
HAL Id: tel-00006328
https://theses.hal.science/tel-00006328

Submitted on 28 Jun 2004

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling and Analysis of Real Time Systems with
Preemption, Uncertainty and Dependency

Marcelo Zanconi

To cite this version:
Marcelo Zanconi. Modeling and Analysis of Real Time Systems with Preemption, Uncertainty and
Dependency. Networking and Internet Architecture [cs.NI]. Université Joseph-Fourier - Grenoble I,
2004. English. �NNT : �. �tel-00006328�

https://theses.hal.science/tel-00006328
https://hal.archives-ouvertes.fr

Universit�e Joseph FourierNÆ attribu�e par la biblioth�equej = = = = = = = = = =T H �E S Epour obtenir le grade deDOCTEUR DE L'UJFSp�eialit�e : \INFORMATIQUE : SYST�EMES ET COMMUNICATION"pr�epar�ee au laboratoire Verimagdans le adre de l'�Eole dotorale \MATH�EMATIQUES, SCIENCES ET TECHNOLOGIES DEL'INFORMATION, INFORMATIQUE"pr�esent�ee et soutenue publiquementparMarelo ZANCONIle 22 Juin 2004Titre :Modeling and Analysis of Real Time Systemswith Preemption, Unertainty and Dependeny(Mod�elisation et Analyse de Syst�emes Temps R�eel,ave Preemption, Inertitude et Dependenes)Direteur de th�ese :Sergio YOVINEJURYDominique Duval PresidenteAlfredo Olivero RapporteurAhmed Bouajjani RapporteurPhilippe Clauss ExaminateurJaques Pulou Examinateur

Contents
Remeriements 9Agradeimientos 111 Introduing the ators 131.1 Real Time Systems . 131.2 Traditional vs Real Time Software . 15The role of rt Modelling . 16The role of Time . 17The role of the Sheduler . 181.3 Contributions . 191.4 Thesaurus . 202 Setting some order in the Chaos: Sheduling 212.1 Shedulers . 222.2 Periodi Independent Tasks . 242.2.1 Rate Monotoni Analysis . 252.2.2 Earliest Deadline First . 262.2.3 Comparison . 272.3 Periodi Dependent Tasks . 282.3.1 Priority Inheritane Protool . 282.3.2 Priority Ceiling Protool . 312.3.3 Immediate Inheritane Protool . 332.3.4 Dynami Priority Ceiling Protool . 332.4 Periodi and Aperiodi Independent Tasks . 352.4.1 Slak Stealing Algorithms . 36Calulating Idle Times . 372.5 Periodi and Aperiodi Dependent Tasks . 382.5.1 Total Bandwidth Server . 392.5.2 tbs with resoures . 393

4 CONTENTS2.6 Event Triggered Tasks . 412.6.1 A Model for ett . 422.6.2 Validation of the Model . 432.7 Tasks with Complex Constraints . 453 Inspiring Ideas 493.1 Introdution . 493.2 Model of a rt-Java Program . 523.2.1 Strutural Model . 543.2.2 Behavioral Model . 553.3 Shedulability without Shared Resoures . 573.3.1 Model Analysis . 583.3.2 Examples . 603.4 Sharing Resoures . 633.4.1 Conit Graphs . 673.4.2 Implementation . 694 Life is Time, Time is a Model 714.1 Timed Automata . 714.1.1 Parallel Composition . 744.1.2 Reahability . 74Region equivalene . 754.1.3 Region graph algorithms . 774.1.4 Analysis using lok onstraints . 784.1.5 Forward omputation of lok onstraints . 784.2 Extensions of ta . 794.2.1 Timed Automata with Deadlines . 804.2.2 Timed Automata with Chronometers . 80Stopwath Automaton . 80Timed Automata with tasks . 814.2.3 Timed Automaton with Updates . 834.3 Di�erene Bound Matries . 844.4 Modelling Framework . 864.5 A framework for Synthesis . 884.5.1 Algorithmi Approah to Synthesis . 884.5.2 Strutural Approah to Synthesis . 904.6 Shedulability through tat . 924.6.1 Shedulability Analysis . 934.7 Job-Shop Sheduling . 964.7.1 Job-shop and ta . 97

CONTENTS 54.8 Conlusions . 995 The heart of the problem 1015.1 Motivation . 1015.2 Model . 1025.3 lifo sheduling . 1045.3.1 lifo Transition Model . 1045.3.2 lifo Admittane Test . 1075.3.3 Properties of lifo sheduler . 1075.3.4 Reahability Analysis in lifo Sheduler . 1085.3.5 Re�nement of lifo Admittane Test . 1135.4 edf Sheduling . 1155.4.1 edf Transition Model . 1165.4.2 edf Admittane Test . 1195.4.3 Properties of edf sheduler . 1205.4.4 Re�nement of edf Admittane Test . 1215.5 General shedulers . 1235.5.1 Transition Model . 1245.5.2 Properties of a General Sheduler . 1275.5.3 Shedulability Analysis . 128Case 1 . 131Case 2 . 133Case 3 . 1345.5.4 Properties of the Model . 1355.6 Final Reipe! . 1366 Conlusions 1376.1 Future Work . 139

6 CONTENTS

List of Figures
2.1 Shedulers . 232.2 rma appliation . 262.3 EDF appliation . 272.4 Sequene of events under pp . 332.5 Dynami pp . 352.6 EDL stati sheduler . 382.7 TBS example . 402.8 Sharing resoures in an hybrid set . 422.9 An example of ett . 433.1 Constrution of a rt-Java Sheduled Program . 513.2 Two Threads . 523.3 Two Threads . 553.4 State Model . 563.5 Counter example of priority assignment . 583.6 Partially Ordered Tasks . 603.7 Time Line for ex. 3.1 . 623.8 Time Line for ex. 3.4 . 633.9 Java Code and its Modelisation . 643.10 Time Line [0,20℄ for ex.3.5 . 653.11 Time Line [0,20℄ for ex.3.6 . 653.12 Two Threads with shared resoures . 663.13 Time Line for ex. 3.7 . 673.14 Wait for Graph example 3.1 . 673.15 Pruned and Cyli wfg . 683.16 Cyli Wait for Graph . 693.17 Two Sheduled Threads . 704.1 Modelling a periodi task . 724.2 Invariants and Ations . 737

8 LIST OF FIGURES4.3 Region Equivalene . 754.4 Representation of sets of regions as lok onstraints . 784.5 Using swa and uta to model an appliation . 814.6 Timed Automata Extended with tasks . 824.7 Representation of onvex sets of regions by dbm's. 854.8 Synthesis using tad . 904.9 A periodi proess . 924.10 Priorities . 934.11 Zeno-behaviour . 944.12 Enoding Shedulability Problem . 954.13 Jobs and Timed Automata . 985.1 A model of a system . 1025.2 Task automaton . 1035.3 One preemption lifo Sheduler . 1055.4 Invariants in lifo Sheduler . 1085.5 Clok Di�erenes in lifo Sheduler . 1115.6 Tasks in a lifo sheduler . 1145.7 One preemption edf Sheduler . 1165.8 Usage of di�erene onstraints . 1195.9 Automaton for a General Sheduler . 1245.10 General edf Sheduler . 1255.11 Evolution of ~w and ~e . 1275.12 Analysis of dbm M . 1315.13 Case 1 ��̂ > �� . 1325.14 Case 1 ��̂ < �� . 1335.15 Case 2 ��̂ < �� . 1335.16 Case 3 ��̂ < �� . 1345.17 Niety property . 135

RemeriementsFinalement, le jour est arriv�e ou on d�eide d'�erire quelques mots de remeriements; �a veut dire quela th�ese est �nie (plus ou moins...), qu'on a fait un tas de opies provisoires, en esp�erant que haqueopie soit \la derni�ere", que les rapports sont arriv�es, qu'on attaque la soutenane et que �a a rien de\provisoire". On se dit alors... pourquoi pas penser aux remeriements? J'y vais!Un tas de noms viennent dans ma tête. Je m'organise:Je voudrais remerier mon direteur, Sergio Yovine, qui m'a soutenu pendant es 40 mois; il a �et�etoujours l�a pour m'aider, me onseiller, me guider, m'enseigner, mais surtout pour me donner on�aneen e que je faisais et pour me transmettre que dans la reherhe on pousse toujours les limites, lesfronti�eres de l'inonnu. Meri, enore!Je voudrais remerier tout le personnel de Verimag: herheurs, enseignants, ing�enieurs, �etudiantset personnel administratif. Ave haque une et haque un, je sens que j'ai partag�e un moment: un af�e,un s�eminaire, une disussion tehnique, un peu de philosophie, quelques opinions politiques ou mêmedes �ehanges ulinaires! C'est sûr qu'apr�es presque trois ans et demi de \vie en ommun" vous allez memanquer... Un Grand Meri �a Joseph Sifakis pour m'avoir aueilli haleureusement et au personneladministratif qui m'a tant aid�e ave mon fran�ais!Un grand meri, �a la R�egion Rhônes Alpes qui m'a g�en�ereursement soutenu �nani�erement pendanttrois ans et au Gouverment Fran�ais qui m'a failit�e �enormement mon d�eplaement en Frane et toutesles d�emarhes administratives de artes de s�ejour et visas.Un �enorme meri �a Pierre qui est mon soutien; son amour, sa bonne humeur toujours euphoriqueet positive et son bon êtat d'esprit m'a enormement aid�e �a faire fae �a la distane entre la Frane etl'Argentine.Meri �a ma famille en Argentine; même si la d�eision a �et�e tr�es dure, ils ont ompris que la r�ealisationd'une th�ese et l'exp�eriene de vivre �a l'�etranger vaut le malheur qui provoque la distane.Un enorme meri �a tous mes amis d'Argentine qui jour apr�es jour sont l�a \derri�ere" l'eran de monordinateur ave un e-mail, un mot d'enouragement, une blague.Et bien �evidemment, meri aussi �a mes amis de Grenoble ave qui je partage un week-end, desbi�eres et toutes les belles hoses de ette ville magni�que.
9

10 LIST OF FIGURES

AgradeimientosEsta es una parte importante de mi tesis, aquella en la que agradezo a las personas que me ayudarony me aompa~naron en esta tarea y por ello esta esrita en mi lengua materna.Agradezo en primer lugar a mi diretor de tesis, Sergio Yovine quien me respaldo enormementedurante estos 40 meses de labor; estuvo siempre alli, para ayudarme, aonsejarme, guiarme y sobre todopara darme on�anza en lo que haiamos y transmitirme que en el ampo de la investigaion, omo enmuhos otros, hay que saber ortar barreras y franquear los limites de lo desonoido. Muhas graias!Quiero agradeer igualmente a todo el personal de Verimag: investigadores, profesores, ingenieros,estudiantes y personal administrativo. Con ada uno siento que omparti un momento agradable:los mediodias de ruigramas, los seminarios, la letura omentada del diario y hasta interambiosulinarios! Graias espeialmente a Joseph Sifakis quien me reibio alurosamente en su laboratorio ya todo el personal administrativo que tanto me ha ayudado on el franes!!Mi agradeimiento va tambien a la Region Rhônes-Alpes y al Gobierno Franes por su ayuda�naniera durante todos estos a~nos y por failitarme enormemente los tramites administrativos deestadia.Un profundo agradeimiento para Pierre por su respaldo y apoyo onstante; su amor, su buen humorsiempre euforio y entusiasta y su buen estado de espiritu han failitado enormemente el afrontar ladistania entre Argentina y Frania.Mil y mil graias a mi familia en Argentina; aun uando la deision de trasladarse al extranjero fuedi�il de aeptar, pronto omprendieron que la importania de realizar la tesis, bien vale la pena ladesaz�on.Graias a la Universidad Naional del Sur y en espeial al Departamento de Cienias e Ingenieriade la Computaion por su apoyo inondiional a mi deision de realizar una tesis en el extranjero y atodos mis profesores que me apoyaron.Enorme y profundo agradeimento va tambien para mis amigos en Argentina; estuvieron (y es-tan) siempre alli, \detras" de la pantalla, on un mensaje, una palabra de aliento, un histe para losmomentos de ojedad.Y por supuesto, muhas graias tambien a mis amigos de Grenoble on quienes omparto los �nesde semana, innumerables ervezas y todas las lindas osas del savoir vivre franes.
11

12 LIST OF FIGURES

Chapter 1Introduing the ators
R�esum�eLes syst�emes temps-r�eel, str, sont soumis �a des fortes ontraintes de temps dont la violation peutimpliquer la violation des exigenes de seurit�e, de sûret�e et de �abilit�e.Aujourd'hui, les strse araterisent par une forte int�egration de omposants logiiels. Leur d�evelop-pement n�eessite une m�ethodologie permettant de relier, même �a partir de la phase de oneption, leomportement du syst�eme au niveau fontionnel ave les aspets non fontionnels qui doivent être t�enusen ompte dans la mise en oeuvre et �a l'ex�eution, [53℄, [7℄, [51℄.Dans ette th�ese nous nous interessons au probl�eme de l'ordonnanement qui est n�eessaire pour as-surer le respet des ontraintes temporelles impos�ees par l'appliation lors de l'ex�eution. L'ordonnanementonsiste �a oordonner dans le temps l'ex�eution des di��erentes ativit�es a�n d'assurer que toutes leursontraintes temporelles sont satisfaites. L'ordonnanement de syst�emes temps r�eel ritiques embarqu�esest essentiel non seulement pour obtenir des bonnes performanes mais surtout pour garantir leurorret fontionnement.Cette th�ese ontribue dans deux aspets de str:� Dans le hapitre 3 on pr�esente un mod�ele pour une lasse de strinspir�e par le langage Java etnous d�eveloppons, �a partir de e mod�ele, un algorithme d'attribution de priorit�es statiques bas�esur la ommuniation entre tâhes. Cet algorithme est simple mais inomplet.� Dans le hapitre 5 on pr�esente une tehnique pour traiter le probl�eme d'ordonnan�abilit�e avepr�eemption, d�ependenes et inertitude. Nous etudions le probl�eme d'analyse et deidabilit�e �atravers d'une nouvelle lasse d'automates temporis�es.Nous ompletons notre pr�esentation ave un hapitre d�evou�e aux mod�eles temporis�es, hapitre 4,et le hapitre 2 ave les tehniques et m�ethodes d'ordonnan�abilit�e les plus onnus.1.1 Real Time SystemsNo doubt that omputers are everywhere in our daily life. Some years ago, but not so many, omputerswere devies whih had some \external" reognizable aspet, suh as a box, a sreen and a keyboard,13

14 CHAPTER 1. INTRODUCING THE ACTORSgenerally used for alulating, data basing and business management. As ommuniation, multime-dia and networking were added to omputing systems, the use of omputers expanded to everyone;nowadays omputers are integrated to planes, ars, multimedia systems and even... refrigerators!A huge branh in omputer systems began to develop, when omputers were integrated to enginswhere time played a very important role. Any omputer system deals with time, in a broad sense; insome systems, time is important beause alulations are very heavy and the response time dependson the arhiteture of the system and the algorithm implemented, but time is not part of the system,that is, time is not part of the espei�ation of the problem.These systems are now wideley employed in many real time ontrol appliations suh as avionis,automobile ruise ontrol, heating ontrol teleommuniations and many other areas. The systemsmust also respond dynamially to the operating environment and eventually adapt themselves to newonditions; they are ommonly alled embedded sine the \omputing engine" is almost hidden anddediated to the appliation.Real Time Systems, rts, deal with time in the sense that a response is demanded within a ertaindelay; if this demand is not satis�ed, we ould produe a failure, an aident and in general a ritialsituation. Compare, for instane the fat of using an atm to withdraw money and a ar airbag system;the �rst ation takes some time, but the system does not deal with time; we an take some seonds to dothe operation and even if the system is overharged the user tolerates some unspei�ed delay (dependingon his patiene!); the airbag system deals with time, sine its response, in ase of an aident, must begiven within a spei�ed delay, if not, the driver ould be hurt. Besides, a late response of the systemis useless, sine the onsequenes of the aident had already happened.Even if a de�nition of rts an lead to restrit ourselves, it is worth mentioning one:A real time system is a omputing system where time is involved in the spei�ation of theproblem and in the response of the system. The orretness of omputations depends notonly on the logial orretness of the implementation, but also on the time response.rts an be lassi�ed into hard and soft rts; in general, we say that in hard rts the absene of ananswer or an answer whih fails to arrive on time an ause a ritial event or unsafety situation tohappen; in soft rts even if the response deals with the time it is produed, the absene of an answerleaves the system in a orret state and some reovery an be possible. An example of soft rts isthe integration proess while sending video frames; the system is quite time-dependant, in the sensethat frames must arrive in order and also respet some timing onstraints, to give the user the idea ofviewing a \ontinous" �lm; but if eventually a frame is lost or if it arrives late, the whole system isorret and, prinipally, no ritial event is produed.The frontier between soft and hard rts is sometimes not so lear; onsider, for instane our exampleof video, it ould be lassi�ed as hard if the \�lm" transmitted was a distane surgery operation.Sometimes, soft rts are more diÆult to speify sine it is not easy to deide whih timing requiremntsan be relaxed, and how they an be relaxed, how often and so on, [58℄.As rts deals with the \real world", the omputer is dediated to ontrol some part of a system orphysial engine; normally, the omputer is regarded as a omponent of the piee to ontrol and we saythat these omputer systems are embedded; sometimes, people are surprised to notie that nowadays aar has a omputer in it, sine the \traditional" view of a omputer is not present. We really mean thata proessor is installed, dediated to survey a part of the system whih interats with the real worldand o�ers an answer to a spei� stimulus in a predetermined time. Airbag systems, ABS, heating andother \intelligent" household equipments, are examples of rts whih we do not see as suh but arepresent in daily life. Airplane ontrol, eletronial ontrol of trains and barriers, nulear submarineshave grown muh safer sine they were helped by omputers.

1.2. TRADITIONAL VS REAL TIME SOFTWARE 15In summary, rts show some deep di�erenes ompared to traditional systems, [34℄:1. Time: in pure omputing appliations, time is not taken into aount; one an talk about the orderof an algorithm as a measure of proess time onsuming but time is not part of the algorithm. Inrts time must be modelled somehow and there are attempts to represent time in some temporallogis, [47℄, or in timed automata, [10, 22℄.2. Events: in rts the inputs an be onsidered as data under the form of events. These events aretriggered by a sensor or by another (external) proess, whih we will generally all produer. Onthe other hand, these events are served by another proess whih we will all onsumer. rtsare haraterized by two basi sytles of design, [49℄, event-driven and time-driven. Time drivenativities are those ruled by time, for instane, periodi ativities, in whih an event (task, in thisase) is triggered simply by time passing. Event driven ativities are those ruled by the arrival ofan external event whih may or may not be predited; it �ts reative appliations.3. Termination: in the Turing-Churh frame, omputing is a terminating proess, giving a result.A non terminating proess is onsidered as defetive. However rts are intrinsially non termi-nating proesses and even more, a terminating program is onsidered defetive. In summary, intraditional appliations ending is really expeted but in rts ending is erroneous.4. Conurreny: even if some e�orts have been done to manage onurreny and parallelism, thetraditional riteria for software is based on the idea of serializability, whih is perfetly embeddedin the Turing-Churh arhiteture. In rts appliations parallelism is the natural form of om-putation as a mehanism of modelling a real life problem, so we are faed to a senario wheremultiple proesses are running and interating.1.2 Traditional vs Real Time SoftwareSoftware development has dramatially hanged sine its beginings in the early 50. In those days,software was really wired to the omputer, meaning that an appliation was in fat implemented fora given arhiteture; the simplest modi�ation implied re-thinking all the appliation and re-installingthe program.Suh a onstrution of software had no methodology; in the earlys 60 many programming languageswere developed and a very important onept, symboli memory alloation let programmers performan abstration between a program and a given arhiteture. Programs ould be more or less exportedor run into di�erent mahines: the onept of portability was born, but the ativity of programmingwas redued to the fat of knowing a language and oding an appliation in suh a language.At the end of 60's, the programming ommunity realised that the situation was haoti; programswere more and more important and large and the programming ativity implied many people workingover the same appliation. Besides that, it was lear that programming was muh more than simplyoding, implying at least three phases: modelling, implementation and maintainane.The �rst phase is of most importane, sine the appliation spei�ation is learly established andall ators involved in it express their views of the problem and their needs. One we have suh a plan ofthe appliation and that all restritions are neatly written down, we an attak the seond phase. Themodelling phase has spread the problem into simpler omponents, with interation among omponentsso programmers an attak the implementation of omponents in parallel sine they only need to knowthe \input" and \output" of eah omponent, leaving the funtional aspet of other omponents as ablak box. Evidently the third phase is apital to the evolution of the appliation, as new needs may

16 CHAPTER 1. INTRODUCING THE ACTORSappear and if modelling is orret, we should only modify or reate some few omponents but no needto re-implement the whole system.The onstrution of rts began by designing and implementing ad-ho software platforms, whihwere not reusable for other appliations; in this sense, rts su�ered the same experiene as programmingin the early 60's... no methodology was applied, and hene soon people were in fae of the haos whihonduted to the development of good software design and analysis praties. No doubt that there hasbeen a great shifting from hardware to software and hene we an now think of in terms of a \realtime engineering", that is, based on some ommon models, we an use some previously developped (andproved) omponents or modules to build a new system, [34℄. Of ourse, most embedded systems inludea signi�ant hardware design also, as new tehnologies are developped and a wider area of appliationis inluded.The role of rt ModellingTime is of most importane in rts sine we deal with ritial appliations, whose failure may auseserious or fatal aidents and also with di�erent tehnologies whih must be integrated. Buildingembedded rts of guaranteed quality in a ost-e�etive manner, raises a hallenge for the sienti�ommunity, [51℄.As for any proess of software onstrution, it is of paramount importane to have a good modelwhih an aid the design of good quality systems and failitate analysis and ontrol.The use of models an pro�tably replae experimentation on atual systems with many advantagessuh as faility to modify and play with di�erent parameters, integration of heterogeneous omponents,observability of behaviour under di�erent onditions and the possibility of analysis and preditabilityby appliation of formal methods.The problem of modelling is to represent aurately the omplexity of a system; a too \narrow"design ould simplify the appliation to the point of being unreal; on the other hand, lak of abstrationonduts to a omplexity whih diÆults the pereption of properties and behaviour.Modelling tehniques are applied at early phases of system development and at high abstrationlevel. The existene of these tehniques is a basis for rigorous design and easy validation.A very important issue in real time modelling is the representation of time whih is obtained byrestriting the behaviour of its appliation software with timing information. Sifakis in [51℄ notes thata ... deep distintion between real time appliation software and the oresponding real timesystem resides in the fat that the former is immaterial and thus untimedTime is external to the appliation and is provided by the exeution platform while the operationalaspets of the appliation are provided by the language; so the study of a rts requires the use of atimed model whih ombines ations of the appliations and time progress.The existene of modelling tehniques is a basis for rigorous design, but building models whih faith-fully represent rts is not trivial; besides models are often used at an early stage of system developmentat a very high abstration level, and do not easily last the whole design life-yle, [52℄.There are many di�erent models of omputation whih may be appropriate for rts suh as ators,event based systems, semaphores, synhronization mehanism or synhronous reative systems, [5, 4,14, 35, 38, 39℄. In partiular, we have used �nite state mahines, fsm as a model; eah mahinerepresents a proess, where the nodes of fsm represent the di�erent states and the ars the transitionsor evolution of the proess. Eah proess is then an ordered sequene of states ruled by the transitions.

1.2. TRADITIONAL VS REAL TIME SOFTWARE 17Eah ar is labelled by onditions.fsm annot express onurreny nor time, so to takle these problems we have used timed automata,ta, whih are fsm extended with loks. In this senario a rts is represented as a olletion of ta,naturally onurrent, where oordination is done through event triggering. This struture permits aformal analysis, using for example model heking to test safety, [26, 25, 43, 42, 41℄ or synthesis forheking shedulability. [8, 9, 7, 52℄.The role of TimeComponents in a rts inlude onurrent tasks often assigned to distint proessors. These tasks mayinterat through events, shared memory or by the simple e�et of time passing. From the point of viewof omponent design we need some de�nitions to delare temporal properties; temporal logi, [47℄ isthe lassi representation of time.Traditional software is veri�ed by tehniques dealing with the funtional aspets of the problemand their implementation; we prove that the ode really performs or behaves as spei�ed by the model.These properties are untimed; in rts we have to add another axe of veri�ation, the non funtionalproperties whih deal with the environment and more preisely with real time. For instane, if we say\event a is followed by an event b triggered at most Æ units of time afterwards", we mean that theinterval between termination of a and begining of b should be smaller than Æ units of time measured inreal time.Independently of the arhiteture of the system, non-funtional properties are heked through atimed model of the rts; this ativity is alled timing analysis; we an also take an approah guidedthrough synthesis where we look for a orret onstrution using methods that help resolving somehoies made during implementation.Some steps in the transition from appliation software to implementation of rts inlude:1. Partition of the appliation software into parallel tasks; these omponents inlude onurrenttasks often assigned to distint proessors whih interat through events, shared memory or bythe simple e�et of time passing. From the point of view of omponent design we need somede�nitions to delare temporal properties.2. Usage of some tehniques for resoure management and task synhronization. This oordinationmay be due to many fators: temporal onstraints, aess to ommon resoures, synhronizationamong events, and so on. A sheduler is in harge of this oordination.3. The hoie of adequate sheduling poliies so that non-funtional properties of the appliationare respeted; for rts one of the ritial missions of the sheduler is to assure the timeliness ofthe ativities, that is, the respet of the temporal onstraints, whih form part of the tasks, atthe same level as other parameters or their funtionality.Synhronous and asynhronous rts Two paradigms are used in the design of rts: synhronousand asynhronous approah.The synhronous paradigm assumes that a system interats with its environment and its reation isfast enough to answer before a new external event is produed; this means that environment hangesourring during the omputation of a step are treated at the next step.The asynhronous paradigm attaks a multi-tasking exeution model, where independent proessesexeute at their own pae and ommuniate via a message passing system. Normally, we have anoperating system whih is responsible for sheduling all tasks so as to perform properly.

18 CHAPTER 1. INTRODUCING THE ACTORSBoth tehniques have their inonvenients; the hypothesis for the synhronous paradigm is not easyto meet, modularity annot be easily handled and the asynhronous paradigm is less preditable andhard to analyse, [52℄.The role of the ShedulerAs a rts appliation is omposed of many tasks, some kind of oordination is neessary to diret theappliation to a good result. A sheduler is the part of a system whih oordinates the exeution of allthese ativities. Roughly speaking sheduling may be de�ned as the\ativity of arranging the exeution of a set of tasks in suh a manner that all tasks ahievetheir objetives"This de�nition, although very impreise, gives an idea of the omplexity of the problem. Coordina-tion may be due to many fators: temporal onstraints, aess to ommon resoures, synhronizationamong events, and so on. A sheduler does not oordinate the exeution per se, but its relationshipswith other ativities. As already mentioned, one of the ritial missions of a rts sheduler is to assurethe timeliness of the ativities.The ativity of sheduling was born when many tasks were run over a mahine and the CPU had tobe shared among the tasks, we talk about entralized sheduling. These tasks were basially independentprograms, triggered by users (or even the operating system). The kernel of the operating system deideswhih task must be exeuted and assures (more or less) a fair poliy of CPU distribution for all tasks;in this ontext, time is not part of a task's desription, but only its funtionality (given by the ode) isimportant. Later on, when distribution was possible, due to ommuniation failities among omputers,the ativity of sheduling distributed tasks was a natural extension of the entralized approah.Sine a sheduler deals with tasks, it is time to de�ne them preisely, but not formally:A task is a unit of exeution, whih is supposed to work orrety while alone in the system,i.e. a task is a veri�ed unit of exeutionA task is then orret and must be exeuted entirely, although its exeution an be interruptedby the system and resumed later. A task has its own environment of exeution (loal variables anddata strutures) and perhaps some shared environment, whose orretness must be guaranteed by theexeution platform, while loal orretness is ensured by the task itself.Tasks are normally grouped to perform one or more funtions, onstituting a system or appliation.A real time task, rtt, is a task whose e�ets (given by its funtionality) must be seen within aertain amount of time alled ritial time; its response is needed for another task to ontinue or forsystem performanes and the absene of response or a late servie an ause fatal aidents. Theritial time for a task is alled its deadline, that is a task must response before this limit. Deadlinesare measured in units of times.In summary, we an envision three main ators in a sheduled system:1. The proesses, (sometimes referred to as tasks or modules), in harge of performing independentations in oordination with other tasks ontrolled by the sheduler.2. The sheduler or the software (eventually hardware) ontrolling the operations and the oordi-nation of a series of proesses, whih is basially a timed system whih observes the state of theappliation and restrits its behavior by triggering ontrollable ations.

1.3. CONTRIBUTIONS 193. The environment or a series of unontrollable ations, events, proesses arrival or proessestermination.Two important issues in the development of rts is analysis and synthesis of shedulers. Analysisis the ability to hek the model of a system to deide if it is orret and if it respets the temporalontraints of all tasks in the appliation. Synthesis is the ability to onstrut an implementation modelwhih respets the temporal ontraints. Of ourse, both tehniques points out to answer the samequestions: \is a system shedulable?", and if so, \an we onstrut or hek that our implementationis shedulable?"The onstrution of sheduled systems has been suessfully applied to some systems, for example,sheduling transations in the domain of data bases or sheduling tasks in the operating system envi-ronment. In the area of rts the existing sheduling theory is limited beause it requires the system to�t into a shedulability riterion, generally to �t into a mathematial framework of the shedulabilityriteria. Suh studies relax one hypothesis at a time, for instane tasks are supposed to be periodi, oronly worst ase exeution times are onsidered.1.3 ContributionsThis thesis onentrates on the de�nition of tehniques for task synhronization and resoure manage-ment, as shown in step 2 in the previous setion.� Chapter 3 is devoted to the development of a model and its veri�ation tehniques for a real timeprogram written in a Java-like language whih uses synhronization primitives for ommuniationand ommon resoures. We show how an abstration of the program an be analysed to verifyshedulability and orret resoure management.� Chapter 5 is devoted to shedulability analysis and deidability;{ We �rst show a proper and new tehnique to deal with the problem of preemptive shedulingand deidability under an asynhronous paradigm;{ We show an evolutive appliation of this method starting from a very simple poliy and�nishing to a general sheduling poliy;{ In eah step of this evolution we show that our method is deidable, that is, that its appli-ation an leave the system in a safe state and that this state an be reahable.{ We also show a omplete admission analysis that an be performed o� line in ase of a setof periodi tasks and on-line in ase of an hybrid set of periodi and aperiodi tasks; in anyase, the admission is the simple omputation of a formula.We omplete our presentation with hapter 4 dediated to timed models, where we show the basimodel of timed automata, some of its extensions and appliations to shedulability analysis. The mostwell-known tehniques for shedulability of real time systems are developed in hapter 2.

20 CHAPTER 1. INTRODUCING THE ACTORS1.4 ThesaurusHere's a list of the abbrevations used in this doument:Abbrevation Meaningdpp Dynami Priority Ceiling Protooldbm Di�erene bound Matrixedf Earliest Deadline Firstedl Earliest Deadline as Late as Possibleett Event Triggered Taskfsm Finite State Mahineiip Immediate Inheritane Protooljss Job Shop Shedulinglm Least Common Multiplelifo Last In First Outrma Rate Monotoni Analysispp Priority Ceiling Protoolpip Priority Inheritane Protoolrts Real Time Systemsrtt Real Time Task(s)srp Stak Resoure Poliyssp Slak Stealing Protoolswa Stopwath Automatonta Timed Automatontad Timed Automaton with Deadlinestat Timed Automaton with Tasktbs Total Bandwidth Serveruta Updatable Timed Automatonwfg Wait For Graphs

Chapter 2Setting some order in the Chaos:Sheduling
R�esum�eCe hapitre �a pour but d'introduire les onepts basiques d'ordonnanement d�evelopp�es depuis 1973;en ommen�ant par les mod�eles les plus lassiques nous �nissons ave les mod�eles les plus r�eents.Une appliation temps r�eels est mod�elis�ee par un ensemble de tâhes T = fT1; T2; : : : ; Tng, haquetâhe Ti; 1 � i � n est harateris�ee par la paire (Ei; Di), o�u Ei est le temps d'�ex�eution de Ti et Diest l'eheane relative. Eventuellement, on peut ajouter Pi, Ei < Di � Pi, la p�eriode pour Ti, 'est �adire, l'intervalle de temps entre deux arriv�ees d'une tâhe. Certaines tâhes sont d̂�tes �ev�enementielless'il existe un �ev�enement qui les d�elenhe; �nalement ertains auteurs onsid�erent d'autres paramêtres,telles que le jitter, pr�eedene entre tâhes, et.Dans l'appliation on peut utiliser de ressoures en ommun; es ressoures partag�ees sont aed�eespar un protoole sp�eial qui garantit la bonne utilisation; les tâhes qui n'utilisent pas de ressoures enommun sont appell�ees independantes.On organise e hap̂�tre selon la taxinomie souivante:

Ensemble de tâhes Nature Gestion de ExemplePriorit�es d'algorithmeIndependentes Statique rmaDynamique edfPeriodiques Dependentes Statique pip, pp, iipDynamique dppPeriodiques Independentes Statique ssp, edl, tbset non-periodique Dependent Dynamique tbsEvent Triggered Independantes ettComplex Constraints 2-edf21

22 CHAPTER 2. SETTING SOME ORDER IN THE CHAOS: SCHEDULING2.1 ShedulersWe have already introdued the need of some oordination among tasks, under a rt senario. We havede�ned a real time appliation as a olletion of tasks, eah of whih has some temporal onstraintsand may interat with the environement through events. In this hapter, we will introdue formalrepresentations of rts, that is, abstrations of real life as simple (or not so simple!) models. We willover more or less 30 years of e�orts in the area; results shown in this setion are general and show thebig headlines; detailed desriptions an be found, of ourse, in the original papers1.A real time appliation may be haraterized by a set T = fT1; T2; : : : ; Tng of real time tasks, rtt,whih may be triggered by external events; eah task Ti is haraterized by its parameters [Ei; Di℄where Ei is the exeution time and Di is the relative deadline. The exeution time is onstant for atask, like in a worst ase exeution environment and it is the time taken by the proessor to �nish itwithout interruptions. Deadline Di is relative to the arrival time ri of a task Ti, (sometimes alledrelease time) and it is the time for Ti to �nish; if a task Ti arrives at time ri, the sum Di + ri is alledthe absolute deadline.rtt may be periodi, that is, they are supposed to arrive within a onstant interval; normallyperiodi tasks respond to the fat that some appliations trigger tasks regularly; in this ase, we anextend our set of parameters by Pi, the period for eah task, and tasks must be �nished before the nextrequest ourrs; we need then that Ei � Di � Pi. Some authors normally assume Di = Pi, [37℄.If task arrival is not preditable, we will say that a task is aperiodi. Some authors make thedi�erene between a semiperiodi task and an eventual task; the former may arrive within a ertainboundary of time, while the latter is really unpreditable. We will not make this di�erene.In the ontext of periodi tasks, we an see that eah periodi task Ti is an in�nite sequeneof instanes of the same task; we normally note these instanes as Ti;1; Ti;2; : : :; Ti;1 arrives at timeri;1 = �i, alled its origin, and its absolute deadline is di;1 = �i +Di = ri;1 +Di; in general we an saythat the absolute deadline of the kth arrival of Ti is di;k = ri;k +Di = �i + (k � 1)� Pi +Di; in manyontexts, �i = 0).The question is then how to manage the set T in order to satisfy all of its objetives, modelledas parameters; sine we assume tasks are orret, ahieving task objetives is redued to �nish itsexeution before its deadline and by extension all tasks in T . This is the ativity of sheduling.De�nition 2.1 A sheduling algorithm is a set of rules that determines the task to be exeuted at apartiular moment.Many sheduling poliies exist, based on parameters suh as exeution time, deadlines and periodi-ity. Based on a set T of tasks haraterized by its parameters, we an di�erentiate shedulers aordingto: � Priority management: assignment of priorities to tasks is one of the most used tehniques toenfore shedulability; we distinguish:{ stati or �xed: where T is analysed before exeution and some �xed priorities are assoiatedwhih are valuable at exeution time and never hanged.{ dynami: where some riteria is de�ned to reate priorities at exeution time, meaning thateah time a task arrives, a priority is assigned, perhaps taking into aount the ative set of1As far as possible, we will try to keep an homogeneous notation and so, symbols may di�er from the original works

2.1. SCHEDULERS 23Non-Preemptive PreemptiveStati easy to implement easy to implementtoo restritive livelinessDynami intelligent priority assigment relatively hard to implementless restritive ostly but tend to optimumFigure 2.1: Shedulerstasks in the system; priorities of tasks might hange from request to request, aording tothe environment.� Sheduler strength: as shedulers rule the management of tasks, they have the power to interrupta task; we distinguish:{ non-preemptive: eah task is exeuted to ompletion, that is, one a task is hosen to exeute,it will �nish and never be interrupted.{ preemptive: a task may be interrupted by a higher priority task; the interrupted task is putin a sleeping state, where all of its environment is kept and it will be resumed some timelater in the future.� Nature of tasks:{ Independent: tasks do not depend on the initiation or ompletion of other tasks and theydo not share resoures; eah task is then 'autonomous' and an be exeuted sine its arrival.{ Dependent: the request for a task may depend on the exeution of another task, perhapsdue to ertain data produed and onsumed later or due to appliation requirements, suhas shared resoures whih impose some method to aess them.Stati shedulers are very easy to model and to be treated by the sheduling manager, but they arevery restritive, sine they are not adaptive; dynami shedulers may take into aount the exeutionenvironment and evolution of the system. Preemption is a well known tehnique based on the idea thatthe arrival of a more urgent task may need to interrupt the urrently exeuting one; this tehniqueintrodues another problem, liveliness, where a task shows no progress, sine other (higher prioritized)tasks are ontinously delaying its exeution.Certainly, we an design shedulers based on a mixed of onepts, table 2.1 shows the results of amixtures, assuming independent tasks.The easiest shedulers are stati and from the system point of view non-preemptive. Shedulerdeisions are �xed at analysis time, where priorities are assigned and as no preemption is aepted, thesystem exeutes to ompletion, no need to keep environments. Of ourse, these are the most restritiveshedulers but the easiest to implement. One well known problem with shedulers is priority inversionwhere a lower priority task prevents a higher priority one to exeute. Stati non-preemptive shedulerssu�er this problem, sine an exeuting task annot be interrupted and hene a reently arrived taskwith higher priority must wait.Stati shedulers with preemptions are very ommon; a newly arrived task interrupts the urrentlyexeuting task if the later has lower priority than the former. The problem is that preemption introduesthe problem of liveliness, sine interrupted tasks may never regain the proessor if higher priority tasks

24 CHAPTER 2. SETTING SOME ORDER IN THE CHAOS: SCHEDULINGarrive onstantly; some solutions have been proposed to this problem, speially the eiling protools,[50℄, [48℄.Corresponding to the lass of �xed priority shedulers, Rate Monotoni Analysis, rma, is the mostpopular, [37℄.Dynami shedulers with no preemptions are not very ommon, beause, in priniple the \intelli-gene" of the assignment proedure is hidden by the inapaity of interruption; they are less restritivethan stati but not suÆiently eÆient.Finally, dynami shedulers with preemptions are the rihest ones, the hardest to implement butthe nearest to the optimum. Among the dynami protools, the most popular is the Earliest Deadline,ED, [37℄, and from this protool, a very wide branh of algorithms exist.From now on, we will use the following de�ntions for a shedule algorithm:De�nition 2.2 (Deadline Missing) A system is in a deadline missing state at time t if t is thedeadline of an un�nished task request.De�nition 2.3 (Feasability) A sheduling algorithm is feasable if the tasks are sheduled so that nodeadline miss ours.De�nition 2.4 (Shedulable System) A system is shedulable if a feasable sheduling algorithmexists.Feasability is the apaity of a poliy or sheduling algorithm to �nd an arrangement of tasks toensure no deadline missing, while shedulability is inherent to a set of tasks, that is, a set T maybe shedulable even if the appliation of an algorithm leads to deadline missings. Finding whether asystem is shedulable is muh harder than deiding if it is feasable under a ertain poliy. We will showthat ertain algorithms ensures feasability for shedulable systems.We organize this hapter following this taxonomy:Task Set Nature Priority MethodManagement PrototypeIndependent Stati rmaDynami edfPeriodi Dependent Stati pip, pp, iipDynami dppPeriodi Independent Stati ssp, edl, tbsand Aperiodi Dependent Dynami tbsEvent Triggered Independant ettComplex Constraints 2-edf2.2 Periodi Independent TasksIn this setion, we show the main results in the area of sheduling rtt under the hypothesis thattasks are periodi and independent, i.e. eah task is triggered at regular intervals or rates, it doesnot share resoures and its exeution is independent of other ative tasks. We show two main lassesof sheduler algorithms; the �rst lass, Rate Monotoni Analysis, rma, is based on stati or �xedpriority (generally attributed after an o�-line analysis) and the seond lass, Earliest Deadline First,edf, is based on dynami priority assignment, based on the urrent state of the system.

