
HAL Id: tel-00006738
https://theses.hal.science/tel-00006738

Submitted on 24 Aug 2004

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Verification and Synthesis of Hybrid Systems
Thi Xuan Thao Dang

To cite this version:
Thi Xuan Thao Dang. Verification and Synthesis of Hybrid Systems. Other [cs.OH]. Institut National
Polytechnique de Grenoble - INPG, 2000. English. �NNT : �. �tel-00006738�

https://theses.hal.science/tel-00006738
https://hal.archives-ouvertes.fr

INSTITUT NATIONAL POLYTECHNIQUE DE GRENOBLE

THESE

pour obtenir le grade de

DOCTEUR DE L'INPG

Sp�ecialit�e : � Automatique, Productique �

pr�epar�ee au laboratoire VERIMAG

dans le cadre de l'�Ecole Doctorale � Electronique, Electrotechnique,

Automatique, T�el�ecommunications, Signal �

pr�esent�ee et soutenue publiquement

par

DANG Thi Xuan Thao

le 10 Octobre 2000

Titre :

V�ERIFICATION ET SYNTH�ESE DES SYST�EMES HYBRIDES

Directeur de th�ese :

Oded Maler

JURY

M. Jean Della Dora, Pr�esident
M. Bruce Krogh, Rapporteur
M. Marcel Staroswiecki, Rapporteur
M. Oded Maler, Directeur de th�ese
M. Eugene Asarin, Examinateur
M. Pravin Varaiya, Examinateur

2

Công cha nhu n�ui Th�ai Son
Nghi~a me. nhu nu�oc trong nguô�n cha?y ra.

To the memory of my grandfather - Dang Van Kieu
and to my parents

Acknowledgements

I wish to express my sincere gratitude to Professor Joseph Sifakis for giving me this oppor-
tunity to work with extraordinary people. I would like to thank Professors Eugene Asarin,
Jean Della Dora, Bruce Krogh, Marcel Staroswiecki, and Pravin Varaiya for accepting to be
members of my jury and for their valuable comments on my thesis.

My greatest thanks go to my advisor, Dr. Oded Maler, for o�ering me technical, moral, and
�nancial support, not to mention an interesting research subject. His knowledge, creative
mind, continuous inspiration, and excellent guidance not only led me to the results presented
in this thesis but also made these years the most fruitful I have ever had. Moreover, my PhD
studies have been so enjoyable thanks to his humor, generosity, and unbounded enthusiasm.
I will always be grateful to him for what he taught me about science, research, and life.
Thanks for being a great advisor.

It has been a great pleasure for me to work closely with Professor Eugene Asarin. I am
thankful for his valuable guidance and numerous discussions which have been sources of
inspiration to my work. He also helped me solve many concrete problems. Without him,
this thesis would probably not exist.

I am happy to thank Dr. Paul Caspi, who has assisted me in many di�erent ways through
my stay here. He has been very generous with his time to me and taught me a lot about
science and culture.

Special thanks are also given to Olivier for his superb library Cubes, his collaboration, and
many nice conversations about things other than veri�cation.

I would especially like to thank Marius Minea for his careful proofreading of my thesis and
detailed comments which greatly improved the quality of the presentation.

I am pleased to acknowledge my friendly and talented colleagues in Verimag. To Yannick
and Stavros, let me simply say thank you. Thanks for teaching me an excellent programming
course and for being very understanding friends. I thank Sergio for being encouraging, and
I really appreciate his insightful suggestions and advice. He spent much time answering my
questions about veri�cation. Sorav deserves special thanks for his contributions to some
applications. I also thank Bertrand, Marius, Moez, Peter for helpful exchanges, and all
other colleagues for useful seminars. Thanks to Nicolas for helping me with daily computer
problems.

The friend who has made my time in Verimag memorable is Yasmina. Thanks for a course
on job-shop scheduling, `aatini el naya wa rghani', `la lune et la rivi�ere', and many other
things I fail to name here.

Finally, I would like to thank all the members of Verimag, who have created such a nice
atmosphere in the lab.

Ca?m on Rapha�el v�i nh~ung n�am th�ang ha.nh ph�uc n�ay. Ca?m on ban b�e thân yêu v�i nh~ung
g�i mang ddê�n cho tôi v�a Hanoi nho? b�e dd~a o? bên tôi ddê�n ng�ay hôm nay.

Contents

1 Introduction 17

1.1 Motivation . 17

1.2 Hybrid System Examples . 18

1.2.1 Example 1 . 18

1.2.2 Example 2 . 20

1.3 Thesis Outline . 21

I Modeling Formalism 27

2 Hybrid Automata 29

2.1 Notation . 29

2.2 Automata . 30

2.3 Continuous Dynamical Systems . 31

2.4 Hybrid Automata . 32

2.4.1 Syntax . 32

2.4.2 Semantics . 34

2.5 Reachability Notions . 37

2.5.1 Reachability of Automata . 37

2.5.2 Reachability of Continuous Systems 38

2.5.3 Reachability of Hybrid Automata . 39

2.6 Other Hybrid System Models . 42

5

6 CONTENTS

II Veri�cation 45

3 Algorithmic Veri�cation 47

3.1 Problematics . 47

3.2 Approach to Solution . 51

3.2.1 Representation of Sets . 51

3.2.2 Reachability Analysis of Continuous Systems 54

3.3 Other Approaches . 57

4 Reachability Analysis of Linear Continuous Systems 59

4.1 Computation Procedure . 60

4.1.1 Approximation Scheme . 61

4.1.2 Reachability Algorithm . 65

4.2 Error Analysis . 68

4.2.1 Error Propagation . 68

4.2.2 Error Estimation . 68

4.2.3 Accuracy Improvement . 70

4.3 Under-approximation . 71

4.4 Termination Condition . 72

4.5 Extension to Linear Systems with Uncertain Input 74

4.5.1 Additional Notations . 74

4.5.2 Reachability Algorithm . 75

4.6 Examples . 82

4.7 Summary and Related Work . 85

5 Reachability Analysis of Non-Linear Continuous Systems 87

5.1 The Face Lifting Concept . 87

5.2 Computation Procedure . 93

5.2.1 Reachability Algorithm . 94

5.2.2 Computational Aspects . 96

5.3 Error Analysis . 98

5.3.1 Local Error Control . 98

5.3.2 Error Accumulation . 102

CONTENTS 7

5.4 Mixed Face Lifting . 103

5.5 Examples . 105

5.5.1 Linear Systems . 107

5.5.2 Mixing Tank . 109

5.5.3 Airplane Safety . 110

5.6 Summary and Related Work . 112

6 Veri�cation of Hybrid Systems 115

6.1 Problem Statement . 115

6.2 Veri�cation Algorithm . 116

6.2.1 Continuous-Successors . 117

6.2.2 Discrete-Successors . 120

6.2.3 Implementation . 122

6.3 E�cient Implementation . 123

6.4 Error Analysis . 127

6.5 Backward Veri�cation Algorithm . 127

6.6 Veri�cation Examples . 129

6.6.1 Example 1 . 129

6.6.2 Collision Avoidance . 129

6.6.3 Double Pendulum . 132

6.7 Summary . 135

III Controller Synthesis 139

7 Switching Controller Synthesis 141

7.1 Preliminaries . 142

7.2 The Problem and An Abstract Solution . 145

7.2.1 Characterizing the Maximal Invariant Set 146

7.2.2 Switching Controller . 149

7.3 From Abstract to E�ective Algorithm . 149

7.4 Uncontrollable Switching . 152

7.5 Anti-Zeno Synthesis . 153

7.6 Examples . 157

8 CONTENTS

7.6.1 Two spiral system . 157

7.6.2 Thermostat with Delay and Disturbances 159

7.7 Summary and Related Work . 160

IV Implementation 163

8 The Tool d/dt 165

8.1 Implementation . 165

8.1.1 Geometric Algorithms . 165

8.1.2 Numerical Integration . 171

8.1.3 Interface . 171

8.2 Functionalities . 171

8.2.1 Input Language . 171

8.2.2 Function Modes . 174

8.2.3 Graphical User Interface . 174

8.3 Summary and Related Work . 176

9 Conclusions 179

9.1 Contributions . 179

9.2 Future Research Directions . 180

List of Figures

1.1 The model for the thermostat. 18

1.2 A trajectory of the room temperature. 19

1.3 The model of the thermostat with uncertainty. 20

1.4 Two di�erent trajectories of the temperature starting at �0. 20

2.1 A piecewise-continuous behavior � and a piecewise-constant behavior � of
logical length 4 with �� = q1; q2; q3; q4. 30

2.2 A 3-state automaton. 31

2.3 Two piecewise-constant behaviors �1 and �2 which can be associated with the
sequence � = q1; q2; q1; q2; q3; q2 of the automaton of Figure 2.2. 31

2.4 The hybrid automata for the ideal thermostat (a) and for the thermostat with
uncertainty (b). 34

2.5 (1) A 3-state hybrid automaton A (X = R
2 , the guards G12 and G23 are the

shaded regions and G32 is the line segment ab); (2) A sketch of a behavior of
A starting from (q1;x0). The jump from x2 to x3 is due to the reset R23. . . 36

2.6 Successors of F by a continuous system. 39

2.7 Continuous-successors of F by the dynamics fq 40

2.8 Discrete-successors of F by transition from q to q0. 41

3.1 Computation of the reachable set of a one-state hybrid system with constant
derivatives where the initial set F and the bad set B are polyhedral. Checking
the intersection of the reachable set with B can be done by linear algebra. . . 49

3.2 An example of a non-terminating computation of reachable states. 50

3.3 (a) A uniform grid G� ; (b) an orthogonal polyhedra on a uniform grid; (c) an
orthogonal polyhedra on a non-uniform grid. 53

3.4 The polyhedra P1 and P2 are distinct but have the same vertices. 53

3.5 Orthogonal polyhedron notions. 54

9

10 LIST OF FIGURES

3.6 Illustration of the over-approximation error accumulation. 56

4.1 Illustration of the computation of �t for a convex polygon F with vertices
fv1; : : : ;v4g. 61

4.2 Illustration of bloat(C; d). 64

4.3 Orthogonal approximations: the convex polyhedron C is over- and under-
approximated by grido(C) and gridu(C). 65

4.4 Two iterations of Algorithm 4 on a simple example where the initial set F
is a two-dimensional line segment with two extreme points v1 and v2. The
computation in the second iteration starts from X1. 66

4.5 In (1) the distance h(�[0;r](F); C) is of the order O(r) while in (2) it is of the
order O(r2). 70

4.6 Accuracy improvement by partitioning of the polyhedron. 71

4.7 The condition P k+1 = P k is satis�ed, but not all the reachable states are
visited (the exact reachable set lies between two dotted curves). 73

4.8 Reachable set of a continuous dynamical system with input. 75

4.9 The solid and the dotted curves are the trajectories �y; �� under �
� and �y; �

under �. At time point r, the hyper-plane P��(r) = �r; ��(P) is determined
by the normal �a(r) and the supporting point �y; ��(r). 77

4.10 Over-approximation of �t(F). 79

4.11 The reachable set of the 3-dimensional system (the system diverges in dimen-
sion 3). 83

4.12 The 6-dimensional system: the projection of the reachable set at time points
kr on dimensions 2, 3, and 4 (r is the time step). One can see that the system
converges to the origin. 84

4.13 The reachable set of the system with uncertain input projected on x3, x4 and t. 84

5.1 Continuity of trajectories. 88

5.2 Neighborhood construction for a polygon. 89

5.3 Illustration of the face li�ng concept. 90

5.4 Illustration of face lifting. 92

5.5 Face lifting on a non-convex polygon. 93

5.6 Orthogonal polyhedra are closed under the lifting operation: f̂e are always
parallel to one of the axes and the resulting polyhedron is orthogonal. 93

LIST OF FIGURES 11

5.7 Illustration of the face lifting algorithm on a uniform grid (a) and a non-
uniform one (b). The initial orthogonal polygon F is decomposed into rect-
angles, whose faces lying on the boundary of F are annotated by the arrows
representing rf̂e. In (b) the algorithm can cause a re�nement of the grid. . . 97

5.8 Neighborhood construction for a rectangle: the neighborhood of the face e+1
is the shaded rectangle. 101

5.9 An example where the over-approximation error accumulation leads to poor
accuracy. 102

5.10 Neighborhood construction for the polygon F with vertices fa; b; c; dg: N�(F)
is the dotted polygon, and eN(e) is the shaded one. 103

5.11 Combination of lifting inward and outward to derive an over-approximation
of �r(F). 104

5.12 Illustration of the mixed face lifting algorithm. 105

5.13 Examples of linear systems. 107

5.14 Reachable sets of linear systems of type: 1) Center, 2) Node, 3) Saddle and
4) Sink. The white rectangles are the initial sets. 108

5.15 Reachable states (left) starting from an initial region (right) for a 3-dimensional
linear system. 109

5.16 A Mixing Tank. 110

5.17 Reachable set of the mixing tank system. 110

5.18 Airplane Safety: u1 = Tmax; u2 = �min: . 111

5.19 Airplane Safety: u1 = Tmin; u2 = �max. 111

6.1 Over-approximating �c(q; F) using the LIN algorithm: the intersection of X1

and Hq results in more vertices in X2. 119

6.2 Orthogonal approximations of C\G: CuoG is the dotted orthogonal polygon
and C uu G is the shaded one. 120

6.3 A concrete version of Algorithm 10. 124

6.4 Over-approximating an orthogonal polyhedron by its convex hull to reduce
the number of vertices. 125

6.5 Separating Explore[q] from Reached[q] is advantageous in (a) but not in (b). 126

6.6 A hybrid automaton. 129

6.7 The 3 stages in the computation of the reachable set. 130

6.8 A single lane of highway. 130

6.9 The reachable set projected on the �rst three dimensions at time point t = 0:2s.131

6.10 A double pendulum. 133

12 LIST OF FIGURES

6.11 The transition relation of the hybrid automaton of the pendulum with 7 dis-
crete values of a given in (6.9). 134

6.12 The search tree of the �rst iteration: the goal orbits are �rst reached after 4
switchings along two paths q3; q2; q3; q2; q3 and q3; q2; q1; q2; q3. 135

6.13 Computation of reachable states for the sequence q3; q2; q1; q2; q1; q2; q3: on
the left we see the reachable set at mode qi, and on the right we show the
intersecion with the guard from qi to qj . 136

6.14 Computation of reachable states for the sequence q3; q2; q1; q2; q1; q2; q3 contin-
ued from Figure 6.13. 137

7.1 A plant with a switching controller. 142

7.2 Car driving automaton (the staying and guard sets are the whole state space
X). 143

7.3 (a) Characterization of �1q (X): the trajectory from point x1 stays inX forever
while the trajectory from x2 leaves X after some time; therefore, x1 is in
�1q (X) but x2 is not. (b) Characterization of Uq(X;Y): the trajectory from
x2 stays in X until it reaches Y while the trajectory from x3 leaves X before,
and hence x2 is in Uq(X;Y) but x3 is not. 147

7.4 Computation of F 0
q: points x1 and x2 are in F 0

q since x1 2 �1q (Fq) and x2 2
Uq(Fq; Gqq0 \ Fq0) (but x2 62 �1q (Fq)). Point x3 is in neither and hence it is
not in F 0

q. 147

7.5 Under-approximation of Uq(X;Y): all the trajectories from points in the or-
thogonal polyhedron remain in the rectangle X until they reach the rectangle
Y . 151

7.6 Under-approximation of �1q (X): all the trajectories from points in the or-
thogonal polyhedron can stay in the rectangle X forever. 151

7.7 The operator � for systems with uncontrollable switching. 153

7.8 Transforming an automaton into a strongly non-Zeno one using a clock c. . . 154

7.9 Construction of X = Xo � [d;1) where Xo = [a; b] in one dimension (the
jagged lines mean that the set extends in�nitely). 155

7.10 Computing R�1
qq0(X): the set X is drawn in dotted lines. First, we intersect X

with P0, which gives the line segment ab. Then, R�1
qq0(X) is the shaded prism

with the base ab. 156

7.11 Computing Y = Uq(Fq; Gqq0 \ R�1
qq0(Fq0)) for an automaton with anti-Zeno

clock: (1) the sets Fq0 (the shaded prism) and Gqq0 (the dotted prism based
on [a; b]); (2) the set R�1

qq0(Fq0) and its intersection with Gqq0 (the darker prism
based on [a; h]); (3) the sets Fq (the prism based on [c; d]) and Y (the shaded
region). 157

LIST OF FIGURES 13

7.12 The phase portrait of the two spiral system and the evolution of F1 and
G12 \ F2 (left) and of F2 and G21 \ F1 (right) within 3 iterations. The �nal
results show for each discrete state the safe set where the system can spiral
and then make a transition to the safe set of the other discrete state. 158

7.13 The hybrid automaton of the thermostat. 159

7.14 The safe sets of the thermostat. 160

7.15 The hybrid automaton of the thermostat with the controller. 160

8.1 The modules of the tool. 166

8.2 Re�nement using the Binary Space Partition principle. 168

8.3 Illustration of the computation grido(C). 169

8.4 The functionalities of the tool. 175

8.5 The menu bar of the tool. 175

14 LIST OF FIGURES

List of Tables

1.1 Glossary of Notation . 24

15

16 LIST OF TABLES

Chapter 1

Introduction

1.1 Motivation

Continuous systems have, traditionally, been the focus of system theory. Due to signi�cant
advances in digital-processor technology in the past few decades, the use of digital controllers
has successfully improved the automation level in the control of physical plants. One typical
example is a chemical batch plant where computers are used to supervise complex sequences
of chemical reactions, each of which is modeled as a continuous process. As another example,
consider a digital engine controller in a car, which has to interact with the physical processes
in the engine as well as with the events generated by the driver. The increasing integration
of such controllers results in highly complex systems involving both continuous and discrete
event dynamics. In addition to discontinuities introduced by the computer, most physical
processes admit components (e.g. valves, gears, switches) and phenomena (e.g. collision,
emptying of tanks) whose most useful models are discrete. Systems that consist of a combi-
nation of discrete and continuous features are called hybrid systems, and they arise in many
applications, such as chemical process control [68], air tra�c management systems [111],
robotics [6], and automobiles [18].

During system design, formal veri�cation and controller synthesis are two important issues.
The goal of formal veri�cation is to prove that the system performs as expected. As today's
automated systems are growing in scale and complexity, the possibility of subtle errors is
much greater. In particular, for safety-critical systems, any error during the operation may
cause loss not only in money but also in human life, and, as a result, it is crucial to ensure
that the system is always safe (no error occurs). Whereas the goal of veri�cation is to
ensure a desired property of the designed system, the goal of controller synthesis is to design
controllers so that the controlled system satis�es a desired speci�cation.

This thesis is concerned with the formal veri�cation and synthesis of hybrid systems. The
best way to understand the problematics in this �eld of research and the approach we propose
is to follow simple examples. In the sequel we discuss two hybrid system examples, the role
of which is to illustrate several characteristics of hybrid systems that make veri�cation and

17

18 Introduction

synthesis di�cult and to motivate the reader to proceed to the de�nitions and the algorithms
in the next chapters. The second example is a variation of the �rst, and both are very simple
one-dimensional linear systems, which can be analyzed by hand. The discussion will be
informal and not rigourous, but the ideas underlie the motivation of our approach.

1.2 Hybrid System Examples

1.2.1 Example 1

Consider a thermostat that is used to control the temperature of a room. The thermostat
consists of a heater and a thermometer. Its lower and upper thresholds are set at �m and �M
such that �m < �M . The heater is maintained on as long as the room temperature is below
�M , and it is turned o� whenever the thermometer detects that the temperature reaches �M .
Similarly, the heater remains o� if the temperature is above �m and is switched on whenever
the temperature falls to �m. One can think of the room temperature and the thermostat
as a dynamical system whose state is de�ned by the room temperature x, which changes
continuously, and the operation mode of the thermostat, which changes between `on' and
`o�'. The evolution of the temperature is described as follows:

_x =

�
f1(x) = �x+ 4 if the heater is on,
f2(x) = �x otherwise.

on off

_x = f1(x) _x = f2(x)

x = �m

x = �M

Figure 1.1: The model for the thermostat.

A visual description of the thermostat is given in form of a directed graph whose vertices
represent two operation modes `on' and `o�' (see Figure 1.1). We associate with the edges
the conditions for switching from one mode to another.

Our veri�cation problem is to prove that the temperature always stays in the desired range,
that is,

m � x �M (1.1)

In this simple example, for a given initial condition x(0) = � the solution of the di�erential
equations of the modes `on' and `o�' can be written as x(t) = �e�t+4(1�e�t) and x(t) = �e�t,
respectively.

1.2 Hybrid System Examples 19

Let us now describe a scenario of the system's behavior starting from an initial state where
the temperature x = �0 and the operation mode of the thermostat is `on'. Suppose that the
initial temperature is in the desired range, that is, m � �0 � M . The heater initially being
on, the temperature evolves as follows:

x(t) = �0e
�t + 4(1� e�t):

Increasing monotonically over time, the temperature reaches �M after t1 time, and the heater
is then shut o�. The temperature is next governed by the di�erential equation of the mode
`o�' and can be written as

x(t+ t1) = �Me�t+t1 :

The temperature decreases monotonically over time and falls to �m, at which point the
heater is turned on, and the process continues as shown in Figure 1.2. One can see that
the trajectory of the temperature alternates between two phases corresponding to the two
operation modes of the thermostat.

on off on off

t

x

t1

�M

�0

�m

0 t2 t3

Figure 1.2: A trajectory of the room temperature.

It is not hard to see that the thermostat satis�es the property (1.1) if only the thresholds
�m and �M satisfy the following condition:

�m � m ^ �M �M: (1.2)

Note that such a veri�cation problem can be analytically solved only when solutions to the
di�erential equations are known1. In more general cases, numerical simulations are used to
obtain an approximation of the behavior of the system from a given state. For most systems,
the state of the art in simulation techniques allows the approximate solution to be as close
as desired to the exact one. However, in practice the initial conditions are usually not known
exactly but only known to lie within some range. Consequently, instead of a single trajectory,
one needs to consider an in�nite number of trajectories. Concerning numerical techniques,
this gives rise to the special di�culty in simulating sets of trajectories.

1Many di�erential equations tend to not have closed-form solutions.

20 Introduction

1.2.2 Example 2

Before attempting to analyze a model, we should make sure that it captures all possible
behaviors of the physical process. The described model assumes ideal conditions, namely
the thermometer can detect exactly the moments the temperature reaches the thresholds and
the switching time between `on' and `o�' is zero. Nevertheless, in practical situations exact
threshold detection is impossible due to incertitude of sensors. Similarly, the reaction time
of the on/o� switch is usually non-zero. The e�ect of these inaccuracies is that we cannot
guarantee switching exactly at the nominal values �m and �M but only in their neighborhoods.
To make the model reect this uncertainty, we modify the switching conditions as follows.
The thermostat switches o� the heater if the temperature satis�es �M � � � x � �M + � and
switches it on if �m� � � x � �m+ �, for some � > 0. This means that when the temperature
enters the interval [�M � �; �M + �] the thermostat can either turn the heater o� immediately
or keep it on for some time provided that x � �M + �. We say that the behavior of the
system is non-deterministic in the sense that from a given state the temperature can follow
more than one trajectory (see Figure 1.4). The enhanced model with uncertainty is depicted
in Figure 1.3.

on off

_x = f1(x) _x = f2(x)

x = [�M � �; �M + �]

x = [�m � �; �m + �]

Figure 1.3: The model of the thermostat with uncertainty.

x

�M

�m

t0

�M + �

�M � e
�0

Figure 1.4: Two di�erent trajectories of the temperature starting at �0.

Another source of non-determinism can come from the continuous dynamics which are of the
form _x = f(x;u) where u is an under-speci�ed input. In this case, from every initial state
there might be a \tube" of possible trajectories, each of which corresponds to a di�erent input
signal. In the example of the thermostat, a source of such uncertainty can be uctuations in

1.3 Thesis Outline 21

the outside temperature which we obviously cannot control.

The model with uncertainty is harder to analyze both analytically and using simulation since,
to characterize all possible behaviors, we have to deal with sets of trajectories. Furthermore,
it is imposible to simulate the system with all inputs. This shows that the simulation
approach is not suitable for verifying such a system since sample solutions do not give abso-
lute assurance that the system satis�es the property. Although the simple one-dimensional
thermostat example can still be analyzed analytically (since we know the solutions of the
di�erential equations and, moreover, they are monotonous), the reader can imagine that for
high-dimensional systems with many modes and complex continuous dynamics, there is no
existing methodology to solve such veri�cation problems.

We turn now to the controller synthesis problem. Our objective is to keep the temperature
of the room in the range [m;M]. Suppose we are given a thermostat whose structure is
�xed, but we are free to set the thermostat at the appropriate thresholds �m and �M so that
the room temperature is maintained as desired. In other words, we use the thresholds to
characterize the feed-back function in order to achieve the desired behavior. Then, the goal
is to �nd switching rules based on state observation such that the system always satis�es
the desired property. We will show, in this thesis, how the methods proposed for verifying
hybrid systems can also be used to synthesize automatically such switching rules.

To sum up, the essence of the above examples is that in order to develop a framework for
veri�cation and synthesis of hybrid systems we need:

� An appropriate model capable of capturing the interaction between discrete and con-
tinuous dynamics and constraints on the physical system as well as on the controller.

� Analysis methods which are rigourous in the sense that they can characterize all pos-
sible behaviors of the system and derive feasible controls.

In addition, hybrid systems in practice are often complex, which makes automatic analysis
very desirable. This motivates us to adopt the algorithmic approach to veri�cation which
consists in building a software tool which can analyze automatically all the behaviors of a
given system and decide whether it satis�es a given property. This approach has been applied
successfully to purely discrete systems (e.g. digital circuits, communication protocols) [33],
but its adaptation to continuous and hybrid systems is still a serious challenge.

1.3 Thesis Outline

In Chapter 2 we discuss hybrid automata [4], the modeling formalism we will use for hybrid
systems. Various hybrid system models have been proposed; the reason we have chosen this
model is that it can capture naturally a wide range of hybrid behaviors and, moreover, pro-
vides a framework suitable for the veri�cation and synthesis problems we tackle in this thesis.

22 Introduction

The chapter includes the theoretical background neccessary for subsequent discussions.

Chapter 3 is concerned with the veri�cation problem for hybrid systems. We are interested in
verifying invariance properties which state that all trajectories of the system remain inside
a subset of the state space. Proving such properties can be done using reachability analysis,
that is, computing all states which can be reached by any trajectory of the system. We
examine the problematics of extending the algorithmic methodology to hybrid systems and
propose an approach which consists in �rst developing reachability techniques for purely con-
tinuous systems and then adapting them for hybrid systems. We then discuss computability
issues and present a basic reachability algorithm for continuous systems, based on numerical
integration and polyhedral approximations. This chapter serves as an introduction to the
next three chapters.

In Chapter 4 we develop a technique for approximating reachable sets of linear continu-
ous systems. This technique exploits the special properties of linear systems so that the
computation is relatively fast and the approximation error does not propagate from iter-
ation to iteration. This technique has some common features with the work of Chutinan
and Krogh [31], which has been developed independently. We also extend this technique to
deal with linear systems with uncertain input (di�erential inclusions) based on some ideas
proposed by Varaiya [114].

In Chapter 5 we present an alternative reachability technique which can be applied to non-
linear continuous systems. The technique, which we call \face lifting", is inspired by earlier
work of Greenstreet [47]. The novelty in our approach is in the way we approximate high
dimensional subsets of the state space using orthogonal polyhedra. This makes both the
linear and non-linear analysis techniques applicable, in principle, to any dimension. Of
course, computational complexity is a major limiting factor.

The goal of Chapter 6 is to adapt the above techniques to the veri�cation of hybrid systems.
Strategies and methods to increase the performance of the veri�cation algorithm and other
important computational issues are also investigated.

Chapter 7 is devoted to the controller synthesis problem for hybrid systems. More precisely,
we consider systems with several modes, each of which has di�erent dynamics. Our goal
is to automatically synthesize a controller which switches the system between modes in
order to satisfy invariance properties. We present an abstract synthesis algorithm, based
on the algorithm in [15] for timed automata, and then apply the reachability techniques of
Chapters 4 and 6 to derive an approximate version of the algorithm.

In Chapter 8 we describe the experimental tool d/dt , in which most of the algorithms dis-
cussed in the thesis have been implemented. The tool provides automatic veri�cation and
switching controller synthesis for hybrid systems with linear di�erential inclusions.

Each of the above chapters ends with some examples (academic and real-life), which illustrate
the applicability of our approach, as well as a discussion of related work.

The concluding chapter summarizes the contributions of the thesis and suggests future re-
search directions.

1.3 Thesis Outline 23

For the best understanding of this thesis, the reader is encouraged to follow chapter by
chapter. In particular, Chapter 2 contains important de�nitions and notations which are
refered to throughout the thesis. For reference, we include a glossary of notation in Table 1.1.

24 Introduction

Table 1.1: Glossary of Notation

N natural numbers

R real numbers

T time domain, p. 29

Z integer numbers

0 zero vector

; empty set

O(�) asymptotic notation, p. 60

Continuous Systems

�(F) reachable set from set F , p. 38

�r(F) successors of set F at time r, p. 38

�[0;r](F) successors of set F within time interval [0; r], p. 38

�(F) backward-reachable set from set F , p. 39

�x trajectory starting from point x, p. 32

�x; � trajectory starting from point x under input �, p. 74

Hybrid Automata

�c continuous-successor operator, p. 39

�d discrete-successor operator, p. 41

�qq0 discrete-successor operator w.r.t transition from q to q0, p. 40

 = (�; �) hybrid automaton trajectory, p. 35

� one-step predecessor operator, p. 146

�1q unbounded-time predecessor operator w.r.t discrete state q,
p. 146

Uq until operator w.r.t discrete state q, p. 146

Geometric Operations

B the unit ball at the origin, p. 59

bloat(C; #) bloating convex polyhedron C by #, p. 63

conv(F) convex hull of set F

1.3 Thesis Outline 25

d(x;y) distance between points x and y, p. 59

grido(C) orthogonal polyhedron over-approximating convex polyhe-
dron C, p. 64

gridu(C) orthogonal polyhedron under-approximating convex polyhe-
dron C, p. 64

h(X;Y) the Hausdor� distance between sets X and Y , p. 59

�(b;d�;d+) lifting the faces of hyper-rectangle b by d� (left) and d+

(right), p. 94

N(X; �) �-neighborhood of set X, p. 59

Ns(G; �) rectangular �-neighborhood of orthogonal polyhedron G,
p. 71

N�(C) neighborhood of convex polyhedron C obtained by pushing
outward its faces by �, p. 88

�(X) diameter of set X, p. 59

C uo G orthogonal polyhedron over-approximating intersection of
convex polyhedron C and orthogonal polyhedron G, p. 118

C uu G orthogonal polyhedron under-approximating intersection of
convex polyhedron C and orthogonal polyhedron G, p. 120

hx;yi scalar product of vectors x and y

� Minkowski sum

jj � jj Euclidian norm

bdc integer part of real number d, p. 94

26 Introduction

Part I

Modeling Formalism

27

Chapter 2

Hybrid Automata

As we have seen from the informal examples in the previous chapter, in order to analyze hy-
brid systems we need a model which is rich enough to describe both continuous-time dynam-
ics and discrete transitions. In addition, the model should be potentially non-deterministic
allowing more than one behavior from a given state. Multiple behaviors can be due to
uncertainties in both continuous and discrete dynamics which can arise from external distur-
bances, uncontrollable events, the modeling abstraction, or imprecision in our knowledge of
the system. Continuous dynamics are traditionally considered within the context of di�eren-
tial equations, and discrete-event dynamics are often modeled and analyzed using automata.
Hybrid automata [4] combine these two models and provide an e�ective formalism which
satis�es the above requirements. In hybrid automata, the continuous behavior is captured
by di�erential equations associated with the discrete states and the discrete behavior is cap-
tured by transitions between states. In this work we use hybrid automata as a modeling
formalism for hybrid systems.

This chapter is organized as follows. The �rst part is devoted to some basic de�nitions
of automata and continuous systems, the main components of hybrid automata. Next, we
present the syntax, semantics for hybrid automata, and some basic reachability notions.
Finally, we discuss briey some other hybrid models considered in the literature.

2.1 Notation

Automata and continuous dynamics can both be viewed as dynamical systems whose states
evolve in time. Their de�nition is therefore associated with a time set. For automata, the
underlying time set is any discrete set which is order isomorphic to (N ;�). For continuous
dynamical systems, time ranges over the real numbers. We begin by introducing some
notations needed for describing the temporal behavior of the systems under consideration.

Throughout this thesis we will use the time domain T = R
+ .

A time sequence is a strictly increasing sequence of time points t0; t1; t2; :: where tk 2 T for

29

30 Hybrid Automata

every k 2 N .

De�nition 1 (Temporal Behavior)
A temporal behavior over a topological space S is a partial function � : T ! S whose domain
of de�nition is an interval [0; r) for some r 2 T [f1g.

We call r the metric length of �, denote it by j�j, and say that � is in�nite if r =1.

De�nition 2 (Piecewise-Continuous Behavior)
A behavior � is piecewise-continuous if it admits a time sequence J (�) = 0; t1; t2; : : : such
that for every k 2 N , � is continuous on the interval Ik = [tk; tk+1).

Note that there may be many time sequences I0; I1; : : : on which a behavior � is piecewise-
continuous. We denote by I(�) such time interval sequence with the smallest number of
intervals. This number is called the logical length of �, denoted by j�jl.
A piecewise-constant behavior is a special case of piecewise-continuous behaviors where � is
constant on every interval Ik. The untimed abstraction of a piecewise-constant behavior � is
the sequence �� = s0; s1; : : : such that for every k, sk = �(tk).

Figure 2.1 shows an example of piecewise-continuous and piecewise-constant behaviors.

�

t0 = 0

q3

q2

q1

t1 t2 t3

q4

t4

�

I0 I1 I3 I4

Figure 2.1: A piecewise-continuous behavior � and a piecewise-constant behavior � of logical
length 4 with �� = q1; q2; q3; q4.

2.2 Automata

We de�ne a �nite automaton without input and output as follows.

De�nition 3 (Automaton)
An automaton is M = (Q; �) where

2.3 Continuous Dynamical Systems 31

� Q is a �nite set of states.

� � : Q! 2Q is the transition function.

The transition relation describes how the system may evolve. Notice that the behavior of
the system is potentially non-deterministic since for a given state q 2 Q, �(q) represents a
set of possible next states rather than a unique state.

De�nition 4 (Behavior of automata)
Given an initial state q 2 Q, a behavior of M is a sequence � : N ! Q such that �(0) = q
and for every k > 0, �(k + 1) 2 �(�(k)).

q1 q2 q3

Figure 2.2: A 3-state automaton.

It is important to note that in studying the behavior of automata, only the ordering infor-
mation between the transitions is considered and there is no attempt to embed the behaviors
into real metric time. Consider the automaton of Figure 2.2 where Q = fq1; q2; q3g and the
initial state is q1. The automaton admits a behavior � = q1; q2; q1; q2; q3; q2. This description
of the behavior does not say anything about the time elapsed while the automaton is at each
state. In other words, the behavior � could be the untimed abstraction of in�nitely many
piecewise-constant behaviors of the form � : T ! Q (see Figure 2.3). The behavior of hybrid
automata, as we shall soon see, is, however, grounded in the real time axis.

q1

q2

q1

q3

q2 q2

�1

q1 q1

q2

q3

q2 q2

�2

t t

Figure 2.3: Two piecewise-constant behaviors �1 and �2 which can be associated with the
sequence � = q1; q2; q1; q2; q3; q2 of the automaton of Figure 2.2.

2.3 Continuous Dynamical Systems

De�nition 5 (Continuous Dynamical System)
A continuous dynamical system is C = (X ; f) where

32 Hybrid Automata

� X = R
n is the state space.

� f : X ! R
n is a continuous vector �eld.

The behavior of the system is governed by the di�erential equation:

_x = f(x) (2.1)

where x 2 X is the state of the system.

The behavior of a continuous dynamical system is characterized by the solutions to the
initial-value problems of its di�erential equation.

De�nition 6 (Trajectory of Continuous Dynamical Systems)
A trajectory of C starting from x 2 X is a continuous behavior �x : T ! X such that �x is
the solution of (2.1) with initial condition x(0) = x.

We assume that f is globally Lipschitz in x, which guarantees that there exists a unique
solution to (2.1) for every initial condition in X [61]. The continuous system of De�nition 5
is deterministic in the sense that from a given point it generates a unique trajectory.

Given two points x, x0 2 X , we say that x0 is reachable from x in time t < 1 if x0 = �x(t).

We denote this by x
t�!x0.

2.4 Hybrid Automata

A hybrid automaton is an automaton augmented with continuous variables whose dynamics
at every discrete state are de�ned by di�erential equations. Transitions between states are
enabled by conditions on the values of these variables.

2.4.1 Syntax

De�nition 7 (Hybrid Automaton)
An n-dimensional hybrid automaton is a tuple A = (X ; Q; f;H;G;R) where

� X � R
n is the continuous state space. Elements of X are written as x = (x1; x2; : : : ; xn).

� Q is a �nite set of discrete states.

� f : Q! (X ! R
n) assigns a continuous vector �eld on X to each discrete state. While

the hybrid automaton stays in discrete state q the evolution of the continuous variables
is governed by the di�erential equation _x = f(q)(x).

� H : Q! 2X are staying conditions (\invariants"). H(q) is the condition that must be
satis�ed by the continuous variables if the automaton is to stay in discrete state q.

2.4 Hybrid Automata 33

� G : (Q�Q)! 2X are transition guards determining the conditions for switching from
one discrete state to another. When the automaton is in discrete state q and x 2 Gqq0 ,
it can make a transition from q to q0.

� R : (Q � Q) ! (X ! 2X) is the reset map which assigns to each transition a multi-
valued function. R(q; q0) de�nes how the continuous variables may change when the
automaton switches from q to q0.

We assume that for every q 2 Q, f(q) is globally Lipschitz over x 2 H(q). This assumption
ensures the existence and uniqueness of solutions of the di�erential equation at q for every
initial condition in H(q) [61]. We also assume that for all q, q0 2 Q, H(q) and G(q; q0) are
closed sets.

