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Avant-propos

Avant-propos

Plusieurs parties de cette theése ont été soumises dans divers journaux ou sont en cours
de corrections par les différents co-auteurs avant soumission. Nous avons décidé de ne pas
intégrer tels quels ces divers papiers, d’une part, dans un soucis d’éviter des répétitions pour les
lecteurs du manuscrit et d’autre part, car les revues de ces papiers ne nous sont pas encore toutes
revenues. Les parties de ce manuscrit soumises sont les suivantes:

1- Modeling of in situ crystallization processes in the Permian mafic layered intrusion of
Mont Collon (Dent Blanche nappe, western Alps)

Philippe Monjoie, Francois Bussy, Henriette Lapierre et Hans-Rudolf Pfeifer

Soumise dans le volume spécial de Lithos: «Modeling of magma chambers». Acceptée
avec révisions modeérées. Ce papier integre principalement les descriptions pétrographiques des
cumulats, la modélisation de la cristallisation in-situ et du liquide parental.

2- Precise U/Pb and “°Ar/*Ar dating of the layered Permian Mafic Complex of the Mont
Collon (Western Alps, Wallis, Switzerland)

Philippe Monjoie., Francois Bussy, Urs Schaltegger, Henriette Lapierre, Hans-Rudolf
Pfeifer et Andreas Mulch

Soumis dans Schweizerische Mineralogische und Petrographische Mitteilungen. Ce
papier inclut les dges U/Pb du gabbro pegmatitique et de la pegmatite quartzique et “°Ar/*°Ar
des filons dioritiques Fe-Ti.

3- Isotopic constraints on the mantle composition and geodynamic implications: insights
from the Permian Mont Collon mafic complex (Austroalpine Dent Blanche nappe, Western
Alps): titre non-définitif

Philippe Monjoie, Francois Bussy, Henriette Lapierre et Hans-Rudolf Pfeifer

En cours de corrections par les différents auteurs. Soumission prévue dans Chemical
Geology. Ce papier comprend les descriptions pétrographiques des filons leucocrates et des
filons mélanocrates Fe-Ti, les donnés isotopiques de tous les types de roches du complexe
mafique du Mont Collon ainsi que les interprétations géodynamiques.
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Résumé

Résumé

Le complexe du Mont Collon (nappe de la Dent Blanche, Austroalpin) est 1’un des
exemples les mieux préservés du magmatisme mafique permien des Alpes occidentales. Il est
composé d’affleurements discontinus et d’une stratification magmatique en son centre (Dents
de Bertol) et est composé a 95% de roches mafiques cumulatives (gabbros a olivine et/ou cpx,
anorthositiques, troctolites, wehrlites et wehrlites a plagioclase) et localement de quelques
gabbros pegmatitiques. Ces faciés sont recoupés par de nombreux filons acides (aplites,
pegmatites quartziques, microgranodiorites et filons anorthositiques) et mafiques tardifs (dikes
mélanocrates riches en Fe et Ti).

Les calculs thermométriques (équilibre olivine-augite) montrent des températures de
1070-1120 + 6°C, tandis que le thermometre amphibole-plagioclase indique une température
de 740 £+ 40°C a 0.5 GPa pour les amphiboles magmatiques tardives. La geobarométrie sur
pyroxeéne donne des pressions moyennes de 0.3-0.6 GPa, indiquant un emplacement dans la
crolite moyenne. De plus, les températures obtenues sur des amphiboles coronitiques indiquent
des températures de 1I’ordre de 700 = 40°C confirmant que les réactions coronitiques apparaissent
dans des conditions subsolidus.

Les ages concordants U/Pb sur zircons de 284.2 + 0.6 et 282.9 + 0.6 Ma obtenus sur
un gabbro pegmatitique et une pegmatitique quartzique, sont interprétés comme des ages de
cristallisation. Les datations *“°Ar/*’Ar sur amphiboles des filons mélanocrates donnent un age
plateau de 260.2 = 0.7 Ma, qui est probablement trés proche de 1’age de cristallisation. Ainsi,
cet age “°Ar/*’Ar indique un second événement magmatique au sein du complexe.

Les compositions des roches totales en ¢léments majeurs et traces montrent peu de
variations, ainsi que le Mg# (75-80). Les éléments traces enregistrent le caractére cumulatif des
roches (anomalie positive en Eu) et révelent des anomalies négatives systématiques en Nb, Ta,
Zr, Hf et Ti dans les faci¢s basiques. Le manque de corrélation entre ¢éléments majeurs et traces
est caractéristique d’un processus de cristallisation in situ impliquant une quantité variable de
liquide interstitiel (L) entre les phases cumulus. Les distributions des éléments traces dans les
minéraux sont homogenes, indiquant une rééquilibration subsolidus entre cristaux et liquide
interstitiel. Un modé¢le quantitatif basé sur les équations de cristallisation in situ de Langmuir
reproduisent correctement les concentrations en terres rares légeres des minéraux cumulatifs
montrant la présence de 0 a 35% de liquide interstitiel L pour des degrés de différenciation F
de 0 a 45%, par rapport au facies les moins évolués du complexe. En outre, les valeurs de L
sont bien corrélées avec les proportions modales d’amphibole interstitielle et les concentrations
en ¢léments incompatibles des roches (Zr, Nb). Le liquide parental calculé des cumulats du
Mont Collon est caractérisé par un enrichissement relatif en terres rares légeéres et Th, un
appauvrissement en terres rares lourdes typique d’une affinité transitionnelle (T-MORB) et une
forte anomalie négative en Nb-Ta.

Les roches cumulatives montrent des compositions isotopiques en Nd-Sr proches de la
terre globale silicatée (BSE), soit —0.6<eNd<+3.2, 0.7045<¥Sr/*Sr<0.7056. Les rapports
initiaux en Pb indiquent une source dans le manteau enrichi subcontinental lithosphérique,
préalablement contaminé par des sédiments océaniques. Les dikes mélanocrates Fe-Ti sont
représentatifs de liquides et ont des spectres de terres rares enrichis, une anomalie positive
en Nb-Ta et des eNd. de +7, des *Sr/*Sr. de 0.703 et des rapports initiaux en Pb, similaires
a ceux des basaltes d’ile océanique, indiquant une source asthénosphérique modérément
appauvrie. Ainsi, la fusion partielle du manteau lithosphérique subcontinental est induite par
I’amincissement post-orogénique et la remontée de 1’asthénosphere. Les filons mélanocrates
proviennent, apreés délamination du manteau lithosphérique, de la fusion de 1’asthénosphere.

III



Abstract

Abstract

The early Permian Mont Collon mafic complex (Dent Blanche nappe, Austroalpine nappe
system) is one of the best preserved examples of the Permian mafic magmatism in the Western
Alps. It is composed of discontinuous exposures and a well-preserved magmatic layering (the
Dents de Bertol cliff) crops out in the center part of the complex. It mainly consists of cumulative
mafic rocks, which represent 95 vol-% of the mafic complex (ol- and cpx-bearing gabbros and
rare anorthositic layers, troctolites, wehrlites and plagioclase-wehrlites) and locally pegmatitic
gabbros. All these facies are crosscut by widespread acidic (aplites, quartz-rich pegmatites,
microgranodiorites) and late mafic Fe-Ti melanocratic dikes.

Olivine-augite thermometric calculations yield a range of 1070-1120 + 6°C, while
amphibole-plagioclase thermometer yields a temperature of 740 + 40°C at 0.5 GPa. Pyroxene
geobarometry points to a pressure of 0.3-0.6 GPa, indicating a middle crustal level of
emplacement. Moreover, temperature calculations on the Mont Collon coronitic amphiboles
indicate temperatures of 700 + 40°C, close to those calculated for magmatic amphiboles. These
temperatures confirm that coronitic reactions occurred at subsolidus conditions.

ID-TIMS U/Pb zircon ages of 284.2 + 0.6 and 282.9 + 0.6 Ma obtained on a pegmatitic
gabbro and a quartz-pegmatitic dike, respectively, were interpreted as the crystallization ages
of these rocks. “Ar/*’Ar dating on amphiboles from Fe-Ti melanocratic dikes yields a plateau
age of 260.2 + 0.7 Ma, which is probably very close to the crystallization age. Consequently,
this “°Ar/*’Ar age indicates a second magmatic event.

Whole-rock major- and trace-element compositions show little variation across the whole
intrusion and Mg-number stays within a narrow range (75-80). Trace-element concentrations
record the cumulative nature of the rocks (e.g. positive Eu anomaly) and reveal systematic
Nb, Ta, Zr, Hf and Ti negative anomalies for all basic facies. The lack of correlation between
major and trace elements is characteristic of an in sifu crystallization process involving variable
amounts of interstitial liquid (L) trapped between the cumulus mineral phases. LA-ICPMS
measurements show that trace-element distributions in minerals are homogeneous, pointing
to subsolidus re-equilibration between crystals and interstitial melts. A quantitative modeling
based on Langmuir’s in sifu crystallization equation successfully reproduced the Rare Earth
Element (REE) concentrations in cumulitic minerals. The calculated amounts of interstitial
liquid L vary between 0 and 35% for degrees of differentiation F of 0 to 45%, relative to the
least evolved facies of the intrusion. Furthermore, L values are well correlated with the modal
proportions of interstitial amphibole and whole-rock incompatible trace-element concentrations
(e.g. Zr, NDb) of the tested samples. The calculated parental melt of the Mont Collon cumulates
is characterized by a relative enrichment in Light REE and Th, a depletion in Heavy REE,
typical of a transitional affinity (T-MORB), and strong negative Nb-Ta anomaly.

Cumulative rocks display Nd-Sr isotopic compositions close to the BSE (-0.6 < eNd.
<+3.2, 0.7045 < ¥’Sr/*Sr, < 0.7056). Initial Pb ratios point to an origin from the melting of
an enriched subcontinental lithospheric mantle source, previously contaminated at the source
by oceanic sediments. The contrasted alkaline Fe-Ti melanocratic dikes are representative of
liquids. They display enriched fractionated REE patterns, a positive Nb-Ta anomaly and eNd,
of +7, ¥Sr/*Sr. of 0.703 and initial Pb ratios, all reminiscent of Ocean Island Basalt-type rocks,
pointing to a moderately depleted asthenospheric source. Thus, partial melting of an enriched
lithospheric mantle is triggered by post-orogenic thinning and up-welling of hot asthenospheric
mantle. The Fe-Ti melanocratic dikes originated, after the complete delamination of the

lithospheric mantle, from the melting of the asthenospheric mantle.

v



Table of contents

Avant-propos

Remerciements

Résumé

Abstract

Table of contents

Chapter 1: General overview

1.1. Introduction 1
1.2. The Variscan belt build-up 4
1.3. Magmatisms related to the late-collisional stages of the Variscan belt 6
1.3.1. The External Crystalline Massifs 6
1.3.2. The Penninic domain: the Internal Crystalline Massifs 7
1.3.3. The Southern Alps: the Ivrea-Verbano zone 7
1.3.4. The Austroalpine nappe system 7
1.3.5. Chemical characteristics of the late Variscan magmatic events 8
1.4. Previous study on the Mont Collon mafic complex 9
1.5. Geographical setting of the Mont Collon mafic complex 9
1.6. Aims of this study and tools 10
1.6.1. Aims 10
1.6.2. Tools 11
Chapter 2: Geological background and field relationships
2.1. Introduction 12
2.2. Geological background 14
2.3. Field relationships 16
2.4. The mafic cumulates and related rocks 24
2.4.1. Wehrlites 24
2.4.2. Plagioclase-bearing wehrlites 24
2.4.3. Troctolites 30
2.4.4. Olivine gabbros 31



Table of contents

2.4.5. Clinopyroxene gabbros 31
2.4.6. Anorthosite 32
2.4.7. Pegmatitic gabbros 33
2.5. The leucocratic dikes and the Arolla orthogneisses 33
2.5.1. Aplites 33
2.5.2. Quartz-rich pegmatites 33
2.5.3. Microgranodiorites 34
2.5.4. Anorthositic dikes 34
2.5.5. The Arolla orthogneisses 34
2.6. The Fe-Ti melanocratic dikes 39
2.7. Conclusion 41

2.8. Thermo-barometric conditions of emplacement of the Mont Collon complex 43

2.8.1. Introduction 43
2.8.2. Thermo-barometric conditions of emplacement 44
2.8.2.1. Thermometric calculations 44
2.8.2.2. Barometric calculations 44
2.8.3. Coronitic reactions 46
2.8.4. Concluding remarks 47

Chapter 3: Modeling of in situ crystallization processes in a layered basic intrusion:
example of the Permian Mont Collon mafic complex

3.1. Introduction 49
3.2. Whole-rock major- and minor-element chemistry 49
3.3. Trace-element chemistry 58
3.3.1. Compatible elements evolution 58
3.3.2. Incompatible trace-element binary diagrams 65
3.3.3. Rare earth elements chondrite-normalized patterns 65
3.3.4. Multi-elements primitive-mantle normalized diagrams 67
3.4. Trace-elements mineral chemistry 67
3.4.1. Clinopyroxene 67
3.4.2. Plagioclase 72
3.4.3. Amphibole 72

VI



Table of contents

3.5. Modeling of in-situ crystallization process 72
3.5.1. Parameters used for the in-situ crystallization model 73
3.5.2. Results and limitations of the model 75

3.6. Parental melt of the Mont Collon cumulative rocks 80

3.7. Discussion 82

3.8. Conclusion 85

Chapter 4: U/Pb and “’Ar/*Ar dating of the layered Permian mafic complex of the Mont

Collon
4.1. Introduction 86
4.2. Previous age determinations for the Mont Collon intrusion 87
4.3. Ages of other Permian Mafic Complexes 87
4.4. Sampling and analytical procedures 88
4.4.1. Choice of samples for U/Pb on zircon dating 88
4.4.2. Sample preparations 88
4.4.3. Choice of samples for *°Ar/*’ Ar on amphibole dating 92
4.4.4. Sample preparations 95
4.5. Results 96
4.6. Discussion 96

Chapter 5: Geochemical constraints on the magma sources

5.1. Introduction 99

5.2. The Mont Collon ultramafic-mafic cumulates 99
5.2.1. Major- and trace-elements chemistry 99
5.2.2. Chondrite-normalized rare earth element patterns 99
5.2.3. Primitive mantle-normalized multi-element plots 100
5.2.4. Nd, Sr and Pb isotope compositions 100

5.3. The leucocratic dikes 106
5.3.1. Major- and trace-element chemistry 106
5.3.2. Chondrite-normalized rare earth element patterns 109
5.3.3. Primitive mantle-normalized multi-element plots 109
5.3.4. Nd, Sr and Pb isotope compositions 109

VII



Table of contents

5.4. The Fe-Ti rich melanocratic dikes 116
5.4.1. Majo- and trace-element chemistry 116
5.4.2. Chondrite-normalized rare earth element patterns 116
5.4.3. Primitive mantle-normalized multi-element plots 117
5.4.4. Nd, Sr and Pb isotope compositions 117
5.4.5. Discussion on the Fe-Ti melanocratic dikes 117

5.5. The Arolla orthogneisses 119
5.5.1. Major- and trace-element chemistry 119
5.5.2. REE and extended trace-element patterns and isotope ratios 120

5.6. Hf and Re-Os isotopes of the Mont Collon igneous suites 120
5.6.1. Hf isotopes 120
5.6.2. Re-Os isotopes 120

5.7. Discussion: nature of the sources and igneous processes linked to the genesis of the

Mont Collon cumulates 124
5.7.1. Assimilation process and influence of the interstitial melt 124
5.7.2. Assimilation-Fractional Crystallization modeling 124
5.7.3. Mantle source contamination by crustal material(s) 127

5.7.3.1. Composition of the subcontinental lithospheric mantle 127
5.7.3.2. Potential composition of the crustal contaminant 128

5.8. Could the Arolla orthogneisses be the source of the leucocratic dikes ? 130

5.9. Fe-Ti melanocratic dikes: the late Permian episode 131

5.10. Conclusion: the early Permian and late Permian magmatic episodes 131

Chapter 6: Geodynamic implications

6.1. Introduction 133
6.2. The collapse stages of the Variscan belt 135
6.3. Thermal input and melting of various mantle types 136
6.3.1. The Mont Collon mafic cumulates 136
6.3.2. The Fe-Ti melanocratic dikes 138
6.5. General conclusions 144

VIII



Table of contents

References
pl47

Appendices
p AI-A19

Appendix 1: Figure captions.

Appendix 2: Table captions.

Appendix 3: Major- and trace-elements analytical procedures.
Appendix 4: Microprobe and LA-ICPMS analytical procedures.

Appendix 5: Sampling and analytical procedures for whole-rocks isotopic determinations
and decay constants used for whole-rocks isotopic corrections.

Appendix 6: Summary of the textures, mineralogies and modal proportions of the Mont
Collon cumulates and the pegmatitic gabbros

Appendix 7: Analytical data of *°Ar/**Ar dating of the Fe-Ti melanocratic dike MP177.
Appendix 8: U/Pb on zircon dating of the Brandjispitz mafic complex

Appendix 9: List of abbreviations

Appendix 10: GPS sample localizations

Plate 1: Microphotographs of field relationships. p21

Plate 2: Microphotographs of successive zones within the contact area from the Arolla
orthogneisses towards the Mont Collon complex. p22

Plate 3a-b: Microphotogaphs of thin section of cumulative rocks. p A17-18

Plate 4: Microphotogaphs of thin section of leucocratic and melanocratic dikes. p A19

IX



Chapter 1: General overview




Chapter 1

Chapter 1: General overview

1.1. Introduction

The Pangea break-up during Jurassic times is synchronous with the opening of the Central
Atlantic domain that led to the formation of the Tethyan Ocean. During the Mesozoic times, the
Tethys Ocean covered a wide area (from the western Mediterranean to the eastern Himalaya)
between African and Eurasian plates. The subduction of the Tethyan oceanic lithosphere
beneath the African margin started some 110 Ma ago (e.g. Pfiffner, 1993), resulting from the
beginning of the convergence between the Apulian (or Adriatic) and European plates. The
Alpine chain resulted from the subsequent collision of the western parts of the European plate
with the (African) Apulian microplate during the Mesozoic and Tertiary times (Coward et al.,
1989). The convergence at Cretaceous times induced mostly (north) west-directed thrusting in
the Eastern and Western Alps (de Graciansky, 1993), while the direction of the later Tertiary
compressional phase is north-south.

Pre-Mesozoic basement units are widespread in central Europe (Fig. 1 and 2) and
numerous exposures compose the framework of the Alps, actually scattered as a complex
system among the Alpine structures. These pre-Mesozoic units are found in all the basement
nappes of the Helvetic, Penninic and Austroalpine realms, as well as in the Southern Alps. In
the Helvetic zone, the Variscan basement units are represented by the External Crystalline
Massifs, the exposures of which form three main units, i.e., northern, middle and southern units,
(1) the northern unit consists of the Mont Blanc and Aiguilles Rouges massifs, Aar-Gotthard
massif, and Belledonne-Grandes Rousses located on an old Variscan lineament NE-SW aligned
(de Graciansky, 1993), (ii) the middle unit is constituted principally by the NW-SE Pelvoux and
Argentera-Mercantour massifs, (ii1) the southern unit is represented by the Tanneron-Esterel-
Maures massifs. In the Penninic Zone, the Variscan basement is represented by the Internal
Crystalline Massifs. The latter include the Monte Rosa, Grand Paradis and Dora Maira massifs.
The Austroalpine nappe system comprises large thrust sheets involving huge masses of the
Variscan crystalline basement, 1.e. granitoids from the Err-Bernina nappe (Spillman and Biichi,
1993 and ref. therein), the Valpelline and Arolla Series of the Austroalpine Dent Blanche
nappe and the Sesia-Lanzo zone (e.g. Martinotti and Hunziker, 1984). Here we refer only to the
western area of the Southern Alps, where the Palaeozoic granulite- to high-T amphibolite-facies
metamorphics of the Ivrea-Verbano zone are tectonically juxtaposed with the amphibolite-
facies Serie de Laghi (Boriani and Villa, 1997).
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Fig. 2: Main tectonic units and Variscan crystalline massifs in the Alps. DB: Dent Blanche nap-
pe, MR: Monte Rosa, MB-AR: Mont Blanc and Aiguilles Rouges massifs, Bld: Belledonne.
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The above cited pre-Mesozoic basement units comprise large basic and/or acidic plutons
and volcanic rocks related to numerous magmatic events of Variscan age. These magmatic
events are the markers of the polyphased tectonic evolution of the long lasting build-up of the
Variscan belt, each one associated with specific tectonic settings, i.e. pre-collisional, collisional
and post-collisional tectonic events. Consequently, the study of the magmatic affinities of these
igneous suites and the characterization of their mantle and/on continental sources enables to
precise the geodynamic settings based on tectonic and paleomagnetism data, faunic correlations
and palinspastic reconstructions. In addition, accurate age determinations are fundamental to
replace the magmatic activity in its geodynamic context.
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This Ph.D. thesis is focused on the Mont Collon-Dents de Bertol mafic complex (named
as Mont Collon in the following sections), located in the Austroalpine Dent Blanche nappe
(Western Alps, Switzerland). Few studies have been done on the Mont Collon mafic complex
although it is probably one of the best preserved mafic complex of the Hercynian basement
of the Alps. Indeed, this massif is affected only by a weak Alpine greenschist metamorphic
overprint. Dal Piaz et al. (1977) dated the Mont Collon at ca. 250 Ma. This age was interpreted
as the cooling age of the complex and relates the emplacement of the Mont Collon-Dents de
Bertol mafic complex to a major phase of the tectonic evolution of Variscan belt, i.e. the post-
collisional event, related to the collapse of the chain. Consequently, the Mont Collon complex
must be more accurately dated. Furthermore, because of the well exposed cumulate rocks and
their preserved magmatic layering at the Dents de Bertol area, the petrological and geochemical
characterization of the complex will help to: (i) determine the differentiation process(es) that
lead to the crystallization of the rock facies, (ii) characterize the affinities of the basic magmas
related to the post-collisional event of the Variscan belt, (iii) precise the physical-chemical
conditions of emplacement of the plutonic rocks, (iv) determine the type of mantle sources and
possible involvement of the continental crust in the genesis of this complex.

1.2. The Variscan belt build-up

The Variscan belt was formed principally between the Devonian and the Carboniferous
and is not a typical continent — continent collisional range. It was formed by successive
accretions of several micro-continents detached from the Gondwana active margin (Stampfli
and Borel, 2002). Different authors (e.g. von Raumer and Neubauer, 1993) proposed to
subdivide the build-up of this belt in different periods: (i) the pre-collisional period (500 — 460
Ma), (ii) a major collisional event close to 380 Ma and (iii) a late to post -collisional stage,
which started around 350 Ma and hold on roughly 30 Ma (von Raumer and Neubauer, 1993).
At the late Carboniferous-early Permian, the Variscan chain collapsed, as the consequence of
the slab roll-back of the Palaeco-Tethys (Stampfli and Borel, 2002).

The pre-collisional times were marked by the consecutive opening of the Rheic oceanic
domain accompanied by the Palaeco-Tethys opening. Cambrian oceanic plagiogranites date the
opening of the Rheic Ocean (von Raumer et al. 2003). At 440 Ma, the Avalonia continental
fragment and associated satellites are already amalgamated to Laurussia in a short-lived
orogenic pulse (von Raumer, 1998, Belka et al., 2002). The opening of the Palaeco-Tethys is
interpreted as back-arc spreading related to the Gondwana-directed subduction of Rheic/Proto-
Tethys. The northern active margin of the Gondwana was dismembered during the Silurian,
generating the formation of several micro-continents and ribbon-like terranes (European Hunic

terranes).
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Fig. 3: Geodynamic reconstruction at the Late Permian (~280 Ma, Sakmarian). After Stampfli
and Borel (2002).

The collision of the Gondwana-derived micro-continents with Laurasia took place
from Late Devonian to Early Carboniferous time (~340 Ma) with the final closure of the
Rhenohercynian domain (Stampfli and Borel, 2002), which ended up to ca. 320 Ma (von Raumer
et al., 2003). The Palaco-Tethys was still opened (Fig. 3) and at the time of emplacement of
the Mont Collon mafic complex, the Variscan chain was supposed to collapse generating the
development of pull-apart basins.
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1.3. Magmatism related to the post-collisional stages of the Variscan belt

1.3.1. The External Crystalline Massifs of the Helvetic zone

The magmatism in the External Massifs units displays intermediate to acidic compositions.
Parts of the Aar-Gotthard, Argentera, Belledonne and Aiguilles Rouges massifs are emplaced
during the post-collisional stages of the Variscan belt.

The Aar massif displays different igneous suites (see a review in Schaltegger, 1994), i.e.
(1) shoshonitic-ultrapotassic suites (diorites, monzonites, syenites and granites associated with
high-K basic rocks) dated at 334 = 2.5 Ma, (2) subordinate high-K calc-alkaline suites dated
around 310 Ma (Schaltegger and Corfu, 1992), and (3) calc-alkaline to subalkaline granitic
suites comprising granodiorite, granites and leucogranites of the Central Aar dated at 297 +
2 Ma (Schaltegger and Corfu, 1992). Recently, new U/Pb dating on migmatites from the Aar
massif yielded 290-300 Ma ages (Olsen et al., 2000). Granites in the Gotthard massif are coeval
with those of the Aar massif and U/Pb concordant ages indicate (around 295-300 Ma, Sergeev
and Steiger, 1993) that the Gotthard granites postdates also the Variscan collision.

In the External Crystalline Massifs, Debon and Lemmet (1999) distinguished two plutonic
suites, one early, Visean and highly magnesian (~ 330-340 Ma), the other, Stephanian (~295-
305 Ma) and more ferriferous. The Mg/Fe ratio variations are mainly related to the physical-
chemical conditions of melting (P-T, fO,) and the Late Variscan geodynamic setting. In the
Argentera massif (332 Ma, Rubatto et al., 2001), plutonic granitic suites exhibits subalkaline
magmatic affinity and magnesian character as well as in the Belledonne massif, the 340 Ma-
old Saint Colomban, Sept Laux and La Lauzicre granites show also an Al-enriched subalkaline
affinities and magnesian character.

In the Aiguilles Rouges massif, subalkaline and magnesian quartz syenites, rich in mafic
minerals, occurring in the Pormenaz monzonites, were dated at 332 + 2 Ma by U/Pb on zircon
(Bussy et al., 1998) whereas the Vallorcine granite is a peraluminous and magnesian-ferriferous
and was dated by U/Pb on zircon and monazite at 307 = 2 Ma (Bussy and Hernandez, 1997).
They interpreted this Westphalian age as reflecting magmatic underplating beneath the crust.

The 304 Ma-old Mont Blanc granite displays an evolved metaluminous to slightly
peraluminous K-rich magmatic affinity, with both alkaline and calc-alkaline characteristics
(Bussy, 1990; Bussy and von Raumer, 1993). The emplacement of the Mont Blanc within the
upper crust (10-15 km) occurred during transtensional strike-slip shearing context. By this way,
the melting of a composite source was induced by a pressure release of a thickened thermally
re-equilibrated lithosphere.
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1.3.2. The Penninic domain: the Internal Crystalline Massifs

In this section, we focus on the geology of the Gran Paradiso and Monte Rosa massifs,
which crop out in the northwestern Alps. Nevertheless, other igneous rocks are present in the
Penninic zone, e.g. the Dora Maira massif and, the late Variscan granitoids of the Tauern
window (Eastern Alps). Disregarding the pre-Alpine metamorphic overprint, the Monte Rosa
and the Gran Paradiso massif protoliths are porphyritic granitoids (Dal Piaz, 2001). Engi et al.
(2001) interpreted the 330 Ma-old monazites as the emplacement age of the main Monte Rosa
granodiorite pluton and the 260 Ma dating obtained from monazites extracted from high-grade
metapelites as the supposed response to the intrusion of minor granitic bodies.

