Topics in Convex Optimization: Interior-Point Methods, Conic Duality and Approximations

François Glineur

Aspirant F.N.R.S. Faculté Polytechnique de MONS

Ph.D. dissertation January 26, 2001 Co-directed by J. TEGHEM T. TERLAKY

François Glineur, Topics in Convex Optimization

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

Motivation

Operations research

Model real-life situations to help take the *best* decisions Decision \leftrightarrow vector of variables Best \leftrightarrow objective function Constraints \leftrightarrow feasible set \Rightarrow

General formulation

$$\min_{x \in \mathbb{R}^n} f(x) \quad \text{s.t.} \quad x \in \mathcal{D} \subseteq \mathbb{R}^n$$

Choice of design parameters, scheduling, planification

Two approaches

Solving all problems *efficiently* is impossible in practice!

Simple problem: $\min f(x_1, x_2, \dots, x_{10})$ $\Rightarrow 10^{20}$ operations to be solved with 1% accuracy !

Reaction: two distinct orientations

- General nonlinear optimization
 Applicable to all problems but no efficiency guarantee
- Linear, quadratic, semidefinite, ... optimization
 Restrict set of problems to get efficiency guarantee

Tradeoff generality \leftrightarrow efficiency (algorithmic complexity)

Restrict to which class of problems ?

Linear optimization : + specialized, very fast algorithms - too restricted in practice

- \rightarrow we focus on **Convex optimization**
 - ♦ Convex objective and convex feasible set
 - ◇ Many problems are convex or can be convexified
 - ◇ Efficient algorithms and powerful duality theory
 - \diamond Establishing convexity *a priori* is difficult

 → work with specific classes of convex constraints: *Structured* convex optimization (convexity by design)

 Reward for a convex formulation is algorithmic efficiency

Overview of the thesis

Interior-point methods

- ♦ Linear optimization survey
- \diamond Self-concordant functions

Conic optimization

- ♦ Formulation and duality
- \diamond Geometric and l_p -norm optimization
- ◇ General framework: separable optimization

Approximations

- \diamond Geometric optimization with l_p -norm optimization
- ♦ Linearizing second-order cone optimization

Overview of this talk

Interior-point methods

- \diamond Linear optimization survey
- \diamond Self-concordant functions

Conic optimization

- \diamond Formulation and duality
- \diamond Geometric and l_p -norm optimization
- ◇ General framework: separable optimization

Approximations

- \diamond Geometric optimization with l_p -norm optimization
- ♦ Linearizing second-order cone optimization

Overview of this talk

Interior-point methods

- \diamond Linear optimization survey
- \diamond Self-concordant functions

Conic optimization

- \diamond Formulation and duality
- \diamond Geometric and l_p -norm optimization
- ◇ General framework: separable optimization

Applications

- \diamond *Classification* with ellipsoids and conic optimization
- ◊ Isotopic dating with geometric optimization

Self-concordant functions: the key to efficient algorithms for convex optimization (chapter 2)

Interior-point methods

 \diamond Self-concordant functions

Conic optimization

 \diamond Formulation and duality

♦ Geometric optimization

◇ General framework: separable optimization

Applications

♦ Classification with ellipsoids and conic optimization

 \diamond Isotopic dating with geometric optimization

Convex optimization

Let $f_0 : \mathbb{R}^n \to \mathbb{R}$ be a convex function, $C \subseteq \mathbb{R}^n$ be a convex set : optimize a vector $x \in \mathbb{R}^n$

$$\inf_{x \in \mathbb{R}^n} f_0(x) \quad \text{s.t.} \quad x \in C \tag{P}$$

Properties

◇ All local optima are global, optimal set is convex
 ◇ Lagrange duality → strongly related dual problem

♦ Objective can be taken linear w.l.o.g. $(f_0(x) = c^T x)$

Defining a problem

Two distinct approaches

a. List of convex constraints. m convex functions $f_i : \mathbb{R}^n \mapsto \mathbb{R}, i = 1, 2, ..., m$ $C = \{x \in \mathbb{R}^n \mid f_i(x) \leq 0 \text{ for all } i = 1, 2, ..., m\}$ (intersection of convex level sets)

 $\inf_{x \in \mathbb{R}^n} f_0(x) \quad \text{s.t.} \quad f_i(x) \le 0 \text{ for all } i = 1, 2, \dots, m$

- b. Use a barrier function. Feasible set \equiv domain of a *barrier* function F s.t.
 - $\diamond F$ is smooth
 - $\diamond F$ is strongly convex int C
 - $\diamond F(x) \to +\infty$ when $x \to \partial C$
 - $\to \quad C = \operatorname{cl} \operatorname{dom} F = \operatorname{cl} \left\{ x \in \mathbb{R}^n \mid F(x) < +\infty \right\}$

Interior-point methods

Principle

Approximate a constrained problem by a *family* of unconstrained problems based on FLet $\mu \in \mathbb{R}_{++}$ be a parameter and consider

$$\inf_{x \in \mathbb{R}^n} \frac{c^T x}{\mu} + F(x) \tag{P}_{\mu}$$

We have

$$x^*_{\mu} \to x^*$$
 when $\mu \searrow 0$

where

 x_{μ}^{*} is the (unique) solution of (P_μ) (→ central path) x^{*} is a solution of the original problem (P)

