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Abstractd

Modeling ThreeyDimensional GroundwateryFlowyand Transportyby
Hexahedral FiniteyElementsy
By
MohammedyAdilySBAIy

Doctor of Philosophy in Applied Sciencesw
Free University of Brusselsw

Faculty of Applied Sciencesw

This!research!work!deals!with!three-dimensional!modeling!of!groundwater!flow!and!
solute! transport! problems!in! groundwater! aquifer! systems,! with! several! complexities,!
heterogeneities! and! variable! conditions! as! encountered! in! the! field.! Finite! element!
methods!arelused!throughout!to!solve!alrangelof!different!problems,!using!in!particular!

the! Galerkin!weighted!residual! approach!based!on!trilinear!hexahedral!elements.!

Speciall emphasis!is! made! on! transient! and! non-linear! groundwater! flow! problems!
with! moving! interfaces,! such! as! the! water! table! and! the! freshwater-saltwater! sharp!
interface.! Algeneralized!Fast! Updating! Procedure!technique!is!developed!for!these!sit-!
uations,! which! presents! a! number! of! advantageous! features! in! comparison! to! classic!
computationalltechniques!used!to!deal!with!such!problems.! One!of!the!important!con-!
tributionslis!thelautomatic!construction!oflthe!generic!soils!characteristic!curves,!'which!
areldynamically!dependent!upon!theloveralllsystem!water!status.! Several!test!examples!
arelsuccessfully!worked!out!for!validating! this! technique!in!different!aquifer! configura-!
tions,!and!under!different!initialland!boundary!conditions.! These!test!cases!show!that!
the! proposed! method!is! cheap,! numerically! stable! and! accurate.! Numerical! stability!

is! guaranteed!through!aldeveloped!solver,! which!is! obtained! by! using!state! of! the! art!
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methods! for! robust! preconditioning! and! efficient! numerical! implementation.! The! ac-!
curacylis!demonstrated!by!comparison!against!analytical,!other!numerical!approaches,!
and!laboratory!experimental!solutions.!

The!usefulness!of! the!method!is! clearly!shown!by!the!application!of! the!3-D!sharp!
interface!finite!lelement!model!”GEO-SWIM’!to!the! coastal! aquifer!system!of! Martil!in!
the! north! ofl Morocco.! Several! efficient! runs! are! made,! leading! to! a! calibrated! man-!
agement!model!for!the!study!area,!giving!a!clear! picture!of!the!salinization!risk!in!the!
aquifer!due!to!saltwater!encroachment.!

Three-dimensional! modeling! of! solute! transport! problems! in! groundwater! aquifer!
systems! is! equally!investigated.! It!is! concluded!that! the! standard! Galerkin! finite! el-!
ement! method!is! computationally! intensive,! since! the! obtained! system! of! numerical!
equations! is! very! large,! sparse,! none! symmetric! and! usually! difficult! to! solve! with!
standard!iterative!techniques.! Hence,!preconditioning!is!necessary!to!improve!the!con-!
vergence! behavior! of! ill-conditioned! systems.! In!this! work,! we! propose! an! M! matrix!
typelofltransformation!on!the!general!transport!matrix!which!guarantees!the!existence!
of! the! preconditioning! schemes,! and! hence! improves! the! overall! solvers! performance!
and!robustness.! The!usefulness! of!the! method!is! demonstrated!by!solving!several! test!
examples! with! different! complexities,! including! hypothetical! and! field! applications!in!
Belgium.! Different!solvers!areltested!as!thelminimallresiduallmethod!and!the!stabilized!
biconjugate! gradient! method,!in! combination! with! different! preconditioning! schemes,!
as!diagonal!scaling! and!incomplete! factorization.! It!is! concluded!that! M! matrix! pre-!
conditioning!is!very!simple!to!implement,!and! proves!to!be! very!efficient!and!robust.!

An! effort! is! put! on! packaging! the! computer! programs,! by! giving! modern! visual!
support!to!many!modules.! Therefore,!several! GUI! programs! are! provided! as! comple-!
mentary! tools! to! support! the! developed! models,! enabling! their! friendly! use,! and! the!

possibility!for! future! extensions.!
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1.1 (Generaly

In the past few decades, modeling has become an important and powerful toolA
in many branches of science. Models allow engineers and scientists a way to testA
hypotheses in a manner that is nondestructive to the actual problem. ComputerA
modeling has become a necessity and a meaningful way of improving our quality A
ofAife, and Ahat AfAhe Auture &Aenerations, rather than a ’luzury’ solely offered for A
the experts at the academicAnd laboratory environment level. A

The astonishing development of computer hardware and software technolo-A
gies, and the significant increase of computational power, has contributed Avidely A

inAolving&Aomplex engineeringAproblemsAn several Aields. Although, it seems thatA
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there will be no limits for such developments, it turns out that at the same timeA
needsAor Auture man civilizationsAvillAdut moreAlemands, and AnoreAlelicate Aom-A
putationalproblems to be manageable by digital or/and ’interactive’ computers.A
Numerical modelersfnd engineers are therefore always in a challenge to designA
and Amplement Adetter Astrategies, inAermsAofAothAcost Aand Aefficiency. AWhich,

at the same time may prove very useful for an improved understanding of theA

world’sAurrounding physical phenomena.A

1.2y ProblemyDefinitiony

Protection of freshwater resources against contamination and toxic pollution isA
of broad Anterest Aor Ahe Aroundwater Azommunity, including modelers, practition-A
ersforAechnical Aexperts, and Alecision AnakersAdrAnanagers. ADifferent Aources AofA
groundwater contamination are man made actions modifying the natural envi-A
ronment process, asAllustratedAn Fig. 1.1. Mathematical Anodeling/lays an everA
increasingAoleAn theAjuantitative analysisAfAhe actual behavior Af Aroundwater A
in terms of quantity and quality, and in the design of efficient protection andA

remediation scenarios.A

Mathematical models are classified in two broad categories: stochastic and de-A
terministic. Stochastic models are useful when our total ignorance of the actualA
situation reach a sufficient level to assume a ’statistically’ random realizationsA
of the unknown problem parameters. ADeterministic models are by far the mostA
commonAnAiseAoday. ASystems Aof Apartial Adifferential Aequations Ahat Aelate Apa-A
rametersAuchAsAotential head, water MlowAnd concentration Af Alissolved Anatter A
are commonly utilized by this type of numerical models.A

The typesAfAnethods commonly used Aor numerical Anodeling are Ainite Aliffer- A
ence methods (FDM), and finite element methods (FEM). The system of equa-A

tionsAhat resultsAsAolved Aimultaneously Ao Aletermine necessary Alow parametersA
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Municipal
water well

Confining

Figure 1.1:ADifferent sources of groundwater contamination (Fetter, 1998).w

at specific nodes.Aln this manner, the hydraulic characteristics are found at spe-A
cific points throughout the system.AFinite element methods, unlike finite differ-A
ence which require orthogonal grid elements, utilize elements of various size andA
shape, enabling these methods to better handle irregular shapes, and complexA
domains with various heterogeneities, and curvilinear boundaries, allowing alsoA
better Amplementation Aof Aharacterized AimeAvarying Aconditions. ADespite Ahese A
FEM advantages, FDM AsAtill &ompetitive, and Aomewhat moreAtableAn dealingA
with practical field applications, where the simulation cost becomes an impor-A
tant objective of the project itself, which explains the encountered success andA

widespread use of these kind of models.A

These conclusions become more evident in case of fully three dimensional mod-A
els.A three dimensional model does not only permit the simulated independentA
variable to be calculated everywhere in the real world physical domain, but itA
removes many underlying AssumptionsAvhen Aormulating the Ariginal Anodel. Ex-A
amples of these assumptions are the well-known Dupuit horizontal flow in aquifersA
and vertical flow in aquitards, leading to quasi-3D models; And the Baden-GhybenA
(1888) and Herzberg (1901) approximation for the salt-freshwater interface nearA
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the sea coast.AThese assumptions have been proven to be physically unrealisticA

for a full range of situations (Bear, 1972).A

Moreover, for transient groundwater flow problems, the PDE’s are more del-A
icate to solve, since four independent variables are involved (space coordinatesA
andAime). InAinconfined aquifersAnvolving Aariably Aaturated Alow, a traditional A
model can not encompass many additional parameters related to the soil charac-A
teristics, most of these parameters are found using some mathematical niceties,
for which it is often hard to find a physically based interpretation. These limita-A
tions shorten the applicability of this kind of models, especially for groundwaterA
systems with a high variability of soils and Aeterogeneities. Unsaturated AystemsA
often involve variable and moving boundaries in time, like the water table de-A
limiting the saturatedAnd variably saturated zones, the salt-freshwater interfaceA

separating the assumed immiscible freshwater and saltwater zones.A

Saltwater Intrusion, or encroachment, defined by Freeze and Cherry (1979)A
as:Athe migration of saltwater into freshwater aquifers under the influence of
groundwater development, becomes a problem in coastal areas where freshwa-A
ter aquifers are hydraulically Aonnected with seawater.AWhen large amounts ofA
freshwater are withdrawn from these aquifers, hydraulic gradients encourage theA
flow dof seawater Xoward Ahe umped Avell Lor Awells. AOne Aommon Azoal Af Ahese A
models is to predictAnd characterize the movement of the transition zone in theA
aquifer where freshwater and saltwater meet. Another purpose of modeling is toA
predict the behavior, degree, and extent of mixing that occurs in this transitionA
region. TheseAre twoAimple&xamplesAfAow models areAised Ao Ajuickly dredict A

the future conditions of situations that may actually take many years to occur.A

Mathematical groundwater modelsAf this class are complex, and Ahe AxistingA
numerical ApproachesAre not ApplicableAor Aield applications AfAarge AlimensionsA
requiringigh Aesolution. Most AfAheAxisting three Alimensional Aaltwater Antru-A

sion models are miscible density dependent solute transport models, which faceA
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data availability problems and a need of large amount of computer hardware re-A
sources. Two-phase sharp interface models are 2-DAr at most quasi-3D, becauseA
the traditional approach requiring the solution of coupled system of freshwaterA
and saltwater governing equations is very demanding.AHence, there is still prac-A
tical AimitationsAnAapplication dof Ahese Anodels Ain Aield Aconditions. A Moreover,

boundaryAonditions relevant to the saltwater phase are not always easily acces-A
sibleAr Anown in caseAf movingAnterfaces. ToAurAresent knowledge, thereAs noA
three-dimensional model based on a ’cheap’ embedded sharp interface approachA

available. A

Three dimensional modeling of solute transport is readily accessible today.A
But Astill someAcomputational AimitationsAare Aexisting Aor Aenhancing Ahe AscopeA
of the numerical methods knownAoAbe standardAn use for this typelfofAprob-A
lems. Alndeed, finiteAlementAliscretizationsAead AoAargesparse Anatrices AwhichA
are often ill-conditioned and hence an iterative solution method even when it isA
robust may fail to provide an acceptable solution. For transport problems theseA
difficulties are augmented by the possibility of other typical errors arising in theA
computational process, such as numerical dispersion, numerical oscillations andA
overshootsAeading Ao smearing Aoncentrations Aronts. ADifferent Atrategies haveA
been adopted in theAast decades to exclude or minimize at best these numerical A
errors. AWeAprovide Ahere Aanother Anethodology Adased on Aobust Anumerical dpre-A
conditioning of the FE algebraic equations, based on physical interpretation ofA
the different terms in the numerical formulation leading to an anticipated massA

conservation of the numerical process.A

For most modeling applications, the time and effort spent on pre-processingA
and Aost-processing Af Alata far exceed Ahat Apent on otherAroject activities. ThisA
work can be tedious for three dimensional simulations which require more inputA
dataf&nd more nicely presented results in easily understood graphic form.AThisA

explains the new trends towardsAtandardization of graphic interface tools, andA
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the motivationffAdeveloping comprehensiveAvisual interfacesAenvironments forA

more interactivity andAriendly use.A

1.3y ScopeyandyObjectivesy

This work focuses on contributing to computationally efficient three dimensional A
groundwater flow and solute transport models and additional set of tools based onA
new techniques and methodologies, which enhance significantly standard conceptsA
knownAoAresent. Special AmphasisAsAnadeAoAransient andAonlinear Aroblems,

which are more difficult toAnvestigate and Ao model effectively. Before a detailedA
expositionAof theAmainAobjectives taken into account in thisAresearch, weAstillA
separateAhe Anvestigated AproblemsAintoAhree Arelated Acategories: A (i) Aransient A
variably Aaturated Aroundwater low Avith a movingAvaterAable, (ii) the AameAdutA
including a moving fresh-saltwater interface, and (iii) solute transport problems.A

Respectively, theAbjectives for each of these three main topics are/sfollows:A

1.ADevelop a robust and efficient time dependent solver, based on linearized A
equations.AThe trade-off between the global cost in memory storage, CPUA

requirements, and the&eneral Aolution accuracy Ahould hdeAuite Aeasonable; A

2.ATheAinearization process should be mass conservative, smooth, andZeffi-A

cient; A

3.AProvide built-in generic representation of the soils characteristic curves, toA
relax the numerical AolutionArocedure. It AhouldAise a minimum set Af AoilA

physical parameters;A

4.ATesting of the codes efficiency and robustness under various platforms andA

with different test examples, to ensure numerical accuracy;A

5. ApplicationfofAhe Aomputer programsAoAstudy Aheactual behavior, andA
futureAnanagement AplansAn Aelected Aield Aites. AThese Anclude Aan Aaquifer A
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system from Morocco for seawater intrusion analysis, and two field sitesA

from Belgium subject to groundwater pollution;A

6.ADevelopment of user interface program packages to be used as a front end7

to the simulation codes.7

One of the important addressed goals in the development stage was the codeA
portability issue, such that the model will run on any hardware provided that aA
Fortran Acompiler As Awvailable. ATo Aachieve Ahis Agoal, weAdeveloped AaAFortran A0A
compatible AodeAree of hardware Alependent Aompiler Alirectives. AThe AodehasA
been tested by running test examples including academic, hypothetical and fieldA

scenarios on the following platforms:A

e+Cray J916/8-1024 Aupercomputer (UNIX-based UNICOS 9.0.2.1And CF90A

Fortran compiling systems)A

eSilicon GraphicsALhallenge-L workstation AUNIX-based IRIX 5.3 And MIIPSA
Fortran90 compiler)A

e+Sun UltraSparc2Avorkstation AUNIX-based SOLARIS 5.2.1And F90SPAR-A

Cworks Pro Fortran compiler)A

etPersonal computers with Intel Pentium processors (MS DOS- Win95/Win98/NT),
provided that a 32-bit compiler is available.A

1.4y Organizationy

The dissertation text is organized in eight chapters including the introductoryA
and theAoncludingAemarks chapters. Separate chapters discussing theAesultsArA
the application of the methods and concepts described in other chapters are notA

given.ATherefore Aall Ahings Arelated Xo A AspecificAopic, includingXAheAheoretical A
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developments, applicationsAandAdiscussions areAput togetherAn oneAconsistentA
chapter.A

Chapter 2 is an introduction to several aspects of computational hydrogeology,
including the model classification, and the computational techniques such as theA
finite element method, and their practical application. Throughout the text, theA
correspondingAliterature Ais Areviewed. A This Ais Anot Antended Ao Agive AaAcomplete A
review of the numerical methodsAised for modeling groundwater flow and soluteA
transport in aquifer systems.Alt only introduces the reader to this field throughA
numerous hints and by providing standard references.AState of the art methodsA
for Aach Adroblem Are Alescribed inAheAiteratureAeviewsA&iven at thebeginning AfA
the respective chapter.A

In chapter 3, the review is extended to more specific aspects of three-dimensional A
modeling of groundwater flow in aquifer systems.AWe start by a general discus-A
sionof Aeveral Xorms Af Ahe Asroundwater Mlow Aoverning Aquations.A fterwards,
a detailed exposition of the finite element matrix equations derivation is given,
this constitutes the core of the chapter, and sets up the necessary foundationsA
for Ahe Anumerical Anodels. ASeveral dother Aaspectsare Adiscussed, suchAasAheAu-A
merical implementation of boundaryAconditionsAand the sparse matrix storageA
scheme.AOnce the algebraic FE equations are derived, several solution methodsA
and Atrategies aredpresentedAn theAast daragraph, aimingAoAntroduce theAeaderA
to the concepts and methodologiesAised in the next chapter.A

Chapter 4 focuses onAariably saturated Aroundwater Alow Avith Anoving Avater A
table profiles.A general discussion on the subject is followed by the conceptualA
development of the &A'UP technique, theAlifferent stepsAnvolved An Ats Application,
and Aow Adifficulties ubjected Ao Aseveral Anon-linearities Aare Aavoided. A The Aper-A
formances of the inner linear numerical solver and/preconditioner are discussedA
inAdetail, andAheir Ause AsAustified. A Other AstepsAand AechniquesAnvolvingAheA
constructionAofAheAon-linear Asolver An Aime doverlay Aare Apresented. AThe AFUPA

based model is verified using four test examples.AThe first example is quite sim-A
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pleAand Adescribes Ahe Adrainage Ahrough Aa Avertical Asoil Acolumn. A The ssecond AsA
basically similar to the first except that a leaky soil is placed at the exit of theA
soil column, retarding the vertical flow.AThe third example is important for theA
transient drainageAtudies in water table aquifers.AThe last validation sample isA
mostAnterestingAn theAcopeAf thisAtudy, it showsAlearly AheAderformancesAndA
capabilitiesAf the8-D model. ThisAtudy AomparesAhe model predictionsAgainst A
theAaboratory experimentsAlesigned and performed by Baseghi and DesaiA1987,
1990), in a 3-D earth model with several complex configurations.A

Generalization of the FUP approach for problems with freshwater-seawaterA
movingAnterfaces AsAliscussed An Ahapter 6. AThe Aconceptual Aproblem Aproper Ao A
thisAnore complicated problems is formulated. This is smoothly adapted from theA
developments already performed in chapter 4.AHere again, a series of test prob-A
lems Aare Arelevant Ao Acheck Ahe Anumerical Aolution Aaccuracy. AFive Aexamples Aare A
considered, includingAateral Aeawater AntrusionAn (i) &onfined andAii) Ainconfined A
aquifers; (iii) seawater intrusion control with recharging wells; (iv) saltwater in-A
trusionAn a multilayer aquifer Aystem;And AinallyAv) a movingAharp AnterfaceAnA
a 3-DAaboratory sand box model as designed by Sugio and Rahim (1992), whichA
is the most challenging problem. Except for the fifth test all numerical solutionsA
are compared with available analytical solutions, additionally for the fourth testA
the results are compared to the numerical solution computed by Huyakorn et al.A
(1996).ASatisfactory AagreementsAare Anoticed An Ahis Aoverall Acomparative study. A

last paragraph is devoted to the model application to seawater intrusion inA
Martil aquifer system in Morocco, for studying the actual behavior of the sharpA
interface, and establishing future risk to salinization scenarios.A

Chapter 6 deals with numerical aspects of three-dimensional modeling of so-A
lute transport problems, using the common-place Galerkin finite element tech-A
nique.AModelAzoverning AequationsAare Jpresented, followed Ay AheirAnatrix FEA
equivalent form.ALimitations related to this approach are shown andAexplained.

An alternative throughAhe use Af Aobust numerical AnethodsAs droposed. ThisAn-A
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volvesAising Atate Af Ahe art Aolvers Aor darticular Aone-symmetric AystemsArisingA
fromAhe FEAliscretizationAf the &lobal Aystem, namely AheAdiconjugate Aradient A
stabilized method (Van der Vorst, 1992).AThis is followed by applying the bestA
preconditioner for a particular situation, meaning the multiplicity of choice fromA
aArangeAdof AheAexisting Aones. AMotivations Aor Apreferring Aattractive AschemesAare A
explained and Aeinforced by giving examples from the state of the art literature. A
The performances of possible mixtures of the selected solvers and AHprecondition-A
ers are compared/based on CPU’s, the convergence behavior, and accuracy. FiveA
problems are studied Ancluding two field situations from Belgium.A

Chapter 7 describes how several of the developed models are implemented A
from software point of view. Thus, a brief explanation of many computer packagesA
and Additional toolsAs&iven. OneAhould keep inAnind that, this chapterAloes notA
intend Aode a user manual Aor Ahe Aoftware, neither a technical Aeport explainingA
theAlevelopment process moreAelated Ao Aoftware Angineering Alesign An computerA
science. These detailed aspects are specifically hidden.A

Finally, in chapter® theAverall conclusions/AreAliscussed and AdeasZor AutureA

research are formulated.A
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2.1 Introductiony

InAhis chapter, weAttempt toAresent a short AndAoncise &overagedf key aspectsA

of modelingAroundwater flow and solute transport in aquifer systems. An effortA
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is made to mix theoretical and practical aspects together, such that it will beA
fruitful from the developer and practitioner points of view.A

We start by a short discussion on the terminology, explaining the differenceA
betweenAsubsurfaceipydrology modeling’ and Komputationalipydrogeology’, whichA
isAaAmoreAzeneral Aand Aappealing Adefinition. ANext, weAdiscussAdifferent &ind AofA
groundwater ow And Aolute Aransport Anodels. Section2.4 AlescribesAheAlifferentA
steps usually involvedAduring a classical modeling approach, starting from theA
conceptual Anodel Alevelopment tobuilding a reliable predictive model. EmphasisA
is made on practical aspects and precautions to take in this process. Section 2.5A
gives a brief introduction to structured mesh generation in simple domains, andA
the extension to complex domains using multiblock methods (Ho-Le, 1988). TheA
next section sets up the basics of the standard Galerkin finite element method,
and its theory useful throughout the upcoming chapters.ASection 2.7 introducesA
advanced AfiniteAelement methods, andAother Adiscretization methodsAbecomingA
commonAplace Ain Ause Aby Athe Agcroundwater Acommunity. A Particular Afeatures AofA
these alternative methods are briefly describedAnd commented. AFinally, we giveA

a brief Averview Af Aterative Anethods, which areAheAeart Af any numerical Aolver. A

2.2y WhatyisyComputationalyHydrogeology 7y

Computationalihydrogeology is an emerging multi-disciplinary scientific discipline. A
It has its roots in broad branches of science as illustrated in Fig. 2.1. These are,
GroundwateryHydrology, AppliedyMathematicsyandyComputationalyMethods, and A
ComputeryScience.

Additional fields resulting from other interactions between these areas (seeA
Fig.A2.1) AaveApecificorientations. ANevertheless, theyaveAeveral AaspectsAnA
common, and a sharp distinction cannot be made. It is clear however, that com-A
putational Aydrogeology Aias a much Adroader Aignificance thanAnodeling, becauseA

usually a sound understanding andAletailed know-how in several other fields areA
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Groundwater Computational
hydrology methods
Computer
science
Legend:
Modeling of Scientific
Subsurface computing
hydrology
Hydro-Informatics Computational

hydrogeology

Figure 2.1: ADefinition of computational hydrogeology.w

needed for solving computational hydrogeology problems efficiently. A

2.3 Classificationyfyroundwatery'lowyand Trans-y

portyModelsy

Groundwater and transport models can be categorized into three broad categoriesA
(Anderson and AVoessner, 1992; Aresic, 1997) numerical, physical, and Analytical. A
OfAhese three, numerical Anodels Are by Aar Ahe most commonly used today, withA
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the availability AfAigh Apeed Aomputers that can solve many AystemsAfAquationsA
inAaAhort AAmount Aof Aime. APhysical Anodels Aind Ainique Aapplications Aas Avisual A
aidsAhat Allow theActual droblem tobdeAcaled Alown to a sizeAhat AsAnanageableA
andAcontrollable. Analytical AnodelsAnvolve &olvingAequations Avhere AaAdefinite A
closed answer is reached at the end of calculations, offering ease of calculationA
and a simplified version of the real problem. Each of these three types of modelsA

will be discussed further below.A

2.3.1 PhysicalyModelsy

Physical models consist of miniature physical analogs of the geology and/or hy-A
drology Af theAituationdeingAtudied. CustodioA1987)AlescribesAhysicalAnodelsA
as an analog which is scaled Allown from the prototype, and in which every pro-A
totype element is reproduced, differing only in size.APhysical models often comeA
into use in situations where numerical and analog models are inappropriate, dueA
to insufficient historic and hydrogeologicAlata.APhysical models have the advan-A
tage of providing a means of visually understanding the problem being studied.A
OneAimple typeAfphysical modelsAs a sandbox typeAnodel.A containerAsAilled A
with a porous media, such as sand or glass beads, and the movement of fluidsA
through the media is observed. Another type is the ion-motion analog.Aln thisA
type of model, the movement of ions, under an electrical gradient, through anA
electrolytic solution is used to model the movement of fluids through porous me-A
dia.ABy introducing other electrically charged probes into the system, hydraulicA
phenomena such as impermeable layers and pumping wells can be simulated inA
theMsystem. Another Acommonly Aused Aphysical Anodel As Ahe AHele-Shaw AanalogA
(BearAandADagan, 1964;5egol, 1994). AThisAnodel AsAused Ao Arepresent AwoAdi-A
mensional flow in groundwater systems and consists of two clear plates placedA
closeAogether Awith A AporousAnediaAnbetween. AFlow Aof Mluid between Ahe Awo A
plates underAlifferent hydraulicAradient is observed AndAtudied.A
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2.3.2y AnalyticalyModelsy

The first analytical models that accurately represented hydrogeologicAonditionsA
appeared in the 1960’s. Analytical models are similar to numerical models, ex-A
cept that the equations involved can be solved exactly at any point of the spaceA
flowAlomain, withoutAheAiseofAapproximationAnethods. Alnforder AolarriveatA
equations thatAprovide an exactfsolution, manyAimplifying assumptions mustA
generally beAnade. ATherefore, theseAnodels/areAot Auited Kor AystemsAhat An-A
volveAcomplex flowsAandAgeometries. A For AhisAreason, analytical AnodelsAhaveA
limited Ause An Agroundwater Mow Aand Aransport Anodeling. AHowever, whenAwna-A
lytical models are suitable, they provide solutions that are relatively simple toA

calculate and Ainderstand. A

2.3.3y NumericalyModelsy

Numerical AmodelsAconsist Aof Amathematical AalgorithmsAthat Arepresent theAhy-A
draulic and/or chemical aspectsAf theAituationbeingAtudied. SystemsAfdartial A
differential Aquations Ahat Aelate Adarameters Auch Ashead, concentration and Ava-A
ter Alow Aare Acommonly Autilized Aby Ahis Atype Aof Amodel. A StudiesAinvolving Athe A
numerical Amodeling AofAgroundwater Aflow Astarted Ain  theAearly A1960’s, mostAofA
these formulations solve the two-dimensionalAdepth integrated equations usingA
comprehensive approximations, such as Dupuit-Forchheimer for saturated flows,

and AGhyben-HerzbergAn Aoastal Aaquifers. AFinite Aifference Awas Ahe Anethod AofA
choice during this era; a numerical solution of equations with a range of thou-A
sand AinknownsAwas Alifficult Ao Adbtain. ADuring Ahe A 970’s Aadvances Awvere Anade A
for applications of the finite element method to groundwater models, while inA
theAl980’s many algorithmsAaveAbeenAdetailedAand made muchApowerful andA
efficient. The 1990’s era is marked by the development and evolvement of three-A
dimensional models to simulate realistic flow and transport phenomena as theyA

would occur in reality, thus most research efforts are focussing on improving theA
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existing algorithms, or their adaptation for greater efficiency and robustness.A

2.4y TheyComputeryModelingyParadigmy

For every modeling work, many steps are involved to build up a complete rep-A
resentative Amodel Aof Ahe Aituation beingstudied. A Usually, many AtagesfofAheA
model setup follow the logic presented in Fig.A.2.AThese steps are grouped intoA
three categories, pre-processing, model run or processing involving applicationA
of the numerical methodAnd the model embedded numerical solver, and finally A
post-processing tasksArelated, which areAuseful AasAoolsXorAresultsAverificationA
and visualization.A strong link exists between different tasks during the modelA
calibration and verification stage, which is illustrated by the dashed lines in Fig.A

2.2.AThese generic model construction steps are discussed in detail below.A

2.4.1 ConceptualyModelyDevelopmenty

The development of a model concept stands the origin of any modeling effort,
and Alays A Akey AoleAn Ahe Success of Ahe Xollowing Ateps. A carefully Alesigned A
andAinderstood Aconceptual Anodel Acan Aave Anonths Aof Anan Avork. A thoroughA
analysis of theAlobal hydrogeological Aituation, the low direction and Ats seasonal A
variation, the system communication with otherAvater Aesources, etc, areAequired A
at this level. All the information is presented in a form of simplified maps andA
cross-sections of the aquifer, though a better management (in space and time)A
is performed by storing and organizing these data in a computerized Alatabase,
linked Awith a general AGeographicAlnformationASystemA GIS)Aor at theAbest aA
custom GIS or a Hydrogeological Information System (HIS), managing all theA
data in easily graphic understood form.A

It is always a common practice to revise the conceptual modelAlesign duringA

the calibrationfrocess. As an example, model Aesults mayAndicate that a neigh-A
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Figure 2.2: Simplifiedvlow chartwepresentationvef the computerwnodelingvparadigm.w

boring hydrogeological unit having lateral contact with the initial model, shouldA

be a part of the final model. A

2.4.2y ModelySelectiony

The selection of a computer code is certainly one of the most challenging tasks.A
WithinAhe Abjective Ao Aimulate Affectively the &oncept Aleveloped An Ahe AdreviousA
phase, a good knowledge And Aufficient level Af AxpertiseAre needed to choose theA
most appropriate model for a given situation.AHowever, it should be mentioned A

that AbesidesAheAtechnical’ Arequirementsfother Aocio-economicAdecisive AactorsA
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take much importance.ASpecial care should be taken for understanding the codeA
functionality, and theAimitationsAnd approximationsAised An Ahe Aduilt-in numer-A
icalAapproach. AnlexampleAsAheAcaseof Anodelingfsaltwater Aencroachment AnA

aquifer systems, where decision ambiguity exists.A

MiscibleyDensity DependentyorySharpylnterfacey?y

Two conceptually different approachesA&overning the saltwater intrusion, namely A
the sharp interface and the density dependent flow coupled with miscible saltA
transport, areAvidely accepted Ay the Aroundwater Azommunity ASegol At al., 1975;A
Galeati et al., 1992; Xue et al., 1995; Yeh et al., 1997). AHowever, in many situa-A
tions decisive factors determining the choice of the best approachAnd eventually A
the numerical code as well, should be defined precisely.AFor instance, in a situ-A
ation where regional analysis are required in an advective dominated flow field,
the use of a fully coupled miscible andAlensity dependent transport model willA
just increase the simulation cost, and make the problem more complex, whereasA
this level of complexity is not desired.A

Nowadays, several computerA&odes are&ither freely available, orAre packagedA
andAdistributed by several vendors with other utilities and auxiliary programs,
especially dre and Apost-processors. MostAfAhesedrograms areAdlifferent distribu-A
tions AfAhe AISGSAMODFLOW AodeAMcDonald and Harbaugh, 1988; HarbaughA
andAVlcDonald, 1996). AnAexampleofAAiniteAelement AodeAput AnAheApublic-A
domain AsAFEMWATERA YehAand AWard, 1981;AYehZet al., 1997), capableAofA
solving coupled8-D groundwater flow, and transport.A detailed review of thisA

computer codes is beyond the scope of this work.A

2.4.3y MeshyGenerationy

To perform simulations of the partial differential equations governing groundwa-A

ter flow and solute transport systems on a computer, these continuum equationsA
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need to be discretized, resulting in a finite number of points in space (and time)
at which variables such as groundwater head, velocity, density, and solute con-
centration are calculated. The usual methods of discretization, finite differences,
finite volumes and finite elements, use neighboring points to calculate deriva-
tives, and so there is the concept of a mesh or grid on which the computation is
performed. There are two mesh types, characterized by the connectivity of the
points. Structured meshes have a regular connectivity, which means that each
point has the same number of neighbors (for some grids a small number of points
will have a different number of neighbors). Unstructured meshes have irregular
connectivity: each point can have a different number of neighbors. Fig. 2.3 gives
an example of each type of grid. In some cases part of the grid is structured and

part unstructured.

Structured Mesh Unstructured mesh

Figure 2.3: Structured mesh (left) and unstructured mesh (right) for the same phys-

ical domain.