The intuitive meaning of De�nition 7 is that the set of discrete states Q denotes all the
possible continuous \modes" of the hybrid automaton. The system can evolve in a discrete
state q only if the current continuous state is in H(q). These staying conditions can arise
from constraints imposed by physical systems or decisions in system design. While being
at discrete state q where x 2 H(q), the system can evolve according to the dynamics f(q).
Whenever it reaches a point x0 2 G(q; q0) the transition from q to q0 is enabled and the
system can switch to discrete state q0. At q0 the continuous variables will be reset to new
values according to R(q; q0), which become the initial states for the evolution according to
f(q0). Our convention is that if there is no transition from q to q0 then G(q; q0) is de�ned
as empty set. If the reset map R(q; q) is the identity, i.e. R(q; q)(x) = fxg for all x 2 X ,
we may assume further that G(q; q) = ; because a transition from a discrete state to itself
without a change in the continuous variables is meaningless. Notice that in the examples so
far all the reset maps were the identity.

It is customary to represent graphically the hybrid automaton A by a directed graph whose
vertices represent the discrete states and edges represent the transitions. We write the staying
conditions and the di�erential equations inside the vertices. With the edges we associate the
transition guards and the resets (identity resets will be omitted). From now on we will use
the notation fq for f(q), Gqq0 for G(q; q

0), Gq for
S
q0 Gqq0 , Hq for H(q), H for

S
qHq, and

Rqq0 for R(q; q
0). We will often use `automaton' to refer to a hybrid automaton with the

context indicating the meaning.

We can now de�ne formally hybrid automata for the thermostats examined in the previous
chapter (see Figure 2.4). The two operation modes `on' and `o�' are represented by two
discrete states q1 and q2. The continuous variable x models the temperature, and its dy-
namics in each mode is given by a di�erential equation. We de�ne the conditions for the
thermostats to stay in each mode by the staying conditions, such as x � �M for q1 in case
of the ideal thermostat. The conditions on the temperature for the thermostats to switch
between two modes are speci�ed by the transition guards. Notice that the upper (lower)
bound of the switching condition for the transition from q1 to q2 (from q2 to q1) need not be
de�ned due to the speci�ed staying conditions at the source state of the transition. In both
models, the temperature does not change at the switching points, and the resets are thus

34 Hybrid Automata

on off

q1 q2

_x = f1(x) _x = f2(x)

x � �M x � �m

x � �M

x � �m

on off

q1 q2

x � �m � �x � �M + �

x � �M � �

x � �m + �

_x = f1(x) _x = f2(x)

(a) (b)

Figure 2.4: The hybrid automata for the ideal thermostat (a) and for the thermostat with
uncertainty (b).

identity functions.

Although the continuous evolution is deterministic at every discrete state, the hybrid evolu-
tion may be non-deterministic for the following reasons:

� The sets Hq and Gqq0 may intersect with each other not only on their boundaries. As
a result, there are points from which the system, when being at q, can either switch to
q0 or continue the continuous evolution at q.
To illustrate, consider again the automata of the thermostats. Suppose that the system
starts at q1 (`on'). After some time the temperature rises to �M , which enables the
transition from q1 to q2. At this point the staying condition of q1 in (a) forces the
system to switch to q2 while in (b) it allows the system to either stay there for some
more time as long as x � �m + � or switch at once. In other words, the system in
(b) can switch from q1 to q2 anywhere in the interval [�M � �; �M + �]. Therefore, the
behavior of the system in (a) is deterministic while the behavior of the system in (b)
is non-deterministic.

� The resets can be set-valued maps, and this causes non-deterministic changes in con-
tinuous variables whenever a transition is taken.

� There can be multiple transitions enabled at the same time because Hq \Gqq0 \Gqq00

may be non-empty.

2.4.2 Semantics

We now turn to the semantics of a hybrid automaton like A. By the semantics of such an
object we mean the set of all behaviors it can generate. In this sense, the semantics of a
continuous system de�ned by a di�erential equation is the set of all solutions of its initial
value problem, namely trajectories.

2.4 Hybrid Automata 35

For the hybrid automaton A we will consider temporal behaviors over the hybrid state space
Q� X . A state (q;x) of A can change in two ways:

� By continuous evolution: the values of the continuous variables change according to
the dynamics fq while the discrete state q remains constant.

� By discrete evolution: the system changes the discrete state by making a transition and
possibly changes the values of the continuous variables according to the reset function.

Let x, x0 2 X and q, q0 2 Q. Let � : T ! X be the (unique) solution of _x = fq(x) with the
initial condition �(0) = x.

The dynamics q is enabled from x for time t > 0 if �(t0) 2 Hq for every t0 2 [0; t]. This is

denoted by x
q;t�!. The state (q;x0) is reachable from (q;x) by the continuous dynamics fq

if there exists t <1 such that �(t) = x0 and �(t0) 2 Hq for every 0 � t0 � t. In this case we

say that x0 is q-reachable from x and denote it by x
q;t�!x0.

A state (q0;x0) is reachable from (q;x) via a discrete transition if x 2 Gqq0 , x
0 = Rqq0(x) and

x0 2 Hq0 .

De�nition 8 (Trajectory of Hybrid Automata)
A trajectory of a hybrid automaton A starting from a state (q0;x0) is a pair of behaviors
 = (�; �) of the same metric length where � : T ! X is piecewise-continuous and � : T ! Q
is piecewise-constant satisfying the following conditions:

1. Initiality: �(0) = x0 and �(0) = q0.

2. Continuous evolution: for every interval Ik = [tk; tk+1) 2 I(�) such that ��k = q,

�(tk)
q;t�!�(tk + t) for every t 2 [0; tk+1 � tk).

3. Transition condition: for every tk 2 J (�) such that ��k�1 = q and ��k = q0, �(t�k) 2 Gqq0

and �(tk) = Rqq0(�(t
�
k)) where �(t

�
k) denotes the left limit of � at tk.

The logical length of , denoted by jjl, is the logical length of �.

Figure 2.5 sketches another hybrid automaton and a projection of one of its trajectories onto
the continuous state space X = R

2 .

The use of staying conditions and the ability to switch in zero time between states can
create phenomena which are impossible in models of well-behaving continuous systems. The
two behavioral anomalies that can be generated by hybrid automata are blocking and Zeno
behaviors.

Blocking Behaviors

A trajectory is blocking if it reaches a point (q;x) from which it is impossible to continue
neither by continuous nor by discrete dynamics, i.e. x 62 Hq and x 62 Gqq0 for every q, q

0 2 Q.

36 Hybrid Automata

x 2 H1

_x = f1(x)

x 2 H2x 2 H3

_x = f3(x) _x = f2(x)

x 2 G13

x 2 G21
x 2 G12x 2 G31

x 2 G32

x 2 G23=x
0 := R23(x)

H1

H3

H2

G32

x2

x1

a
b

G23

G12

x0

x3

x2
x1

(1) (2)

Figure 2.5: (1) A 3-state hybrid automaton A (X = R
2 , the guards G12 and G23 are the

shaded regions and G32 is the line segment ab); (2) A sketch of a behavior of A starting from
(q1;x0). The jump from x2 to x3 is due to the reset R23.

An automaton is non-blocking if from every (q;x) such that x 2 Hq there are no blocking
trajectories.

There are two ways to enter into a blocking situation:

� After a discrete transition, the system moves from (q;x) to (q0;x0) but x0 does not
satisfy the staying condition of q0; as a result, the continuous evolution cannot be
continued. This means that Rqq0(Gqq0) 6� Hq0 . As an example, consider the case when
a careless user sets the thresholds of the thermostat such that �M < �m and then
turns on the heater. The temperature rises to �M + �, at which point the thermostat
must switch o� the heater, but the current temperature does not satisfy the staying
condition of the mode `o�'; the automaton is thus blocked.

� The system leavesHq without entering anyGqq0 ; consequently, the continuous evolution
at q is no longer possible, but the system cannot switch to another dynamics.

One reason for blocking behaviors is the inconsistency of the model. An automaton can be
guaranteed to be non-blocking as follows. To prevent the �rst source of blocking, for every
q; q0 2 Q, Gqq0 can be replaced by G0

qq0 = Gqq0 \ R�1
qq0(Hq0) where R

�1
qq0 : 2

X ! 2X is de�ned
as

R�1
qq0(X) = fx0 j 9x 2 X x = Rqq0(x

0)g:

2.5 Reachability Notions 37

The second type of blocking can be removed by adding a new discrete state that the system
enters whenever it goes out of every Hq.

Zeno Behaviors

A Zeno behavior is a piecewise-constant behavior having an in�nite number of transitions in
a bounded interval of time. For example, consider a behavior � such that J (�) is the time
sequence ftkg; k = 0 : : :1, de�ned as t0 = 0 and tk = tk�1 + 1=2k which converges to 1,
and �(tk) = 0 for even k and �(tk) = 1 for odd k. Such a behavior switches in�nitely many
times between 0 and 1 in the interval [0; 1). An automaton is non-Zeno if it does not admit
Zeno behaviors.

In the example of the thermostat with uncertainty, if the thresholds �m and �M are chosen
such that the intervals [�m � �; �m + �] and [�M � �; �M + �] overlap, then from points in
the intersection of these intervals the thermostat can make an in�nite number of switchings
between two modes in �nite time. The requirement of non-Zenoness, which ensures the
progress of time past any real number, comes from the fact that physical systems cannot be
in�nitely fast which implies that only a �nite number of actions can be executed in a �nite
amount of time. Since trajectories for dynamical systems are supposed to be well-de�ned
on R

n , blocking and Zeno hybrid automata are inadequate models, which often result from
modeling errors. In this thesis, when solving the veri�cation problem we assume that the hy-
brid automata we address are non-Zeno1. We will discuss Zeno behaviors in Chapter 7 where
we deal with the safety controller synthesis problem for hybrid systems. Since Zeno behav-
iors are mathematically possible but not physically achievable, when solving the synthesis
problem, it is important that the automaton is non-Zeno, otherwise the synthesis algorithm
might produce a controller which succeeds in avoiding bad states by preventing time from
progressing.

2.5 Reachability Notions

The set reachable from a given set of states F by a hybrid automaton can be de�ned as
the set of all states visited by the trajectories starting from states in F . A trajectory of the
hybrid automaton in the continuous state space can be thought of as a sequence of trajec-
tory segments of continuous dynamics. Thus, for a clear understanding of the reachability
notions of hybrid automata, it is convenient to consider �rst discrete and continuous systems
separately.

2.5.1 Reachability of Automata

Consider an automaton M = (Q; �) of De�nition 3.

1The reader is refered to [79] for the work on �nding existence and uniqueness conditions under which all
trajectories can be extended to in�nite time.

38 Hybrid Automata

We de�ne the successor operator Post for a set F � Q as the set of states that can be
reached from F in one step:

Post(F) = fq0 j 9q 2 F q0 2 �(q)g:

We also de�ne the predecessor operator Pre for F as the set of states from which F can be
reached in one step:

Pre(F) = fq j 9q0 2 F q0 2 �(q)g:

Hence, the set of states that can be reached from F is the least �xed point � of the equation
� = F [Post(�) and can be computed as the limit of the recursion

P0 = F

Pi+1 = Pi [Post(Pi)

Similarly, the set of states from which F can be reached is the least �xed point of � =
F [Pre(�) and can be computed using the iteration

P0 = F

Pi+1 = Pi [Pre(Pi)

2.5.2 Reachability of Continuous Systems

We consider a continuous system C of De�nition 5.

De�nition 9 (Successors)
The successor operator �I : 2X ! 2X is de�ned for a subset F of X and a time interval
I � T as

�I(F) = fx0 j 9x 2 F 9t 2 I x
t�!x0g:

Recall that the notation x
t�!x0 indicates that x0 is the state reachable from x after exactly

t time, in other words, x0 = �x(t) where �x is the trajectory of C starting from x.

For simplicity, we use the notation �r for �[r;r] (states reachable after exactly r time) and
�I(x) for �I(fxg). The reachable set from F is therefore �[0;1)(F) (all states reachable after
any non-negative amount of time), denoted by �(F).

Figure 2.6 illustrates the above notions. In this two-dimensional example, the shaded region
represents �r(F), that is, the set of successors of F at time point r, and the set reachable
within the time interval [0; r] lies between two dotted lines and the outer boundary of F and
of �r(F).

The set �(F) can be thought of as the union of all trajectories over all possible initial points
in F and is also known in the literature under the names reach tube [71] and ow pipe [122, 31].

2.5 Reachability Notions 39

�r(F)

F �[0;r](F)

Figure 2.6: Successors of F by a continuous system.

Similarly, we de�ne the predecessor operator. The predecessors of a set F are all the states
from which F can be reached.

De�nition 10 (Predecessors)
The predecessor operator �I : 2

X ! 2X is de�ned for a subset F of X and a time interval
I � T as

�I(F) = fx j 9x0 2 F 9t 2 I x
t�!x0g:

The operators � and � satisfy the semi-group property [64], that is,

�I2(�I1(F)) = �I1�I2(F)

where � is the Minkowski sum, and, in particular, �[0;r2](�[0;r1](F)) = �[0;r1+r2](F).

2.5.3 Reachability of Hybrid Automata

We can now proceed with the reachability of hybrid automata. Consider a hybrid automaton
A = (X ; Q; f;G;H;R) of De�nition 7.

As we have already seen, there are two types of evolutions from a state (q;x), namely the
continuous evolution by the dynamics fq and the discrete evolution by taking a transition.
Accordingly, we de�ne two types of successors: successors by continuous evolution, which
we call continuous-successors, and successors by discrete evolution, which we call discrete-
successors.

De�nition 11 (Continuous-Successors)
Given a set of states (q; F) where q 2 Q and F � X , we de�ne the set of continuous-
successors of (q; F), denoted by �c(q; F), as

�c(q; F) = f(q;x0) j 9x 2 F 9t > 0 x
q;t�!x0g:

Recall that the notation x
q;t�!x0, introduced in Section 2.4.2, indicates that x0 is q-reachable

from x. Intuitively, this notation means that the trajectory segment of the dynamics fq from
x to x0 lies inside Hq.

40 Hybrid Automata

Figure 2.7 depicts the continuous-successors of a set (q; F) in the continuous state space.
Unlike continuous systems, the behavior of the hybrid automaton at discrete state q is
constrained by the staying conditions Hq, which are de�ned in this example by the half-space
on the left-hand side of the vertical straight line. The dotted trajectory is thus impossible,
and the point z is not reachable from F by the continuous dynamics fq. However, the
automaton admits the segment of this trajectory from x to y. As a result, all the continuous-
successors of (q; F) lie on one side of the vertical line.

Hq

F

x

�c(q; F)

y

z

Figure 2.7: Continuous-successors of F by the dynamics fq

Let F be a set of states de�ned as F = f(q; Fq) j q 2 Q ^ Fq � Xg. We can naturally
extend the above de�nitions to the continuous-successors of F as follows:

�c(F) =
[
q2Q

�c(q; Fq):

We turn now to discrete-successors.

De�nition 12 (Discrete-Successors)
Given a transition from q to q0 and a set of states (q; F) where q; q0 2 Q and F � X ,
we de�ne the set of discrete-successors of (q; F) with respect to the transition from q to q0,
denoted by �qq0(q; F), as

�qq0(q; F) = f(q0;x0) j 9x 2 F \Gqq0 ^ x0 2 Rqq0(x)\ 2 Hq0g:

The set �qq0(q; F) contains the states (q
0;x0) where x0 are the points in Hq0 resulting from

applying the reset relation Rqq0 to the points x in F that satisfy the guard Gqq0 .

To illustrate, consider the example shown in Figure 2.8 where the set F is the set of
continuous-successors in the example of Figure 2.7. The set Hq0 is the half-space below
the horizontal line, and the guard Gqq0 is the rectangle. Suppose that the continuous vari-
ables do not change after taking the transition from q to q0. The discrete-successors of (q; F)
with respect to this transition can be obtained by intersecting F with Gqq0 and then with
Hq0 , which gives the shaded region in the �gure.

2.5 Reachability Notions 41

Gqq0

�qq0(q; F)

F

Hq

Hq0

Figure 2.8: Discrete-successors of F by transition from q to q0.

The set of discrete-successors of (q; F) by executing all enabled transitions from q, denoted
by �d(q; F), is

�d(q; F) =
[
q02Q

�qq0(q; F):

Hence, the set of discrete-successors for a set of states F = f(q; Fq) j q 2 Q ^ Fq � Xg is

�d(F) =
[
q2Q

�d(q; Fq):

We de�ne now the operator � for F as the set of states reachable from F by continuous
dynamics and then discrete transitions:

�(F) = �d(�c(F)):

Then, the reachable set from F by the automaton A is the limit of the recursion

P0 = F
Pi+1 = �(Pi)

The successor operators are basic ingredients in forward reachability analysis. For backward
reachability, we introduce subsequently the predecessor operators.

De�nition 13 (Continuous-Predecessors)
Given a set of states (q; F) where q 2 Q and F � X , we de�ne the set of continuous-
predecessors of (q; F), denoted by �c(q; F), as

�c(q; F) = f(q;x0) j 9x 2 F 9t > 0 x0
q;t�!x g:

42 Hybrid Automata

De�nition 14 (Discrete-Predecessors)
Given a set of states (q; F) where q 2 Q and F � X , we de�ne the set of discrete-predecessors
of (q; F) with respect to the transition from q0 to q, denoted by �q0q(q; F), as

�q0q(q; F) = f(q0;x0) j 9x 2 F \Rq0q(x
0) ^ x0 2 Hq0 \Gq0qg:

Then, the set of discrete-predecessors of (q; F) is

�d(q; F) =
[
q02Q

�q0q(q; F);

and the set of discrete-predecessors of F = f(q; Fq) j q 2 Q ^ Fq � Xg is

�d(F) =
[
q2Q

�d(q; Fq):

2.6 Other Hybrid System Models

Hybrid systems have been intensively studied by both computer science and control com-
munities. However, the respective approaches to the modeling of hybrid systems are slighly
di�erent due to the di�erent types of problems of interest and analysis/design techniques in
these two disciplines.

The approach pursued by computer scientists is to extend traditional �nite-state automata
by introducing progressively more complex continuous dynamics. Timed automata [5] can be
viewed as a very restricted class of hybrid automata in which the derivative of all continuous
variables is 1. The �rst model which augmented discrete transition systems with variables
governed by di�erential equations is the phase-transition system [84], from which the hybrid
automaton model was derived. In [3] it was shown that the reachability problem for hybrid
automata is undecidable, i.e. there is no general algorithm for any hybrid automaton. The
research in the computer science approaches continued in two major directions. One was to
build tools for classes of hybrid systems for which the veri�cation problem is solvable (e.g.
Kronos [120] and Uppaal [74] for timed automata) or semi-solvable (HyTech [56] for `linear'
hybrid automata2). The other was to �nd further restrictions on continuous and discrete
dynamics that guarantee decidability. Several models along these lines are multirate timed
automata [3], piecewise-constant derivative systems PCD [14], integration graphs [65], and
rectangular hybrid automata [99]. In these models, essentially, the guard and staying sets
are polyhedra and the vector �elds are constant in every discrete state. These works gave
important insights concerning the di�culties in exporting exact veri�cation methodology to
hybrid systems. In addition, the hybrid automaton model has been accepted as a working
model by the control community.

2Linear hybrid automata should not be confused with hybrid automata where continuous dynamics are
linear.

2.6 Other Hybrid System Models 43

Control theorists, on the other hand, approach hybrid systems by incorporating discrete be-
haviors into their continuous dynamical descriptions, speci�cally ordinary di�erential equa-
tions (see [50, 27] and references from there). Other models which deal explicitly with
continuous dynamics and discrete event dynamics consist of a continuous plant (represented
by di�erential equations) supervised by a discrete controller (represensed by an automaton).
Examples of such models are [45, 92, 8]. A more general hybrid model is proposed in [28],
which considers a variety of hybrid behaviors exhibited in hybrid control systems within a
uni�ed dynamical setting. Surveys of the hybrid models developed from the control point
of view can be found in [28, 27, 75] and a comparison between discrete and continuous
dynamical systems in [83].

44 Hybrid Automata

Part II

Veri�cation

45

Chapter 3

Algorithmic Veri�cation

3.1 Problematics

Having a formal model for hybrid systems and their behaviors, we need methods for proving
that these systems behave as required. We will adopt the algorithmic veri�cation methodol-
ogy (also known as model checking [87]), which has been developed for discrete systems and
applied successfully to digital circuits and communication protocols. In this thesis, we will
concentrate on invariance properties, which are the simplest type of safety properties [86]
and can be phrased as follows: no trajectory of the system should ever reach a certain subset
B of the state space, or equivalently, the system will always stay in the complement of B.
For �nite automata, there are two straightforward methods to verify invariance properties,
namely by forward and backward reachability. The forward reachability method consists in
starting with an initial set F of states and computing iteratively their successors until the
set of all reachable states is computed (this is guaranteed to happen after a �nite number of
steps), and this set is then checked for intersection with B. This is summarized by the fol-
lowing algorithm which makes use of the successor operator Post, introduced in the previous
chapter.

Algorithm 1 (Forward Reachability)

R0 := F ;
repeat k = 0; 1; 2; : : :
if (Rk \ B 6= ;) return unsafe
Rk+1 := Rk [Post(Rk);

until Rk+1 = Rk

return safe

Backward reachability starts with the set B, calculates iteratively its predecessors until con-
vergence, and then checks whether the computed set intersects with the initial set F . The

47

48 Algorithmic Veri�cation

veri�cation algorithm using backward reachability is given below (Pre is the predecessor
operator).

Algorithm 2 (Backward Reachability)

R0 := B;
repeat k = 0; 1; 2; : : :
if (Rk \ F 6= ;) return unsafe
Rk+1 := Rk [Pre(Rk);

until Rk+1 = Rk

return safe

The veri�cation problem for any �nite-state discrete system can be solved using either of
the above algorithms since the transition function, the initial set F , the set B, and the set of
reachable states accumulated over the execution are �nite and can be represented explicitly.

Now, if extended to hybrid automata, these algorithms involve the computation of the fol-
lowing functions over subsets of the state space of hybrid systems:

� Successors or predecessors: Q� 2X ! Q� 2X ;

� Union and intersection: 2X � 2X ! 2X ; and

� Emptiness checking: 2X ! f0; 1g.

Set union is needed to accumulate the reachable states; emptiness checking and set inter-
section are needed to check whether the system reaches states in B. Note that to detect
the termination of the algorithms, i.e. when Rk+1 = Rk, one can check emptiness of the set
di�erence Rk+1 �Rk.

In order to be able to compute these functions, the �rst ingredient we need is a �nite syntactic
representation of the sets encountered during the execution of the algorithms. The continuous
state space X of hybrid automata is in R

n , and hence, unlike in �nite-state systems, subsets
of X do not admit an enumerative representation and can only be represented symbolically,
such as by formulas of some logic. Examples of classes of subsets of X which admit a
symbolic representation are the polyhedral sets (represented by Boolean combinations of
linear inequalities) and the semi-algebraic sets (represented by combinations of polynomial
inequalities).

Another di�culty comes with the two-phase evolution of hybrid systems, which requires
the ability to compute the successors or predecessors of sets of states not only by discrete
transitions but also by continuous dynamics. In the continuous phase, this associates with
the special problem of characterizing trajectories of continuous systems. For concreteness,
we illustrate this problem by means of a hybrid automaton with only one discrete state whose
staying set is the whole state space. Suppose that the initial set F can be characterized by a

3.1 Problematics 49

formula �F (x) whose truth value is 1 i� x 2 F , and similarly, the set B by a formula �B(x).
Suppose further that the di�erential equation _x = f(x) of the continuous dynamics admits
a closed-form solution �x(t) for every initial condition x; hence the reachable set from F is
exactly the set of x for which the formula

r(x) = 9x0 �F (x0) ^ 9t � 0 x = �x0(t)

is true. Similarly, proving that the system is safe amounts to proving that the formula

8x0 �F (x0)) 8t : t � 0 :�B(�x0(t)) (3.1)

is true, which can be done by eliminating the quanti�ers. If �B, �F , and �x(t) are de�nable
in a theory for which quanti�er elimination is possible, then the problem can, in principle,
be solved by symbolic manipulation of formulas [37].

When the derivative f is constant: f(x) = c, we have �x(t) = x+ ct; the quanti�ers in (3.1)
can thus be eliminated using linear algebra. This is the basis for veri�cation algorithms for
classes of hybrid systems [120, 74, 56] in which the derivatives of continuous variables are
constant, staying conditions and transition guards are speci�ed as combinations of linear
inequalities; hence, reachable sets are de�nable by linear formulas (see Figure 3.1 for an
example).

F B

f

Figure 3.1: Computation of the reachable set of a one-state hybrid system with constant
derivatives where the initial set F and the bad set B are polyhedral. Checking the intersection
of the reachable set with B can be done by linear algebra.

For systems with non-trivial dynamics, the situation is much more complicated. First, in
many cases we do not know explicit solutions of the di�erential equations. Furthermore,
even when we know such solutions, their forms may not allow a general method for proving
equation (3.1). For example, for linear systems _x = Ax we have a closed-form solution
�x(t) = eAtx, but a proof of (3.1) is possible only for a very restricted class of matri-
ces. Recent results concerning the applicability of algebraic manipulation techniques for the
reachability analysis of hybrid systems with linear continuous dynamics appear in [94, 7].

In addition to the problem of characterizing the states reachable in one continuous phase,
applying Algorithms 1 or 2 to hybrid automata may result in a computation which alternates

50 Algorithmic Veri�cation

inde�nitely between two or more discrete states, each time adding more and more successors.
Figure 3.2 depicts the reachable set computation for a 4-state PCD (piecewise-constant
derivative) system [14] where X = R

2 and the staying conditions of the discrete states
are the disjoint rectangles. The system starts from the line segment F at discrete state
q1. One can see from the �gure that for this system the reachability algorithm does not
terminate. It has been proved that even for simple systems with constant derivatives, where
the computation of continuous-successors in each discrete state can be done exactly, there
is no general reachability algorithm which is guaranteed to terminate [54]. In other words,
the reachability problem for hybrid automata is undecidable. The reader might wish to
consult [7] for a survey of the decidability results.

F

f1

f3

f4

f2

H4

H2

H3

H1

Figure 3.2: An example of a non-terminating computation of reachable states.

We now turn to approximate methods. Numerical simulation is a powerful tool for approxi-
mating solutions of di�erential equations for a given initial condition. Starting from a single
point x in the state space, one can numerically integrate the di�erential equation to obtain
an approximation �̂x of the solution �x. Although the approximate solution is computed
only at discrete time points, the distance between an approximate value �̂x(t) and the true
values at �x(t

0) for t0 2 [t� �; t+ �] can be bounded. Hence, if we want to verify whether the
trajectory starting from a point x reaches B, we can, in principle, simulate the trajectory
forward and check at every step if the approximate solution is close to B. Termination is,
however, not guaranteed since trajectories of continuous systems are not always periodic.
Although simulation techniques are very useful for simulating single trajectories, they are
less so when it comes to deal with sets of trajectories arising whenever the initial condition
of the system is speci�ed as a set of initial states rather than a single state, or when the con-
tinuous dynamic is inuenced by under-speci�ed inputs. This is, in fact, the major di�erence
between simulation/testing and veri�cation.

The conclusion from the discussion thus far is that the main obstacle towards extending the
algorithmic veri�cation methodology outside the world of discrete systems or hybrid systems
with trivial continuous dynamics is the lack of e�ective methods for characterizing reachable
sets of continuous dynamics. In the next section, we propose a framework for algorithmic

3.2 Approach to Solution 51

analysis which, despite the theoretical di�culty, allows practical approximate solutions to
veri�cation and synthesis problems.

3.2 Approach to Solution

3.2.1 Representation of Sets

Given the di�culties in computing exactly reachable sets of hybrid automata, we resort
to approximating them by polyhedra. The reason we choose polyhedra as the symbolic
representation of sets in R

n is that, from the computational point of view, they are among
the geometric objects which are easier to describe and manipulate. We replace all the
operations on the real sets in the abovementioned veri�cation algorithms by operations on
their polyhedral approximations and compute a sequence of polyhedra P k approximating
Rk. If over-approximations are used and the algorithm terminates, then the result is an
over-approximation of the reachable set. Nevertheless, even with polyhedral approximations
the problems of e�ectiveness and termination are not completely resolved.

First, termination is still not guaranteed since there are in�nitely many polyhedral sets,
even in a bounded subset of R n . Second, the sets of reachable states, which are iteratively
computed by the veri�cation algorithms, may have complicated forms and their approximat-
ing polyhedra might be hard to represent and manipulate. Polyhedral sets can be divided
into two types: convex and non-convex. The former are simpler and admit canonical repre-
sentations, namely the dual vertex-based and constraint-based representations, which allow
e�cient implementations of intersection, membership, and equivalence testing. However, if
we restrict ourselves to convex polyhedra, whenever we make a union of two sets, we need
to approximate it by their convex hull, which might result in a too coarse approximation.
Consequently, we need to use non-convex polyhedra, which are much more complex objects.

In two dimensions, any polygon can be uniquely de�ned by an ordered list of its vertices,
but the treatment of non-convex polyhedra in higher dimensions is, unfortunately, very
complicated. Non-convex high dimensional polyhedra constitute a challenging object of
computational geometry. The topological representation of polygons can be generalized to
graphs of incidence and adjacency between vertices, ridges, and faces [117], yet with a lot
of requirements for a polyhedron to be well-de�ned. Still, data structures and algorithms
based on this representation are very sophisticated when it comes to deal with degeneracy
and become ine�cient as the dimension grows. Alternatively, non-convex polyhedra can also
be represented by unions of convex polyhedra1, or by series of Boolean operations on convex
polyhedra, such as CSG2 [69] and Octree [103]. Although these representations have proved
successful in two- or three-dimensional applications, such as computer graphics and solid
modeling, they are not appropriate for higher dimensions since geometric operations become

1In the veri�cation tools Kronos [120] and Uppaal [74] for timed automata, reachable sets are also repre-
sented by lists of simple convex polyhedra which can be written as conjunctions of inequalities of the form
xi � xj � b.

2CSG stands for Constructive Solid Geometry.

52 Algorithmic Veri�cation

prohibitively expensive.

For these reasons, we restrict ourselves further to orthogonal polyhedra which can be de-
scribed as unions of closed full-dimensional hyper-rectangles with rational coordinates. The
justi�cation for this choice is that for orthogonal polyhedra we have a compact and, moreover,
canonical representation, which allows relatively e�cient manipulation including Boolean op-
erations, equivalence checking, and all other geometric operations. However, while the use
of orthogonal polyhedra makes algorithm design easier, a price for this is that the quality of
the approximation is poorer.

It should be noted that approximating sets of states for veri�cation or controller synthesis
purposes is di�erent in nature from approximating single points or trajectories, as is done
in numerical simulation. The goal of simulation is to ensure that the approximating object
is close enough to the real one. However, in set-based approximation, we often want to
guarantee that the approximating set contains the real one (over-approximation) or, in some
cases, is contained in the real one (under-approximation). We will show later that orthogonal
polyhedra are also suitable for these purposes.

To summarize, in order to give an approximate solution to the veri�cation problem for
hybrid systems, we intend to represent sets of reachable states using non-convex orthogonal
polyhedra. The main challenge in the implementation of the veri�cation algorithms is to �nd
techniques for approximating the continuous-successor operator. This requires the ability to
compute successors for purely continuous systems, which is the major problem we attack in
this thesis. In the rest of this section, we give the key ideas of the orthogonal polyhedron
representation, which will help the reader to understand the reachability techniques proposed
in the following chapters. For more details on the representation of orthogonal polyhedra,
the reader is refered to [26, 25].

Orthogonal Polyhedron Representation

Without loss of generality, we assume that we are working in the set [�M;M]n for some
integer M > 0. With every rational number � � 0 we de�ne the corresponding uniform grid
of size � as the set of grid points G� = f(z1�; : : : ; zn�) j zi 2 Zg (see Figure 3.3-(a)).

With every grid point v = (v1; : : : ; vn) we associate an elementary hyper-cube g(v) = [v1; v1+
�]� : : :� [vn; vn + �], namely the hyper-cube of size � whose leftmost corner is v. The set
of all such hyper-cubes is denoted by
� . An orthogonal polyhedron is any subset of
� (see
Figure 3.3-(b)).

A more general class of orthogonal polyhedra can be obtained by using non-uniform grids.
Such polyhedra can be thought of as unions of arbitrary axis-parallel hyper-rectangles (see
Figure 3.3-(c)).

A representation scheme for a class of objects (e.g. orthogonal polyhedra) is canonical if each
representation corresponds to at most one object and each object has a unique representation.
A compact canonical representation makes the checking of equivalence between polyhedra
simple. For example, the representation of convex polyhedra by the set of their vertices

3.2 Approach to Solution 53

��
��
��
��

��
��
��
��

�
v

G�

g(v)

(a) (b) (c)

Figure 3.3: (a) A uniform grid G�; (b) an orthogonal polyhedra on a uniform grid; (c) an
orthogonal polyhedra on a non-uniform grid.

is canonical: every set of vertices de�nes exactly one convex polyhedron and every convex
polyhedron has a unique set of vertices. However, for non-convex polyhedra, a set of vertices
is not a representation at all since two di�erent polyhedra can have the same set of vertices
(see Figure 3.4). If we represent non-convex polyhedra as unions of convex ones, we may
have more than one representation of the same polyhedron. In the sequel we discuss a
vertex-based canonical representation scheme for orthogonal polyhedra, developed in [26].

b

a

c

d

b

a

c

d

P1 P2

Figure 3.4: The polyhedra P1 and P2 are distinct but have the same vertices.

Given a grid point v and an orthogonal polyhedron P , we say the color of v is black if
g(v) 2 P and white otherwise. We de�ne the neighborhood N (v) of a vertex v of P as
the set of the vertices of the elementary hyper-cube lying between (v1 � 1; : : : ; vn � 1) and
v. A vertex is called extreme if its neighborhood contains an odd number of black points.
Figure 3.5 illustrates the above notions. The color of vertex v is black and that of v0 is
white. The neighborhood of grid point v is N (v) = fv1;v2;v3;vg.
It has been proved in [26] that an orthogonal polyhedron is uniquely represented by the set of

54 Algorithmic Veri�cation

v3

v1 v2

v0v

Figure 3.5: Orthogonal polyhedron notions.

its extreme vertices. As an example, consider again the polyhedra of Figure 3.4. It is easy
to see that all the vertices of P2 are extreme while the vertices a, b, c, and d of P1 are not.
Hence, P2 is represented by all its vertices and P1 by all its vertices except a; b; c; d. Based
on this canonical representation, algorithms for Boolean operations, membership testing,
equivalence checking as well as other geometric operations, such as face detection, were
developed and reported in [26, 25].

3.2.2 Reachability Analysis of Continuous Systems

Having chosen a representation scheme for sets of states, the remaining problem is to �nd
techniques for computing reachable sets of continuous systems using this representation. We
�rst formally state the problem and then present a basic reachability algorithm.

Basic Computation Procedure

Consider a continuous system C = fX ; fg, as in De�nition 5. The reachability problem we
consider is stated as follows.

Problem 1 Given a set F � X , we want �nd an approximation of the set �(F) of states
reachable from F by C.

Numerical integration is a common method to approximate solutions of di�erential equations.
The basic idea of this approach is the following. For a given initial condition x(0) = x0, the
solution of the di�erential equation of C can be written as

�x0(t) = x0 +

Z t

0
f(�x0(s))ds: (3.2)

Given a time step r > 0 and a sequence 0; r; 2r; : : : , we denote by xk a numerical estimate
of the exact solution �x0(kr), k = 0; 1; 2; : : : . We can then obtain an approximate solution
using the following rescursive scheme:

xk+1 = xk + �(xk; r): (3.3)

3.2 Approach to Solution 55

where � is an approximation of the integral in (3.2). The main concern of this approach is
to �nd the time step r and � with respect to the desired accuracy and computational cost,
and this leads to numerous advanced schemes, such as multistep and Runge-Kutta [62].

This method, although not adequate for solving Problem 1 since our interest is to com-
pute solutions for all points in the initial set and for all time points t � 0, inspires us to
approximate reachable sets on a step-by-step basis using the following iterative algorithm.

Algorithm 3 (Computation of �(F))

P 0 := F ;
repeat k = 0; 1; 2; : : :
P k+1 := P k [�[0;r](P k);

until P k+1 = P k

The set P k here is the set of states reachable from F during the interval [0; kr], i.e. �[0;kr](F).
The algorithm terminates whenever no new reachable states are found. Algorithm 3 can be
easily extended to account for variable time steps.

To be e�ective, we use orthogonal polyhedra to represent the sets encountered in Algo-
rithm 3 and replace all the operations with their approximate versions on orthogonal poly-
hedra. Since orthogonal polyhedra are closed under the union operation, only �[0;r] needs
to be approximated. Note also that, using orthogonal polyhedra, the set of reachable states
accumulated over the execution is represented as a unique object, and hence termination
checking can be done e�ciently. This also proves the advantage of orthogonal polyhedra
over arbitrary polyhedra or ellipsoids since there is no easy way for deciding if a union of
convex polyhedra or ellipsoids is included into another. Moreover, the use of orthogonal
polyhedra may guarantee the termination of the algorithm if we analyze the system only in
a bounded subset of the state space, which can be represented as a union of a �nite number
of orthogonal polyhedra. This issue will be discussed in more detail in the next chapters.

Nonetheless, using orthogonal polyhedra to approximate smooth sets, it is clear that we
cannot avoid approximation errors. No matter which method to compute �[0;r] is proposed,
the following question about error accumulation must be answered: \How does the error in
each iteration a�ect the global error in the obtained result?".

It is important to emphasize that the global error is the distance between the exact solution
and the approximate one and should not be confused with the local error, namely the error
incurred when we compute P k+1 from P k under the assumption that P k is `exact'. It is not
su�cient to maintain the local error at less than a given tolerance since P k itself contains
errors, which may propagate to the next iterations, and consequently the global error can
grow over the execution. Therefore, another desirable property of the approximation scheme
is that the error in each iteration does not propagate.

56 Algorithmic Veri�cation

Let us examine, in a rather general way, how the error accumulation phenomenon is mani-
fested when using orthogonal polyhedra (and over-approximation in general) in Algorithm 3.
Consider the example shown in Figure 3.6 where we want to over-approximate the set of
states reachable from the box D0. The exact set is shown as the shaded region. Since x0 is
reachable from x, we must include the box D1 (which is an elementary hyper-cube of the
underlying grid) in the set of successors. This box contains points, such as y, not reachable
from D0, which bring in the next iteration new points, such as y0; as a result, we end up
adding the box D0

2 which contains no reachable points from D0 at all.

x0

x
D1

D2 D0
2

y0

y

D0

Figure 3.6: Illustration of the over-approximation error accumulation.

The phenomenon is not speci�c to orthogonal polyhedra (although it is aggravated by the
coarseness of the approximation). Similar phenomena are exhibited, for example, in abstract
interpretation of programs over the integers [35] where over-approximation is called widening.

