
HAL Id: tel-00007026
https://theses.hal.science/tel-00007026

Submitted on 4 Oct 2004

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving large linear systems with multiple right-hand
sides

Julien Langou

To cite this version:
Julien Langou. Solving large linear systems with multiple right-hand sides. Mathematics [math].
INSA de Toulouse, 2003. English. �NNT : �. �tel-00007026�

https://theses.hal.science/tel-00007026
https://hal.archives-ouvertes.fr

N o D’ORDRE 693

MANUSCRIT de THÈSE

présentée devant

L’INSTITUT NATIONAL DES SCIENCES APPLIQUÉES DE TOULOUSE

en vue de l’obtention du doctorat
Spécialité: Mathématiques Appliquées

par

M Julien Langou

Résolution de systèmes linéaires de grande taille avec plusieurs seconds membres.

Solving large linear systems with multiple right–hand sides.

soutenue publiquement à Saint Girons (09, France), le 10 juin 2003, devant Messieurs :

Guillaume Alléon Directeur de groupe, eads–ccr France invité

Åke Björck Professeur, Linköping University Suède rapporteur

Iain S. Duff Directeur de projet cerfacs et ral Royaume–Uni membre du jury

Luc Giraud Chercheur sénior, cerfacs France directeur de thèse

Gene H. Golub Professeur, Stanford University USA membre du jury

Gérard Meurant Directeur de Recherche au CEA France président

Chris C. Paige Professeur, McGill University Canada rapporteur

Yousef Saad Professeur, University of Minnesota USA invité

 ��

LANGOU Julien
Résolution de systèmes linéaires de grande taille avec plusieurs seconds membres.

nombre de pages : 235, thèse doctorat de mathématiques appliquées, soutenance à
Saint Girons (09) le 10 juin 2003, numéro d’ordre: 693

RÉSUMÉ:
Le point de départ de cette thèse est un problème posé par le groupe électromagnétisme
de EADS-CCR : comment résoudre plusieurs systèmes linéaires avec la même ma-
trice mais différents seconds membres ? Pour l’application voulue, les matrices sont
complexes, denses et de grande taille (de l’ordre de quelques millions). Comme de
telles matrices ne peuvent être ni calculées, ni stockées dans un processus indus-
triel, l’utilisation d’un produit matrice-vecteur approché est la seule alternative. En
l’occurrence, le produit matrice-vecteur est effectué en utilisant la méthode multipôle
rapide. Dans ce contexte, le but de cette thèse est d’adapter les méthodes itératives
de type Krylov de telles sorte qu’elles traitent efficacement les nombreux seconds
membres. Nous nous concentrons particulièrement sur l’algorithme GMRES et ses
variantes. Les schémas d’orthogonalisation que nous avons implanté dans GMRES
sont des variantes de l’algorithme de Gram-Schmidt. Dans une première partie, nous
nous intéressons à l’influence des erreurs d’arrondi dans les algorithmes de Gram-
Schmidt. Dans une deuxième partie, nous avons étudié des variantes de la méthode
GMRES, notamment GMRES-DR, seed GMRES et block GMRES. La troisième
partie est dédiée à l’amélioration de ces techniques standards dans le cadre des
problèmes électromagnétiques.

MOTS CLÉS :
méthode d’orthogonalisation, méthode de Krylov avec plusieurs seconds membres,
calcul de section équivallente radar monostatique

soutenue publiquement à Saint Girons (09, France), le 10 juin 2003, devant Messieurs :

Membres du jury:
Guillaume Alléon Directeur de groupe, eads–ccr France invité

Åke Björck Professeur, Linköping University Suède Rapporteur

Iain S. Duff Directeur de projet cerfacs et ral Royaume–Uni membre du jury

Luc Giraud Chercheur sénior, cerfacs France Directeur de thèse

Gene H. Golub Professeur, Stanford University USA membre du jury

Gérard Meurant Directeur de Recherche au CEA France Président

Chris C. Paige Professor, McGill University Canada Rapporteur

Yousef Saad Professeur, University of Minnesota USA invité

Dépôt à la bibliothèque universitaire en 4 exemplaires.

LISTE DES PUBLICATIONS (parues ou soumises)

1. Luc Giraud and Julien Langou (2002). When modified Gram–Schmidt gen-
erates a well–conditioned set of vectors. IMA Journal of Numerical Analysis,
22(4):521–528.

2. Luc Giraud, Julien Langou and Miroslav Rozložńık (2002). On the loss of

orthogonality in the Gram–Schmidt orthogonalization process. À parâıtre cette
année dans Computer and Mathematics with Applications (2003).

3. Luc Giraud and Julien Langou (2002). Robust selective Gram–Schmidt re-

orthogonalization. À parâıtre cette année dans SIAM Journal of Scientific
Computing (2003).

4. Luc Giraud, Serge Gratton and Julien Langou (2003). A reorthogonalization
procedure for modified Gram–Schmidt algorithm based on a rank– k update.
Soumis à SIAM Journal of Matrix Analysis and Applications.

5. Valérie Frayssé, Luc Giraud, Serge Gratton and Julien Langou (2003). A set
of GMRES routines for real and complex arithmetics on high performance
computers. Soumis à ACM Transactions on Mathematical Software (TOMS).

Contents

Part I 1

1 Study of the Gram–Schmidt algorithm and its variants 3
1.1 Presentation of the Gram–Schmidt algorithm 3

1.1.1 Projection . 3
1.1.2 The classical Gram–Schmidt orthogonalization process 4
1.1.3 The modified Gram–Schmidt orthogonalization process 6
1.1.4 The reorthogonalization versions 7
1.1.5 The square–root free versions 8
1.1.6 The row oriented modified Gram–Schmidt algorithm 8
1.1.7 Others variants . 9
1.1.8 Other candidates to perform a QR factorization 10

1.2 Model of error analysis for projections 11
1.2.1 Floating–point arithmetic . 11
1.2.2 Error analysis for basic linear algebra operations 15
1.2.3 Error analysis of an elementary projection 21
1.2.4 Error analysis of a modified projection 24
1.2.5 Error analysis of a classical projection 25

1.3 New insight into the Gram–Schmidt algorithm 27
1.3.1 When the modified Gram–Schmidt algorithm generates a well–

conditioned set of vectors . 27
1.3.2 The Gram–Schmidt algorithm with reorthogonalization at run-

time . 28
1.3.3 A posteriori reorthogonalization in the Gram–Schmidt algorithm 31

1.4 When the modified Gram–Schmidt algorithm generates a well–conditioned
set of vectors . 32
1.4.1 Previous results and notations 32
1.4.2 Conditioning of the set of vectors Q̄ 33
1.4.3 Some remarks . 35

1.5 A robust criterion for modified Gram–Schmidt with selective reorthog-
onalization . 40
1.5.1 Adaptation of the work by Björck (1967) for the modified

Gram–Schmidt algorithm (MGS) to the modified Gram–Schmidt
algorithm with one reorthogonalization step (MGS2) 43

1.5.2 Link with selective reorthogonalization 58

ii CONTENTS

1.5.3 Lack of robustness of the K–criterion 61
1.5.4 What about classical Gram–Schmidt? 63

1.6 A reorthogonalization procedure for the modified Gram–Schmidt al-
gorithm based on a rank k update 71
1.6.1 Rank considerations related to the loss of orthogonality in MGS 73
1.6.2 Numerical illustrations and examples of applications 78

1.7 Miscellaneous topics on the Gram–Schmidt algorithm 88
1.7.1 The modified Gram–Schmidt algorithm is as the Householder

algorithm ? . 88
1.7.2 Blindy MGS: a model for the modified Gram–Schmidt in finite–

precision arithmetic. 88
1.7.3 Accurate eigencomputations using the modified Gram–Schmidt

algorithm. 91
1.8 Future work . 93

Part II 95

2 Implementation of iterative methods 97
2.1 Basics . 97

2.1.1 Preconditioning . 97
2.1.2 Stopping criteria . 97
2.1.3 Implementation details . 99

2.2 The GMRES method . 101
2.2.1 Theoretical presentation . 101

2.3 The flexible GMRES method . 106
2.4 The GMRES method with Deflated Restarting 107

2.4.1 Use of the Givens rotations. 109
2.4.2 Use of Householder transformations. 111
2.4.3 The LU–matrix–matrix product 111
2.4.4 Preliminary experimental results 113

2.5 The seed–GMRES method . 115
2.6 The block–GMRES method . 117

2.6.1 General overview of the block–Arnoldi method 117
2.6.2 Ruhe’s variant of block–GMRES 117
2.6.3 The least–squares solution . 119
2.6.4 1/p –happy breakdown in the block–GMRES algorithm. . . . 119
2.6.5 Deflation in the residuals . 121
2.6.6 Choice of the vectors in the Arnoldi sequence 122

Part III 129

3 The Electromagnetism Application 131
3.1 Presentation of the electromagnetism problem 131

3.1.1 Background on the electric field–integral equation formulation 132
3.1.2 Plane wave scattering and monostatic calculation 134
3.1.3 Properties of the EFIE matrix 137

CONTENTS iii

3.2 Simulation codes and model problems 138
3.2.1 Presentation of the 2D code ie2m 138
3.2.2 Case study in 2D . 138
3.2.3 Presentation of the 3D code as elfip 138
3.2.4 Case study in 3D . 139
3.2.5 A remark on the mesh size versus the wavelength 140
3.2.6 On the properties of the linear systems 143

3.3 A detailed presentation of the 3D code 146
3.3.1 The fast multipole method . 146
3.3.2 Description of the preconditioners 152
3.3.3 The remaining numerical kernels 161
3.3.4 Parallel scalability: an insight 163
3.3.5 Preliminary results . 163

3.4 Numerical behaviour of the linear solvers for one right–hand side . . . 167
3.4.1 The GMRES–DR solver . 167
3.4.2 The SQMR solver . 170

3.5 Techniques to improve one right–hand–side solvers for multiple right–
hand–side problems . 181
3.5.1 Interpolation method . 181
3.5.2 Gathering multiple GMRES iterationns 182

3.6 Linear dependency of the right–hand sides 184
3.6.1 Features of the right–hand sides for plane waves with θ po-

larization . 184
3.6.2 Numerical validation . 186
3.6.3 Dealing with linearly dependent right–hand sides 189
3.6.4 Heuristic for the choices of α and β 190
3.6.5 Relaxing the stopping criteria 192
3.6.6 About the scaling among the ‖Fa‖2tola 194
3.6.7 SVD preprocessing in the block-GMRES method 194
3.6.8 Perspectives . 196

3.7 Numerical behaviour of the multiple right–hand side solvers 198
3.7.1 The seed–GMRES method . 198
3.7.2 The block–GMRES method 208

3.8 Prospectives . 214
3.8.1 Using spectral information in the multiple right–hand sides

context . 214
3.8.2 Stopping criterion issue for the RCS calculations 217
3.8.3 Relaxing the matrix–vector accuracy during the convergence . 219

3.9 Future work . 223

Bibliography 225

iv CONTENTS

I

Chapter 1

Study of the Gram–Schmidt
algorithm and its variants

1.1 Presentation of the Gram–Schmidt algorithm

1.1.1 Projection

The first part of this manuscript is devoted to the study of the Gram–Schmidt
algorithm. The basic operation of the Gram–Schmidt algorithm is the projection.
We propose here a brief overview of what a projection is and what its properties
are.
In Rm , a projection M is a (square) matrix M such that M 2 = M . For geo-
metrical reasons we say that the matrix M represents the oblique projection onto
Range(M) along Null(M) . This implies the following relation:

Null(M)⊕ Range(M) = R
m.

If x ∈ Range(M),Mx = x so that a projection is diagonalizable with E1 =
Range(M) and E0 = Null(M) , where E1 is the invariant subspace associated
with the eigenvalue one and E0 is the eigenspace associated with the eigenvalue
zero. From this, it follows that rank(M) = trace(M) .
For any nonzero vector a of size m , it is possible to define the projection M
onto the orthogonal complement of a along a . The range of such a projection
is Range(M) = {x ∈ Rm such that x ⊥ a} = a⊥ . The null space is Null(M) =
Span({a}) . Since Range(M) ⊥ Null(M) , M is called an orthogonal projection.
Moreover we call it elementary since the null space is of rank one. M is given via
the formula

M = Im − zzT where z =
a

‖a‖2
. (1.1)

Given an orthonormal basis {q1, . . . , qn} of a subspace Q , the orthogonal projection
M onto the orthogonal complement of Q is given by

M = Im −QQT = Im − q1qT
1 − . . .− qnqT

n , (1.2)

where Q = (q1, . . . , qn) .
Regarding the orthogonal projections we have the following properties:

4 Study of the Gram–Schmidt algorithm and its variants

Property 1.1.1 For all x , for M verifying equation (1.2)

1. Im −M is the orthogonal projection onto the range of Q .

2. Theorem of Pythagoras: ‖Mx‖22 + ‖(Im −M)x‖22 = ‖x‖22 .

3. In particular we have ‖Mx‖2 ≤ ‖x‖2 . The reciprocal is also true: if a projec-
tion does not lengthen any distance, then it is an orthogonal projection.

4. The matrix M is symmetric: M = MT . The reciprocal is also true: if a
projection is symmetric then it is an orthogonal projection.

1.1.2 The classical Gram–Schmidt orthogonalization process

It is intuitively plausible that a set of linearly independent vectors (which forms
a basis for their span) may be replaced by an orthonormal basis to span the same
space. The following theorem holds: Given a Euclidean space, for any set of linearly
independent vectors, there exists an orthonormal basis that spans this set. There is
existence, but note that, (if the set is not a singleton) there is an infinite number
of orthonormal basis that comply with this assumption. The proof of this theorem
is given by construction (i.e. when proving the existence, we construct a basis) and
the algorithm used is in general the Gram–Schmidt (orthogonalization) process. It
is a very simple and far–reaching algorithm for replacing the initial set of vectors.
The Gram–Schmidt algorithm was originally given by Schmidt [120, Section 5]. The
Gram–Schmidt algorithm holds in any Euclidean space. In order to highlight this
fact, in this section, we consider a Euclidean space with the scalar product < ., . > .
Let {a1, . . . , an} be a set of n linearly independent vectors. We are interested
in computing the orthonormal basis {q1, . . . , qn} such that Span ({q1, . . . , qn}) =
Span ({a1, . . . , an}) . The strategy of the Gram–Schmidt process is to construct at
each step j = 1, . . . , n the vectors qj such that

Span ({q1, . . . , qj}) = Span ({a1, . . . , aj}) . (1.3)

For j = 1 , we choose

q1 =
a1

< a1, a1 >
1
2

.

Let w2 = a2 − q1 < q1, a2 > so that w2 is orthogonal to q1 and belongs to
Span({q1, a2}) = Span({a1, a2}) . We choose

q2 =
w2

< w2, w2 >
1
2

,

so that q2 is normalized, q2 is orthogonal to q1 and equation (1.3) holds for j = 2 .
The process continues similarly. Assuming q1, . . . , qj−1 have been computed, let

wj = aj − q1 < q1, aj > − . . .− qj−1 < qj−1, aj >, (1.4)

so that wj is orthogonal to q1, . . . , qj−1 and belongs to Span({q1, . . . , qj−1, aj}) =
Span({a1, . . . , aj−1, aj}) . Again we normalize wj to get

qj =
wj

< wj, wj >
1
2

. (1.5)

1.1 Presentation of the Gram–Schmidt algorithm 5

We continue until the desired orthonormal vectors q1, . . . , qn have been produced.
Note that an infinite orthonormal set of vectors could be produced from a countably
infinite linearly independent set of vectors in an infinite–dimensional space in this
way.
In this manuscript, we are interested in matrix analysis. Consequently, for the
remainder of this document, unless clearly stated, the scalar product is the Euclidean
scalar product, that is :

< x, y >= xTy =
m∑

i=1

xT
i yi.

If we denote by R the n –by–n upper triangular matrix such that

for all j = 1, . . . , n rij = qT
i aj, i < j and rjj = ‖wj‖2

and A (resp. Q) the m –by–n matrix with jth column vector aj (resp. qj).
We obtain A = QR , where QTQ = In and R is upper triangular with positive
diagonal entries; that is, the QR factorization of A . The upper triangularity of the
R factor comes directly from equation (1.3). The QR factorization of a matrix is
essentially unique in the sense that given a couple (Q,R) of QR factors for the QR
factorization of A , the set of couples {(QD,−DR), where D are diagonal matrices
with diagonal entries dii = ±1} describes all the QR factors for the QR factorization
of A . In practice, in the Gram–Schmidt algorithm, we force the diagonal entries of
R to be positive. This justifies the sign + in the definition (1.5) of qj .
Finally we note that the Gram–Schmidt orthogonalization process may be applied to
a linearly dependent set of vectors as well. In this case, at least one j exists such that
wj = 0 so that (1.5) cannot be performed. Replacing aj with aj+1 and continuing
the process enables us to complete the algorithm. With this strategy, the algorithm
ends up with p orthonormal vectors q1, . . . , qp such that Span ({q1, . . . , qp}) =
Span ({a1, . . . , an}) . The value of the integer p corresponds to the rank of the set
of vectors {a1, . . . , an} . This illustrates the fact that the Gram–Schmidt algorithm
can be used to determine the rank of a matrix in theory.

Algorithm 1 Classical Gram–Schmidt algorithm – (CGS)

1. Q = A
2. for j = 1 to n do

3. for i = 1 to j − 1 do

4. rij = qT
i aj

5. qj = qj − qirij

6. end for

7. rjj = ‖qj‖2
8. qj = qj/rjj

9. end for

The number of flops to perform this algorithm is about 2mn2 flops.
If the R factor is not needed, it is not necessary to store it during the Gram–Schmidt
process. Once qj is produced, aj is not needed any longer. So if the matrix A is
not needed at the end of the factorization, the matrix Q can be stored in place of
A .

6 Study of the Gram–Schmidt algorithm and its variants

Note that the i –loop can be performed via

r(1 : j, j) = Q(:, 1 : j)Taj and w = aj −Q(:, 1 : j)r(1 : j, j).

In the presence of rounding errors, the property of the QR factors might be lost.
We call (Q̄, R̄) the computed QR factors for A . In this thesis, we are interested in
quantifying

1. The quality of the factorization.
does the factorization Q̄R̄ represent A well ?

2. The quality of the Q factor.
is Q̄ orthogonal to a certain level and does an upper triangular matrix R̂ exist
such that Q̄R̂ represents A well ?

3. The quality of the R factor.
R̄ is triangular by construction, but does a Q̂ exist with orthonormal columns
such that Q̄R̂ represents A well ?

These three questions have already been answered in the past for some variants of
the Gram–Schmidt algorithm. In the first part of this manuscript, we establish new
results that answer these questions for other variants.

1.1.3 The modified Gram–Schmidt orthogonalization process

At step j , let us define Qj−1 = [q1, . . . , qj−1] . The projection (Im−Qj−1Q
T
j−1) can

also be computed via

(Im −Qj−1Q
T
j−1) = (Im − qj−1q

T
j−1) . . . (Im − q1qT

1). (1.6)

This is a consequence of the fact that the columns of Qj−1 = [q1, . . . , qj−1] are
orthonormal. In other words, the orthogonal projection onto the orthogonal com-
plements of {q1, . . . , qj−1} can be obtained by successively projecting onto the or-
thogonal complement of each individual qi , i = 1, . . . , j − 1 . These elementary
projections commute. In equation (1.6), we have arbitrarily fixed the order from 1
to j − 1 . From equation (1.6), step (1.4) can also be computed via

wj = (Im − qj−1q
T
j−1) . . . (Im − q1qT

1)aj. (1.7)

This formulation gives rise to the modified Gram–Schmidt algorithm described in
Algorithm 2.
There is not much difference between the classical Gram–Schmidt algorithm (often
denoted CGS) (see Algorithm 1) and the modified Gram–Schmidt algorithm (often
denoted MGS) from an algorithmic point of view. The only step that differs is step 4
where rij = qT

i aj , in the classical version, is replaced by rij = qT
i qj in the modified

version. Higham [75] quotes Wilkinson who admitted that “I used the modified
process for many years without even noticing explicitly that I was not performing
the classical algorithm.” In 1966, Rice [109] was the first to point out the difference
between the two algorithms.
From the mathematical point of view, both algorithms provides exactly the same
QR factorization, in the same numbers of flops and the same amount of memory. We

1.1 Presentation of the Gram–Schmidt algorithm 7

Algorithm 2 Modified Gram–Schmidt algorithm – (MGS)

1. Q = A
2. for j = 1 to n do

3. for i = 1 to j − 1 do

4. rij = qT
i qj

5. qj = qj − qirij

6. end for

7. rjj = ‖qj‖2
8. qj = qj/rjj

9. end for

notice that in the modified Gram–Schmidt algorithm in the form presented in Algo-
rithm 2, Level 2 BLAS cannot be used. This problem is addressed in Section 1.1.6.

Equation (1.6) explains why the classical projection and the modified projection are
equal. This happens because the set of vectors {q1, . . . , qj−1} is orthonormal. If the
set of vectors {q1, . . . , qj−1} is not orthonormal, equation (1.6) will not hold.

Rice [109] was the first to point out that the modified Gram–Schmidt method pro-
duces a more nearly orthonormal matrix than the classical Gram–Schmidt method
in the presence of rounding errors.

1.1.4 The reorthogonalization versions

A solution to improve the orthogonality among the vectors Q computed by the
Gram–Schmidt algorithm is to iterate the projection phase until a certain criterion
is true. In Section 1.5, a historical description of this class of algorithms is given.
The general method is described in Algorithm 3.

Algorithm 3 Modified Gram–Schmidt algorithm with reorthogonalization and selective reorthog-
onalization

1. Q = A
2. R = 0n,n

3. for j = 1 to n do

4. repeat

5. for i = 1 to j − 1 do

6. α = qT
i qj

7. rij = rij + α
8. qj = qj − qiα
9. end for

10. until (selective criterion is true)
11. rjj = ‖qj‖2
12. qj = qj/rjj

13. end for

8 Study of the Gram–Schmidt algorithm and its variants

1.1.5 The square–root free versions

In 1907, Schmidt [120, Section 5]1 originally gave the classical algorithm in its
square–root free version. The square–root free name comes from the fact that the
elementary projection (1.1) on the orthogonal complement of a can also be written
as

M = Im −
aaT

aTa
. (1.8)

Given an orthogonal2 set of vectors {q1, . . . , qj−1} the general orthogonal projection
on the orthogonal complement of {q1, . . . , qj−1} is similarly given by

M = Im −
q1q

T
1

qT
1 q1
− . . .−

qj−1q
T
j−1

qT
j−1qj−1

. (1.9)

This enables us to derive the classical Gram–Schmidt algorithm in its square–root
free version (see Algorithm 4). At step j , the algorithm computes

q′j = aj − q′1
(q′1)

Taj

(q′1)
T q′1
− . . .− q′j−1

(q′j−1)
Taj

(q′j−1)
T q′j−1

, (1.10)

q′j is equal to wj in equation (1.10). The vector q′j is not normalized, so that
no square–root is used. The vector q′j is orthogonal to (q′1, . . . , q

′
j−1) and we have

Span({q′1, . . . , q′j}) = Span({a1, . . . , aj}) .
If we denote by R′ the upper triangular matrix such that

r′ij = ((q′i)
T)aj, i < j and r′jj = 1 ,

we obtain

A = Q′R′, with (Q′)TQ diagonal and R′ unit upper triangular.

The link between (Q,R) , the QR factors from Gram–Schmidt algorithm, and
(Q′, R′) , the factors from the square–root free Gram–Schmidt algorithm, is

for all j = 1, . . . , n and i = 1, . . . , j qj = q′j/‖q′j‖2 and rjj = ‖q′j‖2r′jj.

In matrix format, we obtain Q = Q′D−1 and R = DR′ where D is the diagonal
matrix with entries djj = ‖q′j‖2 .
The modified square–root free version can also be derived.
Note that the square–root free version saves the scaling operation qj = qj/rjj . In
the context where n is very small n = 2, 3, . . . , this might be an interesting gain.

1.1.6 The row oriented modified Gram–Schmidt algorithm

The version of the modified Gram–Schmidt algorithm presented in Algorithm 2 is
referred to as the column oriented modified Gram–Schmidt algorithm. In this form,

1He quotes Chapter 3 of his own dissertation and J. P. Gram, Ueber die Entwickelung reeler Functionen in reihen

mittelst der Methods der kleinsten Quadrate [Journal für die reine and angewandte Mathematik, Bd, XCIV (1883),
S. 41–73].

2orthonormal is fine but orthogonal is enough.

1.1 Presentation of the Gram–Schmidt algorithm 9

Algorithm 4 The classical Gram–Schmidt algorithm – square–root free version

1. Q′ = A
2. for j = 1 to n do

3. for i = 1 to j − 1 do

4. rij = ((q′i)
T q′j)/di

5. q′j = q′j − q′irij

6. end for

7. rjj = 1
8. dj = (q′j)

T q′j
9. end for

the two loops perform n(n− 1)/2 dot operations and n(n− 1)/2 axpy operations
in a completely sequential way. MGS uses only Level 1 BLAS operations whereas
CGS uses Level 2 BLAS operations.
To remedy this drawback, we exchange the i –loop with the j –loop, and the re-
sulting algorithm is known as the row oriented modified Gram–Schmidt algorithm
(MGSR). This variant is described in Algorithm 5.

Algorithm 5 The row oriented modified Gram–Schmidt algorithm – (MGSR)

1. Q = A
2. for i = 1 to n do

3. rii = ‖qi‖2
4. qi = qi/rii

5. for j = i + 1 to n do

6. rij = qT
i qj

7. qj = qj − qirij

8. end for

9. end for

This algorithm requires exactly the same number of flops as MGS but the j –loop
can be rewritten as r(i, i + 1 : n) = Q(:, i)TQ(:, i + 1 : n) and Q(:, i + 1 : n) = Q(:
, i+ 1 : n)−Q(:, i)r(i, i + 1 : n) . This allows us to use Level 2 BLAS operations.
At each loop i , the ith row of the R factor is produced. This is in contrast with
the column oriented version where, at each loop i , the ith column of the R factor
is produced.
An important remark is that the row oriented modified Gram–Schmidt algorithm
requires the knowledge of all the columns of A in advance. This is a nontrivial
assumption that may prevent us from using this algorithm. For instance, in the
Arnoldi process, the column j of A comes from the previous column (j − 1) of
Q . In such a case only the column oriented version of the modified Gram–Schmidt
algorithm is applicable.

1.1.7 Others variants

Jalby and Philippe [79] studied the stability of the block modified Gram–Schmidt
algorithm. The vectors are gathered by blocks and the modified Gram–Schmidt
algorithm is performed on the blocks of vectors. This variant appears naturally in
the context of the block–Arnoldi method [119].

10 Study of the Gram–Schmidt algorithm and its variants

Since the Gram–Schmidt algorithm is defined for any scalar product, it is particu-
larly useful in many more situations than the preceding analysis may let us think.
Considering a symmetric positive definite matrix A of order m , a natural scalar
product is the A –scalar product:

< x, y >A= xTAy.

A variant of the Gram–Schmidt algorithm is easily derived with this scalar product.
For any m –by– n matrix B , it enables us to find Q and R such that

B = QR QTAQ = In where R is upper triangular.

Finally, we shall also cite Nilsson [96] who gives a variant of the modified Gram–
Schmidt algorithm to find a biorthogonal basis in the context of the Lanczos algo-
rithm.

1.1.8 Other candidates to perform a QR factorization

Classically to perform a QR factorization, two other candidates exist:

QR factorization via Givens rotations,

QR factorization via Householder transformations.

The idea of both methods is to use unitary transformations to triangularize the
matrix. First of all, these methods are much more stable and Wilkinson [136] showed
that these factorizations were backward stable.
The Givens rotations are particularly efficient when the R factor of a sparse matrix
(in fact only the lower triangular part needs to be sparse) is needed. For example,
when one needs the QR factorization of a Hessenberg matrix, then it is recommended
to use Givens rotations.
To obtain the R factor, the Householder algorithm requires 2n2(m−n/3) flops (see
e.g. [63]); to obtain the Q factor, it requires 2mn2 flops more. The MGS algorithm
requires 2n2m flops for Q and R .
We also notice that, when the scalar product is not the Euclidean scalar product but
the A –scalar product, then if the matrix G is unitary in the A –unitary sense (i.e.
GTAG = A), its columns (and rows) are not A -orthogonal. Given a matrix W
such that W TAW = I (W has A –orthogonal columns), unitary transformations
with the A –scalar product provide Q and R such that (a) B = QR , (b) W TAR
is triangular and (c) QTAQ = A . One may also write (a) B = QR , (b) R
is (A,W) –triangular and (c) Q is A –unitary. When A = I (Euclidean scalar
product) and W = I , the QR factorization of a matrix can be obtained via unitary
transformations.

1.2 Model of error analysis for projections 11

1.2 Model of error analysis for projections

1.2.1 Floating–point arithmetic

To carry out the rounding error analysis of an algorithm, we need to make some
assumptions about the arithmetic we use. The arithmetic studied here is based
on the IEEE3 754 standard for binary floating–point arithmetic [1]. This standard
holds on almost all computers. In this section, we give some points about this
arithmetic. The motivation is to explain where and why roundoff errors take place
and how they could be controlled. Many more details can be found in Higham [75]
or Overton [98]. The latter book is devoted solely to the description of the IEEE
floating–point arithmetic.

1.2.1.1 Binary floating–point representation of numbers

Every real number has a decimal representation and a binary representation (indeed
a representation in a base equal to any integer greater than 1). This result comes
from Euclid and the Euclidean division. For example, for the number4 25/8 = 3.125
we have the decimal representation (3.125)10 since

25/8 = (3.125)10 = 3× 100 + 1× 10−1 + 2× 10−2 + 5× 10−3

and its binary equivalent is (11.001)2 since

25/8 = (11.001)2 = 21 + 20 + 2−3.

If every real number has a binary representation, it may not terminate (e.g. 8/25).
A computer using binary floating–point arithmetic represents a set of numbers with
a certain number of bits, a bit being a figure that takes the value 0 or 1 . In our
case, we consider that 32 bits are used.
First of all we are interested in representing a signed integer using a 32 –bit word.
Since 2003 = 1024+512+256+128+64+16+2+1, we have the binary representation

(2003)2 = +11111010011 ,

and so using a 32 –bit word we may represent 2003 with

0 0000000000000000000011111010011 ,

where the first bit represents the sign of the number with the convention + ↔ 0
and − ↔ 1 , and the last 31 bits represent 2003 in binary representation. A first
remark is that this 32 –bit integer format is able to represent only integers that
range from −(231 − 1) to 231 − 1 . One may notice that 0 has two representations
(0 0 . . . and 1 0 . . .). Therefore we can use the second representation of
0 to represent −231 (say). This finally enables us to represent all signed numbers
ranging from −231 to 231 − 1 . This representation of integer is not the one usually
used but is enough for the presentation made here. To avoid this problem while

3Institute for Electrical and Electronic Engineers
4when nothing is said, the decimal representation is used

12 Study of the Gram–Schmidt algorithm and its variants

being rigorous, we denote by ebits 32 (E) the representation of an integer E with a
32 –bit word.
The binary floating–point representation is based on the exponential (or scientific)
notation. In exponentional notation a nonzero number x is expressed in binary
from as

x = ±S × 2E, where 1 ≤ S < 2.

S is called the significand and the binary expansion of the significand is

S = (b0.b1b2b3 . . .)2 with b0 = 1.

E is an integer called the exponent. For example, the number 25/8 is expressed as

25

8
= +(1.1001)2 × 21.

In order to represent numbers, the IEEE 754 single precision format uses the binary
floating–point representation and a 32 -bit word. In this format, the first bit of the
word is used to store the sign with the convention +↔ 0 and − ↔ 1 , the 8 bits
thereafter are dedicated to store the exponent in an integer format rather similar to
the one explained previously; finally the 23 remaining bits represent the significand.
Since the first digit of the significand b0 is necessarily a 1 , we do not store it, b0 is
implicitly set to 1 . We call t = 24 the precision of the arithmetic, it corresponds
to the 24 digits of the significand. Therefore the IEEE 754 single format represents
25/8 with

0 ebits8(1) 10010000000000000000000 .

All single precision format floating–point numbers describe a finite subset of the real
numbers that we call F .
Since the exponent is coded with an 8 –bit word, the smallest exponent represented
should be −128 and the largest is 127 . In practice, the exponents 11111110 and
11111111 are reserved for other purposes than representing the integer −128 and
−127 . Consequently the exponent E ranges from −126 to 127 . In this case, the
smallest positive floating–point number in magnitude is

Nmin = (1.000 . . . 0)2 × 2−126 = 2−126 ≈ 1.2× 10−38 ,

and the maximum positive floating–point number in magnitude is

Nmax = (1.111 . . . 1)2 × 2127 ≈ 2128 ≈ 3.4× 1038.

Let x be a real number such that Nmin ≤ |x| ≤ Nmax , since the significand is coded
with a 23 –bit word x may not have a representation in floating–point arithmetic.
Either its binary expansion is not finite or its binary expansion has more than 24
significant digits. For example, let us consider x = 8/25 = 0.32 . The binary
expansion of x is not finite, we have

8

25
= (0.0010100011110101110000)2

where the period is underlined.
For any real number x , we call fl(x) the nearest element to x of F . for example
for x = 8/25 = 0.32 the nearest floating point number fl(x) is

1.2 Model of error analysis for projections 13

0 ebits(−2) 01000111101011100001010 .

which in decimal representation gives 0.319999992847442626953125.
For any real number x such that Nmin ≤ |x| ≤ Nmax , fl(x) represents x well in
the following sense:

Theorem 1.2.1 If x ∈ R is such that Nmin ≤ |x| ≤ Nmax then there exists a real
δ such that

fl(x) = x(1 + δ), |δ| < u = 2−t.

There also exists a real η such that

fl(x) =
x

1 + η
, |η| < u = 2−t.

Proofs can be found in [75, pp. 42-43]. The quantity u is called the unit roundoff.
Note that, for base β , the exact formula is u = 1

2
β1−t which gives u = 2−t when

binary floating–point arithmetic is used (i.e. when β = 2). If a real number x does
not comply with the assumptions of the theorem because 0 < |x| < Nmin , we say
that fl(x) underflows. If a real number x does not comply with the assumptions
of the theorem because |x| > Nmax , we say that fl(x) overflows5.
The limitations of the single precision format to represent the set of real numbers
are the consequence of the fact that the size of the word used to represent a number
is finite. A simple solution to improve the field of our representation is to increase
the number of bits in a word. Another standard exists in this sense, it is the double
precision format. The double precision binary format uses 64 –bit words to represent
floating–point numbers, the first bit of the word is used to store the sign, the 11
bits thereafter are dedicated to store the exponent, and the 52 last bits are used to
represent the significand. In this case, Nmin ≈ 2.2 × 10−308 , Nmax ≈ 1.8 × 10308

and u = 2−53 .
This presentation of the IEEE 754 binary floating–point representation omitted some
important features of this standard. For example, the representation of 0 , ±∞ , the
special number NaN6 and subnormal numbers. We do not talk about the rounding
modes either.

1.2.1.2 A model of arithmetic.

Given two floating–point numbers x and y belonging to F , we are now concerned
with the operation x op y , where ‘op’ designates any of the four arithmetic oper-
ators + − ∗ / . The most common assumptions (e.g. [13, 75, 137]) are embodied
in the following model

Standard model

fl(x op y) = (x op y)(1 + δ), |δ| < u. (1.11)

5the subnormals numbers are not taken into account in this description also they are described in the IEEE 754
standard

6which stands for “Not a Number”

14 Study of the Gram–Schmidt algorithm and its variants

A floating–point arithmetic verifying this model is called a well-designed arithmetic
([13]). Note that the following modified version of (1.11) can also be used

fl(x op y) =
x op y

1 + δ
, |δ| < u. (1.12)

Equation (1.12) can also be rewritten

fl(x op y) = (x op y)
(1 + δ − δ)

1 + δ
= (x op y)(1− δ

1 + δ
).

Equation (1.12) is used for example by Daniel, Gragg, Kaufman and Stewart [34].
It leads naturally to a bound

|fl(x op y)− (x op y)| ≤ u

1 + u
|x op y|

that is better than

|fl(x op y)− (x op y)| ≤ u|x op y|

coming from Equation (1.11). In the remainder of this manuscript, we use the two
formulations indifferently.

The IEEE 754 standard imposes (1.11) and (1.12). Other features concerning IEEE
754 arithmetic exist and are omitted in this brief description, for example the treat-
ment of exceptional situations such as the division by zero.

1.2.1.3 A choice of model for the square root operation.

Our matrix algorithms use mainly the four arithmetic operators + − ∗ / . Another
operator that we also often need is the square root operator. The bound for the error
made in extracting a square root naturally depends to some extent on the algorithm
which is used. We do not wishe to enter into a detailed discussion of such algorithms.
Following Higham [75, p. 44], it is normal to assume that (1.11) and (1.12) hold also
for the square root operation. This is in agreement to what is proposed by Lawson
and Hanson [87]. The IEEE 754 standard imposes this property (e.g. [75, p. 45]
and [98, p.38]). For information and comparison, in [137], Wilkinson considers that

fl(
√
x) =

√
x + ε where|ε| < (1.00001)2−t−1,

f l(
√
x) =

√
x(1 + ε) where|ε| < (1.00001)2−t,

where t is the precision (for single precision format we recall that t = 24 , double
precision format gives t = 53). Wilkinson notice that: in most matrix algorithms
the number of square roots is small compared with the number of other operations
and even a larger error would make little significant difference to the overall error
bounds.

1.2 Model of error analysis for projections 15

1.2.2 Error analysis for basic linear algebra operations

1.2.2.1 Simplified expression for error bounds

A direct consequence of the models of arithmetic is that they frequently lead in
the first instance to bounds of the form ε ≤ (1 + 2−t)m , where m is an integer.
Following the technique introduced by Wilkinson [137] and sucessfully used after
him, we simplify this expression by using the following result:

Lemma 1.2.2 If |δi| ≤ u and ρi = ±1 for i = 1, . . . , m , and mu < 1 , then

m∏

i=1

(1 + δi)
ρi = 1 + θm,

where
|θm| ≤

mu

1−mu
Proof : see Higham [75, Lemma 3.1].

Lemma 1.2.3 If |δi| ≤ u for i = 1, . . . , m , and mu < 2 , then

m∏

i=1

(1 + δi) = 1 + θm,

where
|θm| ≤

mu

1−mu/2
Proof : see Kie lbasiński and Schwetlick [83, 84] or Higham [75, Lemma 3.4]. Wilkin-
son [137] defines t1 such that

t1 = t− log2(1.06). (1.13)

Then the following corollary holds

Corollary 1.2.4 If |δi| ≤ 2−t for i = 1, . . . , m and m2−t ≤ 0.1 then

m∏

i=1

(1 + δi) = 1 + θm where |θm| ≤ 1.06 · 2−t = 2−t1 . (1.14)

Proof : Notice that if m · 2−t ≤ 0.1 then (1−m · 2−t/2)−1 ≤ 1.06 and use Lemma
1.2.3. ♥

1.2.2.2 Error analysis of an inner–product

Theorem 1.2.5 Let x = (xi)i=1,...,m and y = (yi)i=1,...,m be floating–point vectors
of dimension m where

m · 2−t ≤ 0.1. (1.15)

Then the following error bound for the computed inner–product of x and y is valid
[137, pp. 114–117]:

|fl(xTy)− xTy| ≤ m · 2−t1 |x|T |y| ≤ m · 2−t1‖x‖2‖y‖2. (1.16)

16 Study of the Gram–Schmidt algorithm and its variants

Proof : The order in which the additions take place in the summation is not at all
trivial. A deep study of the summation algorithm can be found in Higham [75, chap
4.]. In this manuscript, it is assumed that the operations take place in the order

p1 = x1 × y1, s1 = p1,

p2 = x2 × y2, s2 = s1 + p2,
...

pm = xm × ym, sm = sm−1 + pm.

This is known as recursive summation and it is the model used for instance by
Wilkinson [137, p. 114]. Using floating–point arithmetic, we have

fl(xTy) = fl(. . . f l(fl(fl(x1y1) + fl(x2y2)) + fl(x3y3)) . . .),

= fl(. . . f l((x1y1(1 + ε
(+)
1) + x2y2(1 + ε

(+)
2))(1 + ε

(×)
2) + fl(x3y3)) . . .),

= x1y1(1 + ε
(+)
1)(1 + ε

(×)
2) . . . (1 + ε(×)

m)

+x2y2(1 + ε
(+)
2)(1 + ε

(×)
2) . . . (1 + ε(×)

m)

+x3y3(1 + ε
(+)
3)(1 + ε

(×)
3) . . . (1 + ε(×)

m)

+xmym(1 + ε(+)
m)(1 + ε(×)

m),

where |ε(+,×)
i | ≤ 2−t , i = 1, . . . , m . Using Corollary 1.2.4, one can write

fl(xTy) = x1y1(1 + θ1) + x2y2(1 + θ2) + . . .+ xmym(1 + θm).

where

|θ1| ≤ m · 2−t1 , |θ2| ≤ m · 2−t1 , |θ3| ≤ (m− 1) · 2−t1 , . . . |θ3| ≤ 2 · 2−t1 .

so we guess that

|fl(xTy)− xTy| ≤
m∑

i=1

|θi| · |xi| · |yi| ≤ m · 2−t1

m∑

i=1

|xi| · |yi| = m · 2−t1 |x|T |y|.

♥

1.2.2.3 Error analysis of a matrix–vector multiplication

The matrix–vector product of the m –by–n matrix A by the n –vector x gives

ỹ = Ax =

n∑

k=1

akxk,

where ak denotes the k –th column of A . Starting from y(0) = 0 , the matrix–vector
operation results in n axpy operations

ỹ(k) = ỹ(k−1) + akxk, k = 1, . . . , n

1.2 Model of error analysis for projections 17

to eventually give ỹ = ỹ(n) = Ax . Using a well designed floating–point arithmetic,
Daniel, Gragg, Kaufman and Stewart [34] considered that each of these axpy oper-
ations are performed with an error vector e(k) , so that

y(k) = y(k−1) + akxk + e(k), k = 1, . . . , n.

The error vector is controlled in each axpy operation by the relation

‖e(k)‖2 ≤ α‖y(k−1)‖2 + β‖ak‖2|xk, | k = 1, . . . , n,

where α and β are constants depending on the machine precision and the values
of m and n . They are set in a second step. First of all, we give the following
Theorem. It gives an upper bound for the 2–norm of e , the error vector that
appears in computing y = fl(Ax) :

y = fl(Ax) = Ax + e.

Theorem 1.2.6 Let A ∈ Rm×n, x ∈ Rn and let y ∈ Rm be the results of the
algorithm

y(0) = 0,
for k = 1, 2, . . . , n

y(k) = y(k−1) + akxk + e(k)

end
y = y(n)

in which the (error) vectors e(k), k = 1, . . . , n satisfy

‖e(k)‖2 ≤ α‖y(k−1)‖2 + β‖ak‖2|xk|. (1.17)

Then y = Ax + e with

‖e‖2 ≤
[
(n− 1)α+ min(m1/2, n1/2)β

]
(1 + α)n−1‖A‖2‖x‖2. (1.18)

Proof : see Daniel, Gragg, Kaufman and Stewart [34].
In order to use Theorem 1.2.6, it remains for us to set the value for the quantity α
and β in (1.17). If we consider that the operations are performed in floating–point
arithmetic with the unit round-off u , we have

y
(k)
i = fl(y

(k−1)
i + aikxk) =

(
y

(k−1)
i + aikxk(1 + δ)

)
(1 + δ′)

where |δ| ≤ u/(1 + u) and |δ′| < u . So that

y
(k)
i = y

(k−1)
i + aikxk +

(
y

(k−1)
i δ′ + aikxk(δ + δ′ + δδ′)

)
.

Since, from equation (1.17), we have

y
(k)
i = y

(k−1)
i + aikxk + e

(k)
i ,

we set
e
(k)
i = y

(k−1)
i δ′ + aikxk(δ + δ′ + δδ′).

18 Study of the Gram–Schmidt algorithm and its variants

Therefore

|e(k)
i | ≤ |y(k−1)

i |u+ |aik||xk|(u+
u

1 + u
+

u2

1 + u
),

≤ |y(k−1)
i |u+ |aik||xk|(u+

u(1 + u− u)

1 + u
+

u2

1 + u
),

≤ |y(k−1)
i |u+ |aik||xk|2u.

(1.19)

This last inequality is true for i = 1 to n so we have

‖e(k)‖2 ≤ ‖y(k−1)‖2u+ ‖ak‖2|xk|2u.
If we set

α = u and β = 2u

then we get the hypothesis of the Theorem ‖e(k)‖2 ≤ α‖y(k−1)‖2 + β‖ak‖2|xk| and
so, using that Theorem, we have y = Ax + e with

‖e‖2 ≤
[
(n− 1) + 2 min(m1/2, n1/2)

]
u(1 + u)n−1‖A‖2‖x‖2 , (1.20)

and using Corollary 1.2.4, we have

‖e‖2 ≤
[
(n− 1) + 2 min(m1/2, n1/2)

]
(n− 1)2−t1‖A‖2‖x‖2 . (1.21)

Daniel, Gragg, Kaufman and Stewart [34] did not obtain equation (1.21) exactly
since they considered an arithmetic such that

fl(a+ b) = (a+ b)(1 + δ) where |δ| ≤ 3

2
u,

and fl(ab) = ab(1 + δ′) where |δ′| ≤ u

1 + u
.

Note that their arithmetic is weaker than the one we actually use. With this arith-

metic, the error for y
(k)
i becomes

y
(k)
i = fl(y

(k−1)
i + aikxk) = y

(k−1)
i (1 + δ′) + aikxk(1 + δ)(1 + δ′),

with |δ| ≤ 3u/2 and |δ′| < u/(1 + u) . One may observe that

|δ + δ′ + δδ′| ≤ 3

2
u+

3

2

u2

1 + u
+

u

1 + u

=
3

2
u+

3

2

u2

1 + u
+ u− u2

1 + u

=
5

2
u+

1

2

u2

1 + u

=
5

2
u(1 +

1

5

u

1 + u
) =

5

2
u′

where u′ is defined as u′ = u(1+u/5(1+u)). The values for α and β given in [34]
are consequently

α =
3

2
u and β =

5

2
u′.

1.2 Model of error analysis for projections 19

Thus

‖e‖2 ≤
1

2

[
3(n− 1) + 5 min(m1/2, n1/2)(1 +

1

5

u

1 + u
)

]
u(1 +

3

2
u)n−1‖A‖2‖x‖2.

Obviously [5(1 + u)]−1 ≤ 3/2 so

‖e‖2 ≤
1

2

[
3(n− 1) + 5 min(m1/2, n1/2)(1 +

3

2
u)

]
u(1 +

3

2
u)n−1‖A‖2‖x‖2

≤ 1

2

[
3(n− 1) + 5 min(m1/2, n1/2)

]
u(1 +

3

2
u)n‖A‖2‖x‖2

≤ 1

2

[
3(n− 1) + 5 min(m1/2, n1/2)

]
u1‖A‖2‖x‖2 (1.22)

with u1 = u(1 + 3
2
u)n . Inequality (1.22) should be compared with (1.21). Both

formulae are similar, only the constants are different.

1.2.2.4 Error analysis of the normalization of a vector

Theorem 1.2.7 Let x be a floating–point vector of size m where m is such that

(m + 4) · 2−t ≤ 0.1 (1.23)

then

|fl(‖x‖2)− ‖x‖2| ≤
m + 2

2
2−t1‖x‖2. (1.24)

Moreover, if x 6= 0 , we have

| ‖fl(x/‖x‖2)‖22 − 1 | ≤ (m+ 4)2−t1 , (1.25)

and | ‖fl(x/‖x‖2)‖2 | ≤ 1 +
m + 4

2
2−t1 . (1.26)

Proof : In the first part of the proof, we study the dot product xTx in floating–point
arithmetic. For the error analysis we choose to use equation (1.12). Following what
is done in Section 1.2.2.2 for xTy , we get that

fl(xTx) =

m∑

i=1

x2
i

(1 + ε
(+)
i)(1 + ε

(×)
i)(1 + ε

(×)
i+1) . . . (1 + ε

(×)
m)

, (1.27)

where |ε(+,×)
i | ≤ 2−t , i = 1, . . . , m . From equation (1.27), we get

xTx

(1 + 2−t)m
≤ fl(xTx) ≤ xTx

(1− 2−t)m
.

Since for −2−t ≤ α ≤ 2−t , (1 + α)−m is a continuous function of α , there exists
ε1 , −2−t ≤ ε1 ≤ 2−t , such that

fl(xTx) =
xTx

(1 + ε1)m
.

20 Study of the Gram–Schmidt algorithm and its variants

Using the model of square root described in Section 1.2.1.3, we get that

fl(‖x‖2) = fl(
√
fl(xTx)) =

√
fl(xTx)

1

(1 + ε2)
,

where |ε2| ≤ 2−t . This gives

fl(‖x‖2) =

√
xTx

(1 + ε1)m/2(1 + ε2)
=

‖x‖2
(1 + ε1)m/2(1 + ε2)

. (1.28)

If equation (1.11) is used instead of equation (1.12) during the proof we obtain,
instead of equation (1.28),

fl(‖x‖2) = ‖x‖2(1 + ε′1)m/2(1 + ε′2),

where |ε′1| ≤ 2−t and |ε′2| ≤ 2−t . Using Corollary 1.2.4, since (m + 2) · 2−t ≤ 0.1 ,
we find that a real θ1 exists such that

fl(‖x‖2) = ‖x‖2
√

(1 + θ1) where |θ1| ≤ (m+ 2) · 2−t1 .

Since for all real α , α ≥ −1 , we have
√

1 + α ≤ 1 + α/2 , this gives

fl(‖x‖2) = ‖x‖2(1 + θ) where |θ| ≤ m + 2

2
· 2−t1 .

From this latter equation we directly obtain equation (1.24).
From equation (1.28), we control the error made in the computation of fl(‖x‖2) .
Since underflows are not taken into account, we see that, if x 6= 0 , then fl(‖x‖2) 6=
0 . It is therefore possible to divide x by fl(‖x‖2) . We study this last step.

For all i = 1, . . . , m , there exists ε
(i)
3 such that

fl(
xi

‖x‖2
) =

xi

fl(‖x‖2)
(1 + ε

(i)
3), where |ε(i)

3 | ≤ 2−t.

Using equation (1.28), this gives, for all i = 1, . . . , m ,

fl(
xi

‖x‖2
) =

xi

‖x‖2
(1 + ε1)

m/2(1 + ε2)(1 + ε
(i)
3).

We obtain

(1− 2−t)
m+4

2 ≤ ‖fl(x

‖x‖2
)‖2 ≤ (1 + 2−t)

m+4
2 .

Since (m + 4) · 2−t ≤ 0.1 , squaring the latter inequality, we obtain using Corol-
lary 1.2.4

1− (m + 4) · 2−t1 ≤ ‖fl(x

‖x‖2
)‖22 ≤ 1 + (m + 4) · 2−t1 .

Equation (1.25) and equation (1.26) follow directly.
�
¨̂

1.2 Model of error analysis for projections 21

1.2.3 Error analysis of an elementary projection

If one wants to project y on the orthogonal complement of a , then it is natural
to use equation (1.2) directly. This is what we do with floating–point arithmetic.
Let us consider a and y , two floating–point vectors of size m with a 6= 0 . We
define the computed quantity x′ = fl(a/‖a‖2) . We define r̄′ and z the computed
quantities

r̄′ = fl((x′)Ty) and z = fl(y − x′r̄′). (1.29)

z is the computed projection of y on the orthogonal complement of a .
The study of orthogonal elementary projection was done by Björck [13] in 1967.
However, he used a square–root free version. Instead of equation (1.2) Björck took

M = Im −
aaT

aTa
. (1.30)

In this section we adapt his work to the square–root version since it is nowadays the
most widespread version. Björck [13] introduced the three quantities

x = x′/‖x′‖2, r̄ = r̄′‖x′‖2 and r = xTy. (1.31)

We are interested in computing error bounds for the norm of δ and η where δ and
η are defined such that

z = y − r̄x + δ and z = y − xr + η. (1.32)

We note that the reference vector in these relations is x , which is exactly normalized
to one, not x′ the vector that is actually computed. This is certainly an elegant way
introduced by Björck to translate the problem to an exact projection. The quantity
y− xr indeed represents the exact projection of y on the orthogonal component of
x .
We are now going to prove the following two bounds:

‖η‖2 ≤ (2.1m+ 6)2−t1‖y‖2. (1.33)

‖δ‖2 ≤ 2.06 · 2−t‖y‖2. (1.34)

To estimate the error in the multiplier r̄ we first study the axpy operations of
definition (1.32). Now we have

zi = (yi − x′ir̄′(1 + ε
(i)
1))(1 + ε

(i)
2) for all i = 1, . . . , m,

where |ε(i)
1 | ≤ 2−t and |ε(i)

2 | ≤ 2−t . Using equation (1.31) leads to

zi = (yi − xir̄(1 + ε
(i)
1))(1 + ε

(i)
2)

so that
yi =

zi

1 + ε
(i)
2

+ xir̄(1 + ε
(i)
1).

Using this to eliminate yi from the definition of δ , Björck got

δi =
ε
(i)
2

1 + ε
(i)
2

zi − ε(i)
1 r̄xi,

22 Study of the Gram–Schmidt algorithm and its variants

and hence, since ‖x‖2 = 1 ,

‖δ‖2 ≤
2−t

1− 2−t
‖z‖2 + 2−t|r̄|. (1.35)

Immediately from equation (1.32) he had

‖η‖2 ≤ ‖δ‖2 + |r̄ − r|. (1.36)

Now our analysis differs slightly from that of Björck since we use a square–root
version. The first goal is to obtain an upper bound for the quantity |r̄ − r| .

r̄ − r = r̄′‖x′‖2 − r
= fl((x′)Ty)‖x′‖2 − r
= (fl((x′)Ty)− (x′)Ty)‖x′‖2 + (‖x′‖22 − 1)r.

We use equation (1.16) to bound (fl((x′)Ty)−(x′)Ty) and equation (1.25) to bound
(‖x′‖22 − 1) , we obtain

|r̄ − r| ≤ m · 2−t1‖x′‖22‖y‖2 + (m + 4)2−t1 · |r|.

From equation (1.26) and equation (1.23), ‖x′‖2 ≤ 1.1 so that

|r̄ − r| ≤ ((m+ 4)|r|+ 1.1m‖y‖2)2−t1 . (1.37)

For the square–root version of the elementary projection, equation (1.37) corre-
sponds to equation [13, Eq. (4.11)]. For the sake of comparison, we recall equa-
tion [13, Eq. (4.11)], that is:

|r̄ − r| ≤ ((m+ 1)|r|+m‖y‖2)2−t1. (1.38)

The bound (1.38) is better than (1.37), however the difference is slight and it enables
us to use the square–root.
We have a bound for |r̄ − r| , as we can continue to develop Björck’s proof [13].
Since (z−η) = y−xr is orthogonal to x it follows from the theorem of Pythagoras
that

‖z − η‖22 + r2 = ‖y‖2,
so that

‖z‖2 ≤ (‖y‖22 − r2)
1
2 + ‖η‖2. (1.39)

Substituting δ in equation (1.36) by using equation (1.35), Björck got

‖η‖2 ≤
2−t

1− 2−t
‖z‖2 + 2−t|r̄|+ |r̄ − r|,

that, multiplied by (1− 2−t) gives

(1− 2−t)‖η‖2 ≤ 2−t‖z‖2 + 2−t(1− 2−t)|r̄|+ (1− 2−t)|r̄ − r|.

Obviously
(1− 2−t)‖η‖2 ≤ 2−t‖z‖2 + 2−t|r̄|+ (1− 2−t)|r̄ − r|,

1.2 Model of error analysis for projections 23

and so

(1− 2−t)‖η‖2 ≤ 2−t‖z‖2 + 2−t|r|+ |r̄ − r|.

Then, adding 2−t‖η‖2 to both sides, this enables us to use equation (1.39) and gives

(1− 2 · 2−t)‖η‖2 ≤ 2−t
(

(‖y‖22 − r2)
1
2 + |r|

)
+ |r̄ − r|.

Hence, using equation (1.37), we have

(1− 2 · 2−t)‖η‖2 ≤
(

(‖y‖22 − r2)
1
2 + (m + 5)|r|+ 1.1m‖y‖2

)
2−t1 . (1.40)

Maximizing f(r) = (‖y‖22−r2)
1
2 +k|r| over r , where 0 ≤ |r| ≤ ‖y‖2 , the maximum

is attained for rmax = ±‖y‖2 k
(1+k2)1/2 . Its value is f(rmax) = ‖y‖2(1 + k2)1/2 so we

obtain, that for 0 ≤ |r| ≤ ‖y‖2 ,

(‖y‖22 − r2)
1
2 + (m+ 5)|r| ≤ ‖y‖2(1 + (m+ 5)2)1/2.

Going back to equation (1.40) gives

(1− 2 · 2−t)‖η‖2 ≤
(
(1 + (m+ 5)2)1/2 + 1.1m

)
2−t1‖y‖2 ,

and finally, since we have assumed (m+ 4)2−t ≤ 0.1 , we note that

(
(1 + (m+ 5)2)1/2 + 1.1m

)
≤ (2.1m+ 6)(1− 2 · 2−t),

and we get the bound (1.33)

‖η‖2 ≤ (2.1m+ 6)2−t1‖y‖2.

Equation (1.35) gives us

‖δ‖2 ≤
2−t

1− 2−t

(
(‖y‖22 − r2)

1
2 + |r|+ ‖η‖2 + |r̄ − r|

)
.

Using for a second time the maximum of the function f with k = 1 for the first
two terms and using equation (1.33) and equation (1.37) for the last two norms, we
get

‖δ‖2 ≤
2−t

1− 2−t

(
(2)1/2 + (4.1m+ 7)2−t1

)
‖y‖2 ,

that eventually enables us to get the bound (1.34):

‖δ‖2 ≤ 2.06 · 2−t‖y‖2 .

We also have

‖z‖2 < (1 + 1.01(m+ 2) · 2−t1)‖y‖2. (1.41)

24 Study of the Gram–Schmidt algorithm and its variants

Algorithm 6 Modified projection

1. ā(1) = a

2. for k = 1, . . . , n

3. r̄′k = fl((q̄′k)T āk)

4. āk+1 = fl(āk − q̄′k r̄′k)

5. endfor

6. w̄ = ān+1

1.2.4 Error analysis of a modified projection

Let us assume that we have a set of vectors Q̄′ = (q̄′1, q̄
′
2, . . . , q̄

′
n) with the property

that

for all i = 1, . . . , n, there exists w̄i 6= 0 such that fl(w̄i/‖w̄i‖2) = q̄′i.

Given an initial floating–point vector a , let us consider the Algorithm 6.
Then, given the error analysis of Section 1.2.3, we know that, if we define for all
k = 1, . . . , n ,

q̄k = q̄′k/‖q̄′k‖2, r̄k = r̄′k‖q̄′k‖2 and rk = q̄T
k ā

k−1,

then

āk+1 = āk − q̄kr̄ + δ(k) , (1.42)

and āk+1 = āk − q̄kr + η(k) , (1.43)

with

‖δ(k)‖2 ≤ 1.45 · 2−t‖āk‖2 , (1.44)

and ‖η(k)‖2 ≤ (2m+ 3) · 2−t‖āk‖2 . (1.45)

Summing equation (1.42) for k = 1, 2, . . . , n we get

w̄ = ā−
n∑

k=1

q̄kr̄k =
n∑

k=1

δ(k) = δ.

From (1.44), we have

‖δ‖2 ≤ 1.45 · 2−t

n∑

k=1

‖āk‖2 .

Using equation (1.41), we get

‖āk‖2 < (1 + 1.01(m+ 2) · 2−t1)(k−1)‖a‖2 .

We assume that
2n(m + 1)2−t1 < 0.01 ,

and so Björck got
‖āk‖2 < 1.006‖a‖2.

1.2 Model of error analysis for projections 25

Finally,
w̄ = (Im − q̄nq̄T

n) . . . (Im − q̄1q̄T
1)a+ η ,

‖η‖2 ≤ 3.25(n− 1)(
2

3
m+ 1)2−t‖a‖2 ,

w̄ = a− Q̄r + δ ,

and‖δ‖2 ≤ 1.5(n− 1)2−t‖a‖2 .

1.2.5 Error analysis of a classical projection

Daniel, Gragg, Kaufman and Stewart [34] defined

r = fl(QTa), v = fl(Qr) and w = fl(a− v),

where w represents the computed orthogonal projection of a onto the orthogonal
complement of Span(Q) . We are typically interested in the norm of the three vectors
c , g , η defined by

r = QTa + c , w = a−Qr + g , and w = (Id−QQT)a + η.

Daniel, Gragg, Kaufman and Stewart [34] introduce the intermediate quantities

v = Qr + e and w = a− v + f.

In other words,

c = fl(QTa)−QTa, e = fl(Qr)−Qr and f = fl(a− v)− (a− v).

From equation (1.20), we know that

‖c‖2 ≤
[
m + n1/2 − 1

]
2−t(1 + 2−t)n−1‖Q‖2‖a‖2 ,

and ‖e‖2 ≤
[
n + n1/2 − 1

]
2−t(1 + 2−t)n−1‖Q‖2‖r‖2 .

From the axpy error analysis,

‖f‖2 ≤ 2−t(‖v‖2 + ‖a‖2) ≤ 2−t(‖Q‖2‖r‖2 + ‖e‖2 + ‖a‖2) .

Therefore, since g = f − e , we have

‖g‖2 ≤ ‖e‖2 + ‖f‖2
≤ (1 + 2−t)‖e‖2 + 2−t‖Q‖2‖r‖2 + 2−t‖a‖2
≤

[
n+ 2n1/2

]
2−t(1 + 2−t)n‖Q‖2‖r‖2 + 2−t‖a‖2 .

Daniel, Gragg, Kaufman and Stewart [34] also noticed that ‖r‖2 ≤ ‖QTa‖2 + ‖c‖2
so that

‖g‖2 ≤
[
n+ 2n1/2

]
2−t(1 + 2−t)n‖Q‖2‖QTa‖2 + 2−t‖a‖2

+
[
mn + 2n1/2(m+ n) + 4n

]
(1 + 2−t)2n−12−2t‖Q‖22‖a‖2.

For a simple expression, we get

‖g‖2 ≤ φ1(m,n)u‖Q‖22‖a‖2 ,

26 Study of the Gram–Schmidt algorithm and its variants

with φ1(m,n) =
[
n+ n1/2 + ζ1

]
ζ2 where ζ1 = 1 + 4mnu(1 + u)n and ζ2 =

(1 + u)n+1 .

We also have η = Qc+ g

‖η‖2 ≤ ‖Q‖2‖c‖2 + ‖g‖2 .

For a simple expression we get

‖η‖2 ≤ ψ(m,n)u‖Q‖22‖a‖2,

with ψ(m,n) =
[
m+ n+ 2n1/2 + ζ1 − 1

]
ζ2 .

1.3 New insight into the Gram–Schmidt algorithm 27

1.3 New insight into the Gram–Schmidt algorithm

1.3.1 When the modified Gram–Schmidt algorithm generates a well–
conditioned set of vectors

When the modified Gram–Schmidt algorithm is run on an ill–conditioned set of
vectors, despite the observed loss of orthogonality among the constructed set of
vectors, it has been observed that the constructed set of vectors is well–conditioned.

