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Introduction

According to Einstein’s General Theory of Relativity, the acceleration of bodies creates a pertur-
bation of the space-time metric that propagates through the universe at the speed of light. This
perturbation is referred to as Gravitational Wave.

To date, this phenomenon lacks direct experimental evidence. However, Russel Hulse and
Joseph Taylor were awarded the Nobel Prize in 1993 for having indirectly proven their existence[1].
Their work was based on the discovery of the binary system PSR 1913416 and on the measure-
ments performed by Taylor and his colleagues on the system’s inward spiraling. By observing the
orbital period of the system, the authors were able to estimate the energy emitted as gravita-
tional radiation and to calculate the velocity of the inward spiral. This result was found to be in
agreement with measurements within 1%.

The detection of gravitational waves is one of the most interesting problems the scientific
community faces today. The possibility of such detection will open the way to a completely new
astronomy that would give us a key to a better understanding of the universe. Many countries
are collaborating in this challenge: Italy and France with the VIRGO project, the United States
with LIGO, Japan with TAMA, and Great Britain and Germany with the GEO project.

The goal of this thesis is to make a small contribution to this search in the context of the
VIRGO project, a gravitational wave antenna in the process of being built in Cascina, Italy.
Before launching the final configuration of a recycled Michelson interferometer with Fabry-Perot
arms, VIRGO will first operate in a test configuration, known as the Central Area Interferom-
eter (CITF). The subject of this thesis consists of a numerical study for the global control of
this interferometer. In particular, the problems of autoalignment and acquisition of lock will be
addressed.

The manuscript is divided in two parts. The first is an introduction to the theory of gravita-
tional waves and to interferometer-based detectors. The second describes the CITF, focusing on
its optical response to angular and longitudinal mirror motions, thus allowing the study of signals
useful for the longitudinal and angular mirror control. Based on this study, the CITF autoalign-
ment is investigated. The problem of lock acquisition is then addressed by first examining the
mode-cleaner prototype (MC30), which allowed the comparison of simulation with experiment.
Finally, an algorithm for guiding the CITF into linear regime is given.

Ch.(1) introduces the reader to Einstein’s field equations and their linearized form in the weak
field approximation. It will be shown how gravitational waves are generated, what their properties
are and what effects are induced by their passage. An order of magnitude of these effects is then
given for different types of sources.

The following three chapters address the problem of detection by interferometry. In Ch.(2),
the principle of the simple suspended Michelson interferometer is introduced. Its coupling to
gravitational wave radiation, as well as its frequency and angular response are first discussed.
Then, as the weak signals expected will be bathed by many Gaussian and non-Gaussian noises,
the different noise contributions will be outlined and the concept of signal-to-noise ratio (SNR) is
introduced. Finally, it will be shown how the detector design can be modified so as to improve
the SNR due to shot-noise, thermal noise and seismic noise.

Ch.(3) illustrates the Fabry-Perot resonator, a common optical configuration which will be often
referred to in this thesis. The fundamental concepts of resonator stability, resonance condition,
laser beam propagation modes, and cavity modes are here presented. Its optical response to

x1
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longitudinal and angular mirror displacements serves as ground work for the response of more
complicated optical systems. The chapter closes by presenting three well-known methods for
cavity control: the Pound-Drever[44] technique for the longitudinal control and the Anderson[45]
and Ward[46] techniques for angular control.

The VIRGO project is presented in Ch.(4). The optical configuration, as well as the laser
system, the detection bench, the suspension system, and the vacuum system are here described.
The foreseen sensitivity curve is shown as well. Finally, the chapter focuses on the Global Control
system, in charge of supervising the phases of lock acquisition, linear locking and autoalignment.

The last four chapters center on VIRGO’s first stage of testing, the CITF, and the main
contributions of this thesis towards the understanding of the optical response of this interferometer
to mirror movements and towards lock acquisition.

Ch.(5) describes the CITF, by presenting the expected mirror displacements in free motion,
its sensitivity and the mirror control requirements. The chapter then presents the study carried
out to understand the optical response of the CITF to longitudinal and angular motions of the
mirrors. This response will be taken into account in the strategies of lock acquisition, locking and
alignment. In particular, a quadrant photodiode configuration is presented and simulated in order
to reconstruct the angular motions of the mirrors once the CITF is locked. The performance of
a control system for the autoalignment of the CITF is then given. Also in this chapter, it will be
shown how the ratio of photodiode signals can be used to detect and lock the dark fringe regardless
of the recycling power buildup. This ratio of signals will be used by the lock acquisition algorithm
(described in c.(8)) to guide the CITF from a non-linear state to the locked state.

The process of lock acquisition by a linear control system is described in ch.(6) by considering
the mode-cleaner prototype in Orsay. First, the general purpose of mode-cleaning is given, then
the prototype configuration is presented. Measurements performed on the prototype made it
possible to tune the simulation of the interferometer, focusing on the acquisition of lock by a
linear feedback. A rotation of the laser beam polarization state allowed a change in the finesse of
MC30 from F ~ 100 to about F ~ 1600, thus allowing a comparison of the process for the two
states.

Before applying a lock acquisition strategy to the CITF, ch.(7) discusses an interesting phe-
nomenon observed on the MC30 in high finesse: the ringing effect. Its properties and behavior
are studied and simulated. By fitting measurements with simulation output, an estimate of the
finesse is given as well as an estimate on the relative velocity of mirrors as the optical resonance
is crossed. The chapter closes by describing an empirical formula for the reconstruction of the
relative mirror velocity.

Ch.(8) returns to the lock acquisition problem addressed in ch.(6), this time suggesting a
strategy to guide the CITF into lock. The model used will be described and the simulation results
will close the chapter.

Finally, Appendix A addresses basic notions of control systems, such as stability criteria and
design specifications, necessary for an understanding of the work presented in this thesis.

xii
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Chapter 1

Gravitational Waves

One of the consequences of General Relativity is the concept of Gravitational Wave, a time-
dependent perturbation of the metric, indirectly proven to exist by the experimental results of
R.A. Hulse and J.H. Taylor[1]. To date, the direct observation of such phenomena has not been
achieved.

This chapter briefly describes, after having outlined the Einstein field equations and their
linearized form, the properties of gravitational waves within the weak field approximation. An
outline of the generation mechanism and the possible astronomical sources will close the chapter.

Most of the arguments here presented originate from references [2, 3, 4, 5, 6]. The reader is
addressed to references [2, 3, 4] for an introduction to the subject and to references [5, 6] for an
in-depth treatment.

1.1 Einstein’s Equations

The FEinstein field equations relating the curvature of space with energy density are

1 87
Ruu - _guuR = 0—4

5 Ty (1.1)

where

® g, is the metric tensor through which the invariant
ds® = gap dz®dx’ (1.2)
is defined;

e R, is the Ricci tensor, defined as the contraction of the Riemann tensor RO‘ﬁW:

Ry, =g¢°f Joao R, (1.3)
where
Raﬁuv = Faﬁl«u - Faﬁuw + Faaurgﬁv - Fawrgﬁu (1‘4)
and I'*,  is the affine connection whose relation to the metric tensor g, ist
pe = Loas 1
pr = 59 (9800 + 9Bv,u — Guv,p) (1.5)
I The notation in use for the partial derivative of an arbitrary tensor V< is
o = V2
8= 61”6

while the covariant derivative of the same tensor V< is defined as

V=V + VT
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e R is the scalar curvature, the contraction of the Ricei tensor:
R=¢"R,, (1.6)
e T, is the stress-energy tensor describing, in an arbitrary reference system, the energy-
momentum densities and fluxes;
e c is the speed of light;
e (i is the gravitational constant.

Due to the symmetry of the Ricei Ry, tensor and the g,, metric tensor, the gravitational field is
described by ten non-linear differential equations of the second order in g,,. These equations

1. lead, in the classical limit, to the Newtonian laws of gravitation
V2¢(x,y,2) = 47 Gp(x,y,?) (1.7)
where ¢(x,y, z) is the gravitational classical field and p(z, y, z) is the mass density;
2. are covariant, i.e. independent from the choice of the reference system;

3. conserve energy and momentum, i.e.
Tyw =0 (1.8)

Two observations can be made from the equations’ non-linearity. Unlike the electromagnetic
case, solutions of eq.(1.1) do not obey the superposition principle, i.e., the linear combination of
solutions is not, in general, a solution. Furthermore, the matter and momentum distributions
determine the metric tensor just as the metric tensor determines the matter and momentum
distributions. For this reason, these distributions cannot be assigned arbitrarily.

1.2 Weak Field Approximation

Omne possible solution for the metric tensor g,, in vacuum, i.e. T, = 0, is the Minkowski tensor

1 0 0 0
a0 s
00 0 -1
In a weak gravitational field described by a metric of the form
G = N+l With | by, |1 (1.10)

eq.(1.1) simplifies and its solution can be treated as a perturbation of the Minkowski metric.
It can be shown that by making the substitution of eq.(1.10) in eq.(1.1), making the change of
variable

_ 1
R = hw = 50wl (1.11)

where h is the contraction of &, and dropping all second order terms in A, eq.(1.1) reduces to

g - o 16 7 G

- o - 0y -
huu,a + Nuv ha'y - hua,u - hua,u = TNV (112)

ct

It is possible to find a reference system such that

Euu,u =0 (113)
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Such a transformation, known as the Loreniz gauge, simplifies eq.(1.12), reducing the ten degrees
of freedom of h,, to six. Eq.(1.12) becomes

— 1
Dhuu = _6LGT;U/ (114)

ct

where O is the d’Alambertian operator defined as

82
O = pt? 1.1
U rTE (1.15)
Eq.(1.14) is thus the weak-field approximation of eq.(1.1).
1.2.1 Wave Equation
In the absence of matter, eq.(1.14) reduces to the propagation equation
Oh =0 (1.16)

One possible solution for the metric perturbation EW, often referred to as gravitational wave, is a
monochromatic plane wave propagating in the z-direction at the speed of light

By = Ay ete(t=2/¢) (1.17)
The Lorentz gauge requires that
Ao = Aps (1.18)

The six degrees of freedom are now reduced to two by applying a second gauge, known as traceless
and transverse (TT), requiring that

AmO =
A% = 0 (1.19)

By defining the non-null components of A,, as

hx = A1z = An (1.20)
hy =—A11 = Ay
eq.(1.17) can be rewritten in the form
by, = |hyep + hxex glwlt=z/c) (1.21)
where
00 0 0 0 0 0 0
_ 01 0 0 _ 0 0 1 0
=100 -1 0 >“=1010 0 (1.22)
00 0 0 0 0 0 0

denote the two polarization states. A diagram, shown in fig.(1.1), shows the effect of these states
on a ring of particles placed on a plane perpendicular to the direction of the incoming wave.

5
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(a)o MY 0%y R
h(t)
‘ (©)
t
(0) e e

Figure 1.1: The effect of the passage of a gravitational wave on a ring of particles distributed
on a plane perpendicular to the incoming radiation. (a) shows the perturbation
on the ring as a function of time due to the hy # 0 component only, (b) the
perturbation due to the hy # 0 component only and (c) the overall contribution

h(t).

1.2.2 Geodesic Deviation

Let’s describe the effect of a gravitational wave on a physical system by recalling that a geodesic
describes the motion of a free falling particle under the influence of a gravitational field in the
context of General Relativity. The equation of motion can be written as

— + TH wut =0 (1.23)
where ¢# is the particle trajectory and u* = dz#/ds is the quadri-velocity.

Let’s consider a pair of nearby free falling particles, following the paths 2 (s) and z#(s)+dx* (s).
The geodesic equations for the two particles can be written as

d? gt de¥ da*
= — r* —_— 1.24
0 d82 + ll)\(x) dS dS ( )
0 = ﬁ(aj“—i—éaj“)—l—F“ (x—i—éx)i(x“—i—éx“)i(x“—l—éx“)
ds? vA ds ds

It can be shown that by taking the difference between these two expressions and dropping all
second order terms in dx*, the geodesic deviation between the two particles follows the equation

D? s dx¥ dx’

= S it SNV S
757 dx” + Rp,, I ds dzt =0 (1.25)
where
D d y

is the covariant derivative along z*(s).
In the weak field approximation and using the TT gauge, the curvature tensor R.-sx can be
written as

1 .77
Ruopo = Rowop = —Raoosg = —Roapo = —5 hags (1.27)
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where hTT describes the evolution of the gravitational wave in the TT gauge and a dot the time
derivative. Eq.(1.25) can then be approximated as

57226%(15) — Raopo 027 (0) = —% fin s (t) 627 (0) (1.28)
By integrating twice with respect to time, we obtain
ra(t) = 62°(0) [Fus + 5 TE(1)] (1.29)
which leads to
Az, (t) = %hgg(t) 527 (0) (1.30)
where
Az (t) = duq(t) — d2a(0) (1.31)

By assuming an incoming plane wave in the z-direction, as expressed in eq.(1.21), the induced
change, shown in eq.(1.30), due only to the “+” component, can be written as

1 :

Ant) = +3 [ RIT et te==e) | gat(0) (1.32)
1 :

AxZ(t) = -5 [h-IT—T ezw(t—z/c)} (51‘2(0)

In this case, the induced displacement is proportional to the gravitational wave amplitude and to
the distance between the two particles.

1.2.3 Generation of Gravitational Waves

We have seen how a plane wave can be a solution for eq.(1.16). Let’s see now what kind of sources
can produce such a dynamical metric perturbation. Let’s solve eq.(1.14) in an approximate way
by assuming that

1. there is a sinusoidal time dependence of the stress-energy tensor T}, of the form
Ty = Sy (x%) e 5 (1.33)
where € is the oscillation frequency for the source;

2. the typical velocities, in a sphere of radius €, are much less than the speed of light

— 1.34
27T<<c (1.34)

These assumptions can be justified in the following way:

e through the use of the Fourier analysis, an arbitrary function can always be rewritten as a
sum of different sinusoidal contributions. Furthermore, many gravitational wave sources like
binary systems and pulsars do have a periodic or quasi-periodic component;

e the second assumption facilitates calculations and is probably satisfied by most gravitational
wave sources, with the exception of the strongest sources.

With these assumptions, a possible solution for eq.(1.14) can be written as

EW = Bul,(xﬁ)e_mt (1.35)
and by substituting this solution back into eq.(1.14) we obtain
0? 167G
2 _
(vt+2)p,, = LG, (1.36)

Let’s distinguish two cases:
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i. for the region of space outside the sphere of radius ¢, eq.(1.36) reduces to

QZ
(VP4 = )Buw =0 (1.37)
c
and a possible solution can be a spherical wave propagating from the origin » = 0:
A,
B,, = —Zeitr/e (1.38)
r

where A,, is a constant to be determined. The gravitational wave can then be written as

_ A,
Ry = i r/e=t) (1.39)

r

Notice how the amplitude of a gravitational wave decreases as the inverse of the distance.
ii. by defining
Juw = /Swd% (1.40)

it is possible to demonstrate that the relationship between the distribution of matter within
the sphere of radius ¢ and the amplitude of the gravitational wave can be described as

7 4G 1 iQ(r/e—t
hw = — ~ T e (r/e=t) (1.41)
Making use of the source’s quadrupole moment tensor, defined as
' = /To%’xmd% = Dimemist (1.42)
and the property
d2
e T ™ dPx = Q/T’md?’x (1.43)
the gravitational wave amplitude can be re-written as
— 2G Q? » _
Bk = 5 jkelﬂ(r/c t) (1.44)

where the slow-motion approximation has been used.

The TT gauge can be chosen so that the propagation is in the z-direction and eq.(1.44) transforms
into

=TT

h,; =0
D e
where
el %(ml} (1.46)

is the reduced quadrupole moment tensor.

Notice how the amplitude has the same time dependence as the energy-stress tensor. In
addition, observe that the metric perturbation is generated by asymmetric motion. This can be
seen from eq.(1.46). If the motion had spherical symmetry, the tensor Z;; would be proportional
to d;,. However, the only tensor proportional to J;; and with null trace is the zero tensor.

8
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1.3 Sources

Gravitational wave emission causes an energy loss by the source that can be written analytically
as

() =~ ) (1.47)

where dE/dt is the energy variation and the mean is taken over the typical period of the source.
The formula in eq.(1.47) is known as the radiation reaction formula. The coefficient G'/5c® =
5.5 107°*m~2 kg~! s is so low that astronomical objects are the only possible sources that we
can detect.

From eq.(1.45) and eq.(1.47), it is possible to show that, for an order-of-magnitude estimate,

Z ~¢MR?

R; R;
he ~ e () ()
* X R r
RB.\2 /V\6
AE ~ e (22) (2 1.48
<\ . (1.48)
where R and V are, respectively, the typical size and velocity of the source, M is its mass, R, =
2G'M/c? is the Schwarzschild radius and € is the dimensionless measure of the source asymmetry.
From the estimates in eq.(1.48), it is possible to determine the conditions for strong emission
of gravitational waves :

i. the source must be extremely dense with its radius R comparable to the Schwarzschild radius

R;
ii. the source must have a velocity V that approaches the speed of light;
iii. the source motion must be asymmetric.

As shown in eq.(1.48), the amplitude decreases as the inverse of the distance: an increase of
one order of magnitude in the detector sensitivity leads to an increase of the event rate by a factor
of a thousand for a uniform spatial distribution of sources.

Only astronomical objects can radiate enough energy to be detected. These anticipated grav-
itational wave sources can be classified into three types, depending on the radiation temporal
behaviour. These are impulsive sources, such as supernovae explosions, quasi-periodic and pe-
riodic sources, such as coalescing compact binaries and spinning neutron stars, and stochastic
sources.

1.3.1 Impulsive Sources

One of the most interesting and spectacular gravitational wave sources is the supernovae explosion.
The construction of gravitational wave detectors was first motivated by the detection of such
explosions. The basic process is known. Once a massive star finishes its nuclear fuel, the central
core begins to collapse as the star fails to support itself from its own gravity. This results in a
violent expulsion of the star’s outer layer caused by the shock wave bounce, which can be 5-10
times as massive as the central core. While the electromagnetic signal is dominated by the ejected
mantle, the gravitational wave signal is dominated by the dynamics of the collapsing core.

An order of magnitude estimate for the gravitational wave amplitude from a supernovae explo-
sion can be obtained from eq.(1.48). The expected supernovae event rate of 1/(30 = 40)yr/galaxy
[7] forces us to look out of the galaxy in order to bring the event rate up to several per year. Mon-
itoring of the Virgo cluster, a distance of 20Mpc away from us, containing about 2500 galaxies,
would increase the supernova rate to a few events per year.

Now, assuming a core mass equal to 1.4 solar masses in the Virgo cluster, collapsing to a size
ten times its Schwarzschild radius, and with a value of ¢ = 1073, would lead to an amplitude value
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Figure 1.2: Waveform examples for core collapse[8]

of about 1072% + 10723, Fig.(1.2) shows the results of a numerical simulation conducted in 1997
by Zwerger & Miiller[8] presenting three typical waveforms we could expect.

The value of ¢ is uncertain. In the case of a symmetrical collapse, ¢ = 0 and no gravitational
waves would be emitted. However, there are two reasons to assume a non-spherical collapse. To
begin with, all stellar cores probably rotate and rotation would prevent a symmetrical collapse
[7]. In addition, the presence of a companion star orbiting around the collapsing one would also
generate an asymmetry[3].

Since most of the energy released in the explosion originates from gravitational binding energy,
the expected wave frequency is of the order of kHz, the natural dynamical frequency of the source.
Therefore, gravitational wave detectors need to be sensitive to amplitudes of the order of 10~2* +
10723 in the kHz region if a rate of several events per year is desired.

1.3.2 Coalescing Compact Binaries

The best understood gravitational wave source is the coalescing of compact binaries consisting of
neutron stars (NS) and/or black holes (BH). The famous PSR 1913416 is an example of a NS/NS
binary. Its orbital period is about 8 hours, emitting gravitational wave radiation at double its
orbital frequency, about 10~*Hz. This frequency region is too low for ground detectors. However,
due to its emission, the system loses energy and its frequency dependence increases as the stars
spiral in toward each other. In about 10 years, the emitted signal would be observable by ground
detectors. By using eq.(1.47), the time derivative of the orbital period can be calculated. The
result agrees with the observed time derivative to within a percent[1].

It is possible to estimate the gravitational waveform. By assuming a circular binary orbit,
neglecting the change in the eccentricity, and treating the stars as point particles (a good approx-
imation for compact objects), it can be shown that the radiation is emitted at double its angular
frequency.

10
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Figure 1.3: Waveform for a coalescing compact binary.

In addition, it can be shown that gravitational wave radiation is linearly polarized and weakly
emitted in the orbital plane. Maximum emission, instead, is in the orthogonal direction to the or-
bital plane with circular polarization. This causes the emitted radiation to be elliptically polarized
for an arbitrary direction.

Assuming masses of the order of 1.4 solar masses at a distance of 10Mpc in the 100Hz frequency
range, leads to A ~ 10722 = 10721, Fig.(1.3) shows the expected waveform amplitude for the
coalescence of such a compact binary. It is worth noting that the signal to noise ratio for such
a signal can be improved by time integrating for sufficiently long periods once the waveform is
known.

Even though the mechanism behind the coalescence of compact binaries is well understood,
the event rate is not clear. Estimates range from 1/(10° yr)[9] to 1/(10%r)[10] per galaxy. In
order to have a sufficiently high rate of several/yr, we may have to monitor as far as 400Mpc.

1.3.3 Spinning Neutron Stars

Another possible source of gravitational waves are rotating neutron stars, believed to be the
remnants of supernovae explosions. These sources are believed to radiate gravitational waves only
if there is a deviation from the symmetry around its rotational axis. Such asymmetries must be
present due to an off-axis magnetic field, but their degree is unclear.

The asymmetries may come from irregularities on the crust, or from the stars’ internal magnetic
field. The amplitude estimate can be written as[3]

hy ~ hy ~ ef*(GM R?/2¢*) (1.49)
where f is the gravitational wave frequency. For a NS of radius R = 10 R, we can write[3]
T a1 f 2 7 10kpe
hij ~ 1077 ( 100H = ) ( r ) (1.50)

11
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From radio astronomy we could infer the location and period of the pulsar. Gravitational wave
detection would then lead to an estimate of ¢.

1.3.4 Stochastic Background

This consists of a gravitational wave background noise due to, for example, a large number of
distant gravitational wave sources whose signals overlap. Other contributions may come from
ancient supernovae explosions, pregalactic massive stars and collapses to black holes that now
would be observed as stochastic background. Also, cosmological processes such as cosmic string
oscillations and inflation may contribute significantly to this background radiation.

12



Chapter 2

Interferometric Detectors

The aim of interferometric detectors is to observe the effect of a gravitational wave passage. The
goal is to monitor the induced length change between two points as expressed in eq.(1.30) or, in
simpler notation,

AL = %hL (2.1)

where L is the distance between them and AL is the induced change. Such detection is indeed
ambitious: assuming h ~ 102! and the monitoring of a length of the order of L ~ 100 m, the
estimated displacement is of the order of 10~ !°m.

In this chapter, a general overview of the Michelson interferometer, at the heart of the interfer-
ometric principle, is presented. The DC detection mechanism is outlined as well as its frequency
and angular response to impinging gravitational wave radiation.

However, the gravitational wave signals to be observed will be bathed in Gaussian and non-
Gaussian noise. For this reason, this chapter will list the main noise sources expected, outlining
their statistical properties. It will then be shown how the implementation of Fabry-Perot arms and
the presence of a recycling mirror can improve the signal-to-noise ratio (SNR) due to shot-noise.

The drawback of the DC detection scheme is its sensitivity to power fluctuations and to 1/f
electronic noise, both strong at low frequencies. The last section presents the frontal modulation
scheme, allowing the shift of detection to radio frequencies (RF).

2.1 The Interferometric Principle:
The Michelson Interferometer

The Michelson interferometer with suspended mirrors, as shown in fig.(2.1) and fig.(2.2), is at
the heart of interferometric gravitational wave detectors. It consists of three mirrors, placed in a
“L”-shaped configuration: the beam splitter Mpgs at the vertex and the two end mirrors, M7 and
Ms, a distance [y and [5 away from Mpg. A laser source injects a beam into this system of mirrors,
which is then divided in two by Mps. Each beam propagates along its arm and is sent back to the
beam splitter where the two beams interfere. A photodiode, placed at the interferometer output,
converts photons to a signal in current.

There is a dual purpose to the mirror suspensions. As it will be shown, the suspension isolates
the mirrors from seismic noise. Furthermore, the mirrors form a free falling reference system,
behaving as free masses in the frequency range above the pendulum resonance. This can be easily
seen by writing the equation of motion for a simple pendulum. Fig.(2.3) shows such a mechanical
system, where z(¢) indicates the mass position, zo(t) the suspension point, m the mirror mass, [
the suspension length and F(#) any force acting on the mass. In the small angle approximation
and no dissipation of energy, the equation of motion is

F(t) —muwd [2(t) — xo(t)] = mi(t) (2.2)

13
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Figure 2.1: The suspended Michelson Interferometer.
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Figure 2.2: The Michelson Interferometer: notations for the electromagnetic fields.
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THE MICHELSON INTERFEROMETER

where the time derivative is indicated by a dot and w2 = g/I. By Laplace transforming! eq.(2.2),
the equation of motion expressed in the frequency domain becomes

x(s) — F(S)/m‘H"o l‘o(s)

2.
52 +wd (2.3)

The advantage of the transformation is the introduction of the transfer function concept. This
consists of the ratio between two polynomials in s relating an input function, such as the force
F(s) or the point zo(s), to an output one, in this case z(s).
Assuming a fixed suspension point zo(s) = 0, the transfer function g(s) relating the position
z(s) to the force F(s) is
z(s) 1/m

g(s) = Flo) = 37wl (2.4)

(2.5)

corresponding to the equation of motion of a free mass. It is for this reason that for frequencies
above the pendulum frequency the passage of a gravitational wave freely perturbs the system.

Figure 2.3: A simple pendulum: notations.

By writing the electromagnetic fields inside the optical system shown in fig.(2.2), it is possible
to show how the interferometer couples to the incoming gravitational wave radiation. We will
assume, unless otherwise stated, that the electromagnetic field ¥ propagates instantaneously and
that it is approximated by plane waves.

The convention in use is

i. the unknown electromagnetic field at point 2, a distance ! from the known field at point 1, is
described as ¥y = e~ Ty ;

ii. the transmitted field through a mirror of transmission amplitude ¢ is ¥, = ¢ ¥,,,;
iii. the reflected field from a mirror of amplitude reflectivity r is W, = i r W;p,;

where k = 27/, A is the light wavelength, »? + ¢* + p? = 1 (p? is the mirror power loss) and i is
the imaginary unit.
The electromagnetic fields shown in fig.(2.2) can be written as

U, =tgs ¥;, Vs =1rps ¥ (2'6)
\Ilgzexp(—ikll)\lll \IJGZGXP(—iklg)\Ifg,
\Ifgzirl\lfg \Ij7:ir2\1j6

Uy =exp(—ikly) s Ug =exp(—ikly) Uy

Ldefined as F'(s) = L[f(t)] = [3° f(t)e~* dt and f(t) = L7I[F(s)] = 5 otioo F(s)e®tds where f(t) is an

2mi Jog—ico
arbitrary function of time and s = o + 1w

15
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where r; and ?; are the amplitude reflectivity and transmittivity of the j-th mirror. The field seen
by the photodiode is then

VUp=itrgsVy+itps Vs (27)
whose square modulus is

| ¥p |2 = |\I!m|2r§5 tés[rf—i—r;—l—errgcosquic] (2.8)
= | Win |? risths (ri +75) [1 + C cos ¢mic]
where ¢ =2 k 0l, 6l =13 — I; and C' is the contrast, defined as

‘I’D|§m—|‘I’D|§m: 227°17°22 N 1_02(712—7“22)2
Up [Zae + 1 ¥D |5 78 + 73 (ri +735)

c=| (2.9)
|

In the case of a non-ideal interferometer, the contrast indicates not only the degree of asymmetry

in the reflectivities of the two arms, but also any optical defects of the mirrors. For an ideal

interferometer with equal reflectivities, i.e. r; = rg, the contrast is C = 1. Eq.(2.8) can be

simplified by assuming a symmetric beam splitter (rps = tps = +/1/2) and considering mirror

reflectivities close to unity (11 ~ rg ~ 1). In this case

|\Ijin |2

| Up |2 = 5

[1 4+ C cosdmic] (2.10)

Any change in the lengths {; and l; causes a change in the photodiode’s output current.
Destructive interference is possible when ¢ = (2n+ 1)7 or

A
ol =7 (2n+1) n=0,1,23 .. (2.11)

where n is an integer, corresponding to a power

_ |\Ijzn|2

| Up |? 5

[1 - C] (2.12)
In the case of an ideal interferometer with C' = 1, no power leaks out to the detector, reflecting
all back to the laser source.

Let’s study the effect on the power seen by the photodiode caused by a small length perturba-
tion due to the passage of a gravitational wave. The “4” component hy of a gravitational wave

irradiating in the direction perpendicular to the plane of the detector induces the following arm
length change

1
lo=h+ Shih (2.13)

1
b=l = Shily

whose difference is
1
(51:1’2—1’1:(12—11)—§h+(11—|—12) (2.14)

The phase ¢y,;. can then be expressed as a sum of an offset term ¢,;; with a perturbation term

Pguw

¢mic = ¢off + ¢gw (215)
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where

bopr = 2k(la — 1) (2.16)
¢gw = _kh+(11+12)

The power seen by the photodiode is then

| Up |2 =

\Ijin 2
i 1211 4 € cos (dugys + b)) 2.17)
Therefore, the induced phase change ¢g, results proportional to the strain A} and to the arm
lengths being monitored. In order to amplify this phase change, the use of the longest arms
possible is desired. Sec.(2.2.2) will determine ¢,;; by maximizing the signal-to-noise ratio due to
shot-noise.

2.1.1 The Frequency Response

The frequency response of the detector to gravitational radiation is strictly connected to the laser
light travel time within the arms. If, for example, the period of a gravitational wave is equal to
the round trip time of light, a null effect would result on the photodiode output current.

By dropping the assumption of infinite light speed, it is possible to estimate the frequency
response of such a detector. Once again let the radiation come in the z direction, perpendicular
to the z-y plane of the arms. Due to the light speed invariance from the reference system along
the z-arm we find

ds?=0 = Guv da da”
[+ WTT ()] da? dar”
= —c?dt? + 1+ hy(t)]da?

Assuming that
hy(t) = het®! (2.18)

where w = 27 f is the angular frequency of the gravitational wave and A is the gravitational wave
amplitude, the time travel to the z-arm end mirror is

. ™ L[l x
r _/0 dt_z/o ,/1+h+(z)dx (2.19)

which, with hy(z/c) <« 1, can be approximated as

rx:/0l0[1+%h+(§)]dx:l—o+ Lt h+(f)dx (2.20)

Substituting eq.(2.18), we obtain

l 1 lo . ) h .
=2 helweledqe = 2 4 ——[efwl/e ] (2.21)

and the round trip time is

xr

21 h
2o B

c 21w

[eiwlo/6+1][ei”’°/c—1] (2.22)

The same calculation can be done on the y-arm

21 h ; ;
_ 2o [ezwlu/c+1][eZWlD/C_1] (223)

c 21w

y
To
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Figure 2.4: The plot of abs(A¢/h) as a function of the radiation frequency for a Michelson
interferometer with lo = 3 km and A = 1 ym. For frequencies multiple of ¢ /21, =
50 kHz, the interferometer is blind.

