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Motivation

Operations research

Model real-life situations to help take the best decisions

Decision <« vector of variables
Best < objective function } = Optimization
Constraints « feasible set

Choice of design parameters, scheduling, planification
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Two approaches

Solving all problems efficiently is impossible in practice!

Optimal method to minimize of Lipschitz-continuous f:
L = 2, 10 variables, 1% accuracy = 10?" operations

Reaction: two distinct orientations

¢ General nonlinear optimization
Applicable to all problems but no efficiency guarantee

¢ Linear, quadratic, semidefinite, ... optimization
Restrict set of problems to get efficiency guarantee

Tradeoff generality < efficiency (algorithmic complexity)
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Restrict to which class of problems ?

+ specialized, very fast algorithms

Linear optimization : . . .
b — too restricted in practice

— we focus on Convex optimization

& Convex objective and convex feasible set
¢ Many problems are convex or can be convexified
o Efficient algorithms and powerful duality theory

¢ Establishing convexity a prior: is difficult

— work with specific classes of convex constraints:
Structured convex optimization (convexity by design)

Reward for a convex formulation is algorithmic efficiency
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Overview of the thesis

Interior-point methods

¢ Linear optimization survey

o Self-concordant functions

Conic optimization
¢ Formulation and duality
& Geometric and [,-norm optimization

o General framework: separable optimization

Approximations

& Geometric optimization with /,-norm optimization

¢ Linearizing second-order cone optimization
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Overview of this talk

Interior-point methods
¢ Linear optimization survey

o Selt-concordant functions

Conic optimization
¢ Formulation and duality
& Geometric and [,-norm optimization

o General framework: separable optimization

Approximations

& Geometric optimization with /,-norm optimization

¢ Linearizing second-order cone optimization
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Self-concordant functions:
the key to eflicient algorithms
for convex optimization
(chapter 2)

Interior-point methods

¢ Self-concordant functions

Conic optimization

¢ Formulation and duality

¢ Geometric and [,-norm optimization

¢ General framework: separable optimization
Approximations

¢ Geometric optimization with /,-norm optimization

Francois Glineur, Topics in Convex Optimization



Convex optimization

Let fy : R" — R be a convex function, C' C R” be a
convex set : optimize a vector x € R"

1€n]1£n folz) st NN (P)

Properties
o All local optima are global, optimal set is convex

¢ Lagrange duality — strongly related dual problem

o Objective can be taken linear w.l.o.g. (fo(z) = c'z)

Defining a problem

Two distinct approaches
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a. List of convex constraints.
m convex functions f; . R"— R, ¢1=1,2,...,m

C = {x € R" | fi(z) < 0 for all s =NS2N—
(intersection of convex level sets)
inlé folz) st. fi(z) < 0 for SINASRIZE—
zeR"
b. Use a barrier function.
Feasible set = domain of a barrier function F' s.t.

& F'is smooth
o F'is strongly convex int C
o F(x) — 400 when z — 0C
— C=cldomF =cl{z e R"| F(x) < 40}
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Interior-point methods

Principle

Approximate a constrained problem by a family
of unconstrained problems based on F’
Let p € R, be a parameter and consider

'z
xlenén N + F(z) (B
We have
s when p N\ O
where

© @y, is the (unique) solution of (P,) (— central path)

o ™ is a solution of the original problem (P)
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Ingredients

¢ A method for unconstrained optimization
o A barrier function

Interior-point methods rely on

*

i
o When (' is defined with nonlinear functions f;,

one can introduce the logarithmic barrier function

R > In(—fi(z))

Question: What is a good barrier, i.e. a barrier for
which Newton’s method is efficient ?

o Newton’s method to compute x

Answer: A self-concordant barrier
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Self-concordant barriers

Definition [Nesterov € Nemirovsky, 1988]
F :int C' +— R is called (., v)-self-concordant on C' iff

o F'1s convex
o [ is three times differentiable
o F(x) — 400 when x — 0C

& the following two conditions hold

V3E(z)[h, h, h] < 2k (V2F(2)[h, h])
VR (@) (V2F(z)) 'VF(z) <v
forall z € int C' and h € R"

\[GV]
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Alternative definition
Let x € int C' and h € R" and define a restriction
Fort): R Rt — F(z +th)
Replace conditions involving differentials by
7(0) < KEL,(0)F and FY,(0) < vE,(0)
for all x € int C and h € R"

Scaling and summation

Let A € R, be a positive scalar
K

Fis (k,v)-SC < AF is (—, Av)-SC
VA

Let F; be (k1,11)-SC and Fy be (kg, 15)-SC
Fi + F; is (max{k1, ko }, 11 + 15)-SC
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Complexity result

