Structure des disques d'accrétion autour des étoiles jeunes séminaire à l'OCA le 23 juin 2003 Régis Lachaume Laboratoire d'Astrophysique de Grenoble Structure des disques d'accrétion autour des étoiles jeunes séminaire à l'OCA le 23 juin 2003 Régis Lachaume Laboratoire d'Astrophysique de Grenoble

Introduction

Un modèle de disque à deux couches Transfert radiatif et structure verticale Observables Conclusion & Perspectives

3/45

***** origine du système solaire et de la terre

 \implies Étudier l'environnement des étoiles jeunes

Disques dans la formation stellaire

Disques dans la formation stellaire

	—>	Étoile jeu	ine	
		masse	0.5–2 <i>M</i> _O	
		rayon	1–2 <i>R</i> ₀	
		âge	10 ⁶ ans	
		=> Disque	e de type T Tauri (TTS)	
		masse	0.001–0.1 <i>M</i> _O	
		taille	100–1000 AU	
1500 AU		émissio	on en K 2–20 <i>R</i> _o	
	X	accrétio	on $10^{-7} - 10^{-8} M_{\odot}/an$	
		=> Disque	e de type FU Orionis (FU	OR
		masse	0.01−? <i>M</i> ⊙	
		taille	100–1000 AU	
	A State	émissio	on en K 0.5–2 AU	
10" @150pc	10 ⁶ yr	accrétio	on $10^{-5} - 10^{-4} M_{\odot}$ /an	

Mise en évidence de disques

Photométrie

Mise en évidence de disques

Mais aussi : polarimétrie, interférométrie radio, etc.

Les premiers modèles

Disque actif plat

Viscosité : $T_{\rm eff} \propto r^{-3/4}$ (Shakura & Sunyaev 1973)

Disque passif évasé

 ${
m \acute{E}clairement}: T_{
m eff} \propto r^{-1/2}$ (Adams, Lada, Shu 1987)

Kenyon & Hartmann (1987)

Les premiers modèles

Viscosité : $T_{\rm eff} \propto r^{-3/4}$ (Shakura & Sunyaev 1973)

 $\begin{array}{l} \underline{\text{Disque passif évasé}}\\ \mathbf{\acute{E}clairement}: T_{\mathrm{eff}} \propto r^{-1/2}\\ \mathbf{(Adams, Lada, Shu 1987)}\end{array}$

Bertout, Basri, Bouvier (1988) Kenyon & Hartmann (1987)

 \Rightarrow Plus complexe : transfert, hydrostatique, ...

Ingrédients physiques à disposition

/45

Quelque modèles de disque stationnaires

Couplage hydrostatique-rayonnement, sans \vec{B} .

	Ingrédients	Éclairement (étoile)	Chauffage visqueux	Gravité du disque
Transfert		(disque passif)	(disque actif)	
Conditions noyennées	1 couche		Shakura, Sunyaev 73	
			LyndenBell, Pringle 74	
		Adams, Lada, Shu 87		
	2 couches		Chiang, Goldreich 97	
Transfert 1D	gris		Bell et coll. 97	
		D'Alessio et coll. 97		
			Huré 00	
	multi–λ	Dullemond et coll. 02		
3D		Wolf et coll. 99	(à structure fixée)	

Progrès de l'interférométrie optique

Sensibilité

Centaines d'étoiles jeunes.

Comprendre les conditions physiques

- * Processus de chauffage dominants? viscosité, chauffage stellaire, rétro-chauffage...
- * Structure verticale? transfert radiatif, gravité du disque...

Contraindre ces conditions

- ***** Distribution spectrale d'énergie
- ***** Visibilités optiques

De nouveaux instruments, bientôt

- * Interféromètres optiques (VLTI, KI)
- ***** Satellite IR SIRTF
- ***** Interféromètre radio ALMA

Prendre en compte l'accrétion

13/45

Rotation différentielle: Friction entre les anneaux

- chauffage (IR)
- ---> accrétion (UV)
- -- >> évacuation du moment cinétique
- Accrétion stationnaire: M

Viscosité ν mal connue \implies paramétrée Flux émis $F \propto rac{M}{m^3}$ \implies indépendant de ν Densité de surface $\Sigma \propto \frac{M}{M}$ dépend de ν

d'après Chiang & Goldreich (1997)