Notice that 7§ differs from 7,/ by one sign change due to the quadrupolar nature of gravitational
wave radiation. The time difference A7y is then

h .
Arg = 78 —rf = —[e?iwlo/e 1] (2.24)
iw
C h eiwle/e sin(wly /)
0 wly /e

where 79 = 21y / ¢. The phase of the output beam will be

_271'0

Ap==

Ar (2.25)

and its modulus is plotted, in logarithmic scale, in fig.(2.4). This figure puts into evidence two
effects: a 1/f decay and the presence of frequencies under which no phase change is generated.
Once a gravitational wave irradiates the detector at a frequency greater than 1/, the detector
fails to respond optimally: within one round trip of light, the metric changes by more than one
cycle. The worst case is when the frequency is a multiple of 1/79: in this case, the gravitational
wave passage has no total effect on the detector and no signal is detected.
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Figure 2.5: Angle notations for impinging gravitational wave radiation. The interferometer
arms lie on the z and y axis.

2.1.2 The Angular Response

Let the interferometer arms lie on the # — y plane and let a gravitational wave radiate in the
direction 0 and ¢ as shown in fig.(2.5). It can be shown[l1] that the induced change Al in the
arm lengths is

S5 = Fa(0.0) ha (1) + Fu(0,6) by (1) (2.26)

where hy(t) and hy(f) are the gravitational wave amplitudes in the two polarization states,
whereas F and Fy, defined as

1
F, = 5(1 + cos?0) cos2¢ (2.27)
Fy = cosf sin2¢

describe the antenna angular response to the radiation. Fig.(2.6) shows the plot of F2(6,¢) +
F2(0,¢) as a function of the angles § and ¢. As can be seen in the figure, the maximum response
is found along the z-axis, whereas a null response is found along the bisector of the z — y axis. In
the latter case, the arm length changes are the same for the two arms, resulting in a null global

effect.

2.2 Noise Sources

Due to the weak gravitational wave effect, the output signal will necessarily have a non-negligible
noise contribution. It is necessary, therefore, to comprehend the main sources of noise and to
statistically quantify the random processes involved.

The sources can be classified as either displacement or phase noise sources. Displacement noise
comes from the effective motion of the mirrors, mainly caused by

e the seismic excitation of the ground;
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Figure 2.6: The plot of F.7(8,¢) + F2(6,¢) as a function of the angles § and ¢. The  and y

axis denote the interferometer’s arms.

e the stochastic gravitational field, generated by mass density fluctuations, which couples
directly to the mirrors;

e the thermal excitation of the suspension wires and optical elements;
e the radiation pressure fluctuations.
Phase noise, instead, is generated by
e the fluctuation of the index of refraction in the arm tubes;
e the amplitude and frequency fluctuation of the incoming laser beam;
e the shot-noise, the quantum mechanical limit to the counting of photons.

Once the many noise contributions are brought under control, the interferometer sensitivity will
be determined by three noise sources: the photon shot-noise, thermal noise and seismic noise.

Before discussing these sources, the concept of signal-to-noise ratio (SNR), a quantitative
description of the detector’s sensitivity, is presented.

2.2.1 The Signal-to-Noise Ratio

The output time series s(¢) can be written as a sum of a deterministic signal h(¢), whose form
could be predetermined, i.e. a gravitational wave, and a random noise contribution n(t):

s(t) = h(t) + n(t) (2.28)

It is often convenient to describe the deterministic signal through the Fourier Transform FEquations

h(f) = ]—"[h(t)]:/_oo h(t) e It qt (2.29)

oQ

(o]
Wty = FoUR(] = / h(f) em2mistdf
— 00
where F denotes the linear transformation. Such operation allows a study of the frequency com-
ponents of A(t).
On the other hand, the statistical properties of a random process n(t) can be better charac-
terized through the one-sided power spectrum density defined as

P,(f) =2 Flcorr, n(t)] 0<f<o (2.30)
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where corr, , (t) is the autocorrelation function of n(t)

corty, 5 (T) = Th_}n;o T /T/2 n(t)n(t + 7)dt (2.31)

The usual representation is the one-sided amplitude spectral density
) = VPa ) (2.32)

where izn(f) is expressed in units of 1/v/ Hz if n(t) is adimensional. The root mean square value
(RMS) of n(t), in the frequency band f; < f < f5, is then

f2
Ppms = /Pn(f)df (2.33)

It is necessary to put the deterministic signal /Nl(f), expressed in units of 1/Hz, in relation with
its counterpart /Nln(f), expressed in units of 1/\/@ This is possible once the frequency band in
question is known. Precisely, assuming a known waveform h(¢) impinging on the detector with a
known noise spectrum, it is possible to show[11] that the power signal-to-noise ratio is

(%)2 = /Ooo 742((?;2# (2.34)

An order-of-magnitude estimate is possible. Assuming an incoming radiation of one cycle, lasting
for 7 = 1ms and with a bandwidth of the order of Af ~ 1/7 and with known amplitude hg, the
amplitude SNR can be estimated to be
S ho ho
N Py(ANAS ha(A))

NG (2.35)

If the signal-to-noise ratio for a known periodic signal (frequency fo and amplitude hg) is in
question, the bandwidth Af is determined by the observation time T ~ 1/Af and

S ho ho
=~ ~ = \/T 2.36
N Po(fo)Af  ha(fo) ( )

The estimate in eq.(2.36) shows an important property of time integration: for a periodic signal,
the SNR can be improved, in principle, by a factor of /r if the integration time is increased by a
factor r.

2.2.2 Phase Noise

The fundamental limit to interferometer sensitivity is set by the photon shot-noise and by the
radiation pressure noise, both caused by the inevitable fluctuations in the number of photons
in the laser beam. The number N of photons detected follows the Poissonian statistics with
fluctuations that go like VN.

Let’s rewrite eq.(2.10) in the form

P = %[1+CCOS¢] (2.37)

where P is the power seen by the photodetector and Fy is the incoming laser power. The RMS
power fluctuation can then be written as

Py h
0 Pspot = \170 n—zt vV 1+ Ccos¢ (2.38)
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where h is the reduced Plank constant, w is the light angular frequency, At is the observation time
interval and 7 is the photodiode quantum efficiency.
The presence of a gravitational wave perturbs the power P, to first order approximation, as

dpP
d¢

where § P, denotes the induced power change and d¢,., the phase perturbation.
By taking the ratio between § P, and 6 Pspo, the SNR is found to be

P(6+06g0) = P(¢) + “— 8640 = P(6) + 6Py (2.39)

_ [PonAt C sin ¢
"V 2 hw 14+ C cosg

We would like to see under what conditions the SNR is maximal. Let’s first neglect any contrast
defect (C'= 1) and treat an ideal interferometer. In this case, the SNR is maximal in condition of

=I5
N B 6Pshot

5 gu (2.40)

dark fringe, i.e. cos ¢ = —1, corresponding to a minimum detectable dephasing of
hw
Sbshot = 2.41
bunoe =\ o (2.41)

On the other hand, considering an interferometer with C' < 1, the SNR is maximum at

cosp=—14++/2(1-0C) (2.42)

or, in other words, slightly detuned from destructive interference.
Eq.(2.41) can be rewritten as a spectral density

§Gshot = \/% [1/VH?] (2.43)

resulting in the equivalent amplitude shot-noise spectral density limit of

- 1 hw
Rshot = ————4 | —— 1/vVH 2.44
hot Yk 1o\ 7 Po 1/ 7] ( )

This limit can only be lowered by increasing the product lg/ Fy. Assuming a laser power of Py = 20
W with interferometer arms of length lo = 3000 m and n = 1, the shot-noise limit is

Bgnot ~ 10721 [1/VHZ] (2.45)

This sensitivity needs to be improved by at least two orders of magnitude if any supernovae events
are to be detected in the kHz region.

2.2.3 Displacement Noise

At the very low end of the frequency spectrum, the sensitivity of the detector is limited by
seismic activity. Measurements conducted around the world have shown that ground movement
is isotropic, exhibiting a 1/f? behavior above 1 Hz. In particular, for the VIRGO site in Cascina
(Pisa, Ttaly), measurements[23] have shown that the displacement spectral density can be described
by the empirical formula

2 2
jseism(f) ~ % ;2%;?2 [m/@] (246)

where fo ~ 0.1 Hz, fi ~ 0.5 Hz and the amplitude a varies from a pessimistic value of 107% to an
optimistic one of 1077,
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Particular attention is necessary when considering the differential movement of two points on
the ground. Depending on the frequency range of observation, the motion of the two points may
be correlated. Assuming seismic vibrations that propagate in the ground at a speed v, ~ 500 m/s
with wavelength A, the motion of the points is correlated if

lo << As (2.47)

where [ is the distance between the two points. In other words, for frequencies f such that

fe< 2 (2.48)
lo
the motion of the two points may be considered as correlated. For points a distance lp = 3 km
apart, the motion is correlated for f << 0.17 Hz.
Therefore, by assuming uncorrelated ground vibrations, the noise amplitude contributions of
each mass can be quadratically summed. The equivalent amplitude spectral density, above fi, can
then be written in the form

-9
hseism(f) = % jseism(f) ~ 122 [1/@] (249)
and an attenuation of more than ten orders of magnitude is necessary in order to detect any events
at 10Hz. One way to decrease the limit is to increase the length ly being monitored regardless of
the optical configuration. This is true for any displacement source.

Another important source of displacement noise is thermal, arising from any motion induced
by a macroscopic system being in thermal equilibrium with its environment. For the mechanical
system in question, it is important to identify the normal modes and to assign an energy £ = % kT
to each mode, where k is Boltzman’s constant and T is the temperature of the system.

The normal modes can be classified in two: the suspension modes and the internal vibrational
modes. These modes couple to the interferometer in different ways. The internal vibrational
modes treat the mirror as an elastic body with an unmoving center of mass. The suspension
modes treat the mirror as a solid body and consist of pendulum, violin and vertical modes.

The thermal noise present in any macroscopic system with dissipation can be found using
the fluctuation-dissipation theorem. By considering a simple resonator, with resonant frequency
Jo = wo/2m, temperature T, mass m, quality factor ) and using the internal damping model[20],
the power spectral density displacement can be expressed as

4kT wi

| Etherm () [* = mQw (wé —w?)2 +wi/Q? [m?®/H:] (2:50)

The frequency dependence of the noise spectrum can then be classified in the following way:

1/ (wov/Quw) for w << wy
Etherm(w) | = \/ MTT \/Q/wg’m for w = wyp (2.51)

wo/(w5/2\/6) for w >> wy

Let’s first consider the pendulum mode. Its resonance frequency fo is below the detection
band of the detector, and the resulting spectral density displacement is inversely proportional to
f3/2,/Qm. A large mirror mass m is therefore desired, as well as a high quality factor Q. The
motion due to this mode becomes negligible at high frequencies but plays a central role in the low
to intermediate frequencies. Fig(2.7) shows the pendulum contribution to thermal noise in the
case of a mirror mass m = 40 Kg, quality factor Q = 100, mode of energy 4 kT = 1.66 x 10-2°J
and a resonance frequency fo = 0.6 Hz. In this case, the equivalent amplitude spectral density is

hiher ~ 1071 [1/V/Hz] @ 10 Hz (2.52)
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Figure 2.7: The pendulum mode contribution to thermal noise: the amplitude spectral density
of the mass displacement as a function of frequency. The parameters used are:
quality factor @ = 100, mode of energy 4k7T = 1.66 x 1072°J, mass m = 40 Kg
and resonance frequency fo = 0.6 Hz.

In order to be sensitive to sources such as coalescing compact binaries, the thermal noise limit
here shown must be improved by at least two orders of magnitude.

The internal vibrational modes, instead, have resonant frequencies in the kH z region. In this
case, the motion due to this mode is inversely proportional to /@ f m and the mirror design has
to carefully chose the product /@ m.

2.3 Detector Design Improvements

It has been shown in the previous three sections how seismic, thermal and shot-noise limit the
sensitivity of the Michelson interferometer. For thermal noise, in particular, it was shown how
materials with high quality factors are desired. Also, the design of a suspension system for the
mirrors and a modification of the interferometer itself is necessary if an improvement of the SNR
due to seismic and shot-noise is desired.

2.3.1 The Suspension System

As already seen, the limit /leeism can be lowered by increasing the length lg being monitored.
Another way to lower the limit is to suspend each mirror from a pendulum. By setting F(s) = 0in
eq.(2.3), the transfer function relating the motion of the mass z(s) to the motion of the suspension
point zg(s) is

z(s) _ wl (2.53)
ro(s) s5%2+wd )
which, in the limit |s| >> |wol, reduces to
z(s)  wé
~— 2.54
zo(s) 52 (2.54)

attenuating, by a factor 1/f2, the seismic motion. Particular attention is then made to the design
of a pendulum with the lowest resonant frequency possible.
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The attenuation factor of a mirror suspended from a pendulum can be improved if the mirror
is suspended from a chain of pendula. For an ideal chain of M pendula (a real suspension system
will be presented in sec.(4.4)), the transfer function is

z(s) _ ﬁ _ Y (2.55)

s2+w?

(2.56)

for |s| >> |war|- The use of a chain of six filters would then attenuate by a factor of twelve orders
of magnitude at 10 Hz. Ideally, a suspension system with as many harmonic oscillators as possible
and with the lowest resonant frequencies is desired.

2.3.2 The Michelson Interferometer with Fabry-Perot Arms

In the previous section, it was shown how the use of a chain of harmonic oscillators attenuates and
shifts the ground vibrations into lower frequencies. This section and the following describe how
an improvement of the SNR due to shot-noise is possible by modifying the optical configuration
of the interferometer.

One way to increase the optical path of light, without increasing the dimensions of the inter-
ferometer itself, is to use Fabry-Perot cavities (see Ch.3) in the place of the end mirrors, as shown

Fabry-Perot 2

y L2
7 ?6

Fabry-P 1 L,

M, < abry-Perot
5
IN 8 | 4 3

LASER —= = 1 = v

D
Photodiode .
\/’/Kﬁ
11 L]

Figure 2.8: The Michelson Interferometer with Fabry-Perot arms.
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in fig.(2.8). The electromagnetic field equations are now

\Ifl = tBS \IJIN \115 = irBS \IJIN (257)
\Ilgzexp(—ikll)\lll \IJGZGXP(—iklg)\Ifg,
U3 = Ag1 ¥y V7 = Ags Y6

Uy =exp(—ikly) s Ug =exp(—ikly) Uy

where Apg; is the complex reflectivity of the i-th Fabry-Perot
Ari = Api exp(i ¢Ri) (2.58)

The power seen by the photodiode is found to be
(Wb |2 = rstds [ Wi |* [AR + ARy + 2451 Aps cos[(6n2 — 6p1) + bmic]|  (2.59)

which can be written in the form

2
w12 = LIy 6 cos{ (6 = 1) + 6] (2.60)
where C' is the contrast, Ap; ~ Ars ~ 1 and rgs = tps = /1/2. The expression in eq.(2.60)
does not change from eq.(2.8).

By taking Ly 2 > [y 2, the induced length change caused by the passage of a gravitational wave
is greater in the Fabry-Perot arms. For this reason, ¢,,;. can be neglected and the advantage in
using such arm cavities appears evident in the phase (¢r2 — ¢ 1) (refer to sec.(3.3.1)). By neglect-
ing mirror losses, it can be shown that a small length perturbation § . around the operating point
Lyes (cavity length L corresponding to maximum stored power) generates, to first approximation,

the change A¢r

¢R(L7‘es + 6L) ~ ¢R(Lres) + A¢R (261)
with
_ d¢r B 2F
MR:WL 6L_—2k(7)6L (2.62)

where F denotes the finesse, to be defined in eq.(3.22), assumed to be the same for both cavities.
A gravitational wave perturbation, just as in eq.(2.13), of the form

1
Li = Lo+ 6Ly = Lo + §h+ Lo (2.63)
1
Ly = Lo — 0Ly = Lg — §h+L0
(2.64)

would generate the following phase change

Or2 — ¢r1 ~ Adrr— Adp = (2.65)

— —2k(¥)(6]}2 —0Ly) = 21@(%)/@%

The phase (¢r2—¢r1) in eq.(2.60) needs to be compared to ¢, shown in eq.(2.10). The distance
Lo being monitored results amplified by a factor G = 2F /= (known as the cavity power gain) as
if monitoring an effective length L.;; = G Lo.
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Figure 2.9: The plot of abs(¢rz — ¢r1)/h for a Michelson interferometer with Fabry-Perot
arms of length Lo = 3 km and finesse F = 50 (continuous line) and the plot of
abs(Admic/h) relative to a simple Michelson interferometer with arms of lp = 3

km (dotted line).

Eq.(2.65) is not exact because it does not take into account the travel time of photons, as
shown in sec.(2.1.1). By dropping the assumption of infinite light speed, it is possible to show
that the frequency response of the arms[13] to gravitational waves can be better approximated by

2F

|¢R2_¢R1|:2k(7)hL0 !

1+ Lo roen]

where wy, is the gravitational wave angular frequency, weqo = 1/ 7 G is defined as the cavity pole
and 7 = Lo / ¢ is the light travel time {from one mirror to the other. For VIRGO, the cavity pole
is located at weq, /27 = 500 Hz.

The plot of eq.(2.66) is shown in fig.(2.9), as well as eq.(2.25) for comparison. Even though
the sensitivity for the Michelson with Fabry-Perot arms degrades for frequencies above the cavity
pole, it is amplified by a factor 2F /7 with respect to the simple Michelson configuration.

The inevitable storage time difference between the two arms, caused by either a difference in
finesse of the cavities or by a length difference in the arms, makes the output of the detector
sensitive to frequency fluctuations. The sensitivity goal sets the requirements on the frequency
fluctuation of the laser source, achieved by making use of several control systems in cascade.

(2.66)
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However, the last control is performed by using the interferometer itself as a reference for the laser
source. Due to the sophisticated suspension system, the interferometer is highly stable at high
frequency. For an in-depth treatment, see [24].

2.3.3 The Recycled Michelson with Fabry-Perot Arms

In the previous section, it was shown how the gravitational wave signal can be amplified by
replacing the terminal mirrors of the Michelson interferometer with Fabry-Perot cavities. This
section introduces a recycling concept in order to improve the signal-to-noise ratio due to the
photon shot-noise.

As the interferometer is operated in condition of dark fringe, most of the light is reflected back
to the laser source. Adding a mirror right after the laser source, as shown in fig.(2.10), recycles
the electromagnetic beam coming from both arms, inducing a power build up. Analytically, this
can be written as

| Up | =T |* cos® (Gmic/2) (2.67)
with
té | ¥y |2
U |?= o 2.68
o | 1+ r sinZ((/)mic/Q)—l— 219 cos( 2kl )sin(Pmic/2) ( )
where
1
b =1lo + 5(11 + 1) (2.69)

while neglecting both the contrast defect and losses and assuming both Fabry-Perots in resonance,
ie. Ap ~ 1, ¢p = 7/2 (see sec.3.3). In condition of destructive interference at the output
photodiode, the power | o |2 within the recycling cavity can be written as

t2
= Un [P = Gree | ¥rn |? (2.70)

0] 2: 0
| 0| (1—7“0)

Fabry-Perot 2

Fabry-Perot 1
W ow
5
IN 0 Si 4 3
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H/ ~ Photodiode

<— 10 11 Ll

Figure 2.10: The Recycled Michelson Interferometer with Fabry-Perot arms.
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Figure 2.11: The Michelson interferometer in the frontal modulation scheme.

where (¢ is the power gain for the recycling cavity.
It can be shown[13] that there exists an optimal value ro for the reflectivity of the recycling
mirror that maximizes the stored power. For this value
2 ! 2
"= | Vi | (2.71)

| Wo
pi + Py

where p¢ and pftf denote the power losses of the recycling mirror and of the interferometer
respectively. In order to maximize the recycling gain, it is therefore necessary to limit the mirror
losses as well as the interferometer losses.

2.4 The Frontal Modulation Scheme

A problem arises once the contrast C' < 1. In sec.(2.2.2), it was shown how, when C' < 1, the SNR
is maximized when the interferometer is operated slightly detuned from destructive interference.
As a consequence, the photodiode is sensitive to any power fluctuations of the laser source. In
order to be shot-noise limited, the relative power fluctuations AP/P must satisfy the condition

AP | hw
—_— —_— 2.72
P < 7]PC ( 7)

where Po = (Py/2) /2 (1 — C) is the power corresponding to maximal SNR with 1 — C' = 1074,
Py =500 W and 5 = 1. This leads to a requirement of AP/P < 10~'° /v/Hz. This condition is
too demanding for the low frequency region due to laser amplitude noise and 1/ f electronic noise.
However, by implementing a modulation-demodulation scheme, it is possible to shift the detection
from DC to the RF band (> M Hz).

Many alternative detection schemes have been investigated, such as the internal, external and
frontal modulation schemes[17]. All of them consist of phase modulation of the laser beam at
different positions in the interferometer. One of them, the frontal modulation scheme, deserves
particular attention. It consists of phase modulating the laser beam at the input of the interfer-
ometer and coherently de-modulating the output signal.

Let’s consider the simple Michelson interferometer shown in fig.(2.11). The phase modulator
consists of an electro-optical element that introduces two lateral frequency sidebands to the carrier.
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It is made of a crystal whose index of refraction changes according to an applied voltage. If the
incoming electromagnetic field Wyy is described by

Ury = Age'wo? (2.73)

where wg is the angular frequency of the laser beam and Ag its amplitude and if the applied voltage
to the modulator is of the form

V=TVye (2.74)

then the electromagnetic field after the modulator can be expressed as

\IIIIN — AO ei (wot + m sin2t) — AO Z Jn (m) ei (wo+nQ)t (275)

n=—oQ

where m is the modulation index and J,(m) are the Bessel functions. For values of m << 1,
eq.(2.75) can be approximated by keeping the first three terms of the sum

rn = Ao [Jo(m) el ot + Jy(m) e @ot Dt g (m)e (wo =D (2.76)
Assuming Ag = 1 and making use of the property
Jp = (=1)"J, (2.77)
the electromagnetic field entering the interferometer can be written as
U,y ~ Jo(m)e ot + Jy(m)el ot Dt _ g (1m) ¢ (wo — D)t (2.78)

By propagating \I!IIN just as in sec.(2.1), the electromagnetic field ¥p seen by the output
photodiode can be written as

Up =W+ Vel §_em 8 (2.79)
where
Ty = —Jo[exp[—i—iwoél/c]—l— exp[—iwgdl /] (2.80)
v, = —J1{exp[—i—i(wo—i—Q)él/c]—l—exp[—i(wo—l—Q)él/c]}><
xexp[+iQ(l +13)/¢]
v = —|—J1[exp[—i(w0—Q)él/c]—l—exp[—i(wo—Q)él/c]}><

xexp[—iQ(l + 1) /€]

and for simplicity 6l =1y — 1y, rps = tps = 1/\/5, ry = rg = 1, J;(m) = J; and a global phase
exp(iwo(ly + 13)/c) has been neglected.
The power seen by the photodiode is then

[ Up |2 = [ QP[0 P40 P+ (2.81)
—I—[\I!+\I!3—|—\I!0\I!*_}exp[i§2t] ¥ {\If_ Wy + o U | exp[—iQt] +
—|—{\IJ+\IJ*_} exp[2iQt] + {\IJ’;\I!_} exp[—2i0t]

and contains a lot of information. It consists of a DC component made up of the square modulus
of each frequency component and of modulated components at 2 and 2. The € component is
generated by the beating of the carrier with the sidebands and contains crucial information on
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the status of the interferometer, while the 2 component consists of the beating between the
sidebands.
By defining

5= Al + 61y, (2.82)

where Al = n A, n >> 1 being an integer and {4, << A being the gravitational wave perturbation,
it is possible to show

T, U4 WU |exp[iQt] + {\If_\lngr\IfO\Iﬁ; exp[—iQt] = (2.83)
Q
= 8.JoJy r1 7y sin( = Al) sin(2 22 6l,,) x
C C
Q Q
X {sin[—(ll—i—lg)]sith—cos[—(ll—l—lg)]coth
C C

In the presence of an asymmetry Al in the arms, the term sin(Q Al/c) is different from zero.
This allows us to observe, in the demodulated components at €, the term sin(2wq lgw/c) ~
2k 6lgy. This mechanism can be explained in the following way. As the interferometer operates in
destructive interference for the carrier, the asymmetry forces a leakage of the sidebands into the
photodiode. Any change of the optical path would bring the carrier out of dark fringe, forcing it
to beat against the sidebands.

Therefore, the frontal modulation scheme allows detection at RF where the electronic and
amplitude noise of the laser are weaker. Furthermore, such a scheme can also be used to control
the interferometer at low frequency as will be shown in the next chapter.
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Chapter 3

The Optical Resonator:
Response and Control

The objective of this chapter is to present and describe one of the key optical configurations for
gravitational wave interferometry: the two-mirror resonator or Fabry-Perot cavity. The optical
response of the outgoing electromagnetic (EM) fields to mirror movements will be given. In
particular, the following two cases have been treated:

e the EM response to longitudinal movements of the mirrors (along the beam axis) by assuming
a mode-matched laser beam to an aligned Fabry-Perot;

e the EM response to the angular mirror motion assuming a laser beam mode-matched and
resonating in the optical system.

Throughout the thesis, this optical system will be often referred to.
An outline of well-known methods for cavity control will follow, consisting of

e the Pound-Drever technique[44] for the longitudinal control;
e the Anderson[45] and the Ward[46] techniques for the angular control.

Beforehand, a brief description of laser beam theory and resonators is necessary in order to
fully comprehend the coupling of the incoming laser field with the optical system. It will be the
task of Ch.5 to apply what is here presented to VIRGO’s first optical configuration.

3.1 Propagation Modes of a Laser Beam

An ideal laser emits coherent and monochromatic electromagnetic radiation that can be expressed
by the electromagnetic field U(z, y, z). This function satisfies the wave equation

v? U(l‘,y, Z) + k? U(l‘,y, Z) =0 (31)

where k = 2w /A is the propagation constant in the medium. Eq.(3.1) has an infinite set of
solutions. One possible set of solutions for a light beam propagating along the z-direction consists
of the propagation modes Up, n(x,y,z) or TEM,,,, of order (m,n), which form a complete and
orthogonal set of functions. Any monochromatic light distribution can be expressed as a linear
combination of these modes.

The modes can be characterized in every point along the propagation axis by two parameters:
R(z) and w(z). The first describes the radius of curvature of the wavefront that intersects the
propagation axis, while the second parameter, with respect to the fundamental mode TEMqg,
gives the radius for which the amplitude of the field has decreased by a factor 1/e with respect to
the amplitude value along the propagation axis. Fig(3.1) shows the profile of a laser beam.
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Figure 3.1: The laser beam profile.

The transversal intensity distribution of the laser beam has a Gaussian dependence and its
radius w(z) contracts to a minimum wo known as the waist of the beam. The two parameters
R(z) and w(z) are determined by the waist size wo and by the distance z from the waist position,
where

wi(z) = wg {1—1— (ﬂ_/\;g)Z} (3.2)
W = <[re (5)

The beam profile, determined by the function w(z), is a hyperbola with asymptotes forming an
angle with the propagating axis of

Ooo = (3.3)

which defines the divergence of the beam.
It can be demonstrated that for a given wavelength A, waist wo and waist position zo (set to
zero for simplicity), the propagation modes Up, (2, y, z) are

Unnlo,0:2) = S0 H(V2 ) Hu(VE ) (3.4)
X ex —x2+y2—ik(x2+y2)—l Z — z
P w2(z) 2 R(z) (k2= mn(2))
where

e H;(x) stands for the Hermite polynomial of order j in «, where the first few Hermite poly-
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nomials are:

Hiy(z) = 2«
Hy(zx) = 4222
Hi(z) = 8z°—12«
® ¢mn(2) is the Guoy phase defined as
Gmn(z) = (m+n+1) arctan(/\z ) (3.6)
T w?
e and A,,, is the normalization constant
9 1/2
Amn = (2”+m n! m! 71') (3:7)

Referring back to eq.(3.4), it is worth mentioning that Uy, (2, y, z) is a function separable in
the x and y variables. This is helpful when dealing with alignment problems: the # dimension can
be treated separately from the .

The approximation of a real laser field with plane wave formalism has already been presented
in Ch.2. With eq.(3.4) it is possible to see the difference between the two. Obviously, they have a
different power distribution, one being Gaussian while the other is constant. The most interesting
difference is perhaps the phase difference ~:

B k’(l‘Z + y2)

TRE) + Gmn(2) (3-8)

V=

This arises from the Guoy phase, which depends both on the distance from the waist and the
eigenmode in consideration, as well as the radius of curvature of the wavefront. By considering
resonators with mirror curvatures coinciding with the beams’ fundamental mode, the problem can
really be seen as a plane wave incident to a plane mirror. In this case, the two formalisms are
identical.

Also, the propagation modes take the simplest form at the position of the waist. By setting
z = 0, the radius of curvature becomes R(0) = oo while w(0) = wo. The electromagnetic field
then takes the form

Unn9,0) = 222 1,(V2 ) 1,2 L) exp [ - ZH00 ] (29)

Wo Wo Wo wq

The Hermite-Gaussian modes are not the only solution to eq.(3.1). Tt is at times convenient
to treat the problem in polar coordinates[42] where the eigenmodes can be expressed as Laguerre
polynomials weighted by a Gaussian.

3.2 Geometrical Properties of Optical Resonators

The Fabry-Perot is the simplest of all optical resonators consisting of two partially reflective
mirrors, a distance d apart. Once the cavity is illuminated, its length has to be adjusted with
respect to the laser frequency, so as to allow a power build up. In this case, the reflected and
transmitted beams exhibit interesting properties that are here presented. The concepts of stability
and mode-matching are first introduced.
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Figure 3.2: The optical resonator and its optical axis.

3.2.1 Resonator Stability

Let’s define the optical axis of the cavity as the straight line perpendicular to the tangent planes
of the mirrors, as shown fig.(3.2) where the surface of the mirrors is denoted by My and M;. Let’s
also define a parazial ray as a ray with very small distance and angle, with respect to the optical
axis. The resonator is then said to be stable if a paraxial ray experiences a periodic focusing action
after an arbitrary number of reflections. It can be demonstrated[42] that this condition can be
expressed as

0<(1—Ri1)(1—i)<1 (3.10)

where Ry and Rg are the curvature radii of the mirrors in figure and d their distance apart.

3.2.2 Cavity Modes

The modes of a resonator are defined as a stationary field configuration. If a mode can be
represented by a wave propagating back and forth between the mirrors, the beam parameters
R(z) and w(z) must be the same after one complete return trip of the beam. This is valid under
the assumption that the resonator is stable and the mirror aperture is large compared to the beam
spot size.

Fig(3.3) shows a resonator made of two mirrors M; and M; of radius of curvature R; and R;
respectively, a distance d apart. These modes have a wavefront at the position of a mirror equal
to the radius of curvature of the mirror in consideration. The dimensions of the spot size, at the
position of the mirrors, is given[42] by

ARiN\? Ry —d d
4 = 3.11
o ( m ) Ri—d Ri+ Ry—d (3.11)

Wi (/\ R2)2 Ry —d d

> T /) Ry—d Ri+Ry—d
where the waist wg, shown in figure, is determined by
MN2d(Ri—d)(Rz—d) (R + R2—d)

o= (= 3.12
Wy (ﬂ-) (Ri+ Ry — 2d)? ( )
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d

Beam profile

Figure 3.3: The resonator mode.

and is positioned inside the cavity at a distance ¢; from M; and t5 from M5 given by the expressions

d (Ry — d)
t i e e 1
! R+ Ry —2d (3.13)
. d (R, — d)
2 Ry + Ry —2d

Therefore, the cavity is said to be mode-matched to an incoming beam, of wavelength A, if the
laser beam waist size and position coincide with that of the cavities.

In particular, the use of plane-concave cavities is common. Assuming M; to be a plane mirror
with Ry = oo, the waist size expressed in eq.(3.12) becomes

w = (%) d(Ry — d) (3.14)

and it will be positioned on the plane mirror Mj.