2.2. PERIODIC INDEPENDENT TASKS 252.2.1 Rate Monotoni AnalysisRate Monotoni Analysis, rma, was reated by Liu and Layland in 1973, [37℄. It is based in verysimple assumptions over the set T = fT1; T2; : : : ; Tng. Eah task Ti; 1 � i � n is haraterized by itsparameters [Ei; Pi℄, for exeution time and period, respetively, and it is assumed that:� All hard deadlines are equal to periods.� Eah task must be ompleted before the next request for it ours.� Tasks are independent.� Exeution time is onstant.� No non-periodi tasks are tolerated for the appliation; those non-periodi tasks in the systemare for initialization or reovery proedures, they have the highest priority and displae perioditasks but do not have hard deadlines.De�nition 2.5 (Rate Monotoni Rule) The rate-monotoni priority rule assigns higher prioritiesto tasks with higher request rates.A very simple way to assign priorities in a monotoni way is the inverse of the period. Priorities arethen �xed at design time and shedulability an be analysed at design time. For a task Ti of period Piits priority, �i, is 1Pi .The following theorem, due to Liu and Layland, [37℄ establishes the optimum riteria of rma:Theorem 2.1 If a feasible priority assignment exists for some task set, the rate-monotoni priorityassignment is feasible for that task set.An important fat in sheduling proessing is the proessor utilization fator, i.e, the time spent inthe exeution of the task set. Ideally, this number should be near to 1, representing full utilization ofproessor; but this is not possible, sine there is some time in ontext swithing and of ourse, the timeused by the sheduler to take a deision.In general, note that for a task Ti, the fration of proessor time spent in exeution it is expressedby Ei=Pi, so for a set T of n task we have that the utilization fator U an be expressed as:U = nXi=1(Ei=Pi)This measure is slightly dependent of the arhiteture of the system, due to the \speed" Ei, butupper bounded by the deadlines whih are arhiteture independent. Based on the utilization fator,Liu et al. established the following theorem:Theorem 2.2 For a set of n tasks with �xed priority assignment, the least upper bound for the proessorutilization fator is Up = n(2(1=n) � 1).whih in general shows an U in the order of 70%, rather ostly in a real time environment. A betterutilization bound it to hoose periods suh that any pairs shows an harmoni relation.We show the appliation of rma through an example due to [19℄.

26 CHAPTER 2. SETTING SOME ORDER IN THE CHAOS: SCHEDULING
5 10 15 20 25 30 35

7 14 21 28 35

deadline miss

�1�2 tFigure 2.2: rma appliationExample 2.1 Let us onsider a set T = fT1(2; 5); T2(4; 7)g, of periodi tasks with parameters (Ei; Pi)as explained above, where periods are onsidered as hard deadlines.The utilization fator U = 25+ 47 = 3435 ;aording to theorem 2.2 Up ' 0:83, so U � Up and set T is not feasible, as shown in �gure 2.2.As T1 has a smaller deadline (or period) than T2, T1 has always the highest priority and preemptsT2 if it is exeuting, we an assign �1 = 15 and �2 = 17 . The very �rst instane of T2 misses its deadlinesine it is interrupted when the seond instane of T1 arrives; by time t = 7, when a seond instane ofT2 arrives, it must yet omplete the �rst instane, thus missing the deadline.As priorities are �xed and known in advane, it suÆes to analyse \a window" of exeution betweenstarting time, say t = � and an upper bound alled hyperperiod, H whih is the least ommon multipleof the tasks periods.Surely a better solution to rma is a dynami assignment algorithm. Liu et al. introdued a deadlinedriven sheduling algorithm alled Earliest Deadline First, edf.2.2.2 Earliest Deadline FirstThis algorithm is based on the same idea as rma, but in a dynami way, i.e. the highest priority isassigned to the task with the shortest urrent deadline; it is based on the idea of urgeny of a task. Forperforming this assignment we simply need to know the relative deadline of a task, Pi and its requesttime, ri to alulate the absolute deadline.For this algorithm the feasability is optimum in the sense that if a feasible shedule exists for a taskset T , then edf is also appliable to T .Liu et al. established the following property for edf:Theorem 2.3 For a given set of n tasks, the edf algorithm is feasible if and only ifU = nXi=1 Ei=Pi � 1whih basially says that a set is feasible if there is enough time for eah task, before its deadlineexpires.Example 2.2 Under this new poliy, we an reonsider example 2.1, as U = 0:97 � 1 we know theset is shedulable, (the problem was that rma was not feasable for that set). Figure 2.3 shows howonsidering absolute deadlines as a priority riteria enlarges the lasses of shedulable sets.

2.2. PERIODIC INDEPENDENT TASKS 27
5 10 15 20 25 30 35

7 14 21 28 35

�1�2 Figure 2.3: EDF appliation� At time t = 0 both tasks arrive; d1 = 5 < d2 = 7 so T1 starts.� At time t = 2 T2 gains the proessor.� At time t = 5 a new instane of T1 arrives and absolute deadlines are analysed; for T2 its absolutedeadline is 7 while for T1 is 10, so T1 does not preempt T2.� At time t = 6 T1 starts a new exeution.� At time t = 7 a new instane of T2 arrives: d1 = 10 < d2 = 14, so T2 waits. See how prioritieshave hanged from one instane, to another.� At time t = 14 T2 arrives and begins exeution.� At time t = 15 T1 arrives and d1 = 20 < d2 = 21 so T1 preempts T2.� The rest of the instanes is analysed analogously.We now know that example 2.1 is shedulable even if rma leaded to a deadline missing and we seethat under ertain onditions edf is better than rma.2.2.3 Comparisonrma is a �xed priority assignment algorithm, very easy to implement sine at arrival of a new taskTi the sheduler knows whether it must preempt the urrently exeuting task or simply aepting Tisomewhere in the ready queue. We assume that stati analysis of the set T prevents the system toenter an unfeasable state.edf is a dynami priority assignment algorithm whih takes into aount the absolute deadline di;kof the kth arrival of a periodi task Ti; in theory, this priority assignment presents no diÆulty but ina system, priority levels are not in�nite and there may be the ase that no new priority level exists fora task. In this ase, a omplete reordering of the ready queue might be neessary.Besides the natural onsequene of alulating priorities at eah task instane arrival, edf introduesless runtime overhead, from the point of view of ontext swithes, than rma sine preemptions are lessfrequent. Our example 2.1 shows this behaviour, see [19℄ for experimental results.As seen by the theorems, a set of n tasks is shedulable by the rma method if Pni=1Ei=Pi �n(21=n � 1) while edf extends the bound to 1. Some interestings results were shown if any pair ofperiods follows an harmoni relation. Under this hypothesis, rma is also bounded to 1.The most important result for edf is that if a system is unshedulable with this method, then it isunshedulable with all other orderings. This is the optimal result for Liu et al.

28 CHAPTER 2. SETTING SOME ORDER IN THE CHAOS: SCHEDULINGOne restrition under both protools is that no resoure sharing is tolerated, sine priorities are basedon deadlines and not on the behaviour of eah task. In the next setion, we will disuss one of themost popular methods for sheduling tasks whih share resoures: the priority eiling family. Anotherrestrition is that edf does not onsider the remaining exeution time with respet to deadlines, toassign priorities, in order to minimize ontext swithings.But the most important result of Liu's work is simpliity; their work, written in 1973, showed theway to follow theoretial results before implementation and by those days, where we an onsider thatsome kind of haos was installed in the real time ommunity, their results showed that some order existsthat rule this haos.2.3 Periodi Dependent TasksIn this setion, we onsider some sheduling protools whih relax one of the onditions of rma andedf: tasks are independent. We onsider algorithms where tasks share resoures whih are managedby the sheduler in a mutually exlusive way, that is, only one task at a time an aess a resoure;hene when a task demands a resoure, it must wait if another task is using it.Normally, resoures are used in a ritial setion of the program and are aessed through a demandprotool, a task � must lok a resoure before using it, the system may grant it or deny it; in thelatter ase, � must wait in a waiting queue, its exeution is temporaly suspended still retaining othergranted resoures. This situation may ause a ommon problem: deadlok that is, a hain of tasks aresuspended, eah of whih is waiting for a resoure granted to another also suspended task. The systemsshows no evolution through time.Protools shown in this setion are alled deadlok preventive, that is they prevent the situationwhere a deadlok is possible, by \guessing" somehow that in the future a deadlok will our; to dothis, they need some information, as the set of resoures that a task may eventually aess.We present three lasses of protools based on inheritane of priorities assigned statially: PriorityInheritane Protool, pip, Priority Ceiling Protool, pp and Immediate Inheritane Pro-tool, iip. Finally we present another protool where priorities are managed dynamially: DynamiPriority Ceiling Protool, dpp.2.3.1 Priority Inheritane ProtoolThe Priority Inheritane Protools, [50℄, were reated to fae the problem of non-independent tasks,whih share ommon resoures. Eah task uses binary semaphores to oordinate the aess to ritialsetions where ommon resoures are used and is assigned a priority (stati or dynami) whih it usesall long its exeution. Tasks with higher priorities are exeuted �rst, but if at any moment, a higherpriority tasks Ti demands a resoure alloated to a lower priority task Tj , this task steals or inheritsthe priority of Ti, thus letting its exeution to be ontinued; after exiting the ritial setion, Tj returnsto its original priority.The original protool assumes that:1. Eah task is assigned a �xed priority and all instanes of the same task are assigned the sametask's priority.2. Periodi tasks are aepted and for eah task we know its worst ase exeution time, its deadlineand its priority.

2.3. PERIODIC DEPENDENT TASKS 293. If several tasks are eligible to run, that with the highest priority is hosen.4. If several tasks have the same priority, they are exeuted in a �rst ome �rst served, FCFS,manner.5. Eah task uses a binary semaphore for eah resoure to enter the ritial setion; ritial setionsmay be nested and follow a \last open, �rst losed" poliy. Eah semaphore may be loked atmost one in a single nested ritial setion.6. Eah task releases all of its loks, if it holds any, before or at the end of its exeution.Normally, a high-priority task Ti should be able to preempt a lower priority task, immediately uponTi's initiation, but if a lower priority task, say Tj owns a resoure demanded by Ti, then Tj is notpreempted and even more, Tj will ontinue its exeution even its low priority. This phenomenon isalled priority inversion sine a higher priority task is bloked by lower priority tasks and it is foredto wait for their ompletion (or at least for their resoures).The interest of the pip is founded on the fat that a shedulability bound an be determined: if theutilization fator stays below this bound, then the set is feasable.When a task Ti bloks one or more higher priority tasks, it ignores its original priority assignmentand exeutes its ritial setion at the highest priority level of all the tasks it bloks. After exiting itsritial setion, task Ti returns to its original priority level.Basially, we have the following steps:Rule 1 The highest priority task is always exeuting exept... Task Ti with the highest prioritygains the proessor and starts running. If at any moment Ti demands a ritial resoure rj , itmust lok the semaphore Sj on this resoure. If Sj is free, Ti enters the ritial setion, works onrj and on exiting it releases the semaphore Sj and the highest priority task, if any, bloked bytask Ti is awakened. Otherwise, Ti is bloked by the task whih holds the lok on Sj , no matterits priority.Rule 2 No task an be preempted while exeuting a ritial setion on a granted resourerj . Eah task Ti exeutes at its assigned priority, unless it is in a ritial setion and bloks higherpriority tasks; in this ase, it inherits the highest priority of the tasks bloked by Ti. One Ti exitsa ritial setion, the sheduler will assign the resoure to the highest priority task demanding rj .This is very important in nested levels; onsider a task Ti whih inludes ode like this:...lok(r1)...lok(r2)...unlok(r2)...unlok(r1)...One the task Ti releases r2 it regains the priority it had before loking r2; this may be lowerthan its urrent priority and Ti may be preempted by the task with the highest priority (perhapsone bloked by Ti but not neessarily). Of ourse, Ti still holds the lok on r1, with the priorityassigned for the highest priority task whih had demanded r1.

30 CHAPTER 2. SETTING SOME ORDER IN THE CHAOS: SCHEDULINGRule 3 Priority inheritane is transitive. As a onsequene of the previous observation, we deduethat inheritane is transitive. We show this through an example:Example 2.3 (Inheritane of Priorities) Imagine three tasks T1, T2 and T3 in desendingpriority order. If T3 is exeuting then it bloks T2 and T1 as it owns a ommon resoure wantedby T2 or by both tasks (if not, T3 ould not be exeuting). Task T3 inherits the priority of T1 viaT2.Consider the following esenario:Task T3 Task T2 Task T1...lok(a) (1) lok() (2) lok(d) (3)...lok(b) (6) lok(a) (5) lok() (4)The numbers between brakets indiate the order of exeution. T3 starts exeution and loks a,then T2 enters the system and preempts T3 as its priority is higher (for the instant being, T3 hasnot yet inherited T2's priority) aessing the ritial setion for resoure . Then T1 gains theproessor as it has the highest priority aessing d and it intends to lok resoure whih is ownedby T2 (point (4)); at this moment T2 inherits T1's priority, resumes its exeution until point (5)where resoure a is owned by T3 and at this moment this task inherits T2's priority whih is, infat, T1's one.Rule 4 Highest priority task �rst. A task Ti an preempt another task Tj if Ti is not bloked andits priority is higher than the priority, inherited or assigned, at whih Tj is running.This protool has a number of properties; one of the most interesting is the fat that a task Ti anbe bloked for at most the duration of one ritial setion for eah task of lower priority. Although wedo not give the proof, the example shown above is illustrative of this fat.As a onsequene of this mehanism, the basi protool does not prevent deadloks. It is very easyto see through this example:Example 2.4 (Deadlok)Task T2 Task T1... ...lok(a) (1) lok(b) (2)... ...lok(b) (4) lok(a) (3)... ...unlok(b) unlok(a)... ...unlok(a) unlok(b)where T1 has highest priority. T2 enters the systems (1) loking a, then T1 at (2) preempts T2, loksb and when it intends to lok a (3) is bloked by T2, whih regains the proessor (as it inherits the

2.3. PERIODIC DEPENDENT TASKS 31priority of T1); when T2 intends lok b (4) this resoure had already been assigned. Both tasks aremutually bloked, hene in deadlok.This problem an be faed by imposing a total ordering on the sempahore aesses, but blokingduration is still a problem sine a hain of bloking an be formed as showned in the examples above.2.3.2 Priority Ceiling ProtoolPriority Ceiling Protool, pp, is a variant of the basi pip but it prevents the formation of deadloksand hained bloking. The underlying idea of this protool is that a ritial setion is exeuted at apriority higher than that of any task that ould eventually demand the resoure. The pip promotesan asending priority assignment as new higher piority tasks enters the systems and arebloked by lower priority tasks, but the pp assigns the highest priority to the task whih�rst gets the resoure among all ative tasks demanding the resoure.To implement this idea, a priority eiling is �rst assigned to eah semaphore, whih is equal to thehighest priority task that ould ever use the semaphore. We aept a task Ti to begin exeution ofa new ritial setion if its priority is higher than all priority eilings of all the semaphores loked bytasks other than Ti. Note that the demanded resoure is not taken into aount to aess the ritialsetion, but the eilings of other ative tasks.Let us revisit our example 2.4 to see how it works:Example 2.5 (Deadlok Revisited) Initially T2 enters the system and loks resoure a (1); later,T1 enters the system, preempts T2 and when it tries to lok b (whih is free), the sheduler �nds thatT1's priority is not higher than the priority eiling of the loked semaphore a; T1 is suspended and T2resumes exeution; when T2 tries to lok b it has in fat the highest priority sine no other tasks loksa semaphore; hene, T2 loks, exeutes, �nishes and releases all of its resoures, letting T1 ontinue itsexeution. Observe that even when T2 releases b, the sheduler will not let T1 resume its exeution,sine its priority is still lower than T2's.The protool an be summarized in the following steps:Step 1 A task Ti with the highest priority is assigned to the proessor; let S� be the semaphore withthe highest priority eiling of all semaphores urrently loked by tasks other than Ti. If Ti triesto enter a ritial setion over a semaphore S it will be bloked if its priority is not higher thanthe priority eiling of semaphore S�. Otherwise Ti enters its ritial setion, loking S. When Tiexits its ritial setion, its semaphore is released and the highest priority task, if any, bloked byTi is resumed.Step 2 A task exeutes at its �xed priority, unless it is in its ritial setion and bloks higher prioritytasks; at this point it inherits the highest priority of the tasks bloked by Ti. As it exits a ritialsetion, it regains the priority it had just before entry to the ritial setion.Step 3 As usual, the highest priority task is always exeuting; a task Ti an preempt another task Tj ,if its priority is higher than the priority at whih Tj is running.Example 2.6 Consider three tasks T0, T1 and T2 in desending priority order, aessing resoures a,b and . We shematize the steps:

32 CHAPTER 2. SETTING SOME ORDER IN THE CHAOS: SCHEDULINGTask T0 Task T1 Task T2... (5) ... (2) ...lok(a) (6)/(9) lok() (3)/(12) lok() (1)...unlok(a) unlok() lok(b) (4)... (7)lok(b) unlok(b) (8)... ... (10)unlok(b) unlok() (11)... ... (13)The priority eilings of semaphores for a and b are equal to T0's priority and for at T1's priority.Figure 2.4 illustrates the sequene of events.� At time t0 task T2 begins its exeution and bloks (1).� At time t1 task T1 enters the system, (2), preempts T2 and begins its exeution but it is blokedwhen it tries to lok (3) owned by T2, whih resumes its exeution at T1's priority (inheritane).� At time t2, task T2 enters its ritial setion for b sine no other semaphore is loked by otherjobs (4).� At time t3, task T0 enters the system, (5), and as it has a higher priority, it preempts T2, whih isstill in b's ritial setion; note that T2's priority (in fat, inherited from T1), is lower than T0's.� At time t4 as T0 tries to enter the ritial setion for a, (6), it is bloked sine its priority isnot higher than the priority eiling of the loked semaphore for b. At this point, T2 regains theproessor at T0's priority (inheritane), (7).� At time t5, T2 releases the semaphore for b, (8), and returns to the previously inherited priorityfrom T1 but T2 is preempted by T0 whih regains the proessor, (9).� At time t5, T0 aesses the ritial setion for a and it is never stopped until termination sine ithas the highest priority.� At time t6, T2 resumes its exeution, (10), at T1's priority, exits the ritial setion for , (11),reovers its original priority and is preempted by T1.� At time t7, T1 is granted the lok over , (12), �nishes its exeution (time t8) and then T2 resumes,(13), and also terminates (time t9).Many properties haraterize this protool: it is deadlok free and a task will not be bloked formore time than the duration of one ritial setion of a lower priority task; it also o�ers a ondition ofshedulability based on a rma assignment of priorities for a set of periodi tasks:Theorem 2.4 (Shedulability of pp) A set of n periodi tasks using the pp an be sheduled bythe rma if the following ondition is satis�ed:nXi=1 EiPi +max�B1P1 ; : : : ; Bn�1Pn�1 � � n(21=n � 1)where Bi is the worst ase bloking time for a task Ti, that is, the longest duration of a ritial setionfor whih Ti might eventually wait.

2.3. PERIODIC DEPENDENT TASKS 33
T2 t0 t9t8t7t6t5t4t3t2t1

 loked b loked b unloked unlokedT1 loked unlokedT0 a loked b loked

Figure 2.4: Sequene of events under pp2.3.3 Immediate Inheritane ProtoolThe main diÆulty with pp is implementation in pratie, sine the sheduler must keep trak of whihtask is bloked on whih semaphore and the hain of inherited priorities; the test to deide whether asemaphore an be loked or not is also time onsuming.There is a very simple variant of this method, alled immediate inheritane protool, iip, whihindiates that if a task Ti wants to lok a resoure r, the task immediately sets its priority to themaximum of its urrent priority and the eiling priority of r. On exiting the ritial setion for r, Tiomes bak to the priority it had just before aessing r.Eah task is delayed at most one by a lower priority task, sine there annot have been two lowerpriority tasks that loked two semaphores with eilings higher than the priority of task Ti, sine one ofthem would have inherited a higher priority �rst. As it inherits a higher priority, the other task annotthen run and lok a seond semaphore. One of the onsequene of this protool is that if a task Ti isbloked, then it is bloked before it starts running, sine if other task Tj is running and holds a resoureever needed by Ti then it has at least Ti's priority; so when task Ti is released it will not start runninguntil Tj has �nished.This variation of the pp is easier to implement and an be found in many ommerial real timeoperating systems, [58℄.2.3.4 Dynami Priority Ceiling ProtoolIn this setion we present a eiling protool whih works dynamially; in pip and all of its extensions,priorities are assigned statially: eah task has a stati priority and eah resoure has a eiling prioritywhih varies from pip to pp. Eah task hanges dynamially its priority as it demands resoures butit always starts at the same priority, regardless of the environment. We have shown the shedulabilityresult under the stati assignment for rma.The Dynami Priority Ceiling Protool, dpp, was reated by Chen et al in [21℄ and extended byMaryline Silly in [54℄. A task Ti is assigned a dynami priority aording to edf protool; as usual a

34 CHAPTER 2. SETTING SOME ORDER IN THE CHAOS: SCHEDULINGtask Ti may lok and unlok a binary semaphore aording to a pp. A priority eiling is de�ned forevery ritial setion and its value at any time t is the priority of the highest priority task, (the taskwith the earliest deadline), that may enter the ritial setion at or after time t.Eah release of Ti may be bloked for at most Bi, the worst ase bloking time. Bi orrespondsto the duration of the longest ritial setion in the set fs; s 2 Sj \ Sk; Dk � Di < Djg, where s is asemaphore to aess a resoure and Si is the list of semaphores aessed by Ti.A very simple suÆient ondition for the set T to be shedulable isnXi=1 Ei +BiPi � 1in whih we \add" to the normal worst ase exeution time, the bloking time, assuming it as an extraomputation. We need a more preise shedulability ondition for dpp.We will assume that deadline equals periods and we de�ne the sheduling interval for a request Tito be the time [ri; fi℄where ri is the release time and fi is the ompletion time for Ti. We will denote j as the deadlineassoiated to the eiling priority of sempahore Sj , in fat, j is the deadline of the highest priority taskthat uses or will use semaphore Sj .Let Ii be a sheduling interval for Ti in whih the maximal amount of omputation time is neededto omplete Ti and all higher priority tasks. Of ourse there may be a lower priority task that anblok Ti in Ii; let m be the index of this task. Let Li be the ordered set of requests' deadlines withinthe time interval [Di; Dm℄ and let Li = mint2Li(t �Pnj=1b t+xjPj :Ej). Li represents a lower bound ofadditional omputation time that an be used within Ii while guaranteeing deadlines of lower prioriytasks.Theorem 2.5 (Silly99) Using a dynami pp all tasks of T meet their deadlines if the two followingonditions hold: nXi=1 EiPi � 1 (2.1)Bi � Li 8i; 1 � i � n (2.2)See [54℄ for proof.Example 2.7 Consider three tasks T1 = (4; 12; 16); T2 = (6; 20; 24); T3 = (8; 46; 48), where the �rstparameter represents exeution time, the seond the deadline and the third the period. Analysis is donewithin the interval [0; 48℄ where three instanes of T1, two of T2 and one for T3 will arrive. T1 aessessemaphore S1, T2 aesses S2 and task T3 both of them. S1 takes 2 units to be unloked and S2 takes 4.Conditions 2.1 and 2.2 are satis�ed; aording to deadlines, task T1 has the highest priority and heneS1 and T3 has the lowest; S2 is assigned T2's priority. Figure 2.5 shows the shedule produed by adynami pp using the earliest deadline as late as possible, edl, whih promotes pushing the exeutionof periodi tasks as late as possible, respeting their deadlines.� At time t = 0 the three tasks arrives: d1 = 12, d2 = 20 and d3 = 46; T1 is exeuted �rst at t = 8,the latest possible time to omplete.

2.4. PERIODIC AND APERIODIC INDEPENDENT TASKS 35
����
����
����
����

����
����
����
����

���
���
���
���

��

���
���
���

���
���
���

���
���
���

���
���
���

����
����
����
����
���
���
���

���
���
���

����
����
����
����

��
��
��

��
��
��

4 8 12 16 20 24 28 32 36 40 44 48

processor idle

task release

task deadline

no resources
processor buzy

T1T3T2
using S2using S1Figure 2.5: Dynami pp� At time t = 14, T2 is started following the edl poliy.� At time t = 16, while T2 is exeuting, a new instane of T1 arrives, its deadline d1 = 28 > d2 = 20,T1 does not preempt T2.� At time t = 20, T2 ompletes and at t = 24 a new instane of T2 arrives, d2 = 44� At time t = 24, T1 starts and �nishes at t = 28.� As T3 and T2 latest starting time is 38 but T2 deadline is 44, we start at t = 28 T2.� At time t = 32 while T2 is exeuting the last instane of T1 arrives with deadline d1 = 44, so itdoes not preempt T2.� At time t = 34, T1 starts and �nishes at t = 38 unloking resoures ofor T3 to start.We will see in detail this algorithm in setion 2.4.1.2.4 Periodi and Aperiodi Independent TasksOur previous setions were dediated to the problem of sheduling a set of periodi tasks; even ifthe methods an be extended to a mixture of periodi and aperiodi tasks, the main results overshedulability and bounded bloking time are found for a set of periodi tasks. In this setion we willtry to analyse some approahes to handle a mixture of periodi and aperiodi tasks.In priniple we de�ne an aperiodi task as a unit of exeution whih has irregular and unpreditablearrival times, that is, a task that may be driven by the environment at any moment with no relationamong arrivals. These kind of tasks may be exeuted as soon as possible after their arrival whileperiodi tasks might be ompleted later within their deadlines, taking advantage of the fat that weknow their periodiity to push their exeution as late as possible, but �nishing before deadlines. Insummary, we are respeting deadlines for periodi tasks and responsiveness for aperiodi tasks.

36 CHAPTER 2. SETTING SOME ORDER IN THE CHAOS: SCHEDULING2.4.1 Slak Stealing AlgorithmsIn [36℄ and [57℄ we �nd a slak stealing protool, ssp, whih beame the referene in sheduling a mixedset of tasks. The idea is to use the idle proessor time to exeute aperiodi tasks.As usual, a periodi task Ti is haraterized by its worst-ase exeution time, Ei, its deadline Diand its period Pi, Di � Pi; a task is initiated at time �i � 0; periodi tasks are sheduled under a �xedpriority algorithm, suh as rma, and by onvention tasks are ordered in priority desending order.For eah aperiodi task Ji, we assoiate an arrival time �i and a omputing time of i. Tasks areindexed suh that 0 � �i � �i+1; between the interval [0; t℄ we de�ne the umulative workload ausedby exeuting aperiodi tasks: W (t) = Xij�i�t iAny algorithm for sheduling both periodi and aperiodi tasks aumulates the e�etive exeutiontime destinated to aperiodi tasks, �(t), for a period [0; t℄; of ourse �(t) � W (t) whih is an upperbound of exeution times for aperiodi tasks.Aperiodi tasks are proessed in a FIFO manner; the ompletion of a task Ji, denoted by Fi is givenby Fi = minftj�(t) = iXk=1 kgand the response time for Ji, denoted Ri is given byRi = Fi � �iThe sheduling algorithm proposed by Lehozky and Ramos-Thuel minimizes Ri, whih is equivalentto minimize Fi.The ssp uses a funtion Ai(t) for eah task Ti whih represents the amount of time that an bealloated to aperiodi tasks within the interval [0; t℄ whih should run at a priority level i or higher,being the proessor onstantly busy and all tasks meeting their deadlines. The total amount of freetime is A(t); sine tasks Ti's are periodi, it suÆes to analyse the interval [0;H℄, where H is the leastommon multiple of the task periods.1. For eah periodi task Ti and for eah instane j of Ti within [0;H℄ we omputemin(0�t�Dij)f(Aij +Ei(t))=tg = 1whih gives the largest amount of aperiodi proessing possible at level i or higher during interval[0; Fij ℄ suh that Fij � Dij (Fij is the ompletion time for the j-th instane of task Ti),2. At run time there are three di�erent kind of ativities: ativity 0 is aperiodi task proessing,ativities 1 : : : n is periodi task proessing and ativity n+ 1 refers to the proessor being idle.3. At any time, we keep A the total aperiodi proessing and Ii the i-level inativity. We supposeperiodi tasks are shedulable (by some other mehanism suh as rma). Suppose we start anativity j at time t, whih �nishes at time t0 (t0 > t) and 0 � j � n+ 1). Then if j = 0 we addt0 � t to A and if 2 � j � n then we add t0 � t to I1; : : : ; Ij�1

2.4. PERIODIC AND APERIODIC INDEPENDENT TASKS 374. When a new aperiodi task J arrives, we must ompute the availability for this task. We omputeA�(s; t) = min(1�i�n)(Ai(s; t)and Ai(s; t) = Aij �A(s)� Ii(s))Suppose J arrives at time t with a w omputing time; if A�(s; t) � w then we an proessimmediately at [s; s + w℄, at the highest priority level (sine we are preempting the urrentlyexeuting task). If A�(s; t) � w then, we will exeute at tiem [s; s + A�(s; t)℄ but no furtheraperiodi proessing is available until additional slak; this will our when a periodi job isompleted.The ssp is optimal in the sense that under a �xed priority sheduler for periodi tasks and a FIFOmanagement for aperiodi tasks, the algorithm minimizes the response time for aperiodi proessingamong all sheduling algorithms whih are feasible.Calulating Idle TimesM. Silly, [54℄ introdued a very lear method to alulate stati idle times for a set of independentperiodi tasks; these idle times are used to ompute aperiodi tasks. The analysis is based, as forThuel's and Lehokzy's algorithm, on the assumption that periodi tasks may be exeuted as late aspossible, (based on their deadlines), and that aperiodi tasks are exeuted as soon as possible. Thisalgorithm is alled Earliest Deadline as Late as possible, edl.We need to onstrut two vetors in the interval [0;H℄:1. K, alled stati deadline vetor, whih represents the times at whih idle times our and isonstruted from the distint deadlines of periodi tasks:K = (k0; k1; : : : ; ki; ki+1; : : : ; kq)where ki < ki+1, k0 = 0 and kq = H�minfxi; 1 � i � ng where xi = Pi �Di 81 � i � n.2. D, the stati idle time vetor, whih represents the lengths of the idle times:D = (�0;�1; : : : ;�i;�i+1; : : : ;�q)where eah �i gives the length of the idle time interval, starting at ki, 1 � i � q. This vetor isobtained by the reurrent formula:�q = minfxi; 1 � i � ng (2.3)�i = max(0; Fi) for i = q � 1 down to 0 (2.4)with Fi = (H� ki)�Pnj=1dH�xj�kiPj eEj �Pqk=i+1 �kExample 2.8 Reonsider example 2.7. In priniple q = 6 (or smaller); from formulae 2.3 and 2.4 weknow that k0 = 0 and k6 = 48 �minf4; 4; 2g = 46 and �6 = 2. The 'last' moment to start runningan be derived from the di�erenes among deadlines and exeution times. For T1 this moment is at

38 CHAPTER 2. SETTING SOME ORDER IN THE CHAOS: SCHEDULING
4 8 12 16 20 24 28 32 36 40 44 48

processor buzy

processor idle

task release

task deadline

T1T3T2
Figure 2.6: EDL stati sheduler8 (12-4); for T2 is at 14 (20-6) and �nally for T3 is at 38 (46-8). Deadline vetor K is onstrutedfrom deadlines; for T1 these are 12, 28, and 44; for T2 we have 20 and 44 and �nally for T3 we have46; sorting these numbers gives K = (0; 12; 20; 28; 44; 46). Calulating D is a little more diÆult. Forinstane, F5 = (48� 44)� 3Xj=1d48� xj � k5Pj Ej � 6Xk=6�kwhih gives F5 = 4� [0 + 0 + 8℄� 2 = �6so �5 = 0, and so on. Figure 2.6 gives the whole stati shedulingThis information is now useful at proessing time while a new aperiodi task task arrives. SupposeJ arrives at time � with an exeution time of E and a deadline D. We need to �nd an interval [�; �+D℄where at least E units of idle time exists, and this an be done easily by using our vetors K and D,shifting the origin to �.We will not give the details of these implementation, but only a simple example; see [54℄ for a fulldesription and proofs.Example 2.9 Suppose at time � = 7 a task J arrives with E = 5 and D = 15. We need to knowif within [7; 22℄ there exists 5 free units. We alulate this by reating K0 = (7; 12; 20; 28; 44; 46) andD0 = (1; 2; 4; 0; 0; 2). We have 1 unit in [7,8℄, 2 in [12,14℄ and 4 in [20,24℄, within [7,22℄ we have our5 units. Task J may be aepted and vetors K and D must be orreted.Silly, [54℄ also proposed a dynami algorithm to alulate idle times while using a dynami priorityalgorithm for periodi tasks, suh as edf.2.5 Periodi and Aperiodi Dependent TasksThe model presented in this setion, onsiders shedulability under a set of periodi and aperiodi taskswhih share some resoures.

