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Introduction

According to Einstein�s General Theory of Relativity� the acceleration of bodies creates a pertur�
bation of the space�time metric that propagates through the universe at the speed of light� This
perturbation is referred to as Gravitational Wave�

To date� this phenomenon lacks direct experimental evidence� However� Russel Hulse and
Joseph Taylor were awarded the Nobel Prize in �		� for having indirectly proven their existence����
Their work was based on the discovery of the binary system PSR �	����� and on the measure�
ments performed by Taylor and his colleagues on the system�s inward spiraling� By observing the
orbital period of the system� the authors were able to estimate the energy emitted as gravita�
tional radiation and to calculate the velocity of the inward spiral� This result was found to be in
agreement with measurements within ���

The detection of gravitational waves is one of the most interesting problems the scienti�c
community faces today� The possibility of such detection will open the way to a completely new
astronomy that would give us a key to a better understanding of the universe� Many countries
are collaborating in this challenge� Italy and France with the VIRGO project� the United States
with LIGO� Japan with TAMA� and Great Britain and Germany with the GEO project�

The goal of this thesis is to make a small contribution to this search in the context of the
VIRGO project� a gravitational wave antenna in the process of being built in Cascina� Italy�
Before launching the �nal con�guration of a recycled Michelson interferometer with Fabry�Perot
arms� VIRGO will �rst operate in a test con�guration� known as the Central Area Interferom�
eter �CITF�� The subject of this thesis consists of a numerical study for the global control of
this interferometer� In particular� the problems of autoalignment and acquisition of lock will be
addressed�

The manuscript is divided in two parts� The �rst is an introduction to the theory of gravita�
tional waves and to interferometer�based detectors� The second describes the CITF� focusing on
its optical response to angular and longitudinal mirror motions� thus allowing the study of signals
useful for the longitudinal and angular mirror control� Based on this study� the CITF autoalign�
ment is investigated� The problem of lock acquisition is then addressed by �rst examining the
mode�cleaner prototype �MC�
�� which allowed the comparison of simulation with experiment�
Finally� an algorithm for guiding the CITF into linear regime is given�

Ch���� introduces the reader to Einstein�s �eld equations and their linearized form in the weak
�eld approximation� It will be shown how gravitational waves are generated� what their properties
are and what e�ects are induced by their passage� An order of magnitude of these e�ects is then
given for di�erent types of sources�

The following three chapters address the problem of detection by interferometry� In Ch�����
the principle of the simple suspended Michelson interferometer is introduced� Its coupling to
gravitational wave radiation� as well as its frequency and angular response are �rst discussed�
Then� as the weak signals expected will be bathed by many Gaussian and non�Gaussian noises�
the di�erent noise contributions will be outlined and the concept of signal�to�noise ratio �SNR� is
introduced� Finally� it will be shown how the detector design can be modi�ed so as to improve
the SNR due to shot�noise� thermal noise and seismic noise�

Ch���� illustrates the Fabry�Perot resonator� a commonoptical con�guration which will be often
referred to in this thesis� The fundamental concepts of resonator stability� resonance condition�
laser beam propagation modes� and cavity modes are here presented� Its optical response to
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INTRODUCTION

longitudinal and angular mirror displacements serves as ground work for the response of more
complicated optical systems� The chapter closes by presenting three well�known methods for
cavity control� the Pound�Drever���� technique for the longitudinal control and the Anderson����
and Ward���� techniques for angular control�

The VIRGO project is presented in Ch����� The optical con�guration� as well as the laser
system� the detection bench� the suspension system� and the vacuum system are here described�
The foreseen sensitivity curve is shown as well� Finally� the chapter focuses on the Global Control
system� in charge of supervising the phases of lock acquisition� linear locking and autoalignment�

The last four chapters center on VIRGO�s �rst stage of testing� the CITF� and the main
contributions of this thesis towards the understanding of the optical response of this interferometer
to mirror movements and towards lock acquisition�

Ch���� describes the CITF� by presenting the expected mirror displacements in free motion�
its sensitivity and the mirror control requirements� The chapter then presents the study carried
out to understand the optical response of the CITF to longitudinal and angular motions of the
mirrors� This response will be taken into account in the strategies of lock acquisition� locking and
alignment� In particular� a quadrant photodiode con�guration is presented and simulated in order
to reconstruct the angular motions of the mirrors once the CITF is locked� The performance of
a control system for the autoalignment of the CITF is then given� Also in this chapter� it will be
shown how the ratio of photodiode signals can be used to detect and lock the dark fringe regardless
of the recycling power buildup� This ratio of signals will be used by the lock acquisition algorithm
�described in c���� to guide the CITF from a non�linear state to the locked state�

The process of lock acquisition by a linear control system is described in ch���� by considering
the mode�cleaner prototype in Orsay� First� the general purpose of mode�cleaning is given� then
the prototype con�guration is presented� Measurements performed on the prototype made it
possible to tune the simulation of the interferometer� focusing on the acquisition of lock by a
linear feedback� A rotation of the laser beam polarization state allowed a change in the �nesse of
MC�
 from F � �

 to about F � ��

� thus allowing a comparison of the process for the two
states�

Before applying a lock acquisition strategy to the CITF� ch���� discusses an interesting phe�
nomenon observed on the MC�
 in high �nesse� the ringing e�ect� Its properties and behavior
are studied and simulated� By �tting measurements with simulation output� an estimate of the
�nesse is given as well as an estimate on the relative velocity of mirrors as the optical resonance
is crossed� The chapter closes by describing an empirical formula for the reconstruction of the
relative mirror velocity�

Ch��� returns to the lock acquisition problem addressed in ch����� this time suggesting a
strategy to guide the CITF into lock� The model used will be described and the simulation results
will close the chapter�

Finally� Appendix A addresses basic notions of control systems� such as stability criteria and
design speci�cations� necessary for an understanding of the work presented in this thesis�
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Chapter �

Gravitational Waves

One of the consequences of General Relativity is the concept of Gravitational Wave� a time�
dependent perturbation of the metric� indirectly proven to exist by the experimental results of
R�A� Hulse and J�H� Taylor���� To date� the direct observation of such phenomena has not been
achieved�

This chapter brie�y describes� after having outlined the Einstein �eld equations and their
linearized form� the properties of gravitational waves within the weak �eld approximation� An
outline of the generation mechanism and the possible astronomical sources will close the chapter�

Most of the arguments here presented originate from references ��� �� �� �� ��� The reader is
addressed to references ��� �� �� for an introduction to the subject and to references ��� �� for an
in�depth treatment�

��� Einstein�s Equations

The Einstein �eld equations relating the curvature of space with energy density are

R�� � �

�
g��R �

�G

c�
T�� �����

where

� g�� is the metric tensor through which the invariant

ds� � g�� dx
�dx� �����

is de�ned�

� R�� is the Ricci tensor� de�ned as the contraction of the Riemann tensor R�
��� �

R�� � g�� g��R
�
��� �����

where

R�
��� � ������ � ������ � �����

�
�� � �����

�
�� �����

and ���� is the a�ne connection whose relation to the metric tensor g�� is�

���� �
�

�
g���g���� � g���� � g����� �����

�The notation in use for the partial derivative of an arbitrary tensor V � is

V �
�� �

�V �

�x�

while the covariant derivative of the same tensor V � is de�ned as

V �
�� � V �

�� � V �����

�
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� R is the scalar curvature� the contraction of the Ricci tensor�

R � g��R�� �����

� T�� is the stress�energy tensor describing� in an arbitrary reference system� the energy�
momentum densities and �uxes�

� c is the speed of light�

� G is the gravitational constant�

Due to the symmetry of the Ricci R�� tensor and the g�� metric tensor� the gravitational �eld is
described by ten non�linear di�erential equations of the second order in g�� � These equations

�� lead� in the classical limit� to the Newtonian laws of gravitation

r� ��x� y� z� � ��G	�x� y� z� �����

where ��x� y� z� is the gravitational classical �eld and 	�x� y� z� is the mass density�

�� are covariant� i�e� independent from the choice of the reference system�

�� conserve energy and momentum� i�e�

T���� � 
 ����

Two observations can be made from the equations� non�linearity� Unlike the electromagnetic
case� solutions of eq������ do not obey the superposition principle� i�e�� the linear combination of
solutions is not� in general� a solution� Furthermore� the matter and momentum distributions
determine the metric tensor just as the metric tensor determines the matter and momentum
distributions� For this reason� these distributions cannot be assigned arbitrarily�

��� Weak Field Approximation

One possible solution for the metric tensor g�� in vacuum� i�e� T�� � 
� is the Minkowski tensor


�� �

�
BB�

� 
 
 


 �� 
 


 
 �� 


 
 
 ��

�
CCA ���	�

In a weak gravitational �eld described by a metric of the form

g�� � 
�� � h�� with j h�� j� � ����
�

eq������ simpli�es and its solution can be treated as a perturbation of the Minkowski metric�
It can be shown that by making the substitution of eq�����
� in eq������� making the change of

variable

h�� � h�� � �

�

��h ������

where h is the contraction of h��� and dropping all second order terms in h�� � eq������ reduces toh
h

�

���� � 
�� h
���

�� � h
�

���� � h
�

����

i
� � ���G

c �
T�� ������

It is possible to �nd a reference system such that

h���� � 
 ������

�



���� WEAK FIELD APPROXIMATION

Such a transformation� known as the Lorentz gauge� simpli�es eq�������� reducing the ten degrees
of freedom of h�� to six� Eq������� becomes

�h�� � � ���G

c �
T�� ������

where � is the d�Alambertian operator de�ned as

� � 
��
��

�x��x�
������

Eq������� is thus the weak��eld approximation of eq�������

����� Wave Equation

In the absence of matter� eq������� reduces to the propagation equation

�h�� � 
 ������

One possible solution for the metric perturbation h�� � often referred to as gravitational wave� is a
monochromatic plane wave propagating in the z�direction at the speed of light

h�� � A�� e
i � 	 t� z � c
 ������

The Lorentz gauge requires that

A�� � A�� �����

The six degrees of freedom are now reduced to two by applying a second gauge� known as traceless
and transverse �TT�� requiring that

Am� � 


A�
� � 
 ����	�

By de�ning the non�null components of A�� as

h� � A�� � A�� ����
�

h� � �A�� � A��

eq������� can be rewritten in the form

h
TT

�� �
h
h� e� � h� e�

i
ei � 	 t� z � c 
 ������

where

e� �

�
BB�


 
 
 


 � 
 


 
 �� 


 
 
 


�
CCA e� �

�
BB�


 
 
 


 
 � 


 � 
 


 
 
 


�
CCA ������

denote the two polarization states� A diagram� shown in �g������� shows the e�ect of these states
on a ring of particles placed on a plane perpendicular to the direction of the incoming wave�
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Figure ���� The e�ect of the passage of a gravitational wave on a ring of particles distributed
on a plane perpendicular to the incoming radiation� �a� shows the perturbation
on the ring as a function of time due to the h� �� � component only� �b� the
perturbation due to the h� �� � component only and �c� the overall contribution
h�t��

����� Geodesic Deviation

Let�s describe the e�ect of a gravitational wave on a physical system by recalling that a geodesic

describes the motion of a free falling particle under the in�uence of a gravitational �eld in the
context of General Relativity� The equation of motion can be written as

du�

ds
� ���	 u

� u	 � 
 ������

where x� is the particle trajectory and u� � dx��ds is the quadri�velocity�
Let�s consider a pair of nearby free falling particles� following the paths x��s� and x��s���x��s��

The geodesic equations for the two particles can be written as


 �
d � x�

ds �
� ���	�x�

dx�

ds

dx	

ds
������


 �
d �

ds �
�x� � �x� � � ���	 �x � �x �

d

ds
�x� � �x� �

d

ds
�x� � �x� �

It can be shown that by taking the di�erence between these two expressions and dropping all
second order terms in �x�� the geodesic deviation between the two particles follows the equation

D �

ds �
�x	 � R	

��


dx�

ds

dx


ds
�x� � 
 ������

where

D

ds
�x� � d

ds
�x� � ���	 u

	 �x� ������

is the covariant derivative along x��s��
In the weak �eld approximation and using the TT gauge� the curvature tensor R���	 can be

written as

R���� � R���� � �R���� � �R���� � ��

�

��

h
TT

�� ������

�
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where hTT�� describes the evolution of the gravitational wave in the TT gauge and a dot the time
derivative� Eq������� can then be approximated as

d�

dt�
�x��t� � R���� �x

��
� � ��

�

��

h
TT

�� �t� �x
��
� �����

By integrating twice with respect to time� we obtain

�x��t� � �x��
� ���� �
�

�
hTT���t�� ����	�

which leads to

�x��t� �
�

�
hTT�� �t� �x

��
� ����
�

where

�x��t� � �x��t� � �x��
� ������

By assuming an incoming plane wave in the z�direction� as expressed in eq�������� the induced
change� shown in eq�����
�� due only to the  �! component� can be written as

�x��t� � �
�

�

h
hTT� ei � 	 t� z � c


i
�x��
� ������

�x��t� � ��

�

h
hTT� ei � 	 t� z � c


i
�x��
�

In this case� the induced displacement is proportional to the gravitational wave amplitude and to
the distance between the two particles�

����� Generation of Gravitational Waves

We have seen how a plane wave can be a solution for eq�������� Let�s see now what kind of sources
can produce such a dynamical metric perturbation� Let�s solve eq������� in an approximate way
by assuming that

�� there is a sinusoidal time dependence of the stress�energy tensor T�� of the form

T�� � S�� �x
�� e�i� t ������

where " is the oscillation frequency for the source�

�� the typical velocities� in a sphere of radius �� are much less than the speed of light

"

��
� c ������

These assumptions can be justi�ed in the following way�

� through the use of the Fourier analysis� an arbitrary function can always be rewritten as a
sum of di�erent sinusoidal contributions� Furthermore� many gravitational wave sources like
binary systems and pulsars do have a periodic or quasi�periodic component�

� the second assumption facilitates calculations and is probably satis�ed by most gravitational
wave sources� with the exception of the strongest sources�

With these assumptions� a possible solution for eq������� can be written as

h�� � B�� �x
��e�i�t ������

and by substituting this solution back into eq������� we obtain�
r� �

"�

c�

�
B�� � ����G

c�
S�� ������

Let�s distinguish two cases�

�
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i� for the region of space outside the sphere of radius � eq������� reduces to

�r� �
"�

c�
�B�� � 
 ������

and a possible solution can be a spherical wave propagating from the origin r � 
�

B�� �
A��

r
ei�r�c �����

where A�� is a constant to be determined� The gravitational wave can then be written as

h�� �
A��

r
ei�	r�c�t
 ����	�

Notice how the amplitude of a gravitational wave decreases as the inverse of the distance�

ii� by de�ning

J�� �
Z
S��d

�x ����
�

it is possible to demonstrate that the relationship between the distribution of matter within
the sphere of radius  and the amplitude of the gravitational wave can be described as

h�� �
�G

c�
�

r
J�� e

i�	r�c�t
 ������

Making use of the source�s quadrupole moment tensor� de�ned as

Ilm �
Z

T ��xlxmd�x � Dlme�i�t ������

and the property

d�

dt�

Z
T ��xlxmd�x � �

Z
T lmd�x ������

the gravitational wave amplitude can be re�written as

hjk � ��G

c�
"�

r
Djke

i�	r�c�t
 ������

where the slow�motion approximation has been used�

The TT gauge can be chosen so that the propagation is in the z�direction and eq������� transforms
into

h
TT

zi � 


h
TT

xx � �hTTxy � �G

c�
ei�r

r
"��Ixx � Iyy�

h
TT

xy � ��G
c�
ei�r

r
"�Ixy ������

where

Ijk � Ijk � �

�
�jkI

l
l ������

is the reduced quadrupole moment tensor�
Notice how the amplitude has the same time dependence as the energy�stress tensor� In

addition� observe that the metric perturbation is generated by asymmetric motion� This can be
seen from eq�������� If the motion had spherical symmetry� the tensor Ijk would be proportional
to �jk� However� the only tensor proportional to �jk and with null trace is the zero tensor�





���� SOURCES

��� Sources

Gravitational wave emission causes an energy loss by the source that can be written analytically
as

hdE
dt
i � � G

�c�
h���I ij

���

I iji ������

where dE�dt is the energy variation and the mean is taken over the typical period of the source�
The formula in eq������� is known as the radiation reaction formula� The coe#cient G��c� �
��� �
���m�� kg�� s� is so low that astronomical objects are the only possible sources that we
can detect�

From eq������� and eq�������� it is possible to show that� for an order�of�magnitude estimate�

I � � M R �

h� � h� � �
� Rs

R

� � Rs

r

�
�E � � �

� Rs

R

�� � V
c

�
�����

where R and V are� respectively� the typical size and velocity of the source� M is its mass� Rs �
�GM�c� is the Schwarzschild radius and � is the dimensionless measure of the source asymmetry�

From the estimates in eq������� it is possible to determine the conditions for strong emission
of gravitational waves �

i� the source must be extremely dense with its radius R comparable to the Schwarzschild radius
Rs�

ii� the source must have a velocity V that approaches the speed of light�

iii� the source motion must be asymmetric�

As shown in eq������� the amplitude decreases as the inverse of the distance� an increase of
one order of magnitude in the detector sensitivity leads to an increase of the event rate by a factor
of a thousand for a uniform spatial distribution of sources�

Only astronomical objects can radiate enough energy to be detected� These anticipated grav�
itational wave sources can be classi�ed into three types� depending on the radiation temporal
behaviour� These are impulsive sources� such as supernovae explosions� quasi�periodic and pe�
riodic sources� such as coalescing compact binaries and spinning neutron stars� and stochastic
sources�

����� Impulsive Sources

One of the most interesting and spectacular gravitational wave sources is the supernovae explosion�
The construction of gravitational wave detectors was �rst motivated by the detection of such
explosions� The basic process is known� Once a massive star �nishes its nuclear fuel� the central
core begins to collapse as the star fails to support itself from its own gravity� This results in a
violent expulsion of the star�s outer layer caused by the shock wave bounce� which can be ���

times as massive as the central core� While the electromagnetic signal is dominated by the ejected
mantle� the gravitational wave signal is dominated by the dynamics of the collapsing core�

An order of magnitude estimate for the gravitational wave amplitude from a supernovae explo�
sion can be obtained from eq������� The expected supernovae event rate of ����
� �
�yr�galaxy
��� forces us to look out of the galaxy in order to bring the event rate up to several per year� Mon�
itoring of the Virgo cluster� a distance of �
Mpc away from us� containing about ��

 galaxies�
would increase the supernova rate to a few events per year�

Now� assuming a core mass equal to ��� solar masses in the Virgo cluster� collapsing to a size
ten times its Schwarzschild radius� and with a value of  � �
��� would lead to an amplitude value

	



CHAPTER �� GRAVITATIONAL WAVES

Figure ���� Waveform examples for core collapse��	

of about �
��� � �
���� Fig������ shows the results of a numerical simulation conducted in �		�
by Zwerger $ M%uller�� presenting three typical waveforms we could expect�

The value of  is uncertain� In the case of a symmetrical collapse�  � 
 and no gravitational
waves would be emitted� However� there are two reasons to assume a non�spherical collapse� To
begin with� all stellar cores probably rotate and rotation would prevent a symmetrical collapse
���� In addition� the presence of a companion star orbiting around the collapsing one would also
generate an asymmetry����

Since most of the energy released in the explosion originates from gravitational binding energy�
the expected wave frequency is of the order of kHz� the natural dynamical frequency of the source�
Therefore� gravitational wave detectors need to be sensitive to amplitudes of the order of �
����
�
��� in the kHz region if a rate of several events per year is desired�

����� Coalescing Compact Binaries

The best understood gravitational wave source is the coalescing of compact binaries consisting of
neutron stars �NS� and�or black holes �BH�� The famous PSR �	����� is an example of a NS�NS
binary� Its orbital period is about  hours� emitting gravitational wave radiation at double its
orbital frequency� about �
��Hz� This frequency region is too low for ground detectors� However�
due to its emission� the system loses energy and its frequency dependence increases as the stars
spiral in toward each other� In about �
� years� the emitted signal would be observable by ground
detectors� By using eq�������� the time derivative of the orbital period can be calculated� The
result agrees with the observed time derivative to within a percent����

It is possible to estimate the gravitational waveform� By assuming a circular binary orbit�
neglecting the change in the eccentricity� and treating the stars as point particles �a good approx�
imation for compact objects�� it can be shown that the radiation is emitted at double its angular
frequency�

�




���� SOURCES

WAVEFORM

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

x 10
-20

0 0.02 0.04 0.06 0.08 0.1 0.12
t(s)

h

Figure ���� Waveform for a coalescing compact binary�

In addition� it can be shown that gravitational wave radiation is linearly polarized and weakly
emitted in the orbital plane� Maximum emission� instead� is in the orthogonal direction to the or�
bital plane with circular polarization� This causes the emitted radiation to be elliptically polarized
for an arbitrary direction�

Assuming masses of the order of ��� solar masses at a distance of �
Mpc in the �

Hz frequency
range� leads to h � �
��� � �
���� Fig������ shows the expected waveform amplitude for the
coalescence of such a compact binary� It is worth noting that the signal to noise ratio for such
a signal can be improved by time integrating for su#ciently long periods once the waveform is
known�

Even though the mechanism behind the coalescence of compact binaries is well understood�
the event rate is not clear� Estimates range from ����
� yr��	� to ����
yr���
� per galaxy� In
order to have a su#ciently high rate of several�yr� we may have to monitor as far as �

Mpc�

����� Spinning Neutron Stars

Another possible source of gravitational waves are rotating neutron stars� believed to be the
remnants of supernovae explosions� These sources are believed to radiate gravitational waves only
if there is a deviation from the symmetry around its rotational axis� Such asymmetries must be
present due to an o��axis magnetic �eld� but their degree is unclear�

The asymmetries may come from irregularities on the crust� or from the stars� internal magnetic
�eld� The amplitude estimate can be written as���

h� � h� � �f��GMR���c�� ����	�

where f is the gravitational wave frequency� For a NS of radius R � �
 Rs� we can write���

hTTij � �
��� �
� f

�

Hz

�� � �
kpc

r

�
����
�

��
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From radio astronomy we could infer the location and period of the pulsar� Gravitational wave
detection would then lead to an estimate of �

����	 Stochastic Background

This consists of a gravitational wave background noise due to� for example� a large number of
distant gravitational wave sources whose signals overlap� Other contributions may come from
ancient supernovae explosions� pregalactic massive stars and collapses to black holes that now
would be observed as stochastic background� Also� cosmological processes such as cosmic string
oscillations and in�ation may contribute signi�cantly to this background radiation�

��
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Interferometric Detectors

The aim of interferometric detectors is to observe the e�ect of a gravitational wave passage� The
goal is to monitor the induced length change between two points as expressed in eq�����
� or� in
simpler notation�

�L �
�

�
hL �����

where L is the distance between them and �L is the induced change� Such detection is indeed
ambitious� assuming h � �
��� and the monitoring of a length of the order of L � �

 m� the
estimated displacement is of the order of �
���m�

In this chapter� a general overview of the Michelson interferometer� at the heart of the interfer�
ometric principle� is presented� The DC detection mechanism is outlined as well as its frequency
and angular response to impinging gravitational wave radiation�

However� the gravitational wave signals to be observed will be bathed in Gaussian and non�
Gaussian noise� For this reason� this chapter will list the main noise sources expected� outlining
their statistical properties� It will then be shown how the implementation of Fabry�Perot arms and
the presence of a recycling mirror can improve the signal�to�noise ratio �SNR� due to shot�noise�

The drawback of the DC detection scheme is its sensitivity to power �uctuations and to ��f
electronic noise� both strong at low frequencies� The last section presents the frontal modulation
scheme� allowing the shift of detection to radio frequencies �RF��

��� The Interferometric Principle�
The Michelson Interferometer

The Michelson interferometer with suspended mirrors� as shown in �g������ and �g������� is at
the heart of interferometric gravitational wave detectors� It consists of three mirrors� placed in a
 L!�shaped con�guration� the beam splitter MBS at the vertex and the two end mirrors� M� and
M�� a distance l� and l� away fromMBS � A laser source injects a beam into this system of mirrors�
which is then divided in two byMBS � Each beam propagates along its arm and is sent back to the
beam splitter where the two beams interfere� A photodiode� placed at the interferometer output�
converts photons to a signal in current�

There is a dual purpose to the mirror suspensions� As it will be shown� the suspension isolates
the mirrors from seismic noise� Furthermore� the mirrors form a free falling reference system�
behaving as free masses in the frequency range above the pendulum resonance� This can be easily
seen by writing the equation of motion for a simple pendulum� Fig������ shows such a mechanical
system� where x�t� indicates the mass position� x��t� the suspension point� m the mirror mass� l
the suspension length and F �t� any force acting on the mass� In the small angle approximation
and no dissipation of energy� the equation of motion is

F �t��m� �
� �x�t�� x��t� � � m %x�t� �����

��
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Figure ���� The suspended Michelson Interferometer�
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Figure ���� The Michelson Interferometer
 notations for the electromagnetic �elds�
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where the time derivative is indicated by a dot and ��� � g�l� By Laplace transforming� eq�������
the equation of motion expressed in the frequency domain becomes

x�s� �
F �s��m � � �

� x��s�

s � � � �
�

�����

The advantage of the transformation is the introduction of the transfer function concept� This
consists of the ratio between two polynomials in s relating an input function� such as the force
F �s� or the point x��s�� to an output one� in this case x�s��

Assuming a �xed suspension point x��s� � 
� the transfer function g�s� relating the position
x�s� to the force F �s� is

g�s� � x�s�

F �s�
�

��m

s � � � �
�

�����

In the limit jsj �� ��� g�s� reduces to

g�s� � ��m

s �
�����

corresponding to the equation of motion of a free mass� It is for this reason that for frequencies
above the pendulum frequency the passage of a gravitational wave freely perturbs the system�

x

y

T
F

θ l

Fg

Figure ���� A simple pendulum
 notations�

By writing the electromagnetic �elds inside the optical system shown in �g������� it is possible
to show how the interferometer couples to the incoming gravitational wave radiation� We will
assume� unless otherwise stated� that the electromagnetic �eld � propagates instantaneously and
that it is approximated by plane waves�

The convention in use is

i� the unknown electromagnetic �eld at point �� a distance l from the known �eld at point �� is
described as �� � e�ikl���

ii� the transmitted �eld through a mirror of transmission amplitude t is �t � t�in�

iii� the re�ected �eld from a mirror of amplitude re�ectivity r is �r � i r�in�

where k � ����� � is the light wavelength� r� � t� � p� � � �p� is the mirror power loss� and i is
the imaginary unit�

The electromagnetic �elds shown in �g������ can be written as

�� � tBS �in �� � i rBS �in �����

�� � exp �� i k l���� � � exp �� i k l����

�� � i r��� �� � i r��

�� � exp �� i k l���� �� � exp �� i k l����

�de�ned as F �s� � L�f�t�� �
R
�

�
f�t� e�s t dt and f�t� � L�� �F �s�� � �

��i

R ���i�
��� i�

F �s� es t ds where f�t� is an

arbitrary function of time and s � � � i�

��
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where rj and tj are the amplitude re�ectivity and transmittivity of the j�th mirror� The �eld seen
by the photodiode is then

�D � i rBS �� � tBS �� �����

whose square modulus is

j �D j � � j �in j � r �BS t �BS � r �� � r �� � � r� r� cos�mic � ����

� j �in j � r �BS t �BS � r �� � r �� � � � � C cos �mic �

where �mic � � k �l� �l � l� � l� and C is the contrast� de�ned as

C � j �D j �max � j �D j �min

j �D j �max � j �D j �min

�
� r� r�
r �� � r ��

� �� C �
� r� � r� � �

� r �� � r �� �
���	�

In the case of a non�ideal interferometer� the contrast indicates not only the degree of asymmetry
in the re�ectivities of the two arms� but also any optical defects of the mirrors� For an ideal
interferometer with equal re�ectivities� i�e� r� � r�� the contrast is C � �� Eq����� can be
simpli�ed by assuming a symmetric beam splitter �rBS � tBS �

p
���� and considering mirror

re�ectivities close to unity �r� � r� � ��� In this case

j �D j � � j �in j �
�

� � � C cos�mic � ����
�

Any change in the lengths l� and l� causes a change in the photodiode�s output current�
Destructive interference is possible when �mic � ��n� ��� or

�l �
�

�
� �n � � � n � 
� �� �� �� ��� ������

where n is an integer� corresponding to a power

j �D j � � j �in j �
�

� � � C � ������

In the case of an ideal interferometer with C � �� no power leaks out to the detector� re�ecting
all back to the laser source�

Let�s study the e�ect on the power seen by the photodiode caused by a small length perturba�
tion due to the passage of a gravitational wave� The  �! component h� of a gravitational wave
irradiating in the direction perpendicular to the plane of the detector induces the following arm
length change

l�� � l� �
�

�
h� l� ������

l�� � l� � �

�
h� l�

whose di�erence is

�l � l�� � l�� � � l� � l� � � �

�
h� � l� � l� � ������

The phase �mic can then be expressed as a sum of an o�set term �off with a perturbation term
�gw

�mic � �off � �gw ������

��
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where

�off � � k � l� � l� � ������

�gw � � k h� � l� � l� �

The power seen by the photodiode is then

j �D j � � j �in j �
�

� � � C cos ��off � �gw � � ������

Therefore� the induced phase change �gw results proportional to the strain h� and to the arm
lengths being monitored� In order to amplify this phase change� the use of the longest arms
possible is desired� Sec�������� will determine �off by maximizing the signal�to�noise ratio due to
shot�noise�

����� The Frequency Response

The frequency response of the detector to gravitational radiation is strictly connected to the laser
light travel time within the arms� If� for example� the period of a gravitational wave is equal to
the round trip time of light� a null e�ect would result on the photodiode output current�

By dropping the assumption of in�nite light speed� it is possible to estimate the frequency
response of such a detector� Once again let the radiation come in the z direction� perpendicular
to the x�y plane of the arms� Due to the light speed invariance from the reference system along
the x�arm we �nd

ds � � 
 � g� � dx
� dx �

� � 
�� � hTT
� � �t� � dx

� dx �

� �c � dt � � � � � h��t� � dx
�

Assuming that

h��t� � h ei � t �����

where � � �� f is the angular frequency of the gravitational wave and h is the gravitational wave
amplitude� the time travel to the x�arm end mirror is

