.

Corollary. Zeta functions of convergent power series of multiplicity at

least four do not have a pole with real part in ]�1;�1=2[nf�1g.
Indeed, every exceptional curve in the minimal embedded resolution of

f lies above a point of E1 (considered in the stage when it is created),

which has a candidate pole with real part larger than or equal to �1=2.

(3.4.1.5) To deal with multiplicity two and three, we will study an `easier'

element of K <<x; y >>. We will use the following theorem (see [Ig7,

Theorem 2.3.1]).
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Weierstrass Preparation Theorem.

If f(z1; : : : ; zn�1; w) = f(z; w) 2 K<<z;w>> is not identically zero on the

w-axis, then f can be written uniquely as f = (we + a1(z)w
e�1 + � � � +

ae(z))h, where ai(z) 2 K<<z>> satis�es ai(0) = 0 and h 2 K<<z;w>>
satis�es h(0) 6= 0.

Because h(0) 6= 0 implies that jhj is constant on a neighbourhood of 0, we

have that Igusa's p-adic zeta functions of f and we+a1(z)w
e�1+� � �+ae(z)

have the same poles. After an appropriate coordinate transformation, the

desired form will appear. For example, the coordinate transformation

(z; w) 7! (z; w � a1(z)=e) cancels the term a1(z)w
e�1.

(3.4.1.6) Example. Let f 2 K<<x; y>> have multiplicity three and let

f3 = y3 + xy2 = y2(y+ x) be the homogeneous part of f of degree 3. By

the Weierstrass Preparation Theorem, we may work with a function of the

form y3 + a1(x)y2 + a2(x)y+ a3(x), with mult(a1(x)) = 1, mult(a2(x)) �
3 and mult(a3(x)) � 4. One can check that there exists a coordinate

transformation (x; y) 7! (x; y � k(x)) such that the function becomes of

the form y3 + b1(x)y2 + b3(x), with mult(b1(x)) = 1 and mult(b3(x)) � 4.

After another coordinate transformation, we get the form y3+xy2+g(x),

with mult(g(x)) � 4.

(3.4.1.7) Theorem. We have

PK2 \
�
�1;�1

2

�
=

�
�1

2
� 1

i

���� i 2 Z>1

�
and every Igusa's p-adic zeta function has at most one pole in ]�1;�1=2].

Moreover, if f 2 K<<x; y>> has multiplicity at least four, then Zf (s) has

no pole with real part in ]�1;�1=2[nf�1g.
Proof. Because the calculations are analogous to the calculations in

(2.2.9) for the local topological zeta function, we do not treat all the

cases in this paper.

(a) Suppose that f is an element of K<<x1; x2>> with multiplicity

two. When we apply the ideas of (3.4.1.5), we see that it is enough to

consider x21 and x21 + axl2, with l 2 Z>1 and a 2 K�. If f = x21, the

candidate poles of Zf (s) are �1=2 + (k�
p�1)=(log p), k 2 Z. If l = 2,

the calculations are analogous as in (3.2.9). If l is odd, write l = 2r + 1.

After r blowing-ups, the strict transform of f�1f0g is non-singular and



74 Chapter 3. Igusa's p-adic zeta function

tangent to Er. The numerical data of Ei, i = 1; : : : ; r, are (2i; i + 1). To

get the minimal embedded resolution, we now blow up twice. Let E0 be

the strict transform of f�1f0g. Remark that T = f0; 1; : : : ; rg. The dual

resolution graph is

: : :s s s s s s

c

E1 E2 E3 Er Er+2 Er+1

E0

and the numerical data are E1(2; 2), E2(4; 3), E3(6; 4), : : : , Er(2r; r+ 1),

Er+1(2r + 1; r + 2) and Er+2(4r + 2; 2r + 3). It follows from Section

3.3.1 that the candidate poles associated to E1; : : : ; Er+1 are not poles.

The other candidate poles have real part �1 or �(2r + 3)=(4r + 2) =

�1=2 � 1=(2r + 1). We calculate the residue of Zf (s) at the candidate

pole s0 = �1=2� 1=(2r + 1). Because�Z
aR
jy1j(2r+1)s+r+1jy1 + ajsjdy1j

�mc

s=s0

= jaj�1=(2r+1)
�Z

R
jyj(2r+1)s+r+1jy + 1jsjdyj

�mc

s=s0

= jaj�1=(2r+1)
"Z

Rn(�1+P )
jyj(2r+1)s+r+1jdyj+

Z
�1+P

jy + 1jsjdyj
#mc

s=s0

= jaj�1=(2r+1)
�
q � 2

q
+
q � 1

q

1

q�r+1 � 1
+
q � 1

q

1

q�0 � 1

�
and"Z

1
a
P
jy2j2rs+rj1 + ay2jsjdy2j

#mc

s=s0

= jaj�1=(2r+1)
�Z

P
jyj2rs+rj1 + yjsjdyj

�mc

s=s0

= jaj�1=(2r+1)
�Z

P
jyj2rs+rjdyj

�mc

s=s0

= jaj�1=(2r+1) q � 1

q

1

q�r � 1

the residue of Zf (s) at the candidate pole s0 = �1=2� 1=(2r + 1) is

jaj�1=(2r+1)
�
q � 2

q
+
q � 1

q

1

q�r+1 � 1
+
q � 1

q

1

q�0 � 1
+
q � 1

q

1

q�r � 1

�
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multiplied by the factor � which is di�erent from zero (see (3.2.7)). Be-

cause �r+1 = (2r+1)s0+r+2 = 1=2 > 0, �0 = s0+1 = 1=2�1=(2r+1) > 0

and �r = 2rs0 + r+ 1 = 1=(2r+ 1) > 0, we have that the last three terms

of this expression are strictly positive. Consequently the whole expression

is strictly positive and thus di�erent from zero, so that �1=2� 1=(2r+ 1)

is a pole of Zf (s).

If l is even and larger than 2, write l = 2r. We have to blow up

r times to obtain an embedded resolution. We have E1(2; 2), E2(4; 3),

E3(6; 4), : : :, Er�1(2r � 2; r), Er(2r; r + 1). We obtain the �rst dual res-

olution graph if �a is a square in K. Otherwise, we obtain the second

dual resolution graph.

: : :s s s s s��
�

HHH

c

c

E1 E2 E3 Er�1 Er

: : :s s s s s

E1 E2 E3 Er�1 Er

It follows from Section 3.3.1 that the candidate poles associated to E1; : : : ;

Er�1 are not poles. The other candidate poles have real part �1 or

�(r + 1)=(2r) = �1=2 � 1=(2r) in the �rst case and �(r + 1)=(2r) =

�1=2�1=(2r) in the second case. Now we prove that �1=2�1=(2r) is an

element of PK2 . Suppose �rst that p 6= 2. Then there exists an element a

of K with norm 1 for which �a is not a square in K. For such an a, the

residue of Zf (s) at s0 = �1=2� 1=(2r) is the non-zero factor � times

q � 1

q

1

q�r�1 � 1
+ 1:

Suppose now that p = 2. Remark that every element of the residue �eld

is a square in this case. Let b 2 R�. If b0 2 b + P , then b02 � b2 2 P 2.

Consequently, there exists an a 2 �b2 + P such that ja + x2j = 1=q for

all x 2 b+ P . For such an a, the residue of Zf (s) at s0 = �1=2 � 1=(2r)

is the non-zero factor � times

q � 1

q

1

q�r�1 � 1
+
q � 1

q
+

1

q

�
1

q

�s0
:
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Because �r�1 = (2r � 2)s0 + r = 1=r > 0, we obtain in the two cases

that this residue is strictly positive, which implies that �1=2 � 1=(2r) is

a pole.

Our conclusion of part (a) is thus that the set fs0 j 9f 2 K<<x1; x2>> :

mult(f) = 2 and Zf (s) has a pole with real part s0g is equal to�
�1

2
� 1

i

���� i 2 Z>1

�
[
�
�1

2

�
:

Remark that Newton polyhedra could also be used to deal with (a) if

p 6= 2, see [DH].

(b) Suppose that f is an element of K<<x1; x2>> with multiplicity

three. Up to an aÆne coordinate transformation, there are three cases

for f3.

We consider the case that f3 is a product of three di�erent linear

factors over Kalg cl. Then we obtain an embedded resolution after one

blowing-up. There are three possibilities for the dual resolution graph,

depending on whether f3 splits into linear factors over K, f3 is a product

of a linear factor and an irreducible factor of degree 2 over K or f3 is

irreducible over K. The dual resolution graphs are respectively

s�
�
�

A
A
A

c

c

c

sc s

The equations of f3 Æ g in the charts determined by (y1; y2) 7! (y1; y1y2)

and (z1; z2) 7! (z1z2; z2) are respectively of the form y31h1 and z32h2. In

the last case for example, we have that h1 and h2 are non-vanishing on

the exceptional curve.

The real parts of the candidate poles of Zf (s) are �1 and �2=3 =

�1=2 � 1=6 in the �rst two cases and �2=3 = �1=2 � 1=6 in the last

case.

The other cases are treated in (2.2.9) for the topological zeta function

and are very similar for Igusa's p-adic zeta function.

(c) Suppose that f is an element of K<<x1; x2>> with multiplicity

at least four. We explained in (3.4.1.4) that Zf (s) has no pole with real

part in ]�1;�1=2[nf�1g. �
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(3.4.1.8) Let � be a character of R�. For n 2 Z>0, we de�ne the set

PKn;� by

PKn;� := fs0 j 9f 2 FKn : Zf;�(s) has a pole with real part s0g:

Theorem. We have

PK2;� \
�
�1;�1

2

�
�
�
�1

2
� 1

i

���� i 2 Z>1

�
and every Igusa's p-adic zeta function has at most one pole in ]�1;�1=2].

Proof. In the proof of the previous theorem we needed only the proposi-

tion in Section 3.3.1 to obtain that some candidate poles were not poles.

Now we work with a character and we can use the same proposition to

prove that these candidate poles are not poles. �

3.4.2 Surfaces

In this section, we prove the following theorem.

(3.4.2.0) Theorem. We have

PK3 \]�1;�1[=

�
�1� 1

i

���� i 2 Z>1

�
:

Moreover, if f 2 K<<x; y; z>> has multiplicity at least three, then Zf (s)

has no pole with real part less than �1.

Remark. (i) It is a priori not obvious that the smallest value of PK3 is

�3=2. This is in contrast with the fact that it easily follows from Lemma

3.4.1.3 that the smallest value of PK2 is �1.

(ii) Let � be a character of R�. Then one proves analogously as below

that an element of PK3;� less than �1 is of the form �1 � 1=i, i 2 Z>1.

Using remark (ii) in Section 3.3.2, the arguments below will also imply

that Zf;�(s) has no pole with real part less than �1 if f 2 K<<x; y; z>>
has multiplicity at least three.

3.4.2.1 Multiplicity two

(3.4.2.1.1) Let f(x), x = (x1; : : : ; xn), be a K-analytic function on an

open and compact subset X of Kn. Let g(y), y = (y1; : : : ; ym), be a

K-analytic function on an open and compact subset Y of Km. Then
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f(x) + g(y) is a K-analytic function on the open and compact subset

X � Y of Kn+m. Put A(s; �) := qs+1 � 1 if � is the trivial character of

R� and A(s; �) := 1 if � is another character of R�.

Fix a character � of R�. Suppose that the only critical value of f and

g is zero. Then the poles of A(s; �)Zf+g;�(s) are of the form s1 + s2 with

s1 a pole of A(s; �0)Zf;�0(s) and s2 a pole of A(s; �00)Zg;�00(s) for some

characters �0 and �00 of R� satisfying �0�00 = � (see [Ig4] or [De2, (5.1)]).

