Topics in Convex Optimization: Interior-Point Methods, Conic Duality and Approximations

François Glineur
Aspirant F.N.R.S.

Faculté Polytechnique de Mons

Ph.D. dissertation
January 11, 2001

Co-directed by J. Teghem
T. Terlaky

Motivation

Operations research

Model real-life situations to help take the best decisions

$$
\left.\begin{array}{rl}
\text { Decision } & \leftrightarrow \\
\text { vector of variables } \\
\text { Best } & \text { objective function } \\
\text { Constraints } & \leftrightarrow \text { feasible set }
\end{array}\right\} \Rightarrow \text { Optimization }
$$

Choice of design parameters, scheduling, planification

Two approaches

Solving all problems efficiently is impossible in practice!
Optimal method to minimize of Lipschitz-continuous f : $L=2,10$ variables, 1% accuracy $\Rightarrow 10^{20}$ operations

Reaction: two distinct orientations
\diamond General nonlinear optimization Applicable to all problems but no efficiency guarantee
\diamond Linear, quadratic, semidefinite, ... optimization Restrict set of problems to get efficiency guarantee

Tradeoff generality \leftrightarrow efficiency (algorithmic complexity)

Restrict to which class of problems ?

Linear optimization: + specialized, very fast algorithms

- too restricted in practice
\rightarrow we focus on Convex optimization
\diamond Convex objective and convex feasible set
\diamond Many problems are convex or can be convexified
\diamond Efficient algorithms and powerful duality theory
\diamond Establishing convexity a priori is difficult \rightarrow work with specific classes of convex constraints: Structured convex optimization (convexity by design)
Reward for a convex formulation is algorithmic efficiency

Overview of the thesis

Interior-point methods
\diamond Linear optimization survey
\diamond Self-concordant functions
Conic optimization
\diamond Formulation and duality
\diamond Geometric and l_{p}-norm optimization
\diamond General framework: separable optimization
Approximations
\diamond Geometric optimization with l_{p}-norm optimization
\diamond Linearizing second-order cone optimization

Overview of this talk

Interior-point methods
\diamond Linear optimization survey
\diamond Self-concordant functions
Conic optimization
\diamond Formulation and duality
\diamond Geometric and l_{p}-norm optimization
\diamond General framework: separable optimization
Approximations
\diamond Geometric optimization with l_{p}-norm optimization
\diamond Linearizing second-order cone optimization

Self-concordant functions:
 the key to efficient algorithms for convex optimization

(chapter 2)

Interior-point methods
\diamond Self-concordant functions
Conic optimization
\diamond Formulation and duality
\diamond Geometric and l_{p}-norm optimization
\diamond General framework: separable optimization
Approximations
\diamond Geometric optimization with l_{p}-norm optimization

Convex optimization

Let $f_{0}: \mathbb{R}^{n} \mapsto \mathbb{R}$ be a convex function, $C \subseteq \mathbb{R}^{n}$ be a convex set : optimize a vector $x \in \mathbb{R}^{n}$

$$
\begin{equation*}
\inf _{x \in \mathbb{R}^{n}} f_{0}(x) \quad \text { s.t. } \quad x \in C \tag{P}
\end{equation*}
$$

Properties

\diamond All local optima are global, optimal set is convex
\diamond Lagrange duality \rightarrow strongly related dual problem
\diamond Objective can be taken linear w.l.o.g. $\left(f_{0}(x)=c^{T} x\right)$

Defining a problem

Two distinct approaches
a. List of convex constraints. m convex functions $f_{i}: \mathbb{R}^{n} \mapsto \mathbb{R}, i=1,2, \ldots, m$

$$
C=\left\{x \in \mathbb{R}^{n} \mid f_{i}(x) \leq 0 \text { for all } i=1,2, \ldots, m\right\}
$$

(intersection of convex level sets)

$$
\inf _{x \in \mathbb{R}^{n}} f_{0}(x) \quad \text { s.t. } f_{i}(x) \leq 0 \text { for all } i=1,2, \ldots, m
$$

b. Use a barrier function.

Feasible set \equiv domain of a barrier function F s.t.
$\diamond F$ is smooth
$\diamond F$ is strongly convex int C
$\diamond F(x) \rightarrow+\infty$ when $x \rightarrow \partial C$
$\rightarrow \quad C=\operatorname{cl}$ dom $F=\operatorname{cl}\left\{x \in \mathbb{R}^{n} \mid F(x)<+\infty\right\}$

Interior-point methods

Principle

Approximate a constrained problem by a family of unconstrained problems based on F
Let $\mu \in \mathbb{R}_{++}$be a parameter and consider

$$
\inf _{x \in \mathbb{R}^{n}} \frac{c^{T} x}{\mu}+F(x)
$$

We have

$$
x_{\mu}^{*} \rightarrow x^{*} \text { when } \mu \searrow 0
$$

where
$\diamond x_{\mu}^{*}$ is the (unique) solution of $\left(\mathrm{P}_{\mu}\right)(\rightarrow$ central path $)$
$\diamond x^{*}$ is a solution of the original problem (P)

Ingredients

\diamond A method for unconstrained optimization
\diamond A barrier function

Interior-point methods rely on

\diamond Newton's method to compute x_{μ}^{*}
\diamond When C is defined with nonlinear functions f_{i}, one can introduce the logarithmic barrier function

$$
F(x)=-\sum_{i=1}^{n} \ln \left(-f_{i}(x)\right)
$$

Question: What is a good barrier, i.e. a barrier for which Newton's method is efficient?
Answer: A self-concordant barrier