1.3.3. The Southern Alps: the Ivrea-Verbano zone

Pin (1986) dated gabbroic and dioritic rocks, exposed in the Val Sesia and Val Mastallone,
from the Main gabbro-diorite body (upper part of the Mafic Complex, Ivrea-Verbano zone).
U/PDb zircon yields an age of 285 + 7 / -5 Ma, interpreted as the emplacement age of this mafic
complex and the granulitic metamorphism exposed in the Val Strona area (north to the Val
Sesia).

The early Permian age of the granulite metamorphism related to the underplating of the
Mafic Complex in the Ivrea-Verbano zone has been confirmed by *’Ar/*’Ar amphibole dating
(Boriani and Villa, 1997). Ultramafic pipes intrude the Main Gabbro of the Mafic Complex and
the roof metasediments of the Ivrea zone and have also an early Permian (287 + 3 Ma) age.
These ultramafic rocks are thought to represent the latest mantle-derived melts associated with
the underplating event that has affected the Ivrea-Verbano zone during the transition from late
Carboniferous to early Permian (Garuti et al., 2001).

1.3.4. The Austroalpine nappe system

The Austroalpine basement and the Helvetic realm are thought to represent Devonian
passive and compressive margins, respectively, which accreted together during the
Carboniferous. The magmatic rocks exposed in the Eastern domain of the Austroalpine zone
of the Central Alps were more studied than those belonging to the several klippes of the
Austroalpine nappes, e.g. the Dent Blanche nappe. Several basic intrusions have been dated
close to the Carboniferous-Permian boundary as the Sondalo gabbroic complex: 290 Ma
(Tribuzio et al., 1999), the Braccia gabbro and associated leucocratic anatexites: 281 = 19 and
278.4 + 2.6 Ma, respectively (Hansmann et al., 1996, Miintener et al., 2000). The orthogneisses
of the Arolla series, the surrounding rocks of the Mont Collon basic complex, were dated by
Bussy et al. (1998) at 289 + 2 Ma.
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The magmatic affinity of the small granitoid bodies from the Sesia zone is interpreted as
calc-alkaline, ranging in composition from granodiorite to quartz-monzodiorite. Zircon U/Pb
dating indicates an age of the magmatic activity close to the Carboniferous-Permian boundary
(293 + 3 Ma, Bussy et al., 1998).

1.3.5. Chemical characteristics of the late Variscan magmatic events

Three distinct magmatic events characterized the end of the Variscan orogeny: early
Carboniferous, late Carboniferous-early Permian, and late Permian. From the post-collisional
stages to the late history of the Variscan belt (i.e. the collapse period), the magmatism ascribed
to this long period, which lasted around 70 Ma, displays various geochemical characteristics.
Each Variscan belt tectonic phase is related to specific magmatic events, which exhibit tholeiitic,
(K-rich) calc-alkaline or subalkaline affinities.

In the early Carboniferous, acidic intrusions were emplaced along strike-slip fault zones
in the basement areas of the Alpine realm (Bonin et al., 1993; von Raumer et al., 1993; Debon
et al., 1994; Bussy et al., 2000). High-K calc-alkaline suites emplaced during the lower and
middle Carboniferous are related with the post-collisional stage of the Variscan belt, which is
characterized by uplift and erosion in a short-lived transtensional and/or transpressional regime.
These calc-alkaline rocks are characterized by Nb and Ta negative anomalies which are not
interpreted to be related to the contemporaneous subduction of an oceanic lithosphere.

The late Carboniferous and early Permian acidic intrusives and volcanics exhibit alkali-
calcic affinities and like the previous calc-alkaline suites, Nb-Ta negative anomalies. These
volcano-plutonic suites are thought to be emplaced in a major distensional regime, i.e. during
the collapse of the Variscan belt.

Finally, the middle to late Permian-early Triassic period is characterized by the
emplacement of anorogenic alkaline melts, characterized by the absence of Nb and Ta negative
anomalies. These alkaline rocks are associated with the intra-continental extensional processes
and crustal thinning, occurring at the end of the collapse of the Variscan range .

Therefore, from the post-collisional stages of the Variscan belt to the complete collapse
of the chain, the mafic, as well as the acidic volcanic and plutonic rocks (lavas, small and large
magmatic intrusions, lamprophyric dikes), share similar geochemical and isotopic characteristics,
despite their different ages (lower, middle and late Carboniferous and early Permian), locations
in the Variscan belt (European Alpine belt, Pyrenees Range, Corsica), and magmatic affinities
(tholeiitic, calc-alkaline, subalkaline and shoshonitic). Thus, negative or near BSE ¢Nd. values
and Nb-Ta negative anomalies are widespread in the Variscan post-collisional magmatism.
These isotopic and trace-element features have been interpreted in different ways, i.e. as the
effect of a crustal contamination and/or related to a subduction context. Nevertheless, another
hypothesis can be proposed to explain the systematic Nb-Ta negative anomaly and the eNd,
values of all these magmas, such as the involvement of the subcontinental lithospheric mantle,
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previously metasomatized by subduction-related fluids and/or contaminated by recycling of
oceanic sediments.

Conversely, subsequent magmatism (mid- to late Permian) associated with the end of the
extensional episode of the Variscan belt displays very different geochemical characteristics, i.e.
positive Nb-Ta anomalies and positive eNd..

Thus, the petrological and geochemical (incompatible trace elements and Nd, Sr and
Pb isotopes) studies of the Mont Collon mafic complex, which does not display typical calc-
alkaline but rather (transitional) subalkaline characteristics, will bring new insights on the
interpretation of the post-collisional magmatism related to the distensive episode that led to the
collapse of the Variscan belt.

1.4. Previous studies on the Mont Collon mafic complex

Dal Piaz et al. (1977) associated the Mont Collon-Dents de Bertol mafic complex with the
famous Matterhorn massif. They developed a mineralogical and petrographic study completed
by some geochemical data. They also dated the massif as late Permian (ca 250 Ma), using Rb/Sr
and K/Ar methods (on biotite) and interpreted this date as the cooling age of the Mont Collon
complex. Moreover, the Mont Collon intrusion is cited several times in the literature as an
example of a basic magmatism associated with the late tectonic extensional events concluding
the history of the Variscan Range.

1.5. Geographical setting of the Mont Collon mafic complex

The Mont Collon mafic complex is located near the village of Arolla (Fig. 4), in the
Southern Val d’Hérens (Wallis, Switzerland). It covers an area of approximately 14 km? and
was labeled after the highest summit of the area, i.e. the Mont Collon. This mafic complex is
composed of several discontinuous outcrops separated by glaciers and associated moraines (see
Chapter 2). The principal exposure is the Dents de Bertol area, located in the central part of the
intrusion, which exhibits a well-preserved magmatic layering.
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Fig. 4: Location of the Mont Collon mafic complex (dotted line) on a topographic elevation
model (3D Atlas of Switzerland).

1.6. Aims and tools

1.6.1 Aims

The first aim of this work was to recognize, during the field work, the various rock types,
their relationships in the complex and to obtain accurate ages of the main lithologies recognized
in the Mont Collon complex, considering that the previously published data did not constrain
the crystallization time. Moreover, the ages of the dikes intruding the plutonic rocks (i.e. the
leucocratic and Fe-Ti melanocratic dikes) were still unknown, at that time this study started.

We have also to determine mineral and whole-rock chemistries of the magmatic suites
(cumulates and dikes) in the Mont Collon mafic complex, in order to characterize the igneous
processes which led to their genesis as well as the parental melt composition of the cumulates.

Mineral compositions will also allow to estimate the crystallisation depth of the Mont
Collon complex.

10
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Radiogenic isotopes (Nd-Sr, Pb and Re-Os and Hf) will help to (i) characterize the nature
of the sources of the cumulates and dikes (crustal, lithospheric or asthenospheric), (i) its
possible evolution with time, and (iii) determine the potential involvement of the continental
crust (contamination versus assimilation).

Finally, all the data obtained from this work (i.e. ages, geochemical and isotopic
characteristics) will allow to replace the Mont Collon complex in its geodynamic context.

1.6.2 Tools

Rocks used for dating were a pegmatitic gabbro and a Qz-rich pegmatite for U/Pb on
zircons and a Fe-Ti melanocratic dike for “’Ar/*?Ar on amphibole. Both dating methods have
been chosen considering the mineralogies of each rock type. U/Pb dating was also coupled with
Hf isotopes analysis on the dated zircons. Zircon U/Pb dating was done at the ETH Zurich in
the laboratory of the Prof. Urs Schaltegger while amphibole “°Ar/*’Ar dating was done in the
laboratory managed by Mike Cosca and Andreas Mulch, at the Institute of Mineralogy and
Geochemistry (IMG, University of Lausanne).

Whole-rock major- and trace-element compositions were determined by X-Ray
Fluorescence (major- and trace-elements) at the Centre for Mineral Analysis, directed by
Hans-Rudolf Pfeifer (CAM, University of Lausanne) and ICPMS (trace-elements), managed
by Catherine Chauvel and Francine Keller (University of Grenoble). We refer to the appendix
3 for the detailed analysis procedures.

The mineral (clinopyroxene, plagioclase and amphibole) major- and trace-element
chemistry were obtained using in-situ analysis methods: an electron microprobe CAMECA
SX50 (major elements) and a Perkin-Elmer 6100 DRC Laser Ablation - Inductively Coupled
Plasma Mass Spectrometer (LA-ICPMS: trace elements) in the laboratory managed by Frangois
Bussy, at the Institute of Mineralogy and Geochemistry (University of Lausanne). We refer to
the appendix 4 for the detailed analysis procedures.

Nd and Sr radiogenic isotopes were measured by Pierre Brunet at the Laboratoire
de Géochimie Isotopique de 1’Université Paul Sabatier - Toulouse (France) on a Finnigan
MAT261 multi-collector mass spectrometer and at the Institut des Sciences de la Terre, de
I’Environnement et de 1’Espace de Montpellier, managed by Delphine Bosch (ISTEEM,
France), respectively. Pb radiogenic isotopes were analyzed on a VG Plasma 54 Multi-Collector
- Inductively Coupled Plasma Mass Spectrometer (MC-ICP-MS), in the laboratory of Francis
Albarede at the Ecole Normale Supérieure de Lyon (ENS, France). We refer to the appendix 5
for the detailed analysis procedures.
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Chapter 2: Geological setting and petrology of the Mont Collon mafic
complex

2.1. Introduction

The Mont Collon mafic complex is exposed within the Arolla Series on the external side
of the Dent Blanche nappe (s.s.), which belongs to the Austroalpine nappe system. It represents
one of the best preserved Permian mafic complexes of the Western Alps. It consists of a
plutonic suite, crosscut by leucocratic and mafic dikes (Fig. 7). In this chapter, we will develop
the geological background, the field relationship of the plutonic suites and intrusive rocks and
their petrological features.

The Austroalpine nappe system originated from the stretched margin of the Adriatic
microplate (Pfiffner, 1993) and was emplaced during the early Palacogene period of the
Mesoalpine orogeny (Dal Piaz et al., 1972; Hunziker et al., 1989), on the Penninic zone along
a NW-vergent thrust system underlined by a SE-oriented stretching lineation. The latter was
created by the underthrusting of the European plate below the Adriatic margin by ductile shear
of the upper part of the European crust and the lower part of the Adriatic plate (Pfiffner, 1993;
Steck and Hunziker, 1994).

The Dent Blanche nappe and the Sesia-Lanzo zone were concurrently scraped off the
same paleostructural domain (Fig. 5; Dal Piaz, 1999). The Dent Blanche nappe was juxtaposed
above the Penninic units subsequent to the high-pressure metamorphism in the latter during
the Eocene-Oligocene (Avigad et al., 1993). The Arolla lower unit of the Dent Blanche nappe,
containing the Mont Collon mafic complex, escaped the severe eclogitic overprint. According
to Pfiffner (1993), the klippe-shape of the Dent Blanche nappe within the Penninic zone resulted
from Tertiary extensive unroofing, uplift and erosion. Moreover, Ramsay (1967) proposed that
the position of the Dent Blanche nappe resulted from a displacement (greater than 40 km) to the
southwest along the ductile Simplon shear zone relative to the Verampio gneiss. This distance
is based on a simple shear model with extension values measured by deformation markers in
competent conglomerates and granitic gneiss. Steck (1980) proposed a displacement of the
order of 80 km, postulating that deformation in the Mesozoic calcschists is much stronger.

12
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Fig. 5: Evolution of the Western Alps (after Dal Piaz, 1999). Stage 1 assumes asymmetric
rifting, mantle denudation and one (A) or two (B) extensional allochthons within Piedmont-
Ligurian ocean. Stages 2 to 5 show pre-collisional (2-3) to collisional contraction (4-5) from
mid- Cretaceous onwards. Vertical rules: lithospheric mantle. Spreading ridges are omitted. The
Dent Blanche nappe is underlined in black.
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2.2. Geological background

In the western Alps, the Austroalpine nappe system (Martinotti and Hunziker, 1984,
Ballévre et al., 1986, Venturini et al., 1996, Dal Piaz, 1999) consists of several independent
klippes belonging to the Dent-Blanche (s.l.) nappes system (on its external north-west side)
and to the Sesia-Lanzo zone (on its internal southeast side) which are separated from the Ivrea-
Verbano zone by the Insubric line (Fig. 6). The Sesia-Lanzo zone displays a wider distribution
area than the Dent Blanche nappes system (s.l.) which, nevertheless, shows a noteworthy
lithological consistency. The Dent-Blanche (s.1.) consists of several independent klippes, which
systematically overlap the Piedmont nappes stack along a complicated thrust slices system.
The main thrust sheets consist of the upper eclogitic-free northern unit (the Dent-Blanche (s.s.)
- Mont Mary - Pillonet klippes) and the lower H-P eclogitic southern unit (the Mont Emilius
- Glacier Raffray - Tour Ponton units). The east-west-trending Aosta-Ranzola fault system in
the Aosta Valley separates these two units (Bistacchi et al., 2001).

The basement units of the upper Dent-Blanche nappe (s.s.) comprise the upper Valpelline
and the lower Arolla Series, which are also exposed in the Mont-Mary, part of the Dent Blanche
system (s.1.), (Fig. 6). The Valpelline Series consist of silicic to mafic granulites, high-T pelitic
gneisses with interbedded marbles and tholeiitic amphibolites. The most common mineral
assemblages of the granulites indicate metamorphic conditions of 8kbar / 750°C (Diehl, 1952).
The Valpelline depression outlined the development of pull-apart structures during the oblique
collision of Europe and Adria (Steck and Hunziker, 1994). In the Sesia-Lanzo zone, the second
Diorite-Kinzigite zone (II DK zone) is coeval with the Valpelline Series. The II DK zone and
the Valpelline Series display similar metamorphic assemblages and mica cooling ages ranging
between 240 and 140 Ma (Hunziker, 1974, Hunziker et al. 1992). The lower tectonic unit of
the Arolla Series is made of pre-granitic relics of high-grade paragneisses and fine-grained
metabasites intruded by late Paleozoic metagranitoids (ca. 289 Ma, Bussy et al., 1998) affected
by greenschist facies Alpine re-equilibration. The most common mineral assemblage of the
Arolla Series orthogneisses consists of quartz, plagioclase, phengite, hornblende with brown
cores, and minor amounts of chlorite, calcite and epidote (Hunziker, 1974). According to
Compagnoni et al. (1977) and Martinotti and Hunziker (1984), the Gneiss Minuti complex is
coeval with the Arolla Series in the Sesia-Lanzo zone. Instead, Ballévre et al. (1986) assume
that both the Valpelline and the Arolla Series are coeval with the Gneiss Minuti. The latter
occurs throughout the external side of the Sesia-Lanzo zone as a continuous distributed sheet
showing a prevailing greenschist overprint.
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Fig. 6: Tectonic map of the northwestern Alps (after Bigi et al., 1990 and Dial Piaz et al., 1993
and 1999) showing the main tectonic units, i.e.: the Helvetic nappes, the External Crystalline
Massifs (Mont Blanc, Aiguilles Rouges and Aar-Gotthard massifs), the klippe of the Dent
Blanche nappe, the Piedmont units, the Internal Crystalline massifs of the Gran Paradiso and

the Monte Rosa, the Sesia-Lanzo zone and the southern Alpine unit of Ivrea.
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The Permian to Mesozoic monometamorphic metasedimentary rocks are locally
preserved in the Dent-Blanche (s.l.) nappes system and constitute the two main units of the
northern Mont Dolin Series (Weidmann and Zaninetti, 1974, Ayrton et al., 1982) and the
southern Mont Roisan zone (Elter, 1960). They consist of Triassic siliceous clastics, Middle
Triassic to Jurassic platform carbonates, syn-rift monogenic breccias and limestones, overlain
by Cretaceous carbonates to terrigenous flysch-type metasediments (Ballévre et al., 1986, Dal
Piaz, 1999 and references therein). They are classically described as the cover sequence of the
Austroalpine basement but Martinotti and Hunziker (1984) labeled the Mont Dolin Series and
the Roisan zone with a more careful term of «detached remnants of a possible cover sequence.
Mylonitic sheets of the orthogneisses of the Arolla Series separate the Mont Dolin-Roisan
zone from the Valpelline Series. Several bodies of gabbros and related ultramafic cumulates
have been described in the Dent Blanche nappe (Ballévre et al., 1986; Dal Piaz, 1999). These
rocks are affected by an important Alpine overprint (e.g. in the Pillonet klippe) but large well-
preserved mafic complexes occur such as the Matterhorn or the Mont Collon-Dents de Bertol.

2.3. Field relationships

As shown in figure 7 and 10, the exposures are relatively discontinuous because they are
partly hidden by three major glaciers (the Mont Collon, the Arolla and the Ferpécle glaciers)
and associated moraines. The Mont Collon mafic complex consists of three major exposures
and several small scattered outcrops.

The Mont Collon summit represents the main outcrop but it is hardly accessible on its
southern and western sides. The Dents de Bertol exposures are located in the center of the
complex (Fig. 7 and 10). A well-preserved magmatic layering is exposed almost continually
over several hundred meters on its western wall (Fig. 8) while outcrops in the Mont Collon
(s.s.) northeastern wall do not present asuch a preserved layered sequence. Thus, two groups of
cumulates have been distinguished on the basis of their location, i.e. the group I encompassing
the Mont Collon rocks and the group II, the Dents de Bertol layered sequence rocks (Fig. 7 and
8). The magmatic layering is sub-vertical and is related to a parallel rhythmic alternation of
variable thickness of mafic rocks (Plate 1, Ph. 6). The rocks exhibit a mineral fabric, underlined
by clinopyroxene and/or plagioclase, which is almost sub-parallel to the magmatic layering.
The main facies observed in the layered sequence are olivine-bearing and clinopyroxene-
bearing gabbros.

Rare thinner melanocratic layers (classified as plg-wehrlite according to their plagioclase,
olivine and clinopyroxene modal contents) are also exposed at the northernmost extremity (near
the contact with the surrounding rocks) and in the middle part of the layered sequence of the
Dents de Bertol area. They have not been observed in other parts within the complex.
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Western European Alpine Belt (see also figure 2).
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Two wehrlitic layers crop out also at the base of Crétes des Plans (Plate 1, Photo. 1).
These rocks occur only as sills within the gabbros, with sharp contact and they are not present
in the preserved layered sequence. At the southernmost extremity of the Dents de Bertol area, a
single anorthositic layer crops out with a magmatic layering parallel to the main orientation of
the rhythmic sequence. Finally, the northeasternmost exposures are located on the eastern bank
of the Glacier de Ferpécle. Patches of pegmatitic gabbros crop out at the base of the eastern wall
of the Mont Collon or in the Dents de Bertol area.

Numerous centimeter- to decimeter-sized intermediate to acidic dikes are widespread in
the Mont Collon intrusion (Plate 1, Photo. 2 to 5). The acidic dikes systematically crosscut the
gabbroic facies and they exhibit various mineralogy. They consist of (i) quartz-rich pegmatites,
(i1) microgranodiorites (iii) aplites and (iv) anorthositic dikes. The petrological characteristics
of the dikes will be described in this chapter.

Fine-grained black dikes are exposed only in the Dents de Bertol area. They are never
found in the surrounding orthogneisses of the Arolla series or in the other parts of the complex.
They crosscut all the lithologies including the mafic cumulates and the leucocratic dikes with
sharp contacts. The terminology, mineralogical and compositional characteristics used to name
these dikes will be discuss in chapter 5. So, we will label these dikes as “Fe-Ti melanocratic
dikes” as they are named by Dal Piaz et al. (1977).

The contact zone between the complex and its country rock (the orthogneisses of the
Arolla Series) is several meter-thick (up to 70 m). It is clearly mylonitic and drastically folded
with both the orthogneisses and the mafic cumulates by Alpine tectonic disturbances (Fig.
9 and plate 2). At the contact with the undeformed zone of the mafic complex, the gabbros
(s.l.) display flaser texture (plate 2, zone 3). The contact can be followed along discontinuous
exposures from the base of the Crétes des Plans to the northern extremity of the Dents de Bertol
where the magmatic layering zone is directly in contact with the mylonitic horizon (Fig. 10).
Consequently, we cannot be sure whether the orthogneisses of the Arolla Series represent or not
the original country rocks of the mafic complex.

The mafic cumulates of the Mont Collon complex display a weak metamorphic overprint
of greenschist grade, which decreases from the mylonitic contact to the center of the complex
(Dents de Bertol), where the magmatic textures and mineralogy are well-preserved. The
weathering is discontinuous across the complex.
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Plate 1: Microphotographs of field relationships

Photo 1: werhlite MP213 (Dents de Bertol area, Photo 2: anorthositic dike Crétes des Plans
swiss coordinates: 605650 / 093600) (swiss coordinates: 605800 / 093420)

Photo 3: aplitic dike (Mont Collon NE wall, Photo 4: quartz pegmatite (Mont Collon NE
swiss coordinates: 605850 / 092850) wall, swiss coordinates: 605500 / 092800)

Photo 5: microgranodioritic dike (Crétes des
Plans, swiss coordinates: 605320 / 093550)

Photo 6: magmatic layering in the Dents de
Bertol area (swiss coordinates: 607100 /
094210)
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Plate 2: Microphotographs of successive zones within the contact area from the Arolla

orthogneisses towards the Mont Collon complex

from the Arolla orthogneisses

zone 1: mylonitic rocks within the contact
between the Mont Collon complex and the
surrounding Arolla orthogneisses

zone 2: cumulates deformed near the
contact with the Arolla orthogneisses

zone 3: flaser gabbro situated at the
outermost zone of the contact, i.e. near the
undeformed cumulates of the complex.

to the Mont Collon mafic complex
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Chapter 2

In the following presentation of each rock type, emphasis is on the chemical variations
of their minerals. The bulk rock chemistry will be treated in chapter 4 (cumulate rocks) and
chapter 6 (dikes).

2.4. The mafic cumulates and related rocks

Most rocks of the Mont Collon complex are medium- to coarse-grained cumulates
displaying variable modal amounts of olivine, clinopyroxene and plagioclase as major mineral
constituents (see major-element composition of minerals in Tables 1 to 4). Plagioclase-
wehrlites, olivine- and clinopyroxene-bearing gabbros are the most common facies with some
rare wehrlites and troctolites. They crop out as variable sized layers forming a well-defined
cumulate sequence in the Dents de Bertol area (Fig. 8). Cumulitic textures are well-preserved
and underlined by preferred mineral orientation. Olivine and clinopyroxene form the main
cumulus phases and crystallize as eu- to subhedral grains, up to 2-3 mm long. Plagioclase
forms tabular crystals, commonly with parallel alignment. Primary olivine crystal boundaries
are systematically resorbed in olivine-bearing rocks by orthopyroxene and amphibole coronitic
reactions (see chapter 3, Fig. 19). Late-magmatic Ti-amphibole dominates the intercumulus
assemblage, occurring as overgrowths or more locally as patches surrounding clinopyroxenes.
Accessory minerals are magnetite, ilmenite and sulphides; apatite is rare. With few exceptions,
orthopyroxene occurs only as coronitic reaction rims between olivine and plagioclase in all
olivine-bearing samples. Nevertheless, orthopyroxene could crystallize as a magmatic phase
(1-2 vol-%) in some plagioclase-wehrlites.

2.4.1. Wehrlites

Wehrlites of the Mont Collon are ad- to mesocumulates with highly serpentinized olivine
(up to 60 vol.%) and euhedral diopsidic clinopyroxene as cumulus phases. Intercumulus
amphibole is a magnesio-hastingsitic hornblende, which is almost completely recrystallized
into actinolite-tremolite.

2.4.2. Plagioclase-wehrlites (= plg-wehrlites)

Olivine is the main cumulus phase in plagioclase-bearing wehrlites. It displays a constant
composition (Fo =75.3 - 77.8) with Ni content between 450 and 630 ppm. MnO shows constant
concentration close to 0.3 wt%. Euhedral to subhedral clinopyroxene represents 20 to 30% of
the cumulus phases. Its composition varies from endiopside in the core to diopside in the rim
(Fig. 11), i.e. Mg# decreases from 87 to 83 and CaO increases from 22.0 to 23.2 %, respectively.
Clinopyroxene has a higher AL,O, content than clinopyroxene in the gabbros. Al,O, varies
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from 2.9 % to 3.9 % and generally decreases from core to rim, while Na,O and TiO, increase.
Plagioclase appears as an intercumulus phase with variable modal proportions (10-30%). Its

composition plots in the labradorite field (An_, and An_, ., Fig. 12). A significant amount of a

63.1 69.2°
magnesio-hastingsite magmatic amphibole (Fig.13) fills the interstices between plagioclase and
clinopyroxene or occurs locally as large patches surrounding clinopyroxene and plagioclase.
Accessories are essentially ilmenite and magnetite. Magnetite occurs as round-shaped grains,
while ilmenite fills the interstices and is generally surrounded by magmatic amphibole. The
ilmenite component is close to 90% with minor amount of geikielite (7.5%) and pyrophanite

(2.5%). Magnetite is Mn, Cr and Mg poor. Its NiO content increases up to 1 wt%.

Diopside
so _/
/ IR/ Salite /S R/
-§©
;§Q Augite plg-wehrlites
& = core
wehrlites o rim
/7% / ) ®/
. ol-gabbros
@ anorthosite + core
w troctolite o rim

a7

cpx-gabbros
= core
o rim

[ [ N\ \

VA \
En o 50 100 Fs

Fig. 11: Ternary diagrams for clinopyroxene from plagioclase-wehrlite, olivine- and
clinopyroxene gabbros in the Ca,Si,0, (Wo) - Mg,Si,O, (En) - FeSi,O, (Fs) system
(compositional fields after Morimoto et al., 1988).
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2.4.3. Troctolites

Troctolites are medium-grained ortho- to mesocumulates, consisting of anhedral olivine
(35 vol%; Fo = 78.7 - 79.4) and variable sized laths of bytownitic plagioclase (65 vol%,
An_,, Fig. 12). Plagioclase crystallizes as euhedral tabular grain underlying the cumulative
texture of the rock. Clinopyroxene is scarce and frequently absent at the thin section scale (<

3 %). It is diopsidic (mean of 9 analyses: En,, Fs. Wo,, Fig. 11); the CaO content increases

45.5 48°
systematically from core (>21.6 wt%) to rim (max. 23.3 wt%). Al,O, ranges from 3.2 to 3.5
wt%, but does not present coherent variations between core and rim. Na,O remains constant
close to 0.3 wt%. Rare magnesio-hornblende fills the interstices between plagioclases (Fig. 13).