(3.4.2.1.2) Proposition. The set fs0 j 9f 2 K<<x; y; z>> : mult(f) = 2

and Zf (s) has a pole in s0g\ ]�1;�1[ is equal to�
�1� 1

i

���� i 2 Z>1

�
:

Proof. Let f be an element of K<<x; y; z>> with multiplicity two. Up to

an aÆne coordinate transformation, the part of degree two of f is equal

to ax2 + by2 + cz2, with a; b; c 2 K and a 6= 0. Using (3.4.1.5), we may

suppose that f is of the form x2 + g(y; z) with g(y; z) 2 K<<y; z>>. The

statement in (3.4.2.1.1) and the result for curves imply that every pole of

Zf (s) less than �1 is of the form �1� 1=i, i 2 Z>1.

Now we prove the other inclusion. Using the p-adic stationary phase

formula (1.1.7), we obtain that Igusa's p-adic zeta function of xy + zi,

i � 2, is equal to�
q � 1

q

� 
1� q�s�3 + (q � 1)(q�2s�4 + q�3s�5 + � � � + q�(i�1)s�(i+1))

(1� q�s�1)(1� q�is�(i+1))

!
:

The real poles of this zeta function are �1 and �1� 1=i. �

3.4.2.2 Multiplicity larger than two

(3.4.2.2.1) Let f be an element of K<<x; y; z>>. Fix a (small enough)

neighbourhood X of 0 2 K3 on which f is convergent and an embedded

resolution g : Y ! X of f which is a K-bianalytic map at the points

where f has normal crossings and which is a composition of blowing-ups

gij : Xi ! Xj with centre a K-analytic closed submanifold Dj and with

exceptional surface Ei satisfying:

(a) the codimension of Dj in Xj is at least two;
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(b) Dj is a subset of the zero locus of the strict transform of f on each

chart (the strict transform of f is not de�ned globally);

(c) the union of the exceptional varieties in Xj has only normal cross-

ings with Dj , i.e., for all P 2 Dj , there are three surface germs

through P which are in normal crossings such that each exceptional

surface germ through P is one of them and such that the germ of

Dj at P is the intersection of some of them;

(d) the image of Dj in X � K3 contains the origin of K3; and

(e) Dj contains a point in which the pullback of f has not normal

crossings.

Remark that such a resolution always exists by Hironaka's theorem [Hi].

(3.4.2.2.2) The following table gives the numerical data of Ei. In the

columns, the dimension of Dj is kept �xed. In the rows, the number

of exceptional surfaces through Dj is kept �xed. So Ek, El and Em
represent exceptional surfaces that contain Dj . The multiplicity of the

strict transform of f in Dj is denoted by �Dj .

Dj is a point P Dj is a curve L

/ (�P ; 3) (�L; 2)

Ek (Nk + �P ; �k + 2) (Nk + �L; �k + 1)

Ek and El (Nk + Nl + �P ; �k + �l + 1) (Nk + Nl + �L; �k + �l)

Ek, El and Em (Nk + Nl +Nm + �P ; �k + �l + �m) /

(3.4.2.2.3) Lemma. Suppose that mult(f) � 3. If there is no excep-

tional surface through Dj , then ��i=Ni � �1.

Proof. The analogous statement for the local topological zeta function is

treated in (2.3.3.3). The proof of the lemma is a trivial adaptation of the

proof there. �

(3.4.2.2.4) Suppose that Dj is contained in at least one exceptional

surface and that the real parts of the candidate poles associated to the

exceptional surfaces that pass through Dj are larger than or equal to �1.

Then the table in (3.4.2.2.2) implies that also ��i=Ni � �1, unless Dj is

a regular point P of the strict transform of f around P through which

only one exceptional surface E0 passes and ��0=N0 = �1. Suppose that

we are in this situation. Let Z0 be a (small enough) neighbourhood of P
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such that, if we restrict the blowing-ups gij to the inverse image of Z0, we

get an embedded resolution h = h1 Æ � � � Æ hs of the pullback of f which is

a composition of blowing-ups hi : Zi ! Zi�1, i 2 f1; : : : ; sg, with centre

D0
i�1 := Di�1 \ Zi�1 and exceptional surface E0

i := Ei \ Zi for which P

is in the image of D0
i�1 under h1 Æ � � � Æ hi�1.

Remark that it can happen that gij is a K-bianalytic map on the inverse

image of Z0. Because we did not specify the indices in (3.4.2.2.1), we were

able to get a nice notation here. From now on, we study the resolution

h : Zs ! Z0 of the pullback of f .

Lemma. (a) If Di = D0
i, then Di is a subset of E0

0 := E0 \ Z0.

(b) Suppose that mult(f) � 3. Then we have �i � Ni + 1 for every

exceptional surface Ei, i 2 f1; : : : ; sg. Moreover, �i = Ni + 1 if and only

if Di�1 is a point and the numerical data of every exceptional surface Ej
di�erent from E0 and through Di�1 satisfy �j = Nj + 1.

(c) If mult(f) � 3 and if the numerical data of Ei satisfy �i = Ni+1,

then ��i=Ni 6= ��j=Nj for every exceptional surface Ej that intersects

Ei at some stage of the resolution process.

Proof. See (2.3.3.5),(2.3.3.6) and (2.3.3.7). �

Proposition. If mult(f) � 3, then Zf (s) has no pole with real part less

than �1.

Proof. The proof is analogous to the one in (2.3.3.8). Now we have to

use the proposition in Section 3.3.2. �

3.5 Consequences for the Mi

Suppose that f is a K-analytic function on Rn de�ned by a power series

over R which is convergent on the whole of Rn. Let l be the smallest

real part of a pole of Zf (s) and let Mi be the number of solutions of

f(x) � 0 mod P i in (R=P i)n.

Proposition. There exists an integer a which is independent of i such

that Mi is an integer multiple of qp(n+l)i�aq for all i 2 Z�0.

Remark. (i) The number p(n+ l)i�aq is the smallest integer larger than

or equal to (n+ l)i� a, which rises (n+ l > 0) linearly as a function of i

with a slope depending on l.
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(ii) The statement is trivial if (n+ l)i�a � 0 because the Mi are integers.

If (n+ l)i� a > 0, which is the case for i large enough, it claims that Mi

is divisible by qp(n+l)i�aq.

Proof. Put t = q�s. It follows from (3.2.2) that we can write

Zf (t) =
A(t)Q

j2T

�
1� q��j tNj� ;

where A(t) is a polynomial with coeÆcients in the set S := fz=qi j z 2
Z; i 2 Z�0g. By using the division algorithm for polynomials we can write

Zf (t) =
B(t)Q

j2K

�
1� q��j tNj� ;

where B(t) is a polynomial with coeÆcients in S and where K := fj 2
T j ��j=Nj � lg.

The Poincar�e series P (t) of f is de�ned by

P (t) =
1X
i=0

Mi
ti

qni
:

and can be obtained from Zf (t) by the relation

P (t) =
1� tZf (t)

1� t :

It easily follows from the de�ning integral of Igusa's p-adic zeta function

that Zf (t = 1) = 1. Consequently, 1 � tZf (t) is divisible by 1 � t and

P (t) can be written as

P (t) =
C(t)Q

j2K

�
1� q��j tNj� ;

where C(t) is a polynomial with coeÆcients in S.

We will say that a formal power series in t has the divisibility property

if the coeÆcient of ti=qni is an integer multiple of qp(n+l)iq for every i.

For j 2 K, the series

1

1� q��j tNj =
1X
i=0

q�i�j tiNj =
1X
i=0

qi(nNj��j)
tiNj

qniNj
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has the divisibility property because nNj � �j is an integer larger than

or equal to Nj(n + l). Let a be an integer such that the polynomial

D(t) := qaC(t) has the divisibility property. Note that C(t) = q�aD(t).

One can easily check that the product of a �nite number of power

series with the divisibility property also has the divisibility property. This

implies that P (t) is a power series with the divisibility property, multiplied

by q�a. Hence Mi is an integer multiple of qp(n+l)iq�a = qp(n+l)i�aq for

all i. �



Chapter 4

Vanishing results with

character

Abstract

In the previous chapter we obtained a vanishing result for

a candidate pole of Igusa's p-adic zeta function associated

to a K-analytic function in three variables and with trivial

character. Here we do the calculations which are needed to

obtain this result if we are dealing with a non-trivial character.

I consider character sums in the �rst section because they

appear in a natural way.

4.1 Character sums

(4.1.1) Let G; : be a �nite group. Let C � ; : be the multiplicative group

of the �eld of complex numbers. A character � of G is a group homomor-

phism � : G ! C � . Note that �(x) is a (jGj)th root of unity for every

x 2 G.

Let R be a discrete valuation ring, abbreviated DVR. Let P be the

maximal ideal of R and suppose that the residue �eld R=P is isomorphic

to Fq . Let � be a �xed uniformizing parameter for R. A character �

of the group R�; : is a group homomorphism � : R� ! C � with �nite

image. The conductor e� = e of � is the smallest u 2 Z>0 such that � is

trivial on 1 + P u.
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Valuation rings of p-adic �elds are the DVRs which are interesting for

our purposes. Other interesting DVRs with �nite residue �eld are the

rings of formal power series Fq [[t]].

For every u 2 Z>0, there is a natural one to one correspondence

between characters � : (R=P u)� ! C � and characters � : R� ! C �

with conductor less than or equal to u.

Let u 2 Z>0 and let L � R be a union of cosets of P u. By abuse

of notation, we will consider L sometimes as a subset of R=P u. We will

write L � R=P u if we want to stress this. If all elements of L � R=P u

are units, we will also write L � (R=P u)�.

The characters of a �nite group G; : (and of R�; :) can be multiplied in

an obvious way. The set of characters becomes a group for this operation.

The identity of this group is the constant map on 1, and this character is

called the trivial character.

We now give a lot of propositions on character sums which will be

used in Section 4.2. In [IR, Chapter 8], character sums of F�p are treated.

We will use similar techniques in our proofs.

(4.1.2) Proposition. Let � be a non-trivial character of a �nite group

G. Then
P

x2G �(x) = 0.

Proof. Fix a 2 G such that �(a) 6= 1. Then

�(a)
X
x2G

�(x) =
X
x2G

�(ax) =
X
x2G

�(x):

The last equality is a consequence of the fact that ax runs over all element

of G if x does. Our statement follows because �(a) 6= 1. �

The previous proposition is well known. Now comes the serious work.

(4.1.3) Proposition. Let R be a DVR and let � be a non-trivial char-

acter of R� with conductor e. Then

X
x2(R=P e)�

�(x) = 0;

X
f(x1;x2)jx1;x2;x1+x22(R=P e)�g

�(x1 + x2) = 0:
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Proof. (1) This is Proposition 4.1.2 for G = (R=P e)�.

(2) Every element of (R=P e)� can be written as x1+x2, with x1; x2 2
(R=P e)�, in exactly (q � 2)qe�1 ways. Consequently,X
f(x1;x2)jx1;x2;x1+x22(R=P e)�g

�(x1 + x2) = (q � 2)qe�1
X

t2(R=P e)�

�(t)

= 0: �

(4.1.4) Proposition. Let R be a DVR and let � be a non-trivial char-

acter of R� with conductor e � 2. Let a 2 R�, let i 2 f1; : : : ; e� 1g and
let j � i. Then

X
x2a+P i�(R=P e)�

�(x) = 0;

X
x21+P i�(R=P e)�

�(�ja+ x) = 0;

X
x2(R=P e)�

�(�ja+ x) = 0:

Proof. (1) Because

a+ P i ! 1 + P i : x 7! a�1x

is a bijection, we obtainX
x2a+P i�(R=P e)�

�(x) =
X

x2a+P i�(R=P e)�

�(a)�(a�1x)

= �(a)
X

t21+P i�(R=P e)�

�(t)

= 0:

The last equality follows from Proposition 4.1.2 because 1 + P i is a sub-

group of (R=P e)� on which � is non-trivial.