2.5. PERIODIC AND APERIODIC DEPENDENT TASKS 39Under this assumption, we annot break an aperiodi task in multiple hunks to be exeuted in idleproessor time, beause tasks are now not independent and ould a�et the stati shedulability forperiodi tasks; on the other hand, if we shedule share resoures by means of pp, we need to assign toaperiodi tasks a deadline in order to reate their priority. We will show a simple method, alled TotalBandwidth Server, tbs, due to Spuri and Buttazzo, [55℄, [56℄ whih assigns deadlines to aperiodi tasksin order to improve their responsiveness and manage ommon resoures.2.5.1 Total Bandwidth ServerThe Total Bandwidth Server, tbs, improves the response time of soft aperiodi tasks in a dynamireal-time environment, where tasks are sheduled aording to edf. As usual, periodi tasks areharaterized by their exeution times and deadlines; aperiodi tasks are only haraterized by theirexeution time. This protool does not onsider ommon resoures but introdues some ideas whihare used for a mix of periodi and aperiodi dependant tasks.tbs an be used for a set of periodi andaperiodi independant tasks.We need a dealine for aperiodi tasks. When the kth aperiodi request arrives at time t = rk, itreeives a deadline dk = max(rk ; dk�1) + CakUswhere Cak is the exeution time of the request and Us is the server utilization fator. By de�nitiond0 = 0 and the request is inserted into the ready queue of the system and sheduled by edf, as any(periodi) instane.Example 2.10 Consider two periodi tasks T1 = (3; 6) and T2 = (2; 8), where the �rst omponentrepresents exeution time and the seond the relative deadline (equal to period), see �gure 2.7.Under this senario, Up = 34 and onsequently Us � 14 . At time t = 6 while the proessor is idle, anaperiodi task J1 with C1 = 1 arrives and its deadline is set to d1 = r1 + C1Us = 6+ 10:25 = 10. Task anbe sheduled sine we are not exeeding the utilization fator, (110 < 14 , and its deadline is the shortest(no other tasks are in queue), J1 is served inmediately. We also show a task J2 with C2 = 2 whiharrives at time t = 13 and is served at t = 15, sine its deadline is set to 21 but a shorter deadline taskis still ative. Finally there is a task J3 with C3 = 1 whih arrives at t = 18, exeuted at t = 22.Atually, as an be seen in �gure 2.7, tbs is not optimal, sine we ould improve the responsivenessof aperiodi jobs. The authors propose an optimal algorithm, alled tb*, whih iteratively shortensthe assigned tbs deadline using the following property:Theorem 2.6 (Buttazzo and Sensini,97) : Let � be a feasible shedule of task set T , in whih anaperiodi task Jk is assigned a deadline dk, and let fk be the �nishing time of Jk in �. If dk is substitutedwith d0k = fk, then the new shedule �0 produed by edf is still feasible.2.5.2 tbs with resouresThe duration of ritial setions must be taken into aount when we handle ommon resoures. Infat, when we have a mixture of periodi and aperiodi tasks, we need to bound the maximum blokingtime of eah task and analyse the shedulability of the hybrid set at arrival of a new aperiodi job.Buttazzo et al. based their algorithm assuming a Stak Resoure Poliy, srp, [11℄, to handle sharedresoures. We desribe briey this poliy.

40 CHAPTER 2. SETTING SOME ORDER IN THE CHAOS: SCHEDULING

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

2 6 8 10 12 14 16 18 20 22 24 264

T1T2 r1 r2 r3d1 d3d2
Figure 2.7: TBS exampleIn the tbs with resoures, every task Ti is assigned a dynami priority pi based on edf and a statipreemption level �i suh that the following property holds:Property 2.1 (Stak Resoure Poliy) Task Ti is not allowed to preempt task Tj , unless �i > �j .The stati priority level for a task Ti with relative deadline Di is �i = 1Di . In addition, everyresoure Rk is assigned a eiling de�ned as:eil(Rk) = f�jTi needs RkgFinally a dynami system eiling is de�ned as:�s(t) = max[feil(Rk)jRk is urrently busy g [f0g℄The srp rule states that:\a task is not allowed to start exeuting until its priority is the highest among the ativetasks, noted at(T), and its preemption level is greater than the system eiling".That is, an exeuting task will never be bloked by other ative tasks though it an be preemptedby higher priority tasks but no bloking will our.Under this protool, a task never bloks its exeution; it annot start exeuting if its preemptionlevel is not high enough; however, we onsider the time waiting in the ready queue as a bloking timeBi sine it may be aused by tasks having lower preemption level. The maximum bloking Bi for taskTi an be omputed as the longest ritial setion among those with a eiling greater than or equal tothe preemption level of Ti, (a similar reasoning have been applied in [54℄):Bi = max(Tj2at(T))fsj;h j (Di < Dj) ^ �i � eil(�j;h)g (2.5)

2.6. EVENT TRIGGERED TASKS 41where sj;h is the worst ase exeution time of the hth ritial setion of task Ti and �j;h is the resoureaessed by the ritial setion sj;h.The following ondition: 8i; 1 � i � n iXk=1 EkPk + BiPi � 1 (2.6)an be tested to ensure feasibility of a set of periodi tasks with ommon resoures.To use srp along with tbs, aperiodi tasks must be assigned a suitable preemption level. Buttazzoet al, propose: �k = UsCkfor eah aperiodi task Jk. We an still use formula 2.5 ranging over the whole task set, to alulatethe bloking using Dj = CjUs as deadline of aperiodi tasks.The following theorem ensures shedulability for an hybrid set of tasks:Theorem 2.7 (Lipari and Buttazzo,99) Let TP be a set of n periodi tasks ordered by dereasingpreemption level (�i � �j i� i < j) and let TA be a set of aperiodi tasks sheduled by tbs withutilization Us. Then, set TP is shedulable by edf+srp+tbs ifnXi EiDi + Us � 1 (2.7)8i; 1 � i � n; 8L;Di � L < Dn (2.8)L � iXj=1b LPj Ej +maxf0; Bi � 1g+ LUs (2.9)Example 2.11 Consider two periodi tasks T1 = (2; 8) and T2 = (3; 12) whih interat with twoaperiodi jobs J1 and J2, both having exeution time 2 and release times r1 = 0 and r2 = 1, respetively.Us � 28 + 312 , Us = 12 . �J1 = �J2 = 122 = 14 ; T1 and J2 share the same resoure during all their exeutionbut J2 has a higher preemption level. J1 is served �rst in virtue of FIFO for aperiodi tasks and J2 isserved before T1 even if both have the same preemption level, but we enhane responsiveness. Figure2.8 shows the sheduling.2.6 Event Triggered TasksUp to now, we have desribed rts as a olletion of tasks, periodi and aperiodi, whih are triggeredby external events; impliitly for periodi tasks we assume the \period" as the event that makes a task(better said, a new instane of task) be released and enter the system. For aperiodi task, we are onlyinterested in its arrival and in its sheduling taking into aount other tasks already ative.We onsider now rts in whih a task is triggered by various events in their environment. A taskmight be triggered as a onsequene of another task ompletion or by various events in the environment.

42 CHAPTER 2. SETTING SOME ORDER IN THE CHAOS: SCHEDULING

2 6 8 10 12 14 16 18 20 22 24 264

T1T2 d1r1 d2r2J1J2
Figure 2.8: Sharing resoures in an hybrid setWe will distinguish internal and external events; the former are related to the system itself and morepreisely to the set of ative tasks in the proessor; the latter are related to the external environment,that is to the reation of some proedures not inluded in the systems (for instane, sensors, measuresinstruments, human ation, and so on).Balarin et al, [13℄ have proposed an algorithm for shedule validation under a sene of event triggeredtasks, ett. We will desribe their method as it sets up a new model for reative rts.2.6.1 A Model for ettIntuitively an event triggered system is modelled as an exeution graph, where some tasks are enabledby others or by some external events; feasibility of suh a system is seen as all tasks ompleting beforea new ourrene of the event that triggers it re-appears in the system. We say that a system is orretif ertain ritial events are never \dropped" or missed.Formally, a system for ett is a 6-uple (T; e; U;m;E;C) where:� T = f1; 2; : : : ; ng is a set of internal task identi�ers, where identi�ers also indiate tasks priority,the larger the identi�er, the higher the priority. We note by �i the priority of a task i.� e : T ! <+ whih assigns to eah internal task its (worst) exeution time.� U , suh that U\T = ; is a set of unique external task identi�ers, representing the tasks generatedby external events of the environment.� m : U ! <+ whih assigns to every external task the minimum time between two ourrenes ofthe event that triggers it.� E � (T [U)�T is a set of events; a pair (i; j) indiates that a task i (external or internal) enablesthe internal task j; if i is external, we say (i; j) is an external event, otherwise (i; j) is an internalevent. Nodes T [U and edges in E onstitute the system graph of our appliation.

2.6. EVENT TRIGGERED TASKS 43
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��

��

��

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 4 3 1 5 4 3 2 34

67 (2,4) (1,2)
(1,5)

(5,3)
(5,4)

(4,3) (2,4) (4,3)
(4,3)(6,2)(7,1)

time

a)

b)

m(7) = 20
m(6) = 10

e(1) = e(3) = e(5) = 2
e(2) = e(4) = 1

UTE
Figure 2.9: An example of ett� C � E is a set of ritial eventsExample 2.12 We show in �gure 2.9a) a system with 7 tasks; tasks 6 and 7 are external, ritialevents are marked by dots and proessing is not all inlusive, that is an internal task is triggered byone event. For instane, task 2 must start after reeiving information from task 1 but need not wait forinformation from task 6 (event (6,2) is not ritial and might be dropped).An exeution of a system is a timed sequene of events that satis�es the following:� An external task i an exeute at any time, respeting the minimum delay m(i) between twoexeutions.� after i has �nished its exeution, all tasks j suh that (i; j) 2 E are enabled, and task i is disabled.� If a task i is enabled at time t1, then it will �nish its exeution or beome disabled at time t2 suhthat in interval [t1; t2℄ the amount of time where i had the highest priority is e(i).An event (i; j) is dropped if after i beomes disabled, task i is exeuted again before task j isexeuted. An exeution is orret if no ritial events are dropped in it. A system is orret if all of itsexeutions are. We show an exeution of our example in �gure 2.9b).2.6.2 Validation of the ModelIf we want to guarantee orretness, we need to show that no ritial event is dropped in any exeution;a suÆient ondition for that is to ensure that for every ritial event (i; j), the minimum time betweentwo exeution of i is larger than the maximum time between i and j. In Balarin's model, they proposea version where:

44 CHAPTER 2. SETTING SOME ORDER IN THE CHAOS: SCHEDULING� Only external events an be dropped; the minimum time between two exeutions for these eventsis determined by a system desription.� Conservative estimation of the maximum time between exeution of i and j.The �rst proposition is quite simple:Proposition 2.1 If i < j then (i; j) annot be dropped.In fat, remember that in their model, i < j implies �i < �j and if i triggers j, this task has higherpriority and an never be dropped by the arrival of a new instane of i.Balarin et al. have settled a ondition for an event (i; j) not to be dropped; it is based on the notionof an exlusive frontier for eah internal task i.De�nition 2.6 (Exlusive Neighborhood) Let (F;N) be a pair of disjoint subsets of tasks; (F;N)is an exlusive neighborhood for some internal task i if F and N satisfy the following onditions:C1 i 2 F [NC2 8j; k : ((k 2 N) ^ ((j; k) 2 E)) ! (j 2 F [N)C3 (8k 2 F [N � i)91j 2 N : (k; j) 2 E and i has no suessors in N .C4 k < j for every k 2 F and every j 2 N .F is the frontier and N is the interior of an exlusive neighborhood, whih gives the graph obtainedby traversing bakwards from i and stopping at the frontier nodes. For example, task 4 has an exlusiveneighborhood with F = f1; 2g and N = f4; 5g.Under this de�nition, the following theorem holds:Theorem 2.8 If (i; j) 2 E and (F;N) is an exlusive neighborhood for task i, suh that: k < j 8k 2 F ,then event (i; j) annot be dropped.whih gives a very simple poliy to assign priorities to tasks, based on propositon 2.1, whih is in fata orollary of this theorem.On the other hand, we an verify if a ritial event (i; j) an eventually be dropped; it suÆes toperform a bakward searh of a system graph starting from i. The searh �nishes when we reah a taskwith priority less than j. If at any time some task is reahed for the seond time (violating C3) or anexternal task is reahed (violating C4), the searh �nishes with failure (but results are inonlusive).On the ontrary if no more unexplored nodes with priority larger than j are found, then we satisfy thetheorem and the event annot be dropped.Finally the authors also propose a methodology to analyse the possibility of an external event bedropped, simpli�ed in [12℄. The problem is quite simple to formulate, but not easy to solve.Basially, to know if an external event (i; j) an be dropped, we need to hek whether the exeutionof j an be delayed for more than m(i) units of time. In order to do so, they alulate an interval,alled �j -busy interval, where the proessor is always serviing tasks with priorities higher than �j .The �rst step in omputing suh a bound is to ompute partial loads, noted Æ(i; p), as the ontinuousload at priority p or higher aused by an exeution of task i. At the beginning of a p-busy intervalsome task with priority lower than p, say k, may be exeuting and eventually at ompletion, k might

2.7. TASKS WITH COMPLEX CONSTRAINTS 45enable some tasks of priority p or higher. The total workload generated by suh a task is bounded bymaxfÆ(k; p) j k 2 T; �k < pg.As new tasks an be triggered as the onsequene of external events, we onsider that in a p-busyinterval of length �, there an be at most d �m(u)e exeutions of an external task u generating a workloadof Æ(u; p) at priority p or higher, hene we have:� �maxfÆ(k; p) j k 2 T; �k < pg+Xu2Ud �m(u)eÆ(u; p)whih an be solved by iteration; if p = �j and � < m(i), then (i; j) annot be dropped.2.7 Tasks with Complex ConstraintsIn this setion, we present some ideas to attak the problem of sheduling when tasks must be analysedusing omplex onstraints. We borrow from [30℄ the term omplex ontraints whih means that a setof tasks is haraterized not only by simple onstraints suh as period, release time and deadline butalso by some other onstraints whih annot be embedded in traditional sheduling.Within these omplex ontraints, we an ite:� Preedene onstraints: suh that a task is triggered by another task or the distribution of tasksin many proessors whih requires some internode ommuniation.� Jitter: even if a task must �nish before its deadline, the evolution of a task may be di�erent frominstane to instane. The maximum time variation (relative to the release time) in the ourreneof a partiular event in two onseutive instanes of a task de�nes the jitter for that event. Forexample, the start time jitter of a task is the maximum time variation between the relative starttimes of any two onseutive jobs; similarly we an de�ne the response time jitter as the maximumdi�erene between the response times of any onseutive jobs, that is the maximum delay for aninstane of a task, [19℄.� Non periodi exeution: where some instanes of a tasks might be separated by non onstantlength intervals (this annot be handled under edf).� Semanti onstraints: tasks are haraterized by parameters suh as performane or relialiblity;for instane: alloate a task to a partiular proessor.We will briey desribe the method proposed by [30℄ in order to handle tasks with omplex on-straints. The method begins by treating periodi tasks, whih are redued o�ine to reate shedulingtables, [27℄; it alloates tasks to nodes and resolves omplex onstraints by onstruting sequenes oftask exeutions. Eah task in a sequene is limited by either sending or reeiving internode messages,predeessor or suessor within the sequene. The �nal result is a set of independent tasks on sin-gle nodes with start-times and deadlines. These tasks an be sheduled aording to traditional edfmethod but we have to take into aount the eventual arrival of aperiodi tasks whih an violate theomplex onstraint onstrution.Isovi et al. propose an extension of edf, alled two level edf, [23℄. There is a \normal level"to shedule tasks aording to edf but a \priority level" to an o�ine task when it needs to start atlatest, similar to the basi idea of slak stealing for �xed priority sheduling, [57℄. We need to knowthe amount and loation of resoures available after o�ine tasks are guaranteed shedulability.

46 CHAPTER 2. SETTING SOME ORDER IN THE CHAOS: SCHEDULINGFor eah node, we have a set of tasks, with start-times and deadlines, tasks are ordered by inreasingdeadlines and the shedule is divided into a set of disjoint exeution intervals. For eah instane j ofo�ine task Ti we de�ne a window w(T ji). We have:� est(T ji) whih is expressed in the o�-line shedule as the earliest start time, provided by the taskonstraints.� f(T ji) the sheduled �nishing time aording to the o�-line shedule and� start(T ji) the sheduled start time of instane j is the starting time of T ji aording to the o�-lineshedule.Eah window w(T ji) = [est(T ji); dl(T ji)℄, where dl(T ji) is the absolute deadline of instane j of taski. We de�ne spare apaities to represent the amount of available resoures for these intervals. Eahtask deadline de�nes the end of an interval Ii. The start is de�ned as the maximum of the end of theprevious interval or the earliest start time of the task. The end of the previous interval may be laterthan the earliest start time, or earlier, thus it is possible for a task to exeute outside its interval, earlierthan the interval start but never before its earliest start time.The spare apaities of an interval Ii are alulated as:s(Ii) = jIij �XT2Ii ET �min(s(Ii+1); 0)sine a task may exeute prior to its interval, we have to derease the spare apaities lent to subsequentintervals.Runtime sheduling is performed loally for eah node. If the spare apaities of the urrent intervalare greater than 0, then edf is applied on the set of ready tasks, -normal level. If no spare apaitiesare available, it means that a task has to be exeuted inmediately (sine we have already guaranteedshedulability).After eah sheduling deision, the s for an interval is updated. If a periodi task assigned to aninterval I exeutes, no hanges are need, but if a task T assigned to a later interval Ij , j > exeutes,the spare apaity of Ij is inreased and that of I is deresead. We will show that urrent spareapaity is redued by aperiodi tasks or idle exeution.When an aperiodi task Ji arrives to the system at time ti we perform an aeptane test based onother previously arrived aperiodi task waiting for exeution; if this set is alled G, we should test ifG [Ji an be sheduled, onsidering o�ine tasks. If so, we an add Ji to G.The �nishing time of Ji, fi, with exeution Ci an be alulated with respet to Ji�1; with no o�inetasks, fi = fi�1 + Ci represents the �nishing time for Ji but we should extend the formula reetingthe amount of resoures reserved for o�ine tasks:fi = Ci +� t+R[t; f1℄ i = 1fi�1 +R[fi�1; fi℄ i > 1where R[t1; t2℄ stands for the amount of resoures reserved for the exetuion of o�ine tasks from timet1 to t2. We alulate this term by means of spare apaities:R[t1; t2℄ = (t2 � t1)� XI2(t1;t2)max(s(I); 0)

2.7. TASKS WITH COMPLEX CONSTRAINTS 47As fi appears on both sides of the equation, the authors propose an algorithm for aeptane of anew aperiodi task Ai in O(n), where n is the number of aperiodi tasks in G not already ompleted.In [23℄, Dobrin, Ozdemir and Fohler propose an algorithm for �xed priority assignment in theontext of o�-line tasks. For o�-line tasks we assign priorities based on starting points; as the systemevolves, it annot always be possible to keep the same priority for di�erent instanes of the same task,so new '�tiiuos' tasks are reated.

48 CHAPTER 2. SETTING SOME ORDER IN THE CHAOS: SCHEDULING

Chapter 3Inspiring Ideas
R�esum�eUne premi�ere id�ee a �et�e l'ordonnanement de programmes Java Temps R�eel, pour r�epondre aux ques-tions \est-e qu'on peut mod�eliser un programme Java selon ertains points d'observation?" et \est-equ'on peut trouver, �a partir de e mod�ele, un programm Java Temps R�eel Ordonnan�e?"Pour resoudre es deux probl�emes on a ommen�e par l'ordonnanement �a partir d'un ertain modelabstrait, [32℄.Un programme Java en Temps R�eel, est un ensemble S de threadsH ; haque thread est ind�ependente�a l'ex�eution mais elle se ommunique ave autres threads par les instrutions de synhronisation.Chaque thread H est divis�ee logiquement en tâhes; haque tâhe d'une thread H peut être ex�eut�eeen parall�ele ou entrela�ee ave autres tâhes d'autres threads. Les tâhes d'une thread son ordonnan�eesd'une fa�on s�equentielle.Formellement, on dit qu'une thread Hj est ompos�ee par une s�equene� j1 ; � j2 ; : : : ; � jnjde tâhes. Les \;" separent les di�erentes tâhes �a l'interieur d'une thread.Chaque thread Hj peut être p�eriodique, i.e. elle arrive dans ertains intervalle de temps d�e�nisstatiquement, Tj . A haque tâhe � ji on va assoier une valeur Ci orrespondant au temps d'ex�eution.Finallement, �a haque thread Hj on peut assoier une �eheane, Dj orrespondante au temps maximalde �nition de la thread. C'est le adre lassique de str, [54℄, [37℄, [36℄.Dans le adre de notre mod�ele, un programme est une s�equene de tâhes de di�erentes threads etun programme ordonnan�e est une s�equene de tâhes telle que �a l'ex�eution elle respete les ontraintestemporelles.3.1 IntrodutionEmbedded systems play an inreasingly important role in daily life. The strong inreasing penetrationof embedded systems in produts and servies reates huge opportunities for all kinds of enterprisesand institutions, [3℄. It onerns enterprises and institutions in suh diverse areas as agriulture,49

50 CHAPTER 3. INSPIRING IDEAShealth are, environment, road onstrution, seurity, mehanis, shipbuilding, medial applianes,language produts, onsumer eletronis, et. Real-time embedded systems interat ontinuously withthe environment and have onstraints on the speed with whih they reat to environment stimuli.Examples are power-train ontrollers for vehiles, embedded ontrollers for airrafts, health monitoringsystems and industrial plant ontrollers. Timing onstraints introdue diÆulties that make the designof embedded systems partiularly hallenging.Hard rt embedded systems have tight timing onstraints, i.e., they are diÆult to ahieve andthey must not be violated, with respet to the apability of the hardware platforms used. Hard rtonstraints hallenge the way in whih software is designed at its roots. Standard software developmentpraties do not deal with physial properties of the system as a paradigm, so we need some new modelswhih add non-funtional aspets to the logi of the problems.As embedded systems are growing, it stands out that a development language for these systems mustbe a popular programming language, whih inludes interesting features for real time environments.Java is a language whih really overs many of the needs of real time programming, to the extent thattoday we an talk of Real Time Java, [15℄, rt-Java, and even sienti� meetings onerning Java andEmbedded Systems.Java is a language whih provides some basi omponents suh as methods, grouped in lasses andobjets belonging to a lass; it provides onurreny through the speial lass Thread where di�erentproesses an oordinate, wait and resume their exeutions; many of these needs are imperative inrts. Another important feature of Java is its ortogonality, that is, almost everything is redued to theonept of objet.Real Time Java deals easily with aspets suh as sheduling, memory management, synhronization,asynhronous event handling and physial memory aess, in some way platform-independent and heneappliations are portable and the developement may be distributed. Java tehnology is already usedin a variety of embedded appliations, suh as ellular phones and mobility.Some of the advantages of the Java tehnology are:� Portability. Platform independene enables ode reuse aross proessors and produt lines, allow-ing devie manufaturers to deploy the same appliations to a range of target devies and henelower osts.� Rapid appliation development. The Java programming language o�ers more exibility duringthe development phase, sine it an begin on a variety of available desktop environments, wellbefore the targeted deployment hardware is available.� Connetivity. The Java programming language provides a built-in framework for seure network-ing.� Reliability. Embedded devies require high reliability. The simpliity of the Java programminglanguage, -with its absene of pointers and its automati garbage olletion-, eliminates manybugs and the risk of memory leaks.It stands out that Java is a language whih ful�ls many of the real time requirements over a�rm language arhiteture; even more, Java is very popular and well known for the implementationommunity.Java and Shedulability. Our �rst need was in priniple to answer the question \is it possibleto model a rt-Java Program in order to synthesize a sheduled program whih ensures all temporal

3.1. INTRODUCTION 51

Scheduled

Java Program

Real Time

Java Program
Analysis

Model

Sc
he

du
le

r
Sy

nt
he

si
s

Preemption

Dependency

Uncertain execution

Environment

Execution times

Urgency

times

Real Time

Figure 3.1: Constrution of a rt-Java Sheduled Programontraints?". Our objetive an be resumed in �gure 3.1, where a Java program su�ers a proess ofanalysis in order to onstrut, synthetise, the sheduled program.So, we need to model a Java Program or a rt-Java Program in order to perform sheduling oper-ations. We are partiularly interested in analysing a program to say whether it is shedulable or not.Sheduling properties to be respeted are deadlines, exeution times, synhronization points and sharedresoures. The �nal objetive is to �nd a possible sequene of exeution whih an guarantee all theproperties mentioned above.The result of the analysis should be a sheduled Java programwith some sheduling poliy embeddedin the Java language through its rt platform. Java provides some means to model synhronizationamong proesses, through two primitives wait and notify and mutual exlusion through the attributesynhronized over an objet. Java performs oordination by bloking an objet. So, to be independentof this speial semantis, we propose to di�erentiate learly these two aspets:1. Synhronization or oordination among threads, that is ommuniation in a produer/onsumerfashion is done through two primitives: await to signal waiting of a message and emit to signalsending of a message. Coneptually speaking it is as if there were no expliit loking of the objetover whih we wait.2. Mutual exlusion, that is an objet annot be aessed by more than one thread at a time, inorder to assure orretness. This is done through the (Java) attribute synhronized over theobjet whih must be preserved.

52 CHAPTER 3. INSPIRING IDEASlass PeriodiTh extends PeriodiRTThread{ long p ;ThreadBody b ;PeriodiTh(long p, ThreadBody b){ this.p = p ;this.b = b ;}publi void run(){ long t ;Clok = new Clok() ;while(true){ t = .getTime() ;b.exe() ;waitforperiod(p + t - .getTime());}}}interfae ThreadBody{ publi void exe() ;}lass Thread1_body implements ThreadBody{ Event a, b ;Thread1_body (Event a, b){ this.a = a ;this.b = b ;}publi void exe(){ t7 ;t1 ;a.emit;t5 ;b.emit;}}

lass Thread2_body implements ThreadBody{ Event a, b ;publi void exe(){ t6;a.await;t2;b.await;t4;t3;}}lass Example{ publi stati void main(String argv[℄){ Event a = new Event() ;Event b = new Event() ;Thread1_body th1_body = new Thread1_body(a,b) ;Thread2_body th2_body = new Thread2_body(a,b) ;PeriodiTh thread1 = new PeriodiTh(10, th1_body) ;PeriodiTh thread2 = new PeriodiTh(20, th2_body) ;}}lass Event{ publi void emit(){ synhronized(this) {this.notify}}publi void await(){ synhronized(this) {this.wait}}}
Figure 3.2: Two ThreadsWe present in �gure 3.2 an example of a Java-like program where we have modi�ed some of itsprimitives.We also need to oordinate the environment and the appliation through the exeution platform.The environment is represented by a series of events whih may be triggered by time passing or by aontrol devie; they must be taken into aount by the appliation in some prede�ned delay, but theappliation response depends greatly on the speed of the exeution arhiteture.3.2 Model of a rt-Java ProgramWe model a Java Program as a set T of Threads, eah thread is independent in its exeution but itommuniates to other threads through await and emit instrutions to ooperate in the exeution of atask, and synhronized bloks to oordinate aess to ritial setions of ommon resoures in a mutuallyexlusive manner.

3.2. MODEL OF A RT-JAVA PROGRAM 53Threads and Tasks. Eah thread H is logially divided into bloks of instrutions, whih we alltasks; ertain tasks an be exeuted in parallel or in an interleaved way with other tasks of otherthreads, but tasks within the same thread H are sequentially ordered.Formally, we an say that a thread Hi is omposed by a sequene� i1; � i2; : : : ; � iniof tasks (note the \;" separating the tasks).This model an be obtained by appliation of some tehniques suh as [32, 28℄ where some obser-vation points are onsidered to \ut up" the ode. We are partiularly interested in synhronizationamong threads through the operations await and emit and use of shared resoures.Eah thread Hi an be periodi, that is, it arrives at regular intervals of time, de�ned statially.We note Pi the period for thread Hi. Eah task � ik has a (worst ase) exeution time, Eik whih is alsostati and derives from some o� line analysis. Finally, we assoiate a deadline Di to eah thread Hi.This is the lassial approah for rts, [37, 36, 54℄, whih we developped in hapter 2.In our model, a program is a sequene of tasks from di�erent threads and a sheduled program is asequene of tasks whih in exeution will respet the timing onstraints (deadloks, exeution times,periods).Tasks and Resoures. Tasks in H may aess some shared resoures, that is, shared data whoseaess must be proteted by a protool to guarantee that at most one and only one modi�er is presentat any time. As we have seen, before aessing a shared resoure, ri, a loking operation over ri isdemanded to the data manager who keeps a register of all resoures and their states (free or busy);suh operation may be granted if the resoure is free or denied if it is busy, in this ase, the demanderwaits for permission.One a task has �nished with ri it releases it to the system by an unlok operation, ui, whih isalways suessful. We demand an \ordered" usage of lok and unlok operations, that is the last lokedresoure is the �rst to be unloked, following a stak logi.In Java we reognize the lok and unlok operation by the struture:...synhronized(r1){}...where the blok between \f" and \g" is the ritial setion for r1 and synhronized is a modi�er of theblok indiating that before aessing this ode, we must obtain a lok over the objet, (r1 in our ase),equivalent to a lok operation. After exiting this proteted ode, the lok over r1 is released.For a set T of threads, we de�ne the set R as the universal set of all shared resoures used by tasksin T and to eah � ik , we assoiate a set R(� ik) � R of the resoures it needs.We are now ready to give the following de�nition:De�nition 3.1 A sheduled program is a sequene of tasks of di�erent threads whih in exeutionrespets the timing onstraints (absene of deadloks, exeution times and periods) and mutual exlusionfor shared resoures.

54 CHAPTER 3. INSPIRING IDEASRelationships Among Tasks. If we onsider two tasks � ik and � jl we an establish one of thefollowing relations:1. � ik, � jl are independent, i 6= j and they an be exeuted in any order, that is, they belong todi�erent threads, they do not share resoures and they do not oordinate.2. � ik, � jl belong to the same thread Hi, i = j, and will be exeuted aording to the internal logiof Hi: � ik is exeuted before � jl , if k < l. We denote � ik; � il the immediate preedene relation(in fat, l = k + 1) of two tasks from thread Hi and � ik ! � jl , the preedene relation in thesequene of the deomposed thread Hi, i.e., the transitive losure of the sequene relation, \;".3. � ik, � jl belong to di�erent threads and ommuniate through a await/emit relation. In this asewe an say that � ik noti�es � jl , denoted � ik � jl . The relation, expresses a waiting state for� jl until the emit arrives, that is we an see � ik as a produer and � jl as a onsumer and the emitas the fat that a produt is ready. On the other hand, � jl must be in a waiting state to \hear"a notify. To eah thread Hi, we assoiate the set Ni of noti�ers that is:Ni = f� ikj� ik � jl ; i 6= jg4. � ik, � jl use a ommon resoure r, then � ik r$ � jl if r 2 R(� ik) ^ r 2 R(� jl).It should be lear that both the preedene and the wait relations impose a hierarhial relationbetween two tasks, but the await/emit relation imposes a oordination with another task, while thepreedene relation is simply a way to express that a task will be thrown after the ompletion of itspreeding in the sequene.Preedene an be established statially and it is always \suessful" in exeution time, whileawait/emit relation may fail if the waiting task is not ready to hear a notify; in our model, the shedulermust assure this proedure in order to guarantee suess of the operation.In this hierarhy we distinguish some speial tasks:� Task �Ha is the starting of a thread H if 8k; �Ha ! �Hk� Task �Hz is the last of a thread H if 8k; �Hk ! �Hz� Finally, task � ik is autonomous if it does not wait for another task, that is if :9l; j � jl � ik.3.2.1 Strutural ModelWe model a program as a graph, where the set of nodes orresponds to tasks and the set of arsorresponds to preedene and await/emit relations. We desribe our model through an example.Example 3.1 Figure 3.3 shows the model of the program in �gure 3.2.We an observe two threads H1 and H2 omposed by the sequeneH1 = [�7; �1; �5℄and H2 = [�6; �2; �4; �3℄

3.2. MODEL OF A RT-JAVA PROGRAM 55
r1

r1
r1; r2 �2�1

�5
�6

�4
�3

�7

E3 = 2
E4 = 1

E7 = 1
E1 = 2
E5 = 2

E6 = 1
E2 = 1

H1 = [�7; �1; �5℄H2 = [�6; �2; �4; �3℄P1 = D1 = 10P2 = D2 = 20sequenesynhronizationFigure 3.3: Two Threadsrespetively1; we an also see two synhronization points as �1 �2 and �5 �4, shown as dotted lines;worst exeution time for eah of the tasks is indiated beneath eah task.R = fr1; r2g, task �1 uses a resoure r1 and �5 uses both r1 and r2; task �4 uses r1 and �1 r1$ �4among others.The model of the program shows a partial order among tasks; those belonging to the same threadare totally ordered, by the sequene relation; those tasks tied by a relation are also totally orderedand �nally some tasks are not ordered.3.2.2 Behavioral ModelTask behaviour an be desribed through a lassial state model shown in �gure 3.4, whih is self-explanatory. Anyway let us note that the exeution platform has three queues: ready (RQ), waiting(WQ) and sleeping (SQ), assoiated to the respetive states. Eah task an be in one of the followingstates:1we will skip the superindex indiating the thread if no onfusion results

56 CHAPTER 3. INSPIRING IDEAS� Idle: task is not ative.� Ready: task is in RQ and an be hosen by the sheduler to begin exeution. It needs no emitoperation but may need or even have some shared resoures.� Waiting: task is in WQ, waiting for an emit; its exeution is bloked until the emit arrives.� Exeuting: task is running.� Sleeping: task is in SQ beause it was preempted by a higher priority task. Later it will resumeits exeution (it is not bloked).
preempted

resumed

idle

sleeping executing

waitingready

notified

wait for emit

CPU OK

O.K

Figure 3.4: State ModelWe de�ne the following rules to manage the queues over the exeution:Ready Rule � ik " ^:9� jl ; i 6= j; � jl � ikRQ! RQ� � ikWaiting Rule � ik " ^9� jl ; i 6= j; � jl � ikWQ!WQ� � ikMigration Rule � ik 2WQ ^ [9� jl ; � jl #; i 6= j ^ � jl � ik℄RQ! RQ� � ik ^WQ!WQ	 � ikPreemption Rule exe(� ik) ^ [9� jl ; � jl 2 RQ; i 6= j; �ik < �jl ^ :loked(R(� jl))℄SQ! SQ� � ik

3.3. SCHEDULABILITY WITHOUT SHARED RESOURCES 57Exeution Rule � ik 2 RQ ^ �ik > highest(RQ) ^ �ik > highest(SQ) ^ :loked(R(� ik))RQ! RQ	 � ik ^ exe(� ik)Resuming Rule � ik 2 SQ ^ �ik > highest(RQ) ^ �ik > highest(SQ) ^ :loked(R(� ik))SQ! SQ	 � ik ^ exe(� ik)� The � and 	 represent the queueing and dequeueing operations, respetively;� � " and � # represent the arrival and ompletion of task � ;� Prediate:{ exe(�) indiates that � is exeuting,{ loked(R(�)) the fat that � is loked by one or more resoures and{ highest(Q) gives the maximum priority in queue Q.� �ik is the priority of � ik; next setion lari�es priority assignment.Remark 1 Note that a task that does not wait for an emit is in the RQ, with some priority; if it hasthe highest priority and all resoures it needs, it exeutes. Preemption, based on priorities, is permitted.Remark 2 If a task is in the WQ then it needs an emit from some other task; it an wait for an emitretaining a resoure loked (and never released) by one of its anestors but it annot be waiting for anemit and a new resoure at the same time, sine the await operation prevents exeution.3.3 Shedulability without Shared ResouresA sheduling algorithm gives some order among tasks; in a stati or dynami manner, this order is basedon some restritions and relationships among tasks, whih an lead the sheduler to some deisions. Asalready said this order is based on timing onstraints sine a task must respond within its deadline orit may ause a ritial event to happen; in our model we need also to shedule the preedene and theawait/emit relation. For the instant being, we are not onsidering shared resoures.We have de�ned a simple �xed priority assignment algorithm, whih takes into aount the pree-dene and await/emit relations:Rule{I To eah thread Hi we assign a priority �i based on some lassial �xed sheduling poliy,suh as rma; these poliies take into aount the period, Pi, or deadline, Di, of threads.For instane, in the ase rma we an say that �i > �j if Pi < Pj . This is the base priorityfor all tasks in Hi.Rule{II If � ik; � ik+1 ^ � jl � ik+1 ^ (i 6= j)) �ik > �jl . The seond rule hanges the priority tosome tasks within a thread.

