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paramètres.
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Introduction

Ce document propose une analyse mathématique et algorithmique de certains
modèles de concurrence1 issus de l’Informatique, structures d’événements et réseaux
de Petri. On décrit ci-dessous les contributions apportées, et le contexte où ils se
placent.

Les résultats nouveaux sont indiqués par l’indentation à droite et à gauche
du texte, comme pour ce paragraphe.

I—Motivation et contexte

L’étude des systèmes artificiels complexes a dégagé au cours des dernières
décennies le concept de système distribué. Les approches et les modèles sont variés,
cependant les conclusions et les conceptions convergent sur un certain nombre de
points.

Une idée importante est que la complexité des systèmes conduit à renoncer à leur
contrôle global. Tout d’abord l’accroissement démesuré du nombre d’états empêche
l’analyse opérationnelle globale des systèmes. D’autre part la nature répartie des
systèmes étudiés remet en cause la notion même d’état global de systèmes tels que
les réseaux de télécommunication, et les réseaux de transmission d’information en
général. Dans les grands réseaux de communication, les temps de synchronisation
des composants rendent tout simplement inaccessible l’état global du système à un
instant donné. La notion d’état global du système doit donc être remplacée par
celle d’état local. Avec la notion d’état local, et en conséquence d’actions locales,
apparaissent aussitôt des situations de concurrence de processus.

La théorie des systèmes s’est donc tournée vers les modèles de concurrence
élaborés et étudiés depuis les années 1970, et dont le représentant emblématique
est le modèle des réseaux de Petri (Petri nets). L’analyse des systèmes utilise

1Dans ce document, “concurrence” est l’anglicisme passé dans le langage scientifique courant,
correspondant au terme anglais “concurrency”. Concurrence doit donc être compris au sens de
simultanéité, et non pas au sens de compétition.
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fréquemment des modèles probabilistes, permettant le traitement statistique des
données. Des exemples classiques d’applications à la gestion et à la surveillance des
systèmes sont l’identification de paramètres et le diagnostic de pannes basés sur des
modèles de Markov cachées (HMM, Hidden Markov Models) avec les algorithmes EM
et de Viterbi, mais aussi l’évaluation de performance des systèmes par exemple par
des méthodes asymptotiques. Ainsi on a pu adapter la théorie des files d’attente
à des systèmes connectés en réseau, en particulier la théorie des files d’attente
markoviennes. La topologie des réseaux définit des opérateurs d’algèbre (max,+)
conduisant à des équations d’évolution temporelles, d’où une analyse des perfor-
mances du système. Le modèle qui se prête à cette approche est celui des réseaux de
Petri à choix libres. La littérature est extrèmement fournie sur le sujet, voir entre
autres [2, 4, 3, 30].

D’autre part, des modèles probabilistes ont été élaborés pour prendre en compte
le développement des logiques temporelles et des langages de communication entre
processus. Les algèbres de processus stochastiques par exemple étendent les algèbres
de processus temporisés en donnant une valeur aléatoire au paramètre temporel [22,
25]. Les grammaires de processus concernent des processus de la forme (λ, p), où
p est un processus dans un langage de communication proche de CCS et λ est un
paramètre probabiliste, par exemple le paramètre d’une loi exponentielle. Cette
approche a aussi été appliquée aux bundle event structures [11], un modèle inspiré
des structures d’événements de Winskel.

De nombreuses études de ces modèles sont motivées par des problèmes de sécurité
de protocoles, exprimables comme problèmes de vérification. Larsen et Skou ont
introduit des relations de simulation et de bisimulation, généralisant aux modèles
probabilistes les relations d’équivalence observationelle sur des processus étiquetés
(labelled transition systems) [29]. Outre l’étude d’algorithmes probabilistes de tests,
un thème d’étude est l’expressivité des modèles modulo simulation ou bisimula-
tion, qu’on cherche à spécifier par une logique temporelle. Par exemple pour les
systèmes de transition entièrement probabilistes (fully probabilistic transition sys-
tem), une bisimulation faible sur les états du système cöıncide avec l’équivalence
provenant de PCTL\X, fragment de PCTL (Probabilistic Computation Tree Logic)
sans l’opérateur Next [5]. Il faut noter l’importance dans ces modèles de l’étiquetage
(labelling) des événements par un alphabet d’actions. C’est par rapport à l’étiquetage
qu’est définie la sémantique des processus probabilistes. La bisimulation isole des
classes d’équivalence d’états telles que les transitions au sein d’une même classe du
système se comportent comme des transitions internes, invisibles depuis les autres
classes.

Ainsi, depuis les automates probabilistes de Rabin (1963), de nombreux modèles
de calcul issus de l’Informatique ont été l’objet d’extensions probabilistes. Dans
ces modèles l’état du système est représenté par un processus aléatoire (Xt)t , où le
paramètre t représente l’avancement du temps, suivant une ligne discrète ou con-
tinue. Il s’agit donc d’un temps global à l’échelle du système. En d’autres termes, et
si le système modélise une structure en réseau, tous les composants du réseau sont
synchronisés sur une même horloge globale. Or pour l’étude des systèmes distribués,
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cette conception présente des inconvénients [8]. Car bien que tous les composants
soient soumis au temps physique universel, il est raisonnable de penser que les syn-
chronisations effectives n’interviennent que sur un ensemble discret d’événements,
qui ne peut en aucune manière être fixé à l’avance. Entre les instants de synchro-
nisation, l’asynchronie des composants se prête très mal à une représentation par
un processus (Xt)t avec t avançant comme précédemment le long d’une ligne. La
mauvaise adéquation entre le système et cette représentation est due à la nature
d’ordre total de la ligne, qui ne correspond plus à l’ordonnancement naturel des
événements du système. Les événements asynchrones étant non reliés causalement,
maintenir une relation de comparaison temporelle entre eux est superflu d’une part,
et maladroit si cela entrâıne une plus grande complexité de calculs.

Ainsi, en dehors de toute considération probabiliste, la représentation temporelle
des systèmes répartis tire avantage d’un affaiblissement de la nature totalement or-
donnée du temps, pour admettre la présence d’événements d’ordonnancements non
comparables. Cette représentation est précisément la représentation par concurrence
forte (true-concurrency) des processus concurrents. Cette sémantique s’oppose à
une sémantique d’entrelacement, qui distingue les entrelacements d’événements con-
currents. L’économie de complexité provenant de la sémantique de concurrence
forte a été mise à profit par exemple pour le model-checking de systèmes concur-
rents [32, 46, 19]. L’approche de concurrence forte a aussi été appliquée avec succès
au diagnostic de pannes dans les réseaux de télécommunications, diagnostic centralisé
et décentralisé [6, 8, 20].

Très récemment, on a commencé à s’intéresser à des modèles probabilistes pour
la dynamique de processus fortement concurrents (true-concurrent) [45, 7, 43]. Le
présent document propose une construction générale de processus probabilistes forte-
ment concurrents ainsi que l’étude de certaines de leurs propriétés. On établit des
propriétés asymptotiques de ces systèmes, notamment des propriétés de récurrence et
la Loi forte des grands nombres, dans un contexte de concurrence forte. Les résultats
sont appliqués à un problème statistique classique, l’estimation de paramètres, et on
propose un algorithme d’estimation.

Les outils sont empruntés aux mathématiques et à l’informatique. Les outils an-
alytiques sont ceux de la topologie et de la théorie de la mesure: espaces métriques,
systèmes projectifs de probabilités. Les modèles et leur interprétation dynamique,
ainsi que certains algorithmes, sont issus de l’informatique: réseaux de Petri, struc-
tures d’événements et réseaux d’occurrence. En dehors de contributions à l’analyse
combinatoires de ces modèles, on montre en quelle mesure les outils analytiques mis
en jeu, topologie et théorie de la mesure, apportent des éléments nouveaux pour
l’appréhension des modèles.



16 Introduction

II—Modèles acycliques : temps partiellement ordonné et

probabilisation

Le modèle où nous nous plaçons est celui des dépliages de réseaux de Petri saufs
(safe Petri nets). Étant donné un réseau de Petri sauf, l’idée est d’identifier les
processus ab et ba si a et b sont des transitions concurrentes, c’est-à-dire n’ayant pas
de ressources communes. C’est de cette manière qu’on affaiblit l’ordre chronologique
total : les occurrences de a et b deviennent chronologiquement non comparables.
La clôture transitive de cette relation est la relation d’entrelacement sur les suites
de tirs dans le réseau. Par construction, la relation d’entrelacement identifie deux
suites de tirs qui se déduisent l’une de l’autre par une suite d’échanges de transitions
concurrentes. Les classes d’équivalences sont appelées processus true-concurrent du
système, ou plus simplement processus. L’ensemble des processus constitue la dy-
namique du système, et chaque processus correspond à une exécution (partielle) du
système. Ainsi une suite de transitions du réseau de Petri définit un processus, et
différentes suites définissent le même processus si elles sont équivalentes modulo en-
trelacement. La concaténation de suites de transitions induit un ordre partiel sur
les suites de transitions, qui induit à son tour un ordre partiel sur les processus. La
relation u ⊆ v pour deux processus correspond au fait que le processus u peut être
continué jusqu’à atteindre v.

Le dépliage d’un réseau de Petri est un réseau acyclique qui recopie le réseau
en différenciant les occurrences des transitions, ce qui revient à déplier indéfiniment
les boucles du réseau d’origine. Mathématiquement, un dépliage est de manière
équivalente une structure d’événements (prime event structure) ou un réseau
d’occurrences (occurrence net). Ces deux modèles équivalents ont surtout la partic-
ularité d’être acycliques. Un processus du réseau de Petri d’origine est décrit par un
unique ordre partiel d’événements du dépliage. On dit qu’on relève dans le dépliage
le processus donné par une séquence de transitions du réseau. Comme il se doit,
le relevé est indépendant de la séquence pourvu qu’elle reste dans la même classe
d’équivalence modulo entrelacement. Les préfixes communs des différents relevés
s’identifient dans le dépliage, d’où une structure d’ordre partiel sur les processus
dans le dépliage. Cette relation est conjuguée à la relation d’inclusion naturelle sur
les processus, ce qui montre que le dépliage capture très exactement la dynamique
true-concurrent du réseau. Ces résultats sont ceux des travaux de Winskel sur les
dépliages [47, 33, 50], et sont en bien des points comparables à certains résultat de
la théorie du relèvement des chemins dans les variétés par exemple topologiques ou
différentiables. De nombreuses extensions de ces travaux ont été effectuées, en par-
ticulier pour traiter le cas des réseaux non bornés, et pour relier cette théorie à celle
des traces de Mazurkiewiscz [23, 26].

Dans cette optique, que serait une probabilisation true-concurrent des réseaux de
Petri saufs ? Peut-on définir une dynamique aléatoire non pas sur les séquences de
transitions dans le réseau, mais sur les classes d’équivalence modulo entrelacement ?
C’est ce qu’on appelle une probabilisation true-concurrent.
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L’espace de probabilité adéquat est l’espace des processus maximaux, correspon-
dant aux exécutions complètes du système. C’est bien cet espace qui est considéré
lorsque le réseau de Petri est réduit à un système séquentiel comme une châıne de
Markov. L’espace de probabilité s’identifie avec le bord à l’infini du dépliage. Plus
précisément, il s’agit du bord à l’infini des processus du dépliage, la distinction étant
triviale pour les systèmes séquentiels. Par abus de langage, on parle de bord à l’infini
du dépliage. La probabilité d’une séquence de transitions, modulo entrelacement,
est alors la probabilité de l’ombre du relevé de la séquence dans le dépliage, ombre
portée sur le bord du dépliage. L’ombre d’un processus dans le dépliage est illustrée
par la Figure 1.

    à
l’infini

Bord

pr
oc

es
su

s
fin

i

Ombre du processus fini

Figure 1: L’ombre d’un processus portée sur le bord définit la probabilité
d’apparition du processus.

L’idée de probabiliser de cette manière la dynamique des réseaux de Petri est
récente, due à Völzer [45]. Les auteurs qui ont mené des études sur le sujet se
sont heurtés à des difficultés qui les ont amenés à réduire la classe de réseaux à
probabiliser. Il s’agit des réseaux à choix libres étendus (extended free choice) pour
Völzer [45], des réseaux sans confusion (confusion-free) pour Varracca [43] et pour
Varracca-Winskel-Völzer [44] (la différence est mince entre choix libre étendu et sans
confusion), et des réseaux dits ”à choix compact” de Benveniste-Haar-Fabre [7].

Le but que se posent ces auteurs, au moins en un premier temps, est la construc-
tion d’une probabilité sur le bord par une technique d’extension. Indubitablement,
il y a là un résultat analytique, dont la nature est indépendante de tout problème
de concurrence. A. Benveniste a identifié avec raison ce résultat comme une limite
projective de systèmes de probabilités, bien que les détails en soient négligés dans [7].

Dans le présent document, on montre qu’une clef pour l’étude analy-
tique du bord à l’infini des modèles concurrents acycliques, c’est-à-dire
l’ensemble des processus maximaux, consiste à plonger le bord à l’infini
dans l’espace des processus (quelconques), ces deux espaces étant mu-
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nis de topologies adéquates. On considère un système projectif, formé
d’ensembles finis, pour chacun des deux espaces : espace des processus et
espace des processus maximaux. Un premier résultat est l’adéquation en-
tre l’espace des processus quelconques et la limite projective du système
projectif associé. Bien que ce résultat soit assez élémentaire, il permet
de définir de manière simple une topologie sur les processus, dérivée de
la topologie projective. On retrouve cette topologie dans la littérature
pour des modèles semblables: topologie de Lawson, topologie de traces
infinies [28, 24]. On retrouve les résultats topologiques dus à la nature des
espaces de processus, en particulier la compacité et la séparabilité, dans
la structure de limite projective, sans introduire de métrique explicite.

Il n’en va pas exactement de même pour la topologie du bord à
l’infini. J’ai été amené à réviser la notion de temps d’arrêt proposée
par Benveniste et al. dans [7], pour étudier à la place les préfixes in-
trinsèques des structures d’événements et introduire la classe de struc-
tures d’événements localement finies, généralisant les arbres localement
finis. Cette étude a grandement profité de la relation de conflit dy-
namique qui m’a été indiquée par D. Varacca et G. Winskel. Les
préfixes intrinsèques finis d’une structure d’événements localement finie
forment un semi-treillis supérieur dont la borne supérieure est la struc-
ture d’événements toute entière. Ils induisent une filtration partiellement
ordonnée de sous-tribus du bord. L’étude des structures d’événements
localement finies montre cette différence entre systèmes séquentiels et
systèmes concurrents: le dépliage d’un système fini concurrent n’est pas
nécessairement localement fini, alors qu’il en est toujours ainsi pour les
systèmes séquentiels. Le bord à l’infini d’une structure d’événements lo-
calement finie s’identifie à une limite projective d’ensemble finis, d’où
l’application du théorème d’extension de systèmes projectifs de proba-
bilités (théorème de Prokhorov).

III—Probabilités et concurrence

Pour les structures d’événements localement finies, la construction d’une mesure
de probabilité sur le bord se réduit à la construction d’un système projectif de proba-
bilités sur des ensembles finis. L’extension de mesures pour les systèmes concurrents
est donc semblable à l’extension de mesures pour les systèmes séquentiels.

Construire une probabilité sur le bord à l’infini d’un arbre, c’est-à-dire pour un
système acyclique séquentiel, c’est construire une probabilité sur les chemins infinis
de l’arbre. Cela revient à faire avancer un bateau sur la mer vers l’horizon par une
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suite d’incréments, en prenant à chaque pas une décision aléatoire pour le faire dévier
plutôt vers la droite ou plutôt vers la gauche, tout en sachant que quoi qu’il arrive,
le bateau va de l’avant. C’est une traduction imagée du théorème de prolongement
des systèmes projectifs de mesures de probabilité.

Maintenant pour un système concurrent, il s’agit de faire avancer plusieurs
bateaux en même temps vers l’horizon. Les bateaux peuvent se rejoindre par synchro-
nisation ou se séparer en plusieurs bateaux. Les bateaux ont a priori des paramètres
propres, mais aussi des paramètres qui indiquent leurs influences respectives les uns
sur les autres. Il est normal d’étudier si elles existent des probabilités qui annulent
les influences mutuelles, rendant les bateaux indépendants en probabilité. C’est bien
le sens de l’intuition de Benveniste et al. [7] (l’indépendance conditionnelle des lay-
ers), rejoignant la maxime de Winskel qui affirme que, au sens de la concurrence, “le
parallélisme est une forme d’orthogonalité” [49].

On introduit certains objets géométriques liés aux structures d’événement
permettant de définir les probabilités distribuées, qui possèdent les pro-
priétés d’indépendance énoncées ci-dessus. On montre l’existence, et
l’unicité sous certaines conditions naturelles, d’une probabilité distribuée
construite à partir d’une famille de probabilités locales. L’opération qui
associe une probabilité distribuée à une famille de probabilités locales
est appelée produit distribué, et constitue une contribution principale
de ce document. Le produit distribué généralise le produit de proba-
bilités conditionnelles, par un traitement particulier de la concurrence.
Naturellement, le caractère distribué des probabilités est trivial si la con-
currence est absente. Autrement dit, toute probabilité sur un produit
infini s’écrit comme un produit distribué.

Ce modèle probabiliste prend en compte la concurrence des systèmes de
manière intrinsèque, sans recourir par exemple aux schedulers ou à un étiquetage
supplémentaire, ou à toute autre variable non-déterministe extérieure comme on
le fait par exemple pour les produits asynchrones d’automates probabilistes [40].
La construction du produit distribué est faite dans le cadre général des structures
d’événements. À ma connaissance, cette construction est la méthode la plus générale
pour construire une probabilité sur des processus true-concurrent, sans référence à
un temps global réel.

La construction du produit distribué est fondé sur une décomposition des proces-
sus dans les structures d’événements. Les outils introduits avec cette décomposition
forment ce que j’ai appelés des outils de géométrie discrète dans les structures
d’événements. Pour les modèles acycliques étudiés dans ce document, structures
d’événements et réseaux d’occurrences, j’appelle géométrique ce qui concerne les
éléments qui composent le modèle, i.e. les événements et les conditions d’un réseau
d’occurrences par exemples, par opposition aux deux autres objets associés au
modèle : processus et processus maximaux, qui sont respectivement un ordre par-
tiel topologique et un espace topologique, avec leurs tribus boréliennes respectives.



20 Introduction

L’essentiel de l’étude consiste à relier les propriétés géométriques aux propriétés
d’espaces mesurables et d’espaces de probabilités.

On décompose les processus maximaux par une construction géométrique
itérative. Cette décomposition isole des processus locaux appelés germes
du processus maximal qui, s’ils sont concurrents, sont indépendant les
uns des autres. La décomposition n’est pas unique, due aux différents
entrelacements possibles, mais la collection des germes en constitue un
invariant, intrinsèque au processus maximal. Les germes sont les proces-
sus maximaux de sous-structures d’événements finies, appelées cellules de
branchements. Les probabilités locales, appelées probabilités de branche-
ment, probabilisent les germes des cellules de branchement. Dans la con-
struction du produit distribué, on associe l’indépendance “horizontale”
de germes concurrents à leur indépendance en probabilité.

Les cellules de branchement sont dynamiques: un même événement peut ap-
partenir à différentes cellules de branchment, en fonction du contexte qui entoure
l’événement. C’est donc une approche différente de celle des clusters (voir par ex-
emple [19, 21]), qui sont statiquement définis dans un réseau de Petri.

IV—Systèmes aléatoires concurrents sans mémoire

En particularisant la construction des probabilités distribuées des structures
d’événements aux dépliages des réseaux de Petri saufs, on définit une dynamique
aléatoire et true-concurrent des réseaux de Petri saufs.

De la théorie des systèmes dynamiques, on retient l’idée que les trajectoires in-
finies explorent les systèmes finis sans mémoire de manière régulière en moyenne. La
formalisation de cette propriété est l’objet des théorèmes limites des probabilités, en
particulier la Loi forte des grands nombres et le Théorème de la Limite Centrale.
L’étude de théorèmes limites pour les systèmes concurrents suppose de définir les
systèmes sans mémoires.

Pour cela j’ai introduit un outil d’une grande utilité dans ce travail, le cône
du futur d’un processus dans les modèles acycliques. Par exemple dans un réseau
d’occurrences, pour le cône du futur d’un processus v, on part de la simple obser-
vation que les processus contenant v peuvent être interprétés comme les processus
d’un sous-réseau d’occurrences. C’est ce sous-réseau qui constitue le cône du future
de v, de sorte que v s’ajoute à tous les processus de son cône de futur. La propriété
essentielle est que le bord à l’infini du cône du futur de v s’identifie à l’ombre de v.
Si le bord du réseau d’occurences est muni d’une probabilité P, l’ombre de v, et
donc le bord du cône du future de v, est muni de la probabilité conditionelle à v. Si
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deux processus finis mènent au même marquage, leurs cones du futur sont isomor-
phes comme réseaux d’occurrences étiquetés, et donc leurs ombres sont isomorphes
comme espaces topologiques et mesurables. Je dis qu’une probabilité P définie sur le
bord à l’infini du dépliage est homogène, ou sans mémoire, si l’isomorhisme d’espaces
mesurables entre deux ombres isomorphes respecte les probabilités conditionnelles.
Ainsi l’isomorphisme est un isomorphisme d’espaces de probabilités.

Je montre qu’une probabilité homogène et distribuée est déterminée par un nom-
bre fini de paramètres, sous forme d’une famille finie de probabilités de branchement.
Un réseau de Petri sauf et compact, i.e. dont le dépliage est localement fini, équipé
d’une probabilité homogène et distribuée, est appelé réseau de Markov distribué.
Les probabilités de branchements correspondent aux lignes de la matrice de tran-
sition d’une châıne de Markov. La thèse de ce document est que les réseaux de
Markov distribués constituent une généralisation à des systèmes concur-
rents des châınes de Markov finies. À l’appui de cette thèse, je montre qu’un
certain nombre de résultats bien connus pour les châınes de Markov finies s’étendent
au réseaux.

Une étude préliminaire consiste à reformuler et à établir la propriété de
Markov forte dans un contexte true-concurrent. Le résultat implique la
propriété de Markov habituelle pour les châınes de Markov. Pour énoncer
la propriété de Markov, j’ai été amené à proposer une généralisation
des temps d’arrêts étudiés classiquement avec les processus stochastiques
(châınes de Markov, martingales, etc), sous la forme d’opérateurs d’arrêt
(stopping operator). Contrairement aux temps d’arrêts pour réseaux
d’occurrences de [7], les opérateurs d’arrêt admettent comme cas par-
ticuliers des opérateurs d’atteinte, correspondant aux temps d’atteinte
(hitting time) étudiés pour les châınes de Markov. Il s’ensuit une étude de
la récurrence des réseaux markoviens, parallèle à l’étude de la récurrence
des châınes de Markov. On montre en particulier l’alternative 0-1 pour un
marquage d’être récurrent ou transcient, et qu’un marquage atteignable
depuis un marquage récurrent est lui-même récurrent. On distingue une
récurrence globale et une récurrence locale, cette distinction étant triviale
pour les châınes de Markov.

La formulation de la propriété de Markov introduit la notion de fonction ho-
mogène pour palier cette difficulté intrinsèque aux systèmes récurrents, qu’une trans-
lation dans le temps ne transporte pas un espace vers un autre qui lui est isomorphe.
À cause de la concurrence, l’espace des processus n’est pas homogène, d’où l’absence
d’opérateur naturel de translation (shift operator) qui permettrait l’application di-
recte de la théorie des systèmes dynamiques. L’étude de la propriété de Markov et
de la récurrence est faite directement sur les réseaux, et les preuves généralisent les
démonstrations classiques pour les résultats analogues sur les châınes de Markov.

L’étude de la récurrence des réseaux est un premier exemple de caractéristique
analytique des réseaux, qui profite de la souplesse du formalisme des probabilités.
En effet, un réseau récurrent est, pour parler vite, un réseau qui revient infiniment
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souvent dans son marquage d’origine, avec probabilité 1. La récurrence est un ex-
emple typique de propriété vraie en probabilité, mais non totalement vraie. Il est
très courant pour un réseau récurrent de contenir des exécutions qui ne reviennent
pas au marquage d’origine : ces exécutions sont rares puisque toutes ensemble elles
ont probabilité 0, mais elles existent. Ainsi une vérification complète échouerait à
déterminer un tel réseau récurrent, il faut une formulation analytique des ensembles
rares, telle que la fournit le formalisme de la théorie de la mesure, et en particulier
les probabilités.

Certains résultats ergodiques, inspirés de résultats de la théorie des
systèmes dynamiques, sont démontrés directement dans les réseaux. Pour
en déduire la Loi forte des grands nombres, un ingrédient supplémentaire
est apportée par l’étude d’une châıne de Markov auxiliaire2. En plus
d’une condition de récurrence sur le réseau, on introduit une hy-
pothèse pour contrôler l’amplitude de la concurrence au sein d’un réseau.
L’amplitude est définie par une variable aléatoire appelée hauteur con-
currente (concurrent height). De nouveau, l’apport de l’outil analytique
est décisif pour formuler un contrôle sur la hauteur concurrente: autant
il est beaucoup top contraignant de requérir que la hauteur concurrente
soit bornée, autant il est naturel de demander qu’elle soit intégrable,
i.e. d’espérance finie.

La Loi forte des grands nombres pose le problème de l’unité de temps
pour les systèmes concurrents. Les outils géométriques décrits ci-dessus
(§ III) montrent que si, pour les systèmes séquentiels et plus généralement
pour les systèmes concurrents sans confusion [33], l’unité de temps est
l’événement courant du système, il n’en est plus de même pour les
systèmes concurrents plus généraux. Les cellules de branchement isolent
des suites de décision qu’on est conduit à considérer comme atomiques,
et qui sont comptabilisées comme telles pour une quantification du temps
écoulé le long d’un processus : une unité de temps par cellule. La Loi
forte des grands nombres donne la limite du rapport entre le nombre de
réalisations d’une propriété locale au réseau, et le déroulement du temps
comptabilisé de cette manière. Je mets en évidence la présence d’une
densité asymptotique des cellules de branchement, qui correposnd à la
mesure stationnaire d’une châıne de Markov ergodique.

Obtenir le Théorème de la Limite Centrale de manière entièrement intrinsèque
aux réseaux peut sembler plus accessible que les théorèmes ergodiques. Je mon-
tre que les probabilités distribuées fournissent un cadre adapté pour l’application
de la théorie des martingales. La propriété d’addition des espérances de carrés de

2Il faut se rappeler que la Loi forte des grands nombres pour les châınes de Markov, et plus
généralement pour les processus stationnaires, dérive en toute généralité du théorème ergodique de
Birkhoff, dont la démonstration est fondée sur le lemme ergodique maximal. Il parâıt peut-être trop
ambitieux de vouloir démontrer un résultat analogue directement pour les systèmes concurrents.
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martingales se retrouve couplée avec une addition “horizontale”, due aux processus
concurrents. La composante horizontale est triviale (un singleton) pour les systèmes
séquentiels. Cependant, le résultat final pour un Théorème de la Limite Centrale
n’est pas donné dans ce document.

V—Méthodes algorithmiques

On aborde l’étude d’algorithmes utilisant les notions introduites plus haut.

On s’intéresse à la mise en œuvre opérationnelle d’une procédure d’estimation
statistique des paramètres. Bien que les objets caractérisant les probabilités dis-
tribuées soient finis, leur calculabilité n’est pas évidente. Comme application, on
propose une procédure pour l’estimation statistique de paramètres.

Pour la calculabilité des objets, les principales questions sont : peut-on
décider si un réseau de Petri sauf est compact, c’est-à-dire si son dépliage
est localement fini ? Si le réseau est compact, peut-on calculer les cel-
lules de branchement initiales de son dépliage ? Je réduis partiellement
ce problème à un problème d’atteignabilité, et je donne un algorithme
qui finit toujours et décèle une sous-classe de réseaux non compacts.
L’étude de la récurrence locale permet de dégager des suites de variables
aléatoires indépendantes se prêtant donc parfaitement à l’estimation de
paramètres, de la même façon qu’on étudie les estimateurs empiriques
des châınes de Markov finies. Cependant une différence due à la présence
de la concurrence doit être prise en compte. Les données statistiques
provenant du modèle sont par nature partiellement ordonnées, tandis
que tout traitement opérationnel finit par atteindre une phase de traite-
ment séquentiel. Pour modéliser ce décalage, je rajoute une contrainte
d’observation au modèle sous la forme d’une variable non déterministe
correspondant à la donnée d’une séquentialisation particulière d’un pro-
cessus concurrent. En rapportant cette variables à d’autres variables,
elles purement aléatoires, je montre que son effet est négligeable asymp-
totiquement, d’où une procédure opérationnelle d’estimation statistique.

L’étude de la composition de réseaux pour l’estimation distribuée est proposée
pour des traveaux futurs.
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VI—Conclusion

Les réseaux de Markov distribués constituent une généralisation des châınes de
Markov à certains systèmes concurrents, les réseaux de Petri compacts. La dy-
namique de concurrence forte (true-concurrent) affaiblit la notion de temps global
totalement ordonné. On introduit une construction par increments partiellement
ordonnés pour une dynamique aléatoire de processus concurrents. Par comparaison
avec l’espace des processus d’une châıne de Markov, l’espace des processus concur-
rents d’un réseau n’est plus homogène par rapport aux translations dans le temps,
ce qui oblige à reformuler un certain nombre de notions classiques pour l’étude des
processus aléatoires, en particulier les temps d’arrêts, la propriété de Markov et
la Loi forte des grands nombres. On montre la propriété de Markov concurrente,
qui permet une étude de la récurrence des réseaux, et certains résultats ergodiques
aboutissant à la Loi forte des grands nombres. On étudie la calculabilité des objets
introduits, pour décrire une procédure opérationnelle d’estimation statistique.

Les méthodes introduites montrent que les outils analytiques permettent une
approche originale et efficace des modèles de concurrence que sont les réseaux de
Petri et les structures d’événements.
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Introduction

The present introduction in English summarises the above Introduction in French.

This document proposes a mathematical and algorithmic analysis of concurrency
models from Computer science: event structures and safe Petri nets. We describe
above our contributions and their context. Centred parts of the text underline the
description of new results.

I—Motivation and Context

Management of telecommunication networks is concerned by the development of
tools for the analysis of distributed and asynchronous systems. In telecommunica-
tion networks the global state of a system has little meaning due to the asynchronism
between the components of the system [6]. It is simply impossible to obtain a snap-
shot of the state of the system. Therefore the notion of global state of a system is
not an appropriate notion for studying distributed systems, and is advantageously
replaced by the notion of local state. Together with the notion of local state appears
a notion of concurrency of processes. The interest of system management for proba-
bilistic methods leads to study probabilistic extensions of models from Concurrency
theory.

The development of temporal logics and the study of languages for communi-
cating processes has encouraged the study of stochastic extensions of timed concur-
rency models like stochastic processes algebra [11, 40, 22]. Following the approach
of Larsen and Skou [29], security issues are studied with probabilistic tests. Obser-
vational properties of models are studied through bisimulation equivalence, related
to equivalence induced by probabilistic extensions of logics like PCTL [29, 5]. As an
other probabilistic model for concurrent systems, stochastic Petri nets extend the
queueing theory to networked systems, and are used, for instance, for performance
evaluation of systems [4, 2, 3, 30].

These probabilistic models are based on the classical analysis of random processes
with the form (Xt)t , where t is a discrete or continuous time parameter. Typical
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examples are given by Markovian processes such as Markov chains in discrete or con-
tinuous time. As a consequence, and for a networked system, this is like considering
that all the components of the network synchronise on a global clock.

However an asynchronous execution of concurrent processes does not fit well
this representation. If local events of concurrent processes are not causally related,
keeping a chronological relation between them is unnecessary. Distinguishing dis-
tinct interleavings of concurrent events leads to useless computational complexity
and should thus be avoided. On the contrary, identifying interleavings of concurrent
events leads to the true-concurrent semantics for the dynamics of concurrency mod-
els [33], recently used for network management in [6, 8]. This new notion of process
changes the representation of time, yielding a partially ordered global time. Hence
local clocks are substituted to the global clock, and as a consequence the global time
becomes partially ordered.

Very recently, probabilistic discrete-events models for the true concurrent dy-
namics of concurrency models has attracted interest [45, 7, 43]. This document
proposes a general construction for true-concurrent probabilistic processes and a
study of some of their properties. We establish asymptotic properties, in particular
recurrence properties and the Strong law of large numbers, in the true-concurrent
framework. We apply the results to the classical statistical problem of parametric
estimation, and we propose related algorithmic procedures.

We use tools from Mathematics and from Computer science. Analytical tools
come from Topology and Measure theory: metric spaces, projective systems of prob-
abilities. The models and their semantics, together with some algorithms, come from
Computer science: Petri nets, event structures and occurrence nets. This document
contributes to the analysis of concurrency models in two ways: We propose new tools
for a geometry on event structures, and we show that the analytical tools bring new
elements for the study of concurrency.

II—Acyclic Models: Partially Ordered Time and Randomisation.

We study the model of safe Petri nets under their true-concurrent dynamics. Using
the unfolding theory from Winskel [47, 33], the dynamics of a safe Petri net is
captured by the dynamics of an acyclic net that represents the set of phases of the
original Petri net. The acyclic net, called the unfolding of the Petri net, lies in
the category of occurrence nets. A more abstract representation, still acyclic and
equivalent from the dynamics point of view, is given by the event structure associated
with the unfolding.

Acyclic models, and in particular the unfoldings of safe Petri nets, present a nat-
ural framework for randomisation of true-concurrent processes. The set of maximal
processes is the adequate probability space to be considered. In this Introduction,
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we call this space the border at infinity of the set of processes, or simply the border
at infinity of the model. The probability for a finite process to occur is then given
by the probability of the shadow of the finite process, as depicted in Figure 2.
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Figure 2: The shadow of a finite process defines the probability for the process to
occur.

The introduction of this probability space is recent [45]. Authors have studied
the way to extend probabilities defined on finite sets to a probability on the border at
infinity (without this vocabulary) for some particular classes of safe Petri nets: ex-
tended free-choice Petri nets for Völzer [45], confusion-free nets for Varacca-Winskel-
Völzer [44], and the so-called “choice-compact” nets of Benveniste-Haar-Fabre [7].
Benveniste et al. underline in [7] that the analytical basis for extension of probabili-
ties in this framework is the extension of projective systems of probabilities, although
the details are somewhat neglected.

In this document, I show that the partial order of processes of an acyclic
model is given by a projective limit of finite sets, which induces a natural
topology on the set of processes3. This is the key for the study of the
border at infinity of the model. I show that the border at infinity can be
realised as the limit of a sub-projective system if and only if the border
at infinity is topologically closed in the set of processes, or equivalently if
the border at infinity is compact. The extension of probabilities is then a
consequence of Prokhorov’s extension Theorem (1930’s). The difference
between sequential and concurrent systems is that the unfolding of a
finite sequential system has always the compactness property, unlike finite
concurrent systems.

3One finds this topology on closed models in the literature: Lawson topology, topology on
traces [28, 27]. The definition as a projective topology has not been observed—although the met-
ric constructions proposed are equivalent to the construction of the projective topology for metric
spaces. Using the projective topology, compactness and separability of the space of processes follow
from classical results.
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I have replaced the notion of “stopping time for occurrence nets” of Ben-
veniste et al. [7] with the notion of intrinsic prefix, and I have introduced
the class of locally finite event structures, generalising the locally finite
trees. This study has taken benefit from the notion of dynamic conflict,
kindly indicated to me by D. Varacca and G. Winskel.

III—Probability and Concurrency

For locally finite event structures, the construction of a probability on the border
at infinity reduces to the construction of a projective system of probabilities on
finite sets. There is thus no fundamental difference in the extension process between
sequential and concurrent systems.

For a tree, i.e. for a sequential and acyclic system, the border at infinity is
the set of infinite paths of the tree. Constructing a probability on the border at
infinity is like driving a boat on the sea, that goes forward towards the horizon.
At each step, a random decision steers the boat to the left or to the right. In the
concurrent framework, there are now several boats that go forward, and that can
join by synchronisation or split to create new boats. Each boat has own probabilistic
parameters, and other parameters reflect the mutual influences. Paying particular
attention to probabilities that insures the probabilistic independence of concurrent
boats is natural. This is the intuition of Benveniste et al. (conditional independence
of layers), that agrees with Winskel’s maxim, according to which “parallelism is a
form of orthogonality” [50].

I have introduced probabilities with the above independence proper-
ties under the name of distributed probabilities. Geometric objects re-
lated to event structures are introduced in order to properly define dis-
tributed probabilities. Local sub-event structures, called branching cells,
are equipped with local probabilities, called branching probabilities. I
show the existence and the uniqueness under natural conditions, of a dis-
tributed probability constructed from a family of branching probabilities.
The construction of distributed probabilities describes an operation that
associates a distributed probability with a family of branching probabil-
ities. I call the operation the distributed product. The distributed prod-
uct generalises the product of conditional probabilities, with a particular
treatment for concurrency. When a system does not present concurrency,
the distributed character of probabilities becomes trivial. Hence, every
probability on an infinite product can be written as a distributed product.

This probabilistic model takes into account the concurrency of systems in an in-
trinsic manner, without using scheduler nor labelling as in asynchronous product of
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probabilistic automata [40]. To the extend of my knowledge, the distributed prod-
uct is the more general technique for randomising the dynamics of true-concurrent
processes without reference to a global real time.

The construction of the distributed product in event structures is based on a
decomposition of processes. The tools introduced with this decomposition constitute
the basic tools for a discrete geometry on event structures. For acyclic models, I call
geometric a property that concerns the elements of the model, by contrast with the
two other objects associated with the model, the topological partial order of processes
and the border at infinity. The general idea is to relate geometric properties of the
model to topological and measurable properties for the spaces of processes and of
maximal processes.

An iterative construction decomposes maximal processes. The decompo-
sition isolates local processes, called germs of a maximal process. Concur-
rent germs of a same process have the independence property. Although
the decomposition is not unique, due to the possible interleavings of
germs, the collection of germs of a maximal process is uniquely defined.
Germs are maximal processes of the branching cells, that are finite sub-
event structures.

Branching cells are dynamic: for instance a same event can belong to different
branching cells, according to the context in which the event is taken. It is thus
different from clusters (see for instance [19, 21]. A branching probability randomises
the germs of a branching cell. The distributed product associates the “horizontal”
independence of concurrent germs with an independence in the probabilistic sense.

IV—Concurrent and Memory-less Random Systems

The construction of distributed probabilities applies in particular to define a true-
concurrent randomisation for the dynamics of safe Petri nets. In order to obtain
Limit theorems in this framework, we need to propose a notion of probabilistic
memory-less dynamics for concurrent systems.

For this I have introduced a tool quite used in this work, the cone of futures
of a process in acyclic models. The cone of future of a process v contains the
possible events that can continue v. They form a sub-acyclic model, whose border
at infinity identifies with the shadow of process v. If the border at infinity of the
global acyclic model is equipped with a probability P the border at infinity of the
cone of v is then equipped with the conditional probability P( · | v). If two processes
v and v′ in the unfolding of a safe Petri net lead to the same marking of the net,
their cones are isomorphic as labelled occurrence nets, and this implies that the
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shadows are isomorphic as measurable spaces. I say that a probability is memory-
less, also called homogeneous, if this isomorphism of measurable spaces is actually an
isomorphism of probability spaces, so that conditional probabilities are invariant. I
show that a probability homogeneous and distributed is defined by a finite collection
of parameters, each one ranging in a subset of a vector space of finite dimension.

I say that a safe Petri net is compact if its unfolding is locally finite. A compact
net, which unfolding is equipped with a probability homogeneous and distributed on
the border at infinity is called a distributed Markov net. In this case the branching
probabilities are in finite number and correspond to the rows of the transition matrix
of a Markov chain. My aim is to show that distributed Markov nets constitute
a generalisation of finite Markov chains to concurrent systems. For this, I
show that several results well known for finite Markov chains extend to distributed
Markov nets.