(2) Because

1 + P i ! 1 + P i : x 7! �ja+ x
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is a bijection, we obtainX
x21+P i�(R=P e)�

�(�ja+ x) =
X

t21+P i�(R=P e)�

�(t)

= 0:

(3) The proof of the last equality is analogous to (2). �

(4.1.5) Proposition. Let R be a DVR and let � be a non-trivial char-

acter of R� with conductor e. Let a 2 R� and let i 2 f1; : : : ; e � 1g.
Then X

x2(R=P e)�

�(x)��1(x+ �ia) =

�
0 if i 2 f1; : : : ; e� 2g
�qe�1 if i = e� 1

;

X
x2(R=P e)�n(�a+P )

�(x)��1(x+ a) =

�
0 if e > 1

�1 if e = 1
;

X
x2(R=P e)�

�(x)��1(�ix+ a) = 0:

Proof. (1) In this proof all calculations in R are modulo P e. Because

�(x)��1(x + �ia) = �(x=(x + �ia)), we study the values x=(x + �ia)

if x runs over (R=P e)�. We have that x=(x + �ia) = t if and only if

x(1� t) = �iat, and such a t is of the form t = 1 + �ib for some b 2 R�.

Moreover the x 2 (R=P e)� which satisfy this equation for such a �xed

t are exactly the elements which are equal to �ab�1t modulo P e�i. We

thus have qi values of x 2 (R=P e)� for such a �xed t. ConsequentlyX
x2(R=P e)�

�(x)��1(x+ �ia) =
X

x2(R=P e)�

�

�
x

x+ �ia

�
= qi

X
t21+(P inP i+1)�(R=P e)�

�(t)

= qi

0@ X
t21+P i

�(t)�
X

t21+P i+1

�(t)

1A
=

�
0 if i 2 f1; : : : ; e� 2g
�qe�1 if i = e� 1

:

The last equality follows from Proposition 4.1.2 because 1 + P i and 1 +

P i+1 are subgroups of (R=P e)�.
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(2) One veri�es easily that the map

(R=P e)� n (�a+ P )! (R=P e)� n (1 + P ) : x 7! x

x+ a

is a bijection. ConsequentlyX
x2(R=P e)�n(�a+P )

�(x)��1(x + a) =
X

x2(R=P e)�n(�a+P )

�

�
x

x+ a

�
=

X
t2(R=P e)�n(1+P )

�(t)

=

�
0 if e > 1

�1 if e = 1
:

(3) One veri�es easily that the map

(R=P e)� ! (R=P e)� : x 7! x

�ix+ a

is a bijection. ConsequentlyX
x2(R=P e)�

�(x)��1(�ix+ a) =
X

x2(R=P e)�

�

�
x

�ix+ a

�
=

X
t2(R=P e)�

�(t)

= 0: �

From now on, e is always the maximum of the conductors of the

characters which are involved.

(4.1.6) Proposition. Let R be a DVR and let �;  ; � be non-trivial

characters of R� such that � 6= ��1 and  6= ��1. Let a 2 R� and let

i 2 Z�0. ThenX
x2(R=P e)�

 (x)�(x + �ia) = 0 if e� � e � + i� 1;

X
x2(R=P e)�

�(x)�(�ix+ a) = 0 if e� � e� + i� 1:
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Proof. (1) Let v 2 1 + P e ��1 such that ( �)(v) 6= 1. ThenX
x2(R=P e)�

 (x)�(x + �ia) =
X

x2(R=P e)�

 (vx)�(vx + �ia)

=
X

x2(R=P e)�

 (vx)�(vx + �iva)

= ( �)(v)
X

x2(R=P e)�

 (x)�(x + �ia):

Because ( �)(v) 6= 1, we get our statement. In the �rst equality, we used

a translation in the group (R=P e)�. For the second equality, we used

that e� � e � + i� 1 and that v 2 1 + P e ��1.

(2) Let v 2 1 + P e��1 such that �(v) 6= 0. ThenX
x2(R=P e)�

�(x)�(�ix+ a) =
X

x2(R=P e)�

�(vx)�(�ivx+ a)

=
X

x2(R=P e)�

�(vx)�(�ix+ a)

= �(v)
X

x2(R=P e)�

�(x)�(�ix+ a):

Because �(v) 6= 1, we get our statement. In the �rst equality, we used a

translation in the group (R=P e)�. For the second equality, we used that

e� � e� + i� 1 and that v 2 1 + P e��1. �

(4.1.7) Proposition. Let R be a DVR and let �;  ; � be non-trivial

characters of R� such that � � = 1. Note that the largest two values of

e�; e ; e� are equal. Let a; x1; x2 2 R� and let i 2 Z�0. Then

X
x22(R=P e)�

�(x1) (x2)�(ax2 + �ix1) =
X

x2(R=P e)�

�(x)�(a+ �ix)

=
X

x12(R=P e)�

�(x1) (x2)�(ax2 + �ix1);

and this is equal to 0 if e� � e� + i� 1.
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Proof. Fix v 2 (R=P e)�. ThenX
x22(R=P e)�

�(x1) (x2)�(ax2 + �ix1)

= (� �)(v)
X

x22(R=P e)�

�(x1) (x2)�(ax2 + �ix1)

=
X

x22(R=P e)�

�(vx1) (vx2)�(avx2 + �ivx1)

=
X

x22(R=P e)�

�(vx1) (x2)�(ax2 + �ivx1):

Because vx1 takes all values of (R=P e)� if v runs over (R=P e)�, we obtain

that X
x22(R=P e)�

�(x1) (x2)�(ax2 + �ix1)

is independent of x1 2 (R=P e)�. In the �rst equality, we put x1 = 1:X
x22(R=P e)�

�(x1) (x2)�(ax2 + �ix1) =
X

x22(R=P e)�

 (x2)�(ax2 + �i)

=
X

x2(R=P e)�

 (x�1)�(ax�1 + �i)

=
X

x2(R=P e)�

( �)�1(x)�(a + �ix)

=
X

x2(R=P e)�

�(x)�(a + �ix):

This is the �rst equality we had to prove. Analogously as before, we

obtain that X
x12(R=P e)�

�(x1) (x2)�(ax2 + �ix1)

is independent of x2. If we put x2 = 1, we obtain the second equality.

We can use either of the equalities of (4.1.6) to prove that it is equal to

0 under the condition e� � e� + i� 1. �

(4.1.8) Proposition. Let R be a DVR and let �;  ; � be non-trivial

characters of R� such that � � = 1. Then

1

qe

X
x1;x2;x1+x22(R=P e)�

�(x1) (x2)�(x1 + x2) =
q � 1

q

X
x2(R=P e)�n(�1+P )

 (x)�(1 + x):
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Proof. The map f(x1; x2) j x1; x2 2 (R=P e)� and x2 =2 �1 + Pg !
f(x1; x2) j x1; x2; x1+x2 2 (R=P e)�g : (x1; x2) 7! (x1; x1x2) is a bijection.

ThereforeX
x1;x2;x1+x22(R=P e)�

�(x1) (x2)�(x1 + x2)

=
X

x1;x22(R=P e)�;x2 =2�1+P

�(x1) (x1x2)�(x1 + x1x2)

=
X

x1;x22(R=P e)�;x2 =2�1+P

 (x2)�(1 + x2)

= (q � 1)qe�1
X

x2(R=P e)�n(�1+P )

 (x)�(1 + x): �

(4.1.9) Proposition. Let R be a DVR and let �; � be non-trivial char-

acters of R� such that �� 6= 1. Let a 2 R�. Let i 2 Z�0. ThenX
x1;x22(R=P e)�

�(x1)�(ax1 + �ix2) = 0;

X
x1;x22(R=P e)�

�(x1)�(ax2 + �ix1) = 0;

X
x1;x2;x1+x22(R=P e)�

�(x1)�(x2) = 0:

Proof. Let v 2 (R=P e)� such that (��)(v) 6= 0. The map (x1; x2) 7!
(vx1; vx2) is a bijection of f(x1; x2) j x1; x2 2 (R=P e)�g and also of

f(x1; x2) j x1; x2; x1 + x2 2 (R=P e)�g. ThereforeX
x1;x22(R=P e)�

�(x1)�(ax1 + �ix2) =
X

x1;x22(R=P e)�

�(vx1)�(avx1 + �ivx2)

= (��)(v)
X

x1 ;x22(R=P e)�

�(x1)�(ax1 + �ix2);

X
x1;x22(R=P e)�

�(x1)�(ax2 + �ix1) =
X

x1;x22(R=P e)�

�(vx1)�(avx2 + �ivx1)

= (��)(v)
X

x1;x22(R=P e)�

�(x1)�(ax2 + �ix1)
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and X
x1;x2;x1+x22(R=P e)�

�(x1)�(x2) =
X

x1;x2;x1+x22(R=P e)�

�(vx1)�(vx2)

= (��)(v)
X

x1 ;x2;x1+x22(R=P e)�

�(x1)�(x2):

Because (��)(v) 6= 1, we obtain our statements. �

(4.1.10) Proposition. Let R be a DVR and let �; ; � be non-trivial

characters of R� such that � � 6= 1. Let a 2 R�. Let i 2 Z�0. ThenX
x1;x22(R=P e)�

�(x1) (x2)�(ax2 + �ix1) = 0;

X
x1;x2;x1+x22(R=P e)�

�(x1) (x2)�(x1 + x2) = 0:

Proof. We obtain these equalities analogously as in (4.1.9). Now we have

to take v 2 (R=P e)� such that (� �)(v) 6= 1. �

4.2 The vanishing result

Let K be a p-adic �eld, i.e., an extension of Qp of �nite degree. Let R be

the valuation ring of K, P the maximal ideal of R, � a �xed uniformizing

parameter for R and q the cardinality of the residue �eld R=P . For z 2 K,

let ord z 2 Z[f+1g denote the valuation of z, jzj = q�ord z the absolute

value of z and ac z = z��ord z the angular component of z.

Let X be an open and compact subset of K3. Let f be a K-analytic

function on X. Let g : Y = Yt ! X = Y0 be an embedded resolution of

f which is a composition g1 Æ � � � Æ gt of blowing-ups gi : Yi ! Yi�1 with

centre a K-analytic closed submanifold which has only normal crossings

with the union of the exceptional surfaces in Yi�1 and with exceptional

surface Ei. Let � be a character of R�.

Proposition. Let r 2 f1; : : : ; tg and let P 2 Yr�1 be the centre of

the blowing-up gr. Suppose that the expected order of a candidate pole

s0 associated to Er is one. Suppose that there exists a chart (V; y =

(y1; y2; y3)) centred at P on which f Æ g1 Æ � � � Æ gr�1 is given by a power
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series with lowest degree part of the form eyk1y
l
2y
m
3 (y1+y2)

n, with e 2 K�

and k; l;m; n 2 Z�0. Then the contribution of Er to the residue b�1 of

Zf;�(s) at s0 is zero.

Proof. Put A = P�P , B = P�R and C = R�R. We obtain analogously

as in Section 3.3.2 that we have to prove that

(�)

Z
A

�
k(ac z1)�l(ac z2)�

n(ac z1+z2)jz1j
�1�1jz2j

�2�1jz1+z2j
�4�1jdz1 ^ dz2j

+

Z
B

�
k(ac z1)�m(ac z3)�n(ac z1+1)jz1j

�1�1jz3j
�3�1jz1+1j�4�1jdz1 ^ dz3j

+

Z
C

�
l(ac z2)�m(ac z3)�

n(ac 1+z2)jz2j
�2�1jz3j

�3�1j1+z2j
�4�1jdz2 ^ dz3j

is equal to zero. The de�nition of the �'s and the relation between them

are in (3.2.8). Note that we have omitted the brackets in for example

ac(z1 + z2). To simplify our notation, we have also put s = s0 in the in-

tegrand. This is not exact because the integrals do not have to converge.