3.2.3 Resonance Condition

The laser beam is said to resonate inside a cavity of length d when the phase of light acquires 27
in a complete round trip. By using the convention that the beam acquires a 7/2 shift in reflection,
the resonance condition for a TEM,,, ,, 1s

kd — mn(d) = = (2¢ — 1) (3.15)

Nl S

where ¢ is an integer denoting the number of quarter wavelengths. Even though the R(z) and
w(z) parameters describe every mode, the resonance condition is different for each mode due to
the Guoy phase ¢mn(z). After some algebraic manipulation, it can be shown[42] that the mode
TEM,,, , resonant frequency v, , is

V:jO” = %(2(] - 1)+ %(m—i—n—l— 1) arccos\/(l - Ril)(l - }%) (3.16)

where vy = ¢/2d is the inverse of the light round trip travel time.
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Figure 3.4: The Fabry-Perot: notations.

3.3 Optical response of a Fabry-Perot

This section presents the optical response of the simple resonator, the Fabry-Perot cavity, to mirror
angular motions and along the beam axis. The longitudinal response is first presented.

3.3.1 The Longitudinal Response

The EM field dependence on longitudinal motions of the mirrors is described under the assumption
that

e the incoming fundamental mode of the laser beam is mode-matched to the resonator;

e the cavity is aligned to the incoming light beam, or, in other words, that the optical cavity
coincides with the beam axis.

Under these assumptions, the problem is simplified by describing the incoming light beam as a
plane wave incident to a plane-plane cavity, as shown in fig.(3.4). According to the notation in
the figure, the electromagnetic fields are

e the stored beam W,
31

W) = ey = A9 = o) ealia)  (B17)
e the transmitted beam W,
_ titpexp(—io/2) _ .
Ve(d) = 1 e s Ar(¢) = Ar(¢) exp(ior) (3.18)
e and the reflected beam W,
9 o
W(6) = i|rm + —2LEPZIO) T A (6) explion) (3.19)

1+ rirgexp(—i¢)

where

e r2 t? and p? are the power reflectivity, transmittivity and losses of the i-th mirror;

[ IR 1

e ¢ = 2k L is the propagation phase accumulated in a complete round trip where L is the
cavity length;
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Al(p)

Figure 3.5: The cavity stored power A? with its corresponding phase ¢, in the case r = 0.88
and r# = 0.99 and no losses.
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Figure 3.6: The transmitted power A% with its corresponding phase ¢z in the case ri = 0.88
and r# = 0.99 and no losses.
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Figure 3.7: The reflected power A} with its corresponding phase ¢g in the case r = 0.88 and
rZ = 0.99 and no losses.
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o A1 rr(¢) is the complex amplitude of the normalized stored, reflected and transmitted
fields, whereas A1 g 7(¢) is the modulo and ¢4 r7(¢) the phase of the corresponding fields;

e U, = 1is the incoming field.

Fig(3.5), fig.(3.6) and fig.(3.7) show the plots of the square modulo of the stored A2, transmit-
ted A? and reflected A2 fields, with their corresponding phases, as a function of the propagation
phase ¢. Notice that the curve in both fig(3.5) and fig.(3.6) delineate the Airy Peak [43]. For
the plots, no mirror losses were taken into account, with power reflectivities for the mirrors of
r# = 0.88 and r# = 0.99. From these plots and from eq.(3.17), eq.(3.18) and eq.(3.19), we remark
that

e the functions are periodic modulo 2 ;
e the resonance condition occurs at ¢ = (2n + 1) 7, where n is an integer, and in this case
i. power is built up inside the cavity:

| Wy(m) |2 >> 1

ii. the reflected power has a minimum, adding a phase of —7/2 to the reflected field (recall
that a mirror adds a 7/2 phase);

e the transmitted power Ar(¢) is proportional to the stored power A;(¢);

It is in condition of resonance that the cavity shows special properties. Not only is the power
within amplified but most importantly the reflected phase acquires a sensitivity to small length
perturbations. It is also interesting to remark that out of resonance, the cavity behaves exactly
like a mirror, reflecting all the power with a 7/2 phase shift.

By introducing the concept of finesse F, it is possible to simplify the expressions for the
EM fields and their properties. The finesse F is defined as the ratio of the distance of between
resonances and the full width at half maximum (FWHM) of a resonance. It can be shown that
the FWHM of a resonance is

1+ rfrf — 47“17“2})
27“17“2

1
FWHM = —— (271' — 9 arccos (3.20)

Hence, the finesse is

A2 T

F = -
FWHM 7 — arccos[ (1+ rZri —4rire)/(2r17r2)]

(3.21)

In general, the reflectivities of optical resonators are chosen so that 1 — 7y ro << 1. In this case,
it is possible to expand eq.(3.21) so as to find an approximate form for the finesse. This turns out
to be

Fo V2 (3.22)

1— 17y

The mirror reflectivities of optical resonators dealt with here, satisfy the condition 1 — r{ 7o << 1.
Therefore, throughout the thesis the approximate sign in eq.(3.22) will be replaced by the equal
sign.

The introduction of the concept of finesse simplifies the expressions. The stored power, whose
amplitude is expressed in eq.(3.17), can be rewritten in the form

1
L+ (2F/m)2sin?(¢/2)

| Wi(9) |*= G (3.23)
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where G is the gain in power defined as the ratio between the stored and incident power in condition
of resonance:

tf
(1 — 7“17“2)2

G

(3.24)

Often, the mirror reflectivities not only satisfy the condition 1 — 1 ro << 1, but also the condition
1 —ry >> 1 — ry. In this case, it can be shown that the relationship between the gain G and
the finesse F is

G~ — (3.25)

T

As already stated in Ch.2, the phase reflectivity of a Fabry-Perot plays a central role in inter-
ferometric detection. To first order approximation, it is possible to show that the phase change
induced by a perturbation of the cavity length 6 L around resonance is

ér(L + 8L) — ¢r(L) ~ 2kGSL (3.26)

3.3.2 The Angular Response

The angular response is here presented by assuming that the incoming field is mode-matched to
the resonator. It will be shown how a mirror misalignment generates a translation and rotation
of the optical axis with respect to the beam axis inducing a coupling to the first order transverse
modes.

The beam and optical axis

The optical systems that we will study consist of plane-concave cavities shown in fig.(3.8). This
section will limit the discussion to such a configuration, treating angles only in one dimension.

Fig.(3.8) shows two possible mirror tilts. A tilt of an angle 63, as shown in fig.(3.8a), of the
concave mirror My generates only a translation of the axis. The induced translation is

a = R sinf, (3.27)

where R is the radius of curvature of mirror My. The mirror tilt induces also a length change AL

of the cavity of

RO
2

AL = R(1 — cosby) ~ (3.28)

approximated for small angles.
On the other hand, a tilt of angle 6, of the plane mirror My, as shown in fig.(3.8b), induces a
rotation 0, of the axis as well as a translation of

a = (R — L)sinf; cost (3.29)
causing a cavity length change AL of

AL =(R—L)(1 = cosby) ~ w

In both mirror tilts, the length change of the cavity is of second order in the angle.

(3.30)

The incoming field in the two reference systems

Misalignment effects are studied by making use of the property that the TEM,, , modes of the
resonator form a complete and orthogonal set of functions. The incoming beam can then be
expressed as a linear combination of these modes. The modal expansion can be performed at any
point along the propagation axis. However, the analytical calculations are made easier
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Figure 3.8: The optical axis as a function of mirror tilts: (a) the curved mirror Ms is tilted
by 8- generating a pure translation a of the optical axis with respect to the input
axis and (b) the plane mirror is tilted by an angle 8, generating a translation a
and angle 6, of the optical axis with respect to the input axis.
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e when performed at the waist, since the expression of the modes becomes simplest, as shown

in eq.(3.9);

e by considering misalignments in one plane only, the expression of the modes are separable
functions in x and y;

e by making use of the approximation

a 0

— k1 — 1 3.31

. < 0 < ( )
where a and 8 are the translation and angle of the optical axis and wg and 6, are the waist
and divergence angle of the beam respectively. Second order terms of the expansion are
neglected.

Let’s first consider pure translations, as shown in fig.(3.8a). The two bases, defined by the
primed beam axis S* and the unprimed optical axis S, are schematically shown in fig.(3.9a). The

X
X X
Xi
| 2 Beam axis S z' Beam axis S
a /\(f .
— Z Opt. axis S z Opt. axis S
X =x+a X =Xx'c0s0-z'sin 0
z=17 zZ =X'sing+ z'cosH

(@) (b)

Figure 3.9: The reference systems defined by the beam axis S’ and the optical axis S: (a) pure
translation and (b) pure rotation.

transformation from one system to the other is simply
=2z +a 2=z (3.32)

In the 5 reference system, the incoming laser beam is seen as a pure fundamental mode, which
at the waist takes the form

A r'?
U, (2") = Ugo(z') = 200 exp{ — —2} (3.33)
W

wo

In the S reference frame, the incoming beam is

Uin(2) = Uz —a)= (3.34)
RN
2 2
= i—? exp {— z—g} exp {nga} exp {— Z;—g}

By making use of the approximation in eq.(3.31), a power expansion of the exponential term is
performed up to first order. This leads to

Uin(2) ~ 20 o {_ x—i} [1+ 2 lﬂ = (3.35)

wo wj wj

a
= Upol(z) + — Uro(¥)
wo
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Any pure translation of the optical axis generates an in-phase coupling with the transversal mode
Uio(x) by an amount a/wq.
Fig.(3.9b) shows schematically the beam axis S’ tilted by an angle 6 with respect to the optical
axis S. We would like to express the beam from the S’ base
Aoo l‘IZ
\Ijzn(l‘/) = UOO(l‘/) = w—o eXp |: - w—g i| (336)
to the S base. The transformation equations relating the two reference systems are

r = 2’ cos® — z' sin6 z = 2" sin® + 2’ cosf (3.37)

In this case, the phase and amplitude of the incoming beam need to be treated separately. The
projection of the amplitude of the beam to the transverse plane of the optical axis is

\Ijin ! 02

| Win(z) | 5

cos 0

consisting of a change in the second order in angle and will be neglected. However, the beam
acquires a phase a(z) of

alzr) =kxsind ~ kzo (3.39)

where the approximation in eq.(3.31) has been used. In the S reference system, the incoming
beam becomes

U (2) = Ugo(x) explia(z)] (3.40)
By power developing eq.(3.40), this becomes
.0

Pure rotations couple in quadrature phase with the transverse mode Ujg by the amount 6/6..
The difference with a pure translation lies in a /2 phase shift in the coupling.

s 4,
***** R b
S
M
1 6, 0, M>

Figure 3.10: Misaligned Fabry-Perot: translation a and angle 6 of the optical axis S with
respect to the beam axis S’.

In general, for the misaligned Fabry-Perot in fig.(3.10), an incoming beam in the S’ reference
system expressed as

U, (2") = Upo(z) (3.42)

is seen in the S reference system as

Ui (2) = Upo(z) + (wio + z%) Uro(z) (3.43)

It is worth noticing that for the calculations here shown, the normalization factors have been
neglected because of their dependence only on second order terms.
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The transmitted and reflected beam of a misaligned cavity

Now that the expression of the beam in the optical base has been found, we are able to describe
the response of the cavity, or how the transmitted and reflected beams look as a function of the
misalignments.

By referring to fig.(3.10), the incoming beam expressed in the S frame is shown in eq.(3.43).
The reflected beam ¥, in the § frame is

U, = AR Ugo(x) + (— n ZQ)A Uso() (3.44)

where A% and A} are the complex reflectivity of the Fabry-Perot [eq.(3.19)] for the fundamen-
tal mode and the first transverse mode respectively. By performing a power expansion of the
fundamental mode, it is possible to map back the field to the S’ frame. The reflected beam is then

b= A [l — (S =D ) Ul + (i) AR U (345)

Wo 900 000

In the same way, the transmitted field in S is

a
\Ift = .A%O Uoo(l‘) + (w—o + Za) .A UlO( ) (346)
which transformed back to S’ becomes
/' _ 400 n_ ({2 i ' a v
W = AP [ Uno() (wo + zaw)Ulo(x)} + ( + zaoo)A Uro(+') (3.47)

It is important to recall that once the fundamental mode resonates, the first order transverse mode
anti-resonates. In this case, by referring to fig.(3.6), A¥ ~ 0 and eq.(3.47) can be approximated
as

W = — AP [Uoo(x’) - (i + ii) Ulo(x’)} (3.48)

wo 000

3.4 Longitudinal Locking: The Pound-Drever Method

In order to make use of the properties of the resonator, the fundamental eigenmode of the laser
beam must resonate in the cavity. Laser frequency fluctuations, together with any mirror displace-
ment noises, do not allow the beam to optically resonate. The Pound-Drever[44] method allows
the stabilization of the cavity length to the laser source.

In VIRGO, the frontal modulation technique, presented in Ch.2, is used not only as a detection
scheme but also as a means to longitudinally control the position of the mirrors. In particular,
the Pound-Drever method consists in phase modulating the incoming beam, as shown in sec.(2.4)

e with both sidebands anti-resonating in the cavity

e while using the demodulated component of the reflected beam as an error signal useful for
the cavity lock onto the laser frequency.

Assuming that the beam is mode-matched to the Fabry-Perot and that the cavity is aligned,
we can study again the problem with the use of plane waves and a flat-flat cavity. Let a normalized
modulated beam, of the form

Wi = Joei 90ty el (o + D)t _ g i o - )t (3.49)

impinge on the cavity, where Jo 1 is the amplitude of the carrier and sidebands and /27 is the
modulation frequency. By neglecting the global phase wg ¢, the reflected field is

Up =Ty 4+ U e 4 §_e 100 (3.50)
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Figure 3.11: The Pound-Drever error signal of a Fabry-Perot with 7 = 0.88, r4 = 0.99 (no
losses) as a function of cavity length (modulo X). Top: transmitted power in DC.
Middle: reflected in-phase signal. Bottom: reflected quadrature signal.

The power of the reflected beam is then
| UR|? = [Wo "+ [V [P+ |¥y P+ (3.51)
+{\I!+\I!3+\I!0\I!t}exp[i§2t] ¥ {\If_ W+ o U | exp[—i Q1]

where the 2Q components have been neglected. The modulated components holding the signal
for the length control can be re-written in simpler form as

\y+\p3+\powt}exp[im] + {\I!_\Ilg—i—\llo\llj_}exp[—i()t]: (3.52)
- 2%{(\p+\p3+\powt)exp[im]}:
= 2R{UL U+ ToU” }cosQt — 23{ Wy U5+ ¥ U™ } sin 2t

where £{} and I{} denote the real and imaginary part of the argument within parentheses.
The properties of the demodulated component ®{ ¥ ¥ + o U* }, referred to as the in-
phase component, and S{ W, U§ + ¥ ¥* }, referred to as the quadrature component, can be

48



T e S e 443 LAV LLA A A LA AL AV /L &

physically understood as follows. Once the carrier is kept in resonance, both sidebands anti-
resonate. Even though both the carrier and sideband amplitudes are reflected by almost the same
amount, their phase change is different. The carrier gains a —m/2 phase shift while both sidebands
gain, approximately, a /2 phase shift, as seen in fig.(3.7). A length perturbation around resonance
induces a phase change for the carrier only. This change generates a beating between the carrier
and the sidebands which is at the origin of the error signal.

In fig.(3.11), the plot of the demodulated components of a Fabry-Perot with »# = 0.88, rZ =
0.99 and no losses as a function of length is shown. The modulation frequency is /27 = 6.28
MHz. The DC transmitted power is also given to indicate the resonance location. It is important
to notice that the in-phase signal is linear around resonance. A control system would then use
such a signal to correct the cavity length. It can also be seen that the linearity is limited by the
FWHM of the resonance:

FWHM = (3.53)

A
2F
3.5 Automatic Alignment

We have presented the longitudinal response of the resonator as well as the Pound-Drever technique
to stabilize the cavity length to the laser source. In the same way, this section presents two methods
for the alignment of a Fabry-Perot. These are the Anderson and Ward techniques.

3.5.1 The Anderson Technique

This method[45] is based upon phase modulation of the incoming beam at a frequency equal to the

frequency spacing between the TEMyg and TEMg determined by the geometry of the resonator.

As a consequence, the TEM1g of one sideband resonates at the same time as the TEMgq of the

carrier. Unlike the Pound-Drever technique, the error signal is taken from the transmitted beam.
Assuming an incoming beam of the form

Win = Jo Uso + J1Usoe' " = Jy Upge™ (3.54)

where /27 is the modulation frequency, then, by referring to eq.(3.48), the transmitted beam
takes the form

U, = —iVGiy x (3.55)

a 0 a 0 :
X | JoUoo — Jo (— + l—) Ui + N1 (— +i—) Uloelm}
wo O wWo 0o
where G is the cavity gain factor, ¢5 is the end mirror amplitude transmittivity and the sideband
term at —{2 has been neglected. By taking the square modulo and neglecting second order terms
in the misalignments, the demodulated components are

2.J1.Jo Uoo Uo | (= ) cos @t — (i)sith} (3.56)
Wo 000

It is possible to retrieve information for the alignment of the cavity from the demodulated compo-
nents. In particular, the quadrature component holds information only on the tilt of the optical
axis whereas the in-phase component holds information only on the translation of the axis. The
in-phase and quadrature signals give orthogonal informations for the alignment. The drawback of
this method is the constraint on the modulation frequency.

3.5.2 The Ward Technique

The Ward method[46] differs from the Anderson by taking the signal on reflection, not demanding
the sidebands to resonate. The analytical expressions are rather complicated and we will limit
ourselves only to an outline of the calculations.
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Figure 3.12: The quadrant photodiode.

Assuming an incident beam of the form
Ui = Jo Ugo + J1Uooe' ' — Jy Upge™ (3.57)

where /27 is the modulation frequency, the reflected beam can be written as

U, = JoWleiwnt 4 Jy el ot @t _ g gl (wo- )¢ (3.58)
where
0 _  _ :_i¢oo(2) _ . 0 i $oo(z)
W= e {UOO + ( ot zaoo)Uloe }+ (3.59)
a 0 .
o P i ¢oo(2)
¢ (wo + ZHOO)Uloe
vt o= wo

Here, the Guoy phase ¢go(z) has been put in evidence and all amplitudes in reflection have been
approximated to unity. The square modulo of this expression leads to the following modulated
components

Jo J1 Uso Ut [ (ai) cos[oo(2)] + (wi) sin[d)oo(z)]} sin Q¢ (3.60)

o0 0

Unlike the Anderson method, information on the rotation and translation of the optical axis
comes from just the quadrature component with the mixing determined by the Guoy phase ¢go(z).
In particular, the translation term is given by the coefficient of sin[¢oo(z)] whereas the angle is
given by the cos[¢go(z)] term.

The information on misalignment mixing depends upon the Guoy phase in which the observa-
tion is made. An optical telescope placed in front of the photodiode could adjust the phase. The
main drawback is that in order to optimize the measurement, two photodiodes, one placed at a
Guoy phase ¢ while the other at ¢ + 7/2, would be necessary. At the same time, the method
offers the advantage of releasing the restraints on the modulation frequency.

3.5.3 The Quadrant Photodiode

Both with the Anderson and the Ward technique, a photodiode monitoring the power of a beam
integrates on the transverse plane of the beam. However, the product Upg(x) x Uyo(x) is an odd
function of = and its integral is zero. A special photodiode, capable of integrating on the half
plane, is therefore necessary. The quadrant photodiode, schematically shown in fig.(3.12), is able
to integrate on the quarter plane. The sum of the signals coming from quadrant 1 with 2, 2 and 3,
3 and 4, and 4 and 1, give the power in the four half planes. By taking the difference between the
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half planes horizontally and vertically, it is possible to recuperate the coefficient of the product
Ugo(x) x Ug(z). In particular, it can be shown that

/OOO Uoo(l‘) Ulo(l‘) dl‘ — / Uoo(l‘) Ulo(l‘) dl‘ = z (361)

oo T

51



RESPONSE AND CONTROL

52



Chapter 4

The VIRGO Project

The VIRGO project, supported by the Ttalian Istituto Nazionale di Fisica Nucleare (INFN) and
the French Centre National de la Recherche Scientifique (CNRS), is a gravitational wave antenna
to be built in Cascina (Pisa, Italy). Tts objective is to directly detect gravitational waves and,
in collaboration with other detectors, to perform gravitational wave astronomy with a planned
sensitivity of h = 10~2!/v/Hz @ 10Hz and h = 3 x 10~23/y/Hz @ 500Hz.

This chapter describes the VIRGO detector, and in particular the optical configuration im-
plemented, the suspension system for the mirrors, the laser system, the tube, the vacuum system
and the foreseen sensitivity.

Particular attention is then given to the Global Control system. Its task is to monitor and
supervise three phases: the acquisition of lock, the linear locking regime and autoalignment. An
outline of the specifications for such a control is given as well as the software and hardware
architecture of the system.

4.1 The Optical Configuration

The optical configuration of VIRGO consists of a Michelson interferometer with Fabry-Perot arm
cavities [fig.(2.10)] with the following characteristics;

i. both Fabry-Perots of length I = 3 km and finesse F = 50;

ii. a recycling cavity of length I, = Iy + (%)(11 + l2) = 12 m and recycling gain Gree =
(2Fpec)/ ™ = B0;

iil. an arm asymmetry of Al = [; — [; = 0.8 m;

The laser source will develop P = 20 W of light power in the fundamental mode to limit the
equivalent shot-noise spectral density to

1 hw 1
chot = ~ 1072 — 4.1
T 2k (2F[m) L\ 9Grec P VHz 1)

where A = 1.064 ym is the laser light wavelength and n = 0.85 is the photodiode efficiency.
However, this performance is obtained only with the use of very low loss mirrors. By defining the
coupling factor

>

£7 (4.2)

T

p

where £ denotes the Fabry-Perot losses, it can be shown[13] that eq.(2.62) holds only in the case
of an under-coupled cavity, i.e. p << 1. Reasonable mirror losses of ~ 2 x 107° guarantee such
under-coupling.
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Furthermore, it can be shown[13] that the stored power in the recycling cavity is maximized
as the recycling mirror reflectivity r¢ satisfies the condition

rg = (1 =p5) (1= pis) (1= p) (4.3)

where pg denotes the power losses of the recycling mirror and p2¢ the power losses for the beam
splitter. This condition leads to optimal recycling, with a recycling gain G, inversely proportional
to the total interferometer losses L;;y

1

Groe =
rec [ritf

(4.4)

The desire for under-coupled Fabry-Perot cavities with a recycling gain inversely proportional to
the total losses demands the use of mirrors with losses lower than 10ppm.

Light is forced to make many passages in the optical substrates. For this reason, the quality
of the optical components for VIRGO are on the limit of today’s technology. Therefore, the
substrates, and in particular those for the front mirrors of the Fabry-Perots and the recycling
mirror, need to be extremely pure, with low diffusion and low absorption. Furthermore, the
coatings must withstand large light power (~ 1kW in the recycling cavity) as well as a constraint
on the surface deformation of less than ~ A/100.

The modulation frequency for the locking and detection scheme has not been defined to date
but will lie in the frequency rage 6 — 18 MHz. It has been shown[26] that for a given modulation
frequency €2, the value of Al for which there is maximal sideband leakage at the dark fringe port
is

cos (%) = 1o ritf(wo £ Q) (4.5)

C

where it (wo = Q) is the reflectivity of the interferometer for the two sidebands.

4.2 The Beam Source

The laser system is conceived to produce and adapt the beam to the interferometer. It consists of
a laser source, an input bench and a mode-cleaner designed to provide light in the fundamental
mode while fulfilling the specifications on the output power, the frequency and power fluctuations
and beam jitter.

4.2.1 The Laser System

The chosen light source is a Nd:YAG laser of wavelength A = 1.064 pm with an output power of
20 W in the fundamental mode. It has been preferred over other sources, such as Argon sources,
for its frequency and geometrical characteristics. To date, VIRGO has conceived and developed
a 10 W mono-mode laser that will be used for the central area interferometer (CITF). The 20 W
laser could be realized by phase locking two 10 W twin lasers.

The power comes out of a Nd:YAG slab, referred to as slave laser, which is pumped by a set
of ten laser diodes phase locked, referred to as injection locking[19], to a commercial 700 mW
Nd:YAG laser, known as the master laser. The optical cavity, within which the slab is placed,
consists of four mirrors in a bow-tie configuration. This configuration has been chosen so as to
optimize laser power with frequency characteristics.

4.2.2 The Input Bench

The input bench is an optical bench placed in vacuum, suspended by a superattenuator. It is
made of three main components which need to be seismically and acoustically isolated:

e the input and output mode-cleaner mirrors;
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Figure 4.1
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e the telescope adapting the beam from the mode-cleaner to the interferometer;
e the frequency pre-stabilization cavity rigidly attached to the bench.

The beam propagation is schematically shown in fig.(4.1). A pick-up plate is positioned along
the output beam path. The plate reflects the beam from the laser source, sending it to the pre-
stabilization cavity, along with the beam coming back from the interferometer. Both of these
reflected beams are used for the frequency stabilization of VIRGO, see [24].

The beam transmitted by the plate is sent to the input mode-cleaner mirror. The light resonates
in the cavity and is transmitted through the output plane mirror. An optical telescope then adapts
and positions the beam waist to the input mirrors of both Fabry-Perot cavities.

4.2.3 The Input Mode-Cleaner

The Mode-Cleaner is a triangular cavity, 144 m long and with a finesse of F = 1000. Its function
is to filter the beam defects as well as the position noise. It consists of three mirrors: the two plane
mirrors, input and output, located on the input bench, and a third concave mirror, suspended by
a superattenuator located in the mode-cleaner tower.

All input geometrical beam fluctuations are seen by the mode-cleaner cavity axis as a linear
combination of transverse modes. The main characteristic of the cavity is that once the funda-
mental TEMgg mode resonates, the higher order modes are all reflected back to the laser source,
thus allowing the transmission of only the fundamental mode. The cavity acts as a spatial filter.
A discussion of the mode-cleaner prototype, developed at LAL in Orsay, will be given in Ch.6.

4.2.4 Laser Source Requirements

The requirements on this system are indeed demanding. The presence of asymmetries in the two
arms, such as the arm difference AL and finesse difference AF, make the interferometer output
sensitive to frequency fluctuations dv. The equivalent spectral density noise can be simplified as
~ ov r AL AF
hoy = 2 (55 + =) 4.6
dv B I + T ( )
where F is the average finesse, L is the arm length and v the laser frequency. To prevent intro-
duction of noise in the foreseen sensitivity curve h, the laser needs to satisfy the condition

v h
Y < (4.7)
v (AL /L + A]—"/]—")
which, by assuming a total asymmetry of 1%, results in
v < 107* [Hz/VHz2] @ 10H> (4.8)
v < 107% [Hz/VH:z] @ 500Hz

Such requirement is met with the use of two control systems in cascade. The first consists of
a pre-stabilization rigid cavity able to bring the fluctuations down to the §o < 10=*[Hz/vHz]
level. The second, instead, makes use of the interferometer itself as a reference. For an in-depth
treatment refer to [24].

Furthermore, the RMS motion of the differential mode Al causes an offset that couples with
power fluctuations. By indicating with (/;0 the spectral density phase change induced by the residual
motion of the differential mode, the equivalent spectral density phase change can be written as

o

J

¢ = — o (4.9)

3|
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where P is the laser power and P its spectral fluctuations. By requiring shot-noise sensitivity,
the power fluctuation with the differential motion must satisfy the condition

~ hv 6P
po < ap! T (4.10)

The requirements on the power fluctuations have been set to
< 3x107° [I/VHz] @ 10Hz (4.11)

< 3x1077 [1/VH:] @ 500Hz

~[30s[=%

4.3 The Detection Bench

The main objective of the detection bench system is the measurement of dark fringe light power
after an improvement in the contrast C. It will also

e separate the two output beams coming from the interferometer: the dark fringe and the
reflected beam off of the second face of the beam splitter;

e adapt the beams;
e spatially filter the dark fringe so as to increase the contrast;
e perform the photodetection and signal treatment.
In order to fulfill these functions, a series of subsystems are necessary:

e a suspended optical bench, installed in the detection tower, in order to attenuate the acous-
tical noise and on which the following components are placed:

— a mode-cleaner, shown in fig.(4.1), consisting of a triangular cavity, maintained in
resonance, for the spatial filtering of the dark fringe;

— an optical telescope for adapting the size of the beam to the mode-cleaner and to the
photodetectors;

— an optical system for the alignment of the bench in order to be able to follow the
secondary beam;

e an external optical bench where all the photodetectors are situated;

e an amplification, filtering, demodulation and sampling system of the signals from the pho-
todetectors.

4.3.1 The Output Mode-Cleaner

The mode-cleaner, of which a prototype has been developed and tested at VIRGO LAPP[25],
consists of a monolithic triangular cavity of finesse 50 and length 3 cm, as shown in fig.(4.2).
Its function is to improve the contrast defect generated by an asymmetry in the interferometer.
The dominant phenomenon at the origin of the contrast is the wavefront deformation due to
imperfections in the optical components. The wavefront defects generate the presence of high
order modes in the beam. The property of the output mode-cleaner, just as the input one, is to
transmit only the fundamental mode. The expected contrast defect after the filtering is

1-C~10"" (4.12)
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Figure 4.2: The output mode-cleaner with the propagating beam. All units in mm.

Figure 4.3: Left: the configuration of the 16 photodiodes needed for the photodetection of the
dark fringe. Right: three dimensional view of a photodiode support.

4.3.2 The Photodiodes

The main function of the bench is photodetection and it must have
e a bandwidth larger than tens of MHz if the modulation frequency is of the order of MHz;
e a high quantum efficiency @ 1.064pm;
e the capability of detecting power of the order of 1 W.

By limiting the power on a photodiode to 100 mW, a set of 16 photodiodes is necessary for
detection. The chosen configuration is shown in fig.(4.3).

4.4 The Superattenuator

None of the interferometric detectors under construction around the world implement a suspen-
sion system as sophisticated as VIRGO’s superattenuator. It consists of a system of mechanical
oscillators conceived so as to reduce the test mass movement down to 3 x 1078 [m/vHz], cor-
responding to an equivalent strain of hyis = 10_21[1/\/E] @ 10 Hz. This is a critical frequency
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region due to an expected abundance of gravitational wave sources, such as pulsars and coalescing
binaries[7].

The superattenuator is made of a pre-isolator stage integrated with a chain of five pendula and
is shown in fig.(4.4). Tt is designed so as to limit the resonant frequencies within a few Hertz, thus
producing an attenuation of more than 1071° above 10 Hz.

However, a chain of pendula does not attenuate the vertical and angular degrees of freedom.
Due to the unavoidable mechanical couplings, these vibrations partially shift to the horizontal
motion of the test mass. It is for this reason that the isolation system must attenuate in all
degrees of freedom.

4.4.1 The Mechanical Filter

FEach pendulum in the suspension chain is referred to as a mechanical filter and is shown in
fig.(4.5) and fig.(4.6). Tt consists of a rigid steel cylinder suspended to its center of mass, designed
to attenuate in the vertical, horizontal and angular degrees of freedom[33]. Tt is connected to the
others via a steel wire 1.15 m long generating a resonance frequency at 0.46 Hz. The whole chain,
once assembled, is about 9 m long.

Vertical attenuation is obtained by a set of converging triangular blade springs whose tips
are attached to a vertical column capable of moving only in the vertical direction, as shown in
fig.(4.6). The lower stages are then attached to this column. These blades are pre-bent so as to
return flat and horizontal once they are loaded. In this way, the chain acts not only as a system
of five pendula in the horizontal direction, but also as a chain of serially coupled oscillators in the
vertical direction as well. However, the lowest resonant frequency of the blades lies around 1.5 Hz,
which is above the pendulum resonant frequency of 0.45 Hz. A system of magnetic anti-springs is
used to reduce the vertical stiffness of the blades in order to displace the main vertical resonant
frequency of each filter below the pendulum one. In this way, the detection band will be limited
by the horizontal motion of the chain and not by the vertical ones.

