
François Glineur, Topics in Convex Optimization •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Topics in Convex Optimization:
Interior-Point Methods,

Conic Duality and Approximations

François Glineur

Aspirant F.N.R.S.
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Motivation

Operations research

Model real-life situations to help take the best decisions

Decision ↔ vector of variables
Best ↔ objective function

Constraints ↔ feasible set

⇒ Optimization

Choice of design parameters, scheduling, planification
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Two approaches

Solving all problems efficiently is impossible in practice!

Optimal method to minimize of Lipschitz-continuous f :
L = 2, 10 variables, 1% accuracy ⇒ 1020 operations

Reaction: two distinct orientations

� General nonlinear optimization
Applicable to all problems but no efficiency guarantee

� Linear, quadratic, semidefinite, . . . optimization
Restrict set of problems to get efficiency guarantee

Tradeoff generality↔ efficiency (algorithmic complexity)
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Restrict to which class of problems ?

Linear optimization :
+ specialized, very fast algorithms
− too restricted in practice

→ we focus on Convex optimization

� Convex objective and convex feasible set

� Many problems are convex or can be convexified

� Efficient algorithms and powerful duality theory

� Establishing convexity a priori is difficult

→ work with specific classes of convex constraints:
Structured convex optimization (convexity by design)

Reward for a convex formulation is algorithmic efficiency
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Overview of the thesis

Interior-point methods

� Linear optimization survey

� Self-concordant functions

Conic optimization

� Formulation and duality

� Geometric and lp-norm optimization

� General framework: separable optimization

Approximations

� Geometric optimization with lp-norm optimization

� Linearizing second-order cone optimization
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Overview of this talk

Interior-point methods

� Linear optimization survey

� Self-concordant functions

Conic optimization

� Formulation and duality

� Geometric and lp-norm optimization

� General framework: separable optimization

Approximations

� Geometric optimization with lp-norm optimization

� Linearizing second-order cone optimization
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Self-concordant functions:
the key to efficient algorithms

for convex optimization
(chapter 2)

Interior-point methods

� Self-concordant functions

Conic optimization

� Formulation and duality

� Geometric and lp-norm optimization

� General framework: separable optimization

Approximations

� Geometric optimization with lp-norm optimization
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Convex optimization

Let f0 : Rn 7→ R be a convex function, C ⊆ Rn be a
convex set : optimize a vector x ∈ Rn

inf
x∈Rn

f0(x) s.t. x ∈ C (P)

Properties

� All local optima are global, optimal set is convex

� Lagrange duality → strongly related dual problem

� Objective can be taken linear w.l.o.g. (f0(x) = cTx)

Defining a problem

Two distinct approaches
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a. List of convex constraints.
m convex functions fi : Rn 7→ R, i = 1, 2, . . . ,m

C = {x ∈ Rn | fi(x) ≤ 0 for all i = 1, 2, . . . ,m}
(intersection of convex level sets)

inf
x∈Rn

f0(x) s.t. fi(x) ≤ 0 for all i = 1, 2, . . . ,m

b. Use a barrier function.
Feasible set ≡ domain of a barrier function F s.t.

� F is smooth

� F is strongly convex intC

� F (x)→ +∞ when x→ ∂C

→ C = cl domF = cl {x ∈ Rn | F (x) < +∞}
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Interior-point methods

Principle

Approximate a constrained problem by a family
of unconstrained problems based on F
Let µ ∈ R++ be a parameter and consider

inf
x∈Rn

cTx

µ
+ F (x) (Pµ)

We have
x∗µ → x∗ when µ↘ 0

where

� x∗µ is the (unique) solution of (Pµ) (→ central path)
� x∗ is a solution of the original problem (P)
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Ingredients

� A method for unconstrained optimization

� A barrier function

Interior-point methods rely on

� Newton’s method to compute x∗µ
�When C is defined with nonlinear functions fi,

one can introduce the logarithmic barrier function

F (x) = −
∑n

i=1 ln(−fi(x))

Question: What is a good barrier, i.e. a barrier for
which Newton’s method is efficient ?