Ingredients

A method for unconstrained optimizationA barrier function

Interior-point methods rely on

- \diamond Newton's method to compute x^*_{μ}
- \diamond When C is defined with nonlinear functions f_i , one can introduce the *logarithmic* barrier function

$$F(x) = -\sum_{i=1}^{n} \ln(-f_i(x))$$

Question: What is a good barrier, i.e. a barrier for which Newton's method is efficient ? **Answer**: A *self-concordant* barrier

Self-concordant barriers

Definition [Nesterov & Nemirovsky, 1988]

- $F: \operatorname{int} C \mapsto \mathbb{R} \text{ is called } (\kappa, \nu) \text{-self-concordant on } C \text{ iff}$ $\diamond F \text{ is convex}$
 - $\diamond F$ is three times differentiable

$$\diamond F(x) \to +\infty$$
 when $x \to \partial C$

 \diamond the following two conditions hold

$$\begin{aligned} \nabla^3 F(x)[h,h,h] &\leq 2\kappa \left(\nabla^2 F(x)[h,h]\right)^{\frac{3}{2}} \\ \nabla F(x)^T (\nabla^2 F(x))^{-1} \nabla F(x) &\leq \nu \end{aligned}$$

for all $x \in \text{int } C$ and $h \in \mathbb{R}^n$

Complexity result

Summary

Self-concordant barrier \Rightarrow polynomial number of iterations to solve (P) within a given accuracy

Principle of a short-step method

◇ Define a proximity measure δ(x, μ) to central path
◇ Choose a starting iterate with a small δ(x₀, μ₀)
◇ While accuracy is not attained

a. Decrease μ geometrically (δ increases)
b. Take a Newton step to minimize barrier
(δ decreases and is restored)

Geometric interpretation

Two self-concordancy conditions: each has its role

- ♦ Second condition bounds the size of the Newton step ⇒ controls the increase of the proximity measure when μ is updated
- ◇ First condition bounds the variation of the Hessian ⇒ guarantees that the Newton step restores the initial proximity to the central path

Complexity result

$$\mathcal{O}\left(\kappa\sqrt{\nu}\log\frac{1}{\epsilon}\right)$$

iterations lead a solution with ϵ accuracy on the objective

Optimal complexity result [Glineur 00]

Optimal values for two constants
(maximum) proximity δ to the central path
Constant of decrease of barrier parameter μ
lead to

$$\left[(1.03 + 7.15\kappa\sqrt{\nu})\log\frac{1.29\mu_0\kappa\sqrt{\nu}}{\epsilon} \right]$$

iterations for a solution with ϵ accuracy

A useful lemma

Proving self-concordancy not always an easy task \Rightarrow improved version of lemma by [Den Hertog et al.]

Auxiliary functions

Let two increasing functions (see Figure 1)

$$r_1 : \mathbb{R} \mapsto \mathbb{R} : \gamma \mapsto \max\left\{1, \frac{\gamma}{\sqrt{3 - 2/\gamma}}\right\}$$
$$r_2 : \mathbb{R} \mapsto \mathbb{R} : \gamma \mapsto \max\left\{1, \frac{\gamma + 1 + 1/\gamma}{\sqrt{3 + 4/\gamma + 2/\gamma^2}}\right\}$$
$$\text{We have } r_1(\gamma) \approx \frac{\gamma}{\sqrt{3}} \text{ and } r_2(\gamma) \approx \frac{\gamma + 1}{\sqrt{3}} \text{ when } \gamma \to +\infty.$$

V

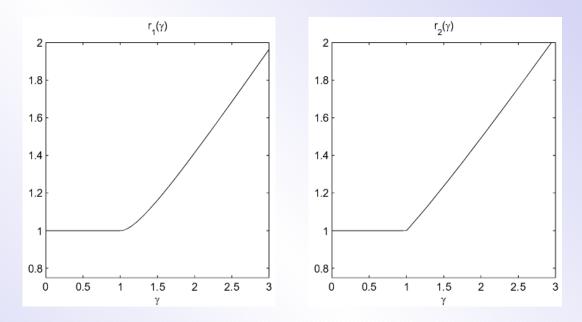


Figure 1: Graphs of functions r_1 and r_2

Lemma's statement [Glineur 00]

Let $F : \mathbb{R}^n \mapsto \mathbb{R}$ be a convex function on C.