In Section 1.4, that corresponds to [61], we shall give a theoretical explanation of
this observation. When the modified Gram–Schmidt algorithm is run on a “not too
ill–conditioned” set of vectors, then the condition number of the computed set of
vectors is around one. The proof is a direct consequence of a result of Björck [13]
combined with a result of Higham [73]. When the initial matrix A is not “too ill–
conditioned”, Björck [13] has shown that the loss of orthogonality of the computed
matrix Q̄ is less than one. Higham [73] has shown that, if the loss of orthogonality
of Q̄ is less than one, then the distance from Q̄ to a matrix with orthonormal
columns is also less than one. We [61] add the fact that, if the distance from Q̄ to
a matrix with orthonormal columns is less than one, then Q̄ is well–conditioned.
In our analysis, the meaning of “not too ill–conditioned” and well–conditioned is
rigorously defined.

In Section 1.4.3.3, we exhibit a 3 –by– 3 matrix called CERFACS that is on the bor-
der of our set of “not too ill–conditioned” matrices and gives a really ill–conditionned
computed Q–factor. In a sense, one can consider the matrices “not too ill–conditioned”
as numerically nonsingular and the matrices “too ill–conditioned” as numerically sin-
gular. The border between the two sets is clear as illustrated by our bound and the
properties of the CERFACS matrix.

We highlight the fact that the CERFACS matrix has been built on purpose. It has
a condition number, κ , of the order of the inverse of the machine precision u , and
the condition number of its computed Q–factor, κ(Q̄) , is also of the order of the
inverse of the machine precision u . In Figure 1.1, we plot the coordinates (κ, κ(Q̄))
for several matrices. The experiments have been performed with Matlab5, with
u = 1.1 · 10−16 . The CERFACS matrix is the only one from this set with uκ ∼ 1
and uκ(Q̄) ∼ 1 . The CERFACS matrix shows that the theoretical bound exhibited
for the condition number of the initial set of vectors for which the condition number
of Q̄ is less than 1.3 is sharp.

Finally, we mention that the behaviour of CERFACS reported in Figure 1.1 was ob-
served using Matlab5. Surprisingly enough, with Matlab6, we no longer observe
a large κ(Q̄) when the running modified Gram–Schmidt algorithm on CERFACS.
This supports the fact that the pathological counter–example matrix is highly de-
pendent on the algorithmic. Note also that the 17 digits (in base 10) of the nine
entries of CERFACS were mandatory to fix correctly the floating–point numbers in
double–precision arithmetic.

We briefly explain here how to construct a CERFACS–like matrix A . Given An−1 ,
an m –by– (n − 1) ill–conditioned matrix (such that all but the smallest singular
values are of the same order, while uκ ∼ 0.1), we generate the first (n−1) columns
of Q̄n−1 with modified Gram–Schmidt applied to An−1 . The (n− 2) left singular

28 Study of the Gram–Schmidt algorithm and its variants

10
0

10
5

10
10

10
15

10
20

10
25

10
30

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

bound on κ(Q)
CERFACS − matrix
row scaled matrices
Toolbox matrices

Figure 1.1: The x –axis represents the condition number of the initial matrix, the y –axis represents
the condition number of the computed Q–factor using the modified Gram–Schmidt algorithm.
The matrices from the Higham Toolbox are clement(94), dramadah(57,1), hilb(12), kahan(85),
moler(24), pascal(16), prolate(23), and triw(47).

vectors of A , Un−2 , are computed. And we take u1 as the left singular vector
associated to the maximal singular value of

(Im − Un−2U
T
n−2)Q̄n−1.

Roughly speaking, u1 represents the direction that is not in An−1 and that “ap-
pears” in Q̄n−1 . Finally, we set the n –th column of A to an = u1 .

1.3.2 The Gram–Schmidt algorithm with reorthogonalization at run-
time

In most circumstances, the Gram–Schmidt algorithm is unable to provide a set
of vectors orthogonal up to machine precision. In Section 1.5, we investigate the
Gram–Schmidt algorithm with reorthogonalization. The goal of such algorithms is
to provide a Q–factor orthogonal up to machine precision. Their main drawback
is that they are more demanding in term of computational effort. Before going
into the details of the algorithms, we first show some situtations where this extra
computational expense is worthwhile to be afforded.
Let us call Q̄ and R̄ the computed QR–factor of A . In [15], Björck and Paige have

shown that an m –by–n matrix Q̂ exists such that Q̂ has its columns orthonormal
and Q̂R̄ represents A up to the machine precision. It means that the triangular
factor computed by MGS is as good as that obtained using backward stable trans-
formations such as Givens rotations or Householder reflections. This property of
MGS explains why this algorithm can be safely used in applications where only the

1.3 New insight into the Gram–Schmidt algorithm 29

triangular factors are needed. This is the case in the solution of linear least–squares
problems of the form

min
x∈� n
‖b− Ax‖2, (1.46)

where ‖.‖2 denotes the spectral norm. In this case, only the R–factor of the QR
factorization of [A, b] is required [13, 15]. A general way to compensate for the lack
of orthogonality of the Q–factor given by the modified Gram–Schmidt algorithm is
derived in [15] for a wide class of problems. Such an approach is appealing since
it enables us to use Q̄ given by the modified Gram–Schmidt algorithm directly.
However, the cost of using Q̄ correctly is – in most cases – much higher than if Q
was orthogonal up to machine precision. For example, when solving equation (1.46)
via a QR–factorization of [A, b] , the cost for computing (ri,n+1)i=1,...,n , the updates
of b during the calculation of Q̄ , is about twice as expensive as the simple calcu-
lation (qT

i b)i=1,...,n . This latter approach could be used if the QR–factorization on
A provided an orthogonal factor with orthogonality at the level of machine preci-
sion. When we want to use the Q–factor several times (e.g. a linear least–squares
problem with multiple right–hand sides), these extra costs are accumulated and a
method like the one proposed in [15] becomes less attractive than a strategy that
aims at enhancing the orthogonality of the columns of the Q–factor at a moderate
computational cost.
In the same spirit, the classical Gram–Schmidt algorithm enables the use of Level 3
BLAS operations whereas the modified Gram–Schmidt (row oriented version) uses
Level 2 BLAS. There are situtations and computing platforms where, even if the
classical Gram–Schmidt algorithm with reorthogonalizations performs twice as many
operations as the modified Gram–Schmidt algorithm, the first algorithm is faster.
Such situations are described for instance in the GMRES context [52], in a GCR
context [49] or in an eigensolver context [88].
The variants of the Gram–Schmidt algorithm with reorthogonalization are often
monitored through two parameters:

(a) the maximum number of reorthogonalization iterations performed for a given
vector,

(b) the criterion used for deciding when the reorthogonalization iterations have to
be stopped.

Our contribution in this context was first conducted in a joint ongoing work with
Miroslav Rozložńık [62]. We have shown that, for numerically nonsingular matri-
ces (in a sense that is clearly defined), two loops of the Gram–Schmidt algorithm
with reorthogonalization are enough to obtain a Q–factor orthogonal up to machine
precision. We clearly relate the number of loops with the condition number which
made this approach different (and complementary) from those of Abdelmaleck [2] or
Daniel, Gragg, Kaufman and Stewart [34]. The main arguments of [62] are developed
in Section 1.5.1.7 in the context of modified Gram–Schmidt with reorthogonaliza-

tion. Denoting by a
(1)
j the vector obtained after the projection of aj onto Qj−1 ,

we bound the quantity ‖aj‖/‖a(1)
j ‖ by the condition number of A times a constant

close to one.

30 Study of the Gram–Schmidt algorithm and its variants

Daniel, Gragg, Kaufman and Stewart [34] studied an infinite loop approach based
on classical projections. Starting from Qj an m –by– j matrix and the vector

a
(0)
j+1 = aj+1 , they performed for ` = 1, . . . ,

a
(`)
j+1 ←− (I −QjQ

T
j)a

(`−1)
j+1 .

At each instance ` , they bound the quantity ‖QT
j a

(`)
j+1‖2/‖a

(`)
j+1‖2 via a real ζ` given

by a reccurence formula ζ` = ϕ(ζ`−1) . The function ϕ and the initial ζ0 depend

on Qj and a
(0)
j+1 . The assumption on Qj is rather weak in term of orthogonal-

ity; roughly speaking it is ‖I − QT
j Qj‖2 < 1. The formulae are given explicitly

in [34]. In Figure 1.2, we plot the function ϕ for a given m –by–n matrix Q and
a given machine precision (here u = 1.1 · 10−16); we also plot the iterates ζ` ’s that
correspond to the bound on ‖QT‖2/‖a(`)‖2 where a(0) is a random vector. This
40 –by– 30 matrix is such that ‖In − QTQ‖2 = 10−3 . At each step, the bound ζ`

represents the effective orthogonality well. It can be observed that, even though
‖In − QTQ‖2 = 10−3 , the final orthogonality ‖QT

na
(`)‖2/‖a(`)‖2 is at the level of

machine precision. The maximum level of accuracy given by Daniel, Gragg, Kauf-
man and Stewart [34] corresponds to ζ? ; it corresponds to the smallest x where
the curves y = ϕ(x) and y = x intersect. In 5 steps, ζ5 is close to ζ? . We note
that the final level obtained in finite precision is much lower than ζ? .

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

0

1

2

3

4

5

Figure 1.2: The function y = x is plotted in red, the function y = ϕ(x) is plotted in blue.
Starting from ζ0 , we plot the iterate ζ` = ϕ(ζ`−1) with ◦ . We verify that the ζ` ’s are bounds
for ‖QT v(`)‖2/‖v(`)‖2 (green points). In this experiment, we have ‖In −QT Q‖2 = 10−3 .

This result can be related to the work of Ruhe [112]. Ruhe stated that Classical
Gram–Schmidt Iterated algorithm corresponds to a Gauss–Jacobi iteration to solve

1.3 New insight into the Gram–Schmidt algorithm 31

the linear system :
(QT

j Qj)r = QT
j aj+1. (1.47)

The initial guess should be set to

r(0) = 0. (1.48)

We call r the exact solution of (1.47) and assume that QTQ is nonsingular, then
we can write

r = (QT
j Qj)

−1QT
j a. (1.49)

The splitting of the matrix QTQ is

M = I, N = I −QT
j Qj. (1.50)

The Gauss–Jacobi iteration converges to the solution if ‖N‖2 ≤ 1 . We obtain that
an infinite loop of projection gives an orthogonal vector, if ‖I −QT

j Qj‖2 < 1 . Note
that Ruhe [112] also stated that the modified Gram-Schmidt iterated algorithm
corresponds to a Gauss–Seidel iteration for solving the linear system (1.47).
In Section 1.5, we give a new reorthogonalization criterion for the modified Gram–
Schmidt algorithm and investigate the numerical behaviour of the Gram–Schmidt
algorithm with several reorthogonalization criteria.

1.3.3 A posteriori reorthogonalization in the Gram–Schmidt algorithm

Another idea to obtain a Q factor orthogonal to machine precision is to treat the
Q factor not at runtime but a posteriori. This implies a good knowledge of the
algorithm, in the sense that we voluntarily let the algorithm go wrong and correct it
afterwards. This is fundammentally different from the philosophy of the reorthog-
onalization at runtime that does its best to enforce orthogonality at each step. A
posteriori reorthogonalization technique have not been given much attention in the
past and, in our bibliographical search, we have only found a posteriori reorthogo-
nalization suggested in Mitchell and McCraith [91].
From Section 1.4.3.2, we obtain a straightforward but robust a posteriori procedure
that consists, after a first run of modified Gram–Schmidt, in performing a second
sweep systematically.
In Section 1.6, we give a reorthogonalization procedure for the modified Gram–
Schmidt algorithm. In particular, we illustrate the efficiency of this new approach
in the framework of the solution of linear systems arising in the application described
in Chapter 3. This reorthogonalization algorithm is based on the new theoretical
properties that are described in the first part of Section 1.6.

32 Study of the Gram–Schmidt algorithm and its variants

1.4 When the modified Gram–Schmidt algorithm generates
a well–conditioned set of vectors

The title as well as the contents of this section corresponds to the following published
paper:

IMA Journal on Numerical Analysis, 22(4):521–528, 2002.
joint work with Luc Giraud.

Abstract

In this paper, we show why the modified Gram–Schmidt algorithm generates a well-conditioned set

of vectors. This result holds under the assumption that the initial matrix is not “too ill–conditioned”

in a way that is quantified. As a consequence, we show that if two iterations of the algorithm are

performed, the resulting algorithm produces a matrix whose columns are orthogonal up to machine

precision. Finally, we illustrate through a numerical experiment the sharpness of our result.

Introduction

In this paper we study the condition number of the set of vectors generated by
the Modified Gram–Schmidt (MGS) algorithm in floating–point arithmetic. After
a quick review, in Section 1.4.1, of the fundamental results that we use, we devote
Section 1.4.2 to our main theorem. Through this central theorem we give an upper
bound close to one for the condition number of the set of vectors produced by MGS.
This theorem applies to matrices that are not “too ill–conditioned”. In Section 1.4.3
we give another way to prove a similar result. This other point of view throws light
on the key points of the proof. In Section 4.2 we combine our theorem with a
well known result from Björck to obtain that two iterations of MGS are indeed
enough to get a matrix whose columns are orthogonal up to machine precision. We
conclude Section 1.4.3 by exhibiting a counter example matrix. This matrix shows
that if we relax the constraint on the condition number of the studied matrices, no
pertinent information on the upper bound of the condition number of the set of
vectors generated by MGS can be gained. For the sake of completeness, we give
explicitly the constants that appear in our assumptions and formula: Appendix A
details the calculus of those constants.

1.4.1 Previous results and notations

We consider the MGS algorithm applied to a matrix A ∈ Rm×n with full rank
n ≤ m and singular values: σ1 ≥ . . . ≥ σn > 0 ; we define the condition number of
A as κ(A) = σ1/σn .
Using results from Björck [13] and Björck and Paige [15], we know that, in floating–
point arithmetic, MGS computes Q̄ ∈ R

m×n and R̄ ∈ R
n×n so that there exists

Ē ∈ Rm×n , Ê ∈ Rm×n and Q̂ ∈ Rm×n , where

A + Ē = Q̄R̄ and ‖Ē‖2 ≤ c̄1u‖A‖2, (1.51)

‖I − Q̄T Q̄‖2 ≤ c̄2κ(A)u, (1.52)

A+ Ê = Q̂R̄ , Q̂T Q̂ = I and ‖Ê‖2 ≤ cu‖A‖2. (1.53)

1.4 When the modified Gram–Schmidt algorithm generates a well–conditioned set of

vectors 33

c̄i and c are constants depending on m , n and the details of the arithmetic, and
u = 2−t is the unit round-off.
Result (1.51) shows that Q̄R̄ is a backward-stable factorization of A , that is the
product Q̄R̄ represents accurately A up to machine precision.
Equation (1.53) says that R̄ solves the QR-factorization problem in a backward-

stable sense; that is, there exists an exact orthonormal matrix Q̂ so that Q̂R̄ is a
QR factorization of a slight perturbation of A .
We notice that results (1.51) from Björck [13] and (1.53) from Björck and Paige [15]
are proved under assumptions

2.12 · (m + 1)u < 0.01, (1.54)

cuκ(A) < 1. (1.55)

For clarity, it is important to explicitly define the constants that are involved in the
upper bounds of the inequalities. Complying with assumptions (1.54) and (1.55) we
can set the constants c and c̄1 to

c = 18.53 · n 3
2 and c̄1 = 1.853 · n 3

2 = 0.1 · c. (1.56)

The value of c̄1 is given explicitly by Björck [13]. The details on the calculus of
the constant c are given in Appendix A. It is worth noticing that the value of c
depends only on n , the number of vectors to be orthogonalized, and not on m , the
size of the vectors, since (1.54) holds.
Assumption (1.55) prevents R̄ from being singular. Under this assumption and
defining

η =
1

1− cuκ(A)
, (1.57)

Björck and Paige [15] obtain an upper bound for ‖R̄−1‖2 as

‖A‖2‖R̄−1‖2 ≤ ηκ(A). (1.58)

Assuming (1.55), we note that (1.51) and (1.53) are independent of κ(A) . This is
not the case for inequality (1.52): the level of orthogonality in Q̄ is dependent on
κ(A) . If A is well-conditioned then Q̄ is orthogonal to machine precision. But
for an ill–conditioned matrix A , the set of vectors Q̄ may lose orthogonality. An
important question that arises then is whether MGS manages to preserve the full
rank of Q̄ or not. In order to investigate this, we study in the next section the
condition number of Q̄ . For this purpose, we denote the singular values of Q̄ ,
σ1(Q̄) ≥ . . . ≥ σn(Q̄) . When Q̄ is nonsingular, σn(Q̄) > 0 , we also denote the
condition number κ(Q̄) = σ1(Q̄)/σn(Q̄) .

1.4.2 Conditioning of the set of vectors Q̄

This section is fully devoted to the key theorem of this paper and to its proof. For
the sake of completeness, we establish a similar result using different arguments in
the next section. The central theorem is the following.

34 Study of the Gram–Schmidt algorithm and its variants

Theorem 1.4.1
Let A ∈ Rm×n be a matrix with full rank n ≤ m and condition number
κ(A) such that

2.12 · (m + 1)u < 0.01 and cuκ(A) ≤ 0.1, (1.59)

where c = 18.53 · n 3
2 and u is the unit round-off.

Then MGS in floating–point arithmetic computes Q̄ ∈ Rm×n as

κ(Q̄) ≤ 1.3. (1.60)

Note that assumption (1.59) is just slightly stronger than assumption (1.55) made
by Björck and Paige [15].

Proof : On the one hand, MGS computes Q̄ , on the other hand, the matrix Q̂ has
exactly orthonormal columns. It seems natural to study the distance between Q̄
and Q̂ . For that we define F as

F = Q̄− Q̂, (1.61)

and look at its 2-norm. For this purpose, we subtract (1.53) from (1.51) to get

(Q̄− Q̂)R̄ = A + Ē − A− Ê,
F R̄ = Ē − Ê.

Assuming cuκ(A) < 1 , R̄ is nonsingular and we can write

F = (Ē − Ê)R̄−1.

We bound, in terms of norms, this equality

‖F‖2 ≤ (‖Ē‖2 + ‖Ê‖2)‖R̄−1‖2.

Using inequality (1.51) on ‖Ē‖2 and inequality (1.53) on ‖Ê‖2 , we obtain

‖F‖2 ≤ (c + c̄1)u‖A‖2‖R̄−1‖2.
Using inequality (1.58) on ‖A‖2‖R̄−1‖2 and (1.56), we have

‖F‖2 ≤ 1.1 · cuηκ(A). (1.62)

This is the desired bound on ‖F‖2 .
Since we are interested in an upper bound on κ(Q̄) , the condition number of Q̄ ,
we then look for an upper bound for the largest singular value of Q̄ and a lower
bound for its smallest singular value.
From Golub and van Loan [63, p. 449], we know that (1.61) implies

σ1(Q̄) ≤ σ1(Q̂) + ‖F‖2 and σn(Q̄) ≥ σn(Q̂)− ‖F‖2.

Since Q̂ has exactly orthonormal columns, we have σ1(Q̂) = σn(Q̂) = 1 . Using the
bound (1.62) on ‖F‖2 , we get

σ1(Q̄) ≤ 1 + 1.1 · cuηκ(A) and σn(Q̄) ≥ 1− 1.1 · cuηκ(A).

1.4 When the modified Gram–Schmidt algorithm generates a well–conditioned set of

vectors 35

With (1.57), these inequalities can be written as

σ1(Q̄) ≤ η(1− cuκ(A) + 1.1 · cuκ(A)) = η(1 + 0.1 · cuκ(A))

and
σn(Q̄) ≥ η(1− cuκ(A)− 1.1 · cuκ(A)) = η(1− 2.1 · cuκ(A)).

If we assume
2.1 · cuκ(A) < 1, (1.63)

σn(Q̄) > 0 so Q̄ is nonsingular.
Under this assumption, we have

κ(Q̄) ≤ 1+0.1·cuκ(A)
1−2.1·cuκ(A)

. (1.64)

1+0.1·cuκ(A)
1−2.1·cuκ(A)

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

cκ(A)

Figure 1.3: Behaviour of the upper bound on κ(Q̄) as a function of cκ(A) .

To illustrate the behaviour of the upper bound of κ(Q̄) , we plot in Figure 1.3 the
upper bound as a function of cκ(A) . We fix u = 1.12 · 10−16 .
It can be seen that this upper bound explodes when 2.1 · cuκ(A) . 1 but in the
main part of the domain where 2.1·cuκ(A) < 1 it is small and very close to one. For
instance, if we slightly increase the constraint (1.55) used by Björck and Paige [15]
and assume that cuκ(A) < 0.1 then κ(Q̄) < 1.3. �

1.4.3 Some remarks

1.4.3.1 Another way to establish a result similar to Theorem 1.4.1

It is also possible to get a bound on κ(Q̄) by using inequality (1.52). In this aim, we
need explicitly the constant c̄2 given by Björck and Paige [15]. Using assumptions
(1.54) and (1.59), c̄2 can be set to

c̄2 = 31.6863 · n 3
2 = 1.71 · c. (1.65)

36 Study of the Gram–Schmidt algorithm and its variants

The details on the calculus of the constant c̄2 are given in Appendix A.
Let Q̄ have the polar decomposition Q̄ = UH . The matrix U is the closest
orthonormal matrix to Q̄ in any unitarily invariant norm. We define

G = Q̄− U.

From Higham [75], we know that in 2-norm the distance from Q̄ to U is bounded
by ‖I − Q̄T Q̄‖2 . This means

‖G‖2 = ‖Q̄− U‖2 ≤ ‖I − Q̄T Q̄‖2
and using (1.52) we get

‖G‖2 ≤ c̄2uκ(A) = 1.71 · cuκ(A). (1.66)

Using the same arguments as in Section 1.4.2 for the proof of Theorem 1.4.1, but
replacing (1.62) with (1.66), we get a similar result: that is

assuming (1.54) and (1.59), κ(Q̄) < 1.42.

This result should be compared with that of Theorem 1.4.1. With the same assump-
tions, we obtain a slightly weaker result.

1.4.3.2 Iterative modified Gram–Schmidt

If the assumption (1.59) on the condition number of A holds, then we obtain, after
a first sweep of MGS, Q̄1 satisfying (1.64). If we run MGS a second time on Q̄1 to
obtain Q̄2 , we deduce using (1.52) that Q̄2 is such that

‖I − Q̄T
2 Q̄2‖2 ≤ 1.71 · cκ(Q̄1)u,

so we get

‖I − Q̄T
2 Q̄2‖2 < 40.52 · un 3

2 , (1.67)

meaning that Q̄2 has columns orthonormal to machine precision. Two MGS sweeps
are indeed enough to have an orthonormal set of vectors Q .
We recover, in a slightly different framework, the famous sentence of Kahan

“Twice is enough.”

Based on unpublished notes of Kahan, Parlett [101] shows that an iterative Gram–
Schmidt process on two vectors with a selective criterion (optional) produces two
vectors orthonormal up to machine precision. In this paper, inequality (1.67) show
that twice is enough for n vectors under assumptions (1.54) and (1.59) with MGS
and a complete a posteriori re-orthogonalization (i.e. no selective criterion).

1.4.3.3 What can be said on κ(Q̄) when cuκ(A) > 0.1

For 2.1·cuκ(A) < 1 , the bound (1.64) on κ(Q̄) is well defined but when cuκ(A) > 0.1 ,
this bound explodes and very quickly nothing interesting can be said about the con-
dition number of Q̄ . For 2.1 · cuκ(A) > 1 , we even do not have any bound.

1.4 When the modified Gram–Schmidt algorithm generates a well–conditioned set of

vectors 37

Here, we ask whether or not there can exist an interesting upper bound on Q̄ when
cuκ(A) > 0.1 . In order to answer this problem, we consider the CERFACS matrix
∈ R3×3 (see Appendix B).
When we run MGS with Matlab on CERFACS, we obtain with u = 1.12 · 10−16

κ(A) = 3 · 1015, cuκ(A) = 37 and κ(Q̄) = 2 · 1014 .

The CERFACS matrix generates a very ill–conditioned set of vectors Q̄ with
cuκ(A) not too far from 0.1.
If we are looking for an upper bound of κ(Q̄) , we can take the value 1.3 up
to cuκ(A) = 0.1 and then this upper bound has to be greater than 2 · 1014 for
cuκ(A) = 37 .
The CERFACS matrix proves that it is not possible to increase by much the domain
of validity (i.e. cuκ(A) < 0.1) of Theorem (1.4.1) in order to get a more interesting
result.
One can also remark that with CERFACS two MGS sweeps are no longer enough
since

‖I − Q̄T
2 Q̄2‖2 = 2 · 10−3.

Acknowledegment
We would like to thank Miroslav Rozložńık for fruitful discussions on the Modified
Gram–Schmidt algorithm and in particular for having highlighted that the sentence
twice is enough required the assumption of a not “too ill–conditioned” matrix A .
We also thank the anonymous referees for their comments that helped to improve
the paper.

Appendix A: Details on the calculus of the constants

In this Appendix, we justify the values of the constants c̄1 , c̄2 and c such as fixed
in the paper. We state that
c̄1 = 1.853 · n 3

2 verifies (1.51) under assumption (1.54),

c̄2 = 31.6863 · n 3
2 verifies (1.52) under assumptions (1.54) and (1.59),

c = 18.53 · n 3
2 verifies (1.53) under assumptions (1.54) and (1.55).

A value for c̄1 Under the assumption (1.54) Björck [13] has shown that

A + Ē = Q̄R̄ with ‖Ē‖E ≤ 1.5 · (n− 1)u‖A‖E.

where ‖.‖E denotes the Frobenius norm.

c̄1 = 1.853 · n 3
2 verifies ‖Ē‖E ≤ c̄1u‖A‖2.

A value for c Björck and Paige [15] explained that the sequence of operations to
obtain the R -factor with the MGS algorithm applied on A is exactly the same
as the sequence of operations to obtain the R -factor with the Householder process

applied on the augmented matrix

(
0n

A

)
∈ R(m+n)×n . They deduced that the

R -factor from the Householder process applied on the augmented matrix is equal

38 Study of the Gram–Schmidt algorithm and its variants

to R̄ . We first present the results from Wilkinson [137] related to the Householder

process on the matrix

(
0n

A

)
∈ R(m+n)×n . Wilkinson [137] works with a square

matrix but in the case of a rectangular matrix, proofs and results remain the same.
All the results of Wilkinson hold under the assumption (m + n) · u < 0.1 which is
true because of (1.54).
Defining x = 12.36 · u , Wilkinson proves that there exists P ∈ R(m+n)×n with
orthonormal columns such that

‖PR̄− A‖E ≤ (n− 1)(1 + x)n−2x‖A‖E. (1.68)

With assumption (1.54), we get (1 + x)n−2 ≤ 1.060053.
Let us define E1 ∈ Rn×n and E2 ∈ Rm×n by

(
E1

E2

)
= PR̄−

(
0n

A

)
.

We deduce with (1.68) that

‖
(
E1

E2

)
‖E ≤ 13.1023 · n 3

2u‖A‖2. (1.69)

If we set
c1 = c2 = 13.1023 · n 3

2 , (1.70)

then we get ‖E1‖2 ≤ c1u‖A‖2 and ‖E2‖2 ≤ c2u‖A‖2.
Note that we also have

‖E1‖2 + ‖E2‖2 ≤
√

2‖
(
E1

E2

)
‖E ≤

√
2c1u‖A‖2. (1.71)

With respect to MGS, Björck and Paige [15] have proved that there exists Ê ∈ R
m×n

and Q̂ ∈ Rm×n such that

A+ Ê = Q̂R̄ , Q̂T Q̂ = I and ‖Ê‖2 ≤ ‖E1‖2 + ‖E2‖2.
With (1.71) we get

‖Ê‖2 ≤ ‖E1‖2 + ‖E2‖2 ≤
√

2c1u‖A‖2 ≤ 18.53 · n 3
2 ,

and c = 18.53 · n 3
2 verifies ‖Ê‖2 ≤ cu‖A‖2.

A value for c̄2 Björck [13] defines a value for c̄2 . In this paper, we do not consider
this value because the assumptions on n and κ(A) that we obtain are too restricted.
The value of c̄2 from Björck and Paige [15] requires weaker assumptions that fit the
context of this paper. From (1.59), we have (c+ c1)uκ < 1 . Under this assumption,
Björck and Paige [15] have proved that

‖I − Q̄T Q̄‖2 ≤
2c1

1− (c+ c1)uκ
κu. (1.72)

With c̄2 = 31.6863 ·n 3
2 and using assumption (1.59), we have ‖I − Q̄T Q̄‖2 ≤ c̄2κu.

1.4 When the modified Gram–Schmidt algorithm generates a well–conditioned set of

vectors 39

Appendix B: matrix CERFACS

We have developed a Matlab code that generates as many as desired matrices with
relatively small cuκ(A) and large κ(Q̄) . CERFACS is one of these:

CERFACS =

��
0.12100300219993308 2.09408775152625060 1.26139640819301024

−0.10439395064078592 −1.80665016070527140 −1.08825526624380808
0.21661355806776747 0.49451660567698374 −0.84174336538575500

��
.

40 Study of the Gram–Schmidt algorithm and its variants

1.5 A robust criterion for modified Gram–Schmidt with se-
lective reorthogonalization

The title as well as the contents of this section corresponds to the following paper
accepted for publication in:

SIAM Journal on Scientific Computing, 2003.
joint work with Luc Giraud.

Abstract

A new criterion for selective reorthogonalization in the modified Gram–Schmidt algorithm is

proposed. We study its behaviour in the presence of rounding errors. We give some counter–example

matrices which prove that the standard criteria might fail. Through numerical experiments, we

illustrate that our new criterion seems to be suitable also for the classical Gram–Schmidt algorithm

with selective reorthogonalization.

AMS Subject Classification : 65F25, 65G50, 15A23.

Introduction

Let A = (a1, . . . , an) be a real m× n matrix (m > n) whose columns are linearly
independent. In many applications, it is required to have an orthonormal basis
for the space spanned by the columns of A . This amounts to knowing a matrix
Q ∈ Rm×n with orthonormal columns such that A = QR , R ∈ Rn×n . Moreover,
it is possible to require R to be triangular, we then end up with the so called QR–
factorization. For all j , the first j columns of Q are an orthonormal basis for the
space spanned by the first j columns of A .
Starting from A , there are many algorithms that build such a factorization. We
focus, in this paper, on the Gram–Schmidt algorithm [120] that consists in project-
ing successively the columns of A on the space orthogonal to the space spanned
by the already constructed columns of Q . Depending on how the projections are
performed, there are two main versions of this algorithm [109]: the classical Gram–
Schmidt algorithm (CGS) and the modified Gram–Schmidt algorithm (MGS). In
exact arithmetic, both algorithms produce exactly the same results and the result-
ing matrix Q has orthonormal columns. In the presence of round–off errors, Q
computed by CGS differs from that computed by MGS. In both cases, the columns
of Q may be far from orthogonal. To remedy this problem, a solution is to iter-
ate the procedure and to project each column of A several times instead of only
once on the space orthogonal to the space spanned by the constructed columns of
Q . Giraud, Langou and Rozložńık [62] have shown that, when using floating–point
arithmetic, either for CGS or MGS, two iterations were enough when the initial
matrix A is numerically nonsingular. This confirms what was already experimen-
tally well known and generalizes the result of Kahan and Parlett [101] for n = 2
vectors. In this paper, we focus mainly on the Gram–Schmidt algorithms where the
number of projections for each column of A is either one or two. When the number
of reorthogonalizations performed is exactly 2, we call the resulting algorithm the
classical (resp. modified) Gram–Schmidt algorithm with reorthogonalization and

1.5 A robust criterion for modified Gram–Schmidt with selective reorthogonalization41

denote it by CGS2, (resp. MGS2); the MGS2 Algorithm is given in Algorithm 1.
The use of either CGS2 or MGS2 guarantees a reliable result in term of orthogo-
nality [62] but then the computational cost is twice as much as for CGS or MGS.
In many applications, we observe that either CGS or MGS is good enough, the
additional reorthogonalizations performed in CGS2 or MGS2 are then useless. A
good compromise in term of orthogonality quality and time is to use a selective
reorthogonalization criterion to check for each columns of A whether an extra re-
orthogonalization is needed or not. Historically, Rutishauser [113] introduced the
first criterion in a Gram–Schmidt algorithm with reorthogonalization. We refer to
it as the K –criterion. It is dependent on a single parameter K ≥ 1 . The result-
ing algorithms are called the classical or modified Gram–Schmidt algorithm with
selective reorthogonalization and K –criterion; they are denoted by CGS2(K) and
MGS2(K) respectively. We give below the modified Gram–Schmidt algorithm with
selective reorthogonalization based on the K –criterion (MGS2(K)).

Algorithm 1 MGS2 Algorithm 2 MGS2(K)
for j = 1 to n do for j = 1 to n do

a
(1)(1)
j = aj a

(1)(1)
j = aj

for k = 1 to j − 1 do for k = 1 to j − 1 do

r
(1)
kj = qT

k a
(k)(1)
j r

(1)
kj = qT

k a
(k)(1)
j

a
(k+1)(1)
j = a

(k)(1)
j − qkr(1)

kj a
(k+1)(1)
j = a

(k)(1)
j − qkr(1)

kj

end for end for

if

(
‖aj‖2

‖a(j)(1)
j ‖2

≤ K

)
then

rjj = ‖a(j)(1)
j ‖2

qj = a
(j)(1)
j /rjj

rkj = r
(1)
kj , 1 ≤ k ≤ j − 1

else

a
(1)(2)
j = a

(j)(1)
j a

(1)(2)
j = a

(j)(1)
j

for k = 1 to j − 1 do for k = 1 to j − 1 do

r
(2)
kj = qT

k a
(k)(2)
j r

(2)
kj = qT

k a
(k)(2)
j

a
(k+1)(2)
j = a

(k)(2)
j − qkr(2)

kj a
(k+1)(2)
j = a

(k)(2)
j − qkr(2)

kj

end for end for

rjj = ‖a(j)(2)
j ‖2 rjj = ‖a(j)(2)

j ‖2
qj = a

(j)(2)
j /rjj qj = a

(j)(2)
j /rjj

rkj = r
(1)
kj + r

(2)
kj , 1 ≤ k ≤ j − 1 rkj = r

(1)
kj + r

(2)
kj , 1 ≤ k ≤ j − 1

end if
end for end for

Using floating–point arithmetic, Kahan and Parlett [101] have shown that for two
vectors the orthogonality obtained (measured by |qT

1 q2|) is bounded by a constant
times Kε where ε denotes the machine precision. This gives a way of comput-
ing K in order to ensure a satisfactory level of orthogonality. For n vectors, the
choice of the parameter K is not so clear. Giraud and al. [62] show that if K is

42 Study of the Gram–Schmidt algorithm and its variants

greater than the condition number of A , κ(A) , then neither CGS2(K = κ(A))
nor MGS2(K = κ(A)) performs any reorthogonalization. Interesting values for K
therefore range from 1 (this corresponds to CGS2 or MGS2) to κ(A) (this cor-
responds to CGS or MGS). If K is high then we have few reorthogonalizations,
so we could expect a lower level of orthogonality than if K is smaller where more
reorthogonalizations are performed. In order to reach orthogonality at the machine
precision level, Rutishauser [113] in 1967 chose the value K = 10 . We find an ex-
planation of this value in Gander [59, p. 12]: “in particular one may state the rule

of thumb that at least one decimal digit is lost by cancellation if 10‖a(1)
j ‖2 ≤ ‖aj‖2 .

This equation is the criterion used by Rutishauser to decide whether reorthogonaliza-
tion is necessary.” The value K =

√
2 is also very often used since the publication

of the paper of Daniel, Gragg, Kaufman and Stewart [34] (e.g. by Ruhe [112] or by
Reichel and Gragg [108]). More exotic values like K = 100.05 [60] or K =

√
5 [50]

have also been implemented. In 1989, Hoffmann [76] tested a wide range of values
K = 2, 10, . . . , 1010 . The conclusion of his experiments is that the K –criterion is
always satisfied either at the first loop or at the second and the final level of orthog-
onality is proportional to the parameter K and to the machine precision, exactly
as is the case for two vectors.
The goal of this paper is to give new ideas on the subject of selective reorthogonal-
ization. In Section 1.5.1, we show that MGS2 applied to numerically nonsingular
matrices gives a set of vectors orthogonal to machine precision. This is summarized
in Theorem 1. The proof given in Section 1.5.1 is strongly related to the work of
Björck [13]. In fact we extend his result for MGS to MGS2. Section 1.1 to Section
1.5 use his results directly with modifications adapted to a second loop of reorthog-
onalization. In Sections 1.5 to 1.11, we develop special results that aim to show that
the R–factor corresponding to the second loop is well–conditioned. To work at step
p of the algorithm, an assumption on the level of orthogonality at the previous step
is necessary; this is done in Section 1.8 using an induction assumption. In Section
1.12, we adapt the work of Björck [13] to conclude that the level of orthogonality
at step p is such that the induction assumption holds. During this proof, several
assumptions are made, each of them are necessary during the proof, in Section 1.13,
for sake of clarity, we encompass all these assumptions into one. Finally, in Section
1.14, we conclude the proof by induction. In Section 1.5.2.1, we give a new criterion
for the modified Gram–Schmidt algorithm. This criterion is dependent on a single
parameter L . We call this criterion the L –criterion and the resulting algorithm is
named MGS2(L). This criterion appears naturally from the proof of Section 1.5.1
and the result of Theorem 1 for MGS2 holds also for MGS2(L) when L < 1 .
Therefore, we state that MGS2(L) with L < 1 applied to numerically nonsingular
matrices gives a set of vectors orthogonal to machine precision. In Section 1.5.2.2,
we give a counter–example matrix for which, if L = 1.03 , then MGS2(L) provides
a set of vectors that are far from orthogonal. Concerning the K –criterion, first of
all we notice that the K –criterion makes sense for K > 1 , otherwise MGS2(K)
reduces to MGS2. In Section 1.5.3, we give counter–example matrices for which
MGS2(K), K ranging from 1.43 down to 1.05 , provides a set of vectors that are
far from orthogonal. These examples illustrate that the K –criterion may not be
robust.

1.5 A robust criterion for modified Gram–Schmidt with selective reorthogonalization43

The result established in Section 1.5.1 for MGS2 is similar to that given in [62]. Both
papers establish with two different proofs that MGS2 gives a set of vectors orthogonal
to machine precision. However the proof given in this paper is different and applies
only to the modified Gram–Schmidt algorithm whereas the classical algorithm is
covered by the proof in [62]. The advantage of this new proof is that it enables us to
derive the L –criterion for the modified Gram–Schmidt algorithm. Moreover, this
paper extends the work of Björck [13] directly from MGS to MGS2(L).
In the error analysis, we shall assume that floating–point arithmetic is used, and fol-
low the technique and notations of Wilkinson [136] and Björck [13]. Let ‘op’ denote
any of the four operators + − ∗ / . Then an equation of the form

z = fl(x‘op’y)

will imply that x , y and z are floating–point numbers and z is obtained from x
and y using the appropriate floating–point operation. We assume that the rounding
errors in these operations are such that

fl(x‘op’y) = (x‘op’y)(1 + ε), |ε| ≤ 2−t

where 2−t is the unit roundoff.
In Section 1.5.1 and Section 1.5.2.1, in order to distinguish computed quantities
from exact quantities, we use an overbar on the computed quantities. For the sake of
readability in Section 1.5.2.2 and 1.5.3, that are dedicated to numerical experiments,
the overbars are no longer used. Throughout this paper, the matrices are denoted
with bold and capital characters, e.g. A , the vectors with bold characters, e.g.
x , the scalars are in normal font, e.g. η . The entry (i, j) of A is denoted by
aij . However, when there may be an ambiguity, we use a comma, e.g. the entry
(j − 1, j) of A is denoted by aj−1,j . The jth column of A is the vector aj . The
paper is written for real matrices, the Euclidean scalar product is denoted by xTy ,
‖ ‖2 stands for the 2 –norm for vectors and the induced norm for matrix, ‖ ‖F
stands for the Frobenius norm. σmin(A) is the minimum singular value of A in the
2 –norm. κ(A) is the condition number of A in the 2 –norm. Ip is the identity
matrix of dimension p . Finally, we shall mention that our results also extend to
complex arithmetic calculations.

1.5.1 Adaptation of the work by Björck (1967) for the modified Gram–
Schmidt algorithm (MGS) to the modified Gram–Schmidt algo-
rithm with one reorthogonalization step (MGS2)

1.5.1.1 Description of the algorithm MGS2 without square roots

In this section, we use the same approach as Björck in [13]. In his paper, he con-
siders the MGS algorithm without square roots to study its numerical behaviour in
floating–point arithmetic. In order to keep most of our work in agreement with his
work we also study the MGS2 algorithm without square roots instead of the MGS2
algorithm (Algorithm 1). The MGS2 algorithm without square roots is described
by Algorithm 3.

44 Study of the Gram–Schmidt algorithm and its variants

Algorithm 3 MGS2 without square roots
for j = 1 to n do

a
(1)(1)
j = aj

for k = 1 to j − 1 do

r
′(1)
kj = q

′T
k a

(k)(1)
j /dk

a
(k+1)(1)
j = a

(k)(1)
j − q

′

kr
′(1)
kj

end for

a
(1)(2)
j = a

(j)(1)
j

for k = 1 to j − 1 do

r
′(2)
kj = q

′T
k a

(k)(2)
j /dk

a
(k+1)(2)
j = a

(k)(1)
j − q

′

kr
′(2)
kj

end for

q
′

j = a
(j)(2)
j

dj = ‖q′

j‖22
r
′

kj = r
′(1)
kj + r

′(2)
kj , 1 ≤ k ≤ j − 1

r
′

jj = 1
end for

The factorization resulting from MGS2 without square roots is denoted by

A = Q′R′

where R′ is a unit upper triangular matrix and (Q′)TQ′ is diagonal. The main
interest in that approach is to avoid the square root operation (

√
) in floating–

point arithmetic. The associated algorithm only requires the four basic operations
that are + , − , ∗ and / . In exact arithmetic, the link between the QR–factors Q′

and R′ of Algorithm 3 and the QR–factors Q and R of Algorithm 1 is

qj = q
′

j/‖q
′

j‖2 and rkj = r
′

kj‖q
′

j‖2 k = 1, . . . , j − 1, j = 1, . . . , n.

1.5.1.2 Basic definitions for the error analysis

Following Björck [13], we define for j = 1, . . . , n , the computed quantities for Algo-
rithm 3

r̄
′(r)
kj = fl(q̄

′T
k ā

(k)(r)
j /d̄k), for k = 1, . . . , j − 1 and r = 1, 2,

ā
(k+1)(r)
j = fl(ā

(k)(r)
j − q̄′

kr̄
′(r)
kj), for k = 1, . . . , j − 1 and r = 1, 2,

q̄
′

j = ā
(j)(2)
j ,

d̄j = fl(‖q̄′

j‖22),
r̄
′

kj = fl(r̄
′(1)
kj + r̄

′(2)
kj), for k = 1, . . . , j − 1,

r̄
′

jj = fl(1).

The initialization is:
ā

(1)(1)
j = aj,

at the end of the first loop (i.e r = 1) the following copy is performed before starting
the next loop (i.e. r = 2)

ā
(j)(2)
j = ā

(1)(1)
j .

1.5 A robust criterion for modified Gram–Schmidt with selective reorthogonalization45

We also introduce the normalized quantities for j = 1, . . . , n

q̄j = d
−1/2
j q̄

′

j, r̄jj = d
1/2
j ,

∀j = 1, . . . , k − 1, r̄
(r)
kj = d

1/2
j r̄

′(r)
kj , r̄kj = r̄

(1)
kj + r̄

(2)
kj ,

(1.73)

where

d
1/2
j =

{
‖q̄′

j‖2, q̄
′

j 6= 0,
1, q̄

′

j = 0.

Note that these latter quantities are never computed by Algorithm MGS2 without
square roots, they are defined a posteriori. Thus expressions in (1.73) are exact
relations.
From (1.73), the following relations also hold

‖q̄j‖2 = 1, r̄jj = ‖ā(j)(2)
j ‖2 and ā

(j)(2)
j = q̄j r̄jj.

The first relation implies that I − q̄j q̄
T
j is an orthogonal projection.

This section aims to prove the following Theorem.

Theorem 1
Let A be an m by n matrix on which MGS2 without square roots is run using a well
designed floating–point arithmetic to obtain the computed Q–factor Q̄.
Let 2−t be the unit roundoff.
Let L be a real such that 0 < L < 1. If

1

L(1− L)
× 10n

5
2 (4.5m+ 2)2−t · κ2(A) ≤ 1. (1.74)

then Q̄ is such that

‖I − Q̄T Q̄‖2 ≤
2.61

1− L · n
3
2 (n+ 1 + 2.5m)2−t. (1.75)

Notice that equation (1.75) indicates that the level of orthogonality reached with
MGS2 is of the order of the machine precision and that assumption (1.74) implies
that A is numerically nonsingular. In the remainder of this section, we make a series
of assumptions on A that holds until the end of the section. In Paragraph 1.5.1.13,
we combine all these assumption in one to finally obtain equation (1.74).

1.5.1.3 Errors in an elementary projection

The complete MGS2 algorithm is based on a sequence of elementary projections. In
that respect, it is important to fully understand what is going on for each of them.
In exact arithmetic, we have the following relations

a
(k+1)(r)
j = a

(k)(r)
j − qkr(r)

kj ,

a
(k+1)(r)
j = (I − qkqT

k)a
(k)(r)
j ,

qT
k a

(k)(r)
j = r

(r)
kj

and ‖a(k+1)(r)
j ‖2 ≤ ‖a(k)(r)

j ‖2.

46 Study of the Gram–Schmidt algorithm and its variants

Björck [13], in his error analysis of an elementary projection, gives the equivalent
of these four relations in floating–point arithmetic. We recall his results. In this
section, the set of indices j for the column, r for the loop and k for the projection
are frozen. Following Björck [13] we assume

m ≥ 2 and 2n(m+ 2)2−t1 < 0.01, (1.76)

where t1 = t− log2(1.06) .

If q̄
′

k 6= 0 , we define the related errors δ
(k)(r)
j and η

(k)(r)
j by

ā
(k+1)(r)
j = ā

(k)(r)
j − q̄kr̄(r)

kj + δ
(k)(r)
j , (1.77)

ā
(k+1)(r)
j = (I − q̄kq̄T

k)ā
(k)(r)
j + η

(k)(r)
j . (1.78)

In the singular situation, that is, when q̄
′

k = 0 these relations are satisfied with

ā
(k+1)(r)
j = ā

(k)(r)
j and δ

(k)(r)
j = η

(k)(r)
j = 0. (1.79)

In the nonsingular case, Björck [13] shows that

‖δ(k)(r)
j ‖2 ≤ 1.45 · 2−t‖ā(k)(r)

j ‖2 and ‖η(k)(r)
j ‖2 ≤ (2m+ 3) · 2−t1‖ā(k)(r)

j ‖2. (1.80)

The error between q̄T
k ā

(k)(r)
j and the computed value r̄

(r)
kj is given by

|q̄T
k ā

(k)(r)
j − r̄(r)

kj | < ((m+ 1) · |q̄T
k ā

(k)(r)
j |+m‖ā(k)(r)

j ‖2)2−t1 ≤ (2m+ 1)2−t1 · ‖ā(k)(r)
j ‖2.
(1.81)

In exact arithmetic, we have a
(k+1)(r)
j = (Im − qkq

T
k)a

(k)(r)
j and so ‖a(k+1)(r)

j ‖2 ≤
‖a(k)(r)

j ‖2 . In floating–point arithmetic, it can happen that the norm of the vector

a
(k+1)(r)
j gets larger than a

(k)(r)
j due to the rounding errors. It is therefore important

to have an upper bound to control a
(k+1)(r)
j . After k projections, k < n , Björck [13]

shows that
‖ā(k)(r)

j ‖2 < 1.006‖a(1)(r)
j ‖2 (1.82)

The constant 1.006 comes from assumption (1.76). For more details, we refer di-
rectly to Björck [13]. Since 1.0062 < 1.013

‖ā(k)(r)
j ‖2 < 1.013‖aj‖2. (1.83)

1.5.1.4 Errors in the factorization

We define
E = Q̄R̄− A. (1.84)

We shall prove the following inequality

‖E‖F < 2.94(n− 1) · 2−t‖A‖F . (1.85)

Summing (1.77) for k = 1, 2, . . . , j − 1 and r = 1, 2 and using the relations

ā
(1)(1)
j = aj, ā

(j)(1)
j = ā

(1)(2)
j , ā

(j)(2)
j = q̄j r̄jj, r̄kj = r̄

(1)
kj + r̄

(2)
kj ,

1.5 A robust criterion for modified Gram–Schmidt with selective reorthogonalization47

we get
j∑

k=1

q̄k · r̄kj − aj =

j−1∑

k=1

(δ
(k)(1)
j + δ

(k)(2)
j). (1.86)

Let us define δj =
∑j−1

k=1(δ
(k)(1)
j + δ

(k)(2)
j) . Then, from inequalities (1.80), we have

‖δj‖2 < 1.45 · 2−t
2∑

r=1

j−1∑

k=1

‖ā(k)(r)
j ‖2.

Using both inequality (1.83) and the fact that 1.013× 1.45× 2 < 2.94 , we have

‖δj‖2 < 2.94 · 2−t(j − 1)‖aj‖2.
Finally, we obtain

‖E‖F = (

n∑

j=1

‖δj‖22)1/2 < 2.94 · 2−t(n− 1)(

n∑

j=1

‖aj‖22)1/2 = 2.94(n− 1) · 2−t‖A‖F .

1.5.1.5 Nonsingularity of Ā

From equation (1.84), a sufficient condition for Ā = Q̄R̄ to have full rank is given
by Björck [13]. If the exact factorization of A is A = QR then Ā has rank n if

2.94(n− 1) · 2−t‖A‖F‖R−1‖2 ≤
√

2− 1. (1.87)

We assume in the following that inequality (1.87) is satisfied. This ensures that, for
all r = 1, 2 and for all j = 1, . . . , n ,

‖ā(j)(r)
j ‖2 6= 0.

1.5.1.6 Theorem of Pythagoras

The purpose of this section is to exhibit an upper bound for
√√√√

j−1∑

i=1

(r̄
(r)
ij)2, (1.88)

that will be used later in Sections 1.5.1.9, 1.5.1.10 and 1.5.1.11. In the sequel, we
are interested in each step r individually. Therefore, for the sake of readability, we
no longer use the subscript (r) to label the index loop.
In exact arithmetic, after the jth step of the MGS algorithm, we have

aj =

j−1∑

k=1

(qkrkj) + a
(j)
j

and as the vectors qk, k = 1, . . . , j − 1 are orthonormal

j−1∑

k=1

(rkj)
2 + ‖a(j)

j ‖22 = ‖aj‖22. (1.89)

48 Study of the Gram–Schmidt algorithm and its variants

Equation (1.89) is nothing but the theorem of Pythagoras. Still in exact arithmetic,
let Qj−1 be such that ‖qk‖2 = 1, k = 1, . . . , j−1 without any additional assumption.
Then, from the column aj running step j of the MGS algorithm, we get

a
(1)
j = (I − q1q

T
1)aj , with r1j = qT

1 aj ⇒ ‖aj‖
2
2 = (r1j)

2 + ‖a
(1)
j ‖2

2,
...

...
...

a
(j)
j = (I − qj−1q

T
j−1)a

(j−1)
j , with rj−1,j = qT

j−1a
(j−1)
j ⇒ ‖a

(j−1)
j ‖2

2 = (rj−1,j)
2 + ‖a

(j)
j ‖2

2,

⇒ ‖aj‖
2
2 = � j−1

k=1(rkj)
2 + ‖a

(j)
j ‖2

2.

We recover Property (1.89). Therefore we have the following statement: when
step j of MGS is performed in exact arithmetic with ‖qk‖2 = 1, k = 1, . . . , j − 1 ,
property (1.89) is true. We apply the same idea in floating–point calculations. From
equation (1.77),

ā
(k+1)
j = ā

(k)
j − q̄kr̄kj + δ

(k)
j ,

⇒ ā
(k)
j + δ

(k)
j = ā

(k+1)
j + q̄kr̄kj,

⇒ ‖ā(k)
j ‖22 + α

(k)
j = ‖ā(k+1)

j ‖22 + (r̄kj)
2, (1.90)

where

α
(k)
j = (δ

(k)
j)T δ

(k)
j + 2(δ

(k)
j)T ā

(k)
j − 2r̄kj(q̄k)T ā

(k+1)
j .

Therefore we can get the following upper bound for |α(k)
j |

|α(k)
j | ≤ ‖δ

(k)
j ‖22 + 2‖δ(k)

j ‖2‖ā
(k)
j ‖2 + 2|r̄kj||q̄T

k ā
(k+1)
j |. (1.91)

From equation (1.78) it follows that

(q̄k)T ā
(k+1)
j = (q̄k)Tη

(k)
j , (1.92)

and therefore

|q̄T
k ā

(k+1)
j | ≤ ‖η(k)

j ‖2. (1.93)

For |r̄kj| , equation (1.81) gives

|r̄kj| ≤ (1 + (2m+ 1)2−t1) · ‖ā(k)(r)
j ‖2 ≤ 1.01 · ‖ā(k)(r)

j ‖2. (1.94)

Using equations (1.76), (1.80), (1.82), (1.93) and (1.94) in inequality (1.91), we get

|α(k)
j | ≤ (1.006)2 × [1.452 × 2−t + 2× 1.45 + 2× 1.06× 1.01× (2m + 3)] · 2−t‖āj‖22,

≤ (4.34m+ 9.33)2−t · ‖aj‖22, (1.95)

where we use inequality (1.76) to bound 2−t with 0.0016 .
Summing equality (1.90) for k = 1, . . . , j − 1 gives

‖aj‖22 +

j−1∑

k=1

α
(k)
j = ‖ā(j)

j ‖22 +

j−1∑

k=1

(r̄kj)
2,

1.5 A robust criterion for modified Gram–Schmidt with selective reorthogonalization49

and then using inequality (1.95), we obtain

| (‖ā(j)
j ‖22 +

j−1∑

k=1

(r̄kj)
2)− ‖aj‖22 | ≤ (4.34m+ 9.33)(j − 1)2−t1 · ‖aj‖22.

Using the fact that
√

1 + x ≤ 1 + x/2 , for all x ≥ −1 , we have
√√√√‖ā(j)

j ‖22 +

j−1∑

k=1

(r̄kj)2 ≤ [1 + (2.17m+ 4.67)(j − 1)2−t1] · ‖aj‖2. (1.96)

Let us assume that
(2.04m+ 4.43)(j − 1)2−t1 ≤ 0.01, (1.97)

then we get √
‖ā(j)

j ‖22 +
∑j−1

k=1(r̄kj)2 ≤ 1.01 · ‖aj‖2. (1.98)

We remark that equation (1.98) and assumption (1.97) are satisfied without any
assumption on the orthogonality of the columns of Q̄j−1 .

1.5.1.7 Condition number of A and maximum value of K
(1)
j =

‖aj‖2

‖ā
(j)(1)
j

‖2

, for j =

1, . . . , n

We define

K
(1)
j =

‖aj‖2
‖ā(j)(1)

j ‖2
and K

(2)
j =

ā
(1)(2)
j

‖ā(j)(2)
j ‖2

. (1.99)

Notice that ‖ā(j)(1)
j ‖2 6= 0 and ‖ā(j)(2)

j ‖2 6= 0 because we make the assumption (1.87)
on the numerical nonsingularity of A . We have seen in the introduction that the

quantity K
(1)
j plays an important role for checking the quality of the orthogonality

for the computed vector q̄j with respect to the previous q̄i , i = 1, . . . , n . In this

section, we derive an upper bound for K
(1)
j .

In exact arithmetic, if MGS is run on A to obtain the QR–factors Q and R then

σmin(A) = σmin(R) ≤ |rjj| = ‖a(j)(1)
j ‖2 and ‖A‖2 ≥ ‖aj‖2

so

K
(1)
j =

‖aj‖2
‖a(j)(1)

j ‖2
≤ κ(A). (1.100)

Inequality (1.100) indicates that, in exact arithmetic, K
(1)
j is always less than the

condition number of A , κ2(A) . With rounding errors, we can establish a bound
similar to inequality (1.100).
We recall equation (1.86) that is

ak =

k∑

i=1

q̄k · r̄ik − δk, k = 1, . . . , j − 1.

50 Study of the Gram–Schmidt algorithm and its variants

For k = j , we just consider the first loop (i.e. r = 1). This gives

aj =

j∑

i=1

q̄i · r̄(1)
i,j + ā

(j)(1)
j − δ(1)

j

with δ
(1)
j =

∑j−1
k=1 δ

(k)(1)
j . In matrix form, this can be written as

Aj = Q̄j−1R̄(j−1,j) −∆j

with Q̄j−1 ∈ Rm×j−1

Q̄j−1 = [q̄1, . . . , q̄j−1]

and R̄(j−1,j) ∈ Rj−1×j such that

R̄(j−1,j) =

r̄1,1 . . . r̄1,j−1 r̄
(1)
1,j

. . .
...

...

r̄j−1,j−1 r̄
(1)
j−1,j

 .

Finally ∆j ∈ R
m×j is defined by

∆j = [δ1, . . . , δj−1, δ
(1)
j − ā

(j)(1)
j],

with
0 < ‖∆j‖F ≤ 2.94(j − 1) · 2−t‖Aj‖F + ‖ā(j)(1)

j ‖2.
Notice that, by construction, the matrix Q̄j−1R̄(j−1,j) is of rank j−1 . Therefore the
matrix Aj + ∆j is singular, whereas we assume that the matrix Aj is nonsingular.
The distance to singularity for a matrix Aj can be related to its minimum singular
value. Some theorems on relative distance to singularity can be found in many
books (e.g. [63, p. 73] or [75, p. 123]). Although the textbooks usually assume the
matrices are square, this statement is also true for rectangular matrices. In our case,
we have

σmin(Aj) = min{‖∆‖2,∆ ∈ R
m×j so that Aj + ∆ is singular } ≤ ‖∆j‖2.

Dividing by ‖Aj‖2 , we get

1

κ2(Aj)
≤ ‖∆j‖2
‖Aj‖2

≤ ‖∆j‖F
‖Aj‖2

,

and since we know that ‖∆j‖F 6= 0 , this gives

κ2(A) ≥ κ2(Aj) ≥
‖Aj‖2
‖∆j‖F

≥ 1

2.94(n− 1) · 2−t ‖Aj‖F

‖Aj‖2
+

‖ā(j)(1)
j ‖2

‖Aj‖2

,

Let us write

κ2(A) ≥ 1

2.94(j − 1) · 2−t ‖Aj‖F

‖Aj‖2
+

‖ā(j)(1)
j ‖2

‖aj‖2

‖aj‖2

‖Aj‖2

,

1.5 A robust criterion for modified Gram–Schmidt with selective reorthogonalization51

since
‖ā(j)(1)

j ‖2

‖aj‖2
= K

(1)
j ,

‖aj‖2

‖Aj‖2
≤ 1 and

‖Aj‖F

‖Aj‖2
<
√
j,

we get

κ2(A) ≥ 1

2.94(j − 1)
√
j · 2−t + 1

K
(1)
j

.

For instance, if we assume that

2.94(n− 1)n
1
2 · 2−t.κ2(A) < 0.09, (1.101)

where the value 0.09 is taken arbitrarily but another value leads to a final similar
result, then we have the following inequality

K
(1)
j ≤

1

1− 2.94(j − 1)j
1
2 2−t · κ2(A)

κ2(A).

Using assumption (1.101) we get

K
(1)
j ≤ 1.1 · κ2(A). (1.102)

We remark that equation (1.102) and assumption (1.101) are independent of the
orthogonality of the previously computed Q̄j−1 ; it is just a consequence of equa-
tion (1.84).
Note that the value 0.09 of the right–hand side in equation 1.101 is arbitrary. We
point out that since the numerical properties of Gram–Schmidt algorithm are in-
variant under column scaling (without consideration on underflow), instead of the
condition number κ(A) one can use

κD(A) = min
D diagonal matrix

κ(AD).

1.5.1.8 Induction assumption

We want to show that the orthogonality of the computed vectors q̄1, q̄2, . . . , q̄n is of
the order of the machine precision.
In exact arithmetic, at step j , to show that the vector qj generated by the MGS
algorithm is orthogonal to the previous ones, we use the fact that the previous
qi , i = 1, . . . , j − 1 are already orthogonal to each other. Therefore to show the
orthogonality at step j in floating–point arithmetic, we make an assumption on the
orthogonality at step j − 1 .
The orthogonality of the computed vectors q̄1, q̄2, . . . , q̄n can be measured by the
norm of the matrix (I−Q̄T Q̄) . Let Up , p = 1, . . . , n be the strictly upper triangular
matrix of size (p, p) with entries:

uij = q̄T
i q̄j, 1 ≤ i < j ≤ p and uij = 0, 1 ≤ j ≤ i ≤ p.

We note U = Un and have:

I − Q̄T Q̄ = −(U + UT). (1.103)

52 Study of the Gram–Schmidt algorithm and its variants

We make a proof by induction to show that ‖U‖2 is small at step n . Therefore,
we assume that at step p− 1 :

‖Up−1‖2 ≤ λ. (1.104)

Our aim is to show that at step p , we still have ‖Up‖2 ≤ λ . The value of λ is
exhibited during the proof.
In the following, the index variables i , j , k and p are such that

1 ≤ j ≤ p ≤ n, 1 ≤ i ≤ j and 1 ≤ k ≤ j

1.5.1.9 Bound for |q̄T
k ā

(j)(1)
j | , for k = 1, . . . , j − 1 and for j = 1, . . . , p

|q̄T
k ā

(j)(1)
j | represents the orthogonality between q̄k , k = 1, . . . , j−1 , and the vector

ā
(j)(1)
j given by the first step of MGS (r = 1). In exact arithmetic, this quantity is

zero. Following Björck [13], we sum equation (1.77) for i = k + 1, k + 2, . . . , j − 1
and r = 1 , to get

ā
(j)(1)
j = ā

(k+1)(1)
j −

j−1∑

i=k+1

q̄ir̄
(1)
ij +

j−1∑

i=k+1

δ
(i)(1)
j .

Hence, multiplying this relation by q̄T
k and using (1.92), we get

q̄T
k ā

(j)(1)
j = −

j−1∑

i=k+1

(q̄T
k q̄i)r̄

(1)
ij + q̄T

k (η̄
(k)(1)
j +

j−1∑

i=k+1

δ
(i)(1)
j).

Therefore :

|q̄T
k ā

(j)(1)
j | ≤

√√√√
j−1∑

i=k+1

(r̄
(1)
ij)2

√√√√
j−1∑

i=k+1

(q̄T
k q̄i)

2 + ‖η̄(k)(1)
j ‖2 +

j−1∑

i=k+1

‖δ(i)(1)
j ‖2.

We can interpret the terms of the right–hand side.

1. the orthogonalization of ā
(k)(1)
j against q̄k is not performed exactly; this cor-

responds to the second term,

2. the resulting vector ā
(k+1)(1)
j is orthogonalized on q̄i , i = k+1, . . . , j−1 , and,

since Q̄ is not orthogonal, we also lose orthogonality here; this corresponds to
the first term,

3. moreover, all these projections i = k + 1, . . . , j − 1 are also done inaccurately;
this corresponds to the third term.

Using inequalities (1.80) and (1.82), we have

‖η̄(k)(1)
j ‖2 +

j−1∑

i=k+1

‖δ(i)(1)
j ‖2 ≤ (2.14m+ 3.20 + 1.46(j − k − 1))2−t · ‖aj‖2.

Finally, using inequalities (1.98) and (1.104), we get

|q̄T
k ā

(j)(1)
j | ≤ [1.01λ+ (2.14m+ 1.46(j − k − 1) + 3.20)2−t] · ‖aj‖2.