Self-concordant barriers

Definition [Nesterov \& Nemirovsky, 1988]
$F: \operatorname{int} C \mapsto \mathbb{R}$ is called (κ, ν)-self-concordant on C iff
$\diamond F$ is convex
$\diamond F$ is three times differentiable
$\diamond F(x) \rightarrow+\infty$ when $x \rightarrow \partial C$
\diamond the following two conditions hold

$$
\begin{gathered}
\nabla^{3} F(x)[h, h, h] \leq 2 \kappa\left(\nabla^{2} F(x)[h, h]\right)^{\frac{3}{2}} \\
\nabla F(x)^{T}\left(\nabla^{2} F(x)\right)^{-1} \nabla F(x) \leq \nu
\end{gathered}
$$

for all $x \in \operatorname{int} C$ and $h \in \mathbb{R}^{n}$

Alternative definition

Let $x \in \operatorname{int} C$ and $h \in \mathbb{R}^{n}$ and define a restriction

$$
F_{x, h}(t): \mathbb{R} \mapsto \mathbb{R}: t \mapsto F(x+t h)
$$

Replace conditions involving differentials by

$$
F_{x, h}^{\prime \prime \prime}(0) \leq \kappa F_{x, h}^{\prime \prime}(0)^{\frac{3}{2}} \text { and } F_{x, h}^{\prime}(0)^{2} \leq \nu F_{x, h}^{\prime \prime}(0)
$$

for all $x \in \operatorname{int} C$ and $h \in \mathbb{R}^{n}$
Scaling and summation
Let $\lambda \in \mathbb{R}_{+}$be a positive scalar

$$
F \text { is }(\kappa, \nu)-\mathrm{SC} \Leftrightarrow \lambda F \text { is }\left(\frac{\kappa}{\sqrt{\lambda}}, \lambda \nu\right) \text {-SC }
$$

Let F_{1} be $\left(\kappa_{1}, \nu_{1}\right)$-SC and F_{2} be $\left(\kappa_{2}, \nu_{2}\right)$-SC

$$
F_{1}+F_{2} \text { is }\left(\max \left\{\kappa_{1}, \kappa_{2}\right\}, \nu_{1}+\nu_{2}\right)-\mathrm{SC}
$$

Complexity result

Summary

Self-concordant barrier \Rightarrow polynomial number of iterations to solve (P) within a given accuracy

Principle of a short-step method
\diamond Define a proximity measure $\delta(x, \mu)$ to central path
\diamond Choose a starting iterate with a small $\delta\left(x_{0}, \mu_{0}\right)$
\diamond While accuracy is not attained
a. Decrease μ geometrically (δ increases)
b. Take a Newton step to minimize barrier
(δ decreases and is restored)

Geometric interpretation

Two self-concordancy conditions: each has its role
\diamond First condition bounds the variation of the Hessian \Rightarrow controls the increase of the proximity measure when μ is updated
\diamond Second condition bounds the size of the Newton step \Rightarrow guarantees that the Newton step restores the initial proximity to the central path

Complexity result

$$
\mathcal{O}\left(\kappa \sqrt{\nu} \log \frac{1}{\epsilon}\right)
$$

iterations lead a solution with ϵ accuracy on the objective

Optimal complexity result [Glineur 00]

Optimal values for two constants
\diamond (maximum) proximity δ to the central path
\diamond Constant of decrease of barrier parameter μ
lead to

$$
\left\lceil(1.03+7.15 \kappa \sqrt{\nu}) \log \frac{1.29 \mu_{0} \kappa \sqrt{\nu}}{\epsilon}\right\rceil
$$

iterations for a solution with ϵ accuracy

Two self-concordancy parameters

Complexity $\kappa \sqrt{\nu}$ invariant w.r.t. to scaling of $F \Rightarrow$ one of the constants κ and ν can be arbitrarily fixed If there exists a (κ, ν)-SC barrier F for C then it can be scaled to get a
$\diamond(\kappa \sqrt{\nu}, 1)$-SC barrier or a
$\diamond\left(1, \kappa^{2} \nu\right)$-SC barrier

Comparison [Glineur 00]

When C is defined by f_{i} 's, it is typical to use the first scaling $(\nu=1)$ with the logarithmic barrier Indeed, if

$$
F_{i}: \mathbb{R}^{n} \mapsto \mathbb{R}: x \mapsto-\ln \left(-f_{i}(x)\right)
$$

satisfies the first condition with $\kappa=\kappa_{i}$ then

$$
F_{i} \text { is }\left(\kappa_{i}, 1\right) \text {-self-concordant }
$$

because the second ν condition is automatically satisfied with $\nu=1$ if f_{i} is convex.
This implies in the end that

$$
F=\sum_{i=1}^{m} F_{i} \text { is }(\kappa, m) \text {-SC with } \kappa=\max _{i=1, \ldots, m} \kappa_{i}
$$

and that the problem can be solved in

$$
O\left(\sqrt{m} \max _{i=1, \ldots, m} \kappa_{i}\right)=O\left(\sqrt{m}\|\kappa\|_{\infty}\right) \text { iterations }
$$

However, the second scaling $(\kappa=1)$ is superior !

Indeed, we have then that $\kappa_{i}^{2} F_{i}$ is $\left(1, \kappa_{i}^{2}\right)$-SC which implies that

$$
F=\sum_{i=1}^{m} \kappa_{i}^{2} F_{i} \text { is }(1, \nu) \text {-SC with } \nu=\sum_{i=1}^{m} \kappa_{i}^{2}
$$

and that the problem can be solved in

$$
O\left(\sqrt{\sum_{i=1}^{m} \kappa_{i}^{2}}\right)=O\left(\|\kappa\|_{2}\right) \text { iterations }
$$

which is always better since

$$
\|\kappa\|_{2} \leq \sqrt{m}\|\kappa\|_{\infty}
$$

(strict inequality when κ_{i} 's not all equal)

A useful lemma

Proving self-concordancy not always an easy task
\Rightarrow improved version of lemma by [Den Hertog et al.]