The intuitive reason for the error accumulation is that Algorithm 3 advances the computation
from kr to (k + 1)r using P k as the new initial set and thus includes in P k+1 the `fake'
successors in P k. Even though we can control the local error, the global error can still grow
if the continuous dynamics f by its very nature expands regions. Note that, by the semi-
group property, computing successors of �[0;kr](F) is equivalent to computing successors of
�kr(F), or more precisely,

�(�[0;kr](F)) = �(�kr(F)) [�[0;kr](F):

Thus, one can employ �kr as the basis for the computation in the next iterations. This may
be helpful in reducing the accumulation error e�ect because one might expect that there is
more accumulated error in the approximation of �[0;kr] than in that of �kr. This solution,
however, requires the additional computation of �kr, which is not more feasible except for
linear systems, as we will see in the next chapter. For non-linear systems, this can still be
done yet with much sophistication.

In the following two chapters, we present two techniques for over-approximating reachable
sets of continuous systems based on Algorithm 3. One technique is specialized for linear
systems, and the other can be used for non-linear systems. The advantage of both techniques
is that they can be easily adapted to the veri�cation of hybrid systems.

Before proceeding, we discuss briey some other approaches reported in the literature.

3.3 Other Approaches 57

3.3 Other Approaches

The standard algorithmic approaches to the veri�cation of hybrid systems can be divided
into two categories: direct and indirect. The direct approach works directly on the continuous
state space of the system (as in this thesis). Examples are the veri�cation algorithms imple-
mented in the tools Kronos [120], Uppaal [74], and HyTech [56]. Recent works in [24, 59],
which we will outline in Chapter 8, also solve the veri�cation problem for hybrid systems
with more complex continuous dynamics in a direct manner.

The indirect approach, on the other hand, reduces �rst the system, via abstraction, to a
�nite-state automaton. The abstraction procedure consists in �nding a �nite partition of the
state space such that the reachability between partition blocks is faithfully described by the
transition relation of the automaton (see [7] for more details on this issue). Once the �nite
abstraction has been constructed, the veri�cation can be performed on the abstracted system
with a termination guarantee, using standard tools for �nite-state systems. Nevertheless, it
was shown that such a �nite abstraction exists only for restricted classes of hybrid systems
either with simple continuous dynamics [5, 4, 93] or with simple discrete dynamics [73]. Even
when a given class of systems is proved to admit a �nite quotient, another di�culty comes
with the problem of actually computing the quotient, which requires calculating successors of
every block in the partition and is consequently at least as hard as the veri�cation problem.
However, it should be noted that this approach is important for proving correctness and
termination of the veri�cation algorithms for some classes of systems [5, 54] and allows to
verify general temporal logic properties.

Alternatively, other works consider discrete approximations, that is, instead of exact �nite
quotient, they search for a �nite discrete system whose behaviors include all behaviors of the
original system. Recently, in [31], discrete approximations are done by iteratively re�ning
state partitions using an approximate reachability method for continuous dynamics, which
is similar in some aspects to the method we propose in the next chapter. In [95] the au-
thor developed an analysis technique for piecewise linear systems using a geometric model
describing switching boundaries and some algorithms for mapping the patterns of trajectory
movements between boundaries into a node graph.

An approach which can be viewed as a mixture of the direct and indirect approaches consists
in deriving from the original system an approximate system for which veri�cation algorithms
and tools are available [101, 57, 107, 109]. The approximate system can be generated by over-
approximating the complex continuous dynamics with simple dynamics (such as constant
slopes and rectangular inclusions) based on discretizations of the continuous state space.
The main drawback of this approach is that, in addition to the considerable e�ort of initially
abstracting continuous dynamics with respect to the desired accuracy, the size of the resulting
system might be prohibitively large for the veri�cation algorithms.

Besides the algorithmic approaches, the deductive approaches have also been used [86]. De-
ductive methods involve proving a property by induction based on a set of axioms and
inference rules. These approaches are often aided by theorem provers (e.g. [22]) and can
verify a more general class of systems. However, unlike the algorithmic approaches, they are

58 Algorithmic Veri�cation

not automatic and require human intelligence in the process of �nding proofs.

Optimal control is another approach to the veri�cation of hybrid systems, mostly used by
the control community. Instead of exploring all trajectories of the system, as is done in
the algorithmic methods, one can turn the veri�cation problem into an equivalent optimal
control problem, that is, �nding the worst possible trajectory with respect to the property
to be veri�ed [100, 78]. Nevertheless, solving optimal control problems for hybrid systems is
non-trivial, both analytically and computationally.

Chapter 4

Reachability Analysis of Linear

Continuous Systems

Linear dynamical systems have been extensively studied by the control community for years
because they have a rich structure and provide su�ciently good models to design controllers
for a broad class of processes. The theory of linear systems is well developed and has been
successfully used in practice. In this chapter we develop a reachability technique for linear
continuous systems. Although this technique is less e�cient than classical methods for
analyzing linear continuous systems, its main advantage is its straighforward adaptation to
veri�cation and controller synthesis for hybrid systems.

An outline of the chapter is as follows. After some preliminaries, we describe an algorithm for
approximating reachable sets of linear systems and then study the error in the approximation.
We next show how this technique can be extended to linear systems with uncertain input.
This chapter is a review of the results presented in [10].

Preliminaries

As the metric for our approximations, we will use the Hausdor� distance [41], which is a good
measure for di�erence between sets. We give below some basic de�nitions and properties.

Let x, y be two points in R
n and X, Y be two subsets of R n . We denote by hx;yi the

scalar product of x and y. Let B be the unit ball at the origin: B = fx j hx;xi � 1g. The
Minkowski sum of X and Y is de�ned as X � Y = fx + y j x 2 X; y 2 Y g. For � 2 R ,
�X = f�x j x 2 Xg. The set N(X; �) = X � �B is called the �-neighborhood of X.

De�nition 15 (The Hausdor� distance)

1. The distance between x and y is de�ned as d(x;y) = jjx�yjj where jj�jj is the Euclidian
norm, or equivalently, d(x;y) = (hx� y;x� yi) 12 .

2. The diameter of X is de�ned as %(X) = supfd(x;y) j x;y 2 Xg. In other words, %(X)

59

60 Reachability Analysis of Linear Continuous Systems

is the maximal distance between any two points in X.

3. The Hausdor� semi-distance from X to Y is de�ned as

h+(X;Y) = inff� j X � N(Y; �)g;

or equivalently,

h+(X;Y) = sup
x2X

inf
y2Y

fd(x;y)g:

4. The Hausdor� distance between X and Y is

h(X;Y) = sup fh+(X;Y); h+(Y;X)g:

If X and Y are closed sets, inf and sup in the above de�nitions can be substituted by
min and max, respectively. It is well-known that the Hausdor� distance has the following
properties [41].

Lemma 1

(h1) Given sets X, Y , Z in R
n , h(X;Z) + h(Z; Y) � h(X;Y).

(h2) Given sets X1, X2, Y1, Y2 in R
n , if h(X1; Y1) � � and h(X2; Y2) � � then

h(X1 [X2; Y1 [Y2) � �:

Here and further the term `distance' refers to the Hausdor� distance (if not explicitly stated
otherwise). We also introduce the following notation [52] which will be used in error estima-
tion.

De�nition 16 (Asymptotic notation) Let x be a real variable tending to some limit. Let
v(x) be a positive function and u(x) any function. Then, we write u = O(v) if there exists
a constant b such that ju(x)j < bv(x) for all values of x.

4.1 Computation Procedure

Consider a continuous linear system C = fX ; fg where X � R
n . The dynamics of C is

described by the linear di�erential equation

_x = Ax (4.1)

where A is an n� n matrix.

For a given initial set F � X , our goal is to �nd an orthogonal polyhedron over-approximating
the reachable set �(F). We begin by stating an important property of linear systems.

4.1 Computation Procedure 61

Lemma 2 If F is a convex set, then for every t � 0 the set �t(F) of states reachable from
F at time point t is convex.

Proof
Let �x : T ! X be the trajectory of C starting from a point x 2 X . By solution of
equation (4.1), we have

�x(t) = eAtx: (4.2)

Therefore, the set �t(F) can be written as �t(F) = eAtF . The matrix exponential eAt is a
linear operator [61] and hence preserves convexity, which implies that �t(F) is convex.

We suppose further that the initial set F is a convex bounded polyhedron. Then, F can be
written as F = conv(V) where conv denotes the convex-hull operator and V = fv1; : : : ;vmvg
is a �nite set of vertices. Note that the successor of a single point can be easily computed
either by matrix exponentiation, as shown in (4.2), or by numerical integration. Thus, to
determine �t(F), it su�ces to compute the set of successors at time t of the vertices of F ,
that is, f�t(v1); : : : ; �t(vmv)g, and then

�t(F) = convf�t(v1); : : : ; �t(vmv)g: (4.3)

Figure 4.1 illustrates the above computation in two dimensions. If we were working in discrete

F
�t(F)

v1 v4

v2
v3

�t(v3)

�t(v4)

�t(v1)

�t(v2)

Figure 4.1: Illustration of the computation of �t for a convex polygon F with vertices
fv1; : : : ;v4g.

time, this computation would be su�cient. We want, however, to compute all the states
reachable at any time t � 0. In the sequel we present a technique for over-approximating
�(F).

4.1.1 Approximation Scheme

We consider the following sub-problem.

62 Reachability Analysis of Linear Continuous Systems

Problem 2 (Over-approximating �[0;r])
Given a convex polyhedron F and a time step r � 0, �nd an orthogonal over-approximation
of �[0;r](F), denoted by b�[0;r](F).
Note that the solution can be easily generalized to problems where the initial sets are non-
convex polyhedra since these can be decomposed into �nitely many convex polyhedra.

We have just shown that �r(F) can be e�ectively computed using (4.3), and we will exploit
this to over-approximate �[0;r](F). To begin, we make some preliminary observations. An
obvious approximation of �[0;r](F) can be obtained by taking the convex hull C = conv(F [
�r(F)). The polyhedron C is, in general, neither a subset nor a superset of �[0;r](F). The
problem is then to �nd a neighborhood of C that is guaranteed to include all the states
reachable within the time interval [0; r].

Let �x : T ! X be the trajectory starting from an arbitrary point x 2 F , and let y = �x(r)
be the point reachable from x at time r. The line segment from x to y can be thought of as
an approximation of �x(t) for t 2 [0; r] by a linear interpolation sx : T ! X de�ned as

sx(t) = x+
t

r
(�x(r)� x); t 2 [0; r]:

Let S be the set of all these line segments:

S = fsx(t) j x 2 F ^ t 2 [0; r]g:
Note that the set S is often a curved object. Since x 2 F and y 2 �r(F), by convexity we
have S � C. Similarly, the reachable set �[0;r](F) can be written as

�[0;r](F) = f�x(t) j x 2 F ^ t 2 [0; r]g:

Theorem 1 Given a time step r � 0, there exists #(r) which is O(r2) such that �[0;r](F) �
N(C; #(r)).

Proof
Since S � C, we have N(S; #(r)) � N(C; #(r)); hence, to prove the theorem, we will prove
that �[0;r](F) � N(S; #(r)). To this end, we estimate the distance between �[0;r](F) and S.
Using Lemma 1-(h2), h(�[0;r](F); S) is the upper bound on the distance between �x(t) and
sx(t) for every x 2 F and for every t 2 [0; r]. This distance is written as

jjsx(t)� �x(t)jj = jjx+ t

r
(eAr � I)x� eAtxjj:

By Taylor's theorem

eAt = I + At+
1

2
A2t2 +

1X
i=3

1

i!
Aiti:

We �nd after obvious simpli�cations

jjsx(t)� �x(t)jj = jj[1
2
A2t(r � t) +

1X
i=3

1

i!
Ait(ri�1 � ti�1)]xjj:

4.1 Computation Procedure 63

Let M be the constant bounding the norm jjxjj. Then, the following inequality holds for all
t 2 [0; r]:

jjsx(t)� �x(t)jj � 1

8
M jjAjj2r2 +O(r3) = #(r): (4.4)

This means that �[0;r](F) � N(S; #(r)), and consequently �[0;r](F) � N(C; #(r)). For-
mula (4.4) also shows that #(r) is indeed O(r2). This completes the proof of the theorem.

Theorem 1 suggests the following scheme to solve Problem 2.

Scheme 1 (Over-approximating �[0;r](F))

1. Compute �r(F).

2. Compute C = conv(F [�r(F)).
3. Find the neighborhood N(C; #(r)) with #(r) from Theorem 1.

4. Find an orthogonal polyhedron over-approximating N(C; #(r)).

Although N(C; #(r)) is already an over-approximation of �[0;r](F), the goal of the last step
is to represent the reachable set after successive iterations succintly as a unique orthogonal
polyhedron, so that termination checking can be done e�ciently.

We show now how to implement Scheme 1. The �rst step can be done, as mentioned
earlier, by numerical integration or matrix exponentiation, and the second can be done
using standard convex-hull algorithms. Let us proceed with the third step.

Constructing N(C; #(r))

The set N(C; #(r)) = C � #(r)B is not polyhedral, and in order to stay in the world of
polyhedra we �nd a polyhedral over-approximation of N(C; #(r)). For doing this, we de�ne
the operator bloat as follows.

De�nition 17 Let C be a convex polyhedron C =
Tmc

i=0fx j hai;xi � big, and let d be a real
number. We de�ne

bloat(C; d) =

mc\
i=0

fx j hai;xi � bi + djjaijjg:

In words, bloat(C; d) is the convex polyhedron resulting from pushing outward the half-spaces
of C by the amount d. As an example, consider the polygon C shown in Figure 4.2, where
the enveloping polygon represents bloat(C; d) and the boundary of the neighborhood N(C; d)
is the curved line.

It can be easily shown that bloat(C; #(r)) is indeed an over-approximation of N(C; #(r)) and
the distance between C and bloat(C; #(r)) is bounded by

p
n#(r).

64 Reachability Analysis of Linear Continuous Systems

C

bloat(C; d)

d

Figure 4.2: Illustration of bloat(C; d).

Orthogonal Approximation

The last step of Scheme 1 is the over-approximation of a convex polyhedron by an orthogonal
polyhedron. Under-approximations are needed for other types of analysis, which we shall
discuss later. It is important to emphasize that every orthogonal polyhedron that is used in
our approximation procedure should be de�ned on the same underlying grid.

De�nition 18 (Orthogonal approximation)
We de�ne the operators grido and gridu for a convex polyhedron C and a grid G� as follows.

� grido(C) is the smallest orthogonal polyhedron de�ned on G� such that grido(C) � C.

� gridu(C) is the largest orthogonal polyhedron de�ned on G� such that gridu(C) � C.

Followed immediately from the de�nition, grido(C) and gridu(C) can be written as

grido(C) = fg(v) j v 2 G� ^ g(v) \ C 6= ;g;
gridu(C) = fg(v) j v 2 G� ^ g(v) � Cg

where g(v) is the elementary hyper-cube associated with a grid point v in G�. In other words,
gridu(C) is the union of all elementary hyper-cubes which are inside C, and grido(C) is the
union of all elementary hyper-cubes whose intersection with C is not empty (see Figure 4.3).

Note that for a given underlying grid, grido(C) and gridu(C) are tight orthogonal approxi-
mations of the convex polyhedron C in the sense that there exists no orthogonal polyhedron
smaller than grido(C) that includes C and there exists no orthogonal polyhedron larger than
gridu(C) that is inscribed in C.

An obvious method for computing grido(C) and gridu(C) is to test all the elementary hyper-
cubes g(v) residing in the bounding box of C. This is, evidently, ine�cient since the number
of tests, which depends on the ratio of the volume of C to the volume of the elementary
hypercubes of the grid, can be large. In Chapter 8 (Implementation), we will present a more
e�cient method for computing grido and gridu, inspired by the Binary Space Partition
concept [44].

4.1 Computation Procedure 65

C

gridu(C)

grido(C)

Figure 4.3: Orthogonal approximations: the convex polyhedron C is over- and under-
approximated by grido(C) and gridu(C).

It is not hard to see that the error in both over-approximation and under-approximation
in terms of the Hausdor� distance is bounded by

p
n�, and one can obtain more accurate

orthogonal approximations by using �ner grids.

4.1.2 Reachability Algorithm

We have now all the ingredients needed to compute an orthogonal over-approximation of
�[0;r](F). Embedding this procedure in Algorithm 3, we obtain the following algorithm for
over-approximating the reachable set �(F).

Algorithm 4 (Over-approximating �(F))

P 0 := ;; X0 :=F ;
repeat k = 0; 1; 2; : : :
Xk+1 := �r(X

k);
Ck+1 := conv(Xk+1 [Xk);
Ck+1
o := bloat(Ck+1; #(r));

Gk+1 := grido(C
k+1
o);

P k+1 := P k [Gk+1;
until P k+1 = P k

return P k+1

Figure 4.4 illustrates the steps of Algorithm 4 with a simple two-dimensional example where
the initial set F is a line segment with two extreme points v1 and v2. The setX

0 is initialized
to the initial set F , and the algorithm basically repeats the following four steps:

66 Reachability Analysis of Linear Continuous Systems

X1

v1

�r(v2)
�r(v1)

X0 = F v2

X1

X0

C1

(1) X1 = convf�r(v1); �r(v2)g: (2) C1 = conv(X0 [X1):

C1
o

C1

C1
o

G1 = P 1

(3) C1
o = bloat(C1; #(r)): (4) G1 = grido(C

1
o):

X2

X1

G2

X2

P 2

The second iteration computes P 2 = G1 [G2:
G2 based on X1:

Figure 4.4: Two iterations of Algorithm 4 on a simple example where the initial set F is a
two-dimensional line segment with two extreme points v1 and v2. The computation in the
second iteration starts from X1.

4.1 Computation Procedure 67

1. Compute Xk+1 = �r(X
k), which represents the reachable set after exactly (k + 1)r

time. In Figure 4.4, the dotted lines are the real trajectories starting from the vertices
of X0, and the exact set �[0;r](X

0) lies between these lines.

2. Compute Ck+1 as the convex hull of (Xk[Xk+1) or equivalently the convex-hull of the
vertices of both Xk and Xk+1. The convex-hull algorithm provides us with information
about the orientation of the faces of Ck+1, which is used in the next step.

3. Bloat Ck+1 by the amount #(r) determined according to (4.4) to obtain the convex
polyhedron Ck+1

o , which is guaranteed to contain �[0;r](X
k).

4. Compute the orthogonal over-approximation Gk+1 of Ck+1
o . The polyhedron Gk+1

representing b�[kr;(k+1)r](F) is then added to P k+1 that is used to store all the states
reachable over the execution.

In the example shown in Figure 4.4, after the �rst iteration we get the orthogonal polyhedron
G1 � �[0;r](F). In the next iteration, we repeat the above four steps starting from X1 to ob-
tain G2 � �[r;2r](F). The orthogonal polyhedron P

2 = G1[G2 is thus an over-approximation
of the set of states reachable after two iterations.

Careful readers may realize that approximate calculations are used in Algorithm 4, and
hence the condition P k+1 = P k is not su�cient to ensure that whenever the algorithm
terminates, it gives an over-approximation of the whole reachable set. We defer this problem
to Section 4.4 and continue with a brief discussion on the main factors which inuence the
time cost of Algorithm 4.

Computational Cost

The computation time of the �rst three steps depends on the number of vertices of Xk

because it determines the number of numerical integrations to perform as well as the time
complexity of the convex-hull algorithm. Note that the bloat operation requires intersecting
half-spaces, which can be transformed into a convex-hull problem. It is worth mentioning that
although the number of vertices of Xk is unchanged over the execution, the time needed for
numerical integration1, being sensitive to the sti�ness of di�erential equations, may vary. We
have already seen that the computation time needed for orthogonal approximations depends
mostly on the ratio of the volume of Xk to the granularity of the underlying grid. Moreover,
the use of �ner grids results in more vertices in P k and consequently more computation time
for the union operation and equivalence testing in the next two steps. We will show, in the
next section, that the size of the underlying grid must be chosen according to the desired
accuracy. Therefore, a crucial problem is to �nd the right compromise between accuracy and
computational cost.

1The time step r of our approximation scheme should not be confused with the step-size of numerical
integration procedures.

68 Reachability Analysis of Linear Continuous Systems

4.2 Error Analysis

In order to guarantee the desired accuracy, we need to determine the bound on error in the
approximate solution and �nd conditions for ensuring an error under the speci�ed tolerance.

4.2.1 Error Propagation

The main advantage of Algorithm 4 is that it avoids the e�ect of over-approximation error
accumulation due to the use of orthogonal polyhedra. To clarify this, let us indicate two
types of errors that are introduced into the computation in each iteration.

� Numerical integration error which results from the computation of Xk+1 from Xk.

� Over-approximation error which is inherent in the approximation of �[0;(k+1)r](F) by

P k+1 based on Xk+1 and Xk.

Indeed, the polyhedron P k contains the over-approximation error while Xk does not. Since
P k+1 is computed based on Xk and not on P k, the over-approximation error does not prop-
agate from iteration to iteration.

We assume that the numerical integration error is negligible2; therefore, every polyhedra
Xk is the exact set �kr(F). Under this assumption, we can state an important property of
Algorithm 4: the global error does not accumulate over the execution. In other words, the
error in the result is the upper bound on the local error incurred in each iteration.

4.2.2 Error Estimation

We now estimate the error in our approximation under the assumption that there is no
numerical integration error. We will prove that the error in terms of the Hausdor� distance
can be made arbitrarily small by choosing the adequate value of the time step and the grid
size.

We are interested in �nding the worst-case error, that is, the largest error for any input
system, so that we can guarantee that the error in the results produced by our algorithm
will never be beyond this.

Since the over-approximation error does not propagate from one iteration to another, it suf-
�ces to study the local error incurred in each iteration. To get a bound on it, we estimate the
distance between the exact set �[0;r](F) and the approximate set b�[0;r](F), which is obtained
by making the convex hull C, bloating C to get Co, and transforming Co into orthogonal.
By the triangle inequality, we have

h(�[0;r](F); b�[0;r](F)) � h(�[0;r](F); C) + h(C;Co) + h(Co; b�[0;r](F)):
2The numerical integration error is sometimes inevitable due to the e�ects of round-o� errors in the

arithmetic of the computer. To handle this problem, special arithmetics, such as interval arithmetic [1], can
be used.

4.2 Error Analysis 69

We have shown earlier that the distance between Co and b�[0;r](F) = grido(Co) is bounded
by the grid size

p
n�. Then,

h(�[0;r](F); b�[0;r](F)) � h(�[0;r](F); C) + h(C;Co) +
p
n�: (4.5)

We estimate �rst h(�[0;r](F); C). The distance between an arbitrary point x 2 F and its

successors �t(x) = eAtx for every t 2 [0; r] satis�es the following inequality:

jj�t(x)� xjj �M jjeAr � Ijj
where M is the constant bounding jjxjj.
It then follows by Lemma 1-(h2) that

h(�[0;r](F); F) �M jjeAr � Ijj:

Since C = conv(F [�r(F)), we also have h(C;F) �M jjeAr � Ijj. This leads to
h(�[0;r](F); C) � h(�[0;r](F); F) + h(F;C) � 2M jjeAr � Ijj:

Expanding eAr in a Taylor series, we obtain

h(�[0;r](F); C) � 2M jjAjjr +O(r2) = �: (4.6)

This means that the distance between the real set �[0;r](F) and the convex hull C is bounded
by �, which is of the order O(r).
As stated in the previous section, h(C; Co) � p

n#(r) where

#(r) =
1

8
M jjAjj2r2 +O(r3)

is the bloating amount applied to the convex hull C and n is the dimension of the system.
Therefore,

h(�[0;r](F); b�[0;r](F)) � 2M jjAjjr +p
n� +O(r2): (4.7)

Note that h(C; Co) is now included in the O(r2) term in the right-hand side of the above
inequality. Formula (4.7) yields the following theorem.

Theorem 2 The error in the approximation is bounded by

� = 2M jjAjjr +p
n� +O(r2)

where r is the time step and � is the size of the underlying grid.

The theorem also shows that � is of the order O(r), and this provides us with the information
about how fast the approximate solution approaches the true solution by reducing the time
step. In addition, by re�ning the underlying grid, � can be made as small as desired. The
following result is an immediate consequence of Theorem 2.

70 Reachability Analysis of Linear Continuous Systems

Result 1 The error in the approximation can be made arbitrarily small by changing the time
step r and the grid size �.

Remark 1 The upper bound � on the error from Theorem 2 can be much larger than the
real error in practice.

As we have already seen, the error in our approximation is mostly due to the approximation
by the convex hull C. This comes as no surprise since the reachable set �[0;r](F) need not
be convex. The error incurred in the convex-hull step is of the order O(r) while the other
errors are of the order O(r2). However, the bound � on the distance h(�[0;r](F); C), given
in (4.6), is approached only when the set �[0;r](F) is very concave. In many other cases, this
distance can be much smaller.

a

b
a0

b0

C

b

a0

a

b0
C = S

(1) (2)

Figure 4.5: In (1) the distance h(�[0;r](F); C) is of the order O(r) while in (2) it is of the
order O(r2).

To illustrate this point, consider two examples shown in Figure 4.5. The initial set F is the
two-dimensional line segment ab, and the set of its successors at time r is the line segment
a0b0. The dotted curves are the true trajectories from a and b, and the exact reachable sets
�[0;r](F) are shown as the shaded regions in both examples. One can see that the distance
h(�[0;r](F); C) in (1) is O(r). However, in (2) the set S and the convex hull C coincide. In
addition, we have shown in the proof of Theorem 1 that h(�[0;r](F); S) = O(r2); therefore
h(�[0;r](F); C) in (2) is O(r2).

4.2.3 Accuracy Improvement

A conclusion from the error analysis is that the intermediate convex-hull approximation
causes the most signi�cant error in the results. A solution to remedy this consists in, �rst,
partitioning the polyhedron F into sub-polyhedra, whose successors at time r can be easily
computed from �r(F) by simple linear transformations, and, second, applying the approxi-
mation scheme to each sub-polyhedron separately. If the sub-polyhedra are small enough,
then the convex-hull approximation incurs considerably less error. To illustrate how partion-
ing can improve the approximation accuracy, consider again the example with the worst-case

4.3 Under-approximation 71

�1

b0

a0

F

b

a G = b�[0;r](F)

C

a

a0 b

b0

�2

C1

a1

a01

G = b�[0;r](F)
F

(1) (2)

Figure 4.6: Accuracy improvement by partitioning of the polyhedron.

error shown in Figure 4.5. Figure 4.6-(1) and -(2) depict the results obtained without and
with prior partitioning the initial polyhedron. In (2), the segment ab is split into eight sub-
segments. The successors of the sub-segment aa1 is a

0a01, and the shaded polygon C1 is their
convex hull. One can see that by treating each sub-segment separately the error due to the
convex-hull approximation is reduced, and the accuracy of the result is remarkably improved.
As shown in the �gures, the global error �2 in the result obtained with partitioning in (2) is
much smaller than the error �1 in (1). Nevertheless, it is clear that this solution results in a
loss of e�ciency in terms of computation time.

4.3 Under-approximation

While the safety veri�cation problem requires over-approximation of the � operator, other
tasks such as controller synthesis (characterizing all states from which the system satis�es a
given property) require under-approximation of this operator. In this section, we show how
to compute an orthogonal under-approximation of �[0;r](F), denoted by e�[0;r](F).
The idea is the following. Let G be the orthogonal over-approximation of �[0;r](F): G =b�[0;r](F). We know that the distance between �[0;r](F) andG is bounded by � from Theorem 2,

and hence we can compute e�[0;r](F) by `narrowing' the polyhedron G by the amount �. For
doing this, we de�ne the rectangular neighborhood of G as follows.

Let E be the set of faces of G. Consider a face e 2 E whose normal is parallel to the axis
i 2 f1; : : : ; ng. The face e is indeed an (n � 1)-dimensional hyper-rectangle and can be
written as

e = [l1; u1]� : : :� [li; li]� : : :� [ln; un]:

The rectangular �-neighborhood of e, denoted by Ns(e; �), is simply a full-dimensional hyper-
rectangle written as

Ns(e; �) = [l1 � �; u1 + �]� : : :� [li � �; li + �]� : : :� [ln � �; un + �];

72 Reachability Analysis of Linear Continuous Systems

and the rectangular �-neighborhood of the boundary of G is

Ns(@G; �) =
[
e2E

Ns(e; �):

We compute the under-approximation e�[0;r](F) as follows:e�[0;r](F) = G nNs(@G; �): (4.8)

Then, to obtain an under-approximation of the whole reachable set, we need just to insert
this computation in Algorithm 4.

An important remark is that the under-approximation e�[0;r](F) described above may be
empty even if the interior of the initial polyhedron F is not empty. This happens when �,
which is O(r), is large and the polyhedron F is narrow. In such cases, in order to obtain a
non-empty under-approximation, one needs to reduce the time step r.

4.4 Termination Condition

In order for Algorithm 4 to be correct, the termination condition must ensure that when the
algorithm terminates, it gives an over-approximation of the whole reachable set.

By construction, the set computed in each iteration is guaranteed to be an over-approximation
of the required set. However, the equivalence between the approximate sets obtained in two
consecutive iterations is not su�cient for the termination decision. In fact, P k can be written
as P k = �[0;kr](F)[Ek where Ek represents the over-approximation error. If the polyhedron

Xk+1 is, unfortunately, included in Ek, then using P k+1 = P k as termination condition one
may decide to stop whereas Xk+1 can still generate new reachable states. The example
shown in Figure 4.7 illustrates this phenomenon. In this example, the system starts from a
line segment X0. As integration is performed, the line segment spirals towards the origin.
After some iterations, Xk+1 is included in the previously computed set P k because of the
over-approximation error, and we have then P k+1 = P k. If the algorithm stops at this point,
some reachable states will be missed.

As stated earlier, the polyhedronXk+1 is the exact set �(k+1)r(F). Hence, for the termination
decision, it is su�cient to check the condition

Xk+1 � �[0;kr](F) (4.9)

Indeed, when this condition is satis�ed, the polyhedron Xk+1 contains uniquely the states
that the system has already visited during the time interval [0; kr]; as a result, Xk+1 will not
contribute any new reachable states. Nevertheless, we do not know the exact set �[0;kr](F).

To be sound, we use a stronger condition, that is, we check whether Xk+1 is included ine�[0;kr](F), which is a subset of �[0;kr](F). Note that the checking of this condition, in some

cases, cannot detect that the set Xk+1 is included in Xk, and we will therefore check both.
To be precise, the algorithm using this termination condition is as follows.

4.4 Termination Condition 73

X0

P k P k+1 = P k

Xk+1Xk

Figure 4.7: The condition P k+1 = P k is satis�ed, but not all the reachable states are visited
(the exact reachable set lies between two dotted curves).

Algorithm 5 (Over-approximating �(F))

P 0 := ;; X0 := F ; P 0
u := ;;

repeat k = 0; 1; 2; : : :
Xk+1 := �r(X

k);
Ck+1 := conv(Xk+1 [Xk);
Ck+1
o := bloat(Ck+1; #(r));

Gk+1 := grido(C
k+1
o);

Gk+1
u := Gk+1 nNs(@G

k+1; �);
P k+1
u := P k

u [Gk+1
u ;

P k+1 := P k [Gk+1;
until Xk+1 � P k

u _ Xk+1 � Xk

return P k+1

In each iteration, the orthogonal polyhedronGk+1
u is an under-approximation of �[kr;(k+1)r](F)

and P k+1
u is an under-approximation of �[0;(k+1)r](F).

We can now state an important property of Algorithm 5, which is a direct consequence of
the above analysis.

Theorem 3 (Soundness)
If Algorithm 5 terminates then it produces an over-approximation of the reachable set.

As mentioned above, the new termination condition being stronger than (4.9), the price for
soundness is that the algorithm may not terminate in some cases.

Before continuing with a discussion on linear systems with uncertain input, we remark that

74 Reachability Analysis of Linear Continuous Systems

the results presented so far can be straightforwardly extended to systems with constant input
of the form _x = Ax+ u where u is a constant in R

n .

4.5 Extension to Linear Systems with Uncertain Input

It is of great interest to study systems which are subject to external disturbances about
which we know only some constraints. An example of such systems is a thermostat whose
behavior is inuenced by uctuations in the outside temperature about which we know only
the minimum and maximum values.

We have proposed a reachability algorithm for linear systems without input. In the following
we discuss an extension of this algorithm to linear systems with uncertain input. We present
�rst some basic notions related to non-deterministic behavior of such systems.

4.5.1 Additional Notations

Consider a continuous system C = fX ; U; fg where X � R
n is the state space of the system

and U � R
m is the input set. The behavior of the system is described by the following

di�erential equation

_x = f(x;u) (4.10)

where x 2 X is the state of the system and u 2 U is the input. We assume a set of admissible
inputs U consisting of measurable functions of the form � : T ! U .

The behavior of such systems can also be analyzed using di�erential inclusions [17].

De�nition 19 (Trajectory of Continuous Dynamical Systems with Input)
A trajectory of C starting from a point x 2 X under a given input �: T ! U is a continuous
behavior �x; � : T ! X such that �x; �(t) is the solution of _x(t) = f(x(t); �(t)) with the initial
condition x(0) = x.

The trajectory �x; � is also called the `response' of the system to � when starting at x.

We assume that the function f is globally Lipschitz in x and continuous in u. This assump-
tion guarantees existence and uniqueness of the solution of the di�erential equation (4.10)
for a given � 2 U [53, 61]; therefore the trajectory �x; � is unique.

When the input cannot be observed, the behavior of the system is non-deterministic. For a
given initial condition x, every �xed input � generates a di�erent solution to (4.10). As a
consequence, under all admissible inputs the system produces a dense `bundle' of trajectories.

Let F be a subset of X . The set of states reachable from F at time point t under a given
input � 2 U, denoted by �t; �(F), is simply the set of states visited at time t by all the

4.5 Extension to Linear Systems with Uncertain Input 75

trajectories starting from points in F under �:

�t; �(F) =
[
x2F

�x; �(t):

The set of all states reachable from F at time point t, denoted by �t(F), is

�t(F) =
[
�2U

�t; �(F):

Then, the set of all states reachable from F during the time interval [0; r] is

�[0;r](F) =
[

t2[0;r]

�t(F);

and the set of all states reachable from F after any non-negative amount of time is thus
�[0;1](F), which we denote by �(F) for brevity. The above notions are illustrated in Fig-
ure 4.8. One can see from the �gure that under di�erent inputs the system, when started at
point x, generates di�erent trajectories.

F

�r; �(F)

xx F
x

�x; � �x; � �x; �

�x; �0

�[0;r](F)

�r(F)

Figure 4.8: Reachable set of a continuous dynamical system with input.

4.5.2 Reachability Algorithm

We consider a linear system C = fX ; U; fg where X � R
n and U � R

n . The dynamics of
the system is de�ned by the linear di�erential equation

_x = Ax+ u (4.11)

where x 2 X and u 2 U . We assume that the input set U is convex and compact.

Note that any system _x = Ax+Bv where v 2 V � R
m can be transformed into a system of

the form (4.11) by letting u = Bv and de�ning the input set U = fu j u = Bv ^ v 2 Vg.

Let us recall our reachability problem. Given a convex polyhedron F , we want to compute
an over-approximation of the reachable set from F , that is, �(F).

76 Reachability Analysis of Linear Continuous Systems

A natural inclination is to use the underlying idea of the method for linear systems without
input. Concretely, to over-approximate �[0;r](F) we compute the convex hull C = conv(F [
�r(F)), bloat C by a certain amount, and over-approximate it by an orthogonal polyhedron.
However, in order to extend this method to systems with uncertain input, one has to consider
the following two facts:

1. The technique for computing �t(F), presented in Section 4.1, is no longer appropriate
because it is impossible to simulate trajectories from the vertices of F with all possible
inputs. To solve this problem, we will make use of the technique suggested by P.
Varaiya [114], which is based on the Maximum Principle of optimal control [64, 82].

2. The estimation of the bloating amount applied to the convex hull C that guarantees
over-approximations must take into account uncertainty in the input.

We begin by presenting the technique of [114] for approximating �t(F), i.e. the set of states
reachable from F at time point t.

Approximating �t(F)

Consider a face e of F whose supporting hyper-plane is

P = fx j ha;xi = ha;yig

where a is the outward normal to e and y is an arbitrary point on the face e, which we call
supporting point of P . Hence, the polyhedron F lies inside the half-space H = fx j ha;xi �
ha;yig.

The key idea is the following. By the Maximum Principle, for every face e of F there exists
an input �� 2 U such that calculating the successors of its supporting plane P under �� is
su�cient to derive a tight polyhedral approximation of �t(F).

It can be proved that the evolution of the normal to P is governed by the adjoint system of
C, denoted by CT , whose dynamics is described by the following di�erential equation [82]:

_x = �ATx: (4.12)

Let �a : T ! X be the trajectory of CT starting from a, in other words, �a is the solution
to the di�erential equation (4.12) with the initial condition x(0) = a:

�a(t) = e�A
T ta: (4.13)

One can see that the trajectory �a of the normal to e does not depend on the input.

4.5 Extension to Linear Systems with Uncertain Input 77

Recall that �x; � denotes the trajectory of C starting from point x and under the input
function �. By solution of (4.11), we have

�x; �(t) = eAtx+

Z t

0
eA(t�s)�(s)ds:

Thus,

h�a(t); �x; �(t)i = h�a(t); eAtxi+ h�a(t);
Z t

0
eA(t�s)�(s)dsi: (4.14)

Since �a(t) = e�A
T ta and, in addition, every initial point x 2 F satis�es ha;xi � ha;yi,

after obvious simpli�cations we obtain from (4.14) the following inequality which holds for
all inputs � 2 U, for all x 2 F and for all t � 0:

h�a(t); �x; �(t)i � h�a(t); �y; �(t)i: (4.15)

Intuitively, this means that the set �t; �(F) of states reachable from F at time t under the
�xed input � is inside the half-space H�(t) = fx j h�a(t);xi � h�a(t); �y; �(t)ig.
Similarly, since every point x in the supporting hyper-plane P of the face e satis�es ha;xi =
ha;yi, using (4.14) again, it is also easy to prove that the set �t; �(P) is the hyper-plane P�(t)
with the normal �a(t) and the supporting point �y; �(t):

�t; �(P) = P�(t) = fx j h�a(t);xi = h�a(t); �y; �(t)ig:

We remark that the normal �a(t) to the hyper-plane P�(t) is independent of the input;
therefore for all � 2 U the hyper-planes P�(t) are parallel to each other as shown in Figure 4.9.