1.5 A robust criterion for modified Gram–Schmidt with selective reorthogonalization53

1.5.1.10 Bound for |r̄(2)
kj | , for k = 1, . . . , j − 1 and for j = 1, . . . , p

Having a bound for the orthogonality of the first step, we now study its influence

in the second step by computing |r̄(2)
kj | . Again summing equation (1.77) for i =

1, 2, . . . , k − 1 and r = 2 we get :

ā
(k)(2)
j = ā

(j)(1)
j −

k−1∑

i=1

q̄ir̄
(2)
ij +

k−1∑

i=1

δ
(i)(2)
j .

Hence multiplying by q̄T
k , we get

q̄T
k ā

(k)(2)
j = q̄T

k ā
(j)(1)
j −

k−1∑

i=1

(q̄T
k q̄i)r̄

(2)
ij + q̄T

k

k−1∑

i=1

δ
(i)(2)
j .

Taking moduli, we have

|q̄T
k ā

(k)(2)
j | ≤ |q̄T

k ā
(j)(1)
j |+

√√√√
k−1∑

i=1

(r̄
(2)
ij)2

√√√√
k−1∑

i=1

(q̄T
k q̄i)

2 +
k−1∑

i=1

‖δ(i)(2)
j ‖2.

Similarly, as in Section 1.9, we bound each term in the right-hand side and get

|q̄T
k ā

(k)(2)
j | ≤ [2.02λ+ (2.14m+ 1.46(j − 2) + 3.20)2−t] · ‖aj‖2.

Using inequalities (1.81) and (1.82), we know that |q̄T
k ā

(k)(2)
j − r̄(2)

kj | ≤ (2.15m+1.08) ·
2−t‖aj‖2, therefore

|r̄(2)
kj | ≤ [2.02λ+ (4.29m+ 1.46(j − 2) + 4.28)2−t] · ‖aj‖2,

This expression can be simplified to obtain

|r̄(2)
kj | ≤ [2.02λ+ 5.75(m+ 1)2−t] · ‖aj‖2. (1.105)

1.5.1.11 Bound for K
(2)
j =

‖ā
(1)(2)
j

‖2

‖ā
(j)(2)
j

‖2

, for j = 1, . . . , p

While the quantity K
(1)
j is important for the level of orthogonality after the first

orthogonalization loop, the quantity K
(2)
j is important for the level of orthogonality

after the second orthogonalization loop. In exact arithmetic, we have a
(1)(2)
j = a

(j)(2)
j

and therefore K
(2)
j = 1 . In this section, we show that K

(2)
j , in floating–point

arithmetic, is close to one.
Let us again sum equation (1.77) for r = 2 , k = 1, 2, . . . , j − 1 , to get

ā
(j)(2)
j = ā

(j)(1)
j −

j−1∑

k=1

q̄kr̄
(2)
kj +

j−1∑

k=1

δ
(k)(2)
j ,

54 Study of the Gram–Schmidt algorithm and its variants

then

‖ā(j)(2)
j ‖2 ≥ ‖ā(j)(1)

j ‖2 − ‖
j−1∑

k=1

q̄kr̄
(2)
kj ‖2 −

j−1∑

k=1

‖δ(k)(2)
j ‖2. (1.106)

The induction assumption (1.103) implies that ‖Q̄‖2 ≤
√

1 + λ2 . From this, we can

get an upper bound for ‖
∑j−1

k=1 q̄kr̄
(2)
kj ‖2 , that is

‖
j−1∑

k=1

q̄kr̄
(2)
kj ‖2 ≤ ‖Q̄‖2‖

r̄
(2)
1j
...

r̄
(2)
j−1,j

 ‖2 ≤

√
1 + λ2‖

r̄
(2)
1j
...

r̄
(2)
j−1,j

 ‖2.

Using inequality (1.105) we get

‖
j−1∑

k=1

q̄kr̄
(2)
kj ‖2 ≤

√
1 + λ2 ·

√
j − 1[2.02λ+ 5.75(m+ 1)2−t] · ‖aj‖2.

With inequalities (1.80) and (1.106) we have

‖ā(j)(2)
j ‖2 ≥ ‖ā(j)(1)

j ‖2−
[√

1 + λ2 ·
√
j − 1(2.02λ+ 5.75(m+ 1)2−t) + 1.47(j − 1)2−t

]
‖aj‖2.

Dividing by ‖ā(j)(1)
j ‖2 we have

1/K
(2)
j ≥ 1−

[√
1 + λ2 ·

√
j − 1[2.02λ+ 5.75(m+ 1)2−t]− 1.47(j − 1)2−t

]
K

(1)
j .

Let us assume that

1.1κ2(A)
[√

1 + λ2 ·
√
j − 1[2.02λ+ 5.75(m+ 1)2−t] + 1.47(j − 1)2−t

]
≤ 0.67 < 1,

(1.107)
where the value 0.67 is taken arbitrarily, but another value leads to a final similar
result. We obtain

K
(2)
j ≤

1

1−K(1)
j

√
1 + λ2 · √j − 1[2.02λ+ 5.75(m+ 1)2−t]

≤ 1

0.67
.

This gives

K
(2)
j ≤ 1.5. (1.108)

We remark that assumption (1.107) is dependent on the parameter λ that is still
not yet known.

1.5.1.12 Bound for the orthogonality of the vectors

Summing (1.77) from k = i + 1, i+ 2, . . . , j − 1 and r = 2 we get

ā
(j)(2)
j = ā

(i+1)(2)
j −

j−1∑

k=i+1

q̄kr̄
(2)
kj +

j−1∑

k=i+1

δ
(k)(2)
j . (1.109)

1.5 A robust criterion for modified Gram–Schmidt with selective reorthogonalization55

From equation (1.92), we have q̄T
i ā

(i+1)(2)
j = q̄T

i η
(i)(2)
j and ā

(j)(2)
j = q̄j r̄

(2)
jj . Therefore

multiplying (1.109) by q̄T
i we get

j∑

k=i+1

r̄
(2)
kj (q̄T

i q̄k) = q̄T
i (η

(i)(2)
j +

j−1∑

k=i+1

δ
(k)(2)
j).

We divide this by |r̄(2)
jj | (which is different from 0) to get

j∑

k=i+1

r̄
(2)
kj

|r̄(2)
jj |

(q̄T
i q̄k) =

q̄T
i (η

(i)(2)
j +

∑j−1
k=i+1 δ

(k)(2)
j)

|r̄(2)
jj |

. (1.110)

We recall that this equality is true for all j = 1, . . . , p and i = 1, . . . , j − 1 .
Define Mp as the unit upper triangular matrix with the (k, j) entry, mkj , given
by

mkj =
r̄

(2)
kj

|r̄(2)
jj |

, for k < j, (1.111)

and let Sp be the strictly upper triangular matrix where the (i, j) entry, sij , is

sij =
q̄T
i (η

(i)(2)
j +

∑j−1
k=i+1 δ

(k)(2)
j)

|r̄(2)
jj |

, for i < j.

Since the entry (i, k) of Up is uik = q̄T
i q̄k , equation (1.110) can be rewritten as

∀j = 1, . . . , p, ∀i = 1, . . . , j − 1, sij =

j∑

k=i+1

uikmkj.

Taking into account the facts that Up and Sp are strictly upper triangular and Mp

is upper triangular, we obtain
Sp = UpMp. (1.112)

In [13], Björck gives an upper bound for the 2 –norm of each column of Sp as

‖sj‖2 ≤ 0.87 · n 1
2 (n + 1 + 2.5m)2−t

‖ā(j)(1)
j ‖2
|r̄(2)

jj |
.

Since |r̄(2)
jj | = ‖ā

(j)(2)
j ‖2 , we obtain

‖sj‖2 ≤ 0.87K
(2)
j · n

1
2 (n + 1 + 2.5m)2−t.

Using inequality (1.108) and the fact that 0.87× 1.5 = 1.305 , we get

‖Sp‖2 ≤ 1.305n(n+ 1 + 2.5m)2−t. (1.113)

Mp is nonsingular. Therefore from equation (1.112) we have

‖Up‖2 ≤ ‖M−1
p ‖2‖Sp‖2. (1.114)

56 Study of the Gram–Schmidt algorithm and its variants

At this stage, the quantity of interest is ‖M−1
p ‖2 .

It is interesting to relate this proof to that of Björck [13]. Björck [13] shows an
inequality similar to inequality (1.114) for MGS, with ‖Sp‖2 of the order of the
machine precision, Up as defined in Section 1.8 but with the q̄ coming from MGS
and Mp as defined in equation (1.111) but with the r̄kj coming from MGS. Since
he proves that, for MGS, ‖M−1

p ‖2 is of the order of κ(A) , he obtains the result:
the final orthogonality obtained with MGS is of the order of κ(A)2−t . Our goal is
to show that ‖M−1

p ‖2 is independent of κ(A) and is of the order of 1 .
An idea for controlling the 2 –norm of Mp is to show that Mp is diagonally dominant
by columns. Following Varah [94], we say that Mp is diagonally dominant by
columns if

∀j = 1, . . . , n, |mjj| >
∑

k 6=j

|mkj|. (1.115)

In our case, since Mp is unit triangular it would be diagonally dominant by columns
if

∀j = 1, . . . , n, 1 >

j−1∑

k=1

|mkj|.

It becomes then natural to look for an upper bound for
∑j−1

k=1 |mkj| that is lower
than one.
From (1.105) we have

j−1∑

k=1

|mkj| ≤ (j − 1)[2.02λ+ 5.75(m+ 1)2−t]
‖aj‖2
|r̄(2)

jj |
,

therefore
j−1∑

k=1

|mkj| ≤ (j − 1)[2.02λ+ 5.75(m+ 1)2−t]K
(1)
j K

(2)
j .

Using equations (1.102) and (1.108), we get as 1.1× 1.5 = 1.65

j−1∑

k=1

|mkj| ≤ 1.65(j − 1)[2.02λ+ 5.75(m+ 1)2−t]κ2(A).

We assume that

1.65(n− 1)[2.02λ+ 5.75(m+ 1)2−t]κ2(A) ≤ L, (1.116)

where L is a real number such that 0 < L < 1 . With inequality (1.116), we obtain

j−1∑

k=1

|mkj| ≤ L. (1.117)

This means that Mp is diagonally dominant by columns.
Let us decompose Mp as

Mp = Ip + Cp

1.5 A robust criterion for modified Gram–Schmidt with selective reorthogonalization57

where Cp is strictly upper triangular. Inequality (1.117) means that

‖Cp‖1 = max
j=1,...,p

j−1∑

k=1

|mkj| ≤ L. (1.118)

In addition, we also have

(Ip + Cp)(Ip − Cp + . . .+ (−1)nCn−1
p) = Ip + (−1)nCn

p .

Since Cp is strictly upper triangular, it is nilpotent (i.e. we have Cn
p = 0) so that

Mp(Ip − Cp + . . .+ (−1)nCn−1
p) = Ip.

Therefore
M−1

p = Ip − Cp + . . .+ (−1)nCn−1
p .

In norm this implies that

‖M−1
p ‖2 ≤ 1 + ‖Cp‖1 + ‖Cp‖21 + . . .+ ‖Cp‖n−1

1 ,

≤ 1 + L + L2 + . . .+ Ln−1 =
1− Ln

1− L .

Finally we get

‖M−1
p ‖1 ≤

1

1− L, (1.119)

which implies that

‖M−1
p ‖2 ≤

√
n

1− L. (1.120)

Notice that inequality (1.119) is nothing else than the result of Corollary 1 of
Varah [94] applied to matrices with unit diagonal. The parameter L has to be cho-
sen between 0 and 1 . It should neither be too close to 0 , so that assumption (1.116)
does not become too strong, nor be too close to 1 , so that the bound (1.120) on
‖M−1

p ‖1 does not become too large. With inequalities (1.113), (1.114) and (1.120),
we get

‖Up‖2 ≤ 1.305
1−L
· n 3

2 (n+ 1 + 2.5m)2−t. (1.121)

A natural choice for λ is then

λ =
1.305

1− L · n
3
2 (n+ 1 + 2.5m)2−t, (1.122)

so that the induction assumption (1.104) is verified at step p .

1.5.1.13 Assumptions on A

Since λ is defined, it is possible to explicitly state the assumptions made on A . The
assumptions made are equations (1.76), (1.87), (1.97), (1.101), (1.107) and (1.116).
We focus here on the main assumption that is (1.116). We replace λ by its value
and get

1

L
× 1.65(n− 1)[2.02

1.305

1− L × n
3
2 (n+ 1 + 2.5m) + 5.75(m+ 1)]2−t · κ2(A) ≤ 1.

58 Study of the Gram–Schmidt algorithm and its variants

For the sake of simplicity we replace it with

1

L(1− L)
× 10n

5
2 (4.5m + 2)2−t · κ2(A) ≤ 1.

1.5.1.14 Conclusion of the proof by induction

We have shown that, if we assume (1.74) and define λ with (1.122), then

if at step (p− 1) , we have ‖Up−1‖2 ≤ λ then at step p we also have ‖Up‖2 ≤ λ.

At step n = 1 , U1 is defined as ‖U1‖2 = 0 and so ‖U1‖2 ≤ λ. From this, we
conclude that at step n , we have

‖I −QTQ‖2 ≤
2.61

1− L · n(n + 1 + 2.5m)2−t.

This completes the proof of Theorem 1.
Theorem 1 involves a parameter L while MGS2 is parameter free. We can never-
theless use the result of that theorem to assess the quality of the orthogonality of
the set of vectors generated by MGS2 by setting L = 0.5 . The value 0.5 is chosen
in order to relax the most the assumption (1.74) on the nonsingularity of A .

1.5.2 Link with selective reorthogonalization

1.5.2.1 Sufficiency of the condition L < 1 for robust reorthogonalization

The key property of the matrix M is given by inequality (1.117). The main effort
in the proof of Section 1 consists in showing that for all j = 1, . . . , n we have, after
the reorthogonalization loop,

L
(2)
j =

j−1∑

k=1

|r(2)
kj |
r
(2)
jj

≤ L < 1.

However, this property may already occur after the first orthogonalization, that is

L
(1)
j =

j−1∑

k=1

|r(1)
kj |

‖a(1)
j ‖2

≤ L < 1. (1.123)

In this case, we do not need to reorthogonalize a
(1)
j , to comply with inequal-

ity (1.117) at the second loop since it is already satisfied at the first loop. From this,
we propose a new algorithm that checks whether the inequality (1.123) is satisfied
or not at step j , r = 1 . We call the resulting criterion the L –criterion and the cor-
responding algorithm MGS2(L). MGS2(L) is the same as Algorithm MGS2(K)
except that line 7 is replaced by

if

∑j−1
k=1 |r

(1)
kj |

‖a(1)
j ‖2

≤ L then.

1.5 A robust criterion for modified Gram–Schmidt with selective reorthogonalization59

Since we have derived MGS2 without square roots from MGS2, we derive MGS2(L)
without square roots from MGS2(L). The proof established in Section 1 for MGS2
without square roots needs basically inequality (1.85) to be satisfied and ‖Up‖2 ≤ λ
assuming ‖Up−1‖2 ≤ λ , p ≥ 1 . Whether one loop or two are performed, inequality
(1.85) holds. If the L –criterion is satisfied at step p for the first loop then we can
state that ‖Up‖2 ≤ λ . If not, at the second loop, we have anyway ‖Up‖2 ≤ λ .
Therefore Theorem 1 holds also for MGS2(L) without square roots. We recall that
Theorem 1 is true for 0 < L < 1 .
From the Theorem 1 point of view, the optimal value of L for having the weaker
assumption on A is 0.5 . With respect to the orthogonality; the lower L is, the
better the orthogonality. To minimize the computational cost of the algorithm, a
large value of L would imply performing only a few reorthogonalizations. There-
fore, in Theorem 1, the value for L between 0 and 1 is a trade-off between the
computational cost and the expected orthogonality quality. In our experiments, we
choose the value L = 0.99 .

1.5.2.2 Necessity of the condition L < 1 to ensure the robustness of the selective

reorthogonalization

In this section we exhibit some counter–example matrices A such that for, any
given value L > 1 , the orthogonality obtained by MGS2(L) may be very poor.
Our strategy is to find a matrix such that:

Property 1. the matrix is numerically nonsingular but ill–conditioned.

Property 2. MGS2(L) applied to this matrix performs no reorthogonalization
and so it reduces to MGS.

Let us define the matrix A(n, α) ∈ Rn×n as

A(n, α) = UTA(n, α) = U

α 1
. . .

. . .
α 1

α

 (1.124)

where U ∈ Rn×n is such that UTU = I .
Matrices A(n, α) have the property that if we apply MGS2(L) (in exact arithmetic),
we get

L
(1)
j =

j−1∑

k=1

|r(1)
kj |

‖a(1)
j ‖2

=
1

α
. (1.125)

If we set α such that L
(1)
j > L that is 1/α > L , then the L –criterion is always

satisfied. In this case, no reorthogonalization is performed, and then Property 2 is
satisfied.
Moreover for all α , 0 < α < 1 ,the condition number of the matrix κ(A(n, α)) can
be made arbitrarily large by choosing an appropriate n . We justify this claim by

60 Study of the Gram–Schmidt algorithm and its variants

studying the matrix TA(n, α) . First of all, we have

TA(n, α)x1 =

α 1
α 1

α 1
. . .

. . .
α 1

α

1
−α
α2

...
(−1)n−2αn−2

(−1)n−1αn−1

=

0
0
0
...
0

(−1)n−1αn

therefore

σmin(TA(n, α)) ≤ ‖TA(n, α)x1‖2
‖x1‖2

≤ αn

√
1− α2n

1− α2
.

On the other hand, we also have

TA(n, α)x2 =

α 1
α 1

α 1
. . .

. . .
α 1

α

0
1
0
...
0
0

=

1
α
0
...
0
0

and therefore

σmax(TA(n, α)) ≥ ‖TA(n, α)x2‖2
‖x2‖2

=
√

1 + α2.

From equation (1.124), the condition number of A(n, α) is the same as that of
TA(n, α) and so can be bounded by

κ(A(n, α)) ≥ α−n

√
1− α4

1− α2n
. (1.126)

For a given L > 1 , the parameter α is set by using equation (1.125) so that
α < 1/L < 1 (Property 2). Using equation (1.126), we increase n , the size of the
matrix A(n, α) , in order to have a sufficiently ill-conditioned matrix to comply with
Property 1.
We have performed some numerical experiments with these matrices using Matlab.
The machine precision is ε = 1.12 · 10−16 . We set α = 0.98 and n = 1500 with a
random unitary matrix U to obtain A(n, α) . The condition number of the matrix is:
κ(A(n, α)) = 7.28·1014 . We should point out that even though the theoretical result
was proved for the square root free MGS algorithm, we consider in our experiments
the classical implementation that involves the square root calculation. In Table 1.1,
we display the numerical experiments. When L = 1.03 , a few reorthogonalizations
are performed and the algorithm is in fact very close to MGS applied to A(n, α) .
‖I − QTQ‖2 is far from machine precision. When L = 0.99 , the criterion permits
all the reorthogonalizations, the algorithm is in fact exactly MGS2 and gives rise to
a matrix Q that is orthogonal up to machine precision.
We show how to construct matrices such that the L –criterion with L > 1 fails,
this strategy permits us to construct matrices such that L = 1.03 is not a good

1.5 A robust criterion for modified Gram–Schmidt with selective reorthogonalization61

MGS2(L = 1.03) 5.44 · 10−1

MGS2(L = 0.99) 4.57 · 10−14

Table 1.1: ‖I − QT Q‖2 for Q obtained by MGS2(L) for different values of L applied on
A(n = 1500, α = 0.98) .

criterion. We have been limited by the size of the matrices used and we conjectured
that increasing the size of the matrices would enable us to decrease the value of L .
Furthermore we remark that in our experiments, we do not observe the influence
of the terms in n and m either in the assumption (1.74) on A or in the final
orthogonality given by inequality (1.75).

1.5.3 Lack of robustness of the K–criterion

Assuming that
∑j−1

k=1(r
(1)
kj)2 + ‖a(1)

j ‖22 = ‖aj‖22 (which corresponds to the theorem of
Pythagoras if Qj−1 has orthogonal columns), we can rewrite the K –criterion as

√∑j−1
k=1(r

(1)
kj)2

‖a(1)
j ‖2

≤
√
K2 − 1. (1.127)

Formula (1.127) means that the K –criterion compares the 2 –norm of the non-

diagonal entries r
(1)
kj , k < j , to the diagonal entry ‖a(1)

j ‖2 . We recall that the

L –criterion consists in comparing the 1 –norm of the non-diagonal entries r
(1)
kj ,

k < j , to the diagonal entry ‖a(1)
j ‖2 .

By analogy with inequality (1.115) we call a diagonally dominant matrix by columns
in the 2 –norm a matrix A such that for all j ,

|ajj| >
√∑

i6=j

a2
ij. (1.128)

The value L = 1 for the L –criterion, which means that the matrix is diagonally
dominant by columns, can be related with the value K =

√
2 for the K –criterion,

which means that the matrix is diagonally dominant by columns in the 2 –norm.
Therefore, our point of view is that the K –criterion forced R to be diagonally
dominant by columns in the 2 –norm whereas the L –criterion forced R to be di-
agonally dominant by columns.
We also notice that, if the K –criterion is satisfied, we have

‖aj‖2

‖a(1)
j ‖2

< K

⇒
�
‖a(1)

j ‖2
2+ � j−1

k=1 r
(1)2
kj

‖a(1)
j ‖2

< K

⇒
�

� j−1
k=1 r

(1)2
kj

‖a(1)
j ‖2

<
√
K2 − 1

⇒ � j−1
k=1 |r

(1)
kj |

‖a(1)
j ‖2

<
√
K2 − 1

62 Study of the Gram–Schmidt algorithm and its variants

So if the K –criterion is satisfied with K =
√

2 , this implies that

∑j−1
k=1 |r

(1)
kj |

‖a(1)
j ‖2

< 1

and the L –criterion with L = 1 is also satisfied. In other words, MGS2(L = 1)
reorthogonalizes more often than MGS2(K =

√
2). In term of diagonal dominance,

we get that a matrix that is diagonally dominant by columns in 2 –norm is diagonally
dominant by columns.
We have compared MGS2(K =

√
2) and MGS2(L = 1) on several numerically

nonsingular matrices from the Matrix Market and also on the set of matrices of
Hoffmann [76]. From our experiments, it appears that the K –criterion with K =√

2 gives us as good results as the L –criterion with L = 1 in term of orthogonality
on all these matrices. However, the L –criterion with L = 1 may perform a few
extra useless reorthogonalizations. Therefore, on these cases, the K –criterion is to
be preferred.
In this section, we look for matrices such that the K –criterion performs poorly. A
first idea is to simply take the matrix A(n, α) , α < 1 . For those matrices, in exact
arithmetic, MGS2(K) does not perform any reorthogonalization for any

K ≥
√

1 + (
1

α
)2.

If we consider A(n = 1500, α = 0.98) , MGS2(K = 1.43) performs no reorthogonal-
ization and therefore reduces to MGS (Cf. Table 1.2). With the A(n, α) matrices,

MGS2(K = 1.43) 1.82 · 100

Table 1.2: ‖I −QT Q‖2 for Q obtained MGS2(K) applied on A(n = 1500, α = 0.98) .

the smallest value of K for which MGS2(K) may fail is K =
√

2 which corre-
sponds to diagonally dominant columns in the 2 –norm criterion.
However we can find better counter–example matrices by considering the matrices
B(n, α) ∈ Rn×n such that

B(n, α) = UT (n, α) = U

1 −α −α/
√

2 −α/
√

3 −α/
√
n− 1

1 −α/
√

2 −α/
√

3 −α/
√
n− 1

1 −α/
√

3 −α/
√
n− 1

1
...

. . .
...

−α/
√
n− 1

1

where U ∈ Rn×n such that UTU = I .
For α < 1 , the unit triangular matrix T (n, α) is a diagonally dominant ma-
trix by columns in the 2 –norm but is not a diagonally dominant matrix in the

1.5 A robust criterion for modified Gram–Schmidt with selective reorthogonalization63

usual sense. For the reorthogonalization criterion, this means that if we apply
MGS2(K ≥

√
1 + α2) to B(n, α) , no reorthogonalization is performed, whereas

for MGS2(L = 1) nearly all the reorthogonalizations are performed. With α < 1
and matrix B(n, α) , Property 2 is verified for MGS2(K ≥

√
1 + α2).

Moreover for α < 1 , the numerical experiments show that when n increases,
T (n, α) becomes ill-conditioned. Property 1 is also verified. It seems therefore
that matrices B(n, α) are good counter-examples for the K –criterion.
The experimental results are in Table 1.3. We run different versions of Gram–
Schmidt with reorthogonalization on a set of matrices B(n, α) . The experiments
are carried out using Matlab.

(L, K) L = 0.99 K = 1.40 L = 0.99 K = 1.30 L = 0.99 K = 1.17 L = 0.99 K = 1.05
matrix B B(n = 400, α = 0.97) B(n = 500, α = 0.82) B(n = 1000, α = 0.50) B(n = 2500, α = 0.30)

κ(B) 3.4 · 1015 8.6 · 1014 1.8 · 1013 5.9 · 1012

MGS2(K) 7.2 · 10−1 1.1 · 100 1.0 · 10−2 7.6 · 10−3

MGS2(L) 1.5 · 10−14 1.9 · 10−14 3.5 · 10−14 8.0 · 10−14

Table 1.3: ‖I − QT Q‖2 for Q obtained with the MGS2(L) and MGS2(K) algorithms applied
to four matrices B(n, α) .

With B(n = 2500, α = 0.30) , the MGS2(K = 1.05) algorithm gives a matrix Q
that is far from orthogonal. This means that to guarantee good accuracy K has
to be set to a value lower than 1.05 . We recall that the value K = 1 implies that
the algorithm reduces to MGS2. By diminishing α and increasing n , we expect
that it is possible to exhibit smaller values for K .We notice that the algorithm
MGS2(L = 0.99) behaves well.

1.5.4 What about classical Gram–Schmidt?

The main focus of this paper is the modified Gram–Schmidt algorithm and its selec-
tive reorthogonalization variant. A natural question is whether the results extend
or not to the classical Gram–Schmidt variant CGS2(L). In [62], the behaviour
of CGS2 is analyzed. However, to our knowledge, no study exists either for the
CGS2(K) algorithm or for the CGS2(L) algorithm. For that latter variant, we
notice that the proof proposed in this paper for MGS2(L) does not apply. Even
though the theoretical behaviour is still an open question, we want to present some
numerical experiments that tend to indicate that a similar behaviour might exist for
CGS2(L) . In Table 1.4, we display the orthogonality quality produced by CGS2(L)
and CGS2(K) on the same test matrix as used in Tables 1.1 and 1.2. We observe

CGS2(L = 1.03) 6.67 · 100

CGS2(L = 0.99) 3.56 · 10−14

CGS2(K = 1.43) 1.82 · 100

Table 1.4: ‖I − QT Q‖2 for Q obtained by CGS2(L) and CGS2(K) for different values of L
and K applied on A(n = 1500, α = 0.98) .

that, on that matrix, CGS2(L) with L = 1.03 does not produce an orthogonal ma-

64 Study of the Gram–Schmidt algorithm and its variants

trix while for L = 0.99 , the computed Q factor is orthogonal to machine precision.
Similarly to MGS2(K), CGS2(K) for K slightly larger than

√
2 cannot compute

an orthogonal set of vectors.
Similar experiments to those displayed in Table 1.3 are reported in Table 1.5 and
similar comments can be made. That is that the CGS2(K = 1.05) algorithm gives
a matrix Q that is far from being orthogonal. This means that, to guarantee good
accuracy, K has to be set to a value lower than 1.05 . We recall that the value
K = 1 implies that the algorithm reduces to CGS2. On the other hand, the algo-
rithm CGS2(L = 0.99) behaves well. This is a clue suggesting that a theoretical
analysis might be done to show that CGS2(L) with L < 1 generates an orthogonal
set of vectors. This latter study might be the focus of future work that would require
developping a completely different proof to the one exposed in this paper which does
not apply.

(L, K) L = 0.99 K = 1.40 L = 0.99 K = 1.30 L = 0.99 K = 1.17 L = 0.99 K = 1.05
matrix B B(n = 400, α = 0.97) B(n = 500, α = 0.82) B(n = 1000, α = 0.50) B(n = 2500, α = 0.30)

κ(B) 3.4 · 1015 8.6 · 1014 1.8 · 1013 5.9 · 1012

CGS2(K) 1.6 · 100 1.6 · 100 1.6 · 100 1.6 · 100

CGS2(L) 1.2 · 10−14 1.5 · 10−14 2.8 · 10−14 6.0 · 10−14

Table 1.5: ‖I − QT Q‖2 for Q obtained by different CGS algorithms applied to four matrices
B(n, α) .

Conclusion

In this paper, we give a new reorthogonalization criterion for the modified Gram–
Schmidt algorithm with selective reorthogonalization that is referred to as the L –
criterion. This criterion depends on a single parameter L . When L is chosen
smaller than 1 (e.g. L = 0.99), for numerically nonsingular matrices, this criterion is
able to realize the compromise between saving useless reorthogonalizations and giv-
ing a set of vectors Q orthogonal up to machine precision level. On the other hand
if we set L > 1 , we exhibit some matrices for which the modified Gram–Schmidt
algorithm with selective reorthogonalization based on the L –criterion (GS2(L))
performs very badly. The condition L < 1 is therefore necessary to ensure the
robustness of MGS2(L).
In order to justify the need of a new criterion, we also show counter–example matri-
ces for which a standard criterion, the K –criterion, gives a final set of vectors far
from being orthogonal for any value of the parameter K (at least for all K > 1.05).
On all these counter–example matrices, we have verified the theory and observe that
MGS2(L < 1) behaves well.
Moreover, we have compared the K –criterion with K =

√
2 and the L –criterion

with L = 1 on a wide class of standard test matrices. It appears that the K –
criterion with K =

√
2 works fine in term of orthogonality of the computed set of

vectors for all these matrices but it also saves more reorthogonalizations than the
L –criterion with L = 1 . Note that both criterions do save reorthogonalizations on
standard test matrices. Therefore in many cases, the K –criterion with K =

√
2

may nevertheless be preferred to the L –criterion with L = 1 .

1.5 A robust criterion for modified Gram–Schmidt with selective reorthogonalization65

Finally, even though no theory exists yet, we give some numerical evidence indicating
that a similar analysis might exist for the classical Gram–Schmidt algorithm with
selective orthogonalization based on the L –criterion. Furthermore, these numerical
experiments show that neither MGS2(K) nor CGS2(K) succeed in generating a
set of orthogonal vectors. This also illustrates the lack of robustness of this criterion
when implementing a classical Gram–Schmidt algorithm with selective reorthogo-
nalization.

Acknowledgments

The authors would like to thank the referees for their fruitful comments that helped
to improve the readibility of the paper.

Below are three small annexes closely related to the section’s topic.

Annex A: the Daniel, Gragg, Kaufman and Stewart criterion

Daniel, Gragg, Kaufman and Stewart [34] have shown that classical Gram–Schmidt
used with a selective reorthogonalization criterion gives a set of vectors orthogonal
up to machine precision. The selective reorthogonalization criterion they used is
called the J –criterion and is

‖a(`)
j ‖2

‖a(`−1)
j ‖2

+ ω`

‖QTa
(`)
j ‖2

‖a(`−1)
j ‖2

≤ θ. (1.129)

With θ , it is possible to control the level of orthogonality of the constructed Q–
factor. The parameter ω` is set at run–time. In Figure 1.4, we give the level of or-
thogonality obtained for three matrices: A(400, 0.97) , A(500, 0.82) and A(1000, 0.5) .
These matrices are used in Section 1.5.2.2.

If the term ω is omitted from equation 1.129, then the J –criterion reduces to the
K –criterion with K = θ . As we have seen, this latter criterion might fail. The
parameter ω` is needed for the stability of the method. It adapts itself to the level of
orthogonality requested (given with θ) and the level of orthogonality of the columns
Q`−1 .

Annex B: Link with the work of Abdelmaleck (1971)

Abdelmaleck [2] have shown that for the classical Gram–Schmidt algorithm iterated
twice, under the assumption that for all j ,

(j + 2)
1
2‖a(1)

j ‖2/‖a
(2)
j ‖2 ≤ 1, (1.130)

then the level of orthogonality of the computed Q–factor is of the level of the machine
precision.

66 Study of the Gram–Schmidt algorithm and its variants

0 100 200 300 400 500 600 700 800 900 1000 1100
10

−16

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

 A(1000,0.5)

 A(1000,0.5)

 A(1000,0.5)

 A(500,0.82)

 A(500,0.82)

 A(500,0.82)

 A(400,0.97)

 A(400,0.97)

 A(400,0.97)

k

||
I k −

 Q
kT
Q

k ||
2

theta = 10000
theta = 100
theta = sqrt(2)

Figure 1.4: The Gram–Schmidt algorithm with reorthogonalization and selective reorthogonal-
ization J –criterion is run on three matrices: A(400, 0.97) , A(500, 0.82) and A(1000, 0.5) (see
Section 1.5.2.2). For each k , we compute the level of orthogonality of the Q–factor, Qk . J We
also relaxed the parameter θ of the J –criterion to see that it effectively controll well the final
level of orthogonality.

With our analysis, we have shown that equation (1.130) is true under numerical
nonsingularity assumption of the initial matrix. Moreover the equation (1.130) is
verified at the first loop, then the second loop is not needed. Equation (1.130) is
nothing but a reorthogonalization criterion. We call this reorthogonalization crite-
rion the I –criterion. Finally note that this criterion –to our knowledge– appears
the first time as a criterion in Kie lbasiński [82, 84].

Annex C: experimental comparison of the K –criterion and the L –criterion

In Section 1.5.2.1, we have shown that the L –criterion is able to provide a Q–factor
orthogonal to the machine precision level. In Section 1.5.3, we have shown that the
K –criterion is unable to provide a Q–factor orthogonal to the machine precision
level. In this part, we want to verify whether or not this is a general trend among
more general matrices.
Following Hoffman [76], the matrices are constructed by multiplying a given diago-
nal matrix (singular values) from both sides by random orthogonal matrices. The
maximum singular value is always equal to 1 and the smallest varies between 0.1
and 10−12 so that the condition number κ of the matrices is between 10 and 1012 .
In Table 1 we show a representative selection of the results of Hoffmann; it shows the
typical behaviour of algorithms CGS2(K) and MGS2(K) for various values of the
parameter κ . The average number of iterations per column is denoted by ν ; the de-
parture from orthogonality is measured in the 1 -norm, and given by ‖QTQ−I‖1 . In
Table 2 the same experiments are run with CGS2(L) and MGS2(L). All matrices

1.5 A robust criterion for modified Gram–Schmidt with selective reorthogonalization67

100 200 300 400 500 600 700 800 900 1000 1100
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

k

ω
k

 A(1000,0.5)

 A(1000,0.5)

 A(1000,0.5)

 A(500,0.82)

 A(500,0.82)

 A(500,0.82)

 A(400,0.97)

 A(400,0.97)

 A(400,0.97)

theta = 10000
theta = 100
theta = sqrt(2)

Figure 1.5: The Gram–Schmidt algorithm with reorthogonalization and selective reorthogonal-
ization J –criterion is run on three matrices: A(400, 0.97) , A(500, 0.82) and A(1000, 0.5) (see
Section 1.5.2.2 and Figure 1.4). For each k , we plot the corresponding ωk used in the selective
reorthogonalization J –criterion (1.129).

used in the selection described in Table 1.6 and 1.7 have m = 210 and n = 100 .

Some differences appear with the results of Hoffmann. First of all the precision
machine Hoffmann used is 5 · 10−14 whereas ours is 1.16 · 10−16 . Then we do not
have exactly the same matrices. We have tried to recover his distribution of singular
values. We know that “the singular values are distributed equally over the interval
[κ−1, 1] ”. As Hoffmann, “we have observed that the distribution of the singular
values within the interval [σmin, . . . , σmax] is of little importance for the resulting
orthogonality of Q .” But the distribution of the singular values influences the
number of reorthogonalizations performed. Finally, we mention that we sucessfully
reproduce the experiments of Hoffmann by considering a logarithmic distribution of
singular values.

Few conclusions can be drawn from Table 1.6 and Table 1.7.

- As Hoffmann, we observe in Table 1.6 that the resulting orthogonality is pro-
portional to K . This is a very interesting observation, despite the counter–
example matrices exhibited in the previous section, for these matrices, we can
adapt K with a trade–off between ν , the computational cost and ‖I−QTQ‖1 ,
the level of orthogonality prescribed. In Table 1.7, the same conclusion holds
for the L –criterion.

- Even if it is hard to compare the K –criterion and the L –criterion, for well–
conditioned matrix, we see that the L –criterion enforces too many reorthogo-
nalizations.

68 Study of the Gram–Schmidt algorithm and its variants

cond. nr. K ν(=avg. nr. iter. per col.) ‖I −QT Q‖1
CGS2(K) MGS2(K) CGS2(K) MGS2(K)

101 1.42 1.54 1.54 1.16 · 10−14 1.15 · 10−14

2 1.10 1.10 2.60 · 10−14 2.30 · 10−14

101 1.00 1.00 3.60 · 10−14 2.92 · 10−14

104 1.42 1.94 1.94 6.25 · 10−15 6.62 · 10−15

2 1.87 1.87 1.13 · 10−14 1.33 · 10−14

101 1.64 1.64 5.55 · 10−13 7.35 · 10−14

102 1.27 1.27 9.74 · 10−11 9.08 · 10−13

103 1.00 1.00 6.84 · 10−9 6.09 · 10−12

104 1.00 1.00 6.84 · 10−9 6.09 · 10−12

107 1.42 1.96 1.96 4.91 · 10−15 5.24 · 10−15

2 1.92 1.92 8.00 · 10−15 5.91 · 10−15

101 1.79 1.79 2.58 · 10−13 4.55 · 10−14

102 1.62 1.62 9.90 · 10−11 5.36 · 10−13

103 1.46 1.46 2.11 · 10−8 8.92 · 10−12

104 1.28 1.28 4.88 · 10−6 1.14 · 10−10

105 1.13 1.13 7.49 · 10−4 9.52 · 10−10

106 1.00 1.00 1.83 · 10−2 2.27 · 10−9

107 1.00 1.00 1.83 · 10−2 2.27 · 10−9

1010 1.42 1.96 1.96 5.24 · 10−15 6.76 · 10−15

2 1.95 1.95 5.77 · 10−15 7.10 · 10−15

101 1.86 1.86 1.89 · 10−13 3.80 · 10−14

102 1.73 1.73 3.19 · 10−10 7.80 · 10−13

103 1.63 1.63 1.60 · 10−8 1.35 · 10−11

104 1.52 1.52 4.72 · 10−6 7.03 · 10−11

105 1.42 1.42 5.99 · 10−4 4.99 · 10−10

106 1.15 1.30 2.16 · 101 1.05 · 10−8

107 1.00 1.19 1.89 · 101 6.02 · 10−8

108 1.00 1.06 1.89 · 101 1.52 · 10−6

109 1.00 1.00 1.89 · 101 2.21 · 10−6

1010 1.00 1.00 1.89 · 101 2.21 · 10−6

Table 1.6: Average number of reorthogonalization (ν) and orthogonality observed (‖I −QT Q‖1)
for CGS2(K) and MGS2(K) applied to various matrices κ = 10 to 1010 with various K = 1.42
to κ .

1.5 A robust criterion for modified Gram–Schmidt with selective reorthogonalization69

cond. nr. L ν(=avg. nr. iter. per col.) ‖I −QT Q‖1
CGS2(L) MGS2(L) CGS2(L) MGS2(L)

101 0.99 1.91 1.91 4.60 · 10−15 5.67 · 10−15

2 1.82 1.82 4.88 · 10−15 5.58 · 10−15

101 1.24 1.24 2.17 · 10−14 1.82 · 10−14

104 0.99 1.97 1.97 4.99 · 10−15 5.62 · 10−15

2 1.92 1.92 6.74 · 10−15 7.83 · 10−15

101 1.80 1.80 1.85 · 10−14 2.09 · 10−14

102 1.51 1.51 4.02 · 10−12 1.83 · 10−13

103 1.21 1.21 4.04 · 10−10 2.15 · 10−12

104 1.00 1.00 6.84 · 10−9 6.09 · 10−12

107 0.99 1.98 1.98 5.89 · 10−15 5.39 · 10−15

2 1.96 1.96 4.91 · 10−15 5.24 · 10−15

101 1.89 1.89 1.34 · 10−14 9.18 · 10−15

102 1.73 1.73 5.13 · 10−12 1.77 · 10−13

103 1.56 1.56 4.23 · 10−10 1.61 · 10−12

104 1.39 1.39 1.48 · 10−7 2.04 · 10−11

105 1.22 1.22 2.18 · 10−5 1.76 · 10−10

106 1.02 1.02 7.49 · 10−3 2.19 · 10−9

107 1.00 1.00 1.83 · 10−2 2.27 · 10−9

1010 0.99 1.98 1.98 5.43 · 10−15 5.80 · 10−15

2 1.96 1.96 5.24 · 10−15 6.76 · 10−15

101 1.90 1.90 3.22 · 10−14 1.69 · 10−14

102 1.81 1.81 3.06 · 10−12 9.67 · 10−14

103 1.69 1.69 1.42 · 10−9 2.72 · 10−12

104 1.56 1.56 7.08 · 10−7 3.38 · 10−11

105 1.44 1.44 1.84 · 10−4 2.02 · 10−10

106 1.28 1.34 1.34 · 101 5.45 · 10−9

107 1.04 1.24 1.83 · 101 2.06 · 10−8

108 1.00 1.13 1.89 · 101 2.60 · 10−7

109 1.00 1.00 1.89 · 101 2.21 · 10−6

1010 1.00 1.00 1.89 · 101 2.21 · 10−6

Table 1.7: Average number of reorthogonalization (ν) and orthogonality observed (‖I −QT Q‖1)
for CGS2(L) and MGS2(L) applied to various matrices κ = 10 to 1010 with various L = 0.99
to κ .

70 Study of the Gram–Schmidt algorithm and its variants

- As Hoffmann, we also observe that MGS works better than CGS.

- In Section 1.6.2.2.3, the K –criterion is used with K = 2 and K =
√

2 on
matrices arising from the Arnoldi process. We observe that the K –criterion
with K = 2 fails on these matrices while the K –criterion with K =

√
2 does

not fail.

1.6 A reorthogonalization procedure for the modified Gram–Schmidt algorithm

based on a rank k update 71

1.6 A reorthogonalization procedure for the modified Gram–
Schmidt algorithm based on a rank k update

The title as well as the contents of this section corresponds to the following technical
report: CERFACS Technical Report (2003) – TR/PA/03/11

joint work with Luc Giraud and Serge Gratton.

Abstract

The modified Gram–Schmidt algorithm is a well–known and widely used procedure to orthogonalize

the column vectors of a given matrix. When applied to ill–conditioned matrices in floating point

arithmetic, the orthogonality among the computed vectors may be lost. In this work, we propose an

a posteriori reorthogonalization technique based on a rank– k update of the computed vectors. The

level of orthogonality of the set of vectors built gets better when k increases and finally reaches the

machine precision level for a large enough k . The rank of the update can be tuned in advance to

monitor the orthogonality quality. We illustrate the efficiency of this approach in the framework of the

seed–GMRES technique for the solution of an unsymmetric linear system with multiple right–hand

sides. In particular, we report experiments on numerical simulations in electromagnetic applications

where a rank–one update is sufficient to recover a set of vectors orthogonal to machine precision

level.

Introduction

Let A be an m × n real matrix, m ≥ n of full rank n . In exact arithmetic,
the Modified Gram–Schmidt algorithm (MGS) computes an m× n matrix Q with
orthonormal columns and an n×n upper triangular matrix R such that A = QR .
The framework of this paper is the study of the MGS algorithm in the presence of
rounding errors. We call computed quantities quantities that are computed using a
well–designed floating point arithmetic [13]. We denote by Q̄ and R̄ the computed
quantities obtained by running MGS in the presence of rounding errors.

In [15], Björck and Paige show that R̄ is as good as the triangular factor obtained
using backward stable transformations such as Givens rotations or Householder re-
flections. This property of MGS explains why this algorithm can be safely used
in applications where only the factor R̄ is needed. This is namely the case in the
solution of linear least squares problems where the R–factor of the QR–factorization
of [A, b] is needed [13, 15]. Another important feature of MGS is that the number
of operations required to explicitly compute the Q–factor (problem known as the
orthogonal basis problem) is approximatively half that of the methods using Givens
rotations or Householder reflections [63, p. 232]. However the computed factor Q̄
has less satisfactory properties, since for an ill–conditioned matrix A , it may ex-
hibit a very poor orthogonality as measured by the quantity ‖Q̄T Q̄ − In‖ , where
‖.‖ denotes the spectral 2 –norm, and In the identity matrix of order n [109]. This
has stimulated much work on various modifications of MGS that aim at enhancing
the orthogonality of Q̄ at a low computational cost. One of these strategies consists
in performing reorthogonalizations during the algorithm when a prescribed criterion
is satisfied. This has given rise to the family of iterated modified Gram–Schmidt

72 Study of the Gram–Schmidt algorithm and its variants

algorithms, which differ in the criterion they use to enforce the reorthogonalization
(see e.g. [34, 76, 113]). An alternative way to compensate for the lack of orthogo-
nality in Q̄ is derived in [15] for a wide class of problems, including the linear least
squares problem and computation of the minimum 2 –norm solution of an under-
determined linear system and the projection of a vector onto a subspace. A careful
use of Q̄ and R̄ , based on an equivalence of MGS on A and Householder QR on
an augmented matrix obtained by putting a matrix of zeros on top of A , leads to
a backward stable algorithm. Such a strategy implies – in general – that the use
of Q̄ is computationally more expensive than would be the use of a Q–factor with
orthonormal columns.
The error analyses related to the loss of orthogonality, that are used to derive the
successful methods mentioned above, are based on the study of the quantity ‖Q̄T Q̄−
In‖ . We propose here to adopt a different approach by inspecting not only the largest
singular value, as actually done in the related literature, but each singular value of
the matrices involved in MGS. We denote by σi , i = 1, . . . n the singular values of
A , σ1 ≥ · · · ≥ σn > 0 , by κ = σ1/σn the spectral condition number of A . Let κi ,
the reduced condition number, be defined by κi = σ1/σn−i+1, i = 1 . . . n . Finally

let Q̃ be the matrix obtained from Q̄ by normalizing its columns. In this paper,
we exhibit a series of low rank matrices Fk , k = 0, . . . , n − 1 that enables us to

update the factor Q̃ such that

• rank(Fk) ≤ k ,

• the columns of Q̃ + Fk are orthonormal up to machine precision times κk , if

k = n− 1 , then the columns of Q̃+ Fn−1 are exactly orthonormal,

• (Q̃+ Fk)R̄ represents A up to machine precision.

In the case k = 0 , F0 = 0 so (Q̃ + F0) = Q̃ and the results obtained are of
the same essence as the ones by Björck (1967) [13]. Namely MGS generates a Q–

factor such that the columns of Q̃ are orthonormal up to machine precision times

κ = κ0 and Q̃R̄ represents A up to machine precision. In the case k = n − 1 ,

(Q̃ + Fn−1) is indeed the same matrix as Q̂ , the matrix exhibited by Björck and

Paige [15]. That is Q̂ has orthonormal columns and Q̂R̄ represents A up to
machine precision. Our result can be seen as a theoretical bridge that links the result
of Björck (1967) [13] to the result of Björck and Paige (1992) [15]. An algorithm to
compute Fk , k = 0, . . . , n − 1 , is also derived. In our experiments this algorithm
behaves well in the presence of rounding errors. For example when κk is close to
one, the update of Q̄ with Fk produces a Q–factor with columns orthonormal up
to machine precision. The complexity of this algorithm increases with k . For small
k , its complexity is competitive with other standard reorthogonalization techniques.
We conclude our study with an application of this algorithm in the framework of
the solution of unsymmetric linear systems with multiple right–hand sides where
a seed–variant of GMRES can be successfully used (we refer to Section 2.5 for a
detailed description of this solver).
In the remainder of this paper, for any m × n matrix X , we denote by σi(X) ,
i = 1, . . . n the singular values of X ordered such that σ1(X) ≥ · · · ≥ σn(X) . We

1.6 A reorthogonalization procedure for the modified Gram–Schmidt algorithm

based on a rank k update 73

note that the work of this paper can be extended to complex arithmetic as well.

1.6.1 Rank considerations related to the loss of orthogonality in MGS

1.6.1.1 Introduction

A rigorous measure of the orthogonality of an m×n matrix Q̄ can be defined to be
the distance, in the spectral 2 –norm, to the set O(m,n) of m × n matrices with
orthonormal columns

min
V ∈O(m,n)

‖Q̄− V ‖.

Fan and Hoffman in [48] for the case m = n , and Higham in [73] for the general case
n ≤ m proved that the minimum is attained for U being the unitary polar factor
of Q̄ . The easily computed quantity ‖In− Q̄T Q̄‖ is often preferred to measure the
orthogonality, because, as shown in Lemma 1.6.1, it has the same order of magnitude
as minV ∈O(m,n) ‖Q̄− V ‖ when ‖Q̄‖ is close to one.

Lemma 1.6.1 [73] Let Q̄ ∈ Rm×n , n ≤ m ,

‖In − Q̄T Q̄‖
1 + ‖Q̄‖ ≤ min

V ∈O(m,n)
‖Q̄− V ‖ ≤ ‖In − Q̄T Q̄‖.

Lemma 1.6.1 can be easily generalized into Lemma 1.6.2.

Lemma 1.6.2 Let Q̄ ∈ Rm×n , n ≤ m ,

σi(Q̄
T Q̄− In)

1 + ‖Q̄‖ ≤ σi(Q̄− U) ≤ σi(Q̄
T Q̄− In),

where i = 1, . . . n and U is the unitary polar factor associated with Q̄

Proof of Lemma 1.6.2 Let Q̄ = UH be the polar decomposition of Q̄ . U ∈ Rm×n

has orthonormal columns and H ∈ Rn×n symmetric positive definite. From UTU =
In and HT = H, it follows that

(Q̄− U)T (Q̄+ U) = Q̄T Q̄− UT Q̄+ Q̄TU − UTU = Q̄T Q̄− In. (1.131)

We also have Q̄+U = U(In +H) and H being symmetric positive definite, In +H
has full rank n , and

Q̄T Q̄− In = H2 − In = (H − In)(H + In),

Q̄− U = U(H − In) = U(Q̄T Q̄− In)(H + In)−1,

σi(Q̄− U) ≤ σi(Q̄
T Q̄− In)‖(H + In)−1‖ ≤ σi(Q̄

T Q̄− In)

≤ σi(H − In)‖H + In‖ = σi(Q̄− U)‖H + In‖ ≤ σi(Q̄− U)(1 + ‖Q̄‖).

♥
An important consequence of Lemma 1.6.2 is that if Q̄ has not orthonormal columns,
but if Q̄T Q̄− In has only k nonzero singular values, Q̄ is at most a rank– k mod-
ification of a matrix with orthonormal columns (namely U).

74 Study of the Gram–Schmidt algorithm and its variants

In Section 1.6.1.3, we derive a result for MGS that is similar in essence to Lemma 1.6.2.
However, for any k ≤ n , the MGS context will enable us to find explicitly a rank– k
matrix Fk such that Q̄+Fk has an improved orthogonality compared with Q̄ and
such that the product (Q̄+ Fk)R̄ still accurately represents A .

1.6.1.2 Some useful background related to MGS in floating point arithmetic

A key result to understand the loss of orthogonality in MGS in floating point arith-
metic, is that MGS on A can be interpreted as an Householder QR–factorization

on Aaug =

[
On

A

]
, where On is the square zero matrix of order n [15]. Since

we elaborate our work on results and techniques presented in [15] we briefly outline
them below.
The use of Wilkinson’s analysis of Householder transformations [137, pp. 153–162]
on Aaug enables Björck and Paige [15, Eq.(3.3)] to give an orthogonal transformation

P̃ such that (
E1

A + E2

)
= P̃

(
R̄
0

)
=

(
P̃11

P̃21

)
R̄,

‖Ei‖ ≤ c̄iu‖A‖, i = 1, 2,

(1.132)

where c̄i are constant depending on m,n and the detail of the arithmetic, and u

is the unit roundoff. Here P̃11 is strictly upper triangular, see [15, §4 & (4.1)].

Let Q̃ = [q̃1, . . . , q̃n] be the matrix obtained from Q̄ = [q̄1, . . . , q̄n] by normalizing

its columns (q̃i = q̄i/‖q̄i‖). The equality P̃21 = Q̃(In− P̃11) holds [15, Eq.(4.5)] and

the residual error of the polar factor Q̂ of P̃21 can be bounded as follows,

‖A− Q̂R̄‖ ≤ c̄u‖A‖, (1.133)

where c̄ = c̄1 + c̄2 , provided that c̄uκ < 1 [15, Eq.(3.7)]. Finally, let σ̄1 ≥ · · · ≥ σ̄n

be the singular values of R̄ . The singular values of R̄ approximate those of A
in the following sense |σ̄i − σi| ≤ c̄uσ1 [15, Eq.(3.8)]. This implies that under the
assumption c̄uκ < 1 , R̄ has full rank n .

1.6.1.3 Recapture of the orthogonality in MGS

Since

(
P̃11

P̃21

)
has orthonormal columns and n ≤ m , we consider its CS decom-

position [63, p. 77] defined by

P̃11 = UCW T ,

P̃21 = V SW T ,
(1.134)

where C is singular since P̃11 is strictly upper triangular, the entries of S are in
increasing order (0 ≤ s1 ≤ .. ≤ sn = 1), the entries of C are in decreasing order
(1 ≥ c1 ≥ .. ≥ cn = 0) and C2 + S2 = In . The three matrices U , V , W have
orthonormal columns. C , S , U and W are n× n , V is m× n . Similarly as in

1.6 A reorthogonalization procedure for the modified Gram–Schmidt algorithm

based on a rank k update 75

[15], we suppose that A is not too ill–conditioned, by assuming that (c̄1 + c̄)uκ < 1
or equivalently (since this implies both c̄uκ < 1 and c̄1uκ < 1− c̄uκ)

c̄1uηκ < 1, (1.135)

where η = (1 − c̄uκ)−1 . This has the following consequence. Since the leading
element of C is (using (1.132)) c1 = ‖P̃11‖ = ‖E1R̄

−1‖ ≤ c̄1uσ1/σ̄n , and since
from (1.133) |σn− σ̄n| ≤ c̄uσ1 , we see that σ̄n ≥ σn− ≤ c̄uσ1 = σnη , and it follows
c1 ≤ c̄1uηκ < 1 (see [15, Eq.(3.11)]), all the si ’s are non zero, thus S has full rank
n .

Our goal is to improve the orthogonality of the Q–factor while maintaining the
residual error, ‖A − QR̄‖/‖A‖ , at the level of the machine precision. Since Q̂

has orthonormal columns and (1.133) holds, Q̂ answers our question. Therefore

a straightforward but expensive way to achieve our goal would be to compute Q̂

with Q̂ = VW T ([63, p. 149]). Let us evaluate F = Q̂ − Q̃ to find matrices that

approximate the difference between Q̂ and Q̃ at low computational cost. Since

Q̂ = VW T , using P̃21 = Q̃(In−P̃11) (see Section 1.6.1.3) and the CS decomposition
(1.134), we get

F = Q̃
(

(In − P̃11)WS−1(In − S)W T − P̃11

)
,

= Q̃
(
W (S−1 − In)− UCS−1

)
W T . (1.136)

We define the truncated matrices Uk , Vk and Wk by retaining the first k columns
in their counterparts U , V and W . In Matlab style notation, it reads Uk = U(:
, 1 : k) . We also denote by Ck (resp. Sk) the diagonal matrix of order k whose
diagonal entries are the ci, i = 1 . . . k (resp. si, i = 1 . . . k).

We define the matrix Fk obtained by setting the cl and the sl , l > k , to zero and
one respectively in (1.136), this gives

Fk = Q̃(Wk(S−1
k − Ik)− UkCkS

−1
k)W T

k , (1.137)

so that F0 = 0 , Fn−1 = Fn = F , since sn = 1 and cn = 0 . The matrix Q̃+F has
orthonormal columns and accurately represents A when multiplied on the right by

R̄ . Theorem 1.6.3 shows how these properties are modified when the matrix Q̃+Fk

is considered instead. The matrices Qk are then a sequence of matrices going from

the matrix of normalized vectors from MGS Q0 = Q̃ , to the matrix of orthogonal
vectors Qn−1 = Q̂ .

Theorem 1.6.3 Assume that c̄1uηκ < 1 , for k = 0, . . . , n − 1 , the matrix Qk

defined by

Qk = Q̃+ Fk (1.138)

enjoys the following properties

a)

rank (Qk − Q̃) ≤ k,

76 Study of the Gram–Schmidt algorithm and its variants

b)

‖A−QkR̄‖ ≤
[
c̄2 + c̄1

2− c̄1uηκ
(1− c̄1uηκ)2

]
u‖A‖,

c) for k = 0, . . . , n− 2 ,

‖Q̂−Qk‖ ≤
c̄1uη

(1− c̄1uηκ)2
κk+1

for k = n− 1 , Qn−1 = Q̂

d) for k = 0, . . . , n− 2 ,

‖In−QT
kQk‖ ≤ ‖In−QT

kQk‖ ≤
[
2 +

c̄1uη

(1− c̄1uηκ)2
κk+1

]
c̄1uη

(1− c̄1uηκ)2
κk+1 ≤

2c̄1uη

(1− c̄1uηκ)4
κk+1,

for k = n− 1 , Qn−1 = Q̂, and so ‖In −QT
n−1Qn−1‖ = 0.

Proof of Theorem 1.6.3 Part a) is a consequence of the definition (1.137) of Fk . We

then establish part b) of this theorem. From (1.132), P̃11R̄ = E1 , and multiplying
to the left by UT

k implies that UT
k UCW

T R̄ = UT
k E1 . Using the definition of the

truncated matrices Ck and Wk , one gets CkW
T
k R̄ = UT

k E1 , and, taking norms,
‖CkW

T
k R̄‖ = ‖UT

k E1‖ ≤ ‖E1‖ . From (1.132), ‖E1‖ ≤ c̄1u‖A‖ , we obtain a first
intermediate result

‖CkW
T
k R̄‖ ≤ c̄1u‖A‖. (1.139)

Let us bound the residual error ‖A−QkR̄‖ . Using the triangular inequality, yields

‖A−QkR̄‖ ≤ ‖A− Q̃R̄‖+ ‖FkR̄‖. (1.140)

The first term of the right–hand side can be bounded using Lemma 1.6.5 (see Ap-
pendix). We study the second term of the right–hand side: ‖FkR̄‖ . By definition
(1.137) of Fk ,

FkR̄ = Q̃(Wk(S−1
k − Ik)− UkCkS

−1
k)(W T

k R̄).

Let us use the facts that CkW
T
k R̄ = UT

k E1 and C2 = I − S2 = (I − S)(I + S) ,
(I − S) = C2(I + S)−1 to give

FkR̄ = Q̃[Wk(S−1
k − Ik)− UkS

−1
k Ck]W T

k R̄

= Q̃[WkC
2
k(Ik + Sk)−1S−1

k − UkS
−1
k Ck]W T

k R̄

= Q̃[WkCk(Ik + Sk)−1S−1
k − UkS

−1
k]UT

k E1,

‖FkR̄‖ ≤ ‖Q̃‖[‖Ck(Ik + Sk)−1S−1
k ‖+ ‖S−1

k ‖]c̄1u‖A‖.
But with c = c1 and s = s1 we can see from the ordering of the ci and si that

‖Ck(Ik+Sk)−1S−1
k ‖+‖S−1

k ‖ =
c

s2 + s
+

1

s
=
c+ s+ 1

s2 + s
·1− c
1− c =

s2 + s− cs
(s2 + s)(1− c) ≤

1

1− c ,

which, with the Lemma 1.6.4 gives

‖FkR̄‖ ≤
1

(1− c̄1uηκ)2
c̄1u‖A‖.

1.6 A reorthogonalization procedure for the modified Gram–Schmidt algorithm

based on a rank k update 77

The result (b) follows from (1.140) and the Lemma 1.6.5.

We now prove part c) of the Theorem. We define the matrices Uk̄ , Vk̄ , Wk̄ ,
so that U = [Uk, Uk̄] , and similarly for V and W . In Matlab style notation,
Uk̄ = U(:, k + 1 : n) . We also define the matrices Ck̄ (resp. Sk̄) the diagonal
matrix of order n−k+1 whose diagonal elements are the ci , i = k+1, . . . n (resp.
si i = k + 1, . . . n). One has

Q̂−Qk = F − Fk, (1.141)

Q̂−Qk = Q̃
(
Wk̄(S−1

k̄
− In−k+1)− Uk̄Ck̄S

−1
k̄

)
W T

k̄ , (1.142)

‖Q̂−Qk‖ ≤ ‖Q̃‖
(
‖S−1

k̄
− In−k+1‖+ ‖Ck̄S

−1
k̄
‖
)
. (1.143)

Since both the si ’s and ci ’s belong to [0, 1] , and the ci (resp. the si) are sorted
in decreasing (resp. increasing) order, one obtains

‖Q̂−Qk‖ ≤ ‖Q̃‖
(
(s−1

k+1 − 1) + s−1
k+1ck+1

)
.

But we can write

s−1
k+1−1+s−1

k+1ck+1 =
1 − sk+1 + ck+1

sk+1
·
1 − ck+1

1 − ck+1
=

s2
k+1 − sk+1 + ck+1sk+1

sk+1(1 − ck+1)
=

ck+1 + sk+1 − 1

(1 − ck+1)
≤

ck+1

1 − ck+1
,

so

‖Q̂−Qk‖ ≤ ‖Q̃‖ ck+1
1

1− ck+1
.

From Lemma 1.6.4 and using the fact that ck+1 ≤ c1 ≤ c̄1uηκ , we get

‖Q̂−Qk‖ ≤
(1

(1− c̄1uηκ)2
ck+1. (1.144)

Remember Q̂ has orthonormal columns. The result for k = n − 1 follows from
Qn−1 = Q̂ in part (c). For the unitary polar factor Uk of Qk we see from part (c)
that

‖Uk −Qk‖ ≤ ‖Q̂−Qk‖ ≤
c̄1uη

(1− γ)2
κk+1 = δ say.

Therefore from Lemma 1.6.2 we see that

‖In −QT
kQk‖ ≤ (1 + ‖Qk‖)δ.