58 CHAPTER 3. INSPIRING IDEAS
executing

pending

missed deadline

0 2 7 10 12 15 17 30

�1�2 �3E1 = 5E2 = 5 E3 = 2�1 "�3 " �3 "�3 �1 �2�3��2 ��2 �2#�1 �1"Figure 3.5: Counter example of priority assignmentIf all tasks were independent, the �rst rule suÆes to exeute eah thread autonomously and fol-lowing an rma analysis we ould know of its shedulability (see hapter 2).The seond rule applies to the operation of emit. Remember that a task waiting for an emit is inthe WQ (waiting rule) and will remain there until it \hears" suh operation. On the other hand, anemit operation is always \suessful": the noti�er sends an emit and ontinues its exeution (it is tothe exeution platform to manage this operation), but the waiter must be in a waiting state to listenthe notify. This rule states that a waiting task, � ik+1, will be triggered by its asendent � ik, and put intothe WQ before the exeution of � jl from whih it waits the emit, in order to be ready to \hear" it andbe ready to exeute (migration rule). Observe that the starting task �Ha of a thread never waits.In onlusion: 8� ik; � jl ; i 6= j; �ik > �jl i�8<: �i > �j ^ � ik =2 Nior9� ik+1 ^ � jl � ik+1whih gives a partial set of onstraints of the form Vi6=j �ik��jl , and � 2 f<;>g.Example 3.2 (See �gure 3.5) Let us onsider two threads HA = [�1; �2℄ of period 15, where both taskshave an exeution time of 5 and a thread HB = [�3℄ of period 10 and �3 exeutes in 2 units and thennoti�es �2; both threads arrive at t = 0. Considering periods as deadlines and �xing priorities usingexlusively rma gives �3 > �1 = �2. Under this assignment, the exeution shows a deadline missing.On the ontrary, if we use our rules, we have that no relation an be stablished among �2 and �3and �3 < �1 (sine �1; �2 ^ �3 �2), the system beomes shedulable.3.3.1 Model AnalysisTo eah task � ik we an assoiate the following \times":� Arrival time, �ik, denoting the time a task is put in the ready or waiting queue.� Bloking time, �ik, denoting the time a task is retained in the ready or waiting queue.� Sleeping time, �ik, denoting the time a task spends in the sleeping queue, after being preempted.� Finishing time, f ik, denoting the time a task omplets its exeution.

3.3. SCHEDULABILITY WITHOUT SHARED RESOURCES 59De�nition 3.2 The starting time of a thread Hi, �i, is the arrival time of its starting task, i.e.,�i = �ia and � ia = starting(Hi)De�nition 3.3 The �nishing time of a thread Hi, Fi, is the �nishing time of the last task in thethread, i.e., Fi = f iz and � iz = last(Hi)De�nition 3.4 (Shedulable Thread) A thread Hi is shedulable if Fi � Di, that is, its exeution�nishes before its deadline.De�nition 3.5 (Shedulable System) A set T = fH1; H2; : : : ; Hng of threads omposing an appli-ation is shedulable if all threads Hi are shedulable, i.e,8Hi; 1 � i � n; Fi � DiAs noted in hapter 2, [37℄, to verify shedulability it suÆies to analyse the time-window or interval[0;H℄, where H is the hyperperiod for all periodi threads, de�ned as the least ommon multiple of allperiods. For eah thread Hi we see its evolution within the interval and if at arrival of a new instaneof its starting task, the �nishing task orresponding to the preedent exeution has already �nished,the thread is shedulable. This idea motivates the following revisited de�nitions:De�nition 3.6 (Finishing Time Periodi Task) The �nishing time of a task � ik of a periodithread Hi in its j-period is alulated asf i;jk = �i;jk + �i;jk + �i;jk +EikDe�nition 3.7 (Finishing Time Periodi Thread) The �nishing time of a periodi thread Hiin the j-period, that is F ji , is the �nishing time of its last task, in the j-period,F ji = f i;jzwhere �z = last(Hi).De�nition 3.8 (Shedulable Periodi Thread) A periodi thread Hi is shedulable ifF ji � �ji + Pi = j � Pifor all j; 1 � j � �i, where j is a period, �i is the number of periodi arrivals of Hi within [0;H℄If a system respets the previous rule for all its threads, we have a shedulable appliation.De�nition 3.9 (Shedulable Periodi System) An appliation system of periodi threads, T =fH1; H2; : : : ; Hng is shedulable if all threads Hi are shedulable:8i 1 � i � n; F ji � �ji + Piwhere 1 � j � �i, j is a period, �i is the number of periodi arrivals of Hi within [0;H℄Resuming, we present an operational approah of our model.1. Priorities are assigned o� line aording to rules 1 and 2.

60 CHAPTER 3. INSPIRING IDEAS�7 �2�5�6�1 �4�3
Figure 3.6: Partially Ordered Tasks2. At time t = 0 starting tasks of ative threads are in RQ.3. The highest priority starting task of a thread Hi begins its exeution.4. When a task � ik �nishes, it may trigger another task � ik+1 in the sequene, whih is put in the RQ(ready rule) or WQ (waiting rule).5. When a task � ik �nishes it may emit to � jl ; aordingly to the migration rule, � jl is awakened, ifit is in the WQ and it is sent to RQ; otherwise the event is lost.6. If at a moment t = t0 it arrives a task � jl whih has greater priority than that in exeution, say� ik, then � ik is preempted.3.3.2 ExamplesExample 3.3 Let us reonsider our example 3.1, without resoures.Aording to the operational approah, we assign threads (and tasks within threads) priorities usingour rules; applying this riteria to our example, gives:1. �1 > �2 sine P1 < P22. As �6; �2 and �1 �2 then �6 > �13. As �2; �4 and �5 �4 then �2 > �5Aording to this mehanism, the rest of the tasks have the same base priority of their threads or, inother terms, they inherit the priority of their threads. We show in �gure 3.6 the partial order obtainedby appliation of our rules.Remark Observe that ertain tasks, suh as �1 and �3, are not omparable; we an establish somepriority order among them based on a �xed riteria. For instane, �1 > �3 if we onsider that �1belongs to a thread with higher priority than that of �3's. Tasks from a thread are naturally orderedby the preedene relationship.

3.3. SCHEDULABILITY WITHOUT SHARED RESOURCES 61Now let us put our example in operation, as should be done by the sheduler implementing ourapproah, supposing a starting time of t=0; the following table shows a possible result:Period 1 Period 2task �ik �ik �ik f i;1k d1k �ik �ik �ik f i;2k d2k�7 0 0 0 1 10 10 0 0 11 20�6 0 1 0 2 20�1 1 1 0 4 10 11 0 0 13 20�2 2 2 0 5 20�5 4 1 0 7 10 13 0 0 15 20�4 5 2 0 8 20�3 8 0 0 10 20We show in �gure 3.7 the time line, where tasks in the upper part are those in exeution and thosein the lower part are in the ready or waiting queue.1. At t = 0 the system is initiated, entering both �7 and �6 to the ready queue.2. As �7 has greater priority, it is hosen to be exeuted and sent to the exeution state.3. As �7 �nishes it triggers �1 whih is also sent to the ready queue (�1 is autonomous). The shedulerhooses �6 (see point 2 priority assignment).4. �6 is exeuted and it triggers �2, whih is sent to the WQ (waiting rule).5. The sheduler exeutes �1 (in fat, the only task in the ready queue).6. When �1 �nishes it triggers �5, whih is sent to the ready queue; �1 awakes �2, whih also goes tothe RQ. Priorities analysed, the sheduler hooses �2 (see point 3 priority assignment).7. When �2 �nishes it triggers �4 whih is sent to the WQ.8. �5 exeutes and when it �nishes, it awakes �4 whih goes to the RQ. H1 is �nished at time t = 7.9. �4 is exeuted and triggers �3.10. At t = 8, �3 is exeuted and �nishes at time t = 10; H2 is �nished.The time analysis aording to this shedule says that �5 �nishes at time t = 7, ready to proessanother arrival of tasks of the next period of H1; �3 �nishes at time t = 10 ready to proess a newinstane of H2. As both threads �nish before their deadlines, with no pending tasks in queues, thesystem is shedulable in this �rst \round".The seond round for H1 is a little simpler, as there are no tasks from H2:1. At t = 10, �7 arrives to the system and it is exeuted.2. As �7 �nishes, it triggers �1, whih is exeuted; at ompletion it sends an emit to �2 whih is lostand it triggers �5.3. �5 is exeuted and analogously it noti�es �4, event that is also lost.

62 CHAPTER 3. INSPIRING IDEAS
10

ready or sleeping

executing

0 1 2 3 4 5 6 7 8 9

�5�6
�6 �1 �2 �2 �5 �4 �4
�7 �1 �1 �2 �5 �4 �3 �3

Figure 3.7: Time Line for ex. 3.1The system is �nished at time t = 15, remaining idle until t = 20, when a new set of perioditasks from H1 and H2 will arrive, repeating the same pattern. The analysis of time in the interval[0;H℄, where H it is the hyperperiod of all the periodial threads, is suÆient to say that the system isshedulable (provided both threads start at the same time). Note that F 11 = 7 < 10 and F 21 = 15 < 20and F 12 = 10 < 20.Example 3.4 We will now modify our example, setting the exeution time for �3 to 3, that is, E3 = 3.The following table illustrates the reation of our sheduler:Period 1 Period 2task �ik �ik �ik f i;1k d1k �ik �ik �ik f i;2k d2k�7 0 0 0 1 10 10 0 0 11 20�6 0 1 0 2 20�1 1 1 0 4 10 11 0 0 13 20�2 2 2 0 5 20�5 4 1 0 7 10 13 0 0 15 20�4 5 2 0 8 20�3 8 0 5 16 20The proedure is exatly the same as before, exept for the last point 10, where �3 is exeuting (see�gure 3.8 for the time line):1. �3 begins at t = 8, and it exeutes for 2 units, when �7 arrives for the next period. As �7 hasgreater priority than �3, the latter is preempted and sent to the SQ, (preemption rule).2. �7 is exeuted until ompletion and triggers �1.3. No priority relation is established among �1 and �3; if we onsider a rma riteria �1 has higherpriority. Let us say that the sheduler hooses �1 based on this riteria, then �3 remains for 2additional units in the SQ.4. One �1 �nished, it triggers �5; �1's emit is lost.5. �5 has greater priority than �3 (for the same reason as before); �3 remains for two more units oftime in the SQ.6. At �5 ompletion, �3 regains the proessor and �nishes at t = 16.As F 11 = 7 < 10 and F 21 = 15 < 20, H1 is shedulable and as F 12 = 16 < 20, H2 is also shedulable;20 is the lm, so it suÆies to assure shedulability within the interval [0; 20℄ to assure shedulabilityfor the whole system.

3.4. SHARING RESOURCES 63
11 12 13 14 15 16 2017

executing

ready or waiting
0 1 2 3 4 5 6 7 8 9 10

�1�1 �5�7 �7�6 �1 �2 �2 �5 �4 �4 �3 �3 �3 �3 �3�6 �2 �5 �4 �3 �3 �1 �1 �5 �5 �3
Figure 3.8: Time Line for ex. 3.43.4 Sharing ResouresWe will now onsider the possibility of sharing resoures among tasks; the gold rule is to prevent two ormore task to aess simultaneously the same resoure, so our algorithm must impose a mutual exlusionpoliy.As we onsider a �xed set of tasks, that is, no eventual tasks an arrive during exeution, wewant some stati analysis within the hyperperiod to deide if the system is shedulable and if so,assign priorities in order to guarantee timing onstraints and mutual exlusion. Deisions taken bythe sheduler are based on the states of eah of the ative tasks, but this analysis should be o� line tominimize sheduler invasion during tasks exeution.Note that synhronization implies a ertain order of exeution among tasks, due to a some pro-duer/onsumer relation among them, while sharing resoures implies a synhronization to respet themutual exlusion rule but no order is implied.Example 3.5 Let us reonsider our example 3.1 of �gure 3.3; �gure 3.9 shows the orresponding Javaode and the model generated by appliation of an abstration algorithm. Note the \separation" from awaiting task and a demand of resoure in �04 and �4, whih is immaterial in our previous analysis sineno resoures are onsidered. Now, let us see how our assignment works in the presene of resoures(the time line in �gure 3.10 shows the evolution of tasks in time):1. �7 has the highest priority but �1 < �6 and �5 < �2 due to the await/emit relation.2. �7 begins exeution and �6 goes to the RQ.3. �7 triggers �1 whih goes to the RQ and4. �6 is hosen to be exeuted; at ompletion it triggers �2 whih goes to the WQ.5. �1 is exeuted, setting the lok over r1 and at its ompletion it emits to �2 and triggers �5, whihgoes to the RQ with r1 retained.6. �2, awaken by �1 goes to the RQ and joins �5; �2 > �5, �2 is hosen to be exeuted, and atompletion it triggers �4 whih goes to the WQ.7. �5 exeutes, releases its lok over r1 and r2, and noti�es �04 , whih goes to the RQ \as" �4.8. �4 exeutes, (over r1), releases r1 and triggers �3.9. �3 exeutes and �nishes at t = 10.10. At t = 10 the next period of H1 arrives and �7 is exeuted, triggering �1.

64 CHAPTER 3. INSPIRING IDEAS

synchronized(r1)

a.Notify ;
synchronized(r2)

...{

}
b.Notify

...
{

...

....

}

{
while (true)

}

waitforperiod(10)

}

{
public void run() public void run()

{
while (true)
{

...

...

a.Wait
...

...

...

...

...
{
synchronized(r1)

...

b.Wait

}

waitforperiod(20)
}

}

�7�1�5r1r1; r2 �2�6
r1�04�4�3

Figure 3.9: Java Code and its Modelisation

3.4. SHARING RESOURCES 6511. �1 is the only task in the RQ, and it an be exeuted (sine resoure r1 was released by �4). Atompletion it triggers �5.12. �5 is exeuted (over r1 and r2) and at ompletion it releases r1 and it emits to �4 whih is lost.
11 12 13 14 15 16 17 18 19 20

executing

ready or sleeping
0 1 2 3 4 5 6 7 8 9 10

r1 r1 r1 r1 r1 r1 r1 r1 r1r2 r2 r2 r2�2 �7 �1 �1 �5 �5�6 �1 �2 �5 �4 �4�7 �6 �1 �1 �5 �5 �4 �3 �3�2 Figure 3.10: Time Line [0,20℄ for ex.3.5Example 3.6 Now suppose the same appliation as in example 3.4 (where E3 = 3) but both �3 and �4use r1. The system shows the same evolution as before until point 99. At time t = 8 �4 �nishes and triggers �3 whih begins exeution.10. At t = 10 the next period of H1 arrives and �7 preempts �3; �3 goes to the SQ with r1 retainedand �7 exeutes and the triggers �1.11. �1 is the only task in the RQ, and it has higher priority than �3 but it annot be exeuted sineit needs r1 retained by taui3, waiting at the SQ.12. �3 regains exeution �nishing at t = 1213. �1 exeutes and �nishes at t = 14, triggers �5 whih �nishes at t = 16.The time line in �gure 3.11 shows the evolution of this example where some kind of priority inversionis due to resoure management.
11 12 13 14 15 16 17 18 19 20

executing

ready or sleeping
0 1 2 3 4 5 6 7 8 9 10

r1 r1 r1 r1 r1 r1 r1 r1 r1r1 r1 r1 r1r2 r2r2 r2�2 �7 �3 �1 �1 �5�6 �1 �2 �5 �4 �4 �3 �1�7 �6 �1 �1 �5 �5 �4 �5�3 �3�2 Figure 3.11: Time Line [0,20℄ for ex.3.6Example 3.7 Now suppose an appliation as shown in �gure 3.12, where �3 waits for an emit from�5.1. �7 has the highest priority but �1 < �6 and �5 < �4 due to the await/emit relation.2. �7 begins exeution and �6 goes to the RQ.3. �7 triggers �1 whih goes to the RQ and

66 CHAPTER 3. INSPIRING IDEAS

r1; r2
r1
r1

r1

�4
�3 E3 = 2

E4 = 1
E1 = 2 E2 = 1

E6 = 1
�2
�6�7

�1
�5 H1 = [�7; �1; �5℄H2 = [�6; �2; �4; �3℄P1 = D1 = 10P2 = D2 = 20sequenesynhronization

E5 = 2
E7 = 1

Figure 3.12: Two Threads with shared resoures4. �6 is hosen to be exeuted; at ompletion it triggers �2 whih goes to the WQ.5. �1 is exeuted, setting the lok over r1 and at its ompletion it emits to �2 and triggers �5.6. �2, awaken by �1, goes to the RQ and joins �5; �5 > �2 �5 is hosen to be exeuted, and atompletion it emits to �3 whih is lost; �5 releases both r1 and r2.7. �2 is exeuted and triggers �4.8. �4 exeutes over r1 and when it �nishes it triggers �03 whih waits an emit from �5 in WQ retainingr1.9. At t = 10 the next period of H1 arrives and �7 is exeuted, triggering �1.10. �1 is the only task in the RQ, but it annot be exeuted sine it needs r1 retained by �3, waitingin the WQ.11. �3 is also bloked and it will never be awaken. We are in the presene of a deadlok.Figure 3.13 shows the time line.

3.4. SHARING RESOURCES 67
11 12 13 14 15 16 17 18 19 20

executing

ready or sleeping
11 12 13 14 15 16 17 18 19 20

executing

ready or sleeping
0 1 2 3 4 5 6 7 8 9 100 1 2 3 4 5 6 7 8 9 10

r1 r1 r1 r1 r1 r1
r1 r1 r1 r1 r1 r1

r2 r2
r1 r1 r1

�2 �7�6 �1 �2 �5 �4 �4 �3 �1�7 �6 �1 �1 �5 �5 �4�2 �2 �7�6 �1 �2 �5 �4 �4 �3 �1�7 �6 �1 �1 �5 �5 �4�2 �3 �3 �3Figure 3.13: Time Line for ex. 3.7
;

;

;

;

;

n

n

;

r1r1
�7�1�5 �4�3

�04�2
�6

Figure 3.14: Wait for Graph example 3.13.4.1 Conit GraphsWe have shown three examples of sheduling using our poliy one of whih shows a deadlok, a situationlearly non-shedulable. How an we detet this situation? Are there any strutural properties of thesystem whih an lead us to avoid deadlok?One well stablished algorithm to deal with tasks and shared resoures is the pp or iip; we ouldapply these protools and perform shedulability analysis, using the priorities omputed by our 2 rules,1 and 2. Instead, we propose to analyse the relationships among our tasks and take advantage of theirstruture.Example 3.8 Reall our example 3.1; �gure 3.14 illustrates the use of our model as a wait for graph,wfg, based on the sequene, (\;"), await/emit, (\n") and resoure, (\r"), relationships.In this graph we an see a yle among (�4, �1, �2, �04) and also among (�1, �5, �4) and as usual,yles in a wfg represent a risk of bloking or deadlok situation. Note that �04 is an arti�ial task to

68 CHAPTER 3. INSPIRING IDEASmark the di�erene between �4 waiting for an emit and �4 in the RQ waiting for exeution over r1.In this graph, we should eliminate those preedene relations whih are not harmful: typially the\;00 relation is not harmful beause when a task �nishes it is \sure" that it triggers its suessor task(if any). The problem is in the presene of \n00-ars or \r00-ars whih risk a task to wait an in�niteamount of time.If we analyse yle (�4, �1, �2, �04), we see that �4 will wait for the exeution of �2, but this timeis bounded by �2's exeution; �2 waits for an emit from �1, whih may be lost risking �2 from livelok.On the other hand, �1 an be bloked by �4 if this task is exeuting (and hene has r1) but this time isbounded. In a similar manner, �4 ould be waiting for �1 and �5 but this time is also bounded. In otherwords, one �4 joins the RQ it has the notify it needs and eventually it an progress as r1 is unloked(by �5 The other yle is analysed in a similar manner.So, this apparent yles an be pruned if we delete all safe wait for relations, we an get a graphwithout yles, shown in �gure 3.15(a).
n

n

n

n

(b)(a)

�7�1�5 �2 �7�1�5 �3
�2�6

r1�3r1r1 �04�4
�6

�4 �04r1 �3r1 r1Figure 3.15: Pruned and Cyli wfgExample 3.9 In �gure 3.15(b), we show the wfg for example 3.6 where we have added two ars of0r0-type between �1 and �3 and �5 and �3. For simpliity, we have omitted the 0;0 ars.Even the elimination of the ars of type \;00 does not provoke the elimination of yles, but a yleinvolving just one resoure is not a deadlok. In fat, in our model, if resoure r1 is assigned to �1 then�5 an also progress and hene release r1 for �4 and �3. Analogously if r1 is assigned to �4.Example 3.10 In �gure 3.16 we show the wfg for example 3.7, where there are many yles but onlyone involves two resoures, i.e. r1 and the emit from �5 to �3 (whih an be onsidered as a resoureretained by �5.In this system the deadlok situation annot be prevented, sine �3 waits in the WQ retaining r1and then preventing �1 (and �5) to progress; as �3 needs an emit from �5 the system is in a deadloksituation.

3.4. SHARING RESOURCES 69
n

n

r1
�7�1�5r1 �3r1

r1 �2�6�4
Figure 3.16: Cyli Wait for GraphIn onlusion, this system is inherently deadlokable under our �xed priority assignment and so it isnon shedulable, as indiated by the yle in the orresponding graph involving more than one resoure.We ould imagine another strategy to handle resoures, inserting riteria in the ode to reate dynamipriorities aording to the state of the system.So, for our priority assignment method, the analysis may be ompleted by the onstrution of theseonits graphs, eliminating those ars whih show a safe wait for relation, that is, ars showing asequene of tasks and verifying the existene of yles whih show a deadlok situation. Our method issafe and simple: assoiating stati priorities and verifying yles assures shedulability but the methodis not omplete, sine we an �nd other assigments for our non-shedulable systems.3.4.2 ImplementationOne we have modelled our Java Program and that a possible shedule is found, we must introduethese rules within our ode, in order to reate a real time Java program.Our sheduler, based on temporal onstraints and await/emit relations an give the following solu-tion to our appliation example 3.1:�7 = 7; �1 = 3; �5 = 3; �6 = 4; �2 = 4; �4 = 2; �3 = 2Rule 1 partially orders some independent tasks from di�erent threads based on some �xed riteria,suh as deadline. We an say �1 > �2, so task �7 has the highest priority; as N1 = f�1; �5 g theirpriorities are treated by rule 2. Then, �6 > �1 but �1 must have a priority greater than �3 and �4 (ifwe want to keep the priority relation within di�erent periods). Similarly �2 > �5, but �5 must havepriority greater than that for �3 and �4.So the sheduler must plae these priority relationships in the synhronization points, whih onsiderthe whole set of ative tasks when a new arrival is produed. We show in �gure, 3.17 a possibleimplementation using the primitive setpriority from RT-Java.

70 CHAPTER 3. INSPIRING IDEAS
lass PeriodiTh extends Thread{ long p ;ThreadBody b ;PeriodiTh(long p, ThreadBody b){ this.p = p ;this.b = b ;}publi void run(){ long t ;Clok = new Clok() ;while(true){ t = .getTime() ;b.exe() ;waitforperiod(p + t - .getTime());}}}interfae ThreadBody{ publi void exe() ;}lass Thread1_body implements ThreadBody{ Event a, b ;Thread1_body (Event a, b){ this.a = a ;this.b = b ;}publi void exe(){ this.setpriority(7);t7 ;this.setpriority(3) ;t1 ;a.emit;this.setpriority(3) ;t5 ;b.emit;}}

lass Thread2_body implements ThreadBody{ Event a, b ;publi void exe(){ this.setpriority(4) ;t6;this.setpriority(4) ;a.await;t2;this.setpriority(2) ;t4;this.setpriority(2) ;b.await;t3;}}lass Sheduler{ publi stati void main(String argv[℄){ Event a = new Event() ;Event b = new Event() ;Thread1_body th1_body = new Thread1_body(a,b) ;Thread2_body th2_body = new Thread2_body(a,b);PeriodiTh thread1 = new PeriodiTh(10, th1_body) ;PeriodiTh thread2 = new PeriodiTh(20, th2_body) ;}}lass Event{ publi void emit(){ synhronized(this) {this.notify}}publi void await(){ synhronized(this) {this.wait}}}Figure 3.17: Two Sheduled Threads

Chapter 4Life is Time, Time is a Model
R�esum�eCe hapitre pr�esente les mod�eles temporels bas�e sur les automates temporis�es et ses extensions. Nousdonnons la d�e�nition d'un automate temporis�e lassique et nous ontinuons ave les automates avehronomêtres et ave tâhes. Dans une deuxi�eme partie nous presentons trois utilisations di�erentes dees automates pour attaquer la mod�elisation.Layout of the hapterThis hapter deals with models used to abstrat rts and their appliation to the shedulability problem.The hapter is organized as follows: we introdue timed models, starting by timed automaton and ananalysis of a well known problem: reahability; then we ontinue with some extensions of this mahine:timed automata with deadlines, with hronometers and with tasks; �nally we show the appliation ofthese basi models to the shedulability problem through three approahes: synthesis, task ompositionand job-shop. No doubt that this hapter only shows a partial state of the art in the theory and evolutionof timed automata, guided by our needs and ontributions.4.1 Timed AutomataA timed automaton, ta, is a �nite state automaton with loks, [10℄. A lok is a real time funtionwhih reords time between events; all loks advane at the same pae in a monotonously inreasingmanner and eventually they an be updated to a new value.Eah transition of a ta is a guarded transition, that is a prediate, de�ned over loks, whih if truepermits the transition to be taken. A transition may also be deorated by lok update operations.Formally, a ta A is a 5-uple (S; C;�; E ; I), where:� S is a set of states (s; v), where s is a loation and v a valuation of loks.� C is a set of loks.� � is the alphabet, a set of labels or ations. 71

72 CHAPTER 4. LIFE IS TIME, TIME IS A MODEL� E is the set of edges. Eah edge e is a tuple (s; �; g; �; s0) where{ s 2 S is the soure state and s0 2 S is the target state.{ � 2 � is the label.{ g is the guard or enabling ondition and{ � is the lok assignment� I is the invariant onstraint, de�ned over loks; I(s) is the invariant of s 2 S.We need to formalize what we understand as lok assignment and an invariant onstraint.An assignment is a mapping of a lok 2 C into another lok or 0; the operation of setting a lokto zero is alled reset operation. The set of assignments over C, denoted �C , is the set fC ! C�g, whereC� = C [f0g.The set of valuations of C, denoted VC is the set [C ! <+℄ of total funtions from C to <+.Let 2 �C , we denote by v[℄ the lok valuation suh that for all x 2 C we have:v[℄() = � 0 if () 2 �Cv() otherwiseDe�nition 4.1 (C-Constraint) A lok onstraint or C-Constraint is an expression over loks whihfollows the grammar: 	 ::= x � djx� y � dj 1 ^ 2j:	where x; y 2 C are loks and d 2 Q is a rational onstant.Invariants and guards are elements of 	; invariants are assoiated to states, that is to eah state weassoiate a formula I(s) 2 	 and eah guard g of an edge e 2 E is also a lok onstraint; expressionsfrom 	 ontrol the transition operations to traverse an edge and the prediate states to remain in astate.Example 4.1 Figure 4.1 shows a simple ta for a periodi task T1 with period P = 10.
executing

Idle Error

T1 "p1 := 0 p1 > 10
p1 � 10Figure 4.1: Modelling a periodi taskSometimes it is useful to partition the set � into two sets of ontrollable and unontrollable ations,noted � and �u, respetively. Controllable ations are those ations time independent, whih an beknown at ompile time and often tied to funtional aspets of the appliation, for instane, aess toshared resoures. Unontrollable ations are those ations dependent of the environment whih maysu�er from disturbanes, for instane, proess arrival, [8℄.

4.1. TIMED AUTOMATA 73x � 5s1 bx = 5a2 < x < 5
Figure 4.2: Invariants and AtionsThe role of invariants. Conditions over states, expressed as a formula in 	, allow the spei�ationof hard or soft deadlines: when for some ation a deadline is reahed, the ontinuous ow of time isinterrupted and the ation is fored to our. We say that and ation is then urgent. On the ontrary,we say that an ation is delayable if whenever it is enabled, its exeution an be postponed by lettingtime progress; at some time a delayed ation may beome urgent. In �gure, 4.2 we see an example;ation a is enabled when lok x attains a value greater than 2; the invariant in s1 let us remain whilex � 5; at any moment between (2; 5) we an exeute ation a, we say a is delayable. On the ontrary,when lok x attains 5 we must exeute ation b, sine it is enabled at x = 5 but annot be postponed,we say b is urgent. Sometimes we will mark an edge e with an urgeny type � 2 fÆ; �g for delayable orurgent ations.Semantis. A ta A is then useful to model a transition system (Q;!), where Q is a set of statesand ! is a transition relation. A state of A is given by a loation and a valuation of loks and atransition is the result of traversing an outgoing edge while respeting the enabling onditions andprobably setting loks aording to an assignment.More preisely, A an remain in a loation while time passes respeting the orresponding invariantondition; in this ase, loks are updated by the amount of time elapsed; these are alled timedtransitions. When the valuation satis�es the enabling ondition of an outgoing edge, A an ross theedge, and the valuation is modifed aording to the assignment; these are alled disrete transitions.Formally, (Q;!) is de�ned, [60℄:1. Q = f(s; v) 2 S � VCjv j= I(s)g, that is, the set of states is omposed by pairs of loation andlok valuation, implying the invariant ondition.2. The transition !� Q� (� [<+)�Q is de�ned by:(a) Disrete transitions: (s; �; g; �; s0) 2 E ^ v j= g ^ v[�℄ j= I(s0)(s; v) �! (s0; v[�℄)where (s0; v[℄) is a disrete suessor of (s; v); onversely, the latter is the disrete predeessorof the former.(b) Timed transitions: Æ 2 <+ 8Æ0 2 <+ Æ0 � Æ) (s; v + Æ0) j= I(s0)(s; v) Æ! (s; v + Æ)where (s; v + Æ) is a time suessor of (s; v); onversely the latter is said to be a timepredeessor of the former.

74 CHAPTER 4. LIFE IS TIME, TIME IS A MODELDe�nition 4.2 (Exeution) An exeution or run r of a timed automaton A is an in�nite sequeneof states and transitions: r = s0 l0! s1 l1! : : :where si 2 S, li 2 (� [<+) and i 2 N.That is, an exeution is the evolution of the automaton aording to the events and the time elapsedin the system.We denote by RA(q) the set of runs starting at q 2 Q and by RA = Sq2QRA(q) the set of runsfor A.4.1.1 Parallel CompositionHow an we ombine two or more timed automata? The omposition is the ombination of timedautomata.De�nition 4.3 (Parallel Composition) Let Ai = (Si; Ci;�i; Ei; Ii), for i = 1; 2 be two ta withdisjoint sets of loations and loks. The parallel omposition A1jj�A2, de�ned over a set of ations� is the ta (S; C;�; E ; I), where:� S = S1 � S2,� C = C1 [C2,� I(s) = I1(s1) ^ I2(s2) if s = (s1; s2), s1 2 S1; s2 2 S2,� E s de�ned by the following rules:e1 = (s1; �; g1; �1; s01) 2 E1; e2 = (s2; �; g2; �2; s02) 2 E2e = ((s1; s2); �; g; �; (s01; s02)) 2 E ; g = g1 ^ g2; � = �1 [�2e1 = (s1; �1; g1; �1; s01) 2 E1; �1 2 �1 ^ �1 =2 �1 \ �2e = ((s1; s2); �1; g1; �1; (s01; s2)) 2 EThat is for those ommon ations, we de�ne a ommon transition as the produt of the individualtransitions; for eah of the non-shared ations, we de�ne a new transition. The seond rule is appliedsymmetrially to the other omponent.4.1.2 ReahabilityOne main problem in Automata Theory is the reahability analysis, that is whih are the states reah-able from a state q, by exeuting the automaton, starting at q.De�nition 4.4 (Reahability) A state q0 is reahable from state q if it belongs to some run startingat q; we de�ne ReahA(q) the set of states reahable from q:ReahA(q) = fq0 2 Qj9r = q0 l0! q1 l1! : : : 2 RA(q); 9i 2 N; qi = q0g

4.1. TIMED AUTOMATA 75

1

1

2

3

2 3 X

Y

0
a

b

c

Figure 4.3: Region EquivaleneThe problem is how to ompute this set; there are many di�erent approahes; we shall use thenotion of region graphs to develop an algorithm, see [60℄.A region is a hyperube haraterized by a lok onstraint.Example 4.2 Figure 4.3 illustrates the onept; a region is de�ned by the lok onstraint 2 < x <3 ^ 1 < y < 2 ^ x� y < 1, marked in grey in the �gure.Region equivaleneLet 	C be a non-empty set of lok onstraints over C. Let D 2 N be the smallest onstant whih isgreater than or equal to the absolute value jdj of every onstant d 2 Z appearing in a lok onstraintin 	. We de�ne '	C� VC � VC to be the largest reexive and symmetri relation suh that v '	C v0i� for all x; y 2 C, the following three onditions hold:1. v(x) > D implies v0(x) > D2. if v(x) � D then(a) bv(x) = bv0(x) and(b) v(v(x)) = 0 implies v(v0(x)) = 0, where b� is the integer part funtion and v(�) is thefrational part funtion.3. for all lok onstraints in 	C of the form x� y � d, v j= x� y � d implies v0 j= x� y � d.'	C is an equivalene relation and is alled the bf region equivalene for the set of lok onstraints	C ; as usual, we denote [v℄ the equivalene lass of v. Regions an be haraterized by a lok onstraint

76 CHAPTER 4. LIFE IS TIME, TIME IS A MODELand as loks evolve at the same path, eah region is graphially represented as a hyperube with some45o diagonals.Reall Figure 4.3 and let v be any lok valuation in this region.1. Consider the assignment y := 0; the lok valuation under this assignment belongs to the region2 < x < 3 ^ y = 0, marked as a in the �gure.2. Consider the assignment x := y; this lok valuation v[x := y℄ belongs to the region 1 < x <2 ^ 1 < y < 2 ^ x = y, marked as b.3. Finally, if we onsider the suesor of v we an see that it belongs to some region rossed by astraight line drawn in the diretion of the arrow.Consider a taA as de�ned in 4.1 and its transition system (Q;!). We extend the region equivalene'	C to the states of Q as follows: two states q = (s; v) and q0 = (s0; v0) are region equivalent, denotedq '	C q0 i� s = s0 and v '	C v0. We denote by [q℄ the equivalene lass of q.The region equivalene over states an be stablished as follows:De�nition 4.5 (State Equivalene) Let 	A be the set of all lok onstraints appearing in A andlet q1; q2 2 Q suh that q1 '	C q2, then:1. For all � 2 �, whenever q1 �! q01 for some q01 there exists q02 suh that q2 �! q02 and q2 '	C q02.2. For all Æ 2 RR+, whenever q1 Æ! q01 for some q01 there exists q02 and Æ0 2 RR+ suh that q2 Æ0! q02 andq2 '	C q02.The region equivalene over states is said to be stable with respet to the transition relation !�Q� (� [RR+)�Q.This de�nition implies that for all region-equivalent states q1 and q2, if some state q01 is reahablefrom q1, a region-equivalent state q02 is reahable from q2.Let 	̂ � 	C be a set of lok onstraints, 	̂A be the set of lok onstraints of A, and ' be theregion equivalene de�ned over 	̂ [̂A. Let � =2 � and let �� = � [f�g.De�nition 4.6 (Region-Graph) The region graph R(A; 	̂) is the transition system (Q';!) where:1. Q' = f[q℄ j q 2 Qg2. !� Q' ��� �Q' is suh that:(a) for all � 2 � and for all �, �0 2 Q'; � �! �0 i� there exists q; q0 2 Q suh that � = [q℄; �0 = [q0℄;and q �! q0.(b) for all �, �0 2 Q'; � �! �0 i�i. � = �0 is an unbounded region or,ii. � 6= �0 and there exists q 2 Q and a real positive number Æ suh that q Æ! q0 and� = [q℄; �0 = [q + Æ℄; and for all Æ0 2 RR+, if Æ0 � Æ then [q + Æ0℄ is either � or �0.

