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0.1. FOREWORD 1

0.1 Foreword

This thesis is concerned with extending the idea of geodesic completeness
from Riemannian (or pseudo-Riemannian) context to the framework of com-
plex geometry: we take, however a completely holomorphic point of view;
that is to say, a ’metric’ will be a (meromorphic) symmetric section of the
twice covariant holomorphic tensor bundle. Moreover, the use of smooth
objects will be systematically avoided.

We shall hint at the need of reformulating some aspects of the theory of
differential equations in the complex domain, originating in the interpenetra-
tion betwixt differential and algebraic aspects when analytical continuation
is pursued.

As one could expect, the notion itself of path should be reformulated: a
section will be devoted to bring forward a deeper discussion of this point of
view, whilst we now confine ourselves to remarking that geodesics, and, more
generally, paths, will be defined on Riemann surfaces which are domains over
regions in the complex plane. In other words we adopt the point of view
according to which a curve is an analytical continuation of an (initial) germ.

Of course,even in this broader context, geodesics will be eventually de-
fined to be auto-parallel paths, but we are urged to focus our attention on
the fact that the Levi-Civita connection will be meromorphic if the metric
from which it is induced is allowed to have poles or even simply to lower
somewhere in its rank.

We shall study rather more deeply a class of manifolds, namely warped
products of Riemann surfaces; some hypotheses concerning their metrics
will be done, but we shall show that the range of applicability of the yielded
completeness theorems will not be exceedingly restricted.
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1.1 Introduction and main definitions

We begin this section by fathoming analytical continuation techniques when
applied to (initially holomorphic) functions defined on ’regions’ (i.e. con-
nected open sets) in the extended complex plane P

1 and taking values in
arbitrary complex manifolds.

The definition of holomorphy in this framework is well known, and quite
natural; the same holds for the treatment of the ’multi-valuedness’ of analyt-
ical continuations, which leads us to functions defined on Riemann surfaces
over open sets in P

1.
The situation is very different if we think of meromorphic functions,

indeed there is no canonical way to ’divide’ points in general complex man-
ifolds; analogous warning should be kept into account if we are concerned
with generalizing essential singularities, thought of as points ’at’ which an-
alytic functions admit Laurent expansions with infinite order characteristic
part.

Therefore, we have made the choice of focusing our attention on the
following two facts:

(1) approaching a pole, a (complex-valued) analytic function ’tends to
infinity’, that is to say, every complex number is eventually left out of
the images of decreasing neighbourhoods of the pole itself; conversely,
holomorphic functions in a punctured disc D \ {p} sharing the above
property, must have, by Picard’s theorem, a pole at p.

(2) Approaching an essential singularity, a (complex-valued) analytic
function comes arbitrarily near any complex number (note that this is
a weaker statement than Picard’s theorem); the converse is also true,
again by Picard’s theorem.

We manage to adapt all that to functions taking values in higher dimensional
manifolds: the only new feature we introduce is allowing some ’components’
to be in fact holomorphic near a singularity in the domain of definition.

Definition 1.1 Let M be a connected complex manifold, S a Riemann
surface, Σ a discrete subset of S, F ∈ O(S \ Σ,M ) and p ∈ Σ; moreover
let {Vk}k≥K be a sequence of decreasing open neighourhoods of p in S,
making up a fundamental system of neighbourhoods of p itself, such that
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⋂
k≥K Vk = {p}. We shall consider the sequences {Vk}k≥K and {Vk}k≥L

equivalent if K ≥ L.
Then p is

• a removable singularity for F if F itself is analitycally continuable
up to p;

• a pole for F if there exist:

– an open set Ω ⊂ M ;

– complex submanifolds N ⊂ Ω and P ⊂ Ω

such that

– dim(P ) ≥ 1;

– Ω and N × P are biholomorphic;

– for every k, F (Vk \ {p}) ⊂ Ω;

– pr1 ◦ F : Vk −→ N has a removable singularity at p;

–
⋂

k=≥K pr2 ◦ F (Vk) = ∅.

Here pr1 and pr2 are the canonical projections of the cartesian product
N × P on its factors.

• an essential singularity for F if there exists a n-dimensional complex
submanifold (1 ≤ n ≤ m) N ⊂ M such that

⋂∞
k=1 F (Vk \ {p}) = N .

Definition 1.2 A function F : S −→ M is meromorphic provided that
its only singularities in S are isolated poles.

If M = C
m, then definition 1.1 is in fact a classification of isolated sin-

gularities: by Riemann’s uniformization theorem, the universal covering
π : Σ −→ S of S is such that Σ is a region of the extended complex plane:
let {ql}l∈L be the set of all preimages of p, where L is a suitable index set; for
each l ∈ L, let Dl be a neighbourhood of ql such that π|Dl

is biholomorphic.
Then, for each l ∈ L, the m component functions

Φkl = prk ◦ F ◦ (π|Dl
)−1 , k = 1...m,
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are holomorphic on the punctured disc Dl\{ql}, hence, if p is not a removable
singularity, each Φkl admits a Laurent development around ql.

Depending now on there being some or no infinite-order principal parts
amongst all these developments, then p will be an essential singularity or a
pole.

If M is a more general complex manifolds, we can only affirm that
the three types of singularities enumerated in definition 1.1 are mutually
exclusive.

If F has singularities only like in definition 1.1, we shall say that F
is analytic with isolated singularities (or, shortly, ’analytic’: note the
difference with ’holomorphic’) on S and denote the space of such functions
by the symbol AΣ(S, M).

Definition 1.3 Let M be a connected complex manifold:

• a path element in M , a M -valued holomorphic mapping el-
ement, or even simply a M -valued function element is a pair
(U, f), where U is a connected open set in P

1 and f a holomorphic
function defined on U and taking values in M ;

• a z0-starting path element in M , a z0-starting holomorphic
mapping element, or a z0-starting function element in M is a
triple (z0, U, f), where U is a connected open neighbourhood of z0 ∈
C

N and f a holomorphic function defined on U and taking values in
M ;

• a germ f z0
of holomorphic mapping at z0 is an equivalence class of

z0-starting path elements, with respect to the equivalence relation of
coinciding within a neighbourhood of z0.

Definition 1.4 Two M -valued holomorphic mapping elements (U, f) and
(V, g) are connectible if there exists a finite sequence

(U0, f0) , (U1, f1) , .... (Un, fn)

such that

• (U0, f0) = (U, f), (Un, fn) = (V, g);
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• for every j = 0, ...., n − 1, there holds

{
Uj

⋂
Uj+1 6= ∅

fj+1|Uj

⋂
Uj+1

= fj|Uj

⋂
Uj+1

.

Two M -valued z0-starting holomorphic mapping elements (z0, U, f) and
(z0, V, g) are connectible if so are (U, f) and (V, g); two germs of holomor-
phic mappings M are connectible if they admit two connectible represen-
tatives.

Remark 1.5 We shall also say that any two objects in definition 1.4 are
connectible when they spot two connectible holomorphic function elements.

Definition 1.6 A standard analytical continuation (resp. a regular
analytical continuation) of a M -valued path element (U, f), or of a z0-
starting path element (z0, U, f) is a quintuple

QM = (S, π, j, F, M) ,

where

• S is a connected Riemann surface over a region of the extended com-
plex plane P

1;

• π : S −→ C is a nonconstant holomorphic mapping (resp. an every-
where maximum-rank holomorphic mapping) such that U ⊂ π(S);

• j : U −→ S is a holomorphic (hence open) immersion such that π◦j =
id|U ;

• F : S −→ M is a holomorphic mapping such that F ◦ j = f .

An analytical continuation of a germ is an analitycal continuation of
any one of its representatives: of course, this definition does not depend on
the choice of the representative.

Since each standard analytical continuation fails to be regular at most
at a discrete set, we could see it as a regular analytical continuation plus
some points p′s. Due to the fact that π is not regular at each p, there is no
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function element containing π(p) which could be connected with the other
ones; notwithstanding, F may be holomorphically extended at p.

Every function element (U, f) admits at least the trivial analytical con-
tinuation

(U, idU , idU , f, M) ,

which may be identified with (U, f) itself; we shall also say that the function
element (W,h) is a (regular) analytical continuation of (U, f) provided that
so is (W, idW , idW , h, M), or, in other words, if W ⊃ U and h|U = f .

Definition 1.7 Let γ : [0, 1] −→ P
N be an embedded rectifiable analytic

arc such that γ(0) = z0: then a regular analytical continuation of a
germ f z0

of holomorphic mapping along γ (resp. along γ|[0,1)) is a regu-
lar analytical continuation (S, π, j, F, M) such that π(S) ⊃ γ([0, 1]) (resp.
π(S) ⊃ γ([0, 1)) ).

Definition 1.8 A morphism between two analytical continuations

QM = (S, π, j, F, M ) ; Q′
M = (S ′, π′, j′, F ′,M )

of the same element (U, f) is a holomorphic mapping h : S −→ S ′ such that
h ◦ j = j′.

Remark 1.9 A morphism between two analytical continuations is a non-
constant (in particular open) mapping, uniquely determined on j(U), hence
everywhere on S, by j′◦j−1. Moreover, there holds π′◦h = π and F ′◦h = F
on j(U), hence everywhere on S.

The only existing morphism betwixt one analytical continuation and
itself is the identity mapping; the composition of two morphisms is still
a morphism; if a morphism admits a holomorphic inverse mapping, this is
again a morphism: in such a case we talk about isomorphisms of analytical
continuations. A morphism h transforms a Riemann domain S into a ’larger’
one if h is injective, or into a less sheeted one on U than S otherwise.
Therefore, going forward along morphism we should find larger and larger
analytical continuations, or less and less branched ones.

Definition 1.10 A continuous mapping f : X −→ Y (X and Y T2 topo-
logical spaces) is proper provided that:
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(a) it is closed;

(b) for every y ∈ Y , p−1(y) is compact.

We recall that the above definition implies that, for every compact set K ⊂
Y , p−1(K) is compact.

Definition 1.11 A Riemann domain over a region of C
N is a pair (R, p)

consisting of a complex manifold R and of a everywhere maximum-rank
holomorphic mapping p : R −→ C

N ;

• R is proper provided that so is p;

• R is finite provided that
{

p is proper
for every Z ∈ C

N , p−1(Z) is a finite set.

Note that there does not necessarily hold p(R) = C
2: we shall sometimes

talk about the Riemann domain R, understanding the projection mapping
p.

Definition 1.12 A regular analytical continuation of a M -valued
holomorphic mapping element (U, f), or of a M -valued z0-starting holo-
morphic mapping element (z0, U, f) is a quintuple

QM = (S, π, j, F, M) ,

where

• S is a connected Riemann domain over a region of C
N ;

• π : S −→ C is an everywhere maximum-rank holomorphic mapping
such that U ⊂ π(S);

• j : U −→ S is a holomorphic immersion such that π ◦ j = id|U ; this
implies that j is an open mapping;

• F : S −→ M is a holomorphic mapping such that F ◦ j = f .

An analytical continuation of a germ is an analitycal continuation of
any one of its representatives.
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1.2 The regular Riemann surface of an ele-

ment

Definition 1.13 A regular analytical continuation

Q̂M =
(
Ŝ, π̂, ĵ, F̂ , M

)

is the regular Riemann surface, or the maximal regular analytical
continuation of the element (U, f) if for every regular analytical continu-
ation QM = (S, π, j, F, M) of (U, f) there exists a morphism h : S −→ Ŝ.

Two regular Riemann surfaces of the same function element must be isomor-
phic, since they admit morphism one into each other, hence the maximal
regular analytical continuation of a function element is unique up to iso-
morphisms.

Theorem 1.14 Every path element (U, f) admits a regular Riemann sur-
face.

Proof: let

• U = {(Ui, fi)}i∈I be the class of all mapping elements connectible with
(U, f);

• S0 =
∐

i∈I Ui as a topological space;

• π0 : S0 −→ P
1 defined by setting π0 =

∐
i∈I id|Ui

;

• j0 : U −→ S0 the natural immersion;

• F0 =
∐

i∈I fi.

Let’s introduce an equivalence relation in S0: z1 ∈ Ui1 and z2 ∈ Ui2

are told to be equivalent if and only if π0(z1) = π0(z2) and fi1 = fi2 in a
neighbourhood of π0(z1) = π0(z2) in Ui1

⋂
Ui2 .

Name Ŝ the quotient space and q : S0 −→ Ŝ the quotient mapping: a
basis for the topology of Ŝ is yielded by the family [Ui] = {q (ui)}. Now
define
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• ĵ : U −→ Ŝ by setting ĵ = q ◦ j0;

• π̂ : Ŝ −→ P
1 by setting π̂ (q(z)) = π0(z);

• F̂ : Ŝ −→ M by setting F̂ (zi) = fi (zi).

The above mappings are well defined and continuous; the topological
space Ŝ is Hausdorff: indeed if q (zi) 6= q (zj) and π0 (zi) = π0 (zj), consider
a connected neighbourhood V of π0 (zi) = π0 (zj), such that fi and fj are
defined and different on V .

Let Vi and Vj be the disjoint copies of V in Ui and Uj in S0: we claim that
q (Vi)

⋂
q (Vj) = ∅. Indeed, if there were two points wi ∈ Vi and wj ∈ Vj with

q (wi) = q (wj) it would be fi = fj in a neighbourhooud of π0 (wi) = π0 (wj),
hence in V , which is a contradiction.

The space Ŝ is connected, since for every pair of points p1 ∈ [U ′] and
p2 ∈ [U ′′], there exists a chain K = {Ui0 , Ui1 .....Uin} of nonempty connected
open sets such that:

• for every k = 0, ...., n − 1, Uik

⋂
Uik+1

6= ∅;

• K connects Ui0 = U ′ with Uin = U ′′.

Hence the open set [Ui0 ]
⋃

· · ·
⋃

[Uin ] is connected and contains p1 and

p2. Since q is a local homeomorphism between Ui and q (Ui), the space Ŝ is
a connected topological surface; since also π̂ : Ŝ −→ P

1 is a local homemor-
phism, then by Poincaré-Volterra’s theorem, Ŝ is second countable too.

Now consider the atlas

{(
[Ui], π̂|[Ui]

)}
i∈I

:

it defines a complex structure on Ŝ, since for every couple of overlapping
charts ([Ui], [Uj]), the transition mapping π̂|j ◦ π̂|−1

i is the identity mapping
on an open subset in Ui

⋂
Uj.

By construction, the mappings π̂, ĵ, F̂ are holomorphic with respect to
this structure, hence Q̂M =

(
Ŝ, π̂, ĵ, F̂ , M

)
is a regular analytical contin-

uation of (U, f).
Now we turn to show that Q̂M is maximal, or which is the same, it

is the regular Riemann surface of (U, f). Let QM = (S, π, j, F, M ) be any
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regular analytical continuation of (U, f), V any open set in S such that π is

an immersion of V in π (V ): then the pair
(
π(V ), F ◦ π|−1

V

)
is a holomorphic

mapping element which may be connected with (U, f); define hV : V −→ Ŝ
by setting hV = q ◦ π|V .

If V ′ is another open set sharing the properties of V , there holds hV = hV ′

on V
⋂

V ′, hence the definition of h on V may be extended to S, since an
open covering of S by open sets like V may be found; finally, h is holomorphic
and h ◦ j = ĵ.

Corollary 1.15 Every germ of holomorphic mapping admits a maximal
regular analytical continuation.



1.3. OTHER RIEMANN SURFACES OF A PATH ELEMENT 15

1.3 Other Riemann surfaces of a path ele-

ment

1.3.1 Superstructural singularities

Let now
Q̆M =

(
S̆, π̆, j̆, F̆ , M

)

be a one dimensional regular maximal analytical continuation of the element
(U, f).

Definition 1.16 A superstructural singularity p of Q̆M is a decreasing

sequence of open sets {Vk}k≥K ⊂ S̆ such that there exist a positive integer
n and a point z0 ∈ P

1, (z0 = z0(p)) depending on p, such that:

• (SPS1) for every k ≥ K Vk is a connected component of

π̆−1
(
D

(
z0,

1

k

)
\ {z0}

)
;

• (SPS2) for every k ≥ K

π̆|Vk
: Vk −→

(
D

(
z0,

1

k

)
\ {z0}

)

is a n-sheeted covering;

• (SPS3)
⋂

k≥K

Vk = ∅

We consider the sequences {Vk}k≥K and {Vk}k≥H equivalent if H ≥ K and
say that they spot the same superstructural singularity in

Q̆M =
(
S̆, π̆, j̆, F̆ , M

)
.

Definition 1.17 The superstrucural completion of S̆ is

S̃ = S̆
⋃ {

superstructural singularities of
(
S̆, π̆, j̆, F̆ , M

)}

as a set, endowed with the following topology: open sets should be the open
sets in S̆ and a fundamental neighbourhood system of a superstructural
singularity p{Vk}k≥K

∈ S̃ \ S̆ should be yielded by the sets Ṽk = Vk
⋃{p}.
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Set now (see definition 1.16)

π̃(s) =

{
π̆(s) if s ∈ S̆
z0(s) if s is a superstructural singularity.

Lemma 1.18 S̃ is a connected Riemann surface.

Proof: if we endow S̃ with the above topology, S̆ is dense in S̃, hence S̃ is
connected too. Moreover S̃ is Hausdorff, because if p ({Vk}) and q ({Wk})
are different superstructural singularities, and π̃(p) 6= π̃(q), then

D
(
π̃(p),

1

k

) ⋂
D

(
π̃(q),

1

k

)
= ∅

if k is large enough, hence Ṽk
⋂

W̃k = ∅; if, instead, π̃(p) = π̃(q) = z0, since

Vk and Wk are different connected components of π̆−1
(
D

(
z0,

1
k
\ {z0}

))
,

then Vk
⋂

Wk, hence Ṽk
⋂

W̃k = ∅ too.
The n-sheeted covering

π̆|Vk
: Vk −→ D

(
z0,

1

k

)
\ {z0}

is equivalent to the covering

ℓ : D


0,

n

√
1

k


 \ {0} −→ D

(
z0,

1

k

)
\ {z0}

defined by setting ℓ(z) = zn + z0, in the sense that there exists a homeo-
morphism

g : D


0,

n

√
1

k


 \ {0} −→ Vk

such that π̆ ◦ g = ℓ. Then each Ṽk is homeomorphic to a disc by means of
the homeomorphism

g̃ : D


0,

n

√
1

k


 −→ Ṽk

defined by setting {
g̃(z) = g(z) if z 6= 0
g̃(0) = p,
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thus S̃ is a topological surface.
Now let’s introduce a complex structure on S̃: if A is the complex struc-

ture of S̆, the family

Ã = A
⋃ {(

Ṽp,k, g̃
−1
p,k

)}
p∈S̃\S̆,k≥Kp

defines a complex atlas on S̃ which makes it into a Riemann surface.