But
‖Qk‖ = ‖Q̂+Qk − Q̂‖ ≤ 1 + ‖Qk − Q̂‖ ≤ 1 + δ,

so ‖In − QT
kQk‖ ≤ (2 + δ)δ , proving the first inequality in (d). Now c̄1uηκk+1 ≤

c̄1uηκ = c̄1uηκ , so

(2 + δ)δ ≤ c̄1uηκk+1[2/(1− c̄1uηκ)2 + c̄1uηκ/(1− c̄1uηκ)4],

and the second inequality in (d) follows by using
2

(1−c̄1uηκ)2
+ c̄1uηκ

(1−c̄1uηκ)4
= 2(1−c̄1uηκ)2+c̄1uηκ

(1−c̄1uηκ)4
= 2−3c̄1uηκ+2c̄1uηκ2

(1−c̄1uηκ)4
≤ 2

(1−c̄1uηκ)4
. ♥

Several remarks can be made. First consistency, ‖A − QkR̄‖/‖A‖ , is maintained
close to machine precision independently of the rank– k of the update. In the

78 Study of the Gram–Schmidt algorithm and its variants

Theorem 1.6.3 Part b) k = 0 Lemma 1.6.5 derived from
Björck and Paige (1992) [15]

‖A− Q̃R̄‖ ≤
(
c̄2 + 2c̄1

(1+c̄1uηκ)
(1−c̄1uηκ)2

)
u‖A‖ ‖A− Q̃R̄‖ ≤

(
c̄2 + c̄1

1+c̄1uηκ
1−c̄1uηκ

)
u‖A‖

Theorem 1.6.3 Part b) k = n− 1 Björck and Paige (1992) [15, Eq.(3.7)]

‖A− Q̂R̄‖ ≤
(
c̄2 + 2c̄1

(1+c̄1uηκ)
(1−c̄1uηκ)2

)
u‖A‖ ‖A− Q̂R̄‖ ≤ (c1 + c2)u‖A‖

Theorem 1.6.3 Part c) k = 0 Björck and Paige (1992) [15, Eq.(5.3)]

‖In − Q̃T Q̃‖ ≤
(
2c̄1η

(1+c̄1uηκ)2

(1−c̄1uηκ)3

)
uκ ‖In − Q̃T Q̃‖ ≤ 2c1

1−(c+c1)uκ
uκ

Theorem 1.6.3 Part c) k = n− 1 Björck and Paige (1992) [15, Eq.(3.7)]

‖In − Q̂T Q̂‖ = 0 ‖In − Q̂T Q̂‖ = 0

Table 1.8: Correspondence between the bounds in Theorem 1.6.3 and the results of Björck and
Paige[15].

Introduction, we explain that in the case k = 0 and k = n−1 , we recover the result
of Björck [13] for Q̃ = Q0 and Björck and Paige [15] for Q̂ = Qn−1 respectively.
A consequence of this unified framework is that the bounds given are larger than
the original ones but remain very close. In Table 1.8, we summarize the relations to
be compared. Note that the results of Björck [13] have been replaced by analogous
results of Björck and Paige [15] in order to compare the same quantities.

1.6.2 Numerical illustrations and examples of applications

1.6.2.1 Numerical illustrations of the bounds in Theorem 1.6.3

The aims of this section are twofold. First, we give an algorithm to compute the
approximations F̄k (resp. Q̄k) of the matrices Fk (resp. Qk), then we numerically
verify that Theorem 1.6.3 is satisfied with these computed quantities up to machine
precision.
In order to make sure that the rank– k property of the m×n matrix Fk is inherited
by the computed matrix F̄k , we define F̄k as the product of the m× k computed
quantities Q̄(Wk(S−1

k − Ik)− UkCkS
−1
k) times the k × n rectangular matrix W T

k .
Then by construction, the first statement a) of Theorem 1.6.3 is satisfied and we
can now focus on the last two statements and show that the bounds are sharp.
In the following, the notation Fk (resp. Qk) stands for the the computed quantity
F̄k (resp. Q̄k). For the experiments, we proceed as follows. Starting from an initial
matrix A , we run MGS to obtain Q̄ and R̄ . Then for each k from k = 0 to n−1 ,
we compute the associated matrix Qk using formulae (1.137) and (1.138). In that

respect, we need to compute P̃11 . In [15, Eq.(4.1)], Björck and Paige show that

P̃11 is strictly upper triangular with element (i, j) equal to q̃T
i (Im− q̃1q̃T

1) . . . (Im−
q̃j−1q̃

T
j−1)q̃j for i < j . We define T̃ such that T̃ is strictly upper triangular with

element (i, j) , q̃T
i q̃j , (i < j). Since ‖q̃i‖ = 1 for all i , one may notice that

(In + T̃)(In − P̃11) = In , that can also be written

P̃11 = (In + T̃)−1T̃ . (1.145)

Note that in practice the mathematical quantities q̃i are replaced by the computed

1.6 A reorthogonalization procedure for the modified Gram–Schmidt algorithm

based on a rank k update 79

1. run MGS on A to obtain Q̄ and R̄

2. compute T̄ , the strictly upper triangular matrix with entry (i, j), q̄T
i q̄j ,

(i < j) then form P̄11 = (In + T̄)−1T̄

3. compute the k largest singular values of P̄11, ci, i = 1, . . . , n, and the
associated k right (resp. left) singular vectors Uk (resp. Wk) finally form
si =

√
1− c2

i , i = 1, . . . , k. The matrix Ck (resp. Sk) is the k×k diagonal
matrix with entry (i, i) equal to ci (resp. si).

4. Form Qk = Q̄ + Q̄(Wk(S−1
k − Ik)− UkCkS−1

k)W T
k

Table 1.9: Algorithm 1 : MGS with an a–posteriori reorthogonalization by a rank– k update

quantities q̄i . Equation (1.145) is preferred to the original equation of Björck and

Paige [15, Eq.(4.1)] since it enables us to compute P̃11 with significantly less flops
when m is large compared to n . We summarize the corresponding algorithm in
Table 1.9.
In this section, the numerical experiments are run with Matlab 6 where the unit
roundoff is u = 1.1 · 10−16 . We consider two test matrices, that are the matrices
P (1500, 500, 1, 5) from Paige and Saunders [99] and GRE 216B from the Matrix
Market7. The first one is a 1500× 500 matrix with condition number 1016 while
the latter is a 216 × 216 matrix with condition number 6 · 1014 . On those two
matrices we investigate how sharp the bounds b) and c) in Theorem 1.6.3 are.
In order to quantify the orthogonality quality of the columns of different matrices,
we define the level of orthogonality of Q as the quantity ‖In−QTQ‖ . In Figure 1.6
a), we plot the “recovered orthogonality” with ◦ . For k = 0 , we have Q0 = Q̄
therefore we simply plot the level of orthogonality obtained after the run of MGS
on P (1500, 500, 1, 5) . For k = 1 , we correct Q̄ by the rank–one update F1 to
obtain Q1 and then plot the level of orthogonality of Q1 . While k increases, we
observe the benefit of adding Fk to Q̄ on the orthogonality quality. We stop the
plot at k = 100 . At this step, the matrix Q100 has nearly reached its final level
of orthogonality (1.44 · 10−14 for k = n − 1). With � , we plot the corresponding
uκk+1 , k = 0, . . . , n − 1 . The theorem predicts that for each k , ‖In − QT

kQk‖
is bounded above by uκk+1 times a constant. In this experiment we observe that
both curves fit well. This indicates that the constant can be taken close to one for
these experiments and that the bound c) of Theorem 1.6.3 is tight. In Figure 1.6
b), we illustrate that Property b) of Theorem 1.6.3 holds. In this case ‖A− QkR̄‖
is smaller than u‖A‖ times a constant where the constant is small.
Similar experiments are reported in Figure 1.7 for the matrix GRE 216B that also
illustrates the tightness of the bounds.
Given the singular value distribution of A and the machine precision, Theorem 1.6.3
gives us a set of k for which all the associated matrices Qk satisfy a prescribed
level of orthogonality. Since the amount of work of Algorithm 1 increases with k ,
we can choose the lowest k of this set and update Q̄ with the rank– k matrix Fk .

7http://math.nist.gov/MatrixMarket/

80 Study of the Gram–Schmidt algorithm and its variants

Therefore an interesting feature of Algorithm 1 is that it is able to adapt its amount
of work with respect to the level of orthogonality expected. For example, if the level
of orthogonality required for the Q–factor of matrix GRE 216B is 10−9 , with both
Theorem 1.6.3 and the knowledge of uκk+1 , we can choose k = 10 . Meanwhile,
if the level of orthogonality required is 10−14 , we can estimate the value a–priori
k = 37 . A–posteriori we observe in Figure 1.7 and curve ‖In − QT

kQk‖ that these
two choices are correct.

10 20 30 40 50 60 70 80 90 100

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

k

10 20 30 40 50 60 70 80 90 100
10

−16

10
−15

10
−14

k
(a) � uκk+1 , ◦ ‖In −QT

k Qk‖ (b) ◦ ‖A−QkR̄‖/‖A‖

Figure 1.6: Illustrations of bounds (b) and (c) of Theorem 1.6.3 for matrix P (1500, 500, 1, 5)

5 10 15 20 25 30 35
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

k

5 10 15 20 25 30 35
10

−16

10
−15

k
(a) � uκk+1 , ◦ ‖In −QT

k Qk‖ (b) ◦ ‖A−QkR̄‖/‖A‖

Figure 1.7: Illustrations of bounds (b) and (c) of Theorem 1.6.3 for matrix GRE 216B

1.6.2.2 An application of choice: seed–GMRES

A practical framework where our algorithm fits perfectly is the seed–GMRES method
for solving a sequence of linear systems with the same coefficient matrix but for
a sequence of different right–hand sides. Roughly speaking one solves the linear

1.6 A reorthogonalization procedure for the modified Gram–Schmidt algorithm

based on a rank k update 81

system for one right–hand side at a time but uses the Krylov space associated with
the current right–hand side to compute a good initial guess for the next ones.
Let us now briefly describe the seed–GMRES method and the various alternatives we
consider to compare with our algorithm. Let Z be a square matrix of order m with
full rank. We want to solve the linear systems Zx(i) = b(i) for i = 0, . . . , p by using
seed–GMRES with MGS (see e.g. [101, 114]). For the sake of clarity, but without
loss of generality, we describe the method assuming that the initial guesses for all
the right–hand sides are zeros, and we only illustrate it when the first right–hand
side has converged. For the next ones, the same algorithm applies but the initial
guesses are no longer zero making the notation more complicated for a purpose that
is out of the scope of this paper.
We first run GMRES with MGS to solve the linear system Zx(0) = b(0) . This
amounts to solving the linear least squares problem

min
y∈� n−1

‖b(0) − ZV (0)
n−1y‖,

where V
(0)
n−1 is a set of n− 1 vectors built with an Arnoldi process on Z using the

starting vector b(0) and orthogonalization scheme MGS. In most applications, the
computational burden lies in the matrix–vector products and the scalar products
required to solve this linear least squares problem. In seed–GMRES, the subsequent

right–hand sides benefit from this work. An effective initial guess x(i) = V
(0)
n−1y

(i)

for the system i is obtained by solving the same linear least squares problem but
with another right–hand side, namely

min
y∈� n−1

‖b(i) − ZV (0)
n−1y‖.

We first compare four approaches to solve this problem. In the first part, we present
two standard algorithms and compare them in terms of floating point operations
(flops) with an approach implementing Algorithm 1. In the second part, one aspect
of our problem is examined in more details to show that – under reasonable assump-
tions – a rank–one update is enough to recover with Algorithm 1 a good level of
orthogonality. In this particular case, a second algorithm is also derived based on
an heuristic that enables us to save substantially computational work. Finally we il-
lustrate the effectiveness of our approach when embedded in large electromagnetism
applications.
In the sequel, the superscript (0) is omitted and the matrix A denotes the computed

matrix
(
b(0), ZV

(0)
n−1

)
similarly as in the first section, MGS is run on A of size m×n

in a well designed floating point arithmetic to obtain Q̄ and R̄ . Indeed, the Arnoldi

process gives Q̄ = V
(0)
n but for the sake of generality this property is not taken into

account.

1.6.2.2.1 The three approaches Since we already have computed the QR factor-
ization of (b, ZVn−1) via MGS, an efficient way to solve the linear least squares with
b(i) is to compute the R–factor of the QR factorization of

(
b, ZVn−1, b

(i)
)

via MGS.

82 Study of the Gram–Schmidt algorithm and its variants

In practice it remains to compute the last column of this R–factor that is c
(i)
MGS such

that

c
(i)
MGS =

q̄T
1 b

(i)

(Im − q̄2q̄T
2)q̄T

1 b
(i)

...
q̄T
n (Im − q̄n−1q̄

T
n−1) . . . (Im − q̄1q̄T

1)b(i)

 . (1.146)

From a complexity point of view the MGS algorithm applied to A requires 2mn2

flops while the (p−1) projections (1.146) for the remaining right–hand sides require
4mnp flops.
A second way is to reorthogonalize Q̄ , the Q–factor from MGS, before performing
the set of projections. We reorthogonalize Q̄ to obtain Qk using formula (1.137),
with Algorithm 1. The value of k is chosen large enough so that Qk has columns
orthonormal up to machine precision. Then we project the (p−1) remaining right–
hand sides with classical Gram–Schmidt type projections, that is

c
(i)
CGS =

q̂T
1 b

(i)

...
q̂T
n b

(i)

 . (1.147)

This latter approach still requires 2mn2 flops to get the QR–factorization of A but
only 2mnp flops for the (p− 1) projections. However, we have to add the cost of
the reorthogonalization that is mainly governed by the construction of T , that is
mn2 flops, plus the assembly of Qk with Equation (1.137), that is 4mnk flops.
A third approach consists in not using MGS as orthogonalization scheme in GM-
RES but instead iterated modified Gram–Schmidt with a criterion denoted by
MGS2(K) [76]. The extra costs compared with MGS comes from the reorthog-
onalizations. We call ν the quantity so that the cost of MGS2(K) is 2mn2ν ; ν
ranges from 1 (if no reorthogonalization is performed) to 2 (if one reorthogonaliza-
tion per column is performed). The parameter K defines the criterion used to decide
whether the reorthogonalization has to be performed or not. According to [34], we
choose the value K =

√
2 and justify this choice later through numerical experi-

ments. The aim here is to obtain directly an orthogonal basis to machine precision
and then use Equation (1.147) with the Q–factor obtained with MGS2(K).
We summarize the costs in flops of these three approaches in Table 1.10. From
Table 1.10, for rather small p a good approach in term of flops seems to be MGS.
However our interest is in large p . For large p , Algorithm 1 is interesting over
MGS2(K) when 3

2
+ 2k

n
≤ ν . We have seen that the parameter k is determined

a–priori by the level of orthogonality required by the user. In the sequel, we consider
k small compared to n , the critical value is then ν = 1.50 . A larger value for ν
would make our approach more efficient than MGS2(K) – and vice versa – since the
construction of T which requires mn2 is the main cost of Algorithm 1, therefore
we compare 3mn2 (Algorithm 1) to 2mn2ν (MGS2(K)).

1.6.2.2.2 Special feature of A = (b, ZVn−1) Greenbaum, Rozložńık and Strakoš [69]
have shown that for GMRES with orthogonalization schemes MGS, the quantity

1.6 A reorthogonalization procedure for the modified Gram–Schmidt algorithm

based on a rank k update 83

MGS and (p− 1) projections (1.146) 2mn2 + 4mnp
Algorithm 1 and (p− 1) projections (1.147) 2mn2 + 2mnp + mn(n + 4k)
MGS2(K) and (p− 1) projections (1.147) 2mn2ν + 2mnp

Table 1.10: Flops required for the three orthogonalization schemes and associated projection con-
sidering m large over k , n and p .

σn((b, ZVn−1)) is of the order of the residual of GMRES obtained at step n − 1 .
When the residual is small, we expect A = (b, ZVn−1) to be ill–conditioned and so
an important loss of orthogonality is expected with MGS.
Since σn−1((b, ZVn−1)) ≥ σn−1(ZVn−1) ≥ σn−1(Z)σn(Vn−1), if we assume Z and
Vn−1 well–conditioned, we get that κ2 is close to one. We note that if the matrix
(b, ZVn−1) is numerically nonsingular then in [61], it is stated that Q̄ (= Vn)
is well–conditioned and we only restrict our study to well–conditioned matrix Z .
From this analysis, the value k = 1 is enough for the reorthogonalization of Q̄
with Algorithm 1 to obtain a Q –factor orthogonal up to machine precision. In the
experimental part, we illustrate that k = 1 is indeed necessary and sufficient in the
seed–GMRES context.
For small k compared to n , the cost of the a–posteriori reorthogonalization proce-
dure of MGS performed with Algorithm 1 is mainly governed by the computation
of the n(n + 1)/2 entries of the matrix T̄ (Section 1.6.2.2.1). We debase Algo-
rithm 1 to get a second algorithm, this algorithm relies mainly on an heuristic that
attempts to avoid the complete computation of T̄ . First of all we consider that the
rank of P̄11 is one, – this is justified by the special feature of the problem: κ large
and κ2 close to one – and since P11 is strictly upper triangular therefore nilpotent
(i.e. P n

11 = 0), we have P 2
11 = 0 and so Equation (1.145) reduces to P11 = T.

Therefore in practice we just compute T and use it as P11 . But computing all the
entries of a rank–one matrix may be considered as a waste of time. In theory, it is
enough to build a row i and a column j so that the entry (i, j) is nonzero. With
rounding errors, the best choice is to build the row i and the column j such that
the entry (i, j) is the largest in magnitude. In practice, if the entry (i, j) is not
the largest but of the order of the largest entry of T̄ , the procedure is still reliable.
A good candidate to be of the order of the largest entry of T̄ is |q̄T

1 q̄n| since the
orthogonality given by MGS of q̄n over q̄1 assumes in theory the orthogonality of
all the previous vectors ; in practice, we expect the loss of orthogonality in V to be
maximal between q̄n and q̄1 . This defines our heuristic:

Heuristic
|q̄T

1 q̄n| is of the order of the largest entry in magnitude of T̄ .

Thanks to this heuristic only the first row and the last column of T̄ are computed.
Algorithm 2 uses the reorthogonalization based on this heuristic, it is described in
Table 1.11. The fourth approach to compute the orthogonalization and the pro-
jections in seed–GMRES is to use Algorithm 2 and then project the (p− 1) other
right–hand sides with Equation (1.147). The whole algorithm is very cheap and
only requires 2mn2 + 2mnp + 8mn flops in which 8mn flops are necessary for the
reorthogonalization. For comparison, 8mn corresponds to the extra cost of the

84 Study of the Gram–Schmidt algorithm and its variants

1. run MGS on A = (b, ZVn−1) to obtain Q̄ and R̄,

2. compute uT = (q̄T
n q̄1, . . . , q̄

T
n q̄n−1, 0), c = u(1)

and wT = (0, q̄T
1 q̄2, . . . , q̄

T
1 q̄n),

3. c = u(1), u = u/‖u‖, w = w/‖w‖, c = c/u(1)/w(n), s =
√

1− c2,

4. compute Q1 = Q̄ + Q̄(w(s−1 − 1)− ucs−1)wT .

Table 1.11: Algorithm 2: MGS with an a–posteriori reorthogonalization by a rank–one update
using the heuristic.

reorthogonalization of about 4 columns.

1.6.2.2.3 Numerical experiments in a large electromagnetism calculation Our case
study arises from large calculations in electromagnetism. The boundary element
method is used to discretize the 3D Maxwell’s equations on the surface of an object.
The formulation relies on the combined field integral equations and the precondi-
tioner used is a sparse approximate inverse [130], this means that in practice the
preconditioned matrix Z is well–conditioned. Moreover one can notice that the
matrix Z is not explicitly known and is accessed through matrix–vector product
done via the fast multipole method. All the calculations are performed using double
precision arithmetic. There are several linear systems Zx(i) = b(i) to be solved, for
this typical calculation we have p = 180 but this value might be much larger if
several radar cross sections have to be computed, as is often the case in engineering
applications. For each right–hand side, GMRES is stopped at iteration l if the

approximate solution x
(i)
l verifies ‖b(i)−Ax(i)

l ‖/‖b(i)‖ ≤ 10−14 . We remark that the
problem is defined in complex arithmetic, however in order to be consistent with
the whole paper the real notation is maintained.
Four geometries are considered, they represent standard test–cases for electromag-
netism calculations, namely a cetaf, an Airbus airplane, a sphere and an almond [130].
In Table 1.12, we give the characteristics of the matrices (b, ZVn−1) obtained by a
GMRES–MGS run on these matrices. The values obtained with GMRES–MGS2(K)
are the same. For more information on the method and the test–case, we refer
to [130].
In Table 1.12, (# iter) represents the number of GMRES iterations required to
converge. The number of columns of the matrix A = (b, ZVn−1) is n = # iter + 1 ,
the number of rows is m . As expected (see Section 1.6.2.2.2), the condition number
κ is such that κ · 10−14 is close to one, while κ2 is of order O(1) .
The fourth column of Table 1.12 corresponds to the average number of reorthog-
onalizations obtained with MGS2(

√
2). In this cases, MGS2(

√
2) systematically

performs an extra reorthogonalization per matrix–vector product, which explains
the constant value (ν = 2.00).
In Table 1.13, we illustrate that all the residual errors ‖A− Q̄R̄‖ – where Q̄ and
R̄ designed the QR–factor given by one the four algorithms – are of the order of the

1.6 A reorthogonalization procedure for the modified Gram–Schmidt algorithm

based on a rank k update 85

m # iter κ κ2 ν
Cetaf 5391 31 9.7 · 1014 27 2.00
Airbus 23676 104 3.6 · 1014 14 2.00
Sphere 40368 59 3.9 · 1014 6.4 2.00
Almond 104973 71 5.1 · 1014 5.9 2.00

Table 1.12: Characteristics of A = (b, ZVn−1)

MGS Algorithm 1 MGS2(
√

2) Algorithm 2
Cetaf 2.8 · 10−17 2.8 · 10−16 1.8 · 10−16 2.9 · 10−16

Airbus 4.0 · 10−17 4.4 · 10−16 2.7 · 10−16 4.4 · 10−16

Sphere 5.8 · 10−17 2.7 · 10−16 1.6 · 10−16 2.7 · 10−16

Almond 3.9 · 10−17 3.9 · 10−16 3.9 · 10−16 2.2 · 10−16

Table 1.13: Residual errors for the four case–test and the different algorithms.

machine precision. In Table 1.14, the different levels of orthogonality characterized
with ‖In− Q̄T Q̄‖ are given. As expected, MGS completely looses the orthogonality
while the three other approaches give a set of vectors orthogonal up to machine
precision. In the context of seed–GMRES, this enables us to use confidently Equa-
tion (1.147) to project the (p− 1) remaining right–hand sides.
A conclusion drawn from Table 1.14 is that in the case of GMRES–MGS applied to
a not too ill–conditioned matrix the value k = 1 is satisfactory (Algorithm 1 with
k = 1). Moreover from Table 1.13 and Table 1.14, we observe that Algorithm 2
relying on the heuristic works fine in practice.
One might question about the relevance of the choice K =

√
2 and its possible

artificial high cost. In Table 1.15 we report on the sensitivity of the orthogonality
quality with respect to the choice of the threshold. These experiments assess the
choice of K =

√
2 for MGS2(K). This value gives a good orthogonality level for all

the examples while the others tested (K = 2 and K =
√

5) fail. However K =
√

2
implies in these cases ν = 2.00 meaning that the criterion is unable to save any
reorthogonalization. This result is not satisfactory and highlights a weakness of the
MGS2(K) procedure. Even if κ2 is close to one, improving noticeably the condition
number κ cannot be obtained in the general case by removing only a column of
(b, ZVn−1) , it is a global phenomenon that needs a global treatment (e.g. to add
the singular vector associated to the smallest singular value to all the columns).
In the same way, the loss of orthogonality is global and affects all the columns of
Q̄ . An algorithm like MGS2(K) that acts locally on each column performs poorly

MGS Algorithm 1 MGS2(
√

2) Algorithm 2
Cetaf 1.6 · 10−02 1.9 · 10−15 2.8 · 10−16 2.4 · 10−15

Airbus 1.8 · 10−02 1.5 · 10−15 3.7 · 10−16 1.6 · 10−15

Sphere 3.9 · 10−02 5.4 · 10−16 3.0 · 10−16 7.8 · 10−16

Almond 4.1 · 10−02 6.8 · 10−16 2.8 · 10−16 7.9 · 10−16

Table 1.14: ‖In − Q̄T Q̄‖ for the four case–test and the different algorithms.

86 Study of the Gram–Schmidt algorithm and its variants

MGS2(
√

2) MGS2(2) MGS2(
√

5)
Cetaf 2.8 · 10−16 (ν = 2.00) 6.3 · 10−16 (ν = 1.90) 1.2 · 10−15 (ν = 1.87)
Airbus 3.7 · 10−16 (ν = 2.00) 3.9 · 10−03 (ν = 1.02) 8.8 · 10−03 (ν = 1.01)
Sphere 3.0 · 10−16 (ν = 2.00) 7.5 · 10−15 (ν = 1.52) 4.9 · 10−04 (ν = 1.07)
Almond 2.8 · 10−16 (ν = 2.00) 1.7 · 10−03 (ν = 1.06) 5.2 · 10−03 (ν = 1.03)

Table 1.15: ‖In − Q̄T Q̄‖ .

in this case, whereas Algorithm 1 and 2 represent appealing strategies since the
reorthogonalization – that has to be global – is expressed as a rank–one update.
Finally, there exists other examples where the value of k > 1 can be given a
priori. Still for the solution of linear systems with multiple right–hand sides, we
mention for instance the block(k)–seed–GMRES–MGS algorithm; that is one runs
block GMRES on k vectors, when the convergence is observed, a rank– k update is
performed to recover an orthogonal set of vectors, that we use to project the p− k
right–hand sides as in seed–GMRES (this method is shortly described in Section 2.6
and its QMR variant is detailed in [85]). In Table 1.16, we report on experiments
on a sphere test problem of size 972 solved for 3 right–hand sides using a threshold
for the stopping criterion equal to 10−14 . The 4 reduced condition numbers κi

observed when running a classical block-GMRES with MGS2(K = 2) for solving
three right–hand sides are also displayed. It can first be observed that the first
three reduced condition numbers are very large as it could have been expected. In

m # iter κ κ2 κ3 κ4 ν
sphere 972 151 4.5 · 1015 6.2 · 1014 4.2 · 1014 26 2.00

Table 1.16: Characteristics of A = (b, ZVn−1) Three right–hand sides corresponding to (θ =
0o, ϕ = 0o : 10o : 20o) .

Table 1.17, we display the values of ‖In− Q̄T Q̄‖ and ‖A−QR‖ ; it can be observed
that the proposed re-orthogonalization techniques are still successful for k larger
than one (i.e. three in this latter case).

MGS Algorithm 1 MGS2(
√

2) Algorithm 2
‖In − Q̄T Q̄‖ 0.66 · 10+00 0.28 · 10−14 0.88 · 10−15 0.28 · 10−14

residual errors 0.12 · 10−15 0.15 · 10−14 0.63 · 10−15 0.15 · 10−14

Table 1.17: Quality comparison of the algorithm.

Conclusion

In this paper we propose an a posteriori reorthogonalization technique based on
a rank– k update to reorthogonalize a set of vectors built by the modified Gram–
Schmidt algorithm. We show that for large enough k , we can fully recover the
orthogonality. We illustrate the effectiveness of our technique in the framework
of the iterative solution of linear systems based on the GMRES algorithm. On a

1.6 A reorthogonalization procedure for the modified Gram–Schmidt algorithm

based on a rank k update 87

set of industrial test problems we demonstrate that our algorithm is efficient and
outperforms classical approaches that also permit to remedy the loss of orthogonality
observed when GMRES has converged. Acknowledgment
The authors would like to thank Chris C. Paige for his careful reading of several
versions of the chapter and for his fruitful comments.

Appendix : Two technical Lemmas

In this appendix, we prove two technical lemmas that are used in the proof of

Theorem 1.6.3. Lemma 1.6.4 relates the norm of the computed Q̃ to the condition

number of A . We prove that for a well–conditioned matrix A , ‖Q̃‖ is close to one.

Lemma 1.6.5 gives an upper bound for the quantity ‖A − Q̃R̄‖ . Similar residual
bounds have been derived in [13, 15], but they involve the computed Q̄ , instead of

Q̃ . In these two lemmas, notations directly refers to the ones used in the article.

Lemma 1.6.4 Suppose that c̄1uηκ < 1 , then

‖Q̃‖ ≤ 1

1− c̄1uηκ
.

Proof of Lemma 1.6.4 Since P̃21 = Q̃(In − P̃11) we obtain from (1.134)

P̃21 = V SW T = Q̃(In − UCW T)

Q̃ = V SW T + Q̃UCW T

‖Q̃‖ ≤ ‖S‖+ ‖Q̃‖.‖C‖
‖Q̃‖ ≤ ‖S‖/(1− ‖C‖) ≤ 1/(1− c̄1uηκ). ♥

Lemma 1.6.5 Suppose that c̄1uηκ < 1 , then

‖A− Q̃R̄‖ ≤ [c̄2 + c̄1/(1− c̄1uηκ)]u‖A‖.

Proof of Lemma 1.6.5 Since P̃21 = Q̃(In − P̃11) , (1.132) gives −E2 = A − P̃21R̄ =

A− Q̃R̄ + Q̃P̃11R̄ , which with E1 = P̃11R̄ and the previous lemma shows

A− Q̃R̄ = −E2 − Q̃E1

‖A− Q̃R̄‖ ≤ [c̄2 + c̄1/(1− c̄1uηκ)]u‖A‖. ♥

88 Study of the Gram–Schmidt algorithm and its variants

1.7 Miscellaneous topics on the Gram–Schmidt algorithm

1.7.1 The modified Gram–Schmidt algorithm is as the Householder al-
gorithm ?

Björck and Paige [15] based all their analysis of the modified Gram–Schmidt algo-
rithm on the following observation. The modified Gram–Schmidt algorithm per-
forms the same operations on A as the Householder algorithm on the augmented
A (see Section 1.6). Therefore the R–factors generated by these two algorithms are
the same.

If the algorithms are those currently given in the literature (e.g. [14, 63]), this is
not exactly true. Some operations differ slightly and eventually the computed the
R–factors differ (at the machine precision level).

For the sake of completeness in Algorithm 7 and Algorithm 8, we give the modified
Gram–Schmidt algorithm and the Householder algorithm on the augmented matrix
respectively. These algorithms are slightly modified variants from the text-book
versions. The standard version for MGS is given in Algorithm 2. In Algorithm 9,
we give the modifications to make Algorithm 8 be able to generate the text-book
Householder algorithm on the augmented matrix.

Both algorithms 7 and 9 give exactly the same floating–point numbers, since they
perform exactly the same operations.

We should of course point out that the differences between the text-book versions
and their variants are so slight that it fully justifies the assumption that the R –
factors from the modified Gram–Schmidt algorithm and from the Householder on
the augmented matrix are indeed the same. When wrote these few lines only to
illustrate that, with small modifications, we can effectively have exactly the same
computed digits.

Algorithm 7 The modified Gram–Schmidt algorithm with a slight modification so that the oper-
ations performed are exactly those of the Householder algorithm given in Algorithm 8.

1. for j = 1 to n do

2. w = aj

3. for i = 1 to j − 1 do

4. rij = qT
i w

5. w = w − qirij

6. end for

7. qj = w/‖w‖2
8. rjj = wT qj

9. end for

1.7.2 Blindy MGS: a model for the modified Gram–Schmidt in finite–
precision arithmetic.

Let us assume that we run modified Gram–Schmidt algorithm in exact arithmetic
on A where

1.7 Miscellaneous topics on the Gram–Schmidt algorithm 89

Algorithm 8 Householder transformations on the augmented matrix for a QR factorization. A
slight modification is added so that the operations performed are exactly those of the modified
Gram–Schmidt algorithm given in Algorithm 7.

1. Ã =

(
0n,n

A

)

2. m̃ = m + n
3. z = ã1

4. for j = 1 to n do

5. wj = 0 �m

6. wj(j + 1 : m̃) = z(j + 1 : m̃)/‖z(j + 1 : m̃)‖2
7. wj,j = −1
8. r(1 : j, j) = z(1 : j)− w(1 : j, j)(w(1 : m̃, j)T z)
9. if j < n,
10. z = ãj+1

11. for i = 1 to j do

12. z = z − wi(w
T
i z)

13. end for

14. endif

15. end for

Algorithm 9 Modifications to make to Algorithm 8 in order to recover a text-book Householder
algorithm.

. . .
6. wj(j : m̃) = z(j : m̃)
7a. β = ‖z(j : m̃)‖2 · sign(z(j, j))
7b. wj,j = wj,j + β
7c. wj = wj/‖wj‖2
8. r(1 : j, j) = z(1 : j)− 2w(1 : j, j)(w(1 : m̃, j)T z)
. . .
12. z = z − 2wi(w

T
i z)

. . .

A =

1 0 1 0
0 1 1 0
0 0 0 1
0 0 0 0

 . (1.148)

Since a3 ∈ Span(a1, a2) , for j = 3 at step 7 of Algorithm 2, we have r33 = ‖q3‖2 =
0 , and so a breakdown occurs at step 8 when we want to compute q3 = q3/r33 . The
singularity is of the form 0/0 .

The two standard ways to deal with this singularity are (a) to remove the third
column of Q or (b) to take as q3 a normal vector belonging to the orthogonal space
of Span(q1, q2) . Then the Gram–Schmidt process can go onto the fourth column.
We suggest a third solution: (c) add a normalized vector. This variant is called
blindy–MGS.

For the matrix A given in equation (1.148), we choose to add the vector q3 =

90 Study of the Gram–Schmidt algorithm and its variants

(1/2 1/2
√

2/2 0) of norm 1 . The resulting Q and R factor are respectively

Q =

1 0 1/2 −1/2
0 1 1/2 −1/2

0 0
√

2/2
√

2/2
0 0 0 0

 and R =

1 0 1 0
0 1 1 0

0 0 0
√

2/2

0 0 0
√

2/2

In Figure 1.8, a geometrical representation is given.

q1

q3
q4

q2

Figure 1.8: (q1, q2, q3, q4) given by blindy–MGS on A .

The properties of the set of vectors constructed by blindy–MGS are very close to
what one can observe when using the modified Gram–Schmidt algorithm on a matrix
in floating–point arithmetic. First of all, note that A = QR . If A is nonsingular,
blindy–MGS reduces to MGS so that Q has orthonormal columns. If A is singular,
say Rank(A) = (n− 1) , Q may be (a) orthogonal, (b) of full rank with two blocks
Q1 and Q2 with orthonormal columns or (c) rank deficient Rank(Q) = (n − 1) .
We depict, in our example with matrix A given by equation (1.148), the case (b).

1.7 Miscellaneous topics on the Gram–Schmidt algorithm 91

We can enumerate some of the properties of the set of vectors Q .

(Im − qnqT
n)(Im − qn−1q

T
n−1) . . . (Im − q1qT

1)A = 0 (1.149)

if Rank(A) = n− k, then

Rank(triu(In −QTQ))) ≤ k (1.150)

there exists Q̂ such that Q̂T Q̂ = In and Rank(Q̂−Q) ≤ k (1.151)

. . .

Equation (1.149) is equivalent to the relation shown by Björck [13, Eq. (5.4)] in the
floating–point arithmetic case, that is

‖(Im − qnqT
n)(Im − qn−1q

T
n−1) . . . (Im − q1qT

1)A‖E ≤ 3.25(
2

3
m+ 1)(n− 1) · 2−t‖A‖E

(1.152)
For example, it enables him to derive a backward stable method based on the
modified Gram–Schmidt algorithm for solving the least–squares problem. Equa-
tion (1.150) and Equation (1.151) are those that initiated the work presented in
Section 1.6.
The purpose of this section is to provide a simple model, that quickly enables us to
get an insight on the numerical behaviour of MGS in floating-point arithmetic.

1.7.3 Accurate eigencomputations using the modified Gram–Schmidt
algorithm.

Braconnier, Langlois and Rioual [19] tested different orthogonalization schemes in
the Arnoldi process to compute eigenvalues. Their experiments were on small ma-
trices (of order 100) and the number of Arnoldi iterations performed is of the order
of the matrix. In the following, we consider similar extreme situations.
Let us study the Toeplitz matrix of order n = 100 (see [19, 131])

Z =

1 3
4

. . . 3
2n

0 1
. . .

...

0
. . .

. . . 3
4

0 1

The Arnoldi method is performed with the starting vector b = (1, . . . , 1)T . In
Figure 1.9, we plot the normwise backward error for Householder–Arnoldi and MGS–
Arnoldi. The backward error formulae are given in Braconnier et al. (also e.g. [28,
p. 76]).
It is well known that Arnoldi computes accurate eigenvalues and eigenvectors of
Z when the term hj+1,j of the Hessenberg matrix is of the order of the machine
precision. In our case, this happens at step n of the Householder–Arnoldi method
as shown in [19].
At step n of MGS–Arnoldi, the computed hn+1,n is not small at all. We note that
the matrix An = (b,ZVn−1) has two small singular values, and so the the numerical
rank of An can be considered equal to (n− 2) . Our idea is to push the iteration j

92 Study of the Gram–Schmidt algorithm and its variants

further than n so that

Rank(Aj+1) = Rank (b,ZVj) = n.

In this last equation, Rank stands for numerical rank. This happens at step n+ 2 :
A numerically spans Rn . In practice, the relation (1.152) holds at step n + 2 :
necessarily this implies, since A spans R

n and Avn+2 belongs to R
n , that

hn+3,n+2 = ‖((Im − qnqT
n)(Im − qn−1q

T
n−1) . . . (Im − q1qT

1)(Avn+2))‖2
is of the order of the machine precision. We end up with the factorization

AVn+2 = Vn+2Hn+2,n+2 + En+2,

where En+2 is of the order of the machine precision. The eigenvalues and eigenvec-
tors of Hn+2,n+2 are good approximations to those of A . Note that Hn+2,n+2 is
an (n+ 2 –by– (n+ 2) matrix and has n+ 2 eigencouples (in this particular case).
We throw away the two smallest eigenvalues and corresponding eigenvectors. They
represent the rank deficiency of Vn+2 (n –by–n+ 2 matrix). The result is that the
n eigencouples for Z are accurate (see Figure 1.9).

10 20 30 40 50 60 70 80 90 100
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

h
j+1,j

 MGS

bwd eigenvalue MGS
bwd couple MGS
h

j+1,j
 Householder

bwd eigenvalue Householder
bwd couple Householder

92 93 94 95 96 97 98 99 100 101 102 103
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Figure 1.9: Backward error analysis of Arnoldi using Householder and modified Gram–Schmidt
orthogonalization schemes. The order of the matrix Z is n = 100 , the maximum number of
iterations with the Householder orthogonalization scheme is 100 , the maximum number of itera-
tions with MGS orthogonalization scheme is 102 . At step 102 , the Arnoldi process returns 102
eigenvalues and we throw away the smallest 2 .

1.8 Future work 93

1.8 Future work

In this first chapter, we have seen new results on the Gram–Schmidt algorithm that
completes the existing framework.
The main effort in the future to complete this study is obtain theoretical concerning
the classical Gram–Schmidt algorithm. What is the real bound on the orthogonality:
experimentally, it is rather easy to obtain a loss of orthogonality of the order of the
condition number of the initial matrix times the machine precision, it is hard to get
much more. Theoretically it is rather easy to prove that the loss of orthogonality is
bounded by the condition number of the initial matrix to the power the number of
vectors orthogonalized times the machine precision and a constant.
Current work is devoted to the study of the Gram–Schmidt algorithm with other
scalar product than the euclidean one.

94 Study of the Gram–Schmidt algorithm and its variants

II

Chapter 2

Implementation of iterative
methods

2.1 Basics

Before describing in detail the different iterative methods we have considered, we
first present their common features.

2.1.1 Preconditioning

The convergence of an iterative method for solving a linear system might be slow. To
overcome this drawback, one often prefers to solve a transformed linear system that
is referred to as the preconditioned linear system. More precisely, if M1M2 ≈ A−1 ,
we actually solve the linear system

M1AM2y = M1b (2.1)

with x = M2y . In our implementation, we allow the user to select left and/or right
preconditioning. The use of preconditioners has some consequences on the stopping
criterion. We discuss these points in the next paragraph.

2.1.2 Stopping criteria

We have chosen to base our stopping criterion on the normwise backward error [28].
Backward error analysis, introduced by Givens and Wilkinson [136], is a powerful
concept for analysing the quality of an approximate solution:

1. it is independent from the details of round-off propagation: the errors intro-
duced during the computation are interpreted in terms of perturbations of the
initial data, and the computed solution is considered as exact for the perturbed
problem;

2. because round-off errors are seen as data perturbations, they can be compared
with errors due to numerical approximations (consistency of numerical schemes)
or to physical measurements (uncertainties on data coming from experiments
for instance).

98 Implementation of iterative methods

The backward error measures in fact the distance between the data of the initial
problem and that of the perturbed problem; therefore it relies upon the choice of
the data allowed to vary and the norm to measure these variations. In the context
of linear systems, classical choices are the normwise and the componentwise pertur-
bations [28]. These choices lead to explicit formulae for the backward error (often
a normalized residual) which is then easily evaluated. For iterative methods, it is
generally admitted that the normwise model of perturbation is appropriate [6].

Let xj be an approximation of the solution x = A−1b . Then

ηj = min {ε > 0; ‖∆A‖2 ≤ εα, ‖∆b‖2 ≤ εβ and (A + ∆A)xj = b + ∆b}

=
‖b− Axj‖2
α‖xj‖2 + β

is called the normwise backward error associated with xj . The best one can require
from an algorithm is a backward error of the order of the machine precision. In
practice, the approximation of the solution is acceptable when its backward error
is lower than the uncertainty on the data. Therefore, there is no gain in iterating
after the backward error has reached machine precision (or data accuracy).

In all our solvers, the evaluation of the norm of the residual b−Axj is given directly
from the algorithm so that it does not require an extra matix–vector product.

When the iterative method is used in conjunction with preconditioning, then our
stopping criterion is based on the backward error for the preconditioned system (2.1):

ηP
j = ‖M1AM2zj −M1b‖2/(αP‖xj‖2 + βP)

with xj = M2zj . We denote by

ηP
A,j =

|rj+1,j+1|
αP‖xj‖2 + βP

the stopping criterion for the preconditioned iterative method. As previously, we
stop the iterations when the computed values of ηP

A,j and then ηP
j satisfy the pre-

scribed tolerance. We prefer to stop the iterations on the preconditioned linear
system and not on the original linear system because the residual which is readily
available in the algorithm is that of the preconditioned system. It would be too
expensive to compute the residual of the unpreconditioned system at each iteration.
For the user’s information, we also give the value of the backward error for the un-
preconditioned system on return from the solver.

We should notice that, for a right preconditioner, η = ηP (or ηA = ηP
A); this is the

reason why right preconditioning is often preferred in many applications. Otherwise,
there is a priori no relationship between the backward error of the preconditioned
system and that of the unpreconditioned system. Nevertheless, we noticed in our
experiments that η (or ηA) is usually smaller than ηP (or ηP

A). It is therefore rec-
ommended to use a larger tolerance for the preconditioned system than one would

2.1 Basics 99

αP βP Stopping criterion

0 0
‖M1AM2zj−M1b‖2

‖M1b‖2

0 6= 0
‖M1AM2zj−M1b‖2

βP

6= 0 0
‖M1AM2zj−M1b‖2

αP ‖xj‖2

6= 0 6= 0
‖M1AM2zj−M1b‖2

αP ‖xj‖2+βP

Table 2.1: Stopping criterion for the preconditioned iterative method.

α β Information on the unpreconditioned system

0 0
‖Axj−b‖2

‖b‖2

0 6= 0
‖Axj−b‖2

β

6= 0 0
‖Axj−b‖2

α‖xj‖2

6= 0 6= 0
‖Axj−b‖2

α‖xj‖2+β

Table 2.2: Stopping criterion for the unpreconditioned iterative method.

have used on the unpreconditioned one.

How do we choose α , β , αP and βP ? Classical choices for α and β that appear
in the literature are α = ‖A‖2 and β = ‖b‖2 . Similarly, αP and βP should be
chosen such as αP ∼ ‖M1A‖2 and βP ∼ ‖M1b‖2 . Any other choice that reflects the
possible uncertainty on the data can also be used. In our implementation, default
values are used when the user’s input is α = β = 0 or αP = βP = 0 . Table 2.1
lists the stopping criteria for different choices of αP and βP . Similarly, Table 2.2
explains the output information given to the user on the unpreconditioned linear
system on return from the solver.

2.1.3 Implementation details

For some given iterative methods, we basically have two versions of the code:

1. the first is freeware and distributed for non-commercial use only. The source
codes is SOON available from the Web at the URL

http://www.cerfacs.fr/algor/

together with the software licence agreement and a set of example codes. To-
day, for unsymmetric solvers, only the GMRES and flexible GMRES packages
are available.

100 Implementation of iterative methods

2. the second version is a tuned implementation that complies with the out–of–
core features of the EADS code.

For the sake of maintenance of the code, only one source file exists and is used to
generate the source code for each of the four arithmetics. The final packages are
written in Fortran 77 and make use of the BLAS routines.
For the sake of simplicity and portability, the implementations are based on the
reverse communication mechanism

• for implementing the numerical kernels that depend on the data structure se-
lected to represent the matrix A and the preconditioners,

• for performing the dot products.

This last point has been implemented to allow the use of the solvers in a parallel
distributed memory environment, where only the user knows how the data have
been distributed (we refer to [52] where some parallel distributed performance is
reported).
The out–of–core version is also based on the reverse communication mechanism for
all the operations using out–of–core vectors. For a complete description of the user
interface, we refer to [51]. The description done for GMRES in this users’ guide
holds for the other solvers. In particular, we explain

1. the reverse communication management,

2. the control parameters and their default values,

3. the information parameters,

4. how invalid parameters are managed (i.e. automatic corrections and unrecov-
erable failures).

2.2 The GMRES method 101

2.2 The GMRES method

2.2.1 Theoretical presentation

The Generalized Minimum RESidual (GMRES) method was proposed by Saad and
Schultz in 1986 [118] in order to solve large, sparse and non Hermitian linear sys-
tems. GMRES belongs to the class of Krylov based iterative methods.

For the sake of generality, we describe this method for linear systems whose entries
are complex, everything also extends to real arithmetic calculations. Let A be a
square nonsingular m ×m complex matrix, and b be a complex vector of length
m , defining the linear system

Ax = b (2.2)

to be solved. Let x0 ∈ Cm be an initial guess for this linear system and r0 = b−Ax0

be its corresponding residual.

The GMRES algorithm builds an approximation of the solution of (2.2) in the form

xn = x0 + Vny (2.3)

where Vn is an orthonormal basis for the Krylov space of dimension n defined by

Kn = span
{
r0, Ar0, . . . , A

n−1r0
}
,

and where y belongs to Cn . The vector y is determined so that the 2–norm of the
residual rn = b− Axn is minimized over Kn .

The basis of the columns of the matrix Vn for the Krylov subspace Kn is obtained
via the well known Arnoldi process. The orthogonal projection of A onto Kn

results in an upper Hessenberg matrix Hn = V H
n AVn of order n . The Arnoldi

process satisfies the relationship

AVn = VnHn + hn+1,nvn+1e
H
n , (2.4)

where en is the nth canonical basis vector. Equation (2.4) can be rewritten as

AVn = Vn+1Hn

where

Hn =

[
Hn

0 · · ·0 hn+1,n

]

is an (n + 1)× n matrix.

Let v1 = r0/β where β = ‖r0‖2 . The residual rn associated with the approximate
solution (2.3) satisfies

rn = b− Axn = b− A(x0 + Vny)

= r0 − AVny = r0 − Vn+1Hny

= βv1 − Vn+1Hny

= Vn+1(βe1 −Hny).

102 Implementation of iterative methods

Since Vn+1 is a matrix with orthonormal columns, the residual norm ‖rn‖2 =
‖βe1 −Hny‖2 is minimized when y solves the linear least–squares problem

min
y∈ �

n
‖βe1 −Hny‖2. (2.5)

We will denote by yn the solution of (2.5). Therefore, xn = x0 + Vnyn is an ap-
proximate solution of (2.2) for which the residual is minimized over Kn . GMRES
owes its name to this minimization property that is its key feature as it ensures the
decrease of the residual norm.

In exact arithmetic, GMRES converges in at most m steps. However, in practice,
m can be very large and the storage of the orthonormal basis Vn may become
prohibitive. Also the orthogonalization of vn on the previous vectors Vn−1 requires
2mn flops, for large n , the computational cost of the orthogonalization scheme
may become too expensive. The restarted GMRES method is designed to cope with
these two drawbacks. Given a fixed nmax , the restarted GMRES method computes
a sequence of approximate solutions xn until xn is acceptable or n = nmax . If
the solution is not found, then a new starting vector is chosen on which GMRES is
again applied. Often, GMRES is restarted from the last computed approximation,
i.e. x0 = xnmax to comply with the monotonicity property even when restarting.
The process is iterated until a good enough approximation is found. We denote
by GMRES(nmax) the restarted GMRES algorithm for a projection size of at most
nmax .
This concludes the theroretical background of the GMRES method. In the following
paragraphs, we enlight the key–points for an efficient implementation of the GMRES
method:

• the solution of the least-squares problem (2.5),

• the construction of the orthonormal basis Vn ,

• the stopping criteria for the iterative scheme, and

• the calculation of the residual at the restart.

2.2.1.1 The least-squares problem

At each step n of GMRES, one needs to solve the least-squares problem (2.5). The
matrix Hn involved in this least-squares problem is an (n+ 1)×n complex matrix
which is upper Hessenberg. We wish to use an efficient algorithm for solving (2.5)
which exploits the structure of Hn .

First, we base the solution of (2.5) on the QR factorization of the matrix [Hn, βe1] :
if QΓ = [Hn, βe1] where Q is a matrix with orthogonal columns and Γ = (γik) is
an (n+ 1)× (n+ 1) upper triangular matrix, then the solution yn of (2.5) is given
by

yn = Γ (1 : n, 1 : n)−1Γ (1 : n, n + 1). (2.6)

2.2 The GMRES method 103

Here, Γ (1 : n, 1 : n) denotes the first n × n submatrix of Γ and Γ (1 : n, n + 1)
stands for the last column of Γ . Moreover, it is easy to see that

‖rn‖2 = ‖b− Axn‖2 = ‖βe1 −Hnyn‖2 = |rn+1,n+1|. (2.7)

Therefore, the norm of the residual of the linear system is a by product of the algo-
rithm and can be obtained without explicitly evaluating the residual vector.

The QR factorization of upper Hessenberg matrices can be efficiently performed
using Givens rotations, because they enable us to zero out all elements Hk+1,k ,
k = 1, . . . n , sequentially. However, since [Hn+1, βe1] is obtained from [Hn, βe1]
by adding one column c , the R–factor Γn+1 of [Hn+1, βe1] is obtained by updating
the R–factor Γn of [Hn, βe1] using an algorithm that we briefly outline now, for
n = 3 (see [12, 14, 16]):

1. Let

Γn =

+ + + +
0 + + +
0 0 + +
0 0 0 +

and Qk ∈ C(n+1)×(n+1) be such that [Hn, βe1] = QkΓk. The matrix Qk is
not explicitly computed, only the sine and cosine of the Givens rotations are
stored. The vector w = QH

k c is then computed by applying the stored Givens
rotations, and w is inserted in between the n and n + 1 columns of Γk , to
yield

Γ̃n =

+ + + ∗ +
0 + + ∗ +
0 0 + ∗ +
0 0 0 ∗ +
0 0 0 ∗ 0

2. A Givens rotation that zeros element Γ̃n(n+ 2, n+ 1) is computed and applied

to Γ̃n to produce the matrix

Γn+1 =

+ + + + +
0 + + + +
0 0 + + +
0 0 0 + +
0 0 0 0 +

The computation of the sine and cosine involved in the givens QR factorization use
the BLAS routines *ROTG, and we refer the reader to [12, 16] for questions related
to the reliability of these transformations.

2.2.1.2 Evaluation of the norm of the residual

Thanks to equality (2.7), we see that the 2 –norm of the residual is given directly
in the algorithm during the solution of the least-squares problem. Therefore, the

104 Implementation of iterative methods

backward error can be obtained at a low cost and we can use

ηA,n =
|γn+1,n+1|
α‖xn‖2 + β

as the stopping criterion of the GMRES iterations. However, it is well known that,
in finite precision arithmetic, the computed residual (2.7) given from the Arnoldi
process may differ significantly from the true residual. Therefore, it is not safe to
use ηA,n exclusively as the stopping criterion. Our strategy is the following: first
we iterate until ηA,n becomes lower than the tolerance, then afterwards, we iterate
until ηn becomes itself lower than the tolerance. We hope in this way to minimize
the number of explicit residual computations (involving the computation of matrix-
vector products) necessary to evaluate ηn , while still having a reliable stopping
criterion.

2.2.1.3 Computation of Vn

The quality of the orthogonality of the Vn plays a central role in GMRES as dete-
riorating it might slow down or delay the convergence. On the other hand, ensuring
very good orthogonality might be expensive and useless for some applications. Con-
sequently a trade-off has to be found to balance the numerical efficiency of the
orthogonalization scheme and its inherent efficiency on a given target computer.
Most of the time, the Arnoldi algorithm is implemented through the modified Gram-
Schmidt (MGS) process for the computation of Vn and Hn . However, in finite
precision arithmetic, there might be a severe loss of orthogonality in the computed
basis; this loss can be compensated by selectively iterating the orthogonalization
scheme (see Section 1.5). The resulting algorithm is called iterative modified Gram-
Schmidt (IMGS). The drawback of IMGS is the increased number of dot products.
The classical Gram-Schmidt (CGS) algorithm can be implemented in an efficient
manner by gathering the dot products into one matrix–vector product, but it is
well known that CGS is numerically worse than MGS. However, CGS with selective
reorthogonalization (ICGS) results in an algorithm of the same numerical quality as
IMGS. Therefore, ICGS is particularly attractive in a parallel distributed environ-
ment, where the global reduction involved in the computation of the dot product is
a well-known bottleneck [49, 52, 88, 122].

In our GMRES implementation, we have chosen to give the user the possibility of
using any of the four different schemes quoted above : CGS, MGS, ICGS and IMGS.
We follow [113] to define the criterion for the selective reorthogonalization and set
K =

√
2 as suggested by [34] as the value for the threshold.

2.2.1.4 Computation of the residual at restart

In most of the applications, the computation of each matrix–vector product can
be extremely expensive compared to the other operations of the GMRES process.
In that case, one would like to avoid the explicit calculation of the residual at
each restart of GMRES. Since we then set x0 = xn , we have r0 = b − Axn with

2.2 The GMRES method 105

xn = x0 + Vny . We can then observe that

r0 = b− A(x0 + Vnyn)
= Vn+1(βe1 −Hyn)

= Vn+1Qn(QH
n βe1 −

[
Γ (1 : n, 1 : n)

0

]
yn)

= Vn+1Qn

[
0

γn+1,n+1

]
.

It follows that the calculation of the residual amounts at computing a linear combi-
nation of the (n+1) Arnoldi’s vectors. The coefficients of the linear combination are
computed by applying the Givens rotations in the reverse order to the vector which
has all its entries equal to zero but the last that is equal to rn+1,n+1 . This non–zero
value is a by product of the solution of the least–square problem. This calculation of
the residual requires m(2n+1)+2n floating–point operations (flops) and should be
preferred to an explicit calculation if the matrix–vector product involving A implies
more than 2m(n + 1) flops. We should mention that in some circumstances, for
instance when the required backward error is close to the machine precision, the
use of this trick might slightly delay the convergence (while it might still enable us
to get the solution in a shorter period of time). Notice that the implementation
of this trick requires to store (n + 1) Arnoldi’s vectors, while only n have to be
stored otherwise. For the sake of robustness, even if this calculation of the residual
is selected by the user, we enforce an explicit residual calculation if, in the previous
restart, the convergence was detected by ηP

A,n but not assessed by ηP
n .

106 Implementation of iterative methods

2.3 The flexible GMRES method

In 1993, Saad [117] introduced a variant of the GMRES method with right precondi-
tioning that enables the use of a different preconditioner at each step of the Arnoldi
process.
In the sequel, we start by briefly describing the standard GMRES algorithm with
right preconditioning and then show the modification which allows to use a different
preconditioning at each GMRES iteration.
The GMRES algorithm with right preconditioning solves the modified system: (AM)y =
b and the solution of the system Ax = b is set with x = My . The Arnoldi process
constructs an orthonormal basis Vn of the preconditioned Krylov subspace:

Kn = span
{
r0, AMr0, . . . , (AM)n−1r0

}
.

and Vn is such that AMVn = Vn+1Hn+1,n . The approximate solution given by
GMRES is in this case given via

xn = x0 +MVnyn,

where yn is given by equation (2.5). The GMRES method with right preconditioning
updates the solution using a linear combination of the preconditioned vectors zi =
Mvi . When all these vectors are obtained by applying the same matrix M to
the vi we do not need to store them and the term MVnyn is given using the
associativity relation (MVn)y = M(Vny) . First we compute Vny , then we apply
the preconditioner.
In the flexible version of GMRES, referred to as FGMRES, the preconditioner varies
at each step. The update of the solution x is done at the price of storing the sequence
of vectors zi = Mivi .
The only difference with the classical GMRES is that we have to store the precon-
ditioned vectors zi and perform the update of the solution using these vectors.
We do not pursue furthermore the description of this algorithm but refer to [117]
for a complete exposition of the convergence theory; we only notice that contrary
to the classical GMRES a general convergence theorem cannot be proved.

2.4 The GMRES method with Deflated Restarting 107

2.4 The GMRES method with Deflated Restarting

It is well known that the convergence of Krylov subspace methods for linear equa-
tions depends to a large degree on the distribution of eigenvalues. Some small
eigenvalues in the spectrum can potentially slow down the convergence rate. In-
deed a clustered spectrum is a highly desirable property for the rapid convergence
of Krylov methods. In exact arithmetic the number of distinct eigenvalues would
determine the maximum dimension of the Krylov subspace. If the diameters of the
clusters are small enough, the eigenvalues within each cluster behave numerically
like a single eigenvalue, and we would expect less iterations of a Krylov method to
produce reasonably accurate approximations. Theoretical studies have related su-
perlinear convergence of GMRES to the convergence of Ritz values [133]. Basically,
convergence occurs as if, at each iteration of GMRES, the next smallest eigenvalue
in magnitude is removed from the system. As the restarting procedure destroys in-
formation about the Ritz values at each restart, the superlinear convergence may be
lost. Thus removing the effect of small eigenvalues in the preconditioned matrix can
have a beneficial effect on the convergence. Note that there are exceptions [68, 95].

Kharchenko and Yeremin [81] built a preconditioner for the matrix using approxi-
mate eigenvectors. Their preconditioner is based on a sequence of rank–one updates
that involve the left and right smallest eigenvectors. The method is based on the idea
of translating isolated eigenvalues consecutively group by group into a vicinity of one
using low–rank projections. After each restart of GMRES(nmax), approximations to
the isolated eigenvalues to be translated are computed by the Arnoldi process. The
isolated eigenvalues are translated towards one, and the next cycle of GMRES(m)
is applied to the transformed matrix. The effectiveness of this method relies on
the assumption that most of the eigenvalues of A are clustered close to one in the
complex plane. Erhel, Burrage and Pohl [46] developed a different preconditioner.
The preconditioner is based on a deflation technique such that the linear system is
solved exactly in an invariant subspace of dimension r corresponding to the smallest
r eigenvalues of A . This is improved upon by Burrage and Erhel [20] with a method
that keep improving the quality of the approximate eigenvectors, this algorithm is
called DEFLATION. A more general formulation of this preconditioner is given by
Carpentieri, Duff and Giraud [24]; it is described in detail in Section 3.3.2.3. These
three approaches use approximate eigenvectors generated during one GMRES cycle
(or an eigensolver used in a preprocessing phase). Morgan [93] compared DEFLA-
TION and GMRES–DR and concluded that, on his examples, DEFLATION in the
best case does as well as GMRES–DR and in some cases GMRES–DR performs
clearly better, this is explained by the fact that the approximate eigenvectors given
by GMRES–DR are more accurate than the ones computed by DEFLATION.

Information from the invariant subspace associated with the smallest eigenvalues and
its orthogonal complement are used to construct a preconditioner in the approach
proposed by Baglama, Calvetti, Golub and Reichel [8]. The algorithm proposed uses
the recursion formulae of the implicitly restarted Arnoldi (IRA) method described by
Sorensen [127]. In this way, the first k columns Vk of the Krylov space spanned by
Vn shall approximate the k eigenvectors associated with the k smallest eigenvalues.

108 Implementation of iterative methods

In [8] the matrix
M = Vk(Im + (V H

k AVk)−1)V H
k .

is used as a left preconditioner. Note that this formulation for the preconditioner is
the same as [46, 24], the difference is that in this latter situation the preconditioner
is updated at each restart by extracting new eigenvalues which are the smallest in
magnitude. Le Calvez and Molina [21] as well as Morgan [92] proposed algorithms
that are also based on IRA. The method proposed by Morgan [92] is called GMRES–
IR.
Wu and Simon [138] developed a method called thick–restart Lanczos for solving
symmetric eigenvalue problem. Morgan [92] adapted this work for solving unsym-
metric linear system, the resulting method is called GMRES–DR. In a sense, the
GMRES–DR is to the thick–restart Lanczos what GMRES–IR is to IRA.
We present here some details in our implementation of the GMRES–DR method.
A full description will be available in a Users’s Guide that is under writing. The
GMRES–DR algorithm is given in Algorithm 10.

2.4 The GMRES method with Deflated Restarting 109

Algorithm 10 The GMRES–DR algorithm.

1. Start. Choose n , the maximum size of the subspace, and k , the desired number of approx-
imate eigenvectors. Choose an initial guess x0 and compute r0 = b − Ax0 . The recast
problem is A(x− x0) = r0 . Let v1 = r0/‖r0‖ and β = ‖r0‖ .

2. First cycle. Apply standard GMRES(n): generate Vn+1 and Hn+1,n with the Arnoldi
iteration, solve min ‖c − Hn+1,nd‖ for d , where c = βe1 , and form the new approximate
solution xn = x0 + Vnd . Let β = hn+1,n , x0 = xn , and r0 = b−Axn . Then compute the

k smallest (or others, if desired) eigenpairs (θ̃i, g̃i) of Hn + |β|2H−H
n eneH

n . (The θ̃i are the
harmonic Ritz values.)

3. Orthonormalization of the first k vectors. Orthonormalize g̃i ’s, first separating into real and
imaginary parts if complex, in order to form an n –by– k matrix Pk . (It may be necessary
to adjust k in order to make sure that both real and imaginary parts of complex vectors are
included.)

4. Orthonormalization of the (k + 1) -th vector. First extend p1, . . . , pk (the columns of Pk)
to length (n + 1) by appending a zero entry to each. Then orthonormalize the vector
c − Hn+1,nd against them to form pk+1 . Note c − Hn+1,nd is the length (n + 1) vector
corresponding to the GMRES residual vector. Pk+1 is (n + 1) –by– (k + 1) .

5. Form portions of new H and V using the old H and V . Let Hnew
k+1,k = P H

k+1Hn+1,nPk

and V new
k+1 = Vn+1Pk+1 . Then let Hk+1,k = Hnew

k+1,k and Vk+1 = V new
k+1 .

6. Reorthogonalization of the (k + 1) -th vector. Orthogonalize vk+1 against the preceding
columns of the new Vk+1 .

7. Arnoldi iteration. Apply the Arnoldi iteration from vk+1 to form the rest of Vn+1 and
Hn+1,n . Let β = hn+1,n .

8. Form the approximate solution. Let c = V Hr0 and solve min ‖c − Hn+1,nd‖ for d . Let
xn = x0 + Vnd . Compute the residual vector r = b − Axn = Vn+1(c − Hn+1,nd) . Check
‖r‖ = ‖c−Hn+1,nd‖ for convergence and proceed if not satisfied.

9. Eigenvalue computations. Compute the k smallest (or others, if desired) eigenpairs (θ̃i, g̃i)
of Hn + |β|2H−H

n eneH
n .

10. Restart. Let x0 = xn and r0 = r . Go to 3.

2.4.1 Use of the Givens rotations.

Classically, we use the Givens rotations to obtain the QR–factorization of the Hes-
senberg matrix Hn+1,n in the GMRES cycle at step 2 and 7. This is already
described in Section 2.2.1.1. In particular the use of the Givens rotations enables
the user to know the norm of the residual at a low cost during the iterations. In
the GMRES–DR algorithm, the properties of the Givens rotations can be used to
efficiently compute the matrix

Hn + |β|2H−H
n ene

H
n (2.8)

needed at step 2 and 9.