The anti-spring system[33] consists of two permanent magnets facing each other with opposite
horizontal magnetic moment and constraint to move in the vertical direction. Once the magnets
are perfectly aligned, the repulsive force has a null vertical component. However, once a magnet
moves away from this unstable equilibrium point, a repulsive force appears along the vertical axis.
This generates a resonant frequency fy for a vertical oscillator of the form

1 1 &
21 /m d

where d is the distance between the magnets, Fj is the repulsive force modulo, k£ the elastic
constant of the blade springs and m the mass of the oscillator. By choosing appropriate values for
Fy and d, the resonant frequency is lowered to 0.4 Hz.

The chain acts as an angular attenuator as well. The filters are designed with a large moment
of inertia and short lever arms between the two points where the wires are attached. Also, the
two attachment points, which can be seen in fig.(4.6), are connected as close as possible to the
filter center of mass. This design leads to tilt mode frequencies below 1 Hz. Furthermore, the
low angular spring constant of the small diameter steel suspension wires lead to very low angular
frequencies around the vertical axis.

Jo = (4.13)

4.4.2 The Pre-Isolator stage

The pre-isolator stage consists of three rigid columns, each connected to the ground through a
flexible joint, and supporting a table. On the table-top lies a modified filter, named filter 0, acting
as a vertical attenuator. This system forms the pre-isolator stage and can be seen in fig.(4.4). The
chain of mechanical filters is then suspended from filter 0.

There are many advantages in the use of such a system. To begin with, assuming an elastic
constant & for the joint and a length L of the inverted pendulum, the resonant frequency fo for
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Figure 4.4: The superattenuator.
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Figure 4.5: The mechanical filter: perspective view. Notice the twelve triangular blades.
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Figure 4.6: The mechanical filter: side view. The movable sections are shaded.
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Figure 4.7: The calculated transfer function of the pre-isolator stage with a chain of five me-
chanical filters.

this oscillator is

o=y 22 (4.14)

where M is the load of the system. By properly tuning the parameters &, L and M, it is possible
to shift the resonant frequency to a lower value, which is foreseen to be 30 mHz.

Secondly, this stage provides a movable suspension point for the superattenuator chain. Very
low frequency ground motion may drift the mirror position (~1 mm) with respect to ground, once
the interferometer is in operation. The inverted pendulum would then offer the possibility for
the control of the suspension point. Furthermore, the system requires low forces in order to be
controlled. Below its resonance frequency fg, the force needed to displace the load of mass M a
quantity dz is

F~ Muwj i (4.15)

This means that for a load mass M = 1 ton, frequency fo = 30 mHz, only 0.36 N are necessary
in order to displace the suspension point of 1 cm.

A prototype[23] of the pre-isolator stage has been constructed in Pisa with promising results.
Fig.(4.7) shows the calculated transfer function for a pre-isolator stage with a chain of five me-
chanical filters. The overall attenuation factor at 10 Hz is about 10715,

4.4.3 The Marionetta and Reference Mass/Mirror System

The last filter, known as filter 7, suspends the marionetta, the final stage supporting the mirror.
It has been designed so as to steer and align the test mass once the interferometer is operative. It
consists of a cross structure from which are suspended two wire loops holding the mirror and the
reference mass. From filter 7, forces are applied so as to control the residual motions of the test
mass up to 10um in the frequency band 0.1-1 Hz without injecting noise into the system.

High frequency control (> 1 Hz) is performed with the reference mass. Four coils are mounted
on the reference mass facing the four magnets placed on the mirror, thus allowing a fine control
of the test mass once the interferometer is running.
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4.5 The Vacuum System

Any gas density fluctuations in the volume of air through which the laser beam travels induce
fluctuations in the index of refraction, therefore causing a phase change in the electromagnetic
beam. In order to limit such variations, the interferometer is operated under vacuum.

beam splitter input mirror (north)

X ?/

input mirror (west)

. end mirror (north)
detection N

A
<«—— end mirror (west) \

@

mode

cleaner >

Figure 4.8: The vacuum system.

The vacuum system, as shown in fig.(4.8), is divided in two parts: the tube and the towers.
The tube contains the propagating beam and is made of 15 m sections of 1.2 m in diameter,
connected to each other by bellows and resting over special supports so as to allow dilation of the
material during the baking procedure and dilation due to daily and seasonal temperature changes.

By requiring the noise fluctuations in the refractive index to be a factor 10 below the dominating
noises, the limit for gas pressure is required to be 10~7 mbar. However, other considerations, such
as the monitoring of mirror cleanliness and vacuum control lead to the design values:

e 1072 mbar for hydrogen;
e 1072 mbar for hydrocarbons;
o 107 ' mbar for the other gases.

The tube is also equipped with baffles designed to trap stray light. Any mirror imperfection
would scatter light which would then be reflected by the vibrating pipe walls. If any of these
reflected photons recombine with the main beam, a phase noise would arise. Such light traps,
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made of an absorbing steel and shaped as truncated cones, are designed to absorb these spurious
photons, thus avoiding their recombination with the main beam [34].

The towers hold the superattenuator and, due to the presence of a large number of devices and
cables that outgas, will be maintained at a lower pressure with respect to the tube. A separating
roof divides the ultra-high-vacuum of the tube from the 10~ mbar pressure of the towers.

4.6 Foreseen Sensitivity of VIRGO

The thermal noise of the last stage suspension consists of three contributions:
1. the pendulum mode, dominant in the frequency region below 50 Hz;

2. the mirror internal modes, with resonances in the frequency range above 5kHz but with a
significant tail contribution in the 50-500 Hz frequency range;

3. the violin modes, dominant in the intermediate frequencies, above 300 Hz.

An estimate of the noise contributions, performed by [21], resulted in

. 5x 10719

hpend = W [1/VHz] (4.16)
for the pendulum thermal noise for frequencies up to 50 Hz, and

. 6 x 10722 —

for the mirror internal noise dominating in the frequency range between 50-500Hz.
The foreseen sensitivity curve for VIRGO is shown in fig.(4.9) with the contributions from the
different sources of noise. The fundamental contributions are

e the seismic wall expected at 2 Hz;

e the Newtonian noise, contributing below 10 Hz, generated by low frequency mass density
fluctuations which induce a stochastic gravitational field that couples directly to the mirrors

(see [22]);

pendulum thermal noise expected to dominate the frequency region between 10 and 30 H z;

mirror thermal noise which dominates between 30 and 500 H z;
e shot noise dominating above 500 Hz.

The peaks present above 300 Hz are due to the violin mode resonances and their harmonics,
whereas the first mirror internal resonance is found at 5 kH z. The peak found at 7 Hz is thermal
noise associated to the main mode of the marionetta-mirror system.

4.7 Online/Offline Activities

The activities around the electronic output of all the sensors of the interferometer can be classified
in the following way:

e online activity, concerning

— interferometer control;

— the acquisition, processing and monitoring of data produced by the sensors and the
control processes;
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e offline activity, whose main objective is the analysis of the collected data for the extraction
of possible gravitational wave events;

e and simulation activity, for the study of the interferometer response to noise sources and
excitation due to gravitational wave radiation.

In particular, the fundamental requirements for the online system are:
e a data acquisition with a sampling frequency of 20 kHz;

e a real time control performed at 10 kHz with fast processes involved;

full data archiving;

data quality check;
e data selection for particular gravitational wave sources.

Most of the signals produced by the different sensors around the detector are locally processed
to compute and correct the local system in question within a given set of tolerances. The local
suspension control and the vacuum system, to name a few, are examples of such local systems. A
higher level control system, referred to as Global Control, guarantees the proper functioning of the
interferometer by monitoring and acting upon both the laser system and the suspension system.
This system is the subject of the section to come.

As an apparatus, VIRGO is composed of subsystems that have to run either on their own or
as correlated components. All the subsystems are controlled and operated through the Supervisor
Control System. Its main function is to keep track of, request, allow or inhibit modifications of
the status of the various components of the interferometer in order to drive and maintain VIRGO
in its functioning state. It is intended to provide the overall user interface with a graphic display
of the status of all VIRGO components.

Also, the architecture of the control and read out systems must take into account the large
distances separating the components. The controls must then be synchronized to a central Timing
System: the knowledge of the precise timing of the various measurements and actions performed
around the detector is of key importance.

The data produced by the sensors, as well as the corrections applied to the systems, are
referred to as raw data and are collected and structured by a Frame Builder. A frame is a unit
of information which records the detector behavior over a finite time interval, typically 2s. Each
frame, organized as a C structure, consists of two sets of structures:

e all the raw data collected by the sensors;

e the online processing containing the reconstructed data set [t,h(t)] with the necessary aux-
iliary information.

The Raw Data Archiving System collects and stores all the frames produced by the Frame Builder.
These data are necessary for a possible reprocessing due to an improvement of the off-line data
analysis. The expected data flow rate is about 100 Gbyte/day and it will be archived.

The Online Data Quality task will survey constantly the quality of the produced data. Tt
uses the signal induced by the calibrators and the environment monitoring, and runs data quality
algorithms, thus providing a real time quality check. The corresponding information is stored in
the data storage system to allow further data selection.

A Data Selection is necessary in order to reduce the amount of data for analysis. The goal
would be a reduction in size of more than one order of magnitude. Trigger algorithms looking for
burst events, such as binary coalescences and supernovae explosions, are necessary and the event
candidates will be selected using simple and robust search algorithms.
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4.8 Global Control

One of the main subsystems within VIRGO, Global Control enables and foresees the proper
functioning of the interferometer. In particular, its tasks are:

1. acquisition of lock or non-linear locking whose objective is to bring the mirrors from their
free running motion to a regime where the linear locking algorithm can be applied;

2. linear locking, the process that maintains the interferometer in operation by keeping

i. light resonating in both Fabry-Perots as well as the recycling cavity;

ii. a condition of dark fringe at the output of the interferometer;
3. autoalignment for the mirror angular control;

The objective of this thesis is the study of both the autoalignment and the acquisition of lock for
the first phase of the VIRGO project, called the central area interferometer (CITF) which will be
described in the next chapter.

4.8.1 Specifications

It has been shown how the superattenuator filters ground vibrations according to the transfer
function shown in fig.(4.7). The residual motion will be concentrated below 1 Hz and in particular
at the inverted pendulum frequency of 30 mHz, as shown in fig.(5.6a) and fig.(5.6b). The motion
amplitude estimated is of the order of ten times the wavelength of light. A local damping control
will be able to reduce such oscillations down to an amplitude of one wavelength. However, such
damping will not be able to reach the requested precision. It is the task of the linear locking
scheme to control the mirrors to within the specifications.
For the correct behavior of the interferometer, the following RMS conditions must be met:

1. by denoting with L the length of one of the Fabry-Perot, the length fluctuations é L of both
cavities must satisfy the condition

1 A _4
6L<EE =5Hx107" A (418)
where F is the finesse of both Fabry-Perots and A the laser light wavelength. This condition
is due to the requirement that the fluctuations be one tenth of half width at half maximum

(HWHM) of the resonance peak;

2. by defining [, as the recycling cavity length, its fluctuations §/, must satisfy a similar con-
dition:
2
3y + 2 (i)aL < 8x 1075\ (4.19)

T

3. any phase offset ¢,;rser from complete destructive interference couples directly with laser
power fluctuations. To be shot-noise limited implies the following condition

2F hv 6P,
offset = 2k | — (0Ly — 0L Al — [ — 4.2
Gogpee = 2k [ T (8Ly = 0La) + Al <[5/ (4:20)
which leads to
2
—j: (6L — 0L )+ Al < 107% X (4.21)
T

where Al is the Michelson arm length difference.
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Furthermore, it has been shown[26] that the maximum residual displacement tolerated for
VIRGO with a sensitivity of a third of the required sensitivity, i.e.

- 1 —21

W= 03 [1/VEZ] @ 10Hz (4.22)
_ —23

ho= % [1/VHZ] @ 500z

leads to the following conditions for the spectral density linear displacement of the mirrors:

@ 10 Hz | @ 500 Hz

Fabry-Perot Mirror (m/vHz) 10-18 3x 10720

Beam Splitter (m/vHz) 3x 10717 | 9x 1071

Recycling Mirror (m/vHz) | 3x 1071° | 8 x 10717

4.8.2 RIOT

The processes involved for the Global Control functionalities are located in the RIOT crate,
shown in fig.(4.10) and whose acronym stands for Real tTme glObal conTrol, placed in the Central
Building of VIRGO. RIOT will collect the signals coming from the various photodiodes around
the interferometer, interpret them so as to compute the necessary corrections and send orders to
the suspension and laser systems.

The functionalities are split into two types:

e the processes involving an action on the optical components, referred to as action processes:

— Longitudinal Locking (10 kHz):
for the longitudinal control of the mirrors within specifications;

— Autoalignment (100 Hz):
for the mirror angular control within the requirements;

— Non-Linear Locking (100 Hz):
to bring the interferometer into operation;

— Emergency Handler (100 Hz):
which in case of loss of lock is able to recuperate control, bringing the detector back
into operation without going through the non-linear locking phase;

e the processes which analyze the running of the interferometer, referred to as checking pro-
cesses:

— Longitudinal Monitor (10 Hz):
which supervises the proper running of Longitudinal Locking;

— Alignment Monitor (10 Hz):
which resembles the longitudinal monitoring;

— Strategy Handler (1 Hz):
where the new parameters for the control are computed.
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Figure 4.10: The RIOT crate.

Software and Hardware Architecture

The architecture design must be flexible enough so as to facilitate evolutions and must also mini-
mize the data flow between processes. Furthermore, for the correct functioning of RIOT, it must
separate all functions into mostly independent processes while minimizing the interferences. For
this reason, processes such as the Longitudinal Locking must not be perturbed by the rest of the
system.

In order to achieve this, the hardware architecture, shown in fig.(4.10), has been chosen as
follows. The photodiode and actuator signals are sent and received by Digital Optical Links
(DOLs) consisting of VME slave boards. A CES PowerPC board, referred to as Working CPU,
performs the Longitudinal Locking task. However, the CPU in question is not able to quickly
access and retrieve data due to the large amount of boards. For this reason, a fast data transfer
board is necessary, consisting of a homemade board, the Transparent Memory Board (TMB),
synchronized to the Timing board and able to quickly transfer the data from the VME to the
VSB bus and vice versa. In this way, the Working CPU can quickly access the data.

A second CES PowerPC board, the Master Server, is in charge of Autoalignment, Non-Linear
Locking, data access and distribution. In order to do this, two boards are introduced: the home-
made Spy Data Board (SDB) and the Shared Memory Board (SMB). The SMB is a VME/VSB
slave board that allows the transmission of status and command signals between the Working CPU
and the Master Server while transmitting the Alignment and Non-Linear Locking corrections to
the Working CPU.

The SDB, instead, is a VME spy/VSB slave introduced so as to perform a fast data retrieval
without perturbing the synchronous processes. Once the data is available on the VSB bus, the
Master Server is able to access it.

A workstation, not shown in figure, the Global Control Survey workstation, will perform the
monitor functionalities: the Autoalignment Monitor, the Locking Monitor, the General Monitor,
the Strategy Handler. The workstation will connect, through Ethernet, with RIOT.
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Chapter 5

The Central Area Interferometer

VIRGO will first operate in a test configuration consisting of a recycled Michelson, referred to
as the Central Area Interferometer (CITF), whose ‘end’ mirrors are placed at the location of the
Fabry-Perot input mirrors. The detector will have the same suspension system, laser source (with
an output power of 10 W), detection bench and acquisition system as the full VIRGO apparatus,
providing

e a complete, full size test of all sub-systems;

e an opportunity to study the various noise contributions.

The CITF will be completely contained in the central building of VIRGO.

This chapter presents a study of the CITF optical response to the longitudinal and angular
motions of the mirrors: the strategies of lock acquisition, locking and alignment need to take this
response into account. In particular, it will be shown how

e when the CITF is in an unlocked state, the ratio of photodiode signals can be used to detect
and lock the dark fringe regardless of the recycling stored power;

e an algorithm using an 8 quadrant photodiode configuration is presented capable of recon-
structing the mirrors’ angles once the CITF is locked.

A study on the CITF autoalignment will also be presented consisting of the control of the mirrors’
angles by using the steering filter/marionetta system.

Before presenting these results, a description of the interferometer is given as well as the foreseen
mirror displacements in free motion, the aimed sensitivity and the mirror control requirements.
The reader is addressed to [35, 36] for further details.

5.1 The Longitudinal Control

The interferometer is schematically shown in fig.(5.1), where Mg denotes the recycling mirror,
Mpgs the beam splitter and M , the end mirrors. The detector is said to be operational once it
fulfills the specifications on

1. the condition of dark fringe implying the control of the phase
kAl (5.1)
where k =27 / A is the wave number and Al =5 — [ the arm length difference;
2. the condition of resonance in the recycling cavity, determined by the phase
kl, (5.2)

where [, = 1o + (1/2) (I1 + I2) is the mean cavity length of the interferometer.
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Figure 5.1: The CITF interferometer.
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Mo MLQ MBS
Coating side 1 | rZ = 0.985 HR the=ris =10.540.005
Coating side 2 AR AR AR
Shape side 1 Flat Concave R = 93 m Flat
Shape side 2 Flat Flat Flat

Table 5.1: The mirror optical characteristics for the CITF. Side 1 refers to the side of the
mirror shown in bold in the figure.

It will be shown in the sections to come that the low frequency components of the mirror
displacements, if left free, will not allow the detector to operate within the requirements and
therefore a control system is necessary. This low frequency control is referred to as longitudinal
locking.

5.2 Optical Configuration

The main optical elements of the interferometer are described in tab.(5.1)[35], where r? and ¢}
denote, respectively, the power reflectivity and transmittivity of the i-th mirror, AR indicates
an anti-reflective coating, typically with r? < 1073 and HR a highly reflective coating with
107° < t1272 < 107, Here, coating side 1 refers to the side of the mirrors shown in bold in fig.(5.1).
The finesse of the CITF, defined in condition of dark fringe, is

F= VO 400 (5.3)

1 —roree

with a recycling factor Gyee = (2F/7) ~ 260. With a foreseen laser power of 10 W, the stored
power in the recycling cavity is expected to be ~ 2.6 kW.
The optical paths, shown in fig.(5.1), are[35]:

lo = 5952.75mm | 1; = 6380.7mm | 13 = 5532.8mm

with a mean cavity length 1, and arm asymmetry Al of

L=lo+ (L + L) | 11909.5 mm

Al = 12 — 11 847.9 mm

Notice that the arm asymmetry, necessary for the frontal modulation technique, induces a beam
mismatch: the beam curvature at the end of the arms differ from the mirror curvatures. This
effect will be discussed in sec.(5.7).

The geometry of the laser beam has been chosen so as to mode match a plane-concave cavity
of length [, and of mirror curvature R = 93 m, and the beam waist is located at the input mirror.
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A P Q/Qﬂ' m Jo Jl Wo R(lr)

1.064 pm | 10 W || 12,586,274 Hz | 0.5 | 0.93847 | 0.242268 || 3.244231 mm | 93 m

Table 5.2: The characteristics of the laser beam, where A is the light wavelength, P is the laser
power, m is the modulation index, Jo1 are the modulation amplitudes, wq is the
beam waist and R(lr) 1s the wavefront curvature at the distance I,.

The modulation frequency has been chosen to be /27 = ¢ /21, so as to allow simultaneously the
recycling of both sidebands as well as the carrier. The presence of the arm asymmetry leads to a
dark fringe condition for the carrier different from that of the sidebands, as already discussed in
sec.(2.4). Tab.(5.2) shows the characteristics of the laser beam.

All output beams, as shown in fig.(5.1), are monitored by photodiodes for the locking and
alignment of the system. The beams are:

e the fringe or output beam Wy;

o the reflected beam Wy off of the recycling mirror Mg;

e the beam reflected off of the second face of the beam splitter ¥s;
e both transmitted beams ¥; and ¥g;

We will use the following simplified model for the photodiodes and their signals: photodiode ¢
will monitor beam ¥;, and its output is written in the form

dfe + diph sin Qt + di* cosQt oc| ¥, |? (5.4)

where df* denotes the DC component, diph’qu denote the demodulated in-phase and quadrature
components, and the 22 terms have been neglected .

5.3 The Sensitivity Curve for the CITF

The sensitivity curve for the CITF, in phase and displacement units, is plotted in fig.(5.2) and
fig.(5.3), where two different quality factors for the mirrors have been used for the top and bottom
graphs. The uncertainty in the quality factor @ is due to the clamping of the mirrors to mirror
holders, with a foreseen value anywhere from a pessimistic value of 3 = 100 to an optimistic one
of Q = 1000.

The sensitivity curve is limited by the seismic wall below 2 Hz and will approach, at high
frequency, the phase shot-noise limit (see eq.(2.43)), of

~ hw
Sbshot = 4] —— = 1.9x 10711 d/VH 5.5
Gonor =\ s p = 19 [rad/VH] (5.5)

or, in displacement units,
8lehor = 1.6 x 107 [m/VHZ] (5.6)

where | = 6 m is the arm length and = 0.9 is the photodiode quantum efficiency.
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Figure 5.3: The foreseen CITF sensitivity curve, expressed in rad/v/ Hz units, for different
values of the quality factor Q. Top graph: @ = 100; bottom graph: ¢ = 1000.
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5.4 Mirror Motion Specifications
As shown in the previous chapter, the specification for the fringe lock depend upon the laser power

fluctuations. Assuming a noise of AP/P ~ 10~7/v/Hz, the tolerated fluctuations in Al must be
kept within[35]

1 sho
Ally — 1) < — 2kl —22

20 107 m 5.7
10 AP/ P (5.7)

where a safety factor of 10 has been taken into account.

For the recycling cavity, the most stringent requirement comes from the dynamics of the
electronics[35], giving a tolerance for the cavity length fluctuations of

1
Allo + 5 (L + b)) < 107" m (5.8)

with a safety factor of 10 taken into account.

5.5 Mirror Displacement Noises
According to numerical calculations performed by A.Viceré and analytical computations performed
by the Perugia group, whose results are shown in [36, 41], it is possible to estimate the mirror
displacement in free motion due to thermal and seismic excitations. In this section, the amplitude
spectral density of the mirror displacements are presented, in all degrees of freedom (DOF). The
conventions in use are shown in fig.(5.4) and are

e the z or longitudinal axis along the beam;

e the y or vertical axis parallel to the suspension;

e the x or horizontal axis perpendicular to both longitudinal and vertical axes;

e the 6; rotation angle around the :-th axis.

y
oa/

Ox

X

Figure 5.4: Conventions for the mirror’s six degrees of freedom: z, y, z, 8,, 8, and 6.
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5.5.1 Thermal Noise

The mirror motion induced by thermal noise has been calculated with the following contributions
for the different degrees of freedom:

1. along the longitudinal axis, the pendulum, violin and the mirror internal modes have been
taken into account;

2. the horizontal motion has been approximated to be the same as the longitudinal one but the
mirror internal modes have been neglected;

3. for the vertical motion, only the pendulum mode has been taken into account;

4. for the angular motions, only rotations around the vertical and horizontal axes have been
computed.

Each mode contributing to one DOF has been added quadratically so as to obtain the total motion
in the DOF in question.

Also, as already stated, the contribution of the mirror internal mode to the motion is not well
defined for the CITF: the mirror mechanical support introduces frictions and stresses onto the
mass, thus affecting the quality factor. A value of @ = 1000 at 1 kHz has been assumed in the
calculations.

5.5.2 Seismic Excitation and Transfer Functions

The estimated residual motion of the mirror due to seismic excitation has been numerically calcu-
lated in all DOF with the superattenuator modeled as a chain of 15 rigid bodies: the 6 mechanical
filters with their movable vertical system, the marionetta, the mirror and the reference mass. The
rigid bodies are connected to each other by elastic elements: the triangular blades, the inverted
pendulum, the centering and suspension wires. Such a model has not been completely validated
by experimental data and makes use of the following approximations:

1. the quality factors of the resonances depend on the structural dissipation within each elastic
body, not taking into account the effects due to clamping points;

2. the coupling parameters between the 6 DOF are approximated and are likely to change from
suspension to suspension.

The output of the simulation consists of transfer functions relating an excitation applied at
any level of the chain and in any of the 6 DOF to the motion of the mirror in all 6 DOF. The
simulation allows a first estimate not only of the mirror motion due to seismic excitation but also
of transfer functions for mirror control.

The seismic noise model used as input to the simulation is

. _ . 107% F2 + 0.01

(f) =9lf) = 2() = F(f) = T 10 [m/VHZ] (5.9)
which assumes equal contributions along the longitudinal, vertical and horizontal DOF. For the
angle excitations, the following model has been assumed:

00 = 0,0 = PN L pad VIR ) = 0 (5.10)

where v = 500 m/s is the velocity of the seismic waves in the ground.

The motion along the 6 DOF is assumed to be uncorrelated since no experimental estimate of
the cross-correlation of noises exists to date. The total mirror motion is the quadratic sum of the
amplitude noise spectra weighted by the transfer functions. By defining §;(f) as the amplitude
spectral density of ground vibrations along the j-th dimension and by defining A;;(f) as the
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Figure 5.5: The calculated free mirror motion estimates due to seismic and thermal excitation:

(a) the displacement amplitude spectral density along the horizontal axis and (b)
its running RMS value; (c) the displacement amplitude spectral density along the

vertical axis and (d) its running RMS value.
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Figure 5.6: The calculated free mirror motion estimates due to seismic and thermal excitation:
(a) the displacement amplitude spectral density along the longitudinal axis and
(b) its running RMS value; (c) the angular amplitude spectral density around the
horizontal axis with (d) its running RMS value.
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The calculated free mirror motion estimates due to seismic and thermal excitation:
(a) the angular amplitude spectral density around the vertical axis and (b) its run-
ning RMS value; (c) the angular amplitude spectral density around the longitudinal
axis with (d) its running RMS value.
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transfer function relating the input excitation along j with the resulting mirror motion along i,

the resulting spectral density linear displacement Mm% is

() = \/Z[Aij<f> x 512 6.11)

5.5.3 Mirror Motion Estimates

The seismic contribution to the mirror motion mi**(f) along the i-th direction is added quadrat-

ically to the thermal contribution m!*¢"(f) along the same direction. The total movement of the

mirror m; (f) is:

() = (s ()2 4 e ()2 (5.12)

Fig.(5.5-5.7) show the amplitude spectral density along the 6 DOTF with their corresponding run-
ning RMS values defined as

f
m;™(f) = /1 mi(f) 2 df (5.13)

O00Hz

The frequency spectrum up to at least the inverted pendulum resonance at 30 mHz will be
damped by a local control system: the inertial damping. From the estimates, the longitudinal
RMS displacement value is foreseen to be 1 um and dominated by a resonance at about 200 mH z.
For the angular motion around the vertical and horizontal axis, the RMS value is expected to be
kept within 1 prad.

5.6 The Longitudinal Response and Ratio of Signals

The objective of this section is to present the optical response of the CITF to longitudinal motions
of the mirrors. Assuming an equal curvature for the beam and the mirrors, with the incoming
laser beam mode-matched to an aligned CITF, the longitudinal response can be studied by using
a plane wave model.

Unlike the simple resonator, where the condition of resonance is obtained by adjusting the
cavity length with respect to the laser frequency, two effects need to be controlled for the CITF:
the dark fringe condition and the recycling cavity resonance. We represent the CITF, shown in
fig.(5.8a), as a two mirror cavity, as shown in fig.(5.8b),

e made of the recycling mirror My and an end mirror M (Al) whose complex reflectivity R(Al)
depend upon the arm length difference Al;

o of length [/,;
Assuming that ¥;, = 1, the stored field ¥, can then be written in the form

— to
Wa (b, Al) = 1 4+ roR(Al) exp(—2ikl,) (5-14)

where the reflectivity R(Al) of the end mirror, which depends only on the arm length difference,
is

R(Al) = t3sri exp(ik Al) — rigry exp(—ik Al) (5.15)

The analogy with the Fabry-Perot can be seen by comparing the CITF stored EM field, expressed
in eq.(5.14), with the Fabry-Perot stored field in eq.(3.17). The form of the two equations is
identical; however, for the CITF, the reflectivity R(Al) can vary both in amplitude and phase as

84



e lS e S+ 44 AU AL A VALV BV AL LAl S Al AW AL W ARAL LA LS

r%
(a) M, [

) lw |

L

b

o
Mo | ' |

(b)

N -

M(AI)
Figure 5.8: The CITF seen as a Fabry-Perot cavity.

Al changes. This means that the condition of resonance depends not only on the mean cavity
length [, but also on the phase of R(Al). In the same way, the finesse of the equivalent cavity
depends necessarily on the amplitude reflectivity of the end mirror and is maximum in condition
of dark fringe.

For simplicity, let r1 = ro = 1 and rgs = tps = 1/\/§ In this case, the laser power can only
leak out to photodiode 1 and | ¥y |? can be written in the form

| Wy [P =| T (A 2| ¥ |? (5.16)
where
| R(AD |2 = sin?kAl (5.17)
| T(Al) |* = cos?kAl

In other words, the DC component of | ¥; |? is proportional to the stored DC power | ¥, |? and
to the transmittivity | 7 (Al) |2 of the end mirror. The condition of dark fringe is determined by
| T(Al) | % regardless of the stored power. The monitoring of | 7(Al) |2 results in the knowledge
of the dark fringe condition. By noting that

AR

|‘I’5|2—T|‘I’a|2 (5.18)

where AR is the power reflectivity of the BS anti-reflective coating, | 7(Al) |2 can be written as

AR | ¥y |2
Al 2= — N
T 7= AL L (5.19)

Therefore, the experimental ratio | ¥y |2 / | ¥5 |? gives information on the condition of dark
fringe.

The CITF, whose configuration is described in sec.(5.2), has been simulated in the quasi-static
approximation and some results are shown in fig.(5.9). Plots of d{¢, d4° and their ratio are shown
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Figure 5.9: The ratio of | ¥, |? with | ¥5 |? as a function of kAl and for different values
of I,: continuous line: I, = A/4; dashed line: I, = A/4 + 4l; dotted line:
I, = A/4+ 24l; dot-dashed line: I, = X /4 + 3481 (81 = 4% 10_9m). Top graph:
the DC power | ¥, |? as a function of the phase kAl; middle graph: the DC power
| W5 |? as a function of the phase kAl, where AR = 10™%; bottom graph: the ratio
of | ¥, |? with | 5 |? as a function of kAL
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d1ph (W)

dide (W)

d1ph/d1dc

Figure 5.10: The ratio of the demodulated component dfh with d{¢ as a function of the phase
kAl and for different values of l,: continuous line: I, = X /4; dashed line:
I, = X/4 + §l; dotted line: I, = A /4 + 26l; dot-dashed line: I, = A /4 4 346l
(8l = 4% 107°m). Top graph: the demodulated component dfh as a function of
the phase kAl; middle graph: the DC component d¢ as a function of the phase
kAl; bottom graph: the ratio of the two signals.
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as a function of the phase k Al and for different values of .. Notice how, to first approximation,
the ratio is independent from ;..

According to the conventions of the simulation program, which are different from the ones used
here, dark fringe and maximum stored power occurs for

kAl = nr (5.20)
2kl, = (2n+ 1)

where n is an integer. For these values, d{° ~ 1 W due to the sideband leakage, and dg° ~ 1 W
with a pessimistic value of AR = 1073. We would like to remark that for a fixed value of I, = \/4
(mod A/2), maximum recycling is possible for kAl = (2n + 1)x. On the other hand, for
kAl = 2nm, the recycling cavity anti-resonates. This is shown in fig.(5.9) and arises from the
phase of the complex reflectivity R(Al) which changes as a function of k£ Al.