P

y

e �y; �(r)

�y; ��(r)

a

�a(r)

P�(r)

P��(r)

F

Figure 4.9: The solid and the dotted curves are the trajectories �y; �� under �� and �y; �
under �. At time point r, the hyper-plane P��(r) = �r; ��(P) is determined by the normal
�a(r) and the supporting point �y; ��(r).

Let �� 2 U be an input function such that the following holds for all t � 0:

h�a(t); �y; ��(t)i = maxfh�a(t); �y; �(t)i j � 2 Ug: (4.16)

78 Reachability Analysis of Linear Continuous Systems

The above and (4.15) imply that for all inputs � 2 U, for all initial points x 2 F and for all
t � 0

h�a(t); �x; �(t)i � h�a(t); �y; ��(t)i: (4.17)

Formula (4.17) simply says that all the states reachable from F at time t are inside the half-
spaceH��(t) = fx j h�a(t);xi � h�a(t); �y; ��(t)ig and the hyper-plane P��(t) = fx j h�a(t);xi =
h�a(t); �y; ��(t)ig supports the reachable set �t(F) at �y; ��(t).

We will exploit this important result to derive an over-approximation of �t(F). For doing
this, we need to �nd the input function �� which steers the initial hyper-plane P to P��(t)
at every time point t.

By solution of the di�erential equation (4.11), (4.16) is equivalent to the following (the terms
involving y cancel):

h�a(t);
Z t

0
eA(t�s)��(s)dsi = maxfh�a(t);

Z t

0
eA(t�s)�(s)dsi j � 2 Ug;

or equivalently,Z t

0
h�a(t); eAte�As��(s)ids = maxf

Z t

0
h�a(t); eAte�As�(s)ids j � 2 Ug: (4.18)

Since �a(t) = e�A
T ta, we have

h�a(t); eAte�As�(s)i = he�AT ta; eAte�As�(s)i
= ha; e�As�(s)i:

Therefore, (4.18) becomesZ t

0
ha; e�As��(s)ids = maxf

Z t

0
ha; e�As�(s)i ds j � 2 Ug:

Note again that ha; e�As�(s)i = he�AT sa; �(s)i. Hence, the input function �� satis�es the
following for every time point t

��(t) 2 argmaxfh�a(t);ui j u 2 Ug:

Now, we apply the above analysis to the initial polyhedron F , which can be represented as
the intersection of, say, mh half-spaces Hi as follows:

F =

mh\
i=1

fx j hai;xi � hai;yiig

Let ��i (t) 2 argmaxfh�ai(t);ui j u 2 Ug for every t � 0, i = 1; : : : ;mh. The following
proposition is a direct consequence of the above results.

4.5 Extension to Linear Systems with Uncertain Input 79

Proposition 3

�t(F) �
m\
i=0

fx j h�ai(t);xi � h�ai(t); �yi; ��i (t)ig:

The reader might wish to consult [114] for another proof of Proposition 3.

Proposition 3 provides the following scheme for computing an over-approximation of the
reachable set from F at time point t. We denote this by b�t(F).
For brevity we denote y�i (t) = �yi; ��i (t) and a(t) = �ai(t). Let ai(t), y

�
i (t) be solutions to

the di�erential equations (4.19) and (4.20), i = 0; : : : ;mh.

_ai(t) = �ATai(t); ai(0) = ai; (4.19)

_y�i (t) = Ay�(t) + ��i (t); y
�
i (0) = yi; (4.20)

��i (t) 2 arg max fhai(t);ui j u 2 Ug: (4.21)

Scheme 2 (Over-Approximating �t(F))

1. For i = 1; : : : ;mh:

(a) Compute ai(t) by solving (4.19).

(b) Compute ��i (t) = arg max fhai(t);ui j u 2 Ug.
(c) Compute y�i (t) by solving (4.20) with ��i (t) obtained in step 1(b).

2. b�t(F) = Tmh

i=1 fx j hai(t);xi � hai(t);y�i (t)ig.

ai

y�i (t)

ai(t)yi

Hi

F

b�t(F)

Figure 4.10: Over-approximation of �t(F).

The step 1(a) can be done by numerical integration. Note that if the input set U is a bounded
convex polyhedron then ��i (t) can be selected at one of its vertices at every time point t.
The step 2 consists in intersecting all the half-spaces de�ned by the normal vectors ai(t) and

80 Reachability Analysis of Linear Continuous Systems

the points y�i (t) to obtain the convex polyhedron b�t(F), which is an over-approximation of
�t(F) (see Figure 4.10 for an illustration of the algorithm).

It is important to note that for linear systems without input (or with constant input) we
can compute the set �t(F) exactly, but for systems with uncertain input the above scheme
produces only an over-approximation of this set.

Conservative Approximations

With a view to over-approximating �[0;r](F) based on the convex hull C = conv(F [b�r(F)),
we need to estimate the amount by which C is bloated (by pushing outward its faces). This
section is concerned with this estimation.

For every input � 2 U we denote

�m =
1

r

Z r

0
�(s)ds; (4.22)

and let �� be an input which is constant on the interval [0; r]:

��(t) = �m; t 2 [0; r]: (4.23)

Consider the trajectory �x; ��(t) starting from a point x 2 F under the input ��. As is done
for linear systems without input, we de�ne the linear interpolation sx; ��(t) of �x; ��(t) on the
interval [0; r] as the line segment with two extreme points x and �x; ��(r). Let Su be the set
of all segments sx; ��(t) over all the initial points x 2 F and all possible inputs � 2 U:

Su = fsx; ��(t) j x 2 F ^ t 2 [0; r] ^ � 2 Ug:
The exact reachable set �[0;r](F) can be written similarly as

�[0;r](F) = f�x; �(t) j x 2 F ^ t 2 [0; r] ^ � 2 Ug:

By convexity, the convex hull C contains the set Su. Therefore, a su�cient bloating amount
applied to C is the distance between Su and �[0;r](F). This distance is indeed the upper
bound of jj�x; �(t) � sx; ��(t)jj for all t 2 [0; r], for all x 2 F and for all inputs � 2 U. We
denote this bound by #u.

The estimation of #u is done in three steps:

1. Estimate the bound #1 on the distance between �x; �(t) and �x; ��(t) for all t 2 [0; r],
for all x 2 F and for all inputs � 2 U.

2. Estimate the bound #2 on the distance between �x; ��(t) and its linear interpolation
sx; ��(t) for all t 2 [0; r], for all x 2 F and for all inputs � 2 U.

3. The bound #u is then obtained by using the triangle inequality, that is,

#u � #1 + #2: (4.24)

4.5 Extension to Linear Systems with Uncertain Input 81

To estimate the distance between �x; ��(t) and �x; �(t), we use the following proposition which
is a direct consequence of the results on time-discretization of control systems obtained by
V. Veliov in [115].

Proposition 4 Given an arbitrary input � 2 U and r � 0, let �� be the input de�ned as
in (4.22) and (4.23). Let �x; �(t) be the trajectory under � and �x; ��(t) be the trajectory
under ��. Then, for all t 2 [0; r]

jj�x; �(t)� �x; ��(t)jj � 2Mur
2ejjArjj

where Mu is the constant bounding jjujj.

Using Proposition 4, we have #1 = 2Mur
2ejjArjj.

We proceed now with the second step. Since �� is constant on the interval [0; r], we write

sx; ��(t) = x+
t

r
(eArx+

Z r

0
eA(r�s)ds �m � x):

Hence, for every t 2 [0; r]

�x; ��(t)� sx; ��(t) = eAtx+

Z t

0
eA(t�s)ds �m � x� t

r
(eArx+

Z r

0
eA(r�s)ds �m � x)

= [eAt � I +
t

r
I � t

r
eAr]x+ [

Z t

0
eA(t�s)ds� t

r

Z r

0
eA(r�s)ds]�m

Expanding eA(t�s) in a Taylor series and after direct calculations the above leads to

�x; ��(t)� sx; ��(t) = [eAt � I +
t

r
I � t

r
eAr]x+ [

1X
i=0

Aiti+1

(i+ 1)!
� t

r

1X
i=0

Airi+1

(i+ 1)!
]�m:

= [
A2t(t� r)

2
+

1X
i=3

Ait(ti�1 � ri�1)

i!
]x+ [

At(t� r)

2
+

1X
i=2

Ait(ti � ri)

(i+ 1)!
]�m

=
t(t� r)

2
(A2x+ A�m) +

1X
i=3

Aix+ Ai�1�m
i!

t(ti�1 � ri�1)

Thus, we have for all t 2 [0; r], for all x 2 F and for all � 2 U

jj�x; ��(t)� sx; ��(t)jj � 1

8
(M jjAjj2 +MujjAjj)r2 +O(r3) = #2

where M is the constant bounding the norm jjxjj.

Using (4.24) the bound #u on jj�x; �(t)� sx; ��(t)jj for all t 2 [0; r], for all inputs � 2 U and
for all x 2 F is

jj�x; �(t)� sx; ��(t)jj � 1

8
(M jjAjj2 +MujjAjj)r2 + 2Mur

2ejjArjj +O(r3) = #u: (4.25)

82 Reachability Analysis of Linear Continuous Systems

This means that by bloating the convex hull C = conv(F [b�r(F)) by the amount #u given
in the above formula we obtain a polyhedron which is guaranteed to contain �[0;r](F). For-
mula (4.25) also shows that, like in linear systems without input, the bloating amount is of
the order O(r2). The scheme for over-approximating �[0;r](F) is presented below.

Scheme 3 (Over-approximating �[0;r](F))

1. Compute the convex polyhedron b�r(F) over-approximating �r(F) using Scheme 2.

2. Compute C = convfF [b�r(F)g.
3. Bloat C by the amount #u given in (4.25), that is, Co = bloat(C; #u).

4. Compute an orthogonal polyhedron G = grido(Co), which is guaranteed to contain
�[0;r](F).

The algorithm for over-approximating the whole reachable set from F can be obtained from
Algorithm 4 with the computation in one iteration replaced by the above scheme.

4.6 Examples

Let us now illustrate our approach by means of three examples. The results and the running
times were obtained using d/dt on a Sun Ultra Sparc-10.

Two Linear Systems Without Input

Consider �rst a 3-dimensional system whose dynamics and initial set are given below.

A =

0@ �1:0 �4:0 0:0
4:0 �1:0 0:0
0:0 0:0 0:5

1A ; F = [0:025; 0:05]� [0:1; 0:15]� [0:05; 0:1];

Figure 4.13 shows the reachable set �[0;3:5](F), computed in 8s (with run-time visualization).
The time step is r = 0:2 and the grid size is 0:005.

The second example is a 6-dimensional system of the Jordan form with the following matrix

4.6 Examples 83

Figure 4.11: The reachable set of the 3-dimensional system (the system diverges in dimension
3).

and initial set.

A =

0BBBBBB@

�0:8 1:0 0:0 0:0 0:0 0:0
0:0 �0:8 1:0 0:0 0:0 0:0
0:0 0:0 �0:8 1:0 0:0 0:0
0:0 0:0 0:0 �0:8 1:0 0:0
0:0 0:0 0:0 0:0 �0:8 1:0
0:0 0:0 0:0 0:0 0:0 �0:8

1CCCCCCA ;

F = [0:025; 0:05]� [0:01; 0:03]� [0:05; 0:15]�
[�0:05; 0:1]� [�0:05; 0:1]� [0:03; 0:08]� [�0:01; 0:05]:

The reachable set of the system, computed with time step r = 0:15 and grid size � = 0:01,
appears in Figure 4.12. The running time is 60s.

A Linear System With Uncertain Input

We consider now a 4-dimensional system with uncertain input, adapted from Example 4.5.1
of [71], pp. 279-285.

The dynamics of the system is _x = Ax+ u where

A =

0BB@
0:0 1:0 0:0 0:0

�8:0 0:0 0:0 0:0
0:0 0:0 0:0 1:0
0:0 0:0 �4:0 0:0

1CCA

84 Reachability Analysis of Linear Continuous Systems

Figure 4.12: The 6-dimensional system: the projection of the reachable set at time points
kr on dimensions 2, 3, and 4 (r is the time step). One can see that the system converges to
the origin.

and the input u ranges inside the hyper-rectangle [�1:0; 1:0] � [�0:01; 0:01] � [�1:0; 1:0] �
[�0:01; 0:01].
The initial set is a hyper-rectangle F = [�1:0; 1:0]� [0:0; 2:0]� [�1:0; 1:0]� [0:0; 2:0]. The
reachability analysis is performed for bounded time Tm = 0:35, i.e. we compute the reachable
set �[0;0:35](F). With time step r = 0:05 and grid size � = 0:35, the running time is 18s.
In Figure 4.13 one can see the evolution of the projection of the reachable set on dimen-
sions 3 and 4 over time, similar to the results in [71] obtained by using ellipsoidal techniques.

Figure 4.13: The reachable set of the system with uncertain input projected on x3, x4 and t.

Remark 2
Experiments with various examples showed that a major factor that inuences the compu-
tation time is the dimensionality. For a 7-dimensional system similar to the example of the
Jordan form, the computation took 220 seconds. In addition, the complexity of the algo-
rithm depends on the granularity of the orthogonal approximations and the coupling of the

4.7 Summary and Related Work 85

continuous variables.

4.7 Summary and Related Work

We have proposed a technique for computing over-approximations and under-approximations
of reachable sets of linear systems. Our technique has the advantage of not propagating over-
approximation error and thus allows to guarantee the desired accuracy for unbounded time.
Moreover, as will be shown later, it can be easily adapted to the veri�cation and synthesis of
hybrid systems. We have also showed an extension of this technique to linear systems with
uncertain input.

There have been other works on computing reachable sets of linear continuous systems.
The closest work to ours is that of Chutinan and Krogh [31]. The authors consider linear
systems with constant input and use a method similar to ours to compute polyhedral over-
approximations of the sets �[kr;(k+1)r](F) (\ow pipe" segments). Their approach di�ers from
ours in their way to guarantee conservative approximations by solving some optimization
problems. Moreover, by exploiting some linear system properties, the ow pipe is computed
only for the �rst time interval [0; r], to which some linear transformations are then applied
to obtain the ow pipe segments on the next intervals. However, this idea seems di�cult
to extend to systems with time-varying, uncertain input since these properties no longer
hold. In addition, ow pipes are represented as unions of convex polyhedra, which makes
termination harder to check than in our method.

Another approach is to approximate reachable sets by classes of domains of some �xed shapes.
Among the methods in this direction are those based on ellipsoidal techniques proposed by
Kurzhanski and Varaiya [71, 72]. Approximations via parallelotopes were also investigated
by Kostousova in [66]. These methods can deal with more general systems than those
we consider, namely linear control systems with time-varying coe�cients. Recent results
show that reachable sets can be represented exactly by parametrized families of ellipsoids
or parallelotopes. However, these works are mainly concerned with the approximation of
reachable sets in discrete time.

86 Reachability Analysis of Linear Continuous Systems

Chapter 5

Reachability Analysis of

Non-Linear Continuous Systems

This chapter is concerned with the reachability problem for non-linear continuous systems.
We propose a technique which is a variation of the technique suggested by Mark Green-
street in [47] for over-approximating reachable sets of two-dimensional systems. The main
advantage of our technique is that it can be applied to any dimension. We describe an im-
plementation of this technique along with a procedure of error control. Finally, we illustrate
our techniques with some examples. This chapter reviews the results presented in [39].

5.1 The Face Lifting Concept

Consider a continuous non-linear system C = fX ; fg where X � R
n . The dynamics of the

system is de�ned by the di�erential equation

_x = f(x): (5.1)

We assume that the function f is Lipschitz.

As before, we are interested in the reachability problem: given an initial set F � X we want
to compute an over-approximation of the set �(F) of states reachable from F by the system
C.
Trying to compute reachable sets of arbitrary non-linear systems, our �rst observation is that
the information obtained from simulations of a �nite number of trajectories is, in general,
not su�cient to derive an over-approximation of the reachable set (even in discrete time).
For some special non-linear systems, if we can prove that this property still holds then the
technique for linear systems, presented in the previous chapter, might be useful. However,
approximations by convex hull are often too coarse. In the following we describe a technique,
inspired by the work of Mark Greenstreet in [47], which we call face lifting.

87

88 Reachability Analysis of Non-Linear Continuous Systems

The technique is based, �rst of all, on the following basic observation concerning continuity
of trajectories. Consider a trajectory �x starting from some interior point x 2 F . It is clear
that the trajectory �x either remains in F forever or traverses the boundary of F after some
time. In the former case, �x does not contribute any reachable points outside F . In the
latter, if a point y outside F is reachable from x after t1 time then there exists a point x0

on the boundary @F of F and t0 < t1 such that y = �x(t
0). It then follows that

�[0;t](F) = F [�[0;t](@F): (5.2)

Hence, to compute �(F), it is su�cient to look at the boundary of F .

x

F

@F
y

x0

Figure 5.1: Continuity of trajectories.

We assume now that F is a convex polyhedron. The boundary of F is then the union of
its faces. Let E be the set of faces of F . Consider a face e 2 E whose supporting plane is
written as

P (e) = fx j hn(e);xi = ceg
where n(e) is the unit outward normal to e. Thus, the polyhedron F lies inside the half-space
H(e) = fx j hn(e);xi � ceg and can be written as

F =
\
e2E

H(e):

We start by constructing the neighborhoods of the faces of F as follows. We de�ne the
neighborhood of F as the polyhedron obtained by pushing outward each face e of F by an
amount �e, denoted by N�(F) where � = f�e j e 2 Eg. In other words,

N�(F) =
\
e2E

fx j hn(e);xi � ce + �eg:

Next, we de�ne the neighborhood N(e) of face e as

N(e) = Ho(e) \N�(F) (5.3)

where Ho(e) is the half-space de�ned as Ho(e) = fx j hn(e);xi � ceg.
Figure 5.2 illustrates the neighborhood construction with a two-dimensional example. The
set F here is a polygon with vertices fa; b; c; dg, and N�(F) is the dotted polygon. The
neighborhood N(e) of the face e is then the shaded polygon.

5.1 The Face Lifting Concept 89

F
e

N(e)

�e

Ho(e)

P (e)

c

b

a

d
e0
�e0

Figure 5.2: Neighborhood construction for a polygon.

Let fe(x) denote the outward component of f(x) relative to e, that is, the projection of f(x)
on n(e):

fe(x) = hn(e); f(x)i;
and let f̂e denote the maximum of fe over N(e):

f̂e = maxffe(x) j x 2 N(e)g: (5.4)

The following assumption should be kept in mind during subsequent discussions since it plays
a crucial role in our analysis.

A trajectory starting from the boundary of F which goes out of F at some time t 2 (0; r] is
called outward trajectory.

Assumption 1 All trajectories starting from the boundary of F stay in N�(F) for at least
r time.

In Section 5.3, we will show how this important assumption can be guaranteed to hold by
properly choosing r and �e.

Consider an outward trajectory �x starting from point x 2 e. By solution of the di�erential
equation (5.1) we have

�x(t) = x+

Z t

0
f(x(s))ds:

Thus,

hn(e); �x(t)i = ce +

Z t

0
fe(x(s))ds:

Due to (5.4), the trajectory �x at every time point t 2 [0; r] satis�es the following

hn(e); �x(t)i � ce + tf̂e:

90 Reachability Analysis of Non-Linear Continuous Systems

We denote

�fe =

�
f̂e if f̂e > 0,
0 otherwise.

It is not hard to see that for all t 2 [0; r]

hn(e); �x(t)i � ce + r �fe: (5.5)

This means that all the points reachable from e within the time interval [0; r] remain inside
the half-space de�ned as Hl(e) = fx j hn(e);xi � ce + r �feg. Geometrically speaking, Hl(e)
is the half-space resulting from lifting H(e) in the direction n(e) by the amount r �fe. It then
follows that

�[0;r](e) � Hl(e):

P (e0)

F

N(e0)

Hl(e
0)

a

b

c

d
d0

Hl(e)

�x

e
N(e)

rf̂e0

e0

rf̂e

x

Figure 5.3: Illustration of the face li�ng concept.

Now, consider a face e0 which is adjacent to e. Similarly, we have �[0;r](e
0) � Hl(e

0).

Claim 5 Any outward trajectory from e cannot leave the half-space Hl(e
0) at time t 2 [0; r].

Sketch of Proof
To prove this, we observe that by convexity any trajectory from F can leave Hl(e

0) only
by crossing the hyperplane P (e0) (see Figure 5.3). Consider now an outward trajectory �x
starting from a point x 2 e. By construction �x stays within N(e) during the time interval
[0; r], which means that �x can go out of Hl(e

0) only by crossing the set M = P (e0) \N(e)
(in Figure 5.3 the set M is the line segment dd0). Clearly, M � N(e0). Since any point y in
M satis�es hn(e0);yi = ce0 and, in addition, the maximum of fe0 is calculated over N(e0), it
follows by (5.5) that �x can leave Hl(e

0) only at time t � r.

5.1 The Face Lifting Concept 91

Lemma 6 Let Fl =
T
e2E Hl(e). Then, �[0;r](F) � Fl.

Sketch of Proof
To prove the lemma, it su�ces to prove that all the trajectories from a face e of F stay
inside the polyhedron Fl for at least r time. Due to Claim 5, any outward trajectory from
e cannot leave the lifted half-spaces of its adjacent faces during the time interval [0; r]. In
addition, any inward trajectory from e can leave F only by crossing another face e0 of F and
thus stays inside Hl(e

0) for t � r time.

Lemma 6 suggests the following scheme for over-approximating �[0;r](F).

Scheme 4 (Over-approximating �[0;r](F))

1. Neighborhood construction

� For every face e of F , compute the appropriate �e. The description of this is
deferred to Section 5.3.

� Construct the neighborhood N(e) for each face e, as shown in (5.3).

2. Lifting operation

� For every face e of F :

{ Calculate f̂e, i.e. the maximum of fe(x) over N(e), and determine �fe accord-
ingly.

{ Lift the half-space H(e) outward by the amount r �fe to obtain Hl(e). Note
that if f̂e is negative or null Hl(e) is just H(e).

� Intersect all the half-spaces Hl(e) to obtain a new convex polyhedron which is an
over-approximation of �[0;r](F).

As an illustration, consider the two-dimensional example shown in Figure 5.4 where the
initial set is a polygon F . Some values of f on its edges are sketched. Only edges e1, e2
have a positive outward component of f , and the corrresponding half-spaces are thus pushed
outward. The other half-spaces remain unchanged. The intersection of these half-spaces
gives the polygon Fl which contains �[0;r](F).

An important observation is that the above scheme may produce poor approximations since
the calculation of the lifting amount for every face e is based uniquely on the maximum of
fe over the neighborhood N(e). In order to avoid excessively conservative approximations,
the neighborhood should be small enough and, as a result, some of the faces must be split a
priori. Note that the approximation scheme works for convex polyhedra, which means that
face splitting amounts to partitioning F into small convex polyhedra Pi

F =

mp[
i=1

Pi

92 Reachability Analysis of Non-Linear Continuous Systems

e2
F

e1

Hl(e1)

Hl(e2)

Fl

Figure 5.4: Illustration of face lifting.

where mp is the number of polyhedra in the partition. Then,

�[0;r](F) =

mp[
i=1

�[0;r](Pi):

Being a union of convex polyhedra, �[0;r](F) need not be convex. Consequently, when com-
ing to compute the whole reachable set from F , we are faced again with the problem of
representing and manipulating non-convex polyhedra.

In two dimensions, the technique can be easily implemented since an arbitrary polygon can be
represented by an ordered list of its vertices, and its faces are simply the line segments de�ned
by two neighboring vertices in the list. Furthermore, thanks to the special properties of planar
geometry, we can compute the successors of a non-convex polygon without decomposing
it into convex ones as follows. Instead of lifting the half-spaces, we just need to lift the
supporting planes of the faces and then the vertices of the new polygon can be obtained
by intersecting the new supporting planes corresponding to adjacent faces. As an example,
consider the polygon F shown in Figure 5.5. Since the vertex v2 belongs to the faces e1
and e2, the new vertex v02 is obtained by intersecting the lifted supporting planes of these
faces. This is indeed the basis of the technique suggested by Mark Greenstreet in [47] for
two dimensional systems.

Nevertheless, this method cannot be generalized to three or more dimensions since the rep-
resentation by vertices is not applicable to higher dimensions. For this reason, we restrict
ourselves to orthogonal polyhedra which o�er important advantages regarding the required
operations, namely

1. The faces of an orthogonal polyhedron are (n � 1)-dimensional hyper-rectangles and
can be systematically enumerated.

2. Using orthogonal polyhedra, we can bene�t from relatively e�cient algorithms for the
union operation and convex decomposition.

5.2 Computation Procedure 93

e1

F

e2

e3v2

v1

v03

v4

v01 v3

v04

v5

v02

v6

Figure 5.5: Face lifting on a non-convex polygon.

Our approximation scheme takes as input convex polyhedra; therefore non-convex orthogonal
polyhedra should be decomposed a priori into hyper-rectangles. Since hyper-rectangles are
closed under the lifting operation, so are orthogonal polyhedra (see Figure 5.6).

f̂ee

Figure 5.6: Orthogonal polyhedra are closed under the lifting operation: f̂e are always
parallel to one of the axes and the resulting polyhedron is orthogonal.

5.2 Computation Procedure

In this section, we describe an algorithm for face lifting using orthogonal polyhedra. From
now on we assume that the initial set F is an orthogonal polyhedron. We �rst introduce
some notations.

94 Reachability Analysis of Non-Linear Continuous Systems

Additional Notations

Let x be a point in R
n and i 2 f1; : : : ; ng be a direction. The ith coordinate of x is denoted

by xi. For a real number d, we denote by bdc the integer part of d.
A hyper-rectangle b in R

n can be written as b = [l1; u1] � : : : � [ln; un]. Let E(b) =
fe�1 ; e+1 ; : : : ; e�n ; e+n g be the set of faces of b where e�i is the face consisting of points x
satisfying xi = li and e+i the face consisting of points x satisfying xi = ui. In other words,
e�i and e+i are the faces whose outward normal vector is parallel to the axis i and oriented
to the negative and positive direction, respectively.

The projection of the function f(x) on the outward normal to e�i is �fi(x) where fi(x) is
the ith component of f(x). Similarly, the projection of f(x) on the outward normal to e+i is
fi(x).

We de�ne the lifting operator for a hyper-rectangle as follows.

De�nition 20 The lifting operator � is de�ned for a hyper-rectangle b = [l1; u1]�: : :�[ln; un]
in R

n and two vectors d�, d+ 2 R
n as

�(b;d�;d+) = [l1 + d�1 ; u1 + d+1]� : : :� [ln + d�n ; un + d+n]:

Thus, d�i and d+
i are the lifting amounts for the faces e�i and e+i , respectively.

5.2.1 Reachability Algorithm

Suppose the orthogonal polyhedron F (de�ned over a uniform grid G�) is decomposed into
mb non-overlapping hyper-rectangles bj and can be thus represented as

F =

mb[
j=1

bj :

Note that the above representation is not unique since there can be more than one convex
decomposition for an orthogonal polyhedron. Although the problem does not a�ect the
correctness of our subsequent reasoning, the decomposition that is used may have impact on
the e�ciency of the algorithm. This issue will be discussed later.

It follows that

�(F) =

mb[
j=1

�(bj):

We have shown earlier that �(F) = F [�(@F). Therefore

�(F) = F [
mb[
j=1

�(@bj \ @F):

5.2 Computation Procedure 95

Hence, to compute �(F) it su�ces to look at those faces of the hyper-rectangles bj which lie
on the boundary of F .

For the time being we suppose that no face splitting is needed and the time step r and the
neighborhoods are given. The tuning of these parameters to achieve the desired accuracy is
presented in Section 5.3. The basic algorithm for face lifting using orthogonal polyhedra is
sketched below.

Algorithm 6 (Face Lifting Algorithm)

P 0 := F ;
repeat k = 0; 1; 2; : : :
for all bj 2 decomp(P k) f

d� := 0; d+ := 0;
for all i 2 f1; : : : ; ng f
if (e�i � @P k) f
f̂ := maxf�fi(x) j x 2 N(e�i)g;
if (f̂ > 0) d�i := �brf̂=�c;
g
if (e+i � @P k) f
f̂ := maxffi(x) j x 2 N(e+i)g;
if (f̂ > 0) d+i := �(brf̂=�c+ 1);

g
g
b0j := �(bj ;d

�;d+);

P k+1 := P k [b0j ;
g
until P k+1 = P k

return P k+1

The algorithm uses the function decomp which takes as input an orthogonal polyhedron
and returns a convex decomposition of the polyhedron in form of a list of non-overlapping
hyper-rectangles. In each iteration the orthogonal polyhedron P k+1 is computed as follows.
For each hyper-rectangle bj in P k, we compute the lifting amount for every face of bj which
lies on the boundary of P k and then apply the lifting operator to bj . This gives a new

hyper-rectangle b0j , which is next added to P k. The lifting amount for a face e whose f̂e is
negative is simply zero.

The following theorem states the correctness of Algorithm 7.

Theorem 4 If the state space X of the system is bounded, then Algorithm 7 always termi-
nates and produces an over-approximation of �(F).

96 Reachability Analysis of Non-Linear Continuous Systems

Proof
We need to prove: (a) if the algorithm terminates then it produces an over-approximation
of the reachable set, (b) the algorithm always terminate. We begin with the proof of (a).

By construction, in each iteration the hyper-rectangle b0j is guaranteed to include all the

points reachable from @bj \ @P k. It then follows that

mb[
j=1

b0j �
mb[
j=1

bj [�[0;r](@bj \ @P k) = P k [�[0;r](
mb[
j=0

(@bj \ @P k)):

Thus,

P k+1 � P k [�[0;r](@P k): (5.6)

The above leads to P k � P k [�[0;r](P k), and hence P k � �[0;kr](F).

If the algorithm terminates, that is, the condition P k+1 = P k is satis�ed, formula (5.6)
implies that �[0;r](@P

k) = ;, which means that all the trajectories from P k stay in P k forever
and so do all the trajectories from �[0;kr](F). We then deduce that when the algorithm

terminates, the computed set P k+1 is indeed an over-approximation of �(F). This proves
(a).

The proof of termination is based on the fact that the state space X , being bounded, can be
represented as the union of a �nite number of orthogonal polyhedra.

5.2.2 Computational Aspects

We have presented an algorithm for over-approximating reachable sets of continuous non-
linear systems. When it comes to a real implementation, a common desired feature is that
the implemented algorithm ful�lls its goal not only accurately but also economically. In the
context of Algorithm 7, several details must be considered.

Face Splitting and Variable Time Steps

As mentioned earlier, the lifting amount for the face e of a hyper-rectangle, determined
based on the maximum of fe over its neighborhood, guarantees over-approximations but at
the same time can make the result too conservative especially when fe has a large variation
over the neighborhood. In this case, more accurate approximations can be achieved by
splitting the hyper-rectangle into smaller ones.

In addition, depending upon the variation of f near the boundary of P k, the time step for
one iteration can be di�erent from another. The use of variable time steps can improve
signi�cantly the time-e�ciency of the algorithm.

Consequently, for both accuracy and e�ciency purposes, the algorithm should exert some
adaptative control over the progress of the computation: making frequent changes in the
time steps and splitting the hyper-rectangles if necessary. We devote the next section to this
important issue.

5.2 Computation Procedure 97

Convex Decomposition

As we have already seen, our algorithm decomposes non-convex orthogonal polyhedra into
hyper-rectangles before applying the lifting operation. Obviously, such a decomposition
is not unique in the sense that there is more than one way to represent an orthogonal
polyhedron as a union of non-overlapping hyper-rectangles. It is clear that the complexity of
the algorithm depends on the number of hyper-rectangles in the decomposition. Nevertheless,
it is not always advantageous to decompose the orthogonal polyhedron into few large hyper-
rectangles if partitioning is then needed. On the other hand, in some cases we can merge
small hyper-rectangles sharing the same face of the orthogonal polyhedron.

(a) (b)

Figure 5.7: Illustration of the face lifting algorithm on a uniform grid (a) and a non-uniform
one (b). The initial orthogonal polygon F is decomposed into rectangles, whose faces lying
on the boundary of F are annotated by the arrows representing rf̂e. In (b) the algorithm
can cause a re�nement of the grid.

Uniform and Non-Uniform Grids

Notice that our algorithm can be applied to both orthogonal polyhedra de�ned on uniform
and non-uniform grids. The main advantage of non-uniform grids over uniform ones is the
accuracy of approximation. With an uniform grid, we need to push every face further to the
next grid point, which sometimes creates unnecessary over-approximation beyond what is
inherent in the face lifting alone (see Figure 5.7-(a)). With a non-uniform grid we can push
the faces as little as we want (see Figure 5.7-(b)). This, however, implies that the grid should
be changed dynamically over the execution, and thus the algorithm may be less e�cient in
terms of computation time. Therefore, one should consider a combination of the desirable
features of the two to achieve better performance and accuracy.

98 Reachability Analysis of Non-Linear Continuous Systems

5.3 Error Analysis

This section is concerned with the problem of determining two important parameters, namely
the time step and the size of neighborhoods, with respect to the correctness and accuracy
of the algorithm. We establish the relation between these two parameters which guarantees
the desired properties by analyzing the local error in the approximation and then examine
the problem of error accumulation.

5.3.1 Local Error Control

Recall that the correctness of our algorithm is guaranteed by Assumption 1 which states that
all trajectories departing from the boundary of F remain in N�(F) within the time interval
[0; r]. We now show how to determine the time step r and the size of the neighborhood �

so that this assumption is always ful�lled. We also prove that locally the error can be made
arbitrarily small by �ne-tuning these parameters.

Our discussion is preceded by some auxiliary results related to Lipschitz functions [61].

Lemma 7 Let f , g : R n ! R
n be continuous functions. Suppose that for all x 2 R

n ,

jjf(x)� g(x)jj � �:

Let K be a Lipschitz constant for f . If �(t), �0(t) are solutions to _x = f(x) and _x = g(x),
respectively, and �(0) = �0(0), then

jj�(t)� �0(t)jj � �

K
(eKt � 1)

for all t � 0.

Proof
Since �(0) = �0(0), for t � 0 we have

�(t)� �0(t) =

Z t

0
[f(�(s))� g(�0(s))] ds:

Hence,

jj�(t)� �0(t)jj �
Z t

0
jjf(�(s))� f(�0(s))jj ds+

Z t

0
jjf(�0(s))� g(�0(s))jj ds

�
Z t

0
Kjj�(s)� �0(s)jjds+

Z t

0
� ds:

Denote �(t) = jj�(t)� �0(t)jj. The above becomes

�(t) � K

Z t

0
(�(s) +

�

K
)ds:

5.3 Error Analysis 99

Using Grownwall's inequality, we obtain

�(t) +
�

K
� �

K
eKt;

which yields Lemma 7.

Lemma 8 Let f : R n ! R
n be a Lipschitz function with a Lipschitz constant K. Let �(t)

be a solution to _x = f(x). Then

jj�(t)� �(0)jj � jjf(�(0))jj
K

(eKt � 1):

Proof
By solution of the di�erential equation we have

jj�(t)� �(0)jj = jj
Z t

0
f(�(s)) dsjj �

Z t

0
jjf(�(s))jj ds:

From the Lipschitz conditions, it is not hard to see that jjf(�(s))jj � jjf(�(0))jj+Kjj�(s)�
�(0)jj. Therefore,

jj�(t)� �(0)jj � jjf(�(0))jjt+
Z t

0
Kjj�(s)� �(0)jj ds:

Using Grownwall's inequality again, this leads to

jj�(t)� �(0)jj � jjf(�(0))jjt+
Z t

0
jjf(�(0))jjsKeK(t�s) ds:

Developing the integral in the right-hand side of the above and after obvious calculations we
establish the lemma.

We return now to the problem of �nding the appropriate time step and the size of neighbor-
hoods which ful�ll Assumption 1 and ensure the local error under the pre-speci�ed tolerance,
say, �.

The lifting operation, when applied for a face e, can be thought of as replacing the real
derivative fe(x) in the neighborhood N(e) by a constant derivative f̂e. Denote

�fe = maxfjjfe(x)� f̂ejj j x 2 N(e)g:
Let %(e) be the diameter of N(e). If L is a Lipschitz constant of fe then we have

�fe � %(e)L: (5.7)

Let �x be the real trajectory starting from a point x 2 e, and let �̂x be the trajectory
corresponding to the constant derivative f̂e. Due to Lemma 7, the bound on the distance

100 Reachability Analysis of Non-Linear Continuous Systems

between �x(t) and �̂x(t) for all initial points x 2 e and for all t � 0 is given by the following
inequality:

jj�x(t)� �̂x(t)jj � �fe
L
(etL � 1):

Therefore, in order to keep the local error under �, the time step r and the neighborhood
diameter %(e) must satisfy

%(e)(erL � 1) � �: (5.8)

In addition, we need to guarantee that all the trajectories from the boundary of F remain in
N�(F) for at least r time. Recall that �e is the amount of pushing outward the face e in the
neighborhood construction. We denote by Me the maximum value of jjf(x)jj for all x 2 e.
It follows by Lemma 8 that for all t 2 [0; r]

jj�x(t)� xjj � Me

L
(eLr � 1):

Thus, the time step r must satisfy the following

Me

L
(eLr � 1) � �e;

or equivalently,

r � 1

L
ln(

�eL

Me
+ 1): (5.9)

Formulas (5.8) and (5.9) establish the relation between the neighborhood, the time step and
the local error. Replacing r in (5.8) with the term in the right-hand side of the inequality (5.9)
and after direct calculations we obtain

%(e)�e � �Me

L
: (5.10)

We now apply the above analysis to a hyper-rectangle b. Note that the neighborhood con-
struction for hyper-rectangles can be done via the lifting operator � of De�nition 20. More
concretely, the neighborhood of b is N(b) = �(b;��;�+) where ��, �+ 2 R

n and for every
i 2 f1; : : : ; ng ��i and �+i are the lifting amounts for the faces e�i and e+i , respectively (see
Figure 5.8).

Denote li the length of the hyper-rectangle b in direction i. The diameter of e+i is thus
written as

%(e+i) =

sX
k 6=i

(lk + ��k + �+k)
2 + �+i

2
:

Then, due to (5.10) we choose �� and �+ satisfying the following inequalities, for i = 1; : : : ; n(
%(e�i)�

�
i � �M�

i =L

%(e+i)�
+
i � �M+

i =L
(5.11)

5.3 Error Analysis 101

b
e�1 e+1

e+2

��2

��1 �+2

�+2

e�2
N(e+1)

Figure 5.8: Neighborhood construction for a rectangle: the neighborhood of the face e+1 is
the shaded rectangle.

where M�
i and M+

i are the maxima of jjf(x)jj over the faces e�i and e+i , respectively.

