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Introduction

Dynamical systems are present everywhere in science. Many models of natural processes
yield dynamical systems. A dynamical system is a system whose state changes with time.
There exist two main types of dynamical systems: discrete dynamical systems that are
represented by difference equations and continuous dynamical systems that are represented
by differential equations.

The state of a system can be described by a number of variables that we will centralize
in the n-dimensional vector X = (z1, ... ,%,). The variable ¢ denotes time. We are inter-
ested in continuous dynamical systems that can be described by a system of autonomous
differential equations

X = F(x) (1)

where F = (f1, ..., fn) is a vector. The components f; € C=!(M,C") are defined on the
open convex subset M. The fact that we consider systems implies that n is greater than
1. In particular the cases n = 2 and n = 3 will be studied very closely.

The solutions of dynamical systems are given by their flow that is denoted by ®. The
velocity of the flow is given by the vector field F'. In general the flow ® is approximated
by numerical algorithms. But those methods are not very precise in the neighbourhood
of singularities and they do not allow the study of systems containing parameters. On
the other hand most differential equations (even simple ones) have no explicit solution.
Therefore in this thesis we will employ another approach proposed by H. Poincaré to
solve this dilemma. The explicit analytic study of a differential equation is replaced by
qualitative studies.

To study the qualitative behaviour of dynamical systems means to classify them into
equivalence classes of similar behaviour. This classification is realized by local diffeo-
morphisms. That means that those studies are strictly local. They are only valid in the
neighbourhood of a point or another object. In two dimensions and for some higher dimen-
sional problems the results of those considerations can be used to approximate algebraic
solutions.

Dynamical systems described by equations as (1) often arise from modeling problems
in science. The variable X denotes involved physical quantities that change with time.
Those changes are described by a system of differential equations.

Example 1 (Planar Pendulum) Newton’s third law

F=ma
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Figure 1: Planar pendulum, see example 1.

describes the behaviour of many physical systems. In absence of friction we find the rela-

tions
F=—-—mgsinz

a:g—;(lx)

for a planar pendulum (see figure 1). The variable m denotes the mass of the pendulum ,
[ its length and g the gravitational constant. As the acceleration a is the second derivative
of displacement x this is a second order differential equation

:}j+%sinx:0

that can be rewritten as a first order system

=y
y = —9sin(z)
in the variables x and the new variable y.

This thesis is split into three parts. The first part introduces some main tools that will
be used in the algorithms for the reduction of two- and higher-dimensional systems. Those
algorithms are described in the second part. The third part of this thesis deals with the
implementation of the algorithms and the programming aspects. We will also give some
examples for the use of the Maple package that has been implemented by the author.

We will give a more precise overview for each chapter of this thesis.

First part: The integration of dynamical systems

Formal solutions for dynamical systems

This chapter introduces some basic notations and definitions for dynamical systems as
they can be found in many references on dynamical systems (see for example the works
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from K. Alligood, T. Sauer and J. Yorke [39], F. Verhulst [26], J. Hale and H. Korcak [33],
S. Chow and J. Hale [14], J. Guckenheimer and P. Holmes [36], D. Arrowsmith and C.
Place [17] and J. Hubbard and B. West [34]).

Systems of differential equations and vector fields can be used to represent the same
dynamics. Therefore the theory of dynamical systems largely uses the notations of vector
fields. Their solutions are called global or local flows. In general global flows can’t be
calculated. That is why the computation of local flows and local studies of vector fields
or differential equations is the main intention in the theory of dynamical systems.

If the linear part of a system exists and if the linearized vector field is equivalent
or conjugated to the initial one a lot of qualitative attributes of vector fields can be
derived from the linearized one. Therefore definitions for equivalence of vector fields
using diffeomorphisms play a very important role in qualitaive studies of vector fields and
differential equations.

Transformations that are no equivalence transformations, so called time transforma-
tions, are also frequently used to find solution curves for differential equations. The trans-
formations do not yield equivalent vector fields and we can no longer retransform solutions
of time transformed equations to solution of the initial differential equations. Therefore
the curves obtained from an integration of the new system can no longer be considered as
equivalent to the flow of the initial one. That is why we introduce the notation of solution
curves that are parametrizations of the flows of the initial system.

In general normal form constructions that are introduced in chapter 3 yield diverging
series. For this reason all calculated solutions might also be divergent. That is why
all considerations are purely formal. We work in the ring of formal power series. The
implemented algorithms work with truncations that are polynomials as formal power series
can not be handeled in computations.

The Newton diagram

Many transformations applied to a vector field can be interpreted geometrically and the
geometric aspects of vector fields can be used to find transformations that reduce and
simplify the considered vector field.

The most important tool for the geometric interpretation of transformation is the
Newton diagram or the Newton polygon. The Newton polygon is also used directly to
find solutions for differential equations (see for example works from J. Della Dora and F.
Jung [19], F. Beringer and F. Jung [6] and J. Cano [37]). For the algorithms proposed
here however the Newton diagram and the support of a considered system will be used to
calculate matrices that define power transformations.

Power transformations are a very powerful tool for handling systems of differential
equations. They can be used to reduce singularities of systems having a nilpotent linear
part as we will see in chapter 4 or to integrate systems that are in normal form (see
chapter 7 and 9). Power transformation manipulate the exponents of the concerned system.
The geometric interpretation of this manipulation is very simple as it induces an affine
transformation on the support of the concerned system. Some results concerning power
transformations are given in works from A. Bruno (][9] and [1]).

To validate the use of power transformations we have to prove that power transforma-
tions are diffeomorphisms. But some power transformations are not injective on the whole
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definition set. Therefore the definition set is limited such that the transformations are
injective on this set. Their surjectivity is guranteed by a construction that makes them
” piecewise surjective”.

In section 4 and 8 we will handle systems that also have negative exponents. They can
be reduced by power transformations as their support lies within a cone. Therefore the
intention of geometric manipulations of vector field often consists in manipulating those
cones.

Normal forms

As mentioned before some of the most important properties of a vector field can be deduced
from its linear part if it exists.

In certain cases there exist diffeomorphisms that transform a considered vector field
into a linear one. Though in general it is not possible to linearize a given vector field
entirely we can find diffeomorphisms that reduce the vector field to a ”simpler” vector
field. However the definition of ”simpler” is not unique. The complexity of a vector field
usually depends on the number and the properties of the nonlinear terms. A ”simpler”
vector field usually has fewer nonlinear terms or its nonlinear terms have special properties.
When the system can no longer be reduced is said to be in normal form.

There exist many different approaches to normal forms. We use the Poincaré-Dulac
normal form as it can be integrated for two-dimensional systems (chapter 7). The Poincaré-
Dulac normal form is mainly due to H. Poincaré [47], H. Dulac [21] and G. Birkhoff [7]. It
can be calculated using the adjoint representation method that is due to G. Iooss [35] or
more efficiently using Lie theory as it has been proposed by K. T. Chen [40] or A. Deprit
[3].

Recently a lot of work has been done in normal form theory. The first step in calcu-
lating the Poincaré-Dulac normal form is the calculation of the Jordan form of the matrix
representing its linear part. This is far from being trivial (see I. Gil [29] and M. Gries-
brecht [31]). But it can be avoided by using the Frobenius form of a matrix (see works
from G. Chen [13]). R. Cushman and A. Sanders [16] propose an algorithm that can be
used for the calculation of vector fields with nilpotent but non-vanishing linear part. The
case of normal forms for Lotka-Voltera systems have been studied by S. Louies and L.
Brenig [50]. Algorithms that use Carleman-linearizations to compute normal forms have
been proposed by L. Stolovitch [56] and G. Chen [13].

Resolution of singularities by blowing-up

The Poincaré-Dulac normal form theorem can no longer be applied if the linear part of the
considered vector field is nilpotent. In this case blowing-up is used. Blowing-up involves
changes of coordinates (polar coordinates or power transformations) which expand or
blow-up the singularity of the vector field into a set on which a finite number of simpler
singularities occur.

Directional blowing-up was first introduced for plane algebraic curves by O. Zariski
[66] and for two-dimensional differential equation by A. Seidenberg [53]. Since then many
others have worked on this subject. For our constructions we will use quasihomogeneous
blowing-up that is given by power transformations and that have first been used by A.
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Bruno [9] and more recently by M. Brunella and M. Miari [8]. They use unimodular matri-
ces and work mainly with two-dimensional problems. We extend blowing-up construction
to power transformations defined by any invertible matrix as unimodular matrices are not
sufficient for problems appearing in dimension 3. It will be shown in chapter 2 that those
matrices define diffeomorphisms in a subset of the concerned neighbourhood and that their
use is therefore allowed.

Second part: The Algorithms

Classification

The proposed algorithms handle the reduction of dynamical systems and the computation
of solution curves for several cases. The case of a simple or regular point, the case of an
elementary singular point (non-nilpotent linear part) and the case of a nonelementary sin-
gular point (nilpotent linear part) are treated separately. The first step in any calculation
is to classify a given system to allow to handle it with the appropriate methods.

Regular points

In the neighbourhood of a regular point any system can be reduced to a system with a
very simple form that is a kind of normal form. It can easily be integrated. The problem
of calculating this normal form can be reduced to the problem of calculating the flow of a
system of differential equations near a simple point. The change of coordinates is computed
using Taylor series. This method is described in many references treating Lie theory and
vector fields (W. Groebner [62], W. Groebner and H.Knapp [63] and P. Olver[46]).

Two-dimensional elementary singular points

A singular point is called elementary singular point if the considered system has a non-
nilpotent Jacobian matrix there. Then the Poincaré-Dulac theorem can be applied to
calculate the normal form of the considered system. The two dimensional Poincaré-Dulac
normal form is integrable as it has been shown by A. Bruno [9].

A special case is represented by systems with purely imaginary eigenvalues. They yield
periodic solutions that are best represented in polar coordinates. This also allows us to
obtain real solution curves if the initial system is real.

Two-dimensional nonelementary singular points

In the case of a nonelementary singular point there exist two methods to find solution
curves. Blowing-ups that are introduced in chapter 4 reduce the complexity of the con-
sidered singularity. They yield several new systems instead of only one initial system.
The new systems are treated recursively be applying the entire algorithm (starting with
the classification). Another method that is to use time transformations to compute non-
nilpotent systems that have their support in a cone. An appropiate power transformation
reduces this system to a non-nilpotent system with integer exponents. Solution curves
for this system can easily be calculated via normal forms as in the case of an elementary
singular point.
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Both methods are controlled by the Newton diagram. The edges are used to compute
the matrices defining the power transformations for the blowing-ups and the vertices define
the time transformations.

These methods yield many solutions. Therefore a central point of this part of the algo-
rithm is the use of sectors. The sectors define the domains of the concerned neighbourhood
where the calculated solution curves are valid. They allow a very efficient handling of the
solutions.

Three and higher dimensional elementary singular points

The algorithms described in this chapter have so far only been treated very superficially
by A. Bruno [1]. Using these works as a starting point we propose a more complete study
of the case of three- and higher-dimensional elementary singular points.

In a first step the Poincaré-Dulac normal form is calculated. This normal form can
be reduced to a system from which we can split a system of lower dimension. The power
transformation used for the reduction has to verify very strict conditions. Problems can
occur if some of those vectors have negative coordinates. These problems arise from the
higher dimension of the resonant plane and its position in the space of exponents. We
propose a classification of three-dimensional normal forms that allows the reduction and
integration of any three-dimensional normal form.

The virtual Newton diagram allows to generalize the results obtained from the intense
study of three-dimensional normal forms to higher dimensional systems.

Three and higher dimensional nonelementary singular points

Three and higher dimensional systems with nonelementary singular points can also be
treated by blowing-ups. However there still remain many problems as it has been shown
for 3 dimensions by X. Gomez-Mont and I. Luengo [30]. Three dimensional systems can not
always be reduced entirely by a finite number of successive blowing-ups. Nevertheless we
give some examples that use 3 dimensional blowing-ups. For these examples the correctness
of the constructions have been proved by F. Cano and D. Cerveau [10]. We propose
a construction of blowing-ups that is controlled by the Newton diagram or the virtual
Newton diagram and that considers a definition of sectors that is different to the definition
given by A. Bruno [9]. It is strongly connected to the cones that contain the support of
the initial system.

Third part: Implementation

The algorithms described in the previous part have been implemented in the FRIDAY !
MAPLE package.

The FRIDAY package

This chapter gives a description of the package and a large number of examples for its use.
The FRIDAY package is organized in modules according to the classification of dynamical

FRIDAY stands for Formal Reduction and Integration of Dynamical Autonomous Systems
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systems. However only a few procedures are visible to the user. The main procedure
can be used to integrate any two-dimensional and a large number of three-dimensional
dynamical systems. Besides this procedure the modules that compute normal forms can
be used separately.

In this thesis we will show how tools as normal forms and power transformations can be
used for the formal reduction and integration of dynamical systems. For two-dimensional
systems and three-dimensional systems with elementary singular points the proposed al-
gorithms have been implemented and tested. However there still remain theoretical and
practical problems especially in the field of three- and higher dimensional systems with
nonelementary singular points.






Introduction

Les systéemes dynamiques sont présents partout dans la science. Ils proviennent de nom-
breux modeles simulant des phenomenes naturels. Il y a deux types principaux de systémes
dynamiques: les systémes discrets qui sont représentés par des équations aux différences
et les systémes continus qui sont caractérisés par des systemes d’équations différentielles.

L’état d’un systeme peut étre décrit par un nombre de variables qui sont réunies dans
le vecteur X = (z1, ... ,x,). La variable ¢ dénote le temps. Dans cette thése nous nous
intéressons aux systemes dynamiques continus qui peuvent étre représentés par un systeme
d’équations différentielles autonomes. Ces systémes seront notés

X = F(x) (2)

ou F'=(f1, ..., fn) est un vecteur de dimension n. Le fait que nous étudions des systemes
implique que n > 1. Nous allons en particulier étudier les cas n =2 et n = 3.

Les solutions des systémes dynamiques sont données par leur flot ®. La vitesse du
flot est définie par le champ de vecteurs F. En général le flot ® est approché par des
algorithmes numériques. Mais ces méthodes ne sont pas tres précises dans le voisinage des
singularités et elles ne permettent pas l'utilisation de parameétres. Par contre la plupart
des équations différentielles (mémes les plus simples) n’ont pas de solutions explicites.
Dans cette these nous allons utiliser une autre approche, proposé par Poincaré. L’étude
explicite analytique d’une équation différentielle est remplacée par une analyse qualitative.

Etudier le comportement qualitatif des systémes dynamiques signifie les répartir dans
des classes d’équivalence représentant des systemes ayant le méme comportement. Cette
classification est réalisée a ’aide de difféomorphismes locaux. Cela veut dire que I'analyse
qualitative utilisant cette approche fournit des résultats qui ne sont valables que localement
dans le voisinage d’un point. Dans le cas de systemes dynamiques de dimension deux cette
analyse peut étre utilisée pour approcher des solutions algébriques.

Des systemes dynamiques de la forme (2) sont souvent issus de la modélisation de
problemes scientifiques. La variable X représente les quantités physiques concernées
qui changent au cours du temps t. Ces changements sont caracterisés par un systéme
d’équations différentielles.

Exemple 1 (Pendule) Le comportement de nombreux modéles en mécanique est décrit
par la troisiéme loi universelle de la mécanique

F=ma.
En Uabsence de friction, les équations

F=—-mgsinz
2
az%(lm)

17
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Figure 2: Le pendule de I'exemple 1.

définissent le comportement d’un pendule (voir figure 2). La variable m représente la masse
du pendule, | sa longueur et g est la constante gravitationelle. Nous pouvons décrire ces
relations par une équation différentielle d’ordre deuz

.. g .

T+ 7 sinz =0
car laccélération o est égale d la deuxieme dérivée du déplacement x. Ceci définit un
systeme d’ordre un en deuz dimensions

=y
y = —Isin(z)

que nous obtenons en introduisant la variable y.

Dans cette thése nous avons montré comment des outils comme les formes normales et les
transformation quasi-monomiales peuvent étre utilisés pour la réduction et l'intégration
formelle des systemes dynamiques. Pour les systémes en dimension deux et les systémes
non nilpotents en dimension trois les algorithmes proposés ont éte implantés et testés.
Néanmoins, de nombreux problémes théoriques et pratiques restent a résoudre, surtout
dans le domaine des systemes nilpotents.



Resumé par chapitre

Cette these est divisée en trois parties. Dans la premiere partie nous allons introduire

des outils essentiels qui seront utilisés pour la réduction des systémes considérés. Dans la
deuxieme partie nous allons décrire les aspects algorithmiques de ces réductions. L’implantation
en MAPLE de ces algorithmes est le sujet de la troisiéme partie. Nous allons décrire les
aspects de programmation et quelques exemples qui illustrent I'utilisation du logiciel im-
planté. Nous détaillons ci-dessous le plan de chaque chapitre.

Premiere partie: Intégration des systemes dynamiques

Les solutions formelles des systémes dynamiques

Dans ce chapitre nous introduisons les notions et les définitions de base que nous utiliserons
constamment par la suite. Elles peuvent également étre trouvées dans de nombreuses
références sur les systémes dynamiques (voir par exemple les travaux de K. Alligood, T.
Sauer et J. Yorke [39], F. Verhulst [26], J. Hale et H. Korcak [33], S. Chow et J. Hale [14],
J. Guckenheimer et P. Holmes [36], D. Arrowsmith et C. Place [17] et J. Hubbard et B.
West [34]).

Les systemes dynamiques et les champs de vecteurs peuvent étre utilisés pour représenter
la méme dynamique. Par conséquent la théorie des systémes dynamiques fait largement
appel a la notion de champs de vecteurs. En général les flots globaux des champs de
vecteurs ne peuvent pas étre calculés. Pour cette raison le calcul des flots locaux et I'étude
locale sont les buts principaux de la théorie des systémes dynamiques. Si la partie linéaire
d’un champs de vecteurs existe dans le voisinage d’un point singulier celle-ci peut étre
équivalente ou conjugé au champ de vecteurs non linéaire associé. Cela signifie que de
nombreuses caractéristiques du champ de vecteurs non linéaire peuvent étre déduits du
champ linéarisé.

Pour cette raison la notion d’équivalence de champs de vecteurs est trés importante
dans ’analyse qualitative des champs de vecteurs et des équations différentielles.

Nous allons souvent utiliser des changements de temps. Ces transformations ne sont
pas des transformations d’équivalence. Par conséquent les champs de vecteurs issus d’un
changement de temps ne sont pas équivalents au champ de vecteurs initial. Les flots cal-
culés pour des systemes transformés par un changement de temps ne peuvent en général
pas étre transformés en des solutions du systeme initial. Pour cette raison nous intro-
duisons la notion de courbes de solutions. Ces courbes représentent des paramétrisations
du flot du systéme initial.

Pourtant, dans certains cas, il existe une relation d’équivalence entre le systéeme de

19
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départ et le systeme transformé par un changement de temps. Dans le cas des systémes
hamiltoniens les deux systemes ont les mémes intégrales premieres. Si nous considérons
uniquement les systemes en deux dimensions, les deux systémes peuvent étre considérés
comme provenant de la méme équation différentielle scalaire. Ces relations peuvent
également étre utilisées pour vérifier les résultats calculés.

Le calcul des formes normales que nous allons introduire au chapitre 3 donne souvent
des séries divergentes. C’est pourquoi nous nous placerons souvent dans I’anneau des séries
formelles. Toutes les considérations seront alors purement formelles.

Le diagramme de Newton

De nombreuses transformations que nous allons utiliser pour la réduction des champs de
vecteurs peuvent étre interprétées géométriquement. De plus, les aspects géométriques des
champs de vecteurs peuvent étre utilisés pour trouver des transformations qui réduisent
le champ de vecteurs comme on le souhaite.

L’outil le plus important pour ’analyse géométrique est le diagramme ou le polygone
de Newton. Il peut aussi étre utilisé directement pour calculer des solutions d’équations
différentielles (voir par exemple J. Della Dora and F. Jung [19], F. Beringer and F. Jung
[6] and J. Cano [37]). Néanmoins, pour les algorithmes que nous allons proposer ici
le diagramme de Newton et le support d’un systéme vont étre utilisés pour définir des
tranformations quasi-monomiales. Ces transformations sont un outil trés puissant pour
manipuler des systemes dynamiques. Nous allons les utiliser pour réduire les singularités
des systemes nilpotents (voir chapitre 4) et pour intégrer des systémes qui sont sous forme
normale (voir les chapitres 7 et 9). Les transformations quasi-monomiales manipulent les
exposants des systemes concernés. L’interprétation géométrique de ces manipulations peut
étre décrite par I'effet d’une transformation affine sur les exposants. Quelques résultats sur
les transformations quasi-monomiales peuvent étre trouvés dans les travaux de A. Bruno
(19] et [1]).

Pour valider 'utilisation des transformations quasi-monomiales nous devons prouver
que ce sont des difffomorphismes. Néanmoins certaines transformations ne sont pas in-
jectives sur 'ensemble du domaine de définition. Pour cette raison nous allons limiter ce
domaine de sorte que la transformation devienne injective. La surjectivité des transfor-
mations quasi-monomiales est assurée par une construction qui les rend surjectives par
morceaux.

Dans les chapitres 8 et 9 nous allons travailler sur des systéemes avec des exposants
négatifs. Ces systémes ne peuvent étre manipulés que parce que leur support est inclus
dans un céne convexe. Pour cette raison la manipulation des champs de vecteurs est
souvent fortement liée & la manipulations de cones dans I'espace des exposants.

Les formes normales

Comme nous venons de le mentionner, de nombreuses caractéristiques d’un champ de
vecteurs peuvent étre déduites de sa partie linéaire si celle-ci existe. Cependant, dans
certains cas le champ de vecteurs linéarisé n’est pas conjugé au champs de vecteurs initial
car il n’existe aucun difféomorphisme permettant de linéariser le champs de vecteurs.
Méme si cette linéarisation n’est pas possible nous pouvons trouver des difféomorphismes
qui simplifient le champ de vecteurs considéré. Mais la définition de ce que ”simple” veut
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dire n’est pas unique. Nous dirons qu’un champ de vecteurs est ”simple” lorsque sa partie
linéaire peut étre décrite par une matrice sous forme de Jordan et que sa partie non-linéaire
ne contient que des termes résonnants. Un champs de vecteurs simplifié est appelé forme
normale du champ de vecteur de départ.

Il existent de nombreuses approches aux formes normales. Nous allons utiliser la forme
normale de Poincaré-Dulac car elle peut étre intégrée en dimension deux (voir chapitre
7). Cette forme normale est due & H. Poincaré [47], H. Dulac [21] et G. Birkhoff [7]. Elle
peut étre calculée en utilisant la méthode de la représentation adjointe due & G. Iooss [35]
ou plus efficacement en utilisant la théorie des transformations de Lie (voir K. T. Chen
[40] et A. Deprit [3]). Récemment, beaucoup de rapports ont été publiés sur le sujet des
formes normales. La premiere étape du calcul de la forme normale de Poincaré-Dulac est
le calcul de la forme de Jordan de la matrice représentant la partie linéaire. A cause de la
complexité de la représentation des nombres algébriques ceci n’est pas un probleme trivial.
La forme de Jordan peut étre calculée & partir de la forme de Frobenius d’une matrice (voir
I. Gil [29] et M. Griesbrecht [31]). Un algorithme de calcul de formes normales pour des
systemes avec une partie linéaire nilpotente a été proposé par R. Cushman et A. Sanders
[16]. Les formes normales peuvent aussi étre calculées en utilisant les linéarisations de
Carleman (L. Stolovitch [56] et G. Chen [13]).

Résolution de singularités par éclatements

Nous ne pouvons plus appliquer le théoréeme de Poincaré-Dulac si la partie linéaire du
systeme concerné est nilpotente. Dans ce cas nous allons utiliser des éclatements. Ces
éclatements sont définis par des changements de variables qui déploient ou éclatent la sin-
gularité. Ce procédé nous donne un nombre fini de singularités plus simples. Des change-
ments de variables qui permettent d’éclater une singularité sont par exemple ’'introduction
de coordonnées polaires ou certaines transformations quasi-monomiales.

Les éclatemets directionnels ont été introduits par O. Zariski [66] pour les courbes
algébriques et par A. Seidenberg [53] pour les systémes d’équations différentielles de di-
mension deux. Depuis, de nombreux travaux ont été réalisés sur ce sujet. Pour nos
constructions nous allons utiliser les éclatements quasi-homogenes qui sont définis par
des transformations quasi-momomiales et qui ont été introduits par A. Bruno [9]. Plus
récemment, M.Brunella et M. Miari [8] ont travaillé dans ce domaine. Ils utilisent des
transformations définies par des matrices unimodulaires et travaillent essentiellement en
dimension 2. Nous étendons la construction des éclatements a 'utilisation de toute ma-
trice inversible. Ceci est nécessaire car 1'utilisation des matrices unimodulaires n’est pas
appropriée a de nombreux problemes en dimension supérieure. Nous pouvons utiliser
ces matrices uniquement grace aux résultats du chapitre 2 oli nous démontrons que ces
matrices définissent des difféomorphismes.

Deuxieme partie: Les algorithmes

La classification

Les algorithmes que nous allons proposer réduisent et integrent des systémes dynamiques
pour différents cas. Ces cas doivent étre traités séparément. Donc, la premiere étape de
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tous les calculs effectués est la classification des systemes concernés. Nous allons distinguer
le cas d'un point régulier, le cas d’un point singulier élémentaire et le cas d’un point
singulier non élémentaire, ce qui nous permet de traiter les systemes considerés avec des
méthodes convenables.

Les points réguliers

Dans le voisinage d’un point régulier nous pouvons réduire chaque systeme a une forme tres
simple que nous appellerons ”forme normale”. Elle peut facilement étre intégrée. Nous
allons ramener le probleme du calcul de cette forme normale au probleme du calcul du flot
d’un champ de vecteurs au voisinage d’un point régulier. Le changement de variables qui
permet de mettre le systéme initial sous forme normale peut étre calculé par des séries de
Taylor. Cette méthode peut étre trouvée dans de nombreuses références sur la théorie des
transformations de Lie (par exemple dans W. Groebner [62], W. Groebner et H.Knapp
[63] et P. Olver[46]).

Les points singuliers élémentaires en dimension deux

Nous appelons un point singulier ”point singulier élémentaire” si la matrice jacobienne du
systeme considéré est non nilpotente. Dans ce cas nous pouvons appliquer le théoréme
de Poincaré-Dulac pour calculer la forme normale de ce systéme. En deux dimensions
toute forme normale peut étre intégrée. Les systemes réels dont la matrice jacobienne
a des valeurs propres imaginaires pures représentent un cas particulier. Les solutions
de ces systemes sont des solutions périodiques. La meilleure facon de les représenter est
d’introduire des coordonnées polaires. Ceci nous permet également d’obtenir des solutions
réelles a condition que le systéme de départ soit réel.

Les points singuliers non élémentaires en dimension deux

Dans le cas d'un point singulier non élémentaire, nous allons utiliser des éclatements et
des changements de temps pour réduire les systemes concernés. Les calculs sont organisés
d’apres les faces du diagramme de Newton.

Pour chaque sommet un changement de temps permet d’obtenir un systéme non nilpo-
tent dont le support est inclus dans un cone convexe. Comme les exposants du systéeme
obtenu sont négatifs nous devons appliquer une transformation quasi-monomiale qui nous
fournit un systéme dont les exposants sont des entiers positifs. Ce systéme peut étre
traité comme un systeme au voisinage d’un point singulier élémentaire. Pour chaque aréte
du diagramme de Newton nous utilisons les éclatements, déja introduit au chapitre 4.
Ces éclatements nous fournissent plusieurs systemes au lieu d’un seul systeme de départ.
Ceux-ci peuvent étre traités récursivement.

Ces méthodes fournissent de nombreuses solutions. Un point central de I’algorithme est
donc de définir des domaines du voisinage étudié ou ces solutions sont valables. Nous allons
appeler ces domaines ”secteurs” et les calculer de facon & ce qu’ils recouvrent entiérement
un voisinage du point étudié.
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Les points singuliers élémentaires en dimension n

Les algorithmes que nous décrivons dans ce chapitre n’ont jusqu’a présent été étudiés que
d’une maniere superficielle par A. Bruno [9]. Nous utilisons ses travaux comme point de
départ pour proposer une étude plus complete. Dans une premiére étape la forme normale
de Poincaré-Dulac du systéme concerné est calculée. Celle-ci peut étre transformée en
un systéme que nous pouvons diviser en un systeme de dimension réduite et un systeme
intégrable. Néanmoins, la transformation quasi-monomiale utilisée dans ce but doit vérifier
des conditions tres strictes.

Pour les systemes de dimension trois, nous proposons une classification des formes
normales qui permet la réduction et I'intégration de toute forme normale. Les résultats
obtenus griace a une étude approfondie des systemes en dimension trois peuvent étre
généralisés aux systemes de dimension supérieure.

Cependant, si la dimension du systéme considéré est supérieure a trois, de nombreux
problémes peuvent apparaitre A cause de la dimension croissante du plan résonnant. Si la
dimension du plan résonnant dépasse deux, le cone contenant les exposants de la forme
normale peut étre défini par un nombre de vecteurs trop important et ces vecteurs peu-
vent avoir des coordonnées négatives. Pour résoudre ces problémes, nous proposons une
construction complémentaire, le diagramme de Newton virtuel. Elle permet de construire
un ensemble de cones qui possedent une structure plus réguliere. Cet ensemble de cones
définit des éclatements qui permettent d’obtenir des systémes de dimension réduite et de
couvrir entierement le voisinage étudié par des secteurs.