Ajouter l'éclairement par l'étoile

14/45

Une formulation analytique

15/45

- Viscosité paramétrée $\nu = \alpha c h_P$.
- $T_{\rm i}^4 = t_1^4 + t_2^4 + t_3^4 + t_4^4$
 - 1 : éclairement, disque plat

Une formulation analytique

- Viscosité paramétrée $\nu = \alpha c h_P$.
- $T_{i}^{4} = t_{1}^{4} + t_{2}^{4} + t_{3}^{4} + t_{4}^{4}$ $t_{1}^{4} \sim r^{-3}$

 $\gamma_1 = 1/8$

15/45

2 : éclairement, disque évasé

Évasement $H/r \propto r^{\gamma}$

Une formulation analytique

- Viscosité paramétrée $\nu = \alpha c h_P$.
- $T_{i}^{4} = t_{1}^{4} + t_{2}^{4} + t_{3}^{4} + t_{4}^{4}$ $t_{1}^{4} \sim r^{-3}$ $t_{2}^{4} \sim \gamma r^{-3/2} T_{i}^{1/2}$
 - **3** : dissipation visqueuse

15/45

Évasement $H/r \propto r^{\gamma}$

(localement)

Une formulation analytique

Viscosité paramétrée $\nu = \alpha c h_P$.

 $T_{i}^{4} = t_{1}^{4} + t_{2}^{4} + t_{3}^{4} + t_{4}^{4}$ $t_{1}^{4} \sim r^{-3}$ $t_{2}^{4} \sim \gamma r^{-3/2} T_{i}^{1/2}$ $t_{3}^{4} \sim r^{-3l-9/2} T_{i}^{-3/2l+m-1}$

 $\boldsymbol{\gamma}_1 = 1/8$ $\boldsymbol{\gamma}_2 = 2/7$ $\boldsymbol{\gamma}_3 = f(l,m)$

15/45

4 : thermalisation avec le milieu

Évasement $H/r \propto r^{\gamma}$ Opacité $\kappa(\rho, T) \propto \rho^{l} T^{m}$

(localement) (localement)

Une formulation analytique

Viscosité paramétrée $\nu = \alpha c h_P$.

$$\begin{split} T_{\rm i}^4 &= t_1^4 + t_2^4 + t_3^4 + t_4^4 \\ t_1^4 &\sim r^{-3} \\ t_2^4 &\sim \gamma r^{-3/2} T_{\rm i}^{1/2} \\ t_3^4 &\sim r^{-3l-9/2} T_{\rm i}^{-3/2l+m-1} \\ t_4^4 &\sim 1 \end{split}$$

 $oldsymbol{\gamma}_1 = 1/8$ $oldsymbol{\gamma}_2 = 2/7$ $oldsymbol{\gamma}_3 = f(l,m)$ $oldsymbol{\gamma}_4 = 1/2$

15/45

Évasement $H/r \propto r^{\gamma}$ Opacité $\kappa(\rho, T) \propto \rho^{l} T^{m}$

(localement) (localement)

Structure verticale?

16/45

surface éclairée Η h_P échelle de hauteur

Disque plutôt passif

 $H \propto h_P$

 $H \propto r^{9/8-9/7}$

Disque plutôt actif

H = ???

Structure verticale : essais

/45

ce travail avec $H \propto r^{9/8-9/7}$

Structure verticale : essais

/45

ce travail avec $H \propto r^{9/8-9/7}$ ce travail avec $H \propto h$

Structure verticale : essais

/45

ce travail avec $H \propto r^{9/8-9/7}$ D'Alessio et coll. : H calculé ce travail avec $H \propto h$

Banc d'essai (1) : température

18/45

Lachaume et coll. (2003)

Banc d'essai (1) : température

18/45

Lachaume et coll. (2003) D'Alessio et coll. (1997)

Banc d'essai (1) : température

18/45

Lachaume et coll. (2003) D'Alessio et coll. (1997) Bell et coll. (1997)

Banc d'essai (1) : température

18/45

Lachaume et coll. (2003) Bell et coll. (1997)

D'Alessio et coll. (1997) Chiang & Goldreich (1997)

Lachaume et coll. (2003) Bell et coll. (1997)