For all types of meshes, there are certain characteristics that we want to

control:

e The local density of points: high density gives more accuracy, but compu-

tation takes longer. This leads to adaptive meshing methods;
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e+The smoothness of the point distribution: Alarge variations in grid Alensity A
or shape can cause numerical diffusion or/andAlispersion. This can lead toA

inaccurate results or instability; A

e+TheAhape of the grid volumes: when the finite element method usesAuadri-A
lateral Aelements theAmaximum angle mustAbeAbounded Astrictly Abelow toA

enable convergence of the method as the element size is reduced.A

For simple domains, the choice between regular or irregular meshes is governed A
mainly by AheAdiscretization Anethod. AHowever, forAcomplex domains, irregularA
mesh AgenerationAat least Aor Ariangular for Aetrahedral felements) can beAullyA
automatic and fast. Regular mesh generation requires the domain to be split upA

into simple blocks which are then meshed automatically. A

2.4.4y Boundary Conditionsy

Boundary &onditionsABC) Axpress theAink detween Ahe conceptualAnodel and AtsA
surrounding environment, including external stresses and water flow at domainA
boundaries. ItAsAmportant toAddressApecifically &achAondition anddetter Asti-A
mate the needed related parameters. These are given in many forms, e.g., waterA
head Aydrographs, varyingAdpumpingAates, etc. ATheAnodeler AhasAoAleal Ajuite A
often Awith AuncertaintiesAwhich are related toApoor initialAestimates of the ABCA
parameters, in such case the start up values should be improved in the modelA
calibrationAprocess. ADifficult Aand Anonlinear ABC, suchAasAdrainage, seepage, orA
evapotranspiration are very particular and require special concern, their imple-A
mentation isAdased AnAariousAechniques different fromAneAituation to another. A
In many Ainite element models, the conditions are attributed Alirectly Ao Aodes,
by AneansAf an integer Andex or code, and Aptionally Another Aub-index indicatingA
the nodedehavior AvhenAt is necessary Ao Alistinguish between Alifferent situationsA
(e.g., a drainage node is switching from saturated to unsaturated, or the otherA

way).A
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2.4.5y ModelyParametersy

These areAlassifiedAn two main categories: timeAndAhysicalAnodel dharameters. A
TimeAparametersA(for Aransient models) Arequired couldAbeAreducedAo a bearA
minimum if only values corresponding to the simulation time, and an array ofA
outputAimeAevelsAreAgiven. AHowever, other AnputAsAequired Aisually, becauseA
each model uses its own time steeping scheme. An example is given in chapter 4A
for AGEO-PROF (De Smedt, 1995) and GEO-SWIMASbai andDe Smedt, 1997a)A
models. Another example is the MODFLOW?’s time control, which subdivides theA
maximum simulation AimeAntoAntervals Alefined asAstressyeriods’ over which BC A
are considered toAe constant, afterwards computational AimeAtepsAreAnternally A
estimated, and are adjusted at each nonlinear iterateAo fit output at target timeA
values.A

Other physicalAnput for groundwater models are hydraulicAonductivities (orA
transmissivities) Lof Al &oil Aypes, porosity, andApecificAield. Alt Anight AulsoAbeA
necessary toApecify Ather Anput An Ahe Aramework Af dther computational Aolvers,
likeAoil curvesAitted darametersAr characteristicsAf the Ainsaturated Alow Awater A
capacity, etc ...).ASolute transport problems need Additionally the longitudinal,
horizontal And Arertical Aransverse Alispersivities, the Aliffusion, decay, and AorptionA
coefficients Avhen Ahe Aorresponding AnechanismsAare Aaken Anto Account. AOther A

parameters depends on the water phase properties, e.g., density, and viscosity. A

2.4.6y ModelyRuny

Before any model run, it is worth the time to check the validity of the input, toA
probe possible errors and incompatibilities. AIndeed, for large applications it canA
save hours of expensive and useless computations. In this context, visual mappingA
of Ahe distributed Anput Awould Abe Aa Avaluable Aassisting Aool. ATt As Aalso AaAzood A
practice to perform a preliminary steady state simulation from bulk data sets,

without introducing changing conditions, e.g.Arecharge and lateral inflows. AThisA
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can giveAnsightful understanding and &uidelines for the AutureAvork.A fterwards,
introductionAof Aexisting conditionsAinAheAdeveloped Amodel can beAperformedA
smoothly. A

2.4.7y CalibrationyandySensitivity Analysisy

Sensitivity analysisAfAnputAlata sets constitute Another Atep towardsA&ompletionA
of the model calibration. AHowever, these two tasks are often combined simulta-A
neously as one.AThis is the most tediousfnd time consuming phase, and AouldA
be a real hassle for the modeler to perform a goodAalibrated model. AT herefore,

it is always suggested to setup guidelines to better characterize uncertainties, by A
determining more sensitive model parameters. AModel integrated or independentA
tools able toAelp in this task are suggested, however, this can be at thebest Aemi-A
automatic and recent advances show that user-interaction and skills are alwaysA

needed for a clean interpretation of the results.A

2.4.8y InteractiveyScientificyVisualizationy

In general, scientists and engineers need efficient, reliable and powerful tools toA
better AexpressAheirAdeas, and Allustrate Aheir Aesearch Aindings. AScientific Arisu-A
alization techniques play an ever increasing role in today’s simulation projects.A
Many Aoftware dackages have Aeached a highAevel Af Atability and Arersatility, suchA
that their use become easier even to non professionals. This is especially true forA
interactive 3-D modeling, which required expensive budgets and highly qualified A
people a few years ago. One should keep in mind that advanced tools enable not A
only quality presentation of the simulated results. Advantageously, they acceler-A
ate the model calibration phase, and are also useful for checking the input fieldA

data.A
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2.4.9y VerificationyandyPredictiony

ThisAsAhe preAinal Atage Af Ahe modeling study, and Ahese twoArocesses are AftenA
linked Aogether.A Because, verificationAand AutureApredictionsArequireAransientA
conditions, and hence an extended set of model parameters, which is often notA
included in the calibrated Asteady state) model, there will be other uncertaintiesA
in the predictive model, caused by the parameters not being calibrated (and henceA
estimated).A

However, a clearAdistinction mustAbe madeAetweenAverificationfof a givenA
model, andApredictivefscenarios. A VerificationAsAachieved fonAapreviously Acali-A
brated model with an extended or different data sets, while predictive modelsA
assume an hypothetical situation, which is projected or possibly available in theA
future. APopular examples are, projection of abstraction well fields, dispersion ofA
a dissolved chemical matter due to waste migration from a disposal site nearbyA

a pumping station. Hence, predictive models are never thoroughly verified. A

2.5y StructuredyMeshesyGenerationy

This section begins with a discussionAfAdoundary-fitted &rids and Ahe discretiza-A
tionAf PDE’s AnAhem, and AhenAntroduces the multiblock concept used for Anore A
complicated Alomains. Thompsont al. (1985), KnuppAnd Steinberg (1993), areA

detailed expositions of structured mesh generation.A

2.5.1 Boundary-FittedyMeshesy

Structured meshes are characterized by regular connectivity, i.e., the points of A
the grid can be indexed (by 2 indices in 2D, 3 indices in 3D) and the neighborsA
of eeachApoint can beAcalculated Arather AhanAooked AupAe.g., the neighborsAfA
theApoint are at (i + 1,7), (i — 1,7), etc.).AMeshesfonAAectangularAdomainA

are trivial to generate (though some care needs to be taken in the discretizationA
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at convex corners)fandAstructured AneshAgeneration techniques concentratefonA
meshingAlomainsAvith Arregular boundaries. Generally, the AneshesAre&enerated A
soAhat Ahey Ait Ahe boundaries, withAne coordinate Aurface Aorming Apart Af) theA
boundary.AThis gives accurate solutions near the boundaryfnd enables the useA
of fast and accurate solvers.A

For groundwater flow these grids allow the easy application of groundwaterA
models, whichAusually ArequireAheAgrid XofbeAligned AwvithAheboundary. ATheA
alternative is to use a rectangular grid which is clipped at the boundary, withA
local &rid Aefinement near Aharp Aeatures AnAhe doundary ACartesian &rids). ThisA
will reduce the truncation order at the boundary and will require the mesh cellsA
todeAlipped at the boundary, increasing theA&omplexity Af theAolver. CartesianA
grid generation is very fast, but it does not appear to be applicable to generalA
situations. A'he most common method of generating boundary-fitting grids is toA
haveAdneAontinuousgrid Ahat Aits Ao AllAheboundaries. AThe leffect As Ao Ait A A
contiguous set of rectangular computational domains to a physical domain withA
curved boundaries. A

It is difficult to fit complex domains with one mapping from a rectangular com-A
putational Alomain Avithout Azenerating Aexcessively Akewed Arids. ATo Azet Aaround A
this problem the domain is split up into blocks and each block is gridded, withA
someAcontinuity ArequirementsAat Ahe Ablock Anterfaces; AthisAs Anultiblock. A TheA
decompositionfofAhe Addomain AntoAlocksAs Ausually Addone Amanually Ausing ACADA
techniques and is slow. An alternative to continuous boundary-fitted grids withA
multiple blocks is to use a boundary fitting grid near each boundary, and simpleA
rectangular grid in the interior, and interpolate between them.AThese are calledA
overset or chimera grids, as discussed by Chesshire and Henshaw (1990).A

This typeAfArid As Aasier Ao &enerate than a multiblock grid Aince Aach Arid AsA
local andAloes not need to match the others.AThe individual grids will generally A
beAdfAigh Ajuality Alow Alistortion). AHowever, theAnterpolationAanAdeAlifficult,
especially Avith AnoreAhan twoAridsAverlapping, and it Ancreases theAolver Aime.A
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The overlapping grids cannot be too different in resolution and this can causeA
problemsAvith Ahe &rids Aequired Aor Aolute Aransport Aproblems. AChimeraAgridsA
are very useful for moving boundaries, e.g., the water table and the salt-freshwater A
interface, or multiple boundaries.AMost of the grid remains fixed but the inter-A
polation changes as the grids move with the boundaries. AChimera gridsAlo haveA
certain advantages, and the recent work by Chesshire and Henshaw (1994) onA
conservativeAnterpolation methodsAaveAncreased their Aisefulness. However, the A

bulk of structured&rid generation is based on multiblock type grids.A

2.5.2y MultiblockyBoundary-FittedyGridsy

InAheory, complex geometries can beAnapped AoAneAectangular Aegion, but thisA
will Aead Ao Aunacceptable Addistortion Aof Ahe Aerid Acells. Aln Apractice, thephysicalA
region is broken up into pieces that each have a simple mapping from a rectangularA

grid. A

AT
»
[p &)

Figure 2.4: AExample of a single multiblock grid component.w

These blocks are fitted together with some degree of grid continuity at theirA
interfacesAsShownAnAFig. A2.4, rangingAromAioneXoAomplete, suchAhatAheA
final Anesh AooksAike a single Arid Avith Ao Alope Ar Apacing Aliscontinuities. So, theA
grid generation process splits into two parts, the decomposition of the physicalA
domainAntoAdlocksAandAhe&gridding Aof Aach bdlock. AThe AlecompositionAprocessA
has not yet been fully automated, and requires considerable user interaction forA

choosing block edgesAo alignAvith object edges, aiming to produceA&oodAneshes. A



26" An Introduction to Computational Hydrogeology7

The meshing of the blocks can proceed automatically, using one of the methodsA

devoted to one single block.A

2.6y TheyFiniteyElementyMethody

2.6.1 Generaly

Continuous physical systems, such as the airflow around an aircraft, the stressA
concentration in a dam, the electric field in an integrated circuit, or the concen-A
tration of reactants in a chemical reactor, are generally modelled using PDE’s.A
The quality of a numerically approximated solution of any PDE depends mainly A
onAhe Aeometry Aliscretization, and the numerical approximation AchemeAuilt AnA
theAliscretized Alomain. TheAinksdetween these two aspectsAreArery Atrong, andA
in the context of a given problem the domain discretization and the numericalA
scheme which is applied should be considered together.A

Finite difference and finite element based methods are the most commonlyA
used Anumerical Aapproximation Aechniques. A Basically, inAaAdiscreteAnumberAofA
nodal points, finite difference based methods approximate the function deriva-A
tives, whileAiniteAelement AnethodsApproximateAheAunctionAtself. ATherefore,
finite difference methods produce solutions at a discrete number of points, whileA
finite Aelement Amethods Aield Apatial solutions. AFurthermore, theAiniteAlementA

method has following advantages over finite difference methods: A

e Aquifers anisotropy and heterogeneity are easily considered in the approx-A

imate formulation;A
eHrregular boundaries are easily incorporated;A

e ess nodal points are needed Ao have the same level of accuracy in a regionA

of interest, thus core computer storage and computational time are saved;A
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e +TheAintegral Aformulation Aused Ain AthisAmethod ApermitsAthe Aflux  typeAofA
boundary Aonditions to come out about naturally (Yeh and Ward, 1980)A

This does not diminish the importance of finite difference related methods asA
one of the most used numerical methods worldwide. For the interested reader, aA
comparison between the two methods have been discussed in detail byA ndersonA
and AVoessnerA1992), and AGrayA1984). However, in thisAtudyAheAinite AlementA

method Aspreferred. AThe Aheoretical dackground Aof Ahe Ainite Aelement Anethod A
will be briefly presented further below.A

2.6.2y BasicyConceptsy

The finite element method envisions the flow domain as non overlapping smaller A
elementsAcalled A finiteyelements’. A The Adependent Avariable As sspatially Aapprox-A
imatedAby an interpolatingAunctionAwhichAs continuousAo a specified Aorder. A
TheAelements Are Allefined Ay AaAdiscrete Avumber Aof Anodal Apoints. AEach Aelement A
is identified by its number and local nodes numbers, coded by following a givenA
numbering sequence.A

The finite elements used in this study are irregular hexahedrons, defined byA
eight nodes as shown in Fig. 2.5. The numbering sequence is first anti clockwiseA
in the base plane and then, starting above the first node, anti clockwise in theA
top plane.A

Consider the continuum problem governed by the PDEA

L(h) AR (2.1)A

whereAL is a differential operator and/ is the dependent variable. A

The mathematical concept leading to the FE formulation can be accomplished A
viaAheAuseAof Aeither AnAvariational dor Aa Aweighted Aresidual Aapproach. A For AnoreA
details see Zienkiewics and Taylor (1989), andAapidus andAPinder (1982).ATheA
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7

Figure 2.5: AHexahedral finite element.w

so-called Galerkin weighted residual scheme is employed in the models presented A

in chapters 4, 5, and 6.A

2.6.3y TheyGalerkinyWeightedyResidualyMethod

Among the existing methods, the Galerkin scheme is one of the most popularA
weighted Aesidual methodsbdecomingAtandardAn use. In generalAhe method canA
beAchieved Aollowing AAtraightforward rocedure: A

1. ADefine Ahe Arialysolutionyas A Ainite Aeries Approximation A

ha> bih (2.2)A

j=14
where /& isAhe ApproximateAlependent Arariable Ao Astimate, e.g. Aproundwa-A
ter potential, h; are the unknown nodal values, b; are linearly independentA
basis functions defined over the entire domainAndAwn is the total numberA

of nodes over the hole domain.ASince is only an approximated solution,
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residuals occur when replacing it in equation (2.1), this results in an errorA

r=A(h)A:0 A (2.3) A

2. AFormulate theAntegralyequationsy

The purpose is to minimize the residual over the problem domain, which isA
accomplished using the set of theAun basis functions;, orthogonal to theA

residual A

/ bir dV =RAA forA=1,2,...,nn (2.4)A
v

or equivalently A

/bz- L} b;hj)AV =RA  forA=1,2,...,nn (2.5)A
v j

2.6.4y BasisyandyWeightingyl'unctionsy

The element basis functions commonly employed take the form of polynomials. A
Their constructionAsAest accomplished Aising theAocal coordinatesA£, n, (). TheA
dependence between the local and the global coordinates will be derived in theA
next paragraph. In local coordinates, the original hexahedral element is mappedA
into a cube whose corners are located atX =At1,n =At1,( =At1, as shown inA
Fig.2.6.A

The eight basis functions for trilinear hexahedral elements are obtained as aA
product of three orthogonal Lagrange polynomials in three dimensional isopa-A

rameteric coordinatesA

A
e ) = BAHEIA+mI1+CC)  Bri=A2 84 (26)A

2.6.5y NumericalyIntegrationy

Since the derived algebraic system of finite element equations is expressed on anA

integral basis, one may encounter difficulties to evaluate integrals with respectA
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8 7

5 | 6
n //4: 77777777777777777777777 3

1 —> 2

Figure 2.6: Asoparametric hexahedral element.w

to global coordinates, and because base functions are expressed in local coordi-A
nates, a transformationAsAequired. ThisAransformationAsAbtained AiaAhedasisA

functions asA

x AZxJ (&m,OA (2.7)A
j=14

y AZyJ (&, O)A (2.8)A

z AZ z; b;j(&,m, A (2.9)A

Using this transformation, firstAorderAderivativesfofAheAbasisAunctionsAversusA
global coordinates can be changed to their equivalent with respect to local coor-A

dinates byA

gs %2
i _ r—-14 i
gé’. o| = [J] —gg (2.10)A

028 aCcs
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or By 9
0 9 ¢

[J] = v oy 02 (2.11)A
dn On On
or dy O
o¢ 0¢ O¢

where [J] is the Jacobian of the transformation.A
The encountered integrals arising out from the finite element approximationA

of the groundwater flow equations may take the formsA
A= % F(z,y,2)Az dy dz (2.12)A
1%

where (x,y, z)As a continuousAunctionAver theAolumeA/. Equation42.12) canA
be transformed toA
+14 414 414
a=f [ renon dean ac (2.13)A
—14 J-14 J-14

whereAJ = det [J]. A can be easily computed by a Gaussian quadrature.A

2.7y AdvancedyFiniteyElementyMethodsy

2.7.1 MixedyFiniteyElementyMethody

TheAnixed Ainite Alement method AMFE) Avas Airst introduced to theAroundwaterA
community Ay AheAworks of AMeissner1972), andDouglasAetAal. A(1983).ASinceA
then, theAmethodAhasAbeenAextensively AstudiedAand compared to more classi-A
cal techniques (Brezzi and Fortin, 1991; Chavent and Roberts, 1991; Cordes andA
Putti, 1997;Durlofsky, 1993). However, theAtateAf the art isAttained for 2-D de-A
launey unstructured triangulations (Durlofsky, 1993), and fundamental researchA
is still needed to extend it to a full range of 3-D problems.A

The MFE Aormulation Aeads Ao Aontinuous Alux Approximations Afirst Arder ac-A
curate) across the element edges, whereas the conforming finite element methodA

failsA(discontinuous Afluxes).A ThisAis Aachieved Aby Aadding Aadditional Adegrees AofA
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freedom Aut Ahe Aelements Anid-edges. AThe Mlow Aquation AsAliscretized Aising Ain-A
known groundwater heads at the nodes, and unknown Darcian velocity vectorsA
at AheAnid-edges. AThe Aypical AchemeAmployed KAor Ahis Aypeofproblem AsAheA
Raviart-ThomasARTO0) approach that usesfiecewise&onstant basis AunctionsforA
the groundwater headAnd linear vector basis functions for the Darcian velocity.
AsAAconsequenceAheAsolution AsAmoreAccurate even Xor Ahe Mlow Xield. AThere A
is an expensive price to pay for such accuracy; the MFE formulation generatesA
about twice as many degrees of freedom as standard finite elements of the sameA
order.A

By AeneratingAigh accuracyArelocity Aields, the MFEAs an attractive method A
for Anodeling Acoupled Mlow Aand Aransport Aproblems. Aln Aparticular, TheAnethodA
has been effectively used in conjunction with the finite volume method for theA

transport equation (Durlofsky, 1993).A

2.7.2y ControlyVolumeyF'initeyElementyMethody

The essence of the control volume finite element method (CVFE) is to use theA
finite element basis functions to approximate the groundwater heads at the nodes,
whereas the conservation equations are applied to control-volumes (Forsyth, 1989).A
The control-volumes definition is highly flexible, they may be patches centeredA
around the nodes as illustrated in Fig 2.7, or coincide completely with the fi-A
nite element cells.AFor more general triangulations, control volumes are general A
polygons spanning more or fewer elements and which are not necessarily convex.A

Here again, recent works have focussed on 2-D triangular elements (even ifA
3-D extensions are straightforward, at least for tetrahedrals) though there existsA
some restrictions with respect to the triangulation used (Forsyth, 1989; Jie andA
Van Quy, 1992; Kottardi and Venutelli, 1993).A

The cell-volume CVFE dual Aliscretization approach can be used in order toA

improve the approximationAf fluid Aelocities, computed at thedasis of groundwa-A
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Control volume L
associated to node |

Figure 2.7: AControl volumes versus finite element cells for 2-D triangulations.w

ter Aead Aalues Aesulting Arom Atandard FEAormulations ADurlofsky, 1993; Tracy,
1994).A

2.8y IterativeyMethodsy

2.8.1 IterativeyMethodsyVersusyDirectyMethodsy

The discretization of PDE’s using numerical approximation methodsAeads to aA
system of algebraic equations which is in most cases expressed in matrix form.A
The problemAeduces toAolving the given systemAf equationsAorA unknowns (n
is the matrix order).A

Regardless of the structure of the system, e.g., linear or nonlinear, dense orA
sparse, one has to choose between direct or iterative solution methods.A

The present state of the art in numerical methods is that direct methods canA
be used as black boxes. This is by far not the case for iterative methods, at leastA

not if we do not know the specific properties of the matrix of the linear systemA
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todbedolved. A ndAvenAhenAtAsAoArivial Anatter AoAlecide Avhen Ao AtopAheA
iteration process and to obtain a reasonable estimate of the approximation errorA

in the result.A

The simplest direct method is probably the well-known Gaussian eliminationA
procedure, unfortunately this popular method leads to fill-in, which makes theA
method often expensive.AUsually large sparse matrices are related to some gridA

or network, and it is highly desirable to exploit this 'nice’ property efficiently. A

ForAargeA3-D Aproblems, iterative methodsAareApreferable, for this classAofA
problems Van der Vorst and Chan (1998) estimated the flops count for a directA
solution method in the drder of A3, and the numberAofAMopsXor an iterativeA
solver AnAtheAorderAdofAn /3. A IsoAtheArequirements Aor Amemory Aspace Aor Athe A
iterativeAmethodsAare Ayypically Assmaller Ay dorders Aof Anagnitude. A ThisAsAoftenA
the argument forAthe usageMofAterative methodsAnA2D Asituations, whenAflopA
countsAorboth classesAf methodsAre moreArAess comparable. FinallyAt shouldA
be noted that iterative methods can exploit good initial guesses, e.g., in timeA
dependent Aproblems. ATheApreconditioner Aan Aoften Abe Ahosen XoAadapt AoAheA

machine architecture.A

The above given arguments are quite nicely illustrated by observations madeA
by Bimon A 1989). AFor Ainear Aproblems Awith AomeAx10%unknowns, he has esti-A
mated the CPU time required by the most economic direct method, as 520,040A
years, providedAhat the computation can be carried out at a speed of 1 TFLOP.A
OnAheAther Aand, he Astimates the ACPU AimeAor Areconditioned conjugate &ra-A
dients, assuming still a processing speed of 1 TFLOPS, as 575 seconds.AThoughA
weAhouldAot takeAt for &Aranted thatAn particular a veryAparsefreconditioningA
part can be carried out at that high processing speed (for the direct solver thisA
is more likely), and the CPU values may change, we see that the differences inA

CPU time requirements are gigantic.A
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2.8.2y AjyBasicylterativeyMethody

very basic idea, that leads to many effective iterative solvers, is to split theA
matrix of a given linear system as the sum of two matrices, one of which leadingA
to a system that can easily be solved. The most simple splitting we can think ofA
is/Gy=Ay- (Iy- G). Given the linear system AGhy=M, this splitting leads to theA

well-known Richardson iterationA
h" =By (Iy- G)h' =A' +1'
Multiplication by A-Gyand addingMygivesA
By Gh" =By Gh’ — Gr'
orA
r' = (Iy- G)r' = (Iy- G)™ =2, (G)r™
or, in terms of the errorA

G(hy-h'"") = R1(G)G(hy- h")A
hy— hi+14 :APZ+1<G’) (hy— hO)A

In these expressionsAP;14is a (special) polynomial of degreeA + 1. ANote Ahat A
P 1(0)AAA

Results obtained for the standard splitting can be easily generalized to otherA
splittings, since the more general splittingAGy=AMly- Ny=AMy- (My- G) can A
be rewritten as the standard splittingMBy=Ay- (Iy- B) for the preconditionedA
matrix APy=AM~!G.A Other Amore Apowerful Aiteration AmethodsAcan Abe Aviewed A
asAaccelerated Aversions of Ahe AdasicAteration Anethods. Aln Ahe Acontext Aof Ahese A
accelerated Anethods, the matrix splittingsAbecomeAmportant inAanotherAway,
sinceAhe matrix MyfAheAplitting As Aften Aised Ao Adrecondition Ahe Aiven Aystem. A
That is, the iterative method is applied to, e.g., M~ !Ghy=M"'B.A
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For the simple Richardson iteration it follows thatA
Rit14 A pO4y P14y 24 4 gl Z(Iy_ G)i'érm
j=04

e {r"Gr’ .., Gr"™ =K (G;r")A

K (G; 1) As a subspace of AlimensionA + 1, generated by A**and AGyand As &alled A
the XKrylovysubspaceyfor Gyand A®. A pparently, the Richardson iteration deliversA
elements of Krylov subspaces of increasing dimension. Note that the RichardsonA
iteration generates a basis for the Krylov subspace, and this basis can be used toA

construct other approximations for the solution of GGhy=Byas well. A

2.8.3y LinearySymmetricyandyNonsymmetricySystemsy

When the system matrix is symmetric and positive definite, which is the caseA
for the conductance matrix derived from the FE discretization of the governingA
equations for groundwater flow, powerful and efficient preconditioned iterativeA
solvers/AareAvailable, and/ecomesAvidespread. ATheAmost Aattractive Xeature AfA
many of these solvers is the mathematically guaranteed convergence in an arith-A
meticAnumber Adof Aterations. A ThisAisAhowever, notAheAcaseAnApractice, whereA
several difficulties might be encountered whenever the positive transmissibility A
(PT) condition is not fulfilled (Putti and Cordes, 1996).AWe refer to section 4.3A
for a more detailed explanation.A

For matricesAhat are not positiveAdefiniteAsymmetric theAituation can beA
moreAproblematic. Alt As doften Adifficult Ao Aind Ahe Aproper Aterative Anethod Aor A
suitableAreconditioner. However, projection type methods, like &AMRES, Bi-CG,
CGS, and Bi-CGSTAB are used as alternatives, even if extreme care should beA
taken when choosing theAmostAappropriatefsolver to a given classAofAystems.A
Despite CG-like algorithms for symmetric matrices, the convergence is neitherA
guaranteed Xor Asuch Accelerators. ASection .3 Aletails Ahese Aaspects, and AliscussA

several examples of preconditioning showing their strenghts and weaknesses. A
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3.1 Introductiony

The mathematical formulation of the governing groundwater flow equations andA
different stepsAinvolved AinAtheirAderivation areAhighlighted, whileAmostAofAtheA

discussion focuses on the distinction of the different flow situations encountered A
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in practice. Of special concern in the next chapters, will be the case of variably
saturated flow and saltwater intrusion. Next, conforming Galerkin finite element
discretizations of these equations are derived and presented in their general form
as used and implemented in the numerical groundwater flow models discussed
further. The numerical algorithms used to handle each of the equations are left
for the upcoming chapters. So, herein only classical derivations as found in the
relevant literature are applied. Interesting issues such as treatment of different
boundary conditions from numerical point of view, and different implementation
techniques are discussed in more detail. A clear picture of different strategies for
solving the finite element equations system is given, in which different methods

used during the last decades are compiled, compared and commented.

3.2 Governing Equations for 3-D Groundwater

Flow

3.2.1 Basic Equations

The governing equations for variable saturated flow in heterogeneous porous
medium are derived based on the mass conservation equation and the gener
alized Darcy law relating flux to potential gradient.

In general, local mass conservation in compressible and variable saturated

porous media is expressed as

0

5 [9e(0) +0(p)] = —Va+R (3.1)
where p is the water pressure [M/LT?| relative to atmospheric pressure, nega-
tive in the unsaturated zone and positive in the saturated zone, S, is the elastic
storage coefficient due to the combined effect of water and solid porous ma-

trix compressibility, and saturated or unsaturated conditions [dimensionless], 6

is the volumetric water content [dimensionless|, q is the specific discharge rate
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[LT~!], R is the internal source/sink term [T~!], and V is the del operator [L!],
(0/0x,0/0y,0/02)T, where x = (x,y, 2)T is the location vector [L].
The generalized Darcy law for variable saturated flow in heterogeneous porous

media is given by

q= —# [Vp + pgV2] (3.2)

where k is the unsaturated permeability tensor [L?], u is the dynamic viscosity
[M/LT], g is the acceleration due to gravity [L2T~!], p is the fluid density [M/L3],
and the z-axis is taken vertical and positive upwards.
Introducing the hydraulic head or groundwater potential h, as
_ p _
h=z+—=2z+79¢ (3.3)
Pg

Where 9 is the pressure head [L]. Darcy’s law can be written in an equivalent

form
q=-K(h) Vh (3.4)

where K = kpg/u is the hydraulic conductivity tensor [LT1].

3.2.2 Saturated Groundwater Flow

Under saturated conditions, the porous medium compressibility depends upon
the water pressure, or groundwater potential, such that we can assume the elastic

storage coefficient, S, proportional to the pressure head, p
S,=95p if p=0 (3.5)

where the coefficient of proportionality, S, is called the specific storage coefficient
[L71], depending only upon compressibility characteristics of the porous medium
and the fluid, Sy represents the volume of water produced per unit saturated

volume of the porous medium, per unit decline of groundwater potential.



40A Numerical Formulation of Mathematical Groundwater Flow Models7

Note also that the saturated water content, #,, and the corresponding con-A
ductivity Ky, do not depend on pressure. Inserting equation (3.4) andA3.5) intoA
equation (3.1) yields a linear partial differential equation governing saturated flowA

in a 3-D heterogeneous porous mediumA

S, % —A& (KyWh) + R (3.6)A

3.2.3y UnsaturatedyGroundwateryFlowy

In this case, it is assumed that the storage due to compression of the medium orA
the fluid can be ignored in comparison to storage resulting from changes in theA

water content (Freeze and Cherry, 1979), i.e,
S, =0A if Ap <0A (3.7)A

inserting equation (3.4)4And (3.7) into equation (3.1)Aields a nonlinear partialA

differential equation governing unsaturated flow, namely theARichardyequationA

% =N/ (KyWh) + R (3.8)A

Notice that this equation contains the groundwater potentialA, and the water A
content A, which are a-priori the unknowns of the problem, therefore additionalA

relationships relating these variables and the hydraulic conductivity should beA

formulated. A ExamplesAof Ahese Aconstitutive ArelationshipsAare Agiven Ain Asection A

3.2.6.A

Using the chain ruleAg—i :AZ% 8—? we obtain the following equationA
oh
C En =N (KyWh)+ R (3.9)A

whereAC'(h) is the water capacity [L7!], given asA

do dSy,
C=an T

J10)A
o (3.10)
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C representsAhe amount of Avater Aeleased der unit AolumeAf unsaturated dorousA
medium, per unit decline of the groundwater potential, andAS,, (=4/6;) is the A
saturation of water (0AC S, < 1) [dimensionless].

In the general case, where the elastic storage coefficient is not neglected, theA
exact derivation leads to a general storage term in the left handAide of equationA

(3.9) which is given by (see Huyakorn and £inder, 1983)A
S(h) = &,5s +C (3.11)A

Hence, the general equation governing the flow in 3-D variably saturated porousA

media may be written asA

S(h) % —A/(K3k, Vh) + R (3.12)A

where/, is the relative hydraulicAonductivity tensor [dimensionless|. This formA
of the governing equation is the so-called &-basedyRichardyequation, while otherA
forms are theA-basedyand doressureyhead-basedyRichardyequations, where the de-A
pendent variables are substituted for& andA) respectively. However, the h-based A
form presents some advantages, as it can be used for saturatedAnd unsaturatedA

soils, as well for layered soils. A

3.2.4y Steady StateyGroundwaterylF'low

Anotherdossibility arisingAromAhe useAf&quationsA3.6), (3.9)ArA3.12) AssAvhenA

the variables become independent of time, the flow equation can be reduced toA
V(K3yk, Vh) + R =AA (3.13)A

The nonlinearity in the groundwater flow equation is still not removed, but de-A
creased by an order of magnitude, since dependencies on the groundwater headsA
are shortened toXk, =4, (h) relationship. Water contents are not involved in theA
steady state groundwater potentials, meaning implicitly that steady saturationA
profiles have a sharp distribution (§ =A in the saturated zone, and 4 =A) in theA

unsaturated zone).A
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3.2.5y UnconfinedyGroundwateryFlowy

In modeling unconfined aquifer systems, care should be taken of theAradoze zoneA
above the saturated region.AThe two regions can be distinguished from physicalA
point of view by the variability of the water content denoted here by 6 (0A< 6 < n),

which equals the porosity, n, or saturated water content, #, in the saturated zone.A
In between an abrupt water table delimits sharply the vadose and saturated zones.A
Neuman and Witherspoon (1970)Alerived the exact mathematical expression forA

the water table as a boundary condition, given by A

(R — 95%>.n34: f:(KWh).ni (3.14)A
=14

whereA; are components of the outward unit vector, andX represents the waterA
tableAlevation aboveAheAlatum level. ThisAs a direct &onclusion of theAact Ahat A
the water table is a streamline satisfying the kinematic conditionA% = 0, whereA
F(x,t) = &z,y,t)A z representsAheAreometry of Ahe Avater Aable. Aln Auddition A
it is necessary to prescribe the atmospheric pressure, taken as a reference, to theA

water table boundary, such thatA

h(x,t) = A (3.15)A

3.2.6y ConstitutiveyRelationshipsy

In general, for variably saturated flow, relative hydraulicAonductivity and volu-A
metricAnoisture content depend on the pressure head; theseAvell-known relation-A
shipsAreAheAoil AharacteristicAurvesAFig.A3.1), whichAhouldbeAdentified AnA
order toAolveAhe mathematical Hproblem. The tremendousAariability Af AheAoilsA
compounds, their&omplex behavior under Aaturation and Alesaturationfrocesses,

and AheAystereticnatureof Ahese Ahanges Asee &ig.A3.2), makesfexact Ajuanti-A
tative Adescription fofAheAoil Aurves Avery Adifficult. APractically, theseAurves/reA
obtained from laboratory experimental analysis, by fitting appropriate parame-A

ters of semi-empirical expressions.A
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Figure 3.1:ARepresentativewinsaturatedvwhydraulicweonductivity curvesworwgiven soilw

types.