4.1. TIMED AUTOMATA 77We de�ne Reah(�) to be the set of regions reahable from the region � asReah(�) = f�0j�!� �0gwhere !� is the reexive and transitive losure of !.We denote by hqi any lok onstraint 2 	 suh that q j= and for all 0 2 	, if q j= 0 then implies 0. That is, hqi is the tightest lok onstraint that haraterizes the values of the loks inq. The question whether the state q0 is reahable from the state q an be answered using the followingproperty:Property 4.1 (Reahability) let A be a ta, q; q0 2 Q and let R(A; fhqi; hq0ig) be the orrespondingregion graph, then: q0 2 Reah(q) i� [q0℄ 2 Reah([q℄)The onstraints hqi and hq0i haraterize exatly the equivalene lasses [q℄ and [q0℄ respetively.4.1.3 Region graph algorithmsThe basi idea of the algorithm using the region graph onept is the use of property Reahabilityas shown in the previous setion. Two ways of answering whether q0 is reahable from q are forwardtraversal and bakward traversalThe �rst starts from a state q and by visiting its suesors, and the suessors of those and so on,until we �nd q0 in some region or all regions have been visited; in summary, we need a sequene ofregions F0 � F1 � : : :, suh that: F0 = [q℄ (4.1)Fi+1 = Fi [Su(Fi) (4.2)where Su(Fi) = f� j 9�i 2 Fi: �i ! �gProperty 4.2 (Forward Reahability) For all q; q0 2 Q; [q0℄ 2 Reah([q℄)i�[q0℄ 2 Si�0 FiThe seond approah starts from a state q0, visits its predeessors, and the predeessors of thoseand so on, until the state q is found or all regions have been visited. Similarly, we onstrut a sequeneof regions B0 � B1 : : : suh that: B0 = [q0℄ (4.3)Bi+1 = Bi [Pre(Bi) (4.4)where Pre(Bi) = f� j 9�i 2 Bi: �! �igProperty 4.3 (Bakward Reahability) For all q; q0 2 Q; [q0℄ 2 Reah([q℄)i�[q℄ 2 Si�0Bi

78 CHAPTER 4. LIFE IS TIME, TIME IS A MODEL
0 1 2 3

1

2

x

y

c

b

a

3 �3�1�2 �4�5
Figure 4.4: Representation of sets of regions as lok onstraints4.1.4 Analysis using lok onstraintsLet F be the set of regions Si�0 Fi omputed by the forward traversal algorithm explained in Se-tion 4.1.3. Then F an be symbolially represented as a disjoint union of the form Us2S Fs , where Fsis the lok onstraint that haraterizes the set of regions that belong to F whose loation is equal tos. The same observation holds for B. Indeed, suh haraterization an be omputed without a-priorionstruting the region graph.4.1.5 Forward omputation of lok onstraintsLet s 2 S, s 2 	C and e = (s; �; g; �; s0) 2 E. We denote by Sue(s) the prediate over C thatharaterizes the set of lok valuations that are reahable from the lok valuations in s when thetimed automaton exeutes the disrete transition orresponding to the edge e. That is,v j= Sue(s) i� 9v0 2 Q: v = v0[℄ ^ v0 j= (s ^):Property 4.4 Sue(s) 2 	C .Example 4.3 Consider again the example illustrated in Figure 4.4. Reall that is the lok onstraint1 < y < 2 ^ 2 < x ^ x� y < 2.a. The result of exeuting the transition resetting x to 0 is omputed as follows.Sua(s) == 9x0; y0: s [x=x0; y=y0℄ ^ y = 0 ^ x = x0= 9x0; y0: 1 < y0 < 2 ^ 2 < x0 ^ x0 � y0 < 2 ^ y = 0 ^ x = x0= 9y0: 1 < y0 < 2 ^ 2 < x ^ x� y0 < 2 ^ y = 0= 2 < x ^ x < 4 ^ y = 0Sine the upper bound of 4 is greater than the onstant C = 3, we an eliminate the lok onstraintx < 4 and obtain: Sua(s) = 2 < x ^ y = 0.

4.2. EXTENSIONS OF TA 79b. Now, onsider the assignment x := y.Sub(s) == 9x0; y0: s [x=x0; y=y0℄ ^ y = y0 ^ x = y0= 9x0; y0: 1 < y0 < 2 ^ 2 < x0 ^ x0 � y0 < 2 ^ y = y0 ^ x = y0= 9x0: 1 < y < 2 ^ 2 < x0 ^ x0 � y < 2 ^ x = y= 1 < y < 2 ^ 0 < y ^ x = y= 1 < y < 2 ^ x = yIn other words, to ompute Sue(s) is equivalent to visit all the regions that are e-suessors of theregions in s , but without having to expliitly represent eah one of them.Let s 2 S and s 2 	C . We denote by Su�(s) the prediate over C that haraterizes the setof lok valuations that are reahable from the lok valuations in s when the timed automaton letstime pass at s. That is,v j= Su�(s) i� 9Æ 2 RR+: v � Æ j= s ^ 8Æ0 2 RR+: Æ0 � Æ) v � Æ0 j= I(s):Property 4.5 Su�(s) 2 	C .Example 4.4 Consider again the example illustrated in Figure 4.4. Case orresponds to letting timepass at the loation. For simpliity, we assume here that the invariant ondition is true.Su�(s) == 9Æ 2 RR+: s [x=x� Æ; y=y � Æ℄= 9Æ 2 RR+: 1 < y � Æ < 2 ^ 2 < x� Æ ^ (x� Æ)� (y � Æ) < 2= 9Æ 2 RR+: 1 < y � Æ < 2 ^ 2 < x� Æ ^ x� y < 2 ^= 1 < y ^ 2 < x ^ y � x < 0 ^ x� y < 2Notie that Su�(s) haraterizes the set of the regions that ontains the regions haraterized by sand the regions reahable from them by taking only �-transitions.Now, we an solve the reahability problem by omputing the sequene of sets of lok onstraintsF0; F1; � � � as follows: F0 = hqiFi+1 = ℄s2S Su�(Fi;s) ℄ ℄e2E Sue(Fi;s)!Notie that Fi;s implies Fi+1;s for all i � 0 and s 2 S.Property 4.6 Let F = Si�0 Fi, q = (s; v), and q0 = (s0; v0). [q0℄ 2 Reah([q℄) i� hq0i implies Fs0 .4.2 Extensions of taFrom the lassi de�nition of ta, there have been developed many variations, prinipally regarding thenature of lok operations; we will present some extensions of ta used to model rts.

80 CHAPTER 4. LIFE IS TIME, TIME IS A MODEL4.2.1 Timed Automata with DeadlinesA tad is a tuple (S; C;�; E ; D) where S; C;� and E are de�ned as for ta and D : E ! 	, assoiateswith eah edge e 2 E a deadline ondition speifying when the edge e is urgent. For s 2 S we de�neD(s) = _e=(s;�;g;�;s0)2ED(e)and we de�ne I(s) = :D(s)whih shows that tad behaves like a ta where time an progress at a loation as long as all the deadlineonditions assoiated with the outgoing edges are not satis�ed.The di�erene between ta and tad is the addition of a deadline ondition for edges; for a given edgee, its guard ge determines when e may be exeuted, while D(e) determines when it must be exeuted;that is the guard is a kind of enabling ondition while a deadline is an urgeny onditions. Clearly, forall the states satisfying :ge ^D(e), time an be bloked and it is reasonable to require D(e) j= ge toavoid time deadloks. When D(e) = ge e is immediate and must be exeuted as soon as it beomesenabled. If D(e) is false, e is delayable at any state.We an now a�ord the operation of omposition for tad, in whih the resulting tad has the samestrutures for S; C;�; E as mentioned for omposition for ta exept for deadlines whih follow the rules:e1 = (s1; �; g1; �1; s01) 2 E1; e2 = (s2; �; g2; �2; s02) 2 E2; � 2 �e = ((s1; s2); �; g; �; (s1; s02)) 2 E ; g = g1 ^ g2; � = �1 [�2; D = D1 ^D2e1 = (s1; �1; g1; �1; s01) 2 E1; �1 2 �1 ^ �1 =2 �1 \ �2e = ((s1; s2); �1; g1; �1; (s01; s2)) 2 E ; D = D14.2.2 Timed Automata with ChronometersAs seen in the de�nition of ta, loks may be assigned a value from <; sometimes it is useful to o�er ariher set of operations over loks. We present in this setion, two variants of ta: stopwath automatonand updatable timed automaton.Stopwath AutomatonClassi ta operates over loks through the operation of reset or more generally the operation of set:x := d where x is a lok and d a onstant from Q. Cloks evolve at the same onstant pae, that is,for all loks its derivative is 1.A variant of ta is a stopwath automaton, swa, where loks an be suspended; MMannis et al,[40℄ propose a swa where the rate of inrease or derivative of a lok an be set to 0. Later, a lok anbe unsuspended to resume inreasing at rate 1. Kesten et al, [31℄ propose a hybrid automaton wherethe derivative of a lok an be set to any onstant from the set of integers.The basi de�nition of a swa is the same as that for ta exept that we add a relation rate to eahloation assoiated to the loks in that loation and their behaviour, stopped or running.A swa is a tuple Aswa = (S; C;�;R; E ; I) where S; C;� and I are de�ned as for ta and� R : CS ! f0; 1gN , assoiates to eah lok i 2 C in state sj 2 S a rate value of 0 or 1. If i is alok running in state sj then rji = 1, otherwise it is 0.

4.2. EXTENSIONS OF TA 81
R(1,0)

R(0,1)

Start

R(0,0) R(0,1)

R(1,0)

Start

R(0,0) R(0,1)

R(1,0)

(b)(a)

Serve T1
Wait T1Serve T2

r23 � 2� e1 e2 = 3e2 := 01 e1 = 2;e1 := 02 e2 = 3e2 := 03 < 2� e1 2 � 3� e2r2 r1r1 Serve T2
Serve T1Wait T2 r12 < 3� e21 e1 = 2;e1 := 02 2 e2 = 3e2 := 0e1 = 2;e1 := 01r2 Serve T2

Serve T1Wait T2 1 e1 = 2;e1 := 02 e2 = 3e2 := 0r2r12 < 3� e2e2 := e2 � 2

Figure 4.5: Using swa and uta to model an appliation� E is also modi�ed by an update operation, i.e, loks may be reset, and also be deremented bysome �xed rational onstant; if e 2 E is the tuple (s; �; g; �; s0), then s, �, g and s0 are as de�nedfor ta and � is the lok update, inluding the reset operation (denoted i := 0) and the derementoperation of the form i := i � d, where i 2 C and d 2 Q..swa are very useful for modelling and analysing rts:Example 4.5 Consider two tasks T1(2; 8); T2(3; 4) where numbers in parentheses represent the exe-ution time, Ei and the minimal interarrival time, Pi respetively, for eah task Ti; i 2 f1; 2g. Theappliation runs under a least time remaining poliy, that is, the proessor performs the task requiringthe least amount of time to omplete.Figure 4.5(a) shows the stopwath automaton modelling this appliation where eah loation rep-resents the status of the task in the system: waiting for servie, exeuting or not requested. For eahtask Ti, we have a timer ei aumulating the omputed time and the expression Ei � ei represents theremaining omputing time whih serves as a priority deision riteria. Cloks are stopped when theorresponding task is not exeuting. Events ri; i 2 f1; 2g represent the arrival ot task Ti, and i theirompletion.Unfortunately, the untimed language of a suspension automata is not guaranteed to be w-regularand some triks may be introdued to replae the suspension by a derementation, as we see in thesetion 4.2.3.Timed Automata with tasksA ta with tasks, tat, is a ta where eah loation represents a task. The model was originally developpedby Fersman et al., [26℄; in that paper they all it extended timed automata.

82 CHAPTER 4. LIFE IS TIME, TIME IS A MODEL

(a) (b)

x = 20; x := 0
x > 10; a1x := 0

b2a2;x := 0
b1 x = 20x := 0x = 10x := 0 s1 s2s3s4 Q1(1; 2)

Q2(1; 4)
P(2,8) P2(2; 10) P1(4; 20)
s1

Figure 4.6: Timed Automata Extended with tasksDe�nition 4.7 A timed automata with tasks AT is a tuple(S; C;�; E ; s0; I; T;M)where S, C, �, E, I represent the set of states, the loks, the alphabet over ations, the edges and theinvariants as already de�ned for ta; we distinguish s0 2 S the initial state, T the set of tasks of theappliation and M : S ,! T , a partial funtion assoiating to eah loation a task.M is a partial funtion, sine at some loations, there may be no task assoiated, sine the systemis idle.Example 4.6 Figures 4.6 shows an example of an tat; in (a) we see a single periodi task P (2; 8) withomputing time 2 and period 8; in (b) we see four tasks: P1(4; 20) and P2(2; 10) two periodi tasks andQ1(1; 2) and Q2(1; 4) two sporadi tasks triggered by events b1 and b2 respetively, both with omputingtime 1 and minimal interarrival times 2 and 4, respetively.Let P = fP1; P2; : : : ; Pmg denote the universal set of tasks, periodi or sporadi; eah Pj ; 1 � j � mharaterized by its pair (Ej ; Dj) exeution time and deadline, respetively.From an operational point of view, a tat represents the urrently ative tasks in the system; asemanti state (s; v[℄; q) gives for a state s the urrent values of loks and a queue q, where q has theform [T1(e1; d1); T2(e2; d2); : : : ; Tn(en; dn)℄ where Ti(ei; di); 1 � i � n denotes an ative instane of taskPj with remaining omputing time ei and remaining time to deadline di. T1 is the urrent exeutingtask.A disrete transition will result in a new queue sorted aording to a sheduling poliy, inludingthe reently arrived task. A timed transition of Æ units implies that the remaining omputation timeof T1 is dereased by Æ; if this value beomes 0, then T1 is removed from the queue; all deadlines aredereased by Æ. Formally:De�nition 4.8 Given a sheduling strategy Sh the semantis of a tat AT as given in de�nition 4.7with initial state (s0; v[0℄; q0) is a transition system de�ned by the following rules:

4.2. EXTENSIONS OF TA 83� Disrete transition over an ation �:(s; v[℄; q) ��!Sh (s0; �[7! 0℄; Sh(q �M(s0))) if s g;�;7!0�! s0 ^ � j= gwhere �[7! 0℄ indiates those loks, within �-assignment, to be reset (the others keep theirvalues as time does not diverge), � is the insertion of M(s0) in q and Sh is the sorting of aqueue aording to a sheduling poliy.� Timed transition over Æ units of time:(s; v[℄; q) Æ�!Sh (s; v[℄ + t; run((q; Æ))) if (v[℄ + t) j= I(s)where run(q; Æ) is a funtion whih returns the transformed queue after Æ units of time of exeution.Remark Observe that q ontains two variables (not loks), for eah ative task: the pair (ei; di);as time diverges, these values are updated onveniently to show this evolution; for example if q =[(5; 9); (3; 10)℄ and time diverges for 3 units, then we have q0 = [(2; 6); (3; 7)℄, that is all deadlines arealso redued by Æ, but the value of ei; i > 1 remains unhanged. The next example shows what happensif Æ � e1.Example 4.7 Consider one again, the example in �gure 4.6(b); onsider a sheduling poliy edf, thefollowing is a sequene of typial transitions(s0; [x = 0℄; [Q1(1; 2)℄) 1! (s0; [x = 1℄; [Q1(0; 1)℄) � (s0; [x = 1℄; [℄)10! (s0; [x = 11℄; [℄)a1! (s2; [x = 0℄; [P1(4; 20)℄)2! (s2; [x = 2℄; [P1(2; 18)℄)b2! (s3; [x = 2℄; [Q1(1; 4); P1(2; 18)℄)0:5! (s3; [x = 2:5℄; [Q1(0:5; 3:5); P1(2; 17:5)℄)a2! (s4; [x = 0℄; [Q1(0:5; 3:5); P2(2; 10); P1(2; 17:5)℄)1:5! (s4; [x = 0:5℄; [P2(1; 8:5); P1(2; 16)℄): : :We should note two important points shown in this example:� The �rst onerns the fat that while in state s2 or s4, an in�nite number of instanes of P1 orP2 may arrive, with 20 or 10 units of delay. No deadline is missing, sine at the arrival of a newinstane, the old one had already �nished.� The queue may potentially grow but it is onsiderably emptied in state s1 where we have to waitfor more than 10 units before onsidering event a1. In fat disrete transitions make the queuegrow while timed transitions shrink it.4.2.3 Timed Automaton with UpdatesThe model presented for swa was slightly modi�ed to avoid the operation of stopping a lok, retainingthe update operation to derement a lok by a onstant from N ; this model is known as updatable timed

84 CHAPTER 4. LIFE IS TIME, TIME IS A MODELautomaton, uta in the literature, though the original paper alled it automaton with derementation.Niollin et al, [45℄ and Bouyer et al, [18℄, analysed some interesting properties of this lass of ta.An uta is a tuple (S; C;�; E) where S; C;� are de�ned as for ta and E hanges in its � to inludethe general set operation.Example 4.8 Regaining our exemple 4.5, we ould modify the model, using a uta, where instead ofstopping e loks when the orresponding tasks are preempted, we let them ontinue running and theirvalues are deremented by the exeution time of the terminating task eah time a task ompletes. Forinstane, (see �gure 4.5(a)), while serving T2, T1 arrives and if its remaining time is smaller than T2's,then T1yT2 and e2 is stopped; instead, we ould derement e2 by the preemption time, E1, (see �gure4.5(b)) and when resuming T2 it will have the \true" value. Another solution is to let e2 diverge andwhen T2 resumes, we set e2 := e2�E1. In both ases, the e�et is the same; some are should be takenin the �rst solution if we do not want loks to be negative.4.3 Di�erene Bound MatriesWe present in this setion a data struture whih is ommonly used to implement some of the algorithmsof reahability analysis: di�erene bound matries, dbm [22℄Let C = f1; � � � ; ng, and let � � 	C be the set of lok onstraints over C de�ned by onjuntionsof onstraints of the form i � , � i and i � j � with 2 ZZ. Let u be a lok whose valueis always 0, that is, its value does not inrease with time as the values of the other loks. Then, theonstraints in � an be uniformly represented as bounds on the di�erene between two lok values,where for i 2 C, i � is expressed as i � u � , and � i as u� i � �.Suh onstraints an be then enoded as a (n+1)�(n+1) square matrix D whose indies range overthe interval [0; � � � ; n℄ and whose elements belong to ZZ1 � f<;�g, where ZZ1 = ZZ [f1g. The �rstolumn of D enodes the upper bounds of the loks. That is, if i � u � appears in the onstraint,then Di0 is the pair (;�), otherwise it is (1; <) whih says that the value of lok i is unbounded.The �rst row of D enodes the lower bounds of the loks. If u � i � � appears in the onstraint,D0i is (�;�), otherwise it is (0;�) beause loks an only take positive values. The element Dij fori; j > 0, is the pair (;�) whih enodes the onstraint i � j � . If a onstraint on the di�erenebetween i and j does not appear in the onjuntion, the element Dij is set to (1; <).Note that for all elements (i; j) an upper bound Mi;j is given for the di�erene i � j betweenloks i and j . During symboli state spae exploration we are interested in omputing the futureof M , and we need to take into aount whih loks are stopped and whih are running. Clearly ifi and j are both stopped, both running or only i is stopped, then the bound Mi;j remains valid; ifonly j is stopped, the di�erene may grow to 1; values in M need to be in a anonial form, whereall bounds Mi;j are as tight as possibleExample 4.9 Let � be the lok onstraint 1 < y < 2 ^ 1 < x ^ x � y < 2. Figure 4.7a shows itsmatrix representation.Remark Every region an be haraterized by a lok onstraint, and therefore be represented by adbm.As a matter of fat, many di�erent dbm's represent the same lok onstraint. This is beause someof the bounds may not be tight enough. As already mentioned, values in M need to be as tight aspossible, [20, 40, 60℄

4.3. DIFFERENCE BOUND MATRICES 85

0 1 2 3

1

2

b

ay
x 0 (0;�)(�1; <)(�1; <)(1; <)(3; <)xy y0 x

D
D00 (0;�)(�1; <)(�1; <)(1; <)(0;�)(1; <)xy (1; <) y0 x

(0;�)(0;�)(1; <)
(0;�)(2; <)

(2; <)Figure 4.7: Representation of onvex sets of regions by dbm's.Example 4.10 Consider again the lok onstraint depited in Figure 4.7. The matrix b is an equiv-alent enoding of the lok onstraint obtained by setting the upper bound of x1 to be (3; <) and thedi�erene x2 � x1 to be (1; <). Notie that this two onstraints are implied by the others.However, given a lok onstraint in �, there exists a anonial representative. Suh a representativeexists beause pairs (;�) 2 ZZ1 � f<;�g, alled bounds, an be ordered. This indues a naturalordering of the matries. Bounds are ordered as follows. We take < to be stritly less than �, and thenfor all (;�); (0;�0) 2 ZZ1 � f<;�g, (;�) � (0;�0) i� < 0 or = 0 and ���0. Now, D � D0 i�for all 0 � i; j � n, Dij � D0ij .Example 4.11 Consider the two matries in Figure 4.7. Notie that D0 � D.For every lok onstraint 2 Cnd, there exists a unique matrix C that enodes and suhthat, for every other matrix D that also enodes , C � D. The matrix C is alled the anonialrepresentative of and an be obtained from any matrix D that enodes , by applying to D theFloyd-Warshall [6℄ algorithm [22, 59, 46, 60℄ for details. We will always refer to a dbm to mean theanonial representative where bounds are tight enough.Enoding onvex timing onstraints by dbm's requires then O(n2) memory spae, where n is thenumber of loks. Several algorithms have been proposed to redue the memory spae needed [17, 33℄.The veri�ation algorithms require basially six operations to be implemented over matries: on-juntion, time suessors, reset suessors, time predeessors, reset predeessors and disjuntion. Theseoperations are implemented as follows.Conjuntion. Given D and D0, D ^D0 is suh that for all 0 � i; j � n, (D ^D0)i;j = min(Dij ; D0ij).Time suessors. As time elapses, lok di�erenes remain the same, sine all loks inrease at thesame rate. Lower bounds do not hange either sine there are no dereasing loks. Upper bounds haveto be pushed to in�nity, sine an arbitrary period of time may pass. Thus, for a anonial representativeD, Su�(D) is suh that: Su�(D)ij = � (1; <) if j = 0,Dij otherwise.

86 CHAPTER 4. LIFE IS TIME, TIME IS A MODELReset suessors. First notie that resetting a lok to 0 is the same as setting its value to the valueof u, that is, (i) = 0 is the same as (i) = u. Now, when we set the value of i to the value of j , iand j beome equal and all the onstraints on j beome also onstraints on i. Having this in mind,the matrix haraterizing the set of reset-predeessors of D by reset onsists in just opying somerows and olumns. That is, the matrix D0 = Su(D) is suh that for all 0 � i; j � n, if (i) = j thenrowi(D0) = rowj(D) and oli(D0) = olj(D). 1Time predeessors. To ompute the time predeessors we just need to push the lower bounds to 0,provided that the matrix is in anonial form. Thus, for a anonial representative D, Pre�(D) is suhthat: Pre�(D)ij = � (0;�) if i = 0,Dij otherwise.Reset predeessors. Reall that the onstraint haraterizing the set of predeessors is obtainedby substituting eah lok i by (i). Now suppose that we have two onstraints xk � xl < kl andxr � xs < rs and we substitute xk and xr by i, and xl and xs by j . Then, we obtain the onstraintsi� j < kl and i� j < rs whih are in onjuntion, and so i� j < min(kl; rs). Thus, the matrixD0 = Pre(D) is suh that for all 0 � i � n, D0ij = minfDkl j (xk) = i ^ (xl) = jg.Disjuntion. Clearly, the disjuntion of two dbm's is not neessarily a dbm. That is, � is not losedunder disjuntion, or in other words, the disjuntion of two onstraints in 	 is not onvex. Usually,the disjuntion of D and D0 is represented as the set fD;D0g. Thus, a lot of omputational work isneeded in order to determine whether two sets of dbm's represent the same onstraint.4.4 Modelling FrameworkThe proess of modelling requires spei�ation of eah of the omponents (tasks) drawn from buildingbloks fully haraterized by their onstraints. The operation of omposition is a key of modelling, sineeah omponent is plugged to the system, interats with other omponents, represents some ode andmust respet its (timing) onstraints.To ompose a system we an start from a single omponent, adding other interating omponents,so that the obtained system satis�es a given property. This integration approah establishes a basirule for omposition whih says that if a property P holds for a omponent C, then this property mustbe preserved in the omposed system. Formally, if jj notes omposition, if C � P then CjjC 0 � P .This assures orretness from onstrution, unfortunately in general, time dependent properties arenon omposable, [8, 9℄.Another approah to omposability, whih does not oppose to integration is re�nement, that is onewe have an abstrat desription of a omponent T we get a more restrited one T 0 whih veri�es ifT � P then T 0 � P ; normally T 0 is obtained from T by restriting some observability riteria and abasi rule for omposition says that if we replae a omponent Ti in a omposition T1jj : : : Ti : : : by itsre�nement T 0i , then the new system T1jj : : : T 0i : : : should be a re�nement of the initial system.A timed model is essential to the proess of synthesis; these models are obtained by adding timevariables, used to measure the time elapsed, to an untimed model. The natural extension of �nite statemahines to timed mahines is ta and they are a general basi model adopted to fae this problem,1Reall that (�) is a total funtion.

4.4. MODELLING FRAMEWORK 87[51℄. A ta is a transition system whih evolves through ations (events) or through time steps whihrepresent time progress and uniformly inrease time variables.Composition of timed models is a natural extension of omposition of untimed ones, but some aremust be taken into aount sine loks evolve at the same rate, that is, time diverges at the samederivative for all loks. Furthermore, for timed steps, a synhronous omposition rule is applied as adiret onsequene of the assumption about a global notion of time.In general, rts are modelled through, [51℄:� A timed model for eah task� A Synhronization layer� A ShedulerTimed model for tasks To reate a timed model for an appliation, we need to reate timedmodels for its building bloks, generally termed as tasks. For eah task, we need to know its resoures,a sequene of atomi ations with their exeution time (a worst ase analysis, in general, or an intervaltiming onstraint with lower and upper bounds) and their timing onstraints. We have shown anapproah in hapter 3.Synhronization layer The orretness of the whole appliation depends on the orretness of eahof its omponents (tasks) but also on the interation among them. Some kind of synhronization isneeded, through the use of primitives to resolve task ooperation and resoure management.We need to di�erentiate two types of synhronization: timed and untimed. Untimed synhronizationis based on the idea that tasks ooperate among them in some kind of produer/onsumer model: theoutput of a task (or of an atomi ation within a task) is needed as input for another task. In general,if C1 and C2 are two omponents, then C1jjC2 is the untimed synhronized omposition of both tasks.But this omposition is not enough, we need some timed extension of this omposition to onsidertiming onstraints and hene build the timed synhronized model. One again, if we have the timedmodel of two tasks CT1 and CT2 , then CT1 jjTCT2 represents its timed omposition, whih inludes, ofourse, the untimed synhronization.Many problems have been enountered for this approah:1. Does the timed omposed system preserve the main funtional properties of the orrespondinguntimed one?2. Does the omposed system respet some essential properties suh as deadlok freedom, livelinessand well timedness?3. How does the implementation reat in front of the timed model? It is worth to note that in amodel the reation to some external stimuli does not take time while the implementation does.4. Whih are the e�ets of interleaving? It has been shown, [16℄, that independent ations of untimedomponents may interleave and ause a (potential) inde�nite waiting of a omponent before itahieves synhronization; the orreponding timed system may su�er deadlok, even if the untimedone is deadlok-free.

88 CHAPTER 4. LIFE IS TIME, TIME IS A MODELSheduler A sheduler has a hallenging mission: assure oordination of exeution of all systemativities to meet timing and QoS requirements. A sheduler interats with the environment and withthe internal exeution. Altisen et al, [8℄ onsider a sheduler as a ontroller of the system modelomposed of timed tasks with their synhronization and of a timed model of the external environment.As systems evolve, the role of the sheduler beomes more and more ompliated. For independenttasks, the sheduler is simply an arbiter whih dispathes tasks in some previously �xed order. As tasksare dependent the sheduler must know the internal state of ative tasks in order to take a deision.Finally, for timed tasks the sheduler must know the (timed) internal state of ative tasks, and also thebehaviour of the environment to deide whih task to selet.4.5 A framework for SynthesisReall that a timed automaton A is a 5-uple (S; C;�; E ; I), where S is a olletion of states, C is aolletion of loks, � is an alphabet or set of ations, E is a set of edges and I is a olletion ofinvariants assoiated to states.One we have the timed model for a task, how do we reate a timed model for an appliation? Thebasi idea is to use the parallel omposition, explained in part 4.1.1.Sifakis et al, [53℄ propose a general framework for ompositional desription using a variant ofta, alled timed automata with deadlines, tad, where invariants are replaed by deadline onditions,expressing that if some timing onstraints are enabled, then the transition must be exeuted, (seesetion 4.2.1). tad are not more (or less) powerful than ta, but the operation of omposition over tadis simpler than in ta.4.5.1 Algorithmi Approah to SynthesisOne approah to onstrut a sheduler sh onsists in de�ning a sheduling poliy, as we have seen inhapter 2, that is, we de�ne a systemati way of ordering the exeution of a set of tasks, based on sometiming onstraints, but independently of the appliation.The traditional approah to sheduling is suitable for rts where the behaviour of the environmentis not preditable and reations to external stimuli must be immediate. Altisen et al, [7℄ proposed amodel useful in rts where the appliation strongly interats with the environment, suh as multimediaor teleommuniations systems. For suh systems it is desirable to generate an ad-ho sheduler atompile time that makes optimal use of the underlying exeution hardware and shared resoures,guided by knowledge of all possible behaviours of the environment.A key onept to this approah is the distintion between ontrollable and unontrollable ations. Aontrollable ation orresponds to a transtion that an be triggered by the sheduler and hene knownin advane at design time. An unontrollable ation is subjet to timing onstraints imposed by theenvironment, whih is onstantly evolving.The semantis of the appliation is given by a timed model A and a property Q to be satis�ed; themethod onstruts a new timed model AQ whih models all the behaviours of A that satisfy Q for anypossible sequene of unontrollable transitions. In summary, quoting Altisen et al, [7℄... AQ desribes all the shedules that satisfy the property, a shedule being a sequene ofontrollable transitions for a given pattern of unontrollable behavioursTypially, the synthesis algorithm is applied to properties of the form 2P , read as \always P". Ini-

4.5. A FRAMEWORK FOR SYNTHESIS 89tially we start with states that satisfy P and keep on iterating over a single step ontrollable predeessoroperator pre until a �xed point is reahed:Q0 = PrepeatQi+1 = Qi \ pre(Qi)until Qi = Qi+1thus obtaining Q�. Given a prediate P of a state, the operator pre represents all the states of thetimed model from whih it is possible to reah a state of P by taking some ontrollable transition,possible after letting time pass, while ensuring that there is no unontrollable transition that leads into:P .Let Q be a property and Q� = Ss2S Q�s be the set of states omputed by the algorithm above. Thetimed modelAQ has the same struture asA and the same timing information, exept for its ontrollableguards, sine eah guard ge has been replaed by g0e = ge ^ Q�s^prea(Q�s0) where prea(P)(s;) =P (s0; v()) ^ g(v), while unontrollable transitions remain unhanged.Example 4.12 We present an example from [7℄ to illustrate the appliation of the synthesis algorithmfor reahability properties, see �gure 4.8. A multimedia doument is omposed of six tasks: musi[30,40℄,video[15,20℄, audio[20,30℄, text[5,10℄, applet[20,30℄ and piture [20,1℄ where eah task is haraterizedby its exeution interval.In the begining, musi, video, audio and applet are launhed in parallel and we have the followingsynhronization onstraints:1. video and audio terminate as soon as any one of them ends; their termination is immediatelyfollowed by the text to be displayed;2. musi and text must terminate at the same time;3. the applet is followed by a piture;4. the doument terminates as soon as both the piture and the musi (and text) have terminated;5. the exeution times of both the audio and the applet depend on the mahine load and are thereforeunontrollable.Development Clok x ontrols musi, y video, audio and text, and z applet and piture. For eahappliation, the orresponding guard is Em � � EM , where is its assoiated lok and Em; EM theminimal and maximal duration time. The �nishing ondition is g = (30 � x ^ 5 � y ^ 20 � z ^ 20 �x� y � 35 ^ x� z � 40 ^ y � z � 10) obtained by a proess desribed in [7℄.The idea is to seek for the existene of a sheduler that moves the system from the initial state tothe state done. The property is 3done and the result obtain is that the doument is indeed shedulable.The exeution time of text an be dynamially adapted to the duration of video and audio so as to makemusi and text terminate synhronously. The orresponding sheduler is shown in �gure 4.8, where therestrited guards of ontrollable transitions, omputed by the syntehsis algorithm, are printed in bold.Notie that if video terminates at time y < 20, the marking fmusi, text, appletg will be reahed witha valuation satisfying x � y < 20 wihih falsi�es the synhronization guard g and therefore the onlypossible shedule guaranteeing the reahability of done must terminate video at y = 20.

