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Introduction

Les applications des champs autosimilaires se sont considérablement développées
au cours de ces derniéres années. En effet, de nombreux phénoménes autosimilaires
sont observés en hydrologie, en écologie, en mécanique des fluides, en imagerie ou
encore en finance. Par suite, de nombreux modéles probabilistes autosimilaires ont
été introduits et étudiés pour modéliser ces phénoménes. L’autosimilarité, propriété
d’invariance en loi par changement d’échelle, est gouvernée par un indice H. De
plus, les trajectoires d’'un champ autosimilaire d’ordre H ne sont pas lisses dés que
H < 1. Dés lors, 'autosimilarité fournit des modéles adaptés a 1’étude de phé-
noménes irréguliers. L’exemple le plus simple de processus autosimilaire est sans
doute le mouvement brownien. Ceci étant, ces accroissements étant indépendants,
il ne permet pas la modélisation de phénomeénes a longue dépendance. Dés lors,
B. Mandelbrot et J. Van Ness ont introduit dans [MVNG68| un champ généralisant le
mouvement brownien et adapté a la modélisation de tels phénomeénes : il s’agit du
mouvement brownien fractionnaire ou FBM pour I'anglais Fractional Brownian Mo-
tion. Ils ont notamment défini le FBM pour pouvoir modéliser les minima annuels
du niveau du Nil et expliquer les observations de H. Hurst en 1951 dans [Hurb1]
sur la série des données de ces minima de ’an 622 & ’an 1284. Ainsi, la vitesse de
convergence de la statistique R/S, appelée rescaled adjusted rand, peut s’expliquer
par la présence de longue dépendance. Par ailleurs, le FBM avait été implicite-
ment utilisé dans [Kol40| pour construire des «spiralesy gaussiennes sur les espaces
d’Hilbert. Précisons que le FBM (Bp(z)),cps est un champ gaussien dont la loi est
caractérisée par l'indice fractionnaire H encore appelé indice de Hurst. Depuis son
introduction, le FBM a été utilisé comme modéle dans des domaines variés. Ce-
pendant, la régularité des trajectoires du FBM By ne dépend pas du point ol on
I’observe. Par suite, un FBM ne peut modéliser que des phénomeénes spatialement
homogénes. De ce point de vue, le FBM n’est pas adapté & la modélisation d’un
relief de montagnes qui est plus ou moins régulier selon la nature du sol. En fait, ce
relief doit étre modélisé par un champ dont la régularité locale des trajectoires peut
varier. D’autres exemples dans lesquels on constate la nécessité d’avoir un exposant
fractionnaire variable en fonction de la position sont donnés dans [Fri95] dans le
domaine de la turbulence ou encore en finance dans [Man97]. Dés lors, de nom-
breuses généralisations du FBM ont été introduites. Toutes ces extensions du FBM
satisfont une propriété d’autosimilarité et la régularité de leurs trajectoires a été
étudiée. Ces études ont notamment été menées dans le cadre des champs introduits
dans [BJRI7|, [PLV96], [ALV00|, [BBCI00] et [BCI02]. De plus, la propriété d’autosi-
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milarité devient une propriété locale et asymptotique. Cette notion d’autosimilarité
locale a été introduite dans [BJR97].

Par ailleurs, le mouvement brownien multifractionnaire (MBM en abrégé), in-
troduit indépendamment dans [PLV96]| et [BJRI7], est sans doute le plus connu des
champs localement autosimilaires généralisant le FBM. Ainsi, il permet la modéli-
sation de phénoménes non homogeénes spatialement car son exposant ponctuel de
Holder peut varier le long des trajectoires. Cependant, la régularité des trajectoires
d’un MBM ne varie pas de fagon trés brutale d’un point a ’autre. Dés lors, de nom-
breux mathématiciens s’intéressent a généraliser le MBM de sorte que la régularité
puisse varier le plus erratiquement possible le long des trajectoires. Par exemple,
des champs dont la régularité peut varier de facon trés brutale ont été introduits
dans [ALV00] et [BBCI00]. Ces champs peuvent notamment trouver des applications
en traitement d’image ot ’on observe des phénomenes de segmentations.

De plus, le FBM est un champ isotrope et de nombreux phénoménes notamment
en médecine ne le sont pas. Ainsi, [LP99|, [ALP02] ou encore [BE03]| se sont intéressés
a des champs anisotropes notamment en vue de détecter I’ostéoporose.

Par ailleurs, les phénoménes observés ne sont pas toujours gaussiens en pratique
et les champs cités jusqu’ici le sont. Ainsi, en traitement d’image, en turbulence, dans
I’étude des réseaux de télécommuncations ou encore en finance, on peut observer
des phénoménes non gaussiens. Des exemples sont notamment donnés dans [Mal89],
[Sim99] et [Vid99] en traitement d’image. Trés peu de champs non gaussiens auto-
similaires ou localement autosimilaires ont été introduits. Citons les champs autosi-
milaires stables étudiés dans [ST94]. Des champs localement autosimilaires ont aussi
été définis dans [BCI02]| et [BCI04|. Contrairement aux champs stables, ces champs
sont du second ordre et ont la méme structure de covariance que le FBM. En parti-
culier les champs de Lévy fractionnaires étudiés par [BCI02| généralisent le FBM et
ont des propriétés semblables aux siennes. Ils sont définis & partir d’une représenta-
tion harmonisable et appelés RHFLMs (abréviation de ’anglais Real Harmonizable
Fractional Lévy Motions). Ces champs permettent la modélisation de phénoménes
non gaussiens, mais comme dans le cas du brownien fractionnaire, spatialement ho-
mogenes.

Dans cette thése, nous introduisons dans un premier temps des champs non gaus-
siens localement autosimilaires dont I’exposant ponctuel de Holder peut varier le long
des trajectoires. Plus précisément, ces champs réels, appelés en anglais Real Har-
monizable Multifractional Lévy Motions (RHMLMs) ou encore en frangais champs
réels de Lévy multifractionnaires, généralisent les RHFLMs étudiés dans [BCI02] et
sont définis au moyen d’une représentation harmonisable. La plus grande partie de
cette thése est consacrée a ’étude de ces champs ainsi qu’a leur simulation.

Enfin, dans un deuxiéme temps nous nous sommes intéressés plus particuliére-
ment a la propriété d’autosimilarité locale. Cette propriété introduit une notion de
champ tangent. Dans la plupart des exemples de champs fractionnaires ou multi-
fractionnaires étudiés dans la littérature, le champ tangent en x est un FBM. Par
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exemple, les RHMLMs, méme s’ils ne sont pas gaussiens, ont en tout point x un
FBM comme champ tangent. Nous pouvons aussi citer les champs gaussiens étudiés
dans [ALV00, BCI1J98| : localement tous ces champs ressemblent & un FBM. Il existe
toutefois des champs fractionnaires X5 autosimilaires non gaussiens, tels les champs
stables fractionnaires, mais alors en tout point le champ tangent est le méme et c’est
Xp lui-méme. Nous introduisons alors un champ X 5 localement autosimilaire mais
avec un comportement différent en un point z; : le champ tangent en xy n’est pas
du méme type que le champ tangent en tout autre point de la trajectoire. En ce
point zy, le comportement de Xy 5 est alors dit atypique.

Le premier chapitre s’intéresse aux champs qui ont conduit & 'introduction des
RHMLMs. Plus précisément, les propriétés du FBM ainsi que du MBM sont rap-
pelées. Par ailleurs, la construction des RHFLMs, décrite dans [BCI02|, est donnée.
La plupart des résultats sont déja connus.

Le deuxiéme chapitre, qui a donné lieu a I’article [Lac04a] & paraitre aux Annales
de I'Institut Henri Poincaré, introduit la classe des RHMLMs. Cette classe contient
non seulement les RHFLMs mais aussi le MBM. De plus, les RHMLMs sont des
champs du second ordre non gaussiens en général et dont la structure de covariance
est celle d’'un MBM. Leurs propriétés semblables a celles du MBM étendent le champ
d’applications du MBM & des phénoménes non gaussiens. Ainsi, un RHMLM X, est
localement autosimilaire avec les mémes champs tangents et la méme fonction mul-
tifractionnaire que le MBM B,;,. Dés lors, au vu de sa structure locale, un RHMLM
peut localement étre vu comme un FBM. Dans le cadre du MBM, cette propriété
d’autosimilarité locale a déja été établie dans [BJR97|. Par ailleurs, un RHMLM X,
a le méme exposant ponctuel en x que le MBM B,,. En particulier, ’exposant ponc-
tuel de Holder d'un RHMLM peut varier le long des trajectoires alors que tel n’est
pas le cas pour un RHFLM. Enfin, le chapitre se conclut par I'identification de la
fonction multifractionnaire. L’estimateur basé sur les variations quadratiques géné-
ralisées proposé par [IL97] dans un cadre gaussien permet l'identification de 'indice
fractionnaire d'un RHFLM comme établi dans [BCI02]. Dans le cadre général des
RHMLMs, en procédant comme dans [BCI98| qui s’intéresse au MBM, c’est-a-dire
en localisant les variations quadratiques généralisées, nous obtenons un estimateur
de la fonction multifractionnaire h.

Suite a I’étude des RHMLMs, le chapitre 3, qui constitue I’article [Lac04b|, pro-
pose une méthode de simulation des RHMLMs. Précisons tout d’abord qu’on ne
s’intéresse qu’a la simulation de la partie non gaussienne X; d’un RHMLM. La
méthode proposée est basée sur la représentation sous forme de séries de bruits gé-
néralisés des lois indéfiniment divisibles (voir [Ros90]). Dans le cas ou la mesure
de controle du RHMLM est de masse finie, une représentation sous forme de série
de bruits de X}, est donnée. Dans le cas contraire, on propose alors de procéder
comme le fait [ARO1| pour la simulation des processus de Lévy. Plus précisément,
on décompose Xj;, en deux RHMLMs indépendants X, ; et X, de fonction multi-
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fractionnaire h. Le champ X, 5 est alors représenté sous forme d’une série de bruits
généralisés et un théoréme de convergence en loi donne une approximation de X, ;
par un MBM. Les erreurs commises par ses diverses approximations sont étudiées.
Enfin, des exemples de simulations sont donnés et ’on constate que plus h(z), qui
est I’exposant ponctuel en x de X, est grand plus la trajectoire est réguliére en x.

Enfin, le dernier chapitre introduit un champ Xy 5 localement autosimilaire mais
avec un champ tangent en 0 différent du champ tangent en = # 0. Dans cet exemple,
le champ tangent en x = 0 dépend de la valeur de 3. Mais le cas le plus frappant
est le cas ot § > d/«. En effet, alors que le champ tangent en x # 0 est un FBM
d’indice H, le champ tangent a Xy 3 en x = 0 est un processus stable fractionnaire
défini par une représentation harmonisable. Par suite, méme si le champ Xy 5 est
un champ du second ordre, son champ tangent en 0 n’en est pas un. De plus, en
x = 0 le comportement local de Xy 3 est trés éloigné de son comportement en
x # 0. D’olt un comportement dit atypique du champ Xy 3 en 0. Dans un premier
temps, les propriétés d’autosimilarité locale sont établies et ce quel que soit (. De
plus, le champ X 3 satisfait une propriété d’autosimilarité & grandes échelles. On
retrouve alors un phénoméne multi-échelles déja rencontré pour les RHMLMs ou
encore dans [BD99|. L’étude de Xy s est ensuite complétée par celle de la régularité
des trajectoires et de la dimension de Hausdorff de ses graphes. Enfin, des champs
avec un comportement atypique en plusieurs points sont introduits.



Chapter 1

Locally asymptotically self-similar
fields

Self-similar fields provide powerful models in applied mathematics. Actually, they
are often used to model natural phenomena. Then, many examples of applications
of self-similarity are given in [Taq86|. Furthermore, the Fractional Brownian Motion
is certainly the most famous self-similar field.

1.1 Fractional Brownian Motion

1.1.1 Definitions and properties

Mandelbrot and Van Ness have defined the Fractional Brownian Motion, in [MVNG68],
as a stochastic integral. However, there exist many ways to characterize the Frac-
tional Brownian Motion. Since it is a Gaussian field, we introduce it thanks to its
covariance function.

Definition 1.1.1. Let 0 < H < 1. A Fractional Brownian Motion (By()),cgd, in
short FBM, with index H is a real-valued centered GGaussian field with covariance
function

C
Ru(e,y) = 5 (Il + gl =l =y, (1)

where (z,y) € R x RY, C' > 0 and ||-|| is the Euclidean norm on R<.
In addition, By is called standard FBM if C' = 1.

Remark 1.1.2. In the case where d = 1 and H = 1/2, By is a Brownian Motion.

Brownian Motions are the only FBMs whose increments are independent. How-
ever, like Brownian Motion, FBMs have stationary increments.

Proposition 1.1.3. A FBM By has stationary increments, i.e
d
Vo € Rdu (Bu(z + x0) — BH(x))meRd & (BH<I))m€Rd7

where @ stands for equality in law of finite dimensional margins.

13
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Many properties of a FBM By are given by its fractional index H. As an
example, H governs the self-similarity property. First, let us precise the definition
of a self-similar field.

Definition 1.1.4. A real-valued field (Y (x)),ga is self-similar with index H if

VA > 0, (Y (A2) g 2 MY (2)) e

Proposition 1.1.5. A FBM By is self-similar with index H, i.e.

VA > 0, (Bu(Me)),epa 2 M (B (), cpa-

From this property of self-similarity, an upper bound for the pointwise Holder
exponent can be stated. Let us first recall the definition of the pointwise Holder
exponent of a function.

Definition 1.1.6. Let f : R? — R be a function on R¢ and x € R%. Then,

Hy(z) = sup {a >0, lim [l +||Z?/J)||; f@) _ 0}

is called the pointwise Holder exponent of the function f at point x.
Then, since By is H-self-similar,
Hg,(x) < H almost surely. (1.2)

In dimension d = 1, the increments stationarity and the self-similarity charac-
terize the FBM.

Proposition 1.1.7. Assume that d = 1. Then, FBMs with index H are the only
real-valued centered Gaussian fields which are self-similar with index H and have
stationary increments.

When d > 2, the preceding proposition does not remain true. In fact, there exists
anisotropic fields, see for instance [BE03], which are self-similar and have stationary
increments.

Using the Kolmogorov criterion, it can be shown that the trajectories of a FBM
are continuous.

Proposition 1.1.8. For every H' < H, there exists a modification of the FBM By
whose sample paths are almost surely locally H'-Hélder continuous on R?.

Then, this proposition gives us a lower bound for the pointwise Hélder exponent
of a FBM. Hence, using (1.2), one easily proves the following corollary.

Corollary 1.1.9. Let v € R%. Then, almost surely
Hg,(x) = H. (1.3)



15

Remark 1.1.10. Actually, (1.3) holds in a strong sense. More precisely,
P(Vz € RY, Hp,(z) = H) = 1. (1.4)

In fact, [AJT04] have introduced Generalized Multifractional Processes with Ran-
dom Exponents which generalize the FBM and can have a random pointwise Holder
exponent. Then, in the particular case of FBM, [AJT04] have obtained (1.4).

1.1.2 Harmonizable Representation

There exist many representations of the FBM. Here we only give its harmonizable
representation. However, other representations can be found in [ST94].

Proposition 1.1.11. Let 0 < H < 1. Then, the standard FBM (By(7)),cgpa has
the following integral representation.:

1 P |
BH<x> = C(H) /RdHfHHer/Q W<d§)7 (15)

where W (d€) is a Wiener measure and
’e_wl . 1/2
</ N 5) | o

Remark 1.1.12. The Wiener measure W (d¢) is a complex measure which ensures
that the field defined by (1.5) is a real-valued field. In fact, W (d¢) is a Fourier
transform of a real Brownian measure, see [ST94] or [Coh99] for more details.

Remark 1.1.13. The constant C(H) can be rewritten, see [ST94| for d = 1 and
chapter 3 for d > 2, as follows:

with e, = (1,0,---,0) € RZ

m@ D20 (H 4 1/2) v
CH) = (HF(QH) sin (mH)T(H + d/2>) ’

where I is the Gamma-function.

As noticed in corollary 1.1.9, the pointwise Holder exponent of a FBM is almost
surely equal to a constant, which restricts the field of applications. Also, some
generalizations of the FBM which allows the pointwise Holder exponent to vary
along the trajectories have been introduced. The most famous one is certainly the
Multifractional Brownian Motion.
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1.2 Multifractional Brownian Motion

The Multifractional Brownian Motion, in short MBM, has been introduced indepen-
dently in [PLV96] and [BJR97|. It can be defined by substituting in the harmonizable
representation of the FBM, see (1.5), to the constant parameter H a locally 5-Holder
function h. Then, this function governs the properties of the MBM.

Definition 1.2.1. Let & : RY — (0,1) be a locally 3-Hélder function. Then, a
Multifractional Brownian Motion, in short MBM, (Bj,(7)), g« is a real-valued field
which admits the representation

1 e it —1
)= G i OO o

where W (d¢) is a Wiener measure and where C(-) is defined by (1.6).

Since W (d¢) is a Wiener measure, a MBM Bj, is a real-valued centered Gaussian
field. Then, since the map f — f fdW is an isometry, i.e.

< >/|f|d§

the covariance function of B;, can be evaluated.

Jw

Proposition 1.2.2. Let (z,y) € RY. Then,
E(Bp(x)Bu(y)) = D(h(z), h(y ))(HxHh(x +hiy) | ”y”h(x +h(y) —ly - 9U|| +h(y)>’

where for (Hy, Hy) € (0,1)?

C*((H, + Hy) /2)
C(H,)C(Hy)

D<H17H2> =

with C(-) defined by (1.6).
Proof. see [ACLVO00]. O

Then, the Kolmogorov criterion gives the continuity of the trajectories of a MBM.
They are even locally Holderian.

Proposition 1.2.3. Let K C R? be a compact set.
Then, for every H' < min (ming h, 3), there exists a modification of the MBM By,
which has H'-Holder sample paths on K.

Proof. see [BJRI7|. O
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Consequently, since h is a continuous function, for every x € R¢,
Ha, () = min (h(x), 3) (1.8)

almost surely.

In the case of a FBM, the self-similarity property gives the equality in (1.8).
However, a MBM is not self-similar in most cases. Nevertheless, a MBM satisfies a
local property of self-similarity introduced in [BJR97].

Definition 1.2.4. A field (Y (x))_ga is locally asymptotically self-similar, in short
lass, at point = with index h(z) if

. (Y (z + ;L(l)_ Y(x))uew D (T (), o0, (1.9)

€*>0+

where the non-degenerate field (7, (u)),cga is called the tangent field at point x of Y’
and the limit is in distribution for all finite dimensional margins of the fields.

Furthermore, the field Y is lass with multifractional function h if for every x € R,
it is lass at point x with index h(x).

Remark 1.2.5. In general, the convergence (1.9) is in distribution for all finite di-
mensional margins. Nevertheless, in some cases, it can be strengthened. As an
example, in the case where Y and T, are continuous, the convergence (1.9) may be
a convergence in distribution on the space of continuous functions endowed with the
topology of the uniform convergence on compact sets. Also, we will precise each
time the sense of the convergence (1.9).

Remark 1.2.6. A lass field looks like locally a self-similar field. More precisely, if a
field Y is lass at point x with index h(x) and tangent field T, then T} is self-similar
with index h(z). Also, the lass property describes the local behaviour of a field.
Furthermore, the local structure, reflected by the tangent fields, is studied in [Fal02]
in the framework of continuous fields and in |Fal03| in the case of processes with
jumps.

Then, in general, a MBM looks like locally a FBM but with exponent which
varies along the trajectory.

Proposition 1.2.7. Let h : RY — (0,1) be a locally 3-Hélder function such that
Vo € R h(x) < S.

Then, the MBM By, s locally asymptotically self-similar with multifractional func-
tion h and at each point its tangent field is a FBM. More precisely, for every
fired x € RY,

lim
e—0t

(et ol 2B) ) 0

where the convergence is a convergence in distribution on the space of continuous
functions endowed with the topology of the uniform convergence on compact sets and
By is a standard FBM with indez h(x).

Proof. see [BJRI7|. O
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Let us remark that in (1.10), the point z is fixed and the limit is a limit of fields
indexed by u. Then one can wonder if the limit of the fields indexed by (z,u) exists,
ie. if

- B ~B
)8y (Bl
(z,u)ERIXRY e—07t eh(®) (z,u)ERE xRY

exists, where the sense of the limit has to be specified. Owing to proposition 1.2.7,
necessarily, for every fixed = € R,

5} (d)
(B(SL’, U)) weRd - (Bh(m) <u))u€Rd :
Then, it remains to know the correlation between the fields By, v € R?. Following

next proposition, these fields are independent.

Proposition 1.2.8. Let h : RY — (0,1) be a locally 3-Hélder function such that
Vo € RY h(z) < B.

Then, let (Bh(m))xeRd be a family of independent standard FBM. In particular, for

every fized v € RY, (B <u))u€Rd is a standard FBM with indez h(z). Let B be the
centered Gaussian field defined by

B(z,u) = Bp)(u).

Then,

@ (é(az, u))

where the limit is in distribution for all finite dimensional margins.

(1.11)

e—07t ghl@) (:1:,u)€[R"l><Rd7

lim (Bh(x +eu) — Bh(x))
(z,u)ERIXRE

Before we prove proposition 1.2.8, let us introduce the field (B(z,y)) , ,)erix(0,1)
defined by
1 [ee_1
W (d§),
C) Juupigpe

where C/(+) is defined by (1.6) and W (d¢) is a Wiener measure. Then,

B(z,y) =

(Br(2)) pepa = (B(x, b)), cpa-

Proof. Let
Bh<SL’ + Eu) — Bh<l’)

Yeloyu) = gh(z)

(d)

Let us split Y. into two fields Y. = Y. ; + Y., where

B(xz + eu, h(z)) — B(x, h(x))

Yea(z,u) = gh(x)
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and

B(x + eu, Mz + ew)) — B(x + cu, h(z))
gh(z) ’

Then, the behaviour of Y; ;, as ¢ — 0., is first studied.

Y;,Q(xa U) =

Step 1 Remark that for every fixed x, (Y. 1(x,u))
Also, if z =y,

is a FBM with index h(x).

u€R4

E(Yz1(z,u)Yz1(y,v)) = E(Bh(:v)(u)Bh(m)(v))a
and by definition of E,

EG;ALuﬁQﬂLU»::E<§@J0§@;@).

Then, assume x # y. By isometry,

o —h(x)—h(y) e W=DE (emiewt — 1) (e¥vE — 1)
E(Yg’l(a:,u)}/;’l(y,v)) = C(h(z))C(h(y)) /]Rd ||§||d+h(m)+h(y) ds.
Hence,
1 eiagf (e—iuf . 1) (eiv-f _ 1)
E(Y'sJ(xvu)Y;:,l(yaU)) = C(h(:{;))C’(h(y)) /Rd ||§||d+h($)+h(y) ds,

where a. = (y — x)/e. Moreover, since x # y,
lim |ja.|| = +o0.
€—>0+

Then, using the Riemann Lebesgue Lemma, one easily concludes that

lim E(Y.:(z,u)Yz1(y,v)) = 0.

€—>0+

Furthermore, since z # y, B(z, u) and B(z,v) are two independent centered Gaus-
sian variables. Hence,

Jim E(Yo (2, 0)Yea(y,0) = E(Ble,w)Bly.v)).

As a consequence,

lim (Yes(z,u)) @<B@ﬂ)

e04 (z,u)ERIXR?

>($7U)€Rd><]Rd7 (1.12)

where the limit is in distribution for every finite dimensional margins.

Step 2 Using the isometry property and a Taylor expansion, one can prove

Eli%l+ E(Y;-:?Q(xv u)) = 07

see proof of proposition 2.2.11 in chapter 2 for more details. Hence, in view of (1.12),
the proof is done. O
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Furthermore, an upper bound for the pointwise Holder exponent of B, can be
deduced from the lass property. Then, using (1.8), the following corollary is ob-
tained.

Corollary 1.2.9. Let h : R? — (0,1) be a locally 3-Hélder function such that
Vo € R h(x) < B.

Then, for every v € R?, the pointwise Hilder exponent Hg, () of the MBM By, at
point x is almost surely equal to h(x).

Hence, the pointwise Holder exponent of the MBM By, is allowed to vary along
the trajectories and is governed by the function h. The greater h(z) is, the smoother
the trajectories of Bj are in a neighbourhood of x. As an example, the MBM is
used as a toy-model for modeling mountains because it allows to take into account
the erosion phenomena. However, the trajectories of the MBM are in some sense
regular since they are locally Holderian. Also, [ALV00] and [BBCI00] introduce
some generalizations of the MBM in order to have a pointwise Holder exponent
which varies abruptly. Nevertheless, their fields remain lass Gaussian fields and can
not model non-Gaussian phenomena. Hence, non-Gaussian lass fields, called Real
Harmonizable Fractional Lévy Motions, have been introduced in [BCI02].

1.3 Real Harmonizable Fractional Lévy Motions

Real Harmonizable Fractional Lévy Motions, in short RHFLMs, share many prop-
erties with the FBM. In addition, the FBM is a RHFLM. Benassi, Cohen and Istas
have defined the class of RHFLMs by substituting in the harmonizable representa-
tion of the FBM to the Wiener measure W (d¢) a Lévy random measure L(d¢).