110 Implementation of iterative methods

We recall that at step n , the QR–factorization of Hn+1,n writes

Hn+1,n = Θn+1

(
Tn

01,n

)
.

The matrix Θn+1 is unitary of order (n+1) and Tn is upper triangular of order n .
The matrix Θn+1 consists in the product of the n Givens rotations. Let us define
the matrix Un so that

Un =
(
In 0n,1

)
Θn+1

(
In

01,n

)
.

Un is the matrix of order n made with n first row and n first columns of Θn+1

We recall that the line n + 1 of of Θn+1 has n − 1 zeros and the n –th term is
− sinn , so we can write

Θn+1

(
In

01,n

)
=

(
Un

01,n−1 − sinn

)

Since
(
In 0n,1

)
ΘH

n+1Θn+1

(
In

01,n

)
= In , we have

(
UH

n

0n−1,1

sinn

) (
Un

01,n−1 − sinn

)
= In

So that

UH
n Un =

1
. . .

1
cos2

n

 (2.9)

Concerning the matrix Hn , we have

Hn =
(
In 0n,1

)
Hn+1,n

=
(
In 0n,1

)
Θn+1

(
In

01,n

)
Tn

= UnTn (2.10)

Back to equation (2.8), and using results (2.9) and (2.10) we obtain

Hn + |β|2H−H
n ene

H
n = Hn + |β|2U−H

n T−H
n ene

H
n ,

= Hn + |β|2Un

1
. . .

1
(cos2

n)−1

0
...
0

(tn,n)−1

 eH

n ,

= Hn + |β|2Un

0
...
0

(cos2
n tn,n)−1

 eH

n .

2.4 The GMRES method with Deflated Restarting 111

Also note that the residual c−Hn+1,nd needed at step 4 can also be obtained via

c−Hn+1,nd = Θn+1

0
...
0

γn+1,n+1

 .

2.4.2 Use of Householder transformations.

In order to obtain the estimate of the current residual at each step of the GMRES
cycle in step 7. The minimization of step 8 is performed using one Givens rotation
per column on the matrix Hn+1,n for j = k + 1, . . . , n . This requires to have the
QR–factorization of the first columns j = 1, . . . , p . Therefore before the GMRES
cycle, we perform a QR–factorization of the first p columns of Hn+1,n . We choose
to use Householder transformations to triangularize the (p + 1) –by– p non zeros
block Hp+1,p .
The i –th Householder transformation Ji writes

Ji = Ip+1 − 2βiyiy
H
i ,

and is fully determined by the vector yi and the modulus of βi . For the sake of
simplicity of exposure, we choose βi real. Let Qk denote the orthogonal factor
associated with the first k Householder transformations. We show below how to
efficiently compute QkV

H
j+1r0 .

First of all, r0 ∈ Vk+1 (see [93]). As the vectors Vj+1 are orthonormal, r0 ⊥ Vk+2,...n ,
we do not need to compute the k + 2, . . . , n entries of c = V H

j+1r0 , they are set to

zero. Consequently, the k + 2, . . . , n entries of QkV
H
j+1r0 are also set to zero.

It is also possible to show that the k first of QkV
H
j+1r0 are 0. This requires all the

results given by Morgan [93]. For a detailed description we refer to the forthcoming
Users’ Guide. Finally it appears that the only nonzero in QkV

H
j+1r0 is its (k+1) –th

entry, and its modulus is ‖r0‖2 , since it is real and positive, we set it directly from
one cycle to the next

QkV
H
j+1r0 = ek+1‖r0‖2,

where ek is the k –th vector of the canonical base.

2.4.3 The LU–matrix–matrix product

The GMRES–DR(n , k) method is always compared with GMRES(n) since both
methods use a Krylov spaces of dimension n . However at step 5. of Algorithm 10,
if the operation

V new
k+1 ←− Vn+1Pk+1, (2.11)

is performed in a classical way (e.g. subroutine zgemm of the BLAS in double
complex arithmetic) it requires (n + k + 2) vectors of size m . For that reason, we
propose to use the LU–matrix–matrix product so that operation (2.11) only requires
(n+ 1) vectors of size m .
The standard matrix–matrix product is given in Algorithm 11. The cost is (2n −

112 Implementation of iterative methods

Algorithm 11 standard matrix–matrix product algorithm.

1. for i = 1 : m,
2. for j = 1 : k,
3. wij = vinhnj

4. for l = 1 : n− 1,
5. wij = wij + vilhlj

6. end for
7. end for
8. end for

1)mk flops and the algorithm needs the workspace for V and W , that is (n + k)
vectors of size m .
In the case where k < n , the k first columns of V are not needed anymore
after the matrix–matrix product, consequently another algorithm is possible. For
the sake of generality and without loss of generality, we consider that the k first
columns of V are not needed after the product. The method is as follows. First
an LU–factorization of the matrix H is performed, then the product of V and L
is performed and the solution is stored in the k first columns of V . This is again
possible thanks to the triangular structure in L . Then the k first columns of V
are multiplied with U and the resulting matrix is stored on V . This is possible
thanks to the triangular structure in L . The algorithm is given in Algorithm 12.

Algorithm 12 LU–matrix–matrix product algorithm

1. LU-factorization

2. for p = 1 : k,
3. if hpp = 0 then stop
4. for i = p + 1 : m,
5. η = hip/hpp

6. for j = p + 1 : k,
7. hij = hij − ηhpj

8. endfor
9. hip = η
10. endfor
11. endfor
12. product V (1 : m, 1 : k)← V (1 : m, 1 : n)L(1 : n, 1 : k)
13. for j = 1 : k,
14. for i = j + 1 : n,
15. vj = vj + vjhij

16. endfor
17. endfor
18. product V (1 : m, 1 : k)← V (1 : m, 1 : k)L(1 : k, 1 : k)
19. for j = k : 1,
20. vj = vjhjj
21. for i = 1 : j − 1,
22. vj = vj + vjhij

23. endfor
24. endfor

The total cost is (2n− 1)mk+k2(n−k) +k(k− 1)(2k
3

+ 1
6
) flops, and the algorithm

does not need any extra vector a part from the n columns of V . The extra costs

2.4 The GMRES method with Deflated Restarting 113

compare to Algorithm 11 are mainly governed by the LU–factorization of the n –
by– k matrix H .
The LU–matrix–matrix product algorithm is particulary interesting when a matrix–
matrix product like the one in (2.11) has to be performed with k and n small. Note
that the particularity of operation (2.11) is that the first k columns of V are not
needed anymore once the matrix–matrix product has been performed.

2.4.4 Preliminary experimental results

In order to validate our GMRES–DR implementation, we use the test matrices
presented in Morgan [93] and cross-check our results. The test examples used here
are real, we then use the real double precision version of the GMRES–DR package.
In the next chapter, the matrices arising from electromagnetism are complex so that
the (double) complex version of the solvers is experimented.
The first matrix we considered is the example 1 of [93]. The GMRES–DR(15,5)
method is run on the matrix SAYLR4 from the Matrix Market1. It is described
as a Saylor’s petroleum engineering/reservoir simulation matrix arising from a 3D
reservoir simulation on a grid (33x6x18). The matrix is of order 3564 with 22316
entries and an incomplete LU factorization with no fill–in is used as preconditioner.
Note that the original matrix is symmetric but the preconditiner is not. The right–
hand side b is random. In Figure 2.1, GMRES–DR(15,5) is compared with full
GMRES and GMRES(15). We observe that, for the same amount of stored vectors
and matrix–vector products, GMRES–DR(15,5) clearly outperforms GMRES(15)
and is close to exhibit the same convergence behaviour as full GMRES.

0 10 20 30 40 50 60 70 80 90 100
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

full GMRES
GMRES(15)
GMRES−DR(15,5)

Figure 2.1: GMRES–DR(15,5), full GMRES and GMRES(15) are run on SAYLR4, a matrix of
order 3564 from Matrix Market.

1http://math.nist.gov/MatrixMarket/

114 Implementation of iterative methods

The second matrix we consider is the example 3 of [93]. The GMRES–DR(25,6)
method is run on the bidiagonal matrix with entries 0.01 , 0.1 , 1 , 2 , . . . , 997 ,
998 on the main diagonal and 1 ’s on the super diagonal. The right–hand side has all
1 ’s. No preconditioner is used. We shall point out that not only the GMRES–DR has
been implemented in the four arithmetics but also the FOM–DR [93] algorithm. In
Figure 2.2, we display the convergence history of six solvers applied to this matrix.
We note that the peaks of FOM–DR(25,6) (resp. full FOM, FOM(25)) coincide
with the plateaus of GMRES–DR(25,6) (resp. full GMRES, GMRES(25)) and that
the FOM variants behave globally as their GMRES counterpart. On that matrix

0 50 100 150 200 250 300 350
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

full gmres
gmres(25)
gmresdr(25,6)
full fom
fom(25)
fomdr(25,6)

Figure 2.2: A comparison of MINRES solvers (GMRES’s) and Galerkin projection solvers (FOM’s)
on the bidiagonal matrix with entries 0.01 , 0.1 , 1 , 2 , . . . , 997 , 998 on the main diagonal and
1 ’s on the super diagonal.

the deflated restarting strategy improves the classical restarted method but is still
outperformed by the full approach for the two solvers.

2.5 The seed–GMRES method 115

2.5 The seed–GMRES method

The principle of the Krylov subspace methods is to construct a Krylov subspace and
then to search for an approximate solution within this subspace that complies with
some optimality criterion. It is often admitted that the main effort resides in the
construction of the Krylov subspace. Indeed to generate a subspace of size n one
needs to perform at least (n− 1) matrix–vector products.
When dealing with multiple right–hand sides, the general governing idea is to use
the Krylov subspace associated with one right–hand side to satisfy not only its
associated optimum criterion but also the ones of the other right–hand sides. This
process is referred to as the seed–variants of the Krylov subspace methods. We
focus in this section on the seed–variant of GMRES, denoted by seed–GMRES. The
algorithm with right preconditioning is given in Algorithm 13.

Algorithm 13 The seed–GMRES algorithm with right preconditioning and restart(nmax).

1. Choose nmax , the maximum size of the subspace. For each right–hand side, b(`) , choose an

initial guess x
(`)
0 and compute r

(`)
0 = b(`) − Ax

(`)
0 . The recast problem is the error system

A(x(`) − x
(`)
0) = r

(`)
0 , choose a right–hand side k , the first on which a cycle of GMRES is

applied. Set Zp = (z1, . . . , zp) , p vectors of size m , to zero.

2. run one cycle of GMRES(nmax) with right preconditioning on r
(k)
0 , either it converges

in n = n1 step or stops after n = nmax steps. This GMRES cycle provides us with
Vn+1 , that has orthonormal columns, and Hn+1,n such that AVn = Vn+1Hn+1,n . The

approximate solution for the k -th system writes xn = x
(k)
0 + MVny

(k)
n but is not computed

as such. The vector zk is updated via zk = zk + Vny
(k)
n and the residual can be formed

via r
(k)
n = r

(k)
0 − Vn+1Hn+1,ny

(k)
n . If the k -th system has converged, form the approximate

solution x(k) = x
(k)
0 + Mzk . If all the systems have converged, stop.

3. For each right–hand side ` 6= k that has not converged, form c(`) = V T
n+1r

(`)
0 and compute

y
(`)
n the solution of the least squares problem miny ‖Hn+1,ny − c(`)‖2 . Compute z` =

z` + Vny
(`)
n and the residual r

(`)
n = (Im − Vn+1V

T
n+1)r

(`)
0 + Vn+1(c

(`) − Hn+1,ny
(`)
n). If the

system ` has converged, form the approximate solution x(`) = x
(`)
0 +Mz` . If all the systems

have converged, stop.

4. For each right–hand side ` that has not converged, set r
(`)
0 = r

(`)
n . Choose a vector to run

a cycle of GMRES. Traditionaly we take the first ` in the list k, k + 1, . . . , p so that the
system ` has not converged and go to step 2.

The design of Algorithm 13 has two particularities that aim at reducing the compu-
tational effort at a low extra storage cost. The right preconditioning is implemented
via the storage of the vectors z` . The preconditioning operation that gives back the
solution of the original system is performed only once at the end of the algorithm

to form x(`) = x
(`)
0 + Mz` . An alternative would be to compute the approximate

solutions x
(`)
n = x

(`)
0 + MVny

(`)
n after each minimization. We have rather chosen to

store the block vector z of size m –by– p rather than to perform a preconditioning
step at each minimization.

At step 3, an updated residual r
(`)
0 is needed. This residual can be computed

116 Implementation of iterative methods

either with the explicit formula r
(`)
0 = b − Ax(`)

0 , or with the implicit computation

r
(`)
n = (Im − Vn+1V

T
n+1)r

(`)
0 + Vn+1(c

(`) − Hn+1,ny
(`)
n) . We have chosen to store the

block vector r0 of size m –by– p and to perform the implicit computation rather
than to perform a matrix–vector product at each minimization as for the explict
computation.
From a memory point of view, we need a total storage of nmax + 4p vectors; namely
p right–hand sides (b), p initial guesses (x0), p residuals (r0), p vectors (z) and
the nmax Krylov vectors (v). The extra storage compared to a classical approach
with the explicit updates is 2p vectors. In large calculation, this extra storage is
largely compensated by the saved computational time.

2.6 The block–GMRES method 117

2.6 The block–GMRES method

In many circumstances, it is desirable to work with a block of vectors instead of a
single vector. This can be achieved by using the block generalizations of the Krylov
subspaces methods, for which A always operates on a group of vectors instead of
on a single vector. Moreover the block generalizations of Krylov subspaces methods
enable the vectors to share their Krylov space with each other, consequently the
convergence is expected to occur sooner.
Each Krylov methods has its block variant. O’Leary [97] gave the block variants
for the Conjugate Gradient, Freund and Malhotra [55] derived the block–QMR al-
gorithm, etc ... In this section, and in the manuscript in general, we only focus
on the block–GMRES method. The origin of the block–GMRES method is often
attributed to Vital [134]. Saad [119] also gives a description of the algorithm.

2.6.1 General overview of the block–Arnoldi method

The block generalization of the Arnoldi algorithm can be simply described as the
Arnoldi algorithm for a single vector where all the single vectors are replaced by block
vectors of size p . The entries of the Hessenberg matrix in the Arnoldi algorithm
are replaced by blocks of size p –by– p , and the normalization in the Gram–Schmidt
version is replaced by a factorization. At each step n , this factorization is in general
either based on an SVD, in that case the Hessenberg matrix Hn+p,n has a block
structure with square block of size p and is block Hessenberg with a block bandwith
of 1 ; or based on a QR–factorization, in which case the matrix Hn+p,n is Hessenberg
with a bandwidth p . Starting with an initial block Vp with orthonormal columns,
the block–Arnoldi algorithm constructs in s = n/p steps, the vectors Vn+p such
that

V H
n+pVn+p = I1:n+p,

AVn = Vn+pHn+p,n.

The vectors Vn span the block–Krylov space

Kn(A, Vp) = span(Vp, AVp, A
2Vp, . . . , A

s−1Vp).

2.6.2 Ruhe’s variant of block–GMRES

We can also define the block–Krylov space Kn(A, Vp) when n is not a multiple of
p . From the Euclidean division in IN , we define s1 and s2 , the two unique integers
such that s1 ≥ 0 , p > s2 ≥ 0 and n = s1p+s2 . The block–Krylov space Kn(A, Vp)
is

span(Vp, AVp, A
2Vp, . . . , A

s1−1Vp, A
s1Vs2).

This can be constructed using the Ruhe’s variant of block–Arnoldi algorithm [111]
that considers the individual vector rather than a set of size p . In the Ruhe’s
variant, the factorization of the block that corresponds to the normalization step
in single vector Arnoldi is necessarily a QR–factorization. In the remaining of our
work, we take the notation of the Ruhe’s variant. In particular, this means that

118 Implementation of iterative methods

each step consists in increasing by one the dimension of the Krylov space instead of
p in the general block–GMRES presentation [116].

We give a brief description of the block–GMRES algorithm. In this description, b ,
x , x0 , r0 stands for the m –by– p matrices such that, for instance, b = (b(`))`=1,...,p ,
where b(`) is the ` -th column of b .

If we have to solve the p linear systems,

Ax = b

with the initial guess x0 then we set the initial residual to

r0 = b− Ax0.

The block–GMRES method is based on the block–Arnoldi algorithm as the GMRES
method is based on the Arnoldi process. In a first step, we construct an orthonormal
basis, Vp , for r0 (we assume that r0 has full rank) such that we have

r0 = Vpβ,

where β is a p –by– p matrix, β = (β(`))`=1,...,p . Then the block–Arnoldi algorithm
is developed with the starting block Vp . At each step n , the block–Krylov space
Kn(A, b) is built and we minimize, for each ` , the least–squares problem:

min
x∈x

(`)
0 +Kn(A,r0)

‖b(`) − Ax‖2. (2.12)

The exact solutions of the problem are found in at most m steps. That requires
at most m/p matrix–vector products per right–hand side. We mention that the p
least–squares problems can also be writen in the following block form as a single
least–squares problem

min
x∈x0+Kn(A,r0)

‖b− Ax‖E, (2.13)

where E denotes the Frobenius norm and x0 +Kn(A, r0) denotes the set of vectors

(x
(`)
0 +Kn(A, r0))`=1,...,p .

If p GMRES methods are performed simultaneously, then, after the step s , they
have performed ps matrix–vector products and for each right–hand side ` , the

residual is minimized on Kn(A, r
(`)
0) . At step n = ps of the block–GMRES method,

ps matrix–vector products have also been performed, for each right–hand side ` , the

residual is minimized on ⊕sKs(A, r
(`)
0) = Kn(A, r0) . Consequently the approximate

solutions given by the block–GMRES method are expected to be better than the
solutions given by the p individual GMRES since the residuals are minimized on a
larger space.

When describing the block–GMRES algorithm, we assume that the p initial resid-
uals r0 are linearly independent. Given r0 , the p initial residuals, it may happen
that they are linearly dependent. The remedy in that situtation is detailed in Sec-
tion 3.6. For the remaining of this section we assume that r0 has full rank.

2.6 The block–GMRES method 119

2.6.3 The least–squares solution

In practice, the least squares problem (2.12) is solved as follows. The approximate
solution at step n , xn ∈ x0 + Kn(A, r0) , writes xn = x0 + Vnyn , where yn is
n -by– p , and we have

b− Axn = r0 − AVnyn,

= Vn+p(

(
β

0n,p

)
−Hn+p,nyn). (2.14)

We perform p Givens rotations per column on the matrix Hn+p,n to obtain its
QR–factorization

Hn+p,n = Θn

(
Tn

0p,n

)
.

In equation (2.14), this gives

b− Axn = Vn+pΘn(

(
gn

τn

)
−

(
Tn

0p,n

)
yn),

where

(
gn

τn

)
= ΘH

n

(
β

0n,p

)
, gn is an n –by– p matrix and τn is a p –by– p

matrix. Since the matrices Vn+p and Θn have orthonomal columns, the p least
squares problems (2.12) are solved by

x(`)
n = x

(`)
0 + Vny

(`)
n

where y
(`)
n corresponds to the ` -th solution of the triangular system Tny

(`)
n = g

(`)
n .

The block residual is rn = b− Axn and we have

rn = b− Axn = Vn+pΘn

(
0n,p

τn

)
.

Consequently, the norm of the residual associated with the system ` is

‖r(`)
n ‖2 = ‖τ (`)‖2. (2.15)

The p –by– p matrix τ is a by–product of the block–GMRES algorithm, and so
equation (2.15) enables us to control the norm of the residuals without computing
them explicitly. As we shall see, this is particulary useful to control the stopping
criteria.
As GMRES, it may be necessary to restart the block–GMRES method. The gener-
alization follows directly from the classical GMRES case.

2.6.4 1/p–happy breakdown in the block–GMRES algorithm.

The classical Arnoldi process may breakdown. The breakdown indeed occurs when
Avn ∈ Kn−1(A, r0) . This means that the Krylov space Kn−1(A, r0) has reached its
maximal size and is an invariant space. The name breakdown corresponds to the
fact that, when the Gram–Schmidt orthogonalization process is used, the orthogonal

120 Implementation of iterative methods

projection of Avn on the orthogonal complement of Kn−1(A, r0) is w = 0 and so the
computation of the vector vn+1 = w/‖w‖2 would result in a breakdown. However,
this breakdown also implies that the solution of Ax = b belongs to Vn , the solution
is then found which gives rise to the name happy breakdown.
Similarly, the block–Arnoldi algorithm process may also breakdown. The conse-
quences for the block–GMRES algorithm are not so heartening (indeed we show
that they only are “ 1/p happy”).
As in the Arnoldi algorithm, the breakdown in the block–Arnoldi algorithm corre-
sponds to the event

Avn ∈ Kn−1(A, r0). (2.16)

Let us examine the implications of statement (2.16) in the block–GMRES algorithm.
We assume that no breakdown has occured until step n . This means that for all
j = 1, . . . , n− 1 , hj+p,j 6= 0 and so

Rank

((
β

0n−1,p

)
Hn+p−1,n−1

)
= n+ p.

At step n , the breakdown implies

AVn = Vn+p−1Hn+p−1,n.

We also have

span

(
β

0n−1,p

)
∩ span(Hn+p−1,n) = span(z(1)),

where z(1) is a vector of size (n+ p− 1) that is defined by

z(1) =

(
β

0n−1,p

)
w(1) = Hn+p−1,nt

(1). (2.17)

Multiplying equation (2.17) by Vn+p−1 and denoting u(1) = Vnt
(1) we have

bw(1) = Au(1).

When a breakdown occurs in the block GMRES algorithm, this implies that a linear
combination bw(1) of the right–hand sides b has converged. Note that t(1) = ynw

(1)

so that the vectors u(1) verifies u(1) = Vnynw
(1) = x

(1)
n w(1) .

At step n+1 , the vector vn+p is generated using Avn+1 . Let pn denotes the current
bandwith at step n . We have pn−1 = p and pn = p− 1 . Each time a breakdown
occurs, the current bandwidth of the Hessenberg matrix decreases by one and a
new linear combination of the right–hand sides has a solution in the Krylov space.
A new linear combination has to be understood as a linear combination w(n−pn+1)

independent of the previous (w(j))j=1,...,n−pn . Eventually it happens that the current
bandwdith at step n is 0 ; p independent linear combinations of the right–hand
sides have a solution in the Krylov space, so all the sytems are solved.
The breakdown occurs at each n such that

hn+pn,n = 0. (2.18)

2.6 The block–GMRES method 121

In order to check whether a breakdown has occured, and to take into account the
round–off errors, we implement the following criterion

|hn+pn,n| ≤ toldef/‖Avn‖2. (2.19)

When this criterion is satisfied, we act as in the exact arithmetic case, the vector
vn+pn is not generated from Avn but from Avn+1 . The action of throwing away a
vector in the Krylov sequence is called deflation.

2.6.5 Deflation in the residuals

The deflation of a Krylov vector in the block–GMRES algorithm implies that a
linear combination of the right–hand sides has converged. Let us assume that the
first deflation occurs at step n . This means that the rank of the columns of the
residual rn = b− Axn is (p− 1) and we have

rnw
(1) = (b− Axn)w(1) = 0m ⇔ τnw

(1) = 0p. (2.20)

Another criterion for checking the breakdown in exact arithmetic is therefore

σpn(τn) = 0, (2.21)

where σp(τn) denotes the largest singular value of τn . We recall that τn is a
by–product of the algorithm.
When a deflation is detected in the residuals, for the block–QMR algorithm, Fre-
und and Malhotra [55] extracted a residual from rn (and τn). Let say the ` –th
is extracted. They also store the solution u(1) that corresponds to the linear com-
bination that has converged u(1) = Vnynw

(1) and the vectors w(1) . Note that the
vectors rn and τn have now pn = (p− 1) columns. Extracting a column of rn is
referred to as deflation of residuals. The process continues. Each time a breakdown
occurs, a column is extracted. Eventually at step n , p breakdowns have occured
and the process stops. Since

Aun = bwn,

the solution xn is given via
xn = unw

−1. (2.22)

The p –by– p matrix w is triangular (up–to a permutation) and has full rank.
The deflation of the residuals introduced by Freund and Malhotra [55] for the block–
QMR algorithm holds also for the block–GMRES algorithm. We have implemented
and experimented it. It happens that the choice of ` , the residual to be deflated at
step n , is important in order to have w well–conditioned. In that respect Freund

and Nachtigal suggested to take ` such that |w(n−pn+1)
` | = maxj |w(n−pn+1)

j | . In the
block–QMR algorithm, the residual plays an important role. If the residuals are
strongly linked this deteriorates considerably the biorthogonality relations and so
affects directly the convergence of the method. In the block–GMRES algorithm, the
block–Arnoldi process is completely decoupled from the minimization process. If the
residuals are strongly linked, it does not influence the quality of the block–Arnoldi
process. Equation (2.22) is potentially dangerous for the quality of the recovered

122 Implementation of iterative methods

solutions and the suitable selection of the residual to be deflated is not clear. For
stability reasons, we have therefore chosen in our implementation to only deflate the
residuals upon the individual criterion

‖b− Ax(`)
n ‖2

α(`)‖x(`)
n ‖2 + β(`)

≤ tol`. (2.23)

This criterion is not checked at each step but evaluated through

‖τ (`)
n ‖2

α(`)‖x(`)
n ‖2 + β(`)

≤ tol`.

This is closely related to the standard stopping criterion defined in Section 2.1.2
A final remark is to note that, in exact arithmetic, the criterion (2.18) and the
criterion (2.21) are equivalent; that is:

σpn(τn) = 0⇔ hn+pn,n = 0.

In Section 2.6.6.1, we show that , for j = 1, . . . , p , σj(τn) is strongly related

to σn−j+p+1

((
β

0n,p

)
Hn+p,n

)
. In exact arithmetic, the number of zero diagonal

entries in a triangular matrix gives the number of zero singular values. However,
it is well known that due to round–off and to the global ill–conditioning in the
triangular matrices, the number of small singular values is greater than the number of

small diagonal entries. In practice this holds for

((
β

0n,p

)
Hn+p,n

)
. Consequently,

σj(τn) is poorly related to the j –th smallest diagonal entry of this matrix. The
deflation in the residuals is decorrelated from the deflation in the Arnoldi procces.
In Section 3.7.2.2, we experiment a deflation strategy on the Arnoldi vectors that is
based on a criterion on the residual (namely criterion (2.23)).

2.6.6 Choice of the vectors in the Arnoldi sequence

In this paragraph, we describe how the Krylov space grows; that is, what is the
strategy to select the next vector to be involved in the Arnoldi process. For the
sake of clarity of exposure, we will ignore the problem related to the deflation and
consider that deflation does not occur.
In paragraph 2.6.1, we have described the block–GMRES algorithm so that at step
n , it generates vn+p by normalizing w once it has been orthogonalized against
Vn+p−1 ; w is computed by the matrix–vector product

w ←− Avn.

From this scheme, we say that the Krylov vector vn+p is the son of vn . All the
Krylov vectors are the sons of the p initial vectors that are the columns of Vp .
In the example of the classic block–GMRES, any vector vs1p+s2 , with s1 ≥ 0 and
p > s2 ≥ 0 , is the son of the vector vs2 . The vector vs2 is called the root of vs1p+s2 .
Each root vector ` has a succession of sons that eventually ends to what we call the

2.6 The block–GMRES method 123

youngest son of ` . In that respect, we have p chains that link the Krylov vectors,
each vector belongs to a unique chain and each chain has one root and one youngest
son.
In the classic block–GMRES, the youngest sons of the root vectors are taken cycli-
cally 1, 2, . . . , p, 1, 2, . . . to generate the successive Krylov vectors. However, we can
choose any of the youngest sons as the next vector. If, at step n , the youngest son
vj is chosen to generate vn+p then we set γ(n) = j . γ is an injective integer–
valued function defined for k = 1, . . . , n that takes its values in 1, . . . , n + p − 1 .
The p values in 1, . . . , n+ p− 1 that have no antecedent with γ correspond to the
youngest sons. The function γ enables us to track the history of the run, thanks to
this function we write

AVγn = Vn+pHn+p,n,

where Vγn = (Vγ(1), . . . , Vγ(n)) . Of course the relation V H
n+pVn+p = In+p still holds.

These variants of the block GMRES algorithm can, in some sense, be related with
the flexible variant of GMRES, in this case Z = Vγn . In the block variant Z does
not need to be stored explicitly, we only need γ to recover the solutions.
We consider three strategies to choose the next youngest son in the Arnoldi process.
They give rise to three variants of block–GMRES, namely:

Classical block–GMRES: the youngest son is chosen cyclically as in the classic
block–GMRES.

Depth-first block–GMRES: we always use the youngest son of a given root until
the associated right–hand side converges, then we apply the same strategy to
the next root. Using this terminology, the above classical block–GMRES could
also be called breadth-first block–GMRES.

Largest-norm first block–GMRES: we select the youngest son of the root that
is associated with the right–hand side that has the largest residual norm.

We can also introduce a fourth strategy that is somehow a continuum between
the block and the seed GMRES, that is referred to as the continuum seed–block
GMRES method. It somehow follows the deep first block–GMRES strategy. The
complete block vector r0 is not included in the Krylov space from the beginning
but at run-time; one column at a time, once the linear system associated with the
previous column has converged. The algorithm is as follows. Starting from the first

initial residual r
(1)
0 , the GMRES iterations built the Krylov space V

(1)
n1+1 , we stop at

the n1 –th iteration when the stopping criterion threshold is achieved. The Arnoldi

relation writes
(
r
(1)
0 , AV

(1)
n1

)
= V

(1)
n1+1Rn1+1 where V

(1)
n1+1 has orthonormal columns

and Rn1+1 is upper triangular. Then we insert the second initial residual r
(2)
0 to

obtain v
(2)
1 and then for j = 1, 2, . . . computes the vectors v

(2)
j+1 via an Arnoldi–like

process to obtain
(
r
(1)
0 ,ZV

(1)
n1 , r

(2)
0 , AV

(2)
j

)
=

(
V

(1)
n1+1, V

(2)
j+1

) (
R

(1)
n1+1

0
R

(2)
j+1

)
where

(
V

(1)
n1+1, V

(2)
j+1

)
has orthonormal columns and

(
R

(1)
n1+1

0
R

(2)
j+1

)
is upper triangular.

At each step j , we minimize ‖r(2)
0 − ZJ‖2 on

(
V

(1)
n1 , V

(2)
j

)
, the minimization is

124 Implementation of iterative methods

performed via Givens rotations on the Hessenberg matrix given by

(
R

(1)
n1+1

0
R

(2)
j+1

)

where the first columns of R
(1)
n1+1 and R

(2)
j+1 have been removed. Note that this

Hessenberg matrix has a subdiagonal bandwidth of size 1 for the part associated

with R
(1)
n1+1 and a subdiagonal bandwidth of size 2 for the part associated with

R
(2)
j+1 . The process goes on until all the right–hand sides have converged. We recall

that, in exact arithmetic, using this process, we compute the block–Krylov space
for the block of vectors b . This algorithm may be viewed also as a variant of
the seed-GMRES algorithm. We note that this algorithm is close to the algorithm
given in [30, sec. 4.2]. We illustrate the numerical behaviour of this algorithm in
Section 3.7.2.1. To conclude about the possible links between block variants and seed
variants, we mention that it is possible to define the seed–block–GMRES method,
the block methods is embedded in a seed process. For the QMR solver this method
is studied in [85].
The strategy to select the next Arnoldi vector can symmetrically be used to define
deflation strategy in the Arnoldi process. An example of a such a strategy is il-
lustrated in Section 3.7.2.2. The strategy consists in stopping to use any youngest
associated with a root right-hand sides that has converged.

2.6.6.1 An insight on the relation between the singular values of rm and those of

the Hessenberg matrix.

2.6.6.1.1 The classical GMRES context: for the solution of one right hand side the
least squares problem in GMRES writes

min
y∈ �

n
‖e1β −Hn+1,ny‖2.

If we denote by Un+1 =

((
β
0n

)
Hn+1,n

)
it becomes

min
y∈ �

n
‖Un+1

(
1
y

)
‖2. (2.24)

It is interesting to relate this problem with

min
µ ∈ Cn

λ ∈ C

‖µ‖22 + |λ|2 = 1

‖Un+1

(
λ
µ

)
‖2. (2.25)

Problem (2.25) amounts to find the singular vector associated with the smallest
singular value of Un+1 . Problem (2.24) amounts to minimize U on the affine hy-

perplane x such that eT
1 x = 1 , the solution is denoted

(
1
y

)
. The value of the

minimization is the norm of the residual of GMRES at step n , that is ‖rn‖2 . Prob-
lem (2.25) amounts to minimize Un+1 on the unit sphere, the solution is denoted

2.6 The block–GMRES method 125

(
λ
µ

)
, the value of the minimization is the smallest singular value of Un+1 , that is

σn+1(Un+1) . In Figure 2.3, a geometrical interpretation of these two minimization

problems is given. From the picture, if λ is not too small then the vectors

(
1
y

)

and

(
λ
µ

)
are close, the two values of the norm of Un+1 applied to those vectors

should also be close. Let assume λ 6= 0 , on one hand we have

σn+1(Un+1) = ‖Un+1

(
λ
µ

)
‖2 = λ‖Un+1

(
1

µλ−1

)
‖2 ≥ λ‖rn‖2.

On the other hand, we have

‖rn‖2 = ‖Un+1

(
1
y

)
‖2 ≥

√
1 + ‖y‖2σn+1(Un+1).

Therefore we can write

σn+1(Un+1)
√

1 + ‖y‖2 ≤ ‖rn‖2 ≤ σn+1(Un+1)λ−1.

This formula has to be related with the work of Strakǒs and Paige [100]. Indeed they
have developed a more accurate study and manage to relate λ with the condition
number of the matrix A . In this manuscript, we stick to this approach and assume
λ 6= 0 .

PSfrag replacements

µ

SVD
GMRES

y

�

� n

λ

Figure 2.3: Link between the least squares problem and the smallest of singular value problem.

This result links the norm of the residual with the smallest singular value of the up-
per triangular matrix U . When the convergence occurs in GMRES (‖rn‖2 small),
we expect U to be ill–conditioned. This result is useful to understand the GMRES
algorithm with the modified Gram–Schmidt orthogonalization process. The QR–
factorization of (b, AVn) results in Vn+1Rn+1 . Björck [13] shown that the loss of

126 Implementation of iterative methods

orthogonality among the column of Vn+1 is related, in the modified Gram–Schmidt
algorithm, with the smallest singular value of Rn+1 . Drkošová, Greenbaum, Ro-
zložńık and Strakoš [43] used these two results to show that the loss of orthogonality
in the GMRES algorithm with the modified Gram–Schmidt orthogonalization only
occurs at the convergence. Consequently, the effect of the loss of orthogonality is
not problematic regarding the solution of the linear system.

2.6.6.1.2 The block-GMRES context: in that framework, we derive a similar result
for the block–GMRES algorithm. At step n , we give a relation between the p
singular values of rn and the p smallest singular values of Rn+p

First of all,

rn = Vn+pRn+p

(
1
−yn

)
.

Consequently, for k = 1, . . . , p we have the following inequality on the singular
value [77, p. 427]

σk(rn) ≥ σn+k(Rn+p)σp(

(
1
−yn

)
).

This gives

σk(rn) ≥ σn+k(Rn+p)
√

1 + σp(yn)2. (2.26)

On the other hand, we recall that, using the givens rotations, Θn , we obtain

Rn+p = Θn

(
gn Tn

τn 0p,n

)
and rn = Vn+pΘn

(
0n,p

τn

)
.

From the last expression, we recall that the p singular values of τn are the p
singular values of rn , for all ` = 1, . . . , p ,

σ`(rn) = σ`(τn).

We denote the p singular vectors associated with the p smallest singular values of
Rn+p , (

λn

µn

)
,

where λn is a p –by– p matrix, µn an n –by– p matrix and λH
n λn +µH

n µn = Ip . we
can write

Θn

(
gn Tn

τn 0p,n

) (
λn

µn

)
= unΣn,

where Σn is the diagonal matrix with the singular values (σn+1(Rn+p), . . . , σn+p(Rn+p))
on the diagonal, and un corresponds to the left singular vectors. We obtain

Θn

(
gnλn + Tnµn

τnλn

)
= unΣn.

Assuming λn nonsingular, we consider the matrix

Θn

(
gn + Tnµnλ

−1
n

τn

)
= unΣnλ

−1
n .

2.6 The block–GMRES method 127

Therefore the p singular values of τn satisfy, for all ` ,

σk(τn) ≤ σk(unΣnλ
−1
n) = σk(Σnλ

−1
n) ≤ σn(λn)−1σn+k(Rn+p) (2.27)

Finally equation (2.26) and equation (2.27) gives us
√

1 + σp(yn)2σn+k(Rn+p) ≤ σk(rn) ≤ σn(λn)−1σn+k(Rn+p). (2.28)

Assuming λn well–conditioned, we see that the convergence of the singular values
of the block residual rn are strongly linked with the convergence of the p smallest
singular values of Rn+p . In Figure 2.4, we give a numerical illustration of this
fact. The numerical experiment corresponds to the solution of a linear system with
5 right-hand sides, in each of the 5 sub-plots we display the 5 smallest singular
values of rn and Rn+p of same index when n , the iteration number, varies. It
can effectively be seen that, in each sub-plot, the curves match and simmutaneously
drop from a value close to 1.0 to a value close to machine precision; this happens
when a convergence is observed. It can be seen that the first convergence occurs at
the second iteration (bottom sub-plot), the second at iteration 5 , and the last three
at iteration 10 .

0 1 2 3 4 5 6 7 8 9 10
10

−20

10
0

0 1 2 3 4 5 6 7 8 9 10
10

−20

10
0

0 1 2 3 4 5 6 7 8 9 10
10

−20

10
0

0 1 2 3 4 5 6 7 8 9 10
10

−20

10
0

0 1 2 3 4 5 6 7 8 9 10
10

−20

10
0

5 right–hand sides.

Figure 2.4: The convergence during the iterations of the block–GMRES method of the singular
values of the block residual rn (O) is strongly linked with the evolution of the p smallest singular
values of Rn+p (4).

When the first linear combination of the right–hand sides converges, this implies
Rn+1 is ill–conditioned. When the block–GMRES algorithm with modified Gram–
Schmidt is run, we observe that an important loss of orthogonality appears in the
set of vectors Vn+p . However, in the block case, (p − 1) linear combinations still
have to converge and the consequences of the loss of orthogonality may be more

128 Implementation of iterative methods

dangerous. In all our block implementation, we let the choice between the four
orthogonalization scheme CGS, MGS, CGS2(K) and MGS2(K) but we highly
recommend the reorthogonalization schemes.
A consequence of equation (2.28) is that at convergence we expect p small singular
values in Rn+p ; this property is also exploited in Section 1.6.2.2.3.
Finally we note that the condition number of the matrix λn is related to the condi-
tion number of the matrix Hn+p,n . In the single vector case, the condition number
Hn+1,n is bounded by the one of A . In the block case, such a rule does not hold
and even if A is well–conditioned it is possible for Hn+p,n to be ill–conditioned

III

Chapter 3

The Electromagnetism Application

3.1 Presentation of the electromagnetism problem

In the last decade, a significant amount of effort has been spent on the simulation of
electromagnetic wave propagation phenomena to address various topics ranging from
radar cross section, to electromagnetic compatibility, stealth, absorbing materials,
and antenna design. In Figure 3.1, we illustrate one application of such a calculation
that helps the car manufacturer to locate the best position for an antenna on a car.
Two complementary approaches based on the solution of the Maxwell equations

Figure 3.1: Representation of the electric current due to an antenna on the Citroën C5 car (courtesy
of G. Sylvand, inria cermics).

are often adopted for tackling these problems. The first approach utilizes finite
differencing in the time domain. The second one operates in the frequency domain.
The latter approach offers two main advantages: (a) it does not require truncating
the infinite spatial domain surrounding the scattering object which implies the use
of approximate boundary conditions, and (b) it requires discretizing only the surface
of the scattering object. On the other hand, the frequency domain approach leads
to singular integral equations of the first kind, the discretization of which with
boundary elements results in linear systems with complex and dense matrices which

132 The Electromagnetism Application

are quite challenging to solve.
The Boundary Element Method (BEM) has been successfully employed in the nu-
merical solution of this class of problems, proving to be an effective alternative to
common discretization schemes like Finite Element Methods (FEM’s), Finite Differ-
ence Methods (FDM’s) or Finite Volume Methods (FVM’s). The idea of BEM is to
shift the focus from solving a partial differential equation defined on a closed or un-
bounded domain to solving a boundary integral equation over the finite part of the
boundary. The discretization by BEM results in linear systems with dense complex
matrices. The coefficient matrix can be symmetric non-Hermitian in the Electric
Field Integral Equation formulation (EFIE), or unsymmetric in the Combined Field
Integral Equation formulation (CFIE) (see [103] for further details). The unknowns
are associated with the edges of an underlying mesh on the surface of the object.
With the advent of parallel processing, this approach has become viable for large
problems and the typical problem size in the electromagnetic industry is continu-
ally increasing. Nevertheless, nowadays, many problems can no longer be solved by
parallel out-of-core direct solvers as they require too much memory, CPU and disk
resources and iterative solvers appear as a viable alternative. In our work, we will
mainly consider the EFIE formulation that usually gives rise to linear systems that
are more difficult to solve with iterative methods. Another motivation to focus only
on EFIE formulation is that it does not require any restriction on the geometry of
the scattering obstacle as CFIE does, and, in this respect, is more general.

3.1.1 Background on the electric field–integral equation formulation

Let Γ be a metallic scatter. We suppose that the surface of Γ is discretized with
triangles. The mesh has mT triangles and m edges. We denote by rΓ the radius
of the smallest ball that completely encompasses the object. We set the origin of
the coordinates at the centre of this ball. If λ is a wavelength, we denote the wave
number by

k =
2π

λ
.

The frequency is F = c/λ where c is the light velocity in the vacuum.
From Γ and its mesh, we construct a space of functions Vh . The dimension of this
space is finite and equal to the number of edges,

Vh = Span
{
~Ψ`(x); 1 ≤ ` ≤ m

}
.

The ~Ψ`(x) ’s are the basis functions; we choose the standard basis functions for
this type of problem: those of Raviart–Thomas [107]. Note that a few years later,

they were rediscovered by Rao–Wilson–Glitton [106]. Each basis function ~Ψ`(x)
is associated with an edge e` and its value is zero everywhere except on the two
triangles Te+

`
and Te−`

that share the edge e` . On these two triangles, ~Ψ`(x) is

defined by

~Ψ`(x) = ε

−−−−−→
x− AT ε

e`

2 · area(T ε
e`

)
, x ∈ T ε

e`
,

3.1 Presentation of the electromagnetism problem 133

*
x

Figure 3.2: Representation of the vector basis function associated with the ` -th edges. The
function is nonzero only on the two adjacent triangles T +

e`
and T−

e`
where the norm of its value is

depicted.

where ε = ± . Figure 3.2 is an illustration of one this basis function ~Ψ`(x) .
In the notation Vh , h represents a typical length of an edge, for example the largest
one, this highlights the fact that Vh is an approximation subspace.
The EFIE can be written as follows. If ~E inc(x) is some incident field, the problem
is

Find ~Jh(x) ∈ Vh such that for each test function ~J test
h (x) ∈ Vh,

−

���
Γ×Γ

ikZ0
eik|y−x|

4π|y − x| � ~Jh(x) · ~Jtest
h (y) −

1

k2
divΓ

~Jh(x)divΓ
~Jtest
h (y) � ds(x)ds(y)

=

�
Γ

~Einc(x) · ~Jtest
h (x)ds(x). (3.1)

Here, divΓ
~Jh(y) denotes the surface divergence (it is a scalar number). · is the

usual dot product in R3 and Z0 is the impedance of the vacuum.
By writing ~Jh(x) in terms of the basis functions, we get

~Jh(x) =

m∑

`=1

J`
~Ψ`(x).

The J` ’s are the components of ~Jh(x) in ~Ψ`(x) . They can be interpreted as the

flux of the current ~Jh(x) across the edges.

TThe variational equation (3.1) holds for any basis function ~Ψ`(x) . The choice

of taking the same basis for decomposing ~Jh(x) and for the test function is not

134 The Electromagnetism Application

mandatory but simplifies the problem. This gives a linear system of order m where
the unknowns are J` , 1 ≤ ` ≤ m . The m linear equations are

m∑

`=1

Zj,`J` = Fj, 1 ≤ j ≤ m.

In matrix form, this gives
ZJ = F, (3.2)

where the entry (j, `) of Z is

Zj,` = −
∫ ∫

Γ×Γ

ikZ0
eik|y−x|

4π|y − x|

(
~Ψj(x) · ~Ψ`(y)− 1

k2
divΓ

~Ψj(x)divΓ
~Ψ`(y)

)
, (3.3)

and the entry j of F is

Fj =

∫

Γ

~E inc(x) · ~Ψj(x)ds(x). (3.4)

3.1.2 Plane wave scattering and monostatic calculation

In radar applications, the incident field is taken as a plane wave. The general
expression of such a wave is

~E inc(x, ϕ, pθ, pϕ) = (pθ)ûθe
ikx·ûr(ϕ) + (pϕ)ûϕe

ikx·ûr(ϕ), (3.5)

where (pθ, pϕ) are two complex numbers and ûr , ûθ , ûϕ are the classical unitary
vectors:

ûr = �� cos ϕ cos θ
sin ϕ cos θ

sin θ

��
, ûθ = �� − cos ϕ sin θ

− sin ϕ sin θ
cos θ

��
, ûϕ = �� − sin ϕ cos θ

cos ϕ cos θ
sin θ

��
.

In Figure 3.3, given the Cartesian coordinates (O, x̂, ŷ, ẑ) , we describe the spherical
coordinates. From equation (3.5), the families of plane waves associated with the
couple (pθ, pϕ) = (1, 0) and the families of plane waves associated with the couple
(pθ, pϕ) = (0, 1) are independent. We call (pθ, pϕ) = (1, 0) the ϕ polarization and
(pθ, pϕ) = (0, 1) the θ polarization.
In many applications, the wave is coming from different directions located all around
a circle. At the price of a rotation of the coordinates, we can assume that θ = 0
and ϕ varies from 0 to 2π . We get

ûr =

cosϕ
sinϕ

0

 , ûθ = ẑ =

0
0
1

 , ûϕ =

− sinϕ

cosϕ
0

 .

Figure 3.4 illustrates this choice.
For the incident field we get

~E inc(x) = ~E inc(x, ϕ) = ẑeikx·ûr(ϕ)

= ẑeik(x1 cos ϕ+x2 sin ϕ). (3.6)

3.1 Presentation of the electromagnetism problem 135

PSfrag replacements

x

y
z

ϕ

ûϕ

ûθ ûθ
ûr

P

O

θ

Figure 3.3: spherical coordinates.

PSfrag replacements

x

y
z

ϕ
ûϕ

ûθ

ûr

P
O

Figure 3.4: spherical coordinates in the plane ẑ = 0 .

Definition 3.1.1 The monostatic calculation with θ polarization is equivalent to
finding the current ~J(x, ϕ) associated with the incident waves ~Einc(x, ϕ) when ϕ
varies from 0 to 2π .

In practice we sample ϕ : we consider p equidistant angles ϕ1, ϕ2, . . . , ϕp and we
have to solve p linear systems with the same coefficient matrix:

ZJ(ϕa) = F (ϕa), 1 ≤ a ≤ p.

136 The Electromagnetism Application

Once we have solved the a –th system to obtain J(ϕa) , we construct

~Jh(x, ϕa) =

n∑

`=1

J`(ϕa)~Ψ`(x)

then compute

a∞(ϕa) =
ikZ0

4π

∫

Γ

(ûr(ϕa) ∧ (~Jh(x, ϕa) ∧ ûr(ϕa)))ds(x),

a∞(ϕa) =
ikZ0

4π

∫

Γ

ûr(ϕa) ∧ ~Jh(x, ϕa)eikx·ûr(ϕa)ds(x),

and finally

RCS(ϕa) = 20 log10(|a∞(ϕa)|)
that is the back-scattered Radar Cross Section (RCS), the quantity of interest for
instance for the aircraft manufacturers.
In Figure 3.5, we plot the computed monostatic radar cross section for the Airbus
23676 (see 3.2.4). In this graph, the black point on the curve has the following mean-
ing: a plane wave is illuminating the Airbus coming from the direction ϕ = 30o ,
we recover the energy of the associated back-scattered field in the same direction;
depicted in decibel scale in the curve, the value of the energy RCS(ϕ = 30o) = −4 .

0 10 20 30 40 50 60 70 80 90
−35

−30

−25

−20

−15

−10

−5

0

5

10

15
− Radar cross section − airbus 23676 − phi = 30o − theta = 0o:90o − vertical polarization − nofmm direct solver −

R
C

S

theta

Figure 3.5: monostatic Radar Cross Section (RCS) for the Airbus 23676.

The current J(ϕa) obtained from the solution of the system corresponding to F (ϕa)
may also be used to compute the bistatic RCS associated with the angle ϕa . For

3.1 Presentation of the electromagnetism problem 137

the angle ϕb , it consists in computing

a∞(ϕa, ϕb) =
ikZ0

4π

∫

Γ

(ûr(ϕb) ∧ (~Jh(x, ϕa) ∧ ûr(ϕb)))ds(x).

The interpretation of a∞(ϕa, ϕb) is the following: a plane wave illuminates the
object coming from the direction ϕa , and we recover the energy of the associated
back-scattered field in the direction ϕb .
The computation we are faced with is in general either the bistatic RCS associated
with a fixed angle or the monostatic computation. The bistatic RCS requires the
solution of a system with a single right–hand side whereas the monostatic RCS
requires the solution of a system with multiple right–hand sides.

3.1.3 Properties of the EFIE matrix

From equation (3.3) that defines Zj,` , we have Zj,` = Z`,j ; that is, with the EFIE
formulation, Z is complex symmetric.
If we write eik|y−x| = cos (k|y − x|) + i sin (k|y − x|) in equation (3.3), we obtain
Z = B + iD where B and D are symmetric real such that

Bj,` =

∫ ∫

Γ×Γ

kZ0
sin (k|y − x|)

4π|y − x|

(
~Ψj(x) · ~Ψ`(y)− 1

k2
divΓ

~Ψ`(x)divΓ
~Ψ`(y)

)
,

Dj,` = −
∫ ∫

Γ×Γ

kZ0
cos (k|y − x|)

4π|y − x|

(
~Ψj(x) · ~Ψ`(y)− 1

k2
divΓ

~Ψj(x)divΓ
~Ψ`(y)

)
.

Since B (resp. iD) is symmetric real (resp. symmetric imaginary), it has real (resp.
imaginary) eigenvalues.
B comes from an integral operator with the following kernel

K � (x, y) =
sin (k|y − x|)

4π|y − x| .

This kernel is extremely smooth, consequently the matrix B is of low rank. Moreover
Collino and Després [32] show that the matrix B may also be written

A∞A
H
∞

where A∞ corresponds to the operator that, given a current on the object, returns
the diffracted field. We have the property that the eigenvalues of A∞AH

∞ are real
positive with a large number of them equal to zero.
In the 2D case, equation (3.3) is multiplied by −i . So that in a sense we obtain

Z = D− iB

and the properties of B and D from the 3D case hold in 2D.

138 The Electromagnetism Application

3.2 Simulation codes and model problems

3.2.1 Presentation of the 2D code ie2m

The 2D code ie2m has been developed by Abderrahmane Bendali from cerfacs.
It is a Matlab6 code based on the EFIE, where all the modules related to electro-
magnetics are implemented in single precision arithmetic Fortran code. The main
interest of this code is that the difficulties encountered by the linear solvers in 2D
are similar to those observed in 3D. Using Matlab, we can easily use and quickly
investigate the behaviour of various solvers and preconditioners.

3.2.2 Case study in 2D

In Table 3.1, we give the characteristics of the three 2D test cases we consider.
The quantity p corresponds to the diameter in wavelengths of the smallest circle
that encompasses the object. In Figure 3.6, the geometries of the three objects are
depicted.

matrix ddl λ p
Goldorak 715 0.5 0.32
cnsph 310 0.5 3.0
cerfacs 312 0.5 0.75

Table 3.1: Characteristics of the 2D test cases.

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

0 1 2 3 4 5 6
−1

0

1

2

3

4

5

6

7

(a) Goldorak (b) cnsph (c) cerfacs

Figure 3.6: Different 2D test examples.

3.2.3 Presentation of the 3D code as elfip

The code as elfip is a joint effort of three partners. The first part is the work from
eads–ccr. They have developed the basic kernel operations for the electromag-
netism equations and also the basic operations for the out–of–core linear algebra
calculations. Dealing with the singularities arising in the integral equations is a key
point that requires a knowledge that is based on a long study combined with a wide
variety of test cases to assess the quality of the methods. Such work can only be
done by a long established company namely eads–ccr. Recently, the fast multi-
pole method [71] has been extended to the integral equations of electromagnetism

3.2 Simulation codes and model problems 139

[110, 126]. The second contribution to the work has been developed by Guillaume
Sylvand [130] during his PhD thesis at cermics. He provided an implementation
of the fast multipole method for sequential and parallel distributed platforms. His
code is among the most advanced in terms of capabilities and efficiency. Finally the
third component is the result of the work of the Parallel Algorithm Project at cer-

facs. Bruno Carpentieri, Luc Giraud and Iain Duff provided the way to implement
an efficient Frobenius norm minimization preconditioner; a detailed and rigorous
study [23] shows the efficiency of this preconditioner in the electromagnetism con-
text. In particular, to compensate for the lack of scalability of this preconditioner,
they also adapted a flexible variant of GMRES. These three components result in
the as elfip code. With this code, the solution of the EFIE for one right–hand
side was properly addressed. However, for the monostatic RCS calculations, many
linear systems with the same coefficient matrix and different right–hand sides have
to be solved. The number of right-hand sides varies depending on the geometry
and the frequency of the illuminating waves, but it usually classically ranges from a
few tens to a few hundreds. The iterative methods mentioned earlier are no longer
appropriate. This motivates the third part of this thesis.
From a technical point of view, the code is parallel and suited for shared or dis-
tributed memory computers. Furthermore, it implements out–of–core capabilities
to handle very large problems. During my PhD, I have been using this code on
several computers ranging from linux laptops or Sun workstations to parallel ar-
chitectures with shared or distributed memory like the Compaq Alpha Server at
cerfacs and cea, the PC cluster at cerfacs, the Origin 2000 at cines and the
IBM SP3 (and SP4) at cines.
For the sake of consistency in this manuscript, when running time are displayed they
have been observed on the Compaq Alpha Server at cerfacs.

3.2.4 Case study in 3D

For the 3D calculations, we consider the six geometries that are depicted in Fig-
ure 3.7.
The sphere is the first test case, its mesh is easily constructed. It is homogeneous
in the sense that all the edges have all the same size (i.e. with a ±20% variation).
For all the spheres we consider a radius equal to one metre, the wavelength and
the mesh size vary such that the average length of the edges is around λ/10 . The
quantity q is such that the average length of the edges is λ/q . In the case of
the sphere, we thus have q = 10 . An advantage of using this object is that the
back-scattered far field is known analytically from the Mie series (see e.g. [130]).
In order to study the scalability of our solvers, we have a collection of spheres of
different mesh size. The ones used most frequently are given in Table 3.2. In that
table, “dof” is the number of degrees of freedom (i.e. the number of edges) in the
meshes, F the frequency of the incident fields, λ the wavelength and p the size of
the sphere measured in number of wavelengths. For example, the wavelength of the
incident field illuminating the sphere 40368 edges is λ = 33.3 cm since the radius
of the sphere is one metre, the size of the sphere is p = 6 wavelengths. In fact, the
value of p is defined for nonspherical objects as well. It corresponds to the diameter

140 The Electromagnetism Application

(in wavelengths of the incident field) of the smallest sphere that encompasses the
object. For most of the objects, we give a rough approximation of this value. One
of the drawbacks is that the problem of the monostatic computation from an angle
ϕl is the same for any ϕl = 0, . . . , 2π . Therefore, there is practically no interest to
perform runs with more than one right–hand side.
The second tested geometry is called a cetaf. This is a standard test case in com-
putational electromagnetism. The object is depicted in Figure 3.7.b. It is a sort of
wing with a slit. Its physical size is 50 cm × 30 cm × 5 cm and the associated
value for q is 7.9 . A typical monostatic computation is done for θ = 0o : 1o : 180o

and ϕ = 0o with a particular interest for the interval θ = 60o : 1o : 70o .
The third test case is called a cobra. It is also a standard test case. Its size is
67.9 cm × 23.3 cm × 11 cm. It represents a cavity and is considered from
the electromagnetism point of view as a challenging problem. In this manuscript,
we observe that it gives rise to a difficult linear algebra problem for the iterative
solvers. For the radar cross section calculation, the interval of interest is (θ = 20o :
1o : 30o, ϕ = 0o) . Among all the objects considered in this document, we notice
that this is the only one that is an open surface and consequently can only be solved
using the EFIE formulation.
The fourth test case is an almond. It was an official test–case for the JINA 2002
(12th International workshop on Antenna design, Nice 2002). Its size is 2.5 m. For
this workshop, several codes were benchmarked on this problem to calculate the
monostatic RCS on the interval θ = 90o, ϕ = 0o : 1o : 180o .
The fifth object is a commercial airplane. It is an Airbus A318 of size (not realistic)
about 1.8 m × 1.9 m × 0.65 m. In Table 3.2, we give the characteristics of the
range of Airbus is used in the manuscript for the numerical experiments.
All the previous objects were perfectly conducting objects. Finally, we also consider
a simulation with a dieletric. It consists in a coated cone sphere of size 24 cm in
length and 9 cm in diameter. The number of degrees of freedom is 77604 . The
frequency of the incident field is 3 GHz.
We note that, in Table 3.2, the number of edges increases proportionally with the
square of the frequency. This observation holds for all the geometries.

3.2.5 A remark on the mesh size versus the wavelength

In order to have a reliable representation of a sine function of wavelength λ on the
mesh, the usual criterion is to take the edges so that the average of the length of
the edges, e , is smaller than λ/6 or λ/10 sometimes (see e.g [130, p. 45]). In
Figure 3.8, we show that if the mesh is too coarse then the sine function is not well
approximated. Consequently, if the frequency of the illuminating field increases (i.e.
the wavelength decreases proportionally), the size of the surface mesh increases in
order to maintain the average length of the edges of the order of λ/10 . Roughly
speaking, if the frequency is multiplied by α , the size of the mesh is multiplied by
α2 (cf. Table 3.2).
When we study the aircrafts, we therefore study different physical problems. To
illustrate this point, we consider a sphere of radius one metre. The first case is
denoted by (p, q) = (13, 10) . We consider the wavelength so that 13λ = 1 metre,

3.2 Simulation codes and model problems 141

(a) sphere (b) cetaf

(c) cobra

(d) almond

(e) Airbus

(f) coated cone sphere

Figure 3.7: Different 3D test examples.

and we mesh the sphere as that the average length of the edges is λ/10 . The
second case is (p, q) = (10, 13) (10λ = 1 metre, and the average length of the
edges is λ/13), and the third (p, q) = (10, 10) (10λ = 1 metre, and the average
length of the edges is λ/10). Doing so we obtain three cases such that the first
two have exactly the same mesh but correspond to different problems, the last two
represent the same physical problem but exploit two different meshes. The second
mesh is very fine for the problem it is used for. In Table 3.3, we give the number of
iterations for GMRES with the Frobenius preconditioner 1 to converge on these test
cases. The stopping criterion is such that ‖rn‖2/‖b‖2 ≤ 2 · 10−2 . On the two cases
representing the same physical problems (a sphere of one metre of radius with an
illuminating field at 3.00 GHz), the number of GMRES iterations are the same even
if the meshes are different. On the other hand, if the same meshes are taken (ddl

1see Section 3.3.2.1, for the description of this preconditioner

142 The Electromagnetism Application

dof F λ p
cetaf 5391 3.0 GHz 10.0 cm 6

sphere 40368 0.9 GHz 33.3 cm 6
sphere 71148 1.2 GHz 25.0 cm 8
sphere 161472 1.8 GHz 16.7 cm 12
sphere 288300 2.4 GHz 12.5 cm 16
sphere 549552 3.3 GHz 9.1 cm 22
sphere 1023168 4.5 GHz 6.6 cm 30
Airbus 23676 2.3 GHz 13.0 cm 14
Airbus 94704 4.6 GHz 6.5 cm 29
Airbus 213084 6.9 GHz 4.3 cm 44
Airbus 591900 9.1 GHz 3.2 cm 59
Airbus 1160124 11.4 GHz 2.6 cm 73
cobra 3823 1.0 GHz 30.0 cm 2
cobra 14449 5.0 GHz 6.0 cm 12
cobra 60695 10.0 GHz 3.0 cm 24

almond 360 0.1 GHz 299.8 cm 1
almond 8112 0.7 GHz 42.8 cm 6
almond 104793 2.6 GHz 11.5 cm 22

coated cone 77604 3.0 GHz 10.0 cm 1.5

Table 3.2: Characteristic of the 3D test cases. All the object are perfectly conducting except the
coated cone sphere (dielectric). All the object are closed except the cobra cavity.

0 1 2 3 4 5 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

4 points per wavelength
10 points per wavelength
sin(x)

Figure 3.8: A sine function discretized with 4 points per wavelength and 10 points per wavelength.

= 768108) for different physical problems then the number of GMRES iterations
differ. This experiment illustrates the fact that, the meshes of the same object differ
not only in their number of edges but also in the physical problems they represent.

3.2 Simulation codes and model problems 143

Finally, these experiments indicate that q = 10 is enough; increasing this value
would only result in increasing the size of the linear systems to be solved but would
not improve the physical meaning of the computed solution.

p q Frequency dof # iter
13 10 3.90 GHz 768108 142
10 13 3.00 GHz 768108 80
10 10 3.00 GHz 451632 80

Table 3.3: GMRES(30) with Frobenius preconditioner on three spheres of one metre radius.

3.2.6 On the properties of the linear systems

In Section 3.1, we explained the theoretical properties shared by the matrices and
the right–hand sides involved in an electromagnetism calculation. In this section,
some general observations are given; they correspond to the global trend observed
in our test–cases.
The matrix arising from the boundary element method is dense, this is due to
the fact that the value of the Green’s function between one point x and another
y(6= x) is never zero. However the decay of the magnitude of the function is quick
and starting from a threshold level on the distance between x and y , the influence
of x on y (and reciprocally) is small. Consequently, we expect the entry (j, `) of
Z , depicting the influence between the edge ej of the mesh and the edge e` , to be
small. In Figure 3.9, we sparsify the matrix obtained from the Goldorak test case by
removing the entries that are lower in modulus than a prescribed threshold (1/1000
of the largest magnitude).

0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

nz = 26607

Figure 3.9: Entries of Z with modulus larger than 1/1000 of the largest entry in modulus for the
test example Goldorak.

144 The Electromagnetism Application

In Figure 3.10.a, we plot the eigenvalues of −iB and D computed with the ie2m

toolbox. We may notice that, among the 310 eigenvalues of B , 256 are smaller
(in modulus) than 10−5‖B‖2 . This is due to the low numerical rank of B (we
recall that the ie2m toolbox is implemented in single precision arithmetic where the
machine precision is about 10−6). Moreover, all the eigenvalues of B are positive.
In Figure 3.10.b, we plot the spectrum of Z = D− iB .

CNSPH(310)

−0.2 0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

(a) spectrum of D and −iB,
� eigenvalues of D,
� eigenvalues of −iB.

−0.2 0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

(b) spectrum of Z = D− iB.
× eigenvalues of Z,

Figure 3.10: Spectrum of the various matrices.