90 CHAPTER 4. LIFE IS TIME, TIME IS A MODEL
music

music

music

music

video

video

audio

audio

applet

applet

text

text

picture

picture

start

done

(20 � y � 30)u
(20 � y � 30)u (20 � z � 60)u(y = 20)

(y = 20)fx; y; zg
fyg fyg fyg fygfzg

fzg g
(20 � z � 60)utrue

Figure 4.8: Synthesis using tad4.5.2 Strutural Approah to SynthesisAltisen et al, [9, 8℄ have proposed a di�erent methodology based on the onstrution of a shedulertailored to the partiular appliation and regardless of any a priori �xed sheduling poliy, sine we areonsidering not only the set of tasks but also the behaviour of the environment and some non funtionalproperties suh as QoS.There exists some theoretial methodology for the onstrution of sheduled systems, [8℄ based on:1. A funtional desription of the proesses to be sheduled, as well as their resoures and theassoiated synhronization;2. Timing requirements added to the funtional desription whih relate exeution speed with theexternal environment;3. Requirements for the sheduling algorithm:(a) Priorities: �xed or dynami (for pending requests of the proesses),(b) Idling: a sheduler may not satisfy a pending request due to higher priority requests and() Preemption: a proess of lower priority is preempted when a proess of higher priority raisesa request.Taking into aount these model onstraints, we an follow a methodology for onstruting a shed-uled system and a timed spei�ation of the proess to be sheduled, [8℄, based on ontrol invariantsand their omposability and the sheduling requirements expressed as onstraints, (some of whih areindeed invariants).The idea is to deompose the global ontroller synthesis proedure into the appliation of simplersteps. At eah step a ontrol invariant orresponding to a partiular lass of onstraints is applied tofurther restrit the behaviour of the system to be sheduled. The sheduler is deomposed into:

4.5. A FRAMEWORK FOR SYNTHESIS 911. Global Sheduling: haraterized by a onstraint K of the form K = Kalgo ^Kshed where Kalgospei�es a partiular sheduling algorithm and Kshed expresses shedulability requirements ofthe proesses2. Computation of ontrol invariants: at eah step the orresponding ontrol invariant is omputedin a straightforward manner.3. Iteration: the sheduled system an be obtained by suessive appliations of steps restritingthe proess behaviour by ontrol invariants implying all the sheduling onstraints, but someomposability onditions must be satis�ed.Eah onstraint is a state prediate represented as an expression of the form Wni=1 si ^ i where i 2 	 is a C-onstraint, (an expression over loks), and si is the boolean denoting presene at statesi. Given a timed system TS and a onstraint K, the restrition of TS by K denoted as TS=K is thetimed system T where eah guard ge of a ontrollable transition is replaed byg0e = ge ^K(s0; �0)where �0 is the set of loks reset in e.In a restrited system TS=K, the C-onstraint K is a ontrol invariant of TS if TS=K j= inv(K),that is K is preserved by edges all long the exeution of the transition system.The problem of synthesis was de�ned by Altisen et al, [8℄ as:De�nition 4.9 (Synthesis Problem) Solving the synthesis problem for a timed system TS anda onstraint K amounts to giving a non-empty ontrol invariant K 0 of TS whih implies K, K 0)K;TS=K 0 j= inv(K 0).We need a sheduling requirement expressed as a C-onstraint, K. If K 0 is aontrol invariantimplying K then TS=K 0 desribes as sheduled system.To larify these onepts we present an example:Example 4.13 Let us model a periodi non-preemptable proess PP of period P > 0, exeution timeE and relative deadline D(0 < E � D � P).In �gure, 4.9 we illustrate our example and we an distinguish three states, sleeping, waiting andexeuting; the ations a; b and f stand for arrive, begin and �nish; timer x is used to measure theexeution time, while timer t measures the time elapsed sine proess arrival; both timers progressuniformely; b is the only ontrollable ation and guards g are deorated with an urgeny type. Notiethat sine the transition b is delayable, the proessor may wait for a non-zero time even if proessor isfree.Consider a timed system TS = TS1jjTS2 where TS1 and TS2 are instanes of the periodi proessshown in �gure 4.9, with parameters (E;P;D) equal to (5,15,15) and (2,5,5) for proess 1 and 2respetively. We an reate the onstraint:Kdlf = [(s1 ^ t1 � 15) _ (u1 ^ x1 � 5 ^ t1 � 15) _ (w1 ^ t1 � 10)℄^[(s2 ^ t2 � 5) _ (u2 ^ x2 � 2 ^ t2 � 5) _ (w2 ^ t2 � 3)℄whih expresses the fat that eah one of the proesses is deadlok-free: from a ontrol state, time anprogress to enable the guard of some exiting transition. This onstraint is a proper invariant for TS.

92 CHAPTER 4. LIFE IS TIME, TIME IS A MODEL

e

s

w

au; (t = T)�t := 0
b; (t � D �E)Æx := 0fu; (x = E ^ t � D)�

Figure 4.9: A periodi proessPriorities Priorities are neessary in modelling formalisms for rts sine there may be urgent pro-esses or they may be useful as a onit resolution mehanism by assoiating priorities to states ormore generally, speifying a state onstraint and an assoiated priority order. Priorities are intrinsiallyrelated to preemption poliies.In [9℄ priorities are de�ned as a strit partial order over the ations. Formally, a priority order is astrit partial order �� A �A and we say that if a1 � a2, then a1 must be done before a2.Altisen et al, have proved that the appliation of a priority rule to a timed system respetingoniting ations through a partial priority order de�nes a new timed system.Example 4.14 In �gure 4.10 we see a part of the omposed automaton for TS, where some onitexists between b1 and b2 as both aess a ommon resoure. Then from the ontrol state (w1; w2) of theomposed system, the priority rule:� = (Di � (ti + Ei) < Dj � (tj +Ej)); bj � biwhere (i; j) 2 f(1; 2); (2; 1)g expresses the rule for onit resolution; the guards of b1 and b2 an beonveniently modi�ed as shown in �gure 4.10, (note ation b is still ontrollable but the transition isimmediate).Conit resolution and hene priorities are de�ned aording to a sheduling poliy sh; in ourexample, we have hosen the least laxity �rst, [44℄ whih is a mixture of edf and remaining exeutingtimes.4.6 Shedulability through tatIn this setion, we disuss another approah to modelling, introdued by Fersman et al, [26, 25℄ and�rst disussed in [24℄. The main idea of the model is to o�er a shedulability frame, for a set ofnon-periodi tasks, triggered by external stimuli, relaxing the general assumption of onsidering their

4.6. SCHEDULABILITY THROUGH TAT 93
(D1 � (t1 +E1) � D2 � (t2 +E2)))�x1 := 0b1((t1 � D1 �E1)^ w1w2 b2; ((t2 � D2 �E2)^x2 := 0(D2 � (t2 +E2) � D1 � (t1 +E1)))�

Figure 4.10: Prioritiesminimal interarrival times as task periods, as this analysis is pessimisti in many ases and indeed itdoes not take into aount the evolution of the environment.To model the appliation, tat are used, (see setion 4.2.2), where eah state of the automatonorresponds to a task; a transition leading to a loation in the automaton denotes an event triggeringa new task and the guard on the transition spei�es the possible arrival times of the event; loks maybe updated by the derementation operations shown in 4.2.3. A state of suh an automaton inludesnot only the loation and the lok assignment but also a queue q whih ontains pairs of remainingomputing times and relative deadlines for all ative tasks.Task set is denoted P = fP1; P2; : : : ; Pmg, where eah task Pj ; 1 � j � m is haraterized by apair (Ej ; Dj), as usual. The ative set of tasks is T = fT1; T2; : : : ; Tng where eah Ti 2 P; 1 � i � n;the system may aept many instanes of the same task Pj , in whih ase they are opies of the sameprogram with di�erent inputs2.4.6.1 Shedulability AnalysisRemember that a tat is a transtion system haraterized by triples of the form (s; v[℄; q) where s isa state, v[℄ values of loks in s and q a queue of tasks sorted by some sheduling poliy. The notionof shedulability is then transposed to q: if all tasks in q an be omputed within their deadlines, thesystem is shedulable and hene an automaton is shedulable if all reahable states of the automatonare shedulable. Two important results are drawn out from this model:1. Under the assumption of non-preemptive sheduling poliies, the shedulability hekingproblem an be transformed to a reahability problem for tat and thus it is deidable.2. Under the assumption of preemptive sheduling poliies, a onjeture was made over theundeidability of the shedulability heking problem, sine preemptive sheduling is assoiatedwith stop-wath automata for whih the reahability problem is undeidable. This onjeture wasproved as wrong if uta are used, (reall that in uta loks may be updated by substration), andif loks are upper bounded and substration leaves loks in the bounded zones; the reahabilityproblem is then deidable.2sometimes Pi is alled a task type and we distinguish instanes as T 1i ; T 2i ; : : :

94 CHAPTER 4. LIFE IS TIME, TIME IS A MODELx > 10; ax := 0 x = 10l1l2 y := 0x := 0ay � 40bb Q(2; 10) P (4; 10)
Figure 4.11: Zeno-behaviourThe shedulability problem may be redued to the problem of loation reahability as for normalta not onsidering task assignment, abstrating from the extended model; with this analysis we anhek properties suh as safety, liveliness or many others not related to the task queue.However as properties to the task queue are of interest, Fersman et al, [26℄ have developped anew veri�ation tehnique. One of the most intersting properties of tat related to the task queue, isshedulability. In fat, invariants in loation and guards on edges rule the problem of shedulability.Consider, for example, a part of an tat shown in �gure 4.11; while in loation l1 the system ouldaept a new event a eah 10 units (x � 10) but no more than 4, due to the onstraint y � 40; in fat,eah time a new instane of P arrives, the previous one had already been exeuted, so the task queueis bounded (by 1 in this ase).On the ontrary if we observe state l2 we see than an in�nite number of Q instanes ould be aeptedsine the disrete transition b is not guarded, i.e. not onstraint by some loks. This behaviour is notdesirable and is alled the zeno behaviour. Fersman et al have proved that this behaviour orresponds,of ourse, to non-shedulability as the sheduler annot manage to �nish an in�nite number of taskswithin a �nite time (deadline). We also note that zenoness is a neessary ondition for shedulabilitybut not a suÆient ondition, sine we an easily �nd a system non-zeno whih is not shedulable.The following de�nition relies shedulability and reahability.De�nition 4.10 (Shedulability) A state (s; v[℄; q) of an tat is a failure denoted (s; v[℄; Error) ifthere exists a task within q whih fails to meet its deadline, i.e, if q = [T1(e1; d1); : : : ; Tn(en; dn)℄, thenfrom an initial state (s0; v[0℄; q0) ��!Sh (s; v[℄; Error) =) 9i; 1 � i � n; s:t: ei > 0 ^ di < 0 for agiven sheduling poliy Sh.In Fersman's methodology, value ei omputing the remaining exeuting time dereases as task �i isexeuted while values d's omputing the remaining time to reah deadlines derease; under this ontext,shedulability an be heked by verifying that at any instant t :Xi�k ei � dk 8 1 � k � n (4.5)whih assures that the waiting time for task �k, given by the sum of the exeution times of tasks withhigher priority (aording to Sh) is \small enough" to let �k �nish its exeution3. Sometimes we andeompose expression 4.5 as3Remember that tasks in q are ordered, being T1 under exeution

4.6. SCHEDULABILITY THROUGH TAT 95
empty(q)

non−sched(q)

running(i,j) running(m,n)

Idling

Error non−sched(q)

m
m l

l releasei releasem�i(E;D) i;j = Ei; status(m; n) = prereleasedm;Run(m;n)Run(i; j)releasedk;
Figure 4.12: Enoding Shedulability ProblemXi�k ei � dk =Xi<k ei| {z }Bk +ek � dk 8 1 � k � n (4.6)and Bk is alled the bloking time for task �k.A very important result in Fersman's model is that the problem of heking shedulabilityrelative to a preemptive �xed priority sheduling strategy for tat is deidable.This result is based on the following ideas, (see �gure 4.12):� For uta the reahability problem is undeidable and hene the redution of shedulability toreahability is also undeidable.� A bounded updatable automata is a uta in whih eah lok is not negative and bounded bya maximal onstant C , that is all operations leave loks non-negative and loks do not growbeyond a known onstant.� The reahability problem for bounded updatable automata is deidable and hene the shedula-bility problem, [18, 40℄.� They prove that tat are in the lass of bounded uta.To enode the problem of shedulability as reahability, Fersman et al, develop a methodology basedon three transformation steps:1. The appliation is �rst enoded as a tat AT as we have seen in the preedent paragraphs, wherestates represent a task, (possibly in exeution).2. AT is transformed to a ta A redued to ations triggering tasks.3. Given a sheduling �xed priority strategy Sh, a tatASh is developed whih inludes all tasks andall possible transitions aording to priorities. ASh is a uta, with the following harateristis:

96 CHAPTER 4. LIFE IS TIME, TIME IS A MODEL� There are three types of loations: Idling, Running(i; j) and Error, with Running beingparametrized by a task �i and its instane j.� For eah task instane, we have two loks: i to denote aumulated omputing time sineT ji was started and ri;j denoting the time sine T ji was released; i is a substrated lok,substration is applied to note the evolution of time, while Ti is temporarily suspended. Forinstane, i (initially reset to 0) is redued by Æ if task Tk is exeuted Æ units of time and Tkpreempts Ti. It is this transformation whih moves to the \risking zone of undeidability".4. The third step of the enoding is to onstrut the produt automaton AShjjA where both au-tomata synhronize over idential ation symbols.Fersman et al. prove that loks of ASh are bounded and non negative in the produt automaton;for this automaton the reahability analysis of the error state is deidable and equivalent to delare thesystem as non-shedulable.For this approah, the number of loks needed in the analysis is proportional to the maximalnumber of shedulable task instanes assoiated with a model, whih in many ases is huge. In a laterpaper, [25℄, Fersman et al prove that for a �xed priority sheduling strategy, the shedulability hekingproblem an be solved by reahability analysis on standard ta using only two extra loks in additionto the loks used in the original model to deribe task arrival times.4.7 Job-Shop ShedulingTo onlude this hapter, we introdue another model for tasks, the job-shop sheduling problem, jss,suitable for distributed systems, under ertain onditions, [1℄.The jss problem is a generi resoure alloation problem in whih mahines are required at varioustime points for given durations by di�erent tasks. Eah job J is haraterized by a sequene of steps(m1; d1); (m2; d2); : : : ; (mk; dk) where mi 2 M and di 2 N ; 1 � i � k, M being the universal set ofmahines indiating the required utilization of mahine mi for time duration di. The sequene states alogial order to aomplish job J , �rst mahine m1 for d1 units of time, then mahine m2 for d2 time,and so on.Formally:De�nition 4.11 (Job-Shop Spei�ation) Let M be a �nite set of mahines. A job spei�ationover M is a triple J = (k; �; d) where k 2 N is the number of steps in J , � : f1 : : : kg ! M indiateswhih resoure is used at eah step, and d : f1 : : : kg ! N spei�es the length of eah step. A job-shopspei�ation is a set J = fJ1; : : : ; Jng of jobs with J i = (ki; �i; di).The model assumes that:� A job an wait an arbitrary amount of time between two steps, (there is no notion of deadline).� One a job starts to use a mahine, it annot be preempted until this step terminates, (that is,there is no preemption).� Mahines are used in a mutual exlusion manner (while job J is using a mahine, no other anhave aess simultaneously) and steps of di�erent jobs using di�erent mahines an exeute inparallel.

4.7. JOB-SHOP SCHEDULING 97De�nition 4.12 (Feasible Shedule) A feasible shedule for a job-shop spei�ation J = fJ1; : : : ; Jngis a relation S � J �K � RR+, so that a triple (i; j; t) from S indiates that job J i is busy doing itsjth-step at time t and hene oupies mahine �i in its j step. A feasible shedule should satisfy thefollowing onditions:1. Ordering: if (i; j; t) and (i; j0; t0) 2 S then j < j0 �! t < t02. Every step is exeuted ontinously until ompletion.3. Mutual Exlusion: for every i; i0 2 J ; j; j0 2 K and t 2 RR+ if (i; j; t) and (i0; j0; t) 2 S, then�i(j) 6= �i0(j0), two steps of di�erent jobs whih exeute at the same time do not use the samemahine.The optimal jss problem is to �nd a shedule with the shortest length over t over all (i; j; t) 2 S.4.7.1 Job-shop and taNaturally, eah job J = (k; �; d) an be modeled as a ta suh that for eah step j where �(j) = m wereate a state indiating the use of m for a duration of d, but we have to mark also the waiting timebefore using m; for this reason, [1℄ proposes to reate states �m for eah mahine used by J .We will not give the formal de�nition of this transformation, but illustrate it through an example.Example 4.15 Consider two jobs J1 = f(m1; 4); (m2; 5)g and J2 = f(m1; 3)g, over M = fm1;m2g.The automata orresponding to these jobs is shown in �gure 4.13(a), where one lok i for eah taskJi is used to model exeution time. In [1℄ eah ta has a �nal state f .To treat a jss we need to ompose the automata for eah task. This omposition takes into aountthe mutual exlusion priniple, by whih no more than one task an be ative in a mahine at any time.The resulting restrited omposition is shown in �gure 4.13(b).From the omposition automaton, we an derive the di�erent lengths of exeutions by analysingdi�erent runs of the automaton, whih represent feasible shedules for J .Example 4.16 Two di�erent exeutions for our previous example are shown bellow, where eah tupleis of the form (m;m0; 1; 2);m;m0 2 fm1; �m1;m2; �m2g and ? represents an inative lok:S1 :(�m1; �m1;?;?) 0�! (m1; �m1; 0;?) 4�! (m1; �m1; 4;?) 0�! (�m2; �m1;?;?) 0�!(m2; �m1; 0;?) 0�! (m2;m1; 0; 0) 3�! (m2;m1; 3; 3) 0�! (m2; f; 3;?) 2�!(m2; f; 5;?) 0�! (f; f;?;?)S2 :(�m1; �m1;?;?) 0�! (�m1;m1;?; 0) 3�! (�m1;m1;?; 3) 0�! (�m1; f;?;?) 0�!(m1; f; 0;?) 4�! (m1; f; 4;?) 0�! (�m2; f;?;?) 0�! (m2; f; 0;?) 5�!(m2; f; 5;?) 0�! (f; f;?;?)The �rst shedule S1 has length 9 while the seond S2 has length 12.

98 CHAPTER 4. LIFE IS TIME, TIME IS A MODEL

(b)(a)

1 := 0
1 := 01 := 0
1 := 0

2 := 0
2 := 01 := 0

2 � 3

2 � 3 2 � 31 � 5 1 � 5 1 � 5

1 � 4
1 � 42 := 02 := 0 m2m1 �m2 �m1m2 �m1f �m1 fm1 ff

�m1m1m1 �m1�m2 �m1
�m1 �m1

�m1fm1f�m2fm2f

1 := 01 � 41 := 01 � 5

2 := 02 � 3
�m1m1�m2m2f

�m1m1f

Figure 4.13: Jobs and Timed Automata

4.8. CONCLUSIONS 99The previous example shows the idea for jss and timed automata, [1℄: the optimal job-shop shedul-ing problem an be redued to the problem of �nding the shortest path in a ayli timed automaton.This problem of reahability, that is arriving to the tuple (f; f;?;?) is always suessful sine all runslead to f . In [1℄ various tehniques for traversing the omposed automaton in order to �nd the shortestpath are presented; algorithms redue the number of explored states, still guaranteeing optimality.4.8 ConlusionsIn this hapter we presented three main streams for modelling and analysing, based on ta and thereahability problem.Tailored Synthesis The approah studied in [8, 9, 7℄ is based on the onstrution of a sheduledsystem, guided by some desired properties and the appliation itself. From a ta they onstrut anew automaton whose invariants must respet the desired properties; priorities are used as inputsand its alulation is guided by oniting states. The problem of preemption is not learlyhandled. Shedulability is attained by onstrution.Timed Automata with Tasks The approah studied in [26, 25℄ is based on the idea of modellingthe appliation under bounded supension automata; the problem of shedulability is redued tothe problem of reahability of an error state; they prove this problem is deidable and hene sois shedulability. The problem with this model is enoding the appliation in a new uta, whihonsiders all possible transition among tasks, and then we are soon fae to the problem of stateexplosion. Sheduling poliies are �xed priority.Job Shop The approah studied in [1, 2℄ is ompletely di�erent: it treats the problem of (real time)tasks where no deadline restrition is imposed and many mahines are at disposition for exeution.Modelling is based on the idea of omposing the individual models for tasks and shedulability isredued to a reahability problem with the shortest time weight. Although simple, the problemis too narrow sine periodi tasks are not onsidered (and hene, ta are really ayli ta) andtasks have no deadlines so, shedulability analysis is almost inexistant.

100 CHAPTER 4. LIFE IS TIME, TIME IS A MODEL

Chapter 5The heart of the problem
R�esum�eCe hapitre pr�esente les resultats les plus importants de ette th�ese; nous donnons une nouvelle util-isation d'horloges pour mod�eliser l'ordonnanement dans un adre ave preemption, d�ependenes etunertitude.Le hapitre pr�esente graduellement notre tehnique; au debut on onsid�ere des syst�emes aveune preemption et on les mod�elise �a l'aide des automates temporis�es; on prouve que le probl�eme del'ordonnanement est deidable en montrant que le probl�eme d'atteignabilit�e est deidable. On etendnotre m�ethode vers un adre plus general en presentant une mod�elisation qui utilise la di�erene entredeux horloges pour simuler la preemption. Finallement, on onlut par la preuve de deidabilit�e deette approhe. Un mehanisme d'admission de tâhes est present�e bas�e sur l'id�ee de temps d'attente.5.1 MotivationAs seen in the previous hapters, the behavior of real-time systems with preemptive shedulers an bemodelled by stopwath automata. Nevertheless, the expressive power of stopwath automata disour-aged for a long time their use for veri�ation purposes. Indeed, the reahability problem (even for asingle stopwath) has been proven to be undeidable [29, 31, 20℄.There are, however, some deidable sub-lasses suh as the so-alled integration graphs [31℄ andsuspension automata [40℄. The latter are atually useful for modelling and analyzing systems made upof a set of tasks with �xed exeution times. swa an be translated into timed automata with updates,spei�ally derementation by a onstant, for whih the reahability problem is indeed deidable [18℄.The result of [40℄ has been extended in [26℄ to a more general model tat, though still requiringonstant exeution times of tasks. The approah via timed automata with derementation su�ers oftwo main problems. First, it requires a ostly translation. Seond, it only allows modelling tasks with�xed exeution times. A tehnique to ope with the �rst problem has been proposed in [25℄.In this hapter we fous on preemptive sheduling of systems of tasks with unertain but lower andupper bounded exeution times. The behavior of these systems annot be straightforwardly translatedinto a deidable extension of timed automata with updates. Our approah onsists in enoding thevalue of stopped loks as the di�erene of two running ones. We do allow tasks to be restarted again;101

102 CHAPTER 5. THE HEART OF THE PROBLEM�1 "�1 # �2 "
�2 # �4 #

�4 "
�3 "Figure 5.1: A model of a systeminitially we forbid preempting a task more than one, then we extend to a more general model. Weshow that the system an be modelled by formulas involving di�erene bounded matries, dbm, that is,di�erene onstraints on loks, and time-invariant equalities apturing the values of stopped loks.This result implies deidability and leads to an eÆient implementation. Moreover, it gives a preisesymboli haraterization of the state spae for the onsidered lass of systems.5.2 ModelA real time appliation is modelled as a olletion T = f�1; �2; : : : ; �mg of all tasks for the applia-tion, whih are triggered by external events, inluding a timed event suh as period. Eah task �i isharaterized by a vetor of parameters [Gi; Di℄ 1 � i � m where Gi = [Emini ; Emaxi ℄ is the exeutiontime-interval, i.e. the best and worst ase exeution time and Di is the relative deadline. For eah task�i, we have two timed variables, namely ri and ei, that measure the release time and the aumulatedexeuted time, respetively. Both variables are reset to zero whenever task �i arrives. Task arrival isdenoted by �i " and task ompletion by �i #.The environment is any untimed relation between arrivals and ompletions of all tasks (it shouldrespet the preedene relationship between �i " and �i #, though).Example 5.1 In �gure 5.1 we an see an example of a model of system of four tasks.The general model of an appliation is then a graph G = (V;A), where the set of verties V � f�i "; �i #g1�i�m where jin(V)j � 1 (no more than one inoming edge per vertex) and a set of direted edgesA � f�i "! �i #g1�i�m [f�i #! �j "gi6=j; 1�i;j�m [f�i "! �j "gi6=j; 1�i;j�mLet T � T be the �nite set of ative tasks in the system, that is, those that have already arrivedand are urrently being handled by the sheduler. At any moment, at most one instane of a task maybe ative. The prediate exe(Ti) indiates whether Ti is exeuting or not and for the set T , exe(T)denotes the exeuting task of T . The prediate aept(�i) indiates whether �i is aepted or not at

5.2. MODEL 103its arrival due to some sheduling or modelling reasons; for instane, �i ould be rejeted beause itwould produe some tasks to miss their deadlines or beause there is an ative instane of this task. Adetailed desription of this prediate will be given when we preise the sheduling poliy. Figure 5.2shows a task automaton.
executing

or
pending

Idle

Modelling Error Scheduling Error

�i # ^exe(�i)
�i "aept(�i)

ei 2 Gi ^ ri � Di�i " ^:aept(�i) �i " _ri > Di
Figure 5.2: Task automatonThe dynami behavior of the system is represented by a transition system (S; T;!) where S isa set of states, T is the set of ative tasks, and ! is the transition relation. S is a tuple of ontrolloations of the task automaton (Fig. 5.2) and of valuations of timed variables. The following rulesgive a skethed behaviour of the system; formal and omplete rules will be given later when analysingpartiular sheduling poliies, sh.� Task ompletion: �i # If ei 2 Gi, ri � Di, and exe(�i), then(S; T) �i#! (S 0; T 	 f�ig)where S 0 is obtained aording to sh and 	 is the operation of removing a task from T .� Task arrival: �i "If �i 2 T) (S; T) �i"! Shedulling Error(no more than one instane of eah task)If �i =2 T ^ :aept(S; T; �i)) (S; T) �i"! Modelling ErrorIf aept(S; T; �i)) (S; T) �i"! (S 0; T � f�ig)where S0 is obtained aording to sh and � is the operation of inserting a task in T .

104 CHAPTER 5. THE HEART OF THE PROBLEM� Deadline violation: If ri > Di for some �i 2 T)(S; T)! Shedulling Error� Time passing: Let exe(�i), Æ � 0, and ei + Æ � Emaxi)(S; T) Æ! (S 0; T)where S0 is obtained from S by adjusting the values of timed variables aording to sh.The �rst rule expresses the ompletion of the exeuting task, leaving to the sheduler the hoieof hoosing the next task to be exeuted. The de�nition of exe(T) and the omputation of the nextstate are left unspei�ed sine they are dependant of the sh.The seond rule expresses the arrival of a new task, whih an be aepted or rejeted. We distinguishtwo transitions leading to an error state, one for unshedulability and the other for a behaviour notsatisfying the modelling assumptions.The third rule expresses the ase of a deadline violation. The fourth rule expresses time passing ofÆ units of time, adjusting the values of the timed variables in T .In general we will assume the existene of an aeptane test at task arrival. This test is related tosome assumptions of our system and of ourse, to the sheduling poliy. One the task passes the test,it an enter the system, either waiting for its turn or exeuting immediately, preempting the urrentlyexeuting task. Prediate aept(S; T; �i) will be analysed in detail for di�erent sheduling poliies.5.3 lifo shedulingTo show our analysis, we start with a very simple sheduling poliy: a lifo sheduler, that is, asheduler where the urrent exeuting task is always preempted by the reently arrived task. We alsosuppose that eah task an be preempted for at most one.Intuitively speaking, a one preemption lifo sheduler aepts tasks in the stak, until the task onthe top �nishes; at this moment, as all tasks beneath it had already been preempted, the sheduler willrejet any new task, until the stak is empty; note, then, that all tasks in the stak had been preemptedone, exept the task on the top whih ould have never been preempted.Example 5.2 Let T = f�1(4; 12); �2(5; 10); �3(2; 10); �4(3; 6)g be a set of tasks, where the numbers inparentheses represent exeution times and deadlines. In this example, deadlines are suÆiently long tolet all tasks exeute on time.Figure 5.3 shows the reation of a lifo sheduler at arrival of eah task. For instane at time t = 3,�2 " and �2y�1; note that at time t = 8, �3 #, and �2 resumes exeution, noted as �2%; remark that thearrival of �4 at time t = 9 is ignored by the sheduler, sine �2 had already been preempted. We alsoshow the evolution of loks.5.3.1 lifo Transition ModelLet T = fT1; T2; : : : Tng be the stak of ative tasks in the system and let Tn be the task in exeution,i.e. Tn = exe(T); if �i arrives to the system and it is aepted, then �i preempts Tn, written as �iyTn.

5.3. LIFO SCHEDULING 105
t

30 6 8 10r3 := 0r1 := 0 r3 = 7r2 = 2r2 := 0�1 " �3 " �2 " �2 # �1 #
T = f�3; �1g

�3% �1%
e1 = r1 e3 = r3 e2 = r2 r1 = 8r3 = 5 r1 = 11�3 #�4 "
T = f�1g T = fgT = f�2; �3; �1g T = f�1gT = f�3; �1gFigure 5.3: One preemption lifo ShedulerWe de�ne a funtion � for renaming tasks, � : T ! f1; 2; : : : ;mg, �(Ti) = j; 1 � i � n; 1 � j � mgives the \name" j in T of the task �j plaed in position i in stak T .An hybrid transition system (S; T;!) for a lifo sheduler is omposed of :1. a olletion of states, S = (S;~e; ~r; ~_e; ~p), where:(a) S is a ontrol loation,(b) ~e a vetor of loks ounting exeution time, where ~ej is the umulated exeution time fortask �j ,() ~r a vetor for releasing times, where ~rj is the released time for task �j ,(d) ~_e a vetor indiating those exeution loks whih are stopped,(e) ~p a vetor for preemption where ~pj = l means that task �l preempts �j , �ly�j , if l 6= 0 or that�j has never been preempted, otherwise. In partiular, in the lifo sheduler, if task �j is atposition k; 1 � k < n in T , that is �j = Tk, then task �l is at position k + 1, that is1 :�(Tk) = j; �(Tk+1) = l; ~p�(Tk) = �(Tk+1) � ~pj = l2. a stak of tasks, T � T (with the usual operations pop, top and push).3. a transition relation !We give the operations over our transition system; reall that the arrival of a task is aptured bythe sheduler, who deides over the admission. As a onvention, we will use index j for \names" oftasks, 1 � j � m and k for ative tasks in T , 1 � k � n.� Task arrival, �i " (�i 2 T and aept(S; T; �i)):(S; T) �i"! (S 0; T 0)where T 0 � push(�i; T) and S 0 = (S0; ~e0; ~r0; ~_e0; ~p0) is:~e0j = � 0 if i = j~ej otherwise1We ould simplify ~p as a boolean vetor where ~pj = �, and � 2 [true; false℄

106 CHAPTER 5. THE HEART OF THE PROBLEM~r0j = � 0 if i = j~rj otherwise~p0j = 8<: i if j = �(top(T))0 if j = i~pj otherwise~_e0j = � 1 if j = i0 otherwiseThat is, as a new task is aepted, its exeution and release loks are both reset, its rateexeution lok is set to 1 to mark it is running, while all other exeution loks are stopped; wemark preemption to the urrent exeuting task.� Task ompletion: Tn # (S; T) Tn#! (S 0; T 0)where T 0 = pop(T) and ~e�(Tn) = ~r�(Tn) =?, all other variables are unhanged.� Task resumption: Tn% (we assume Tn = top(T) is a task preempted in the past, whih regainsthe proessor). (S; T) Tn%! (S 0; T)where S 0 = (S0; ~e0; ~r0; ~_e0; ~p0) is: ~_e0j = � 1 if j = �(Tn)0 otherwiseall other variables remain unhanged.� Time passing: Æ is an elapsed time not enough to �nish the urrent exeuting task.(S; T) Æ! (S 0; T)where S 0 = (S0; ~e0; ~r0; ~_e0; ~p0) is: ~e0j = � ~ej + Æ if j = �(Tn)~ej otherwiseand ~r0j = ~rj + Æ 8�j ; �j 2 T , all other variables remain unhanged.

5.3. LIFO SCHEDULING 1075.3.2 lifo Admittane TestIt is time to give an admittane test for our lifo sheduler. We propose:aeptlifo(S; T; �i) � :ative(T; �i) ^ :preempted(T; Tn)that is, we do not aept a task if:� There is an ative instane of the same task, that isative(T; �i) � i = �(Tk) for some k; 1 � k � n� It will preempt an already preempted task, that ispreempted(T; Tn) � ~p�(Tn) 6= 0For the instant being we do not onsider timing onstraints; in partiular, we are not onsideringin the aeptane test the fat that a new aepted task may lead to some other tasks in T miss theirdeadlines. Later, we propose a re�nement in that diretion.5.3.3 Properties of lifo shedulerUnder the one-preemption assumption the following properties hold:1. If ~p�(Tn) = 0) e�(Tn) = r�(Tn)2. e�(Tn�1) = r�(Tn�1) � r�(Tn)3. 8Tk; Tk 2 T; k < n, we have:(a) Preemption: ative(Tk) ^ preempted(Tk)(b) Time invariant ondition:Ilifo(T) � n�1̂k=1 e�(Tk) = r�(Tk) � r�(Tk+1)Ilifo(T) � n�1̂k=1 e�(Tk) = r�(Tk) � r~p�(Tk)() Shedulability: r�(Tk) < D�(Tk)Property 1 simply says that if the urrently exeuting task Tn has never been preempted sine itsarrival, then both loks, e�(Tn) and r�(Tn) have the same value.Property 2 is the onsequene of preemption. When Tn�1 was preempted, (i.e. Tn�1 was exeutingand hene on top of T), we know by the previous rule, that e�(Tn�1) = r�(Tn�1) and as r�(Tn) is set tozero, we an establish the property whih is time-invariant while Tn�1 is suspended. This observationleads by indution to property 3b, whih we all the exeution invariant under a lifo sheduling poliy.Property 3a says that all tasks in stak T are ative and were preempted in the past (exepteventually the task in the top).Property 3 says that all tasks in T are shedulable, (remember our extension of the admittanetest will go in that diretion).

108 CHAPTER 5. THE HEART OF THE PROBLEM
t

30 6 8 10r3 := 0r1 := 0 r3 = 7r2 := 0�1 " �3 " �2 " �2 # �1 #
T = f�3; �1g

�3% �1%
e1 = r1 r1 = 11�3 #�4 "
T = f�1g T = f�2; �3; �1ge2 = r2e3 = r3e1 = r1 � r3 e3 = r3 � r2 r3 = 5r2 = 2e1 = r1 � r3e3 = r3 � r2 e1 = r1 � r3r1 = 10T = f�3; �1gT = f�1g T = fgFigure 5.4: Invariants in lifo ShedulerExample 5.3 Let us reonsider the example 5.2; we an observe that (see �gure 5.4):� At t = 0 r1 = e1 = 0, �1 begins its exeution. Ilifo(�1) = true,� At t = 3, �3 arrives, it is aepted and preempts �1 (later, we will give an admission test dealingwith shedulability onditions). The exeution invariant Ilifo(�1; �2) � fe1 = r1 � r3g� At t = 6, �2 " and �2y�3. The exeution invariant Ilifo(�1; �2; �3) � fe1 = r1� r3 ^ e3 = r3� r2g.� At t = 8, �2 ompletes its exeution and the sheduler resumes �3. The omputed time is reoveredfrom the di�erene e3 := r3 � r2. Note that ~p3 = 2 and e3 = r3 � r~p3 .� At t = 9, T4 arrives but it is rejeted by the admittane test sine: exe(T) = �3^preempted(�3).� Finally, at t = 10, �3 ompletes and the sheduler resumes �1; one again e1 is reovered from thedi�erene r1 � r3; �1 ends at t = 11.The previous properties motivate the following de�nition:De�nition 5.1 The exeution invariant under a lifo sheduling poliy isIlifo(T) = ^1�k�n�1 e�(Tk) = r�(Tk) � r�(Tk+1)If the urrently exeuting task has already been preempted, the equation r�(Tn) = e�(Tn) may nothold and in this ase, we annot simply express e�(Tn) as the di�erene of r�(Tn) and r�(Tn+1). So forthe time being, we still retain our assumption of one-preemption. To ensure that r�(Tn) = e�(Tn) holds,we an onstrain the prediate aept(S; T; �i) for every task �i by the onstrainteexe(T) = rexe(T)5.3.4 Reahability Analysis in lifo ShedulerLet 	 be the set of formulas generated by the following grammar: ::= x� y � d j ^ j : j 9x:

5.3. LIFO SCHEDULING 109where x; y 2 C are loks and d 2 Q is a rational onstant.To failitate notation, we will skip in this analysis the use of the funtion �, and replae it by theposition a task oupies in the stak. Remember then that when saying, for instane, ek we really meanthe exeution lok e of the task whih is in the k position in the stak, that is e�(Tk).Let � be a onstraint haraterizing a set of states. We de�ne Tn+1 "(�) to be the set of statesreahed when task Tn+1 arrives, that is:Tn+1 "(�) = fs0 : 9s 2 �: s Tn+1"! s0gLet � be of the form Ilifo(T) ^ , with 2 	 a quanti�er free formula. Without loss of generality,we an assume that either :1. Tn+1 is rejeted: =) :aept(; T; Tn+1)in this ase, Tn+1 "(�) � � and the system moves to an error state.2. Tn+1 is aepted: =) aept(; T; Tn+1)We have that: Tn+1 "(�) � Ilifo(T � fTn+1g) ^ en+1 = rn+1 = 0 ^ 9en: Moreover, sine en = rn, Ilifo(T � fTn+1g) ontains the equality en = rn � rn+1, we have that:Tn+1 "(�) � Ilifo(T + fTn+1g) ^ en+1 = rn+1 = 0 ^ 0Hene, Tn+1 "(�) has the same struture than �, that is, it is the onjuntion of an exeutioninvariant and a formula in 	. Moreover, if is a quanti�er-free formula, that is, a di�ereneonstraint (or dbm), we have that 9en: is indeed a dbm. Note that is a formula ontainingloks measuring release times and only one exeution lok (that of the task on top).Then we have:Proposition 5.1 Let � be of the form Ilifo ^M , where M is a dbm and Ilifo is a one preemptionlifo exeution invariant, then, Tn+1 " (�) has the same struture as �.Now, let �% the set of states reahed from � by letting time advane, that is:�%= fs0 : 9s 2 �; Æ � 0:s Æ! s0gClearly, if � is of the form Ilifo(T) ^M , we have that�%= (Ilifo(T) ^M)%= Ilifo ^M%Proposition 5.2 Let � be of the form Ilifo ^M , where M is a dbm and Ilifo is a one preemptionlifo exeution invariant, then, �% has the same struture as �.