A preliminary study reformulates and establishes the Strong Markov
property in the true-concurrent framework. The proof is self-contained,
and the result implies the usual Strong Markov property for Markov
chains. To sate the Markov property, I propose a generalisation of stop-
ping times classically studied with stochastic processes—also called op-
tional times, introduced by Doob—under the form of stopping operators.
Unlike stopping times of [7], stopping operators admit hitting operators,
corresponding to hitting times of Markov chains. The new formulation of
the Markov property is a work-around for the intrinsic difficulty with con-
current systems, that the space of processes is not invariant w.r.t. trans-
lations in the time space. The Markov property for concurrent systems
allows a study of recurrence of nets, in the same way than the recurrence
of finite Markov chains. I show the 0-1 alternative for a marking to be
recurrent or transient, and that recurrence is a conservative property.
Both results are inspired by Markov chains theory. I introduce an orig-
inal local recurrence for nets. Local and global recurrences match for
sequential systems, but not for concurrent systems.

Recurrence is a first example of an intrinsic property of nets expressed within
the analytical formalism. Roughly speaking, a recurrent net comes back in its initial
marking infinitely often with probability 1. Typically, a net may contains trajectories
that do not return infinitely often to the initial marking, although they are very rare
since all together they have probability zero. The analytical framework given by
Measure theory, and in a particular by Probability theory, is appropriate for dealing
with negligible sets, whereas a complete verification would fail to detect recurrent
nets. Recurrence also illustrates the following principle: properties concerning the
states of a Markov chain are translated into a global property in memory-less nets.
To obtain local results, we focus on distributed probabilities and take advantage
from their local independence properties.

Some ergodic results , inspired by results from dynamical systems theory,
are directly shown on the nets. With these results, I derive the Strong law
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of large numbers for nets from the study of an auxiliary Markov chain.
For the Strong law of large numbers to hold, and beside a recurrence
condition imposed on nets, I introduce a condition to control the “con-
currency range” of a net. A random variable, called concurrent height,
modelises the concurrency range of the net. Again, the analytical for-
malism is crucial: requiring the variable to be bounded is too restrictive,
whereas it is natural to impose that the concurrent height is integrable,
i.e. has finite mean.

The Strong law of large numbers brings the problem of the unit of time for
concurrent systems. The geometric tools introduced above (§ III), agree
with the usual convention that the unit of time for a sequential system
is the current event. The same holds for confusion-free concurrent sys-
tems [33], but not for more general concurrent systems. Branching cells
isolate a partially ordered family of decisions that we consider as atomic.
Hence we count branching cells to quantify the time elapsed along a
process. The Strong law of large numbers gives the limit of the ratio
between the number of occurrences of a local property in the net and the
quantity of concurrent time elapsed. I show that distributed probabilities
induce an asymptotic density of branching cells, that correspond to the
stationary measure of an ergodic Markov chain.

Obtaining the Central Limit Theorem in a way fully intrinsic to nets seems to be
possible using Martingale theory. Indications are given for the construction of par-
tially ordered martingales for distributed probabilities. The final result for a Central
Limit Theorem is not given in this document.

V—Algorithmic Methods

I study algorithms for computing some of the objects described above. Although
the objects that characterise distributed probabilities are finite, their computability
is not obvious. As an application, I propose a procedure for statistical parametric
estimation.

The main computability questions are: can we decide if a safe net is compact,
i.e. if its unfolding is locally finite? If the net is compact, can we compute the
branching cells of the unfolding? I partially reduce the problem to a reachability
problem. I give an algorithm that always ends and detects a class of non compact
nets.

The local recurrence study shows that distributed probabilities define
sequences of independent random variables from which the local prob-
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abilistic parameters of the system can be retrieved. The statistical es-
timators associated correspond to the empirical estimator for Markov
chains. Concurrency introduces however a specificity. Statistical data
from the model are partially ordered, whereas I consider that any opera-
tional treatment reaches a phase of sequential computations (for instance,
when data pass through channels and buffers). A non-deterministic (un-
known but non random) sequentialisation of a concurrent process is thus
introduced. I show that the effect of this variable is controlled by purely
random variables asymptotically negligible, whence an operational sta-
tistical procedure. The problem of composition of nets for distributed
estimation is proposed for a future work.

VI—Conclusion

Distributed Markov nets extend finite Markov chains to a class of concurrent systems,
compact Petri nets. The true-concurrent dynamics weakens the notion of a global
totally ordered time. As a consequence, the space of processes is not homogeneous
w.r.t. translations in the time space. A random dynamics is constructed for partially
ordered processes with partially ordered local increments. We define memory-less
systems, and we show that they satisfy a Strong Markov property within a true-
concurrent formulation. We apply the Markov property to the study of recurrent
nets. Ergodic results yield the Strong law of large numbers, formulated with a
concurrent unit of time. We study the computability of the objects introduced, and
we describe a statistical estimation procedure.

The techniques introduced show that analytical tools provide an efficient and
original approach for safe Petri nets and event structures.
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Chapter 1

Chapter 1

Preliminaries on Computational
Models

In this first chapter, we present the computational models that we will study.
Roughly speaking, there are two kinds of models: acyclic models, and finite ma-
chines.

A finite machine represents a “concrete device”, that we associate with an ab-
stract acyclic model, representing the “set of phases” of the machine. An execution
of the machine is then a trajectory in the acyclic model. For a sequential machine,
like an automaton or a transition system, it is well known that the acyclic system
is a tree, given by the covering of the graph of states and transitions of the system.
Finite executions of the machine match finite paths in the tree starting from the
root: we say that an execution is lifted into a path of the covering tree.

We study safe Petri nets as concurrency models. The concurrency of safe Petri
nets expresses through the equivalence relation called trace equivalence or interleav-
ing equivalence. The interleaving equivalence identifies two finite executions, seen
as sequences of transitions, where two transitions occurring concurrently can be ex-
changed. In other words, we say that ab = ba if transitions a and b are concurrent,
and we close the relation on sequences of playing transitions by transitivity. What
we call a process, or an execution of the system, or a trace, is an equivalence class of
sequences of transitions, modulo the trace equivalence. This dynamics is also called
the true-concurrent dynamics of the net, contrasting with the interleaving dynamics.
For the reasons exposed in the Introduction, we are interested in the true-concurrent
dynamics of nets.

It is remarkable that a representation of true-concurrent processes as “paths” of
an acyclic system holds for safe Petri nets in a way formally equivalent to sequential
systems. For a safe Petri net, the acyclic system analogous to the covering tree of a
transition system is called the unfolding of the net. The unfolding of a safe net lies
in the category of occurrence nets, and maps to the original net. True-concurrent
processes in the net are lifted into true-concurrent processes of the unfolding. For
this, a playing sequence of the net is first lifted into a playing sequence of the un-
folding. Modulo trace equivalence in the unfolding, the lifted process is a congruence
w.r.t. the trace equivalence in the net.
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The concurrent models that we present are of three kinds, very closely related one
with another. The safe and finite Petri nets constitute our finite concurrent machines.
Their unfoldings lie in the category of labelled occurrence nets, or foldings. Event
structures, and more precisely prime event structures, are an abstract model quasi
equivalent to the model of occurrence nets.

Our aim is not to explicitly set up the elements from category theory that can be
a basis for a presentation of concurrent models, although we insist on the relations
between the different models. The goal of the chapter is rather to collect the different
properties of models that will be used throughout the document, and to explain how
we can go from a model to an other.

Throughout the document, we will compare the results for concurrent systems
with results for sequential systems: trees and transition systems. It is thus important
to fix the notations and conventions that we will use for comparison. In particular,
we will set the sequential nets that we use to simulate sequential systems. We
also present the probabilistic framework associated with sequential systems, i.e. we
present the basic framework of finite Markov chains.

The chapter begins in Section I, Event structures, with the model of prime event
structures, which is the more abstract model, with the advantage of a simple formal-
ism. Section II, net models, presents a quick overview of trace theory for safe nets.
The unfolding theory is also shortly presented. The last Section, Sequential systems,
fixes all our conventions concerning sequential systems. We also recall the basis of
finite Markov chains theory, connected to simple probabilistic transition systems.

I—Event Structures

This Section recalls the basic definitions concerning event structures and their dy-
namics. We will only study prime event structures, thus we follow the classical
presentation (E ,�, #) ([33]). A presentation of general event structures is found
in [48]. We will say event structures for short, always meaning prime event struc-
tures.

I-1 Partial Orders and Lattices.

We recall first basic well-known notions on partial orders and lattices. See for
instance a presentation in [16].

I-1.1 Partial Orders. Let E be a set. A relation F on E is given by a subset
of E × E. We denote xF y for x, y ∈ E with (x, y) ∈ F . The inverse relation,
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denoted by F−1, is defined by:

xF−1 y ⇔ y F x .

The data (E,F ) is said to be a partial order if F is reflexive transitive and
satisfies:

∀x, y ∈ E , xF y & y F x⇒ x = y .

If (E,F ) is a partial order, a sequence (xn)n is said to be non decreasing if
xn F xm for all integers n ≤ m. A non decreasing sequence is also called a chain. The
sequence is said to be increasing if n < m⇒ xn F xm and xn 6= xm . The sequence
is said to be non increasing , respectively decreasing , if F −1 is non decreasing,
respectively increasing. A partial order (E,F ) is said to be well founded if there
is no infinite decreasing sequence.

A morphism of partial orders f : (E,F ) → (E ′, F ′) is a mapping f : E → E ′

such that:
∀x, y ∈ E , xF y ⇒ f(x)F ′ f(y) .

Let A be a subset of a partial order (E,F ). The restriction F |A = F ∩ (A ×A)
defines the partial order (A,F |A).

I-1.2 Maximal Elements. Let (E,F ) be a partial order. An element x ∈ E
is said to be maximal in E if:

∀y ∈ E , xF y ⇒ x = y .

x is said to be minimal if x is maximal in (E,F −1).
Let A be a subset of E. Let DA be the subset of upper bounds of A defined

by:
DA = {x ∈ E | ∀ y ∈ A : y F x} .

An element a ∈ E is said to be a least upper bound of A if a is a minimal element
of DA , in which case a is unique. If such an element exists, in particular DA is non
empty.

We recall Zorn’s Lemma, equivalent to the Axiom of choice, and that we will
apply on twice in this document (I-2.12 below, and Ch. 3, III-1.2).

I-1.3 Theorem. (Zorn’s Lemma, [13]) Let (E,F ) be a partial order. Assume
that for every chain A = {xi , i ∈ I} of elements of E, with I any totally ordered set,
admits an upper bound. Then E admits a maximal element.

I-1.4 Lattices. A partial order (E,F ) is said to be a semi upper lattice if
every finite subset A of E admits a least upper bound in A. The semi lattice is said
to be complete if every subset of E admits a least upper bound.

A partial order (E,F ) is said to be a lattice if (E,F ) and (E,F −1) are two
upper semi lattices.
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A typical example of lattice is given by the powerset of a set O. If E = P(O) is
the powerset of O, consisting of the subsets of O, (E,⊆) is a complete lattice. The
prefixes of a configuration in an event structure are an other example, see I-2.8.

I-2 Event Structures.

Without other precision, a family of subsets of a same set is ordered by the
inclusion ⊆.

I-2.1 Definition. An event structure is a triple (E ,�, #), where E is a set at
most countable, and �, # are two binary relations satisfying the following axioms:

1. (E ,�) is a partial order,

2. For every e ∈ E , the set {x ∈ E |x � e} is finite,

3. # is a symmetric and irreflexive relation on E ,

4. (Inherited conflict) For all x, y, e ∈ E , e#x and x � y ⇒ e# y.

The elements of E are called the events, � is the causality relation, # is the
conflict relation.

The point 2. is fundamental from a computational point of view, since it means
that an event in a computational execution has a finite number of ancestors. Remark
that it implies that (E ,�) is well founded.

I-2.2 The empty set with the empty relations is the empty event structure.

I-2.3 Graphical Representation of Event Structures. We represent event
structures as in Figure 1.1. Events are drawn with a bullet, the causality relation
is the transitive reflexive closure of the relation depicted by the oriented arcs. The
conflict relation is generated by arcs drawn like: • /o/o/o • , using the inherited
conflict property. In Figure 1.1, the conflict relation is given by:

# = {(a, b) , (a, c) , (a, d)} .

I-2.4 Relations. For (E ,�, #) an event structure, we set the following rela-
tions, where Id denotes the identity relation {(x, x) |x ∈ E} on E .

≺=� \ Id, �= (�)−1, �=� \ Id .

We define the concurrency relation ‖ by:

∀x, y ∈ E x ‖ y ⇔ ¬(x ≺ y) and ¬(x � y) and ¬(x# y).
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• d

•

OO

c

• /o/o/oa •

OO

b

Figure 1.1: Representation of event structures. Generators of the causality and of
the conflicts relations are drawn.

I-2.5 Extension of Relations to Sets. We extend the relations of conflict
and of concurrency to subsets of E as follows:

• Two subsets A,B are said to be concurrent, denoted by A ‖ B if a ‖ b for all
a ∈ A and for all b ∈ B.

• Two subsets A,B are said to be in conflict, denoted by A#B if there is a pair
(a, b) ∈ A×B such that a# b .

I-2.6 Sub-structures. Let A be a subset of an event structure E . A is an event
structure for the relations �A and #A, respectively defined as the restrictions to A
of � and # . We will only consider the event structure (A,�A, # A) for a subset
A ⊆ E .

I-2.7 Prefixes. A subset P of an event structure E is said to be a prefix if P
is �-closed (downwards closed), i.e. if P satisfies:

∀e ∈ P, ∀x ∈ E , x � e⇒ x ∈ P.

The lattice of finite prefixes of E is denoted by P0. Using Axiom 2. in I-2.1, every
event e belongs to a finite prefix, the prefix {x ∈ E |x � e} .

I-2.8 Configurations. A prefix v ⊆ E is said to be a configuration of E if no
two nodes of v are in conflict. We denote by W the set of configurations of E , and
by W0 the set of finite configurations. Both sets are ordered by inclusion, are stable
under any intersection, and have ∅ as unique minimal element.

The configurations included in a configuration w form a complete lattice, with
union as least upper bound. They are called the sub-configurations of w.

Since the conflict relation is irreflexive and inherited (I-2.1), the finite prefix
{x ∈ E |x � e} is a configuration of E for every e ∈ E . We denote it by [ e ]. Obviously,
[ e ] is the smallest configuration that contains e. We denote by [ e [ the configuration
[ e [ = [ e ] \ {e}. If we have to specify the event structure E , we use the notations
[ e ]E and [ e [E .



42 Chapter 1—Preliminaries on Computational Models

I-2.9 Interpretation of Configurations. A configuration is interpreted as
a process of a computational system. Events correspond to atomic actions of the
system. A process is causally consistent: in a process, the causal predecessors of any
event belong to the process, and the events of a same process do not exhibit any
conflict.

The notion of compatibility of processes is of great importance.

I-2.10 Compatibility. Two configurations v, v ′ are said to be compatible if
v ∪ v′ is a configuration. Any family of pairwise compatible configurations is the
family of sub-configurations of a configuration, the union of the family.

We say that an event e is compatible with a configuration v if [ e ] and v are
compatible in the above sense, i.e. if [ e ] ∪ v ∈ W.

I-2.11 Maximal Configurations. We denote by Ω the set of maximal ele-
ments of the partial order (W,⊆).

I-2.12 Lemma. For each v ∈ W, there is an element ω ∈ Ω such that ω ⊇ v.

Proof – Let W(v) denote the set of configurations that contain v. Then any chain
(vn)n∈I of Wv, where I is any totally ordered set, admits a least upper bound, that
is
⋃

n∈I vn . By Zorn’s Lemma (I-1.3), W(v) admits a maximal element, that is also
maximal in W. �

I-2.13 Configurations in a Prefix. Let P be a prefix of an event structure E .
We denote by WP and by ΩP respectively the set of configurations and the set of
maximal configurations of P , as a sub-event structure (I-2.6). A conflict-free prefix
of P is a conflict-free prefix of E , so we have an injection i :WP ↪→W. We will not
mention the use of i, and state: a subset v ⊆ P is a configuration of P if and only
if v is a configuration of E . In particular, for every v ∈ W and for every prefix P ,
v ∩ P ∈ WP .

I-2.14 The Domain of Configurations. The structure of a partial order W
deriving from an event structure E has been characterised in [47, 33]. We briefly recall the
result.

Let (W,v) be a partial order. An element p ∈ W is said to be complete prime if for
every subset X ⊆ E, if X admits a least upper bound a and if p v a, then there is an element
x ∈ X such that p v x. The partial order (W,v) is said to be prime algebraic if for every
element v ∈W , if we set:

Wv = { p v v | p is complete prime} ,

then Wv admits v as least upper bound. A first result is the following:

Say that an event structure E is elementary if the conflict relation is empty. Then
the partial order of configurations (W ,⊆) of an elementary event structure is a prime
algebraic complete lattice. Any prime algebraic complete lattice can be obtained this
way.
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E , e • an event structure, an event of E
W, w, v • the partial order of configurations of E , elements of

W
Ω, ω • the set of maximal elements of W, an element of Ω
P,P0 • the sets of prefixes and of finite prefixes of E
P • a prefix or a finite prefix of E
WP , ΩP • the set of configurations of prefix P , the set of

maximal configurations of P .
[ e ] = [ e ]E ,

[ e [ = [ e [E
• the smallest configuration

containing event e, and [ e ] \ e

Table 1.1: Basic Notations for Event Structures.

The characterisation of partial orders of configurationsW for general event structures is
treated in [33] using the condition of coherence from [31] as follows. Let (W,v) be a partial
order. A subset A ⊆W is pairwise consistent if any two of its elements have an upper bound
in W . (W,⊆) is said to be coherent if every pairwise consistent subset of W admits a least
upper bound. Then we have:

Let (E ,�, # ) be an event structure. Then the partial order W of configurations of
E is a prime algebraic coherent partial order. The complete primes of W are the
elements [ e ], with e ranging over E . Any prime algebraic coherent partial order can
be obtained by this way.

II—Net Models

This Section describes the net models used throughout this document. Our basic
objects are safe marked nets and their unfoldings. We present in II-1–II-2 the basis
concerning safe nets and their dynamics from the trace theory point of view. We
describe the model of occurrence nets in II-3. The unfolding theory, that relates safe
nets to occurrence nets, is the topic of II-4.

II-1 Petri Nets and Safe Petri Nets.

Before we focus on safe Petri nets and on occurrence nets, it is useful to state
the definition of nets in a slightly general way.

II-1.1 Definition. (Nets) Let P and T be two disjoint sets, both at most count-
able. Call P a set of places, and T a set of transitions. Let F be a relation on
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P ∪ T , called the flow relation. We assume that F connects places to transitions
and transitions to places, hence F is given as a subset F ⊆ (P × T ) ∪ (T × P ). We
assume further that no transition is isolated, i.e.:

∀t ∈ T , ∃b, b′ ∈ P : b F t, t F b′ .

We define a net as any triple N = (P, T, F ), with P, T, F as above.

An element of the disjoint union P tT is called a node of the net. For shortness
we write x ∈ N to designate a node of N .

Let e be a node of the net. We define the preset of e as the subset •e = {x ∈
P ∪ T |xF e}, and its postset by e• = {x ∈ P ∪ T | e F x}. The elements of the
preset and of the preset of a node e are all of the same sort, places or transitions,
which differs from the sort of node e.

Petri nets are graphically represented by circles for places and rectangles for
transitions, and arcs for the flow relation, as follows:
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We will now fix a net, and fill some places with tokens. The distribution of the
tokens is thought of as the state of the system. A dynamics is introduced by a
“rule of the game”, called the Petri net game, which allows to change the position
of tokens. This rule introduces concurrency in the dynamics.

II-1.2 Multisets Notation. It is convenient to use a multiset notation. A
multiset on set X is a mapping A : X → N. A subset A is represented by the
multiset given by its characteristic function 1A : X → N :

1A(x) = 1 , if x ∈ A , 1A(x) = 0 , if x /∈ A .

The addition and subtraction are defined on multisets as functions X → N, as well
as the order ≤.

II-1.3 Definition. (Markings, marked nets) Let M0 be a multiset of places of a
net N , call M0 a marking . We say that a place p is isolated w.r.t. the marking M0,
if:

p /∈M0 , and •p = ∅ .

We define a Petri net, or a marked net, as any tuple N = (P, T, F,M0), such that
no place of N is isolated w.r.t. M0 . We call M0 the initial marking of N .

Very often, we omit the relation F , and we write N = (P, T,M0) for a marked
net.
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II-1.4 Dynamics of Marked Nets (the Petri Net Game). Let N =
(P, T, F ) be a net, let M be a marking of N , and let t be a transition of N . We
say that t is a playing transition of N from marking M , or that N can play

transition t from M , if •t ⊆M . In this case, let M ′ be the marking given by:

M ′ = M − •t + t• .

We denote that N can play t from M , together with the fact that M ′ = M − •t+ t•,
by:

N : M →t M ′ .

If the net N is clear from the context, we shortly write: M →t M ′. The elements of
•t are seen as resources that are consumed to produce t•. The operation is illustrated
in Figure 1.2. A marking is represented with tokens, the marking at right is the result
of playing transition t from the marking at left.
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Figure 1.2: Playing transition t.

We say that a sequence of transitions r = (en)n∈I of N , indexed by a set with
the form I = {1, . . . , N} with N ∈ N, or by I = N , is a playing sequence of N
from M , if there is sequence of markings (Mn)n∈I such that we have, by setting
M0 = M :

∀n ≥ 1 Mn−1 →
en Mn .

In this case the sequence (Mn)n∈I is unique. If the playing sequence r if finite indexed
by I = {1, . . . , N}, we say that r leads from M to MN . We denote it by M →r MN .
If N is marked with initial marking M0, a marking M is said to be reachable if
there is a playing sequence r such that M0 →

r M . A great simplification is brought
as follows.

II-1.5 Definition. (Safe Petri nets) Let N be a marked net. N is said to be
safe, or contact-free, or 1-bounded, if for every reachable marking M of N ,
M ≤ 1.

Hence, for safe Petri nets, reachable markings identify with subsets of conditions,
and in particular the initial marking.
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II-2 True-Concurrent Dynamics of Safe Nets.

The trace dynamics on safe Petri nets is defined as follows [33, 39].

II-2.1 Definition. (Interleaving relation, traces) Let N be a safe marked net,
and let R denote the set of playing sequences of N . The interleaving relation,
denoted by ∼, is the smallest equivalence relation on R such that, for all transi-
tions e, f :

∀ r = (· · · , e , f , · · · ) ∈ R,
(
•e ∪ e•

)
∩
(
•f ∪ f •

)
= ∅ ⇒ r ∼ (· · · , f , e , · · · ) .

We denote by R the quotient set R = R
/

∼ . The equivalence class of a playing
sequence is called its trace modulo interleaving . We denote by R0 the image in
R of finite playing sequences, and we call the elements of R0 the finite traces of N .

The purpose of traces is to not distinguish between playing sequences, equivalent
modulo interleaving of concurrent transitions.

II-2.2 True-Concurrent Dynamics and True-Concurrent Randomisa-
tion. Studying the true-concurrent dynamics of safe marked nets means studying
its traces. Equivalently, a property on playing sequences is true-concurrent if it de-
pends only on the traces of the playing sequences. We will explain later how this
notion can be aused for a true-concurrent randomisation.

II-2.3 Marking Associated with a Finite Trace. Let (N ,M0) be a safe
marked net. The mapping which associates with a finite playing sequence r the
marking M such that M0 →

r M , is a ∼-congruence, and thus factorises through R0 .
We say that a finite trace s leads to M if M0 →

r M for any playing sequence r in
the class s, and we denote it by: M0 →

s M .

II-2.4 Example. In the net of Figure 1.3, at left, the playing sequences ab and
ba are equivalent since •a∩•b = ∅. The resulting marking after playing their common
trace is depicted at right.
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Figure 1.3: Transitions a and b are concurrent.
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II-2.5 Partial Order of Traces. For two finite traces s, s′, we define the rela-
tion s ⊆ s′ if and only if there are sequences r and r ′ belonging to the classes s and
s′ respectively, such that the sequence r is a prefix of r ′. Then (R0,⊆) is a partial
order, that extends to R as follows: for two traces r, s ∈ R, r ⊆ s if and only if there
are non-decreasing sequences rn and sn of finite playing sequences, such that

⋃

n rn

and
⋃

n sn belong to the classes r and s, and such that rn ⊆ sn for all n.
The unfolding theory (II-4) realises R as the partial order of configurations of

an event structure. In this representation, the relation ⊆ just defined is conjugated
to the inclusion relation on sets, and we will focus on this later model. The trace
semantics for safe Petri nets give the “physical” meaning—since a finite Petri net is
seen as a “physical” machine—of true-concurrent dynamics for more abstract objects
such as event structures.

II-3 Occurrence Nets.

Occurrence nets are acyclic net models. We recall the basic material concerning
occurrence nets: cuts, prefixes and configurations, and also the well-known relation
between occurrence nets and event structures [47, 33].

II-3.1 Definition. (Occurrence net) Let N = (B,E, F ) be a net, let X = B∪E
denote the set of nodes of N , and let ≺ and � denote respectively the transitive
and the reflexive transitive closure of F on X. Define the immediate conflict

relation #1 on transitions, and the conflict relation # on nodes by:

∀ e, e′ ∈ E , e#1 e′ iff e 6= e′, •e ∩ •e′ 6= ∅ ,

∀x, x′ ∈ X , x#x′ iff ∃ e � x,∃ e′ � x′ : e#1 e′ .

N is an occurrence net if the following axioms are satisfied.

1. (X,�) is partial order,

2. for every x ∈ X, {y ∈ X : y � x} is finite,

3. for every b ∈ B, |•b| ≤ 1,

4. # is irreflexive (no auto-conflict).

II-3.2 Terminology for Occurrence Nets. We adopt the usual convention
according to which transitions e ∈ E of an occurrence net are called events, and
places b ∈ B are called conditions. The relation � is called the causality relation.
We also set the following relations:

≺=� \ IdX , �= (�)−1, �=� \ IdX .

In Figure 1.4, examples of occurrence nets are depicted at right. Nets at left are
not occurrence nets.
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Figure 1.4: At left, non occurrence nets, at right, occurrence nets.

II-3.3 Concurrency and Concurrent Width. Define the concurrency re-
lation ‖ on X by:

‖= X ×X \
(
≺ ∪ � ∪#

)
.

We say that the occurrence net N has finite concurrent width if every ‖-clique of
X is finite. This is equivalent to say that every ‖-clique of conditions is finite, due
to Axiom 3.

II-3.4 Cuts. Initial Cut. Let N = (B,E, F ) be an occurrence net. A subset
of conditions A ⊆ B is said to be a cut if A is a ‖-clique, maximal in B. In that
case, A is also maximal in X = E ∪B.

The markings of Figure 1.4 at right indicate cuts of the occurrence nets.
We denote by c0 = Min� (N ) the set of minimal elements of N , w.r.t. the causal-

ity relation. Since we assume that no event of the net is isolated (II-1.1), the elements
of c0 are the conditions b such that •b = ∅. It follows from Axiom 2 in II-3.1 that the
causality relation is well founded. Therefore c0 is empty if and only if B is empty,
i.e. if N is the empty occurrence net. In all cases, c0 is a cut of N , which is called
the initial cut of N .

II-3.5 Open Subsets. Events of a Subset. Prefixes. Configurations.
Let A be subset of X, where X denotes the set of nodes of an occurrence net N .

We say that A is open if •e ⊆ A and e• ⊆ A for all events e of A.

We denote the set of events of A by
◦
A.
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A is said to be a prefix of N if:

• A is open,

• A contains the initial cut.

• A is downward closed, i.e.:

∀x ∈ A , {y ∈ X | y � x} ⊆ A .

We say that a subset v of N is a configuration of N if v is a conflict-free prefix
of N , i.e. a prefix with no two nodes in conflict, or equivalently, with no two events
in conflict. We insist that configurations contain the initial cut.

II-3.6 Relationship Occurrence Nets / Event structures. Let N =
(B,E, F ) be an occurrence net. Then E = (E,� |E ,#|E) is an event structure,
the canonic event structure of N . The concurrency relation in E coincides with the
restriction to E of ‖ defined in N .

There are natural isomorphisms of partial orders between the sets of prefixes,
of finite prefixes, of configurations, of finite configurations, of N on the one hand,
and of E on the other hand. The set of maximal configurations of N and of E are
one-to-one, and all these mappings between subsets of N and of E are given by

A 7→
◦
A = A ∩ E. The inverse mappings are given by the operation that maps a

subset A ⊆ E to the smallest open subset of N that contains A and the initial cut.

We mention that the converse operation, from event structures to occurrence nets,
is also possible ([47, 33]). If E is an event structure of finite concurrent width, the
occurrence net N that induces the event structure E , resulting from the construction
of [47, 33] is not of finite concurrent width in general since the initial cut obtained
may be infinite, but a slight modification of the construction changes the occurrence
net into an other one of finite concurrent width.

II-3.7 Notations. Due to the above isomorphisms, we keep the same notations
that we have adopted for event structures (Table 1.1, page 43): W and WP for the
configurations and the configurations of a prefix P , etc.

A fundamental tool for studying configurations of occurrence nets is the following
result, that relates cuts and configurations.

II-3.8 Proposition. The mapping γ : v 7→ γ(v) = Max� (v) is one-to-one
between the finite configurations of N and the cuts of N .



50 Chapter 1—Preliminaries on Computational Models

II-3.9 Petri Net Game in Occurrence Nets. Let U = (E,B, F ) be an
occurrence net. There is a natural marked net associated to U , that is N =
(E,B, F, c0), where c0 denotes the initial cut of U . If (e1, . . . , en) is a finite playing
sequence of U , then:

c0 + (e1 + e•

1) + · · ·+ (en + e•

n) ,

is a configuration of U . This association, from finite playing sequences to configura-
tions, extends to infinite playing sequences, and is a trace congruence.

II-3.10 Proposition. A marked occurrence net is safe. There is a natural
isomorphism of partial orders Φ between finite traces of playing sequences, and finite
configurations of the net. The marking associated with a trace s is given by γ

(
Φ(s)

)
.

The isomorphism of partial orders naturally extends from finite traces to traces.
The point is now that for any safe marked net N , there is an occurrence net U which
realises the traces of N as its own traces, i.e. as its own configurations. This is the
topic of the unfolding theory.

II-4 Unfolding Theory.

As we have pointed out in the Introduction of this chapter, the unfolding theory
is very closely related, at least formally, to the covering theory set up in various
categories—topological, smooth or Riemannian manifolds, graphs. As in these clas-
sical frameworks, the unfolding of a safe net is characterised by a universal property.
We thus need the notion of “covering”, i.e. a class of morphism. The appropriate
definition of morphism for Petri nets is due to G. Winskel. Since we are only inter-
ested in unfoldings for the moment, we consider only the foldings ([49]) among the
more general class of morphisms.

II-4.1 Definition. (Labelled occurrence nets. Foldings.) Let N = (P, T, F ) be
a safe net. A labelled occurrence net is a pair (U , ρ), where U = (B,E,G) is an
occurrence net, and ρ : U → N is a mapping that respects the sort of the nodes.
Hence we write ρ = β t η, with β : B → P and η : E → T . We assume moreover
that ρ satisfies the following property:

For each event e ∈ E, the restrictions β |•e
and β|e• are two one-to-one mappings

β|•e
: •e→ •

(
η(e)

)
and β|e• : e• →

(
η(e)

)•
.

Assume that M0 is an initial marking of N . Then (U , ρ) is said to be a folding

of (N ,M0) if ρ : U → N is a labelled occurrence net, and if moreover:

The restriction β|
Min�(U)

: Min� (U) → M0 is a bijection between the initial

markings of U and of N .
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II-4.2 Definition. (Morphisms of labelled occurrence nets and of foldings) Let
(U , ρ) and (U ′, ρ′) be two occurrence nets, labelled by the same safe net N . We say
that a mapping f : U → U ′ is a morphism of labelled occurrence nets if (U , f)
is an occurrence net labelled by U ′, and satisfying ρ′ ◦ f = ρ.

Assume that (U , ρ) and (U ′, ρ′) are foldings of (N ,M0). Then a mapping
f : U → U ′ is said to be a morphism of foldings if f is just a morphism of
labelled occurrence nets, and this implies that f |Min�(U)

: Min� (U) → Min� (U ′) is

a bijection.

II-4.3 Theorem. (Winskel) Let N be a safe marked net. There is a fold-
ing (U(N ), ρ) of N , called unfolding of N , satisfying the following universal
property: For any folding (V, f) of N , there is a unique morphism of foldings
g : V → U(N ), such that the following diagram commutes:

N U(N )

V

�ρ

@
@

@
@@I

f
p

p

p

p

p

p

p

p

p

p

6
∃!g

The unfolding U(N ) is unique, up to a unique isomorphism of foldings.

See [50, 18] for the construction of the unfolding.

II-4.4 Conservation of Trace Dynamics. The trace dynamics of the safe
net is the same than the trace dynamics of its unfolding. Recall first that the initial
markings M0 and c0 of the net and of its unfolding U(N ) are one-to-one.

For r = (ei)i a finite playing sequence of N , there is a unique lifting of r in N ,
that is a playing sequence r = (ei)i of U(N ), such that ρ(ei) = ei for all i: the lifted
sequence projects into the original sequence. Define v = Ψ(r) as the configuration
associated to r as in II-3.9. Then Ψ is a congruence w.r.t. the interleaving.

The quotient mapping Ψ has the following property.

II-4.5 Proposition. ([33], Prop. 6) Let N be a safe marked net, and let
(U(N ), ρ) be the unfolding of N . The mapping Ψ is an isomorphism of partial
orders, which maps the finite traces of N onto the finite configurations of U(N ).
For each finite trace r of N , leading in N to the marking M , if we set v = Ψ(r), we
have M = ρ

(
γ(v)

)
, and the restriction ρ|γ(v)

: γ(v)→M is a bijection.

This result says that finite traces of playing sequences in N are in bijection with
the finite traces of playing sequences in U(N ). And in an occurrence net, finite
traces identify with finite configurations. Figure 1.5, left, depicts an example of safe
marked net, with a prefix of the unfolding at right hand. In the representation of
the unfolding, conditions and events are labelled with the names of corresponding
places and transitions in the original net.
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Figure 1.5: A safe marked net and a prefix of its unfolding

II-4.6 Concurrent Width of Unfoldings. Assume that N is finite. It follows
from II-3.8 and II-4.5 that the concurrent width of U(N ) is finite. Indeed, any cut is
one-to-one with a marking of the net N , which is finite.

We will use later in this document the following Lemma.

II-4.7 Lemma. Let N be a safe marked net. Let K be the unfolding of N , and
let m : O → K be a morphism of labelled occurrence nets. Then m is injective.

Proof – It is enough to show that the restriction of m to conditions is injective.
Since a conflict in O induces a conflict in K, it is enough to show that the restriction
of m to configurations is injective. Let b, b′ be conditions of a configuration v ⊆ O
such that m(b) = m(b′). We may assume without generality that b′ ∈ K[ b ], since
otherwise the converse would hold: b′ ∈ K[ b′ ]. Hence there is a condition p ∈ γ([ b ])
such that p � b′. It implies that m(p) � m(b′) = m(b). On the other hand, since
p and b belong to the same cut γ(v) in O, we have p ‖ b and thus m(p) ‖ m(b). It
follows that m(p) = m(b). But m is injective on cuts, hence p = b. Now we have
b � b′, so there is a chain of conditions from b to b′, that transports through m into
a chain of conditions in K, from m(b) to m(b′) = m(b). Since K is acyclic, the chain
is trivial, which implies that b = b′. �

III—Sequential Systems

Throughout this document, and in particular for probabilistic issues, we will try to
generalise existing notions and results that are stated for sequential systems. We
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will in particular refer to the theory of finite Markov chains.
Historically, Markov used first the probabilistic processes that he introduced at

the beginning of the 20th Century to extend the range of application of the Weak
law of large numbers to more general processes than independent sequences of real
random variables. The study of discrete Markovian processes, and in particular of
finite Markov chains, has also been an early topic of researches1.

Markovian processes have become one of the most important probabilistic mod-
els, both in theoretical research and in practical applications of probabilities. In
particular, the dynamics of sequential computational models is usually extended to
a probabilistic dynamics based on finite Markov chains theory. Our goal is to provide
an extension of discrete Markovian processes to concurrent systems.

III-1 Finite Markov Chains.

III-1.1 Canonical Markov Chain. Let E a finite set of states, and let µ be
a probability measure on E, called starting or initial probability measure (we
refer to Ch. 2, I-2 for background on probability). Let P be a transition matrix
on E. By a transition matrix, we mean that P is a square matrix with elements Px,y

indexed by E ×E, and such that:

∀x, y ∈ E : Px,y ∈ [0, 1] , ∀x ∈ E :
∑

y∈E

Px,y = 1 .

The canonical Markov chain associated to the triple (E,P, µ) is defined as follows.
Let A denote the product space A = EN, and let Xn : A → E denote the canonical
projections for n ≥ 0. A is equipped with the product σ-algebra F , w.r.t. the
discrete σ-algebra on E. Equivalently, we write F = 〈X0, . . .〉, meaning that F
is the smallest σ-algebra on A that makes all the mappings Xn measurable. The
Kolmogorov extension theorem implies that there is a unique probability measure
Pµ on A, such that:

1. The law of X0 in E is µ.

2. For all x, y ∈ E and for all n ≥ 0, for all arrays (x0, . . . , xn−1) ∈ En−1, we
have:

Pµ

(
Xn+1 = y

∣
∣X0 = x0, . . . , Xn−1 = xn−1, Xn = x

)
= Px,y .

This is also read as follows: The chain starts with initial distribution µ, and then
recursively: given the present state x, the probability of jumping into state y does
not depend on the previous history, but only on the present state x; moreover this
probability is given by the entry (x, y) in the transition matrix. We say that the

1Markov and Kolmogorov have defined in the 1920’s Markovian processes on words, introducing
what is called today speech recognition.
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process (Xn)n is memory less, since at each instant, its probability distribution in
the future only depends on the present, and not on the past.

If the starting measure µ is a Dirac measure µ = δx0 , given by:

δx0(x) = 0 if x 6= x0 , δx0(x0) = 1 ,

we say that the Markov chain starts with initial state x0 . Indeed, we have
P(X0 = x0) = 1. We write Px0 = Pδx0

.

III-1.2 Dual Markov Chain. We introduce the notion of dual Markov chain,
that will be of practical useful use for studying probabilistic transition systems.

Let (Xn)n≥0 be a Markov chain on a finite set S, with transition matrix P ,
defined on the product space A = SN. We define the dual Markov chain by:

∀n ≥ 1 , Yn = (Xn−1, Xn) .

The interpretation is that (Yn)n≥1 is the sequence of actions of the chain. With the
point of view of a particle jumping from state to state, the chain Xn is the sequence
of states, and the sequence Yn is the set of jumps. Clearly, one defines the other.
We formalise this below.

Let A denote the set A = S × S, called set of actions. It is readily seen that
(Yn)n≥1 is a Markov chain on A. If µ is the starting measure of (Xn)n, the law of Y1

in A is called the dual starting measure, and is given by:

ν(x, y) = µ(x)Px,y .

The transition matrix Q of (Yn)n≥1 is called the dual transition matrix, and is
given by:

Q(x,y),(x′,y′) = 1{y=x′}Px′,y′ .

We set the following mappings, given by the projections on first and second
components of actions A = S × S:

∂−, ∂+ : A→ S .

Let A′ be the product space A′ = AN. There is an injection k : A′ → A,
k(a1 , a2 , . . .) = (∂−(a1), ∂−(a2), . . .), that satisfies the following property.

III-1.3 Proposition. Let Pµ be the probability measure on A = SN associated
with the Markov chain (Xn)n≥0 on S, with starting measure µ on S and transition
matrix P . Let Qν be the probability measure on A′ = AN, with A = S×S, associated
with the dual starting measure on A and the dual transition matrix on A. Then:

(A, Pµ)→ (A′, Qν) (Xn)n≥0 7→ (Yn)n≥1 , Yn = (Xn−1, Xn) ∀n ≥ 1 ,

is an isomorphism of probability spaces.
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III-2 Probabilistic Transition Systems.

III-2.1 Basic Definitions. Let (E,A) be a finite oriented graph with E a set
of nodes, and with set of arrows a family A of pairs (x, y) ∈ E × E. We denote by
(∂−, ∂+) : A→ E ×E the natural mappings that indicate the initial and final nodes
of arrows. We say that E is the space of states, and that A is the space of actions
or of transitions, and we consider an initial state s0. We define the triple (E,A, s0)
as a transition system.