Les points singuliers non élémentaires en dimension n

Les éclatements permettent également de traiter des systémes nilpotents de dimension
trois et supérieure. Néanmoins certains systémes ne peuvent étre entiérement réduits
comme l'ont démontré X. Gomez-Mont et I. Luengo [30]. Seuls quelques cas précis somme
les systémes non dicritiques peuvent étre réduits par cette méthode (voir F. Cano et
D. Cerveau [10]). Pour ces systémes nous proposons une construction qui utilise des
éclatements controlées par le diagramme de Newton et son extension, le diagramme de
Newton virtuel. Cette méthode permet de définir des secteurs qui couvrent entiérement
le voisinage concerné. La définition des secteurs obtenus par cette méthode est différente
de celle proposée par A. Bruno. Sa construction est fortement liée & la manipulation de
cones dans I'espace des exposants.

Troisieme partie: Le logiciel

Les algorithmes décrits dans la partie précédente ont été implantés en MAPLE dans le
package FRIDAY?.

Le logiciel FRIDAY

Dans ce chapitre nous donnons une description du package FRIDAY et de nombreux
exemples pour son utilisation. Ce package est organisé en modules correspondant a la

2FRIDAY est un acronyme pour Formal Reduction and Integration of Dynamical Autonomous Systems
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classification des systemes dynamiques. Cependant, I'utilisateur n’a acces qu’a certaines
procédures de controle.

La procédure principale peut étre utilisée pour 'intégration d’un systeme quelconque
en dimension deux et pour de nombreux systémes en trois dimensions. A part cette
procédure ce sont surtout les modules calculant les formes normales qui peuvent étre
utilisés séparément.

Dans cette these nous avons montré comment des outils comme les formes normales et les
transformations quasi-monomiales peuvent étre utilisés pour la réduction et I'intégration
formelle des systemes dynamiques. Pour les systémes en dimension deux et les systémes
non nilpotents en dimension trois les algorithmes proposés ont éte implantés et testés.
Néanmoins, de nombreux problémes théoriques et pratiques restent a résoudre, surtout
dans le domaine des systémes nilpotents.



Chapter 1

Formal Solutions for Dynamical
Systems

This chapter introduces some definitions that are basic for the developement of the theory
in the following chapters. Consider a system of autonomous differential equations of the

form ax
i F(X) (1.1)
where F' = (f1, fo,...,fn), fi € CZY(M,C") and X = (z1,z3,...,7,) are vectors of
dimension n. The system is called autonomous because the right hand side of equation
(1.1) does not depend on the independent variable ¢ that usually stands for time. We are
looking for solutions represented by the dependent variable X (¢).
The results and notations presented in this chapter have been subject of many publica-
tions. For example in the works from K. Alligood, T. Sauer and J. Yorke [39], F. Verhulst
[26], J. Hale and H. Korcak [33], S. Chow and J. Hale [14], J. Guckenheimer and P. Holmes

[36], D. Arrowsmith and C. Place [17] and J. Hubbard and B. West [34].

1.1 Flows, Vector Fields and Differential Equations

Let M be a convex open subset of C* or R”.

Definition 1 (global flow) A global flow on M is a continuously differentiable function
¢p:Rx M — M such that VX € M

1. $(0,X) =X
2. ¢(t, (s, X)) = p(t + s, X), Vi, s € R

The flow is called global because it is defined for all ¢ € R. It can be related to differential
equations by the definition of vector fields.

Definition 2 (vector field) A wvector field associated to a flow ¢ is a function F : M —
R™, F € C°, defined on the open subset M, that associates a vector in R™ to any point in
M such that VX € M :

_d¢

F(X) 7

(b, X)]ico = limeso {W’X )~ #(0.X) } |

€
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X (t) = ¢(t, Xo) is a solution of the initial value problem X = F(X), X (0) = X,. The
existence and the uniqueness of a local flow representing a solution is guaranteed by the
following theorem.

Theorem 1 (existence and uniqueness) Let M be an open subset of R or C" and
F: M — R" or C" be a continuously differentiable map and let Xg € M. Then there is
some constant ¢ > 0 and a unique solution X (t) = ¢(t, Xo) : (—¢,c) = M of the initial
value problem

X = F(X), X(0) = X,.

From definition 2 it follows that every flow corresponds to autonomous differential
equation (1.1). The opposite is not true because in general the solutions of (1.1) can not
be extended indefinitely in time. But for every autonomous differential equation there can
be found local flows defined on a subset of R x M.

Definition 3 (local flow) Let A be an open subset of R x M. A local flow is a continu-
ously differentiable function ¢ : A — M such that

1. {0} x MCACRXxM
2.VX eM:AN(R x{X}) is convez

3. $(0,X) =X and Vt,s e R, VX € M : ¢(t, (s, X)) = ¢(s + t,X) if this expression
makes sense.

As it can be deduced from above flows, vector fields and autonomous differential equa-
tions can be used to represent the same dynamics.

1.2 Linearization of vector fields

Solutions of differential equations or vector fields are particulary interesting in the neigh-
bourhood of isolated singular points as the behaviour of the solutions can be quite complex
there.

Definition 4 (singular point) A point Xy € M is called singular point of a vector field
F if F(Xy) = 0. It is an isolated singular point if Xo has a non-empty neighbourhood
such that F(X) #0 VX € Q — Xj.

A singular point is often called equilibrium point or singularity whereas all other points
are called simple, regular or ordinary points.
Any system (1.1) can be linearized in a point Xy. That means that instead of studying

the behaviour of the nonlinear system we can study the linear system
X
88—15 = DF(Xy)X (1.2)

where DF(X) denotes the jacobian matrix of F' in Xy. As linear systems are well known
this is the simplest way to obtain information about a differential equation (1.1).
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The point Xy is called a nonelementary singular point if X is a singular point and all
eigenvalues of DF(Xy) are zero. In this case the matrix DF(Xj) and the linear system
(1.2) are called nilpotent. If X is a singular point but DF(Xj) is non-nilpotent we call
X an elementary singular point of the system F.

For the calculation of solutions of differential equations an important question arises.
The question is if the linearized system (1.2) and the corresponding non-linear system (1.1)
have locally the same flow structure. Under precise conditions the Hartman-Grobman
theorem gives a positive answer to this question.

Theorem 2 (The Hartman-Grobman theorem) If none of the eigenvalues of the
matriz DF(Xy) has a zero real part then the vector field F is topologically conjugated
to the linearized vector field DF (X)X in a neighbourhood of Xj.

The theorem gives no result for vector fields if the matrix D F(Xy) has zero eigenvalues.
In those cases certain nonlinear parts of the vector field have a determining role.

If a nonlinear system is topologically conjugated to a linear one there exists a homeo-
morphism that linearizes the nonlinear system. But homeomorphisms are not necessarily
smooth and do therefore not preserve very well the qualitative behaviour of a concerned
system. For this reason we have to use a stronger definition of conjugacy and equivalence
that is based on diffeomorphisms.

1.3 Equivalence of vector fields

To study the qualitative behaviour of vector fields or systems of differential equations
means to classify them into equivalence classes of similar behaviour and to describe the
characteristics of those classes. This classification is done via diffeomorphisms. Systems
that can be transformed into each other by diffeomorphisms are called equivalent.

Let M and V be open subsets of R” or C".

Definition 5 (diffeomorphisms) Let M and V' be open sets on E. A map H : M — 'V
is a C*-diffeomorphism if

1. H is of class C* and

2. H is invertible and its inverse is also of class C*.
C*-diffeomorphisms can be used to define equivalence or conjugacy relations.

Definition 6 (C* equivalence of vector fields) Let F and F be two vector fields de-
fined respectively on M and V', that are two open subsets of E. ¢ and ¢ denote their local
flows.

F and F are called locally C*-equivalent if there exists a C*-diffeomorphism H : V —
M which takes the flow 1 of F to the flow ¢ of F and preserves the orientation of the
flows.

If in addition to this, the parametrization of the flows is preserved the systems are
called C*-conjugated.
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Applying a diffeomorphism H : X — H(X) to a differential equation (1.1) yields
DH(X)X = F(H(X))

and a new vector field
F=DH ' (FoH) (1.3)

that is conjugated to the vector field F'. Equation (1.3) defines the action of a diffeo-
morphism H on a vector field F. F is often denoted H * F and the operator * is called
pull-back. A diffeomorphism H such that the relation (1.3) is verified can be found if the
vector fields F and F are conjugated.

Example 2 (Translations) As it is much simpler to study vector fields in the neigh-
bourhood of the origin than in the neighbourhood of a point Xo we will often use diffeo-
morphisms given by a translation

H(X)=X+Xp.
H transforms any vector field F' into the conjugated vector field
H+F=DH '(FoH).

The wvector field F is similar to F except that Xy has been transformed to the origin as
DH =id.

Remark 1 In the Hartman-Grobman theorem the notation of topological conjugacy is
used. Topologically conjugated means C°-conjugated and refers to C°-diffeomorphisms
that are homeomorphisms.

Transformations defined by diffeomorphisms are the main tool for the reduction of
vector fields. All normalizing transformations and power transformations that are used in
the following are diffeomorphisms.

1.4 Time transformations

A dynamical system describes the one-parameter evolution of several dynamic variables.
The parameter in which they evolve is called time ¢t. At certain steps of the proposed al-
gorithms we will apply transformations to ¢. These transformations are called time trans-
formations. In contrast to previously introduced transformations by C*-diffeomorphisms
time transformations do not preserve the orientation of flows. The resulting vector fields
are therefore not equivalent to the initial vector fields.

For some vector fields there exists a factorization

F(X) = hX)F(X)

with the factor h(X). It is much simpler to study the vector field F' that results from a
division of F' by h instead of studying F'. F' can be seen as a result of an application of a
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time transformation to F. If we substitute h(X )t by 0% the differential equation (1.1) is
transformed to a new equation

0X

ot
The change of variables 0t = h(X)0t is equivalent to a change of variables

F(X). (1.4)

t=(t)

where v is the solution of the differential equation
ot
— =h(X). 1.

= h(X) (15)

The solution X (¢) of the initial system can easily be calculated from the solutions X () of
equation (1.4) if v is known.

Example 3 (Time transformations) Consider the 2 dimensional system
dz 2
dz _ .
{%__ (1.6)
that can be transformed to the system
dz
— = I
{ & _, (L7)
by the time change given by Ot = hot with h = z. The solutions of (1.7) are given by
X(t) = (ae',be'). Solving (1.5) yields
Y(t) = —in(=a(t +c))
and the solution of the system (1.6) is
-1 —-b 1
t+c¢ at+c)’
Observe that the behaviour of the solutions (x(t),y(t)) for t — oo, —c,—o0 is different
from the behaviour of (z(t),y(t)) for t — oo, —c, —00. As a consequence the deduction of

some qualitative characteristics such as stability of the solutions of F from the behaviour
of X (t) is impossible if v is not known.

The time change ¢ = y(t) alters the parametrization of the solution curves and it is
easy to see that the orientation of the flow is not always preserved. F and F are therefore
neither equivalent nor conjugated. The only common characteristic between the solutions
of F and F is that they are different parametrizations of the same curve.

However we can define an equivalence relation between the vector field £’ and the vector
field F in the case of Hamiltonian vector fields and if we treat two-dimensional systems.
Those equivalence relations are important for the verification of computed solution curves.
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For two dimensional systems calculating solutions X (¢) for
X
oX _ (f(x,y)> (1.8)
ot \g(z,y)

can be reduced to the problem of finding parametrized solutions for the scalar differential
equation

d
dy _glay) (1.9)
dz  f(z,y)
This equation can be parametrized as in equation (1.8) or as
f(z.y)
ot 9(z,y) )
h(z,y)

which is equivalent to the application of a time change with 0t = h(z,y)dt to equation
(1.8). We can therefore say that the systems (1.8) and (1.10) are equivalent in the sense
that their solutions are both parametrized solution curves for the scalar equation (1.9).

Another equivalence relation between F and F' can be given if we consider Hamiltonian
systems of differential equations. A Hamiltonian system is characterized by its energy
function H. The dependent variables are given by X = (Y, Z) where Y and Z are vectors.
A Hamiltonian system is given by

y =28
{. %% (1.11)

A major property of Hamiltonian systems is that they own first integrals.

Definition 7 (first integral) let U be open and nonempty. A real valued map
d:U =R X d(X), decC!

that is mot constant on any open subset of R is called a first integral of a differential
equation (1.1) if the function ® is constant along any solution X (t) with initial value
X(0) = Xp.

(X (t)) = P(Xp) (1.12)

for all t for which X (t) is defined.

It is obvious that the Energy function H is a first integral of the Hamiltonian system
(1.11) as
OH (Y (t), Z(t))
ot
for any (Y (t), Z(t)) solving equation (1.11).
Applying a time change to a Hamiltonian vector field yields a vector field that is
equivalent to the initial one in the sense that it has the same first integrals. This is due
to the fact that the condition (1.12) does not depend on the parametrization of the curve
X (t). Most systems of differential equations however do not possess first integrals. For
this reason this conclusion can not be generalized to non-Hamiltonian systems.

=0
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Figure 1.1: The level curves of H and the solution curves of the dynamical system (1.13)
are identic but the level curves have no direction. See example 4.

Example 4 (pendulum) The pendulum equation is either given by the second order
scalar equation

T+ %sm(m) =0

or by the first order system

{ =y . . (1.13)

y = —9Isin(z)

The points (km,0) with k € Z are singularities of (1.13). In chapter 7 we will approzimate
solution curves in the neighbourhood or these singularities.

The total energy of the system (kinetic plus potential energy) is given by
H(z,y) = (1/2)mi*y* + mgl(1 — cos(z)) .

H is constant along the solutions (z(t),y(t)) of the system and along any parametrization
(z(t),y()) with t = ~(t) of those curves. In contrast to the real solutions (x(t),y(t)) it
makes no sense to give a direction to the curves (z(t),y(t)), that denote the lines where
the total energy of the system is constant, as the sense of parametrization might have been
inversed by the time transformation. The curves (x(t),y(t)) are called level curves of H.
Level curves and the solutions of equation (1.13) are sketched in figure 1.1 for g/l =1/2.

Time transformations will be extensively used in the following. Therefore all calcu-
lated solution curves can only be interpreted as level curves of the energy function if we
treat Hamiltonian systems or parametrized solutions of the associated scalar differential
equations if we deal with 2-dimensional systems. Those properties are used to verify com-
puted solution curves. That also means that for 3 dimensional systems the verification of
calculated results is much more difficult.
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1.5 Convergence and Formal Solutions

Normal form calculations, that will be introduced in chapter 3, often yield diverging series.
Therefore the ring of convergent power series k{X} is not sufficient for our calculations.
The following calculations and considerations are purely formal. We work in the ring of
formal power series k[[X]], that extends the ring of polynomials k[X], as it also admits
infinite sums without presuming that they are converging.

The aspects of convergence will not be considered here though conditions for the con-
vergence of normal form transformations have been given by H. Poincaré [47], H. Dulac
[21], C. Siegel [54], A. Bruno and S. Walcher [2] and others.

We will mainly work with systems of first order differential equation of dimension 2
and 3. First order means that only the first derivative occurs in the equation. However
higher order differential equations can always be transformed to a system of order one. As
we will see with some restrictions the algorithm can also be used for problems that admit
parameters. The systems of dimension two are very well known due to a large number
of publications in this domain. Three dimensional problems have so far not been studied
extensively using the approach proposed here. So far there didn’t exist any programms
for integrating a large number of 3 dimensional systems of differential equations.



Chapter 2

The Newton diagram

In this chapter power transformations are introduced. Those transformations act on the
exponents of the monomials of a given system

X =F(X). (2.1)

Their effect on the exponents of a given system can be interpreted geometrically for a
better illustration of the action of those transformations. Further those geometric aspects
can be used to find power transformations that manipulate the exponents of a system in
an appropriate way.

Therefore some geometric notations as the Newton diagram and the support of a
system are needed. In chapter 4 we will use the Newton diagram to calculate matrices
that define power transformations as it has been done by A.Bruno [9] and more recently
by M. Brunella and M. Miari [8].

Section 2.2 is closely related to the work of A. Bruno [1] who states theorem 3. In
his approach he concentrates on the use of unimodular matrices. However unimodular
matrices are not sufficient to solve all problems concerning the integration of two- and
higher-dimensional systems as it will be shown in the chapters 8 and 9. For this reason we
extend the definition of power transformations to the use of any invertible matrix as they
have also been studied by L. Brenig and A. Goriely [23]. As some of those transformations
are not injective and therefore no diffeomorphism we will introduce some complementary
methods to make them bijective.

Another important role in the geometric study of differential equations is played by
cones as some systems can have their support within a cone. That is why in section 2.4 we
introduce some basic notations about cones that can for example be found in A. Goldman
and A. Tucker [4].

2.1 The support and the Newton diagram
Power transformations are applied to a system in order to integrate it in the case of an
elementary singular point in section 7.1 or in order to simplify it by blowing-ups that are

the subject of chapter 4. To study the geometrical aspects of power transformations we
will work in the space of exponents (which is subset of Z™) where the support and the
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Newton diagram for any dynamical system are defined. To simplify the representation the
notations
X = (1,22, ... ,%n),

Q: (qlana"'aqn) EZna
XQ = ((L‘({l’x?a"'ax%n)a

A = (aij) € Mn(Z),

R I
X4 = . ,
A P
71 Ygen; X ¥
F(X)= . , agi ERor C

T ZQeNn aQnXQ
where the sets A are defined as
Ni={Q e N"! x NU{-1} x N"7": } " ¢; > 0}
will be used. Further the set N defined as
n
N={JN
i=1

will frequently appear. Based on the above notations the support and the Newton diagram
for F' are defined as follows :

Definition 8 (Support) The set
n
supp(F) = U{Q eN;:ag #0} CZ"
=1
is called the support of the system (2.1).

The definition of the support allows to construct the set

0= |J {Q+P:PeRry}
Qesupp(F)

that is used to define the Newton diagram.

Definition 9 (Newton diagram) The lower left part of the convex hull of the set S is

called the Newton diagram of F. It does not contain horizontal or vertical faces. It is
denoted by T'(F).
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['(F) consists of a finite number of j-dimensional faces that are denoted by I‘Z(j ). The

faces Fgl) and FEO) are called edges and vertices of the Newton diagram. The faces of the
Newton diagram will be used to compute matrices defining quasihomogeneous blowing-ups
in chapter 4.

The Newton polygon which is almost identical to the Newton diagram can also be used
in a different way. It can be applied for the direct calculation of solutions of algebraic or
differential equations (see for example J. Della Dora and F. Jung [19], F. Beringer and F.
Jung [6] and J. Cano [37]).

Example 5 Consider the system

X — —zt 4+ y2?
= 19_3y2$6 — 22?1 P
which has a nonelementary singularity in the origin. Its support consists of the points
supp(F) ={(3,0),(2,1),(6,1), (1,2)}

and its Newton diagram is shown in figure 2.1.

2.2 Power transformations

Power transformations are defined as

E" = k", E=Ror k=
{ — k", or C (2.2)

X = xXA7,

AT denotes the transposed of an invertible matrix A € Gl,(Z) with integer coefficients.
We use those transformations as coordinate change X = X AT

The effect of the coordinate change on the exponents of the system is described by the
following theorem.

Theorem 3 A change of coordinates X = xA” applied to a system (2.1) induces an
affine transformation Q = AQ on the points Q € supp(F).

Proof 1 To prove this theorem we will study the system

dlog X _ N fn
" _G(X)—(xl,...,xn

)
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that is equivalent to (2.1). Under the change of coordinates X = XA" we obtain

Z dlogX (@11,921>--9n1) 9,

% 0%, ot

dlog XA” i

9t IR

Z 8logX(a1n=a2n ----- ann) 0%
0z; ot

(a11—1,a21,...,an1) OZ1
(auX ot + ...

(alnX(aln*I:aQn:---:ann)% +.. )

(%L an1 )3_X
10" In /Ot
(aln Gnn )ﬁ
T17°"" &p /Ot
dlogX
(ar1,a21,. .., 0n1) %
dlogX
(alnaa2na---aann) 3%
_ T@logX'
= A ot
and the new system
alogX _ A_TG(XAT)
ot

A simple calculation shows that each monomial X% in G(X) is transformed to a monomial
XAQ belonging to G(XAT).

Theorem 3 is used to calculate appropriate matrices for power transformations. Finding
a matrix A that handles the support or the Newton diagram in a suitable way makes sure
that exponents of the system transformed by the power transformation X = XA" have
the required caracteristics.

2.3 Power transformations as diffeomorphisms

The application of power transformations in order to transform a vector field implies that
the coordinate change must be a diffeomorphism. However most power transformations
are not injective in any neighbourhood U of the origin in R* or C* but we will show that
they are in some regions of U. If the power transformations are defined on those regions
instead of U their use is allowed. The methods employed to find those regions are different
in C" and R". For this reason both cases are treated separately.

For the following considerations we work in the set U' = U — J,{X|z; = 0} where
none of the components of X is zero. The sets {X|z; = 0} will be considered in chapter
4. They play the role of exceptional divisors for a special kind of power transformations
that are called blowing-ups.
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N —
(=)
=

Figure 2.1: The Newton diagram for the system treated in example 5.

2.3.1 Power transformations in R”

In a first step it will be shown that XA is injective within the set {X € U’ : z1,...,z, >
0}. Suppose that X[f‘T =X f‘T. This can also be written as a system of equations

ail @21 an1 — ail ,.a21 an1
Zo1 Toz -+ Ton T Tiz - Tip

a12 ,,6422 an?2 — a2 ,,a22 an?2
Zor Toz ---Ton = T Tz - Tip

A1n ,.02n ann — Aln ,.02n ann
Lol Loy ---Loy = T Ty ---Tqp -

Exponentiating the k-th lines with a1; and dividing them by the first line exponentiated
by aq leads to a new equation system

ail ,.a21 an1 —_ ail ,.a21 an1
zol'xoy - xgnt = xi]' iy .ozl
. .22 G2 _ <022 Gn2
Lxzys® ...z = lai3...27)
. 6/271 ann _ . 6/2n &nn
Lxzgs™ ... xgy = lai...x".
Further exponentiations and divisions (that are allowed as x1;, zo; # 0 foralli € {1,...,n})
leads to
XE=XxR
where R is an upper triangular matrix. Because z¢; > 0 and z1; > 0 for all i € {1,...,n}

we can conclude that Xy = X;.
This result can be generalized to any of the 2" quadrants

{XGU,:xil,...,(L‘il>0, xil+1,...,xin<0}, il,...,inE{l,...,n}, ik:ij@k:j
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of U’ but it is not necessarily true for the whole set U’. In this case a subset of U’ can be
found such that X4" is injective within this subset. This subset will be denoted by U.

To determine U the neighbourhood is split into 2" quadrants and a set of those quad-
rants is chosen such that X4" is injective within this set. This is closer illustrated in the
following algorithm :

Algorithm 1
compute_U(A)
input: the matrix A
output: results that is a list caracterizing the region of injectivity of X AT and
image that is a list that allows to define a piecewise surjective transformation
begin
list = list of all e = (e1,...,ep), € € {0,1}
results = empty list
image = empty list
for:=1,...,2" do
ali] == (list[i])*"
for j=1,...,2" do
if a[i] = list[j] and j & image then
add @ to results
add j to image
return (results,image)
end.

If a change of coordinates characterized by a power transformation is used for our
problems the complete initial neighbourhood has to be covered by the image of X AT
U — R™. This is true if the transformation is surjective.

In R" power transformations are usually not surjective if U’ # U. This problem can
be solved by using X AT and the transformations defined by

(-1 x4
X — : (2.3)
(~1)n XA
with vectors o; = (aj1,...,®j,) such that a;; € {1,0}. The vectors A; denote the row

vectors of AT. Choosing appropriate transformations (2.3) defined on the same set U as
xA” yields a set of transformations that is ”piecewise” surjective. The vectors a; can be
deduced from the list image computed by algorithm 1.

Example 6 Consider the transformation XA" with

-2 2 1
A= 0 0 1
4 -2 =2

and det A = 4. The list result returned by algorithm 1 contains 2 entries that allows to
construct a set
U={X:y>0,2z>0}.
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that contains only two quadrants. XAT U SR s injective.
The list image allows to conclude that the image of the power transformation XA s
the set {X : x>0,y > 0}. That means we also have to use the 3 transformations

(_1)ale(_27074)
X — (_l)ajzX(2,0,72)
(_1)aj3X(1717_2)

with
o = (ajl,an,ajg) c {(1,0,0), (0, 1,0), (1, 1,0)}

that are all defined on U, to construct a piecewise surjective transformation.

2.3.2 Power transformations in C"

Handling the case of transformations defined in C" is less complicated as U does not
consist of a set of quadrants and any injective transformation is surjective.
Suppose that X AT is not injective. That means there exist Xy # X7 such that

T T

X =x{. (2.4)
X, can be written in trigonometric form
rjlemjl
X;=
rjnemi"
with rj; > 0 and «j; € [0,2n]. With R; = (rj1,...,7jn), o = (j1,...,qj,) and k =
(k1,...,kn), kj € Z the condition (2.4) holds if the 2n conditions

s (25)
2.5
ATay = AToy +k2r

are verified. That means that the arguments modulo 27 have to be equal. As rj; > 0
the first n conditions are verified only if Ry = R; so we can focus on the remaining
conditions on the arguments. The second condition in equation (2.5) can be multiplied by

AT = 7 (i 4 A" where A* denotes the adjoint matrix to AT All entries of A" are integer.
That yields
27
—qp = A%k. 2.6
0T et a (2:6)

Any power transformation X AU SO is injective for U = U] with

~ - 27
U ={X €U :arg(z;) < Jotd
forie {1,...n}.
On U] the inverse to XA exists. It is given by XA .
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When applying a change of coordinates characterized by a power transformation all
of the initial coordinates has to be covered by the image of X A" This is true if the
transformation is surjective.

We will show that for any X € U’ there exists a X € U! such that X = X AT Writing
X in trigonometric form

,rlez'al
X =

rpeitn
and applying the inverse transformation X =xA" yields
X — RA—TeiA—Ta

If X € U] the 2n conditions

(R"); > 0
(A™Ta)jmod2r € [0,2n[Vj #1i
(ATa);mod2r € [0, diﬁ[

have to be verified. (.); denotes the j-th component of a vector. The first two conditions
are always true so only the last condition has to be proved.

Without loss of generality let ¢ = 1. Suppose that (A~ Ta); & [0, 2Z;[. Equation (2.6)
will be used to find another X € U’ such that X = X4". For any [ € Z there exists a &’
such that (A*k'); =1 and an | € Z such that

2T

2m
-T _en _aen
<(A a); + l) mod 2 € [0, detA['

detA

Defining
2T
— A*T A*kl
“ “F detA
we can easily verify that A7 = a. It has been proved that the transformation X AT g
bijective on the set U’.

Example 7 The power transformation from example 6 is bijective if it is defined as xA" .
U{ — U with
Ul = {X : arg(z) mod 27 € |0, g[} .

Remark 2 Power transformations defined by unimodular matrices are bijective. For this
reason their use for defining power transformations is advantageous in many cases.

For the power transformations used in the following it can be assumed that they are
bijective on U’ or that they have been defined on a subset U of U’ such that they are
bijective. This section has shown that with some additional constructions any power
transformation is a diffeomorphism and can therefore be used to transform vector fields.
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2.4 Cones

In the following a certain type of vector fields will play an important role: vector fields
having their support within a cone V in the space of exponents. Those systems are often
refered to as class V-systems. Time- and power transformation that are used to transform
a considered system (2.1) to an equivalent system can also be interpreted as manipulations
of the cone V' that contains supp(F'). Further cones can be used to define transformations
that manipulate a given system in an appropriate way.

A set V C R” is called a cone if along with the point P it contains any point aP with
a >0, a € R Any cone can be defined by a set of vectors Qp, Q1,-..,Qn as the set

V:{Q:Q:Q(H—ZaiQi,aiZO,aiER}. (2.7)
i=1

A cone is called convex if it is a convex set. All cones considered in the following are
convex cones. A cone V is called degenerate if it contains an entire line aP with o € R.
Consider a time transformation defined by

dt = X9t
that transforms the initial system (2.1) to a system

0X 1
Frin mF (X) .
It is obvious that each point Q € supp(F) is translated to the point Q = Q — Qp. With
the points of the support of F' the time transformation also tranlates the Newton diagram
of F' or any cone V.
The effect of power transformations on cones is more complex. Consider a convex
degenerate or non-degenerate cone V' that is defined as in equation (2.7) by the vector Q)

and the linearly independent vectors @1, ..., Q, € Z™ where of course m < n. A change
of coordinates X = X4” can be defined via the inverse of the matrix A. Using the vectors
Q1,..., Q. as the first row vectors of A~! yields the matrix

A = (@il 1Qml )

that is completed to a n x n matrix such that A~" is invertible.
According to theorem 3 the coordinate change X = X A" transforms all vectors Qi, 1=
1,...,m to

Q; = AQ; = detAe; .
Therefore the cone V has been transformed to a cone
V={Q:Q=A4Qo+ ) de;,& >0, € R}

that is defined by the vectors eq,..., e, and AQ).
However, the matrix A~ might not be unimodular and A might therefore have frac-
tional coefficients. For this reason instead of the inverse matrix the adjoint matrix

A = detAA™ = (Q1]...|Qm]...)
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is used to define the power transformation. The matrix A is not uniquely defined by
A* and can therefore be chosen such that it has only integer coefficients. The matrix
A is computed in the following way: The adjoint matrix B* of any matrix B is defined
as B* = detBB~'. Now define A = ﬁB with £ € N such that Vi,j : a;; € Z and
ged(ain, ..., apy) =1 for the coefficients a;;, ¢,j = 1,...,n of the matrix A.