� x �

Z �x

�

dt �
�

c

Z l�

�

r
� � h�

� x
c

�
dx ����	�

which� with h��x�c�� �� can be approximated as

�x �
Z l�

�

� � �
�

�
h�

� x
c

�
� dx �

l�
c

�
�

� c

Z l�

�

h�

� x
c

�
dx ����
�

Substituting eq������� we obtain

�x �
l�
c
�

�

� c

Z l�

�

h e i � x� c dx �
l�
c

�
h

� i �
� ei � l� � c � � � ������

and the round trip time is

� x� �
� l�
c

�
h

� i �
� e i � l� � c � � � � e i� l� � c � � � ������

The same calculation can be done on the y�arm

� y� �
� l�
c
� h

� i �
� e i � l� � c � � � � e i� l� � c � � � ������

��
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Figure ���� The plot of abs����h� as a function of the radiation frequency for a Michelson
interferometer with l� �  km and � � ��m� For frequencies multiple of c � � l� �
�� kHz� the interferometer is blind�

Notice that � x� di�ers from � y� by one sign change due to the quadrupolar nature of gravitational
wave radiation� The time di�erence ��� is then

��� � � x� � � y� �
h

i �
� e � i � l� � c � � � ������

� h �� e
i � l� � c

sin�� l� � c�

� l� � c

where �� � � l� � c� The phase of the output beam will be

�� �
�� c

�
��� ������

and its modulus is plotted� in logarithmic scale� in �g������� This �gure puts into evidence two
e�ects� a ��f decay and the presence of frequencies under which no phase change is generated�
Once a gravitational wave irradiates the detector at a frequency greater than ����� the detector
fails to respond optimally� within one round trip of light� the metric changes by more than one
cycle� The worst case is when the frequency is a multiple of ����� in this case� the gravitational
wave passage has no total e�ect on the detector and no signal is detected�

�
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Figure ���� Angle notations for impinging gravitational wave radiation� The interferometer
arms lie on the x and y axis�

����� The Angular Response

Let the interferometer arms lie on the x � y plane and let a gravitational wave radiate in the
direction � and � as shown in �g������� It can be shown���� that the induced change �l in the
arm lengths is

�l

l
� F���� �� h��t� � F���� �� h��t� ������

where h��t� and h��t� are the gravitational wave amplitudes in the two polarization states�
whereas F� and F�� de�ned as

F� �
�

�
�� � cos� �� cos �� ������

F� � cos � sin ��

describe the antenna angular response to the radiation� Fig������ shows the plot of F �
� ��� �� �

F �
���� �� as a function of the angles � and �� As can be seen in the �gure� the maximum response

is found along the z�axis� whereas a null response is found along the bisector of the x� y axis� In
the latter case� the arm length changes are the same for the two arms� resulting in a null global
e�ect�

��� Noise Sources

Due to the weak gravitational wave e�ect� the output signal will necessarily have a non�negligible
noise contribution� It is necessary� therefore� to comprehend the main sources of noise and to
statistically quantify the random processes involved�

The sources can be classi�ed as either displacement or phase noise sources� Displacement noise
comes from the e�ective motion of the mirrors� mainly caused by

� the seismic excitation of the ground�

�	



CHAPTER �� INTERFEROMETRIC DETECTORS
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z

Figure ���� The plot of F �
���� �� � F �

���� �� as a function of the angles � and �� The x and y
axis denote the interferometer�s arms�

� the stochastic gravitational �eld� generated by mass density �uctuations� which couples
directly to the mirrors�

� the thermal excitation of the suspension wires and optical elements�

� the radiation pressure �uctuations�

Phase noise� instead� is generated by

� the �uctuation of the index of refraction in the arm tubes�

� the amplitude and frequency �uctuation of the incoming laser beam�

� the shot�noise� the quantum mechanical limit to the counting of photons�

Once the many noise contributions are brought under control� the interferometer sensitivity will
be determined by three noise sources� the photon shot�noise� thermal noise and seismic noise�

Before discussing these sources� the concept of signal�to�noise ratio �SNR�� a quantitative
description of the detector�s sensitivity� is presented�

����� The Signal
to
Noise Ratio

The output time series s�t� can be written as a sum of a deterministic signal h�t�� whose form
could be predetermined� i�e� a gravitational wave� and a random noise contribution n�t��

s�t� � h�t� � n�t� �����

It is often convenient to describe the deterministic signal through the Fourier Transform Equations

&h�f� � F �h�t�� �

Z �

��

h�t� e�iftdt ����	�

h�t� � F���&h�f�� �
Z �

��

&h�f� e��iftdf

where F denotes the linear transformation� Such operation allows a study of the frequency com�
ponents of h�t��

On the other hand� the statistical properties of a random process n�t� can be better charac�
terized through the one�sided power spectrum density de�ned as

Pn�f� � � F �corrn�n�t�� 
 � f �	 ����
�

�
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where corrn�n�t� is the autocorrelation function of n�t�

corrn�n�� � � lim
T��

�

T

Z T��

�T��

n�t�n�t � � �dt ������

The usual representation is the one�sided amplitude spectral density

&hn�f� �
p
Pn�f� ������

where &hn�f� is expressed in units of ��
p
Hz if n�t� is adimensional� The root mean square value

�RMS� of n�t�� in the frequency band f� � f � f�� is then

nrms �

sZ f�

f�

Pn�f�df ������

It is necessary to put the deterministic signal &h�f�� expressed in units of ��Hz� in relation with
its counterpart &hn�f�� expressed in units of ��

p
Hz� This is possible once the frequency band in

question is known� Precisely� assuming a known waveform h�t� impinging on the detector with a
known noise spectrum� it is possible to show���� that the power signal�to�noise ratio is

� S
N

��
�

Z �

�

� j&h�f�j�
Pn�f�

df ������

An order�of�magnitude estimate is possible� Assuming an incoming radiation of one cycle� lasting
for � � �ms and with a bandwidth of the order of �f � ��� and with known amplitude h�� the
amplitude SNR can be estimated to be

S

N
� h�p

Pn��f��f
� h�

&hn��f�

p
� ������

If the signal�to�noise ratio for a known periodic signal �frequency f� and amplitude h�� is in
question� the bandwidth �f is determined by the observation time T � ���f and

S

N
� h�p

Pn�f���f
� h�

&hn�f��

p
T ������

The estimate in eq������� shows an important property of time integration� for a periodic signal�
the SNR can be improved� in principle� by a factor of

p
r if the integration time is increased by a

factor r�

����� Phase Noise

The fundamental limit to interferometer sensitivity is set by the photon shot�noise and by the
radiation pressure noise� both caused by the inevitable �uctuations in the number of photons
in the laser beam� The number N of photons detected follows the Poissonian statistics with
�uctuations that go like

p
N �

Let�s rewrite eq�����
� in the form

P �
P�
�

� � � C cos � � ������

where P is the power seen by the photodetector and P� is the incoming laser power� The RMS
power �uctuation can then be written as

�Pshot �

s
P�
�

'h�


�t

p
� � C cos � �����

��
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where 'h is the reduced Plank constant� � is the light angular frequency� �t is the observation time
interval and 
 is the photodiode quantum e#ciency�

The presence of a gravitational wave perturbs the power P � to �rst order approximation� as

P ��� ��gw� � P ��� �
dP

d�
��gw � P ��� � �Pgw ����	�

where �Pgw denotes the induced power change and ��gw the phase perturbation�
By taking the ratio between �Pgw and �Pshot� the SNR is found to be

��� S
N

��� � ��� �Pgw
�Pshot

��� �
r
P�
�


�t

'h�

C sin�p
� � C cos�

��gw ����
�

We would like to see under what conditions the SNR is maximal� Let�s �rst neglect any contrast
defect �C � �� and treat an ideal interferometer� In this case� the SNR is maximal in condition of
dark fringe� i�e� cos � � ��� corresponding to a minimum detectable dephasing of

��shot �

s
'h�


 P��t
������

On the other hand� considering an interferometer with C � �� the SNR is maximum at

cos� � � � �
p

� � � � C � ������

or� in other words� slightly detuned from destructive interference�
Eq������� can be rewritten as a spectral density

� &�shot �

s
'h�


 P�
���
p
Hz� ������

resulting in the equivalent amplitude shot�noise spectral density limit of

&hshot �
�

� k l�

s
'h�


 P�
���
p
Hz� ������

This limit can only be lowered by increasing the product l�
p
P�� Assuming a laser power of P� � �


W with interferometer arms of length l� � �


 m and 
 � �� the shot�noise limit is

&hshot � �
��� ���
p
Hz� ������

This sensitivity needs to be improved by at least two orders of magnitude if any supernovae events
are to be detected in the kHz region�

����� Displacement Noise

At the very low end of the frequency spectrum� the sensitivity of the detector is limited by
seismic activity� Measurements conducted around the world have shown that ground movement
is isotropic� exhibiting a ��f � behavior above �Hz� In particular� for the VIRGO site in Cascina
�Pisa� Italy�� measurements���� have shown that the displacement spectral density can be described
by the empirical formula

&xseism�f� � a

f �

f � � f �
�

f � � f �
�

�m�
p
Hz� ������

where f� � 
��Hz� f� � 
��Hz and the amplitude a varies from a pessimistic value of �
� to an
optimistic one of �
���

��



���� NOISE SOURCES

Particular attention is necessary when considering the di�erential movement of two points on
the ground� Depending on the frequency range of observation� the motion of the two points may
be correlated� Assuming seismic vibrations that propagate in the ground at a speed vs � �

m�s
with wavelength �s� the motion of the points is correlated if

l� �� �s ������

where l� is the distance between the two points� In other words� for frequencies f such that

f ��
vs
l�

�����

the motion of the two points may be considered as correlated� For points a distance l� � � km
apart� the motion is correlated for f �� 
���Hz�

Therefore� by assuming uncorrelated ground vibrations� the noise amplitude contributions of
each mass can be quadratically summed� The equivalent amplitude spectral density� above f�� can
then be written in the form

&hseism�f� �
�
p
�

l�
&xseism�f� � �
��

f �
���
p
Hz� ����	�

and an attenuation of more than ten orders of magnitude is necessary in order to detect any events
at �
Hz� One way to decrease the limit is to increase the length l� being monitored regardless of
the optical con�guration� This is true for any displacement source�

Another important source of displacement noise is thermal� arising from any motion induced
by a macroscopic system being in thermal equilibrium with its environment� For the mechanical
system in question� it is important to identify the normalmodes and to assign an energy E � �

� k T
to each mode� where k is Boltzman�s constant and T is the temperature of the system�

The normal modes can be classi�ed in two� the suspension modes and the internal vibrational
modes� These modes couple to the interferometer in di�erent ways� The internal vibrational
modes treat the mirror as an elastic body with an unmoving center of mass� The suspension
modes treat the mirror as a solid body and consist of pendulum� violin and vertical modes�

The thermal noise present in any macroscopic system with dissipation can be found using
the �uctuation�dissipation theorem� By considering a simple resonator� with resonant frequency
f� � ������ temperature T � mass m� quality factor Q and using the internal damping model��
��
the power spectral density displacement can be expressed as

j &xtherm��� j � � � k T

mQ�

� �
�

�� �
� � � �� � � � �

� �Q
�

�m ��Hz� ����
�

The frequency dependence of the noise spectrum can then be classi�ed in the following way�

j &xtherm��� j �
r

� k T

m

��������
������	

� � ���
p
Q� � for � �� ��

p
Q��

���
� for � � ��

�� � ��
���

p
Q � for � �� ��

������

Let�s �rst consider the pendulum mode� Its resonance frequency f� is below the detection
band of the detector� and the resulting spectral density displacement is inversely proportional to
f���

p
Qm� A large mirror mass m is therefore desired� as well as a high quality factor Q� The

motion due to this mode becomes negligible at high frequencies but plays a central role in the low
to intermediate frequencies� Fig����� shows the pendulum contribution to thermal noise in the
case of a mirror mass m � �
 Kg� quality factor Q � �

� mode of energy � k T � ����
 �
���J
and a resonance frequency f� � 
�� Hz� In this case� the equivalent amplitude spectral density is

&hther � �
��� ���
p
Hz� ( �
 Hz ������
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Figure ���� The pendulum mode contribution to thermal noise
 the amplitude spectral density
of the mass displacement as a function of frequency� The parameters used are

quality factor Q � ���� mode of energy � k T � ���� � �����J � mass m � �� Kg
and resonance frequency f� � ��� Hz�

In order to be sensitive to sources such as coalescing compact binaries� the thermal noise limit
here shown must be improved by at least two orders of magnitude�

The internal vibrational modes� instead� have resonant frequencies in the kHz region� In this
case� the motion due to this mode is inversely proportional to

p
Qf m and the mirror design has

to carefully chose the product
p
Qm�

��� Detector Design Improvements

It has been shown in the previous three sections how seismic� thermal and shot�noise limit the
sensitivity of the Michelson interferometer� For thermal noise� in particular� it was shown how
materials with high quality factors are desired� Also� the design of a suspension system for the
mirrors and a modi�cation of the interferometer itself is necessary if an improvement of the SNR
due to seismic and shot�noise is desired�

����� The Suspension System

As already seen� the limit &hseism can be lowered by increasing the length l� being monitored�
Another way to lower the limit is to suspend each mirror from a pendulum� By setting F �s� � 
 in
eq������� the transfer function relating the motion of the mass x�s� to the motion of the suspension
point x��s� is

x�s�

x��s�
�

� �
�

s � � � �
�

������

which� in the limit jsj �� j��j� reduces to

x�s�

x��s�
� � �

�

s �
������

attenuating� by a factor ��f�� the seismic motion� Particular attention is then made to the design
of a pendulum with the lowest resonant frequency possible�

��
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The attenuation factor of a mirror suspended from a pendulum can be improved if the mirror
is suspended from a chain of pendula� For an ideal chain of M pendula �a real suspension system
will be presented in sec�������� the transfer function is

x�s�

x��s�
�

MY
n��

� �
n

s � � � �
n

������

where �n denotes the resonance of the n�th pendulum� resulting in an attenuation of

x�s�

x��s�
� �

s �M
������

for jsj �� j�M j� The use of a chain of six �lters would then attenuate by a factor of twelve orders
of magnitude at �
 Hz� Ideally� a suspension system with as many harmonic oscillators as possible
and with the lowest resonant frequencies is desired�

����� The Michelson Interferometer with Fabry
Perot Arms

In the previous section� it was shown how the use of a chain of harmonic oscillators attenuates and
shifts the ground vibrations into lower frequencies� This section and the following describe how
an improvement of the SNR due to shot�noise is possible by modifying the optical con�guration
of the interferometer�

One way to increase the optical path of light� without increasing the dimensions of the inter�
ferometer itself� is to use Fabry�Perot cavities �see Ch��� in the place of the end mirrors� as shown
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Figure ��	� The Michelson Interferometer with Fabry�Perot arms�
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in �g������ The electromagnetic �eld equations are now

�� � tBS �IN �� � i rBS �IN ������

�� � exp �� i k l���� � � exp �� i k l����

�� � AR��� �� � AR��

�� � exp �� i k l���� �� � exp �� i k l����

where ARi is the complex re�ectivity of the i�th Fabry�Perot

ARi � ARi exp�i �Ri� �����

The power seen by the photodiode is found to be

j �D j � � r �BS t
�
BS j �IN j �

h
A �
R� � A �

R� � �AR�AR� cos� ��R� � �R� � � �mic �
i

����	�

which can be written in the form

j �D j � � j �IN j �
�

h
� � C cos� ��R� � �R� � � �mic �

i
����
�

where C is the contrast� AR� � AR� � � and rBS � tBS �
p

���� The expression in eq�����
�
does not change from eq������

By taking L��� � l���� the induced length change caused by the passage of a gravitational wave
is greater in the Fabry�Perot arms� For this reason� �mic can be neglected and the advantage in
using such arm cavities appears evident in the phase ��R���R�� �refer to sec���������� By neglect�
ing mirror losses� it can be shown that a small length perturbation �L around the operating point
Lres �cavity length L corresponding to maximum stored power� generates� to �rst approximation�
the change ��R

�R�Lres � �L� � �R�Lres� � ��R ������

with

��R � d�R
dL

�����
Lres

�L � � � k
� �F

�

�
�L ������

where F denotes the �nesse� to be de�ned in eq�������� assumed to be the same for both cavities�
A gravitational wave perturbation� just as in eq�������� of the form

L� � L� � �L� � L� �
�

�
h� L� ������

L� � L� � �L� � L� � �

�
h� L�

������

would generate the following phase change

�R� � �R� � ��R� ���R� � ������

� � � k
� �F

�

�
� �L� � �L� � � � k

� �F
�

�
h� L�

The phase ��R���R� � in eq�����
� needs to be compared to �mic shown in eq�����
�� The distance
L� being monitored results ampli�ed by a factor G � �F � � �known as the cavity power gain� as
if monitoring an e�ective length Leff � GL��
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Figure ��
� The plot of abs��R� � �R���h for a Michelson interferometer with Fabry�Perot
arms of length L� �  km and �nesse F � �� �continuous line� and the plot of
abs���mic�h� relative to a simple Michelson interferometer with arms of l� � 
km �dotted line��

Eq������� is not exact because it does not take into account the travel time of photons� as
shown in sec��������� By dropping the assumption of in�nite light speed� it is possible to show
that the frequency response of the arms���� to gravitational waves can be better approximated by

j �R� � �R� j � � k
��F
�

�
hL�

�r
� �

h
�gw ��cav

i� ������

where �gw is the gravitational wave angular frequency� �cav � �� � G is de�ned as the cavity pole
and � � L� � c is the light travel time from one mirror to the other� For VIRGO� the cavity pole
is located at �cav��� � �

 Hz�

The plot of eq������� is shown in �g����	�� as well as eq������� for comparison� Even though
the sensitivity for the Michelson with Fabry�Perot arms degrades for frequencies above the cavity
pole� it is ampli�ed by a factor �F�� with respect to the simple Michelson con�guration�

The inevitable storage time di�erence between the two arms� caused by either a di�erence in
�nesse of the cavities or by a length di�erence in the arms� makes the output of the detector
sensitive to frequency �uctuations� The sensitivity goal sets the requirements on the frequency
�uctuation of the laser source� achieved by making use of several control systems in cascade�
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However� the last control is performed by using the interferometer itself as a reference for the laser
source� Due to the sophisticated suspension system� the interferometer is highly stable at high
frequency� For an in�depth treatment� see �����

����� The Recycled Michelson with Fabry
Perot Arms

In the previous section� it was shown how the gravitational wave signal can be ampli�ed by
replacing the terminal mirrors of the Michelson interferometer with Fabry�Perot cavities� This
section introduces a recycling concept in order to improve the signal�to�noise ratio due to the
photon shot�noise�

As the interferometer is operated in condition of dark fringe� most of the light is re�ected back
to the laser source� Adding a mirror right after the laser source� as shown in �g�����
�� recycles
the electromagnetic beam coming from both arms� inducing a power build up� Analytically� this
can be written as

j �D j � � j �� j � cos � ��mic � � � ������

with

j �� j �� t �� j �IN j �
� � r �� sin � ��mic � � � � � r� cos � � k lr � sin ��mic � � �

�����

where

lr � l� �
�

�
� l� � l� � ����	�

while neglecting both the contrast defect and losses and assuming both Fabry�Perots in resonance�
i�e� AR � �� �R � ��� �see sec������ In condition of destructive interference at the output
photodiode� the power j �� j � within the recycling cavity can be written as

j �� j �� t ��
�� � r� � �

j �IN j �� Grec j �IN j � ����
�
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Figure ����� The Recycled Michelson Interferometer with Fabry�Perot arms�
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Figure ����� The Michelson interferometer in the frontal modulation scheme�

where Grec is the power gain for the recycling cavity�
It can be shown���� that there exists an optimal value r� for the re�ectivity of the recycling

mirror that maximizes the stored power� For this value

j �� j �� �

p �� � p �itf
j �IN j � ������

where p �� and p �itf denote the power losses of the recycling mirror and of the interferometer
respectively� In order to maximize the recycling gain� it is therefore necessary to limit the mirror
losses as well as the interferometer losses�

��� The Frontal Modulation Scheme

A problem arises once the contrast C � �� In sec��������� it was shown how� when C � �� the SNR
is maximized when the interferometer is operated slightly detuned from destructive interference�
As a consequence� the photodiode is sensitive to any power �uctuations of the laser source� In
order to be shot�noise limited� the relative power �uctuations �P�P must satisfy the condition

�P

P
�

s
'h�


 PC
������

where PC � �P����
p
� ���C� is the power corresponding to maximal SNR with � � C � �
���

P� � �

 W and 
 � �� This leads to a requirement of �P�P � �
��� �
p
Hz� This condition is

too demanding for the low frequency region due to laser amplitude noise and ��f electronic noise�
However� by implementing a modulation�demodulation scheme� it is possible to shift the detection
from DC to the RF band �� MHz��

Many alternative detection schemes have been investigated� such as the internal� external and
frontal modulation schemes����� All of them consist of phase modulation of the laser beam at
di�erent positions in the interferometer� One of them� the frontal modulation scheme� deserves
particular attention� It consists of phase modulating the laser beam at the input of the interfer�
ometer and coherently de�modulating the output signal�

Let�s consider the simple Michelson interferometer shown in �g�������� The phase modulator
consists of an electro�optical element that introduces two lateral frequency sidebands to the carrier�

�	
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It is made of a crystal whose index of refraction changes according to an applied voltage� If the
incoming electromagnetic �eld �IN is described by

�IN � A� e
i �� t ������

where �� is the angular frequency of the laser beam and A� its amplitude and if the applied voltage
to the modulator is of the form

V � V� e
i� t ������

then the electromagnetic �eld after the modulator can be expressed as

�
�

IN � A� e
i 	�� t�m sin � t
 � A�

�X
n���

Jn�m� ei 	�� �n�
 t ������

where m is the modulation index and Jn�m� are the Bessel functions� For values of m �� ��
eq������� can be approximated by keeping the �rst three terms of the sum

�
�

IN � A� � J��m� ei �� t � J��m� ei 	�� � �
 t � J���m� ei 	�� � �
 t� ������

Assuming A� � � and making use of the property

Jn � �� � �n Jn ������

the electromagnetic �eld entering the interferometer can be written as

�
�

IN � J��m� ei �� t � J��m� ei 	�� � �
 t � J��m� ei 	�� � �
 t �����

By propagating �
�

IN just as in sec������� the electromagnetic �eld �D seen by the output
photodiode can be written as

�D � �� � ��e
i� t ���e

� i� t ����	�

where

�� � �J�
h
exp �� i �� �l � c � � exp �� i �� �l � c �

i
���
�

�� � �J�
h
exp �� i ��� � "� �l � c � � exp �� i ��� � "��l � c �

i




 exp �� i" � l� � l� � � c �

�� � �J�
h
exp �� i ��� � " � �l � c � � exp �� i ��� � " � �l � c �

i




 exp �� i" � l� � l� � � c �

and for simplicity �l � l� � l�� rBS � tBS � ��
p
�� r� � r� � �� Ji�m� � Ji and a global phase

exp�i���l� � l���c� has been neglected�
The power seen by the photodiode is then

j �D j � � j �� j� � j �� j� � j �� j� � �����

�
h
�� ��� ����

�
�

i
exp � i" t � �

h
�� ��� � ���

�
�

i
exp �� i" t � �

�
h
�� ���

i
exp � � i" t � �

h
��� ��

i
exp �� � i" t �

and contains a lot of information� It consists of a DC component made up of the square modulus
of each frequency component and of modulated components at " and �"� The " component is
generated by the beating of the carrier with the sidebands and contains crucial information on

�
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the status of the interferometer� while the �" component consists of the beating between the
sidebands�

By de�ning

�l � �l � �lgw �����

where �l � n�� n �� � being an integer and �lgw �� � being the gravitational wave perturbation�
it is possible to showh

�� ��� ����
�
�

i
exp � i" t � �

h
����� ����

�
�

i
exp �� i" t � � �����

�  J� J� r� r� sin�
"

c
�l� sin� �

��
c
�lgw� 




h
sin�

"

c
� l� � l� � � sin " t� cos�

"

c
� l� � l� � � cos " t

i
In the presence of an asymmetry �l in the arms� the term sin�"�l�c � is di�erent from zero�
This allows us to observe� in the demodulated components at "� the term sin� ��� �lgw�c� �
� k �lgw� This mechanism can be explained in the following way� As the interferometer operates in
destructive interference for the carrier� the asymmetry forces a leakage of the sidebands into the
photodiode� Any change of the optical path would bring the carrier out of dark fringe� forcing it
to beat against the sidebands�

Therefore� the frontal modulation scheme allows detection at RF where the electronic and
amplitude noise of the laser are weaker� Furthermore� such a scheme can also be used to control
the interferometer at low frequency as will be shown in the next chapter�
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Chapter �

The Optical Resonator�

Response and Control

The objective of this chapter is to present and describe one of the key optical con�gurations for
gravitational wave interferometry� the two�mirror resonator or Fabry�Perot cavity� The optical
response of the outgoing electromagnetic �EM� �elds to mirror movements will be given� In
particular� the following two cases have been treated�

� the EM response to longitudinalmovements of the mirrors �along the beam axis� by assuming
a mode�matched laser beam to an aligned Fabry�Perot�

� the EM response to the angular mirror motion assuming a laser beam mode�matched and
resonating in the optical system�

Throughout the thesis� this optical system will be often referred to�
An outline of well�known methods for cavity control will follow� consisting of

� the Pound�Drever technique���� for the longitudinal control�

� the Anderson���� and the Ward���� techniques for the angular control�

Beforehand� a brief description of laser beam theory and resonators is necessary in order to
fully comprehend the coupling of the incoming laser �eld with the optical system� It will be the
task of Ch�� to apply what is here presented to VIRGO�s �rst optical con�guration�

��� Propagation Modes of a Laser Beam

An ideal laser emits coherent and monochromatic electromagnetic radiation that can be expressed
by the electromagnetic �eld U �x� y� z�� This function satis�es the wave equation

r� U �x� y� z� � k� U �x� y� z� � 
 �����

where k � ���� is the propagation constant in the medium� Eq������ has an in�nite set of
solutions� One possible set of solutions for a light beam propagating along the z�direction consists
of the propagation modes Umn�x� y� z� or TEMmn� of order �m�n�� which form a complete and
orthogonal set of functions� Any monochromatic light distribution can be expressed as a linear
combination of these modes�

The modes can be characterized in every point along the propagation axis by two parameters�
R�z� and w�z�� The �rst describes the radius of curvature of the wavefront that intersects the
propagation axis� while the second parameter� with respect to the fundamental mode TEM���
gives the radius for which the amplitude of the �eld has decreased by a factor ��e with respect to
the amplitude value along the propagation axis� Fig����� shows the pro�le of a laser beam�
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RESPONSE AND CONTROL
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Figure ���� The laser beam pro�le�

The transversal intensity distribution of the laser beam has a Gaussian dependence and its
radius w�z� contracts to a minimum w� known as the waist of the beam� The two parameters
R�z� and w�z� are determined by the waist size w� and by the distance z from the waist position�
where

w ��z� � w �
�

h
� �

� � z

� w�
�

�� i
�����

R�z� � z
h
� �

� � w�
�

� z

�� i

The beam pro�le� determined by the function w�z�� is a hyperbola with asymptotes forming an
angle with the propagating axis of

�� �
�

� w�
�����

which de�nes the divergence of the beam�

It can be demonstrated that for a given wavelength �� waist w� and waist position z� �set to
zero for simplicity�� the propagation modes Umn�x� y� z� are

Umn�x� y� z� �
Amn

w�z�
Hm�

p
�

x

w�z�
� Hn�

p
�

y

w�z�
� 
 �����


 exp
h
� x� � y�

w��z�
� i k �x� � y��

� R�z�
� i �k z � �mn�z��

i

where

� Hj�x� stands for the Hermite polynomial of order j in x� where the �rst few Hermite poly�

��
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nomials are�

H��x� � � �����

H��x� � � x

H��x� � � x� � �

H��x� �  x� � �� x

� �mn�z� is the Guoy phase de�ned as

�mn�z� � � m� n� � � arctan
� � z

� w�
�

�
�����

� and Amn is the normalization constant

Amn �
� �

�n�m n) m) �

����
�����

Referring back to eq������� it is worth mentioning that Umn�x� y� z� is a function separable in
the x and y variables� This is helpful when dealing with alignment problems� the x dimension can
be treated separately from the y�

The approximation of a real laser �eld with plane wave formalism has already been presented
in Ch��� With eq������ it is possible to see the di�erence between the two� Obviously� they have a
di�erent power distribution� one being Gaussian while the other is constant� The most interesting
di�erence is perhaps the phase di�erence ��

� � i
h
� k �x � � y ��

�R�z�
� �mn�z�

i
����

This arises from the Guoy phase� which depends both on the distance from the waist and the
eigenmode in consideration� as well as the radius of curvature of the wavefront� By considering
resonators with mirror curvatures coinciding with the beams� fundamental mode� the problem can
really be seen as a plane wave incident to a plane mirror� In this case� the two formalisms are
identical�

Also� the propagation modes take the simplest form at the position of the waist� By setting
z � 
� the radius of curvature becomes R�
� � 	 while w�
� � w�� The electromagnetic �eld
then takes the form

Umn�x� y� 
� �
Amn

w�
Hm�

p
�

x

w�
� Hn�

p
�

y

w�
� exp

h
� x � � y �

w �
�

i
���	�

The Hermite�Gaussian modes are not the only solution to eq������� It is at times convenient
to treat the problem in polar coordinates���� where the eigenmodes can be expressed as Laguerre
polynomials weighted by a Gaussian�

��� Geometrical Properties of Optical Resonators

The Fabry�Perot is the simplest of all optical resonators consisting of two partially re�ective
mirrors� a distance d apart� Once the cavity is illuminated� its length has to be adjusted with
respect to the laser frequency� so as to allow a power build up� In this case� the re�ected and
transmitted beams exhibit interesting properties that are here presented� The concepts of stability
and mode�matching are �rst introduced�

��
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M

Tangent plane

Optical axis

Tangent plane

Figure ���� The optical resonator and its optical axis�

����� Resonator Stability

Let�s de�ne the optical axis of the cavity as the straight line perpendicular to the tangent planes
of the mirrors� as shown �g������ where the surface of the mirrors is denoted by M� and M�� Let�s
also de�ne a paraxial ray as a ray with very small distance and angle� with respect to the optical
axis� The resonator is then said to be stable if a paraxial ray experiences a periodic focusing action
after an arbitrary number of re�ections� It can be demonstrated���� that this condition can be
expressed as