Answer: A self-concordant barrier
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Self-concordant barriers

Definition [Nesterov & Nemirovsky, 1988]

F : intC 7→ R is called (κ, ν)-self-concordant on C iff

� F is convex

� F is three times differentiable

� F (x)→ +∞ when x→ ∂C

� the following two conditions hold

∇3F (x)[h, h, h] ≤ 2κ
(
∇2F (x)[h, h]

)3
2

∇F (x)T (∇2F (x))−1∇F (x) ≤ ν

for all x ∈ intC and h ∈ Rn
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Alternative definition

Let x ∈ intC and h ∈ Rn and define a restriction

Fx,h(t) : R 7→ R : t 7→ F (x + th)

Replace conditions involving differentials by

F ′′′x,h(0) ≤ κF ′′x,h(0)
3
2 and F ′x,h(0)2 ≤ νF ′′x,h(0)

for all x ∈ intC and h ∈ Rn

Scaling and summation

Let λ ∈ R+ be a positive scalar

F is (κ, ν)-SC⇔ λF is (
κ√
λ
, λν)-SC

Let F1 be (κ1, ν1)-SC and F2 be (κ2, ν2)-SC

F1 + F2 is (max{κ1, κ2}, ν1 + ν2)-SC
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Complexity result

Summary

Self-concordant barrier ⇒ polynomial number of
iterations to solve (P) within a given accuracy

Principle of a short-step method

� Define a proximity measure δ(x, µ) to central path

� Choose a starting iterate with a small δ(x0, µ0)

�While accuracy is not attained

a. Decrease µ geometrically (δ increases)

b. Take a Newton step to minimize barrier
(δ decreases and is restored)
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Geometric interpretation

Two self-concordancy conditions: each has its role

� First condition bounds the variation of the Hessian
⇒ controls the increase of the proximity measure when
µ is updated

� Second condition bounds the size of the Newton step
⇒ guarantees that the Newton step restores the initial
proximity to the central path

Complexity result

O
(
κ
√
ν log

1

ε

)
iterations lead a solution with ε accuracy on the objective
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Optimal complexity result [Glineur 00]

Optimal values for two constants

� (maximum) proximity δ to the central path

� Constant of decrease of barrier parameter µ

lead to ⌈
(1.03 + 7.15κ

√
ν) log

1.29µ0κ
√
ν

ε

⌉
iterations for a solution with ε accuracy
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Two self-concordancy parameters

Complexity κ
√
ν invariant w.r.t. to scaling of F ⇒

one of the constants κ and ν can be arbitrarily fixed
If there exists a (κ, ν)-SC barrier F for C then it can be
scaled to get a

� (κ
√
ν, 1)-SC barrier or a

� (1, κ2ν)-SC barrier

Comparison [Glineur 00]

When C is defined by fi’s, it is typical to use the first
scaling (ν = 1) with the logarithmic barrier
Indeed, if

Fi : Rn 7→ R : x 7→ − ln(−fi(x))
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satisfies the first condition with κ = κi then

Fi is (κi, 1)-self-concordant

because the second ν condition is automatically satisfied
with ν = 1 if fi is convex.
This implies in the end that

F =

m∑
i=1

Fi is (κ,m)-SC with κ = max
i=1,...,m

κi

and that the problem can be solved in

O(
√
m max

i=1,...,m
κi) = O(

√
m ‖κ‖∞) iterations

However, the second scaling (κ = 1) is superior !
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Indeed, we have then that κ2
iFi is (1, κ2

i )-SC which implies
that

F =

m∑
i=1

κ2
iFi is (1, ν)-SC with ν =

m∑
i=1

κ2
i

and that the problem can be solved in

O(

√√√√ m∑
i=1

κ2
i ) = O(‖κ‖2) iterations

which is always better since

‖κ‖2 ≤
√
m ‖κ‖∞

(strict inequality when κi’s not all equal)
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A useful lemma

Proving self-concordancy not always an easy task
⇒ improved version of lemma by [Den Hertog et al.]