For each state x, let Dx be the set of states y connected from x by an action
x, y) ∈ A, and let µx be a probability measure on Dx. Implicitly, we assume thus
that Dx is non empty. We say that (E,A, s0, (µx)x∈E) is a probabilistic transition

system. Its dynamics is described by the trajectories of a particle starting from x0 =
s0 at time n = 0. At instant n ≥ 0, the particle jumps from its current state xn to a
state xn+1 according to the result of a coin, that has µx as probability distribution
on Dx. Hence the particle follows the arrows in the graph, taking at each node a
decision that is random, and independent of the previous decisions. Probabilistic
transition systems are represented as in Figure 1.6 as a graph with weighted arcs.
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Figure 1.6: A probabilistic transition system with three states. States are depicted
by circles, and actions by arrows. An arrow is equivalent to the pair of its initial and
final states. The initial state is filled with a token.

A special symbol ∆ can be added to E, to carry the cases where no further
decision can be taken, i.e. if Dx = ∅.

III-2.2 Markov Chain of a Probabilistic Transition System. Let
(E,A, x0 , (µx)x∈S) be a probabilistic transition system. The successive states Xn

of the particle form a Markov chain on E starting from x0 . The transition matrix
P on E ×E is given by Px,y = µx(y) if (x, y) is an arrow of the graph, Px,y = 0 oth-
erwise. It is like adding arrows, but with probabilistic weight zero. We call (Xn)n≥0

the canonical Markov chain associated with the probabilistic transition system.

III-2.3 Dual Transition System. If (Xn)n≥0 is the Markov chain that de-
scribes the states of a probabilistic transition system, the dual chain (Yn)n≥1 de-
scribes the transitions of the system. Figure 1.7 depicts the dual transition system
of Figure 1.6.
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Figure 1.7: Dual transition system of transition system depicted in Figure 1.6. Each
state • of the dual transition system is an arrow of the original system.

III-3 Sequential Net Associated with a Transition System.

We fix the rule that we use to associate a safe Petri net to a transition system.
Let (E,A, x0) be a transition system. We simply consider the net (E,A, F, x0), with
same places than states in E, with set of transitions the set of actions A. The flow
relation F is defined by (Cf. Figure 1.8):

∀x ∈ E, ∀a ∈ A, ∂−(a) = x⇒ xFa ,

∀x ∈ E, ∀a ∈ A, ∂+(a) = x⇒ aFx .

Hence, for each arrow x → y in the transition system, we put a transition t with
x → t → y, and that satisfies: •t = x and t• = y. Each reachable marking has
a unique element (carries a unique token), and in particular the net is safe. A
playing sequence (rn)n in the net determines a unique sequence of transitions in the
transition system, and we have observed that this determines a unique sequence of
states (Xn)n , with X0 = x0 . The sequence of states corresponds to the successively
reached markings in the net. This association is one-to-one.
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Figure 1.8: From a transition system to the sequential net.

III-4 Trees and Probabilistic Trees.

Trees are the acyclic model associated with sequential systems. We define trees
in two ways: as graphs, and as event structures ([48]). We only consider oriented
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trees.

III-4.1 Trees as Graphs. Let T be a set of vertices, an oriented arrow is a
pair (x, y) ∈ T ×T . An oriented graph is a pair (T,G), where G is a set of oriented
arrows on a set of vertices T . Let ≤ denote the reflexive transitive closure of G. We
say that (T,G) is a tree if the following conditions hold:

1. If T is non empty, ≤ admits a unique minimal element, called the root of the
tree.

2. (T,≤) is a partial order.

3. ∀x, y, z ∈ T , xGz & yGz ⇒ x = y .

III-4.2 Trees of Events. We can also follow Winskel in [48] for the definition
of trees, and define a tree of events as an event structure (T ,�, #) satisfying this
property: For all pairs (v, v′) of configurations of T , if v and v′ are compatible then
v and v′ are comparable. That is:

∀v, v′ ∈ W , v ∪ v′ ∈ W ⇒ v ⊆ v′ or v′ ⊆ v , (1.1)

where W denotes the set of configurations of T . It follows that every configuration
of T is a totally ordered subset of (T ,�). We describe below the relation between
the two models of trees (see also Figure 1.9).

Let G be the binary relation on a tree of events T , that connects any event to
its immediate successors. Then G satisfies the points 2 and 3 of III-4.1, but does not
satisfy point 1: T has several minimal events in general. There is a slight difference:
a tree of events T is a disjoint union of trees in the above sense, each pair of distinct
roots being in conflict. The roots of the different trees that compose T are called
the roots of T . Every configuration of (T ,�, #) is a path of (T , G), that can be
empty, and that contains exactly one of the roots if non-empty.

Conversely, let (T,G) be a tree, we define a tree of events associated with (T,G).
We define the causality relation � on T as the reflexive and transitive closure of G.
The conflict relation # is defined on T as the smallest conflict relation on T that
contains the pairs of distinct roots, and such that:

∀x, y, z ∈ T, xGy & xGz =⇒ y # z or y = z .

For simplicity, we assume that the tree is everywhere infinite: every x ∈ T has
a successor by G. Then the maximal configurations of (T,�, #) as a tree of events
match the infinite paths of (T,G) as a tree.

III-4.3 Covering of a Transition System. Let (S,A, x0) be a transition sys-
tem (we assume that all nodes have successors). We define a tree (T,G) by setting:

T = {(x0, . . . , xn), n ≥ 0 | (x0, . . . , xn)G(x0, . . . , xn, y)⇔ (xn, y) ∈ A} .
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Figure 1.9: From a tree as graph to a tree of events.

The covering of a transition system is illustrated by Figure 1.10. Let p : T → S be
the mapping defined by p : (x0, . . . , xn) 7→ xn . Then the pair (T, p) is the universal
covering of the graph (S,A), starting from x0 , which means the following:

For every finite sequence of states (xi)i in the transition system, there is a
unique path (ei)i in the tree, starting from the root and with p(ei) = xi for
all i . The path (ei)i is the lifting of (xi)i .
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Figure 1.10: Covering of a transition system.

III-4.4 Probabilistic Covering. Assume moreover that (µx)x∈S is a family of
probabilities that makes (S,A, x0 , (µx)x) a probabilistic transition system. Let K
denote the set of infinite paths in the tree (T,G), and let A denote the product space
A = SN . There is an injection k : K ↪→ A. The space K has Px0 probability 1 inA. It
implies that the injection k admits an inverse mapping Px0-a.s defined, k−1 : A → K.
Equipped with the probability k−1Px0 , K is isomorphic as a probability space to
(A,F , Px0).

Probabilistic transition systems belong to the class of sub-shifts of finite types,
a model studied in dynamical systems theory ([42]).

III-4.5 Unfolding of a Sequential Net. Let N = (S,A, F, x0) be the safe
marked net associated with the transition system (S,A, x0). Let (U , ρ) be the un-
folding of N . Let H denote the set of conditions of U . Then H, equipped with the
graph structure induced by causality, and with the mapping ρ|H : H → S, is the
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covering of the transition system S. In particular the initial cut of U has a unique
condition, labelled with the initial state x0. The cuts of the unfolding are given by
any unique condition b ∈ U .

The underlying event structure T of U is a tree of events (III-4.2). Let ai = ρ(ri)
be the label of the root ri of Ti, with T = T1 t . . . t Tn the decomposition of T as
a disjoint union of trees with a unique root. Then ai ranges over the set ∂−1

− (x0) .
Each Ti is the covering of the dual transition system of S, starting from different
roots ri . That is, the transition system with set of states A, and with arrows the
pairs (a, b) ∈ A×A such that ∂+(a) = ∂−(b).

III-4.6 Probabilistic Unfolding. The set Ω of maximal configurations of T
is one-to-one with the infinite paths in the covering H. Using III-4.4, Ω can thus
be equipped with a probability that makes it isomorphic as a probability space to
(A,F , Px0), and we write (Ω,F , P) to denote it.

This isomorphism, together with the isomorphism between a chain and its dual
chain of III-1.3, allows to consider that the Markov chains (Xn)n≥0 and (Yn)n≥1 are
defined on the space (Ω,F , P). They respectively give the successive markings and
transitions of an execution of N , and we have the equality of σ-algebras:

∀n ≥ 1 , 〈X0 , . . . , Xn〉 = 〈Y1, . . . Yn〉 . (1.2)

III-5 More General Transition Systems.

The model that we consider is simpler than probabilistic transition systems usu-
ally encountered in the literature. These models often consider that the set A of
actions is not given as a set of arrows. Each action determines an arrow, but the
mapping (∂−, ∂+) : A → E × E is not injective. Hence different actions can induce
the same move of the particle in the transition system.

This 2-step semantics is intended for instance to set up synchronous products
of transition systems, with application to the definition of grammars of processes
for process algebra [22, 41]. If the choice of action an is random, depending only
on the current state Xn , then the sequence (Xn, an)n≥0 is a finite Markov chain,
thus we are back to our simplified model. Asynchronous products of automata also
consider non deterministic actions, in the sense: non determined, but non random.
Nevertheless, the random part of the dynamics is always based on the model of finite
Markov chains.

This justifies that we only use simple probabilistic transition systems as typical
examples of sequential systems, since they can simulate any finite Markov chain.
Adding labelling on nets for studying the probabilistic bisimulation of nets is an
other step, not treated in this document.
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Chapter 2

Chapter 2

Topological
Event Structures

Although we are interested in discrete models with discrete events, these models
generate—in general—a non countable set of processes. Concepts and tools from
mathematics are thus required to analyse the set of processes, in particular from
topology and measure theory. We focus in this chapter on the topological properties
of processes, measurability properties will follow.

Event structures are an acyclic model for concurrent systems, where processes
are described by configurations. Among all configurations of an event structure,
we pay particular attention to the set of maximal configurations. This space is the
natural support for probability measures. Hence we are interested in the topological
properties of the set of maximal processes, call it Ω, and not really of the set of all
processes, let us call it W. However, the topology on W is the key for studying the
topology on Ω. It appears that W naturally identifies with the projective limit of a
projective systems of finite sets. We equip thus W with the topology inherited from
the projective limit. This topology brings us into the familiar framework of compact
metric spaces.

We have in mind the application to Ω of the Prokhorov extension theorem, that
extends projective systems of probability measures. For this, we need to identify Ω
with a projective limit. We define first from Ω a natural projective system of finite
sets. Then we show that Ω identifies with the projective limit if and only if Ω is
compact, i.e. closed in W.

Can we see the compactness of Ω in the event structure? We give a geometric
condition, i.e. a condition that concerns the event structure, insuring compactness:
We introduce intrinsic prefixes, and the condition is that every event belongs to
a finite intrinsic prefix. We also underline the computational interest of intrinsic
prefixes: their own dynamics simulates the local dynamics of the event structure,
which is not the case in general for arbitrary prefixes.

In particular, locally finite event structures are shown to satisfy this condition.
I have studied the class of locally finite event structures to improve the study based
on stopping times for occurrence nets of Benveniste et al. in [7]. The study has taken
benefit from the definition of the dynamic conflict relation, kindly communicated to
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me by D. Varacca and G. Winskel.
In Section I, Background on Projective Systems, we recall some notions from

topology and measure theory, in order to present the theory of product spaces and
projective limits. We also recall the vocabulary from probability theory: random
variables, probability law, etc. We present the extension theorem that we will apply
for projective systems of probability measures, a version of the Prokhorov theorem
from Bourbaki. In Section II, Defining topologies for event structures, we successively
define and study topologies on W, the partial order of configurations, and on Ω, the
set of maximal configurations—the boundary at infinity. We also introduce associ-
ated projective systems. The main result is the condition for Ω to be homeomorphic
to a projective limit, the compactness of Ω. We apply this result with the Prokhorov
extension theorem in Section III, Extension of probability measures. We introduce
the intrinsic prefixes, and we show the compactness of Ω under the condition that
finite intrinsic prefixes cover the whole event structure. We apply this result to
stopping prefixes and to locally finite event structures, and we state the extension
theorem for locally finite event structures.

Some remaining open questions are the topic of a discussion in IV.



I——Background on Projective Systems 63

I—Background on Projective Systems

We recall some notions from topology, in particular concerning products and pro-
jective limits. We introduce the basis of vocabulary from probability theory, and we
give a version of the Prokhorov extension theorem from Bourbaki.

I-1 Basic Notations.

We denote by N the set of integers, and we use N to denote N∪{∞}. We denote
by R the set of real numbers.

If X is a set, we identify an element x ∈ X and the singleton {x}.

I-2 Topology and Probability.

I-2.1 Topological Spaces and Metric Spaces. A topological space is a pair
(E, τ), where E is a set and τ is a collection of subsets of E, called the collection
of open sets of E, such that: τ contains E and the empty set, τ is stable under any
union and under finite intersection. Any complement cU of U in E is by definition a
closed subset of E. If τ ′ is an other topology on E such that τ ′ ⊆ τ , then τ ′ is said
to be weaker than τ .

The space (E, τ) is said to be Hausdorff if for every disjoint elements x, y of E,
there are disjoint open sets U, V such that x ∈ U and y ∈ V . The closure F of
a subset F ⊆ E is the smallest closed subset that contains F . F is dense in E if
F = E. E is said to be separable if there is a subset F ⊆ E at most countable and
dense in E.

For any subset F ⊆ E, we denote by τ |F the restriction of τ to F , the topology
on F given by the collection of sets U ∩ F , where U ranges over τ .

A sequence (xn)n≥1 in a topological space (E, τ) is said to be convergent to an
element x ∈ E if:

∀U ∈ τ , x ∈ U , ∃N ≥ 1 : n ≥ N ⇒ xn ∈ U ,

and the limit is unique if the space is Hausdorff.
If E is a set, a non-negative and symmetric function d : E × E → R is a metric

if for every pair (x, y) of elements of E: d(x, y) = 0⇒ x = y, and if for every triple
(x, y, z), the triangular inequality is satisfied: d(x, z) ≤ d(x, y) + d(y, z) . The pair
(E, d) is said to be a metric space. We denote by B(x, r) the open ball of centre x
and of radius r. An open set of (E, d) is defined as any subset U ⊆ E such that:

∀x ∈ U , ∃ r > 0 : B(x, r) ⊆ U ,

and then the collection of open sets defines a topology on E.
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A subset A ⊆ E of a metric space (E, d) is said to be compact if every sequence
of A admits a subsequence that converges in A. Compactness is intrinsic: a subset
A ⊆ E is compact as a subset of E if and only if A is compact w.r.t. the induced
topology on (A, d|A). A closed subset of a compact metric space is compact.

I-2.2 Measurable Spaces and Random Variables. A σ-algebra F of a set
E is a collection of subsets of E, containing ∅, and stable under: complement in E,
countable union, and countable intersection. The pair (E,F) is said to be a measur-
able space. The elements of F are called the measurable subsets of (E,F), or of E
for short. A mapping X : E → Y between two measurable sets (E,F) and (Y,G) is
said to be measurable if for every measurable subset A ⊆ Y , X−1(A) is measurable
in E. X is also called a random variable. We denote by 〈X〉 the σ-algebra generated
by X, defined by:

〈X〉 = {X−1(A), A ∈ G} .

I-2.3 Borel σ-Algebra. If (X, τ) is a topological space, the Borel σ-algebra
is defined as the smallest σ-algebra that contains the open subsets of X. The σ-
algebras that we consider in this document are always given by Borel σ-algebras on
topological space. For example, the set R is equipped with its Borel σ-algebra.

I-2.4 Probability Space and Probability Law (Image Probability). Let
(Ω,F) be a measurable space. A probability measure, or a probability on (Ω,F) is
a set function P : F → [0, 1], satisfying P(Ω) = 1, and such that for every sequence
(Bn)n≥0 of disjoint measurable spaces:

P
(⋃

n≥0

Bn

)

=

∞∑

n=0

P(Bn) .

Let f : Ω → E be a random variable, i.e. a measurable mapping with values in
a measurable space (E,G). The probability law of f in E, or the law of f in E,
or the image of P under f , is the probability measure on F , denoted by fP, and
defined by:

∀A ∈ G , fP(A) = P
(
f−1(A)

)
.

This action is indeed a left action, i.e. we have whenever the composition is well
defined:

(f ◦ g)P = f(gP) .

Let X : Ω → E be a random variable. Let P be a probability on Ω, and let PX

be the law of X in E (PX is a probability on E). Then we have the transfer formula,
for every non-negative measurable function h : E → R :

∫

Ω
h(X) dP =

∫

E
h(x) dPX(x) .
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I-2.5 Finite Probability Spaces. If Ω is finite, and unless otherwise specified,
we consider the discrete σ-algebra F given by the powerset of Ω. A probability P is
then an additive set function on the algebra of sets F . Any function f : Ω→ R such
that:

∀x ∈ Ω , f(x) ∈ [0, 1] ,
∑

x∈Ω

f(x) = 1 ,

determines a unique probability such that P({x}) = f(x) for all x ∈ Ω. P is given
by: P(A) =

∑

x∈A f(x).

I-2.6 Notation of Subsets from Probability. We will not use the word event
for measurable subsets of probability spaces, to avoid confusion with the events from
event structures. However we will keep the usual notation that makes us write {φ}
to denote the set of elements ω ∈ Ω that satisfy the property φ(ω). For instance, if
T : Ω→ N is an integer random variable, we write:

{T = n} = {ω ∈ Ω |T (ω) = n} ,

P(T = n) = P
(
{ω ∈ Ω |T (ω) = n}

)
.

I-2.7 Properties Almost Sure (a.s). Let (Ω,F , P) be a probability space.
We say that a property Φ( · ) that depends on ω ∈ Ω, is true P almost surely ,
abbreviated in P-a.s, if there is a measurable subset A ⊆ Ω with P(A) = 0, such
that Φ(ω) is true for all ω /∈ A. In other words1, Φ is true P-a.s if Φ holds with
probability 1.

For example, we say: X = Y P-a.s, for X and Y two random variables, if
{X = Y } has probability 1. We say that a sequence of random variables (Xn)n≥1

converges P-a.s if
(
Xn(ω)

)

n≥1
is P-a.s a convergent sequence.

Some more notions from Probability are introduced in Ch. 4, Section I.

I-3 Product Spaces.

I-3.1 Topology Generated by a Collection of Mappings. Let (E, τ) be a
topological space. A basis of open sets of τ is a sub-collection τ ′ ⊆ τ , such that for
every U ∈ τ there is a non empty V ∈ τ ′ with V ⊆ U .

Let E be a set, let I be an at most countable set of indices, and let (Ei, τi)i∈I

be a collection of topological spaces. For every i ∈ I, let πi : E → Ei be a mapping.
There is a weakest topology τ on E that makes all the mappings πi continuous. A
basis of τ is given by the collection of subsets with the form ([12]):

⋂

j∈J

π−1
j (Aj) , (2.1)

1For simplicity, we will assume without more details that the σ-algebra F is complete, i.e. contains
all subsets contained in measurable sets of probability 0.
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where J is a finite subset of I, and Aj is an open subset of Ej for every j ∈ J . We
denote this topology by τ = 〈πi, i ∈ I〉 . This construction applies to the product
spaces as follows.

I-3.2 Topological Product Spaces. Let (Ei, τi)i∈I be as above an at most
countable collection of topological spaces. Let E be the product set of the family
(Ei, τi)i∈I , and let πi : E → Ei be the collection of projections. We define the
product topology ([12],[38]) by τ = 〈πi, i ∈ I〉 . It follows from (2.1) that a basis of
open sets of (E, τ) is given by the collection of elementary cylinders:

U =
∏

i∈I

Ai , (2.2)

where Ai is an open subset of Ei for every i ∈ I, and Ai = Ei for all but a finite
number of i. If we have a basis of open sets for Ei, we can choose the sets Ai 6= Ei

in this basis.
Let Fi be the Borel σ-algebra of τi for every i ∈ I, and let F be the Borel σ-

algebra associated to τ . Then F is the smallest σ-algebra that contains 〈τi〉 for every
i ∈ I, and F is generated by the subsets with the form (2.2), with Ai measurable for
all i ∈ I, and Ai = Ei for all but a finite number of i. Such subsets of E are called
the elementary measurable cylinders of E.

The two following results are well known.

I-3.3 Proposition. Assume that (Ei)i∈I is an at most countable collection of
topological spaces, and let E denote the product space. If all Ei are Hausdorff, then
E is Hausdorff. If all Ei are separable metric, then E is separable metric.

We will only use the countable version of the Tychonoff theorem.

I-3.4 Theorem. ([38],[9]) A countable product of compact spaces is compact
in the product topology.

I-4 Projective Systems.

I-4.1 Projective Systems. Let I be a partially ordered set of indices. We
denote by ∆ the set of pairs (i, j) ∈ I × I such that i � j. Let (Ei)i∈I be a family
of sets. Assume that, for every pair (i, j) ∈ ∆, a mapping πi,j : Ej → Ei is defined.
We say that the family (πi,j)(i,j)∈∆ is a filtration of (Ei)i∈I , and we say that (Ei)i∈I

is a projective system w.r.t. the filtration (πi,j)(i,j)∈∆, if the two following conditions
are satisfied ([9]):

1. ∀ i ∈ I: πi,i = IdEi
,

2. ∀i, j, k ∈ I , i � j � k ⇒ πi,k = πi,j ◦ πj,k .
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I-4.2 Projective Limit. Let E be the product of the family (Ei)i∈I . The
projective limit of the projective system (Ei)i∈I , w.r.t. the filtration (πi,j)(i,j)∈∆, is
defined as the subset of E given by:

F = {(xi)i∈I ∈ E | ∀i, j ∈ I , i � j ⇒ xi = πi,j(xj)} . (2.3)

The projective limit is denoted by F =
(
Ei

)

←−−
i∈I . We still write πi instead of πi|F

to denote the restrictions to F of the projections πi.

I-4.3 Topological and Measurable Projective Systems. We say that the
filtration is topological (respectively, measurable), and that the projective system
is topological (respectively, measurable), if all Ei are equipped with a topology (re-
spectively, a σ-algebra), such that all mappings πi,j are continuous (respectively,
measurable) for all pairs (i, j) of ∆. For a topological projective system, we will
then equip F with the restriction of the product topology. This topology is called
the projective topology . The form (2.3) implies that F =

(
Ei

)

←−−
i∈I is a closed subset

of the product, as an intersection of closed subsets. A basis of open sets of F is given
by the collection of subsets U with the form:

U = F ∩
∏

i∈I

Ai ,

the trace in F of an elementary open cylinder.
Remark that, if I is equipped with the trivial partial order �= IdI×I , then

(
Ei

)

←−−
i∈I coincides with the product space

∏

i∈I Ei .

I-4.4 Cofinal Sequences. We say that a sequence (in)n≥0 is cofinal in the
partial order (I,�) if (in)n≥0 is non-decreasing (n ≤ m⇒ in � im), and if for every
i ∈ I, there is an integer n such that i � in .

I-4.5 Lemma. Let (in)n≥1 be a sequence of indices cofinal in I, and let
(Ei , πi,j) be a projective system indexed by I. Then there is a homeomorphism:

(
Ei

)

←−−
i∈I → (Ein)

←−−−
n≥1 , (zi)i∈I 7→ (zin)n≥1 .

I-5 Projective Systems of Probability Measures.

Let (Ei,Fi)i∈I be a measurable projective system of measurable spaces, w.r.t.
a filtration (πi,j)i�j . We assume that each σ-algebra Fi is the Borel σ-algebra of
a topology on Ei . The projective σ-algebra

(
Fi

)

←−−
i∈I is the Borel σ-algebra of the

projective topology.
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I-5.1 Definition. (Projective systems of probabilities) Let (Ei,Fi)i∈I be a mea-
surable projective system of measurable spaces, w.r.t. a filtration (πi,j)i�j . We say
that a family (Pi)i∈I , with Pi a probability measure on (Ei,Fi), is a projective

system of probability measures, if the following holds:

∀i, j ∈ I , i � j ⇒ Pi = πi,jPj , (2.4)

where πi,jPj denotes the image of Pj in Ei under the measurable mapping πi,j :
Ej → Ei (I-2.4).

I-5.2 Projective System of Probabilities Coming from a Probability on
the Projective Limit. With the previous notations, assume that P is a probability
measure on

(
Ei

)

←−−
i∈I , equipped with the projective σ-algebra. Define Pi = πiP for

all i ∈ I. Then (Pi)i∈I is a projective system of probabilities on (Ei, πi,j), naturally
associated with P. The converse operation, from projective systems of probabilities
to probability on the projective limit, is the topic of an Extension theorem. Classical
references describe the Prokhorov condition for the existence of projective limit of
probability measures. In particular, the following statement holds ([9], Th. 2 p. 53).

I-5.3 Theorem. Let (Ei,Fi, πi,j) be a measurable projective system indexed
by a partial order I that admits a cofinal sequence. We assume that Fi is the Borel
σ-algebra of a Hausdorff topological space. Let (Pi)i∈I be a projective system of
probability measures. Then there is a unique probability P on

(
Ei

)

←−−
i∈I such that

Pi = πiP for all i ∈ I.

II—Defining Topologies for Event Structures

We show that natural projective systems are associated with event structures. The
projective formalism brings us to the definition of topologies on the set of configu-
rations, and on the set of maximal configurations of an event structure. Although
probabilistic constructions are concerned with the set of maximal configurations,
the topology on the set of configurations is the key of our study. This way, we
also re-obtain results concerning the relationship between the Scott and the Lawson
topology on the domain of configurations.

The contribution of this section consists in the application of the projective for-
malism to the study of the compactness of the set of maximal configurations—that
can be seen as the border at infinity of an acyclic concurrent model.
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II-1 Definition of Mappings.

We recall that P and P0 denote respectively the complete lattice of prefixes,
and the lattice of finite prefixes of an event structure E . W denotes the set of
configurations of E , and for P ∈ P, WP denotes the set of configurations of P , that
coincides with the set of configurations of E included in P .

II-1.1 Global Projections. We begin by defining mappings that will be used
throughout the document. Let P be a prefix of E . For each configuration v, v ∩ P
is a conflict-free prefix of P , i.e. an element of WP . We define thus a surjective
mapping πP by setting:

πP :W →WP , w 7→ w ∩ P .

We recall that Ω denotes the set of maximal configurations of E . We set ΓP = πP (Ω),
and we still denote by πP the restriction πP |Ω:

πP : Ω→ ΓP , ω 7→ ω ∩ P .

We restrict our attention to the family (πP )P where P ranges over P0. The
family (πP )P∈P0 separates W, as stated by the following.

II-1.2 Lemma. Let w,w′ ∈ W. Then w = w′ if and only if πP (w) = πP (w′)
for all P ∈ P0.

Proof – Since every event belongs to a finite prefix, every configuration w satisfies:

w =
⋃

P∈P0

πP (w) ,

which implies the statement of the lemma. �

II-1.3 Relative Projections. Let P ⊆ P ′ be two prefixes of E . We set as
above the two following mappings:

πP,P ′ :WP ′ →WP , w 7→ w ∩ P ,

πP,P ′ : ΓP ′ → ΓP , w 7→ w ∩ P .

We have in particular πP = πP,E for every P ∈ P. The family of mappings πP,P ′

satisfies obviously the two following properties:

(a) ∀P ∈ P , πP,P = IdWP
,

(b) ∀P, P ′, P ′′ ∈ P , P ⊆ P ′ ⊆ P ′′ ⇒ πP,P ′′ = πP,P ′ ◦ πP ′,P ′′ .
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II-2 The Topological Space of Configurations.

As we are interested in controlling the processes restricted to finite prefixes, it is
natural from a computational point of view to define the following topology on W.
The terminology of projective topology will be justified in the sequel. The definition
has a sense according to I-3.1.

II-2.1 Definition. (Projective topology) For each P ∈ P0, we equip each WP

with the discrete topology. We define the projective topology on W as the topol-
ogy generated by the collection of mappings πP :W →WP , with P ranging over P0 .
Equivalently, the projective topology is the weakest topology making all the map-
pings πP : W → WP continuous, with P ranging over P0. In the sequel, W is
equipped with the projective topology.

II-2.2 Convergence in the Projective Topology. The convergence in the
projective topology is addressed as follows. A sequence (vn)n≥0 of configurations
converges to w ∈ W if and only if:

∀P ∈ P0 , ∃N ≥ 0 : n ≥ N ⇒ vn ∩ P = w ∩ P . (2.5)

In particular, if (vn)n≥0 is non-decreasing, i.e. i ≤ j ⇒ vi ⊆ vj for all i, j, then
limn→∞ vn =

⋃

n≥0 vn always holds in the projective topology.

II-2.3 The Complete Projective System. We introduce a projective system
whose limit realizes the topological space W. According to properties (a) and (b)
in II-1.3, the family of finite sets (WP )P∈P0 forms a projective system w.r.t. to the
family of mappings πP,P ′, trivially continuous for P ⊆ P ′ ranging over P0.

II-2.4 Remark. Since E is at most countable, since every event e belongs to a
finite prefix, and since P0 is a lattice, it follows that P0 admits a countable cofinal
sequence (I-4.4). That is, there is a non decreasing sequence (Pn)n≥1 of finite prefixes,
such that for every finite prefix P , there is an integer n with Pn ⊇ P . Define for
instance E = {e1 , e2 , . . .}, choose Qi ∈ P0 that contains ei for each i ≥ 1, and then
consider the cofinal sequence (Pn)n defined by:

Pn =

n⋃

i=1

Qi .

II-2.5 Notation. Let Ξ denote the projective limit Ξ =
(
WP

)

←−−−
P∈P0 . We recall

that Ξ has the following expression as a subset of the product space
∏

P WP :

Ξ =
{
z = (zP )P∈P0

∣
∣ ∀P ∈ P0 : zP ∈ WP ,

∀P, P ′ ∈ P0 : πP,P ′(zP ′) = zP

}
.
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There is a natural mapping Φ :W → Ξ, defined by Φ(v) =
(
πP (v)

)

P∈P0
. Indeed,

if z =
(
πP (v)

)

P∈P0
, we have for every P ⊆ P ′:

πP,P ′(zP ′) = (v ∩ P ′) ∩ P = zP ,

showing that z is an element of Ξ.

II-2.6 Proposition. The mapping Φ : W → Ξ =
(
WP

)

←−−−
P∈P0 of II-2.5 is a

homeomorphism. In particular, W is compact, metric and separable.

Proof – Injective mapping. Lemma II-1.2 implies that Φ is injective.
Continuous mapping. Let U be an elementary open set in Ξ. We denote by Ξ the

product space
∏

P∈P0
WP . U is given by U = U ∩Ξ, with U an elementary cylinder

of Ξ, given by:

U =
∏

P∈P0

AP ,

with AP =WP for all but a finite number of P . P0 is a lattice, so there is a P0 ∈ P0

such that:
∀P ∈ P0, AP 6=WP ⇒ P ⊆ P0 . (2.6)

Equivalently (zP )P ∈ U if and only if zP ∈ AP for all P ⊆ P0 , which in turn is
equivalent to zP0 ∈ AP0 . In particular, for all v ∈ W, Φ(v) ∈ U if and only if
πP0(v) ∈ AP0 . Equivalently, Φ−1(U) = π−1

P0
(AP0), which shows that Φ−1(U) is open

in the projective topology, and thus Φ is continuous.
Surjective mapping. Let z = (zP )P∈P0 be an element of Ξ. We set the following

prefix of E :

v =
⋃

P∈P0

zP .

Assume that v contains a conflict, i.e. two events e, e′ with e# e′. There are finite
prefixes P0, P1 such that e ∈ zP0 and e′ ∈ zP1 . Let P2 ∈ P0 containing P0 and P1.
As z is an element of Ξ, z satisfies:

πP0,P2(zP2) = zP0 , πP0,P1(zP2) = zP1 ,

equivalently:
zP2 ∩ P0 = zP0 , zP2 ∩ P1 = zP1 .

It implies that zP2 contains the conflict e# e′, a contradiction. Thus v is a conflict-
free prefix of E , i.e. a configuration. We show that Φ(v) = z, i.e. that v ∩ P = zP

for all P ∈ P0. For any Q ∈ P0, let Q′ ∈ P0 that contains both Q and P . We have
zQ = πQ,Q′(zQ′), and therefore zQ ∩ P = zQ′ ∩Q ∩ P , whence we get:

zQ ∩ P = zP ∩Q . (2.7)

Taking union w.r.t. Q in (2.7), we get: v ∩ P = zP , as was to be shown. Therefore
Φ is bijective, and we denote by Φ−1 : Ξ→W the inverse mapping.
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Open mapping (Φ−1 is continuous). By Definition II-2.1, a basis of open sets for
the projective topology is given by the family π−1

P (v), with (P, v) such that P ranges
over P0 and v ranges over WP . Let V = π−1

P (v) be such an elementary open set
in W, we show that Φ(V ) is open. Let X be the subset of Ξ given by:

X = Ξ ∩
∏

P∈P0

AP ,

with AP0 = πP0(v) and AP = WP for every P 6= P0. Then X is open and we
obviously have that Φ(V ) ⊆ X . We show the converse inclusion. Let z ∈ X, and let
w = Φ−1(z). Then w ∩ P0 = zP0 ∈ AP0 , from which follows that w ∈ π−1

P0
(v) = V .

We have shown that Φ(V ) = X is open, thus Φ is an open mapping.
With the four previous points, we have shown that Φ is a homeomorphism

W → Ξ . By the classical results, as the WP are finite and thus compact metric,
Ξ is compact metric whenever P0 contains a cofinal sequence. We have seen in II-2.4
that such a sequence exists. Therefore W is a compact and separable metric space.
�

II-3 The Space of Maximal Configurations.

We now examine the set Ω of maximal configurations of E . As a subset of W,
Ω is equipped with the restriction of the projective topology.

II-3.1 Definition. (Operational topology, finite shadows) We define the opera-

tional topology on Ω as the restriction to Ω of the projective topology.

We will always use the following basis of open sets for the topology on Ω.

II-3.2 Lemma. A countable base of open sets of the operational topology is
given by the family of finite shadows of Ω, where a finite shadow is any subset of
Ω with the form:

Ω(v) = {ω ∈ Ω |ω ⊇ v} , v ∈ W0 .

Proof – Let τ denote the restriction to Ω of the projective topology in W, and let τ ′

denote the topology generated by the collection of finite shadows. Any Ω(v) ∈ τ ′ is
written as Ω(v) = π−1

P (v) ∩ Ω, with P = v and πP : W →WP . Hence Ω(v) is open
in the projective topology, and thus τ ′ ⊆ τ .

Conversely, let P ∈ P0, v ∈ WP , and set A = π−1
P (v) ∩ Ω, with πP : W → WP .

The collection of such subsets A generates τ . To show that A ∈ τ ′, let ω ∈ A.
For each e ∈ P \ v, e is in conflict with an event y ∈ ω, otherwise ω would not be
maximal. Let y(e) be such an event. Since P is finite, there is a finite prefix Q that
contains v and all the events y(e) for e ∈ P \ v. We set v ′ = ω ∩Q. Then the finite
shadow Ω(v′) satisfies: ω ∈ Ω(v′) ⊆ A. This shows that A is open is τ , and thus
τ = τ ′. �
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II-3.3 The Operational Projective System. Until a certain point, we can
make the same construction as we did for the space of configurations. Recall that
ΓP denotes, for P a finite prefix, the set: ΓP = {ω ∩ P , ω ∈ Ω} . Then we have,
for the family of mappings πP,P ′ : ΓP ′ → ΓP with P ∈ P0:

(a) ∀P ∈ P0: πP,P = IdΓP
,

(b) ∀P, P ′, P ′′ ∈ P0, P ⊆ P ′ ⊆ P ′′ ⇒ πP,P ′′ = πP,P ′ ◦ πP ′,P ′′ .

Hence the family (ΓP )P∈P0 is a projective system w.r.t. the filtration πP,P ′ with
P, P ′ ∈ P0 and P ⊆ P ′ . Let Γ denote the projective limit Γ =

(
ΓP

)

←−−−
P∈P0 . For every

ω ∈ Ω, the family z = (zP )P∈P0 with zP = πP (ω) satisfies:

∀P, P ′ ∈ P0 P ⊆ P ′ ⇒ zP = πP,P ′(zP ′) ,

hence we define a mapping Ψ : Ω → Γ by setting Ψ(ω) = z. We have the following
commutative diagram, with natural continuous injections on the sides:

W Ξ

Ω Γ

-Φ

-
Ψ

6
i

6
j (2.8)

i is continuous since the topology on Ω is the restriction of the topology on W. It is
readily checked by hand that j : Γ→ Ξ is continuous.

From the diagram follows that Ψ is injective. We also have that Ψ is continuous:
Let V be an open set in Γ. Then there is an open set U in Ξ such that j(V ) = j(Γ)∩U ,
and we have:

Ψ−1(V ) = (Φ ◦ i)−1
(
j(Γ) ∩ U

)
= (Φ ◦ i)−1(U) ,

showing that Ψ is continuous.

II-3.4 Lemma. We have Φ−1(Γ) = Ω, where Ω denotes the closure of Ω in W,
and where we identify Γ and its image j(Γ) in Ξ.

Proof – We have Φ(Ω) ⊆ Γ. Γ is a closed subset of Ξ, as a countable intersection of
closed subsets of Ξ:

Γ =
⋂

P∈P0

π−1
P (ΓP ) .

Since Φ is continuous, it follows that Φ(Ω) ⊆ Γ, and thus Ω ⊆ Φ−1(Γ).
To show the converse inclusion, let v ∈ Φ−1(Γ). There is an element (zP )P∈P0 ∈ Γ

such that v ∩ P = zP for all P ∈ P0 . For each P ∈ P0, let ωP ∈ Ω be an element
such that zP = ωP ∩ P . Choose (Pn)n≥0 a cofinal sequence of P0 (I-4.4), i.e. a
non decreasing sequence of finite prefixes, that contain every finite prefix. We set
ωn = ωPn , and we show that limn→∞ ωn = v holds in W (Cf. Remark II-2.2 on the
convergence in Ξ ).
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We have v ∩ P = zP for all P ∈ P0, and in particular:

∀n ≥ 0 , v ∩ Pn = zPn = ωn ∩ Pn . (2.9)

Fix a prefix P ∈ P0, and choose N an integer such that n ≥ N ⇒ P ⊆ Pn. Then (2.9)
implies: n ≥ N ⇒ v ∩ P = ωn ∩ P , which is the convergence limn→∞ ωn = v. This
shows that Φ−1(Γ) ⊆ Ω. �

II-3.5 Theorem. The mapping Φ|Ω : Ω→ Γ is a homeomorphism.

Proof – According to II-3.4 and II-2.6, Φ|Ω is a one-to-one continuous mapping

Φ|Ω : Ω→ Γ. Ω ⊆ W is compact sinceW is compact. By a classical result, it implies
that Φ|Ω is a homeomorphism. �

II-3.6 Corollary. Let E be an event structure. With the above notations, we
have equivalence between the following propositions:

1. Ψ : Ω→ Γ is a homeomorphism,

2. Ω is compact.

Proof – 1⇒ 2. We have seen above in the proof of II-3.4, that Γ is closed in W. It
implies that Γ is compact since W is compact (II-2.6). Hence Ω is compact.

2⇒ 1. We have that Φ|Ω : Ω → Γ is a homeomorphism (II-3.5). Ω = Ω since Ω
is compact, hence Ψ = Φ|Ω is a homeomorphism Ω→ Γ. �

II-3.7 Example. It can actually hold that Ψ : Ω→ Γ is not a homeomorphism.
It is readily checked that Ψ is always open (maps an open set onto an open set),
and therefore the only possibility for Ψ not to be a homeomorphism is to be not
surjective.

Consider the event structure of Figure 2.1. Let ω∞ and ωn denote the maximal
configurations given by:

ω∞ = g ⊕ e1 ⊕ e2 ⊕ · · · , ∀n ≥ 1 , ωn = e1 ⊕ · · · ⊕ en ⊕ fn .

Consider the following cofinal sequence of finite prefixes:

∀n ≥ 1 , Pn = {g, e1 , . . . , en , f1 , . . . , fn } .