It is possible to use a demodulated signal as an error signal for the dark fringe control inde-
pendent from the recycling condition. By defining

Al = Al + 61 (5.21)

where Al is the arm asymmetry and d/ = Al (mod 1)), it is possible to show that the ratio between
the in-phase signal dfh with the DC component d{* around dark fringe is, to first approximation

dre
Iz ~ Kl (5.22)
For small values of the phase
0 __
—Al<<1 (5.23)
the constant K is
Jo C
K =2k— — 5.24
b Ji QA (5.24)

The output of the simulation is given in fig.(5.10) where dfh, dd¢ and their ratio are shown as a
function of k£ Al and for different values of /.. The value of the constant K in eq.(5.24) is in good
agreement with the simulation result.

5.7 The Angular Response

For a simple Fabry-Perot cavity, it has been shown in sec.(3.3.2) how any translation of the
optical axis with respect to the incoming beam generates, to first order approximation, an in-
phase coupling with the first order transverse mode. On the other hand, any rotation leads to a
quadrature coupling with the first order transverse mode. For the CITF, it is not possible to have
such a simple model. For this reason, the study here presented, with the exception of sec.(5.7.1),
is based on numerical simulations[37]. These results correspond to an old CITF configuration with
lo=6m,1l; =5.6m,ly = 6.4m, r¢ = 0.96 and J2 = 0.01.

This section describes the angular response for three different CITF configurations: symmetric
with [; = Iy, asymmetric with [; —{; = 0.8 m, but mode-matched to the incoming laser beam, and
the actual CITF configuration. The asymmetry matrix for the actual CITF autoalignment will be
presented in sec.(5.8).

5.7.1 Case 1: Symmetric CITF

Let’s first consider the case of a symmetric recycled Michelson with i; = [5 and r; = ry, matched
and aligned to an incoming Uy, where, for simplicity, Uy = Ugp and U; = Ujzg. Due to its
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symmetry, the beams transmitted and reflected by this optical system can be seen as the output
beams of a simple Fabry-Perot cavity of the length [.. A tilt 8 of the Michelson recycling mirror
induces the same effect as a tilt @ applied to the input mirror of the Fabry-Perot. In the same way,
a tilt ¢ of the Fabry-Perot end mirror has the same effect as a tilt ¢ applied to both end mirrors
of the Michelson. Therefore, we can see the CITF as an equivalent Fabry-Perot cavity and treat
the problem as in sec.(3.3.2).

Let the incoming EM field be a pure Uy which, according to the conventions in sec.(3.3.2), is
expressed in the unprimed reference system of the laser

Ui, = J Up (5.25)

where J is the beam amplitude. Let’s also assume that the optical axis of the equivalent cavity
is translated and rotated with respect to the incoming beam. At the waist location, the incoming
field expressed in the primed reference system of the cavity is, up to first order approximation in

a/wo and 6/6.,

a 0

W= J[Up+ (=i ) U (5.26)
Wo 900

where a and 6 are the translation and angle of the axis. Denoting by A% and A% the complex

valued cavity reflectivity and transmittivity of an incoming U/ in the cavity reference system, as

in sec.(3.3), the transmitted field can be written as

r_ 0 yrt 1 {4 i /
\I!T_J[ATUO—l—AT(wO—l—zaOO)Ul} (5.27)
whereas the reflected beam takes the form
.0
v = [AORU(S—I—A}%(%O—I—ZG—)U” (5.28)
The two beams in the unprimed reference systems take the following form
_ 0 a i 1 40 i¢
U, = J{ATUO—I—(MO—I—ZGOO)(.AT A% e )Ul} (5.29)
_ 0 a 1 40 . i 0 1
o = o ios () (=) 55 () (= )
By tuning the cavity so as to let the Uy component resonate, we find
A% = —iAl (5.30)
Ay o= i
A% = —iAY
AL = Al

where A% =| A% | and A% =] A% |. Eq.(5.29) reduces to

Ur = J{—iA%Uo—i—(wio—i—i%) (iA%eWJrA;)Ul} (5.31)
Uy = J{—iAORUO—i—(%)(AOR—A}%)Ul—i—i(wio)(AOR—i—A}%)Ul}

The modulation frequency for the alignment will be the same as the longitudinal one, /27 =
¢/ 2l,, and the incoming beam W,,,, for the three different frequency components, can be written
in the form

o) —Jiexp(—iQt)
g, = Jo (5.32)
Jyexp (i2t)
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As a result, the transmitted and reflected beams for the carrier and the sidebands are :

—Jiexp(—iQt)

gm0t = Jo x (5.33)
Jyexp (i2t)
x[—iA%Uo—I—(in—I—i%)(iA%em—l—A%)Ul}
\Ijg707+) _ —JleX[j](()—iQt) )
Jyexp (i2t)
x{—iAORUO—i—(%)(AOR—AOR)Ul—i—i(in)(AOR—i—A}%)Ul}

Recalling that the demodulated components of the photodiode signals, shown in eq.(3.52) and
eq.(5.4), consist of

cosQt = 25&{\1/0*\1/++\110*\11—} (5.34)
sinQt = 2%{\110*\11——\110*\11+}

and that the products

0+ _ a 0 0 1
W Uh = JoiUsUn | Q(MO)AR(AR—FAR)} (5.35)
Vo vy = —v%ruf
a 0
W UE = —Jo Ul |- (A9)? = = Af A} |
Wo 900
v, = — it wd

we find that the in-phase signal, corresponding to the real part of the sum of the above components,
cancels out. Since no imaginary components are present, the quadrature term is also zero. By
recalling that the above analytical calculations are approximations to first order terms in a/wqo and
0/0.,, we conclude that for a symmetric CITF, only second order terms or higher might be present
in the demodulated signals. Just as for the frontal modulation scheme presented in sec.(2.4), an
arm asymmetry is also necessary for the CITF alignment.

5.7.2 Case 2: Mode-Matched CITF

By introducing an arm asymmetry, the sidebands will behave differently from the carrier. In this
section, we assume an arm asymmetry of Al = 0.8 m and we have chosen the radii of curvature
of the end mirrors to ~ 90 m and ~ 95 m respectively, in order to match them to the curvature of
the incoming laser beam. In this way, we can neglect the effect of the mismatch.

Before showing the results of the simulation runs, we define as asymmetry the up-down and
left-right differences of the half-planes relative to a quadrant photodiode, described in sec.(3.5.3),
demodulated at the modulation frequency, and normalized to the DC power. Since the asymme-
tries are linear functions of the misalignment angles (at least for small values of these angles), in
the tables we report the proportionality constants that relate the asymmetries to the misalignment
angle in units of the angular divergence (fs).

Tab.(5.3) shows the asymmetries from quadrant photodiode 7, placed on one transmitted beam,
and from quadrant photodiode 2, located on the beam reflected off of the recycling mirror. We
notice that the in-phase signal depends strongly on the angle 6y and could be used to control
M. Since the matrix is not diagonal, a y? minimization procedure will use all error signals to
reconstruct the mirror tilts.
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beam o 01 )

v, ph 1.195-107% | —8.734-1073 | —5.463-1073

qu || 5.870-10=* | 1.372-10"2 | —1.467-10~2

U, ph || —=3.817-107¢ 3.229-1072 2.102-1072

qu || —6.244-10~* 5.797-1072% | —5.166- 1073

Table 5.3: The asymmetry matrix for a CITF in the matched configuration: arm asymmetry
of Al = 0.8 m and radius of curvature for the end mirrors of ~ 90 m and ~ 95 m.

5.7.3 Case 3: The Actual CITF Configuration

In the actual CITF configuration, the radius of curvature of the end mirrors is set to 93m and a
mismatch is present. The generated asymmetry matrix is shown in tab.(5.4) where both trans-
mitted beams are shown as well as the reflected beam. No important differences are found when
comparing tab.(5.3) with tab.(5.4).

5.8 The Asymmetry Matrix

In sec.(3.5.2), the Ward technique was introduced for the alignment of a Fabry-Perot cavity. The
demodulated signal of the quadrant photodiode placed on the beam reflected off of the input
mirror is (as shown in eq.(3.60)):

0 a .
JoJ1UsoUo | (5= ) coslon(=)] + (- ) sinfgoo(=)] | (5.36)
%] 0
and depends on the misalignments a/wo and 6/6.,. The mixing of information on the translations
and rotations is determined by the Guoy phase ¢go(z). For example, if the quadrant photodiode
is placed at a Guoy phase ¢gp = 0, then the error signal contains information only on rotations:

0
JoJy Uno Uso { 9—} (5.37)
A second photodiode placed at ¢oo = 7/2 would then allow the retrieval of information on the
translations of the system:

a
Jo J1 Ugo Ut [w_} (5.38)
0

Therefore, in order to reconstruct both misalignments, two photodiodes are necessary, possibly
placed at an arbitrary Guoy phase ¢oo = ¢1 and ¢oo = ¢1 + 7/2.

For this reason, the CITF quadrant photodiode configuration, shown in fig.(5.11), also consists
of two quadrant photodiodes placed on each beam. The transmitted beams are monitored, as
well as the beam reflected off of Mg and off of Mpg. The fringe beam, on the other hand, is
neglected. All transverse modes arising from any optical defects leak out to the dark fringe and
for this reason, its error signal is not used.
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beam o 01 )

W, |phl| 1.186-10"2 | -8.558-103 | —5.541-103

qu || 1.024-1073 | 1.350-10~2 | —1.499-10~2

Uy ph 1.194-107% | —5.472-1073 | —8.654-1073

qu || —1.491-1073 | 1.601-1072 | —1.453-1072

U, ph || —3.834-10~! 2.738 - 1072 2.585-1072

qu || —=7.718-10* 5.605- 1072 | —5.308- 1073

Table 5.4: The asymmetry matrix for a CITF configuration: Al = 0.8 m and radius of curva-
ture for the end mirrors of 93 m.

Qs
2 Qq
[—
QT
N p |
| i q,
Q,, % Qe
Q. Qs

Figure 5.11: The quadrant photodiode configuration for the CITF. Two quadrant photodiodes
are placed on each beam. The dark fringe is not monitored for the alignment.
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Figure 5.12: The demodulated signals from W7 as a function of ¢oo and for two values of 6.

The chosen CITF asymmetry matrix[38] for the angular reconstruction, relative to the pho-
todiode configuration shown in fig.(5.11), is presented in tab.(5.5), where ¢go indicates the Guoy
phase and ¢p the demodulation phase of the photodiode signals. Considering mirror tilts in one
plane only, the 8 quadrant configuration yields 3 x 16 elements.

The error signals, generated with the STESTA module OPtestITF (see [49]) with the modal
expansion limited to order n 4+ m = 4, showed good linearity with misalignments up to 1073 6,,.
A sizeable departure from linearity was observed for angles 101 0,..

The Guoy phase positioning of the quadrant photodiodes was chosen with the following criteria.
Each pair of photodiodes is placed at a 7/2 Guoy phase difference from each other so as to obtain
orthogonal information on the misalignments. Since a departure from linearity is observed with
increasing angles, the Guoy phase positioning of the photodiodes is chosen to prevent any change
in sign for the asymmetries with increasing angle up to a maximum value. We see an example
of sign change in fig.(5.12) where the demodulated signals from the photodiode placed on the
transmitted beam are shown as a function of ¢gg and for two values of 0.

It is possible to demodulate the photodiode signals at an arbitrary phase. Given the error
signals A and B, the signals A’ and B’ demodulated at an arbitrary phase ¢ are such

AcosQt + BsinQt = A" cos(Q + ¢) + B sin(Q + ¢) (5.39)

where

A" = Acosé — Bsing (5.40)
B’ = Asing + Bcos¢
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For the asymmetry matrix shown in tab.(5.5), the demodulation phase ¢ is chosen so as to minimize
either an in-phase or quadrature term. The matrix terms minimized correspond to the zero values
shown in the table.

5.9 The Reconstruction Procedure

The theory for the reconstruction procedure relative to the complete VIRGO interferometer has
already been developed and experimentally verified [30, 40]. This section reviews and applies,
through a numerical simulation, the procedure for the angle reconstruction for the CITF in one
dimension using the asymmetry matrix shown in tab.(5.5).

The error signals y; can be written in the form

Y, = Z [£79] Oj (541)
J
where 0; is the misalignment angle for the j-th mirror, expressed in 6. units, and a;; is the

asymmetry matrix shown in tab.(5.5). Given a set of n independent measurements yi; with
statistical error dy,,, the best estimates for the parameters 6; are those for which

V2= Z (g~ — 225 aij0;) (5.42)

dy?

K3

is minimized[51]. By taking its first partial derivatives and setting them to zero

dx* ; ij Wi
(;;l :0} N yiak,:zj:(zi:“;y;’)aj (5.43)

2
k Iy

a set of three equations in the three unknowns 6; is obtained. This can be written in vectorial
form as

P = A0 (5.44)
The parameters 0; are then given by
f=A"1pP (5.45)

with reconstruction errors Af; equal to

o 905\ 5.2
AO; = \/Xk: (Z)yk) 5y, (5.46)

Let’s assume that the noise on each photodiode is limited by the shot-noise. For the DC
component attenuated to 3 mW, the shot-noise level corresponds to éy; = 1.7 x 10~ [W/v/Hz].
By referring to eq.(5.46), the angular reconstruction errors due to shot-noise limited signals is

Ay = 8.02x107°60., [1/VH?] (5.47)
A0, = 2.94x107%0., [1/VH?]
Afy = 291x107%0., [1/VH?]

We also used a numerical simulation to estimate the reconstruction errors and compared the
results with those given by eq.(5.47). The optical module OPtestITF, limited to modes m + n =
4, was used to calculate the in-phase and quadrature signals, as a function of mirror tilts, at
the location of each quadrant photodiode. The misalignments were generated according to a
Gaussian distribution with dispersion & = 107° 6, and are shown in the top graphs of fig.(5.13),
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Q.Ph. | ¢o0 ép (°) 0o 01 6,
sin 4.256-1073 | —7.6233-1073 0
40° | 2.2313- 10+t
cos 8.309-10~* 1.2325. 1072 1.4165- 1072
Q7
sin | —9.1070-103 7.4093- 1073 0
130° | —9.4122.10~2
cos | 4.9233.10"% 3.4013- 102 3.4703 - 102
sin 0| 3.2209-10-2 3.1723 - 1072
80° | 7.5236-10%!
cos | 2.3559-1072 | —4.3430-1073 | —5.7420-103
8
¢ sin | —9.8263-1073 6.4013- 1073 | —4.3100-1073
170° | 1.7094- 1012
cos 0 1.8201- 102 1.8434-10~2
sin 1.5220 | —5.3542. 101 5.3138 - 10!
30° 4.3053
cos 1.1339-10~1 0 7.9673 1072
Q2
sin 1.1799 | —8.8540- 101 8.8203- 107!
120° 4.1003
cos | 8.4472.1072 0 1.2675-10!
sin | —9.1743.103 5.8870- 1073 | —4.9030- 1073
0° 3.7661
cos 0 1.1568 - 10~2 1.1731-10-2
Qs
sin | —4.0353.103 2.8573-1073 | 2.4385.1073
90 ° 1.8173- 1012
cos 0| 3.4793.10°2 3.4940 - 102

Table 5.5: The asymmetry matrix for the quadrant photodiode configuration shown in
fig.(5.11). ¢oo denotes the Guoy phase and ¢p refers to the demodulation phase.

Notice that the dark fringe beam is not monitored.

95




A~ iLd AL 4

L

e S+ 444 AL ALl LAalbuiJda A ARV /AN L

L4 AL JLu

500

400

300

200

100

00
RS
2909
0%
2505
X
5K

3

0%

%

%

S

S
S
S lotototes
e tototode!
S tototete!
et ototete!
e tototete!
hetoteoutoses
KKK

25
20
2RSS
2R
3RS
XS
55
RS
25
2R
2R
2R
%%
2R
%%
%%
P00
oot
b0t
oot
ot
35S
P00
55
RES
K5
S
0’00’0
QS
ate?
2R
0%
otote%es
SIS
o909
SRR
5
S
29%9%9¢
2950%9¢
25052
SRS
35S
09598
090959%
09%%%
RS
505
Sateete!
%
b9%e!
%S
3%
pod

o3

o

55

%
355

bt

<5

55

%5

%0

b

RSN
RRIGLRIHIKLE:

2R
%

o
%55
el
2%

2R 5
el
el

CRRIIIK XSS
R RIRRIEIRKRIINKS
Sototeseses S

X'/ndf | 55.58 |/ 69
Constant :

<

0.1020E—-06
0.9496E—-05

R
<
)

LRI

o%
OO0
XSS
OBIIKKKEK,
XX

4%’

ool

Lk

00

%
059

S
<5

23

|
q

o
0%
0
‘f

292

X3

35
o0t
0%
%

0900050
0.
o
x|

o%

LS
S%0%9¢
SRS
K
0
S950%s

R

X

2%
RS
RS
2RI
SRR
SRR
LR
2RI

e letoteds
LXK
SRR
R0

o oatutatotote!

%
Setatotetototososeseses
S9%e!
X
e

o

293
%5
29083
2
5

RRIBEELK,

o
%
55K
R

K
355
ooata%e!
o200%eS

%t
oS
%

oo tatatatotebobotel

%8s

A

e

X

2RIRRILRRE

X

o

$0ate ety

i?
%!
35S
9%t
255
oSS
258

R
5

5 GRS

o

%
QRIS

ORI
IR
000020202020 %6%6%0 % %%

6%
o
%S
%
%
35
3
%
%
3
3
3
3
3
3
%
o
K
<
%S
%%
T2
25
o
o
o
oo

S5
X5
9%
9005,
090!
KR
090!
0900%)
090!
o9%e%S
09005
2%

%S

dotet

55

b9%e!

b9%!

095!

58

3K
Dasotetesitatotetes

RRIIRELLS,
RS

X

OGS
QL

%8
355
%
Soesatete%?
o9t

SRS

S
oot
5
%
%
5K
3
o
%
3
093
3

o%
ORI

&
25
355
35S
o%0%
38

38

X
o
S35
3
KK

S
<

X

2%

o%

3

LIRS
RIS R mcr
R IARKRIERARIRES

XX
g”

QY
RRSARIS

2959%9%
RRRARS SR

%
%
%%

%%
Q<

500

400

300

200

100

/ndf  59.26
Constant

Sigma

499.0

s
XX
X
000 VI
29soton
Skl

RIHRIRIKRS:

%

3
XX

0L
oo

Sz
SO
555

QR

I
X
2K
9o
tote%es
otoleses
So%e%es

o
35

%
0K
35S
:o:
255

90
N
SIS
5K

q
oS-
X
X

S
XK

)
S
SR

s
0 0a%%

X
9%
e
R
0%
2
%
0

GRS,
IS

o
R
%9
%!
9%
%%
%
Sote%ss
X
X

SRS
IRIERKII

XX KKK
IS

botet
KRN

bo%

%
5
55
5
3
o

CRRLLRRILRKS,

SULERRELLRL,
s

%S
0%
55
55
3
<
e
0%
P9

[

%
33
S5

095058
S9%e%s
0950%8
5%
095058

RS
0950%¢
09503
o%abe
%08

o
%
K
o9%!
ogels
8
5
35

9090
%
ot
ot
%
%
%
ot
%
2%
otatet
ooatet
%
X
o209

‘:
oo%eS
%%
R
o
9ol
90058
o
S
S
oS
o
%
X
%
<
:’
%

o%
%
o
%
55
o295
55
X
X

¢
oot
0

o5

3
o2

%
3K
b9%98
baseseses
<X
<

0%

s
%
<X
Baso%s
5
5%
S
255
o
XX
%
%
55
028
55
2SS
do%el
o0%el
S
9%
%
b0l
2

o%
X
o5
79|

0‘:
55
35

35S
S0%%S

%S
%

2
XX

9%
9%

o9t
55

XXX
o

%
XX

ot
&

&
%!
2
0%

&
o2

%
000

%
-
9%
553
oo
S
35
%S
0o
4
2%
XX
55
25

XX

<%
XRXES
oods

XK
0000,
29598

09S < 29098
CRRIRR

XX
XX
o
%

25
3
2959503
2%

00X

120003

293
09583
255
0330
%
o2

S
S
%t

b9t
5
o
oo
b9t
5K
o
d%e%s
<X

o%

XX
S

%
%

%
ol
25
dotols
35
R
<
&
o2
3%
XX
o202
&
938
K

:00 %
0638 o2e%%

090
oS0 %6% %%
KRR ORIIKES
SRR SIERIRKS
SIS KL
Ssislssesrsiotestateoteceteteiotoret
Saseesesesetetess

otoke
25

S
oS9%0%es
KL
35
potete!
s

55

%
o000
9%
5%
%5
K
0%
&
5

2
o
o

posreeet

K8

ot
bote%es
S

o%
IR

D
SRR
RS e
RRREERARKRIRIKR S

CEALLEREKL
SR
SRRRESIXKSS

a0, %9%)

XS
QRS
% 0.0‘0.00"00

XX
s

RRX K

Figure 5.13: Distribution of the difference between the true angle ¢™¢

0.2 0.3

TRUE _ RECON x10°
(C>0 CDO )//C)DHV

7

and the reconstructed

angle #§°°°®. Top graph: the distribution of the angle 8,"™"¢ with gg, = 107° 8o

(fp1v

with ¢ = 7.95 x 107° .
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Figure 5.16: The y? distribution for the angular reconstruction procedure.
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Figure 5.17: Block diagram for the mirror angular control.

fig.(5.14) and fig.(5.15). A reconstruction procedure then took the 16 error signals and used the
asymmetry matrix in tab.(5.5) to reconstruct the misalignments. The distribution of the difference
(gtrue —grecon)y /9 is shown in the bottom graphs of fig.(5.13), fig.(5.14) and fig.(5.15). By fitting

the resulting distribution to a Gaussian, the reconstructed errors are

AG) = 7.95x107°0., [1/VH?] (5.48)
AOp = 2.93x107%0., [1/VH?]
AO, = 292x107%0., [1/VH?]

in agreement with the values found in eq.(5.47). The y ? distribution for the simulation run here
presented is shown in fig.(5.16), with a mean value centered at 1. By plotting the y % distribution
for each error signal as a function of time, it is possible to monitor the behavior of each quadrant
photodiode.

Concluding, this quadrant photodiode configuration allows to understand the angle misalign-
ment for each individual mirror. These misalignments were taken from a Gaussian distribution
with ¢ = 107°60.,. For larger angular values, the reconstruction error increases due to a change
in the relation between misalignments and photodiode signals (see sec.(5.8)).

5.10 Angular Control

A preliminary study for the CITF angular control is here presented. Tt will be shown in sec.(6.1.1)
and sec.(6.2) that the most stringent requirement for the alignment of the complete VIRGO
interferometer comes from the coupling alignment/laser jitter: by assuming a laser beam jitter of
10— rad/\/fﬁ, the mirrors must be aligned to better than 1078 rad RMS. For this reason, we
would like to design a control system able to attenuate the CITF angular motion down to the
nrad RMS.

In this section, the main characteristics of the control system will be given as well as its
performance in open and closed loop. It will be also shown how only the marionetta can be used
for the control.

5.10.1 The Control System

Let 6, represent the mirror angular density spectrum in open loop, as shown in fig.(5.6¢). The
objective is to attenuate this angular motion for the recycling mirror and both end mirrors once
the CITF is longitudinally locked. This control could be achieved by using the reference mass as
well as the steering filter piloting the marionetta. However, only the steering filter will be used:
the reference mass does not have a sufficiently high dynamic range for this type of control, as
shown below.

Let the control system be described by the block diagram shown in fig.(5.17) where

e O describes the CITF optical transfer function, assumed to be constant in this work, relating
the mirror tilt with the output beam signals;
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Figure 5.18: The estimated torque for the mirror angular control from the reference mass. In
(a), the amplitude transfer function relating torque with angular displacement;
(b) shows the estimated angular mirror spectrum 6, in free motion; (c) shows the
torque spectrum density once the loop is closed and (d) shows its corresponding
running RMS value.

e D is the photodiode’s transfer function, also assumed constant, transforming the incoming
beam power from W to V;

y is the error contribution to the angle reconstruction due to shot-noise limited signals;

H filters the incoming photodiode’s voltage, with the error contribution, providing the output
force f to be applied to the marionetta from the steering filter;

B is the mechanical transfer function transforming the force f into angular motion;

e O, is the mirror angular density spectrum in open loop;
° HN’x is the mirror angular density spectrum in closed loop.
Once the system is in closed loop, the resulting angular mirror motion é’x is
~ 1 ~ HB
7 = ( )0+ ( )i 5.49
= \1r e/ i a)? (5:49)
where G = O D H B is the open loop transfer function. The force for the control is

(10

1fG)g (5.50)
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Figure 5.19: The estimated torque for the mirror angular control from the steering filter of the
superattenuator. In (a), the B amplitude transfer function relating the torque
with the angular displacement; (b) shows the estimated angular mirror spectrum

. in free motion; (c) shows the torque spectrum density once the loop is closed
and (d) shows its corresponding running RMS value.

If the design of H is such that within a given bandwidth

|G| > 1 (5.51)
then eq.(5.49) and eq.(5.50) can be approximated as
N 1N -~
oo (1 -
g~ (G)Hx—l—y (5.52)
~ 1y =~ 1 -
Jo= —(5)0+ (5pp)0

From the above, the angular motion in open loop will be attenuated by a factor G and will be
limited by the shot-noise value. Furthermore, within the bandwidth in question, the necessary
force for the control will be proportional to the seismic excitation 6, and inversely proportional
to the mechanical transfer function B.

Marionetta or reference mass?

The simulation program used for the mirror motion estimates, described in sec.(5.5.2), can be used
to estimate the transfer functions (referred to as B in the block diagram in fig(5.17)) necessary
for the mirror control from the reference mass as well as from the steering filter. Therefore, it is
possible to estimate the forces involved from both control systems.
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Figure 5.20: The B transfer function relating the torque applied from the steering filter to the
mirror tilt §,. Top: the transfer function amplitude: dots: simulation output;
continuous line: approximation. Bottom graph: transfer function phase. Only
the approximated behavior is shown.

Fig.(5.18a) shows the amplitude transfer function relating the torque to the mirror angular
displacement from the reference mass. By dividing the expected seismic noise, shown in fig.(5.18b),
with the amplitude transfer function in fig.(5.18a), we obtain the torque spectrum density shown in
fig.(5.18¢). Integrating the latter leads to the graph shown in fig.(5.18d) which gives the expected
running RMS torque for the reference mass. According to [39], the maximum allowed torque for
the reference mass and the steering filter are

reference mass — 4.41x 10”7 (N m) RMS (5.53)
steering filter —  0.84 x 1072 (N m) RMS

For the reference mass, this maximum value is shown in the figure by the gray line. This means
that from frequencies above 1.5 Hz, the reference mass could be used for the control. However,
it clearly is not suited for the angular control of the CITF, where all the angular motion is
concentrated below 1.5 Hz.

On the other hand, we show in fig.(5.19) the results relative to the control from the marionetta.
The limit set in eq.(5.53) is well above the foreseen RMS torques necessary. As a consequence, in
this preliminary study we will only make use of the marionetta to pilot the mirror.
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Figure 5.21: The open loop transfer function ¢ for the mirror angular control.
The H filter

The amplitude transfer function for the mirror control from the marionetta, shown in fig.(5.19a),
is also shown by the dots in the top graph of fig.(5.20). Its essential behavior is shown on the same
plot by the continuous line and can be characterized by a set of 3 double-poles (the peaks at 0.6 H z,
1.5 Hz and 2.1 Hz) and one double-zero (the notch at 1 Hz). The remaining characteristics arise
from sets of pole-zero, close enough to each other to cancel their combined effect.

In order to prevent instabilities, the notch must not cross the unitary gain. Also, the mirror
motion is mostly concentrated around 1 Hz so that, if a bandwidth of tens of Hz is desired, it
is necessary to compensate the notch to some degree. This implies a very good knowledge of the
transfer function around 1 Hz in order to guarantee that the feedback system is robust.

We have assumed, for simplicity, that we know B exactly and we have chosen the poles and
zeros of H to consist of

e a double pole at the origin in order to attenuate the low frequency region as much as possible;
e two poles to compensate the notch at 1 Hz;

e aset of 7 zeros to let the open loop transfer function descend as 1/s when crossing the UGF;
e four poles to limit the H filter dynamic from about 100 H z.

The filter H can be written as

(s — a)(s — a”) (s = b) (s = b) (s — e) (s — ") (5 — d)
T =) (s — ) (s~ (s~ F) (s —9) (s — 4

H(s)= K (5.54)
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Figure 5.22: The angle reconstruction as a function of the real angular value.

where
K = 2x10"[N/V] (5.55)
a = —3.1+i54
b = —7.2+4i17.4
c = —48+i11.6
d = —94
e = —6.4x107% 4 i6.4
f = —3.1x10%+ i5.4 x 102
g = —3.8x10%+ i6.5x 10°

with the poles and zeros in rad/s units. The resulting open loop transfer function is shown in
fig.(5.21). The gain is 10* at 107! Hz with the UGF at 10 Hz and a gain and phase margin of
6 db and 4(P respectively.

5.10.2 Autoalignment: Open and Closed Loop

We present the results of the model presented thus far, sketched in fig.(5.17), once it was imple-
mented within the STESTA engine. Before presenting the closed loop performance, a discussion of
the open loop case will be given.

The optical model described in sec.(5.8) and the angle reconstruction procedure discussed
in sec.(5.9) will be used. We let the recycling mirror and both end mirrors follow the motion
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Figure 5.23: The angle reconstruction as a function of the real angular value and with the
angular cuts shown.
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Figure 5.24: The DC power fluctuations as the mirrors move in free motion.

described by the spectrum shown by the continuous line in fig.(5.25), which is an approximation
of fig.(5.6¢). As the simulation evolved in time, the angular tilts of the three mirrors followed
the motion described by the angular spectrum given. At each tick of the simulation’s clock, an
adjustment was made on Al and [, so as to optimize dark fringe and maximize recycling, therefore
simulating the locked state.

Angle reconstruction for mirrors in free motion

In order to study the performance of the angle reconstruction, we extracted the mirrors’ tilts from
a white and Gaussian distribution with o = 4 x 107¢ rad RMS. The results of a simulation run
are shown in fig.(5.22) and fig.(5.23). The reader can observe that in the plots of fig.(5.22), the
mirror tilts can go up to 1075 rad. Even though for these large angular values the reconstruction
percent error reaches errors as high as 90%, the reconstructed angles always have the correct sign.
For this reason, no difficulties in the acquisition of control are expected.

In fig.(5.23) we show how the reconstruction can be improved if an angular cut on the true
angular positions is introduced. For example, the reconstruction of 6; is improved when the
excursions of the real values of 8y and 65 are limited.

DC power fluctuations in open loop

It is also interesting to observe the DC power fluctuations for a free motion run with the mirrors
following the open loop spectrum density shown by the continuous curve of fig.(5.25), consisting
of an approximation of the spectrum shown in fig.(5.6c). Each mirror moves with an angular
motion of 1.5 yrad RMS. The DC power fluctuations are shown in fig.(5.24) where d{ refers to
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the photodiode on the dark fringe, d£°¢ is the photodiode on the beam reflected off of the recycling
mirror and d£¢ is the photodiode placed on the beam reflected off of the BS (AR = 1072). The
DC power fluctuations for the dark fringe detector can go as high as 9 W. This is explained by
the fact that any high order transverse mode generated by the misalignments is leaked directly
out to the dark fringe, thus inducing large DC power fluctuations, as discussed below.

The CITF can be seen as a Fabry-Perot whose input mirror is the CITF recycling mirror and
whose virtual end mirror transmittivity ¢ is simply d#¢/2 x d&¢ 1000 where 2 * d¢ x 1000 is the
DC power incident to the BS. The stored DC power of the Fabry-Perot is then the DC power
stored in the recycling cavity. It is then clear that, the more power is leaked out of the dark fringe,
the higher the transmittivity of the Fabry-Perot virtual mirror, inducing a decrease in the stored
power.