We actually have to calculate these integrals for complex numbers s sat-

isfying Re(s) > 0, and we have to evaluate the meromorphic continuation

in s = s0. This can be done in mind while reading the calculations. The

expression above is equal to

Z
A

�
k(ac z1)�

l(ac z2)�n(ac z1+z2)jz1j
�1�1jz2j

�2�1jz1+z2j
�4�1jdz1 ^ dz2j

+

Z
P

�
k(ac z1)�n(ac z1+1)jz1j

�1�1jz1+1j�4�1jdz1j

Z
R

�
m(ac z3)jz3j

�3�1jdz3j

+

Z
R

�
l(ac z2)�

n(ac 1+z2)jz2j
�2�1j1+z2j

�4�1jdz2j

Z
R

�
m(ac z3)jz3j

�3�1jdz3j:

Note that

H :=

Z
R

�
m(ac z3)jz3j

�3�1 jdz3j =

(
q�1
q

1

1�q��3
if �m = 1

0 if �m 6= 1:

To calculate the �rst term in (�), we partition A into

A1 = f(z1; z2) 2 P � P j ord z1 > ord z2g =
G

i2Z>0

f(z1; z2) j ord z1 > ord z2 = ig

A2 = f(z1; z2) 2 P � P j ord z1 < ord z2g =
G

i2Z>0

f(z1; z2) j i = ord z1 < ord z2g

A3 = f(z1; z2) 2 P � P j ord z1 = ord z2g =
G

i2Z>0

f(z1; z2) j ord z1 = ord z2 = ig
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To calculate the third term in (�), we partition C into C1 = (R n (P [
�1 + P ))�R, C2 = P �R and C3 = (�1 + P )�R.

We have that Nr is a multiple of the order of � because s0 is a candi-

date pole of Zf;�(s) associated to Er. On the other hand, Relation 1 in

(3.2.8) says that Nr = k+ l+m+n. Consequently, 1 = �Nr = �k+l+m+n.

Let e be the maximum of the conductors of �k, �l, �m and �n.

Case 1. �
k
= �

l
= �

m
= �

n
= 1

The calculations for this case are already done in Section 3.3.2.

Case 2. �
k
= �

m
= 1 and �

l
; �

n 6= 1

Note that �l = ��n and that e = e�l = e�n .

The contribution of A1 to the �rst term in (�) is equal to

1X
i=1

Z
P i+1

 Z
P inP i+1

�
l(ac z2)�

n(ac z1+z2)jz1j
�1�1jz2j

�2�1jz1+z2j
�4�1jdz2j

!
jdz1j

=

1X
i=1

q
�i(�2+�4�2)

Z
P i+1

jz1j
�1�1

 Z
P inP i+1

�
l(ac z2)�

n(ac z1+z2)jdz2j

!
jdz1j

= �
q � 1

q2
q
�(e�1)�1 1

q�1+�2+�4�1 � 1
+

�
q � 1

q

�2
q�e�1

(1 � q��1)(q�1+�2+�4�1 � 1)
:

For the last equality, note that by Proposition 4.1.5

Z
P inP i+1

�
l(ac z2)�n(ac z1+z2)jdz2j =

1

qi+e

X
z22(R=Pe)�

�
l(z2)�

n(�ord z1�iac(z1) + z2)

=

8<
:

0 if ord z1 � i 2 f1; : : : ; e� 2g

�q�i�1 if ord z1 � i = e� 1

(q � 1)q�i�1 if ord z1 � i � e:

The contribution of A2 to the �rst term in (�) is equal to

1X
i=1

Z
P i+1

 Z
P inP i+1

�
l(ac z2)�n(ac z1+z2)jz1j

�1�1jz2j
�2�1jz1+z2j

�4�1jdz1j

!
jdz2j

=

1X
i=1

q
�i(�1+�4�2)

Z
P i+1

�
l(ac z2)jz2j

�2�1

 Z
P inP i+1

�
n(ac z1+z2)jdz1j

!
jdz2j

= 0:
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For the last equality, note that by Proposition 4.1.4

Z
P inP i+1

�
n(ac z1+z2)jdz1j =

1

qi+e

X
z12(R=Pe)�

�
n(z1 + �

ord z2�iac z2)

= 0:

The contribution of A3 to the �rst term in (�) is equal to

1X
i=1

Z
P inP i+1

 Z
P inP i+1

�
l(ac z2)�

n(ac z1+z2)jz1j
�1�1jz2j

�2�1jz1+z2j
�4�1jdz1j

!
jdz2j

=

1X
i=1

q
�i(�1+�2�2)

Z
P inP i+1

�
�
l(ac z2)

Z
�z2+P i+1

�
n(ac z1+z2)jz1+z2j

�4�1jdz1j

+�l(ac z2)

Z
(P inP i+1)n(�z2+P i+1)

�
n(ac z1+z2)jz1+z2j

�4�1jdz1j

!
jdz2j

=
1X
i=1

q�i(�1+�2�2)
Z
P inP i+1

�
�l(ac z2)

Z
P i+1

�n(ac z)jzj�4�1jdzj

+�l(ac z2)q�i(�4�1)
Z
(P inP i+1)n(z2+P i+1)

�
n(ac z)jdzj

!
jdz2j

=

1X
i=1

q
�i(�1+�2+�4�3)

Z
P inP i+1

 
�
�l(ac z2)

qi+e

X
z2ac z2+P

�
n(z)

!
jdz2j

=

(
0 if e > 1

� q�1
q2

1

q�1+�2+�4�1�1
if e = 1:

For the third equality, note thatZ
P i+1

�
n(ac z)jzj�4�1jdzj = 0

and that for z2 2 P i n P i+1

Z
(P inP i+1)n(z2+P i+1)

�
n(ac z)jdzj

=

Z
(P inP i+1)

�
n(ac z)jdzj �

Z
z2+P i+1

�
n(ac z)jdzj

=
1

qi+e

X
z2(R=Pe)�

�
n(z)�

1

qi+e

X
z2ac z2+P�(R=Pe)�

�
n(z)

= �
1

qi+e

X
z2ac z2+P�(R=Pe)�

�
n(z):
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The second term of (�) is equal to

Z
P

�
n(ac z1+1)jz1j

�1�1jdz1j

Z
R

jz3j
�3�1jdz3j

=

 
e�1X
i=1

q
�i(�1�1)

Z
P inP i+1

�
n(ac z1+1)jdz1j +

Z
Pe

jz1j
�1�1jdz1j

!Z
R

jz3j
�3�1jdz3j

= �
q � 1

q2
q
�(e�1)�1 1

1 � q��3
+

�
q � 1

q

�2
q�e�1

(1 � q��1)(1 � q��3 )
:

For the last equality, note that by Proposition 4.1.4

Z
P inP i+1

�
n(ac z1+1)jdz1j =

Z
P i

�
n(ac z1+1)jdz1j �

Z
P i+1

�
n(ac z1+1)jdz1j

=
1

qe

X
z21+P i�(R=Pe)�

�
n(z) �

1

qe

X
z21+P i+1�(R=Pe)�

�
n(z)

=

�
0 if i 2 f1; : : : ; e� 2g

� 1
qe

if i = e� 1:

Using Proposition 4.1.5 we obtain that the contribution of C1 to the third

term in (�) is equal to

Z
Rn(P[�1+P )

�l(ac z2)�
n(ac 1+z2)jdz2j

Z
R

jz3j
�3�1jdz3j

=

0
@ 1

qe

X
z22(R=Pe)�n(�1+P )

�
l(z2)�n(1+z2)

1
A q � 1

q

1

1 � q��3

=

(
0 if e > 1

� q�1
q2

1

1�q��3
if e = 1:

Using Proposition 4.1.5 we obtain that the contribution of C2 to the third

term in (�) is equal to H multiplied by

Z
P

�
l(ac z2)�

n(ac 1+z2)jz2j
�2�1jdz2j

=

e�1X
i=1

q
�i(�2�1)

Z
P inP i+1

�
l(ac z2)�n(ac 1+z2)jdz2j +

Z
Pe

�
l(ac z2)jz2j

�2�1jdz2j

=
e�1X
i=1

q�i(�2�1)

qi+e

X
z2(R=Pe)�

�
l(z)�n(1 + �

i
z)

= 0:
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Using Proposition 4.1.5 we obtain that the contribution of C3 to the third

term in (�) is equal to H multiplied by

Z
�1+P

�
l(ac z2)�

n(ac 1+z2)j1+z2j
�4�1jdz2j

=

Z
P

�
l(ac �1+z2)�n(ac z2)jz2j

�4�1jdz2j

=

e�1X
i=1

q
�i(�4�1)

Z
P inP i+1

�
l(ac �1+z2)�n(ac z2)jdz2j

+�l(�1)

Z
Pe

�n(ac z2)jz2j
�4�1jdz2j

=
e�1X
i=1

q�i(�4�1)

qi+e

X
z2(R=Pe)�

�
l(�1 + �

i
z)�n(z)

= 0:

The contribution of A1 cancels with the one of B. The contribution of

A3 cancels with the one of C1. Consequently, the contribution of Er to

b�1 is equal to zero in this case.

Case 3. �
k
= �

l
= 1 and �

m
; �

n 6= 1

Using Proposition 4.1.4 we obtain that the contribution of A1 to the �rst

term in (�) is equal to

1X
i=1

Z
P i+1

 Z
P inP i+1

�
n(ac z1+z2)jz1j

�1�1jz2j
�2�1jz1+z2j

�4�1jdz2j

!
jdz1j

=
1X
i=1

q
�i(�2+�4�2)

Z
P i+1

jz1j
�1�1

 Z
P inP i+1

�
n(ac z1+z2)jdz2j

!
jdz1j

=

1X
i=1

q
�i(�2+�4�2)

Z
P i+1

jz1j
�1�1

0
@ 1

qi+e

X
z22(R=Pe)�

�
n(�ord z1�iac(z1) + z2)

1
A jdz1j

= 0:

Analogously, we obtain that the contribution of A2 to the �rst term in

(�) is equal to 0.
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Using Proposition 4.1.3 we obtain that the contribution of A3 to the �rst

term in (�) is equal to

1X
i=1

Z
P inP i+1

 Z
P inP i+1

�
n(ac z1+z2)jz1j

�1�1jz2j
�2�1jz1+z2j

�4�1jdz1j

!
jdz2j

=
1X
i=1

q
�i(�1+�2�2)

Z
P inP i+1

�Z
�z2+P i+1

�
n(ac z1+z2)jz1+z2j

�4�1jdz1j

+

Z
(P inP i+1)n(�z2+P i+1)

�
n(ac z1+z2)jz1+z2j

�4�1jdz1j

!
jdz2j

=

1X
i=1

q
�i(�1+�2+�4�3)

Z
P inP i+1

Z
(P inP i+1)n(�z2+P i+1)

�
n(ac z1+z2)jdz1jjdz2j

=
1X
i=1

q�i(�1+�2+�4�3)

q2(i+e)

X
z1;z2;z1+z22(R=Pe)�

�
n(z1 + z2)

= 0:

The second and the third term in (�) are both equal to zero. Indeed, we

have that H = 0 since �m 6= 1.

Case 4. �
m
= 1 and �

k
; �

l
; �

n 6= 1

We may suppose that e�n � e�k and that e�n � e�l . Note that e�k = e�l ,

and e is by de�nition this value.