Auxiliary functions

Let two increasing functions (see Figure 1)

r1 : R 7→ R : γ 7→ max
{
1,

γ√
3− 2/γ

}
r2 : R 7→ R : γ 7→ max

{
1,

γ + 1 + 1/γ√
3 + 4/γ + 2/γ2

}
We have r1(γ) ≈ γ√

3
and r2(γ) ≈ γ+1√

3
when γ → +∞.



François Glineur, Topics in Convex Optimization •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Figure 1: Graphs of functions r1 and r2

Lemma’s statement [Glineur 00]

Let F : Rn 7→ R be a convex function on C.
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If there is a constant γ ∈ R+ such that

∇3F (x)[h, h, h] ≤ 3γ∇2F (x)[h, h]

√√√√ n∑
i=1

h2
i

x2
i

then the following barrier functions

F1 : Rn 7→ R : x 7→ F (x)−
n∑
i=1

lnxi

F2 : Rn × R 7→ R : (x, u) 7→ − ln(u− F (x))−
n∑
i=1

lnxi

satisfy the first self-concordancy condition with

κ1 = r1(γ) for F1 on C

κ2 = r2(γ) for F2 on epiF = {(x, u) | F (x) ≤ u}
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A structured convex problem

Extended entropy optimization

min cTx +

n∑
i=1

gi(xi) s.t. Ax = b and x ≥ 0

with scalar functions gi : R 7→ R such that

|g′′′i (x)| ≤ κi
g′′i (x)

x
∀x ≥ 0

(which implies convexity)

Special case: classical entropy optimization
when gi(x) = x log x ⇒ κi = 1
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Application of the Lemma

Use Lemma with F (xi) = gi(xi) to prove that

− ln
(
ti − gi(xi)

)
− ln(xi) is

(
r2(
κi
3

), 2
)
-SC

Total complexity of EEO is [Glineur 00]

O
(√√√√2

n∑
i=1

r2(
κi
3

)2
)

iterations

or

O(
√

2n) iterations for entropy optimization

Possible application: polynomial gi’s
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Conic optimization: an elegant framework
to formulate convex problems

and study their duality properties
(chapter 3)

Interior-point methods

� Self-concordant functions

Conic optimization

� Formulation and duality

� Geometric and lp-norm optimization

� General framework: separable optimization

Approximations

� Geometric optimization with lp-norm optimization
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Conic formulation

Primal problem

Let C ⊆ Rn be a convex cone

inf
x∈Rn

cTx s.t. Ax = b and x ∈ C

Formulation is equivalent to convex optimization.

Dual problem

Let C ⊆ Rn be a solid, pointed, closed convex cone.
The dual cone C∗ =

{
x∗ ∈ Rn | xTx∗ ≥ 0 for all x ∈ C

}
is also convex, solid, pointed and closed→ dual problem:

sup
(y,s)∈Rm+n

bTy s.t. ATy + s = c and s ∈ C∗
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Primal-dual pair

Symmetrical pair of primal-dual problems

p∗ = inf
x∈Rn

cTx s.t. Ax = b and x ∈ C

d∗ = sup
(y,s)∈Rm+n

bTy s.t. ATy + s = c and s ∈ C∗

Optimum values p∗ and d∗ not necessarily attained !

Examples : C = Rn
+ = C∗ ⇒ linear optimization,

C = Sn+ = C∗ ⇒ semidefinite optimization (self-duality)

Advantages over classical formulation

� Remarkable primal-dual symmetry

� Special handling of (easy) linear equality constraints
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Weak duality

For every feasible x and y bTy ≤ cTx
with equality iff xTs = 0 (orthogonality condition)

∆ = p∗ − d∗ is the duality gap ⇒ always nonnegative

Definition: x strictly feasible ⇔ x feasible and x ∈ int C

Strong duality (with Slater condition)

a. Strictly feasible dual point ⇒ p∗ = d∗

b. If in addition primal is bounded
⇒ primal optimum is attained ⇔ p∗ = min cTx

(dualized result obviously holds)
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Corollary