Among the most popular ones, the Van Genuchten and Nielsen (1985) equa-A

tions are given byA

b)) = Zr + (9;; Zrl[loj; BT ifA < 0A (3167
S 1 -
—5v/2 v _ 2 :
ke () = il " ﬁ:ﬁ . ;(10; pr-gr iR <04 (3.17)A

where /9 zﬁ<%> , ¥, (< 0)AsAhe capillary Ar air-entry pressurehead Aralue AL,

n is a constant, andA = 1 — — forA approximately in the range 1.25A n < 6.
n
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Figure 3.2:AHysterisisveffectswnuthew ettingwandwdryingweycleswofuthewunsaturatedw
hydraulic conductivity (After Fetter, 1998).w

Paniconi et al. A1991) have suggested the following substitutionA

() = Or +(0s = 0)[L+ 8177 ifA ) <y, (3.18)7
Or + (0 — 0,)[1+ 8ol 7 + Ss(0 —1hy) K h & 1y,

%4)”
Vq
Other widely used functions are given by Brooks an

d Corey (1964)A
¢ A

0, + (0, — 0,) 4 2 forA o > o,
o= | 0O ez

(3.19)7
0, ifAvy <,

whereA),is a continuity parameter, B,,=8(1,) = (

0—0,\"
: ifA 1) < 0A
(1) = (95—9r> < (3.20)A
| K pAOA

whereA\ is a constant, andAn is a conductivity shape parameter.7
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FuentesZet Aal. A (1992) Ashowed Ahat Ahe Acombination Aof Ahe AVan AGenuchten A
water Aetention&quation (3.16) and AheBrooksAnd Corey&onductivity &quationA
(3.20) Arields the most consistent approximation for a large number of soil typesA
encountered in practice.Al'herefore, we recommend using such a combination forA
the Anodel Ao beAleveloped Afterwards. AHowever, aAnajorAlifficulty An/ApplyingA
such equations on large scale is that 'point’ scale measurements are only in-situA
quantitiesAf the Aeal Aepresentative Aield parameters, which make this approach aA
subject Af many uncertainties and Anadequatefor large scale Aield Atudies. NoticeA
that, for each soil type a significant number of related parameters is involved,
some dimensionless parameters are usually obtaineddased on curve fitting tech-A

niques rather than a physical meaning based approach (HaverkampAt al., 1999).A

3.2.7y Boundary andylnitialyConditionsy

The specification of appropriate boundaryAconditions is essential in groundwa-A
ter Anodeling. A Each Aset Aof Aoundary Aconditions Adefines Aone Aunique Asolution AofA
theAnathematical Aproblem.ATheseAonditions Aneed Ao e Awell iinderstood AromA
physical Adoint of Ariew, and their Anathematical formulation and numerical Ample-A
mentation should be worked out in an efficient way.A

Conditions at the flow domain boundaries are classified from mathematical A

point of view either as Dirichlet, Neuman, Cauchy or variable conditions.A

DirichletyBoundary Conditions

Also known as first type boundaryAondition, because the potential value is pre-A

scribed on a given boundaryASi4

Dirichlet boundaryAonditions are usually applied to soil-water interfaces, suchA
as streams, rivers (draining or feeding), reservoirs, trenches, lakes, wells, coastalA

lines and infiltration ponds.A
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NeumanyBoundary Conditionsy

This is a second type boundary condition, involving a prescribed flux normal toA

the boundary, or a prescribed gradient of the potential A
an(x,t) = A(KWh)A ny=A-qy(x, t) . SoA (3.22)A

whereyis the outward unit vector normal to boundaryASay qo(x, t) is considered A
positive Awvhen Zentering Ahe Alomain Aand Anegative otherwise. ANeuman boundary A
conditions are typically encountered at the boundaries of aquifer systems whereA
either Arecharge Aor AdrainageAoccurs, orAoMowAq, =2)An casedofAmperviousA
boundaries. Other examples are water divide lines, pumping or recharging wells,

infiltration, effective rainfall, water outflow to the sea, and ground water inflowA
or outflow through a boundary from a part of the aquifer that is not consideredA

in the simulation, etc.A

Cauchy Boundary Conditionsy

The third type of boundary condition, which is also known as head dependent fluxA
boundary condition, involves prescribing theAotal normalAlux due to the gradientA
in the boundary in response to changes in head within the aquifer adjacent toA

this boundaryA
Gn(x,t) = AN [ho(x,t) — h] = Aqo(x,1) dn  S3A (3.23)A

whereA\ isAAconstant. AThisAypeAofdoundary AanbeAllustrated oy AheAupperA
surface of an aquifer overlain by a semi-confining bed that is in turn overlain byA
a body of surface water.AT'he flux, qo4 across the semi-confining bed entering theA

aquifer, is given by ADarcy’syflaw asA
 hog— h
d

where K is the hydraulic conductivity of the semi-confining bed, d is its thickness,

qoa=HK =Kos(hos— h)A (3.24)A

Co4is the specific conductance of the resisting layer, hg4is the head in the surfaceA

water body, and& is the head in the aquifer.A
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ExamplesAofAsuch a boundary condition areAartificial AnjectionAof AwaterAorA
pumping of &Around water, where the transferAs subjectedAo a certain resistance,

as a sedimented infiltration pond or a clogged well, or a stream with a muddyA

bed.A

InitialyConditionsy

For variable groundwater flow problems initial conditions have to be specified,

given byA
h =4(x) h VA (3.25)A

wheref4is the prescribed initial value for the groundwater potential, andA/ isA

the region of interest.A

3.3 GoverningyEquationsyforySaltwateryIntru-y

siony

3.3.1 Basicsy

The flow in both saltwater and freshwater zones is modeled via an abrupt interfaceA
assumption A Bear Aand AVerruijt, 1987) AsshownAnAFig.A3.3. AThisAapproachAsA
successfully applied in case theAransition zone is thin relative to the thickness of A
the freshwater lens.AThe exact position of this interface is initially unknown; inA
fact this is part of the solution, such that the sharp interface constitutes a freeA
nonlinear boundary of the problem.A
WithAhe abruptAnterfaceAapproximation, onlyAtheXlow AequationsAofAbothA

fluids need to be solved, i.e., salt concentrations in the freshwater zoneA’r, and A
the saltwater zoneA/s are respectively given byA

C=0A inAVp

C =L inA Vg

(3.26a)A
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Fresh water
C=0
P=0

Salt water
C=C,
pP=0

Figure 3.3:ASchematicwepresentationvofwhevgaltwaterwntrusionvgharpwnterfacevap-w

proach.w

Notice that consequently the density of each flow phase becomes constant,

p = inA Vg
p =k, inA Vg

(3.27a)A

This is easily deduced from the empirical formula suggesting density to be linearly A

dependent upon concentration, and given byA
p =1+ 06c)A (3.28)A

where, p, is taken as a reference density, ¢ (=AC/C;) is a normalized concen-A
tration, and& = (p, — p;)/p; is the density difference ratio, such thatfp, is theA

density at the maximum concentration (¢ = 1). A

3.3.2y TheyMultiphaseySharpylnterfaceyA pproachy

Under theseAssumptions, the low Aquations&overning the lowAn each AdhaseAreA
stated independently as in Bear (1979), Volker (1980) and Huyakorn and PinderA
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(1983)A
R4
) 38t v (K(f)Vh(f)ﬁ) R(N4 (3.29a)A
(s)4
B 3gt A (K(S)Vh(s)a R(s)4 (3.29b)A

where (f) and (s) superscripts on the equation variables denote fresh and saltA
water phases respectively. The general storage coefficient for the saltwater phaseA
isArigorously Aequired An Acase of Apecial Aonditions. AFor Anstance, the/saltwaterA
phase mayAoverlapAwithAhe unsaturatedAzone, a saltAconeAofAdepression mayA
develop in contact with the unsaturated zone, or infiltration of salty water fromA
irrigation parcels need to be simulated.A

The coupled equations (3.29a) andA3.29b) are solved for a given problem ifA
unique boundaryAonditions are specified. AThese include in particular the fresh-A
saltwater AnterfaceAas a physical dboundaryAconditionXor the twolequationsAsi-A
multaneously. AVolker A1980) Aised A Aimilarity between Ahe Avater Aable Aand Ahe A

fresh-saltwater interface, leading to a generalized form of equation (3.14), andA

given byA
on S KDL
—0s—n3, = > (KY*VhV))n, (3.30a)A
ot i—14
on (KT )
i=14

where/y is the interface depth below the datum level, given by Hubbert (1940)A
asA

n=ALe _por P o (3.31)A
Ps — pf Ps — pf

This leads to the following equations relating the change of the position of theA
interface with time to potential gradient (or Darcian velocity) componentsA
on K4 gh(f)%)?7 éh(f)4<977 Oh(H4
— — — — A
ot o Yoo Yoy oy os )

on K®1onn 0%y ohl)?

(3.32a)A
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The equation for freshwater potential (3.32a) is derived by several authors, amongA
which BearA1972), Sugio andADesai (1987) implemented it in a 2-D seawaterA
intrusion Ainite Alement model, and Bakker A1998) used At for Aolving the AransientA
Dupuityinterface with the analytic element method.A

3.3.3y AjySimplifiedyApproachy

Solving the Aoupled Aystem Af &quationsA3.29a) andA3.29b) Aubject Aoboundary A
conditionsAncludingA3.32a) And A3.32b), isAlelicate Aand Aar Aexpensive.ASolvingA
suchAroblemAor a fully Ahree Alimensional Alow Aield Avill Anduce Aurther Ainneeded A
complexity. Alnstead, a simplified approach is developed to determine the sharpA
interface position, assuming a quasi-stationaryAaltwater zone, with a hydrostaticA

pressure distributionA
p =Ap,gz (3.33)A
by using the expression in equation (3.3)A
h=A0bz (3.34)

AssumingAhat AheAydraulichead changesAn theAaltwater zone are Amall AluringA
the saltwater displacement (Hantush, 1968;A nderson, 1976) it is only necessary A
toMsolveequationA(3.29a) Aor theAreshwater Aheads, andAhenceAhe couplingAisA
removed, whichAsAvery/fuitableAandAcheap.AThus, thefequationAgoverningAheA
flow for saltwater intrusion in 3-D heterogeneous aquifer systems is the same asA
equation (3.12), except that an additional unknown free boundary, namely theA
sharp interface is to be determined. A

Differentiation of equation (3.31) givesA

an _, 18h

5% 5 (3.35)

Equation (3.35) shows explicitly that the variations of the interface position areA

dependent on the density difference and the groundwater heads in the flow field,



3.4A pplication of The Finite Element MethodA 517

whileAnAequation3.32a) Ahese Avariations Aare Amplicit. Alt AurnsAdout Ahat, theA
latest AequationAls moreAsuitable Xfor numerical AimplementationAin a computerA
model to estimate the differential saltwater interface displacement over a givenA

time interval, knowing the residuals of the groundwater potential distributions.A

3.4y ApplicationyofyTheyFiniteyElementyMethody

For the AakeAfAimplicity, weAirst Ahall approximateAheAteady Aroundwater Alow A
equationA3.13), sinceAheAight hand Aide Af AquationA3.12)As theAame. TheAeftA
handAide of the transient variably saturated flow equation, which expresses theA
timeAlependence Avill be Approximated Aater An by a fully Amplicit Ainite AlifferenceA

technique.A

3.4.1 GalerkinySpacialyA pproximationy

ByAapplying theAFEAapproachAalready Adescribed AinAtheAprevious chapter, theA
groundwater potential is approximated by a finite series asA
h~ i b;(x) A (3.36)A
j=14
where/; isAhe nodalAalue Af the Aroundwater dotential, b;(x)As a trilinear nodalA
basis function andAwn is the number of the nodes in the problem domain. UsingA
equation (3.36) in equation (3.13) and applying the orthogonality condition inA

equation (2.5) results on the following equationA
/ {V [KW(§ bjh;)| + R} b; dV =RA forAi=1,2,...,nn (3.37)A
174 -
j

by applying theAGreen’sytheorem on the first term and integrating over all ele-A
ments and Ahen AummingAver theAlomain, weAbtain the AEA&quationsAn matrixA

form, which are linear for saturated flow and nonlinear for unsaturated flowA

G] {h} —4B) (3.38)A
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where {h} is the unknown vector containing the nodal potentials, [G] is the globalA
conductance matrix depending on the geometrical and conductive properties ofA
the flow domain andAB} is a vector containing all boundaryAconditions, andA
sources and sinks terms.A

In section 3.5 some important properties of the conductance matrix are ex-A

plored for an efficient use by the solver. The entries of [G] are given by A
Gy =" G;=N"[ Vi KV dve (3.39)
e e Ve

where the local element contributions, Gf;, are calculated in local coordinatesA
(&,71,¢) by means of equations (2.7) through (2.13).A
The boundary conditions, together with sources and sinks, are incorporated A

in the entries of vectorAB} given byA

B; :A/ ¢n b; dS +fy Rb; dV (3.40)A
S \%

wheredy, is the outer normal flux through the boundary surface, S.A

3.4.2y FiniteyDifferenceyA pproximationyinyl'imey

finite difference method is used for approximating the time derivative.A fullyA
implicit method or backward Alifference is adopted in the presented groundwaterA
flow model because it is unconditionally stable and quite resistant to oscillatoryA
nonlinear instability (Huyakorn andAPinder, 1983), even if the method is onlyA
first order accurate.A
Considering the governing equation (3.12), the matrix system is written inA

the formA

%ﬁh}tw — {h}] + [G]A{h}'*" =B} (3.41)A

where [S] is the diagonalized storage matrix having the following entriesA

Sij =K Y /V SO b dve (3.42)A
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whereA;; is the Kronecker symbol, andAS® is the storage coefficient of element/
as defined in equation (3.11).

Assuming that the element storage quantityAS® is averaged over each elementA
volume, and that the value is attributed to the 3-D element centroid, we mayA

express the diagonal matrix storage terms asA

Sy :/g Se /V b dve :A; Seve (3.43)

whereA/f is the control volume contribution of element/ at nodeA as shown inA
Fig.A3.4. Hence, The storage term does only increase the diagonal dominance ofA

the global matrix.A

e"hexahedral
element

_____

~
~——
....
-
-

Control volume VS

Figure 3.4: AT hree-dimensional control volume contribution of the element e at nodew

R

Finally, equation (3.41) can be transformed to a similar form as in equationA

(3.38), but in this case with a global matrix [G*] and the boundary vector AB*}
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having respectively the following entriesA

Gy =" . Vb KV dVe +% (3.44)
B :/y G b; dS +/y Rb; dV + tht (3.45)A
S \%

So, in the remainder sections, GyandBywill refer to entries given by equationsA

(3.44) And (3.45) respectively. A

3.4.3y NumericalyimplementationyfyBoundary Conditionsy

Basically, for a general groundwater flow problem there are different boundaryA
conditionsApossible, dependingAiponAheAypelofAlow: Aconfined, unconfined, orA
unsaturated-saturated flow.Aln the presented FE numerical model, a wide rangeA
of boundaryAonditions were implemented to allow for either natural or artificial A
stresses that might be encountered in practice. All conditions are attributed toA

the nodes of the finite element mesh, by means of a boundaryAondition code.A

Fixed Potentialsy

In such nodes the potentials are given a fixed value in the left-hand Aide of equa-A
tionA(3.41) Aand Aare Anot Aanymore Acalculated by Ahe Anmodel. A sAAconsequence,

for such nodes located on the boundary & 4the finite element equations are notA
needed.A simple substitution of equation (3.21) in the matrix system leads toA
an unsymmetrical AlobalAnatrix, whichAs an undesirable froperty Aor Aolving theA
matrix system.ATherefore, in the remaining equations all known fixed potentialA
terms are moved to the right-handide of equation (3.41) in order to conserveA
symmetry, and the equations corresponding to a prescribed potential nodes areA
simply skipped in the computational routines (Larabi and De Smedt, 1994), thisA
method As&fficient because At Aliminish Ahe Alimension Ar the number Af AinknownsA
of AheAmatrix system.AltAsAlsoAobust, because/Mrescribed ppotential Aaluesare A

preserved at their initial fixed values.A
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FixedyFluxyoryFlowy

Here, the flux or flow rate of inflow or outflow of water in a node or at a seriesA
of nodes is fixed in the right-handAide of the matrix system.AHence, boundaryA
conditions prescribed at Neuman boundariessare explicit, except for nodes withA
a prescribed Alux value, andAor Avhich theAodal AurfaceAormal to theAlux vectorA
must be calculated.AThis is practically feasible for vertical fluxes, as recharge orA
seepage, otherwise this becomes tricky or difficult to implement. Furthermore, theA
nodal horizontal surface areas are needed in other computational finite elementA

routines, such that the cost of this implementation is reduced.A

LeakageyFlux oryFlowy

In nodes of mixed type boundaryAonditions as described previously in sectionA
3.2.7, the resisting layer characteristics are described by one parameter, which canA
be considered as a global conductance, ACy4 or as a nodal specific conductance,
Cog dependingAn Avhich condition Aflux or Alow) Asdrescribed, respectively. IfAheA
conductance is large, h will be nearly equal to hog but in the opposite case no muchA
flow is possible and the potential will be different from#&y. Nodes at boundary A
Sssare explicitly included in the matrix system, and Aliagonal dominance of theA
general matrix will increase at rows corresponding to this condition, i.e.AglobalA

conductance terms are added to some of theAGymatrix diagonal entries.A

Seepage Facey

ThisAondition AappliesAoAhe Aase of A sseepage Kace. AOutflow Acan boccur Ainder A
athmospheric conditions, this means zerofressure, or/k equal to4k, but noAnflowA

is possible. This is expressed asA

h=A ifA Q < 0A
QQ =AA otherwiseA

(3.46)A
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The position of this boundary is known, but its extent is initially unknown.AToA
handle the complexity of such situation, an iteratively based procedure is imple-A
mented in the computer model which determines nodal points of this kind, thisA
is an improved version of the Neuman’s procedure (1973).A 11 the nodes whichA
can possibly be on the seepage face are treated initially as prescribed potential A
boundaries, with the potential equal to the elevation.A fter every iteration step,

the flux values of the nodes are checked, and if an inflowing flux is encountered,

thisAodeAsAreated As an imperviousAdoundaryAn theAextAterationAtep. OnAheA
other hand, if a positive value of pressure is encountered at a boundary node inA
the unsaturated zone, such node is treated in the next iteration step respectively A

as node located on a seepage face node boundary.A

OutflowySea Facey

This condition applies at boundaries of either confined or unconfined aquifers,

having a physical contact with a sea and through which the freshwater outflowA
toAheseaAisApossible. A ThisAcondition Assimilar Ao Ahe Aseepage Aace Acondition A
except that here the density gradient of salt and freshwater needs to be takenA

into account, it is given byA

h=A0bz ifA Q < 0A
Q =AA otherwiseA

(3.47)A

where/ is the elevation referenced to the sea water level, andA& is the freshwaterA
potential Aat AheAoutflowAnodes.  AllAheAnodesAwhichAcanApossibly AbeAonAtheA
outflow AaceAare Areated Anitially asAprescribed ApotentialAboundaries, withAtheA
potential equal to the sea water level corrected for density difference, and AluringA
theAterationdrocessAf a negativeAutflow Alux isAncountered at a boundary AiodeA
in the saltwater zone, in the next iteration step the flow rate at such nodes willA

put equal to zero.A
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VariableyBoundary Conditionsy

Because boundary conditions are subject to sharp temporal changes, and to theA
large variability of the medium properties which influence in turn the flow field,

variable conditionsAive dowerful Aapabilities toAimulateAituations AsAhey Avould A
occur naturally. Examples are, horizontal infiltration where the flow rate specifiedA
at theAoil Aurface Anfiltrate An Ahe unsaturated ZoneAbove the Avater tableAurface; A
abstraction wellsAbecomingAdry at unsaturated AdepthsAwhereAnoAwater can beA
pumped;Alrainage systems, where the collected water is removed by an overflowA
system set at a given&levation. Such boundaryAonditions (Infiltration, drainageA
or abstraction) are efficiently implemented/nd given a special attention in theA

groundwater model routines as well.A

Special nodesAare alsoAnvolvedAn manyZAsituations, such asAsolated nodesA
whichAare Acompletely Aurrounded Ay Aempty’ Aelements, i.e.AwhereAnoAoilAypeA
is considered.AThese nodes are excluded from the system of equations and com-A
putational Aroutines, andAoMowAcanfeAcalculated At Aheir Aocations.ATypicalA
examplesAre man-madeAolesAuch AsAnining Axcavations, galleries, and AlrainageA

systems.A

3.5y FiniteyElementyMatrix Analysisy

Repeatedly Aenerated systems of FE equations are ideally solved by an iterativeA
solver Xor Aarge Adimensions.ABut, theAchoiceofAhisAolver AddependsAmainly AonA
the particular properties of the global matrix which should be used efficiently toA
gain in memory use and CPU consumption. Alnvestigation of FE matrix proper-A
ties also clarifies many numerical issues related to the solvers efficiency and theA

preconditioners existence.A
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3.5.1 Propertiesyofythey(GeneralyMatrixy

It is of great importance to investigate the shape of the conductance matrix re-A
sulting Arom Ahe Ause Aof Ahexahedral Ainite Aelements. A Indeed Ahe AGymatrix hasA
some properties that make preconditioning possible and enhance the solver per-A

formance. AGysatisfies following the conditions:A

1.AGysAparse, becauseAS;; iskeroAfA andA areAot AodesAf theAameAlementA
2.AGyis symmetric, as can be concluded from equations (3.39 and8.44)A

3.AGyis positive semi-definite (Axelsson and Barker, 1984).A

desired Aroperty Aor Ahe conductanceAnatrix isAheAo-called M-matrix prop-A
erty, which means that theAollowing conditionshave tohbeAatisfied AAxelsson andA
Barker,y1984)A

e G; >0 for izAl,Q,...,nn
° Gij < 0 for ¢ #&S
e G 14> 07

In case of symmetrical matrices these conditions are less restrictive, and areA

equivalent to the following (Gustafson,1984):A
e Guyis positive definiteA
e G;; <0 for ¢ ANS
From equation (3.44) it is clear that,7

Gii :A/ Vb KyWo; dV +A / S€bS dve (3.48)A
14 e €
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is always positive, and using the basis functions propertiesA

> b =AIA (3.49a)A
j=14
> Vb =0 A (3.49b) A
j=14

it follows that,

i Gy =D | S dve (3.50)A
e Ve

j=14

Gi =A> Gy +D " [ S°bdve (3.51)A
J#i e WV

Substituting equation 3.48 toAG;; yieldsA
S Gy =A / Ky(Vb;)2'dV < 0A (3.52)A
i#i v
This implies that some but not necessarily all of the off-diagonal terms are nega-A
tive. For trilinearexahedral&lements, LarabiAndDe SmedtA1994) Ahowed AhatA
the conductance matrix satisfies an M-matrix property if and only if all finiteA
elements are cubes.A

First AndAecond typeAdoundaryAonditionsAlo Aot Affect the &eneral AtructureA
of Az.AThird type boundary/Aonditions only increase the diagonalAlominance ofA

some rows.A

3.5.2y SparseyMatrix StorageySchemey

conventional arrayAstorageAofAthe conductanceAmatrix composedAofAn?4ele-A
ments, requires usually more core computer storage than the hardware can han-A
dle.ATherefore, use is made of the symmetry and sparsity of AGymatrix and onlyA
non zerolentriesAn theAowerAriangularApart AofAzyarestoredAvia an indexingA
algorithm that keeps element positions within the original matrix. Several com-A

pressed storage schemes have been developed for sparse matrices (Saad, 1994),
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with the aim of gain in efficiency both in terms of memory utilization and arith-A
metic operations. It seems that the Compressed Sparse Row (CSR) format, andA
its variants as the Modified CSR (MCSR) and Diagonal CSR (DCSR) are theA
mostAdopular because Ahey Are Amplemented An many Aomputer dackages. SimilarA
schemes referred as the forward and backward structures, have been describedA
by Nawalany (1986), and Zijl and Nawalany (1993).AHerein, a DCSR variant isA
used, and which is described as follows: A

compact row-wise real vector gys used to represents the conductance matrixA
G, all non zero entries existing in subsequent rows along the lower triangularA
submatrix of &3.A direct Aelationship can beAstablished between Ahe AlimensionsA
of \Gyand A, respectively denoted byAn andAy,, as A

ng =A "k (3.53)A

i=14

where/; isAhe numberAf non AeroAlementsAn Ahe A" rowAf theAower triangularA
part of AG.A

TwoAnteger Apointer AvectorsApcyandApdyare used tosstoreArespectively theA

numbers of the columns of subsequent non zero elements, and the positions ofA

the diagonal elements, of AGyin vector4, such that A

J
pd; =B " k; (3.54)A

1=14

Gi,pcj :l@j (355)A

Since a twoAvay correspondencebdetween Gynd Ats Aompressed AepresentationAg,
pc, pd) is needed, this has to be clarifiedAnd established.A non zero elementA

Gij (i < j) is retrieved as follows A

e ForA =1 and ﬁ: 1A G114:1@(1)A
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etForAl > 1, a search is performed on the elements of pcyto determine theA

element that is equal to a given A The search can be limited to the rangeA

k € (pd;_1,pd;), whenkc, =4, we find &;; =4

Reciprocally, to find the elementAG;; corresponding to a given elementAy, itsA
column number is directly obtained from pcy, and its row number is the AnaximumA

i, such that pd; < k.A

3.6y SolutionyStrategiesy

TheAiniteelement systemAis Ausually Asolved Aby Amesh-free Aiterative techniques,

sinceAhe Anumber Aof Aunknowns Ainvolved Amay Abe Avery Alarge. A The Achoice AofAa A
particular solver must suit the special system properties to gain in efficiency andA
robustness, the shapeAfAhe matrix stays theAnost AlecisiveAactor, i.e, symmetricA
or unsymmetrical, dense or sparse, banded or random, etc. AMore discussions onA
the solver to be used within the computer packages being underAtudy will beA

given in the next chapter.A

Besides the numerical solver, several strategies exist for solving unsaturated A
flow problems in unconfined or multilayer aquifers, the choice of a given methodA
involves a number Af underlying approximations and Aimitations, but the applica-A
tion goals and interests remain the general guidelines for such compromise. AForA
instance, the moving mesh procedure is quite efficient, practical, and economical A
for prediction of the water table fluctuations in a regional groundwater aquiferA
system.AlnAontrast, forAeasonal ArariationsAstudy Aof AheAaturationAoil rofilesA
involving infiltration and ponding, the unsaturated zone plays a key role, andA
the more general variably saturated groundwater flow formulation including theA

unsaturated soils parameters is more appropriate.A
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3.6.1 TheyMovingyMeshyMethody

This technique involves an adaptive finite element mesh fitting the geometry ofA
the external flow domain boundaries.AThe most naturally encountered free andA
moving boundaries in groundwater flow problems being the water table and theA
fresh-saltwater Anterface. A The Aechnique AhasAeen Asuccessfully Aused Ay Aseveral A
groundwater Alow Anodelers Avorldwide AFrance, 1974; Mesaikt al., 1983; BearAndA
Verruijt, 1987; Larabi and De Smedt, 1993; Crowe et al., 1998).A
nice feature of the method is that soil unsaturated properties are not needed,

such that we may escape from the use of the water Aetention and theAelativey-A
draulic conductivity curvesAn theAnodel, whichAvill Alecrease Ahe AroblemAonlin-A
earity. AHowever, a price is paid for such approximations, because under certainA
conditions unacceptable errors could be introduced to the solution, or conver-A
gence difficulties are present. To better illustrate these limitations, the followingA

two descriptive examples are given.A

1.yAyFirstyExampley

Recharge from effective rainfall in an homogeneous shallow unconfined aquiferA
isAprescribed at the most upperAayer, whichAs theAirstAayer toAbe adjustedA
duringAheAolution Aprocedure. ARetardation Aeffects An Ahe Ainsaturated Avone Aare A
anAmportant AissueAespecially Af AheApercolation Azone AisAbecoming Ahick. A ThisA
scenario not being taken into account in the moving mesh based simulators, theA
numerical solution is inaccurate in consequence, especially for time dependentA

scenarios involving a number of consecutive series of humid And Alry periods.A

2.yAySecondyExampley

partially penetrating well pumping a fixed amount of water flow, (), is placedA
inAanAinconfined Aaquifer Aas Allustrated An AFigA3.5. AThe Xop Ssection Aof Ahe Avell A
filter dofAengthAr, isAplaced at a givenAdepth, dpp, fromAhesoilsurface. A IfA
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the water level at the well, h,,, is beneath the top filter section, the distributedA
pumpingAateAver theAnovingAumpingAodes at the Avell f&ace Ahould de Aipdated A
in parallel, this amount of water depends on the length of the saturated part ofA
the filter, this adaptive procedure at the boundary nodes is tricky to implement.A
The problem still remains when the well becomes completely dry, because a userA

intervention is still required.A

Figure 3.5: AExample of a partially penetrating pumpingw ell withdrawingw ater overw

a portion of the filtered part.w

Hence, unexpected problems may occur with the moving mesh strategy. TheA
modeler experience plays a very important role here, since the interpretation ofA

the model obtained in many situations should be performed with care.A

3.6.2y TheyFixedyMeshyMethod

Another possibility consists on adopting a fixed or ’rigid’ network of elements,
invariant Ain Aspace Aand Aime. A This Aconcept Ais Amore Awidely Aused Aor Amodeling A
groundwater flow problems in unconfined aquifers (Cooley, 1983;AHuyakorn etA

al., 1986; Paniconi et al., 1996), but in all these models the traditional approachA
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considers the characteristicfsoilAcurvesAoAresolve theAnonlinearitiesAn theAin-A
saturated Zone. ADrawbacksArelated Ao Asuch Aapproach Aare Alassified An AwoAnain A
points: A

1.ANumerical instabilities: due to the irregular shape of the characteristic soilA
curves, and the difficulties surrounding an accurate representation of theA

capacitance terms. These effects are best described in the next chapterA

2. Alnefficiency: most of computer codes using a compact matrix based solver,
need AoAecompute all Anatrix entries termsAor theAixed Anesh Aize Alements,
which need Axcessive Aomputer AimeAo achieve an accurateAolution. TheseA
kind of problems for large 3-D problems has been the domain of high-endA
supercomputersfand AmainframeAworkstations Aor AaAong AimeAago. A EvenA
if several ports are existing nowadays for cheap desktop computers, CPUA
cost AsAtill Aery Aigh. Larabi and DeSmedtA1997) haveAhowed that the Gy
matrix entries depends upon the soil medium properties and the elementsA
geometry which remains constant along the iterative process, they demon-A
strate that important computer time saving is achieved when keeping theA
fixed contribution the same all the time, so the relative hydraulicAonduc-A
tivity AsAhe Aunique Aparameter Awhich Ahas Ao Abe Aadapted. A However, thisA
previous study was limited to steady state conditionsfnd will be furtherA

extended for transient problems.A
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4.1 Introductiony

The problem of unconfined groundwater seepage is of a great interest in manyA
fields such as in hydrogeology, civil and agricultural engineering, and hydrology.A

Practical applications are for example, seepage flow in earth dams for stability A
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analysis; prediction of water table levels in a phreatic aquifer bounding an adja-A
cent water bodyAriver, canal, lake, stream, reservoir) Avhose Avater Aevel AuctuatesA
with time; performance of trenches which intercept contaminated groundwater;A
bank storage due to fluctuations of water levels in rivers.A

The solution of these problems is often complicated owing to the occurrenceA
of a free or moving water table and seepage face which are unknown a-priori,
andAhould Aherefore e Aletermined Aas A Apart of AheAolution Aprocedure. Ana-A
lytical solutions for such problems are derived for two-dimensional groundwaterA
flow (in vertical cross-section) under the Dupuit- Forchhemeiryassumption, whichA
neglects the vertical flow component.AClassic solutions for initial and boundaryA
value problems of this kind are found in the works of Harr (1962), Polubarinova-A
Kochina (1962), Bear (1972, 1979) and Bear and Veruijt (1987); these solutionsA
are limited to simple situations where hydraulic properties are uniform andAlo-A
main/fgeometriesAare Aegular. AThese Aimitationshave Aed Ao Ahe Alevelopment AfA
numerical Aechniques AisingAhe FDMARubin, 1968; Areeze, 1971).AHowever, itA
is not possible to construct a finite difference grid which fits exactly the curvedA
water table position.AThe IFDM brings a further improvement, this method canA
handle easily domains of complex shape by constructing an irregular fitted net-A
work of elements, but the drawback of the method is that the elements shouldA
satisfy a given number of orthogonality conditions, which restricts its flexibility. A
InAontrast, the FEM As Anore Alexible An Aandling Auch Alifficulties, which AxplainsA
its popular use and implementation in many groundwater flow numerical codes,
asAhoseApresented Aby ANeuman (1973), YehAandAWardA(1980), CooleyA1983),
Huyakorn et Al.A(1984), PaniconifndPuttiA1996), and AarabiAand ADeSmedtA
(1997).A

However, it is our point of view that more research is needed to implement aA
powerful and cost-effective solver for three-dimensional modeling with the stan-A
dard AiniteAelement method, becausefof theAhighly Anvolved Acost AnAconstruct-A
ing andfsolving theAalgebraic numerical ssystemsAofAequations, whichAbecomesA



4.1 IntroductionA 67A

cumbersome for transient problems as the iterative solution procedure involvesA
repeatedly Aenerated 2quations Aystems. AThe Alesired Aolver Ahould Aexploit Aeffi-A
ciently the particular properties of the global FE matrix as discussed in chapterA
3.AFurthermore, non-linearities inherent to the water table and seepage face it-A
erativeAupdatingAprocess, mayAeadAoAumerical Anstabilities. AnotherAmajorA
difficulty which is typically encountered in solving groundwater seepage flow inA
variably saturated flow domains, arises from the strongly nonlinear behavior ofA
the Richards’igoverning flow equation. Also, numerical approximation of the cord A
slopeAangent of theAvater Aetention curveAtemmingArom theAnatrix capacitanceA
term is a complicated issue as reported by Paniconi and Putti (1996).A