1.3.1 Lévy random measure

Heuristically, a Lévy random measure is linked with the increments of a Lévy pro-
cess. Furthermore, the non-Brownian part of a Lévy process can be represented
by a Poisson process. Also, the non-Brownian part of a Lévy random measure is
introduced owing to a Poisson random measure.

Let N(d¢,dz) be a Poisson random measure on R? x C with mean measure
n(d¢, dz), i.e. a random measure such that

e for every Borel set A such that n(A) < +o00, N(A) is a Poisson random variable
of intensity n(A).

e if the set [ is finite and if the Borel sets A;, i € I are pairwise disjoint, then
the random variables N(A;), i € I, are independent.
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Notation Throughout this section, L? (Rd X (C) is the space of complex-valued func-
tions which are square integrable for the measure n(d¢, dz).

Let us note N = N — n the compensated Poisson random measure. It is then
classical to define the stochastic integral

/R o(€,2) N(de, d2)

dxC

for every function ¢ : R? x C — C such that ¢ € L? (Rd X (C). Then, by
construction, for every ¢ € L*(R? x C),

E

[, wles) N, ]: [, Jete ) n(as. ).

dxC
ie. themap ¢ — [¢ dN is an isometry from L2 (R? x C) onto a subset of L(12).
Notice that if ¢ is real so is [¢ dN. Let us denote by R(z) the real part of a

complex z and by (z) its imaginary part.
The law of the random variable [¢ dN is given by its characteristic function

E[exp (i(u/é)%(go) dﬁ+v/%(gp) dﬁ))]

exp [ [, e litam(e) + 3(0) — 1 = itu(e) +03(0))] u(dz>] ,
RixC

which is equal to

where (u,v) € R%. Let us remark that [¢ dN is a centered random variable.

Here the mean measure n(d¢,dz) = EN(d¢, dz) = d€ v(dz) satisfies:
Vp =2, /|z|p v(dz) < +o0. (1.13)
C

Moreover v is a non vanishing measure such that v({0}) = 0.
Then, in [BCI02], a measure M (d¢), associated with the Poisson random measure
N(d¢,dz), is defined by

def

[ Ko@) [ (1©:+ £(-0)2 Nide,d2), (1.14)

where f € L?(R?).
Hence, if

VEER?,  f(=§) = f(¢) (1.15)
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f]Rd M(d€) is a real-valued centered random variable. Furthermore, its charac-
terlstlc function is

E(emffdM) =exp </Rdxc[exp (2iuR(f(€)z))—1—2iuR(f(£)z)] d§ I/(dz)), (1.16)
where u € R.

In addition, the control measure v(dz) is assumed to be rotationally invariant.
Let P be the map P(pe’) = (6, p) € [0,2m) x R}. The measure v(dz) satisfies the
following property:

P(v(dz)) = dOv,(dp), (1.17)

where df is the uniform measure on [0, 27). Hence, if f satisfies (1.15), the random
variable [, f(&) M(d€) is symmetric and for every a € R,

[ 1@ ewtia- )Mt [ 16 pr(ae). (1.18)
Moreover, when f satisfies (1.15),
2 ) +o00
[ 1 a(ag) ]=4w|rf|rLz<Rd> | rvan. (1.19)

Definition 1.3.1. A Lévy random measure associated with a Poisson random mea-
sure N(d¢,dz) is

L(dg) = aM(dS) + bW (dE),
where (a,b) € R? and W (d€) is a Wiener measure independent of M (d§). In addi-
tion, aM (d€) is called a Lévy random measure without Brownian component.

Remark 1.3.2. Let d = 1. Then, (L([0,1])),5, is a Lévy process and (aM([0,1])),,
is its non-Brownian part.

Hence, in order to study the trajectories regularity of a RHFLM, [BCI02]| estab-
lishes next proposition which gives an evaluation of the moment

p
Proposition 1.3.3. Let p € N*, f € L? (Rd) N L% (Rd) and suppose that [ satis-
fies (1.15) then [, f(§)M(dE) is in L*(Q) and

[ 7€) M)

S SCAT AT
| ([ e 100) ]:ZM(%)’"ZH L ,

Lpm ¢=1

where ),  stands for the sum over the set of partitions L,, of {1,...,2p} in m
subsets K, such that the cardinality of K, is 2l, with l, > 1 and where || f[y, is the

L%4(R%) norm of f.
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Under the assumption that f € L*(R?) N L% (R?), [BCI02] obtains the existence
and the expression of the moment of order 2p of the stochastic integral [ fdM.
Actually, this assumption is also necessary.

Proposition 1.3.4. Let f € Lz(Rd) and p € [2,400). Assume that [ satis-
fies (1.15). Then,
8

Proof. By definition, for every u € R,

e (i [ £6)01(09))

exp [ [, e aunr(©)2) — 1 - 2iu(r(6)2)) u<dz>} |

FGECS

p) < +oo < f € LP(RY).

is equal to

Then, the law of [fdM is an infinitely divisible distribution. Furthermore, its
Lévy measure Ay is the push-forward of the measure n(d¢, dz) = d§v(dz) by the
map (§,2) — R(f(£)z). Hence, by theorem 25.3 in [Sat99],

“

Furthermore, by definition of Ay,

p
de) ) < 400 = /\x\pAf(d:c) < +o00.
R

[t astan) =2 [ @ devias)

Then, since v(dz) is a rotationally invariant measure,

Jlal astan) =2 [ 1@ de [mee)pviaz).

Hence, in view of (1.13) and since v(dz) is a non vanishing measure,

/|x|pAf(d:p) < 400 <= / If (O d¢ < +o0,
R Rd

which concludes the proof. O
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1.3.2 Definition and properties

Definition 1.3.5. Assume that the Lévy random measure M (d¢) satisfies the finite
moment assumption (1.13) and the rotational invariance (1.17). Let (a,b) € R? and
H € (0,1). A Real Harmonizable Fractional Lévy Motion, in short RHFLM, with
index H is a real-valued field which admits a harmonizable representation

—iz& _
Xie) = | s 1)

where L(d§) = aM(d§) + bW (d€) is a Lévy random measure in the sense of defini-
tion 1.3.1.

Hence, a FBM is a RHFLM obtained for L(d§) = bW (d¢). Therefore, by defini-
tion, a RHFLM Xy is the sum of two independent fields: a FBM and the RHFLM Zg
defined by

—iz-& 1
Zu(z) = a /]R W M(d).

In general, a RHFLM is not a Gaussian field. Furthermore, by construction, a
RHFLM is a second order field and its covariance function is given by the isometry
property (1.19).

Proposition 1.3.6. Let Xy be the RHFLM associated with the Lévy random mea-
sure L(d€) = aM (d§)+bW (d€). Then, Xy is an infinitely divisible field. In addition,
its increments are stationary and for every (x,y) € R x R?,

E[(Xu(2) = Xu(y))’] = CL(H)|lx —y|™, (1.20)
where . "

Ci(H) = (a2 + 4b27r/0 0’ I/p(dp)) C(H)
with C(-) defined by (1.6).

Therefore, a RHFLM Xy has the same variogram and then the same structure
of covariance as a FBM. However, whereas a FBM has moments of every order, a

RHFLM may not.

Proposition 1.3.7. Assume that Xy is a RHFLM with index H associated with
the Lévy random measure L(d€) = aM(d§) + bW (d€) where a # 0. Let p € [2,+00)
and v € RN\{0}. Then,

E(Xu(z)f) < +oo <= H<1-§+1%
Proof. Proposition 1.3.7 is a simple consequence of proposition 1.3.4. O

Remark 1.3.8. A RHFLM Xy with index H, which is not a FBM, has finite moments
of every order if and only if H < 1 — d/2. In particular, when d > 2, it does not
have finite moment of every order.
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Then, like FBM, RHFLMs have locally Holder sample paths.

Proposition 1.3.9. For all H' < H, there exists a modification of the RHFLM X
whose sample paths are almost surely locally H'-Hélder continuous on RY,

Hence, a lower bound for the pointwise Holder exponent of a RHFLM X is
obtained:
Hx, () > H almost surely. (1.21)

Furthermore, a RHFLM Xy is not in general self-similar but is lass with tangent
field a FBM at each point. Even a non-Gaussian RHFLM looks like locally a FBM.
In addition, at each point z, the index of the FBM is the same.

Proposition 1.3.10. A RHFLM Xy is locally asymptotically self-similar with pa-
rameter H in the sense that for every x € RY,

o (XH(JJ+6U) —XH(JJ)) (d)
ucRd

e—0t eH = (BH(U))ueRda (122)

where the convergence is a convergence in distribution on the space of continuous

functions endowed with the topology of the uniform convergence on compact sets
and By is a FBM of index H.

Like in the case of the MBM, the limit
(XH(:c + eu) — Xp(x)

eH

lim

e—0t

) (x,u)e(Rd)2

exists. However, the proof is quite long and will be given in chapter 2 in a more
general framework, see proposition 2.2.11.

In addition, some RHFLMs satisfy an asymptotic self-similarity property when
the increments are taken at large scales.

Proposition 1.3.11. Let 0 < a < 2 and assume that the control measure v(dz) is
associated with

locp<t
vo(dp) = psz dp

by (1.17) and L(d€) = M(d€). Moreover, assume that H = H + d/2 — d/a is such
that H > 0. Then, the RHFLM Xy with index H and control measure v(dz) is
asymptotically self-similar with parameter H. More precisely,

i (F) 2 (55000) e

R—+o00 RE

where the limit is in distribution for all finite dimensional margins of the fields and
Sg 45 a Real Harmonizable Fractional Stable Motion that has representation

e 1
S (u) = 2R ( /R fen Ma(d§)> , (1.23)

with M, a complex isotropic stable a-symmetric random measure.
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Remark 1.3.12. In the previous proposition, the RHFSM S} is well-defined by (1.23)
since 0 < H < H < 1.

Then, at large scales, the behaviour of a RHFLM can be very different from the
Gaussian model and this even in the case where the RHFLM has moments of every
order.

However, since a RHFLM has stationary increments, the distribution of its point-
wise Holder exponent at point z does not depend on x. Furthermore, the lass
property and the lower bound (1.21) gives its value.

Proposition 1.3.13. At every point z, the pointwise Hélder exponent Hx, () of
the RHFLM Xy is almost surely equal to H.

In addition, since a RHFLM is an isotropic field, the distribution of its directional
pointwise Holder at point x does not depend on the direction. Let us first recall the
definition of the directional pointwise Holder exponent.

Definition 1.3.14. Let f : R? — R be a function, z € R? and u € S?!, where
591 is the unit sphere of R
Then, the pointwise Hélder exponent of the function f at point x in direction w is

Hy(z,u) = sup {a S0, i LEFEW = @) _ 0}.

e—04 e

Also, thanks to the isotropy property of RHFLMs, the following corollary is a
simple consequence of proposition 1.3.13.

Corollary 1.3.15. Let (v,u) € R? x S%1. Then, the pointwise Hdlder expo-
nent Hx,(z,u) of a RHFLM Xy at point x in direction u is almost surely equal
to H.

From this corollary, one can deduce that the restriction of a RHFLM along a
straight line is not a RHFLM as soon as the non-Brownian part does not vanish. It
is well known that if By is a FBM, then its restriction (Bg(Au)),cp is a FBM with
exponent H. It does not remain true for RHFLMs.

Proposition 1.3.16. Let d > 2 and Xy = (Xy(x)),cga be a RHFLM with index H
associated with the Lévy random measure L(d§) = aM (d€)+bW (dE). Assume a # 0.
Let (z,u) € RY x ST1. Then,

(Xg(z+ Au) — XH(:zc)))\e]R
18 not a RHFLM.

Proof. For every A € R, let

Y(A) = Xg(z+ M) — Xg(x).



27

Since Xy has stationary increments, we can suppose that x = 0. In this case,
Y (A = Xg(Au).
Let us fixed A\ # 0. By applying proposition 1.3.7 to the RHFLM Xy, if ¢ > 2,

d d
E([Y(V]?) < 400 <= H<1+ - — 3
q
Remark that since d > 2, Y(\) does not have moment of every order.
Furthermore, if Y were a RHFLM, by corollary 1.3.15, its pointwise Hdlder
exponent at 0 would be equal to H and then its index would be equal to H too.
Therefore, by applying proposition 1.3.7 to Y, we would have:

1 1
E([Y(M)]?) < +o00 <= H < 5+ 5

However, since d > 2, for every q > 2

1 1 d
- +=->14+-
q 2

d
.

Then, since 0 < H < 1, one can choose ¢ such that

d d 11
l4-—-<H<-+4=
—l—q 5 q+2

and Y is not a RHFLM. O

As a conclusion, RHFLMs are non-Gaussian fields which share many properties
with the FBM. However, their pointwise Holder exponent does not depend on the
position, which restricts the field of applications. Hence, next chapter introduces
a generalization of RHFLMs which allows the pointwise Hélder exponent to vary
along the trajectories.






Chapter 2

Real Harmonizable Multifractional
Lévy Motions: definition and
properties

Real Harmonizable Fractional Lévy Motions (in short RHFLMs), introduced by
Benassi, Cohen and Istas in [BCI02|, make up a class of lass fields which includes
non-Gaussian fields and the FBM. However, their increments are stationary and their
Holder exponent is almost surely equal to a constant. Then, this chapter introduces
some non-Gaussian lass fields whose Holder exponent varies along the trajectories.
These fields are called Real Harmonizable Multifractional Lévy Motions, in short
RHMLMs.

The MBM has been defined in [PLV96] and [BJR97| by substituting in a repre-
sentation of the FBM to the constant parameter H a function h. Here, RHMLMs
are introduced in the same way from the definition of RHFLMs. Let us recall that
a RHFLM Xy of index H (0 < H < 1) is defined as the stochastic integral:

e—ix-{ —1

)= | T a9 (2.1)

where ||£]| is the Euclidean norm of £ and L(d¢) is a Lévy random measure. Then
RHMLMs are defined by substituting in (2.1) to the constant parameter H a lo-
cally Holder function h. When L(d¢) is a Wiener measure W (d¢), one obtains the
harmonizable representation of the MBM. Hence, the class of RHMLMs general-
izes the MBM and the RHFLMs. One of its main interest is that it contains some
non-Gaussian fields which share many properties with the MBM which is a power-
ful model in applied mathematics. Actually, RHMLMs have locally Holder sample
paths and are locally asymptotically self-similar with FBM as tangent field at each
point. Hence, RHMLMs have the same local structure as the MBM: locally they
look like FBMs.

In addition, [BCI02] studies the asymptotic at large scale of RHFLMs. Also,
RHFLMs can have different asymptotic at low and at large scales. More precisely,
some RHFLMs satisfy an asymptotic self-similarity at infinity with tangent field a

29



30

Real Harmonizable Fractional Stable Motion, in short RHFSM. Whereas RHFLMs
locally look like a FBM, at large scales they can look like RHFSM, which does not
have even second order moments. Actually, the same behaviour at large scale holds
for a larger class of RHMLMs.

Like in the case of MBM, the properties of a RHMLM X, are governed by the
multifractional function h. In particular, it controls the local regularity of its sample
paths. Also, in view of applications, a central problem is to identify this function h.
In the case of a RHFLM Xy, i.e. in the case where h is equal to a constant, the
fractional index H is identified in [BCI02| thanks to an estimator based on gener-
alized quadratic variations. One of the main interest of this estimator is that it is
constructed owing to discrete observations of one sample path of the RHFLM Xp.
It has first been introduced in a general Gaussian framework in [IL97| and studied
in the case of Filtered White Noises in [BCIJ98]. Nevertheless, whereas it cannot
be applied to RHFSMs (see [ADF00, APPT00, Dur01] as for estimation of RHF-
SMs), it allows to identify the fractional index of RHFLMs which are second order
fields. However, as for the MBM B, this estimator only gives the minimum of
the function h. Also, in the framework of RHMLMs, in order to identify h(z), the
generalized quadratic variations are localized in a neighbourhood of = as in [BCI9S].
Hence, the estimation of the multifractional function h can be performed using only
one discrete sample paths of the RHMLM X,.

The next section is devoted to the construction of RHMLMs. In section 2.2, the
regularity of the sample paths of RHMLMs and the asymptotic self-similarity prop-
erties are studied. The last section deals with the identification of the multifractional
function, using localized generalized quadratic variations.

2.1 Construction of non-Gaussian Multifractional
Fields

In this part, M (d€) is a Lévy random measure without Brownian component in the
sense of definition 1.3.1. More precisely, M (d¢) is represented by a Poisson random
measure N(d¢, dz) on RY x C whose mean measure n(d¢, dz) = d¢ v(dz) satisfies the
the finite moment assumption (1.13) , i.e. is such that

Vp>2, /\z|p v(dz) < 4o0.
C

Here, v(dz) is a non vanishing measure such that v({0}) = 0. Moreover, as
in |[BCI02|, the control measure v(dz) is assumed to be rotationally invariant. Then,
v(dz) is associated to a measure v,(dp) on (0,+o00) by (1.17).

Let us now introduce Real Harmonizable Multifractional Lévy Motions.
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Definition 2.1.1. Let 8 > 0 and let h : RY — (0,1) be a locally 3-Holder
function on R?. Let (a,b) € R?. A Real Harmonizable Multifractional Lévy Motion,
in short RHMLM, is a real-valued field which admits a harmonizable representation

Xy = [ g
n(@) = o €[ (d§),

where L(d§) = aM(d€) + bW (d€) is a Lévy random measure in the sense of defini-
tion 1.3.1.

Consequently, X}, is the sum of two independent fields, one of which is a Multi-
fractional Brownian Motion. In particular, the MBM is the RHMLM obtained for
L(d§) = W(d¢€). Furthermore, when h is equal to a constant H, X}, is a RHFLM.
Then, the class of RHMLMs contains the MBM and RHFLMs. In addition, let us
notice that by construction X, is an infinitely divisible field.

As noticed in [BCI02], RHFLMs have the same structure of covariance as the
FBM. Also, by the isometry property (1.19), a RHMLM has the same structure of

covariance as a MBM. However, whereas the FBM and the MBM have moments of
every order, RHFLMs and RHMLMs do not in general.

Proposition 2.1.2. Let a # 0 and X, be a RHMLM associated with the Lévy
measure L(d€) = aM (&) + bW (d€). Let x € RIN\{0} and p € [2,+0c0). Then,

d d

E(|Xn(2)") < 400 <= h(z) <1-— P o
Proof. Tt is a simple consequence of proposition 1.3.4. O
In particular, X (z) has moments of every order if and only if h(z) < 1 —d/2.
Then, as soon as d > 2 or h(z) > 1/2, X (x) does not have moment of every order.

Assuming (1.17), RHFLMs have stationary increments. It does not remain true
for RHMLMs. As an example, the MBM is a RHMLM whose increments are not
stationary in most cases.

Throughout this chapter, h : R? — (0, 1) is a locally S-Hélder function on R?
and X, is the RHMLM associated with s and the Lévy random measure L(d¢).

2.2 Sample paths regularity and Asymptotic self-
similarity
This section deals with two properties that RHMLMs share with the MBM. On the

one hand, the RHMLM X}, has locally H-Holder sample paths on a neighbourhood
of z for every H < min (h(z), ). On the other hand, if for every z, 0 < h(z) < 3,
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then X, is lass with tangent FBM at point x. From these two properties, one
deduces that the Holder exponent of X, at point x is almost surely equal to h(z).
As these properties have already be shown in [BJR97| in the case of the MBM, i.e.
in the case where L(d§) = W (d§), we suppose for the sake of simplicity in the proofs
that L(d¢) = M(d¢).

Furthermore, the asymptotic at large scales is studied. Actually, some RHMLMs
satisfy an asymptotic property when the increments are taken at large scales and
the limit field is a fractional stable model.

2.2.1 Preliminary Lemmas

Usually, to get the regularity of the trajectories and the lass property, one estimates
E[|Xn(z) — Xa(y)|],

where ¢ € N* = N\{0}. Nevertheless when h(x) > 1 —d/2 and ¢ > 3, X,(2)
may have an infinite moment of order ¢q. Thus the field X}, is split into two fields
X, = X;7 + X, where X, has moments of every order and X, has almost surely
locally 5-Hélder sample paths. Then one can estimate

E[| X, (z) = X ()["], ¢ €N".

Let n € N and
P.(t) = Z k with convention Fy(t) = 0.
k=1
Then - P 6
e s — 1 — n —ix - 1 <1
ng(x’ 5) = h(z)+d/2 Ieli= (2'2)
€]
and iz €)1
> (—ix -
g;(l’, 5) = H£|’h(x)+d/”2£”S1 (23)
are in L*(R?) for every z € R
Therefore X, = X;7 + X, with
Xiule) = [ oo, L9 (2.4
R
and Xy, (o) = [ gu(0.€) L(ag). 25)
R

Notice that
X, =X h* 0

Moreover g (z,-) € LY(R?) for every ¢ > 2 such that

(n+1—d/2—h(z))g > —d.
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Consequently, when n > d/2, g (x,-) € L1(R?) for every ¢ > 2 and every x € R%.
In this case, by proposition 1.3.4, X ,”LL ,, has moments of every order. Furthermore,
thanks to proposition 1.3.3, proved in [BCI02], one can compute

2
B[ (X1, (2) = Xi, ()]
with the help of some L??-norms of the deterministic map & — g,(x,y, &), where

To estimate these norms, g, is split into g, = g,.1 + gn2 With

e € — e + [Pu(—iy - €) — Pul(—iz - g
e

gn,l(x7y7§) = (26)

and

gn,2<x,y,§>=eix{_l_Pn(_wolmg[ 1 : ] (2.7)

{6 el pe

If X, is a RHFLM of index H, i.e. if h is equal to a constant H, notice that
gn2 = 0. One of the main difference between the studies of RHFLMs and RHMLMs
lies in the study of the properties of g, 2.

Lemma 2.2.1. Let K C R? be a compact set. Suppose that ¢ > 2 is such that
q(n —d/2) > —d. Then there exists a non negative constant C = C(K,q) such that

\V/(ZL‘,y) € sz ||gn,1(x7y7 )HZ < CH:L‘ — quh(y).
Proof. Let (z,y) € K? and let us note I) = [ gn,1(2,y, ).
Il(xay) = Ill(x7 y) + 112(1‘, y)

where

e Wl _ o WE 4 P (—jy- &) — P (—iz-&)|*
In(z,y) :/ ‘ q(h(y)%qudg3 ( é)‘ s,
lell<1 €]l

’efix'g — efiy{’q
and 112(x,y):/ dg.
E 1 A

By Taylor expansion,
e —e™WE 4 Py(—iy - €) — Pa(—ix - €)| < Cllz =yl €)™
Let us define My = maxg h. If 0 < ||€|| < 1, then

1o 1
—_ M .
(13
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Consequently,

1
hmawSCWx—mw/

el [

d¢.

This last integral is defined since g(n — d/2) > —d and so
Li(z,y) < Cllz —yl|”.

It remains to study /5. Unfortunately Taylor expansion gives an infinite bound.
Let us suppose that = # y. One splits [15(z,y) into the integrals

}e*i(x*y)-ﬁ -1 }q

J1($,y):ﬂxy””521 Hquh(y)-l-qd/Q dg
llEn=>1

i

dg.
h d/2
Hqu (y)+qd/

and Jz(x,y):/
1<gl<

Then one can easily see that

III yll

Jy (x, y) < C'||:17 _ y”d(q/?*l)ﬂh(y)'

By Taylor expansion,

1

TTe—yll

Tlayy) < Cllo =yl [ g g,
1

Then 1
Ta—ull
JQ(xay) < CHQE ||q(1+h(y MK)/ ! pd—l—qMK-i-q—qd/Q dp
1

Consequently, by evaluating the last integral, one obtains that

Jo(z,y) < Oz — y||*"¥

Let us now study g, ».

Lemma 2.2.2. Let K C R? be a compact set. Let us note mx = ming h and
My = maxy h.
Suppose that ¢ > 2 is such that q(n — d/2) > —d. Then

V(w,y) € K, [lgna(z,y,)|! < Clle —y|*,

where
C = ||h]|} x sup J(u) € RT
’ ueK
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with
= [l —Pn(—iu-6)1||f||§1}q|1n||§|||q{ Lo r :
R (1= ™™= g™
h(uw) — h(v
and ||h|| 5, = sup M
(woer?®  [lu— vl
Proof. Let (z,y) € K? and let us note I, = 1gn2(x,y,-)[[;- By the Mean Value
Theorem,
11 =(h=) = h(y) o]
€™ Tl HEE

where ¢, ,, is between h(z) and h(y). Therefore myg < c¢,, < M.

Furthermore
1 1 1

c < e Ljg>1 + 1 1.