Accessory oxides are extremely rare and fill the interstices between plagioclase grains.

anorthosite

4 \-- 5\6\

5

plg-wehrlites

L

\

An

| ww)

Fig. 12: Compositions of plagioclase from plagioclase-wehrlite, troctolite, olivine- and
clinopyroxene gabbros, anorthosite. Compositional fields after Smith and Brown (1988).
1: albite, 2: oligoclase, 3: andesite, 4: labradorite, 5: bytownite, , 6: anorthite.
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2.4.4. Olivine gabbros (= ol-gabbros)

Olivine gabbros display ortho- to mesocumulate textures. Modal proportions of cumulus
phases are slightly variable and plagioclase is generally dominant. Olivine is anhedral and
displays a more homogeneous composition (Fo =76.4 - 79.4) than in plagioclase-wehrlites, but
similar Ni contents. MnO is rather constant with mean concentrations close to 0.3 wt%. Diopside
crystallizes as euhedral to anhedral grains of variable size (Fig. 11), indicating an early-stage
magmatic crystallization. Mg# ranges from 84 to 89 and remains rather constant between
core and rim. CaO content shows limited variations (22.0 < CaO < 23.4). Clinopyroxene is
characterized by a wide range in Al content, which is rather low (1.2 <Al O, <3.5 wt%). Na,O
(0.21 to 0.49 wt%) is positively correlated with A1 O, as does TiO,. Plagioclase is tabular and
preferentially oriented in the layering plane. It is chemically zoned (Fig. 12) with bytownitic
cores (up to An

) and labradoritic rims (An_, ). Magmatic amphibole occurs as interstitial phase

82.6 65.6
between plagioclase and / or clinopyroxene or patches riming clinopyroxene. Its distribution is
not spatially uniform at the scale of a thin section. It displays three main compositions: Ti-rich
pargasite, magnesio-hastingsite and magnesio-hornblende (Fig. 13). The AIY! content is anti-
correlated with Ti. Their Mg# is the highest observed in all Mont Collon basic rocks. Actinolitic
hornblende, actinolite and tremolite appear as spatially limited retromorphic products of
magmatic amphibole during Alpine greenschist metamorphism. Ilmenite is rare and magnetite

represents the most common non-silicate mineral present in this rock facies.

2.4.5. Clinopyroxene gabbros (= cpx-gabbros)

Olivine-free clinopyroxene gabbros are essentially composed of cumulitic clinopyroxene
and plagioclase in equal proportions. They contain variable amounts of Ti-rich magmatic
amphibole as intercumulus phase (up to 8 %). Both plagioclase and clinopyroxene crystallized
as euhedral grain, showing preferred orientation. Clinopyroxene composition plots in the
diopside field (Fig. 11). It is characterized by low AlLO, (< 3.1 wt%) and Na,O (0.29 to 0.56
wt%) contents. Rims are generally depleted in AlO, and TiO, with respect to the cores.
Clinopyroxene displays relatively constant Mg# close to 85. Compositional features are very
similar to those of clinopyroxene crystallizing in the other rock types. Plagioclase crystallizes
as equigranular crystals and exhibits commonly bytownitic composition (Fig. 12). Plagioclase
(An_,) is commonly unzoned. Magmatic amphibole is a Ti-rich pargasite (Fig. 13), surrounding
clinopyroxene and/or oxides. Its Mg# is the lowest among magmatic amphiboles in the massif.
Extremely rare oxides are closely associated with amphiboles.
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(Na+K) A > 0.50; Ti < 0.50; Fe3* < AIVI Mg/(Mg+Fe2t)
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Fig. 13: Compositions of amphibole of cumulative rocks. Nomenclature of calcic amphiboles
(CatNa), > 1.34; Na, < 0.67) according to Leake et al. (1997).

2.4.6. Anorthosite

The unique anorthositic layer observed in the Dents de Bertol area is essentially
constituted of tabular grains of unzoned bytownitic plagioclase (Fig. 12) without preferential
orientation; although a weak fabric is visible at the outcrop scale. There is also a small amount
of clinopyroxene (4 —5 vol.-%) and amphibole (< 1 vol.-%). Rare clinopyroxene displays
diopsidic composition (Fig. 11) similar to that of other rocks and amphibole is commonly a
magnesio-hornblende (Fig. 13) with relatively high TiO, content (up to 1.58 wt%).
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2.4.7. Pegmatitic gabbros

The pegmatitic gabbros have rather preserved magmatic assemblages, although their
magmatic texture are still preserved. They are partly recrystallized under greenschist facies
conditions. This metamorphic overprint is explained by the sampling location, which is in an
outermost position (i.e. at the base of the Mont Collon), more affected by Alpine greenschist
metamorphism, whereas the cumulates crop out in the innermost well-preserved part of the
complex (i.e. the Dents de Bertol). They consist of large crystals (up to several cm long) of
plagioclase, which are mainly completely recrystallized as albite (Ab,,). A primary magmatic
amphibole is replaced by a pale green polycrystalline secondary amphibole (actinolite). Fe-
oxides are scarce and represent less than 1 vol-%.

2.5. The leucocratic dikes and the Arolla orthogneisses

The leucocratic rocks crop out as centimeter- to decimeter thick dikes. Four types of
dikes can be distinguished on the basis of their mineralogy: (i) K-feldspar-quartz pegmatites,
(i1) K-feldspar-quartz aplites, (iii) microgranodiorites, and (iv) anorthositic dikes. The other
leucocratic rocks exposed in the Mont Collon area are the surrounding Arolla orthogneisses.
Feldspar and amphibole compositions are given in Tables 5 and 6, respectively.

2.5.1. Aplites

Aplites are fine-grained dikes essentially composed of K-feldspar and quartz. These
dikes are mostly deformed and crystals show intracrystalline deformation. Feldspar is seldom
preserved and replaced by sericite. Preserved crystals display orthoclase composition (Or,, .,
Fig. 14). Na O varies from 0.29 to 0.95 wt%. Feldspars are characterized by low major-element
variations between the core and the rim (63 < Si0, < 64 wt%, Al O, close to 18.2 wt%). Epidote

is common, whereas white mica (muscovite), pyrite and Fe oxides are rare.

2.5.2. Quartz-rich pegmatites

The quartz-rich pegmatites differ from the aplite by the large size and anhedral shape
of the crystals. The acid pegmatites consist of large K-feldspar and quartz (up to 5 centimeter-

sized). As aplitic dikes, the K-feldspar exhibits orthoclase (Or, , Fig. 14) composition.

96
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2.5.3. Microgranodiorites

The microgranodiorites consist of eu- to subhedral tabular-shaped feldspars,
euhedral biotite and xenomorphic quartz. Feldspars show oligoclase (An,Ab.,) and sanidine
(Ab, Or, ) compositions (Fig. 14) and crystallize before (or probably contemporaneously)
with biotite. Biotite is characterized by low K O (8.7-9.3 wt%), relatively high MnO and
TiO, (up to 5 wt% and 3.7-4.8 wt%, respectively) contents. SiO,, Al,O,, FeO_ exhibit low
variations (29-30 wt%, 16.8 wt% and around 26 wt%, respectively). Biotite can be completely
recrystallized into chlorite and feldspar replaced by sericite. Textural evidences (e.g. biotite and
feldspar included within quartz, xenomorphic shape) show that quartz is the latest crystallizing
phase. Quartz occurs occasionally as poikilitic crystals. From the core to the margin of the
dikes, modal proportions of quartz increase whereas biotite decreases. Epidote is the most
common accessory mineral with apatite. The former is closely related to biotite and the latter is

always included within feldspars.

2.5.4. Anorthositic dikes

Plagioclase is the major component of the anorthositic dikes (90 vol-%). Apatite is
widespread and represented as inclusions in plagioclase. It is difficult to determine the exact
apatite modal proportion. Nevertheless, several percents (up to 5 vol-%) could be a right
estimate. Amphibole crystallizes also as interstitial grains (2-5 vol-%), and displays more or
less important chlorite recrystallization at its rim.

2.5.5. The Arolla orthogneisses

The common mineral assemblage of the Arolla orthogneisses consists of quartz,
plagioclase, phengite, hornblende with brown cores, and minor amounts of chlorite, calcite and
epidote (Hunziker, 1974; this study).
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granodiorites aplites
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Fig. 14: Compositions of plagioclase from leucocratic and Fe-Ti melanocratic dikes. Composi-

tional fields after Smith and Brown (1988).
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2.6. The Fe-Ti melanocratic dikes

The Fe-Ti melanocratic dikes are mainly composed of amphibole, clinopyroxene and
plagioclase associated with apatite and Fe-Ti oxides (magnetite and ilmenite). The grain size of
these Fe-Ti rich dikes decreases from the core to the margin. The latter exhibits microcrystalline
texture and includes pyroxene and olivine xenocrysts belonging to the cumulate host rocks.

Euhedral amphibole is the main component (55 - 60 vol.-%) and displays a kaersutite
composition (Leake et al., 1997; Fig. 15). The kaersutite is Fe- (10.65 < FeO* % < 15.20), Ti-
(4.85 <TiO, < 6.79 wt%) and alkali-rich (3.4 < [Na,O + K O] < 4.4 wt%). Some amphibole
grains show higher FeO* (up to 17.31 %) and lower MgO (< 8.5 wt%) contents and thus, can be
named ferro-kaersutites. The Fe enrichment is related to the (Fe*" + Fe**) substitution of Mg.

Clinopyroxene crystallizes as euhedral or round-shaped small grain (6 to 8 vol-% modal
proportions). Primary compositions plot within the diopside field (Fig. 16, Table 7), although
some clinopyroxenes tend toward the salite compositional field. The latter exhibit high Al O,
content (between 6.2 and 7.5 wt%) compared to diopside (3.45-5.52 wt%). The CaO content
does not display a regular evolution from core to rim and remain relatively constant (20.9-22-
3 wt%). Fe and Ti increase systematically from core to rim and the TiO, content reaches 2.66
wt% in the most enriched rim (sample MP244d) with the exception of clinopyroxenes, which
tend to the wollastonite field (TiO, content up to 3.45 wt%). They display low Na,O (0.47-0.73
wt%), Cr,0, and MnO contents (lesser than 0.44 wt% and 0.21 wt%, respectively).

Anhedral Na-rich (Ab,, . .. ,An, . Or ) plagioclase (25-28 vol-%) fills the spaces left
between the kaersutite, clinopyroxene and oxides grains, and shows a Na enrichment from core
to rim (range between Ab, and Ab,,; Fig. 14). This albitic composition is surprising, considering
the chemistry of these dikes (see chapter 3), which present ultrabasic characteristics (SiO, <
45 wt%). It is noteworthy that Dal Piaz et al. (1977) obtain a range of An,

of melanocratic dikes from the Matterhorn-Mont Collon massifs and especially, an An,,

for plagioclase

composition for a plagioclase of a melanocratic dike from the Dents de Bertol (sample DBL
605). So, the albitic composition of the plagioclase from the melanocratic dikes sampled for
this study is not in agreement with those given by Dal Piaz et al. (1977). They could be related
either to the Alpine metamorphic overprint or to deuteric transformations although, other
constituent minerals remain remarkably preserved and not affected by secondary reactions.
Another explanation can be given for the Na-rich composition of the plagioclase. The FeO/
MgO ratios of the melanocratic dikes indicate that they are evolved rocks (FeO/MgO ~ 1.59).
Consequently, the plagioclase composition could be related to the differentiated character of
these dikes.
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Fig. 15: Compositions of amphiboles of the Fe-Ti melanocratic dikes. Nomenclature according
to Leake et al. (1997). MP177, MP249a and b refer to sample numbers.
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Fig. 16: Ternary diagrams for clinopyroxene from Fe-Ti melanocratic dikes in the Ca,Si,0,
(Wo) - Mg, Si,0, (En) - Fe,Si,0, (Fs) system (compositional fields after Morimoto et al.,
1988).
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Euhedral ilmenite and magnetite represent approximately 3-5 vol-% of the modal
proportions and precipitated before albite. They crystallize as euhedral grains, commonly
associated with the amphibole or as isolated grain within feldspar.

Needle-shaped apatite (~ 2 vol-%) is included in the albite grains. Titanite, zircon and
pyrite are rare at the scale of a thin section. Calcite is common, crystallizing in thin veins. These
dikes are also characterized by the presence of miarolitic vesicles. The occurrence of these
vesicles and the apatite habitus suggest a rapid cooling at shallow depth.

2.7. Conclusion

Mineral evolution in the cumulitic sequence

The crystallization sequence in the cumulates of the Mont Collon mafic complex is
variable. Olivine is the first phase to crystallize, followed either by plagioclase or clinopyroxene
(e.g. in troctolites and wehrlites, respectively) depending on the lithologies and probably the
location within the magma chamber (i.e. variation in space and time of parameters such as
PH,0, fO, magma replenishment). Ilmenite and/or magnetite crystallize subsequently, whereas
Ti-amphibole is the last phase to form together with accessory apatite. Mineral compositions
are surprisingly homogeneous among the different rock types. The most primitive olivine
composition (Fo = 78.7-79.4) is found in the troctolites, but it is barely different in others

lithologies (Fo =74 - 77). The overall plagioclase compositional range is An,, ., not much larger

83-63?

than zoning in individual crystals in olivine-gabbros (An,, ..). Clinopyroxene is diopsidic, but

83-65
shows some weak elemental variations in plagioclase-wehrlites, where less calcic composition
(endiopside-augite joint) are locally found in crystal cores. Rims are often slightly more calcic
(by 0.1-0.5 wt% CaO) than the core of the crystals. Aluminum exhibits larger variations; the
Al O, content of clinopyroxene ranges from 1 to 5 wt% over the pluton, with up to 1 wt% Al O,
increase (in plagioclase-wehrlites) or decrease (in clinopyroxene-gabbros) between core and rim
within a single clinopyroxene crystal and up to 2 wt% within a sample. Small scale variations
probably reflect fluctuation in the silica activity of the melt (Deer, Howie and Zussmann,
1992) in the vicinity of crystallizing grains in relation with the nature of surrounding phases.
Composition of interstitial amphibole does not vary significantly, except for its Ti content
(from 0 to 3.5 wt% TiO, over the massif), which is in direct relationship with the presence or
absence of ilmenite/magnetite in the sample. The Mg# and Mg# | of cumulates are positively
correlated (Fig. 17a), whereas the An values do not display a good correlation with the Mg# of
olivine (Fig. 17b). A poorly defined negative correlation is observed between the Mg#  and
the mean An content of plagioclase (Fig. 17c¢). It is noteworthy that the anorthite content (An)
of plagioclase is systematically lower in plg-wehrlites and ol-gabbros from the Mont Collon
area (group I samples) than the rocks sampled in the Dents de Bertol cumulitic sequence (i.e.
plg-wehrlite MP155, ol- and cpx-gabbros from the group II) and the troctolite MP240.
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Fig. 17: Variation diagrams using Mgit ., Mgt | and anorthite content of plagioclase (An_) of
the Mont Collon cumulates.

Leucocratic and Fe-Ti melanocratic dikes

Leucocratic dikes display three main mineral assemblages: (i) K-feldspar and quartz,
(i) plagioclase, K-feldspar, biotite and quartz, and (iii) rather solely plagioclase. Thus,
quartz-pegmatites and aplites differ only by their grain sizes. The occurrence of biotite in the
microgranodiorites suggests the presence of water which appears to be absent in the other
leucocratic dikes. Anorthositic dikes are different from the other leucocratic dikes as they
contain only plagioclase, showing that they originated probably from less Si enriched melt than
the others.
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The Fe-Ti melanocratic dikes are characterized by a contrasted mineralogy, compared
to the mafic cumulates and leucocratic dikes. The main feature of the Fe-Ti melanocratic dike
is the presence of kaersutite, ilmenite and =+ titanite and Na-rich plagioclase. This mineral
assemblage is typical of alkaline hydrous melts.

2.8. Thermo-barometric conditions of emplacement of the Mont Collon mafic

complex

2.8.1. Introduction

The pressure and temperature conditions of crystallization and/or emplacement of the
Mont Collon mafic complex were still unknown, up to the current study. However, these
parameters are helpful to discuss the geodynamic setting of this complex. Moreover, accurate
pressure and temperature will allow us to calculate specific partition coefficients between
clinopyroxene and melt, which will be used in chapter 4 for the modeling of the differentiation
process of the Mont Collon mafic cumulates. As, the contact with the country rock is tectonic,
the Arolla orthogneiss mineralogy does not give any clue.

The geobarometers and geothermometers calibrated and available for basic magmas
are scarce in the literature. Published geothermometers (e.g. Lindsey, 1983) need specific
mineralogical assemblages, most of the time with both orthopyroxene and clinopyroxene and
provide only estimates of the temperature. But, orthopyroxene is absent as a primary phase in
most of the Mont Collon cumulates. Nevertheless, some geothermometers are applicable to the
basic rocks containing olivine and clinopyroxene, such as the olivine-augite geothermometer
of Loucks (1996). The most adapted geobarometer available is the one developed by Nimis and
Ulmer (1998) for anhydrous and hydrous basic magmas based on the mineralogical structure
of clinopyroxene. However, this geobarometer requires an accurate temperature, considering
its sensitivity to this parameter. Temperature on interstitial amphiboles will be also estimated
using thermometer B of Holland and Blundy (1994).
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2.8.2. Thermo-barometric conditions of emplacement
2.8.2.1 Thermometric calculations

Geothermometric calculations were made on the Mont Collon olivine- and clinopyroxene-
bearing rocks. As mentioned above, we have to calculate accurate crystallization temperatures,
which, then, will be introduced in the geobarometer of Nimis and Ulmer (1998). We propose
to use the thermometer developed by Loucks (1996) based on the Fe-Mg exchanges between
coexisting augite and olivine calculated on the basis of the Kd Fe/MgOV"“‘g = (Fe/Mg), / (Fe*'/
Mg)aug. This geothermometer can be applied within a wide range of temperatures (800-
1250°C) and for mineral assemblages including olivine + augite + plagioclase + pigeonite or
orthopyroxene. Experimental studies described by Loucks (1996) suggest that the calculations
are valid up to 1 GPa. The geothermometer is reliable up to 2wt% H,O in the melt, which covers
most of the range of relevant natural olivine-bearing assemblages. Computation for thermal
calculations were performed using Wolfran® Mathematica® software (ver. 4) in order to extract
the temperature T from the equation proposed by Loucks. The obtained temperatures range
from 1070 to 1120 = 6 °C.

Calculations were then made on interstitial magmatic amphiboles crystallizing in the mafic
cumulates using the geothermometer B of Holland and Blundy (1994) based on amphibole/
plagioclase compositions. This geothermometer can be applied to silica-undersaturated rocks
in the range of 400-1000°C for pressures between 0.1 to 1.5 GPa. It can be applied for a wide
range of amphibole compositions using the following parameters: amphibole atom per formula
contents for Na,, > 0.03, AIV'< 1.8, 6.0 < Si < 7.7 and the anorthite content of plagioclase has
to lie between 0.1 and 0.9. The calculated temperatures are close to 740 + 40°C for a pressure
of 0.5 GPa. This temperature indicates clearly that the development of these amphiboles took
place during igneous conditions of crystallization. However, the obtained temperatures are
rather related to cooling conditions. This value must be very close to the solidus temperature of
the considering magmatic system at 1GPa, according to experimental work on partial melting
of (meta)basalts and gabbros at PHZO <P . (Holloway and Burnham, 1972; Springer and Seck,

1997).
2.8.2.2. Barometric calculations

Several geobarometers taking into account the Al content in hornblende (s.1) are available
in the literature (Hammarstrom and Zen, 1986, Johnson and Rutherford, 1989, Schmidt,
1992), but none of them are well calibrated for undersaturated rocks. So, we used parameters
defined by Nimis (1995) and Nimis and Ulmer (1998) for geobarometric calculations on
clinopyroxenes. Firstly, Nimis (1995) developed a barometer based on the volume of cell (V)
and of the M1-site (V,, ) which are negatively correlated for a given pressure (P) corresponding
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Fig. 18: Backscattered electron image (BSE) of olivine-gabbro coronitic texture (magnification

x150). Primary assemblage of olivine-gabbro : olivine + clinopyroxene + plagioclase + spi-

nelle. Corona assemblage: orthopyroxene+amphibole+Cr-spinel.
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with the extent of the Tschermak-type substitutions depending on the activities of SiO, and
CaO. Moreover, both these parameters decrease linearly as P increases. Thus, this barometer is
applicable to near-liquidus C2/c clinopyroxene crystallizing from a basaltic anhydrous melt in
the absence of garnet. Nimis and Ulmer (1998) expanded a second T-depend barometer for both
anhydrous and hydrous melts to obtain corrections for thermal expansivity on unit-cell and M 1-
site. This geobarometer closely agrees with the pressures calculated by independent methods on
the Adamello batholith. Nimis and Ulmer (1998) developed a MS-DOS software to facilitate
the barometric calculations “CpxBar” (available at http//dmp.unipd.it). This program excludes
clinopyroxene which do not display the calibrated compositions (Mg#Cpx =0.7-0.9, (Ca + Na)
> 0.5 and basaltic melt with AL O, = 18%). The Nimis and Ulmer (1998) geobarometer needs
accurate temperatures with an error lower than 20°C. Reporting the calculated temperatures
into the Nimis and Ulmer (1998) clinopyroxene geobarometer yields pressures ranging from
0.3t0 0.6 £0.17 GPa (=10).

2.8.3. Coronitic reactions

Coronitic layers occur systematically between olivine and plagioclase in the mafic
cumulates. They consist of two or three distinct shells (Fig. 18). The first shell is adjacent to the
olivine and is composed of colorless 20-50 pm thick orthopyroxene. The second shell is a corona
of amphibole-Cr-spinel of variable width. Amphibole composition ranges from pargasite to
magnesio-hastingsite (nomenclature of Leake et al., 1997), while the fine exsolution of Al-Mg
spinel exhibits hercynite composition. The third shell consists of spinel-free amphibole with
the same composition as in the second shell. The orthopyroxene and the first amphibole layers
are optically continuous single crystals. Coronitic and magmatic amphiboles display markedly
different major- and trace-element compositions. Coronitic amphiboles display higher Mg#
and A1Y!' and lower Ti, Na, Cr contents and similar Si contents (Fig. 19). Grantham et al. (1993)
described coronitic reactions modeled with the software Thermocalc in the Proterozoic olivine
melanorite of the Equeefa Suite (Natal Metamorphic Province, South Africa).

The coronitic reaction is as following:

2Ab+12Fo+4An+2HO=7En+2Parg+2Sp

The activity of water is supposed to be less than 1.0 and reaction occurs at around
800°C (at 0.7 GPa). Grantham et al. (1993) interpreted this reaction as a partial hydration
of the mafic rocks at high temperature and pressure, probably shortly after crystallization.
Temperature calculations were also made on the Mont Collon coronitic amphiboles using
the geothermometer of Holland and Blundy (1994) based on amphibole-plagioclase pair. The
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calculated temperatures of 700 + 40°C are close to those calculated for magmatic amphiboles
(740 £40°C, see section 3.2.1). Thus, this temperature confirms that coronitic reactions occurred
at subsolidus conditions. Similar coronas have been described in many gabbroic intrusions
(Grieve and Gittins, 1975; Claeson, 1998 and ref. therein) and are also interpreted as subsolidus
reaction products, which developed during deep-seated slow cooling. The undeformed nature
of the Mont Collon gabbro suggests that there is no need for a metamorphic overprint to trigger
the development of coronas.

2.8.4. Concluding remarks

The temperature and pressure (mean values: 1100°C and 0.45 GPa) show conditions of
emplacement in the middle crust. This temperature is consistent with a cotectic precipitation
of the mineralogical assemblage ol+plg+cpx from a basaltic magma containing some water
(Green and Ringwood, 1967). This low pressure of intrusion is also compatible with (i) the
absence of orthopyroxene, (ii) the widespread presence of olivine and plagioclase, (iii) the Na
contents of clinopyroxene and (iv) the relatively high An content of plagioclase.

Comparison with some other mafic intrusions ascribed to the post-collisional extension
of the Variscan belt at the Carboniferous-Permian boundary illustrates that mafic magmas
emplaced at the mantle/crust boundary and at different crustal levels (Fig. 20). P/T intrusion
conditions of the Val Malenco (Miintener et al., 2000) and gabbros of the Ivrea-Verbano zone
(Maronni et al., 1998) based on primary mineralogical assemblages reflect deeper emplacement
depths for these Permian Mafic Complexes (PMC) than the Mont Collon mafic complex, i.e.
at the crust-mantle boundary. Despite any accurate calculations on the gabbros, Tribuzio et al.
(1999) proposed a similar level of emplacement for the Sondalo gabbroic complex to that of
the Mont Collon complex, i.e. the middle crust, based on the P/T conditions deduced from the
minerals assemblages of the surrounding rocks.
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Fig. 20: Comparison of the calculated P/T conditions of emplacement of the Mont Collon mafic

complex (this study), the Braccia gabbro (Val Malenco, Hermann et al., 1997) and the Ivrea-

Verbano zone (Marroni et al., 1998).
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Chapter 3: Modeling of in situ crystallization processes in the Permian
mafic layered intrusion of Mont Collon

3.1. Introduction

Large parts of the Variscan belt have been involved in the Alpine orogeny and some of
them underwent high-grade metamorphic recrystallization (granulite, eclogite and/or Alpine
greenschist overprints) and deformations (Variscan and/or Alpine). In contrast, the Mont
Collon mafic complex displays remarkably well-preserved magmatic structures and mineral
assemblages (especially in the Dents de Bertol area), which allow detailed investigation and
modeling of crystallization processes in an intra-continental mafic magma chamber.

This chapter focuses on the whole-rock and mineral (clinopyroxene, plagioclase and
amphibole) major- and trace-element geochemistry of mafic cumulates. Monotonous major-
element compositions throughout the Mont Collon mafic intrusion coupled to highly variable
trace-element distribution are better explained by an in sifu crystallization model (Langmuir,
1989) than by a classical fractional crystallization process. Interstitial residual liquid is
involved during crystallization of mafic cumulates and the relative proportion of interstitial
residual liquid can be computed by modeling the mineral trace-element contents. Interstitial
melt tends to re-equilibrate with early cumulus minerals (clinopyroxene, plagioclase). Such
re-equilibration leads to enrichments in incompatible trace-element in these phases. So, this
enrichment could be erroneously interpreted as the effects of magmatic differentiation, rather
than the involvement of interstitial liquid.

Modeling indicates a transitional MORB-type affinity for the Mont Collon cumulate melt,
showing that transitional MORB are not restricted to oceanic context, but can occur in intra-
continental settings.

3.2. Whole-rock major- and minor-element chemistry

Chemical data are reported in Tables 8a-c and 8a-d. Major-element distributions are
illustrated in figure 22 as well as in figure 23 for the specific chemical evolution of the
Dents de Bertol cumulative sequence. Iron is recalculated as total iron (FeO") following the
recommendations of Irvine and Baragar (1971). CIPW norm calculation has been restricted
to unmetamorphosed samples, as it is very sensitive to potentially mobile elements (e.g. Na)
during metamorphism or alteration processes. Rocks are olivine and hypersthene normative
and plot in the olivine tholeiite field (Ol-Hy-Di triangle; Fig. 21) of Ne-Di-Ol-Hy-Q diagram
Thompson (1984).
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Fig. 21: Classification of the Mont Collon mafic cumulates and Fe-Ti melanocratic dikes based
on their CIPW normative compositions expressed as Ne-Ol-Di, Ol-Di-Hy and Di-Hy-Q (after
Thompson, 1984).

The Mg# (molar Mg / (Mg+Fe ) x 100 ratio) shows remarkably small variation (73-80)
over the whole-rock suite (Fig. 23), pointing to concomitant decrease of FeO" and MgO (see the
good correlation in the MgO vs FeO" diagram of Fig. 22). Therefore, we used the more variable
MgO content as differentiation index.