In this chapter the developed numerical approachAnd itsAdasicAoncepts whichA
are used to solve the approximate FE matrix equations system derived in theA
previous chapter are introduced for solving problems with a moving free surface.A
The developed technique is formally called theArastyUpdatingyProcedurey(FUP).A
Special consideration is made on computational efficiency in terms of CPU run-A
time and convergence speed.ACare is taken of controlling numerical stability by A
effective handling Af nonlinearities Aesulting Aither Arom Alifficulties Aelated Ao Asti-A
mationAf theAapacitance matrix coefficients, the chordAlope, or Arom theAccur-A
rence of nonlinear boundary conditions (time dependent fixedAeads, drainage,
seepage, abstraction, etcA..).AOtherAessential Assues Xor Aguarantying Aaumerical A
stability AwillAbe Adiscussed, suchAasAtheAperformancefof theAnonlinearAiterativeA
solver, the existence of linearized preconditioned conjugate gradient scheme forA
hexahedral finite elements, and the time stepping scheme.A

Several test AxamplesAreAtudied toAlemonstrateAhe numerical Aechnique ca-A
pability of predicting accurate results efficiently. AComparisons are made againstA
available analytical solutions, and other numerical schemes such as the movingA
mesh method.A comprehensive validation of the model predictions is achieved,

by comparing to laboratory experimental measurements of free surface flow inA

anfearth Alam Amodel dof Arregular Ashape ABaseghifand Aesai, 1987).AThisAprob-A
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lem is rather complex because it allows for real three-dimensional flow and forA

heterogeneous dam materials. A

4.2y TheyFUPyNumericalyI'echniquey

This section will focus on the development of the FUP. The method is compu-A
tationally fast because it avoids systematic reconstruction of the hole set of theA
FEAequations, andAdoesAnot ArequireArecalculating theAglobal Amatrix entries asA
given in Equation 3.44. This fast’ FEAnatrix reconstruction is performed in twoA
steps. First, theAelative AydraulicAonductivity AaluesAn the Aonductance matrix A
terms are updated on an iterative basis, and second, the mass storage entriesA
are approximated automatically from an idealized water retention curve as willA
be explained in the next two sub-sections.AThe two steps involve changes in theA

water suction potential values, and hence updating of the flow field. A

4.2.1 Determination of IdealizedyRelativeyHydraulicyCon-y
ductivity

InAhe conductance matrix entries in EquationA3.39, two contributions can beA
recognized, the basis functions derivatives referring to the geometry of the finite A
elements, while K yefers to the hydraulic properties of the medium with respect toA
water flow. It follows that the coefficients depend upon the position of the waterA
table. InAaseAhe nodesAositionAemainAixed, only theAffective conductivity AvillA
be variable, as some nodes will be situated in the unsaturated zone.AG;; can beA

approximated as proposed by Larabi and De Smedt (1997), as followsA
Gij = ki / Vb KWV b;dV =k;; Gy (4.1)A
v

thisAmeans actually, thatAwe assumeAthatAtheArelativeAhydraulicAconductivityA
between nodes is independent of their positions in space and time, and will dependA

only on the water status of the region in between as shown in Fig.M.1(a).A
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FigureM.1:A(a)wLocationwofwaw aterwtablewbetweenwtwownodes,wandw(b)widealizedw
relative hydraulic conductivity curve versus nodal pressure heads (note thatwk;; =4

only if both nodes are unsaturated).w

NoticeAthat Ahefsaturated Aconductance coefficients, G3;, areAconstant, andA
henceAremainAixed Aduring thefsolutionAprocedure, suchAhatAonly AheArelativeA
conductivitiesAhave Ao Abe Acomputed Aagain Ain Aeach Aiteration. A For Ainstance, ifA
nodesA andA are saturated water nodes it follows that&;; = 1, otherwise A;; hasA
to be updated. The following method is chosen to achieve this (Fig. 4.1(a))A

k= 1 K pi & 0hr p; > 0A (12)A

€ otherwiseA
This is slightly different from the method used by Larabi and De Smedt (1997)A
for steady state water flow, suggesting/;; to be smoothly updated for a waterA
table region.Aln contrast, unsteady problems require immediate release of waterA
fromAinsaturated toAaturatedAodes, such Ahat Amall derturbationsAlue toAvaterA
table retardation effects are avoided.Ae is theoretically zero, but chosen here asA

a small number in order to allow for the finite element equations correspondingA

to unsaturated nodes to remain in the algebraic equation system, without ob-A
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structing the numerical solution procedure by making the matrix singular. AThisA
also allows a small but negligible amount of water movement in the unsaturatedA
zone, enabling recharge to pass from the soil surface to the water table throughA

the vadose zone.A

4.2.2y ldealizedyWateryRetentionyCurvey

Most Aomputer Anodels Aise Aarious Aonstitutive Ar characteristicAelations Alescrib-A
ing the soil storage properties. AHerein, the updating of the nonlinear storage orA
time dependent term in the right hand AideAf Equation 3.44 is evaluated numer-A
ically in the FUP numerical technique.AThe nodal storage variation depends onA
the water tableAosition, and isAvaluated Aising a massAumping scheme ANeuman,

1972), such thatA

A~

do do dao
/ve %bi dV ~ an.. b, dV —ACEVZ- (4.3)A

clear physical interpretation of the mass lumped approximation for unsaturated A
flow, isAthatAwithinAeachAelement theAwater content changeAsAindependent ofA
thefspaceAlomain. AWhereasAn Acontrast, aAmassAdistributed Aschemefssumes/AA
trilinear Adistribution An AheAelement. A This As Anost Aprobably Ahe Areason Awhy A A
mass distributed Acheme exhibits numerical oscillations. TheAultimate AdvantageA
of using a lumped formulation is therefore that it is unconditionally oscillationA
free (Celia et al., 1990).A

The method used to evaluate the derivative term in Equation 4.3 affects signif-A
icantly the convergence behavior of the iterative schemes, due to steep gradientsA
and Aliscontinuities or points of inflection in the soil curves as shown in Fig. 4.2.A

natural choiceAf an idealized moistureAetention curveAvould de a step AunctionA

given byA

6, ifA p >0A
) = (194
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(1) steep gradient
(2) discontinuity

D
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N
~

Water content, ©

Pressure head, p

Figure 4.2: AWaterwetentionwcurvesworvspecificwsoilwtypes,wandverrorswinwthew aterw

capacity tangent approximation (modified from Istok, 1989).w

However, this function suffers from the same disadvantages cited above, especially A
discontinuity at the water Aable positionAp =A), hence another method should beA
adopted. It is of great importance to understand physically the reason of failureA
of the above mentioned procedure, while it seems to be attractive and simple.

Actually, spurious oscillations are observed in cases where there are sharp pressureA
head AvariationsAnear convergence)Asuch thatAwaterAable movement does notA
change enough to cross at least one node from top to bottom.Aln such case, dueA
to a null storage variation, i.e. [S] = 0, a severe cancelation or an eventual jumpA
toAteadyAtate Mlow conditionsAccurs.A nother Anterpretation Af AuchAhehavior, isA
that nodal points are assumed toAdeAhysically asAither saturated or unsaturated,

while the elements have three different water status, i.e., they may be saturated,
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unsaturated, or partially Aaturated asepicted Aor AheAlement inAigA.3. It turnsA
out that theseAlementsAre theAourceAfAailure Alue Ao Aeglection Af thedartially A
saturated AnodesAn Ahe Aormulation df AquationAt.4.A nAllustrativeexampleAsA
shown in the table at the left side of Fig.Ad.3 for the correspondingAexahedral A
element.AThe relative position of the water table inside this element to a fictiveA
plane joining specific points at the element z-vertices is depicted.AFor instance,

if the free surface crosses a vertex at a position between this fictive plane andA
the top element plane, the lower node sharing this vertex will be considered toA
beAsaturated Awhile AheAother snode AbecomesApartially ssaturated. AThe Adistance A
separating a given node from that fictive plane, is interpreted as a sharp depthA
position from fully saturated or unsaturated state to partially saturated in theA

node neighborhood; this distance is evaluated asA

@:@i (4.5)A

where €); is the control volume attributed to nodeA, and I'; is the correspondingA
FE patch surface in the xy plane.A

We define the soil moisture curve used in the described conceptual model asA

93 - 97’ s + 97’
0(p) = d Di e 5A
0, ﬁAm<—%

i | < +A 4.6)A
A fpl < +%, (1.6

and the specific water capacity function as7

0, —0 ;
= ifA |p;| < %

_ i 1|p|_+A
0A  otherwiseA

do

) (4.7)A

which means that the specific yield is released over the total length of each elementA
if a nodal variation occurs in one node sharing it. Therefore, at least two nonlinear A

iterations are needed to achieve convergence.A
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P: Partially saturated
S: Saturated
1 U: Unsaturated

FigureM.3: Alllustrativewexamplewofwmappingwsaturated,wunsaturatedwandwpartiallyw

saturated nodes from a partially saturated element.w

The functionals showed in Fig.Ad.4 are used to achieve the numerical differ-A
entiation method adopted in this model.A t the beginning of each time step theA
differential An function (b) is directlyAused to approximate the chord slope, inA
the next iterations nodal water content values are relaxed following the functionA
(a) defined &xplicitly in&quation 4.6 and the differential expression is calculated A
thereafter asA

A O(t+ At) — O(A_ O™ (t + At) — O(t)A
Ah h(t+ At) — h(HA (t+ At) — h(H)A

(4.8)A

whereAn isAhe iteration level. It can beAwoticed that Equation 4.8 AloesAot existA
whenever & (t + At) = A(t) which is especially the case at the beginning of eachA
nonlinear time step. This explains the use of the analytic specific water capacity A
as defined in Equation 4.7.A

There AremainsAonly Aone Aexception Awhen Astarting Arom Adry Aconditions, i.e.A
when the initial water table position is put exactly at the lower layer of nodes.A
UnderAuch initial conditionsAhe FUP hasAlifficulty to start Aip asAhe lower AodesA
inAheAinite Alement meshAvill Aemain dartially Aaturated, whichAsAinrealistic. A
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possible Aemedy As Adaptation Af theAdealized Avater Aetention curve, by Aixing theA
parameterAl; for such nodes as small as possible (d; =& — 0) and add this sameA
presetAalue toAnitialheadsAh; =/, + ¢, Vi). Another Atrategy AonsistsAn AddingA
another AnodalAayer deneath Ahe Aactual Amesh. AThisAecond Achoice Anay Anvolve A
however an important number Af nodesAor Aarge applications. However, it isAftenA
rare to meet such extreme conditions for large scale groundwater flow models,

and this issue is only of importance for local scale simulations and theoreticalA

scenarios.A

6,
|
Q |
\\{b\'Q\ :
& |
| Saturated zone
) |
! I
| |
Unsaturated zone| |
|
|
‘ | >
d/2 0 d/2
(b)
doidpd
(6-0)/d

Figure 4.4:Aldealizedw(a)w aterwetentionwcurve,wvandw(b)wanalyticwdifferentiationvofw

slope tangent at nonlinear first iterate.w
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4.3y NumericalySolvery

Direct solution techniques are not attractive because they cannot handle matri-A
cesMof largeAdimensions, andAddoAnot make useAofAhe specialApropertiesfof theA
conductanceAnatrix. Alterative AechniquesfreAnoreAuitable, butAtAsArucial AoA
choose a good iterative method from the many available, since any one of theseA
methods mayAolve a particular AystemAn few AterationsAvhile Aliverging Aor Ather A
problems.AHence, preconditioned conjugate gradient methods are preferred, be-A
cause they are highly successful, reliable and more efficient for solving linear and A
positive Alefinite Aymmetric Aystems, and AlsoAdecause Af their Aeasonable &ost fper A

iteration.A

4.3.1 LinearyPreconditionedyConjugateyGradienty(PCG)y

Solver

Among thelexisting Aiterativesolvers, the conjugateAgradient method A CG)yisA
used mainly to solve positive-definite systems (Hestenes and Stiefel, 1952). ThisA
methodAsArery dopular Aor Aolving FD and AEAystemsArising Arom Aroundwater A
flow Aequations. A The Anethod Adoes Aot Arequire Ahe Acoefficient Amatrix, onlyAheA
result Aof AaAmatrix-vector Aproduct As Aneeded. Alt Aulso Arequires AaArelatively Asmall A
number of vectors to be stored per iteration since its iterates can be expressedA
by a three-term vector recurrences.AThe convergence is theoretically guaranteedA
after A iterations, but inAractice theAlgorithm convergesAfter muchAess numberA
of iterations. The CG algorithm is given in table 4.1 in which the residual at /&'
iteration isA, =By Ghg. A

Notice thatAhe algorithmAs moreAfficient when AheAzymatrix isAnAarticularA
symmetric and very sparse, because the heaviest operation is the matrix vectorA
multiplication AGp, which/becomesXaster AnAsuchAcase. AIfAheAnatrix satisfiesA

also the requirements of an M matrix the convergence will be even more fasterA
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(AxelssonAnd Barker, 1984).A n important characteristicAfAhe ACG algorithmAsA
its connection with the Lanczos method which allows to obtain estimates of theA
eigenvalues of Azywith only little work per iteration, in this way Van der VorstA
(1988) determined the condition spectral number, which is the ratioAf the highest A
and lowest eigenvalues of theAGymatrix, and reported that the CG convergenceA
speed AsAlepending An Ahis number. Therefore, the Anore Az yesembles theAdentity A
matrix theAaster theA&onvergence, otherwiseAhe matrix isAll-conditioned and AheA
algorithm requires a substantial number of iterations to converge.ATo overcomeA
this problem, a transformation can be applied, which is commonly called scalingA

or preconditioning (Van der Vorst, 1989).A

TableAL.1:AUnpreconditionediconjugateyradientyiterativeyplgorithmy Barretyetyal. ,y
1994).y

Choose an initial estimate/g,

Pos=By- Ghy,

Foryk = 0, 1, 2, ... until convergenceA
I‘g Tr

PZ - GPyq

hy14=K) — Pra

(673 =A

rk+14:fkk -+ Oék;kad

Td
A Tky1g4 Te+1
By =A—F——

rl 1y

Pr+14= Xy 14+ B1.Pr
End Fory

4.3.2y Preconditioningy

Preconditioning acceleratesAgreatly Ahe convergenceAbehaviordofACG methods,
whichAecomes necessary AnAlealing Avith Aractical Applications Adf Aarge Aize. TheA
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idea behind it is to multiply the system by a matrixAC~'#that resemblesAG~1.A
Basically Ahe algorithmAloes not changeAxcept multiplyingAy C~'*whenever AhisA
is required. AUsing initial guess values of the potentialsg,=AC~ By Gustafsson,
1984; Gambolati, 1988b)Aeads to theAreconditioned algorithm asAhownAnAableA
4.2.A

Table 4.2:A Preconditionedyconjugateygradientyiterativeyalgorithmy(Barretyetyal.,y
1994).y

Po=XC" o4

Foryk = 0, 1, 2, ... until convergenceA
rl - Clry

pf - GPpg

hy14=K} — Pra

(673 =A

rir1a=4y + 0, Gpyy
Td
Br=A

-1
rii1e C T
rl - Clry

Prr14=K 14+ 5Pk
End Fory

The preconditioning matrixAC, which is close toAG, is considered as a goodA

estimate if it fulfills the following conditions:A

e4The condition spectral number of AGC™is less than that ofAG;A

e4TheAigenvalueAlistribution AfAGC ~tis Anore Aavorable to theACG AlgorithmA
than that of AGyitself;A

e4The coefficients AfAC~1*should beAasily Aletermined And ACyloes Aot AequireA

excessive storage.A
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However, theseAonditionsAestrict Ahe Ahoice ofAlgood dpreconditioner. ATheA
methods proved to be of value when they are used in conjunction with CG likeA
methodsAare: Adiagonal &caling ADS), incomplete ACholesky Adecomposition XIC),
incomplete factorization (IF), modified incomplete factorization (MIF), and soA
on.A 1l preconditioners, except DS are derived from the class of incomplete tri-A
angularAactorization AfAG, in this case we set &y=AU, where Ayand UyareAower A
and upper triangular matrices. A
The choice of the best preconditioner is still a matter of debate, indeed in eachA
particular AsituationAone Amethod Acan Aperform Abetter AhanAothers. A It AwasAalsoA
shown that theirAfficiency AshardwareAlependent. DSAsbest Auited An vector Au-A
percomputers, while IC is better in scalar distributed memory computers. AThusA
there is no general rule of thumb. It is also important to point out that the per-A
formance of theseAreconditionersAlependsAn howAheyAre coded, i.eArectorized,

parallelized, etc.A

Theylncomplete Factorization Preconditionery
In this study IF preconditioning is preferred, i.eA
Cy=(Ly- D)D(Ly+ D)” (4.9)A

whereALyis the strictly lower triangular part of Az, and Byis a positive diagonalA
matrix, such thatAiag [C] = diag [G] (Meijerink and Van der Vorst, 1977). OnlyA
the Antries Af D yeed AobeLomputed, thus theAnethod MloesAot requireAoo muchA
additional storage and computational work.AThe entries of the diagonal matrixA

Dycan be computed recursively asA

Dy =Gy — (4.10)A

Larabi and DefSmedtA1994) concluded after many comparisonshasedAn several A
test problems, including hypothetical and field applications, that the precondi-A
tioned conjugateAradient (PCG)AnethoddasedAn DS is the Anost Aobust becauseA
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it never fails, which isAlue to theAact that Ahe preconditioningAnatrix alwaysAx-A
ists. AHowever, thisAsAotArueXordotherpreconditioners. AlnAuchAcases, the AVIA
property of Gyroves to be a key factor for the successfulness of these solvers (Mei-A
jerinkAnd Van der Vorst, 1977), becauseAinder this conditionsAll dreconditionersA
are&uaranteed Ao Axist. Therefore, inAhisAtudy Ave Avill Aise an incomplete Aactor-A
ization preconditioner obtained on the M type transformed conductance matrixA

as recommended by Larabi and De SmedtA1994).A

4.3.3y M-Matrix TransformationyProcedurey

The flow domain is often divided into irregular finite elements, and leads naturally A
to a conductance matrix which is not an M matrix.Alndeed, the more irregular-A
ity in the shape of the elements, thehigher the deviation from the M matrix A
property.Alhis will greatly hamper the numerical solution procedure, because ofA
some constraints related to the existence of preconditioners as discussed in theA
previousAparagraph. ALarabiAand ADe Smedt 1994) Auggested Ahat KXor obtaining A
a preconditioner, Gycan be transformed to aAG,; M-matrix by maintaining allA
negative off-diagonal terms of Az, while all positive terms of AGyare added to theA

diagonal; henceA

(Ga)ii =AY max(Gy;,0)A (4.12)A
j=14

In the next paragraph, we will show thatAz),, is a good M matrix estimate ofA
Gyand, that an incomplete factorization preconditioner used in conjunction withA

the conjugate gradient solver is always guaranteed.A

4.3.4y ModifiedyNonlinearyPicardylteration

Among the most popular linearization schemes are Picard and Newton-RaphsonA

methods (Huyakorn and Pinder, 1983;Astok, 1989), with the Picard method beingA
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moreAopular becauseAt isAasier toAmplement, cheaper An a single Ateration dasisA
andAloes not Aeed Ather Atorage AequirementsAr changes An Ahe Aystem Atructure. A
In contrast, the Newton method involves additional costs related to storage andA
approximationAof AderivativesAof AheAJacobian, andAeadsAto an unsymmetricalA
nonlinearAsystem, whichArestrictsAtheAlinear AsolversAchoice. A comprehensiveA
comparison between these two methods with several strategies has been carriedA
by Paniconi and Putti (1996), who concluded that the Newton method is fasterA
in case the initial estimate is good enough, otherwise convergence performanceA
maybdesoor, and theyhpropose a mixed ApproachAor Aemedy. Herein, a modifiedA
Picard scheme is preferred because we believe that combined to the developedA
M matrix based linear PCG solver and the FUP, a robust and yet more stableA
solution method is obtained as will be demonstrated further in this chapter.A

ToAolve theAonlinear FEAystemAfAquationsA.41 at timeAtep A 14 startingA
from Athe Ainitial Apotential ddistribution Ah(x, t;), the modified APicard algorithmA
involves the following steps described below forAn =1, 2, ...

1.AThe new AositionAf the Avater tableAsAletermined at iterateAn, usingAqua-A
tion 3.15, where &, ;denotes theAn™ iterate of & (x, ty11);A

2.AThe global conductance matrix is adjusted using Eqns 4.1 andAL.2;A
3.AThe capacitance matrix terms are adjusted using Eqns 4.3 and 4.6 to 4.8;A

4.AThe linearized system of FE equations is solved using standard conjugateA
gradient solvers, preconditioned with point incomplete factorization method A
enhanced with an automatic M-matrix transformation as described earlier,

which yields a potential distributionﬁhﬁ:“lfA
5.AFor the next iteration, an improved estimate of A& is derived fromA

P = A (B B) + B (4134
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whereAv™14is an automatic underrelaxation factor used here in order toA
amortize possible oscillations of the potential iterates. An optimal value ofA

w™ s determined upon convergence rate at the previous iteration;A

6.ATheAterative drocedure Alescribed Ahought stepsA to 5 isAepeated until AheA

following convergence criterium is satisfiedA

et = max [y = AL ) < tolw (4.14)7

€raxd —

but, only over nodes lying in the saturated zone domain, whileAolw is aA

prescribed &Aroundwater potential tolerance.A

Relaxation Techniquey

Relaxation isAsuggested toAenhanceAnonlinearAiterative AschemesAasAby ACooley A
(1983) Aand Huyakorn et Aal. A(1986), thisAsecauseAterationsAcould AesslowdorA
oscillations my occur.AHere we used an adaptation of the Huyakorn’s procedureA

(1996) Avhich AjuantifiesA™4as a functionAf theAonvergenceAateAn the dreviousA

linear iteration, we suggest the following expressionA

m+14
W™= max %mmf( Cmax4 },wmin% (4.15)A
rnax4

where (Ah) max |Amaxa— Pmin| is the absolute value of groundwater po-A

tential Aead AxtremasAver allhodal Aalues, and Aping(0AC wiing< 1)As a minimalA

max4 ™

preset Aalue. Typically, thishas a greater &ffect at thebeginning Af AheAterations,

and as the solution procedure continues it is obvious thatAv™4— w4 whereA

m+14

€max4

— 0, especially when convergence is close. The technique shows to be veryA
effective in accelerating the convergence of the nonlinear iteration by an order ofA

magnitude of few iterations at the beginning of the process.A

4.3.5y TimeySteppingySchemey

The model automatically adjusts time step sizes, in order to avoid possible in-A

stabilities during the solution.A maximum number of linear iterations;At,,, isA
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allowed for each nonlinear time step, and if exceeded without convergence theA
solution is recomputed at the current time level 'back stepping’ using a reducedA
timeAtep Aize. AThe Aomputation Aontinues Aintil A Anaximum Apreset AimeAl ... A

This time step is calculated using following expressionA

S’iitolw
Bi =Y Giht
J

J°79

At =Anin7|

(4.16)A

However, if a fixed time step value At is specified the simulator will assumeA
timeAtep Aizes AsAnteger AnultipliersA (2A¢yser, 3Atyser, -..) of this preset value. A
If necessary, the time step is adjusted to coincide with a target time valueA, atA
which simulation output is required.A

In conclusion, three nested iterative loops are necessary to build the overallA
numerical flow solver.AThey are from the outer to the most inner one, the timeA
steppingAloop, theAionlinear APicard Aiteration, and theAinear AM Amatrix basedA

incomplete factorization preconditioned conjugate gradient method.A

4.4y ModelyValidationyandyA pplicationsy

4.4.1 NaturalyDrainageyinyaySoilyColumny
ProblemyDefinitiony

Water drainage in a wet vertical soil column of length L and unit cross sectionA
(S = 1x1 %?)AsAdepicted AnAFig. A4.5AsAnvestigated, assumingAafhydrostaticA
initial Apressurehead Adistribution An AheAentireAlomain.A tA = 0, the pressureA
head at the flow outlet becomes equal to zero, the soil column starts draining,

and Aan Ainsaturated AZone Awill Alevelop Arom Aop Ao Mbottom. AThe Anoving Avater A
table position& (t) is predicted using the developed FUP, and Aompared to otherA
solutions including the moving mesh solution methodAnd the exact analytical A

solution.A



4.4 Model Validation and ApplicationsA 837

A
Z
— L
=]
Q
©
=
(4]
[75]
[ o
| 2 | Water
Z(t) table
o)
L
o
=
«©
(0p]
=0

QS

Figure 4.5:ASchematic view of a draining vertical soil column.w

AnalyticalyExpressions

Assuming an instantaneousAdrainageAn theAporous mediumA Boussinesq’syap-A
proximation), theAlischargeAate throughAheAaturated Aoil&olumn Aength As &on-A
stant, and equalsA), =AKS. The drained volume of water at time t is calculated A
equivalently using one of the following expressions given asA

V(t) = A Qs (C(t) - L)S (4.17)A

o4 T

which yields a simple linear decreasing water table height A

C(t) = A— %t (4.18)A
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FigureM.6:AWaterwevelwdrawdownwlaw ((t);Acomputedwresults withwthewFUPwarew

plotted versus analytical solution.w

Numerical ResultsyandyDiscussiony

We assume a 10m length fine sandy soil column, having a saturated hydraulicA
conductivity AKX = 1m/d and an effectiveAporosityn, = 0.25. AlthoughAtheA
problem is naturally 1-D, 2 nodes along plane x and y directions are necessaryA
toAunourB-D Anodel. AThe Ainite Alement Anesh As Aomposed Arom AL Arertically A
ordered Avexahedral Alements, thusAt4AodesAnAotal. ATheAnodelsArefexecutedA
for 2Adays simulation time, with a user-specified time step of 0.1 days, and aA

predefined Xolw parameter equal to 1073.A tAeachAimeAarget Aolution, sharpA
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FigureA.7: Computedwharpw aterwableweightw(¢) usingwhewnovinguwneshwechniquew

versus analytical results.w

water tablefositionAccurring at zeroAressurehead AalueAsAinearly Anterpolated A

from obtained values at nodal positions.A

Decreasing water table heights arelottedAn Fig. 4.6 with a time increment of A
0.1Alays; Ahe numerical Aolution Axhibits very Amall deviationsArom the analytical A
solution, whileAheAmnovingAmeshproceduredyieldsAexcellent AresultsAFig.A4.7).A
This is interpreted as a consequence of discarding the unsaturated zone, becauseA
water As Aeleased Ammediately Ao Avater tableAodesAocated at the top AfAhe newly A

adjusted mesh, whichAomewhat comply AvithBoussinesq’s approximation used toA
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Figure M.8: AWaterwcontentwprofileswatwspecificwtargetwtimes, wdotswindicateswnodalw

positions.w

derive theAnalyticAiquationA.18. SoilAnoistureAontent profiles at selected AimesA
plottedAn Fig. 4.8 Ahows that theAlesaturationfrocess at a givenAlevationAointA
is by no means linear in time.AOne should not confuse the linear water retentionA
curve model which is locally dependent on the moving water table position, andA

the overall global representation at the end of the solution procedure.A

The efficiency of the two calculation methods is investigated in terms of run-A

time, CPU(s); total number of inner PCG iterations, NI(PCG); and total num-A



4.4 Model Validation and ApplicationsA 8TA

Table 4.3:AComparisonyofytheyF UPyandymouvingymeshysolversyefficiency forytesty
problemyl .y

CPU(s) NI(PCG) NI(PicarD)
FUP 1.1A 545A 111A
MOVING MESH METHOD 5.4A T25A 157A

ber of outer Picard iteration loops required to satisfy convergence requirements,

NI(Picard)'. These values are given in Table 4.3 for the FUP and moving meshA
methods. AThe A UP AechniqueAsXaster, and ArequiresAessAaumber AdfAotal PCGA
iterationsAnd Aicard iterationAoops, meaningAhat theAuccessively updated Ana-A
trix equationsAystemsAare Anuch Aasier Xo&olve. AHowever, savingAnACPUAimeA
is largely due to the implicit reconstruction of the conductancef&nd capacitanceA

matrix terms as explained in Section 4.2.A

4.4.2y DrainageyofyaySoilyColumnyl'’hroughyayl.eaky Outlety
ProblemyDefinitiony

This problem is taken from Ababou et al.A(1998) who solved the same problemA
with a partially saturated finite volume based approach. This test case is basically A
similar to the previous example, except that a soil medium of lower hydraulicA
conductivity A, << K and smallAengthA < L ishlaced beneath theAdriginal Aoil A
column as illustrated in Fig.M.9.A

AnalyticalyDevelopmentsy

Following again the Boussinesq’s approximation, the flow rate remains the sameA
through the upper and lower unit cross-sections of the outlet, such that directA

application of Darcy’s law at these two cross-sections yieldsA

Qs =AC gg—_héb)A:PKb%b)A (4.19)A

L Alll test! runs!in! this! chapter! are! executed! on! a! PC! platform! (Pentiun-166! with! Intel! CPU-!
classI,!land!64MB!/RAM).!
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Figure 4.9:ASchematic view of a soil column draining through a leaky outlet.w

such that the groundwater potential at the upper outlet section, h(b), can beA
deduced asA

_ B+b)¢
B+¢

whereAJ :/&(zg —1). Substitution AfAquationA.20An onedart bf AquationA.19A
b
yieldsA

h(b) (4.20)

¢
Q. =K 4.21
Fic (4.21)
whichAs a relationship Aelating theAlischarge Aate at theAutlet to theAvater tableA

height X
Application Af AquationA.17 to theAxpression Alerived An Aquation A.21 ArdeldsA

the analytical form of the moving free surface positionA

¢+ ﬁln(%) =A— %t (4.22)
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results.w

Therefore, the water table heightAl is expected to decrease with a much lowerA

rate than in the first example. A

ComparisonyWithyNumericalyResultsyandyDiscussiony

Now, we take a soil column of 80m length, in which a coarse sandy soil is placedA
above a 10m height clayey outlet. AHydraulic conductivity and effective porosity A
values are respectivelyAX = 10m/d, n = 0.3;AK}, = 0.1m/d andAn, = 0.6 for A
the macro-porousAand and theAeakyAdutlet. 80 box shapedA&lements and a totalA

number AfA824 nodesAre used to approximateAheAntireAlomain. The modelAunsA
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FigureAd.11: AWaterwtablewdrawdownwaw ((¢), FUPwandwmovingwmeshwnumericalw

methods are compred to the analytical solution.w

for 80 days with a prescribedXolw parameter equal to 1073; this time is quiteA

sufficient for the soil column to drain completely, as an estimate can be made a-A

priori from Equation 4.22 forA =A. The computational time step is fixed to 0.5A

days and the numerical results are obtained within a period of 4 days. PredictedA

discharge Arate Avalues Ait Ahe Aanalytical Acurve Aperfectly Aas sshown An AFig. A4.10,

except close to the end, when the water table crosses the two mediums interface. A
TheAsimulated Anoving Awater Aable AitsAexactly theAanalytical AoneAashown inA
Fig.Ad.11; such that it can be concluded that the FUP model is able to predictA

accurately the time for the sandy soil to become dry.A
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The effect of the outlet low permeability on retarding the water table decrease,
could be deduced also from soil moisture content profiles at target times shownA
in Fig. L.12.A

Here again, the FUP based solver performance is checked against the movingA
mesh method, it is shown from Table 4.4 that still the superiority of the newA

technique is preserved.A

Table 4.4:AComparisonyofytheyF UPyandymovingymeshysolversyefficiency forytesty
problemip.y

CPU(s) NI(PCG) NI(PicarD)
FUP 08.3A 13722A 791A
MOVING MESH METHOD 197.3A 6620A 725A

4.4.3 SeepageyinyayReservoiryfromyaySemi-InfiniteyUncon-y
finedyA quifery

ProblemyDefinitiony

This is another academic test problem:Atwo-dimensional&roundwater flow in aA
semi-infinite aquifer of rectangular shape. The natural drainage of a water tableA
aquifer starts when the water level in a bounding reservoir is lowered fromAbg,
toAh,4 asAllustrated AnAFig. A 4.13.A The Agoverning Aequation Ain Ahis Acase Ais Ahe A
well-known 1-DABoussinesq’syequationy

oh_K, 9 on,
ot  n.or Or

(4.23)A

Initial and boundaryAonditions are defined in such case asA

h(l‘, O)kfko, h(O,t > 0)AF1%14 andA h(OO,t > 0)1%#@04 (424)A
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Figure 4.12:ANVater content profiles at target times.w

AnalyticalySolutionsy

Several attemptsAvere taken toAlerive approximate And Axact analytical AolutionsA
for thisfroblem, which can beAoundAn a number AfAtandard and AomprehensiveA
textbooks. For instance, solutions given by Bear (1972; 1979) are established by A
using linearized forms with respect tof and&?*as the dependent variable in theA
original quationAseeA ppendix A.1).A moreAccurateolutionAwaspresented A
earlier by Polubarinova-Kochina (1962), which is given in the form of& =4 u,

whereAs is a truncated fpower Aeries Axpansion to theforth termAfAheparameter A



4.4 Model Validation and ApplicationsA 937

JT77777777777777777777777
impervious
X

Figure 4.13:ASchematic view of test problem 3.w

[ — 3h04_ h14
h14
u :Az: lmum ~1 =+ lU14—|— ZQUQ4+ Z3U34—|— (425)A
m=04

whereAu, uy, andAizqare functions of the dimensionless parameterAy Ai" A
2Eht
analytical expressions of these functions and a set of tabulated numerical valuesA
are given in Appendix A.2.AHowever, EquationA .5 is not valid for the extremeA
casedf AeepageAnto an emptyAtream channel, i.e., whenA4,= 0, this is not math- A

ematically neither physically correct.Aln such situation the following expressionA

was derived alternatively A
a4
h(n,t) = 2.365ho(y — 2y + 3y""— oK A (4.26)A
wheredy = 0.4873{/n, the discharge flux to the stream is evaluated asA
Gooa= 0.332 (Kne ) 221/ (4.27)

nother solution based on theABoltzmanytransformation is recently proposed byA

Guo (1997), which has the feature of Aninimizing computational costs in compar-A
ison to the Polubarinova-Kochina’s solution.A

WeAind it comprehensive to recall some key assumptionsAinder whichAheA

Boussinesq’sipquation is derived, namely the horizontal flow or Dupuit- Forchhemeiry
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approximation, which is known to be not valid near the stream channel where the
vertical flow component cannot be neglected (Bear, 1972), this is more obvious
as Z—(l) >> 1 or [ >> 1, and also in case of relatively deep unconfined aquifers.
Another limitation of the analytical solution is the inability to predict the seepage
face extent. These limitations are not applicable to the numerical model being
under study, and differences with the expected numerical results may therefore
occur. To be able to interpret these deviations in numerical results, a couple
of simulations is performed by disabling and enabling respectively the seepage
face detection procedure. The first run is especially chosen to comply with the

analytical prescribed head near the stream, while the second simulation is judged

to be more realistic as it will occur in either laboratory or field conditions.
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Figure 4.14: Finite element mesh for test problem 3.