110 CHAPTER 5. THE HEART OF THE PROBLEMThus, given a sequene of task arrivals T1 "; : : : ; Tn ", the set of reahed states an be representedby the onjuntion of the exeution invariant Ilifo(T), haraterizing the already exeuted time ofthe suspended tasks, namely T1; : : : ; Tn�1, and a dbm M , haraterizing the relationship between theorresponding released times and the equality en = rn.A dbm M has the following form:u r1 r2 : : : rn enu � Mur1 Mur2 : : : Murn Muenr1 Mr1u � Mr1r2 : : : Mr1rn Mr1enr2 Mr2u Mr2r1 � : : : Mr2rn Mr2en...rn Mrnu Mrnr1 Mrnr2 : : : � Mrnenen Menu Menr1 Menr2 : : : Menrn �As en = rn, then Mxen = Mxrn and Menx = Mrnx, so from here on we omit en in M .In our ase, M is onstruted in a very partiular way and therefore has a speial struture. Let usanalyse it:Event Equation ExplanationT1 " ;T2 " Mr1r2 = Mr1u � e1 = r1 � r2 �Mr1r2 = Mr1u * r2 = u (5.1)T3 " Mr2r3 = Mr2u � e2 = r2 � r3 �Mr2r3 = Mr2u * r3 = u (5.2)Mr1r3 = Mr1r2 +Mr2r3 (e1 = r1 � r2 �Mr1r2 ^ e2 = r2 � r3 �Mr2r3))r1 � r3 �Mr1r3 = Mr1r2 +Mr2r3 (5.3)T4 " Mr3r4 = Mr3u � e3 = r3 � r4 �Mr3r4 = Mr3u * r4 = u (5.4)Mr2r4 = Mr2r3 +Mr3r4 (e2 = r2 � r3 �Mr2r3 ^ e3 = r3 � r4 �Mr3r4))r2 � r4 �Mr2r4 = Mr2r3 +Mr3r4 (5.5)Mr1r4 = Mr1r2 +Mr2r3 +Mr3r4 (e1 = r1 � r2 �Mr1r2 ^ e2 = r2 � r3 �Mr2r3^e3 = r3 � r4 �Mr3r4))r1 � r4 �Mr1r4 = Mr1r2 +Mr2r3 +Mr3r4 (5.6)We an observe that equality 5.3 is dedued from 5.1 and 5.2; 5.5 from 5.2 and 5.4 and �nally5.6 from 5.1, 5.2 and 5.4. So we see that the matrix is onstruted from a set of base formulaeorresponding to the di�erene of the task being exeuted and that whih preempts it, while all otherdi�erenes an be onstruted from this base set. Base formulae are marked with a �.In general, when Tn arrives: Mrn�1rn = Mrn�1uand Mrn�1en�1 = Men�1rn�1 = 0As Tn preempts Tn�1 and

5.3. LIFO SCHEDULING 111
rn�1 := 0 en = rnPj�i�n�1 ei = rj � rn �MrjrnP1�i�n�1 ei = r1 � rn �Mr1rne3e2e1 ej en�1rj := 0r3 := 0r2 := 0r1 := 0 rn := 0Figure 5.5: Clok Di�erenes in lifo Sheduler

Mrjrn = n�1Xi=j Mriri+1 ; j < n� 1 (5.7)Equation 5.7 may be re-written as a reursive formula:Mrjrn =Mrjrn�1 +Mrn�1rn ; j < n� 1 (5.8)and Mrju =Mrjrn +MrnuWhat do these di�erenes mean? Figure 5.5 shows a geometri interpretation of the followingrelations: e1 = r1 � r2 � Mr1r2e2 = r2 � r3 � Mr2r3...en�1 = rn�1 � rn � Mrn�1rnP1�i<n ei = P1�i<n ri � ri+1 � P1�i<nMriri+1P1�i<n ei = r1 � rn � P1�i<nMriri+1 (5.9)On the other hand, we know that: r1 � rn �Mr1rn (5.10)From the expression (5.9) and (5.10) and (5.7) we an dedue that:X1�i<n ei = r1 � rn � X1�i<nMriri+1 =Mr1rnThe expression 5.9 an be generalized as:Xj�i<n ei = rj � rn �MrjrnThat is, when Tn arrives we have that:

112 CHAPTER 5. THE HEART OF THE PROBLEMMrn�1rn = Mrn�1u (5.11)Mrn�1en�1 = Men�1rn�1 = 0 (5.12)and for all j < k � n, Mrju = Mrjrk +Mrku (5.13)Murj = Murk +Mrkrj (5.14)Mrjrk = Mrjrk�1 +Mrk�1rk (5.15)Mrkrj = Mrkrk�1 +Mrk�1rj (5.16)Let us all a dbm M that satis�es properties 5.11 to 5.16 a nie dbm.We have therefore proved that:Proposition 5.3 Tn+1 " (�) and% (�) preserve niety.We have shown so far that task arrival and time passing preserve the struture of the symboliharaterization of the state spae for a lifo sheduler if tasks are aepted only under the one-preemption restrition. The question that arises then, is whether task ompletion has the same property.If this is the ase, we have a omplete symboli haraterization of the state spae of suh shedulers.Indeed, the answer is yes, though the reasoning is a bit more involved.Let Tn # (�) be the set of states reahable from � when Tn terminates:Tn #(�) = fs0 : 9s 2 �:s Tn#! s0gLet � be of the form Ilifo(T) ^M and Gn be the interval [Eminn ; Emaxn ℄. We have that:Tn # (�) � 9en; rn:Ilifo(T) ^M ^Gn� Ilifo(T � fTng) ^ 9rn:en�1 = rn�1 � rn ^ 9en:(M ^Gn)� Ilifo(T � fTng) ^M 0[rn rn�1 � en�1℄where M 0 � 9en:(M ^Gn), that is we eliminate en from M , sine we do not need it. The question is:\ Is M 0 still a nie dbm matrix?"We have to show now that M 0[rn rn�1 � en�1℄ is equivalent to a nie dbm.When substituting rn by rn�1 � en�1 in M we get:from rn � rn�1 �Mrnrn�1) �en�1 �Mrnrn�1 (5.17)from rn � rj �Mrnrj) rn�1 � en�1 � rj �Mrnrj (5.18)whih is not a di�erene onstraint, but from (5.17) andrn�1 � rj �Mrn�1rj

5.3. LIFO SCHEDULING 113we derive that rn�1 � en�1 � rj �Mrnrn�1 +Mrn�1rjSine M is nie, we have that: Mrnrj = Mrnrn�1 +Mrn�1rjwhih means that (5.18) is an implied onstraint and it an be eliminated. The same applies for allthe non-di�erene onstraints that appear after subsitution. Sine no other new onstraints on releasedtime variables appear, niety is preserved.In summary:Proposition 5.4 Let � be of the form I ^ M , where M is a nie dbm and I is a lifo exeutioninvariant. Then, Tn# (�) has the same struture than �.Sine all variables are bounded, the above results imply the following:Theorem 5.1 The symboli reahability graph of a system of tasks for a lifo sheduler satisfying theone-preemption onstraint is �nite.Hene, the reahability (and therefore the shedulability) problem for our lass of systems is deid-able. More importantly, our result gives a fully symboli haraterization of the reah-set.5.3.5 Re�nement of lifo Admittane TestWe have \skipped" the analysis of deadlines; in this setion we give a re�nement of our lifo admittanetest.We propose to test at �i " the prediate:aeptlifo(T; �i) � :ative(T; �i) ^ :preempted(T; Tn) ^ shedulable(T; �i)that is, we do not aept a task if:� There is an ative instane of the same task, that is ative(T; �i) � i = �(Tk) for some k; 1 �k � n.� It will preempt an already preempted task, that is preempted(T; Tn) � ~p�(Tn) 6= 0.� It will miss its deadline or ause other tasks in T miss their deadlines, i.e,shedulable(T; �i) � 8�j 2 fT [�ig; rj +Bj + (EMj � ej) � Dj (5.19)that is we must alulate how many units of time the rj 's will be shifted after omputing thosetasks whih have higher priorities, inluding �i, and of ourse how many units of time must atmost exeute �j . The time a task �j will be suspended as a onsequene of the exeution of higherpriority tasks is alled the bloking time, Bj .

114 CHAPTER 5. THE HEART OF THE PROBLEM
.
.
.

.

.

. T1T2
TkTn
Tn+1

shedulable(�i)?

�jBlifoj
�i

Figure 5.6: Tasks in a lifo shedulerWe should note that a lifo sheduler is in some kind a dynami priority protool, sine the arrivalof a new task will, in priniple, preempt the urrently exeuting one. That is, priorities are given bytask arrival and hene by stak position, ��(T1) < ��(T2) : : : < ��(Tn).At task arrival, the shedulability test must assure no deadline missing for all ative tasks, whih,due to the one-preemption hypothesis it does not neessarily mean that the new task will be aepted.For eah task Tk 2 T , the bloking time when a new task �i arrives an be alulated as follows(j = �(Tk); 1 � k � n0) : Blifoj = X��0>�j(E� 0 � e� 0)under the lifo sheduler we know that ej = rj � r~pj 8 k < n; Tk 2 T; �(Tk) = j. Obviously e�(Tn) =r�(Tn) (if not, �i would violate the one preemption hypothesis and hene it should not be aepted) ande�(Tn+1) = 0, so (see �gure 5.6 for a graphial interpretation of these formula):Blifoj = n+1Xl=k+1(EM�(Tl) � e�(Tl))Blifoj = n�1Xl=k+1(EM�(Tl) � e�(Tl)) + (EM�(Tn) � e�(Tn)) +EM�(Tn+1)Using our exeution time invariant and the fat that ��(Tn) annot have been preempted (if this

5.4. EDF SCHEDULING 115were the ase, then surely �i annot be aepted), we have:Blifoj = n�1Xl=k+1(EM�(Tl) � (r�(Tl) � r�(Tl+1))) + (EM�(Tn) � r�(Tn)) +EM�(Tn+1)Blifoj = n+1Xl=k+1(EM�(Tl))� n�1Xl=k+1(r�(Tl) � r�(Tl+1))� r�(Tn)Blifoj = n+1Xl=k+1(EM�(Tl))� (r�(Tk+1) � r�(Tn))� r�(Tn)Blifo�(Tk) = n+1Xl=k+1(EM�(Tl))� r�(Tk+1) (5.20)Replaing in 5.19 with 5.20, using j = �(Tk) we have:8Tk 2 fT [�ig; rj + n+1Xl=k+1(EM�(Tl))� r�(Tk+1) + (EMj � ej) � Djwhih an be rewritten as8Tk 2 fT [�ig; n+1Xl=k (EM�(Tl)) + (r�(Tk) � r�(Tk+1) � e�(Tk)) � D�(Tk)but e�(Tk) = r�(Tk) � r�(Tk+1) and the test is redued to:8Tk 2 fT [�ig; n+1Xl=k (EM�(Tl)) � D�(Tk) (5.21)This test is pessimisti, sine we are using the worst ase exeution time for tasks in order to alulatebloking times and shedulability. If we onsider appliations where exeution times are ontrollable,that is, appliations where we an inuene in someway the time spent in the exeution, we ould useminimum exeution times. This ould be aeptable for appliations where exeution times are relatedto some quality of servie, for instane performing an approximative alulus instead of an exat oneor omposing an image in di�erent qualities.On the ontrary, if exeution times are unontrollable, then we need maximum exeution times,sine we must aept to work under a worst ase perspetive.5.4 edf ShedulingLet us analyse another sheduling poliy, earliest deadline �rst, edf, whih is onsidered to be optimalin the sense that if a set of tasks is shedulable under some poliy, then it is also shedulable underedf, [37℄.Under this poliy we know that tasks are hosen by the sheduler aording to their deadlines, withthat having the shortest deadline being in exeution. The poliy is generally preemptive, but we ouldimagine an edf sheduler not preemptive. We will onsider a one-preemption edf sheduler.

116 CHAPTER 5. THE HEART OF THE PROBLEM
30 6 8 10 12 14r3 := 0�3 "r1 := 0e1 = 0�1 "�1 �1 �2 "r2 := 0�3%�1 #

D3 � r3 = 10D1 � r1 = 9f�1; �3g D2 � r2 = 6D3 � r3 = 7 �4 "�3%�2 # �3 #�2 D4 � r4 = 3D3 � r3 = 4f�1g f�2; �3g f�3gFigure 5.7: One preemption edf ShedulerLet T be the set of ative tasks ordered by deadline; in fat, T is a queue and by onvention Tn is thehead of the queue and hene urrently exeuting; the rest of T is the tail. We also assume the existeneof the renaming funtion �, as explained for lifo and the universe T of tasks, suh that T � T.Coneptually speaking, the edf sheduler is quite simple, when a new task arrives it is aepted orrejeted by the sheduler for shedulability reasons and if aepted it is inserted in T aording to itsdeadline. One a task is �nished, the sheduler an hoose the next one, whih is that behind the head,and so on. Note that a task an be aepted and put in T in some position aording to its deadline,not neessarily preempting the task in the head of T .A one-preemption edf sheduler works quite similarly to an edf sheduler exept that if a new task� must preempt the urrently exeuting one whih has already been preempted, then � is rejeted evenif the whole system is shedulable. One again, the reason to do this is our manipulation of loks.Example 5.4 Let us onsider a set T = f�1(4; 12); �2(2; 6); �3(5; 10); �4(1; 3)g. In �gure 5.7 we see thebehaviour under a one preemption edf sheduling poliy. Some remarks:� At time t = 3, �3 " but its deadline (10) is longer than �1's, so it waits in the queue.� At time t = 4, �1 �nishes and �3, gains the proessor.� At time t = 6, �2 ", and its deadline (6) is shorter than �3's, so it preempts it. This is the �rstpreemption for �3 sine it is its �rst exeution. �3 rejoins the queue.� At time t = 8 �2 �nishes its exeution and �3 resumes its exeution.� At time t = 9 task �4 arrives and its deadline (3) is shorter than �3's (4) so it should preempt itbut �3 had already been preempted, son our sheduler rejets �4.� At time t = 11 �3 �nishes.As usual, we distinguish the arrival of a task � ", from the resuming of a task � %. Note that inour one-preemption edf sheduler is not optimal, sine the system is feasable (we ould have aepted�4) but we rejeted it.5.4.1 edf Transition ModelWe model an edf appliation as a transition system S; T;!) omposed of:

5.4. EDF SCHEDULING 1171. A olletion of states S = (S;~e; ~r; ~p; ~_e; ~w), where S, ~e, ~r, ~p, ~_e have the same meaning as for lifoand ~w is an auxiliary vetor of loks, ~wj notes the time when task �j begins its exeution, whihis di�erent from its released (or arrival) time; note that in lifo sheduling, the most reent arrivedtask preempts the exeuting one, so, immediately aepted, a task begins exeution. Under edfsheduling this is not the ase, sine an aepted task may go somewhere in the queue, being itsexeution delayed until more urgent tasks �nish their exeutions. Cloks w's will serve to notethis gap in time.2. A olletion of ative tasks T3. A transition relation !.We introdue the operations in our transition system; we note as � the urrently exeuting task,that is � = exe(T) = ��(Tn)� Task arrival, �i " (remember: �i 2 T and aept(S; T; �i)):(S; T;) �i"! (S 0; T 0)whereT 0 � T � �i and � is an ordered insert operation over T for �i aording to its deadline. S 0 =(S0; ~e0; ~r0; ~p0; ~_e0; ~w0) is de�ned as:~e0j =8<: ~ej if j 6= i0 for j = i ^D � r > Di (Exeute �i)? otherwise~w0j = 8<: ~wj if j 6= i0 if j = i ^D � r > Di (Exeute �i)? otherwise~r0j = � ~rj if j 6= i0 otherwise~p0j = 8<: i if j = ^D � r > Di (�iy�)0 if j = i~pj otherwise~_e0j = 8>><>>: 1 if j = i ^D � r > Di (Exeute �i)0 if j = i ^D � r � Di (Do not start �i)0 if j = ^D � r > Di (Stop �)~ej otherwise� Task ompletion: T # (S; T) T#! (S 0; T 0)where T 0 = tail(T) and

118 CHAPTER 5. THE HEART OF THE PROBLEM~e0j = � ? if j = ~ej otherwise~w0j = � ? if j = ~wj otherwise~_e0j = � ? if j = 0 otherwise~rj = � ? if j = ^ �p�(Tk) = ; 1 � k < n~rj otherwiseVariable ~p remains unhanged.� Task resumption: �i% (we assume �i = top(T), arrived and eventually preempted in the past).(S; T) �i%! (S 0; T)where ~e0j = � 0 if j = i ^ pi = 0 (�i was never exeuted)~ej otherwise~w0j = � 0 if j = i ^ pi = 0 (�i was never exeuted)~wj otherwise~_e0j = � 1 if j = i0 otherwiseVariables ~p and ~r remain unhanged.� Time passing: Æ is an elapsed time not enough to �nish the urrent exeuting task.(S; T) Æ! (S 0; T)where ~e0j = � ~ej + Æ if j = ~ej otherwiseand ~w0j = 8<: ~wj + Æ if j = ~wj + Æ if ~pj 6= 0? otherwise~r0j = ~rj + Æ 8�j ; �j 2 T and variables ~p and ~_e remain unhanged.

5.4. EDF SCHEDULING 119
30 6 8 10 12 14e3 :=?�3 "r1 := 0�1 "�1 �1 �2 "r2 := 0;w2 := 0f�2; �3g

�3%�1 #
D3 � r3 = 10D1 � r1 = 9f�1; �3g D2 � r2 = 6D3 � r3 = 7

�3%�2 # �3 #�2r3 := 0 w3 := 0 (e3 = w3 � r2) (e3 := w3 � r2)D4 � r4 = 3D3 � r3 = 4e3 := 0e1 := 0w1 := 0 �4 "f�1g f�3gFigure 5.8: Usage of di�erene onstraintsFor the instant being, our operations do not show the utility of de�ning the new auxiliary loks ~w;although this is explained in the next setion, let us give an example of their usage.The automata model de�ned behind our transition system is a swa where loks ~e are stopped atpreemption time. We want to eliminate this operation and replae it di�erene onstraint using ~w, aswe have done for a lifo sheduler.In �gure 5.8 we show example 5.7 using ~w; we an see that:� At time t = 3, �3 ", p3 = r3 := 0; w3 = e3 =?, and �3 joins the queue.� At time t = 4, �3% and we set w3 := 0 (note r3 = 1).� At time t = 6, �2 " and �2y�3; we see that e3 an be expressed as the di�erene w3 � r2 and wesee the utility of variable ~w, sine we ould not express the value e3 as r3 � r2, as we have donefor lifo, sine �3 arrived and was not immediately exeuted; we need another lok to mark the�rst exeution of �3. Observe that p3 := 2.� At time t = 8, �2 # and �3%; e3 is reovered from the invariant di�erene w3 � r2.� At time t = 9, �4 " and even if its deadline priority is shorter than �3's, it annot preempt it,(p3 = 2 6= 0).� At time t = 11, �3 �nishes.5.4.2 edf Admittane TestAs in lifo, eah time a new task, say �i, arrives, we perform an aeptane test aording to edf andone-preemption poliy. For EDF we propose:aeptedf(T; �i) � :ative(T; �i) ^ :preempted(T; �i)that is, we do not aept a task if:� There is an ative instane of the same task:ative(T; �i) � (9 Tk 2 T: 1 � k � n)(�(Tk) = i _ p�(Tk) = i)

120 CHAPTER 5. THE HEART OF THE PROBLEM� It will preempt an already preempted task (in fat �) :preempted(T; �i) � p 6= 0 ^D � r > DiThe �rst term, rejets a new instane of an unompleted task or a task whose release lok is stillative; the seond one deals with the one preemption hypothesis under edf whih is rather triky, sinea new task may have a shorter deadline than the urrently exeuting one, but the latter has alreadybeen preempted in the past, so the new task is rejeted (even if there is enough time to exeute it) orthe new task may go beneath � (whih was not possible under lifo).Later, we give a re�nement of this admittane test, onsidering deadlines, exeution times andsystem state.5.4.3 Properties of edf shedulerLet T be the set of ative tasks, with � = ��(Tn) = head(T) the task under exeution. We anenumerate the following properties:1. if pj = 0) ej = wj ;8�j ; �j 2 T2. if 9 pj =) ej = wj � rpj � ej = wj � r3. if �% ^p = 0) e = w =? ^:9pj = 4. 8pj 6= 0; j 6=) ej = wj � rpjProperty 1 says that a task �j in T whih has never been preempted respets ej = wj =?. In fat,if �j 2 T and �j 6= �, then �j arrived in the past, its deadline was not urgent enough to preempt theurrently exeuting task, and it was put in the queue aording to its deadline with ej = wj =?; onthe ontrary if �j = � and it has never been preempted, then ej = wj � 0.Property 2 is a onsequene of preemption; if pj = it means that � preempted �j , in fat, when�j was running, pj = 0 (one-preemption assumption) whih implies ej = wj (property 1); as �j waspreempted by �, its omputation time an be put as ej = wj � r (sine r = 0 when � arrived). Astime passes, while _ei = 0, ej = (wj + Æ)� (r+ Æ) = wj � r. This property shows that exeution timesan be re-written as di�erenes of some loks for those stopped tasks.Property 3 is a onsequene of the EDF poliy. It means that � resumes but it had never beenpreempted; so the senario is as follows: when � arrived, its deadline was longer than that of theurrently exeuting task and hene, it was put in the queue, but never exeuted, so e = w =?; as ithas not exeuted, it ould not have preempted any other task (in partiular the one exeuting at itsarrival time). Note that � an be preempted during its exeution.The last property 4 is our exeution invariant for EDF, whih says that for all preempted tasks,(exept the urrent exeuting task), we an express its omputed time as a di�erene. This is anextension of property 2 and 3, sine there may be tasks in T never preempted and never exeuted. Thisis a great di�erene ompared to lifo. This property an be put as:Iedf(T) � ^�j2T;pj 6=0 ej = wj � rpjreall that ej = wj =?; if �j 2 T ^ pj = 0.For the urrent exeuting task, even if preempted in the past, property 4 does not hold sine itsexeution lok is running.

5.4. EDF SCHEDULING 121Remark Note that property 4 obliges to keep lok rpj even if task �pj has already �nished; for thesame reason, we annot aept a new instane of this task if �j is still ative. This is a restrition of ourmodel (taken into aount by the admittane test), whih ould be relaxed if we reate a \preemptablelok" for eah task instane that preempts; a rather ostly solution.We onlude the setion with a theorem, analogous to that give for a lifo sheduler, without proof,sine we will give a detailed proof of the general ase in setion 5.5.Theorem 5.2 The symboli reahability graph of a system of tasks for an edf sheduler satisfying theone-preemption onstraint is �nite.5.4.4 Re�nement of edf Admittane TestAs in lifo, eah time a new task, say �i, arrives, we perform an aeptane test aording to edf andone-preemption poliy. For EDF we propose:aeptedf(T; �i) � :ative(T; �i) ^ negpreempted(T; �i) ^ shedulable(T; �i)The �rst two prediates have already been explained; in this setion, we develop a test regardingexeution times, deadlines and system state. The question is 'will the new arrived task, if aepted,ause other tasks in T miss their deadlines?In priniple, the prediate shedulable is:shedulable(T; �i) � 8�j 2 fT [�ig; rj +Bj + (EMj � ej) � Dj (5.22)where the bloking time for a task �j whih is in position k of T is expressed as:BEDFj = n+1Xl>k (EM�(Tl) � e�(Tl))Under the edf sheduler we know that for those �j 2 T preempted in the past, we have ej = wj�rpjand for those �j 's never preempted, ej = wj =?, so the preedent expression an be split into:BEDFj = n�1Xl=k+1;p�(Tl) 6=0(EM�(Tl) � e�(Tl)) + (EM�(Tn) � e�(Tn)) +n�1Xl=k+1;p�(Tl)=0EM�(Tl) +EM�(Tn+1)using the equality for preempted task we have:BEDFj = n�1Xl=k+1;p�(Tl) 6=0(EM�(Tl) � (w�(Tl) � rp�(Tl))) + (E�(Tn) � e�(Tn)) +n�1Xl=k+1;p�(Tl)=0EM�(Tl) +EM�(Tn+1)

122 CHAPTER 5. THE HEART OF THE PROBLEMBEDFj = n+1Xl=k+1EM�(Tl) � n�1Xl=k+1;p�(Tl) 6=0(w�(Tl) � rp�(Tl))� e�(Tn) (5.23)Unfortunately we an say nothing about the seond term in 5.23, so we will try to �nd some boundsfor this term in order to get neessary or suÆient onditions for our shedulability test. We deal withtwo fats:1. In 5.23 we have BEDFj � n+1Xl=k+1EM�(Tl) (5.24)sine all terms representing exeution times are positive. This fat gives a suÆient ondition forthe admission test; whih is too onservative but safe, in the sense that if we aept �i we knowall tasks in T , inluding the new one, will be sheduled within their deadlines.2. Using minimum exeution times: BEDFj � n+1Xl=k+1Em�(Tl) (5.25)sine minimum exeution times represent the fastest exeution, this bound is a neessary on-dition, more laxative but unsafe. If after onsidering minimum exeution times, the test ofshedulability is not satis�ed, then no admission is possible; if the test is satis�ed, then we anaept but we know that there may be some exeutions leading to error states and hene we needsome dynami ontrol.Reonsidering our shedulability test 5.22:8 �j 2 fT [�ig; rj + n+1Xl=k+1EM�(Tl) � n�1Xl=k+1;p�(Tl) 6=0(w�(Tl) � rp�(Tl)) + (EMj � ej) � Dj8 �j 2 fT [�ig; n+1Xl=k EM�(Tl) � n�1Xl=k+1;p�(Tl) 6=0(w�(Tl) � rp�(Tl)) + (rj � ej) � Dj (5.26)Now we analyse 5.26 to �nd some bounds; we onsider two ases:1. pj = 0� for k < n, we know ej = 0 and so 5.26 beomes:8 �j 2 fT [�ig; n+1Xl=k EM�(Tl) � n�1Xl=k+1;p�(Tl) 6=0(w�(Tl) � rp�(Tl)) + rj � Dj (5.27)� for k = n, we know ej = wj � 0 and expression 5.26 is:(EMj +EM�(Tn+1) � (wj � rj) � Dj (5.28)

5.5. GENERAL SCHEDULERS 1232. pj 6= 0, we know ej = wj � r�(Tk+1) so 5.26 beomes:8 �j 2 fT [�ig; n+1Xl=k EM�(Tl) � n�1Xl=k;p�(Tl) 6=0(w�(Tl) � rp�(Tl)) + rj � Dj (5.29)Now onsidering our bounds 5.24 and 5.25 we have:� 8 �j 2 fT [�ig; n+1Xl=k EM�(Tl) � n�1Xl=k;p�(Tl) 6=0(w�(Tl) � rp�(Tl)) + rj � n+1Xl=k EM�(Tl) + rj| {z }� (5.30)If 8 �j 2 fT [�ig; � � Dj then we an aept the new task �i. On the ontrary, we rejet it, butwe know we are being too restritive.� 8 �j 2 fT [�ig; n+1Xl=k EM�(Tl) � n�1Xl=k;p�(Tl) 6=0(w�(Tl) � rp�(Tl)) + rj � n+1Xl=k Em�(Tl) + rj| {z }� (5.31)One again, if 9 �j 2 fT [�ig; � > Dj , we do not aept �i.These hypothesis ould be used aording to the nature of exeution times; if exeution times areontrollable, that is we an inuene the time spent in the exeution, we ould use minimum exeutiontimes. This ould be aeptable for appliations where exeution times are bound to some quality ofservie, for instane performing an approximative alulus instead of an exat one or omposing animage in di�erent qualities.On the ontrary, if exeution times are unontrollable, then we need maximum exeution times,sine we must aept to work under a worst ase perspetive.5.5 General shedulersIn this setion we onsider general sheduling poliies, that is, preemptive shedulers based on somepriority assignment mehanism whih an be �xed or dynami. We will relax the onstraint of one-preemption imposed to lifo and edf shedulers and we onsider unertain, but bounded, exeutiontimes.Instead of using a stopwath automaton as we have done in the previous setions, we use a modelbased on timed automata as shown in �gure, 5.9 where to eah task �i we add a lok wi whih initiallyounts the aumulated omputed time for a task. The main idea is to replae a stopped lok by anoperation of di�erene of two running loks, to keep trak of already exeuted time.Cloks w's are used as follows: preemption is only possible at arrival of a new task, say �j and eahtime a task �jy�i, ei is aumulated in wi, �j gains proessor and when �i is resumed, we reover eias the di�erene wi � rj ; lok ei is then never stopped but updated. This proedure relaxes the onepreemption hypothesis but still obliges to keep lok rj even if task �j has �nished its exeution andhene it is not ative.

124 CHAPTER 5. THE HEART OF THE PROBLEM

Pending

Executing

ErrorIdle

ei := ri := 0aept(�i)�i " ^ �i " _ri > Di
�i " ^aept(�i)ri := 0

ri � Di�i # ^exe(�i)
�i " _ri > Di

ei 2 [Emi ; EMi ℄ wi := eiei :=? ei := wi � rpi�i%
Figure 5.9: Automaton for a General ShedulerExample 5.5 Let us onsider T = f�1(4; 13); �2(5; 10); �3(2; 10); �4(3; 6)g; we show how the introdu-tion of w's loks an help to relax the onstraint of one-preemption under an edf sheduler, see �gure5.10.� At time t = 0, �1 ", r1 = e1 := 0� At time t = 2, �2 " and its deadline 10 is shorter than �1's (11), so, �1 is preempted and joins thequeue; w1 := e1 = 2. From there on the value of e1 = w1 � r2.� At time t = 4, �3 " and its deadline 10 is longer than �2's, so it joins the queue (after �1).� At time t = 5, �4 ", its deadline 6 is shorter than �2's, whih is preempted and we set w2 := e2 = 3;from there on e2 = w2 � r4.� At time t = 8, �4 # and e2 is updated as w2 � r4 = 6� 3; taui2 resumes exeution.� The rest of the tasks proeed in a similar manner. Note that at time t = 12, �3 gains the proessorfor the �rst time, e3 and w3 are inde�ned.5.5.1 Transition ModelFormally the transition system is of the form (S; Q;!) omposed of disrete events and time passingtransitions, as already mention in the preedent setions.� S = (S;~e; ~r; ~p; ~w), where S, ~e, ~r and ~p have the same meaning as in edf and ~w is the auxiliaryvetor to reonstrut the exeution times after preemption,� Q is a queue of tasks, with the usual operations: �, for adding an element, pop to remove theelement at the head, top, to hoose the task at the head.

5.5. GENERAL SCHEDULERS 125
30 6 8 10 12 14

�3 #�1 "r1 := 0e1 := 0 �2 " �3 " w2 = 6
�2 # �1 #�1% �3%�2%�4 # r2 = 8w1 = 10r2 := 0 r4 = 3�4 "w1 := e1�2 > �1 w2 := e2�4 > �2f�1g f�2; �1g f�4; �2; �1; �3g f�2; �1; �3g f�1; �3g f�3g

�1 �2 �4
(e1 = w1 � r2) (e2 = w2 � r4) e1 := 2e1 := w1 � r2e2 := 3f�2; �1; �3g e2 := w2 � r4

Figure 5.10: General edf Sheduler� ! is the transition relation.We list the operations over our transition system; reall that the arrival of a task is aptured by thesheduler, who deides over the admission. We assume also that the shedulers 'knows' the priority ofeah task (dynami or �xed); of ourse, the urrently exeuting task, denoted �, is on the head of thequeue and has the highest priority; priority of task �i is noted �i, as usual; the operation � works ona queue aording to a sheduling poliy.� Task arrival, �i " (�i 2 T): (S; Q) �i"! (S0; Q0)whereQ0 = Q� �i. ~e0j =8<: ~ej if j 6= i0 if j = i ^ �i > � (exe(�i))? otherwise~r0j = � 0 if j = i~rj otherwise~p0j =8<: i if j = ^ �i > � (�iy�)0 if j = i (no task preempted �i)~pj otherwise~w0j = 8<: ~ej if j = ^ �i > � (�iy�)? if j = i~wj otherwiseNote that w := e if � is preempted by �i and wi =?.

126 CHAPTER 5. THE HEART OF THE PROBLEM� Task ompletion: � # (S; Q) �#! (S0; Q0)where Q0 = pop(Q) and ~e0j = � ? if j = ~ej otherwise~w0j = � ? if j = ~wj otherwise~rj = � ? if j = ^ �p�(Tk) = ; 1 � k < n~rj otherwiseVariable ~p remains unhanged.� Task resumption: �i% (we assume �i = top(Q) is a task whih regains the proessor).(S;Q) �i%! (S0; Q)where ~e0j = 8<: ~wj � ~r~pj if j = i ^ ~pj 6= 0 (�~pj y�i)0 if j = i ^ ~pj = 0 (�i was never preempted)~ej otherwiseVariables ~r, ~p and ~w remain unhanged.� Time passing: Æ is an elapsed time not enough to �nish the urrent exeuting task, �.(S;Q;~e; ~r; ~p; ~w) Æ! (S0; Q; ~e0; ~r0; ~p; ~w0)where ~e0j = � ~ej + Æ if j = ~ej otherwiseand ~r0j = ~rj + Æ and ~w0j = ~wj + Æ 8�j 2 QRemark I Note that lok wi is initially set to bottom at �i arrival, and it is updated to ei if thistask is preempted, so saving the umulated exeuting time; from there on wi grows (while ei is ?)and when �i regains proessor its umulated time is reovered from the di�erene between wi and thereleased lok of the preempter (kept in ~pi). This implies that released loks annot disappear untilthe preempted task regains the proessor. This ondition must be tested at admission time of a newtask. Figure 5.11 shows the evolution of loks.A possibly more elegant way of solving the problem onsists in systematially adding the newvariable hi for eah task, and use it in the time-invariant equations of the form e = w � hi. In thisase, the r variables are eliminated at ompletion time but many 'instanes of h' may be neessary

5.5. GENERAL SCHEDULERS 127

�i "ri := 0 �i% �jy�irj := 0 �i%
ri rjwi

tei := 0

eiei = wi � rjwi := ei
pi := j ei := wi � rpi:exe(�i)Figure 5.11: Evolution of ~w and ~eto be reated as �i may be a very eager task with high priority preempting di�erent tasks at eaharrival. This approah unneessary ompliates the proofs (as it requires arrying through additionalinvariants). Besides, it is not very useful in pratie as it augments the omplexity by inreasing thenumber of loks.Remark II We will show that the fat of simulating a stopped lok ei by a di�erene onstraint ofthe form wi � rpi , both running does not disturbe the semantis of the systems; indeed we will provethat the relationships where ei is involved an be replaed by this expression while ei is stopped andstill the problem of shedulability, view as the problem of reahability of an error state is deidable.5.5.2 Properties of a General ShedulerLet Q be the queue of ative tasks, Q 2 T where � = top(Q). We an enumerate the followingproperties:1. if pj = 0) ej = wj ;8�j ; �j 2 Q2. if 9 pj =) ej = wj � r3. if �% ^p = 0) e = w =? ^:9pj = ; for any �j 2 Q4. 8�j 2 fQ� top(Q)g ^ pj 6= 0) ej = wj � rpjProperties 1, 2 and 3 are ompletely analogous to the orresponding edf sheduler properties. Thelast property 4 an be reformulated to reate our general exeution invariant:Ish(Q) � ^�j2Q0;pj 6=0 ej = wj � rpj ^ ^�j2Q0;pj=0 ej = ?