For example, at about 160 s

die ~ 9W (5.56)
ddc ~ 052W
dfc ~ 09W

At that instant, about t? = 9/1040 ~ 0.87% of power is lost in higher order modes, mainly through
the dark fringe port (neglecting the transmitted beam contributions and assuming no absorption
losses). The stored power P is then

td

(1= rov/1_ )

The reader will recall that the desired power buildup for the locked and aligned CITF is 2.6 kW.

P=10W

~~ 1070 W (5.57)

Angular spectra open/closed loop

0.1 0.2 03 04 05 1 2 3 4 5 10

Figure 5.25: The angular density spectrum in open/closed loop. Continuous line: open loop
f.; dotted line: closed loop 6.,
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Figure 5.26: The angular displacement running RMS value. Continuous line: open loop 6;;
dotted line: closed loop 8%.

The closed loop performance

The performance of the control system in closed loop is here presented. The seismic angular
density spectrum noise used is an approximation of the spectrum shown in fig.(5.6¢) and it is
shown by the continuous curve in fig.(5.25). The continuous curve in fig.(5.26) shows its running
rms value, resulting in 1.5 prad RMS. Once the loop is closed (dotted curves in the figures), the
open loop RMS value is attenuated down to to 10~ rad.

Fig.(5.27) shows the histogram of the three mirror angles, once in closed loop, with a resulting
angular motion for each of 10~%rad RMS. In the same figure, the distribution of the dark fringe
DC power fluctuations are limited to within 107°.

5.11 Conclusion

In this chapter, we presented a study on the optical response to longitudinal and angular mirror
motions. We showed that, when the CITF is in a non-linear state, by taking the ratio of photodiode
signals it is possible to detect dark fringe and obtain an error signal useful for its control, regardless
of the power buildup in the recycling cavity. The results of this investigation will be used to guide
the CITF from a non-linear state to the locked state.

Furthermore, by examining the CITF angular response, we were able to design an algorithm
using an 8 quadrant photodiode configuration, capable to angularly reconstruct, in one dimension,
the mirror tilts once the CITF is in a locked state.

This algorithm was then implemented in an angular control system for the CITF. We have
shown how only the marionetta can be used and that the piloting of the mirror from the steering
filter requires a very good knowledge of the transfer function in question if the bandwidth of the
system is to be limited to within some tens of H z.

Therefore, assuming a good knowledge of the transfer function for the control, we have designed
a filter for the autoalignment capable of attenuating the angular fluctuations down to the 10=%rad
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RMS as required by the coupling laser jitter/misalignment.

We also observed that in open loop, the foreseen angular spectral density for each mirror causes
large DC power fluctuations. However, even for these large angular values, the model was able to
reconstruct them with the correct sign: no difficulties acquiring control are expected.

111



A~ ii4 Al A LJEU RS S+ 44 s A AbdAad LAalbbiJda A0 A /AL A4V s A Y

112



Chapter 6

The Mode-Cleaner Prototype

One of the first suspended cavities within the VIRGO project is the Orsay mode-cleaner prototype.
It served as a test bed for

e mirror local control systems;
e longitudinal locking;
e automatic alignment.

The structure of this chapter is threefold. First, the motivations for the use of a mode-cleaner
are given together with a brief description of its VIRGO configuration. Next, the Orsay mode-
cleaner (MC30) is characterized, in particular its optical response, the local mirror controls, and
the servo system for the longitudinal control. Finally, and most importantly, the simulations
performed for the study of the acquisition of lock are discussed. For a brief overview of feedback
design, refer to Appendix A.

6.1 Why a Suspended Mode-Cleaner?

Fig.(6.1) represents the mode-cleaner optical configuration. It consists of a suspended three mirror

W

1IIIN " Ml M2

N

Figure 6.1: The mode-cleaner optical configuration.

ring cavity of perimeter 2L as implemented in most gravitational wave interferometers. In fig.(6.1),
My and M3 denote both input and output mirrors, with the same transmittivity and reflectivity,
whereas M5 indicates the terminal mirror whose reflectivity is set to 1. The objective of this
optical configuration is to

e transmit the fundamental TEMgg mode while reflecting all higher order modes;
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e attenuate both frequency and power fluctuations;

e attenuate beam jitter by at least 3 orders of magnitude.

6.1.1 Beam Jitter and Optical Defects

In order for the incoming light beam to couple completely to the interferometer, it is necessary to
spatially filter it. The main sources of noise arise from

1. beam distortions generated by the optical elements;
2. the laser beam jitter.

As already stated in Ch.(3), every monochromatic light distribution can be expressed as a
linear combination of the propagation modes TEM,, ,,. The effect of the passage of light in the
many optical components, such as the phase modulator, induces beam distortions which can be
expressed as a linear combination of high order modes. The mode-cleaner would transmit only
the fundamental one.

For simplicity, the triangular cavity can be seen as a two mirror cavity with the same input
and output mirrors as the triangular one but a distance L apart, as shown in fig.(6.2). In this
case, from eq.(3.23), we can write the transmitted power P, for a TEM,,, as

Poo
1+ (2F/m)2sin®(27 Avpn L/ )

Pon = (6.1)

where Py is the power transmitted for a resonant TEMgg mode and Aw,, , is the frequency spacing
between the TEMqg and the TEM,, , modes [refer to eq.(3.16)]:

:%(m—i—n)arccos (1—%) (6.2)

JAN 7

Vo

where vo = ¢/ 2L is the inverse of the light round trip travel time.
In order for the optical system to mode-clean the input beam while transmitting all the incoming
TEMgo power, it must

e maximize the factor

(E)ZsiHZ{Qﬂ'(E)Aan} (6.3)

™ [

present in eq.(6.1) by choosing

— a large value for the finesse F;

— a non-degenerate optical configuration such that the resonance frequency of the higher
order modes be different from the fundamental one (and possibly anti-resonant);

e transmit all the incoming TEMgyo power by setting equal transmittivity for the input and
output mirrors;

The triangular geometry is introduced so that the reflected beam is not injected back to the laser
source.

The second source of noise comes from the laser beam jitter or beam positioning fluctuations.
In sec.(3.3.2) it was shown how a TEMgq is seen, in the optical axis of a misaligned cavity, as a
linear combination of higher order modes. In the same way, any input jittering beam is seen by the
cavity as composed of a linear combination of transverse modes. It has been shown[47, 48] that
for an aligned interferometer, any beam fluctuations introduce second order terms at the output
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Figure 6.2: The mode-cleaner seen as a Fabry-Perot cavity.

port of the interferometer. However, any misalignment of the interferometer couples directly with
the beam jitter, as can be seen in the expression for the phase noise at the output port:

oo =2 () [ () + 4 ()] o)

where

e 7 is the reflectivity of the recycling mirror My;

A and AY are the amplitude reflectivities of the Fabry-Perot cavities for the TEMgo and
TEMg; modes respectively;

e 0 and a are the angular and lateral fluctuations of the incoming beam:;

e a; and 6; are the lateral and angular translations of the optical axis of the ¢-th Fabry-Perot;

wo and O, are the beam waist and angular divergence.

Beam jittering and interferometer misalignments have a different frequency dependence: the for-
mer is caused by the mechanical vibrations of the laser source, with spectral components within
the detection bandwidth of the interferometer. The latter, instead, is dominated by the frequency
spectrum of the suspension system, concentrated in the low-frequency region. The misalignments,
compared to the jitter, can be considered as a static contribution causing, by referring back to
eq.(6.4), the jitter to contribute to the noise at first order.

The mode-cleaner is then required not only to spatially filter the laser field, but also to provide
a stabilized beam positioning at the input of the interferometer. The mode-cleaner transmitted
beam will have the same stability as the mode-cleaner optical axis. The mode-cleaner mirrors
must be suspended so that the mode-cleaner optical axis displacements have only low frequency
components.
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6.1.2 Frequency and Power Fluctuation Filtering
As shown in eq.(2.66), the Fabry-Perot cavity behaves as a low-pass filter of the form

1
H(f) ~ = (6.5)

for both frequency and power fluctuations with a pole f.qy = ¢/(4F L). By increasing the
product L F, it is possible to shift the pole of the cavity to lower frequencies and thus increase
the attenuation factor.

6.2 The VIRGO Mode-Cleaner

The VIRGO mode-cleaner (MC144) is a triangular Fabry-Perot cavity 144 m long that can be
schematically represented by fig.(6.1). It consists of three mirrors: the two plane mirrors, input
and output, located on the input bench and a third concave mirror (R = 181m) located in the
mode-cleaner tower. The input bench and the concave mirror are both suspended by special
superattenuators. The input and output mirrors have a power reflectivity of r? = 0.997 (with
the end-mirror power reflectivity r? ~ 1) corresponding to a cavity finesse of F = 1000.

The optical system must satisfy the specifications on

e laser jitter:
the specifications on the jitter of the beam at the interferometer input (fpcqm ) are strictly
connected to the gain of the automatic alignment of VIRGO. This can be seen as follows.
The phase noise induced by the coupling misalignment/jitter [eq.(6.4)] must be less than the
shot-noise level of [see eq.(4.1)]

Gonor ~ 1071 [rad/VH?z] (6.6)
or in other words
Opeam (a1 — az) < 3x 107 [mrad/vHZ (6.7)

where only the dominant term in eq.(6.4) has been kept. Assuming a laser jitter of Opeam =~
1078 rad/vHz[31] which after mode-cleaning is reduced to Opeam ~ 107 rad/vHz, the

requirement on the alignment becomes
(a1 —az) < 3x107°m (6.8)
From eq.(3.27), a = R0, so the control on the angle must be better than 10~% rad.

e sidebands:
not only must the optical system be able to filter the beam but it must allow the sidebands
to be transmitted as well. Therefore, the modulation frequency must be a multiple of the
free spectral range, i.e. ¢/2L.

e cavity pole:
as already stated, a large value of I and F would shift the cavity pole to lower frequencies,
thus improving the attenuation factor for frequency and power fluctuations. For L. = 144 m
and F = 1000, the cavity pole is ¢/4F L ~ 500 Hz, corresponding to an attenuation factor
of ~ 20 at 10 kHz.

6.3 The Mode-Cleaner Prototype

The properties and requirements for mode-cleaning the laser beam have been presented in the
previous sections. This section will briefly describe the Orsay mode-cleaner prototype (MC30),
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Orsay mode cleaner prototype

I Wlagnet

-— marionetta ——

input bench MC end mirror

s 07

Figure 6.3: Sketch of the mode-cleaner prototype MC30.

sketched in fig.(6.3). In particular, its optical configuration will be given as well as an outline of
the local controls and alignment necessary for the longitudinal lock of the cavity with respect to
the laser frequency.

The optical configuration of the prototype has been chosen as close as possible to the VIRGO
mode-cleaner. Tt consists of a triangular ring cavity of 30 m in length. Tab.(6.1) allows a compar-
ison between the principal characteristics of the two mode-cleaners. The laser source is a Nd:YAG
providing 300 mW in the fundamental mode. A rigid ULE cavity of 30 cm is used as a reference
for the frequency prestabilization of the laser.

The MC30 consists of two masses placed in two vacuum chambers connected by a tube 30 cm
in diameter. Mass 1 is the mass holding an optical bench where the two plane mirrors are placed.
Mass 2 contains the concave mirror held by a cylindrical holder (see fig.(6.3)).

Both masses are suspended by a double pendulum system. The first stage is referred to as
the marionetta stage and is similar to the marionetta found in the VIRGO superattenuator. The
local control, necessary for the local damping of the mirror motion, uses a magnet-coil system
where the magnets are on the marionetta and the coils are rigidly connected to the ground. The
masses are controlled in all six degrees of freedom: the three translations and the three rotations
around the axes.

The two-stage suspension system is seen as two coupled oscillators in the horizontal direction.
In the vertical direction, only one attenuation stage is provided by the metal blades placed on the
marionetta.

By rotating the polarization state of the incoming light beam, from the p state, where the
electric field is parallel to the plane of the incident and reflected beams, to the s state, where the
electric field is perpendicular to it, the finesse of the cavity can be changed. A finesse of 1600 was
found for the s-state whereas a finesse of 120 was found for the p-state. This allowed a study of
the M(C30 acquisition of lock phase for different finesse values.

6.3.1 Local Controls

The two-stage suspension system provides an attenuation of seismic noise above the pendulum
frequencies that are at 0.5 Hz and 1 Hz along the beam axis and at 2 Hz along the suspension
axis. The mirror dynamics in free motion is dominated by these resonances, resulting in motion
amplitudes as high as hundreds of a light wavelength. For this reason, before stabilizing the cavity
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MC30 MC144
Length L (m) 30 144
Finesse F (s) ~ 1600 1000
Finesse F (p) ~ 100
Suspensions 2 stages 3 stages and

inverted pendulum

Geometry triangular triangular
Mass 1 2 plane mirrors 2 plane mirrors
Mass 2 concave mirror R = 112 m | concave mirror R, = 181 m
Laser Nd:YAG 300 mW Nd:YAG 10 W
Prestabilization ULE non-suspended ULE suspended

Table 6.1: The prototype MC30 configuration is shown with respect to the VIRGO MC144.

length to the laser frequency, it is necessary to damp the resonance contributions locally, that is
relative to the ground, in all six degrees of freedom.
The local controls used for the MC30 function as follows:

1. the mirror position in the six degrees of freedom is measured[52] by observing, with the aid
of a CCD camera,

e reference marks placed on the mass;

e the reflected beams injected by two auxiliary lasers;

2. the digitized signals from the camera are processed to find the mirror displacements and to
compute the corrections to be applied;

3. once the corrections are computed, an appropriate current is sent to the coils.

The residual motion per mirror after local control is 0.54m RMS for the three axes, 1urad RMS
around the vertical and transversal axes and 20urad RMS around the beam axis.

6.4 Cavity Control Elements and Models

The main objective of this chapter is the study of the acquisition of lock process for the MC30
prototype, once the local controls are on, in both s and p polarization states. This process
is achieved modeling the control system for the cavity stabilization with respect to the laser
frequency. A basic description of the electrical, mechanical and optical elements involved is here
given as well as the system’s block diagram.

A numerical calculation, performed with the SIESTA engine, made it possible to model the
overall system. The simulation results of each block element, as well as of the overall system in
open and closed-loop, were compared to experimental results [24].
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6.4.1 The Control System

The goal of the feedback system is to stabilize the MC30 to the incoming laser frequency vjqs:
the cavity must follow, within the specifications, the evolution of v;,5. The block diagram for the
system in question, shown in fig.(6.4), is made of the following signals and transfer functions:

e a reference signal r(s), namely the laser frequency vigs;

e a photodiode, described by the transfer function H(s), whose objective is to provide an error
signal e(s), generated by phase modulating the incoming beam at 6.25 MHz and observing
the demodulated signal reflected off the cavity (the Pound-Drever technique);

e an electronic (analog) filter or compensator, whose transfer function is denoted by G(s), to
appropriately filter and amplify the error signal e(s);

e the coil amplifier’s transfer function A(s) providing a force generated by coils placed on the
ground and applied directly onto the mirror;

e the mechanical transfer function M (s) which relates an incoming force with the mirror
movement;

e the suspension transfer function P(s) describing the filtering of seismic noise;

e the cavity transfer function C'(s) characterizing the optical response of the prototype.
In order to conceive the feedback control, it is necessary to know the transfer functions of each
element here listed. Measurement and simulation are compared.
Seismic noise, the mechanical M(s) and pendulum P(s) transfer functions

By Laplace transforming the differential equations of the double pendulum system pictorially
shown in fig.(6.5), it is possible to derive the transfer functions

e M(s) for the mirror control, defined as the ratio between the mass displacement x(s) and
the force F(s):

M(s) = 2 (6.9)

e P(s) for the filtering of seismic noise, defined as the ratio between the suspension point
movement zo(s) and the mass displacement z(s):

ps) = 20 (6.10)

The pendulum transfer function P(s) consists of two double-poles corresponding to the two reso-
nances and it can be written in the form:

w? w2
P(s) = ———7 - — - [n/m] (6.11)
(5 —|——5—|—w1)(5 —|——5—|—w2)
1 2
where
w1 = 27 - 0.5234Hz Q1 = 2 (6.12)
wy = 27 - 1.1349 Hz Q2 = 3

The quality factors of the resonances are really the effective quality factors: they depend upon
the attenuation factor of the local controls.
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Figure 6.4: The mode-cleaner MC30 block diagram.
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Figure 6.5: The MC30 mirror suspension system and the magnet-coil system for the longitu-
dinal control of the cavity.

An experimental measurement of the cavity length noise was obtained by locking the laser
frequency onto the mode-cleaner. In order to change the laser frequency, there is an actuator with
a dynamic range corresponding to a length change of about 25 ym and a large bandwidth (MHz).
The length variations, induced by seismic noise, are of the order of 1ym RMS in a low frequency
range, where the correction signal sent to the laser is proportional to the length. In fig.(6.6), the
amplitude spectral density of the cavity length, measurement and numerical simulation, is shown.
The model simulated two identical suspensions for the mass 1 and 2, both described by eq.(6.11)
and using, for the amplitude spectral density of ground motion, the model

%o = 3x 107 [m/VHZ] (6.13)

Here, the discrepancies between the measurement and the model are due to the uncertainties in
the local control gain and to the presence of other resonances (3 Hz, 5 Hz) arising from the angular
motion that couples to the cavity length motion. Fig.(6.7) shows the running RMS of fig.(6.6)
whose values AL for the cavity displacement at 0.01 Hz are

ALy = 03um (6.14)
ALpe = 0.7um

The mechanical transfer function M (s) is the transfer function whose input is the computed
force for the correction and whose output is the displacement of mass 2. It consists of two double-
poles and one double-zero:

- [m/N] (6.15)

where
w3 = 27 - 1.0986 Hz Qs = 111 (6.16)

The presence of the double-zero causes a driving force at ws to weakly excite the mirror motion.

In the case of the VIRGO reference mass, for example, this is not the case: the transfer func-
tion relating the driving force from the reference mass to the mirror position is that of a simple
pendulum.

121



A~ iiL Al AL LJEU Ve S+ 444 VLAY AL AL ALY 4 AV A 1

£+

A

M

f (HZ)

I”I y
H
||‘

I
iIH 4

Figure 6.6: The MC30 amplitude spectral density of the length fluctuations. Continuous line:

simulation. Continuous line with dots: measurement.
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Figure 6.7: The MC30 running RMS of the mirror displacement amplitude spectral density.
Continuous line: simulation. Continuous line with dots: measurement.
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Figure 6.8: The MC30 measured and simulated mechanical transfer function M(s). Continu-
ous line: simulation. Points: measurement

The cavity transfer function C(s)

The cavity response is represented by the transfer function C'(s). It basically relates the cavity

length L(s) with its frequency equivalent v(s):

C(s) = Z((z)) = ((25)) T j:w) [H z/m] (6.17)

where weq,, /27 is the cavity pole with values

25 kHz for F = 100
Deav _ _° (6.18)

1.6 kHz for F = 1600

For the control, we are interested in the low frequency region, with a bandwidth of 100 Hz. For
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Figure 6.9: The calculated MC30 transmitted power and error signal. Top graph: transmitted
power as a function of cavity length. Bottom graph: the Pound-Drever error signal
as a function of cavity length.

this reason, the cavity transfer function can be seen as just a multiplicative factor, independent
of frequency, mapping length into frequency.

The Pound-Drever error signal for the mode-cleaner in the p state has been simulated by the
SIESTA engine and shown in fig.(6.9). The chosen optical module made use of the plane wave
and static approximation. The parameters used were

ri = ri=10.97 (6.19)
P, = 300 mW
Ji = 0.1

where 7y 5 is the amplitude reflectivity of the mirrors, F;, is the incident power of the laser and
J2 is the percentage of power in each sideband.

The coil driver A(s)

The control of the cavity is achieved by controlling the mirror mass 2 position with the aid of a
set of coils and magnets. In particular, the coils are driven from the ground while the magnets,
applied directly to the mass, allow its direct control (unlike the local controls that pilot the mass
through the marionetta).
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Figure 6.10: The MC30 measured and simulated coil driver transfer function relating the in-
coming compensator signal (V) to an outgoing force (N) applied to the mass.
Continuous line: simulation. Points: measurement.

The transfer function relating the input voltage of the amplifier to the force delivered by the
coils is of the form

AW = T ey W (6.20)

where

w1

27 - 18.5Hz (6.21)
wy = 2w . 1.5kHz

and an overall gain has been neglected. This function relates an incoming signal, expressed in
V and generated by the compensator G(s), to an outgoing force, in N. Fig.(6.10) shows both
measurement and simulation of the amplitude and phase of A(s). The agreement between the two
is satisfactory.
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The photodiode H(s) and compensator (i(s) transfer function

For simplicity, the transfer function H(s) describing the photodiode response consists of just a
multiplicative factor, transforming the signal from Hz to V. The role of the compensator G(s) is
of key importance. It is designed to fulfill

e the specifications of the control;
e the stability criteria.

In the locked regime, we require the residual cavity length fluctuations AL to be much smaller
than the HWHM of the resonance:

\ 10=2m for F =100
AL << HWHM = — ~ (6.22)
4F
10~1%m for F = 1600

This means that a double-zero would compensate the 1/s behavior, after 18.5 Hz, of A(s) M (s).
Assuming a RMS displacement per mass of 0.5um (with local controls) concentrated below 1
Hz, the required loop gain G must be

/107 m ~ 700  for F =100
G >> V2 x 0.5um (6.23)
/107 m ~ 7000 for F = 1600

where the motion of the masses has been assumed uncorrelated.
The design of the compensator used for the p polarization state of MC30 is[24]

o7 o (P red)
G(s) = K — or - 2 2 [1/1] (6.24)
(5 —|——5—|—w1) (8—|—(.d2) w3
1
where
K = 15x10* (6.25)
w1 = 2w -T700Hz Q1 = 0.5
wy = 2w -26.5kHz
w3 = 2m-30Hz Qs = 0.5

Furthermore, in order to maintain a relatively large phase and amplitude margin, the 1/s behavior
is kept from about 30 Hz to 300 Hz, with the UGF placed at 100 Hz. Fig.(6.11) shows the corrector
used for the control of MC30 once in p state. A notch (double-zero) was introduced at 3.4 kHz
in order to compensate for a mechanical resonance. For the simulation study, both the notch and
the resonance were neglected.

6.5 Performance of Control
Fig.(6.4) can be put in simpler form by defining the following products of functions

G'(s) = H(s) -G(s)-A(s)- M(s) (6.26)
H'(s) = C(s)

The resulting block diagram is shown in fig.(6.12). Tt is possible to express the cavity length L(s)
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Figure 6.11: The corrector (G(s) used for the control, in the p state, of MC30[24]. Continuous
line: simulation. Points: measurement. Notice the presence of a notch (double-

zero) at 3.4 kHz in the measurement, necessary to compensate a mechanical
resonance found at that frequency. For the simulation study, the notch and the

mechanical resonance were neglected.

as a function of the reference signal r(s) = v(s), where v(s) is the laser frequency, and the cavity
(6.27)

length fluctuations P(s) - n(s) due to seismic noise:
B G'(s) 1
L(S) - 1 _|_ G/(S)H (8) } V(S) + {1 _|_ G’(S)H’(S) P(S) n(s)
where
G'(s) H'(s) (6.28)

(6.29)

G'(s)
14+ G'(s) H'(s)

is the open-loop transfer function, defined in eq.(A.1), and
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Figure 6.12: The block diagram for the longitudinal control of MC30.

is the closed-loop transfer function, defined in eq.(A.2). For frequencies such that the open-loop
transfer function has an elevated gain, i.e.

| G'(s) H'(s) [>> 1 (6.30)
the cavity length L(s) can be written as

L(s) ~ H/;(S)V(S) + %n(s) (6.31)

In our case, H'(s) is the cavity transfer function, which we assumed to be a constant. On the
other hand, the noise contribution is attenuated by the factor 1/G’(s)H’(s) by virtue of eq.(6.31).
As a result, in closed-loop, the seismic noise is attenuated and the cavity fluctuations follow the
laser frequency. Throughout this chapter, no frequency fluctuations have been assumed.

6.5.1 The Open-Loop Transfer Function

Fig.(6.13) shows the Bode plot! of the open-loop transfer function G’(s) H'(s). Most of the
properties of the feedback control can be understood from these plots. The gain at DC is 1.5 x 10*
and the unit gain frequency is 100 Hz. Notice the 1/f behavior from about 30 Hz up to 300 Hz.
The amplitude and phase margin of 4.5 and 4(° respectively a reasonable stability and robustness.
Notice the notch at 1.1 Hz originating from the transfer function M (s). The gain must be high
enough so that the notch does not go below the unity gain, otherwise the system will be unstable.

6.5.2 The Closed-Loop Transfer Function

The closed-loop transfer function G'(s)/(1 + G’(s) H'(s)) is shown in fig.(6.14). The cavity length
L(s) follows the laser frequency v(s) up to 100 Hz, where an overshoot appears.

The transfer function 1/(1 + G’(s) H'(s)), instead, gives the attenuation factor of the mirror
displacement due to seismic noise (P(s) - n(s)) and is plotted in fig.(6.15).

1 Bode plots consist of amplitude and phase plots of the transfer function.
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Figure 6.13: The open-loop transfer function G'(s) H'(s) for the MC30. Upper graph: the am-
plitude | G'(s) H'(s) |. Lower graph: the phase arg[G'(s) H'(s)]. The amplitude

and phase margins are 4.5 and 40° respectively.
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Figure 6.14: The closed-loop transfer function G'(s)/(1 + G'(s) H'(s)) for the MC30.
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Figure 6.15: The seismic noise attenuation factor 1/(1 + G'(s) H'(s)) for the MC30.

6.6 The Acquisition of Lock Problem

So far, the overall description of the mode-cleaner prototype was given, as well as the performance
of the control system in closed-loop. The only noise that was taken into account was the seismic
excitation of the masses.

This section presents the acquisition of lock problem. In particular, we would like to understand
what parameters play a role in the lock acquisition time. The simulation results are then compared
to the experimental.

The problem is two-fold. To begin with, it is necessary to understand how fast the control
system is. In other words, assuming an incoming linear error signal, how long will the control
system take in order to control the cavity length?

Secondly, the error signal, and precisely the Pound-Drever signal, is linear only close to the
fundamental resonance. Outside of the FWHM of the peak, the signal is non-linear, as can be seen
in fig.(6.9). Tt is natural to ask how the control system would react to such a non-linear signal.

6.6.1 The Control System Time Response

In order to describe the time response of a control system, it is necessary to define a parameter
that characterizes such a response. The settling time, defined as the time required for the response
of the system to be within 5% of the final value, can be used as such a parameter.

One way to quantify the settling time of the system in question is to send, as a reference signal,
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71 = —1.9x 102 pr = —1.7x 103

zg = —3.1x 1072 + 6.9i py = —8.8x 103

p3 = —6.8 X 103

ps = — 1.8 x 103

ps = —3.5x 102 + 3.0 x 1024

pe = — 1.5 x 102

pr = —31x10"2 + 6.94

Table 6.2: The poles and zeros (in rad/s) for the closed-loop transfer function C(s) in eq.(6.33).

the unit step function ()

0 fort<0
r(t) = u(t) = (6.32)
1 fort>0

whose Laplace transform is L[u(¢)] = 1/s and observe the reaction time of the feedback. Recalling
the closed-loop transfer function, defined as
L(s) G'(s)

C6) = 0 = TG0 () (6:33)

then the unit step response of the system is just

1 G'(s)

L(s) = — 7 TRy (6.34)
By Laplace transforming eq.(6.34) to the time domain, the time response of the system is found.
For the control system in question, the problem is difficult to treat. The polynomial order
of the closed-loop transfer function is O(s*)/O(s%) and the analytical expression is complicated.
Nonetheless, it is possible to simplify the problem.
Let’s neglect the photodiode and cavity transfer functions because they are constant. The

factored closed-loop transfer function then becomes

G(s) A(s) M (s)
1 4+ G(s) A(s) M(s)

C(s) (6.35)

(s —z1)?(s—2)(s = %3)

(s =p1)(s —p2)(s —p3)(s —pa)(s—ps)(s—p5)(s—ps)(s—pr)(s—p3)

where p; and z; denote the ¢-th pole and zero of the function and p! and 2} their complex
conjugates. The values of the poles and zeros are shown in tab.(6.2).

It is possible to approximate the closed-loop transfer function by referring to tab.(6.2). To
begin with, remark that the pole p; is sufficiently close enough to the zero z3. This double-pole
and double-zero cancel out. In the same way, to first approximation, we can assume that the pole
pe cancels out the zero z;. By so doing, we say that these poles and zeros do not contribute to
the system.
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Furthermore, the bandwidth of the system is about 100 Hz. It is, therefore, useless to consider
the poles and zeros which are found above this frequency. This implies that the contribution of
the poles p1, p2, ps and ps can be neglected as well. Thus, eq.(6.35) reduces to

~|p5|2 (s — =)
C(s) = = TETRICETS (6.36)

To appreciate the approximation, a plot of the closed-loop transfer function amplitude | C(s) | is
shown in fig.(6.16), with the approximation in eq.(6.36) and the amplitude of

1
(s —ps)(s —p5)

C(s) ~|ps|? (6.37)
as well.

Moreover, the transfer function consisting of just the two poles can serve as an order of mag-
nitude behavior of the system. A transfer function of this type is really describing a damped
harmonic oscillator and can be re-written in the form

1

C(s) ~ |ps|? . 6.38
(s) | ps | G =) (o= 7 (6.38)
B w? B w?
B 52+£5+w2_52—|—25w5—|—w2
Q

where w/27m = |ps|/2mand Q@ = 1/26 = —|ps|/ 2R(ps) is the resonance frequency and quality
factor of such an oscillator. By reducing the closed-loop transfer function to such a simple system,
many properties can be easily understood. To begin with, only two parameters play a role in the
closed-loop transfer function: the resonance frequency w/27 and the quality factor Q). Therefore,
also the time response must depend on two parameters.

It can be shown that if the closed-loop transfer function is described by a harmonic oscillator
transfer function, then the response of the system to a step excitation leads to

L(s) = L - v’ ~ (6.39)
s +20ws +w
The Laplace transform mapping back to the time domain gives as a result
L7HL(s)] = L(t) =1 — Aexp(—dwt) sin(@t + ¢) (6.40)
where
A = ! (6.41)

w = V1 =-62w
¢

|
Q
=4
o
o
=]
@
(=)

Fig.(6.17) shows the step response as a function of w? and for different values of J.

From eq.(6.40) and its plot in fig.(6.17) we see that there are two components to the step
response: a sinusoidal term and an exponential term. The response has a marked oscillation
for high values for the quality factor 1/24§. For relatively low values of the quality factor, the
exponential term dominates the response time of the control. In other words, recall that a relatively
high quality factor corresponds to low dissipative forces in the oscillator model. Once the system is
excited, relatively long damping times are expected. On the other hand, with low quality factors,
the energy of the system is quickly dissipated. It is natural to think that for the closed-loop system,
a low quality factor is desired. The goal is to follow the time evolution of the reference signal with
as few oscillations as possible and as quickly as possible. Therefore, for stable systems, the model
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Figure 6.17: The step response of a harmonic oscillator as a function of w ¢ and for different
values of 4.

must have a relatively low quality factor. In the end, the only parameter that determines the time
response of the model is the resonance frequency w appearing in the exponential term. In such a
simple model, the bandwidth is almost equal to the resonating frequency w, so, as expected, the
bandwidth of the system plays a central role in the step response.

We approximated the closed-loop transfer function with a harmonic oscillator of quality factor
1/26 and resonance frequency w. The model was used as an example to get the main characteristics
of the system. We computed the time response to the step function of eq.(6.36), thus including
the effect of the zero z; and comparing it to the results obtained for the harmonic oscillator (see
fig.(6.18)). The presence of the zero introduces an overshoot; however, the settling time of the
system remains about the same, 10ms, corresponding to the inverse of the bandwidth.