Comparison with Numerical Results and Discussion

The parameters for running the numerical simulations are hg = 1m, h; = 0.5m,
K = 1m/day, n. = 0.1; and 1m fixed groundwater potential at 4m downstream
the reservoir, assuming that the flow is stationary landward. The finite element
mesh used in this example has a uniform spacing of 0.1m as shown in Fig. 4.14.

The total simulation period Ti,.x is 1 day, and the dynamic time step size con-
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trol algorithm is enabled. Numerical solutions of the groundwater potential dis-
tributions, h(x,t); the free surface positions for runs 1 and 2; and Polubarinova-

Kochina’s analytical free surface are simultaneously plotted in Fig. 4.15.

t= 0.1 days t=0.4 days

35 4

t=0.2 days

0.5

35 4 0o 05 1 15 2 25 3 35 4

t= 0.3 days

h (m)

0.8 0.85 0.9 0.95 1

Figure 4.15: Comparison of moving numerical and analytical water tables; coutour
heads with an interval of 0.05m are also plotted. Dots represent the analytical solu-
tion.

First Run

For the first run no seepage face condition is set at the outlet face. The results
show that drainage is faster than expected, especially at starting time levels, but

becomes less pronounced as the time increases. Groundwater potential contours
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are plotted within a regular interval of 0.05m, it showsAmportant gradients (andA
henceAelocities) at theAutlet boundary Af the Aeservoir, diminishingAn time. WeA
can think that not allowing the numerical seepage face existence has led to theseA

difficulties, and explains the motivation for the second run.A

SecondyRuny

In this run the seepage face is taken into consideration.Alt is observed that theA
newly simulated water tables fit more accurately the analytical solution whereA
the previouslyAimulated ones haveAhe maximum deviations, while deviationsA
near the reservoir are obvious due to the limitation of the analytical solution.A
These conclusionsAhed Anore light on the simplifications of some ’exact’ analytical A
solution, and the superiority of numerical modeling techniques. A

The efficiency of the FUP is again investigated for this test problem, theseA
resultsAreAhown inAlableA.5.A sforAhedreviousAxamplesAhe AUP AsAound toA
be very efficient. ADue to sharp water table variations, time steps were automat-A
ically adjusted, and the simulations neededAadditionally®2 time levels (differentA
than output time levels) at 0.02days and 0.0448days which is not excessive butA
necessary to prevent numerical Ascillations around Ahe Arue Aolution, which ArovesA

that the used time stepping scheme is effective and well implemented. A

Table 4.5:AFUPysolveryperformanceyforytestyproblemys.y
CPU(s) NI(PCG) NI(PicarD)
FUP (RUN 2)  12.2A 360A 53A

4.4.4y Validationwith a Three-DimensionalyL.aboratory Modely
Backgroundyandyl.aboratory ModelyDescriptiony

In general, practical simulations involving moving surface seepage in field condi-A

tions are complex due to local medium heterogeneities, non regular geometries,
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and time dependencies.AClosed form analytical solutions for these problems areA
hard Ao Aormulate and Aery Aimited asAliscussed An the AdreviousAection. Hence, toA
establish a confidence in the numerical model results, validation by using exper-A
imental or/andAield measurements is an asset for the developed model. Aln thisA
study, the results of an earlier experimental tests are used to validate the FUPA
model, these laboratory experiments were carried in department of Civil Engi-A
neering and Engineering Mechanics (University ofA rizona, Tucson) by BaseghiA
and Desai (1987), which is a useful contribution since it is a unique study thatA

reported laboratory observations on three-dimensional free surface flow.A

Laboratory tests were performed on a three-dimensional glass bead model. A
The modelAconfiguration allowsAXorAimulationofAomogeneousAand Anonhomo-A
geneous materials such as core in dams, which are simulated by glass beads ofA
different diameters (1mm and8mm).AFig.A4.16 howsAheM-D Anesh Aised AoA
approximateAheAoleAlomain, inAvhich Apecific Aections Are Af Anterest, especially A
the front section, F; back sections, Bisand Bs; andAide section S. During the ex-A
periments, transient movement of Ahe free surface was recorded photographically A
along these sections, upon transient (rise, steady-state, drawdown) fluctuationsA
onAheAipstream Aection of AheAearth Alam Anodel. AThese fobservations Aare Aom-A

pared to numerical predictions from the presented model. A

Model Parametersy

Hydraulic conductivity values for granular glass beads are reported by the authorsA
(Baseghi andADesai, 1990), andAhaveAbeenAdeterminedAusing a constant headA
laboratory Aest, specificAtorageAcoefficients AwereAlsoAcalculated. ABut, neitherA
specificAields Aor Aporosities Aare Agiven Xor Ahe Aised Amaterials. AThis AsAaAimiting A
factor for theAimulationsAobedperformed, but a relatively acceptableAstimationA

of the porosity is found from the Kozny-Carmen equation (Freeze and Cherry,
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Figure 4.16: Configuration of the laboratory model showing the finite element mesh,

the photographed sections, and the core dam location.
1979) relating it to the hydraulic conductivity by

(4.28)

)

D2
)3 (1780

where D is the mean-size granular soil diameter [L|. Equation 4.28 yields the

following equation

(4.29)

0

TL2 —n3

)

A

1-3n+ (33—

[.

n is therefore the root of the polynomial Equation 4.29 which

2

D

)
180K 1’
satisfies necessarily the condition n € ]0, 1

_ (pg

where A\
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Figure 4.17:AComparisonwofwpredicted (continuouswines)vandwobservedvireeveurfacew
duringwisevandveteadyvstatevforuthevhomogeneouswdam:w(F )wfrontvgection;w(B;,Bs)w
Back sections; (S) side section.w

ComparisonyofyF UPyNumericalyResultsywithylL.aboratory Observationsy

Caseyl :yHomogeneousyDamy

Glass beads of 1mm diameterAreAised AnAhisAexperiment. AStarting AromAdry A
conditionsAle.g.Ah = Ocm everywhere), the upstreamAwater Aevel AsAraised toA
17.4cm in about 20min, and maintained at that level for about 140min. The A
upstream water level is decreased thereafter with a fixed rate of 0.96cm/min.A
Measured values were recorded at 4min, 8min and 12min for the rising phase,
and at 156min, 158min, 162min, and 164min for the drawdown stage.ASo, ac-A
cordingly Ahese AimesAevelsAre Apecified Aas output An Ahe Anodel. AComparisonsA
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Figure 4.18: Comparison of predicted (continuous lines) and observed free surface
during drawdown for the homogeneous dam: (F) front section; (By,B5) Back sections;
(S) side section.

between the FUP numerical predictions and the observed water table positions
are shown in Fig. 4.17 for the rise and steady state conditions and in Fig. 4.18 for
the drawdown stage. It is clear that the developed numerical procedure produces
satisfactory predictions of either the free surface or the seepage face height. The
observed deviations at given time levels, are due in large extent to inaccurate
estimations of the saturated and residual water contents in our models. A para-
metric study to estimate these values is possible by trial and error calibration
procedure with the observed steady state measurements on a long term transient
simulation basis, however this would need more effort which is beyond the scope

of the present study.
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Figure 4.19:AComparisonwofwpredicted (continuouswines)vandwobservedvireeveurfacew
duringwisevandvsteadyvetateworvthevheterogeneousvdam:w( F)wirontveection;wB;4Bs )w
Back sections; (S) side section.w

NoteyonyComputer Timey

It AookAbout 834 PU AAn average der AimeAtepAn a CYBERA&05Aupercomputer A
of 10 years ago (as reported by the authors) for their 3-D model, and82 CPU sA
for the present FUP model on a simple scalar desktop PC platform.AThis showsA
the rapid evolvement of computer hardware and computational methods at theA

last era of the current century.A
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Figure 4.20:AComparisonvofwredicted (continuouswines)vandvwobservedwreeveurfacew
duringwdrawdownworvthevheterogeneouswdam:w( F)wfrontvsection;w(B14B5) Back sec- w
tions; (S) side section.w

Casey2:yHeterogeneousyDamy

This is a moreAlifficult And challenging4roblem, because the damAsAectioned asA
shown in Fig. 4.16. InAhe core area the 1mm size glass beads are used whileAheA
3mm size beads are placed elsewhere.AThe upstream head variation for the riseA
period is similar to the first experiment, the maximum water level is maintained A
for 40min, andAlecreased at a much faster drawdown rate of 9.33cm/min. Ob- A
served outputs are taken at 4min, 7min, and 12min for theAvater tableAise, and A
at 60.5min, 60.7min, 61min, and 61.5min forAheAlrawdown.ATheAlifficulty AofA

this problem arises from the important drawdown for a steep time period, whichA
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need special attention. AHere again dynamic time step sizes control is turned on,

and very small time steps were needed at the beginning to relax the numerical A
solution. Comparisonbetweendredicted And Abserved AraluesAs Arery Aood for theA
two stages, i.e.Arise, steady state and Alrawdown of the free surface as shown inA

Figures 4.19And 4.20. The seepage face height is also predicted accurately.A

4.5y Summary

computer model forAredictionAf three-dimensional Aroundwater low involvingA
a moving phreatic boundary is developed based on the Galerkin finite elementA
approximation in space and a fully implicit finite difference time approximationA
with a mass lumped capacitance term.A
The embedded numerical approach does not completely neglect the flow inA
the vadoze zone, but it is assumed to be a small fraction of magnitude as in theA
saturated domain. The moving water table boundary is iteratively adjusted based A
onAodal Avater AtatusAi.e. saturated, unsaturated, partially Aaturated) Avhich areA
deduced Arom Ahe Aelative Avater Aable dosition Awithin Aeach Alement. AThe FUPA
technique is shown to be cost-effective and efficient due to inexpensive update ofA
the conductanceAnatrix, and AccurateAstimationAf the Aapacitance terms, whichA
are less expensive in comparison with standard approximation methods.A
The overall numerical solver is robust and implements attractive state of theA
art features and powerful reputed algorithms, such as the modified incompleteA
factorization preconditioner based on a M matrix transformation, a linear con-A
jugateAgradient solverXor theAmostAnnerAoops, and a dynamicAime/lsteepingA
schemeAvith Automatic Aletermination Af the Ainder-relaxation Aactor for Aipdating A
groundwater heads to avoid possible numerical oscillations and/or instabilities. A
The numerical model also enables various types of complex nonlinear boundaryA
conditionsAseepage Aace, drainage, timeAaryingheads, leakage, abstraction, etc.)A
The usefulness of the FUP approach and the developed model is clearly putA
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in evidence, based on a series of test problems.AThese examples are of differentA
complexity, dimensions, andAroundwater Mlow Aehavior. ANumerical Aesults/fareA
compared toAnalytical solutions whenever they are available, and show very goodA
agreement. ComparisonsAre also madeAvith Aespect AoAhe moving mesh method,

which is slower in comparison to the FUP for transient nonlinear problems. TheA
last test validates the model by comparison with respect to laboratory measure-A
ments in a 3-D earth dam model. AThe model structure allows for homogeneousA
and Aeterogeneous Aormations Avith Aore Alams. Satisfactory Agreement isAbserved A
in case of rise, steady state andAlrawdown of the free seepage flow for all theseA

experiments. A
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5.1 Introductiony

Coastal aquifers often involve complicatedAnd varying conditions in time andA
space, owing to the occurrence of a moving fresh-saltwater interface, rather thanA
theAnatural Astationary Ainterface Ainitially Aexisting. A Practical AexamplesAinclude A
pumpingAstationsAof Avariable Ascheduled Awithdrawal; Aartificial Arecharge Xor Asite A
remediation; Aonstruction of cutoff walls and barriers; and other possible scenariosA

for Aseawater Aintrusion Acontrol. A Moreover, unconfined Aflow Ain Acoastal AaquifersA
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involves additionally a moving water table as discussed in the previous chapter,
so adding further complexity. A

Three-dimensional numerical modeling of saltwater intrusion is investigated A
in case of a sharp fresh-saltwater interface approach, neglecting mixing of theA
twoAMluids, meaningAhat AheAwoXlow AeldsbecomeAndependent.A numerical A
approachAsAleveloped toAstimate at theAame time theAir-freshwater Aree AurfaceA
and the fresh-saltwater positions in 3-D space.AThe technique is again based onA
a Galerkin finite element scheme and a generalized form of the FUP techniqueA
developed Apreviously Xor Aransient Avariably Auinsaturated Mlow.A The Ageneralized A
FUP accounts for the dual free boundaries separating the freshwater flow fromA
the unsaturated zone and the saltwater respectively.Aln contrast to water tableA
aquifers only, care is taken to includeAlensity effects in the formulation.A

thorough analysis of this numerical formulation, and assumptions in this ap-A

proach are presented first. In particular, the choice of a sharp interface approachA
is discussed andAustified.A fterwards, several validation and application exam-A
ples are shown to establish confidence in the obtained numerical results. ATheseA
test problems include a number of analytical solutions which have been chosenA
carefully, such that the limitations and applicability of the numerical solutionA
technique will be highlightedAnd explained. An important test case is a three-A
dimensional laboratory model (Sugio and Rahim, 1992) which demonstrates theA
usefulness of the newly developed numerical procedure, enabling to accuratelyA
predict positions of fresh-saltwater interface and free surface in complicate andA
irregular configurations.A

TheAdeveloped Ahree-dimensional Agroundwater AMlow andAsaltwater AntrusionA
model 'GEO-SWIM’, is applied to the coastal aquifer of Martil in Morocco, as aA
validation of the model package, and also as an example showing the integrationA
of AGIS Aupport Ao Yrepare fabasic Aramework Kor Ahe Anodel Aapplication. Alnitial A
conditionsAnd some model unknown parameters of the aquifer are found usingA

aArialAand Aerror Acalibration Aprocedure. AThis Atudy Aenables Ao Auinderstand Ahe A
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aquifer Aresponse to changesAnArechargefand totalArateAofApumped Awater, andA
their Aeffects fon Aeawater Antrusion. ADifferent Ascenarios Aare Anvestigated Aor Ahe A
period AfA966 A0 2006, to predict AutureAituations and the salinization risk AromA
seawater intrusion.AThe obtained results show that the interface will move fastA
and travel over considerableAlistances in forthcoming years, and will produce anA
irreversible Adegradationof theAgroundwaterAquality, especiallyAalongAhe coastA
and in the center of the Martil plain. An alarming optimal management schemeA

in the near future is necessary for its safeguard.A

5.2y ConceptualyModely

In this model, distinction is made of three main areas, namely the unsaturated,
the saturated freshwater, and the saltwater zones respectively as shown in Fig.A
5.1.AThe flow hydrodynamics behave differently in each area.Aln this conceptualA
problem, only freshwater flow is taken into account, but without excluding com-A
pletely the other zones from the simulation or the system of FE equations. ATheA
unsaturated zone is treated as explained in chapter 4, while the saltwater zoneA
is transformed to an equivalent freshwater zone having the same pressure headA
distribution as that of the saltwater.

As introduced in chapter 3 this procedure avoids the simultaneous solutionA
of a coupled system of governing differential equations for fresh and salt waterA
zones, orAdeally Ahe Mlow Aand AnassAransportAquations. ATheprinciple AonsistsA

on dividing the FE domain to three groups of nodes as depicted in Fig. 5.1A
1.AUnsaturated nodes where the pressure is negative, such thatA

h(x, t)A z (5.1)A

2.ASaturated fresh water nodes where the pressure should be larger than theA

pressure in the saltwater zone, assumed to be in hydrostatic equilibriumA
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Figure 5.1: Potential pressure conditions along the free boundaries; in the unsatu-
rated, fresh and salt water zones.

with the sea. These nodes satisfy therefore the following equations

h(x,t)

Vv

z (5.2a)

h(x,t) > —éz (5.2b)

3. Saltwater nodes which necessarily satisfy the condition
h(x,t) < —6z = h (5.3)
where h, [L], is the equivalent saltwater potential at the interface position.

This procedure is implemented on an iterative basis, meaning that the posi-
tions of the free and moving boundaries are iteratively changing inside the initial
fixed mesh domain, but are not implemented as boundary conditions of the dual
problem, and thus avoiding a computational difficulty. Hence, the three different

zones are changed accordingly.
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This mode permits change of the interfaces in response to boundary conditionsA
applied in the freshwater moving domain. Care should be taken for specificationA
of the boundary condition nodes, which should belong exclusively to the initial A
and AheAinal Areshwater llomains. A Otherwise, problemsAmayoccurAduringAheA
model Aexecution. AThisAimitation As fonly Aapplicable Ao Ahe Asaltwater Azone, be-A
cause specifying other conditions than the sea outflow face in the salt domain,
is not physically acceptable under the sharp interface approximation, and in theA
specifically Alesigned numerical Approach todeAxplained Aurther An Ahe upcomingA

section.A

clear AeexampleAis thatAof an interfaceAdomeAbelow a pumpingAwell nearA
the coast, where the appex of the upconing beneath the well crosses the lowerA
well Ailter ssection. A TheAonly Away Aaround Ahis Aat Apresent As Ao Aensure Ahat Ahe A
pumping well does not extracts out large amounts of saltwater from the aquifer.A
Research effortsAeed todedursued for developingdetter and advanced numerical A
techniques to better include these complicated conditions, which would be feasibleA
inAhe context Af AurAnodel. But, inAheAramework AfAhisAtudy Ave Adort muchAfA
the developments towards a numerically stable and a mass-conservative solutionA
by Aextending theAscope andAtheAeasibility of theAFUP AapproachAasAdiscussed A

earlier.A

5.3y They(GeneralizedyF UPyA pproachy

The solution of the FE system for this class of problems is solved in a similarA
fashion s Apresented Xor Ahe Arariably Ainsaturated Mlow Aquations. AHowever, theA
numerical techniques needs further modificationsAnd tweaking to comply withA
physical conditions involved in the saltwater zone.AHence, we take advantage ofA
the FUP procedure which was developed for the case of the free air-freshwaterA

interface, to extend it in cases where dual free boundaries exists in the domain.A
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5.3.1 RelativeyHydraulicyConductivity

TheAelative AydraulicAonductivity As updated AlependingAn theAelative dositionA
of Ahe nodesAversusAoth theAwater table and thefsaltwater Anterface iterativeA
positions. The updating process of the relative hydraulic conductivity coefficients,

k;;, is therefore generalized asA
1 K p; & 0Mrp; >0A

kij = ifA andA are apart from the water table A
€ otherwiseA

(5.4)A

A
Al (77:7> Z] (n;) ifA andA are apart from the saltwater interfaceA (5.5)A
i

whereZy, is the distance of nodeA from the saltwater interface, and given byA
k(n) is a relative hydraulicAonductivity function, which is defined asA

1 K nAOA
Ko =4 125 A p—o0A (5.7)A
oA

€ otherwiseA

5.3.2y WateryRetentionyCurveyyDensity Dependencey

The nonlinear storage in time from the right handAide of Equation 3.44 is eval-A
uated numerically in the FUP numerical technique.AThe numerical procedure isA
similar to that developed in the previous chapter, except that the storage varia-A
tions due to changes of the saltwater zone displacement should be included. TheseA
changes are evaluated to be equal to the saturated water content, 6. However,

to ensure numerical stability the variation should be smooth across the nodesA
around the salt-freshwater interface. AThis has been performed by modifying theA
functionsAn AFig. A4.4 Aepresenting Ahe Adealized Avater AetentionAcurve, and AheA



5.3 The Generalized FUP ApproachA 1117

water capacity term at the first nonlinear iterate, to the functions represented inA

Fig.A.2, which may be expressed as followsA

( d

0, ifA pi < ——
2A
| <
7 pz — ifA !pz(ISd_ +%A
O(p) = 7% 95 ifA +ﬁl— <p < =6z — 2; (5.8)
Z—i—ﬁ%&l —l—%TA ifA |p; — 6z <
OA ifA p;, > =6z —|—KL
andA
HS;H" ifA |l <+ﬁé
do ‘
)= % A |p; — 6z < +f§— (5.9)

0A  otherwiseA

The newly distinguished pressure distribution around the fresh-saltwater in-A
terface is smaller in size in comparison with the equivalent pressure distributionA
existing around the water table, because small variations in the water table po-A
sition involves greater displacement of the fresh-saltwater interface. And hence,
much larger variations in the storage term.AThe coefficient of proportionality isA

taken equal toA, according to the Ghyben-Herzberg (GH) relationship.A

5.3.3y NumericalySolutionyProcedurey

HereAgain, thefsame numerical proceduresAdeveloped in the previous chapterA
areAstill applicableAinAthisAcase, exceptAhat changesfof theAsaltwater AdomainA
should Abe Aaccounted Xor Ahe Adensity Avariations.A Hence, theAgeneralized AFUPA
approach is built around the same nonlinear Picard solver in time, and the innerA

preconditioned PCG solver as discussed earlier.A
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Figure 5.2: AGeneralized (a)w ater retention curve, and (b) analytic differentiation ofw
the slope tangents at the nonlinear first iterate.w

great AeatureAn this conceptual &eneralizationAhase, is theAtraightforward A
modular Amplementation usinglexistingAsoftware componentsAdevelopedAprevi-A

ously.A

5.3.4y OtheryFeaturesyofytheyProposedyApproachy

ThoughAthe modelAisAbasedAon an iteratively Aadjusted ApositionAof theAfresh-A
saltwater AnterfaceAbased don theAGhyben-HerzbergArelation knownAtoAbeAveryA

limiting. Approximations and inaccuracies related to this 1-D approach are re-A

solved An AheA&copeof AheApresented Anumerical Xormulation. AInAparticular, theA
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geometry of the sea outflow face window boundaryAondition, to be determinedA
in relation with the freshwater flow behavior in the aquifer system, is automat-A
ically Avdjusted Asee Chapter 8B Kor Aletails). AThe Anterface dposition near Ahe eaA
shore will not be over-estimated as would be the case within the GH approxima-A
tion.A

Situations involving two moving interfaces in unconfined flow are solved effi-A
ciently, these solutions are cheap and run within a minimum hardware require-A
ments. Al'he model has the ability of simultaneous determination of the interfaceA
and freshwater potential heads distributions at different time levels. The obtained A
potentialsAre continuousAcrossAheAnterfaces, but only otentialsAomprised be-A
tween Ahe Awater AableAand Ahe Aresh-saltwater Anterface Aare Aignificant. AHence,
a verification model based on measured groundwater heads is still feasible evenA
without taking into account salinity measurements for validating the interfaceA
position Aimultaneously, sinceAiezometricAneasurementsAre affected Ay Ahe Axis-A
tence Af theAnterface. Because, thisAs a practical AimitingAactor An many ArojectsA
in coastal aquifers, the developed model will prove to be useful for representingA
the global response of the saltwater interface in relationship with the changingA
freshwater heads conditions.A

It will be shown through the field application presented in Section 5.5, thatA
thisAnodel As A Aiseful Aool Xor Acalibration of Ahe Aroundwater Adeads. AMoreover,
the model could be used as a practical tool for providing routinely managementA
support At AaMprofessional Aevel, e.g.AinAAroundwater Ananagement Aoffice Aor An A
governmental Alepartment, because of Ahe Aow AequirementsAn AlataAnput As well. A

5.4y ValidationyandyA pplicationyEExamplesy

In this section, examples are discussed andAised as a basis for comparison withA
theAnodel Aoredictions. AThe Aleveloped Anodel As Aralidated Zor Aeveral Aituations,

involving confined andAinconfined aquifer systems, under a variety of physicalA
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boundaryAonditions such as recharge and groundwater abstraction.Aln the ma-A
jority Af theseAest Axamples, thedroblem accommodateAo an available analytical A
solution. Most AfAheseAolutionsAreAimited toAteadyAtateA&onditions. It ishardA
to find a solution for transient interface flow, and the existing ones lack generalA
applicability. ASince this is not always the case for a real case study, a validationA
is made with laboratory experiments achieved by Sugio and Rahim (1992) in anA
irregular dox allowingAor a three-dimensional Ahape AfAheAnterface, and Aariable A

conditions.

Analytical solutions involving a saltwater interface in confined aquifers areA
relatively more encountered, especially if the saltwater is at rest. ThisAs becauseA
under such conditions, exact potential functions can be derived separately for eachA
region. Strack (1976) has contributed a continuous potential function across theA
interfaceAither Xor Aonfined Mlow, orAinconfined Mlow AasAwell. ABut, manyAtherA
solutions were also given by Glover (1959), Van der Veer (1977a,b), Van DamA
(1982), Haitjema (1991), and Bakker (1998).A

5.4.1 SeawaterylntrusionyinyayConfinedyA quifery

This example concerns steady state seawater intrusion under natural conditionsA
(i.e., no recharge and/or pumping conditions exists) in a cross-section of a rect-A
angular confined aquifer having a uniform inland horizontal recharge flux, ¢, asA
depicted An A'ig.A5.3. AThis problem As Aaken Arom Aarabiand DeSmedt A1997) A
who used theAsameAproblem XorAvalidationfof theAold computer codeAversion.A
It is considered here again, to demonstrate the improvement directly fobtainedA
from the use of the newly implemented solver. Table 5.1 summarize the problemA
physical and computational parameters which wereAised toAbtainAhe numerical A

solution.A
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Figure 5.3:Achematic representation of the Glover's problem (1959).w

Table 5.1:A Glover’sytestyproblemyphysicalyandycomputationalymodelyparametery
values.y

PARAMETER VALUE
Upstream Aixed Alux, ¢ 3.9cm?/sA
Rectangle Aonfined Aquifer Alimensions, L, D 400cm, 27cmA
GridAlimensionsA 106x2x10A
Grid Apacings, Az, Ay, Az 4cm, 4cm, 3cmA
Density Alifference Aatio, & 0.029A
Saturated AlydraulicAonductivity, K 69cm/sA
Start AipAmderrelaxation Zactor, w® 0.25A
Water Aolerance parameter, tolw 0.02cmA

ComparisonAetween the twoAolutionsAsAhown in Fig. 5.4Avhere a very &oodA
agreement is obtained.ALike in most aquifer systems, the vertical dimension as-A
pect ratioAsAncreased toAnable a better Ariew Af the Aesults. However, for coastalA
aquifers especially, distortion of the figure does not illustrate the orthogonality A
between the groundwater potential isolines and the saltwater interface. Therefore,
for the actual problem a zoom is performed on the intrusion zone, while keepingA
thefsamefscale An Ahorizontal Aand Avertical dimensions A Fig. £.5). A Groundwater A
heads are also plotted showing clearly the hydraulicAradient increase seaward.

Another Aubject Af Anterest An Ahis Aest AxampleAs the &valuationAf the solverA
robustnessand Aefficiency. ASince, steadyAtatefsolutionsAareAalculated, afingleA
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Figure 5.5: AZoom window showingwhevresh-saltwateninterfacewositionvandwhevireshw
groundwater heads (X and Z axis have the same scale).w

sequenceAf Aonlinear Ricard AterationsAsAnvolved. Fig. 5.6 4lots theAonvergenceA
history of such process, only 7 nonlinear iterations were needed to achieve con-A
vergence, withZAachAtepAequiringAanAverage df A7 CGAterations. ATheAnassA
balance error acting as an indicator for the quality of the computed results isA

equally excellent, 0.135x1072%.A

5.4.2y SeawaterylntrusionyinyanyUnconfinedyA quifery

ProblemyDescriptiony

Van der Veer (1977) has proposed an analytical solution for the steady interfaceA
flow Ain Acoastal Aaquifer ssystems Anvolving AaAphreatic ssurface. A ThisAapproach AsA
two-dimensional, and assumes the existence of a distanceA, between the pointA
where the interface and the phreatic surface reach the sea level as shown in FigA

5.7.A
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Maximum residual error

Nonlinear iteration

Figure 5.6: AonvergencewatevhistorywfwthewnodifiedWicard nonlinearvterationwolverw
for test problem 1.w

AnalyticalyExpressionsy

The analytical solution is derivedAased on a non-linear algebraic expression inA
the complex potential A2, defined by QA= & 4 W, whereAb and AV are respectively A
the velocity potential and the stream functions. Boundary conditions must holdA
at the interface and the phreatic surface, which gives respectively the position ofA

the interfaceA and the phreatic surface asA

n(x) = —(%ﬂ i 231%96) (5.10)A

R A
i) = _(%x24+ 250) v <%)

whereAV is the effective precipitation, K is the saturated hydraulic conductivity A

1/24
21 (1[5 +4%)
(+1)(1- )

(5.11)

of theAomogeneousAquifer, and & isAheAlensity &Aradient ratio. TheA axisAriginA
is taken at the point whereAheAnterfaceAeach thefseaMevel, andAy* is a fluxA
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Figure&.7: A/anvderweer'svanalyticalvinterfacevproblemvw1977).w
quantity Alefined by A
¢ =4+ Nl (5.12)A

wheredy is the outflow of fresh water towards the sea. Note that A is calculatedA
fromAhedoundary conditionk(—I.) A=A, whichAeadsAoAheAollowing AxpressionsA

( q* A X o
ﬁ(%s_ DA ifAV=0A
N 1/2
le =K o 1—-[6+ KEA (5.13)
\ (-2 +2)

There remains only one undetermined variable, ¢*.AT'wo different situations areA

distinguished: A

SymmetricalyFlowyinyanylslandy InAaseAfAymmetrical Alow, weAlenote by A
theAlistance Aeparating the twoAointsAvhere Ahe Anterface Antersects the AeaAevel A
at each side, the outflow in steady state is given as =AV(l; — [.) and it resultsA
thatA4* =AVI;
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Non-SymmetricalyFlow Another case which can be encountered is a situationA
where a fixedAhead AvalueAis attributed at the upstreamAboundaryAwheredy isA
unknown, see Fig.A5.7 for details.Aln this situation the quantity4* is calculated A
analytically from the fixed potential, asA

N
¢ =A Kl — [aq(a4— g)(mt)%— as (K hy )22 (5.14)A

whereA
N N
apgq4— (1 — E)[l — (6 +%)], 014:f&0(6 + E), a,ndsz%:f&o(l + 6)A

Comparison withyNumerical ResultsyandyDiscussiony

Two test problems were run to check the model accuracy by comparing the ana-A
lytical solution and the numerical results.AThe first example corresponds to theA
case (N=0) i.e. no precipitation.AThe fixed finite element mesh used in this ex-A
ample is composed of 211x2x51 nodes respectively along x, y and z coordinateA
system, whichAeadsAo a 3-D Anesh Af21522Aodes andA0500Alements. InAhe FEA
mesh the portion above the sea reference is refined to allow for the calculationA
of the phreatic surface with greater precision.AThe mesh dimension is 10m andA
bm respectively along x andA-directions, while it varies from 1m above the m.s.1A
toAlOmAbelow.A boveAheseaAevel All AnodesStartingArom Aposition A&x=1968mA
are considered as isolated nodes in the model, becauseA, is found to be equal toA
32m from Equation 5.13 withA4,;=2000m. Additional physical parameters of thisA
problem are K=10m/d, 6=0.002 and h;(x=0)=10m.

As boundaryAonditions, an outflow sea boundaryAondition is attributed toA
all nodes starting from x=1968m in the plane z=0m, and a fixedAead boundaryA
condition h=10m is attributed to all nodes in the plane x=0m.AFor the secondA
test problem (N=1440mm//year) which impose another fixed flux boundary con-A
dition of 0.004m/d at the upper plane (z=10m and x<1968m).AFig.A5.8 AhowsA
simultaneously the obtained numerical results for test runs 1 and2.AThe steadyA

fresh-saltwater Anterface and theAphreatic surface positionsAare compared AwithA
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Figure 5.8: AComparison between numerical and Van der Veer's analytical solution.w

the analytical solution, and these comparisons show a good agreement betweenA
the two solutions and the model ability to handle situations involving rechargeA
conditions.AFig. 5.94nd 5.10 show the freshwater heads and interface responseA
to the recharge boundaryAcondition, the interface moves seawardAdue to moreA
steepAuydraulic Agradients Anear AheAseashore. AThe Aocation Aof AheApoint Avhere A
the interface reaches the sea level has been determined 'numerically’ very closeA

to x=2000m for the first problem as expected.A

Here again, itAs instructive toAhowAowAhe modelAolver takes controlAfAheA
equations system.AThe nonlinear iterative process for runs 1 and2 is plotted inA
Fig.A5.11.AIn AheAirst AunAnoAecharge) A Aew Anore Aterations Avere needed Kor A
convergence, the two testsAised an averageAf 214, and 223 PCG iterationsAespec-A
tively per nonlinear iterative step.ARecorded mass balance errors were satisfyingA

the global solution accuracy, they are equal to 0.145x1071% and20.733x1072%A
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0
E 200 | o 8
N
400 5 500 1000 1500 2000
X(m)

Figure 5.10: Freshwater potential heads distribution for the second run.
respectively.