We next estimate the time step r. For each face e, let re be the value of the term in the
right-hand side of the inequality (5.9), i.e.

re =
1

L
ln(

�eL

Me
+ 1):

All the trajectories from e are then guaranteed to stay in the neighborhood N(e) within the
time interval [0; re], and we choose the time step r for the hyper-rectangle b as the minimum
of these values:

r = minf 1
L
ln(

��i L

M�
i

+ 1);
1

L
ln(

�+i L

M+
i

+ 1) j i 2 f1; : : : ; ngg: (5.12)

The Lipschitz constant of fe, which is needed for the above calculations, can be estimated
by solving the following optimization problem:

L = maxf jjDfe(x)jj j x 2 X g
where Dfe(x) is the n � n matrix of partial derivatives whose element ij is de�ned as
@(fe)i=@xj.

We are now ready to indicate the steps of our error control procedure to be applied to each
hyper-rectangle b prior to the lifting operation.

Error control procedure

1. For each direction i 2 f1; : : : ; ng, computeM�
i and M+

i as the maxima of jjf(x)jj over
the face e�i and e+i , respectively.

102 Reachability Analysis of Non-Linear Continuous Systems

2. Choose �� and �+ according to (5.11) and use them to construct the neighborhoods
of the faces.

3. Determine the time step r using (5.12).

We remark that, for a given error tolerance, when the diameter of a face is large, for-
mula (5.10) shows that its neighborhood should be small, and due to (5.9) the time step
is accordingly small. In this case, partitioning the hyper-rectangle a priori into smaller
ones allows larger time steps and can thus help to achieve better performance in terms of
computation time.

5.3.2 Error Accumulation

We have presented a procedure for controlling the local error, that is, the error incurred in
each iteration. However, the goal of ensuring the global error under the desired tolerance
is still problematic because of the accumulation of over-approximation error. As a result,
there are cases where, in the long run, the over-approximation error becomes too large for
the result to be useful.

f

P 0 = F

P 1
P 2

Figure 5.9: An example where the over-approximation error accumulation leads to poor
accuracy.

Consider a two-dimensional example shown in Figure 5.9 where the vector �eld f is constant
with non-zero components in both dimensions and the initial set is the rectangle F . The
exact reachable set lies between the two dotted diagonal lines. After the �rst iteration we
obtain the rectangle P 1. The shaded regions in the �gure represent the over-approximation
error in P 1. In the next iteration we compute P 2 from P 1, and one can see that the over-
approximation error in P 1 propagates to P 2. It is clear that the algorithm ends up with the
whole upper-right quadrant. For such systems, the use of local error control does not help
to avoid the growth of the global error. To remedy this, we propose in the following section
a modi�cation to the face lifting algorithm.

5.4 Mixed Face Lifting 103

5.4 Mixed Face Lifting

The reason for the accumulation of over-approximation error is that for every lifted face we
look only at the normal direction (which points outward) and ignore the other directions
(which may point inward as in the above example). By exploiting some of the inward
information we can signi�cantly reduce the accumulation of errors and use a computation
scheme similar in spirit to the one used in the previous chapter for linear systems. The idea
is to keep separately the sets P k of states reachable so far and the sets Qk which represent
the `frontiers' of the set of reachable states at time points kr. This can be formalized as
follows.

Let P 0 = F and Q0 = F . The reachable set from F can be computed using the following
iterative algorithm:

Qk+1 = �r(Q
k)

P k+1 = P k [�[0;r](Qk)
(5.13)

Note that, due to the semi-group property, �[0;(k+1)r](F) = �[0;kr](F) [�[0;r](�kr(F)), which
guarantees that the above algorithm is correct. Next, we show how to over-approximate
�r(F).

In order to take inward evolution into account, we need a new neighborhood construction for
the faces of F . Recall that N�(F) is the neighborhood of F resulting from lifting outward
the faces e of F by the amounts �e.

F
eeN(e)

e0
d

b

a

c

�e0

�e
�e

eH(e)

Figure 5.10: Neighborhood construction for the polygon F with vertices fa; b; c; dg: N�(F)
is the dotted polygon, and eN(e) is the shaded one.

Consider a face e whose supporting hyper-plane is P (e) = fx j hn(e);xi = ceg where n(e) is
the unit outward normal to e. We de�ne the neighborhood eN(e) of e as

eN(e) = N�(F) \ eH(e)

104 Reachability Analysis of Non-Linear Continuous Systems

where eH(e) is the half-space de�ned as eH(e) = fx j hn(e);xi � ce � �eg. Thus, the new
neighborhood includes points on both sides of the hyper-plane P (e) (see Figure 5.10 for an
illustration).

We denote by ~fe the maximum of fe over the neighborhood eN(e), that is, ~f(e) = maxffe(x) j x 2eN(e)g.
We observe that the successor of every point x 2 e at time point r satis�es

hn(e); �r(x)i � ce + r ~fe: (5.14)

The above formula provides us with useful information about the boundary of the reachable
set �r(F). We suggest a variation of the basic face lifting scheme: we lift the half-space of
every face e by the amount r ~fe, and the direction of lifting (inward or outward) is determined
by the sign of r ~fe. The intersection of the lifted faces gives a new polyhedron F 0, which is
guaranteed to contain �r(F).

We note that the polyhedron F 0 contains many points reachable before time r and is, there-
fore, a rough over-approximation of �r(F); however, it contains less over-approximation error
than the polyhedron obtained by pushing the faces uniquely outward.

F 0

e1 e3F

e4

e2

r ~fe2

r ~fe3r ~fe1

r ~fe4

Figure 5.11: Combination of lifting inward and outward to derive an over-approximation of
�r(F).

As an example, the over-approximation of �r for a rectangle F is depicted in Figure 5.11.
The arrows in the left �gure show the directions and amounts of lifting. The faces e1 and e4
whose ~fe are positive are lifted outward, and the other faces whose ~fe are negative are lifted
inward. The polyhedron F 0 is the shaded rectangle in the right �gure, and the polyhedron
resulting from lifting outward alone is the enveloping rectangle.

Embedding the above scheme for over-approximating �r in (5.13), we obtain Algorithm 7
shown on the next page. This algorithm, which we call mixed face lifting, can reduce the
accumulation of error by considering both outward and inward evolutions. Basically, in each
iteration we perform the additional computation of Qk, in which the lifting amounts do not
depend on the sign of ~fe. The boundary of Qk is a better approximation of @(�r(P

k)) than
P k, and Qk is used as the basis for the computation of �[0;r] in the next iteration. It should

be noted that P k is computed from Qk using the original face lifting algorithm; hence, the
result obtained is guaranteed to be an over-approximation of �(F).

5.5 Examples 105

f

b

a

g

d m

P 1

Q1

P 0
= F

c
h

f

ma

g

n

q
Q2

P 2

s

p

Q1

h

Iteration 1 Iteration 2

Figure 5.12: Illustration of the mixed face lifting algorithm.

Figure 5.12 illustrates the behavior of the mixed face lifting algorithm on the example of
Figure 5.9. The initial set F is the rectangle with the vertices fa; b; c; dg. After the �rst
iteration, the set Q1 is the shaded rectangle shown in the left �gure, and the set P 1 of states
reachable within the �rst iteration is the rectangle with vertices fa; g; h;mg. Next, starting
from Q1 (the dotted rectangle in the right �gure) the set of new reachable states in the second
iteration is the rectangle with vertices fn; p; q; sg, and the set Q2 is the shaded rectangle.
The set P 2 of reachable states accumulated so far is the enveloping orthogonal polygon with
vertices fa; g; p; q; s; h;mg. Here, one can see that the modi�ed algorithm produces a much
more accurate approximation. Note that in this example, due to the constant derivative,
the sets Qk are the exact successors of F at time points kr, i.e. Qk = �kr(F). In more
general cases, these sets contain over-approximation errors, and the modi�ed algorithm can
only reduce the accumulation of over-approximation error. Note also that when ~fe is positive
everywhere, the mixed face lifting algorithm gives exactly the same result as the original
one.

5.5 Examples

We have implemented the above algorithms using both uniform and non-uniform grids. We
wish to mention that at the time we were exploring the technique, the work on the canonical
representation for orthogonal polyhedra was still in progress. All the results described below
are for demonstration purposes and obtained by a simple implementation. The data structure
for uniform grids is an n-dimensional matrix. For non-uniform grids, in addition to the
matrix, we used a linked list to represent the variable grid coordinates. Although advanced
data structures such as dictionaries or dynamic arrays allow compact storage for sparse
matrices, this implementation is clearly very costly for the required geometric operations. We
intend to implement face lifting using the canonical representation of orthogonal polyhedra
in a near future and believe that this implementation will improve signi�cantly the e�ciency
of the technique both in terms of space and time usage and thus increase the applicability
to high dimensional systems.

106 Reachability Analysis of Non-Linear Continuous Systems

Algorithm 7 (Mixed Face Lifting Algorithm)

P 0 := F ; Q0 = F ;
repeat k = 0; 1; 2; : : :

/* Computing �[0;r] of Q
k by lifting outward alone */

for all bj 2 decomp(Qk) f
d� := 0; d+ := 0;
for all i 2 f1; : : : ; ng f
if (e�i � @P k) f
f̂ := maxf�fi(x) j x 2 N(e�i)g;
if (f̂ > 0) d�i := �brf̂=�c;
g
if (e+i � @P k) f
f̂ := maxffi(x) j x 2 N(e+i)g;
if (f̂ > 0) d+i := �(brf̂=�c+ 1);

g
g
b0j := �(bj ;d

�;d+);

P k+1 := P k [b0j ;
g

/* Computing Qk+1 from Qk by lifting outward and inward */
Qk+1 := ;;
forall bj 2 decomp(Qk) f

d� := 0; d+ := 0;
for all i 2 f1; : : : ; ng f
if (e�i � @Qk) f

~f := maxf�fi(x) j x 2 eN(e�i)g;
d�i := �br ~f=�c;

g
if (e+i � @Qk) f

~f := maxffi(x) j x 2 eN(e+i)g;
d+i := �(br ~f=�c+ 1);

g
g
b0j := �(bj ;d

�;d+);

Qk+1 := Qk+1 [b0j;
g

until P k+1 = P k

return P k+1

5.5 Examples 107

5.5.1 Linear Systems

Linear Systems in R
2

We demonstrate the behavior of the algorithm on various classes of linear systems of the form
_x = Ax (see [61] for the classi�cation). The examples treated are described in Figure 5.13
and the results obtained appear in Figure 5.14.

Type A Initial set

Center

�
0:0 �6:0
3:0 0:0

�
[�0:25; 0:25]� [�0:25; 0:25]

Node

� �5:0 0:0
0:0 �2:0

�
[0:2; 0:5]� [0:2; 0:4]

Saddle

� �5:0 0:0
0:0 4:0

�
[0:0; 0:4]� [�0:0; 0:4]

Sink

� �2:0 �3:0
3:0 �2:0

�
[�0:1; 0:3]� [0:1; 0:3]

Figure 5.13: Examples of linear systems.

Sometimes, the use of a �xed grid generates an over-approximation which covers all the
space. This is evident the case of the �rst example (center) where every edge has a non-
zero outward component in some dimension. To obtain the desired result, we have changed
in these cases the rounding rule, that is, we push a face to the nearest grid unit and not
necessarily outward. Consequently, the resulting polyhedron is not guaranteed to be an
over-approximation of the reachable set. Using a variable grid is another way to solve this
problem. Note that the optimization of fe is much cheaper computationally in the linear
case.

108 Reachability Analysis of Non-Linear Continuous Systems

Figure 5.14: Reachable sets of linear systems of type: 1) Center, 2) Node, 3) Saddle and 4)
Sink. The white rectangles are the initial sets.

5.5 Examples 109

Linear Systems in R
3

In Figure 5.15 one can see the reachable set of a 3-dimensional system with

A =

0@ �2 0 0
1 �2 0
0 1 �2

1A
starting from the initial region [�0:025; 0:025]� [�0:1; 0:1]� [0:05; 0:07].

Figure 5.15: Reachable states (left) starting from an initial region (right) for a 3-dimensional
linear system.

5.5.2 Mixing Tank

This example, taken from [108], is a typical non-linear equation encountered in chemical
engineering. The mixing tank, depicted in Figure 5.16, consists of a free outlet stream v3
and of two controlled inlets with di�erent rates v1, v2 and di�erent concentrations c1, c2.
The variables x1 and x2 represent the height and the concentration of liquid, respectively.
The dynamics of these variables are described by the following di�erential equations:

_x1 =
1

k1
(v1 + v2 � k2

p
x1)

_x2 =
1

k1x1
(v1(c1 � x2) + v2(c2 � x2))

where k1, k2 are geometrical parameters.

With the following choice of parameters:

k1 = 1 m2; k2 = 0:02 m2:5=s; c1 = 1 mole=l; c2 = 2 mole=l;

110 Reachability Analysis of Non-Linear Continuous Systems

x1
x2; v3

c2; v2c1; v1

Figure 5.16: A Mixing Tank.

(1:322; 1:652) is an equilibrium state of the system. Figure 5.17 depicts the set of states
reachable from an initial set [1:12; 1:17]� [1:56; 1:68] (white rectangle), and one can see the
convergence to the equilibrium.

Figure 5.17: Reachable set of the mixing tank system.

5.5.3 Airplane Safety

The next example is taken from [80]. The state variables x1, x2 represent, respectively, the
velocity and the ight path angle of an aircraft. Their evolution is governed by

_x1 = �aDx
2
1

m
� g sinx2 +

u1
m

_x2 =
aLx1(1� cx2)

m
� g cosx2

x1
+
aLcx1
m

u2

where u1 (the thrust), u2 (the pitch angle) are bounded control inputs such that u1 2
[Tmin; Tmax] and u2 2 [�min;�max]; m is the mass of the aircraft; g is the gravitational
acceleration; c, aL, and aD are the system parameters.

5.5 Examples 111

The problem is to determine the safe subset of the state space, that is, the states from which
the system does not leave the envelope P de�ned as the rectangle [Vmin; Vmax]� [min; max].
For doing this, we take the complement of P , that is, X n P , as the set of initial states
and compute the set R reachable by the reverse system _x = �f(x). Therefore, the set R
contains all the states which can leave P , and the safe subset will be P n R. Note that our
technique produces an over-approximation of R and, as a result, the computed safe subset
is an under-approximation of the real set. The results, depicted in Figure 5.19, correspond
to the following parameters:

m = 85000kg; c = 6; aL = 30; aD = 2; Tmin = 40000N; Tmax = 80000N; �min = �22:5o;
�max = 22:5o; Vmin = 180m=s; Vmax = 240m=s; min = �22:5o; max = 22:5o;

and for the speci�c choices of the controls u1 = Tmax; u2 = �min: (for the left boundary of
the rectangle P) and u1 = Tmin; u2 = �max (for the right boundary of P). These results are
consistent with those in [80] obtained using analytical methods.

Figure 5.18: Airplane Safety: u1 = Tmax; u2 = �min:

Figure 5.19: Airplane Safety: u1 = Tmin; u2 = �max.

112 Reachability Analysis of Non-Linear Continuous Systems

5.6 Summary and Related Work

We have presented an algorithm for over-approximating reachable sets of non-linear contin-
uous systems of arbitrary dimensions. The novelty of our method is the way of representing
high dimensional sets, which guarantees termination of the algorithm and, moreover, allows
an easy extension to hybrid systems, as we will show in the next chapter.

There have been various works on the computation of reachable sets for non-linear continuous
systems. However, few of these are concerned with the important questions of data structures
for high dimensional sets.

To our knowledge, the �rst appearance of the ideas underlying face lifting was the work
of Kurshan and McMillan in [70]. Their approach can be classi�ed as indirect since they
were trying to construct a �nite-state discrete abstraction of an electrical circuit (de�ned
using the di�erential equations for voltage and current of transistor). They partitioned the
continuous state space into hyper-cubes using a �xed grid and computed the reachability
relations between these cubes by optimizing normal derivatives, as in face lifting. No general
purpose tool has been built based on these ideas.

Our work was triggered by the paper of Greenstreet [47], motivated by similar problems as
in [70], where the idea of face lifting in two dimensions for arbitrary polyhedra was �rst
proposed. Later works of Greenstreet and Mitchell [48, 49] concentrated on an alternative
method to represent high dimensional polyhedra by their two-dimensional projections (a
polyhedron is thus the largest set satisfying the constraints of its projections). By doing
this, all the operations are performed on the projections of the polyhedron. The advantage
of this representation is that successors of projections can be more e�ciently and accurately
computed. However, its obvious drawback is that polygonal projections, even non-convex,
cannot capture the real geometric form of the full-dimensional reachable sets, and this results
in further over-approximation error which is hard to control.

The reachability method of Chutinan and Krogh [31], which we have outlined in the previous
chapter, was �rst developed for non-linear systems and then specialized for linear systems.
Their method di�ers from ours in their trajectory-based approximations and in our use of
orthogonal polyhedra to store reachable states.

The idea of approximating reachable sets over a grid was used by Puri, Borkar, and Varaiya
in [98] for di�erential inclusions _x 2 f(x). Their method consists in partitioning a priori
the state space into a �nite number of boxes such that the variation of f within each box is
bounded by a given constant � and then associating with each box a constant rectangular
di�erential inclusion of the form cl � _x � cu. Then, the computation of the reachable
set is performed on the resulting approximate model (for which the reachability problem
is decidable). This approach, like ours, can guarantee error bounds only for a �nite time
horizon.

Finally, the reachability problem can be formulated using partial di�erential equations (see,
e.g., [29, 111]). The reachable set �[0;t](F) can be described as �[0;t](F) = fx j l(x; t) � 0g

5.6 Summary and Related Work 113

where l : X � T ! R is the solution to the following equation:

@l

@t
= �grad(l) � f

with the initial conditions:�
l(x; 0) = 0 if x is on the boundary of F ,
l(x; 0) < 0 if x is in the interior of F .

Various methods for tracking the evolution of l exist (see, e.g., [105]). However, numerical
solutions are often complicated, and so far we have found no special computational advantage
of this formulation over the direct ODE formulation.

114 Reachability Analysis of Non-Linear Continuous Systems

Chapter 6

Veri�cation of Hybrid Systems

In this chapter we show how the approximate reachability techniques for continuous systems,
presented in the previous chapters, are adapted to hybrid systems. Reachability analysis is
a basic component of many veri�cation and synthesis procedures. We are interested in the
veri�cation of invariance properties, which is equivalent to the reachability problem.

An outline of this chapter is as follows. We begin by stating formally the veri�cation problem
for hybrid automata and then give an abstract veri�cation algorithm, based on which we
develop an e�ective approximate algorithm. We also present a concrete implementation of
the approximate algorithm and discuss important computational issues. Finally, we illustrate
the application of our approach with some examples. Some of the results of this chapter have
been presented in [10].

6.1 Problem Statement

Consider a hybrid automaton A = (X ; Q; f;G;H;R) of De�nition 7. Let F = f(q; Fq) j q 2
Q ^ Fq � Xg be the set of initial states. The problem of safety veri�cation is stated as
follows.

Problem 3 (Safety veri�cation problem)
Given a set S = f(q; Sq) j q 2 Q ^ Sq � Xg we want to verify that the hybrid automaton
A satis�es 2S, i.e. all trajectories of A remain inside S.

We say that the hybrid automaton A is safe if it satis�es the speci�cation 2S and unsafe
otherwise.

In the hybrid automaton model to be considered, the sets Hq and Gqq0 are convex polyhedra
in R

n for all q; q0 2 Q. This assumption is not restrictive for two reasons. First, in many
practical systems, staying conditions and transitions guards are speci�ed as conjunctions of
linear inequalities, which de�ne convex polyhedra. Second, the algorithms presented here can

115

116 Veri�cation of Hybrid Systems

be extended to hybrid automata whose staying and guard sets are non-convex polyhedra.
Similarly, we require the sets Sq and Fq to be polyhedral (convex or orthogonal). Non-
polyhedral sets should be replaced a priori by their polyhedral approximations.

We consider a�ne, set-valued reset maps, more precisely, for all q; q0 2 Q, Rqq0(x) = Dqq0x+
Jqq0 where Dqq0 is an n � n matrix and Jqq0 is a convex polyhedron in R

n . Of particular
interest are the following special cases of Rqq0 :

1. Deterministic resets: Jqq0 is a singleton fjqq0g. The reset Rqq0 maps every point x 2 X
to a unique point Dqq0x+ jqq0 .

2. Identity resets: Dqq0 is the identity matrix and Jqq0 = f0g, which means that the
continuous variables remain unchanged after the transition from q to q0.

3. Memoryless resets: Dqq0 is the zero matrix, and Rqq0 is thus an arbitrary set-valued
map. If all Rqq0 satisfy this condition, we say that the system is memoryless.

6.2 Veri�cation Algorithm

Proving that the hybrid automaton A satis�es 2S is equivalent to proving that A never
reaches the set B = f(q;Bq) j q 2 Q ^ Bq = X nSqg, the complement of S, which represents
the set of unsafe (\bad") states. Problem 3 can be solved by using either forward or backward
reachability analysis. We focus �rst on forward analysis and present an adaptation for
backward analysis in Section 6.5.

In essence, we compute the set reachable by the system from F and then check emptiness of
its intersection with the bad set B. The abstract algorithm for solving Problem 3 is shown
below.

Algorithm 8 (Forward Veri�cation Algorithm)

P0 := F ;
repeat k = 0; 1; 2; : : :
if (Pk \ B 6= ;) return unsafe
Pc := �c(Pk);
Pd := �d(Pc);
Pk+1 := Pk [Pc [Pd;

until Pk+1 = Pk

return safe

The reachable set is initialized with the initial set: P0 = F . In each iteration the continuous-
successor operator �c is applied to Pk. This gives the set of states reachable by continuous
dynamics, to which the discrete-successor operator �d is next applied to obtain the set of
states reachable by executing discrete transitions. If the intersection of the computed set Pk

6.2 Veri�cation Algorithm 117

with the bad set B is not empty, then the algorithm reports that the system is unsafe and
terminates. Otherwise, the algorithm continues until no new reachable states are found. If
the algorithm terminates and the bad set is not reached, then the system is proved to satisfy
the safety speci�cation.

This abstract algorithm is in fact the basic model-checking algorithm implemented in the
veri�cation tools such as Kronos [120] for timed automata and HyTech [56] for `linear' hybrid
automata. As discussed earlier, for systems with arbitrary continuous dynamics, exact com-
putation of reachable sets is, in general, not possible. Our approach is to use Algorithm 8
with successive approximations of continuous- and discrete-successors using orthogonal poly-
hedra. Note that in the context of safety veri�cation, over-approximations are required. In
the following we show how to over-approximate the operators �c and �d. From now on all
the sets we manipulate are either convex or orthogonal polyhedra.

6.2.1 Continuous-Successors

Given a set of states (q; F) where q 2 Q and F is a polyhedron in R
n , we want to compute

an orthogonal over-approximation of �c(q; F), denoted by b�c(q; F).
We have presented in the previous chapters two algorithms for over-approximating the suc-
cessor operator � of continuous systems. One is specialized for linear systems that can admit
uncertain input. For brevity, from now on we call it the LIN algorithm. The other algorithm,
based on the face lifting technique, can be applied to non-linear systems, and we call it the
FL algorithm. We will approximate the continuous-successors operator of hybrid automata
using these algorithms. Note that for the FL algorithm non-orthogonal initial polyhedra are
replaced by their orthogonal over-approximations, and for the LIN algorithm non-convex
initial polyhedra are �rst decomposed into convex ones.

The only di�erence between the operator �c of hybrid automata and the operator � of con-
tinuous systems is the presence of staying conditions in the former. During the continuous
evolution at a discrete state q, some trajectories may go out of the staying set Hq and from
there no further continuous evolution at the current discrete state is possible. Hence, the
reachability algorithms for continuous systems should be modi�ed to account for staying
conditions.

We consider �rst the FL algorithm. Essentially, starting from F this algorithm iteratively
computes

P k+1 = P k [b�[0;rk](P k)

where b�[0;rk] is an over-approximation of the reachability operator �[0;rk] and every P k is an
orthogonal polyhedron. Recall that for accuracy and e�ciency purposes the FL algorithm
uses variable time steps.

The treatment of staying conditions consists in removing from the sets P k+1 the states that

118 Veri�cation of Hybrid Systems

do not satisfy Hq and starting the next iteration from the resulting set. In other words, in
the modi�ed algorithm we compute P k+1 as follows:

P k+1 = (P k [b�[0;rk](P k)) \Hq: (6.1)

Since Hq is a convex polyhedron, the scheme (6.1) involves intersections of orthogonal and
convex polyhedra, which cannot be exactly computed (orthogonal polyhedra are obviously
not closed under such an operation). To remedy this, we approximate these intersections
using the following operator.

De�nition 21 Given an orthogonal polyhedron G and a convex polyhedron C, C uoG is the
smallest orthogonal polyhedron de�ned on the grid of G such that C uo G � C \G.

We defer the computation of the uo operator to the end of this section.

Now, replacing \ with uo in (6.1) we obtain the following scheme

P k+1 = (P k [b�[0;rk](P k)) uo Hq; (6.2)

which guarantees to produce an orthogonal over-approximation b�c of �c.
We turn now to the LIN algorithm. The basic iterative scheme of the LIN algorithm is
written as

P k+1 = P k [b�[0;r](Xk)

Xk+1 = �r(X
k)

Recall that besides P k, which is used to accumulate the reachable states, the LIN algorithm
maintains a convex polyhedron Xk which is the exact reachable set at time point kr and
used as the basis for the computation of P k+1. Therefore, to adapt the LIN algorithm for
computing b�c, we need interesect not only P k+1 but also Xk+1 with Hq. Again, we make

use of the uo operator to compute b�c as follows:
P k+1 = (P k [b�[0;r](Xk)) uo Hq

Xk+1 = �r(X
k) \Hq

(6.3)

Since every �r(X
k) is a convex polyhedron, Xk+1 can be exactly computed.

Before proceeding, we make two important observations concerning the accuracy and e�-
ciency of the above modi�ed algorithms.

� In both algorithms, the uo operator introduces further error into the approximation.
The FL algorithm computes P k+1 based on P k, it it clear that this error propagates

6.2 Veri�cation Algorithm 119

from iteration to iteration. However, the LIN algorithm computes P k+1 based on
Xk, which is exactly computed. Consequently, the LIN algorithm, when applied for
computing b�c, preserves the property of not propagating over-approximation errors in
the continuous phase.

� Recall that the computation cost of the LIN algorithm depends on the number of ver-
tices of the convex polyhedraXk. For purely continuous systems the number of vertices
remains constant, but for hybrid systems it might change due to the intersection with
Hq (see Figure 6.1).

X2

P 1
Hq

X1

X0 = F

Figure 6.1: Over-approximating �c(q; F) using the LIN algorithm: the intersection of X1

and Hq results in more vertices in X2.

We now show how to compute the uo operator, which is used by both modi�ed algorithms.

Computing the uo operator

The uo operator takes as input a convex polyhedron C and an orthogonal polyhedron G
and returns the smallest orthogonal polyhedron de�ned on the grid of G that includes the
intersection C \G.
Let G� be the underlying grid of G. We can represent the orthogonal polyhedron G as the
union of, say, mg elementary hyper-cubes of G� : G = fgi j i = 1; : : : ;mgg. It is not hard
to see that (C uo G) is the union of the elementary hyper-cubes gi in G whose intersection
with C is not empty (see Figure 6.2). We write

C uo G = fgi j gi \ C 6= ;; i = 1; : : : ;mgg:

The algorithm for computing uo is described in Chapter 8 (Implementation).

By construction, the distance between each hyper-cube gi in CuoG and C\G is at most the
size � of the underlying grid. It then follows by Lemma 1-(h1) that h(C uo G;C \ G) � �,
which means that the error incurred in replacing \ by uo is bounded by

p
n�.

120 Veri�cation of Hybrid Systems

C uu G

C uo G

C

G

Figure 6.2: Orthogonal approximations of C \G: C uo G is the dotted orthogonal polygon
and C uu G is the shaded one.

We note that the above results can be naturally extended to under-approximate the continuous-
successor operator. For doing this, we de�ne C uu G as the largest orthogonal polyhedron
such that C uu G � C \G. It is easy to see that

C uu G = fgi j gi � C; i = 1; : : : ;mgg
and the distance h(C uu G;C \ G) is also bounded by

p
n�. Hence, an orthogonal under-

approximation of �c(q; Fq) can be obtained by replacing uo with uu in the schemes (6.2)
and (6.3).

6.2.2 Discrete-Successors

For a given set of states (q; F) where q 2 Q and F is an orthogonal polyhedron in R
n , we

want to compute an orthogonal over-approximation of �d(q; F), denoted by b�d(q; F).
The reason we consider the problem where F is orthogonal is that continuous-successors, as
shown above, are represented by orthogonal polyhedra. In addition, the algorithm presented
in the following is also applicable for convex polyhedra.

The set of discrete-successors of (q; F) is written as

�d(q; F) =
[
q02Q

�qq0(q; F)

where �qq0(q; Fq) is the set of discrete-successors of (q; F) with respect to the transition from
q to q0. Followed immediately from the de�nition of �qq0 ,

�qq0(q; F) = (q0; Rqq0(F \Gqq0) \Hq0):

6.2 Veri�cation Algorithm 121

Recall that by convention the guard Gqq0 is empty if there is no transition from q to q0. We
consider �rst the problem of �nding an orthogonal polyhedron P such that

P � Rqq0(F \Gqq0) \Hq0 :

As mentioned earlier, the resets in the hybrid automata considered are linear transformations,
that is, Rqq0(x) = Dqq0x+Jqq0 where Dqq0 is an n�n matrix and Jqq0 is a convex polyhedron
in R

n .

Since the polyhedron F is orthogonal and Gqq0 is convex, we replace again F \ Gqq0 by
F uo Gqq0 . The orthogonal polyhedron F uo Gqq0 can be decomposed into, say, mb non-
overlapping hyper-rectangles bi:

F uo Gqq0 =

mb[
i=1

bi:

We can represent the convex polyhedron Jqq0 by the convex hull of its vertices fj1; : : : ; jmj
g:

Jqq0 = convfj1; : : : ; jmj
g. Then, the image of a point x 2 R

n by Rqq0 can be written as

Rqq0(x) = convfDqq0x+ j1; : : : ;Dqq0x+ jmj
g: (6.4)

Hyper-rectangles are convex, and their convexity is preserved by linear transformation; there-
fore, the image of the hyper-rectangle bi by Rqq0 can be obtained by applying Rqq0 to its 2n

vertices fv1; : : : ;v2ng as shown in (6.4) and then taking the convex hull of the resulting
sets. In other words, Rqq0(bi) = conv(Rqq0(v1) [: : : [Rqq0(v2n)). Hence, to compute P , we
need just transform every convex polyhedron Rqq0(bi) \Hq0 into orthogonal using the grido
operator:

P =

mb[
i=1

grido(Rqq0(bi) \Hq0):

We derive from the above formula the following algorithm for computing an orthogonal
over-approximation b�qq0(q; Fq) of �qq0(q; Fq). Recall that decomp denotes the function that
decomposes an orthogonal polyhedron into a list of non-overlapping hyper-rectangles.

Algorithm 9 (Computing b�qq0(q; F))
P := ;;
Fg := F uo Gqq0 ;
for all bi 2 decomp(Fg) f
hi := Rqq0(bi) \Hq;
G := grido(hi);
P := P [G;

gb�qq0(q; Fq) := (q0; P);

122 Veri�cation of Hybrid Systems

Note that the union of all the convex polyhedra hi is also an over-approximation of the set
Rqq0(F \ Gqq0) \Hq0 . This fact will be exploited in Section 6.3 to increase the e�ciency of
the veri�cation algorithm in certain cases.

Now, b�d(q; F) can be readily computed as follows:b�d(q; F) = [
q02Q

b�qq0(q; F):
We proceed with the estimation of the approximation error. The error is �rst introduced by
the uo operator and bounded at this stage by pn� where n is the dimension of the hybrid au-
tomaton. After the linear transformation Rqq0 , the bound on this error becomes

p
n�jjDqq0jj,

and hence after applying grido the total error in b�qq0(q; F) is bounded by
p
n�(jjDqq0jj+ 1).

As before, to under-approximate �qq0(q; F), one can use Algorithm 9 with the operators uo
and grido replaced by uu and gridu, respectively.

It remains now to replace the exact operators �c and �d in Algorithm 8 by b�c and b�d to obtain
an approximate veri�cation algorithm for hybrid automata.

Algorithm 10 (Approximate Forward Veri�cation Algorithm)

P0 := F ;
repeat k = 0; 1; 2; : : :
if (Pk \ B 6= ;) return bad-set-reached

Pc := b�c(Pk);

Pd := b�d(Pc);
Pk+1 := Pk [Pc [Pd;

until Pk+1 = Pk

return safe

In Algorithm 10, checking emptiness of Pk \ B, when the bad set B is not orthogonal, is
done by decomposing Pk into hyper-rectangles rather than by using uo in order to avoid
introducing additional error. Since the algorithm over-approximates the reachable set, it
might declare the system unsafe even though the exact reachable set does not intersect B.
On the other hand, Algorithm 10 is sound: if it terminates by declaring the system to be
safe, then the system is indeed safe.

6.2.3 Implementation

Algorithm 11, a more concrete version of Algorithm 10, appears, in pseudo-code form, in
Figure 6.3. Before detailing the implementation of this algorithm, let us recall the compu-
tational procedures on which it is based:

6.3 E�cient Implementation 123

� Over-approximation of reachable sets of continuous dynamics by orthogonal polyhedra;

� Over-approximation of intersections of orthogonal polyhedra and convex polyhedra by
orthogonal polyhedra;

� Exact Boolean operations on orthogonal polyhedra;

� Tests of equivalence between polyhedra.

Algorithm 11 maintains two arrays, Reached and Explore, both of size m where m is the
number of discrete states. The qth element of Reached, denoted by Reached[q], contains an
orthogonal polyhedron that represents the reachable set at discrete state q. Each element of
the array Explore contains a list of polyhedra, each of which can be orthogonal or convex.
The polyhedra of Explore[q] represent the sets to be explored at discrete state q. The use
of lists of polyhedra for Explore facilitates some modi�cations which will be explained later.
The algorithm uses two additional arrays of orthogonal polyhedra, Rc and Rd, both of size
m to store reachable states in one iteration.

Although the FL algorithm can work for linear systems, for e�ciency purposes it is preferable
to use the LIN algorithm to approximate �c whenever possible. Recall that the FL algorithm
accepts as input only orthogonal polyhedra and the LIN algorithm only convex polyhedra; in
order to use the LIN and FL algorithms in a uniform way, a pre-processing phase is needed:
if the dynamics at q is linear and the set F to explore is an orthogonal polyhedron, we
decompose it into hyper-rectangles. Similarly, if the dynamics at q is non-linear and F is
convex, we over-approximate it by grido(F).

We detail now the steps of Algorithm 10. In the continuous phase, we compute the continuous-
successors of the unexplored states at every discrete state. Thus, the orthogonal polyhedron
in Rc[q] represents new states reachable by the continuous evolution at q. In the discrete
phase, we compute the discrete-successors of the states in Rc, and hence Rd[q] contains the
polyhedra representing new reachable states generated by transitions leading to q. There-
fore, the polyhedra in Rc and Rd represent the states reachable in one iteration. For the
termination decision we check whether these polyhedra are included in the previously com-
puted Reached and then add them to Reached in the update phase. The array Explore is
next replaced with Rd since only the new states reachable by discrete evolution need to be
explored in the next iteration. Safety checking is done at the beginning of every iteration,
and the ag Bad indicates whether the bad set is reached.

6.3 E�cient Implementation

When coming to actual computation, our consideration is to economize on computational
cost while ensuring the desired accuracy. The main practical limitation of Algorithm 10 is its
computational cost, mostly due to the approximation of continuous-successors. One reason
for this comes from the continuous dynamics: if the di�erential equations are sti�, the nu-
merical integration procedure needs to reduce signi�cantly the step-size (in a portion of the

124 Veri�cation of Hybrid Systems

Algorithm 11 (Concrete Veri�cation Algorithm)

� Initialization
Bad = Stop = False.
For every q 2 f1; : : : ;mg
{ Reached[q] = ;, Explore[q] = Fq.

� Main computation loop
As long as Stop = False the algorithm repeats the following steps:

1. Safety checking: for every q 2 f1; : : : ;mg
{ If Reached[q] \ B 6= ; then Bad = True and go to Output.

2. Pre-processing: for every q 2 f1; : : : ;mg
{ If fq is linear
Every non-convex orthogonal polyhedron P in Explore[q] is replaced by
decomp(P).

{ If fq is non-linear
Every convex polyhedron P in Explore[q] is replaced by grido(P).

3. Continuous phase

Suppose Explore[q] contains mp polyhedra fPj j j = 0; : : :mpg.
For every q 2 f1; : : : ;mg

Rc[q] =

mp[
j=1

b�c(Pj)
4. Discrete phase: for every q 2 f1; : : : ;mg

Rd[q] =
[
q02Q

b�q0q(Rc[q
0])

5. Termination checking:
If 8q 2 f1; : : : ;mg (Rc[q] [Rd[q]) � Reached[q] then Stop = True.

6. Update: for every q 2 f1; : : : ;mg

Reached[q] = Reached[q] [Rc[q] [Rd[q]

Explore[q] = Rd[q]

Rd[q] = ;

� Output
If Bad = True then report that the bad set is reached. Otherwise, report that the
system is safe and stop.

Figure 6.3: A concrete version of Algorithm 10.

6.3 E�cient Implementation 125

time interval) to avoid instability. The other reason is the structure of the polyhedra to be
explored: if they are too complex, the geometric operations can be prohibitively expensive.
The measure of complexity for a polyhedron with regard to the LIN algorithm is the number
of vertices and with regard to the FL algorithm is the number of faces.

We propose the following methods and strategies for improving the performance of the
algorithm.

Convex-Hull approximation

When using the LIN algorithm to compute b�c of a non-convex orthogonal polyhedron, we
�rst need decompose it into hyper-rectangles, as described in the pre-processing phase, and
then treat each hyper-rectangle in the continuous phase separately. This is evidently costly
due to redundancy. An alternative is to over-approximate this orthogonal polyhedron by
its convex hull (see Figure 6.4). This may reduce signini�cantly the number of vertices
and thus improve the e�ciency in both time and space without a�ecting the correctness of
the algorithm. Of course, the price is an increase of the approximation error, and a good
compromise between precision and e�ciency should be made. The idea of using convex hull
as an abstract operator to accelerate the computation is also employed in [40] for timed
automata and in [55] for `linear' hybrid automata.