If there is a constant $\gamma \in \mathbb{R}_+$ such that

$$\nabla^3 F(x)[h,h,h] \le 3\gamma \nabla^2 F(x)[h,h] \sqrt{\sum_{i=1}^n \frac{h_i^2}{x_i^2}}$$

then the following barrier functions

$$F_1 : \mathbb{R}^n \mapsto \mathbb{R} : x \mapsto F(x) - \sum_{i=1}^n \ln x_i$$

$$F_2 : \mathbb{R}^n \times \mathbb{R} \mapsto \mathbb{R} : (x, u) \mapsto -\ln(u - F(x)) - \sum_{i=1}^n \ln x_i$$
satisfy the first self-concordancy condition with
$$\kappa_1 = r_1(\gamma) \quad \text{for } F_1 \text{ on } C$$

$$\kappa_2 = r_2(\gamma)$$
 for F_2 on $\operatorname{epi} F = \{(x, u) \mid F(x) \le u\}$

François Glineur, Topics in Convex Optimization

Conic optimization: an elegant framework to formulate convex problems and study their duality properties (chapter 3)

Interior-point methods

 \diamond Self-concordant functions

Conic optimization

 \diamond Formulation and duality

 \diamond Geometric optimization

 \diamond General framework: separable optimization

Applications

♦ Classification with ellipsoids and conic optimization

 \diamond Isotopic dating with geometric optimization

Conic formulation

Primal problem

Let $\mathcal{C} \subseteq \mathbb{R}^n$ be a convex cone $\inf_{x \in \mathbb{R}^n} c^T x$ s.t. Ax = b and $x \in \mathcal{C}$

Formulation is equivalent to convex optimization.

Dual problem

Let $\mathcal{C} \subseteq \mathbb{R}^n$ be a *solid*, *pointed*, *closed* convex cone. The dual cone $\mathcal{C}^* = \{x^* \in \mathbb{R}^n \mid x^T x^* \ge 0 \text{ for all } x \in \mathcal{C}\}$ is also convex, solid, pointed and closed \rightarrow dual problem:

$$\sup_{(y,s)\in\mathbb{R}^{m+n}} b^T y \quad \text{s.t.} \quad A^T y + s = c \text{ and } s \in \mathcal{C}^*$$

Primal-dual pair

Symmetrical pair of primal-dual problems

$$p^* = \inf_{x \in \mathbb{R}^n} c^T x \text{ s.t. } Ax = b \text{ and } x \in \mathcal{C}$$
$$d^* = \sup_{(y,s) \in \mathbb{R}^{m+n}} b^T y \text{ s.t. } A^T y + s = c \text{ and } s \in \mathcal{C}^*$$

Optimum values p^* and d^* not necessarily attained ! Examples: $C = \mathbb{R}^n_+ = C^* \Rightarrow$ linear optimization, $C = \mathbb{S}^n_+ = C^* \Rightarrow$ semidefinite optimization (self-duality) Advantages over classical formulation

♦ Remarkable primal-dual symmetry

 \diamond Special handling of (*easy*) linear equality constraints

Weak duality

For every feasible x and y $b^T y \leq c^T x$ with equality iff $x^T s = 0$ (orthogonality condition)

 $\Delta = p^* - d^* \text{ is the duality } gap \Rightarrow \text{always nonnegative}$ Definition: $x \text{ strictly feasible} \Leftrightarrow x \text{ feasible and } x \in \text{int } \mathcal{C}$

Strong duality (with Slater condition)

a. Strictly feasible dual point $\Rightarrow p^* = d^*$

b. If in addition primal is bounded \Rightarrow primal optimum is attained $\Leftrightarrow p^* = \min c^T x$ (dualized result obviously holds) An application to classification Pattern separation using ellipsoids and semidefinite optimization (appendix)

Interior-point methods

 \diamond Self-concordant functions

Conic optimization

 \diamond Formulation and duality

♦ Geometric optimization

◇ General framework: separable optimization

Applications

 \diamond Classification with ellipsoids and conic optimization

 \diamond Isotopic dating with geometric optimization

Pattern separation

Problem definition

Let us consider *objects* defined by *patterns* Object \equiv Pattern \equiv Vector of *n* attributes

Assume it is possible to group these objects into c classes

Objective

Find a partition of \mathbb{R}^n into c disjoint components such that each component corresponds to one class

Utility: classification

 \Rightarrow identify to which class an unknown pattern belongs

Classification

Consider

♦ Some well-known objects grouped into classes

◇ Some unknown objects

Two-step procedure

- a. Separate the patterns of well-known objects $\equiv learning$ phase
- b. Use that partition to classify the unknown objects \equiv generalization phase

Examples

Medical diagnosis, species identification, credit approval

Our technique

W.l.o.g. consider two classes

Main idea

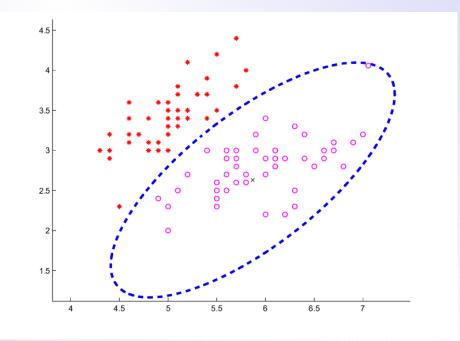
Use ellipsoids to separate the patterns

Ellipsoid

An ellipsoid $\mathcal{E} \subseteq \mathbb{R}^n \equiv$ a center $c \in \mathbb{R}^n$ and a positive semidefinite matrix $E \in \mathbb{S}^n_+$

$$\mathcal{E} = \{ x \in \mathbb{R}^n \mid (x - c)^T E(x - c) \le 1 \}$$

But which ellipsoid performs the **best** separation ?