The major elements plotted against MgO reveal two distinct groups of rocks (Fig. 22):
ultramafic cumulates, i.e. wehrlites and plagioclase-bearing wehrlites, with MgO contents up to
13 wt%, on the one hand and mafic cumulates, i.e. olivine- and clinopyroxene-bearing gabbros,
with lower MgO contents, on the other hand. Compositional fields of olivine and clinopyroxene
gabbros generally overlap without significant chemical differences. The chemical evolution
from wehrlites to gabbros, through plagioclase-wehrlites is marked by an increase of ALO,,
CaO and Na O (i.e. plagioclase constituents). The olivine- and clinopyroxene-gabbros display
similar and large variations in ALO, (14.2 - 23.1 wt%, 12.6 - 23.6 wt%, respectively) and SiO,
(43.8 - 47.6 wt%, 43.8 - 49.4 wt%, respectively). Clinopyroxene-gabbros are generally richer in
KO (up to 0.63 wt%) than all other rock types. Plagioclase-wehrlites have weak variations in
ALO, (10.6-12.2 wt%). P O, and TiO, do not show well-defined correlations with MgO; TiO,
increases with decreasing MgO in plg-wehrlites, then tend to decrease in the more evolved
cumulitic facies. MnO stays relatively constant (0.14-0.17 wt%) in wehrlites and plagioclase-
wehrlites, then drastically decreases down to 0.06 wt% from olivine- and clinopyroxene-

bearing gabbros to anorthosites.
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Fig. 22a: Variation diagrams for major-elements versus MgO (in wt%) for cumulative rocks of

the Mont Collon.
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Fig. 22b: Variation diagrams for major-elements versus MgO (in wt%) for cumulative rocks of
the Mont Collon. Same legend as figure 22a.

52



Chapter 3

0.7 -

0.5 -

0.3 -

0.1 - .

0.15 -

0.05 - MnO

50 A

30 -

10 A
S10»

0 5 10 15 20 25 30
MgO

Fig. 22¢: Variation diagrams for major-elements versus MgO (in wt%) for cumulative rocks of
the Mont Collon. Same legend as figure 22a.

53



Chapter 3

<
v
‘wdd ur uoAIS a1e sjuowald ‘oner )0 1X (SN +

Ya1) / SIN) Tejow = #3A “(senuuno g dnois g "S1,] Jo) vare [031¢ 9P SHUA( Y} JO A71d Sje[nwnd 3y} SUOTE SJUSWA[D PAJII[IS JO SUOTRLIBA €T "SI
O onpyem-3id 51 & soiqqes-jo [¢77]

Bl soiqqes-xdo [

0s [0i4 0¢ 0T 0l S 0 0SI 001 0¢S 0 00¢ 00¢ 001 0 60 80
. . . . . . . . . . . . : : 0SS (ur ur)
./ -/ ._/ \. .ﬂ sts
00§
514
: ] : : 1 osv
9474
00t SOt
: 1 1 1 1 os¢ S9¢
%
o Y43
= : o N 00€ So€
e \ / S o I
\ Vs ~
3 ] 1 1 ] { osz st
Y44
. ! = . 002 s0¢
1 ’ N N 1 1
| , N | I
1 4 ’ 1 N . b I 7 ] ) 0S1
I / N ! I ydwe 5[d xdo [0
1 I o ! s
0 £ 001 001
.pN\bU . w . . . vm " "
# 0 0
0S 0
17 A eq IN #IN



Chapter 3

6'¢L 0'LL 9°¢L 00 1'eL SLL yL 0L SeL 1'SL €9L 89L €SL S'SL #IN
SL'86 60°66 ¥71°66 01°66 89°66 L1001 11°66 66°66 S1'66 6766 99°66 7566 LL'66 0566 el
8¢€'C SL'T IL'C 0¢'l 891 0L'e Se'l 494 08'L 80°C ¥9°¢ 09 6€°L 99°8 101
200 €00 SO0 00 LO0 200 €00 90°0 0°0 0°0 €00 010 €00 00 S0¢g
8T0 91°0 'l €10 €L°0 80°0 €1'o €20 LT°0 ¥10 910 170 S0'0 90°0 o
0€'C 61’1 0€'¢C €81 6L'C 780 S9°'1 1T'1 8T'1 1T'1 or'l €€0 61°0 000 0oCeN
I'vl 1ot 901 LTl 811 9°¢l el el el 6 '8 9'L 09 ¥'C oD
€e Lel 6 LTl '8 L91 Sel 8Vl S¢Sl '8l el 9'1¢C [ 44 ¥'LT O
€0°0 010 cro LT°0 [4N0) SIo 710 LT°0 LT°0 91°0 710 91°0 61°0 710 OUN
|4 €L 09 '8 Y 9'8 '8 €6 6'6 L0l 901 9’11 44! 6°S1 Loog
G'8¢C 0t 191 SL LI Cll 8¢l 0Tl 901 el 87Tl L6 L (44 fotry
1o 90°0 €50 LT'1 €50 9¢°0 ot'0 090 S0 LEO 670 86°0 0’0 €e0 <o
LSy [94% 6’67 'es 9°0S 8'Sy €9y L9y LSy 8y £'ey S'ly 1’0oy £ 0v co1s
S8CTAIN 0vZdIN BG9TdIN cIIdN PdIN SSIdIN 80IdIN LOTdIN 901dIN s601dd  v601dd 8LTdIN €YCdIN EITdN sioquinu odweg
J)Isoy3ioue 911[03001) so1qqes onnewsad sy Iyom-31d S[IYIM ad& Yooy

-qe3 onnewdad soiqqes-xdo pue -[0 ‘931[03001) ‘SAAYIM-T[d ‘SIYIM) SHYI0I-I[0YM JO suonIsodwod Juawd[d-10[ewr 9ANLIUISAIdIY g d[qe ],

‘(9ysoyIoue pue soiq

55



Chapter 3

L'LL 1'9L 9L L9L L'SL 8°9L €9L SSL L'SL TSL 09L #IN
£0°66 £6°66 68°66 1€°66 60°66 11°66 90°001 19°66 S1'66 90°001 6766 [e10L
19°0 08T L1T 43 Se'l S6'1 6£°0 £€CT LS'1 LET L8°0 101
¥0°0 ¥0°0 00 ¥0°0 €00 ¥0°0 €00 S00 €00 0°0 €00 so¢
L1°0 1T0 0C’0 01°0 [4N1] 81°0 01°0 81°0 170 91°0 170 oo
IL1 081 8L'1 LT1 3! 181 (40! Ll S 08’1 651 OGN
STSI 0S¢l s €0°Cl 0TS 0Tl 8I'vl SIel 9¢'Cl SEPvlI 80¥1 (OL0)
61°6 LEOI 09°6 69°CI 06 T8 61°6 601 89°CI £8'8 89°01 03N
600 I1°0 110 01°0 01°0 L0°0 60°0 600 170 600 01°0 OUNN
0Ly 18°S LTS L89 6¢°S 1484 STs S6°S 9T'L 0TS 209 AVQLE|
€81 081 €L91 6591 8S°L1 §9°0C 6L°0C 6961 88°LI ¥1°0¢ 1781 L©oqv
LEO ¥€0 (1141} €20 8€0 LTO 620 €T0 170 LTO 670 1L
L8 60°LY 9'8Y LL'Sy 08y 81'Ly oLy 86'SY €esy €LLY €TLY [£0)1
TTdIN LTTAN 122dN 161dN 061dN 881N 9L1dN 99 1dIN 191dIN 091dIN 6STdN srquinu ojdwes
s01qqe3-[0 ad£y ooy
L'LL 0'8L 8'LL 9LL V'LL TLL TLL TLL 9°SL 89L 6'9L #IIN
99°66 €1'66 8866 91°66 S0°66 LS'66 9666 71°66 1766 SL'66 ¥C°66 [eloL
681 891 I1e 'l ¥TT €51 61T Ly'T a4 LLT 9¢°1 101
200 00 S00 €00 €00 ¥0°0 ¥0°0 0°0 ¥0°0 ¥0°0 S00 SoU
L00 450 910 170 0C0 0T0 LT°0 sTo ST0 [4X0] 81°0 oo
140! L1 09°'1 661 88°1 881 69°'1 061 09°'1 891 S9'L OCeN
ILY1 LEST 6501 9¢vl LTV 60°S1 eIyl Srel 6v'¢l Sevl 19Tl (0170
LSEL 76'8 6S°¢l 869 LS8 (4] 96°6 L6'6 yTol1 0T01 IS¢l OSIN
1o 60°0 01°0 90°0 80°0 80°0 60°0 600 01°0 01°0 [4N(] OUN
€69 6v'y 69 09°¢ v 8¢ sT§ sTS 88°¢ 8¢S STL Loed
eyl 9881 6L°61 80°¢€C 6161 Srel SLLT ye6l 9L'81 (WA 8TSI £oav
0 0€0 STo €00 80 9¢0 €0 9T0 €60 9¢°0 LEO 1L
1$°9% LELY 08ty ¥6'9% 09°LY or'8Y 98'LY LE9Y ¥0'9% 0S'LY 08'9% [7)
LSTdIN 9STIdIN CSTdN 0STdIN 9¢TdIN SEIdIN LTIdIN STIdN £601dd 0601494 160194 s1oquinu djdweg
so1qqes-[o od&y ooy

"panunuod :qg d[qeL,

56



Chapter 3

L'8L 08L oYL 0°SL 09L €LL oL 19L 6L 708 1'8L €LL #IN
S0°001 001 8°66 76'66 10°66 8766 69°66 1166 r'66 20°001 80°66 01°66 [e30L
[4%4 9T'C 9L'C e ¥9°C [2:3! S6'C 18°¢ 1€°C S9'1 8%'C S8l 101
90°0 S00 S0°0 90°0 ¥0°0 €0°0 €0°0 ¥0°0 €00 <00 £0°0 S0°0 Sou
10 00 LT°0 020 81°0 4 €10 620 LY'0 SI°0 £€9°0 6£0 o
2! 091 S6'l SI'e 6’1 9Tt LL'T 1871 651 LS'T [4%! T 0%eN
9ISl 8Sv1 08¢l £8°C1 (AN 489! 9¢°¢1 6511 9¢'91 L091 18°CI 86°¢l oed
96'11 801 898 L6 19°6 0L L 69°01 9L 0L'6 8I'¥1 1450 OSIN
(N0 600 600 010 0r'o 80°0 L00 (0] L00 60°0 €10 600 OUN
LL'S Sv's LTS 6L'S oy’ LL'E Y0t L6'S 85'¢ 9Ty LOL 6Ly Lood
el 80°81 8¢°61 8l L6°LT 6961 L1°0T ¥8°0C 60°61 LLLT LST1 691 todv
SS0 8¢°0 LEO 8¢°0 LEO LEO [430] 91°0 €0 €€0 9%°0 LEO oL
0€'8Y 1844 STLY 0T'8% 8S°LY 98y LTLY 6L'EY oL’Ly €8y WLy L3014 <o's
2601494 LYTdN 0€CdIN STCdN €CCdN Y6 1dN Co1dN 681dIN L8IdIN P8IdN 181dIN 081dIN s1oquinu ojduweg
so1qqe3-xdo adAy ooy
6L 9'SL L'SL 8L 8'GL Y'SL 9'9L 8'LL 9'8L 8'9L 9'LL 6'6L #SN
0L°66 11°66 SL'66 €0°001 6L'86 6Y°66 0T°66 L9°66 ¥9°66 €1°66 166 €0°66 [e10L
LTT LL'T ¥0'C LET 96'1 STl 8¢'C 6C'C 8C'1 G8'¢ ¥6'C 89'1 101
200 €00 €00 00 200 €0°0 €00 ¥0°0 ¥0°0 ¥0°0 00 €00 S0
8C0 6S°0 s1o 1o 8¢0 LY'0 19°0 9T°0 61°0 61°0 €20 [840) ot
S8l 98’1 861 L8] €L'1 81'C €6'1 S8'1 68’1 (43! 651 T 0C%eN
el 68°C1 0S¢l 0€91 yS€l 1€v1 86°¢l €0yl €191 [N IS¢l L9°S1 o)
9¢°01 IL'6 €L°01 oL’L 60°L §e's 659 €06 1.8 6L°C1 LS'TT €6 O3IN
1o 01°o 01°0 80°0 90°0 90°0 L00 80°0 600 N0 1o 600 OUN
619 8¢°¢ S19 [4:53 0t we 65°¢ 65V €&y 069 S6'S 81y Loog
8Ll ocel £6'81 LL6l1 ¥9°€C 86°¢€C 0'ce L1°0C IS°LT LT 8L°SI 8L°SI toav
€20 90 ¥T0 €€0 S1°0 (44 €20 €0 [840] €20 Seo0 LEO <o
0¢'LY 96°SY 9T9 (45814 148%% 9914 IL'LY ¥6'9% 90°6¥ 19ty S6'9% 8Cov <o's
ILTdN 691dIN 891dN PSTdN 6V 1dIN 8Y1dIN 8CIdN PEIdN 1E1dN YCIdN CCIdN 0CIdIN sroquinu d[duweg
so1qqes-xdo ad£) ooy

"pPanuUnUO0o :08 S[qeL.

57



Chapter 3

The anorthosite, which represents the most differentiated facies of the plutonic suite,
follows the general trend and displays the highest content in Al,O, (28.5 wt%) and Na,O (2.30
wt%) and the lowest one in TiO, (0.11 wt%), FeO™ (2.1 wt%), MnO and P,O, (0.02 wt%), both
close to the detection limits (0.01 wt%).

The whole-rock chemistry of the pegmatitic gabbros does not largely differ from that
of the olivine- and clinopyroxene-gabbros. They display similar FeO" and AL O, contents, are
enriched in TiO, Na, O and K O and depleted in CaO, compared to the olivine and clinopyroxene
gabbros. Off-trend values for Na, K and Ca might partly result from remobilization during
greenschist facies recrystallization.

3.3. Trace-element chemistry

3.3.1. Compatible-element evolution

The trace-element behavior in the Mont Collon cumulitic rocks is quite variable (trace-
element contents are given in Tables 9a-c). Compatible elements such as Ni, Co, Zn with K|
values >1 for early crystallizing minerals (olivine, clinopyroxene) usually show a good positive
correlation (Fig. 24) when plotted against MgO as differentiation index. Others like Sr, Ba or
Ga are negatively correlated with MgO, which reflects the dominant role of plagioclase in the
cumulitic sequence when ferromagnesian minerals are less abundant. V, Cr and Y display a
more complex, chevron-like evolution; with maximum concentrations at ca. 15 wt% MgO (Fig.
24), which is the limit between the gabbros (s.1.) and the wehrlites.
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3.3.2. Incompatible trace-element binary diagrams

On the other hand, incompatible elements (not incorporated in the dominant cumulitic
phases) such as Zr, Nb, Hf behave more erratically and yield scattered plots, as illustrated by the
MgO-Zr diagram (Fig. 25a). Consequently, classical binary diagrams using Zr as differentiation
index are mostly scattered, with few exceptions like for Ti (Fig. 25b) or other incompatible
elements such as Nb (Fig. 26). The Zr vs Nb diagram (Fig. 26) is particularly interesting; if the
troctolite MP240 plots as expected in the low concentration part of the diagram, the sample
MP106 (plagioclase-wehrlite) is relatively Zr-rich, by far not the most evolved rock-type of the
massif. In other words, the incompatible trace-element content of the Mont Collon lithologies
is not solely controlled by their cumulitic mineralogy, or by their degree of differentiation, but
rather by the amount and composition of trapped interstitial liquid, as will be demonstrated later
on by quantitative modeling. Absence of correlation between the degree of differentiation of the
lithologies and their incompatible trace-element content is also illustrated in the well-preserved
cumulitic sequence of the Dents de Bertol area (Fig. 23). Concentrations in incompatible
elements like Zr, Y or Ba fluctuate largely and independently from Mg#.

Sr displays the same behavior as Ba. In a Sr-La correlation diagram (Fig. 27), all rocks
show relatively similar Sr contents with the exception of a plagioclase-free wehrlite. Focusing
on the well-preserved cumulative sequence of the Dents de Bertol area, the incompatible
trace element abundances fluctuate largely and without a specific trend along the cumulate
pile. Figure 23 illustrates the variations of the trace-element abundances with respect to the
stratigraphic distribution of cumulates within the complex. Only well preserved rocks with
unaltered magmatic mineralogy are represented in this stratigraphic column. Y ranges between
2.8 to 11.6 ppm and the lowest contents characterize the olivine and cpx gabbros located
between 250-200 m. Nb shows a discrepancy from 0.18 to 1.32 ppm; the olivine gabbros
located between 350 and 300 m are the most Nb-depleted. Zr ranges between 26 and 46 ppm
while Ba exhibits the larger range (from 15 to 124 ppm).

3.3.3. Rare earth elements chondrite-normalized patterns

In the whole-rock plots of figure 28, wehrlites exhibit smooth REE patterns with low and
variable contents (XREE ranges from 17.58 to 29.59 ppm), and a more or less marked negative
Eu anomaly (Fig. 28d), which could be interpreted as plagioclase fractionation before wehrlites
crystallization. Plg-wehrlites show relatively flat patterns (1.84 < La /Yb_ < 1.93; 0.89 <La/
Sm <0.95, and Sm /Yb = 2; Fig. 28d) with slightly higher concentrations (9 to 15 times the
chondrite). The troctolite is characterized by the lowest REE content (XREE = 6.85 times the
chondritic abundances. Fig 28c) and the strongest positive Eu anomaly (Ew/Eu* = 5.77). This
rock is enriched in LREE (La/Yb, = 13.20, La /Sm = 4.27) and displays a relative flat M- to
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Fig. 28: Chondrite-normalized REE content of whole-rocks of the Mont-Collon mafic
cumulates, pegmatitic gabbros and anorthosite. Normalization to the C1 chondrite (Sun and
McDonough, 1989).
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HREE pattern (Sm /Yb = 3.08). The total REE content of the cumulate gabbros correlates
positively with SiO, and represents about 10 times the chondritic abundances. Ol- and cpx-
gabbros display similar REE patterns (Fig. 28b and c), slightly LREE-enriched (La,/Yb_ up to
3.67) and characterized by more or less marked positive Eu anomalies, showing the important
role of plagioclase accumulation in the genesis of these rocks. Among the olivine gabbros
(Fig. 28b), sample MP152 differs from the others by a significant LREE enrichment (La /Yb
= 6.48) and lower REE contents (XREE = 14.13 ppm), making it more similar to the troctolite
than to olivine-gabbros. Plagioclase accumulation, which represents the most significant feature
of the anorthositic layer (Fig. 28a), is reflected by the marked positive Eu anomaly (Eu/Eu* =
3.87), which nevertheless 1s lower than in the troctolite. Anorthosite differs from the gabbros
by a REE pattern which is enriched in LREE [(La/Yb) = 14.24]. Pegmatitic gabbros exhibit
REE patterns similar to those of the other gabbros (Fig. 28a), but with higher (and highest) REE
contents (average XREE = 51.43 ppm), and a small Eu negative anomaly (Eu/Eu* close to 1).

3.3.4. Multi-elements primitive-mantle normalized diagrams

The various Mont Collon lithologies have very similar multi-element primitive-mantle
normalized diagrams (Fig. 29). Typical features are negative anomalies in Nb-Ta, Zr-Hf, and
Ti, and positive anomalies in Sr and Eu. All cumulitic rocks are more or less enriched in Th,
U and LILE and depleted in HREE and Y. The pegmatitic gabbros differ from the ultramafic
(wehrlites) and mafic (gabbros s.l.) cumulates by the absence of the Nb, Ta, Zr, Hf and Ti
negative anomalies, a significant enrichment in U, Th and a marked depletion in LILE (Ba,
Rb).

3.4. Trace-elements mineral chemistry

3.4.1. Clinopyroxene

Chemical data are reported in Table 10. The REE contents (about 10 times the chondritic
abundances) and patterns of clinopyroxenes are very similar whatever the rock type (Fig.
30a). They are depleted in La and Ce, and enriched in Nd and Sm. Gabbro clinopyroxenes
(cpx) exhibit a marked negative Eu anomaly, which is less important in clinopyroxenes from
ultramafic cumulates. There is no correlation between REE content and the Eu anomaly. The
main difference in the cpx REE patterns lies in the Nd and Sm enrichment, which appears to be
more important in some gabbros (MP191, MP150, MP168). Clinopyroxenes from troctolites
display REE patterns similar to those of the olivine-bearing gabbros. Multi-elements primitive-
mantle normalized diagrams of clinopyroxene do not show differences related to the rock-type
and are characterized, like those for whole-rocks (Fig. 30b), by (i) Nb, Ta, Zr, Hf negative
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anomalies, (ii) a depletion in LILE, HREE and Y, and (iii) an enrichment in Th. The only
difference lies in the presence of Sr and Eu negative anomalies in the clinopyroxenes. These
geochemical similarities between clinopyroxenes and whole-rock show that clinopyroxene is a
major host for trace elements in the Mont Collon cumulates. Moreover, these clinopyroxenes
with humped, convex-upward REE patterns, with a significant negative fractionation of the
most incompatible REE elements are significantly differents from those crystallizing from a
N-MORB melt.

3.4.2. Plagioclase

HREE in plagioclases (from Ho to Lu) are always below detection limits. REE patterns
of plagioclase are characterized more important La and Ce contents, relative to Nd and Sm,
(La,/Sm, = 27.6) and a higher (La /Dy, ratio (Fig. 31a-¢). All analyzed plagioclases exhibit
a large positive Eu anomaly. Multi-element primitive-mantle normalized diagrams exhibit
a systematic negative Nb anomaly, like in the clinopyroxenes and whole-rocks (Fig. 311-)).
Interestingly, plagioclases from plagioclase-wehrlite are enriched in Rb (up to 10 times the
primitive mantle) with respect to other rock types.

3.4.3. Amphibole

Amphiboles have higher REE contents than clinopyroxenes (about 30 times the chondrite;
Fig. 32a-e). Their REE patterns are similar and do not depend on the rock type. Multi-element
primitive-mantle normalized diagrams are very different from those of clinopyroxenes, because
they show positive Nb, Ta, Zr and Hf anomalies, as expected from the high distribution
coefficients of these elements in amphiboles (Fig. 32f-j). Conversely, Sr is relatively depleted,
as in clinopyroxenes, because this element has a higher affinity for plagioclase.

3.5. Modeling of in-situ crystallization process

Although strongly layered, the Mont Collon mafic complex does not show clear
differentiation trends. As illustrated by the Dents de Bertol sequence (Fig. 23), major-element
contents of the main lithologies do not vary systematically and largely overlap. The Mg# is
monotonous and the modal abundance of major minerals remains roughly constant. At the same
time, concentrations in incompatible elements like Zr, Nb, Y, Ba, and REE vary considerably.
As stated by Langmuir (1989), this feature is typical for in-situ crystallization, where gabbros
form in a solidification zone with an unknown proportion of cumulates and interstitial liquid.
In this situation, the major-element composition of a gabbroic cumulate would be close to that
of the magma from which it crystallizes and remain constant during differentiation, whereas
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incompatible trace-element contents would be controlled by a variable amount of interstitial
liquid. In the Mont Collon cumulitic sequence, water-rich interstitial liquid is documented by
intercumulus Ti-pargasite with high concentrations of incompatible elements. Laser ablation
ICP-MS micro-analysis show that there is no trace element zoning in minerals (but contents
might vary from one crystal to the other within a sample), which means that they locally re-
equilibrated with the interstitial liquid at subsolidus conditions (Hermann et al., 2001). In other
words, the trace-element composition of mineral phases directly records the presence and the
proportion of a former interstitial liquid.

To quantify this process, we thereafter use the model of in-situ crystallization developed
by Hermann et al. (2001). The idea is to calculate REE patterns of all mineral phases in a given
sample starting from a primitive liquid and using the equation of Langmuir (1989). These
calculated patterns are then fitted to actual LA-ICP-MS data in adjusting the parameters F
(degree of differentiation) and L (proportion of interstitial liquid) in equation (4). For each set
of mineral data, a best fit can be calculated with corresponding F and L values.

3.5.1. Parameters used for the in-situ crystallization model

Partition coefficients

The first step is to determine REE partition coefficients between minerals and melt, starting

with those for clinopyroxene (D ). Unfortunately, available data sets in the literature are

cpx/Melt
either incomplete or are not appplicable to our clinopyroxene compositions, which are high
in CaO (up to 23 wt%) and low in ALO, (<4 wt%). We therefore used the predictive model
of Wood & Blundy (1997) with analysis MP157cpx3-2, selected for its lowest REE content
(ZREE = 25.08 ppm), its high Mg# (87.8), its weak Eu negative anomaly (Eu/Eu* ~ 0.95) and
the low Nb-Zr content of the host rock. Calculations were done using a K°1Fe_Mg of 0.30, and
the pressure and temperature calculated in the above P/T section (chapter 3). D_ ., D and

pI/M? ol/M

D, (for plagioclase, olivine and amphibole) are then calculated using mineral/cpx partition

coefficients, according to equations (la-c) (the REE content of each mineral is measured by
LA-ICP-MS):

REE,/REE_ =D /D_ . =cste = D ,,=D_ . *REE /REE_  (la)
REEamph / REEcpx - Damph/M / Dcpx/M = cste = Damph/M (lb)
REE  / REECpx =D,/ Dcpx/M = cste => Dy (1c)
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The bulk rock partition coefficient D_, . is calculated (2a) assuming the modal content of
MP157 olivine-gabbro (48% clinopyroxene, 35% plagioclase, 15% olivine and 2% pargasite).
To calculate the enrichment of elements in the residual melt, we introduce the D’ | parameter
(2b) in the “Rayleigh fractionation” part of the in-situ crystallization equation, which takes into
account that an average of 10% of melt is trapped during differentiation (this parameter does
not affect drastically the modeled REE contents).

D,y = 040D

rock/M

M +0.20 Dpl/M+ 0.35 Dol/M +0.05 Damph/M (23-)

D’ .,=090D

rock/M

o T 0.10 (2b)
Calculation of the initial magma composition

The starting liquid L is obtained using the REE composition of the «reference»
clinopyroxene (i.e. with lowest REE content, MP157cpx3-2, Fig 33b):

LOZREEcpx / Dcpx/M (3)

Estimation of the degree of differentiation (F) and proportion of intercumulus liquid (L)

The whole-rock REE content (REE_ ) can be expressed as the sum of cumulus phases
and interstitial liquid, given by Langmuir equation (4), or as the sum of the different mineral
contributions (5). Boundary limits for equation (4) are set by L=0 (pure cumulate) and L=100%
(frozen liquid).

REE_, = cumulus phase + interstitial melt

_ LO (1 _ F)D’rock/Mfl [Dka/M (1 — L) + L] (4)
=0.48 REE_ +035REE  +0.15REE +0.02 REE, (3)
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Combining equations (4) and (5) with (1a-c) (i.e. REE = REEcpx*(Dpl/M / DCPX/M), etc), we
extract the calculated REE content of clinopyroxene (REEcCpX, equation 6a) and subsequently
that of other mineral species (equations 6b-c).

[L, (1 —F)PeM-1% D (1-L)+L]
= (6a) REEc, =

0.48 +035(D /D, ) +0.15(D, /D_ ) +0.02(D, .\ /D_ )
= REEc, =REEc_ * (D, /D, ) (6b)
= REEc,  =REEc_ *(D, . /D_ ) (6¢)

The calculated REEc ,  are then compared with and fitted to the real LA-ICP-MS
mineral data of tested sample in adjusting F and L by a trial and error procedure (Fig. 33c-j).