A is the matrix used for the power transformation and B* is its adjoint as detA = k
yields

A*=kA'=detBB™' = B*.

So for A* = B* the matrix A is the appropriate matrix for the power transformation.



Chapter 3

Normal Forms

The theory of normal forms is due to H. Poincaré [47] who introduced qualitative meth-
ods in the study of solutions of ordinary differential equations. To study the qualitative
behaviour of a systems of differential equations

X = F(X) (3.1)

means to classify them locally into equivalence classes of similar behaviour. The classifica-
tion is performed by formal diffeomorphisms. For systems with non-vanishing linear part
the corresponding classes can be represented by a set of elements that are said to be in
normal form. These elements are the ”simplest” elements of their class. In general these
representative elements are not unique and their choice depend on the definition of what
”simplest” means.

In the following chapters the Poincare-Dulac normal form is used. Here ”simplest”
means that the matrix characterizing the linear part of the system is in Jordan form and
the nonlinear part of the system contains as few terms as possible.

The computation of the Jordan form is a difficult problem for higher-dimensional
matrices. However it represents the first step in the computation of the Poincaré-Dulac
normal form. The reduction of the non-linear terms is performed step by step for terms of
increasing degree. The computations yield a normal form and the formal diffeomorphism
that is used to normalize the considered system (3.1). There exist many approaches for
the computation of normal forms. In this chapter we will focus on the construction of
the Poincaré-Dulac normal form using Lie transformations and the matrix representation
method.

Normal forms have been the subject of many publications. The basic results of H.
Poincaré [47] have been extended by H. Dulac [21] and G. Birkhoff [7]. Lie theory has
been introduced to normal form theory by K.T. Chen [40] and W. Groebner [62]. The
concerning algorithms have been optimized by A. Deprit [3]. Recently normal form theory
has rapidly developped since it is essential in bifurcation theory. See for example the works
of A. Bruno [9], J. Guckenheimer and P. Holmes [36], S. Walcher [65], S. Ushiki [58], F.
Takens [25], Shui-Nee Chow, Chengzhi Li and Duo Wang [15], G. Gaeta [27], S. Louies
and L. Brenig [50], L. Vallier [60], G. Iooss and M. Adelmeyer [35] and F. Zinoun [67].

There exist other algorithms for normal form computations that are however not con-
sidered here. For example the computation of normal forms by Carleman linearizations (J.

43
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Della Dora and L. Stolovitch [20] and G. Chen [13]) and the computation of normal forms
for systems with nilpotent linear parts (R. Cushman and J. Sanders [16]). The problem of
computing the Jordan form can be avoided by using the Frobenius form of a matrix (G.
Chen [13]).

The components of the map F' in equation (3.1) are considered to be formal power
series. Therefore the only possible singularity is X = 0. As a consequence we will suppose
that F'(0) = 0. All transformations are considered to be formal power series.

3.1 The Poincaré-Dulac normal form

The basic theory of normal forms is due to H. Poincaré [47]. He stated that systems
of the form (3.1) are formally equivalent to their linearized system if the eigenvalues of
the concerned system are non-resonant. In this context resonance is defined as a relation
between the points ) € N that can appear in the support of the vector field F' and the
eigenvalues of the matrix DF(0). The set N defines the set of all points that can appear
in the support of a vector field F'. It has already been defined in section 2.1.

Definition 10 (resonances) Let Ai,...,\, be the eigenvalues of the matriz DF(0).
They verify a resonance condition if

3Q = (q1,---,qn) EN: (QA) =) qghi=0 (3.2)
i=1
where A = (A1,...,\n). They verify a resonance condition of order k if the condition

(3.2) holds and if |Q| = > ¢ =k — 1.
Now the Poincaré theorem can be formulated as follows:

Theorem 4 (Poincaré theorem) If the eigenvalues of the matriz DF(0) are non-resonant
the system (3.1) is formally equivalent to its linear part. That means that the nonlinear
system (3.1) can be reduced to a linear system

X =DF(0) X

by a formal change of coordinates X = H(X).

The Poincaré theorem has been extended by H. Dulac [21] to systems whose matrices
DF(0) have resonant eigenvalues. He states that any system (3.1) can be reduced to a
system X = F(X) where the matrix DF(0) is in Jordan form and the nonlinear part
contains only resonant terms.

Theorem 5 (Poincaré-Dulac theorem) The differential equation (3.1) can be reduced
to a system

= F(X)=JX + W(X) (3.3)

Q
SB‘ >

by a formal change of coordinates X = H(X). In equation (3.3) the matriz DF(0) = J
s in Jordan form and F contains only resonant terms. That means that the resonance
condition

VQ € supp(F) : (@A) =0
holds for all exponents of the normal form.
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The transformation X = H(X) is called normalizing transformation. It can be decom-
posed into

H(X)=PX +V(X)

where PX denotes its linear part and V(X) its nonlinear part. The matrix P is the
transition matrix that transforms the matrix DF(0) into Jordan form

J=P 'DF(0)P .

The new system (3.3) is called Poincaré-Dulac normal form of the initial system (3.1).
The particular structure of its support is used for further reductions or for the integration

of normal forms. The points of supp(F') lie on the so called resonant plane.

Definition 11 (resonant plane) The set of points
M={QeN :(Q,A) =0}

is called the resonant plane for a normalized system (3.8). It is a subset of the space of
exponents and represents all points that can appear in the support of a normal form.

It is obvious that resonances occur for all Q € N if A\; = ... = )\, = 0. For this reason the
Poincaré-Dulac normal form only yields a reduction for systems (3.1) with non-nilpotent
linear part. However there exist normal form constructions for nilpotent systems with
non-vanishing linear part (see R. Cushman and J. Sanders [16]).

Efficient algorithms for the computations of the Poincaré-Dulac normal form will be
introduced in the following. These algorithms use Poincaré- or Lie-transformations. How-
ever the Poincaré and the Poincaré-Dulac theorem are the basis for all reductions and
integrations concerning normal forms that are used in the following chapters.

3.2 The Jordan form

The first step in calculating the Poincaré-Dulac normal form is the calculation of the
Jordan form of the matrix DF(0) that represents the linear part of the system (3.1). Let

J=P'DF(0)P

be the Jordan form of the matrix DF(0). Then the linear change of coordinates X = PX
yields a system
0X .
— =F(X
5 (X)
where the matrix DF(O) = J is in Jordan form. However due to the problems of represen-
tation of algebraic numbers the computations of the Jordan form for n X n matrices with

n > 2 is difficult. In this case the computations can be performed by algorithms that are
based on works from I. Gil [29], P. Ozello [44] and M. Griesbrecht [31].
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3.3 Computation of normal forms by Poincaré Transforma-
tions

To understand the basic idea of normal form computations we will study the effect of so
called Poincaré transformations to a given system (3.1). Poincaré transformations have
the form

X = X + Hi(X) (3.4)

where Hy € HE. HE denotes the product of n copies of the space of homogeneous polyno-
mials of degree k with n variables x1,...,x,. The effect of Poincaré transformations on
the initial system (3.1) is computed step by step for increasing degree k > 2. To study
this effect the Taylor expansion

X = AX + Fy(X) + F3(X) + ... (3.5)

of system (3.1) with Fj, € H} is considered. Applying a Poincaré-transformation (3.4) to
the vector field (3.5) yields the so called homological equation for the terms of degree k of
the resulting normalized system. Calculating normal forms can be reduced to the problem
of finding solutions for the homological equation. This problem can be solved for example
by using the matrix representation method.

3.3.1 The homological equation

The effect of Poincaré transformations on a system (3.1) or (3.5) can be computed straight-
forward. The resulting equation that is called homological equation is basic to all normal
form theory. Introducing the Poincaré transformation (3.4) into equation (3.1) yields the
new system

‘98—);( = (Id + DHy(X)) 'F(X 4+ Hi(X)) = F(X) (3.6)

that has been computed according to H * F = (DH) 'F(H). This expression can be
simplified by introducing
~ e ~ - ~ ~
(Id + DHy(X))™' =) (~DHy(X))" = Id — DH(X) + O(X*) .
i=0

Now the system (3.6) can be written as

% = (Id — DHi(X) + O(X*))"'F(X + Hi(X)).

Ordering all terms according to their degree yields

X — AX 4+ Fy(X) +... + Fo(X)
+(Fp(X) + AHp(X) — DH(X)AX) (3.7)
+O(XHH),

This equation can be decomposed into three parts. The terms of degree lower than k
remain unchanged in equation (3.7). The terms of degree higher than k are changed but
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they are not considered at this step of the algorithm. The term F,(X) of the normal form
is obtained by the relation

Fp(X) = Fi(X) 4+ AHp(X) — DHR(X)AX. (3.8)

The task consists in finding an appropriate Hj such that F}, is ”as simple as possible”.

For the Poincaré-Dulac normal form that means to find Hy(X) such that a maximum of
terms in equation (3.8) vanish. For this purpose we try to solve the equation

F.(X) = DH(X)AX — AH,(X) (3.9)
that is called the ”homological equation”. An equivalent formulation
Fip(X) = LY (H)
can be given by introducing the linear operator

Ik { Hy, —ijL L .
AT Hiy(X) = L¥(Hy) = DH(X)AX — AHR(X).

that is called the homological operator. The subscript means that the linear operator
L¥ only makes use of the informations available from the linear part A of the system
and k refers to the degree of the polynomials in Hy. Theoretically the problem of using
Poincaré-transformations for calculating normal forms reduces to calculating the inverse
of the operator L% (H).

If the eigenvalues of L¥ (H) do not contain zero the operator L% (H) is invertible and
equation (3.9) can be solved. If L% (H) is not invertible the space H is split into

HY = RE(A) @ CF(A)

where RE(A) denotes the range of L¥ (H) and C¥(A) a complementary space. The terms
belonging to C¥(A) can not be removed. In the case of the Poincaré-Dulac normal form
those terms are the resonant terms.

The normal forms are not unique since C¥(A) is not uniqueley determined. Several
methods can be used for finding the complementary subspaces C* for a given matrix A.
We will use the matrix representation method.

3.3.2 The matrix representation of the homological operator

A possible method for computing the subspace C¥(A) is the matrix representation method.
In liteature this method can be found for example in Shui-Nee Chow, Chengzhi Li and
Duo Wang [15] and L. Vallier [60]. The linear operator L¥ can be represented by a matrix
L in a suitable basis. The matrix L has a structure that can be derived from the structure
of the matrix A. The space Ker(L), that is associated to C¥(A) can easily be computed
for the Poincaré-Dulac normal form as the matrix A is in Jordan form.

The operator L’j1 can be represented by a matrix with respect to a basis of ’Hﬁ. A basis
for HE can be given by the basis elements X“@e; with |Q| = k and i = 1,...,n. The basis
elements are ordered in the lexicographic order

XQ@] < XPei ~ (iaQIa"'aQTl) < (japla"'apn) . (310)
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In equation (3.10) the relation (i,q1,...,q,) < (4,p1,...,Pn) holds only if i < j or ifi = j
and the first components g; and p; with ¢; # p; verify ¢; < p;. The structure of the matrix
L depends on the structure of A.

Lemma 1 If A is a diagonal matriz then L is also diagonal. If A is lower (upper) tri-
angular then L is lower (upper) block triangular. The element l;; is (Q,A) — \; where
1 means the i-th element in the lexicographical ordering and it corresponds to the basis
element erQ.

The maps Hj, and F,(X) — F,(X) can be represented by the vectors h and f with respect
to the basis of H}}. Equation (3.8) can be written as a linear system

Lh=f.

If A is in Jordan form the range of L and a complementary subspace can be easily read
off the matrix L because the range of L is spanned by the columns of the matrix. We can
easily see that L has zero eigenvalues if the eigenvalues of A verify resonance conditions
of order k. That means that resonant monomials can not be reduced by the operator L]jl.

The terms in the space C}' are the terms of degree k that remain in the normal form.
They can not be removed in equation (3.8). However the Poincaré transformation (3.4)
also affects terms of higher degree than k. To perform the next step of the computation
of the normal form (for £ + 1) these terms need to be known. They are calculated using
equation (3.7). However these computations are not very efficient. A better approach for
this problem is the use of Lie transformation methods.

3.4 Computation of normal forms by Lie transformation

A main problem in calculating normal forms using Poincaré transformations is that the
calculated transformation X = X + Hj(X) does not only affect terms of degree k but it
also changes terms of higher degree. In the previous section the application of Poincaré
transformation to the initial system was computed according to equation (3.7). However
a much more efficient way to perform these computations is to use Lie transformations.

The introduction of Lie theory to the theory of normal forms is due to W. Groebner
[62] and K.T. Chen [40]. Since then this subject has been developped by many others.
See for example the works of P. Olver [46], G. Chen [13] and K. Meyer [43]. A. Deprit
[3], S. Chow and J. Hale [14] and L. Vallier [60] have optimized the organization of the
computations.

3.4.1 Definitions
The elementary operators used in Lie theory are the Lie derivative and the Lie bracket.

Definition 12 (Lie derivative) Let F' = (f1,..., fn) be a vector field defined on an open
subset M of R" or C" and let g : M — R[[X]] or C[[X]] be a function on M. The operator
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»CF() with

Lr(g) = Z fz'£
i=1 ¢

1s called the Lie derivative.

Lr(g) can be interpreted as the derivative of the function g in direction of the vector field
F.

Definition 13 (Lie bracket) Let F' and G be two vector fields defined on open subsets.

The wvector field

[F,G] = g—gF(X) - g—)F(G(X) (3.11)

is called the Lie bracket of F' and G.

In equation (3.11) the expression g% denotes the Jacobian matrix of F. The Lie bracket
is used to define the adjoint operator.

Definition 14 (adjoint operator) The operator
adp = [F, ]

that associates a vector field [F,G] to any vector field G, is called the adjoint operator
associated to a vector field F'.

The main idea of Lie transformation theory is to introduce a new parameter ¢ and to
consider the transformation H (X, €) either as the flow of a vector field G(H) or as solution
of the associated differential equation

%)S’G)ZG(H(X,E) .

The normalizing transformation introduced in section 3.1 is obtained from the flow H ()2' ,€)
for e = 1. It transforms the initial system (3.1) to Poincaré-Dulac normal form. The vector
field H * F' is not computed as the action of the transformation H on F' but as the action
of the vector field G on F'.

The task consists in transforming F' to normal form by the action of the vector field
G. Having calculated H % F' and G, the transformation H is computed as the flow of the
non-singular vector field G.

3.4.2 Action on a vector field

Consider the vector field F' defined on an open subset M of C"* or R" and the vector field
G defined on an open subset M of H,,

F:XeMw—C"orR"
G:HeMw—H, .

Introducing the parameter € the normalizing transfomation H can be written as

H(X,e) =X + Hy(X) + H3(X) + ... .
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H can be considered as the flow of the non-singular vector field G(H) or the solution of
the associated differential equation
OH (X ,e)
Oe
Now the action of the vector field G on the vector field F' is given by the following theorem:

= G(H(X,e€)) . (3.12)

Theorem 6 The action of a vector field G on a vector field F s given by the formal

Taylor serie
2

H*F:F+6[G,F]+%[G,[G,F]]—i—...:e”dG(F) (3.13)
where H x F' denotes the transformed vector field.

Proof 2 Equation (3.13) represents the Taylor serie of the vector field H * F. Therefore
to prove theorem 6 it is sufficient to show that

H*Fl—y = F

8%:F e=0 = [G’ F]

i (3.14)
et = [GIG.F)

The first equation in (3.14) follows immediately from the definition of H(X,¢). Now we
will prove the second equation. .
Applying the transformation X = H(X,e€) to the initial equation (3.1) yields

X .
DH(?— = F(H(X,¢)) (3.15)
€
and the new system 5
0X 1 ~
B = (DH)'F(H(X,¢)) (3.16)
€
that is also denoted by H * F. Deriving equation (3.15) yields
ODH p o pg2H*F _ ppfHX ) (3.17)
Oe Oe Oe
that can be simplified by the properties
ODH  _ oOH
Oe - DW
= D(G(H))
= DG(H)DH

H+F = (DH)"'F(H)

91 = G(H).
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Introducing these results into equation (3.17) yields

OHxF

DG(H)F(H) + DH—-

DF(H)G(H) .

With the definition of the Lie bracket this can be written as

OHxF

e (DH)™'[G, F] .

For € = 0 this yields the second term in the Taylor serie for H x F'. The terms of higher
degree can be computed in a similar way (see also G. Chen [13]).

Now H(X,e€) can be computed as the flow of the vector field G. The normalizing trans-

formation H(X) is obtained for ¢ = 1.

3.4.3 The flow of a non-singular vector field

Let G(H) be a non-singular vector field. The flow H of the vector field G(H) can be
computed very efficiently by computing the Taylor serie of H.
The derivations of H(X,€) are given by

% = G(H(X,e)
PHX  _ pGH)GH(X,e))

Oe?

Computing the Taylor serie for H(X,€) around e = 0 yields

N OH (X ,e) 2 92H (X ,¢)
e=0 e=0
or
~ ~ ~ 2 ~
H(X,0) = H(X,0) + € GUH(X, )|+ 5 DG GHE, )|+

Introducing the notation of Lie derivatives this can be written as

H(X,e) = Hy(X) + € Lg(Ho(X)) + ;—Q!L%;(HO(X)) + ... = e (Hy(X)) (3.18)

with Ho(X) = H(X,0). Considering that H is the normalizing transformation defined
in section 3.1 and that the linear part has Jordan form we can consider that Hy = X.
Equation (3.18) is called the Lie serie of the vector field G.

The property (3.18) is used to compute the transformation H for the vector field G(H)
that is used to normalize the initial vector field F'.
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3.4.4 Organization of the computations

The computations of the action on a vector field (theorem 6) and of the flow of a non-
singular vector field (equation (3.18)) can be performed very efficiently when they are
organized in so called Lie triangles. This scheme has been introduced by A. Deprit [3].
Therefore the scalar parameter € € k is introduced. Now the vector fields F', G and
F = H « F and the transformation H are written as

F(X,€) = 5% o Frn1 (X) s

m

G(Xv 6) = Z?r?:ﬂ Gm+1 (X)%

F(X,€) = Yoo Fms1 (X) 5

m

H(X,e) =3 Hy1(X)S .

where Fy, Gy, Fy, Hy, € Hy. The calculations are performed according to the following
theorems

Theorem 7 If the sequence Fz-(m)(X), 1=1,2,..., m=1,2,...,1 — 1 is defined by the
recursive relations

FO=F, i=1.2,...

(3
-1 i—1 -1
Fz'(m) = Fz'(m )+ do1<i<iom (;‘71)[G]'+1’Fi(1nj )]
fori=1,2,... and m=1,2,...,i—1
then

F=F"Y fori=12,....

This allows to compute the normal form F and the vector field G. It yields an equation
that is equivalent to the homological equation (3.9). This equation can be solved by using
the matrix representation method.

The transformation H can be computed according to the following theorem.

Theorem 8 If we define the sequence

GOV=gq, i=12,...
m m—1 i— m—1
Gz( )= Gz( - > 1<j<i-m (j—ll)[’Gj+1(Gz(—j )
fori=1,2... andm=1,2,...,4—1
then .
H=G""Y  fori=1,2,....

i

These theorems allow to organize the computations in Lie triangles :

FO H

FO pO) 2O HO

FO g0 p® Y gY@
FO g p® p® HY 5O gD g

These Lie triangles can be computed very efficiently.
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3.5 Example
The following example illustrates all steps of the proposed algorithm.

Example 8 (Pendulum) Consider the dynamical system

=y
y = —$sin(z)

already introduced in the examples 1 and 4. Developping sin(x) into its Taylor serie around

x =0 yields
=y
3.19
{y——%($—3$3+120x 54 0(27)) . (3.19)

The linear part of the system (3.19) represented by the matriz

0 1
A‘(—%o)

is transformed to its jordan form by a change of variables
ls 1o
2T+ 3y
X=1 95 _ i\/£~ :
2\ 1 2\ 1Y
This yields the new system

oX _ (it 0\ o [ —d/1 - f5\/1% - /100 - /1 + O
ot 0 —z'\/% 4%\/%34“%\/%2%% 977° +48\/3y3+0 X4

%

s (Wi 0\ (~yfieor

y
e . ) (3.20)
ot R 54397 + O(X)

by a change of variables

The system (3.20) contains only resonant nonlinear terms. This is the Poincaré-Dulac
normal form of the initial system (3.19).

Calculating with parameters in the linear part of the system in example 8 is only possible
because in the resonance equation the parameters vanish.






Chapter 4

Resolution of singularities by
blowing-up

Blowing-up is one of the most frequently used methods to reduce vector fields. It is mostly
used for the reduction of nilpotent vector fields but in chapter 9 it is shown that blowing-
ups can also be used for the reduction of non-nilpotent systems of differential equations.

The idea is to apply a change of coordinates that expands or ”"blows-up” the singularity
of a vector field F' or of the associated system of differential equations

X =F(X). (4.1)

In section 4.3 it will be shown that F' can no longer be supposed to be given by formal
power series. Therefore we will presume that the components f; of F' are real or complex
analytic power series in the variables x1,...,%y.

The local study of the initial system in the singular point X = 0 is replaced by a study
of the transformed system in the blown-up singularity. The concerned singularity X =0
is called the center and the blown-up singularity is refered to as the exceptional divisor of
the blowing-up.

The simplest blowing-up, that illustrates very well all aspects of this method, is the
introduction of polar coordinates. However for systems defined by power series the use
of directional and quasi-homogeneous directional blowing-ups is more appropriate. Those
blowing-ups are represented by power transformations that were already introduced in
chapter 2.

Directional blowing-up has first been introduced for the desingularization of plane al-
gebraic curves by O. Zariski [66]. Those results were extended to two-dimensional systems
of differential equations by A. Seidenberg [53] and A. van den Essen [61]. Quasihomoge-
neous directional blowing-up, that is controlled by the Newton diagram, was introduced
by A. Bruno [9]. Like M. Brunella and M. Miari [8] he uses only unimodular matrices to
construct the power transformations that define blowing-ups for two-dimensional systems.
In the works of F. Dumortier [32], [22] and M. Pelletier [45] the matrices for the used
quasihomogeneous blowing-ups are constructed using a different approach.

However we will see that the use of the matrices defining the blowing-ups can be
generalized. This is necessary as unimodular matrices do not allow to treat all appearing
problems. Therefore the definition of blowing-ups is extended to the use of any invertible

95
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matrix. The used matrices are computed via their adjoint matrix. As those matrices do
not always define injective power transformation this generalization is only possible due
to the results from section 2.3.

The definitions of blowing-ups are given for n-dimensional systems. However blowing-
ups of systems with n > 2 might yield difficulties. For some three-dimensional systems
there might not exist a finite chain of successive blowing-up that entirely reduces the
concerned system. This has been shown by J. Jouanolou [38] and X. Gémez-Mont and I.
Luengo [30]. Three-dimensional vector fields can only be desingularized by blowing-ups
for some particular cases as it was shown for nondicritical systems by F. Cano and D.
Cerveau [10].

4.1 Two-dimensional polar blowing-up

The simplest possible blowing-up is the introduction of polar coordinates to the differential
equation (4.1). In general polar blowing-up is not used for systems given by power series.
However it is considered here as it illustrates well all aspects of blowing-up. We will
consider a two-dimensional vector field F' = (f1, f2) where f; and f, are given by real
analytic power series in the variables z; and z9 (f1, f2 € R{z1,z2}).

Definition 15 (Polar blowing-up in R?) The map

o. ] Rx[0,2n[— R?
"1 (r,9) = (rsing,rcos )

is called a polar blowing-up in R?.

A considered system is blown-up by applying the change of coordinates X = CP(X' ). This
yields a new system F' = @ x F'. The point X = 0 is "represented” by the set

{(ryp) :7 =0, p €[0,27[} . (4.2)

That means that ® ! is not defined for X = 0. Nevertheless the set (4.2) is denoted by
®~1(0). It will be called the exceptional divisor of the blowing-up. The point X = 0 is
refered to as the center of the blowing-up. In contrast to directional blowing-up, that will
be studied in the following section, the exceptional divisor of polar blowing-up is finite as
¢ € [0,2n].

The system resulting from the blowing-up can be computed according to

b+ F = (DO 'F(D).
This yields the system
. . -1 .
T\ ([ sinp rcosgp f1(rsinp,rcos )
o)  \ cosp —rsing fo(rsinp,rcosp))’
that can also be written as

7 = singfi(rsing,rcosp) +cospfa(rsing,reosg) = rEfi(r @)
p = LEfilrsing,reosg) — L fr(rsing,reosp) = ¥ fo(r, )
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with f1, fo € R[r,sin ¢, cos ¢]. Applying a time transformation df = r¥~1dt yields the
new system

8

o _ i) (4.3)

{ or — Tfl(ra (,0)

The local study of the initial system near X = 0 is replaced by the examination of the
system (4.3) near the exceptional divisor ®~1(0). For further studies the new singularities
on ® 1(0) are of particular interest. Those singularities exist as the studied systems are
analytic. Two possible cases have to be considered for equation (4.3).

« f2(0,0) 0.
The singularities on ®~1(0) are given by the set

S =1{(0,9) : f2(0,p) =0} .

All other points on @ 1(0) are regular points. Here the solution curves are parallel

to the exceptional divisor as % = (. For the initial coordinates that means that only

the solution curves computed for the singularities in S might pass through X = 0.

Further applying the time transformation
th = f? (’)", (p)d'z

yields the new system

8_7: = f~l (T,(P)
ot P (T7Lp)
9 -1
ot ’

that has the solution (r, ) = (0,%). Therefore the exceptional divisor is a solution
curve for (4.3).

b f? (07 90) =0. N R
Another time transformation dt = rdt yields the new system

% = flg’ra()o)
3? = %f?(’ra (,0) .

The singularities of the new system are given by the set

S={0.9): fi0.9) =0and _firp)| =0}

All points (0, ) ¢ S are regular points.

For any point (0,¢9) ¢ S with fi (0,¢0) = 0 there exits a solution curve that is
tangent to the exceptional divisor. Those solution curves are called tangencies.

As for all other points (0, ¢g) ¢ S on the exceptional divisor % # 0, there exists a
solution curve for equation (4.3) passing through this point. For the initial system
(4.1) that means that there is an infinite number of solution curves passing through
the singularity in X = 0.



58 4.2. Quasi-homogeneous directional blowing up

In both cases the points in the set S can be studied by translating them to the origin and
by applying either another blowing-up or by computing normal forms.

Remark 3 The case fz(O,go) Z 0 s called the noncritical case. The case fQ(O, v) =0
is refered to as the dicritical case. The name “dicritical” is due to the problems in the
dicritical case for higher dimensional problems.

Remark 4 The transformation ® is a diffeomorphism on the set R x [0,27[—®~1(0).
Therefore the initial vector field F' and the vector field ® x F' are conjugated.

Example 9 Consider the system given by

X = —:E14 + 213z
19—3]7161722 —$12I22 + I 51323 )

Applying a polar blowing-up and a time transformation with dt = r3dt yields a new system
8—2 = —rsin(p) + 2rsin(p) cos(p)? + rcos(p) + ...
& = 3 24i 2 _ 2 4 3 (44)
5c = —cos(ip) + cos(p)” + 2sin(p) cos(y) cos(p)*sin(p) + ...

that verifies the conditions for the noncritical case. For r = 0 the system (4.4) has the
form

0

or

i
% = —cos(p) + cos(p)? + 2sin(p) cos(p)? — 2 cos(p)* sin(y)
that allows to compute its singularities on the exceptional divisor. As

4

—cos(p) 4 cos(p)® + 2sin(p) cos(p)? — 2 cos(p)* sin(p) = cos(p) sin(p)? (sin(2 ) — 1)

the singularities on the exceptional divisor ® 1(0) are given by the set

S = {(0, 0), (0, i ), (0, %w), (0, 7, (0, Zw), (0, gw)} .

The components of the systems resulting form polar blowing-up are analytic series in
r, siny and cos . As all further reductions are defined for power series, Taylor series
expansions have to be used to allow further computations. Therefore directional blowing-
up is more appropriate for the use with systems of the form (4.1).

4.2 Quasi-homogeneous directional blowing up

Among the most frequently used blowing-up constructions for systems (4.1) given by power
series are quasihomogeneous directional blowing-ups. They are based on the fact that the
qualitative properties of vector fields near the singularity in X = 0 are mainly determined
by the quasihomogeneous parts of the concerned vector field. Those parts are computed
using the Newton diagram. The degree of quasi-homogenity defines the coefficients of
the matrix used for the blowing-up. That means that quasihomogeneous blowing-up is
controlled by the Newton diagram.
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4.2.1 Quasi-homogeneous vector fields

Quasi-homogeneous blowing-ups have been studied by F. Dumortier [32] and M. Pelletier
[45]. They are defined by the type of quasi-homogenity of a quasi-homogeneous vector
field.

Definition 16 (quasi-homogeneous functions and vector fields) A function f de-
fined on R or C is called quasi-homogeneous of type a = (aq,...,an) € N* and degree k
with ged(aq, ..., ap) =1 if

fOr®zy,... r%x,) = rkf(xl,...,xn)

A wvector field F = (f1,..., fn) is called quasi-homogeneous of type « and degree k if any
fi» 3 =1...n is quasi-homogeneous of type a and degree k + «;.

The quasi-homogeneous parts of a vector field with the lowest degree are given by the
monomials associated to the faces of the Newton diagram. Consider the vector field

' 1 ZQGFEj) a1QX?
F(J) —

2

Tn Y gept) an@X?

()

containing all monomials associated to the points of a face I';’’ of the Newton diagram.