Since (Pn)n is cofinal, the projective limit Γ is given by Γ =
(
Γn

)

←−−
n≥1 , with Γn = ΓPn

(Lemma I-4.5). For each n, the configuration vn = e1 ⊕ · · · ⊕ en belongs to Γn since
vn = ωn+1 ∩ Pn . Moreover the sequence (vn)n≥1 is coherent, i.e. satisfies:

m ≥ n⇒ vm ∩ Pn = vn .
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Now we observe that the element z = (vn)n≥1 , which is thus an element of Γ, cannot
be written as z = Φ(ω), with ω ∈ Ω. Indeed, assume that there is such an element ω.
Then ω∩P1 = v1 implies that g /∈ ω, and ω∩Pn ⊇ vn for all n implies that ω = ω∞ ,
a contradiction. This shows that Φ is not surjective.

Remark that the operational topology makes Ω homeomorphic to N = N∪ {∞},
with the discrete topology. In other words, ω∞ is not the Alexandrov point at infinity
of {ωn , n ≥ 1}. Indeed the finite shadow Ω(g) only contains ω∞ , so ω∞ is isolated.
Observe that it is always true that a finite and maximal configuration is isolated,
and in particular here the ωn , n ≥ 1.

...
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Figure 2.1: Ψ : Ω→ Γ is not surjective.

II-3.8 Remark. This example can be realised as the unfolding of a safe Petri
net. Indeed, we recognise the unfolding of the net depicted in Figure 1.5. The
construction of probability measures for this example, that does not fit the extension
technique presented below, is discussed in Chapter 9.

III—Extension of Probability Measures

This last section is devoted to the application of the above results to the extension of
probability measures. Using the form of a projective limit for the space Ω associated
with an event structure E , we apply the Prokhorov extension theorem to extend
projective systems of probabilities, defined on finite spaces. For this we introduce
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the class of intrinsic prefixes, and we discuss the computational interest of this class
of prefixes.

We apply this result to locally finite event structures. This class of event struc-
tures will be studied in more details in Chapter 3. We only use here a basic property
of locally finite event structures.

III-1 Probabilistic Event Structures and Intrinsic Prefixes.

III-1.1 Definition. (Operational σ-algebra, probabilistic event structure) Let E
be an event structure, with Ω the topological space of maximal configurations of E .
We define the operational σ-algebra on Ω as the Borel σ-algebra F of Ω (I-2.3).
Hence E defines the measurable space (Ω,F).

A probabilistic event structure is a pair (E , P), where E is an event structure
and P is a probability measure on (Ω,F).

Let (E , P) be a probabilistic event structure. For every finite prefix P , the map-
ping πP : Ω → ΓP induces a probability PP = πP P on ΓP . Remark that PP is not
defined on ΩP in general, and hence does not define a probabilistic event structure
on P . However ΩP ⊆ ΓP always holds. Indeed, let v ∈ ΩP , and let ω ∈ Ω such that
ω ⊇ v, then πP (ω) is a configuration of P that contains v. Since v is maximal in P ,
v = πP (ω), and thus v ∈ ΓP .

In order to induce probabilistic event structures on prefixes, we are thus led to
introduce the following definition.

III-1.2 Definition. (Intrinsic prefixes) Let P be a prefix of E . We denote by ΩP

the set of maximal configurations of the sub-event structure P . We say that P is
intrinsic to E , or intrinsic, if ΩP = ΓP . If (E , P) is a probabilistic event structure,
(P, πP P) defines an induced probabilistic event structure for every intrinsic prefix P .

III-1.3 Example. In the event structure of Figure 2.2, left, prefix P = {a} is
not intrinsic in the event structure. Indeed, with ω = {b} we have P ∩ ω = ∅, that
is not a maximal configuration of P . Hence the dynamics of the event structure at
right is not faithful to the restricted dynamics of the event structure at left.

• /o/o/o

a
•
b

•
a

Figure 2.2: Non intrinsic prefix at left hand, intrinsic at right hand.

III-1.4 Remark. Clearly, the union of two intrinsic prefixes is an intrinsic pre-
fix. Intrinsic prefixes are not stable in general under intersection, as shown by the
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event structure of Figure 2.3. P1 and P2 are intrinsic with P1 = {a, b} and P2 = {b, c},
but P1 ∩ P2 = {b} is not: take ω = {a, c}, then ω ∩ {b} = ∅, not maximal in {b}.

• /o/o/o

a

P1
• /o/o/o

b

•

c

P2

Figure 2.3: Non intrinsic intersection of intrinsic prefixes.

III-1.5 Example. In the event structure E of Figure 2.1, the only intrinsic
prefix that contains the event g is E itself.

Proof – Let P be an intrinsic prefix that contains g. Let N = max{i ≥ 1 | ei ∈
P}. Assume that N < ∞. Then ω = e1 ⊕ · · · ⊕ eN ⊕ fN+1 is maximal in E and
satisfies ω ∩ P = e1 ⊕ · · · ⊕ eN , a configuration of P that can be completed in P
by g ⊕ e1 ⊕ · · · ⊕ eN . This contradicts that P is intrinsic. We have shown that P
contains all ei , and we show in a similar way that P contains all fi. Hence P = E .
�

III-2 The Extension Theorem.

Since we have given a condition for Ω to be homeomorphic to a projective limit,
we can apply under this condition the Extension theorem of Prokhorov to extend
projective systems of probability measures (I-5). From a computational point of
view, the advantage is that the projective system consists of finite spaces. However
this is not enough, in particular for the two following reasons.

1. The condition to apply the Extension theorem is abstractly given on Ω, this in-
formation is not easily computable. A first step towards a better computability
will be to give a condition on E that implies the compactness of Ω.

2. If P is a finite prefix, the information contained in (P,ΓP ) is strictly larger
than P in general. In other words, given a finite prefix P , we do not know how
Ω intersects P through the configurations ω ∩ P . The use of intrinsic prefixes
is thus fully justified: in this case (P,ΓP ) = (P,ΩP ) is determined by the only
data P .

We will show how the use of intrinsic prefixes brings a solution to both problems. In
particular, the class of locally finite event structures provides a convenient framework
w.r.t. both restrictions.

The first result that we get from our above study is the ability to apply
the Prokhorov extension theorem. Recall the projective system of finite spaces
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(ΓP )P∈P0 . From equation (2.4), I-5, a family (PP )P∈P0 with PP a probability on ΓP

is a projective system of probability measures if the following condition holds:

∀P, P ′ ∈ P0 , P ⊆ P ′ ⇒ PP = πP,P ′PP ′ .

III-2.1 Theorem. Let E be an event structure, and let (PP )P∈P0 be a projective
system of probability measures w.r.t. the projective system (ΓP )P∈P0 . Assume that
Ω is compact w.r.t. the operational topology. Then there is a unique probability
measure P on Ω such that:

∀P ∈ P0 , πP P = PP .

Proof – Let Γ =
(
ΓP

)

←−−−
P∈P0 , and let ρP : Γ → ΓP denote the natural projections

for P ∈ P0 . Since P0 admits a countable cofinal sequence, the Prokhorov extension
theorem applies (I-5.3). There is a unique probability Q on Γ such that:

∀P ∈ P0 , ρP Q = PP .

Let Ψ : Ω → Γ be the homeomorphism given by II-3.6, since we assume that Ω is
compact, and let P = Φ−1Q . Since πP and ρP are conjugated by πP = ρP ◦ Φ for
all P ∈ P0, we obtain by the chain rule for image probabilities (I-2.4):

πP P = πP (Φ−1Q ) = (πP ◦ Φ−1)Q = ρP Q = PP .

This shows the existence of P, and by similar arguments, the uniqueness follows from
the uniqueness in the Prokhorov theorem. �

As we have noted above, we need a more computable condition than the com-
pactness of Ω to apply the extension theorem. We give a geometric condition on E
that insures the compactness of Ω.

III-2.2 Lemma. Let E be an event structure. Assume that for each event e ∈ E
there is a finite intrinsic prefix P such that e ∈ P . Then Ω is compact.

Proof – We show that Ω is closed inW. Let (ωn)n≥1 be a sequence of Ω, convergent
to v inW. Assume that v /∈ Ω. Then there is an event e /∈ v, and such that v∪e ∈ W.
Let P be a finite intrinsic prefix that contains e, such a prefix exists by hypothesis.
Then e is compatible with v∩P . Since limn→∞ ωn = v, there is an integer n ≥ 1 such
that ωn ∩ P = v ∩ P . Since P is intrinsic, ωn ∩ P is maximal in P , and compatible
with e. Therefore e belongs to ωn ∩ P , and thus e ∈ v, a contradiction. This shows
that Ω is closed in W, and thus compact w.r.t. the operational topology. �

Remark that, since finite unions of intrinsic prefixes are intrinsic, the condition
of III-2.2 is equivalent to requiring the existence of a cofinal sequence (I-4.4) in P0 of
finite intrinsic prefixes.
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III-2.3 Example. Let E = T is a tree of events with a unique root, and let
G be the graph relation on T (Cf. Ch. 1, III-4.2). Then it is well known that Ω is
compact if and only if the sets D(x) = {y ∈ T |xGy} are all finite, for x ranging
over T . Such trees are called locally finite in the literature.

To see that, for trees, the assumption of Lemma III-2.2 is fulfilled if and only if
Ω is compact, remark that intrinsic prefixes are exactly the prefixes P that satisfy:

∀x ∈ T ,

{

D(x) ∩ P = ∅ ,

or: D(x) ∩ P = D(x) .

Hence finite prefixes are unions of sets D(x), and every event belongs to such a finite
prefix if and only if all D(x) are finite: the statement of lemma III-2.2 holds with
an “if and only if” for trees. In these intrinsic prefixes, one recognises the “stopping
times for occurrence nets” of Benveniste et al. ([7]). In particular, if T is the covering
of a finite transition system, then Ω is always compact.

III-2.4 Example. Consider the event structure depicted in Figure 2.1, p. 75,
with Ψ : Ω→

(
ΓP

)

←−−−
P∈P0 non surjective. We have shown in III-1.5 that every intrinsic

prefix containing the event g is E itself. The condition of Lemma III-2.2 is not fulfilled.
In this example, we check that the result of Lemma III-2.2 does not occur: Ω is

not compact. For this observe that all elements ω ∈ Ω are isolated in Ω. That is,
for every ω ∈ Ω, there is a finite shadow Ω(v) such that Ω(v) = {ω}. This is clearly
the case for elements ωn = e1 ⊕ · · · ⊕ en ⊕ fn—every finite maximal configuration is
always isolated. For ω∞, take v = {g}.

I expect that the Lemma III-2.2 can be improved to an “if and only if” statement
for all event structures. As we see, it works with this example.

III-3 Locally Finite Event Structures.

We will introduce and study in details in Chapter 3 the class of locally finite event
structures. For the time being, the reader is asked to accept that one can define a
class of event structures called locally finite event structures, with the following
property:

A locally finite event structure comes with a lattice S0 of finite intrinsic prefixes,
called finite stopping prefixes. Every event e ∈ E belongs to a finite stopping
prefix.

In particular, by Lemma III-2.2, the space Ω is compact and the extension the-
orem III-2.1 applies to locally finite event structures. The lattice S0 contains a
sequence cofinal in P0, therefore the mapping:

Ω→
(
ΩB

)

←−−−
B∈S0 , , ω → (ω ∩B)B∈S0 ; ,

is a homeomorphism. Whence the following result.
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III-3.1 Theorem. Let E be a locally finite event structure, with S0 the lattice
of stopping prefixes of E . Then (ΩB)B∈S0 is a projective system w.r.t. the filtra-
tion πB,B′ . Assume that (PB)B∈S0 is a projective system of probability measures
associated with the projective system (ΩB)B∈S0 , i.e.:

∀B,B′ ∈ S0 , B ⊆ B′ ⇒ PB = πB,B′PB′ . (2.10)

Then there is a unique probability P on Ω such that PB = πBP for all B ∈ S0.

IV—Conclusion.

Summary. In this chapter, we have defined topological and probabilistic event
structures. We have shown how the projective formalism applies to describe the
dynamics of event structures.

We have given a condition on event structure that insures the compactness of Ω.
This condition applies to locally finite event structure, the main class of event struc-
tures studied in the rest of this document. In particular, for locally finite event
structures, the construction of a probability is equivalent to the construction of a
projective system of probabilities on finite sets. We have shown that the local finite-
ness, due to the intrinsic character of stopping prefixes, is a reasonable assumption
from the computational point of view.

Extensions. We have seen that, for the extension theorem of probability measures
to hold, it is enough that every event belongs to a finite intrinsic prefix. Locally
finite event structures satisfy this property, but the converse result has not been
established. Nevertheless, it will not be needed. I also expect that the class of
locally finite event structures coincides with the class of event structures with Ω
compact, so that we should have the equivalences:

Ω is
compact

⇐⇒ every event of E belongs
to a finite intrinsic prefix

⇐⇒ every event of E belongs
to a finite stopping prefix

The question of computability of local finiteness itself will be relevant when deal-
ing with unfoldings of finite nets instead of abstract event structures, to have a finite
input. Some results on this topic are given in Chapter 8.

Chapter 4 is devoted to the construction of projective systems of probabilities.
First, Chapter 3 introduces some needed material concerning event structures.
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Chapter 3

Chapter 3

Geometry of
Stopping Prefixes

In the previous chapter, we have shown that, for locally finite event structures,
the construction of a probability on the set Ω of maximal configurations reduces
to the construction of finite probabilistic event structures (B, PB), where B ranges
over the lattice of finite stopping prefixes. There is a coherence condition on the
family (PB)B : it must be a projective system of probabilities.

Consider the case of a locally finite tree, i.e. a tree with finite branching. The
boundary at infinity is reached by the canonical sequence of prefixes Bn , that contain
events connected to the root with less than n events. For event structures, these
prefixes have little meaning from the dynamics point of view, since they are not
intrinsic in general. We use instead the partially ordered filtration given by the
finite stopping prefixes, as depicted in Figure 3.1.

A
A
A
A
A
A
A
A
A
A
AA

�
�

�
�

�
�

�
�

�
�

��

n = 3

n = 2

n = 1

T E

Figure 3.1: Filtrations of sequential and concurrent acyclic systems.

Continuing the analogy with sequential systems, one may wish to inductively
construct projective systems of probability measures by conditional increments:

P(t1 , . . . , tn+1) = P(t1 , . . . , tn)
︸ ︷︷ ︸

already computed

P
(
t1 , . . . , tn+1

∣
∣ t1 , . . . , tn

)

︸ ︷︷ ︸

to be defined

.

Although increments between stopping prefixes of concurrent systems can be de-
fined, a direct probabilistic transcription fails. For concurrent systems, the class of
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configurations reached by the stopping prefixes lacks a compositionality property:
the class is not closed under concatenation. This is our main motivation for intro-
ducing a new class of configurations.

With probabilistic applications in mind, and in particular as we want a notion
of Markovian process, the closure of processes under concatenation is expected. In-
deed, we want to have invariance properties w.r.t. the future of finite processes.
Geometrically, i.e. in the event structure, the future of processes is obtained by the
concatenation of configurations. We need thus to manipulate a class of configurations
closed under concatenation.

We propose therefore to consider a class that have these two properties: stability
under concatenation and containing the stopped configurations, i.e. the configura-
tions with the form ω ∩ B with ω ∈ Ω and B a finite stopping prefix. The con-
figurations obtained by recursively concatenating stopped configurations are called
well-stopped, and they form the minimal class with the required properties.

Each maximal configuration admits a partially ordered decomposition through
well-stopped configurations. Although the decomposition is not unique, the minimal
increments of well-stopped configurations that compose a maximal configuration ω
are uniquely defined. They form what we call the germs of ω. The germs are
configurations locally maximal: they are indeed maximal configurations of a finite
sub-event structure, called a branching cell.

The germs of an element ω are partially ordered. Some are causally related
and some are concurrent. The parallelism of germs is stronger than the simple
concurrency of events. The parallelism of germs implies their independence from
a set point of view: all combinations of parallel germs are allowed, hence the state
space is a free product of local state spaces. This property has a natural probabilistic
counterpart as a probabilistic independence, but this is the topic of next chapter.
We underline the three following properties of the decomposition through germs:

1. Universal w.r.t. the past. The decomposition through germs fits the global
puzzle drawn by the stopping prefixes. The restriction of a decomposition to
a stopping prefix coincides with the decomposition of the restriction.

2. Universal w.r.t. the future. The decomposition of the tails of a maximal confi-
guration coincides with the restriction of the maximal configuration to a cone
of future—to be defined later.

3. Parallelism and independence. If v is a configuration formed by a finite number
of germs, the germs that continue v are both concurrent and independent.

Although this construction has been achieved with probabilistic applications in
mind, I hope that it presents some interest for itself. It is exposed together with a
very useful tool, the cone of future of a configuration. The cone of future allows a
proper definition of concatenation and of subtraction of configurations. It will be of
constant use throughout the document.

Concerning event structures as a computational model, the contribution of this
document consists in the introduction of these two notions: the well-stopped con-



85

figurations (germs and branching cells, etc), and the cone of future. How the cone
of future can be inserted in the categorical framework for Petri nets introduced by
Winskel will be detailed in Chapter 5. The notion of stopping prefix comes back to
“stopping times for occurrence nets”, introduced by A. Benveniste et al. in [7], and
which have been improved by D. Varacca and G. Winskel by the use of the dynamic
conflict. However, the whole study presented here is original.

As we need some technical results, the chapter is rather long. Section I, Dynamic
conflict and stopping prefixes, gives the basic definitions concerning stopping prefixes
and stopped configurations. Section II, Cone of future, studies this object that, as we
said, will be used throughout the document. Its study consists mainly in examining
its relationships with other objects: prefixes, stopping prefixes, induced topologies.
As a first introduction to well stopped decompositions and well-stopped configura-
tions, Section III presents the Normal decomposition of maximal configurations—the
whole study of well-stopped configurations consists in variants on this theme. Sec-
tion III also introduces the important initial stopping prefix, and the initial branching
cells. In Section IV, Well-stopped configurations, we introduce the well-stopped con-
figurations and their basic properties.

The compositional properties of well-stopped configurations are treated in Sec-
tions V and VI. Section V, Branching cells, introduces the definition of branching
cells, generalising the initial branching cells. It collects then a certain number of
technical results, leading to a lemma that we call an exchange lemma. Section VI,
The dynamic puzzle, states the most useful results about well-stopped configura-
tions, that will be used in the rest of the document. Finally, Section VII precises
what become the notions introduced when the event structure is a tree of events.

Most of the “back-end” results on well-stopped configurations used later in the
document are contained in Section VI. The notations are collected in Table 3.1,
page 120.
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I—Dynamic Conflict and Stopping Prefixes

Stopping prefixes and stopped configurations are basic tools for the analysis of the
dynamics of event structures. They rely on the dynamic conflict relation.

I-1 Dynamic Conflict.

I-1.1 Definition. (Dynamic conflict) We define the dynamic conflict relation
#E

d on E by:

∀x, y ∈ E x#E
d y ⇔ (x# y) and ([x ] ∪ [ y [ ∈ W) and ([x [ ∪ [ y ] ∈ W).

We denote the dynamic conflict relation by #d for short.

Events are in dynamic conflict if they are “simultaneously” enabled but in con-
flict.

I-1.2 Lemma. Let v, v′ be two incompatible configurations. Then there is a
pair of events (e, e′) ∈ v × v′ such that e#d e′.

Proof – For every configuration w and every event x, we set:

Cx(w) = {y ∈ w |x# y} .

For v, v′ ∈ W, we set Cv(v
′) = {e ∈ v |Ce(v

′) 6= ∅}. Now for the proof, let v, v′ ∈ W
be incompatible. Then Cv(v

′) is non empty, and thus admits at least a minimal
element e ∈ v. We have Ce(v

′) 6= ∅, thus Ce(v
′) admits a minimal element e′ ∈ v′.

As e is minimal in Cv(v
′) we have:

∀x ∈ E , x ≺ e⇒ x compatible with v′,

therefore [ e [ is compatible with v′. In particular, as e′ ∈ v′, [ e [ and [ e′ ] are
compatible. Now as e′ is minimal in Ce(v

′), we have that [ e ] and [ e′ [ are compatible.
As e# e′, this shows that e#d e′, and we have as requested: e ∈ v and e′ ∈ v′. �

I-2 Stopping Prefixes.

I-2.1 Definition. (Stopping prefix) We say that a prefix B of E is a stopping

prefix if B is #d -closed, i.e. if B satisfies:

∀e ∈ B, ∀x ∈ E , e#d x⇒ x ∈ B.

We denote by S the complete lattice of stopping prefixes of E , and by S0 the lattice
of finite stopping prefixes.
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I-2.2 Smallest Stopping Prefix Containing an Event or a Set of Events.
Since S is a complete lattice, and as E itself is a stopping prefix, there is for every
event e ∈ E a smallest stopping prefix that contains e. We denote it by B(e). Note
that B(e) is not necessarily finite. For the same reasons, for every subset A ⊆ E , there
is a smallest stopping prefix B(A) containing A, and we have B(A) =

⋃

e∈A B(e).

I-2.3 Definition. (Locally finite event structure) We say that the event structure
E is locally finite if for every event e ∈ E , there is a finite stopping prefix B such
that e ∈ B.

Equivalently, E is locally finite if and only if B(e) is finite for every e ∈ E , if and
only if B(A) is finite for every finite subset A ⊆ E .

I-2.4 Example. (Locally finite trees) If T is a tree of events, the intrinsic pre-
fixes described in Chapter 2, III-2.3, are finite stopping prefixes. Hence a tree of
event is locally finite as an event structure if and only if it is locally finite as a graph,
in the usual sense of finite branching. In particular the covering of a finite transition
systems is locally finite.

I-2.5 Example. Figure 3.2 shows examples of stopping prefixes. The stopping
prefix B(e) is framed with dotted lines, with e the indicated event. Figure 3.3 depicts
partially ordered stopping prefixes.

•

• /o/o/o •
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/o/o/o •
_ _ _ _ _ _ _ _ _�
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�
�_ _ _ _ _ _ _ _ _

•

• /o/o/o •

??�������
•
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•

__@@@@@@@@

OO

•

OO
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�
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�
�
�
�
�

_ _ _ _ _

Figure 3.2: Stopping prefix B(e) with e = • .
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Figure 3.3: Partially ordered stopping prefixes.

Stopping prefixes have the following property, that will be fundamental in the
sequel. The result of the lemma is clear on Figure 3.3.
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I-2.6 Lemma. Let B be a stopping prefix of E , and let D be a prefix of E . If
B ∩D = ∅ then B ‖ D.

Proof – We have to show that x ‖ y for every pair (x, y) ∈ B×D. Let (x, y) ∈ B×D.
As B and D are two prefixes with B ∩ D = ∅, we cannot have x � y, nor x � y.
Assume that x# y holds. Then by Lemma I-1.2, there exists x′ ∈ [x ] and y′ ∈ [ y ]
such that x′ #d y′. But then x′ ∈ B and y′ ∈ D, and B is #d-closed, thus y′ ∈ B∩D,
a contradiction with B ∩D = ∅. This shows that x ‖ y. �

I-2.7 Remark. The result of Lemma I-2.6 fails if B and D are two prefixes
in general. Take for instance the prefixes defined by the two events of the event
structure: • /o/o/o • .

I-3 Stopped Configurations.

The following lemma motivates the definition I-3.2 of stopped configurations.
Recall that a prefix P of an event structure E is said to be intrinsic to E if every
maximal configuration ω intersects P through a maximal configuration of P , which
defines the mapping πP : Ω→ ΩP , πP (ω) = ω ∩ P .

I-3.1 Lemma.

1. Any stopping prefix of E is intrinsic to E .

2. If B ⊆ B′ are two stopping prefixes, then B is a stopping prefix of B ′. In
particular for B ⊆ B ′, B is intrinsic to B ′, so that we have the following
commutative diagram:

Ω ΩB′

ΩB

-πB′

@
@

@@R
πB

?

πB,B′

Proof – 1. Let B be a stopping prefix of E , and let ω ∈ Ω be a maximal configuration
of E , we have to show that ω ∩ B is a maximal configuration of B. Assume that
ωB = ω ∩ B is not maximal in B. Then there is an event e ∈ B such that e /∈ ωB ,
and such that ωB ∪ {e} is a configuration of B.

e belongs to B and not to ω ∩ B, thus e does not belong to ω. We claim that
e#ω, i.e. there is an event x ∈ ω with x# e. Otherwise [ e ] ∪ ω is a conflict-free
prefix that strictly contains ω, contradicting that ω is maximal. Hence e#ω, and it
follows from Lemma I-1.2 that there is a pair (f, y) of events such that:

a) f � e , b) y ∈ ω , c) f #d y .
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Since e ∈ B, and since B is a prefix, a) implies that f ∈ B. As B is #d-closed,
c) implies that y ∈ B, and with b), we get: y ∈ ωB . But then the configuration
ωB ∪ {e} contains the conflict f # y, a contradiction. We have shown that ωB is
maximal in B.

2. Obvious. �

I-3.2 Definition. (Stopped configurations) We say that a configuration w is
stopped in E , or that w is a stopped configuration of E , if there is a stopping
prefix B such that w ∈ ΩB. We say that w is finitely stopped if there is a finite
stopping prefix B such that w ∈ ΩB. The elements of ΩB, with B ∈ S, are called
the B-stopped configurations of E .

In particular, since E is a stopping prefix, every maximal maximal configuration
is stopped. From Lemma I-3.1, point 2, the stopped configurations of a stopping
prefix B are the stopped configurations of E included in B.

I-3.3 If v is stopped in E , then v is B(v)-stopped. Indeed let B ∈ S such that
v ∈ ΩB . Then B(v) ⊆ B, and thus v ∈ ΩB(v) by Lemma I-3.1, point 2.

As a consequence, in a locally finite event structure, every finite stopped confi-
guration is finitely stopped: if v is B stopped and if v is finite, then v is maximal in
B(v), which is finite since the event structure is locally finite. The non locally finite
event structure of Ch. 2, Figure 2.1, page 75, admits finite stopped configurations
that are not finitely stopped.

I-3.4 Example. In a tree, every configuration is stopped (Cf. VII). The same
holds for confusion-free event structures (Cf. Ch. 5). In general event structures, this
is not the case as shown by the example below on the left hand. In this finite event
structure E , the configuration v consisting of the framed event is not stopped. Oth-
erwise, v would be maximal in B(v) = E , but this is not the case. Compare with the
example below on the right hand: by adding a conflict the event structure becomes
a tree and the configuration becomes stopped. There is no more concurrency.

• /o/o/o • /o/o/o • • /o/o/o
6v 5u 4t 3s 1q 0p /o .n -m +k *j )i (h

• /o/o/o •

II—Cone of Future

We introduce the cone of future of a configuration, a notion that we will use through-
out the document. We present the definition in II-1. We can then define in II-2 a
concatenation and a cancellation of configurations with this formalism. Then we
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analyse the relations between the cone of future and other objects that we have de-
fined for event structures: the induced topology is examined in II-3. The dynamic
conflict and the stopping prefixes in a cone of future are studied in II-4, whereas the
cone of future in a prefix is the topic of II-5.

II-1 The Fundamental Isomorphism of Partial Orders.

Let v be a configuration of E . We denote byW(v) and Ω(v) the following subsets
of W and Ω:

W(v) = {w ∈ W |w ⊇ v}, Ω(v) = {ω ∈ Ω |ω ⊇ v}. (3.1)

We have already encountered Ω(v) in Ch. 2, II-3.1, we call it the shadow of v.
We say that the shadow is finite if v is finite. These two subsets can be realised as,
respectively, the set of configurations and of maximal configurations of a sub-event
structure of E .

II-1.1 Definition. (Cone of future of a configuration) Let v be a configuration
of E . We define the cone of future of v as the sub-event structure E v given by:

Ev =
{
e ∈ E | ∃w ∈ W : w ⊇ {e} ∪ v

}
\ v

= {e ∈ E \ v
∣
∣ e is compatible with v} .

We denote by Wv and Ωv respectively the set of configurations and of maximal
configurations of Ev.

Let w be a configuration that contains v. Then w∩E v is conflict-free in Ev since
it is conflict-free in E (Cf. Ch. 1, I-2.6, for sub-event structures). Clearly, w ∩ E v is
a prefix of Ev, thus we have w ∩ Ev ∈ Wv. So we define a mapping by setting:

Φv :W(v)→Wv , w 7→ w ∩ Ev.

II-1.2 Lemma. For every event e ∈ E v, we have [ e ]E
v

= [ e ]E \ v = [ e ]E ∩ Ev.

Proof – Let y(e) = [ e ]E \ v. Using that [ e ]E
v

= {x ∈ Ev |x � e}, we see that
[ e ]E

v
⊆ y(e). As e is compatible in E with v, every f ∈ [ e ]E is compatible in E with v.

This implies that y(v) ⊆ [ e ]E
v
, whence the equality. The part [ e ]E \ v = [ e ]E ∩ Ev

is obvious. �

II-1.3 Proposition. The mapping Φv : W(v) → Wv is an isomorphism of
partial orders, that induces by restriction a one-to-one mapping:

Φv : Ω(v)→ Ωv.
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Proof – The mapping Φv : w 7→ w ∩Ev is increasing. To show that Φv is an isomor-
phism, we exhibit its inverse mapping. We set Ψv(z) = v ∪ z for every configuration
z of Ev. We have for every z ∈ Wv:

z =
⋃

e∈z

[ e ]E
v

,

thus Ψv(z) =
⋃

e∈z

(
v ∪ [ e ]E

v)
. By Lemma I-3.1, we have v ∪ [ e ]E

v
= v ∪ [ e ]E for

every e ∈ z. Thus Ψ(z) is a configuration of E , as a union of pairwise compatible
configurations. Clearly, we have Ψv ◦ Φv = IdW(v) and Φv ◦ Ψv = IdWv , so Φv is

invertible and (Φv)
−1 = Ψv. In particular, Φv maps the maximal elements of W(v)

onto the maximal elements of Wv, i.e. onto Ωv. We conclude by observing that the
maximal elements of W(v) are the elements of Ω(v). �

Figure 3.4 depicts a geometric representation for the cone of future of a configu-
ration.

cone of future Ev

configuration v

events in conflict
with v

Figure 3.4: Cone of future of a configuration. A configuration v cuts off three regions:
events in v, events in the cone of future E v, and events in conflict with v.

II-1.4 Notation. For every configuration v, Φv and Φv are denoted by the
arrows W(v)→Wv and Ω(v)→ Ωv.

II-1.5 Remark. (Trivial cases) Observe the following equalities:

E∅ = E , ∀ω ∈ Ω , Eω = ∅ .

For every configuration v, Ev = ∅ implies that v is maximal.

II-2 Concatenation and Cancellation.

The above isomorphism allows to properly define the concatenation, and also the
cancellation, a sort of subtraction of configurations.
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II-2.1 Definition. Let v be a configuration, and let y ∈ W v. We define the
concatenation of v and y, in this order, by:

⊕ : {(v, y) | v ∈ W, y ∈ Wv} → W, v ⊕ y = Φ
−1
v (y) = v ∪ y ,

and we always have v ⊕ y ∈ W.

We define the left-cancellation, or shortly the cancellation, as follows. For
v ⊆ v′ two configurations, v′ 	 v is the unique configuration y of E v such that
v′ = v ⊕ y, and y is given by y = v′ ∩ Ev = v′ \ v. We have thus:

	 : {(v′, v) ∈ W ×W | v ⊆ v′} → W, v′ 	 v = Φv(v
′) = v′ \ v ,

and we always have that v′ 	 v ∈ Wv.

If e ∈ Ev satisfies {e} = [ e ]E
v
, i.e. if e is minimal in Ev , we shortly write v ⊕ e

to denote v ⊕ [ e ]E
v

= v ∪ {e}. Figure 3.5 illustrates the concatenation and the
cancellation.

w

w ∈ Wv

−→ v⊕w ∈ W(v)

y ∈ W(v)
y 	 v ∈ Wv ←−

w

v

Figure 3.5: Concatenation and cancellation.

II-2.2 Composition. If v ∈ W and y ∈ Wv, we have v ⊕ Ωv(y) = Ω(v ⊕ y)
and:

Φv⊕y = Φ
v
y ◦ Φv , (3.2)

where Φ
v
y denotes the isomorphism Wv(y) → (Wv)y constructed w.r.t. the event

structure Ev.

II-2.3 Lemma. (Concatenation of cones) For any v ∈ W and y ∈ W v, we have:

(Ev)y = Ev⊕y , (3.3)

and for any configurations v ⊆ v′ of E :

(Ev)v
′	v = Ev′ . (3.4)
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We have for any pair v, v′ of configurations: v ⊆ v′ ⇒ Ev′ ⊆ Ev. This inclusion
induces through its action on sets the canonical injection: Ωv′ → Ωv , conjugated to
the inclusion mapping:

Ω(v′)→ Ω(v) .

Proof – It all follows from (3.2). �

II-3 Compositionality of Topologies.

Let v be a finite configuration of E . As a subset of W, W(v) is equipped with
the restriction of the projective topology on W. On the other hand, W v is equipped
with the projective topology inherited from the event structure E v . In the same
manner, Ω(v) is equipped with the restriction to Ω(v) of the operational topology
on Ω, whereas Ωv is equipped with the operational topology inherited from the event
structure Ev.

II-3.1 Notation. We denote by Pv
0 the set of finite prefixes of Ev. Then we

have the following elementary result.

II-3.2 Lemma. Let v be a finite configuration of E . For every P ∈ P0, P ∩Ev ∈
Pv

0 . For every Q ∈ Pv
0 , v ∪Q ∈ P0.

Proof – The first part is trivial. For the second part, let Q ∈ P0. We write v ∪Q as
a union of finite prefixes:

v ∪Q =
⋃

e∈Q

(v ∪ [ e ]E
v

) =
⋃

e∈Q

(v ∪ [ e ]E ),

the later by lemma II-1.2. So v ∪Q ∈ P. �

As a consequence, we have:

II-3.3 Proposition. Let v be a finite configuration of E . The mappings
W(v)→Wv and Ω(v)→ Ωv are two homeomorphisms.

Proof – We show for instance that W(v)→Wv is continuous. An elementary open
subset of Wv has the form:

U = {x ∈ Wv |Q ∩ x = z} ,

with Q a finite prefix of Ev and z a configuration of Q (from Ch. 2, II-2.1). According
to lemma II-3.2, P = v ∪Q is a finite prefix of E . Then we have:

Φv
−1

(U) = {v ⊕ x , x ∈ U}

= {y ∈ W | y ∩ P = v ⊕ z} ,
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an open subset of W(v). We show in a similar manner that W v →W(v) is continu-
ous. Hence W(v)→Wv is an isomorphism of partial orders and a homeomorphism.
It implies that the restriction of the mapping to the maximal elements is a homeo-
morphism. Since the maximal elements of W(v) are indeed the elements of Ω(v), we
obtain that Ω(v)→ Ωv is a homeomorphism. �

II-4 Dynamic Conflict in a Cone of Future.

For a configuration v, we denote by Sv the lattice of stopping prefixes of E v, and
by Sv

0 the lattice of finite stopping prefixes of E v. We denote by #v
d the dynamic

conflict relation defined in E v. For e an event of Ev, we denote by [ e ]v the smallest
configuration of Ev that contains e, and similarly for [ e [ v . As the conflict in Ev is by
definition the restriction of # to E v (sub-structure, Ch. 1, I-2.6), the relation #v

d

on Ev is given by:

e#v
d e′ ⇔ (e# e′) and

(
[ e ]v ∪ [ e [v ∈ Wv

)
and

(
[ e [v ∪ [ e ]v ∈ Wv

)
. (3.5)

II-4.1 Lemma. The dynamic conflict relations #d and #v
d satisfy:

#v
d = #d ∩ (Ev × Ev). (3.6)

Proof – Applying Lemma II-1.2, we have for every event e ∈ E v:

[ e ]v = [ e ] ∩ Ev, [ e [v = [ e [ ∩ Ev. (3.7)

v⊕ [ e ]v is a configuration of E that contains e, thus v⊕ [ e ]v ⊇ v∪ [ e ]. From (3.7) we
have v⊕ [ e ]v ⊆ v ∪ [ e ], and thus v⊕ [ e ]v = v ∪ [ e ]. It implies: v ∪ [ e [v = v ∪ [ e [ .

Now to show (3.6), we begin with the inclusion ⊆. Let e, e′ ∈ Ev such that e#v
d e′.

Then [ e ]v ∪ [ e′ [v ∈ Wv, and thus:

v ⊕ ([ e ]v ∪ [ e′ [v) ∈ W

= (v ⊕ [ e ]v) ∪ (v ⊕ [ e′ [v)

= (v ∪ [ e ] ) ∪ (v ∪ [ e′ [ )

⊇ [ e ] ∪ [ e′ [ .

So [ e ] and [ e′ [ are compatible. We show in the same way that [ e [ and [ e′ ] are
compatible, and as e#v e′ ⇒ e# e′, we have e#d e′. This shows ⊆ in (3.6). For the
⊇ part, take e, e′ ∈ Ev with e#d e′. Then (3.7) shows that e#v

d e′. �

II-4.2 Lemma. For every configuration v, the association B 7→ B ∩ E v defines
mappings from S to Sv, and from S0 to Sv

0 .

Proof – Follows immediately from II-4.1 and II-3.2. �
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•
i4

•
i3

•
i4

Figure 3.6: Stopping prefix B splits into two stopping prefixes in the cone of fu-
ture E i1 .

II-4.3 Remark. (Stopped configurations are not closed under concatenation)
Lemma II-4.2 shows that B ∩ Ev is a stopping prefix of Ev . However not every
stopping prefix of Ev is obtained this way in general. Consider for instance the event
structure E depicted in Figure 3.6, with stopping prefix B = E . Then B splits into
two stopping prefixes in the cone of future E i1 .

In particular, observe that v = i1 ⊕ i3 is not a stopped configuration (otherwise
v would be maximal in B(v) = E ), although v is the concatenation of two stopped
configurations. This example shows that the class of stopped configurations is not
closed under concatenation.

II-5 Cone of Future in a Prefix.

If P is a prefix of E , we recall that we do not distinguish between configurations
of E included in P , and configurations of P . For v a configuration of P , P v denotes
the cone of future of v in P .

II-5.1 Lemma. Let v be configuration included in a prefix P . Then we have:
P v = Ev ∩ P .

Proof – Obvious. �

II-5.2 Lemma. Let B be a stopping prefix of E . Let w be a configuration of E ,
and let v = w ∩B. Then we have: Bv = Ew ∩B.

Proof – We write w = v ⊕ z, with z a configuration of E v, satisfying z ∩ B = ∅.
Let e ∈ Bv, and assume that e /∈ Ew. Since e /∈ w, it implies that e#w, and thus
e#Ev

z, since w = v ⊕ z. Applying Lemma I-1.2 in the event structure E v, we find
f ∈ Ev with f � e and g ∈ z such that f #v

d g, and thus f #d g. As B is #d-closed,
and since f ∈ B, it implies that g ∈ B, which contradicts that z∩B = ∅. This shows
that e ∈ Ew, and thus Bv ⊆ Ew ∩B. The converse inclusion is obvious. �

II-5.3 Remark. The condition “B is a stopping prefix” is necessary in
Lemma II-5.2. Indeed, consider the event structure E below, with w = {b} and
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with B = {a, c}, which is not a stopping prefix. Then we have v = ∅, and Bv 6= ∅,
whereas Ew ∩B = ∅.

• a

•

;{
;{

;{
;{

;{

#c
#c

#c
#c

#c
b B

• c

III—Normal Decomposition

We introduce now the normal decomposition of maximal and of stopped configura-
tions. A more extensive study of decompositions similar to the normal decomposition
is the topic of paragraph IV. We also introduce the class of event structures of finite
concurrent width1.

III-1 Finite Concurrent Width.

We introduce the following class of event structures. They model systems where
finitely many events can concurrently appear, a reasonable computational assump-
tion.

III-1.1 Definition. (Finite concurrent width) We say that an event structure E
is of finite concurrent width if every ‖-clique of E is finite.

Obviously, if E has finite concurrent width, the same holds for every sub-event
structure of E , and in particular for E v for every v ∈ W.

Let S denote the lattice of stopping prefixes of an event structure E . Let S ?

denote the set of non empty stopping prefixes of E . Then (S ?,⊆) is a partial order.
In the sequel we can avoid the use of the following lemma, it is however instructive
(notice the use of Zorn’s Lemma).