5.4.3 Plan Seawater Intrusion Control with Artificial Recharge

Problem Description

Seawater intrusion control with pumping or recharge wells is an important issue in
field methods and practices for site remediation in coastal aquifers. In particular,
artificial injection has been practiced in the field in several projects, with the
aim to push the fresh-saltwater interface toward to sea. Two strategies exists:
(i) positioning a pumping well field near the coast to withdraw saltwater; or (ii)
a battery of recharge wells inland injecting a fixed amount of freshwater, in the
later case the injected freshwater is usually of lower quality than that stored
in the aquifer. In such situation delineation of the backward movement of the
injected water is also important.

In this test example, we consider several wells parallel to the coast line at a

fixed distance, d, as represented in Fig 5.12, which are injecting an equal amount
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Figure 5.11:AConvergencewatewhistorywofuthemwmodifiedwPicard nonlinearwiterationw
solver for test problem 2 (runs 1 and 2).w

of water, Q,,, and whereA isAheAlistanceAeparatingAwoAuccessive Awells. ATheA

inland uniform flow rate per unit arc length normal to the coast is denoted by 4. A

AnalyticalySolutiony

steady state analytical solution for this problem is derived by Hunt (1985). ThisA
solution accommodates for the case of (i) one inland recharge well; and (ii) anA
infinite number Af AechargeAvells. Herein, the Aecond AolutionAsAetained, becauseA
the first solution implies boundaries at infinity, which can not be handled in theA
numerical model. AHence, the second analytical solution was derivedbased on aA
modified form Af theStrack’s (1976) dotential Aor Ainconfined Alow AnAhe complexA

plane. The Ghyben-Herzberg approximation was used to locate the interfaceAoeA



5.4 Validation and Application ExamplesA 1237

(a)

1
>

¢¢$¢%i&¢
<
>

A
\4

Figure 5.12:ADefinitionvofuthewHunt'svanalytical interface problem (1985); (a)wplanw
view, and (b) aw ell cross-section profile.w

curve for an unconfined aquifer, which has the following equationA

K D% Q
5 0(1406)=4g +P§¥ In(r)A (5.15)A

whereAD is the vertical distance between the mean sea level and the bottom ofA
the unconfined aquifer, andA is given byA

d d
sinh?*r (:IHZ— ) cos?4r (Q) + sin®r <%> cosh?*r <x + )

24 A l l

—LX

sinh?*r (I ; d) cos?4r (y> + sin?¥r (%) cosh?*r (m — d)

(5.16)

l l

Equationﬁ(f).16)AhasﬁextremasﬁlocatedﬁatﬁyzOAandPy:éAAForﬁaﬁﬁxedﬁfﬁwalue,
EquationA5.15) can beAolved by a numerical drocedureAuch aseuller’synethody
(See Appendix B) for finding the root of a real function with a single variable.A
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Comparison withyNumerical ResultsyandyDiscussiony

The physical and computational data set used for this test problem are givenA
in Table 5.2.ABecause of the problem symmetry we consider only the half planeA
[0, ékin theAy-directionAseparating twoAwells, thusAonlyAoneAwell AsAvirtually’ A
considered An AheAcurrent Anodeling Astudy. A Notice AalsoAhat AheAelementsAgrid A
sizes are uniform, Arz=Ay=10m, and Az=4m, except for the first element layerA
above the water table, Az=10m, because in this example a detailed water tableA
profile is not the main interest. It is assumed also that the well Aecharge occurs forA
nodes lying below the sea level, and that the upstream uniform recharge shouldA

always adapt to the water table increase/decrease.A

Table 5.2:APhysicalyandycomputationalymodelyparameteryvaluesyofytheythirdytesty
problem.y

PARAMETER VALUE
Upstream Aixed Alux, ¢ 3m?/dA
Rectangle Aiconfined Aquifer Alimensions, L, D 410m, 40mA
Grid AlimensionsA 41x11x12A
Density Alifference Aatio, & 0.025A
Saturated AydraulicAonductivity, K, 10m/dA
WellAnjectionAate, Q., 1000m?/dA
Distance Af AvellsArom Ahe Aoast, d 100mA
Distance/between Awo Avells, [ 200mA
Start AipAmderrelaxation Zactor, w® 0.25A
Water Aolerance fparameter, tolw 0.0lmA

The maximum seawater AntrusionAnterface at the Aquifer dottomAs plotted AnA
Fig. 5.13Against the Analytical Aolution, and Ahows a good Agreement. AlthoughA
differencesfexists, the numericalfsolutionAs acceptableAregarding, firstA(i)AtheA
coarse mesh resolution used;And secondly (ii) the upstream Neuman boundaryA
condition which is applied at a given fixedAimit, 400m inland, while it existsA
"theoretically’ at the infinity, so as a consequence the computed interface has aA

tendency to intrude more inland as concluded.A
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Figure 5.13: Comparison between analytical and numerical results for the hunt's test

problem at the aquifer bottom. Results are plotted together with the countour lines
of potential heads.
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Figure 5.14: Cross-section view of the computed interface and freshwater potential
heads along the injection well.

The most seaward interface profile at the plane y=0 is plotted in Fig. 5.14,
where the artificial injection through the well location is clearly shown by the
potential contour lines. A better 3-D enlarged view of the simulated interface is
showed in Fig. 5.15 where intersecting potential iso-surfaces are also plotted, it is
noticed that the interface line at the aquifer bottom coincides with the potential
isoline h=1m. Convergence within the iterative procedure was achieved within

4 outer iterations, requiring an average of 48 PCG iterations, and performing a

mass balance error of 0.176x102%.
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Figure 5.15:AAwoomwiew onwthewnterface wcrossingwpotentialwisolineswarewshownw
alongw ith the outflow to the sea face.w

5.4.4y SaltwaterylntrusionyinyayMultilayeryA quiferySystemy
ProblemyDescription andyBackgroundy

This example is taken fromAuyakorn et al. (1996) who solved AheAame theoret-A
ical problem with their SIMLAS code.AThe test problem involves the simulationA
of staggered fresh-saltwater interfaces in a multilayer aquifer system.AFig.A5.16A
shows the conceptual problem, in which the chosen parameter values are given,
as the hydraulicAonductivities of the upper aquifer, the intermediate thin leakyA
layer, andAheAlowerAconfinedAaquifer, respectively.A ComparisonAisAconducted A
against the steady state analytical solution derived by Mualem and Bear (1974).A
It AsAhowever Amportant, toApoint out that thisAsolutionAwasAbasedfon a lin-A
earized form of the governing equation, and the use of theADupuit-Forchheimery
assumption.AHence, thefnalytical&olutionAsAnotAexact, and AhisAvasAzivenAasA
an argument by the authors to explain the SIMLAS results deviations from theA
analytical results as shown in Fig. 5.17.A

We did run the same problem with the data already given in Fig.A5.16, andA
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Figure 5.16:ASchematicwepresentationvandwparameterwaluesvofwthewfourthvitest ex-w

ample (Huyakorn et al., 1996).w
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Figure 5.17:AComparisonwofwthewanalyticalwandwnumericalwsolutionswcomputedwbyw

Huyakorn et al.w(1996).w

using a uniform orthogonal mesh composed of 49x2x21 nodes. AConvergence wasA

achieved within 3 nonlinear iterations, and an average of 53 PCG iterations perA

each outerAterate. Comparisonhetween analytical And numerical AesultsAsAhownA

in Fig 5.18.AThe predictions are satisfactory regarding the approximations used A

in the numerical solution, also comparisons could not be performed for the lowerA

aquifer unit, outside of the leaky layer extension, because the boundary conditionsA

for theAnalytical Aolution AreApecified at theAquitard boundaries. Interestingly,
GEO-SWIM (Sbai and DeSmedt, 1999; Sbaiht al. 1998) And SIMLAS results areA

very close, a comparative study of the two simulators based on other examples,

will certainly be fruitful for a wide range of practical applications.A
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Figure 5.18:AComparisonwofwanalyticalwvandwthewnumericalwsolutionwcomputedw ithw
GEO-SWIM code, for the fourth test problem.w

5.4.5 Movingyaltwateryjnterface in a 3-DjLaboratory Sandy
Box Modely

ToAdemonstrateAthat Athe numericalAmodelAis able to accurately Asimulate A3DA
groundwater flow problems with a moving freshwater saltwater interface, a com-A
putation is made with results from a 3-D sand model (Sugio and Rahim, 1992)A
depicted An&ig. 5.19. The model&onsistsAf a 3D Aandbox, 165.8 by A7.5cm, andA
having a width of 63.2cm in the first 82.3cm section, and80cm in the remainingA
part.ADuring the experiment, acrylic plates were placed at upstream and Alown-A
streamAections, whileAhe aqueousAaltwater Aolution Avas A&olored by Alye An Arder A

to distinguish it from the freshwater part.A

The upstream andAdownstream water levels are 44.15 and 40.67cm respec-A
tively; other data are K=1.293cm/s and4 = 0.03. The behavior of the saltwater A
interface Avas Aneasured AnAheAront, back, and dottomAides Af Ahe box for Ateady A
state (initial conditions), and each 30min thereafter, when the upstream head isA

reduced to 42.65cm with a linear decrease rate of 0.0lcm/min.A

The model is applied by discretizing the box into a total number of 154275A
elements, and 80800 Anactive AlementsAvhich areA&xcluded AromAheAimulation asA

shown in the finite element mesh in Fig. 5.20. The positions of the saltwater in-A
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Figure 5.19: ADescriptivewiew ofwthevexperimentalwsand boxwnodel used byviugiovandw
Rahim (1992).w

terface areflotted Aor Aach Aection Af theAnodel and Aompared Avith Ahe numerical A
results in Fig. 5.21Aa, b and c¢). TheseAteady and Aransient interfaces showAhatA
the predicted 8D results compareAvell with the measurements. The interface hasA
a tendency to advanceAapidly An thedack section thanAn theAront section, thisAsA
becauseAf theAvell dronounced Ahree-dimensional dehavior &f the low created by A
the shorter width section, in which the flow is faster, and the intrusion is likelyA
toAbeAnoreAmportant. A ThisAisAetter Ainderstood Arom Ahe Aplotted AnaximumA
interface profiles (or interfaces toe positions) shown in the bottom section.Alt isA
also worth noting that small variations of the upstream groundwater potentialsA
had led to a noticeable tracking of the salt-freshwater interface; a situation oftenA

encountered in practice.A
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Figure 5.20: Finite element mesh used in Sugio's laboratory sand box model valida-
tion.

5.5 Model Application to Seawater Intrusion in
Martil Aquifer

5.5.1 General Situation and Background

Aquifer systems in northwestern part of Morocco are known to be of small exten-
sion. The Martil aquifer (Fig. 5.22) is not an exception with its 80km? surface
area (Fig. 5.23). However, it is one of the important local groundwater resources,
especially for water supply of Tetouan city, and its industry and irrigated areas
located in the center of the plain. In recent years, the aquifer has become vulner-
able to potential pollution due to leachate of domestic and industrial wastewater
in the Martil river, and also due to seawater intrusion from the Mediterranean

sea.

Relevant hydrogeological information on this aquifer is scarce as for many

other sites in Morocco, such that before a representative model of this aquifer
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Figure 5.21: ANumerical solutionswersusvaboratorywexperimentsvior (a)vrront section,w
(b) back section, and (c) bottom section.w

can be set up, a significant fraction of the work involves aquifer characterizationA
andAreinterpretation Aof Aprevious Ameasurements. A Combined Ause Aof AGeographicA
Information Systems tools (GIS), andAleveloped software interfaces (chapter 7),

give consistent support to correlate unavailable data, and a robust approach forA
its interpretation.A total of 59 boreholes were selected to make digital elevationA

maps of contacts between different geological layers. A

three-dimensional finite element model for the Martil aquifer is developed A
using Ahe AGEO-SWIM Apackage Aand Aassociated Agraphic Ainterface Atools. A First,
afsteady-state Agroundwater Alow Ais Asimulated. A Calibration Aof AthisAmodel AwillA
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Figure 5.22: General geographic situation map of Martil aquifer.

establish natural conditions and hydraulic conductivity ranges for the different
aquifers. Afterwards a transient simulation is performed to predict future lateral
extension of the saltwater encroachment due to pumping of groundwater. Future
trends of the salinization risk from saltwater intrusion are investigated. This is
the first time that a simulation model for groundwater flow and seawater intrusion

in the Martil aquifer system is performed.

5.5.2 Data Analysis

Previous studies carried out in the plain (Ennouhi and Melouki, 1984; El Mora-

biti et Pulido-Bosch, 1993; Larabi et al., 1998) identified two aquifer units, sepa-
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Figure 5.23:AStudy area and locations of cross-sections of interest.w

rated by a leakyAquitard. TheAipper aquifer is formed from Quaternary alluvialA
deposits of the Martil river; the lower aquifer unit is composed from sandstone-A
limestone Rliocene Aormations, whileAhe aquitard AsAnainly AnarlAnd clay. Varia-A
tionsAn Ahickness Are Ahown AoAdeAignificant from NorthAoAouth, and alsoAlongA
the West-East direction. AHowever, this information was not taken into accountA
inAtudiesAmade An AheApast. AToMDetter Aharacterize Ahe Ahickness fof Ahe Ahree A
hydrogeological units a reinterpretation of data obtained from a total of 59 wellsA
and boreholes is performed with support of GIS tools.A

The aim of this study is to better define the structure of the aquifer systemA
(upper, lower aquifers and aquitard) and their extension. Digital elevation modelsA
of Ahese Aurfaces areAhown in Fig. 5.24, and areAbtained Ay AnterpolatingAcatter A

point data sets obtained from contacts between different formations or at theA
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Figure 5.24: Interpolated countour maps of (A) aquifer topography, and bottom of
of (B) phreatic aquifer, (C) aquitard and (D) confined aquifer respectively.

surface (topography) of each borehole into a numerical grid (usually the same as
used for the numerical FE model). A summary of statistical analysis results of

thickness of each of the three units is presented in Table 5.3.

5.5.3 Construction of the Conceptual Model
Model Set Up

The conceptual model used in this study is a multi-layer aquifer system composed
of two aquifer strata, separated by an aquitard layer of variable thickness. A

structured surface mesh of 93 columns and 121 rows is used to approximate the



5.5 Model Application to Seawater Intrusion in Martil Aquifer

135

Table 5.3: Information on thickness of model layers.

MINIMUM MAXIMUM MEAN
THICKNESS (M) THICKNESS (M) VALUE (M)
UPPER AQUIFER 8.9 24 16
AQUITARD 0.0 28.8 11.5
LOWER AQUIFER 0.0 36.4 17.3

aquifer domain, and some sub-zones are set to be inactive to fit the remaining

part at the domain boundaries, especially at the weastern boundary near Tetouan

city. In total, the aquifer system is divided into 9 nodal layers, with 88320

hexahedral elements and 101277 nodes.The two-dimensional mesh is projected
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Figure 5.25: S-N and W-E cross-sections of the conceptual model, showing the finite
element mesh and soil types distribution.

over the digital elevation maps, including the topography map, as shown in Fig.

5.24. Nodal elevations in intermediate layers are found by linear interpolation

from values of existing surfaces above and below. This three-dimensional mesh
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conforms to the aquifer configuration and makes it easy to fill in soil types ofA
elementsAnside Aach Af theAnainAhreeAayers. The threeAnodel unitsAre assumedA
to be homogeneous and isotropic in this study, to allow for a faster and efficientA

calibration.A

Fig.A.25 shows the finite element mesh used for the numerical simulation ofA
the Martil Aquifer Aystem AvhichAs adjusted toAit theAtructure and Ahe AxtensionA
of AheAhydrogeological Aayers A cross-sectionsAB-B’Aand  F-F’). ATheAocationsAofA
these cross-sectionsAreAndicated AnA'ig. 5.23. Cross-section B-B’AsAlirected 5-NA
while cross-section F-F’ is directed E-W.A

Boundary Conditionsy

Domain boundaries are set impervious, except at the eastern part, which is inA
direct contact with the sea. This boundary receives the 'special’ sea outflow faceA
boundaryAcondition Aas Adescribed An Achapter A3. A The Aextent Aof Ahe Aresh Awater A
outflow to the sea is therefore automatically determined as part of the results.A
Nodes along the rivers paths are taken as fixedAead with the assumption thatA
water AevelsAarefequal Ao Ahefelevation. AnotherAconditionAakenAntoAccountA
is the effective rainfall, which is assumed to be uniformly distributed over theA
wholeAurfacedasin. ASaturated AydraulicAonductivity Avalues Aare Aleduced AromA
calculated transmissivities of pumping tests analysis, conducted by the Regional A
HydraulicADepartment Aof ATetouan. A These Avalues Aare Acharacterized Aby AaAhigh A
variability, and range between 2.3m/d and 4.0m/d for the unconfined aquifer;A
and.5m/d and 4.8m/d for Ahe Aonfined Ainit. AOnly Awverage Aayer Alepths Awere A
taken into account as a basisAor thisAstimation, which Axplain Avhy Ahe Abtained A

values should be calibrated afterwards.A
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(a)

Figure 5.26: Comparison between (a) computed and (b) observed (in 1966, before
heave pumping) steady state groundwater potentials (presented as meters above sea

level).



138A 3-D Sharp InterfaceA pproach ...7

5.5.4y ModelyApplicationyandyResultsy

Natural GroundwateryFlowyandySeawaterylntrusiony

first set of steady state simulations is performed under natural conditions (i.e.A
noApumpingAwells). AThe objective bofAhisAalibration Aprocess AsAoAeproduce A
natural groundwater flow pattern of the aquifer system and at the same timeA
provide a range of confidence limits for the model parameters, such as hydraulicA
conductivity and effective recharge.AThe obtained results for each test run wereA
compared XopiezometricAevels Aneasured An Al966. Alt Acan Ade assumed Ahat Ahe A
aquifer Avas Aot Aet heavily pumped At Ahat Aime. A trialAand Aerror Acalibration A
procedure is used to estimate the hydraulicAconductivity of the different layersA
andAtheAnatural Arecharge. A TheAestsshowAhat Ahe Aconceptual Anodel AsAmoreA
sensitive to changes in the effective recharge value, moreover varying hydraulicA
conductivity values inside a given range for the same recharge does not produceA

drastic increase or decrease of the water table.A

Computed Aroundwater potential heads versus observed values are comparedA
inAFig.A5.26, theXitAsAatisfactoryfexcept Aot AheAcenter AofAheplainand Anear A
theAcoastline Awhere Adifferences Aare Aobvious. A There Amight Abe Awo Areasons Afor A
this.A First, theAobservedAvaluesAwereAobtained AduringAaAperiod Ain Awhich AtheA
exploitation of the aquifer alreadyftarted, in a form of pumping for domesticA
use andArrigation in theAenterplain. Secondly, theAlifferences may AdeAxplained A
also by the fact that soil heterogeneity and anisotropy were not included in theA
calibrationprocedure. AHowever An Azeneral, theAnodel AsAbleXoAeproduceAheA
same flow pattern, indicating that the main groundwater flow is directed W-E,

with some convergence tendency to the rivers.A

In the GEO-SWIM code (Sbai and De Smedt, 1998) the fresh-salt water A
interface is computed iteratively in parallel Avith Ahe groundwater potential heads,
and theAimulated AnterfaceAs obtained after convergence.A n enlarged 8D view of A
the simulated interface is depicted in Fig. 5.27, showing that preferential pathsA
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Figure 5.27: Shape and extent of the natural 3-D fresh-saltwater interface.

for seawater intrusion are located along the rivers, especially along the Martil
river where the maximum intrusion equals 1100m in the lower aquifer. W-E
cross-sections displayed in Fig. 5.28 show the shape of the steady interface and
water heads distribution in different parts of the aquifer. By comparing cross-
sections C-C’ and E-E’ which are respectively parallel to the Alila and Martil
rivers, it follows that saltwater intrusion is more sensitive along the Martil river

as the hydraulic gradient is the smallest due to the flat topography.

Calibration Results

The parameters obtained after calibration are summarized in Table 5.4
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Figure 5.28: W-E cross-sections showing the initial groundwater heads and fresh-
saltwater interface position. (The vertical scale magnification factor equals 100 for
cross-sections C-C' and E-E’, and 66.7 for F-F')

Future Prediction Scenario for Seawater Intrusion

A second set of simulations is performed, to predict the present and future ground-
water flow and seawater intrusion in the aquifer. A long-term transient simulation
is made of 40 years starting in 1966. The previous calculated heads are used as
initial head values.

The pumping of groundwater is assumed to decrease the natural recharge by
half during this period, because no other precise information is available about

the number of wells and their pumping rates. Fig. 5.29 shows the computed
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Figure 5.29: Computed moving toe positions of the sharp feshwater saltwater inter-
face each 8 years from 1974 to 2006. The shaded surface represents the bottom of
the lower aquifer.

fresh/saltwater interface in the lower aquifer each 8 years from 1974 until 2006.
Corresponding positions of the moving interface are also plotted along cross-

section F-F’ as shown in Fig. 5.30.

Upconing effects due to pumping are negligible, since pumping rates are not
concentrated in specific locations as it would be in practice. Also here, the
maximum seawater intrusion occurs at the Martil river as clearly shown in Fig.
5.31, where the lateral distance to the coast from the maximum interface toe
position versus time is plotted. Three different time periods can be distinguished:
before 1986, the interface moves inward linear in time; a second period between
1986 and 1992, when the interface is intruding quadratically in time; and finally

after 1992 where the movement is exponential in time.
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Table 5.4: Model calibrated parameters under steady state conditions.

Ks(M/D) 05 DENSITY EFFECTIVE
I II III| I II IIl | RATIO | RECHARGE (MM/Y)
3.5 005 4504 025 0.25 0.03 o0
I : Upper aquifer unit; IT : Aquitard unit; IIT : Lower aquifer unit
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Figure 5.30: Cross-sectional view of the seawater intrusion; simulated moving inter-
face positions from 1974 to 2006 are plotted.

5.6 Summary

A finite element model for simulating seawater intrusion in fully three—dimensional
groundwater aquifer systems is developed. This accounts for free and mov-
ing boundaries, either between the saturated and unsaturated domains (air-
freshwater interface) or between the freshwater and saltwater domains (fresh-
saltwater interface). The key assumptions, is an iteratively based Ghyben-Herzberg
approximation of the interface position, which permits the flow field to be com-
pletely dependent on the governing equations for the freshwater phase. Computer
memory and storage savings are not only due to such approach. The presented
generalized FUP approach is the second major step for making such economy.
The FUP had to adapt for the density difference between the salt and fresh water
zones. This was explicitly reflected in the shape of the idealized water retention
curve, and in the technique for regenerating the relative hydraulic conductivity

at each inner time step. The previously constructed flow solver was smoothly
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Figure 5.31: Maximumvinterface toe position of the movingviresh-saltwater interfacew
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implemented in the new model, without further costs, which is a proof for itsA

strength and robustness.A

comprehensive set of 5 test problems is provided for validating the numer-A
ical Amodel. AThese Aexamples Aaccount Xor Ararious Aanalytical Aolutions, numericalA
results from other models, and measurements performed on a laboratory sand boxA
model. Moreover, several types of aquifers were investigated, includingAonfined,
unconfined and multilayer aquifer systems.ASeveral kind of boundary conditionsA
were tested according to the type of solutions.A 1l these tests yield satisfactoryA
results regarding the scope of the application, and model specific situation forA

each test.A

Finally, a model was set up for the aquifer system of Martil situated in Mo-A
rocco usingAhe AGEO-SWIM numerical &ode, in order Ao Atudy Aeawater AntrusionA
effects An Aerms Af theAhape and Aateral Axtension. First a steadyAtateAnodel AvasA
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calibrated to obtain adequate model parameters, such as hydraulicAconductivi-A
tiesfand feffective Aecharge, and AheAaturalAituation. Afterwards, aAong-termA
transient simulation wasAperformed to reproduce actual and future situations,

with the aim to analyzeAheAisk toAalinization from the MediterraneanAea. It isA
concluded that Avithout Aurther &ontrol the Aaltwater Anterface Avould travel Anland A
over Aonsiderable Alistances An Ahe Auture. AControl Aof Aaltwater Antrusion Aan/beA
obtained Arom A Aumber bof Atrategies. AThe best dneAs Ao Aestrict pumping but A
this might not be possible from economical and social point of view. However, itA
is recommended that this should be a future study, for which the present modelA
results could be a starting basis. This present Martil mathematical model is be-A
ingAmproved asAurther AlataAre Abtained Arom theAield Adistribution Af pumpingA
well rates at present and in the future, infiltration recharge in the irrigated areaA
and better water electrical conductivity values measured with the depth in theA

observed wells along the coast that reveal seawater intrusion).A



Chaptery6

FiniteyElementyModelingyofy
Three-Dimensional Transporty
usingyM-Matrix Preconditionersy
andyNonsymmetricySolversy

Contentsy
6.1 Introduction ... ..............0.0.0.0.0... 145
6.2 Theory . . . . . . . i i i i i ittt 147
6.3 Numerical Model . ... ... .............. 150
6.4 Results and Discussion . . ... ... .......... 157
6.5 Summary . .. .. ... e e e e e e e e e 171

6.1 Introductiony

Computational modeling of solute transport is undoubtedly one of the most ex-A
citingAesearch areas, for many AydrologistsAnd modelersAluring the Aast Alecades. A
Pioneering work in this field has been presented by Remson et al. (1971), and Pin-A
der and Gray (1977) who introduce successively applications of finite differenceA

and finite element methods to contaminant subsurface hydrology problems. TheseA

0 Manuscript!submitted!for!review!to! Advances in Water Resources Journal.!
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methodsAave &ained Avide dopularity Anside the Aroundwater Aommunity, and he-A
come available through famous packagesAnd models, such asAMOC (Konikow andA
Bredehoeft, 1978), FEMWASTEA YehAndAWard, 1981), HST3DAKipp, 1987)A
and MT3D (Zheng, 1990).AHowever, solving an advective dispersive problem isA
traditionally Aubject Ao Anany Aources df Hossible Aailure. ATypical Arrors Aare fen-A
countered for a high Peclet and Lourant numbers, yielding numerical AscillationsA
and/or numerical dispersion, overshooting andAindershooting in case of sharpA
concentration fronts, which leads to constraints on the grid size and computa-A
tional time step. Other sources of errors or a solution breakdown, depend on theA
ability of the numerical solver and the chosen preconditioner to converge.A

With the noticed rapid advances in computer technology, computational speed A
and efficiency become affordable, and can be fully used to build complex three-A
dimensional models for solving practical contamination problems of large size,
such numerical approaches yield large, sparse and nonsymmetric linear algebraicA
systems.AThe state of the art in nonsymmetric linear solvers is not yet satisfac-A
tory when compared to the highly successful preconditioned conjugate gradientA
solver for symmetric problems, such as those arising from the discretization ofA
the groundwater flow equation.AHowever, the latest achievements accomplished A
in this discipline are encouraging; modern methods are more reliable, computa-A
tionally Afficient, fast And Aave a smooth convergenceAdehavior. TheseAechniquesA
knownAsAonjugate Aradient likeAr KrylovAdased Anethods arebecomingAncreas-A
ingly Aopular An Alealing Avith AonsymmetricAinear Aystems. InAhisAlassAf meth-A
odsAheAiconjugateAgradient Atabilized Asolver A BICGST AB) Apresented Ay AVan A
der Vorst (1992) is reputed to be the most efficient with respect to the trade-offA
betweenAtorage and convergence speed. Pini and Putti (1994) reported that theA
method AsAuperior An solvingAinite Alement discretizationsAf the two-dimensional A
advection Alispersion fquation. AGambolatifet Aal. A(1995) Applied Ahe Anethod Ao A
solve the partial differential equation of a dual porosity transport model. A

Preconditioning is considered as a key factor in improving the convergenceA
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behavior &f theseAolvers, in thisAtudyAhreeAdreconditioning Atrategies Are Anves-A
tigated in terms of efficiency and computational speed, diagonal scaling (DS) isA
the simplest And made always possibleby construction. Incomplete factorizationA
(IF0) which is reputed to be efficient (Larabi and De Smedt, 1994), but can failA
for non M type of matrices. A M matrix transformation is then proposed on theA
general transportAnatrix toAllow Aor Ahe AF(0 Areconditioner Axistence ADeSmedt A
and Sbai, 1998).AThis transformation proves to be very easy to implement andA
robust.Alts computational efficiency is dependent on the solver used in conjunc-A
tion (Sbai and De Smedt, 1997), but in all chosen test problems this scheme isA
the most performing. A

This paper starts with a brief review of the finite element scheme used in theA
presented model to discretize the general three-dimensional advection dispersionA
equation.ANext, theAheoryAfAonjugateAgradient Aike AnethodsXor AheAolutionA
of nonsymmetric linear systems is highlighted, and algorithms such as minimalA
residual AMR) and BICGSTAB AnethodsAvith Aome Areconditioning Atrategies areA
presented.A  comparisonAdetween AheseAolvers As dperformed by Aest problems,
using preconditioning by three schemes:ADS, IF0, and modified incomplete fac-A
torization (MIF0).A

6.2y Theory
6.2.1 GoverningyEquationsy

ThelequationAgoverningAthe transient movement of a reactive chemicalAsoluteA
in three-dimensional groundwater flow systems, taking into account the advec-A
tion andAdispersion processes, as well as adsorption, first orderAdegradation ofA
chemicals, and source and sink terms is given by Zheng and Bennett (1995)A

(60 + pS) = X(EDWO) ~ V(aC) ~ MOC +pS) + R (6.)A
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where is the soil moisture content, C' is the dissolved concentration [ML™?],
p is the bulk soil density [ML™3], S is the adsorbed concentration of the soluteA
[M/M], ¢ is time [T~!], Dyis the hydrodynamicAlispersion tensor [L2T~!], qyisA
the groundwater flux vectorALT 1], A is the first orderAlecay coefficient, R, is anA
external source/sink rate term [MT'L73|, andAV is the del operator [L™!]. TheA
left handAide of equation (6.1) represents the rate of mass accumulation over aA
differential volume. In the right hand side, the first term represents the net rateA
of AnassAlux due toAlispersion andAliffusion, theAecondAs theAet massAlux due toA
advection, the third is the degradation rate of the chemical species, and the lastA
term is a source/sink term corresponding to artificial injection and /or withdrawal. A
linear isotherm adsorption model is used to couple the concentrations in theA

aqueous andAdsorbed phases, and may be formulated by A
S =A;,C (6.2)A

whereAK; is the adsorptionAlistribution coefficient [L3M™1].A
Combining equations (6.1) and/46.2)Asields a linear partial differential equa-A

tion as expressed belowA

R %—f _N(DWC) — V(vC) — ARC +A§—C (6.3)A

whereAR = 1+ %Kd isAheAetardationAactor, andNy:%yisz%hefgroundwaterf&eep—A
age velocity [LT™'].ATheAlispersivity Aensor ADyincludesAliffusion coefficient ADgy
[L2T~ 1, and Alispersivity coefficientsAvy, azy, andAvr,, respectively the longitu-A
dinal Alispersivity, the transverse horizontal and vertical dispersivities [L], whichA
multiplied by the different velocity components yield the mechanical dispersionA
as discussed by Bear (1972).A

The groundwater velocity vector is retrieved from a previously computed po-A

tential head Alistribution asA

K
vy:A—?%h (6.4)A
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where Ky the hydraulicAonductivity tensor [LT™!], and & is the hydraulichead A
[L], whichAisAdobtained Arom theAsolutionAof theAgoverningAequationAor Athree-A

dimensional Ateady state groundwater flowA
V(KVh)+Qr=0A (6.5) A

where/AQ), is a source/sink flow rate term [LT™!].A
Solving equation (6.3) for a well posed initial value problem, requires a priorA

definition of initial and boundaryAonditions in the domain being under Atudy.A
6.2.2y InitialyandyBoundary Conditionsy
Initially, a spatial concentration distribution is known such thatA

C(x,0) A= (x)A (6.6)A

whereAxy= (z,y, z) is the vector position, andACy,is the initial distribution ofA
concentrations.A
Generally, thereAre three typesAf conditionsAised An Aolute Aransport Anodels: A

(a) Prescribed concentrations, or first type Dirichlet boundary AonditionA
C(x,t)|s, =Lp(x,t)A t>0A (6.7)A

where A is a sourceAlistribution Aunction Apecified alongAheAirichlet AoundaryA
Sp

(b) FixedAlispersive flux, or second type Neuman boundaryAonditionA
—0DVC|s, =#.(x,t)A t > 0A (6.8)A

wheredy. is the solute flux specified along the boundaryASy that is consideredA
impervious for water (¢ =0) A

(c) Fixed total flux, or mixed type, or third type Cauchy boundaryAonditionA
—0DVC + qCls, =A.(x,t)A ¢t >0A (6.9)A

wheredy. is the solute flux specified along the Cauchy boundaryASs.A



150A Finite Element Modeling of Three-Dimensional Transport ...7

6.3y NumericalyModely
6.3.1 TheyConformingyFiniteyElementyMethody

EquationA6.3) Aubject toAnitial and doundary AonditionsAeqns&.6 to8.9) can beA
solved numerically with the standard Galerkin weighted residual finite elementA
method (FEM), referred also as the conforming FEM in the literature, and withA
a fully implicit finite difference time stepping scheme.AThe finite elements usedA
inAhisAtudy AreAsoparametric Aexahedral Alements. TheArincipleAf theAnethod A
is to subdivide the domain into a given number of conveniently small elementsA
sharing A Ariven Anumber of Anodesat Aheir Aorners. A trial &olution AsAgiven Ay A
interpolating the dependent variable from the corresponding values at the nodalA
points, using nodal basis functions, such that the approximate solution over theA

domain becomesA
C =", (6.10)A

whereAn isAthe total numberAofAnodes, andA; isAtheAtrilinearAbasis AunctionA
associated AoModeAj. A ToXulfill Ahe Aveighted Aresidual AFE Aapproach, residualsA
resulting by Asubstitution ofAequationA6.10) AntoAequation A 6.3) Aare Aninimized A
by making them orthogonal to the basis functions, yielding a linear system ofA

algebraic equations at time& + At (¢ > 0), which can be written in matrix formA

asA

(1Q] + 4 MJ){C}+4 =4B} + L IMJ{C}' (611)A

where [M] is the mass transport matrix, { C}**2* is the vector of unknown concen-A
trations, [Q] is the transport matrix, and B} represents the external effects onA
the domain namely the boundary conditionsfnd eventual sources and/or sinks.A

The entries of the given matrices and vectors areA
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B :1-}/ b % dv — / b % ds (6.14)A

The matrix/Gy=A) +%yarising from this FE formulation is highly sparse. It isA
therefore suitable to use a compact vector form by storing separately the upperA
and lower triangular parts of the CrouteA.Uydecomposition of Az. & is obsolete A
fromA6.13) that Ahe Qymatrix isAion symmetrical, a property which restricts theA
choiceAofsuitablefsolvers.Alndeed, preconditioned AconjugateAgradient AnethodsA
which are highly efficient for solving linear symmetric and positive definite sys-A
tems arising from the groundwater flow equations (Larabi and De Smedt, 1994)A

cannot be applied. A

6.3.2y IterativeySolversy

During theAast two decadesAnethodsAvhich are specifically developed Zor AolvingA
linear nonsymmetric systems have attracted the intention of many researchers.A
Efforts were spent on porting the successfulness of the conjugate gradient methodsA
(CG) Aor Aolving Alinear ssymmetricAsystemsAoAhe classfofAnonsymmetricAandA
indefinite systems; these methods are so-called Krylov projection type methods.A
The literature devoted to this topic is rather huge, and the proposed algorithmsA
can be classified as either orthogonal residual (OR) or minimal residual (MR)A
based methodsASleijpen and Van der Vorst, 1993; Barret&tAl., 1994; GambolatiA
et al., 1995).