Then
1 < 1 n 1
e = T e
Consequently,
1 1 1 1
5 | < )~ Bl €| o + e |
e el eI g™

Therefore Ir(x,y) < |h(x) — h(y)|*J(z), where J(x) is equal to

/ }e_”f—1—Pn(—iw-€)1||£||§1!q|ln||§|||q[ L ] "

R €l el jieg ™

It is straightforward to prove that sup,cx J(u) < +00. Moreover since h is a locally
(3-Holder function on R¢,

h(x) = h(y)] < Al 5.l =yl
and then
Iy(w,y) < ||} & Sup J(w) ||z — y)) ™.
O

Since g, = gn1 + gn2, by applying the Minkowski inequality, proposition 1.3.3
and lemmas 2.2.1 and 2.2.2, one can proves:

Lemma 2.2.3. Let K C R? be a compact set and n > d/2, then for every p € N*,
there erists a non negative constant C' = C(K,p) such that

Y(r,y) € K2 B[ (Xif, (@) = X, )] < Clly — =™,

where m = min (h(y), 5).
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Let us notice that by symmetry, m can be replaced by
m' = min (max (h(z), h(y)), 5).

It remains now to study X, . Please note that as usual the regularity of the

trajectories is given for a modification X~ of X 1€ for a field X~ such that
Yz € R, IP’()?*(:U) - thn(x)) ~1.

Lemma 2.2.4. There exists a modification of the field X, that has, with probability
one, locally 3-Hdlder sample paths.

Remark 2.2.5. When h is C!, there exists a modification of the field X}, such that
with probability one, X, € Ch.

Proof. Notice that for every z € R?
Xh’n(:c) = Zn(x, h(x)),

where the field (Z,,(z,Y)), ,)erax(0.1) 15 defined as follows:

P,(—iz - ¢)
Znl,y) = S S L(dE). 2.8
) /usngl e ) 29

Then since h is a locally g-Holder map with values in (0, 1), it is sufficient to
prove that there exists a modification of the field 7, such that P(Z, € C!) = 1.

Let us define ol 17 _
il H':l g‘?‘]
y y>:/ . )
len< [l€NP

where o € N7 is such that 1 < |a| = > —1a; <nandy € (0,1). One shows that
for every «, the field Y, admits a modification which has almost surely C!'-sample
paths on (0,1). Then since P, is a polynomial, the same holds for Z,,.

Let o € N? such that 1 < 2?21 a; < nand n € (0,1). One can prove with

Taylor expansion the existence of a constant C' > 0 such that

1. E[|Ya(y +96) — Ya(y)|2} < C|8)?, for every y € [,1 —n] and every § such that
y+5€ [7771_77L

2. E[|Ya(y +0) + Ya(y — 6) — 2Ya(y)’] < O[], for every y € [, 1—7] and every
§ such that (y + 4,y — d) € [n,1 —n]*.

According to |CL67|, see page 69, these statements imply the existence of a
modification of Y, which has almost surely C!-sample paths. And so the same holds
for Z,. O
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2.2.2 'Trajectories Regularity

There exist modifications of the MBM whose sample paths are locally Holder. Here
an analogous result in the case of RHMLMs is shown.

Proposition 2.2.6. Let K C R? be a compact set.
Then for every H < min (ming h, ), there ezxists a modification of the RHMLM X,
which has H-Hdélder sample paths on K.

Proof. Let H < min (ming h, 3) and n > d/2.

As a consequence of lemma 2.2.3 and of the Kolmogorov Theorem, there exists
a modification of the field X ,;L , Whose sample paths are H-Ho6lder on K. Then
since X, has almost surely locally (B-Holder sample paths (see lemma 2.2.4) and
Xp = X, + X, the proof is done. O

Then proposition 2.2.6 gives us a lower bound for the pointwise Holder expo-
nent Hy, (z) of X} at point z:

Hx, (x) > min (h(z), §). (2.9)

2.2.3 Asymptotic Self-Similarity

Like RHFLMs and MBM, a RHMLM is not self-similar but locally asymptotically
self-similar. However, a RHMLM looks like locally a FBM whose index varies along
the trajectory. In fact, its tangent field at each point is a FBM.

Proposition 2.2.7. Suppose that for every x € RY, h(x) < 3. Then the Real Har-
monizable Multifractional Lévy Motion X, is locally self-similar with multifractional
function h in the sense that for every fized x € R?:

<Xh(x + ;:24(1)— Xh(l')) . (d) C(h(@)) (B (1)), s (2.10)

lim
e—0t

where the convergence is a convergence in distribution on the space of continu-
ous functions endowed with the topology of the uniform convergence on compact
sets, By is a standard FBM of index h(x) and

Ci(H) = [4a2ﬂ/0+oop2yp(dp)+b2}é< Mdgf, (2.11)

ra €]
with e; = (1,0,---,0) € R%

Before we prove proposition 2.2.7, the field

—iz-é _
Y (z,y) = /Rde||§||Td/2 L(d¢), zeR% ye(0,1) (2.12)
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is introduced. Then, notice that
Vo € RY Xy, (z) = Y(x, h(z)). (2.13)

The field Y will be used to split the increments of X}, into increments of Y which
only involves one variation of its two variables.

Proof. Since this proposition has already been proved in [BJR97| in the case where
L(d¢) = W(d€), i.e. in the case of the MBM, we can assume for the sake of simplicity
L(dg) = M(de).

We first prove the convergence of the finite dimensional margins. Next a tightness
property is shown. It is a direct consequence of lemmas 2.2.3 and 2.2.4.

Let us fixed € R% Then for every ¢ > 0 and u € R,

B Xn(x + eu) — Xp(x)
- 5h($) '

Yo(u)

Convergence of the finite dimensional margins:

The field Y. is split into two fields Y.; and Y., such as Y.; only involves a
variation of Y in its first variable. Hence, Y., is an increment of Y in its second
variable. More precisely, Y. = Y, ; + Y. » where

Y(z +eu, h(z)) — Xp(x)

Yea(w) = ghl@)
e Xala + £0) — V(o -+ cu, h(z)
mlx+eu)—Y(x +eu, hlz
Y5=2(u) - ch(x) )
Then, by (2.13),
Y(z +eu,h(x)) —Y(x, h(x
Vo) = X1 () = Y (&, 1))

ch()

Moreover, (Y (v, h(x))),cgs is @ RHFLM with index h(z) and it is associated with
the Lévy random measure L(d). Also, thanks to proposition 3.1 in [BCI02],

Jim (¥ (u) € Ci(h(@) (Bao) () (2.14)
where the limit is in distribution for all finite dimensional margins of the fields, By,
is a standard FBM of index h(z) and C(-) is defined by (2.11). Actually, |[BCI02]
establishes that the convergence (2.14) is a convergence in distribution on the space
of continuous functions endowed with the topology of the uniform convergence on
compact sets. However, we will not directly use this result.

Furthermore,
1
Yeolu) = 55 / go2(x + eu, x, §) L(dE),
9 R4
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where g o is defined by (2.7). Therefore, using the isometry property (1.19),

E(YZ2y(u)) = % /0+ P*vo(dp)llgoz(x + eu, z, )3,
Hence, by lemma 2.2.2, for every ¢ < 1
E(yé(@) < O2B-nw)
Then as > h(x), lim._o, E(Y2y(u)) = 0. Hence,

. d
lim (Yeo(u)),cpe = 0, (2.15)

€*>0+

where the limit is in distribution for all finite dimensional margins of the fields.
Then, since Y. = Y. 1 + Y. 2, (2.14) and (2.15) gives the convergence of the finite
dimensional margins of Y.

Tightness: Let n > d/2,

B X}J{n(a: +eu) — X,fn(:c)

Xh’n(:c +eu) — Xh’n(a:)
eh(x) ’

+
Y. (u) @)

€

and Y. (u) =

Then Y, = YF + Y.
Since h(z) < (3 and since X, has locally 3-Holder sample paths, it is clear that

. (Xh,n(x +eu) — Xh,n(l“)) (@
lim
u€ERA

e ch(z) =0
where the convergence is a convergence in distribution in the space of continuous
functions endowed with the topology of the uniform convergence on compact sets.
Consequently, (Y.7).., is a tight family. Let us now prove the tightness of (Y.*)..
Notice that Y."(0) = 0 and so that (Y_7(0))_ is tight.

Let K C R? be a compact set and ry > 0 such that when ¢ < 1, v+ eK C K,
where Ky = B(z,79). The lemma 2.2.3 is applied to the compact set K,. Then
for every p € N*, there exists a constant C' = C(p, Ko, ) > 0 such that for every

e € (0,1] and every (u,v) € K2,

B| (3 (1) = Vi ()] 5 Qs by — et
Moreover as h is a locally 5-Holder map,
Ve € (0,1], Vv € K, ghleten)=h@) < ¢

Therefore for every p € N*, there exists a constant C' = C(p, K, x) > 0 such that for
every ¢ € (0,1] and every (u,v) € K?,

B[ (V) = YH(0)¥] < Cllu— o],

One can choose p € N* such that 2pming, h > d, which concludes the proof. O



40

On the one hand, the behaviour of the increments of Y in its second variable is
governed by the regularity of the function A since they involve increments of this
function. On the other hand, the behaviour of the increments of Y in its first variable
are given by the value of h(x). Hence, the tangent field at X, at point = depends
whether h(z) < ap(z) or not. Actually, the convergence (2.10) holds as soon as
h(z) < ap(x). Then, one can wonder what happens when h(z) > ap(z). In this
case, the preponderant term is due to the increments in the second variable of Y.

Proposition 2.2.8. Let v € R?. Assume that h(z) > oy, (z) and that

() = lim MEFY) = M@) (2.16)

I 7R

exists. Then

@)X @) (Jel™@) o (217)

u€Rd

lim
e—0t

Xz +eu) - Xa(@)) @
gah(x) cRE N

where the limit is in distribution for all finite margins of the fields and where

- [ =Dkl
X0 = [ g 10

Remark 2.2.9. When x # 0 and [(x) # 0, the limit field in (2.17) is not degenerate
and then (2.17) means that X, is lass at = with exponent ay(x). Let us remark

that in (2.17), the field <||u||0‘h($ ) is deterministic. Then the randomness of the
u€Rd

tangent field is only due to the real-valued random variable X*(z) which does not
depend on wu.

Proof. For the sake of simplicity, we assume that L(d¢) = M(d). Then, one pro-
ceeds as in the proof of (2.10) replacing " by 2+ Let

Y;(u) _ Xh(l‘ + EU) — Xh(l‘)
gah(l’)
and let us split Y, into Y, = Y. ; + Y., where

Y(z +eu, h(z)) — Xp(x)
gah(x)

Yoi(u) =

and Xp(z + eu) —Y(x+€u,h($))_

con (@)

Yeo(u) =

First, by proposition 3.1 in [BCI02|, the RHFLM (Y (v, h(2))),cga is lass with
index h(zx). Hence, since X (z) = Y (z, h(z)) and since h(z) > ap(x),

d
lim (Ve (1)), cpe 2 0.

Eﬂ0+
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Therefore, it remains to study the field Y., which is here the preponderant term.
Let us recall that

1
Yeolu) = o / go2(7 + eu, x,§) L(dE)
g%h Rd
where
( 5) e—i(x+6u)~§ -1 ( 1 1 )
go,2 T +eu,x, = Ttew) < :
(k& lgf =gt

Furthermore, (2.16) leads to

~ T g0,2<x +eu,z, 5) _ (e—ix-f B 1) In H£|| ap(z)
g(x, uaf) = Eli%{r can (@) = ||§||h(x)+d/2 l(l’)”u” :

Hence, by a dominated convergence argument,

9072(I‘+EU,,ZL‘,') ~

o I@u)) =0

2

2
)=

lim
Eﬂ0+

Then, the isometry property (1.19) yields that

“(

(e —1)In|i¢]]
H£|’h(:v)+d/2 )

Yoo (u) + 1) ul| X" (2)

where X*(z) — /

R4
As a consequence,

. (d) * ap(T
T (Vo) 0 @ ~1) X" (@) (lul )

where the limit is in distribution for all finite margins of the fields. Furthermore,
by (1.18), X*(x) is a symmetric random variable, which concludes the proof. O

b
u€ER4

In addition, since X*(0) = 0, the limit field in (2.17) is degenerate if z = 0.
Hence, the convergence (2.17) does not establish the lass property at z = 0. Actually,
the variation of Y in its second variable

Y (eu, h(z + eu)) — Y (eu, h(x))

does not give the tangent field; its convergence is accelerated by the convergence to
zero of its first variable cu as € tends to zero. However, the RHMLM X, remains lass
at x = 0 and its tangent field is governed by the behaviour of Y in its first component.
Actually, the limit field is given by proposition 2.2.7 without assumption on the value
of h(0) as stated in next proposition.

Proposition 2.2.10. The Real Harmonizable Multifractional Lévy Motion X, is
locally asymptotically self-similar at © = 0 with index h(0) in the sense that

i (S55) 0 0) (B (1) e (2.18)

e—0t

where the limit us in distribution for all finite margins of the fields, By is a standard
FBM of index h(0) and C1(-) is defined by (2.11).
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Proof. For the sake of simplicity, we suppose that L(d¢) = M (df). However, the
proposition remains true for a general Lévy random measure L(d¢). We directly
prove the result without using the decomposition of the increments of Xj,.

Let p e N*, u = (uy,...,up,) € (Rd)p, v=(vy,...,v,) € R” and

5 —zauk & 1
gO(g gh(O Z Uk = h(eur) ||§||h(6uk) :

k=1

p
Then since ka Ye(ug) = / g5 (&, 2) N(d¢, dz),
k=1 Re

E|exp < ka )] = exp (Ye(u,v))

with 9. (u,v) = /d C[exp (ig5(&, 2)) — 1 —iga(&, 2)] dE v(dz).
Rax
Therefore, the change of variable A = ¢ leads to:
o, v) = / (A, 2) d\v(dz),
RdxC

where I.()\, 2) = e ¥exp (igo" (€, 2)) — 1 —igo" (), 2)] with

- ] 72uk A 1 .
905(572) _ 2€d/2Z§R< Z U H)\H = +d/2€h(€ k) h(O)) .

Hence, since h is locally Holder, 1i1(r]1 ghleu)=hO) — 1 and then
e—U4

fwk)\ -1
lim (), 2) = —4R?
ELI(I)I_F ( Z < Z kH)\H O)+d/2>

Then, a dominated convergence argument gives the convergence of the characteristic
function and the conclusion. O

Furthermore, in the convergence (2.10), the point z is fixed. Actually, the con-

vergence of
(Xh(x +eu) — Xh(:p))
ehle) (z,u)ERIXR?

is established in next proposition. This result generalizes proposition 1.2.8 to the
class of RHMLMs. In particular, it holds for any RHFLMs.
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Proposition 2.2.11. Let h : R — (0, 1) be a locally 3-Hélder function such that
Vo € RY, h(z) < f.

Then, let (Bh ) vepa b€ @ family of independent standard FBM. In particular, for

every © € R, (B (u ))ueRd is a standard FBM with indez h(z). Let B be the
centered real-valued Gaussian field defined by

B(z,u) = Bp)(u).

Then,
X - X ~
lim ( h@“jj(l) h@) D (cr(h(@) B, u)) . (2.19)
e—0t e (z,u)ERIxRY (z,u)€RIXRE

where the limit is in distribution for all finite dimensional margins and Cy(-) is
defined by (2.11).

The proof of this proposition is quite long and is based on the following lemma.

Lemma 2.2.12. Let p € N such that p > 2. Let up = 0 and (uy,...,u,) € RP.
Then,

p—2 P
el Dho1 Uk _ Zewk +p—1= Zelzj ouJ( Uyl _ 1) Z (eiw _ 1)_
_ - I=k+2
Proof. By expanding the right hand side term, one easily obtains the result. O

Proof of proposition 2.2.11. First, the convergence of the Brownian part is given by
proposition 1.2.8. Then, assume that L(d{) = M(d¢). Let p € N* and (zy,...,2,)
be a family of pairwise different elements of R?. Then for each integer k such that
1 <k <p,let pp € N, (ug1,...,upp,) € (Rd)pk and (vg1,...,Ukp,) € RPE. In
addition, let

Pk

Xn( X
(010) = 30 30y Tl ) Xalar)

h(zk)
k=1 j=1 €

The proposition will be proved as soon as we establish that

P Pk
lim Y.(z,u,v) i) ZkajB(xk,ukj). (2.20)

=0+ =1 j—1

When k = 1, proposition 2.2.7 implies (2.20). Then, assume that k > 2.
Let us split Y. = Y. ; + Y. » into two fields defined by

Yoi(z,u,v) = ZZ Ukj Y (zk + eupy, h(wy)) — Y (@p, h(zk))

h(z)
£
k=1 j=1
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and

Y (2 + eugj, h(zg + cug;)) — Y () + cugg, h(zg))
Z Z Uki () :

.TUU
k=1 j=1

Step 1 Study of Y, ;: Let

P

G.(§) =) e ™ EFE(E),

k=1
where
—ieug;-§ _ 1

Z ki ch(zk) H£||h(xk)+d/2

=1

Then, since Y. i (z,u,v) = /RdGe(f) M (dS),

Elexp (iYe 1 (2, u, 0))] = exp (¢(¢))

with
0E) = [ [exp (iR(GE)2) ~ 1 = AR(GlE)2)) dE (),
Thus,
§E) = S0+ He)
where -

Ix(e) = /Rd (C[exp (2iR(e ™ FE(€)2)) — 1 — 2iR (e FE (£)2)] dE v(dz)

and

Jp(e) = /Rd C[exp (2iR(G:(&)z)) +p—1— Z exp (Qi%(e”k'gF,f(f)z))] dév(dz).

Hence, by rotational invariance of the measure v(dz),

Be = [ | lexp (IR(F(€)2) — 1 = 2(FH(€)2)) de vide),

Therefore, by definition of FJ,

exp (Ix(e)) = E

Pk
exp (z Z Vi Xh(ay) (aukj)> ] ,

J=1
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where X, h(zy) 15 @ RHFLM with index h(z;) and associated with the Lévy measure
L(d¢) = M(d€). Consequently, by proposition 2.2.7,

elir& Z Ix(e) = —% Z\/ar (Zk vkjcl(h(xk))é(xk, uk3)> : (2.21)

Let us now prove that
lim J,(e) = 0. (2.22)

€*>0+

First, by applying the change of variable A\ = ¢, J,(¢) is equal to

/Rdx(ce_d[exp (2i5d/2§R <ég()\)z>) +p—1— kz;exp (2i5d/28%(e_”’f')‘/aFk(}\)z))] dAv(dz),

where
—zukj 1
Fi(A) Z Uki T 1R +d/2 INZEDRE
[l
and ,
G-(A) =) e ™M (N).
k=1

Then, lemma 2.2.12 leads to

p p
=2 > A

k=0 k'—k~+2
where
App(e) = K. (& 2)d\v(dz)
RexC

with .

K.(\z) =¢ Yexp [22’561/2?)? (Z eixf“/eFj()\)z>] Ka1(A, 2)

j=1

and

K.1(\, 2)= [exp (202 R e+ ME (A)z)) —1[exp (2i€d/29?(e’”k’ Mepy, (AN)z))—1].

Hence, in order to obtain (2.22), it is sufficient to prove that

lim Ay () = 0. (2.23)
€—>0+
Then, let B ‘ ‘
K (N 2) = AR (e M B (M) 2) R (e MEF (N)2).
Hence,

lim (Ke()\,z) + I?e()\,z)> —0

Eﬂ0+
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and a dominated convergence argument yields that

lim (KE()\, )+ K.\, z)> d\v(dz) = 0.

=0+ Jrixc

Therefore, in order to prove (2.23), it remains to show that

lim K.(\ z)d\v(dz) = 0. (2.24)

€20+ Jraxc
In addition, since the map ¢ — [ @dﬁ is an isometry,
K.\, 2)d\v(dz) = E(Lgyi Li),
where

L = R(e @ MeF(N)z2) N(de, dz).
RixC

Hence, since Fj(—\) = Fj()),

L= / e NER(N) M(dE).
Rd

Also, using (1.19), one easily shows that

- +o0 , _
K.\ 2)d\v(dz) = —4x / p*v,(dp) / el =T ) Me @ (N Fy (V) d.
RaxC 0 Rd

Then, since xp # 211 (K’ > k+1), by applying the Riemann Lebesgue lemma, one
obtains (2.24). Consequently,

alil& = —— ZVar (Z vy C1(h (%Wk;))

Therefore, by definition of é,

hS]

Pr

lim Y; (z,u,v) i) ka]B Tk, Ugj)- (2.25)
€*>0+ 1 ]:1

Step 2 Study of Y, Let us remark that
E[(Y(:ck —+ €Ukj, h(l’k + EUkj)) — Y(Ik + EUkj, h(.l’k)))2] = C'Hgo,g(xk + EUkj, Tk, )”;,

with C = 47 fo v(dp). Hence, since h(y) < 3 for every y € R?, by the Minkowski
inequality and lemma 2.2.2,

E(|Y:2(z, u,v)[?) = 0. (2.26)

Conclusion The conclusion is then given by (2.25) and (2.26). O
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In the case of RHFLMs associated with a stable control measure, there exists
an asymptotic self-similarity at infinity. A similar property holds for more general
RHMLMs. Then, when the increments are taken at large scales, the limit field is a
Real Harmonizable Fractional Stable Motion. Actually, it holds when RHMLMs are
associated with a truncated a-stable control measure. Heuristically, this truncation
disappears at large scales.

Proposition 2.2.13. Let L(d§) = M(dE), 0 < a < 2 and assume that the control
measure v(dz) is associated with

locp<r
vp(dp) = pfjj dp

by (1.17). Moreover, assume that
H1l Sh, €R, lim (h(z)— he)ln|z|| =0,

[|lz]| =00
and

H2 ho = hoo +d/2 —dja > 0.

Then, the RHMLM X, is asymptotically self-similar with parameter %Oo at infinity.

More precisely,
RLHEOO ( Rheo )ung B (Shw (u))ueRd’

where the limit is in distribution for all finite dimensional margins of the fields and
S;_ is a Real Harmonizable Fractional Stable Motion, in short RHFSM, that has

representation
|
S (1) = D(aﬁR(/Rd W Ma(d§)>7 (2.27)

with M, a complez isotropic stable a-symmetric random measure with control mea-
sure the Lebesque measure (in the sense of [ST94]) and

T +o0 dr e
D(a) = [2 7T/0 (1 — cos (T))rl+a:| .
Remark 2.2.14. Since 0 < E; < hy < 1, the RHFSM SEO@ is well-defined.

Remark 2.2.15. In the case where h is equal to a constant H, the assumption H1 is
fulfilled and the preceding proposition has been proved in [BCI02|. However, there
exists non-constant function h which satisfies H1 and H2 such as

h(z) = Cexp (_ﬁ)

where a et C' are chosen such that d/a —d/2 < C' < 1. Then, the preceding
proposition holds with i, = C'+d/2—d/«. Hence, there exists RHMLMs associated
with a non-constant function ~» and with a RHFSM as tangent field at infinity.



48

Proof. Let p e N*, u = (uy,...,u,) € (Rd)p, v=(vy,...,v,) € R” and
2 N
90 (6:%) = Tg?(zzvkm)
Res = |I€]]
p ~
Then since ka Xn(Ruy) = / gi(&,2) N(d¢, dz),
k=1 Re

E = exp (¢(R))

exp (z Z i Xh(Ruk)>

with
0(R) = [ fexp (iafte,2) = 1 = igf(6,2)] d v(d2).

First, since v(dz) is a rotationally invariant measure and since g*(¢, —2)=—g{¥ (¢, 2),

0(R) = [ foos (afi(€,2)) = 1]dentdz).

Hence, by definition of v(dz),

+00 27r dp
/ / / cos f pe’ )) }10<p<1 df —— e dg.
R4

Therefore, the changes of variable A = R¢ and r = R¥p leads to:

2 p+oo
:// / Ir(\, 7, 0) dr do de,
R4J0 0

1 ~
lR()‘a r, 0) = rlt+a [COS (gé%()‘a Ty 0)) - 1] 10<r<Rd/a'

where

with
0 e A — 1 R
— ’l Uk )—Noo
G\ 1, 0) = 2rR Z kH)\Hh(Ruk +d/2R )
Furthermore, the assumption H1 implies that for every k such that u; # 0,

lim RMAwR)—hoo — 1.
R—~4o00

Therefore,

fzuk-)\ -1
g\, 1, 0) = hm g0 B\ r,0) = 2r§R< ZGZ ’“7”)\”hoo+d/2>
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Then, let m and M such that 0 < m < ho, < M. Hence, there exists R, such that
for every R > Ry and 1 < k < p,

m < h(Rug) < M and RMEu)=he <9
Therefore, for every R > Ry,
95\, 0)] < G(\)r, (2.28)

where

p
ug||1 1
—23 Juy el < Lpagor

”)\|’M71+d/2 H)\Hm+d/2 :
Moreover, by (2.28), for every R > Ry,
llr(A, 7, 0)] < U\, 7, 0),

with

1 W 2
l(A1,0) = QGz()\)Tl Looyrst + g Leourst:

(e

Let us recall that 0 < ?Loo = he +d/2 —d/a < hy < 1. Then m and M can be
chosen such that

O<m+d/2—d/a<M+d/2—d/a<1.