Choose « such that the vector « is orthogonal to the face Fl(j) and such that aq,...,a, > 0.
Due to the definition of the Newton diagram this vector exists for all faces FZ(-j ). Then all
Q€ Fz(j ) are lying on the hyperplane {Q : (o, Q) = k}. Fi(j ) is quasihomogeneous of type
«a and degree k as

. /raalxl ZQ fr<0‘aQ>a1QXQ
Fi(])(ralwl,...,ro‘”xn) =
,ranxn ZQ fr<0‘aQ>anQXQ
()

The vector field Fi(j ) is called the quasihomogeneous part of F' relative to the face I';

Each vector field Fi(o) is quasihomogeneous of type « for any vector c. The vector a with
a,...,a, > 0is used to define quasi-homogeneous blowing-ups.
Quasihomogenous directional blowing-up is defined by a power transformation

Tyt X 5 XA (4.5)
where the matrix A,, is defined as
1
An=1 a1 ... am ... «ap
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The index m refers to the m-th row vector in A,, that is identical to the vector . A
considered system (4.1) is transformed to the conjugated blown-up system ¥, * F' by the
change of coordinates X = 0, (X).

Quasi-homogeneous blowing-ups of the form (4.5) are not necessarily diffeomorphisms.
In this case the transformed system is not conjugated to the initial one. Therefore the
additional constructions from section 2.3 are used to define a diffeomorphism corresponding
to transformation (4.5).

Quasi-homogeneous blowing-up is defined by the vector « that is computed using the
Newton diagram. Therefore the effects of the blowing-up ¥,, on the support and on the

Newton diagram of F' are of particular interest.

4.2.2 The effect on the Newton diagram

All power transformations act on the exponents of the considered system and equivalently
on the support of F' and its Newton diagram. Consider the n — 1 dimensional face I‘En*l)
According to theorem 3 in section 2.2 the effect of the power transfomation (4.5) on the

points @ € supp(F) can be computed as

dn
That means that all points on the face I‘Z(-nfl)

m-coordinate k = (a, Q) with Qo € anfl). As anfl) lies on the lower left part of the
convex hull and as aq,...,a, > 0 it can be stated that all points Q € supp(F) — an_l)
are transformed to points AQ whose m-coordinate is greater than k.

This result can be interpreted geometrically. The face an_l) has been straightened

up. That means that it has been transformed to a face that is parallel to the hyperplane

{Qldgm =0} . (4.6)

This face can be translated to the set (4.6) by a time transformation

are transformed to points with identical

dt = #F dt .

m

As all points Q € supp(F) — FZ(-n_l) are transformed to points AQ) whose m-coordinate is
greater than k the exponents of the system resulting from the blowing-up and the time

transformation are positive.
(n—2) (n—-1)

Now consider the n — 2 dimensional face T i . This face can be seen as

; c’rl
the intersection of the face anfl) and another face of dimension n — 1. This face is either
a n — 1 dimensional face of the Newton diagram or a face of the convex hull of supp(F).
Let § be a normal vector § of this face that verifies § € N*| ged(f,...,0,) = 1. The
vectors a and S are not colinear and all points Q € I:z('n_Q) lie on a hyperplane (Q, 8) = k.
Further, for all Q € supp(F) the condition (@, ) > k holds.
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For this reason after having applied the transformation (4.5) another quasihomoge-
(n—2)

neous blowing-up ¥; can be applied to straighten the face I'; such that it is transformed

to a set of points that is parallel to the set
{Qlgm =0 and ¢ =0} .

The composition of those two blowing-ups is given by the power transformation X = xA"
with

1
Bl e i i B .. B

1
()

As any face I';” of the Newton diagram can be seen as an intersection of n — j faces of

dimension n — 1 the n — j normal vectors of these faces are orthogonal to I‘E] ). There-
fore n — j elementary quasihomogeneous blowing-ups of the form (4.5) can be used to
straighten the concerned face. These elementary blowing-ups can be joined to a single
power transformation ¥ : X — X AT where the normal vectors of the intersecting faces
define the row vectors of the matrix A. This defines a blowing-up for each face FEJ ) of the
Newton diagram. Ordering the quasihomogeneous blowing-ups (m =1, [ =2, ...) yields
that the face I‘Z(-] ) is transformed to a face that is parallel to the set

{Q:31=0,42=0, ..., Guj =0} . (4.7)
For all Q € supp(¥ * F') the condition
q1 > qot, -+-s Gn—j = Gon—j
with Qo = (o1, - - - s Qon—j) = AQo, Qo € Fl(j) holds. Therefore a time transformation
di = & .. 5P dt (4.8)

translates the straightened face to the set (4.7). The exponents of the system resulting
from the blowing-up ¥ and the time transformation (4.8) are positive.

However quasihomogeneous blowing-ups defined that way are not uniquely defined as
in a face FEJ ) with j < n—2, any number of n —1 dimensional faces of the Newton diagram
can intersect. Each of those n — 1 dimensional faces can be used to define the matrix A
by its normal vector. Therefore quasihomogeneous blowing-ups defined that way do not
allow adequate control on the cones of the Newton diagram. That induces that the sectors
that will be introduced in section 8 can not be controlled sufficiently. A better method to
construct matrices that perform well directed manipulations on the Newton diagram and
its cones is the construction of A via its adjoint matrix.
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4.2.3 Construction of blowing-ups via adjoint matrices

The construction of the matrix A, that defines a quasi-homogeneous blowing-up, via its
adjoint matrix is based on theorem 3 in section 2.2 and on the results in section 2.4. It
yields a blowing-up that has the same effect on the Newton diagram as the blowing-ups
constructed in section 4.2.2.

Consider the linearly independent vectors vy, ...,v, € Z™. They form the columns of
the matrix

A" = (v1]...|vn) .

According to the results from section 2.4 the matrix A* can be used to compute a matrix
. S AT . . .

A that defines a power transformation X = X4 . According to theorem 3 in section 2.2

the effect of this transformation on the vectors vg, £k =1,...,n is given by

17k = Avk = detA €L .

If there exists a point Qo such that any point Q € supp(F') can be written as

Q=Qo+ Y vk with v >0 (4.9)
k=1

those points are transformed to the points

Q=AQo+ Y ek -

k=1

The condition (4.9) is equivalent to the condition that supp(F') has to be contained in
the set Q9 + V where V is the convex cone spanned by the vectors vy,...,v,. A time

transformation . .
dX = X4Qog¢

translates the point AQ)q to the origin and yields a new system with positive support.
These properties can be used to construct a quasihomogeneous blowing-up with the
same effects as the blowing up ¥ defined in section 4.2.2.

Consider the face I‘E]) and let Qg = FEO) € I‘Ej) be a vertex on the face I‘Z(j). There
exist 7 linearly independent vectors

e=Qo—Qr QreTY k=n—j—1,...,n

on the face FZ(-j ) such that all Q € FZ(-j ) can be represented as

n
Q=Qo+ >, vk meER'.
k=n—j—1

With the vectors vy, ...,v,—; they can be completed to a set of vectors that define the

convex cone
n n—j
V= Z R+vk+ZR+vk
k=n—j+1 k=1
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such that all @ € supp(F') lie within the set Qo + V.

The cone V' can be computed using for example the virtual Newton diagram that will
be introduced in section 9.4 and chapter 10.

The blowing-up defined by X = X4 with

A* =det AAN = (vy]...|vp)

has the same effects as the blowing up ¥ from section 4.2.2. That means that the face
I‘E] ) is straightened and an appropriate time transformation yields a system with integer
exponents.

The choice of the vectors vy, ..., v, and therefore the construction of V' is not unique.
Further the construction of the matrix A* is not limited to the above choices of Q¢ and
V. Any cone V spanned by n vectors and any point @)y such that supp(F) C Qo +V can
be used for the above construction if n — j vectors in the set of vectors defining V' lie on
i),

However the construction of quasihomogeneous blowing-ups by adjoint matrices is in
certain cases easier to handle than the quasihomogeneous blowing-ups defined in section
4.2.2. The main advantage is that the sector definition, that will be introduced in chapter
8 and 10, is much simpler to control as the inverse matrix of A is known.

It is obvious that not all power transformations define blowing-ups. Therefore a central
point in the use of power transformations is to determine whether they define blowing-ups

or not and to consider this in the construction of the power transformations.

4.2.4 The exceptional divisor

A power transformation defines a blowing-up if the center of the blowing-up can be rep-
resented by an object of higher dimension in the new coordinates. That means that the
exceptional divisor has to contain more than a single point. Consider the transformation
T : X — X" where A is an invertible matrix. The exceptional divisor ¥='(0) can be
computed by considering the inverse of the transformation X = XA" where it is defined.
The transformation X = X" can be inverted on the set

U=K"-|J{IX €K &y =0}, K=Ror K=C.
k

If A is defined by its adjoint matrix A* with the column vectors vy, ..., v, this yields the
inverse transformation
X @Al
X=x4"= : . (4.10)
Xaeiatn

The exceptional divisor is defined as the set of values that the expression

1
X det a1

lim X = lim : (4.11)
X—=0 X—=0 1
X detalr
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can take. To evaluate this expression the point X = 0 is approached on so called curves
of class W. Those curves have been introduced by A. Bruno [9]. They are defined as

w1(t) = t* (c1 + O(1/t))
T
Zp(t) =t (¢, + O(1/1))

with @ = (a1,...,a,) € Z", a1,...,a, < 0 and ¢1,...,¢, # 0. Evaluating expression
(4.11) on the curve F yields

1
Cp tdet A (v1,a)

lim X = lim : (4.12)
X—0 XEF(j) t=o0 1.
) i En tm(zm,a)

with ¢, = ﬁ > vkicr for v, = (vg1, - .., Vgn). Bach line in equation 4.12 can be evaluated
separately. For the line k this yields

0 if (vk,a) <0
Gt 5 L & if (v, a) =0
oo if (vg,a) >0

as det A > 0. It is obvious that &, t{"»® £ 0 only if the vector vj, has at least one negative
coefficient. In this case there exists an « with (o, v;) = 0. That means that Zj can take
any value if X — 0. As a consequence the transformation X = X AT s a blowing-up.

Any power transformation X = X AT g a blowing-up if the matrix A* has negative
entries.

From the construction of the vectors v,_j41,..., vy, it follows that they lie on a hyper-
plane (.,a) = 0 with @ € Z™. As those vectors are used for the construction of the matrix
A* the power transformation X = X4 with A and A* defined as in section (4.2.3) is a
blowing-up. The components Z,_;1,...,%, can take any value and the set

S={X:4=0,...,4%, ; =0} (4.13)

is part of the exceptional divisor. We are interested in the singularities of the new system
U« F on the set (4.13). It is obvious that those singularities are given by the singularities
of

) jélf:l(OV"707£n*j+17---7$n)
U« FD0,... 0,80 ji1s. .. i) = : L (414)
infn((), s 70757n7j+17 s 7:%71,)

We have to distinguish two cases:

e If the condition
Fe{n—jG+1,...,n}: fr(0,...,0, %0 ji1,---rdn) Z0
holds, the singularities are given by the points X, = (0,...,0,%,...,%) that verify

Faejr1(Xo) = 0,..., fu(Xo) =0 .
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All other points X, are regular points. As for those points the condition
T % F(Xo) =(0,...,0,%,...,%)

holds, the solution curves X (t) in the neighbourhood of those points verify 1 (t), ...,
Zn—;(t) = const. The curves X (t) near Xy are all parallel to the exceptional divisor.

The n — j dimensional system

Bdn_j = F % T
3tj+1 = $n7j+1fn*j+1(07"' 7071771*]‘4‘1"" ,IEn)
o5 o~ ~ ~
% = xnfn(o, ,O,xn—j+13"' 7‘/1:771)

yields solution curves on the exceptional divisor. As they are all transformed to the
point X = 0 they are not interesting for the computation of solution curves X (¢).

This case is called the noncritical case.

o If the condition

Foji1(0,0 0, %0 ity Zn) = oo = ful0,0 0,0 ity @) =0

holds, equation (4.14) is identical to zero. The entire set S is a non-isolated singu-
larity. However there exists an index k such that the time transformation

dt = Zpdt

yields a new system with at least one non-vanishing component on the set (4.13).
The singularities of the resulting system are identical to the singularities of

t

ﬁfl(oa---aoajn—j-l—la"'a*;i‘n)

s FD(0,...,0,Fn_it1se.. & . :
7 ( — n ]+1 n) — fk)(oayoaj’nf_]%*l))in)

T .
22 (0,0, 0,80 jg1, e s )

In general this system will have negative exponents. If this is the case a further
study with the methods introduced here is not possible.

This case is called the dicritical case.

In this section it has been shown how quasi-homogeneous blowing-up can be used to reduce
vector fields. However in the dicritical case a further reduction is not always possible. In
general a single blowing-up might not be sufficient to reduce a considered vector field
entirely. This is due to the fact that the first blowing-up might still yield nonelementary
singularities. In this case further blowing-ups are needed. The composition of several
blowing-ups is called successive blowing-up.
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Figure 4.1: This figure shows the cone V' constructed to define the blowing-up applied in
(1)

the case of an edge I'; ’ in example 10.

4.3 Successive blowing-up

The singularities of a system resulting from a single blowing-up might still be nonelemen-
tary. In this case a single blowing-up is not sufficient to reduce a nonelementary singular
point entirey. The concerned singularity is translated to the origin and another blowing-up
is applied. This yields a chain of compositions of a blowing-up, a time transformation and
a translation. This chain is called successive blowing-up.

An important question arises in this context. Is it possible to reduce any nonelementary
singular point by a finite successive blowing-up 7

This is true for two-dimensional vector fields if the vector field is analytic in the neigh-
bourhood of an isolated singularity. This has been shown for example by A. van den Essen
[61], F. Cano [24] and F. Dumortier [32].

For three-dimensional problems this is not true for any case. This has been shown by
J.P. Jouanolou [38] and X. Gémez-Mont and I. Luengo [30]. However some particular cases
can be solved. It has been shown by F. Cano and D. Cerveau [10] that any non-dicritical
system can be reduced by a finite number of blowing-ups. Non-dicritical means that none
of all admissible blowing-ups yield a dicritical case.

Example 10 (Blowing-up of a two-dimensional vector field) Consider the two-di-
mensional nilpotent system of differential equations

4 3
. —I{ + Tox
X = ! ! : 4.1

(ot ) (4:19)
It’s Newton diagram is drawn in figure 4.1. It contains a single edge FSI) = (_1). The

1
blowing-up corresponding to that edge can be constructed using Qo = FSU) and the matriz

A* = (vi|v2)
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with ve = (—1,1). The matriz A* can be completed by any vector vy = (vi1,v12) with

v
02£>—1, v11 > 0.
V11

Choosing vi = (1,0) yields the matrices

« (1 -1 (11
A—(O 1>andA—<01>.

The power transformation X = xA" yields the system

0X ([ —it+7iis
3%y — 28383 4 2323 + Lalad

ot

The points Fgo) and Fg)) have been transformed to the point (3,0) and (3,2) respectively.
Therefore a time transformation

dt = #3dt
transforms the straightened edge to the go-axis. The resulting system
(9X B —Z1 + T1Z9
oF < Fo — 282 + &3 + LBati2 (4.16)
verifies the noncritical case. Therefore the singularities of (4.16) are given by the set
S={X:i =0, (1 — 2%y + 22) =0} = {(0,0), (0,1)} .

In X = (0,0) the system (4.16) is non-nilpotent. The singularity in X = (0,1) however
15 nilpotent. It can be reduced by a further blowing-up.

This chapter has shown how power transformations and quasihomogeneous blowing-up
can be used for the desingularization of nilpotent vector fields. They are controlled by the
Newton diagram.






Chapter 5

Classification

In the previous chapters a number of methods that can efficiently be used to reduce vector
fields were introduced. These methods are the basis of the algorithms introduced in the
following. This chapter will show how those methods can be linked together to integrate
any 2-dimensional and a large number of 3- and higher-dimensional system of autonomous
differential equations.

Consider a system of differential equations given by

X = F(X) (5.1)

where the components of F' are given as real or complex analytic power series in the
variable X. The intention of all algorithms proposed in the following is to reduce this
system such that formal solution curves X (¢) can be calculated in the neighbourhood

U={X:[[X = Xo|loo <€}

of a point X3. We will presume that the point of interest Xy has been translated to the
origin to simplify all considerations. (For more details about translations see example 2).
The algorithm is split into three main parts according to the classification of the point
Xo = 0 that has already been mentioned in section 1.2:

e The origin is a regular point if F(0) # 0. The flow of a vector field in the neigh-
bourhood of a regular point has a very simple structure. According to the flow box

theorem there exists a change of coordinates X = H(X) that transforms the system
(5.1) into a new system of the form

1
ox |0
E

0

The integration of this system is obvious. The change of coordinates can be calcu-
lated as a Taylor serie.

The flow box theorem can be found for example in M. Hirsch and S. Smale [42] or
J. Hale and H. Korcak [33].
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e The origin is an elementary singular point if #(0) = 0 and the Jacobian matrix
DF(0) is non-nilpotent. In this case the Poincaré-Dulac theorem introduced in
chapter 3 can be applied. The resulting normal forms can always be integrated in
two dimensions. For 3- and higher-dimensional problems, if a direct integration is
not possible, an appropriate power transformation can reduce the normal form to a
system of lower dimension. These systems are treated recursively by applying the
entire algorithm again.

e The origin is a nonelementary singular point if F(0) = 0 and DF(0) is nilpotent.
In this case there exist two possibilities to reduce the considered system. They are
controlled by the Newton diagram that was introduced in chapter 2. For any of its
vertices there exists a time transformation that yields a non-nilpotent system that
has its support within a cone. Applying a power transformation this system can
be reduced to a form that allows to apply reduction and integration algorithms for
elementary singular points. All other faces of the Newton diagram can be used to
define matrices for blowing-ups that where introduced in chapter 4. Those blowing-
ups yield new systems that have either regular points, elementary singular points or
nonelementary singular points. Those systems can be treated by applying the entire
algorithm recurively. Blowing-ups are very well known for 2-dimensional problems
(see for example A. van den Essen [61], F. Cano [24] and F. Dumortier [32]). For
higher dimensional systems there still remain many unsolved problems as it has been
shown by J.P. Jouanolou [38] and X. Gémez-Mont and I. Luengo [30].

An overwiev on the splitting of the algorithms and how the different parts are linked
is given in figure 5.1.

The different cases are the subject of the following chapters. Chapter 6 deals with
n-dimensional regular points. Chapter 7 describes the integration of systems with 2-
dimensional elementary singular points. Systems with 2-dimensional nonelementary sin-
gular points are treated in chapter 8. In chapter 9 we show how 3 dimensional normal
forms can be integrated and where the limits of the proposed algorithms are. The propo-
sitions obtained for 3-dimensional systems can partly be extended to higher-dimensional
systems. Chapter 8 gives some examples for 3- and higher-dimensional blowing-ups.
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Figure 5.1: An overwiew on the entire algorithm and its composites.






Chapter 6

Regular Points

The simplest examples of dynamical systems are systems in the neighbourhood of a regular
point Xy = 0. In this case the constant part of the considered system

X = F(X) (6.1)

is different form zero. The flow or the normal form of a regular system (6.1), where the
components of F' are given as real or complex, analytic or formal power series, has a very
simple structure as it is stated in the flow box theorem.

Theorem 9 (Flow Box Theorem) In a sufficient small neighbourhood of a reqular point
of (6.1) there exists a differentiable, analytic change of variables

X =H(X), H=(h,...,hn), hi € k{X}, K=R or C (6.2)

that transforms the initial system to

1
0X 0
0

in the new coordinates.

A proof of this theorem can be found in works from M. Hirsch and S. Smale [42] and J.
Hale and H. Kocak [33]. Theorem 9 guarantees the existence of a box-like neighbourhood
of any regular point such that the flow of the system enters the box at one end and flows
out at the other. The flow of a system in the neighbourhood of a simple point and a
corresponding flow box are sketched in figure 6.1.

The computation of the change of variables H can be reduced to the problem of
calculating the flow of a regular vector field. An algorithm that solves this problem was
introduced in section 3.4.3. The method is based on Lie theory and is very efficient. It
allows to compute the flow X (¢, X¢) for any initial value Xy = X (0, Xp) if X is a regular
point.
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The solution of the reduced system (6.3) is

t+c
C2

Cn

They must coincide with the flow X (¢, Xy) calculated using the algorithm from section
3.4.3. Therefore H can be obtained from substituting

t =21,

zo1 = 0,
To2 = T2,
Top = Tp

n X(t,X()) where X() = (I()l, . ,:I?Un).

Example 11 The system
=y
{ =y (6.4)

y = —9Isin(x)

that issued from the pendulum model in example 1 can be developped into a Taylor serie
around the regular point (w/2,0). This yields a system

=y
{ y=—-9+ %%((L‘ —in)? 4+ O((z — 3m)%)

that s transformed to

0r __
5 =1
oy _
5 =0
by the transformation
¥ = T+g—392%+... ‘
—dr ...

The solution curves X = (t,c) for the reduced system are transformed to the initial coor-
dinates. The obtained curves X (t,c) are solution curves for the initial system (6.4). They
are sketched for g/l = 1/2 in figure 6.1.

The calculation of solutions of dynamical systems (6.1) in the neighbourhood of a
regular point is not very interesting for itself. Nevertheless many blowing-ups of nilpotent
vector fields yield systems with regular points. Therefore solution curves of nilpotent
vector fields can only be calculated if the case of a regular point can be solved.
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Figure 6.1: Solution curves in the neighbourhood of a regular point for the system treated
in example 11. The lines flow through a so called "flow box”.






Chapter 7

Two dimensional elementary
singular points

In chapter 3 non-nilpotent singular systems of differential equations
X = F(X) (7.1)

where transformed to their Poincaré-Dulac normal form. In two dimensions this yields
systems of the form

5 =T X (QeNi(@ua)—0) 9T Y 7.2
@ g Z b q1,,92 ( . )
at — Y 2.{QeN2:(Q,A)=0} PQTY

that have their support on the resonant plane
M={QeN:(Q,A) =0}

with A = (A, A2). A possible resonant plane is sketched in figure 7.1. In this chapter
it will be shown that 2-dimensional normal forms can always be integrated. The results
from section 7.1 are based on works from A. Bruno [9] and the results from section 7.2
can partly be found in works from S. Chow, C. Li and D. Wang [15].

7.1 Integration

To integrate the Poincaré-Dulac normal form (7.2) a central point of interest are the
possible solution of the resonance equations

Let A := %, Ao # 0 without loss of generality. This allows to classify the possible solutions
of equation (7.3)

1. 2eC-Q

No resonance is possible, the normal form is a linear differential equation

{ a—f :)\1]7
5 = \oy.
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Figure 7.1: This figure shows the resonant plane for the normal form in example 12. All
points in N3 U Ny that intersect the line {@Q € R :< Q,A >= 0} are elements of the
resonant plane M and can be in the support of the normal form.

Its integration
At

Aot

T =cie
Y = cz€e

is obvious.

2.20€Q, A>0

e If A\ =m, m € N, XA # 1 only one vector ) = (:”1) can solve the resonance
equation (7.3). With A =m (A; = mA2) the normal form is

3t = A2y.
This can be integrated to
— m Aamt
T = (a1,mcy't+ci)e
y = cpe?t
using the method of the variation of the constant.
. IfA:%, meN, \#1 we get
{ % = )\1]7
a—?z =mA\1y + b(m7,1)$m
which can be integrated in a same way as the previous case.

e If A = 1, 0 might be different from zero but no nonlinear monomials will
appear. This case is similar to the previous one (A = m, m € N) with m=1
and a(_y,;) = 0 = 1). If 0 = 0 the resulting system is linear.
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o If X ¢ {1, m|m € N} the obtained system is linear.

3.0€Q, A=0 & A\ =0.

All vectors @ = (%) with ¢; € N verify the condition (7.3). The normalized system

(7.2) has the form
{ 7 - ik = of (o) (7.4)
3 =My +y Xp bieoyr” = yg(w)

f and g depend only on z. If f =0 a time transformation

yields the system

that can be integrated to

z(t) = ¢

y(t) =t +co
with

f = cgedler)t

If f # 0 the corresponding scalar differential equation

Ology _ g(z)
or  xf(xr)

is formally integrable as the right hand side does not depend on y. The result is

o= [ 88

This can be parametrized in the following way

Note that in this case time transformations ¢ = () with unknown map  are used.
() is the solution of the scalar differential equation
dt

i xf(x) . (7.5)

Therefore to transform the calculated curves X (¢) to solutions X (¢) of the initial
system the solution of equation (7.5) has to be known.

4. 0€Q, A<0
If A € Q there exists a vector @) = (Z;) with ¢1,¢92 € N and ged(q1,q2) = 1 that
solves the equation (7.3). This is also true for any vector kQ,k € N. Figure 7.1
shows the set N = Nj U Ny of the points that can be in the support of the initial
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system supp(F') and the line defined by the resonance condition. The points on this
line can be in the support of the resulting normal form

{ % = MNT + T X kg o) (27 ) (7.6)
= Xy + Y Dk Dihog o) (1Y )P

This system has two particular solutions

(z,y) = (£,0) with t = ceM?

(z,y) = (0,%) with t = ce** . (7.7)

Further the normal form (7.6) can be brought to a system of the form (7.4), that
is treated by the previous case, by a suitable change of coordinates X = X AT
According to theorem 3 in section 2.2 the matrix A is computed such that

W (DA -

and a,b > 0. The resulting system can be integrated as in the previous case (A = 0).

The transformation X = X4 where A verifies equation (7.8) is not a blowing-up
as the inverse of A does not have any negative matrix entries. As a consequence a
local integration of the resulting system of the form (7.4) is sufficient to find solution
curves for system (7.6).

However it can be deduced from the power transformation that the particular solu-
tions (7.7) can not be obtained from the integration of the reduced system.

The solution curve (z,y) = (2§79, Z°§%) = (£,0) can only be obtained for § = 0
but

limg_ox = limj_,0Z"y * < oo
only if go = 0. g2 = 0 is impossible for this case.

For this reason the solutions (7.7) have to be added separately to the set of calculated
solutions.

Example 12 This example computes solution curves for the pendulum equation intro-
duced in example 1 in the neighbourhood of the elementary singularity Xo = (m,0).
In a first step the pendulum equation

T=y

y = —9sin(z)
is translated to move the point of interest to the origin. Developping the translated system
into a Taylor serie around 0 we obtain the system

X = ( v 1,..3 1.5 7 )
Iz — g’ + 5gr° + O(2"))
that we can treat with normal form algorithms. The Poincaré-Dulac normal form is
ox _ [yt 0\ [ f%5+ O(X1)

ot 0 g — L\ 955 + O(XY)

(7.9)
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Figure 7.2: Solution curves calculated for the pendulum equation in the neighbourhood of
the singular point (7, 0) in example 12. The curves obtained from the particular solutions
(7.7) are dashed.

Resonances occur for all QQ = k(i) for k € N. Applying a power transformation X = xA"
with
2 -1
(5

AL
o (i)

This system has been truncated to order 3. It can be integrated to X (t) = (c,t) according to
case 3 in section 7.1. The corresponding solution curves and the particular solution curves
X = (£,0) and X = (0,%) of system (7.9) have been retransformed to the initial coordinates
and sketched for g/l = 1/2 in figure 7.2 without considering problems of convergence. (The
dashed lines represent the solution curves obtained for X = (£,0) and X = (0,1)).

yields the new system

7.2 Systems with real coefficients

A system (7.1) that has real coefficients can have a linear part with complex eigenvalues
A1 and A2 = A;. In this case the previously described method will transform the system
into its complex Jordan canonical form and therefore introduce complex coefficients and
yield complex solutions. In this section it will be shown that it is possible to calculate
only the real solutions for real systems even if the computations use complex numbers.

There are two cases to consider. The case where the eigenvalues are purely imaginary
A1 = —X2 and the case when they have a non-vanishing real part.

e Re(A) #0
In this case we know that the resonance condition (7.3) has no solutions for ) €
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7.2. Systems with real coefficients

Nj UNj;. The Poincaré-Dulac normal form is linear. According to Sternberg [55] the
system (7.1) can be linearized by a normalizing algorithm even without transforming
the linear part of the system into its Jordan canonical form. To calculate this so
called rational or A-normal form we can use the algorithms described in chapter 3.

The integration of the resulting linear system X = DF(0)X is obvious.

Al ==X
In this case the linear part of F has the form

0 —«

DF(0)X = ( 5 0

)Xa aa/B>0a CK,,BER.
This linear part is transformed to its Jordan canonical form

by a linear transformation

X:Psz‘thP:<

|
N[
=
Nl
N[
=

The resulting system has the particular structure

3 ) (7.10)

a_X_ -1 o\ Z%ZG;QXQ
o =P F(PX) = ( 5 bk

where the coefficients verify ag = I_JQ for all @ with g1 = ¢o. This structure is
preserved by the normal form construction. Applying the inverse of transformation
(7.10) to the resulting Poincaré-Dulac normal form

0X _ ( &3 a3, XD )

ot \ 9%, X0
yields a new system

0% [ T,6
7\ 56

that is transformed to

7;:017“—’—03’)"34‘...
0:d0+d2’f'2+d47"4+...

rv/asing

T\/Bcosa)' This new system can be

by the introduction of polar coordinates X = (
integrated using previously introduced methods.
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Example 13 (Pendulum) In ezample 8 the normal form of the system

=y
{ j=—9(z — %$3+ﬁx5+0($7)) .

was computed. This system issued from modelling o planar pendulum in example 1. The
normal form

ox (it o . [ -H/Eroxy

92 X+| . (7.11)
ot 0 i %\/%xy +O(XY)

~I=

18 transformed to the new system
X (0 % —1628°0 — 1529° + O(X?)
o\ -9 0)7 T Ly Ll oX

by a transformation

that is the inverse to the transformation that was used to obtain a system with a linear
part in Jordan form. The introduction of polar coordinates

- 7 sin(w)
X = ( r\/%cos(a) )

yields a new truncated system

or _

=0
0

&= i

that can be integrated to (r(t), a(t)) = (c,t) with t = \/%(1— %)t‘i‘CQ according to case 3 in
section 7.1. These curves can be transformed to the initial coordinates. They are sketched
together with the exact solutions in figure 7.8 without considering eventual problems of
convergence.