Primal and dual Slater⇒ min cTx = p∗ = d∗ = max bTy

Multiple cones

xi ∈ Ci for all i ∈ {1, 2, . . . , k} ⇒ C = C1 × C2 × · · · Ck

Our approach

� Duality for general convex optimization weaker than
for linear optimization (need Slater condition)

� But some classes of structured convex optimization
problems feature better duality properties (i.e. zero
duality gap even without Slater condition)

Our goal: prove these duality properties using general
theorems for conic optimization ⇒ new convex cones
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A conic formulation
for two well-known classes of problems:

geometric and lp-norm optimization
(chapters 4–5)

Interior-point methods

� Self-concordant functions

Conic optimization

� Formulation and duality

� Geometric and lp-norm optimization

� General framework: separable optimization

Approximations

� Geometric optimization with lp-norm optimization
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Geometric optimization

Posynomials

Let K = {0, 1, 2, . . . , r}, I = {1, 2, . . . , n} ;
let {Ik}k∈K a partition of I into r + 1 classes.

A posynomial is a sum of positive monomials

Gk : Rm
++ 7→ R++ : t 7→

∑
i∈Ik

Ci

m∏
j=1

t
aij
j

defined by data aij ∈ R and Ci ∈ R++

Example : G(t1, t2, t3) = 2
t21
t2

+ 3
√
t2 +

t
2/3
2

3t1t
3
3

Many applications, especially in engineering
(optimizing design parameters, modelling power laws)
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Primal problem

Optimize m variables in vector t ∈ Rm
++

inf G0(t) s.t. Gk(t) ≤ 1 ∀k ∈ K
Not convex: take G0(t) =

√
t1

Convexification

W.l.o.g. consider a linear objective and let

tj = eyj for all j ∈ {1, 2, . . . ,m}
⇒ we let

gk : Rm 7→ R++ : y 7→
∑
i∈Ik

ea
T
i y−ci

with ci = − logCi ⇒ equivalence gk(y) = Gk(t)
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Convexified primal

Free variables y ∈ Rm, data b ∈ Rm, c ∈ Rn, A ∈ Rm×n

sup bTy s.t. gk(y) ≤ 1 for all k ∈ K

(Lagrangean) dual

inf cTx +
∑
k∈K

∑
i∈Ik
xi>0

xi log
xi∑
i∈Ik xi

s.t. Ax = b and x ≥ 0

Properties [Duffin, Peterson and Zener, 1967]

� Convex problem ⇒ weak duality
� No duality gap !
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The geometric cone

Definition [Glineur 99]

Let n ∈ N. Define Gn as

Gn =
{

(x, θ) ∈ Rn
+ × R+ |

n∑
i=1

e−
xi
θ ≤ 1

}
with the convention e−

xi
0 = 0

Our goal: express geometric optimization in a conic form
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Properties

� Special cases: G0 = R+ and G1 = R2
+

� (x, θ) ∈ Gn, (x′, θ′) ∈ Gn and λ ≥ 0
⇒ λ(x, θ) ∈ Gn and (x + x′, θ + θ′) ∈ Gn
⇒ Gn is a convex cone.

� Gn is closed, solid and pointed

� The interior of Gn is (→ Slater condition)

intGn =
{

(x, θ) ∈ Rn
++ × R++ |

n∑
i=1

e−
xi
θ < 1

}
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Dual cone

The dual cone (Gn)∗ is given by{
(x∗, θ∗) ∈ Rn

+ × R | θ∗ ≥
∑
x∗i>0

x∗i log
x∗i∑n
i=1 x

∗
i

}
It is the epigraph of

fn : Rn
+ 7→ R : x 7→

∑
x∗i>0

x∗i log
x∗i∑n
i=1 x

∗
i

� Special cases: (G0)∗ = R+ and (G1)∗ = R2
+

(but Gn is not self-dual for n > 1)

� It is also convex, closed, solid and pointed.