Summary

Self-concordant barrier = polynomial number of
iterations to solve (P) within a given accuracy

Principle of a short-step method

o Define a proximity measure d(x, p) to central path
o Choose a starting iterate with a small §(xg, o)
& While accuracy is not attained

a. Decrease p geometrically (§ increases)

b. Take a Newton step to minimize barrier
(0 decreases and is restored)
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Geometric interpretation

Two self-concordancy conditions: each has its role

& First condition bounds the variation of the Hessian
= controls the increase of the proximity measure when
1 is updated

& Second condition bounds the size of the Newton step
= guarantees that the Newton step restores the initial
proximity to the central path

Complexity result
1
O (KJ\/; log —)
€

iterations lead a solution with € accuracy on the objective
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Optimal complexity result [Glineur 00]

Optimal values for two constants
& (maximum) proximity & to the central path
& Constant of decrease of barrier parameter u

lead to

1.29
[(1.03 ) log —— Oﬁﬁw
€

iterations for a solution with € accuracy
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Two self-concordancy parameters

Complexity k+/v invariant w.r.t. to scaling of F' =
one of the constants k and v can be arbitrarily fixed
If there exists a (k, ¥)-SC barrier F' for C' then it can be

scaled to get a
o (k4/v,1)-SC barrier or a

o (1, k*v)-SC barrier

Comparison [Glineur 00]

When C' is defined by f,’s, it is typical to use the first
scaling (v = 1) with the logarithmic barrier

Indeed, if
F,:R"— R:z+— —In(—f;(x))
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satisfies the first condition with x = x; then
F; is (k;, 1)-self-concordant

because the second v condition is automatically satisfied
with v = 1 if f; is convex.
This implies in the end that

R — Z F; is (k, m)-SC with kK = max &;

) 7NN
=1

and that the problem can be solved in

O(vm max ;) = O(v/m ||k]|,,) iterations

1=

geeey

However, the second scaling (x = 1) is superior !
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Indeed, we have then that x?F} is (1, x7)-SC which implies
that

i — ZKJ2F is 1V>SCW1thV—Z/€

=l
and that the problem can be solved in
O( \ > " k2) = O(||x|l,) iterations
i=1

which is always better since

Illy < vm |5l

(strict inequality when &;’s not all equal)
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A useful lemma

Proving self-concordancy not always an easy task
= improved version of lemma by [Den Hertog et al./

Auxiliary functions

Let two increasing functions (see Figure 1)

o
’\/m}

v+ 1+1/y }
NG+ /TR

and ro(7y) ~ 7—\}%1 when v — +o00.

T1:R|—>R:7|—>max{1

TQZRHR:”YHmaX{l

We have r1(v) =~

S
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Figure 1: Graphs of functions r; and ry

Lemma’s statement [Glineur 00]

Let F': R" — R be a convex function on C.
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If there is a constant v € R such that

V3F(z)[h, h, h] < 3yV2F(z)[h, R] —
\ =1 i
then the following barrier functions
Fl:R”HR:xHF(:U)—Zlnmi
i=1 N
Fob  R*XR—R: (z,u) — —In(u— F(z)) — Zlnxi
i=1

satisty the first self-concordancy condition with

k1 =ri(y) for Fyon C
ko =1o(y) for Fhon epi F'={(z,u) | F(x) < u}
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A structured convex problem

Extended entropy optimization

min ¢!z + Zgz(xl) s.t. Az = blamdvre .
i=1
with scalar functions g; : R — R such that
gi (x)
x

Vo =l

97" ()] < 5

7

(which implies convexity)

Special case: classical entropy optimization
= rlocez = x;=1
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Application of the Lemma

Use Lemma with F'(x;) = g;(x;) to prove that
Ri

—In (tz- — g@-(xi)) — In(z;) is (7“2(3), 2)—SC

Total complexity of EEO is [Glineur 00]

O( 2 J2) iterati
\ 2 7“2(3) iterations
or

O(Vv/2n) iterations for entropy optimization

Possible application: polynomzial g;’s
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Conic optimization: an elegant framework
to formulate convex problems
and study their duality properties
(chapter 3)

Interior-point methods

¢ Self-concordant functions

Conic optimization

¢ Formulation and duality

¢ Geometric and [,-norm optimization

¢ General framework: separable optimization
Approximations

¢ Geometric optimization with /,-norm optimization
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Conic formulation

Primal problem

Let C C R"™ be a convex cone

inf 'z st. Azx=bandz eC
zeR"

Formulation is equivalent to convex optimization.