This chapter has shown that all 2 dimensional systems can be integrated if they are in
Poincaré-Dulac normal form. However, the obtained results are in general no solutions of
the considered systems but parametrizations of the solution curves.
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Figure 7.3: This figure shows the exact solutions and the solution curves calculated in
example 13 for the planar pendulum for g/l = 1/2. We can see that the curves coincide
well in the neighbourhood of (0, 0).



Chapter 8

Two dimensional nonelementary
singular points

In the case of a nonelementary singular point the application of the Poincaré-Dulac normal
form to a system

X = F(X) (8.1)

with F € C?{X} or R?{X} fails because A\; = X2 = 0 and resonances occur for any
exponent. For this reasons other techniques, that are controlled by the Newton diagram
of F, are employed. For two-dimensional systems the Newton diagram yields a set of
vertices Fg-o) with j = 1,...,k and a set of edges Fg-l) with j = 1,...,k — 1. For each of
those faces there exist algorithms to calculate solution curves.

For each vertex a time transformation and a power transformation transform the initial
system (8.1) to a non-nilpotent system. This system can be integrated using normal form
constructions and the methods introduced in chapter 7. The edges of the Newton diagram
are used to define blowing-ups that yield a finite number of ”less complicated” new systems.
Those systems are treated by applying the entire algorithm recursively.

However the solutions computed by the algorithms associated to the faces of the New-
ton diagram are only valid on parts of the initial neighbourhood. Those parts are called
sectors. Those sectors are defined such that they cover the entire concerned neighbour-
hood though they might sometimes intersect each other. That means that solution curves
are computed for any point of the concerned neighbourhood.

Blowing-ups of two-dimensional systems have been subject of many publications. This
chapter is mainly based on works from F. Dumortier [32], M. Pelletier [45] and A. Bruno [9].
Though we give a different explanation for the appearance of sectors the sector notation
introduced by A. Bruno is largely used in this chapter.

8.1 The Vertices

Each vertice @) := ng) of the Newton diagram can be used to define a time transformation
di = X9dt. (8.2)

85
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(1)
Fj . . .
1 (0 R .
(1) \ ’
Fj—l
1 1 R* o .

Figure 8.1: The time transformation (8.2) translates the considered vertex to the origin.
The new system (8.3) has its support within a convex cone V that contains the first
quadrant.

that translates the point @ to the origin in the space of exponents (see figure 8.1). This

yields a new system
0X 1

i EF (X) (8.3)
that has a non-zero linear part. This system and the initial one in equation (8.1) are
equivalent in the sense that the solution curves of both systems are parametrized solutions
of the same scalar differential equation. If the Newton diagram of the system consists of
more than one vertex the support of the new system has negative exponents and it lies
within a convex cone
V =R" R* +R" R,

(see figure 8.1). The cone V contains the first quadrant and it is defined by the vectors
R* and R,.. For non-extremal vertices those vectors lie on the edges Fg-l) and Fg-ljl. R*
and R, lead away from the origin and they verify

ged(s,t) =1, ged(u,v) = 1 with R, = (i)’ Rt — (u) ‘
v
For the extremal vertex I,go) the vector R, is defined as R, = (1,0) and for the extremal

vertex F,go) the vector R* is defined as R* = (0, 1).
Systems having their support within a convex cone are called class V systems.

8.1.1 The Poincaré-Dulac Normal Form for Class V Systems

Class V systems have been introduced by A. Bruno [9]. They denote systems that have
their support within a convex cone V. In the case of a vertex this cone is defined by the
vectors R* and R..

A class V system (8.3) can either be transformed to normal form directly via the
definition of the generalized Poincaré-Dulac normal form, as it is done by A. Bruno [9], or it
can be transformed to a system with positive integer exponents by a power transformation

X=X (8.4)
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Theorem 10 The change of coordinates X = XA" described by the matriz

v —u
A= ( v )
transforms a class V system (8.3) to a new system with integer exponents that has its
support within the first quadrant (R, = (i) and R* = (;f), s,v >0, t,u <0).
Proof 3 All points Q) that might appear in the support of the class V system (8.3) can be
written as

Q = aR* + BR.

with o, 8, € RT . According to theorem 3 in chapter 2 the vectors R* and R, are transformed

to the vectors
0 J detA
deta) “" o

respectively. For this reason Q is transformed to the point

~ 0 detA
Q:a(detA> +ﬁ( 0 )

that has positive coordinates. The coordinates of Q are integer as A has only integer
coefficients.

According to the results from section 4.2.3 the matrix A can also be computed via its
adjoint matrix. For the matrix

A" = (RJRY)

we obtain the matrix A form theorem 10.

The new system is transformed to its Poincaré-Dulac normal form and integrated with
the algorithms introduced in chapter 7.

The advantage of this method compared to the computation of generalized normal
forms for class V systems is that the classical normal form algorithms from chapter 3
can be used. They are more efficient than algorithms computing normal form for class V
systems.

Remark 5 If the employed power transformation is not bijective the constructions intro-
duced in chapter 2 can be used to define injective and piecewise surjective transformation.

8.1.2 The Sectors

A very important characteristic of the solution curves calculated by the algorithms associ-
ated to a vertex of the Newton diagram is that they are not valid in the entire concerned
neighbourhood

U={X:|z]<e [yl <e}.

This results from the fact that the transformation (8.4) is a blowing-up. The origin X =0
is transformed to the exceptional divisor of the blowing-up and the neighbourhood U of
the origin is transformed to the set U that denotes a neighbourhood of the exceptional



88 8.1. The Vertices

g y

04

0z

Figure 8.2: The neighbourhood U of the singularity X = 0 is transformed into a neigh-
bourhood U of the exceptional divisor.

divisor. This is shown in figure 8.2. The solution curves for the set U can no longer be
found with local methods as U is not a neighbourhood of a point.

The algorithms from section 8.1 yield solution curves that are only locally valid in a
neighbourhood of X = 0. We will presume that this neighbourhood can be denoted as

7O = (X |3 < 6, |91 < ;)

with 0; sufficiently small.

Transforming (7](0) to the initial coordinates yields the definition sets

UJ(O) — {X . |X|R* < %.detAl’ |X R* < 5;detA|}

(0)

for the curves computed for the vertices ' o The sets UJ(O) are limited by the curves

detA s

lyl=0; " |z["+ if t#0
_ detA

|z| =4, * if v=0

detA ” .
lyl=0;" lz["v if v#0

The sets UJ(O) are called sectors. An example for a sector obtained in example 14 is sketched
in figure 8.4.

An important point in the definition of the set (7](0) is the choice of the parameter 0;.
As it has been shown in chapter 4 the blowing-up might yield new singularities on the
exceptional divisor besides the one in X = 0. We have to consider all those singularities.
The singularities different from X = 0 will be studied in the algorihms associated to the
edges of the Newton diagram. Therefore the set (7](0) must be chosen such that it does not
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contain any further singularities besides X = 0. This is guaranteed if the d; are chosen
sufficiently small.
To simplify the representation of the sectors we choose

€ = min {1, minle{é;dem‘}}

and work with the neighbourhoods

~ 1 1
](0) — {X . |j| < 6|detA|’ |g| < 6|detA|}
in the coordinates X and with the the sectors

U](O):X:|XR* <6 XIH <6 X <€}

in the initial coordinates. The parts of U that are not covered by the sectors associated to
(1

the vertices of the Newton diagram are associated to the edges I' ; and treated separately.

They are denoted by
UV = (X :e<|X[F<e!, [X]w <€)

(1

The vector R is defined as lying on the edge Fj and verifying the properties

r1 <0, 79 > 0,gcd(r1,r9) =1

with R = (r1,72). R is identical to the vector R* for the vertex Fgo)‘

The following example illustrates how solution curves in a sector associated to a vertex
of the Newton diagram are calculated. The used power transformation is not bijective.
This makes additional constructions necessary.

Example 14 The Newton polygon of the system

9y

% = acZy + :Ey4
5r = 2zy% + 2%y

is sketched in figure 8.3. It has a vertex Fg]) = G) Applying the time transformation

di = XV dt

yields a system
% =z+ x_1y3 (8.5)
=2y + zy~! '

that has its support within a cone V defined by the vectors R* = (;1) and R, = (711) The
cone is shown in figure 8.1. The transformation

AT _ 3 1
et (3 )
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q2

Figure 8.3: The Newton diagram for the system treated in example 14.

is not bijective. Therefore we use the two transformations
_ vAT _ (2%F
X=X and X = ("}}) (8.6)

defined on the set
U = {X 1|7 <e2, | <e2, 7>0}

that consists of two quadrants of a neighbourhood of X = 0.
The transformations (8.6) transform system (8.5) to the two systems

0% _ _1s 123, 1:~2

g =20 el (8.7)
Oy _ 5~ 4 352~ 13 :
57 — 2Y T 3Ty —3Y

and

8@ 1~ | 13 1~~9

g2t el (8.8)
9y S~ _ 352~ 1~3 :
o — 2Y — 3Tyt 3y

The set (NJQ(O) is transformed into the two sets

US) = {X + [X|C9) < e, [X|7D) <, my > 0}
U(2) ={X :|X|E53) <, |X|7D <€, zy <0}
That form the sector U2(0 . To find solution curves valid for U2(?1) and UQ(?Q) the two systems

(8.7) and (8.7) are treated like any system with an elementary singular point.

Figure 8.4 shows U2(0) and the sector U2(0) for e= %

=

For € < 1 the constructions for the vertices of the Newton diagram yield solution curves
that do not entirely cover the initial neighbourhood U. Solutions for the remaining sectors
are associated to the vertices of the Newton diagram. They are found using blowing-ups.
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Figure 8.4: The set (72(0) and the solution curves X (t) otained for the system (8.7) are
transformed to the initial coordinates. We obtain the set U2(?1) and solution curves X (¢t) for
the initial system that have been sketched without considering any problems of convergence

(see section 1.5). See also example 14.

8.2 The Edges

The sectors

My — i R o —1
Uj (6 ={X e <|X|" < e, [[X]|oo <€}

are associated to the edges F§1) of the Newton diagram. Within these sectors the initial

system (8.1) is reduced by quasihomogenous blowing-ups that were introduced in section
4.2.3. These blowing-ups yield a finite number of new systems that have no or ”less
complex” singularities . The matrix defining the corresponding power transformation is
defined by the vectors R verifying

r1 <0, 79 > 0,gcd(r1,r) =1

(1)

and lying on the edges I' i of the Newton diagram.

8.2.1 Reduction of the Singularity

The sector

M)y . R -1
U= {X e < IXI® <, Xl < )

is limited by the plane algebraic curves
1 N
ly| = e |z| ™

and
1

1
yl = 72 ja] 7
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Figure 8.5: The figure shows that the set set U;l) does not entirely cover the set (8.11) if
any unimodular matrix is used (left). If matrices of the form (8.9) or (8.10) are used, the

set U](I), that is drawn with dashed lines, entirely contains the set (8.11) (right figure).

To study the behaviour of the system (8.1) within this sector an appropriate blowing-up
can separate these curves. This blowing-up is defined by the change of coordinates

X = x4

_ (T2 71
=)
with R = (71, 72). The matrix coefficients ¢ and d can be chosen such that detA = 1. This

makes sure that the power transformation is a diffeomorphism (see section 2.3). However,
we will also consider the matrices
o —T1
A= .
( 0 1 > (8.9)

A:(? z“> (8.10)

if ro is even. Those matrices also define diffeomorphisms. Using those matrices the

representation of the sectors U](l) is more complicated as in the case of unimodular matrices

but the calculated solution curves are valid in the entire sector UJ(I)
if unimodular matrices are used (see figure 8.5).

with the matrix

if 9 is odd and the matrix

. This is not the case

Applying a blowing up X = X4” to the initial system (8.1) yields a new system

ox .
o F

that has the following properties :
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[ qi

Figure 8.6: The figure shows the Newton diagram and the support of the system treated

in example 15. After having applied a blowing up the edge Fgl) has been straightened up

to the vertical edge f‘gl).

e For the matrices (8.9) and (8.10) the origin is blown up to the exceptional divisor
{0} x k where kK = C or R. In the case of unimodular matrices different from the
matrices (8.9) and (8.10) the exceptional divisor is k& x {0} U {0} x k.

e The sector U](O) has been transformed to the set
~ 1 1
{X :elteral < || < e Taerdl | |F]2 56| < e, |2]757 < €} (8.11)
but we will work with the simplified expression
~ (1) B ~ 1 ~ _ 1 ~ 1
Uj — {X s gldetA] < |y| <e |detA|, |(L‘| < e\detA\} (8.12)

that contains the set (8.11) for the matrices (8.9) and (8.10).
1)

In the case of unimodular matrices the sector Uj does in general not entirely contain

the set (8.11). This is sketched in figure 8.5.

e The edge I‘g-l) has been ”straightened up”. That means that the vector R has been
transformed to a vertical vector

- 0
R=AR= (detA) '

The points Fgo) and F% lying on the edge Fg.l) have been transformed to points

with identical ¢;-coordinates. This is illustrated in figure 8.6.

e As the support of the new system lies entirely on the left of the straightened edge
the new system has the form

0T _ zs+1f(s ~
{ A (#9) (8.13)
5 = 92°g(Z,7)
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il A Im(p)
51,1
1“312 91’1 14 gl 6
51;7 Si 5
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Sl,:} 81’2 51’3 81 4

Figure 8.7: The set Ul(l) from example 15 is decomposed in subsectors for the real and the
complex case. The only appearing singularity is the one in X = (0, 1).

where s is the ¢i-coordinate of the straightened edge.

The initial problem was to find solution curves for the initial system (8.1) in the neigh-
bourhood U of the origin X = 0. Applying the blowing-up this has been reduced to a new
problem. Now we must find solution curves of a new system (8.13) in the neighbourhood
(NIJ(I) of the y-axis. This problem can be solved by splitting the set U](l) into so called
subsectors and by defining a recursion.

8.2.2 Subsectors and Recursion

To solve the problem of finding solution curves within (NIJ(I) two different cases have to be
considered. To distinguish those cases the truncated system
Q
. (IIZ{Q:QGFJQ)} agX

X =F = 0 (8.14)
Y 2 gqertny o X

is defined. This system contains only those monomials in (8.1) that have their support

on the edge Fg-l). By the blowing up the truncated system (8.14) is transformed to the

system i
=) 8.15
G5 s (8.15)
@ = 2°99(9).
(0)

that has its support on the straightened edge .
The transformed truncated system (8.15) is used to distinguish the two cases:

e g(y)=0.
Applying a time transformation df = #5t1dt to system (8.13) yields
9% _ f(z i
a ch(“/) (8.16)
Bi zg(xay)
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Ul® Sis
S1,1
S1,2
U1(0) | 2

Figure 8.8: The division of the neighbourhood of the origin into sectors and subsectors in

the first and the second level of recursion for the system treated in example 15 (Ul(l) =
S1,1US12U813).

To calculate the new singular points on the exceptional divisor let £ = 0. The

resulting system
dz £y~
{ g—‘f f(@)
y ~ ~ ~
o ( g(x,y))

Bl

=0

has the following properties:

1. The y-axis is no solution curve.

2. All points in {(0,7) : f(0,7) # 0} are regular points and Z(¢) is not constant
there. Therefore there exists a solution curve passing through each of those
points.

3. All points in {(0,7) : f(0,7) = 0, (%g(:fc,gj))~ . # 0} are regular points but
TrT=
here the solution curves are parallel to the § — azis as Z(t) is constant. Those
points are called tangencies.

4. All points in {(0,7) : f(0,g) = 0, (gg(:}z,g)» .= 0} are singular points.
Ir=
Those points are translated to the origin and the entire algorithm is applied

recursively to the resulting systems.

This case is called the dicritical case as tangencies and singularities can occur.

. §(7) £0. )
Applying the time transformation dt = z°dt. (8.13) yields the system

& = 2f(2.9)
{ % = 99(,9)- (8.17)
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On the exceptional divisor, for Z = 0 the system is

i

Some properties for the system (8.17) can now be given:

PR eF o 81

(8.18)

g|%|c}:

1. The y-axis (Z(t) = 0,y(t) = ¢) is a solution curve of system (8.17).

2. All points {X € U](U) : g(0,9) # 0} are regular points. From equation (8.18)
shows that here the solution curves will be parallel to the y-axis.

3. All points in {X € U](U) : g(0,9) = 0} are singular points. They might be
elementary or not. Those points are translated to the origin and the entire
algorithm is applied recursively to the resulting systems.

This case is called the noncritical case as tangencies do not occur.

The above classification has shown that in any case the resulting system can be solved
in any point. A central point is the recursive application of the entire algorithm. Those

7(1).

recursions have to be defined such that they yield solution curves for the whole set Uj

Therefore the set (7](1) is split into so called subsectors S’j,l, RPN S']k Any of those subsec-
tors contains either one singular point or only regular points. The subsectors are considered
as neighbourhoods of the points Xj,l, e ,X'j,k. The point Xj,i with ¢ = 1,...,k is either
a singular points or any regular point. A possible splitting of a set UJ(I)
the case of real and complex variables is sketched in figure 8.7.

With the systems (8.16) or (8.17), the subsector S;; and the point of interest X;; the
entire algorithm can be called again. The first step in the next level of recursion will be a
translation of the point X ji to the origin.

If the singularity has not been reduced by a first application of a blowing-up another
one is applied. A. van den Essen [61] has proved that any isolated singularity can be
reduced entirely by a finite number of blowing-ups. So this algorithm will come to an end
after a finite number of steps.

into subsectors in

Example 15 The Newton diagram of the considered system

: —at + ya?
X =
( 13y2$6 22y2 + 33 >

1) (see figure 8.6). For € = 3 the sector

(8.19)

has only one edge F( with R =

Ul(l) ={X:

1
5 <lel7yl <2, |9E|< ; yl < }

1s associated to this edge. The blowing-up X = XA with

()
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Figure 8.9: This figure shows the structure of the exceptional divisors of the blowing-ups
used for the faces of the Newton diagram.

(1)

transforms U; "’ into

(VAN
=
(VAN
N
=
(VAN
N —
—~—

and yields the new system

e
I

—it + x4y
By - 28352 + 3P + BaTy? )7

That means a noncritical case. A new time transformation with s = 3. yields a resulting
system that has a nonelementary singular point in (0,1). For the real case the sector (7'1(1)
is divided into 3 subsectors as shown in figure 8.7. The subsectors 5’1,1 and 5’1,3 contain
only simple points but the remaining subsector 5’172 contains a nonelementary singular
points. Therefore in the second level of recursion another blowing-up has to be performed.

In the second level of recursion the solution curves for all sectors and subsectors of
S12 can be calculated directly as the blown-up system has only simple points. Figure 8.8
shows the sectors and subsectors resulting for this example in the first and second level of
recursion.

This chapter has shown how blowing-ups and time transformations can be used to find
solution curves for two-dimensional systems of differential equations in the neighbourhood
of a nonelementary singular point. The computed solutions are valid only on parts of the
neighbourhood that are called sectors.
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For both cases, for the case of an edge and for the case of a vertex, blowing-ups are
used to reduce the considered system. This fact imposes to study the structure of the
blowing-ups and their exceptional divisors more closely. Consider the blowing-ups for the

(1)

vertices Fg-o and Fgg_l and the edge I' e They are denoted by

X=X" x=x\n
7 )

~ BT
_ J
it andX—Xj

respectively. As those power transformations are invertible anywhere except in their ex-
ceptional divisors we can construct the transformations

~ ~ AT —

X;= (X (8.20)
and o1

~ ~ - -T

Xj= (X)) . (8.21)

Those power transformations can be completed in the exceptional divisors of the initial
power transformations. Computing the transformations (8.20) and (8.21) explicitely yields

. 1
yjz—jk , k>0, keQ
j+1

and 1
Yi
if the matrix (8.9) is used to define the blowing-up for the edge and

Ji=195, k>0, keQ

if the matrix (8.10) is used. That means that a part of the exceptional divisor for all three
considered blowing-ups is identical. However as

lim:i‘jJrl*)O ?J] =00

the point X; = (0,00) is identic to the point X, = (0,0). To visualize this relation the
lines Z; = 0 and 7; = 0 of the exceptional divisors can be displayed as circles as it has been
done in figure 8.9. This figure shows the structure of the exceptional divisors computed
for a Newton diagram that consists of four vertices and three edges. The neighbourhoods
of the exceptional divisors are split into the sets UI(O), ey Uél) according to this figure.

Now, it is obvious that the power transformations applied for the reductions of class V
systems could also be used for the case of an edge to define a recursive process. Nevertheless
the case of an edge and the case of a vertex of the Newton diagram are treated separately
for two reasons. The sector definition is simpler and the use of transformations that are
no diffeomorphisms to define recursions would increase the cost of the algorithm. This is
due to the additional constructions introduced in section 2.3 that have to be used in the
case of non-injective power transformations.



Chapter 9

Three- and higher-dimensional
elementary singular points

The case of a two-dimensional elementary singular point has been subject of chapter 7.
There it was shown that any two-dimensional system can be integrated in the neighbour-
hood of an elementary singular point. In this chapter we are interested to know whether
these results can be extended to higher dimensional systems.

Like in the case of two-dimensional systems the first step is the transformation of the
considered system to Poincaré-Dulac normal form. For higher-dimensional systems the
computation of the Jordan form might cause some problems that were already mentioned
in section 3.2. However, here we will presume that the Jordan form can be computed and
that the considered system

X = F(X) (9.1)

is given by a formal power serie and that it is in Poincaré-Dulac normal form. The resonant
plane

M={QeN:(Q,A) =0}

of the normal form (9.1) has been defined in section 3.1. It plays a central role in the
reduction and integration of the system (9.1). The set M is used to define the vector space

M={P:P=) oQi, % €R, Q; € M}.

The methods used for the reduction of the normal form depend on m that denotes the
maximum number of linearly independent vectors in M. It is obvious that m is smaller
than the dimension of the system.

For m = 0 the system (9.1) can be integrated directly as it is linear and the matrix
DF(0) is in Jordan form. For m = 1 the considered normal form can always be integrated.
The integration methods are similar to those already used in section 7.1. If M contains two
linearly independent vectors one or several power transformations can be used to reduce
the normal form. The reduction yields systems that can be integrated via the integration
of a m-dimensional nilpotent system. However, the employed power transformations have
to verify very strict conditions.

The methods for reducing systems with elementary singular points are extensively
studied for three-dimensional systems. A generalization to n-dimensional systems is pos-

99
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sible but some further difficulties arise from the fact that a three- or higher-dimensional
cone can be spanned by any number of vectors.

The general ideas for the algorithms described in this chapter have been studied by
A.Bruno [9] and L. Brenig and A. Goriely [23]. In this chapter many aspects of those
algorithms are studied more intensely and some further constructions are introduced. The
sections 9.2 and 9.3.3 deal with real normal forms for systems with two complex conjugated,
purely imaginary eigenvalues. They are based on works from S. Chow, C. Li and D. Wang
[15].

9.1 Integration of n-dimensional normal forms for m =1

If the resonant plane M of a normalized system (9.1) contains only one linearly independent,
vector (m = 1) the results from section 7.1 (case 3 and 4) can be generalized. Two cases
have to be studied separately:

e M NN"={0}
Without loss of generality it can be presumed that
-1
Qo = q(.]z
qon

with go; € N is the only vector different from () = 0 that lies in M. The normalized
system (9.1) has the form

al,QoX(Uy%z,m,QOn)
0X 0
— =DF(0)X
5 0)X + :
0
It can be integrated using the method of the variation of the constant.

e M NN #£ {0}
There exists a vector ()9 € M such that all other vectors () € M can be written as
kQo with k € N. The normalized system (9.1) has the form

. z1 Y, agp X FQ0
X = DF(0)X + (9.2)

Tn Dok e X FQo

Like in section 7.1 there exists a power transformation X = X AT that transforms
this system to a system

0% E1 >, a1t T191(71)
2 _DF(0)X + = 9.3)
Tn Y Elnkiﬁ]f Tngn(Z1)
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that can be integrated. If g; # 0 the resulting equation (9.3) can be transformed to
a new system of differential equations

{ 931

ot

Ologz; _  gi(&1 . (94)
5 = Tio(EL)’ 1=2,...,1

by a time transformation
df = 57191 (:fl) dt

In equation (9.4) each line is integrable. The lines 2,...,n can be integrated to
t .
logZ; :/ 9:() ds +c¢; .
s91(s)
g1 = 0 yields Z;(t) = ¢; for the first variable. As a consequence equation (9.3) has
the form
0
0X | Ta2ke
ot
Tnkn
with the constant terms k; = g;(c1), i = 2,...,n. This can formally be integrated to
X(t) = (c1, e, ... cpefnt) .

The matrix A for the power transformation is best calculated via its adjoint matrix
A* =detA A~'. Any matrix A with

A% = (Qol-..)

such that A* has no negative entries can be used. The fact that A* has no negative
entries guarantees that the power transformation is no blowing-up.

Like in section 7.1 the particular solutions
X(t) = (t,e1,... 0 1) with t = eMt e, ... cno1 ERor C
X(t) = (c1y...,cn 1,t) with t = eMt e, .., cn1 €ERor C

of equation (9.2) have to be considered separately if they can not be obtained from
solution curves calculated for the reduced system (9.3).

Example 16 The normal form of the considered system

‘ 1 2 0 I%$2IE3
X=]111 0 X + 0
0 0 -2 —x1x2x§
has the form
0% 1+2 ) V252505
v 1-v2 X+ | —¥25,825;

|
(V)
o
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The resonant plane
1
M=<k|[ 1 | :keN
1

is transformed to the ¢i-axis by the change of coordinates X = XA" with

110 00 1
A*=11 0 1 and A= 1 0 -1
1 00 0 1 -1
This yields the new system
ox [ 0
1-v2 —%i‘gil

that can be integrated to

X(t) = (cl, 026(\/5+1+‘1/%c1)t, 036(—x/§+1—‘{—§cl)t>

with ¢1,c,c3 € R or C.

9.2 Integration of real n-dimensional normal forms for m =1

A particular normal form with m = 1 can issue for a system with real coefficients and two
complex conjugated, purely imaginary eigenvalues. The two-dimensional case has been
the subject of section 7.2.

The system X=F (X) that has real coefficients and the purely imaginary eigenvalues

A1 and Ay = —)\; can be transformed to a system
oxX - -
— =F(X
pr (X)

with real coefficients where the linear part is in real Jordan form

The block

0 «
n=(% %)

represents the eigenvalues A; and A2 (@ = Im(A;1)). The other blocks are either Jordan
blocks for real eigenvalues or real Jordan blocks for complex conjugated eigenvalues. The
used linear transformation X = T'X is also real.



Chapter 9. Three- and higher-dimensional elementary singular points 103

The next step is the application of a linear transformation

1
2.
X=PXwithP=| —3

[NSIEXNITE

that yields a new system with a linear part in Jordan form
DF(0)X=| 0 -—ia X.

This system is transformed to its Poincaré-Dulac normal form

N Kk ok
) i 0 £ Y apdiis
- ~kak
0X 0 —ia N To Y ag T
- ~kak
Tn Y A2n TV Es

that has the particular form a1 = @g;. Applying the linear transformation X = PX to
the normalized system yields a new system

S (G + 52)F (Re(awr)F1 — Im(ay,)Fs)
24 % i

0% 0 « ) (% + 23)k(Im(a1g)F1 + Re(arr) )
oXx _ —a 0 X ~ ~ ~2 ~2 k
5 + T3 azk(T] + &3)

Introducing polar coordinates

for the coordinates Z; and Z» yields the integrable system

o= ar4crd4...
¢ = d0+d27“2+d47"4+...
% = I3(eg+ear? +eqrt +..)

Example 17 Consider the system

. 0 4 0 3:512(1)2—51,‘33
X=| -4 00 )X+ O
0 0 2 21?39 w3 — 11 2
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Its linear part is in real Jordan form. Transforming it to Jordan form using the transfor-
mation X = PX yields the new system

5% —4 0 0 %I:ﬁi’—%Iﬁ:%eriIaElaE%Jr%I:%%—jg
T 41 0 | X+ §Ii?—§I:i%i2+§lzi1:i%+gli%—:i§
0 0 2 1t — I3 +...

This system is transformed to Poincaré-Dulac normal form

9% —4I 0 0\ 417 — 31337+ 2 T 2333 + . ..
— = 0 41 0 | X+ | dlzo+31mal— 2512325+ ...
0 0 2 T3 — 22171812559664 i“411 T3Ty+ ...

and retransformed by the transformation X = P~1X. This yields the new system

9% 0 40\ 342d,+ 233 +...
S = | 400 X+ —333 - 34234,
2245477 ;44 z
0 0 2 ~Tiosoizssd L14243 +
Introducing polar coordinates
rsin ¢
X = rcos¢
T3
yields a new integrable system
d 843792 9
5)—’2 = 53999657 1 -
2= —4—6r2+ et 4
3gt3 2:%3 4+ ... .

9.3 Reduction of three-dimensional normal forms for m=2

The reduction and integration of three dimensional normal forms is of particular interest
as the dimension of the resonant plane does not exceed 2 and two-dimensional systems
can be integrated by methods introduced previously in the chapters 5 to 8.