3.5.2. Results and limitations of the model

Examples of measured vs. modeled mineral compositions are given in figure 33 for a
wehrlite (MP243), a plg-wehrlite (MP106), ol-gabbros (MP125, MP136, and MP166), a cpx-
gabbro (MP168), the troctolite (MP240) and the anorthosite (MP285). The REE content in all
minerals is strongly dependent on the percentage of trapped liquid L. Clinopyroxenes, which
exhibit the highest Nd and Sm contents, are modeled with the largest L value. Clinopyroxene of
wehrlite MP243 is modeled with F = 0% and L = 20%, but can also be fitted with F = 35% and
L = 0%, which shows that F is less sensitive than L to REE concentrations and Eu anomaly. For
all other samples, we found unique sets of F and L values to fit accurately the measured mineral
compositions. Some samples are modeled as pure cumulates, without interstitial liquid (L=0%,
1.e. ol-gabbro MP136 and troctolite MP240). The opposite situation (L=100%, frozen liquid)
has never been observed, the maximum proportion of trapped liquid never exceeding 35%
(plg-wehrlite MP106; F = 10%). At a given degree of differentiation F (F = 45%), the modeled
REE content and the Eu negative anomaly drastically increase with the increase of L (L =0
and 20% for the ol-gabbros MP136 and MP166, respectively). As a matter of fact, interstitial
amphibole systematically surrounds (and re-equilibrated with) MP166 clinopyroxene. Despite
its differentiated character in terms of major element contents, anorthosite MP285 does not
display the highest F value (F = 25%), ol-gabbro MP136 reaching 45%. This suggests that
segregation of anorthositic material might have occurred earlier than expected in the magma
chamber or that these two rocks derive from distinct magma batches (i.e. different L ).
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Fig. 33 (previous page): a) partition coefficient values (D ) for clinopyroxene based on

cpx/melt
the predictive model of Wood and Blundy (1997). Partition coefficients for plagioclase and
amphibole are calculated from Doove Diosonr = bulk partition coefficient considering any

trapped liquid and D’__ .= = bulk partition coefficient with 10% of liquid remaining in the

k/
cumulate pile, b) Chondrite-normalized REE pattern of the reference clinopyroxene used for
in-situ crystallization modeling. c-j) Comparison of measured (filled symbol) and calculated
(open symbol) chondrite-normalized REE patterns of clinopyroxene (H), plagioclase (@) and
amphibole (A). F = degree of differentiation with respect to the reference clinopyroxene and L

= the amount of trapped liquid.
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Pegmatitic gabbros are thought to represent nearly pure liquid. Nevertheless, we can not
apply an in-situ crystallization model to this rock type because of its high zircon and apatite
contents, which strongly influence the REE budget.

The calculated D Using the model of Wood & Blundy (1997) largely differs from most
published values (calculated and some published D values are given in figure 34 and tables 11a
and b). Nevertheless, they are close to the upper values recommended by Skulski et al. (1994)
for clinopyroxene from alkali olivine basalt. These differences have important consequences

for the in-situ crystallization model, which is very sensitive to D For example, modeled

cpx/M*
clinopyroxenes indicate a lower F value at constant L using lower Do than those calculated

with the model of Wood and Blundy (1997).

The modeled amounts of trapped liquid are quite consistent with the whole-rock
concentrations of incompatible trace-elements. There is a clear positive correlation between
L values and e.g. concentrations in Zr or Nb (Fig. 35 and 36), which confirms our assumption
that incompatible trace-element distribution is controlled by the interstitial liquid. In the same
way, there is a good correlation between L values and the modal proportions of magmatic
amphibole (Fig. 35a), which makes this mineral a good proxy for the proportion of interstitial
melt. Conversely, the degree of differentiation F does not correlate with whole-rock trace-
element contents (Fig. 35c), which confirms that the trace-element chemistry of cumulates is
essentially controlled by the interstitial melt, and especially for the REE (Fig. 37). Moreover,
the parameter F has to represent the degree of differentiation of a whole rock. Nevertheless,
the interpretation of the F values as «degree of differentiation» does not seems to be in well
agreement with structural and mineralogical-petrological data. For example, the end-member
values (F = 0% and 45%) are obtained for rocks of the same type, showing very similar bulk
rock compositions. Particularly, sample MP136 (showing the highest F value of 45%), is
characterized by slightly lower Mg# values of olivine (ol : Mg# = 78.1) and cpx (cpx_ : Mg#
= 85.8) than sample MP125 (F = 0), that have ol Mg# = 79.4 and cpx Mg# = 89.5-88.9.
Conversely, sample MP136 has plagioclase composition higher (plg_ . An = 82.6) than those of
sample P125 (plg  An=72.8) and MP166 (plg, An = 73.6). Similar remarks could be done
on wehrlites and plg-wehrlites, which display relatively low F (wehrlite MP243: F=0% and plg-
wehrlite MP106: F=10%), but Mg# (wehrlites: Mg# = 75.3-76.8; plg-wehrlites: Mg# = 73.5-
77.5) lower to similar to those of the gabbroic rocks (troctolites: Mg# = 77.0; ol-gabbros: Mg# =
75.2-78.0; cpx-gabbros: Mg# = 74.6-80.2; anorthosites: Mg# = 73.9; pegmatitic gabbros: Mg#
= 73.1-73.6) and plg-wehrlites have plagioclase significantly poorer in the An content (plg,_
An = 63.1-69.2) than the gabbroic and anorthositic rocks (plg,  An=72.8-82.6). Consequently,
the parameter F rather represents a deviation from the reference rocks than a true “degree of
differentiation” from the parental melt of the Mont Collon cumulative rocks.
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Table 11: Calculated with the method of Wood and Blundy, 1997 (a) and published (b)
partition coefficients between clinopyroxene and melt (lower and upper values are given when

available).

a Dcpx/M Dpl/M Damph/M Dol/M Dmck/M D’rock/M
La 0.204 0.294 0.804 0.000012 0.217 0.295
Ce 0.312 0.204 1.281 0.000024 0.247 0.322
Pr 0.445 0.151 1.545 0.000061 0.298 0.368
Nd 0.597 0.115 2.028 0.000305 0.367 0.431
Sm 0.862 0.051 2.415 0.000549 0.480 0.532
Eu 0.954 0.708 2.985 0.0015 0.766 0.789
Gd 1.021 0.037 3.115 0.0031 0.566 0.609
Tb 1.057 0.026 3.350 0.0042 0.584 0.626
Dy 1.060 0.019 3.001 0.0079 0.577 0.619
Ho 1.034 0.044 2.776 0.0118 0.569 0.612
Er 0.987 0.030 2.829 0.029000 0.545 0.591
Yb 0.868 0.015 2.269 0.0469 0.474 0.527
Lu 0.807 0.020 2.219 0.076 0.450 0.505
b | Frey (1969) Skulski et al. (1994) McKenzie & O'Nions (1991) Irving & Frey (1984) Hauri et al. (1994)
Lower values | Higher values Lower values Higher values
La 0.002 0.041 0.212 - 0.02 0.10 0.05
Ce 0.02 - - 0.10 0.03 0.20 0.09
Pr 0.06 0.11 0.63 0.15 0.04 0.30 0.14
Nd 0.14 0.20 0.80 0.21 0.07 0.50 0.22
Sm 0.32 - - 0.26 0.10 0.80 0.33
Eu 0.41 0.31 0.20 0.70 0.37
Gd 0.46 - - 0.30 0.20 0.80 0.41
Tb 0.53 0.28 1.12 0.31 0.30 0.90 0.41
Dy - - - 0.33 0.30 0.90 0.41
Ho 0.60 0.31 0.30 1.00 0.41
Er 0.57 0.30 0.30 1.00 0.41
Yb 0.60 - - 0.28 0.20 0.90 0.41
Lu 0.58 0.01 0.96 0.28 0.10 0.90 0.41
10 3
s
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1
1
1
1
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Fig. 34: Compilation of different clinopyroxene / melt partition coefficients from the literature.
[1: calculated D from the reference clinopyroxene based on the predictive model of Wood
and Blundy (1997).
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3.6. Parental melt of the Mont Collon cumulative rocks

The parental melt composition of the Mont Collon intrusion is unknown and can hardly
be deduced from whole-rock analyses, as all are cumulates (L max = 35% in the model
calculations) and any rock has been modeled as a pure liquid (L = 100%). The initial liquid L
calculated in the model (equation 3) is only a first order approximation, because (i) it relies on
a reference clinopyroxene composition prone to re-equilibration with interstitial liquid after
crystallization, (i1) the Mg# of the cumulates look too low (< 78) to consider these rocks as the
products of a primitive magma. It is highly probable that L corresponds to a magma which
underwent some degree of differentiation before intrusion in the magma chamber and/or that
the earliest cumulates of the system are not outcropping (e.g. absence of dunites). To account
for this, we tentatively tried to back calculate the effect of some differentiation on L, assuming
that olivine first reached the liquidus, followed by the two pyroxenes (orthopyroxene was
probably present especially if P was higher than in the magma chamber) and plagioclase (i.e. a
gabbronorite assemblage). In a first approximation, we consider that about 10% of dunite (90%
ol and 10% cpx) and 10% of ol-gabbronorite (20% cpx, 40% plg, 15% ol and 25% opx) were
extracted before crystallization of the outcropping gabbroic rocks (i.e. before the liquid reaches
composition L of equation 3).

The resulting liquid (parental melt in Fig. 38) is similar to L, with lower REE
concentrations and virtually no Eu anomaly. The calculated parental melt is enriched in LREE
(up to 20 times the chondritic abundances) and comparatively depleted in HREE (<10 times the
chondritic values), with La /Sm = 1.5 and Sm /Yb_ = 1.9. The LREE values and fractionation
pattern are close to the upper bound of the transitional MORB range (Fig. 38a), but distinctly
lower in HREE, which might be due to the presence of garnet in the mantle source. The most
striking feature of the parental melt composition lies in its strong negative Nb anomaly when
normalized to the primitive mantle (Fig. 38b), as also observed in whole-rock and mineral

analyses.
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A weak positive Sr anomaly is noticeable; calculations show that this anomaly in the melt
is more sensitive to the contribution of the clinopyroxene than of the plagioclase. Compared to
the classical basalt types, the calculated parental melt is intermediate between T-MORBs and
more alkaline basalts. This is not a typical tholeiitic melt, as it is hydrated, high in Zr (26-46
ppm) and relatively low in Fe and Ti; this is not an alkaline melt either with its low contents in
Na,O, K O and its negative Nb-Ta anomalies. The Mont Collon parental melt thus appear to be
of transitional affinity.

3.7. Discussion

Despite its layered structure, the Mont Collon intrusion is a weakly differentiated pluton.
Isotopic data indicate (see chapter 6) that the numerous acidic dikes originate by partial melting
of the country rock (back-dyking), whereas the few high Fe-Ti melanocratic dikes are much
younger (260 Ma, chapter 5 and Monjoie et al., submitted) and do not belong to the same
magmatic system. About 95% of the outcropping facies are made of an assemblage of olivine,
plagioclase, clinopyroxene and a little amphibole. Anorthosites are extremely rare and evolved
facies like Fe-Ti melanocratic dikes have not been found; either they have been eroded, are
buried or never existed. As stated by Langmuir (1989), this lack of differentiation, coupled
with highly variable concentrations in incompatible trace elements, is typically expected for in
situ crystallization in the bottom and margins of a convecting magma chamber. Whether other
processes like periodic replenishment of the magma chamber took place or not is difficult to
assess. In the Dents de Bertol layered sequence, no chemical or isotopic evidence support such
a mechanism, but it should be kept in mind that large part of the former inner magma chamber
disappeared by erosion. The pegmatitic gabbros represent the only mafic facies without cumulitic
features. They are randomly distributed in the massif as meter-sized pockets. These gabbros are
characterized by the highest REE and LILE concentrations ever found in the complex, except
for Rb and Ba (Fig. 29), which were probably remobilized by late-magmatic fluids (plagioclase
is always heavily altered). REE patterns are moderately fractionated (La,/Yb = ~ 2) and the
negative Eu anomaly is small to absent. Mineral alteration prevents any quantitative modeling,
but we suspect that these rocks represent almost pure, fluid-rich melts, differentiated, although
without much plagioclase subtraction.

At the Carboniferous-Permian boundary, the Variscan Range collapse is marked by the
emplacement of mantle-derived mafic complexes related to intra-continental extension and
crustal thinning (e.g. Dal Piaz, 1993). In the Western Alps, this magmatism is essentially
represented by the Austroalpine and South alpine Permian Mafic Complexes (=PMC) of Val
Malenco (281 + 19 Ma, Miintener et al., 2000; Hermann et al., 2001), Sondalo (300 + 12 and
280 + 10 Ma, Tribuzio et al., 1999), Ivrea-Verbano (285-290 Ma, Rivalenti et al., 1980; Sinigoi
et al., 1994; Mulch et al., 2002) and Mont Collon (284 + 0.6 Ma, chapter 5 and Monjoie et al.,
submitted). The Mont Collon intrusion shares common features with these contemporaneous
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Austroalpine mafic complexes, but also significant differences. The Braccia pluton (Val
Malenco) displays the chemical and mineralogical characteristics of a deeper, drier, more
tholeiitic and more differentiated intrusion than the Mont Collon. It intruded at the crust-mantle
boundary (Miintener et al., 2000) and shows a much wider range of Mg# (from 80 to 50) and
REE contents from olivine gabbronorites (Mg-gabbros) to ilmenite gabbronorites (Fe-gabbros)
(Hermann et al., 2001). Olivine is rare and orthopyroxene quite widespread (deeper and drier
magma than in the Mont Collon). Clinopyroxene is systematically higher in AL,O, (pressure
effect) and FeO*, and exhibits a wider range of REE contents. Plagioclase has lower anorthite
component (labradorite, drier magma), but displays large REE variations. Ti-pargasite is a
minor interstitial magmatic phase and the main accessory mineral is ilmenite. Reaction coronas
are well developed like in the Mont Collon (Miintener et al., 2000). In situ crystallization is
thought to be the dominant magmatic process (Hermann et al, 2001).

The calculated REE pattern of the Braccia parental melt (Hermann et al, 2001) is rather
flat, similar to that of a transitional tholeiitic MORB with La /Yb, close to 1.2 (Fig. 38). It is
much less depleted in HREE than the parental melt of the Mont Collon intrusion, which led the
above-mentioned authors to favor a spinel-peridotite mantle source. Although Hermann et al.
(2001) do not model the Nb-Ta content of their parental melt, it probably exhibits a negative
anomaly similar to that of the Mont Collon, considering the composition of the reference
clinopyroxene they used for their modeling.

The Sondalo complex (Northern Italian Alps, Tribuzio et al., 1999) is mainly composed
of troctolites and gabbronorites, intruded at mid-crustal level like the Mont Collon. Major- and
trace-element chemistry of clinopyroxene and plagioclase (a bit less calcic) is very similar to
that of the Mont Collon intrusion, despite the abundance of orthopyroxene in the assemblage.
Tribuzio et al. (1999) calculated a melt composition on the basis of a poikilitic clinopyroxene,
which cannot represent a parental melt. They suggest that the primary melt of the Sondalo
complex should have a tholeiitic affinity with a slight REE enrichment relative to N-MORBs.

In summary, all major Permian mafic intrusions from the Austroalpine domain have
a tholeiitic or transitional magmatic affinities. Mineral chemistry is partly controlled by the
level of intrusion and water content of the magmas. These factors are also responsible for the
restricted development of orthopyroxene in the Mont Collon (low P and high water content).
Compared to Braccia and Sondalo, the Mont Collon parental magma is slightly enriched in
LREE and LILE and substantially more REE fractionated. The latter feature might be related to
crustal contamination and/or a characteristic of the mantle source. In the latter case, an enriched
lithospheric mantle would be a suitable candidate, which will be confirmed by isotope data
(chapter 6 and sMonjoie et al., in prep.).

84



Chapter 3

3.8. Conclusion

The well-preserved Mont Collon pluton results from the intrusion at mid-crustal level (ca.
0.6 GPa) of a basic magma with transitional affinity into a magma chamber. The parental melt
is characterized by a relative enrichment in LREE and Th, depletion in HREE (La,/Yb =2.85),
and strong negative Nb-Ta anomalies when normalized to primitive mantle. Other Permian
mafic complexes in the Alps derive from comparatively less enriched magmas.

Uncoupling between monotonous major-element chemistry and highly variable
incompatible trace-element concentrations across this well layered, but poorly differentiated
intrusion, is best explained by an in situ crystallization process. Quantitative modeling points to
0 to 35% of interstitial liquid (L) in the cumulates for a maximum differentiation rate (F) of 45%,
relative to the less evolved composition outcropping in the massif. L is quite variable along a
cumulitic sequence, pointing to irregular convection (?) efficiency in the magma chamber. Rare
pegmatitic gabbros might represent the only pure, fluid-rich liquids within the massif.
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Chapter 4: U/Pb and “Ar/**Ar dating

4.1. Introduction

The end of the Variscan orogeny is characterized by three distinct magmatic events:
Early Carboniferous, Late Carboniferous-Early Permian, and Late Permian. In the Early
Carboniferous, acid intrusions were emplaced during an extensional event related to strike-
slip faults in the basement areas of the Alps such as the External Crystalline Massifs and the
Penninic domain (von Raumer et Ménot, 1989; Dal Piaz, 1993; von Raumer et al., 1993;
Debon et al., 1994; Ménot et al., 1994). At the Carboniferous-Permian boundary, the Variscan
Range collapse is marked by the emplacement of several mafic complexes and K-rich magmas
related to intra-continental extension and crustal thinning. In the European Alpine belt, the late
Carboniferous-Early Permian mafic magmatism is essentially distributed in the Austroalpine
and South Alpine domains and brings good evidence for a major melting event. It must be
distinguished from the ophiolitic gabbros of the Jurassic Tethyan rifting (Rampone et al.,
1998; Costa and Caby, 2001) and clearly dated. The Permian Mafic Complexes (=PMC) of Val
Malenco (Miintener et al., 2000; Hermann et al., 2001), Sondalo (Tribuzio et al., 1999), Ivrea-
Verbano zone (Rivalenti et al., 1980; Sinigoi et al., 1994) and Mont Collon mafic complex (Dal
Piaz et al., 1977 and this study) are likely related to this Late Carboniferous-Early Permian
event. Some of these complexes are dated e.g. Val Malenco (ca. 281 + 19 Ma), Sondalo (ca. 300
+ 12 Ma and 280 + 10 Ma), others not (the Mont Collon mafic complex).

The pre-Triassic basements, including sedimentary and magmatic rocks belonging to the
Variscan cycle, exposed in the Alpine belt have underwent severe metamorphic conditions and
deformation phases. In contrast, the Mont Collon mafic complex is remarkably well-preserved.
Dating this complex will allow adding new constraints on the evolution of the Variscan orogeny.
Thus, the aim of this chapter is to obtain accurate ages for the emplacement of the mafic and acid
rocks, and the Fe-Ti Fe-Ti melanocratic dikes exposed in the Dents de Bertol area in order to
confirm that a late-Variscan basic magmatism occurred at the Permo-Carboniferous boundary
in this segment of the belt, i.e. the Austroalpine Dent Blanche nappe. So, we present here new
ages on the Mont Collon based on U/Pb zircon and *’Ar/*’Ar amphibole dating.
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Fig. 39: U/Pb Concordia diagram for the Arolla Series orthogneisses and the Sermenza gabbro.
Error ellipses are given at the 95% confidence level). Numbers in [ | refer to the mineral fraction
listed in table 13.

4.2. Previous age determinations for the Mont Collon intrusion

Dal Piaz et al. (1977) dated the Mont Collon and Matterhorn intrusions. They analyzed
biotites extracted from pegmatitic pyroxenite outcropping in the Matterhorn area, and fine
grained quartz diorite and pegmatitic plagioclase veins exposed in the Dents de Bertol area.
They obtained ages ranging from 246 + 8 Ma (by K/Ar method) to 257 + 6 Ma (Rb/Sr corrected
age), which were interpreted as cooling ages.

4.3. Ages of other Permian Mafic Complexes

The literature provides several other dating on this crucial period of the Variscan cycle.
Bussy et al. (1998) dated a metagranitoid, sampled south of the Matterhorn (Swiss coordinates:
616900/89250/2600) and similar to that of the Mont Collon country rocks (see in chapter 2, the
petrological description of the Arolla orthogneisses). It yielded small euhedral, pink zircons
with some resorption features. Two multigrain fractions (8 short prisms [9] and 4 needles [10],
Table 14) yielded the same age of 289 + 2 Ma (Fig. 39), interpreted by Bussy et al. (1998) as
the intrusion age of the metagranite.
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The Sermenza gabbroic and dioritic masses belong to the internal unit of the polycyclic
basement of the Sesia zone (Venturini et al., 1996). The main rock type of this basement unit is a
layered cumulitic high Mg-, low Ti-gabbro. It consists of plagioclase, hornblende, clinopyroxene,
magnetite £+ zoisite, white mica, and chlorite and is geochemically similar (Venturini et al.,
1996) to the Dent Blanche/Sesia Mg-rich metagabbros. The dated metagabbro sample (913az,
for sample location, description and chemical composition, see Venturini et al., 1996) yielded
large pink zircon fragments from which three multigrain fractions were selected [11] and [13],
see Table 14) which yielded an age of 288 +2 /4 Ma (Fig. 39). This age was proposed for the
intrusion of the Sermenza mafic stock (Bussy et al., 1998), which is contemporaneous (within
errors) with the Val Mastallone gabbroic mass from the neighboring Ivrea zone (285 +7 /-5
Ma, Pin, 1986). The Braccia gabbro (Val Malenco), which is petrologically and geochemically
similar to the Mont Collon complex, has been dated at 281 + 19 Ma (Hansmann et al., 1996).

4.4. Sampling and analytical procedures

4.4.1. Samples choice for U/Pb on zircon dating

We sampled the two rock types that are the most suitable to hosted zircons, i.e. a
pegmatitic gabbro and a quartz-rich pegmatitic dike. Pegmatitic gabbros provide some good
samples for U/Pb dating because of their higher zircon content than the other mafic rocks (i.e.
the cumulates). The sampled pegmatitic gabbro MP4 is exposed at the base of the Mont Collon
on its northern side (Fig. 40). The quartz-rich pegmatite MP2 occurs as a decimeter-thick dike
crosscutting the magmatic fabric of the pegmatitic gabbro MP4 (Fig. 41). Major- and trace-
elements contents of whole rocks are given in Table 12.

4.4.2. Sample preparations

Zircons were extracted from 30 - 40 kilograms of samples according to the procedure
described in Bussy and Cadoppi (1996). Selected crystals were air-abraded (Krogh, 1982)
to suppress post-magmatic overgrowths and to reduce the uncertainties for the common lead
corrections. From a population of approximately 250 suitable zircons, we selected crystals by
hand picking under a binocular microscope without impurities (as mineral inclusions), cracks,
central canals or inherited cores to obtain the most concordant ages in order to follow closely
the procedures described in Schaltegger et al. (1999). Isotopic measurements were done on a
Finnigan MAT 262 mass spectrometer at the ETH (Zurich). Data reduction was done using the
Isoplot software of Ludwig (1998). Errors are reported at the 95% confidence level (25). Decay
constants are those reported by Jaffrey et al. (1971).
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Fig. 40: Localization of the dated samples MP2 (quartz-rich pegmatite), MP4 (pegmatitic
gabbro) for the U/Pb zircons dating, and MP177 (Fe-Ti melanocratic dike) for the “*Ar/*Ar
amphibole dating).

89



Chapter 4

Fig. 41: a) field relationship between MP4 (pegmatitic gabbro) and MP2 (quartz pegmatite) on
the northern wall of the Mont Collon, b) example of Fe-Ti melanocratic dike (located on the
Dents de Bertol), ¢) thin section detail of the Fe-Ti melanocratic dike MP177 (kaer = kaersutite,
cpx = clinopyroxene, plg = plagioclase (An3-15), ox = Fe-Ti oxides, ap = apatite).
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Table 12: Major- (in wt% oxides) and trace-elements (in ppm) compositions of dated rocks.

Rock types pegmatitic gabbro Qz-rich pegmatite Fe-Ti melanocratic dike
Sample numbers MP4 MP2 MP177
Si0, 50.6 61.0 41.6
Ti0, 0.53 0.14 3.32
Al O3 17.4 22.1 12.2
FeOr 5.5 0.87 14.2
MnO 0.12 0.01 0.19
MgO 8.4 0.63 10.5
CaO 11.8 6.7 10.2
Na,O 2.79 5.59 2.90
K,0 0.73 1.48 0.51
P,0; 0.07 0.11 0.72
LOI 1.7 1.3 2.8
Total 99.68 100.05 99.14
Mg# 73.1 56.5 56.9
in ppm
Cu* 18 6 61
S* 69 80 1351
Sc* 35 7 34
% 110 15 267
Cr** 233 8 256
Ni** 54 14 246
Ga** 16 26 24
Zn** 178 16 131
Co 36 13 50
Cs 0.36 0.82 0.43
Rb 29.6 47.2 2.6
Ba 188.4 275.2 92.2
Th 0.90 14.67 3.84
U 0.70 0.88 1.30
Nb 3.56 11.50 69.98
Ta 0.23 0.66 3.94
Pb 38.18 6.07 2.01
Sr 503.9 492.3 442.9
Zr 20.9 20.0 290.2
Hf 0.67 0.60 5.87
Y 16.1 4.0 29.8
La 6.11 61.40 35.44
Ce 15.36 108.64 72.77
Pr 2.18 11.13 9.06
Nd 9.39 35.46 37.99
Sm 248 4.58 8.20
Eu 0.77 1.41 2.54
Gd 2.60 2.45 7.69
Tb 0.43 0.25 1.13
Dy 2.51 0.87 5.73
Ho 0.51 0.13 1.02
Er 1.41 0.32 2.60
Yb 1.14 0.25 1.93
Lu 0.17 0.04 0.26
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Table 13: Major and trace-elements analyses of the *Ar/*?Ar dated kaersutites (wt%). The
structural formulae are calculated on the basis on 23 oxygens.

Sample MP177
Type kaersutite
SiO, 39.81 39.53 38.35 38.97
TiO, 491 5.42 6.79 6.02
ALO; 12.81 12.79 13.46 13.30
FeO 15.20 13.87 12.60 11.83
MnO 0.29 0.24 0.21 0.17
MgO 9.85 10.22 10.87 11.82
Ca0 11.13 11.26 11.59 11.28
Na,O 2.79 2.82 2.56 2.83
K,O 1.07 1.08 1.17 1.13
OH 1.99 1.99 2.00 2.00
Total 99.88 99.21 99.60 99.43
Si 6.00 5.97 5.76 5.83
AlY 2.00 2.03 2.24 2.17
AlY! 0.27 0.24 0.14 0.17
Ti 0.56 0.62 0.77 0.68
Fe’' 1.92 1.75 1.58 1.48
Mn 0.04 0.03 0.03 0.02
Mg 2.21 2.30 2.43 2.64
Ca 1.80 1.82 1.86 1.81
Na 0.82 0.83 0.75 0.82
K 0.21 0.21 0.22 0.22
OH* 2.00 2.00 2.00 2.00
Total 17.81 17.80 17.77 17.83

4.4.3. Choice of samples for “*’Ar/*Ar on amphibole dating

The Fe-Ti melanocratic dike MP177 chosen for dating, is exposed in the Dents de Bertol
area and crosscuts all the rocks facies of the intrusion (Fig. 40 and 41b-c, composition is given

in Table 12). The melanocratic dikes are poor in zircons and extracted zircons appeared too
small to provide accurate U/Pb dating. Then, we selected the **Ar/*’Ar amphibole dating,

considering the high modal amount of kaersutite in these dikes (selected mineral major- and

trace-elements contents are given in Table 13).
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Fig. 42: a) U/Pb Concordia diagram for 1 to 3-grain zircon fractions of a pegmatitic gabbro

and for b) 2 to 3-grain zircon fractions of a quartzitic pegmatite from the Mont Collon northern

face (error ellipses are given at the 2o confidence level). Black ellipse represents the mean

Concordia age. Number in [ ] refers to the mineral fraction listed in table 14.
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Fig. 43: Ca/K and “Ar/*’Ar step-heating spectrum vs. cumulative %39Ar released diagram for
the sample MP177 (Fe-Ti melanocratic dike).