III-1.2 Lemma. Assume that E has finite concurrent width. Then every
B ∈ S? is supset of a minimal element of S?.

Proof – We will use the following elementary remark: since E is well founded, every
prefix P ⊆ E is well founded, thus P admits minimal elements e ∈ P , which are all
minimal in E .

1In Ch. 7, we will introduce a concurrent height.
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Let B ∈ S. We show that every chain (Bn)n∈I admits a lower bound in S?,
where I is a totally ordered set and Bn, for n ∈ I, are non empty stopping prefixes
of B. Since S is a lattice, the bound exists in S, given by C =

⋂

n∈I Bn , and we
show that C is non empty. Assume that C = ∅, and consider the sequence of events
constructed as follows. Fix ω a maximal configuration of E . Then for all n ∈ I,
ω ∩Bn is maximal in Bn , and since we assume Bn 6= ∅, ω ∩Bn is non empty.

Choose e0 a minimal event of ω, and thus of E . Assume that e0, . . . , ei have
been constructed until rank k ≥ 0, with ei a minimal event of ω for each i ≥ 0,
and ei 6= ej for all i 6= j. Since

⋂

n∈I ↓ Bn = ∅, there is an index n ∈ I such that
Bn ∩ {e0 . . . , ek} = ∅. As ω ∩Bn is non empty, we choose ek+1 minimal in ω ∩Bn ,
and the induction is complete. Then all ei are distinct, and for all i, j ≥ 0, ¬(ei � ej)
holds since ej is minimal in E , and similarly ¬(ei � ej). Since ei and ej belong to
the same configuration ω, ¬(ei # ej) also holds, and thus ei ‖ ej . This contradicts
that E has finite concurrent width. Hence C 6= ∅.

Zorn’s lemma implies that the set of non empty stopping prefixes included in B
admits a minimal element. �

III-1.3 Example. We show in Figure 3.7 an example of an event structure E of
infinite concurrent width, and such that S? admits no minimal element. Indeed every
Bk = {ek , ek+1 , . . .} is a stopping prefix, and every non empty stopping prefix B
that contains ek strictly contains Bk+1 . Remark the infinite ‖-clique {e2k+1 , k ≥ 0} .

•
e2

•
e4

•
e6

•

•

?�
?�

?�
?�

e1

•

OO
?�

?�
?�

?�

e3

•

OO
?�

?�
?�

?�

e5

•

OO
?�

?�
?�

?�

e7

•

OO

. . .

Figure 3.7: S? admits no minimal element.

III-1.4 Remark. Let E be an event structure locally finite and of finite concur-
rent width. A prefix P does not necessarily even intersect a minimal element of S ?

(Figure 3.8, P = {e}). If e is minimal in E , the stopping prefix B(e), minimal to
contain e, is not necessarily minimal in S? (Figure 3.8).

Local finiteness does not imply finite concurrent width: consider for instance
the infinite event structure E without conflict: • • • · · · . E is locally finite and
has infinite concurrent width. And finally, finite concurrent width does not imply
local finiteness, as show by the example of non locally finite event structure given in
Chapter 2, Figure 2.1, p. 75.
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•

•

?�
?�

?�
?�e

•

OO

_ _ _ _ _ _�
�
�
�
�

�
�
�
�
�_ _ _ _ _ _

__�
�

�
�__

Figure 3.8: Although e is minimal in E , B(e) (external frame) is not minimal in S ?

since B(e) contains a smaller stopping prefix (internal frame).

III-2 Initial Stopping Prefix and Initial Branching Cells.

We keep the notation S? to denote the non void stopping prefixes. We define the
initial branching cells as the minimal elements of S ?, if they exist.

III-2.1 Definition. (Initial branching cells, initial stopping prefix, full-initial con-
figurations.) We set ∆⊥ (E) = min

(
S?
)
, and the elements of ∆⊥ (E) are called the

initial branching cells of E . We define the initial stopping prefix of E by:

B⊥ (E) =
⋃

λ∈∆⊥(E)

λ . (3.8)

We say that a configuration w is full-initial in E if w is a maximal configuration of
the initial stopping prefix B⊥ (E).

Figure 3.9 depicts the initial branching cells of an event structure. Figure 3.10
depicts a more abstract representation.

• • • /o/o/o •

•

?�
?�

?�
?�

•

OO

/o/o/o • •

OO

•

OO

/o/o/o •

O�
O�
O�_ _ _ _ _�

�
�
�_ _ _ _ _

_ _ _�
�

�
�_ _ _

_ _ _ _ _�
�
�
�
�

�
�
�
�
�

_ _ _ _ _

Figure 3.9: Initial branching cells.

λ2 λ3

B
⊥ (E)

︷ ︸︸ ︷

λ1

E

Figure 3.10: Initial branching cells and initial stopping prefix.

III-2.2 Lemma. Let E be an event structure of finite concurrent width. Then
the initial stopping prefix B⊥ (E) is empty if and only if E is empty. For every B ∈ S
we have: B⊥ (B) = B⊥ (E) ∩B.

Proof – The first part follows from III-1.2, the second part is obvious. �
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III-2.3 Proposition. Let E be an event structure of finite concurrent width.
Then for every v ∈ W0, ∆⊥ (Ev) is a finite collection of sets. If moreover E is locally
finite, then all λ ∈ ∆⊥ (Ev) are finite. In particular the initial stopping prefix B⊥ (E)
is finite.

Proof – Since Ev has finite concurrent width for every v ∈ W0, we can assume
without loss of generality that v = ∅, and thus E v = E . We use an independent
result, stated below in IV-3.1: all λ ∈ ∆⊥ (E) are concurrent. Since every λ ∈ ∆⊥ (E)
is non empty by definition, we choose a collection (eλ)λ∈∆⊥(E) with eλ ∈ λ for all

λ ∈ ∆⊥ (E), which is thus a ‖-clique one-to-one with ∆⊥ (E) (the construction applies
even if E is the empty event structure). Since E has finite concurrent width, it implies
that ∆⊥ (E) is finite.

Assume that E is locally finite. For every λ ∈ min(S ?), λ contains an event e,
and thus λ ⊇ B(e) (I-2.2), which implies λ = B(e). B(e) is finite since E is locally
finite. In particular, B⊥ (E) is a finite collection of finite sets, thus B⊥ (E) is finite.
�

III-3 Normal decomposition.

We show that every maximal configuration is the concatenation of recursive full-
initial configurations, and this decomposition is unique, hence the terminology nor-
mal decomposition.

From now on, in this chapter, we assume that E is an event structure locally

finite, and of finite concurrent width.

III-3.1 Proposition-Definition. (Normal decomposition) For ω ∈ Ω fixed,
there is a unique infinite sequence (vj , zj)j≥1 such that, with v0 = ∅ we have for
all j ≥ 1:

vj = vj−1 ⊕ zj , with vj ⊆ ω and zj ∈ ΩB⊥(Evj−1) , (3.9)

i.e. zj is full-initial in Evj−1 . We define the sequence (vj, zj)j≥1, completed with
v0 = ∅, as the normal decomposition of ω.

Proof – Existence. By induction, assume that (vj , zj) has been constructed for
1 ≤ j ≤ n. We have ω ⊇ vj , so that ω ∈ Ω(vj). Thus ξj = ω 	 vj is maximal
in Evj by Proposition II-1.3. We set zj+1 = ξj ∩ B⊥ (Evj ), and zj+1 is maximal
in the stopping prefix B⊥ (Evj ) as B⊥ (Evj ) is intrinsic to Evj . Then by setting
vj+1 = vj ⊕ zj+1, we have vj+1 ⊆ ω. This completes the induction.

Uniqueness. Let (vj, zj)j≥1 and (v′j , z
′
j)j≥1 be two sequences satisfying (3.9). By

definition v0 = v′0 = ∅. Assume that vn = v′n, with n ≥ 0, then zn+1 and z′n+1 are
two configurations compatible and maximal in B⊥ (Evn), so they are equal, and thus
vn+1 = v′n+1. This shows the uniqueness. �
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III-3.2 Other Formulation. For every ω ∈ Ω, the normal decomposition of ω
is given by:

v0 = ∅, zn+1 = ω ∩B⊥ (Evn) , vn+1 = vn ⊕ zn+1 .

If we set ξn = ω 	 vn for all n ≥ 0, then we have for all n ≥ 0:

ξn ∈ Ωvn , zn+1 = ξn ∩B⊥ (Evn) .

Figure 3.11 illustrates a normal decomposition.

v1 = z1

v2 = v1 ⊕ z2

v3 = v2 ⊕ z3

6
ω

E
E
E
E
E
E
E
E
E
EE �

�
�
�
�
�
�
�
�
��

Figure 3.11: Three first steps of a normal decomposition.

Now we show that the normal decomposition of ω entirely characterises ω.

III-3.3 Proposition. Let (vn, zn)n≥1 be the normal decomposition of an ele-
ment ω ∈ Ω. Then

⋃

n≥1 vn = ω. Equivalently, limn→∞ vn = ω in the projective
topology.

Proof – Let v =
⋃

n≥1 vn. We show that v is maximal. Assume that v is not
maximal, then there is an event e ∈ E such that v ⊕ e ∈ W. It implies that [ e [ ⊆ v,
so there is an integer n such that e ∈ vn. Then e is a minimal event of E vn , and it
implies that there is a λ ∈ ∆⊥ (Evn) such that e ∈ λ. Let zn+1 = vn+1 	 vn. e is
compatible with v, so e is compatible with zn+1, which is maximal in λ. It implies
that e ∈ z, and contradicts that e 3 v. Thus v is maximal, and as ω is maximal too,
v = ω. �

Remark that if ω is finite, vn = ω for n large enough, and then E vn = ∅,
B⊥ (Evn) = ∅ and zn = ∅.

III-3.4 Proposition. (Induced normal decomposition) Let B be a stopping pre-
fix of E , and let ωB = ω∩B, with ω an element of Ω. Let (vn, zn)n≥1 and (un, rn)n≥1

be the normal decompositions of ω and of ωB. Then we have for all n ≥ 1:

un = vn ∩B, rn = zn ∩B .
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Proof – We show the following by induction on n ≥ 1:

Hn :

{
rn = zn ∩B, un = vn ∩B ,
Bun = Evn ∩B .

We have r1 = ωB ∩ B⊥ (B) and B⊥ (B) = B⊥ (E) ∩ B by Lemma III-2.2, and
thus r1 = z1 ∩B. It follows that u1 = v1 ∩B. We apply Lemma II-5.2 to obtain that
Bu1 = Ev1 ∩B. This shows H1 (observe that H0 is not defined).

Assume that Hn holds. Then we have:

rn+1 = ωB ∩B⊥ (Bun) = ω ∩B⊥ (Bun) . (3.10)

We have Bun = Evn ∩ B by induction, thus Bun is a stopping prefix of Evn by
Lemma II-4.2. Then we apply Lemma III-2.2 in the event structure E vn , and we get:

B⊥ (Bun) = B⊥ (Evn) ∩Bun

= B⊥ (Evn) ∩B .

With (3.10) it implies:

rn+1 = ω ∩B⊥ (Evn) ∩B = zn+1 ∩B.

It follows that un+1 = vn+1 ∩B. We apply Lemma II-5.2 in the event structure E vn

to get:
(
Bun

)rn =
(
Evn
)zn ∩Bun

Bun+1 = Evn+1 ∩Bun = Evn+1 ∩B .

This shows Hn+1 and completes the induction, which implies the statement of the
lemma. �

IV—Well-Stopped Configurations

We still consider locally finite event structures, of finite concurrent width. The class
of stopped configurations is not rich enough. In particular, we have seen in II-4.3 that
the concatenation of two stopped configurations is not stopped. From a dynamics
point of view, concatenation however is crucial. Thus we close the class of finitely
stopped configurations under concatenation, and the resulting class of configurations
has good compositional properties. We call them well-stopped configurations.

We collect in this Section the basic properties of well-stopped configurations. We
present the definition and the immediate properties of well-stopped configurations
in IV-1. We show in IV-2 that they have good properties w.r.t. the restriction to
stopping prefixes. In IV-3 and IV-4, we analyse the properties of the initial stopping
prefix. We describe in particular its well-stopped configurations, in terms of germs.
Finally, IV-5 gives a useful characterisation of well-stopped configurations.
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IV-1 Well-Stopped Sequences and Well-Stopped Configurations.

To close the class of finitely stopped configurations under concatenation, we
proceed as follows.

IV-1.1 Definition. (Well-stopped sequences, well-stopped configurations) Let I
be a finite or infinite interval of N containing 0, finite or infinite. Let (vn)n∈I be a
non decreasing sequence of configurations of E . We set E0 = E , and for every non
zero n ∈ I, we set En = Evn and zn = vn	vn−1. Hence zn is the unique configuration
of En−1 such that:

vn = vn−1 ⊕ zn .

We say that (vn)n∈I is a well-stopped sequence if zn is a finite stopped configu-
ration of En−1 for every non zero integer n ∈ I. We say that a configuration v ∈ W
is well-stopped if v is limit of a well-stopped sequence of configurations, i.e. if:

v =
⋃

n∈I

vn ,

with (vn)n∈I a well-stopped sequence. We say that (vn)n∈I leads to v.

Figure 3.12 illustrates the construction of well-stopped configurations.

Figure 3.12: Construction of well-stopped configurations. Successive cones of futures
are drawn and successive stopping prefixes are filled in with gray.

IV-1.2 Length and Finite Well-Stopped Configurations. A well-stopped
sequence (vi)i∈I is said to be of finite length if there is an integer N ∈ I such that
vn = vN for all n ∈ I with n ≥ N . The length of the sequence is then the smallest
such integer N . A configuration v is said to be finite well-stopped if v =

⋃

n∈I vn,
with (vn)n∈I a well-stopped sequence of finite length.
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IV-1.3 Notations. We denote by X the set of well-stopped configurations, and
we denote by X0 the set of finite well-stopped configurations. For v ∈ W, we denote
by X v the set of well-stopped configurations of E v, and by X v

0 the set of finite well-
stopped configurations of Ev.

IV-1.4 We can always assume that a well-stopped sequence is infinite, by com-
pleting the sequence by zn = ∅ for n large if it is of finite length—otherwise nothing
has to be done—, which still gives a well-stopped sequence and the same union.

IV-1.5 Lemma. Assume that E is a locally finite event structure with finite
concurrent width. Then every maximal configuration is a well-stopped configuration,
i.e. Ω ⊆ X .

Proof – Let (vn, zn)n≥1 be the normal decomposition of an element ω ∈ Ω (III-3.1).
For every integer n ≥ 1, zn is maximal in B⊥ (Evn−1), and B⊥ (Evn−1) is finite by
Proposition III-2.3, as E has finite concurrent width. Thus zn is finitely stopped
in Evn−1 . �

IV-1.6 Lemma. (Concatenation) If v ∈ X0 and if y ∈ X v
0 , then v ⊕ y ∈ X0.

Proof – Let (v1
n, z1

n)n≥1 be a well-stopped sequence of E , of finite length N , and
leading to v = vN . Let (v2

n, z2
n)n≥1 be a well-stopped sequence of E v. Then the

concatenation of (v1
n, z1

n)1≤n≤N and of (v2
n−N , z2

n−N )n≥N+1 is a well-stopped sequence
of E , by Definition IV-1.1. �

IV-1.7 Lemma. (Extraction of well-stopped sequences). Let (vk, zk)k≥1 be a
well-stopped sequence of E . Let n be an integer, and for each k ≥ 1 let:

v′k = vn+k 	 vn, z′k = zn+k .

Then (v′k, z′k)k≥1 is a well-stopped sequence of E vn .

Proof – Let T = Evn . We have:

v′k+1 	 v′k = (vn+k+1 \ vn+k) \ vn = zn+k+1 \ vn .

We have zn+k+1 \ vn = zn+k+1 since zn+k+1 ⊆ E
vn , and thus v′k+1 	 v′k = z′k .

Moreover we have for each k ≥ 1, using Lemma II-2.3:

Evn+k = Evn⊕v′
k = T v′

k .

Thus z′k = zn+k is finitely stopped in T v′
k−1 . �

IV-2 Well-Stopped Configurations in a Stopping Prefix.

As stopped configurations, well-stopped ones are intrinsic w.r.t. stopping prefixes,
in the following sense. The lemma is illustrated by Figure 3.13.
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stopping prefix B

Figure 3.13: Lemma IV-2.1

IV-2.1 Lemma. Let B be a stopping prefix of E . A configuration v of B is
well-stopped in B if and only if v is well-stopped in E . The decompositions are
obtained one from the other by:

(vn, zn)n → (vn ∩B, zn ∩B)n, and (vn, zn)n → (vn, zn)n .

Proof – This is a consequence of the following lemma. �

IV-2.2 Lemma. Let B be a stopping prefix of E and let v be a configuration
of B. Then we have:

(a) D stopping prefix of Bv ⇒ D stopping prefix of Ev.

(b) D stopping prefix of Ev ⇒ D ∩B stopping prefix of Bv.

Proof – According to Lemma II-5.2 we have: Bv = Ev∩B, and thus Bv is a stopping
prefix of Ev since B is a stopping prefix of E (II-4.2). Now for (a), if D is a stopping
prefix of Bv, then D is a stopping prefix of E v by Lemma I-3.1 applied in the event
structure Ev. For (b), if D is a stopping prefix of E v, we also have by Lemma I-3.1
applied in the event structure E v, that D ∩B is a stopping prefix of Bv. �

IV-3 Concurrent Decomposition of the Initial Stopping Prefix.

The following simple lemma is a key result for our study.

IV-3.1 Lemma. Two distinct initial branching cells are disjoint and concur-
rent.

Proof – Since branching cells are by definition minimal non void stopping prefixes,
and since stopping prefixes are stable under intersection, distinct branching cells are
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disjoint. That distinct branching cells are concurrent follows then from Lemma I-2.6.
�

The following result establishes the relation between initial branching cells, i.e. el-
ements of ∆⊥ (E), and stopping prefixes of the initial stopping prefix B⊥ (E). The
proof is straightforward.

IV-3.2 Lemma. A subset B of B⊥ (E) is a stopping prefix of E if and only if
B is a union B =

⋃

λ∈I λ , where I is a subset of ∆⊥ (E).

IV-3.3 Definition. (Initial λ-Germs, stopped-initial configurations) Each initial
branching cell λ is a sub-event structure of E , andWλ,Ωλ denote respectively the set
of configurations and the set of maximal configurations of λ. Any element zλ ∈ Ωλ

is called an initial germ of E , or a λ-germ. We say that a configuration v is
stopped-initial if v is stopped in the initial prefix B⊥ (E).

IV-3.4 Product Space Associated with the Initial Decomposition of E.
With Lemma IV-3.1, the geometric decomposition B⊥(E) =

⋃

λ∈∆⊥(E) λ implies a
decomposition of ΩB⊥(E) into independent components associated with the branching
cells. We set the following product spaces:

K⊥ (E) =
∏

λ∈∆⊥(E)

Wλ , Π⊥ (E) =
∏

λ∈∆⊥(E)

Ωλ . (3.11)

For every λ ∈ ∆⊥ (E), we have the mapping πλ : W → Wλ, w 7→ w ∩ λ. Let
W → Π⊥ (E) be the direct product of the family (πλ)λ∈∆⊥(E). We thus have the
following commutative diagrams, with a functorial injection from nodes at right
hand to nodes at left hand.

W

K⊥ (E) WB⊥(E)

?

Q
Q

Q
QQs

�

Ω

Π⊥ (E) ΩB⊥(E)

?

Q
Q

Q
QQs

�

(3.12)

We have seen that, since we assume that E has finite concurrent width, ∆⊥ (E) is a
finite collection of sets, and these sets are finite since E is locally finite (Prop. III-2.3).
Hence K⊥ (E) and Π⊥ (E) are finite. The following result is a direct consequence of
Lemma IV-3.2.

IV-3.5 Lemma. In Diagram (3.12), the mappings WB⊥(E) → K⊥ (E) and

ΩB⊥(E) → Π⊥ (E) are two bijections.
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In particular, a configuration v is stopped-initial if and only if v can be written
as a union:

v =
⋃

λ∈I

vλ, vλ ∈ Ωλ ,

where I is a subset of ∆⊥ (E). The decomposition is unique. v is full-initial if and
only if I = ∆⊥ (E).

IV-4 Well-Stopped Configurations of the Initial Prefix.

We can now precisely describe the well-stopped configurations of the initial stop-
ping prefix.

IV-4.1 Lemma. If v is a stopped configuration of E , then E v ∩B(v) = ∅.

Proof – Assume that B(v)∩Ev contains an event x. Then x is compatible with v. We
have seen in I-3.3 that v is maximal in B(v). It implies that x ∈ v, and contradicts
that v ∩ Ev = ∅. �

IV-4.2 Lemma. Assume that E satisfies B⊥ (E) = E , and let (∅, v1, . . . , vn) be
a well-stopped sequence of E . Then (∅, v2 	 v1, . . . , vn 	 v1) is also a well-stopped
sequence of E .

Proof – Let B1 = E \ B(v1), where B(v1) denotes the smallest stopping prefix that
contains v1. We show that B1 = Ev1 . As v1 is stopped, we have Ev1 ∩ B(v1) = ∅
by Lemma IV-4.1, hence Ev1 ⊆ B1. By Lemma IV-3.2, and since B⊥ (E) = E , B1

itself is a stopping prefix of E , union of initial branching cells λ ∈ ∆⊥ (E) such that
λ ∩ B(v1) = ∅. By Lemma IV-3.1 every event e ∈ B1 is compatible with v1, and
e /∈ v1, thus e ∈ Ev1 . Finally Ev1 = B1. For each n ≥ 1 let zn = vn 	 vn−1.

As (∅, v1, . . . , vn) is well-stopped in E , it follows from Lemma IV-1.7 that (∅, v2	
v1, . . . , vn 	 v1) is well-stopped in Ev1 = B1. Since B1 is a stopping prefix of E ,
(∅, v2 	 v1, . . . , vn 	 v1) is well-stopped in E (Lemma IV-2.1). �

IV-4.3 Proposition. Assume that E is locally finite and of finite concurrent
width, and let v be a configuration of B⊥ (E). Then v is well-stopped if and only if
v is stopped.

Proof – Let B = B⊥ (E). B is finite according to Proposition III-2.3. Therefore
ΩB ⊆ X0 .

Conversely, by Lemma IV-2.1, we can assume without loss of generality that
E = B. Let (vn, zn)n be a well-stopped sequence of finite length of E , leading
to v = vN . Using Lemma IV-4.2, we show by induction that zk is stopped in E for
all k. It is easy to check that a union of compatible finitely stopped configurations,
is a finitely stopped configuration. Thus v =

⋃

k zk is finitely stopped in E . �
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IV-5 Step-by-Step Decomposition.

We introduce a characterisation of well-stopped configurations, that can be taken
as an equivalent definition.

IV-5.1 Definition. (Step-by-step decomposition) Let (vn, zn)n∈I be a well-
stopped sequence of E (IV-1.1). We say that the sequence is step-by-step if for
every n ≥ 1, zn is stopped-initial (IV-3.3) in E vn−1 . We say that an element v ∈ X
admits a step-by-step decomposition if there is a step-by-step sequence (vn, zn)n∈I

such that v =
⋃

n∈I vn .

IV-5.2 Proposition. In a locally finite event structure of finite concurrent
width, every well-stopped configuration admits a step-by-step decomposition.

Proof – We observe first that every stopped configuration admits a finite step-by-
step decomposition. Indeed, if v ∈ ΩB with B ∈ S0, v admits by Lemma IV-1.5 a
normal form in B, which is step-by-step in E by Lemma IV-2.1. The decomposition
has finite length since B is finite and thus v is finite.

Now let (vn, zn)n be a well-stopped sequence decomposing v. Consider a finite
step-by-step decomposition of each zk in Evk−1. Then the concatenation of these
decomposition gives a step-by-step decomposition of v. �

V—Branching Cells

Branching cells generalise the initial branching cells introduced in III-2.1. The idea
is the following: what happens just after a finite configuration v can be seen in
the initial stopping prefix of the cone of future E v . Hence the study of the initial
stopping prefix applies in general. In particular, branching cells generalise the initial
branching cells.

In V-1, we present the definition and the composition properties of branching
cells. We expose combinatorial lemmas in V-2. The goal is to show Proposition V-
2.4. Some other lemmas are summed up in V-3 into a lemma that appears as an
exchange lemma.

V-1 Branching Cells.

We generalise the notion of initial branching cell introduced in Definition III-2.1.
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V-1.1 Notation. For v a configuration of E , ∆+
E (v), or ∆+ (v) for short, de-

notes the set of initial branching cells of the cone of future E v:

∆+
E (v) = ∆⊥ (Ev) .

We have in particular: ∆⊥ (E) = ∆+
E (∅) .

V-1.2 Definition. (Branching cells) Any element λ ∈ ∆+ (v), with v ∈ X0, is
called a branching cell of E . The elements λ ∈ ∆+ (v) are called branching cells
at v. We denote by ΛE the collection of branching cells of E .

Branching cells are illustrated by Figure 3.14.

v

Ev

E

branching cells at v
= elements of ∆+ (v)

Figure 3.14: Branching cells in ∆+ (v).

V-1.3 Lemma. (Concatenation and restriction to a stopping prefix) For every
B ∈ S we have:

ΛB = {λ ∈ ΛE |λ ∩B 6= ∅} = {λ ∈ ΛE |λ ⊆ B} .

For every v ∈ X0 and y ∈ X v
0 , we have:

∆+
Ev (y) = ∆+

E (v ⊕ y) .

In particular, ΛEv ⊆ ΛE if v ∈ X0.

Proof – The second part comes from II-2.3:
(
Ev
)y

= Ev⊕y. For the first part, let
B ∈ S, and λ ∈ ΛB . Then there is a configuration v, well-stopped in B, such that
λ ∈ ∆+ (v). By IV-2.1, v is well-stopped in E , and λ is a stopping prefix of Ev

by IV-2.2 (a). It is a minimal non empty stopping prefix of E v by IV-2.2 (b), so we
have λ ∈ ∆+ (v) and thus λ ∈ ΛE and λ ⊆ B. With the same argument we show
that any λ ∈ ΛE with λ ⊆ B is a branching cell of B, so we get:

ΛB = {λ ∈ ΛE |λ ⊆ B} .

It follows from II-4.2 that, if λ ∈ ΛE satisfies λ∩B 6= ∅, then λ ⊆ B. This completes
the proof. �
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V-2 Auxiliary Results.

Recall that stopped-initial configurations are stopped in the initial stopping prefix
(IV-3.3).

V-2.1 Lemma. Let v ∈ W, and let A be a subset of E v. Assume that A is a
prefix of E . Then A ‖ v.

Proof – We have to show that x ‖ y for every pair (x, y) ∈ A× v. Let (x, y) ∈ A× v.
As A is a prefix of E , we have x � y ⇒ y ∈ A, and y ∈ A contradicts v ∩ E v = ∅,
thus we have ¬(x � y). As v is a prefix of E , we have x � y ⇒ x ∈ v, and x ∈ v also
contradicts v ∩ Ev = ∅, and thus ¬(x � y) holds. As x ∈ E v, x is compatible with v,
thus ¬(x# y) holds, and finally x ‖ y. �

V-2.2 Lemma. Let v be a configuration of E , and let B ∈ S. Then we have:
B ∩ v = ∅ ⇒ B ⊆ Ev.

Remark that the result does not hold in general if B is not a stopping prefix.
Take for instance two minimal events in conflict e1 # e2 . Then e1 ∩ e2 = ∅ but
e1 /∈ Ee2 .

Proof – As B and v are two prefixes of E that do not intersect, no pair of events
(e, e′) ∈ B × v are causally related. If e# e′, then by Lemma I-1.2 there are events
x, y with x � e and y ∈ v with x#dy. Then x ∈ B as B is a prefix, and thus y ∈ B
as B is #d-closed, contradicting v ∩B = ∅. Therefore we have B ‖ v and B ∩ v = ∅,
which implies B ⊆ Ev. �

V-2.3 Lemma. Let v be a stopped-initial configuration of E , and let λ be an
initial branching cell of E . Then v ∩ λ = ∅ ⇒ λ ∈ ∆+ (v) .

Proof – According to Lemma V-2.2, λ ⊆ E v. Hence, since λ is a stopping prefix of E ,
λ is a non empty stopping prefix of E v. It remains thus to show that λ is minimal
in Ev.

For this let γ be a stopping prefix of E v that contains an event in γ ∩ λ. We set
the following subset of E :

B = γ ∩ λ = (v ∪ γ) ∩ λ ,

and it is clear on the latter that B is a prefix of E . We show that B is #d-closed
in E . Let e ∈ B, and let f ∈ E such that e #d f . Then f ∈ λ since λ is #d-closed
in E . Since λ ⊆ Ev, it follows that f ∈ Ev. γ is #v

d-closed, which implies that f ∈ γ,
and finally f ∈ λ∩γ. Hence B is a stopping prefix of E that intersects λ, thus B ⊇ λ.
It follows that γ ⊇ λ. This shows that λ is an initial branching cell of E v. �
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V-2.4 Proposition. Let λ ∈ ∆⊥ (E), and let v be a well-stopped configuration
of E . Then v ∩ λ = ∅ or v ∩ λ ∈ Ωλ.

Proof – v ∩ λ is a well-stopped configuration of λ. Since λ is minimal non void, it
is then obvious that v ∩ λ = ∅ or v ∩ λ is maximal in λ. �

V-3 An Exchange Lemma.

We now show a result that will be useful to conclude the study of well-stopped
configurations. We use the notion of initial germ (IV-3.3).

V-3.1 Lemma. Let v0 ∈ X0, and let x be an initial germ of E compatible
with v0. Then v0 ∩ x 6= ∅ ⇒ x ⊆ v0.

Proof – Let λ ∈ ∆⊥ (E) such that x ∈ Ωλ, and assume that v0 ∩ x 6= ∅. By V-2.4,
v0 ∩ λ ∈ Ωλ. x and v0 ∩ λ are two maximal and compatible configurations of λ, so
they are equal, and thus x ⊆ v0. �

V-3.2 Lemma. Let x be an initial germ of E , let z be stopped-initial in E , and
assume that x ⊆ z. Then z 	 x is stopped-initial in Ex.

Proof – By Lemma IV-3.5, z decomposes itself as the following disjoint union:

z = x t zλ1 t . . . t zλp
, λi ∈ ∆⊥ (E) ,

with zλi
a λi-germ for all i. Thus z 	 x = zλ1 t . . . t zλp

. For each i, x ∩ λi = ∅,
and so λi ∈ ∆+ (x) by V-2.3. Thus, each zλi

is an initial germ of Ex, and z 	 x is a
union of compatible initial germs of Ex. Applying IV-3.5 in the event structure Ex,
z 	 x is stopped-initial in Ex. �

V-3.3 Lemma. (First Exchange Lemma) Let x be an initial germ of E , let
v0 ∈ X0, and let z ∈ Wv0 . Assume that v0 ⊕ z is compatible with x. We set the
configuration v = v0 ∪ x, and we set v′ ∈ W and z′ ∈ Wv such that:

v′ = (v0 ⊕ z) ∪ x = (v0 ∪ x)⊕ z′ . (3.13)

Then z is stopped-initial in E v0 ⇒ z′ is stopped-initial in Ev.

Figure 3.15 illustrates Lemma V-3.3.
Proof – It is enough to show the implication: z is an initial germ of E v0 ⇒ z′

is stopped-initial in Ev, since v does not depend on z, and a union of compatible
stopped-initial configurations is stopped-initial (IV-3.5). So we assume that z is an
initial germ of Ev0 .

First case: v0 ∩ x 6= ∅. Then, by V-3.1, x ⊆ v0. Thus v = v0 and z′ = z. The
result is trivial.
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B⊥ (E)

v0
z

x

with v = v0 ∪ x

Figure 3.15: The exchange lemma V-3.3.

Second case: v0 ∩ x = ∅. Then it is a consequence of V-2.3 that x is an initial
germ of Ev0 .

a) z ∩ x 6= ∅. Then we apply V-3.1 in the event structure E v0 , to get that x ⊆ z.
Since x and z0 are two initial germs of Ev0 , it implies z = x and z′ = ∅.

b) z∩x = ∅. Let λ ∈ ∆⊥ (E) such that x ∈ Ωλ. By V-2.4, if (v0⊕ z)∩λ 6= ∅, then
(v0 ⊕ z) ∩ λ is maximal in λ; since it is compatible with x, it coincides with x,
contradicting (v0 ⊕ z) ∩ x = ∅. Thus we have (v0 ⊕ z) ∩ λ = ∅, and by V-2.2
applied to λ, it implies λ ⊆ Ev0 . In particular x ⊆ Ev0 . Then (3.13) becomes:

(v0 ⊕ z)⊕ x = (v0 ⊕ x)⊕ z′ ,

and thus z′ = z since the ⊕ are disjoint unions. Let γ ∈ ∆+ (v0) such that
z ∈ Ωγ . Since we have seen that x is an initial germ of E v0 , x ∩ γ = ∅.
Applying V-2.3 in Ev0 , we get:

γ ∈ ∆+
Ev0 (x) = ∆⊥ (Ev) ,

the later by V-1.3. Since z ′ ∈ Ωγ , we have the requested result.

�

VI—The Dynamic Puzzle.

This section is intended to take advantage of the previous technical results, to state
more general and practical statements. We introduce the partition of a well-stopped
configuration through its germs. The associated branching cells form the dynamic
puzzle around the configuration.

In VI-1, we introduce another characterisation of well-stopped configurations,
through the so-called germ-decomposition. Then VI-2 is devoted to the result that
compatible well-stopped configurations form a lattice. The dynamic puzzle associ-
ated to well-stopped configurations is the topic of VI-3.
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VI-1 Germ-Decompositions.

Recall that an initial germ is maximal in an initial branching cell. We extend
the definition as follows.

VI-1.1 Definition. (Germ decomposition, germs) A well-stopped sequence
(vn, zn)n≥1 is said to be a germ-decomposition if zn is an initial germ of Evn−1 for
all integer n ≥ 1. If the germ decomposition has finite length N , it is said to lead
to vN . We say that a well-stopped configuration v admits a germ-decomposition if
there is a germ-decomposition leading to v. Any element zn is called a germ of v.

Clearly, the concatenation (IV-1.6) of finite germ-decompositions is a germ-
decomposition.

VI-1.2 Lemma. Assume that E is locally finite and has finite concurrent width.
Then every finite well-stopped configuration of E admits a germ-decomposition.

Proof – Let v ∈ X0, and let (vn, zn)n be a step-by-step decomposition of v (IV-5.2).
If each zn admits a finite germ-decomposition in E vn−1 , then the concatenation of
their germ-decomposition is a germ-decomposition of v. As E vn−1 is locally finite
and has finite concurrent width, it is enough to show:

Every v stopped-initial in E admits a finite germ-decomposition.

For this, ∆⊥ (E) is finite as E as finite concurrent width (III-2.3). As v is stopped-
initial, v has the following decomposition into disjoint unions:

v = zλ1 t . . . t zλp
, zλi

∈ Ωλi
.

Let v0 = ∅ and vk = vk−1 ∪ zk for 1 ≤ k ≤ p. Clearly, all vk are stopped-initial
in E , as unions of compatible germs (IV-3.5). For every k, vk−1 ∩ λk = ∅ since vk−1

is stopped and zk is maximal in λk. Applying V-2.3, we get that λk ∈ ∆+ (vk−1) . It
implies that (vk, zλk

)1≤k≤p is a germ-decomposition, leading to vp = v. �

VI-2 The Lattice of Well-Stopped Sub-Configurations.

We begin by stating a result improving our first exchange lemma V-3.3.

VI-2.1 Lemma. (Exchange Lemma) Let v, v ′ be two well-stopped configurations
of E , and assume that v and v′ are compatible. Then (v ∪ v′) 	 v′ is well-stopped
in Ev′ .

Proof – We assume without loss of generality that v and v ′ have decompositions of
finite length. We assume first that v′ = x is an initial germ of E . Let (vn, zn)n be a
step-by-step decomposition of v. We set:

wk = vk ∪ x, z′k = wk 	 wk−1 .
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Then we have:
wk = (vk−1 ⊕ zk) ∪ x = (vk−1 ∪ x)⊕ z′k .

By the exchange lemma V-3.3, z ′k is stopped-initial in Ewk−1 since zk is stopped-initial
in Evk−1 . We have shown that (wk, z

′
k)k is a well-stopped sequence of E , leading to

wn = v ∪ x. Now let yk = wk 	 x. Then we have yk = yk−1 ⊕ z′k, and z′k is stopped-
initial in Evk−1 =

(
Ex
)yk−1 . As (yk, z

′
k)k leads to (v ∪ x) 	 x, we have shown the

result if v′ = x is an initial germ of E .
For the general case, let (v′n)n≥1 be a germ-decomposition of v′. Such a decom-

position is given by Lemma VI-1.2. By induction on n, it follows from the previous
case that (v ∪ v′n) 	 v′n is well-stopped in Ev′n . The result of the lemma follows, by
considering an integer n large enough. �

VI-2.2 Corollary. Let v ∈ X0 and v′ ∈ X . If v ⊆ v′ then v′	 v is well-stopped
in Ev.

Proof – We can assume without generality that v ′ ∈ X0. Then we apply VI-2.1 with
v′ ∪ v = v′. �

VI-2.3 Theorem. Let w ∈ X . The set of well-stopped sub-configurations of w
forms a lattice.

Proof – It is enough to show that the following subset is a lattice:

H = {v ∈ X0 | v ⊆ w} .

Let v, v′ ∈ H, we show that v ∪ v′ ∈ H. By VI-2.1, v ∪ v′ is finitely well-stopped in
v′. By concatenation (IV-1.6), v ∪ v′ is well-stopped in E .

Now we show that y = v ∩ v′ ∈ H. We set:

y0 = ∅ , z1 = y ∩B⊥ (E) .

Observe that z1 = ∅ if and only if y = ∅ = y0, since each prefix of E encounters an
initial branching cell (III-1.2). For any initial branching cell λ, v ∩ λ and v ′ ∩ λ are
two compatible configurations, and each one is maximal in λ if non empty (V-2.4).
Thus z1 has the property:

∀λ ∈ ∆⊥ (E) , z1 ∩ λ 6= ∅ ⇒ z1 ∩ λ ∈ Ωλ .

It follows that z1 is stopped-initial in E . According to VI-2.1, it implies that v 	 z1

and v′	 z1 are well-stopped in Ez1 . We repeat inductively this construction and get
a sequence (yn, zn)n≥1 such that:

i. (yn, zn)n≥1 is a step-by-step well-stopped sequence of E ,

ii. For all n ≥ 1, yn ⊆ y, and v 	 yn , v′ 	 yn are well-stopped in Eyn ,

iii. For all n ≥ 1, zn = ∅ if and only if y = yn−1 .

As y is finite, there is an integer n such that zn = ∅, and then y = yn−1, which shows
that y is well-stopped, i.e. y ∈ H. �
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VI-3 Dynamic Puzzle.

Consider a lattice of compatible well-stopped configurations. Then consider the
elementary increments between the well-stopped configurations: they form a collec-
tion of germs. These germs are maximal configurations of a collection of branching
cells. We show that these branching cells do not intersect, hence they form what we
call a puzzle. However, and as a typical effect of concurrency, the whole collection of
branching cells defined by an event structure may intersect. Therefore we say that
the puzzles drawn by well-stopped configurations are dynamic.

VI-3.1 Dynamic puzzle. For v a well-stopped configuration of E , we define
the following collection of branching cells of E :

Λ (v) = {λ ∈ ∆+ (y) | y ⊆ v , y ∈ X0} ,

If v is finite and well-stopped, we define the dynamic puzzle around v by the
collection of branching cells:

Λ (v) = Λ (v) \∆+ (v) . (3.14)

We note ΛE(v) and ΛE(v) to precise the event structure E .

VI-3.2 Remark. If v is finite and maximal, then E v = ∅ thus ∆⊥ (Ev) = ∅,
and Λ (v) = Λ (v). The “boundary effect” is cancelled.

Figure 3.16 illustrates the dynamic puzzle.