Separation ratio

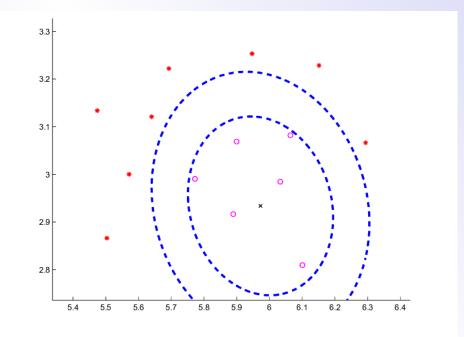
We want the best possible separation \Rightarrow define and maximize the *separation ratio*

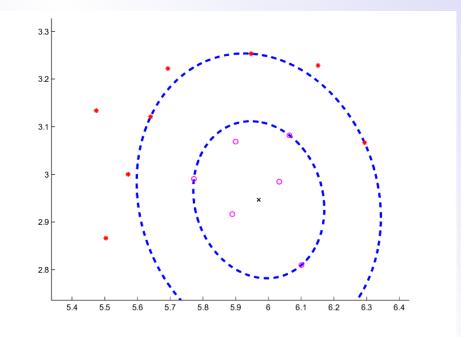
Definition

Pair of homothetic ellipsoids sharing the same center Separation ratio $\rho \equiv$ ratio of sizes

Mathematical formulation

$$\max \rho \quad \text{s.t.} \quad \begin{cases} (a_i - c)^T E(a_i - c) \leq 1 \ \forall i \\ (b_j - c)^T E(b_j - c) \geq \rho^2 \ \forall j \\ E \in \mathbb{S}^n_+ \end{cases}$$





●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

Analysis

This problem is not convex but can be convexified (*homogenizing* the description of the ellipsoid)

 \Rightarrow we obtain a semidefinite optimization problem \equiv conic optimization with $\mathcal{C} = \mathbb{S}^n_+$

A general semidefinite optimization problem

$$p^* = \inf_{X \in \mathbb{S}^n} C \bullet X \text{ s.t. } \mathcal{A}X = b \text{ and } X \in \mathbb{S}^n_+$$
$$d^* = \sup_{(y,S) \in \mathbb{R}^m \times \mathbb{S}^n} b^T y \text{ s.t. } \mathcal{A}^T y + S = C \text{ and } S \in \mathbb{S}^n_+$$

 \Rightarrow efficiently solvable in practice with interior-point method

Numerical experiments

- \diamond Implementation using MATLAB
- Test on sets from the Repository of Machine Learning Databases and Domain Theories maintained by the University of California at Irvine (widely used)
- \diamond Cross-validation
 - divide data set into *learning* and *validation* set
 - a. Compute best separating ellipsoid on learning set
 - b. Evaluate accuracy of separating ellipsoid on validation set (generalization capability)

Data sets

Three representative sets

- a. Wisconsin Breast Cancer. Predict the benign or malignant nature of a breast tumor (683 patterns, 9 characteristics)
- b. **Boston Housing**. Predict whether a housing value is above or below the median (596 patterns, 12 characteristics)
- c. **Pima Indians Diabetes**. Predict whether a patient is showing signs of diabetes (768 patterns, 8 characteristics)

Comparison

	Best ellipsoid		LAD	Best other
Training	20 %	50 %	50 %	Variable (% tr.)
Cancer	5.1 %	4.2 %	3.1 %	3.8 % (80 %)
Housing	15.8 %	12.4 %	16.0 %	16.8 % (80 %)
Diabetes	28.5~%	28.9~%	28.1 %	24.1 % (75 %)

♦ Competitive error rates

- \diamond Best results on the Housing problem (even 20 %)
- $\diamond 50 \%$ not always better than 20 % (⇒ overlearning)
- ◇ Results with small learning set already acceptable

A conic formulation for a well-known class of problems: geometric optimization (chapter 5)

Interior-point methods

 \diamond Self-concordant functions

Conic optimization

 \diamond Formulation and duality

 \diamond Geometric optimization

 \diamond General framework: separable optimization

Applications

♦ Classification with ellipsoids and conic optimization

 \diamond Isotopic dating with geometric optimization

Our approach

- Duality for general convex optimization weaker than for linear optimization (need Slater condition)
- ◇ But some classes of structured convex optimization problems feature better duality properties (i.e. zero duality gap even without Slater condition)

Our goal

- Prove these duality properties using general theorems for conic optimization
- $\diamond \Rightarrow$ Define **new** dedicated convex cones