Three-dimensional normal forms have a resonant plane with 0,1 or 2 linearly indepen-
dent vectors. For m = 0 the integration of the normal form is obvious. For m = 1 the
algorithms from section 9.1 can be used to integrate the considered normal form. For
m = 2 a power transformation X = X AT can be used to reduced the normal form to a
two-dimensional system. The choice of the matrix A is the main problem.

Systems that are treated in a particular way in section 9.3.3 are systems with real
coefficients and two complex conjugated, purely imaginary eigenvalues. It will be shown
that they can be reduced to systems that are also real.

9.3.1 The Choice of the Matrix A

If M contains 2 linearly independent vectors a power transformation can be used to sim-
plify the normal form (9.1).



Chapter 9. Three- and higher-dimensional elementary singular points 105

Suppose that the vectors Q1, Q2 € M form a basis for M. Then the normal form (9.1)

can also be written as

T1 Y0 2| Rj=k G1RX "

X=| o D k>0 22| R=k azp X"

3D k>0 20| R|=k azpX"
with

R =0a10Q1 + a2Q2
and

|R| = [r1] + |r2| + |r3]

where R = (ry,79,73). a1 € Z and as € Z are chosen such that R € N. According to
theorem 3 in section 2.2 applying a power transformation X = XA with

1 0
AQl =det A 0 and AQ2 =det A 1
0 0

yields a new system

. L1 k>0 2| =k du%j(lf
a5 = | %2 D k>0 22| Rk azé):(lf“ (9.5)
T3 D k>0 2| =k a3 X1
with
R=a1AQ1 + w2 AQs, |R| = || +|F2]) -

The system (9.5) can also be written in the form
ox T191(Z1,T2)
il T292(Z1, Z2)
T393(Z1,T2)

(9.6)

The first two lines only depend on the variables Z; and Z,. The 2-dimensional system

9% _ & (A
{ agg ?19({17%2) (97)
Gt = T292(21, T2)

is formally integrated by previously introduced methods. If the system (9.7) is integrable
the solution curves X (¢) can be obtained from the solution curves (Z (t), Z2(¢)) by formally
integrating the scalar differential equations

Olog T3

T 93(Z1(t), T2(t))

that is equivalent to the remaining equation in system (9.6). The problem of finding
solution curves for the initial normalized system (9.1) has been reduced to the problem
of finding an appropriate power transformation and an appropriate matrix A. A is best
constructed via its adjoint matrix

A" = (1]Q2]-..)

where the vectors ()1 and ()9 define the first and the second row vectors. However some
essential properties are required for the system (9.6). Those properties affect the choice
of the vectors Q1 and Q2 and therefore the computaion of the matrix A.
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as it has been shown the vectors ()1 and Q2 have to form basis of M.

the coefficients of the system (9.6) have to be integer and positive. Otherwise the
resulting system can not be integrated by the previously introduced algorithms.

the power transformation X = X AT has to be a diffeomorphism. This is verified
if the matrix A is unimodular. If A is an non-unimodular invertible matrix the
constructions introduced in section 2.3 can be used to define a corresponding bijective
diffeomorphism.

if the power transformation X = X AT is not a blowing-up, the solutions of the
resulting systems are valid in the whole neighbourhood of X = 0.

If the power transformation X = X AT s a blowing-up, the reduction and integra-
tion yield solutions that are only valid in sectors As a single transformation is not
sufficient to cover a neighbourhood of X = 0 with sectors, a serie of blowing-ups
controlled by a Newton diagram are needed.

The following classification allows to construct appropriate matrices A for any three-
dimensional normal form.

9.3.2 The Classification

In this section a classification of three-dimensional Poincaré-Dulac normal forms is given.
This classification uses the eigenvalues of the linear part of the system and can easily be
implemented. It allows an exact definition of the resonant plane M. Further it makes sure
that all cases are considered and it allows the reduction of any three-dimensional normal

form.
In the study of three-dimensional normal forms we will focus on systems with rational

eigenvalues and show later that all other cases can be derived from these systems.

1. A1 >0, Ao <0, A3=0

Let ) \
k1 ::min{ke(@:?1 EZand?2 €L}
-9 0
the setMcanbewrittenasM:{/,%‘1 A1 +61 0 |: a€eN, BEN, a+8 >
0 1

0}

The support lies on a plane (m = 2). All points in supp(F) are in N°.

Let Q1,Q2 € M NN? be the two vectors that span the cone V that includes entirely
. . S AT

the support of the considered system. Then the power transformation X = X4

defined by the matrix
a

A= | ]Q:f | b
C

with a,b, ¢ € N yields a system that verifies all conditions for the further integration
of the corresponding two-dimensional system.



Chapter 9. Three- and higher-dimensional elementary singular points 107

1@

Figure 9.1: This picture shows the plane < A, Q >= 0, supp(F') and the vectors that are
choosen for the construction of the matrix A* in example 18. The support of the new
system lies in the g;go-plane.

Proof 4 Any point QQ € supp(F') can be written as

Q= a1Q1 + a2Q2

with ay,as > 0. Q is transformed to the point

1 0
Q:aldetA 0 | +agdetA ] 1
0

that has only positive coordinates. As A has only integer coefficients the ezponents
Q = AQ of the new system are integer and positive. The first and the second line in
the resulting system only depend on the variables £, and Z-.

As the matriz A* = det A A= has no negative coefficients the transformation X =
XA s not a blowing-up.

Example 18 Consider the normalized system

1 riTo7?

X = 3 X+ | 2ix3
-3 0

As we can see in figure 9.1 the cone V that contains the set M is spanned by the
vectors Q1 = (3,0,1) and Q2 = (0,1,1). They are used to build the matriz

3 0 2
A*=10 1 0
111
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The power transformation X = xA" yields the new system

0% 0 ) 37y

— = 0 X+ | @3

ot 2
-1 2:131:132:133

with positive, integer support. Using a cone that does not contain supp(F'), for
example the cone spanned by the vectors Q1 and Q3 = (3,1,2), yields a system with
negative support.

2. 01>0, Ao >0, A3 >00r A\; <0, A3 <0, A3<0
o Tl EN: A =KXy, do =Ny

-1 0 0 0
M={| &k +al|l -1 ], -1 ], 0 |:a<k acN}
0 l l 0
The resulting system can be written as
_ Aol p1(72,73)
X = A2 oy | X+ | pa(z3)
A3 0

where p; is a power serie in 9 and x3, p2 is a power serie in x3 and o; € {0, 1}.
The system can be integrated directly using the separation of the constant.

e dk € N: \; = k)9, and there does not exist a [ € N such that Ay = I3

~1 0
M={| &k |, | o}
0 0

Like above the system is directly integrable.
e There does not exist a k,I € N such that \y =12, Ao = k)3
0
M={| 0]}
0
The system is diagonal and therefore integrable.

3. M A0, do=0, \3=0

0 0
M={a| 0 |+8[ 1 |: (,B) eNPU{(=1,k),(k,—1) : k e N,k > 1}}
1 0
The system has the form
' A1 71 f(72,73))
X = 0 X + 9(152,153)
0 h(]?g,]?g)

A two-dimensional system in the variables zo and x3 can be split directly. After
having solved the two-dimensional system the third equation can be integrated.

4. X1 >0, Ao >0, A3=00r A\ <0, Ao <0, \3=0



Chapter 9. Three- and higher-dimensional elementary singular points 109

e\ =X
0 -1 1
M={a| 0 | +p 1 +9| -1 | : aeN,B,ve€{0,1}}
1 0 1

As and basis of M contains at least one vector with negative coordinates the
construction of a power transformation that is not a blowing-up is not possible.
For this reason blowing-ups controlled by the Newton diagram of the concerned
system will be used.

The support of the considered system lies in the cone V' defined by two vectors
Q1 =(—1,1,a1) and Q2 = (1,—1,1 + a2). Then the Newton diagram consists
of the three vertices

T = (-1,1, 1),

" = (0,0,0),

T = (1,-1,1 + o)

and the edges Fgl) and I‘gl) defined by the vectors
R1 == (—]_, 1,0[1), R2 == (]_, —]., 1+ 012)

respectively. Like in the case of a two-dimensional nonelementary singular point
the edges and vertices are considered separately.

The vertices ng) are transformed to the point () = 0 by a time transformation

~ (0)
di = X5 dt .
Now, the power transformation defined by the matrix

a

A*=|RJR*| b
C

where a,b,¢c > 0 is used to reduce the system. The vectors R, and R* are
defined as the vectors lying on the edges adjoinig the vertex and leading away
from the vertex. For the extremal vertices the remaining vector is defined as
Q3 = (0,0,1) € M. As the vectors R, and R* form a cone that includes the
support of F, the resulting system verifies all conditions required for a further
reduction and local integration.

The solution curves computed for the resulting system are valid in a neighbour-
hood

0% ={X :|X|x < ¢}

of X = 0. Therefore the curves X (¢) are valid in a sector
o) _ i R. R* (a,b,c)
U7 ={X:|X|"™ <e [X[T <e [X] <€}

in the initial coordinates. The remaining sectors are associated to the edges.
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(1)

The blowing-up for the edges I';” is defined by the matrix

a
A= | Rj|Qs[ | b
c

with a,b,c € N. In the new coordinates the sector

U = {X:e<|X|B<et L)

is transformed to a neighbourhood of the exceptional divisor {k}x0x0. Solution
curves on those sets can be computed like in section 8.2 by the definition of
subsectors and recursions. The system reduced by the power transformation
verifies all conditions required for the reduction to a two-dimensional system.

Example 19 Consider the system

‘ 11 0
X = 1 X + T1 T3
0 73

with the three vertices T\") = (=1, 1, 0), T\ = (0, 0, 0) und I'\") = (1, —1, 1).
The support and the resonant plane M are shown in figure 9.5.

For the first vertex FSU) the time transformation
di = X110 gt

yields the system

ax $12$51 + I
— = T+ :E12 T3To
ot 5 2

T3 $1x2_1

1

A power transformation defined by the matrices

1 01 0 -1 0
Ar=A'= -1 00 | andA=| 0 0 1
010 1 1 0
yields the new system
~ ~3 ~
= —T9x] + T
a{( = | @i (9.8)
ot 2
T1 X3+ I3

that can be integrated by the algorithms introduced in section 9.3.1. Its solution
curves are valid in the sector

UI(O) = {X : |X|(1’_1’0) <e, |ZE3| <€, |ZU1| < 6} .

Blowing-ups for the other vertices defined by the matrices

1 -1 1 10 1
A= -1 10 ],4=[ 100
1 00 110
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Figure 9.2: The figure shows the three sectors computed by applying blowing-ups to the
system in example 19.

yield solution curves for the sectors

UL = {X 1 |X|CLL0) < ¢ |X|0LD < ¢ |oy| < €}
U = (X XD < e, Jas| < e, an| <€}

As no further singularities except the one in X =0 appear on the exceptional
divisors of the power transformations we can choose € = 1. The sets UI(O), 1(0)
and UI(O) cover an entire neighbourhood of X = 0.

The sectors computed for this example are sketched in figure 9.2

° E”{?EN:)\l:k)\Q)
-1 0
M={a| k +8| 0 |: apeN}
0 1
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| 43

q1

Figure 9.3: The support and some points of the set M for the system treated in example
19.

The Newton diagram has the two vertices
0
MY = (=1, k, 1), B €N,
r = (0, 0, 0).
A procedure similar to the one used in the previous case yields systems that

verify all conditions for a further local integration. As the used power trans-
formations are blowing-ups, the computed solution curves are only valid in

sectors.
° /Hk‘ENiklzk‘)\g)
0
M={a| 0 |: aeN}
1

All points in M are on a line. That means that the algorithms for m =1
proposed in section 9.1 can be applied.

5. A1 >0, A2 >0, A3<0
The notations

A A
ky :zmin{kEQ:fGZ/\fGZ}
A A
ko ::min{kEQ:fEZ/\er}
—Az 0
k1
with Q1 := 0 and Qo := %;3 are used to simplify the representation
AL Az
k2

k1
of the set M in this case.
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e Jk € N: A\ = kX and

da,b>0:aX — Ao +bA3 =0 (9.9)
a -1
M={| -1 | +aQ:+pBQs, ki | +aQi+BQ2: a,B €N}
b 0

We will show that in this case k1 = ko and that the considered normal form can
. . . . S AT .
be simplified using a power transformation X = X4 defined by the matrix A

with
1 0 0 1 0 0
A= 0 1 0 , A7 = 0 1 0
PSPV ¥ EDSTRP VY 1
k kl kl )\3 /\3 /\3

A and A~ verify all conditions required and det(A) = —2‘—?.

Proof 5 (k1 = ky) This needs to be shown only for A\, Ao, A3 € N otherwise
k1 = ko =1 or equation (9.9) is not verified.
suppose k1 # ka. A1 = kg yields kv = ged(kXa, —X3) = n ged(Ag, —A3) =
n ko, n € N, n>1. (9.9) can be written as

kX A A
n kg(a—Z + b—3) = k2—2.

n kQ n kQ k‘g
Dividing by nko yields a:)}é + bn/\i2 = n)\12c2 where the right hand side is in N

but the left hand side is not (if n > 1). This is a contradiction so ki = ka.

Proof 6 The points with negative entries in supp(F') can be written in the form

-1
k Aok
Q=1 ki | +8Q=22Q1 — Z22Qs+ Qo
0 A3 A1 A3
or
a
k ak
Q= -1 | +0Q = 2Qs— —2Q1 +aQ,
b A3 A3

after having applied the transformation X = XA the points in the support of
the new system are given by

—1 0

- k Aok A
Q=AQ =240, +(B-214Q, = 0 |+B2-k| 1
)\3 )\1)\3 0 kl 0

and

0 0

- k k A
O=AQ="2AQs+ (- LA = | -1 | +2 - | 1
A3 A3 0 Ky 0

That means that all new points are in N. The matriz A is choosen such that
the points in Ny —N? only appear in the first equation and all points in Ny — N
appear only in the second equation of the new system.
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e dk e N: )\ =k)yand Aa,b>0:aX\ — Ao +bA3=0

-1
M={| k +aQ+ Q2 a,p €N}

0
The matrix

1 0 0

A= 0 1 0

A X A3

k 2 k2

and the power transformation X = X AT can be used to simplify the considered
system. This can be proved like above.

Example 20 Consider the system
1 Tix3

X = 2 X+ | —z%+2dzs — 2323
-1 0

that is in normal form. The power transformation X = xA" defined by the
matric

1
A*=1|( 0
1

N = O

0
0
1

with the vectors Q1 = (1, 0, 1) and Q9 =

—~

0, 1, 2) yields a system

- 0 i
0X . L
— = 0 X+ | -3 +3 - 73
ot -1 0

with positive exponents that can be integrated. The resonant plane of the initial
system and of the resulting system are sketched in figure 9.4.

° /E”fEN:)\l:k)Q and da,b>0: —Ai +aXa+ b3 =0
-1

M={[ a |+aQ:i+pQ2: a,B €N}
b

The power transformation X = X AT Qefined by the matrix

1 0 0
A= 0 1 0 , v = ged(ky, ko)
A A A3
v v Y

simplifies the system. This can be proved like above.
° /E”fEN:)\l:k)Q and /Ha,b>0:—)\1+a>\2+b)\3:0
M ={aQ: +BQ2: o, €N}
In this case the matrix A for the power transformation can be found like in
example 18 as the vectors Q1 and Q2 span a cone V' that contains supp(F).
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Figure 9.4: This figure shows the resonant planes of the initial system and the reduced
system from example 20.

6. \1 >0, Ao <0, A\3<0
In this case the reduction to a two dimensional system is similar to the previous
point.

All cases where non-rational eigenvalues appear can be derived from the cases treated
above. If there exists an eigenvalue \; ¢ Q resonances appear if there exist vectors Q € N/
such that

(AQ) =Y Xai=0.

In this case m = 1 or m = 2. Further there exists a vector A = (5\1, A2, 5\3) such that
M C {Q € N :< QA >= 0}. Finding A is equivalent to finding a vector in @ that
is orthogonal to one or two vectors in . As for the resonance equation it makes no
difference if A or A is used. All cases with A1, A2, A3 € C have a corresponding case with
AL, A3, A3 € Q.

9.3.3 Real three-dimensional systems

This section deals with systems that have real coefficients but a pair of complex conjugated
eigenvalues. In certain cases the reduction to a two-dimensional system can be performed
such that it yields a system that has real coefficients.

Without loss of generality it can be supposed that A\; = Ay. Three cases have to be
considered.

e Re(A\) =0 and A3 # 0.
In this case the resonant plane M contains only one linearly independent vector.
This case has alredy been treated for n-dimensional systems in section 9.2.

° Re(Al) =0 and )\3 =0.
The reductions in this case are similar to those applied in section 9.2. However here
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the resonant plane contains two linearly independent vectors. As a consequence
the reduced system is not integrable directly but we can integrate a corresponding
two-dimensional system.

Consider without loss of generality that the linear part of the considered system
is in real Jordan form. The transformation to Jordan form by the transformation
X = PX and the transformation of the resulting system to Poincaré-Dulac normal
form yields the system

a% e A B0 Y 2o arpl(®1 B2)Fah
e —ia X+ | 22300 aom(dn :%Qk)k?é
0 Dok 2o 3ki(T1 T2) Ty

with the particularity that Vk,l : aip = age and Vk, [ : Im(agg) = 0. For this

reason the transformation X = P~1X yields the new real system

~2 ~2\ .zl x ~
0% 0 « N > 2@ + xQ)kalg(Re(alkz)xl — Im(ai1)22)
v ~2 2\ ~ 4
e X+ 2@ +$2)k$3(1m(a1kz)$1 + Re(air)72)
0 52 k3L
>k 2@+ 952) T3a3k
Introducing polar coordinates ~
T1 =rsing
T9 = 1 COS ¢
yields the real system
%zﬁ@@)
a—; = fg(’)”, 573) (910)
% = f3(r, 73) .

The system (9.10) is either directly integrable or a two-dimensional system in the
variables r and Z3 can be split from it.

Example 21 Consider the system

. 0 4 3:512152 - (II33
X = —4 0 X+1 0
0 212 To Ty — T1 T2

that is transformed to Jordan form by the linear transformation X = PX and to
Poincaré-Dulac normal form

~ 41 31323 — 2L T3333 +.
0X - 8L T3 172
5 = —4I X+ | 21523+ 10;4133%953
0 I3 Tg +
The transformation X = P1X yields
aX 0 4 . %Z;E’%A—FA%A%?Q;F...
W: —4 0 X+ -3 1!L‘2—§ ?‘i‘
0 s 23834+ £ 2427 4.
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Introducing polar coordinates yields the system

o) _ 3 45.3.,2_ 271 4

gt 43323@34-87“ ooz’ Tt .-
. 3°3.

? = 13%’)"4 3+

xr3 1 -,

ot 87' :E3+

L4 Re(Al) 7é 0.
In this case a construction like in the previous cases is not possible. This is due to the
fact that the transformation matrix P is more complex. However if no resonances
occur (m = 0) the normal form is linear. Therefore the computation of a real
normal form is possible. (Compare section 7.2). If M # 0 the computations have to
be performed in C3.

9.4 Reduction of n-dimensional normal forms for m > 2

The classification in the previous section has shown that any three-dimensional Poincaré-
Dulac normal form can be reduced to a system of the dimension of its resonant plane. In
this section these results are generalized to n-dimensional normal forms. This generaliza-
tion yields some additional problems as the cone containing supp(F') can be spanned by
any number of vectors for m > 2. The algorithms are illustrated by examples for four-
dimensional normal forms with m = 3. The basic procedure is similar to the procedure
used for three-dimensional systems in section 9.3.1.

Suppose that the vectors Q1,...,Q,, € M form a basis for M. Then the normal form
(9.1) can be reduced to a system

8X jlgl(i‘l,...,i‘m)
— = (9.11)
ot - - -
xngn(xla N 7$m)
by a power transformation defined by the matrix
A" =(Q1]...1Qm]--.)
where the vectors Q;, ¢ = 1,...,m define the row vectors of A*. The first m lines of the
system in equation (9.11) only depend on the variables Z1,..., ;. That means that it is
formally integrable if the m-dimensional system
0% _ = ~, ~,
Gt =119(T1,. .., )
. (9.12)
85—? =3dm (5717 7jm)

can be integrated formally. The solution curves X (t) for equation (9.11) can be obtained
from the solution curves (Zi(t),...,Zm(t)) for equation (9.12) by an integration of the
n — m scalar differential equations

Olog ;
ot
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That means that the problem of finding solution curves for the initial normalized system
(9.1) has been reduced to the problem of finding an appropriate power transformation or
an appropriate matrix A. Further, the system (9.12) has to be integrated. In general the
system (9.12) will have a nonelementary singular point in X = 0. Therefore, in practice we
will only be able to integrate systems (9.12) of dimension m = 2. Nevertheless, the used
methods will be developped using approaches that can be generalized to m > 2. In those
cases the problems that the integration of system (9.12) might cause are not considered.

However, some essential properties are required for the system (9.11) in order to in-
tegrate it. Those properties affect the choice of the vectors @1, ..., Q, and therefore the
computaion of the matrix A.

9.4.1 Conditions for the choice of the matrix A

The power transformation X = X A" that transforms the initial normal form to a system
of the form (9.11) is defined by the matrix A. This matrix must be chosen such that the
power transformation and the new system verify the following properties:

e the vectors Q1,...,Q, have to form a basis of M. Otherwise the reduced system
does not have the form (9.11).

e the coefficients of the system (9.11) have to be integer and positive. Otherwise the
resulting system can not be integrated by the previously introduced algorithms.

e the power transformation X = X A" has to be a diffeomorphism. This is verified
if the matrix A is unimodular. If A is a non-unimodular invertible matrix the
constructions introduced in section 2.3 can be used to define a corresponding bijective
diffeomorphism.

e if the power transformation X = X A" i not a blowing-up, the solutions of the
resulting systems are valid in the whole neighbourhood of X = 0.

If the power transformation X = X AT g a blowing-up, the reduction and integration
yield solutions that are only valid in a sector. As a single transformation is not
sufficient to cover a neighbourhood of X = 0 with sectors, a serie of blowing-ups
controlled by a Newton diagram are needed.

To verify whether an appropriate matrix A exists or not it is useful to consider 3 possible
cases for the position of the resonant plane M in the space of exponents:

e M CN"
In this case all vectors in M lie within the first quadrant. An appropriate matrix A
exits if the support of F' is included in a cone V spanned by m vectors Q1,...,Qm €

M. Otherwise, the considered system can be reduced by defining a so called virtual
Newton diagram and by using blowing-ups.

e M ¢ N" and the set M N N" contains m linearly independent vectors.
To compute a power transformation that is not a blowing-up yields the same problem
as the previous case. Further the matrix must be chosen such that the vectors in
M — N" are transformed to points that lie within N — N*. This matrix does not
always exist.
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The use of blowing-ups controlled by the Newton diagram of the considered system
is more appropriate here.

e M ¢ N" and the set M N N" contains less than m linearly independent vectors.
Any basis of M contains at least one vector with negative entries. Therefore the
concerned systems can only be reduced by blowing-ups.

Those three possibilities for the position of the resonant plane M will be considered more
closely in the following sections.

9.4.2 The resonant plane lies entirely within N"

Consider all cones V' that contain the support of F' and that are spanned by vectors
Qi € M. The problem arises from fact that all cones V might be spanned by more than
m vectors.

Let V be a cone that contains supp(F') and that is defined by the minimum number
of vectors QQ1,...Qr € M with k > m. We have to distinguish two cases :

o If k = m the first rows of the matrix

A" = (@1l ---1Qml--.)

are defined by the m vectors @Q1,...,Qy. In this case all conditions for the choice
of A are verified.

Proof 7 Any vector Q € supp(F') can be written as

szaiQi, a; ER, a; 20 .

According to theorem 3 in section 2.2 @Q is transformed to the point
Q = ZaidetAei .

Therefore its coordinates are positive and the first m lines in the new system only
depend on the variables T+, ..., Tm. As A has only integer coefficients the coordinates
of Q are integer.

As all Q; have only positive entries A* can be chosen such that X = XA" is not a
blowing-up.

e If k > m the vectors Q1, ..., Q are linearly dependent. As the matrix A* has to be
invertible only m vectors Ry,..., Ry € Z" N M can be used for the construction of
the matrix

A" = (Ri|...|Rm|...) .

The cone W spanned by those vectors has to contain all @ € supp(F') and therefore
the cone V. Otherwise some points Q € supp(F) are transformed to points Q = AQ
with negative coordinates and the corresponding system has negative exponents. As
W has to include all Q € supp(F') at least one vectors R;, i = 1,...,m has negative
coordinates. As a consequence the power transformation X = XA isa blowing-up.
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For this reason the concerned systems can only be reduced by blowing-ups. If
blowing-ups are used they have to be controlled by a Newton diagram. However
the Newton diagram for the concerned systems consists of a single vertex Fgo) =0.
For this reason an additional construction, called the virtual Newton diagram is

used.

The virtual Newton diagram

Consider a normalized system that has its support on the resonant plane M with m
linearly independent vectors. Any cone W that contains supp(F') and that is defined by
the vectors Ry, ..., R, has at least one vector with negative coordinates. Therefore the
matrices

A* = (Ry|...|Rm|...)

define blowing-ups. For this reason the solution curves computed for the reduced systems
are only valid in a sector of the initial neighbourhood U. Several sectors and several
blowing-ups are needed to cover the entire neighbourhood U. For this reason several
cones W are required too. Those cones are computed by the virtual Newton diagram.
The name "virtual Newton diagram” is used as the employed techniques yield a structure
that is similar to the Newton diagram.

The idea of the virtual Newton diagram is simple. The only vertex Fgo) = 0 of the
Newton diagram of the considered system (9.1) is considered as a set of identical vertices
f’go), edges f’gl) of length 0 and higher dimensional faces f’gn) without spacial expansion.
By computing the virtual Newton diagram those faces are visualized.

Any virtual vertex f‘EO) is joined by m faces. Those faces are not necessarily faces of
the virtual Newton diagram but faces of the convex hull of the considered set of points.
The intersection of those m faces define m vectors R;q,..., Ry, that define the cone W;

and that are used for the construction of the matrix

A* = (Ri| .- |Rim]---) -
For any virtual vertex f‘z(-o) the virtual Newton diagram yields a cone W; that contains
supp(F) and that defines the matrices A* and A for a blowing-up. This blowing-up is
applied to the initial normal form (9.1) without using a time transformation as the only
real vertex of the considered system is I,go) =0.

The virtual Newton diagram is not unique. The defined blowing-ups yield no further
solutions. For this reason we can let ¢ = 1 in the definition of the corresponding sectors.

The construction of the virtual Newton diagram is simple. It is based on the compu-
tation of the complex hull of a set of points. Possible algorithms for the computation of
the convex hull are for example the gift wraping method [48]. Computing the convex hull
of all points @ € supp(F) yield k faces of dimension m — 1 that are joining in Fgo) =0
and that limit the cone V.

The cone V is defined by the k vectors @1, ..., Qk. Now take m of the faces joining in
Fgo) and choose m — 1 of them at a time. The intersections of those m — 1 faces are lines
that are either characterized by a vector Q;, i € {1,...,k} or a vector P; & {Q1,...,Qx}.
For all choice of m — 1 faces this yields a set of vectors P, € M, ¢« = 1,...,l. Now we
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compute the new set of points

{Q:Q € supp(F)} U{Q :34,Q0 € supp(F) : Q = Pj + Qo} , (9.13)

and its convex hull. The Newton diagram of the set of points (9.13) contains the vertices

M =p,i=1,....,0and %, =0.

All of these vertices f‘go), that are the virtual vertices of the initial system, are considered

separately. If the convex hull of (9.13) defines m faces joining the vertex f’go) they define
m vectors Ry,..., Ry, that can be used for the construction of the matrix A*. If more
than m faces are joining the vertex f‘EO) they define k > m vectors those faces can be used

for a recursive call of the entire algorithm.

The virtual Newton diagram allows the computation of blowing-ups for systems with
k > m. This is illustrated by the following example.

Example 22 Consider the 4 dimensional system

-1 z3xy
o 1 :E%m
X = 1 X+ z3T4 + 2371

|
—
o

that is in normal form. The set
SUpp(F) = {1)1,1)2,1)3,1)4} C M
with

O ==

U1 = , U2 = , U3 =

0
0 —
1 » Ve =
1

O = O =
_— O = O

e}

is rectangular to the vector (—1,1,1,—1). None of the points in supp(F') can be expressed
by a positive linear combination of the other three points. Therefore the 4 wvectors in
supp(F') form a convexr cone V that is not included in any cone spanned by only three of
the vectors vy,...,vy4.

To construct a power transformation a cone W described by only three vectors that
contains all points in supp(F') is needed.

We can try to construct W by using the planes p;, ©+ = 1...4 spanned by two vectors
in supp(F). This cone is limited by three planes and spanned by the 3 vectors on the
intersection of the planes. (Two arbitrarily chosen planes always intersect in the origin
and therefore in a line passing through the origin.) It is obvious that W contains all points
in supp(F).

The planes p; are given by

p1 = avy + fus
p2 = aus + vy
p3 = auy + Pug
P4 = avg + fur
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with o, € R. We obtain 4 possible cones W

Wi = ave + Bus + yvs
W = avy + Bog — yus
W3 = aus + Bug + yug
Wy = avy + Bug — v

with o, B.y > 0 where vs = (0,1,—1,0) and vs = (1,0,0,—1). vs and vs are the vectors
lying on the intersection of the planes p1 and ps and the intersection of the planes ps and
py respectively.

That means all cones containing supp(F) contain at least one vector with negative
entries. Therefore any power transformation X = xA" defined by

A* = (Q)i1|’l)i2|1)i3| .. ) (914)

is a blowing up. In equation (9.14) the vectors v;1,...,v;3 are the three vectors spanning
the cone W;, 1 =1,...,3.

