

Laboratoire Kastler Brossel Université Paris VI

Fermions et bosons dégénérés au voisinage d'une résonance de Feshbach

Solitons d'ondes de matière et condensat de molécules

 6 Ti

Systèmes quantiques dégénérés

Objectifs

Bosons : Condensats de Bose Einstein (CBE)

- utilisés depuis 1995
- interaction attractive 3D is effondered

I Système 1D en interaction attractive : Soliton

Fermions

• théorie de la superfluidité fermionique supraconducteurs

• $\frac{T}{T_F} = 0.2$ mélange bosons/fermions dégénérés JILA, ENS

Il Gaz de fermions en interaction forte

Contrôle des interactions

Longueur de diffusion : a

- section efficace de collision élastique
- signe gouverne l'énergie d'interaction

 $\sigma = 8 \pi a^{2} \text{bosons}$ $\sigma = 0 \quad \text{fermions}$ $a > 0 \quad \text{répulsive}$ $a < 0 \quad \text{attractive}$

Résonances de Feshbach

Variation de l'interaction avec B

- 2 potentiels V_s et V_T
- couplage entre canal ouvert et canal fermé
- décalage dépend de B

Résonance pour $B = B_0$

Contrôle expérimental des interactions

Techniques Expérimentales

Refroidissement de ⁷Liet ⁶Li

• 1000 K : four

- 1 mK : refroidissement laser
- 10 µK : refroidissement évaporatif

Exploration des résonances

- piége optique
- évaporation par diminution de la profondeur
- bobines de champ magnétique

Imagerie par absorption

- nombre d'atomes
- distribution de position
- distribution d'impulsion après expansion

 10^5 fermions $T \approx 0.2 T_F$

Bosons : Solitons d'ondes de matière

Bosons dégénérés en interaction : a>0

- interaction répulsive
- coupure du confinement

Bosons dégénérés en interaction : a < 0

Solitons d'ondes de matière

L

propagation dans un potentiel extérieur V(z) avec : $R \ll L$

propagation sans déformation /

Production d'un soliton

Propagation du soliton

- évaporation a=6,5 nm
- ajustement de a 🛛 🔵 🔵
- lâcher 1D

Propagation du soliton

- évaporation a=6,5 nm
- ajustement de a

()

• lâcher 1D

Propagation du soliton

dispersion naturelle taille multipliée par 5 évaporation a=6,5 nm
ajustement de a
lâcher 1D

a=-0,2 nm

^{8ms} Soliton de 6000 atomes

se propage sur 500 fois sa taille sans déformation

(aussi trains de solitons à RICE University)

Le monde des solitons

ondes de perturbation

hydrodynamique

• solitons noirs ou gris dans des condensats a > 0

NIST,Hannovre

Le monde des solitons

Fermions en régime d'interaction forte

Résonance de Feshbach entre fermions

Energie d'interaction

⁶Li dans deux états de spin

fermions en interaction forte

Stratégie $E = \mathbb{K}_{inter} + E_{cin} + \mathbb{K}_{pot}$

• coupure du piège \times $\triangleright E_{inter} + E_{cin}$ • \times et bobines \times $\triangleright E_{cin}$

- mélange 1/2,-1/2 à B=1060 G (a<0) ou B ≈ 0 G (a ≈ 0) $\int \frac{T}{T} \approx 0.2 - 0.5$
- on amène B au voisinage de la résonance

Énergie d'interaction

• loin de résonance : champ moyen stabilité à résonance interaction attractive à résonance unitaire $a \rightarrow \pm \infty$ $E_{tot} \propto (1+\beta) E_F$ (Heiselberg) $\beta < 0$ interaction attractive $|\beta| < 1$ système stable

pertes loin de résonance
≠ cas des bosons
changement de signe dans la zone de pertes

Résonances de Feshbach et molécules

Problème à 2 corps

- état lié pour a>0
- de taille ∝ a

Formation

 recombinaison à 3 corps amplifiée à la résonance

- molécules piégées
 «cachées» par E; pertes pour B<750 G
- mélange en 1: N1
- - **2→3** : N3>N2 ?
- **4** détection efficacité $1 - \frac{N_2}{N_2}$ (aussi JILA)

Molécules !

Fraction moléculaire

- N3 comparable à N1 : réversible
- conversion d'une fraction macroscopique
- e augmente avec $E_1 = h^2 / (ma^2)$

Formation thermodynamique

Efficacité de formation

 équilibre thermo assuré par les collisions à 2 et 3 corps

• à B donné un grand $\frac{E_l}{k_B T}$

conservation de l'entropie fixe e et T au point

Efficacité de formation

 équilibre thermo assuré par les collisions à 2 et 3 corps

 à B donné un grand favorise les molécules

conservation de l'entropie fixe e et T au point

Condensat de molécules

 $3 10^4 \text{ molécules}$ $T \approx T_{CBE} = 2.4 \,\mu \text{K}$

(aussi à JILA, Innsbruck, MIT, Duke)

double structure 🆒 CBE nombres comparables et tailles très différentes 🗸

 $a_{mol} \gg$

Détermination de *a_{mol}*

- Expansion anisotrope : hydrodynamique
- Lois d'échelle : détermination de <u>R</u>

condensat pur de 2,3 10⁴ molécules anisotropie 2,0 : hydrodynamique 1,98

$$a_{mol} = 170^{+100}_{-60} nm$$
 en bon accord
 $a_{at} = 306 nm \diamondsuit 0,6 \times a_{at} = 183 nm$

Théorie $a_{mol} = 0.6 a_{at}$ (Petrov *et al.*)

Durée de vie des molécules

(10^{-13} cm^3) \mathfrak{O}_{0} 100a (nm)

4 corps : relaxation

• bosons

Le principe de Pauli stabilise les molécules de fermions proches de résonance

La durée de vie augmente à résonance

 $\beta \propto a^{-1,9\pm0,8}$

 $\beta \propto a^{-2,55}$ (Petrov et al.)

durée de vie 1000 fois plus longue que dans les bosons

Superfluide fermionique

exploré

en cours

zone de transition : de nombreux articles théoriques

Conclusion

Résonance de Feshbach : un outil très efficace

- Observation des premiers solitons d'onde de matière
- Gaz dégénéré de molécules : intérêt des fermions
- 1ère limite du superfluide fermionique

Perspectives

- appariement en ondes p : ³He
- régime $na^3 \gg 1$

• régime BCS

Merci à tous