The collection Λ (v) consists in:

Branching cells in
∆+ (v)
Branching cells in
the dynamic puzzle
Λ (v)

and we have:

v =
⋃

λ∈Λ(v)

v ∩ λ .

Figure 3.16: The dynamic puzzle.

VI-3.3 Lemma. For any v ∈ X0, we have:

Λ (v) = {λ ∈ Λ (v) : v ∩ λ 6= ∅} = {λ ∈ Λ (v) : v ∩ λ ∈ Ωλ} . (3.15)
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Proof – Let λ ∈ Λ (v): there is a y ∈ X0 with y ⊆ v and λ ∈ ∆+ (y). We set
s = v 	 y, and we have s ∈ X y

0 by VI-2.2. Since λ ∈ ∆⊥ (Ey), we have by V-2.4:

s ∩ λ 6= ∅ ⇔ s ∩ λ ∈ Ωλ .

Since v∩λ = s∩λ, the equality between the two right sets in (3.15) follows. For every
λ ∈ Λ (v), we have λ ∈ ∆+ (v)⇒ λ ∩ v = ∅, which shows the following inclusion:

{λ ∈ Λ (v) : λ ∩ v 6= ∅} ⊆ Λ (v) .

It remains to show the converse inclusion. Let y ∈ X0 with y ⊆ v, and let λ ∈ ∆+ (y) .
It is enough to show:

λ ∩ v = ∅ ⇒ λ ∈ ∆+ (v) .

For this, let s = v 	 y ∈ X y
0 . We have λ ∈ ∆⊥ (Ey), hence by applying V-2.3:

λ ∩ v = ∅ ⇒ λ ∩ s = ∅ ⇒ λ ∈ ∆+
Ey (s) = ∆+

E (y ⊕ s) = ∆+ (v) .

�

VI-3.4 Lemma. Let v, v′ ∈ X0, and assume that v, v′ are compatible. Let
λ ∈ ∆+ (v) and λ′ ∈ ∆+ (v′) . Then λ ∩ λ′ 6= ∅ ⇒ λ = λ′ .

Proof – We assume that λ ∩ λ′ 6= ∅, and we show that λ = λ′. Assume first that
v ∩ v′ = ∅. Then we have:

v′ = (v ∪ v′)	 v . (3.16)

According to VI-2.1, it implies that v ′ is well-stopped in Ev. (3.16) also implies that

λ′ ∈ ∆+
E (v′) = ∆+

Ev (v′). Then λ ∩ Ev′ is a stopping prefix of
(
Ev
)v′

, that intercepts
λ′ by hypothesis. Since λ′ is minimal, it implies that λ′ ⊆ λ. Exchanging the role of
v and v′ leads to the converse inclusion, hence λ = λ′.

For the general case, we set:

v1 = v 	 (v ∩ v′), v2 = v′ 	 (v ∩ v′), u = v ∩ v′ .

Then, by VI-2.3, u is well-stopped, and thus v1 and v2 are well-stopped in Eu by
Lemma VI-2.1. We also have: λ ∈ ∆+

E (v) = ∆+
Eu (v1), and in the same way

λ′ ∈ ∆+
Eu (v2). Since v1 ∩ v2 = ∅, the problem reduces to the previous case, and

we conclude that λ ∩ λ′ 6= ∅ ⇒ λ = λ′. �

The following result shows that the branching cells of Λ (v) are disjoint, hence in
particular the branching cells in the dynamic puzzle are disjoint. Moreover branching
cells of Λ (v) can be obtained from any step-by-step decomposition of v. It is thus
an invariant of these decompositions.
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VI-3.5 Theorem. Let v be a well-stopped configuration of E . All the branch-
ing cells of Λ (v) are disjoint.

If (vn, zn)n≥1 is any step-by-step decomposition of v, we have:

Λ (v) =
⋃

n≥0

∆+ (vn) . (3.17)

Proof – The first part of the theorem follows from VI-3.4. To show (3.17), we can
assume without loss of generality that v ∈ X0. Let Γ =

⋃

n≥0 ∆+ (vn) , we have

by definition that Γ ⊆ Λ (v). To show the converse inclusion, let λ ∈ Λ (v), and let
v′ ⊆ v such that λ ∈ ∆+ (v′). We distinguish two cases.

• First case. Assume that there is an integer p ≥ 1 such that vp∩λ 6= ∅. Let n be
the smallest of such integers. Then λ contains an event e in B⊥ (Evn−1) , that
belongs to a branching cell λ′ ∈ ∆+ (vn−1) . Since v′ and v are compatible, it
follows from VI-3.4 that λ = λ′ , and thus λ ∈ Γ .

• Second case. Otherwise v ∩ λ = ∅. Let y = v 	 v ′. Then y is well-stopped

in Ev′ (VI-2.2). We have λ ∈ ∆⊥
(

Ev′
)

, and y ∩ λ = ∅ since v ∩ λ = ∅. We

apply V-2.3 to get that λ ∈ ∆+
Ev′

(y) = ∆+ (v). Since v is finite, there is an
integer q such that v = vq, and thus λ ∈ Γ.

�

VI-3.6 Remark. Branching cells of a same configuration do not intersect.
However branching cells intersect in general. Figure 3.17 shows the branching cells
that decompose the two maximal configurations of a same event structure. The
unique branching cell of ∆+ (a) is framed on the left hand, and the unique branch-
ing cell of ∆+ (b) is framed on the right hand. These distinct branching cells intersect.
However branching cells are disjoint for confusion-free event structures, and a fortiori
for trees (Cf. VII for trees, and Ch. 5 for confusion-free event structures).

• /o/o/o
a

•

��

b

• /o/o/o

c
•
d

_ _�
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�
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Figure 3.17: Intersecting branching cells. ∆+ (a) at left, ∆+ (b) at right.

The compositionality of dynamic puzzles is established by the following result.
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VI-3.7 Proposition. (Concatenation of dynamic puzzles) Let v ∈ X0, and let
v′ ∈ X v

0 . Then we have the following disjoint union:

ΛE(v ⊕ v′) = ΛE(v) t ΛEv (v′) . (3.18)

We have v ∩ λ = (v ⊕ v′) ∩ λ if λ ∈ ΛE (v) and v′ ∩ λ = (v ⊕ v′) ∩ λ if λ ∈ ΛEv (v′) .

Proof – Assume that the following property is satisfied:

♦ For every v ∈ X0 and z a λ0-germ of Ev, ΛE (v ⊕ z) = ΛE(v) t {λ0} .

Then (3.18) follows by considering a germ decomposition of v ′ in Ev (VI-1.1). Now
we show ♦. The inclusion ⊇ follows immediately from VI-3.3. For the converse
inclusion, let λ ∈ ΛE (v⊕z). There is a y ∈ X0, with: y ⊆ v⊕z and λ ∈ ∆+ (y) , and
we have, according to VI-3.4: λ ∩ (v ⊕ z) 6= ∅ . We distinguish the following cases:

1. y ∩ z 6= ∅ . Then y ⊆ v. We either have one of the followings:

a. λ ∩ z 6= ∅ ⇒ λ = λ0, using VI-3.4.

b. λ ∩ z = ∅ ⇒ λ ∩ v 6= ∅, and thus λ ∈ ΛE(v), using the characterisation
of VI-3.3.

2. y ∩ z 6= ∅. Then z ⊆ y, and we either have one of the followings:

a. λ ∩ v 6= ∅ ⇒ λ ∈ ΛE(v),

b. λ ∩ v = ∅ ⇒ λ ∩ z 6= ∅ ⇒ λ = λ0 , using VI-3.4.

This shows the ⊆ inclusion, and thus the equality in ♦.
The second assertion of VI-3.7 follows from VI-3.4. �

VII—The Case of Trees of Events

In this section, we examine the different notions introduced (stopping prefixes, well-
stopped configurations, germs and branching cells) for trees, i.e. for event structures
without concurrency. In Chapter 5, a similar study with similar results is done for
confusion-free event structures.

VII-1 Stopping Prefixes and Cone of Future.

Assume that the event structure E = T is a non empty tree of events (Ch. 1, III-
4.2). Denote by G the graph relation on T that connects an event to its successors.
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Configurations of T coincide with paths in (T , G). Hence every non void finite
configuration v has the form:

v = e1 ⊕ · · · ⊕ en = [ en ] ,

with e1 a root of T and eiGei+1 for all i.

VII-1.1 Stopping Prefixes. For each event x ∈ T we denote by D(x) the
immediate successors of x:

D(x) = {y ∈ T |xGy} .

We also define:

F (e) = {y ∈ T |x#d y} .

Let e be an event of T , and let v = [ e [ . Then we have: F (e) = Min� (T v) , the
minimal events of T v . If v 6= ∅, v has the form v = [ f ], and then:

F (e) = D(f) .

Clearly, the smallest stopping prefix B(e) that contains an event e with [ e ] = e1 ⊕
· · · ⊕ en , is given by:

B(e) =

n⋃

i=1

F (ei) .

It follows that:

1. A tree of events T is locally finite if and only if T has finitely many roots, and
if all of the trees as graphs that constitute the tree of events are locally finite
in the usual sense (finite branching).

2. Every configuration of a tree is a stopped configuration. Indeed, we have
[ e ] = ω∩B(e) for every ω ∈ Ω that contains e. This implies in particular that
X0 =W0 .

VII-1.2 Cone of Future. For every finite configuration v = [ e ] , the cone of
future of v coincides with the set of successors of e: E [ e ] = {x ∈ E | e ≺ x} . Each
cone of future Ev is a tree of events.

VII-1.3 Branching Cells. A branching cell of T has the form λ = F (e), with
e any event in λ. If ΛT denotes the set of branching cells of T , we have thus:

∀λ, λ′ ∈ ΛT , λ ∩ λ′ 6= ∅ ⇒ λ = λ′ .

The “dynamic” puzzle is not dynamic.
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VII-1.4 Lack of Concurrency. There is a unique minimal non void stopping
prefix, consisting of the roots of T . The lack of concurrency implies that ∆⊥ (E) is a
singleton. The later condition is not sufficient however since there can be concurrent
events inside a branching cell.

The initial stopping prefix coincides thus with this unique initial branching cell.
Since the cones of future are trees of events, ∆+ (v) consists for every configu-

ration v of at most one branching cell. It follows that ([ e1 ] , . . . , [ en ]) is a germ-
decomposition of e1 ⊕ · · · ⊕ en.

VII-2 Unfolding of a Sequential Net.

Assume that T is the tree of events given by the unfolding of a sequential net N ,
with N associated with a transition system (S,A, x0) as in Ch. 1, III-3. The finite
branching condition of VII-1.1 is satisfied. Hence unfoldings of sequential nets are
locally finite.

Every branching cell λ projects one-to-one into the set of arrows a that all have
the same origin x, for a certain state x of the system. It follows that the projections
of branching cells in the transition system are disjoint.

VIII—Conclusion

In this chapter, we have introduced a class of configurations for locally finite event
structures with finite concurrent width, the well-stopped configurations. Their study
is motivated by their compositional properties. We have collected various results on
well-stopped configurations that we use in particular in the next chapter to define
projective systems of probabilities.

We have shown that well-stopped configurations have various recursive decom-
positions. We have defined the germs of a well-stopped configuration, that are its
minimal increments. Germs are maximal configurations of finite sub-event struc-
tures. These finite event structures constitute the branching cells. Branching cells
associated with a well-stopped configuration v are uniquely defined. Their collection
is partially ordered, and they cut off without intersecting each other a neighbourhood
around v. This collection is a factor of concurrency of the configuration, intrinsic
to the configuration. In general, there are still concurrent elements inside branching
cells.

To define and manipulate well-stopped configurations, we have also introduced
the cone of future of a configuration. The cone of future of v is simply the sub-event
structure that realises the shadow Ω(v) as its own set of maximal configurations.
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#d, S • dynamic conflict (I-1.1), the lattice of stopping
prefixes (I-2.1)

S0, S
? • the lattice of finite stopping prefix, the poset

of non empty stopping prefixes
Ev • cone of future of v, a configuration of E

#v = #Ev
, #v

d = #Ev

d • conflict and dynamic conflict relations in E v

Wv, Ωv • configurations and maximal configurations
of Ev

W(v), Ω(v) • configurations and maximal configurations of
E containing v

B⊥ (E), ∆⊥ (E) • initial stopping time of E , collection of initial
branching cells of E

∆+
E (v)

(
= ∆+ (v)

)
• collection of initial branching cells of E v

X , X0 • set of well-stopped and finite well-stopped con-
figurations of E

(vn, zn)n≥1 • a well-stopped sequence, i.e. satisfying v0 = ∅,
zn = vn+1	 vn, and zn finitely stopped in Ev.
Other restricting conditions on zn make the
sequence a step-by-step or a germ decomposi-
tion.

Λ (v), Λ (v) • the dynamic neighbourhood of v ∈ X , Λ (v) =
Λ (v) t∆+ (v) if v ∈ X0 (a disjoint union)

ΛE • the collection of branching cells of E

Table 3.1: Notations for Well-Stopped Configurations
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Chapter 4

Distributed Probabilities

Chapter 2 has presented an analytical tool for the construction of a probability
measure on the set Ω of maximal configurations of an event structure. Modulo a
geometric condition—the local finiteness of the event structure—the probability is
the limit of a projective system of probability measures on finite sets. In this chapter,
we use the decompositions presented in Chapter 3 to explicitly construct projective
systems of probabilities.

The projective systems that we construct define what we call distributed prob-
abilities. The main feature is to join in some sense a probabilistic independence to
the concurrency of local processes. The intuition according to which “parallelism is
a form of orthogonality” [50] is confirmed. This study is a new interpretation of the
idea of Benveniste et al. [7], that concurrency should fit probabilistic independence.

Chapter 3 has introduced the family of branching cells of an event structure.
Each maximal configuration ω of a locally finite event structure is composed of germs,
seen as local processes. A probability P on Ω induces a collection of probabilities on
germs, called branching probabilities. As the germs are local processes, branching
probabilities are local probabilities, i.e. local probabilistic parameters. The main
problem is then the reverse operation: given a collection of branching probabilities,
can we construct a probability that induces this collection as induced branching
probabilities? Is such a probability unique? The answer depends on the concurrency
properties of the system.

Consider an event structure given by a tree. Randomising Ω consists in driving
a boat that goes forward in the tree. Each choice is the result of the toss of a coin,
whose probability law may vary in any way through the different choices. There is
no concurrency, only one boat is in course. Any probability on Ω, w.r.t. the natural
σ-algebra, is obtained this way—although it is an unusual way to formulate the
extension theorem for projective limits.

For the concurrent picture, you now drive several boats, and they still go forward.
The number of boats vary: they can join—synchronisation—or split—adding con-
currency. There are now many joysticks: one for each boat that makes local choices,
and also additional parameters related to the influence of each boat on the others.
In a sequential system, the additional parameter is necessarily trivial. In concurrent
systems, it is an additional assumption to require that the mutual influence is trivial.
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This is what we do with distributed probabilities.

From a practical point of view, distributed probabilities are of high interest for
computational reasons. They can be coded through a countable family of local
probabilities on finite sets. If the event structure is given by the unfolding of a safe
finite net, we can reduce the countable collection to a finite collection. They are
intended to modelise distributed systems, where interactions are “minimal”: only
local parameters must be specified.

Distributed probabilities also bring a new object: the distributed product of
branching probabilities. The distributed product is the operation that associates a
probability with a family of branching probabilities. As we have already noticed,
its range of application is quite large since every probability on an infinite product
Ω = EN can be obtained this way. Following the discussion engaged in the Introduc-

tion of Chapter 3, the distributed product, denoted with the symbol P =
⊗d

E

Pλ

(distributed product on E of the collection (Pλ)λ ), satisfies the following properties:

1. Universal w.r.t. the past. For every finite stopping prefix B, the image in ΩB

of a d-product P =
⊗d

E Pλ satisfies:

πBP =
⊗d

B

Pλ .

2. Universal w.r.t. the future. For every finite well-stopped configuration, the
probabilistic future Pv = P

(
· |Ω(v)

)
of a d-product is a d-product w.r.t. the

cone of future Ev:

Pv =
⊗d

Ev

Pλ . (4.1)

3. Parallelism and probabilistic independence. We have seen in Chapter 3 the
association between the concurrency of branching cells and the independence
of the associated germs. Distributed probabilities bring as a counterpart the
probabilistic independence of the random variables defined by the concurrent
germs.

Point 2. will be fundamental for the construction of memory-less probabilities
in Chapter 5, connecting our constructions with the familiar framework of finite
Markov chains.

The present chapter has 5 sections. The background from probability theory
related to independence is presented in Section I, Independence and conditional
probabilities. On the way, we collect the notions concerning conditional expectation
and conditional probability used in next chapters. Section II, General probabilis-
tic framework quickly recalls the vocabulary and notations concerning probabilistic
event structures. In Section III, Distributed probabilities, we define the distributed
probabilities and related objects: branching probabilities, random germs. The exis-
tence of distributed probabilities is the topic of Section IV, The distributed product.
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We establish the theorem that sates the existence and the compositional properties
of the distributed product. Section V studies Two examples of distributed product.
In the first example, a purely concurrent case leads to a direct product of proba-
bilities. The second example is the example of trees, a purely sequential case; we
show that every probability on a countable product (the boundary of a tree) is a
distributed product.
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I—Background: Independent Random Variables and Expectation

This section states the background material concerning independence of random
variables needed in this chapter (I-1). We also recall some results on expectation
and on conditional expectation that will be used later in the document (I-2–I-3),
and we give an example of conditional expectation in the context of probabilistic
event structures. Finally we recall two classical results from probability theory, the
Borel-Cantelli lemma and the Strong law of large numbers for independent random
variables.

I-1 Conditional Probability and Independence of Random Variables.

I-1.1 Conditional Probability. Let (Ω,F , P) be a probability space. If A is
a subset of Ω with P(A) > 0, we denote by P( · |A) the probability on Ω defined by:

∀B ∈ F , P(B |A) =
P(A ∩B)

P(A)
.

We shall also denote by P( · |A) the probability on A defined by:

∀B ∈ F , B ⊆ A , P(B |A) =
P(B)

P(A)
.

P( · |A) is the probability conditional on A.

I-1.2 Independent Subsets. Two measurable subsets A,B ⊆ Ω are said to
be independent (w.r.t. probability P), if P(A ∩B) = P(A)P(B).

With the vocabulary of conditional probabilities, and if P(A) > 0, A and B are
independent if and only if P(B |A) = P(B).

I-1.3 Independence of σ-Algebras. Two σ-algebras G,G ′ ⊆ F are said to be
independent if A and B are independent subsets, for all pairs (A,B) ∈ G ×G ′. More
generally, if I is a finite set and Fi are sub-σ-algebras of F , (Fi)i∈I is said to be a
family of independent σ-algebras if we have:

P
(⋂

i∈I

Ai

)

=
∏

i∈I

P(Ai) ,

for every tuple of subsets (Ai)i ∈
∏

iFi .

I-1.4 Independence of Random Variables. Let (Ω,F ,P) be a probability
space, and let (Ei,Fi)i∈I be a finite collection of measurable spaces. Let (Xi)i∈I
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be a family of random variables Xi : Ω → Ei . The family (Xi)i∈I is said to be
independent if the family of σ-algebras 〈Xi〉i∈I is independent. Equivalently:

∀(Ai)i ∈
∏

i

Fi , P
(⋂

i

(Xi ∈ Ai)
)

=
∏

i

P(Xi ∈ Ai) .

For instance, assume that Xi : Ω → N are integer random variables, with I =
{1, . . . , k}. Then (Xi)i is independent if and only if for every k-tuple (ni)i:

P
(
X1 = n1 , . . . , Xk = nk

)
= P(X1 = n1) · · · P(Xk = nk) .

More generally, the following result is of constant use for studying independent
random variables. Recall that, if (Ei,Fi, µi)i is a finite family of probability spaces,
the product spaces

∏

i Ei is equipped with the product σ-algebra F =
⊗
Fi , gener-

ated by the squares:
∏

i

Ai ,

with Ai ∈ Fi . The product probability µ =
⊗

i µi is the unique probability on
(
∏

i Ei,
⊗

i Fi) satisfying:

∀(Ai)i ∈
∏

i

Fi , µ
(∏

i

Ai

)

=
∏

i

µi(Ai) .

I-1.5 Theorem. Let (Xi)i∈I be a family of random variables Xi : Ω → Ei .
Let E denote the product space E =

∏

i Ei . Then the family (Xi)i is independent
under P if and only if the probability law PX of X = (Xi)i ∈ E is the product:

PX =
⊗

i∈I

Pi ,

with Pi the probability law of Xi in Ei .

I-2 Expectation and Conditional Expectation.

We denote by L1 the set of integrable real random variables X : Ω → R. We
denote by L∞ the set of real random variables, bounded on a set of probability 1.
For X ∈ L1, the expectation of X is defined as its integral, and we write:

E(X) =

∫

Ω
X(ω) dP(ω) .

If A is measurable subset of Ω with P(A) > 0, the expectation of X conditional
on A is the integral of X w.r.t. the probability measure P( · |A), i.e.:

E(X |A) =
1

P(A)

∫

A
X dP .

Theorem I-1.5 has the following consequence:
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I-2.1 Theorem. Let X,Y be two independent random variables. For every pair
(g, h) of integrable real random variables, with f X-measurable and g Y -measurable,
we have:

E(fg) = E(f)E(g) .

I-3 Conditional Expectation w.r.t. a σ-Algebra.

For G a sub-σ-algebra of F , we write g ∈ G if g is a G-measurable random variable.
G-measurable functions are seen as test functions.

Let G be a sub-σ-algebra of F , and let X ∈ L1. There is a random variable
Z ∈ L1, G-measurable, and such that:

∀g ∈ L∞ , g ∈ G ⇒ E(Xg) = E(Zg) . (4.2)

If Z ′ is an other G-measurable random variable satisfying (4.2), then Z = Z ′ P-a.s.
Z is called the conditional expectation of g w.r.t. G, denoted by:

Z = E(X | G) .

I-3.1 Example. (Conditional expectation w.r.t. a discrete random variable) We
write E(X |Y ) = E(X | 〈Y 〉), where 〈Y 〉 is the σ-algebra generated by a random
variable Y . Assume that Y takes its values in a discrete set of values y1, . . . ∈ R.
Let Z = E(X |Y ). Z is 〈Y 〉-measurable, hence there is a mapping z : {y1 , . . .} → R
such that Z = z(Y ), and z is given by:

z(y) = E(X |Y = y) , (4.3)

if P(Y = y) > 0, and any real number otherwise. In (4.3), the expectation is
taken conditionally on the event {Y = y} = {ω ∈ Ω |Y (ω) = y} , that is w.r.t. the
conditional probability P( · |Y = y).

I-3.2 Example. Assume that X and Y are independent real random variables.
Then conditional expectation and expectation coincide:

E(X |Y ) = E(X) .

Indeed for every random variable g Y -measurable, we have by Th. I-2.1:

E
(
gX
)

= E
(
g
)
E(X) = E

(
gE(X)

)
.

The constant E(X) is Y -measurable and satisfies the characterisation of conditional
expectation.
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I-3.3 Example. (Conditional expectation w.r.t. a stopping prefix) This example
illustrates the notion of probabilistic future, defined below in II-3.

Let (E , P) be a probabilistic event structure, and let B be a finite stopping prefix
of E . We denote as usual πB : Ω → ΩB, and ωB = πB(ω) = ω ∩ B. Let FB denote
the σ-algebra FB = 〈πB〉. For any integrable function h : Ω→ R, we have:

E(h | FB) =

∫

ΩωB

h(ωB ⊕ ξ) dPωB(ξ) .

E(h | FB) represents the mean value of h, given that ω ⊇ ωB . We can define it
as zero or as any function on PB(ωB) = 0.

Proof – Let φ be a FB-measurable function. There is a function φ̇ : ΩB → R with:
φ(ω) = φ̇(ωB). Since B is finite, ΩB is finite, hence:

E(hφ) =
∑

w∈ΩB

∫

Ω(w)
hφdP

=
∑

w∈ΩB

φ̇(w)

∫

Ω(w)
h(ω) dP(ω)

=
∑

w∈ΩB

P
(
Ω(w)

)
φ̇(w)

∫

Ωw

h(w ⊕ ξ) dPw(ξ) ,

where Pw = 1

P

(
Ω(w)

)P
(
· ∩ Ω(w)

)
denotes the probabilistic future of Uw (see below,

II-3). In the later sum, there is no need to define Pw if P
(
Ω(w)

)
= 0. The sum can

be written as:

E(hφ) = EB(Ẏ φ̇) ,

with Ẏ : Ω→ R defined by:

Ẏ : ΩB → R , Ẏ (w) =

∫

Ωw

h(w ⊕ ξ) dPw(ξ) if P
(
Ω(w)

)
> 0 ,

Ẏ = 0 otherwise. We set Y : Ω→ R, Y (ω) = Ẏ (ωB) to get:

E(hφ) = E(Y φ) .

Y is FB-measurable and has the characteristic property of conditional expectation,
hence E(h | FB) = Y . �

I-3.4 Properties of Conditional Expectation. The conditional expectation
satisfies the following properties, for G ⊆ F two σ-algebras:

∀h ∈ F , E
(
E(h | G)

)
= E(h) , (4.4)

∀h ∈ F , ∀g ∈ G , E(gh | G) = gE(h | G) , g is “constant” w.r.t. G . (4.5)
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I-4 Independent and Identically Distributed (i.i.d.) Random Variables.

We recall the statement of the Strong law of large numbers for i.i.d sequences [10].

I-4.1 i.i.d Sequences. Let (Ω,F , P) be a probability space and let (E,G) be
a measurable space. A sequence (Xn)n≥1 of random variables Xn : Ω→ E is said to
be identically distributed if the law PXn of Xn in E is independent of n. If Xi are
real random variable identically distributed, it implies that the Xn are integrable all
together, and if they are integrable E(Xi) = E(Xj) for all i, j.

The sequence (Xn)n≥1 is said to be independent if for every n, the finite family
(X1 , . . . , Xn) is independent (I-1.4). “i.i.d” is an abbreviation for independent and
identically distributed.

I-4.2 Remark. If (Xn)n≥1 is i.i.d and if Xn takes a finite number of values,
then (Xn)n≥1 is a finite Markov chain. The transition matrix has identical rows. Any
row is given by the finite probability vector that gives the probability law of X1 .

I-4.3 Theorem. Let (Xn)n≥1 be an i.i.d sequence of real random variables
Xn : Ω → R, that we assume integrable. Then for every non negative function
f : R→ R, we have the convergence:

lim
n→∞

1

n

n∑

k=1

f(Xk) = E
(
f(X1)

)
, P-a.s .

If µ denotes the common probability law PXi of Xi in R we have:

E
(
f(X1)

)
=

∫

R

f(x) dµ(x) .

I-5 Limit Sup of Subsets and the Borel-Cantelli Lemma.

I-5.1 Limit Sup of Subsets. Let (Ω,F) be a measurable space, and let
(An)n≥1 be a sequence of measurable subsets of Ω. The limit sup of the sequence
(An)n is the measurable subset of Ω defined by:

lim sup
n→∞

An =
⋂

N≥1

⋃

n≥N

An .

The elements ω ∈ lim supAn are those elements ω ∈ Ω that belong to infinitely
many An . We also say that An holds infinitely often, abbreviated by i.o. Thus we
write:

lim sup
n→∞

An = {An i.o } .

We recall the following elementary result.
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I-5.2 Theorem. (Borel-Cantelli Lemma) Let (Ω,F , P) be a probability space,
and let (An)n≥1 be a sequence of measurable subsets of Ω.

1. If
∑

n≥1 P(A) <∞ , then: P
(
An i.o) = 0.

2. If the sequence (An)n is an independent sequence of subsets, and if
∑

n≥1 P(A) =∞ , then: P
(
An i.o) = 1.

II—General Probabilistic Framework

We consider an event structure E , that we assume locally finite and of
finite concurrent width (Chapter 3, I-2.3, III-1.1).

II-1 Probability Space and Random Variables for Event Structures.

We denote by Ω the set of maximal configurations of E . We have shown in
Chapter 2 that the topology generated by the finite shadows:

Ω(v) = {ω ∈ Ω |ω ⊇ v}, v ∈ W0 ,

makes Ω a separable metric space. We have defined a probabilistic event structure
as a pair (E , P), with P a probability measure on Ω, equipped with the σ-algebra F
generated by the collection of finite shadows.

We recall that for each finite prefix P of E , the finite set ΓP = {ω ∩ P |ω ∈ Ω}
is equipped with the discrete σ-algebra, that contains all its subsets. We denote by
πP the mapping:

πP : Ω→ ΓP , ω 7→ πP (ω) = ω ∩ P ,

and we denote by FP = 〈πP 〉 the sub-σ-algebra of F generated by πP . FP is the
collection of πP -saturated subsets A ⊆ Ω, i.e. such that:

∀ω ∈ A , ∀ ξ ∈ Ω , πP (ω) = πP (ξ)⇒ ξ ∈ A .

For any measurable space E, a random variable Y : Ω→ E is 〈πP 〉-measurable if
and only if there is a random variable f : ΓP → E such that Y = f ◦πP . ΩP denotes
the set of maximal configurations of P . Every stopping prefix B ∈ S is intrinsic to E ,
i.e. satisfies ΩB = ΓB .

Since E is locally finite, Ω is isomorphic as a topological space, and hence as a
measurable space, to the projective limit:

(Ω,F) ' (ΩB)
←−−−

B∈S0 , (4.6)
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with ΩB equipped with the discrete σ-algebra (Ch.2, III-3).

In particular, F coincides with the σ-algebra:

F =
〈
FB , B ∈ S0

〉
.

As a consequence, dealing with finite stopping prefixes instead of finite prefixes is
allowed without loss of generality, from a measurable (and topological) point of view.
Moreover, Theorem III-3.1 of Ch. 2 states that every projective system (PB)B∈S0

of probability measures on (ΩB)B∈S0 , w.r.t. the natural filtration πB,B′ , can be
extended to a unique probability measure P on Ω such that PB = πBP for all B ∈
S0. The diagram of Ch. 3, I-3.1, becomes the following commutative diagram of
probability spaces, for B,B ′ ∈ S0 with B ⊆ B′:

(Ω,F , P) (ΩB′ ,FB′ , PB′)

(ΩB ,FB , PB)

-πB′

Q
Q

Q
Q

Q
QQs

πB

?

πB,B′

II-2 Likelihood of Configurations.

We recall that every shadow Ω(w), with w ∈ W a configuration, is measurable.
Indeed, Ω(w) is the countable intersection of measurables subsets:

Ω(w) =
⋂

v⊆w
v∈W0

Ω(v) .

We define the likelihood of P as the function pE with values in the real interval [0, 1],
given by:

pE :W → [0, 1] , w 7→ pE(w) = P
(
Ω(w)

)
.

Let B ∈ S. The probabilistic event structure (B, PB) defines a likelihood pB :
WB → [0, 1]. For every configuration v ⊆ B, we have:

π−1
B

(
ΩB(v)

)
= Ω(v) ,

and therefore:

pB(v) = pE(v) (4.7)

is independent of B ∈ S such that v ⊆ B. Therefore, we simply note p for the
likelihood.
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II-3 Probabilistic Future of a Finite Configuration.

Let v be a finite configuration of E , and let E v be the cone of future of v in E
(Ch. 3, II-1.1). The mapping Ω(v) → Ωv is a homeomorphism (Ch. 3, II-3.3), and
thus an isomorphism of measurable spaces, where:

• Ω(v) is equipped with the restriction of F to Ω(v) ,

• Ωv is equipped with the operational σ-algebra w.r.t. the event structure E v .

We denote with the same symbol F v, both σ-algebras on Ω(v) and on Ωv. If v
satisfies p(v) > 0, then we equip

(
Ω(v),Fv

)
with the conditional probability Pv

defined by:

Pv( · ) = P
(
· |Ω(v)

)
, Pv(A) =

P(A)

p(v)
∀A ⊆ Ω(v), A ∈ Fv .

We denote with the same symbol the probability on Ωv, image of Pv under the
isomorphism Ω(v)→ Ωv , and given by:

∀A ⊆ Ωv, A ∈ Fv , Pv(A) =
1

p(v)
P(v ⊕A) . (4.8)

II-3.1 Definition. (Probabilistic future) Let (E , P) be a probabilistic event
structure, and let v ∈ W0 such that p(v) > 0. We define the probabilistic cone

of future of v, or shortly the probabilistic future of v, as the probabilistic event
structure (Ev, Pv).

II-3.2 Likelihood in the Future. If v ∈ W0 satisfies p(v) > 0, we denote by
pv the likelihood of (Ev , Pv), and we have from (4.8):

∀ y ∈ Wv , pv(y) =
p(v ⊕ y)

p(v)
. (4.9)

II-4 ?-Regular Probabilities.

We introduce the following class of probabilities, that is convenient for our pur-
pose. It is analogous to a statistical model dominated along a filtration [14].

II-4.1 Definition. (?-regular probability) Let (X, d) be a separable metric space,
let F be the Borel σ-algebra generated by d, and let P be a probability on (X,F).
We say that P is ?-regular if P(U) > 0 for every non empty open set U .
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II-4.2 Remark. Two ?-regular probabilities might not to been regular1 one w.r.t.
the other. I give below two counter-examples.

• Let X = [0, 1] and let p, q be two different numbers of ]0, 1[. Consider P and Q
the probabilities on X ∼= {0, 1}N given by the coin game on {0, 1}, respectively with
probability p and q respectively on 0. Then by the Strong Law of Large Numbers
applied to the natural process (Xn)n≥0 of i.i.d random variables, P is concentrated on
the set of sequences (Xn)n≥0 such that:

lim
n→∞

1

n
Card

{
k ≤ n |Xk = 0

}
= p

and similarly with q for Q . Therefore P and Q are concentrated on disjoint sets, and
thus none is regular w.r.t. the other, although both are ?-regular w.r.t. the Euclidean
topology of X .

• The following example has been kindly communicated to me by Tanguy Briançon. Let
X = [0, 1] and let (xn)n≥1 be a sequence dense in X . Let k > 0 be a constant such
that

∑∞

n≥1
2k
n2 < 1. Let U be the open set of X given by:

U =
⋃

n≥1

B
(

xn,
k

n2

)

,

where B(x, r) denotes the open interval of centre x and radius r. Then U = X since
(xn)n is dense. Let m denote the Lebesgue measure on X , and let H = X \ U . We
have m(H) ≥ 1 −

∑∞

n≥1
2k
n2 > 0. Let mU denote the restriction of m to U , given

by mU ( · ) = m( · ∩ U). Then m and mU are both ?-regular, but m(H) > 0 and
mU (H) = 0. Therefore m is not regular w.r.t. mU .

The class of ?-regular probabilities is stable under product and projective limit,
which has the following expression in our context.

II-4.3 Lemma. Let (E , P) be a locally finite probabilistic event structure, with
likelihood p. The following propositions are equivalent:

1. P is ?-regular,

2. PB is ?-regular for every B ∈ S0 ,

3. p(v) > 0 for every v ∈ W0 .

In this case, Pv is defined for every v ∈ W0, and Pv is ?-regular.

Proof – 1⇔ 3. Since the finite shadows form a basis of open sets of Ω, P is ?-regular
if and only if P

(
Ω(v)

)
= p(v) > 0 for every v ∈ W0 .

2 ⇔ 3. As E is locally finite, every finite configuration is subset of a B ∈ S0,
and (4.7) gives then the result.

It follows from (4.9) that Pv is then ?-regular. �

1A probability P is said to be regular w.r.t. a probability Q , which is denoted by P � Q , if
Q(A) = 0 ⇒ P(A) = 0.
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III—Distributed Probabilities

In this Section we introduce the definition of distributed probabilities, together with
other related notions: branching probabilities, induced branching probabilities and
random germs. We begin the study a priori of distributed probabilities, their effec-
tive construction is the topic of Section IV.

We begin in III-1 with the definition of branching probability and of induced
branching probability. This comes together with the notion of absolute random
germ associated with a branching cell. The notion of conditional random germ
is presented in III-2. The definition of distributed probabilities, presented in III-3,
establishes a relation between conditional and absolute random germs. We conclude
the section by studying in III-4 the image of distributed probabilities in stopping
prefixes.

III-1 Branching Probabilities.

We use the notions of branching cells and of well-stopped configurations intro-
duced in Chapter 3. We recall that Table 3.1, page 120, presents a summary of the
notations that we use concerning well-stopped configurations and branching cells.
Since we assume that E is locally finite, every branching cell is finite (Ch. 3, III-2.3).

III-1.1 Definition. (Branching probability) Let λ be a branching cell of E . A
branching probability on λ is a probability µ on the finite set Ωλ . The branching
probability µ is said to be positive if µ(z) > 0 for every z ∈ Ωλ .

III-1.2 Induced Branching Probability. We show that a probability on Ω
induces a collection of branching probabilities. For each λ ∈ ΛE , we set the following
subset of Ω:

Hλ
E = {ω ∈ Ω |λ ∈ Λ (ω)} ,

where Λ (ω), defined in Ch. 3, VI-3.1, denotes the collection of branching cells of E
that form the neighbourhood of ω. Thus Hλ

E is the set of maximal configurations of
E that contain λ as a branching cell in their decomposition. Hλ

E is a “thick” shadow,
illustrated in Figure 4.1. We denote Hλ

E by Hλ if there is no ambiguity on the event
structure E .

III-1.3 Lemma. For every λ ∈ ΛE , Hλ is a non empty open subset of Ω.

Proof – By definition of Λ (ω), we have:

Hλ =
⋃

v∈X0 :λ∈∆+(v)

Ω(v) .
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λ

Ω

Hλ

Figure 4.1: Thick shadow Hλ .

Therefore Hλ is open as a union of open sets. It is not empty since by definition of
branching cells, there is a v ∈ X0 with λ ∈ ∆+ (v). �

In particular Hλ is measurable, and P(Hλ) > 0 for all λ ∈ ΛE whenever P is ?-re-
gular. In order to deal with non ?-regular probabilities, we introduce the following
definition. For simplicity, the reader may assume that all probabilities are ?-regular.

III-1.4 Definition. (Positive trace of a probability, positive branching cell) Let
(E , P) be a probabilistic event structure. We define the positive trace of P as the set
of finite well-stopped configurations v such that p(v) > 0:

R(P) = {v ∈ X0 | p(v) > 0} .

We say that a branching cell λ of E is P-positive, or positive for short, if
P
(
Hλ
)

> 0 .

Remark that it is totally independent for a branching cell λ to be positive, and
for a branching probability µ on λ to be positive.

Assume that λ is a positive branching cell. Then we equipHλ with the conditional
probability measure P( · |Hλ), given by:

∀A ⊆ Hλ, A ∈ F , P
(
A |Hλ) =

1

P(Hλ)
P(A) . (4.10)

III-1.5 Definition. (Absolute random germs) Let (E , P) be a probabilistic event
structure. For each positive branching cell λ, we define the following random variable
as the absolute random germ of λ:

Xλ : Hλ → Ωλ, ω 7→ ω ∩ λ ,
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where Hλ is equipped with the conditional probability (4.10).

Proof – We have to show that ω ∩ λ ∈ Ωλ for every λ ∈ ΛE and all ω ∈ Hλ. Fix
λ ∈ ΛE , ω ∈ Hλ, and let v ∈ X0 such that v ⊆ ω and λ ∈ ∆+ (v). Then ω 	 v is
maximal in Ev (Ch. 3, VI-2.2) and λ is a stopping prefix of E v, thus (ω	v)∩λ ∈ Ωλ.
As λ ∈ ∆+ (v), we have v ∩ λ = ∅, and thus (ω	 v) ∩ λ = ω ∩ λ, from which follows
that ω ∩ λ ∈ Ωλ. �

III-1.6 Definition. (Induced branching probability) Let (E , P) be a probabilistic
event structure, and let λ be a positive branching cell of E . We define the branching
probability on λ induced by P, as the probability law of the random variable
Xλ : Hλ → Ωλ . We denote this probability on Ωλ by Pλ.

For every x ∈ Ωλ, Pλ(x) is given by:

Pλ(x) = P
(
Xλ = x |Hλ

)
=

P(ω ∈ Hλ and ω ∩ λ = x)

P(Hλ)
. (4.11)

III-1.7 Lemma. Let (E , P) be a probabilistic event structure, and let B be a
stopping prefix. Let λ ∈ ΛB , i.e. a branching cell of E subset of B. Then λ is positive
for (E , P) if and only if λ is positive for (B, PB), and in this case both induce the
same branching probability in λ.