Remark 1.19 By construction, the mapping π̃ : S̃ −→ C is holomorphic;
moreover, if j̃ : U −→ S̃ is the canonical immersion j̆ of U in S followed by
the identity mapping id : S̆ −→ S̃, j̃ is holomorphic too.

Definition 1.20 A superstructural singularity of Q̆M =
(
S̆, π̆, j̆, F̆ , M

)

is

• (RMS) a removable singularity for F̆ if there exists η ∈ M such

that
⋂

k F̆ (Vk) = {η};

• (P) a pole for F̆ if there exist:

– an open set Ω ⊂ M ;

– complex submanifolds N ⊂ Ω and P ⊂ Ω

such that

– dim(P ) ≥ 1;

– Ω and N × P are biholomorphic;

– for every k, F̆ (Vk \ {p}) ⊂ Ω;

– pr1 ◦ F̆ : Vk −→ N has a removable singularity at p;

–
⋂

k≥K pr2 ◦ F̆ (Vk) = ∅.

• (ESS) an essential singularity for F̆ if there exists a n-dimensional
complex submanifold (1 ≤ n ≤ m) N ⊂ M such that

⋂∞
k=1 F (Vk) =

N .
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1.3.2 The standard Riemann surface of a path ele-
ment

Definition 1.21 A standard analytical continuation

Q̆M =
(
S̆, π̆, j̆, F̆ , M

)

is the standard Riemann surface, or the maximal standard analyt-
ical continuation of the element (U, f) if for every standard analytical
continuation

QM = (S, π, j, F, M )

of (U, f) there exists a morphism h : S −→ S̆.

Theorem 1.22 Every path element (U, f) admits a standard Riemann sur-
face.

Proof: set

S̆ = S̃ \ {poles and essential singularities of Q̆M };

then S̆ is a dense open subset in S̃, hence it is a connected Riemann surface.
Set π̆ = π̃|S̆, π̃ being defined in remark 1.19 and j̆ = id

Ŝ−→S̆
◦ ĵ; π̆ and j̆ are

holomorphic and π̆ ◦ j̆ = id|U .
Now, for every removable singularity p there exists a point η ∈ M

such that the image of a neighbourhood of p is contained in a local chart
(W, Ψ) around η, hence, by Riemann’s removable singularity theorem, the
holomorphic mapping

Ψ ◦ F̂ ◦ gp,k : D


0,

n

√
1

k


 \ {0} −→ C

could be holomorphically extended up to the point 0, hence F̂ : Vk −→ M

could be holomorphically extended up to p.
Therefore we are able to define a holomorphic mapping F̃ : Ṽk −→ M ,

hence a holomorphic mapping F̆ : −→ M which extends F̂ : Ŝ −→ M .
We claim that Q̆M =

(
S̆, π̆, j̆, F̆ , M

)
is the standard Riemann surface

of the element (U, f). To prove this statement, let QM = (S, π, j, F, M)
be any continuation of (U, f); set

S− = {p ∈ S : π is regular at p}.
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We have that Q−

M
= (S−, π, j, F, M ) is a continuation of (U, f), hence

there exists a morphism h : S− −→ Ŝ.
Pick p0 ∈ S \ S−: we can find a local chart (W, ξ) around p0 such that





ξ : W −→ Cz

ξ(p0) = 0
ξ(W ) = D(0, 1)
π(p) = [ξ(p)]n n ≥ 2 for every p ∈ W.

• At first let’s suppose that for every pair of points p′, p′′ in W we have:

π(p′) = π(p′′) and F (p′) = F (p′′) =⇒ p′ = p′′;

in this case the mapping h : W \ {p0} −→ Ŝ is injective, because for every
p′, p′′ in W with π(p′) = π(p′′) and two neighbourhoods W ′,W ′′ respectively
of π(p′) and π(p′′) such that π(W ′) = π(W ′′) and π|W ′ , π|W ′′ are immersions

on A = π(W ′) = π(W ′′) the two path elements
(
A, F ◦ π|−1

W ′

)
,
(
A,F ◦ π|−1

W ′′

)

are different and without equivalent points in S0 (see the proof of theorem
1.14); therefore h|W is an open immersion of W in Ŝ.

Set W ∗
k = ξ

(
D

(
0, n

√
1
k

)
\ {0}

)
and Vk = h (W ∗

k ) for every k ≥ 1, the

sequence {Vk}k≥1 is a removable singularity in Ŝ.
Indeed,

• (SPS1): there couldn’t exist a connected open set contained in

(π̂)−1
(
D

(
0,

1

k

)
\ {0}

)

and properly containing Vk, since every chain Z1, ...., Zu of open sets
in (π̂)−1

(
D

(
0, 1

k

)
\ {0}

)
such that π|Vj

j = 0, ...., u is an immersion,

with Z1 ⊂ Vk and Zj
⋂

Zj
⋂

Zj+1 6= ∅ j = 0, ...., u − 1, is contained in
Vk;

• (SPS2): this property holds for (Vk, π̂|Vk
) in the same way as for(

W ∗
k , π|W ∗

k

)
;

• (SPS3): if there existed p̂0 in
⋂

k≥1 Vk, then π̂ would be regular at p̂0

and π at p0, which is a contradiction.
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• (RMS) in definition 1.20: the behaviour of F̂ on Vk is the same as that
of F on W ∗

k .

Let p̂0 ∈ S̆ \ Ŝ be the removable singularity spotted by the sequence
{Vk}k≥1; we get a holomorphic extension of h up to p0 by setting h(p0) = p̂0.

•• Instead, if there exist some pairs (p′, p′′) of distinct points in W
with π(p′) = π(p′′) and F (p′) = F (p′′) we can find again a local chart
(W, ξ) around p0 such that ξ(p0) = 0, ξ : W −→ Cz, ξ(W ) = D(0, 1) and
π(p) = [ξ(p)]n n ≥ 2 for every p ∈ W .

Let y = F (p0) and (Z, (Θ1...ΘN)) a local chart around y; maybe
shrinking W , we may suppose that F (W ) ⊂ Z; set E = Fξ−1 and
zmGν(z) = Θν ◦ E(z), with m ∈ N and Gν(z) 6= 0, ν = 1 · · ·N , for every

z ∈ D (0, 1). Set m = l.c.m. (m1 · · ·mN), r = G.C.D. (n,m) and u = e
2πi

r .
Let Ŭ be a (small enough) neighbourhood of 0,

s = min
{
k > 0 ; k|r, Gν

(
ukz

)
= Gν(z), ν = 1 · · ·N, for every z ∈ Ŭ

}

and t = r/s; we claim that, maybe shrinking Ŭ , for every pair (z′) , (z′′) in
Ŭ (

(z′)
n

= (z′′)
n

and E(z′) = E(z′′)
)

⇐⇒
(
(z′)

t
= (z′′)

t
)
.

Indeed, if (z′)n = (z′′)n and E(z′) = E(z′′), then

[Gν(z
′)]

n
=

[Ψν ◦ E(z′)]n

(z′)nmν
=

[Ψ ◦ E(z′′)]n

(z′′)nmν
= [Gν(z

′′)]
n
,

hence, if Ŭ is small enough, we have Gν(z
′) = Gν(z

′′), ν = 1 · · ·N : this
implies ((z′)mν = (z′′)mν ) , ν = 1 · · ·N , thus ((z′)m = (z′′)m).

Set ϑ′ = arg (z′) and ϑ′′ = arg (z′′), then, for suitable a, b ∈ Z,





|z′| = |z′′|
n (ϑ′ − ϑ′′) = 2aπ
m (ϑ′ − ϑ′′) = 2bπ,

hence r (ϑ′ − ϑ′′) = 2eπ, , with suitable e ∈ Z so, (z′)r = (z′′)r, that is to

say z′′ = e
2πki

r z′, with 1 ≤ k ≤ r.
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Perhaps shrinking again Ŭ , the set

I =
{
k ∈ Z : ∀z ∈ Ŭ , ν = 1 · · ·N, Gν

(
ukz

)
= Gν(z)

}

is a subgroup in Z containing r, generated by s, hence r = st.
Let’s shrink Ŭ again, so that, for every k, 1 ≤ k ≤ r and r not multiple

of s, G
(
ukz′

)
= G(z′) =⇒ z′ = 0: then, for every z′, z′′ ∈ Ŭ \ {0} such that

z′ 6= z′′, if G(z′) = G(z′′) and (z′′) = e
2πki

r z′ then k = ps and

(z′′)
t
=

(
e

2πki

r

)stp
(z′)

t
= (z′)

t
.

Vice versa, if (z′′)t = (z′)t, then (z′′) =
(
e

2πki

r

)ps
(z′), so that

Gν (z′) = Gν

((
e

2πki

r

)s
z′

)

= Gν

((
e

2πki

r

)2s
z′

)

= · · · =

= Gν

((
e

2πki

r

)ps
z′

)

= Gν (z′′) (ν = 1 · · ·N).

Thus (z′)n = (z′′)n, hence (z′)m = (z′′)m and E (z′) = E (z′′).
We may suppose Ŭ = D (0, ε), for a suitable real number ε. Consider

ℓ : Cz −→ Cw, defined by setting w = zt and set Ŭ ♯ = ℓ(Ŭ): then the
functions {

π♯ : Ŭ ♯ −→ C

π♯(w) = wn/t

and {
F ♯ : Ŭ ♯ −→ M

F ♯(w) = F ◦ ξ−1(z)

are well defined and holomorphic throughout Ŭ ♯.
Moreover, π◦ξ−1 = π♯◦ℓ and F ◦ξ−1 = F ♯◦ℓ; now let V ⊂ W be an open

set such that π|V is biholomorphic and j = (π|V )−1: then (W,π, j, F, M ) and(
Ŭ ♯, π♯, ℓ ◦ ξ ◦ j, F ♯

)
are analytical continuations of the same path element

(π(V ), F ◦ j), hence their standard Riemann surfaces are the same up to
isomorphism: we shall denote both them by S̆.
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Let h′ :
(
Ŭ ′ \ {0} −→ Ŝ

)
be the natural morphism: since h′ ◦ ℓ = h, it

may be holomorphically extended up to 0, hence h may be holomorphically
extended up to p0.

Corollary 1.23 Every germ of path admits a standard Riemann surface.

1.3.3 The extended Riemann surface of a path ele-
ment

Definition 1.24 Let now

Q̂M =
(
Ŝ, π̂, ĵ, F̂ , M

) (
resp. Q̆M =

(
S̆, π̆, j̆, F̆ , M

))

be the regular, (resp. standard), maximal analytical continuation of the
path element (U, f): the extended Riemann surface (or the extended
maximal analytical continuation) of (U, f) is the quintuple

Q̃M =
(
S̃, π̃, j̃, F̃ , M

)
,

where

• S̃ is the superstructural completion of Ŝ, or, which is the same, of S̆
(see definition 1.17);

• π̃ : S̃ −→ P
1 is the unique holomorphic extension of π̂ (or π̆) to S̃;

• j̃ = id
Ŝ−→S̃

◦ ĵ;

• F̃ = F̆ : S̆ −→ M .

1.3.4 Other features

Lemma 1.25 Let M and N be complex manifolds, G ∈ O (M ,N ) and

(U, f) a path element in M ; if
(
R̃, π

R̃
, j

R̃
, F

R̃
, M

)
is the standard Rie-

mann surface of (U, f) in M and
(
S̃, π

S̃
, j

S̃
, F

S̃
,N

)
is the standard Rie-

mann surface of (U,G ◦ f) in N , then there exists a holomorphic function
h : R̃ −→ S̃ such that π

S̃
◦ ψ = π

R̃
.
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Proof: we should merely note that
(
R̃, π

R̃
, j

R̃
, G ◦ F

R̃
,N

)
is a continuation

of (U,G ◦ f) in N , hence the existence of h is postulated by definition 1.21.
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1.4 Logarithmic singularities

1.4.1 Generalities

This section deals with ’logarithmic singularities’ in analytical continuations,
i.e; points resembling 0 in connection with z 7→ log z: it will turn out that
a complex structure at such ’points’ couldn’t be made up; notwithstanding,
they may be bept into account by introducing a weaker structure.

Definition 1.26 A logarithmic singularity q of a regular maximal an-
alytical continuation Q̂M =

(
Ŝ, π̂, ĵ, F̂ , M

)
of some path element is a

sequence of decreasing open sets {Vk}K≥K of Ŝ such that there exist a point
z0 ∈ P

1, depending on q such that:

• (LS1) for every k ≥ K Vk is a connected component of

π̂−1
(
D

(
z0,

1

k
\ {z0}

))
;

• (LS2) for every k ≥ K and every (real) nonconstant closed path γ :
[0, 1] −→ D(z0, 1/k) \ {z0}, with nonzero winding number around z0,
every lifted path

β : [0, 1] −→ π̂−1 (D(z0, 1/k) \ {z0})

with respect to the topological covering π is not a closed path, i.e.
β(0) 6= β(1);

• (LS3)
⋂

k≥K

Vk = ∅

Of course, even in this case, we consider the sequences {Vk}k≥K and {Vk}k≥H

equivalent if H ≥ K and say that they spot the same logarithmic singularity
in Q̂M =

(
Ŝ, π̂, ĵ, F̂ , M

)
.

Lemma 1.27 Let Q̂M =
(
Ŝ, π̂, ĵ, F̂ , M

)
be the regular Riemann surface

of some path element: then

{logarithmic singulartities}
⋂
{superstructural singularities} = ∅.
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Proof: let b be a superstructural singularity: then, by SPS2 in definition
1.16, there exist:

• a local chart (U, φ) around b with φ(b) = 0;

• a local chart (V, η) around 0, with η(0) = 0;

• an integer N

such that
η ◦ π̂ ◦ φ−1(z) = zN .

Consider now the nonconstant closed path

γ : [0, 1] −→ D(z0, 1/k) \ {z0}

defined by setting γ(t) = φ−1
(
(1/2k)e2πiNt

)
: its winding number around

z0 is N , but the lifted path β : [0, 1] −→ Ŝ defined by setting β(t) =

η
(√

N1/2ke2πit
)

is closed, contradicting (LS2) in definition 1.26, hence b is
not logarithmic.

On the other hand, suppose q is a logarithmic singularity: by (LS2),
π|Vk

couldn’t be a n-sheeted covering, contradicting (SPS2) in definition
1.16, hence q is not superstructural.

Consider now the set B of logarithmic singularities of the regular Rie-
mann surface Q̂M =

(
Ŝ, π̂, ĵ, F̂ , M

)
: set S♯ = Ŝ

⋃
B as a set and introduce

a topology on S♯: open sets should be the open sets in Ŝ and a fundamental
neighbourhood system of a logarithmic singularity q{Vk}k≥K

∈ S♯ \ Ŝ should

be yielded by the sets V ♯
k = Vk

⋃{q}.

Lemma 1.28 S♯ admits no complex structure at q.

Proof: were there one, we could find charts (W , φ) around q and (V, ψ)
around z0 such that

ψ ◦ π ◦ φ−1 (ζ) = ζN

for some integer N > 0.
This fact would imply π|W\{q} to be a n-sheeted covering of V \ {z0},

contradicting, as shown in lemma 1.27, (LS2) in definition 1.26.
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We say that q is a ’boundary’ point because, in the given topology, every
point ’near’ q does admit a complex structure.

Lemma 1.29 π̂ admits a unique continuous extension π♯ to S♯.

Proof: let b ∈ B and {Vk} be the sequence spotting b: define

π♯(q) =
{

π̂(q) if q ∈ Vk

z0 if q = b,

where z0 is the common centre of the discs onto which the V ′
ks are projected.

Now π♯ is continuous at all points in Vk; moreover, for every neighbourhood
G of z0,

π♯ −1(G) ⊃ π♯ −1(z0)
⋃

π̂−1(G \ {z0}),
hence, if we set

H = {b}
⋃

π̂−1(G \ {z0}),
we have that H is a neighbourhood of b in S♯ such that π♯(H) ⊂ G, proving
continuity at b.

Arguing by density, we conclude that this extension is unique.

Definition 1.30 A logarithmic singularity of Q̂M =
(
Ŝ, π̂, ĵ, F̂ , M

)
is

• (RMLS) a removable logaritmic singularity for F̂ if there exists

η ∈ M such that
⋂

k F̂ (Vk) = {η};

• (PLS) a polar logarithmic singularity for F̂ if there exist:

– an open set Ω ⊂ M ;

– complex submanifolds N ⊂ Ω and P ⊂ Ω

such that

– dim(P ) ≥ 1;

– Ω and N × P are biholomorphic;

– for every k, F̂ (Vk \ {p}) ⊂ Ω;

– pr1 ◦ F : Vk −→ N has a removable singularity at p;
⋂

k=≥K pr2 ◦ F̂ (Vk) = ∅.
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• (ELS) an essential logarithmic singularity for F̂ if there exists a
n-dimensional complex submanifold (1 ≤ n ≤ m) N ⊂ M such that
⋂∞

k=1 F̂ (Vk) = N .

Lemma 1.31 For every removable logarithmic singularity r of Q̂M , F̂
admits a unique continuous extension F ♯ to r.

Proof: let {Vk} be any sequence spotting r: set
⋂

k F̂ (Vk) = {η} and define

F ♯(q) =

{
F̂ (q) if q ∈ Vk

η if q = r.

Now π♯ is continuous at all points in Vk; moreover, for every neighbourhood
G of η,

F ♯ −1(G) ⊃ π♯ −1(η)
⋃

π̂−1(G \ {η}),

hence, if we set H = {r}⋃
π̂−1(G\{η}), we have that H is a neighbourhood

of r in S♯ such that F ♯(H) ⊂ G, proving continuity at r.
Arguing by density, we conclude that this extension is unique.

By lemmata 1.27, 1.29 and 1.31, we are allowed to add logarithmic sin-
gularities to the extended Riemann surface Q̃M of a path element, and this
may be done without ambiguity.

1.4.2 Riemann surfaces with boundary

We axiomatize:

Definition 1.32 A quintuple Q♮

M
=

(
S♮, π♮, j♮, F ♮,M

)
, is an analyti-

cal continuation with boundary, or with logarithmic singularities
of the function element (U, f) if there exists an analytical continuation
Q̃M = (S, π, j, F, M ) of (U, f) such that Q̃M and Q♮

M
share the following

properties: S♮ is a Riemann surface with boundary such that int
(
S♮

)
= S,

π admits a unique continuous extension π♮ : S♮ −→ P
1 to S♮, j♮ = idS−→S♮ ◦j

and F admits a unique continuous F ♮ to S♮.
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Definition 1.33 let Q̃M =
(
S̃, π̃, j̃, F̃ , M

)
be the extended Riemann sur-

face of the element (U, f): the extended Riemann surface with bound-
ary, or the extended Riemann surface with logarithmic singularities
of (U, f) is the quintuple Q̃♯

M
=

(
S̃♯, π̃♯, j̃♯, F̃ ♯,M

)
, where

• S̃♯ = S̃∪BR∪BP∪BE is the Riemann surface with boundary associated
with S̃ and BR ∪ BP ∪ BE; moreover

– BR = {removable logarithmic singularities of Q̂M };
– BP = {polar logarithmic singularities of Q̂M };
– BE = {essential logarithmic singularities of Q̂M }

and

• π̃♯ : S̃♯ −→ C is the unique continuous extension of π̃ to S̃♯;

• j̃♯ = id
S̃−→S̃♯ ◦ j̃;

• F̃ ♯ is the unique continuous extension of F̃ to S̃
⋃

BR.