Among the existing up to date MR solvers, the generalized minimal residual A
method (GMRES) proposed by SaadAnd Schultz (1986) is successful for solvingA
thisAind AofAproblemsAus Anoted oy APiniAand AZilliA1990). AThe Anajor Alrawback A
of the method is the increasing number of vectors andAelated storage required A
for each iteration step. GMRES(m) algorithms are therefore constructed in suchA

way that the linear AterationsAreAestarted After An steps. The choice of An isAlsoA
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a delicate problem since determining an optimal value still relies on the modelerA
experience, which needs typically several runs for tuning up this parameter forA
eachAspecificAproblem.A Thus, theAnethod AisAnot Auser Ariendly, andAespeciallyA
cumbersome for large three-dimensional systems.Aln this paper we use the mostA

simpleAnd Aowest Aost AR Adased Anethod. AThe Apreconditioned AVIR Anethod AsA

presented below wherePyis the preconditioning matrix, as explained laterA

Table 6.1:AThewpreconditionedyMinimumyResidualyterativeynethody Barretyetyl. ,y
1994).y

Calculate ros=A — GCyfrom the initial guessACy,
Foryi = 1,2, ... until convergenceA

Solve& fromAPz =A

R NPT

C; =014+ 0izig

ri =& 10+ o GYrig
End Fory

The biconjugate gradient method (BCG) introduced by Lanczos (1952) wasA
considered as a first natural extension of the three-term short recurrences biorthog-A
onal Algorithms, requiringAessAtorage and computational Avork Aver Ateration Atep. A
However, an erratic convergence behavior or an eventual breakdown can be ob-A
served for ill-conditioned systems. The explicit use of AGT in the algorithm makeA
it also inappropriate to use for many practical applications.ATo overcome theseA
limitations the conjugate gradient squared method (CGS) has been developedA
by Sonneveld (1989).AThe method is quite competitive, because it preserves theA
low cost per iteration and avoids the multiplication with the matrixAGT. It i& A
reported that the method converges two times faster than BCG whenever thisA
one converges, but ashoted by Van der Vorst A1992) Ats Aonvergence behavior canA
beAvorse Ahan BCG Alue AoAocal Anstabilities AesultingAn failure. ThediconjugateA
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gradient stabilized method was proposed as a smoother variant of CGS, but theA
convergence can still oscillate remarkably for difficult problems having complexA
eigenvalues with big imaginary parts as noticed by Sleijpen and Fokkema (1993)A
and later by Pini and Putti (1994). The preconditioned BICGSTAB seems to beA
the most attractive OR method with respect to computer storage and convergenceA
speed.ABelow, areAdepictedAheAterativeAstepsAnvolvedAnAheApreconditionedA
BICGSTAB method, whereyis again a preconditioning matrix.A

Table 6.2:AThewpreconditionedyBiCGSTA Byiterativeymethody Barretyetyl., y1 994 ).y
CalculateAp=A — GCyfrom the initial guessAyy
Choose an arbitrary vector&gsuch that ALros# 0 (e.g. Ros=ro)A
Initialize the iterative parameters:A
Po=t =dp=1 A
Poa=Ags= 0 A
Foryi = 1,2, ... until convergenceA
pi =AGiria
B =(pi/pir)(a/wi1)A
Pi =i 14t B(Pi—14— wi—1vi—1)7
solvedy from Py =,y
a =8, /10 i
s =K 14— auig
solve&x fromPz =AS
t =A5z5
w; =ATt/tTtS
C; =L 1t ay +w;zS
T =A - witS
End Fory

Gutknecht (1993) has refined this algorithm for the case of complex eigen-A
values, which leads to better convergence behavior.AHe showed that the later isA
afcombination bfABCGANdAGMRES(2). AThis doint of Aiew Avas Ageneralized by A
Sleijpen and Fokkema (1993) who describe how to derive a BICGSTAB variantA
of orderA: BICGST B(I), and give a practical implementations for low orders.A
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ThisAsAusually Aised Aas Aan Anlternative Avhenever BICGSTAB Atagnates Aor XailsA
toAconverge. AHowever, highfrder Avariants Ancreasingly Arequire Amore Awork Aper A

iteration.A

6.3.3y PreconditioningyMethodsy

Preconditioning is a key factor to the successfulness of any iterative solver, espe-A
cially when dealing with practical applications of large size. The state of the artA
isAtill Aot Aatisfactory, because much &ffort Avas &iven for Aleveloping Anore Aobust A
solvers at a first stage.AThe idea behind it is to transform the original system ofA
equations by multiplying withAP !, such that the new system is easier to solve,
which implies that the preconditioning matrix yhould resembleAGyas close asA
possible.A  goodApreconditioner Aproducesfenough Azain An Aconvergence Arate AoA
overcomeAheAextraAcost Arelated Ao AtsAown Aconstruction. A For AaAmore Adetailed A
discussion in this subject we refer to Barret et al. A1994).A

Three preconditioning schemes were implemented in this study to seek theA

performance of the selected solvers:A

1.ADiagonal scaling (DS):APy=Aliag[G|, point Jacobi preconditioning is theA
easiest AoAmplement since there is no extraAtoragebeyond that AfAz. One A
canAoticeAhe Ainconditional Aexistence Adf Ahis Aransformation. ABy Acaling A
the original matrix the spectrum becomes smaller, and thus the convergenceA
rateAsAmproved. Unfortunately, in many Aest Aases, it AsAbserved Ahat AhisA
preconditioner Adoes notAdrastically Amprove AheAolver Aperformance, andA
the convergenceAnight beAlow.A moreAowerful preconditioningAcheme isA

therefore needed for such problems.A

2.APoint incompleteAactorization AfArder AeroAIF0): thereconditioningAna-A
trix isAften formulated An the form Py= (L+D)D (D + U), whereALyndA
Upyare respectively the strictly triangular lower and upper parts of A&, and A
Dyis a positive diagonal matrix, such thatAiag[P] = &ag[G]. The essenceA
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of the method is to prohibit fill-in positions whereAy;; = 0 during the fac-A
torization. AMeaningAhat, LyandAJyhave the same sparsity pattern asAG.

An attractive Aeature Af Ahe method As Ats Aeasonable Aonstruction cost AinceA
only DydiagonalsAreAeeded Aand Ano dther fextraSstorage AsAequired. ATheA

entries of Dycan be computed recursively A

i—1
Gir, Gri

Dy =G — (6.15)A

D
k=14 Kk

3.APoint modified incomplete factorization of order zero (MIF0):APyhas theA
same Aorm As An AF(0 Axcept Ahat Dys Aonstructed An such Avay As Ao dreserve A

the row sum constant, the entries of Dyare computed in this case asA

i—1 n G G
_ it Gjk
Dy =& — E g "D (6.16)A
k=14j=k-+14

For a moreApractical Amplementation theAentriesAofAD areAcalculated AasA
(Beauwens, 1990)A

n i—1 G U
Ui=8 G- wk (6.17a)A
‘24 ;4 Dy
Dii =Kj; = ) Gy (6.17b)A
k=i+14

The preconditioners IFO and MIFO only work when the obtained Aliagonals areA
positive, and it turns out that there are cases for which IFO and MIFO are notA
guaranteed to exist.AMeijerink and Van der Vorst (1977) proved that precondi-A
tioning by IF0 is possible only ifAGysatisfies the requirements of an M matrixA
(Gi; > 0, andAH;; < 0 for A#A, and &yis non singular). AHowever, for MIFO theA
existenceAs Aven not Auaranteed, Beauwens and QuenonA1976)Aoticed that AuchA
factorization Aexists Aor Aliagonally Alominant Anatrices. AHence, forAnanyApracti-A
cal applications these kind of methods may fail. ATo overcome this drawback weA

suggest the use of the following M matrix approximationAs,; of A5, such that A
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n

(Gr)i = Z maz(Gi;,0) (6.19)
j=1

Practically, the global matrix is lumped by moving positive off-diagonals to the
diagonal position while keeping negative off-diagonals, such that row sums are
kept constant. The proposed method was successfully used by Larabi and De
Smedt (1994) to solve linear systems stemming from three dimensional hexahedral
finite element discretizations of the steady state groundwater flow equation. The
previously presented algorithms and preconditioners are efficiently implemented

in a user friendly numerical tool kit, which is integrated to GEO-PROF numerical

code (De Smedt, 1996).

(C)
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Figure 6.1: Schematic representation of the test problems; (A) Injection in a uni-
form flow field; (B) Radial injection with equilibrium counter dispersion; (C) Radial
injection; (D) Field problem 1; and (E) Field problem 2.
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6.4y ResultsyandyDiscussiony

FiveAest AproblemsAare Aselected AoAnvestigate theAsolvers andApreconditionersA
performance. These examples include/ theoretical and & field applications illus-A
trating A Aliversity Adf physical Aituations AasShownAn Aig. A6.1.ATable %.3 AhowsA
several of the numerical features of the studied examples, as the total number ofA
nodes and &lementsAised An Ahe Adroblem Aliscretization, theAhapeAfAheAlements,

the degree of sparsity of theAGymatrix, the maximum Peclet and Courant num-A
bers, and if the M matrix requirement is satisfied or not. Additionally, physicalA
parameters of the test problems used to run the models are given in Table 6.4.A
The numerical results are obtained by executing the numerical models on a SunA
UltraSparc 2Alesktop workstation.AFor each test problem, the tolerance related A
to the convergence stopping criterion (sum of squaredAresiduals) is denoted byA
tol parameter, this is either previously specified or determined automatically by A
an internal routine implemented in the models. The obtained results in terms ofA
total number of iterations required to achieve the convergence criterion, and theA

used CPU calculation time are also checked.A

In the remainderAwe denote by I the solution procedureAwithout precondi-A
tioning, and by AFO-M and MIF0-MAheAncomplete factorization preconditionersA

with M matrix transformation, as proposed in equations 6.18 and 6.19.A

Table 6.3:ANumericalyfeaturesyofitheytestyproblems.y

TEST NO. OF No. or ELEMENT DEGREE OF G M MATRIX PE CR
NO. NODES ELEMENTS SHAPE  SPARSITY (%)

lal 50000! 54756! box! 99.97! Yes! 4 -1
1b! 50000! 54756! irregular! 99.97! No! 4 -1
2al 672! 300! wedge! 99.98! No! 1! -1
2b! 6432! 3000! wedge! 99.98! No! 2! -1
3! 1608! 600! wedge! 99.98! No! 1! 5!
4 21000! 16284 irregular! 99.94 Nol! RYAR

5! 77964 69696! irregular! 99.93! No! 48! -l
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Table 6.4:APhysicalyparametersyofytheytestyproblems. g

PHYSsICcAL TEST PROBLEMS
PARAMETERS 1 2 3 4 5
Layer 1! Layer 2 ! Layer 3!

K!(m/d)! 0 5 100 12! 3.4 0.5! 3.1!
ar (m)! 5! 5! 0.1 100! 20! 20! 20!
arp (m)! 05! 5 01 33 5! 5! 5!
ap, (m)! 05! 5! 01! 033 0.5 0.5! 0.5!
Dog(m?/d)! 0 0! o 10 0 0 0!
n 0.25! 0.35! 0.387! 0.25! 0.3! 0.45! 0.3!

6.4.1 TestyProblemyl:y ContinuousyPointylnjectionyinyay
UniformyF'low Fieldy

The first test example is based on an available three-dimensional analytical so-A
lution from Hunt (1978) for steady state solute transport in a uniform flow fieldA

from a continuous point injection source, and given byA
M VT —Rov R—ut
=A — | erfcd ——
e T eXp<2DL> [eXp’é oD > “ C{ QA(DLt>
Rv R+t
— fcA —— ) |A (6.20)A
—|—exp62DL) er cf<2 DLt>} ( )

where AR :V 244 (y* 4+ 22)% [L], M isAhe massAnjectionAate AMT '], v isAheA
T

uniform groundwater flow velocity [LT!] along the longitudinal AlistanceAr, Dy,
andADr are the longitudinal and transverse dispersion coefficients respectively A
[L2T~1, and erfc is the complementary error function.A

In the present test example the pollution plume is simulated for a constantA
groundwater Arelocity AfA.5m /d and a massAnputAate AfA000kg/d; other daram-A
eters/farefgive An Alable6.4. AThe Anodel Aegion As Aeduced Ao dneAjuadrant Awith A
the solute source injection point at the origin. Two test runs are conducted withA
different meshesAoAtudy Ahe Affect AfAhe M Anatrix transformation. TheAirst AunA
(1a) is done by discretizing the domain into box sized elements of 4x2x2m3. WhileA
in the second test (1b) the previous mesh is modified by adding or substractingA

a constant value of 0.5m randomly to the coordinates of all interior nodes.ATestA
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problem (la) yields a M matrix, while problem (1b) is non M matrix.7

@)

BICGSTAB

10*

10

Relative residual norm

10»10

]
50 100 150 200
Number of iterations

(b)

10"

Relative residual norm

50 100 150 200
Number of iterations

Figure 6.2: AConvergence history analysis of test problems (a) 1a and (b) 1b.w

The obtained results are shown in Table 6.5.Aln the table are indicated: AtheA
number of iterations needed to obtain convergence, NI; the total runtime, CPU(s);A
the solute mass balance error, MBE expressed in percentage, and the maximumA
error between calculatedAnd exact concentrations over the hole mesh, excludingA
theAnjectionApoint. AThe Aighest Aerrors Aare Xound At Ahe Anodel boundaries, asA
theAanalytical &olution As Aestablished Aasssuming Anfinite Apacial Alimensions. AThe A
total mass balance error is somewhat higher for the unpreconditioned methods,
nevertheless all are satisfactory.

All algorithms except MIFO converge for test problem la, and an M type ofA
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transformation is unnecessary.AObviously, the MR methodAreconditioned withA
IF0As the fastest, although more iterationsAre needed Aompared to BICGSTAB.A
For theAther dreconditioners BICGSTABAsAheAastest. The convergencebehav-A
ior df AheAlifferent AolversAsAllustrated An Aig.A6.2(a). AObviously, IF0AnablesA
a steadyAlecrease in the relative residual norm.AThe same convergence behaviorA
was observed for the second run 1b, as can be concluded from Fig.A6.2(b).AForA
this case, the IF0 preconditioner unexpectedly exists, and turns out to be theA
most efficient solver, while M transformation requires a little less iterations butA

somewhat more execution time.A

6.4.2 TestyProblemy2:ySteady StateylransportynyayRadialy
Flow FieldywithyCounteryDispersiony

recharge well is injecting clean water in an initially polluted aquifer.A fixedA
concentrationdoundary conditionAsAmposed at a distanceAR fromAhe well, suchA
that steady Atate advection and dispersion act in inverse directions. By neglectingA

sorption and Alecay mechanisms, the Ateady Atate Aransport Aquation AimplifiesAoA

0*C  oC

rS
whereA A— and Ais the radial coordinate [L].AEquation 6.21 is easily solvedA
for the boundaryA:ondltlonA

C =Ky atAr =R< (6.22)A

such thatA

T

C r—R
G~ exp ( ) (6.23)

Assuming a well Aadius AfA.1m, a dischargeAateAf 15m?/d, a radius R ofA00.1m,

with a unit upstream fixed concentration, i.e.ACyy= 1, this problem is solvedA
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Table 6.5:ASolveryperformancesyforytheyfirstytestyproblem. g

TEST | SOLVER | PRECONDITIONER | NI | CPU(s) | MBE | ERROR
I! 1025! 696.2! 1.17! 1.467!
DS! 799! 369.5! 0.85! 1.467!
MR! IF0! 67! 64.6! 0.15! 1.467!
MIFO! *] *| *1 *
IFO-M! ! | - .
(a)! MIFO-M! —A —A - -
I! 144 111! 0.27! 1.467!
DS! 138.7! 133.9! 0.05! 1.467!
BICGSTAB! | TF0! 31! 74.3! 0.14 1.467!
MIFO! *] *| *1 *
IFO-M! ! | - .
MIF0-M! ! ! - .
1! 960! 665.6! 1.02!
DS! 735! 359.5! 0.65!
MR! IF0! 77! 63.45! 0.11!
MIFO! *] *| *1 *
IFO-M! 73! 64 0.12!
(b)! MIFO0-M! 460! 448.6! 0.54
I! 159! 142.3! 0.21!
DS! 129! 155.6! 0.03!
BICGSTAB!| IF0! 36! 83.4 0.09!
MIFO! *] *| *1 *
IFO-M! 38! 90.9! 0.07!
MIFO0-M! 72! 309.5! 0.05!
~!Solver!not!executed!
*|Residual!stagnates!before! maximum!number!of!iterations! (10000)! was!reached!

using aA;E AWedge and Adopting two mesh configurations. Test runs (2a)And (2b)A
use respectively 21x16x2 and&01x16x2 nodes along a three-dimensional radialA
coordinate system. For test run (2a) the spacing along the radial axis is 5m andA
forA2b) it AsBm exceptAor 80m aroundAhe well center Avhere Ahe nodalAositionsA

follow an exponential sequence in incremental order starting form 0.045m at theA

well. A

07124

For the first run with the coarse mesh and using a tolerance of 1 all pre-A

conditioned algorithms perform very well and need very few iterations to convergeA
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—— Analytical solution

Numerical solutions:

—e—- Coarse mesh (run 2a) ad :
—o— - Fine mesh (run 2b)

I
50 75 100

r(m)

Figure 6.3: Comparison of analytical and numerical solutions of normalized concen-
tration versus radial distance for test examples 2a and 2b.

as shown in Fig. 6.4(a). Surprisingly, the obtained numerical results are not very
accurate as demonstrated by the comparison versus analytical results shown in
Fig. 6.3. Especially close to the well, the computed results deviate noticeably:;
this lack of accuracy results from the fact that the advective component of the
solute transport is very important in this region, such that element velocities

need to be approximated more accurately.

For the second run the different solvers and preconditioners are tested with the
fine mesh and severe convergence criteria (tol = 1073"). The performance of the
different solvers are presented in Table 6.6, showing that all MR based methods
fail to converge; in this case the iterative process either stagnates, as for DS,
IFO and IFO0-M, or eventually breaks down as for MIFO and MIF0-M. The same
convergence behavior is observed for the BICGSTAB based methods, except for
IFO and IFO-M, which are the only successful methods (Fig. 6.4(b)). The error

norm over the hole mesh becomes very small, and the obtained results of the
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Figure 6.4: AConvergence history analysis of test problems (a) 2a and (b) 2b.w

numerical Aolution are muchAnore Accurate AhanAn AheAirst Aun, asAhown in Fig.A

6.3.AHowever, still&someAdeviationsAwithAheexact AolutionAemain, indicatingA

that this seemingly simple problem is rather difficult to solve numerically. A

6.4.3 TestyProblemy3:y TransientyTransportyinyayRadialy

Velocity Fieldy

The radial Alispersion problem is typical for describing the movement of a tracer,

injected from a recharge well of finite radius. Several authors have analyzed thisA

problem by deriving approximate and exact analytical solutions, such as Tang andA
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Table 6.6:ASolveryperformancesyforytestyproblemi2b. g

SOLVER | PRECONDITIONER | NI | CPU(s) ERROR(107?)
I! #! #! #!
DS! *1 *1 *|
MR! IFO! * *1 *|

MIFO! #! #! #!
IFO-M! * * *|
MIFO-M! #! #! #!
I! #! #! #!
DS! *1 *1 *|

BICGSTAB! | IF0! 452! 208.35! 1.36!
MIFO! #! #! #!
IFO-M! 426! 1734 1.36!
MIFO-M! #! #! #!

*IResidual!stagnates! before! maximum!number!ofliterations! (10000)! was!reached!

#!Iterations!stopped! when!division!by!zero! was!encountered!

Babu (1979), Hsieh (1986) and Yates (1988), who gives also additional solutionsA
for variable boundary conditions at the well. AThe same problem was also solvedA

by Hoopes and Harleman (1967) using a finite difference based model.A

finite element wedge of 600 elements in 3 layers composed of 200 elementsA
along theAadial Alirection, with uniform nodalApacingAfA.1m isAdopted. Model A
parameters and analytical solution values used £or AomparisonfpurposeAre takenA
fromSegolA1994).A user-specified AimeAtep of 0.01day is used for computing theA
solution atA = 0.1 and 1day.ACorresponding numerical and analytical solutionsA
-in terms of AU/ Cyqversus radial Alistance- are plotted in Fig. 6.5 showing a fairlyA

good agreement.A fixed tolerance of 10~°*was used to obtain these results.

All test runs except BICGSTAB preconditioned with TFO-M fail to converge.A
The solution obtained with BICGSTAB is computed in about 547.3 CPU AandA
439 Aotal Anumber Aof Aterations. A 11Adother AsolversAexhibit Aa Aypical doscillatory A
convergence behaviorAn time which fails to converge before the maximum numberA
of Aallowed Aiterations AL0000 Ais Areached. A Hence, alsoAthisAest AproblemAisAvery A

difficult to solve numerically.A
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Figure 6.5: AComparison of analytical and numerical solutions of normalized concen-w
trationwersuswadialwdistanceworwtestvexamplewd. wOutputsvarewplottedvatvitimewevelw
0.1day and lday.w

6.4.4y TestyProblemy:yFirstyFieldyExampley

The objective of this field application study is to predict the possible contami-A
nationAof A Awell Arom A Anearby Avaste Alisposal Aite. AThe Avater Aabstraction Aate A
at the groundwater pumping station equals 12000m?/d and a pollution injectionA
rate of 100kg/d is infiltrating from the waste site as depicted inA&'ig. 6.1(d). TheA
velocity fieldAs obtained by solving the groundwaterfequation by an adaptiveA
moving mesh procedure such that only the saturated part of the domain is con-A
sidered. TheAvater table position fits exactly with the iteratively adjusted upperA
meshAayer asAhown inA'ig. 6.6(a), whereAlsoAso-potential surfaces and Aelocity A
vectors at theAvater table AreAhown, clearly Andicating theAadial Aonvergent flowA
nearby the well. AThe element velocity extrema is found to be equal to 6.17m/d

near the well location, which results in a high Peclet number of approximatelyA

37 for this problem.ATest runs are performed for the steady state transport sit-A
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Figure 6.6: Simulated steady state (a) potentials, water flow velocities, and (b)
concentration iso-surfaces for test problem 4.

uation, and solver performances corresponding to tol = 1072 are presented in
Table 6.7. Most solvers fail, except when DS preconditioned or M matrix pre-
conditioned. The successful preconditioned MR based methods are slow, while
the IFO-M preconditioner needs less number of iterations compared to DS. The
successful preconditioned BICGSTAB methods show a very important speed-up
and less number of iterations. We can also notice the good performance of DS
for this problem, but IFO-M is exceptionally good, while MIF0-M has a poor per-
formance in comparison. As an illustration, numerical results are visualized in

Fig. 6.6(b), with iso-concentration surfaces, showing the extent of the pollution
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plume at steady state.
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Figure 6.7:AConvergence history analysis of test problem 4.w

6.4.5y TestyProblemy5:ySecondyFieldyExampley

The pollutant transport from a landfill area of irregular geometry is studied inA
a phreatic aquifer system with three different lithologic layers. AThe landfill is inA
contact with the waterAable, such thatAs a boundary condition the concentrationA
at theAvater Aable areAonsidered AodeAixed. TheAroundwater movement passesA
through andAinderneath the landfill, flowing to a nearby canal.A lso, recharge isA
added to theAquifer Aliluting theAollution plume. The transportAs calculated Ain-A
til steady state is reached.A three-dimensional finite element mesh is designedA
consisting ofA73x89x12 modes. AFig. A6.8 showsAimultaneously Ahe Agroundwater A

heads isolines, and the direction andAnagnitude of the velocity vectors drivingA
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Table 6.7:ASolveryperformancesyforitheyforthytestyproblem.g

SOLVER | PRECONDITIONER | NI CPU(s)
I! *| *1
DS! 542! 141.4
MR! IFO! x! x!
MIFO0! x! x!
IFO-M! 275! 118.2!
MIF0-M! *| *
I! *| *
DS! 225! 41!
BICGSTAB!| IF0! x! x!
MIFO! x! x!
IFO-M! 41! 37.7!
MIF0-M! 368! 323.6!
*Iconvergencelnot!achieved!after!maximum!number!ofliterations! (10000)!was!reached!
x!preconditioner!does!not!exist!

theAteady Apollution AplumeAat Ahe Aaquifer bottom. ATheSspecified Aolerance Xor A
convergence was chosen asAol = 107'?*and numerical results are presented inA
Table 6.8. Exceptionally, the IFO preconditioning exists although the problem isA
non M Anatrix type. TheAnostAmportant findingAs Ahat BICGSTAB Adased meth-A
ods are faster, and that DS shows to be competitive when used in combinationA

with a robust solver.A

By comparing all previous results, an immediate conclusion is that the BICGSTABA
method is more efficient than MR, because it requires less computational timeA
and Ais AalwaysAhe Aastest. A For Aproblems A2 Aand A3 Awhere AVIR Aails Awith Aall Ahe A
preconditioners, BICGSTARB is still successful with some of the studied precon-A
ditioners. AUnpreconditioned algorithms do not converge except for test problemA
la, because the elements have a simple and regular geometry such thatAGyis anA
M matrix. WithAespect to thedreconditioners, one can notice thatAS convergesA
for all tests except for problem 2bAnd#, but is much slower than IF0. However,

DS could be more efficient in massively parallel computers, since it is the onlyA
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Figure 6.8: An illustrative plan view of the computed head and velocity fields and
the pollution plume at the base of the lower aquifer unit.

preconditioner that can be parallelized easily. Also, it is very robust and always
exists. Clearly, IFO and especially IFO-M perform very well, and in combination
with BICGSTAB yield the most efficient and fastest solver. MIF0 and MIF0-M
preconditioning strategies are less efficient due to the related expensive cost per
iteration, this is in agreement with the conclusions obtained by Jacobs (1984)
and Larabi and De Smedt (1994) for preconditioned conjugate gradient methods.

The results arising from runs (1a) and (1b) show that the loss of the desirable
M matrix property does not affects the rate of convergence of the solvers, and
the superiority of each method is preserved. It is also instructive to notice that
the MIFO preconditioner does not exist for test problems 1b, 2b, and 5, but that
an IF0 decomposition exists even for a non M matrix. This is not surprising

since the M condition is a sufficient but not essential condition for the existence
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Table 6.8:ASolveryperformancesyforytheyfifthytestyproblem.g

SOLVER | PRECONDITIONER | NI | CPU(s) ERROR(1072?)

I! *1 *1 *|

DS! 1544 | 772.2! 0.437!

MR! IFO! 166! | 257.5! 0.567!

MIFO0! x! x! x!

IFO-M! 184 | 288.9! 0.597!

MIF0-M! #! #! #!

I! #! #! #!

DS! 106! | 150.2! 1.73!

BICGSTAB! | IF0! 35! 126.1! 0.635!

MIFO! x! x! x!

IFO-M! 37! 152.9! 0.9!

MIF0-M! #! #! #!
*IResidual!stagnates! before! maximum!number!ofliterations! (10000)! was!reached!
#!Iterations!stopped! when!division!by!zero! was!encountered!
x!preconditioner!does!not!exist!

of Ahe AF0 Adecomposition A Meijerink Aand AVan Ader AVorst, 1977).A However, inA
problems having irregular and wedge shaped elements, preconditioningfand MA
matrix transformationarefessential. AThe BICGSTAB Aolver Apreconditioned Ay A
[FO-MAhows Ao e Ahe most efficient, and droves Ao bedf valueAn repeatedly dong-A
termAransient Aimulations, asAnAaseffAproblem 8. Alndeed, inAaseofAhe AMIRA
solver, IFO-MAnd DS areAjuite comparable, but for BICGSTAB preconditioningA
by IFO-M results in an important speedup. One can also observe that the repeatedA
oscillatory changes AfAheAesidual norm Aor Ahe BICGSTAB applications decomesA
less dronounced whenAreconditioned Ay AF0, and that MR preconditioned by AFOA
has in contrast a smoother convergence behavior, and shows to be competitive.A
However, forAllAasesMBICGSTAB Areconditioned Awith AF0-M Aperforms AalwaysA
the best.A
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6.5y Summary

Three-dimensional numerical modeling of pollutant transport in aquifer systemsA
by the finite element method leads to large linear systems that are sparse andA
nonsymmetric. The&lobal transport matrix arising from the discretization usingA
hexahedral elements does not in general satisfy the requirements of an M ma-A
trix, which is a very desirable property with respect to the numerical solutionA
procedure.AThe efficiency of preconditioned conjugate gradient like solvers suchA
asMRAndBICGSTABAvasAnvestigated. FiveAepresentative test AxamplesAvereA
selected as a basis for this comparison, and several strategiesAvere Adopted to con-A
ductAlifferent numerical simulations, based on the implemented Areconditioners,
stopping convergence criteria, and solutions benchmarks when an exact solutionA
was available.A

Preconditioners as diagonal scaling, incomplete factorization, and modifiedA
incomplete Xactorization AwereAested. AnAMAmatrix transformationAsAproposedA
whichAguarantees Ahe Aexistence dofAincomplete Aactorization, the mostAefficientA
preconditioner Ao Xar. AThe Asumber AofAterations, and ACPU Acost Awere Aused Aas /A A
basis for these comparisons, also a series of benchmarks for all succeeded testsA
were performed for problems, which could be solved analytically, to ensure theA
accuracy of the obtained results.A

It is found that BICGSTAB preconditioned by incomplete factorization per-A
formsAvelldor all Aest Aroblems. However, for Alifficult AroblemsAuch AactorizationA
is unlikely to exist, and the proposed M matrix transformation proves to be ef-A

fective, leading to the guaranteed existence of a robust and efficient solver.A
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7.1 Introductiony

In this chapter we shall discuss issues which are more relevant to software engi-A
neering Alevelopment, rather than the models concepts, mode of functioning, andA
implemented approaches themselves. These aspects are reported herein, becauseA
they are valuable tools to support some of the modelsAlreadyAliscussed in theA
previous chapters, and take effective role in a number of ways for a model setup,
run and analysis. A

TheAfollowingAdescriptionsAareArestricted to theAsaltwater Aintrusion modelA
GEO-SWIM. However, pre and post-processor modules are shared within GEO-A
PROF numerical code for which the modelsAlescribed in chapter 4 and 6 are theA

newly implemented pieces, contributed in the framework of this work.A
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7.2y GeneralyOverviewy

new system for finite element modeling of three-dimensional groundwater flowA
and Asaltwater Antrusion An Aaquifer AsystemsAs Aeveloped. AGEO-SWIMA Geohy-A
drological Saltwater AntrusionAModel) Ahas several features including flexibility,
computational Aefficiency, portability, andAhandling a largeAvariety AofAphysical A
conditions, makingAitAsuitableXor a wideArangeMofApracticalAandAreal Alife ap-A
plications.A Steady Astate Aas Awell Aas Aransient Aproblems Acan Abe Ainvestigated An A
three-dimensions, for AeterogeneousAorous media. TheAoftwareAsbduild Aip AromA
different Anodules, includingpre-processorAandApost-processor Anodules. Almple-A
mented numerical algorithms are efficiently coded to optimize computer storage,
memoryAnanagement, and AomputingAime. AVisual Support AoAnputAlata, andA
output results, is given through an integrated program that interfaces in differ-A
ent ways with the simulators, and Ather Aleveloped GUI (GraphicAUser Interface) A
tools. A

Modeling Aof Agroundwater Alow Aaking AintoAaccount variationsAinAdensity AisA
traditionally Aprerequisite Awhen Aaquifer AsystemsAareAn direct Acontact withAtheA
sea.AFinite Adifference Aand Ainite Aelement Acomputer Acodes Ahave Aeen Adeveloped A
for such applications, such as SWIM (Sa da Costa and Wilson, 1979); SUTRA
(Voss, 1984);ASHARPAEssaid, 1990a);AMAGNASAHuyakorn/ZetAl., 1994/.b);A
and SIMLAS (Huyakorn et al., 1996).ASharp interface models are yet the mostA
common, economicalfndApractical Xor Ahese AypesofAimulations. AMost AdfAheA
existing modelsAn this category areAither D Ar Auasi-3D And Aave Aimited built-A
in GUI and visualization capabilities, except for SUTRA, recently supported by A
a number of 2D visual routines in Argus ONE (Voss et al., 1997). Driven by theA
need for a fully three-dimensional sharp interface model, GEO-SWIM has beenA
developed ASbaiAndMe Smedt, 1998) Ancluding pre-processor and dost-processor A
packagesAthat Acommunicate Awith Athe Asimulators Ahrough AinterfaceAcalls. A TheA

developed system is highly efficient, simple in use, portable, interactive in a wayA
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to provide modular and user-friendly tools to handle separate modeling tasks,

and open to other software packages leading in their field.A

7.3y GEO-SWIMyArchitecturey

Before presenting the general structure of the developed software packages, howA

they interface and inter-depend, the objectives are discussed first.A

7.3.1 DesignyGoalsy

The following were design goals for GEO-SWIM with their motivation and im-A

plications.A

HighyNumerical Performancey

GEO-SWIM takes advantage from latest developments and approaches for solv-A
ing the sharp fresh-salt water interface, by avoiding solving the equivalent twoA
fluid flow problem.AThis was achieved by transforming the saltwater (and even-A
tually the unsaturated) part of the domain, to an equivalent freshwater domainA
having the same pressure distribution as in the saltwater domain. Also, numer-A
ical difficulties prone to the non-linear discrete Richards equation are handled.