Proof – We have:

Hλ
B = {ωB ∈ ΩB |λ ∈ Λ (ωB)} ,

from which follows that π−1
B (Hλ

B) = Hλ
E . Therefore: λ is P-positive ⇔ λ is

PB-positive. Assume that λ is a positive branching cell. For every ω ∈ Hλ, we
have ω ∩ λ = πB(ω) ∩ λ since λ ⊆ B, from which follows:

∀z ∈ Ωλ, Pλ
B(z) =

PB(ωB ∈ H
λ
B and ωB ∩ λ = z)

PB(Hλ
B)

=
P(ω ∈ Hλ and ω ∩ λ = z)

P(Hλ)
= Pλ(z) .

�

III-2 Concurrent Conditional Random Germs.

The absolute random germ Xλ depends only on λ, and thus is intrinsic to λ, as
a branching cell of E . We now define an other random germ with value in Ωλ, that
is not intrinsic to λ, but with the advantage that concurrent random germs can be
considered on the same probability space.
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We fix a finite well-stopped configuration v ∈ X0 . For each λ ∈ ∆+ (v), we define
the random variable Zλ

v by:

Zλ
v : Ω(v)→ Ωλ, ω 7→ ω ∩ λ .

It is immediate that Zλ
v ∈ Ωλ. Indeed for ω ∈ Ω(v), ω 	 v is maximal in E v, and λ

is a stopping prefix of Ev, thus ω ∩ λ = (ω 	 v) ∩ λ ∈ Ωλ . We recall that we denote
by Π(v) the product:

Π(v) =
∏

λ∈∆+(v)

Ωλ .

III-2.1 Definition. (Conditional random germs) Let v be a finite well-stopped
configuration of a probabilistic event structure (E , P), and assume that p(v) > 0.
We define the conditional random germs of v as the random variables Zλ

v for
λ ∈ ∆+ (v) , defined on the same probability space Ω(v). We set the following
product random variable:

Zv : Ω(v)→ Π(v) , Zv = (Zλ
v )λ∈∆+(v) .

As it was for absolute random germs, the restriction of conditional germs to
stopping prefixes keeps the laws invariant, as stated by the following result. Recall
the notation R(P) for the positive trace of P, III-1.4.

III-2.2 Lemma. Let (E , P) be a probabilistic event structure. Let v ∈ R(P),
and let B ∈ S such that Λ (v) ⊆ ΛB . Let Y λ

v denote the conditional λ-germ induced
by (B, PB), and let Yv = (Y λ

v )λ∈∆+
B

(v) . Then Zv and Yv have the same law in Π(v).

Proof – Remark first that Yv and Zv take their value in the same space Π(v) since
Λ(v) ⊆ B, and thus ∆+

B (v) = ∆+
E (v) ⊆ B. Let y = (yλ)λ∈∆+(v). The law of Yv

evaluated at y is given by:

PB

(
Yv = y |ΩB(v)

)
=

1

pB(v)
PB(ωB ⊇ v, Yv(ωB) = y) ,

where pB denotes the likelihood in (B, PB). For every ω ∈ Ω(v), Yv(ω∩B) = Zv(ω),
and since pB(v) = p(v) as seen in (4.9), we get:

PB

(
Yv = y |ΩB(v)

)
=

1

p(v)
P(ω ⊇ v, Zv(ω) = y)

= P
(
Zv = y |Ω(v)

)
.

�

For every v ∈ R(P) and λ ∈ ∆+ (v), λ is a positive branching cell. In this case,
the two random variables Xλ and Zλ

v , with values in Ωλ, define probability laws
on Ωλ . In general, these laws need not be equal (we derive a counter-example from
a law on {0, 1}×{0, 1} that is not the product of its marginal laws). This observation
leads to the definition of distributed probabilities.
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III-3 Distributed Probabilities.

We define a particular class of probabilities, that we call distributed probabili-
ties2. We have seen that the germs that compose well-stopped configurations can
be concurrent. Moreover, from a set point of view, concurrent germs are indepen-
dent. Distributed probabilities translate this property into an independence in the
probabilistic sense.

We give the definition, and then we show that the likelihood of distributed proba-
bilities has a simple form (Cf. I-1 for background on independent random variables).

III-3.1 Definition. (Distributed probability) Let (E , P) be a probabilistic event
structure. We say that the probability P is distributed w.r.t. E , or shortly that P
is distributed, if for every v ∈ R(P), we have:

1. the random variables (Zλ
v )λ∈∆+(v) form an independent family,

2. for every λ ∈ ∆+ (v), the law of Zλ
v in Ωλ is the law of Xλ.

Equivalently, P is distributed if and only if for every v ∈ X0 with p(v) > 0, the

law of Zv in Π(v) =
∏

λ∈∆+(v)

Ωλ is given by the direct product of probabilities:

⊗

λ∈∆+(v)

Pλ , (4.12)

where Pλ is the branching probability induced by P on λ (III-1.6). Remark that this
product is finite since we assume that E has finite concurrent width. The product
probability is the unique probability that gives probability:

∏

λ∈∆+(v)

Pλ(zλ) ,

to a tuple (zλ)λ ∈ Π(v).

III-3.2 Concurrency and Probabilistic Independence. Point 1 in Defini-
tion III-3.1 of distributed probabilities is the more intuitive part: the conditional
random germs are independent in the probabilistic sense. This is also the sense
of (4.12).

The next proposition shows that the likelihood of distributed probabilities has a
simple form on X0 .

2The term “distributed” in the expression “distributed probability” refers to the distributed
systems themes, and not to the theory of distributions nor to the distribution of the probability,
i.e. to its law.
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III-3.3 Counting Branching Cells. We introduce a tool for inductions on
finite well-stopped configurations. We define the following function, that counts the
number of branching cells in the decomposition of an element v ∈ X0 :

N : X0 → N , v ∈ X0 7→ 〈N, v〉 = Card
(
Λ (v)

)
. (4.13)

The notation 〈N, v〉 will be justified in Chapter 6.

III-3.4 Proposition. Let (E , P) be a probabilistic event structure, with P a
distributed probability. Then the likelihood p is given on X0 by:

∀ v ∈ R(P) , p(v) =
∏

λ∈Λ(v)

Pλ(v ∩ λ) . (4.14)

Proof – We show the result by induction on 〈N, v〉 = CardΛE(v) (III-3.3). If empty,
the product equals 1 by convention, so p(∅) = 1 holds. Let v ′ = v ⊕ z, with z ∈ Ωλ0

and λ0 ∈ ∆+ (v), and assume that v⊕z ∈ R(P). Then Λ (v ′) = Λ (v)t{λ}, a disjoint
union (Ch. 3, VI-3.7), and thus 〈N, v ′〉 = 〈N, v〉 − 1. Obviously, p(v) > 0, thus we
apply the chain rule to get:

p(v′) = p(v) pv(z) = p(v) Pv(Zλ0
v = z) . (4.15)

The subset {Zλ0
v = z} of Ω(v) projects to Π(v) onto the product:

{z} ×
∏

λ∈∆+(v)
λ6=λ0

Ωλ .

Using that P is distributed, the law of Zv has the form (4.12), so we get pv(z) =
Pλ0(z)× 1 = Pλ0(v′ ∩ λ0). Using the induction hypothesis, we get from (4.15):

p(v′) = Pλ0(v′ ∩ λ0)
∏

λ∈Λ(v)

Pλ(v ∩ λ) .

It follows from Ch. 3, VI-3.3, that v ′ ∩ λ = v ∩ λ for every λ ∈ Λ (v), and this
completes the induction. �

III-3.5 Corollary. Let P and Q bet two probabilities distributed w.r.t. an event
structure E (locally finite and of finite concurrent width). Assume that the following
holds:

∀λ ∈ ΛE , if λ is P-positive and Q-positive, then Pλ = Qλ .

Then P = Q .

Proof – First step. We show that R(P) = R(Q ). Let v ∈ R(P). We set:

v′ = sup{y ∈ X0 , y ⊆ v | y ∈ R(Q )} .
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Assume that v′ ( v. Since the well-stopped sub-configurations of v form a lattice
(Ch. 3, VI-2.3), v′ is well-stopped. Hence there is a λ0 ∈ ∆+ (v′) such that λ ∈ Λ (v),
i.e., λ /∈ ∆+ (v). Let p and q denote the likelihoods of P and Q . We have q(v ′) > 0 by
construction, so λ0 is Q-positive. Let z be the λ0 germ of v. Then v′ ⊕ z ⊆ v. Since
p(v) > 0, we have that λ0 is P-positive, and that Pλ0(z) > 0. Thus λ0 is P-positive
and Q-positive, and by the assumption it implies that Qλ0(z) = Pλ0(z). But then
q(v′ ⊕ z) > 0, which contradicts that v′ is maximal among configurations y ∈ X0

satisfying y ∈ R(Q) and y ⊆ v. It follows that R(P) ⊆ R(Q ), and by symmetry:
R(P) = R(Q ).

Second step. Let B ∈ S0 , and let v ∈ ΩB . If p(v) = 0, it follows from the above
point that q(v) = 0, and thus p(v) = q(v). If p(v) > 0, then q(v) > 0. It follows
that all the branching cells of Λ (v) are P-positive and Q-positive, and thus satisfy
Pλ = Qλ. Since P and Q are distributed, it follows from III-3.4 that p(v) = q(v).
We have shown that PB = QB for all B ∈ S0 . By the uniqueness in the extension
theorem (Ch. 2, III-3.1), it implies that P = Q . �

III-4 Restriction of Distributed Probabilities to Stopping Prefixes.

Let (E , P) be a probabilistic event structure, and assume that P is a distributed
probability. We first look for conservation properties w.r.t. restriction to stopping
prefixes. The following result shows that the distributed probabilities are stable
under projective limit. The case of the probabilistic future is more delicate and is
examined in the next section.

III-4.1 Proposition. Let (E , P) be a probabilistic event structure. Then (E , P)
is distributed if and only if (B, PB) is distributed for every B ∈ S0. In this case, for
every B ∈ S0 , (B, PB) and (E , P) induce the same collection of branching probabili-
ties on ΛB .

Proof – The first part follows from III-1.7 and III-2.2.

Conversely, assume that (B, PB) is distributed for every B ∈ S0, we show that
P is distributed w.r.t. E . Let v ∈ R(P). Since E is locally finite, ∆+ (v) is a finite
collection of finite sets (Ch. 3, III-2.3). There is thus a B ∈ S0 such that λ ⊆ B
for all λ ∈ ∆+ (v). Since we have (Ch. 3, V-1.3) ΛB = {λ ∈ ΛE |λ ⊆ B}, it follows
that ∆+

E (v) = ∆+
B (v). Then applying III-1.7 and III-2.2, the law of Zv in Π(v) is the

product:
⊗

λ∈∆+
B

(v)

Pλ
B =

⊗

λ∈∆+
E (v)

Pλ .

This shows that P is distributed. �
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IV—Distributed Product

This Section states the existence of distributed probabilities. For this we propose
a construction that reverses the operation P → (Pλ)λ . The goal is to establish
theorem IV-2.2, that states both the existence of the distributed product and its
compositional properties w.r.t. the past and w.r.t. the future. The proof is based
on an induction. We use the analytical result of extension of measures shown in
Chapter 2.

IV-1 Preliminary.

We have seen in III-3.4 that distributed probabilities, if they exist, must have
their likelihood given by (4.14) on finite configurations. We will now check that this
expression actually leads to a projective system.

Before that, we introduce the following random variable, defined for λ ∈ ΛE :

V λ
E : Hλ →W, ω 7→ V λ

E (ω) = min{v ∈ X0 | v ⊆ ω , λ ∈ ∆+ (v)} .

The set at right hand is non empty because of ω ∈ Hλ, and is a lattice by Ch. 3,
VI-2.3, thus V λ

E is well defined.

IV-1.1 Lemma. The random variable V λ
E satisfies the following property:

∀ω, ω′ ∈ Ω , ω ⊇ V λ
E (ω′)⇒ V λ

E (ω) = V λ
E (ω′) . (4.16)

For all B ∈ S such that λ ∈ ΛB , i.e. such that λ ⊆ B, V λ
E is FB-measurable, given

by V λ
E = V λ

B ◦ πB .

Proof – We denote shortly V = V λ
E . Let ω, ω′ ∈ Ω. Let y = V (ω′), and assume that

ω ⊇ y. Then y is finite well-stopped, and satisfies λ ∈ ∆+
E (y), thus V (ω) ⊆ y, i.e.:

V (ω) ⊆ V (ω′).

It implies, since y ⊆ ω′, that V (ω) ⊆ ω′. Exchanging the role of ω, ω′ and
applying the same reasoning, we get that V (ω ′) ⊇ V (ω), and hence V (ω) = V (ω′).
The identity V λ

E = V λ
B ◦ πB for a B ∈ S0 that contains λ follows from ΛB = ΛE ∩B,

in the sense as given by Lemma V-1.3, Ch. 3. It implies that V λ
E is FB-measurable.

�

IV-1.2 Lemma. Let (E , P) be a probabilistic event structure. Assume that
there is a collection of branching probabilities (µλ)λ∈ΛE

, such that for every
v ∈ R(P), the law of Zv in Π(v) is given by the product law

⊗

λ∈∆+(v) µλ . Then we
have, for all λ ∈ ΛE :

P
(
Hλ
)

> 0⇒ Pλ = µλ .
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Proof – Let λ ∈ ΛE , assume that P
(
Hλ
)

> 0 , and let z ∈ Ωλ . We denote by V the
random variable V = V λ

E , and by T the set of values of V . Since E is locally finite,
there is a B ∈ S0 such that λ ⊆ B, and then V is FB-measurable (IV-1.1). It implies
that T is a finite set, and in particular:

P
(
Hλ , Xλ = z

)
=
∑

u∈T

P
(
V = u , Xλ = z

)
.

Equation (4.16) implies that {V = u} = Ω(u) for any u ∈ T . Therefore:

P
(
Hλ , Xλ = z

)
=
∑

u∈T

P
(
Ω(u)

)
P
(
Xλ = z |Ω(u)

)
=
∑

u∈T

p(u)Pu(ξ ∩ λ = z) ,

where ξ denotes the variable in Ωu . Since any u ∈ T is well-stopped, it follows from
the hypothesis that:

∀u ∈ T , p(u) > 0⇒ Pu(ξ ∩ λ = z) = µλ(z) ,

and thus: ∀u ∈ T p(u)Pu
(
ξ ∩ λ = z

)
= p(u)µλ(z) . Therefore:

P
(
Hλ , Xλ = z) =

(∑

u∈T

p(u)
)

µλ(z) = P
(
Hλ
)
µλ(z) .

We have thus: P
(
Hλ
)

> 0⇒ Pλ(z) = µλ(z), and this holds for all z ∈ Ωλ. �

IV-2 Construction of the Distributed Product.

IV-2.1 Definition. (Probability consistent with a family of branching probabil-
ities) Let E be a locally finite event structure of finite concurrent width, and let
(µλ)λ∈ΛE

be a family of branching probabilities. We say that a probability P on Ω
is consistent with (µλ)λ∈ΛE

, if we have:

∀λ ∈ ΛE , P
(
Hλ
)

> 0⇒ Pλ = µλ .

IV-2.2 Theorem. Let E be a locally finite event structure, of finite concurrent
width. Let (µλ)λ∈ΛE

be a family of branching probabilities. There is a unique
distributed probability measure P consistent with (µλ)λ∈ΛE

. We call this probability
the distributed product of the family (µλ)λ∈ΛE

, and we denote it by:

P =
⊗d

λ⊆E

µλ .

P is ?-regular if and only if every branching probability µλ is positive (III-1.1),
and there is a one-to-one mapping between ?-regular distributed probabilities and
families of positive branching probabilities (µλ)λ∈ΛE

.
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The distributed product satisfies the following composition formula:

∀B ∈ S , PB =
⊗d

λ⊆B

Pλ , (4.17)

∀ v ∈ X0 with p(v) > 0 , Pv =
⊗d

λ⊆Ev

Pλ . (4.18)

Proof – Existence. Fix the event structure E . For every finite event structure K
such that ΛK ⊆ ΛE , let mK : ΩK → [0, 1] be the real-valued function defined by:

∀w ∈ ΩK, mK(w) =
∏

λ∈ΛK(w)

µλ(w ∩ λ) . (4.19)

For such an event structure K, we define the height of K as the integer:

N(K) = max{〈N,w〉 , w ∈ ΩK } ,

where 〈N,w〉 counts the branching cells of w (III-3.3). We show by induction on
N(K) that mK defines a probability on ΩK , i.e. it sums to 1 over ΩK .

This is trivial for K = ∅, since Ω∅ = {∅}. Let K be finite and non empty
with ΛK ⊆ E , and assume that the property holds for every event structure of
height < N(K). Denote by B0 = B⊥ (K) the initial stopping prefix of K. For
every w ∈ ΩK, denote by v the full-initial germ of w, given by v = w ∩ ΩB0 , and
denote by Kv the cone of future of v. We apply Ch. 3, VI-3.7, to the concatenation
w = v ⊕ (w 	 v) to get the disjoint union:

Λ (w) = ∆⊥ (K) t ΛKv(w 	 v) . (4.20)

In particular, if v 6= ∅, we have:

N
(
Kv
)
≤ N(K) − 1 .

Since K 6= ∅, and since ∅ ∈ ΩB0 ⇒ K = ∅, we actually have that v 6= ∅. Moreover,
as v is stopped in K, we have according to Ch. 3, V-1.3: ΛKv ⊆ ΛK ⊆ ΛE , thus the
induction hypothesis applies to Kv .

It follows from (4.20) that the function mK has the following expression:

mK(w) =
( ∏

λ∈∆⊥(K)

µλ(v ∩ λ)
)( ∏

λ∈ΛKv (w	v)

µλ

(
(w 	 v) ∩ λ

))

= mB0(v)mKv (w 	 v) .

Since w ∈ ΩK 7→ w∩B0 is onto ΩB0 , and since w ∈ Ω(v) 7→ w	v ∈ Ωv is an bijection
(Ch. 3, II-1.3), w ∈ ΩK 7→ (v, w 	 v) is a bijection onto the following disjoint union:

ΩK →
⊔

v∈Ω
B0

{v} × Ωv .
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We sum the above expression of mK(w) to obtain:

∑

w∈ΩK

mK(w) =
∑

v∈Ω
B0

mB0(v)
( ∑

s∈ΩKv

mKv(s)
)

=
∑

v∈Ω
B0

mB0(v) , (4.21)

the later by applying the induction hypothesis to Kv. Given the identification ΩB0 →
Π⊥ (K) (Ch. 3, IV-3.5), it is clear that mB0 identifies with the product probability
⊗

λ∈∆⊥(K) µλ, and hence sums to 1. Then it follows from (4.21) that mK sums to 1,
and this completes the induction.

In particular for B a finite stopping prefix of E , we have ΛB ⊆ ΛE (Ch. 3, V-1.3),
and thus mB defines a probability on ΩB. We show that (mB)B∈S0 is a projective
system. Let B,B ′ ∈ S0 such that B ⊆ B ′. Since ΩB and ΩB′ are finite, we have to
check that:

∀v ∈ ΩB ,
∑

w∈ΩB′(v)

mB′(w) = mB(v) . (4.22)

Let v ∈ ΩB . For every w ∈ ΩB′(v), we have by Ch. 3, VI-3.7:

ΛB′(w) = ΛB(v) t ΛB′v (w 	 v) .

Hence we get:

∑

w∈ΩB′(v)

mB′(w) =
( ∏

λ∈ΛB(v)

µλ(v ∩ λ)
) ∑

s∈Ωv
B′

∏

λ∈ΛB′v (s)

µλ(s ∩ λ)

= mB(v)
∑

s∈Ωv
B′

mB′v(s) .

Since B′v is a finite sub-event structure of E with branching cells a sub-collection
of ΛE , we have shown that the last sum equals 1, and (4.22) follows.

As (mB)B∈S0 is a projective system of probability measures, and since E is locally
finite, there is a unique probability P on Ω such that mB = πBP for every B ∈ S0

(Ch. 2, III-3.1). The likelihood p of P is given, on finitely B-stopped configurations,
by (4.19) with K = B. Now we show that p is given on X0 by:

∀ v ∈ X0 , p(v) =
∏

λ∈Λ(v)

µλ(v ∩ λ) . (4.23)

For this, let v ∈ X0, and let B ∈ S0 that contains v. Then we have p(v) =
mB

(
ΩB(v)

)
. Every w ∈ ΩB(v) admits the decomposition:

w = v ⊕ s , s ∈ Ωv
B .

Since v is well-stopped in E , v is well-stopped in B (Ch. 3, IV-2.1). As w is maximal
and thus well-stopped in B, s = w	v is well-stopped in Bv (Ch. 3, VI-2.2). Applying
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Ch. 3, VI-3.7, we have: ΛB(w) = ΛB(v) t ΛBv (s) , from which follows:

p(v) =
∑

s∈Ωv
B

p(v ⊕ s)

=

(
∏

λ∈ΛB(v)

µλ(v ∩ λ)

)(
∑

s∈Ωv
B

mBv (s)

)

.

We have shown that the sum at right equals 1, which implies (4.23).

Now we can compute the law of Zv in Π(v), for v ∈ X0 with p(v) > 0. Let
u = (uλ)λ∈∆+(v) be an element of Π(v), we have, using (4.23):

Pv(Zv = u) =
1

p(v)
p
(

v ⊕
⋃

λ∈∆+(v)

uλ

)

=
∏

λ∈∆+(v)

µλ(uλ) =
( ⊗

λ∈∆+(v)

µλ

)

(u) .

Hence the law of Zv in Π(v) is the product law
⊗

λ∈∆+(v) µλ , and this holds for
every v ∈ R(P). According to IV-1.2, it implies:

∀λ ∈ ΛE , P
(
Hλ
)

> 0⇒ Pλ = µλ .

Therefore (E , P) is distributed and consistent with (µλ)λ∈ΛE
. This completes the

proof of existence of a distributed probability consistent with the family (µλ)λ∈ΛE
.

Actually, we have a bit more, since we have explicitly constructed a distributed
product of (µλ)λ∈ΛE

.

Uniqueness. If P and Q are consistent with (µλ)λ∈ΛE
, then they satisfy the

condition of III-3.5. Hence P = Q.

?-Regularity. The fact that P is ?-regular if and only if all µλ are positive comes
from (4.23). Hence for each family of positive branching probabilities (µλ)λ∈ΛE

we
construct a unique consistent distributed and ?-regular probability. Conversely, let
P be distributed and ?-regular. P admits the unique following form as a distributed
product:

P =
⊗d

λ∈ΛE

Pλ ,

and each Pλ is a positive branching probability.

Composition formulae. By construction, the distributed product on any B ∈ S0

is given by mB = πBP. Now let B ∈ S not necessarily finite. Let (Bn)n≥0 be a
sequence cofinal in S0 (Ch. 2, I-4.4). Then B ∩ Bn is cofinal in B. Making n → ∞
in: mBn∩B = πBn∩BP , we get:

⊗d

λ⊆B

µλ = πBP .
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This shows (4.17).
Now we show (4.18). We write Bn → E to denote that (Bn)n is a sequence of S0,

cofinal in S0 . Let v ∈ X0 , and let B ∈ S0 such that v ⊆ B. For any w ∈ ΩB(v), we
have seen that, using the decomposition w = v ⊕ (w 	 v), we get:

p(w) = p(v)mEv (w 	 v),

and thus Pv
B = mBv , modulo the identification ΩB(v) → Ωv

B . Consider a sequence
Bn → E . Then Bn ∩ E

v → Ev, and we recall that we have Bn ∩ E
v = Bv

n (Ch. 3,
II-5.1), hence Bv

n → E
v. Making n→∞ in Pv

Bn
= mBv

n
, we obtain:

Pv =
⊗d

λ⊆Ev

µλ .

�

IV-2.3 Corollary. Let (E , P) be a distributed probabilistic event structure. Let
(µλ)λ∈ΛE

be any family of branching probabilities such that µλ = Pλ for all P-positive
branching cells λ. Then we have:

P =
⊗d

λ⊆E

µλ .

Proof – Let (µλ)λ∈ΛE
be such a family, and let Q =

⊗d
λ⊆E µλ . Then P and Q are

distributed and consistent with (µλ)λ∈ΛE
. Hence they are equal. �

V—Two Examples of Distributed Product.

We analyse two “extremal” examples of distributed products: one with full con-
currency, and one without concurrency. With full concurrency, we find the direct
product of measures. Without concurrency, i.e. for trees of events, we find without
surprise that all probabilities are distributed. The distributed character of probabil-
ities is trivial for trees.

V-1 Concurrent Product.

Assume that E coincides with its initial stopping prefix, i.e.: E = B⊥ (E). Then
Ω = ΩB⊥(E) , and any ω ∈ Ω decomposes itself as a unique disjoint union:

ω =
⊔

λ∈∆⊥(E)

zλ , zλ = ω ∩ λ .
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The study of Ch. 2, IV-4, shows that the collection of branching cells of E is given
by ΛE = ∆⊥ (E). Hence, if (µλ)λ∈∆⊥(E) is a collection of branching probabilities,

the distributed product P =
⊗d

λ∈∆⊥(E) µλ is just the direct product of measures:
P =

⊗

λ∈∆⊥(E) µλ .

V-2 Distributed Probabilities on Trees.

The construction of distributed probabilities is based on an analysis of concur-
rency properties. Since the concurrency relation is trivial in trees of events, we expect
that the distributed character of probabilities are trivial. Indeed, every probability
on Ω is distributed, and can be written as a distributed product. We begin by a
quick review of the different probabilistic notions introduced, for trees.

V-2.1 Absolute and Conditional Germs. Let T be a tree of events (Ch. 1,
III-4.2). Let G denote the graph relation on T :

∀x, y ∈ T , xGy ⇔ y ∈Min� (z ∈ T | z � x) ,

such that the reflexive and transitive closure of G coincides with � . We have seen
in Ch. 3, VII, that every finite configuration is finitely stopped. We recall that the
branching cells of T are disjoint, and given by the collection:

λx = {y ∈ T |xGy} , x ∈ T ,

excepted for the unique initial branching cell, formed by the finite set of roots of the
tree of events. We also have for all x ∈ T : ∆+ ([x ]) = {λx} . There is thus a unique
conditional germ Zλx

[ x ] (III-2.1). We write:

Zx = Zλx

[x ] , (4.24)

and Z∅ for the unique initial germ.
Let x be an event of T . We write Ω(x) to denote the finite shadow Ω([x ]). We

trivially have the inclusion (III-1.2): Ω(x) ⊆ Hλx . Conversely, let ω ∈ Hλx . That
is, there is finite configuration v = [ y ] such that y ⊆ ω and λx ∈ ∆+ (v). Then we
have λx = λy and thus x = y, so we have: Hλx ⊆ Ω(x). Hence we obtain:

∀x ∈ T , Hλx = Ω(x) . (4.25)

It follows that the absolute random germ Xλ (III-1.5) coincides with the unique
conditional random germ Zx defined by (4.24).

V-2.2 Branching Probabilities. Let P be any probability on (Ω,F). Let λ =
λx be a branching cell of T . Assume that x has positive likelihood, i.e. P

(
Ω(x)

)
> 0.

The branching probability induced by P in λ is given by:

∀z ∈ Ωλ , Pλ(z) = P
(
Xλ = z |Hλ

)
= P

(
Zx = z |Ω(x)

)
. (4.26)
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V-2.3 Distributed Probabilities. Let P be a probability on Ω. Let v = [x ]
be a finite (trivially well-stopped) configuration. The family of conditional germs at
v reduces to the singleton (Zx), and is thus trivially an independent family. Moreover
for λ the branching cell associated with v, the law of Zx in Ωλ coincides with the
law of Xλ by (4.26). It follows that P is a distributed probability (Definition III-3.1).
Using the form of distributed product of IV-2.3, we have the following result.

V-2.4 Theorem. For every probability P on (Ω,F), (T , P) is distributed.
There is a family of branching probabilities (µλ)λ∈ΛT

such that P =
⊗d

λ⊆T µλ .

VI—Conclusion

In this chapter we have constructed a product of branching probabilities, called dis-
tributed product. The distributed product associates a probabilistic event structure
with the data consisting of:

• a locally finite event structure with finite concurrent width,

• a collection of branching probabilities, defined on the branching cells of the
event structure.

The class of probabilities reached by this product considers jointly probability and
concurrency: distributed probabilities associate a probabilistic independence with
the concurrency of local processes. Local processes are defined by the germs of
maximal configurations.

The distributed product has remarkable composition properties. Restriction to
the past, and conditioning w.r.t. the future are two operations on probabilities that
combine with operations on the event structure and on the processes. Remark the
triple level of operations: event structures, processes and maximal processes, and
probabilities. We obtain the following table:

Past Stopping prefix B

{

Ω→ ΩB

ω 7→ ω ∩B

PB = πBP

=
⊗d

λ⊆B

Pλ

Future Cone of future Ev

{

Ω(v)→ Ωv

ω 7→ ω ∩ Ev

Pv = P
(
· |Ω(v)

)

=
⊗d

λ⊆Ev

Pλ
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P, pE = p • a probability P on Ω, the associated likelihood
pE : W → R, defined by pE( · ) = P

(
Ω( · )

)
(II-

2).
R(P) • the trace of P in W0 , the set of positive finite

configurations (III-1.4)
(Ev, Pv) • the probabilistic future of configuration v,

where Ev is the cone of future of v, and Pv =
P
(
· |Ω(v)

)
(II-3).

pv • the likelihood associated with Pv (II-3.2)
?-regular probability • II-4

Hλ
E = Hλ • the open subset of Ω associated with a branch-

ing cell λ (III-1)
Xλ • the absolute random germ associated with

branching cellλ, a random varaiable Xλ :
Hλ → Ωλ (III-1.5)

Pλ • the branching probability in the positive
branching cell λ induced by P. Pλ is the law
of Xλ in Ωλ

Zλ
v • the conditional λ-germ associated with finite

configuration v and branching cell λ ∈ ∆+ (v).
Zλ

v : Ωv → Ωλ (III-2)
Zv • the collection Zv = (Zλ

v )λ∈∆+(v) (III-2.1)

〈N, v〉 • the number of branching cells in the decompo-
sition of v: 〈N, v〉 = Card(Λ(v)) (III-3.3)

Table 4.1: Summary of notations for distributed probabilities, Chapter 4.
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Chapter 5

Chapter 5

Markov Nets and
Distributed Markov Nets

So far we have studied the abstract model of probabilistic event structures. We now
apply our results to particular event structures, those coming from the unfolding of
safe and finite Petri nets.

The trace theory identifies the dynamics of a safe net with the dynamics of its
unfolding, an occurrence net labelled by the safe net. By the well-known equiva-
lence between the model of occurrence nets and the model of event structures, the
randomisation of trace dynamics reduces to the construction of a probabilistic event
structure. This idea is due to H. Völzer, and this is also the point of view of [7].

From a theoretical point of view as well as for practical applications, the memory-
less—or Markovian—randomisation of systems is of major interest in the study of
random systems. Informally, for memory-less systems, processes starting from the
same state have the same futures in probability. We say that processes forget their
past. The most popular model of such a system in discrete time is the model of
finite (and homogeneous) Markov chains. It constitues for instance the basis of
probabilistic automata [34, 41].

Our first challenge is to bring a definition for memory-less and true-concurrent
random systems, in the model of safe Petri nets. Given a safe Petri net, we constat
the isomorphism between the cones of futures of two processes leading to the same
marking. This formalises that the dynamics of Petri nets is intrinsically memory-
less. This geometric mapping induces an isomorphism of measurables spaces on the
shadows of processes. We require for a memory-less, or homogeneous probability,
that this isomorphism respects the conditional probabilities defined on the shadows.
From different states—markings—the probabilistic futures have the same probabil-
ity law. This defines an equivalent of homogeneous Markov chains, whence the
terminology of homogeneous probabilistic nets—or homogeneous probability—that
we adopt. Homogeneous probabilities are characterised by an invariance property:
the probabilistic future only depends on the current marking.

In the analysis of Markovian processes, one of the major tool is the so-called
Strong Markov property. It is based on the notion of stopping time, that are par-
ticular random times. The important point is that stopping times, for sequential
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systems, generalise the constant times given by the integers 0, 1, . . . . The Markov
property is also related to the notion of shift operator. Roughly speaking, a stop-
ping time cuts up two pieces from each maximal process: a beginning—until the
random time—and the tail. The shift operator associated with the stopping time is
the ponctual transformation on the canonical space Ω that forgets the beginning of
the process, and keeps the tail.

Stating the Markov property for concurrent and memeory-less systems is our
second challenge. For concurrent systems, constant times have little meaning. Until
a certain point, constant times can be replaced by stopping prefixes, and we introduce
stopping operators to replace stopping times. Many properties of stopping times hold
for stopping opertors—but not all1. We also define shift operators associated with
stopping operators, with the same idea of keeping the tail of processes. Then we show
the Strong Markov property for homogeneous probabilistic nets. We underline the
formal analogy between the two statements, in the sequential and in the concurrent
frameworks. The proof of the concurrent Markov property is self-contained, and
implies the usual Markov property for Markov chains with usual stopping times.

The difficulty for concurrent systems is that the space of processes is not homo-
geneous, w.r.t. time translations. As a consequence, for concurrent systems, there
is no natural shift operator Ω → Ω as for Markov chains. Hence even the only for-
mulation of the Markov property for concurrent systems is not clear. We propose a
formulation based on homogeneous functions, that extend the class of test functions
Ω→ R used with the Markov property for sequential systems.

For this study to be useful, we need to show the existence of homogeneous nets—
of homogeneous probabilities as we say. The Markov chain theory gives a first ex-
ample: the sequential nets. However, the more general construction that we propose
does not bring homogeneous probabilities in general. Our construction is based on
the distributed product of Chapter 4, which is in turn based on the decomposition of
processes through well-stopped configurations. Due to the compositionality formula
w.r.t. the future of the distributed product, the invariance property for homogene-
ity only holds, in general, for well-stopped configurations, not for all configurations.
This distinction is trivial for sequential systems, but not for concurrent systems.

Modulo this restriction, all the notions introduced—homogeneous probabilities,
homogeneous functions, stopping operators, shift operators—admit weaker versions,
concerning well-stopped processes. This technical distinction has thus no conse-
quence on the global way to proceed. We state the adapted version of the Markov
property, that we call the well-stopped Markov property. A first application is found
in this chapter through the study of the embeded Markov chain of a net. We will
have several occasions in Chapters 6 and 7 to apply the Markov property for con-
current systems, following some classical applications of the Markov property for
sequential systems.

The chapter contains 5 sections. Section I, True-concurrent randomisation of

1An important property of stopping times for sequential systems, the stability under min( · , · ),
does not hold for stopping operators, but holds for stopping prefixes. The translation is thus a bit
ambigous, and we shall say very carefully that stopping operators replace stopping times.
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nets, formalises the randomisation of traces of safe Petri nets through probabilistic
event structures. We also give the version of the cone of future adapted to occurrence
nets—it was defined for event structures in Chapter 3. For simplicity, the notions
related to concurrent Markovian processes are presented in Section II, Homogeneous
nets, without referrence to well-stopped configurations. Section III, d-Homogeneous
nets, presents the weaker versions, where the invariance property of probabilities
only concerns well-stopped configurations. No fundamental difference appears. Sec-
tion IV, Distributed Markov nets, presents a construction of d-homogenous nets,
using the distributed product introduced in Chapter 4. Finally, Section V, Exam-
ples of distributed Markov nets, presents explicit examples of Markov nets: we give
examples of parametric families, and we analyse the case of confusion-free event
structures.
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I—True-Concurrent Randomisation of Nets

This short section states the definition and the general framework for probabilistic
Petri nets. The true-concurrent randomisation of traces is defined in I-1. We have
defined in Ch. 3 the cone of future of event structures. Here, in I-2, we define it for
occurrence nets.

I-1 True-Concurrent Randomisation.

We consider a safe marked net N , with initial marking M0. (U , ρ) denotes the
unfolding of N . (E ,�, #) denotes the event structure of finite concurrent width,
canonically associated to U .

We recall that the partial order of traces of executions of the net N is isomorphic
to the partial order of configurations of E . Hence, a true-concurrent randomisation of
the dynamics of N is modelised by a probability measure P on Ω, the set of maximal
configurations of E . For r a playing sequence of the net, its “probability” is given
by what we called the likelihood of v, where v is the configuration associated to the
sequence r. This probability is independent of r modulo interleaving, and defines
thus what can be called a true-concurrent randomisation of the dynamics of N . The
probability of r to occur is given by the probability of the shadow:

p(v) = P
(
Ω(v)

)
.

This definition, adapted from sequential systems to concurrent systems, is due to
H. Völzer ([45]).

Since we have studied in Chapters 3 and 4 the class of locally finite event struc-
tures, we set accordingly the following definition for safe nets.

I-1.1 Definition. (Compact nets) A safe marked net N is said to be compact

if the unfolding U of N is locally finite.
(Probabilistic net, positive net) A probabilistic net is a pair (N , P), where P is

a probability measure on the set Ω of maximal configurations of U . N , or (N , P), is
said to be positive if P is ?-regular, i.e. if every finite trace has positive likelihood.

I-1.2 Example. (Sequential nets) Let N be the sequential net associated to a
probabilistic transition system (S,A, x0, (µs)s∈S) (Ch. 1, III-3). Let U be the un-
folding of N , and let T be the event structure associated to U , which is a tree of
events. We have seen in Ch.1, III-4.6, that Ω is equipped with a probability P such
that the canonical Markov chain (Xn)n≥0 and its dual (Yn)n≥1 are defined on Ω, and
given as follows: For every ω ∈ Ω, if (x0 , x1 , . . .) and (t1 , t2 , . . .) are respectively the
sequences of markings (states) and of transitions (actions) of the execution ω, then:

∀n ≥ 0, Xn(ω) = xn , ∀n ≥ 1, Yn(ω) = tn .
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We define (N , P) as the canonical probabilistic net associated with the probabilistic
transition system S.

If all µs satisfy µs(x) > 0 for all x connected to s in the transition system, then
the likelihood p satisfies p(e1, . . . , en) > 0 for every finite configuration (e1, . . . , en)
in T . Hence (N , P) is a positive probabilistic net.

I-2 Cone of Future for Occurrence Nets.

I-2.1 Notations: Cuts and Markings. Recall that we denote by γ(v) the cut
γ(v) = max(v) associated with a finite configuration v of the unfolding (U , ρ). We de-
note by m(v) the marking of the net N associated with v, defined by m(v) = ρ ◦ γ(v).
The configuration v leads to the marking m(v).

I-2.2 Cone of Future. All the affirmations stated below follow easily from our
study of the cone of future in event structures. We recall that γ(v) denotes the cut
associated with a finite configuration v.

Let U be an occurrence net, and let E be the event structure associated. For any
cut c of U , let U c denote the following open subset of U :

Uc =
{
x ∈ U | ∀b ∈ c , ¬(x# b) ,

& ∃b ∈ c : b � x
}

.
(5.1)

For any finite configuration v of U , we write U v to denote U c, where c = γ(v) is
the cut given by the maximal elements of v. We call U v or Uc the cone of future

of v or, equivalently, of c = γ(v). The cone U v is equipped with the restricted flow
relation F |Uv = F ∩ (Uv ×Uv), and (Uv, F ) is an occurrence net satisfying:

v ∪ Uv = {x ∈ U |¬(x# v)} , (5.2)

v ∩ Uv = γ(v) = Min� (Uv) , (5.3)
◦
Uv = Ev , (5.4)

where Ev denotes the cone of future for event structures, as defined in Ch. 3, II-1.1.

I-2.3 Remark. We insist that the cone U v contains all conditions of γ(v), which

is not implied by
◦
Uv = Ev .

I-2.4 Lemma. Let (N ,M0) be a safe marked net. For every reachable mark-
ing M , let (UM,ρM ) denote the unfolding of (N ,M). Let c be a cut of UM0 , and let
M1 = γ(c) be the marking of N associated to c. Then there is a unique isomorphism
of labelled occurrence nets:

(UM0
c, ρM0 |UM0

c)→ (UM1, ρ
M1),



156 Chapter 5—Markov Nets

where UM0
c denotes the cone of future of UM0 associated with the cut c.