Auxiliary functions

Let two increasing functions (see Figure 1)

$$
\begin{gathered}
r_{1}: \mathbb{R} \mapsto \mathbb{R}: \gamma \mapsto \max \left\{1, \frac{\gamma}{\sqrt{3-2 / \gamma}}\right\} \\
r_{2}: \mathbb{R} \mapsto \mathbb{R}: \gamma \mapsto \max \left\{1, \frac{\gamma+1+1 / \gamma}{\sqrt{3+4 / \gamma+2 / \gamma^{2}}}\right\}
\end{gathered}
$$

We have $r_{1}(\gamma) \approx \frac{\gamma}{\sqrt{3}}$ and $r_{2}(\gamma) \approx \frac{\gamma+1}{\sqrt{3}}$ when $\gamma \rightarrow+\infty$.

Figure 1: Graphs of functions r_{1} and r_{2}

Lemma's statement [Glineur 00]

Let $F: \mathbb{R}^{n} \mapsto \mathbb{R}$ be a convex function on C.

If there is a constant $\gamma \in \mathbb{R}_{+}$such that

$$
\nabla^{3} F(x)[h, h, h] \leq 3 \gamma \nabla^{2} F(x)[h, h] \sqrt{\sum_{i=1}^{n} \frac{h_{i}^{2}}{x_{i}^{2}}}
$$

then the following barrier functions

$$
F_{1}: \mathbb{R}^{n} \mapsto \mathbb{R}: x \mapsto F(x)-\sum_{i=1}^{n} \ln x_{i}
$$

$F_{2}: \mathbb{R}^{n} \times \mathbb{R} \mapsto \mathbb{R}:(x, u) \mapsto-\ln (u-F(x))-\sum_{i=1}^{n} \ln x_{i}$ satisfy the first self-concordancy condition with

$$
\begin{array}{ll}
\kappa_{1}=r_{1}(\gamma) & \text { for } F_{1} \text { on } C \\
\kappa_{2}=r_{2}(\gamma) & \text { for } F_{2} \text { on epi } F=\{(x, u) \mid F(x) \leq u\}
\end{array}
$$

A structured convex problem

Extended entropy optimization

$$
\min c^{T} x+\sum_{i=1}^{n} g_{i}\left(x_{i}\right) \quad \text { s.t. } \quad A x=b \text { and } x \geq 0
$$

with scalar functions $g_{i}: \mathbb{R} \mapsto \mathbb{R}$ such that

$$
\left|g_{i}^{\prime \prime \prime}(x)\right| \leq \kappa_{i} \frac{g_{i}^{\prime \prime}(x)}{x} \forall x \geq 0
$$

(which implies convexity)
Special case: classical entropy optimization when $g_{i}(x)=x \log x \quad \Rightarrow \quad \kappa_{i}=1$

Application of the Lemma

Use Lemma with $F\left(x_{i}\right)=g_{i}\left(x_{i}\right)$ to prove that

$$
-\ln \left(t_{i}-g_{i}\left(x_{i}\right)\right)-\ln \left(x_{i}\right) \text { is }\left(r_{2}\left(\frac{\kappa_{i}}{3}\right), 2\right)-\mathrm{SC}
$$

Total complexity of EEO is [Glineur 00]

$$
O\left(\sqrt{\left.2 \sum_{i=1}^{n} r_{2}\left(\frac{\kappa_{i}}{3}\right)^{2}\right)}\right. \text { iterations }
$$

or
$O(\sqrt{2 n})$ iterations for entropy optimization
Possible application: polynomial g_{i} 's

Conic optimization: an elegant framework to formulate convex problems and study their duality properties

 (chapter 3)Interior-point methods
\diamond Self-concordant functions
Conic optimization
\diamond Formulation and duality
\diamond Geometric and l_{p}-norm optimization
\diamond General framework: separable optimization
Approximations
\diamond Geometric optimization with l_{p}-norm optimization

Conic formulation

Primal problem

Let $\mathcal{C} \subseteq \mathbb{R}^{n}$ be a convex cone

$$
\inf _{x \in \mathbb{R}^{n}} c^{T} x \quad \text { s.t. } \quad A x=b \text { and } x \in \mathcal{C}
$$

Formulation is equivalent to convex optimization.

Dual problem

Let $\mathcal{C} \subseteq \mathbb{R}^{n}$ be a solid, pointed, closed convex cone. The dual cone $\mathcal{C}^{*}=\left\{x^{*} \in \mathbb{R}^{n} \mid x^{T} x^{*} \geq 0\right.$ for all $\left.x \in \mathcal{C}\right\}$ is also convex, solid, pointed and closed \rightarrow dual problem:

$$
\sup _{(y, s) \in \mathbb{R}^{m+n}} b^{T} y \quad \text { s.t. } \quad A^{T} y+s=c \text { and } s \in \mathcal{C}^{*}
$$

Primal-dual pair

Symmetrical pair of primal-dual problems

$$
\begin{gathered}
p^{*}=\inf _{x \in \mathbb{R}^{n}} c^{T} x \text { s.t. } A x=b \text { and } x \in \mathcal{C} \\
d^{*}=\sup _{(y, s) \in \mathbb{R}^{m+n}} b^{T} y \text { s.t. } A^{T} y+s=c \text { and } s \in \mathcal{C}^{*}
\end{gathered}
$$