Dual problem

Let C C R"” be a solid, pointed, closed convex cone.
The dual cone C* = {z* e R" | zlz* > 0 for all z € C}
is also convex, solid, pointed and closed — dual problem:

sup by st. Aly+s=candseC
(y,s)ERMFT
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Primal-dual pair

Symmetrical pair of primal-dual problems

D — inﬂg lx st. Ar=band z €C
reR"
di= sup by st ATy + s —CldRcR .
(y,s)ER™MFT

Optimum values p* and d* not necessarily attained !

Ezamples: C = R} = C* = linear optimization,
C =S = C* = semidefinite optimization (self-duality)

Advantages over classical formulation

¢ Remarkable primal-dual symmetry
o Special handling of (easy) linear equality constraints
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Weak duality

For every feasible x and y by < c’'x
with equality iff 21's = 0 (orthogonality condition)

A = p* — d* is the duality gap = always nonnegative

Definition: x strictly feasible < x feasible and x € int C

Strong duality (with Slater condition)

a. Strictly feasible dual point = p* = d*

b. If in addition primal is bounded
= primal optimum is attained < p* = minc’x

(dualized result obviously holds)
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Corollary

T

Primal and dual Slater = minc’z = p* = d* = max b’y

Multiple cones

gae Clforalli € {1,2,...,k} = C =10 00 S RN

Our approach

o Duality for general convex optimization weaker than
for linear optimization (need Slater condition)

o But some classes of structured convex optimization
problems feature better duality properties (i.e. zero
duality gap even without Slater condition)

Our goal: prove these duality properties using general
theorems for conic optimization = new convex cones
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A conic formulation
for two well-known classes of problems:
geometric and [;-norm optimization
(chapters 4-5)

Interior-point methods

¢ Self-concordant functions

Conic optimization

¢ Formulation and duality

¢ Geometric and [,-norm optimization

¢ General framework: separable optimization
Approximations

¢ Geometric optimization with /,-norm optimization
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Geometric optimization

Posynomials

e — {0,1,2,...,r}, [ = {1525
let {11}, & partition of I into 7 + 1 classes.
A posynomial is a sum of positive monomials

Ge: R — R, 1t ) C Hta”

ZG]k

defined by data a;; € R and C; € R
Ezample: G(tq,t2,13) = 2t1 Sh S\FJr 30

Many applications, espe(nally in engineering
(optimizing design parameters, modelling power laws)

2/3
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Primal problem

Optimize m variables in vector ¢ € R,
inf Gy(t) st GptPF=NN7EREE.
Not convex: take Gy(t) = /11

Convexification

W.l.o.g. consider a linear objective and let
g dforall j € {1,2,...,m}
= we let
e Ry — Zeafy—q

iE[k

with ¢; = —logC; = equivalence gi(y) = Gi(?)
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Convexified primal

Free variables y € R™, data b € R™, c € R", A € R™*"

supb’y st. gp(y) < 1lforallk € K

(Lagrangean) dual

T R ARE Z Z x;log z:x—zx
icly, 1

ke K iEIk
x;>0

RN — ) and £ > 0

Properties [Duffin, Peterson and Zener, 1967

o Convex problem = weak duality
¢ No duality gap !
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The geometric cone

Definition [Glineur 99/
Let n € N. Define G" as

g”:{(x,Q)ERZxIR{”Z et }

2

with the convention e 7 = ()

Our goal: express geometric optimization in a conic form
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Properties

o Special cases: G =R, and G' = R2

o (z,0) e G", (2',0) e G and A = 0
= Mz,0)€G" and (x+2,0+60)eg"

= G" is a convex cone.
o G" is closed, solid and pointed

o The interior of G" is (— Slater condition)

int G" = {<5U>9> eRY, xR, | Ze_% X 1}

1=1
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Dual cone

The dual cone (G")* is given by

{(:p,@)eR+xR9 >Zflf¢10gw}

*
x; >()

[t is the epigraph of

*

95 <

N n ) * 1
I Rz — g xilogzn =
x>0 =AU

o Special cases: (GY)* =R, and (G')* =R2
(but G" is not self-dual for n > 1)

o It is also convex, closed, solid and pointed.

o ((G"M)*)* = g™ (since G" is closed).
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Figure 2: Boundary surfaces of the geometric cone G2 and its dual cone (G?)*

BN (G (since G C R

o The interior of (G")* is given by

% % n * * Ly
($,9>ER++XR|9 >;$210gm
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We are now ready to apply the general duality theory
for conic primal-dual pairs, using our dual cones G" and
(G™)*, to derive the duality properties of the geometric
optimization primal-dual pairs.