Since the right–hand side F is in the range of A∞ , it belongs to the range of B =
A∞AH

∞ . Then, if we decompose the right–hand sides using a basis of eigenvectors
of Z (note that in practice we have observed that Z is diagonalisable and the
condition number associated with the set of eigenvectors is reasonable), we expect
that the largest components of this decomposition correspond to eigenvectors with
a large real part. In Figure 3.11, we plot the spectrum of Z and we plot a circle
on the eigenvalues for which the modulus of the components of the right–hand side
corresponding to θ = 90o is larger than 20% of the maximum modulus of the
components in the eigenvectors basis. We observe that the real part of the spectrum
is not excited.

Finally, in Figure 3.12, we plot the 100 largest singular values of B and of
[F (0o), F (1o), . . . , F (359o)] . We observe that the rank of B is approximately the
same as those of [F (0o), . . . , F (359o)] . This is agreement with the theoretical result,
that is, the right-hand sides belong to the range of B .

The 3D–matrix Z = B + iD is obtained from the 2D–matrix Z = D − iB by a
multiplication by −i . In a similar way, we observe that the 3D–spectrum is similar
to a 2D–spectrum with a rotation of 90o degrees clockwise. In Figure 3.13, we plot
some spectrum for different 3D–test cases.

3.2 Simulation codes and model problems 145

−0.2 0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Figure 3.11: The test case is the cnsph. The spectrum of Z is represented with × . We decom-
pose the right–hand side using the eigenvector basis and plot an ◦ on the eigenvalues when the
components of the right–hand sides in the associated eigenvector is larger than 20% of the largest
component.

10 20 30 40 50 60 70 80 90 100
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

svd(imag(Z))
svd(F)

Figure 3.12: Singular values of B and of F (0o), F (1o), . . . , F (359o) .

We finally note that, in Table 1.12, we give the value κ2(F,ZV) , where (F,ZV)
corresponds to the Krylov space generated by n iterations of the Arnoldi method
applied to the starting vector F and the matrix Z . This value is, in theory, an upper
bound of the condition number of Z and is, in practice, a good approximation to
the condition number of Z . The value of κ2(F,ZV) ranged from 27 for the cetaf
to 5.9 for the almond. The matrices coming from the CFIE are therefore fairly
well–conditioned.

146 The Electromagnetism Application

0 20 40 60 80 100 120 140 160 180
−500

0

500

1000

1500

2000

2500

3000

3500

4000

(a) almond 360

0 20 40 60 80 100 120 140 160 180 200
−500

0

500

1000

1500

2000

(b) cobra 3823

0 50 100 150 200 250 300 350 400
−300

−200

−100

0

100

200

300

(c) sphere 972

0 50 100 150 200 250 300 350 400
−400

−200

0

200

400

600

800

1000

1200

1400

1600

(d) cetaf 5391

Figure 3.13: Spectrum of the different matrices Z involved in an electromagnetic calculation.

3.3 A detailed presentation of the 3D code

3.3.1 The fast multipole method

3.3.1.1 Presentation of the fast multipole method

The Fast Multipole Method (FMM) introduced by Greengard and Rokhlin [71],
provides an algorithm for computing approximate matrix–vector products for elec-
tromagnetic scattering problems. The method is fast in the sense that the compu-
tation of one matrix–vector product costs O(n log n) arithmetic operations instead
of the usual O(n2) operations, and is approximate in the sense that the relative
error with respect to the exact computation is around 10−3 [36, 130]. It is based
on truncated series expansions of the Green’s function for the electric–field integral
equation (EFIE). The EFIE can be written as

E(x) = −
∫

Γ

∇G(x, x′)ρ(x′)d3x′ − ik

c

∫

Γ

G(x, x′)J(x′)d3x′ + EE(x), (3.7)

where EE is the electric field due to external sources, J(x) is the current density,

3.3 A detailed presentation of the 3D code 147

ρ(x) is the charge density and the constants k and c are the wavenumber and the
speed of light, respectively. The Green’s function G can be expressed as

G(x, x′) =
e−ik|x−x′|

|x− x′| . (3.8)

The EFIE is converted into matrix equations by the Method of Moments [72]. The
unknown current J(x) on the surface of the object is expanded into a set of basis
functions Bi, i = 1, 2, ..., N

J(x) =

N∑

i=1

JiBi(x).

This expansion is introduced in (3.7), and the discretized equation is applied to a set
of test functions. A linear system is finally obtained. The entries in the coefficient
matrix of the system are expressed in terms of surface integrals, and have the form

AKL =

∫ ∫
G(x, y)BK(x) ·BL(y)dL(y)dK(x). (3.9)

When m–point Gauss quadrature formulae are used to compute the surface integrals
in (3.9), the entries of the coefficient matrix assume the form

AKL =

m∑

i=1

m∑

j=1

ωiωjG(xKi
, yLj

)BK(xKi
) ·BL(yLj

). (3.10)

Single and multilevel variants of the FMM exist and, for the multilevel algorithm,
there are adaptive variants that handle inhomogeneous discretizations efficiently. In
the one–level algorithm, the 3D obstacle is entirely enclosed in a large rectangular
domain, and the domain is divided into eight boxes (four in 2D). Each box is recur-
sively divided until the length of the edges of the boxes of the current level is small
enough compared with the wavelength. The neighbourhood of a box is defined by
the box itself and its 26 adjacent neighbours (eight in 2D). The interactions of the
degrees of freedom within nearby boxes are computed exactly from (3.10), where
the Green’s function is expressed via (3.8). The contributions of far away cubes are
computed approximately. For each far away box, the effect of a large number of
degrees of freedom is concentrated into one multipole coefficient, that is computed
using truncated series expansion of the Green’s function

G(x, y) =
P∑

p=1

ψp(x)φp(y). (3.11)

The expansion (3.11) separates the Green’s function into two sets of terms, ψi and
φi , that depend on the observation point x and the source (or evaluation) point
y , respectively. In (3.11) the origin of the expansion is near the source point and
the observation point x is far away. Local coefficients for the observation cubes
are computed by summing together multipole coefficients of far–away boxes, and
the total effect of the far field on each observation point is evaluated from the local

148 The Electromagnetism Application

expansions (see Figure 3.14 for a 2D illustration). Local and multipole coefficients
can be computed in a preprocessing step; the approximate computation of the far
field enables us to reduce the computational cost of the matrix–vector product to
O(n3/2) in the basic one–level algorithm.
In the hierarchical multilevel algorithm, the obstacle is enclosed in a cube, the cube
is divided into eight subcubes and each subcube is recursively divided until the size
of the smallest box is generally half of a wavelength. Tree–structured data is used
at all levels. In particular only non–empty cubes are indexed and recorded in the
data structure. The resulting tree is called an oct–tree (see Figure 3.15) and we refer
to its leaves as the leaf–boxes. The oct–tree provides a hierarchical representation
of the computational domain partitioned by boxes. Each box has one parent in the
oct–tree, except for the largest cube which encloses the whole domain, and up to
eight children. Obviously, the leaf–boxes have no children. Multipole coefficients are
computed for all cubes in the lowest level of the oct–tree, that is for the leaf–boxes.
Multipole coefficients of the parent cubes in the hierarchy are computed by summing
together contributions from the multipole coefficients of their children. The process
is repeated recursively until the coarsest possible level. For each observation cube,
an interaction list is defined that consists of those cubes that are not neighbours of
the cube itself but whose parent is a neighbour of the cube’s parent. In Figure 3.16
we denote by dashed lines the interaction list for the observation cube in the 2D
case. The interactions of the degrees of freedom within neighbouring boxes are
computed exactly, while the interactions between cubes in the interaction list are
computed using the FMM. All the other interactions are computed hierarchically
traversing the oct–tree at a coarser level. Both the computational cost and the
memory requirement of the algorithm are of order O(n log n) . For further details
on the algorithmic steps see [37, 105, 121] and [36, 39, 40, 41] for recent theoretical
investigations. Parallel implementations of hierarchical methods have been described
in [65, 66, 67, 70, 125, 139].
In Table 3.4, the time for assembling and applying a dense matrix is compared
with the time for assembling the components for the FMM and applying the EFIE
operator via the FMM. With the cetaf 5391, it turns out that the method is already
interesting. The larger the mesh is, the more interesting the fast multipole method
is; as can be seen when going from the cetaf test example to the Airbus test example.

assembly solve # procs
dof FMM dense FMM dense

cetaf 5391 9.6 14.7 0.25 0.51 4
Airbus 23676 114.8 274.1 1.84 133.24 4

Table 3.4: Elapsed time to perform a matrix-vector product using the FMM and a BLAS-2 routine
using the dense matrix.

The FMM makes problems affordable by reducing not only the time to perform the
matrix–vector product but also the memory required to store the information needed
to perform the product. For example, it is not possible to store dense matrices of
order 50000 on the 8 Gigabyte disk space available on a two node Compaq (8
processors). Using the FMM, problems ten times larger can easily be solved.

3.3 A detailed presentation of the 3D code 149

Figure 3.14: Interactions in the one–level FMM. For each leaf–box, the interactions with the gray
neighbouring leaf–boxes are computed directly. The contribution of far away cubes are computed
approximately. The multipole expansions of far away boxes are translated to local expansions for
the leaf–box; these contributions are summed together and the total field induced by far away
cubes is evaluated from local expansions.

Figure 3.15: The oct–tree in the FMM algorithm. The maximum number of children is eight. The
actual number corresponds to the subset of eight that intersect the object (courtesy of G. Sylvand,
inria cermics).

150 The Electromagnetism Application

Figure 3.16: Interactions in the multilevel FMM. The interactions for the gray boxes are computed
directly. We denote by dashed lines the interaction list for the observation box, that consists of
those cubes that are not neighbours of the cube itself but whose parent is a neighbour of the
cube’s parent. The interactions of the cubes in the list are computed using the FMM. All the other
interactions are computed hierarchically on a coarser level, denoted by solid lines.

3.3.1.2 The different accuracies

The code has some parameters in order to tune the features of the FMM. For in-
stance, it is possible to change the size of the leaf boxes of the octree or to change the
order of the expansion. Varying these parameters enables us to play with the FMM
accuracy and the FMM computational cost; of course higher accuracy implies higher
computational cost. This leads to define various FMM accuracies that correspond
to different trade–off’s between the computing cost and the accuracy of the matrix–
vector multiplication. In that context, three FFM have been implemented, we call
them prec–1, prec–2 and prec–3. The less accurate and the fastest is prec–1, prec–3 is
the most accurate and the slowest. Sylvand [130, p.138] gives some estimates on the
forward error associated with these FMM when solving electromagnetic problems
using an iterative solver. The forward error is computed assuming that the exact
solution is given by a direct solver. For the sphere of order 255792 , he obtains
relative errors of the order of 10−2 , 10−3 and 5 ·10−4 for prec–1, prec–2 and prec–3
respectively.

As a default value, we use the prec–3 accuracy. It should also be noticed that the
default calculations are performed in single precision arithmetic (double precision is
also available).

To illustrate the different computing costs associated with each accuracy, we give in
Table 3.5 the average times observed for the FMM on different test cases.

3.3 A detailed presentation of the 3D code 151

prec–1 prec–2 prec–3 prec–3 (double) # procs
Airbus 23676 1.3 1.7 1.8 2.0 4
Airbus 94704 3.5 4.3 4.6 5.1 8
Airbus 213084 6.2 9.1 11.1 13.0 8
Airbus 591900 17.0 25.5 29.8 8

sphere 40368 1.3 2.1 2.2 2.3 4
sphere 71148 2.3 3.4 3.8 4.4 4
sphere 161472 3.2 4.4 4.6 5.3 8
sphere 288300 4.7 7.5 8.3 9.5 8
sphere 549552 9.0 14.5 17.1 20.1 8
sphere 1023168 13.9 16.7 16

Table 3.5: Average elapsed time (s) for a matrix–vector product using the FMM with different
level of accuracy.

3.3.1.3 The gathered fast multipole matrix–vector products

The code has been designed to take advantage of the memory hierarchy of the
computer (cache memories) so that a Level 3 BLAS 3 effect can be observed if
several matrix–vector products can be computed at the same time. We report in
Table 3.6 on some computing times when the number of simultaneous matrix-vector
products is varied. The times for the blocked method are roughly half than the time
for a single FMM product. It can also be observed that this significant gain is already
observed with relatively small blocks, about for 8 vectors. We show, in Section 3.3.3,
a way of exploiting this when several right-hand sides have to be solved. We also
remark that, for the simulations involving a dielectric, the corresponding FMM can
exploit the data locality even more (as more floating–point operations have to be
performed on the vectors); this results in a gain of about 13 on the coated cone
sphere test example.

1 2 4 8 16 32 # procs
Airbus 23676 1.8258 1.1794 0.9066 0.7949 0.7795 0.7874 4
Airbus 94704 4.6062 3.0609 2.3800 2.1287 2.0807 2.0938 8
Airbus 213084 11.0609 7.7233 6.2501 5.6018 5.4421 5.6690 8

Table 3.6: Average CPU time (s) for a matrix–vector product using the FMM where the block size
is varied.

3.3.1.4 Consequence on the stopping criterion threshold

The problem we solve is an approximation of the original problem for several reasons
(model error, discretization, use of the FMM, roundoff errors). In a backward error
analysis framework, it seems therefore natural to set the tolerance of the iterative
solver according to our estimate of the difference between the problem we solve and
the problem we intend to solve.

152 The Electromagnetism Application

In general, the stopping criterion is based on the normalized backward error

‖b− Zx‖2
‖b‖2

≤ η. (3.12)

For example, in Figure 3.17, we plot two bistatic RCS computed for the sphere
with η = 10−1 , η = 10−2 and lastly the exact bistatic RCS computed using the
analytic solution given by the Mie series. From these plots, the engineers advised us
to select a stopping criterion threshold around 10−2 . Throughout this document,
when convergence history are displayed, we always report the norm-wise backward
error (residual norm normalized by the norm of the right-hand side) as a function
of the iterations. In other words, we plot the quantity (or an approximation of this
quantity)

‖F − Zxm‖2
‖F‖2

where xm is the current iterate. This corresponds to the choice αP = 0 and
βP = ‖F‖2 for the stopping criterion of the preconditioned iterative method in
Table (2.1).
The stopping criterion problem is further discussed in Section 3.8.2.

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

30

35

40

45

50

exact
tol = 1e−01
tol = 1e−02

Figure 3.17: Bistatic RCS obtained for the sphere with different levels of backward error compared
with the Mie series (exact solution).

3.3.2 Description of the preconditioners

In all the experiments we consider right preconditioning. The main reason is that
we use GMRES quite extensively. Within this solver, the norm of the Arnoldi
residual, used to evaluate our stopping criterion (see Section 2.2.1.2) is (in exact

3.3 A detailed presentation of the 3D code 153

arithmetic) the norm of the true residual associated with the linear system solved
by GMRES. In that respect, the stopping criterion is related to the unpreconditioned
linear system which is the one that is meaningful for the physical problem. On the
contrary, with left preconditioning, the norm of the Arnoldi residual is the norm of
the preconditioned residual; the stopping criterion is related to the preconditioned
system and no longer to the original problem.

3.3.2.1 The Frobenius–norm minimization preconditioner

3.3.2.1.1 General presentation of the Frobenius norm minimization preconditioner

The preconditioner implemented in the code is a Frobenius norm minimization pre-
conditioner. A complete description and study of the preconditioner is given in [23]
in the context of our code.
Frobenius–norm minimization is a natural approach for building explicit precondi-
tioners. This method computes a sparse approximate inverse as the matrix M =
{mij} which minimizes ‖I − MA‖F (or ‖I − AM‖F for right preconditioning)
subject to certain sparsity constraints. Early references to this latter class can be
found in [9, 10, 11, 53] and in [4] for some applications to boundary element ma-
trices in electromagnetism. The Frobenius norm is usually chosen since it allows
the decoupling of the constrained minimization problem into n independent linear
least–squares problems, one for each column of M (when preconditioning from the
right) or row of M (when preconditioning from the left).
The independence of these least–squares problems follows immediately from the
identity:

‖I −MA‖2F = ‖I − AMT ‖2F =

n∑

j=1

‖ej − Amj•‖22 (3.13)

where ej is the j –th unit vector and mj• is the column vector representing the
j –th row of M .
In the case of right preconditioning, the analogous relation

‖I − AM‖2F =
n∑

j=1

‖ej − Am•j‖22 (3.14)

holds, where m•j is the column vector representing the j –th column of M . Clearly,
there is considerable scope for parallelism in this approach. The main issue for the
computation of the sparse approximate inverse is the selection of the nonzero pattern
of M , that is the set of indices

S = { (i, j) ⊆ [1, n]2 | mij = 0 }. (3.15)

If the sparsity pattern of M is known, the nonzero structure for the j –th column of
M is automatically determined, and defined as J = {i ∈ [1, n] s.t. (i, j) ∈ S} .
The least–squares solution involves only the columns of A indexed by J ; we indicate
this subset by A(:, J) . When A is sparse, many rows in A(:, J) are usually null,
not affecting the solution of the least–squares problems (3.14). Thus if I is the
set of indices corresponding to the nonzero rows in A(:, J) , and if we define by

154 The Electromagnetism Application

Â = A(I, J) , by m̂j = mj(J) , and by êj = ej(J) , the actual “reduced” least–
squares problems to solve are

min‖êj − Âm̂j‖2, j = 1, .., n (3.16)

Usually problems (3.16) have much smaller size than problems (3.14).
Two different approaches can be followed for the selection of the sparsity pattern of
M : an adaptive technique that dynamically tries to identify the best structure for
M ; and a static technique, where the pattern of M is prescribed a priori based on
some heuristics. The idea is to keep M reasonably sparse while trying to capture
the “large” entries of the inverse, which are expected to contribute the most to the
quality of the preconditioner. A static approach that requires an a priori nonzero
pattern for the preconditioner, introduces significant scope for parallelism and has
the advantage that the memory storage requirements and computational cost for
the setup phase are known in advance. However, it can be very problem dependent.

3.3.2.1.2 Implementation of the Frobenius–norm minimization preconditioner in the

fast multipole framework An efficient implementation of the Frobenius–norm min-
imization preconditioner in the FMM context exploits the box–wise partitioning of
the domain. The subdivision into boxes of the computational domain uses geomet-
ric information from the obstacle, that is the spatial coordinates of its degrees of
freedom. Carpentieri [23, Chapter 3] shown that this information can be profitably
used to compute an effective a priori sparsity pattern for the approximate inverse.
In the FMM implementation, we adopt the following criterion: the nonzero struc-
ture of each column of the preconditioner is defined by retaining all the edges within
a given leaf–box and those in one level of neighbouring boxes. We recall that the
neighbourhood of a box is defined by the box itself and its 26 adjacent neighbours
(eight in 2D). The sparse approximation of the dense coefficient matrix is defined by
retaining the entries associated with edges included in the given leaf–box as well as
those belonging to the two levels of neighbours. The actual entries of the approxi-
mate inverse are computed column by column by solving independent least–squares
problems. The main advantage of defining the pattern of the preconditioner and of
the original sparsified matrix box–wise is that we only have to compute one QR fac-
torization per leaf–box. Indeed the least–squares problems corresponding to edges
within the same box are identical because they are defined using the same nonzero
structure and the same entries of A . It means that the QR factorization can be
performed once and reused many times, improving the efficiency of the computation
significantly. The preconditioner has a sparse block structure; each block is dense
and is associated with one leaf–box. Its construction can use a different partition-
ing from that used to approximate the dense coefficient matrix and represented by
the oct–tree. The size of the smallest boxes in the partitioning associated with the
preconditioner is a user–defined parameter that can be tuned to control the number
of nonzeros computed per row, that is the density of the preconditioner. Accord-
ing to our criterion, the larger the size of the leaf–boxes, the larger the geometric
neighbourhood that determines the sparsity structure of the columns of the precon-
ditioner. Parallelism can be exploited by assigning disjoint subsets of leaf–boxes

3.3 A detailed presentation of the 3D code 155

to different processors and performing the least–squares solutions independently on
each processor. Communication is required to get information on the entries of the
coefficient matrix from neighbouring leaf–boxes.

3.3.2.1.3 Preliminary results In Figure 3.18, we study the influence of the size of
the leaf-boxes on the density and on the efficiency of the preconditioner for cobra
3823. The density of the Frobenius preconditioner increases linearly with the size of
the leaf-boxes while the number of iterations of GMRES to converge to a backward
error of 10−3 eventually stagnates at around 30 iterations.

0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

radius for Frobenius preconditioner

density
iterations of full GMRES

100

200

300

400

500

0

Figure 3.18: Number of iterations on the test example cobra 3823 with full GMRES for different
sizes of the leaf-boxes used to define the sparsity pattern of the preconditioner. The corresponding
density for the preconditioner is also given.

In the remainder of the manuscript, the size of the leaf-boxes of the oct-tree used to
build the preconditioner is proportional to the wavelength. The ratio is set to 0.125 .
In Figure 3.19, we show the spectrum for each preconditioned matrix associated
with four of our test examples. If we compare it with the spectrum of the matrices
without a preconditioner given in Figure 3.13, we observe that the Frobenius norm
minimization preconditioner manages to cluster nearly all the eigenvalues around
one.

Since the size of the leaf-boxes of the oct-tree used to build the preconditioner
is proportional to the wavelength, the number of nonzero entries per row in the
preconditioner is constant (around 200) independently of the size of the problems.
The amount of memory necessary to store the preconditioner, the time to assemble
it and to apply it to a vector increase linearly with the size of the mesh. For example,

156 The Electromagnetism Application

if we compare the last two rows in Table 3.7, we obtain

288300

161472
= 1.79,

1108.1

609.8
= 1.81 and

1.09

0.61
= 1.79.

The ratios are constant. This implies that the density of the preconditioner decreases
when the size of the mesh increases. As a consequence, we expect the preconditioner
to be less and less efficient when the size of the linear systems increases.

nnz nnz/row density assemble apply # procs
airbus 23676 5277284 223 0.94 183.8 (85.53%) 0.27 4
airbus 94704 24918048 263 0.28 605.3 (90.15%) 0.80 8
airbus 213084 58741250 276 0.13 1724.0 (92.65%) 1.78 8

sphere 40368 8694684 215 0.53 305.3 (89.35%) 0.29 4
sphere 71148 15210224 214 0.30 532.1 (87.25%) 0.54 4
sphere 161472 34899276 216 0.13 609.8 (88.05%) 0.61 8
sphere 288300 62580136 217 0.08 1108.1 (89.87%) 1.09 8

Table 3.7: Characteristics of the Frobenius norm minimizer preconditioner. For some of the test
examples, we give the number of nonzeros (nnz), the number of nonzeros per row and the density
of the preconditioner. We also give the elapsed time for assemblying it and, in parentheses, the
percentage that it represents in the whole assembly phase (assembly of the FMM + assembly of
the preconditioner). Finally, we give the elapsed time for applying the preconditioner to a single
vector.

3.3.2.2 Flexible Krylov Variants

In this section, we describe some experiments on an inner-outer scheme introduced
in [23, 26]. A preconditioner for Z is a matrix, M , that tries to approximate the
inverse of Z at low computational and memory cost. Given x , it computes y = Mx
to obtain a the compromise between: (a) y is a good approximation to Z−1x and
(b) y is cheap to compute. In that context, a natural way to compute y is to
approximatively solve the linear system Zx = y via an iterative method. Since
at each step, the preconditioner changes, one variant of GMRES that allows this
type of preconditioning is called flexible GMRES. For the preconditioner solver (also
called the inner solver), we use GMRES since Carpentieri [23] observed that GMRES
performs better in our case than SQMR [54] or transpose free QMR [58]. Therefore
the solver results in an inner GMRES scheme embedded in an outer GMRES scheme.
Let a be the value of the restart parameter of the outer GMRES and b be the value
of the restart parameter of the inner GMRES, then the amount of memory required
by the method is (a+ 2b) vectors.
The trade–off quality v.s. time of the preconditioning step is controlled via three
parameters: (a) the stopping criterion of the inner scheme, that is set relatively high,
(b) the maximum number of iterations of the inner scheme, that is set relatively low
so that only a few steps of the method are performed, (c) the accuracy on the inner
matrix–vector product; for that latter parameter we generally choose a less accurate
FMM product to perform the matrix–vector product than that used for the outer
iterations.

3.3 A detailed presentation of the 3D code 157

3.3.2.3 The spectral low rank update preconditioner

The construction of the Frobenius-norm minimization preconditioner is inherently
local. Each degree of freedom in the approximate inverse is coupled to only a very
few neighbours and this compact support does not allow an exchange of global
information.
In [24], Carpentieri, Duff and Giraud proposed a refinement technique which en-
hances the robustness of the approximate inverse on large problems. Related pre-
vious work can also be found in [47, 8, 81, 115]. The method is based on the in-
troduction of low-rank updates computed by exploiting spectral information of the
preconditioned matrix. The Frobenius-norm minimization preconditioner succeeds
in clustering most of the eigenvalues far from the origin, nevertheless eigenvalues near
zero can potentially slow down convergence. The purpose of the preconditioner pro-
posed in [24] is to shift the smallest eigenvalues in magnitude of the preconditioned
matrix so they are close to one.
Most of the schemes exploiting spectral information are combined with the GMRES
procedure as they derive spectral information directly from its internal Arnoldi pro-
cess. In some preliminary work, we consider an explicit eigencomputation which
makes the preconditioner independent of the Krylov solver used for the actual solu-
tion of the linear system.
We present the spectral low rank update in a general framework. Consider the
solution of the linear system

Zx = b, (3.17)

where Z is a m×m complex unsymmetric nonsingular matrix, and x and b are
vectors of size m .
We assume that the matrix Z is diagonalizable, that is:

Z = V ΛV −1, (3.18)

with Λ = diag(λi) , where |λ1| ≤ . . . ≤ |λm| are the eigenvalues and V = (vi) the
associated right eigenvectors. We denote by U = (ui) the associated left eigenvec-
tors. Let Vε be the set of right eigenvectors associated with the set of eigenvalues
λi with |λi| ≤ ε . Similarly, we define by Uε the corresponding subset of left
eigenvectors.
Carpentieri et al [24] present the following theorem.

Theorem 3.3.1 Let
Zc = UH

ε ZVε,

Mc = VεZ
−1
c UH

ε

and
M = Im +Mc.

Then MZ and ZM are diagonalisable and we have MZ = ZM = V diag(ηi)V
−1

with {
ηi = λi if |λi| > ε,
ηi = 1 + λi if |λi| ≤ ε.

158 The Electromagnetism Application

Zc represents the projection of the matrix Z on the coarse space defined by the
approximate eigenvectors associated with its smallest eigenvalues. The low rank
spectral update is defined by Mc . Computing Uε and Vε can be quite expensive.
In our case, the matrix–vector product with the transpose of the FMM operator is
not available so that obtaining the left eigenvectors is absolutely not practicable. To
address this situation, the following theorem is given in [24].

Theorem 3.3.2 Let W be such that

Z̃c = WH
ZVε has full rank,

M̃c = VεZ̃
−1
c WH

and
M̃ = Im + M̃c.

Then M̃Z and ZM̃ are similar to a matrix whose eigenvalues are
{
ηi = λi if |λi| > ε,
ηi = 1 + λi if |λi| ≤ ε.

We should point out that, if the symmetry of the preconditioner is required (EFIE),
then an obvious choice exists. For left preconditioning, we can set W = V̄ε . It
can be noticed that, in the SPD case, this choice leads to a preconditioner that
has a similar form to those proposed in [27] for two–level preconditioners in non–
overlapping domain decomposition.
The spectral low rank updates that are described in Theorems 3.3.1 and 3.3.2 shift
the smallest eigenvalues λi to 1+λi . Indeed with a slight modification, it is possible
to shift the eigenvalues to any desired value. We give here an alternative variant of
the spectral low rank update (variant of Theorem 3.3.1) that shifts the k smallest
eigenvalues to |λ| :

MSLRU = Im + U
(
|λ|D−1 − Ik

)
V H , (3.19)

where D is the k –by– k diagonal matrix with the k smallest eigenvalues on the
diagonal. For the associated variant of Theorem 3.3.2, we obtain:

M̃SLRU = Im + U (|λ|Ik −D) (WH
ZU)−1WH . (3.20)

It is interesting to relate this work with [47, 8]. Given an invariant subspace P of
Z , Burrage, Erhel and Pohl [47] considered the orthonormal basis Z for P . The
preconditioner they give has the following form:

MBEP = Im + Z
(
|λ|(ZH

ZZ)−1 − Ik
)
ZH . (3.21)

Let consider Z spanning U so that there exists H a k –by– k matrix such that

Z = UH.

Z is an orthonormal basis of span(U) . Since Z is invariant under transformations
by Z we have

ZZ = Z(ZH
ZZ).

3.3 A detailed presentation of the 3D code 159

Combining these two equations with AU = UD , we obtain

D = H(ZH
ZU).

We then consider the preconditioner MBEP :

MBEP = Im + U
(
|λ|(ZH

ZU)−1 −H
)
ZH ,

= Im + U
(
|λ|Ik −H(ZH

ZU)
)

(ZH
ZU)−1ZH ,

= Im + U (|λ|Ik −D) (ZH
ZU)−1ZH ,

(3.22)

That is

Mbep = M̃SLRU . (3.23)

We recover the formulation of the spectral update given in [24] with W = Z .
In Figure 3.19, we plot with the symbol “x” the spectrum of the matrix precon-
ditioned with the Frobenius preconditioner. For the sake of comparison, we re-
call that the spectra of the non–preconditioned matrices are given in Figure 3.13.
The Frobenius-norm minimization preconditioner succeeds in clustering most of the
eigenvalues far from the origin. We observe a big cluster near (1.0, 0.0) in the
spectrum of the preconditioned matrix. This kind of distribution is highly desirable
to get fast convergence of Krylov solvers. Nevertheless the eigenvalues nearest to
zero potentially can slow down the convergence. Using the symbol “o” we plot, in
Figure 3.19, the spectrum of the matrix preconditioned with the Frobenius precon-
ditioner and the spectral low rank update (equation (3.19)). We observe that the k
smallest eigenvalues of the matrix preconditioned with the Frobenius preconditioner
are shifted close to one, in agreement with Theorem 3.3.2. Consequently, we expect
the Krylov solver to perform better with the spectral low rank update.
Several remarks are in order:

1. The choice of the shifts on |λmax| made by Burrage, Erhel and Pohl [47] is
not obvious. For example, let us consider a diagonalisable matrix with (n− 1)
eigenvalues equal to −1 and one eigenvalue equal to −0.5 ; then the smallest
eigenvalue in magnitude is −0.5 . However, it seems more appropriate to shift
it to minus one rather than to one. In our case, because we use this idea
in combination with the Frobenius–norm minimization preconditioner, many
eigenvalues are already clustered around one. It is therefore natural to shift
the smallest eigenvalues close to one.

2. In equation (3.19), D may be ill–conditioned and so we can expect some trouble
when using the spectral low rank update. In our experiments, D has always
been rather well–conditioned.

The study of the spectral update preconditioner for large electromagnetism calcu-
lation is part of the ongoing PhD. thesis of Emeric Martin at cerfacs. It has been
observed that the more eigenvalues that are shifted, the better the convergence of
GMRES. However, the spectral low rank update has a cost at each iteration and
also a preprocessing cost (currently the computation of the eigenvectors associated

160 The Electromagnetism Application

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

(a) almond 360 (20)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

(b) cobra 3823 (15)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

(c) sphere 972 (20)

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(d) cetaf 5391 (15)

Figure 3.19: Spectrum of the matrix preconditioned with Frobenius and the matrix preconditioned
with Frobenius and Spectral Update. – x eigenvalues of the matrix preconditioned with Frobenius
; o spectrum of the matrix preconditioned with Frobenius and Spectral Update. The number of
shifted eigenvalues is given in parentheses.

with the eigenvalues of smallest magnitude is performed in a pre-processing phase
using Arpack in forward mode). This cost grows with the number of eigenvec-
tors obtained and a trade-off needs to be found. Following the choices of Emeric
Martin, we take 15 eigenvectors for the cobra, 60 eigenvectors for the almond and
20 eigenvectors for the others. Note that these values are taken independently of
the mesh size. The cost of the computation of 20 eigenvectors depends on the test
problem and varies from 500 up to 1000 matrix-vector products. In Table 3.8, we
give the times to assemble and apply the FMM, the Frobenius preconditioner and
the spectral update (SLRU, the number of shifted eigenvalues is given in bracket).
Note that, in the case of the spectral update, the eigenvectors are stored on disk and
so the assembly of the spectral low rank update is rather fast and mainly consists
in reading the eigenvectors from disk.

3.3 A detailed presentation of the 3D code 161

assembly application # procs
FMM Frob SLRU FMM Frob SLRU

cetaf 5391 9.6 631.8 3.7 (20) 0.25 0.11 0.02 (20) 4
Airbus 23676 114.8 184.8 36.7 (20) 1.86 0.29 0.03 (20) 4
cobra 60695 33.3 120.2 30.6 (15) 1.93 0.22 0.03 (15) 8

almond104793 53.1 345.8 182.8 (60) 2.92 0.41 0.10 (60) 8
almond104793 53.1 345.8 59.3 (20) 2.92 0.41 0.05 (20) 8

Table 3.8: Time of assembly and application of the FMM (prec-3), the Frobenius preconditioner
and the spectral update (the number of shifted eigenvalues is given in bracket).

3.3.3 The remaining numerical kernels

In the code, the vectors are stored out–of–core and we do not want to be concerned
with their storage. For that purpose, EADS-CCR has provided us with all the
basic operations to handle the vectors. The basic kernel operations are listed in
Table 3.9 using a BLAS-like notation.

zaxpy(α,x,y) x← x + αy
zdscal(α,x,y) x← αx
zcopy(x,y) x← y
zdot(x,y) xHy
precond(x) x←Mx
matvec(x) x← Zx

Table 3.9: “kernel” operations needed by the iterative solvers.

The iterative solvers are implemented using a reverse communication mechanism (see
Chapter 2). The time for an iteration is directly related to the time for each kernel
operation and the number of calls to these operations. It is therefore important to
know the average time consumed by each call to the kernel operations. We report
these in Table 3.10. They are also given relative to the FMM time in Table 3.11.
First of all, we notice that the two most time consuming operations are of course
the matrix–vector product and the preconditioning. In all our experiments, the
number of iterations for a given solver is close to the number of times a matrix–
vector product, and a preconditioning application, is performed. Consequently, the
first goal is to reduce the number of iterations for each solver.
This last sentence should however be further discussed. The general principle of the
design of iterative methods to handle several right–hand sides is to share, among
all the right–hand sides and via an intensive use of vector–vector operations, the
information obtained from a matrix–vector product. In general, the computational
time of these operations is neglected and only the number of iterations are taken into
account. In our case, the matrix–vector product is performed using the FMM. This
numerical kernel is particularly well implemented and efficient. From Table 3.10, we
see that, in most cases, 1000 dot products (say) are more expensive than one matrix–
vector multiplication. In Section 3.7.1.1, we show that the overall time for the
vector–vector operations is, for our iterative solvers with multiple right–hand sides,
of the same order, and in general larger, than the overall time for the matrix–vector

162 The Electromagnetism Application

products. To illustrate the importance of the vector–vector operations, we give the
results in Table 3.16. For both the Airbus 23676 and sphere 71148 , the full GMRES
method converges in less iterations than the GMRES(30) method. However, the
elapsed time is larger for the full GMRES method than for the GMRES(30) method.
Although, the full GMRES method performs less matrix–vector product than the
GMRES(30) method, it performs more orthogonalization among vectors. Since the
time spent in the orthogonalizations is not negligible, the full GMRES method takes
more time to converge than the GMRES(30) method.

zaxpy zdscal zcopy zdot precond FMM # proc.
Airbus 23676 0.0027 0.0026 0.0019 0.0024 0.27 1.83 4
Airbus 94704 0.0066 0.0063 0.0046 0.0051 0.80 4.61 8
Airbus 213084 0.0148 0.0142 0.0105 0.0106 1.78 11.13 8

sphere 40368 0.0044 0.0042 0.0030 0.0036 0.29 2.16 4
sphere 71148 0.0079 0.0059 0.0079 0.0061 0.54 3.84 4
sphere 161472 0.0131 0.0129 0.0093 0.0098 0.61 4.63 8
sphere 288300 0.0202 0.0194 0.0143 0.0140 1.09 8.25 8

cetaf 5391 0.0010 0.0001 0.0001 0.0013 0.13 0.25 4
cobra 60695 0.0045 0.0003 0.0004 0.0040 0.22 1.93 8
almond 104793 0.0082 0.0006 0.0007 0.0064 0.41 2.92 8

Table 3.10: Elapsed time (s) for each basic operation needed by the iterative solvers.

100
zaxpy

100
zdscal

100
zcopy

100
zdot

precond FMM # proc.

Airbus 23676 14.75 14.21 10.38 13.11 14.75 100 4
Airbus 94704 14.32 13.67 9.98 11.06 17.35 100 8
Airbus 213084 13.30 12.76 9.43 9.52 15.99 100 8

sphere 40368 20.37 19.44 13.89 16.67 13.42 100 4
sphere 71148 20.57 15.36 20.57 15.89 14.06 100 4
sphere 161472 28.29 27.86 20.09 21.17 13.17 100 8
sphere 288300 24.48 23.52 17.33 16.97 13.21 100 8

cetaf 5391 40.80 2.40 2.40 50.80 52.00 100 4
cobra 60695 23.47 1.66 2.18 20.89 11.40 100 8
almond 104793 28.05 1.89 2.47 21.99 14.04 100 8

Table 3.11: Percentage of time required for 100 calls to each basic operations with respect to one
call to the FMM.

An efficient way to reduce significantly the time of the zaxpy operations is to block
them. The iterative solvers dealing with several right–hand sides use and abuse of
this property. However, in our out–of–core implementation, this strategy does not at
all improve the computational time. For instance, n consecutive zaxpy’s performed
simultaneously take the same time as n successive zaxpy’s.
In Table 3.12, we compare the elapsed times for 1000 dot products performed si-
multaneously with The elapsed times for 1000 dot products performed sequentially.
the benefit is clear. The implementation of the vector–vector operation for vectors
held out–of–core deserves further study.

3.3 A detailed presentation of the 3D code 163

successive ZDOT gathered ZDOT # procs
cetaf 5391 1.27(1) 0.13(20) 4
Airbus 23676 2.48(1) 0.46(20) 4
cobra 60695 4.03(1) 0.59(17) 8
almond 104793 6.42(1) 0.78(60) 8
almond 104793 6.42(1) 0.99(20) 8

Table 3.12: Elapsed time (s) for 1000 dot products performed one at a time and 1000 dot products
gathered, the size of the set varies and is given in parentheses.

3.3.4 Parallel scalability: an insight

Thanks to the reverse communication, the parallelism of the code is implemented
independently of the solver. All the operations needed by the solvers are parallel.
A detailed study of the parallel implementation is out of the scope of this section.
For the parallel implementation of the fast multipole method we refer to [130] and
for the parallel implementation of the Frobenius–norm minimizer preconditioner we
refer to [23, 130]. Nevertheless, we show, in Table 3.13, the results of some basic
scalability experiments with the code. Going from four processors to eight, we
observe how the basic parallel operations scale. The main two operations, the fast
multipole method and the preconditioner, get a speedup of nearly two. Note that
the dot product only has a speedup of 1.39 .

zaxpy zdscal zcopy zdot precond FMM
assemb.
FMM

assemb.
precond

proc.

0.0079 0.0059 0.0079 0.0061 0.54 3.84 532.1 590.6 4
0.0050 0.0048 0.0035 0.0044 0.28 2.11 270.4 309.9 8
1.58 1.23 2.25 1.39 1.93 1.82 1.97 1.91

Table 3.13: Elapsed time (s) for each basic operation on 4 and 8 processors for the sphere 71148
test example. The corresponding speedups are given in the last row.

3.3.5 Preliminary results

3.3.5.1 Direct versus iterative solvers

The purpose of this chapter is the study of the iterative methods in the context of
electromagnetism calculations. For the sake of completeness, we recall that direct
methods might be highly suited to that framework as long as enough memory (RAM
and disk) can be afforded. Direct solvers are particularly attractive when dealing
with multiple right–hand sides since the factorization is performed only once for all
the right–hand sides. Furthermore, since the matrices are dense and complex, the
implementations of these solvers can benefit from the performance of the Level 3
BLAS and can reach high substained Megaflop rates; finally they can be parallelized
in a Scalapack fashion [3, 31]. In Table 3.14, we compare the elapsed times of the
direct and the iterative solvers on the Airbus 23676 with 181 right–hand sides. On
that example, the direct solver is clearly the fastest and should be preferred when

164 The Electromagnetism Application

more than 45 right–hand sides have to be solved.

direct solver iterative solver
assembly of the dense matrix 57.1 assembly of the fmm matrix 8.93
factorization of the matrix 449.9 construction of the preconditionner 80.37
181 solves 15.9 GMRES solver 8982.5
elapsed time 522.9 elapsed time 9071.8

Table 3.14: Elapsed times on 8 processors for the direct and iterative (GMRES with Frobenius–
norm minimization) solvers on the Airbus 23676 test example with 181 right–hand sides.

However, no definit conclusion can be reached for this comparison between direct
and iterative solvers. While the cost of the direct method (when affordable) only
depends on the size of the linear systems, the performance of the iterative techniques
is problem dependent. For example, in the case of the coated cone sphere where the
convergence is observed of 20 iterations for each right–hand side (20 is an average),
the elapsed time for the 181 solves using GMRES is 10 hours (3617 cumulated
iterations) whereas the direct solver needs more than 20 hours. (These times were
observed on a cluster of 25 Pentium4 running at 2GHz by Guillaume Sylvand).
To conclude this short comparison, we shall mention that, thanks to the use of the
fast multipole technique, iterative methods are the only alternative for the solution
of problems with a few tens of thousand of unknowns. On this range of problems,
the direct approaches are no longer affordable since they are too demanding in term
of CPU and memory.

3.3.5.2 Other integral equation formulations

In Section 3.1, we have only described the EFIE formulation. Nevertheless, we
mentioned that other formulations exist, for example the MFIE (magnetic–field
integral equation) and the CFIE (combined field integral equation). These last two
formulations have a primary limitation, that is, they are only defined on closed
objects. Their main advantage is that they usually give rise to linear systems that
are easier to solve with the iterative solvers. In Table 3.15, we illustrate this latter
observation. It can be seen that the preconditioned EFIE requires 172 iterations
whereas the unpreconditioned CFIE(0.2) only requires 30 iterations. Consequently
the elapsed time is ten times larger for the EFIE than for the CFIE(0.2). For
that geometry, we shall mention that all the three approaches enable us to get the
correct bistatic RCS. Because all but the cobra example presented in Section 3.2.4

No preconditioner Frob preconditioner
EFIE CFIE(0.2) MFIE EFIE CFIE(0.2) MFIE

iterations 354 30 130 172 12 86
assembling time 49.5 76.8 67.9 399.1 461.1 425.4
solution time 1968.7 128.2 549.4 798.4 66.6 371.8

total time 2018.2 205 617.3 1197.5 527.7 797.2

Table 3.15: Elapsed time on 8 processor Compaq for solving the Airbus 23676 test problem using
the three integral equation formulations.

3.3 A detailed presentation of the 3D code 165

are closed objects, CFIE(0.2) is applicable and then seems to be the formulation
of choice. Nevertheless, we only consider the EFIE formulation in our work for
many reasons. The first one is that, for realistic aircraft geometries, the windows
are included; consequently the airplane can no longer be considered as a closed
object. The second is that, even though on closed objects all the formulations
give, in theory, the same solution, it appears in practice that the solution using the
EFIE is sometimes better. This was revealed on several geometries during the JINA
2002 workshop and no explanation of that behaviour has been given to date. For
the sake of reliability, the EFIE formulation is often the method of choice even on
closed objects. These points justify the choice made in this study.
Finally, we mention that other integral equations exist that enable us to perform the
same numerical simulation. For instance, Després [42] proposed a set of equations
that also are widely used.

3.3.5.3 Combining the Frobenius–norm minimization preconditioner with flexible

inner–outer iterations

When only a few right–hand sides have to be solved, the joint effort involving eads–

ccr, cermics and cerfacs has proposed a strategy to solve problems with upto a
few tens of millions of unknowns [130]. The iterative solver used for those large sim-
ulations combines the fast multipole method with an inner–outer iteration scheme.
The outer solver is the Flexible GMRES that uses, as its preconditioner, a few
iterations of preconditioned GMRES. For the inner solver, the preconditioner is
the Frobenius–norm minimization technique and the matrix–vector product is per-
formed using a less accurate fast multipole method than that used for outer itera-
tions.
To illustrate the attractive behaviour of the solver, we report in Table 3.16 on
some experiments for the various discretizations of a sphere and the Airbus. For
these experiments, we set the restart parameters of the various GMRES algorithms
(classical and flexible) so that they all use the same amount of storage. For the inner-
outer scheme, the inner GMRES consists in one restart of GMRES(20) and the
value of the restart for the FGMRES is set to 5 . The total amount of vectors used
by the resulting solver, denoted by flexible GMRES(20,5), is 30 (see Section 2.3).
Regarding the accuracy of the inner fast multipole methods we consider prec–2,
prec–1, to define FGMRES(20,5)(2), FGMRES(20,5)(1) respectively. The number
of iterations for FGMRES(20,5) is given in a x − y format where x denotes the
number of outer iterations (using FMM prec–3) and y denotes the number of inner
iterations (using FMM prec–1 or prec–2).
For the small Airbus test examples, restarted GMRES or the full GMRES method
may perform better in terms of iterations or elapsed time than the FGMRES(20,5)
but the difference is slight. When the size becomes large (Airbus 213084 and
Airbus 591900) the FGMRES(20,5) method outperforms the standard methods in
terms of elapsed time. This is mainly due to three reasons. Firstly the cost of the
orthogonalization scheme in flexible GMRES(20,5) is small compared to its cost in
full GMRES; secondly, the inner iterations are performed with a less accurate but
faster matrix–vector product. Finally, it appears that the flexible scheme manages

166 The Electromagnetism Application

to converge on some large problems where the classical restarted scheme does not
converge and the full GMRES runs out of memory (disk).
The same observation is true on the series of spheres. It should be noticed that
on this academic example, the use of the less accurate FMM, prec–1, induces a
significant delay in the convergence of the flexible GMRES(20,5) compared with the
same scheme using the inner prec–2 FMM. On the sphere 1023168 , full GMRES
runs out of memory, restarted GMRES runs out of iterations (and time limit on
the computer batch queue), and FGMRES(20,5) is the only alternative that succeds
in solving this one million degree of freedom problem. This confirms the results
observed in [23, 26, 130].

3.4 Numerical behaviour of the linear solvers for one right–hand side 167

iter time (s) (#procs)
Airbus 23676 full GMRES 71 207.0 (4)
Airbus 23676 GMRES(30) 81 184.7 (4)
Airbus 23676 FGMRES(20,5)(2) 5− 100 222.7 (4)
Airbus 23676 FGMRES(20,5)(1) 5− 100 184.2 (4)
Airbus 94704 full GMRES 100 678.8 (8)
Airbus 94704 GMRES(30) 131 772.8 (8)
Airbus 94704 FGMRES(20,5)(2) 8− 160 930.3 (8)
Airbus 94704 FGMRES(20,5)(1) 8− 160 736.8 (8)
Airbus 213084 full GMRES 123 1868.8 (8)
Airbus 213084 GMRES(30) 343 4556.8 (8)
Airbus 213084 FGMRES(20,5)(2) 9− 180 2038.0 (8)
Airbus 213084 FGMRES(20,5)(1) 9− 180 1524.1 (8)
Airbus 591900 full GMRES 146 6498.5 (8)
Airbus 591900 GMRES(30) +× +× (8)
Airbus 591900 FGMRES(20,5)(2) 10− 200 6412.6 (8)
Airbus 591900 FGMRES(20,5)(1) 10− 200 4790.3 (8)
sphere 40368 full GMRES 61 214.2 (4)
sphere 40368 GMRES(30) 80 222.2 (4)
sphere 40368 FGMRES(20,5)(2) 4− 80 257.3 (4)
sphere 40368 FGMRES(20,5)(1) 6− 120 241.2 (4)
sphere 71148 full GMRES 66 388.4 (4)
sphere 71148 GMRES(30) 76 379.6 (4)
sphere 71148 FGMRES(20,5)(2) 5− 100 454.5 (4)
sphere 71148 FGMRES(20,5)(1) 6− 120 410.3 (4)
sphere 161472 full GMRES 77 549.0 (8)
sphere 161472 GMRES(30) 126 817.6 (8)
sphere 161472 FGMRES(20,5)(2) 6− 120 736.2 (8)
sphere 161472 FGMRES(20,5)(1) 8− 160 744.2 (8)
sphere 288300 full GMRES 131 1649.0 (8)
sphere 288300 GMRES(30) 311 3695.2 (8)
sphere 288300 FGMRES(20,5)(2) 10− 200 2214.1 (8)
sphere 288300 FGMRES(20,5)(1) 14− 280 1972.9 (8)
sphere 549552 full GMRES 154 4365.1 (8)
sphere 549552 GMRES(30) 345 7977.4 (8)
sphere 549552 FGMRES(20,5)(2) 11− 220 4530.9 (8)
sphere 549552 FGMRES(20,5)(1) 25− 500 6769.3 (8)
sphere 1023168 full GMRES − − (16)
sphere 1023168 GMRES(30) +× +× (16)
sphere 1023168 FGMRES(20,5)(2) 11− 220 4080.2 (16)

Table 3.16: Number of iterations and elapsed time (s) on different test cases for full GMRES,
GMRES(30) and FGMRES(20,5). × means that the number of iterations exceeded 500 , +
means that the times exceeded 10000 seconds and − means that the code runs out of memory.

3.4 Numerical behaviour of the linear solvers for one right–

hand side

3.4.1 The GMRES–DR solver

3.4.1.1 Analysis of the convergence of GMRES–DR

In Section 2.4, we present the theoretical background of the GMRES–DR method
and its implementation. In this section, we investigate its numerical behaviour for

168 The Electromagnetism Application

solving large linear systems from electromagnetism.
We first consider GMRES–DR(30,20) on the cetaf test example. The right–hand
side corresponds to the direction (θ = 60o, ϕ = 0o) . The convergence history is
shown in Figure 3.20. For the sake of illustration, the stopping criterion threshold
has been set to the value 10−5 which is much smaller than what is usually required
for the RCS calculations. The convergence of GMRES(30) and of full GMRES are
also shown for comparison purposes. The objective of GMRES–DR is to approach
the behaviour of the full GMRES method at a lower memory cost; we recall that
this goal was achieved in the numerical experiments reported in Section 2.4.
In Figure 3.20, the behaviour of GMRES–DR(30,20) is satisfactory. It manages
to follow well the superlinear convergence rate of full GMRES and outperforms
GMRES(30). For the sake of comparison, we also plot the convergence history
of GMRES(10) with a spectral low rank update preconditioner of size 20 and the
convergence history of GMRES–DR(20,10) with a spectral low rank update precon-
ditioner of size 10. These two solvers share a feature with GMRES–DR(30,20): all
three attempt to capture the spectral information related to the 20 smallest eigenval-
ues using 20 vectors and use 10 vectors for the Arnoldi basis. GMRES(10) exploits
spectral information from the beginning while GMRES–DR(30,20) does not have
any spectral information at the beginning but constructs it during the iterations.
In that respect, the comparison in term of iteration count is not fair. However, it
is interesting to note that, at the end, the three convergence curves have the same
slope. GMRES–DR(30,20) starts to exhibit this slope at the 150-th iteration while
GMRES(10) with a spectral low rank update of size 20 has this slope from the be-
ginning. It indicates that GMRES–DR(30,20) manages to construct a good enough
approximation of the harmonic Ritz vectors to improve its speed of convergence
notably.
For the same example, we have recovered the harmonic Ritz values computed by
GMRES–DR(30,20) at each restart (i.e. every other 10 iterations). In Figure 3.21,
we plot their modulus as a function of the iterations; we also plot the modulus of
the 10 smallest eigenvalues of the matrix. These latter eigenvalues are computed
using arpack. As the 10 smallest harmonic Ritz values converge toward the 10
smallest eigenvalues, convergence is also observed for their moduli as can be seen in
the figure. Moreover, we point out the fact that the four smallest eigenvalues of the
matrix are well approximated by the four smallest harmonic Ritz values after the
150–th iteration; that is, when GMRES–DR(30,20) starts to exhibit its superlinear
rate of convergence. Instead of observing the harmonic Ritz value, we could also

have looked at the Rayleigh quotient associated with y , that is yT � y
yT y

. Indeed they
are slightly better approximations of the eigenvalues than the harmonic Ritz values.
In Section 3.8.1, this topic is also further discussed.
To conclude with these experiments we plot, in the complex plane, the 20 smallest
eigenvalues and the 20 harmonic Ritz values given by GMRES–DR(30,20) at the
last iteration. It can be seen that the smallest harmonic Ritz values match the
corresponding eigenvalues. We also draw in the complex plane the path of the
smallest harmonic Ritz value obtained at each restart. Note that this path goes
from one eigenvalue to another. This observation is quite general and has been
observed on all the examples.

3.4 Numerical behaviour of the linear solvers for one right–hand side 169

0 50 100 150 200 250 300

10
−4

10
−3

10
−2

10
−1

10
0

iterations

full GMRES
GMRES(30)
GMRES−DR(30,20)
GMRES−DR(20,10),SLRU(10)
GMRES(10),SLRU(20)

Figure 3.20: Convergence history for three solvers on the cetaf 5391 test example. The solvers
are GMRES–DR(30,20), GMRES–DR(20,10) with a spectral low rank update of size 10 and GM-
RES(10) with a spectral low rank update of size 20. They share the same size of Krylov subspace
(10) and the same number of spectral vectors (20). The full GMRES and GMRES(30) are also
given for comparison.

In Figure 3.23, we report on another experiment with GMRES–DR(50,20) on the
cobra 60695. The convergence history is plotted and compared with full GMRES and
GMRES(50). As expected GMRES–DR(50,20) performs better than GMRES(50)
and worse than full GMRES. In this case, we observe that the curve of GMRES–
DR(50,20) does not fit the curve of full GMRES and that the final rate of convergence
is half the one observed with full GMRES. At the end of the iterations, we observe
that the smallest eigenvalue approximates the smallest eigenvalue well, so we think
that the relatively poor rate of convergence of GMRES–DR(50,20) is mainly due to
the fact that 20 vectors is not enough to properly represent the spectral information
needed to obtain the slope of full GMRES.

In Figures 3.21 and 3.22, we illustrate that the GMRES–DR method finds a good
approximation of the eigenvalues. This is not surprising since, in a sense, GMRES–
DR is nothing but an eigensolver adapted for solving linear systems.

Finally in Table 3.17, we give the number of iterations of the GMRES–DR method,
with full GMRES and restarted GMRES on the spheres and Airbus problems. The
restarted GMRES and GMRES–DR use the same amount of memory to store their
vectors. For GMRES–DR, we consider two different dimensions of the eigensub-
spaces, 10 and 20 . In the case of the spheres, the GMRES–DR method succeeds in
following the convergence curve of full GMRES. For the sphere with one million un-
knowns, the GMRES–DR(30,10) converges while the full GMRES method fails due
to a lack of memory. In that respect the GMRES–DR(30,10) method and FGMRES

170 The Electromagnetism Application

40 60 80 100 120 140 160 180
10

−3

10
−2

10
−1

10
0

Eigenvalue from Arpack
Harmonic Ritz value from GMRESDR(30,20)

Figure 3.21: GMRES–DR(30,20) is run on the cetaf 5391 test example (see Figure 3.20). The
modulus of the ten smallest harmonic Ritz values computed by GMRES–DR(30,20) during the
iterations is plotted. We observe that they converged toward the modulus of the ten smallest
eigenvalues that are also plotted.

(20,5)(2) are the only two methods that succeed in solving this very large problem.
For the Airbus problems, the results are not as good, and the GMRES–DR solvers do
not manage to follow the convergence curves of full GMRES exactly. The results are
nevertheless satisfactory. We note that, for the Airbus 591900 , GMRES–DR(30,10)
and GMRES–DR(30,20) are close to convergence at the 500 –th iteration whereas
GMRES(30) stagnates at 2 · 10−2 from the 300 –th iteration.

3.4.2 The SQMR solver

In this section, we investigate the use of symmetric QMR [57] for the solution of sym-
metric dense linear systems arising from the EFIE formulation. Symmetric QMR
(SQMR) is a hybrid version of QMR that benefits from the symmetry of the matrix
so halving the memory and computing requirement compared with QMR. The ad-
vantage over solvers like GMRES is that SQMR uses a short term recurrence and
therefore requires only a few vectors to be stored while the number of dot products
is also considerably reduced. The main drawback is an observed delay in the con-
vergence due, in general, to a loss of orthogonality among the computed vectors. In
our experiments, the matrix-vector products are performed using a fast multipole
code [130] with three different accuracies. Even though, in exact arithmetic, the
dense matrix is symmetric, the use of floating–point arithmetic combined with the
approximations made in the three implementations of the fast multipole method
deteriorate this property. We therefore end up by using a non–symmetric matrix–
vector product in a symmetric solver. In this section, we study the influence of this

3.4 Numerical behaviour of the linear solvers for one right–hand side 171

−0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Eigenvalue from Arpack
Harmonic Ritz value from GMRESDR(30,20) − it 170
Path of the first Harmonic Ritz value

Figure 3.22: GMRES–DR(30,20) is run on the cetaf 5391 test example (see Figure 3.20). The
twenty harmonic Ritz values obtained at the convergence from GMRES–DR(30,20) (iteration 170)
with the twenty smallest eigenvalues of the matrix are plotted in the complex plane. The path
during the iterations of the smallest harmonic Ritz value is also given.

0 100 200 300 400 500 600 700 800 900 1000
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

iterations

full GMRES
GMRES(50)
GMRESDR(50,20)

Figure 3.23: Convergence history for three solvers on the cobra 60695 test example. The solver
GMRES–DR(50,20) is compared with full GMRES and GMRES(30).

172 The Electromagnetism Application

iter
Airbus 23676 GMRES(30) 112
Airbus 23676 GMRES–DR(30,10) 95
Airbus 23676 GMRES–DR(30,20) 93
Airbus 23676 FULL GMRES 87
Airbus 94704 GMRES(30) ×
Airbus 94704 GMRES–DR(30,10) 170
Airbus 94704 GMRES–DR(30,20) 171
Airbus 94704 FULL GMRES 142
Airbus 213084 GMRES(30) ×
Airbus 213084 GMRES–DR(30,10) 266
Airbus 213084 GMRES–DR(30,20) 274
Airbus 213084 FULL GMRES 183
Airbus 591900 GMRES(30) ×
Airbus 591900 GMRES–DR(30,10) ×
Airbus 591900 GMRES–DR(30,20) ×
Airbus 591900 FULL GMRES 233

sphere 40368 GMRES(30) 138
sphere 40368 GMRES–DR(30,10) 81
sphere 40368 GMRES–DR(30,20) 80
sphere 40368 FULL GMRES 71
sphere 71148 GMRES(30) 87
sphere 71148 GMRES–DR(30,10) 84
sphere 71148 GMRES–DR(30,20) 80
sphere 71148 FULL GMRES 75
sphere 161472 GMRES(30) 139
sphere 161472 GMRES–DR(30,10) 104
sphere 161472 GMRES–DR(30,20) 98
sphere 161472 FULL GMRES 93
sphere 288300 GMRES(30) 335
sphere 288300 GMRES–DR(30,10) 187
sphere 288300 GMRES–DR(30,20) 166
sphere 288300 FULL GMRES 137
sphere 549552 GMRES(30) 475
sphere 549552 GMRES–DR(30,10) 198
sphere 549552 GMRES–DR(30,20) 209
sphere 549552 FULL GMRES 182
sphere 1023168 GMRES(30) ×
sphere 1023168 GMRES–DR(30,10) 197
sphere 1023168 FULL GMRES −

Table 3.17: Comparison in term of iterations of GMRES–DR(30,10) and GMRES–DR(30,20) with
full GMRES and GMRES(30). × means that the number of iterations exceeded 500 , and −
means that the code runs out-of disk space.

lack of symmetry on the behaviour of the linear solver.

3.4.2.1 A comparison study of solvers in the ie2m code.

We first report on experiments run with the ie2m code on the cnsph test example
(See Section 3.2 for their description). The main reason we use this problem is that

3.4 Numerical behaviour of the linear solvers for one right–hand side 173

the corresponding matrix is small and explicitly available. That makes it possible
to compute the level of symmetry for the matrix Z , defined by

‖Z− ZT‖2
2‖Z‖2

. (3.23)

In equation (3.4.2.1), we use the 2 –norm to represent the level of symmetry of the
matrix Z .From a mathematical point of view (see [74]), this quantity represents the
distance in 2–norm from Z to the nearest symmetric matrix (that is (Z + ZT)/2).
We recall that the calculation of Z is performed in single precision. For this example,
the code computes a matrix that has a level of symmetry equal to:

‖Z− Z
T‖2

2‖Z‖2
= 4 · 10−5.

This nonzero value is due to the fact that the code computes all the entries of the
matrix without exploiting its symmetry; each entry zij is computed via a numer-
ical integration, the round-off makes it different from zji . We recall that, in our
experiments, this matrix is used in double precision arithmetic.
The first experiments consist in comparing the numerical behaviour of the solvers
using both Z , symmetric up to 4 · 10−5 , and (Z + ZT)/2 , that is symmetric by
construction. As symmetric solvers we consider:

(a) Symmetric QMR (SQMR) with two three–term recurrences [54]. We have also
played with the three two–term recurrence variants [56], but have observed the
same behaviour and so do not report on these here.

(b) Biconjugate Gradient for a symmetric matrix (SBCG) [78, 80].

The convergence histories are displayed in Figure 3.24. For the purpose of com-
parison, we also plot the convergence of the non–symmetric solvers (c) QMR, (d)
full GMRES and (e) GMRES(20). Theoretically the convergence histories of SQMR
and QMR should perfectly overlap. It can be observed that it is certainly false when
the solvers are applied to Z that is not symmetric (See Figure 3.24(a)). When the
matrix is symmetrized, the SQMR curve follows exactly the QMR one. SQMR on
Z needs 160 iterations to converge down to 10−3 whereas SQMR on (Z + Z

T)/2
only needs 97 iterations. We recall that although the level of symmetry of Z was
not too far from the machine precision (the matrix was computed in single precision
arithmetic), there is an already significant bad effect on the behaviour SQMR. We
remark that SBCG oscillates a lot but eventually follows the curves of SQMR. This
can be observed both with Z and with (Z + ZT)/2 . Note that if we run SQMR
in single precision arithmetic on the explicitly symmetized matrix (Z + ZT)/2 , we
would obtain a curve similar to that of SQMR in Figure 3.24(a). Finally we remark
that we stop the iterations in the graphs of Figure 3.24 when the stopping criterion
threshold 10−6 is verified by the backward error of the appoximate solution. The
level of symmetry of Z , 4 · 10−5 , corresponds to the nonsymmetric part of the per-
turbation that has deteriorated the system. Consequently, in practice, we are not
interested to go lower than this value of the perturbation. However, if we continue
after 10−6 , we note that all the curves of Figure 3.24, except that of GMRES(20),

174 The Electromagnetism Application

0 50 100 150 200 250 300
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

iterations

SQMR
SBCG
QMR
full GMRES
GMRES(20)

(a) Experiments with Z

0 50 100 150 200 250 300
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

iterations

SQMR
SBCG
QMR
full GMRES
GMRES(20)

(b) Experiments with (Z + ZT)/2

Figure 3.24: Symmetric solvers (SBiCG, SQMR) are run on (a) Z for which the level of symmetry
is 4·10−5 and (b) (Z+ZT)/2 for which is symmetric in floating–point arithmetic. For these solvers,
one iteration requires one matrix–vector product with Z . For the QMR solver, one matrix–vector
product with Z and one matrix–vector product with ZT are required per iteration.

reach the machine precision level. In particular, in our experiments, SQMR manages
to obtain an approximate solution for ZJ = F with a backward error of the order
of the machine precision level; this happens even if the level of symmetry for Z is

3.4 Numerical behaviour of the linear solvers for one right–hand side 175

4 · 10−5 .