Optimum values p^{*} and d^{*} not necessarily attained!
Examples: $\mathcal{C}=\mathbb{R}_{+}^{n}=\mathcal{C}^{*} \Rightarrow$ linear optimization,
$\mathcal{C}=\mathbb{S}_{+}^{n}=\mathcal{C}^{*} \Rightarrow$ semidefinite optimization (self-duality)
Advantages over classical formulation
\diamond Remarkable primal-dual symmetry
\diamond Special handling of (easy) linear equality constraints

Weak duality

For every feasible x and $y \quad b^{T} y \leq c^{T} x$ with equality iff $x^{T} s=0$ (orthogonality condition)
$\Delta=p^{*}-d^{*}$ is the duality gap \Rightarrow always nonnegative
Definition: x strictly feasible $\Leftrightarrow x$ feasible and $x \in \operatorname{int} \mathcal{C}$

Strong duality (with Slater condition)

a. Strictly feasible dual point $\Rightarrow p^{*}=d^{*}$
b. If in addition primal is bounded
\Rightarrow primal optimum is attained $\Leftrightarrow p^{*}=\min c^{T} x$
(dualized result obviously holds)

Corollary

Primal and dual Slater $\Rightarrow \min c^{T} x=p^{*}=d^{*}=\max b^{T} y$

Multiple cones

$x^{i} \in \mathcal{C}^{i}$ for all $i \in\{1,2, \ldots, k\} \Rightarrow \mathcal{C}=\mathcal{C}^{1} \times \mathcal{C}^{2} \times \cdots \mathcal{C}^{k}$
Our approach
\diamond Duality for general convex optimization weaker than for linear optimization (need Slater condition)
\diamond But some classes of structured convex optimization problems feature better duality properties (i.e. zero duality gap even without Slater condition)
Our goal: prove these duality properties using general theorems for conic optimization \Rightarrow new convex cones

A conic formulation
 for two well-known classes of problems: geometric and l_{p}-norm optimization
 (chapters 4-5)

Interior-point methods
\diamond Self-concordant functions
Conic optimization
\diamond Formulation and duality
\diamond Geometric and l_{p}-norm optimization
\diamond General framework: separable optimization
Approximations
\diamond Geometric optimization with l_{p}-norm optimization

Geometric optimization

Posynomials

Let $K=\{0,1,2, \ldots, r\}, I=\{1,2, \ldots, n\}$;
let $\left\{I_{k}\right\}_{k \in K}$ a partition of I into $r+1$ classes.
A posynomial is a sum of positive monomials

$$
G_{k}: \mathbb{R}_{++}^{m} \mapsto \mathbb{R}_{++}: t \mapsto \sum_{i \in I_{k}} C_{i} \prod_{j=1}^{m} t_{j}^{a_{i j}}
$$

defined by data $a_{i j} \in \mathbb{R}$ and $C_{i} \in \mathbb{R}_{++}$
Example: $G\left(t_{1}, t_{2}, t_{3}\right)=2 \frac{t_{1}^{2}}{t_{2}}+3 \sqrt{t_{2}}+\frac{t_{2}^{2 / 3}}{3 t_{1} t_{3}^{3}}$
Many applications, especially in engineering (optimizing design parameters, modelling power laws)

Primal problem

Optimize m variables in vector $t \in \mathbb{R}_{++}^{m}$

$$
\inf G_{0}(t) \quad \text { s.t. } \quad G_{k}(t) \leq 1 \quad \forall k \in K
$$

Not convex: take $G_{0}(t)=\sqrt{t_{1}}$

Convexification

W.l.o.g. consider a linear objective and let

$$
t_{j}=e^{y_{j}} \text { for all } j \in\{1,2, \ldots, m\}
$$

\Rightarrow we let

$$
g_{k}: \mathbb{R}^{m} \mapsto \mathbb{R}_{++}: y \mapsto \sum_{i \in I_{k}} e^{a_{i}^{T} y-c_{i}}
$$

with $c_{i}=-\log C_{i} \quad \Rightarrow \quad$ equivalence $g_{k}(y)=G_{k}(t)$

Convexified primal

Free variables $y \in \mathbb{R}^{m}$, data $b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}$

$$
\sup b^{T} y \quad \text { s.t. } \quad g_{k}(y) \leq 1 \text { for all } k \in K
$$

(Lagrangean) dual

$$
\begin{array}{ll}
\text { inf } & c^{T} x+\sum_{k \in K} \sum_{\substack{i \in I_{k} \\
x_{i}>0}} x_{i} \log \frac{x_{i}}{\sum_{i \in I_{k}} x_{i}} \\
\text { s.t. } & A x=b \text { and } x \geq 0
\end{array}
$$

Properties [Duffin, Peterson and Zener, 1967]
\diamond Convex problem \Rightarrow weak duality
\diamond No duality gap !

The geometric cone

Definition [Glineur 99]
Let $n \in \mathbb{N}$. Define \mathcal{G}^{n} as

$$
\mathcal{G}^{n}=\left\{(x, \theta) \in \mathbb{R}_{+}^{n} \times \mathbb{R}_{+} \left\lvert\, \sum_{i=1}^{n} e^{-\frac{x_{i}}{\theta}} \leq 1\right.\right\}
$$

with the convention $e^{-\frac{x_{i}}{0}}=0$

Our goal: express geometric optimization in a conic form

Properties

\diamond Special cases: $\mathcal{G}^{0}=\mathbb{R}_{+}$and $\mathcal{G}^{1}=\mathbb{R}_{+}^{2}$
$\diamond(x, \theta) \in \mathcal{G}^{n},\left(x^{\prime}, \theta^{\prime}\right) \in \mathcal{G}^{n}$ and $\lambda \geq 0$ $\Rightarrow \quad \lambda(x, \theta) \in \mathcal{G}^{n} \quad$ and $\quad\left(x+x^{\prime}, \theta+\theta^{\prime}\right) \in \mathcal{G}^{n}$
$\Rightarrow \mathcal{G}^{n}$ is a convex cone.
$\diamond \mathcal{G}^{n}$ is closed, solid and pointed
\diamond The interior of \mathcal{G}^{n} is $(\rightarrow$ Slater condition $)$

$$
\operatorname{int} \mathcal{G}^{n}=\left\{(x, \theta) \in \mathbb{R}_{++}^{n} \times \mathbb{R}_{++} \left\lvert\, \sum_{i=1}^{n} e^{-\frac{x_{i}}{\theta}}<1\right.\right\}
$$