4.4.4. Sample preparations

20 - 30 mg amphiboles were separated using conventional methods. Minerals were
selected by hand picking under binocular microscope for their euhedral shape and free of
retromorphosed rims (i.e. green amphibole overgrowths). The samples and closely spaced
standards were irradiated for 20 hours in the central thimble position of the USGS TRIGA
reactor in Denver (CO), USA (Dalrymple et al. 1981). The neutron flux was monitored using
the standard MMHBI1 assuming an age of 523.1 £4.6 Ma (Renne et al. 1998). J value for the
irradiation was 0.00301 £0.0001 for bulk mineral separate. Furnace step-heating analyses were
performed using a double vacuum resistance furnace. After furnace step-heating, the gas was
exposed to a metal cold finger at temperatures of approximately —130°C and gettered using a
SAES AP50 getter for an additional 180 seconds to remove all active gases. Following cleanup,
the gas was expanded into a modified MAP 215-50 mass spectrometer for isotopic analysis.
Eight scans per analysis were made over the mass range of 40 to 36 and peak heights extrapolated
back to inlet time. Furnace blanks ranged for m/e=40 from 2 x 10 moles at 1500°C to 5 x 1013
moles below 1000°C. Blank values for m/e (36-39) were below 2 x 10-'° moles. Peak heights
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were corrected for background, mass discrimination, and for decay of interfering isotopes of
argon derived from Ca, K, and CI. The apparent ages were calculated using an assumed initial
PAr/®Ar ratio of 295.5 and decay constants recommended by Steiger and Jager (1977).

4.5. Results

Five zircon fractions of the pegmatitic gabbro and three zircon fractions of the pegmatitic
dike yielded the ID-TIMS U/Pb mean concordant ages of 284.2 + 0.6 Ma and 282.9 + 0.6 Ma
(Fig. 42a-b, Table 14). These ages are interpreted as the crystallization age of the gabbroic
complex and the emplacement of the associated acid magmatism, respectively.

We obtain an integrated age of 255.4 + 2.0 Ma (Fig. 43) on the amphiboles separates
from the Fe-Ti melanocratic dike. Argon isotopic incremental measurements are given in
appendix 7. As shown in figure 43, during argon heating of kaersutitic amphiboles, the first five
heating steps differed markedly from the other ones by giving a higher Ca/K ratio, interpreted
as the degassing of another minor phases as plagioclase inclusions. Thus, we omitted the first
analytical steps, and we prefer to choose the plateau age of 260.2 + 0.7 Ma (Fig. 43).

4.6. Discussion

Zircons extracted from the pegmatitic gabbro and the quartz-rich pegmatite display all
concordant ellipses. In both cases, the zircons show no evidences of inheritance. Thus, the
obtained dating can be considered as the crystallization ages of the main gabbroic intrusion
and associated felsic dikes. These results show that basic and acid magmatisms are nearly
contemporaneous and emplaced at the Permian-Carboniferous boundary. If we postulate
that the orthogneisses of the Arolla series (ca. 289 Ma) are the original country rocks of the
intrusion, the several acidic dikes and dikelets exposed in the Mont Collon intrusion could
arise by back-diking processes as the emplacement of the basic magmas provide enough heat
for partial melting of the country rocks. The magmatic processes leading to the formation of
the intermediate to acidic dikes will be discussed in chapter 6. Nevertheless, field observations
do not bring evidences for the mentioned hypothesis because the contact between the Mont
Collon intrusion and its present day country rocks is strongly reworked by the Alpine tectonics.
Moreover, dikes coming directly from the Arolla orthogneisses have not been observed near
the contact.
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Chapter 4

The Early Permian Mont Collon complex is contemporaneous with other gabbros of the
Alpine domain (i.e., Sermenza .gabbro-diorite mass (Val Anzasca), Braccia (Val Malenco)
and Sondalo gabbros, the main gabbro-diorite body in the Ivrea-Verbano zone; Fig. 44). It
is noteworthy that, as the Mont Collon gabbros and Arolla orthogneisses association, many
gabbroic intrusions of the Alpine domain are in space and time related with granitoid bodies.
Near the Sondalo complex, several small granitoid bodies have been dated between 282 and
259 Ma using Rb/Sr method on muscovites (Del Moro and Notarpietro, 1987). A similar
association was dated in the Val Malenco. The age of the acid magmatism associated with the
Braccia gabbro yields an U/Pb zircon age of 278.4 + 2.6 Ma (Hansmann et al., 1996).

The Fe-Ti melanocratic dikes represent probably a distinct and later magmatic event with
respect to the early Permian Mont Collon complex cumulates. The “°Ar/*’Ar dating of these dikes
yields a surprisingly younger plateau age than what we expected. The “*Ar/*Ar dating shows
that it is not the case. According to McDougall and Harrison (1988), the closure temperatures
of amphiboles range between 450 to 500°C and these minerals are known for their important
retentiveness of argon during cooling. But other parameters have to be taken into account as the
grain size, the diffusion length scale or the correlation between the Mg content in the kaersutites
of the MP177 sample (MgO = 9.85 - 11.82 wt%, table 13). Pressures 0of 0.3 - 0.6 GPa calculated
applying the geobarometer of Nimis and Ulmer (1998) for hydrous basaltic magmas based on
clinopyroxene compositions indicate that the Mont Collon complex was emplaced into the
middle crust (see chapter 3). Inversely, some structural and petrographical characteristics of
the Fe-Ti melanocratic dikes (i.e. miarolitic voids indicating a fluid exsolution, very fine apatite
needles) suggest an emplacement and a quenching at shallower levels than the gabbroic rocks.
Then, a fast cooling and the relatively high Mg content of the analyzed kaersutites probably
balance the effects of their small grain sizes and possibly prevent Ar loss which could yield a
younger age than the effective age of the sample. Consequently, the obtained “Ar/*Ar age is
probably very close to the age of crystallization of the dike.

The presence of such contrasting dikes suggests a second magmatic event, distinct from
the early Permian magmatic event related to the Mont Collon cumulates emplacement. The
conditions of mantle melting and the tectonic processes which led to this emplacement will be
discussed in the following chapters.
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Chapter 5: Geochemical constraints on the magma sources

5.1. Introduction

The Mont Collon mafic complex consists mainly of ultramafic and mafic cumulates
intruded by two types of rocks: (i) leucocratic and (ii) Fe-Ti1 melanocratic dikes. U/Pb dating
(chapter 5 and Monjoie et al., submitted) on zircons show that the leucocratic (283 Ma) dikes
are contemporaneous with the cumulates (284 Ma), while the Fe-Ti melanocratic ones are
younger (260 Ma, “*Ar/* Ar amphibole dating, Monjoie et al., submitted). The leucocratic dikes
are widespread within the whole intrusion, whereas the Fe-Ti melanocratic dikes are restricted
to the Dents de Bertol area.

The aim of this chapter is to present and discuss the whole-rock petrology, chemistry
and above all the isotopic (Nd, Sr, Pb and Re-Os) compositions of the main rock types (i.e.
cumulates, leucocratic and Fe-Ti1 melanocratic dikes) in order to characterize their magmatic
affinities and sources.

5.2. Summary of the the Mont Collon cumulates elemental characteristics

5.2.1. Major and trace element chemistry

The chemical evolution from wehrlites to gabbros, through plagioclase-wehrlites is
marked by an increase of Al,O,, CaO and Na,O. Ol- and cpx-gabbros are geochemically similar
and display wider variations in Al,O, and SiO, than the other cumulates (Fig. 22). Compared
to the other mafic cumulates, cpx-gabbros are generally enriched in K O. TiO,, Na, O and CaO

increase with increasing SiO,.

5.2.2. Chondrite-normalized rare earth element patterns

All cumulates (Fig. 28), whatever the rock type, display similar LREE-enriched patterns
(1.84 < La /Yb < 3.67) with variable REE contents and more or less marked Eu negative
anomalies. The troctolite displays a relative flat Medium (M) to HREE pattern (Sm/Yb, =
3.08), compared to the other cumulates. Anorthosites differ from the gabbros by a larger LREE
enrichment [(La,/Yb,) = 14.24]. Compared to the cumulate gabbros, the pegmatitic gabbros
exhibit the highest REE contents and a small Eu negative anomaly (Eu/Eu* = 0.70 - 0.93).
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5.2.3. Primitive mantle-normalized multi-element plots

The primitive mantle-normalized (Sun and Mc Donough, 1989) multi-element plots of
the Mont Collon ultramafic and mafic cumulates and anorthosite layer are very similar (Fig. 29,
Tables 9a-d). These plots are characterized by (i) LILE enrichment, (ii) Nb-Ta (La/Nb = 1.27
- 10.50), Zr-Hf, and Ti negative anomalies and (iii)) HREE and Y depletions. The Sr and Eu
positive anomalies are linked to plagioclase accumulation. The pegmatitic gabbros differ by the
absence of Nb and Ta negative anomalies (La/Nb = 0.57; sample MP113).

5.2.4. Nd, Sr and Pb isotope compositions

The cumulates have a wide range of eNd, (3.2 to -0.6, Table 15a) which are not related to
the rock types (Fig. 45). The groups distinguished on the basis of their sampling locations (Fig.
7; chapter 2 section 2.3.) have been also differentiated according to their *Sr/*Sr, values, and
to a lesser extent, their eNd.. Group I, which consists of rocks sampled in different locations of
the Mont Collon massif is characterized by *’Sr/*Sr, lower than 0.705 (about 0.70481) and eNd.,
ranging between +1.2 to +3.2. Group Il encompasses all the cumulates collected along the Dents
de Bertol cliff and differs from group I by higher *’Sr/*Sr, (> 0.705) and comparatively lower
and homogeneous eNd, values near 0. These low values of the éNd, are in the range of those of
the Bulk Silicate Earth (BSE). It is noteworthy that this two groups can not be distinguished on
the base of their whole-rock and mineral compositions.

The subdivision into two groups, mentioned above, can be also applied on the basis of
the *’Pb/**Pb. and ***Pb/***Pb. ratios (Table 15b). In the enlarged plot (Fig. 46), group I differs
from group II by lower *’Pb/***Pb. and ***Pb/***Pb, ratios, but both groups have similar **Pb/
*%Pb.. *’Pb/***Pb, and ***Pb/***Pb, ratios display a positive linear correlation with **Pb/***Pb.. In
the *’Pb/**Pb, - **°Pb/**Pb, diagrams (Fig. 47a), group II exhibits a linear trend parallel to the
205Pb/**Pb. axis and plots near the Atlantic sediments field. Similarly, in the ***Pb/**Pb, - **°Pb/
*%*Pb, diagram (Fig. 47b), the Mont Collon cumulates fall close to the Atlantic sediments field
(values after Ben Othman et al., 1989). Despite its higher Pb isotopic signature, the pegmatitic
gabbro (MP4) is aligned with the cumulates. The ¥Sr/*Sr. - **Pb/**Pb. plot well illustrates the
distinction into two groups (Fig. 48). In the **’Pb/***Pb, and Nd ratio versus **Pb/***Pb, diagrams
(Fig. 47a and 49), the cumulates plot also close to the BSE field.

The subdivision into two groups could be explained by either variable crustal contamination
(by assimilation of wall-rocks or at the source) or two melt batches exhibiting slightly different
isotopic composition (heterogeneity of the mantle source?). The hypothesis of two (or more)
melt batches is consistent with the lack of differentiation within the whole complex, i.e. the
poorly variation in the rocks facies (no occurrences of differentiated rock types).
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Fig. 45: eNd, '""Nd/"*Nd. and *’Sr/**Sr_ diagram for the Mont Collon cumulates showing the

differences between the groups I and II.
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5.3. The leucocratic dikes

5.3.1. Major- and trace-element chemistry

Major-element compositions of the quartz-rich pegmatites are very homogeneous with
the exception of Al,O, abundance. In contrast, the aplite compositions exhibit larger variations,
especially for CaO, Al,O, and K O contents (Fig. 50, Table 16).

The microgranodiorites display variable SiO, contents from the central part to the margin
of the dike (67.1 - 72.8 wt%). This silica content increase is related to higher quartz modal
composition at the margin compared to the central part. Despite identical mineralogical content,
sample MP128 differs from the other microgranodiorites by its lower SiO, content (61.0 wt%).
We explain this variable silica content by a use of a bad powder fraction for the major-element
analysis. It is noteworthy that the powder fractions used for major-elements analyses and
trace-element and isotopic determinations are made with different grinders (tungsten-carbide
and agathe grinder, respectively) and thus, trace-element and isotope are reliable. Moreover,
the microgranodiorites differ in higher FeO* (1.56 - 3.36 wt%) and MgO (0.68 - 1.63 wt%)
contents, from the other leucocratic dikes. This feature is mainly related to the presence of
biotite (see chapter 2).

The anorthositic dikes exhibit intermediate compositions (SiO, ~ 60 wt%) and differ from
the other leucocratic dikes by their higher K,O (up to 1.42 wt%), AL,O, (~21 wt%) and Na,0O
(5.8-8.6 wt%) contents.

All leucocratic dikes are Mg-poor (MgO < 1.6 wt%, Table 16). That is why SiO, was
chosen as differentiation index. The leucocratic dikes display more or less well-defined linear
trends in Harker-type diagrams (oxides versus SiO,; Fig. 50) with the exception of K O and
Na,O. For instance, the leucocratic dikes plots are scattered in the K O-SiO, diagram. This is
likely related to the orthoclase abundance relative to quartz or variable degrees of alteration.
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5.3.2. Chondrite-normalized rare earth element patterns

All the leucocratic dikes show LREE-enriched patterns (Fig. 51, Table 17), but the LREE
enrichment varies with the rock types and sometimes within a given rock type (i.e., pegmatites,
microgranodiorites). Among the Qz-pegmatites, sample MP2 shows the highest LREE
enrichment [(La/Yb) = 177.31] of all the leucocratic dikes and a small Eu positive anomaly
(Euw/Eu* = 1.29). The aplites show very homogeneous REE patterns with the exception of the
Eu anomaly. One sample differs from the others by a marked negative Eu anomaly (Eu/Eu*
= 0.62). The microgranodiorites exhibit the more diversified REE patterns, i.e. positive or
negative Eu anomalies (Eu/Eu* = 0.53 - 1.49), variable LREE enrichments, [(La/Yb) = 25.73
-90.35]. These differences in the REE chemistry are likely related to the biotite abundance with
respect to sanidine and andesine.

The LREE-rich patterns of the anorthositic dikes are not similar to those of Ca-rich
plagioclase. This is due to the abundant apatite (up to 5 vol-%).

5.3.3. Primitive mantle-normalized multi-element plots

All the leucocratic dikes are characterized by Nb, (La/Nb = 1.39 - 8.06) Ta, and Ti
negative anomalies and variable enrichments in large ion lithophile elements (LILE, Ba, Th,
U), with the exception of a sample of aplitic dike, which is also characterized by a K negative
anomaly (Fig. 52). This is probably related to an alteration process. Pegmatites, aplites and
microgranodiorites exhibit also differences in the P, Zr and Hf contents. Some samples are
characterized by P, Zr and Hf positive anomalies, other not. This is probably linked to the
presence (variable modal amounts) or absence of apatite and zircon. The Pb positive anomaly
of the anorthositic dikes can be attributed to the plagioclase abundance, as expected from the
high distribution coefficients of lead in plagioclase.

5.3.4. Nd, Sr and Pb isotopic compositions

All the leucocratic dikes are characterized by negative ¢éNd, values that range between
—1 and —6.6 and high *’Sr/*Sr initial ratios (0.70573 to 0.71005; +83.5 < eSr, < +22.2; Fig. 53;
Table 18). Such values are similar to those of upper continental crust. One sample (MP141,
MP132b) shares with some cumulate gabbros similar ¢éNd. values (-1) that are the highest
among the leucocratic dikes. However, the ®’Sr/*Sr initial ratios of these two rocks differ
significantly (0.70636 and 0.71005). This difference in the initial Sr ratios can be attributed to
alteration or weathering processes. In the '*Nd/"*Nd. versus *’Sr/*Sr plot, the leucocratic dikes
do not show a well-defined correlation trend.
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Fig. 51: Chondrite normalized REE content of whole-rocks of the Mont-Collon leucocratic and
Fe-Ti melanocratic dikes and the Arolla orthogneisses. Normalization to the C1 chondrite (Sun
and McDonough, 1989).
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Fig. 53: eNd,, "“Nd/'**Nd. and *’Sr/**Sr, diagram for the Arolla orthogneisses, the leucocratic and
Fe-Ti melanocratic dikes. Also shown the compositional field of the Mont Collon cumulates.
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Fig. 54: *®Pb/**Pb. - *’Pb/**Pb. diagram for the leucocratic and Fe-Ti melanocratic dikes.
Lower crust of Arabian - Nubian shield (Bosch and Lancelot, 1990), MORB (White et al.,
1987), Lesser Antilles (White and Dupré, 1986 and Davidson, 1987), Atlantic sediments (Ben
Othman et al., 1989). EM I and EM 1I fields after Zindler and Hart (1986). Also shown the
compositional field of the Mont Collon cumulates. Same legend as figure 53.
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Fig. 55: 2°Pb/**Pb. - "“Nd/'**Nd. diagram the leucocratic and Fe-Ti melanocratic dikes. MORB,
DM, HIMU, PREMA and BSE fields after Zindler and Hart (1986).
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The Pb isotope compositions of the leucocratic dikes are heterogeneous and do not depend
on the rock type. They fall within the field of the continental crust. In the **’Pb/***Pb. versus
20Pb/**Pb, diagram (Fig. 54, Table 18), the leucocratic dikes show a linear trend between the
Bulk Silicate Earth (BSE) and Enriched Mantle IT (EMII) fields. This is due to the rather high
and homogeneous *”’Pb/**Pb, (between 15.635 and 15.666), while the **Pb/**Pb, ratios are
more variable (between 18..016 and 18.554). Similarly, in the '*Nd/"*Nd. and *’Sr/**Sr, versus
205Pb/**Pb, correlation diagrams (Fig. 55 and 56), the leucocratic dikes exhibit a linear trend

between BSE and EMIIL. Among these dikes, one pegmatite and a microgranodiorite fall near
the EMII field.

5.4. The Fe-Ti melanocratic dikes

5.4.1. Major and trace element chemistry

The Fe-Ti melanocratic dikes are SiO,-undersaturated (40.7 - 43.1 wt%) and nepheline
normative (ne = 6.5 - 9.0 %, Fig. 21). They have high FeO* (11.5 - 14.2 wt%; Fig. 50, Table 16),
TiO, (~ 3 wt%), alkali (3 < (Na,0 + K,0) % < 4 wt%) and P,0O, (0.72 to 0.91 wt%) contents.
Na,O + K,O content is always lower than that of A1,O, and Na,O content always higher than
that of K,O (4.1 <Na,O/K,0 < 8.6) . AL,O, content decreases from the center part (12.9 wt%)
to the margin (11.7 wt%) of the dikes, and is rather high for such low SiO, contents. The Al to
(Na+K) molar ratios are comprised between 2 and 2.3. Thus, the Fe-Ti melanocratic dikes show
features of metaluminous melts (Shand, 1951). Their Mg-numbers (Mg# = molar ratio (Mg /
Mg + Fe*") x 100) range from 54 to 57 and remain relatively constant but show a slight negative
correlation with SiO, (mean value of = 42.1 wt%). The Na,O, ranging from 2.63 to 3.58 wt%,
increases with SiO.,.

5.4.2. Chondrite-normalized rare earth element patterns

All the REE patterns of the Fe-Ti-rich melanocratic dikes are very similar and characterized
by high contents (ZREE_ ~ 700; Fig. 51), and important LREE enrichments (La,/Yb_ = 12.56
- 13.19). They do not display Eu anomalies (Eu/Eu* = 1.0-1.1).
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5.4.3. Primitive mantle-normalized multi-element plots

The Fe-Ti melanocratic dikes exhibit multi-element plots, very similar to those of alkaline
mafic rocks (Fig. 52), with marked depletions on both ends of the plots, i.e. Rb and Ba and
HREE and Y, respectively. In contrast with the leucocratic dikes and cumulates, the Fe-Ti
melanocratic dikes do not show Nb and Ta negative anomalies. Their La/Nb ratio is less than
1. Moreover, they exhibit also K and Pb negative and Sr positive anomalies. The K negative
anomaly suggests that the Fe-Ti melanocratic dikes belong to Na-rich alkaline rocks. They are
slightly depleted in HREE and Y, which could indicate that they are typical of within-plate
alkaline melts.

5.4.4. Nd, Sr and Pb isotope compositions

The Fe-Ti melanocratic dikes have the highest eNd, values (~+7, , Table 18) and lowest
$7Sr/*Sr. ratios of all the Mont Collon igneous suites (Fig. 53, Table 18). This suggests that
these melanocratic dikes are mantle-derived melts, without involvement of the continental
crust (no crustal contamination). The eNd, values of the dikes fall in the range of enriched OIB-
type mantle source. In the eNd.-*’Sr/*Sr, the dikes plot in the mantle array. In the **’Pb/***Pb -
205Pb/**Pb, correlation diagram (Fig. 54), the dikes cluster near the MORB field, while in the
"“Nd/"Nd, and *’Sr/**Sr, versus **Pb/***Pb, diagrams (Fig. 55 and 56), they plot below and in
the MORB field, respectively.

5.4.5. Discussion on the Fe-Ti melanocratic dikes

Classifying the Fe-Ti melanocratic dikes is not evident for mineralogical and chemical
reasons. Their mineralogy is typical for alkaline rocks, i.e. they contain alkaline calcic
amphibole (kaersutite), a high modal proportion of apatite, and the clinopyroxene (with high Ti
content) appears before plagioclase, in the crystallization sequence. The latter is in the range of

albite-oligoclase (An_ ). According the international nomenclature (Le Maitre, 2002), mafic

5-15
rocks that contain Na-rich plagioclase should be called diorites or if they occur as dikes and are
fine-grained, as it is the case here, microdiorites. But diorites are much richer in SiO, (55-57%),

than our rocks, which are ultrabasic (42-43% SiO,).

Chemically they have a metaluminous affinity (Al/Na+K molar ratio > 1) and a relatively
low Mg-number (Mg# close to 55), typical for evolved liquids. Their Rare Earth Element
contents are high (REE, ~ 700; Fig. 51) and they exhibit important LREE enrichments (La,/
Yb,=12.56 - 13.19), and HREE and Y depletions (Fig. 52). They are also nepheline normative,
indicating an alkaline tendency. However, their Nd, Sr and Pb radiogenic isotopes suggest that
they derived from an asthenospheric mantle source (Fig. 53 to 55). This somehow contradictory
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Chapter 5

chemical signature is typical for alkaline lamprophyres (Rocks, 1991). Indeed, chemically, the
Fe-Ti melanocratic dikes share many typical characteristics of camptonites. Both rock types
share the mineralogical composition (clinopyroxenetkaersutite+plagioclasetolivine), major-
and trace element contents, i.e. low SiO, (< 45 wt%), high Fe, Ti and Ca contents (~12 wt%,
~3 wt% and ~10 wt%, respectively), high LREE, HFSE (Th, U) and LILE (Nb-Ta) contents.
Typical camptonites display a significant K,O content (up to 2 wt%), compared to the low K, O
(~ 0.5 wt%) of the Fe-Ti dikes. This feature is related to the presence of biotite in camptonite,
which has not been recognized in the Fe-Ti dikes.

Alkaline lamprophyres have been found in many different geodynamic settings. They are
emplaced either during convergent or distensive geodynamic contexts (Rocks, 1991), as well
as in intraplate situation, and related either to lithospheric or asthenospheric mantle sources,
according to their Nd, Sr and Pb isotopic signatures (Rocks, 1991; Debon and Zimmermann,
1993; Riley et al., 2003).

Another problem remains to be clarified: The high Na-content composition of the
plagioclase is not in agreement with the findings of Dal Piaz et al. (1977), who mentioned a
range between An,, and An_ for the plagioclase of apparently similar dikes in the Matterhorn
area and a labradorite composition (An ) from sample DBL 605 outcropping in the Dents
de Bertol area. Nevertheless, in the complete absence of deuteric alteration in our samples
(no epidote or sericite), we consider that the high Na-plagioclase is a magmatic feature. This
plagioclase composition is in agreement with the low Mg# and high trace-element content of
these dikes (evolved character).

5.5. The Arolla orthogneisses

5.5.1. Major and trace element chemistry

One sample of the Arolla orthogneiss (KAW1983, collection J.C. Hunziker) has a very
low SiO, content (54.1 wt%; Table 16) compared to rocks of intermediate to acidic composition
(Fig. 50) and especially to the other sample Arolla orthogneiss KAW985 (68.0 wt%). Moreover,
the Arolla orthogneiss KAW1983 exhibits higher FeO_, MgO and CaO contents (3.7-8.1, 1.28-
3.25 and 2.4-6.1, respectively) than the other orthogneiss. The two samples were not collected in
the same place. KAWO985 (sample provided by J.C. Hunziker) was sampled near the Matterhorn
and not in the vicinity of the Mont Collon intrusion whereas KAW1983 was collected in the
host rocks of the complex. As for SiO,, the two orthogneiss samples show differences in their
major-element chemistry. These variations are probably due to variable mobility of elements
during metamorphic processes or both orthogneisses could have different protoliths. We rather
give preference to the second hypothesis, i.e. these protoliths could be a diorite for sample
KAWI1983 and a granite for sample KAW985.
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5.5.2. REE and extended trace-element patterns and isotope ratios

The differences in major-element chemistry between the two Arolla orthogneisses
appear also in their REE and extended trace-elements patterns (Fig. 51 and 52, Table 17). The
sample KAW985 displays a more fractionated REE pattern (La,/Yb, = 10.0) with respect to
the other orthogneiss (La,/Yb, = 2.2). This difference is marked by LREE enrichment in the
former (XLREE_ = 402.7 ppm) compared with the orthogneiss KAW1983 (XLREE = 303.4
ppm). Inversely, the orthogneiss KAW1983 is HREE-richer (ZHREE = 231.9 ppm) than the
orthogneiss KAW985 (ZHREE = 119.9 ppm).

In spite of their differences, both samples are characterized by marked negative Eu
anomalies (Eu/Eu* ~ 0.5), important LILE (Ba and Rb) enrichments, Nb-Ta and Ti negative
and Zr-Hf, K and Pb positive anomalies. The positive Pb anomaly is correlated with the Th-U
enrichment.

Moreover, Arolla orthogneisses have similar '"“Nd/"*Nd. ratios (0.51208 - 0.51209),
eNd. values (ranging from -3.4 to -3.7) and *'Sr/*Sr, ratios (0.70808 - 0.70837; Fig. 53). Lead
isotopic compositions are also very similar. They plot close to the EMII field in the Nd ratio
and *”’Pb/**Pb, versus **Pb/***Pb, correlation diagrams (Fig. 54), and they display Sr isotopic
ratio and **Pb/***Pb. similar of those of microgranodiorite sample MP128 and the quartz-rich
pegmatite MP2.

5.6. Hf and Re-Os isotopes of the Mont Collon igneous suites

5.6.1. Hf isotopes

The U/Pb-dated zircon fractions have also been used for Hf isotopes determinations (Fig.
57, Table 19). The zircon Hf data plot in the ¢Hf, vs. time (Ma) diagram are aligned (because
of their similar ages) but, the lower ¢Hf. of the pegmatitic dike suggest that the latter are more
contaminated by the upper crust than the pegmatitic gabbro.

5.6.2. Re-Os isotopes

The Mont Collon cumulate rocks seem to offer valid samples in order to determine
Osmium concentrations and isotopic ratios. The Re-Os isotope system differs from the Nd-Sr
and Pb ones in that the daughter product Os is highly compatible in the residual mantle during
partial melting, whereas the parent Re is incompatible. Thus, melting lowers the Re-Os ratios
in the residue. The samples have been analyzed twice because the first set of analyses produced
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very low Os contents. Unfortunately, the second data confirm the extremely low Os contents of
the cumulates (Table 20), melanocratic and leucocratic dikes. Thus, '*’Os/'*Os. isotopic ratios
(as well as the deviations compared to the CHUR, i.e. the yOs parameter) are not interpretable
in term of signatures of mantle or crustal source(s). We can suggest a few hypotheses to explain
these very low Os contents, such as the formation of layers rich in minerals with strong affinities
for Os, as olivine chromite and sulfide. Such horizons could have precipitated at the base of the

intrusion, which is not outcropping or at lower surface level.