Geometric optimization

Posynomials

Let $K = \{0, 1, 2, ..., r\}, I = \{1, 2, ..., n\}$; let $\{I_k\}_{k \in K}$ a partition of I into r + 1 classes. A *posynomial* is a sum of positive monomials $G_k : \mathbb{R}^m_{++} \mapsto \mathbb{R}_{++} : t \mapsto \sum C_i \prod^m t_j^{a_{ij}}$

defined by data $a_{ij} \in \mathbb{R}$ and $C_i \in \mathbb{R}_{++}$ *Example*: $G(t_1, t_2, t_3) = 2\frac{t_1^2}{t_2} + 3\sqrt{t_2} + \frac{1}{3}\frac{t_2^{2/3}}{t_1t_3^3}$ Many applications, especially in engineering (optimizing design parameters, modelling power laws)

 $i \in I_k$ j=1

Primal problem

Optimize m variables in vector $t \in \mathbb{R}^m_{++}$

inf $G_0(t)$ s.t. $G_k(t) \le 1 \quad \forall k \in K$

Not convex: take $G_0(t) = \sqrt{t_1}$

Convexification

W.l.o.g. consider a linear objective and let $t_j = e^{y_j}$ for all $j \in \{1, 2, \dots, m\}$ \Rightarrow we let $g_k : \mathbb{R}^m \mapsto \mathbb{R}_{++} : y \mapsto \sum e^{a_i^T y - c_i}$

with $c_i = -\log C_i \implies$ equivalence $g_k(y) = G_k(t)$

 $i \in I_{l}$

Convexified primal

Free variables $y \in \mathbb{R}^m$, data $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$

$$\sup b^T y$$
 s.t. $g_k(y) \le 1$ for all $k \in K$

(Lagrangean) dual

inf
$$c^T x + \sum_{k \in K} \sum_{\substack{i \in I_k \\ x_i > 0}} x_i \log \frac{x_i}{\sum_{i \in I_k} x_i}$$
s.t. $Ax = b$ and $x > 0$

Properties [Duffin, Peterson and Zener, 1967]

The geometric cone

Definition [Glineur 99] Let $n \in \mathbb{N}$. Define \mathcal{G}^n as $\mathcal{G}^n = \left\{ (x, \theta) \in \mathbb{R}^n_+ \times \mathbb{R}_+ \mid \sum_{n=1}^n \mathbb{R}^n_+ \right\}$

$$\mathcal{G}^n = \left\{ (x, \theta) \in \mathbb{R}^n_+ \times \mathbb{R}_+ \mid \sum_{i=1} e^{-\frac{x_i}{\theta}} \le 1 \right\}$$

with the convention $e^{-\frac{x_i}{0}} = 0$

Our goal: express geometric optimization in a conic form

Properties

♦ Special cases:
$$\mathcal{G}^0 = \mathbb{R}_+$$
 and $\mathcal{G}^1 = \mathbb{R}^2_+$
♦ $(x, \theta) \in \mathcal{G}^n, (x', \theta') \in \mathcal{G}^n$ and $\lambda \ge 0$
⇒ $\lambda(x, \theta) \in \mathcal{G}^n$ and $(x + x', \theta + \theta') \in \mathcal{G}^n$
⇒ \mathcal{G}^n is a convex cone.

 $\diamond \mathcal{G}^n$ is closed, solid and pointed

 \diamond The interior of \mathcal{G}^n is (\rightarrow Slater condition)

$$\operatorname{int} \mathcal{G}^n = \left\{ (x, \theta) \in \mathbb{R}^n_{++} \times \mathbb{R}_{++} \mid \sum_{i=1}^n e^{-\frac{x_i}{\theta}} < 1 \right\}$$

Dual cone

The dual cone $(\mathcal{G}^n)^*$ is given by

$$\left\{ (x^*, \theta^*) \in \mathbb{R}^n_+ \times \mathbb{R} \mid \theta^* \ge \sum_{x_i^* > 0} x_i^* \log \frac{x_i^*}{\sum_{i=1}^n x_i^*} \right\}$$

It is the epigraph of

$$f_n : \mathbb{R}^n_+ \mapsto \mathbb{R} : x \mapsto \sum_{x_i^* > 0} x_i^* \log \frac{x_i^*}{\sum_{i=1}^n x_i^*}$$

♦ Special cases: $(\mathcal{G}^0)^* = \mathbb{R}_+$ and $(\mathcal{G}^1)^* = \mathbb{R}_+^2$ (but \mathcal{G}^n is not self-dual for n > 1)

 \diamond It is also convex, closed, solid and pointed.

 $\diamond ((\mathcal{G}^n)^*)^* = \mathcal{G}^n \text{ (since } \mathcal{G}^n \text{ is closed)}.$

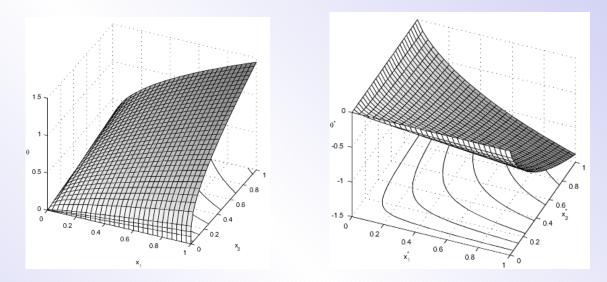


Figure 2: Boundary surfaces of the geometric cone \mathcal{G}^2 and its dual cone $(\mathcal{G}^2)^*$