� ((Gn)∗)∗ = Gn (since Gn is closed).
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Figure 2: Boundary surfaces of the geometric cone G2 and its dual cone (G2)∗

� Rn+1
+ ⊆ (Gn)∗ (since Gn ⊆ Rn+1

+ )

� The interior of (Gn)∗ is given by{
(x∗, θ∗) ∈ Rn

++ × R | θ∗ >
n∑
i=1

x∗i log
x∗i∑n
i=1 x

∗
i

}
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We are now ready to apply the general duality theory
for conic primal-dual pairs, using our dual cones Gn and
(Gn)∗, to derive the duality properties of the geometric
optimization primal-dual pairs.
Notation: vI (resp. MI) ≡ restriction of vector v (resp.
matrix M) to indices belonging to I .

Strategy diagram

(PG) ≡ (CPG)
Weak←→ (CDG) ≡ (DG)

l∗ l
(RPG)

Strong←→ (RDG)
↑

(Slater)
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Formulation with Gn cone

Primal

sup bTy s.t. gk(y) ≤ 1 for all k ∈ K
Introducing variables si = ci − aTi y ∀i we get

sup bTy s.t. s = c− ATy

and
∑
i∈Ik

e−si ≤ 1 for all k ∈ K

m (introducing additional v variables)

sup bTy s.t.

(
AT

0

)
y +

(
s
v

)
=

(
c
e

)
and (sIk, vk) ∈ G

nk for all k ∈ K
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(e ≡ all-one vector, nk = #Ik)
Standard conic problem:
variables (ỹ, s̃), data(Ã, b̃, c̃), cone K∗ with

ỹ = y, s̃ =

(
s
v

)
, Ã =

(
A 0

)
, b̃ = b,

c̃ =

(
c
e

)
and K∗ = Gn1 × Gn2 × · · · × Gnr

⇒ we can mechanically derive the dual !

inf

(
c
e

)T (
x
z

)
s.t.

(
A 0

) (
x
z

)
= b

and (xIk, zk) ∈ (Gnk)∗ ∀k
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inf

(
c
e

)T (
x
z

)
s.t.

(
A 0

) (
x
z

)
= b

and (xIk, zk) ∈ (Gnk)∗ ∀k

⇔ inf cTx + eTz s.t. Ax = b, xIk ≥ 0

and zk ≥
∑
i∈Ik
xi>0

xi log
xi∑
i∈Ik xi

⇔ inf cTx +
∑
k∈K

∑
i∈Ik
xi>0

xi log
xi∑
i∈Ik xi

s.t. Ax = b and x ≥ 0



François Glineur, Topics in Convex Optimization •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Weak duality

y feasible for the primal, x is feasible for the dual

⇒ bTy ≤ cTx +
∑
k∈K

∑
i∈Ik
xi>0

xi log
xi∑
i∈Ik xi

.

(∑
i∈Ik

xi

)
ea

T
i y−ci = xi for all i ∈ Ik, k ∈ K

Proof [Glineur 99]

Weak duality theorem with conic primal-dual pair→ ex-
tend objective values to geometric primal-dual pair (easy
← convexity)
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Strong duality

Primal and dual feasible solutions ⇒ zero duality gap
(but attainment not guaranteed)

Proof [Glineur 99]

Provide a strictly feasible dual point
⇔ zk >

∑
i∈Ik xi log xi∑

i∈Ik
xi

and xi > 0 ∀i

But the linear constraints Ax = b may force xi = 0
(for some i) at every feasible solution !

⇒ detect these zero xi components and form a restricted
primal-dual pair without these variables (which had no
influence on the objective/constraints anyway)
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Detection with a linear problem

min 0 s.t. Ax = b and x ≥ 0

Define N = set of indices i such that xi is identically zero
on the feasible region and B the set of the other indices.
(B,N ) is the optimal partition of this linear problem
(Goldman-Tucker theorem)

Strategy

Remove variables xi for all i ∈ N
a. restricted primal-dual conic pair

b. strictly feasible dual solution

c. zero duality gap
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There remains to prove that

� Optimal objective values are equal for restricted and
original dual problems (easy)

� Optimal values are equal for restricted and original
primal problems (more difficult). Moreover, attain-
ment is lost in the process.
Difficulty: restricted posynomials have less terms than
in original primal ⇒ restricted solution may become
infeasible in in original primal
Solution: perturb the restricted primal solution

Perturbation vector given by Goldman-Tucker theorem
applied to our detection linear program and its dual
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� Perturbed restricted solution is asymptotically feasi-
ble for the original primal with the same objective
value

� Another trick (mixing with a feasible solution) leads
to a feasible solution with asymptotically the same
objective value (⇒ lost attainment)

⇒ the original primal optimum objective value is equal
to the original dual optimum objective value.