Dual cone

The dual cone $\left(\mathcal{G}^{n}\right)^{*}$ is given by

$$
\left\{\left(x^{*}, \theta^{*}\right) \in \mathbb{R}_{+}^{n} \times \mathbb{R} \left\lvert\, \theta^{*} \geq \sum_{x_{i}^{*}>0} x_{i}^{*} \log \frac{x_{i}^{*}}{\sum_{i=1}^{n} x_{i}^{*}}\right.\right\}
$$

It is the epigraph of

$$
f_{n}: \mathbb{R}_{+}^{n} \mapsto \mathbb{R}: x \mapsto \sum_{x_{i}^{*}>0} x_{i}^{*} \log \frac{x_{i}^{*}}{\sum_{i=1}^{n} x_{i}^{*}}
$$

\diamond Special cases: $\left(\mathcal{G}^{0}\right)^{*}=\mathbb{R}_{+}$and $\left(\mathcal{G}^{1}\right)^{*}=\mathbb{R}_{+}^{2}$ (but \mathcal{G}^{n} is not self-dual for $n>1$)
\diamond It is also convex, closed, solid and pointed.
$\diamond\left(\left(\mathcal{G}^{n}\right)^{*}\right)^{*}=\mathcal{G}^{n}\left(\right.$ since \mathcal{G}^{n} is closed $)$.

Figure 2: Boundary surfaces of the geometric cone \mathcal{G}^{2} and its dual cone $\left(\mathcal{G}^{2}\right)^{*}$
$\diamond \mathbb{R}_{+}^{n+1} \subseteq\left(\mathcal{G}^{n}\right)^{*}\left(\right.$ since $\left.\mathcal{G}^{n} \subseteq \mathbb{R}_{+}^{n+1}\right)$
\diamond The interior of $\left(\mathcal{G}^{n}\right)^{*}$ is given by

$$
\left\{\left(x^{*}, \theta^{*}\right) \in \mathbb{R}_{++}^{n} \times \mathbb{R} \left\lvert\, \theta^{*}>\sum_{i=1}^{n} x_{i}^{*} \log \frac{x_{i}^{*}}{\sum_{i=1}^{n} x_{i}^{*}}\right.\right\}
$$

We are now ready to apply the general duality theory for conic primal-dual pairs, using our dual cones \mathcal{G}^{n} and $\left(\mathcal{G}^{n}\right)^{*}$, to derive the duality properties of the geometric optimization primal-dual pairs.
Notation: $v_{I}\left(\right.$ resp. $\left.M_{I}\right) \equiv$ restriction of vector v (resp. matrix M) to indices belonging to I.

Strategy diagram

$$
\begin{aligned}
(P G) \equiv(C P G) & \stackrel{\text { Weak }}{\longleftrightarrow} \\
\downarrow^{*} & (C D G) \\
(R P G) & \stackrel{\downarrow}{\downarrow}) \equiv(D G) \\
& \left.\begin{array}{c}
\text { Strong } \\
\\
(R D G) \\
\uparrow
\end{array}\right) \\
& \text { Slater) }
\end{aligned}
$$

Formulation with \mathcal{G}^{n} cone

Primal

$\sup b^{T} y$ s.t. $g_{k}(y) \leq 1$ for all $k \in K$
Introducing variables $s_{i}=c_{i}-a_{i}^{T} y \forall i$ we get

$$
\begin{array}{lll}
\sup b^{T} y & \text { s.t. } & s=c-A^{T} y \\
& \text { and } & \sum_{i \in I_{k}} e^{-s_{i}} \leq 1 \text { for all } k \in K
\end{array}
$$

$$
\begin{array}{lll}
\mathbb{\imath} & & \text { (introducing additional } v \text { varial } \\
b^{T} y & \text { s.t. } & \binom{A^{T}}{0} y+\binom{s}{v}=\binom{c}{e} \\
& \text { and } & \left(s_{I_{k}}, v_{k}\right) \in \mathcal{G}^{n_{k}} \text { for all } k \in K
\end{array}
$$

($e \equiv$ all-one vector, $n_{k}=\# I_{k}$)
Standard conic problem:
variables (\tilde{y}, \tilde{s}), $\operatorname{data}(\tilde{A}, \tilde{b}, \tilde{c})$, cone K^{*} with

$$
\begin{gathered}
\tilde{y}=y, \tilde{s}=\binom{s}{v}, \tilde{A}=\left(\begin{array}{ll}
A & 0
\end{array}\right), \tilde{b}=b, \\
\tilde{c}=\binom{c}{e} \text { and } K^{*}=\mathcal{G}^{n_{1}} \times \mathcal{G}^{n_{2}} \times \cdots \times \mathcal{G}^{n_{r}}
\end{gathered}
$$

\Rightarrow we can mechanically derive the dual !