Figure 6.4: Over-approximating an orthogonal polyhedron by its convex hull to reduce the
number of vertices.

Order of Exploration

The current algorithm works in a combination of breadth-�rst and depth-�rst search. The
algorithm is breadth-�rst with respect to discrete transitions, but from the point of view
of elapsed time, in each iteration we explore �rst all the continuous-successors at discrete
state qi and then all the continuous-successors at discrete state qi+1. Alternatively, we can
explore the discrete states in a breadth-�rst way. For example, we can �x a time limit
for the continuous-successor computation in each discrete state. Beyond this limit, if the

126 Veri�cation of Hybrid Systems

computation does not terminate we store un�nished sets in a local variable and add them
to Explore at the end of the iteration. In case the system is unsafe, a di�erent search
order might accelerate the detection of intersection with the bad set. In general, some
understanding of the system's dynamics is required to exploit this possibility. For a system
which is safe, we need to explore the whole state-space, whatever order we use. However,
experience with timed automata [20] shows that even in such situations the order of the
search might have a notable inuence on the performance of the algorithm.

Geometric Decompositions

For a given discrete state q, the polyhedra in Explore[q] may contain states which have
already been explored in the previous iterations. It is thus su�cient to continue with the
states which are not included in the set Reached[q]. If the intersection of each polyhedron
in Explore[q] with Reached[q] results in a less complex polyhedron (with regard to the algo-
rithm used for computing b�c), then this will reduce the computational cost of the continuous
phase at q. However, the resulting polyhedra may also be more complex, and in such cases
the separation is no more of interest. To illustrate, consider two examples in Figure 6.5. The
polyhedra Explore[q] are drawn in dotted lines and the polyhedra resulting from separating
Explore[q] from Reached[q] are shaded regions. One can see that in (a) the separation is
advantageous since the resulting polyhedron has fewer faces as well as fewer vertices than
Explore[q], which is not the case in (b).

Reached[q]

Explore[q]

Reached[q]

Explore[q]

(a) (b)

Figure 6.5: Separating Explore[q] from Reached[q] is advantageous in (a) but not in (b).

Another improvement can be made by exploiting the fact that Algorithm 9 for computingb�qq0(q; Fq) can produce, as an intermediate result, a list of convex polyhedra whose union is
already an over-approximation of �qq0(q; Fq). If fq0 is linear then we can use these convex

polyhedra instead of the orthogonal polyhedron b�qq0(q; Fq) as the initial sets when treating
the continuous dynamics at q0. This not only reduces the over-approximation error but also
avoids decomposing the orthogonal polyhedron.

6.4 Error Analysis 127

6.4 Error Analysis

In the sequel we discuss briey the error in our approximation.

In the continuous phase, besides the error speci�c to the approximate algorithm (LIN or
FL), the use of the uo operator introduces further error. The error incurred in the discrete
phase is due to both uo and grido operators. Although using the LIN algorithm the over-
approximation errors do not accumulate during the continuous phase, they propagate to
other continuous dynamics whenever a discrete transition is taken.

To illustrate how the over-approximation errors propagate after successive discrete and con-
tinuous evolutions, let us consider a single discrete transition, say, from discrete state q1 to
q2 where Rq1q2(x) = Dq1q2x+ Jq1q2 .

Suppose that after treating the continuous dynamics at q1, the error in the approximate set is
�1. As shown in Section 6.2.2, when making the transition to q2, we introduce an additional
error bounded by �12 =

p
n�(jjDq1q2 jj + 1) where � is the grid size and n is the dimension

of the hybrid automaton. Consequently, the bound on the total error is � = �1 + �12. At the
target discrete state q2, besides the new error inherent in the computation of b�c, the error �
evolves under the continuous dynamics fq2 , in the worst case, as:

�(t) = eL2t�; t � 0:

where L2 is a Lipschitz constant of fq2 .

Hence �(t) at this stage is bounded by eL� � where � is the time needed for the computation
to terminate at q2. However, depending on the nature of the continuous dynamics at q2,
�(t) may increase or decrease over time, and it is thus di�cult to make a general statement
about the magnitude of �(t) when the next transition is taken. Due to the insensivity of the
Lipschitz constant, the above estimation may not reect the real error in practical situations.
A better assessement requires a mechanism integrated in the computational package whereby
the local error is evaluated and possibly controlled in the course of the computation.

6.5 Backward Veri�cation Algorithm

The veri�cation algorithm using forward reachability can be easily adapted for backward
reachability analysis. It remains to compute the orthogonal over-approximations b�c and b�d

of the continuous-predecessor �c and discrete-predecessor �d operators.

To compute b�c(q; F), one can use the algorithm for b�c(q; F) on the reverse dynamics, i.e. fq
is replaced with �fq.

We now show how to over-approximate discrete-predecessors. The exact set �q0q(q; F) can
be written as

�q0q(q; F) = (q0; R�1
q0q(F) \Gq0q \Hq0)

128 Veri�cation of Hybrid Systems

where R�1
q0q : 2

X ! 2X is the inverse map of Rq0q de�ned as R�1
q0q(X) = fx0 j 9x 2 X x =

Rq0q(x
0)g. We consider the following two cases of Rq0q.

1. The map Rq0q is memoryless, that is, Rq0q = Jq0q. Then,

b�q0q(q; F) =

� ; if F \ Jq0q = ;,
(q0; grido(Gq0q \Hq0)) otherwise.

2. The map Rq0q is Rq0q(x) = Dq0qx + Jq0q where Jq0q = convfj1; : : : ; jmj
g. Assume

that the matrix Dq0q is invertible. It is not hard to see that R�1
q0q(x) = convfD�1

q0qx �
j1; : : : ;D

�1
q0qx� jmj

g, and for a convex polyhedron P = convfv1; : : : ;vmpg

R�1
q0q(P) = conv(R�1

q0q(v1) [: : : [R�1
q0q(vmp)):

Hence, we can compute b�q0q(q; F) by decomposing F into mb non-overlapping hyper-
rectangles bj and then

b�q0q(q; F) = (q0;

mb[
j=1

grido(R
�1
q0q(bj) \Gq0q \Hq0))

With b�q0q(q; F) characterized as above, we can next compute the orthogonal over-approximation
of discrete-successors as b�d(q; F) =

[
q02Q

b�q0q(q; F):

The backward veri�cation algorithm is sketched below. The algorithm computes the set
backward reachable from the bad set B and checks whether it intersects with the initial set
F . Note that for a given safety veri�cation problem, backward reachability may be more
e�cient than forward reachability and vice versa.

Algorithm 12 (Approximate Backward Veri�cation Algorithm)

P0 := B;
repeat k = 0; 1; 2; : : :
if (Pk \ F 6= ;) return bad-set-reached

Pc := b�c(Pk);

Pd := b�d(Pc);
Pk+1 := Pk [Pc [Pd;

until Pk+1 = Pk

return safe

6.6 Veri�cation Examples 129

6.6 Veri�cation Examples

In the sequel we illustrate our approach with some results obtained using the above algo-
rithms implemented in d/dt .

6.6.1 Example 1

Consider the hybrid automaton sketched in Figure 6.6. This automaton has two discrete
states q1 and q2 whose dynamics are the following:

A1 =

� �2:0 �3:0
3:0 �2:0

�
; A2 =

�
0:0 �0:6
3:0 0:0

�
:

The initial set is F = (q1; [0:3; 0:6]� [�0:2; 0:2]). In other words, the system starts at discrete
state q1 from the rectangle shown in Figure 6.7-(a). The successors by A1 (a center dynamics)
are computed until the trajectories all go out of the staying conditions H1 (x1 � �0:15). The
intersection with the guard G12 (x1 = �0:15) is then computed and from there the dynamics
A2 is applied, shrinking the set until all the trajectories go out of H2 (see Figure 6.7-(b)).
From the intersection with the guard G21 (x1 = �0:02) the dynamics A1 induces a \ring" of
states which stay in q1 forever (see Figure 6.7-(c)).

_x = A2x

x1 = �0:02

x1 = �0:15

q1 q2

_x = A1x

x1 � �0:15 x1 � �0:02

Figure 6.6: A hybrid automaton.

6.6.2 Collision Avoidance

The second example is the model of a single lane of highway of an Automated Vehicle/Highway
System (AVHS), taken from [100].

Consider a vehicle i on the lane. Let di be the distance of vehicle i from the origin, and let
si and ai be its speed and acceleration, respectively (see Figure 6.8). The dynamics of each
vehicle depends on the state of the vehicle in front; therefore, to avoid an in�nite dimen-
sional problem, when studying vehicle i, the dynamics of the vehicle i� 1 is conservatively
abstracted by ai�1 = [Al; Au] where Al is the maximum deceleration and Au is the maximum
acceleration. Let d = di�1�di be the distance between vehicles i and i� 1. We focus on the
leader control mode in which vehicle i follows vehicle i� 1, and the control law is written as
follow:

_ai = �3ai � 3(si � si�1) + d� si + 10: (6.5)

130 Veri�cation of Hybrid Systems

q1 q2 q1

(a) (b) (c)

Figure 6.7: The 3 stages in the computation of the reachable set.

0 di+1 di di�1

i+ 1 i� 1i

Figure 6.8: A single lane of highway.

This control mode is applied when the inter-vehicle distance is small or the relative speed
between vehicles is large. More precisely, it is applied to vehicle i if the following conditions
are satis�ed.

8>>>>>><>>>>>>:

d � 5

si 2 [0; 30]

si�1 2 [0; 30]

ai 2 [�5; 2]
d+ (s2i � s2i�1)=2Al � (si � si�1) � 10

(6.6)

A detailed description of the AVHS can be found in [100].

The goal is to prove that the control law (6.5), when applied to vehicle i, guarantees that
collision between vehicles i and i � 1 never happens, i.e. the distance d is always positive,
regardless of the behavior of vehicle i�1. For doing this, we consider the following dynamical

6.6 Veri�cation Examples 131

system:

_d = si � si�1

_si = ai

_si�1 = ai�1

_ai = �3ai � 3(si � si�1) + d� si + 10

The continuous state of the system is (d; si; si�1; ai), and the last di�erential equation de-
scribes the control law. Note that the acceleration ai�1 of vehicle i � 1 is now the input
(disturbance) of the system ranging inside [Al; Au] where Al = �5m=s2 and Au = 2m=s2.
In addition, the system is subject to the constraints _si�1 � 0 and _si � 0. Therefore we model
the system as a one-state hybrid automaton with these constraints as staying conditions at
the discrete state. To prove that the system never reaches a state where d � 0, we take the
set Sl described by (6.6) as the initial set and compute its successors. The last inequality
of (6.6) is non-linear, and to over-approximate the initial set by a convex polyhedron we
replace it with

si�1 � 27

40
si � 3:

Figure 6.9: The reachable set projected on the �rst three dimensions at time point t = 0:2s.

We perform bounded time reachability analysis, and the result obtained shows that the
system is safe until 200s. Termination can be checked if we restrict the analysis to a bounded
set. The projection of the reachable set at time point t = 0:2s on the �rst three dimensions
is drawn within its bounding box in Figure 6.9. This safety property was proved by the
authors of [100] using optimal control techniques.

132 Veri�cation of Hybrid Systems

6.6.3 Double Pendulum

Another example we consider is inspired by the biped robot developed at Inria Rhone-Alpes.
We consider a simpli�ed model of a robotic leg having two motors installed at the hip and

knee (see Figure 6.10). The continuous state of the system is z =

�
z1
z2

�
where z1 and z2

are the hip and knee angles. The dynamics of the robot leg is described by the well-known
double pendulum equations:

M(z)�z+N(z; _z) =W� (6.7)

where M is the matrix de�ning the kinetic energy; N gathers generalized gravity, Coriolis,
and centrifugal forces; � includes all external generalized forces; W is a constant matrix. We

focus on the case where the system is under-actuated: W =

�
1
0

�
, that is, only the hip is

actuated.

Consider the following coordinate transformation parametrized by a = (a1; a2) 2 R
2 :

z!
�

e1(z)
e2(z)

�
=

�
z1 � a1z2 � a2

z2

�
:

We are interested in the zero dynamics, that is, e1 is stabilized at 0 by using the control � (the
control law that drives the system to the zero dynamics is detailed in [42]). Once the zero
dynamics is reached, the motion of the pendulum is free since no more control is available
(dim(e1) = dim(W) = 1). In many cases, this free motion is periodic, i.e. the trajectory
of the system starting from a given point z is a periodic orbit (corresponding to an energy
level) and determined uniquely by the value of a. We denote this orbit by �z;a. Hence, the
parameter a can be used as an additional control (or a supplementary degree of freedom).
In this study, the parameter a is discretized, and we are interested in the following question:
\Is a goal orbit reachable from an initial orbit by a �nite number of discrete jumps in a?". A
more general question is whether a set of target orbits can be reached from a connected set
of initial orbits. In particular, we want to �nd the sequence of discrete values of a that steers
the system from low-energy orbits to high-energy ones and, moreover, with the least number
of jumps. In the following we will show how to use our reachability algorithms implemented
in d/dt to solve this synthesis problem.

The evolution of the system in the zero dynamics is described by the following equation
resulting from the projection of (6.7) on the constraint e1 = 0:

M(a; z2)�z2 + C(a; z2) _z2 + G = 0

To facilitate reachability analysis, we will linearize the system. Without getting into detail

(see [42]), the above equation, linearized about an equilibrium point

�
z�2
_z�2

�
=

� a2
1+a1
0

�
,

becomes

_x = Ax+ u; (6.8)

6.6 Veri�cation Examples 133

l1

l2

m2

m1

L1

z2

z1

Figure 6.10: A double pendulum.

where

x =

�
z2
_z2

�
; u =

�
0
�z�2

�
;

A =

�
0 1
�� 0

�
; � = l2 +

a1
1 + a1

L1cos(
a2

1 + a1
):

The condition for ensuring the existence of periodic orbits is � > 0.

The geometric parameters of the double pendulum at the robotics laboratory in Inria [42] are
as follows: L1 = 0:52m, l1 = 0:3m, l2 = 0:29m, m1 = 6kg, m2 = 4kg, and the gravitational
acceleration g = 9:81m=s2.

Since the pendulum is submitted to physical bounds on the joints: zi 2 [zmin
i ; zmax

i], the
equation e1 = z1 � a1z2 � a2 = 0 of the zero dynamics leads to linear constraints in the
parameter a. We consider 7 discrete values of a:

p0 = (�0:32;�0:1); p1 = (�0:28; 0:0); p2 = (�0:25; 0:05);
p3 = (�0:15; 0:0); p4 = (�0:1; 0:1); p5 = (0:05; 0:2); p6 = (0:15; 0:3):

(6.9)

Thus, the pendulum can be modeled as a 7-state hybrid automaton. In each discrete state qi
corresponding to a parameter value pi, the linearized continuous dynamics is given in (6.8).
Since the controller is subject to mechanical constraints, the transitions between discrete
states (or the jumps in a) cannot be arbitrary. More precisely, we can switch from a to a0

if jai � a0ij � �ai; i = 1; 2. The transition relation of the hybrid automaton is shown in
Figure 6.11. Moreover, when we switch from a to a0 there might be a transient period until
the system reaches the new zero dynamics. Hence, we need to make sure that e01 and _e01 be
already close to their zero. For e01 this means

je01j = jz1 � a01z2 � a02j < �1

134 Veri�cation of Hybrid Systems

Since e1 = z1 � a1z2 � a2 = 0, the above leads to

j(a1 � a01)z2 + (a2 � a02)j < �1 (6.10)

For _e01 we have

j _e01j = j(a1 � a01) _z2j < �2 (6.11)

The conditions (6.10) and (6.10), which form rectangles in the phase-space of the zero dy-
namics, will be used as transition guards in the hybrid automaton model. Note that these
conditions are symmetric, i.e. they are the same for the transition from (a01; a

0
2) to (a1; a2).

q1 q2

q3

q4q5q6

q0

Figure 6.11: The transition relation of the hybrid automaton of the pendulum with 7 discrete
values of a given in (6.9).

Let Ot be the set of goal orbits f�x;at j x 2 Ftg, and let O0 be the set of initial orbits
f�x;a0 j x 2 Fg. We describe briey the procedure for �nding the switching sequence (the
detailed algorithm is given in [9]). Starting with an initial orbit in the (z2; _z2) space, we
calculate in a breadth-�rst manner all the continuous-successors of F at the discrete state
corresponding to a0, and then, via instersection with the guards, the discrete-successors. We
continue until at some level k of the search tree, the computed reachable sets at one or more
nodes intersect with Ot. From these non-empty intersections we do backward reachability
analysis to �nd the subset Fk of F from which the goal orbits can be reached using k
transitions. Next, we restart the process from F 0 where F 0 = F n Fk is the subset of F
consisting of the points not covered yet.

We illustrate the process where the initial set F is the rectangle [0:7�0:9]�[0:01; 0:02] at state
q3 (i.e. a0 = p3), and the goal orbits are speci�ed by the rectangle Ft = [1:05; 1:3]�[0:01; 0:02]
at the same state (i.e. at = p3). We choose �1 = 0:05 and �2 = 0:02. The search tree
of the �rst iteration is shown in Figure 6.12 where there are two intersections with the
goal orbit after 4 transitions. Going backward we conclude that initial states satisfying
z2 2 [0:7552; 0:9] can reach the goal orbits by following the sequence q3; q2; q3; q2; q3 and
those satisfying z2 2 [0:7152; 0:9] can do it following the sequence q3; q2; q1; q2; q3. Note that
from states in the set [0:7552; 0:9]� [0:01; 0:02] both sequences can be used. In the second
iteration, we start with the remaining initial states, i.e. z2 2 [0:7; 0:7152] and �nd that
from there the goal orbits can be reached by either one of the three following 6-transition
sequences: q3; q2; q3; q2; q3; q2; q3; q3; q2; q3; q2; q1; q2; q3; q3; q2; q1; q2; q1; q2; q3. The fact that
_z2 does not matter here is particular to this example | with other sets of parameters the
partition of the initial set did involve conditions on _z2. The reachable states which correspond
to the �nding of the sequence q3; q2; q3; q2; q3 are depicted in Figures 6.13 and 6.14.

6.7 Summary 135

q3

q2

q1q4

q2q2

q4 q1 q3 q1 q4

q1 q2

q3 q4 q1q1q3 q4

q3

Figure 6.12: The search tree of the �rst iteration: the goal orbits are �rst reached after 4
switchings along two paths q3; q2; q3; q2; q3 and q3; q2; q1; q2; q3.

6.7 Summary

We have described a veri�cation algorithm for hybrid automata based on the approximate
reachability techniques for continuous systems. Our algorithm can work with a large class
of hybrid systems with arbitrary continuous dynamics and rather general discrete dynamics.
We have also discussed various methods for increasing the e�ciency of the algorithm and an
adaptation for backward reachability analysis. To illustrate the applicability of our approach,
we have shown some examples treated using the implemented algorithms.

Along these lines, there are the works of [31], [24], and [59], the results of which are the
hybrid system veri�cation tools CheckMate, VeriShift, and HyperTech, respectively. We
defer a discussion on these works to Chapter 8 after presenting our tool d/dt .

136 Veri�cation of Hybrid Systems

_z2

z2

_z2

z2

q3 q3 ! q2

_z2

z2

_z2

z2

q2 q2 ! q1

_z2

z2

_z2

z2

q1 q1 ! q2

_z2

z2

_z2

z2

q2 q2 ! q1

Figure 6.13: Computation of reachable states for the sequence q3; q2; q1; q2; q1; q2; q3: on the
left we see the reachable set at mode qi, and on the right we show the intersecion with the
guard from qi to qj .

6.7 Summary 137

_z2

z2

_z2

z2

q1 q1 ! q2

_z2

z2

_z2

z2

q2 q2 ! q3

_z2

z2

q3

Figure 6.14: Computation of reachable states for the sequence q3; q2; q1; q2; q1; q2; q3 continued
from Figure 6.13.

138 Veri�cation of Hybrid Systems

Part III

Controller Synthesis

139

Chapter 7

Switching Controller Synthesis

In this chapter we study the problem of synthesizing switching controllers for hybrid systems.
The setup of the system we consider is shown in Figure 7.1. The system, which we refer
to as the plant, can be in one of several \modes", in each of which its behavior is governed
by a distinct continuous dynamics. In some zones of the continuous state space X � R

n

the system can switch from one mode to another. These modes can arise from di�erent
structures of a continuous system (such as gears in a car or combination of open and closed
valves in a liquid container), the use of di�erent operation ranges of continuous regulators, the
approximation of non-linear continuous systems by piecewise-linear ones, etc. . The choice
between the modes is made by a discrete controller, which continuously observes the state
of the plant and decides continuously which mode to select. The discrete controller can thus
be modeled as an automaton with a set Q of states, where each state is identi�ed with a
mode of the plant. We assume the controller has complete observability of the plant, in other
words, the observation space of the controller is X . Hence, the domain of the feed-back map
is Q� X .

We allow the controller to be non-determinisitic, i.e. a function s : Q�X ! 2Q. This means
that when the current mode is q and the state of the plant is x, the controller might choose to
stay in q as well as to switch to one of several other modes. In synthesis problems, one usually
starts with a \liberal" controller which allows the system to be in one of several modes at a
given state. In other words, s(q;x) contains all the modes to which it is physically possible
to switch from (q;x). The result of the synthesis process is a more restrictive controller
which allows to stay in a mode or to switch to another mode only if this does not lead to bad
consequences. As in the previous sections, we concentrate on invariance properties, namely
the avoidance of bad states. In our setting, the combined system which is a product of the
controller and the environment is viewed as a hybrid automaton over the state space Q�X ,
and the synthesis algorithm is performed on this automaton.

We begin by discussing some aspects of hybrid automata behavior, which are important in
the synthesis context. Next, we de�ne formally the controller synthesis problem and give
an abstract algorithm to solve it. We then describe an approximate implementation of this

141

142 Switching Controller Synthesis

Plant

Discrete switching controller

Mode selection
C2

C1

C3

q 2 Q x 2 X

q2

q3

q1

Figure 7.1: A plant with a switching controller.

algorithm for systems with linear continuous dynamics, which is based on the reachability
techniques presented in Chapters 4 and 6 and gives an approximate switching controller that
guarantees correctness. We illustrate our approach with some examples and conclude with a
discussion of related work. The material of this chapter is developed from the presentation
in [11].

7.1 Preliminaries

The automata-theoretic formulation of the synthesis problem is as follows: given a hybrid
automaton, restrict the transition guards and staying conditions of the automaton so that
all remaining trajectories satisfy some safety speci�cation. Our approach is to iteratively
reduce the staying and guard sets, so that the automaton will be forced to leave a continuous
dynamics which leads to bad states and will not take transitions which lead to such states,
until we obtain an automaton all of whose behaviors are good. There are two anomalies that
may result from a careless application of this approach, namely blocking and Zeno behaviors.

Blocking Behavior

In the process of iteratively restricting the automaton, one should ensure that the result-
ing automata are non-blocking, that is, from every reachable state there is always either a
continuous dynamics or a discrete transition which is enabled. To prevent blocking after
transitions, for every q, q0 2 Q, we replace Gqq0 with G0

qq0 = Gqq0 \ R�1
qq0(Hq0) where R

�1
qq0 is

7.1 Preliminaries 143

the inverse map of Rqq0 . Hence,

Rqq0(G
0
qq0) � Hq0 (7.1)

There is always a trivial way to synthesize controllers with respect to a given safety property
by generating an automaton with H = G = ;. This automaton has no trajectories at all
and thus satis�es the property. In order to obtain sensible solutions, we are interested in
�nding the maximal non-blocking sub-automaton of A which satis�es the property. As in
the theory of supervisory control of discrete-event systems [102], such a maximal controller
exists for safety properties. However, since we are dealing here with hybrid systems, we will
eventually produce an approximation of this maximal automaton.

Zeno Behavior

The importance of avoiding Zeno behavior in synthesis problems cannot be underestimated.
Indeed, because of this inevitable anomaly associated with modeling of interaction between
discrete and continuous dynamics, a synthesis algorithm may come to wrong conclusions
and produce a controller that `avoids' bad states by generating Zeno behaviors. Similar
phenomena have been extensively studied in sliding mode control [43, 113, 12, 2]. To illustrate
the problem, consider a car driving towards a wall. The driver's only means of control is to
turn the radio on and o�. The system can be modeled as an automaton with two discrete
states corresponding to two modes (on and o�) of the radio. In both discrete states, the
derivative of the continuous variable x which models the distance from the car to the wall is
�v where v > 0 is the constant speed of the car (see Figure 7.2).

radio_on radio_off

x 2 X

x 2 X

x 2 X x 2 X
_x = �v _x = �v

Figure 7.2: Car driving automaton (the staying and guard sets are the whole state space X).

Clearly such a car is doomed to reach the bad state x = 0 and bump into the wall. However,
formally, there is a behavior of the automaton where the driver switches the radio on and o�
in�nitely many times in a bounded time interval, and consequently the car does not progress
beyond a given point x > 0.

One straightforward way to ensure that our synthesis algorithm will not rely on such phe-
nomena is to restrict its scope to hybrid automata which are non-Zeno by construction. This
motivates the following de�nitions.

144 Switching Controller Synthesis

We consider a hybrid automaton A = (X ; Q; f;H;G;R). The set of all trajectories starting
from (q;x) 2 Q�X is denoted by L(A; (q;x)), and the set of trajectories starting from any
(q;x) such that x 2 Hq is denoted by L(A). The automaton A is non-Zeno if L(A) contains
no Zeno behaviors.

For the time being we assume that in the hybrid automata to be considered the reset map
Rqq0 is the identity for all q, q

0 2 Q, that is, there are no jumps or resets in the values of the
continuous variables when transitions are taken, and hence R will be omitted. An extension
of the synthesis algorithm to automata with resets will be examined later.

De�nition 22 (Strongly Non-Zeno Hybrid Automaton)

� A state cycle of A is a sequence of states q1; : : : qs such that q1 = qs.

� A cycle is non-Zeno if there exists a sub-sequence of states q; q0; q00 in the cycle such
that cl(Gqq0) \ cl(Gq0q00) = ; where cl is the closure operator.

� A hybrid automaton is strongly non-Zeno if all its cycles are non-Zeno.

A Zeno cycle may allow the automaton to make a sequence of transitions leading from a
state (q;x) to itself inde�nitely in non-diverging time and result hence in a Zeno behavior.

Lemma 9 If the automaton A is strongly non-Zeno, then it is non-Zeno.

Proof
By de�nition of strongly non-Zeno automata, every state cycle � of A has at least a sub-
sequence of states q; q0; q00 such that the intersection of cl(Gqq0) and cl(Gq0q00) is empty, which
means that there is a positive lower bound on the distance between Gqq0 and Gq0q00 . Hence,
every traversal of � must do some continuous evolution between a point x 2 Gqq0 and a point
y 2 Gq0q00 . This implies that every behavior whose discrete part is cyclic must pass some
time in the continuous phase and thus has a positive lower bound on its duration. Let d be
the minimal such lower bound over all cycles.

Let consider a behavior = (�; �) of in�nite logical length. Let q be a state which repeats
in�nitely often in the discrete behavior �. Then, the behavior � can be decomposed into
q; : : : ; q; : : : ; q; : : : ; q; : : : , that is, a concatenation of �nite cyclic behaviors. As we have just
shown, each cyclic behavior spends at least d > 0 time in the continuous phase, and hence
any behavior of in�nite logical length has an in�nite metric length and is non-Zeno.

It can be veri�ed that Lemma 9 is also true with a weaker de�nition of strongly non-Zeno
automata, that is, the automaton A is strongly non-Zeno if every cycle q1; : : : qs of A satis�es

s�1\
i=1

Gqi;qi+1 = ;:

7.2 The Problem and An Abstract Solution 145

It is important to note that these conditions are both su�cient but not necessary for a hybrid
automaton to be non-Zeno1. In addition, the above conditions on the intersection of guards
are de�ned for automata without resets; for those with reset maps, more complex conditions
need to be de�ned.

De�nition 23 (Hybrid Automaton Restriction)
Let A = (X ; Q; f;H;G) and A0 = (X ; Q; f;H 0; G0) be two hybrid automata. We say that
A0 is more restrictive (in terms of behaviors) than A, denoted by A0 � A, if H 0 � H and
G0 � G, i.e. H 0

q � Hq and G0
qq0 � Gqq0 for every q; q

0 2 Q.

Clearly if A0 � A then L(A0) � L(A) and, in addition, if A is non-Zeno, so is A0.

Before formulating the synthesis problem we need some additional notations related to con-
tinuous evolutions of hybrid automata. Let us �rst recall the notations introduced in Chap-
ter 2. A trajectory of the hybrid automaton A = (X ; Q; f;H;G) is a pair (�; �) where
� : T ! X is a piecewise-continuous behavior and � : T ! Q is a piecewise-constant behav-

ior. Let x, x0 be points in X and q 2 Q. The notations x
q;t�! indicates that the dynamics q

is enabled from x for time t > 0 and x
q;t�!x0 indicates that x0 is q-reachable from x in time

t.

De�nition 24 (Continuous Evolution)
Let F and G be subsets of X . Let = (�; �) be a trajectory of A starting from (q;x).

� If x
q;t�! , and, in addition, �(t0) 2 F for every t0 2 [0; t] we write it as x

q;t�!
F
.

� If x
q;t�!x0 and, in addition, �(t0) 2 F for every t0 2 [0; t] we write it as x

q;t�!
F
x0.

� The set G is q-reachable from x in time t if x
q;t�!x0 for some x0 2 G. We denote this

by x
q;t�!G. If, in addition, �(t0) 2 F for every t0 2 [0; t], we write it as x

q;t�!
F

G (F
until G).

7.2 The Problem and An Abstract Solution

We formulate a simple control problem of avoiding bad states in a non-trivial way.

Problem 4 (Safety Synthesis for Hybrid Automata)
Let A = (X ; Q; f;H;G) be a hybrid automaton and let F be a subset of Q�X . The safety
controller synthesis problem is to �nd the maximal non-blocking hybrid automaton A� � A
such that for every trajectory 2 L(A�) and every t 2 T , (t) 2 F .

1In this thesis we do not address the problem of �nding more precise non-Zenoness conditions. Recent
works on this topic can be found in [79, 121].

146 Switching Controller Synthesis

The existence and uniqueness of the solution A� to Problem 4 is not self-evident and will be
shown in the proof of Theorem 5.

In the following we present a synthesis algorithm which works for strongly non-Zeno hybrid
automata and then show how to generalize it to arbitrary hybrid automata. Our approach
to Problem 4 is to calculate the maximal set P� of `winning' states, that is, the states from
which the controller, by switching properly, ensures that all the trajectories of the controlled
system lie within F . Then, the switching rule can be derived from P�, and we will call P�
the maximal invariant set.

7.2.1 Characterizing the Maximal Invariant Set

The calculation of the set P� is the core of any synthesis algorithm, and for doing this we
make use of the following operators.

De�nition 25 (Unbounded-time-predecessor Operator)
Given q 2 Q, the unbounded-time-predecessor operator �1q : 2X ! 2X is de�ned for a set
X � X as

�1q (X) = fx j x q;1�!
X
g:

Intuitively, �1q (X) is the set of states from which it is possible to continue inde�nitely with
the dynamics fq while staying in X (see Figure 7.3(a)).

De�nition 26 (Until Operator)
Given q 2 Q the until operator Uq : 2X � 2X ! 2X is de�ned for two sets X, Y � X as

Uq(X;Y) = fx j 9t x q;t�!
X

Y g:

The set Uq(X;Y) consists of states from which it is possible to continue with the dynamics
fq and stay inside X until Y is reached (see Figure 7.3(b)).

De�nition 27 (One-step Predecessor Operator)
The one-step predecessor operator � : 2Q�X ! 2Q�X is de�ned for a set

F = (q1; F1) [: : : [(qm; Fm)

where m is the number of discrete states in Q as

�(F) = f(q;x) j x q;1�!
Fq

_ (9t 9q0 2 Q 9x0 2 X x
q;t�!
Fq

x0 ^ x0 2 Gqq0 ^ (q0;x0) 2 F)g:

The intuition behind this de�nition is the following. A state (q;x) is in �(F) if either there
is an in�nite trajectory without switching starting from (q;x) and always staying in F , or
that it is possible to stay in F for some time and then make a transition to another state
(q0;x0) which is still in F . Note that, due to (7.1), the continuous evolution can always be

7.2 The Problem and An Abstract Solution 147

X

x2

x1

X

Y

x3

x2

(a) (b)

Figure 7.3: (a) Characterization of �1q (X): the trajectory from point x1 stays in X forever
while the trajectory from x2 leaves X after some time; therefore, x1 is in �1q (X) but x2 is
not. (b) Characterization of Uq(X;Y): the trajectory from x2 stays in X until it reaches Y
while the trajectory from x3 leaves X before, and hence x2 is in Uq(X;Y) but x3 is not.

continued after a discrete transition is taken; hence, the condition x0 2 Hq0 can be omitted.

It is not hard to see that �(F) can be expressed via the operators Uq and �1q as

�(F) = (q1; F
0
1) [: : : [(qm; F

0
m)

where for every q

F 0
q = �1q (Fq) [

[
q0 6=q

Uq(Fq; Gqq0 \ Fq0): (7.2)

Figure 7.4 sketches the computation of F 0
q where the dynamics fq is the same as in the ex-

ample of Figure 7.3.

x1

x2

x3

Gqq0 \ Fq0

Fq

Figure 7.4: Computation of F 0
q: points x1 and x2 are in F 0

q since x1 2 �1q (Fq) and x2 2
Uq(Fq; Gqq0 \ Fq0) (but x2 62 �1q (Fq)). Point x3 is in neither and hence it is not in F 0

q.

Based on the one-step predecessor operator we obtain the following abstract algorithm for
computing the maximal invariant set P�.

148 Switching Controller Synthesis

Algorithm 13 (Computing P�)

P0 := F \H;
repeat k = 0; 1; 2; : : :
Pk+1 := Pk \ �(Pk);

until Pk+1 = Pk

P� := Pk;

It is clear that the states in F but not in H are not admitted by the system, and it is thus
su�cient to start with the set P0 = F \H. Algorithm 13 produces a decreasing sequence
fPkg, and if the algorithm terminates it gives the �xed point P�.

Lemma 10 (Property of Algorithm 13)
For every k, (q;x) 2 Pk i� L(A; (q;x)) contains a trajectory remaining invariantly in F
which is either of logical length smaller than k and in�nite metric length, or else of logical
length not less than k.

Proof
The proof concerning the length of trajectories is done by induction. For the base case, all
states in P0 admit empty trajectories of length zero and all states outside P0 (and outside F)
do not admit such trajectories. Consider a state (q;x) in Pk. If (q;x) is in �(Pk�1), it can
either admit an in�nite trajectory remaining invariantly in Pk�1 (and thus in P0 = F), or
make one transition to Pk�1 and then (k�1) transitions from there. On the other direction,
if (q;x) 62 �(P k�1), then it cannot make a transition to Pk�1 nor an in�nite trajectory, and
hence it can make at most (k � 1) transitions. This proves Lemma 10.

The set P� contains all the states for which there exist switching controllers that can prevent
the system from going out of F . We restrict the automaton A to P� as follows.

Theorem 5 The automaton A� = (X ; Q; f;H�; G�) where for every q, q0 H�
q = fx j (q;x) 2

P�g and G�
qq0 = Gqq0 \H�

q \H�
q0 is the solution of the safety controller synthesis problem.

Proof
By Lemma 10, the set P� is the set of all states which admit either a trajectory inside F
of �nite logical length whose last interval is in�nite or a trajectory of in�nite logical length,
which (for strongly non-Zeno hybrid automata) implies an in�nite metric length. This shows
that A� is a non-blocking automaton whose trajectories always stay in F .
In addition, in each iteration Algorithm 13 computes Pk+1 by removing from Pk the states
from which leaving Pk is unavoidable. We then deduce that all the trajectories from X nPk

leave F after at most k transitions; as a result, any automaton larger than A� will contain
states outside P� from which the system goes out of F after a �nite amount of time. We

7.3 From Abstract to E�ective Algorithm 149

next conclude that A� is the largest automaton whose trajectories can be extended to in�nity
without leaving F .

7.2.2 Switching Controller

A switching controller can be derived from A� by de�ning a feed-back map s : Q�X ! 2Q

as

s(q;x) = fq0 j (q0 = q ^ x 2 H�
q) _ (q0 6= q ^ x 2 G�

qq0)g: (7.3)

Notice that, unlike in continuous systems, the feed-back control depends not only on the
continuous state but also on the discrete state of the system.

This switching controller is non-deterministic since the sets H�
q and G�

qq0 might not intersect
with each other only on their boundaries, and hence in some parts of the state space the
choice between continuing with dynamics q and switching to q0 is not speci�ed. This is
similar to the notion of \least restrictive supervisor" [102], that is, for all (q;x) 2 Q � X ,
all other switching controllers that keep the system inside F have the feed-back maps which
are contained in s.

A deterministic controller can be obtained by reducing H� and G� so that the feed-back map
becomes a function s : Q�X ! Q. In general, there is no \canonical" reduction preferable
over the others, and we consider it an implementation issue.

Let us review what has been resolved so far. We have presented an abstract solution to the
safety controller synthesis problem which consists in restricting the automaton A to the set
P� characterized as the maximal �xed point of the equation P = F \ �(P). This solution
can be useful if one is able to e�ectively implement Algorithm 13 whose main ingredient
is the � operator. The following section is concerned with the problem of computing this
operator.

7.3 From Abstract to E�ective Algorithm

From now on we restrict the continuous dynamics to be linear of the form fq(x) = Aqx for
every q 2 Q.

Given a set F = f(q; Fq) j q 2 Q ^ Fq � Xg, our goal is to compute the set �(F). We
derive from (7.2) Algorithm 14 for characterizing �(F).
The algorithm uses the operators Uq and �1q which, like the successor and predecessor oper-
ators in the veri�cation algorithms, cannot, in general, be exactly computed. Our approach
to an e�ective synthesis algorithm is to use our reachability techniques to under-approximate
these operators. It should be noted that for synthesis problems under-approximations are

150 Switching Controller Synthesis

Algorithm 14 (Computing �(F))

P := ;;
for all q 2 Q f
X := �1q (Fq);

for all q0 6= q f
X := X [Uq(Fq; Gqq0 \ Fq0);

g
P := P [(q;X);

g
return P

required since one needs to guarantee that the computed maximal invariant set is a subset
of the exact set P�.
We begin with the until operator. Let us rephrase the meaning of this operator in terms of
reachable sets of hybrid automata. The set Uq(X;Y) is simply the set of states from which
the system can reach Y while remaining inX. Thus, Uq(X;Y) can be characterized as the set
of continuous-predecessors of (q; Y), i.e. �c(q; Y), with X as the staying condition at q. Note
that computing continuous-predecessors is equivalent to computing continuous-successors of
the reverse dynamics: _x = �Aqx.