Notation: vy (resp. My) = restriction of vector v (resp.
matrix M) to indices belonging to I.

Strategy diagram

e NG & (0DG) = (DE)

i !
ze) " (rDG)

T
(Slater)
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Formulation with G" cone

Primal

supb’y st. gily) <lforallk € K
Introducing variables s; = ¢; — aly Vi we get
supbly st. s=c— Aly
and Z e <lforall ke K

ZEIk

D (introducing additional v variables)

g st (%T> N @ 3 @

and (s7,vr) € G forall k € K
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(e = all-one vector, ng = #1)
Standard conic problem:
variables (7, 5), data(A, b, ¢), cone K* with

\ ) S ~ ~
A1/, S:(U>,A:(A O),b:b,

eh— (Z) and K* = G™ x G"2 X S

= we can mechanically derive the dual !

(o) () = o9

NN 2;) € (GF)* VE
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(o) () = o9

and (zr, 2P RCNCRaN
sinfelz+elz st Az = b, el
and zp > Z 15 1og—
ZZE[;C i

ZE[k
;>0

St c x+22xllog

keK i€l ZEIk: i
x;>0

st. Axr=bandz >0
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Weak duality

y feasible for the primal, z is feasible for the dual

= ply<cl :I:JrZszlog

keK i€l Zelk
gl
T\ .
(Z xi) eli V=% = g, for all ¢ € NENENES

iE]k

Proof [Glineur 99]

Weak duality theorem with conic primal-dual pair — ex-
tend objective values to geometric primal-dual pair (easy
«— convexity)

Francois Glineur, Topics in Convex Optimization



Strong duality

Primal and dual feasible solutions = zero duality gap
(but attainment not guaranteed)

Proof [Glineur 99]

Provide a strictly feasible dual point
& zk>ZZGI .izczlogZ and z; > 0 Vi
ZE]k [

But the linear constraints Ax = b may force x; = 0
(for some i) at every feasible solution !

= detect these zero x; components and form a restricted
primal-dual pair without these variables (which had no
influence on the objective/constraints anyway)
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Detection with a linear problem

min 0 s.t. Az =5 anc e

Define N = set of indices 7 such that z; is identically zero
on the feasible region and B the set of the other indices.

(B,N) is the optimal partition of this linear problem
(Goldman-Tucker theorem)

Strategy
Remove variables z; for all 1 € N/

a. restricted primal-dual conic pair
b. strictly feasible dual solution

c. zero duality gap
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There remains to prove that

& Optimal objective values are equal for restricted and
original dual problems (easy)

& Optimal values are equal for restricted and original
primal problems (more difficult). Moreover, attain-
ment is lost in the process.

Difficulty: restricted posynomials have less terms than
in original primal = restricted solution may become
infeasible in in original primal

Solution: perturb the restricted primal solution

Perturbation vector given by Goldman-Tucker theorem
applied to our detection linear program and its dual
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o Perturbed restricted solution is asymptotically feasi-
ble for the original primal with the same objective
value

o Another trick (mixing with a feasible solution) leads
to a feasible solution with asymptotically the same
objective value (= lost attainment)

= the original primal optimum objective value is equal
to the original dual optimum objective value.

e Cre) &= (cDG) = (DG)
I8 ]
(PP AN TTe)

)
(Slater)
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l,-norm optimization

Primal
sup 1"y
A\ A
s.t. %p‘q di — by g Rl
Dual (with -+ =1)

q;

- 1
e 2) = ch+de+szZg -
k=1 el

st. Ar+ Bz=nand z > 0
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Properties [Peterson and Ecker, 1967]

o Convex program = weak duality
o GGeneralizes linear and convex quadratic optimization

¢ No duality gap and primal attainment

Conic optimization approach [Glineur 99]

Same approach holds: corresponding cone is

|x2|pz

Cp—{(xHR)ER”XRi\Z _1§/i}

with similar properties (closedness, interior, etc. )
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Very similar dual cone

Wane— o — {(:I;*,e*, " € R"xR? | Z

x|
*
qiKk*Pi=1 =6 }

Same strategy

a. Weak duality is straightforward

b. Strong duality essentially follows from existence of a
strictly feasible solution to the (possibly restricted)
dual problem

Difference with geometric optimization

Perturbed restricted primal solution is feasible (no addi-
tional trick needed) = primal attainment is preserved
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Intermezze:
Approximating geometric optimization
with [p-norm optimization
(chapter 8)

Interior-point methods

¢ Self-concordant functions

Conic optimization

¢ Formulation and duality

¢ Geometric and [,-norm optimization

¢ General framework: separable optimization
Approximations

¢ Geometric optimization with /,-norm optimization
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Approximating geometric optimization