 �
�
�� d

R�

� �
�� d

R�

�
� � ����
�

where R� and R� are the curvature radii of the mirrors in �gure and d their distance apart�

����� Cavity Modes

The modes of a resonator are de�ned as a stationary �eld con�guration� If a mode can be
represented by a wave propagating back and forth between the mirrors� the beam parameters
R�z� and w�z� must be the same after one complete return trip of the beam� This is valid under
the assumption that the resonator is stable and the mirror aperture is large compared to the beam
spot size�

Fig����� shows a resonator made of two mirrors M� and M� of radius of curvature R� and R�

respectively� a distance d apart� These modes have a wavefront at the position of a mirror equal
to the radius of curvature of the mirror in consideration� The dimensions of the spot size� at the
position of the mirrors� is given���� by

w�
� �

�� R�

�

�� R� � d

R� � d

d

R� � R� � d
������

w�
� �

�� R�

�

�� R� � d

R� � d

d

R� � R� � d

where the waist w�� shown in �gure� is determined by

w�
� �

��
�

�� d �R� � d� �R� � d� �R� �R� � d�

�R� � R� � �d��
������

��
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Figure ���� The resonator mode�

and is positioned inside the cavity at a distance t� fromM� and t� fromM� given by the expressions

t� �
d �R� � d�

R� � R� � �d
������

t� �
d �R� � d�

R� � R� � �d

Therefore� the cavity is said to be mode�matched to an incoming beam� of wavelength �� if the
laser beam waist size and position coincide with that of the cavities�

In particular� the use of plane�concave cavities is common� Assuming M� to be a plane mirror
with R� �	� the waist size expressed in eq������� becomes

w �
� �

� �
�

�p
d �R� � d � ������

and it will be positioned on the plane mirror M��

����� Resonance Condition

The laser beam is said to resonate inside a cavity of length d when the phase of light acquires ��
in a complete round trip� By using the convention that the beam acquires a ��� shift in re�ection�
the resonance condition for a TEMmm is

k d � �mn� d � �
�

�
� � q � � � ������

where q is an integer denoting the number of quarter wavelengths� Even though the R�z� and
w�z� parameters describe every mode� the resonance condition is di�erent for each mode due to
the Guoy phase �mn�z�� After some algebraic manipulation� it can be shown���� that the mode
TEMmn resonant frequency �mn is

�mn

��
�

�

�
� � q � � � �

�

�
�m � n � �� arccos

r
� � � d

R�
� � � � d

R�
� ������

where �� � c � � d is the inverse of the light round trip travel time�

��
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Figure ���� The Fabry�Perot
 notations�

��� Optical response of a Fabry�Perot

This section presents the optical response of the simple resonator� the Fabry�Perot cavity� to mirror
angular motions and along the beam axis� The longitudinal response is �rst presented�

����� The Longitudinal Response

The EM �eld dependence on longitudinal motions of the mirrors is described under the assumption
that

� the incoming fundamental mode of the laser beam is mode�matched to the resonator�

� the cavity is aligned to the incoming light beam� or� in other words� that the optical cavity
coincides with the beam axis�

Under these assumptions� the problem is simpli�ed by describing the incoming light beam as a
plane wave incident to a plane�plane cavity� as shown in �g������� According to the notation in
the �gure� the electromagnetic �elds are

� the stored beam ��

����� �
t�

� � r� r� exp�� i � �
� A���� � A���� exp� i �� � ������

� the transmitted beam �t

�t��� �
t� t� exp�� i � � � �

� � r� r� exp�� i � �
� AT ��� � AT ��� exp� i �T � �����

� and the re�ected beam �r

�r��� � i
h
r� �

r� t
�
� exp�� i ��

� � r� r� exp�� i � �

i
� AR��� � AR��� exp� i �R � ����	�

where

� r �i � t
�
i and p �i are the power re�ectivity� transmittivity and losses of the i�th mirror�

� � � � kL is the propagation phase accumulated in a complete round trip where L is the
cavity length�

�
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Figure ���� The cavity stored power A �
� with its corresponding phase �� in the case r �� � ����

and r �� � ���� and no losses�

�	
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Figure ���� The transmitted power A �
T with its corresponding phase �T in the case r �� � ����

and r �� � ���� and no losses�

�
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Figure ���� The re�ected power A �
R with its corresponding phase �R in the case r �� � ���� and

r �� � ���� and no losses�

��
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� A��R�T ��� is the complex amplitude of the normalized stored� re�ected and transmitted
�elds� whereas A��R�T ��� is the modulo and ���R�T ��� the phase of the corresponding �elds�

� �in � � is the incoming �eld�

Fig������ �g������ and �g������ show the plots of the square modulo of the stored A �
� � transmit�

ted A �
T and re�ected A �

R �elds� with their corresponding phases� as a function of the propagation
phase �� Notice that the curve in both �g����� and �g������ delineate the Airy Peak ����� For
the plots� no mirror losses were taken into account� with power re�ectivities for the mirrors of
r �� � 
� and r �� � 
�		� From these plots and from eq�������� eq������ and eq�����	�� we remark
that

� the functions are periodic modulo ���

� the resonance condition occurs at � � � �n � � ��� where n is an integer� and in this case

i� power is built up inside the cavity�

j ����� j ��� �

ii� the re�ected power has a minimum� adding a phase of ���� to the re�ected �eld �recall
that a mirror adds a ��� phase��

� the transmitted power AT ��� is proportional to the stored power A�����

It is in condition of resonance that the cavity shows special properties� Not only is the power
within ampli�ed but most importantly the re�ected phase acquires a sensitivity to small length
perturbations� It is also interesting to remark that out of resonance� the cavity behaves exactly
like a mirror� re�ecting all the power with a ��� phase shift�

By introducing the concept of �nesse F � it is possible to simplify the expressions for the
EM �elds and their properties� The �nesse F is de�ned as the ratio of the distance of between
resonances and the full width at half maximum �FWHM� of a resonance� It can be shown that
the FWHM of a resonance is

FWHM �
�

� k

�
�� � � arccos

h � � r �� r
�
� � � r� r�

� r� r�

i�
����
�

Hence� the �nesse is

F �
� � �

FWHM
�

�

� � arccos� � � � r �� r �� � � r� r� � � � � r� r� � �
������

In general� the re�ectivities of optical resonators are chosen so that � � r� r� �� �� In this case�
it is possible to expand eq������� so as to �nd an approximate form for the �nesse� This turns out
to be

F � �
p
r� r�

� � r� r�
������

The mirror re�ectivities of optical resonators dealt with here� satisfy the condition �� r� r� �� ��
Therefore� throughout the thesis the approximate sign in eq������� will be replaced by the equal
sign�

The introduction of the concept of �nesse simpli�es the expressions� The stored power� whose
amplitude is expressed in eq�������� can be rewritten in the form

j ����� j �� G
�

� � � �F � � � � sin ��� � � �
������

��
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where G is the gain in power de�ned as the ratio between the stored and incident power in condition
of resonance�

G � t ��
� � � r� r� � �

������

Often� the mirror re�ectivities not only satisfy the condition �� r� r� �� �� but also the condition
� � r� �� � � r�� In this case� it can be shown that the relationship between the gain G and
the �nesse F is

G � �F
�

������

As already stated in Ch��� the phase re�ectivity of a Fabry�Perot plays a central role in inter�
ferometric detection� To �rst order approximation� it is possible to show that the phase change
induced by a perturbation of the cavity length �L around resonance is

�R�L � �L� � �R�L� � � kG �L ������

����� The Angular Response

The angular response is here presented by assuming that the incoming �eld is mode�matched to
the resonator� It will be shown how a mirror misalignment generates a translation and rotation
of the optical axis with respect to the beam axis inducing a coupling to the �rst order transverse
modes�

The beam and optical axis

The optical systems that we will study consist of plane�concave cavities shown in �g������ This
section will limit the discussion to such a con�guration� treating angles only in one dimension�

Fig����� shows two possible mirror tilts� A tilt of an angle ��� as shown in �g����a�� of the
concave mirror M� generates only a translation of the axis� The induced translation is

a � R sin �� ������

where R is the radius of curvature of mirrorM�� The mirror tilt induces also a length change �L
of the cavity of

�L � R � � � cos �� � � R� ��
�

�����

approximated for small angles�
On the other hand� a tilt of angle �� of the plane mirror M�� as shown in �g����b�� induces a

rotation �� of the axis as well as a translation of

a � �R � L � sin �� cos �� ����	�

causing a cavity length change �L of

�L � �R � L � � � � cos �� � � �R � L � � ��
�

����
�

In both mirror tilts� the length change of the cavity is of second order in the angle�

The incoming �eld in the two reference systems

Misalignment e�ects are studied by making use of the property that the TEMmn modes of the
resonator form a complete and orthogonal set of functions� The incoming beam can then be
expressed as a linear combination of these modes� The modal expansion can be performed at any
point along the propagation axis� However� the analytical calculations are made easier

��
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Figure ��	� The optical axis as a function of mirror tilts
 �a� the curved mirror M� is tilted
by �� generating a pure translation a of the optical axis with respect to the input
axis and �b� the plane mirror is tilted by an angle �� generating a translation a
and angle �� of the optical axis with respect to the input axis�

��



���� OPTICAL RESPONSE OF A FABRY�PEROT

� when performed at the waist� since the expression of the modes becomes simplest� as shown
in eq����	��

� by considering misalignments in one plane only� the expression of the modes are separable
functions in x and y�

� by making use of the approximation

a

w�
� �

�

��
� � ������

where a and � are the translation and angle of the optical axis and w� and �� are the waist
and divergence angle of the beam respectively� Second order terms of the expansion are
neglected�

Let�s �rst consider pure translations� as shown in �g����a�� The two bases� de�ned by the
primed beam axis S� and the unprimed optical axis S� are schematically shown in �g����	a�� The

x

z

z

x

‘

‘

x = x + a
z = z

‘
‘

a
Opt. axis S

Beam axis S

‘

z

z‘
‘

Beam axis S

Opt. axis S

x
x

θ

(a) (b)

x = x cos  - z sinθ θ
θθ

‘
‘ ‘z = x sin  + z cos

Figure ��
� The reference systems de�ned by the beam axis S� and the optical axis S
 �a� pure
translation and �b� pure rotation�

transformation from one system to the other is simply

x � x� � a z � z� ������

In the S� reference system� the incoming laser beam is seen as a pure fundamental mode� which
at the waist takes the form

�in�x
�� � U���x

�� �
A��

w�
exp
h
� x

��

w�
�

i
������

In the S reference frame� the incoming beam is

�in�x� � U���x� a� � ������

�
A��

w�
exp
h
�
�x� a

w�

��i
�

�
A��

w�
exp
h
� x�

w�
�

i
exp
h� x a
w�
�

i
exp
h
� a�

w�
�

i

By making use of the approximation in eq�������� a power expansion of the exponential term is
performed up to �rst order� This leads to

�in�x� � A��

w�
exp
h
� x�

w�
�

i h
� �

� x a

w�
�

i
� ������

� U���x� �
a

w�
U���x�

��
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Any pure translation of the optical axis generates an in�phase coupling with the transversal mode
U���x� by an amount a�w��

Fig����	b� shows schematically the beam axis S� tilted by an angle � with respect to the optical
axis S� We would like to express the beam from the S� base

�in�x
�� � U���x

�� �
A��

w�
exp
h
� x

��

w�
�

i
������

to the S base� The transformation equations relating the two reference systems are

x � x� cos � � z� sin � z � x� sin � � z� cos � ������

In this case� the phase and amplitude of the incoming beam need to be treated separately� The
projection of the amplitude of the beam to the transverse plane of the optical axis is

j �in�x� j� j �in�x
�� j

cos �
� j �in�x

�� y�� 
� j �� � ��

�
� ���� �����

consisting of a change in the second order in angle and will be neglected� However� the beam
acquires a phase ��x� of

��x� � k x sin � � k x � ����	�

where the approximation in eq������� has been used� In the S reference system� the incoming
beam becomes

�in�x� � U���x� exp�i ��x�� ����
�

By power developing eq�����
�� this becomes

�in�x� � U���x� � i
�

��
U���x� ������

Pure rotations couple in quadrature phase with the transverse mode U�� by the amount �����
The di�erence with a pure translation lies in a ��� phase shift in the coupling�

,

MM1 2θ2θ1

θ a
S

S

Figure ����� Misaligned Fabry�Perot
 translation a and angle � of the optical axis S with
respect to the beam axis S��

In general� for the misaligned Fabry�Perot in �g�����
�� an incoming beam in the S� reference
system expressed as

�in�x
�� � U���x

�� ������

is seen in the S reference system as

�in�x� � U���x� �
� a

w�
� i

�

��

�
U���x� ������

It is worth noticing that for the calculations here shown� the normalization factors have been
neglected because of their dependence only on second order terms�

��
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The transmitted and reected beam of a misaligned cavity

Now that the expression of the beam in the optical base has been found� we are able to describe
the response of the cavity� or how the transmitted and re�ected beams look as a function of the
misalignments�

By referring to �g�����
�� the incoming beam expressed in the S frame is shown in eq��������
The re�ected beam �r in the S frame is

�r � A��
R U���x� �

� a

w�
� i

�

��

�
A��
R U���x� ������

where A��
R and A��

R are the complex re�ectivity of the Fabry�Perot �eq�����	�� for the fundamen�
tal mode and the �rst transverse mode respectively� By performing a power expansion of the
fundamental mode� it is possible to map back the �eld to the S� frame� The re�ected beam is then

��r � A��
R

h
U���x

�� �
� a

w�
� i

�

��

�
U���x

��
i
�
� a

w�
� i

�

��

�
A��
R U���x

�� ������

In the same way� the transmitted �eld in S is

�t � A��
T U���x� �

� a

w�
� i

�

��

�
A��
T U���x� ������

which transformed back to S� becomes

��t � A��
T

h
U���x

�� �
� a

w�
� i

�

��

�
U���x

��
i
�
� a

w�
� i

�

��

�
A��
T U���x

�� ������

It is important to recall that once the fundamental mode resonates� the �rst order transverse mode
anti�resonates� In this case� by referring to �g������� A��

T � 
 and eq������� can be approximated
as

��t � � i A��
T

h
U���x

�� �
� a

w�
� i

�

��

�
U���x

��
i

�����

��� Longitudinal Locking� The Pound�Drever Method

In order to make use of the properties of the resonator� the fundamental eigenmode of the laser
beam must resonate in the cavity� Laser frequency �uctuations� together with any mirror displace�
ment noises� do not allow the beam to optically resonate� The Pound�Drever���� method allows
the stabilization of the cavity length to the laser source�

In VIRGO� the frontal modulation technique� presented in Ch��� is used not only as a detection
scheme but also as a means to longitudinally control the position of the mirrors� In particular�
the Pound�Drever method consists in phase modulating the incoming beam� as shown in sec������

� with both sidebands anti�resonating in the cavity

� while using the demodulated component of the re�ected beam as an error signal useful for
the cavity lock onto the laser frequency�

Assuming that the beam is mode�matched to the Fabry�Perot and that the cavity is aligned�
we can study again the problem with the use of plane waves and a �at��at cavity� Let a normalized
modulated beam� of the form

�in � J� e
i �� t � J� e

i 	�� � �
 t � J� e
i 	�� � �
 t ����	�

impinge on the cavity� where J��� is the amplitude of the carrier and sidebands and "��� is the
modulation frequency� By neglecting the global phase �� t� the re�ected �eld is

�R � �� � �� e
i� t � �� e

� i� t ����
�

��
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Figure ����� The Pound�Drever error signal of a Fabry�Perot with r �� � ����� r �� � ���� �no
losses� as a function of cavity length �modulo ��� Top
 transmitted power in DC�
Middle
 re�ected in�phase signal� Bottom
 re�ected quadrature signal�

The power of the re�ected beam is then

j �R j � � j �� j� � j �� j� � j �� j� � ������

�
h
�� ��� ����

�
�

i
exp � i" t � �

h
�� ��� � ���

�
�

i
exp �� i" t �

where the �" components have been neglected� The modulated components holding the signal
for the length control can be re�written in simpler form ash
�� ��� ����

�
�

i
exp � i" t � �

h
����� ����

�
�

i
exp �� i" t � � ������

� ��
n
������ � ���

�
� � exp � i" t �

o
�

� ��f����� � ���
�
� g cos " t � �f����� ����

�
� g sin" t

where �fg and fg denote the real and imaginary part of the argument within parentheses�
The properties of the demodulated component �f����� � ���

�
� g� referred to as the in�

phase component� and f����� � ���
�
� g� referred to as the quadrature component� can be

�
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physically understood as follows� Once the carrier is kept in resonance� both sidebands anti�
resonate� Even though both the carrier and sideband amplitudes are re�ected by almost the same
amount� their phase change is di�erent� The carrier gains a ���� phase shift while both sidebands
gain� approximately� a ��� phase shift� as seen in �g������� A length perturbation around resonance
induces a phase change for the carrier only� This change generates a beating between the carrier
and the sidebands which is at the origin of the error signal�

In �g�������� the plot of the demodulated components of a Fabry�Perot with r �� � 
�� r �� �

�		 and no losses as a function of length is shown� The modulation frequency is "��� � ���
MHz� The DC transmitted power is also given to indicate the resonance location� It is important
to notice that the in�phase signal is linear around resonance� A control system would then use
such a signal to correct the cavity length� It can also be seen that the linearity is limited by the
FWHM of the resonance�

FWHM �
�

�F ������

��� Automatic Alignment

We have presented the longitudinal response of the resonator as well as the Pound�Drever technique
to stabilize the cavity length to the laser source� In the same way� this section presents two methods
for the alignment of a Fabry�Perot� These are the Anderson and Ward techniques�

����� The Anderson Technique

This method���� is based upon phase modulation of the incoming beam at a frequency equal to the
frequency spacing between the TEM�� and TEM�� determined by the geometry of the resonator�
As a consequence� the TEM�� of one sideband resonates at the same time as the TEM�� of the
carrier� Unlike the Pound�Drever technique� the error signal is taken from the transmitted beam�

Assuming an incoming beam of the form

�in � J� U�� � J�U�� e
i� t � J� U�� e

�i� t ������

where "��� is the modulation frequency� then� by referring to eq������� the transmitted beam
takes the form

�t � � i
p
G t�
 ������



h
J�U�� � J�

� a

w�
� i

�

��

�
U�� � J�

� a

w�
� i

�

��

�
U�� e

i� t
i

where G is the cavity gain factor� t� is the end mirror amplitude transmittivity and the sideband
term at �" has been neglected� By taking the square modulo and neglecting second order terms
in the misalignments� the demodulated components are

� J� J� U��U��

h � a

w�

�
cos" t �

� �

��

�
sin" t

i
������

It is possible to retrieve information for the alignment of the cavity from the demodulated compo�
nents� In particular� the quadrature component holds information only on the tilt of the optical
axis whereas the in�phase component holds information only on the translation of the axis� The
in�phase and quadrature signals give orthogonal informations for the alignment� The drawback of
this method is the constraint on the modulation frequency�

����� The Ward Technique

The Ward method���� di�ers from the Anderson by taking the signal on re�ection� not demanding
the sidebands to resonate� The analytical expressions are rather complicated and we will limit
ourselves only to an outline of the calculations�

�	
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Figure ����� The quadrant photodiode�

Assuming an incident beam of the form

�in � J� U�� � J�U�� e
i� t � J� U�� e

�i� t ������

where "��� is the modulation frequency� the re�ected beam can be written as

�r � J��
�
r e

i �� t � J��
�
r e

i 	�� ��
 t � J���
�
r ei 	�� ��
 t �����

where

��
r � � i ei ���	z


h
U�� �

�
� a

w�
� i

�

��

�
U�� e

i ���	z

i
� ����	�

i
� a

w�
� i

�

��

�
U�� e

i ���	z


��
r � ��r

Here� the Guoy phase ����z� has been put in evidence and all amplitudes in re�ection have been
approximated to unity� The square modulo of this expression leads to the following modulated
components

J� J�U�� U��

h � �

��

�
cos�����z�� �

� a

w�

�
sin�����z��

i
sin" t ����
�

Unlike the Anderson method� information on the rotation and translation of the optical axis
comes from just the quadrature component with the mixing determined by the Guoy phase ����z��
In particular� the translation term is given by the coe#cient of sin�����z�� whereas the angle is
given by the cos�����z�� term�

The information on misalignment mixing depends upon the Guoy phase in which the observa�
tion is made� An optical telescope placed in front of the photodiode could adjust the phase� The
main drawback is that in order to optimize the measurement� two photodiodes� one placed at a
Guoy phase �� while the other at �� � ���� would be necessary� At the same time� the method
o�ers the advantage of releasing the restraints on the modulation frequency�

����� The Quadrant Photodiode

Both with the Anderson and the Ward technique� a photodiode monitoring the power of a beam
integrates on the transverse plane of the beam� However� the product U���x� 
 U���x� is an odd
function of x and its integral is zero� A special photodiode� capable of integrating on the half
plane� is therefore necessary� The quadrant photodiode� schematically shown in �g�������� is able
to integrate on the quarter plane� The sum of the signals coming from quadrant � with �� � and ��
� and �� and � and �� give the power in the four half planes� By taking the di�erence between the

�
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half planes horizontally and vertically� it is possible to recuperate the coe#cient of the product
U���x�
 U���x�� In particular� it can be shown that

Z �

�
U���x�U���x� dx �

Z �

��

U���x�U���x� dx �

r
�

�
������

��
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Chapter �

The VIRGO Project

The VIRGO project� supported by the Italian Istituto Nazionale di Fisica Nucleare �INFN� and
the French Centre National de la Recherche Scienti�que �CNRS�� is a gravitational wave antenna
to be built in Cascina �Pisa� Italy�� Its objective is to directly detect gravitational waves and�
in collaboration with other detectors� to perform gravitational wave astronomy with a planned
sensitivity of &h � �
����

p
Hz ( �
Hz and &h � �
 �
����

p
Hz ( �

Hz�

This chapter describes the VIRGO detector� and in particular the optical con�guration im�
plemented� the suspension system for the mirrors� the laser system� the tube� the vacuum system
and the foreseen sensitivity�

Particular attention is then given to the Global Control system� Its task is to monitor and
supervise three phases� the acquisition of lock� the linear locking regime and autoalignment� An
outline of the speci�cations for such a control is given as well as the software and hardware
architecture of the system�

��� The Optical Con	guration

The optical con�guration of VIRGO consists of a Michelson interferometer with Fabry�Perot arm
cavities ��g�����
�� with the following characteristics�

i� both Fabry�Perots of length L � � km and �nesse F � �
�

ii� a recycling cavity of length lr � l� � � �
� � � l� � l� � � �� m and recycling gain Grec �

��Frec � � � � �
�

iii� an arm asymmetry of �l � l� � l� � 
� m�

The laser source will develop P � �
 W of light power in the fundamental mode to limit the
equivalent shot�noise spectral density to

&hshot �
�

� k � �F � � �L

s
'h�


GrecP
� �
���

�p
Hz

�����

where � � ��
���m is the laser light wavelength and 
 � 
�� is the photodiode e#ciency�
However� this performance is obtained only with the use of very low loss mirrors� By de�ning the
coupling factor

	 � LF
�

�����

where L denotes the Fabry�Perot losses� it can be shown���� that eq������� holds only in the case
of an under�coupled cavity� i�e� 	 �� �� Reasonable mirror losses of � � 
 �
�� guarantee such
under�coupling�

��
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Furthermore� it can be shown���� that the stored power in the recycling cavity is maximized
as the recycling mirror re�ectivity r� satis�es the condition

r �� � � � � p �� � � � � p �BS � � � � 	 � �����

where p �� denotes the power losses of the recycling mirror and p �BS the power losses for the beam
splitter� This condition leads to optimal recycling� with a recycling gainGrec inversely proportional
to the total interferometer losses Litf

Grec �
�

Litf �����

The desire for under�coupled Fabry�Perot cavities with a recycling gain inversely proportional to
the total losses demands the use of mirrors with losses lower than �
ppm�

Light is forced to make many passages in the optical substrates� For this reason� the quality
of the optical components for VIRGO are on the limit of today�s technology� Therefore� the
substrates� and in particular those for the front mirrors of the Fabry�Perots and the recycling
mirror� need to be extremely pure� with low di�usion and low absorption� Furthermore� the
coatings must withstand large light power �� �kW in the recycling cavity� as well as a constraint
on the surface deformation of less than � ���

�

The modulation frequency for the locking and detection scheme has not been de�ned to date
but will lie in the frequency rage �� � MHz� It has been shown���� that for a given modulation
frequency "� the value of �l for which there is maximal sideband leakage at the dark fringe port
is

cos
� "�

c

�
� r� ritf ��� � "� �����

where ritf ��� � "� is the re�ectivity of the interferometer for the two sidebands�

��� The Beam Source

The laser system is conceived to produce and adapt the beam to the interferometer� It consists of
a laser source� an input bench and a mode�cleaner designed to provide light in the fundamental
mode while ful�lling the speci�cations on the output power� the frequency and power �uctuations
and beam jitter�

	���� The Laser System

The chosen light source is a Nd�YAG laser of wavelength � � ��
���m with an output power of
�
 W in the fundamental mode� It has been preferred over other sources� such as Argon sources�
for its frequency and geometrical characteristics� To date� VIRGO has conceived and developed
a �
 W mono�mode laser that will be used for the central area interferometer �CITF�� The �
 W
laser could be realized by phase locking two �
 W twin lasers�

The power comes out of a Nd�YAG slab� referred to as slave laser� which is pumped by a set
of ten laser diodes phase locked� referred to as injection locking��	�� to a commercial �

 mW
Nd�YAG laser� known as the master laser� The optical cavity� within which the slab is placed�
consists of four mirrors in a bow�tie con�guration� This con�guration has been chosen so as to
optimize laser power with frequency characteristics�

	���� The Input Bench

The input bench is an optical bench placed in vacuum� suspended by a superattenuator� It is
made of three main components which need to be seismically and acoustically isolated�

� the input and output mode�cleaner mirrors�

��
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� the telescope adapting the beam from the mode�cleaner to the interferometer�

� the frequency pre�stabilization cavity rigidly attached to the bench�

The beam propagation is schematically shown in �g������� A pick�up plate is positioned along
the output beam path� The plate re�ects the beam from the laser source� sending it to the pre�
stabilization cavity� along with the beam coming back from the interferometer� Both of these
re�ected beams are used for the frequency stabilization of VIRGO� see �����

The beam transmitted by the plate is sent to the input mode�cleaner mirror� The light resonates
in the cavity and is transmitted through the output plane mirror� An optical telescope then adapts
and positions the beam waist to the input mirrors of both Fabry�Perot cavities�

	���� The Input Mode
Cleaner

The Mode�Cleaner is a triangular cavity� ��� m long and with a �nesse of F � �


� Its function
is to �lter the beam defects as well as the position noise� It consists of three mirrors� the two plane
mirrors� input and output� located on the input bench� and a third concave mirror� suspended by
a superattenuator located in the mode�cleaner tower�

All input geometrical beam �uctuations are seen by the mode�cleaner cavity axis as a linear
combination of transverse modes� The main characteristic of the cavity is that once the funda�
mental TEM�� mode resonates� the higher order modes are all re�ected back to the laser source�
thus allowing the transmission of only the fundamental mode� The cavity acts as a spatial �lter�
A discussion of the mode�cleaner prototype� developed at LAL in Orsay� will be given in Ch���

	���	 Laser Source Requirements

The requirements on this system are indeed demanding� The presence of asymmetries in the two
arms� such as the arm di�erence �L and �nesse di�erence �F � make the interferometer output
sensitive to frequency �uctuations �&�� The equivalent spectral density noise can be simpli�ed as

&h�� �
�&�

�

� �L

L
�

�F
F
�

�����

where F is the average �nesse� L is the arm length and � the laser frequency� To prevent intro�
duction of noise in the foreseen sensitivity curve &h� the laser needs to satisfy the condition

�&�

�
�

&h�
�L�L � �F �F

� �����

which� by assuming a total asymmetry of ��� results in

�&� � �
�� �Hz�
p
Hz� ( �
Hz ����

�&� � �
� �Hz�
p
Hz� ( �

Hz

Such requirement is met with the use of two control systems in cascade� The �rst consists of
a pre�stabilization rigid cavity able to bring the �uctuations down to the �&� � �
���Hz�

p
Hz�

level� The second� instead� makes use of the interferometer itself as a reference� For an in�depth
treatment refer to �����

Furthermore� the RMS motion of the di�erential mode �l causes an o�set that couples with
power �uctuations� By indicating with &�� the spectral density phase change induced by the residual
motion of the di�erential mode� the equivalent spectral density phase change can be written as

&� �
� &P

P
&�� ���	�

��
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where P is the laser power and � &P its spectral �uctuations� By requiring shot�noise sensitivity�
the power �uctuation with the di�erential motion must satisfy the condition

&�� �
s

h �


 P
�
� &P

P
����
�

The requirements on the power �uctuations have been set to

� &P

P
� �
 �
�� ���

p
Hz� ( �
Hz ������

� &P

P
� �
 �
�� ���

p
Hz� ( �

Hz

��� The Detection Bench

The main objective of the detection bench system is the measurement of dark fringe light power
after an improvement in the contrast C� It will also

� separate the two output beams coming from the interferometer� the dark fringe and the
re�ected beam o� of the second face of the beam splitter�

� adapt the beams�

� spatially �lter the dark fringe so as to increase the contrast�

� perform the photodetection and signal treatment�

In order to ful�ll these functions� a series of subsystems are necessary�

� a suspended optical bench� installed in the detection tower� in order to attenuate the acous�
tical noise and on which the following components are placed�

� a mode�cleaner� shown in �g������� consisting of a triangular cavity� maintained in
resonance� for the spatial �ltering of the dark fringe�

� an optical telescope for adapting the size of the beam to the mode�cleaner and to the
photodetectors�

� an optical system for the alignment of the bench in order to be able to follow the
secondary beam�

� an external optical bench where all the photodetectors are situated�

� an ampli�cation� �ltering� demodulation and sampling system of the signals from the pho�
todetectors�

	���� The Output Mode
Cleaner

The mode�cleaner� of which a prototype has been developed and tested at VIRGO LAPP�����
consists of a monolithic triangular cavity of �nesse �
 and length � cm� as shown in �g�������
Its function is to improve the contrast defect generated by an asymmetry in the interferometer�
The dominant phenomenon at the origin of the contrast is the wavefront deformation due to
imperfections in the optical components� The wavefront defects generate the presence of high
order modes in the beam� The property of the output mode�cleaner� just as the input one� is to
transmit only the fundamental mode� The expected contrast defect after the �ltering is

�� C � �
�� ������

��
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Figure ���� The output mode�cleaner with the propagating beam� All units in mm�

Figure ���� Left
 the con�guration of the �� photodiodes needed for the photodetection of the
dark fringe� Right
 three dimensional view of a photodiode support�

	���� The Photodiodes

The main function of the bench is photodetection and it must have

� a bandwidth larger than tens of MHz if the modulation frequency is of the order of MHz�

� a high quantum e#ciency ( ��
���m�

� the capability of detecting power of the order of � W�

By limiting the power on a photodiode to �

 mW� a set of �� photodiodes is necessary for
detection� The chosen con�guration is shown in �g�������

��� The Superattenuator

None of the interferometric detectors under construction around the world implement a suspen�
sion system as sophisticated as VIRGO�s superattenuator� It consists of a system of mechanical
oscillators conceived so as to reduce the test mass movement down to � 
 �
��� �m�

p
Hz�� cor�

responding to an equivalent strain of &hsis � �
������
p
Hz� ( �
 Hz� This is a critical frequency

�
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region due to an expected abundance of gravitational wave sources� such as pulsars and coalescing
binaries����

The superattenuator is made of a pre�isolator stage integrated with a chain of �ve pendula and
is shown in �g������� It is designed so as to limit the resonant frequencies within a few Hertz� thus
producing an attenuation of more than �
��� above �
 Hz�

However� a chain of pendula does not attenuate the vertical and angular degrees of freedom�
Due to the unavoidable mechanical couplings� these vibrations partially shift to the horizontal
motion of the test mass� It is for this reason that the isolation system must attenuate in all
degrees of freedom�

	�	�� The Mechanical Filter

Each pendulum in the suspension chain is referred to as a mechanical �lter and is shown in
�g������ and �g������� It consists of a rigid steel cylinder suspended to its center of mass� designed
to attenuate in the vertical� horizontal and angular degrees of freedom����� It is connected to the
others via a steel wire ���� m long generating a resonance frequency at 
��� Hz� The whole chain�
once assembled� is about 	 m long�

Vertical attenuation is obtained by a set of converging triangular blade springs whose tips
are attached to a vertical column capable of moving only in the vertical direction� as shown in
�g������� The lower stages are then attached to this column� These blades are pre�bent so as to
return �at and horizontal once they are loaded� In this way� the chain acts not only as a system
of �ve pendula in the horizontal direction� but also as a chain of serially coupled oscillators in the
vertical direction as well� However� the lowest resonant frequency of the blades lies around ��� Hz�
which is above the pendulum resonant frequency of 
��� Hz� A system of magnetic anti�springs is
used to reduce the vertical sti�ness of the blades in order to displace the main vertical resonant
frequency of each �lter below the pendulum one� In this way� the detection band will be limited
by the horizontal motion of the chain and not by the vertical ones�

The anti�spring system���� consists of two permanent magnets facing each other with opposite
horizontal magnetic moment and constraint to move in the vertical direction� Once the magnets
are perfectly aligned� the repulsive force has a null vertical component� However� once a magnet
moves away from this unstable equilibrium point� a repulsive force appears along the vertical axis�
This generates a resonant frequency f� for a vertical oscillator of the form

f� � �

��
p
m

r
k � F�

d
������

where d is the distance between the magnets� F� is the repulsive force modulo� k the elastic
constant of the blade springs and m the mass of the oscillator� By choosing appropriate values for
F� and d� the resonant frequency is lowered to 
�� Hz�

The chain acts as an angular attenuator as well� The �lters are designed with a large moment
of inertia and short lever arms between the two points where the wires are attached� Also� the
two attachment points� which can be seen in �g������� are connected as close as possible to the
�lter center of mass� This design leads to tilt mode frequencies below � Hz� Furthermore� the
low angular spring constant of the small diameter steel suspension wires lead to very low angular
frequencies around the vertical axis�

	�	�� The Pre
Isolator stage

The pre�isolator stage consists of three rigid columns� each connected to the ground through a
�exible joint� and supporting a table� On the table�top lies a modi�ed �lter� named �lter 
� acting
as a vertical attenuator� This system forms the pre�isolator stage and can be seen in �g������� The
chain of mechanical �lters is then suspended from �lter 
�

There are many advantages in the use of such a system� To begin with� assuming an elastic
constant k for the joint and a length L of the inverted pendulum� the resonant frequency f� for

�	



CHAPTER �� THE VIRGO PROJECT

Mirror + Reference Mass

Inverted Pendulum

Filter 0

Base of the Inverted Pendulum

Pre-Isolator stage

Chain of
five filters

Filter 7

Marionetta

Figure ���� The superattenuator�
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Figure ���� The mechanical �lter
 perspective view� Notice the twelve triangular blades�

Figure ���� The mechanical �lter
 side view� The movable sections are shaded�

��
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Figure ���� The calculated transfer function of the pre�isolator stage with a chain of �ve me�
chanical �lters�

this oscillator is

f� �
�

��

r
k

M
� g

L
������

where M is the load of the system� By properly tuning the parameters k� L and M � it is possible
to shift the resonant frequency to a lower value� which is foreseen to be �
 mHz�

Secondly� this stage provides a movable suspension point for the superattenuator chain� Very
low frequency ground motion may drift the mirror position ��� mm� with respect to ground� once
the interferometer is in operation� The inverted pendulum would then o�er the possibility for
the control of the suspension point� Furthermore� the system requires low forces in order to be
controlled� Below its resonance frequency f�� the force needed to displace the load of mass M a
quantity �x is

F �M � �
� �x ������

This means that for a load mass M � � ton� frequency f� � �
 mHz� only 
��� N are necessary
in order to displace the suspension point of � cm�

A prototype���� of the pre�isolator stage has been constructed in Pisa with promising results�
Fig������ shows the calculated transfer function for a pre�isolator stage with a chain of �ve me�
chanical �lters� The overall attenuation factor at �
 Hz is about �
����

	�	�� The Marionetta and Reference Mass�Mirror System

The last �lter� known as �lter �� suspends the marionetta� the �nal stage supporting the mirror�
It has been designed so as to steer and align the test mass once the interferometer is operative� It
consists of a cross structure from which are suspended two wire loops holding the mirror and the
reference mass� From �lter �� forces are applied so as to control the residual motions of the test
mass up to �
�m in the frequency band 
���� Hz without injecting noise into the system�

High frequency control �� � Hz� is performed with the reference mass� Four coils are mounted
on the reference mass facing the four magnets placed on the mirror� thus allowing a �ne control
of the test mass once the interferometer is running�

��
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��� The Vacuum System

Any gas density �uctuations in the volume of air through which the laser beam travels induce
�uctuations in the index of refraction� therefore causing a phase change in the electromagnetic
beam� In order to limit such variations� the interferometer is operated under vacuum�

Figure ��	� The vacuum system�

The vacuum system� as shown in �g������ is divided in two parts� the tube and the towers�
The tube contains the propagating beam and is made of �� m sections of ��� m in diameter�
connected to each other by bellows and resting over special supports so as to allow dilation of the
material during the baking procedure and dilation due to daily and seasonal temperature changes�

By requiring the noise �uctuations in the refractive index to be a factor �
 below the dominating
noises� the limit for gas pressure is required to be �
�� mbar� However� other considerations� such
as the monitoring of mirror cleanliness and vacuum control lead to the design values�

� �
�� mbar for hydrogen�

� �
��� mbar for hydrocarbons�

� �
��� mbar for the other gases�

The tube is also equipped with ba�es designed to trap stray light� Any mirror imperfection
would scatter light which would then be re�ected by the vibrating pipe walls� If any of these
re�ected photons recombine with the main beam� a phase noise would arise� Such light traps�

��
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made of an absorbing steel and shaped as truncated cones� are designed to absorb these spurious
photons� thus avoiding their recombination with the main beam �����

The towers hold the superattenuator and� due to the presence of a large number of devices and
cables that outgas� will be maintained at a lower pressure with respect to the tube� A separating
roof divides the ultra�high�vacuum of the tube from the �
� mbar pressure of the towers�

��
 Foreseen Sensitivity of VIRGO

The thermal noise of the last stage suspension consists of three contributions�

�� the pendulum mode� dominant in the frequency region below �
 Hz�

�� the mirror internal modes� with resonances in the frequency range above �kHz but with a
signi�cant tail contribution in the �
��

 Hz frequency range�

�� the violin modes� dominant in the intermediate frequencies� above �

 Hz�

An estimate of the noise contributions� performed by ����� resulted in

&hpend �
�
 �
���

f���
���
p
Hz� ������

for the pendulum thermal noise for frequencies up to �
 Hz� and

&hmir �
�
 �
���

f���
���
p
Hz� ������

for the mirror internal noise dominating in the frequency range between �
��

Hz�
The foreseen sensitivity curve for VIRGO is shown in �g����	� with the contributions from the

di�erent sources of noise� The fundamental contributions are

� the seismic wall expected at � Hz�

� the Newtonian noise� contributing below �
Hz� generated by low frequency mass density
�uctuations which induce a stochastic gravitational �eld that couples directly to the mirrors
�see ������

� pendulum thermal noise expected to dominate the frequency region between �
 and �
 Hz�

� mirror thermal noise which dominates between �
 and �

 Hz�

� shot noise dominating above �

 Hz�

The peaks present above �

 Hz are due to the violin mode resonances and their harmonics�
whereas the �rst mirror internal resonance is found at � kHz� The peak found at � Hz is thermal
noise associated to the main mode of the marionetta�mirror system�

��� Online�Oine Activities

The activities around the electronic output of all the sensors of the interferometer can be classi�ed
in the following way�

� online activity� concerning

� interferometer control�

� the acquisition� processing and monitoring of data produced by the sensors and the
control processes�

��



���� ONLINE	OFFLINE ACTIVITIES

Figure ��
� The foreseen VIRGO sensitivity curve�
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� o�ine activity� whose main objective is the analysis of the collected data for the extraction
of possible gravitational wave events�

� and simulation activity� for the study of the interferometer response to noise sources and
excitation due to gravitational wave radiation�

In particular� the fundamental requirements for the online system are�

� a data acquisition with a sampling frequency of �
 kHz�

� a real time control performed at �
 kHz with fast processes involved�

� full data archiving�

� data quality check�

� data selection for particular gravitational wave sources�

Most of the signals produced by the di�erent sensors around the detector are locally processed
to compute and correct the local system in question within a given set of tolerances� The local
suspension control and the vacuum system� to name a few� are examples of such local systems� A
higher level control system� referred to as Global Control� guarantees the proper functioning of the
interferometer by monitoring and acting upon both the laser system and the suspension system�
This system is the subject of the section to come�

As an apparatus� VIRGO is composed of subsystems that have to run either on their own or
as correlated components� All the subsystems are controlled and operated through the Supervisor
Control System� Its main function is to keep track of� request� allow or inhibit modi�cations of
the status of the various components of the interferometer in order to drive and maintainVIRGO
in its functioning state� It is intended to provide the overall user interface with a graphic display
of the status of all VIRGO components�

Also� the architecture of the control and read out systems must take into account the large
distances separating the components� The controls must then be synchronized to a central Timing
System� the knowledge of the precise timing of the various measurements and actions performed
around the detector is of key importance�

The data produced by the sensors� as well as the corrections applied to the systems� are
referred to as raw data and are collected and structured by a Frame Builder� A frame is a unit
of information which records the detector behavior over a �nite time interval� typically �s� Each
frame� organized as a C structure� consists of two sets of structures�

� all the raw data collected by the sensors�

� the online processing containing the reconstructed data set �t�h�t�� with the necessary aux�
iliary information�

The Raw Data Archiving System collects and stores all the frames produced by the Frame Builder�
These data are necessary for a possible reprocessing due to an improvement of the o��line data
analysis� The expected data �ow rate is about �

 Gbyte�day and it will be archived�

The Online Data Quality task will survey constantly the quality of the produced data� It
uses the signal induced by the calibrators and the environment monitoring� and runs data quality
algorithms� thus providing a real time quality check� The corresponding information is stored in
the data storage system to allow further data selection�

A Data Selection is necessary in order to reduce the amount of data for analysis� The goal
would be a reduction in size of more than one order of magnitude� Trigger algorithms looking for
burst events� such as binary coalescences and supernovae explosions� are necessary and the event
candidates will be selected using simple and robust search algorithms�

��
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��� Global Control

One of the main subsystems within VIRGO� Global Control enables and foresees the proper
functioning of the interferometer� In particular� its tasks are�

�� acquisition of lock or non�linear locking whose objective is to bring the mirrors from their
free running motion to a regime where the linear locking algorithm can be applied�

�� linear locking� the process that maintains the interferometer in operation by keeping

i� light resonating in both Fabry�Perots as well as the recycling cavity�

ii� a condition of dark fringe at the output of the interferometer�

�� autoalignment for the mirror angular control�

The objective of this thesis is the study of both the autoalignment and the acquisition of lock for
the �rst phase of the VIRGO project� called the central area interferometer �CITF� which will be
described in the next chapter�

	��� Speci�cations

It has been shown how the superattenuator �lters ground vibrations according to the transfer
function shown in �g������� The residual motion will be concentrated below � Hz and in particular
at the inverted pendulum frequency of �
 mHz� as shown in �g�����a� and �g�����b�� The motion
amplitude estimated is of the order of ten times the wavelength of light� A local damping control
will be able to reduce such oscillations down to an amplitude of one wavelength� However� such
damping will not be able to reach the requested precision� It is the task of the linear locking
scheme to control the mirrors to within the speci�cations�

For the correct behavior of the interferometer� the following RMS conditions must be met�

�� by denoting with L the length of one of the Fabry�Perot� the length �uctuations �L of both
cavities must satisfy the condition

�L �
�

�


�

�F � �
 �
�� � �����

where F is the �nesse of both Fabry�Perots and � the laser light wavelength� This condition
is due to the requirement that the �uctuations be one tenth of half width at half maximum
�HWHM� of the resonance peak�

�� by de�ning lr as the recycling cavity length� its �uctuations �lr must satisfy a similar con�
dition�

�lr � �
� �F

�

�
�L � 
 �
�� � ����	�

�� any phase o�set �offset from complete destructive interference couples directly with laser
power �uctuations� To be shot�noise limited implies the following condition

�offset � � k
h �F

�
� �L� � �L� � � �l

i
�

r
h �

P�
�
�P�
P�

����
�

which leads to

�F
�

� �L� � �L� � � �l � �
�� � ������

where �l is the Michelson arm length di�erence�

��
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Furthermore� it has been shown���� that the maximum residual displacement tolerated for
VIRGO with a sensitivity of a third of the required sensitivity� i�e�

&h �
�
���

�
���
p
Hz� ( �
Hz ������

&h �
�
 �
���

�
���
p
Hz� ( �

Hz

leads to the following conditions for the spectral density linear displacement of the mirrors�

( �
 Hz ( �

 Hz

Fabry�Perot Mirror �m�
p
Hz� �
��� �
 �
���

Beam Splitter �m�
p
Hz� �
 �
��� 	
 �
���

Recycling Mirror �m�
p
Hz� �
 �
��� 
 �
���

	��� RIOT

The processes involved for the Global Control functionalities are located in the RIOT crate�
shown in �g�����
� and whose acronym stands for Real tIme glObal conTrol� placed in the Central
Building of VIRGO� RIOT will collect the signals coming from the various photodiodes around
the interferometer� interpret them so as to compute the necessary corrections and send orders to
the suspension and laser systems�

The functionalities are split into two types�

� the processes involving an action on the optical components� referred to as action processes�

� Longitudinal Locking ��
 kHz��
for the longitudinal control of the mirrors within speci�cations�

� Autoalignment ��

 Hz��
for the mirror angular control within the requirements�

� Non�Linear Locking ��

 Hz��
to bring the interferometer into operation�

� Emergency Handler ��

 Hz��
which in case of loss of lock is able to recuperate control� bringing the detector back
into operation without going through the non�linear locking phase�

� the processes which analyze the running of the interferometer� referred to as checking pro�
cesses�

� Longitudinal Monitor ��
 Hz��
which supervises the proper running of Longitudinal Locking�

� Alignment Monitor ��
 Hz��
which resembles the longitudinal monitoring�

� Strategy Handler �� Hz��
where the new parameters for the control are computed�

�
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Figure ����� The RIOT crate�

Software and Hardware Architecture

The architecture design must be �exible enough so as to facilitate evolutions and must also mini�
mize the data �ow between processes� Furthermore� for the correct functioning of RIOT� it must
separate all functions into mostly independent processes while minimizing the interferences� For
this reason� processes such as the Longitudinal Locking must not be perturbed by the rest of the
system�

In order to achieve this� the hardware architecture� shown in �g�����
�� has been chosen as
follows� The photodiode and actuator signals are sent and received by Digital Optical Links
�DOLs� consisting of VME slave boards� A CES PowerPC board� referred to as Working CPU�
performs the Longitudinal Locking task� However� the CPU in question is not able to quickly
access and retrieve data due to the large amount of boards� For this reason� a fast data transfer
board is necessary� consisting of a homemade board� the Transparent Memory Board �TMB��
synchronized to the Timing board and able to quickly transfer the data from the VME to the
VSB bus and vice versa� In this way� the Working CPU can quickly access the data�

A second CES PowerPC board� the Master Server� is in charge of Autoalignment� Non�Linear
Locking� data access and distribution� In order to do this� two boards are introduced� the home�
made Spy Data Board �SDB� and the Shared Memory Board �SMB�� The SMB is a VME�VSB
slave board that allows the transmission of status and command signals between the Working CPU
and the Master Server while transmitting the Alignment and Non�Linear Locking corrections to
the Working CPU�

The SDB� instead� is a VME spy�VSB slave introduced so as to perform a fast data retrieval
without perturbing the synchronous processes� Once the data is available on the VSB bus� the
Master Server is able to access it�

A workstation� not shown in �gure� the Global Control Survey workstation� will perform the
monitor functionalities� the Autoalignment Monitor� the Locking Monitor� the General Monitor�
the Strategy Handler� The workstation will connect� through Ethernet� with RIOT�

�	
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Part II
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Chapter �

The Central Area Interferometer

VIRGO will �rst operate in a test con�guration consisting of a recycled Michelson� referred to
as the Central Area Interferometer �CITF�� whose *end� mirrors are placed at the location of the
Fabry�Perot input mirrors� The detector will have the same suspension system� laser source �with
an output power of �
 W�� detection bench and acquisition system as the full VIRGO apparatus�
providing

� a complete� full size test of all sub�systems�

� an opportunity to study the various noise contributions�

The CITF will be completely contained in the central building of VIRGO�
This chapter presents a study of the CITF optical response to the longitudinal and angular

motions of the mirrors� the strategies of lock acquisition� locking and alignment need to take this
response into account� In particular� it will be shown how

� when the CITF is in an unlocked state� the ratio of photodiode signals can be used to detect
and lock the dark fringe regardless of the recycling stored power�

� an algorithm using an  quadrant photodiode con�guration is presented capable of recon�
structing the mirrors� angles once the CITF is locked�

A study on the CITF autoalignment will also be presented consisting of the control of the mirrors�
angles by using the steering �lter�marionetta system�

Before presenting these results� a description of the interferometer is given as well as the foreseen
mirror displacements in free motion� the aimed sensitivity and the mirror control requirements�
The reader is addressed to ���� ��� for further details�

��� The Longitudinal Control

The interferometer is schematically shown in �g������� where M� denotes the recycling mirror�
MBS the beam splitter and M��� the end mirrors� The detector is said to be operational once it
ful�lls the speci�cations on

�� the condition of dark fringe implying the control of the phase

k�l �����

where k � �� � � is the wave number and �l � l� � l� the arm length di�erence�

�� the condition of resonance in the recycling cavity� determined by the phase

k lr �����

where lr � l� � ����� �l� � l�� is the mean cavity length of the interferometer�

��
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Figure ���� The CITF interferometer�
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���� OPTICAL CONFIGURATION

M� M��� MBS

Coating side � r �� � 
�	� HR t �BS � r �BS � 
��� 
�

�

Coating side � AR AR AR

Shape side � Flat Concave R � 	� m Flat

Shape side � Flat Flat Flat

Table ���� The mirror optical characteristics for the CITF� Side � refers to the side of the
mirror shown in bold in the �gure�

It will be shown in the sections to come that the low frequency components of the mirror
displacements� if left free� will not allow the detector to operate within the requirements and
therefore a control system is necessary� This low frequency control is referred to as longitudinal
locking�

��� Optical Con	guration

The main optical elements of the interferometer are described in tab����������� where r �i and t �i
denote� respectively� the power re�ectivity and transmittivity of the i�th mirror� AR indicates
an anti�re�ective coating� typically with r � � �
�� and HR a highly re�ective coating with
�
�� � t ���� � �
��� Here� coating side � refers to the side of the mirrors shown in bold in �g�������
The �nesse of the CITF� de�ned in condition of dark fringe� is

F �
�
p
r� r���

� � r� r���
� �

 �����

with a recycling factor Grec � ��F��� � ��
� With a foreseen laser power of �
 W� the stored
power in the recycling cavity is expected to be � ��� kW�

The optical paths� shown in �g������� are�����

l� � �	�����mm l� � ��
��mm l� � �����mm

with a mean cavity length lr and arm asymmetry �l of

lr � l� � �
� � l� � l� � ��	
	�� mm

�l � l� � l� ���	 mm

Notice that the arm asymmetry� necessary for the frontal modulation technique� induces a beam
mismatch� the beam curvature at the end of the arms di�er from the mirror curvatures� This
e�ect will be discussed in sec�������

The geometry of the laser beam has been chosen so as to mode match a plane�concave cavity
of length lr and of mirror curvature R � 	� m� and the beam waist is located at the input mirror�

��
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� P " � �� m J� J� w� R�lr�

��
�� �m �
 W ��������� Hz 
�� 
�	��� 
������ �������� mm 	� m

Table ���� The characteristics of the laser beam� where � is the light wavelength� P is the laser
power� m is the modulation index� J��� are the modulation amplitudes� w� is the
beam waist and R�lr� is the wavefront curvature at the distance lr�

The modulation frequency has been chosen to be "��� � c � � lr so as to allow simultaneously the
recycling of both sidebands as well as the carrier� The presence of the arm asymmetry leads to a
dark fringe condition for the carrier di�erent from that of the sidebands� as already discussed in
sec������� Tab������ shows the characteristics of the laser beam�

All output beams� as shown in �g������� are monitored by photodiodes for the locking and
alignment of the system� The beams are�

� the fringe or output beam ���

� the re�ected beam �� o� of the recycling mirror M��

� the beam re�ected o� of the second face of the beam splitter ���

� both transmitted beams �� and ���

We will use the following simpli�ed model for the photodiodes and their signals� photodiode i
will monitor beam �i� and its output is written in the form

d dci � d phi sin"t � dqui cos"t � j �i j � �����

where d dci denotes the DC component� d ph�qui denote the demodulated in�phase and quadrature
components� and the �" terms have been neglected �

��� The Sensitivity Curve for the CITF

The sensitivity curve for the CITF� in phase and displacement units� is plotted in �g������ and
�g������� where two di�erent quality factors for the mirrors have been used for the top and bottom
graphs� The uncertainty in the quality factor Q is due to the clamping of the mirrors to mirror
holders� with a foreseen value anywhere from a pessimistic value of Q � �

 to an optimistic one
of Q � �


�

The sensitivity curve is limited by the seismic wall below � Hz and will approach� at high
frequency� the phase shot�noise limit �see eq��������� of

� &�shot �

s
'h�


GrecP
� ��	
 �
��� �rad�

p
Hz� �����

or� in displacement units�

�&lshot � ���
 �
��� �m�
p
Hz� �����

where l � � m is the arm length and 
 � 
�	 is the photodiode quantum e#ciency�

��



���� THE SENSITIVITY CURVE FOR THE CITF

Figure ���� The foreseen CITF sensitivity curve� expressed inm�
p
Hz units� for di�erent values

of the quality factor Q� Top graph
 Q � ���� bottom graph
 Q � �����

��
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Figure ���� The foreseen CITF sensitivity curve� expressed in rad�
p
Hz units� for di�erent

values of the quality factor Q� Top graph
 Q � ���� bottom graph
 Q � �����

�



���� MIRROR MOTION SPECIFICATIONS

��� Mirror Motion Speci	cations

As shown in the previous chapter� the speci�cation for the fringe lock depend upon the laser power
�uctuations� Assuming a noise of � &P�P � �
���

p
Hz� the tolerated �uctuations in �l must be

kept within����

�� l� � l� � �
�

�

� k l

&hshot

� &P �P
� �
���m �����

where a safety factor of �
 has been taken into account�

For the recycling cavity� the most stringent requirement comes from the dynamics of the
electronics����� giving a tolerance for the cavity length �uctuations of

�� l� �
�

�
� l� � l� � � � �
���m ����

with a safety factor of �
 taken into account�

��� Mirror Displacement Noises

According to numerical calculations performed by A�Vicer+e and analytical computations performed
by the Perugia group� whose results are shown in ���� ���� it is possible to estimate the mirror
displacement in free motion due to thermal and seismic excitations� In this section� the amplitude
spectral density of the mirror displacements are presented� in all degrees of freedom �DOF�� The
conventions in use are shown in �g������ and are

� the z or longitudinal axis along the beam�

� the y or vertical axis parallel to the suspension�

� the x or horizontal axis perpendicular to both longitudinal and vertical axes�

� the �i rotation angle around the i�th axis�

xθ

x

θ

θz

y

y

z

Figure ���� Conventions for the mirror�s six degrees of freedom
 x� y� z� �x� �y� and �z�

�	
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����� Thermal Noise

The mirror motion induced by thermal noise has been calculated with the following contributions
for the di�erent degrees of freedom�

�� along the longitudinal axis� the pendulum� violin and the mirror internal modes have been
taken into account�

�� the horizontal motion has been approximated to be the same as the longitudinal one but the
mirror internal modes have been neglected�

�� for the vertical motion� only the pendulum mode has been taken into account�

�� for the angular motions� only rotations around the vertical and horizontal axes have been
computed�

Each mode contributing to one DOF has been added quadratically so as to obtain the total motion
in the DOF in question�

Also� as already stated� the contribution of the mirror internal mode to the motion is not well
de�ned for the CITF� the mirror mechanical support introduces frictions and stresses onto the
mass� thus a�ecting the quality factor� A value of Q � �


 at � kHz has been assumed in the
calculations�

����� Seismic Excitation and Transfer Functions

The estimated residual motion of the mirror due to seismic excitation has been numerically calcu�
lated in all DOF with the superattenuator modeled as a chain of �� rigid bodies� the � mechanical
�lters with their movable vertical system� the marionetta� the mirror and the reference mass� The
rigid bodies are connected to each other by elastic elements� the triangular blades� the inverted
pendulum� the centering and suspension wires� Such a model has not been completely validated
by experimental data and makes use of the following approximations�

�� the quality factors of the resonances depend on the structural dissipation within each elastic
body� not taking into account the e�ects due to clamping points�

�� the coupling parameters between the � DOF are approximated and are likely to change from
suspension to suspension�

The output of the simulation consists of transfer functions relating an excitation applied at
any level of the chain and in any of the � DOF to the motion of the mirror in all � DOF� The
simulation allows a �rst estimate not only of the mirror motion due to seismic excitation but also
of transfer functions for mirror control�

The seismic noise model used as input to the simulation is

&x�f� � &y�f� � &z�f� � F �f� �
�
�

f �

f � � 
�
�

f � � ��

�m�

p
Hz� ���	�

which assumes equal contributions along the longitudinal� vertical and horizontal DOF� For the
angle excitations� the following model has been assumed�

&�x�f� � &�y�f� � F �f�
�� f

v
�rad�

p
Hz� &�z�f� � 
 ����
�

where v � �

m�s is the velocity of the seismic waves in the ground�
The motion along the � DOF is assumed to be uncorrelated since no experimental estimate of

the cross�correlation of noises exists to date� The total mirror motion is the quadratic sum of the
amplitude noise spectra weighted by the transfer functions� By de�ning &sj�f� as the amplitude
spectral density of ground vibrations along the j�th dimension and by de�ning Aij�f� as the






���� MIRROR DISPLACEMENT NOISES

Figure ���� The calculated free mirror motion estimates due to seismic and thermal excitation

�a� the displacement amplitude spectral density along the horizontal axis and �b�
its running RMS value� �c� the displacement amplitude spectral density along the
vertical axis and �d� its running RMS value�

�



CHAPTER �� THE CENTRAL AREA INTERFEROMETER

Figure ���� The calculated free mirror motion estimates due to seismic and thermal excitation

�a� the displacement amplitude spectral density along the longitudinal axis and
�b� its running RMS value� �c� the angular amplitude spectral density around the
horizontal axis with �d� its running RMS value�

�



���� MIRROR DISPLACEMENT NOISES

Figure ���� The calculated free mirror motion estimates due to seismic and thermal excitation

�a� the angular amplitude spectral density around the vertical axis and �b� its run�
ning RMS value� �c� the angular amplitude spectral density around the longitudinal
axis with �d� its running RMS value�
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transfer function relating the input excitation along j with the resulting mirror motion along i�
the resulting spectral density linear displacement &mseis

i is

&mseis
i �f� �

sX
j

�Ai j�f� 
 &sj�f� � � ������

����� Mirror Motion Estimates

The seismic contribution to the mirror motion &mseis
i �f� along the i�th direction is added quadrat�

ically to the thermal contribution &mther
i �f� along the same direction� The total movement of the

mirror &mi�f� is�

&mi�f� �
q

&mseis
i �f� � � &mther

i �f� � ������

Fig���������� show the amplitude spectral density along the � DOF with their corresponding run�
ning RMS values de�ned as

mrms
i �f� �

vuut�����
Z f

���Hz

&mi�f� � df

����� ������

The frequency spectrum up to at least the inverted pendulum resonance at �
mHz will be
damped by a local control system� the inertial damping� From the estimates� the longitudinal
RMS displacement value is foreseen to be � �m and dominated by a resonance at about �

mHz�
For the angular motion around the vertical and horizontal axis� the RMS value is expected to be
kept within ��rad�

��
 The Longitudinal Response and Ratio of Signals

The objective of this section is to present the optical response of the CITF to longitudinal motions
of the mirrors� Assuming an equal curvature for the beam and the mirrors� with the incoming
laser beam mode�matched to an aligned CITF� the longitudinal response can be studied by using
a plane wave model�

Unlike the simple resonator� where the condition of resonance is obtained by adjusting the
cavity length with respect to the laser frequency� two e�ects need to be controlled for the CITF�
the dark fringe condition and the recycling cavity resonance� We represent the CITF� shown in
�g����a�� as a two mirror cavity� as shown in �g����b��

� made of the recycling mirrorM� and an end mirrorM ��l� whose complex re�ectivity R��l�
depend upon the arm length di�erence �l�

� of length lr �

Assuming that �in � �� the stored �eld �a can then be written in the form

�a�lr��l� �
t�

� � r�R��l� exp�� � i k lr�
������

where the re�ectivity R��l� of the end mirror� which depends only on the arm length di�erence�
is

R��l� � t �BS r� exp�i k�l� � r �BS r� exp�� i k�l� ������

The analogy with the Fabry�Perot can be seen by comparing the CITF stored EM �eld� expressed
in eq�������� with the Fabry�Perot stored �eld in eq�������� The form of the two equations is
identical� however� for the CITF� the re�ectivity R��l� can vary both in amplitude and phase as

�
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Figure ��	� The CITF seen as a Fabry�Perot cavity�

�l changes� This means that the condition of resonance depends not only on the mean cavity
length lr but also on the phase of R��l�� In the same way� the �nesse of the equivalent cavity
depends necessarily on the amplitude re�ectivity of the end mirror and is maximum in condition
of dark fringe�

For simplicity� let r� � r� � � and rBS � tBS � ��
p
�� In this case� the laser power can only

leak out to photodiode � and j �� j � can be written in the form

j �� j �� j T ��l� j � j �a j � ������

where

j R��l� j � � sin� k�l ������

j T ��l� j � � cos � k�l

In other words� the DC component of j �� j � is proportional to the stored DC power j �a j � and
to the transmittivity j T ��l� j � of the end mirror� The condition of dark fringe is determined by
j T ��l� j � regardless of the stored power� The monitoring of j T ��l� j � results in the knowledge
of the dark fringe condition� By noting that

j �� j �� AR

�
j �a j � �����

where AR is the power re�ectivity of the BS anti�re�ective coating� j T ��l� j � can be written as

j T ��l� j �� AR

�

j �� j �
j �� j � ����	�

Therefore� the experimental ratio j �� j � � j �� j � gives information on the condition of dark
fringe�

The CITF� whose con�guration is described in sec������� has been simulated in the quasi�static
approximation and some results are shown in �g����	�� Plots of d dc� � d dc� and their ratio are shown

�
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Figure ��
� The ratio of j �� j � with j �� j � as a function of k�l and for di�erent values
of lr 
 continuous line
 lr � � � �� dashed line
 lr � � � � � �l� dotted line

lr � � � � � � �l� dot�dashed line
 lr � � � � �  �l ��l � ������m�� Top graph

the DC power j �� j � as a function of the phase k�l� middle graph
 the DC power
j �� j � as a function of the phase k�l� where AR � ����� bottom graph
 the ratio
of j �� j � with j �� j � as a function of k�l�
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Figure ����� The ratio of the demodulated component dph� with ddc� as a function of the phase
k�l and for di�erent values of lr
 continuous line
 lr � � � �� dashed line

lr � � � � � �l� dotted line
 lr � � � � � � �l� dot�dashed line
 lr � � � � �  �l
��l � �� ����m�� Top graph
 the demodulated component dph� as a function of
the phase k�l� middle graph
 the DC component ddc� as a function of the phase
k�l� bottom graph
 the ratio of the two signals�
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as a function of the phase k�l and for di�erent values of lr � Notice how� to �rst approximation�
the ratio is independent from lr �

According to the conventions of the simulation program� which are di�erent from the ones used
here� dark fringe and maximum stored power occurs for

k�l � n� ����
�

� k lr � � �n � � ��

where n is an integer� For these values� d dc� � �W due to the sideband leakage� and d dc� � �W
with a pessimistic value of AR � �
��� We would like to remark that for a �xed value of lr � ���
�mod ����� maximum recycling is possible for k�l � � �n � � ��� On the other hand� for
k�l � �n�� the recycling cavity anti�resonates� This is shown in �g����	� and arises from the
phase of the complex re�ectivity R��l� which changes as a function of k�l�

It is possible to use a demodulated signal as an error signal for the dark fringe control inde�
pendent from the recycling condition� By de�ning

�l � �l � �l ������

where �l is the arm asymmetry and �l � �l �mod ��� it is possible to show that the ratio between

the in�phase signal d ph� with the DC component d dc� around dark fringe is� to �rst approximation

d ph�
d dc�

� K �l ������

For small values of the phase

"

c
�l �� � ������

the constant K is

K � � k
J�
J�

c

"�l
������

The output of the simulation is given in �g�����
� where d ph� � d dc� and their ratio are shown as a
function of k�l and for di�erent values of lr � The value of the constant K in eq������� is in good
agreement with the simulation result�

��� The Angular Response

For a simple Fabry�Perot cavity� it has been shown in sec�������� how any translation of the
optical axis with respect to the incoming beam generates� to �rst order approximation� an in�
phase coupling with the �rst order transverse mode� On the other hand� any rotation leads to a
quadrature coupling with the �rst order transverse mode� For the CITF� it is not possible to have
such a simple model� For this reason� the study here presented� with the exception of sec���������
is based on numerical simulations����� These results correspond to an old CITF con�guration with
l� � �m� l� � ���m� l� � ���m� r �� � 
�	� and J �

� � 
�
��
This section describes the angular response for three di�erent CITF con�gurations� symmetric

with l� � l�� asymmetric with l�� l� � 
�m� but mode�matched to the incoming laser beam� and
the actual CITF con�guration� The asymmetry matrix for the actual CITF autoalignment will be
presented in sec������

����� Case �� Symmetric CITF

Let�s �rst consider the case of a symmetric recycled Michelson with l� � l� and r� � r�� matched
and aligned to an incoming U�� where� for simplicity� U� � U�� and U� � U��� Due to its
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symmetry� the beams transmitted and re�ected by this optical system can be seen as the output
beams of a simple Fabry�Perot cavity of the length lr� A tilt � of the Michelson recycling mirror
induces the same e�ect as a tilt � applied to the input mirror of the Fabry�Perot� In the same way�
a tilt � of the Fabry�Perot end mirror has the same e�ect as a tilt � applied to both end mirrors
of the Michelson� Therefore� we can see the CITF as an equivalent Fabry�Perot cavity and treat
the problem as in sec���������

Let the incoming EM �eld be a pure U� which� according to the conventions in sec��������� is
expressed in the unprimed reference system of the laser

�in � J U� ������

where J is the beam amplitude� Let�s also assume that the optical axis of the equivalent cavity
is translated and rotated with respect to the incoming beam� At the waist location� the incoming
�eld expressed in the primed reference system of the cavity is� up to �rst order approximation in
a�w� and ����

��in � J
h
U �� �

� a

w�
� i

�

��

�
U ��

i
������

where a and � are the translation and angle of the axis� Denoting by Ai
R and Ai

T the complex
valued cavity re�ectivity and transmittivity of an incoming U �i in the cavity reference system� as
in sec������� the transmitted �eld can be written as

��T � J
h
A�
T U

�
� � A�

T

� a

w�
� i

�

��

�
U ��

i
������

whereas the re�ected beam takes the form

��R � J
h
A�
R U �� � A�

R

� a

w�
� i

�

��

�
U ��

i
�����

The two beams in the unprimed reference systems take the following form

�T � J
h
A�
T U� �

� a

w�
� i

�

��

��
A�
T � A�

T e
i �
�
U�

i
����	�

�R � J
h
A�
R U� �

� a

w�

��
A�
R � A�

R

�
U� � i

� �

��

��
A�
R � A�

R

�
U�

i
By tuning the cavity so as to let the U� component resonate� we �nd

A�
T � � i A�

T ����
�

A�
T � A�

T

A�
R � � i A�

R

A�
R � i A�

R

where Ai
R � j Ai

R j and Ai
T � j Ai

T j� Eq�����	� reduces to

�T � J
h
� i A�

T U� �
� a

w�
� i

�

��

��
i A�

T e
i � � A�

T

�
U�

i
������

�R � J
h
� i A�

R U� �
� �

��

��
A�
R � A�

R

�
U� � i

� a

w�

��
A�
R � A�

R

�
U�

i
The modulation frequency for the alignment will be the same as the longitudinal one� " � �� �
c � � lr� and the incoming beam �in� for the three di�erent frequency components� can be written
in the form

�
	�����

in �

�
�� J� exp �� i" t �

J�
J� exp � i" t �

�
A ������
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As a result� the transmitted and re�ected beams for the carrier and the sidebands are �

�
	�����

T �

�
�� J� exp �� i" t �

J�
J� exp � i" t �

�
A 
 ������



h
� i A�

T U� �
� a

w�
� i

�

��

��
i A�

T e
i � � A�

T

�
U�

i

�
	�����

R �

�
�� J� exp �� i" t �

J�
J� exp � i" t �

�
A 




h
� i A�

R U� �
� �

��

��
A�
R � A�

R

�
U� � i

� a

w�

��
A�
R � A�

R

�
U�

i

Recalling that the demodulated components of the photodiode signals� shown in eq������� and
eq������� consist of

cos" t � � �
n
�� � �� � ��� ��

o
������

sin" t � � 
n
�� � �� � �� � ��

o
and that the products

�� �
R ��

R � J� J� U� U�

h
� �

� a

w�

�
A�
R

�
A�
R � A�

R

� i
������

���
R ��R � ����

R ��
R

�� �
T ��

T � � J� J� U� U�

h a

w�
�A�

T � � � �

��
A�
T A

�
T

i
���
T ��T � ����

T ��
T

we �nd that the in�phase signal� corresponding to the real part of the sum of the above components�
cancels out� Since no imaginary components are present� the quadrature term is also zero� By
recalling that the above analytical calculations are approximations to �rst order terms in a�w� and
����� we conclude that for a symmetric CITF� only second order terms or higher might be present
in the demodulated signals� Just as for the frontal modulation scheme presented in sec������� an
arm asymmetry is also necessary for the CITF alignment�

����� Case �� Mode
Matched CITF

By introducing an arm asymmetry� the sidebands will behave di�erently from the carrier� In this
section� we assume an arm asymmetry of �l � 
�m and we have chosen the radii of curvature
of the end mirrors to � 	
m and � 	�m respectively� in order to match them to the curvature of
the incoming laser beam� In this way� we can neglect the e�ect of the mismatch�

Before showing the results of the simulation runs� we de�ne as asymmetry the up�down and
left�right di�erences of the half�planes relative to a quadrant photodiode� described in sec���������
demodulated at the modulation frequency� and normalized to the DC power� Since the asymme�
tries are linear functions of the misalignment angles �at least for small values of these angles�� in
the tables we report the proportionality constants that relate the asymmetries to the misalignment
angle in units of the angular divergence �����

Tab������ shows the asymmetries from quadrant photodiode �� placed on one transmitted beam�
and from quadrant photodiode �� located on the beam re�ected o� of the recycling mirror� We
notice that the in�phase signal depends strongly on the angle �� and could be used to control
M�� Since the matrix is not diagonal� a �� minimization procedure will use all error signals to
reconstruct the mirror tilts�
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beam �� �� ��

�� ph ���	� � �
�� ����� � �
�� ������ � �
��

qu ���
 � �
�� ����� � �
�� ������ � �
��

�� ph ����� � �
�� ����	 � �
�� ���
� � �
��

qu ������ � �
�� ���	� � �
�� ������ � �
��

Table ���� The asymmetry matrix for a CITF in the matched con�guration
 arm asymmetry
of �l � ���m and radius of curvature for the end mirrors of � ��m and � ��m�

����� Case �� The Actual CITF Con�guration

In the actual CITF con�guration� the radius of curvature of the end mirrors is set to 	�m and a
mismatch is present� The generated asymmetry matrix is shown in tab������ where both trans�
mitted beams are shown as well as the re�ected beam� No important di�erences are found when
comparing tab������ with tab�������

��� The Asymmetry Matrix

In sec��������� the Ward technique was introduced for the alignment of a Fabry�Perot cavity� The
demodulated signal of the quadrant photodiode placed on the beam re�ected o� of the input
mirror is �as shown in eq�����
���

J� J�U�� U��

h � �

��

�
cos�����z�� �

� a

w�

�
sin�����z��

i
������

and depends on the misalignments a�w� and ����� The mixing of information on the translations
and rotations is determined by the Guoy phase ����z�� For example� if the quadrant photodiode
is placed at a Guoy phase ��� � 
� then the error signal contains information only on rotations�

J� J� U��U��

h �

��

i
������

A second photodiode placed at ��� � ��� would then allow the retrieval of information on the
translations of the system�

J� J� U��U��

h a

w�

i
�����

Therefore� in order to reconstruct both misalignments� two photodiodes are necessary� possibly
placed at an arbitrary Guoy phase ��� � �� and ��� � �� � ����

For this reason� the CITF quadrant photodiode con�guration� shown in �g�������� also consists
of two quadrant photodiodes placed on each beam� The transmitted beams are monitored� as
well as the beam re�ected o� of M� and o� of MBS � The fringe beam� on the other hand� is
neglected� All transverse modes arising from any optical defects leak out to the dark fringe and
for this reason� its error signal is not used�

	�
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beam �� �� ��

�� ph ���� � �
�� ���� � �
�� ������ � �
��

qu ��
�� � �
�� ����
 � �
�� ����		 � �
��

�� ph ���	� � �
�� ������ � �
�� ����� � �
��

qu ����	� � �
�� ���
� � �
�� ������ � �
��

�� ph ����� � �
�� ���� � �
�� ���� � �
��

qu ����� � �
�� ���
� � �
�� ����
 � �
��

Table ���� The asymmetry matrix for a CITF con�guration
 �l � ���m and radius of curva�
ture for the end mirrors of �m�
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Figure ����� The quadrant photodiode con�guration for the CITF� Two quadrant photodiodes
are placed on each beam� The dark fringe is not monitored for the alignment�
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Figure ����� The demodulated signals from �� as a function of ��� and for two values of ���

The chosen CITF asymmetry matrix��� for the angular reconstruction� relative to the pho�
todiode con�guration shown in �g�������� is presented in tab������� where ��� indicates the Guoy
phase and �D the demodulation phase of the photodiode signals� Considering mirror tilts in one
plane only� the  quadrant con�guration yields �
 �� elements�

The error signals� generated with the SIESTA module OPtestITF �see ��	�� with the modal
expansion limited to order n�m � �� showed good linearity with misalignments up to �
�� ���
A sizeable departure from linearity was observed for angles �
�� ���

The Guoy phase positioning of the quadrant photodiodes was chosen with the following criteria�
Each pair of photodiodes is placed at a ��� Guoy phase di�erence from each other so as to obtain
orthogonal information on the misalignments� Since a departure from linearity is observed with
increasing angles� the Guoy phase positioning of the photodiodes is chosen to prevent any change
in sign for the asymmetries with increasing angle up to a maximum value� We see an example
of sign change in �g������� where the demodulated signals from the photodiode placed on the
transmitted beam are shown as a function of ��� and for two values of ���

It is possible to demodulate the photodiode signals at an arbitrary phase� Given the error
signals A and B� the signals A� and B� demodulated at an arbitrary phase � are such

A cos"t � B sin"t � A� cos�"t � � � � B� sin�"t � � � ����	�

where

A� � A cos� � B sin� ����
�

B� � A sin� � B cos �
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For the asymmetrymatrix shown in tab������� the demodulation phase � is chosen so as to minimize
either an in�phase or quadrature term� The matrix terms minimized correspond to the zero values
shown in the table�

��� The Reconstruction Procedure

The theory for the reconstruction procedure relative to the complete VIRGO interferometer has
already been developed and experimentally veri�ed ��
� �
�� This section reviews and applies�
through a numerical simulation� the procedure for the angle reconstruction for the CITF in one
dimension using the asymmetry matrix shown in tab�������

The error signals yi can be written in the form

yi �
X
j

aij �j ������

where �j is the misalignment angle for the j�th mirror� expressed in �� units� and aij is the
asymmetry matrix shown in tab������� Given a set of n independent measurements y�n with
statistical error �yn� the best estimates for the parameters �j are those for which

� � �
X
i

� y �i � Pj aij �j �
�

�y �i
������

is minimized����� By taking its �rst partial derivatives and setting them to zero

n � � �

� �l
� 


o
�

X
k

y �k
�y �k

akl �
X
j

� X
i

aij ail
�y �

i

�
�j ������

a set of three equations in the three unknowns �l is obtained� This can be written in vectorial
form as

P � A� ������

The parameters �j are then given by

� � A��P ������

with reconstruction errors ��j equal to

��j �

sX
k

� ��j
�yk

� �
�y �k ������

Let�s assume that the noise on each photodiode is limited by the shot�noise� For the DC
component attenuated to � mW� the shot�noise level corresponds to �yj � ���
 �
��� �W�

p
Hz��

By referring to eq�������� the angular reconstruction errors due to shot�noise limited signals is

��� � �
�
 �
�� �� ���
p
Hz� ������

��� � ��	�
 �
�� �� ���
p
Hz�

��� � ��	�
 �
�� �� ���
p
Hz�

We also used a numerical simulation to estimate the reconstruction errors and compared the
results with those given by eq�������� The optical module OPtestITF� limited to modes m � n �
�� was used to calculate the in�phase and quadrature signals� as a function of mirror tilts� at
the location of each quadrant photodiode� The misalignments were generated according to a
Gaussian distribution with dispersion � � �
�� �� and are shown in the top graphs of �g��������
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Q�Ph� ��� �D � o � �� �� ��

sin ����� � �
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�
 o ���
��

cos �����	 � �
�� 
 ��	��� � �
��
Q�

sin ����		 ����
 � �
�� ��
� � �
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��
 o ���

�

cos ����� � �
�� 
 ������ � �
��

sin �	����� � �
�� ���
 � �
�� ���	
�
 � �
��

 o ������

cos 
 ����� � �
�� ������ � �
��
Q�

sin ���
��� � �
�� ����� � �
�� ����� � �
��
	
 o ����� � �
��

cos 
 ����	� � �
�� ���	�
 � �
��

Table ���� The asymmetry matrix for the quadrant photodiode con�guration shown in
�g�������� ��� denotes the Guoy phase and �D refers to the demodulation phase�
Notice that the dark fringe beam is not monitored�
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Figure ����� Distribution of the di�erence between the true angle � true� and the reconstructed
angle � recon� � Top graph
 the distribution of the angle � true

� with ��� � ���� ��
��DIV � ���� Bottom graph
 the distribution of the error � � true

� � � recon
� � � ��

with � � ����� ���� ���
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Figure ����� Distribution of the di�erence between the true angle � true� and the reconstructed
angle � recon� � Top graph
 the distribution of the angle � true
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��DIV � ���� Bottom graph
 the distribution of the error � � true
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Figure ����� Distribution of the di�erence between the true angle � true� and the reconstructed
angle � recon� � Top graph
 the distribution of the angle � true
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��DIV � ���� Bottom graph
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Figure ����� The 	� distribution for the angular reconstruction procedure�
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Figure ����� Block diagram for the mirror angular control�

�g������� and �g�������� A reconstruction procedure then took the �� error signals and used the
asymmetry matrix in tab������ to reconstruct the misalignments� The distribution of the di�erence
� � true � � recon � � �� is shown in the bottom graphs of �g�������� �g������� and �g�������� By �tting
the resulting distribution to a Gaussian� the reconstructed errors are

���� � ��	�
 �
�� �� ���
p
Hz� �����

���� � ��	�
 �
�� �� ���
p
Hz�

���� � ��	�
 �
�� �� ���
p
Hz�

in agreement with the values found in eq�������� The � � distribution for the simulation run here
presented is shown in �g�������� with a mean value centered at �� By plotting the � � distribution
for each error signal as a function of time� it is possible to monitor the behavior of each quadrant
photodiode�

Concluding� this quadrant photodiode con�guration allows to understand the angle misalign�
ment for each individual mirror� These misalignments were taken from a Gaussian distribution
with � � �
�� ��� For larger angular values� the reconstruction error increases due to a change
in the relation between misalignments and photodiode signals �see sec�������

���� Angular Control

A preliminary study for the CITF angular control is here presented� It will be shown in sec��������
and sec������ that the most stringent requirement for the alignment of the complete VIRGO
interferometer comes from the coupling alignment�laser jitter� by assuming a laser beam jitter of
�
��� rad�

p
Hz� the mirrors must be aligned to better than �
�� rad RMS� For this reason� we

would like to design a control system able to attenuate the CITF angular motion down to the
nrad RMS�

In this section� the main characteristics of the control system will be given as well as its
performance in open and closed loop� It will be also shown how only the marionetta can be used
for the control�

������ The Control System

Let &�x represent the mirror angular density spectrum in open loop� as shown in �g�����c�� The
objective is to attenuate this angular motion for the recycling mirror and both end mirrors once
the CITF is longitudinally locked� This control could be achieved by using the reference mass as
well as the steering �lter piloting the marionetta� However� only the steering �lter will be used�
the reference mass does not have a su#ciently high dynamic range for this type of control� as
shown below�

Let the control system be described by the block diagram shown in �g������� where

� O describes the CITF optical transfer function� assumed to be constant in this work� relating
the mirror tilt with the output beam signals�

�





���� ANGULAR CONTROL

Figure ���	� The estimated torque for the mirror angular control from the reference mass� In
�a�� the amplitude transfer function relating torque with angular displacement�
�b� shows the estimated angular mirror spectrum ��x in free motion� �c� shows the
torque spectrum density once the loop is closed and �d� shows its corresponding
running RMS value�

� D is the photodiode�s transfer function� also assumed constant� transforming the incoming
beam power from W to V �

� &y is the error contribution to the angle reconstruction due to shot�noise limited signals�

� H �lters the incoming photodiode�s voltage� with the error contribution� providing the output
force &f to be applied to the marionetta from the steering �lter�

� B is the mechanical transfer function transforming the force &f into angular motion�

� &�x is the mirror angular density spectrum in open loop�

� &��x is the mirror angular density spectrum in closed loop�

Once the system is in closed loop� the resulting angular mirror motion &��x is

&��x �
� �

� � G

�
&�x �

� H B

� � G

�
&y ����	�

where G � ODH B is the open loop transfer function� The force for the control is

&f � �
� HOD

� � G

�
&�x �

� H

� � G

�
&y ����
�

�
�
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Figure ���
� The estimated torque for the mirror angular control from the steering �lter of the
superattenuator� In �a�� the B amplitude transfer function relating the torque
with the angular displacement� �b� shows the estimated angular mirror spectrum
��x in free motion� �c� shows the torque spectrum density once the loop is closed
and �d� shows its corresponding running RMS value�

If the design of H is such that within a given bandwidth

j G j � � ������

then eq�����	� and eq�����
� can be approximated as

&��x �
� �

G

�
&�x � &y ������

&f � �
� �

B

�
&�x �

� �

ODB

�
&y

From the above� the angular motion in open loop will be attenuated by a factor G and will be
limited by the shot�noise value� Furthermore� within the bandwidth in question� the necessary
force for the control will be proportional to the seismic excitation &�x and inversely proportional
to the mechanical transfer function B�

Marionetta or reference mass�

The simulation program used for the mirror motion estimates� described in sec��������� can be used
to estimate the transfer functions �referred to as B in the block diagram in �g������� necessary
for the mirror control from the reference mass as well as from the steering �lter� Therefore� it is
possible to estimate the forces involved from both control systems�

�
�
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Figure ����� The B transfer function relating the torque applied from the steering �lter to the
mirror tilt �x� Top
 the transfer function amplitude
 dots
 simulation output�
continuous line
 approximation� Bottom graph
 transfer function phase� Only
the approximated behavior is shown�

Fig�����a� shows the amplitude transfer function relating the torque to the mirror angular
displacement from the reference mass� By dividing the expected seismic noise� shown in �g�����b��
with the amplitude transfer function in �g�����a�� we obtain the torque spectrum density shown in
�g�����c�� Integrating the latter leads to the graph shown in �g�����d� which gives the expected
running RMS torque for the reference mass� According to ��	�� the maximum allowed torque for
the reference mass and the steering �lter are

reference mass � ����
 �
�� �N m� RMS ������

steering �lter � 
��
 �
�� �N m� RMS

For the reference mass� this maximum value is shown in the �gure by the gray line� This means
that from frequencies above ���Hz� the reference mass could be used for the control� However�
it clearly is not suited for the angular control of the CITF� where all the angular motion is
concentrated below ���Hz�

On the other hand� we show in �g�����	� the results relative to the control from the marionetta�
The limit set in eq������� is well above the foreseen RMS torques necessary� As a consequence� in
this preliminary study we will only make use of the marionetta to pilot the mirror�

�
�
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Figure ����� The open loop transfer function G for the mirror angular control�

The H �lter

The amplitude transfer function for the mirror control from the marionetta� shown in �g�����	a��
is also shown by the dots in the top graph of �g�����
�� Its essential behavior is shown on the same
plot by the continuous line and can be characterized by a set of � double�poles �the peaks at 
��Hz�
���Hz and ���Hz� and one double�zero �the notch at � Hz�� The remaining characteristics arise
from sets of pole�zero� close enough to each other to cancel their combined e�ect�

In order to prevent instabilities� the notch must not cross the unitary gain� Also� the mirror
motion is mostly concentrated around � Hz so that� if a bandwidth of tens of Hz is desired� it
is necessary to compensate the notch to some degree� This implies a very good knowledge of the
transfer function around � Hz in order to guarantee that the feedback system is robust�

We have assumed� for simplicity� that we know B exactly and we have chosen the poles and
zeros of H to consist of

� a double pole at the origin in order to attenuate the low frequency region as much as possible�

� two poles to compensate the notch at � Hz�

� a set of � zeros to let the open loop transfer function descend as ��s when crossing the UGF�

� four poles to limit the H �lter dynamic from about �

Hz�

The �lter H can be written as

H�s� � K
�s � a� �s � a�� � s � b � � s � b� � � s � c � � s � c� � � s � d �

s� � s � e � � s � e� � � s � f � � s � f� � � s � g � � s � g� �
������

�
�
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Figure ����� The angle reconstruction as a function of the real angular value�

where

K � �
 �
�� �N�V � ������

a � ���� � i ���

b � ���� � i ����

c � ��� � i ����

d � �	��
e � ����
 �
�� � i ���

f � ����
 �
� � i ���
 �
�

g � ���
 �
� � i ���
 �
�

with the poles and zeros in rad�s units� The resulting open loop transfer function is shown in
�g�������� The gain is �
� at �
��Hz with the UGF at �
Hz and a gain and phase margin of
� db and �
o respectively�

������ Autoalignment� Open and Closed Loop

We present the results of the model presented thus far� sketched in �g�������� once it was imple�
mented within the SIESTA engine� Before presenting the closed loop performance� a discussion of
the open loop case will be given�

The optical model described in sec����� and the angle reconstruction procedure discussed
in sec����	� will be used� We let the recycling mirror and both end mirrors follow the motion

�
�
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Figure ����� The angle reconstruction as a function of the real angular value and with the
angular cuts shown�

�
�



���� ANGULAR CONTROL

Figure ����� The DC power �uctuations as the mirrors move in free motion�

described by the spectrum shown by the continuous line in �g�������� which is an approximation
of �g�����c�� As the simulation evolved in time� the angular tilts of the three mirrors followed
the motion described by the angular spectrum given� At each tick of the simulation�s clock� an
adjustment was made on �l and lr so as to optimize dark fringe and maximize recycling� therefore
simulating the locked state�

Angle reconstruction for mirrors in free motion

In order to study the performance of the angle reconstruction� we extracted the mirrors� tilts from
a white and Gaussian distribution with � � � 
 �
� rad RMS� The results of a simulation run
are shown in �g������� and �g�������� The reader can observe that in the plots of �g�������� the
mirror tilts can go up to �
�� rad� Even though for these large angular values the reconstruction
percent error reaches errors as high as 	
�� the reconstructed angles always have the correct sign�
For this reason� no di#culties in the acquisition of control are expected�

In �g������� we show how the reconstruction can be improved if an angular cut on the true
angular positions is introduced� For example� the reconstruction of �� is improved when the
excursions of the real values of �� and �� are limited�

DC power uctuations in open loop

It is also interesting to observe the DC power �uctuations for a free motion run with the mirrors
following the open loop spectrum density shown by the continuous curve of �g�������� consisting
of an approximation of the spectrum shown in �g�����c�� Each mirror moves with an angular
motion of ����rad RMS� The DC power �uctuations are shown in �g������� where d dc� refers to

�
�
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the photodiode on the dark fringe� d dc� is the photodiode on the beam re�ected o� of the recycling
mirror and d dc� is the photodiode placed on the beam re�ected o� of the BS �AR � �
���� The
DC power �uctuations for the dark fringe detector can go as high as 	W � This is explained by
the fact that any high order transverse mode generated by the misalignments is leaked directly
out to the dark fringe� thus inducing large DC power �uctuations� as discussed below�

The CITF can be seen as a Fabry�Perot whose input mirror is the CITF recycling mirror and
whose virtual end mirror transmittivity t is simply d dc� �� � d dc� � �


 where � � d dc� � �


 is the
DC power incident to the BS� The stored DC power of the Fabry�Perot is then the DC power
stored in the recycling cavity� It is then clear that� the more power is leaked out of the dark fringe�
the higher the transmittivity of the Fabry�Perot virtual mirror� inducing a decrease in the stored
power�

For example� at about ��
 s

d dc� � 	W ������

d dc� � 
���W

d dc� � 
�	W

At that instant� about t� � 	��
�
 � 
��� of power is lost in higher order modes� mainly through
the dark fringe port �neglecting the transmitted beam contributions and assuming no absorption
losses�� The stored power P is then

P � �
W
t��

��� r�
p
�� t���

� �
�
W ������

The reader will recall that the desired power buildup for the locked and aligned CITF is ��� kW �
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The closed loop performance