Hence, for this choice, one easily proves that [ € L! (Rd x (0, +00) x [0, 27r]). Con-
sequently, a dominated convergence argument yields that

27 +oo d
lim (R // / [cos (g(\,r,0)) — 1]
R—+o00 Ré

Moreover, for every = € R,

/ leos (@) = 1] - = (@)l

—+00

where C'(a) = /0 (1 —cos(r)) Tii:

7zuk)\ _ 1

Z Uk T (heotd/2 |/\||hoo+d/2

k=1

P
exp (z kaﬁw (uk)>] ,
k=1

where S;_is defined by (2.27), which concludes the proof. O

2
RLII_I:()()Q/J( ) = —C’(a)/o |2 cos (0)|” d(9/]R

As a conclusion, since hoo + d/2 = hoo + d/a,

P Xh Ruk
exp ( ka%>

k=1

lim E
R—+o00

=K
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2.3 Pointwise Holder exponent

The pointwise Hélder exponent of a RHFLM, and then in particular of a FBM,
does not vary along a sample path. Then, the MBM is a model which generalizes
the FBM and allows the pointwise Holder exponent to vary along the trajectories,
which extends the field of applications. More generally, in most cases, the pointwise
Holder exponent of RHMLMs is not equal to a constant.

Proposition 2.3.1. Suppose that for every v € R%, h(z) < 3. Then for every
r € RY, the pointwise Hélder exponent of the RHMLM X, at point x is almost
surely equal to h(x).

Remark 2.3.2. This proposition generalizes corollary 1.2.9.

Proof. Tt is classical, see proposition 3.3 page 109 in [BCI02], to deduce from the lass
property that the pointwise Holder exponent Hy, (z) of the RHMLM X, at point «
satisfies:

Hx, (z) < h(z).

Then by (2.9), Hx, () = h(x). O

The corollary 1.3.15 establishes that the directional pointwise Hélder exponent
of a RHFLM does not depend on the direction. It is due to the increments station-
arity and the isotropy property of RHFLMs. In general, a RHMLM does not have
stationary increments and is not an isotropic field. Nevertheless, in most cases, its
directional pointwise Holder exponent does not depend on the direction.

Proposition 2.3.3. Let h : RY — (0,1) be a locally 3-Hélder function such that
Vo € R h(x) < S.

Let us fized (z,u) € R? x S1. Then, the pointwise Hilder exponent Hx, (z,u) of
a RHFLM X}, at point x in direction u is almost surely equal to h(z).

Remark 2.3.4. The proof of proposition 2.3.3 uses the same arguments as in the
proof of proposition 2.3.1. Then, an upper bound for Hy, (z,u) is given by the lass

property.
Proof. By definition, Hy, (z,u) > Hx, (x). Hence, by proposition 2.3.1,
Hx, (z,u) > h(z) (2.29)

almost surely.
Let H' > h(x). Then, the lass property, stated in proposition 2.2.7, implies:

lim Xp(x +eu) — Xp(z)
e—04 Eh(l‘)
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Moreover, since u # 0, P(Bj)(u) = 0) = 0. Hence, since Cy(h(z)) # 0,

lim - @y
e—04 |Xh(:L‘+EU) —Xh(ZL‘)| '

This last convergence is also a convergence in probability. Therefore, there exists a
sequence (&,), .y such that lim &, =0 and

n—-4o0o

lim Xn(z +epu) — Xp(x)

n—-4o0o En

= +o00 almost surely.

Therefore, by definition, Hy, (z,u) < H' almost surely, which concludes the proof.
O

Then, the multifractional function h gives the local regularity of the RHMLM Xj,.
Furthermore, it also governs its local structure in terms of tangent fields. From a
statistical point of view, a central problem is then to identify this function which
characterizes the properties of the RHMLM.

2.4 Identification

In this section, L(d¢) = M (d€) + o W (d€) is a Lévy random measure which satisfies
the assumptions of the definition 2.1.1. In particular, W and M are two independent
measures.

Let h : RY — (0,1) be a locally S-Hélder function and X, be the RHMLM
associated with L(d¢) and h. Then

—iwg _
Xn(z) = /[R;dHegnh(W L(d¢).

Our aim is to identify the multifractional function h from discrete observations of
the field X}, on [0, 1]%. The variance o and the control measure v(dz) are unknown.
The field is observed at sampling points (&,..., k—]\f;), 0<k; <N,1<j<d. The
multifractional function is then identified owing to one sample path.

Then, one uses localized generalized quadratic variations, method introduced

in [BCI98]. For any = € (0,1)%, we define a (&, N)-neighbourhood of = by

<ef
Let (a¢),_o_x be a real valued sequence such that:

K K
> ag=> ta,=0. (2.30)
{=0 {=0

As an example, one can take K =2, ag =1, a1 = —2, ay = 1.

V.n(x) = {p ez ma
j=1..d

p.
v
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d
For every k = (ki,...,kq) € N¥ ay = H ;- Let us note
]:

K={keN,0<k;<Kj=0...K}.

K d
AXPZ Zath<$) = Z Hakj Xh<k%)

ke

where p € V. y(z), are the increments of X} associated with the sequence a.
Then the localized generalized quadratic variation at point x is equal to

Von(e) = > (AXp)"
pevs,N(x)

Our aim is to show that

(o) = | Loma (2250 ]

is a consistent estimator of h(x).

Notations Let (v,,),, be a deterministic real valued sequence, (Z,,),, and (R,,)
be two sequences of real random variables.

m

e v, = O(1) means that the sequence (v,,),, is bounded.
e 7, = Op(1) if and only if

Ve >0, 3M >0, supP(|Z,,| > M) < e.

e 7., = Op(R,,) means Z,, = R,,U,, with U,, = Op(1).
Theorem 2.4.1. Let h be a 3-Hélder function on [0,1]¢ and suppose that

max h < (3.
s (y) <p

Let e = N™® with 0 < a < 1. Then, as N — +o0,

where ® means a convergence in probability.
Ifd>2and 0 < a<1-—1/d, then as N — +o0

/i;N(:p) — h(x) almost surely.
Moreover for o = d/(d + 23) and for every v < af,

hy(x) = h(z) + Op (N~ ™0 E-h@2) 1y §). (2.31)
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Remark 2.4.2. Since the rate of convergence in (2.31) depends on  and h(zx), it is
only given here as a curiosity! Nevertheless we can remark that when 3 is known,
the last claim of theorem 2.4.1 explains how to choose a. Moreover when 3 = 1,
which is the case when h is C' for instance, it is the same choice as in [BCI98].

In order to prove this theorem, one studies the asymptotic of V. y(z). Let us
recall that
Xn(z) =Y (x, h(z))
where ‘
Yy = | e L(d¢), = eR?, ye€l0,1].
R

Hence,

Von(z)= > [ZakY(k;p,h(k;Z)))r. (2.32)

peV. n(z) LkeK

Like in [ALV02] and [ABCLV02], one replaces Y (X2 h(Et2)) by Y (EL2 1 (2))

in (2.32): ,
ZakY($,h(%>)] . (2.33)

ke

Wenl(z)= > [

pEV&N(l‘)

The study of the asymptotic of W. y(x) is simpler than for V. y(x). Then it remains
to compare W y(z) to V- y(z). In order to obtain the asymptotic of W, y(z), one
evaluates E(W, y(x)) and Var W, y(z). At first, let us give useful expressions of
them. Please notice that because of (2.30),

ZakY($,h(%>) :/R %Zake_’%f L(d¢).

a
et Yl =) (=
Then because of (1.19),
EW.n(z) =4 > Ipp (2.34)
pEV&N(Z‘)

where A = 0% + 47 fOJrOOpQ vy(dp) and

2
_ik.
/ i(p,—p){’zkelcake ZN&’
R e N
R4

I,y = ~—d (2.35)
’ d+h( 2)+h(2
g B+ (5)
Moreover one can prove as it is done in the last section of [BCI02| that
Var We v (2) = Z [2142(]1942’)2 + 2By + BLpy], (2.36)

p,p Ve N (2)



where B = 47 [ ptv,(dp),

’Zkelc ar e’
Jp,p’ = /
R

2d+2h
le] 2

and

L —

o, —

Before proving theorem 2.4.1, let us study Iy, Jpp and Ly .

4
-k
—ik g
2 (P/_P) g ‘Ekelc ake N ‘
e N
R4

||§||2d+2h(%)+2h(%)
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(2.37)

(2.38)

Lemma 2.4.3. For every 0 > 0 such that h(zx) > 0, there ezist £ > 0 and Ny € N*

such that for € € (0,g0], N > Ny and (p,p’) € V..n(z)?,

1
low = Sanay Pon (P = p)'

N2 T (1 + [pf = py])

where C' is a non negative constant which only depends on 0 and x, and where

ik-£|2
| d¢, v€(0,2), ueRL

i E ap €
Fy(u) = / e’ ‘ Rl d+y
R 1€]]

Proof. Let r > 0 such that Ky = B(z,r) C (0,1)% and m = ming, h > §. Let
M = maxg, h. Then let ¢y > 0 and Ny € N* such that for every p € V. y(z) and k,

kE+p

N
Let us remark that

1

I F

/

Notice that for every u € R?, the map v —

Taylor expansion gives:

1
Iow = Nz Fonn (P = p)' < Ce’

where A(p,p’,7) = %Aﬂpap'ﬁ) + l]ri/—]ypv(p, — D),

P S (E) )

|A(p, P, 7)|,

In || e'®—p)¢ ‘ Ek:eK: a e** ‘ ?

with  Ai(p,p’,7) = /
]Rd

F.,(u) is C' on (0,2). Then a
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Notice that A(p,p,v) = A(v). Then suppose that p # p’ and proceed like [BCI02]
or [BCLJ98| by integrating by parts, which leads to

‘A1<p7p/7/7>‘ SC H
{3/pi#p;

<CH-H% ol

N \pj vl

Moreover one can also prove, using integrations by parts that

ol 120 = P) CHLH% nl

Then since m > 4,

1 N 1
Loy — gy Fonte (P —p)| < C—% H o
N N Jj=1 1+ }p] pJ}

O

Lemma 2.4.4. For every § > 0 such that h(x) > 0, there exist g > 0, Ny € N*
such that for e € (0,e0], N > Ny and (p,p’) € V- n(x)?,

1 fIn N
|Jp,p’|§0{ S ]

N T Nars

where C' is a non negative constant which only depends on § and x.
The same inequality holds for L, .

Proof. Notice that
|Lp,p" < Jpp-

Therefore it is sufficient to prove the lemma for J,,,». Let Ky = B(x,7), gy and Ny
be such as in the proof of the previous lemma.
Please notice that

—_

J A , G . p/ 0’
o = an(gyea(g) (e (s)

where

dog |4
—%%u- E Qg elk{
G, (u) :/de 2 5‘ kel | d€.
R

d
(13

Since the map v — 5 G,(0) is C' on ]0,4[, a Taylor expansion leads to

1 CePln N

Jppt — Nd-+4h(z) G4h($)(0)‘ < TN
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Let us now prove theorem 2.4.1.

Proof of theorem 2.4.1. Let us take ¢ = N~* with a € (0,1). Let 6 > 0 such that
d < h(x).

Step 1: Asymptotic of W, n(x)
One deduces from the equality (2.34) and from lemma 2.4.3 that

E(W. n(z)) = N D(2) + O(N7®) + O (P N> In N), (2.39)
where D(x) = 294 Fy,(0).

It remains to study Var W, y(z). In the sequel, lemmas 2.4.3 and 2.4.4 are
applied in order to estimate this variance. Let us first recall that

J

and remark that

> H Nk < CeN,

PP EVe N ( 1 + ‘p]
Then by applying lemmas 2.4.3 and 2.4.4 to (2.36) with 6 > h(z) — a3/2,

Var W, y(z) = O ("N @), (2.40)
Consequently, if d(1 — ) > 1, then by the Borel-Cantelli lemma, as N — o0,
e INTIP@ Y y(x) — D(x) almost surely. (2.41)
Furthermore, because of (2.39) and (2.40),
W, n(z) = e2N“24@) D (1) + Op (8d/2Nd/272h(x)) +O(sMAN2 Iy N).
At first, suppose that o < d/(d + 2/3), then since 0 < h(z),
(d+ B)a—d+20 <dla—1)/2+ 2h(zx).
Consequently, since ¢ = N™¢,
Won(z) = "N D(2) 4 Op (e PN In N). (2.42)
Else suppose that a > d/(d + 2/3), then one can choose
0> h(z) — (d+20)a/4+d/4.
For this choice of 9,

Wen(z) = e?NT2M0) D(z) 4 Op (e N2 72h(2)) (2.43)
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Step 2: Comparison of W, n(x) and V, n(x)
Since Y may have infinite moments, it is split into Y = Y," + Z,, where n > d/2
and Z, is defined by (2.8), see page 36. Notice that

X)) =Y, (y,h(y)) and that X, (y) = Zu(y, h(y)).

Moreover

V% () — Wi ()

where A(z,N)= } [Zak(xgn("%p) _yn+("’LNP,h(%>))r

f < 2A(e, N) 4+ 2B(z, N),

peV- () Lkex
2
_(k+p E+p
and B(e, N)= Z [Zak( ( ) Zn< I h(N)))] :
pEV. N(z) LREK

Since Z, has C!-sample paths,
|B(e, N)| < CeNI—28, (2.44)

where C' is a random variable.
Let us now study the moments of A(e, V). Notice that

k k k
() e (BE2(2)) - [o(22.2.6)

where g, » is defined by (2.7), see page 33. Then by applying proposition 1.3.3 and
lemma 2.2.2, one obtains that

E(A(e, N)?) < CelaNald=20),

Then since 3 > h(x), one can choose ¢ € N* such that 2¢(3 — h(z)) > 1. The
Borel-Cantelli lemma leads to:

e"IN~I20@) A N) — 0 almost surely, as N — —+oo.

Moreover A(e, N) = Op(e“N?~27). Consequently,

VN (@) — W (2) = Op (72 N/29) (2.45)
and as N — 400
g2 N—4/2Hh(@) <V;]/\?(a:) - W;/]\? (SL’)) — 0 almost surely. (2.46)

Step 3: Conclusion
Notice that

Vo (@) = Wen (@) + 2W2 () Doy(@) + D? y(x),
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where D, y(z) = (V;]/\?(:c) - Wel/]\?(:c)) Then when d(1 — «) > 1, because of (2.41)
and (2.46), and since AFyp(,)(0) # 0,

/i;N(x) — h(x) almost surely as N — +o0.

Even if we do not need the asymptotic of V_ x(x) for every « to prove the theorem,
let us state it. Using the equalities (2.42), (2.43) and (2.45), one can prove:

o if > d/(d+20), then

—if h(z) < B —d(1—a)/2,
Von(z) = 20 A NO=2h@) [y, 0 (0) + Op (92 NH2-2h(@))
—else V. n(x) = 29Ae? N2 By 0(0) 4 Op (e NT =),

o if « < d/(d+20), then

- if h(z) > 5 — ap,
Ve (2) = 20 At N4 By 0 (0) 4 Op (NI =7),
— else Vi n(z) = 24N Fy 0 (0) + Op (N2 In N)

where § < h(x).

Let us now take o = d/(d + 2(3) and explain in few words this choice. Let us
first recall that

W&N(.CL’) — ngd72h(m)D(x) + O]P’ (gd/QNd/2f2h(x)) + O(€d+5Ndf25 In N) )

For a given 0, since ¢ = N ™%, the best choice of « is obtained by solving the following
equation in «:

—ad+d
% —9n(z) = —(d+ B)a +d — 26,
which gives
~d—46 + 4h(2)
B d+203

Then the two errors terms are of the same order up to a logarithmic factor. But
since the error term is a non-increasing function of § and since J can be arbitrarily
chosen closed to h(x), one choose

_d
T d128
In this case,
V. n(z) = 29 A’ N2 By 0 (0) + Op (N7 In N), (2.47)

where
n(x) = min ((d + B)a — d + 20, da — d + h(z) + ().
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Then using lemma 2.12 of [vdV98]|, one can prove that
LOgQVYe,N(:L‘) — L0g2 (QdAngd—Zh(J:)FZh($) (0)) + O]P’ (N— min(Ba+20—2h(x),8—h(x)) In N),

and conclude that

~

hN(ZL‘) — h(l‘) + O]P (N_ min(Sa+26—2h(x),8—h(x)) In N)

Notice that with the same argument one can give a rate of convergence for every
choice of «. O

As a conclusion, RHMLMs are in general non-Gaussian lass fields which point-
wise Holder exponent is allowed to vary along the trajectories. Furthermore, the
multifractional function h governs the properties of a RHMLM Xj. In particular,
it gives the local regularity of the RHMLM X}. In addition, even in the case of
non-Gaussian RHMLMs, the multifractional function i can be identified owing to
generalized quadratics variations whereas it is not possible in the case of RHFSMs.
Also, RHMLMs share many properties with the MBM and then extends the fields
of applications of the MBM to non-Gaussian phenomena. Thus, in view of applica-
tions, next chapter proposes a method for generating RHMLMs owing to generalized
shot noise series.






Chapter 3

Series Representation and Simulation
of Multifractional Lévy Motions

In this chapter, we describe a method for generating the sample paths of RHMLMs
and thereby to give an account of the sample paths theoretical roughness.

3.1 Introduction

Let us recall that a RHMLM Z;, with multifractional function A is defined as the

stochastic integral:
20w = [ e 1)
W)= | ————0m ;
ma || ¢

where ||| is the Euclidean norm of £ and L(d¢) is a Lévy random measure. In fact,
Zh = CLBh + th,

where (a,b) € R?, By, is a Multifractional Brownian Motion and

X(a) = [ fla.€) M(ae),

with M(d€) a Lévy random measure without Brownian component and

e it — 1
f(x,8) = e[

Let us notice that Bj, and X} are two independent fields.

In this chapter, only the generation of the non-Brownian part X, is discussed.
As for the FBM, many authors have already studied the simulation of its sample
paths, see for example [WC94| or [AS96]. Implementations of severals methods of
simulation of the FBM can be found in [Coe00]. On the other hand, methods of
generating sample paths of the MBM are given in [PLV96] and in [CW98].
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Many authors have already been interested in the simulation of non-Gaussian
fields defined as stochastic integrals. As an example, simulation of solutions of
stochastic differential equations driven by Lévy processes are studied in [Rub03].
Furthermore, simulation of stochastic integrals with respect to Lévy processes are
discussed in [Wik02]|. However in the case of RHMLMs, the stochastic integral is
on whole R? and not just on a compact interval of R. In [Dur01], a method for
generating symmetric a-stable processes based on a multiresolution analysis is pro-
posed. Nevertheless, the stochastic integral is truncated. On the other hand, X} is
an infinitely divisible field and infinitely divisible laws can be represented as gener-
alized shot noise series. An overview of these representations is given in [RosO1la).
Moreover the simulation implementation is discussed in [Bon82|. Furthermore, se-
ries representations are also studied in [Ros01b| in the case of Lévy processes and
in [Ros89]. Then, generalized shot noise series allow us to represent X, as series
without truncating the stochastic integral. Nevertheless, it only works if the control
measure v(dz) of the Lévy random measure M (d€) has finite mass. In this case, the
generalized shot noise series

+00 1/d
Yi(z) = QZ%{JC(L <ch?C)) Un> Zn},

for a suitable choice of random variables (7}, Z,,, U, ), converges almost surely. More-
over for this choice,

(Xn(z): 7 € RY L {Vi(2) : z € R,

where @ denotes equality in distribution. In practice, one then simulates the sample
paths of Y, which is equal in law to X;,. When v is not a finite measure, the
approximation of X}, is closely related to those of Lévy processes with infinite Lévy
measure given in [ARO1]. In this case, X}, is split into two independent RHMLMs

Xh - Xa,l + XE,2

where X, 5 is associated with a finite control measure v, 5(dz). Thus X., can be
approximated by a generalized shot noise series. It remains to generate X, ;. As it
is done in [ARO1] in the case of Lévy processes, a functional Central Limit Theorem
leads to a normal approximation of X, ;.

Then next section is devoted to the case of a finite control measure. The rate
of convergence of the shot noise series is studied. Sufficient conditions to establish
a Central Limit Theorem are discussed in section 3.3. Finally some simulation
examples are given.

3.2 Generalized shot noise series

In this section, v is supposed to be a finite measure. The random field X} can be
then represented as a generalized shot noise series.
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Let us first introduce some notations that will be used throughout the chapter.

Notation Let (Z,),~;, (Un),; and (T,),>, be independent sequences of random
variables.

e (Z,),> is asequence of independent and identically distributed (i.i.d.) random
variables with common law

e (Us),>, is a sequence of i.i.d. random variables such that U, is uniformly
distributed on the unit sphere S?! of the Euclidean space R?. Let 041 be
the uniform measure on S?'. Then

0q-1(du
Let us recall that o2
7 () = Ty
where I' is the Gamma-function. Moreover let us introduce
o (st
d

the volume of the unit ball of R<.

e T, is the nth arrival time of a Poisson process with intensity 1.
Remark 3.2.1. When d = 1, U,, is a symmetric Bernoulli random variable.

Proposition 3.2.2. Let K C R? be a compact set. Then almost surely, the series

+oo 1/d
Yi(+) :22%{]0(-, <Cdf’g©) Un>Zn} (3.1)

converges uniformly on K and

(Xn(2): 2 € K} L {V(2) : 2 € K}

Remark 3.2.3. Actually, Y} n converges almost surely to Y}, in the space of continuous
functions endowed with the topology of the uniform convergence on compact sets.

Therefore, since Y}, is equal in law to X, in practice one simulates the sample
paths of Y},. These sample paths can be approximated on K owing to (3.1). For the
sake of simplicity, in dimension d = 1, they are simulated on a compact interval K.
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Proof. The series (3.1) can be rewritten as the generalized shot noise series

Z H(Tnv Vn)@f)a

where V,, = (U,,, Z,) and

. 1/d
H(T,U)(J,‘):Q%{f(l‘,(m) u)z}, r>0 v=(u,z).

(V),>; is a sequence of i.i.d. random variables which is independent of (7},), .
In order to obtain the convergence of (3.1), one shall verify the conditions of The-
orem 2.4 in [Ros90]. This theorem implies the convergence in Ef the space of
real-valued continuous functions on K endowed with the uniform norm ||-||,: for
every g € Ex, ||g9llx = sup,ex |9(x)|- Endowed with this norm, E is a separable
Banach space. Moreover

H:RYxD — Ex
(r,v) — H(r,v),

where D = S9! x C, is a Borel measurable map. Define a measure Fx on the Borel
o-ring B, of Ex by

Fx(A) = /0 Oo/DlA\{O}(H(T, v)) A(dv) dr,

where ) is the law of V;. Since v is a symmetric measure, so is Fix. First one proves
that Fx is a Lévy measure. Let E be the dual of Fx and for ¢/ € F}., y € Ex
denote < ¢,y >=y/(y). Let us recall, see [Ros90], that F is a Lévy measure if for
every vy € E.,

/ (< ¥,y >* Al) Fg(dy) < 400 (3.2)
Ex
and if
(I)K : E}( — C
yl —— exp {/ (ei<y/’y> —1—-i< y/,y > 1||y||K§1>FK<dy>}
Ex
is the characteristic function of a probability on Fi.

Notice that

Il Fic(dy) = / | (r,0) % dr A(do).

Ex 10,400[xD
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Therefore by applying the change of variable p = (r/(cq v(C)))"*,

+oo
ol Fictdn) =4 [ [ [ o) o) vl
EK CJ8e-1J0

where g(&, 2) = sup,cx |R(f(z,£)z)|. Hence using polar coordinates,

Iyl Fr(dy) = 4 / (€, 2) dE w(d2).

EK RdX(C

As a result,
[ sl Fictay) <4 [1avia) [ e ae
Ex C R4
with §(§) = sup,ex | f(2,€)|. Furthermore,

- Ck 2
19(8)] < W—,Hmlnsng + Wlnswu

where Cx = maxyeg |[u|l, mxg = mingh and My = maxg h. Therefore, since
0<mg <land0< Mg <1, ge L*(R?). Then by (1.13),

/E Il Fic(dy) < +oo, (3.3)

which implies (3.2). Moreover since the integral in (3.3) is finite,

/ <y',y> Fk(dy)
I

yll 21

is well defined and is equal to 0 by symmetry of F. Hence

Pr(y') = exp {/ (ei<y"y> —1-i<yy >> FK(dy)}-
Ex
Let us recall, see proposition 2.2.6, that the sample paths of X}, are almost surely
continuous. Thus, we can consider < y', Xp|, >. Let us first extend y' to the
space of continuous functions on K with values in C. For every continuous function

g: K — C,let < 9,9 >=< vy, R(g) > +i < v,3(9) > . In particular, by
definition, R(< ¢/, 9 >) =< v/, R(g) > and (< v, g >) =< y',S(g) >. Then, since

<o\ Xy >= /R <8, > M), (3.4)

by (1.16), see page 22, E(ei<y/’Xh\K>> is equal to

exp {/Rdxc(ezm(<y’f(n£)l(>z) — 1= Qm(< Y, f(.7§)‘K > z)) dé ,/(dz)},
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Since 2§R<< Y fC ), > z) =<1/, 2§R<f(~,£)|Kz) >, then by definition of FY,

Br(y') = E(ei<y/’Xh‘K>). (3.5)

As a consequence, @y is the characteristic function of Xh‘ .- Then Fk is a Lévy
measure on Eg. According to Theorem 2.4 in [Ros90],

S H(T.V) - AT,

where for s > 0 ,
A(s) = // H(r, v)1n(), <1 A(dv) dr,
0JD

is convergent in Ex. Since v is a symmetric measure, for every s > 0, A(s) = 0,
which gives the convergence of (3.1) in Ex. Then let Y}, be its limit. In view of
Theorem 2.4 in [Ros90], the characteristic function of (Y,(x)), . is ®x. Therefore

(Xn(2), 2 € K} L Vo(2), 2 € K}
follows from (3.5), which concludes the proof. O

Remark 3.2.4. In view of (3.3) and corollary 2.5 in [Ros90] applied with p = 2, the
series (3.1) converges also in L*(Ey), i.e.