Cumulative rocks and Fe-Ti melanocratic dikes display similar '®¥’Re content (0.109 <
Re < 0.662 ppb and Re = 0.225 ppb respectively, Table 20). Thus, Re contents could indicate
that this element displays the same content in the both sources of the melanocratic dikes and
cumulates. Os content is higher by one order of magnitude in melanocratic dikes (*0s =
0.0199). However, as for cumulates, the yOs is also useless, as well as the '’Os/'**Os,, in view
of their very high '®"Re/'®*Os ratio.

asthenospheric mantle
g - ‘ \
mixing of mantle sources
6 _ l
® lithospheric mantle
4 -
L 4
i L 2 . :

2 X Qz-rich pegmatite
T - ¢ € Pegmatitic gabbro
T %
« X

20 A

4 - \ v

-6

upper crustal contamination
-8 -
-10 T T T
275 295 315 335
Time (Ma)

Fig. 57: ¢Hf vs. Time (Ma) co-variation diagram for zircon fractions extracted from the
dated pegmatitic gabbro (MP4) and the quartz-rich pegmatite (MP2). Arrows refer to general
tendencies toward mantellic or crustal reservoirs (after Stille and Schaltegger, 1996).
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5.7. Discussion: Nature of the sources and igneous processes linked to the genesis of
the Mont Collon cumulates

5.7.1. Assimilation process and influence of the interstitial melt

The cumulate rocks sampled along the Dents de Bertol cliff (group II, see Fig. 45) have
remarkably homogeneous eNd. in spite of the wide range of the MgO contents of the cumulate
rocks. Similarly, the Sr and Pb isotopic variations are not linked to the MgO abundances (Fig.
58a). As expected, we assume that the isotopic compositions do not depend on the fractionation
degree of the cumulates. We have shown in chapter 5, that the cumulates were characterized by
the presence of a LREE and Zr- and Hf-enriched interstitial trapped liquid. The abundance of
the trapped interstitial liquid is correlated positively with the modal percentage of amphibole
(Fig. 35; see chapter 4). Thus, the incompatible trace-element contents (LREE, Zr, Hf, Rb, Ba,
Zr and Y) of the whole rocks and minerals (clinopyroxene, plagioclase and amphibole) depend
more or less exclusively on the abundance of the interstitial trapped liquid. They have been
significantly increased, in relation to the abundance of trapped liquid. Figures 35 and 37 (see
chapter 4) illustrate the well-defined positive correlations between interstitial melt (L) and some
incompatible trace elements (Zr, LREE) and the percentage of amphibole. No correlation exists
between the abundance of interstitial liquid in cumulates and the initial Nd, Sr and Pb (Fig.
58b). Similar observations can be made for group I. Thus, the variations of the Nd-Sr and Pb
isotopic initial ratios are not linked to the presence of the interstitial melt.

The Mont Collon cumulates Nd, Sr and Pb isotopic compositions suggest that these
rocks derived from partial melting of an enriched mantle source. Moreover, these cumulates
exhibit systematic Nb and Ta negative anomalies, suggesting that this feature is (i) linked to the
source composition, (ii) derive from the partial melting of this source (Nb-Ta melt depletion)
or (iii) implies the involvement of continental crustal material. In addition, whether a crustal
continental component influences the isotopic and trace-element composition of the cumulate,
could be related to assimilation or mixing processes or source contamination.

5.7.2. Assimilation-Fractional Crystallization (AFC) and mixing modeling

We carried out an AFC model to confirm or invalidate the possible effects of assimilation
during the cumulate fractionation of the Mont Collon mafic melt. For this model, we have
selected samples MP152 and KAW 1983 as mafic and crustal end-members. Sample MP152 is
an ol-gabbro, which is characterized by the highest eNd. = +1.9 value of group II. KAW1983
(eNd. = -3.7) was collected in the Arolla orthogneiss and we assume that it represents the
Mont Collon host rocks. Group I rocks have not been considered in this model because they
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do not belong to the continuous exposure of the Dents de Bertol sequence. AFC equations and
procedure are from De Paolo (1981). The resulting AFC parameters are (i) r, the ratio of the
assimilation rate to the fraction of melt remaining, and (ii) F, the fraction of remaining melt. We
obtained the values r=0.7 and F ~ 0.95 (Fig. 59). These values seem to be unrealistic to explain
the isotopic compositions of the cumulates by an AFC model with the assumption that the
Arolla orthogneisses are the original country rocks of the Mont Collon mafic complex. A very
high degree of crustal contamination during the crystallization of cumulates has to be invoked
to reach the Sr isotopic compositions of the cumulates with such r-F parameters. Thus, we infer
that these calculations fail to reproduce a realistic assimilation-fractional crystallization process.
We can assume that assimilation of wall-rock does not represent the main process which could
explain the variations of the isotopic composition of Mont Collon cumulative rocks.

Mixing modeling (equations after Langmuir et al., 1978) has been performed using the
following mantle (Nd =8 ppm, Sr = 120 ppm, eNd = +7 and ¥Sr/**Sr =0703; values from
Voshage et al., 1990) and crustal (Nd =40 ppm, Sr =220 ppm, eNd = -10 and ¥’Sr/%¢Sr =0715
for the metapelitic Kinzigite Formation of the Ivrea zone, which is thought to be exposed lower
crust; values from Voshage et al., 1990) end-members. The obtained mixing curve (Fig. 60)
shows that the Nd and Sr isotopic compositions of the Mont Collon mafic cumulates could be

4 A & pegmatitic gabbro
<o B cpx-gabbros
o ol-
| oo ol-gabbros
¥ troctolite
" O plg-wehrlites
0 - X aplites
A microgranodiorites
X X' Qz-rich pegmatite
'2 2 + Arolla orthogneiss
w
F=0.95
4 A
-6 X X
A X
r=0.7
_8 T T T T 1
0.704 0.705 0.706 0.707 0.708 0.709
87Sr/86Sri

Fig. 59: eNd, vs. *’Sr/*Sr, diagram for Mont Collon cumulates and acid rocks. Calculated AFC
path after the equations of de Paolo (1981). Fractionated assemblages: 45% cpx , 40% plg,

13% ol and 2% amph. D_, = identical to those of the in-situ crystallization modeling (see Table
11).
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explained by mixing the mantellic end-member with less than 15% of the crustal end-member.
This leads to the conclusion that the Mont Collon mafic cumulates show some effect of crustal
contamination. Nevertheless, the mixing curve in figure 60 shows that this contamination is
very much weaker in group I samples (between 5 and 10%) than those of group II (between 10
and 15%). Comparison with other mafic complexes (e.g. Finero External Gabbro Unit, Ivrea
zone; Lu et al. 1997) or peridotitic massifs exposed in the Alps (Balmuccia, Ivrea zone; Lu
et al. 1997) show that similar mixing modeling indicates that in the Finero gabbro suffered
very minor contamination by the surrounding crust (less than 10%, Lu et al., 1997), whereas
the Balmuccia peridotite massif has been pervasively metasomatized by crust-derived fluids,
which led to the crystallization of phlogopite and the development of crustal-type (negative)
eNd values.

The Mont Collon cumulates and their mineral components (i.e. clinopyroxene and
plagioclase with the exception of the interstitial amphibole, which has a high affinity for Nb)
are characterized by U-Th enrichment and Nb-Ta negative anomalies. The significance of this
systematic Nb-Ta anomaly could be explained by either crustal contamination of the melt or
presence of this anomaly in the mantle source of the Mont Collon mafic cumulates.

The composition of the lower crust was mostly deduced from granulitic rocks, exposed at
the surface by regional tectonic processes. Xenoliths perhaps provide a better direct sampling
of the lower crust, but they are rare. Average lower crust is MgO and AL O,-rich (7.1 and 16.6
wt%, respectively) according to Rudnick and Fountain (1995) or slightly less enriched in these
elements (5.2 and 15.5 wt%, respectively; Fig. 61) according to Wedepohl (1995). The lower
crust is LREE-enriched (20 times the chondritic values of Sun and McDonough, 1989). It
exhibits also enrichment in HFSE (Th, U) and LILE (Pb, Sr, Ba, Rb and K) but a flat primitive
mantle normalized pattern for the other incompatible trace elements (HREE, Zr, Hf and Y).
Compared to the CLM (Fig. 61), the lower crust has similar Nb and Ta contents (McDonough,
1990; Downes, 2001), but higher abundances in incompatible elements such as Th, U and
LREE. Thus, U and Th enrichment in the cumulates could be related to contamination of the
Mont Collon mafic magma by the lower crust during its ascent.

Nevertheless, we cannot rule out the possibility that the mantle source of the Mont
Collon mafic cumulates could be metasomatized by (ancient?) subducted-related fluids with
crystallatization of Nb-rich minerals (e.g. rutile). Subsequent melting of this mantle would have
retained Nb and Ta in the rutile. Thus, we could also generate the observed systematic Nb-Ta
negative anomaly by this process.
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simple mixing modeling

B crustal end-member = Ivrea kingizite formation: eNd = -10.3, 87Sr/86Sri =0.715, Nd = 40 ppm, Sr =220 ppm
@ mantellic end-member : eNd =+7, 87Sr/86Sri =0.703, Nd=8 ppm, Sr=120 ppm

0 0 50 & pegmatitic gabbro X aplites
% m cpx-gabbros A microgranodiorites
"EZ:T 5 ¢ ol-gabbros X Qz-rich pegmatite
@ ¢ troctolite + Arolla orthogneisses
O plg-wehrlites
4
6 X X
-8 1
-10
-12 T T T T T T :
0.702 0.704 0.706 0.708 0.710 0.712 0.714 0.716

875r/86sr;

Fig. 60: Simple mixing model curve using the eNd. vs. ¥’Sr/*Sr. isotopic composition of the
Mont Collon mafic cumulates. The compositions of the mantellic and crustal end-members are
given within the diagram (after Voshage et al., 1990).

5.7.3. Mantle source contamination by crustal material(s)

5.7.3.1. Composition of the subcontinental lithospheric mantle

Databases on spinel and garnet peridotite and harzburgite xenoliths (McDonough, 1990;
Griffin et al., 2003) are used to constrain the composition of the subcontinental lithospheric
mantle (CLM) and demonstrate the secular evolution of its composition. Garnet peridotite
xenoliths from Australia, South Africa or Siberian cratons display relatively lower concentrations
in some elements (e.g. HREE, Sc, Ca, Mn or Fe) than spinel peridotite of the same locations.
These differences are mainly ascribed to regional or age variations between Archean and post-
Archean lithospheric mantle. The main process that controls the geochemistry of the CLM 1is
the extraction of basaltic liquid by partial melting, mainly observed in major-element (TiO,,
ALO, or CaO vs. MgO) variations (Frey and Green, 1975; Ottonello et al., 1984 and Frey et al.,
1985). Variations from this model could reflect other processes of trace-element and isotope
enrichment or depletion, such as metasomatism processes by subduction-related or carbonatitic
melt or fluid (Lu et al., 1997; Lenoir et al., 1997), recycled crustal materials (e.g. Rosenbaum
et al., 1997). Other studies based on the comparison between mantle xenoliths and peridotitic
massifs tectonically emplaced during Variscan and Alpine orogenies in the Central and Western
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Alps (Downes, 2001) show that both the mantle xenoliths exhumed by lavas and the peridotitic
massifs (e.g. Ronda, Ivrea, Pyrénées) present similar compositions. The most frequently
observed mineralogy consists of anhydrous spinel peridotite with subordinate harzburgite.
Such mineralogies and their corresponding major-element and incompatible trace-element
compositions are thought to reflect the shallow subcontinental lithospheric mantle (SCLM)
composition. In Central and Western Alps, the SCLM is LREE enriched (by metasomatism)
or depleted (basaltic melt extraction) relative to the primitive mantle with Nb-Ta positive
anomalies (Fig. 61; Table 21). The latter feature is not observed in the extended primitive-
mantle normalized plots of the Mont Collon cumulative rocks (Fig. 29). Thus, the trace-element
geochemical characteristics of the Mont Collon cumulate cannot be related solely to the partial
melting of the CLM. According to numerous publications (e.g. McDonough, 1990; Kalt et al.,
1997; Downes, 2001; Cannic et al., 2002), the CLM is characterized by a large range of Nd and
Sr initial ratios that fall also in the range of OIB-type enriched mantle. Thus, it appears difficult
on the basis of Nd, Sr and Pb isotopic data only, to assume that the mantle source of the Mont
Collon cumulates is an enriched asthenospheric or a subcontinental lithospheric mantle. We
think that other arguments are needed to determine what type of mantle was the source of the
cumulates, i.e. the nature of the crustal component involved at the source of the Mont Collon
cumulates or the tectonic features linked to the Mont Collon emplacement.

5.7.3.2. Potential composition of the source contaminant

Data from the Lesser Antilles island arc are useful to discriminate a potential contamination
by a continental terrigenous sediment component. Terrigenous sediments display high 2’Pb/
2Pb and *’Sr/**Sr ratios. Davidson (1987) postulated that the Lesser Antilles island arc
magmas have been contaminated at crustal levels by a sedimentary component intercalated
within the Caribbean plate. Because in the Lesser Antilles, the subducted sediments display
higher Pb isotopic signatures than Atlantic sediments, White and Dupré (1986) and Davidson
(1987) suggested that they contain a terrigenous component derived from the erosion of the
Precambrian Venezuela shield area.

In Pb-Pb correlation diagrams (Fig. 47), the Mont Collon cumulates cluster close to
the field of the Atlantic sediments. Thus, sediments geochemically similar to those of the
Atlantic could represent the crustal component involved in the genesis of the Early Permian
mafic magmas. However, the geodynamic setting of the Mont Collon complex is not that of an
Andean-type margin and the sediments input cannot be related to the subduction of an oceanic
plate. Thus, the sedimentary component must be searched in the lithospheric mantle. The
process to call for the presence of recycled sediments in the lithospheric mantle must be an old
subduction process, i.e., 900 Ma as suggested by Stille and Schaltegger (1996) or during the
Palaco-Tethys subduction (the multi-stage eclogite-facies metamorphism is dated at 425-395
Ma, i.e. Silurian., Paquette et al., 1989).
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lower crust CLM Table 21: Trace-element

Rb 11 1.9 composition of the lower
Ba 259.0 33.0 crust (after Rudnick and
Th 6.6* 0.7 Fountain, 1995) and the
Y 0.9% 0.1 subcontinental lithospheric
Nb 5 4.8 mantle (McDonough, 1990).
Ta 0.6 0.4

K 4980 448
La 8 2.6
Ce 20 6.3
Pb 4.2 0.2
Nd 11 2.7

Sr 348 49

P 436.0 2442
Sm 2.8 0.5

Zr 68 21.0
Hf 1.9 0.3
Eu 1.1 0.2

Ti 4792 539
Tb 0.5 0.1
Dy 3.1 0.5

Y 16 4.4
Yb 1.5 0.3

100 3

10 4

E /~\A

’ CLM

0.1 1

0.01 — T T T—T T T — T

Rb Th Nb K Ce Nd Zr  Eu Tb Y

Ba U Ta La Pb St Sm Hf Ti Dy Yb

Fig. 61: Primitive mantle-normalized patterns of the lower crust and the subcontinental
lithospheric mantle (CLM). Normalization values after Sun and McDonough (1989).
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5.8. Could the Arolla orthogneisses be the source of the leucocratic dikes ?

Like the ultramafic and mafic cumulates, the leucocratic dikes display a more or less
pronounced Nb-Ta, Zr-Hf and Ti negative anomalies (Fig. 52), a distinctive feature considered
as typical of subduction-related magmas (e.g. Pearce, 1983). However, unlike arc-related
magmas, all the intermediate to acidic rocks display a more or less pronounced Ba trough
relative to the adjacent Rb and Th (-U). Moreover, microgranodioritic dikes are the most Th-
and U-enriched among the leucocratic rocks. As discussed in the chapter 7, a subduction-related
tectonic setting has never been invoked for the Early Permian magmatism. Thus, the Nb-Ta,
Zr-Hf and Ti negative anomalies are not directly related to a subduction tectonic setting but
could be related to upper crustal contamination or to the characteristics of the source. Moreover,
the Rb and Th enrichments have not to be considered as features of alteration overprint. Rb
and Ba show comparable mobility. Th is considered to be immobile in aqueous fluids (Pearce,
1983). So, Ba and Rb have similar behaviors. Consequently, the Ba depletion likely represents
a primary magmatic characteristic rather than a consequence of weathering or hydrothermal
overprints. Such Rb and Th enrichment relative to Ba is also observed in crustal contaminated
volcanic rocks of Southern Alps (Rottura et al., 1998) and in the Pyrenees (Innocent et al.,
1994).

The negative éNd,, high initial Sr and Pb isotopic ratios of the leucocratic dikes (Fig. 53)
are more or less similar to those of the Arolla orthogneisses and the upper continental crust.
This suggests that the leucocratic dikes could derive from the melting of the Arolla gneisses
which are slightly older than the dikes (i.e. ~ 289 Ma, see chapter 4).

Furthermore, the Hafnium isotopic ratio of the Qz-pegmatite clearly suggests the
contribution of an upper crustal component in their genesis. Among the leucocratic dikes,
some samples have higher Sr ratios than those of Arolla gneisses. This difference could be
explained by the presence of fluids, characterized by higher Sr isotopic ratios than the Arolla
orthogneisses.

Among the leucocratic dikes, the anorthositic dikes are probably not related to the re-
melting of the Arolla orthogneisses. Some characteristics point to an origin from late fractionated
products of the Mont Collon mafic cumulates. They display major- and trace-element contents
compatible with derivation from residual melt, such as high Al and LREE contents (Fig. 50
and 51). Zircon and apatite (i.e. LREE-bearing minerals) are refractory phases during melting
of orthogneiss. Consequently, the resulting melt would be less LREE-enriched than the
anorthositic dikes. Moreover, experimental studies have shown that melting of metasediments
or orthogneisses can not generate feldspathic and quartz-free dikes. Consequently, anorthositic
dikes could be late products of the differentiation of the Mont Collon cumulates melt.
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5.9. Fe-Ti melanocratic dikes: the late Permian episode

The youngest Fe-Ti melanocratic dikes exhibit clearly distinct characteristics from those
of the cumulates and leucocratic dikes. These melanocratic dikes show high incompatible trace-
element enrichments (e.g. LREE, Nb-Ta, Th-U) whereas other elements such as K or Pb show
marked negative anomalies. The high incompatible trace-element enrichment and the relatively
strong LREE/HREE fractionation (La,/Yb_ = 12 - 13, Fig. 51) suggest that they could be the
products of low degree partial melting of an enriched mantle source or more probably they are
highly fractionated melts, considering compositional characteristics, such as their rather low
bulk rock Mg# (54.3-57.5). They are also depleted in HREE and Y that could be interpretded
as a partial melting starting in the garnet stability field.

According to their isotopic Nd, Sr and Pb (eNd. = +7 and *’Sr/**Sr, = 0.703; Fig. 53 and
54) signatures, the OIB type mantle source of these dikes is more depleted than that of the
Mont Collon cumulates and could be the asthenospheric mantle. The rather low *’Sr/**Sr. and
Pb initial ratios rule out a crustal contamination.

5.10. Conclusion: the early Permian and late Permian magmatic episodes

The Nd and Sr isotopic chemistry of the Mont Collon cumulates suggests that these rocks
derived from the melting of an enriched mantle source (i.e., lithospheric or asthenospheric),
although recycled oceanic sediments in the subcontinental lithospheric mantle have to be
invoked to explain the Pb isotopic signatures. The systematic Nb and Ta negative anomalies
that characterize the Mont Collon cumulates is commonly interpreted as a feature of subducted-
related magmas or fluids. However, no contemporaneous subduction of oceanic lithosphere is
considered to occur in the early Permian in the Variscan belt. We have shown in a previous
section that the Nb-Ta negative anomaly could also be related to crustal contamination. In an
intra-continental break-up tectonic setting, specific conditions occurred to obtain “pseudo-calc-
alkaline liquids” (this term was introduced by Pin and Marini, 1993).

Similar mafic intrusions in the Alps, e.g. central-eastern Southern Alps mafic intrusions
and volcanic districts (Rottura et al., 1998) or the Sondalo gabbroic complex (Tribuzio et
al., 1999) are also thought to originate from the melting of lithospheric mantle in the spinel
peridotite stability field. These mafic complex all underwent significant crustal contamination
and the isotopic composition of their sources are inferred from mixing and/or AFC modeling.
Nevertheless, the possible mantle source of the Sondalo complex is supposed to be a NMORB-
type mantle, similar to those of the Internal Ligurides ophiolites (Rampone et al., 1996 and
1998).
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The Fe-Ti melanocratic dikes are probably the first indication that the subcontinental
lithospheric mantle has been reduced in thickness beneath the collapsed Variscan belt and that
the asthenosphere reaches the conditions for partial melting. Similar dikes are also exposed
in the Braccia gabbro-Val Malenco but their ages and isotopic compositon are not well
constrained. But, according to Hermann et al. (2001), these dikes could have the same early

Permian crystallization age than that of the surrounding gabbros.
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Chapter 6: Geodynamic reconstructions

6.1. Introduction

The collapse of the mountain belts represents an important feature of post-collisional
orogenic stages. Several models have been proposed to explain the tectonic setting, which led
to the collapse of the Variscan belt (Malavieille, 1993; Schaltegger and Corfu, 1995; Stampfli,
1996; Ziegler et al., 2001). The accretion of the Hun superterrane and thickening of the Variscan
lithosphere occurred mainly during the Devonian and Carboniferous. This episode is rapidly
followed by the subduction of the Palaeo-Tethys mid-oceanic ridge (Stampfli, 1996). Extension
was associated with a fundamental change, in the regional stress field affecting Western and
Central Europe, at the Westphalian-Stephanian boundary. This change was coincident with the
termination of orogenic activity in the Variscan foldbelt, followed by major dextral translation
between North Africa and Europe. Consequently, after the major Carboniferous Variscan
collisional event (Fig. 62), the European Variscan belt underwent repeated intra-continental
post-convergence distensive events during the upper Palaeozoic (Matte, 1986; Burg et al.,
1994). A first extensional event occurred between the late Visean and the late Westphalian, but
extensional processes are not generalized to the whole belt. Inversely, the second distensive
episode affected the entire Variscan belt at the late Carboniferous-Permian boundary and led to
the complete collapse of the chain.

During the late Carboniferous and Permian, northern Europe experienced a widespread
mafic and acid magmatic activity, associated with a major episode of extensional tectonics (Fig.
63). As proposed by Schaltegger (1997) for the central and western Alpine belt (Austroalpine
nappe system, Penninic realm), magmatism could be subdivided into three main events. These
observations could be extended through the whole Variscan chain remnants in the Southern
Alps, Pyrenees, Corsica, Sardinia or Esterel massif (southeast France).

The Carboniferous magmatism displays mainly high K and Mg calc-alkaline affinities
(e.g. Internal Crystalline Massifs, Sesia Lanzo zone) or both calc-alkaline and alkaline
characteristics (e.g. External Crystalline Massifs). These magmatic suites are characterized by
negative eNdi values, showing that melts originating in the lithospheric mantle were affected
by substantial crustal contamination.

At the late Carboniferous-early Permian boundary, magmatic activity was also widespread
in the Alpine, Corsican/Sardinian and Pyrenean Variscan basement and was represented by
numerous granitoids (e.g. Bonin et al., 1993) and scarce mafic complexes (e.g. Hermann et al.,
2001; Tribuzio et al., 1999). The geochemical characteristics of volcanic and plutonic rocks
resemble closely those of (high-K) calc-alkaline subduction-related magmatism, with still more
or less marked Nb-Ta negative anomaly and €Nd, close to the Bulk Silicate Earth values or
weakly negative.

133



Chapter 6

Magmas emplaced during the middle and late Permian (after ~ 270 Ma) display mainly
alkaline affinities as observed in the Pyrénées (e.g. upper Permian Anayet fifth episode and
volcanic suites; Innocent et al., 1994). These volcanic rocks have positive eNdi values,
indicating a reduced involvement of the continental crust and the significant implication of
asthenospheric mantle.

Nevertheless, we have to mention the occurrence of middle Permian transitional magmas
in the Estérel massif (eastern Provence, France; Poitrasson and Pin, 1998), which still exhibit
some calc-alkaline characteristics (Nb-Ta negative anomaly) and eNd. values near 0, like the
Mont Collon cumulates. The youngest transitional tholeiitic melts observed in this area are
represented by the basalts of the bassin d’Agay and the trachytes of the Batteries des Lions (ca.
250 Ma, Lapierre et al., 1999), which also display Nb-Ta negative anomalies and eNd, ratios
close to the Bulk Earth. Thus, between the Carboniferous and the late Permian, the increase
of the eNd. values, the transition from Nb-Ta negative to positive anomaly and the evolution
from calc-alkaline (or subalkaline) to alkaline melt may reflect an increasing contribution of the
asthenosphere and a .decreasing role of the lithospheric mantle and/or crustal contamination.

The goal of this chapter is to integrate available geodynamic concepts with ages, P/T
calculations and geochemical data obtained on the Mont Collon mafic complex in order to
integrate this mafic complex in a regional tectonic context and to constrain the late Variscan
orogenic evolution. When taking into account the ages and the geochemical characteristics of
the Mont Collon cumulates and the Fe-Ti melanocratic dikes, the tectonic settings responsible
for their emplacement have to be clearly different. The crystallization ages obtained on the Mont
Collon cumulates and the Fe-Ti melanocratic dikes relate these magmatic events to distinct
stages of the Variscan orogenic evolution, separated by approximately 25 Ma. Moreover, the
Mont Collon cumulates and Fe-Ti melanocratic dikes have distinct geochemical characteristics
(major- and incompatible trace-element contents and isotopes). The variation in the Nd, Sr
and Pb isotopic signatures among the cumulates and Fe-Ti melanocratic dikes suggests the
participation of at least two distinct components in the mantle source, i.e. the subcontinental
lithospheric mantle with an isotopic signature modified by recycled oceanic sediments, and 25
Ma later, an increasing role of the asthenospheric mantle. Evidently, the tectonic environment
inducing the partial melting of these two mantle types is the extension of the crust and/or
the lithosphere, but the switch between lithospheric to asthenospheric mantles could happen
in various ways. Thus, we propose here several hypotheses to explain the partial melting of
lithospheric and asthenospheric mantles during the late stages of the Variscan orogeny.
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6.2. The collapse stages of the Variscan belt

Various hypotheses have been proposed to explain the collapse of the Variscan belt, by
comparison with other belts, i.e. the North American Pacific Coast and a Basin and Range
model, the Himalaya belt and a Tibetan plateau evolution or the South American Cordillera and
an Andean-type model. Moreover, several extensional periods have been recognized at the late
Visean-Westphalian and the late Carboniferous-early Permian to late Permian.

From late Visean to Westphalian (Fig. 62), a first extensional period took place in
the Variscan belt and is characterized by sub-parallel ductile strike-slip faulting. This first
extensional tectonic episode occurred, while the tectonic convergence prevailed at the scale
of the whole orogen (Matte, 1986 and 2001). For instance, pre-330 Ma volcano-sedimentary
sequences located in the Aar massif (Bifertenfirn formations) are ascribed to this first distensive
episode. They were deposited in relatively small transtensional or extensional basins with some
marine and estuarine influences (Schaltegger and Corfu, 1995). Although the age and the
lifetime of these small basins are unknown, they could be related to similar late Visean (between
345 and 335 Ma) volcanic and sedimentary deposits of the Southern Vosges (Schaltegger et al.,
1996). They probably mark the development of back-arc basins related to the subduction of the
Palaco-Tethys. Between late Visean and Westphalian times, according to Stampfli (1996), the
opening of back-arc basins was followed by the diachronous subduction of the Palaeo-Tethys
mid-oceanic, along the Variscan belt. It is noteworthy that the subduction of the Palaeo-Tethys
mid-oceanic ridge below the Eurasian margin probably protracted up to the Permian (remnants
of Permian MORB accretion in Iran, Ruttner, 1993). Such a tectonic environment suggests
an analogy between the late collisional stages of the Variscan orogen and an Andean-type
orogeny. The Andean-type model would better fit for the Variscan orogen evolution up to the
Westphalian (Stampfli, 1996) than a Tibetan plateau evolution (Ménard and Molnar, 1988) in
term of width of the belt (300-400 km for the Variscan belt compared to the 1000 km of the
Tibetan plateau), amplitude of uplift and timing.