6.6.2 The Error Signal

The second consideration in the acquisition of lock is the nature of the error signal. It has been
mentioned that the linearity of the signal is limited to the FWHM of the resonance peak, shown
in fig.(6.9). If the non-linear contribution of the signal is negligible, or if the signal is relatively
weak outside of resonance, then it is clear that only the width of the resonance plays a role in the
acquisition times.

On the other hand, if the signal has a non-negligible non-linear component of the correct sign,
then this component helps the acquisition process. The latter is the case for the mode-cleaner
prototype in the p state, relative to the finesse F = 100. Outside resonance, as far as ~ A/10
from resonance, the error signal has non-negligible values with the correct sign. The cavity, once
outside the FWHM but still within the ~ A/10, will give an error signal not proportional to the
correction to be applied but with the correct sign. It is expected that the control system applies
forces with the correct sign.

6.7 The Acquisition of Lock: F = 100

The simulation for the acquisition of lock of the mode-cleaner prototype in the p polarization state
is described as follows. The transfer functions used have been described in sec.(6.4) and the model
is shown in fig.(6.19).

For this study, the laser frequency has been assumed constant, and the only noise considered
was the seismic noise exciting the mirror positions. At the beginning of the simulation, performed
in the time domain, the mirrors were left free to follow their motion induced by seismic noise.
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Figure 6.18: The step response of the closed-loop transfer function C(s). The simple harmonic
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zero. The settling time is about the same and is the inverse of the bandwidth of
the system in question.
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Figure 6.19: The MC30 model used for the acquisition of lock simulation in the p polarization
state (F = 100). Seismic noise excited the mirror positions, while the laser
frequency has been assumed constant.
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the loop is closed at t= 140 s.

After an arbitrary time, the control loop was closed (by controlling the end mirror) and the first
attempt to lock the cavity began. The feedback was left closed for 50 s, after which the mirror was
released. After allowing it to freely move again and establish its natural motion, the procedure
was repeated. Briefly, the simulation consisted of

1. letting the two masses relax and follow their natural motion for an arbitrary time At; (open-

loop);

2. closing the loop once the system relaxed regardless of the state of the cavity with respect to

the laser frequency which is constant;

maintaining the loop closed for 7 seconds and saving the time evolution of

(a) the photodiode signals d#¢ and dgh;
(b) the cavity length L(t);
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4. releasing the controlled mirror (the terminal mirror 2) by opening the loop and letting the
system relax again.

The relaxing time At; was chosen randomly from a uniform distribution with values ranging as
At; € [100,140] s (6.42)

whereas the time the loop was closed was chosen to be 7 = 50 s. During a simulation run of 3000
s, the loop was closed 17 times. Throughout the chapter, we will refer to as event the ensemble
of signals (such the beam power, the cavity length, the correction signals etc.) relative to times
when the loop is closed.

The result of the simulation showed that for each event, or in other words every time the loop
was closed, the cavity was successfully locked with a mean time for lock acquisition of {4,y = 3 s
and a maximum time of 10 s. For the mode-cleaner prototype in Orsay, mean acquisition times
of 10 s were experimentally observed[55].

The agreement between simulation and experiment is more than acceptable taking into account
all the uncertainties in the parameters used in the model. Not only did this study allow the
estimation of acquisition times, but it also offered a means to understand the process behind the
acquisition of lock. In the following, 2 events out of the 17 will be presented as typical events,
thus allowing the main characteristics of the process to be put in evidence.

6.7.1 Example: t = 140 s

Out of all the events, the one presented here is perhaps the most interesting. Fig.(6.20) shows the
time evolution of the error signal dgh in the top graph, as well as the transmitted DC power d#¢ in
the bottom graph. The system is in open loop, with both masses freely moving. At t = 140 s, the
loop is closed. It takes the feedback about 5 s to achieve control. The transmitted power, at t >
145 s, is equal to the incoming laser power of 300 mW corresponding to the complete transmission
of all the power.

Not much can be understood from both graphs of fig.(6.20) apart from a distinct behavior
around t = 143 s. On the other hand, by plotting the time evolution of the cavity length L(t), it
is possible to get an insight into the process. Two curves are plotted in fig.(6.21), both depicting
L(t) in A units as a function of time. The dotted curve describes the time evolution L(t) in open
loop. In this case, the loop is never closed and the masses are free to move. On the other hand, the
continuous curve describes L(t) with the loop closed at t = 140 s. By plotting the two curves at
the same time, it is possible to better understand the locking process. Notice that the fundamental
mode resonance corresponds to L(t) = 0 and all multiples of A/2.

There are two characteristics of the graph in question:

1. the difference between the curves describing the cavity length in open and closed loop increase
as the relative velocity of the mirrors decreases; in other words, the control system is able
to substantially change the cavity length only when the two mirrors slow down with respect
to each other;

2. the control system can ”kick” the cavity out of resonance.

In all the events studied, the relative velocity of the mirrors plays an important role in the lock
acquisition process.

Fig.(6.22) focuses in the region around the kick. The plot of the error signal dgh as well as the
DC transmitted power d¢ is shown together with the cavity evolution. It is worth noticing that
for t € [142.2s : 142.85] the cavity crosses six resonances, with a relative velocity that goes up to
8A/s. In this time interval, the control system has a negligible effect on the cavity length as can
be seen by the fact that the two curves almost overlap.

Once the relative velocity goes to zero, the feedback begins to act, as shown in a further close-
up in fig.(6.23). When the cavity approaches the resonance at I = —1.5 A, the velocity decreases
and goes to zero before the sideband resonance. The cavity then goes back toward the resonance
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First example of lock acquisition from the simulation run of MC30 with F = 100:
the cavity length, in A units, as a function of time. The dotted curve is the cavity
time evolution in open loop whereas for the continuous curve the loop is closed
at t= 140 s.
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Figure 6.22: First example of lock acquisition from the simulation run of MC30 with F = 100:
a close-up in the region around the kick. Right: the cavity length L(t) as a
function of time; center: the corresponding error signal d2ph as a function of
length L; left: the corresponding DC transmitted power df¢ as a function of
cavity length L.
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Figure 6.23: First example of lock acquisition from the simulation run of MC30 with F = 100:
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length L; left: the corresponding DC transmitted power df¢ as a function of
cavity length L.
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again but the servo system is unable to stop it at resonance. The cavity expansion continues until
the other sideband resonance is approached. Here, the two curves begin to differ completely. We
would like to recall that the cavity length L(t) in closed loop consists of two contributions: one
originating from seismic noise, and the other from the control system. The seismic contribution
can be observed from the open-loop curve (the dotted one) in fig.(6.21) and fig.(6.22), whereas
the sum of both contributions is described by the closed-loop curve (continuous one). Now, by
referring to fig.(6.23) we notice that as the sideband resonance is approached, the cavity, due to
the seismic contribution only, begins to expand. In closed-loop, the cavity also expands until the
error signal increases due to the sideband. Here, the feedback is able to revert the expansion at t
= 143 s. As a consequence, as the sideband resonance is left behind, the error signal decreases and
the seismic contribution begins to dominate. The error signal increases, an oscillatory behavior
begins and the cavity finds itself in an unstable position from t = 143 s to t = 143.5 5. At the
end (t = 143.5 s), the relative velocity of the mirrors in open-loop decreases, as can be seen in
fig.(6.21), and the control system does not have enough time to react accordingly, resulting in a
forceful kick to the terminal mirror.

Fig.(6.24) focuses on the moment when the control system acquires lock. The relative velocity
of the masses decreases in the region around the resonance at L=1.5A. Here, the non-linear region
due to the sideband contribution plays a role again: the cavity is guided into lock from outside
the FWHM of the fundamental resonance.

In conclusion, we observed that the effect of the servo system is noticeable when the relative
velocity of the mirrors is low. Furthermore, in all the events, the Pound-Drever error signal outside
of the FWHM of the fundamental resonance contributed to the acquisition of control. Only 2 events
out of the 17 were observed where the mirror was forcefully kicked away from resonance.

6.7.2 Example: t = 825 s

Most of the 17 events resemble this one. The plot of the error signal as well as the DC power
as a function of time are shown in fig.(6.25). In this case, only 2.5 s were necessary in order to
acquire lock. The cavity length evolution, in both closed and open loop, is presented in fig.(6.26).
Again, once the relative velocity reaches low values, the control system begins to play a role. If,
at the same time, the value of the error signal is non-negligible, the feedback is able to guide the
cavity into lock. Fig.(6.27) shows the behavior in question. The relative speed decreases as the
resonance at L. = A is approached and the cavity length begins to oscillate from one sideband to
the other. It is clear that the non-linear component of the error signal plays a role in the process.

6.8 Acquisition of Lock: F = 1600

The lock acquisition process was also studied in the case of F = 1600. By going from a finesse
F = 100 to a finesse of F = 1600, the resonance FWHM decreases by more than one order of
magnitude. Fig.(6.28) shows both the transmitted DC power as well as the error signal for the two
polarization states. As a consequence, the gain of the control must be adjusted so as to limit the
length fluctuations to within (A/2)/F = 3 x 10=* X once the loop is closed. One way to increase
the gain while leaving the bandwidth of the system at 100 Hz is to multiply the open-loop transfer
function by the filter

s 4+ w
S

(6.43)

where w/27r = 18.5 Hz.

A simulation run of t = 3000 s, just as in sec.(6.7), was used to study the lock acquisition
process. The same MC30 model was used, only with the finesse modified to F = 1600 and
the open-loop transfer function, discussed in sec.(6.5.1), multiplied by the filter in eq.(6.43). The
result of the simulation showed that the control system was unable to acquire lock. Experimentally,
unacceptably long lock acquisition times were observed with the control system described in this
chapter.
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Figure 6.24: A close-up of the acquisition of lock region. Right: the cavity length L(t) as a
function of time; center: the corresponding error signal d2ph as a function of length
L; left: the corresponding DC transmitted power d¢¢ as a function of cavity length
L.
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Figure 6.25: The time evolution of the error signal d2ph and the transmitted DC power df° as
the loop is closed at t= 825 s.
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cavity time evolution in open loop whereas for the continuous curve the loop is
closed at t= 825 s.
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Figure 6.27: A close-up in the region around the acquisition of lock. Right: the cavity length
L(t) as a function of time; center: the corresponding error signal d2ph as a function
of length L; left: the corresponding DC transmitted power d¢¢ as a function of
cavity length L.
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This was expected and it can be understood by referring to fig.(6.28). For the two polarization
states, not only the two resonance FWHM but also the non-linear components of their error signals
differ. In the case of F = 1600, the Pound-Drever error signal can be neglected outside of the
resonance because of its low value. The threshold velocity viny, defined in eq.(6.46) is, in this case

vae = B o 222 = 5107 Dy (6.44)

As an estimate, for the mirror motion concentrated at 1 Hz with an RMS value of 1 pum, the
mean velocities expected are of the order of 3 um/s, which is two orders of magnitude above the
threshold value, and therefore very long acquisition times are expected.

6.9 Conclusion

The model of the mode-cleaner prototype MC30 in the p polarization state has been presented as
well as a simulation of the acquisition of lock process. The numerical study resulted in a mean
acquisition time  and a maximum acquisition time #,,,, of

t = 3s (6.45)
tmar = 10s

This has been confirmed on the MC30 prototype with acquisition times of the order of 10 s[55].
The simulation results also showed that

1. the control system plays a role only when the relative speed of the mirrors is low;
2. the non-linear contribution of the error signal also plays a role

a) by causing the control system to inject noise into the system (as for example forcefully
g
kicking the mirror away from the closest resonance) even though only 2 out of the 17
events showed such behavior;

(b) by helping the control system to guide the cavity into lock with oscillations of the cavity
length ranging from sideband to sideband.

It is possible to give an estimate for the acquisition times once the response of the control
system, the relative speed of the mirrors and the error signal are known. Assuming that the error
signal has a negligible component outside of the FWHM of the resonance, then there exists a
threshold speed v, below which the control system is able to acquire lock. Such a threshold can

be defined as follows:
vehr = B+ FWHM (6.46)
where B is the bandwidth of the control. If the mirror speed v is such that
v < Vthr (6.47)

then the feedback is able to follow and correct the evolution of the cavity dynamics.

For the mode-cleaner prototype with F = 100, acquisition times are difficult to estimate. This
is due to the fact that the error signal outside of the FWHM does contribute to the locking. By
assuming that an error signal is limited to the distance between the sideband resonances, ~ A/4,
then the threshold velocity is

A
v < vy ~ B x 1= 25 [\/s] (6.48)
For seismic displacements concentrated around 1 Hz with a RMS value of 1 ym, the mean velocities
expected are of the order of 3 um/s, well below the threshold limit, and short acquisition times
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are expected. From the simulation, acquisition of lock was possible from velocities ranging up to
5 A/s.

On the other hand, the results of the numerical calculations showed that for the mode-cleaner
prototype with F = 1600, the control system was unable to acquire lock. Experimentally, unac-
ceptable acquisition times were observed with the control system described in this chapter. This
was anticipated: the non-linear contribution of the error signal is negligible so that the threshold
velocity is veny = 3 x 1072 [\/s], well below the mean velocity of 3 um/s. Long acquisition times
are therefore expected.
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Chapter 7

The Ringing Effect

Before making the step from the MC30 prototype to the CITF as regards the lock acquisition
process, let us consider a phenomenon which occurs on the mode-cleaner in high finesse. Prior to
the lock acquisition of the MC30 prototype, the mirrors move in free motion, inducing the cavity
length to sweep the optical resonance at different rates of expansion. If the relative velocity between
the mirrors is constant, the DC transmitted power delineates the Airy peak as a function of time.
This was observed for the optical system with F = 100. However, during the experimental work
on the MC30 prototype with F = 1600, a deformation of the Airy peak, similar to a ringing, was
observed. Fig.(7.1) shows an experimental measurement of the transmitted power as a function
of time, as the cavity length swept the optical resonance at an unknown expansion rate.

0.9

N
|
|
|

. |
) /i

Toe (ALU)

(o)) S — T | | i i R — | i T

0.05 0.06 0.07 0.08 0.09 0.1 0.1 0.12_2
x 10
t(s)

Figure 7.1: The observed ringing effect on the transmitted DC power of the MC30 prototype.
The transmitted power is shown as a function of time as the cavity length sweeps
the optical resonance at an unknown rate.

Both [56, 57] and references therein discuss this phenomenon. Briefly, this effect arises once
the cavity sweeps the optical resonance in a time Tyweep Of the order of or less than the cavity
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storage time Tyiorage >~ F L /¢, i.c.

Tsweep S 7—storage (71)

This effect is observed when the rate of expansion is so high that, as resonance is approached, the
cavity doesn’t have enough time to completely fill itself. It is the beating between the incoming
laser field and the evolving stored field that gives rise to this oscillatory behavior.

This effect created difficulties in the measurement of the finesse for the s polarization state. In
the p polarization state, it was possible to measure the resonance FWHM, thus allowing the deter-
mination of this parameter. However, for relatively high finesse values, the Airy peak distortion
introduced by the ringing effect modifies the resonance FWHM, impeding the estimate.

In this chapter, we present a numerical study on the ringing effect. This study allowed the
determination of

e the MC30 finesse for the s polarization state, whose result is then compared to that of an
alternative method[56];

e an empirical expression to resolve the cavity expansion rate.

These two parameters, F and v, define the behavior of the oscillations. We begin the chapter by
describing the model used for this study.

7.1 The Ringing Effect Model

In order to model this phenomenon, the photon travel time within the cavity needs to be taken into
account. Just as in Ch.(6), a two-mirror Fabry-Perot of length Lo = 30 m, sketched in fig.(7.2),
was chosen to simulate the mode-cleaner. Assuming a negligible mirror displacement for times of

| L |
| |

Wy L4
= ik

1

Figure 7.2: The model used for the study of the MC30 ringing effect.

the order of the round trip time of light 7 = 2Lo/c = 0.2 s, the stored field ¥y (¢) at time ¢ can
be written as

V(t) = t; W + rPexp(—2ik L) Uyt — 7) (7.2)

where 7 denotes the amplitude reflectivity for each mirror, ¥;,, is the incoming laser field, and L
is the cavity length. Assuming that the cavity expands at a constant rate v, we can write

and solve eq.(7.2) iteratively, for different velocities v and finesse F.

By setting the Fabry-Perot finesse to a fixed value and plotting the stored DC power as a
function of cavity length AL for different expansion rates, it is possible to reproduce the oscillatory
behavior shown in fig.(7.1). In particular, fig.(7.3) shows this plot for three velocities: v = 0
(static approximation), v = 1A/s, and v = 2.6A/s, with F = 4000. The curve labeled static,
corresponding to v = 0, was generated by neglecting the travel time of light, assuming an infinite
speed of light. The two other curves, on the other hand, were simulated according to the dynamical
model here presented. Notice how the main peak height decreases, its width increases and its
position shifts ahead of the resonance. These changes are greater for larger velocities.
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Figure 7.3: The calculated Fabry-Perot transmitted power, with F = 4000, as a function
of cavity length AL as the resonance is swept at v = 0 (static approximation),
v=1)/s, and v = 2.6A/s. In the figure, AL = 0 corresponds to resonance.
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Figure 7.4: The observed ringing effect for the MC30 prototype: measurements and eye fits.
The finesse and velocity values are shown for each graph.

7.2 Measurement Fits

The first goal of this work was to reproduce the observed ringing effect on the MC30 prototype
and estimate the cavity finesse as well as the relative mirror velocities. Figs.(7.4-7.5) show ten
measurements of the transmitted power, with the principal peak height normalized to one, and
their eye fits performed with the simulation. The good agreement between actual measurements
and simulation outputs confirm the validity of the model in use. By averaging the fit results, the
mean finesse is

T = 1554 £ 160 (7.4)

Here the error arises from the fact that the state of the alignment changes from each resonance
crossing, generating different cavity losses per crossing. This finesse value was later confirmed by
a measurement of the cavity pole[58].

The fits also allowed an estimate of the relative velocities. We can observe that the time
difference between minima and maxima decreases with increasing velocity.
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Figure 7.5: The observed ringing effect for the MC30 prototype: measurements and eye fits.
The finesse and velocity values are shown for each graph.
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Finesse F set in simulation | Finesse estimated from eq.(7.5) | Error
1000 828 20%
1500 1316 12%
2000 1845 8%
2500 2452 2%
3000 2960 1%
3500 3480 0.5%

Table 7.1: The precision of eq.(7.5) as a function of finesse, using simulation outputs instead
of measurements. The rate of expansion used was v = 10 A/s.

7.3 Measuring the Finesse: An Alternative Method

An alternative method for the measurement of (relatively) high finesses from the observation of
the ringing effect, described in [56], was used. According to the authors, by measuring the first
and second peak height, I; and I3 respectively, as well as their time difference At, then

9
7€ At
F=q=Ll— (7.5)
1
L 9
L, ¢

where L is the cavity length. This method also yielded a mean finesse of F ~ 1600 with a
maximum spread of 20%.

This method is biased towards high finesse values, which can be observed by using eq.(7.5) with
simulation outputs instead of measurements, thus allowing the comparison of the known finesse
with the finesse obtained by this method. Tab.(7.1) shows the results for 6 different finesse values
with the same cavity expansion rate v = 10 A/s. The reader can observe that the error decreases
as the finesse increases with values that go below 1% for finesse values above 3000.

7.4 The Properties of the Effect

We would now like to discuss a property of the ringing effect observed from the simulation runs.
Fig.(7.3) graphs the stored power as a function of cavity length for a given finesse and for different
values of velocity. We can now plot the stored power as a function of time, setting the velocity to a
fixed value, but varying the finesse. One example is given in fig.(7.6). The top graph of this figure
shows the stored power as a function of time, for an expansion rate set to v = 10 \/s, for three
different finesse values: F = 1000, F = 2000, and F = 3000. The bottom graph is the curves’
time derivative. From these plots, we remark a particular characteristic of the phenomenon: the
position of the minima and maxima, with the exception of the main peak, are almost independent
from the finesse value.

Furthermore, going back to fig.(7.3), we can now note that the derivative zeros depend only
on the relative mirror velocity. Therefore, the output of the simulation can be easily adjusted so
as to fit any measurement. As a matter of fact, by modifying the cavity rate of expansion, it is
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Figure 7.6: The calculated stored power as a function of time, with a fixed expansion rate set
to v = 10A/s, for different finesse values: F = 1000, F = 2000, and F = 3000.
Top graph: the stored power. Bottom graph: the stored power time derivative.
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possible to increase or decrease the frequency of the oscillations so as to match the experimental
position of minima and maxima. Once these positions are found, changing the finesse allows the
adjustment of the peak heights.

7.4.1 The Relative Velocity Estimate

The simulation output shown in fig.(7.6) not only shows how the derivative zeros are independent,
at least to first approximation, from the finesse, but it also shows a particular regularity in the
spacing between the minima and maxima. The upper graph of fig.(7.7) shows the simulated
stored power of a cavity with F = 3500, expanding at a rate 10\/s. Let the position of the
curve’s derivative zeros, f,er0, be labeled by the index n, so that, for the first zero, positioned at
tsero =~ 5.07ms, n = 0, for the second zero, located at #,c;0 ~ 5.103ms, n = 1 and so on. Then,
the bottom graph of fig.(7.7) shows the plot of index n as a function of time. We remark that the
n-th zero of the derivative is a quadratic function of the zero crossing time #,ep0:

n X tZZero (7'6)
By fitting the simulation outputs to the expression

Ngero = P1 + P2 lzero + P3 tz2ero (77)

where p; o 3 are fitting parameters, we empirically found that the coefficient p3 can be written as

_cv
AL

where L is the cavity length and v is the cavity expansion rate (an example of this fit is shown
in the bottom graph of fig.(7.7)). Therefore, an estimate of coefficient pz would also give us an
estimate of the relative velocity v.

Now, going back to the measurements discussed in sec.(7.2) and shown in figs.(7.4 - 7.5), it is
possible to fit them with eq.(7.7) to estimate the relative velocity v. For 5 measurements, figs.(7.8
- 7.12) show, on the left, the measured transmitted power as a function of time and on the right,
the fit results of 4,00 as a function of n. In these figures, what is referred to as coefficient P
refers to the inverse of eq.(7.8). From the 5 fit results, the estimate of ps gives an estimate on the
velocity. The velocity error derives from the accuracy within which the minima and maxima are
located. For this work, this was set to half of the oscilloscope’s sampling time. The fit results for
the velocity reconstruction are shown in tab.(7.2), with their corresponding y?/ndf values, and
are in agreement with the eye fits shown in fig.(7.4 - 7.5).

P3 (7.8)

7.5 Conclusion

In this chapter, we investigated a phenomenon, which we called ringing effect, observed on the
MC30 transmitted DC power as the mirrors moved in free motion. By fitting the behavior with
SIESTA’s outputs, we were able to give a first estimate of the cavity’s finesse

F = 1554+ 160

Furthermore, the numerical results showed how the position of the oscillations’ minima and
maxima, when plotted as a function of time, weakly depend on the finesse value and are completely
determined by the cavity expansion rate as the resonance is being crossed. In particular, we showed
how a simple empirical formula can determine the cavity expansion rate by observing these minima
and maxima. For the same set of measurements used for the finesse, the results from the empirical
formula and the eye-fits were in agreement.

This chapter’s results may be useful for a possible acquisition of lock algorithm relative to
VIRGO’s mode-cleaner prototype. We remark that the velocity reconstruction here shown gives
information only on its amplitude and not on its sign. In order to obtain information on the
velocity sign, the same empirical formula must be applied to the demodulated signals.
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Figure 7.7: The simulated stored power of a Fabry-Perot, expanding at a constant rate v =
10 /s, with F = 3500. Top graph: the stored power as a function of time. Bottom
graph: the index n, corresponding to the n-th derivative zero, as a function of

pr + p2t + ps t2. Notice that

time. The curve is fit to the expression n =

ps = cv /AL = 100[1/ms?].
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fig.(7.8) fig.(7.9) fig.(7.10) fig.(7.11) fig.(7.12)
v (p/s) 2.6 2.7 16.6 11.9 13.1
(from
eye fit)
v(p/s) | 25£3-107* | 27+£3-1073 | 13.94£3-1072 | 10.94£7-1073 | 12.8+£8-1073
x?/ndf 7.3 8.7 1.6 0.8 0.9

Table 7.2: Fit results for the mirror relative velocity reconstruction: the estimated velocity v
and the corresponding x?/ndf value.

Transmitted Power (V)

-2
x 10
®0.15 X/ndf 21.76 1/ 3 |
~ Pl .8979E-03+ .2322E-05
+ L P2 —.1595E—05+ .2269E-08
P3 4197E-07 £ 5220E-10

0145 (= e

0.135

0.125

0115+ L

n—th zero

Figure 7.8: Fit results for the mirror relative velocity reconstruction.On the left: The measured
DC transmitted power. On the right: the plot of ¢, as a function of index n.
The error bars correspond to half of the oscilloscope’s sampling time.

160



AL LA RS LA LA

-2
x 10
~ 0.14 X/ndf 17.52 /7 2 ‘
— P1 .8798E+03+ .3084E—05
P2 |  —.1889E+05+ .2004E-08
r| P3| .3920E+07 £ .3933E-10

¢

0.135

Transmitted Power (A.U.)

0.125

0.115

2

t(s) n—th zero

x 10~

Figure 7.9: Fit results for the mirror relative velocity reconstruction.On the left: The measured
DC transmitted power. On the right: the plot of ¢, as a function of index n.
The error bars correspond to half of the oscilloscope’s sampling time.
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Figure 7.10: Fit results for the mirror relative velocity reconstruction.On the left: The mea-
sured DC transmitted power. On the right: the plot of {;¢ro as a function of index
n. The error bars correspond to half of the oscilloscope’s sampling time.

162



AL LA RS LA LA

-2
x 10
P ~~ 0.14
> ] : :
~ s s s g X/ndf9.440 / 12 %
o 96— 0 R P 1P L9180E-03 + .1058E-05
= | | | P2 —.1028E-05+ .7038E-09
o 0.135/EP3 (9736E-08 4 .6268E~11.
a | s |
o i i i L
O 05 | e oo
- | | |
f’i} H H H
£ 0.13
(7]
c | | |
O R e
= % % %
0.125
O B i B
0.12
o2 f
| | | 0.115
CR] e —
| | | 0.11
O AL N AV.Y. , | |
\\\\‘\\\\‘\\\\‘\\\\ 0’10\\\\‘\\\\‘\\\\‘\
0.09 0.1 0.1 0.12 0.13_2 105 110 115 120
x 10
t(s) n—th zero

Figure 7.11: Fit results for the mirror relative velocity reconstruction.On the left: The mea-
sured DC transmitted power. On the right: the plot of {;¢ro as a function of index

n. The error bars correspond to half of the oscilloscope’s sampling time.

163



i idAdL AL LJEU T -4 444 LRLLVAALLTAA L A LSS

-+

-2
x 10

T~ ~ 0.14

> 0 3 3

~ = X/nef10i77 /12 §

5 ; ; ; P 1 .9364E-03+ .7621E-06

P N — 0 DO SO S P2 +.8471E-06+ .5592£-09

o i i i 0.135[EP3 -.8302E-08 £ --.5042£-11.

a | s |

ke

) : : : i

- | | |

= 05 e e

- s s s 0.13

%)

C

O

(-

e e e
0.125

0.3

0.2
0.115

0.1

o IR A VAVAV.N ,

I ‘ L ‘ L1 ‘ L O”IO | | ‘ | ‘ | | i L
0.09 01 011 012 013 00 105 110 115
x 10
t(s) n—th zero

Figure 7.12: Fit results for the mirror relative velocity reconstruction.On the left: The mea-
sured DC transmitted power. On the right: the plot of {;¢ro as a function of index
n. The error bars correspond to half of the oscilloscope’s sampling time.
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Chapter 8

Lock Acquisition Strategy

The study of the mode-cleaner prototype in ch.(6) allowed an understanding of the acquisition
of lock process for the two polarization states. It has been shown how, given a spectral density
displacement for the longitudinal motion of the mirrors, the acquisition time depends on

e the bandwidth of the control system;
e the finesse of the optical system.

Once these parameters are set, it is possible to estimate the acquisition time.

This chapter discusses this process for the CITF, and presents a non-linear lock acquisition
strategy inspired from a work[59] developed within the LIGO collaboration. At first, the strategy
is simulated by modeling a VIRGO Fabry-Perot. Then, once the scheme is presented, it is applied
to the CITF case. The simulation results close the chapter.

8.1 Acquisition Time Estimate

As previously stated, the lock acquisition time depends on the bandwidth of the control system
and the finesse of the optical system. However, in order to give an estimate of such a time period,
it is also necessary to estimate the mirrors’ relative velocity distribution and to observe how many
resonance crossings, per unit time, have a velocity below a certain threshold.

For the CITF with mirrors in free motion, the displacement noise is concentrated below 3 Hz,
as shown in the CITF sensitivity curve in fig.(5.3). Ideally, a control bandwidth of a few Hertz
is desired. In this way, noise injection into the detection bandwidth is limited and the first violin
mode excitation (300 Hz) is avoided. A study[62] already exists on linear locking for the complete
VIRGO interferometer with a 20 Hz control bandwidth. For this reason, in this chapter we
assume a linear locking bandwidth for the CITF also of 20 Hz. It is clear that for such a low
bandwidth, the control system will necessarily have a slow reaction time.

Once the CITF is operated in dark fringe, the resonance FWHM for the recycling cavity is

A/2
FWHM = % ~ 1073 pm (8.1)

where F = 400. Assuming a negligible contribution of the error signal outside of the linear region,
the velocity threshold vy, is

Ve ~ 20 Hz x FWHM ~ 2 x 1072 [um/s] (8.2)

By referring to the mirror amplitude spectral density displacement model used for the simulations,
shown in fig.(8.2), the mirror motion, in open-loop, has an RMS value of A ~ 1.6 um dominated
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by a resonance at f = 200 Hz. If we assume that the mirror displacement z(t) is described by a
simple sinusoidal model of the form

z(t) = Asin(27 ft) (8.3)

then the mean mirror velocity v, is
1 T
ExZQNfoT/ |cos(2m ft) | dt =4 Af ~1.3[um/s] (8.4)
0

and the relative mirror velocity v = V23, =1.8 um/s. The mean time ‘At between each resonance
crossing is

A2

v

At =

~ 0.3s (8.5)

In the sections to come, it will be shown that less than 0.1% of all crossings have a relative mirror
velocity below the velocity threshold. This means an acquisition time facq no less than

At

tacq = — ~ .
4= g5 ~ 3005 (8.6)

Acquisition times this long are not acceptable and a means of improvement is necessary.
There are three possibilities for the improvement of the acquisition time:
i. increase the linear range of the error signal;
ii. increase the bandwidth of the control system;
ili. decrease the mirror relative velocity.

This chapter presents a non-linear locking scheme for the improvement of the CITF acquisition
time by damping the relative motion of the mirrors, thus facilitating the acquisition of control by
the linear servo system. The goal of this chapter is to first present and simulate the scheme for a
VIRGO Fabry-Perot and then extend it to the CITF.

8.2 The VIRGO Fabry-Perot Model

We here present the model, shown in fig.(8.1), used for the Fabry-Perot simulation[60]. In partic-
ular, the simulation

1. computed the mirror motion due to seismic noise, thermal noise and the possible presence
of forces induced by the reference mass coils;

2. computed the optical response of the cavity;

3. treated the photodiode signals, filtering and sending them, if necessary, to the reference mass
coils.