To control those blowing-ups a virtual Newton diagram is constructed. It is computed
using the three planes p1,p2 and ps. Their intersections yield the lines

p1 N p2 = avs
p1 N p3 = avs
P2 NP3 = Qg
wit « € R. The Newton diagram of the set {Q1 = (0,0,0,0),Q2 = (0,1,—1,0)} yields
the virtual vertices f‘go) = @1 and f‘go) = (Q9.For those vertices the cones including the
supp(F) are the cones Wi and Wo. Those cones define the matrices
01 00 10 00
« | 00 10 « |11 =10
A=l 1 cro | ™A= g0 10
1 0 01 01 01
The blowing-ups yield the new systems
) P2+ F0 7
0X | Z&1 + &3 + 373
ot | I3E1 — G B3 — To s
i
and
B Ty + 2T
ox _ | 3
ot | T3y +323% — T2
iy

Solution curves computed for those systems are valid in the sectors
U® = {X:|x]0L-10 <¢ 3
U = {X : | X011 <¢ )

with € = 1. The virtual Newton diagram is sketched in 3 dimensions in figure 9.6 ane
figure 9.5 shows the cones V, Wy and Ws.
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Figure 9.5: The suport of the normal forms treated in example 22 lies within a cone V
that is spanned by 4 vectors. As only 3 of these vectors can be used to define the power
transformation X = X AT, the cones W7 and W5 are used instead.

Figure 9.6: To obtain an appropriate control structure for the definition of the blowing-ups
used in example 22 the virtual Newton diagram that consists of two vertices and one edge
is computed..
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9.4.3 The set M NN" contains m linearly independent vectors

In this case there exits a basis Q1,...,Q, € M NN" for M. For this reason for some
particular normal forms the reduction by a power transformation that is not a blowing-up
is possible. However the matrix A that defines this transformation has to verify some very
strict conditions. In general it does not exist.

Therefore the use of blowing-ups is the more appropriate method for this case. The
Newton diagram of the concerned systems consists of more than one vertex. For this
reason it can be used to control the blowing-ups. However the Newton diagram of the
system (9.1) might contain higher-dimensional faces than edges and vertices. Blowing-ups
for those faces have not been defined.

The time transformation

di = X" at
(0)

that tranforms the vertex I';” to the point ) = 0 yields a new system

0X
ot

=F.

The k faces of the convex hull of supp(F) that are joining in @@ = 0 define k vectors
Q1,...,Qp. Those vectors define the cone V that contains the support of F. As the
number of vectors spanning V might exceed m the construction of a virtual Newton
diagram in for the concerned vertex might be necessary.

The following examples ilustrate this case. In the first example a power transformation
that is not a blowing-up can be used for the reduction of the concerned system. This is
not possible for the system treated in the second example were blowing-ups are used.

Example 23 Consider the normalized system

-1 I3 :E42
2 2
1 To°Tq + 237X
1 z32 x4 + 3% 11
-1 0

that also has the points (—1,0,1,2) and (1,—1,2,0) in its support. The set M NN* lies
within a cone V spanned by the vectors (1,0,1,0), (0,1,0,1) and (0,0,1,1). Therefore the
power transformation defined by the matrices

100 0 1 0 00
., o100 B 0 1 00
A=l g1 |™A=] 1 ¢ 1
011 1 1 -1 -1 1

is used to simplify the considered system. This yields the new system
T2+ F3d + 33
0X I3 &1 + T35
ot T3 31 + 73
iy
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Example 24 Consider the normalized system

-1 T3 T42
v — _ 1 zo? x4 + 3% 31
X = F(X) o 1 X+ 2732 T4 +IL‘32 I +IL‘22 T4

-1 0

that also has the points (—1,0,1,2), (0,2,—1,1) and (1,—1,2,0) in its support. Reducing
this system by a power transformation defined by the matriz A used in the previous example
15 not possible.

9.4.4 The set M NN" contains less than m linearly independent vectors

In this case any basis @1, ..., @y, of M has at least one vectror with negative coordinates.
As a consequence matrix A defined via its adjoint matrix

A" =(Q1]...1Qm]---)

that does not define a blowing-up does not exist. The only possibilty to reduce the
concerned system to a m-dimensional system is to use blowing-ups controlled by the
Newton diagram of the system (9.1). Eventually the virtual Newton diagram can be used
if the use of the Newton diagram is not sufficient.

9.5 Conclusion

In this chapter it has been shown that three-and higher-dimensional normal forms can be
reduced to m-dimensional systems. m denotes the maximum number of linearly indepen-
dent vectors in the resonant plane M of the concerned normalized system. The reduction
is performed by a power transformation. If the power transformation is a blowing-up it
has to be controlled either by the Newton diagram or the virtual Newton diagram.

However in certain cases blowing-ups associated to higher-dimensional faces of the
Newton diagram are needed. Those transformations have not yet been defined. They are
studied in some examples in the following chapter.

The reduction of n-dimensional normal forms yields m-dimensional systems with a
nonelementary singular point. The integration of those systems is not always possible for
m > 2 (see [30]). For m = 2 however any normal form can be integrated by the proposed
algorithms.






Chapter 10

Three-dimensional nonelementary
singular points

In chapter 9 blowing-ups have already been used for the reduction of three-and higher-
dimensional non-nilpotent systems. In particular the virtual Newton diagram has shown
to be an efficient tool to define blowing-ups. In this chapter blowing-ups will be used to
reduce three-dimensional systems in the neighbourhood of a nonelementary singular point.
However the use of blowing-ups for three-dimensional systems yields problems. This has
been shown by J. Jouanolou [38], X. Gémez-Mont and I. Luengo [30] and mentioned in
section 4.3. Therefore it will be presumed that the considered differential equation

X = F(X) (10.1)

is non-dicritical. That means that at each step of the desingularization the noncritical
case occurs. It has been shown by F. Cano and D. Cerveau [10] that those systems can
be reduced to a finite number of systems with regular or elementary singular points by
a finite number of successive blowing-ups. The reduction of three-dimensional systems
(10.1) by blowing-up is based on the construction of quasi-homogeneous blowing-ups in
section 4.2. Further the Newton diagram and the virtual Newton diagram will be used. As
in the case of a two-dimensional nonelementary singular point the elementary operations
as translations and time and power transformations. The used power transformatins are
diffeomorphisms (see section 2.3).

In the study of a three-dimensional nonelementary singular point we will focus on
the algorithmic point of view and on the construction of the sectors. The definition of
the sectors is affected by the choice of the blowing-ups and it is not unique. It will be
shown that the sectors can be constructed such that they cover the entire considered
neighbourhood

U={X:|X|x <€}

of the singularity in X = 0. The sectors and the algorithms are constructed according to
the faces of the Newton diagram.

127
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10.1 The vertices

Consider the vertex FZ(-O) of the Newton diagram of the initial system (10.1). As in the

two-dimensional case a time transformation

~ (0)
dt = X' dt
translates FZ(-O) to the point @@ = 0. The resulting system
. F(X ~
X = % = F(X)
XTi
is a class V system. It has its support in a cone that is defined by m vectors vy,...,vp,.

Three cases have to be distinguished.

e m=23
The cone V containing supp(F) if defined by the 3 vectors vy, vy and vs. They define
the columns of the matrix
A* = (v1|vz|vs)

that defines the power transformation X = XA, The power transformation trans-
forms all points in supp(F') to points with positive integer coordinates. For this
reason the resulting system has positive integer exponents. As it has a non-nipotent

linear part it can be integrated using the methods introduced in chapter 9.

All further reductions and integrations are valid locally in a neighbourhood U =
{X : |X|s < €}. For this reason in the initial coordinates the solution curves are
valid in the sector

U = {X + |X|™ < emia, |X|™ < emin, |X[" < emia} .

e m <3
This case has already been treated partly in chapter 9 as the support of F' lies on a
plane or on a line. The matrix A* is defined by the column vectors vy, ..., v, and
completed to an invertible matrix by the vectors v,,41,...,v3 € N3. The condition
v, € N? guarantees that the corresponding surface | X |’ = e that limits the sector
does not pass through the origin.

o m >3
The cone V containig supp(F’) is spanned by more than three vectors. However for
the construction of A via A* a maximum of 3 linearly independent vectors is needed.
Therefore a vector W thet contains V' is constructed such that W is defined by the
three vectors wq,...,ws.

The power transformation X = X AT with
A* = (w1|w2|w3)

yields a new system with positive integer exponents. The resulting system can be
integrated with previously introduced methods. Its solution curves are valid in the
sector

U W) = {X : |X|" < emra, |X[" < emia, X[ < e}

)
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a3

F(l) @

U2

a1

Figure 10.1: This figure shows the cone V constructed to define the blowing-up applied in
(1

the case of an edge I';

that depends on the choice of W. This choice and therefore the construction of A*
is not unique.

The proposed algorithm is similar to the methods used for the reduction of two-dimensional
systems. However in section 10.4 it will be shown that for the case m > 3 some additional
constructions are needed to guarantee an entire covering of the initial neighbourhood U
by sectors.

10.2 The edges

Consider the edge FZ(-I) of the Newton diagram and the vector R = (ry,rs,73) with
gcd(ri,re,r3) = 1 that lies on that edge. According to the results from section 4.2 we
will construct a quasihomogeneous blowing-up that straightens that edge. Further the
blowing-up yields a system with positive integer exponents after having applied a time
transformation that translates the edge FEI) to the set

{Q:q1 =0, =0} . (10.2)

Any blowing-up defined in the previous section for the case of a vertex FEO) € FEO) with
ws = R or v3 = R can be used to perform the blowing-up for an edge.

However there are different possbilities to construct the matrix A* that defines the
blowing-up.

If r3 # 0 we can presume without loss of generality that the vector R is chosen such
that 3 > 0. Otherwise —R can be chosen instead of R. The line Qg + aR with Qg € FEI),
a € R cuts tha ¢igs-plane in the point P. The vector R leads away from that point.
Consider that the FEQ) and F§-2) are the faces of the Newton diagram that join in the

(1)

edge I'; 7. They intersect the gigo plane in the lines P + av; and P + avy with a € R
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respectively. Without loss of generality it can be presumed that the vectors v; and wve

verify
V11 V11
V] = V12 with vi1 > 0 and vis <0, vy = V12 with vi; > 0 and vi2 <0 .
0 0

The vectors vi, vy and R form a cone V such that Qo + V' contains supp(F'). Therefore
the blowing-up X = XA" defined by the matrix

A* = (v1|va| R)

straightens the edge I‘El). The straightened edge is parallel to the set (10.2). A time
transformation o
dt = 1 712 qt

with Qo = (Go1,Go2,Go3) = AQo. Qo € FEI translates the straightened edge to the set

(10.2). The exponents of the resulting system

~

0X -
5 = FX) (10.3)

are positive and integer.

An example for such a cone V is shown in figure 10.1.
2 or 7@
i J
vectors v1 € I‘Z(-z) and vy € F§-2) can be replaced by the vectors e; and ey respectively.

If r3 = 0 the vector R can be chosen such that ro > 0. The line Q9 + aR cuts the ¢1q3

;-2) are defined such that

If the edge FEI) is an extremal edge the faces T’ might not exist. Then the

plane in the point P. The vectors v; € T? and vg €

i

V11 V11
v = 0 with v >0 and vi3 <0, vo = 0 with v11 > 0 and v13 <0 .
V13 V13

The matrix A* and the time transformation can be defined like above. They yield equiv-
alent results. In fact any cone V' defined by the vectors v;, v and R such that

VQ € supp(F): Qe P+V

with P = Qo + aR, Qo € I‘El) can be used to define a blowing-up that straightenes the

edge FZ(-I).

(1)

For any blowing-up for the edge I';”’ the resulting system (10.3) is studied on the set

S={X:%=0,§=0} (10.4)

that is a part of the exceptional divisor. The singularities of the system (10.3) on the set
(10.4) are identic to the singularities of the quasihomogeneous part

By i1 f1(X)
%—if =i = :%;f;({( ) (10.5)
T3 f3(X)
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on the set (10.4). The quasihomogeneous par of a system (10.3) has been defined in section
4.2. Tt contains only the monomials associated to the points on the straightened edge. It
is used to distinguish two cases.

° f3#0
This is the noncritical case. The points Xy € S with f3(Xy) = 0 are the singularities
of system (10.5) and system (10.3). All other points are regular points. In the neigh-
bourhood of these regular points the solution curves are parallel to the exceptional
divisor. Further the exceptional divisor itself is a solution curve for the blown-up
system (10.3).

o f3=0
This is the dicritical case. For the resulting system there might not exist a serie
of blowing-ups that entirely reduce the nilpotent system to a finite number of non-
nilpotent or regular systems (see J. Jouanolou [38], X. Gémez-Mont and I. Luengo
[30]). However the dicritical case also yields problems in it’s algorithmic aspects.

The entire set S is a non-isolated singularity of the system (10.5). However a time
transformation

dt = &,dt
or

dt = Zodt
might transform the system (10.5) into a system with isolated singularities. The
resulting system has the form

; f1(X)
38_); — | 22X (10.6)

2 f3(X)

[ BA®
88—); =| LX) |- (10.7)

7= f3(X)

These systems might have negative exponents. Therefore a further reduction and
integration using the methods proposed here is not always possible.

The singularities of the system (10.6) or (10.7) are identic to the singularities of the

system ~
0X 1 ~ =
— = —F(X
ot Z1 (X)
or .
0X 1 ~ =
— = —F(X).
ot Zo (X)

They are given by the points X, € S that yield a vanishing right hand side in the
equations (10.6) or (10.7). All othe points are regular points. They are either tan-
gencies or there exists a solution curve passing through X,. Therefore the dicritical
case yields an infinity of solution curves passing through X = 0 fr the initial system
(10.1).
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The system (10.3) is studied in a neighbourhood of a finite part of the set S. This
neighbourhood is denoted by

U={X:|31]|<¢ |#2] <& &< |a3) <& '},
This study yields results that are valid in a sector
U = {X + |X|" < Ewia, |X|" < Ewia, Emra < |X|R < enia}

of the initial neighbourhood U.

10.3 The faces

Consider the face I‘Z@). It can be straightened by a blowing-up X = XA" defined by the
matrix

A* = (U1|1)2|U3)
with the column vectors wve,v3 € FEZ). The vectors v; and wvo are linearly independent.
The matrix A* is completed by a vector vz € Z3. v3 is chosen such that the support of F

lies within the set R + V where R is a point that lies on the plane passing through FZ(-z).
V is the cone spanned by the three vectors vy, vo and vs.

The face FEQ) is transformed to a face that is parallel to the set

{Q:q1 =0} . (10.8)

The time transformation
dt = 7901t

with QO = (q~01, qo2, 6103) = AQyp, Qo € FEQ) yields the new system
— = F(X) (10.9)
that has positive integer exponents. The straightened face has been translated to the set
(10.8).
The new system (10.9) is studdied in a neighbourhood of a finite part of the set
S={X:& =0}. (10.10)

The singularities of the new system (10.9) on S are identic to the singularities of the
quasihomogeneous system

- #1f1(X)
W _FO@) = [ 2p0) | - (10.11)
Z3f3(X)

The system (10.11) is used to distinguish the noncritical and the dicritical case:
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o fa#0or f3 #0 S -
The points Xy € S are singularities of the system (10.9) if f2(Xy) = 0 and f3(Xy) =
0.

All other points are regular points. The solution curves in the neighbourhood of all
regular points are parallel to S.

° fQanndngo
In this case the nonelementary singularity of the initial system (10.1) might not be
reduceable by finite successive blowing-up.

As S represents a non-isolated singularity for the system (10.11) a time transforma-

tion
dt = xdt
is used to transform the system (10.11) to the new system
; fi(X)
0X G F S
o = | @~X)
2 f3(X)

that has no negative exponents. Its singularities are given by the points X, with
f1(Xo) = fo(Xo) = f3(Xo) = 0.

All other points X are regular points. If f(Xy) = 0 they are tangencies. Otherwise
there exists a solution curves passing through Xj.

The system (10.9) is studdied in a neighbourhood of a finite part of the set (10.10). This
neighbourhood is given by

U={X:|r1|<¢ < || <&, é< |z <7}
Therefore the sectors associated to the faces are given by
UP = (X :&wera < |X|" < &@an, eaera < |X|2 < &@an, |X[ < &aera}

where v3 represents the column vector used to complete the matrix A*.

10.4 The sectors

As it has been shown previously the definition of blowing-ups for vertices, edges and faces
of the Newton diagram also affects the shape of the sectors. In this section it will be shown
that there exist blowing-up constructions such that a concerned neighbourhood

U={X":|X]e <0}

with ¢ sufficiently small can be covered. First we will presume that in any vertex FEO) of
the Newton diagram the cone V is defined by 3 vectors. For the vertex FZ(-O), the edge FZ(-I)
and the face FEZ) the corresponding sectors are defined as

U = (X X <6 [X12 <6 X <6}
UM = (x X1 <6, X1 < e e <X <) (10.12)
U = (X :e< X% <e !, e< X% <e !X <6}

~
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The constants ¢ that define the size of the sets U in section 10.1, 10.2 and 10.3 are chosen
such that € = edet4,

To show that the entire neighbourhood U is covered by the sectors (10.12) the singu-
larity is approached for ¢ — 0o on class W curves

z1(t) = t% (c1 + O(1/1))
F:
z3(t) = 1% (c3 + O(1/t))

with @ = (a1, a9, a3) € 73 and a1, as, a3 < 0. The neighbourhood U is entirely covered if
for any « and any ¢ = (c1, ¢z, c3) and ¢t — oo the curve F lies within a sector (10.12).
Consider any vector v. The point X = 0 is approached on a curve X = F(t). The
condition
XP <e

holds if («,v) < 0 or if (a,v) =0 and |c|” < e. The condition
e<|X[”<e!

holds if {(@,v) = 0 and € < |c[” < e~!. That means that F lies within the sector Ui(o)
(0)

associated to the vertex I';"” if « verifies the conditions

(@,0!”) <0
a, vy <0 (10.13)
(@, 03”) <0
Further the conditions
,(© ,© ,(©
le|t <, |e|? <e, le] <e (10.14)

have to be verified if the corresponding equalities in equation (10.13) are verified. The
condition (10.13) is equivalent to the condition that « has to lie in the dual cone associated

(0) (0) (0)

to the cone defined by the vectors v;”, v5” and vy ’. This dual cone is associated to the

(0)
‘ 1

The curve F lies within the sector Ui( ) if the conditions

vertex T’

a,v;’) <0
(a, Ry =0
and
. S |C|R S 671 (1016)
hold. Further the conditions " o
et <6l <e (10.17)

have to be verified if the corresponding equalities in equation (10.15) are verified. The
condition (10.15) is equivalent to the condition that « has to lie in the dual cone of the
degenerate cone

V= avgl) +Bv§2) + YR, a,B,7vyER, a,8>0
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that is defined by the vectors vgl), Uél) and R. This dual cone is associated to the edge
(1)
r:.

1
The curve F lies within the sector UZ-(2) if the conditions

(2)
Qa,v =0
2 (10.18)
a,vy) =0
and .
<lefr < et
exleln <e (10.19)

hold. The inequality

is always verified for ¢ sufficient large if (10.18) holdes. The condition (10.18) is equivalent
to the condition that « has to lie in the dual cone for the degenerate cone

V= ng) +/Bv§2) +’7U§2)a 04,5,’7 € Ra Y Z 0
defined by the vectors ng)’ 1152) and v§2). This dual cone is associated to the face FEZ).
However the dual cones associated to the cones defined for the faces of the Newton
diagram entirely cover {Q € R3 : q1,¢2,q3 < 0}. Therefore every class W curve F lies
within a sector if the following conditions are verified :

e All vectors ¢ € R® or C? lie within the set denoted by (10.14) or the set denoted
by (10.16) if « lies in the dual cone associated to an edge and not in a dual cone
associated to a neighbouring face.

This can easily be shown as there always exist 2 vertices FEO) and FE.O) € FEI). The
cones associated to those vertices contain the vector R or —R that defines the edge.

Therefor either the condition (10.14) for the edge FEI) or the condition (10.16) for
one of the edges FEO) ok Fg-o) holds.

e All vectors ¢ € R? or C? lie within the set denoted by (10.14) or (10.17) and (10.16)
(2)

or (10.19) if « lies within the dual cone associated to the face FiQ .

This is not always true as the computations for simple examples show. To solve this
problem a number of methods can be taken into consideration. The parameters e
and € can be varied for certain faces. Another possibility is to extend the solutions
computed in the neighbourhood of the sets that are not covered by the sectors. This
is not possible if those sets contain singularities. Further the sets U in the sections
10.1, 10.2 and 10.3 can be choosen in a different way. This includes a smaller € or a
different shape of the sectors.

It has been shown that the sectors defined by the blowing-ups mainly cover U if m = 3
for all concerned vertices. If m > 3 it is obvious that this is no longer true. Therfore we
will introduce an additional construction to the Newton diagram that adds virtual vertices
and edges such that m = 3 is verified for any real and virtual vertex.
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10.5 The virtual Newton diagram

The previous section has shown that with the proposed methods an entire study of a
three-dimensional system is possible if the Newton diagram has a regular structure. The

2
means that the cone V' that verifies FEO) + V' D supp(F) is defined by 3 vectors. Those
vectors lie on adjoining edges if the vertex is not an extremal vertex. Otherwise the three
vectors are defined by the edges adjoining FZ(-O) and by vectors from the set {e1,e2,e3}.
Therefore for any regular vertex the corresponding blowing-up is uniquely defined up to
a permutation of the column vectors in the matrix A*.

In general the Newton diagram of a given system does not yield such a regular structure.
The blowing-ups associated to any non-regular vertex are not uniquely defined. The
dual cones of the cones computed to define the blowing-ups corresponding to non-regular
vertices do not allow to entirely cover the set {Q € R? : ¢1,¢2,q3 < 0}. Therefore the
sectors resulting form the blowing-up construction do not cover the entire neighbourhood
U. To solve this problem we will introduce an additional construction that allows to
compute a Newton diagram that extends the conventinal diagram such that it has a
regular structure. This additional construction is called the virtual Newton diagram.

In a first step the Newton diagram is computed. Its non-regular vertices are considered
as a finite number of identic vertices connected by edges of zero length. Any of those virtual
vertices owns a cone V that is defined by 3 vectors. The blowing-ups associated to all real
and virtual faces yield sectors that cover the neighbourhood U as mentioned in section
10.4. Tt is obvious that the blowing-ups associated to virtual edges yield no singularities

on the set S.

structure of a Newton diagramm will be called regular if in any vertex I'}”/ is regular. That

10.5.1 The construction of the virtual Newton diagram

The construction of the virtual Newton diagram is based on the computation of the convex
hull and the Newton diagram of a set of points. An algorithm for the computation of the
convex hull is for example the gift wraping method (see for example F. Preparata and M.
Shamos [48]).

Consider the vertex FZ(-O) and presume that it lies on the intersection of k > 3 faces

of the convex hull of F'. For non-extremal vertices those faces also belong to the Newton
(0)

diagram of F. The intersections of two of those faces define the edges joining in I';”” and
the vectors defining the associated cone.

Now choose 3 of those faces and compute the intersection of each two of them. This
(0)

yields 3 lines that intersect in I';”. They can be used to define three vectors vy, v, v3 such
that these vectors define a convex cone V. The cone verifies supp(F) C FZ(-O) + V. Two

possible cases have to be considered for each of the vectors v, k=1,...,3 :
e vy lies on the convex hull of F'. In this case vy does not define a virtual edge.

e v; does not lie on the convex hull of F. That means that the vector vy defines a
virtual edge.

If none of the computed vectors vg,k = 1,...,3 defines a virtual edge the introduction
of virtual vertices is not necessary. Otherwise the algorithm defines the virtual vertices
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U3 "

0] U3

Figure 10.2: The virtual Newton diagram allows to replace the cone W for Fgo) by the

three cones Vi, Vo and V3 for the virtual vertices f‘go), f‘g)) and f‘go).

I‘EO) + v, where the vy are the vectors defining virtual edges. Now the Newton diagram of
the set of points

supp(F)U{Q + v : Q € supp(F), vy defines a virtual edge}

is computed. The virtual edges and vertices for the initial differential equation are real
edges and vertices of the computed Newton diagram. If the resulting cones associated
to the vertices 1:1(0) are still defined by more that three vectors the whole algorithm is

repeated for the concerned vertices.

The virtual Newton diagram yields vertices, edges and faces and their associated cones.
These cones can be blown-up with the constructions introduced previously. The resulting
sectors cover the initial neighbourhood U with the restrictions mentioned in section 10.5.

10.6 Examples for the reduction of three-dimensional nilpo-
tent systems by blowing-ups

Consider the three-dimensional system of differential equations

‘ :1:16 +:1:13 :1:22 +:1:12 T9 T3
X = | 290 + 293 32 : (10.20)
6
3
Its Newton diagram contains 5 faces, 10 edges and 6 vertices. All constructions introduced
previously can be illustrated by this example.

Example 25 (The vertex (1,1,1).) As shown in figure 10.2 5 edges are joinig in the

vertex Fgo) = (1,1,1). Therefore Fgo) 1s replaced by the 3 virtual vertices f‘go) = f‘go) = f‘go)
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that coincide with I‘go) and the virtual edges f‘gl) and f‘gl) defined by the vectors vg and vy
respectively. The virtual vertices and edges have been sketched in figure 10.2. The cones

Vi, k= 1,...3 for the virtual vertices are defined by the vectors vy,vs, —vg for f‘go), by

(0) (0)

Vo, Vg, V7 for f‘2 and by vs,vq, —v7 for f‘3 . The vectors vy,...,vy are given by

U1 = (_17 47 _1)

V2 = (13 13 _1)

U3 = (47 _]-7 1)

V4 = (_13 _13 4)

U5 = (_17 L, 1)

vg = (—11, 19, —1)

U7 = (37 -1, 3)

They characterize the matrices for the blowing-ups. For the vertex f‘go) that yields the
blowing-up X = xA" by the matrices

-1 -1 11 15 10 25
AT = 1 4 -19 |,A=1] 20 12 8
1 -1 1 5 2 3

The blowing-up and an apropriate time transformation yields the system

1 1 20 1,21
oxX —55 1t 55 L1 T27 + 55017 + ...
_ 1 T,.21, 1,20
— = —sg T2+ 5T FxT1T T2+
ot Ny, 197,20, " 19,20, o
20 90 L2 I3 20(1)1 I3

Example 26 (The edge Fgl).) Consider the edge Fgl) defined by the vector R = (—4,1,1)
and the vertices I‘go) = (5(,1)0, 0), F:())U) =(1,1,1) € I‘gl). The simplest way to compute(o()z

blowing-up for the edge I'j’ is to use the blowing-up associated to the virtual vertex f‘3
It is given by X = XA with

-3 -1 4 1 31
A* = 7 -1 -1 |, A= 2 3 5
—3 4 -1 5 3 2

To straighten the edge I‘gl) the vector —R = vy has to appear in the third column of the
matriz A*.
After an appropriate time transformation this yields the system

5 1~ 1 ~4 ~6 7 ~4 6

ox _(THp-iss s

7 = —1—5x2—1—5x1x2$3—1—5$1x2,+

t Agay Agdgr  dgageg o
1543 T 5 L1Ly — 75 L1 L2 L3 T -

The vertices Fgo) and Fgo) have been transformed to the points (5,10,15) and (5,10, 10)
(1)

respectively. As the first and second coordinates of those points are identic the edge I';
has been straightened up.
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Example 27 (Blowing-up of the face I‘§2)) Consider the face I‘§2) defined by the nor-
mal vector (—2, —3, —5) and the vertices Fgo), Féo), I‘go) =(2,2,0) € I‘?). The cone
V' defined by the three vectors vg,v3 and vg = (—13,2,7) verifies supp(F) C I‘go) +V.
Therefore it can be used to define the matrices

13 1 4 2 3 5
A* = 2 1 -1 |,A=|5 15 5
7 -1 -1 9 6 15

for the blowing-up. The vectors vy and vs represent the second and third column vectors
in A*.

After having applied an appropriate time change the system resulting from the power
transformation x = X4 has the form

- 3 - 13 ~ ~15 13 ~ =15
ox BT~ 521230 — 5 21%° +
_ 1 ~16 1 = 1 = 15
5 12 5 +15:L‘2+15:L‘2:L‘3 +.

~15 4 ~16 4 ~
ﬁxQ x3+ﬁx3 +ﬁ$3+

The vertices I‘go),I‘gO) and I‘go) are transformed to the points (10,15,45), (10,40,30) and

(10,25, 30) respectively.

The previous sections have shown how blowing-up can be reduced for the reduction of
three-dimensional nilpotent vector fields. Further it has been shown how the study of
the blown-up system in a part of the exceptional divisor yields sectors for the initial
coordinates. Therefore solution curves within the sectors can be computed by calculating
solution curves in a neighbourhood of the concerned parts of the exceptional divisors.
Those neighbourhoods are denoted by U in the sections 10.1, 10.2 and 10.3. To compute
solution curves in U the sets U are divided into subsectors associated to regular and
simple points of the reduced system on the exceptional divisor. The solution curves for
those subsectors are computed by a recursive call of the entire algorithm. However it can
not be guaranteed for all three-dimensional systems that they can be entirely reduced by
a finite number of blowing-ups. Further algorithmic problems may occur if the dicritical
case is verified for an edge of the Newton diagram.

10.7 Higher-dimensional nonelementary singular points

In the previous sections algorithms for the reduction of three-dimensional dynamical sys-
tems have been introduced. Especially the virtual Newton diagram has shown to be a
powerful tool. Those results can be extended to higher-dimensional problems. The main
difficulties for higher dimensional blowing-ups are the same as for three-dimensional sys-
tems. The virtual Newton diagram can be used to solve large number of those problems.
It can be used to enlarge the conventional Newton diagram by introducing virtual faces of
dimension n — 2 and lower. This new structure allows well directed manipulation on the
cones and a sector definition that covers the studied neighbourhood U.