We proceed with the operator �1q . Let X be the complement of X. It is not hard to see that
the set �1q (X) can be obtained by removing from X the states from which the continuous

dynamics fq leads the system to X. In other words, one needs �rst to compute the set of
predecessors of X by the dynamics fq, i.e. �(X) where � denotes the predecessor operator
of continuous systems. Then, �1q (X) = X n�(X).

We conclude from the formulation of � using the predecessor operators that we can over-
approximate it by orthogonal polyhedra using the machinery for linear continuous and hybrid
systems, developed in Chapters 4 and 6.

Example
Let us now illustrate the above computations with an example where the sets X and Y are
rectangles de�ned as

X = [�0:1; 0:1]� [�0:03; 0:1];
Y = [0:02; 0:06]� [�0:05;�0:02];

and the linear dynamics fq is de�ned by the matrix

Aq =

� �0:5 4:0
�3:0 �0:5

�
:

7.3 From Abstract to E�ective Algorithm 151

Figure 7.5: Under-approximation of Uq(X;Y): all the trajectories from points in the orthog-
onal polyhedron remain in the rectangle X until they reach the rectangle Y .

Figure 7.6: Under-approximation of �1q (X): all the trajectories from points in the orthogonal
polyhedron can stay in the rectangle X forever.

The results obtained for the approximation of Uq(X;Y) and �1q (X) are depicted in Fig-
ures 7.5 and 7.6, respectively. In Figure 7.5, the set X is the big rectangle and Y is the small
one underneath X. The linear dynamics is a sink, similar to the example of Figure 7.4, and
its trajectories spiral clockwise to the origin. The orthogonal polyhedra lying between the
stair-like lines in the �gures are the under-approximations of Uq(X;Y) and �1q (X).

Plugging the approximate algorithm for � into Algorithm 13, we obtain a sequence f ePkg of
orthogonal polyhedra such that ePk � Pk for every k. The computed solution eP� is guaran-
teed to be included in P�, and hence the restricted automaton eA� with respect to eP� satis�es
the same properties as A� except, of course, being maximal. This gives an e�ective solution
to the controller synthesis problem for hybrid automata with linear continuous dynamics.

Recall that we have also developed a reachability technique for continuous dynamics of the
form _x = Ax + u where u is the input and takes values in a convex set U (see Section 4.5
of Chapter 4). Combining this with the computation procedure described above, one is able
to solve the safety controller synthesis problem for systems with continuous disturbances, as
the example in Section 7.6.2 will illustrate.

152 Switching Controller Synthesis

7.4 Uncontrollable Switching

In the framework described so far, we assumed that all discrete transitions are controllable,
i.e. generated by the controller. However, in practice the environment in which physical sys-
tems work is often uncontrollable and can induce some of the switching in a non-deterministic
way. For instance, human interaction (such as an operator pushing a button) or a discrete
change in a physical process (such as a collision) can be modeled as uncontrolled transitions.
In addition, such transitions are very useful to describe the passage from one region of the
state space to another when piecewise-linear systems are used to approximate non-linear
dynamics.

Here we discuss an extension of the synthesis algorithm to hybrid automata with uncon-
trollable switching. In this setting, it is important to distinguish non-determinism of the
controller, which corresponds to the design choices, from non-determinism of the environ-
ment, which reects our imprecise knowledge about the latter's actions. Therefore, the
transitions of our systems are now labeled as controllable and non-controllable.

In the model to be considered we assume that the controller has no dominion over the actions
of the environment, i.e. if an uncontrollable transition and a controllable one are enabled at a
given state, the former has higher priority. The synthesis problem is formulated as �nding a
controller by restricting the controllable actions such that the controlled system always stays
within a given set F regardless of the environment's behavior. We show now how to adapt
the � operator to take uncontrollability into account.

When all transitions are controllable, in order to stay in F the controller's strategy might be
to wait some time t > 0 and then take a transition. However, in the presence of uncontrollable
transitions, one should consider the possibility that at some time t0 < t the environment
might take a transition that will lead the system outside F .
In order to incorporate uncontrollable transitions, we augment the model with a set T u �
Q�Q of uncontrollable transitions. We observe that if (q; q0) is in T u, then from any state
(q;x) such that x 2 Gqq0 the environment can enforce a transition to (q0;x), and if (q0;x) 62 F
this will make the system violate the safety speci�cation. From this observation, we modify
the � operator as follows.

Let F = (q1; F1)[: : :[(qm; Fm). The computation of F 0 = �(F) = (q1; F
0
1)[: : :[(qm; F

0
m)

is done in two steps:

1. Compute �F = (q1; �F1) [: : : [(qm; �Fm) by letting

�Fq = Fq n
[

(q;q0)2Tu

Gqq0 \ F q0

where F q0 is the complement of Fq0 . By doing this, we remove from F all states (q;x)
from which the environment can lead the system to some (q0;x) outside F .

7.5 Anti-Zeno Synthesis 153

2. For every q 2 Q compute F 0
q as follows:

F 0
q = �1q (�Fq) [

[
(q;q0 62Tu)

Uq(�Fq; Gqq0 \ �Fq0): (7.4)

x2

x3

x1

Fq

Gqq0 \ Fq0

x2

y
z

x3

x1

Fq

Gqq0 \ Fq0

Gqq00

Fq00

Figure 7.7: The operator � for systems with uncontrollable switching.

Figure 7.7 illustrates the above modi�cation. In the left �gure, (q; q0) is the only outgoing
transition from q, and this transition is controllable. It is easy to see that points x1, x2 and
x3 are all in F 0

q since the trajectories from them either stay invariantly in Fq or stay there
until Gqq0 \ Fq0 is reached. We now add to the system an uncontrollable transition (q; q00)
as shown in the right �gure. The shaded rectangle consists of points inside Fq from which
the environment can force a transiton to q00 and take the system outside F . Hence �Fq is the
result of removing this rectangle from Fq. Consequently, points like x2 and x3 are no longer
in F 0

q.

With the characterization of the operator �(F) given in (7.4), the extension of our synthesis
algorithm to systems with uncontrollable switching is straightforward.

7.5 Anti-Zeno Synthesis

We have developed an e�ective synthesis algorithm for strongly non-Zeno hybrid automata,
i.e. automata whose all state cycles are non-Zeno. Whenever the input automaton does not
satisfy this condition, Algorithm 13 might produce wrong results where P� contains states
from which bad behaviors can be avoided only due to Zeno behaviors. To remedy this, we
need to transform a-priori every hybrid automaton into a non-Zeno one.

An obvious method for doing this is to eliminate the Zeno cycles by reducing the guards
of the transitions involved in the cycles. The problem with this approach is that there are
in�nitely many di�erent ways to `separate' the guards, and the results might depend on the
choice we have made. For some choices of guard reduction, the maximal invariant set will

154 Switching Controller Synthesis

be empty while for other choices there is a way to control the system. Making the right
choice requires knowledge about the qualitative behavior of the continuous dynamics. As an
alternative, we propose a systematic method for transforming any hybrid automaton into a
strongly non-Zeno automaton at the price of increasing the dimensionality of the system by
one, and adding non-identity resets to the transitions.

The idea is very simple: we force the automaton to spend a certain positive amount of time
at every discrete state by adding a clock variable c (a variable with _c = 1 at any discrete
state), resetting it to zero at every transition, and adding the condition c � dqq0 (dqq0 is a
positive constant) to every transition guard Gqq0 (see Figure 7.8 for an example). In fact,
it is su�cient to have one transition which resets c and one transition which is guarded
by c � d in any cycle of the automaton where d > 0. This idea is similar to the use
of dwell-time switching logics [91] in switching control to suppress \chattering", i.e. very
fast switching. Another well-known method to avoid this phenomenon is called hysteresis
switching logic [91, 104].

x 2 H2x 2 H1

_x = f2(x)

q2
x 2 G21

x 2 G12

q1

_x = f1(x)

^ c � d12=c := 0

^ c � d21=c := 0

Figure 7.8: Transforming an automaton into a strongly non-Zeno one using a clock c.

This construction guarantees that the guards are separated and the augmented automaton
is strongly non-Zeno. However, this solution clearly eliminates some behaviors that are pos-
sible in the original automaton. Putting positive lower-bounds on inter-transition times also
adds some realism to the model of some physical systems which require some time to switch
from one mode to another. The appropriate choice of dqq0 might come from such realistic
considerations or can be based on knowledge of the continuous dynamics. In any case, tuning
dqq0 seems to be much simpler than separating the guards of the original system. In addition
to increasing the system dimensionality, the price of adding a clock is that the synthesis
algorithm should be modi�ed to account for clock resetting. The rest of this section is con-
cerned with this modi�cation.

We begin by giving a formal de�nition of hybrid automata augmented with a clock.

De�nition 28 (Hybrid Automaton with Anti-Zeno Clock)
Let Ao = fX o; Qo; fo;Ho; Go; Rog be a hybrid automaton where Ro

qq0 are the identity for all
q, q0 2 Qo. The automaton A = fX ; Q; f;H;G;Rg constructed from Ao by adding a clock is
de�ned as follows.

7.5 Anti-Zeno Synthesis 155

� The continuous state space is X = X o � [0;1).

� The discrete state space is Q = Qo.

� The vector �elds fq = (foq ; 1) for every q 2 Q.

� The staying conditions Hq = Ho
q � [0;1) for every q 2 Q.

� For all q, q0 2 Q, Gqq0 = Go
qq0 � [dqq0 ;1) where dqq0 > 0.

� For all q, q0 2 Q, Rqq0(x1; : : : ; xn�1; xn) = (x1; : : : ; xn�1; 0). In other words, Rqq0

leaves the �rst (n� 1) continuous variables intact and resets xn (the clock) to 0.

Every safety synthesis problem on Ao characterized by a set Fo = f(q; F o
q) j q 2 Qg is

transformed to a problem on A with F = f(q; F o
q � [0;1)) j q 2 Qg.

Geometrically speaking, all the sets Hq, Gqq0 , and Fq of the augmented automaton A are the
prisms extending in�nitely in the positive direction of the axis xn from the corresponding
sets of Ao (see Figure 7.9).

d

x1

x2

X

ba Xo

Figure 7.9: Construction of X = Xo� [d;1) where Xo = [a; b] in one dimension (the jagged
lines mean that the set extends in�nitely).

To deal with the resets in the clock values, we modify slightly the � operator (the new
de�nition holds for arbitrary resets and not only for those described in De�nition 28).

Let R�1
qq0 : 2

X ! 2X be the inverse map of Rqq0 de�ned as

R�1
qq0(X) = fx0 j 9x 2 X x = Rqq0(x

0)g:

Then, the � operator can be modi�ed to handle the resets as follows:

�(F) = f(q; �1q (Fq) [
[
q0 6=q

Uq(Fq; Gqq0 \R�1
qq0(Fq0))) j q 2 Qg: (7.5)

The modi�cation is made to the second argument of the operator Uq. Intuitively, we need
to guarantee that the system stays in F after every reset Rqq0 . The computation of the
until operator is done backwards as described in Section 7.3 but this time starting with the
initial set Gqq0 \R�1

qq0(Fq0). It remains now to compute the map R�1
qq0 .

156 Switching Controller Synthesis

Computing R�1
qq0

The inverse reset map R�1
qq0 for the hybrid automaton A of De�nition 28 is characterized as

R�1
qq0(X) = f(x1; :::; xn) j xn � 0 ^ (x1; ::; xn�1; 0) 2 Xg:

The condition xn � 0 is due to the fact that the clock can have only non-negative values. To
compute R�1

qq0(X), we intersect the set X with the hyper-plane P0 = f(x1; :::; xn) j xn = 0g
and build over the resulting set a prism extending in�nitely in the positive direction of the
axis xn (see Figure 7.10 for an example).

x2

0 x1b
P0

a

X

R�1
qq0(X)

Figure 7.10: Computing R�1
qq0(X): the set X is drawn in dotted lines. First, we intersect X

with P0, which gives the line segment ab. Then, R�1
qq0(X) is the shaded prism with the base

ab.

Before proceeding, we illustrate the computation of the set Y = Uq(Fq; Gqq0 \R�1
qq0(Fq0)) with

a simple example shown in Figure 7.11 where the dynamics fq is constant. In the �rst step,
we compute R�1

qq0(Fq0) and then intersect it with the set Gqq0 (see Figure 7.11-(2)). Next,

we compute Y as the set of continuous-predecessors of Gqq0 \ R�1
qq0(Fq0) with Fq as staying

conditions (see Figure 7.11-(3)).

Let us give an intuition behind this result. Indeed, the point y is not in Y because the
trajectory from it stays in the set Fq for less than dqq0 time. On the other hand, from any
point in Y , such as x, the system can reach a point x0 in the guard Gqq0 after staying in Fq
for at least dqq0 time. From x0 the system makes the transition to q0 and, by clock resetting,
jumps to a point x00 in Fq0 as shown in Figure 7.11-(1).

Having computed an under-approximation eP� of the maximal invariant set P� of the aug-
mented automaton A, we restrict A to eP� using Lemma 5 and derive a switching controller
as in (7.3). The clock will be part of the controller, and the controller observes the state of
the system and the value of the clock, switches according to the switching rule and resets
the clock while doing so.

7.6 Examples 157

x1x1 x10

x2 x2 x2

a ha hba

0 0
dc

yc0 d0 x

x0x0

d0c0

x00

fq

R�1
qq0(Fq0)

Y

FqGqq0Fq0 Gqq0

dqq0 dqq0 dqq0

(1) (2) (3)

Gqq0 \R�1
qq0(Fq0)

Figure 7.11: Computing Y = Uq(Fq; Gqq0 \R�1
qq0(Fq0)) for an automaton with anti-Zeno clock:

(1) the sets Fq0 (the shaded prism) and Gqq0 (the dotted prism based on [a; b]); (2) the set
R�1
qq0(Fq0) and its intersection with Gqq0 (the darker prism based on [a; h]); (3) the sets Fq

(the prism based on [c; d]) and Y (the shaded region).

7.6 Examples

We have implemented the synthesis algorithms described above into d/dt and we now illus-
trate the behavior of the algorithms on two examples. Note that the results are obtained in
a fully automatic manner once the model has been written.

7.6.1 Two spiral system

The �rst example is a system with two discrete states where the goal is to stay within a set
F = [�0:65; 0:35]� [�0:35; 0:68]. The dynamics are de�ned by

A1 =

�
0:05 �0:5
2:0 0:05

�
; A2 =

�
0:05 �2:0
0:5 0:05

�
The continuous dynamics in both discrete states are characterized as `sources' and their
trajectories are diverging spirals. Therefore the only way to keep the system within F is to
switch between two discrete states. The initial transition guards are:

G12 = [�0:2;�0:01]� [�0:2; 0:01]; G21 = [0:01; 0:32]� [�0:01; 0:1]:
One can see that the guards do not intersect with each other, and the system is thus strongly
non-Zeno. The synthesis algorithm terminates after three iterations, and the running time
is 75s (with run-time visualization) on a Sun Ultra Sparc-10. Figure 7.12 depicts the sets
Fq and Gqq0 \ Fq0 obtained in each iteration (the latter set lies inside the former). These
sets are used as initial sets to compute Uq in the next iteration (all the sets �1q (Fq) are

158 Switching Controller Synthesis

q1 q2

Figure 7.12: The phase portrait of the two spiral system and the evolution of F1 and G12\F2

(left) and of F2 and G21 \ F1 (right) within 3 iterations. The �nal results show for each
discrete state the safe set where the system can spiral and then make a transition to the safe
set of the other discrete state.

7.6 Examples 159

empty since the continuous dynamics are diverging). One can see from the �gures that the
safe sets become smaller after each iteration until they remain unchanged and the algorithm
terminates.

7.6.2 Thermostat with Delay and Disturbances

Consider a thermostat with two modes (on and o�). The continuous variable x1 models the
temperature and the input u models uncontrolled disturbances. The dynamics of the modes
`on' and `o�' are described by the di�erential equations

_x1 = �x1 + u;

and

_x1 = �x1 + 4 + u

where u ranges inside the interval [�0:5; 0:5].
We augment the system with an additional clock variable x2 as in De�nition 28. We choose
dqq0 = 0:5 for every transition, which means that the thermostat stays in each mode at least
0:5 time. We let the staying conditions and initial guards be the whole continuous state
space. The hybrid automaton of the thermostat with delay and disturbances appears in
Figure 7.13.

ono�

_x2 = 1 _x2 = 1

q1

x2 � 0:5=x2 := 0

x2 � 0:5=x2 := 0

_x1 = �x1 + u _x1 = �x1 + 4 + u

q2

Figure 7.13: The hybrid automaton of the thermostat.

Our goal is to keep the temperature x1 within the interval [1:5; 3:6], and hence we start with
F = fq1; q2g � [1:5; 3:6]� [0:5;1). The synthesis algorithm is performed on the augmented
system and converges after three iterations. The results are shown in Figure 7.14 and the
running time is 18s (with run-time visualization) on a Sun Ultra Sparc-10. By intersecting
the two dimensional safe sets with x2 = 0 we obtain the safe sets for x1: [2:48365; 3:5] at
discrete state `on' and [1:5; 3:15736] at `o�'.

From the computed safe sets, we can de�ne a deterministic switching controller which turns
the thermostat on when x1 = �12 ^ x2 � 0:5 and turns the thermostat o� when x1 =
�21 ^ x2 � 0:5 for any �12 and �21 satisfying

2:48365 < �12 < �21 < 3:15736:

The automaton of the thermostat with the controller can be viewed in Figure 7.15.

160 Switching Controller Synthesis

x2

x1

x2

x1
(o�) (on)

Figure 7.14: The safe sets of the thermostat.

o� on

_x2 = 1

q1

_x2 = 1

q2
x2 � 0:5=x2 := 0

x2 � 0:5=x2 := 0x1 = �12 ^

x1 = �21 ^

_x1 = �x1 + u _x1 = �x1 + 4 + u

Figure 7.15: The hybrid automaton of the thermostat with the controller.

7.7 Summary and Related Work

In this chapter we have developed a simple framework for studying control by switching.
We have proposed an e�ective algorithm for synthesizing switching controllers for hybrid
automata with linear continuous dynamics subject to safety requirements, making use of the
approximate reachability techniques. We have also presented an adaptation of the algorithm
for systems with uncontrollable switching and a method to guarantee non-Zenoness of any
synthesized system.

In the rest of this chapter we present some related work on controller synthesis for hybrid
systems.

Controller synthesis for discrete systems is well-known in computer science (see, for exam-
ple, the surveys in [15, 85]) as well as in control theory (supervisory control of discrete-event
systems [102]). The �rst extension toward hybrid systems appeared in the work of Wong-Toi
and Ho�mann [119], which can be characterized as indirect: they transform a timed automa-
ton into a �nite automaton (by using the �nite partition of the state space, known as the
region graph [5]). Algorithm 13, presented in this chapter, is based on the direct algorithm
suggested in [85, 16] for timed automata. In that work, due to the special properties of timed
automata, the exact computation of winning states and of a controller is guaranteed to ter-
minate. These results were extended recently to the synthesis of time-optimal controllers for
timed automata [13].

Another class of hybrid systems with simple continuous dynamics for which an exact con-

7.7 Summary and Related Work 161

troller synthesis algorithm always terminates are the initialized rectangular hybrid automata,
studied by Henzinger et al. [60, 58]. For other classes of hybrid systems with constant deriva-
tives, synthesis procedures are not guaranteed to terminate, although the � operator can be
exactly computed by using linear algebra. An exact synthesis algorithm for `linear' hybrid
automata, which also considers non-Zenoness, was given in [118] and implemented in HyTech.
Earlier work on controller synthesis for eventuality for such systems was reported in [110].

Outside the world of hybrid systems with trivial continuous dynamics, results have been hard
to come by due to the di�culties discussed in Chapter 3. Recent work in [81, 112], using a
game-theoretic approach, is very close in spirit to ours. The authors try to solve the controller
synthesis problem for arbitrary continuous dynamics with time-varying piecewise continuous
control and disturbance inputs, using an abstract algorithm similar to Algorithm 13. The
� operator is characterized using Hamilton-Jacobi partial di�erential equations. Techniques
to solve such equations were investigated in [112, 89]. However, numerical solutions can be
complicated, and no evidence has been given so far of the computational advantages of this
point of view. In [106] it has been shown that the synthesis problem for the sub-class of linear
systems where the matrices are either diagonal or nilpotent is solvable by using computer
algebra.

In addition, the synthesis problem has been studied in the discrete-event supervisory control
framework by various authors (see [67, 76] and references from there). Since the continuous
dynamics treated by these authors are non-trivial, they look for approximating automata [90,
36] rather than exact �nite state abstraction as in [119]. In [67], the problem of extracting a
discrete-event system from the continuous part of the system has been investigated. Once the
DES has been extracted, discrete-event supervision techniques can be applied to synthesize
a controller.

162 Switching Controller Synthesis

Part IV

Implementation

163

Chapter 8

The Tool d/dt

In this chapter we describe d/dt , an experimental tool for the veri�cation and synthesis of
hybrid systems. It is a C++ implementation of the algorithms presented in the previous
chapters. We present �rst the modules of the implementation and then the main features of
the tool.

8.1 Implementation

The modules of the implementation are summarized in Figure 8.1. The parts enclosed in the
solid boxes are the modules that we implemented and the others are the software packages we
use. The veri�cation and synthesis algorithms are described in the previous chapters; here
we present only the geometric manipulation, numerical integration and interface modules.

8.1.1 Geometric Algorithms

One important component of our veri�cation and synthesis algorithms are procedures for
manipulating convex and orthogonal polyhedra. Besides common geometric operations
(Boolean operations, membership testing, etc..), for which we can use available software
packages, some orthogonal approximation operations speci�c to our approach need to be
implemented. We begin by presenting the data structures for polyhedra.

Data Structure for Convex and Orthogonal Polyhedra

Since we are interested in analyzing the system only in a bounded subset of the state space,
called the analysis set, all polyhedra of interest are bounded. Every bounded convex poly-
hedron P can be represented either by the convex hull of a �nite number of vertices or by
the intersection of a �nite number of half-spaces. Given either form, the other can be com-
puted using standard algorithms. Since both forms are needed for di�erent operations and,

165

166 The Tool d/dt

Interface

Numerical Integration
CVODE

Verification Algorithms

Controller Synthesis Algorithms

Geometric Algorithms

OpenGL, LEDA

New Polka CubesQhull
Approximations
Orthogonal

LEDA

d/dt

Figure 8.1: The modules of the tool.

moreover, the duality computation is expensive, our data structure for convex polyhedra
maintains both forms, which means that the trade-o� between memory and computation
time was made in favor of the latter. An n-dimensional vertex is encoded as a real (or
rational) vector, vertex, of size n whose elements are the coordinates of the vertex. An
n-dimensional half-space is encoded as a real (or rational) vector, halfspace, of size (n+1)
whose the �rst n elements represent the normal to the half-space and the last one represents
the o�set, i.e. the distance from the half-space to the origin if the normal is an unit vec-
tor. Rationals are used to avoid precision problems in certain cases. The basic C-like data
structure for a convex polyhedron is as follows.

Convex-polyhedron f
int n, nbvertices, nbhalfspaces;
vertex *V;
halfspace *H;

g

8.1 Implementation 167

Concerning orthogonal polyhedra, as we have already seen, a bounded orthogonal polyhe-
dron can be represented by a �nite number of extreme vertices (see Section 3.2 of Chapter 3).
Thus, the data structure for orthogonal polyhedra is simply a list of extreme vertices as shown
below.

Orthogonal-polyhedron f
int n, nbvertices;
vertex *V;

g

In all the implemented algorithms, basic data types (rational, array, dictionary, etc..) are
provided by LEDA1 library [88].

Convex and Orthogonal Polyhedron Operations

For operations on convex polyhedra, we use two libraries: Qhull [19] and a new imple-
mentation of Halbwachs's library [51]. Although Qhull does not provide ready polyhedral
operations (and some auxiliary programs were thus implemented to �t the needs), the moti-
vation of this choice is that convex hull is the most frequently used operator and the general
dimensional convex-hull algorithm implemented in Qhull is one of the fastest available. In
addition, Qhull provides an e�cient algorithm for half-space intersection, a crucial element
in our computations.

The `new Polka' library implemented by B. Jeannet [63], using exact arithmetic, is much
less time-e�cient than Qhull, but its advantage is the ability to deal with degeneracies for
which Qhull, using oating point arithmetic, may fail due to precision problems. In order to
obtain a good compromise between time usage and accuracy, we combine these two libraries
as follows: the algorithms of Qhull are used whenever possible and those of `new Polka' for
degenerate cases.

To manipulate orthogonal polyhedra, we use the library Cubes, implemented by O. Bournez [25],
which provides algorithms for Boolean operations, inclusion test, convex decomposition, and
face detection.

Orthogonal Approximations

Our veri�cation and synthesis algorithms make use of four orthogonal approximation op-
erators grido, gridu, uo, and uu to over- and under-approximate convex polyhedra and
intersections of convex and orthogonal polyhedra. In the sequel we describe how these op-
erators are implemented.

1Library of E�cient Data types and Algorithms.

168 The Tool d/dt

The Operators grido and gridu

We describe �rst an algorithm for computing grido. For a clear understanding, let us recall
the de�nition of this operator. Let G� be the uniform underlying grid over which our orthogo-
nal polyhedra are de�ned. Given a convex polyhedron C, grido(C) is the smallest orthogonal
polyhedron G de�ned on G� such that grido(C) � C. We have shown that grido(C) is the
union of all the elementary hyper-cubes of the grid whose intersection with C is not empty.

Let V be the set of vertices of the polyhedron C. We denote for all i 2 f1; : : : ; ng
li = minfbvic� j v 2 V g; ui = maxf(bvic+ 1)� j v 2 V g

where bvic is the integer part of vi=�. We de�ne the bounding box Bb of C on the grid G�
as Bb = [l1; u1]� : : :� [ln; un].

Figure 8.2: Re�nement using the Binary Space Partition principle.

The key idea of the algorithm is the following. Using the principle of Binary Space Partition
from computational geometry (see [44] for an introduction to this method), we split the
bounding box Bb into sub-boxes and then re�ne recursively those sub-boxes which intersect
C until they become elementary hyper-cubes of the grid (see Figure 8.3).

We denote by bsp the function that takes as input a box b and returns a list of 2n sub-boxes.
Note that the vertices of the sub-boxes must be grid points. Let len(b) be the maximal side
length of the box b. The pseudo-code of the recursive re�nement algorithm for computing
grido(C) is sketched below. The algorithm starts with the bounding box Bb of the input
polyhedron C.

Algorithm 15 (Computing grido(C))

refine(b: box) f
if (b \ C 6= ;) f

if (len(b) � �) G := G [b;
else f
Lb := bsp(b);
for all (bi 2 Lb) f refine(bi); g

g
g
return G;

g

8.1 Implementation 169

Essentially, the re�nement algorithm works as follows. If the box b intersects C, we distin-
guish the following two cases:

� If b is bigger than elementary hyper-cubes of the grid G�, then it is split into sub-boxes
and each of these boxes is recursively re�ned.

� If b is an elementary hyper-cube of G�, then it is added to G.

C

b1

Bb

Figure 8.3: Illustration of the computation grido(C).

As an example, consider a two-dimensional convex polyhedron shown in Figure 8.3. After
successive re�nements of the bounding box Bb we obtain the box b1 whose sub-boxes become
elementary hyper-cubes, and three shaded ones are added into G.

It is clear that e�cient box-polyhedron intersection detection is crucial to the performance
of the algorithm since the number of boxes encountered can be large. A straightforward way
is to compute the intersection using standard convex polyhedron intersection algorithms.
Nevertheless, the expense of �nding geometric intersections makes it quite costly. To reduce
the number of intersections we combine several tests exploiting the geometry of boxes, which
are commonly used for interference detection in computer graphics [46, 77, 97].

The algorithm can be easily adapted to grids where a di�erent constant �i is used for every
dimension and therefore elementary hyper-cubes become hyper-rectangles. Depending on
the geometric form of the input polyhedron C, the use of such grids can improve signi�-
cantly the performance of the algorithm.

We turn now to the operator gridu. Given a convex polyhedron C, gridu(C) is the largest
orthogonal polyhedron de�ned on the grid G� that is included in C. It is not hard to see
that gridu(C) can be computed in a similar way, but only the sub-boxes that are entirely
inside C will be added to G. The algorithm for gridu is as follows.

170 The Tool d/dt

Algorithm 16 (Computing gridu(C))

refine(b: box) f
if (b � C) f G := G [b; g
else f

if (b \ C 6= ; ^ len(b) > �) f
Lb := bsp(b);
for all (bi 2 Lb) f refine(bi); g

g
g
return G;

g

Algorithm 16 requires the additional inclusion test, which is trivial since testing whether a
box is included in a convex polyhedron amounts to testing whether all the vertices of the
former are inside the latter.

Remarks

� The approximation accuracy can be �ne-tuned by de�ning a tolerance � 2 N and only
the boxes whose size is greater than �� need to be re�ned. This can help to increase
time-e�ciency, but the approximations are no longer tight.

� An alternative method to compute orthogonal approximations is to use linear pro-
gramming to �nd the largest hyper-rectangle inscribed in the polyhedron C and do it
recursively [21]. This method is time costly in case the input polyhedron C is `narrow',
i.e. its bounding box has very di�erent side lengths. The reason is that the volume
of hyper-rectangles inscribed in C is small compared to that of C, which results in a
large number of linear programming problems to solve. We have also implemented this
method into d/dt , and the choice between this and the algorithm based on re�nement
is a user-de�ned parameter.

The Operators uo and uu
We discuss only the computation of uo (uu is similar). Recall that given a convex polyhedron
C and an orthogonal polyhedron G, CuoG is the smallest orthogonal polyhedron Go de�ned
on the grid of G such that Go � C \ G. The polyhedron Go is thus the union of all the
elementary hyper-cubes in G which intersect with C.

A naive implementation consists in testing all the elementary hyper-cubes in G. This can
be very expensive in case G contains many hyper-cubes. A more e�cient implementation
consists in decomposing G into non-overlapping hyper-rectangles and then applying the
re�nement procedure, as is done for grido and gridu.

8.2 Functionalities 171

8.1.2 Numerical Integration

For numerical integration, we use CVODE [34], a software package for solving initial value
problems for ordinary di�erential equations. The main attractive feature of CVODE is that
it can deal with both sti� and non-sti� systems. CVODE implements two linear multi-
step methods, namely variable-coe�cient Adams and BDF (Backward Di�erentiation For-
mula) [62]. The former is used for non-sti� problems and the latter for sti� ones. Both
methods, being implicit, require solving non-linear systems, and to this end CVODE em-
ploys a variety of linear solvers and thus allows e�cient solutions to a large class of problems.

8.1.3 Interface

Visualization is an increasingly important component in the design of a software package
since it helps the user to easily interpret the results obtained. However, writing e�cient
3D animation programs integrated into a computation tool is a highly professional and
time-demanding task. Moreover, the computation time needed to obtain good visualization
quality is considerable and sometimes exceeds the computation time of the reachability algo-
rithms. The solution we adopt here is to develop only some simple OpenGL [116] programs
(omitting advanced visualization features), which allow the user to display the results during
the execution and provide an option to generate data in the input formats of other standard
viewers. The interface programs, which manage the input and output as well as optional
settings, are implemented using the Windows library of LEDA [88].

8.2 Functionalities

The current version of the tool handles hybrid automata in which

� Continuous dynamics are linear of the form f(x) = Ax + u where u is the input and
ranges inside a convex polyhedron.

� All the staying conditions and transition guards are speci�ed as convex polyhedra.

In the current version of d/dt , the face lifting algorithm (which has been implemented
separately) and the treatment of resets have not yet been integrated. Adding these features
is straightforward and can be done without modifying the current modules.

We present �rst the input languague and then the functionalities of the tool.

8.2.1 Input Language

The input hybrid automaton and the speci�cation are described in a model �le (.hyb). The
speci�cation is given in form of a polyhedron which represents the bad set or the safe set.
Parameters and formulas referring to them can be used to describe the system. The input

172 The Tool d/dt

language is simple and can be easily understood through an example. The textual descrip-
tion of a 2-state hybrid automaton is shown below.

dimension : 2; /* dimension of the system */

parameters :
a0 = �0:32,
a1 = �0:28,
b0 = �0:1,
b1 = 0:0,
eps1 = 0:05,
eps2 = 0:02,
l2 = 0:29,
L1 = 0:52;

badset : type rectangle

0:62 0:67,
�0:1 0:1;

initloc : 0;
initset : type griddy

�0:2 0:2,
0:2 0:2,

�0:2 0:6,
0:2 0:6;

location : 0;
matrixA :

0:0 �6:0,
[�l2� (a0=(1 + a0)) � L1 � cos(b0=(1 + a0))] 0:0;

inputset : type convex vert

0:0 [(b0=(1 + a0)) � (�l2� (a0=(1 + a0)) � L1 � cos(b0=(1 + a0)))];
stayset : type rectangle

�0:15 1:0,
�1:0 1:0;

transition :
label to1 :
if in guard : type rectangle

[�(�eps1 + (b0� b1))=(a0� a1)] [�(eps1 + (b0� b1))=(a0� a1)],
[eps2=(a0� a1)] [�eps2=(a0� a1)];

goto 1;

location : 1;
matrixA :

8.2 Functionalities 173

�2:0 �3:0,
3:0 �2:0;

inputset : type convex vert

0:5 0:5, /* vertex (0:5; 0:5) */
0:5 1:0,
1:0 0:5;

stayset : type rectangle

�1:0 �0:02,
�1:0 1:0;

transition :
label to0 :
if in guard : type convex halfsp

1:0 2:0 �0:02, /* x[0] + 2x[1] � �0:02 */
�1:5 0:8 �1:5,
�1:0 1:0 1:5,
�1:0 0:5 �1:0;

goto 0;
;

limits: /* the analysis set de�ned by a set of inequalities */
x[0] >= �1:0 and

x[0] <= 1:0 and

x[1] >= �1:0 and

x[1] <= 1:0

Convex polyhedra can be speci�ed using two formats: a list of vertices (convex vert) and
a list of half-spaces (convex halfsp). In case a polyhedron is a hyper-rectangle, it can be
de�ned simply by intervals. While the staying and guard sets must be convex polyhedra,
the initial set can be orthogonal. Orthogonal polyhedra are speci�ed by lists of extreme
vertices following the keyword griddy. The analysis set (limits) can be speci�ed either as
a conjunction of inequalities, like in the example, or as a convex polyhedron. The grammar
of the input language is detailed in [38].

Computation Parameters

Since approximations are used in our algorithms, the tuning of some computation parameters
can be useful to �nd a good compromise between computation time and accuracy. The tool
allows for computation parameters to be de�ned textually in a parameter �le (.par) or
through the graphical interface. If they are not de�ned, default parameters will be used.
Here we outline only some important parameters (see [38] for more details).

� Time step: the choice of the time step for each discrete state depends on the desired
accuracy and also on the matrices of the continuous dynamics. It must be chosen
according to Theorem 2 in Chapter 4.

174 The Tool d/dt

� Grid size: errors in orthogonal approximations depend on the granularity of the grid.
By reducing the grid size one can achieve better approximations at the price of more
computation time.

� Convex-hull approximation option: this option is used only for reachability and veri-
�cation purposes. In order to speed up the computation in the continuous phase, the
user has an option to over-approximate orthogonal initial sets by their convex hull (see
Section 6.3 of Chapter 6). This, however, reduces the approximation accuracy.

It is clear that prior knowledge of continuous dynamics will facilitate the �ne-tuning of
computation parameters in order to achieve the maximal computational e�ciency.

8.2.2 Function Modes

An overview of the functionalities of the tool is shown in Figure 8.4. Given a model �le and
optionally a parameter �le, the tool can work in the following three modes:

1. Reachability: this mode performs forward reachability analysis from the initial set. The
output is an over-approximation of the reachable set.

2. Safety Veri�cation: using forward reachability analysis, this mode can check whether
the system starting from the initial set can reach the bad set. The output is a yes/no
answer accompanied by a set of bad states that the system has reached, in case the
answer is yes.

3. Safety Controller Synthesis: by computing an under-approximation of the maximal
invariant set, this mode can synthesize a switching controller so that the system always
remains inside the safe set. The output is the under-approximation of the maximal
invariant set and the synthesized automaton.

The analysis results are stored in .res �les in form of a sequence of sets of states (q; P)
where q is a discrete state and P is a polyhedron.

8.2.3 Graphical User Interface

The goal of the graphical interface is to ease the use of the tool and facilitate interactive
analysis. It consists of a menu bar and a window where the results are displayed. The menu
bar has �ve sub-menus: Input, Preferences, Run, View, and OOGL-Save. The user selects
the model �le to work with through the Input menu and the type of analysis (reachability,
veri�cation, synthesis) to perform through the Run menu. During the analysis of a system,
the main computation parameters can be changed via the Preferences menu. The tool
o�ers the possibility to display the results from the output �les (.res) using the View menu.
This is useful when the user might wish to skip run-time visualization in order to reduce
computation time. The OOGL-Save menu is used to transform results stored in output �les

8.2 Functionalities 175

.par

.hyb

.par

.hyb

.par

.hyb

Set of reachable states

Set of reachable states

Set of bad states reached
.res

.res

.res

(optional)

(optional)

Computation Parameters
(optional)

Computation Parameters

Computation Parameters

Maximal invariant set
Synthesized Automaton

Hybrid Automaton
Safety Specification

Safety Specification
Hybrid Automaton

Hybrid Automaton

Yes/No (bad set is reached or not)

Verification

Reachability

Synthesis

d/dt

d/dt

d/dt

Figure 8.4: The functionalities of the tool.

Figure 8.5: The menu bar of the tool.

176 The Tool d/dt

into OOGL2 format data, which can be then input to GeomView [96], an interactive viewer
with many attractive 3D features. A snapshot of the graphical interface can be viewed in
Figure 8.5.

8.3 Summary and Related Work

We have presented the overall structure of the experimental tool d/dt for automatically an-
alyzing hybrid systems. We were able so far to treat rather easily continuous systems in up
to 6 dimensions and recently a 3-dimensional hybrid system with 7 discrete states [9]. The
tool is still under development, and there is an ongoing e�ort to add new features and to
improve the implementation in order to increase its applicability. We have analyzed using
d/dt many academic examples and several examples inspired by real-life applications. We
are also currently investigating more applications in automotive control, robotics, and pro-
cess control.