Apply the general duality theory for conic primal-dual pairs, using our dual cones \mathcal{G}^n and $(\mathcal{G}^n)^*$, to derive the duality properties of the geometric optimization primaldual pair

Strategy diagram

$$(PG) \equiv (CPG) \stackrel{\text{Weak}}{\longleftrightarrow} (CDG) \equiv (DG)$$

$$\uparrow^* \qquad \uparrow$$

$$(RPG) \stackrel{\text{Strong}}{\longleftrightarrow} (RDG)$$

$$\uparrow$$

$$(\text{Slater})$$

François Glineur, Topics in Convex Optimization

Formulation with \mathcal{G}^n cone

Primal

 $\sup b^T y$ s.t. $g_k(y) \leq 1$ for all $k \in K$ Introducing new variables $s_i = c_i - a_i^T y \; \forall i$ we get $\sup b^T y$ s.t. $s = c - A^T y$ and $\sum e^{-s_i} \leq 1$ for all $k \in K$ $i \in I_{l}$ \uparrow (introducing *additional* v variables) $\sup b^T y \quad \text{s.t.} \quad \begin{pmatrix} A^T \\ 0 \end{pmatrix} y + \begin{pmatrix} s \\ v \end{pmatrix} = \begin{pmatrix} c \\ e \end{pmatrix}$ and $(s_{I_k}, v_k) \in \mathcal{G}^{n_k}$ for all $k \in K$

 $(e \equiv \text{all-one vector}, n_k = \#I_k)$ This is a standard conic problem ! variables (\tilde{y}, \tilde{s}) , data $(\tilde{A}, \tilde{b}, \tilde{c})$, cone K^* with

$$\tilde{y} = y, \ \tilde{s} = \begin{pmatrix} s \\ v \end{pmatrix}, \ \tilde{A} = \begin{pmatrix} A & 0 \end{pmatrix}, \ \tilde{b} = b,$$

$$\tilde{c} = \begin{pmatrix} c \\ e \end{pmatrix}$$
 and $K^* = \mathcal{G}^{n_1} \times \mathcal{G}^{n_2} \times \cdots \times \mathcal{G}^{n_r}$

 \Rightarrow we can mechanically derive the dual !

$$\inf \begin{pmatrix} c \\ e \end{pmatrix}^T \begin{pmatrix} x \\ z \end{pmatrix} \quad \text{s.t.} \quad \begin{pmatrix} A & 0 \end{pmatrix} \begin{pmatrix} x \\ z \end{pmatrix} = b$$

and $(x_{I_k}, z_k) \in (\mathcal{G}^{n_k})^* \ \forall k$

$$\inf \begin{pmatrix} c \\ e \end{pmatrix}^T \begin{pmatrix} x \\ z \end{pmatrix} \quad \text{s.t.} \quad (A \ 0) \begin{pmatrix} x \\ z \end{pmatrix} = b$$

and $(x_{I_k}, z_k) \in (\mathcal{G}^{n_k})^* \ \forall k$
$$\Leftrightarrow \inf c^T x + e^T z \quad \text{s.t.} \quad Ax = b, \ x_{I_k} \ge 0$$

and $z_k \ge \sum_{\substack{i \in I_k \\ x_i > 0}} x_i \log \frac{x_i}{\sum_{i \in I_k} x_i}$

$$\Leftrightarrow \quad \inf \quad c^T x + \sum_{k \in K} \sum_{\substack{i \in I_k \\ x_i > 0}} x_i \log \frac{x_i}{\sum_{i \in I_k} x_i}$$
s.t.
$$Ax = b \text{ and } x \ge 0$$

François Glineur, Topics in Convex Optimization

Weak duality

y feasible for the primal, x is feasible for the dual

$$\Rightarrow \quad b^T y \le c^T x + \sum_{k \in K} \sum_{\substack{i \in I_k \\ x_i > 0}} x_i \log \frac{x_i}{\sum_{i \in I_k} x_i}$$

$$\left(\sum_{i\in I_k} x_i\right) e^{a_i^T y - c_i} = x_i \text{ for all } i \in I_k, k \in K$$

Proof [Glineur 99]

Weak duality theorem with conic primal-dual pair \rightarrow extend objective values to geometric primal-dual pair

Strong duality

Primal and dual feasible solutions \Rightarrow zero duality gap (but attainment not guaranteed)

Proof [Glineur 99]

Provide a strictly feasible dual point $\Leftrightarrow \quad z_k > \sum_{i \in I_k} x_i \log \frac{x_i}{\sum_{i \in I_k} x_i} \text{ and } x_i > 0 \quad \forall i$ But the linear constraints Ax = b may force $x_i = 0$ (for some *i*) at every feasible solution !