$$
\begin{array}{rll}
\inf \binom{c}{e}^{T}\binom{x}{z} \quad \begin{array}{ll}
\text { s.t. } & \left(\begin{array}{ll}
A & 0
\end{array}\right)\binom{x}{z}=b \\
\text { and } & \left(x_{I_{k}}, z_{k}\right) \in\left(\mathcal{G}^{n_{k}}\right)^{*} \forall k
\end{array}
\end{array}
$$

$$
\begin{array}{rll}
\inf \binom{c}{e}^{T}\binom{x}{z} \quad \begin{array}{ll}
\text { s.t. } & \left(\begin{array}{ll}
A & 0
\end{array}\right)\binom{x}{z}=b \\
\text { and } & \left(x_{I_{k}}, z_{k}\right) \in\left(\mathcal{G}^{n_{k}}\right)^{*} \forall k
\end{array}
\end{array}
$$

$\Leftrightarrow \inf c^{T} x+e^{T} z \quad$ s.t. $\quad A x=b, x_{I_{k}} \geq 0$

$$
\text { and } \quad z_{k} \geq \sum_{\substack{i \in I_{k} \\ x_{i}>0}} x_{i} \log \frac{x_{i}}{\sum_{i \in I_{k}} x_{i}}
$$

$$
\Leftrightarrow \quad \inf \quad c^{T} x+\sum_{k \in K} \sum_{\substack{i \in I_{k} \\ x_{i}>0}} x_{i} \log \frac{x_{i}}{\sum_{i \in I_{k}} x_{i}}
$$

$$
\text { s.t. } \quad A x=b \text { and } x \geq 0
$$

Weak duality

y feasible for the primal, x is feasible for the dual

$$
\Rightarrow \quad b^{T} y \leq c^{T} x+\sum_{k \in K} \sum_{\substack{i \in I_{k} \\ x_{i}>0}} x_{i} \log \frac{x_{i}}{\sum_{i \in I_{k}} x_{i}} .
$$

$$
\left(\sum_{i \in I_{k}} x_{i}\right) e^{a_{i}^{T} y-c_{i}}=x_{i} \text { for all } i \in I_{k}, k \in K
$$

Proof [Glineur 99]

Weak duality theorem with conic primal-dual pair \rightarrow extend objective values to geometric primal-dual pair (easy \leftarrow convexity)

Strong duality

Primal and dual feasible solutions \Rightarrow zero duality gap (but attainment not guaranteed)

Proof [Glineur 99]

Provide a strictly feasible dual point $\Leftrightarrow \quad z_{k}>\sum_{i \in I_{k}} x_{i} \log \frac{x_{i}}{\sum_{i \in I_{k}} x_{i}}$ and $x_{i}>0 \forall i$
But the linear constraints $A x=b$ may force $x_{i}=0$ (for some i) at every feasible solution!
\Rightarrow detect these zero x_{i} components and form a restricted primal-dual pair without these variables (which had no influence on the objective/constraints anyway)

Detection with a linear problem

$$
\min 0 \quad \text { s.t. } A x=b \quad \text { and } \quad x \geq 0
$$

Define $\mathcal{N}=$ set of indices i such that x_{i} is identically zero on the feasible region and \mathcal{B} the set of the other indices. $(\mathcal{B}, \mathcal{N})$ is the optimal partition of this linear problem (Goldman-Tucker theorem)

Strategy

Remove variables x_{i} for all $i \in \mathcal{N}$
a. restricted primal-dual conic pair
b. strictly feasible dual solution
c. zero duality gap

There remains to prove that
\diamond Optimal objective values are equal for restricted and original dual problems (easy)
\diamond Optimal values are equal for restricted and original primal problems (more difficult). Moreover, attainment is lost in the process.
Difficulty: restricted posynomials have less terms than in original primal \Rightarrow restricted solution may become infeasible in in original primal
Solution: perturb the restricted primal solution
Perturbation vector given by Goldman-Tucker theorem applied to our detection linear program and its dual
\diamond Perturbed restricted solution is asymptotically feasible for the original primal with the same objective value
\diamond Another trick (mixing with a feasible solution) leads to a feasible solution with asymptotically the same objective value (\Rightarrow lost attainment)
\Rightarrow the original primal optimum objective value is equal to the original dual optimum objective value.

$$
\begin{aligned}
& (P G) \equiv(C P G) \stackrel{\text { Weak }}{\longleftrightarrow}(C D G) \equiv(D G) \\
& \downarrow^{*} \uparrow \\
& (R P G) \stackrel{\text { Strong }}{\longleftrightarrow}(R D G) \\
& \uparrow \\
& \text { (Slater) }
\end{aligned}
$$

l_{p}-norm optimization

Primal

$$
\begin{array}{ll}
\sup & \eta^{T} y \\
\text { s.t. } & \sum_{i \in I_{k}} \frac{1}{p_{i}}\left|c_{i}-a_{i}^{T} y\right|^{p_{i}} \leq d_{k}-b_{k}^{T} y \quad \forall k \in K
\end{array}
$$

Dual (with $\frac{1}{p_{i}}+\frac{1}{q_{i}}=1$)

$$
\begin{gathered}
\inf \psi(x, z)=c^{T} x+d^{T} z+\sum_{k=1}^{r} z_{k} \sum_{i \in I_{k}} \frac{1}{q_{i}}\left|\frac{x_{i}}{z_{k}}\right|^{q_{i}} \\
\text { s.t. } A x+B z=\eta \text { and } z \geq 0
\end{gathered}
$$

Properties [Peterson and Ecker, 1967]
\diamond Convex program \Rightarrow weak duality
\diamond Generalizes linear and convex quadratic optimization
\diamond No duality gap and primal attainment

Conic optimization approach [Glineur 99]
Same approach holds: corresponding cone is

$$
\mathcal{L}^{p}=\left\{(x, \theta, \kappa) \in \mathbb{R}^{n} \times \mathbb{R}_{+}^{2} \left\lvert\, \sum_{i=1}^{n} \frac{\left|x_{i}\right|^{p_{i}}}{p_{i} \theta^{p_{i}-1}} \leq \kappa\right.\right\}
$$

with similar properties (closedness, interior, etc.)