The performance of the control system in closed loop is here presented� The seismic angular
density spectrum noise used is an approximation of the spectrum shown in �g�����c� and it is
shown by the continuous curve in �g�������� The continuous curve in �g������� shows its running
rms value� resulting in ����rad RMS� Once the loop is closed �dotted curves in the �gures�� the
open loop RMS value is attenuated down to to �
�� rad�

Fig������� shows the histogram of the three mirror angles� once in closed loop� with a resulting
angular motion for each of �
��rad RMS� In the same �gure� the distribution of the dark fringe
DC power �uctuations are limited to within �
���

���� Conclusion

In this chapter� we presented a study on the optical response to longitudinal and angular mirror
motions� We showed that� when the CITF is in a non�linear state� by taking the ratio of photodiode
signals it is possible to detect dark fringe and obtain an error signal useful for its control� regardless
of the power buildup in the recycling cavity� The results of this investigation will be used to guide
the CITF from a non�linear state to the locked state�

Furthermore� by examining the CITF angular response� we were able to design an algorithm
using an  quadrant photodiode con�guration� capable to angularly reconstruct� in one dimension�
the mirror tilts once the CITF is in a locked state�

This algorithm was then implemented in an angular control system for the CITF� We have
shown how only the marionetta can be used and that the piloting of the mirror from the steering
�lter requires a very good knowledge of the transfer function in question if the bandwidth of the
system is to be limited to within some tens of Hz�

Therefore� assuming a good knowledge of the transfer function for the control� we have designed
a �lter for the autoalignment capable of attenuating the angular �uctuations down to the �
��rad

�
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Figure ����� The angular RMS values in closed loop and the dark fringe DC power �uctuations
expressed in percent�

��
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RMS as required by the coupling laser jitter�misalignment�
We also observed that in open loop� the foreseen angular spectral density for each mirror causes

large DC power �uctuations� However� even for these large angular values� the model was able to
reconstruct them with the correct sign� no di#culties acquiring control are expected�

���
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Chapter �

The Mode�Cleaner Prototype

One of the �rst suspended cavities within theVIRGO project is the Orsay mode�cleaner prototype�
It served as a test bed for

� mirror local control systems�

� longitudinal locking�

� automatic alignment�

The structure of this chapter is threefold� First� the motivations for the use of a mode�cleaner
are given together with a brief description of its VIRGO con�guration� Next� the Orsay mode�
cleaner �MC�
� is characterized� in particular its optical response� the local mirror controls� and
the servo system for the longitudinal control� Finally� and most importantly� the simulations
performed for the study of the acquisition of lock are discussed� For a brief overview of feedback
design� refer to Appendix A�


�� Why a Suspended Mode�Cleaner�

Fig������ represents the mode�cleaner optical con�guration� It consists of a suspended three mirror

ΙΝ

ΨΤ

ΨR

M1

3M

Ψ
2M

Figure ���� The mode�cleaner optical con�guration�

ring cavity of perimeter �L as implemented in most gravitational wave interferometers� In �g�������
M� and M� denote both input and output mirrors� with the same transmittivity and re�ectivity�
whereas M� indicates the terminal mirror whose re�ectivity is set to �� The objective of this
optical con�guration is to

� transmit the fundamental TEM�� mode while re�ecting all higher order modes�

���
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� attenuate both frequency and power �uctuations�

� attenuate beam jitter by at least � orders of magnitude�

����� Beam Jitter and Optical Defects

In order for the incoming light beam to couple completely to the interferometer� it is necessary to
spatially �lter it� The main sources of noise arise from

�� beam distortions generated by the optical elements�

�� the laser beam jitter�

As already stated in Ch����� every monochromatic light distribution can be expressed as a
linear combination of the propagation modes TEMmn� The e�ect of the passage of light in the
many optical components� such as the phase modulator� induces beam distortions which can be
expressed as a linear combination of high order modes� The mode�cleaner would transmit only
the fundamental one�

For simplicity� the triangular cavity can be seen as a two mirror cavity with the same input
and output mirrors as the triangular one but a distance L apart� as shown in �g������� In this
case� from eq�������� we can write the transmitted power Pmn for a TEMmn as

Pmn �
P��

� � � �F � � � � sin�� ����mnL� c �
�����

where P�� is the power transmitted for a resonant TEM�� mode and ��mn is the frequency spacing
between the TEM�� and the TEMmn modes �refer to eq���������

��mn

��
�

�

�
�m � n � arccos

r
� � � L

R
� �����

where �� � c � �L is the inverse of the light round trip travel time�
In order for the optical system tomode�clean the input beamwhile transmitting all the incoming

TEM�� power� it must

� maximize the factor � �F
�

��
sin�

h
��
� L
c

�
��mn

i
�����

present in eq������ by choosing

� a large value for the �nesse F �

� a non�degenerate optical con�guration such that the resonance frequency of the higher
order modes be di�erent from the fundamental one �and possibly anti�resonant��

� transmit all the incoming TEM�� power by setting equal transmittivity for the input and
output mirrors�

The triangular geometry is introduced so that the re�ected beam is not injected back to the laser
source�

The second source of noise comes from the laser beam jitter or beam positioning �uctuations�
In sec�������� it was shown how a TEM�� is seen� in the optical axis of a misaligned cavity� as a
linear combination of higher order modes� In the same way� any input jittering beam is seen by the
cavity as composed of a linear combination of transverse modes� It has been shown���� �� that
for an aligned interferometer� any beam �uctuations introduce second order terms at the output

���
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Figure ���� The mode�cleaner seen as a Fabry�Perot cavity�

port of the interferometer� However� any misalignment of the interferometer couples directly with
the beam jitter� as can be seen in the expression for the phase noise at the output port�

� &� � �
� � � r�A

��
R

� � r�A��
R

�h &�

��

� a� � a�
w�

�
�

&a

w�

� �� � ��
��

�i
�����

where

� r� is the re�ectivity of the recycling mirror M��

� A��
R and A��

R are the amplitude re�ectivities of the Fabry�Perot cavities for the TEM�� and
TEM�� modes respectively�

� &� and &a are the angular and lateral �uctuations of the incoming beam�

� ai and �i are the lateral and angular translations of the optical axis of the i�th Fabry�Perot�

� w� and �� are the beam waist and angular divergence�

Beam jittering and interferometer misalignments have a di�erent frequency dependence� the for�
mer is caused by the mechanical vibrations of the laser source� with spectral components within
the detection bandwidth of the interferometer� The latter� instead� is dominated by the frequency
spectrum of the suspension system� concentrated in the low�frequency region� The misalignments�
compared to the jitter� can be considered as a static contribution causing� by referring back to
eq������� the jitter to contribute to the noise at �rst order�

The mode�cleaner is then required not only to spatially �lter the laser �eld� but also to provide
a stabilized beam positioning at the input of the interferometer� The mode�cleaner transmitted
beam will have the same stability as the mode�cleaner optical axis� The mode�cleaner mirrors
must be suspended so that the mode�cleaner optical axis displacements have only low frequency
components�

���
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����� Frequency and Power Fluctuation Filtering

As shown in eq�������� the Fabry�Perot cavity behaves as a low�pass �lter of the form

H�f� � �p
� � � f � fcav � �

�����

for both frequency and power �uctuations with a pole fcav � c � � �F L �� By increasing the
product LF � it is possible to shift the pole of the cavity to lower frequencies and thus increase
the attenuation factor�


�� The VIRGO Mode�Cleaner

The VIRGO mode�cleaner �MC���� is a triangular Fabry�Perot cavity ��� m long that can be
schematically represented by �g������� It consists of three mirrors� the two plane mirrors� input
and output� located on the input bench and a third concave mirror �R � ��m� located in the
mode�cleaner tower� The input bench and the concave mirror are both suspended by special
superattenuators� The input and output mirrors have a power re�ectivity of r � � 
�		� �with
the end�mirror power re�ectivity r� � �� corresponding to a cavity �nesse of F � �


�

The optical system must satisfy the speci�cations on

� laser jitter�
the speci�cations on the jitter of the beam at the interferometer input ��beam� are strictly
connected to the gain of the automatic alignment of VIRGO� This can be seen as follows�
The phase noise induced by the coupling misalignment�jitter �eq������� must be less than the
shot�noise level of �see eq�������

&�shot � �
��� �rad�
p
Hz� �����

or in other words

&�beam � a� � a� � � �
 �
�� �mrad�
p
Hz� �����

where only the dominant term in eq������ has been kept� Assuming a laser jitter of &�beam �
�
�� rad�

p
Hz���� which after mode�cleaning is reduced to �beam � �
��� rad�

p
Hz� the

requirement on the alignment becomes

� a� � a� � � �
 �
��m ����

From eq�������� a � R�� so the control on the angle must be better than �
�� rad�

� sidebands�
not only must the optical system be able to �lter the beam but it must allow the sidebands
to be transmitted as well� Therefore� the modulation frequency must be a multiple of the
free spectral range� i�e� c��L�

� cavity pole�
as already stated� a large value of L and F would shift the cavity pole to lower frequencies�
thus improving the attenuation factor for frequency and power �uctuations� For L � ��� m
and F � �


� the cavity pole is c��FL � �

 Hz� corresponding to an attenuation factor
of � �
 at �
 kHz�


�� The Mode�Cleaner Prototype

The properties and requirements for mode�cleaning the laser beam have been presented in the
previous sections� This section will brie�y describe the Orsay mode�cleaner prototype �MC�
��

���
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Figure ���� Sketch of the mode�cleaner prototype MC��

sketched in �g������� In particular� its optical con�guration will be given as well as an outline of
the local controls and alignment necessary for the longitudinal lock of the cavity with respect to
the laser frequency�

The optical con�guration of the prototype has been chosen as close as possible to the VIRGO
mode�cleaner� It consists of a triangular ring cavity of �
 m in length� Tab������ allows a compar�
ison between the principal characteristics of the two mode�cleaners� The laser source is a Nd�YAG
providing �

 mW in the fundamental mode� A rigid ULE cavity of �
 cm is used as a reference
for the frequency prestabilization of the laser�

The MC�
 consists of two masses placed in two vacuum chambers connected by a tube �
 cm
in diameter� Mass � is the mass holding an optical bench where the two plane mirrors are placed�
Mass � contains the concave mirror held by a cylindrical holder �see �g��������

Both masses are suspended by a double pendulum system� The �rst stage is referred to as
the marionetta stage and is similar to the marionetta found in the VIRGO superattenuator� The
local control� necessary for the local damping of the mirror motion� uses a magnet�coil system
where the magnets are on the marionetta and the coils are rigidly connected to the ground� The
masses are controlled in all six degrees of freedom� the three translations and the three rotations
around the axes�

The two�stage suspension system is seen as two coupled oscillators in the horizontal direction�
In the vertical direction� only one attenuation stage is provided by the metal blades placed on the
marionetta�

By rotating the polarization state of the incoming light beam� from the p state� where the
electric �eld is parallel to the plane of the incident and re�ected beams� to the s state� where the
electric �eld is perpendicular to it� the �nesse of the cavity can be changed� A �nesse of ��

 was
found for the s�state whereas a �nesse of ��
 was found for the p�state� This allowed a study of
the MC�
 acquisition of lock phase for di�erent �nesse values�

����� Local Controls

The two�stage suspension system provides an attenuation of seismic noise above the pendulum
frequencies that are at 
�� Hz and � Hz along the beam axis and at � Hz along the suspension
axis� The mirror dynamics in free motion is dominated by these resonances� resulting in motion
amplitudes as high as hundreds of a light wavelength� For this reason� before stabilizing the cavity

���
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MC�
 MC���

Length L �m� �
 ���

Finesse F �s� � ��

 �




Finesse F �p� � �



Suspensions � stages � stages and
inverted pendulum

Geometry triangular triangular

Mass � � plane mirrors � plane mirrors

Mass � concave mirror R � ��� m concave mirror R � �� m

Laser Nd�YAG �

 mW Nd�YAG �
 W

Prestabilization ULE non�suspended ULE suspended

Table ���� The prototype MC� con�guration is shown with respect to the VIRGO MC����

length to the laser frequency� it is necessary to damp the resonance contributions locally� that is
relative to the ground� in all six degrees of freedom�

The local controls used for the MC�
 function as follows�

�� the mirror position in the six degrees of freedom is measured���� by observing� with the aid
of a CCD camera�

� reference marks placed on the mass�

� the re�ected beams injected by two auxiliary lasers�

�� the digitized signals from the camera are processed to �nd the mirror displacements and to
compute the corrections to be applied�

�� once the corrections are computed� an appropriate current is sent to the coils�

The residual motion per mirror after local control is 
���m RMS for the three axes� ��rad RMS
around the vertical and transversal axes and �
�rad RMS around the beam axis�


�� Cavity Control Elements and Models

The main objective of this chapter is the study of the acquisition of lock process for the MC�

prototype� once the local controls are on� in both s and p polarization states� This process
is achieved modeling the control system for the cavity stabilization with respect to the laser
frequency� A basic description of the electrical� mechanical and optical elements involved is here
given as well as the system�s block diagram�

A numerical calculation� performed with the SIESTA engine� made it possible to model the
overall system� The simulation results of each block element� as well as of the overall system in
open and closed�loop� were compared to experimental results �����

��
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��	�� The Control System

The goal of the feedback system is to stabilize the MC�
 to the incoming laser frequency �las�
the cavity must follow� within the speci�cations� the evolution of �las� The block diagram for the
system in question� shown in �g������� is made of the following signals and transfer functions�

� a reference signal r�s�� namely the laser frequency �las�

� a photodiode� described by the transfer function H�s�� whose objective is to provide an error
signal e�s�� generated by phase modulating the incoming beam at ���� MHz and observing
the demodulated signal re�ected o� the cavity �the Pound�Drever technique��

� an electronic �analog� �lter or compensator� whose transfer function is denoted by G�s�� to
appropriately �lter and amplify the error signal e�s��

� the coil ampli�er�s transfer function A�s� providing a force generated by coils placed on the
ground and applied directly onto the mirror�

� the mechanical transfer function M �s� which relates an incoming force with the mirror
movement�

� the suspension transfer function P �s� describing the �ltering of seismic noise�

� the cavity transfer function C�s� characterizing the optical response of the prototype�

In order to conceive the feedback control� it is necessary to know the transfer functions of each
element here listed� Measurement and simulation are compared�

Seismic noise� the mechanical M �s� and pendulum P �s� transfer functions

By Laplace transforming the di�erential equations of the double pendulum system pictorially
shown in �g������� it is possible to derive the transfer functions

� M �s� for the mirror control� de�ned as the ratio between the mass displacement x�s� and
the force F�s��

M �s� � x�s�

F �s�
���	�

� P �s� for the �ltering of seismic noise� de�ned as the ratio between the suspension point
movement x��s� and the mass displacement x�s��

P �s� � x�s�

x��s�
����
�

The pendulum transfer function P �s� consists of two double�poles corresponding to the two reso�
nances and it can be written in the form�

P �s� �
� �
��

s� �
��
Q�

s � � �
�

� � �
��

s� �
��
Q�

s � � �
�

� �m�m� ������

where

�� � �� � 
�����Hz Q� � � ������

�� � �� � �����	Hz Q� � �

The quality factors of the resonances are really the e�ective quality factors� they depend upon
the attenuation factor of the local controls�

��	
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Figure ���� The mode�cleaner MC� block diagram�
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0x (s)

Coil

F(s)

x(s)

Marionetta

Mass 2

Magnet

Figure ���� The MC� mirror suspension system and the magnet�coil system for the longitu�
dinal control of the cavity�

An experimental measurement of the cavity length noise was obtained by locking the laser
frequency onto the mode�cleaner� In order to change the laser frequency� there is an actuator with
a dynamic range corresponding to a length change of about �� �m and a large bandwidth �MHz��
The length variations� induced by seismic noise� are of the order of ��m RMS in a low frequency
range� where the correction signal sent to the laser is proportional to the length� In �g������� the
amplitude spectral density of the cavity length� measurement and numerical simulation� is shown�
The model simulated two identical suspensions for the mass � and �� both described by eq�������
and using� for the amplitude spectral density of ground motion� the model

&x� � �
 �
���m�
p
Hz� ������

Here� the discrepancies between the measurement and the model are due to the uncertainties in
the local control gain and to the presence of other resonances �� Hz� � Hz� arising from the angular
motion that couples to the cavity length motion� Fig������ shows the running RMS of �g������
whose values �L for the cavity displacement at 
�
� Hz are

�Lexp � 
���m ������

�Lthe � 
���m

The mechanical transfer function M �s� is the transfer function whose input is the computed
force for the correction and whose output is the displacement of mass �� It consists of two double�
poles and one double�zero�

M �s� � P �s� �

�
s� �

��
Q�

s � � �
�

�
� �
�

�m�N � ������

where

�� � �� � ��
	�Hz Q� � ��� ������

The presence of the double�zero causes a driving force at �� to weakly excite the mirror motion�
In the case of the VIRGO reference mass� for example� this is not the case� the transfer func�
tion relating the driving force from the reference mass to the mirror position is that of a simple
pendulum�

���
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Figure ���� The MC� amplitude spectral density of the length �uctuations� Continuous line

simulation� Continuous line with dots
 measurement�

���
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Figure ���� The MC� running RMS of the mirror displacement amplitude spectral density�
Continuous line
 simulation� Continuous line with dots
 measurement�
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Figure ��	� The MC� measured and simulated mechanical transfer function M�s�� Continu�
ous line
 simulation� Points
 measurement

The cavity transfer function C�s�

The cavity response is represented by the transfer function C�s�� It basically relates the cavity
length L�s� with its frequency equivalent ��s��

C�s� �
��s�

L�s�
�

� c

�L

�
� �
�

� �cav
� s � �cav �

�Hz�m� ������

where �cav��� is the cavity pole with values

�cav
��

�
c

�F L
�

���
�	
�� kHz for F � �



��� kHz for F � ��



�����

For the control� we are interested in the low frequency region� with a bandwidth of �

 Hz� For

���
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Figure ��
� The calculated MC� transmitted power and error signal� Top graph
 transmitted
power as a function of cavity length� Bottom graph
 the Pound�Drever error signal
as a function of cavity length�

this reason� the cavity transfer function can be seen as just a multiplicative factor� independent
of frequency� mapping length into frequency�

The Pound�Drever error signal for the mode�cleaner in the p state has been simulated by the
SIESTA engine and shown in �g����	�� The chosen optical module made use of the plane wave
and static approximation� The parameters used were

r �� � r �� � 
�	� ����	�

Pin � �

 mW

J� � 
��

where r��� is the amplitude re�ectivity of the mirrors� Pin is the incident power of the laser and
J �
� is the percentage of power in each sideband�

The coil driver A�s�

The control of the cavity is achieved by controlling the mirror mass � position with the aid of a
set of coils and magnets� In particular� the coils are driven from the ground while the magnets�
applied directly to the mass� allow its direct control �unlike the local controls that pilot the mass
through the marionetta��

���
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Figure ����� The MC� measured and simulated coil driver transfer function relating the in�
coming compensator signal �V� to an outgoing force �N� applied to the mass�
Continuous line
 simulation� Points
 measurement�

The transfer function relating the input voltage of the ampli�er to the force delivered by the
coils is of the form

A�s� �
��

� s � �� �

��
� s � �� �

�N�m� ����
�

where

�� � �� � ���Hz ������

�� � �� � ��� kHz

and an overall gain has been neglected� This function relates an incoming signal� expressed in
V and generated by the compensator G�s�� to an outgoing force� in N� Fig�����
� shows both
measurement and simulation of the amplitude and phase of A�s�� The agreement between the two
is satisfactory�

���
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The photodiode H�s� and compensator G�s� transfer function

For simplicity� the transfer function H�s� describing the photodiode response consists of just a
multiplicative factor� transforming the signal from Hz to V� The role of the compensator G�s� is
of key importance� It is designed to ful�ll

� the speci�cations of the control�

� the stability criteria�

In the locked regime� we require the residual cavity length �uctuations �L to be much smaller
than the HWHM of the resonance�

�L �� HWHM �
�

�F �

���
�	
�
�� m for F � �



�
��� m for F � ��



������

This means that a double�zero would compensate the ��s� behavior� after ��� Hz� of A�s�M �s��
Assuming a RMS displacement per mass of 
���m �with local controls� concentrated below �

Hz� the required loop gain G must be

G ��
p
�
 
���m

���
�	
��
�� m � �

 for F � �



��
��� m � �


 for F � ��



������

where the motion of the masses has been assumed uncorrelated�
The design of the compensator used for the p polarization state of MC�
 is����

G�s� � K
� �
��

s� �
��
Q�

s � � �
�

� � �
��

s � ��

�
�
s� �

��
Q�

s � � �
�

�
� �
�

����� ������

where

K � ���
 �
� ������

�� � �� � �

Hz Q� � 
��

�� � �� � ���� kHz
�� � �� � �
Hz Q� � 
��

Furthermore� in order to maintain a relatively large phase and amplitude margin� the ��s behavior
is kept from about �
 Hz to �

 Hz� with the UGF placed at �

 Hz� Fig������� shows the corrector
used for the control of MC�
 once in p state� A notch �double�zero� was introduced at ��� kHz
in order to compensate for a mechanical resonance� For the simulation study� both the notch and
the resonance were neglected�


�� Performance of Control

Fig������ can be put in simpler form by de�ning the following products of functions

G��s� � H�s� �G�s� �A�s� �M �s� ������

H��s� � C�s�

The resulting block diagram is shown in �g�������� It is possible to express the cavity length L�s�

���
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Figure ����� The corrector G�s� used for the control� in the p state� of MC����	� Continuous
line
 simulation� Points
 measurement� Notice the presence of a notch �double�
zero� at �� kHz in the measurement� necessary to compensate a mechanical
resonance found at that frequency� For the simulation study� the notch and the
mechanical resonance were neglected�

as a function of the reference signal r�s� � ��s�� where ��s� is the laser frequency� and the cavity
length �uctuations P �s� � n�s� due to seismic noise�

L�s� �
h G��s�

� � G��s�H ��s�

i
��s� �

h �

� � G��s�H��s�

i
P �s�n�s� ������

where

G��s�H ��s� �����

is the open�loop transfer function� de�ned in eq��A���� and

G��s�

� � G��s�H��s�
����	�

��
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Figure ����� The block diagram for the longitudinal control of MC��

is the closed�loop transfer function� de�ned in eq��A���� For frequencies such that the open�loop
transfer function has an elevated gain� i�e�

j G��s�H��s� j�� � ����
�

the cavity length L�s� can be written as

L�s� � �

H��s�
��s� �

P �s�

G��s�H��s�
n�s� ������

In our case� H��s� is the cavity transfer function� which we assumed to be a constant� On the
other hand� the noise contribution is attenuated by the factor ��G��s�H��s� by virtue of eq��������
As a result� in closed�loop� the seismic noise is attenuated and the cavity �uctuations follow the
laser frequency� Throughout this chapter� no frequency �uctuations have been assumed�

����� The Open
Loop Transfer Function

Fig������� shows the Bode plot� of the open�loop transfer function G��s�H��s�� Most of the
properties of the feedback control can be understood from these plots� The gain at DC is ���
�
�

and the unit gain frequency is �

 Hz� Notice the ��f behavior from about �
 Hz up to �

 Hz�
The amplitude and phase margin of ��� and �
o respectively a reasonable stability and robustness�
Notice the notch at ��� Hz originating from the transfer function M �s�� The gain must be high
enough so that the notch does not go below the unity gain� otherwise the system will be unstable�

����� The Closed
Loop Transfer Function

The closed�loop transfer function G��s���� � G��s�H ��s�� is shown in �g�������� The cavity length
L�s� follows the laser frequency ��s� up to �

 Hz� where an overshoot appears�

The transfer function ���� � G��s�H��s��� instead� gives the attenuation factor of the mirror
displacement due to seismic noise �P �s� � n�s�� and is plotted in �g��������

�Bode plots consist of amplitude and phase plots of the transfer function�

��	
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�
 The Acquisition of Lock Problem

So far� the overall description of the mode�cleaner prototype was given� as well as the performance
of the control system in closed�loop� The only noise that was taken into account was the seismic
excitation of the masses�

This section presents the acquisition of lock problem� In particular� we would like to understand
what parameters play a role in the lock acquisition time� The simulation results are then compared
to the experimental�

The problem is two�fold� To begin with� it is necessary to understand how fast the control
system is� In other words� assuming an incoming linear error signal� how long will the control
system take in order to control the cavity length�

Secondly� the error signal� and precisely the Pound�Drever signal� is linear only close to the
fundamental resonance� Outside of the FWHM of the peak� the signal is non�linear� as can be seen
in �g����	�� It is natural to ask how the control system would react to such a non�linear signal�

����� The Control System Time Response

In order to describe the time response of a control system� it is necessary to de�ne a parameter
that characterizes such a response� The settling time� de�ned as the time required for the response
of the system to be within �� of the �nal value� can be used as such a parameter�

One way to quantify the settling time of the system in question is to send� as a reference signal�

���
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z� � � ��	
 �
� p� � � ���
 �
�

z� � � ���
 �
�� � ��	 i p� � � �
 �
�

p� � � ��
 �
�

p� � � ��
 �
�

p� � � ���
 �
� � ��

 �
� i

p � � ���
 �
�

p� � � ���
 �
�� � ��	 i

Table ���� The poles and zeros �in rad�s� for the closed�loop transfer function C�s� in eq������

the unit step function u�t�

r�t� � u�t� �

���
�	

 for t � 


� for t � 


������

whose Laplace transform is L�u�t�� � ��s and observe the reaction time of the feedback� Recalling
the closed�loop transfer function� de�ned as

C�s� � L�s�

��s�
�

G��s�

� � G��s�H��s�
������

then the unit step response of the system is just

L�s� �
�

s

G��s�

� � G��s�H��s�
������

By Laplace transforming eq������� to the time domain� the time response of the system is found�
For the control system in question� the problem is di#cult to treat� The polynomial order

of the closed�loop transfer function is O�s���O�s�� and the analytical expression is complicated�
Nonetheless� it is possible to simplify the problem�

Let�s neglect the photodiode and cavity transfer functions because they are constant� The
factored closed�loop transfer function then becomes

C�s� �
G�s�A�s�M �s�

� � G�s�A�s�M �s�
������

�
� s � z� � � � s � z� � � s � z�� �

� s � p� � � s � p� � � s � p� � � s � p� � � s � p� � � s � p�� � � s � p � � s � p� � � s � p�� �

where pi and zi denote the i�th pole and zero of the function and p�i and z�i their complex
conjugates� The values of the poles and zeros are shown in tab�������

It is possible to approximate the closed�loop transfer function by referring to tab������� To
begin with� remark that the pole p� is su#ciently close enough to the zero z�� This double�pole
and double�zero cancel out� In the same way� to �rst approximation� we can assume that the pole
p cancels out the zero z�� By so doing� we say that these poles and zeros do not contribute to
the system�
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Figure ����� The amplitude of the MC� closed�loop transfer function j C�s� j and its two ap�
proximations
 �double�pole� denoting the transfer function with only the double�
pole p� and �double�pole�zero� denoting the double�pole p� with the zero z��
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Furthermore� the bandwidth of the system is about �

 Hz� It is� therefore� useless to consider
the poles and zeros which are found above this frequency� This implies that the contribution of
the poles p�� p�� p� and p� can be neglected as well� Thus� eq������� reduces to

C�s� � j p� j �
z�

� s � z� �

� s � p� � � s � p�� �
������

To appreciate the approximation� a plot of the closed�loop transfer function amplitude j C�s� j is
shown in �g�������� with the approximation in eq������� and the amplitude of

C�s� � j p� j � �

� s � p� � � s � p�� �
������

as well�
Moreover� the transfer function consisting of just the two poles can serve as an order of mag�

nitude behavior of the system� A transfer function of this type is really describing a damped
harmonic oscillator and can be re�written in the form

C�s� � j p� j � �

� s � p� � � s � p�� �
�����

�
� �

s� �
�

Q
s � � �

�
� �

s� � � � � s � � �

where ���� � jp�j� �� and Q � � � � � � �jp�j � ���p�� is the resonance frequency and quality
factor of such an oscillator� By reducing the closed�loop transfer function to such a simple system�
many properties can be easily understood� To begin with� only two parameters play a role in the
closed�loop transfer function� the resonance frequency ���� and the quality factor Q� Therefore�
also the time response must depend on two parameters�

It can be shown that if the closed�loop transfer function is described by a harmonic oscillator
transfer function� then the response of the system to a step excitation leads to

L�s� �
�

s

� �

s� � � � � s � � � ����	�

The Laplace transform mapping back to the time domain gives as a result

L���L�s�� � L�t� � � � A exp�� � � t � sin� &� t � � � ����
�

where

A � �p
� � � �

������

&� �
p
� � � � �

� � arccos �

Fig������� shows the step response as a function of �t and for di�erent values of ��
From eq�����
� and its plot in �g������� we see that there are two components to the step

response� a sinusoidal term and an exponential term� The response has a marked oscillation
for high values for the quality factor ��� �� For relatively low values of the quality factor� the
exponential term dominates the response time of the control� In other words� recall that a relatively
high quality factor corresponds to low dissipative forces in the oscillator model� Once the system is
excited� relatively long damping times are expected� On the other hand� with low quality factors�
the energy of the system is quickly dissipated� It is natural to think that for the closed�loop system�
a low quality factor is desired� The goal is to follow the time evolution of the reference signal with
as few oscillations as possible and as quickly as possible� Therefore� for stable systems� the model

���
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Figure ����� The step response of a harmonic oscillator as a function of 
 t and for di�erent
values of ��

must have a relatively low quality factor� In the end� the only parameter that determines the time
response of the model is the resonance frequency � appearing in the exponential term� In such a
simple model� the bandwidth is almost equal to the resonating frequency �� so� as expected� the
bandwidth of the system plays a central role in the step response�

We approximated the closed�loop transfer function with a harmonic oscillator of quality factor
���� and resonance frequency �� The model was used as an example to get the main characteristics
of the system� We computed the time response to the step function of eq�������� thus including
the e�ect of the zero z� and comparing it to the results obtained for the harmonic oscillator �see
�g�������� The presence of the zero introduces an overshoot� however� the settling time of the
system remains about the same� �
ms� corresponding to the inverse of the bandwidth�

����� The Error Signal

The second consideration in the acquisition of lock is the nature of the error signal� It has been
mentioned that the linearity of the signal is limited to the FWHM of the resonance peak� shown
in �g����	�� If the non�linear contribution of the signal is negligible� or if the signal is relatively
weak outside of resonance� then it is clear that only the width of the resonance plays a role in the
acquisition times�

On the other hand� if the signal has a non�negligible non�linear component of the correct sign�
then this component helps the acquisition process� The latter is the case for the mode�cleaner
prototype in the p state� relative to the �nesse F � �

� Outside resonance� as far as � ���

from resonance� the error signal has non�negligible values with the correct sign� The cavity� once
outside the FWHM but still within the � ���
� will give an error signal not proportional to the
correction to be applied but with the correct sign� It is expected that the control system applies
forces with the correct sign�


�� The Acquisition of Lock� F � ���

The simulation for the acquisition of lock of the mode�cleaner prototype in the p polarization state
is described as follows� The transfer functions used have been described in sec������ and the model
is shown in �g�����	��

For this study� the laser frequency has been assumed constant� and the only noise considered
was the seismic noise exciting the mirror positions� At the beginning of the simulation� performed
in the time domain� the mirrors were left free to follow their motion induced by seismic noise�

���
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Figure ���	� The step response of the closed�loop transfer function C�s�� The simple harmonic
oscillator model is compared to the transfer function with a double�pole and the
zero� The settling time is about the same and is the inverse of the bandwidth of
the system in question�
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Figure ���
� The MC� model used for the acquisition of lock simulation in the p polarization
state �F � ����� Seismic noise excited the mirror positions� while the laser
frequency has been assumed constant�
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Figure ����� First example of lock acquisition from the simulation run of MC� with F � ���

the time evolution of the error signal d ph� and the transmitted DC power d dc� as
the loop is closed at t� ��� s�

After an arbitrary time� the control loop was closed �by controlling the end mirror� and the �rst
attempt to lock the cavity began� The feedback was left closed for �
 s� after which the mirror was
released� After allowing it to freely move again and establish its natural motion� the procedure
was repeated� Brie�y� the simulation consisted of

�� letting the two masses relax and follow their natural motion for an arbitrary time �ti �open�
loop��

�� closing the loop once the system relaxed regardless of the state of the cavity with respect to
the laser frequency which is constant�

�� maintaining the loop closed for � seconds and saving the time evolution of

�a� the photodiode signals d dc� and d ph� �

�b� the cavity length L�t��

��
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�� releasing the controlled mirror �the terminal mirror �� by opening the loop and letting the
system relax again�

The relaxing time �ti was chosen randomly from a uniform distribution with values ranging as

�ti � ��

� ��
� s ������

whereas the time the loop was closed was chosen to be � � �
 s� During a simulation run of �



s� the loop was closed �� times� Throughout the chapter� we will refer to as event the ensemble
of signals �such the beam power� the cavity length� the correction signals etc�� relative to times
when the loop is closed�

The result of the simulation showed that for each event� or in other words every time the loop
was closed� the cavity was successfully locked with a mean time for lock acquisition of tacq � � s
and a maximum time of �
 s� For the mode�cleaner prototype in Orsay� mean acquisition times
of �
 s were experimentally observed�����

The agreement between simulation and experiment is more than acceptable taking into account
all the uncertainties in the parameters used in the model� Not only did this study allow the
estimation of acquisition times� but it also o�ered a means to understand the process behind the
acquisition of lock� In the following� � events out of the �� will be presented as typical events�
thus allowing the main characteristics of the process to be put in evidence�

����� Example� t � �	� s

Out of all the events� the one presented here is perhaps the most interesting� Fig�����
� shows the

time evolution of the error signal d ph� in the top graph� as well as the transmitted DC power d dc� in
the bottom graph� The system is in open loop� with both masses freely moving� At t � ��
 s� the
loop is closed� It takes the feedback about � s to achieve control� The transmitted power� at t �
��� s� is equal to the incoming laser power of �

 mW corresponding to the complete transmission
of all the power�

Not much can be understood from both graphs of �g�����
� apart from a distinct behavior
around t � ��� s� On the other hand� by plotting the time evolution of the cavity length L�t�� it
is possible to get an insight into the process� Two curves are plotted in �g�������� both depicting
L�t� in � units as a function of time� The dotted curve describes the time evolution L�t� in open
loop� In this case� the loop is never closed and the masses are free to move� On the other hand� the
continuous curve describes L�t� with the loop closed at t � ��
 s� By plotting the two curves at
the same time� it is possible to better understand the locking process� Notice that the fundamental
mode resonance corresponds to L�t� � 
 and all multiples of ����

There are two characteristics of the graph in question�

�� the di�erence between the curves describing the cavity length in open and closed loop increase
as the relative velocity of the mirrors decreases� in other words� the control system is able
to substantially change the cavity length only when the two mirrors slow down with respect
to each other�

�� the control system can !kick! the cavity out of resonance�

In all the events studied� the relative velocity of the mirrors plays an important role in the lock
acquisition process�

Fig������� focuses in the region around the kick� The plot of the error signal d ph� as well as the
DC transmitted power d dc� is shown together with the cavity evolution� It is worth noticing that
for t � ������s � ����s� the cavity crosses six resonances� with a relative velocity that goes up to
��s� In this time interval� the control system has a negligible e�ect on the cavity length as can
be seen by the fact that the two curves almost overlap�

Once the relative velocity goes to zero� the feedback begins to act� as shown in a further close�
up in �g�������� When the cavity approaches the resonance at L � ������ the velocity decreases
and goes to zero before the sideband resonance� The cavity then goes back toward the resonance

��	
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Figure ����� First example of lock acquisition from the simulation run of MC� with F � ���

the cavity length� in � units� as a function of time� The dotted curve is the cavity
time evolution in open loop whereas for the continuous curve the loop is closed
at t� ��� s�
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Figure ����� First example of lock acquisition from the simulation run of MC� with F � ���

a close�up in the region around the kick� Right
 the cavity length L�t� as a
function of time� center
 the corresponding error signal d ph� as a function of
length L� left
 the corresponding DC transmitted power d dc� as a function of
cavity length L�
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Figure ����� First example of lock acquisition from the simulation run of MC� with F � ���

a close�up in the region around the kick� Right
 the cavity length L�t� as a
function of time� center
 the corresponding error signal d ph� as a function of
length L� left
 the corresponding DC transmitted power d dc� as a function of
cavity length L�
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again but the servo system is unable to stop it at resonance� The cavity expansion continues until
the other sideband resonance is approached� Here� the two curves begin to di�er completely� We
would like to recall that the cavity length L�t� in closed loop consists of two contributions� one
originating from seismic noise� and the other from the control system� The seismic contribution
can be observed from the open�loop curve �the dotted one� in �g������� and �g�������� whereas
the sum of both contributions is described by the closed�loop curve �continuous one�� Now� by
referring to �g������� we notice that as the sideband resonance is approached� the cavity� due to
the seismic contribution only� begins to expand� In closed�loop� the cavity also expands until the
error signal increases due to the sideband� Here� the feedback is able to revert the expansion at t
� ��� s� As a consequence� as the sideband resonance is left behind� the error signal decreases and
the seismic contribution begins to dominate� The error signal increases� an oscillatory behavior
begins and the cavity �nds itself in an unstable position from t � ��� s to t � ����� s� At the
end �t � ����� s�� the relative velocity of the mirrors in open�loop decreases� as can be seen in
�g�������� and the control system does not have enough time to react accordingly� resulting in a
forceful kick to the terminal mirror�

Fig������� focuses on the moment when the control system acquires lock� The relative velocity
of the masses decreases in the region around the resonance at L������ Here� the non�linear region
due to the sideband contribution plays a role again� the cavity is guided into lock from outside
the FWHM of the fundamental resonance�

In conclusion� we observed that the e�ect of the servo system is noticeable when the relative
velocity of the mirrors is low� Furthermore� in all the events� the Pound�Drever error signal outside
of the FWHM of the fundamental resonance contributed to the acquisition of control� Only � events
out of the �� were observed where the mirror was forcefully kicked away from resonance�

����� Example� t � �� s

Most of the �� events resemble this one� The plot of the error signal as well as the DC power
as a function of time are shown in �g�������� In this case� only ��� s were necessary in order to
acquire lock� The cavity length evolution� in both closed and open loop� is presented in �g��������
Again� once the relative velocity reaches low values� the control system begins to play a role� If�
at the same time� the value of the error signal is non�negligible� the feedback is able to guide the
cavity into lock� Fig������� shows the behavior in question� The relative speed decreases as the
resonance at L � � is approached and the cavity length begins to oscillate from one sideband to
the other� It is clear that the non�linear component of the error signal plays a role in the process�


�� Acquisition of Lock� F � �
��

The lock acquisition process was also studied in the case of F � ��

� By going from a �nesse
F � �

 to a �nesse of F � ��

� the resonance FWHM decreases by more than one order of
magnitude� Fig������ shows both the transmitted DC power as well as the error signal for the two
polarization states� As a consequence� the gain of the control must be adjusted so as to limit the
length �uctuations to within ������F � �
 �
�� � once the loop is closed� One way to increase
the gain while leaving the bandwidth of the system at �

Hz is to multiply the open�loop transfer
function by the �lter

s � �

s
������

where ���� � ���Hz�
A simulation run of t � �


 s� just as in sec������� was used to study the lock acquisition

process� The same MC�
 model was used� only with the �nesse modi�ed to F � ��

 and
the open�loop transfer function� discussed in sec��������� multiplied by the �lter in eq�������� The
result of the simulation showed that the control system was unable to acquire lock� Experimentally�
unacceptably long lock acquisition times were observed with the control system described in this
chapter�

���
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Figure ����� A close�up of the acquisition of lock region� Right
 the cavity length L�t� as a
function of time� center
 the corresponding error signal d ph� as a function of length
L� left
 the corresponding DC transmitted power d dc� as a function of cavity length
L�
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Figure ����� The time evolution of the error signal d ph� and the transmitted DC power d dc� as
the loop is closed at t� ��� s�
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Figure ����� Second example of lock acquisition from the simulation run of MC� with F �
���
 the cavity length� in � units� as a function of time� The dotted curve is the
cavity time evolution in open loop whereas for the continuous curve the loop is
closed at t� ��� s�
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Figure ����� A close�up in the region around the acquisition of lock� Right
 the cavity length
L�t� as a function of time� center
 the corresponding error signal d ph� as a function
of length L� left
 the corresponding DC transmitted power d dc� as a function of
cavity length L�
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Figure ���	� The calculated MC� transmitted DC power and the error signal as a function of
the cavity length� Dotted line
 F � ���� Continuous line
 F � �����
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���� CONCLUSION

This was expected and it can be understood by referring to �g������� For the two polarization
states� not only the two resonance FWHM but also the non�linear components of their error signals
di�er� In the case of F � ��

� the Pound�Drever error signal can be neglected outside of the
resonance because of its low value� The threshold velocity vthr� de�ned in eq������� is� in this case

vthr � B � ���F � �
 �
�� ���s� ������

As an estimate� for the mirror motion concentrated at �Hz with an RMS value of ��m� the
mean velocities expected are of the order of ��m�s� which is two orders of magnitude above the
threshold value� and therefore very long acquisition times are expected�


�� Conclusion

The model of the mode�cleaner prototype MC�
 in the p polarization state has been presented as
well as a simulation of the acquisition of lock process� The numerical study resulted in a mean
acquisition time t and a maximum acquisition time tmax of

t � � s ������

tmax � �
 s

This has been con�rmed on the MC�
 prototype with acquisition times of the order of �
 s�����
The simulation results also showed that

�� the control system plays a role only when the relative speed of the mirrors is low�

�� the non�linear contribution of the error signal also plays a role

�a� by causing the control system to inject noise into the system �as for example forcefully
kicking the mirror away from the closest resonance� even though only � out of the ��
events showed such behavior�

�b� by helping the control system to guide the cavity into lock with oscillations of the cavity
length ranging from sideband to sideband�

It is possible to give an estimate for the acquisition times once the response of the control
system� the relative speed of the mirrors and the error signal are known� Assuming that the error
signal has a negligible component outside of the FWHM of the resonance� then there exists a
threshold speed vthr below which the control system is able to acquire lock� Such a threshold can
be de�ned as follows�

vthr � B � FWHM ������

where B is the bandwidth of the control� If the mirror speed v is such that

v � vthr ������

then the feedback is able to follow and correct the evolution of the cavity dynamics�
For the mode�cleaner prototype with F � �

� acquisition times are di#cult to estimate� This

is due to the fact that the error signal outside of the FWHM does contribute to the locking� By
assuming that an error signal is limited to the distance between the sideband resonances� � ����
then the threshold velocity is

v � vthr � B � �

�
� �� ���s� �����

For seismic displacements concentrated around �Hz with a RMS value of ��m� the mean velocities
expected are of the order of ��m�s� well below the threshold limit� and short acquisition times

��	
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are expected� From the simulation� acquisition of lock was possible from velocities ranging up to
� ��s�

On the other hand� the results of the numerical calculations showed that for the mode�cleaner
prototype with F � ��

� the control system was unable to acquire lock� Experimentally� unac�
ceptable acquisition times were observed with the control system described in this chapter� This
was anticipated� the non�linear contribution of the error signal is negligible so that the threshold
velocity is vthr � �
 �
�� ���s�� well below the mean velocity of ��m�s� Long acquisition times
are therefore expected�

��




Chapter �

The Ringing E�ect

Before making the step from the MC�
 prototype to the CITF as regards the lock acquisition
process� let us consider a phenomenon which occurs on the mode�cleaner in high �nesse� Prior to
the lock acquisition of the MC�
 prototype� the mirrors move in free motion� inducing the cavity
length to sweep the optical resonance at di�erent rates of expansion� If the relative velocity between
the mirrors is constant� the DC transmitted power delineates the Airy peak as a function of time�
This was observed for the optical system with F � �

� However� during the experimental work
on the MC�
 prototype with F � ��

� a deformation of the Airy peak� similar to a ringing� was
observed� Fig������ shows an experimental measurement of the transmitted power as a function
of time� as the cavity length swept the optical resonance at an unknown expansion rate�

Figure ���� The observed ringing e�ect on the transmitted DC power of the MC� prototype�
The transmitted power is shown as a function of time as the cavity length sweeps
the optical resonance at an unknown rate�

Both ���� ��� and references therein discuss this phenomenon� Brie�y� this e�ect arises once
the cavity sweeps the optical resonance in a time �sweep of the order of or less than the cavity

���
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storage time �storage � F L� c� i�e�

�sweep � �storage �����

This e�ect is observed when the rate of expansion is so high that� as resonance is approached� the
cavity doesn�t have enough time to completely �ll itself� It is the beating between the incoming
laser �eld and the evolving stored �eld that gives rise to this oscillatory behavior�

This e�ect created di#culties in the measurement of the �nesse for the s polarization state� In
the p polarization state� it was possible to measure the resonance FWHM� thus allowing the deter�
mination of this parameter� However� for relatively high �nesse values� the Airy peak distortion
introduced by the ringing e�ect modi�es the resonance FWHM� impeding the estimate�

In this chapter� we present a numerical study on the ringing e�ect� This study allowed the
determination of

� the MC�
 �nesse for the s polarization state� whose result is then compared to that of an
alternative method�����

� an empirical expression to resolve the cavity expansion rate�

These two parameters� F and v� de�ne the behavior of the oscillations� We begin the chapter by
describing the model used for this study�

��� The Ringing E�ect Model

In order to model this phenomenon� the photon travel time within the cavity needs to be taken into
account� Just as in Ch����� a two�mirror Fabry�Perot of length L� � �
m� sketched in �g�������
was chosen to simulate the mode�cleaner� Assuming a negligible mirror displacement for times of

ΤΨΙΝ Ψ

1

L

Ψ

Figure ���� The model used for the study of the MC� ringing e�ect�

the order of the round trip time of light � � �L��c � 
���s� the stored �eld ���t� at time t can
be written as

���t� � t��in � r � exp�� � i k L � ���t � � � �����

where r denotes the amplitude re�ectivity for each mirror� �in is the incoming laser �eld� and L
is the cavity length� Assuming that the cavity expands at a constant rate v� we can write

L � L� � v t �����

and solve eq������ iteratively� for di�erent velocities v and �nesse F �

By setting the Fabry�Perot �nesse to a �xed value and plotting the stored DC power as a
function of cavity length �L for di�erent expansion rates� it is possible to reproduce the oscillatory
behavior shown in �g������� In particular� �g������ shows this plot for three velocities� v � 

�static approximation�� v � ���s� and v � �����s� with F � �


� The curve labeled static�
corresponding to v � 
� was generated by neglecting the travel time of light� assuming an in�nite
speed of light� The two other curves� on the other hand� were simulated according to the dynamical
model here presented� Notice how the main peak height decreases� its width increases and its
position shifts ahead of the resonance� These changes are greater for larger velocities�

���
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Figure ���� The calculated Fabry�Perot transmitted power� with F � ����� as a function
of cavity length �L as the resonance is swept at v � � �static approximation��
v � ���s� and v � �����s� In the �gure� �L � � corresponds to resonance�
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Figure ���� The observed ringing e�ect for the MC� prototype
 measurements and eye �ts�
The �nesse and velocity values are shown for each graph�

��� Measurement Fits

The �rst goal of this work was to reproduce the observed ringing e�ect on the MC�
 prototype
and estimate the cavity �nesse as well as the relative mirror velocities� Figs���������� show ten
measurements of the transmitted power� with the principal peak height normalized to one� and
their eye �ts performed with the simulation� The good agreement between actual measurements
and simulation outputs con�rm the validity of the model in use� By averaging the �t results� the
mean �nesse is

F � ����� ��
 �����

Here the error arises from the fact that the state of the alignment changes from each resonance
crossing� generating di�erent cavity losses per crossing� This �nesse value was later con�rmed by
a measurement of the cavity pole����

The �ts also allowed an estimate of the relative velocities� We can observe that the time
di�erence between minima and maxima decreases with increasing velocity�

���



���� MEASUREMENT FITS

Figure ���� The observed ringing e�ect for the MC� prototype
 measurements and eye �ts�
The �nesse and velocity values are shown for each graph�
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Finesse F set in simulation Finesse estimated from eq������ Error
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���

Table ���� The precision of eq������ as a function of �nesse� using simulation outputs instead
of measurements� The rate of expansion used was v � ����s�

��� Measuring the Finesse� An Alternative Method

An alternative method for the measurement of �relatively� high �nesses from the observation of
the ringing e�ect� described in ����� was used� According to the authors� by measuring the �rst
and second peak height� I� and I� respectively� as well as their time di�erence �t� then

F �

�� c

L
�t

I�
I�

� � � e

�����

where L is the cavity length� This method also yielded a mean �nesse of F � ��

 with a
maximum spread of �
��

This method is biased towards high �nesse values� which can be observed by using eq������ with
simulation outputs instead of measurements� thus allowing the comparison of the known �nesse
with the �nesse obtained by this method� Tab������ shows the results for � di�erent �nesse values
with the same cavity expansion rate v � �
��s� The reader can observe that the error decreases
as the �nesse increases with values that go below �� for �nesse values above �


�

��� The Properties of the E�ect

We would now like to discuss a property of the ringing e�ect observed from the simulation runs�
Fig������ graphs the stored power as a function of cavity length for a given �nesse and for di�erent
values of velocity� We can now plot the stored power as a function of time� setting the velocity to a
�xed value� but varying the �nesse� One example is given in �g������� The top graph of this �gure
shows the stored power as a function of time� for an expansion rate set to v � �
��s� for three
di�erent �nesse values� F � �


� F � �


� and F � �


� The bottom graph is the curves�
time derivative� From these plots� we remark a particular characteristic of the phenomenon� the
position of the minima and maxima� with the exception of the main peak� are almost independent
from the �nesse value�

Furthermore� going back to �g������� we can now note that the derivative zeros depend only
on the relative mirror velocity� Therefore� the output of the simulation can be easily adjusted so
as to �t any measurement� As a matter of fact� by modifying the cavity rate of expansion� it is

���
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Figure ���� The calculated stored power as a function of time� with a �xed expansion rate set
to v � ����s� for di�erent �nesse values
 F � ����� F � ����� and F � ����
Top graph
 the stored power� Bottom graph
 the stored power time derivative�
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possible to increase or decrease the frequency of the oscillations so as to match the experimental
position of minima and maxima� Once these positions are found� changing the �nesse allows the
adjustment of the peak heights�

��	�� The Relative Velocity Estimate

The simulation output shown in �g������ not only shows how the derivative zeros are independent�
at least to �rst approximation� from the �nesse� but it also shows a particular regularity in the
spacing between the minima and maxima� The upper graph of �g������ shows the simulated
stored power of a cavity with F � ��

� expanding at a rate �
��s� Let the position of the
curve�s derivative zeros� tzero� be labeled by the index n� so that� for the �rst zero� positioned at
tzero � ��
�ms� n � 
� for the second zero� located at tzero � ���
�ms� n � � and so on� Then�
the bottom graph of �g������ shows the plot of index n as a function of time� We remark that the
n�th zero of the derivative is a quadratic function of the zero crossing time tzero�

n � t �zero �����

By �tting the simulation outputs to the expression

nzero � p� � p� tzero � p� t
�
zero �����

where p����� are �tting parameters� we empirically found that the coe#cient p� can be written as

p� �
c v

�L
����

where L is the cavity length and v is the cavity expansion rate �an example of this �t is shown
in the bottom graph of �g�������� Therefore� an estimate of coe#cient p� would also give us an
estimate of the relative velocity v�

Now� going back to the measurements discussed in sec������ and shown in �gs����� � ����� it is
possible to �t them with eq������ to estimate the relative velocity v� For � measurements� �gs����
� ����� show� on the left� the measured transmitted power as a function of time and on the right�
the �t results of tzero as a function of n� In these �gures� what is referred to as coe#cient P�
refers to the inverse of eq������ From the � �t results� the estimate of p� gives an estimate on the
velocity� The velocity error derives from the accuracy within which the minima and maxima are
located� For this work� this was set to half of the oscilloscope�s sampling time� The �t results for
the velocity reconstruction are shown in tab������� with their corresponding ���ndf values� and
are in agreement with the eye �ts shown in �g����� � �����

��� Conclusion

In this chapter� we investigated a phenomenon� which we called ringing e�ect� observed on the
MC�
 transmitted DC power as the mirrors moved in free motion� By �tting the behavior with
SIESTA�s outputs� we were able to give a �rst estimate of the cavity�s �nesse

F � ����� ��


Furthermore� the numerical results showed how the position of the oscillations� minima and
maxima� when plotted as a function of time� weakly depend on the �nesse value and are completely
determined by the cavity expansion rate as the resonance is being crossed� In particular� we showed
how a simple empirical formula can determine the cavity expansion rate by observing these minima
and maxima� For the same set of measurements used for the �nesse� the results from the empirical
formula and the eye��ts were in agreement�

This chapter�s results may be useful for a possible acquisition of lock algorithm relative to
VIRGO�s mode�cleaner prototype� We remark that the velocity reconstruction here shown gives
information only on its amplitude and not on its sign� In order to obtain information on the
velocity sign� the same empirical formula must be applied to the demodulated signals�

��
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Figure ���� The simulated stored power of a Fabry�Perot� expanding at a constant rate v �
����s� with F � ���� Top graph
 the stored power as a function of time� Bottom
graph
 the index n� corresponding to the n�th derivative zero� as a function of
time� The curve is �t to the expression n � p� � p� t � p� t

�� Notice that
p� � c v �� L � ��� ���ms�	�
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�g����� �g����	� �g�����
� �g������� �g�������

v ���s� ��� ��� ���� ���	 ����
�from
eye �t�

v ���s� ���� � � �
�� ���� � � �
�� ���	� � � �
�� �
�	� � � �
�� ����  � �
��

���ndf ��� �� ��� 
� 
�	

Table ���� Fit results for the mirror relative velocity reconstruction
 the estimated velocity v
and the corresponding 	��ndf value�

Figure ��	� Fit results for the mirror relative velocity reconstruction�On the left
 The measured
DC transmitted power� On the right
 the plot of tzero as a function of index n�
The error bars correspond to half of the oscilloscope�s sampling time�
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Figure ��
� Fit results for the mirror relative velocity reconstruction�On the left
 The measured
DC transmitted power� On the right
 the plot of tzero as a function of index n�
The error bars correspond to half of the oscilloscope�s sampling time�
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Figure ����� Fit results for the mirror relative velocity reconstruction�On the left
 The mea�
sured DC transmitted power� On the right
 the plot of tzero as a function of index
n� The error bars correspond to half of the oscilloscope�s sampling time�
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Figure ����� Fit results for the mirror relative velocity reconstruction�On the left
 The mea�
sured DC transmitted power� On the right
 the plot of tzero as a function of index
n� The error bars correspond to half of the oscilloscope�s sampling time�
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Figure ����� Fit results for the mirror relative velocity reconstruction�On the left
 The mea�
sured DC transmitted power� On the right
 the plot of tzero as a function of index
n� The error bars correspond to half of the oscilloscope�s sampling time�
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Chapter �

Lock Acquisition Strategy

The study of the mode�cleaner prototype in ch���� allowed an understanding of the acquisition
of lock process for the two polarization states� It has been shown how� given a spectral density
displacement for the longitudinal motion of the mirrors� the acquisition time depends on

� the bandwidth of the control system�

� the �nesse of the optical system�

Once these parameters are set� it is possible to estimate the acquisition time�
This chapter discusses this process for the CITF� and presents a non�linear lock acquisition

strategy inspired from a work��	� developed within the LIGO collaboration� At �rst� the strategy
is simulated by modeling a VIRGO Fabry�Perot� Then� once the scheme is presented� it is applied
to the CITF case� The simulation results close the chapter�

��� Acquisition Time Estimate

As previously stated� the lock acquisition time depends on the bandwidth of the control system
and the �nesse of the optical system� However� in order to give an estimate of such a time period�
it is also necessary to estimate the mirrors� relative velocity distribution and to observe how many
resonance crossings� per unit time� have a velocity below a certain threshold�

For the CITF with mirrors in free motion� the displacement noise is concentrated below �Hz�
as shown in the CITF sensitivity curve in �g������� Ideally� a control bandwidth of a few Hertz
is desired� In this way� noise injection into the detection bandwidth is limited and the �rst violin
mode excitation ��

Hz� is avoided� A study���� already exists on linear locking for the complete
VIRGO interferometer with a �
Hz control bandwidth� For this reason� in this chapter we
assume a linear locking bandwidth for the CITF also of �
Hz� It is clear that for such a low
bandwidth� the control system will necessarily have a slow reaction time�

Once the CITF is operated in dark fringe� the resonance FWHM for the recycling cavity is

FWHM �
� � �

F � �
�� �m ����

where F � �

� Assuming a negligible contribution of the error signal outside of the linear region�
the velocity threshold vthr is

vthr � �
Hz 
 FWHM � �
 �
�� ��m�s� ����

By referring to the mirror amplitude spectral density displacement model used for the simulations�
shown in �g������ the mirror motion� in open�loop� has an RMS value of A � ����m dominated
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by a resonance at f � �

Hz� If we assume that the mirror displacement x�t� is described by a
simple sinusoidal model of the form

x�t� � A sin��� f t� ����

then the mean mirror velocity vx is

vx � �� f A
 �

T

Z T

�

j cos��� f t� j dt � �Af � ��� ��m�s� ����

and the relative mirror velocity v �
p
� vx � ���m�s� The mean time �t between each resonance

crossing is

�t �
� � �

v
� 
�� s ����

In the sections to come� it will be shown that less than 
��� of all crossings have a relative mirror
velocity below the velocity threshold� This means an acquisition time tacq no less than

tacq �
�t


���
� �

 s ����

Acquisition times this long are not acceptable and a means of improvement is necessary�
There are three possibilities for the improvement of the acquisition time�

i� increase the linear range of the error signal�

ii� increase the bandwidth of the control system�

iii� decrease the mirror relative velocity�

This chapter presents a non�linear locking scheme for the improvement of the CITF acquisition
time by damping the relative motion of the mirrors� thus facilitating the acquisition of control by
the linear servo system� The goal of this chapter is to �rst present and simulate the scheme for a
VIRGO Fabry�Perot and then extend it to the CITF�

��� The VIRGO Fabry�Perot Model

We here present the model� shown in �g������ used for the Fabry�Perot simulation��
�� In partic�
ular� the simulation

�� computed the mirror motion due to seismic noise� thermal noise and the possible presence
of forces induced by the reference mass coils�

�� computed the optical response of the cavity�

�� treated the photodiode signals� �ltering and sending them� if necessary� to the reference mass
coils�

���� Mirror Dynamics and Control

The two mirrorsM� andM�� � km apart� are suspended by identical superattenuators� By low�pass
�ltering white noise according to a power law of the form f��� seismic noise is simulated and �ltered
through the superattenuator transfer function� The noise contribution due to thermal excitation
was simulated as well� even though it is negligible for the lock acquisition study� The amplitude
spectral density displacement &x��� for both mirrors M��� is shown in �g������ corresponding to
an RMS value for the displacement of ����m integrated down to �

mHz� Having injected
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Figure 	��� The model used for the Fabry�Perot non�linear locking scheme� The mirror ampli�
tude spectral density displacement is shown in �g�������

uncorrelated noise� the RMS value for the cavity length �uctuations is ����m� Notice also that
the thermal noise contribution has been added quadratically and contributes from about �Hz�

A system of coils and magnets allows position control of the mirror through a reference mass� as
can be seen in �g������ The mirror displacement induced by the force applied from the reference
mass is computed according to a transfer function that takes into account the mirror�s mass� the
quality factor Q��
� and to the resonance frequency �
��Hz� of the pendulum system� It is
assumed that no energy is injected in the superattenuator upper stages as the reference mass acts
on the mirror�

���� The Optical Response and The Linear Control System

A phase�modulated �modulation frequency "��� � ����MHz� �
W laser beam �wavelength of
laser light � � ��
���m� is injected into the optical system� Due to the plane�wave characteristics
of the model used� the cavity is assumed to be aligned and matched to the incoming beam� In
the optical con�guration given� the mirror power re�ectivities are r �� � 
� and r �� � 
�				�
corresponding to a �nesse of F � �
� Since the photon storage time is about F L� c � �ms and
the foreseen relative mirror velocities are below �
�m�s� no ringing e�ect is expected and the
quasi�static approximation is used for the optical module of the simulation�

Two photodiodes monitor the re�ected and transmitted beams� The only error measurement
taken into account is the statistical �uctuations in the number of photons detected� the beams
shot�noise� The signals coming from the photodiodes are digitized at a �
 kHz sampling rate�

The error signal is the Pound�Drever error signal� using the demodulated component on re�ec�
tion� Fig����� shows its dependence on the cavity length as it is swept over time at a constant
velocity� Due to the low �nesse of the system� the non�linear component contributes to the lock
acquisition process�

Assuming a bandwidth for the linear control system of �
Hz� the threshold velocity is �
Hz �
FWHM � 
���m�s if we neglect the non�linear contribution of the error signal� However� the
non�linear component does play a role� just as in the case of MC�
 with F � �

� and the threshold
velocity must be higher� Long acquisition times are not expected for this system�

���� Lock Acquisition Strategy

An algorithm is here introduced to aid the linear control system acquire cavity lock� The algorithm
consists of

���
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Figure 	��� The simulated displacement amplitude spectral density for each mirror� The RMS
cavity length displacement is �� �m dominated by the resonance at ���mHz�
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Figure 	��� The simulated transmitted DC power and the Pound�Drever error signal for the
VIRGO Fabry�Perot cavity� The trigger on transmission is set to the resonance
half�maximum while the window on the error signal is opened for values below
���W � The presence of a TEM�� � due to a slight misalignment� is also shown�
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� an analysis procedure�

� an acting procedure�

The objective of the �rst procedure is to reconstruct the relative mirror velocity� The acting
procedure then uses the reconstructed value to damp the relative mirror motion to within the
velocity threshold� Once this is done� the linear control system is enabled�

���	 The Analysis Procedure

In order to understand how fast the mirrors are moving with respect to each other� we must be
able to monitor the linear region of the Pound�Drever error signal� This is possible only when the
cavity length is within the FWHM of resonance and which is not frequent because the mirrors
move freely and the full spectral range of the cavity is swept completely� One way to monitor just
the linear region of the error signal is to recognize when a fundamental mode resonance is being
crossed as the mirrors move in free motion� This is achieved by simply triggering the transmitted
power at a particular value� Once the transmitted power is above a particular threshold� the cavity
is about to resonate and the error signal can be used to determine the relative velocity� However�
for this to be possible the power of both sidebands� as well as that of any high order transverse
modes� must be below the threshold level�

Fig����a� shows the transmitted power as a function of time as the cavity length is swept� A
trigger is set at the half�maximum level of the resonance� Once this trigger is satis�ed� the cavity
is within the resonance FWHM and the error signal can be monitored� Notice how the trigger
level is higher than the power of resonating sidebands� The presence of a TEM��� generated by a
small misalignment� is also shown� Fig����b� shows the Pound�Drever error signal�

As the trigger placed on the transmitted power is satis�ed� a window on the error signal opens
and the values of the error signal are stored until the window closes� At this point� a least�square
�t to a straight line reconstructs the velocity� In other words� by de�ning as yi the value of the
error signal at the sampled time ti and considering a model of the form

y�t� � a � b t ����

then the merit function

�� �
X
i

h
yi � � a � b t �

i�
���

gives a measure of how well the model �ts the sampled data� By minimizing eq���� with respect
to the parameters a and b� we obtain

a �

X
i

t�i
X
i

yi �
X
i

ti
X
i

tiyi

N
X
i

t�i �
�X

i

ti

�� ��	�

b �

N
X
i

tiyi �
X
i

ti
X
i

yi

N
X
i

t�i �
�X

i

ti

��
where N is the number of sample points within the window� The value of parameter b allows the
estimate of the mirrors relative velocity�

Fig����b� shows an example of a window which opens on the error signal once the trigger on
the transmitted power is enabled� In this �gure� the window is set to ����W �

We would like to remark that it is possible to reconstruct the velocity correctly only if we
assume that it is constant within the time interval of the resonance crossing� Since the motion is
mostly concentrated around �

mHz� the relative velocity can be considered constant for time
intervals much smaller than ���

mHz � � s�
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Figure 	��� The e�ect of the application of a single pulse to a mirror� ��� The cavity is ex�
panding at an unknown velocity and at this point the transmitted power is above
threshold� ��� A window opens on the error signal and the analysis procedure
begins� �� The analysis procedure ends and the 	� minimization procedure deter�
mines the rate of expansion �v� The acting procedure begins and a pulse in current
is sent to the reference mass coils� ��� The pulse ends here� The cavity is now
expanding at the rate ���v and it is forced to cross resonance again�

���� The Acting Procedure

Once the relative velocity is reconstructed� the algorithm has the option of enabling the linear
feedback or not� according to the reconstructed value� If the reconstructed velocity is below the
threshold value� the linear feedback is enabled� If not� a pulse of current is sent to the coils of
the reference mass so as to damp the relative motion of the mirrors� If the analysis procedure
reconstructed an expansion of the cavity at a rate �v� a rectangular pulse of amplitude �F is sent
for a time �t with

�F � � m�v

�t
� � �  � ���
�

where m is the mass of the mirror and  is a parameter� The result of such a pulse application
causes the relative velocity to change from �v � � �v� As can be seen� the relative motion will be
damped for values of  � �
���� Fig����� shows graphically the e�ect of the application of a single
pulse�

In principle� any value of  � �
��� is suitable� Setting  � 
 would momentarily stop the relative
motion of the masses and the linear feedback could take over without a problem� However� this
would imply a very good knowledge of the optical system� the reconstruction and the acting
procedure as well� For this reason� we opted for an iterative application of pulses� i�e�� an iterative
analysis and acting procedure� The result is the periodic control of the optical system� damping
the relative motion of the mirrors below the threshold value�

This iterative procedure cannot be applied for an in�nite amount of time� after a few pulses�
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Figure 	��� A brief simulation shows the e�ect of the algorithm with pulses sent to mirror
M�� In graph �a�� the two mirror positions are shown as a function of time� At
t � �� s� pulses are sent to mirror M� forcing it to move in phase with mirror M��
Graph �b� shows the cavity length as a function of time around t � �� s �recall that
FWHM � ���	m�� In graph �c�� the relative velocity is plotted as a function of
time� Notice how it is damped from the initial value of � �m�s down to ��� �m�s�

the acceleration applied to the mirror is weak with respect to the seismic excitation and the cavity
could fail to cross resonance again� As a consequence� the analysis procedure is not called and the
train of pulses ends� The mirrors then begin to follow the motion caused by seismic noise�

Fig����� and �g����� show the results of the iterative application of the analysis and acting
procedures �without enabling the linear feedback� as the relative motion is damped� It consists of
a t � �
 s simulation run with  � 
��� �t set to �
ms and the damping performed on mirrorM��
In �g����a�� at t � 
 s the mirrors are at rest� and as time evolves they begin to acquire speed�
The algorithm is triggered by the transmitted power at about t � �� s� the cavity is within the
resonance FWHM� The window opens on the error signal� the relative velocity is reconstructed
and a pulse is applied to M�� The cavity is then forced to cross resonance again with half of
its initial speed� Notice� from �g����a�� how the algorithm forces the motion of M� to follow
the motion of M�� forcing it to be in�phase� Fig����b� shows both the spontaneous and forced
resonance crossings� notice how the cavity remains within the FWHM � �
��m of the optical
resonance�

Fig����c� shows the initial and �nal velocity� where by �nal velocity we intend the last recon�
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Figure 	��� The train of pulses used by the non�linear locking algorithm and the resulting
transmitted DC power�
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structed velocity� In this case� the velocity attenuation is of a factor of ten� with the �nal velocity
being below threshold� the linear feedback could be enabled� Fig����a� shows the pulses sent to
mirror M�� The forces used are of the order of �
mN and of duration �
ms � Fig����b� shows
the DC transmitted power as a function of time� The cavity is kept within the resonance FWHM�
since the power is kept above the half�maximum value�

��� The CITF Locking Strategy

In this section we extend the algorithm presented for the VIRGO Fabry�Perot to the CITF�����
Longer acquisition times� with respect to the Fabry�Perot� are expected and a means to guide the
CITF into lock is necessary if a bandwidth of �
Hz for the linear control system is used� We �rst
present the model used and then brie�y recall the optical response of the CITF to longitudinal
mirror motions already discussed in Ch�����

���� The Model for the CITF

Just as for the Fabry�Perot� the model shown in �g����a� is simulated in the time domain and
it consists of three parts� The �rst generates the dynamical behavior of the mirrors caused by
seismic noise and the possible presence of forces induced by the reference mass coils� The second
deals with the optical response of the CITF� and the third treats the photodiode signals deriving
from them� the error signals that are then �ltered and applied� if necessary� to the reference mass
coils�

The chosen displacement spectral density for the recycling mirrorM�� both end mirrorsM� and
M� as well as the beam�splitterMBS � is shown in �g������ corresponding to an RMS displacement
value� for each mirror� of ����m at �

mHz� Recalling that �l � l��l� and lr � l��������l��l���
we can de�ne the velocity v�l as

v�l � d

dt
�l �����

and vlr as

vlr �
d

dt
lr �����

Fig���� shows the results of a free motion run� The distribution of the velocities v�l and vlr is
shown in �g���a� and �g���c�� The velocity spectrum is wide� with speeds that range above
��m�s with a mean velocity at about ���m�s� Fig���b� and �g���d� show the distribution
of the time di�erence �t between each dark fringe crossing and between each resonance crossing�
About ��� of all crossings are found in a time �t inferior to 
�� s�

The parameters used in the model are slightly di�erent from the one described in Ch����� In
particular� the lengths used were set to l� � ��
m� l� � ���m and l� � ��m� The incoming laser
power was �
W � phase modulated at "��� � c��lr � with J �

� � ���
In order to apply the algorithm presented to the CITF� it is necessary to use signals for the

control that depend mostly on either �l or lr � Sec������ showed that this is possible by taking the
ratio of di�erent photodiode signals� We here recall that the CITF can be seen as a Fabry�Perot
cavity �see �g������ of length lr � whose end mirror transmittivity T ��l� depends only on the dark
fringe condition� regardless of the recycling resonance� It has been shown that this end mirror
transmittivity can be obtained by taking the following ratio of signals�

j T ��l� j �� AR

�

d dc�
d dc�

�����

where AR is the power re�ectivity of the BS anti�re�ective coating� d dc� is the DC power seen by
photodiode � and d dc� is the DC power seen by photodiode �� This ratio can be used to identify
the interference condition regardless of the recycling power� as can be seen in �g����	��
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Figure 	��� The CITF seen as a Fabry�Perot cavity�

Even though the ratio d dc� �d dc� can be used to identify dark fringe� it cannot be used for the

control due to its quadratic dependence on �l� On the other hand� the ratio d ph� �d dc� � shown in
�g�����
�� depends linearly on �l and it can be used for its control regardless of the recycling
condition�

Once dark fringe is controlled� we can estimate the acquisition times for the recycling cavity�
Recall that the threshold relative velocity is vthr � � 
 �
�� �m�s� From the distribution of
velocity� shown in �g���c�� the threshold is well below the mean value of v � ���m�s� Only

�
�� of all events have vlr � 
�
��m�s� Again� by considering all crossings separated by the
mean time �t � 
�� s� we can estimate the time required for lock acquisition as the average time
between two events with velocity below threshold� or 
�� s� �
 �
�� � �

 s�

���� Lock Acquisition Strategy

The overall strategy is simple and straightforward� By monitoring the two ratios d dc� � d dc� and

d ph� �d dc� � the analysis procedure reconstructs v�l � The acting procedure is then enabled� sending
pulses to one end mirror so as to damp the relative motion of the two end mirrors and enable
the linear feedback� when appropriate� Once acquisition of control for the dark fringe succeeds�
locking of the recycling cavity is addressed by acting on the recycling mirror�

Dark Fringe analysis procedure

As already stated� the decoupling of signals makes it possible to �nd v�l� The �rst step consists
in monitoring �l and this is done by introducing a trigger on d dc� � d dc� � which for the simulations
was set to � 
 �
�� �here AR � � for simplicity�� Once the trigger is satis�ed� the system is
about to go into dark fringe� The purpose of such a trigger is to enable a second one monitoring
the error signal d ph� �d dc� � This second trigger� enabled for absolute values of j d ph� �d dc� j � ��
�
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Figure 	�	� The velocities v
l and vlr and the time distribution �t for the CITF mirrors in
free motion� as the system enters dark fringe and maximum recycling for the CITF�
Graph �a� shows the v
l distribution as the CITF enters dark fringe while graph
�b� shows the time distribution �t between dark fringe crossings� Graph �c� shows
the vlr distribution as the CITF enters maximum power recycling while graph �d�
shows the time distribution �t between condition of maximum power recycling�
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opens a window on the signal that now exhibits linearity� Sampled points are stored and a ��

minimization procedure reconstructs v�l�
Assuming that the mirror relative motion evolves at constant velocity� the analysis procedure

reconstructs the relative speed correctly� This is a valid assumption due to the concentration of
the motion in the sub Hertz region� The relative acceleration can often be considered insigni�cant
for observation times inferior to the time scale of the accelerations� which is of the order of the
second considering a dominant resonance at �

mHz� Therefore� once the triggers are enabled�
it is most likely that v�l remains constant for time scales inferior to the second�

Fig���	� shows the results of the reconstruction of v�l as the four mirrors are left to move freely�
During the simulation run� every time the two triggers are enabled� the algorithm reconstructs the
velocity vrecon and compares it to the true value vtrue� The top graph of �g���	� plots the relative
error

error �
vtrue � vrecon

vtrue
�����

as a function of vtrue� where vtrue is the mean value of v�l taken over the time the window is kept
open on the error signal� This procedure is able to make a reconstruction with errors below the
�� band� We can observe that as the relative mirror velocity increases� the number of sampled
points in the window decreases� causing the reconstruction error to increase as well�

Another characteristic of the top graph of �g���	� is the line structures present� The error
signal is only to �rst approximation linear� a small non�linear component is also present� As a
consequence� as the window on the error signal is opened� a �xed number of points can distribute
themselves in di�erent ways� giving rise to di�erent results and generating these line structures�

The reader can also observe the presence of scattered events with errors well above ��� These
events correspond to a power build�up inside the recycling� As the power increases� the error
signal changes as well� this can be seen from the plot shown in �g�����
�� One way to improve the
reconstruction is to consider events for which the value of the stored power is either above or below a
certain value� Since the crossings of both dark fringe as well as recycling resonance are uncommon�
we only considered events with d dc� below a threshold� For �g�����
�� by considering only the dark
fringe crossings with d dc� � �W � �� of all the events are discarded and the reconstructed procedure
improves� as can be seen in the bottom graph of �g���	��

Fig���	� also shows how well the analysis procedure reconstructs the velocity by comparing
the mean true velocity with the reconstructed value� It is also useful to compare the reconstructed
value with the vtrue value at the moment the �� procedure ends� The acting procedure will use
the reconstructed value to determine the pulse amplitude� and for this reason it is helpful to know
by how much the reconstructed value is o� the instantaneous value� Fig����
� shows the result of
the error

error �
vtrue � vrecon

vtrue
�����

plotted as a function of vtrue� neglecting all the events with d dc� � �W � As expected� for low
velocities the reconstruction error is greater with respect to the case where vtrue was used� This
can be explained by the fact that the �� procedure gives an estimate of the mean velocity� The
di�erence between the �nal velocity and the mean value increases as the velocity decreases�

Signal digitization

Both �g���	� and �g����
� show how the analysis procedure reconstructs the velocity� However�
they do not take into account the signal digitization process performed by the ADCs� The phases
of the acquisition of lock and the linear lock regime di�er� in the linear regime� the photodiode
signals do not change much from the values

d dc� � �W �����

d dc� � ��

W �AR � ��

j d ph� j � �W

���



CHAPTER 
� LOCK ACQUISITION STRATEGY

Figure 	�
� The error for the reconstruction of v
l� In top graph� �vtrue � vrecon��vtrue is
plotted as a function of vtrue� where vtrue is the mean velocity value taken over
the time the window on the error signal is open� The bottom graph shows again
�vtrue � vrecon��vtrue as a function of vtrue but only the reconstructed events with
d dc�  �W are considered�

��




��� THE CITF LOCKING STRATEGY

Figure 	���� The error for the reconstruction of v
l� The error �vtrue� vrecon��vtrue is plotted
as a function of vtrue� where vtrue is the velocity at the time the 	� procedure
ends� Only the reconstructed events with d dc�  �W are considered�
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Figure 	���� The error for the reconstruction of v
l with the use of �� bit ADCs� The error
�vtrue � vrecon��vtrue is plotted as a function of vtrue� Only reconstructed events
with a number of sampled points N � �� are considered�

and the ADCs are adapted so as to operate for these values� On the other hand� in the lock
acquisition phase� the value of the photodiode signals can change by as much as � orders of
magnitude� as is shown in �g����	� and �g�����
�� In particular� we observe that these values are
in the ranges

d dc� � � �
 �
�� � �
 �W �����

d dc� � � �
 �
�� � ��

 �W �AR � ��

j d ph� j � � �
�� � � �W

In this case� the ADC dynamic may not be high enough to allow the observation� with precision�
of the full excursion of signals� from their lowest to their highest value� In the acquisition of
lock phase� d dc� and d dc� will often have low values� therefore by amplifying them we improve the
precision in this phase�

Assuming a n � �� bit ADC sampling photodiode signal d� then the digitized signal y can be

�





��� CONCLUSION

written as

y � A � d � �
n

r
� x ����

where A is an ampli�cation� r is the ADC range and x is a random variable simulating the ADC
noise� By setting the range to r � �
V and assuming a noise of x � � count RMS� then �g������

shows the reconstruction results with A � �

 for d dc� � A � � for d dc� and A � �

 for d ph� � From
the top graph of the �gure� we notice that there are many events with large reconstruction errors�
By considering reconstructions with more than �
 sampling points� about �
� of all the events
are discarded but the error is limited to within �
�� to be compared with the value of about ���
relative to the case without ADCs ��g����
���

Dark Fringe acting procedure

Just as for the VIRGO Fabry�Perot� the procedure consists of an iteration between velocity
reconstruction and pulse application� Once the reconstructed velocity is below threshold� the
linear feedback is enabled�

Stored Power

The monitoring of the recycling resonance begins once dark fringe is locked� A trigger monitoring
one of the two transmitted beams� set to �
mW � enables the analysis procedure by using d qu� �
Just as for dark fringe� the acting procedure sends pulses to M� so as to damp its motion with
respect to the free end mirror and the linear feedback is enabled when appropriate�

���� Results

Fig����� � ���� show the results of one ��
 s simulation run with �l � 
��� lr � 
�� and a pulse
width �t � �
ms� The algorithm uses the ADC signals� described in the previous section� to
reconstruct the velocities whereas the linear feedback reads the photodiode error signals directly�
The algorithm was enabled at t � ��� s and stood by for the �rst dark fringe crossing� At
t � ������ s� dark fringe was crossed and a train of pulses was sent to M� as shown in the top
graph of �g������� The e�ect of these pulses is shown in the middle and bottom graph of the
�gure� where �l and v�l are plotted as a function of time� Once the velocity was damped� the
dark fringe linear feedback was enabled on M�� Less than a second was taken for the control�

Once the feedback of dark fringe was on� the monitoring of the recycling began� A resonance
was crossed at t � ������ s� and from the top graph of �g������ the reader can observe that �
pulses were sent toM� before the linear servo was enabled� The middle graph plots lr as a function
of time whereas the bottom graph its velocity vlr � Again� less than a second was taken to achieve
control� The plots of d dc� and d dc� as a function of time are shown in the top and bottom graphs
of �g������� In total� about 
�� s were necessary to guide the CITF into lock�

In a set of � simulation runs� where in each the algorithm was enabled at arbitrary times�
the non�linear control system failed to guide the CITF into lock only once� In other words� the
feedbacks were enabled but no lock was achieved� The remaining � runs gave a mean time of lock
acquisition of the order of one second�

��� Conclusion

A simple method to guide the CITF into lock was here presented and simulated� By monitoring
the digitized signals from photodiodes �� � and �� it was possible to reconstruct the time evolution
of �l and lr� Once the reconstruction succeeded� an iterative application of reconstruction and
pulse application damped the mirrors� relative motion� facilitating the acquisition of control by
the linear feedback� An improvement of acquisition times of more than one order of magnitude
was observed with respect to relying solely on the linear feedback�
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Figure 	���� Results from a simulation run� The algorithm was enabled at t � ��� s� Top
graph
 the forces sent to mirror M� as a function of time� Middle graph
 �l as
a function of time� Bottom graph
 v
l as a function of time� In this case� about
�� s were necessary for the control�
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��� CONCLUSION

Figure 	���� Results from a simulation run� The algorithm was enabled at t � ��� s� Top
graph
 the forces sent to mirror M� as a function of time� Middle graph
 lr as a
function of time� Bottom graph
 vlr as a function of time� Less than one second
was necessary for the algorithm to acquire complete control of the CITF�
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CHAPTER 
� LOCK ACQUISITION STRATEGY

Figure 	���� Results from a simulation run� The algorithm was enabled at t � ��� s� Top
graph
 d dc� as a function of time� Bottom graph
 d dc� as a function of time�
Control of the CITF is achieved at about ����� s
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Conclusion

This thesis presented a simulation study for the control of the CITF that focused on the problem
of autoalignment and lock acquisition�

The �rst step in the problem�solving approach consisted in the study of the CITF optical
response to

� longitudinal mirror displacements� with particular attention to the non�linear regime�

� angular mirror displacements once the CITF is in the locked regime�

It was shown� both analytically and numerically� how the ratio of photodiode signals can be used
for the reconstruction of the microscopic arm length di�erence �l and of its time derivative v�l
once all mirrors move freely� By numerically simulating the mirrors� free motion and the CITF
optical response� we were able to observe the performance of the reconstruction procedure with
and without the digitization process introduced by ADCs with errors within a few percent for the
former� and below �
� for the latter�

The study on the optical response also showed that the longitudinal modulation frequency
"��� � c��lr can be used for the CITF alignment if an arm asymmetry is present� We were able
to set up a routine� based on a �� minimization procedure� capable of reading the error signals
from quadrant photodiodes and reconstructing the mirrors� misalignments� By simulating the
angular mirror motions and the CITF optical response� we were able to reconstruct each mirror
misalignment using the error signals of  quadrant photodiodes�

The angular reconstruction scheme was then implemented in a control system for the CITF�
It was shown that only the marionetta can be used� Furthermore� the piloting of the mirror
from the steering �lter requires a very good knowledge of the transfer function in question if
the bandwidth of the system is to be limited to within some tens of Hz� By assuming a good
knowledge of this transfer function� a �lter has been designed for the autoalignment capable of
attenuating the angular �uctuations down to the �
��rad RMS as required by the coupling laser
jitter�misalignment�

The mode�cleaner prototype MC�
 was introduced in order to comprehend the process of lock
acquisition by a linear control system� The rotation of the laser beam polarization state allowed
the study of this process for two di�erent �nesse values� F � �

 and F � ��

� We concluded
that� for a given spectral amplitude displacement noise� the lock acquisition times depend on

� the �nesse F �

� the bandwidth of the linear control system�

In particular� it was shown how� for F � �

 and for a control bandwidth B � �

Hz� the non�
linear components of the Pound�Drever error signal played a positive role in the process and short
acquisition times were observed in both simulation and measurement� The case with F � ��

 and
the same control bandwidth of B � �

Hz was also studied� As expected� longer acquisition times
were observed� both in simulation and in experiment� due to negligible non�linear components of
the error signal� In this case� we de�ned a threshold velocity below which acquisition of lock is
possible�

��



CONCLUSION

During the study of the MC�
 prototype with F � ��

� a phenomenon was observed on
the transmitted DC power� referred to as the ringing e�ect� This e�ect was here studied and
simulated� The simulation outputs allowed us to �t measurements and estimate from them the
cavity �nesse as well as the mirrors� relative velocity during the resonance crossing� It was also
observed how the position of the oscillations� minima and maxima depend� to �rst approximation�
on the cavity expansion and not on the �nesse value� An empirical formula was then presented
capable of determining the relative velocity from the positions of the oscillations� minima and
maxima� This chapter�s results may be useful for a possible acquisition of lock algorithm relative
to VIRGO�s mode�cleaner prototype�

The study of the acquisition of lock was addressed again by extending it to the case of the CITF
with a control system bandwidth set to �
Hz� We argued that the expected acquisition times
were of the order of � �

 s and an algorithm� using the ratio of photodiode signals� was presented
in order to aid the control system to achieve lock� It consisted of an iterative procedure of velocity
reconstruction and pulse application to damp the relative mirror motion to within the velocity
threshold value� Once this was achieved� the linear feedback was enabled� These procedures were
�rst applied to one end mirror for the control of dark fringe and then to the recycling mirror for
the control of the in�cavity stored power� A numerical calculation simulated the algorithm� the
mirrors� motion� the optical response and the ADCs� process� As a result� acquisition times of the
order of one second were observed�

We would like to conclude that the alignment scheme� as well as the algorithm for lock ac�
quisition� both described in this work� have been adopted as reference solutions for the VIRGO
Central Area Interferometer�
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Appendix A

Control Systems

This section outlines the basics of feedback control� The notions here presented are necessary for
the understanding of Ch���� and Ch���� Both ���� ��� o�er a good introduction to the subject�

In Ch����� the concept of transfer function was brie�y introduced to describe the dynamical
behaviour of a mechanical system such as a pendulum� it relates the input signal to the output
signal of the system� In principle� any mechanical� electrical or even optical system can be described
by a transfer function�

A control system may consist of a number of components� each of which can be described by
a transfer function�

It is common to use block diagrams to show the functions of each component� how they are
connected to each other and the �ow of signals� For the case of a simple pendulum� shown in

0

x (s)0

ω0
2

ω0
2

x (s)
P(s) = 

T

l
θ

0x (t)

x(t)

Fg

x(s)

x(s) = P(s)

s + 2

Figure A��� The pendulum system and its block diagram representation�

�g��A��� together with its block diagram representation� the output signal x�s�� describing the
mass position� is found by multiplying the input signal x��s�� describing the suspension point
position� by the transfer function P �s� of the mechanical system in question� The block diagram
then gives a pictorial representation of the system� Such representation facilitates the study of the
control system�

A system that maintains a prescribed relationship between the output and the input by com�
paring them and using the di�erence as a means of control is called a feedback control system�
often referred to as closed�loop control system� Fig��A��� shows an example of a block diagram of
a closed�loop system� The output c�s�� after being multiplied by H�s� is fed back to the summing
point� where it is compared to the reference input r�s�� The closed�loop nature of the system is
clearly indicated by the �gure� The output c�s� is obtained by multiplying the transfer function
G�s� by its input e�s�� Any linear control system may be represented by a block diagram similar
to the one shown in this �gure� consisting of blocks� summing points and branch points�

The main properties of a control system� such as its stability� harmonic response and behaviour
in any regime can be studied with the aid of �see �g��A����
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c(s)
G(s)

H(s)

+
-

e(s)r(s)

b(s)

Figure A��� The block diagram of a closed�loop system�

� the open�loop transfer function� de�ned as the ratio of the feedback signal b�s� to the reference
r�s��

Open�Loop Transfer Function � b�s�

r�s�
�A���

� G�s�H�s�

when b�s� is disconnected from the summing point

� the closed�loop transfer function� relating the output c�s� with the input r�s� as

Closed�Loop Transfer Function � c�s�

r�s�
�A���

�
G�s�

� � G�s�H�s�

A�� The Stability Criteria

The stability of a closed�loop system can be determined from the location of the poles� of the
closed�loop transfer function in a plane where the axes are the real and imaginary parts respec�
tively� If any of these poles lie in the right half�plane� then with increasing time they give rise
to the dominant mode� and the time response increases or oscillates with increasing amplitude�
This represents an unstable system� Therefore� closed�loop poles in the right half�plane are not
permissible in the usual linear control system� If all closed�loop poles lie to the left half�plane� any
transient response eventually reaches equilibrium�

The Nyquist criterion o�ers an e�ective aid to the study of the stability of a closed�loop system
once the open�loop transfer function is known� It refers to the polar diagram of the function

G�s�H�s� �A���

for values of j s j ranging from �	 to 	� According to ����� the Nyquist criterion is phrased as
follows�

� Nyquist stability criterion� if the open�loop transfer function G�s�H�s� has

i� neither poles nor zeros on the imaginary axis�

ii� k poles in the right half�plane�

iii� and limjsj�� G�s�H�s� � constant�

�By poles we mean the roots of the function	s denominator while by zeros the roots of the numerator�

�
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then for stability the G�s�H�s� locus� as j s j varies from �	 to 	� must encircle the ��
point k times in the counterclockwise direction�

The polar diagram of the open�loop transfer function is of great help for the design of a closed�loop
system�

A rule of thumb for loop stability is a ��s behaviour for the amplitude of the open�loop transfer
function at the unity gain frequency� �UGF��

A�� Design Speci	cations

Not only must the control system be stable but it must also be conceived so as to ful�ll speci��
cations on the sensitivity to parameter variations and on the attenuation of noise sources present
anywhere along the chain� Above all� the overall loop gain in closed�loop as well as the bandwidth
of the control must be chosen accordingly�

The closed�loop transfer function� de�ned as

G��s� � G�s�

� � G�s�H�s�
�A���

must be such that� in a given bandwidth�

j G��s� j � � �A���

where the bandwidth in question is de�ned as the angular frequency �f for which the amplitude
of j G���f � j is � db� less than G��
�� If the open�loop transfer function G�s�H�s� is chosen so
that

j G�s�H�s� j �� � �A���

then eq��A��� can be approximated as

G��s� � G�s�

� � G�s�H�s�
�A���

� �

H�s�

independently of any variation in G�s��
In conclusion� the choice on the open�loop transfer function must be such that in a chosen

bandwidth� the control system is able to limit the excursion values of the error function e�s� to
the given speci�cations�

A�� Amplitude and Phase Margin

Once the control system in question satis�es the stability criteria� it is also possible to quantify
the margin of stability� It is clear that the farther the G�s�H�s� locus is from the critical point ���
the less sensitive the system is to instabilities� Two parameters can quantify the relative stability
of a feedback system�

�� the Amplitude Margin MA�
the inverse of the amplitude j G�i ��H�i �� j at the angular frequency � corresponding to
the condition

arg�G�i ��H�i ��� � �� �A��

�The frequency for which the amplitude of the open
loop transfer function is ��
�A gain of A can be expressed in B db with the formula B � � log��A�
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�� the Phase Margin MP �
the angle di�erence between the phase arg�G�i ��H�i ��� for which

j G�i ��H�i �� j � � �A�	�

and the angle ���
A general rule indicating the good behaviour of the control system is

� � MA � � �A��
�

��o � MP � �
o
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