 \Rightarrow detect these zero x_i components and form a restricted primal-dual pair without these variables (which had no influence on the objective/constraints anyway)

Detection with a linear problem

min 0 s.t. Ax = b and $x \ge 0$

Define $\mathcal{N} = \text{set of indices } i$ such that x_i is identically zero on the feasible region and \mathcal{B} the set of the other indices. $(\mathcal{B}, \mathcal{N})$ is the optimal partition of this linear problem (Goldman-Tucker theorem)

Strategy

Remove variables x_i for all $i \in \mathcal{N}$

- a. restricted primal-dual conic pair
- b. strictly feasible dual solution
- c. zero duality gap

Diagram

$$(PG) \equiv (CPG) \stackrel{\text{Weak}}{\longleftrightarrow} (CDG) \equiv (DG)$$
$$\uparrow^* \qquad \uparrow \qquad \uparrow$$
$$(RPG) \stackrel{\text{Strong}}{\longleftrightarrow} (RDG)$$
$$\uparrow^{(\text{Slater})}$$

(some technicalities needed to prove * equivalence)

Conlusion

 \Rightarrow the original primal optimum objective value is equal to the original dual optimum objective value Application Isotopic dating using geometric optimization

Interior-point methods

- \diamond Self-concordant functions
- Conic optimization
- \diamond Formulation and duality
- ♦ Geometric optimization
- ◇ General framework: separable optimization
- Applications
- \diamond Classification with ellipsoids and conic optimization
- \diamond Isotopic dating with geometric optimization

Introduction

(based on discussion with geology department, FPMs)

Radioactive decay

 $^{238}U \rightarrow ^{206}Pb + 8\alpha$ and $^{235}U \rightarrow ^{207}Pb + 7\alpha$ Constant disintegration probability \Rightarrow exponential decay $N(t) = N_0 e^{-\lambda t}$ and half-life $T = \frac{\log 2}{\lambda}$ $\lambda_{238} = 1.55110^{-10} \text{year}^{-1} \text{ and } \lambda_{235} = 9.84910^{-10} \text{year}^{-1}$ $\diamond \frac{238_U}{235_U} = 137.9$ for all material nowadays \diamond We are able to measure $\frac{206Pb}{207Pb}$ for a sample \Rightarrow This is enough to date the sample !

Analysis Let $t = 0 \Leftrightarrow$ formation of sample ${}^{238}U(t) = {}^{238}U(0)e^{-\lambda_{238}t}$ \downarrow ${}^{206}Pb(t) = {}^{238}U(0) - {}^{238}U(t) = {}^{238}U(t)(e^{\lambda_{238}t} - 1)$ $\frac{{}^{206}Pb(t)}{{}^{207}Pb(t)} = \frac{{}^{238}U(t)}{{}^{235}U(t)}\frac{(e^{\lambda_{238}t}-1)}{(e^{\lambda_{235}t}-1)}$ But we know both $\frac{206Pb(t)}{207Pb(t)}$ and $\frac{238U(t)}{235U(t)}$ for t = nowSolve $\frac{e^{\lambda_{238}t} - 1}{e^{\lambda_{235}t} - 1} = \rho$ with $\rho = \frac{206Pb(t)}{207Pb(t)}\frac{235U(t)}{238U(t)}$

Geometric optimization formulation

a. Equality \rightarrow Inequality with objective $\max t \quad \text{s.t.} \quad \frac{e^{\lambda_{238}t} - 1}{e^{\lambda_{235}t} - 1} \geq \rho$ b. \rightarrow exponential form

max t s.t.
$$e^{\lambda_{238}t} \ge \rho e^{\lambda_{235}t} + (1-\rho)$$

c. \rightarrow posynomial form \equiv geometric optimization min e^{-t} s.t. $1 \ge \rho e^{(\lambda_{235} - \lambda_{238})t} + (1 - \rho)e^{-\lambda_{238}t}$

Example

When $\rho = 1/9$, one finds t = 783 million years

A general framework for separable convex optimization: Generalizing our conic formulations (chapters 6–7)

- Interior-point methods
- \diamond Self-concordant functions
- Conic optimization
- \diamond Formulation and duality
- \diamond Geometric optimization
- ♦ General framework: separable optimization
- Applications
- ◇ Classification with ellipsoids and conic optimization
- \diamond Isotopic dating with geometric optimization

Generalizing our framework

Comparing cones

$$\mathcal{G}^n = \left\{ (x, \theta) \in \mathbb{R}^n_+ \times \mathbb{R}_+ \mid \sum_{i=1}^n e^{-\frac{x_i}{\theta}} \le 1 \right\}$$
$$\mathcal{L}^p = \left\{ (x, \theta, \kappa) \in \mathbb{R}^n \times \mathbb{R}^2_+ \mid \sum_{i=1}^n \frac{|x_i|^{p_i}}{p_i \theta^{p_i - 1}} \le \kappa \right\}$$

n

Variants

$$\mathcal{G}_{2}^{n} = \left\{ (x,\theta,\kappa) \in \mathbb{R}_{+}^{n} \times \mathbb{R}_{+} \times \mathbb{R}_{+} \mid \theta \sum_{i=1}^{n} e^{-\frac{x_{i}}{\theta}} \leq \kappa \right\}$$
$$\mathcal{C}^{p} = \left\{ (x,\theta,\kappa) \in \mathbb{R}^{n} \times \mathbb{R}_{+} \times \mathbb{R}_{+} \mid \theta \sum_{i=1}^{n} \frac{1}{p_{i}} \left| \frac{x_{i}}{\theta} \right|^{p_{i}} \leq \kappa \right\}$$