Chapter 2

Ordinary differential equations

in the complex domain

29
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2.1 Fundamentals

The theory of ordinary differential equations in the complex domain is quite
a classical subject: we start by reporting some statements which we shall use
in the following; for further details, the reader is referred to [HIL] or [INC];
we go on by reformulating the basic theory in a more geometrical fashion, in
view of merging these results with the techniques of analytical continuation.
In the following, the bracket symbol with a subscript ([f ]p) will denote the
germ at p of the holomorphic mapping f and, given a germ uv0

at v0, the
uv0

(v0) will denote the common value at v0 of all the representatives u of
uv0

.
Endow now C

n with the maximum coordinate norm:

||W || = ||(w1....wn)|| = max(|wj|).

We state without proof the classical existence and uniqueness theorem of
the theory of ordinary differential equations in the complex domain:

Theorem 2.1 Let the first order N-dimensional Cauchy’s problem

♠
{

W ′ = F (W (z), z)
W (z0) = W0

(2.1)

be given, where (W, z) 7−→ F (W, z) is a mapping of N +1 complex variables,
defined and holomorphic in a (N + 1)-cylinder

∆ = {|w1 − w1
0| ≤ b1.....|wN − wN

0 | ≤ bN , |z − z0| ≤ a}

and taking values in C
N . Assume that

• (A) max∆ ||F (W, z)|| = M ;

• (B) ||F (U, z)−F (V, z)|| ≤ K||U −V || for every (U, z) and (V, z) in ∆.

Define a disc

D = {|z − z0| ≤ r},
where

r < min(a, b1/M.....bN/M, 1/K) :
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then there exists a unique vector valued holomorphic mapping

z 7→ W (z) : D −→ C
N

(such that graph(W ) ⊂ ∆) satisfying 2.1 in a neighbourhood of z0.

Remark 2.2 If N = 1 condition B is automatically fulfilled, since ∂F/∂z
is bounded on ∆; the same holds, for any N , if ♠ is autonomous, i.e. if F
does not depend explicitly on z.

We now reformulate the theory of local solutions of ordinary differential
equations in the complex domain in terms of germs of holomorphic map-
pings: we confine ourselves to first order systems in normal form, without
loss of generality, since every N-th order normal differential equation is in
turn equivalent to a system of N first order equations in normal form.

We start by defining the composition operation of a funcion and a germ:
let Uv0

be a germ of a C
P -valued holomorphic function at v0 ∈ C and S be

a holomorphic function of P complex variables, holomorphic at Uv0
(v0) and

taking values in C
Q; let U be any representative of Uv0

in a neighbourhood
of v0.

Definition 2.3 S ◦ Uv0
= [S ◦ U ]v0

.

The above definition is well posed, since, if V is another representative of
Uv0

(v0), then U = V in a neighbourhood of v0, hence S ◦ U = S ◦ V too.

Definition 2.4 A first order differential operator on (Ov0
, C

N) is any
mapping DS : (Ov0

, C
N) −→ (Ov0

, C
N) defined by setting:

♥ DS(Uv0
) = U ′

v0
+ S ◦ (Uv0

× idv0
),

where

• (1) (Ov0
, C

N) is the stalk of germs of holomorphic mappings at v0,
taking values in C

N ;

• (2) U ′
v0

= [U ′]v0
, U being any representative of Uv0

• (3) S is a mapping of N + 1 complex variables, taking values in C
N

and holomorphic at (Uv0
(v0), v0).
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Definition 2.5 A complex-analytic (resp a real-analytic) mapping S is
uniformly Lipschitz-like at (U0, v0) provided that there exists K ∈ R

such that
||S(U, v) − S(V, v)|| ≤ K||U − V ||,

uniformly on v in a neighbourhooud of (U0, v0).

We shall say that DS is

• autonomous provided that S does not depend explicitely on v;

• uniformly Lipschitz-like provided that so is S.

Definition 2.6 • A system of N first order ordinary differential
equations at v0 is an expression of the form D(Uv0

) = 0, where
D is a first order differential operator on (Ov0

, C
N); that system is

autonomous or uniformly Lipschitz-like provided that so is D;

• a solution, sometimes a germ solution of the above system is any
element Uv0

∈ D−1(0);

• a N-dimensional, first order Cauchy’s problem at v0 is a pair consisting
in a system of N first order ordinary differential equations at v0 and
an ‘initial-value‘ assignment Uv0

(v0) = U0 ∈ C
N .

We state a natural consequence of theorem 2.1 and remark 2.2:

Theorem 2.7 Every first order one dimensional Cauchy’s problem at a
given point admits a unique solution; every uniformly Lipschitz-like N-
dimensional Cauchy’s problem admits a unique solution. In particular, the
same holds about autonomous systems.

The question naturally arises about how far may be pushed the analytical
continuation of the germ solution whose existence is asserted by theorem
2.7: in this section we confine ourselves to a quite general statement.

Theorem 2.8 Let the N-dimensional Cauchy’s problem
{

U ′
v0

= S ◦ (Uv0
× idv0

)
Uv0

(v0) = U0

be given, with S holomorphic at (U0, v0); suppose that:
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• the (unique) germ solution Uv0
admits regular analytical continua-

tion φ along the embedded analytic arc

γ : [a, b] −→ C;

• the holomorphic mapping S admits regular analytical continuation Ω
along (φ ◦ γ) × γ;

then, set v1 = γ(b), Uv1
= [φ]v1

, we have:

U ′
v1

= Ω (Uv1
× idv1

) .

Proof: it should be merely noted that there exists an open neighbourhood
V of v0 such that for every v ∈ V , φ′(v)−Ω(φ(v), v) = 0: by hypothesis the
above expression is analytically continuable up to v1 across γ and the result
follows.

Proposition 2.9 Let U be a R
P -valued analytic function on (a, t0)

⋃
(t0, b),

which is continuous at t0, with U(t0) = U0. Suppose that U ′(t) = F (U(t), t)
in (a, t0) and (t0, b), where F is a R

P -valued real analytic mapping in
U(a, b)× (a, b), uniformly Lipschitz-like at (U0, t0): then U ′(t) = F (U(t), t)
in the whole (a, b) and U is analytic at t0.

Proof: note that, by assumption, F is analytic in a neighbourhood of
(U(t0), t0), hence we have

lim
t→t0

U ′ = lim
t→t0

F (U(t), t) = F (U(t0), t0) .

Thus U is derivable in t0 and U ′(t0) = F (U(t0), t0); moreover U equals, in
a neighbourhood of t0, the unique solution of the Cauchy’s problem

{
U ′(t) = F (U(t), t)
U(t0) = U0;

this fact proves analyticity at t0.
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Proposition 2.10 Let V be a R
P -valued analytic function on (a, t0) and

suppose that V ′(t) = F (V (t), t) in (a, t0) , where F is a uniformly Lipschitz-
like R

P -valued real analytic mapping in an open neighbourhood of U(a, t0)×
(a, t0). Moreover suppose that there exists

lim
t→t−

0

V (t) = V0 ∈ R
P

and that F is analytic at (V0, t0); then V admits analytical continuation up
to t0.

Proof: the Cauchy’s problem

{
V ′(t) = F (V (t), t)
V (t0) = V0

admits a unique analytic solution W in a neighbourhood I (t0, r) of t0; by
proposition 2.9, the function U defined by setting

U(t) =
{

V (t) if t ∈ (a, t0)
W (t) if t ∈ [t0, t0 + r)

is a solution of the equation U ′(t) = F (U(t), t) in the whole (a, t0 + r) and
it is analytic at t0, ending the proof.

Theorem 2.11 Let U be a R
P -valued analytic function on (a, t0), solution

of the equation
U ′(t) = F (U(t), t)

in (a, t0) , where F is a uniformly Lipschitz-like R
P -valued real analytic

mapping in a neighbourhood G of U(a, t0)× (a, t0). Moreover suppose that
there exists a strictly increasing sequence {th} −→ t0, such that

{
limh→∞ U(th) = U0 ♥
(U0, t0) ∈ G;

then there holds
lim
t→t−

0

U(t) = U0 ∈ R
P ,

hence then U admits analytical continuation up to t0.
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Proof: now there exist neighbourhoods I of t0 and J of U0 such that F is
analytic in I × J . Set

M = sup
I×J

|F (U, t) |.

We claim that for each (small) ε > 0 there exists j such that

♣ (tj < t < t0) =⇒ |U(t) − U0| < ε.

Let ε > 0 be such that D(U0, ε) ⊂ J : then, by ♥, there exists j ∈ N such
that tj ∈ I and {

|tj − t0| < ε/4M
|U(tj) − U0)| < ε/2.

Let’s show that
△ |U(t) − U(tj)| < ε/2 :

suppose, on the contrary, that

{t ∈ (tj, t0) : |U(tj) − U0| ≥ ε/2} 6= ∅,

and let τ = inf E: by continuity, |U(tj − U0)| ≥ ε/2, hence τ > tj.
On the other hand, if tj < ξ < τ , there holds |U(ξ)−U(tj)| < ε/2, hence

u(ξ) ∈ J and |U ′(ξ)| = |F (U(ξ), ξ) | ≤ M . Now

ε/2 ≤ |U(τ) − U(tj)|
=

∣∣∣
(
U1(τ) − U1(tj)...U

P (τ) − UP (tj)
)∣∣∣

=
∣∣∣
(
U1 ′(ξ1) (τ − tj) ...UP ′(ξP ) (τ − tj)

)∣∣∣ ,

where the ξn’s are suitable points in (tj, τ). Hence

ε/2 < M |t0 − tj| < ε/4,

which is a contradiction. By △ just proved, if tj < t < t0,

|U(t) − U0| ≤ |U(t) − U(tj)| + |U(tj) − U0| < ε :

this ends the proof.

The following corollary applies the previous real-variable results to the
complex domain:
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Corollary 2.12 let (V , U) be a C
N -valued holomorphic function element,

solution of the equation U ′(z) = G (U(z), z) in V , where G is a uni-
formly Lipschitz-like C

P -valued holomorphic mapping in a neighbourhood
of U (V) × V . Pick now z0 ∈ bd(V) and suppose that there exists an em-
bedded real analytic regular curve γ : [0, 1] −→ V ∪ {z0} with endpoint
z0 and a strictly increasing sequence {th} −→ 1, such that there exists
limh→∞ U ◦γ(th) = U0 and that G is holomorphic at (U0, z0); then U admits
analytical continuation up to z0.

Proof: let W ⊂ C
N be an open set such that G is holomorphic in W × V

and consider the mappings

{
Φ∆ : C

N −→ R
2N(

z1...zN
)
7−→

(
ℜ(z1),ℑ(z1)......ℜ(zN),ℑ(zN)

)





H : Φ∆ (W) × [0, 1] −→ R
2N

H
(
x1, y1......xN , yN , t

)
= Φ∆

[
•
γ(t)G

(
x1 + iy1...xN + iyN , γ(t)

)]
,

and set V = Φ∆ ◦ U ◦ γ; then

•

V (t) =
d

dt
[Φ∆ ◦ U ◦ γ] (t)

= Φ∆

(
d

dt
(U ◦ γ(t))

)

= Φ∆

(
U ′ (γ(t))

•
γ(t)

)

= Φ∆

[
G (U ◦ γ(t), γ(t))

•
γ(t)

]

= H (Φ∆ ◦ U ◦ γ(t), t)

= H ((V (t), t)) ,

hence theorem 2.11 may be applied since {V (th)} −→ Φ∆(U0) and H is real
analytic at (Φ∆(U0), 1): then V admits analytical continuation up to 1, that
is to say, U is analytically continuable up to z0.
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2.2 An extension of Painlevé’s theorem

2.2.1 Introduction

In this section we pursue the goal of extending the well known Painlevé’s
determinateness theorem (see e.g. [HIL], theorem 3.3.1); let N be one of
the following objects:

• the empty set ∅;
• a (not necessarily connected) algebraic curve in C

2

and (R, p) a proper Riemann domain over C
2 \ N .

Introduce complex-valued holomorphic functions P and Q on R, with Q
not everywhere vanishing, so that P/Q is a meromorphic function on R; if
X0 ∈ R, (u0, v0) = p(X0) and η is a local inverse of p in a neighbourhood of
(u0, v0), consider the following Cauchy’s problem at v0:





u′
v0

=
P ◦ η

Q ◦ η
(uv0

× idv0
)

uv0
(v0) = u0.

(2.2)

We wonder about the analytical continuability of its (unique) germ solution:
this is in general quite a difficult argument, but if P and Q resemble, in a
sense to be precised, ’polynomials’, something more could be asserted. We
shall state and prove a theorem of determinatess, representing an interme-
diate step towards the goal of proving analytical continuability theorems.

2.2.2 Set of hypotheses for theorem 2.14

• (H1) R, p and N are as in (2.2.1);

• (H2) the curve p (Q−1(0)) is an algebraic curve, or, alternatively, the
empty set.

2.2.3 Notations for theorem 2.14

Definition 2.13 The complex number k ∈ Cv is a horizontal flatness
point for the polynomial (u, v) 7−→ Z (u, v) (or for the curve Z (u, v) = 0)
if (v − k) divides Z.
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2.2.4 Painlevé’s theorem extended

Theorem 2.14 Let (U , u) be a holomorphic function element, representa-
tive of the unique germ solution of (2.2) and A the set of all horizontal
flatness points of p (Q−1(0))

⋃N ; let v1 ∈ C \ A and suppose γ : [0, 1] −→
C \ A is an embedded rectifiable analytic arc connecting v0 and v1; then, if
an analytical continuation ω of u may be got along γ|[0,1), i.e if there exists
a function element (V , ω) such that





V ⊃ γ ([0, 1))
[ω]v0

= [u]v0

v1 ∈ bd(V)

and all the hypotheses of the above set are fulfilled, there exists lim
v→v1,v∈V

ω(v)

in P
1.

Proof: suppose, on the contrary, that lim
v→v1,v∈V

ω(v) in P
1 does not exist.

For every ν ∈ Cv, set

Wν = pr1

(((
p(Q−1(0)

) ⋃
N

) ⋂
(C × {ν})

)
.

By (H2) Wv1
is finite or empty; the case it is empty is trivial; otherwise,

let’s say that Wv1
= {uk}k=1....q.

For each k, set {
Dk = D(uk, ε)
Tk = bd(Dk),

for ε > 0 small enough: then there exists ̺ > 0 such that

v ∈ D (v1, ̺) =⇒ Wv ⊂
q⋃

k=1

Dk.

This implies that there exists M > 0 such that

X ∈ p−1

( q⋃

k=1

Tk × D (v1, ̺)

)
=⇒ |P

Q
(X)| ≤ M.

Take now, as it is possible, R > 0 so large that

X ∈ p−1 (bd(D(0, R)) × D (v1, ̺)) =⇒ |P
Q

(X)| ≤ M.
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Set now Θu = D(O,R) \ ⋃q
k=1 Dk: this is a compact set and, for each

v ∈ D (v1, ̺), p−1 (Cu × {v}) is a Riemann surface, hence, by maximum
principle,

X ∈ p−1 (Θu × {v}) =⇒ |P
Q

(X)| ≤ M,

and, by the arbitrariness of v in D (v1, ̺),

X ∈ p−1 (Θu × D (v1, ̺)) =⇒ |P
Q

(X)| ≤ M.

Now we have assumed that ω does not admit limit as v −→ v1 in V, hence
there exists a sequence {vi} ⊂ V converging to v1 such that {ω(vi)} ⊂ Θu.
Without loss of generality, we may suppose that {vi} ⊂ D (v1, ̺/2); since

p is proper, p−1
(
Θu × D (v1, ̺/2)

)
is compact, hence we may extract a

convergent subsequence Ωk from p−1{(ω(vi), vi)}: let Ω be its limit and H a
neighbourhood of Ω such that p|H is a biholomorphic mapping: the Cauchy’s
problem at v1 




uv1

′ =
P ◦ (p|H)−1

Q ◦ (p|H)−1 (uv1
× idv1

)

uv1
(v1) = pr1 (p(Ω))

admits a unique holomorphic solution uv1
.

By corollary 2.12, a representative holomorphic mapping element of uv1

is connectible with (V , ω), hence with (U , u): this eventually implies that
limv→v1,v∈V ω(v) = pr1 (p(Ω)), which is a contradiction.

The main difference between theorem 2.14 and theorem 3.3.1 of [HIL] is
that, in the latter, the proper Riemann domain (R, p) is restricted to be of
the particular form (S × C), for some algebraic Riemann surface S.
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3.1 Introduction

Let’s start with a slight reformulation of the notion of path: to achieve this
goal, we adopt the point of view according to which a ’path’ or even a ’curve’
are analytical continuations of some initial germs, generally yielded by local
solutions of systems of differential equations.

Moreover our approach will be inclusive of all types of singularities en-
countered in the chapter about analytical continuation; on the other side,
we agree to use the term ’path’ to designate functions defined on one-
dimensional manifolds (Riemann surfaces), whereas ’curve’ will denote, in-
formally speaking, a collection of local relations among coordinates: in this
setting a germ of curve will hence be regarded as a germ of a subset (see
[GRO]).

Another aspect of a path, not of negligible importance, will be its velocity
field: to define it we shall need a vector field on its domain of definition,
to be related with the natural derivation field d/dz on C: this approach is
closely related to the analytical continuation procedure.

3.2 Main definitions and theorems

Let M be a connected complex manifold: in the continuation, abusing
language but following Wells (see e.g. [WEL] or [GRO]), we shall name
TM (resp.T ∗M ) its holomorphic tangent (resp. cotangent) bundle and,
more generally, T s

r M its holomorphic r-covariant and s-contravariant tensor
bundle; as usual, Π: T s

r M −→ M will appoint the natural projection.

Definition 3.1 A closed hypersurface F in a complex manifold M is a
closed subset such that there exists a maximal atlas {Un} for M and, for
each n, a holomorphic function Ψn, not vanishing everywhere, such that

Un

⋂
F = {X ∈ Un : Ψn(X) = 0}.