The contribution of A1 to the �rst term in (�) is equal to

1X
i=1

Z
P i+1

 Z
P inP i+1

�
k(ac z1)�

l(ac z2)�n(ac z1+z2)jz1j
�1�1jz2j

�2�1jz1+z2j
�4�1jdz2j

!
jdz1j

=

1X
i=1

q
�i(�2+�4�2)

Z
P i+1

�
k(acz1)jz1j

�1�1

 Z
P inP i+1

�
l(ac z2)�n(ac z1+z2)jdz2j

!
jdz1j

= 0:

For the last equality, note that by Proposition 4.1.6

Z
P inP i+1

�
l(ac z2)�

n(ac z1+z2)jdz2j =
1

qi+e

X
z22(R=Pe)�

�
l(z2)�n(�ord z1�iac(z1) + z2)

= 0:

Analogously, we obtain that the contribution of A2 to the �rst term in

(�) is equal to 0.
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The contribution
1X
i=1

Z
P inP i+1

 Z
P inP i+1
�k(ac z1)�

l(ac z2)�
n(ac z1+z2)jz1j

�1�1jz2j
�2�1jz1+z2j

�4�1jdz2j

!
jdz1j

of A3 to the �rst term in (�) is the sum of two parts.

Part 1. Using Proposition 4.1.7 we obtain that

1X
i=1

q
�i(�1+�2�2)

Z
P inP i+1

�Z
�z1+P i+1

�
k(ac z1)�l(ac z2)�

n(ac z1+z2)jz1+z2j
�4�1jdz2j

�
jdz1j

=

1X
i=1

q
�i(�1+�2�2)

Z
P inP i+1

�
�
k(ac z1)�

l(ac �z1)

Z
P i+e

�
n(ac z2)jz2j

�4�1jdz2j

+

e�1X
j=1

Z
P i+jnP i+j+1

�
k(ac z1)�l(ac �z1+z2)�n(ac z2)jz2j

�4�1jdz2j

!
jdz1j

=

1X
i=1

q
�i(�1+�2�2)

Z
P inP i+1

e�1X
j=1

q�(i+j)(�4�1)

qi+j+e

X
z22(R=Pe)�

�
k(ac z1)�

l(ac(�z1) + �
j
z2)�

n(z2)jdz1j

=

1X
i=1

q
�i(�1+�2+�4�2)

Z
P inP i+1

e�1X
j=1

q�j�4

qe

X
z22(R=Pe)�

�
l(�1 + �

j
z2)�n(z2)jdz1j

=
q � 1

q

1

q�1+�2+�4�1 � 1

e�1X
j=1

q�j�4

qe

X
z22(R=Pe)�

�
l(�1 + �

j
z2)�

n(z2):

Part 2.

1X
i=1

q
�i(�1+�2+�4�3)

Z
P inP i+1

 Z
(P inP i+1)n(�z1+P i+1)

�
k(ac z1)�

l(ac z2)�
n(ac z1+z2)jdz2j

!
jdz1j

=
1

q2e
1

q�1+�2+�4�1 � 1

X
z1;z2;z1+z22(R=Pe)�

�
k(z1)�l(z2)�n(z1 + z2):

Using Proposition 4.1.6 we obtain that the second term in (�) is equal to

H multiplied by

Z
P

�
k(ac z1)�

n(ac z1+1)jz1j
�1�1jdz1j

=

e�1X
i=1

q
�i(�1�1)

Z
P inP i+1

�
k(ac z1)�n(ac z1+1)jdz1j +

Z
Pe

�
k(ac z1)jz1j

�1�1jdz1j

=
e�1X
i=1

q�i(�1�1)

qi+e

X
z2(R=Pe)�

�
k(z)�n(�iz + 1)

= 0:
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The contribution of C1 to the third term in (�) is equal to

Z
Rn(P[�1+P )

�
l(ac z2)�

n(ac 1+z2)jdz2j

Z
R

jz3j
�3�1jdz3j

=

0
@ 1

qe

X
z22(R=Pe)�n(�1+P )

�
l(z2)�

n(1 + z2)

1
A q � 1

q

1

1 � q��3
:

The contribution of C2 to the third term in (�) is 0. The calculation is

the same as the calculation of the second term.

The contribution of C3 to the third term in (�) is equal to H multiplied

by

Z
�1+P

�
l(ac z2)�n(ac 1+z2)j1+z2j

�4�1jdz1j

=

Z
P

�l(ac �1+z)�n(ac z)jzj�4�1jdzj

=
e�1X
j=1

q
�j(�4�1)

Z
P jnP j+1

�
l(ac �1+z)�n(ac z)jdzj + �

l(�1)

Z
Pe
�
n(ac z)jzj�4�1jdzj

=

e�1X
j=1

q�j�4

qe

X
z2(R=Pe)�

�
l(�1 + �

j
z)�n(z)

The contribution of C3 cancels with the one of the �rst part of A3. Using

Proposition 4.1.8 we obtain that the contribution of C1 cancels with the

one of the second part of A3.

Case 5. �
n
= 1 and �

k
; �

l
; �

m 6= 1

The contribution of A1 to the �rst term in (�) is equal to

1X
i=1

Z
P i+1

 Z
P inP i+1

�
k(ac z1)�

l(ac z2)jz1j
�1�1jz2j

�2�1jz1+z2j
�4�1jdz2j

!
jdz1j

=

1X
i=1

q
�i(�2+�4�2)

Z
P i+1

�
k(ac z1)jz1j

�1�1

 Z
P inP i+1

�
l(ac z2)jdz2j

!
jdz1j

= 0:

Analogously, we obtain that the contribution of A2 to the �rst term in

(�) is equal to 0.

The contribution
1X
i=1

Z
P inP i+1

 Z
P inP i+1

�
k(ac z1)�l(ac z2)jz1j

�1�1jz2j
�2�1jz1+z2j

�4�1jdz2j

!
jdz1j
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of A3 to the �rst term in (�) is the sum of two parts.

Part 1. Using Proposition 4.1.9 we obtain that

1X
i=1

q
�i(�1+�2�2)

Z
P inP i+1

�Z
�z1+P i+1

�
k(ac z1)�

l(ac z2)jz1+z2j
�4�1jdz2j

�
jdz1j

=
1X
i=1

q
�i(�1+�2�2)

Z
P inP i+1

�Z
P i+1

�
k(ac z1)�

l(ac �z1+z2)jz2j
�4�1jdz2j

�
jdz1j

=
1X
i=1

q
�i(�1+�2�2)

1X
j=1

q
�(i+j)(�4�1)

Z
P inP i+1

Z
P i+jnP i+j+1

�
k(ac z1)�l(ac �z1+z2)jdz2jjdz1j

=
1X
i=1

q
�i(�1+�2+�4�3)

1X
j=1

q�j(�4�1)

q2i+j+2e

X
z1;z22(R=Pe)�

�
k(z1)�

l(�z1 + �
j
z2)

= 0:

Part 2. Using Proposition 4.1.9 we obtain that

1X
i=1

q
�i(�1+�2+�4�3)

Z
P inP i+1

 Z
(P inP i+1)n(�z1+P i+1)

�
k(ac z1)�

l(ac z2)jdz2j

!
jdz1j

=
1

q2e
1

q�1+�2+�4�1 � 1

X
z1;z2;z1+z22(R=Pe)�

�
k(z1)�

l(z2)

= 0:

The second and the third term in (�) are both equal to zero. Indeed, we

have that H = 0 since �m 6= 1.

Case 6. �
k
; �

l
; �

m
; �

n 6= 1

Using Proposition 4.1.10 we obtain that the contribution of A1 to the

�rst term in (�) is equal to

1X
i=1

Z
P i+1

 Z
P inP i+1

�
k(ac z1)�

l(ac z2)�n(ac z1+z2)jz1j
�1�1jz2j

�2�1jz1+z2j
�4�1jdz2j

!
jdz1j

=
1X
i=1

1X
j=1

q�i(�2+�4�2)�(i+j)(�1�1)

Z
P i+jnP i+j+1

Z
P inP i+1

�
k(ac z1)�

l(ac z2)�
n(ac z1+z2)jdz2jjdz1j

=
1X
i=1

1X
j=1

q�i(�2+�4�2)�(i+j)(�1�1)

q2i+j+2e

X
z1;z22(R=Pe)�

�
k(z1)�

l(z2)�
n(�jz1+z2)

= 0:
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Analogously, we obtain that the contribution of A2 to the �rst term in

(�) is equal to 0.

The contribution
1X
i=1

Z
P inP i+1

 Z
P inP i+1
�
k(ac z1)�

l(ac z2)�
n(ac z1+z2)jz1j

�1�1jz2j
�2�1jz1+z2j

�4�1jdz2j

!
jdz1j

of A3 to the �rst term in (�) is the sum of two parts.

Part 1. Using Proposition 4.1.10 we obtain that

1X
i=1

q
�i(�1+�2�2)

Z
P inP i+1

�Z
�z1+P i+1

�
k(ac z1)�

l(ac z2)�
n(ac z1+z2)jz1+z2j

�4�1jdz2j

�
jdz1j

=

1X
i=1

q
�i(�1+�2�2)

Z
P inP i+1

�Z
P i+1
�
k(ac z1)�l(ac �z1+z2)�n(ac z2)jz2j

�4�1jdz2j

�
jdz1j

=

1X
i=1

q
�i(�1+�2�2)

1X
j=1

q
�(i+j)(�4�1)

Z
P inP i+1

Z
P i+jnP i+j+1

�
k(ac z1)�

l(ac �z1+z2)�
n(ac z2)jdz2jjdz1j

=

1X
i=1

q
�i(�1+�2+�4�3)

1X
j=1

q�j(�4�1)

q2i+j+2e

X
z1;z22(R=Pe)�

�
k(z1)�

l(�z1+�
j
z2)�

n(z2)

= 0:

Part 2. Using Proposition 4.1.10 we obtain that

1X
i=1

q�i(�1+�2+�4�3)
Z
P inP i+1

 Z
(P inP i+1)n(�z1+P i+1)

�k(ac z1)�
l(ac z2)�

n(ac z1+z2)jdz2j

!
jdz1j

=
1

q2e
1

q�1+�2+�4�1 � 1

X
z1;z2;z1+z22(R=Pe)�

�
k(z1)�

l(z2)�
n(z1+z2)

= 0:

The second and the third term in (�) are again both equal to zero.

We have treated all the cases by using the geometric symmetry of the

problem, so our proof is �nished. �





Chapter 5

Congruences and lower

bound in arbitrary

dimension

Abstract

Let K be a p-adic �eld, R the valuation ring of K, P the

maximal ideal of R and q the cardinality of the residue �eld

R=P . Let f be a polynomial over R in n variables and let �

be a character of R�. Let Mi(u) be the number of solutions of

f = u in (R=P i)n for i 2 Z�0 and u 2 R=P i. These numbers

are related with Igusa's p-adic zeta function Zf;�(s) of f . We

explain the connection between the Mi(u) and the smallest

real part of a pole of Zf;�(s). We also prove that Mi(u) is

divisible by qp(n=2)(i�1)q, where the corners indicate that we

have to round up. This will imply our main result: Zf;�(s) has

no poles with real part less than �n=2. We will also consider

arbitrary K-analytic functions f .

5.1 Introduction

(5.1.1) Let K be a p-adic �eld, i.e., an extension of Qp of �nite degree.

Let R be the valuation ring of K, P the maximal ideal of R, � a �xed

This chapter corresponds to [Se2].
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uniformizing parameter for R and q the cardinality of the residue �eld

R=P . For z 2 K, let ord z 2 Z [ f+1g denote the valuation of z,

jzj = q�ord z the absolute value of z and ac z = z��ord z the angular

component of z.

Let � be a character of R�, i.e., a homomorphism � : R� ! C � with

�nite image. We formally put �(0) = 0. Let e be the conductor of �, i.e.,

the smallest a 2 Z>0 such that � is trivial on 1 + P a.

(5.1.2) Let f be a K-analytic function on an open and compact subset

X of Kn and put x = (x1; : : : ; xn). Igusa's p-adic zeta function of f and

� is de�ned by

Zf;�(s) =

Z
X
�(ac f(x))jf(x)js jdxj

for s 2 C , Re(s) � 0, where jdxj denotes the Haar measure on Kn, so

normalized that Rn has measure 1. Igusa proved that it is a rational

function of q�s, so that it extends to a meromorphic function Zf;�(s) on

C which is also called Igusa's p-adic zeta function of f . We will write

Zf;�(t) if we consider Zf;�(s) as a function in the variable t = q�s. If �

is the trivial character, we will also write Zf (s) and Zf (t).