The separable cone [Glineur 00]

Consider a set of n scalar closed proper convex functions

$$f_i: \mathbb{R} \mapsto \mathbb{R}$$

and let

$$\mathcal{K}^{f} = \operatorname{cl}\left\{ (x, \theta, \kappa) \in \mathbb{R}^{n} \times \mathbb{R}_{++} \times \mathbb{R} \mid \theta \sum_{i=1}^{n} f_{i}(\frac{x_{i}}{\theta}) \leq \kappa \right\}$$

 $\diamond \mathcal{K}^{f} \text{ generalizes } \mathcal{L}^{p} \text{ and } \mathcal{G}_{2}^{n}$ $\diamond \mathcal{K}^{f} \text{ is a closed convex cone}$ $\diamond \mathcal{K}^{f} \text{ is solid and pointed}$

$$\diamond (x, \theta, \kappa) \in \operatorname{int} \mathcal{K}^f \text{ iff}$$
$$x_i \in \operatorname{int} \operatorname{dom} f_i \text{ and } \theta \sum_{i=1}^n f_i(\frac{x_i}{\theta}) < \kappa$$

♦ The dual of $(\mathcal{K}^f)^*$ is defined by

$$\left\{ (x^*, \theta^*, \kappa^*) \in \mathbb{R}^n \times \mathbb{R}_{++} \times \mathbb{R} \mid \kappa^* \sum_{i=1}^n f_i^* (-\frac{x_i^*}{\kappa^*}) \leq \theta^* \right\}$$

using the conjugate functions

$$f_i^* : x^* \mapsto \sup_{x \in \mathbb{R}^n} \{ x^T x^* - f_i(x) \}$$

(also closed, proper and convex)

Separable optimization [Glineur 00] Primal sup $b^T y$ s.t. $\sum_{i \in I_k} f_i(c_i - a_i^T y) \le d_k - f_k^T y$ $\forall k \in K$

Dual

inf
$$\psi(x, z) = c^T x + d^T z + \sum_{k \in K | z_k > 0} z_k \sum_{i \in I_k} f_i^* \left(-\frac{x_i}{z_k}\right)$$

 $-\sum_{k \in K | z_k = 0} \inf_{x_{I_k}^* \in \text{dom } f_{I_k}} x_{I_k}^T x_{I_k}^*$
s.t. $Ax + Fz = b$ and $z \ge 0$.
 \diamond Justification for conventions when $\theta = 0$

 \diamond Mix different types of constraints within problems

Some other examples

 \Diamond

 \diamond

$$f: x \mapsto \begin{cases} -\sqrt{a^2 - x^2} & \text{if } |x| \le a \\ +\infty & \text{if } |x| > a \end{cases}$$
$$f^*: x^* \mapsto a\sqrt{1 + x^{*2}}$$

(square roots, circles and ellipses)

$$\begin{aligned} f: x \mapsto \begin{cases} -\frac{1}{p} x^p & \text{if } x \ge 0\\ +\infty & \text{if } x < 0 \end{cases} & 0 < p < 1 \\ f^*: x^* \mapsto \begin{cases} -\frac{1}{q} (-x^*)^q & \text{if } x^* < 0\\ +\infty & \text{if } x^* \ge 0 \end{cases} & -\infty < q < 0 \end{aligned}$$

(CES functions in production and consumer theory)

$$\begin{aligned} f: x \mapsto \begin{cases} -\frac{1}{2} - \log x & \text{if } x > 0 \\ +\infty & \text{if } x \leq 0 \end{cases} \\ f^*: x^* \mapsto \begin{cases} -\frac{1}{2} - \log(-x^*) & \text{if } x^* < 0 \\ +\infty & \text{if } x^* \geq 0 \end{cases} \end{aligned}$$
(with property that $f^*(x^*) = f(-x^*)$)

 \diamond

Conclusions Summary and perspectives

Contributions

Interior-point methods

- \diamond Overview of self-concordancy theory
- ♦ Discussion over different definitions
- ◇ Optimal complexity of short-step method
- ◇ Improvement of useful Lemma

Approximations

 \diamond Approximation of geometric optimization with l_p -norm optimization

Conic optimization

- ◇ New convex cones to model
 - a. geometric optimization
 - b. l_p -norm optimization
- ◇ Simplified proofs of their duality properties
- \diamond New framework of separable optimization

Applications

Classification using semidefinite optimization
Isotopic dating using geometric optimization

Research directions

Interior-point methods

♦ Replace self-concordancy conditions by single condition involving complexity $\kappa \sqrt{\nu}$

Conic optimization

Duality properties of separable optimization
Self-concordant barrier for separable optimization
Implementation of interior-point methods

Thank you for your attention