3.2.1 Meromorphic sections

The following definition is adapted from [ONE], definition 2.4 and lemma
2.5:



3.2. MAIN DEFINITIONS AND THEOREMS 43

Definition 3.2 let E be a closed hypersurface in M , N another connected
complex manifold and F ∈ O(M ,N ): an E-meromorphic section of
T s

r N over F is a holomorphic section Λ of T s
r N over F |M \E

such that

• π ◦ Λ admits analytical continuation up to the whole M (coinciding
with F );

• for every p ∈ E and every coordinate system (U , (z1...zn)) around
F (p), there exists a neighbourhood U of p and r · s pairs of C−valued
holomorphic functions φi1...ir , ψl1...ls , with ψl1...ls 6= 0 on U \ E , such
that

Λ

(
dzl1 ...dzls ,

∂

∂zi1
...

∂

∂zir

)
=

φi1...ir

ψl1...ls

.

Remark 3.3 If M = N and F = idM we are dealing with E-meromorphic
section of T s

r M tout-court; if E = ∅ we shall talk about holomorphic sections
of (holomorphic) tensor bundles.

3.2.2 Paths

Definition 3.4 A path in M is a quintuple QM =
(
S

⋃
Sb, π, j, F, M

)
,

where

• S
⋃

Sb is a connected Riemann surface with boundary Sb;

• π: S
⋃

Sb −→ P
1 is a branched covering of S over π(S), with set of

branch points P and π ∈ C0
(
S

⋃
Sb, P

1
)
;

• F ∈ AΣ(S, M)
⋂

C0
(
S

⋃
Sb,M

)
, where Σ is a discrete set in S and

Σ
⋂

Sb = ∅;
• U ⊂ C is an open set wich admits a holomorphic (hence open) immer-

sion j: U −→ S \ Σ such that π ◦ j = id|U .

The path QM will be told to be

• z0-starting at m ∈ M if z0 ∈ U and F ◦ j(z0) = m;

• without boundary, or without logaritmic singularities, if Sb = ∅

In the following, ’starting’ will mean 0-starting.
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3.2.3 The velocity field

We are now turning to define the velocity field of a path QM : it will
be defined, except for points in the boundary, as a suitable meromorphic
section over F of the holomorphic tangent bundle TM : to achieve this
purpose, we need to lift the vector field d/dz on C with respect to π; of
course, in general, contravariant tensor fields couldn’t be lifted.

Notwithstanding, we may get through this obstruction by keeping into
account that C and S are one-dimensional manifolds and allowing the lifted
vector field to be meromorphic: these matters are fathomed in next state-
ments: recall that P is the set of branch points of π.

Lemma 3.5 there exists a unique P -meromorphic vector field d̃/dz on S

such that, for every r ∈ S \ P , π∗|r
(
d̃/dz|r

)
= (d/dz) |π(r).

Proof: the 1-form dz and the metric dz ⊙ dz are covariant tensor fields,
hence they may be pulled back with respect to π, getting a holomorphic 1-
form ω = π∗dz and a holomorphic metric Λ = π∗ (dz ⊙ dz) on S: the latter
is nondegenerate on S \ P , hence it establishes an isomorphism between its
holomorphic cotangent and tangent bundles.

Call V the holomorphic vector field corresponding to ω in the above

isomorphism: we claim that V = d̃/dz on S \ P . To show this fact, we
explicitely compute the components of V with respect to a maximal atlas
B = {(Uν , ζν)} for S \ P : let





ω(ν) 1 = ω
(
∂/∂ζ(ν)

)

g(ν) 11 = Λ
(
∂/∂ζ(ν), ∂/∂ζ(ν)

)
;

then, set V 1
(ν) =

ω(ν) 1

g(ν) 11

the collection
{(

Uν , V
1
(ν)

)}
of open sets and holomor-

phic functions is such that, on overlapping local charts (Ua, ζa) and (Ub, ζb),
we have:

V 1
(a) =

ω(a) 1

g(a) 11

=
ω(b) 1

dζ(b)

dζ(a)

g(b) 11

(
dζ(b)

dζ(a)

)2
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=
ω(a) 1

g(a) 11

dζ(a)

dζ(b)

= V 1
(b)

dζ(a)

dζ(b)

,

that is to say, that collection defines a holomorphic, simply contravariant
tensor field, i.e. a holomorphic vector field.

Now for every r ∈ S \ P ,

π∗|r
(
d̃/dz|r

)
= (d/dz) |π(r) ⇐⇒ dz|π(r)

(
π∗|rd̃/dz|r

)
= 1.

We prove the right side to be true:

dz|π(r)

(
π∗|rd̃/dz|r

)
= π∗dz|r

(
d̃/dz|r

)
=

= π∗dz|r
(

1

dz|π(r)(π∗∂/∂ζ|r)
∂

∂ζ

∣∣∣∣∣
r

)
=

=
π∗dz|r(∂/∂ζ|r)

dz|π(r)(π∗∂/∂ζ|r)
= 1,

hence the left one is true too, proving the asserted.

Let’s prove now that d̃/dz may be extended to a meromorphic vector
field on S: let indeed p ∈ P : then we could find local charts (U, ψ) around
p (ψ : U −→ Cu) and (V, φ) around π(p) (φ : V −→ Cv) , and an integer
N > 0, not depending on (U, ψ) and (V, φ) such that

φ ◦ π ◦ ψ−1(u) = uN .

Now we have

(ψ−1 ∗π∗φ∗(dw)(d/du))(u) = dw(φ∗π∗ψ
−1
∗ (d/du)|u)

= dw((φπψ−1)′(d/dw)) = NuN−1;

but φ and ψ are charts, hence π∗dz itself is vanishing of order N − 1 at p;

but, as we have already proved, π∗|r
(
d̃/dz|r

)
= (d/dz) |π(r) on U \ {p} and,

consequently,

(π∗dz)(d̃/dz) = dz(π∗)̃ = dz(d/dz) = 1
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on U \ {p}, hence, by Riemann’s removable singularity theorem, on the
whole U . Now, in local coordinates,





(π∗dz) = αdφ

d̃/dz = y
∂

∂φ
,

where α is a holomorphic function on U , vanishing of order N − 1 at p and
y is a holomorphic function on U \ {p}. By the argument above, yα = 1,
hence y has a pole of order N − 1 at p: this holds for each isolated point in

P , hence the meromorphic behaviour of d̃/dz is proved for the special atlas

B = A⋃{(U, φ)p}p∈P , hence for every atlas on S. The uniqueness of d̃/dz
as a meromorphic vector field follows from its uniqueness as a holomorphic

vector field in a neighbourhood of a regular point of π in S.

Definition 3.6 A finite-velocity point of a path QM = (S, π, j, F, M)

is a point r ∈ S such that d̃/dz is holomorphic at r.

We are ready to define the velocity field (this will be done in definition

3.8): let at first be r a finite-velocity point of QM ; since d̃/dz is holomorphic

at r, we could define the holomorphic velocity at r as Vr = F∗

(
(d̃/dz)|r

)
.

Lemma 3.7 The mapping

V
(
QM

)
: S \ P −→ TM

r 7−→
(
F, F∗|r

(
d̃

dz
|r

))

may be extended to a P-meromorphic section of TM over F .

Proof: trivially Π◦V |R\P = F |R\P . Let’s show the meromorphic behaviour
of V : if p ∈ P there is a neighbourhood U of p such that, for every local
chart ζ: U −→ Cw there exist holomorphic functions f, g ∈ H (ζ(U)) such
that

d̃

dz
|ζ−1(U) = ζ−1

∗

(
f

g
(w)

d

dw
|w

)
;
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moreover, for every local chart Ψ = (u1...um, du1...dum) in TM we obtain

Ψ ◦ V ◦ ζ−1(w) =

= Ψ ◦
(
F ◦ ζ−1(w), F∗|ζ−1(w)

(
d̃

dz
|ζ−1(w)

))

= Ψ ◦
(
F ◦ ζ−1(w), F∗|ζ−1(w)ζ

−1
∗

(
f

g
(w)

d

dw
|w

))

= Ψ ◦
(
F ◦ ζ−1(w),

f

g
(w)

d

dw
(F ◦ ζ−1)(w)

)

=
(
u1 ◦ Fζ−1(w)...um ◦ Fζ−1(w),

f

g
(w)

d

dw

(
u1 ◦ F ◦ ζ−1

)
(w)...

f

g
(w)

d

dw

(
um ◦ F ◦ ζ−1

)
(w))

)

Definition 3.8 The velocity field of a path QM = (S, π, j, F, M) is the
meromorphic mapping

V
(
QM

)
: S \ P −→ TM

r 7−→
(
F, F∗|r

(
d̃

dz
|r

))

3.2.4 Completeness

We eventually yield a definition of completeness:

Definition 3.9 A M -valued path (with or without logarithmic singulari-
ties) (S, π, j, F, M) is complete provided that P

1 \ π (S) is a finite set in the
Riemann sphere.
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4.1 Introduction and main definitions

The intuitive geometry of the real euclidean space R
3 can be easily brought

back to its natural inner product, which allows basic geometrical operations,
like measuring the length of a tangent vector, or angles between tangent
vectors: Riemannian real geometry generalizes all this to ’curved’ spaces,
which is based on the concept of positive definite bilinear forms: weakening
definiteness to nondegeneracy leads us in the realm of Lorentz geometry,
originating from the problems posed by Einstein’s general relativity theory.

A less intuitive idea is that of starting from the basic geometry of C
3,

meant as a ’complexification’ of the usual real euclidean space to get formal
extension of the geometric properties of real ’curved’ manifolds. Introducing
this complex environment could allow us to hope to get able to handle some
types of metrical singularities which naturally arise in dealing with real
manifolds with indefinite metrics; it is soon seen that the nondegeneracy
hypothesis itself should be dropped, since it would cut down the purport of
this investigations, when combined with analyticity assumptions.

Wide treatises about semi-Riemannian or Lorentz geometry are [ONE]
and [BEH]; a different approach to holomorphic geometry could be found
in [MAN]. Finally, we owe [LEB] for the definition of nondegenerate holo-
morphic metric.

Let now M be a complex manifold, D and E closed hypersurfaces in M .

Definition 4.1 A holomorphic (resp.E-meromorphic) metric on M is a
holomorphic (resp.E-meromorphic) section Λ: M −→ T 2

0 M which is sym-
metric, that is to say, for every m ∈ M and every pair of holomorphic
tangent vectors Vm and Wm at m, there holds

Λ(m) (Vm,Wm) = Λ(m) (Wm, Vm) ;

• the rank of Λ at p ∈ M is the rank of the bilinear form Λ(p);

• Λ is nondegenerate at p if rk(Λ(p)) = dim(M ), degenerate other-
wise;

• if D is a hypersurface in M and Λ is degenerate only on D, we shall
say that Λ is D-degenerate.
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In the following we shall consider only metric which degenerate only on
closed hypersurfaces.

Remark 4.2 We emphasize that holomorphic and meromorphic metrics are
not pseudo-Riemannian ones on the underlying real manifolds (see [LEB]).

Definition 4.3 We say that p is a metrically ordinary point in M if
Λ is holomorphic and nondegenerate at p; a metrically extraordinary
point otherwise.

Definition 4.4 Two meromorphic metrics Λ and H on M are

(a) holo-conformal if for every p ∈ M there exists a neighbourhood U
of p and F ∈ O(U), never zero, such that Λ|U = F · H|U

(b) mero-conformal if if for every p ∈ M there exists a neighbourhood
U of p and F ∈ M(U), not everywhere vanishing, such that Λ|U =
F · H|U

Lemma 4.5 Every meromorphic metric H is locally mero-conformal to a
holomorphic one, that is, for every p ∈ M there exists a neighbourhood U
of p such that (4.4) (b) holds on U .

Proof: it is enough to prove this statement for meromorphic metrics on
open sets in C

N : let

Λ =
∑

i≤k

Eik

Fik

(
dxi ⊗ dxk + dxk ⊗ dxi

)

and ψ = l.c.m.(Fik): then ψ ·Λ is a holomorphic metric on U , meroconformal
to Λ by construction.

Definition 4.6 • A holomorphic Riemannian manifold is a com-
plex manifold endowed with a holomorphic metric ;

• a nondegenerate holomorphic Riemannian manifold is a com-
plex manifold endowed with a nondegenerate holomorphic metric ;
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• a meromorphic Riemannian manifold is a complex manifold en-
dowed with a meromorphic metric ;

Thus, strictly speaking, all the above objects are pairs consisting in complex
manifolds and metrics, but we shall often understand metrics and denote
them by teo only underlying complex manifolds.

Short examples (We postpone more articulate examples after intro-
ducing geodesics ).

(a) ’The complex-euclidean space’: endow C
m with metric

Λ =
m∑

i=1

dzi ⊗ dzi :

such a metric structure is holomorphic, everywhere nondegenerate;
note that Λ (Z, Z) =

∑m
i=1 Zi 2 is not a norm in the usual sense: for

example, if m = 2, then the (complex) vector subspaces generated by
(1, i) or by (1,−i) entirely consist of null vectors.

(b) ’Warped products’: let (M , Λ) and (N , H) be meromorphic Rieman-
nian manifolds, F ∈ M(M );

{
̺: M × N −→ M

σ: M × N −→ N

be the canonical projection of their Cartesian product: then ̺∗ (Λ) +
(F◦) σ∗ (H) is a meromorphic metric on M ×N . Consider e.g. C

2
(u,v)

endowed with Λ (u, v) = du ⊗ du + F (u)dv ⊗ dv: if F is holomorphic
then Λ is a holomorphic metric, degenerate only on the locus F (u) = 0;
if F is P -meromorphic, then Λ is P × C-meromorphic.

(c) Let H a noncostant doubly periodic function on C: then H(z)dz ⊗ dz
defines a meromorphic metric on C, which may be clearly pushed down
to the quotient torus.

(d) Vice versa, a holomorphic metric on the torus C/(a, b) defines a doubly
periodic holomorphic function on C with periods a, b, hence a constant
function. This proves that the only holomorphic metrics on complex
one-dimensional tori may be identified with complex constants.
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(e) Symmetric product of 1-forms: let ω1 and ω2 be holomorphic (resp.
meromorphic) 1-forms: then ω1 ⊙ ω2 = 1

2
(ω1 ⊗ ω2 + ω2 ⊗ ω1) is a

holomorphic (resp. meromorphic) metric. Symmetric product is com-
mutative and distributive with respect to sum, but in general, not
associative.

(f) It is a consequence of general theory that CP
N does not admit any

holomorphic metric; on the other hand, it does carry meromorphic
ones, which may be defined e.g. in the following way: start from
the metric Λ(z) =

∑
i,j Rij(z

1 · · · zN) dzi ⊙ dzj defined on C
N , where

the Rij are rational functions; then extend Λ to the other copies of C
N

which CP
N consists of by pulling it back along the coordinate-changing

mappings. These metrics are meromorphic by construction.



54 CHAPTER 4. COMPLEX-RIEMANNIAN METRIC STRUCTURES

4.2 The meromorphic Levi-Civita connec-

tion

We begin this section by introducing the holomorphic Levi-Civita connection
induced on a holomorphic nondegenerate Riemannian manifold by its metric
structure: this is done in a quite similar way to that pursued in (real)
differential geometry, apart from a slight difference, which naturally arises:
the action of the Levi-Civita connection is defined at first on ’local’ vector
fields, producing local ones as well, then it is globalized as a collection of
local operators.

Let now (M , Λ) be a nondegenerate Riemannian holomorphic manifold,
A a maximal atlas for M , U ∈ A a domain of a local chart. Let also

• X (U) be the Lie algebra of holomorphic vector fields on U ;

• O (U) the ring of holomorphic functions on U .

Definition 4.7 A connection on U is a mapping

D:X (U) ×X (U) −→ X (U)

such that:

(D1) DV W is H (U)-linear in V ;

(D2) DV W is C-linear in W ;

(D3) DV (fW ) = (V f) W + fDV W for every f ∈ H (U);

DV W is called the covariant derivative of W with respect to V in
the connection D. By axiom (D1), DV W has tensor character in V , while
axiom (D3) tells us that it is not a tensor in W .

Next step is showing that there is a unique connection characterized by
two further properties, (D4) and (D5) below, namely being anti-Leibnitz like
with respect to the Lie bracket operation and Leibnitz like wuth respect to
the metric. In the following we use the alternative notation 〈V, W 〉 instead
of Λ (V,W ).
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Lemma 4.8 Let U be an open set belonging to a maximal atlas A for the
nondegenerate holomorphic Riemannian manifold M . If V ∈ X (U), let
V ∗ be the holomorphic one-form on U such that V ∗(X) = 〈V, X〉 for every
X ∈ X (U): then the mapping V 7→ V ∗ is a O-linear isomorphism from
X (U) to X ∗ (U).

Proof: since V ∗ is O-linear, it is in fact a one-form, and V 7→ V ∗ is O-linear
too. We claim:

(a) if 〈V,X〉 = 〈W,X〉 for every X ∈ X (U) then V = W ;

(b) given any one-form ω ∈ X ∗ (U) there is a uique vector field V ∈ X (U)
such that ω(X) = 〈V, X〉 for every X ∈ X (U).

Let U = V − W : then (a) is proved if we show that

(〈Up, Xp〉 = 0 for every X ∈ X (U) and p ∈ U) =⇒ U = 0.

This simply follows from the nondegeneracy of the metric tensor.
To prove (b), let

(
z1...zN

)
be local coordinates on U .

Then ω =
∑N

i=1 ωidzi; let {gij} be the representative matrix of Λ|U in(
z1...zN

)
: by nondegeneracy, it admits a holomorphic inverse matrix {gij}:

set now

V =
N∑

j=1

(
N∑

i=1

gijωi

)
∂

∂zj
;

we have

〈V, X〉 =

〈
N∑

j=1

(
N∑

i=1

gijωi

)
∂

∂zj
,

N∑

k=1

Xk ∂

∂zk

〉

=
∑

ijk

gijωiX
kgjk

=
∑

ik

δi
kX

kωi

=
∑

k

Xkωk

= ω (X)
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Corresponding vector fields and one-forms in the above isomorphism are
told to be be metrically equivalent.

Theorem 4.9 Let U be an open set belonging to a maximal atlas A for
the nondegenerate holomorphic Riemannian manifold M . There exists a
unique connection D on U , called the Levi-Civita connection, such that:

(D4) [V, W ] = DV W − DW V ;

(D5) X 〈V, W 〉 = 〈DXV, W 〉 + 〈V, DXW 〉 for every X,V,W ∈ X (U).

Moreover D is characterized by the ’Koszul’s formula’:

2 〈DV W,X〉 = V 〈W,X〉 + W 〈X,V 〉 − X 〈V, W 〉
− 〈V, [W,X]〉 + 〈W, [X,V ]〉 + 〈X, [V, W ]〉 ,

for every X, V, W ∈ X (U).