It is not easy to compare our tool to other tools in the domain for the following reasons.
The hybrid systems research is still young, and hence it is not always possible to understand
exactly the functionalities of some innovative tools from the papers which describe them.
Moreover, due to the complexity of the problem and the approximate nature of the solution,
it is still hard to de�ne performance measures and to compare tools according to standard
benchmarks. Here we discuss only the relationship between d/dt and three tools for the
analysis of hybrid systems with non-trivial continuous dynamics, of which we are aware.
The �rst di�erence between these tools and d/dt is that they do not support controller
synthesis.

� CheckMate [31, 30]
CheckMate is a veri�cation tool, developed by Chutinan and Krogh, for threshold-
event-driven hybrid systems where continuous dynamics are de�ned by general ODEs.
The input system is modeled using Simulink block diagrams and then converted into
a hybrid automaton with the following restrictions: all the guard sets Gqq0 lie on the
boundary of the staying sets Hq, which are convex polyhedra; the reset maps are the
identity, i.e. there is no jump in the continuous variables at discrete transitions. Un-
like our tool, CheckMate takes the indirect approach, that is, it computes a �nite-state
abstraction of the original system using approximate reachability analysis and then ap-
plies standard veri�cation algorithms to the resulting discrete model to verify ACTL
speci�cations3. As mentioned in Chapter 4, the reachability algorithm used by Check-
Mate for linear continuous dynamics is similar to and potentially more e�cient than
ours, but it is not easy to extend to systems with uncertain input. One attractive fea-
ture of CheckMate is its interface for Matlab/Simulink, a commonly used formalism for
specifying and simulating continuous and hybrid systems. The most complex example

2OOGL stands for Object Oriented Graphics Language.
3ACTL is a restriction of CTL (computation tree logic) [32] which allows only universal formulas.

8.3 Summary and Related Work 177

reportedly treated using CheckMate is the batch evaporator, which is modeled as a
hybrid automata with 3 continuous variables and 5 discrete states where continuous
dynamics are non-linear.

� HyperTech [59]
HyTech [56], developed by Henzinger, Ho and Wong-Toi, was the most popular tool
for verifying systems with piecewise-constant continuous dynamics. HyperTech is an
attempt to extend HyTech to systems with arbitrary di�erential equations. However,
the tool treats only simple discrete dynamics, i.e. the resets are either arbitrary set-
valued maps or the identity. The design philosophy of HyperTech is to use existing
interval arithmetic packages in order to over-approximate reachable sets. Concretely,
the typical computation step of HyperTech in the continuous phase starts with a hyper-
rectangle F (a product of intervals) and uses the numerical integration of the interval
arithmetic package to over-approximate the reachable states at time r by a hyper-
rectangle F 0. Then, the reachable set within the interval [0; r], i.e. �[0;r](F), is approx-
imated by a hyper-rectangle F 00 containing both F and F 0. In [59] the authors do not
detail how F 00 can be guaranteed to be an over-approximation of �[0;r](F). The reach-
able states accumulated over the execution are stored as a union of hyper-rectangles.
The most complex example treated using HyperTech in [59] is an air-tra�c conict
resolution system modeled as an automaton with 3 discrete states and 3 continuous
variables whose dynamics are non-linear.

� VeriShift [24]
VeriShift is a tool, developed by Botchkarev and Tripakis, for hybrid automata with
linear di�erential inclusions. The basic hybrid automaton model treated by Ver-
iShift is similar to ours, and the tool can accept systems of communicating hybrid
automata. VeriShift is designed to perform bounded time veri�cation. To over-
approximate continuous-successors, VeriShift employs the ellipsoidal techniques, de-
veloped by Kurzhanski and Varaiya [72]. To treat discrete transitions, new methods
for over-approximating unions of ellipsoids and intersections of ellipsoids and convex
polyhedra are proposed. Input models should be written in C++ code, which is not
always trivial for users not having a computer science background. A recent example
treated by VeriShift is a train-gate system [23] which consists of three 4-state commu-
nicating automata sharing one continuous variable.

Note that in all the abovementioned tools reachable sets are represented in a non-canonical
way (as unions of convex polyhedra/hyper-rectangles/ellipsoids), which limits their applica-
bility to high dimensional systems. The tool d/dt has been designed with generality in mind,
and hence the problem of representing polyhedra of arbitrary dimension has been tackled
and solved before the development of the rest of the algorithms. Therefore, one positive fea-
ture of d/dt is that it extends easily to more general systems (in terms of the dimensionality
and the complexity of dynamics).

178 The Tool d/dt

Chapter 9

Conclusions

9.1 Contributions

Hybrid systems which combine continuous and discrete dynamics have been considered in
this thesis. We have presented a practical framework for algorithmic analysis of hybrid
systems, using the commonly accepted hybrid automaton model. The main contributions of
the thesis are summarized as follows.

� Formal Veri�cation:
The lack of methods for computing reachable sets of continuous dynamics has been
the main obstacle towards an algorithmic veri�cation methodology for hybrid systems.
This motivated us to tackle �rst the reachability problem of continuous systems. Un-
like the conventional approaches which attempt to �nd exact solutions and are thus
limited by undecidability of most non-trivial systems, our approach is based on an ef-
�cient method for representing sets and a combination of techniques from simulation,
computational geometry, optimization, and optimal control. We have developed two
e�ective approximate reachability techniques for continuous systems: one is special-
ized for linear systems and extended to systems with uncertain input; the other can be
applied for general non-linear systems.

Next, we have shown how these techniques can be adapted for hybrid systems and
developed a safety veri�cation algorithm which can work for a broad class of hybrid
systems (with arbitrary continuous dynamics and rather general switching behavior).
The main advantage of our veri�cation algorithm over other existing algorithms is its
easy application for high dimensional systems due to the canonical representation of
reachable sets. In addition, with this representation our algorithm terminates in many
cases while other algorithms do not.

� Controller Synthesis:
We have considered the problem of synthesizing switching controllers for hybrid sys-
tems with respect to a safety speci�cation. A safety speci�cation is speci�ed as a subset

179

180 Conclusions

of the state space within which the system must remain. We have presented an abstract
synthesis algorithm based on the calculation of the maximal invariant set. The useful-
ness of this approach depends on the ability to e�ectively implement the � operator,
the main ingredient of the synthesis algorithm. We have shown how our reachabil-
ity techniques can be used for this purpose and provided an e�ective and automatic
procedure for synthesizing controllers. Furthermore, we have extended this procedure
to systems with uncontrolled switching coming from the environment. We have also
proposed a simple method for ensuring non-Zenoness of any synthesized system.

� Tool:
Another, not less important, goal of this thesis is to develop a working tool for analyzing
hybrid systems. Many veri�cation and synthesis algorithms have been proposed, but
so far not many tools exist. We have implemented most of the algorithms presented
in this thesis in the tool d/dt . The current version of the tool deals with hybrid
systems with linear di�erential inclusions and provides automatic safety veri�cation
and controller synthesis. Some e�ort has been made to develop a graphical interface
which helps the user to gain insight into the analysis and facilitates user intervention.
Besides numerous academic examples used to evaluate the implementation, we have
successfully applied the tool to verify some practical systems.

9.2 Future Research Directions

There are many promising research directions to pursue.

� Formal Veri�cation:
Much work can be done to improve the face lifting technique. The main drawback of
this technique is the accumulation of over-approximation error. We have proposed a
method to remedy this. However, further investigations should be made to devise a
more clever approximation scheme by exploiting the qualitative behavior of the system.
On the other hand, the current implementation of face lifting uses linked lists and
matrices to encode orthogonal polyhedra. A new implementation using the canonical
representation will increase signi�cantly the e�ciency of the algorithm.

The performance of our veri�cation algorithm can be improved in numerous ways.
Experiments with many examples showed that most of the computation time is spent
for geometric operations especially in high dimensions. We are currently exploring
more e�cient orthogonal approximation algorithms combining diverse techniques from
computational geometry. Enhancing the implementation of some operations of the
Cubes library is another way to make geometric manipulations more time-e�cient.

In addition, we have highlighted in Chapter 6 how search order can inuence compu-
tation time, and we need thus to �nd the search strategies suitable for each problem
instance. This could be done using qualitative reasoning. Since our veri�cation al-
gorithm can be readily used for simulation purposes, a method to reduce the search

9.2 Future Research Directions 181

space is to de�ne search order during the execution based on the information obtained
by some simulations. In addition, prior simulation results can also suggest ways to do
veri�cation more e�ciently.

In this thesis we have concentrated on the complexity of the system rather than of the
properties. Methods for verifying more general temporal logic speci�cations are also a
subject of future research.

� Controller Synthesis:
We consider the following extensions of the synthesis results presented in this thesis:

{ Synthesis for eventuality: the dual synthesis problem of safety, eventuality, is
concerned with �nding the set of states from which the controller can enforce the
system into a target set in �nite time and �nite number of switchings and com-
pute the strategy for these states. Adapting our techniques for this performance
criterion is rather straightforward.

{ Hybrid game automata: we have extended the synthesis algorithm to hybrid
automata with uncontrollable switching which the controller cannot govern. The
next extension is to more general hybrid games where the controller and the
environment can have joint moves, as is done in [16] for timed automata. The
synthesis of controllers in this setting can be solved at the price of adding a
quanti�er to the one-step predecessor operator.

{ Di�erential games: we believe that our techniques can be adapted to construct
strategies for linear di�erential games of the form _x = Ax+Bu+Cv where u is
a control input and v represents uncontrolled disturbance. One way to solve this
problem is to discretize u and hence restrict the control to be piecewise-constant.
This reduces the synthesis problem to the problem of mode switching solved in
Chapter 7.

More ambitiously, our synthesis algorithm could be generalized for systems with non-
linear continuous dynamics. This requires a method for under-approximating reachable
sets, and hence an extension of face lifting or a new technique needs to be investigated.

� Tool:
The current version of the tool is not yet as general purpose as we would like. Many
features can be added, such as the integration of the face lifting algorithm. As veri-
�cation is often expensive, we are considering an extension of the tool to include the
analysis in a `simulation' fashion, that is, reachability is performed from only some
subsets of the initial set. Although this analysis does not give a formal proof that the
system is safe, it provides more reliable results than traditional simulation techniques.
Besides the improvements on the algorithmic level, the graphical interface needs to
be enhanced to allow more interactive analysis. This feature should not be underesti-
mated since it facilitates better understanding of the behavior of the model and can
serve for diagnostics purposes.

182 Conclusions

Clearly there is signi�cant work that needs to be completed. Experimentation is not
only a way to assess the methods and tools, but also a source of inspiration. The
tool is currently under testing with examples taken from tra�c control, engine control,
robotics, and chemical process control, and more improvements can be made based on
the accumulated experience. Recent results seem encouraging, and we feel hopeful that
the techniques developed in this thesis will eventually be applied to real-life problems.

Bibliography

[1] G. Alefeld and J. Hezberger. Introduction to Interval Computations. Academic Press,
New York, 1983.

[2] J.C. Alexander and T.I. Seidman. Sliding modes in intersecting switching surfaces.
Houston J. Math., 24:545{569, 1994.

[3] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138:3{34, 1995.

[4] R. Alur, C. Courcoubetis, T.A. Henzinger, and P.-H. Ho. Hybrid automata: an al-
gorithmic approach to the speci�cation and veri�cation of hybrid systems. In R.L.
Grossman, A. Nerode, A.P. Ravn, and H. Rischel, editors, Hybrid Systems, Lecture
Notes in Computer Science 736, pages 209{229. Springer-Verlag, 1993.

[5] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,
126:183{235, 1994.

[6] R. Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee. Modular speci�cation of hybrid sys-
tems in CHARON. In N. Lynch and B.H. Krogh, editors, Hybrid Systems: Computation
and Control, Lecture Notes in Computer Science 1790, pages 6{19. Springer-Verlag,
2000.

[7] R. Alur, T.A. Henzinger, G. La�erriere, and G. Pappas. Discrete abstractions of hybrid
systems. In Proc. of the IEEE, 2000.

[8] P.J. Antsaklis, J.A. Stiver, and M.D. Lemmon. Hybrid system modeling and au-
tonomous control systems. In R.L. Grossman, A. Nerode, A.P. Ravn, and H. Rischel,
editors, Hybrid Systems, Lecture Notes in Computer Science 736, pages 366{392.
Springer-Verlag, 1993.

[9] E. Asarin, S. Bansal, B. Espiau, T. Dang, and O. Maler. On hybrid control of under-
actuated mechanical systems. Technical report, Verimag, Grenoble, 2000. Submitted
to Hybrid Systems: Computation and Control 2001.

183

184 BIBLIOGRAPHY

[10] E. Asarin, O. Bournez, T. Dang, and O. Maler. Approximate reachability analysis
of piecewise-linear dynamical systems. In B. Krogh and N. Lynch, editors, Hybrid
Systems: Computation and Control, Lecture Notes in Computer Science 1790, pages
20{31. Springer-Verlag, 2000.

[11] E. Asarin, O. Bournez, T. Dang, O. Maler, and A. Pnueli. E�ective synthesis of
switching controllers for linear systems. Proceedings of the IEEE, July, 2000.

[12] E. Asarin and R.N. Izmailov. Determining the sliding speed on a discontinuity sur-
face. Avtomatika Telemekhanika, 9:1181{1185, 1989. transl., Automation and Remote
Control 50.

[13] E. Asarin and O. Maler. As soon as possible: Time optimal control for timed automata.
In F. Vaandrage and J. van Schuppen, editors, Hybrid Systems: Computation and
Control, Lecture Notes in Computer Science 1569, pages 19{30. Springer-Verlag, 1999.

[14] E. Asarin, O. Maler, and A. Pnueli. Reachability analysis of dynamical systems having
piecewise-constant derivatives. Theoretical Computer Science, 138:35{66, 1995.

[15] E. Asarin, O. Maler, and A. Pnueli. Symbolic controller synthesis for discrete and
timed systems. In P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, editors, Hybrid
Systems II, Lecture Notes in Computer Science 999, pages 1{20. Springer-Verlag, 1995.

[16] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed automata.
In IFAC Symposium on System Structure and Control, pages 469{474. Elsevier, 1998.

[17] J.P. Aubin and A. Cellina. Di�erential Inclusions: Set-valued Maps and Viability
Theory. Springer, 1984.

[18] A. Balluchi, L. Benvenuti, G.M. Miconi, U. Pozzi, T. Villa, M.D. Di Benedetto,
H. Wong-Toi, and A. L. Sangiovanni-Vincentelli. Maximal safe set computation for
idle speed control of an automative engine. In B. Krogh and N. Lynch, editors, Hybrid
Systems: Computation and Control, Lecture Notes in Computer Science 1790, pages
32{44. Springer-Verlag, 2000.

[19] C.B. Barber, D.P. Dobkin, and H.T. Huhdanpaa. The quickhull algorithm for convex
hulls. ACM Transactions on Mathematical Software, 22(4):469{483, 1996.

[20] G. Behrmann, T. Hune, and F.W. Vaandrager. Distributed timed model checking -
how the search order matters. In Computer Aided Veri�cation, CAV'2000, Lecture
Notes in Computer Science. Springer-Verlag, 2000.

[21] A. Bemporad and F.D. Torrisi. Inner and outter approximation of polytopes using
hyper-rectangles. Technical report, Automatic Control Lab, ETH, Zurich, 2000.

[22] N. Bjorner, A. Browne, E. Chang, A.M. Colon, A. Kapur, Z. Manna, H. Sipma, and
T. Uribe. STeP: Deductive-algorithmic veri�cation of reactive and real-time systems.
In Computer Aided Veri�cation, Lecture Notes in Computer Science. Springer-Verlag,
1996.

BIBLIOGRAPHY 185

[23] O. Botchkarev. Ellipsoidal techniques for veri�cation of hybrid systems.
Technical report, University of California in Berkeley, 2000. Available at:
http://robotics.eecs.berkeley.edu/~olegb/VeriSHIFT.

[24] O. Botchkarev and S. Tripakis. Veri�cation of hybrid systems with linear di�erential
inclusions using ellipsoidal approximations. In B. Krogh and N. Lynch, editors, Hybrid
Systems: Computation and Control, Lecture Notes in Computer Science 1790, pages
73{88. Springer-Verlag, 2000.

[25] O. Bournez. Complexit�e algorithmique des syst�emes dynamiques continus et hybrides.
PhD thesis, �Ecole Normale Sup�erieure de Lyon, Laboratoire de l'Informatique du Par-
all�elisme, 1999.

[26] O. Bournez, O. Maler, and A. Pnueli. Orthogonal polyhedra: Representation and
computation. In F. Vaandrager and J. van Schuppen, editors, Hybrid Systems: Com-
putation and Control, Lecture Notes in Computer Science 1569, pages 46{60. Springer-
Verlag, 1999.

[27] M.S. Branicky. Studies in Hybrid Systems: Modelling, Analysis, and Control. PhD
thesis, Massachusetts Intistute of Tech., 1995.

[28] M.S. Branicky, V.S. Borkar, and S.K. Mitter. A uni�ed framwork for hybrid control. In
Proc. of the 33rd International Conference on Decision and Control, pages 4228{4234,
1994.

[29] P. Caspi. Global simulation via partial di�erential equations. Unpublished note, Ver-
imag, 1993.

[30] A. Chutinan. Hybrid System Veri�cation Using Discrete Model Approximations. PhD
thesis, Carnegie Mellon University, Department of Electrical and Computer Engineer-
ing, May 1999.

[31] A. Chutinan and B.H. Krogh. Veri�cation of polyhedral invariant hybrid automata
using polygonal ow pipe approximations. In F. Vaandrager and J. van Schuppen,
editors, Hybrid Systems: Computation and Control, Lecture Notes in Computer Science
1569, pages 76{90. Springer-Verlag, 1999.

[32] E.M. Clarke, O. Grumberg, and D. Long. Veri�cation tools for �nite-state concurrent
systems. In Proceedings of A Decade of Concurrency: Reections and Perspectives,
REX School/Symposium, pages 124{175. Springer-Verlag, June 1994.

[33] E.M. Clarke and J.M. Wing. Formal methods: State of the art and future directions.
ACM Computing Surveys, 28:623{643, August 1996.

[34] S.D. Cohen and A.C. Hindmarsh. CVODE, a sti�/nonsti� ode solver in C. Computers
in Physics, 10(2):138{143, 1996.

186 BIBLIOGRAPHY

[35] P. Cousot and R. Cousot. Abstract interpretation and application to logic programs.
Journal of Logic Programming, pages 103{179, 1992.

[36] J.E.R. Cury, B.H. Krogh, and T. Niinomi. Supervisory controllers for hybrid systems
based on approximating automata. IEEE Trans. on Automatic Control, 43:564{568,
1998.

[37] D. Van Dalen. Logic and Structure. Springer-Verlag, 1994.

[38] T. Dang. d/dt manual. Technical report, Verimag, Grenoble, 2000.

[39] T. Dang and O. Maler. Reachability analysis via face lifting. In T.A. Henzinger
and S. Sastry, editors, Hybrid Systems: Computation and Control, Lecture Notes in
Computer Science 1386, pages 96{109. Springer-Verlag, 1998.

[40] C. Daws and S. Tripakis. Model checking of real-time reachability properties using
abstractions. In B. Ste�en, editor, Tools and Algorithms for the Construction and
Analysis of Systems, TACAS'98, Lecture Notes in Computer Science 1384. Springer-
Verlag, 1998.

[41] G.A. Edgar. Measure, Topology, and Fractal Geometry. Kluwer Springer, 1995.

[42] B. Espiau and C. Canudas de Wit. Sur la commande orbitale de certains systems
m�ecaniques sous-action�es. Technical report, BIP, Inria, France, June 2000.

[43] A.F. Filippov. Di�erential Equations with Discontinuous Righthand Sides. Kluwer,
1988.

[44] H. Fuchs, Z. Kedem, and B. Naylor. On visible surface generation by a priori tree
structures. In Proc. of SIGGRAPH'80, pages 124{133, 1980.

[45] A. G�oll�u and P. Varaiya. Hybrid dynamical systems. In Proc. of the 28th International
Conference on Decision and Control, pages 2708{2712, 1989.

[46] N. Greene. Graphics Gems IV, chapter Detecting intersection of a rectangular solid
and a convex polyhedron, pages 74{82. Academic Press, 1994.

[47] M.R. Greenstreet. Verifying safety properties of di�erential equations. In R. Alur
and T.A. Henzinger, editors, Computer Aided Veri�cation, CAV'96, Lecture Notes in
Computer Science 1102, pages 277{287. Springer-Verlag, 1996.

[48] M.R. Greenstreet and I. Mitchell. Integrating projections. In T.A. Henzinger and
S. Sastry, editors, Hybrid Systems: Computation and Control, Lecture Notes in Com-
puter Science 1386, pages 159{1740. Springer-Verlag, 1998.

[49] M.R. Greenstreet and I. Mitchell. Reachability analysis using polygonal projections.
In F. Vaandrager and J. van Schuppen, editors, Hybrid Systems: Computation and
Control, Lecture Notes in Computer Science 1569, pages 76{90. Springer-Verlag, 1999.

BIBLIOGRAPHY 187

[50] R.L. Grossman, A. Nerode, A.P. Ravn, and H. Rischel, editors. Hybrid Systems,
Lecture Notes in Computer Science 736. Springer-Verlag, 1993.

[51] N. Halbwachs. Delay analysis in synchronous programs. In C. Courcoubetis, editor,
Computer Aided Veri�cation, CAV'93, Lecture Notes in Computer Science 697, pages
333{346. Springer-Verlag, 1993.

[52] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Clarendon
Press, 1979.

[53] P. Hartman. Ordinary Di�erential Equations. Wiley, 1964.

[54] T.A. Henzinger. Hybrid automata with �nite bisimulations. In F. Vaandrager and
J. van Schuppen, editors, Proc. ICALP'95, Lecture Notes in Computer Science 944,
pages 324{335. Springer-Verlag, 1995.

[55] T.A. Henzinger and P.-H. Ho. A note on abstract-interpretation strategies for hybrid
automata. In P. Antsaklis, A. Nerode, W. Kohn, and S. Sastry, editors, Hybrid Systems
II, Lecture Notes in Computer Science 999, pages 252{264. Springer-Verlag, 1995.

[56] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A model checker for hybrid
systems. Software Tools for Technology Transfer, 1:110{122, 1997.

[57] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. Analysis of nonlinear hybrid systems.
IEEE Transactions on Automatic Control, 43:540{554, 1998.

[58] T.A. Henzinger, B. Horowitz, and R. Majumdar. Rectangular hybrid games. In
F. Vaandrager and J. van Schuppen, editors, Concurrency Theory, CONCUR'99, Lec-
ture Notes in Computer Science 1664, pages 320{335. Springer-Verlag, 1999.

[59] T.A. Henzinger, B. Horowitz, R. Majumdar, and H. Wong-Toi. Beyond HyTech: Hy-
brid system analysis using interval numerical methods. In B. Krogh and N. Lynch,
editors, Hybrid Systems: Computation and Control, Lecture Notes in Computer Sci-
ence 1790, pages 130{144. Springer-Verlag, 2000.

[60] T.A. Henzinger and P.W. Kopke. Discrete-time control for rectangular hybrid au-
tomata. Theoretical Computer Science, 221:369{392, 1999.

[61] M.W. Hirsch and S. Smale. Di�erential Equations, Dynamical Systems and Linear
Algebra. Academic Press, 1974.

[62] A. Iserles. A �rst course in Numerical Analysis of Di�erential Equations. Cambridge
University Press, 1996.

[63] B. Jeannet. Partitionnement dynamique dans l'analyse de relations lin�eaires et ap-
plication �a la v�eri�cation de programmes synchrones. PhD thesis, Institut National
Polytechnique de Grenoble, Laboratoire Verimag, 2000.

188 BIBLIOGRAPHY

[64] R.E. Kalman, P.L. Falb, and M.A. Arbib. Topics in Mathematical System Theory.
McGraw-Hill Book Company, 1968.

[65] Y. Kesten, A. Pnueli, J. Sifakis, and S. Yovine. Integration graphs, a class of decidable
hybrid systems. In P.J. Antsaklis, W. Kohn, M. Lemmon, A. Nerode, and S. Sastry,
editors, Proc. of Workshop on Theory of Hybrid Systems, Lecture Notes in Computer
Science 736, pages 179{208. Springer-Verlag, 1992.

[66] E.K. Kostoukova. State estimation for dynamic systems via parallelotopes: Optimiza-
tion and parallel computations. Optimization Methods and Software, 9:269{306, 1999.

[67] X.D. Koutsoukos, P.J. Antsaklis, M.D. Lemmon, and J.A. Stiver. Supervisory control
of hybrid systems. Proc. of the IEEE, 2000.

[68] S. Kowalewski, O. Stursberg, M. Fritz, H. Graf, J. Preu�ig, S. Simon, and H. Treseler.
A case study in tool-aided analysis of discretely controlled continuous systems: The
two-tanks-problem. In P.J. Antsaklis, W. Kohn, M. Lemmon, A. Nerode, and S. Sastry,
editors, Hybrid Systems V, Lecture Notes in Computer Science 1567, pages 163{185.
Springer-Verlag, 1999.

[69] S. Krishnan, A. Narkhede, and D. Manocha. Representation and computation of
boolean combinations of sculptured models. In Proc. 11th Annual ACM Symposium
Computational Geometry, pages C8{C9, 1995.

[70] R.P. Kurshan and K.L. McMillan. Analysis of digital circuits through symbolic reduc-
tion. IEEE Trans. on Computer-Aided Design, 10:1350{1371, 1991.

[71] A. Kurzhanski and I. Valyi. Ellipsoidal Calculus for Estimation and Control.
Birkhauser, 1997.

[72] A. Kurzhanski and P. Varaiya. Ellipsoidal techniques for reachability analysis. In
B. Krogh and N. Lynch, editors, Hybrid Systems: Computation and Control, Lecture
Notes in Computer Science 1790, pages 202{214. Springer-Verlag, 2000.

[73] G. La�erriere, G. Pappas, and S. Yovine. Reachability computation for linear systems.
In Proc. of the 14th IFAC World Congress, volume E, pages 7{12, 1999.

[74] K. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. Software Tools for Tech-
nology Transfert, 1(1), 1997.

[75] M.D. Lemmon, K.X. He, and I. Markovsky. A tutorial introduction to supervisory
hybrid system. Technical Report ISIS-98-004, ISIS Group, University of Notre Dame,
October 1998.

[76] M.D. Lemmon, K.X. He, and I. Markovsky. Supervisory hybrid system. IEEE Control
Systems Magazine, 19, 1999.

[77] M.C. Lin and D. Manocha. Fast interference detection between geometric models. The
Visual Computer, 11(10), 1995.

BIBLIOGRAPHY 189

[78] J. Lygeros, D.N. Godbole, and S. Sastry. Optimal control approach to multiagent,
hierarchical system veri�cation. In Proc. of IFAC World Congress, 1996.

[79] J. Lygeros, K.H. Johansson, M. Egerstedt, and S. Sastry. On the existence of executions
of hybrid automata. In Proc. of the 38th Annual International Conference on Decision
and Control, CDC'99. IEEE, 1999.

[80] J. Lygeros, C. Tomlin, and S. Sastry. Multiobjective hybrid controller synthesis. In
O. Maler, editor, Proc. International Workshop on Hybrid and Real-Time Systems,
Lecture Notes in Computer Science 1201, pages 109{123. Springer, 1997.

[81] J. Lygeros, C. Tomlin, and S. Sastry. Controllers for reachability speci�cations for
hybrid systems. Automatica, 35, 1999.

[82] J. Macki and A. Strauss. Introduction to Optimal Control Theory. Springer, 1982.

[83] O. Maler. A uni�ed approach for studying discrete and continuous dynamical sys-
tems. In Proc. of the 37th Annual International Conference on Decision and Control,
CDC'98. IEEE, 1998.

[84] O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems. In J.W. de Bakker,
C. Huizing, W.P. de Roever, and G. Rozenberg, editors, Real-Time: Theory in Practice,
Lecture Notes in Computer Science 600, pages 447{484. Springer-Verlag, 1992.

[85] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for timed
systems. In E.W. Mayr and C. Puech, editors, Proc. STACS'95, Lecture Notes in
Computer Science 900, pages 229{242. Springer-Verlag, 1995.

[86] Z. Manna and A. Pnueli. Temporal Veri�cation of Reactive Systems: Safety. Springer,
1995.

[87] K.L. McMillan. Symbolic Model Checking. Kluwer Academic, 1993.

[88] K. Mehlhorn and S. Naher. The LEDA Platform of Combinatory and Geometric Com-
puting. Cambridge University Press, 1999.

[89] I. Mitchell and C. Tomlin. Level set method for computation in hybrid systems. In
B. Krogh and N. Lynch, editors, Hybrid Systems: Computation and Control, Lecture
Notes in Computer Science 1790, pages 311{323. Springer-Verlag, 2000.

[90] T. Moor and J. Raisch. Discrete control of switched linear systems. In Proc. ECC'99,
1999.

[91] A.S. Morse. Control using logic-based switching. In A. Isidori, editor, Trends in Control
- An European Perspective, pages 69{113. Springer-Verlag, New York, 1995.

[92] A. Nerode and W. Kohn. Models for hybrid systems. In R.L. Grossman, A. Nerode,
A.P. Ravn, and H. Rischel, editors, Hybrid Systems, Lecture Notes in Computer Science
736, pages 317{356. Springer-Verlag, 1993.

190 BIBLIOGRAPHY

[93] X. Nicolin, A. Olivero, J. Sifakis, and S. Yovine. An approach to the description
and analysis of hybrid automata. In R.L. Grossman, A. Nerode, A.P. Ravn, and
H. Rischel, editors, Hybrid Systems, Lecture Notes in Computer Science 736, pages
149{178. Springer-Verlag, 1993.

[94] G. Pappas, G. La�erriere, and S. Yovine. A new class of decidable hybrid systems.
In F. Vaandrager and J. van Schuppen, editors, Hybrid Systems: Computation and
Control, Lecture Notes in Computer Science 1569, pages 29{31. Springer-Verlag, 1999.

[95] N.B.O.L. Pettit. Analysis of Piecewise Linear Dynamical Systems. Research Studies
Press LTD, 1995.

[96] M. Phillips, S. Levy, and T. Munzner. Geomview: An interactive geometry viewer.
Notices of the American Mathematical Society, October 1993.

[97] F.P. Preparata and M.I. Shamos. Computational Geometry. Springer-Verlag, 1985.

[98] A. Puri, V. Borkar, and P. Varaiya. �-approximation of di�erential inclusions. In
T.A. Henzinger R. Alur and E.D. Sontag, editors, Hybrid Systems III, Lecture Notes
in Computer Science 1066, pages 362{376. Springer-Verlag, 1996.

[99] A. Puri and P. Varaiya. Decidability of hybrid systems with rectangular di�erential in-
clusions. In Computer Aided Veri�cation, CAV'94, Lecture Notes in Computer Science
816, pages 54{104. Springer-Verlag, 1994.

[100] A. Puri and P. Varaiya. Driving safely in smart cars. Technical Report UBC-ITS-
PRR-95-24, California PATH, University of California in Berkeley, July 1995.

[101] A. Puri and P. Varaiya. Veri�cation of hybrid systems using abstraction. In A. Nerode
P. Antsaklis, W. Kohn and S. Sastry, editors, Hybrid Systems II, Lecture Notes in
Computer Science 999. Springer-Verlag, 1995.

[102] P.J. Ramadge and W.M. Wonham. The control of discrete event systems. Proc. of the
IEEE, 77, 1989.

[103] H.J. Samet. Design and Analysis of Spatial Data Structure: Quadtree, Octree, and
Other Hierachical Methods. Addison-Wesley, 1989.

[104] A.V.D. Schaft and H. Schumacher. An Introduction to Hybrid Dynamical Systems.
Lecture Notes in Control and Information Sciences 251. Springer, 1999.

[105] J.A. Sethian. Level Set Methods : Evolving Interfaces in Geometry, Fluid Mechanics,
Computer Vision, and Materials Science. Cambridge, 1996.

[106] O. Shakernia, G.J. Pappas, and S. Sastry. Decidable controller synthesis for classes
of linear systems. In B. Krogh and N. Lynch, editors, Hybrid Systems: Computation
and Control, Lecture Notes in Computer Science 1790, pages 407{420. Springer-Verlag,
2000.

BIBLIOGRAPHY 191

[107] O. Stursberg and S. Kowalewski. Approximating switched continuous systems by
rectangular automata. In Proc. ECC'99, 1999.

[108] O. Stursberg, S. Kowalewski, and S. Engell. Generating timed discrete models of
continuous systems. In Proc. 2nd IMACS Symposium on Mathematical Modelling,
MATHMOD'97, pages 203{209, 1997.

[109] O. Stursberg, S. Kowalewski, and S. Engell. On the generation of timed approximations
for continuous systems. Mathematical and Computer Modelling of Dynamical Systems,
6(1):51{70, 2000.

[110] M. Tittus and B. Egardt. Controllability and control-law synthesis of linear hybrid
systems. In G. Cohen and J.-P. Quadrat, editors, Proc. International Conference on
Analysis and Optimization of Systems, Lecture Notes in Computer Science 199, pages
377{383. Springer-Verlag, 1994.

[111] C. Tomlin, J. Lygeros, and S. Sastry. Conict resolution for air tra�c management: A
study in multi-agent hybrid systems. IEEE Trans. on Automatic Control, 43(4), 1998.

[112] C. Tomlin, J. Lygeros, and S. Sastry. A game-theoretic approach to controller design
for hybrid systems. Proc. of the IEEE, 2000.

[113] V.I. Utkin. Sliding Modes and their Application in Variable Structure Systems. Mir,
Moscow, 1978.

[114] P. Varaiya. Reach set computation using optimal control. In Proc. KIT Workshop,
Verimag, Grenoble, pages 377{383, 1998.

[115] V. Veliov. On the time-discretization of control systems. SIAM journal on Control
and Optimization, 35(5):1470{1486, 1997.

[116] C. Walnum. 3D Graphics Programming with OpenGL. Que Corp, 1995.

[117] K. Weiler. Topological Structures for Geometric Modeling. PhD thesis, Dept. Comput.
Syst. Engr., Rensselaer Polytechnic Inst., Troy, 1986.

[118] H. Wong-Toi. The synthesis of controllers for linear hybrid automata. In Proc. of the
36th International Conference on Decision and Control, CDC'97, 1997.

[119] H. Wong-Toi and G. Ho�mann. The control of dense real-time discrete event systems.
Technical report, Stanford University, 1992. Technical report STAN-CS-92-1411.

[120] S. Yovine. Kronos: A veri�cation tool for real-time systems. Software Tools for Tech-
nology Transfer, 1(1):123{133, 1997.

[121] J. Zhang, K.H. Johansson, and S. Sastry. Dynamical systems revisited: Hybrid sys-
tems with zeno executions. In B. Krogh and N. Lynch, editors, Hybrid Systems:
Computation and Control, Lecture Notes in Computer Science 1790, pages 451{464.
Springer-Verlag, 2000.

[122] F. Zhao. Automatic Analysis and Synthesis of Controllers for Dynamical Systems
Based on Phase-space Knowledge. PhD thesis, MIT, Arti�cial Intelligence Laboratory,
August 1992.

R�ESUM�E : Les syst�emes hybrides sont des syst�emes qui combinent des dynamiques dis-
cr�etes et continues. Cette th�ese propose des techniques algorithmiques de v�eri�cation et de
synth�ese pour ces syst�emes. Le manque de m�ethodes pour calculer les ensembles atteignables
par des dynamiques continues est l'obstacle principal vers une m�ethodologie algorithmique
de v�eri�cation. Nous d�eveloppons deux techniques d'atteignabilit�e approximatives pour les
syst�emes continus bas�ees sur une m�ethode e�cace pour repr�esenter des ensembles et une com-
binaison des techniques de la simulation, de la g�eom�etrie algorithmique, de l'optimisation et
de la commande optimale. La premi�ere technique est sp�ecialis�ee pour les syst�emes lin�eaires
et �etendue aux syst�emes avec entr�ee incertaine. La seconde peut être appliqu�ee aux syst�emes
non-lin�eaires. En appliquant ces techniques nous d�eveloppons un algorithme de v�eri�cation
des propri�et�es de sûret�e pour des syst�emes hybrides avec des dynamiques continues et dis-
cr�etes g�en�erales. Nous �etudions ensuite le probl�eme de la synth�ese de contrôleurs de sûret�e
pour les syst�emes hybrides. Nous pr�esentons un algorithme de synth�ese des contrôleurs
par commutation bas�e sur le calcul de l'ensemble d'invariance maximal et les techniques
d'analyse d'atteignabilit�e. Nous d�ecrivons l'outil d/dt qui permets la v�eri�cation et la syn-
th�ese automatique pour les syst�emes hybrides avec des inclusions di��erentielles lin�eaires.
Nous avons appliqu�e avec succ�es l'outil pour analyser quelques syst�emes pratiques.

ABSTRACT: This thesis proposes a practical framework for the veri�cation and synthesis
of hybrid systems, that is, systems combining continuous and discrete dynamics. The lack of
methods for computing reachable sets of continuous dynamics has been the main obstacle to-
wards an algorithmic veri�cation methodology for hybrid systems. We develop two e�ective
approximate reachability techniques for continuous systems based on an e�cient represen-
tation of sets and a combination of techniques from simulation, computational geometry,
optimization, and optimal control. One is specialized for linear systems and extended to
systems with uncertain input, and the other can be applied for non-linear systems. Using
these reachability techniques we develop a safety veri�cation algorithm which can work for a
broad class of hybrid systems with arbitrary continuous dynamics and rather general switch-
ing behavior. We next study the problem of synthesizing switching controllers for hybrid
systems with respect to a safety property. We present an e�ective synthesis algorithm based
on the calculation of the maximal invariant set and the approximate reachability techniques.
Finally, we describe the tool d/dt which provides automatic safety veri�cation and controller
synthesis for hybrid systems with linear di�erential inclusions. Besides numerous academic
examples, we have successfully applied the tool to verify some practical systems.
Keywords: Hybrid automata, di�erential equations, reachability analysis, formal veri�ca-
tion, controller synthesis.

MOTS-CL�ES : Automates hybrides, �equations di��erentielles, analyse d'atteignabilit�e, v�eri-
�cation formelle, synth�ese de contrôleurs.

SP�ECIALIT�E : Automatique, Productique
VERIMAG, 2, avenue de Vignate, 38610 Gi�eres, France, http://www-verimag.imag.fr