Chapter 11

The FRIDAY package

In the previous chapters several algorithms for the reduction and the integration of two-,
three- and higher-dimensional systems of autonomous differential equations

X = F(X) (11.1)

were introduced. Those algorithms are implemented in the FRIDAY ' MAPLE package. In
particular the FRIDAY package contains procedures for the computation of n-dimensional
normal forms for systems of the form (11.1) in the neighbourhood of regular and elementary
singular points. Further, it allows to integrate any real and complex two-dimensional
system and real three-dimensional systems in the neighbourhood of elementary singular
points.

The intention in implementing the FRIDAY package was to design a program that is
easy to use and that can handle a large number of systems (11.1). Therefore the data
structure is conceived object-like because object-oriented programming can’t be realized
in MAPLE. The organisation in modules simplifies the addition of new procedures and
functions.

Primitives act on the object-like data structure and perform elementary operations.
These primitives are used by the control structure to execute the different steps of the
algorithm. The control structure of the program is split into 4 main parts. According to
the classification of dynamical systems three modules deal with the case of regular points,
elementary singular point and nonelementary singular points. One module performs the
classification of the considered system (11.1).

Only a few procedures are visible and can be manipulated by the user. The main part
of the functions are capsuled. The procedure FRIDAY reduces a given system (11.1) as far
as possible and performs eventual integrations. Besides this main procedure in particular
the procedures for normal form computations are accessible. They allow computations of
Poincaré-Dulac normal forms, normal forms for systems with real coefficients and complex
eigenvalues and normal forms for systems in the neighbourhood of a regular point. Further
some procedures that handle the obtained solutions, the transformations and the sectors
are available. A large number of examples in section 11.3 show how these procedures can
be used.

!FRIDAY stands for Formal Reduction and Integration of Dynamical Autonomous Systems.

141
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There is a restriced number of possible tests for the computed solutions. These meth-
ods were already mentioned in section 1.4. They were performed for a large number of
arbitrarilly chosen systems.

11.1 Organisation

The FRIDAY package is split into 4 main modules. According to the classification of
dynamical systems the modules SP.n, ESP.n and NESP_n deal with the cases of regular
points, elementary singular points and nonelementary singular points respectively. The
module separate_cases performs the classification of the considered system.

The procedure separate_cases distinguishes the different possible cases as it has been
introduced in chapter 5. Further it performs eventual translations and defines neighbour-
hoods. Therefore it uses the primitives newtrans n and initial_sector.n.

The module SP_n reduces and integrates n-dimensional vector fields in the neighbour-
hood of regular points. The application of the flow-box theorem reduces the given system
to a normal form that can easily be integrated. The program is based on the algorithms
introduced in chapter 6.

The module ESP_n is based on the algorithms defined in the chapters 7 and 9. It in-
tegrates two- and three-dimensional systems in the neighbourhood of elementary singular
points. Therefore it computes normal forms using the primitive functions jordan sys,
PDNF_n, GNF_n and PI_NF.n. All two- and a large number three-dimensional normal forms
are integrable. The integrations are performed by a large number of elementary integration
procedures. The reduction of the remaining three-dimensional normal forms is controlled
by the procedure two_d_solutions. If the reduction is performed without blowing-ups an
appropriate matrix A for the power transformation X = X AT g computed by the function
find matrix_A. The power transformation is applied to the initial system in the proce-
dure power_trans n and the recursion is defined within the module two_d_solutions. If
blowing-ups have to be used their application is controlled by the module two_d_solutions
that uses the Newton diagram computed using the function ND. Once solution curves for
two-dimensional systems have been computed, those solution curves, the sectors and the
transformations are extended to the three dimensions by the function solution_23. There-
fore the projection of the sectors on the x1 — zo-plane has to be reversed. If problems of
bijectivity occur the definition of the sectors is adapted. Further the equation remaining
from the splitting of the two-dimensional system is integrated to complete the solution
curves.

The module NESP_n handels the integration of two-dimensional systems in the neigh-
bourhood of nonelementary singular points. It is based on the algorithms introduced in
chapter 8. It uses the primitive ND for the compuatation of the Newton diagram. Any
of the computed faces are used to define blowing-ups that reduce the system and enables
the computation of solution curves. The main transformation used in this context are
the elementary operations as time- and power transformations. They are defined in the
functions ntt_n and power_trans n. The used methods lead to a recursive call if the entire
algorithm. The definition of the recursion is based on the computations of the new singu-
larities on the exceptional divisor and on the computation of subsectors. Those operations
are performed for real and complex problems by the elementary procedure subsectors.
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The primitive functions transform_sector n, vi_sector_2 and vi_sector_3 are not
used by the main procedure but they represent helpful tools for handling sectors and for
displaying them. Their use will be illustrated by examples in section 11.3.

Only a part of the implemented modules are visible to the user. All integrations
and reductions for two- and three-dimensional systems can be performed using the main
procedure FRIDAY. The use of the visible procedures is illustrated by examples in section
11.3.

11.2 Using the package

The FRIDAY package is written in MAPLE V, release 5. It is available as a MAPLE
package or as source code files. If the package form is used, the package has to be
installed using the command

> with(FRIDAY);

This makes all visible procedures and functions available. The with command can only
be executed if the variable

libname := libname, ‘user/packages/FRIDAY* :

in the file .mapleinit has been set to the directory that contains the package. The
package version contains help topics that explain the use of the most important func-
tions that are visible to the user. Those help pages can be consulted using the com-
mand

> ?function

If the source code of the FRIDAY package is available the program can be installed
using the command

> read(FRIDAY);
or an equivalent command if the concerned files are not in the working directory. In-
formations on the current state of the computations can be displayed during runtime.
Therefore the constant infolevel [FRIDAY] has to be set to a value between 1 and 3. For
infolevel[FRIDAY] = 1 only basic informations are displayed. For higher values those
informations are more and more precise. is set

The FRIDAY MAPLE package and its source code are available on the internet. More
informations are available on the following adress

http : | Jwww — Imc.imag.fr/CF [logiciel .html .

The package version adresses to users that are only interested in computation results. The
source code allows a user to perform only elementary operations and to modify or extend
the FRIDAY package.

11.3 Introducing examples

The way the FRIDAY package works is best illustrated by some examples. In this section
examples for the use of procedures contained in the FRIDAY package are given for a
number of representative problems. The procedures are capable of treating more complex
problems and are not restricted to the given simple examples.
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FRIDAY
Initial system

X = F(X)

separate_cases
differentiate 3 possible cases

SP_n ESP_n NESP_n
simple point elementary singular point nonelementary singular point
normal form and PDNF_n ND
integration Poincaré-Dulac normal form Series of blowing-ups controlled

by the Newton diagram

Computation of m, the dimension Recursive application of the entire

of the resonant plane algorithm for the reduced systems
m <2 m =2 |
inte... find matr_A
Integration power_trans._n

Blowing-up or other
power transsformation

two_d_solutions
Recursive application
of the entire algorithm

to the reduced two
dimensional systems.

Figure 11.1: The sheme of the reduction tree. It shows the evolution of the computations.
The concerned algorithms are specified in the chapters 5 to 9.
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11.3.1 Integration of n-dimensional systems in the neighbourhood of a
regular point

The algorithm that is used to compute solution curves for n-dimensional systems in the
neighbourhood of a regular point has been introduced in chapter 6. The solution curves
can be calculated using the main procedure FRIDAY.

First the input variables have to be defined in the vectors F, X and S. F defines the
considered vector field, X the used variables and S the coordinates of the point of interest.
Further the constant € is needed for the definition of the sectors and neighbourhoods. The
constant index that denotes the degree of approximation for all normal form computations

1s set to 4.
> F := [3+x[1]+x[2],3*x[1]*x[2]-2*x[1]"2];
> X:=[x[1]1,x[2]]; S:= [0,0];epsilon:=1/2;index:=4;

F := [3+(II1 + 9, 3(1)1:52 —2:512]

X = [z1, z9]

S =10, 0]
€:=1/2
index := 4

With these definitions the main procedure can be executed. The varibles ¢ and t are
used for the computed solution curves.

> so0l:=FRIDAY(F,X,S,c,t,epsilon,index):
The number of computed solution curves is 1.

> nops(sol);

1

The computed solution is represented by the list so1[1] with 5 elements.
> mnops(sol[1]);

5

The first element of the list so1[1] represents the reduced system.
> print(sol[1][1]);

[1, 0]

This system can be integrated. The integration results are given in the second element
of the list.

> print(sol[1][2]);

[t1, 1]

The third element of the list represents the transformation X = H(X) that was used
to reduce the initial system.
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> print(sol[1]1[3]);

3 1 1 11
[3361+x1x2+§x12+§x12x2+§x13+§x13x2—§x14,
9 3 5 9
x2+§x12x2+§x12x22—6x13— 53013302— 5:514]

The fourth element sol[1] contains the neighbourhood in the new coordinates that
denotes the set where the computed solution is valid.

> print(sol[1][4]);

Bt (50 20 15 (5 2t 2 5 2 e S 15 2

For a simple point this sector is the entire neighbourhood U={X:|z1]| <e|Z < e}
U is given by a list of 4 curves that denote the borders of U. Each curve is given in
a parametrized form. The first curve for example is given by X(¢;) = (1/2,¢1) with
t=-1/2...1/2.

> print(sol[1][4]1[1]);

1 -1 1
[57 t1, [77 5]

In the case of an elementary singular point the sectors in the initial coordinates are
obtained by transforming the neighbourhood U. to the initial coordinates. The transfor-
mation used for this purpose is given as last element of the list.

> print(sol[1][5]);

1, 7

In the case of a simple point this transformation is identity. The integration results
computed for the reduced system can be transformed to the initial coordinates using
the procedure newtrans n and the transformation contained in the third element of
the list.

> sol2:=newtrans_n(sol[1][3],X,sol[1]1[2]);

3t t —t —t —1 —t ——1
1+1C1+21+21C1+21+3101 g o
9 3 ) 9
01+—t1261+—t12012—6t13——t1361——t14

2 2 2 2

As for the computation of solution curves for simple points no time transformations are
used the computed curves are the aproximated exact solutions of the initial system. The
precision of the algorithm can be tested by substituting X =so0l12 in the equation

X — F(X) = inaccuarcy (11.2)
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The lowest degree in #; and ¢; of the terms remaining in inaccuarcy denotes the
degree of approximation. As the computations were executed with the index 4 the
lowest degree of the remainig terms is 4 in both lines of equation (11.2).

> inaccuarcy := diff(sol2[1],t[1])-subs(x[1]=s012[1],x[2]=s012[2],F[1]):
> 1ldegree(expand(inaccuarcy), [t[1],c[1]]);

4

> inaccuarcy := diff(sol2[2],t[1])-subs(x[1]=s012[1],x[2]=s012[2],F[2]):
> 1ldegree(expand(inaccuarcy), [t[1],c[1]]);

11.3.2 Computation of n-dimensional normal forms for non-nilpotent
singular vector fields

Non-nilpotent singular vector fields can be transformed to normal form. In the FRIDAY
package there exist 3 procedures PDNF n, PI_NF n and GNF_n that compute normal forms
for different purposes.

Computation of the Poincaré-Dulac normal form

The procedure PDNF n computes the Poincaré-Dulac normal form for a given vector
field. It is based on the algorithms introduced in section 3.4. The procedure PDNF_n
can be used separately from the main procedure and allows the computation of n-
dimensional normal forms for vector fields F' if the matrix A = DF(0) is in Jordan
form. If this is not the case the procedure jordan sys that is based on the Maple
function jordan can be used to compute a new system JF such that its linear part
B = DJF(0) is in Jordan form. The linear transformation that transforms F to JF is
assigned to the optional variable tri.

> F :=[x[1]+2*x[1]-x[2]+2*x [1]*x[2]-x [3]*x [2] ,x [2] -3*x[4],
> x[3]+2*x[4],-x[3]+x[4]1];

F:=[8x1 —xo+2x2x1 —x3%2, To — 3T4, T3 + 214, —T3 + T4]

> A:=lin_part_n(F,X):print(A);

OO O w

> JF:=jordan_sys(F,X,’tr1’) :B:=1lin_part_n(JF,X) :print (B);
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10 0 0
0 3 0 0
00 1+IV2 0
0 0 0 1-1V2

For the given example the procedure PDNF n computes the Poincaré-Dulac normal form
of the vector field JF up to order 3. Further the used transformation is assigned to the
optional variable tr. The transformation trans that transforma the initial vector field
F into its Poincaré-Dulac normal form NF can be computed from trl and tr using the
procedure newtrans n.

> NF:=PDNF_n(JF,X,3,’tr’);
34 3
NF := [zq, 3x2+?$1x3x4+12$1 , (L+1V2)z3, (1 —1V2) 34

> trans:=newtrans_n(trl,X,tr):print(trans);

Lt >+
651;2 2151 3$2$1

Normal forms for real systems

In example 13 in section 7.2 the Poincaré-Dulac normal form for the pendulum equation
in the neighbourhood of the singularity X = 0 was computed. The considered sysem
has only real coefficients but two complex conjugated, purely imaginary eigenvalues. The
particularity of those computations are that parameters are allowed in the linear part of
the system as the resonance equation can be solved explicitely.

The computation of the normal form for systems with 2 complex conjugated, purely
imaginary eigenvalues can be performed using the procedure PI_NF_n. In the considered
example the computations are performed up to order 6. The last input variable in the
function call indicates weather polar coordinates

r = 571 Sin:fg
L9 = Z1COS Ty
Tr3 = I3

should be introduced of not.
> F :=vector([x[2],convert(taylor(-g/l*sin(x[1]),x[1],4) ,polynom)]1);

gz gz’
l 6 I

F = xro, —

> s0l:=PI_NF_n(F,X,6,false);
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] [ ED 1 gxo z12 1 92 x93 17 x14gx2 17 92 12193 17 g3 z9°
sol i= [-7—F + — —
l 16 [ 16 12 3072 [ 1536 [2 3072 I3
1 gx z92 | 17 92 z1 o 17 5 17 g$22 z3
Tl — T~ — 7xT1 — 5 - 2’ — =g
16 [ 16 3072 l 3072 1536 [

> s0l:=PI_NF_n(F,X,6,true);

1 g(=307212 +192¢g x1%1 + 17 2,* ¢?)

3072 \/gﬁ
[

The generalized normal form

sol := |0

Another kind of normal form for n-dimensional systems can be computed using the pro-
cedure GNF_n. The implemented algorithm is based on the matrix representation method
and the Maple optimisation procedure leastsqrs. It reduces a maximum of nonlinear
terms, even if the matrix DF(0) if not in Jordan form. If the matrix DF(0) is in Jordan
form the algorithm yields the Poincaré-Dulac normal form. However the used algorithm
is less efficient than the algorithms implemented in PDNF_n and for the example of the
pendulum it does not yield the optimal normal form (compare section 7.2).

> g:=1:1:=2:s01:=GNF_n(F,X,6);

sol = [w9 — —— 1 p2_ 5 o8 22156 o, 1078 5 5 5339
T T 161 129475395 2T T 120475395 72 T 25895079 2
L1z g o, 2256 o, 4312 g
27T 161 M T 161 1T T 120475395 1 P2 T 25805079
11078 |
129475395 ©2 1

In the main procedure FRIDAY the procedure GNF_n is used if it is known that the normal
form of a given vector field has no nonlinear resonant terms (see section 7.2).

11.3.3 Integration of two-dimensional elementary singular points

The integration of two-dimensional vector fields F in the neighbourhood of an elementary
singular point is handeled by the main procedure FRIDAY. The concerned vector fields
can have real or complex coeflficient and parameters if they do not affect the resonance
equation. The implemented algorithms have been introduced in chapter 7.

> F := vector([x[2],convert(taylor(-g/l*sin(x[1]),x[1],4),polynom)]);

gz lgz’
l 6 I

F = |zo, —

)

5



150 11.3. Introducing examples

> sol:=FRIDAY(F,X,S,c,t,1/2,4):

WARNING : parameters in the system !
WARNING : parameters in linear part of the system !

Like in the example of a regular point in section 11.3.1 the returned solution list sol
contains the reduced system sol[1] [1], the integration result so1[1] [2] and the used

transformation sol[1] [3].
> sol[1][1];

0 1 g (=161 +z129)

16 g
72
Vi

> sol[1][2];

[c1, t]

> sol[1][3];

?

1 \/%Sin(xz) (1921 + 5212 g + 4 g 1% cos(x2)?)
[@ l

1 gz cos(zz) (641 — 5212 g +4gz1%cos(xa)?)
64 12

11.3.4 Integration of two-dimensional nonelementary singular points

The integration of two-dimensional vector fields F in the neighbourhood of a nonlele-
mentary singular point is based on the method introduced in chapter 8. The vector
field can have real or complex coefficients. The integration is handeled by the main
procedure FRIDAY. The variable infolevel [FRIDAY] has been set to 1 to give some
informations on the computations during runtime. Those informations indicate the
current state of the computations.

> F:=[-x[11"4+x[1]"3%x[2],13/9%x[1]"6*x[2] "2-x [1] "2*x [2] "2+x [1]*x[2] 3] ;

13
4 2 2 2
F = [—:El +ZE13£E2, 9 (L‘16 ro© — 11" T” + T (L‘23]

> sol:=FRIDAY(F,X,S,c,t,1/2,4):
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separate_cases_23: NONELEMENTARY SINGULAR POINT
separate_cases_23: NONELEMENTARY SINGULAR POINT
separate_cases_23: SIMPLE POINT
NF_SP_n: simple point calculated
separate_cases_23: SIMPLE POINT
NF_SP_n: simple point calculated

For the considered example, that has already been studied in example 15 in sec-
tion 8.2, 5 different solutions are computed. The sectors returned in the variable
sol[i][4] for s =1,...,5 can be transformed to the initial coordinates by the proce-
dure transform_sector n and the transformation in sol[i][5] for i =1,...5.

> nops(sol);

> soll[1][4];

-1 -1 1 1 -1 1

-1 1 -1 -11

1
[[7? t1, [7’ 2]]? [5? t1, [7’ 2]]? [tlv 5’ [7? 5]]? [tlv 7? [7’ 5]]]

> print(sol[1][5]);

> sect:

k1 z2, o9

=transform_sector_n(sol[1][4],X,s0l[1][5],1/2):

The resulting sectors can be visualized by the procedure vi_sectors 2. All 5 sectors
are sketched in figure 8.8 in section 8.2.

> vi_sectors_2(sect,0.6);

0.6

0.4+

0.2

0.2+

If the optional variable complex is set in the call of the procedure FRIDAY, complex so-
lutions are computed. This yields 8 solutions as the definition of subsectors in C? yield
more subsectors than in R? (compare section 8.2). The sectors are defined by the curves

((I,‘l(tl,tg,tg),xQ(tl,tQ,tg)), t1,t9,t3 € R.
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> read(bruno_2) :sol:=FRIDAY(F,X,S,c,t,1/2,4,complex):

> nops(sol);

Y

sol[1][4];

[[=3 =TIt ti+1ts], [+ 1ts, ti+1ts], [t +1te, 2+ 1t3] [t1+1ty, -3 — It3],
[—%I—tg, tl-l-ItQ],[%I—i-tg, t1+It2],[t1+It2, %I-l—tg], [tl-l-ItQ, —%I—tg”

11.3.5 Integration and Reduction of three-dimensional elementary sin-
gular points

The procedures for the integration of three-dimensional vector fields with elementary sin-
gular points is based on methods introduced in chapter 9. They can treat systems with
real coefficients. The integration of those vector fields is handeled by the main procedure
FRIDAY. The variable infolevel [FRIDAY] is set to 1 to give some informations on the
computations during runtime.

The support of the considered vector field F lies within a two-dimensional cone and
within the first quadrant in the space of exponents. Therfore it can be integrated.

> F := [-2%x[1]+x[1]"2*x[3]1°2,x[2],x[3]+x[1]1*x[2] ~2*x[3]1];
F = [-2x + 212232, 2o, 23 + 21 297 23]

> sol:=FRIDAY(F,X,[0,0,0],c,t,1/2,4):

separate_cases_23: ELEMENTARY SINGULAR POINT
two_d_solutions: 2d procedure
separate_cases_23: NONELEMENTARY SINGULAR POINT
separate_cases_23: SIMPLE POINT
separate_cases_23: SIMPLE POINT
two_d_solutions: 2d solution calculated !
two_d_solutions: 2d procedure
separate_cases_23: NONELEMENTARY SINGULAR POINT
separate_cases_23: SIMPLE POINT
separate_cases_23: SIMPLE POINT
two_d_solutions: 2d solution calculated !

The vector field F' is reduced to a two-dimensional vector field with a nonelementary
singular point. This vector field can be integrated but the obtained solution curves are
only valid in sectors. Those sectors are extended to three-dimensional sectors. They can
be transformed to the initial coordinates using the procedure transform sector n and
visualized in three dimensionas by the procedure vi_sectors_3.

> sect := transform_sector_n(sol[i] [4],X,s0l[i]1[5],1/2);

> vi_sector_3(sect,t,2):

> a:=1/2: for i from 1 to nops(sol) do

> display(p[il,view=[-a..a,-a..a,-a..al); od;
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The 12 resulting sectors are shown in the figures 11.2 and 11.3. It can be observed that
in every figure three identic sectors appear. This is due to the fact that in addition to
the general solutions computed for a sector two further solutions, the so called particular
solutions, have to be considered. (See also case 4 in section 7.1).

The neighbourhood of X = 0 is decomposed into 6 sectors for x; > 0 and 6 sectors
for 1 < 0. That shows that the power transformation, that is used to reduce the initial
three-dimensional system, is not injective. Therefore additional constructions as they were
introduced in section 2.3 are used.

For the considered system F the structure of the two-dimensional sectors is well pre-
served by the extention to three coordinates and the retransformation to the initial coor-
dinates. This is not always true as the inverse of the power transformation, that is used
to simplify the vector field F, is a blowing-up.

11.4 Tests

A large number of tests have been run to ensure the viability of the FRIDAY package.
The possible tests for the computed solutions are the following :

e Introducing the solution curves into the initial differential equation and computing
the accuarcy of the results yields an evaluation for the precision of the computations.
This test can only be used if the computed results are approsimations of the exact
solutions. It has for example be used to proove the viability of the computation of
normal forms for systems with simple points. If time transformations are used at
any step of the computations, this test fails.

e The computed solution curves can be introduced into the energy function H for
Hamiltonian systems or into the scalar differential equation associated the two-
dimensional systems. This yields another indicator for the accuarcy of the com-
puted results. This method also works if time transformations were applied to the
considered system. However it fails if power transformation were used. Power trans-
formations cause problems as negative exponents may appear in the retransformed
solution curves.

Due to the limited possiblities it is in general not possible to test the computed results.
However the primitives can be tested individually and the tests proposed above can be used
for some particular exampes. As far as possible every module was tested for arbitrarilly
chosen vector fields.
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Figure 11.2: This figure shows 6 sectors computed for the example in section 11.3.5. They
form a decomposition of a neighbourhood of X = 0 for z; < 0.
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.,_H-
e

Figure 11.3: This figure shows 6 sectors computed for the example in section 11.3.5. They
form a decomposition of a neighbourhood of X = 0 for z; > 0.






Conclusion

The objective of this thesis is the study of the theoretical and practical aspects of the
reduction and formal integration of two- and three-dimensional systems of autonomous
differential equations. The case of two-dimensional systems has been solved completely.
Any considered system can be reduced and integrated by the proposed algorithms.

The three-dimensional case yields much more problems. Reductions are only possible
for some particular cases. We have introduced an algorithm that allows the formal in-
tegration of any three-dimensional system in the neighbourhood an elementary singular
point. These results can be obtained due to a generalization of power transformations and
blowing-ups.

The used transformations can be interpreted geometrically. This interpretation allows
a very efficient handling of all reductions. All transformations are interpreted geometrically
in the space of exponents as manipulations on the support of the system. The use of those
geometric methods also allows to cover the concerned neighbourhood entirely by sectors
and to compute all solutions.

The generalization of the proposed algorithms to higher-dimensional systems with
elementary singular points is possible. For this purpose the virtual Newton diagram has
been introduced. The virtual Newton diagram completes the information obtained for the
considered system by the Newton diagram. Therefore it allows controlled blowing-ups and
an entire covering of the concerned neighbourhood by sectors. However the integration
of the reduced systems is only possible if the reduction of higher-dimensional nilpotent
systems can be controlled.

The reduction of nilpotent three- and higher-dimensional systems by blowing-ups is
only possible for some particular cases. In these cases the virtual Newton diagram can
be used to construct blowing-ups that yield sectors that entirely cover the concerned
neighbourhood.

The proposed algorithms have been implemented in the FRIDAY MAPLE package.
This program formally integrates any two-dimensional and a large number of three-
dimensional systems.

The problem of convergence is always arising in the context of the reduction of dy-
namical systems by symbolic computations. Although many results on the resummation
of formal power series are known, many problems of convergence for normalizing transfor-
mations remain unsolved. Further problems are encountered in generalizing the obtained
results to higher dimensional problems. These problems offer many possibilities for further
work in this domain.

Three and higher dimensional blowing-ups certainly cause the main theoretical prob-
lems as it has been shown that finite succesive blowing-up can not entirely reduce any

157
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nonelementary singularity. For an entire study of those cases the use of some further
methods might be necessary.

Three dimensional blowing-ups also cause many algorithmic problems as it has been
shown for the dicritical case of an edge. This problem will have to be considered more
closely to entirely cover the case of a nonelementary singular point.

In this work an algorithm for the computation of the virtual Newton diagram has been
proposed. However this algorithm performs several computations of the convex hull of
a set of points. As this is not very efficient this algorithm could be replaced by a more
appropriate method.

The additional construction introduced for power transformations makes the use of
several similar transformations necessary. As the solutions computed for the different
transformations are similar too, some simplifications in the algorithms might yield a much
more efficient program.

The MAPLE package FRIDAY works very efficiently for two dimensional and some
three dimensional problems. However generalizations to higher dimensional problems will
need some basic modifications of the sector notation. Handling sectors in several recursions
and different dimensions causes implementation problems. Handling the sectors is much
more complicated than handling the solutions and the successive transformations.

The possible applications of the proposed methods are the studies of bifurcations as
normal forms play a very important role in this domain. As the use of parameters is possi-
ble up to a certain degree this represents an important advantage. The use of parameters
could also be used to perform algebraic optimization on simple physical models.



Conclusion

L’objectif de cette thése était d’étudier les aspects théoriques et pratiques de la réduction
et de l'intégration des systemes d’équations différentielles ordinaires en deux et trois di-
mensions. Le cas des systémes en deux dimensions a été résolu entierement. Tout systéeme
en deux dimension peut étre intégré par les algorithmes que nous avons proposés.

Dans le cas des systemes en trois dimensions nous rencontrons des probléemes qui
rendent ’étude de tels systemes beaucoup plus complexe. Nous proposons un algorithme
permettant l'intégration de tout systéme au voisinage d’un point singulier élémentaire.
Ces résultats sont basés sur la généralisation de l'utilisation des transformations quasi-
monomiales et des éclatements.

La généralisation des algorithmes proposés aux systemes en dimension supérieure est
possible. Les problemes rencontrés peuvent étre résolus grace au diagramme de Newton
virtuel que nous avons introduit auparavant. Le diagramme de Newton virtuel complete les
informations obtenues par le diagramme de Newton. Il permet de controler les éclatements
utilisés et définit un ensemble de secteurs couvrant entierement le voisinage concerné.
L’intégration des systemes que nous obtenons grace a ces méthodes n’est possible que si
les systemes nilpotents obtenus sont intégrables.

La réduction des systéemes nilpotents en trois dimensions en utilisant des éclatements
n’est possible que pour certains cas particuliers. Dans ces cas nous pouvons également
utiliser le diagramme de Newton virtuel qui permet de définir des éclatements couvrant
entierement le voisinage concerné par un ensemble de secteurs.

Les algorithmes que nous avons proposés dans cette these ont été implantés en Maple
dans le package FRIDAY. Ce logiciel permet 'intégration formelle de tout systéme en
deux dimensions et d’une large partie des systemes en trois dimensions.

Im me semble que les points suivants peuvent compléter ce travail. Du point de vue
théorique, de nombreux problémes restent & résoudre pour des systéemes de dimension
trois et supérieure. L’aspect de la resommation et de la convergence devient essentiel si
nous voulons utiliser les méthodes proposées pour résoudre des problemes réels. Mais les
travaux connus sur la resommation ne permettent pas encore de formuler des algorithmes
ou d’implanter un logiciel.

Du point de vue du code de calcul, la partie des formes normales et le calcul de
I’enveloppe convexe nécessite une réécriture dans un langage compilé. L’algorithme intro-
duit pour le calcul du diagramme de Newton virtuel n’est pas tres rapide. Il pourrait étre
remplacé par un algorithme plus sophistiqué.

Le logiciel FRIDAY est trés efficace pour résoudre des problémes en deux et trois
dimensions. En généralisant les procedures existantes & des dimensions supérieures, les
secteurs utilisés vont devenir de plus en plus compliqués. Un probleme fondamental est
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donc celui de la gestion des secteurs en plusieurs étapes récursives et en différentes dimen-
sions.

Les applications possibles des méthodes proposées sont surtout les problemes des bi-
furcations, car les formes normales jouent un role essentiel dans ce domaine. Le fait que
des parametres soient partiellement permis peut représenter un avantage non négligeable.
Il permet également d’optimiser les parametres d’une équation issue d’un probleme de
modélisation.
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