Proof: suppose that such a connection exists: then

V 〈W,X〉 + W 〈X, V 〉 − X 〈V, W 〉
− 〈V, [W,X]〉 + 〈W, [X,V ]〉 + 〈X, [V, W ]〉 =

= 〈DV W,X〉 + 〈W,DV X〉 + 〈DW X,V 〉
+ 〈X, DW V 〉 − 〈DXV, W 〉 − 〈V, DXW 〉
− 〈V,DW X − DXW 〉 + 〈W,DXV − DV X〉 + 〈X,DV W − DW V 〉

= 2 〈DV W,X〉 ,

proving uniqueness.

To prove existence, define

F (V, W,X) = V 〈W,X〉 + W 〈X, V 〉 − X 〈V, W 〉
− 〈V, [W,X]〉 + 〈W, [X,V ]〉 + 〈X, [V, W ]〉 :

for fixed V,W ∈ X (U), the function X 7→ F (V, W,X) is O (U)-linear,
indeed

F (V,W,X + Y ) = F (V, W,X) + F (V, W, Y )



4.2. THE MEROMORPHIC LEVI-CIVITA CONNECTION 57

trivially, and, if φ ∈ O (U)

F (V, W, φX) = V 〈W,φX〉 + W 〈φX, V 〉 − φX 〈V, W 〉
− 〈V, [W,φX]〉 + 〈W, [φX, V ]〉 + 〈φX, [V, W ]〉
= (V φ) 〈W,X〉 + φV 〈W,X+〉 + (Wφ) 〈X, V 〉
+ φW 〈X,V 〉 − φX 〈V, W 〉
− φ 〈V, [W,X]〉 − (Wφ) 〈V,X〉 + φ 〈W, [X,W ]〉
− (V φ) 〈W,X〉 + φ 〈X, [V, W ]〉
= φF (V,W,X) .

Thus the map X 7→ F (V, W,X) is in fact a holomorphic one-form: hence,
by lemma 4.8, there exists a unique holomorphic vector field on U , which we
denote by DV W , such that 2 〈DV W,X〉 = F (V,W,X) for every X ∈ X (U).
Then the Koszul’s formula holds and we are able to deduce (D1)÷ (D5):

• (D1): 2 〈DφV W,X〉 = φV 〈W,X〉 + W 〈X, φW 〉 − X 〈φV,W 〉
− φ 〈V, [W,X]〉 + 〈W, [X,φV ]〉 + 〈X, [φV, W ]〉
= φV 〈W,X〉 + (Wφ) 〈X, V 〉 + φW 〈X, V 〉
− (Xφ) 〈V, W 〉 − φX 〈V,W 〉 − φ 〈V, [W,X]〉
+ φ 〈W, [X, V ]〉 + (Xφ) 〈W,V 〉 + φ 〈X, [V, W ]〉
− (Wφ) 〈X, V 〉 = 2φ 〈DV W,X〉 ,

where φ ∈ O (U) and V, W,X ∈ O (U); finally 〈DV +UW,X〉 = 〈DV W,X〉+
〈DUW,X〉 as a consequence of the bilinearity of 〈 〉 and [ ] with respect to
holomorphic vector fields.

• (D2) is trivial;

• (D3): 2 〈DV (fW ), X〉 = V 〈fW,X〉 + fW 〈X,V 〉 − X 〈V, fW 〉
− 〈V, [fW,X]〉 + 〈fW, [X, V ]〉 + 〈X, [V, fW ]〉
= (V f) 〈W,X〉 + fV 〈W,X〉 + fW 〈X,V 〉
− (Xf) 〈V, W 〉 − fX 〈V, W 〉 − f 〈V, (W,X)〉
+ Xf 〈V, W 〉 + f 〈W, [X, V ]〉 + f 〈X, [V, W ]〉
+ (V f) 〈X, W 〉 = 2 〈V fW + fDV W,X〉

for f ∈ O (U) and V, W,X ∈ O (U); thus DV (fW ) + (V f)W + fDV W .
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• (D4): 2 〈DV W − DW V, X〉 = V 〈W,X〉 + W 〈X, V 〉 − X 〈V, W 〉
− 〈V, [W,X]〉 + 〈W, [X, V ]〉 + 〈X, [V,W ]〉
− W 〈V,X〉 − V 〈X, W 〉 + X 〈W,V 〉
+ 〈W, [V,X]〉 − 〈V, [X, W ]〉 − 〈X, [W,V ]〉
= 〈X, [V,W ]〉 − 〈X, [W,V ]〉
= 2 〈[V, W ], X〉 ;

• (D5): 2 (〈DXV,W 〉 + 〈V,DXW 〉) =

= X 〈V,W 〉 + V 〈W,X〉 − W 〈X,V 〉
− 〈X, [V,W ]〉 + 〈V, [W,X]〉 + 〈W, [X,V ]〉
− V 〈X, W 〉 + X 〈W,V 〉 + W 〈V, X〉
+ 〈V, [X,W ]〉 − 〈X, [W,V ]〉 = 〈W, [V, X]〉
= 2X 〈V,W 〉

If we have to emphasize the open set U in theorem 4.9 we shall write D [U ]
instead of D: if U1,U2 ⊂ M in a maximal atlas A for M are overlapping
open sets, then the open set U1

⋂U2 is in A too and

D [U1] |X(U1

⋂
U2) = D [U1] |X(U1

⋂
U2),

hence we can collect all local definitions of Levi-Civita connections:

Definition 4.10 the Levi-Civita connection (or metric connection)
D of (M , Λ) is the collection consisting of all the metric connections
{D [Ui]}i∈I as Ui runs over any maximal atlas A = ({Ui})i∈I on M .

So far we have studied nondegenerate holomorphic Riemannian mani-
folds: this situation is quite similar to real Riemannian geometry.

Things are different, instead, if we allow metrics to have meromorphic
behaviour, or even simply to lower somwhere in their ranks. These metric
’singularities’ will be generally supposed to lie in closed hypersurfaces; Levi
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Civita connections may still be defined, but, as one could expect, they will
turn out to be themselves ’meromorphic’.

Let now (N , Λ) be a meromorphic Riemannian manifold admitting
closed hypersurfaces D and E such that

• Λ|N \E
is holomorphic;

• Λ|
(N \E)\D

is nondegenerate;

Since N \ E is connected, we have that (N \ E) \ D, Λ|
(N \E)\D

is a nonde-
generate holomorphic Riemannian manifold admitting, as such, a canonical
holomorphic Levi-Civita connection D.

Now, if p ∈ D ⋃ E and V, W are holomorphic vector fields in a neigh-
bourhood V of p, it will result that we are able to define the vector field
DV W on V \ (D ⋃ E), and this will be a meromorphic vector field.

Let’s state all this more precisely:

Definition 4.11 the Christoffel symbols of a coordinate system

Z = (z1 · · · zm)

on an open set U ⊂ N are those complex valued functions, defined on
U \ (D ⋃ E) by setting

Γk
ij = dzk

(
D ∂

∂zi

(
∂

∂zj

))
.

Now the representative matrix (gij) of Λ with respect to the coordinate
system Z is holomorphic in U , with nonvanishing determinant function on
U \ (D ⋃ E); as such it admits a inverse matrix gij, whose coefficients hence
result in being D ⋃ E-meromorphic functions.

Lemma 4.12 (a) D ∂

∂zi

(∑m
j=1 W j ∂

∂zj

)
=

∑m
k=1

(
∂W k

∂zi +
∑m

j=1 Γk
ijW

j
)

∂
∂zk

as meromorphic vector fields;

(b) 2Γk
ij =

∑N
m=1 gkm (−gij,m + gim,j + gjm,i) = 2Γk

ij as meromorphic func-
tions;
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Proof: at first note that the operation of associating Christoffel symbols
to a coordinate system is compatible with restrictions, in the sense that
the Christoffel symbols of the restriction of Z to a smaller open set are its
Christoffel symbols restricted to that set: now, if

p ∈ U
⋂
{n ∈ N : Λ is holomorphic and nondegenerate at n}

and Vp ⊂ U is a neighbourhood of p, contained in U , we have that Λ is
holomorphic and nondegenerate in Vp: hence (a): by Koszul’s formula we
have

2
N∑

a=1

Γa
ijgam = 2

〈
D ∂

∂zi

∂

∂zj
,

∂

∂zm

〉
=

∂

∂zi
gjm +

∂

∂zj
gim +

∂

∂zm
gij;

multiplying both side by gmk and summing over m yields the desired result;
(b) follows immediately from (D3) of definition 4.7. Now the fact that (a)
and (b) hold in fact on U follows by analytical continuation: note that this
result does not depend on the choice of p.

Proposition 4.13 For every pair V, W of holomorphic vector field on the
open set U (belonging to a maximal atlas) in the meromorphic Rieman-
nian manifold (N , Λ), DV W is a well defined vector field, holomorphic on
U ⋂{n ∈ N : Λ is holomorphic and nondegenerate at n} and may be ex-
tended to a meromorphic vector field on U .

Proof: there exist holomorphic functions {V i}, {W j} and a coordinate

system Z =
(
z1.....zN

)
on U such that





V =
N∑

i=1

V i ∂

∂zi

W =
N∑

j=1

W i ∂

∂zj
.

By lemma 4.12(a),

DV W =
N∑

i=1

V iD ∂

∂zi




N∑

j=1

W j ∂

∂zi


 =

=
N∑

k=1




N∑

i,j=1

V i

(
∂W k

∂zi
+ Γk

ijW
j

)
 ∂

∂zk
:
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this is a vector field whose components are meromorphic functions.

Summing up, we yield:

Definition 4.14 Given a D-degenerate and E-meromorphic Riemannian
manifold (N , Λ), with D and E closed hypersurfaces in N , the Levi-Civita
metric connection (or meromorphic metric connection) of N is the
collection consisting of the metric connections {D [Ui \ (D ⋃ E)]}i∈I as U}i

runs over any maximal atlas B = ({U}i)i∈I on N .
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4.3 Meromorphic parallel translation

We turn now to study vector fields on paths: an obvious example is the
velocity field, defined in definition 3.8: just as in semi-Riemannian geometry,
there is a natural way of defining the rate of change X ′ of a meromorphic
vector field X on a path. We study at first paths without boundary, with
values in a nondegenerate holomorphic Riemannian manifold M : let

• QM = (S, π, j, γ, M ) be a path in M , without boundary;

• P be the set of branch points of π;

• r ∈ S \ P be a finite-velocity point of QM ;

• V ⊂ S \ P be a neighbourhood of r such that γ (V) is contained in a
local chart in M ;

• H (V) be the ring of holomorphic functions on V ;

• Xγ (V) the Lie algebra of holomorphic vector fields over γ on V.

Proposition 4.15 There exists a unique mapping

∇γ′ :Xγ (V) −→ Xγ (V) ,

called induced covariant derivative on QM in V , (or on γ in V) such
that:

(a) ∇γ′ (aZ1 + bZ2) = a∇γ′Z1 + b∇γ′Z2, a, b ∈ C;

(b) ∇γ′ (hZ) =

(
d̃

dz
h

)
Z + h∇γ′Z, h ∈ H (V);

(c) ∇γ′ (V ◦ γ) (r) = D
γ∗|r( d̃

dz
|r)

r ∈ V ,

where V is a holomorphic vector field in a neighbourhood of γ(r). Moreover,

d̃

dz
〈X, Y 〉 = 〈∇γ′X,Y 〉 + 〈X,∇γ′Y 〉 X, Y ∈ Xγ(V).
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Proof: let’s prove at first uniqueness: suppose existence to hold and let(
z1....zN

)
be a coordinate system containing γ(V); we have, at γ(r),

Z(r) =
N∑

i=1

(
Z zi(r)

) ∂

∂zi
.

Set Z(zi) = Zi: by (a) and (b),

∇γ′Z(r) =
N∑

i=1

(
d̃

dz
Zi ∂

∂zi
|γ(r) + Zi∇γ′

(
∂

∂zi

)
|γ(r)

)
.

By (c) we deduce

∇γ′Z =
N∑

i=1

(
d̂

dz
Zi ∂

∂zi
+ ZiDγ∗

d̃

dz

(
∂

∂zi

))
. (4.1)

Thus ∇γ′ is completely determined by the Levi-Civita connection on M .
Let’s prove now existence: define ∇γ′ by (4.1): then, using local coordinates(
z1...zN

)
at γ(r) we have:

∇γ′Z =
m∑

k=1


 d̃

dz
Zk +

m∑

i,j=1

Γk
ij

d̃

dz

(
γi

)
Zj


 ∂

∂zk
,

hence (a) and (b) are trivial; (c) and (d), instead, require a little bit more of
attention. Within this proof, we shall understand summation with respect to
repeated indices, but only with regards to tensor components or Christoffel
symbols: we shall instead explicitely write down the summation sign Σ when
acting on vector fields.

Let’s prove (c):

(V ◦ γ) (r) =

=
N∑

k=1

(
d̃

dz

(
V k ◦ γ

)
(r) + Γk

ij(γ(r))
d̃

dz

(
γi

)
(r)V j(γ(r))

)
∂

∂zk
=

=
N∑

k=1

(
∂V k

∂zi
(γ(r))

d̃

dz

(
γi

)
(r) + Γk

ij(γ(r))
d̃

dz

(
γi

)
(r)V j(γ(r))

)
∂

∂zk

=
N∑

k=1

[
d̃

dz

(
γi

)
(r)

(
∂V k

∂zi
(γ(r)) + Γk

ij(γ(r))V j(γ(r))

)
∂

∂zk

]
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=
N∑

k=1

D∑N

k=1

d̃
dz

(γi)(r) ∂

∂zi

(
∂V k

∂zi
(γ(r)) + Γk

ij(γ(r))V j(γ(r))

)

= D
γ∗|r( d̃

dz
|r)

.

While proving (d), we set

gkl = Λ

〈
∂

∂zk

∂

∂zl

〉
◦ γ.

Now

〈∇γ′(X), Y 〉 + 〈X,∇γ′(Y )〉 =

=

〈
N∑

k=1

(
d̃

dz

(
Xk

)
+ Γk

ij

d̃

dz

(
γi

)
Xj

)
∂

∂zk
,

N∑

l=1

Y l ∂

∂zl

〉

+

〈
N∑

l=1

X l ∂

∂zl

N∑

k=1

(
d̃

dz

(
Y k

)
+ Γk

ij

d̃

dz

(
γi

)
Y j

)
∂

∂zk

〉

= gkl

(
d̃

dz

(
Xk

)
+ Γk

ij

d̃

dz

(
γi

)
Xj

)
Y l + gkl

(
d̃

dz

(
Y k

)
+ Γk

ij

d̃

dz

(
γi

)
Y j

)
X l

= gkj

(
d̃

dz

(
Xk

)
+ Γk

il

d̃

dz

(
γi

)
X l

)
Y j + gkl

(
d̃

dz

(
Y k

)
+ Γk

ij

d̃

dz

(
γi

)
Y j

)
X l

= gkl
d̃

dz

(
Xk

)
Y l + gkl

d̃

dz

(
Y k

)
X l +

d̃

dz

(
γi

)
X lY j

(
gkjΓ

k
il + gklΓ

k
ij

)

= gkl
d̃

dz

(
Xk

)
Y l + gkl

d̃

dz

(
Y k

)
X l +

+
1

2

d̃

dz

(
γi

)
X lY j

(
gkjg

km

(
− ∂gil

∂zm
+

∂gim

∂zl
+

∂glm

∂zi

)
+

+ gklg
km

(
−∂gij

∂zm
+

∂gim

∂zj
+

∂gjm

∂zi

))

= gkl
d̃

dz

(
Xk

)
Y l + gkl

d̃

dz

(
Y k

)
X l +

+
1

2

d̃

dz

(
γi

)
X lY j

(
δm
j

(
− ∂gil

∂zm
+

∂gim

∂zl
+

∂glm

∂zi

)
+

+ δm
l

(
−∂gij

∂zm
+

∂gim

∂zj
+

∂gjm

∂zi

))
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= gkl
d̃

dz

(
Xk

)
Y l + gkl

d̃

dz

(
Y k

)
X l +

+
1

2

d̃

dz

(
γi

)
X lY j

(
−∂gil

∂zj
+

∂gij

∂zl
+

∂glj

∂zi
− ∂gij

∂zl
+

∂gil

∂zj
+

∂gjl

∂zi

)

= gkl
d̃

dz

(
Xk

)
Y l + gkl

d̃

dz

(
Y k

)
X l +

d̃

dz

(
γi

)
X lY j ∂glj

∂zi

= gkl
d̃

dz

(
Xk

)
Y l + gkl

d̃

dz

(
Y k

)
X l +

(
d̃

dz
(gkl)

)

=
d̃

dz
〈X, Y 〉

Now let R = {Vk}k∈K be a maximal atlas for S\P ; we may assume that,
for every k, maybe shrinking Vk, γ (Vk) is contained in some local chart Ui

in the already introduced atlas A for M .
By proposition 4.15, if V1 and V2 are overlapping open sets in R,

V1
⋂V2 ∈ R too, and

∇γ′ [V1] |V1

⋂
V2

= ∇γ′ [V2] |V1

⋂
V2

.

Now let’s complete R to an atlas S for S: keeping into account that the
local coordinate expression of the induced covariant derivative is

∇γ′Z =
m∑

k=1


 d̃

dz
Zk +

m∑

i,j=1

Γk
ij

d̃

dz

(
ui ◦ γ

)
Zj


 ∂

∂uk
.

and arguing as about the meromorphic Levi-Civita connection, we are able
to show that pairs of holomorphic vector fields on γ are transormed into
P -meromorphic vector fields on γ.

Definition 4.16 The P -meromorphic induced covariant derivative, or
the P -meromorphic parallel translation on a path QM = (S, π, j, γ, M)
with set of branch points P and taking values in a nondegenerate Rie-
mannian manifold M is the collection consisting of the induced covariant
derivatives ∇γ′ [Vk \ P ] as Vk runs over a maximal atlas S = ({Vk})k∈K on
S.
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Let’s turn now to dealing with meromorphic parallel translations in-
duced on a path QN = (T, ̺, j, δ, N ), without boundary, in a meromorphic
Riemannian manifold (N , Λ) admitting closed hypersurfaces D and E such
that

• Λ|N \E
is holomorphic;

• Λ|
(N \E)\D

is nondegenerate.

We set F = D ⋃ E and restrict our attention to paths z0-starting at metri-
cally ordinary points, supposing, without loss in generality, that z0 = 0.

Lemma 4.17 Set M = N \F , S = δ−1(M): then T \S is discrete, hence
S is a connected Riemann surface.