B) D'Alessio et coll. (1997) Chiang & Goldreich (1997)

Température médianeactif pour r < 2AUTempérature effectivepassif pour tout r

Ce modèle à deux couches

- $\star\,$ est simple à mettre en place
- ***** combine les sources de chauffage principales
- ***** reproduit les prédictions des modèles numériques

/45

P'tit bilan

***** permet de pointer la physique sous-jacente

Mieux modéliser la structure verticale

- ***** transfert plutôt que couches isothermes
- ***** hydrostatique

Principe de la solution

23/45

 $dF \propto -\boldsymbol{u}dm$ $dP_{rad} \propto \kappa F dm$ $T^4 \leftarrow P_{rad} \& \boldsymbol{u}$

F flux vertical
u chauffage massique
P_{rad} pression de radiation

Principe de la solution

23/45

 $dF \propto -\boldsymbol{u}dm$ $dP_{rad} \propto \kappa F dm$ $T^4 \leftarrow P_{rad} \& \boldsymbol{u}$

F flux vertical
u chauffage massique
P_{rad} pression de radiation

Hubeny (1990)viscositéMalbet & Bertout (1991)éclairement en opacité grise

Formalisation de la solution

Intensité spécifique de rayonnement $I_{\nu}(\mu, m)$:

$$\mu \frac{\mathrm{d}I_{\nu}}{\mathrm{d}m} = \chi_{\nu}I_{\nu} - \kappa_{\nu}S_{\nu}$$

Moments de l'intensité :

$$J = \iint I_{\nu} \mu^{0} d\mu d\nu$$
$$H = \iint I_{\nu} \mu^{1} d\mu d\nu$$
$$K = \iint I_{\nu} \mu^{2} d\mu d\nu$$

(intensité)

24/45

(pression)

Formalisation de la solution

24/45

Intensité spécifique de rayonnement $I_{\nu}(\mu, m)$:

$$\mu \frac{\mathrm{d}I_{\nu}}{\mathrm{d}m} = \chi_{\nu}I_{\nu} - \kappa_{\nu}S_{\nu}$$

Moments de l'intensité :

$$J = \iint I_{\nu} \mu^{0} d\mu d\nu \qquad \text{(intensité)}$$
$$H = \iint I_{\nu} \mu^{1} d\mu d\nu \qquad \frac{dH}{dm} = \mathbf{u}/(4\pi) \qquad \text{(flux)}$$
$$K = \iint I_{\nu} \mu^{2} d\mu d\nu \qquad \frac{dK}{dm} = \chi_{H} H \qquad \text{(pression)}$$

25/45

Solution générale

- ***** Atmosphère stellaire + termes de chauffage.
- ***** Superposition du flux.
- * $\Delta \tau_H$: profondeur optique pondérée par u.
 - * chauffage en surface

 $\Delta \tau_H = \tau_H \implies T \text{ constant}$

* chauffage dans le plan médian $\Delta \tau_H = 0 \implies T$ d'atmosphère stellaire

L'éclairement : formalisme

26/45

trois rayonnements	thermalisé	isotrope
stellaire incident I^0	non	non
stellaire diffusé I ^d	non	\approx
émis par le disque I	\approx	\approx

Rayonnement stellaire à part, source de chauffage

$$u = 4\pi (\kappa_J^0 J^0 + \kappa_J^d J^d)$$

$$\tau - \Delta \tau = \frac{\omega^0 (K^0 - K^0(0)) + \omega^d (K^d - K^d(0))}{H^0(0) - H^d(0)}$$

 $\omega = \frac{\text{opacité pour le rayonnement stellaire}}{\text{opacité pour le rayonnement thermique}}$

45

Approche numérique : viscosité

28/45

Résultats pour le disque actif

 $\dot{M} = 10^{-7} M_{\odot} / \mathrm{yr}$

Malbet, Lachaume & Monin 2001

Difficultés numériques avec l'éclairement

30/45

Solution numérique pour l'éclairement

- * Sauts d'opacités? \implies Non.
- ★ Solution initiale trop éloignée? \implies modèle à deux couches
- * Instabilité vis-à-vis de l'éclairement? \implies Oui en 1D (Dullemond 2000) Mais en 3D? Problème dynamique...