2
i 24 (o) i) | <o

N 1/d
Yin(z) = 22%{]‘(3;, <Cd ZE‘C)) Un> Zn}. (3.6)

In simulation, Y}, is approximated by Y} . Then one is interested in the rate
of convergence of (3.1). We first consider one-dimensional distribution. The next
proposition studies the error in L9. From this, an almost sure error is deduced and
stated in corollary 3.2.8. Then a functional result is established.

where

Proposition 3.2.5. Let ¢ > 2 and x € RL.  Then for every N € N* such that
N >q/2+qh(x)/d—1, Y,(z) — Y, n(x) € L and

Dy q(h(z))
E([Ya(z) = Yan(@)[") < Coa W’ (3.7)
where C, . does not depend on N and for 0 < s <1 andn > q/2+ gs/d
D(n+1—q/2—gs/d) (n+ 1)"**/
D, 4(s) = . (3.8)

I'(n+1)
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Remark 3.2.6. By the Stirling formula, limy_. ;o Dn4(s) = 1. Therefore thanks
to (3.7), the rate of convergence of Y}, x(z) in L7 is at least N™"®/4 Actually, we
will prove that the rate of convergence in (3.7) is optimal, see proposition 3.2.7.

For simulation reasons, it can be useful to explicitly provide a constant C, , for
which (3.7) holds. In fact one can take

q/2
Cq,x = 21+3Q/2 Bg (%) E(|§R(Zl)|(I) (Cdy(c))q/quh(x)/d’ (39)
where
1 when g = 2,
By = 1/q (3.10)
V2 (_F((q\—l/—%l)/Z)) when ¢ > 2.
Proof. Let
T 1/d
e m{f<x’ (i) U") Z"}’ e
and

Ryp(x) =Yy p(z) = Vin(@) = D &), 1SN <P

n=N+1

Then limp_, 1o Ry p(x) = Yi(x) — Y, n(x) almost surely. In fact as P — +o00, Ry p
converges in Fy for any compact subset K of R%.

As (&(2)),>, is a symmetric sequence of random variables, by proposition 2.3
pages 47-48 in [LT91],

B, s, Rvaro)”) < 28( Ry p(o)f)

N+1<M<P

Moreover since T,,, U, and Z, are independent random variables and since the law
of Z,, is rotationally invariant,

&) 2 ()

! <$ (= ZEL@)l/dU")

Furthermore for given values of (Uy),, and (7},),, (§.(7)),,>, and (é;(x))@l are
sequences of independent random variables. Therefore

where

Enl(z) =2 R(Zy).

€@ 2 (6@)
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As a consequence,

oo £20))

Let (,),>; be a sequence of i.i.d. symmetric Bernoulli random variables which
is independent of (Z,,U,,T,),-,- Hence by symmetry of the law of Z,, Z, can
be replaced in Ry p by €,Z,. Then by applying the Khintchine inequality with
constant B, and conditionally with respect to (Z,,, Uy, T},)

n>17

q/2
E(|By,p(z)|") < BJE <Z§n ) : (3.11)

n=N+1

Notice that the best possible constant B, in the Khintchine inequality is known.
According to [Haa81], the best constant is

1 when ¢ = 2,
B, = 1/
r 1)/2 !

V2 <%) when ¢ > 2.

Then by the Minkowski inequality,

P 2/q q/2
E(|Ry.p()|") < Bg{ > E(j6@]) / } -

n=N+1

é;(x)’q> By independence and since Z; @ L,

)

+o00 Tnflfq/2fqh(:r)/d

q
} < 2%(¢y V(C))q/2+qh(x)/d/ e "dr.
0

Let us now evaluate E(

e(j&0|") = 2qE<|%<zl>|q>E{ |f<x (- fzc))l/dvn)
Moreover

7 1/d
E n
{ d (‘U (wvia) U”)
As a result, when n > gh(z)/d + q/2, £,(z) € L7 and

E(|éu(@)|') < 2% (car(©) O B(R(Z)1)

Then let N > gh(x)/d + q/2 — 1. Therefore

E<N+‘P§%5fzp| RN,M<:c>|q) <4 { Z”: <F(n—Q/lg(;)qh(x)/d)>2/q}Q/2’ .

n=N-+1

(n—1)!

L(n—q/2—qh(z)/d)
['(n) '
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where A, , = 2201 BY (cqv(C)) >R (1R(2,)]).
Then by the Stirling Formula, as P — 400,

i (r<n - q/ﬁ(;)qh(w)/d) ) 2

n=N-+1

converges and

f (n — q/2 — gh(x)/d)\** f 1 d
I'(n) ni+2h@)/d " op(z) N2h(@)/d’

n=N+1 n=N+1

Owing to (3.12) and to a monotone convergence argument,
+o0 1 q/2
B( s [Raar@l") < Ayssup Dos(h(o) (; W) ,
where for 0 < s < 1and n > ¢/2+¢s/d — 1,

D(n+1—q/2—gs/d) (n+ 1)"*" e/
I'(n+1) '

D q(s) =

As a consequence,

Coo
B sup [Rvar(o)l') < 55 sup Do (o).

M>N+1
d q/2
=(——) A..
o= (aiz7) e

Therefore by an argument of dominated convergence,

where

Cox
E(Yi(x) —~ Yin(2)]") < S Sup Dy (h(a).

Moreover
Dyi1,4(h(2))
Dy q(h(z))

where for y > ¢/2 + qh(x)/d,
q(d+2h(x)) 1 q(d+2h(x))
o) = S (1) (1 D),

A simple study of ¢ shows that g(z) < 0. Therefore (D,, ,(h(x)))
non-increasing sequence. As a result,

sup Dy o(h(z)) = D q(h(2)),

n>N

= exp(g(n +1))

n>lq/2+qh(z)/d)+1 1S &

which concludes the proof. O
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The next proposition studies the asymptotic of the mean square error. From this
proposition, we deduce that the rate of convergence in (3.7) is optimal. For the sake
of clearness, the proof of this proposition is given in appendix, see section 3.5.

Proposition 3.2.7. Let v € R¥N\{0}. Then,

Jim  NEEAR(Y (2) = Yiv(@)*) = =5,

where Cy, is defined by (3.9).

The following corollary gives a rate of almost sure convergence of Y, y. It is
deduced from the proposition 3.2.5 and the Borel-Cantelli lemma.

Corollary 3.2.8. Let € R? and H' < h(x). Then there ewists a finite positive
random variable C' such that, almost surely,

C

VN > 1, |[Vi(z) = Vin(z)| < NHd

The two previous results study the approximation errors for a one-dimensional
distribution. However the sample paths are approximated on the compact set K.
Therefore errors in term of norms on Ej are studied.

Let K C R? be a compact set and let us endow Ex with a LP-norm:

mmxz{ﬁpwwﬁf, (313)

where p > 1. By applying the following proposition with ¢ = 2 and p = 2, the mean
integrated square error is evaluated.

Proposition 3.2.9. Let ¢ > max (p,2), mx = ming h and My = maxy h. Then
for every integer N € N* such that N > q/2 + qMy/d + 1,

DN,q<mK)

E(HYh - Yh,NH;K) <, Namr/d

where C,, does not depend on N and Dy, is defined by (3.8).
Remark 3.2.10. In fact proposition 3.2.9 holds with

mpg

d q/2
¢y =249 By L) Bz i e { a0,
TEe
where B, is defined by (3.10) and dk is the volume of the compact set K.

Notice that

ah(e)/d _
max (cqv(C)) =

(cav(C))™5/Tif cp(C) > 1
(cav(C))™</*if cyu(C) < 1.
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Proof. Let N € N* such that N > ¢/2 4+ qMy — 1. Since ¢ > p, by the Holder
inequality,
1Y = Yanll, x < A PVNY, - Y|

where dy is the volume of K. Therefore

q,K’

B(I% — Vil ) < e [ E(Yi(o) = Yin(@)) do.

Then proposition 3.2.5 is not directly applied. However, in what follows the notation
is the same as in the proof of proposition 3.2.5. Let us recall, see inequality (3.12),

that
P /T(n— q/2 - ghla)/d)\ ¥\ "
> (o)L

n=N+1

N+1<M<P

E( max |RN,P(.T)‘q) < Aq,m{

where A, = 22071 B (¢4 p(C) V@R (1R(Z,)|7). Therefore since
n—q/2—qmg/d>N+1-q/2—-qgh(z)/d>N+1-q/2—qMg/d>2,
and since T is an increasing function on [2, +00|

i (F(n - Q/FZ(;) qu/d))Q/q}q/Q.

n=N+1

E( max |RN7P(ZL')|q)§Aq,x{

N+1<M<P

Furthermore the arguments used in the proof of the proposition 3.2.5 leads to

d \"? Dy q(mk)
q q
(i (o) = Vi @)") < (o) sup g o),
As a result,
Dy g(mi)

E(”Yh - Yh,NH;K) < Cq Nami/d

a/2
where C,, = d(}(/p( ! ) SUD,c i Ag -

2my

Consequently, the Borel-Cantelli lemma yields the following corollary.

Corollary 3.2.11. Let H' < ming h. Then there exists a finite positive random
variable C such that, almost surely,

C

VN > 1, [|Yh = Yanll, x < N

In practice, when v is a finite measure, one simulates the sample paths of Y},
which is equal in law to X} owing to a generalized shot noise series representation.
However when v is not a finite measure, it becomes more complicated. The field X,
is split into two fields X, ; and X.,. First X, can be simulated as a generalized
shot noise series. Then, the next section gives conditions to approximate X, ; by a
Multifractional Brownian Motion.
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3.3 Normal Approximation
In this part v is not supposed to be finite. Then let ¢ > 0 and let us split
Xn=Xeq+ Xep

into two random fields where

Xea(z) =2 Cé)?(f(x, €)2)1).j< N(d, dz), (3.14)
R x
and N
Xea@)=2 | ROz Nl d2), (3.15)
R x

Let us consider the two independent Poisson random measures
N1 (d€, dz) = 1< N(d§, dz)

and
Neyg(df, dZ) = 1‘2‘25 N(df, dZ)

Let M. ; be the Lévy random measure associated with V. ; by (1.14). Remark that
X.; is a RHMLM associated with M. ;. Moreover X.; and X, are independent.
Notice that the control measure v, »(dz) = 1> v(dz) of M. is finite. Therefore
X. o can be simulated as a generalized shot noise series, see section 3.2. It now
remains to approximate X, ;. In [ARO1], it is proposed to simulate the small jump
part of a Lévy process by a Brownian Motion. Here proposition 3.3.1 gives suffi-
cient conditions to approximate X, ; by a Multifractional Brownian Motion. These
conditions are closely related to those given in [ARO01| for Lévy processes.

Let us introduce v, ;(dz) = 1.|<. v(dz) the control measure of M, ; and

d@:(lqgh%@0”7 (3.16)

The following proposition can be established under simpler conditions, see corol-
lary 3.3.4. However in some simple cases, the assumptions of this proposition are sat-
isfied whereas those of corollary 3.3.4 are not. An example that comes from [ARO1]
will be given below.

Proposition 3.3.1. Suppose that for each k > 0,
H1l o(ko(e)Ne)~o(e) ase— 04

then

) D) Bl @)
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where the limit s in distribution for all finite-dimensional margins, By, is a standard
Multifractional Brownian Motion with multifractional function h and

A7 @2 (h(z) +1/2) Y2

h(z)T'(2h(z)) sin (rh(z)) ['(h(x) + d/2) '

Let us recall that h is a locally B-Hélder function. Let K C R? be a compact set,
myg = ming h and px =1+ [%] . Then if H1 and

2min (mg,B

Cp(r) = (3.18)

H2 3deg0 >0, 3C € (0, +00), Ve < &y, / p2pK I/p(dp) < CO.ZPK(E)

0<p<e

are satisfied, the convergence (3.17) is a convergence in distribution on the space Ex
of continuous functions on K endowed with the topology of uniform convergence.

For the sake of clearness, the proof of this proposition is given in appendix, see
section 3.6.
Remark 3.3.2. When d =1 and my > 1/2, px = 1 and H2 is fulfilled.

Remark 3.3.3. Suppose that H2 is satisfied for all closed balls of R%. Then under H1,
the convergence (3.17) is a convergence in distribution on the space of continuous
functions endowed with the topology of uniform convergence on compact sets.

As it is done in [ARO1]|, a simpler convergence condition can be given. It compares
the second moment of v, 1(dz) to the level of truncation €. Actually, as the level of
truncation tends to zero, the dispersion o(e) also converges to zero but slower.

Corollary 3.3.4. If
H3 lim — = +o0,

e—=04 ¢

then the assumptions H1 and H2 are satisfied.

Proof. The comparison between H3 and H1 has already been done in [AR01]. More-
over for k > 1,

|t <)
0<p<e

Thanks to this inequality, H3 implies H2.

It can be shown by the same way that H2 is satisfied as soon as

lim inf @ > 0.
e—04 g

Let us give an example which satisfies the assumptions H1 and H2 of proposi-
tion 3.3.1 whereas it does not satisfy H3. In fact it is the Example 2.1 in [ARO1].
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Ezample 3.3.5. Let (a,),-, be a decreasing sequence such that

Ap41 —0

lim a, =0and lim
n—-+o0o n—-+o0o ap,

Assume that a; = 1. Let v, be a Lévy measure on (0, +00) such that

[ a, fore €layi1,an]
0(8)_{ 1 fore>1.

First, the Lévy measure v associated to v, by (1.17) satisfies (1.13). Moreover, since
liminf, o, @ =1, H3 is not fulfilled whereas H2 is. On the other hand, according
to [ARO1], H1 is satisfied. As a result, proposition 3.3.1 can be applied.

Let us now discuss the rate of convergence in terms of Berry-Esseen bounds. For
the sake of simplicity, X.(z) is supposed to have a moment of order three, which
allows us to apply the classical Berry-Esseen inequality. However a generalization
of the classical Berry-Esseen inequality, see Theorem 5.7 in [Pet95], under a weaker
moment assumption, allows us to extend the following results. Then an estimation in
term of Berry-Esseen bounds is deduced from the next lemma which is a consequence
of the classical Berry-Esseen inequality.

Lemma 3.3.6. Let pu be an infinitely divisible law on R such that [, x p(dz) = 0
and [, 7|’ p(dz) < +oo. Then

x/g 2 u
u((~o0, 7)) — / o2 j—Q_ﬂ

sup
z€R

<0.797507° /|x|3 A(dz),
R

/2

where o = ([, \:L’|2,u(da:))1 and A is the Lévy measure of .

Proof. Let (Z(t)),s, be a Lévy process such that y is the law of Z(1). Then proceed
as in the proof of Theorem 3.1 page 487 in [ARO1], i.e. write

- k k—1
Z(1) = — ) = .
w=3(() ()
k=1
Hence Z(1) is a sum of i.i.d real-valued random variables with mean zero and vari-
ance o2 /n. Moreover, according to [AR01],

nETwnE<‘Z(%) 3) = /R|x|3A(d:v).

Therefore the conclusion is given by the classical Berry-Esseen inequality. O

Then an estimation in term of Berry-Esseen bounds of the rate of convergence
stated in proposition 3.3.1 can be given.



75

Proposition 3.3.7. Let K C R? be a compact set, vy € E) and assume that
maxy h < 1 —d/6. Then sup,c |f(z,£)| € L3(R?) and

sup ]P’(< Y, Xeny, >< u) — IP’<< y,0(e)(ChBy), >< u)’ < C(y")

u€R

where m3(e) = [o_,..r° V,(dp) and

SA/
R4

3<wéd<%fh®K>r%)m’

Proof. < v/, X€,1|K > is a real-valued infinitely divisible random variable. Its Lévy
measure A is the push forward of v, ; by

<o 108, > de

Cly) =

with A = 0.7975.

(62) — 2R(< ¥, [ ), > 7).

V= o r(<rreo, > )| ucdenta)
= ano’@) [ v, ] d

— Val“<< 9,70(5)(Ch3h)\K >>'

Therefore,

E<‘< y/7X€,1|K >

Moreover,

/|:c|3A(d:z;) _ 4m§(5)/2ﬂ|c086\3d0/ <y 1(-9), >‘3d§
R 0 R4 3
= g [ |<virtey, o] de

One concludes by applying the lemma 3.3.6. O

Remark 3.3.8. In proposition 3.3.7, the assumption maxy h < 1—d/6 means that for
every © € K, Xj(x) has moment of order three. However, the preceding proposition
can be generalized to any RHMLM. In fact there always exists 6 € (0, 1) such that
maxg h <1—d/2+d/(2+ ). Then, for every x € K, E<|Xa,1(x)|2+5> < +400. As a

consequence, a generalization of proposition 3.3.7 is obtained owing to Theorem 5.7
in [Pet95].
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Hence, in the case where v is not a finite measure, X, can be approximated in
law as soon as v satisfies assumptions of proposition 3.3.1. In this case, according
to propositions 3.3.1 and 3.2.2, an approximation is given by

N 1/d
Yoow(@) = o(e)C(h(@) Bula) +2 3 9‘%<f ( (i) Un) z)

where By, T,,, U, and Z., are independent. 7}, and U, are defined in section 3.2.
We have that (Z.,) areii.d. random variables with common law v, 5(dz) /v, 2(C).
It is supposed that v, »(C) # 0, which is the case for ¢ sufficiently small.

Then the approximations given in section 3.2 and section 3.3 are used in the
next part to generate sample paths of Xj. First, examples of RHMLMs with finite
control measure are given since it is the simplest case of simulation.

3.4 Simulation

3.4.1 Case of finite measure

Suppose here that 0 < v(C) < +o0. Let us recall that

st =23 w1 (o () ")),

efim-ﬁ -1

f(%é):”th(m-

with

Then, Y}y converges almost surely to Y}, which is equal in law to X},. Therefore the
sample paths of Y}, are simulated and are approximated by Y}, n.

Let us present some examples. Suppose that v is the uniform law on the unit
circle of C. Then v(C) = 1.

First assume that A is constant to H, which means that X, is a RHFLM. Accord-
ing to |[BCI02|, the sample paths of Xy = X, are locally Holderian. Furthermore,
the pointwise Holder exponent does not vary along the trajectory and is almost
surely equal to H. Figure 3.1 yields illustrations of these facts.

Let now h : R — 10, 1[ be a locally S-Holder function. The pointwise Hélder
exponent of a RHFLM is constant but for a general RHMLM it is not. More
precisely, if h(x) < [, the pointwise Holder exponent at point = of X} is almost
surely equal to h(z). In figure 3.2, examples of RHMLMs in dimension d = 1 are
given. Furthermore, figure 3.3 present an example of RHMLM in dimension d = 2
such that the function i : R?> — 0, 1[ is periodic in its first variable z; and equal
to a constant in its second variable z5. One can observe that the regularity varies
along the trajectory as h does. The greater h(x) is, the smoother the trajectories
are on a neighbourhood of . When v is a finite measure, simulations exhibit the
same smoothness properties as the theoretical model.
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Figure 3.2: Examples of RHMLMs
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Figure 3.3: Example of RHMLM
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3.4.2 Case of infinite measure

Suppose that v is a measure which satisfies the assumptions of proposition 3.3.1.
Hence X}, is split into two independent RHMLMs X, ; and X. o, defined by (3.14)
and (3.15). Then for ¢ sufficiently small, 0 < v.5(C) < +o0.

Let (Z.), be a sequence i.i.d. random variables with common law v, »(dz)/v. 2(C)
and B), a standard Multifractional Brownian Motion. Let us recall that (U,),, is a
sequence of i.i.d uniform random variables on S¢ ! and 7, is the nth arrival time
of a Poisson process with intensity 1. Assume that By, (Z.,),, (U,), and (1},), are

independent. As a consequence,

N 1/d
Vor(2) = 0(e)Cu() Bulz) +2 3 R < s <:1: (Cd ZEL Q) Un> zm> |

approximates a field Y;, which is equal in law to Xj,.

In order to simulate Bj, we use J.-F. Coeurjolly’s programs which are available on
http://www-lmc.imag.fr/SMS /software.html.

More precisely, the Fractional Brownian Motion (case h constant) is generated by
the method of circulant embedding, introduced in [WC94].

Let us now give some examples. Assume that v,(dp) is a truncated a-stable
measure. More precisely, suppose that

dp
Vp(dp) = Lo<p<i Py

with 0 < o < 2. Let 0 < ¢ < 1. Then

2r(e7* — 1) 9 g2 @
= —— and = .
and o7 (¢) 5

1/5’2(@)

Figures 3.4 and 3.5 present some examples of RHMLMs with control measure v.
Like in the case of finite measures, the theoretical smoothness of the trajectory is
observed. Actually, the local regularity of the sample paths follows the variation of
the multifractional function h.
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3.5 Proof of proposition 3.2.7

In the case where d > 2, the proof of the proposition 3.2.7 is based on the study of
the asymptotic of

+o0
K,(y,b) = / ey be T gy, (3.19)
0

where y € R and b > 0. Else, if d = 1, the proof of the proposition 3.2.7 is simpler.
The next lemma gives the asymptotic of K,.

Lemma 3.5.1. Let d > 2,y € R and b > 0. Then

~y*/8 ifd—
. Kn(y,b) B V2re if d =2,
N oo mn—b+1/2 a—ngint/dy
Foo L/ emnetm Y V2r  ifd> 3.
Proof. Let
o Kn(y7b)

Kn(yv b) =

nn—b+1/2 g—nginl/dy’

By applying the change of variables s = %,

Kn(y7 b) _ e—inl/dy/ eznl/d(lJrs/\/ﬁ)l/dy <1 + i) e—s\/ﬁ ds.
,\/ﬁ \/ﬁ

A Taylor expansion leads to
S nb 2
lim 1+ — eV =75 /2,
e ( \/ﬁ)

Moreover, using a Taylor expansion,

ev/? if d =2
1/d,, inl/d 1/d ’
—int/ Ypin <1+s/\/ﬁ) Y _

lim e
noree 1 ifd>3.
Consequently,
L n—b eisv/2=5"/2 if { = 2,
lim e~/ wern!/(1s/ Vi) Ty <1 + —) e V' =
S vn e=*/2  ifd >3

We do not directly apply a dominated convergence argument. Let us first write

Ko(y,b) = Kn1(y,b) + Koy, b),

where

Kn,l(y7 b) = / gn(y7 ba 8) ds
NG



and
g Vn
Kn,Q(y7 b) = / gn(y7 ba 8) ds

n—b
. . /
with gn(y7 bv S) = e_ml/dy eml/d(lJrS/\/ﬁ)l dy (1 + i) e—s\/ﬁ'

N4D
Study of I?,:l (y,b)

Remark that
o +00 s n—>b
Kn,1<y;b>’ S / <1 + —> e*f"\/ﬁ ds
| s

[
< 1+_) Vi ds.
/R vn

since b > 0 and 1+ s/y/n > 1. Furthermore, integrating by parts leads to

+o0 s )" e "
14+ — ) e*Vds < (271 — 1) ——.

lim K, ,(y,b) =0.

n—-4o0o

As a consequence,

Study of Iz':g(y, b)
Let us recall that

eis/2e=5%/2 if = 2,
lim g¢,(y,b,s) =

oo —s2/2

e if d > 3.

Let n > b. Let us notice that for every |z| < 1, In(1+ z) <z — 2?/6. Then,

bs n—=>b 2

190 (Y, 0, 8) [ Lgcym < € Vie o

—b .2
< ele @ ®

bs

since n < b. Then for n sufficiently large,

2

‘gn<y7 ba 8)’1|5|<\/ﬁ < ebei%u

84

(3.20)

for every s € R. Therefore, using a dominated convergence argument, one concludes

that
/eisy/QeSQ/2 ds ifd=2,

— R
hm Kn,Z(y7 b) =

n—-400 9
/es 2ds  ifd> 3.

R
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As a consequence,

V2re V'8 ifd =2,

e V2r ifd >3,
The conclusion is then given by (3.20) and (3.21). O

Let us now prove the proposition 3.2.7.

Proof. Let x € R\{0}. In the following, the notation is the same as in the proof of
proposition 3.2.5. Let us first recall that

E(|Rw.p(2)") =E (Z@(@) 7

n=N+1

~ 1/d
where &,(z) = 2'f<x, (ch’(‘C)> Un) R(Z,).
Therefore, since (R(Z,)), is a sequence of i.i.d symmetric random variables and
since this sequence is independent of (U,,T},),,

B(Rxplol) = 3 E(& ().