(5.1.3) A power series f =
P

(i1;:::;in)2Zn�0
ci1;:::;inx

i1
1 : : : x

in
n over K is

convergent in (a1; : : : ; an) 2 Kn if and only if jci1;:::;inai11 : : : ainn j ! 0

if i1 + � � � + in !1. If f is convergent at every (a1; : : : ; an) 2 (P k)n for

some k 2 Z, then f is called a convergent power series.

Since a K-analytic function is locally described by convergent power

series, we only have to consider this type of functions in the study of

Igusa's p-adic zeta function. By performing a dilatation of the form

(x1; : : : ; xn) 7! (�kx1; : : : ; �
kxn), we may moreover suppose that f is

rigid, i.e., convergent on Rn. The coeÆcients of a rigid K-analytic func-

tion f on Rn have the property that jci1 ;:::;in j ! 0 if i1 + � � � + in ! 1.

Consequently, jci1;:::;in j is bounded and we can multiply f by an element

of K to obtain a series over R. So we only have to study Zf (s) for rigid

K-analytic functions f on Rn de�ned over R. See also [Ig7, Chapter 2].

(5.1.4) Let f be a rigidK-analytic function on Rn de�ned over R. Igusa's

p-adic zeta function of such an f has an important connection with con-

gruences. For i 2 Z�0 and u 2 R=P i, letMi(u) be the number of solutions
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of f(x) � u mod P i in (R=P i)n. Put Mi := Mi(0).

The Mi+e(�
iu), u 2 (R=P e)�, describe Zf;�(t) through the relation

Zf;�(t) =
1X
i=0

X
u2(R=P e)�

�(u)Mi+e(�
iu)q�n(i+e)ti:

If � is the trivial character, all the Mi's describe and are described by

Zf (t) through the relation

Zf (t) = P (t)� P (t)� 1

t
;

where the Poincar�e series P (t) of f is de�ned by

P (t) =

1X
i=0

Mi(q
�nt)i:

Remark that P (t) is a rational function because Zf (t) has this property.

(5.1.5) If n = 2 it is generally known that Zf;�(s) has no poles with real

part less than �1. We determined in Chapter 3 all the values less than

�1=2 which occur as the real part of a pole of some Zf;�(s) if n = 2, and

all values less than �1 if n = 3. In particular, we proved that there are

no poles with real part less than �3=2 if n = 3. In arbitrary dimension

n, we saw that it is easy to prove that there are no poles with real part

less than �(n� 1) and we conjectured that this bound can be sharpened

to �n=2.

Let f be a rigid K-analytic function on Rn de�ned over R. In Section

3.5 we proved that there exists an integer a such that Mi is an integer

multiple of qp(n=2)i�aq for all i if this conjecture is true in dimension n for

the trivial character. Consequently, this divisibility property of the Mi is

true for n = 2 and n = 3. The statement of this property is so easy that

we tried to �nd an elementary proof, and with success. It generalized

easily to arbitrary dimension and to the more general class of numbers

Mi(u). This is the subject of the second section. We deduce there that

Mi(u) is divisible by qp(n=2)(i�1)q for all i 2 Z>0.

(5.1.6) The poles of Igusa's p-adic zeta function are an interesting ob-

ject of study for example because they are related to the monodromy

conjecture [De2, (2.3.2)]. In the third section, we explain the connection
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between the Mi(u) and the smallest real part of a pole of Igusa's p-adic

zeta function. Let l be the smallest real part of a pole of Zf (s). We

proved in Section 3.5 that there exists an integer a which is independent

of i such that Mi is an integer multiple of qp(n+l)i�aq for all i 2 Z�0. We

repeat this proof for completeness and we also prove the converse: if there

exists an integer a such that Mi is an integer multiple of qp(n+l
0)i�aq for all

i 2 Z�0, then l0 � l. The last statement has an analogue if we are dealing

with a character. Together with (5.1.5), this will imply that Zf;�(s) has

no pole with real part less than �n=2. Remark that this bound is opti-

mal: Zf (s) has a pole in �n=2 if f is equal to x1x2 +x3x4 + � � �+xn�1xn
for n even and x1x2 + x3x4 + � � � + xn�2xn�1 + x2n for n odd, see [Ig7,

Corollary 10.2.1].

5.2 A theorem on the number of solutions of

congruences

(5.2.1) Let f be a rigid K-analytic function on Rn de�ned over R. Let

i 2 Z�0 and u 2 R=P i. We denote by Mi(f; u) or Mi(u) the number of

solutions of f(x) � u mod P i in (R=P i)n. If u = 0, we will also write

Mi(f) or Mi.

(5.2.2) Let f be a rigid K-analytic function on Rn de�ned over R. Let

(b1; : : : ; bn) 2 Rn. Then g(y1; : : : ; yn) := f(b1 + y1; : : : ; bn + yn) is a rigid

K-analytic function on Rn de�ned over R. Consequently, h(z1; : : : ; zn) :=

g(�z1; : : : ; �zn) = f(b1 + �z1; : : : ; bn + �zn) is a power series which is

convergent on ��1R � R and the coeÆcient of a monomial of degree r in

this power series is in P r.

Remark also that the coeÆcients of a convergent power series are

related with partial derivatives.

(5.2.3) Theorem. Let n 2 Z>1. Then we have that

qp(n=2)(i�1)q jMi(f; u)

for all rigid K-analytic functions f on Rn de�ned over R, i 2 Z>0 and

u 2 R=P i.
Remark. The number p(n=2)(i � 1)q is the smallest integer larger than

or equal to (n=2)(i � 1).
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Proof. Note that we may suppose that u is zero, because u can be ab-

sorbed by f . So we have to prove that

qp(n=2)(i�1)q jMi(f)

for every rigid K-analytic function f on Rn de�ned over R and for every

i 2 Z>0.

The argument is by induction on i. For i = 1, the statement is trivial.

Let k 2 Z�2. Suppose that the statement is true for i = 1; : : : ; k � 1.

We prove the statement for i = k. Let (b1; : : : ; bn) 2 Rn. It is enough to

prove that the number of solutions of

f(b1 + �z1; : : : ; bn + �zn) � 0 mod P k (5.1)

in (R=P k�1)n is a multiple of qp(n=2)(k�1)q. Put h(z1; : : : ; zn) := f(b1 +

�z1; : : : ; bn + �zn). Then h is a rigid K-analytic function on Rn which is

de�ned over R. Moreover, the coeÆcients of the zj , j = 1; : : : ; n, are in

P and the coeÆcients in terms of higher degree are in P 2. We explained

this in (5.2.2).

Case 1: Not all the coeÆcients in the linear part of h are in P 2. Then

the number of solutions of (5.1) in (R=P k�1)n is equal to 0 or q(n�1)(k�1).

This is actually Hensel's lemma. Because (n�1)(k�1) � p(n=2)(k�1)q,

we are done.

Case 2: All the coeÆcients in the linear part of h are in P 2. Write

h(z1; : : : ; zn) = �2~h(z1; : : : ; zn), where ~h is a rigid K-analytic function on

Rn de�ned over R. Equation (5.1) becomes

~h(z1; : : : ; zn) � 0 mod P k�2: (5.2)

We want to prove that the number of solutions of this congruence in

(R=P k�1)n is a multiple of qp(n=2)(k�1)q. If k = 2, the number of solutions

of (5.2) in (R=P )n is qn, so we are done because n � pn=2q. If k > 2,

the number of solutions of (5.2) in (R=P k�1)n is qnMk�2(~h), which is a

multiple of qnqp(n=2)(k�3)q = qp(n=2)(k�1)q. Here we used the induction

hypothesis for ~h and i = k � 2. �

(5.2.4) Remark. The previous theorem can be proved without induc-

tion. We give an outline. Let O � (R=P i)n be the set of solutions of

f(x1; : : : ; xn) � u mod P i in (R=P i)n. We give a partition of O with the

property that the number of elements of every subset in this partition is

a multiple of qp(n=2)(i�1)q.
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Let r be i=2 if i is even and (i � 1)=2 if i is odd. We associate a

subset of O to every element (b1; : : : ; bn) 2 O. If (@f=@xj)(b1; : : : ; bn) �
0 mod P r for every j 2 f1; : : : ; ng, then we associate to (b1; : : : ; bn) the

subset O(b1;:::;bn) := (b1; : : : ; bn) + P i�r of O. Otherwise let k be the

number in f0; : : : ; r � 1g such that (@f=@xj)(b1; : : : ; bn) � 0 mod P k for

every j 2 f1; : : : ; ng and such that (@f=@xj)(b1; : : : ; bn) 6� 0 mod P k+1

for some j 2 f1; : : : ; ng. We associate to (b1; : : : ; bn) in this case the set

O(b1;:::;bn) := O \ ((b1; : : : ; bn) + P k+1).

One can prove that the number of elements of every O(b1 ;:::;bn) is

a multiple of qp(n=2)(i�1)q. Moreover, if (b01; : : : ; b
0
n) 2 O(b1;:::;bn), then

O(b01;:::;b
0
n)

= O(b1;:::;bn). Consequently, the set fO(b1;:::;bn) j (b1; : : : ; bn) 2
Og is a partition of O.

5.3 The smallest poles of Igusa's zeta function

and congruences

(5.3.1) Let f be a rigid K-analytic function on Rn which is de�ned over

R. Let S := fz=qi j z 2 Z; i 2 Z�0g. It is generally known (see [Ig7] or

Chapter 3) that Igusa's p-adic zeta function of f is a rational function in

t of the form

Zf (t) =
A(t)Q

j2J(1� q��j tNj ) ;

where A(t) 2 S[t], where all �j and Nj are in Z>0 and where A(t) is not

divisible by any of the 1 � q��j tNj . Remark that the real parts of the

poles of Zf (s) are the ��j=Nj , j 2 J . Put l := minf��j=Nj j j 2 Jg.
It follows from P (t) = (1� tZf (t))=(1� t) and Zf (t = 1) = 1 that the

Poincar�e series P (t) =
P1

i=0Miq
�niti of f can be written as

P (t) =
B(t)Q

j2J(1� q��j tNj ) ;

where B(t) 2 S[t] is not divisible by any of the 1� q��j tNj .
In the next paragraphs, we will work in a more general context. By

abuse of notation, we will use the symbols of this particular situation.

(5.3.2) Let P (t) be an arbitrary rational function in t of the form

P (t) =
B(t)Q

j2J(1� q��j tNj ) ;
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where B(t) 2 S[t], where all �j and Nj are in Z>0 and where B(t) is not

divisible by any of the 1�q��j tNj . Put l := minf��j=Nj j j 2 Jg. De�ne

the numbers Mi by the equality

P (t) =

1X
i=0

Miq
�niti:

The following proposition is also in Section 3.5.

(5.3.3) Proposition. There exists an integer a which is independent of

i such that Mi is an integer multiple of qp(n+l)i�aq for all i 2 Z�0.

Remark. (i) The statement in the proposition is obviously equivalent to

the following. If l0 � l, then there exists an integer a which is independent

of i such that Mi is an integer multiple of qp(n+l
0)i�aq for all i 2 Z�0.

(ii) Suppose that we are in the situation of (5.3.1). Then n + l > 0, see

Chapter 3 or (5.3.4), so that (n+ l)i � a rises linearly as a function of i

with a slope depending on l. The statement is trivial if (n+ l)i � a � 0

because the Mi are integers. If (n + l)i � a > 0, which is the case for i

large enough, it claims that Mi is divisible by qp(n+l)i�aq.