Solution numérique : stabilisation par lissage du profil de H.

Un formalisme général

Mise en œuvre numérique

- ***** Viscosité seule : *grille* (r, z, ρ, T)
- ***** Viscosité + éclairement : en cours de résolution

32/45

P'tit bilan

34/45

Principe de l'interférométrie optique

35/45Observables Influence du taux d'accrétion Visibilités SED **1.0** 10-12 λF_{λ} (W.m⁻²) **10-14** 0.5 $dM/dt = 10^{-6} M_{sun}/yr$ $dM/dt = 10^{-7} M_{sun}/yr$. $dM/dt = 10^{-8} M_{sun}/yr$. $dM/dt = 10^{-9} M_{sun}/yr$

 $\begin{cases} \Sigma & \Longrightarrow \text{flux radio} \\ T_{\text{v}} & \Longrightarrow \text{flux IR proche} \end{cases}$ $\dot{M} \Longrightarrow$

10-3

10-5

λ (m)

10-6

10-4

 $\lambda = 2.19 \ \mu m$

200

B (m)

400

60

0.0

10-16

Influence de la viscosité

36/45

 $\nu \Longrightarrow \Sigma \Longrightarrow \mathbf{flux} \ \mathbf{radio}$

Ajustement du modèle à SU Aurigae

37/45

 $\dot{M} = 2.0 \times 10^{-7} M_{\odot} / \text{yr}$ $\alpha = 2 \times 10^{-4} r_{\min} = 8.2 R_{\odot}$ $r_{\star} = 3.1 R_{\odot}$ $M_{\star} = 2.2 M_{\odot}$ $T_{\star} = 5600 \text{ K}$

Ajustement du modèle à FU Orionis

 $\dot{M} = 3.5 \times 10^{-5} M_{\odot} / \text{yr} \qquad \alpha = 1 \times 10^{-1} \qquad r_{\min} = 4.4 R_{\odot}$ $r_{\star} = 4.0 R_{\odot} \qquad \qquad M_{\star} = 1.0 M_{\odot} \qquad \qquad T_{\star} = 5000 \text{ K}$

Ajustement du modèle à T Tauri

39/45

 $\dot{M} = 1.4 \times 10^{-7} M_{\odot} / \text{yr} \qquad \alpha = 1 \times 10^{-3} \qquad r_{\min} = 3.6 R_{\odot}$ $r_{\star} = 3.5 R_{\odot} \qquad \qquad M_{\star} = 2.0 M_{\odot} \qquad \qquad T_{\star} = 4600 \text{ K}$

Ajustement du modèle à T Tauri

39/45

 $\dot{M} = 8.0 \times 10^{-7} M_{\odot} / \text{yr} \qquad \alpha = 1 \times 10^{-2} \qquad r_{\min} = 18.0 R_{\odot}$ $r_{\star} = 3.8 R_{\odot} \qquad \qquad M_{\star} = 2.0 M_{\odot} \qquad \qquad T_{\star} = 4700 \text{ K}$

Modèle à deux couches

- * Simple à mettre en place et à analyser
- ***** Prédictions proches des modèles numériques

41/45

Bilan

* Explique à la fois SED et visibilités

Modèle de structure verticale

- **\star** Obtention de cartes (r, z) pour le disque actif
- * Difficultés avec l'éclairement par l'étoile \implies en cours de résolution

Utilisation des données interférométriques

- \star SED + visibilités = meilleures contraintes
- * Géométrie de la source et visibilités (Lachaume 2003)

Rétro-chauffage ?

42/45

Rétro-chauffage ?

42/45

Autogravité marginale?

43/45

 $\dot{M} = 10^{-7} M_{\odot} / \mathrm{yr}$

Autogravité marginale?

43/45

Échelle de hauteur

Meilleure compréhension de la physique

- ***** Dynamique : *autogravité, éjection de matière*
- * Chauffage : rétro-chauffage, advection d'énergie
- Amélioration du code
- * Éclairement
- ***** Observables synthétiques
 - * disques vus par la tranche (transfert 2-3D)
 - * lumière diffusée & polarimétrie (interface avec MC)
- ***** Naines brunes
- * Traitement multi- λ ?
- **Contraintes observationnelles**
- * Observations VLTI (FU Ori en détail + survey Tau)