Moreover, Ry p(x) converges to Y,(z) — Y, n(x) in quadratic mean as P — +o0.
Therefore,

—+00

E(Va(@) = Yin(@)?) = > E(& (@)
n=N+1
) 400 Tn 1/d 2
— 4E(R (Zl))nzN:HE f<x,(6dy(c)> Un>

Then, by definition of the sequence (7}, U,,)

n>1?

E(\Yh(a:) _ Yh,N<5L’)‘2) :4(Cdy((c))1+2h(a:)/dE(§R2(Z1)) Z I, (W) , (3.22)

where for every v € R,

+o00
Sd=1J0 n — c 0d—1 -
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Let n > 1+ 2h(z). Let us remark that

2l(n —1—2h(z)/d) 2
[(n) ['(n)

/ / 2= 2h(z)/d ZT‘ dyy— T dr Od— 1(du)
gd—1 Od— 1(Sd ol

Let us assume in the following that v # 0.

In(v) =

with

Step 1 Case d = 1 Using the characteristic function of a Gamma-distribution, we
obtain that

Jo(v) = (1+ UQ)h(x)/dJr(l_n)/Q cos ((n — 1 —2h(z)/d)arctanv)'(n — 1 — 2h(z)/d).
Hence, since v # 0,

ol(n — 1 — 2h(z)/d)

B~ )

(3.23)

as n — —+oo.

Step 2 Case d > 2 We prove that the equivalence (3.23) remains true for d > 2.
It is then sufficient to prove that

Jn(v)
li =0. .
A T =1 — o)) (3:24)
Remark that
oq-1(du)
Ja(v) = K,(v-u,242h(x)/d) ————~,
= [ K ()/) 2GS
where K, is defined by (3.19).

Since
T(n —1—2h(z)/d) ~ V/2rn"=3/272h@)/de=n

by applying the lemma 3.5.1,
Kn(v - u, 2+ 2h(a:)/d) —inl/dy.

niToo F(TL —1- Qh(fli)/d) d(v u>7
B e V8 ifd = 2,
where l4(y) = { 1 ifd>3.
Furthermore,
Jn(v) _
T 1-2n@ya) ) T nalv)
where

o1 _ du)
Jn _ in /dv-ul . g4 1(
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and

. Kn(v - u, 2 + Qh(fli)/d) —inl/dya int/dy. O'd,1<du)
%ﬂw‘ﬂébfjwn—1—2mwﬁme —M@-M)e 041 (ST

Let us first remark that by definition,

0 < | Kp(v-u,2+ 2h(z)/d)|

S Tm-1-2@)jd ="

Then, a dominated convergence argument leads to

lim J,2(y) =0.

n—-+0o0o
Furthermore, by rotational invariance of the measure 041 (du),

inl/|v e1-u Od— (dU)
Tuafo) = [ e ey ufer -u) TG

with e; = (1,0,...,0) € R% As a consequence,

__ TI(d/2)
- VAL((d = 1)/2)

Let us recall that v # 0. Therefore, by the Riemann-Lebesgue lemma,

1
Jn1(v) / pin'/lvlls ld(HUHS)(l _ 52)(d—3)/2 ds.
-1

I (y) =0
As a result,
. Jn (V)
1
oo T(n — 1 — 2h(x)/d)

—0,
which implies (3.23).

Step 3 Conclusion By applying (3.23) and the Stirling formula,

2
Iy(v) ~ nl+2h(z)/d"

Then, because of (3.22), as N — +o0,

+oo
. 2
E(|Yh(l’) N Yh7N(IL')|2) -~ 4(0d1/(C))1+2h( )/dE(éRZ(Zl)) Z n1+2h(x)/d’
n=N+1

which gives the conclusion. O
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3.6 Proof of proposition 3.3.1

This part is devoted to the proof of the proposition 3.3.1.

X, 1(:1:)

Proof of proposition 8.3.1. Let Y.(z) = o)

Convergence of the finite dimensional margins
Let r € N*, u = (uy,- -+ ,u,) € (Rd)r and v = (vy,--+,v,) € R". Then

kay w) = [ 28 ),
where
g(&,u,v) ka flug, &
Thus by (1.16),
E <Z vkmuk)) — exp (Ve(u,0)

with

= o (BRA1) 1N

Then by rotational invariance of v,

Vo) = [ L2lgl€ )] cos (9)) g db
R4x[0,27]

where for every y € R,

Ol e yp
I.(y) = ‘o) — 1 —i—2 )1 V,(dp).
w=[ (e 22 Loy )

Under the assumption H1, see [ARO01],

a2
lim I.(y) = J

€—>0+ 2 '
Moreover, since
2
vy eR, L) < %,

a dominated convergence argument yields

lim ¥V (u,v) = —27T/
e—04 Rd

= —iVar (Z UkCh<uk>Bh<uk)> ;

" g (e_"“k'£ — 1) 2
Z ||§||h(uk)+d/2

k=1

dg
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where B}, is a standard Multifractional Brownian Motion and where for every z € R¢,

’ —ieq-€ 1}2 1/2
e s —

Cu(r) = |4n | —agrs—dE |
( ) ( Rd H£||d+2h(a:) )
with e; = (1,0,---,0) € R4,

Let us now prove the formula (3.18) i.e.

o A7@3)/2D(h(z) + 1/2) 2
Cn(w) = (h(g;) T'(2h(z)) sin (7wh(z)) T(h(z) + d/2)) ’

which will conclude the proof of the convergence of the finite dimensional margins.
In fact, when d = 1, this formula is already known, see pages 328-329 in [ST94|.
Suppose that d > 2. Then, thanks to polar coordinates,

e — 1P
R pr14+2h(z)

w/2
Cilw) = 042(5*7) d’f’/ (cos 0)*"®) (sin 6)~2 dg.
0

By applying the formula (3.18) for d = 1,

7 @2 B(H +1/2,(d—1)/2)

i) = )T () sin (k) (@ - 1)/2)

where B is the Beta-function. Then, the formula (3.18) is deduced from the rela-
tionship between the Beta-function and the Gamma-function.

Tightness Now assume that H1 and H2 are satisfied. Let us prove that the family
{(Yo(%)),cpc, € > 0} is tight in E. The field Y; is split into two fields Y. = Y.F +Y_~

where ' »
. / e” Wt — 1 — P,(—iz - £)1j¢<1
h(x)+d
» e

Me,l(dg)

and

Yo (1) = —— /| BuCiz &) ) oge)

o(e) Jen<a [fg)" e+
with n € N* such that n > d/2 and

S
~
ko

Pn(t) =

k=1

x>

According to chapter 2, the sample paths of Y." and Y.~ are continuous. Therefore
to prove the tightness of (Y7)_ in Ef, it is sufficient to prove the tightness of (Y.")_
and (Y.7)_. Since Y_" has moments of every order, the tightness of (Y.")__ is shown
owing to the Kolmogorov criterion.



90

Step 1: Tightness of (Y.")_
Let z¢y € K. Notice that

E(|Y (o)) = E(]¥1* (20)]") < +00.

As a result, (Y.*(z0))., is a tight family of random variables.
Moreover by proposition 2.2 in [BCI02],

2l 2y (e)

) =yl = 3o ST D (a2

Ly, g=1

where my’ () = [,___p% v,(dp), gu(u,v,€) = g} (u,€) — g (v,€) with

et — 1 — Py(—iy - £)1gi<a
el |

9 (y,€) =

and where ), stands for the sum over the set of partitions L,, of {1,...,2px} in
m subsets K, such that the cardinality of K is 2/, with [, > 1.
Moreover, by lemmas 2.2.1 and 2.2.2 in chapter 2, there exists C' > 0 such that

Y(u,v) € K2, [|gn(u,v, )3 < Cllu— oMo s (3.26)

21
Let us now study 22;‘1( for 1 <1, < pg. Since

1 1 1
<<
2pr 2, 2
there exists 6 € [0, 1] such that
1 6 1-6
2L, 2 2pg

Therefore by the Hélder inequality,

1 0 1-0

(L i) = ([ o) ([ o)

Consequently by H2,
may, () < C'o(e). (3.27)

Then owing to (3.25), (3.26) and (3.27), there exists C' > 0 such that

N

Ve S €0, V(u,v) c KQ, HYE—I—(U) H2pK < CHU N ,U||2mein(meﬁ).

As 2pg min (mg, B) > d, (Y.7)..,, is a tight family in E.

€
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Step 2: Tightness of (Y.7).
Let 2y € K. E<|Y;__(x0)|2> does not depend on ¢ and is finite, which gives the

tightness of (Y. (20)).,. For the sake of clearness, for & = (o -+ ,q) € N* and

z=(z1-+,23) € C let
d

la| = Zozj and 2“ H

7j=1

Foruc R?and 0 <y < 1,

1 P(—iu- &)
Zon(u,y) = — “ L M (de).
S >/ s e

Therefore Y.”(u) = Z. ,(u, h(u)). On the other hand,
Ze n(u,y) Z Cou® Y (y

1<]al<n
where for a = (ay -+, aq) € N9,
1 (=)™
Yy) = ——= M, 1(d€).

Yo (u) =Y ()l < [ Zen(u, h(w)) = Ze (v, h(w) [+ Ze (0, h(w)) = Ze n (v, h(0))]

< Yo ICY(h()llu® —v®+ Y |Cav® [[Y((u)) =Y (h(v))]-

1<]al<n 1<]al<n

Since there exists C' > 0 such that for every (u,v) € K?, [u® —v*| < Cllu — v|| and
|v*| < C, then

Vo) = Yo ) < Clllu—voll Y YE(R()+ Y ¥ (A(w) = Y2 (h(v))]

1<|a|<n 1<al<n

Therefore by continuity of h, to obtain the tightness of (Y.7)
show that for each o € N such that 1 < |a| < n,

it is sufficient to

1. (Y), is tight in the space of the continuous functions on [mg, M|, where
MK — IMaXg h.
2. the family (Supy, . iz |Y€a(y)\)6 is tight.
According to [Bil68], 2 is a consequence of 1. Moreover,
E(|Y2 (mi)l*) = E([Y{" (mx)[*) < +o0
and by a Taylor expansion,
Ve >0, Y(y.y') € [mx, Mk[*, E<|Yf(y) - Yf(y')|2) <Cly—vy'T,

which by the Kolmogorov criterion gives 1 and concludes the proof. O






Chapter 4

Fields with exceptional tangent fields

In this chapter, we propose to define a lass field which has a special local structure
at x = 0. More precisely, the behaviours of this field at x = 0 and at x # 0 are very
different from each other.

4.1 Introduction

The lass property is a local property which gives the behaviour of a field at each
point. As already noticed, tangent fields, in the sense of the lass property, are self-
similar. Furthermore, general properties of tangent fields are given in [Fal02| in the
framework of continuous fields and in [Fal03| in the case of processes with jumps. In
particular, in these frameworks, for almost all point x, a tangent field at point = must
have stationary increments. In addition, many lass fields has been studied and their
local structure identified. The most famous lass Gaussian field which generalized the
FBM is certainly the Real Harmonizable Multifractional Brownian Motion, in short
MBM, introduced independently in [BJR97| and in [PLV96]. However, many other
examples of lass Gaussian fields have been studied, see for instance [ALV00, BBCI00,
BCI98, BC1J98]. All these fields share many properties with the FBM. Furthermore,
at each point x, the tangent field is a FBM. The lass Gaussian fields introduced
in [BEO3] do not have FBM as tangent field; however, these Gaussian fields have
stationary increments and then at each point, the tangent field is the same Gaussian
field. In addition, Real Harmonizable Fractional Lévy Motions are in general non-
Gaussian lass fields with FBM as tangent field, see [BCI02|. In the same way, Real
Harmonizable Multifractional Lévy Motions remains lass fields with FBM as tangent
field at each point. Furthermore, the lass fields studied in [BCI04| have stationary
increments and then the same tangent field at each point. However, this tangent
field is a Fractional Stable Motion and and is not Gaussian. Furthermore, for most
of the previous fields, the trajectories regularity is known. In general, these fields are
locally Hélder continuous. Moreover, [BCI03] gives sufficient, conditions to evaluate
the Hausdorff dimension of the graphs of a field. In addition, these conditions are
linked to the trajectories regularity and the lass property. Furthermore, in [BCI03],
the Hausdorff dimension of the graph is given for some of the above-mentioned fields.
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However, in all encountered examples, the local behaviour is the same at each
point. Also, in this chapter, we propose to define a field Xy.3 with a special be-
haviour at « = 0. The field Xy 3 is a non-Gaussian lass field which has finite second
order moment. More precisely, its tangent field at = # 0 is a FBM. Furthermore, its
tangent field at + = 0 depends on the value of 5. Especially, when 5 > d/a, it is
a Fractional Stable Motion, in short de RHFSM. Then, in this case, the behaviour
of Xy g at x = 0 is very different from the one at  # 0. In fact, even if Xy 5 has
finite second order moments, its tangent field at x = 0 does not. Hence, the tangent
field is of the same kind at each point x except at x = 0. Considering this, 0 is an
exceptional point for the field Xy 5. In addition, when 8 < d/a, the field Xy 5 re-
mains lass at x = 0 but in most cases the tangent field is a Gaussian field. However,
in general, the tangent field at x = 0 does not have stationary increments and then
is not a FBM. Also, in general, when < d/«, for one point the tangent field does
not have stationary increments.

Like RHFLMs, Xy 5 is defined as a stochastic integral. The definition of Xy g
and of RHFLMs are very similar. Then let us first recall that a RHFLM Zy with
index H is defined as follows:

—izg _ ] ~
Zy(x) = Q/Rdxcm (T‘g”sz) N(de, dz), (4.1)

where || is the Euclidean norm of ¢ and N(d¢,dz) is the compensated Poisson
random measure associated with the Poisson random measure N(d¢, dz) whose in-
tensity measure is n(d§, dz) = d€ v(dz). Moreover, the previous stochastic integral

is defined as soon as
/\z| v(dz) < 4o0.

However, in this chapter, v(dz) does not have a second order moment and then Zy
may not be defined. Actually, v(dz) is a rotationally invariant measure associated
with a symmetric a-stable measure. More precisely, let P be the map

P(pe”) = (0, p) € [0,27) x (0, 400).
Then, throughout this chapter,

dp

P(v(dz)) = db e

(4.2)

where df is the uniform measure on [0, 27), dp is the Lebesgue measure on (0, +00)
and 0 < a < 2. Then, v(dz) does not have any finite moment. Thus, we introduce
a function ¢ such that

1z wllzDP vids) < +x.
C
Hence, the field Xy g is defined by

—ix-§ __ 1 .
Xuplo) =2 [ LR <W2>w(nxn%) N(dg, dz).
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In fact, the function 1) has a compact support and then allows us to truncate the
support of the measure v(dz). Moreover, the truncation of the support in the def-
inition of Xy g(x) depends on x. In addition, if Xy s were a Gaussian field, i.e. if
N(d§, dz) were a Gaussian measure with intensity n(d¢, dz), it would be self-similar
with index H — (1 — «/2) by homogeneity of the integrand and of the mean mea-
sure n(d¢, dz). Furthermore, following |[Ros89|, the invariance of the mean measure
n(d¢,dz) by a map L implies an invariance in law of the Poisson random measure
N(d¢, dz) i.e.
N(d¢,d2) @ N o L71(de, d2).

In addition, for every ¢ > 0, the mean measure n(d¢, dz) is invariant by the map

L(€.2) = (e€.2Y2).
Hence, by applying the changes of variable A = € and 2/ = %z,

—ix-A
(d) —d/a e -1 —d/a
XH,ﬁ(Ex) = 2 ghtd/z=df /Rd%<H)\HH7+d/22/>¢<€6 df ||l‘||6|2’,|> N(d/\,dz'). (4.3)

Also, the behaviour of Xy at = 0 is not the same whether § = d/a, 5 > d/«a
or 3 < d/a. In particular, if 3 = d/a, the field Xp s is self-similar with index
H +d/2 — d/«a. Furthermore, when 3 > d/«, the truncation due to the function 1
heuristically disappears in (4.3) as € tends to 0. Then, when 3 > d/a, the tangent
field at * = 0 is a RHFSM with index H + d/2 — d/a. Remark that the index
does not depend on the value of 3. However, when 5 < d/a, Xy 3 remains a lass
field at * = 0 with index H — 3(1 — a/2) as it would be expected in a Gaussian
framework. Moreover, in this case, the tangent field is Gaussian but its increments
are not stationary as soon as (3 # 0.

The next section is devoted to the construction of Xz . Then, in section 4.3,
the lass property is established. Moreover, an asymptotic self-similarity property
at infinity is stated. In section 4.4, the trajectories regularity and the Hausdorff
dimension of the graph are studied. Thus, section 4.5 is devoted to the study of
the Gaussian field Wy g which has the same covariance as Xy g. In addition, some
generalizations of the field X g are introduced in section 4.6. Finally, some remarks
on the construction are given.

4.2 Definition
Let N(d¢,dz) be a Poisson random measure on R? x C with mean measure
n(dg, dz) = B(N(dg, dz=)) = € v(d2),

where v/(dz) is defined by (4.2). Then, let N = N — n be its Poisson compensated
random measure and ¢ € L? (Rd X C) for the measure n(d¢,dz). Let us recall that
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the map ¢ — [ dN is an isometry, which means that

E

/ (€, 2) N(de d2)
RIxC

] B / (& 2 (e, d2), (4.4)

Furthermore, the characteristic function of [ dN is known. In particular, suppose

that ¢ is a real-valued function, then [¢ dN is a real-valued random variable and
for every u € R,

E[ei“f@dﬁ] = exp [/ lexp (iup(€, 2)) — 1 —iup(, 2)] dév(dz)|. (4.5)
RaxC
Notation Let ¢/ : R — R be a C*-function such that
[ ifful <5
vlu) = { 0 if fu > 1. (4.6)

Then, in particular, ¢ and its derivatives are with compact support and then
bounded.

Let us now define the field Xy 3 which is a real-valued centered field.
Definition 4.2.1. Let 3 € R. Then, for every z € R,

—iz-£ 1 -
Xuple) =2 [ R (Wz)w(uxnw) N(dg, dz)

with convention 0° = 1 and if 8 < 0 and z = 0, ¢<||x||6|z|) = 0.
Remark 4.2.2. When 8 = 0, Xy is a RHFLM with control measure the push-
forward of v(dz) by the map z — 21(]z]).

Since the map ¢ — [ dN is an isometry from L2 (R? x C), for the measure
n(d¢,dz), onto L*(2), Xp 5 is a field with finite second order moments and one can
evaluate its covariance function.

Proposition 4.2.3. Let v be the covariance function of Xy g, t.e.

for every (z,y) € Rix € RL. Then, if v # 0 and y # 0, v(x,y) is equal to

D (™ + 1l = 2 = 1) / o= (1all )6 (1) do

where

C(H) _ ( 4 7r(d+3)/2 F(H + 1/2) )1/2
HT(2H)sin (mH)I'(H + d/2)
Otherwise, i.e. ifx =0 ory =0, y(z,y) = 0.
Especially, for every x € R¥\{0},

(4.7)

—+00

E(Xir(r) = C*(H) /0 P (p) dp [,
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Consequently, if 5 > 2H /(2 —«), Xy s is not continuous in quadratic mean at 0.

Proof. Since Xy 5(0) =0, if x =0 or y =0, y(x,y) = 0. Then, let z € R%\ {0}, and
y € R\{0}. Since the map ¢ — [(pdN is an isometry,

Woy) =4 [ R ODRF 02 0 (Iol)21) o Iyl ")21) de vid2),
RixC
where W
e—wl _
f(u,§) = W-

Then, using that 2R(z1)R(22) = R(2122) + R(z1%2),
1w, y) = 2R(4(,y)) + 2R (D (. )
where
nGe) = [2o(lelPlel)o (Il vdo) [ ferto.€)de
and
L(z,y) = /@ =0 (Ll el ) (o)1) od2) | T8

Moreover, since v(dz) is rotationally invariant,
/@ 220 (Jl2l)%l21) o (Ilyll’l]) v(dz) = 0
and then I;(x,y) = 0.

Furthermore, by definition of v(dz) and of the function f,

—+00

U o= (1) (1911°0) d.

2

Lo(a,y) = E(Bi () Bu(y)) /

0

where By is a standard FBM and

o 2 1/2
CH) = (4 7 1] de
= 7'[' -
re |I€)H

with e; = (1,0,...,0) € R Therefore, y(x,y) is equal to

e R e P I A (O e (O )

Furthermore, according to chapter 3, see proof of proposition 3.3.1,

A2 (H +1/2) 2
CH) = (H ['(2H ) sin (mH)T'(H + d/2))
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Moreover, in the case where = =y, the change of variable r = ||z|°p leads to:

+o0

B(Xip5(x)) = C*(H) / PR ) dr e,

which concludes the proof. O

Let € > 0. Then, by a simple change of variable,

2H—-pB(2—a)

V(ew,ey) =€ (@, y)-

Also, if the centered field Xy 3 were Gaussian, it would be self-similar with index
H—p(1—«a/2).

Throughout this chapter, 0 < H < 1, 8 € R and Xy g is the field associated
with (H, ) by the definition 4.2.1.

4.3 Asymptotic Self-Similarity

In this section, the asymptotic self-similarity properties of the field X g are studied.
Like RHFLMs, Xp 4 is locally asymptotically self-similar at each point x € RY.
However, RHFLMs have stationary increments and then the same tangent field at
each point. It does not remain true in the case of Xy g whose increments are not
stationary in general. First, in the case where § = d/a, the field Xy s is self-similar.
Then, the nature of the tangent field at z = 0 depends on (3 whereas it does not at
x # 0. Hence, the lass property at x # 0 is first stated. Then, the lass property
at x = 0 is given according to the value of 5. In particular, when 5 > d/a, the
tangent field at x = 0 is a RHFSM whereas it is a FBM at x # 0. In this case the
behaviour at © = 0 is very different from the behaviour at x # 0. In addition, when
B < d/a, the tangent field at z = 0 is Gaussian but it is not in general a FBM.
Also, in this case, the tangent field at + = 0 and x # 0 are two Gaussian fields.
However, whereas, in general tangent fields have stationary increments, the tangent
field at x = 0 for # < d/« does not, as soon as [ # 0. Furthermore, this section is
concluded by the study of the asymptotic of the field when the increments are taken
at large scales.

4.3.1 Case f=d/«

First, as already noticed, if Xy 3 were a centered Gaussian field, it would be self-
similar with exponent H — (1 — «//2) because of its structure of covariance. How-
ever, in general Xy 3 is not self-similar but locally asymptotically self-similar. Nev-
ertheless, in the case where 5 = d/a, by homogeneity of the mean measure of
N(d¢,dz), Xy pis self-similar with index H — 3(1 — d/«) as it would be expected if
it were Gaussian. Then, the field X 5 satisfies a global property of self-similarity
only for 5 =d/a.
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Proposition 4.3.1. Assume that § = d/a. Then, Xy g is self-similar with index
H=H+d/2—d/a, i.e.

X p(eu) (d)
VE > O, (m = (XH,6<U)>u€Rd.
ucRd

Proof. Let p € N\{0}, (v1,...,v,) € R?, (uq,...,u,) € (RY)” and

p —iguy-€ 1
K(§,2) =2 ( UkW (SBHMHB\Z'I))

k=1

p
X
Then, since ka Hﬁ 5uk / N(d¢, dz),
=1 dxC

exp< e )] — exp ()

k=

where

o) _/Rd/QTmexp (€ pe)) 1= 1K (6 pe)] -

Hence, since H=H-+ d/2 — d/«, by applying the changes of variables A = ¢ and
_ dja
r=evmp,

which concludes the proof. O

Hence, when § = d/«, Xy g is lass at © = 0 with exponent H + d/2 — d/a and
tangent field itself. However, X 3 remains lass at = # 0 but the tangent field is not
the same as = 0.

4.3.2 Asymptotic self-similarity at x # 0
Before we study the field Xy 3, let us first define

o—izt _
Yi(z,y) ZQ/RdXC%<”§HH7+d/i ) (yl2]) N (dg, dz), (4.8)

where x € R? and y > 0. Furthermore, let Y7(0,0) = 0.
Then, for every z € R,

Xy () = Vi (x ||x||ﬁ>. (4.9)

The theorem 4.3.3 states the lass property at x = 0. It will be proved using (4.9)
and the lass property of RHFLMs, established in [BCI02|. In fact, for every y > 0,
the field (Yy(2,9)),cpe is @ RHFLM with index H. Therefore, following [BCI02],
(Ya(2,v)),era is a lass field and its tangent field at point = is known. Hence, let us
first explain why (Y (2,%)),cge is @ RHFLM and give the Poisson random measure
it is associated with.
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Lemma 4.3.2. Let y > 0. Then, the field (Yu(2,y)),cra 25 @ RHFLM with index
H associated with a Poisson random measure N,(d€,dz) whose mean measure is
ny(d¢,dz) = dév(y,dz), where v(y,dz) is the push-forward of v(dz) by the map
z — z1(ylzl).

Proof. Let y > 0. Thus, for every g € L? (Rd), let

My(g) = 2 R(g(€)2) ¥ (ylz]) N(dE, dz).