Recent geodynamic reconstructions (Ziegler and Stampfli, 2001; Stampfli and Borel,
2002) suggest that the late Carboniferous-early Permian post-orogenic extension of the
European Variscan orogeny is probably induced by the roll-back effect of the still subducting
Palaeo-Tethys oceanic slab on the eastern side of the Variscan belt (Fig. 3 and 63). Thus, the
Andean-type tectonic, which prevailed during the Visean-Westphalian, was probably followed
by a Basin and Range situation, as proposed by Schaltegger and Corfu (1995) and Stampfli
(1996). Nevertheless, a Basin and Range geodynamic context is connected with the evolution
of an active margin and not with a continent-continent collision as it is the case for the Variscan
belt. Using this active margin analogy, the general extension and magmatism, which affected
the Variscan belt during the late Carboniferous-early Permian, can certainly be compared
to a Basin and Range tectonic context. Schaltegger and Corfu (1995) proposed a Basin and
Range model according to the magmatic activity observed during the late Carboniferous-early
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Permian. Despite Stampfli (1996) agreed, with caution, with the Basin and Range model for the
general collapse of the Variscan belt, tectonic studies (Lorenz and Nicholls, 1984) showed that
the Variscan orogenic collapse was accompanied by dextral shear component and/or dextral
faulting along continental transcurrent discontinuities. Thus, a Basin and Range model could
not be strictly applied to the late Variscan tectonic environment. From late Carboniferous to
Autunian, the distension is essentially transverse compared to the general stretching direction of
the belt and related to the main generalized collapse evolution of the Variscan belt (Malavieille,
1993). This extensional period is mainly responsible of the formation of the Stephanian (like
the Zone Houillere) and early Permian basins (Burg et al., 1990).

Stampfli and Borel (2002) infer that the Permian mafic complexes are related to a
subduction tectonic setting. Conversely, we have shown in the previous chapter that the «calc-
alkaline» subduction-related Nb-Ta negative anomaly resulted rather from source signature
or contamination by a crustal component. Moreover, geochronological investigations indicate
a significant time span between the Variscan subduction event and the intrusion of the mafic
complexes. For instance, the Variscan eclogites from the Austroalpine Otztal (Eastern Alps)
yield Sm-Nd mineral isochrons of about 360-350 Ma for the eclogite-facies metamorphic
overprint (Miller and Thoni 1995).

6.3. Thermal input and melting of various mantle types
6.3.1. The Mont Collon mafic cumulates

We have shown that the 284 Ma-old Mont Collon mafic complex is not unique in
the Austroalpine domain (e.g. Val Malenco, Ivrea-Verbano zone, Sondalo; chapter 4, Fig.
44). Available structural data indicate that the emplacement of these mafic complexes was
associated with an extensional tectonic regime (Quick et al. 1994; Hermann et al. 1997). The
isotopic data (Pb, Nd, and Sr) show that the subcontinental lithospheric mantle (previously
contaminated by recycling of oceanic sediments) could be the most suitable source for the Mont
Collon cumulates magmas. We could propose some hypotheses based on those provided by
available articles. Several tectonic processes could provide enough heat for partial melting of
the lithospheric mantle. Melting might be initiated by various processes such as (1) lithospheric
mantle root detachment, which could induce the asthenosphere upwelling and heat input at
the base of the lithosphere (Fig. 64) and/or (ii) simple adiabatic decompression, delamination
of the subcontinental lithospheric mantle by thermal erosion and heat input by asthenosphere
upwelling (Fig. 65). Recent modeling on delamination and detachment of lithospheric root
have been proposed by Schott and Schmeling (1998) and applied to the Himalayan and
Variscan belts, showing that conditions of delamination and detachment of lithospheric root
is an appropriate hypothesis, during late orogenic phases of the Variscan belt. Detachment
of the Variscan lithospheric root is suggested by Spiess et al. (2001) between 343 + 2 Ma
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(according to the metamorphic decompressionnal growth of garnets in micaschists of Otztal,
Eastern Alps; Schweigl, 1995) and 320 Ma (Rb/Sr white micas age cooling of this previous
micaschists). This hypothesis was also proposed by Schaltegger (1997) to explain de variations
in the magmatic affinities and isotopic signatures of plutons and volcanites and the occurrence
of distinct magmatic pulses, despite he suggested that the lithospheric root detachment occurred
at the Permo-Carboniferous boundary (around 300 Ma). So, lithospheric mantle root probably
occurred during the Carboniferous, but with an upper age limit of 320 Ma. Thus, upwelling of
hot asthenospheric mantle could provide enough heat for lithospheric mantle partial melting.
Consequently, the partial melting processes at the origin of the Mont Collon cumulates parental
melt would not directly be linked to the lithospheric root detachment, but rather to delamination
processes (i.e. thermal erosion) induced by the asthenopshere convection and subsequent
adiabatic decompression in the mantle.

6.3.2. The Fe-Ti melanocratic dikes

Following the palinspastic reconstructions of Stampfli and Borel (2002), the Variscan
belt has completely collapsed at the late Permian (Fig. 66). Mid- to late Permian alkaline dikes
geochemically similar to the Fe-Ti melanocratic dikes exposed in the Mont Collon mafic
complex were also found in Western Alps (e.g. Val Malenco) or in the Pyrenees. Large swarm
of dikes crosscut plutons and pre-Permian Palaeozoic sedimentary sequences in the Pyrenean
Axial Zone (Debon and Zimmermann, 1993 and ref. therein; Innocent et al., 1994). Other
occurrences of late Permian alkaline dikes are reported by Zheng et al. (1991), Poitrasson and
Pin (1998) and Lapierre et al. (1999) in the Mediterranean domain (Esterel massif, eastern
Provence, France), but their argon dating have to be taken cautiously considering the highly
altered character of the dikes, as reported by Zheng et al. (1991). These dikes are thus also
related to the late Variscan distensive stages.

Isotopic and incompatible trace elements characteristics of the alkaline Fe-Ti dikes
suggest that they are the products of the melting of the asthenospheric mantle (Fig. 67). The later
emplacement of alkali magmas (i.e. the Fe-Ti dikes) implies that the underlying asthenospheric
mantle reached the conditions of partial melting. Moreover, the continental crustal contribution
1s indeed absent from the chemical characteristics of the Fe-Ti melanaocratic dikes. Then, the
alkaline melts preserve their geochemical characteristics (Nb-Ta positive anomaly) and isotopic
signatures (positive eNd. and low *’Sr/*Sr, ratios).

Different geodynamic processes were proposed to explain the transition between within-
plate continental transitional (or tholeiitic) melts and alkaline mantle magmas in the Variscan
belt at the middle and late Permian. In the Pyrenees Range, Vissers (1992) and Vissers et
al. (1993) proposed the development of a gravitationally unstable lithospheric root, which
consequently detached and were replaced by the upwelling of the asthenosphere producing
alkaline mantle-derived magmas. If we suppose that lithospheric root detachment occurred,
this process occurred earlier in the Variscan history (see above). Thus, we rather agree with the
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hypothesis of Innocent et al. (1994 and references therein), which suggested the progressive
thinning and finally complete erosion of the lithospheric mantle. The complete disappearance
of the subcontinental lithospheric mantle was probably triggered off by the thermal
erosion induced by convection in the underlying asthenospheric mantle (Fig. 67).Adiabatic
upwelling of the asthenospheric mantle led to its partial melting. These processes lead to the
“asthenospherization” of this part of the Variscan belt.

6.4. General conclusions

In a time span of 25 Ma, the mantle source of the magmatism occurring in the Dent
Blanche nappe evolves, pointing to an increasing thermal gradient and the final implication
of the asthenospheric mantle. Extension is induced by the roll-back effect of the distant
Palaeo-Tethys subduction zone, although gravitational collapse has probably to be taken
into account and associated to subduction pull forces in extensional processes. We exclude a
lithospheric mantle root detachment at 280 Ma and we give preference to the delamination of
the subcontinental lithospheric mantle by thermal erosion and decompressionnal melting (Fig.
67). The thermal erosion of the subcontinental lithospheric mantle, induced by the convection
of the underlying asthenosphere was certainly active during the melting of the subcontinental
lithospheric mantle. This process is consistent with the tectonic environment that led to the
generation of the Fe-Ti melanocratic dikes asthenosphere-derived melts. They are the markers
of the evolution from transitional to alkaline magmatism and their ages constitute possibly an
upper limit age for the collapse of the Variscan belt in the Western Alps. This chronological
switch from transitional melts to asthenospheric alkaline products seems to be common during
the late-Variscan stages, as shown by the widespread similar dikes in all the European Variscan
realms. The complete restructuration of the lithosphere was thought to be completed close to
200 Ma (Innocent et al., 1994), while the final closure of the Palaeo-Tethys in the Tethyan
domain was achieved during the Cimmerian (Triassic to Jurassic) orogenic cycle (Innocent et
al., 1994; Stampfli and Borel, 2002). The overall tectono-magmatic evolution is interpreted in
a scenario of post-collisional thinning and restoration to normal size of a thickened continental
lithosphere. The latter re-equilibrates through root detachment, delamination and thermal
erosion of the lithospheric mantle.

This study of Mont Collon mafic complex provides new insights into the mineralogical
and geochemical characteristics of this well-preserved early Permian layered mafic intrusion
and the geochemistry of magmas related to the Carboniferous - early Permian and late Permian
tectonic episode of the Variscan belt.
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This work has produced important new data on the Mont Collon mafic complex:

1) the field study, which allowed us to discriminate three major rock suites, i.e. the mafic
cumulates, the leucocratic and the Fe-Ti melanocratic dikes.

i1) U/Pb and *°Ar/*’ Ar dating on mafic and acid pegmatitic rocks and the Fe-Ti melanocratic
dikes, respectively,

ii1) major- and trace-element analyses on whole rocks and minerals in order to model the
differentiation process of the cumulates,

1v) isotopic analyses showing that several types of isotopes (Nd, Sr, Pb and Hf) are
necessary to discriminate the source signature, the contamination processes (at the source or
during the ascent of magmas), each isotope providing specific informations.

Compiling all the data enable to propose geodynamic reconstructions at the Carboniferous
- early Permian boundary and at the middle Permian.

The major rock suites recognized during the field work are (i) the mafic rocks i.e. the
cumulates (wehrlites, plg- wehrlites, ol- and cpx-gabbros, troctolite and anorthosite) and
pegmatitic gabbros, (i1) the leucocratic dikes (quartz-rich pegmatites, aplites, granodiorites and
anorthositic dikes) and (iii) the Fe-Ti melanocratic dikes.

The crystallization ages of the Mont Collon cumulates (ca. 284 Ma), the widespread
leucocratic dikes exposed in the complex (ca. 282 Ma) and, the Fe-Ti melanocratic dikes (ca.
260 Ma) allow us to infer that two major magmatic events occurred in this area in 20 Ma. These
data are crucial for the understanding of the magmatic activity because they show that the
collapse episode of the Variscan belt is a long-lasting tectonic event.

The fact that the majority of the rocks present in the Mont Collon mafic complex are
cumulates (~95 vol-%) and that, therefore, we could not use methods on major and incompatible
trace elements classically applied to the magmatic representative liquids, show well that it is
necessary to take care of erroneous interpretations based on binary covariation diagrams (e.g.
correlations between incompatible trace-element ratios) or partial melting equations, which can
only apply to volcanic rocks. Nevertheless, coupling an in-situ crystallization model with Nd, Sr
and Pb isotopic geochemistries permit us to understand the differentiation processes at the origin
of the cumulates, i.e. (i) the involvement of an LREE-rich interstitial melt during crystallization
of cumulates influences in an considerably way the trace-element contents and behaviors in
whole rocks and minerals, (ii) the trace-element characteristics of the parental liquid show that
transitional melts are not restricted to oceanic environments but also to continental settings,
(iii) the subcontinental lithospheric mantle previously contaminated by oceanic sediments is
a suitable source for mafic magmas and, (iv) the widespread Nb-Ta negative anomaly results
from subcontinental lithosphere or the crustal contamination by crustal component rather than
be related to melting in subduction-type tectonic environment.
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Chapter 6

The second magmatic mafic event occurring in the Mont Collon mafic complex is
represented by the emplacement of alkaline melts (i.e. the Fe-Ti melanocratic dikes). These
geochemically contrasted dikes indicate the melting of asthenospheric mantle.

Thus, each magmatic episode (early Permian and late Permian) is characterized by distinct
geochemical signature related to distinct geodynamic environment.
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Appendices

Appendix 1: Figure captions

Fig. 1: Simplified geological map of Variscan basement areas in Central Europe after von
Raumer et al. (2003) and based on Franke (1989), Martinez-Catalan (1990), and Ribeiro
and Sanderson (1996). AA: AustroAlpine; Am: Armorican Massif; Aq: Aquitaine-
Pyrenees; BM: Bohemian Massif; Co: Corsica; HE: Helvetic Zone; iA: Intra-Alpine ;
Ib: Iberia; MC: French Central Massif; PE/BR: Penninic/Briangonnais (dark grey); sA:
Southalpine; Sd: Sardinia; sP: South Portuguese Zone; WALZ: West Asturias Leon
Zone. p2.

Fig. 2: Main tectonic units and Variscan crystalline massifs in the Alps. DB: Dent Blanche
nappe, MR: Monte Rosa, MB-AR: Mont Blanc and Aiguilles Rouges massifs, Bld:
Belledonne. p3.

Fig. 3: Geodynamic reconstruction at the Late Permian (~280 Ma, Sakmarian). After Stampfli
and Borel (2002). p5.

Fig. 4: Location of the Mont Collon mafic complex (dotted line) on a topographic elevation
model (3D Atlas of Switzerland). p10.

Fig. 5: Evolution of the Western Alps (after Dal Piaz, 1999). Stage 1 assumes asymmetric rifting,
mantle denudation and one (A) or two (B) extensional allochthons within Piedmont-
Ligurian ocean. Stages 2 to 5 show pre-collisional (2-3) to collisional contraction (4-5)
from mid- Cretaceous onwards. Vertical rules: lithospheric mantle. Spreading ridges are
omitted. The Dent Blanche nappe is underlined in black. p13.

Fig. 6: Tectonic map of the northwestern Alps (after Bigi et al., 1990 and Dial Piaz et al.,
1993 and 1999) showing the main tectonic units, i.e.: the Helvetic nappes, the External
Crystalline Massifs (Mont Blanc, Aiguilles Rouges and Aar-Gotthard massifs), the klippe
of the Dent Blanche nappe, the Piedmont units, the Internal Crystalline massifs of the
Gran Paradiso and the Monte Rosa, the Sesia-Lanzo zone and the southern Alpine unit
of Ivrea. p15.

Fig. 7: a) Geological map of the Mont Collon area (scale: 1:25 000). Modified after Gouffon et
al., 2003, map n°1317 Geological Atlas of Switzerland). b) Inset: main tectonic units of
the Western European Alpine Belt (see also figure 2). p17.

Fig. 8: Photograph of the well-preserved magmatic layering in the Dents de Bertol area. Scale:
total length of the cliff is approximately 500 meters.p18

Fig. 9: Mylonitic contact between the Mont Collon complex and the Arolla orthogneisses ex-
posed in the Crétes des Plans area. p19

Fig. 10: Geological profiles through the Mont Collon and the Dents de Bertol (after Bucher et
al., 2003 and 2004). p23
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11: Ternary diagrams for clinopyroxene from plagioclase-wehrlite, olivine- and
clinopyroxene gabbros in the Ca,Si,0, (Wo) - Mg,Si,0, (En) - Fe,Si,0, (Fs) system
(compositional fields after Morimoto et al., 1988). p25
12: Compositions of plagioclase from plagioclase-wehrlite, troctolite, olivine- and
clinopyroxene gabbros, anorthosite. Compositional fields after Smith and Brown (1988).
1: albite, 2: oligoclase, 3: andesite, 4: labradorite, 5: bytownite, , 6: anorthite. p30

13: Compositions of amphibole of cumulative rocks. Nomenclature of calcic amphiboles
(CatNa), > 1.34; Na, < 0.67) according to Leake et al. (1997). p32

14: Compositions of plagioclase from leucocratic and Fe-Ti melanocratic dikes. Composi-
tional fields after Smith and Brown (1988). p35

15: Compositions of amphiboles of the Fe-Ti melanocratic dikes. Nomenclature according
to Leake et al. (1997). MP177, MP249a and b refer to sample numbers. p40

16: Ternary diagrams for clinopyroxene from Fe-Ti melanocratic dikes in the Ca,Si O,
(Wo) - Mg,Si,0, (En) - Fe,Si,0, (Fs) system (compositional fields after Morimoto et al.,
1988). p40

17: Variation diagrams using Mg# ., Mg# | and anorthite content of plagioclase (Anplg) of
the Mont Collon cumulates. p42

18: Variation diagrams for amphibole of selected elements (Al, Ti Cr and Fe*" in atom per
formulae). Mg# = molar (Mg / (Fe, + Mg) x100 ratio. p45

19: Backscattered electron image (BSE) of olivine-gabbro coronitic texture (magnification
x150). Primary assemblage of olivine-gabbro : olivine + clinopyroxene + plagioclase +
spinelle. Corona assemblage: orthopyroxene + amphibole + Cr-spinelle. p45

20: Comparison of the calculated P/T conditions of emplacement of the Mont Collon mafic
complex (this study), the Braccia gabbro (Val Malenco, Hermann et al., 1997) and the
Ivrea-Verbano zone (Marroni et al., 1998). p48

21: Classification of the Mont Collon mafic cumulates and Fe-Ti melanocratic dikes based
on their CIPW normative compositions expressed as Ne-Ol-Di, Ol-Di-Hy and Di-Hy-Q
(after Thompson, 1984). pS0

22a: Variation diagrams for major-elements versus MgO (in wt%) for cumulative rocks of
the Mont Collon. p52

22b: Variation diagrams for major-elements versus MgO (in wt%) for cumulative rocks of
the Mont Collon. Same legend as figure 22a. p53

22c¢: Variation diagrams for major-elements versus MgO (in wt%) for cumulative rocks of
the Mont Collon. Same legend as figure 22a. p54

23: Variations of selected elements along the cumulate pile of the Dents de Bertol area (cf.
Fig. 8; group 2 cumulates). Mg# = molar (Mg / (Fe + Mg) x100 ratio, elements are given
in ppm. p54
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Fig. 24: Variation diagrams for compatible trace-elements versus MgO (in wt%) for cumulative

Fig

Fig
Fig

Fig.

Fig

Fig

Fig.

Fig

Fig

Fig

. 33 (previous page): a) partition coefficient values (D

rocks of the Mont Collon area. Symbols: * troctolite, wehrlites, [1: plg-wehrlites, <:
ol-gabbros, B: cpx-gabbros, +: pegmatitic gabbros, @: anorthosite. p59

. 25: Variation diagrams using Zr (ppm) as differentiation index versus a) MgO and b) TiO,

(in wt%). p60

. 26: Variation diagram using Zr (in ppm) as differentiation index versus Nb (in ppm). p59

. 27: Logarithmic binary diagrams using La (ppm) as differentiation index versus Ba and Sr

(in ppm). Same legend as figure 25. p60

28: Chondrite-normalized REE content of whole-rocks of the Mont-Collon mafic
cumulates, pegmatitic gabbros and anorthosite. Normalization to the C1 chondrite (Sun
and McDonough, 1989). p66

. 29: Primitive Mantle (PM) normalized trace-elements patterns of whole rocks of the Mont

Collon mafic cumulates, pegmatitic gabbros and anorthosite. Normalization values are
taken from Sun and McDonough (1989). p66

. 30a: Selected REE patterns of clinopyroxenes of cumulate rocks (a-d) and example of

REE variations within a single clinopyroxene of the ol-gabbro MP150 (e). Normalization
values after Sun and McDonough (1989). p69

30b: Primitive Mantle (PM) normalized trace-elements patterns of representative
clinopyroxenes. Normalization values after Sun and McDonough (1989). p69

. 31: (a-e) Chondrite-normalized REE patterns of representative plagioclase (C1 chondrite

values after Sun and McDonough, 1989) and (f-j) Primitive Mantle (PM) normalized
trace-elements patterns of magmatic amphibole (normalization values are taken from Sun
and McDonough, 1989). p70

. 32: Chondrite-normalized REE patterns of magmatic amphibole (C1 chondrite values after

Sun and McDonough, 1989) and Primitive Mantle normalized trace-elements patterns of
plagioclase (normalization values are taken from Sun and McDonough, 1989). p71

) for clinopyroxene based on the

cpx/melt

predictive model of Wood and Blundy (1997). Partition coefficients for plagioclase and

/M rock/M
= bulk partition coefficient with 10% of liquid remaining in

amphibole are calculated from D o D = bulk partition coefficient considering any
trapped liquid and D’ .
the cumulate pile, b) Chondrite-normalized REE pattern of the reference clinopyroxene
used for in-situ crystallization modeling. c-j) Comparison of measured (filled symbol)
and calculated (open symbol) chondrite-normalized REE patterns of clinopyroxene
(), plagioclase (@) and amphibole (). F = degree of differentiation with respect to the

reference clinopyroxene and L = the amount of trapped liquid. p76

Fig. 34: Compilation of different clinopyroxene / melt partition coefficients from the literature.

[1: calculated D_ o from the reference clinopyroxene based on the predictive model of
Wood and Blundy (1997). p79
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Fig. 35: Variation diagrams between the percentage of interstitial liquid (L) and the modal
amount of interstitial magmatic amphibole and the Zr (ppm) content (a-b), and the degree
of differentiation F (%) and the Zr (ppm) content (c¢) in the modeled rocks. p80

Fig. 36: Variation binary diagrams using Zr as differentiation index versus Nb (in ppm). Sample
numbers are indicated with the modeled F and L parameters. p81

Fig. 37: Variation diagrams between the percentage of interstitial liquid (L) and the total REE
content (ppm) in the modeled rocks. p81

Fig. 38: a) Chondrite-normalized comparison of the calculated parental melt of the Mont-Collon
intrusion with T-MORB (grey field, after Sun et al., 1979), the Braccia gabbro (Hermann
et al., 2001). L_ is the calculated melt in equilibrium with the reference clinopyroxene.
Normalizing values after Sun and McDonough (1989). b) Primitive normalized trace-
elements pattern of the calculated parental melt of the Mont Collon mafic complex
(normalization values are taken from Sun and McDonough, 1989). p83

Fig. 39: U/Pb Concordia diagram for the Arolla Series orthogneisses and the Sermenza gabbro.
Error ellipses are given at the 95% confidence level). Numbers in [ ] refer to the mineral
fraction listed in table 14. p87

Fig. 40: Localization of the dated samples MP2 (quartz-rich pegmatite), MP4 (pegmatitic
gabbro) for the U/Pb zircons dating, and MP177 (Fe-Ti melanocratic dike) for the “Ar/
3 Ar amphibole dating). p89

Fig. 41: a) field relationship between MP4 (pegmatitic gabbro) and MP2 (quartz pegmatite) on
the northern wall of the Mont Collon, b) example of Fe-Ti melanocratic dike (located on
the Dents de Bertol), c¢) thin section detail of the Fe-Ti melanocratic dike MP177 (kaer
= kaersutite, cpx = clinopyroxene, plg = plagioclase (An3-15), ox = Fe-Ti oxides, ap =
apatite). p90

Fig. 42: a) U/Pb Concordia diagram for 1 to 3-grain zircon fractions of a pegmatitic gabbro
and for b) 2 to 3-grain zircon fractions of a quartzitic pegmatite from the Mont Collon
northern face (error ellipses are given at the 2o confidence level). Black ellipse represents
the mean Concordia age. Number in [ | refers to the mineral fraction listed in table 14.
p9%4

Fig. 43: Ca/K and “Ar/*Ar step-heating spectrum vs. cumulative %39Ar released diagram for
the sample MP177 (Fe-Ti melanocratic dike). p95

Fig. 44: Distribution map of some Permian Mafic Complexes with comparable ages in the Alps.
All ages were determinate using a zircons U/Pb method except for Tribuzio et al., 1999
which obtain Sm/Nd ages on separate minerals. p97

Fig. 45: eNd, ""Nd/"*Nd. and *’Sr/**Sr_ diagram for the Mont Collon cumulates showing the
differences between the groups I and II. p103

Fig. 46: *Pb/**Pb. - **Pb/**Pb. co-variation diagram for the Mont Collon cumulates showing

the differences between the groups I and II. The pegmatitic gabbro MP4 is not shown.
pl03
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47: a) **Pb/***Pb. - *’Pb/***Pb. and b) ***Pb/***Pb. - ***Pb/***Pb, diagram for the Mont Collon
cumulates. Lower crust of Arabian - Nubian shield (Bosch and Lancelot, 1990), MORB
(White et al. 1987), Lesser Antilles island arc (White and Dupré, 1986; Davidson, 1987)
and Atlantic sediments (Ben Othman et al., 1989). EM I and EM II fields after Zindler
and Hart (1986). p104

48: 2%Pb/***Pb. - ¥'Sr/*Sr, diagram for the Mont Collon cumulates. MORB, Depleted Man-
tle (DM), HIMU, PREMA and Bulk Silicate Earth (BSE) fields after Zindler and Hart
(1986). p105

49: 2Pb/**Pb, - "“Nd/'**Nd, diagram for the Mont Collon cumulates. MORB, DM, HIMU,
PREMA and BSE fields after Zindler and Hart (1986). p105

50: Harker-type diagrams for major-elements versus SiO, (in wt%) for the Arolla orthog-
neisses, the leucocratic and Fe-Ti melanocratic dikes. p105
51: Chondrite normalized REE content of whole-rocks of the Mont-Collon leucocratic and

Fe-Ti melanocratic dikes and the Arolla orthogneisses. Normalization to the C1 chondrite
(Sun and McDonough, 1989). p111

52: Extended normalized trace-elements plots of the Mont Collon leucocratic, Fe-Ti mela-
nocratic dikes and the Arolla orthogneisses. Normalization after Sun and McDonough
(1989). p111

53: eNd,, '""Nd/"*Nd. and *'Sr/*Sr, diagram for the Arolla orthogneisses, the leucocratic
and Fe-Ti melanocratic dikes. Also shown the compositional field of the Mont Collon
cumulates. p114

54:2Pb/**Pb. - ”Pb/***Pb, diagram for the leucocratic and Fe-Ti melanocratic dikes. Lower
crust of Arabian - Nubian shield (Bosch and Lancelot, 1990), MORB (White et al., 1987),
Lesser Antilles (White and Dupré, 1986 and Davidson, 1987), Atlantic sediments (Ben
Othman et al., 1989). EM I and EM Il fields after Zindler and Hart (1986). Also shown the
compositional field of the Mont Collon cumulates. Same legend as figure 53. p114

55: 2%Pb/**Pb, - "“Nd/'**Nd. diagram the leucocratic and Fe-Ti melanocratic dikes. MORB,
DM, HIMU, PREMA and BSE fields after Zindler and Hart (1986). p115

56: *Pb/**Pb. - ¥Sr/*Sr.diagram the leucocratic and Fe-Ti melanocratic dikes. MORB,
DM, HIMU, PREMA and BSE fields after Zindler and Hart (1986). p115

57: ¢Hf vs. Time (Ma) co-variation diagram for zircon fractions extracted from the dated
pegmatitic gabbro (MP4) and the quartz-rich pegmatite (MP2). Arrows refer to general
tendencies toward mantellic or crustal reservoirs (after Stille and Schaltegger, 1996).
pl21

58a: Variations diagrams between MgO and *’St/*Sr. (A), eNd. (B) and **Pb/***Pb, (C) for
the