Proof: suppose that there exists a subset V ⊂ T \S admitting an accumu-
lation point t ∈ V and consider a countable atlas for B = {Un}n∈N for N

such that, for every n, there exists Ψn ∈ O ({Un}) such that

Un

⋂
F = {X ∈ Un : Ψn = 0}

(If Un
⋂F = ∅, pick a never vanishing holomorphic function).

Set δ−1(Un) = Tn ⊂ T and suppose, without loss of generality, that
δ(t) ∈ U0.

We have Ψ0 ◦ δ|V∩T0
= 0 and t ∈ V ∩ T0 is an accumulation point of

V ∩ T0 , hence Ψ0 ◦ δ|T0
= 0 and δ(T0) ⊂ F .

Suppose now that TN 6= ∅ for some N : we claim that this implies
δ(TN) ⊂ F : to prove the asserted, pick two points τ0 ∈ T0 and τn ∈ Tn

and two neighbourhoods T ′
0, T ′

N of τ0 and τn in T0 and Tn respectively, such
that ̺|T ′

0
and ̺|T ′

N
are biholomorphic functions. Now the function elements(

̺(T ′
0), δ ◦

(
̺|T ′

0

)−1
)

and
(
̺(T ′

N), δ ◦
(
̺|T ′

N

)−1
)

are connectible, hence there

exists a finite chain {Wν}ν=0...L such that W0 = ̺(T ′
0), WL = ̺(T ′

N),
Wν

⋂
Wν+1 6= 0 for every ν.

Without loss of generality, we may suppose that each Wν admits a holo-
morphic, hence open, immersion jν −→ T , hence, setting





S0 = T0

Sλ = jλ(Wλ) for λ = 1...L
SL+1 = TN ,
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yields a finite chain of open subsets {Sλ}λ=0...M of T connecting T0 and TN .
Let’s prove, by induction, that, for every λ, δ(Sλ) ⊂ F .
• At first recall that δ(S0) ⊂ U0

⋂F as already proved; suppose now
that δ(Sk−1) ⊂ F . We have Sk−1

⋂
Sk 6= ∅, hence δ(Sk−1)

⋂
δ(Sk) 6= ∅.

For every m set

Σkm = δ(Sk−1)
⋂

δ(Sk)
⋂

Um :

if Σkm 6= ∅, then
Ψm ◦ δ|δ−1(Σkm)

⋂
Sk−1

⋂
Sk

≡ 0;

but δ−1(Σkm)
⋂

Sk−1
⋂

Sk is open in δ−1 (δ(Sk)
⋂

Um)
⋂

Sk, thus

Ψm ◦ δ|δ−1(δ(Sk)
⋂

Um)
⋂

Sk
≡ 0,

that is to say δ(Sk)
⋂

Um ⊂ F .
• On the other hand, if Σkm = ∅, but δ(Sk)

⋃
Um 6= ∅ we claim that

δ(Sk)
⋂

Um ⊂ F as well: proving this requires a further induction: pick a
UM such that ΣkM 6= ∅ and a finite chain of open sets B′ = {U ′

µ}µ=0...J ⊂ B
(with U ′

µ

⋂
δ(Sk) 6= ∅ for each µ) connecting UM and Um. Since ΣkM 6= ∅,

δ(Sk)
⋂

U ′
0 = δ(Sk)

⋂
UM ⊂ F ;

suppose by induction that

δ(Sk)
⋂

U ′
l−1 ⊂ F :

then
Ψl ◦ δ|δ−1(δ(Sk)∩U ′

l−1
∩U ′

l)∩Sk
≡ 0,

hence
Ψl ◦ δ|δ−1(δ(Sk)∩U ′

l)∩Sk
≡ 0,

i.e. δ(Sk)
⋂

U ′
l ⊂ F : this ends the induction and eventually implies

δ(Sk)
⋂

Um = δ(Sk)
⋂

U ′
J ⊂ F .

Summing up,
δ(Sk) =

⋃

m

(
δ(Sk)

⋂
Um

)
⊂ F ,
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for each k; hence
δ(TN) = δ(SM) ⊂ F

and eventually

δ(T ) = δ


 ⋃

N∈N

TN


 ⊂ F ,

hence δ couldn’t start at a point in N \ F .

In the following considerations, there will still hold all notations intro-
duced in preceding lemma: given a path Q♯

N
=

(
T

⋃
T ♭, ̺♯, j, δ,N

)
, with

possibly nonempty boundary T ♭ set QN = (T, ̺, j, δ, N ), set π = ̺|S, where

̺ = ̺♯|T , we call QN the interior path of Q♯

N
. Set now π = ̺|S, γ = δ|S

and note that, since QN is starting from a metrically ordinary point m,
j may be supposed to take values in fact in S; since the preceding lemma
shows that S is a connected Riemann surface, QM = (S, π, j, δ|SM ) is in
fact a path in M , which we call the depolarization of QN . But M is a
nondegenerate holomorphic Riemannian manifold, hence if P is the set of
branch points of π, there is a P -meromorphic induced parallel translation on
QM , got following definition 4.16 and its substratum. Finally, we introduce
a maximal atlas T for T and yield the following:

Definition 4.18 Let (N , Λ) be a E- meromorphic and D-degenerate Rie-

mannian manifold, M = N \ (D ⋃ E), Q♯

N
=

(
T

⋃
T ♭, ̺♯, j, δ,N

)
a

path with possibly nonempty boundary T ♭ and QN its interior path: the
(P

⋃
δ−1 (D ⋃ E))-meromorphic induced covariant derivative on QN

is the collection consisting of all induced covariant derivatives ∇γ′ [Vk
⋂

S]
as Vk runs over a maximal atlas T = ({Vk})k∈K for T and QM =
(S, π, j, δ|SM ) is the depolarization of QN .
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4.4 Geodesics

Definition 4.19 A meromorphic (in particular, holomorphic) vector field
Z on a path without boundary QM = (S, π, j, γ, M ) is parallel provided
that ∇Z = 0 (as a meromorphic field on QM ).

Definition 4.20 The acceleration ℵ
(
QM

)
of QM is the meromorphic

field ∇
(
V

(
QM

))
on QM yielded by the induced covariant derivative of

its velocity field; the speed of a path is the ’amplitude’ function of its ve-

locity field: S
(
QM

)
(r) =

〈
γ∗|r

(
d̃
dz

)
, γ∗|r

(
d̃
dz

)〉
. This is a meromorphic

function. A path is null provided that its speed is zero everywhere.

Definition 4.21 A geodesic in a meromorphic (in particular, holomor-
phic) Riemannian manifold is a path whose interior path’s velocity field is
parallel, or, equivalently, one of zero acceleration (see definition 4.20). A
geodesic is null provided that so is as a path.

The local equations of elements of geodesics (U, β)





••

β k +
∑N

i,j=1 Γk
ij(β)

•

β i
•

β j = 0

k = 1.....N

are a system of N second-order ordinary differential equations in the com-
plex domain, with meromorphic coefficients, in turn equivalent to an au-
tonomous system of 2N first-order equations, hence, as a consequence of
the general theory (see theorem 2.7) we have the following

Theorem 4.22 For every metrically ordinary point p ∈ M , every holo-
morphic tangent vector Vp ∈ TpM and every z0 ∈ C, there exists a unique
germ βz0

of geodesic such that

{
βz0

(z0) = p
βz0 �(d/dz)|z0

= Vp;

moreover any analytical continuation of βz0
is a geodesic (see theorem 2.8).
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Definition 4.23 Let now QN = (S, π, j, γ, N ) be a nonconstant path:
another path PN = (R, ̺, i, δ, N ) is a reparametrization of QN , or,
shortly, δ is a reparametrization of γ if there exists a holomorphic function
φ : R −→ S such that δ = γ ◦ φ.

•(δ = γ ◦ φ)

R
φ−→ S

γ−→ N
yρ

yπ

Cτ Ct

Proposition 4.24 Suppose that QN is a geodesic: then PN is a geodesic
if and only if there exist two complex contstants a, b, with a 6= 0 and, for
every regular point r of ̺ and s of π such that s = φ(r), there exist two
neighbourhoods Ur of r and Vs of s such that ̺|Ur and π|Vs are biholomorphic
and π ◦ φ ◦ (̺|Ur)

−1 (z) = a z + b.

Proof: the ’if’ implication is trivial; on the other hand, suppose that γ ◦ φ
is a geodesic and r is a regular point for the branched covering ̺: then there
exist neighbourhoods Ur of r and Vs of s = φ(r) such that ̺|Ur and π|Vs are
biholomorphic and γ ◦ φ ◦ ̺|−1

Ur
is a geodesic.

Pick now a chart (W , Θ) around γ(s) and set
{

γk = Θk ◦ γ ◦ π|−1
Vs

ψ = π ◦ φ ◦ ̺|−1
Ur

;

denote derivation with respect to τ ba an apex and with respect to t by a
dot; then, for each k:

0 =
(
γk (ψ(τ))

)′′
+ Γk

ij

(
γi (ψ(τ))

)′ (
γj (ψ(τ))

)′

=
••
γ k (ψ(τ)) (ψ′(τ))

2
+

•
γ k (ψ(τ)) ψ′′(τ) +

Γk
ij (γ ◦ ψ(τ))

•
γ i (ψ(τ))

•
γ j (ψ(τ))

(
ψ′(τ)

)2

=
•
γ k (ψ(τ)) ψ′′(τ).

Since γ is a nonconstant path, then, for some k,
•
γ k 6= 0, hence it should

be ψ′′ = 0, i.e π ◦φ◦̺|−1
Ur

(z) = a z + b, for some complex constants a, b, with
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a 6= 0. The uniformity of a and b with respect to r follows now from the
fact that, if we pick another regular point r♣ of ̺, the holomorphic function
element π ◦ φ ◦ ̺|−1

U♣
r

is connectible with π ◦ φ ◦ ̺|−1
Ur

.

Definition 4.25 A pregeodesic is a path admitting a reparametrization
as a geodesic.

4.4.1 A local reparametrization theorem

Somewhat surprisingly, the natural parameter of any nonconstant geodesic
could be cut off from its local equations: in other terms, we are able to ex-
press, at least locally, the behaviour of such geodesic in terms of a coordinate
function. Of course this is not in general a geodesic parametrization, but
this may be although restored by imposing a constant-speed like condition.
We state all this more precisely:

Theorem 4.26 For every nonconstant geodesic function element
(z0,U , β), z0-starting at the metrically ordinary point m ∈ N in the mero-
morphic Riemannian manifold N and every local chart

(W, Θ) =
(
W, Θ1...ΘN

)

around m (with Θ : W −→ C
N
v1...vN and Θ(m) = 0), there exist:

• an integer l, 1 ≤ l ≤ N , which may be supposed to equal N ;

• a (one-dimensional) neighbourhood V of 0 in CvN ;

such that:

• βN
(
= ΘN ◦ β

)
: U −→ V is biholomorphic, with inverse function

η : V −→ U ;

• β ◦ η is pregeodesic (see definition 4.25).

•
(
β1 ◦ η...βN−1 ◦ η

)
satisfies the following N − 1 dimensional second

order Cauchy’s problem, an apex denoting derivation with respect to
vN and (

γ1...γN−1
)

=
(
β1 ◦ η...βN ◦ η

)
:
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γk ′′ − γk ′




N−1∑

i,j=1

ΓN
ij (γ, vN)γi ′γj ′ + 2ΓN

iN(γ, vN)γi ′ + ΓN
NN(γ, vN)




+
N−1∑

i,j=1

Γk
ij(γ, vN)γi ′γj ′ + 2Γk

iN(γ, vN)γi ′ + Γk
NN(γ, vN) = 0

γ(0) = 0

γk ′(0) =
(

•

β /
•
v N

)
(z0)

k = 1...N − 1

Proof: since β a nonconstant geodesic, one at least among the
•

β J(v0) is
nonzero: maybe reordering the N coordinate functions, we may suppose,

without loss of generality, that
•

β N(v0) 6= 0: then βN is biholomorphic at v0

and, as such, admits a holomorphic inverse function η : V −→ U for suitable
neighbourhoods V of 0 and U of z0. The fact that β ◦η is pregeodesic simply
follows from being η biholomorphic. Now, if k 6= N we have, by the chain

rule γk ′ =
•

β kη′; set w = vN ◦β: then
•

β k = γk ′ and
••

β k = γk ′′ •
w 2 + γk ′ ••w.

On the other hand,

♠
{ ••

β k +
∑N

i,j=1 Γk
ij(β)

•

β i
•

β j

k = 1.....N,

in particular

••
w = −

N∑

i,j=1

Γk
ij(β)

•

β i
•

β j

= −



N−1∑

i,j=1

ΓN
ij (γ, v)γi ′γj ′ + 2ΓN

iN(γ, v)γi ′ + ΓN
NN(γ, v)


 •

w 2,

hence, for k 6= N ,

••

β k =
•
w 2


γk ′′ − γk ′




N−1∑

i,j=1

ΓN
ij (γ, v)γi ′γj ′ + 2ΓN

iN(γ, v)γi ′ + ΓN
NN(γ, v)





 ;

on the other hand,

N∑

i,j=1

Γk
ij(β)

•

β i
•

β j =
•
w 2




N−1∑

i,j=1

ΓN
ij (γ, v)γi ′γj ′ + 2ΓN

iN(γ, v)γi ′ + ΓN
NN(γ, v)


 ,
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hence substituting in ♠ ends the proof.

4.4.2 Geodesic completeness

We eventually yield a definition of geodesic completeness, which will be an
extension of the classical one:

Definition 4.27 A meromorphic Riemannian manifold is geodesically com-
plete provided that the Riemann surface, with logarithmic singularities, of
each geodesic germ starting at a metrically ordinary point is complete as
apath with boundary.
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Chapter 5

Completeness theorems

5.1 Warped products

In this section we shall be concerned with warped products of Riemann sur-
faces, each one endowed with some meromorphic metric: in this framework
we shall prove a geodesic completeness criterion.

Let now Ui, (i = 1....N), N ≥ 2 be either a copy of the unit ball in the
complex plane, or the complex plane itself, whose coordinate function we
shall call ui.

Moreover, let each Ui be endowed with a (not everywhere vanishing)
meromorphic metric, which we denote by b1(u

1) du1 ⊙ du1 on U1 , or by
fi(u

i) dui⊙dui if i ≥ 2, where both b1 and the fi’s are nonzero meromorphic
functions.

Consider now the meromorphic Riemannian manifold

U = U1 ×a2(u1) U2 ×a3(u1) U3 × ........ ×aN (u1) UN ,

where the ak’s (k ≥ 2) are nonzero meromorphic warping functions defined
on U1, i.e. depending solely on u1.

We could write down the meromorphic metric Λ of U in the form

Λ
(
u1.....uN

)
= b1(u

1) dui ⊙ dui +
N∑

i=2

ai(u
i)fi(u

i) dui ⊙ dui.

In other words, the representative matrix of Λ, with respect to the canon-

75



76 CHAPTER 5. COMPLETENESS THEOREMS

ical coordinates of U , inherited from C
N , is of the form

(gik) =




b1(u
1)

a2(u
1)f2(u

2)
a3(u

1)f3(u
3)

. . .

aN(u1)fN(uN)




,

where the blanks should be filled in with zeroes.

Lemma 5.1 The meromorphic Levi-Civita connection induced on U by Λ
is characterized by admitting the following Christoffel symbols Γk

ij:

if k = 1





2Γ1
11 =

b′1(u
1)

b1(u1)
;

Γ1
ij = 0 if i 6= j;

2Γ1
ii = −a′

i(u
1)fi(u

i)

b1(u1)
if 1 ≤ i ≤ N ;

if 2 ≤ k ≤ N





2Γk
kk =

f ′
k(u

k)

f(uk)

2Γk
ik =

a′
k(u

1)

ak(u1)
if i = 1

Γk
ij = 0 otherwise.

Proof: the inverse matrix of the representative one of Λ is

(gik) =




1

b1(u1)
1

a2(u
1)f2(u

3)
1

a3(u
1)f3(u

3)
. . .

1
b1(u

N)fN(uN)




,

where the blanks should be filled in with zeroes; therefore there holds

2Γk
ij = gkk

(
−∂gij

∂uk
+

∂gik

∂uj
+

∂gjk

∂ui

)
,
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where k is meant to be fixed.
Now, if k = 1, then

2Γ1
ij = gkk

(
−∂gij

∂u1
+

∂gi1

∂uj
+

∂gj1

∂ui

)
;

but

• ∂gij

∂u1
6= 0 only if i = j;

• ∂gi1

∂uj
6= 0 only if i = j = 1;

• ∂gj1

∂ui
6= 0 only if i = j = 1,

hence

2Γ1
11 = g11∂g11

∂u1
=

b′1(u
1)

b1(u1)
;

on the other hand, if 2 ≤ i ≤ N ,

2Γ1
ii = −g11∂gii

∂u1
= −a′

i(u
1)fi(u

i)

b1(u1)
.

Instead, if 2 ≤ k ≤ N ,

• ∂gij

∂uk
6= 0 only if i = j = k;

• ∂gik

∂uj
6= 0 only if i = j = k or if i = k 6= j and j = 1;

• ∂gjk

∂ui
6= 0 only if i = j = k or if j = k 6= i and i = 1,

hence

2Γk
kk = gkk ∂gkk

∂uk
=

f ′
k(u

k)

fk(uk)
;

moreover

2Γk
ik = 2Γk

ki = gkk ∂gkk

∂u1
=

a′
k(u

1)

ak(u1)
δk1 :

this ends the proof.
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Lemma 5.2 Each element of geodesic of (U , Λ) satisfies the following sys-
tem of N ordinary differential equations in the complex domain:





••
u 1(z) +

b′1(u
1(z))

2b1(u1(z))

(
•
u 1(z)

)2

−
N∑

l=2

a′
l(u

1(z))fl(u
l(z))

2b1(u1(z))

(
•
u l(z)

)2
= 0

••
u k(z) +

f ′
k(u

k(z))

2fk(uk(z))

(
•
u k(z)

)2

+
a′

k(u
1(z))

ak(u1(z))

(
•
u 1(z)

) (
•
u k(z)

)
= 0, k = 2...N,

(5.1)

provided that it starts at a metrically ordinary point.

Proof: this is an immediate consequence of lemma 5.1.

Lemma 5.3 The system of equations (5.1) of every element of geodesic

z 7−→
(
u1(z)...uN(z)

)

of (U , Λ) such that

• the initial values

(
u1(z0).....u

N(z0),
•
u 1(z0).....

•
u N(z0)

)

of γ yield a metrically ordinary point of (U , Λ);

• u1 is not a constant function;

admits the following first integral:





(
•
u 1(z)

)2 (
b1

(
u1(z)

))
= A1 −

N∑

l=2

Al

al (u1(z))
♠

(
•
u k(z)

)2
fk

(
uk(z)

) [
ak

(
u1(z)

)]2
= Ak k = 2...N ♣.