RixC
Then, for every u € R,

E(eiuMy(g)) —exp (/ [e%uéﬁ(g(&)z) 1 _ngfg(g(g)z)} d¢ v(y, d,z)) , (4.10)

RixC
where v(y,dz) is the push-forward of v(dz) by the map z —— z¢(y|z]). As a

consequence,
(4) Y
M,(g) =2 R(g(£)z) Ny(dE, dz),
RixC
where N;(dg, dz) = Ny(d¢, dz) —n,(d€, dz), with N, (d€, dz) a Poisson random mea-
sure whose mean measure is n,(d¢, dz) = d{ v(y, dz). Moreover, since y # 0, then,

for every p > 2,

/C|Z| v(y,dz) = /(c|zw(y|z|)| v(dz) < +oo0.

Furthermore, since v(dz) is a rotationally invariant measure, the measure v(y, dz) is
rotationally invariant too. Hence, the assumptions done in [BCI02| are fulfilled and
we can consider the RHFLM Zy , defined by

e—ix-§ -1 __
A x:Q/ R| —=—=2 | N,(d§,dz).
mlT) =2 (ngnHW ) R
Therefore, in view of (4.10),

{YH(:c,y), x € Rd} @ {ZH@(:U), x € Rd},
which concludes the proof. O

Let us now state the lass property at point z # 0.

Theorem 4.3.3. Let x € RY, x # 0. Then, the field Xg 5 is locally asymptotically
self-similar with index H and tangent FBM at point x. More precisely,

X - X
iy (F2 e =X ) 0 a Bi )
u€Rd

where the limit is in distribution for all finite dimensional margins of the fields, By
1s a standard FBM with index H and

C(H +00 1/2
C(x, H) %( /0 pl“wQ(p)dp)

||

€—>0+

where C(-) is defined by (4.7).



Proof. Let

X - X
V;(u) _ H,ﬁ(x+5:; Hﬂ(ff).

Since x # 0, V.(u) can be split into

Vir (2 +2u, |l2]”) = X ()
EH

Vea(u) =

and
Xpppla +2u) = Yig (2 + 2w, |Jo] )

‘/572(71,) = H

Then, the asymptotic of V; is first studied.

Step 1 For every u € R,

V(2 +cu, o) = Y (. 1))

cH

Vea(u) =
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Furthermore, since = # 0, according to lemma 4.3.2, the field (Y (v, |[|2]|?))ycra is a
RHFLM associated with a Poisson random measure N, s(d¢,dz). In addition, the
mean measure of Ny, s(d€, dz) is ny,s(d€, dz) = d§v(||z||?, dz), where v(||z|”, dz)
is the push-forward of the measure v(dz) by the map z —— 2z (||z||?|z|). Then, by

applying proposition 3.1 in [BCI02],

lim (‘/;,1(U))u€Rd @ C(:E, H)(BH(U))ueRd7

Eﬂ0+

where By is a standard FBM with index H and
400 ) 5 ‘e—iel'f B 1‘2 1/2
Clz,H)= |4 R (z)u(HxH ,dz) / sy A€
0 re €]l

with e; = (1,0,...,0) € R Therefore, by definition of V(Hx”ﬁ, dz),

. 1/2
An +ool_a ) ‘6*161-6 . 1‘2
C(LH)_(W/O p @/)(P)dP/Rng”Wdé :

Step 2 Now let us prove that

. d
lim (V1)) e = 0.

€*>0+

Let us fix v € RY. By definition,

1 ~
Vial = 7 [ | oo +ewa,62) (de. ),

(4.11)

(4.12)
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where

92<a,b,s,z>=2%<m,%d/§ )( (lalllel) - (1e1°1=1) )

Therefore by (4.4),
1
E(VeQQ(U)) = =g / |ga( + eu, z, &, 2)|” d€ v(d2).
€ RéxC

Then, by definition of v(dz), which is rotationally invariant,
}2

Ar I ( |emileren)E
E(‘/?Q(u)) = €2H / H£||d+2H dé’

where 1) = [ (1l +ul?p) — o lel') ) o

Hence,

(1) = S el )

Remark that I.(0) = 0. Then, suppose that u # 0. Let
K. ={y e R"/|ly — || <ellul }

and €9 > 0 such that 0 ¢ K. . Hence, for every ¢ < g, K. C K., and x +cu € K.

Let my,, = minyeg,, lv]|°. Since K., is a compact set such that 0 ¢ K., mg., > 0.

Then, in view of the support of ¢, for every ¢ < ¢y and every p > mKio,

o+ eul’p) = (1) =0

and so ¢ ||z + =ull’p) — v (Jl2]%) = 0.
Furthermore, by a Taylor expansion, one proves that there exists D € R, , which
does not depend on ¢, such that

U (llz +eul’o) = v (Jl21°0) | < Doz 10,0 1(0):

Since my,, > 0 and since 0 < o < 2,

Ve < €0,

+o0o
/ P Liomy ! 1(p) dp < +o0.
0 0

Therefore,
Ve < e, 0< I.(u) < D'e?

where D’ does not depend on . As a consequence, since H < 1,
vu € RY, lim E(VZ(u)) =0,
€*>0+ ’
which implies (4.12).

Conclusion (4.11) and (4.12) gives the conclusion. O
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Then, Xp 4 is lass at each point # € RY\{0} with tangent FBM. Furthermore,
in the case where § = d/«, since Xy 3 is self-similar, it is lass at # = 0 with tangent
field itself. Then, the next subsection shows that Xz 3 remains lass at = 0 for any
B # d/a but with two different behaviours whether 5 > d/a or § < d/a.

4.3.3 Exceptional point = = 0

Let us first study the case where 3 > d/a. In this case, the behaviour of Xy 35 at
x = 0 is very far from its behaviour at x # 0. Actually, the tangent field at z = 0
is not a Gaussian model whereas it is at « # 0. The tangent field at x = 0 does not
have even finite second order moment.

Theorem 4.3.4. Let 3> d/o and H = H +d/2 —d/a. Assume that H > 0. Then,

Xup s locally asymptotically self-similar at point x = 0 with index H and tangent
field RHFSM, in the sense that

. Xupleu (d)
lim (71{[3; )> = (Sﬁ(u))ueRd,
€ u€Rd

Eﬂ0+

where the limit is in distribution for all finite dimensional margins of the fields and
S is a RHFSM that has the representation

e~ _
Sz(u) = D(a) 3%( /R W Ma(d§)> (4.13)

with M, a complex isotropic symmetric a-stable random measure with control mea-
sure the Lebesque measure and

D(a) = {zaﬂﬂ /O 1= cos () ﬂa}w.

Let us remark that H < H < 1. Then, since H > 0, by assumption, the
RHEFSM S5 is well defined.

Proof. Let p € N\{0}, (v1,...,v,) € RP, (uy,...,u,) € (RY)” and

p e—tEurs _ 1 5 5
Ko(g2) = 2R D ez (Pl ) ).
i

p
X
Then, since ka Hﬁ 5uk / d£ dz),
k=1

exp< Z Ausioti) )] = exp (i2(2))

k=
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where

p(e) = /Rd C[exp (1K.(&,2) — 1 —iK. (&, 2)]dE v(dz).

First, since v(dz) is a rotationally invariant measure,

o€ = [ leos(Ku(e,2) — s vldz).

Then, by definition of v(dz),

o(0) —/]Rd/27+mcos (6p0%) ~1] 2 dv

Hence, since H=H-+ d/2 — d/«, by applying the changes of variables A = £ and

r =¥, )
(e —//7 we(A, 1, 0)drdfdA,
R
where
pe(A, 7, 0) = Tt |:COS (K (A, Q)) }
with

fmk)\ _
()\ T, 9) = 27’%(2 kW z@w( B— d/aHukHBT>>.

Remark that since § > d/a, h%l gf=d/e — (0. Thus, by continuity of ¥ and since
e—U4
¥(0) =1,

—ch>\_1
K\, r,60) = lim K.(\,r0) = me(Z Vp——— ”A”HM/Z )

€*>0+

Then, let us define
fzuk A -1 ‘

Z' G AT

Furthermore,
pe(A, 7, 0)] < G(A, 7, 0)
with
S\, 7,0) = F*(\)r' ™ 1ppyr<t + 2 — Lroyrs1-

Using that 0 < H < 1, one easily shows that § € L (R? x (0,400) x [0,27]).
Consequently, by a dominated convergence argument, lir(r)l ©(e) is equal to
e—U4

/R d /0 270+m[cos (K(\7,0)) — 1] Tﬁ’a
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Moreover, for every = € R,

+oo
/0 os (er) — 1] = = ~Cla)al"

—+00

d
where C'(a) = / (1 —cos(r)) rl;' Therefore,
0

lim (e / |2 cos (0)|“ dﬁ/
€*>0+

As a consequence, since H + d/2 = H+ d/a,

—zuk A 1

Z CIA

k=

hS]

p
X
lim E |exp ( kaw> =E|exp (z kaﬁ(uk)>],
=0 k=1 € k=1
where S is defined by (4.13), which concludes the proof. O

Therefore, when 3 > d/« and when 0 < H < 1, Xy g is lass with multifractional
function
h: RY — (0,1)
ifx#£0
xr — ~
H ifx=0.

More precisely, for every x € R?, Xp 5 is lass at point z with index h(z). On the
one hand, even if X g has finite second order moments, the tangent field at x = 0,
which is a RHFSM, does not. On the other hand, the tangent field at = # 0 is a
FBM, which is a Gaussian field. Therefore the behaviours of X3 at z = 0 and
x # 0 are very far from each other.

Let us now study the lass property at z = 0 when § > d/«. In this case, the
tangent field at x = 0 is Gaussian. However, if 3 # 0, this tangent field does not
have stationary increments and then it is not a FBM. Furthermore, Xy 3 is lass at
x = 0 with index H — 3(1 — «/2) as it would be expected for the centered Gaussian
field that has the same covariance as Xy 3.

Theorem 4.3.5. Let 3 < d/a. Then, the field Xy s is locally asymptotically self-
similar at x = 0 with index H — B(1 — «/2), in the sense that

X s(eu) (d)
(5H5(1a/2) = (WH,B(U»UEW,
u€Rd

lim
€—>0+

where the limit is in distribution for all finite dimensional margins of the fields and
Wh g is a centered Gaussian field which has the same covariance as Xp g.
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Proof. Let p € N\{0}, (v1,...,v,) € R?, (uy,...,u,) € (RY)" and

P ieup-
- |
(f z) (E vkgH 50 a/2)”£”H+d/22w 5 ||uk|| |z|

k=1

Then,

E |exp < ka i‘;ﬂg 162’;2))] = exp ((2))

where

p(e) = /}Rd/027r/0+oo[exp (iKE (f,pew)) —1—iK, (f,pew)] pclifa de d§.

Therefore, by applying the changes of variables A = ¢£ and r = £°p, ¢(e) is equal to

2mp oo d—Ba d—Ba dr
///5_d+ﬁa[exp <’iETK()\,T,0)>—l—iSTK()\,T,Q)} n
raJo Jo rita

where
_Wk i —1 10 B
K\ r0)=2rR Z kW Q/’(H kil ) :
Moreover, since § < d/a, hm € 72[3 = 0. Consequently,
— b Oé 1
liI(r)le_djLﬁo‘[exp(is%K()\,r, 8)) e K\, 0)} ——§K2()\,r, 0).
e—U4

Then, using a dominated convergence argument, one easily concludes that

lim U——;/f7WMMrW%M0W
Eﬂ0+90€ - 9 zilo Jo s 1y Tl—}—a'

Furthermore, by definition of Wy g, it is straightforward to prove that

P P
XH EUy, .
elir(r)i E |exp ( Z vk%> =E|exp (z kaWHﬁ(uk)>] ,
k=1 k=1
which concludes the proof. O

Hence, when 3 < d/a Xp g is lass with multifractional function

h: RT — (0,1)

H ifz#0
T Tl H-B8(1-a/2) ifz=0.

In this case, the tangent fields at x = 0 and x # 0 are two Gaussian models. In
particular, when 3 = 0, the tangent field is the same at x = 0 and at x # 0. In fact,
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when 3 = 0, Xp s is a RHFLM. As noticed in [BCI02|, a RHFLM has stationary
increments and then the same tangent field at each point. In addition, when (3 # 0,
the tangent field at x = 0 does not have stationary increments.

As a conclusion, Xy s is lass at each point. However, its behaviour at = = 0 de-
pends on . The three possible behaviours at x = 0 are very different. Furthermore,
whereas at = # 0, the tangent field is a FBM, it is not at x = 0 except for § = 0.

4.3.4 Asymptotic self-similarity property at large scales

Like in the case of RHFLMs, the asymptotic self-similarity is now study at large
scales. Heuristically, in view of (4.3), the behaviour at infinity is given by the
behaviour at z = 0. More precisely, there is a symmetry: the tangent field at
infinity when § > d/« (respectively when § < d/«) and the tangent field at x = 0
when 8 < d/a (respectively when 5 > d/a) are two of a kind. Actually, when the
increments are taken at large scales, the limit is a Gaussian model when § > d/«a
and a RHFSM when 5 < d/a. Then, by homogeneity of the Poisson random
measure N(d¢,dz), the kind of the tangent fields at infinity and at = 0 are the
same but the conditions on 3 are exchanged.

Proposition 4.3.6. Let 3 > d/a. Then, the field Xy g is asymptotically self-similar
with index H — 5(1 — «/2), in the sense that

. XH,IQ(RU)
PR (m a . W) g

where the limit is in distribution for all finite dimensional margins of the fields and
W is a centered Gaussian field which has the same covariance as Xy g.

Remark 4.3.7. The limit field Wy s is not a FBM: its increments are not stationary.

Proof. The proof is analogous to the proof of theorem 4.3.4. As noticed in the proof
of theorem 4.3.4,

p
X Ruk
exp< S vt At am)] — exp (¢(R))
where

2mp+00 Ba e
:///R_Hﬁo‘[exp <iR%K()\,T,0))—1—2’R%K(A,T,0)] dr
R0 Jo

with

—iUgA
K\ r,0) —2T§R<Z W ”w(ll ell%r ))

k

Then, since § > d/a, limRHJrooRd_fa = 0 and one concludes as in the proof of

theorem 4.3.4. O
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In the same way, the field Xy 3 satisfies an asymptotic property at infinity
when [ < d/a. However, in this case the limit field is a RHFSM. This phenomenon
has already been encountered in the case of RHFLMs associated with the mean
measure

1\z\§1 n(dé, dZ)

in [BCI02]. Actually, when 5 = 0, Xy 3 is a RHFLM associated with a quite similar
mean measure. The only difference with [BCI02| is that we have truncated the
measure n(d¢, dz) owing to a smooth function.

Proposition 4.3.8. Let 3 < d/a and H = H + d/2 — d/a. Assume that H > 0.
Then, Xy g ts asymptotically self-similar with index H, in the sense that

. XH,IQ(RU)
R0 ( RE ) yena (5(0) e

—
=

where the limit is in distribution for all finite dimensional margins of the fields
and S is a RHFSM that has the representation

—tug
Sg(u) = D(a) %</Rd(i§”f17+d/i Ma(d§)>

with M, a complez isotropic symmetric a-stable random measure with control mea-
sure the Lebesgue measure and

D(a) = {zaﬂw /0 = cos () Tﬁ’a} "

Proof. analogous to the proof of theorem 4.3.5. O

As a conclusion, the field Xy 3 satisfies different asymptotic self-similarities at
low and large scales. These properties has already been remarked in the case of
RHFLMs in [BCI02|. Furthermore, this phenomenon has already been encountered
in [BD99|. However, in [BD99]|, the limit field at low scales and the limit field at
large scales are two FBMs but with different index. In addition, the field Xz g has
three different behaviours: its local structure at x = 0, x # 0 and at large scales are
not the same in most cases.

4.4 Trajectories regularity and Hausdorff dimension
of the graphs

In section 4.4.1, the trajectories regularity of Xy 5 is studied. In addition, [BCIO3]
has linked the Hausdorff dimension to the lass property and the trajectories regu-
larity. Therefore, section 4.4.2 is devoted to the study of the Hausdorft dimension
of the graphs of Xy 3.
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4.4.1 Trajectories Regularity

In general, in order to study the trajectories regularity of a field (Y (z)), g4, one
evaluates the moments of its increments

E([Y(x) = Y(y)I")

and applies the Kolmogorov criterion. However, Xy 3 may not have moments of
order greater than two. In fact, since the law of Xy 5 is an infinitely divisible law,
one easily proves that for every ¢ > 2 and every z € R\ {0},

E(|Xps(z)|") < +00 & H<1-— g + gj

thanks to Theorem 25.3 in [Sat99] Then, following |[BCI02|, Xy g is split into two
fields X}, m5 and Xy 5 where X 5 has moments of every order and X ; has almost

surely C!-sample paths on Rd\{O}

The proposition 4.4.3 and its corollary give the trajectories regularity of Xz 3 on
RA\{0}. Furthermore, we first study the trajectories regularity of X} ; and Xp ,,
see lemmas 4.4.1 and 4.4.2. Then, the proposition 4.4.3 is an immediate consequence
of these two lemmas. Hence, let us quickly define X}_}ﬂ and X 5.

Let n € N such that n > d/2 and

3
~
B

Pu(t) =

?‘
—_
=

Let us define '
e~ — 1 — Py(—iz - §) Ljg<t

g,f(x,@ = H£||H+d/2

(4.14)
Then, for every ¢ € N such that ¢ > 2, the map
(62) — gt (@9 (Jlal’lz)

is in L?(R? x C) for the measure n(d¢, dz) = d€ v(dz). Therefore,

Xip) =2 [ | Rat 60w (lello) Fide, az),

dxC

is defined and has moments of every order.
Hence, Xy 3 = X} 5 + Xp 5 where the field (Xgﬁ(x))xeRd is defined by

— Pn(_. 5)1 < N7
Xiple) =2 [ ?R( HZHM/Q”“—%)w(uxu%\) N(de, d).
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Furthermore, the trajectories regularity of XIJSW is first studied, see lemma 4.4.1.
Then, by differentiation of the characteristic function given by (4.5), every moment
of order 2p, p € N\{0},

E| (X (@) = X5)”]

can be computed with the help of some L*-norm of the deterministic function
(&,2) — gn(x,y,&, z) where

Gule.y,€.2) = 2R (g (@, =0 (lall2]) — ot (. O (Il°121) ). (415)

As a consequence, an evaluation of these norms will give us an estimation of the
moments of the increments of X}, 5- Then, the Kolmogorov criterion will be applied.

Lemma 4.4.1. For every H' < H, there exists a modification of X;_;ﬁ whose sample
paths are almost surely locally H'-Holder on R4\ {0}.

Proof. Let K C R? be a compact set such that 0 ¢ K. Then, let p € N\{0}. By
differentiation of the characteristic function of X7 ;(z) — X 5(y), given by (4.5),
one proves that

B[00~ X)) =X NI [ e g o dsvias). (419

q=1lePyn=1
where ¢, is defined by (4.15) and
Py = {1 =l ) € (VO] 1+ 4, = p

Therefore, let us study
L) = [ |6 2 dviaz)
RixC

for every ¢ € N\{0}. In order to estimate this norm, g,, is first split into two functions

G (@, €, 2) = 2R (g (2, )2 — g (1,€)2) 6 (1]}

and

Gtal@,0,€.2) = 2R(g5 (4,€)2) (¢ (21°121) = v (o121 ) ).
By the Minkowski inequality,
I4(2,9) < (Ay(@,y) + By ()", (4.17)

where

1/q
Ao = ([ oo o) devta))
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and g
B = ([ loaten& o) dentan)

Therefore, let us study A,(z,y) and B,(z,y).

Step 1 Since v(dz) is rotationally invariant,

Agfa.y) = 2T )[R0 (el ) o)
where

- e~ — =€ 4 [P(—iy - §) — P(—iz - &) Ljgj<a|”

I,(x,y) =
)= f T

d¢.

Moreover, according lemma 2.2.1, see chapter 2 page 33, there exists a constant
D € R, such that

V(z,y) € K%, I,(z,y) < Dz —y|[**".

Furthermore, if x # 0,
1 21 +o00
JRE (ol 2) )= s [ cos @) s [ i) .
C |77 Jo 0

Then, let myx = minyex ||v]|°. Since 0 ¢ K and since K is a compact set, my > 0.
Therefore, as (2g — ) > 0, for every z € K,

1 < 1
7T i

As a consequence, there exists a constant D € R, such that for every (z,y) € K2,
Al(x,y) < Dljx — y|**" (4.18)
q ) - . .

Step 2 By definition of v(dz),

+o0 2
Bian) = 30) [ o (o(1aln) = o (lols) ) do
2m _Z‘y.g_l_P i 1 2q
where J(y) = 2% / costa () do [ I || fniﬁiff) isi] g
0 Rd

It is straightforward to prove that sup,c J(v) < 4+00. Then, it remains to study

Btei) = [ 5 (o(1el) = 0 1ol) ) o
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One proceeds as in step 2 of the proof of theorem 4.3.3. First, when (z,y) € K2,

then for every p > m[_(l,

o (1) = v (Ilyl’0) =o,

because of the support of ). Then by a Taylor expansion, one proves that there
exists a constant D € R, such that for every (z,y) € K2,

[ (1l21%) = @ (I9l°0) | < D pllz = yll 1g iy (o)

Moreover, since myg > 0 and 0 < a < 2,

+00
/ P 1[0’%_(5](/)) dp < 4o0.
0

As a consequence, there exists a constant D € R, such that for every (z,y) € K2,
Bi(z,y) < Dz —y|I*. (4.19)

Step 3 Owing to (4.17), (4.18) and (4.19), there exists a constant D € R, such
that for every (z,y) € K2,

I(w,y) < Dljz —y|*"".

Then, by definition of I,(z,y) and by (4.16), for every (z,y) € K2,

B[ (X7 5(0) = Xi5w) "] < Dlle - ",

where D € R, is a constant which only depends on p and K. Since p can be chosen
such that 2pH > d, the Kolmogorov criterion gives the conclusion. O

Hence, it remains to study the field X7 ;. Actually, the trajectories of this field
are smooth.

Lemma 4.4.2. There exists a modification of Xy 5 which has Ct-sample paths
on R4\{0}.

Proof. This proof is based on the same scheme as the proof of lemma 2.2.4, see
chapter 2 page 36. For the sake of clearness, let us recall this scheme.
Notice that for every x € R%\ {0}

Xz l2) = Vi (. 112)).

where the field (Ygﬂ(a:, y))meRd 40 is defined as follows:

Yy (2, y) :2/

R

Py(—ix N
d C%(Wz)gb(ypb1||£||§1N(d§,dz). (4.20)
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Let us define
T | _
Z(y) ZQ/Rd ﬁ(W@;Z b(yl2]) Ljey<a N(dE, d2),

where v = (71,...,74) € N*is such that 1 < |y[ =3""_ v; <nand y > 0.

Since P, is a polynomial, it is sufficient to prove that Z, admits a modification
which has C'-sample paths on (0, +0c). Then let n and M such that 0 < n < M.
One can prove with Taylor expansion the existence of a constant D > 0 such that

1. E[|Z,(y +6) — Z,(y)|’] < D|s], for every y € [, M] and every & such that
y+den M,

2. E[|Z,(y+6)+ Z,(y —0) — QZV(y)|2] < D|§|*, for every y € [, M] and every
§ such that (y +d,y — d) € [n, M.

Therefore, according to [CL67|, see page 69, there exists a modification of Z., which
has almost surely C'-sample paths on (0, +00), which concludes the proof. O

The following proposition is an immediate consequence of the lemmas 4.4.1
and 4.4.2.

Proposition 4.4.3. For every H' < H, there exists a modification of Xy s whose
sample paths are almost surely locally H'-Hélder on R*\{0}.

From the preceding proposition and the lass property, the pointwise Holder ex-
ponent of Xy 5 at point  # 0 can be given. Even if the increments of X 3 are not
stationary, the pointwise Holder exponent is the same at each point x # 0.

Corollary 4.4.4. At every point x # 0, the pointwise Hélder exponent Hx, ,(x) of
X p ts almost surely equal to H.

Proof. see proof of proposition 2.3 in [BCI02]. O

Remark 4.4.5. When 3 > d/a, because of the lass property at x = 0, it can be

proved that, almost surely, B
Hx, ,(0) < H.

Hence, Hx, ,(0) < H. In particular, for every H' such that H < H' < H, the
trajectories of Xp 5 are not locally H’-Holder on whole R%. The same holds has
soon as (3 > 0.

Corollary 4.4.6. Let u € S ! and v € R? such that x # 0. Then, the point-
wise Holder exponent Hx,, , (x,u) of Xup at point x in direction u is almost surely
equal to H.

Proof. see proof of proposition 2.3.3 page 50 in chapter 2. O
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4.4.2 Hausdorff dimension

Owing to [BCI03|, the Hausdorff dimension of the graphs of Xy 5 can be computed.
Let us first recall the definition of the graphs of Xp 5. Let U C R? be a compact
set. Then, the graph of Xy 3 on U is

graph(XHﬁ'U) = {(z, Xpyg(x)), v € U}.
The Hausdorff dimension of graph <X H”S|U> is denoted by dimgy X Hp),

Proposition 4.4.7. Let K = H?Zl[ai, bil, (a;,b;) € R? and a; < b; Then the Haus-
dorff dimension of the graph of Xz on K is almost surely equal to d +1 — H.