8.2.1 Mirror Dynamics and Control

The two mirrors My and My, 3 km apart, are suspended by identical superattenuators. By low-pass
filtering white noise according to a power law of the form f~2, seismic noise is simulated and filtered
through the superattenuator transfer function. The noise contribution due to thermal excitation
was simulated as well, even though it is negligible for the lock acquisition study. The amplitude
spectral density displacement #; o for both mirrors M; » is shown in fig.(8.2), corresponding to
an RMS value for the displacement of 1.6pm integrated down to 200 mHz. Having injected
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Figure 8.1: The model used for the Fabry-Perot non-linear locking scheme. The mirror ampli-
tude spectral density displacement is shown in fig.(8.2).

uncorrelated noise, the RMS value for the cavity length fluctuations is 2.3 ym. Notice also that
the thermal noise contribution has been added quadratically and contributes from about 3 H z.

A system of coils and magnets allows position control of the mirror through a reference mass, as
can be seen in fig.(8.1). The mirror displacement induced by the force applied from the reference
mass is computed according to a transfer function that takes into account the mirror’s mass, the
quality factor Q(10°) and to the resonance frequency (0.6 Hz) of the pendulum system. It is
assumed that no energy is injected in the superattenuator upper stages as the reference mass acts
on the mirror.

8.2.2 The Optical Response and The Linear Control System

A phase-modulated (modulation frequency /27 = 6.27 M Hz) 10 W laser beam (wavelength of
laser light A = 1.064 pzm) is injected into the optical system. Due to the plane-wave characteristics
of the model used, the cavity is assumed to be aligned and matched to the incoming beam. In
the optical configuration given, the mirror power reflectivities are r# = 0.88 and rZ = 0.9999,
corresponding to a finesse of F ~ 50. Since the photon storage time is about F L /¢ ~ 1 ms and
the foreseen relative mirror velocities are below 10 um/s, no ringing effect is expected and the
quasi-static approximation is used for the optical module of the simulation.

Two photodiodes monitor the reflected and transmitted beams. The only error measurement
taken into account is the statistical fluctuations in the number of photons detected, the beams
shot-noise. The signals coming from the photodiodes are digitized at a 10 kH z sampling rate.

The error signal is the Pound-Drever error signal, using the demodulated component on reflec-
tion. Fig.(8.3) shows its dependence on the cavity length as it is swept over time at a constant
velocity. Due to the low finesse of the system, the non-linear component contributes to the lock
acquisition process.

Assuming a bandwidth for the linear control system of 20 H z, the threshold velocity is 20 Hz -
FWHM ~ 0.2 um/s if we neglect the non-linear contribution of the error signal. However, the
non-linear component does play a role, just as in the case of MC30 with F = 100, and the threshold
velocity must be higher. Long acquisition times are not expected for this system.

8.2.3 Lock Acquisition Strategy

An algorithm is here introduced to aid the linear control system acquire cavity lock. The algorithm
consists of
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Figure 8.2: The simulated displacement amplitude spectral density for each mirror. The RMS
cavity length displacement is 2.3 um dominated by the resonance at 200 mH z.
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Figure 8.3: The simulated transmitted DC power and the Pound-Drever error signal for the
VIRGO Fabry-Perot cavity. The trigger on transmission is set to the resonance
half-maximum while the window on the error signal is opened for values below
1.5W. The presence of a T'FMio, due to a slight misalignment, is also shown.

169



A~ iiL4 Al A LJEU e AN AR LA Y AL A AL S A s A A

e an analysis procedure;
e an acting procedure.

The objective of the first procedure is to reconstruct the relative mirror velocity. The acting
procedure then uses the reconstructed value to damp the relative mirror motion to within the
velocity threshold. Once this is done, the linear control system is enabled.

8.2.4 The Analysis Procedure

In order to understand how fast the mirrors are moving with respect to each other, we must be
able to monitor the linear region of the Pound-Drever error signal. This is possible only when the
cavity length is within the FWHM of resonance and which is not frequent because the mirrors
move freely and the full spectral range of the cavity is swept completely. One way to monitor just
the linear region of the error signal is to recognize when a fundamental mode resonance is being
crossed as the mirrors move in free motion. This is achieved by simply triggering the transmitted
power at a particular value. Once the transmitted power is above a particular threshold, the cavity
is about to resonate and the error signal can be used to determine the relative velocity. However,
for this to be possible the power of both sidebands, as well as that of any high order transverse
modes, must be below the threshold level.

Fig.(8.3a) shows the transmitted power as a function of time as the cavity length is swept. A
trigger is set at the half-maximum level of the resonance. Once this trigger is satisfied, the cavity
is within the resonance FWHM and the error signal can be monitored. Notice how the trigger
level is higher than the power of resonating sidebands. The presence of a TEMj¢, generated by a
small misalignment, is also shown. Fig.(8.3b) shows the Pound-Drever error signal.

As the trigger placed on the transmitted power is satisfied, a window on the error signal opens
and the values of the error signal are stored until the window closes. At this point, a least-square
fit to a straight line reconstructs the velocity. In other words, by defining as y; the value of the
error signal at the sampled time ¢; and considering a model of the form

y(t) =a + bt (8.7)

then the merit function

XZZZ{yi_(a+bt)}2 (8-8)

7

gives a measure of how well the model fits the sampled data. By minimizing eq.(8.8) with respect

to the parameters a and b, we obtain
Zt? Zyi - th’ Ztiyi
N> - (Zti)Q
- .

N Ztiyi - th’ Zyi
N> - (Zti)Q

7

(8.9)

where N is the number of sample points within the window. The value of parameter b allows the
estimate of the mirrors relative velocity.

Fig.(8.3b) shows an example of a window which opens on the error signal once the trigger on
the transmitted power is enabled. In this figure, the window is set to 1.5 W.

We would like to remark that it is possible to reconstruct the velocity correctly only if we
assume that it is constant within the time interval of the resonance crossing. Since the motion is
mostly concentrated around 200 mH z, the relative velocity can be considered constant for time
intervals much smaller than 1/200 mHz = 5.
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Figure 8.4: The effect of the application of a single pulse to a mirror. (1) The cavity is ex-
panding at an unknown velocity and at this point the transmitted power is above
threshold. (2) A window opens on the error signal and the analysis procedure
begins. (3) The analysis procedure ends and the x? minimization procedure deter-
mines the rate of expansion @. The acting procedure begins and a pulse in current
is sent to the reference mass coils. (4) The pulse ends here. The cavity is now
expanding at the rate —e¥ and it is forced to cross resonance again.

8.2.5 The Acting Procedure

Once the relative velocity is reconstructed, the algorithm has the option of enabling the linear
feedback or not, according to the reconstructed value. If the reconstructed velocity is below the
threshold value, the linear feedback is enabled. If not, a pulse of current is sent to the coils of
the reference mass so as to damp the relative motion of the mirrors. If the analysis procedure
reconstructed an expansion of the cavity at a rate ¥, a rectangular pulse of amplitude F'is sent
for a time At with

= muv

where m 1s the mass of the mirror and ¢ is a parameter. The result of such a pulse application
causes the relative velocity to change from ¢ — — e @. As can be seen, the relative motion will be
damped for values of € € [0,1). Fig.(8.4) shows graphically the effect of the application of a single
pulse.

In principle, any value of ¢ € [0,1) is suitable. Setting ¢ = 0 would momentarily stop the relative
motion of the masses and the linear feedback could take over without a problem. However, this
would imply a very good knowledge of the optical system, the reconstruction and the acting
procedure as well. For this reason, we opted for an iterative application of pulses, i.e., an iterative
analysis and acting procedure. The result is the periodic control of the optical system, damping
the relative motion of the mirrors below the threshold value.

This iterative procedure cannot be applied for an infinite amount of time: after a few pulses,
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Figure 8.5: A brief simulation shows the effect of the algorithm with pulses sent to mirror
M. In graph (a), the two mirror positions are shown as a function of time. At
t = 17 s, pulses are sent to mirror M; forcing it to move in phase with mirror M.
Graph (b) shows the cavity length as a function of time around ¢ = 17 s (recall that
FWHM = 107® m). In graph (c), the relative velocity is plotted as a function of
time. Notice how it is damped from the initial value of 1 um/s down to 0.1 pm/s.

the acceleration applied to the mirror is weak with respect to the seismic excitation and the cavity
could fail to cross resonance again. As a consequence, the analysis procedure is not called and the
train of pulses ends. The mirrors then begin to follow the motion caused by seismic noise.

Fig.(8.5) and fig.(8.6) show the results of the iterative application of the analysis and acting
procedures (without enabling the linear feedback) as the relative motion is damped. Tt consists of
a t = 20 s simulation run with ¢ = 0.5, A¢ set to 10 ms and the damping performed on mirror M;.
In fig.(8.5a), at t = 0s the mirrors are at rest, and as time evolves they begin to acquire speed.
The algorithm is triggered by the transmitted power at about ¢ = 17s: the cavity is within the
resonance FWHM. The window opens on the error signal, the relative velocity is reconstructed
and a pulse is applied to M;. The cavity is then forced to cross resonance again with half of
its initial speed. Notice, from fig.(8.5a), how the algorithm forces the motion of M; to follow
the motion of M, forcing it to be in-phase. Fig.(8.5b) shows both the spontaneous and forced
resonance crossings: notice how the cavity remains within the FWHM = 10~3m of the optical
resonarnce.

Fig.(8.5c) shows the initial and final velocity, where by final velocity we intend the last recon-
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Train of Pulses

Figure 8.6: The train of pulses used by the non-linear locking algorithm and the resulting
transmitted DC power.
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structed velocity. In this case, the velocity attenuation is of a factor of ten, with the final velocity
being below threshold: the linear feedback could be enabled. Fig.(8.6a) shows the pulses sent to
mirror My. The forces used are of the order of 10 mN and of duration 10 ms . Fig.(8.6b) shows
the DC transmitted power as a function of time. The cavity is kept within the resonance FWHM,
since the power is kept above the half-maximum value.

8.3 The CITF Locking Strategy

In this section we extend the algorithm presented for the VIRGO Fabry-Perot to the CITF[61].
Longer acquisition times, with respect to the Fabry-Perot, are expected and a means to guide the
CITF into lock is necessary if a bandwidth of 20 Hz for the linear control system is used. We first
present the model used and then briefly recall the optical response of the CITF to longitudinal
mirror motions already discussed in Ch.(5).

8.3.1 The Model for the CITF

Just as for the Fabry-Perot, the model shown in fig.(8.7a) is simulated in the time domain and
it consists of three parts. The first generates the dynamical behavior of the mirrors caused by
seismic noise and the possible presence of forces induced by the reference mass coils. The second
deals with the optical response of the CITF, and the third treats the photodiode signals deriving
from them, the error signals that are then filtered and applied, if necessary, to the reference mass
coils.

The chosen displacement spectral density for the recycling mirror My, both end mirrors M; and
M as well as the beam-splitter Mpg, is shown in fig.(8.2), corresponding to an RMS displacement
value, for each mirror, of 1.6 um at 200 mH z. Recalling that Al = ly—{; and [, = lo+(1/2)(l1+{2),
we can define the velocity va; as

VAl = Al (811)
and v, as
l, (8.12)

Fig.(8.8) shows the results of a free motion run. The distribution of the velocities va; and v, is
shown in fig.(8.8a) and fig.(8.8¢c). The velocity spectrum is wide, with speeds that range above
6 pm/s with a mean velocity at about 1.8 um/s. Fig.(8.8b) and fig.(8.8d) show the distribution
of the time difference At between each dark fringe crossing and between each resonance crossing.
About 75% of all crossings are found in a time At inferior to 0.5 s.

The parameters used in the model are slightly different from the one described in Ch.(5). In
particular, the lengths used were set to {p = 6.0m, {; = 6.2m and I3 = 5.8 m. The incoming laser
power was 10 W, phase modulated at Q/27 = ¢/21,, with J?2 ~ 4%.

In order to apply the algorithm presented to the CITF, it is necessary to use signals for the
control that depend mostly on either Al or l.. Sec.(5.6) showed that this is possible by taking the
ratio of different photodiode signals. We here recall that the CITF can be seen as a Fabry-Perot
cavity (see fig.(8.7)) of length /., whose end mirror transmittivity 7 (Al) depends only on the dark
fringe condition, regardless of the recycling resonance. It has been shown that this end mirror
transmittivity can be obtained by taking the following ratio of signals:

AR dde
Al 2= =21

(8.13)

where AR is the power reflectivity of the BS anti-reflective coating, d4¢ is the DC power seen by
photodiode 5 and d{ is the DC power seen by photodiode 1. This ratio can be used to identify
the interference condition regardless of the recycling power, as can be seen in fig.(5.9).
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Figure 8.7: The CITF seen as a Fabry-Perot cavity.

Even though the ratio d{*/dJ° can be used to identify dark fringe, it cannot be used for the
control due to its quadratic dependence on Al. On the other hand, the ratio dfh/dldc, shown in
fig.(5.10), depends linearly on Al and it can be used for its control regardless of the recycling
condition.

Once dark fringe is controlled, we can estimate the acquisition times for the recycling cavity.
Recall that the threshold relative velocity is vy = 2 X 10_2/1m/5. From the distribution of
velocity, shown in fig.(8.8¢c), the threshold is well below the mean value of 7 = 1.8 um/s. Only
0.07% of all events have v;, < 0.02pm/s. Again, by considering all crossings separated by the
mean time At = 0.3 s, we can estimate the time required for lock acquisition as the average time
between two events with velocity below threshold, or 0.3s/7 x 10=* ~ 400 s.

8.3.2 Lock Acquisition Strategy

The overall strategy is simple and straightforward. By monitoring the two ratios d{* /d and
dfh /d{, the analysis procedure reconstructs va; . The acting procedure is then enabled, sending
pulses to one end mirror so as to damp the relative motion of the two end mirrors and enable
the linear feedback, when appropriate. Once acquisition of control for the dark fringe succeeds,
locking of the recycling cavity is addressed by acting on the recycling mirror.

Dark Fringe analysis procedure

As already stated, the decoupling of signals makes it possible to find va;. The first step consists
in monitoring Al and this is done by introducing a trigger on d{* / d4¢, which for the simulations
was set to 6 x 1073 (here AR = 1 for simplicity). Once the trigger is satisfied, the system is
about to go into dark fringe. The purpose of such a trigger is to enable a second one monitoring
the error signal d" /d@. This second trigger, enabled for absolute values of | d¥" /ddc | < 1.0,
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Figure 8.8: The velocities va; and v;, and the time distribution At for the CITF mirrors in
free motion, as the system enters dark fringe and maximum recycling for the CITF.
Graph (a) shows the va; distribution as the CITF enters dark fringe while graph
(b) shows the time distribution A¢ between dark fringe crossings. Graph (c) shows
the v;, distribution as the CITF enters maximum power recycling while graph (d)
shows the time distribution At between condition of maximum power recycling.
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opens a window on the signal that now exhibits linearity. Sampled points are stored and a x?
minimization procedure reconstructs va;.

Assuming that the mirror relative motion evolves at constant velocity, the analysis procedure
reconstructs the relative speed correctly. This is a valid assumption due to the concentration of
the motion in the sub Hertz region. The relative acceleration can often be considered insignificant
for observation times inferior to the time scale of the accelerations, which is of the order of the
second considering a dominant resonance at 200 mHz. Therefore, once the triggers are enabled,
it is most likely that va; remains constant for time scales inferior to the second.

Fig.(8.9) shows the results of the reconstruction of va; as the four mirrors are left to move freely.
During the simulation run, every time the two triggers are enabled, the algorithm reconstructs the
velocity vrecon and compares it to the true value Teye. The top graph of fig.(8.9) plots the relative
error

Tt — v
error — —2¢  recon (8.14)

Utrue
as a function of Tyrye, Where virye is the mean value of va; taken over the time the window is kept
open on the error signal. This procedure is able to make a reconstruction with errors below the
2% band. We can observe that as the relative mirror velocity increases, the number of sampled
points in the window decreases, causing the reconstruction error to increase as well.

Another characteristic of the top graph of fig.(8.9) is the line structures present. The error
signal is only to first approximation linear; a small non-linear component is also present. As a
consequence, as the window on the error signal is opened, a fixed number of points can distribute
themselves in different ways, giving rise to different results and generating these line structures.

The reader can also observe the presence of scattered events with errors well above 2%. These
events correspond to a power build-up inside the recycling. As the power increases, the error
signal changes as well: this can be seen from the plot shown in fig.(5.10). One way to improve the
reconstruction is to consider events for which the value of the stored power is either above or below a
certain value. Since the crossings of both dark fringe as well as recycling resonance are uncommon,
we only considered events with d¢ below a threshold. For fig.(5.10), by considering only the dark
fringe crossings with d2° < 5 W, 5% of all the events are discarded and the reconstructed procedure
improves, as can be seen in the bottom graph of fig.(8.9).

Fig.(8.9) also shows how well the analysis procedure reconstructs the velocity by comparing
the mean true velocity with the reconstructed value. It is also useful to compare the reconstructed
value with the vye value at the moment the y? procedure ends. The acting procedure will use
the reconstructed value to determine the pulse amplitude, and for this reason it is helpful to know
by how much the reconstructed value is off the instantaneous value. Fig.(8.10) shows the result of
the error

error = Jtxue — Urecon (8.15)
VUtrue
plotted as a function of virue, neglecting all the events with d2¢ < 5W. As expected, for low
velocities the reconstruction error is greater with respect to the case where vy, was used. This
can be explained by the fact that the y? procedure gives an estimate of the mean velocity. The
difference between the final velocity and the mean value increases as the velocity decreases.

Signal digitization

Both fig.(8.9) and fig.(8.10) show how the analysis procedure reconstructs the velocity. However,
they do not take into account the signal digitization process performed by the ADCs. The phases
of the acquisition of lock and the linear lock regime differ: in the linear regime, the photodiode
signals do not change much from the values

di¢ ~ 1W (8.16)
dd¢ ~ 1300W (AR =1)
N
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Figure 8.9: The error for the reconstruction of va;. In top graph, (Tirue — Urecon)/Ttrue is
plotted as a function of virne, Where Uie 18 the mean velocity value taken over
the time the window on the error signal is open. The bottom graph shows again
(Ttrue — Vrecon)/Ttrue as a function of Tyrye but only the reconstructed events with
dg¢ < 5W are considered.
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Figure 8.10: The error for the reconstruction of va;. The error (virue — Urecon )/ Vtrue is plotted
as a function of virne, Where vire 18 the velocity at the time the X2 procedure
ends. Only the reconstructed events with dg¢ < 5 W are considered.
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Figure 8.11: The error for the reconstruction of va; with the use of 16 bit ADCs. The error
(Vtrue — Vrecon)/Vtrue 1s plotted as a function of virue. Only reconstructed events
with a number of sampled points N > 10 are considered.

and the ADCs are adapted so as to operate for these values. On the other hand, in the lock
acquisition phase, the value of the photodiode signals can change by as much as b orders of
magnitude, as is shown in fig.(5.9) and fig.(5.10). In particular, we observe that these values are
in the ranges

d¥¢ ¢ [2x107* = 10]W (8.17)
dd¢ € [2x107% = 1300]W (AR =1)
|dP* | e [107% = 7]W

In this case, the ADC dynamic may not be high enough to allow the observation, with precision,
of the full excursion of signals, from their lowest to their highest value. In the acquisition of
lock phase, d{ and d£¢ will often have low values, therefore by amplifying them we improve the
precision in this phase.

Assuming a n = 16 bit ADC sampling photodiode signal d, then the digitized signal y can be
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written as

n

2
y=A-d-— 4 (8.18)
r

where A is an amplification, r is the ADC range and x is a random variable simulating the ADC
noise. By setting the range to r = 10 V and assuming a noise of # = 1 count RMS, then fig.(8.11)
shows the reconstruction results with A = 100 for d{¢, A = 1 for dg° and A = 100 for dfh. From
the top graph of the figure, we notice that there are many events with large reconstruction errors.
By considering reconstructions with more than 10 sampling points, about 30% of all the events
are discarded but the error is limited to within 20%, to be compared with the value of about £3%
relative to the case without ADCs (fig.(8.10)).

Dark Fringe acting procedure

Just as for the VIRGO Fabry-Perot, the procedure consists of an iteration between velocity
reconstruction and pulse application. Once the reconstructed velocity is below threshold, the
linear feedback is enabled.

Stored Power

The monitoring of the recycling resonance begins once dark fringe is locked. A trigger monitoring
one of the two transmitted beams, set to 60 mW, enables the analysis procedure by using dJ*.
Just as for dark fringe, the acting procedure sends pulses to My so as to damp its motion with
respect to the free end mirror and the linear feedback is enabled when appropriate.

8.3.3 Results

Fig.(8.12 - 8.14) show the results of one 150 s simulation run with £4; = 0.5, g;, = 0.5 and a pulse
width At = 10ms. The algorithm uses the ADC signals, described in the previous section, to
reconstruct the velocities whereas the linear feedback reads the photodiode error signals directly.
The algorithm was enabled at { = 122s and stood by for the first dark fringe crossing. At
t ~ 122.25 s, dark fringe was crossed and a train of pulses was sent to M; as shown in the top
graph of fig.(8.12). The effect of these pulses is shown in the middle and bottom graph of the
figure, where Al and va; are plotted as a function of time. Once the velocity was damped, the
dark fringe linear feedback was enabled on M;. Less than a second was taken for the control.

Once the feedback of dark fringe was on, the monitoring of the recycling began. A resonance
was crossed at ¢ ~ 122.55 s, and from the top graph of fig.(8.13) the reader can observe that 4
pulses were sent to My before the linear servo was enabled. The middle graph plots [, as a function
of time whereas the bottom graph its velocity v;,.. Again, less than a second was taken to achieve
control. The plots of d{** and d¥° as a function of time are shown in the top and bottom graphs
of fig.(8.14). In total, about 0.6 s were necessary to guide the CITF into lock.

In a set of 6 simulation runs, where in each the algorithm was enabled at arbitrary times,
the non-linear control system failed to guide the CITF into lock only once. In other words, the
feedbacks were enabled but no lock was achieved. The remaining 5 runs gave a mean time of lock
acquisition of the order of one second.

8.4 Conclusion

A simple method to guide the CITF into lock was here presented and simulated. By monitoring
the digitized signals from photodiodes 1, 5 and 2, it was possible to reconstruct the time evolution
of Al and l,. Once the reconstruction succeeded, an iterative application of reconstruction and
pulse application damped the mirrors’ relative motion, facilitating the acquisition of control by
the linear feedback. An improvement of acquisition times of more than one order of magnitude
was observed with respect to relying solely on the linear feedback.
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8.12: Results from a simulation run. The algorithm was enabled at t = 122s. Top
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0.3 s were necessary for the control.
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Control of the CITF is achieved at about 122.6 s
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Conclusion

This thesis presented a simulation study for the control of the CITF that focused on the problem
of autoalignment and lock acquisition.

The first step in the problem-solving approach consisted in the study of the CITF optical
response to

e longitudinal mirror displacements, with particular attention to the non-linear regime;
e angular mirror displacements once the CITF is in the locked regime.

It was shown, both analytically and numerically, how the ratio of photodiode signals can be used
for the reconstruction of the microscopic arm length difference Al and of its time derivative va;
once all mirrors move freely. By numerically simulating the mirrors’ free motion and the CITF
optical response, we were able to observe the performance of the reconstruction procedure with
and without the digitization process introduced by ADCs with errors within a few percent for the
former, and below 20% for the latter.

The study on the optical response also showed that the longitudinal modulation frequency
Q/27 = ¢/2l, can be used for the CITF alignment if an arm asymmetry is present. We were able
to set up a routine, based on a x? minimization procedure, capable of reading the error signals
from quadrant photodiodes and reconstructing the mirrors’ misalignments. By simulating the
angular mirror motions and the CITF optical response, we were able to reconstruct each mirror
misalignment using the error signals of 8 quadrant photodiodes.

The angular reconstruction scheme was then implemented in a control system for the CITF.
It was shown that only the marionetta can be used. Furthermore, the piloting of the mirror
from the steering filter requires a very good knowledge of the transfer function in question if
the bandwidth of the system is to be limited to within some tens of Hz. By assuming a good
knowledge of this transfer function, a filter has been designed for the autoalignment capable of
attenuating the angular fluctuations down to the 10~%rad RMS as required by the coupling laser
jitter/misalignment.

The mode-cleaner prototype MC30 was introduced in order to comprehend the process of lock
acquisition by a linear control system. The rotation of the laser beam polarization state allowed
the study of this process for two different finesse values: F ~ 100 and F ~ 1600. We concluded
that, for a given spectral amplitude displacement noise, the lock acquisition times depend on

e the finesse F;
e the bandwidth of the linear control system.

In particular, it was shown how, for 7 ~ 100 and for a control bandwidth B = 100 Hz, the non-
linear components of the Pound-Drever error signal played a positive role in the process and short
acquisition times were observed in both simulation and measurement. The case with F ~ 1600 and
the same control bandwidth of B = 100 H z was also studied. As expected, longer acquisition times
were observed, both in simulation and in experiment, due to negligible non-linear components of
the error signal. In this case, we defined a threshold velocity below which acquisition of lock is
possible.
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During the study of the MC30 prototype with F ~ 1600, a phenomenon was observed on
the transmitted DC power, referred to as the ringing effect. This effect was here studied and
simulated. The simulation outputs allowed us to fit measurements and estimate from them the
cavity finesse as well as the mirrors’ relative velocity during the resonance crossing. It was also
observed how the position of the oscillations’ minima and maxima depend, to first approximation,
on the cavity expansion and not on the finesse value. An empirical formula was then presented
capable of determining the relative velocity from the positions of the oscillations’ minima and
maxima. This chapter’s results may be useful for a possible acquisition of lock algorithm relative
to VIRGO’s mode-cleaner prototype.

The study of the acquisition of lock was addressed again by extending it to the case of the CITF
with a control system bandwidth set to 20 Hz. We argued that the expected acquisition times
were of the order of ~ 300 s and an algorithm, using the ratio of photodiode signals, was presented
in order to aid the control system to achieve lock. It consisted of an iterative procedure of velocity
reconstruction and pulse application to damp the relative mirror motion to within the velocity
threshold value. Once this was achieved, the linear feedback was enabled. These procedures were
first applied to one end mirror for the control of dark fringe and then to the recycling mirror for
the control of the in-cavity stored power. A numerical calculation simulated the algorithm, the
mirrors’ motion, the optical response and the ADCs’ process. As a result, acquisition times of the
order of one second were observed.

We would like to conclude that the alignment scheme, as well as the algorithm for lock ac-
quisition, both described in this work, have been adopted as reference solutions for the VIRGO
Central Area Interferometer.
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Appendix A

Control Systems

This section outlines the basics of feedback control. The notions here presented are necessary for
the understanding of Ch.(6) and Ch.(8). Both [53, 54] offer a good introduction to the subject.

In Ch.(2), the concept of transfer function was briefly introduced to describe the dynamical
behaviour of a mechanical system such as a pendulum; it relates the input signal to the output
signal of the system. In principle, any mechanical, electrical or even optical system can be described
by a transfer function.

A control system may consist of a number of components, each of which can be described by
a transfer function.

It is common to use block diagrams to show the functions of each component, how they are
connected to each other and the flow of signals. For the case of a simple pendulum, shown in

X(t)
T X(t)
X(s) = P(s) %,(S)
Fg

Figure A.1: The pendulum system and its block diagram representation.

fig.(A.1) together with its block diagram representation, the output signal x(s), describing the
mass position, is found by multiplying the input signal z(s), describing the suspension point
position, by the transfer function P(s) of the mechanical system in question. The block diagram
then gives a pictorial representation of the system. Such representation facilitates the study of the
control system.

A system that maintains a prescribed relationship between the output and the input by com-
paring them and using the difference as a means of control is called a feedback control system,
often referred to as closed-loop control system. Fig.(A.2) shows an example of a block diagram of
a closed-loop system. The output ¢(s), after being multiplied by H(s) is fed back to the summing
point, where it is compared to the reference input r(s). The closed-loop nature of the system is
clearly indicated by the figure. The output ¢(s) is obtained by multiplying the transfer function
G/(s) by its input e(s). Any linear control system may be represented by a block diagram similar
to the one shown in this figure, consisting of blocks, summing points and branch points.

The main properties of a control system, such as its stability, harmonic response and behaviour
in any regime can be studied with the aid of (see fig.(A.2))
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Figure A.2: The block diagram of a closed-loop system.

e the open-loop transfer function, defined as the ratio of the feedback signal b(s) to the reference

r(s):

A8 (A.1)

Open-Loop Transfer Function

when b(s) is disconnected from the summing point

e the closed-loop transfer function, relating the output ¢(s) with the input r(s) as

|
‘ =)
=
o
N
—_
>
b
=

Closed-Loop Transfer Function

A.1 The Stability Criteria

The stability of a closed-loop system can be determined from the location of the poles! of the
closed-loop transfer function in a plane where the axes are the real and imaginary parts respec-
tively. If any of these poles lie in the right half-plane, then with increasing time they give rise
to the dominant mode, and the time response increases or oscillates with increasing amplitude.
This represents an unstable system. Therefore, closed-loop poles in the right half-plane are not
permissible in the usual linear control system. If all closed-loop poles lie to the left half-plane, any
transient response eventually reaches equilibrium.

The Nyquist criterion offers an effective aid to the study of the stability of a closed-loop system
once the open-loop transfer function is known. It refers to the polar diagram of the function

G(s) H(s) (A.3)

for values of | s | ranging from —oo to co. According to [54], the Nyquist criterion is phrased as
follows:

o Nyquist stability criterion: if the open-loop transfer function G/(s) H(s) has

i. neither poles nor zeros on the imaginary axis;
ii. k poles in the right half-plane;

iii. and limy,|o, G(s) H(s) = constant;

LBy poles we mean the roots of the function’s denominator while by zeros the roots of the numerator.
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then for stability the G(s) H(s) locus, as | s | varies from —oo to oo, must encircle the -1
point &k times in the counterclockwise direction.

The polar diagram of the open-loop transfer function is of great help for the design of a closed-loop
system.

A rule of thumb for loop stability is a 1/s behaviour for the amplitude of the open-loop transfer
function at the unity gain frequency? (UGF).

A.2 Design Specifications

Not only must the control system be stable but it must also be conceived so as to fulfill specifi-
cations on the sensitivity to parameter variations and on the attenuation of noise sources present
anywhere along the chain. Above all, the overall loop gain in closed-loop as well as the bandwidth
of the control must be chosen accordingly.
The closed-loop transfer function, defined as
G(s)

Go(S) = m (A4)

must be such that, in a given bandwidth,
| Gols) | ~ 1 (A5)

where the bandwidth in question is defined as the angular frequency w; for which the amplitude
of | Go(wy) | is 3 db? less than Go(0). If the open-loop transfer function G(s) H(s) is chosen so
that

|G(s)H(s) | >> 1 (A.6)
then eq.(A.4) can be approximated as
_ G(s)
Gols) = TG ) (A7)
1
T HE)

independently of any variation in G/(s).

In conclusion, the choice on the open-loop transfer function must be such that in a chosen
bandwidth, the control system is able to limit the excursion values of the error function e(s) to
the given specifications.

A.3 Amplitude and Phase Margin

Once the control system in question satisfies the stability criteria, it is also possible to quantify
the margin of stability. Tt is clear that the farther the G(s) H(s) locus is from the critical point -1,
the less sensitive the system is to instabilities. Two parameters can quantify the relative stability
of a feedback system:

1. the Amplitude Margin M 4:
the inverse of the amplitude | G(iw) H(iw) | at the angular frequency w corresponding to
the condition

arg[Giw) H(iw)] = —7 (A.8)

2The frequency for which the amplitude of the open-loop transfer function is 1.
3 A gain of A can be expressed in B db with the formula B = 20 logioA.
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2. the Phase Margin Mp:
the angle difference between the phase arg[G(iw) H(iw)] for which

| Gliw)H(iw) | =1
and the angle —m.
A general rule indicating the good behaviour of the control system is

1< My <6
45 < Mp <60

(A.9)

(A.10)
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