3.4.2.2 On the loss of t-orthogonality due to the nonsymmetry

When the matrix is explicitly available the remedy is straighforward. It is enough
to explicitly symmetrize the matrix, that is, to perform:

for all i and for all j, Zji = (Zji + Zij)/2 and Zij = Zji.

In the case of as elfip, things are a bit more complicated. The matrix is not
known explicitly and explicit symmetrization is no longer possible. One solution is
to symmetrize the matrix implicitly. That is, each time we perform a matrix-vetor
product, we enforce the relations that would hold if the matrix was symmetric. The
relation imposed by the symmetry of Z is the t-orthogonality of the basis of the
Krylov subspace constructed by SQMR. The t-orthogonality is the orthogonality
defined with respect to the indefinite quadratic form associated with the tranpose
(i.e. xT y = 0). The matrix being implicitly symmetrized, is equivalent to enforcing
the t-orthogonality among the Krylov basis in the SQMR method, eventually leading
to a SQMR variant with full t-reorthogonalization (note that it requires storing all
the Krylov basis as in GMRES).
It appears that there is a strong link between the level of symmetry of the matrix and
the t-orthogonality obtained among the computed Krylov vectors. In Figure 3.25,
we plot the loss of t-orthogonality among the 110 –first Krylov vectors on the cnsph

test example. In that figure, we plot the magnitudes of the entries of the matrix
I − QTQ . We observe that larger the asymmetry of the matrix, the more the t-

−7

−6

−5

−4

−3

−2

−1
50 100 150 200 250

250

200

150

100

50

(a) Experiments with Z

−16

−14

−12

−10

−8

−6

−4

−2
10 20 30 40 50 60 70 80 90 100 110

110

100

90

80

70

60

50

40

30

20

10

(b) Experiments with (Z + ZT)/2

Figure 3.25: Loss of t-orthogonality among the Krylov vectors in SQMR.

orthogonality is lost. Moreover, we observe that the loss of t-orthogonality among
the Krylov vectors for SQMR applied to the explicitly symmetrized matrix can also
grow up to 10−2 which is rather large. So, even with the explicitly symmetrized
matrix, we can lose t-orthogonality (as the conjugate gradient algorithm might lose
orthogonlity among the residuals).
This fact is not surprising and is in agreement with what we observe in Section 3.4.2.1.
Since the matrix is known to the Krylov process only through a matrix–vector prod-

176 The Electromagnetism Application

uct, even if it is exactly symmetric in floating–point arithmetic, we can consider that
the matrix might have a loss of symmetry up-to the order of the machine precision.
In Figure 3.24, we observe that a level of symmetry of 4 · 10−5 results in an impor-
tant delay in the convergence, even when the stopping criterion threshold is only
set to 10−3 . Consequently, we can legitimally worry about the delay of convergence
implied by a level of symmetry of the order of the machine precison. In Figure 3.26,
we plot the curves of three solvers applied to Z : (a) we run SQMR on the explicitly
symmetrized matrix Z , that is (Z+ZT)/2 ; (b) we run SQMR on the implicitly and
explicitly symmetrized matrix; that is, SQMR with t-reorthogonalization applied to
(Z+ZT)/2 ; (c) we run full GMRES on the explicitly symmetrized matrix Z . In Fig-

0 20 40 60 80 100 120
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

iterations

full GMRES
SQMR on symmetrized matrix
SQMR with t−reorthogonalization

Figure 3.26: Comparison of the effect of two symmetrization strategies on the numerical behaviour
of SQMR.

ure 3.26, SQMR with t-reorthogonalization clearly outperforms SQMR. The method
benefits from the implicit symmetrization and almost behaves as GMRES.
In the context of the conjugate gradient algorithm, and more generally in the con-
text of short term recurrence algorithms, such a phenomenon is well known and has
led to extensive use and study of reorthogonalization algorithms. In Figure 3.27, we
attempt to illustrate that our claims are also true for the conjugate gradient algo-
rithm. We run the conjugate gradient algorithm on Z where Z is a 100 –by– 100
matrix. Z is the sum of a random Hermitian matrix H with eigenvalues logarithmi-
cally distributed between 1 and 10−3 and a random (nonsymmetric) perturbation
E with ‖E‖2 = 10−7 . The right–hand side b is random. Five solvers are tested.
The backward error analysis is given with respect to H (i.e. not Z = H + E) since
the system we intend to solve is Hx = b . A direct solution using a LU factorization
is performed to get a reference. We run the conjugate gradient algorithm on Z . If
the conjugate gradient algorithm is run on (Z + Z

H)/2 it performs better than if it

3.4 Numerical behaviour of the linear solvers for one right–hand side 177

20 40 60 80 100 120 140 160

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

iterations

cg
gmres
cg reorth
cg on H + HH

cg reorth on H + HH

Figure 3.27: Convergence curves for the hermitian linear system Hx = b of order 100 where H is a
random Hermitian matrix with eigenvalues logarithmically distributed between 1 and 10−3 . The
matrix-vector product is perturbed by a (nonsymmetric) perturbation E such that ‖E‖ = 10−7 .
The dotted line represents the backward error obtained with respect to H with a direct solver
applied to H + E .

is performed on Z but these two strategies are outperformed by the conjugate gradi-
ent algorithm with reorthogonalization that nearly coincides with GMRES. We also
note that the conjugate gradient algorithm with reorthogonalization on (Z + ZH)/2
behaves exactly the same as the conjugate gradient algorithm on Z (this matrix
has a level of symmetry of 10−7) with also reorthogonalization. Finally, the same
set of experiments have been performed with the QMR algorithm (also a short term
recurrence algorithm) where we perturbed the matrix–vector products with Z and
the matrix–vector products with ZH by a random perturbation that changes at each
product. The curves are similar to those of Figure 3.27 and the same conclusions
can be drawn.

Another important remark that can be drawn from Figure 3.27 is that, even if
the convergence of the conjugate gradient algorithm is severely damaged when the
matrix Z is used, the algorithm still manages to provide a solution that is correct.
This confirms the theoretical and experimental results given in [124, 132]. Indeed
they even show that if the norm of the perturbation is increased proportionally to
1/‖r‖2 we should also reach this final accuracy level. However, their study does
not predict any consequence on the convergence rate. Our experiments tend to
show that if the perturbations are non–symmetric in a symmetric context then the
convergence may be dramatically slower. This is also in agreement with all the work
done in the past on various schemes of reorthogonalization to maintain the rate of
convergence of the short term recurrence algorithms.

178 The Electromagnetism Application

3.4.2.3 The as elfip code and the cetaf test example.

In order to have a symmetric preconditioner for SQMR, we take the Frobenius
preconditioner, M , and use M +MT as preconditioner. Carpentieri, Duff, Giraud
and Magolu monga Made [25] show that this strategy gives a suitable preconditioner.
In Table 3.18, we give a simple illustration of this. We observe that full GMRES
with the symmetrized preconditioner behaves the same as GMRES with the original
preconditioner.

iter (10−3) # iter (10−5)
Frob symm–Frob Frob symm–Frob

without FMM 78 81 140 139
FMM prec-2 81 83 141 140

Table 3.18: Number of full GMRES iterations on the cetaf with either the Frobenius preconditioner
or the symmetrized Frobenius preconditioner; two different values are considered for the stopping
criterion threshold: 10−3 and 10−5 .

We first consider the cetaf. In Figure 3.28, we plot the backward error as a function
of the iterations for the three accuracies of the FMM (denoted by prec–1, prec–2
and prec–3) and two different arithmetics (i.e. single or double precision). Three

50 100 150 200 250 300
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Cetaf 5391 − CFIE 1 − (0o,90o) − symmetric FROB precond.

GMRES FMM prec−3
SQMR no fmm
SQMR FMM prec−1
SQMR FMM prec−2
SQMR FMM prec−3
SQMR FMM prec−1 double
SQMR FMM prec−2 double
SQMR FMM prec−3 double

Figure 3.28: SQMR on the cetaf 5391 with different FMM implementation.

similar behaviours can be observed. The first is the non convergence of SQMR with
the FMM prec–2. We checked the level of symmetry associated with this accuracy
and observed that is was fairly bad. This explains the lack of convergence. The
second is the similar behaviour oberved with both the FMM prec–1 and prec–3 when
computed in single precision arithmetic; the corresponding matrices are symmetric

3.4 Numerical behaviour of the linear solvers for one right–hand side 179

up to 10−6 . Finally, the last corresponds to the behaviour observed with the FMM
prec–1 and prec–3 computed in double precision arithmetic. In that latter situation,
the level of symmetry of these matrices is close to 10−15 . These experiments confirm
that the rate of convergence of SQMR is greatly affected by the symmetry of the
matrix involved in the construction of the Krylov vectors. The better the symmetry
is, the faster the convergence. When the matrix is nearly symmetric, the behaviour
of SQMR is fairly similar to that of GMRES. We have also compared SQMR with
GMRES(30). The results are given in Table 3.19. It appears that SQMR, used

iter (10−3) # iter (10−5)
Full GMRES 78 140
GMRES(30) 112 ×

SQMR 133 167

Table 3.19: Number of iterations to obtain a backward error smaller than (10−3) and (10−5) for
full GMRES, GMRES(30) and SQMR. The preconditioner used is the symmetrized Frobenius
preconditioner for SQMR and the standard Frobenius preconditioner for GMRES. The multipole
implementation uses prec–3 in double precision arithmetic. × means that the stopping criterion
is not satisfied in less than 500 iterations.

with the symmetric formulation of the multipole method, manages to converge to
10−5 whereas GMRES(30) fails. However, if a lower accuracy (10−3) is requested,
GMRES(30) performs better. GMRES(30) gets stuck between 10−3 and 10−5

and the convergence does not make any significant progress. More details on this
work can also be found in [45].

3.4.2.4 Experimental study of SQMR

In this section, we investigate the numerical behaviour of SQMR on large electro-
magnetism problems, using the FMM prec–3 in double precision that appears to
be the most reliable. For that purpose we consider the Airbus and spheres set of
test problems. The numerical experiments are reported in Table 3.20. It appears

full GMRES GMRES(30) SQMR
Airbus 23676 71 81 324
Airbus 94704 100 131 440
Airbus 213084 123 343 ×
sphere 40368 61 80 94
sphere 71148 66 76 111
sphere 161472 77 126 210
sphere 288300 131 311 370
sphere 549552 154 345 383

Table 3.20: Comparison of the number of iterations (equal to the number of matrix–vector product)
needed for full GMRES, GMRES(30) and SQMR to converge. The matrix–vector product is
performed using the FMM prec–3 (double). × means that the convergence was not achieved in
500 iterations.

that SQMR gives satisfactory convergence behaviour that are nevertheless not fully

180 The Electromagnetism Application

convincing. In practice, we have observed that, when the stopping criteria is set to
10−2 , then GMRES(30) exhibits a faster convergence than SQMR. When the stop-
ping criterion threshold is set to 10−5 (very low for classical RCS calculations) then
sometimes GMRES(30) does not converge whereas SQMR manages to converge.

3.4.2.5 Conclusion

SQMR, which is very appropriate for problems where the matrix is fully assem-
bled [25], may also be applied with the multipole method but it requires a careful
implementation to ensure the symmetry of the multipole expansion. From the exper-
imental results using the as elfip code, we see that, even if the maximum symmetry
affordable is obtained for using the FMM, SQMR does not give satifactory results
for large systems when a low tolerance is requested. To decrease the number of iter-
ations, a strategy would be to reorthogonalize the vectors. In this case, SQMR loses
its computational interest and becomes as costly as full GMRES. For this reason,
we do not investigate the use of SQMR in the as elfip code further; even if the use
of local reorthogonalization techniques deserve to be studied.

3.5 Techniques to improve one right–hand–side solvers for multiple right–hand–side

problems 181

3.5 Techniques to improve one right–hand–side solvers for
multiple right–hand–side problems

The problem we face is to solve the linear systems (3.2) not only for one right-hand
side but with several that are given simultaneously. In a classical RCS calculation,
the number of right-hand sides is typically 360 if we are interested in observing the
scattered waves in each direction in the plane of interest. If the solution for one right
hand side requires a day of computation, the complete RCS will require a complete
year; this is not acceptable in a design process. The purpose of this section is to
indicate two strategies to significantly reduce the solution time for each right-hand
side using a classical Krylov solver. The first strategy consists in exploiting the
underlying physical problem to use suitable initial guesses. The second approach
consists in solving simultaneously and independently several linear systems to take
advantage of a Level 3 BLAS like efficiency of the FMM calculation.

3.5.1 Interpolation method

The solution of the linear system is the current ~J on the object. It depends con-
tinously on ϕ (and/or θ), the angle associated with the illuminating wave. If we
assume that the system is solved for a given right–hand side F (ϕ0) , giving the
solution J(ϕ0) , a natural idea is to use J(ϕ0) as the initial guess for the solution
of the next linear system ZJ = F (ϕ0 + δϕ) associated with the next illuminat-
ing angle. This leads to a simple but effective strategy, referred to as strategy 1.
Some other strategies have been derived to find a more elaborate initial guess (e.g.
Carayol [22]). In particular, Sylvand [130] has investigated several. Among these,
we only use the two that appear to be the most effective. The first one is strategy
1 described above. The second one further exploits the nature of the underlying
equations. The right-hand side is defined by equations (3.4) and (3.5), the ` -th
entry of F is defined by

F`(ϕ) =

∫

Γ

eikx·ûr(ϕ)ẑ · ~Ψ`(x)ds(x). (3.23)

The entry F` only depends on ϕ . In a first approximation, we can assume that
the dependency in ϕ is linear with respect to eikx·ûr(ϕ) . When going from an angle
ϕ0 to ϕ0 + δϕ a natural strategy for the initial guess is to use the solution J(ϕ0)
corrected with a phase term, giving

J`(ϕ0)eikx`·ûr(δϕ).

For the third right–hand side, each entry of the initial guess is computed as the
linear interpolation of the corresponding entries in the first and second solution,
each of them corrected by the appropriate phase component. For the following
initial guesses, the same strategy is applied that only used the two previous solutions.
This second strategy is referred to as strategy 2 for the initial guess. Note that this
strategy leads to an initial guess that is not in the span of the previous solution.
This nonlinear way of getting the initial guess gives therefore a completely different
intial guess than those obtain with standard linear algebra techniques.

182 The Electromagnetism Application

These two strategies are very efficient and their numerical merits are reported
throughout this document.

3.5.2 Gathering multiple GMRES iterationns

In Table 3.6, we observe that, when the FMM is used to perform several matrix-
vector products at a time, significant gains can be expected due to a Level 3 BLAS
effect. Since in a GMRES solve, the FMM is the main time consuming part, solving
at the same time and independently several right-hand sides is an appealing strategy
if the FMM product are gathered. We refer to this strategy as gathered GMRES.
In Table 3.21, we give results on the elapsed times for gathered GMRES and for
a sequence of classical GMRES. In our implementation of gathered GMRES, we
have indeed synchronized and gathered all the kernel operations required by the
p GMRES solvers. ight–hand sides have converged. We mention that this latter
constraint can be relaxed by deflating the right–hand sides as soon the corresponding
solution has converged. For the sake of simplicity of the implementation we have not
considered this strategy in the preliminary implementation used for the experiments
reported in this document. Under these four assumptions, each of the p solver
performs, at each step, the same operation between the same vectors of its own.
This enables the code to use the data locality in cache and memory efficiently as
the code is out-of-core.
In Table 3.21, the total number of iterations reported for gathered GMRES is higher
than for the sequence of classical GMRES and is indeed a multiple of the number
of gathered right–hand sides. This is a direct consequence of the fact that we do
not deflate a converged vector. This problem does not lead to important damage
in the method since the convergence is rather uniform among the right–hand sides.
On the coated cone sphere test example, the gap between gathered GMRES and a

FMM (s) Precond (s)
FMM

&Precond
total

gathered GMRES (10) 0.7 0.05 180 205.1
GMRES with zero
as initial guess

1.8 0.27 177 401.4

(a) Airbus 23676.

FMM (s) Precond (s)
FMM

&Precond
total

GMRES gathered (19) 1.6 0.13 931 2340.8
GMRES with strategy 2
for the initial guess

7.1 0.42 856 7703.2

(b) coated cone sphere.

Table 3.21: Comparison in elapsed time (s) of gathered GMRES and a sequence of classical GMRES
on two test examples. Gathered GMRES gathers the matrix–vector product (and precondition)
by sets of size 19 for the coated cone sphere test example and sets of size 10 for the Airbus 23676
test example. The total elapsed time (s) for the solution is given in the last column.

sequence of classical GMRES is larger than for the other example. This is due to

3.5 Techniques to improve one right–hand–side solvers for multiple right–hand–side

problems 183

the fact, that in the dielectric situation, the FMM performed more floating–point
operations and exploiting the data locality induces larger gains.
Finally, we note that strategy 2 for the initial guess cannot be used within a set of
right–hand sides, but could be implemented between the sets. That is, for instance
for the RCS from θ = 0o : 1o : 179o of the coated cone sphere, the first set will
include the angles 0o : 10o : 170o , the next 1o : 10o : 171o , etc ... This strategy
would deserve to be implemented in a future release of the code.

184 The Electromagnetism Application

3.6 Linear dependency of the right–hand sides

A natural question to address when solving a linear system with p right–hand sides
is whether these right–hand sides are linearly independent or not. If the right–hand
sides are linearly dependent with rank([F1, . . . , Fp]) = q < p , there exists U , an
n –by– q matrix, and S , a q –by– p matrix such that

F = US,

where F = [F1, . . . , Fp] . In such a case, a natural approach consists in solving the
q systems associated with the right–hand sides U , that is

ZJU = U,

then recovering the unknowns of interest

J = JUS.

This section is organized as follows. In the first part, we further investigate the
nature of the right–hand sides arising in electromagnetism calculations. We show
that any of these right-hand sides can be well approximated in a space spanned
by qsh spherical harmonic functions. In practical RCS calculations, the engineers
usually provide a number of right-hand sides that is far larger than qsh . In the
second subsection, we compare the analytic value qsh with the numerically computed
value q . Finally, in a third part we illustrate the benefits of this approach and how
it can be efficiently exploited on some practical application examples.

3.6.1 Features of the right–hand sides for plane waves with θ polariza-
tion

If we go back to the expression for the right–hand side, equation (3.4) and equa-
tion (3.6) give us

Fj(ϕ) =

∫

Γ

eikx·ûr(ϕ)ẑ · ~Ψj(x)ds(x). (3.23)

Since F is only a function of ϕ , in equation (3.6.1) and in the remainder of this
document we denote it by F (ϕ) , Fj(ϕ) denotes its j –th entry and the associated
solution of ZJ = F (ϕ) is denoted by J(ϕ) . In this section, we recall some math-
ematical results on the spherical harmonics. In particular, we show that, for each
ϕ ∈ [0, 2π] , F (ϕ) can be expressed with a small error as a linear combination of
the same finite set of vectors.

3.6.1.1 Use of Jacobi–Anger formula

3.6.1.1.1 Spherical harmonics If ŝ is a direction on the unit sphere, we can asso-
ciate it with the angles (θs, ϕs) so that

ŝ =

sin θs cosϕs

sin θs sinϕs

cos θs

 .

3.6 Linear dependency of the right–hand sides 185

Let ` and n be two integers such that |`| ≤ n and n ≥ 0 . We define the spherical
harmonics by

Y `
n(ŝ) =

√
2n+ 1

4π
S |`|

n (cos θs)e
i`ϕs, (3.23)

where S`
n(x) are the spherical functions of Legendre. They are defined by induction.

If ` is positive then

S`
n(x) = 0, for n = 0, . . . , n − 1,

S`
`(x) =

�
(2`)!

2` · `!
(1 − x2)

`
2 ,

S`
n(x) = � (2n − 1)xS`

n−1(x) − ((n − 1)2 − `2)
1
2 S`

n−2(x) � /
�

n2 − `2 for n = ` + 1, ` + 2, . . .

3.6.1.1.2 Jacobi–Anger formula This formula enables us to decompose a plane
wave into spherical harmonics. If x = |x|x̂ , we have

eikx·ûr = 4π

∞∑

n=0

n∑

`=−n

injn(k|x|)Y `
n(x̂)Y `

n(ûr),

where jn(t) is the spherical Bessel function of order n (see [33]). Note that this
series converges uniformly on any ball BΓ = {|x|; |x| ≤ rΓ} . Moreover, if

Lε = krΓ + Cε log(krΓ + π), (3.20)

and the series is truncated by keeping the first Lε terms, it can be shown that the
error is of the order 10−Cε = ε [86]. Therefore we can write with an error of order
ε :

eikx·ûr = 4π
Lε∑

n=0

n∑

`=−n

injn(k|x|)Y `
n(x̂)Y `

n(ûr).

In our case, the corresponding angles are θs = π
2
, ϕs = ϕ , and ûr =

cosϕ
sinϕ

0

 .

Equation (3.6.1.1.1) provides

eikx·ûr =
√

4π

Lε∑

n=0

n∑

`=−n

in
√

2n+ 1jn(k|x|)Y `
n(x̂)S |`|

n (0)ei`ϕ,

that can also be written

eikx·ûr(ϕ) =
Lε∑

n=−Lε

√
4π

∑

n≥|`|
in
√

2n+ 1jn(k|x|)Y `
n(x̂)S |`|

n (0)ei`ϕ,

and finally

eikx·ûr =
`=Lε∑

`=−Lε

P`(x)ei`ϕ (3.20)

186 The Electromagnetism Application

where
P`(x) =

√
4π

∑

n≥|`|
in
√

2n+ 1jn(k|x|)Y `
n(x̂)S |`|

n (0).

Equation (3.6.1.1.2) is the Fourier decomposition of the function

ϕ ∈ [0, 2π] −→ eikx·ûr(ϕ).

If we replace Lε by ∞ in equation (3.6.1.1.2), we recover the exact decomposition.
If an accuracy ε is acceptable then, the first Lε terms are enough.

3.6.1.2 Results for the right–hand sides.

We insert expression (3.6.1.1.2) in equation (3.6.1) to get

Fn(ϕ) =

Lε∑

`=−Lε

[∫

Γ

P`(x)ẑ · ~Ψn(x)ds(x)

]
ei`ϕ.

If we define the vector ξ` of size ne with its nth entry equal to

ξ`(n) =

[∫

Γ

P`(x)ẑ · ~Ψn(x)ds(x)

]
where 1 ≤ n ≤ ne, (3.20)

we have

F (ϕ) =
Lε∑

`=−Lε

ξ`ei`ϕ. (3.20)

The vectors F (ϕ) belong to a space of size at most 2Lε+1 . Using equation (3.6.1.1.2),
the dimension of the space spanned by the right–hand sides is bounded above by

M = 2 (krΓ + Cε log(krΓ + π)) + 1. (3.20)
�
¨̂

Note that in equation (3.6.1.2), the term krΓ can be replaced by πp , where we
recall that p is the size, in number of wavelengths, of the object. M is only a
function of p and in a first approximation, we have M ∼ 2πp . We observe that
the number of right–hand sides increases proportionally with the frequency.

3.6.2 Numerical validation

The numerical validation of the theory presented in Section 3.6.1 is as follows. In our
experiments we first build the F (ϕl) , l = 1, . . . , p . Next, we compute the Singular
Value Decomposition (SVD) of F (ϕl)l=1,...,p in order to obtain

[F (ϕl)l=1,...,p] = UΣV H ,

where U is an m –by– p matrix with orthonormal columns (i.e. UHU = Ip), V is
a p –by– p matrix with orthonormal columns (i.e. V HV = Ip) and Σ is diagonal
with positive real entries on the diagonal ordered by decreasing value. The entry
(i, i) of Σ is denoted by σi . We consider the truncated SVD defined by:

[F (ϕl)l=1,...,p] ≈ UqΣqV
H
q ,

3.6 Linear dependency of the right–hand sides 187

where Uq = [(Ul)l=1,...,q] , Vq = [(Vl)l=1,...,q] and Σq is the q –by– q diagonal matrix
with its entry (i, i) equal to σi .
The value of q is chosen such that σq/σ1 < ε . Note that if it happens that
σp/σ1 ≥ ε , we use a larger p . The basis Uq is not the set of vectors (ξ`)`=−Lε,...,Lε

defined in equation (3.6.1.2), but it plays the same role; both span the space that
contains the (ϕl)l = 1, . . . , p .
In the remainder of this section we compare the computed number q with its the-
oretical counterpart qsh . Because the number of columns in F is small compared
with its number of rows, the algorithm of choice for computing the SVD of F is
the R –SVD algorithm (see e.g. [63, pp. 152–254]), and we proceed as follows. First
of all, we compute the QR factorization of F via modified Gram–Schmidt iterated
twice to get F = QR , then we compute with LAPACK the SVD of R to get
R = URΣWH . Finally, we compute U = QUR , the left singular vectors. The SVD
we seek is eventually given by F = UΣWH .

dof q qsh

40368 60 63
71148 76 78

161472 104 106
288300 130 133

Table 3.22: Comparison of qsh computed with Cε = 4 and q , the larger integer such that
σq/σ1 < 10−4 for spheres with different numbers of degrees of freedom.

In Table 3.22, we compare the quantity q such that σq/σ1 < ε = 10−4 with
the quantity qsh obtained from equation (3.6.1.2). The parameter Cε in equa-
tion (3.6.1.2) is set so that ε = 10−4 = 10−Cε ; this gives Cε = 4 . This rule of
thumb is given by the people working on electromagnetism applications [35]. For
ϕ , the interval of angles is initially discretized at every degree from 0o to 359o .
Therefore the parameter p is equal to 360 . In Table 3.22, we observe that qsh is
close to q . Note that a perfect matching between qsh and q is observed for the
value Cε = 3.7 .
We should mention, that if we change the targeted accuracy for the right–hand sides
from σq/σ1 < 10−4 to σq/σ1 < 10−6 , the number of singular vectors q increases.
Similarly, the corresponding value of Cε increases but we still observe that qsh and
q remain close to each other. The model given in Section 3.6.1 and the assumption
ε ≈ σq/σ1 seems therefore to enable us to get a rather sharp upper bound for q
for any ε . Finally, we mention that qsh increases with respect to the frequency.
This seems to be in agreement with the fact that the RCS associated with high
frequencies are highly oscillating. Classically, when the frequency is increased the
engineers reduce the step used to discretize the interval of interest; this results in
the solution of more linear systems. This behaviour, that is that the number of large
singular values increases with respect to the frequency, is observed in Figure 3.29.
In that figure, we plot the singular values larger than 10−14 for the sphere and the
Airbus test example, when illuminated with waves of different frequencies.
It might be noticed that the value of qsh only depends on the size of the object
measured in wavelengths. The geometry of the object does not play any role on

188 The Electromagnetism Application

50 100 150 200 250 300 350
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

sphere of 1 metre lit by different plane waves

8.993775e+08 Hz
1.199170e+09 Hz
1.798755e+09 Hz
2.398340e+09 Hz

(a) sphere

50 100 150 200 250 300 350
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Airbus lit by different plane waves

2.286e+09 Hz
4.572e+09 Hz
6.858e+09 Hz

(b) Airbus

Figure 3.29: Largest singular values of F when the frequency of the illuminating waves is varied.

the value of qsh . Finally, the above comparative study has been performed for a
sample of plane waves that lie in the plane (θ = 0o). The gap between q and p ,
that is already significant, would be even larger if both ϕ and θ were varied. For
that latter situation on the sphere 40368, we get q = 549 to be compared with

3.6 Linear dependency of the right–hand sides 189

p = 64800 if every other degree is discretized in ϕ and θ .

3.6.3 Dealing with linearly dependent right–hand sides

Let us consider the system ZJ = F, where F = [F1, . . . , Fp] and J = [J1, . . . , Jp] .
Let tola denote the tolerance requested for the a -th right–hand side. We write the
SVD of F in the following block form:

F =
(
U UE

)(
Σ 0
0 ΣE

) (
WH

WH
E

)
,

where
(
U UE

)
is m –by–n and has orthonormal columns, U corresponds to the

first q columns, UE the last n − q ; Σ is a q –by– q diagonal matrix with entries
σ1, . . . , σq on the diagonal, ΣE is a (n−q) –by– (n−q) diagonal matrix with entries

σq+1, . . . σn on the diagonal,

(
W
WE

)
is n –by–n and has orthonormal columns,

W corresponds to the first q columns, WE the last n− q .
If we note that S = ΣWH and E = UEΣEW

H
E , we can write

F = US + E. (3.20)

In this expression, U corresponds to the q linearly independent set of vectors chosen
to represent F , S corresponds to the coefficients of F in U , and E the error made
when approximating F by the product US . In that case we have

‖E‖2 = σq+1.

What we would like to do at this stage is: to neglect the matrix E , to solve for the U
(i.e. only solve q linear systems ZX` = U` using a backward error threshold equal
to tolX`), and to recover the solution to the system ZJ = F by setting J = XS .
For doing this, we need to know:

1. how to choose q ,

2. how to choose the stopping criterion thresholds tolX` , so that each recon-
structed solution Ja , associated with the right–hand side Fa , has a backward
error at most equal to tola .

To address these questions, let R = U − ZX . Each column of R corresponds to
the residual of the linear system associated with a singular vector. Consequently,
R` satisfies the relation ‖R`‖2 ≤ tolX` ‖U`‖2 = tolX` . From equation (3.6.3), the
residuals F − ZJ can also be written as

F − ZJ = RS + E, (3.20)

which indicates that the final residuals, F − ZJ , are defined by E (part of the
right–hand sides that we do not want to solve) and the residuals R multiplied by
the matrix of the coefficients of F in U . Considering the a -th column of the

190 The Electromagnetism Application

equality (3.6.3), we get

‖Fa − ZJa‖2
‖Fa‖2

=
‖RSa + Ea‖2
‖Fa‖2

≤
q∑

`=1

(|S`,a|
‖Fa‖2

‖R`‖2
)

+
‖Ea‖2
‖Fa‖2

≤
q∑

`=1

(|S`,a|
‖Fa‖2

tolX`

)
+

σq+1

‖Fa‖2
(3.19)

In order to ensure that, for any a , we have ‖Fa − ZJa‖2/‖Fa‖2 ≤ tola . We should
select q and tolX` , ` = 1, . . . , q , such that

q∑

`=1

(|S`,a|
‖Fa‖2

tolX`

)
+

σq+1

‖Fa‖2
≤ tola.

Among all the possibilities for (q, tolX`) , we select the one that has the smallest q
such that

σq+1 ≤ βmin
a

(‖Fa‖2tola), (3.19)

where β < 1 . We assume that q < p , then the stopping criterion for the q linear
systems can be chosen such that

tolX` = α` min
a

(
‖Fa‖2tola
|S`,a|

), (3.19)

where the α` ’s are such that

β +

q∑

`=1

α` < 1.

A natural choice for the α` ’s and β is α` = β = (q + 1)−1 .

3.6.4 Heuristic for the choices of α and β

The parameters α` = (q + 1)−1 and β = (q + 1)−1 certainly ensure the prescribed
backward error for each of the p systems ZJa = Fa . This choice takes into ac-
count the worst situation, when the triangle inequality is an equality; that it, the
q columns of R and that of E` are colinear. This is possible but highly unlikely
to happen. For large q , this gives fairly small values for α` and β . Such values
request targeted accuracies that eventually lead to solutions that have much smaller
backward errors that the ones prescribed. To overcome this drawback, we set in
practice , α` = α = 0.5 and β = 0.7 ; which enables us to compute RCS that
are correct for all our test examples. Regarding the effect of this heuristic choice,
we plot, in Figure 3.30, the backward error associated with each of the recovered
solutions Ja for the cobra 14449 test example illuminated from 0o to 90o . On that
example, only 21 linear systems have been effectively solved and 91 solutions are
eventually reconstructed. The targeted accuracy was 10−3 for all the right–hand

3.6 Linear dependency of the right–hand sides 191

sides. In that figure, it can be observed that the value α = 0.5 does not manage to
provide all backward errors at the targeted value, while the solution complies with
the prescribed accuracies for many right–hand sides. It can also be observed that
the value α = (q + 1)−1 = 0.047 , referred to as the secure strategy, imposes a too
strong constraint: most of the solutions are computed with a backward error around
10−4 .

0 10 20 30 40 50 60 70 80 90
10

−5

10
−4

10
−3

10
−2

0.0417
0.1
0.5
1.0

Figure 3.30: Backward error observed for different values of α in equation (3.6.3). For that
example, p = 90 and q = 21 . The value α = (q + 1)−1 = 0.047 corresponds to a secure strategy.
The targeted backward error for all the right–hand sides is tola = 10−3 , a = 1, . . . , p . The other
values correspond to relaxed strategies.

We further investigate the effect of the choices of α (β is constant and equal to
0.5) on the final observed accuracy of the reconstructed right–hand sides as well as
on the computing cost required by the corresponding calculation. In Figure 3.31,
we vary α and display the largest observed backward error associated with the
reconstructed solutions and the cumulated number of iterations performed to solve
the q linear systems. The largest value of α such that the targeted accuracy is
observed for all the reconstructed right–hand sides is about 0.4 ; the corresponding
calculation only requires 2100 cumulated iterations (to be compared with 2800
with the secure strategy). The optimal value of α is difficult to predict. We see
in Section 3.6.7 that the problem simplifies if the linear solver is block-GMRES.
Finally, note that a “bad” choice of α might lead to backward errors higher than
the stopping criteria (e.g. α = 1 in the investigated case). This latter situation
can be easily tackled a posteriori with an iterative refinement type procedure. This
would consist in performing a few GMRES steps using the recovered solutions as
initial guesses for the right–hand sides that have not converged.

192 The Electromagnetism Application

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

3000

α

ite
ra

tio
ns

10−2

10−3

10−4

m
axim

al error

maximal error obtained
iter

Figure 3.31: Largest backward error observed on the reconstructed solutions and computational
cost expressed in cumulated number of iterations when α is varied.
The 21 linear systems are solved with seed–GMRES.

3.6.5 Relaxing the stopping criteria

In practical implementations, we use equation (3.6.3) to compute the stopping cri-
terion thresholds, tolX` , for the solution of the linear systems that have the singu-
lar vectors as right–hand sides. Since S`,a = σ`(W`,a)H and ‖W`‖2 = 1 we get
|S`,a| ≤ σ` , that, combined with equation (3.6.3), leads to

αmin
a

(‖Fa‖2tola)
1

σ`
≥ tolX` . (3.19)

From this equation, it appears that the stopping criterion threshold for the ` –th
singular vector is proportional to the inverse of ` –th singular value. The smaller
the singular value is, the more the associated stopping criterion threshold is relaxed.
Eventually, for the last (n − q) linear systems, the stopping criterion thresholds
are larger than one. For those linear systems, the solution X = 0 is fine; this is
another illustration that they do not need to be solved. In Figure 3.32, we plot the
values of stopping criterion thresholds corresponding to the right–hand sides solved
when computing the RCS for the cobra 14449. For that calculation 91 angles are
considered, and the following solvers are used:

(a) the GMRES method with zero initial guess, in this case the 91 stopping crite-
rion thresholds are set to 10−3 ;

(b) the GMRES method with GMRES with strategy 2 for the initial guess. In that
case, solving a linear system with a given initial guess and a prescribed accuracy
is equivalent to solving the associated error equation with a zero initial guess

3.6 Linear dependency of the right–hand sides 193

using a relaxed accuracy. More precisely,

‖ZJa − Fa‖
‖Fa‖

=
‖Z(J

(0)
a + e)− Fa‖
‖Fa‖

=
‖r0‖
‖Fa‖

‖Ze− r0‖
‖r0‖

where r0 = ZJ
(0)
a −Fa . Consequently solving ZJa = Fa with a backward error

εa is equivalent to solving Ze = r0 with a backward error ‖r0‖
‖Fa‖εa . This latter

backward error can be considered as relaxed thanks to the use of a nonzero
initial guess. These latter backward errors are the ones displayed.

(c) the GMRES method with the singular vectors as right–hand sides, the solution
of the p = 91 systems reduces to the solution of the q = 21 linear systems on
the 21 first singular vectors.

0 10 20 30 40 50 60 70 80 90

10
−3

10
−2

10
−1

10
0

right−hand side index

to
le

ra
nc

e
re

qu
es

te
d

GMRES
 SVD (α = 0.9, β = 0.5)
GMRES with strategy 2 for the initial guess

Figure 3.32: Stopping criterion thresholds on the right–hand sides for three different strategies.

In that figure, it can be seen that not only the number of linear systems to be
solved is reduced with the SVD approach, but also the accuracies required for their
solution.
Note that equation (3.6.5) is nice for interpretation purpose but should not be
implemented. We illustrate our claim through this following extreme example. Let
us assume that all the columns of F are the same vector (p times the same vector)
and that the requested tolerances for each system are set to the same value tol . It is
clear that q = 1 and this single system must be solved with the requested tolerance
tol . Equation (3.6.3) performs well to set tolX1 = tol . Equation (3.6.5) leads to
tolX1 = tol/

√
p that is too low. Since our right–hand sides are highly dependent,

this phenomenon might occur in many places. We take care to implement in our
algorithm equation (3.6.3) and not its simplified version equation (3.6.5).

194 The Electromagnetism Application

3.6.6 About the scaling among the ‖Fa‖2tola

Because of the term min
a

(‖Fa‖2tola) in equation (3.6.5), we should not have too large

variations among each of the ‖Fa‖2tola in order to avoid artificial unsuited imbal-
ances between the stopping criterion thresholds. Let us illustrate this phenomenon
through a small 2 by 2 example in real arithmetic.
Let us consider the QR factorization of F = (F1, F2) = (Q1, Q2)R where

R =

(
ν1 ν2 sin(θ)
0 ν2 cos(θ)

)
.

where θ is set between 0 and π/2 . In this case, the SVD of F is F = (QU)ΣW T

where (
cos(θ/2) − sin(θ/2)
µ sin(θ/2) cos(θ/2)

) (
σ1 0
0 σ2

) (√
2/2

√
2/2√

2/2 −
√

2/2

)T

where σ1 = ν1 cos(θ/2) + ν2 sin(θ/2) and σ2 = |ν1 cos(θ/2) − ν2 sin(θ/2)| . We
consider that the νa ’s are of the same order, and the angle θ is neither “too” close to
π/2 x, (so that the vectors are not orthogonal), nor “too” close to 0 (such that the set
of vectors is well conditioned). For example, we set ν1 = ‖F1‖ = ‖F2‖ = ν2 = 1 and
θ = π/4 . The stopping criterion for the two systems are set so that ν2tol2γ = ν1tol1 ,
with γ >> 1 . The accuracy requested on the first set of linear systems is high
whereas the accuracy requested on the second is set low. In this case we expect our
strategy to perform badly. Using equation (3.6.3), we obtain q = 2 since σ2 > tol1 .
Using equation (3.6.3), we set the tolX` , ` = 1, 2 to

√
2

2
tol1.

Our strategy results in the solution of two sets of linear systems with right–hand

sides (U1, U2) , where the stopping criterion threshold is
√

2
2

tol1 . The initial problem
was far simpler with the right-hand sides (F1, F2) and the requested accuracies tol1
and tol1γ respectively. The use of the SVD in a preprocessing phase is not relevant
in that case where there is a bad scaling between the ‖Fa‖tola (the ratio in our
case is γ >> 1). Such a situation introduces undesirable difficulties for the block-
GMRES that will attempt to solve the two sets of linear systems simultaneously and
will not be able to realize that a better solution will be to solve them independently.
This observation extends to the situation with several vectors. Possible remedies
might exist but are out of the scope of this manuscript, as in our study, the norm
of the right–hand sides are almost the same (±1%) and the stopping criterion
thresholds are exactly the same.

3.6.7 SVD preprocessing in the block-GMRES method

The deflation technique described in Section 3.6.3 exactly corresponds to the defla-
tion implemented in the first step of our block-GMRES implementation. For the
sake of completeness, we have introduced the parameters α` and β so that each lin-
ear system associated with a particular singular vector can be solved by any solver,

3.6 Linear dependency of the right–hand sides 195

including one right–hand side solvers. In that latter context, in order to alleviate
the extra cost introduced by the lack of sharpness of our bound, we have introduced
some relaxation heuristics. We show below how these heuristics can be removed in
the framework of the block-GMRES solver.
We first recall that we have F = US +E . Starting from a zero initial guess for the
solution of the linear systems that have U as right–hand sides, block-GMRES at
step n , has

(U,ZVn) = Vn+q

(
Iq

0n,q
H̄n+q,n

)
.

Since U has orthonormal columns, we have (V0, . . . , Vq) = U . At that stage, if our
wish was to solve the linear system ZX = U , we would be interested in solving the
least–squares problem

min
x∈K
‖U − Zx‖2.

However, our initial goal is to solve ZJ = US + E with ‖E‖2 small. A natural
approach is to consider the least–squares problem

min
x∈K
‖US − Zx‖2.

Since x ∈ K , there exists y such that x = Vny , this gives

US − Zx = US − ZVny

= Vn+q

(
S

0n,p

)
− Vn+qH̄n+q,ny

= Vn+q

((
S

0n,p

)
− H̄n+q,ny

)
.

Classically, we perform q Givens rotations on the n columns of H̄n+q,n to obtain

the n –by–n upper triangular matrix Rn such that H̄n+q,n = Θn

(
Rn

0q,n

)
. We

obtain

US − Zx = Vn+qΘn

(
ΘH

n

(
S

0n,p

)
−

(
Rn

0q,n

))
.

With the notation, (
g
τ

)
= ΘH

n

(
S

0n,p

)
,

where g is n –by– p and τ is q –by– p , the approximate solution x is given by Vny
where y is the solution of the triangular system Rny = g . The norm of the residual
of the a -th linear system is given by

‖Fa − Zxa‖2 ≤ ‖USa − Zxa‖2 + ‖E‖2.

At each step of the Arnoldi iterations, the quantity ‖USa − Zxa‖2 is given via

‖USa − Zxa‖2 ≤ ‖τa‖2.

196 The Electromagnetism Application

The main part of the residual ‖USa−Zxa‖2 is therefore given by the block-GMRES
algorithm at a low computational cost. Consequently, the inequality that controls
the residual associated with the a -th linear system is

‖Fa − Zxa‖2 ≤ ‖τa‖2 + ‖E‖2.

This latter bound is sharper than equation (3.19). Indeed, rather than writing the
triangle inequalities on a (q+1) –term sum, we write the triangular inequalities only
for a two–term sum. The process is as follows. Fixing q so that equation (3.6.3)
holds with β < 1 , we set α = 1 − β and stop the block-GMRES iterations when
‖τa‖2 ≤ α for all a = 1, . . . , p . In our block-GMRES implementation, we therefore
choose this implementation to control the individual residuals.

3.6.8 Perspectives

From equation (3.6.1.2), we could compute explicitly the spherical harmonics (ξ`)`=−Lε,...,Lε

since the coefficients of F (ϕ) in this basis are known (the m –th coefficient is ei`ϕ).
An alternative strategy to solve the p linear systems is to

(a) compute the qsh spherical harmonics (ξ`) ,

(b) solve the qsh linear systems Zy = ξ ,

(c) finally, reconstruct the p solutions, J(ϕ) =
∑Lε

`=−Lε
yqsh

ei`ϕ .

We recall that the SVD strategy consists in

(a) computing the p right–hand sides F (ϕ) ,

(b) computing the q first singular vectors U of the right–hand sides,

(c) solving the q linear systems Zx = U ,

(d) reconstructing the p solutions.

The computational work to construct the qsh spherical harmonics is equivalent to
computing qsh columns of F . In the initial phase, the SVD approach requires us
to compute (p − qsh) extra right–hand sides. On the other hand, the cost of the
SVD calculation is affordable as can be seen in Table 3.23. In a further study, it

Size of the problem Elapsed time SVD Elapsed time GMRES # procs
40368 1063 214 4
71148 1903 388 4

161472 2992 550 8
288300 4923 1649 8

Table 3.23: Elapsed time to compute the SVD for 360 right–hand sides for the sphere. For
comparison, we give the average elapsed time for the solution of one right–hand side using full
GMRES (assembly of the preconditioner phase not included). The backward error is set to 10−2

for the GMRES solve.

would be interesting to compare the spherical harmonics and the SVD approaches

3.6 Linear dependency of the right–hand sides 197

more deeply. In particular, we should look at the different costs for constructing
the requested set of vectors and also the behaviour of the selected iterative solver
on these right–hand sides, that are essentially different.
Finally, we should also point out the recent related work by Lötstedt and Nilsson [89].
In this work, the authors proposed a numerical scheme based on a dichotomy. Let us
quickly describe their approach for a RCS computed on the interval 0o : 1o : 180o .
In the first step, they solve the three systems corresponding to 0o : 90o : 180o ; next
they solve for the two remaining systems in the set 0o : 45o : 180o . At step s ,
they solve the 2s remaining systems in the set 0o : 90o/2s : 180o . Between each
step, they decompose the right–hand sides, involved in the next step, into the set of
right-hand sides already solved; this gives them an initial guess for the next linear
systems to be solved. They eventually observe that after a certain number of steps,
they do not need to solve a linear system anylonger as any new right–hand side can
be written in the set of already solved right–hands sides. They theoretically end up
with a bound for the number of steps in their method that can be compared to our
bound given in equation (3.6.1.2). We should mention that our bound, based on
the spherical harmonics analysis, gives a smaller estimate than their bound while
requiring less assumptions.

198 The Electromagnetism Application

3.7 Numerical behaviour of the multiple right–hand side
solvers

In Section 3.6, we have illustrated the fact that the right–hand sides given by the
engineers, when they compute a RCS, are strongly linked. In that case, the use of
the SVD (see Section 3.6) is, in most cases, highly desirable to significantly reduce
the number of linear systems to be effectively solved. However, we still have to
solve the linear systems with the remaining right–hand sides. In that section, we
investigate the numerical behaviour of two iterative methods designed to deal with
multiple right–hand sides. More precisely, in Section 3.7.1 we consider the seed-
GMRES method and in Section 3.7.2 the block-GMRES method. Both of these
approaches have been described in detail in Chapter 2.

3.7.1 The seed–GMRES method

In this section, we aim at highlighting two numerical phenomena that have been
observed when solving, using the seed-GMRES method, linear systems arising in
electromagnetism applications. These numerical behaviours are representative but,
in some sense, quite the opposite from each other. Firstly, we consider a test example
where the seed approach is quite effective; secondly we show a different example
where the seed approach is not too effective. In this latter situation, we show that the
spectral low rank update preconditioner is a way to overcome the problem and makes
seed-GMRES the most efficient solver. For the first example, described in detail in
Section 3.7.1.1, we give a strategy to efficiently combine the numerical efficiency of
the method while reducing the cost of its main time consuming numerical kernels.
In the second case, we show, in Section 3.7.1.2, how the bad numerical behaviour
can be fixed by using the spectral update preconditioner that nicely compensates
for the weakness of the Krylov solver. We conclude with a comparative study on
several variants of seed–GMRES.

3.7.1.1 The case of the almond 104793 and the restart seed–GMRES

The test example that we consider in this section, is the almond 104793 using the
CFIE formulation for an RCS calculation on θ = 0o : 0.5o : 180o and a stopping
criterion threshold set to 10−3 . We should point out that this calculation exactly
corresponds to the test case proposed for benchmarking purposes for the JINA 2002
workshop (see Section 3.2.4). In this case, strategy 2 for defining the initial guess for
the GMRES method is very effective. The initial guess gives the correct answer on a
spherical object, and so is very appropriate on any object that has a rather spherical
shape, e.g. an almond. With this approach, the complete RCS calculation requires
1431 matrix–vector products, that have to be compared with about 4000 for the
GMRES method with zero as the initial guess. This means that on average, each
linear system is solved using only 6 iterations. For that calculation, seed-GMRES
consumes 1185 matrix–vector products; that is, only 3 iterations on average per
right-hand side. Unfortunately, if we look at the performance in elapsed time, the
picture differs. GMRES with strategy 2 requires 6202 seconds, while seed-GMRES

3.7 Numerical behaviour of the multiple right–hand side solvers 199

takes 10460 seconds. In order to explain this behaviour, we give the profiling of
these two runs in Table 3.24. This profiling reveals that the time spent by seed-

seed–GMRES GMRES with strategy 2

Solution phase Solution phase
(1185 iterations) (2152 iterations)

operation unitary time # calls total time # calls total time
ZDOT 0.0061 2575 16 3614 22

ZDSCAL 0.0006 1546 1 1792 1
ZCOPY 0.0005 722 0 722 0
ZAXPY 0.0082 2575 21 3614 30

MATVEC 2.9940 1185 3548 1431 4284
FROB 0.3636 1546 563 1792 651
total 4148 4989

Projection Initial Guess
operation unitary time # calls total time # calls total time
ZDOT 0.0061 28066 1703 360 3

ZDSCAL 0.0006
ZCOPY 0.0005
ZAXPY 0.0082 56132 4609 360 3

MATVEC 2.9940 360 1077
FROB 0.3636
total 6312 1083

elapsed time 10460 6202

Table 3.24: Profiling details for the seed–GMRES method and GMRES with strategy 2 for the
initial guess. The test example is the almond 104973 with θ = 0o : 0.5o : 180o and the CFIE
formulation.

GMRES in the ZAXPY and ZDOT kernels, involved in the minimization process
on successive Krylov spaces (that are implemented to calculate the initial guesses),
is larger than the elapsed time for the complete calculation using GMRES with
strategy 2. In that minimization phase, the number of ZDOT operations is about
navp

2/2 , and the number of ZAXPY operations is about navp
2 , where p is the

number of right–hand sides and nav the average size of the Krylov spaces (i.e. the
average number of iterations to solve each right–hand side).
For instance, the residual corresponding to the last right–hand side is minimized
(p − 1) times on the sequence of subspaces of size nav generated for the solution
of the first (p − 1) linear systems. In Figure 3.33, we plot the evolution of the
backward error associated with the initial guess computed for the last right–hand
side after each of the 359 minimizations. Starting from the value 1 , the backward
error decreases after each minimization but exhibits a long plateau before eventually
converging faster, thanks to the influence of its few preceding right-hand sides. In
Figure 3.34, we illustrate the same phenomenon in a different way. The curve K`

represents the contribution of the minimization on the ` -th Krylov space, generated
for solving the ` -th right–hand side, to the reduction of the residual norms of all the
subsequent linear systems. The curve on the top left represents the norm of each
residual after the minimization on the Krylov space generated for the first right–
hand side. For the first right–hand side itself, its Krylov space gives an approximate

200 The Electromagnetism Application

0 50 100 150 200 250 300 350
10

−3

10
−2

10
−1

10
0

Figure 3.33: Evolution of the norm of the residual of the last right–hand sides at each minimization
on the Krylov spaces generated for the solution of the previous right-hand sides. The test example
is the almond 104973 with θ = 0o : 0.5o : 180o and CFIE formulation.

solution with a backward error smaller than 10−3 , consequently the curve begins
from 10−3 . For a given θ (abscissa), the values of the graph Ki at this abscissa
indicate that its residual norm strictly reduces each time a linear system is solved.
This is due to the fact that, at each time, its residual norm is minimized on the
Krylov space generated for the right–hand side that has just been solved. It can
also be seen that for θ ≥ 2.5 , the norm of the updated residuals stagnates around
4 · 10−3 before being eventually reduced to 10−3 by the Krylov space generated
especially for it. Futhermore, the shape of K1 shows that the Krylov space of the
first right–hand side does not help much in minimizing the residual norm of the
10 -th right–hand sides and the subsequent ones.
Based on the observation that

(a) using all the Krylov spaces to attempt to reduce the residual norm of all the
remaining linear systems implies a very large number of minimizations;

(b) the influence of a given Krylov space is significant for reducing the residual
norm of the very next right-hand sides, but negligible on those occuring later;

it appears natural to use the minimization phase for only a few vectors located close
to the right–hand sides that have just been solved.
In oder to implement this idea, we first consider a sliding window of size w . This
approach consists in exploiting the ` –th Krylov space to reduce the next w residu-
als. In Figure 3.35, we experiment with this sliding strategy for the almond 104973
(CFIE). For the first w right–hand sides, the seed–GMRES method and its sliding
variant are the same method. The difference appears for the (w + 1) –st right–

3.7 Numerical behaviour of the multiple right–hand side solvers 201

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
10

−3

10
−2

10
−1

10
0

θ

K
1

K
2

K
3

K
5

K
4

K
6

K
7 K

8 K
9 K

10

Figure 3.34: Norm of the residuals after each minimization on the Krylov spaces. The test example
is the cobra 60695, θ = 0o : 0.5o : 5.5o . Each (×) line corresponds to the minimization on a
Krylov space, starting at the Krylov space associated with the first right–hand side for the top
left curves, then the Krylov space for the second right–hand side, etc. The (©) gives the norm of
the residual just before the GMRES solver is used on it. The (�) shows the residual for a fixed
right–hand side (θ = 2o).

hand side where the sliding version induces a bad behaviour. For the seed–GMRES
method, the (w + 1) –st right–hand side is minimized on K1 , then K2 , . . . , Kw

and eventually on its own Krylov space. For the sliding version, the (w + 1) –st
vector is minimized on K2 , . . . , Kw and eventually on its own Krylov space.

In the seed–GMRES and the sliding version, F2 is minimized on K1 , so the Krylov
space constructed from F2 , K2 , is fully meaningful only for a vector that has been
previously minimized on K1 as K2 cannot contain both itself and K1 . The seed-
approach implies a sonhood chain among the Krylov spaces: a Krylov space, Kj ,
is the father of another, K` , if the vector used to generate K` has been previously
minimized on Kj . To be efficient, the minimization on K` requires that the same
process has been applied to the father hierarchy of K` . The sliding version of seed–
GMRES clearly breaks this hierarchy among the Krylov spaces. In Figure 3.35, the
catastrophic effect of this break is visible starting from the (w + 1) -st right–hand
side. Several strategies are possible to preserve a sequence among the right–hand
sides. The simplest is to gather consecutive right–hand sides in blocks of size r and
run the seed–GMRES method on each block independently. We refer to this version
as the consecutive seed–GMRES method. It only depends on the parameter r .
One can easily imagine tuning this parameter at runtime through an auto-learning
phase, based on the following simple model of the seed-GMRES behaviour. We often
observed that the seed–GMRES behaviour consists of a transient phase followed by

202 The Electromagnetism Application

5 10 15 20 25 30 35 40 45
0

2

4

6

8

10

12

14

16

θ

seed−GMRES
GMRES with strategy 2 for initial guess
seed−GMRES(w=10)
seed−GMRES(w=20)

Figure 3.35: The seed–GMRES method is run on the almond 104973 (CFIE), we observe the
number of iterations to reach the stopping criterion threshold for each right–hand sides. A variant
of the seed–GMRES is also tested, the ` –th Krylov space is used to minimize the residuals of the
next w residuals, we consider w = 10 and w = 20 .

a steady state phase. Moreover, we assume that this model is independent of the
initial right–hand side. We illustrate our approach on the almond. Starting the
seed–GMRES method from the right–hand side F (θ = 0o) , we obtain the following
sequence for the number of iterations for the first 15 right-hand sides:

[
11 7 5 3 3 3 3 2 3 3 2 3 2 3 2

]
.

The transient phase is defined by the sequence 11 , 7 and 5 ; the stationary phase
is the remaining part where the number of iterations does not change much. It is
well defined by a plateau at a value equal to the average number of iterations for
the right–hand sides solved in this stationary phase. In the almond case, we obtain
(55− 11− 7− 5)/12 ∼ 2.67 . Finally we obtain the following model law:

[
11 7 5 2.67 2.67 2.67 2.67 2.67 2.67 2.67 2.67 2.67 2.67 2.67 2.67

]
.

This law describes the number of iterations of the seed–GMRES method on 15
right–hand sides starting from F (θ = 0o) . We assume that this behaviour holds
for any starting right–hand side F (θ) . Using our model law and a value r for
the block size, we are able to forecast the elapsed time and also the total number
of iterations of the consecutive seed–GMRES method. In Figure 3.36, we plot the
forecast elapsed time and number of iterations for all the values of r , ranging
from 0 , that corresponds to classical GMRES with a default guess, up to p , the
classical seed–GMRES. For small values of r , the number of iterations quickly

3.7 Numerical behaviour of the multiple right–hand side solvers 203

0 50 100 150 200 250 300 350
0

2000

4000

6000

8000

10000

12000

14000

r

el
ap

se
d

tim
e

(s
)

4000

2000
iterations

elapsed time (s)
number of iterations

Figure 3.36: Elapsed time and number iterations versus the size of the restart r for restarted
seed–GMRES. The test example is the almond 104973 with θ = 0o : 0.5o : 180o and CFIE
formulation.

decreases, so does the elapsed times. When r increases, the number of transient
phases diminishes (e.g. 17 for r = 20); eventually, the number of extra iterations
they induce is not significant compared with the total number of iterations. This
implies that the total number of iterations becomes rather independent for a large
enough size of the restarts. Consequently, the GMRES solves in the Seed GMRES
methods take approximatively the same time; while the computational cost of the
minimization phase increases with the restart size r , as does the elapsed time.
From this analysis, we deduce that an optimum exists that minimizes the overall
elapsed time. On the almond test example, we remark that the minimum number
of total iterations is observed when the size of restart is 33 . In this case, the total
numbers of iterations is 1318 and the elapsed time is about 5300 seconds. With
this technique, the seed–GMRES method becomes competitive with the classical
GMRES method using strategy 2 for the initial guess (6200 seconds).
In this part, we have seen that, in the seed–GMRES, deteriorating the convergence
(the number of iterations) may result in reducing the overall elapsed time. This
can be related to the observed behaviour of the classical GMRES method where the
full GMRES may exhibit better convergence properties than restarted GMRES but
eventually takes more time.
Finally note that the number of singular values q such that σq/σ1 < ε = 10−4

(where σ` denotes the ` –th singular value of F) is equal to 67 for the almond
104973. The number of right–hand sides is p = 360 . If we stored the 67 solutions
associated with 67 equally spaced right–hand sides (say), we should recover the 360
solutions of the object. This is the strategy adopted by Lötstedt and Nilsson [89].
Since the seed–GMRES method minimize succesively and independently on the
different Krylov subspaces, this global effect does not appear in this experiment.

204 The Electromagnetism Application

3.7.1.2 Complementarity between the seed-GMRES and the spectral low rank up-

date preconditioner

The example considered in this section is the cobra 60695. We first study the RCS
that corresponds to the first twelve right–hand sides: θ = 0o : 0.5o : 5.5o . On these
right–hand sides, seed-GMRES exhibits a very strange behaviour. To illustrate it,
we first compare the seed-GMRES method with the GMRES method with either
strategy 2 or zero for the initial guess. These three methods only differ in their
choice of the initial guess J0 . In Table 3.25, we give the number of iterations per
right–hand side for the three solvers and the initial backward error, ‖r0‖2/‖F‖2 =
‖F − ZJ0‖2/‖F‖2 . Of course, we recall that the normalized initial residuals for the
GMRES method with default initial guess are all equal to 1.0 . In Table 3.25, we

default guess strat. 2 seed–GMRES
(θ, ϕ) # iter # iter ‖r0‖2/‖F‖2 # iter ‖r0‖2/‖b‖2

(0.0,0.0) 338 338 1.000 338 1.000
(0.5,0.0) 339 339 1.000 190 0.230
(1.0,0.0) 340 63 0.071 210 0.074
(1.5,0.0) 341 56 0.048 130 0.024
(2.0,0.0) 341 81 0.039 197 0.007
(2.5,0.0) 341 116 0.037 215 0.004
(3.0,0.0) 342 139 0.028 237 0.004
(3.5,0.0) 342 151 0.028 226 0.004
(4.0,0.0) 343 159 0.024 254 0.004
(4.5,0.0) 344 180 0.022 258 0.004
(5.0,0.0) 345 179 0.027 265 0.004
(5.5,0.0) 346 192 0.022 299 0.004

iterations 4102 2005 2819
elapsed time (s) 15565.6 6765.6 9863.7

Table 3.25: Number of iterations per right–hand side and initial residual norm for the GMRES
method with default initial guess, strategy 2 and the seed–GMRES method. The test example is
the cobra 60695.

see that the seed–GMRES method performs well in decreasing the initial residual
norms. However, the final effect on the number of iterations performed is not what
we might have expected. The initial residual norm provided by the seed–GMRES
method is nearly always by far the smallest. Unfortunately, starting from the seed
initial guess that is the closest (in the backward error sense) to the solution does
not guarantee a fast convergence. From that initial guess, GMRES performs rather
poorly. It performs only slightly better, if it starts from zero and is outperformed
by the approach that starts from the initial guess provided by strategy 2. In other
words and surprisingly enough, the approach that gives the smallest initial residual
norm is not the method that gives the smallest number of iterations.

We have observed this behaviour of the seed–GMRES method on some other difficult
problems. Intuitively, it seems to us that an analogy exists between this behaviour
and the observed stagnation of the classical restarted GMRES method. In the two
cases, an initial guess is extracted from a Krylov space to generate a new Krylov
space. In the restarted GMRES method, one possible remedy is to use the spectral

3.7 Numerical behaviour of the multiple right–hand side solvers 205

low rank update preconditioner (see Section 3.3.2.3 and [44]).
In Figure 3.37, we investigate this possibility. For each right–hand side, θ = 60o :

60 61 62 63 64 65 66 67 68 69 70 71
10

−3

10
−2

10
−1

10
0

θ

Figure 3.37: Comparison between the seed–GMRES method (©) and the seed–GMRES method
with the spectral low rank update (×). The fifteenth smallest (in modulus) eigenvalues are shifted
close to one with the spectral low rank update.

1o : 70o , we plot the convergence of the seed–GMRES method and the seed–GMRES
method with the spectral low rank update preconditioner (both use the Frobenius
preconditioner). While the norm of the initial residuals are about the same for the
two methods, the rate of convergence is significantly improved by the spectral low
rank update preconditioner. Finally, in Table 3.26, we make a comparative study
to highlight the improvement introduced by the spectral low rank update in the
context of the seed–GMRES method. Without the spectral low rank update, the

iterations
Solver MFrob MSLRU

GMRES with default initial guess 1071 341
seed–GMRES 597 92
GMRES with strategy 1 485 111
GMRES with strategy 2 363 171
block–GMRES 249 153

Table 3.26: Number of iterations for various GMRES methods with or without the spectral low
rank update preconditioner (exploiting the 20 eigenvectors). The test example is the cetaf 5391,
(θ = 60o : 1o : 70o, ϕ = 0o) .

seed–GMRES method performs poorly. It is less efficient than the GMRES method
with either the first or the second initial guess strategy. The spectral low rank

206 The Electromagnetism Application

update preconditioner improves the rate of convergence of the four methods that
we have considered in that table. It is important to notice that the use of this
preconditioner completly changes the performance ranking of the solvers and seed–
GMRES becomes the most efficient. The complementarity of the seed–GMRES
method and the spectral low rank update results in an excellent symbiosis. The
solution offered by the seed–GMRES method is not acceptable, the solution offered
by the spectral low rank update is correct (but block–GMRES performs better),
the symbiosis of the two gives rise to the best method. The seed–GMRES method
provides a small initial residual and the spectral low rank update ensure a good rate
of convergence of GMRES iterations: in a race starting close from the arrival (seed
strategy) and running fast (spectral low rank preconditioner) ensures to finish first!