(PG) ≡ (CPG)
Weak←→ (CDG) ≡ (DG)

l∗ l
(RPG)

Strong←→ (RDG)
↑

(Slater)
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lp-norm optimization

Primal

sup ηTy

s.t.
∑
i∈Ik

1

pi

∣∣ci − aTi y∣∣pi ≤ dk − bTk y ∀k ∈ K

Dual (with 1
pi

+ 1
qi

= 1)

inf ψ(x, z) = cTx + dTz +

r∑
k=1

zk
∑
i∈Ik

1

qi

∣∣∣∣xizk
∣∣∣∣qi

s.t. Ax +Bz = η and z ≥ 0
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Properties [Peterson and Ecker, 1967]

� Convex program ⇒ weak duality

� Generalizes linear and convex quadratic optimization

� No duality gap and primal attainment

Conic optimization approach [Glineur 99]

Same approach holds: corresponding cone is

Lp =
{

(x, θ, κ) ∈ Rn × R2
+ |

n∑
i=1

|xi|pi
piθpi−1

≤ κ
}

with similar properties (closedness, interior, etc. )
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Very similar dual cone

(Lp)∗ = Lqs =
{

(x∗, θ∗, κ∗) ∈ Rn×R2
+ |

n∑
i=1

|x∗i |
qi

qiκ∗pi−1
≤ θ∗

}
Same strategy

a. Weak duality is straightforward

b. Strong duality essentially follows from existence of a
strictly feasible solution to the (possibly restricted)
dual problem

Difference with geometric optimization

Perturbed restricted primal solution is feasible (no addi-
tional trick needed) ⇒ primal attainment is preserved
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Intermezzo:
Approximating geometric optimization

with lp-norm optimization
(chapter 8)

Interior-point methods

� Self-concordant functions

Conic optimization

� Formulation and duality

� Geometric and lp-norm optimization

� General framework: separable optimization

Approximations

� Geometric optimization with lp-norm optimization
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Approximating geometric optimization

Principle [Glineur 00]

Geometric constraint is
∑

i∈Ik e
aTi y−ci ≤ 1

Relies on exponential function
Let α ∈ R++ and define

gα : R+ 7→ R+ : x 7→
∣∣∣1− x

α

∣∣∣α
We have for all 0 ≤ x ≤ α

gα(x) ≤ e−x < gα(x) + α−1

which implies
lim

α→+∞
gα(x) = e−x
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Approximated primal

sup bTy s.t. gk(y) ≤ 1 for all k ∈ K (GP)

becomes for a fixed α

sup bTy s.t.
∑
i∈Ik

(
gα(ci − aTi y) + α−1

)
≤ 1 (GPα)

⇒ restriction of (GP) equivalent to

sup bTy s.t.
∑
i∈Ik

1

α

∣∣ci − α− aTi y∣∣α ≤ αα−1(1−nkα−1)

⇒ a lp-norm optimization problem !

� α→ +∞⇒ approximation gα(x)→ e−x

� Solutions of (GPα) tend to solution of (GP) ?
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Duality properties

Dual approximate problem

inf cTx−αeTnx+α
∑
k∈K

(1−nkα−1)
1
α
∥∥xIk∥∥β s.t. Ax = b

Fixed feasible region, when α→ +∞ objective tends to

inf cTx +
∑
k∈K

∑
i∈Ik|xi>0

xi log
xi∑
i∈Ik xi

s.t. Ax = b, x ≥ 0

(hidden constraint x ≥ 0)

⇒ dual geometric optimization problem
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Duality results

Apply lp-norm duality results to geometric optimization

a. Weak duality

b. Strong duality (attainment lost with the limit)