Proof. We will say that a formal power series in t has the divisibility

property if the coeÆcient of ti=qni is an integer multiple of qp(n+l)iq for

every i.

For j 2 J , the series

1

1� q��j tNj =

1X
i=0

q�i�j tiNj =

1X
i=0

qi(nNj��j)
tiNj

qniNj

has the divisibility property because nNj� �j is an integer larger than or

equal to Nj(n+ l). Let a be an integer such that the polynomial C(t) :=

qaB(t) has the divisibility property. Remark that B(t) = q�aC(t).

One can easily check that the product of a �nite number of power

series with the divisibility property also has the divisibility property. This

implies that P (t) is a power series with the divisibility property, multiplied

by q�a. Hence Mi is an integer multiple of qp(n+l)iq�a = qp(n+l)i�aq for

all i. �

(5.3.4) Proposition. There exist an integer a which is independent of i

and positive integers R and c such that MiR+c is not an integer multiple

of qp(n+l)(iR+c)+aq for i large enough.
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Consequences. (i) If there exists an integer a such that Mi is an integer

multiple of qp(n+l
0)i�aq for all i 2 Z�0, then l0 � l. This is the converse of

Proposition 5.3.3.

(ii) Because we saw in the previous section that Mi is an integer multiple

of qp(n=2)(i�1)q if we are in the situation of (5.3.1), we obtain already that

Zf (s) has no poles with real part less than �n=2.

Proof. Put J1 = fj 2 J j ��j=Nj = lg and J2 = J n J1. Let N be

the lowest common multiple of the Nj , j 2 J1, and let � be the lowest

common multiple of the �j , j 2 J1. Remark that �=N = �j=Nj for all

j 2 J1. Let m be the cardinality of J1. Because 1 � q��tN is a multiple

of 1� q��j tNj for all j 2 J1, we can write

P (t) =
D(t)

(1� q��tN )m
Q
j2J2

(1� q��j tNj ) ;

where D(t) 2 S[t]. Using decomposition into partial fractions, we obtain

that

P (t) =
r1

(1� q��tN )m
+ � � �+ rm

1� q��tN +
E(t)Q

j2J2
(1� q��j tNj ) ;

where ri 2 S[t] with deg(ri) < N and where E(t) 2 S[t].

Let k 2 Z>0. Then

1

(1� q��tN )k
=

1X
i=0

fk(i)q
�i�tiN ;

where fk : Z�0! Z�0 is a polynomial function with rational coeÆcients

of degree k � 1. Indeed, because
P1

i=0 fk(i)q
�i�tiN = (

P1
i=0 q

�i�tiN )

(
P1

i=0 fk�1(i)q
�i�tiN ), we obtain that fk(n) =

Pn
i=0 fk�1(i). Conse-

quently, it follows by induction on k since
Pn

i=0 g(i) is a polynomial

function in n of degree r with rational coeÆcients if g is such a func-

tion of degree r � 1.

There exists an integer d, an integer z which is not divisible by q

and polynomial functions with integer coeÆcients gb : Z�0 ! Z�0, b 2
f0; 1; : : : ; N � 1g, such that

r1
(1� q��tN )m

+
r2

(1� q��tN )m�1
+ � � �+ rm

1� q��tN

=
N�1X
b=0

1X
i=0

gb(i)

zqd
q�i�tiN+b
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=

N�1X
b=0

1X
i=0

gb(i)

z
q(n+l)(iN+b)�d�bl tiN+b

qn(iN+b)
(5.3)

and such that z is a divisor of gb(i) for every i 2 Z�0. Remark that

(n + l)(iN + b) � d � bl is an integer. Because D(t) is not divisible by

(1 � q��tN )m, at least one of the polynomials gb is di�erent from the

zero polynomial. Fix from now on a b 2 f0; : : : ; N � 1g for which gb is

di�erent from 0. Because gb is a polynomial function, it has only a �nite

number of zeros. Let h be a positive integer which is not a zero of gb.

Let r be an integer such that gb(h) is not a multiple of qr. Because gb is

a polynomial with integer coeÆcients, we obtain for every i 2 Z�0 that

gb(iq
r + h) is not a multiple of qr. We put a = xr � d� bly and because

(iqr + h)N + b = iqrN + hN + b, we put R = qrN and c = hN + b. With

this notation, we have that the coeÆcient of tiR+c=qn(iR+c) in (5.3) is

not an integer multiple of q(n+l)(iR+c)+r�d�bl = qp(n+l)(iR+c)+aq for every

i 2 Z�0.

Now we consider the remaining part

E(t)Q
j2J2

(1� q��j tNj ) (5.4)

of P (t). We obtain from Proposition 5.3.3 that there exists an l0 > l

and an integer a0 such that the coeÆcient of ti=qni in (5.4) is an integer

multiple of qp(n+l
0)i�a0q for all i 2 Z�0. Consequently, the coeÆcient of

ti=qni is an integer multiple of qp(n+l)i+aq for i large enough.

Because MiR+c is the sum of two numbers of which exactly one is

an integer multiple of qp(n+l)(iR+c)+aq for i large enough, we obtain that

MiR+c is not an integer multiple of qp(n+l)(iR+c)+aq for i large enough.

�

(5.3.5) Let � be a character of R� with conductor e. Suppose that the

image of � consists of the nth roots of unity. Let � = exp(2�
p�1=n). The

minimal polynomial of � over Q is the nth cyclotomic polynomial having

degree the Euler number �(n). Remark also that f1; �; : : : ; ��(n)�1g is a

basis of Q(�) as a vector space over Q .

Write

Zf;�(t) =

1X
i=0

X
u2(R=P e)�

�(u)Mi+e(�
iu)q�n(i+e)ti
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=
X

0�k<�(n)

 
1X
i=0

fMi+e;kq
�n(i+e)ti

!
�k; (5.5)

where fMi+e;k is a linear combination of the Mi+e(�
iu), u 2 (R=P e)�,

with integer coeÆcients because the nth cyclotomic polynomial is monic

and has integer coeÆcients. Since Mi+e(�
iu) is an integer multiple of

qp(n=2)(i+e�1)q, this implies that fMi+e;k is also an integer multiple of

qp(n=2)(i+e�1)q.

On the other hand, it is generally known that Zf;�(t) can be written

in the form

Zf;�(t) =
X

0�k<�(n)

Ak(t)Q
j2Jk

(1� q��j tNj )�
k; (5.6)

where Ak(t) 2 S[t], where every �j and Nj is in Z>0 and where Ak(t) is

not divisible by 1� q��j tNj for every j 2 Jk.

Because f1; �; : : : ; ��(n)�1g is a basis of Q(�) as a vector space over Q ,

we obtain from (5.5) and (5.6) that

Ak(t)Q
j2Jk

(1� q��j tNj ) =
1X
i=0

fMi+e;kq
�neq�niti

for every k 2 f0; 1; : : : ; �(n) � 1)g. The consequence (i) of (5.3.4) can

be applied to this equality. Because fMi+e;kq
�ne is an integer multiple of

qp(n=2)(i+e�1)�neq, which is equal to qp(n�n=2)i�(n=2)(e+1)q , we obtain that

Zf;�(s) has no pole with real part less than �n=2.

We obtain the following theorem by using (5.1.3).

Theorem. Let f be a K-analytic function on an open and compact

subset of Kn. Let � be a character of R�. Then we have that Igusa's

p-adic zeta function Zf;�(s) of f has no poles with real part less than

�n=2.
Remark. To any f 2 C [x1 ; : : : ; xn] and d 2 Z>0 Denef and Loeser asso-

ciate the topological zeta function Z
(d)
top;f (s), see [DL1] or [De2]. Because

Z
(d)
top;f (s) is a limit of Igusa's p-adic zeta functions, we obtain that Z

(d)
top;f (s)

has no poles less than �n=2. This is generally known for n = 2 and we

proved this already for n = 3 and d = 1 in Section 2.3.
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Getaltheorie en meetkunde zijn historisch gezien de eerste deelgebieden

van de wiskunde die bestudeerd werden. Mijn onderzoek van de laatste

jaren leidde tot nieuwe eigenschappen in deze twee domeinen.

N.1 Basisbegrippen en -eigenschappen

N.1.1 Igusa's p-adische zetafunctie

(N.1.1.1) E�en van de basisbegrippen van dit proefschrift is veeltermcon-

gruenties. Zij f 2 Z[x1; : : : ; xn] een veelterm over de gehele getallen in

n veranderlijken. Noteer x = (x1; : : : ; xn). We willen het aantal oplos-

singen bestuderen van de congruentie f(x) � 0 mod m in (Z=mZ)n voor

een willekeurig positief geheel getal m. De Chinese reststelling reduceert

dit probleem tot het geval dat m een macht van een priemgetal is. Zij p

een ge�xeerd priemgetal en zij Mi, i 2 Z�0, het aantal oplossingen van

de congruentie f(x) � 0 mod pi in (Z=piZ)n. Het gedrag van de Mi's is

door Hensels lemma gekend voor grote i als f geen singulier punt heeft

in Znp. Hier stelt Zp de ring van p-adische gehelen voor. Het gedrag van

de Mi's is veel ingewikkelder als f een singulier punt heeft in Znp. Igusa's

p-adische zetafunctie laat ons toe om het singuliere geval te bestuderen.

(N.1.1.2) Voor een p-adisch getal z 2 Qp noteren we de valuatie van z

met ord z 2 Z[ f+1g, de absolute waarde van z met jzj = p�ord z en de

angulaire component van z met ac z = zp�ord z. Zij � een karakter van

Z�p , d.w.z. een groepsmor�sme � : Z�p ; : ! C � ; : met eindig beeld. We

stellen formeel �(0) = 0. Zij f een veelterm over Z of algemener over

Zp of Qp . Zij X = Znp. Igusa's p-adische zetafunctie Zf;�(s) van f en �
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wordt gede�nieerd door de p-adische integraal

Zf;�(s) :=

Z
X
�(ac f(x))jf(x)js jdxj (N.1)

voor complexe getallen s met positief re�eel deel, en door de meromorfe

continuatie te nemen op de rest van C . Hier is jdxj de Haarmaat op Qnp
waarvoor Znp maat 1 heeft.

(N.1.1.3) Igusa's p-adische zetafunctie kan in een algemenere context

gede�nieerd worden. Zij K een p-adisch veld, d.w.z. een uitbreiding van

Qp van eindige graad. ZijR de valuatiering van K, P het maximaal ideaal

van R, � een ge�xeerde uniformerende parameter voor R en q het aantal

elementen van de quoti�entring R=P . Merk op dat dus R=P �= Fq . Voor

z 2 K, zij ord z 2 Z[ f+1g de valuatie van z, jzj = q�ord z de absolute

waarde van z en ac z = z��ord z de angulaire component van z. Zij � een

karakter van R�. Zij X een open en compact deel van Kn en zij f een

K-analytische functie op X. Igusa's p-adische zetafunctie Zf;�(s) van f

en � wordt nu op dezelfde manier gede�nieerd als voordien. Merk op dat

in het speciale geval van hierboven K = Qp , R = Zp, P = pZp, � = p,

q = p, X = Znp en f 2 Qp [x1; : : : ; xn].

Door gebruik te maken van een ingebedde resolutie van (f; dx) bewees

Igusa dat de p-adische integraal in (N.1) een rationale functie is van q�s.

Bijgevolg kunnen we Zf;�(s), Re(s) > 0, uitbreiden tot een meromorfe

functie op gans C , een feit dat we in de de�nitie van Igusa's p-adische

zetafunctie gebruikt hebben. Als we Zf;�(s) beschouwen als functie in de

variabele t = q�s zullen we Zf;�(t) schrijven. Als � het triviale karakter

is van R� schrijven we ook Zf (s) en Zf (t).