(5.2)

Here the Ak’s are suitable complex constants.
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Proof: let’s prove at first that the set of equations ♣ , corresponding to
k = 2...N , holds.

If uk is a constant function, then
•
u k ≡ 0 and the k-th equation in ♣

holds, with Ak = 0.
If, instead, uk is not a constant function, then we could divide the k-th

equation in (5.1) by uk, this division being lead within the ring of meromor-
phic functions in a neigbhourhood of z0.

We get

2

••
u k(z)
•
u k(z)

+
f ′

k

(
uk(z)

)

fk(uk(z))

•
u k(z) + 2

a′
k (u1(z))

ak(u1(z))

•
u 1(z) = 0.

Therefore, integrating once,

(
•
u k(z)

)2
fk

(
uk(z)

) [
ak

(
u1(z)

)]2
= Ak,

where we have set

Ak =
(
•
u k(z0)

)2
fk

(
uk(z0)

) [
ak

(
u1(z0)

)]2
.

Note that Ak is a well defined complex number, since

U (z0) =
(
u1(z0)...u

N(z0)
)

is a metrically ordinary point.
Let’s eventually prove ♠ : we could multiply the first equation of (5.1)

by 2b1 (u1(z))
•
u 1(z), since this last function is not everywhere vanishing.

We get

2b1

(
u1(z)

)
•
u 1(z)

••
u 1(z) + b′1(u

1(z))
(
•
u 1(z)

)3

−
N∑

l=2

a′
l(u

1(z))fl(u
l(z))

(
•
u l(z)

)2 •
u 1(z) = 0;

by ♣, already proved,

(
•
u l(z)

)2
=

Al

fl(ul(z)) [al(u1(z))]2
,
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hence

2b1

(
u1(z)

)
•
u 1(z)

••
u 1(z) + b′1(u

1(z))
(
•
u 1(z)

)3

−
N∑

l=2

Al
a′

l(u
1(z))

[al(u1(z))]2
•
u 1(z) = 0;

integrating once we get

b1

(
u1(z)

) (
•
u 1(z)

)2
+

N∑

l=2

Al

al (u1(z))
= K,

where

K = b1

(
u1(z0)

) (
•
u 1(z0)

)2
+

N∑

l=2

Al

al (u1(z0))
;

dividing by b1 (u1(z)), keeping into account that b1 (u1(z0)) 6= 0 (due to
the metrical ordinariness of the initial point of the geodesic) and eventually

setting A1 = K/b1

(
u1(z0)

)
ends the proof.

Lemma 5.4 Every element of geodesic z 7−→
(
u1(z)...uN(z)

)
of (U , Λ) such

that

• the initial values

(
u1(z0).....u

N(z0),
•
u 1(z0).....

•
u N(z0)

)

of γ yield a metrically ordinary point of (U , Λ);

• u1 is a constant function;

admits the following first integral:





u1(z) = A1 ♦(
•
u k(z)

)2
fk

(
uk(z)

)
= Ak ♥ k = 2...N.

(5.3)

Here the Ak’s are suitable complex constants.
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Proof: ♦ holds by hypothesis: let’s prove now that the set of equations
♥ , corresponding to k = 2...N , holds.

If uk is a constant function, then
•
u k ≡ 0 and the k-th equation in ♦

holds, with Ak = 0.
If, instead, uk is not a constant function, then we could divide the k-th

equation in (5.1) by uk, this division being lead within the ring of meromor-
phic functions in a neigbhourhood of z0.

By keeping into account that
•
u 1(z) ≡ 0 we get:

2

••
u k(z)
•
u k(z)

+
f ′

k

(
uk(z)

)

fk(uk(z))

•
u k(z) = 0

Therefore, integrating once,
(
•
u k(z)

)2
fk

(
uk(z)

)
= Ak,

where we have set
Ak =

(
•
u k(z0)

)2
fk

(
uk(z0)

)
.

Note that Ak is a well defined complex number, since

U (z0) =
(
u1(z0)...u

N(z0)
)

is a metrically ordinary point: this fact ends the proof.

Remark 5.5 In the following we shall be concerned with ’extracting square
roots’ of nonvanishing elements, or germs, of holomorphic functions at some
points in the complex plane: more precisely, let (U, Ψ) be a never vanishing
holomorphic function element: then there exist two holomorphic function
elements (U, Ξ1) and (U, Ξ2) such that Ξ2

1 = Ψ and Ξ2
2 = Ψ on U : the

Riemann surfaces of (U, Ξ1) and (U, Ξ2) are isomorphic, since either

• the Riemann surface
(
R, p, i, Ũ

)
of (U, Ψ) is such that Ũ is never

vanishing, nor has it got any poles; then the Riemann surfaces of
(U, Ξ1), (U, Ξ2) and (U, Ψ) are all isomorphic;

• the Riemann surface
(
R, p, i, Ũ

)
of (U, Ψ) is such that there exists

some point p ∈ R such that Ũ(p) = 0 or such that Ũ has a pole in p:
then the function elements (U, Ξ1) and (U, Ξ2) are connectible, hence
their Riemann surfaces are again isomorphic.
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The same reasoning could be applied without changes to the Riemann sur-
faces of the holomorphic function elements (U,

∫
Ξ1) and (U,

∫
Ξ2).

Definition 5.6 A meromorphic warped product

U = U1 ×a2(u1) U2 ×a3(u1) U3 × ........ ×aN (u1) UN

of complex planes or one-dimensional unit balls with metric

Λ
(
u1.....uN

)
= b1(u

1) dui ⊙ dui +
N∑

i=2

ai(u
i)fi(u

i) dui ⊙ dui,

where b1, the ak’s and the fk’s are nonzero meromorphic functions is co-
ercive provided that, for every metrically ordinary point X0 =

(
x1

0...x
N
0

)

and

• for every n-tuple (A1...AN) ∈ C
N such that





b1(x
1
0) 6= 0

A1 −
∑N

l=2
Al

al(x
1
0)

6= 0

and for each one of the two holomorphic function germs ℵ1 and ℵ2

such that

(ℵi)
2 =

[
1

b1

(
A1 −

N∑

l=2

Al

al

)]

x1
0

i = 1, 2,

the Riemann surface (S1, π1, j1, Φ1,U) of both the holomorphic func-
tion germs (see remark 5.5)

[∫ u1

x0

d η

ℵi(η)

]

x1
0

i = 1, 2; (5.4)

is such that P
1 \ Φ1(S1) is a finite set;

• for each k, 2 ≤ k ≤ N and for each one of the two holomorphic
function germs φk1 and φk2 such that

(φki)
2 = [fk]x1

0

, i = 1, 2
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the Riemann surface (Sk, πk, jk, Φk,U) of both the holomorphic func-
tion germs (see remark 5.5)

[∫ uk

x1
0

φki(η) dη

]

x1
0

i = 1, 2 (5.5)

is such that P
1 \ Φk(Sk) is a finite set.

Remark 5.7 Definition 5.6 may be checked for just one metrically
ordinary point X0: this is proved in lemma 5.8; moreover, we may
assume,without loss of generality X0 = 0: were not, we could carry it
into 0 by applying an automorphism of U , that is to say a direct product
of automorphisms of the unit ball or of the complex plane, according to the
nature of each Ui. Then a simple pullback procedure would yield back the
initial situation: in the following we shall understand this choice.

In the following lemma we shall use the ’square root’ symbol in the meaning
of definition 5.6, or remark 5.5: in other words, given a holomorphic function
germ, which is not vanishing at some point, it should denote any one of the
two holomorphic function germs yielding it back when squared.

Lemma 5.8 For every metrically ordinary point
(
ξ1...ξN

)
of U and every

n-tuple (A1...AN) ∈ C
N such that





b1(x
1
0) 6= 0

A1 −
∑N

l=2
Al

al(x
1
0
)
6= 0

b1(ξ
1) 6= 0

A1 −
∑N

l=2
Al

al(ξ1)
6= 0,

set Ψ(η) = A1 −
N∑

l=2

Al

al(η)
, the Riemann surfaces of the holomorphic func-

tion germs

[∫ u1

ξ1

√
b1(η)/Ψ(η) dη

]

ξ1

and

[∫ u1

0

√
b1(η)/Ψ(η) dη

]

0

are iso-

morphic: moreover so are, for each k, those of

[∫ uk

ξk

√
fk(η) dη

]

ξk

and

[∫ uk

0

√
fk(η) dη

]

0

.



84 CHAPTER 5. COMPLETENESS THEOREMS

Proof: the holomorphic function germs

[∫ u1

ξ1

√
b1(η)/Ψ(η) dη

]

ξ1

and

[∫ u1

0

√
b1(η)/Ψ(η) dη

]

0

are connectible.

Moreover so are, for each k,

[∫ uk

ξk

√
fk(η) dη

]

ξk

and

[∫ uk

0

√
fk(η) dη

]

0

.
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5.2 More analytical continuation

Lemma 5.9 Let (U , f) and (V , g) be two holomorphic function elements
(or two holomorphic function germs), each one inverse of the other; let
(R, π, j, F, C) and (S, ρ, ℓ, G, C) be their respective standard Riemann sur-
faces: then

F (R) = ρ(S).

Proof:
a) F (R) ⊂ ρ(S): let ξ ∈ R and F (ξ) = η; there exist:

• an open neighbourhood U1 of ξ;

• open subsets U2 ⊂ π (U1) and V2 ⊂ F (U1);

• a biholomorphic function g2 : V2 −→ U2, with inverse function f2 :
U2 −→ V2

such that:

• (U2, f2) and (U , f) are connectible;

• (V2, g2) and (V , g) are connectible.

By construction there hence exist two holomorphic immersions

j̃ : U2 −→ R and ℓ̃ : V2 −→ S

such that π ◦ j̃ = id and ρ ◦ ℓ̃ = id.
Let V1 = F (U)1 and

Σ = {(x, y) ∈ U1 × V2 : F (x) = y};

moreover let J : V2 −→ Σ be defined by setting J(v) =
(
j̃ ◦ g2(v), v

)
.

Then (Σ, pr2, J, π ◦ pr1) is an analytical continuation of (V2, g2); indeed

π ◦ pr1 ◦ J = π ◦ j̃ ◦ g2 = g2.

But (V∈, g2) is connectible with (V , g), hence (Σ, pr2, J, π ◦ pr1) is an ana-
lytical continuation of (V , g).
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There eventually exists a holomorphic function h : Σ −→ S such that
ρ ◦ h = pr2: hence

η = pr2 (ξ, η) = ρ ◦ h (ξ, η) ∈ ρ (S) .

b) ρ(S) ⊂ F (R): let s ∈ S: there is a neighbourhood V of s in S such
that V \{s} consists entirely of regular points both of ρ and G, not excluding
that s itself be regular for ρ or G or both.

This fact means that for each s′ ∈ V \ {s} there exists a holomorphic
function element (ρ(s′),V ′, g̃s′) connectible with (V , g) and, besides, a holo-
morphic immersion ℓ̃ : V ′ −→ V .

By a) already proved, G(s) ∈ π(R), hence there exist:

• p ∈ R such that π(p) = G(s);

• a neighbourhood W of p in R such that π−1 (g̃ (V ′))
⋂

W 6= ∅.

Set

W ′ = π−1 (g̃ (V ′))
⋂

W :

we may suppose, without loss of generality, that π is invertible on W ′: hence
there exists a (open) holomorphic immersion j̃ : g̃ (V ′) −→ W .

Therefore, for each ζ ∈ j̃ (g̃ (V ′)), there exists η ∈ ℓ̃ (V ′) such that

F (ζ) = F
(
j̃ ◦ g̃ ◦ ρ(η)

)
.

Now, by definition of analytical continuation there holds

F ◦ j̃ ◦ g̃ = id,

hence we have F (ζ) = ρ(η).
Consider now the holomorphic function Ξ : W × V −→ C defined by

setting

Ξ (w, v) = F (w) − ρ(v) :

we have

Ξ|̃
j(g̃(V ′))×ℓ̃(V ′)

≡ 0.
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But j̃ (g̃ (V ′)) × ℓ̃(V ′) is an open set in W × V , hence Ξ ≡ 0 on W × V ,
which in turn implies F (p) = ρ(s).

Therefore we have proved that for each s ∈ S there exists p ∈ R such
that F (p) = ρ(s): this eventually implies that ρ(S) ⊂ F (R).

Lemma 5.10 Let f , g, h be three holomorphic function germs such that
f ◦ g = h. Let (R, π, j, F, C) be the Riemann surface of f , (S, ρ, ℓ, G, CI)
the one of g and (T, σ,m,H, CI) the Riemann surface with logarithmic
singularities (see definition 1.32) of h: then

F (R) \
(
P

1 \ (σ(T ))
)
⊂ ρ(S).

Proof: let ξ ∈ R such that η = F (ξ) 6∈ P
1 \ (σ(T )); there exist:

• an open neighbourhood U1 of ξ;

• open subsets U2 ⊂ π (U1), V2 ⊂ F (U1) and W2 ⊂ σ (T ) ;

• biholomorphic functions f2 : U2 −→ W2, g2 : V2 −→ U2 and h2 :
V2 −→ W2

such that:

• (U2, f2) and f are connectible;

• (V2, g2) and g are connectible;

• (V2, h2) and h are connectible;

• f2 ◦ g2 = h2.

By construction there hence exist three holomorphic immersions




j̃ : U2 −→ R
ℓ̃ : V2 −→ S
m̃ : W2 −→ T

such that π ◦ j̃ = id, ρ ◦ ℓ̃ = id and σ ◦ m̃ = id.
Let V1 = F (U1), W1 be the connected component of σ−1 (F (U1)) in T

and
Σ = {(x, y) ∈ U1 ×W1 : F (x) = H(y)};
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moreover let J : V2 −→ Σ be defined by setting J(v) =
(
j̃ ◦ g2(v), m̃(v)

)
.

Then (Σ, pr2, J, π ◦ pr1) is an analytical continuation, with logarithmic
singularities of (V2, g2); indeed

π ◦ pr1 ◦ J = π ◦ j̃ ◦ g2 = g2.

But (V∈, g2) is connectible with (V, g), hence (Σ, pr2, J, π ◦ pr1) is an
analytical continuation of (V, g).

There eventually exists a continuous function h : Σ −→ S (in fact holo-
morphic on int(Σ)) such that ρ ◦ h = pr2 : hence

η = pr2 (ξ, η) = ρ ◦ h (ξ, η) ∈ ρ (S) .
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5.3 The main theorem

Theorem 5.11 A meromorphic warped product

U = U1 ×a2(u1) U2 ×a3(u1) U3 × ........ ×aN (u1) UN

of complex planes or one-dimensional unit balls with metric

Λ
(
u1.....uN

)
= b1(u

1) du1 ⊙ du1 +
N∑

i=2

ai(u
1)fi(u

i) dui ⊙ dui,

is geodesically complete if and only if it is coercive.

Proof:
a) suppose that U is coercive and that U , defined by

z 7−→
(
u1(z)...uN(z)

)
,

is an element of geodesic, defined in a neighbourhood of 0 in the complex
plane and such that

(
u1(0)...uN(0)

)
is a metrically ordinary point; moreover,

let (
•
u 1(0)...

•
u N(0)

)

be the initial velocity of U .

Suppose at first that z 7→ u1(z) is a constant function (hence
•
u 1(0) = 0 ):

then, by lemma 5.4, the equations of U are





u1(z) = A1(
•
u k(z)

)2
fk

(
uk(z)

)
= Ak k = 2...N,

(5.6)

where the Ak’s are suitable complex constants.
Now the Riemann surface of the holomorphic function element z 7→ u1(z)

is trivially isomorphic to
(
P

1, id, id, A1

)
; if Ak = 0 the Riemann surface of

z 7→ uk(z) is isomorphic to
(
P

1, id, id, A
)

for some complex constant A; if

Ak 6= 0 we could rewrite the k-th equation of (5.6) in the form:

1

Bk

∫ uk(z)

uk(0)
φ(η) dη = z, (5.7)
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where φ2
k = fk and B2

k = Ak, the choice of φk and Bk being made in such a
way that

•
u k(0) =

Bk

φk(0)
.

By hypothesis, the Riemann surface (Sk, πk, jk, Φk) of the holomorphic func-

tion germ

[∫ uk

0
φk dη

]

0

is such that P
1 \Φ1(S1) is a finite set; by lemma 5.8

the Riemann surface of the holomorphic function germ

[∫ uk

uk(0)
φk dη

]

uk(0)

is isomorphic to (Sk, πk, jk, Φk); but, by (5.7), the germs uk
z=0 and[∫ uk

uk(0)
φk dη

]

uk(0)

are each one inverse of the other; hence, by lemma 5.9

the Riemann surface of uk
z=0 is complete; this eventually implies that the

Riemann surface of the element

z 7−→
(
u1(z)...uN(z)

)

is complete too: this fact ends the proof of a) in the case that u1 is a constant
function.

On the other side, suppose that u1 is not a constant function: then, by
lemma 5.3, the equations of U are





(
•
u 1(z)

)2 (
b1

(
u1(z)

))
= A1 −

N∑

l=2

Al

al (u1(z))
♠

(
•
u k(z)

)2
fk

(
uk(z)

) [
ak

(
u1(z)

)]2
= Ak k = 2...N ♣.

(5.8)

for suitable complex constants A1...AN .
Consider now the germ z 7→ u1(z) in z = 0: rewrite the first equation of

(5.8) in the form: ∫ u1(z)

u1(0)

dη

ℵ(η)u1(0)

= z, (5.9)

where
(
ℵ(η)u1(0)

)2
=

A1 −
∑N

l=2 Al/al(η)

b1(η)

in a neighbourhood of z = 0, the choice of the square root ℵk being made

in such a way that ℵu1(0)

(
u1(0)

)
= 1/

•
u 1(0).
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Denote now by ℵu=0 the holomorphic function germ defined by setting

(ℵ0)
2 =

[
1

b1

(
A1 −

N∑

l=2

Al

al

)]

0

,

the choice of the ’square root’ ℵ0 being arbitrary.

By hypothesis, the Riemann surface (S1, π1, j1, Φ1) of the holomorphic

function germ

[∫ u1

0
1/ℵ0

]

0

is such that P
1 \ Φ1(S1) is a finite set.

By lemma 5.8 the Riemann surfaces of

[∫ u1

0
1/ℵ0

]

0

and of

[∫ u1

u1
0

1/ℵ0

]

u1
0

are both isomorphic to (S1, π1, j1, Φ1); but, by (5.7), the germs u1
z=0 and

[
∫ u1

0
1/ℵ0]u1(0) are each one inverse of the other; hence, by lemma 5.9 the

Riemann surface of u1
z=0 is complete.