Principle [Glineur 00]

JE
. N T
Geometric constraint is ) ;. €% 974 <1

Relies on exponential function
Let « € R, | and define

(07

ga:R+r—>R+:xr—>‘1—£
Q

We have for all 0 < z < «
IREANE e’ - g, (z) + o !

which implies
11111 = ”
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Approximated primal
sup b'y st. gily) < lforallk € K (GP)
becomes for a fixed «
sup o'y st ) (ge(c — ap y)i+an R NIN(EE
iG[k

= restriction of (GP) equivalent to

1

T T | Ay )

sup b*y s.t. Za ‘cz- — o — a; y' < o (1 e
ZE]k

= a [,-norm optimization problem !

& @ — +00 = approximation g,(z) — e

& Solutions of (GP,) tend to solution of (GP) ?
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Duality properties

Dual approximate problem

inf c'e—aelz+a 2:(1—71/<304_1)é Hx]kHﬁ st. Az =0
ke K

Fixed feasible region, when ac — 400 objective tends to

inf c :1:+Z Z rilog—=———25st. Az =0, x >0
keK icl;|z;>0 ZZE[%

(hidden constraint > 0)

= dual geometric optimization problem
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Duality results

Apply [,-norm duality results to geometric optimization
a. Weak duality
b. Strong duality (attainment lost with the limit)

We note

a. Primal approximation:
same objective, different feasible region (restriction)

b. Dual approximation:
same feasible region, different objective
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A general framework for
separable convex optimization:
Generalizing our conic formulations
(chapters 6-7)

Interior-point methods

¢ Self-concordant functions

Conic optimization

¢ Formulation and duality

¢ Geometric and [,-norm optimization

¢ General framework: separable optimization
Approximations

¢ Geometric optimization with /,-norm optimization
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Generalizing our framework

Comparing cones

g”Z{(:E,@)ERﬁXRJF | Zn:e_%gl}

Ep—{(xﬁm)ER”x]Ri\zpepz 1§/<;}

=l

Variants

03 = {(2,0,%) € R} xR, xﬂzmez e <}

Q:'Z' Di < }
TN K
9 N

= {(JZ,@,KJ) eR" xR, xR, | QZ—
~\n;
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The separable cone [Glineur 00]

Consider a set of n scalar closed proper convex functions
and let

/Cf:cl{(x,ﬁ,/i) e R x R, X RY 92]@(%) §/<;}
i=1

o K/ generalizes £P and G
o Kt is a closed convex cone

o KT is solid and pointed
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o (x,0,K) € int K7 iff

x; € int dom f; and 02fz<%) < K
1=

o The dual of (K/)* is defined by

{(ﬁ,@*,ﬁ;*) e R"xR, xR | K*Zm—%) < 9*}

i=1
using the conjugate functions

[ {2 o — fi(2))
rERM

(also closed, proper and convex)
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Separable optimization [Glineur 00/

Primal

sup bly st Zﬁ(cZ —aly) <dp — f U
ZEIk

Dual

nf Yiz,2) = Fordzr Y w3 (D)
k

keK|z,>0  i€l}

— E inf xﬂxzﬂ

keK‘zk:O xl—kGdOm flk
st. Ax + Fz=band z > 0.
o Justification for conventions when 6 = 0

o Mix different types of constraints within problems
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Some other examples
&
—va? — 2 i

+00 if |z

f*: ¥ — av IR

(square roots, circles and ellipses)
o

f.x—

—dyp ifx >0
fix— p , 0<p<l
+o00 iz <0

- —(—z*)? ifz* <0
ffix'— 9 — 00 = gl
+00 s > ()

(CES functions in production and consumer theory)
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7 —%—logx if £ >0
L T
+00 if x <0

400 1N > 0
(with property that f*(x*) = f(—x%))

o {—% — log(—z™) NifNzaE.
x>
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Conclusions
Summary and perspectives
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Contributions

Interior-point methods

o Overview of self-concordancy theory
& Discussion over different definitions
o Optimal complexity of short-step method

o Improvement of useful Lemma

Approximations

& Approximation of geometric optimization with /,-norm
optimization
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Conic optimization

o New convex cones to model

a. geometric optimization

b. {,-norm optimization
& Simplified proofs of their duality properties

o New framework of separable optimization
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Research directions

Interior-point methods

o Replace self-concordancy conditions
by single condition involving complexity k+/v

Conic optimization

o Duality properties of separable optimization
& Self-concordant barrier for separable optimization

¢ Implementation of interior-point methods
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