We note

a. Primal approximation:
same objective, different feasible region (restriction)

b. Dual approximation:
same feasible region, different objective
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A general framework for
separable convex optimization:

Generalizing our conic formulations
(chapters 6–7)

Interior-point methods

� Self-concordant functions

Conic optimization

� Formulation and duality

� Geometric and lp-norm optimization

� General framework: separable optimization

Approximations

� Geometric optimization with lp-norm optimization
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Generalizing our framework

Comparing cones

Gn =
{

(x, θ) ∈ Rn
+ × R+ |

n∑
i=1

e−
xi
θ ≤ 1

}
Lp =

{
(x, θ, κ) ∈ Rn × R2

+ |
n∑
i=1

|xi|pi
piθpi−1

≤ κ
}

Variants

Gn2 =
{

(x, θ, κ) ∈ Rn
+ × R+ × R+ | θ

n∑
i=1

e−
xi
θ ≤ κ

}
Lp =

{
(x, θ, κ) ∈ Rn × R+ × R+ | θ

n∑
i=1

1

pi

∣∣∣xi
θ

∣∣∣pi ≤ κ
}
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The separable cone [Glineur 00]

Consider a set of n scalar closed proper convex functions

fi : R 7→ R

and let

Kf = cl
{

(x, θ, κ) ∈ Rn × R++ × R | θ
n∑
i=1

fi(
xi
θ

) ≤ κ
}

� Kf generalizes Lp and Gn2
� Kf is a closed convex cone

� Kf is solid and pointed
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� (x, θ, κ) ∈ intKf iff

xi ∈ int dom fi and θ
n∑
i=1

fi(
xi
θ

) < κ

� The dual of (Kf)∗ is defined by{
(x∗, θ∗, κ∗) ∈ Rn×R++×R | κ∗

n∑
i=1

f ∗i (−
x∗i
κ∗

) ≤ θ∗
}

using the conjugate functions

f ∗i : x∗ 7→ sup
x∈Rn

{xTx∗ − fi(x)}

(also closed, proper and convex)
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Separable optimization [Glineur 00]

Primal

sup bTy s.t.
∑
i∈Ik

fi(ci − aTi y) ≤ dk − fTk y ∀k ∈ K

Dual

inf ψ(x, z) = cTx + dTz +
∑

k∈K|zk>0

zk
∑
i∈Ik

f ∗i
(
−xi
zk

)
−

∑
k∈K|zk=0

inf
x∗Ik
∈dom fIk

xTIkx
∗
Ik

s.t. Ax + Fz = b and z ≥ 0 .

� Justification for conventions when θ = 0

� Mix different types of constraints within problems
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Some other examples

�

f : x 7→

{
−
√
a2 − x2 if |x| ≤ a

+∞ if |x| > a

f ∗ : x∗ 7→ a
√

1 + x∗2

(square roots, circles and ellipses)
�

f : x 7→

{
−1
px

p if x ≥ 0

+∞ if x < 0
0 < p < 1

f ∗ : x∗ 7→

{
−1
q(−x

∗)q if x∗ < 0

+∞ if x∗ ≥ 0
−∞ < q < 0

(CES functions in production and consumer theory)
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�

f : x 7→

{
−1

2 − log x if x > 0

+∞ if x ≤ 0

f ∗ : x∗ 7→

{
−1

2 − log(−x∗) if x∗ < 0

+∞ if x∗ ≥ 0

(with property that f ∗(x∗) = f (−x∗))
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Conclusions
Summary and perspectives
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Contributions

Interior-point methods

� Overview of self-concordancy theory

� Discussion over different definitions

� Optimal complexity of short-step method

� Improvement of useful Lemma

Approximations

� Approximation of geometric optimization with lp-norm
optimization
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Conic optimization

� New convex cones to model

a. geometric optimization

b. lp-norm optimization

� Simplified proofs of their duality properties

� New framework of separable optimization
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Research directions

Interior-point methods

� Replace self-concordancy conditions
by single condition involving complexity κ

√
ν

Conic optimization

� Duality properties of separable optimization

� Self-concordant barrier for separable optimization

� Implementation of interior-point methods