3.7.1.3 Some variants of the seed–GMRES algorithm

In this section, we investigate three variants of the seed–GMRES methods. These
three methods attempt to combine the appealing physical properties of the initial
guess provided by strategy 2 with some linear algebra information. We briefly de-
scribe the methods and outline the underlying motivation for their implementations.

The results are summarized in Table 3.27.

The seed–GMRES method is nothing but the GMRES method with a particular
choice for the initial guess. The choice is governed by the seed strategy. Possible
improvements would be to use different strategies to set up the initial guesses, aimed
at improving the efficiency of the subsequent GMRES iterations. Using J2 , the
initial guess provided by strategy 2, and Jseed , the initial guess built by the seed
strategy, we compute the initial guess JB that minimizes

min
J∈Span(J2,Jseed)

‖F` − ZJ‖2.

We have JB = µJ2 + νJseed . With this approach, the initial residual norm is
always better than those provided by any of the other two; we would expect that
the GMRES iterations behaves better. Unfortunately, our experiments reveal the
contrary. One possible explanation is that the resulting Krylov space breaks the
sonhood chain described in Section 3.7.1.1. Consequently, the minimization on
the successive Krylov spaces no longer makes much sense in the seed-philosophy.
From our experiments, we observe that this strategy only succeeds in damaging
the GMRES method with the second initial guess strategy, while it only slightly
improves the seed-GMRES.

GMRES 3820
GMRES with initial guess J2 1965
seed–GMRES 2373
GMRES with initial Guess Best of J2 and Jseed 2132
seed–GMRES with Z(J2, Jseed) in the front of the Krylov space 2374
seed–GMRES with Z(J2, Jseed) at the end of the Krylov space 2373

Table 3.27: Three seed–GMRES variants on the cobra 14449 test example with θ = 0o : 1o : 35o .

3.7 Numerical behaviour of the multiple right–hand side solvers 207

The second approach consists in augmenting the spaces with (ZJ2,ZJseed) . At each
step j of the Arnoldi iteration, we construct vj+1 and the (j + 1) –st column of
Rj+1,j+1 so that

(ZJ2,ZJseed, b,Zv3,Zv4, . . . ,Zvj) = (v1, v2, v3, . . . , vj+1)Rj+1,j+1.

Then we minimize

min
J∈Span(J2,Jseed,v2,...,vj)

‖F` − ZJ‖2.

Note that if J2 and Jseed were eigenvectors, then this method would reduce to
GMRES augmented with eigenvectors [30] and the subspace (v0, v1, v2, . . . , vj+1)
would be a Krylov space. The goal here is to enlarge the minimization space from
(v2, . . . , vj) to (J2, Jseed, v2, . . . , vj) , and so enable us to add the information from
J2 and Jseed . With this initial guess strategy, this information is, in some sense,
added with some prescribed constant coefficients (e.g. (0, 1) for the seed strategy
and (1, 0) for initial guess with the second strategy, (µ, ν) for the first variants of
seed GMRES). In this variant, the coefficients of J2 and Jseed vary at each step so
that the residuals are minimized. Following this argument, we would have expected
to get a method that improves the performance of the other GMRES variants.
Unfortunately, this is not the case. The total number of iterations of this method
increases to 2374 . The spaces constructed by this method are no longer Krylov
spaces and the minimization on these spaces is not efficient; even though they were
augmented with the vectors J2 and Jseed , that are both good methods.

Augmenting the space with vectors that do not represent a stable space for Z , pre-
vents us to constructing a Krylov space and deteriorates the convergence behaviour
of the iterative schemes. Another possibility is to enlarge the Krylov space by adding
the vectors J2 and Jseed , only for the minimization step of GMRES. That is, at
each step j we still construct the standard Krylov space, Kj+1 , but perform the
minimization on the augmented space as follows:

min
J∈Span(J2,Jseed,Kj)

‖F` − ZJ‖2.

The motivation is to avoid the interference between the vectors J2 and Jseed and the
constructed Krylov space while minimizing on a larger space. We plot in Figure 3.38,
the backward error. In Figure 3.38, we plot the convergence history, associated with
the 11-th right hand side, for classical seed-GMRES and the variant described above
(minimization on Span(J2, Jseed,Kj)). In the very early iterations, the vectors J2

and Jseed significantly contribute to reduce the backward error, unfortunately this
positive effect quickly vanishes and both approaches eventually behave the same.

We conclude our dicussion of these three variants by mentioning that we did not
manage to successfully combine physical and linear algebra information to design a
linear solver that outperforms the classical seed–GMRES. Another approach that de-
serves to be investigated in this framework was proposed by Chapman and Saad [30].
It consists in running block–GMRES starting with the block composed by (F, J2, Jseed) .

208 The Electromagnetism Application

560 570 580 590 600 610 620 630 640 650 660
10

−3

10
−2

10
−1

10
0

iterations

GMRES
GMRES with projection on (J

2
 , J

seed
) at each step

Figure 3.38: Backward errors of seed-GMRES (minimization on Kj) and of seed-GMRES post–
augmented (minimization on Span(J2, Jseed,Kj)). The test example is the cobra 14449, the
right–hand side corresponds to θ = 5o and is solved starting from the 552 –nd iteration of the
process.

3.7.2 The block–GMRES method

The block strategies represent an alternative to the seed methods to deal efficiently
with several right–hand sides. They are widely used in electromagnetism. For
example, Paul Soudais [128] presents the multiGCR algorithm. This algorithm has
been successfully used by Poirier [104] and by Simon [123]. In this manuscript, we
focused on the block–GMRES method since the GMRES method has proved its
efficiency for the solution of the linear systems arising from the EFIE formulation
when only one right–hand side has to be solved.

3.7.2.1 About the continuum seed–block GMRES method

In Section 2.6, the block–GMRES method is presented as an Arnoldi process to
construct the block–Krylov space of the right–hand sides associated with the matrix
Z . At each step n , we choose a vector among the pn vectors from the Arnoldi
process. In this section, we test a variant of the classic algorithm called block–seed–
GMRES.
The test case is the cobra 14449, for θ = 0o : 1o : 35o . In Table 3.27, the number
of total iterations requested for the convergence of the 36 right–hand sides is 960
for block–seed–GMRES, this is fairly good if we compare it with seed–GMRES
and its variants. However the classic block–GMRES method, by itself requires 683
iterations. In our experiments, block–seed–GMRES does not perform better than

3.7 Numerical behaviour of the multiple right–hand side solvers 209

the classic block–GMRES. We do not pursue any further studies.

3.7.2.2 About deflation strategies in the block–GMRES method

In Section 2.6, deflation was described as a strategy to throw away a youngest son
once the right-hand side associated with its root has converged. We propose to test
in this section two strategies:

(a) block–GMRES without any deflation,

(b) block–GMRES with deflation of the converged right–hand sides.

We mention that implementing the deflation of the converged right–hand sides can
also be interpreted as a strategy for selecting the next youngest son in the Arnoldi
process, that is, a youngest son will never be selected if the right–hand side associated
with its root has converged. In that respect, the following numerical experiment can
be interpreted as an illustration for the effect of

either one deflation strategy,

or one selection strategy for the next youngest son,

on the convergence behaviour of the block–GMRES method.
The test example chosen is the cobra 14449 with (θ = 0o : 1o : 35o, ϕ = 0o) . On this
example, block–GMRES without any deflation performs better than block–GMRES
with deflation of the converged right–hand sides. The total number of iterations for
block–GMRES without any deflation is 683 and the total number of iterations for
block–GMRES with deflation of the converged right–hand sides is 725 .
In Figure 3.39, we describe the later iterations of both methods. For each right–hand
side, we plot the iteration number where it has converged using both the block–
GMRES method without deflation and the block–GMRES method with deflation
of the converged right–hand sides. From the first iteration to the 662 –nd, both
algorithms behave exactly the same and build the same Krylov space by applying
the Arnoldi process cyclically to the vectors within the previous block. It can be
seen in the figure that the first residuals that converge are for θ = 29o and θ = 30o

at iteration 663 . However, until iteration 673 the two algorithms still construct the
same Krylov space as the Arnoldi process still uses vectors associated with not-yet
converged right–hand sides. The difference appears at iteration 674 , where the next
Arnoldi vector should be computed with the vector associated with the right–hand
side (θ = 25o) that has converged at the previous block-iteration. The block-
GMRES that deflates the converged right–hand sides, searches for the next vector
that is associated with a not-yet converged right–hand side and deflates/skips those
corresponding to right–hand sides sides that have converged. In that example, its
next Arnoldi vector is computed with the vector associated with θ = 0o (as right–
hand sides θ = 25o to θ = 35o have converged in the previous block-iteration). The
block-GMRES without deflation computes its next Arnoldi vector using the vector
associated with θ = 25o . From this step, the two methods differ; they construct
two different Krylov spaces and have a different convergence behaviour. As can be
seen in this figure, the method without deflation enables the fastest convergence for

210 The Electromagnetism Application

0 5 10 15 20 25 30 35

660

670

680

690

700

710

720

730

θ

ite
ra

tio
ns

block−GMRES with deflation
block−GMRES without deflation

Figure 3.39: For each right–hand side, we plot the iteration number where it has converged using
either the block–GMRES method without deflation or the block–GMRES method with deflation
of the converged right–hand sides. © indicates the index of the current vector used to build the
next Arnoldi vector for the Krylov space generated by the block–GMRES method without any
deflation. Similarly, we use × for the block–GMRES method with deflation of the converged
right–hand sides. The test example is the cobra 14449 with (θ = 0o : 1o : 35o, ϕ = 0o)

all the right-hand sides. The method with deflation seems to lose some information
that results in noticeably slowing down its convergence. This bad behaviour has
been observed on all the experiments we have performed with the block–GMRES
with the deflation of the converged residuals. For this reason, we conclude that
deflation should not be performed in the block–GMRES algorithm.

3.7.2.3 Restart and gathering of matrix–vector products

The restarting strategy can also be considered, and we implemented it in our block-
GMRES algorithm. In Table 3.28, we report on the total number of iterations
required by the block-GMRES(500) and full block-GMRES. We also report on the
corresponding elapsed time. For that reason, we consider a block-GMRES imple-
mentation where the matrix-vector products have been gathered. In that table, it

iterations elapsed time
gathered(11)–block–GMRES 1211 8135.0 s
block–GMRES 1211 9618.5 s
block–GMRES with restart 500 2958 13482.3 s

Table 3.28: Restart and gathering of matrix–vector products in the block–GMRES algorithm. The
test example is the cobra 60695 for (θ = 20o : 1o : 30o, ϕ = 0o)

3.7 Numerical behaviour of the multiple right–hand side solvers 211

can be seen that the restart significantly slows down the convergence and gathering
the matrix-vector products speeds up the calculation.

3.7.2.4 The block–GMRES method combined with SVD preprocessing

Finally, we investigate the solution technique that appears to be the most efficient
for large RCS calculations. It combines the SVD approach on the right–hand sides
followed by a block-GMRES solver without deflation. We report in Table 3.29 the
number of iterations and the elapsed time of the block-GMRES with and without
the spectral low rank update preconditioner. For the sake of comparison, we also
display preliminary results on the same RCS calculation using classical GMRES
with and without the spectral low rank update preconditioner. The test example is
the Airbus 23676 for θ = 0o : 1o : 180o . The combination of the SVD approach and

iterations elapsed time
GMRES with default initial guess 86940 33 hours 52 minutes
GMRES with MSLRU (20)
and default initial guess

47197 18 hours 21 minutes

SVD with block–GMRES 1501 4 hours 34 minutes
SVD with block–GMRES using MSLRU 1357 4 hours 33 minutes

Table 3.29: Airbus 23676 with block–GMRES SVD (49) compared to blockgmres svd (49rhs)
LRU(20)

the block–GMRES algorithm gives rise to a fairly efficient solver. Firstly, the SVD
enables us to reduce the number of linear systems to be effectively solved from 181
to 49 and also permits us to reduce most of the stopping criterion thresholds used
for these 49 right-hand sides. Secondly, the block–GMRES method solves these 49
right-hand sides efficiently. Finally, we mention that the benefit of using the spectral
low rank preconditioner seems less important than for one right-hand sides method.
The time saved by the reduction of the iterations is compensated by the extra cost
within each iteration.
In Figure 3.40, we show the number of iterations required for each right–hand side
to converge down to the requested accuracy for the four methods considered in
Table 3.29.
In Figure 3.41, similar results are displayed using a different format. We depict the
backward error level-curve for all the linear systems at different iteration numbers;
that is, for a given iteration, the backward error associated with the current iterates
are plotted.
Finally, in Table 3.30 we report on the elapsed time for each basic operation involved
in the complete calculation based on the SVD preprocessing phase and the block-
GMRES solution with the spectral low rank update preconditioner. The vector-
vector operations clearly dominate and are far more expensive than the matrix-
vector product involved in the FMM and the preconditioner. The orthogonalization
scheme used is MGS2(K) and all the reorthogonalizations are performed.
We consider a second test example that is the coated cone sphere, θ = 0o : 1o : 180o .
In Table 3.31, we report on the performance of four linear solvers. The seed–GMRES

212 The Electromagnetism Application

0 20 40 60 80 100 120 140 160 180

0

100

200

300

400

500

600

θ

GMRES
GMRES with SpU
Block GMRES − SVD (49)
Block GMRES − SVD (49) − SpU

Figure 3.40: For each right–hand side, we plot the number of iterations (matrix–vector products)
required to converge. The test example is the Airbus θ = 0o : 1o : 180o .

operations # elapsed time
FMM 1540 1773
frod 1540 401
slru 1540 46
dot 3000000 7751
zaxpy 3000000 6412

total 1 16383

Table 3.30: Detailed operation count in the block–GMRES method with SVD preprocessing. The
test case is the Airbus 23676.

iterations elapsed time (s)
GMRES with second strategy initial guess 3797 29726
seed–GMRES 784 10328
seed–GMRES SVD(16) 632 10930
block–GMRES SVD(19) 329 8894

Table 3.31: Four competitive methods on the coated cone sphere, θ = 0o : 1o : 180o .

SVD performs poorly, the value of α is set to 0.1 in this experiment. Some stopping
criterion threshold are very low and required too many iterations. This illustrates a
drawback of the SVD preprocessing when it is followed by a sequence of one-right-
hand side solvers; the tuning of the value for α is not easy. The SVD preprocessing
followed by block–GMRES performs better.

3.7 Numerical behaviour of the multiple right–hand side solvers 213

0 20 40 60 80 100 120 140 160 180
10

−3

10
−2

10
−1

10
0

θ

181

5000

10000

15000

30000

50000

80000

(a) GMRES with default initial guess.

0 20 40 60 80 100 120 140 160 180
10

−3

10
−2

10
−1

10
0

θ

181

5000

10000

20000

30000

40000

(b) GMRES with the spectral low rank update and default initial guess.

20 40 60 80 100 120 140 160 180
10

−3

10
−2

10
−1

10
0

1

200

400

600

800

1000

1200

1400

(c) block–GMRES with SVD preprocessing.

Figure 3.41: Level lines that represents the convergence of GMRES, GMRES with the spectral low
rank update, and block–GMRES with SVD preprocessing. Each line gives the level of backward
error for all the right–hand sides obtained at a given iteration. The test example is the Airbus
with θ = 0o : 1o : 180o .

214 The Electromagnetism Application

3.8 Prospectives

3.8.1 Using spectral information in the multiple right–hand sides con-
text

In the single right–hand side case, at each restart, the GMRES–DR method en-
ables us (a) to extract some spectral information from the Krylov space and (b) to
use this information for building the next Krylov space aiming at speeding up its
convergence. In Section 2.4, the implementation of the method is given and in Sec-
tion 3.4.1 its behaviour in the electromagnetism context is examined. In the multiple
right–hand sides case, we have shown that the use of the spectral low rank update
preconditioner increases the efficiency of the solvers (GMRES and seed–GMRES in
particular). In the experiments we have shown, the spectral information was cal-
culated in a pre–processing phase using an eigensolver; namely Arpack in forward
mode. A more elegant possibility is to extract this spectral information from previ-
ous linear system solutions. Exactly as GMRES–DR does from one restart to the
next, but, in our case, from one right–hand side to the next. Firstly, we consider
an example where we extract from the GMRES–DR iterations the smallest eigen-
values and the associated eigenvectors. Secondly, we investigate different possible
strategies to exploit this spectral information.

3.8.1.1 Spectral information from the GMRES–DR method

In Figures 3.21 and 3.22, we have illustrated that the GMRES–DR method succeeds
in finding good approximations of the eigenvalues. This is not surprising since, in
a sense, GMRES–DR is nothing but an eigensolver that solves linear systems. In
Table 3.32, we report on the backward error associated with the ten harmonic Ritz
vectors corresponding to the smallest (in modulus) harmonic Ritz values computed
by GMRES–DR on the Airbus 213084. For the backward error on the eigenvectors,
we consider the definition given in [29]; that is, let y 6= 0 be an approximation of
an eigenvector so that the backward error η associated with y is

η =
‖Zy − y yH � y

yHy
‖

‖Z‖2‖y‖2
.

For estimating ‖Z‖2 , we use the approximation of the spectral radius given by the
Arnoldi iterations. Finally, we mention that solving the linear system up to 10−2

requires 183 iterations, the extra cost of this run is 317 iterations (500− 183) and
requires 10062.1 seconds on eight processors.

3.8.1.2 Strategies that use the spectral information.

If we know r eigenvectors U = (u1, u2, . . . , ur) associated with the r smallest
eigenvalues of Z , there are at least three possibilities for using them to improve the
iterative solution of the right–hand sides F :

(a) use them to build a preconditioner; for instance, the spectral low rank update
preconditioner;

3.8 Prospectives 215

η1 3.78 · 10−3

η2 4.63 · 10−3

η3 7.94 · 10−3

η4 9.54 · 10−3

η5 1.03 · 10−2

η6 1.23 · 10−2

η7 1.26 · 10−2

η8 1.62 · 10−2

η9 1.57 · 10−2

η10 4.03 · 10−3

Table 3.32: Backward error of the harmonic Ritz eigenvectors associated with the 10 smallest
harmonic Ritz values computed by GMRES–DR(500,10). The method performed 500 iterations
(i.e. no restart). The test example is the Airbus 213084 .

(b) inject this information directly in the Krylov space so that we construct the
block–Krylov space of K(Z, u1, u2, . . . , ur, F) = Span(u1, u2, . . . , ur,K(Z, F)) .
This method is known as the GMRES method augmented with eigenvectors or
often referred to as the augmented GMRES method.

(c) deflate the initial guess so that its residual has no components on these eigen-
vectors. If we also know the left eigenvectors W = (w1, w2, . . . , wr) associated
with the smallest eigenvalues, this is achieved by setting x0 = UD−1W TF and
so r0 = (Im−UWH)F . This initial guess strategy is referred to as the spectral
initial guess strategy 1.
If the left eigenvectors are not known then we consider an alternative strategy,
referred to as the spectral initial guess strategy 2, defined as follows. Given p
vectors W̃ such that (W̃HZU) is of full rank, the second spectral initial guess
strategy computes x0 = U(W̃H

ZU)−1W̃HF and the initial residual is given
by r0 = (Im − ZU(W̃HZU)W̃H)F . The efficiency of this initial guess strategy
depends on the choice of W . Classically, we take W̃ = U . This choice cor-
responds to the first spectral initial guess strategy when the matrix is normal
(W = U).

In Figure 3.42(a), we compare the spectral initial guess strategy with the spectral low
rank update preconditioner. GMRES, with the first spectral initial guess strategy,
behaves like GMRES preconditioned with the spectral low rank update precondi-
tioner. This behaviour is in agreement with the theory. If the left eigenvectors are
known (or the matrix is normal) then the first spectral initial guess strategy is at-
tractive. It performs the deflations of the components only once while the spectral
low rank update performs a deflation per iteration. Nevertheless, this requires us
to have a very good accuracy on the eigenvectors, otherwise the first spectral initial
guess strategy might become less effective while, GMRES preconditioned with the
spectral low rank update preconditioner is not much affected [24].
Unfortunately, the left eigenvectors might be difficult to compute in some situations.
For instance, in the context of the FMM preconditioned with the Frobenius–norm
minimization, the matrix-vector product with the transpose conjugate matrix, ZH ,
is not available and cannot be implemented. Consequently, the left eigenvectors

216 The Electromagnetism Application

cannot be computed via an Arnoldi process. In this situation, the second initial
guess strategy represents an alternative. In Figure 3.42(b), we compare the second
spectral initial guess strategy with the spectral low rank update. Because this is no
longer a deflation, this strategy should be applied at each restart. Even though it
succeeds in improving the convergence of GMRES, it is clearly outperformed by the
spectral low rank update preconditioner.

0 50 100 150 200 250 300 350 400 450 500

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

GMRES(70)
GMRES(60) + spectral initial guess 1 (10)
GMRES(60) SLRU(10)

(a) first spectral initial guess strategy

0 50 100 150 200 250 300 350 400 450 500

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

GMRES(70)
GMRES(60) + spectral initial guess 2 (10)
GMRES(60) + spectral initial guess 2 (10) at each restart
GMRES(60) SLRU(10)

(b) second spectral initial guess strategy

Figure 3.42: The convergence of the GMRES method with restart 60 and with spectral initial
guess strategies using 10 eigenvectors is compared with the GMRES method with restart 60 and
spectral low rank update with 10 eigenvectors. The test example is the CNSPH.

Morgan [93] proposed a variant of GMRES–DR for solving several right–hand sides;
this variant is referred to as GMRES–Proj. From the run of GMRES–DR on the first
right–hand side, the harmonic Ritz vectors associated with the r smallest harmonic
Ritz values, Upr

r , are computed and the following relation holds

ZUpr
r = Upr

r+1H̄
pr
r . (3.15)

The GMRES–Proj algorithm implements cycles that alternate GMRES iterations
with a projection phase. The projection phase may be performed via either a
Galerkin projection or a MINRES projection. The MINRES projection consists
in setting d at step 1 of the algorithm so that d solves the least–squares problem
min ‖(Upr

r+1)
TF − H̄pr

r d‖2 . The GMRES–Proj with Galerkin projection corresponds
to the second spectral initial guess strategy where W is an orthogonal basis of
Span(Upr

r) . We consider this latter variant in our experiments.

Algorithm 14 GMRES–Proj with Galerkin projection between cycles

1. Solve Hpr
r d = (Upr

p)T F .
2. The new approximate solution is xk = Upr

p d.
3. The new residual vector is rk = r0 −AUpr

k d = r0 − Upr
r+1H̄

pr
r d.

Finally, we mention that the spectral information that is provided by GMRES–DR
(or any other eigensolver) corresponds to approximate eigenvectors and approxi-
mate eigenvalues. Accurately computing the eigenvectors may be expensive and we

3.8 Prospectives 217

can wonder about the sensitivity of the convergence behaviour with respect to the
accuracy of the computed eigenvectors. In Figure 3.43, we show the convergence
histories of augmented GMRES and GMRES using the spectral low rank update
preconditioner when the accuracy of the eigenvectors is varied. It can be seen in
that figure that GMRES with the spectral low rank update preconditioner is much
less sensitive than augmented GMRES to the accuracy of the eigenvectors.

0 50 100 150 200 250 300 350 400 450 500

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iterations

bwd 1e+0
bwd 1e−1
bwd 1e−2
bwd 1e−3
bwd 1e−4
bwd 1e−16

Figure 3.43: Convergence histories of augmented GMRES (10 eigenvectors, restart 40, plotted with
a ◦) and GMRES with the spectral low rank update (10 eigenvectors, restart 40, plotted with a
×) when the accuracy of the eigenvectors is varied. The test example is the CNSPH.

3.8.2 Stopping criterion issue for the RCS calculations

When solving a linear systen is it often very useful to have some knowledge about
the underlying application. For instance, it might help

(a) in the selection or design of the preconditioner (the Frobenius preconditioner for
instance in our electromagnetism application) or in the selection of the Krylov
solver; and

(b) in the stopping criterion to be implemented by the solver.

For instance, when solving the linear systems arising from the discretization of self–
adjoint partial differential equations using either finite–element or finite–difference
schemes, the matrix A of the linear system is symmetric and positive definite. The
A –norm is also often called the energy norm, and the solution we are interested
in complies with some optimal criterion in the energy norm. It seems therefore
appropriate to use the conjugate gradient method (which minimizes the A –norm of
the error) rather than a minimum residual method (which minimizes the 2 –norm

218 The Electromagnetism Application

of the residual).
In that situation, the choice of the appropriate stopping criterion is also crucial. The
reason for having a suitable stopping criterion is to stop the iteration at the right
time. In the case of the conjugate gradient method, we may want the A–norm of the
error to be below a certain threshold provided by the physics and the discretization
of the problem [5]. It is then important to use this criterion, that can be easily
estimated at each iteration [64, 129], to stop the iterations. Similarly, in the case of
non-symmetric problems one can also define an energy norm [7] in which to measure
convergence. However, the stopping criterion in the GMRES method is often based
on the 2 –norm of the residual, this quantiy being easily accessed at each iteration.
This may not necessarily be the quantity of interest.
As explained in Section 3.1, our main motivation when solving the linear system
ZJ = F is to eventually compute the RCS of the incident wave characterized by
F . The currents at the surface of the object, that are represented by the solution J
of our system, are post–processed to calculate one point of the RCS curve. In this
thesis, the stopping criterion used is the one requested initially by the engineers: the
successful solution has a backward error smaller than a given threshold parameter
(10−2 for the Airbus, 5 · 10−3 for the cobra, ...). In this section, we illustrate some
weakness of this stopping criterion in that framework.
In order to investigate this question, we first try to look at the sensivity of the RCS
operator. Given two currents J and J+∆J , we want to know if the associated RCS
are close or not. In Figure 3.44, we give the RCS obtained from the approximate cur-
rents given by two different solvers; namely the GMRES method with the stopping
criterion threshold 10−3 , and the seed–GMRES method with SVD preprocessing
and stopping criterion threshold 10−3 . In this case, we have ‖∆J‖2 ≤ 2 ·10−3 ·κ(Z)
and the two RCS curves perfectly overlap. This seems to indicate that the RCS
operator on that example is well conditioned. This also illustrates that the stopping
criterion based on the backward error with a threshold set to 10−3 is satisfactory
from an engineering point of view; it should be mentioned that for engineers the
“quality” of an RCS is a qualitative rather than quantitative quantity.
In Figure 3.45, we plot the relative error of the RCS calculated for each iterate
of GMRES for a given incident wave θ . For that example, we consider that the
“exact” solution, denoted by xref is either computed by GMRES with a stopping
criterion threshold set to 10−5 or is computed by a direct solver. The resulting RCS
is denoted by rcsref(FMM) for the one calculated from the solution provided using
GMRES- 10−5 , and rcsref(no FMM) for the one calculated by the direct solver,
respectively. The relative errors shown in Figure 3.45 are computed using

|rcsn − rcsref|
|rcsref|

,

where rcsn is the RCS computed for each iterate of GMRES. In that figure, it can
first be seen that the relative error is not a strictly decreasing function and that
the two relative error curves only overlap for the first iterations and then roughly
exhibit the same behaviour. The complete RCS of the Airbus is given in Figure 3.5
(see Section 3.1). There it can be seen that the angle θ = 30o, ϕ = 0o does not
correspond to a local minimum and in that respect is a “regular” point without

3.8 Prospectives 219

0 10 20 30 40 50 60 70 80 90
30

35

40

45

50

55

60

65

70

S
E

R
 (

dB
)

θ

GMRES
seed−GMRES

Figure 3.44: RCS computed using two different linear solvers on the cobra 14449, (θ = 0o : 1o :
90o, ϕ = 0o) . For both solvers the stopping criterion is based on a backward error criterion and
the threshold is set to 10−3 .

any specificity. Consequently, the same behaviour can be expected for many other
points on the RCS curve.
In Figure 3.46, we report on the same experiment performed on the coated cone
sphere for the angle (θ = 0o, ϕ = 0o) . For that example the “exact” solution is
computed using GMRES with the FMM prec–3 using a backward error threshold
equal to 10−5 . It can again be observed that the relative error is not a strictly
decreasing function and consequently the RCS solution at some early iterates is
better than at many other later iterates.
These two experiments illustrate that, if an appropriate stopping criterion based
on the RCS existed, it would be possible to stop the iterations of the linear solvers
earlier and consequently to save some computing time.
Finally, as mentioned in the introduction of this section, the nature of the underlying
problem should also be exploited. So far in this work, we have only unsuccesfully
tried to take advantage of the symmetry of the EFIE formulation when we used
SQMR. We think that the structure of the matrix Z and the right–hand sides
described in Section 3.2.6 should be further exploited.

3.8.3 Relaxing the matrix–vector accuracy during the convergence

In a series of CERFACS technical reports, Bouras, Frayssé and Giraud [17, 18] ex-
perimentally showed that the accuracy of the matrix–vector products can be relaxed
during the iterations of Krylov linear solvers. In this context, it is possible to mon-
itor the matrix-vector accuracy and relax it when the convergence proceeds. The
model is the following. At step j , the matrix–vector product w ← Zvj is performed

220 The Electromagnetism Application

50 100 150 200 250
10

−4

10
−3

10
−2

10
−1

10
0

iterations

bwd error : || A (x
n

 − x
ref

) || / || A x
ref

 ||
rcs error : | rcs

n
 − rcs

ref
(fmm) | / | rcs

ref
(fmm) |

rcs error : | rcs
n

 − rcs
ref

(nofmm) | / | rcs
ref

(nofmm) |

Figure 3.45: Relative error associated with each GMRES iterate for the monostatic RCS at the
angle θ = 30o, ϕ = 0o . The reference RCS value is given by either the value computed using the
solution given by GMRES with the FMM prec–3 and a backward error equal to 10−5 or the value
computed using the solution provided by a direct solver. The convergence history of GMRES is
also reported. The test example is the Airbus 23676.

with an error gj

w ← Zvj + gj, (3.15)

where

‖gj‖2 ≤ ηj‖Z‖2‖vj‖2, (3.15)

with ‖vj‖2 = 1 . When no relaxation is performed, the value of ηj remains constant
for all j . For example, if the matrix–vector product (3.8.3) is performed in double
precision arithmetic, ηj is of the order of the machine precision. Such a strategy
that enables us to obtain the targeted backward error tol has been empirically
proposed in [17, 18]. This so called relaxation strategy requires ηj to be bounded
above by

ηj ≤ max

{
tol

‖rj‖2
, tol

}
, (3.15)

where tol is the threshold stopping criterion based on the backward error, and rj

is the residual of the system at step j .
Two years later and simultaneously, Simoncini and Szyld [124] on the one hand,
and van den Eschoff and Sleijpen [132] on the other hand, shed some light on this
phenomenon. They give a theoretical framework that attempts to explain why the
relaxation strategy (3.8.3) works. Their studies rely on the observation that, due to

3.8 Prospectives 221

10 20 30 40 50 60

10
−4

10
−3

10
−2

10
−1

10
0

iterations

bwd error : || A (x
n

 − x
ref

) || / || A x
ref

 ||
rcs error : | rcs

n
 − rcs

ref
(fmm) | / | rcs

ref
(fmm) |

Figure 3.46: Evolution of the error of the monostatic RCS for the right–hand side corresponding to
θ = 0o, ϕ = 0o during the iteration of GMRES. The reference point is given by the value obtained
from the solution given by GMRES on the FMM prec–3 (bwd error 10−5). The convergence of
the backward error of the approximate solution is also shown. The test case is the coated cone
sphere.

equation (3.8.3), the Arnoldi relation at step ` becomes

ZV` + E` = V`+1H`,

where
E` = (e1, . . . , e`) . (3.15)

Since V H
` V` = I` , we have

(Z + E`V
H
`)V` = V`+1H`.

Their studies are based on the fact that inexact GMRES reduces to exact GMRES
applied to the perturbed linear system

Ẑ`J = F,

where Ẑ` = Z + E`V
H
` .

In the as elfip code, the three FMM options that correspond to three levels of
accuracy are available. From the least accurate to the most, we denote them by
prec–1, prec–2 and prec–3. When the accuracy is relaxed then we have a faster
calculation of the matrix-vector product (see Section 3.3.1 for more details). We
intend to solve the system ZJ = F with Z being the matrix of the FMM prec–3.
We have experimented the relaxation strategy for the matrix–vector products during

222 The Electromagnetism Application

the GMRES iterations. The relaxation strategy chosen at step (j + 1) is slightly
modified and is defined by

ηj ≤ max

{
tol

ω · ‖rj‖2
, tol

}
.

We mention that such a choice has also been considered in the numerical experiments
in [124] and for industrial applications using inner-outer iterative solvers in [135],
for radiation diffusion problems, and in [90], for the solution of the time-harmonic
Maxwell’s equations. In our experiments, we arbitrarily set the parameter ω = 10
and tol = 10−3 . The numerical experiments are reported in Figure 3.47. We
compare the relaxation strategy with the fixed strategy. At each step, the backward
error is computed explicitly with the prec–3 FMM (i.e. the Arnoldi estimate is

not used since it holds for the matrix Ẑ and not the system Z). In Figure 3.47,
we observe that the relaxation strategy does not degrade the convergence while it
enables us to perform faster and faster matrix–vector products. However we do
not manage to attain the requested criterion tol; the parameter ω has probably
been set too large. Even though some deeper investigations deserve to be developed

10 20 30 40 50 60 70 80 90 100

10
−3

10
−2

10
−1

10
0

prec−1
prec−2
prec−3

(a) with preconditioning,

50 100 150 200 250 300 350 400

10
−3

10
−2

10
−1

10
0

prec−1
prec−2
prec−3

(b) without preconditioning.

Figure 3.47: The relaxation strategy of Bouras, Frayssé and Giraud [18] is tested on GMRES. The
test example is the cetaf 5391 for the right–hand side θ = 0o, ϕ = 90o .

to better understand the numerical behaviour of the inexact GMRES method, the
optimal relaxation strategy as well as the tuning of the FMM parameters at run time,
electromagnetism is clearly a topic that can fully take advantage of such numerical
techniques.

3.9 Future work 223

3.9 Future work

The flexible variant of GMRES has been sucessfully used in the context of the
electromagnetism calculations with a single right–hand side. An implementation
of a flexible block–GMRES is straightforward and should be studied on this class
of problems. Regarding the flexible GMRES, it would be a good thing also to
look at even worse approximations of the matrix in the inner loop. Also, a full
flexible GMRES (i.e. full GMRES in the outer loop) seems affordable and should
be investigated on large examples.
Some ideas suggest using the FMM as a preconditioner. A main problem with the
Frobenius–norm minimizer is that it is sparse. The use of the FMM as a precondi-
tioner would enable us to use a dense preconditioner at low memory cost and low
computational cost each time it is applied.
From a more practical point of view, we think that the storage of the vectors out–of–
core is, in most of the cases, a bottleneck for the performance. An implementation
with in–core vectors should be preferred. This should increase significantly the
efficiency of our multiple right–hand side solvers by reducing the costs of the vector–
vector operations. The drawback would be that the largest tractable problem would
be smaller with the in–core storage. Nevertheless, for most of the problems, the
RAM memory of high performance computers is large enough.
Morgan recently has worked on the block–GMRES–DR method, that, as its name
indicates, is a block version of the GMRES–DR algorithm. We strongly believe
that this method would be efficient in our case. Restarted block GMRES seems
clearly less efficient than the full block GMRES (as it is in the single right–hand
side case). However in the block case, the storage of the full approach quickly
becomes a bottleneck.

224 The Electromagnetism Application

Bibliography

[1] IEEE Standard for binary Floating–Point Arithmetic, ANSI/IEEE Standard
754–1985. Institute of Electrical and Electronics Engineers, New–York, 1985.

[2] Nabih N. Abdelmalek. Round off error analysis for Gram–Schmidt method
and solution of linear least squares problems. BIT, 11:345–368, 1971.

[3] Guillaume Alléon, Sabine Amram, Nicolas Durante, Philippe Homsi, Denis
Pogarieloff, and Charbel Farhat. Massively parallel processing boosts the so-
lution of industrial electromagnetic problems: High performance out-of-core
solution of complex dense systems. In M. Heath, V. Torczon, G. Astfalk, P. E.
Bjørstad, A. H. Karp, C. H. Koebel, V. Kumar, R. F. Lucas, L. T. Watson,
and D. E. Womble, editors, Proceedings of the Eighth SIAM Conference on
Parallel. SIAM Book, Philadelphia, 1997. Conference held in Minneapolis,
Minnesota, USA.

[4] Guillaume Alléon, Michele Benzi, and Luc Giraud. Sparse approximate inverse
preconditioning for dense linear systems arising in computational electromag-
netics. Numerical Algorithms, 16:1–15, 1997.

[5] Mario Arioli. A stopping criterion for the conjugate gradient algorithm in
a finite element method framework. Technical Report #1179, IAN, 2000.
Submitted to Numer. Math.

[6] Mario Arioli, Iain Duff, and Daniel Ruiz. Stopping criteria for iterative solvers.
SIAM Journal on Matrix Analysis and Applications, 13(1):138–144, January
1992.

[7] Mario Arioli, Daniel Loghin, and Andy J. Wathen. Stopping criteria for itera-
tions in finite element methods. Technical Report TR/PA/03/21, CERFACS,
Toulouse, France, 2003.

[8] James Baglama, Daniela Calvetti, Gene H. Golub, and Lothar Reichel. Adap-
tively preconditioned GMRES algorithms. SIAM Journal on Scientific Com-
puting, 20(1):243–269, 1999.

[9] Maurice W. Benson. Iterative solution of large scale linear systems. Master’s
thesis, Lakehead University, Thunder Bay, Canada, 1973.

[10] Maurice W. Benson and P. O. Frederickson. Iterative solution of large sparse
linear systems arising in certain multidimensional approximation problems.
Utilitas Mathematica, 22:127–140, 1982.

226 BIBLIOGRAPHY

[11] Maurice W. Benson, J. Krettmann, and M. Wright. Parallel algorithms for the
solution of certain large sparse linear systems. Int J. of Computer Mathematics,
16, 1984.

[12] David Bindel, Jim Demmel, William Kahan, and Osni Marques. On computing
Givens rotations reliably and efficiently. ACM Transactions on Mathematical
Software (TOMS), 28(2):206–238, June 2002.

[13] Åke Björck. Solving linear least squares problems by Gram–Schmidt orthog-
onalization. BIT, 7::1–21, 1967.

[14] Åke Björck. Numerical Methods for Least Squares Problems. Society for In-
dustrial and Applied Mathematics, Philadelphia, PA, USA, 1996.

[15] Åke Björck and Christopher C. Paige. Loss and recapture of orthogonality
in the modified Gram–Schmidt algorithm. SIAM Journal on Matrix Analysis
and Applications, 13(1):176–190, 1992.

[16] L. Susan Blackford, Jim Demmel, Jack Dongarra, Iain S. Duff, Sven Hammar-
ling, Greg Henry, Mike Heroux, Linda Kaufman, Andrew Lumsdaine, Antoine
Petitet, Roldan Pozo, Karin Remington, and R. Clinton Whaley. An updated
set of Basic Linear Algebra Subprograms (BLAS). ACM Transactions on
Mathematical Software (TOMS), 28(2):135–151, June 2002.

[17] Amina Bouras and Valérie Frayssé. A relaxation strategy for inexact matrix-
vector products for Krylov methods. Technical Report TR/PA/00/15, CER-
FACS, Toulouse, France, 2000.

[18] Amina Bouras, Valérie Frayssé, and Luc Giraud. A relaxation strategy for
inner-outer linear solvers in domain decomposition methods. Technical Report
TR/PA/00/17, CERFACS, Toulouse, France, 2000.

[19] Thierry Braconnier, Philippe Langlois, and Jean-Christophe Rioual. The in-
fluence of orthogonality on the Arnoldi method. Linear Algebra and its Appli-
cations, 309(1–3):307–323, April 2000.

[20] Kevin Burrage and Jocelyne Erhel. On the performance of various adaptive
preconditioned GMRES strategies. Numerical Linear Algebra with Applica-
tions, 5(2):101–121, March/April 1998.

[21] Caroline Le Calvez and B. Molina. Implicitly restarted an deflated GMRES.
Numerical Algorithms, 21:261–285, 1999.

[22] Quentin Carayol. Développement et analyse d’une méthode multipôle multi-
niveau pour l’électromagnétisme. Ph.D. dissertation, Université Paris 6, 2001.

[23] Bruno Carpentieri. Sparse preconditioners for dense complex linear sys-
tems in electromagnetic applications. Ph.D. dissertation, INPT, April 2002.
TH/PA/02/48.

BIBLIOGRAPHY 227

[24] Bruno Carpentieri, Iain S. Duff, and Luc Giraud. A class of spectral two-
level preconditioners. SIAM Journal on Scientific Computing, x(x):xx–xx, to
appear. A preliminary version is available as CERFACS Technical Reports,
TR/PA/02/55.

[25] Bruno Carpentieri, Iain S. Duff, Luc Giraud, and Mardochée Magolu monga
Made. Sparse symmetric preconditioners for dense linear systems in elec-
tromagnetism. Numerical Linear Algebra with Applications, xx(x):xx–xx,
2003. A preliminary version is available as CERFACS Technical Reports,
TR/PA/01/35.

[26] Bruno Carpentieri, Iain S. Duff, Luc Giraud, and Guillaume Sylvand. Com-
bining fast multipole techniques and an approximate inverse preconditioner for
large parallel electromagnetics calculations. Technical Report in preparation,
CERFACS, Toulouse, France, 2003.

[27] Luiz M. Carvalho, Luc Giraud, and Patrick Le Tallec. Algebraic two-level
preconditioners for the Schur complement method. SIAM Journal on Scientific
Computing, 22(6):1987–2005, 2001.

[28] Françoise Chaitin-Chatelin and Valérie Frayssé. Lectures on Finite Precision
Computations. Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA, 1996. SIAM series Software ·Environments ·Tools, Editor in chief
Jack J. Dongarra.

[29] Françoise Chaitin-Chatelin, Vincent Toumazou, and Elisabeth Traviesas. Ac-
curacy assessment for eigencomputations : variety of backward errors and
pseudospectra. Linear Algebra and its Applications, 309:73–83, 2000.

[30] Andrew Chapman and Yousef Saad. Deflated and augmented Krylov subspace
techniques. Numerical Linear Algebra with Applications, 4(1):43–66, January/
February 1997.

[31] Jaeyoung Choi, Jim Demmel, Inderjiit Dhillon, Jack Dongarra, Susan Os-
trouchov, Antoine Petitet, Ken Stanley, David Walker, and Clinton Whaley.
ScaLAPACK: A portable linear algebra library for distributed memory com-
puters - design issues and performance. Computer Physics Communications,
97:1–15, 1996. (also as LAPACK Working Note #95).

[32] Francis Collino and Bruno Després. Integral equations via saddle point prob-
lems for time–harmonic Maxwell’s equations. Journal of Computational and
Applied Mathematics, 150:157–192, 2003.

[33] David Colton and Rainer Kress. Inverse Acoustic and Electromagnetic Scat-
tering Theory. Springer–Verlag, Berlin Heidelberg New York, 1992.

[34] James W. Daniel, Walter Bill Gragg, Linda Kaufman, and G. W. (Pete)
Stewart. Reorthogonalization and stable algorithms for updating the Gram–
Schmidt QR factorization. Math. Comp., 30(136):772–795, 1976.

228 BIBLIOGRAPHY

[35] Eric Darve. Méthodes multipôles rapides : résolutions des équations de Maxwell
par formulations intégrales. PhD thesis, Université Paris 6, June 1999.

[36] Eric Darve. The fast multipole method (I) : Error analysis and asymptotic
complexity. SIAM Journal on Numerical Analysis, 38(1):98–128, 2000.

[37] Eric Darve. The fast multipole method: Numerical implementation. J. Comp.
Phys., 160(1):195–240, 2000.

[38] Achiya Dax. A modified Gram–Schmidt algorithm with iterative orthogonal-
ization and column pivoting. Linear Algebra and its Applications, 310(1–3):25–
42, 2000.

[39] Ben Dembart and Michael A. Epton. A 3D fast multipole method for elec-
tromagnetics with multiple levels. Tech. Rep. ISSTECH-97-004, The Boeing
Company, Seattle, WA, 1994.

[40] Ben Dembart and Michael A. Epton. Low frequency multipole translation
theory for the Helmholtz equation. Tech. Rep. SSGTECH-98-013, The Boeing
Company, Seattle, WA, 1998.

[41] Ben Dembart and Michael A. Epton. Spherical harmonic analysis and synthesis
for the fast multipole method. Tech. Rep. SSGTECH-98-014, The Boeing
Company, Seattle, WA, 1998.

[42] Bruno Després. Quadratic functional and integral equations for harmonic wave
problems in exterior domain. Mathematical Modelling and Numerical Analysis,
31(6):679–732, 1997.

[43] Jitka Drkošová, Anne Greenbaum, Miroslav Rozložńık, and Zdeněk Strakoš.
Numerical stability of GMRES. BIT, 35(3):309–330, September 1995.

[44] Iain S. Duff, Luc Giraud, Julien Langou, and Émeric Martin. Exploiting spec-
tral informations in large electromagnetic calculation. Tech. Rep. In prepara-
tion, CERFACS, Toulouse, France, 2003.

[45] Romain Durdos. Krylov solvers for large symmetric dense complex linear
systems in electromagnetism: some numerical experiments. Working Notes
WN/PA/02/97, CERFACS, Toulouse, France, 2002.

[46] Jocelyne Erhel, Kevin Burrage, and B. Pohl. Restarted GMRES precon-
ditioned by deflation. Journal of Computational and Applied Mathematics,
69:303–318, 1996.

[47] Jocelyne Erhel, Kevin Burrage, and B. Pohl. Restarted GMRES precon-
ditioned by deflation. Journal of Computational and Applied Mathematics,
69:303–318, 1996.

[48] Ky Fan and Alan J. Hoffman. Some metric inequalities in the space of matrices.
Proc. Amer. Math., 6:111–116, 1955.

BIBLIOGRAPHY 229

[49] Jason Frank and C. (Kees)Vuik. Parallel implementation of a multiblock
method with approximate subdomain solution. Appl. Num. Math., 30:403–
423, 1999.

[50] Valérie Frayssé, Luc Giraud, and Serge Gratton. A set of GMRES routines
for real and complex arithmetics. Technical report TR/PA/97/49, CERFACS,
Toulouse, France, 1997.

[51] Valérie Frayssé, Luc Giraud, Serge Gratton, and Julien Langou. A set of GM-
RES routines for real and complex arithmetics on high performance computers.
Technical report TR/PA/03/03, CERFACS, Toulouse, France, 2003.

[52] Valérie Frayssé, Luc Giraud, and Hatim Kharraz–Aroussi. On the influence
of the orthogonalization scheme on the parallel performance of GMRES. In
Proceedings of EuroPar’98, volume 1470 of Lecture Notes in Computer Science,
pages 751–762. Springer–Verlag, 1998. A preliminary version is available as
CERFACS Technical Reports, TR/PA/98/07.

[53] Paul O. Frederickson. Fast approximate inversion of large sparse linear sys-
tems. Math. Report 7, Lakehead University, Thunder Bay, Canada, 1975.

[54] Roland W. Freund. Conjugate gradient–type methods for linear systems with
complex symmetric coefficient matrices. SIAM Journal on Scientific and Sta-
tistical Computing, 13(1):425–448, January 1992.

[55] Roland W. Freund and Manish Malhotra. A block QMR algorithm for non-
Hermitian linear systems with multiple right-hand sides. Linear Algebra and
its Applications, 254(1–3):119–157, March 1997. Proceedings of the Fifth Con-
ference of the International Linear Algebra Society (Atlanta, GA, 1995).

[56] Roland W. Freund and Noël Nachtigal. A new Krylov–subspace method
for symmetric indefinite linear systems. Technical Report ORNL/TM-12754,
ORNL, Oak Ridge, TN, US, May 1994.

[57] Roland W. Freund and Noël M. Nachtigal. An implementation of the QMR
method based on coupled two-term recurrences. SIAM Journal on Scientific
Computing, 15(2):313–337, 1994.

[58] Roland W. Freund and Noël M. Nachtigal. QMRPACK: a package of QMR
algorithms. ACM Transactions on Mathematical Software (TOMS), 22(1):46–
77, March 1996.

[59] Walter Gander. Algorithms for the QR decomposition. Research report No.
80-02, Eidgenössische Technische Hochschule, Zürich, 1980.

[60] Walter Gander, Luciano Molinari, and Hana Švecová. In Birkäuser Ver-
lag, editor, Numerische Prozeduren aus Nachlass und Lehre von Prof. Heinz
Rutishauser, volume 33 of International Series of Numerical Mathematics.
1977.

230 BIBLIOGRAPHY

[61] Luc Giraud and Julien Langou. When modified Gram–Schmidt generates
a well–conditioned set of vectors. IMA Journal on Numerical Analysis,
22(4):521–528, 2002.

[62] Luc Giraud, Julien Langou, and Miroslav Rozložńık. On the round-off error
analysis of the Gram–Schmidt algorithm with reorthogonalization. Technical
Report TR/PA/02/33, CERFACS, Toulouse, France, 2002.

[63] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins
Series in the Mathematical Sciences. The Johns Hopkins University Press,
Baltimore, MD, USA, third edition, 1996.

[64] Gene. H. Golub and Gérard Meurant. Matrices, moments and quadrature II:
How to compute the norm of the error in iterative methods. BIT, 37:687–705,
1997.

[65] Ananth Grama, Vipin Kumar, and Ahmed Sameh. On n-body simulations
using message-passing parallel computers. In Sidney Karin, editor, Proceedings
of the 1995 SIAM Conference on Parallel Processing, San Francisco, CA, USA,
1995.

[66] Ananth Grama, Vipin Kumar, and Ahmed Sameh. Parallel matrix-vector
product using approximate hierarchical methods. In Sidney Karin, editor,
Proceedings of the 1995 ACM/IEEE Supercomputing Conference, December
3–8, 1995, San Diego Convention Center, San Diego, CA, USA, New York,
NY, USA, 1995. ACM Press and IEEE Computer Society Press.

[67] Ananth Grama, Vipin Kumar, and Ahmed Sameh. Scalable parallel formula-
tions of the Barnes–Hut method for n -body simulations. Parallel Computing,
24(5–6):797–822, 1998.

[68] Anne Greenbaum, Vlastimil Pták, and Zdeněk Strakoš. Any nonincreasing
convergence curve is possible for GMRES. SIAM Journal on Matrix Analysis
and Applications, 17(3):465–469, July 1996.

[69] Anne Greenbaum, Miroslav Rozložńık, and Zdeněk Strakoš. Numerical be-
haviour of the modified Gram–Schmidt GMRES implementation. BIT, 37:706–
719, 1997.

[70] Leslie Greengard and William Gropp. A parallel version of the fast multipole
method. Comput. Math. Appl., 20:63–71, 1990.

[71] Leslie Greengard and Vladimir Rokhlin. A fast algorithm for particle simula-
tions. Journal of Computational Physics, 73:325–348, 1987.

[72] Roger F. Harrington. Origin and development of the method of moments for
field computation. IEEE Antennas and Propagation Magazine, 1990.

[73] Nicholas J. Higham. Matrix nearness problems and applications. In M. J. C.
Gover and S. Barnett, editors, Applications of Matrix Theory, pages 1–27.
Oxford University Press, 1989.

BIBLIOGRAPHY 231

[74] Nicholas J. Higham. Matrix nearness problems and applications. In M. J. C.
Gover and S Barnett, editors, Applications of Matrix Theory, pages 1–27,
Oxford, UK, 1989. Oxford University Press.

[75] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1996.

[76] Walter Hoffmann. Iterative algorithms for Gram–Schmidt orthogonalization.
Computing, 41:335–348, 1989.

[77] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge Univer-
sity Press, Cambridge, UK, 1985.

[78] D. A. H. Jacobs. A generalization of the conjugate–gradient method to solve
complex systems. IMA Journal on Numerical Analysis, 6:447–452, 1986.

[79] William Jalby and Bernard Philippe. Stability analysis and improvement of
the block Gram-Schmidt algorithm. SIAM Journal on Scientific and Statistical
Computing, 12(5):1058–1073, September 1991.

[80] Pascal Joly and Gérard Meurant. Complex conjugate gradient methods. Nu-
merical Algorithms, 4:379–406, 1993.

[81] Serge A. Kharchenko and Alex Yu. Yeremin. Eigenvalue translation based
preconditioners for the GMRES(k) method. Numerical Linear Algebra with
Applications, 2(1):51–77, 1995.

[82] Andrzej Kie lbasiński. Analiza numeryczna algorytmu ortogonalizacji Grama–
Schmidta. Seria III: Matematyka Stosowana II, pages 15–35, 1974.

[83] Andrzej Kie lbasiński and Hubert Schwetlick. Numerische Lineare Algebra:
Eine Computerorientierte Einführung. VEB Deutscher, Berlin, 1988.

[84] Andrzej Kie lbasiński and Hubert Schwetlick. Numeryczna Algebra Liniowa:
Wprowadzenie do Obliczeń Zautomatyzowanych. Wydawnictwa Naukowo–
Techniczne, Warszawa, 1992 edition, 1992.

[85] Misha Kilmer, Eric Miller, and Carey Rappaport. QMR-based projection
techniques for the solution of non-Hermitian systems with multiple right-hand
sides. SIAM Journal on Scientific Computing, 23(3):761–780, May 2002.

[86] Ronald Koifman, Vladimir Rokhlin, and Stephen Wandzura. The fast multi-
pole method for the wave equation: a pedestrian prescription. IEEE Antennas
and Propagation Magazine, 35(3):7–12, 1993.

[87] Charles L. Lawson and Richard J. Hanson. Solving Least Squares Problems.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1995.

[88] Richard B. Lehoucq and Andrew G. Salinger. Large-scale eigenvalue calcu-
lations for stability analysis of steady flows on massively parallel computers.
Int. J. Numerical Methods in Fluids, 36:309–327, 2001.

232 BIBLIOGRAPHY

[89] Per Lötstedt and Martin Nilsson. A minimum residual interpolation method
for linear equations with multiple right–hand sides. Technical report 2002-041,
Uppsala University, 2002.

[90] Katherine Mer-Nkonga and Francis Collino. The fast multipole method ap-
plied to a mixed integral system for time-harmonic Maxwell’s equations. In
B. Michielsen and F. Decavèle, editors, European symposium on numerical
methods in electromagnetics, pages 121–126, 2002.

[91] W. C. Mitchell and D. L. McCraith. Heuristic analysis of numerical variants of
the Gram Schmidt orthonormalization process. Technical Report TR/CS/122,
Computer Science Department, Stanford University, AD 687450, 1969.

[92] Ronald B. Morgan. Implicitly restarted GMRES and Arnoldi methods for
nonsymmetric systems of equations. SIAM Journal on Matrix Analysis and
Applications, 21(4):1112–1135, October 2000.

[93] Ronald B. Morgan. GMRES with deflated restarting. SIAM Journal on Sci-
entific Computing, 24(1):20–37, 2002.

[94] Jim M.Varah. A lower bound for the smallest singular value of a matrix. Linear
Algebra and its Applications, 11:3–5, 1975.

[95] Noël M. Nachtigal, Satish C. Reddy, and Lloyd N. Trefethen. How fast are
nonsymmetric matrix iterations? SIAM Journal on Matrix Analysis and Ap-
plications, 13(3):778–795, July 1992. Iterative methods in numerical linear
algebra (Copper Mountain, CO, 1990).

[96] Martin Nilsson. Iterative Solution of Maxwell’s equations in Frequency Do-
main. Ph.D. dissertation, UPPSALA University, June 2002.

[97] Dianne P. O’Leary. The block conjugate gradient algorithm and related meth-
ods. Linear Algebra and its Applications, 29:293–322, 1980.

[98] Michael L. Overton. Numerical computing with IEEE foating point arithmetic.
Including One Theorem, One Rule of Thumb and One Hundred One Exercises.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2001.

[99] Christopher C. Paige and Michael A. Saunders. LSQR: An algorithm for sparse
linear equations and sparse least squares. ACM Transactions on Mathematical
Software (TOMS), 8(1):43–71, 1982.

[100] Christopher C. Paige and Zdeněk Strakoš. Residual and backward error bounds
in minimum residual Krylov subspace methods. SIAM Journal on Scientific
Computing, 23(6):1899–1924, November 2002.

[101] Beresford N. Parlett. A new look at the lanczos algorithm for solving systems
of linear equations. Linear Algebra and its Applications, 29:323–346, 1980.

[102] Beresford N. Parlett. The Symmetric Eigenvalue Problem. Prentice–Hall,
Englewood Cliffs, NJ, USA, 1980.

BIBLIOGRAPHY 233

[103] Andrew F. Peterson, Scott L. Ray, and Raj Mittra. Computational Methods
for Electromagnetics. IEEE Press, 1997.

[104] Jean-René Poirier. Modélisation électromagnétique des effets de rugosité sur-
facique. Ph.D. dissertation, Institut National des Sciences Appliquées de
Toulouse, December 2000.

[105] Jussi Rahola. Experiments on iterative methods and the fast multipole method
in electromagnetic scattering calculations. Technical Report TR/PA/98/49,
CERFACS, Toulouse, France, 1998.

[106] Sadasiva M. Rao, Donald R. Wilton, and Allen W. Glisson. Electromagnetic
scattering by surfaces of arbitrary shape. IEEE Antennas and Propagation
Magazine, 30:409–418, 1982.

[107] Pierre-Arnaud Raviart and Jean-Marie Thomas. A mixed finite element
method for 2nd order elliptic problems. In I. Galligani and E. Magenes, ed-
itors, Mathematical aspects of finite element method, volume 606 of Lecture
Notes in Mathematics. Springer–Verlag, Berlin, 1975.

[108] Lothar Reichel and William B. Gragg. FORTRAN subroutines for updat-
ing the QR decomposition. ACM Transactions on Mathematical Software
(TOMS), 16:369–377, 1990.

[109] John R. Rice. Experiments on Gram–Schmidt orthogonalization. Math.
Comp., 20:325–328, 1966.

[110] Vladimir Rokhlin. Diagonal forms of translation operators for the Helmholtz
equation in three dimensions. Technical report YALEU/DCS/RR-894, De-
partment of Computer Science, Yale University, 1992.

[111] Axel Ruhe. Implementation aspects of band Lánczos algorithms for com-
putation of eigenvalues of large sparse symmetric matrices. Mathematics of
Computation, 33(146):680–687, April 1979.

[112] Axel Ruhe. Numerical aspects of Gram–Schmidt orthogonalization of vectors.
Linear Algebra and its Applications, 52/53:591–60, 1983.

[113] Heinz Rutishauser. Description of algol 60. In F. L. Bauer, A. S. Householder,
F. W. J. Olver, H. Rutishauser, K. Samelson, and E. Stiefel, editors, Handbook
for Automatic Computation, volume 1, Part a. Springer Verlag, New York Inc.,
1967.

[114] Youcef Saad. On the Lanczos method for solving symmetric linear systems
with several right–hand sides. Math. Comp., 48:651–662, 1987.

[115] Youcef Saad. Projection and deflation methods for partial pole assignment in
linear state feedback. IEEE Trans. Automat. Contr., 33(3):290–297, 1988.

[116] Youcef Saad. Numerical Methods for Large Eigenvalue Problems. Manchester
University Press, UK, 1992.

234 BIBLIOGRAPHY

[117] Youcef Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM
Journal on Scientific Computing, 14(2):461–469, March 1993.

[118] Youcef Saad and Martin H. Schultz. GMRES: a generalized minimal residual
algorithm for solving nonsymmetric linear systems. SIAM Journal on Scientific
and Statistical Computing, 7(3):856–869, July 1986.

[119] Yousef Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing
Company, Boston, MA, US, 1996.

[120] Erhard Schmidt. Über die Auflösung linearer Gleichungen mit unendlich vielen
Unbekannten. Rend. Circ. Mat. Palermo. Ser. 1, 25:53–77, 1908.

[121] Kevin E. Schmidt and Mickaël A. Lee. Implementing the fast multipole method
in three dimensions. J. Statist. Phys., 63:1120, 1991.

[122] John N. Shadid and Ray S. Tuminaro. A comparison of preconditioned non-
symmetric Krylov methods on a large-scale MIMD machine. SIAM Journal
on Scientific Computing, 14(2):440–459, 1994.

[123] Jérôme Simon. Extension des Méthodes Multipôles Rapides : Résolution pour
des seconds membres multiples et applications aux objets diélectriques. Ph.D.
dissertation, Université de Versailles Saint–Quentin en Yvelines, 2003.

[124] Valeria Simoncini and Daniel B. Szyld. Theory of inexact Krylov subspace
methods and applications to scientific computing. SIAM Journal on Scientific
Computing, x(x):xx–xx, 2003.

[125] Jaswinder P. Singh, Chris Holt, Takashi Totsuka, Anoop Gupta, and John L.
Hennessy. Load Balancing and Data Locality in Adaptive Hierarchical N-body
Methods: Barnes-Hut, Fast Multiple, and Radiosity. Journal of Parallel and
Distributed Computing, 27:118–141, 1995.

[126] Jiming M. Song, Caicheng C. Lu, and Weng Cho Chew. Multilevel fast mul-
tipole algorithm for electromagnetic scattering. IEEE Antennas and Propaga-
tion Magazine, 45:1488–1493, 1997.

[127] Danny C. Sorensen. Implicit application of polynomial filters in a k-step
Arnoldi method. SIAM Journal on Matrix Analysis and Applications, 13:357–
385, 1992.

[128] Paul Soudais. Iterative solution of a 3–d scattering problem from arbitrary
shaped multidielectric and multiconducting bodies. IEEE Antennas and Prop-
agation Magazine, 42(7):954–959, 1994.

[129] Zdeněk Strakoš and Petr Tichỳ. On error estimation in the conjugate gra-
dient method and why it works in finite precision computations. Electronic
Transactions on Numerical Analysis (ETNA), 13:56–80, 2002. The original
publication is available on link at http://etna.mcs.kent.edu/ c©ETNA.

[130] Guillaume Sylvand. La Méthode Multipôle Rapide en Electromagnétisme : Per-
formances, Parallélisation, Applications. Ph.D. dissertation, Ecole Nationale
des Ponts et Chaussées, 2002.

BIBLIOGRAPHY 235

[131] Lloyd N. Trefethen. Pseudospectra of matrices. In G. A. Watson D. F. Grif-
fiths, editor, 14th Dundee Biennial Conference on Numerical Analysis, 1991.

[132] Jasper van den Eshof and Gerard L. G. Sleijpen. Inexact Krylov subspace
methods for linear systems. Preprint nr. 1224, Dep. of Mathematics, Utrecht
University, The Netherlands, 2002.

[133] Henk A. van der Vorst and C. (Kees) Vuik. The superlinear convergence
behaviour of GMRES. Journal of Computational and Applied Mathematics,
48:327–341, 1993.

[134] Brigitte Vital. Étude de quelques méthodes de résolution de problèmes linéaires
de grande taille sur multiprocesseur. Ph.D. dissertation, Université de Rennes,
November 1990.

[135] James S. Warsa, Michele Benzi, Todid A. Wareing, and Jim E. Morel. Precon-
ditioning a mixed discontinuous finite element method for radiation diffusion.
Numerical Linear Algebra with Applications, 2003. To appear.

[136] James H. Wilkinson. Rounding Errors in Algebraic Processes. London, 1963.

[137] James H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University
Press, Oxford, UK, 1965, 1965.

[138] Kesheng Wu and Horst Simon. Thick-restart Lanczos method for large sym-
metric eigenvalue problems. SIAM Journal on Matrix Analysis and Applica-
tions, 22(2):602–616, April 2001.

[139] Feng Zhao and S. Lennart Johnsson. The parallel multipole method on the
connection machine. SIAM Journal on Scientific and Statistical Computing,
12:1420–1437, 1991.