Very similar dual cone

$$
\left(\mathcal{L}^{p}\right)^{*}=\mathcal{L}_{s}^{q}=\left\{\left(x^{*}, \theta^{*}, \kappa^{*}\right) \in \mathbb{R}^{n} \times \mathbb{R}_{+}^{2} \left\lvert\, \sum_{i=1}^{n} \frac{\left|x_{i}^{*}\right|^{q_{i}}}{q_{i} \kappa^{* p_{i}-1}} \leq \theta^{*}\right.\right\}
$$

Same strategy

a. Weak duality is straightforward
b. Strong duality essentially follows from existence of a strictly feasible solution to the (possibly restricted) dual problem

Difference with geometric optimization
Perturbed restricted primal solution is feasible (no additional trick needed) \Rightarrow primal attainment is preserved

Intermezzo:
 Approximating geometric optimization with l_{p}-norm optimization

(chapter 8)
Interior-point methods
\diamond Self-concordant functions
Conic optimization
\diamond Formulation and duality
\diamond Geometric and l_{p}-norm optimization
\diamond General framework: separable optimization
Approximations
\diamond Geometric optimization with l_{p}-norm optimization

Approximating geometric optimization

Principle [Glineur 00]
Geometric constraint is $\quad \sum_{i \in I_{k}} e^{a_{i}^{T} y-c_{i}} \leq 1$ Relies on exponential function
Let $\alpha \in \mathbb{R}_{++}$and define

$$
g_{\alpha}: \mathbb{R}_{+} \mapsto \mathbb{R}_{+}: x \mapsto\left|1-\frac{x}{\alpha}\right|^{\alpha}
$$

We have for all $0 \leq x \leq \alpha$

$$
g_{\alpha}(x) \leq e^{-x}<g_{\alpha}(x)+\alpha^{-1}
$$

which implies

$$
\lim _{\alpha \rightarrow+\infty} g_{\alpha}(x)=e^{-x}
$$

Approximated primal

$$
\begin{equation*}
\sup b^{T} y \quad \text { s.t. } \quad g_{k}(y) \leq 1 \text { for all } k \in K \tag{GP}
\end{equation*}
$$

becomes for a fixed α

$$
\sup b^{T} y \quad \text { s.t. } \quad \sum_{i \in I_{k}}\left(g_{\alpha}\left(c_{i}-a_{i}^{T} y\right)+\alpha^{-1}\right) \leq 1 \quad\left(\mathrm{GP}_{\alpha}\right)
$$

\Rightarrow restriction of (GP) equivalent to
$\sup b^{T} y \quad$ s.t. $\quad \sum_{i \in I_{k}} \frac{1}{\alpha}\left|c_{i}-\alpha-a_{i}^{T} y\right|^{\alpha} \leq \alpha^{\alpha-1}\left(1-n_{k} \alpha^{-1}\right)$
\Rightarrow a l_{p}-norm optimization problem !
$\diamond \alpha \rightarrow+\infty \Rightarrow$ approximation $g_{\alpha}(x) \rightarrow e^{-x}$
\diamond Solutions of $\left(\mathrm{GP}_{\alpha}\right)$ tend to solution of (GP) ?

Duality properties

Dual approximate problem
$\inf c^{T} x-\alpha e_{n}^{T} x+\alpha \sum_{k \in K}\left(1-n_{k} \alpha^{-1}\right)^{\frac{1}{\alpha}}\left\|x_{I_{k}}\right\|_{\beta}$ s.t. $A x=b$
Fixed feasible region, when $\alpha \rightarrow+\infty$ objective tends to $\inf c^{T} x+\sum_{k \in K} \sum_{i \in I_{k} \mid x_{i}>0} x_{i} \log \frac{x_{i}}{\sum_{i \in I_{k}} x_{i}}$ s.t. $A x=b, x \geq 0$
(hidden constraint $x \geq 0$)
\Rightarrow dual geometric optimization problem

Duality results

Apply l_{p}-norm duality results to geometric optimization
a. Weak duality
b. Strong duality (attainment lost with the limit)

We note
a. Primal approximation: same objective, different feasible region (restriction)
b. Dual approximation:
same feasible region, different objective

A general framework for separable convex optimization: Generalizing our conic formulations

 (chapters 6-7)Interior-point methods
\diamond Self-concordant functions
Conic optimization
\diamond Formulation and duality
\diamond Geometric and l_{p}-norm optimization
\diamond General framework: separable optimization
Approximations
\diamond Geometric optimization with l_{p}-norm optimization

Generalizing our framework

Comparing cones

$$
\begin{gathered}
\mathcal{G}^{n}=\left\{(x, \theta) \in \mathbb{R}_{+}^{n} \times \mathbb{R}_{+} \left\lvert\, \sum_{i=1}^{n} e^{-\frac{x_{i}}{\theta}} \leq 1\right.\right\} \\
\mathcal{L}^{p}=\left\{(x, \theta, \kappa) \in \mathbb{R}^{n} \times \mathbb{R}_{+}^{2} \left\lvert\, \sum_{i=1}^{n} \frac{\left|x_{i}\right|^{p_{i}}}{p_{i} \theta^{p_{i}-1}} \leq \kappa\right.\right\}
\end{gathered}
$$