Proof. In fact, this proposition is a consequence of Theorem 2.1 in [BCI03]. How-
ever, when 0 € K, for ¢ > 0 sufficiently small, the sample paths of Xy 3 are not
(H — ¢)-Holder continuous on K. Consequently, when 0 € K, the assumptions of
Theorem 2.1 in [BCIO3] are not fulfilled. Nevertheless,

dimH XH’6|K = dlmH {(ZL‘,XHﬂ(ZL‘)), T € K\{O}} = dlmH XH’B‘K*’
where K* = K\{0}. Then, since

dimy U E; = supdimy F;,

ieN ieN

for every E; C R Borel set, it is sufficient to prove the proposition when 0 ¢ K. In
fact, when 0 € K, K* can be written as a countable union of blocks which do not
contain 0.

Therefore, let us now assume that 0 ¢ K. Then one must prove that Xy g
satisfies the assumptions of Theorem 2.1 in [BCI03]. Firstly, by proposition 4.4.3,
the sample paths of Xy 5 are (H — ¢)-Holder continuous on K for every € € (0, H).
Hence, it remains to prove the existence of a L!-function ® and of &, > 0, such that
for all uw € R and every (z,y) € K? such that ||z — y|| < &,

Z-vXH,ﬁ(I)*XH,ﬁ(y)
’E(e llz—y )’ < P(v). (4.21)
Let (z,y) € (K)* and v € R. Then by (4.5),

E [exp (wXH’ﬁ(x) — XHﬁ(y))} = exp (p(z,y,v)),

H
[l = yll

where

(p(SL’,y,U) = Ad C[eXp (ZUG(xv yvév Z)) —1- iUG(LE,y,&, 2)] df V(dZ)
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with

2 —iwé ] EKATS
Gla,9,€,2)= %(H f”M/Qzw(||w||ﬁ|z|)—&”H—Wz¢(||y||ﬁ|z|)).

H
lz =yl

As v(dz) is a rotationally invariant measure,

o(z,y,v) = /Rd (C[COS (vG(x,y,&, 2)) — 1] dEv(dz).

Put My = maxyg HuHﬁ and let T = My'/2. Then, by (4.6), for every u € K,
if |2| < T, z/;(”u”ﬁ\zo — 1 since |Ju||’|2| < 1/2. Furthermore,

90('777 Y, U) < /d [COS (UG(;E7 Y, 57 Z)) - 1] 1[0,T]<‘Z‘) df V(dZ).
RexC
Therefore, by definition of ¢, the last inequality can be rewritten as follows:

o(z,y,v) <oz, y,v),

where

oz, y,v) = /Rdxc[cos <vé(x,y,£,z)> — 1} 1j0.17(|2]) d§ v(dz)

with

= H
|z =yl

~ 2 e it — 1 e e 1
G(ZU>ZJ>§>Z> %( Hd2z_ Hd2z>'
(13t (13t
As a consequence,

Xup(r) — Xup(y)
|z —y|”

0<E [eXp (w )] < exp (F(z, y,v)). (4.22)

Moreover, notice that

€xXp (QZ(‘T, Y, U)) =E H
[z — yll

o < Xi(2) ~ Xnw) )] |

where Xy is a RHFLM with control measure the push forward of v(dz) by the map
z +— z17(|2]). Furthermore, according to [BCI03|, there exists ® and dy such
that Xy satisfies (4.21). Then, because of (4.22), (4.21) is also fulfilled by Xy 5. As
a result, the assumptions of Theorem 2.1 in [BCI03] are fulfilled and then

dimy X Hp|, = d+1— H almost surely.
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Hence, the Hausdorff dimension of the graphs of Xy 3 does not depend on f3.
Actually, except at one point, Xy 3 locally looks like FBM with index H. Then,
the Hausdorff dimension of its graphs is the same as the Hausdorff dimension of the
graphs of a FBM with index H.

RHFLMs have the same structure of covariance and the same local structure as
the FBM. In next section, the local structure of Wy 3 is studied. In particular, even
if Wi 3 and Xy 3 have the same structure of covariance, their local structure are
different when 3 > d/a.

4.5 Gaussian Model

This section is devoted to the study of the real-valued Gaussian field Wy 3 which
has the same covariance as Xy s.

Definition 4.5.1. Let 5 € R. The field Wy s is the real-valued centered Gaussian
field with covariance function ~ given by proposition 4.2.3.

Remark 4.5.2. When 3 =0, Wy 5 is a FBM with index H.

4.5.1 Asymptotic self-similarity

As we have already noticed, thanks to its covariance structure, it is easy to verify
that Wy g is self-similar.

Proposition 4.5.3. The field Wy 5 is self-similar with index H — 5(1 — «/2), i.e.

Wi p(eu) (@)
Ve > O, (W) = (WHﬂ(u))ueRd.
u€Rd

However, in general, Wy g does not have stationary increments. Then, even if
the self-similarity is a global property, proposition 4.5.3 only implies that Wy s is
lass at © = 0. Nevertheless, the Gaussian field Wy 3 remains lass at each point.
Furthermore, it has the same tangent field as Xy 3 at « # 0.

Theorem 4.5.4. Let v € R, x # 0. Then, the field Wy g is locally asymptotically
self-similar with index H and tangent FBM at point x. More precisely,

iy (Pl Z W) 0 1) B )
u€R4

€*>0+

where the limit is in distribution for all finite dimensional margins of the fields, By
18 a standard FBM with index H and

C(H +00 1/2
Ol 1) = quﬁii)“ ([ oeeoran)

with C(-) is defined by (4.7).
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Proof. Let
‘Z(u) _ WHﬁ(l‘ + 5;2 — WHﬁ(l‘) .

and

X - X
V;(u) _ H,ﬁ(l“FE:; Hﬂ(ff).

Then, since Wy g and Xy 3 are two centered fields with the same structure of co-
variance,

E(V.(u)V.(v)) = E(V.()V(v))

Then, we use the decomposition V, = V. ; + V_» introduced in the proof of theo-
rem 4.3.3. Let us first recall that for every y € R,

vy € RY, Elir& E(VZ,(y)) = 0. (4.23)

Moreover, V. ; is a RHFLM and then have the same structure of covariance as a
FBM. Furthermore, the proof of theorem 4.3.3 gives the Poisson random measure
which defines V.;. Then, using the isometry property induced by this Poisson
random measure,

E(Ver(w)Ven(v)) = C*(x, H)E(Bp(u) Bu(v)),

where By is a standard FBM with index H and

C(H +00 1/2
Ola. H) = W ([ eetorio)

with C(-) is defined by (4.7). Hence, by (4.23),

lim E(\Z(U)YZ(U)) — C2(z, H)E(By (u) By (v)),

€*>0+
which concludes the proof since Wy 3 and By are centered Gaussian fields. O
Hence, Wy 3 and Xy 3 have the same tangent fields at = # 0. However, in

general, their tangent fields at x = 0 are not the same.

4.5.2 Trajectories Regularity

Using the Kolmogorov criterion, the trajectories regularity of Wy s can be given on
R\ {0}. Since Wy 5 is a Gaussian field, it is sufficient to control

E[(Was(z) — Wi s(y))?].

Proposition 4.5.5. For every H' < H, there exists a modification of Wy 3 whose
sample paths are almost surely locally H'-Hélder on RY\{0}.
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Proof. Let K C R? be a compact set such that 0 ¢ K. Then,

B[(Wans(o) = Was)’) = [ lden & 2P dsvldaz), (424
where

(9. 6.2) = 2R (g, 20 (Jl2]°121) — g0(w. 20 (2l ) ).

with ”»
e s —1
90(u, &) = —a75
[ s

Then, one proceeds as in the proof of proposition 4.4.1. Also, there exists a
constant, D such that for every (x,y) € K2,

E[(Was(x) = Wip(y))’] < Dlle —y*".

Hence, since Wy 5 is a centered Gaussian field, for every p € N*, there exists a
constant D,, such that for every (z,y) € K?,

E[(Was(z) = Wip(®)”] < Dylle =y,

Since p can be chosen such that 2pH > d, the Kolmogorov criterion gives the
conclusion. O

Then, the pointwise Holder exponent at x # 0 is deduced from the lass property
and proposition 4.5.5.

Corollary 4.5.6. At every point x # 0, the pointwise Hélder exponent Hy, ,(x)
of Wi g is almost surely equal to H.

Proof. see proof of proposition 2.3 in [BCI02]. O

Remark 4.5.7. In view of the lass property satisfied by Wy g at z = 0,
Hy,, 50) < H — (1 — a/2).

almost surely. Hence, for every H< H < H , the trajectories of Wy 3 are not
locally H’-Holder on whole R? as soon as 3 > 0. We have already obtained the
same property for Xy 3.

Corollary 4.5.8. Let u € S¥*! and v € RY such that x # 0. Then, the point-
wise Holder exponent Hx,, , (x,u) of Xup at point x in direction u is almost surely
equal to H.

Proof. see proof of proposition 2.3.3 page 50 in chapter 2. O
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4.5.3 Hausdorff dimension

Owing to [BCI03|, the Hausdorff dimension of the graphs of Xy s have been given
in section 4.4. Actually, it has been deduced from Theorem 2.1 in [BCI03]. Let us
recall that this theorem links the Hausdorff dimension to the lass property and the
trajectories regularity. Then, since Wy 3 and Xy g satisfy the same lass property at
x # 0 and have the same pointwise Holder exponent at x # 0, we expect that the
Hausdorff dimension of their graphs are the same. Then, in view of next proposition
and of proposition 4.4.7, the Hausdorff dimension of Wy 5 is equal to the Hausdorff
dimension of Xy 3 and does not depend on /.

Proposition 4.5.9. Let K = Hle[ai,bl-], (a;,b;) € R? and a; < b;. Then the
Hausdorff dimension of the graph of Wy g on K is almost surely equal to d+1— H.

Proof. As explained in the proof of proposition 4.5.9, it is sufficient to prove the
proposition when 0 ¢ K. Therefore, let us now assume that 0 ¢ K.

Then, by proposition 4.5.5, the sample paths of Wy 5 are (H — ¢)-Hélder contin-
uous on K for every € € (0, H). Hence, let us prove that there exists a L'-function ®
and &y > 0 such that for all u € R and every (z,y) € K? such that ||z — y|| < do,

i V8 = WH,5()
'E(e llo—y|H )‘ < O(v). (4.25)

Let (z,y) € (]Rd)2 and v € R. Then, since Wy 5 is a centered Gaussian field,

E {exp (w Wip(@) = W (y))] = exp (—v*¢(z,y)),

H
Iz = yll

where

p(z,y) = E[(Wa (@) = Wip(y))’] = B[(Xus(@) — Xupy))’].
Therefore,

o(a,y) = / G (2,y,€, 2) dé v(d2)

dxC
with

9 —ix-E 1 —iy-& 1
Glx,y.€,2) %(H gHHM/Qw(nxn%) —Ww(nynw)).

= H
|z —yll

Put My = maxg ||u|” and let T = My /2. Then,

ola,y) > / G (2, 9,€,2) Loy (|]) dé w(d2).

dxC

Therefore, by definition of ¢, the last inequality can be rewritten as follows:

o(x,y) > oz, y),
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where
Fow) = [ Gy.6.2) Yom(aD) de (d2)
RixC
with
~ 2 e it 1 e e 1
G(x,y,8 2) = ?R< z— Z)
lz =gl \ e g

As a consequence,

Wha(x) — Whs(y)
[

0< Elexp (w )} < exp (—v*@(z,y)). (4.26)

Moreover, notice that

exp (3(z,y,v)) = E [exp <iUBH(fL') — BH(?/)):| ,

H
Iz = yll

where By is a FBM. Furthermore, according to [BCI03|, there exists ® and &y such
that By satisfies (4.25). Then, because of (4.26), (4.25) is also fulfilled by Wy 5. As
a result, the assumptions of Theorem 2.1 in [BCI03] are fulfilled and then

dimy Wiy =d+1—H almost surely.

4.6 Generalization

In this chapter, a lass field X 3 with a special behaviour at = 0 has been defined.
More precisely, its tangent field at x = 0 is not a FBM and for 3 enough large,
it is not even a Gaussian field. Nevertheless, Xy g only admits the point x = 0
as exceptional point. Also, one can wonder if there exists a field X .3 With several
exceptional points. Actually, let {xz eRY el } be a family; we would like to define
a lass field with a tangent field at x = x; which is not a FBM. Furthermore, the
tangent field at x = x; would be a RHFSM. In this part, we give a solution of this
problem when the family {z;, i € I} does not have any accumulation point. There
are many ways to proceed. By the following one, the properties of the constructed
field Xy 3 are immediate consequences of the properties of the field Xy g.

Before we give the definition of the field X 3, let us precise the framework and
the notation.

Assumption H Let {:1:2 eRY el } be a family of pairwise different elements
of R?. Assume that this family does not have any accumulation point.
Hence, the set I is at most countable.
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Then, let us consider a family of functions {¢;, i € I} which will be used in order
to localized the field. Let us first introduced

ri = inf [l — ;.
j#i

Under the assumption H, r; > 0 for every ¢ € I.
Notation For every i € I, let ¢; : RY — [0, 1] be a C*-function with compact
support. More precisely,

() = 1 if ||l — o] <
PATIZ 0 it o — ] >

Then, in particular, for every z, there exists at most one i such that ¢;(x) # 0.
Furthermore, let us define ¢ : R — [0,1] by

plx)=1- ngi(az), c R<.

30|

The function ¢ is well-defined since in the last equation the sum is reduced at most
at one point. Furthermore, on a neighbourhood of a fixed =,

o(y) =1 or 1—gi(y)

for a certain fixed i. Then, ¢ is a C**-function.
Thus, let us now introduced the field Xy g.

Definition 4.6.1. Let § € R and let By be a standard FBM independent of Xy 3.
Then, for every = € R,

Xy s(z) = o(x)By(z) + Z 0i(2) Xpg(r — x;).
icl
Remark 4.6.2. For every i € I, )?Hg(scl) = 0.

Also, we will easily deduce the properties of X s from the properties of Xy g
using the following lemma.

Lemma 4.6.3. Let v € R? and J(z) = {i € I, p;(z) # 0}. Then, J(x) is empty or
reduced to one point. Moreover, there exists r > 0 such that for every y such that
ly —zll <,

Xis() = o) Buly) + > ¢iy)Xusly — x2).

ieJ(x)

Proof. In view of the definition of the supports of the continuous functions ;, this
lemma is straightforward. O

Hence, the lass properties of By and Xy g at  # 0 can be established.
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Theorem 4.6.4. Let v € R¢, x ¢ {x;, i € I}. Then, the field )?H,g is locally asymp-
totically self-similar with index H and tangent FBM at point x. More precisely,

e—04 e ueRd’

where the limit is in distribution for all finite dimensional margins of the fields, By
1s a standard FBM with index H and

_ +o0 1/2 (o
Clo.t) =)+ ([ pdp) 'y %jﬁ({_w)

icl |z — ;]

with C(-) is defined by (4.7).
Proof. Let us first study
o(z + eu)By(r + eu) — p(x) By ()

Y;,l(u) = cH
and
; iz Feu) Xpp(r 4 eu) — @i(2) X p(x)
Ye,Z(u> - EH .
Moreover,

Yoi(u) = @(x + su)BH(x + 8;; — Bul(w) + plo + E:; — ¢l) By (x).

Then, since ¢ is a C!'-function and since H < 1,

p(z +eu) — p(z)

5 = 0.

lim

€*>0+
Hence, since the deterministic function ¢ is continuous, the lass property satisfied
by By leads to:

lim (V1)) g0 < ¢(2) (Bu(w)) (4.27)

e—04 ueRd’
where the limit is in distribution for all finite dimensional margins of the fields
and By is a standard FBM with index H.

In the same way, thanks to the lass property satisfied by Xy s at y # 0, one

establishes that

lim (V(w), o @ i(@)Cla = iy H) (By(w)) (4.28)

e—04 ueRd’

C(H +00 1/2
o) = it ([ 7o)

with C(-) defined by (4.7).

Furthermore, by lemma 4.6.3, on a neighbourhood of x, the sum on I in the
definition of Xy 5 is in fact a sum on J(z) which contains at most one point. Also,
since By and Xy g are independent, (4.27) and (4.28) gives the conclusion. O

where
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Furthermore, the field X 3 remains a lass field at each = x;. Let us state this
lass property in the case where 5 > d/a.

Theorem 4.6.5. Leti € I, 8> d/a and H = H +d/2 — d/o. Assume that H > 0.

Then, X mp 18 locally asymptotically self-similar at point x = x; with index H and
tangent field RHFSM, in the sense that

. )? T+ eu (d)
o ( 1,5 d )) D (S5()),ne
€
u€Rd

€*>0+

where the limit is in distribution for all finite dimensional margins of the fields
and S is a RHFSM that has the representation

e~ w€ _
Sp(u) = D(a) ?ﬁ(/RdW Ma(d§)>

with M, a complex isotropic symmetric a-stable random measure with control the
Lebesgue measure and

D(a) = {zaﬂw /0 = cos () Tﬁ’a} "

Proof. In view of lemma 4.6.3, in a neighborhood of z;, )?Hﬁ(y) = Xpupaly — ;).

Then, the lass property of X u3(y) at © = z; is the same as the lass property satisfied
by Xup at x = 0. O

In the same way, the field Xy 5 remains lass at * = x; when 5 < d/«. However,
in this case the tangent field is a Gaussian field whose increments are not stationary
except for 4 = 0.

Theorem 4.6.6. Let i € I and < d/«a. Then, )?Hﬁ 18 locally asymptotically
self-similar at point x = x; with index H — (1 — «/2), in the sense that

lim
€—>0+

Xip(wi +eu) @
( cH—B(1-a/2) = Wh,s(w)),cpas
u€Rd

where the limit is in distribution for all finite dimensional margins of the fields
and Wy g is a centered Gaussian field which has the same covariance as Xy g.

Proof. see proof of theorem 4.6.5. O

Then, one can wonder what happens when 3 = d/«a. In this case, whereas Xy g

is self-similar, X 3 is not. Nevertheless, it remains lass at * = x; with Xy 3 as
tangent field.
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Theorem 4.6.7. Let i € [ and § = d/a. Then, X}Lﬁ 1s locally asymptotically
self-similar at point x = x; with index H — (1 — «/2), in the sense that

. X p(x; + eu) @
lim (m (Xu,5()) ez,
ueRd

€—>0+

where the limit is in distribution for all finite dimensional margins of the fields.
Proof. see proof of theorem 4.6.5. O

Furthermore, the trajectories regularity of X 3 and the Hausdorff dimension of
its graphs can be easily given using lemma 4.6.3.

Proposition 4.6.8. For every H' < H, there exists a modification of )?Hﬁ whose
sample paths are almost surely locally H'-Hélder on R4\ {0}.

Then, the pointwise Holder exponent at x # 0 is deduced from the lass property
and proposition 4.6.8.

Corollary 4.6.9. At every point x # 0, the pointwise Hélder exponent H;(Hﬁ(:c) of

X 3 s almost surely equal to H.

Like in the case of Xy 3, the directional pointwise Holder exponent can be given
and does not depend on the direction. Let us now be interested in the Hausdorff
dimension of the graphs of Xy s.

Proposition 4.6.10. Let K = Hle[ai,bi], (a;,b;) € R?* and a; < b;. Then the
Hausdorff dimension of the graph of Wy 3 on K is almost surely equal to d+1— H.

Moreover, there exist other fields which satisfy the same properties as X . As
an example, the FBM can be replaced by a lass field which admits By as tangent field
at each point. However, one may suppose that its trajectories are locally Hélderian
and take into account the Hausdorff dimension of its graphs. As an example, the
FBM Bpy can be replaced by a RHFLM Xy with index H.

In addition, one can also study the field (Y (z)), g« defined by

Y(ZL‘) +ZSDZ XH 51 )7

el

where for example the fields By and Xy, g,, ¢ € I, are independent. Then, playing
with the parameters, one obtains several behaviours.

4.7 Notes

In this chapter, a field Xy s with two different behaviours have been built. More
precisely, when 3 > d/c«, its tangent field at + = 0 is a RHFSM S with index
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H = H +d/2 — d/a whereas at = # 0, it is a FBM with index H. Hence, since
H < H , the index of self-similarity at x = 0 is strictly lower than the index of
self-similarity at = # 0. N

In addition, as soon as we give us 0 < H < H < 1, there exists o € (0,2)
such that H = H + d/2 — d/a and then a field Xy 4 of second order which is lass
with a RHFSM of index H as tangent field at * = 0 and a FBM of index H at
x # 0. Also, we can wonder if there exists such a field when H > H. In the sequel,
we easily construct such a field. However, the construction depends if H = H or
not. Furthermore, the lass property are taken in the sense of the convergence in
distribution for all finite dimensional margins.

Notation Throughout this section, Sz is a RHFSM with index H and By is a
FBM with index H. Furthermore, a and b are two real-valued C'-function on R?
such that

b(0) =0, a(0) # 0 and b(z) # 0 for every = # 0.

Remark 4.7.1. The RHFSM S and the FBM By are not supposed independent.

Let us first give the construction in the case where H < H.

Proposition 4.7.2. Assume that H < H and define the field Y7 by
Yi(z) = a(z)Sz(x) + b(x) Bu(x), * € R™

Then, the field Y7 is locally asymptotically self-similar. Furthermore, its tangent
field at x = 0 is the field a(0)Sz which is a RHFSM and its tangent field at x # 0
is the FBM b(z)Bpy.

Remark 4.7.3. The assumptions a(0) # 0 and b(x) # 0 are only done to ensure that
the limit fields a(0)S and b(z) By are not degenerate.

Proof. Let us fixed x € R%. Then, since Sj is self-similar with index H and since a
is a C!- function, one easily establishes that

lim
€*>0+

G ) IR ICH0)

cH
In the same way, since By is self-similar with index H and since b is a C'- function,

iy (M Bl RO ZAOBE)) ) 1))

€*>0+

Also, since H<H ,

_ Yi(x 4 eu) — Yi(x) (d)
lim < o )uERd = b(x)(Ba(u)),cpa- (4.29)

€*>0+
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Actually, if  # 0, b(z) # 0 and b(x) By is not degenerate. Hence, (4.29) establishes
the lass property at x # 0. However, since b(0) = 0, (4.29) does not give the tangent
field at = = 0. However, in the case where x = 0, since b is deterministic,

(b(eu)BH(au)) @ (b(au)lBg(u)) |

Hence,
lim (b(su)BH(z—:u)) @
e=0+ € u€eRd
and then v
lim ( 1§2“>)UERd D a(0) (S (1)), g (4.30)
which gives the lass property at x = 0 since a(0) # 0. O

In the case where H = H, i.e. the case where the FBM By and the RHFSM
S have the same index, we can not deduce the local behaviour of Y7 at x # 0 from
these of By and S in general.

Proposition 4.7.4. Assume that H=H.
Then, let us fired H' such that 0 < H < H'. Then, let a € (0,2) such that
H=H'+d/2—d/a. We consider the field Xy 3, defined in section 4.2. Let

Ya(z) = a(x) X p(x) + b(2) Bu ().

Then, the field Y5 is a locally asymptotically self-similar field. Furthermore, its tan-
gent field at x = 0 s is a RHFSM with index H whereas it is a FBM with index H
at x # 0.

Proof. One proceeds as in proof of proposition 4.7.2 using the lass property of Xy 3
instead of the self-similarity of the RHFSM Sj. O

As a conclusion, for any (H, H) € (0,1)2, we can build a field which admits 0
as an exceptional point. More precisely, the tangent field at + = 0 is a RHFSM
whereas it is a FBM at = # 0.
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Multifractional Lévy Motions

Abstract

In a first part, the class of Real Harmonizable Multifractional Lévy Motions, in
short RHMLMs, is introduced. This class is a generalization of the Multifractional
Brownian Motion, in short MBM, and of the class of Real Harmonizable Fractional
Lévy Motions. This class contains some non-Gaussian second order fields which
share many properties with the MBM. Especially, RHMLMs are locally asymptot-
ically self-similar and their pointwise Holder exponent is allowed to vary along the
trajectory. Moreover, their properties are governed by their multifractional function
which can be estimated with the localized generalized quadratic variations as in the
case of the MBM.

The second part deals with the simulation of the non-Gaussian part of a RHMLM.
Actually, the method for generating the sample paths of RHMLMSs is based on a
generalized shot-noise series expansion. However, in some cases, one part of the
RHMLM is approximated by a MBM.

The last part introduces a locally asymptotically self-similar field Xy 3 with
a special behaviour at x = 0. More precisely, at x # 0, the tangent field is a
Fractional Brownian Motion, in short FBM. However, in most cases, the tangent
field at = 0 is not a FBM and can even be non-Gaussian. In addition, the field Xy 5
is asymptotically self-similar at infinity with a Gaussian field, which is not a FBM,
as tangent field. Finally, the trajectories regularity and the Hausdorff dimension of
the graphs of X 3 are studied.

Keywords: Asymptotic self-similarity, identification, generalized shot noise series,
infinitely divisible distribution, simulation.
Field: Mathematics, Statistics and Probability Theory.
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