Let now 2 ≤ k ≤ N : if Ak = 0 the Riemann surface of z 7→ uk(z) is

isomorphic to
(
P

1, id, id, A
)

for some complex constant A; if Ak 6= 0 we

could rewrite the k-th equation of (5.8) in the form:

∫ uk(z)

uk(0)
φ(η) dη =

∫ z

0

Bk dz

ak (u1(z))
, (5.10)

where φ2
k = fk and B2

k = Ak, the choice of φk and Bk being made in such a
way that

•
u k(0) φ

(
uk(0)

)
ak

(
u1(z)

)
= Bk.

Denote now by [ϕk]uk=0 the holomorphic function germ defined by setting
[ϕk]

2
uk=0 = [fk]uk=0, the choice of the ”square root” [ϕk]uk=0 being arbitrary.

By hypothesis, the Riemann surface (Sk, πk, jk, Φk) of the holomorphic

function germ

[∫ uk

0
ϕk

]

0

is such that P
1 \ Φ1(S1) is a finite set; more-

over, by lemma 5.8 the Riemann surfaces of the holomorphic function germ[∫ uk

uk(0)
φk dη

]

uk(0)

is isomorphic to (Sk, πk, jk, Φk); but, by (5.10) the germs

•
[
z −→ uk

]
z=0

;
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•
[∫ uk

uk(0)
φk dη

]

uk(0)

;

•
[
z −→

∫ z

0

Bk

ak (u1(ζ))
dζ

]

z=0

satisfy, in the above order, the hypotheses of lemma 5.10; moreover, the Rie-

mann surface with logarithmic singularities of

[∫ uk

uk(0)
φk dη

]

uk(0)

is complete,

since the one of [φk]uk(0) is complete without logarithmic singularities.

Therefore the Riemann surface with logarithmic singularities of uk
z=0 is

complete; this eventually implies that the Riemann surface with logarithmic
singularities of the element

z 7−→
(
u1(z)...uN(z)

)
,

is complete too: this fact ends the proof of a).

Vice versa, suppose that

U = U1 ×a2(u1) U2 ×a3(u1) U3 × ........ ×aN (u1) UN

is not coercive: then

• either there exists a complex n-tuple (A1...AN) ∈ C
N such that





b1(x
1
0) 6= 0

A1 −
∑N

l=2
Al

al(x
1
0)

6= 0

and for each one of the two holomorphic function germs ℵ1 and ℵ2

such that

(ℵi)
2 =

[
1

b1

(
A1 −

N∑

l=2

Al

al

)]

0

i = 1, 2,

the Riemann surface (S1, π1, j1, Φ1) of both the holomorphic function
germs (see remark 5.5)

[∫ u1

x0

d η

ℵi(η)

]

x1
0

i = 1, 2;

is such that P
1 \ Φ1(S1) is an infinite set;
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• or there exists k, 2 ≤ k ≤ N such that, for each one of the two
holomorphic function germs [φk1]0 and [φk2]0 such that

[φki]0 = [fk]0 , i = (1, 2)

the Riemann surface (Sk, πk, jk, Φk) of both the holomorphic function

germs (see remark 5.5)

[∫ uk

0
φki(η) dη

]

0

i = 1, 2 is such that P
1 \

Φ1(S1) is an infinite set.

In the first case the geodesic element

z 7−→ U(z) =
(
u1(z)...uN(z)

)

starting from 0 with velocity (L1...LN), such that

L2
1 =

1

b1(0)

(
A1 −

N∑

l=2

Al

al(0)

)
, L2

k =
Ak

fk(0)ak(0)
, k = 2...N,

satisfies, among the other ones, the equation

∫ u1(z)

0

dη

ℵi(η)
= z,

where i = 1 or i = 2; by lemma 5.9, this fact implies that
[
z 7−→ u1(z)

]
0

has

got an incomplete Riemann surface, hence the same holds about z 7−→ U(z)
too.

Consider now the second case: first construct a geodesic element

z 7−→ U(z) =
(
0...uk(z)...0

)
,

with all components which have to be constant functions except uk, k ≥ 2
(this element is easily seen to exist).

Now recall lemma 5.4 to conclude that z 7−→ uk(z) satisfies, in a neigh-
bourhood of z = 0 the equation

1

Ck

∫ uk(z)

0
φki(η) dη = z,

for a suitable complex constant Ak; therefore its Riemann surface is incom-
plete by lemma 5.9; this fact ends the proof.
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Definition 5.12 Let U and V be meromorphic warped products of complex
planes and unit balls; U and V are directly biholomorphic provided that
they are biholomorphic under a direct product of biholomorphic functions
between each Ui and each Vi.

Remark 5.13 Definition 5.6 is invariant under direct biholomorphism (see
definition 5.12 ) : in other words, if U and V are directly biholomorphic,
then U is coercive if and only V is too: this is a simple consequence of
’changing variable’ in integrals 5.4 and 5.5.

Therefore, we could yield the following

Definition 5.14 An equivalence class [U ] of meromorphic warped products
of complex planes and unit balls, consisting of mutually directly (see defi-
nition 5.12 ) biholomorphic elements is coercive provided that any one of
its representatives is coercive.

Our goal is now to extend definitions 5.6 and 5.14 to warped products
containg some P

1’s among their factors.
Keeping into account remark 5.13, this could be readiliy pursued: indeed,

consider a meromorphic warped product

U = U1 ×a2(u1) U2 ×a3(u1) U3 × ........ ×aN (u1) UN

of Riemann spheres, complex planes or one-dimensional unit balls with met-
ric

Λ
(
u1.....uN

)
= b1(u

1) dui ⊙ dui +
N∑

i=2

ai(u
i)fi(u

i) dui ⊙ dui.

Let L ⊂ {1...N} be the set of indices such that Ul ≃ P
1 for each l ∈ L.

Definition 5.15 Let Y =
(
y1...yN

)
∈ U : then (Y, L) is a principal mul-

tipole of U provided that

{
b1(y

1) = ∞
fl(y

l) = ∞ for each l ∈ L \ {1}.
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Definition 5.16 A meromorphic warped product

U = U1 ×a2(u1) U2 ×a3(u1) U3 × ........ ×aN (u1) UN

of Riemann spheres, complex planes or one-dimensional unit balls with met-
ric is partially projective if some one of its factors is biholomorphic to
the Riemann sphere P

1.

Definition 5.17 A partially projective warped product U =
N∏

i=1

Ui is coer-

cive in opposition to the principal multipole (Y, L) if, set

Wi =
{Ui if i 6∈ L
Ui \ {yi} if i ∈ L,

then
N∏

i=1

Wi is coercive in the sense of definition 5.14, that is to say, belongs

to a coercive equivalence class with respect to direct biholomorphicity.
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5.4 Warped product of Riemann surfaces

Consider now a warped product of Riemann surfaces

S = S1 ×a2
S2 ×a3

S3 × ........ ×aN
SN ,

where each Si is endowed with meromorphic metric λi: S’s metric Λ is
defined by setting

Λ = λ1 +
N∑

k=2

akλk,

where each ak is a meromorphic function on Si.

Theorem 5.18 S admits universal covering Ψ : U −→ S, where U is a
direct product of Riemann spheres, complex planes or one-dimensional unit
balls: this universal covering is unique up to direct biholomorphisms.

Proof: this is a simple consequence of Riemann’s uniformization theorem.

Now U could be endowed with the pull-back meromorphic metric Ψ∗Λ,
hence U itself results in a meromorphic warped product.

Definition 5.19 The manifold S is

• totally unelliptic provided that none of the Si is elliptic;

• L-elliptic provided that there exists a nonempty set of indices L such
that Sl is elliptic if and only if l ∈ L.

Definition 5.20 Let S be a L-elliptic warped product, with universal cov-
ering Ψ : U −→ S: then (Z,L) is a principal multipole for S provided that
Z ∈ S and each Y ∈ Ψ−1 (Z) is a principal multipole for U .

Definition 5.21 • A totally unelliptic warped product of Riemann sur-
faces is coercive provided that its universal covering is coercive in the
sense of definition 5.14;
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• A L-elliptic warped product of Riemann surfaces is coercive in oppo-
sition to the principal multipole (Z,L) provided that its universal
covering U is coercive in opposition to each principal multipole (Y, L)
as Y runs over Ψ−1(Z).

Theorem 5.22 A totally unelliptic warped product of Riemann surfaces S
is geodesically complete if and only if it is coercive.

Proof: let Ψ : U −→ S be the universal covering of S: by definition 5.19 U
is coercive, hence geodesically complete by theorem 5.11.

Let now γ be a germ of geodesic in S, starting at a metrically ordinary
point: since Ψ is a local isometry, there exists a germ β of geodesic in U ,
starting at a metrically ordinary point, such that γ = Ψ ◦ β.

By definition of completeness, the Riemann surface with logarithmic sin-
gularities (Σ, π, j, B,U) of β is such that P

1 \ π (Σ) is a finite set; moreover,
(Σ, π, j, Ψ ◦ B,S) is an analytical continuation, with logarithmic singulari-
ties, of γ.

This proves that, if
(
Σ̃, π̃, j̃, G,S

)
is the Riemann surface with loga-

rithmic singularities of γ, then P
1 \ π̃

(
Σ̃

)
is a finite set too, hence S is

geodesically complete.
On the other side, if S admits an incomplete germ of geodesic γ, starting

at a metrically ordinary point, then there exists an incomplete germ of
geodesic β in U , starting at a metrically ordinary point, such that γ = Ψ◦β;
this means by theorem 5.11, that U is not coercive; eventually, by definition
5.19, S is not coercive: this fact ends the proof.

Theorem 5.23 A L-elliptic warped product of Riemann surfaces S is
geodesically complete if and only if) it is coercive in opposition to some
principal multipole.

Proof: suppose that S is coercive in opposition to some principal multipole
(Z,L): then, by theorem 5.22, S is coercive in opposition to (Z, L) if and
only if S \ Z is geodesically complete; since Z is not metrically ordinary, S
is geodesically complete.

On the other hand, suppose that S admits an incomplete geodesic
(Σ, π, j, γ,S): let (Z, L) be a principal multipole of S wich is known to
exist; set R = γ−1 (S \ Z) ⊂ Σ.
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Now (R, π|R, j, γ|R,S \ Z) is an incomplete geodesic of S \ Z: this fact
implies that S \Z is not geodesically complete, hence it is not coercive, that
is to say, S is not coercive in opposition to (Z,L).

The arbitrariness of Z allows us to conclude the proof.
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5.5 Examples

We shall now show a wide class of warped products sharing all characteristics
defining coercivity: they will hence result in being geodesically complete.

We recall, without proof, the following results from the theory of mero-
morphic functions (see [NEV] or [HAY]):

Theorem 5.24 • A function meromorphic in the complex plane takes
all P

1’s values but at most two ones;

• a function meromorphic in the unit disc, whose characteristic function
T is such that the ratio

T (r)/log(1 − r) (5.11)

is unlimited as r −→ 1, takes all P
1’s values but at most two ones.

In the following we shall need some technicalities from integral calculus,
hence we state:

Proposition 5.25 Set ∆ = b2 − 4ac, there holds

[∫ d η√
aη2 + bη + c

]

0

=










 1√

a
log


η +

b

2a
+

√

η2 +
b

a
η +

c

a


 + cost




0
the same branch of

√
, any branch of log

if a 6= 0 and ∆ 6= 0



[
1√
a

log

(
η +

b

2a
+

)
+ cost

]

0
any branch of log
if a 6= 0 and ∆ = 0




[
2
b
√

bη + c + cost
]
0

the same branch of
√

if a = 0 and b 6= 0



[η/
√

c + cost]0
the same branch of √
if a = b = 0.
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Let now h, f2...fN be mermorphic functions on C and P2...PN polynomi-
als of degree at most two.

Consider on C
N the mermorphic metric

Λ
(
u1...uN

)
=

[
h′(u1)

]2
du1 ⊙ du1 +

N∑

k=2

[
fk(u

k)
]2

Pk (h(u1))
duk ⊙ duk.

Theorem 5.26
(
C

N , Λ
)

is coercive (hence geodesically complete).

Proof:

• For every n-tuple (A1...AN) ∈ C
N such that





h′(0) 6= 0

A1 −
N∑

l=2

AlPl(0) 6= 0,

there holds

∫ u1

0

h′(η)d η√√√√A1 −
N∑

l=2

AlPl(h(η))

=
∫ h(u1)

h(0)

d h√√√√A1 −
N∑

l=2

AlPl(h)

= Φ
(
h(u1)

)
,

where Φ is one (depending on the constants A1...AN) of the holo-
morphic function germs on the right hand member of proposition
5.25. This fact shows that the maximal analytical continuation of
u1 −→ Φ (h(u1)) takes all P

1’s values but a finite number, because so
does the meromorphic function h (see theorem 5.24);

• for each k, 2 ≤ k ≤ N , each one of the two holomorphic function
germs ± [fk]0 , could be continuated to ±fk which, by theorem 5.24,
takes all values but at most two ones.

Remark 5.27 Extending the validity of preceding example to the partially
projective case is straightforward.
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Let now Si, i = 1..N be Riemann surfaces, which we suppose for simplic-
ity to be parabolic or hyperbolic, pi:Ui −→ Si their universal covering, where
each Ui is isomorphic either to the unit disc or to the complex plane; finally,
let φi be meromorphic functions such that φ1 ◦ p1 and (φi ◦ pi)

′, i = 1..N
take all complex values but at most a finite number (the hypothesis on φi◦pi

could be weakened; even dropped, if Si is parabolic: see [HAY]).
Moreover, let ai, bi, ci, i = 1..N be complex numbers such that, for

each i, ai 6= 0 or bi 6= 0 or ci 6= 0.
Set 




S =
∏N

i=1 Si

U =
∏N

i=1 = Ui

p = (p1....pN)

and consider the meromorphic metric

Λ = dφ1 ⊙ dφ1 +
N∑

i=1

dφi ⊙ dφi

aiφ2
1 + biφ1 + ci

.

Theorem 5.28 (U , Λ) is coercive (hence geodesically complete).

Proof: by pulling back Λ with respect to the universal covering p we get

p∗Λ(z1...zN) = [(φ1 ◦ p1)
′]

2
dz1 ⊙ dz1 +

N∑

i=1

[(φi ◦ pi)
′]2 dzi ⊙ dzi

ai(φ1 ◦ p1)2 + biφ1 ◦ p1 + ci

.

We claim that (U , p∗Λ) is coercive: in fact, for every n-tuple (A1...AN) ∈ C
N

such that 



(φ1 ◦ p1)
′(0) 6= 0

A1 −
N∑

l=2

Alai(φ1 ◦ p1)
2 + biφ1 ◦ p1 + ci 6= 0,

there holds
∫ u1

0

(φ1 ◦ p1)
′(η)d η√√√√A1 −

N∑

l=2

Al(ai(φ1 ◦ p1)
2 + biφ1 ◦ p1 + ci)((η))

=
∫ φ1◦p1(u1)

φ1◦p1(0)

d (φ1 ◦ p1)√√√√A1 −
N∑

l=2

Al(ai(φ1 ◦ p1)
2 + biφ1 ◦ p1 + ci)

= Φ (φ1 ◦ p1) ,
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where Φ is one (depending on the constants A1...AN) of the holomorphic
function germs on the right hand member of proposition 5.25.

This fact shows that the maximal analytical continuation of

u1 −→ Φ
(
φ1 ◦ p1(u

1)
)

takes all P
1’s values but a finite number, because so does the meromorphic

function φ1 and hence φ1 ◦ p1; moreover, for each i, 2 ≤ i ≤ N , each one of
the two holomorphic function germs

± [(φi ◦ pi)
′]

could be continuated to ± [(φi ◦ pi)
′] which, by assumption, takes all values

but at most two ones.

5.5.1 Extensions

The preceding examples may be readily extended to the following two (al-
ternative) cases, mostly following the outline of the above reasoning:

• D
N taking place of C

N and h, f2...fN meromorphic functions on D

satisfying condition (5.11);

• P2...PN polynomials of degree at most four: similar conclusions may
be drawn by means of elliptic integrals.
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5.5.2 Some pseudo-Riemannian geometry

We assume all basic notions involved: the reader is referred to [ONE] or
[BEH]: we present only main definitions and theorems, which are real ana-
logues of the complex ones which we have introduced: for the sake of com-
pleteness, we repeat some proofs, adapted to the real case.

Definition 5.29 •
A path with logarithmic singularities (S, π, j, F, M), with values in
some complex manifold M is real-complete provided that R \ π (S) is
a finite set.

• A pseudo-Riemannian manifold is geodesically complete provided that
it admits a complexification M such that the Riemann surface, with
logarithmic singularities, of each (complexified) geodesic germ is real-
complete.

Definition 5.30 A warped product

U = U1 ×a2(u1) U2 ×a3(u1) U3 × ........ ×aN (u1) UN

of real intervals, real lines or S
1’s with nondegenerating real-analytic pseudo-

Riemannian metric

Λ
(
u1.....uN

)
= b1(u

1) dui ⊙ dui +
N∑

i=2

ai(u
i)fi(u

i) dui ⊙ dui,

of arbitary signature is coercive provided that, called K the canonical com-
plexification R

N → C
N , for one (hence every) point X0 = (x1

0...x
N
0 ) there

holds:

• for every n-tuple (A1...AN) ∈ R
N such that





b1(x
1
0) 6= 0

A1 −
∑N

l=2
Al

al(x
1
0)

6= 0

and for each one of the two holomorphic function germs ℵ1 and ℵ2

such that

(ℵi)
2 = K ◦

[
1

b1

(
A1 −

N∑

l=2

Al

al

)]

x1
0

i = 1, 2,
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the Riemann surface
(
S1, π1, j1, Φ1C

N
)

of both the holomorphic func-

tion germs (see remark 5.5)

[∫ u1

x0

d η

ℵi(η)

]

x1
0

i = 1, 2; (5.12)

is such that R \ Φ1(S1) is a finite set;

• for each k, 2 ≤ k ≤ N and for each one of the two holomorphic
function germs φk1 and φk2 such that

(φki)
2 = K ◦ [fk]x1

0

, i = 1, 2

the Riemann surface
(
Sk, πk, jk, Φk, C

N
)

of both the holomorphic func-

tion germs (see remark 5.5)

[∫ uk

x1
0

φki(η) dη

]

x1
0

i = 1, 2 (5.13)

is such that R \ Φk(Sk) is a finite set.

We confine ourselves in stating the real analogue of our main theorem (the
proof is almost identical):

Theorem 5.31 A warped product

U = U1 ×a2(u1) U2 ×a3(u1) U3 × ........ ×aN (u1) UN

of real intervals, real lines or S
1’s with nondegenerating real-analytic pseudo-

Riemannian metric

Λ
(
u1.....uN

)
= b1(u

1) dui ⊙ dui +
N∑

i=2

ai(u
i)fi(u

i) dui ⊙ dui,

of arbitary signature is geodesically complete if and only if it is coercive.
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