Variants

$$
\begin{gathered}
\mathcal{G}_{2}^{n}=\left\{(x, \theta, \kappa) \in \mathbb{R}_{+}^{n} \times \mathbb{R}_{+} \times \mathbb{R}_{+} \left\lvert\, \theta \sum_{i=1}^{n} e^{-\frac{x_{i}}{\theta}} \leq \kappa\right.\right\} \\
\mathcal{L}^{p}=\left\{(x, \theta, \kappa) \in \mathbb{R}^{n} \times \mathbb{R}_{+} \times\left.\mathbb{R}_{+}\left|\theta \sum_{i=1}^{n} \frac{1}{p_{i}}\right| \frac{x_{i}}{\theta}\right|^{p_{i}} \leq \kappa\right\}
\end{gathered}
$$

The separable cone [Glineur 00]
Consider a set of n scalar closed proper convex functions

$$
f_{i}: \mathbb{R} \mapsto \mathbb{R}
$$

and let

$$
\mathcal{K}^{f}=\operatorname{cl}\left\{(x, \theta, \kappa) \in \mathbb{R}^{n} \times \mathbb{R}_{++} \times \mathbb{R} \left\lvert\, \theta \sum_{i=1}^{n} f_{i}\left(\frac{x_{i}}{\theta}\right) \leq \kappa\right.\right\}
$$

$\diamond \mathcal{K}^{f}$ generalizes \mathcal{L}^{p} and \mathcal{G}_{2}^{n}
$\diamond \mathcal{K}^{f}$ is a closed convex cone
$\diamond \mathcal{K}^{f}$ is solid and pointed
$\diamond(x, \theta, \kappa) \in \operatorname{int} \mathcal{K}^{f}$ iff

$$
x_{i} \in \operatorname{int} \operatorname{dom} f_{i} \text { and } \theta \sum_{i=1}^{n} f_{i}\left(\frac{x_{i}}{\theta}\right)<\kappa
$$

\diamond The dual of $\left(\mathcal{K}^{f}\right)^{*}$ is defined by

$$
\left\{\left(x^{*}, \theta^{*}, \kappa^{*}\right) \in \mathbb{R}^{n} \times \mathbb{R}_{++} \times \mathbb{R} \left\lvert\, \kappa^{*} \sum_{i=1}^{n} f_{i}^{*}\left(-\frac{x_{i}^{*}}{\kappa^{*}}\right) \leq \theta^{*}\right.\right\}
$$

using the conjugate functions

$$
f_{i}^{*}: x^{*} \mapsto \sup _{x \in \mathbb{R}^{n}}\left\{x^{T} x^{*}-f_{i}(x)\right\}
$$

(also closed, proper and convex)

Separable optimization [Glineur 00]

Primal
$\sup b^{T} y \quad$ s.t. $\quad \sum_{i \in I_{k}} f_{i}\left(c_{i}-a_{i}^{T} y\right) \leq d_{k}-f_{k}^{T} y \quad \forall k \in K$
Dual
$\inf \psi(x, z)=c^{T} x+d^{T} z+\sum_{k \in K \mid z_{k}>0} z_{k} \sum_{i \in I_{k}} f_{i}^{*}\left(-\frac{x_{i}}{z_{k}}\right)$

$$
-\sum_{k \in K \mid z_{k}=0} \inf _{x_{I_{k}}^{*} \in \operatorname{dom} f_{I_{k}}} x_{I_{k}}^{T} x_{I_{k}}^{*}
$$

$$
\text { s.t. } A x+F z=b \text { and } z \geq 0 .
$$

\diamond Justification for conventions when $\theta=0$
\diamond Mix different types of constraints within problems

Some other examples

$$
\begin{gathered}
f: x \mapsto \begin{cases}-\sqrt{a^{2}-x^{2}} & \text { if }|x| \leq a \\
+\infty & \text { if }|x|>a\end{cases} \\
f^{*}: x^{*} \mapsto a \sqrt{1+x^{* 2}}
\end{gathered}
$$

(square roots, circles and ellipses)

$$
\begin{gathered}
f: x \mapsto\left\{\begin{array}{ll}
-\frac{1}{p} x^{p} & \text { if } x \geq 0 \\
+\infty & \text { if } x<0
\end{array} \quad 0<p<1\right. \\
f^{*}: x^{*} \mapsto\left\{\begin{array}{ll}
-\frac{1}{q}\left(-x^{*}\right)^{q} & \text { if } x^{*}<0 \\
+\infty & \text { if } x^{*} \geq 0
\end{array} \quad-\infty<q<0\right.
\end{gathered}
$$

(CES functions in production and consumer theory)

$$
\begin{aligned}
& \qquad f: x \mapsto \begin{cases}-\frac{1}{2}-\log x & \text { if } x>0 \\
+\infty & \text { if } x \leq 0\end{cases} \\
& \qquad f^{*}: x^{*} \mapsto \begin{cases}-\frac{1}{2}-\log \left(-x^{*}\right) & \text { if } x^{*}<0 \\
+\infty & \text { if } x^{*} \geq 0\end{cases} \\
& \text { (with property that } \left.f^{*}\left(x^{*}\right)=f\left(-x^{*}\right)\right)
\end{aligned}
$$

Conclusions

Summary and perspectives

Contributions

Interior-point methods

\diamond Overview of self-concordancy theory
\diamond Discussion over different definitions
\diamond Optimal complexity of short-step method
\diamond Improvement of useful Lemma

Approximations
\diamond Approximation of geometric optimization with l_{p}-norm optimization

Conic optimization

\diamond New convex cones to model
a. geometric optimization
b. l_{p}-norm optimization
\diamond Simplified proofs of their duality properties
\diamond New framework of separable optimization

Research directions

Interior-point methods

\diamond Replace self-concordancy conditions by single condition involving complexity $\kappa \sqrt{\nu}$

Conic optimization

\diamond Duality properties of separable optimization
\diamond Self-concordant barrier for separable optimization
\diamond Implementation of interior-point methods