Another reason for Auch numerical AobustnessAs Alue Ao Ahe Afficiency and level of A
optimizationAn coding. As an example, an important improvement wasAbserved A
when converting many parts of the code from FORTRAN 77 to FORTRAN 90A
language, by usingAdynamicAmemoryAallocation, intrinsicAarray Aunctions, andA
modules for organizing data structures, objects and shared variables, and avoid-A

ing the use of obsolescent FORTRAN 77 features.A

Portability

GEO-SWIM AvasAlesigned toAun under any AlatformAnd AperatingAystem. TheA

code was tested on the following systems: A
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e Dos/Windows95/98/NT for Intel based PCs,

e UNIX-based Solaris for SUNSPARC workstations,

e UNIX-based IRIX for SGI.A

Numerical models areforted successfully, at no cost. ThereAs only an excep-A
tion for Windows based interfaces, because such tools use windows 32-bitAdasedA

GUIAnd AraphicAibrary Aalls, which areAot &asily dorted toAther Anvironments. A

Simple Programmingylnterfacey

It AvasAdecided AoAiseA NSTAFORTRANAO0AsAprimary Aanguage AoAdevelopA
all packages.AFor instance, all numerical routines used to buildAlifferent modelsA
were developed from scratch, making the numerical codeelf-dependent, or onA
the other hand Andependent of any hardware, compiler Alirective or system specificA
library calls.AWe preferred also to keep each program independent of others, toA
have a programming layout as simple as possible, which allows a user with anA
average programming knowledge, the ability to navigate through and change codeA
partsAccording to hisApecific need. However, thisA&ives however moreAlexibility,

but AessAsecurity. ABut, accordingAoAhepreviousAgoal AhisAvasAllowed AnAhisA
release. AnotherAtrategyAs toAock access to theAiser Aodrevent possibleAlamageA
by providing a set ofA PI (Application Programming Interface) calls to built-inA

libraries. AT'his issue may be considered in the next release. A

Highly InteractiveyResearchyTooly

Recently Aleveloped AxUT And &Araphical dackages, aim at providing a highly Anter-A
activeAand Avaluable Aresearch Aool. AThese AprogramsAre Aleveloped An A AnodularA

way, which implies an easier level of maintenance.A
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Figure 7.1: AGEO-SWIM modules.w

7.3.2y Structurey

GEO-SWIM is composed from different packages as depicted in Fig.A7.1.ATheyA

are classified as pre-processors, post-processors or models, which constitutes theA

core system component.A

Pre-Processor Packagesy

typical Ainite Alement simulationAn GEO-SWIM Atarts Ay constructing a three-A

dimensional mesh of the aquifer system, and attributing soil types and related A

physical arametersAoAt. AThis Airst Aask Aanbeccomplished Auising Ahe GEO-A
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GRID mesh generator for making structured grids from irregular hexahedral finite A
elements, and GEO-SOIL a soil types interpolator package, which attributes soilA
types to all elements from an initial number of given vertical geological cross-A
sections. A

Boundary conditions on external boundaries and/or internal nodes (e.g. waterA
abstraction nodes) are then specified prior to run the saltwater intrusion model.A
The package GEO-FCON handles this task and Additionally a user-friendly win-A
dows GUI version of this package was designed to facilitate user input.A

Twelve typesAf nodal doundary Aonditions Aepresenting a wide Aange Af dossi-A
bilities Ancountered An practice areAllowedAn GEO-FCON.AtAas alsoAhe ability A
to specify soil types as conditions confined to elements based on structured sub-A
zones of the whole mesh, this option is not powerful as the use of GEO-SOIL,

but it is faster in case of simple situations (e.g. horizontally layered aquifers).A

Saltwaterylntrusion Modelsy

Two models are included in the software package, plus two other auxiliary pro-A
grams for tracking flow lines, and velocity calculation.A

GEO-SSWI:As theMsteady AstateSsaltwater Antrusion model, whichAsAbasedA
on a symmetric conjugate gradient flow solver, preconditioned with a modifiedA
M-matrix incomplete factorization.AThe conductance matrix coefficients are im-A
plicitly corrected, depending on the nodal water pressure status.A

GEO-TSWI: simulates the moving salt-fresh water interface in groundwaterA
aquifer Asystems. A ThisAprogram Auses Aa Ainite Adifference Aapproximation An AimeA
and a finite element discretization in space.Aln each time step a modified Picard A
iteration schemeAs adoptedAo solve theAon-linear set of equations. An idealizedA
soil characteristic curve is used, and proves to be very efficient in enhancing theA
behavior of the numerical model, by eliminating irregularities encountered whileA
solving standard non-linear equations.A

GEO-FLOW:AThisAprogramArack flowAinesAndividually, untilAeaving theA
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flow domain, or arriving in elements with zero soil type (inactive elements), orA
when Ahe Alow Aime AdecomesAarger Ahan a pre-set Anaximum simulationAime. TheA
mobile water fraction parameter has an important effect here, since it representsA
the fraction of the groundwater that is considered to be effectively flowing. A
GEO-FLUX: This program produces a continuous nodal flow velocity field,
the corresponding nodal flux vectors are also calculated.A lumped formulationA
is used to solve the finite element equations obtained from post processing theA

simulated &Aroundwater potential heads.A

Post-Processorsy

ThisAroupAncludes converter fdrograms, which Aonverts AGEO-SWIM AlataAets Ao A
files format compatible with third party software. GEO-GIS program convertingA
user Aspecified Slice Acuts Ao Areadily Apost-processed AGIS Acompatible Ailes. AOther A
programsAin AthisAcategory Aare AGEO-TECP a converter Afor Avisualization Awith A
external software: Tecplot’™ 14 and GEO-ACAD a CAD converter.A

7.4y Visualizationylools

Another alternative for post processing GEO-SWIM data sets, is the use of theA
integrated modelling environment (Fig. 7.2), which has been developed recently. A
The motivation for developing such program is to provide a number of routinesA
for visualizing the model input and results, which will enable easy verificationA
andAcalibrationfofAheAnodel. A tAheAameAime, afignificantAenvironment Xor A
buildingAeasily groundwater modelsXor practical and field studies is obtained,
without AremendousZeffort, suchAthatAthe modeler Awill Aconcentrate Amainly AnA
using the model and interpretation of the obtained results. A
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The developed user interface can run under Win®**operating systems, suchA

as Windows 95/98/NT. It is a configurable windows menu-driven interface, withA

I Tecplot!islaltrademark!of!l Amtec! Engineering!Inc.!
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ERvisual GED_SWIM 0.5 - (O]
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Hew .. View Toolbar

Open .. Oeverlay Yiew Mode Indice: Igu
@ ' .

Save ’]7 Mesh ¥ Sails ’7 Flan ” Front = Side | WE: IW Update | .\l e\l

Save Az ..

Export ...
Print

Information ..

Exit

Tatal nurber of nodes: 1277
Tatal number of elemets: 88320

Mumber of used zoil types: 3
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Z 1ange: 52892 - 17.000
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Loading Model parameters ... ES E417 ' 1742 D:4mazbaiMARTILWSIMT vmartil0n. wgz 4

Figure 7.2: AVisual GEO-SWIMuwnterface:wA samplevfront sectionwiew, meshvand soilw
types are overlayed.w

many significant characteristics and implemented packages. Some of these pack-A
ages give GUI support for previously described programs such as GEO-FCONA
and GEO-TECP. Other built-in packages include:A

Cross-SectionalyCutter Packagey

2D cross sectional cutter package for previewing cross-sectional or plan viewsA
of AheAoaded model, thisApackagethas theAability toAview model Xeaturesfe.g.A
mesh, soil types as separate layers of information, such that it works as a trueA
GeographicAnformation System. ATheAist of AnformationAverlays Ancludes: Asoil A

types, simulated Aroundwater dotentials, pressures, and Aresh /saltwater Anterface. A
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MapsyExport Packagey

This package enables exporting displayed maps to popular raster and vector for-A
mats (e.g.A utoCAD DXF, Windows Metafile, PostScript) which can be used inA
third party CAD and engineering graphic programs.A

v Geo_Fcon for Wind5/NT - D:AmasbaiAGEO_PROFAGEO_CON1AEXAMPLES. .. !Elm

File Bun Toolz Help

EEHE =X 728

candition | start |:| sharkr... | start |... | end c... | end ru:uw| end Ia...| walue 1 | value 2 | v;l

Fined potential = 1 ) 1 71h

Fined patential = 1 56 1 7e

Fixed potential = 1 a7 1 7.2h

Fined potential = 1 s 1 7.3

Soil type 1 1 1 72 ga A 1

Soil type 1 1 7 7 ga g 2

Soil type 1 1 9 72 ga 11 3 -

4| | 3
Annotation:

—Boundany Conditions

" Fixed potential ™ Leakage flux " Sespage % Sail type
" Fixed flow " Infiltration " Recharge " |zolated nodes
" Fixed flux ™ Drainage " Evapotranspiration
" Leakage flove  Ahstraction " Sea boundary
Soil type index: Flowy rate:

Caolurnn:

Calurn: IF"2 vl |3 3, ID.DDEIEID

|1 37
Riow I'I 3, Row: |58 — Flus: Conductance:
Iﬂ 000000 ID.DDDDD

| | | 21/06/93 | 03:46:05

Layer:

Figure 7.3: Alow conditionernpackage:wpperist shows boundarywonditionswsed forw
the processed case study.w

FlowyConditions Packagey

ThisAackageAs a comprehensive AGUTArersion Af the dreviously Alescribed Around-A
water flow conditioner program (Fig. 7.3). The interface works in a similar way asA

for the batch program version, and enables to speed up this process for practical A
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applications. A

Solver options

— PCG [teration
b aximurn number of iterations: (5o

Tolerance fachor: 0.0

Tolerance: 0000

— Modified Picard lteration
Max nurnber of outer iterations: |50

Under-relaxation factor: 050

Outer balerance: 0100

L{ oK !Earu:ell

Figure 7.4:Aptions of GEO-SWIM solver package.w

Modelsylnterface Packagey

This package is a collection of interactive dialog boxes and tools for collectingA
model input parameters e.g.Adensity, soil types parameters, solver options (Fig.A
7.4), time dependent parameters, etc.AThe collected Alata is translated to GEO-A
SWIM specific format, as required by the models.AThis makes the modelAlevel-A
opment independent of that Af theAnterface and Anables theAater toAaveAupportA
for other groundwater flow models if required, eliminating the need to write an-A
otherApecifichodeAor At. When AlirectoriesAf programsAxecutables are Alefined AnA
theAnterface Anvironment optionsAsAlisplayedAn Fig. 7.5, severalAnodel AersionsA

can run from the same box. A

GEO-SWIMjto TecplotyConverter Packagey

ThisAisAa AGUIAprogramA(Fig. A 7.6) Aspecifically Addeveloped Ato Aenable Acasy Aand A
automatic production of high quality presentation graphics with the help of theA
Tecplot Arisualization Aoftware A Amtec AngineeringAnc., 1996). Although, priorA

knowledge of how to manipulate different data sets for best visualization resultsA
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Paths to Executables

— Pre Frocessorz
Grid Generator;

Flow Conditioner;

Soilz Interpolator;

C:%geo_swim'binsgeo_grid. exd

C:hgeo_swim'hbingeo_foon, exe

C:hgeo_swirnbinaeo_zail exe

— Maodels

Steady kModel:

Tranzient Maodel:

C:hgeo_swimbbintaeo_swil exe

C:hgeo_swimhbintgeo_swid exe

Tecplat interface package:

|' Fozt Proceszors

II::'xgen_swimhbinkgen_tecp.e:-:e

L{DK

! Cancel |

Figure 7.5: AExecutable program paths interface.w

with this powerful software is necessary, this program acts as a simple generatorA

toAbuild AcustomAdata setsAwhichAcouldAbe used Adirectly AromAwithinATecplot,

thus transforming data formats from GEO-SWIM. The transformation is doneA

smoothly An different ways, and a variety Af Alataformats AreAupported; Ao ASCITA
and Binary Alecplot Aile formats Are Aupported, theAater Aersion could heAf choice A
whenAlatassetsAare AargeAi.e. Aexcessive Aiumber Adf Avodesand /or Aransient AlataA
sets).AThisAenables Anaking Ailes Aof Aigh Acompression Aatios, whichAesultsAnAA
significant Astorage AnediasavingAand Asmaller Aaccess AimesAoAheAiles. A SCITA

data sets are useful only for small size problems, such as theoretical ones, forA

which immediate checking of the results is faster through immediate viewing ofA

theA SCII Tecplot file.A
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Geo_prof to Tecplot converter
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Figure 7.6:AA Tab view of the GEO-SWIM to Tecplot converter GUI package.U
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8.1 Conclusionsy

TheAresultsAand Asignificant findings areAsummarizedAin theAsub-sectionsAgivenA

below, following the order at which they were discussed earlier.A

8.1.1 Variably SaturatedyGroundwateryFlowyProblemsy

computer program for modeling time dependent, and Ahree-dimensional vari-A
ably saturated groundwater flow has been developed based on several numerical A
techniques, enabling great savings in computer time, and giving rise for runningA
large problems of billion of unknowns, efficiently on cheap desktop workstationA
or PC’s.AThe model uses a Galerkin finite element approximation in space andA
a fully implicit finite difference time approximation with a mass lumped storageA

term. It features the following items:A
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e AutomaticAocationAf theAnovingAvater Aable boundary, based An the AUPA

technique found AoAe excessively cheap inAomparison to the standard finite A
element method.AThe water table location is based on the changing nodalA
water status which are mapped from the relativeAvater table position withinA

each hexahedral element;A

e1Other non-linearities related to the difficulty in estimating the soil char-A

acteristic curves are tackled using nodal specific idealized water retentionA
curves, by taking into consideration the saturated and the residual waterA
contents for each soil type exclusively. This approach is found to be useful,

and very attractive especially in combination with the solver;A

e+The implemented numerical solver shows to be very efficient, stable, andA

mass conservative. The embedded methods which largely contribute to suchA
robustness are: the modified incomplete factorization preconditioner, withA
an M matrix transformation, theAnnerAinear conjugate Aradient solver, and A

the dynamic time marching scheme with automatic under-relaxation;A

e1iSpecial attention was paid to complex and nonlinear boundaryAonditions,

such as, seepage face, drainage, time varying heads, leakage and abstrac-A
tion, these conditionsAarefeffectively AmplementedAand testedAon several A
application samples, thus providing a meaningful Avay to/uild applicationsA

with many levels of complexities. A

The model is verifiedAnd validated using 4 test examples. Numerical resultsA

are compared Arersus analytical, measured Aesults, and Ather numerical AechniquesA

such as the moving mesh method. For all these test problems, a good agreementA

isAobtained. AThe Anost Amportant Aest Avalidates Ahe Anodel by Aomparison Awith A
respect AoAaboratory AmeasurementsAin a 3-DAearthAdam modelABaseghi andA

Desai, 1987). Numerical AxperimentsAvere carried dut in Aase AfAise, steady AtateA

and Alrawdown of the free seepage flow, which allow for modeling heterogeneitiesA
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represented Ay coreAlam materials. The modelAvas able toAredict Accurately AheA

moving water table location and seepage face extent.A

8.1.2y SaltwaterylntrusionyProblemsy

Simulationof thesaltwater Aencroachment in 3-DAaquifer ssystemsAwasAstudied A
based AnAAewly Aleveloped Ainite Alement Adased Aomputer Aode: AGEO-SWIM. A
ThisAnodel can handleAlifficult casesAvhere twoAree And moving doundaries Axist A
in the domain, e.g. in coastal unconfined aquifers.A n iteratively based Ghyben-A
Herzberg approximation was implemented, and thus avoiding the solution of theA
coupled Awo-phaseAgoverning Aequations Asimultaneously. A Instead, theAsaltwaterA
zoneAsAeplaced Awith an equivalent freshwaterAzoneAhavingAhesamepressureA
distributionAsAnAheAsaltwater. AOther Aachieved Alevelopments Aare Aclassified Aas A
follows: A

e+The FUP numerical technique was generalized for the case of dual movingA
boundaries, especially &xplicit modifications AreAerformed for the shape AfA
the idealized water retention curve, showing its dependence on the density A

difference ratio;A

e+The model uses the same numerical solver, and time marching scheme de-A

veloped for the variably saturated Aroundwater flow model. A

FiveAest AproblemsAare Aprovided Ao Asupport Ahe Anumerical Anodel. A VariousA
solution types (analytical, numerical, andAexperimental)fare adoptedXor com-A
parison purposes.AThe behavior of the saltwater encroachment has been studiedA
in confined, unconfined and multilayer aquifers with different complexities andA
conditions.A [1AheseAestsAyield Satisfactory Aesults Aegarding Ahe Ascope of Ahe A
application, and model specific situation for each test.A

The GEO-SWIM numerical code is applied to study saltwater encroachment inA

the coastal aquifer system of Martil situated in the northern part of Morocco. TheA
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detailed three-dimensional geometry of the aquifer was reconstructed from theA
available data sets as a further step to pursue the modelingAtudy.A calibratedA
steady Anodel Ahows Ahat sensitivities areAnore relevant toAheAatural Aecharge, inA
comparison toAtherdarametersAuchAsAydraulicAonductivity and AheAaltwater A
density. Afterwards, a long-term transient simulation was performed to reproduceA
actual And AutureAituations, withAhe aimAoAnalyze theAisk AoAalinization AromA
theMediterraneanAea. ItAsAoncluded thatAvithout Aurther &ontrol the Aaltwater A

interface would travel inland over considerableAlistances in the future.A

8.1.3y SoluteyIransportyProblemsy

InApite Af Ahe Anvestigated three-dimensional Aroundwater Alow class AfAroblems,

numerical modeling of pollutant transport in aquifer systems by the conformingA
finite element method leads to large linear systems that are sparse and nonsym-A
metric. AHowever, compared to the flow conductance matrix, it is observed thatA
the global transport matrix arising from the discretization using hexahedral el-A
ements is not an M matrix, which is a very desirable property guarantying theA
numerical stability of the solution procedure.ATherefore, several issues were in-A

vestigated to overcome this difficulty, such as:A

e+The efficiency Af breconditioned conjugateAradient like solversAuchAsAMRA
and BICGSTAB;A

e+tPreconditionersAs diagonalAcaling, incomplete factorization, and modified A
incomplete factorization were tested. An M matrix transformation is pro-A
posed which guarantees the existence of incomplete factorization, the most A
efficient Apreconditioner Aso Xar. A The Anumber Aof Aterations, and ACPU AcostA
wereAusedAas a basisNor theseAcomparisons, also a seriesfofAbenchmarksA
for all succeeded tests were performed for problems, which could be solvedA

analytically, to ensure the accuracy of the obtained results.A
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FiveAepresentative test AxamplesAvere Aelected As a basisAor this comparison,
and several strategies were adopted to conductAlifferent numerical simulations,
basedon theAmplemented Apreconditioners, stopping convergenceAcriteria, andA
solutions benchmarks when an exact solution was available. A

It is found that BICGSTAB preconditioned by incomplete factorization per-A
formsAvell dor all Aest droblems. However, for Alifficult AroblemsAuch AactorizationA
is unlikely to exist, and the proposed M matrix transformation proves to be ef-A

fective, leading to the guaranteed existence of a robust and efficient solver.A

8.2y Recommendationsy

General Azuidelines Xor Asuggested Auture Aresearch Aare Agiven Aherein. AThroughout A
several Apossibilities andAdirectives, weArecommendAeither an extensionAof thisA
work orfother alternativesAand complementaryAdevelopments, which may takeA
profit Arom Ahis Ahesis Aindings. AWeAhink At dpresent Ahat Auture AmodificationsA
and/or extensions of the existing computer packages and models is manageableA

to success any of these suggestions. A

e+TheAdeveloped AFUP numerical AechniqueAor Aree Aand Anoving Anterfaces,
including the water table and the salt-freshwater interface was tested onA
problemsAll Aonstructed onAtructured Aneshes. AHowever, weAhouldA&eepA
in mind that, this is not a restrictive condition with respect to the numerical A
approach since the FUP involves updating nodal storage and AonductanceA
with respect to the hexahedral element behavior. We expect the numericalA
scheme to work for problems with unstructured8-D problems using exclu-A
sively Aiexahedrals. AThis Aould dprove Ao SbeAiseful Kor A Mparticular Alass ofA

problems where local refinement is advised;A

etUnderAidalAonditions in the sea, the pressure distribution in the saltwa-A

ter zone may become important, and hence it is advised that the coupledA
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system of freshwater and saltwater equations are solved simultaneously inA

time; A

e MoreAdetailed Aprobes areAneeded AXor thelevaluationof theAvertical lowA
componentsAn Aase Adf Ahe moving Anterface Alow, thisAvillbe very Aiseful Aor A
proper Adjustment of theboundary Aonditions at wellsAvhich mayAvithdraw A

saltwater;A

etFor the preconditioning methodsAeither for the flowAr theAransport prob-A
lems) AdiscussedAin thisAwork, the ability AofAeach method to adoptAto aA
particular hardware is dropped. In particular, the cost and ease of the im-A
plementation in parallel architectures are not discussed.AParallelization ofA
computer codes is considered as one of the most exiting research topics inA
development AnXoday’s Asoftware Aengineering Anarket. AThe Apromising Anew A
generation of programming languages, optimized compilers, and operatingA
systems will provide a solid platform for an integrated Alevelopment of au-A
tomaticAparallel AodesAgeneration. AHowever, the/dbestAesultsAaredbtained A

through a direct implementation at the computer code level;A

eWe are aware that for many situations where there exists a strong depen-A
dence of the water density upon the solute concentration, the solution ofA
coupled Alow And Aransport droblemsAsAiecessary. ToAolveAffectively theseA
class of problems, it is often assumed that spatial differences in the massA
of pure water per unit volume due to variations of pressure are negligibleA
inAomparison. Particularly, in case of unsaturated transport a robust fullyA
coupled Aolver Anay bebased on Ahe FUP Aechnique. AIn Ahis Aontext, andA
moreAprecisely AinAcase dof Ahighly Aadvective Alow, a secondAorder accurateA
CVFE approach could be more feasible in solving solute transport equa-A
tions.ATheAatest Alevelopments Aure Atill Anot Aatisfactory Zor 8-D Alomains,
especially Aor Aexahedral &lements Amost AfAhe Axisting AormulationsAs Anly A
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for 2-D triangular elements), these new strategies should take into accountA
the cost of the developed numerical engine, as in 3-D these are expected toA

be very high;A

eHUnstructured meshes are efficiently designed, if they effectively minimizeA
the overall solver time for the same number of nodes.AThis is achieved inA
particular for a number of problems, using at least a combination of twoA
elements (triangles andAjuadrilaterals in 2-D, and hexahedralsfnd tetra-A
hedrals in 3-D), the possible extension of the M matrix transformation toA
other kind Af Alements can provide challenging applicationsAoAdeAderformedA
efficiently; A

e +TheArisual Anterface drogram AresentedAn chapter 7 is an attempt toAive aA
sufficient level of support for the models being developed.A s the softwareA
development was academically and research oriented, the program can beA
usedAs a learning toolAor AdostgraduateAevel And trainingAn finite Alement A
groundwater Alow Arinciples. To boost the practical useAf the program, weA
strongly recommend its continuous development and support, for a widerA

range of models. A
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Appendix AG

Analyticalysolutionsyforytransienty
seepagey

A.1 Linearizationytechniquesy

The Dupuit theory simplifies the governing groundwater flow equation, but doesA
notAemoveAll Ahe Aonlinearity. AThe Aommon AnethodsAofAinearization Aseek Ao A
escape from this difficulty by transforming the original governing equation to anA
equivalent form, which can be directly solved using standard applied mathemat-A
ics. AFor Ahe Aake Aof Aimplicity, theAechniqueAwill beAdriefly AdescribeAn Acase fA

1-D Boussinesq’s equation, with no sources/sinksA

oh k O Oh
E:AE%@;) A

1.AThe simplest idea consists on approximating the dependent variable by anA

averaged value in the right handAide of equation A.1, such thatA

7 92 T 92
oh _ khd*h _ T &% (A2)

ot n_68x24: N, Ox24

where A" is the apparent transmissivity. AEquationA .2 is equivalent to theA
famous heat conduction PDE for which a known space of basic solutionsA
isAvailable, e.g.Atheferror Xunction. AHowever, theApproximationAised AnA
equationA .2 remains valid for small variations in the flow field, otherwiseA

errors are significant.A
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h
2. A second method assumes ;ﬁ— asAonstant, such that &quationA .1hecomesA

Ned
linear with&42.7

It AhasAbeen Ademonstrated that theAsecond AmethodAisAmoreAaccurateAthanA
the first one, because the linearization inA?*preserves somewhat the nonlinearA

behavior of the original equation (Polubarinova-Kochina, 1962; Guo, 1997)A

A.2y Polubarinova-Kochina’syseriesyfunctionsy

The analytical AolutionAdrovided An Section A.3AsAiven in a formAf an expansionA

series, whose first three terms are evaluated by Polubarinova-Kochina asA

2 T,
U = A— e Vdt = erf 3
1(n) =1 (n) A 3)
[ U S V- WS N
ug(n) = 7T(1 e ) ﬁne Uy 2X14+ (ﬁ - Upg (A4)A

9A 1A . 3 _ 1A, o2
uz(n) = I&KﬁﬂLﬁTﬁne T2t mnz)’e K u%ﬁ%—A?;e T w4~ ;17 ey y— (A.5)

1A . 1A > 3V3 2 3v3 1
e — —3nt _ VY 3 1-= Y- _Z
Wﬁne 27r\/7_rn6 A w(mv/3) + ( T aet ( A 2A™M

Tabulated values of this functions for values of  from A toA areA&ivenAn tableA .1A
below.AOneAnay Aotice however Ahat by AruncatingAhe Apower Aeries Aexpansion A

in equation (4.25) to the second term, the solution simplifies toA
h(n,t) = By (1 + Lerf(n)) A&t (hos— h1) erf(n) A .6)

whichAs theAolutionAf theAinearized BoussinesqAquation using theAirst Anethod A
(Bear, 1972).A
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TableA .1:ACoefficientsyofyseriesyusedyinytheyPolubarinova- Kochina syanalyticaly

solution.y

Ui U4 U4

U3zq

0 0A 0A
0.1A 0.1125A +0.0141A
0.2A 0.2227A +0.0160A
0.3A 0.3286A +0.0073A
0.4A 0.4284A -0.0092A
0.5A 0.5205A -0.0300A
0.6A 0.6039A -0.0519A
0.7A 0.6778A -0.0718A
0.8A 0.7421A -0.0874A
0.9A 0.7969A -0.0975A
1.0A 0.8427A -0.1017A
1.1A 0.8802A -0.1004A
1.2A 0.9103A -0.0946A
1.3A 0.9340A -0.0855A
1.4A 0.9523A -0.0744A
1.5A 0.9661A -0.0626A
1.6A 0.9764A -0.0510A
1.7A 0.9838A -0.0394A
1.8A 0.9891A -0.0310A
1.9A 0.9928A -0.0232A
2.0A 0.9953A -0.0169A
2.5A 0.9996A -0.0024A
3.0A 0.9999A -0.0002A
3.5A 1A  -0.0000A
40A 1A  -0.0000A

0A
-0.0039A
-0.0081A
-0.0090A
-0.0049A
+0.0039A
+0.0159A
+0.0280A
+0.0373A
+0.0422A
+0.0418A
+0.0368A
+0.0281A
+0.0194A
+0.0078A
-0.0011A
-0.0079A
-0.0125A
-0.0147A
-0.0151A
-0.0141A
-0.0047A
-0.0006A
-0.0001A
-0.0001A
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Appendix By

Meuller’s methody

B.1 Synopsisy

This method4inds a zero of a real functionAf(x) = 0. An initial approximationA
to the zero must be given.A

ThisAuses an interpolatingApolynomial AP(x)AofAdegree two, by usingAthreeA
approximate values for a root and approximates f(x) near the root to be obtained.A
One of the roots for B(x) A (\is taken as the next approximate root of A(x).AnA

this way iteration is continued.Al'his algorithm has the following featuresA

e Derivatives of A () are not requiredA

e The function is evaluated only once at each iterationA

B.2y Descriptiony

LetAv be a root of & () and let three values #; 24 z;_14andA; be approximationsA
to the root (See later explanation for initial valuesAr14, z24andA3). According toA
Newton’sAnterpolation formula of llegree two, f(z) is approximated by using theA

three values described above as followsA

P(z) = A+ flog, zia](z — 23) + flos, w1, o) (x — 23) (7 — 241) M.1)
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whered; =X (z;), and & [x;, z;_1] and A [z;, ;_1, z;_2] are the first and the secondA
order Alivided Alifferences of & (z), respectively, and are defined as followsA

f[xi,xifl] = M‘l

Ty — Ti—14
iy Li—1] — i1, Ti—a| A
fleo, zic1, wi] = ]{[a:,x 1] = Sz, zi (B.2)A
Ty — Tj—24

P(x)A=A is then solved and the two roots are written asA

e 2f,
T OEALi T {wk—Af; flws, xiq, ;0] }1/2
w =Aflri, i) + (v — zi1) flos, Ti1, 7o) 8.3)

Of these two roots forAP(z) = 0, the root corresponding to the larger absoluteA
value of the denominator in the second term of equation (B.3) is chosen as theA
nextAterationAalueA; ;. This meansAhatA;, 14is a root closer toA;. In equationA
(B.1), if the term of &*4is null, i.e., ifA[z;, 7;_1, 7;_o] =A), the following equationA

is used in place of using equation (B.3)A

Ji
r =Azg;,— ———
f[fﬂi,l‘i—l]A
Ty — Tj—14
fi - fi—14 ( )

This is the secant method.A
In equation (B.1) also, if both termsAr andAv?*are null, P(x) reduces to aA

constant and the algorithm fails. (See later explanation.)A

B.3y Algorithmy

- Initial valuesA14 xosandArsy

The three initial values are set as follows:ALetAr be an initial value set byA
the user in the input parameter AX.A

Whenk # 0 A

T14=— 0.9z
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Toa= 1.1z
Ta—A
Whenk = 0,
r14=A1.0A
Tos= 1.0A
r3,= 0.0A
- Whenf(z;—2) = Az;—1) = Az)A
ThisAorrespondsAoAhe caseAn whichAdothAermsA and A?%inAquationAB.4)A
are null, so Muller’s method cannot be continued.A
The subroutine changes x;_24 x;_1, and x; and tries to get out of this situationA
by settingA
Ty o= (14 p")Ti o
Ti1= (1 +p")ai1a
2= (1+p")zi
wherep =A-u"Y1° 4 is the unit round off andAn is the count of changes.A
Muller’s method is continued by using4r; .4 z; ;, and #. When more than fiveA

changes are performed the subroutine terminate unsuccessfully. A

B.4y Convergenceycriteriay

The following two criteria are used.A

CRITERIA I. WhenAhe approximateAootA; satisfies (z;) A € thek; is takenA
as the root.A

CRITERIA II. When the approximate rootA; satisfiesAr; — z;—1| < 7.|x;| theA
z; isAakenasAheAoot. AWhenAhe oot AsAAnultipleAx;| root or very close toA
another root, v must be set sufficiently large. If 0A v < u, the subroutine resetsA
v =M.A
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