(N.1.1.4) Zij f een veelterm over R of algemener, een strakke K-analyti-

sche functie op Rn gede�nieerd over R, d.w.z. een K-analytische functie

op Rn die gegeven wordt door een convergente machtreeks op Rn met

co�eÆci�enten in R. Igusa's p-adische zetafunctie van zo'n f heeft een be-

langrijk verband met congruenties. Voor i 2 Z>0 en u 2 R=P i beschou-

wen we het aantal oplossingenMi(u) van de congruentie f(x) � u mod P i

in (R=P i)n. Noteer Mi := Mi(0). Zij e de conductor van �, d.w.z. de

kleinste a 2 Z>0 waarvoor � triviaal is op 1 + P a.
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De Mi+e(�
iu), u 2 (R=P e)�, beschrijven Zf;�(t) via de relatie

Zf;�(t) =

1X
i=0

X
u2(R=P e)�

�(u)Mi+e(�
iu)q�n(i+e)ti:

Als � het triviale karakter is, beschrijven deMi's Igusa's p-adische zetafunc-

tie Zf (t) ook via de relatie

Zf (t) = P (t)� P (t)� 1

t
; (N.2)

waarbij de Poincar�e reeks P (t) van f gede�nieerd wordt door

P (t) =

1X
i=0

Mi(q
�nt)i:

Omdat we relatie (N.2) kunnen oplossen naar P (t) hebben we ook dat

Zf (t) alle Mi's beschrijft.

N.1.2 De lokale topologische zetafunctie

(N.1.2.1) Zij f de kiem van een holomorfe functie op een omgeving van

de oorsprong 0 in C n waarvoor f(0) = 0. We veronderstellen steeds dat

f niet identiek nul is. Zij g : V ! U � C n een ingebedde resolutie van

singulariteiten van een representant van f�1f0g. We noteren de irreduci-

bele componenten van g�1(f�1f0g) met Ei, i 2 T , en de multipliciteiten

van f Æg en g�(dx1^� � �^dxn) langsheen Ei met Ni en �i�1. De (Ni; �i),

i 2 T , worden de numerische data genoemd van de resolutie (V; g). Voor

I � T noteren we EI := \i2IEi en
Æ
EI := EI n ([j =2IEj). Merk op dat V

de disjuncte unie is van de
Æ
EI , I � T . Zij d 2 Z�1.

(N.1.2.2) Aan f en d associ�eren we de lokale topologische zetafunctie

Z
(d)
f (s) :=

X
I�T

8i2I : djNi

�(
Æ
EI \g�1f0g)

Y
i2I

1

�i + sNi
:

Hier is s een complexe variabele en �(�) stelt de topologische Euler-

Poincar�e karakteristiek voor. Het merkwaardige feit dat Z
(d)
f (s) onafhan-

kelijk is van de gekozen resolutie werd voor het eerst bewezen door Denef
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en Loeser. Ze bekwamen de uitdrukking voor de topologische zetafunctie

immers als limiet van Igusa's p-adische zetafuncties. Verder noteren we

Zf (s) := Z
(1)
f (s).

De kandidaatpolen van de rationale functie Z
(d)
f (s) zijn de ��i=Ni,

waarbij i 2 T voldoet aan d j Ni. Het is opvallend dat de meeste kandi-

daatpolen geen pool blijken te zijn.

N.2 Studie met behulp van ingebedde resoluties

N.2.1 De lokale topologische zetafunctie

(N.2.1.1) We bestuderen eerst het geval n = 2. Het is dan algemeen

gekend dat de lokale topologische zetafunctie geen polen heeft kleiner

dan �1. We bepalen voor elke ge�xeerde d de waarden kleiner dan �1=2

die de pool zijn van een lokale topologische zetafunctie. Ze zijn allemaal

van de vorm �1=2�1=i met i 2 Z>1, en al deze waarden zijn de pool van

een lokale topologische zetafunctie met d = 1.

Als f multipliciteit vier of meer heeft in de oorsprong 0 2 C 2 , argu-

menteren we dat �1 de enige mogelijke pool is kleiner dan �1=2. Om

de multipliciteiten twee en drie te behandelen gebruiken we het Prepara-

tietheorema van Weierstrass om een eenvoudigere functie te vinden met

dezelfde lokale topologische zetafunctie.

Voor willekeurige n kan de logcanonieke drempel c0(f) van f beschre-

ven worden in termen van een ingebedde resolutie van f door c0(f) =

minf�i=Ni j i 2 Tg. In het bijzonder is dit minimum dus onafhankelijk

van de ingebedde resolutie van f . Als n = 2 is het gekend dat �c0(f)

een pool is van Zf (s). Bijgevolg is ons resultaat een opmerkelijke veral-

gemening van het feit dat de logcanonieke drempel nooit in het interval

]5=6; 1[ zit.

(N.2.1.2) Als n = 3 en d = 1 bepalen we alle waarden kleiner dan �1

die de pool zijn van een lokale topologische zetafunctie. Ze zijn �1� 1=i

met i 2 Z>1. Merk op dat er dus geen polen zijn kleiner dan �3=2.

Als f multipliciteit drie of meer heeft, bewijzen we bovendien dat er

geen polen zijn kleiner dan �1. Dit is een lastig deel omdat we moeten

argumenteren dat sommige kandidaatpolen geen pool zijn. Hiervoor kun-

nen we de relaties tussen de numerische data van Veys gebruiken. Als s0
een kandidaatpool is van Z

(d)
f (s) met verwachte orde �e�en en als Ei een
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exceptionele vari�eteit is met kandidaatpool s0, dan kunnen we gemakke-

lijk de bijdrage van Ei tot het residu van Z
(d)
f (s) in de kandidaatpool s0

neerschrijven. De relaties van Veys laten je toe om te bewijzen dat deze

bijdrage nul is voor sommige intersectiecon�guraties op Ei op het ogenblik

dat Ei gecre�eerd wordt. We bepalen alle mogelijke intersectiecon�gura-

ties op exceptionele vari�eteiten met kandidaatpool kleiner dan �1 op het

ogenblik dat ze gecre�eerd worden. Voor deze intersectiecon�guraties is de

bijdrage tot het residu nul.

N.2.2 Igusa's p-adische zetafunctie

(N.2.2.1) Voor Igusa's p-adische zetafuncties bekomen we analoge resul-

taten als voor de topologische zetafunctie, maar nu voor de re�ele delen

van de polen. We krijgen hier wel te maken met een extra moeilijkheid in

het bewijs dat sommige kandidaatpolen geen pool zijn. We willen de bij-

drage berekenen van een exceptionele vari�eteit Ei met een kandidaatpool

s0 van verwachte orde 1 tot het residu van Zf;�(s) in s0 door alleen in-

formatie te gebruiken die gekend is als Ei gecre�eerd wordt. Ons resultaat

van volgende sectie geeft een methode om dit te doen.

(N.2.2.2) Zij f een K-analytische functie op een open en compact deel X

van Kn. Zij g : Y = Yt ! X = Y0 een ingebedde resolutie van f die een

samenstelling g1 Æ � � � Æ gt is van opblazingen gi : Yi ! Yi�1. Veronderstel

dat elke gi een opblazing is langsheen een K-analytisch gesloten deelmani-

fold van Yi�1 dat gelegen is in de nulpuntsverzameling van f Æg1Æ� � �Ægi�1
en dat enkel transversale snijdingen heeft met de unie van de exceptionele

vari�eteiten van g1 Æ � � � Æ gi�1.
Veronderstel dat s0 een kandidaatpool is van Zf;�(s) met verwachte

orde m. Zij r 2 f1; : : : ; tg. Zij (V; y = (y1; : : : ; yn)) een kaart op een open

en compact deel V van Yr. Veronderstel dat het zin heeft om over de

strikt getransformeerde van y1 = � � � = ym = 0 in Y te spreken en dat

f Æ g1 Æ � � � Æ gr = �

mY
i=1

yNii en (g1 Æ � � � Æ gr)�dx = �

mY
i=1

y�i�1i dy

waarbij geldt:

1. � en � zijn K-analytische functies op V die niet nul worden op een

n�m dimensionaal deel van y1 = y2 = � � � = ym = 0,

2. voor elke i 2 f1; : : : ;mg is �Ni = 1 en
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3. voor elke i 2 f1; : : : ;mg bestaat er een ki 2 Z zodat s0 = ��i=Ni +

(2ki�
p�1)=(Ni log q).

Dan is de bijdrage van de strikt getransformeerde van y1 = � � � = ym = 0

in Y tot de co�eÆci�ent b�m in de MacLaurin reeks

b�m
(s� s0)m +

b�m+1

(s� s0)m�1 + � � �+ b0 + b1(s� s0) + � � �

van Zf;�(s) in s0 gelijk aan 
mY
i=1

q � 1

qNi log q

!�Z
y1=���=ym=0

�(ac�)j�jsj�jjdym+1 ^ � � � ^ dynj
�mc

s=s0

:

Hier stelt [ � ]mc
s=s0 de evaluatie voor in s = s0 van de meromorfe continuatie

van de functie tussen de vierkante haakjes. Het was reeds gekend dat de

bijdrage tot het residu van Zf;�(s) in s0 hieraan gelijk is als we op de

ingebedde resolutie Y werken, dus als r = t. Voor andere r bekomen we

ons resultaat door deze formule voort te duwen langsheen de opblazingen.

N.3 Studie met behulp van congruenties

(N.3.1) Zij f een veelterm over R of algemener een strakke K-analytische

functie op Rn gede�nieerd over R. Zij l het kleinste re�ele deel van een

pool van Igusa's p-adische zetafunctie van f met triviaal karakter. We

bewijzen dat er een geheel getal a bestaat dat onafhankelijk is van i zodat

Mi een geheel veelvoud is van qp(n+l)i�aq voor alle i 2 Z�0.

(N.3.2) Als n = 2 heeft Zf (s) geen polen met re�eel deel kleiner dan �1.

Als n = 3 hebben we met behulp van ingebedde resoluties bewezen dat

Zf (s) geen polen heeft met re�eel deel kleiner dan �3=2. Tesamen met

de vorige paragraaf geeft dit mooie deelbaarheidseigenschappen voor de

Mi's als n = 2 en als n = 3. Omdat deze zo eenvoudig te formuleren

zijn, gaan we op zoek naar een elementair bewijs, en we hebben succes.

Dit bewijs veralgemeent gemakkelijk naar willekeurige dimensie en naar

de algemenere klasse van getallen Mi(u). Ons resultaat is dat Mi(u)

deelbaar is door qp(n=2)(i�1)q voor alle i 2 Z>0 en alle u 2 R=P i.

(N.3.3) We willen dit resultaat gebruiken om te bewijzen dat Zf (s) geen

polen heeft met re�eel deel kleiner dan �n=2. Hiervoor bewijzen we het
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omgekeerde van het resultaat in (N.3.1): als er een geheel getal a be-

staat zodat Mi een geheel veelvoud is van qp(n+l
0)i�aq voor alle i 2 Z�0,

dan geldt dat l0 � l. Omdat we een analoog resultaat hebben wan-

neer we te maken hebben met een karakter � zijn we in staat om te

bewijzen dat Zf;�(s) geen polen heeft met re�eel deel kleiner dan �n=2.

Voorlopig hebben we deze ondergrens alleen geformuleerd voor strakke

K-analytische functies op Rn gede�nieerd over R. We zullen echter ar-

gumenteren dat hieruit deze ondergrens ook volgt voor een willekeurige

K-analytische functie op een open en compact deel van Kn. Merk op dat

deze grens optimaal is: Zf (s) heeft een pool in �n=2 als f gelijk is aan

x1x2+x3x4+� � �+xn�1xn voor n even en x1x2+x3x4+� � �+xn�2xn�1+x2n
voor n oneven.

(N.3.4) Omdat de lokale topologische zetafunctie een limiet is van Igusa's

p-adische zetafuncties verkrijgen we ook dat Z
(d)
f (s) geen polen heeft klei-

ner dan �n=2.