128 CHAPTER 5. THE HEART OF THE PROBLEMwhere Q0 = pop(Q).The invariant says that for those tasks waiting for exeution and preempted their umulated exeutedtime an be express as a di�erene of loks; evidently, for those tasks never exeuted at all theirumulated exeuted time is unknown.5.5.3 Shedulability AnalysisLet 	 as explained in lifo analysis and let � be a onstraint haraterizing a set of states. We de�ne�i " (�) to be the set of states reahed when task �i arrives, that is:�i " (�) = fs0 : 9s 2 �: s �i"! s0gLet � be of the form Ish(Q) ^ , with 2 	; that is � haraterizes a state with the exeutioninvariant for all waiting tasks and lok relationships expressed as di�erenes.Without loss of generality, we an assume that either:1. �i is rejeted: =) :aept(;Q; �i), in whih ase we have �i "(�) � �.2. �i is aepted: =) aept(;Q; �i). Does �iy�?if :�iy�; then �i " (�) � Ish(Q� �i) ^ ri = 0 ^ ei =? ^wi =? ^ � Ish(Q0) ^ if �iy�; then �i " (�) � Ish(Q� �i) ^ ri = 0 ^ ei = 0 ^ [e := w℄ � Ish(Q0) ^ 0where [e := w℄ is the substitution of e for w in . In summary:�i " (�) � Ish(Q0) ^ 0Hene, we have:Proposition 5.5 �i "(�) has the same struture than �, that is, it is the onjuntion of an exeutioninvariant and a formula in 	.Now, let �% be the set of states reahed from � by letting time advane, that is:�%= fs0 : 9s 2 �; Æ � 0:s Æ! s0gClearly, if � is of the form Ish(Q) ^ , we have that�%= (Ish(Q) ^)%� Ish(Q) ^ %As 2 	 over loks in S, we an express these di�erenes in a dbm. The following propositiongives this equivalene:Proposition 5.6 Let � be of the form I ^M , where M is a dbm and I is an exeution invariant undersh. Then, �i " (�) and �% have the same struture as �.

5.5. GENERAL SCHEDULERS 129Thus, given a sequene � of task arrivals the set of reahed states �(�) an be represented bythe onjuntion of the exeution invariant Ish(Q), haraterizing the already exeuted time of thesuspended tasks and a dbm M , haraterizing the relationships between the orresponding r's and w'sloks.A dbm M has the following form (sine en = rn we omit it; in order to failitate omprehension,we \name" loks aording to the position of their orresponding tasks in Q):M u r1 w1 r2 w2 : : : rn wnu � Mur1 Muw1 Mur2 Muw2 : : : Murn Muwnr1 Mr1u � � Mr1r2 Mr1w2 : : : Mr1rn Mr1wnw1 Mw1u � � Mw1r2 Mw1w2 : : : Mw1rn Mw1wnr2 Mr2u Mr2r1 Mr2w1 � � : : : Mr2rn Mr2wnw2 Mw2u Mw2r1 Mw2w1 � � : : : Mw2rn Mw2wn...rn Mrnu Mrnr1 Mrnw1 Mrnr2 Mrnw2 : : : � �wn Mwnu Mwnr1 Mwnw1 Mwnr2 Mwnw2 : : : � �One again, M is onstruted in a very speial way and has a partiular struture. Let us analyseit: � The new matrix M is onstruted as new tasks �i's arrive; we denote M 0 =M�i" the values in Mimmediately after aeptane of �i.� When �i ", we have two possible situations (assuming it is aepted):{ �iy�, then ri = ei := 0, we need to stop e and reate w with value e, we have thate = w � ri �M 0wri =Meri , but ri = 0 and so M 0wri =Meri =Meu =M 0wu.{ :(�iy�), then ri := 0; ei :=?, we have r� ri �M 0rri , ri = 0 and so we haveM 0rir =Mru.This relation is also respeted in the preedent ase.� When � #, we have again two situations:{ �pj = ; �j 2 Q: (Ish(Q) ^)[w :=?; r :=?℄ � Ish(pop(Q)) ^ 0{ 9pj = ; �j 2 Q: (Ish(Q) ^)[w :=?℄� When �i%, one again two situations are possible:{ pi = j;: (Ish(Q) ^)[rj := wi � ei℄ � Ish(pop(Q)) ^ 0{ pi = 0: Ish(Q) ^ ^ ei := 0So, the haraterization of eah state as time passes or new tasks arrive or resume ispreserved as di�erenes of running loks. At eah operation, the representation under adbm keeps the struture of bounded di�erenes

130 CHAPTER 5. THE HEART OF THE PROBLEMNow, what is the struture of M after a task ompletion? Is it still a dbm?We will prove that this operation still enables us to haraterize the states as bounded di�erenesin a dbm, so establishing that �i # (�) is still the onjuntion of an invariant and a formula in 	.Let us expose the senario when a task �i �nishes. At that moment, the sheduler will hooseanother task, say � to regain the proessor; this task had been eventually preempted in the past byanother task, say � and the relation e := w � r shows the omputed time for � . Clok r an now beeliminated from M and replaed by w � e. What happens to all di�erenes in M where �r is named?We have the following relations involving �r:1. Base relations: w � r �Mwr) e� u �Mwr (5.32)r � w �Mrw) u� e �Mrw (5.33)u� r �Mur) e� w �Murr � u �Mru) w � e �Mru2. Let x be another lok di�erent from w and u:x� r �Mxr) x� (w � e) �Mxr (5.34)r � x �Mrx) (w � e)� x �Mrx (5.35)We an onsider that these di�erenes an be deomposed in the following ways:1. In 5.34 and onsidering 5.32:x� w � Mxwe� u � Mwr �) x� (w � e) �Mxw +MwrMxw +Mwr � Mxr (5.36)2. In 5.35 and onsidering 5.33w � x � Mwxu� e � Mrw �) (w � e)� x �Mrw +MwxMrw +Mwx � Mrx (5.37)Both expressions are not di�erene onstraints but we will show that in 5.36 and 5.37 � representsequality; that is, we will prove that: Mxw +Mwr = Mxr (5.38)Mrw +Mwx = Mrx (5.39)and hene they are dedutible from M , no need to keep them in the M 0�i#.To prove this we will onsider a task � whih regains the proessor after being interrupted byanother task �� , point I in �gure 5.12; a third task �̂ will be used to express the evolution of di�erenes

5.5. GENERAL SCHEDULERS 131�̂ " �� " �̂ " �%��y��%�̂ " w := e�r = �e := 0a1 2 3 br̂ = ê := 0e := e0r̂ = ê := 0 r̂ = ê := 0 e := w � �rIFigure 5.12: Analysis of dbm Mas � is exeuting or waiting. In the �gure we show the three di�erent possibilities of arrival for suha task �̂ in the system, namely 1, 2, 3; � % at point a indiates the last exeution for � when itwas preempted by �� ; its umulated exeuted time is e0. We are analysing lok relationships when �prepares to resume its exeution (point b in �gure 5.12), after it was preempted by ��It is of extreme importane to remark two properties onerning our senario:� Monotony: loks grow at the same rate; in our model the derivative of a lok is always 1 (ifit is running) or 0 (if it is stopped).� Continuity: From point a to point b loks for � were not reset neither updated. They werenot reset, beause any new instane of � should have been rejeted by the sheduler, sine aprevious instane is still ative (and reset is only applied at task arrival). On the other hand,loks were not updated, beause the only possibility is to update e by the operation e := w� �r orw by the operation w := e, but we are supposing that in between no resuming of � ours; in fatpoint b is the �rst exeution after the last preemption, point I, so no suh update operation ispossible.In interval [a, b℄, loks r and w are running monotonously and ontinuously while lok e isstopped. This means that di�erenes suh as r�x and w�x where x is also running, do not invalidatethe respetive bounds Mrx and Mwx; also, x annot be a stopped lok, sine if it were, it would be anexeution lok e0 of a preempted task � 0 and in that ase, we should have replaed it by its appropriatedi�erene involving two ontinous loks. In point b lok �r an be eliminated and replaed by w � ein M whih leaves us with three term di�erenes suh as 5.34: we will prove that these di�erenes anbe dedued by simple bounded di�erenes.We know that if ��y� then it must be ��� > �� . At preemption time, that is when �� ", we set w := e,�r = �e := 0 and �w := ?.We note that arrival times are indeed intervals, sine our exeution times are unknown but bounded;remember that values inM are haraterized by a super-index indiating its value at a ertain moment;for instane M ��"eu means \the maximum value for e at arrival of ��".We will prove equality for expression 5.38 but it is absolutely simetri for 5.39.Case 1We distinguish two ases aording to priority relationships; either ��̂ > �� or ��̂ < ��1. ��̂ > �� , this means that at �%, task �̂ did �nish its exeution but there may be anohter task~� preempted by �̂ still ative, with priority �~� < �� ; under this senario lok r̂ is still running,but lok ŵ has disappeared.

132 CHAPTER 5. THE HEART OF THE PROBLEMFigure 5.13 shows the situation graphially.
�� "�̂ " � % M ��"ue M ��"euM ��"r̂u�

 � �%bIa Figure 5.13: Case 1 ��̂ > ��M�%r̂w +M�%w�r �M�%r̂�r� M�%r̂w =M ��"r̂e =M�%r̂eThis suession of equalities is based on our properties of monotony and ontinuity; in fat,the di�erene r̂ � w at �% (point b) is the same sine w was reated, that is in point Iwhen �� ", whih equals the value e; this di�erene is onstant as both e and r̂ were running(point a). The same reasoning as a hain of equalities is kept all over the proof.� M�%w�r =M ��"eu = �+ e0� M�%r̂�r =M ��"r̂u� In �gure 5.13 we have: M ��"ue = + e0and M ��"r̂u � � = �� !M ��"r̂u = �� + �adding e0 gives M ��"r̂u = (�+ e0)| {z }M�%w�r �(+ e0) + �| {z }Mr̂w !M�%r̂w +M�%w�r =M�%r̂�rproving that in fat the relationship � is equality.2. ��̂ < �� , this means that at �%, task �̂ did not �nish its exeution and hene loks r̂ and ŵ areboth ative. The analysis for r̂ is the same as above; let us see what happens to ŵ. Figure 5.14shows the situation graphially. M�%̂ww +M�%w�r �M�%̂w�rIn �gure 5.14 we have:

5.5. GENERAL SCHEDULERS 133
�� "�̂ " � % M ��"ue M ��"eu�� 00 "� 00y�̂ M�%ŵu �%a bIFigure 5.14: Case 1 ��̂ < ��� M�%̂ww =M ��"̂we =M�%ŵe =M�%ŵu � e0The di�erene between ŵ and w at the moment of resuming � (point a) is the same as thedi�erene when w was reated, point I, that is at arrival of �� ; by the property of monotonythis di�erene is kept sine both e and ŵ were running, that is � % at point a. Finally,by monotony this value is the same as the di�erene between the initial value for ŵ, that isM�%̂wu and e0.� M�%w�r =M ��"eu = �+ e0 and� M�%̂w�r =M ��"̂wu =M�%ŵu + � adding e0 gives:M�%̂wu + �| {z }M�%̂w�r =M�%̂wu � e0| {z }M�%̂ww +�+ e0| {z }M�%w�rhene proving M�%̂ww +M�%w�r =M�%̂w�rCase 2Reall �gure 5.12; we have also two possibilities for �̂1. ��̂ > �� , this situation is not possible under our senario sine we are onsidering � preemptedby �� during its last exeution.2. ��̂ < �� , then �̂ did not exeute at all: its priority being smaller, it must wait at least for � to�nish; only r̂ is running. Figure 5.15 shows this situation graphially;
�� " M ��"eu� % �̂ " M ��"ue �

M ��"r̂u �%�
Figure 5.15: Case 2 ��̂ < ��

134 CHAPTER 5. THE HEART OF THE PROBLEMM�%r̂w +M�%w�r �M�%r̂�r� M�%r̂w =M ��"r̂w =M ��"ue = �(� + e0)� M�%w�r =M ��"eu = �+ e0� M�%r̂�r =M ��"r̂u� In �gure 5.15 we have: �� � =M ��"r̂u(�+ e0)| {z }M�%w�r � (� + e0)| {z }M�%r̂w =M ��%r̂uhene proving M�%r̂w +M�%w�r =M�%r̂�rCase 3One again, we have two possibilities for �̂1. ��̂ > �� , in this ase �̂ did �nish at �% and if �̂ preempted a task, it should be one with higherpriority than � , so both tasks have �nished by the moment �%, (point b) and no lok r̂ exists.2. ��̂ < �� , then �̂ did not exeute at all, only lok r̂ is running. Figure 5.16 shows the senario.
�% M ��"eu �̂ "M �̂"ur̂ M �̂"r̂uM �̂"ur̂

� � �%�� "Figure 5.16: Case 3 ��̂ < ��M�%r̂w +M�%w�r �M�%r̂�r� M�%r̂w =M �̂"r̂w =M �̂"uw = �(� + e0)� M�%w�r =M �̂"w�r =M ��"eu = �+ e0� M�%r̂�r =M �̂"u�r� In �gure 5.16 we have: �� � =M �̂"ur̂

5.5. GENERAL SCHEDULERS 135(�+ e0)| {z }M�%w�r �(� + e0)| {z }M�%r̂w =Mur̂�̂"hene proving M�%w�r +M�%r̂w = M�%r̂�rThus, we have proved that the reahability problem in our transition system (S; Q;!) using aderementation of the form e = w � �r for preempted tasks, is solvable. Relationships among runningloks an be enoded using a dbm; we have proved that relationships involving stopped loks whenreplaed by their di�erenes do not give a di�erene onstraint, but these di�erene onstraints an bededued from other di�erene onstraints in M , thus they an be eliminated. The following theoremresumes our theory:Theorem 5.3 Given a task model as de�ned in 5.5.1 and a general sheduling poliy, the reahabilitygraph of the system an be symbolially haraterized using prediates of the form I ^M where I is aonjuntion of equalities e = w � �r and M is a dbm. Moroever, the reahability graph is �nite.As a orollary: the shedulability problem for this lass of systems is deidable.5.5.4 Properties of the ModelWe have shown that the relationships among release loks for \free" tasks, that is tasks whih havenot preempted eah other, an be implied by the sum of relationships between a preempted task, itsalready omputed time and the orresponding release loks. This is a very useful property beause itredues the amount of relationships in M . In fat, all those di�erenes envolving released loks of freetasks an be dedued from a base set of bounds, involving only released loks from free tasks and wlok from a preempted task and hene matrix representation is also redued.The properties of ontinuity and monotony are exploted for our reahability analysis, implying thatit is possible to onstrut the reahability graph.
s s’. . .

x:=0

continuity & monotony

Msyx = � Ms0yx = �Figure 5.17: Niety propertyIn general if we onsider two states s and s0 in a timed automaton, see �gure 5.17, where lokx is reset in s and no reset or update operations are done in between, we an see that the di�ereneis kept; this phenomena is due to the fat that both loks show a monotonously inreasing property(time passing) and also a ontinuity property (no update is done). Under this ontext, another lokz (not neessarily ontinuous) shows the property: Mzy = Mzx +Mxy and hene no need to keep thisdi�erene, (intuitively it is as if the stopped time for z were \absorbed" by x and y, both running).

136 CHAPTER 5. THE HEART OF THE PROBLEM5.6 Final Reipe!Now that we know the problem an be modelled as the transition system de�ned in setion 5.2, we ansketh an operational approah of our system.1. Given a rt problem, we an partition it into tasks haraterized by timing onstraints. If theproblem is expressed in Java, we an use tehniques suh as [28, 32℄ to ut up the appliation intosmaller tasks.2. Eah task is assigned a �xed or a dynami priority whih is used by the sheduler; naturally, weimpose that at arrival of a task, a priority is known.3. The sheduler keeps a queue Q of tasks, preempted or not, ordered by priority, being the taskwith highest priority on the head of Q.4. As a new task �i arrives, an admittane test is performed to analyse if its exeution leaves thesystem in a safe state, that is, a state where all tasks in Q, inluding �i, �nish their exeutionsbefore their respetive deadlines and that no information of preemption is lost. We have givenan admittane test for edf. +5. If �i is aepted:� it preempts the urrently exeuting task � if �i > �; we update the information of preemp-tion marking that p := i and also setting lok w := e; �i joins the queue Q as the newhead and � is behind it.� it does not preempt � if �i � �; in this ase, �i joins the queue Q somewhere aording toits priority.6. When � �nishes, the sheduler an eliminate it from Q but its release lok is kept if 9pj = forsome task �j 2 Q; otherwise all loks an be eliminated.7. When a task �i resumes exeution, its already exeuted time an be reovered from the di�ereneei := wi � rpi if pi 6= 0; otherwise ei := 0.

Chapter 6ConlusionsIn this thesis we have followed two main researh lines:� Shedulability of Java-like real time programs� Deidability of General Preemptive ShedulersThe approah to shedulability of a Java-like program is inspired in the use of the synhro-nization primitives provided by the language to attain good ommuniation among threads and the useof ommon resoures.Primitives that provide synhronization an have two general forms: a primitive to delare a taskis waiting for a response from another task, and onversely a primitive to signal an event to a task.The �rst primitive is ommonly alled wait, await, reeive, in di�erent languages and even they havedi�erent semantis, they do share a feature: the task interrupts its exeution and waits until it \hears"a response from another task(s); this event permits the task to awake itself and be ready to resume itsexeution. The seond primitive, ommonly referred to as notify, emit, send has as mission awake atask whih is (presumably) waiting for this event; in general it is not a bloking operation, that is, thetask emiting it ontinues its exeution.This simple synhronization mehanism permits to implement proper ommuniation among tasks:if a task needs to start as a onsequene of an (external) event, then an easy solution is to wait untilthe event happens. We an also use it in a produer/onsumer environment where the output of a taskis needed as input for another, and we an also use it when some kind of 'order' among tasks is neededto assure funtional orretness.Besides synhronization, tasks may aess some ommon resoures (data) in a ompetitive man-ner, that is, as tasks need data to operate on, they demand them to the data manager who deidesabout granting or rejeting this demand; tasks do not neessarily ommuniate eah other as in theproduer/onsumer hypothesis where ooperation is expliit, instead they may run independently andthe aess to resoures does not imply some other order to assure funtional orretness.These two fats, inspired us to model a Java like program into funtional omponents, that is, pieesof program performing some well de�ned task; the program is \ut" into two main levels: appliationlevel and task level. The �rst level spreads a program into major omponents, alled threads in ourmodel; eah omponent has its timing onstraints and logially performs some general funtion. Theseond level spreads a omponent into minor modules, alled tasks in our model; these modules mayuse some (shared) resoures and an synhronize with other modules from other threads.137

138 CHAPTER 6. CONCLUSIONSThe \ut" of a thread into tasks may be guided by the use of ommon resoures or synhronizationprimitives. In order to failitate a ooperative ompetition among tasks, we need to irumsribe thearea where a shared resoure is used; if a shared resoure is used in a piee of ode of a thread, thenthis area an be abstrated as a task. To failitate synhronization, if a blok of ode is preeded byan await operation, we an abstrat it as task.We have reated a graphial and behavioral model of a Java-like real time program, using bothsynhronization and ommon resoures; we have haraterized this model by two timing onstraints:periods for threads and exeution times for tasks and also by the set of resoures used by eah task.For suh a model, we have given a stati priority assignment algorithm based on the operations ofsynhronization; this priorities an be inserted in the Java ode to produe a sheduled Java program.For shared resoures we have given a heuristi tehnique based on a wait for graph to deide aboutdeadloks in an o�-line manner but this priority assignment ould be used in the ontext of a priorityinheritane protool to assure deadlok freedom during exeution. One interesting property of ourassignment mehanism is the fat that this order is not omplete, that is, tasks involved in synhro-nization are tied to �xed priorities while independent tasks are free and an be dynamially assignedsome onvenient priority.The seond axe of this thesis is the problem of shedulability for preemptive shedulers;for these shedulers the orresponding omputation model is stop wath automaton for whih thereahability problem is undeidable, and hene, we ould not in general, answer the question \an wereah a �nal state where all tasks have �nished before their deadlines expire?". Even if some resultsapply to this question, we are onstrained by the fat that exeution times are bounded but unknownpreisely; we have not rely on a worst ase exeution time hypothesis, but on an interval of exeution.We have reated a model of real time tasks haraterized by an interval of exeution time, based onthe idea of best and worst exeution time and also a deadline; periodiity is not a partiular restritionof our model; we only need to know a priority for eah task, whih an be stati or dynami.For this model, we have presented a transition system where states are haraterized by a loationand a set of loks: release and exeution loks, (as it is lassial in these models), and aumulatedexeution lok; besides we have one variable to note preemption. We have haraterized this transitionsystem by three event operations: task arrival, resuming and ompletion and a timed operation:� Adding one lok per task whih ounts the aumulated exeution time of a task, serves as amean to let a general preemptive sheduler work orretly.� This lok is used to update the value of the exeution lok of a task when it resumes exeutionafter preemption.We have shown that the reah set of a system of tasks with unertain but lower and upper boundedexeution times, and sheduled aording to a preemptive sheduler, an be haraterized by onstraintsinvolving:1. time-invariant equations that apture preisely the already exeuted time of suspended tasks, and2. a dbm haraterizing the di�erenes among the release times of all the ative (i.e., suspended orexeuting) tasks, as long as there exists for eah task at most one instane in the system.3. The struture of the dbm is foreseeable, in the sense that there is a (small) set of basi di�ereneonstraints whih derive other relationships (not neessarily di�erene onstraints).

6.1. FUTURE WORK 139This result implies the deidability of the reahability problem for this lass of systems. The niestruture of the dbm's generated by the analysis permits a spae-eÆient implementation, reduing thespae needed to represent a dbm from 4n2 up to 4n, in the ase of lifo sheduling poliy; moreover,for lifo, our result does not require introduing any additional lok. For general shedulers, ourharaterization requires using at most one more lok per task. Atually, the number of additionalloks depends on the number of delayed tasks allowed to be suspended at any time. This number maybe ontrolled via the admission ontrol test. Indeed, the number of extra loks may be ompensatedby the more ompat representation of the state spae.Besides this, we have given an admittane test for an edf sheduler; this test is based on deadlinesand on bloking times; we have given two bounds for admissibility, taking advantage of our interval ofexeution: an optimisti (but unsafe) bound whih is appliable under the hypothesis of ontrollableexeution time or in ase of dynami deadline ontrol; the pesimisti (but safe) bound whih is basedon the worst ase exeution time or in ase of unontrollable exeution time.The idea of ontrollable and unontrollable exeution time is useful to haraterize some real timeappliations. Classial real time theory deals with (worst) exeution time or unontrollable exeutiontime, that is, the user or the appliation itself annot inuene the exeuting time; but many (modern)appliation are haraterized by the idea of a ontrollable exeution time, that is the appliation, theenvironment (and even the user) an inuene this time, by given \more or less aproximative results"(for instane, in multimedia, lowering the quality of rendering images); the orretness is not alteredby this approximation, and more importantly, it may lead to shedulability when worst exeution doesnot.The admittane test is thought to help the appliation to attain shedulability using the exeutionbounds and ontrollability.We have proved that a general sheduler implemented using our method is deidable, in the sensethat the shedulability problem expressed as reahability problem is deidable.6.1 Future WorkWe an mention that as future work, we an:� Give an implementation of our method; indeed, our method is part of a projet to reate a hainof programs to manage real time appliations; starting by a desription of the appliation, itsmodel, the onstrution of the sheduled program. The implementation must take advantageof the niety property to reate appropriate data strutures; then we shold validate it to someappliations to prove properties suh as liveliness and in general all properties preserved by thereahability graph as mentioned in [17℄.� Controllability and unontrollability of time is not suÆiently exploited in our model, that is, themodel does not inlude ontrollability of exeution time; we use it for the admittane test, butwe ould design a model based on this idea.� We base our model on timed automata but we an imagine another base model suh as push-down automata. Roughly speaking, the automaton would have arrival, resuming, ompletionand time passing as operations and the idea is to test the reahability to a �nal state to dedueshedulability. The stak ontains 3-uples of the form (ei; ri; wi) for eah ative task �i.

140 CHAPTER 6. CONCLUSIONS

Bibliography[1℄ Yasmina Abdedda��m and Oded Maler. Job-shop sheduling using timed automata. In SpringerVerlag, editor, Leture Notes in Computer Siene. Speial Edition for CAV'2001, volume 2102,pages 478{492, 2001.[2℄ Yasmina Abdedda��m and Oded Maler. Preemptive job-shop sheduling using stopwath automata.In Springer Verlag, editor, Leture Notes in Computer Siene. Speial Edition for TACAS 2002,volume 2280, pages 113{126, 2002.[3℄ Advaned Real-Time Systems - Information Soiety Tehnologies. Artist Projet: Advaned Real-Time Systems, IST-2001-34820.[4℄ G. Agha. A model of Conurrent Computation in Distributed Systems. MIT Press, 1986.[5℄ G. Agha. Conurrent objet oriented programming. Communiations of the ACM, 33(9):125{141,1990.[6℄ A.V. Aho, J. E. Hoproft, and J. D. Ullman. The design and analysis of omputer algorithms.Addison-Wesley, 1974.[7℄ Karine Altisen, Greg Goessler, Amir Pnueli, Joseph Sifakis, Stavros Tripakis, and Sergio Yovine.A framework for sheduler synthesis. In Proeedings of the 1999 IEEE Real-Time Systems Sym-posium, RTSS'99, deember 1999.[8℄ Karine Altisen, Greg Gossler, and Joseph Sifakis. A methodology for the onstrution of sheduledsystems. In FTRTFT 2000 Proeedings, 2000.[9℄ Karine Altisen, Greg Gossler, and Joseph Sifakis. Sheduler modeling based on the ontrollersynthesis paradigm. Tehnial report, Verimag, 2 Av. Vignate, 38610 - Gieres - Frane, 2000.[10℄ R. Alur and D. Dill. Automata for modeling real time systems. Theoretial Computer Siene,126(2):183{236, 1994.[11℄ T. P. Baker. Stak-based sheduling of real time proesses. The Journal of Real Time Systems,3(1):67{100, 1991.[12℄ Felie Balarin. Priority assignment for embedded reative real-time systems. Languages, Compilersand Tools for Embedded Systems. Workshop LCTES'98, 1474:146{155, 1998.[13℄ Felie Balarin and Alberto Sangiovanni-Vinentelli. Shedule validation for embedded reative realtime systems. In Proeedings of Design Automation Conferene, Anaheim(CA), 1997.141

142 BIBLIOGRAPHY[14℄ G. Berry and G. Gonthier. The esterel synhronous programming language: Design, semantis,implementation. Siene of Computer Programming, 2(19):87{152, 1992.[15℄ Greg Bollella. Real Time Spei�ation for Java. Addison Wesley, 1999.[16℄ Sebastian Bornot, Joseph Sifakis, and Stavros Tripakis. Modeling urgeny in timed systmes. InLeture Notes in Computer Siene. Speial Edition for COMPOS'97, volume 1536, 1998.[17℄ Ahmed Bouajjani, Stavros Tripakis, and Sergio Yovine. On-the-y symboli model-heking forreal-time systems. In Pro. 18th IEEE Real-Time Systems Symposium, RTSS'97, San Franiso,USA, Deember 1997.[18℄ Patriia Bouyer, Catherine Dufourd, Emmanuel Fleury, and Antoine Petit. Are timed automataupdatable? In Proeedings of the 12th Int. Conf. on Computer Aided Veri�ation, pages 464{479,Chiago, USA, July 2000.[19℄ Giorgio Buttazzo. Rate monotoni vs edf: Judgment day. In Proeedings of the 3rd ACM Inter-national Conferene on Embedded Software (EMSOFT 2003), Philadephia, Otober 13-15 2003.[20℄ Frank Cassez and Kim Larsen. The impressive power of stopwathes. Leture Notes in ComputerSiene, 1877:138+, 2000.[21℄ Min Chen and Kwei Lin. Dynami priority eilings: a onurreny ontrol protool for real-timesystems. Real Time Systems Journal, 2(4):325{346, 1990.[22℄ D. Dill. Timing assumptions and veri�ation of �nite-state onurrent systems. Pro. 1st Workshopon Computer-Aided Veri�ation. LNCS, 407, 1989.[23℄ Radu Dobrin, Yusuf Ozdemir, and Gerhard Fohler. Task attribute assignment of �xed prioritysheduled tasks to reenat o�-line shedules. In Proeeding of RTCSA 2000, Korea, 2000.[24℄ C. Erisson, A. Wall, and W. Yi. Timed automata as task models for event-driven systems. InIEEE Computer Soiety Press, editor, Proeedings of the 6th International Conferene on RealTime Computing Systems and Appliations, 1999.[25℄ Elena Fersman, Leonid Mokrushin, Paul Pettersson, and Wang Yi. Shedulability anaysis usingtwo loks. In ETAPS 2003, 2003.[26℄ Elena Fersman, Paul Pettersson, and Wang Yi. Timed automata with asynhronous proesses:Shedulability and deidability. In ETAPS 2002, 2002.[27℄ Gerhard Fohler. Joint sheduling of distributed omplex periodi and hard aperiodi tasks instatially sheduled systems. In Proeedings of the 16th Real Time Systems Symposium, Pisa,Italy, 1995.[28℄ D. Garbervetsky, C. Nakhli, S. Yovine, and H. Zorgati. Program instrumentation and run-timeanalysis of soped memory in java. In Proeeding of International Workshop on Runtime Veri�-ation. ETAPS 2004, Barelona. Spain, April 2004.[29℄ Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya. What's deidable abouthybrid automata? In Proeedings of the 27th Annual ACM Symposium on Theory of Computing,pages 373{382, 1995.[30℄ Damir Isovi and Gerhard Fohler. EÆient sheduling of sporadi, aperiodi and periodi taskswith omplex onstraints. In Proeedings of the 21st IEEE RTSS, Florida - USA, november 2000.

BIBLIOGRAPHY 143[31℄ Y. Kesten, A. Pnueli, J. Sifakis, and S.Yovine. Integration graphs: A lass of deidable hybridsystems. LNCS. Sepeial Edition on Hybrid Systems, 736:179{208, 1993.[32℄ Christos Kloukinas, Chaker Nakhli, and Sergio Yovine. A methodology and tool support forgenerating sheduled native ode for real-time java appliations. In Proeedings of the ThirdInternational Conferene on Embedded Software (EMSOFT 2003), pages 274{289. Leture Notesin Computer Siene-2855, Springer Verlag, otober 2003.[33℄ Kim Larsen, Frederik Larsson, Paul Pettersson, and Wang Yi. EÆient veri�ation of real-timesystems: ompat data struture and state-spae redution. In Pro. 18th IEEE Real-Time SystemsSymposium, RTSS'97, San Franiso, California, USA, Deember 1997.[34℄ Edward Lee. Embedded software - an agenda for researh. UCB ERL Memorandum M99/63,Deember 1999.[35℄ Edward Lee and Antonio Snagiovanni-Vinentelli. A framework for omparing models of ompu-tation. IEEE Transations on CAD, Deember 1998.[36℄ John Lehozky and Sandra Thuel. An optimal algorithm for sheduling soft aperiodi tasks in�xed priority preemptive systems. IEEE Real Time Symposium, Deember 1992.[37℄ C.L. Liu and James Layland. Sheduling algorithms for multiprogramming in a hard real-timeenvironment. Journal of the ACM, 20:46{61, January 1973.[38℄ D. C. Lukham and J. Vera. An event-based arhiteture de�nition language. IEEE Transationson Software Engineering, 21(9):717{734, September 1995.[39℄ Florene Maraninhi. The argos language: Graphial representation of automata and desriptionof reative systems. In Proeedings of the IEEE Workshop on Visual Languages, Otober 1991.[40℄ Jennifer MManis and Pravin Varaiya. Suspension automata: a deidable lass of hybrid au-tomata. In Pro.6th International Conferene on Computer Aided Veri�ation, CAV'94, Stanford,California, USA, volume 818, pages 105{117. Springer-Verlag, 1994.[41℄ Jesper M�ller. EÆient veri�ation of timed systems using bakwards reahability analysis. Teh-nial Report IT-TR-2002-11, Department of Information Tehnology - Tehnial University ofDenmark, Febrary 2002.[42℄ Jesper M�ller, Henrik Hulgaard, and Henrik Reif Andersen. Symboli model heking of timedguarded ommands using di�erene deision diagrams. Journal of Logi and Algebrai Program-ming, 52-53:53{77, 2002.[43℄ Jesper M�ller, Jakob Lihtenberg, Henrik Reif Andersen, and Henrik Hulgaard. On the sym-boli veri�ation of timed systems. Tehnial Report IT-TR-1999-024, Department of InformationTehnology - Tehnial University of Denmark, February 1999.[44℄ A.K. Mok. Fundamental Design Problems for Hard Real Time Environments. PhD thesis, MIT,1983.[45℄ Xavier Niollin, Alfredo Olivero, Joseph Sifakis, and Sergio Yovine. An approah to the desriptionand analysis of hybrid systems. LNCS Speial Edition on Hybrid Systems, 736:149{178, 1993.[46℄ Alfredo Olivero. Mod�elisation et analyse de syst�emes temporis�es et hybrides. PhD thesis, InstitutNational Polytehnique de Grenoble, Frane, September 1994.

144 BIBLIOGRAPHY[47℄ Amir Pnueli. The temporal logi of programs. In Proeedings of the 18th Symposium on Founda-tions of Computer Siene, (IEEE FOCS 77), 1977.[48℄ Ragunthan Rjakumar, Liu Sha, John Lehozky, and Krithi Ramamritham. An optimal priorityinheritane poliy for synhronization in real-time systems. In Sang H. Song, editor, Advanes inReal Time Systems. Prentie-Hall, 1995.[49℄ Manas Saksena, A. Ptak, P. Freedman, and P. Rodziewiz. Shedulability analysis for automatedimplementations of real time objet oriented models. In Proeedings of the IEEE-Real Time Sys-tems Symposium, 1998.[50℄ Lui Sha, Ragunathan Rjakumar, and John Lehozky. Priority inheritane protools: An approahto real-time synhronization. IEEE Transations on Computers, 39:1175{1185, 1990.[51℄ Joseph Sifakis. Modeling real time systems: Challenges and work diretions. In Leture Notes inComputer Siene. Speial Edition for EMSOFT 2001, volume 2211, 2001.[52℄ Joseph Sifakis, Stavros Tripakis, and Sergio Yovine. Building models of real-time systems fromappliation software. Proeedings of the IEEE, Speial issue on modeling and design of embeddedsystems, 91(1)::100{111, January 2003.[53℄ Joseph Sifakis and Sergio Yovine. Compositional spei�ation of timed systems (extended ab-strat). In Proeedings of the 13th Annual Symposium on Theoretial Aspets of Computer Siene,pages 347{359, 1996.[54℄ Maryline Silly. The edl server for sheduling periodi and soft aperiodi tasks with resoureonstraints. Journal of Time-Critial Computing Systems, 17:87{111, 1999.[55℄ Maro Spuri and Georgio Buttazzo. EÆient aperiodi servie under earliest deadline sheduling.In Proeedings of the IEEE Real Time Systems Symposium, deember 1994.[56℄ Maro Spuri and Giorgio Buttazzo. Sheduling aperiodi tasks in dynami priority systems. Journalof Real Time Systems, 10(2), 1996.[57℄ Sandra Thuel and John Lehozky. Algorithms for sheduling hard aperiodi task in �xed prior-ity systems using slak stealing. In Proeedings of the '94 Real Time Symposium, Puerto Rio,Deember 1994.[58℄ Ken Tindell. Real time systems and �xed priority sheduling. Tehnial report, Department ofComputer Systems, Uppsala University, 1995.[59℄ Sergio Yovine. M�ethodes et outils pour la v�eri�ation symbolique de syst�emes temporis�es. PhDthesis, Institut National Polytehnique de Grenoble, Frane, May 1993.[60℄ Sergio Yovine. Model-heking timed automata. Leture Notes in Computer Siene, 1494, 1998.