Proof – We set U = UM0 and (V, θ) = (UM0
c, ρM0 |UM0

c). We denote by v the
unique finite configuration of U such that γ(v) = c. V is an occurrence net, satisfying,
using (5.3): c = Min� (Uv), and θ|c is one-to-one onto M1. It follows that (V, θ) is a
folding of (N ,M1).

Conversely, let (V, r) be a folding of (N ,M1), we show that (V, r) maps to (V, θ).
We have that Min� (V ) is one-to-one with M1. We also have that γ(v) = Max� (v)
in U is one-to-one with M1. We can thus consider the concatenation of (v, ρM0 |v) and
of (V, r), obtained by taking first their disjoint union, and then identifying Max� (v)
and Min� (V ). Hence, we glue v and V along the cut c, and we denote the result by
v tc V .

It is straightforward to check that v tc V is a folding of (N ,M0). There is thus
a unique morphism of foldings f : v tc V → U (Ch. 1, Th. II-4.3). Every node f(x)
is compatible with v, hence f(x) ∈ v ∪ U v by (5.2). We have f(v) = v and thus
f
(
Min� (V )

)
= c. According to Lemma II-4.7 of Ch. 1, the morphism f is injective.

It implies that f(V ) ⊆ U v, since
◦
v ∩ Uv = ∅ by (5.3). This shows that we get by

restriction a folding: f |V : V → Uv = V.
We have shown that (V, θ) satisfies the universal property of UM1, and by the

uniqueness of the unfolding (Ch.1, II-4.3), it implies the statement of the lemma. �

II—Homogeneous Nets.

In this section, we give a formalisation for memory-less true-concurrent processes,
and we show the Markov property in this framework. Following as much as we can
the theory of Markov chains, we define stopping operators for concurrent systems,
a notion closely related to the classical notion (due to Doob) of stopping times for
stochastic processes, also called optional times.

In II-1, we define an equivalence relation on cuts of labelled occurrence nets that
will be useful throughout the whole study of Markov nets. We define the memory-
less, or homogeneous probabilities in II-2. An other notion for stating the Markov
property is the notion of stopping operator, introduced in II-3. It is then time in II-4
to compare our definitions with their analogous for Markov chains. After recalling
the statement of the Markov property for Markov chains, we establish the analogous
for concurrent systems in II-5.
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II-1 Equivalence of ‖-Cliques in Unfoldings.

II-1.1 Definition. (Equivalence of ‖-cliques and of cuts.) We assume that (U , ρ)
is the unfolding of a safe finite marked net N . Let c, c′ be two ‖-cliques of conditions
of U . We say that c and c′ are equivalent, and we denote it by:

c ∼= c′,

if ρ(c) = ρ(c′).

The restriction ρ|d of ρ to a cut d is one-to-one onto ρ(d): this is a consequence
of Ch 1, II-4.5 and Ch. 1, II-3.8. Hence the same holds for ‖-cliques. It follows that,
if c ∼= c′, there is an isomorphism of labelled occurrence nets:

(c, ρ|c )→ (c′, ρ|c′ ) . (5.5)

If the clique is actually a cut, i.e. if c is a maximal ‖-clique, the isomorphism can
be extended to the cones of future as follows.

II-1.2 Lemma. Let (U , ρ) be the unfolding of a safe marked net (N ,M0). Let
c and c′ be two equivalent cuts of U . Then there is a unique isomorphism of labelled
occurrence nets:

(Uc, ρ|Uc)→ (U c′ , ρ|Uc′ ) ,

that extends (5.5).

Proof – Let M = ρ(c) = ρ(c′) be the marking of N associated with c and c′. Let V
denote the unfolding of (N ,M). According to I-2.4, there are unique isomorphisms
of foldings f1 : Uv → V and f2 : Uv′ → V, thus a unique isomorphism g : U v → Uv′ .
�

Intuitively, the lemma is clear: if a same marking is reached by two processes, the
possible continuations of the processes are the same. A continuation of one process
fits the other process. This formalises the absence of memory of the dynamics of
Petri nets. We will now associate this fact with invariance properties of probability
laws.

II-1.3 Convention. Let (U , ρ) and (U ′, ρ′) be two isomorphic labelled occur-
rence nets. For any configuration v of U with image v ′ in U ′, it follows directly from
(5.2) and (5.3) that U v and U ′v′ are isomorphic, and I-2.4 implies that the isomor-
phism is unique. Hence taking the cone of future is a congruence w.r.t. isomorphism
of labelled occurrence nets.

Therefore we will not distinguish between isomorphic labelled occurrence nets,
and the operation of future is defined for the class of isomorphic labelled occurrence
nets. With this convention, II-1.2 becomes: If v, v ′ are two finite configurations of
the unfolding U of a safe net, we have:

γ(v) ∼= γ(v′)⇒ Uv = Uv′ .
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This implies in particular, for v, v ′ finite in U with γ(v) ∼= γ(v′):

Wv =Wv′ , Ωv = Ωv′ , etc. (5.6)

II-2 Homogeneous Probabilities.

Let (N ,M0, P) be a marked probabilistic net. U and E denote the unfolding
and its event structure. Let p denote the likelihood of P, and let v be a finite
configuration with p(v) > 0. The probabilistic future (E v, Pv) is well-defined (Ch. 4,
II-3.1). Hence, if M denotes the marking reached by v in N from M0, (N ,M, Pv)
is a probabilistic net. The probability Pv is defined on Ωv, whose elements are the
maximal configurations of U v . Recall that Uv is defined modulo isomorphism of
labelled occurrence nets. Let v′ be an other finite configuration with p(v ′) > 0. As
stated by (5.6), if γ(v) ∼= γ(v′), then Pv and Pv′ are defined on the same probability
space Ωv. In general Pv and Pv′ are different.

II-2.1 Definition. (Homogeneous probability) Let (N , P) be a probabilistic net.
Let U denote the unfolding of N , and p the likelihood of P. We say that (N , P) is
homogeneous, or strongly homogeneous, or shortly that P is homogeneous, if
P satisfies the following property:

∀v, v′ ∈ W0 , p(v), p(v′) > 0, γ(v) ∼= γ(v′)⇒ Pv = Pv′ . (5.7)

Equivalently, without the identification modulo isomorphism, homogeneity is for-
mulated by: P is homogeneous if and only if for all finite configurations v, v ′ such
that γ(v) ∼= γ(v′), the two random variables:

{
Ω(v) → Ωv

ω 7→ ω 	 v
,

{
Ω(v′) → Ωv′

ω 7→ ω 	 v′
,

induce probability laws in Ωv and Ωv′ , that are images one from the other under the
natural isomorphism Ωv → Ωv′ .

This definition formalises the notion of memory-less randomisation of traces of
safe nets. The construction of homogeneous probabilities is the topic of next sections
in this chapter. For the moment, we study their properties a priori.

II-2.2 Probability from a Reachable Marking. If a probability P on Ω is
homogeneous, the probability space (Ωv,Fv , Pv) only depends on the class of γ(v)
modulo the relation ∼=, i.e. on the marking m(v) = ρ ◦ γ(v).

It implies that, if M is a marking satisfying M = m(v), with v a finite configu-
ration with positive likelihood, the probability space (Ωv,Fv , Pv) does not depend
on v. We denote it by (ΩM ,FM , PM ). We have thus:

∀v ∈ W0 , (Ωv,Fv , Pv) = (Ωγ(v),Fγ(v), Pγ(v)) = (Ωm(v),Fm(v), Pm(v)) .
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II-3 Stopping Operators.

We now define a notion closely related to the notion of stopping times, classical
in the study of stochastic processes.

II-3.1 Definition. (Stopping Operator) We say that a mapping V : Ω → W
is a stopping operator if V is measurable, and if V satisfies the two following
properties:

1. ∀ω ∈ Ω , V (ω) ⊆ ω ,

2. ∀ω, ω′ ∈ Ω , ω ⊇ V (ω′)⇒ V (ω) = V (ω′).

II-3.2 Example. Let P be an intrinsic prefix of E (Ch. 2, III-1.2). Then πP :
Ω→W, ω 7→ ω ∩ P is a stopping operator. In particular, πB is a stopping operator
for every stopping prefix B.

II-3.3 Example. Not every stopping operator has the form V (ω) = P ∩ ω.
The event structure E of Figure 5.1 has two maximal configurations, ω1 = a⊕ c and
ω2 = a⊕ b. Let V (ω1) = ω1 and V (ω2) = b. If V is defined through a prefix P , then
P = V (ω1) ∪ V (ω2) = E . It implies that V = IdΩ, which is not.

• c

•

?�
?�

?�
?�

b •

OO

a

ω1 = a⊕ c , ω2 = a⊕ b

V (ω1) = a⊕ c , V (ω2) = b .

Figure 5.1: Stopping operator not defined through a prefix.

II-3.4 Example. (Local hitting operator) Let λ be a branching cell of E . We
have defined in Ch. 4, IV-1.1, the random variable V λ : Hλ → X0 by:

∀ω ∈ Hλ , V λ(ω) = min{y ∈ X0 , y ⊆ ω |λ ∈ ∆+ (y)} .

We extend V λ to Ω by setting V λ(ω) = ω if ω /∈ Hλ , i.e. if λ /∈ Λ (ω) . We have
seen that the restriction V λ|Hλ is measurable, thus V λ : Ω→W is measurable. We

have V λ(ω) ⊆ ω by construction. Point 2 of II-3.1 has been shown in Ch. 4, IV-1.1,
on Hλ , and extends to Ω. We call V λ the hitting operator associated with λ.
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II-4 The Strong Markov Property for Homogeneous Markov Chains.

We quickly recall the definition and properties of stopping times (also called
optional times) for sequential systems. In particular, we recall the Strong Markov
property for finite Markov chains, following [37]. We show that, for sequential sys-
tems, stopping operators are one-to-one with stopping times.

II-4.1 Stopping Times. Let P be a stochastic matrix on a finite set S, and
let (Xn)n≥0 be the canonical homogeneous Markov chain defined on the probability
space Ω =

∏

n≥0 S (Ch. 1, III-1). We denote by Fn the σ-algebra Fn = 〈X0 , . . . , Xn 〉.
We denote by Pν the probability on Ω associated with an initial probability ν on S.
We write Px for Pδx

, where δx is the Dirac measure of an element x ∈ S. We write
Eν( · ) and Ex( · ) to denote the expectations w.r.t. probabilities Pν and Px .

We denote by N the set N ∪ {∞}. A measurable random variable T : Ω → N is
said to be a stopping time w.r.t. the filtration (Fn)n≥0, if the following holds:

∀n ≥ 0 , {T = n} ∈ Fn .

We recall that {T = n} stands for the subset of Ω: {ω ∈ Ω |T (ω) = n} . We
denote by FT the sub-σ-algebra of subsets A ∈ F such that:

∀n ≥ 0 , A ∩ {T = n} ∈ Fn . (5.8)

For T : Ω → N a stopping time, we denote by XT : Ω → S the random variable
defined XT (ω) = XT (ω)(ω). XT gives the value of the process X “at time T”.

II-4.2 Shift Operator. We define the shift operator as the pointwise transfor-
mation θ : Ω → Ω by θ(s0, s1, . . .) = (s1, s2, . . .). We denote by θn the nth power
of θ: θ0 = IdΩ, θn = θ ◦ θn−1 for n ≥ 1.

We denote by θT the transformation Ω→ Ω given by θT (ω) = θT (ω)(ω).

II-4.3 The Strong Markov Property. ([37], Th. 3.5, p. 23) For every positive
random variable h on (Ω,F), initial measure ν and stopping time T :

Eν(h ◦ θT | FT ) = EXT
(h) , Pν-a.s .

By convention the two members vanish on {T =∞}. The right member is the com-
posite mapping of ω 7→ XT (ω) and x → Ex(h). Both members are FT -measurable
mappings.

II-4.4 Commentary on the Markov Property. The meaning of the Markov
property is more clear if T : Ω → N is constant, say equal to n. It becomes:
E(h ◦ θn | Fn) = EXn(h). Recall that Fn = 〈X1 , . . . , Xn〉 contains the information
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until time n, with final state Xn . The left hand member of the Markov equality rep-
resents the mean value of the function h on the truncated variable (Xn , Xn+1 , . . .),
conditional on (X1 , . . . , Xn), that is:

E
(
h(Xn , Xn+1 , . . .)

∣
∣X1 , . . . , Xn

)
.

The right hand member of the Markov equality is the mean value of h(Z0 , Z1 , . . .),
where (Zp)p≥0 is a Markov chain on the same space and with same transition matrix
than (Xp)p≥0 , but with initial state Xn . Although it may seem confusing, we can
take the Markov chain (Zp)p = (Xp)p , under probability PXn . Indeed since we look
at mean values, only the probability laws are important, not the random variables
themselves.

The Markov property states the equality of the two members for all functions h,
seen as test functions. Forgetting X0 , . . . , Xn−1 and keeping only Xn , we actually
do not loose information in the law of the future process (Xn , Xn+1 , . . .). This
statement for constant times constitutes the Weak Markov property. The Strong
property states that things go the same way if T is a stopping time, i.e. if T ranges
over a large class of random times.

II-4.5 Formulation for Sequential Nets. Let N = (S,A, F, s0) be the se-
quential net associated with a probabilistic transition system (S,A, s0, (µs)s∈S)
(Ch. 1, III-3). Let (U , ρ) denote the unfolding of the marked net N , and let T
be the event structure associated with U . We recall that T is a tree of events. Us-
ing the Markov chain theory, we equip the space (Ω,F) with a probability P and
two Markov chains (Xn)n≥0 and (Yn)n≥1 , that respectively describe the successive
markings and transitions of the net N , and we have (Ch. 1, III-4.5):

∀n ≥ 1, Fn = 〈Y1 , . . . , Yn〉 = 〈X0 , . . . , Xn〉 .

If T is a stopping time for (Xn)n, since 〈X0〉 is the trivial σ-algebra {∅,Ω}, we
have that T ≥ 1 P-a.s, excepted for the trivial case T = 0, P-a.s. Hence we assume
without loss of generality that T ≥ 1 P-a.s, and thus stopping times for (Xn)n and
(Yn)n coincide. We just call them stopping times T : Ω→ N.

II-4.6 Stopping Operator Associated with a Stopping Time. Still in the
case of a sequential net, let T : Ω → N be a stopping time. We define the mapping
V T : Ω→W as follows. Each ω ∈ Ω admits a unique decomposition through events
ω = (Y1 , Y2 , . . .). We set:

V T (ω) = (Y1 , . . . , YT (ω)) if T (ω) <∞ , V T (ω) = ω otherwise.

Conversely, if V : Ω → W is a stopping operator (II-3.1), we define the integer
random variable T V : Ω→ N as follows. If V (ω) is finite, and with ω = (Y1 , . . .):

T V (ω) = n , n such that V (ω) = (Y1 , . . . , Yn) ,

and T V (ω) =∞ if V (ω) = ω.
Hence we map the canonical total order {1, . . . , T (ω)} onto the “concrete” order

{Y1(ω), . . . , YT (ω)} in the unfolding, and this for each ω ∈ Ω.
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II-4.7 Proposition. The mappings V → T V and T → V T are one-to-one
between stopping operators and stopping times, and inverse one from the other.

Proof – We denote by πn : Ω → W the mapping πn = (Y1 , . . . , Yn), and we have
Fn = 〈πn〉. Let T be a stopping time. V T is measurable since T is measurable, and
V T (ω) ⊆ ω for all ω ∈ Ω. Let ω, ω′ ∈ Ω such that ω ⊇ V T (ω′), and let n = T (ω′).
Then πn(ω) = πn(ω′). The subset {T = n} is Fn-measurable and thus πn-saturated.
It follows that T (ω) = n, and thus V T (ω) = V T (ω′). Hence V T is a stopping
operator.

Conversely, let V be a stopping operator. T V is then an integer random variable.
Let n ≥ 1, we show that {T = n} is Fn-measurable, i.e. πn-saturated. Let ω ∈ Ω
such that T (ω) = n, and let ω′ ∈ Ω with πn(ω) = πn(ω′). Then ω ⊇ V (ω′), which
implies V (ω′) = V (ω) and thus T V (ω′) = T V (ω). This shows that T V is a stopping
time.

The mappings V → T V and T → V T are obviously inverse one from the other.
�

II-5 The Strong Markov Property for Concurrent Homogeneous Sys-
tems.

We now return to unfoldings of general safe marked nets. We try to adapt the
theory of Markov processes to our framework, as we left it at the end of II-3.

II-5.1 Shift Operator. Let V : Ω→W be a stopping operator. We define the
random variable γV as follows:

∀ω ∈ Ω

{
γV (ω) = γ

(
V (ω)

)
if V (ω) ∈ W0 ,

γV (ω) is undefined otherwise.

To define a shift operator we use the cancellation operation 	, defined in Ch. 3,
II-2.1. For V a stopping operator, we define the shift operator θV by:

∀ω ∈ Ω , θV (ω) = ω 	 V (ω). (5.9)

For each ω ∈ Ω such that V (ω) is finite, we have θV (ω) ∈ UγV (ω), which is written:

θV ∈ U
γV .

We remark that the shift operator of (5.9) does not act on Ω. Recall that in the
sequential case, we have defined a shift operator θ : Ω → Ω (II-4.2). We have then
defined for h a measurable function Ω → R and T a stopping time, the composite
functions h◦θ, h◦θ2, etc, and h◦θT . We can relate this facility to the product form
of the space Ω. The concurrent framework is different: h ◦ θ is not defined, neither
is h ◦ θV , since θV : Ω→ ΩγV changes the space, ω by ω.
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This problem is indeed one of the main difference that we encounter between
concurrent and sequential systems. Unlike the classical framework of dynamic sys-
tems theory [42], there is no semi-group of operators (θn, n ≥ 0). We propose thus
to slightly extend the framework, introducing the following objects.

II-5.2 Definition. (Homogeneous functions) Denote by D the set of equivalence
classes of cuts in U (which identify with reachable markings). Let g be a collection
of measurable mappings g = (gc)c∈D, with gc : Ωc → R. We say that g is a homo-

geneous function on Ω.

Equivalently, a homogeneous function is given by a collection g = (gc)c of map-
pings gc : Ωc → R, where c ranges over the cuts of U , satisfying:

c ∼= c′ ⇒ gc = gc′ .

II-5.3 Non-negative and Integrable Homogeneous Functions. We say
that g is non-negative if all gc are non-negative. If P is a probability on Ω, we say
that g is integrable if for all cut c of U , if P(c) > 0 then gc is integrable w.r.t. the
probability Pc.

II-5.4 The FV σ-Algebra. We adapt the σ-algebra FT for stopping times (II-
4.1, Eq. (5.8) ) as follows. Let V be a stopping operator. We define the σ-algebra
FV as the collection of subsets A ∈ F such that:

∀ω, ω′ ∈ Ω , ω ∈ A , ω′ ⊇ V (ω)⇒ ω′ ∈ A . (5.10)

It is readily checked that FV is indeed a σ-algebra. We see as in II-4.7, for N a
sequential net and T a stopping time, that FT = FV T , where V T is the stopping
operator associated with T (II-4.6).

We now state a lemma before establishing the Markov property.

II-5.5 Lemma. Let V be a stopping operator, and let:

U = {u ∈ W0 | ∃ω ∈ Ω , V (ω) = u} .

1. For all u ∈ U , we have: {V = u} = Ω(u).

2. Let φ be a FV -measurable real function. There is a function φ̂ : U → R such
that:

∀u ∈ U , φ|Ω(u)
= φ̂(u) .

Proof – 1. Let u ∈ U . Every ω such that V (ω) = u contains u, hence {V = u} ⊆
Ω(u) . Conversely, let ω ∈ Ω(u). By definition there is an element ω ′ ∈ Ω such that
V (ω′) = u. Then ω ⊇ V (ω′), and it implies V (ω) = V (ω′) = u by point 2 in II-3.1.
We have shown that {V = u} = Ω(u).
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2. Let φ : Ω → R be FV -measurable. Let u ∈ U and ω0 ∈ Ω with V (ω0) = u.
Let A be the subset A = {φ = φ(ω0)}, FV -measurable since φ is FV -measurable.
Applying (5.10) to A, we get that Ω(u) ⊆ A. It follows that φ is constant on Ω(u).
Remark that we have: p(u)φ̂(u) =

∫

Ω(u) φdP . �

II-5.6 Theorem. (Strong Markov property for concurrent systems) Let P be a
homogeneous probability on (Ω,F). For every stopping operator V , for any positive
homogeneous function g = (gc)c∈D, we have:

E(g ◦ θV | FV ) = EγV (gγV ) , P-a.s . (5.11)

The two members vanish by convention on {V /∈ W0}. The function g ◦ θV

vanishes on {V /∈ W0}, and is defined on {V ∈ W0} by:

g ◦ θV (ω) = gγV
(
θV (ω)

)
= gγV

(
ω 	 V (ω)

)
. (5.12)

The right hand member in (5.11) is the composite of ω 7→ γ(ω) and c 7→ Ec(gc).
Ec denotes the expectation in the probability space (Ωc,Fc, Pc).

II-5.7 Remark. Observe the need for homogeneous functions to formulate the
Markov property. If g : Ω→ R is a usual function, then g(ω	 θV (ω)) is not defined.

Proof – Let φ be a positive, FV -measurable function. We have to compute E(g◦θV φ).
We assume without loss of generality that φ vanishes on {V /∈ W0}. Let U denote
the set of finite values of V : U = W0 ∩ V (Ω). Since U is at most countable, and
g, φ ≥ 0, we have:

E(g ◦ θV φ) =
∑

u∈U

E
(
1{V =u}φg ◦ θV

)
.

According to lemma II-5.5, {V = u} = Ω(u). We also denote by φ̂ the function such
that φ|Ω(u)

= φ̂(u) given by lemma II-5.5. Using (5.12), we get:

E(g ◦ θV φ) =
∑

u∈U

φ̂(u)

∫

Ω(u)
gu(ω 	 u) dP(ω)

=
∑

u∈U

p(u)φ̂(u)Eu(gu) ,

where p denotes the likelihood of P, defined by p(v) = P
(
Ω(v)

)
.

Let u, u′ ∈ U such that γ(u) ∼= γ(u′). We have gu = gu′
since g is a homogeneous

function, and Pu = Pu′
since P is homogeneous. It follows that Eu(gu) = Eu′

(gu′
).

Recall the notation D for the set of equivalence classes of cuts, and set γV the random
variable in D, the equivalence class of γV . We have:

E(g ◦ θV φ) =
∑

u∈U

∑

c∈D
γ(u)=c

p(u)φ̂(u)Eu(gu)

=
∑

c∈D

Ec(gc)
∑

u∈U
γ(u)=c

p(u)φ̂(u) . (5.13)



II——Homogeneous Nets. 165

Since φ equals φ̂(u) on Ω(u) = {V = u}, we compute the right sum in (5.13) as
follows:

∀c ∈ D ,
∑

u∈U
γ(u)=c

p(u)φ̂(u) =
∑

u∈U
γ(u)=c

∫

V =u
φdP

=

∫

γV =c
φdP

= P(γV = c)E
(
φ | γV = c

)
. (5.14)

Using (5.13) and (5.14), we get:

E(g ◦ θV φ) =
∑

c∈D

P(γV = c)E
(
φ Ec(gc)

∣
∣ γV = c

)

=
∑

c∈D

P(γV = c)E
(
φ EγV (gγV )

∣
∣ γV = c

)

= E
(
φ EγV (gγV )

)
.

It follows that E(g ◦ θV | FV ) = EγV (gγV ) . �

II-5.8 Application to Sequential Systems. Assume that N is a sequential
net associated with a transition system as in I-1.2. P is the probability that comes
with the two Markov chains (Xn)n and (Yn)n of states and transitions of the system.
Assume that P is a homogeneous probability in the sense of II-2.1 (this will be shown
in IV-3). Then we show that the usual Strong Markov property II-4.3 holds for
(Yn)n≥1. It implies also the Strong Markov property for (Xn)n, since 〈X0 , . . . , Xn〉 =
〈Y1 , . . . , Yn〉.

Proof – Let h be a positive measurable function and let T be a stopping time.
h : Ω → R is defined on the product space SN, where A is the set of actions of
the system. For each c ∈ D, there is an injection Ωc → AN. We set gc = h|Ωc ,
and g = (gc)c∈D defines a homogeneous function (II-5.2). Let V denote the stopping
operator V T associated with T (II-4.6). Then we have θV = θT , where θT is the shift
operator of II-4.2, and for all ω = (e1 , . . .) we have:

g ◦ θV (ω) = gγV (ω)(eT+1 , . . .) = h(eT+1 , . . .) = h ◦ θT (ω) .

Hence we have: g ◦ θV = h ◦ θT . We have already observed that FV = FT . We
apply the Markov property for concurrent systems (II-5.6) to get:

E(h ◦ θT | FT ) = E(g ◦ θV | FV )

= EγV (gγV )

= EXT (h) ,

the later since γV = XT . The two members vanish on {V /∈ W0} = {T =∞}. This
is the Markov property II-4.3 for the stopping time T . �
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III—d-Homogeneous Nets.

The construction that we propose for probabilities, the distributed product, is based
on well-stopped configurations. It appears that, in general, the distributed product
that one defines is not homogeneous. Does it mean that the study of Section II is
useless?

We take the study of Section II, and we replace all occurrences of the words “fi-
nite configuration” by “finite well-stopped configuration”. This defines in particular
d-homogeneous probabilities. Then all results concerning homogeneous probabilities
hold, with this weak form, and in particular the Markov property. A novelty is intro-
duced with the embedded Markov chain: We show that the normal decomposition,
defined in Chapter 3, defines a Markov chain that characterises the process. The
study of the embedded Markov chain is our first application of the Markov property;
others will be found in next chapter.

Although the construction of distributed product does not provide a homoge-
neous net in general, we will see in next section that it always gives a d-homogeneous
net. This justifies the restriction of our study to d-homogeneous nets.

In III-1 and III-2 we state the above results, with the well-stopped configurations
restriction. The embedded Markov chain is studied in III-3.

III-1 d-Homogeneous Nets.

By definition, homogeneous probabilities induce the same probability in the fu-
tures of any two finite configurations v, v ′ such that γ(v) ∼= γ(v′) (II-2.1). For a no-
tion adapted to the distributed probabilities, based on well-stopped configurations,
we only require the invariance of the probabilities for v, v ′ finite and well-stopped.

III-1.1 Definition. (d-homogeneous net, well-stopped cuts and markings) Let
(N , P) be a compact probabilistic net. Let U be the unfolding of N , and let p denote
the likelihood of P. We say that (N , P) is d-homogeneous if the following property
holds:

∀v, v′ ∈ X0 , p(v), p(v′) > 0, γ(v) ∼= γ(v′)⇒ Pv = Pv′ . (5.15)

Say that a cut c is well stopped, if the configurations v such that c = γ(v) is
well-stopped. An equivalence class of cut c is said to be well-stopped if there is a
v ∈ X0 with γ(v) within class c. We denote by D ′ the set of well-stopped classes of
cuts.

In a similar way, we say that a marking M is (positive) well-stopped if there
is a (positive) well-stopped configuration leading to M .

III-1.2 Remark. We insist that d-homogeneous nets are compact.
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If P is d-homogeneous, c → Pc is a congruence w.r.t. the equivalence relation ∼=
restricted to well-stopped cuts. If M is a positive well-stopped marking, we write
(ΩM ,FM , PM ) to denote the probabilistic future (Ωv,Fv , Pv), for any configuration
v finite, positive and well-stopped, leading to M .

III-2 Well-Stopped Markov Property.

The stopping operators defined in II-3.1 can be well-stopped. A Markov property
holds then w.r.t. d-homogeneous probabilities.

III-2.1 Definition. (Well-stopping operator) We say that V : Ω→ X is a well-

stopping operator, or that V is well-stopped, if V : Ω → W is a stopping
operator (II-3.1).

Hence a well-stopping operator is a stopping operator, whose value V (ω) is max-
imal or is finite and well-stopped.

III-2.2 Shift Operator. We use the above notations for the shift operator θV

(II-5.1) and the σ-algebra FV (II-5.4). We have θV (ω) = ω 	 V (ω).

III-2.3 Definition. (d-homogeneous functions) We define a d-homogeneous

function, as a collection (gc)c∈D′ of measurable mappings gc : Ω→ R, with c ranging
over D′ (by contrast with homogeneous functions where c ∈ D, II-5.2). Equivalently,
g is given by a collection (gv)v∈X0 , such that:

∀v, v′ ∈ X0 , γ(v) ∼= γ(v′)⇒ gv = gv′ .

III-2.4 Theorem. (Well-stopped Markov property) Let (N , P) be a d-
homogeneous probabilistic net. For all d-homogeneous positive function g = (gc)c∈D,
and for all well stopping operator V , the following holds:

E(g ◦ θV | FV ) = EγV (gγV ) , P-a.s , (5.16)

with the same conventions than in II-5.6. In particular the two members vanish on
{V /∈ X0}.

Proof – The proof is formally the same as the proof for homogeneous probabilities
(II-5.6). We replace W0 by X0 . The invariance property of the d-homogeneous
probability P w.r.t. the equivalent elements of X0 (i.e., leading to equivalent cuts)
gives the result. �



168 Chapter 5—Markov Nets

III-3 The Embedded Markov Chain.

We consider a distributed Markov net (N , P). The normal decomposition of
maximal configurations, defined in Chapter 3, defines a sequence of random vari-
ables that converge to a maximal process. The random markings reached through
the normal decomposition, together with the local random actions, constitute the
embedded Markov chain, that is actually a finite Markov chain. The embedded
Markov chain characterises the probabilistic system (N , P).

This is our first application of the Markov property. The embedded Markov
chain has a huge space of states, and its manipulation should thus be avoided for
computational reasons. However the embedded Markov chain appears as an auxiliary
tool for the study of limit theorems in Chapter 7.

III-3.1 Random Variables from the Normal Decomposition. Let (N , P)
be a d-homogeneous net, with U the unfolding and E the associated event structure.
Since N is compact, E is locally finite and has finite concurrent width. In particular
each maximal configuration ω has a unique normal decomposition (Ch. 3, III-3.1),
given by a sequence (vn, zn)n≥1 and v0 = ∅, characterised by:

∀n ≥ 1 , vn ⊆ ω , vn = vn−1 ⊕ zn ,

with zn full-initial in Evn−1 , or equivalently: zn ∈ ΩB⊥(Evn−1 ) , for all n ≥ 1.

We define the random variables (Vn, Zn)n≥0 and V0, by:

V0(ω) = ∅ , ∀n ≥ 1 , Vn(ω) = vn , Zn(ω) = zn . (5.17)

By construction, Vn takes its values in X0 . Zn takes its values in a finite set Z, given
by:

Z =
⋃

c∈D

ΩB⊥(Uc) ,

where D denotes the finite set of reachable markings of N , which are in finite num-
bers. We define the random variable Mn as the marking in N associated with the
finite configuration Vn, for all n ≥ 0. If ρ : U → N denotes the folding mapping, we
have:

∀n ≥ 0 , Mn = ρ ◦ γ(Vn) .

Mn takes its values in the finite set of reachable markings.

III-3.2 The Embedded Markov Chain. Due to the following result, that
states that (Mn, Zn)n≥0 is a Markov chain, we call (Mn, Zn)n≥0 the embedded

Markov chain of (N , P).
It is intuitively clear that (Mn, Zn)n≥0 is a Markov chain: given (Mn, Zn), and

especially the marking Mn , one computes the law of Zn+1 , that is the law of the
full-initial configuration in the cone of future UMn , under probability PMn . This
gives the joint law of (Mn+1, Zn+1) conditional on (Mn, Zn).
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III-3.3 Theorem. Let (N , P) be a d-homogeneous net. Then Vn is a finite
well-stopping operator for every n ≥ 0, and (Mn, Zn)n≥0 is a homogeneous Markov
chain in the finite set D ×Z.

III-3.4 Corollary. For every d-homogeneous net (N , P), there is a finite set S
and a Markov chain (Xn)n≥1 on S, defined on the canonical probability space
A = SN, and an isomorphism of probability spaces A → Ω.

Proof – Xn is given by the embedded Markov chain Xn = (Mn, Zn). The isomor-
phism of probability spaces Φ : A → Ω is given by:

Φ
(
(Xn)n

)
= Z1 ⊕ Z2 ⊕ · · · ,

�

III-3.5 Proof of III-3.3. To show that Vn is a well-stopping operator, since
Vn ∈ X0, we only have to show that Vn is a stopping operator. Let ω, ω′ ∈ Ω such
that ω′ ⊇ Vn(ω). Then an induction shows that the first n terms of the normal
decomposition of ω′ coincide with those of ω, hence Vn(ω′) = V (ω), what was to be
shown.

To show that (Mn, Zn)n is a Markov chain, we construct its probability transi-
tion Q, a square matrix indexed by (D × Z) × (D × Z). We denote by m(v) the
marking reached by a configuration v.

Let (m, z) ∈ D × Z. If there is no finite well-stopped configuration v in U such
that m(v) = m and p(v) > 0, we fill the row (m, z) of Q with any probability vector.
Otherwise, let v ∈ X0 with positive trace (p(v) > 0) and such that m(v) = m.
Let µm be the probability on Z given as follows. Let Z v be the full-initial random
configuration:

Zv : Ωv → ΩB⊥(Ev) , ξ → ξ ∩B⊥ (Ev) , (5.18)

with Ωv equipped with the probability Pv = P
(
· |Ω(v)

)
. We define µm as the law of

Zv in ΩB⊥(Ev) , that we extend with zeros to Z. Since P is d-homogeneous, µm does
not depend on the particular v ∈ X0 that has been chosen.

To fill the row (m, z) of matrix Q, we give probability:

µm(z′)

to the pairs (m′, z′) ∈ D × Z such that m′ = m(v ⊕ z′), where v is as above any
v ∈ X0 leading to m, and probability 0 to the other pairs. This gives a stochastic
matrix Q.

Now we show that (Mn, Zn)n≥0 is a Markov chain with transition matrix Q. Let
(m′, z′) ∈ D ×Z. The conditional probability:

p(m′, z′) = P
(
(Mn+1, Zn+1) = (m′, z′)

∣
∣M0 , Z0 , . . . ,Mn , Zn

)
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is zero whenever m′ 6= Mn ⊕ z′. Otherwise we have:

p(m′, z′) = P(Zn+1 = z′ |M0 , Z0 , . . . ,Mn , Zn

)
. (5.19)

Since Vn = M0 ⊕ Z1 ⊕ · · · ⊕ Zn, we have the equality of σ-algebras:

FVn = 〈Z1 , . . . , Zn〉 = 〈M0 , Z0 , . . . ,Mn , Zn〉 . (5.20)

For v ∈ X0 of positive trace, let gv : Ωv → R be the non-negative function defined
by:

gv(ξ) =

{
1 if ξ ∩B⊥ (Ev) = z′

0 otherwise.

The mapping v → gv is a congruence for the equivalence of cuts: if v, v ′ ∈ X0 satisfy
m(v) = m(v′) then gv = gv′ , modulo the identification Ωv = Ωv′ (II-1.3). The
collection (gv)v defines thus a non-negative d-homogeneous function g = (gc)c∈D′

(III-2.3). We have:

E(g ◦ θVn | FVn) = P
(
ξ ∩B⊥

(
EVn

)
= z′

∣
∣FVn

)
= P(Zn+1 = z′ | FVn) . (5.21)

Using (5.19) and (5.20), we get:

p(m′, z′) = P(Zn+1 = z′ | FVn)

= E(g ◦ θVn | FVn) , by (5.21),

= EγVn (gγVn ) , by the well-stopped Markov property,

= PγVn (ZVn = z′) , where Zv is defined by (5.18),

= µMn(z′) = Q(Mn,Zn),(m′ ,z′) .

This shows that (Mn , Zn)n≥1 is a Markov chain with transition matrix Q. �

IV—Distributed Markov Nets

We now have to construct d-homogeneous probabilities. In general, the distributed
product does not give homogeneous probabilities: nothing is guaranteed for the
invariance of the probabilities in the futures of finite configurations leading to the
same marking. The invariance holds if the configurations are finite and well-stopped.
We construct thus “almost” memory-less probabilities. It may happen though that
the probabilities that we obtain are actually homogeneous. For instance, in sequential
systems, the distinction has no effect since all finite configurations are well-stopped.
This topic is discussed through examples in next section.

In IV-1, we give the definition of branching cells for occurrence nets—it was
defined for event structures in Ch. 3. In particular for labelled occurrence nets,
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an equivalence relation is inherited from the labelling mapping. We then define
distributed Markov nets in IV-2, and we show that they define d-homogeneous nets.
In IV-3, we show how our results apply to sequential systems. In particular, we
complete the proof of the usual Strong Markov property for finite Markov chains
with usual stopping times.

IV-1 Branching Cells in Occurrence Nets and in Unfoldings.

We adapt the notion of branching cell from event structures (Ch. 3, V-1.2) for oc-
currence nets. We introduce an equivalence class on branching cells if the occurrence
net is given by the unfolding of a safe net.

IV-1.1 Branching Cells of an Occurrence Net. Let U be an occurrence

net, and let E be the event structure associated with U . Let
◦
λ be a branching cell

of E (Ch. 3, V-1.2). We define the branching cell λ of U as the smallest open set in

U that contains
◦
λ (Ch. 1, II-3.5). λ is given by:

λ =
◦
λ +

∑

e∈
◦

λ

(•e + e•) .

If (U , ρ) is the unfolding of a safe marked net (N ,M), each branching cell
(λ, ρ|λ : λ→ N ) is a labelled occurrence net w.r.t. the net N . We denote by Wλ

and by Ωλ the set of maximal configurations of λ, which are isomorphic to W ◦

λ
and

to Ω◦

λ
respectively.

We denote by ΛU the set of branching cells of U , and ΛU is one-to-one with ΛE .

IV-1.2 Equivalence of Branching Cells in Unfoldings. Let (U , ρ) be the
unfolding of a safe marked net N . A branching cell λ, equipped with the restric-
tion ρ|λ , is a labelled occurrence net. We say that λ, λ′ ∈ ΛU are equivalent, denoted
by:

λ ∼= λ′ ,

if λ and λ′ are isomorphic as labelled occurrence nets (Ch. 1, II-4.2). The relation is
indeed an equivalence relation, and we denote by LU the set of equivalence classes:

LU = ΛU
/
∼= .

Let λ ∈ ΛU . By definition there is v ∈ X0 such that λ ∈ ∆+ (v). It follows that
c(λ) = Min� (λ) is a ‖-clique in U , since c(λ) ⊆ γ(v). Let λ′ be equivalent to λ.
Then c(λ) ∼= c(λ′) in the sense of II-1.1. Conversely, the following holds.
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IV-1.3 Proposition. Let λ, λ′ ∈ ΛU . Assume that Min� (λ) ∼= Min� (λ′).
Then there is a unique isomorphism of labelled occurrence nets λ→ λ′.

Proof – Consider λ ∈ ΛU , and fix v ∈ X0 such that λ ∈ ∆+ (v). We have that λ is a
minimal non empty stopping prefix of U v. Let M be the marking associated with v,
and we set: N = ρ

(
Min� (λ)

)
, the projection of Min� (λ) in the net N . We have:

N ⊆M , and thus (N , N) is a safe net.

For every configuration y of λ, γ(v) ⊕ y is a configuration of U v—recall that
we have to add the initial cut to obtain configurations in occurrence nets. Since λ
is a prefix of Uv, the configuration γ(v) ⊕ y only consumes resources from N . It
follows that (λ, ρ|λ) is a folding of (N , N). Let V be the unfolding of (M,N). By the
universal property of V, there is a unique morphism of foldings m : λ → V. On the
other hand, any playing sequence in (N , N) only consumes resources from N , and
thus induces a configuration in U v. We have thus a morphism of labelled occurrence
nets m′ : V → Uv.

Since both m and m′ are morphisms into unfoldings, and according to Lemma II-
4.7 of Ch. 1, m and m′ are injective. It follows that m−1 : m(λ)→ λ satisfies m−1 =
m′|m(λ)

.

We now show that m(λ) is an initial branching cell of V. m(λ) is a prefix, and
we check that:

∀e, e′ ∈ V , e#d e′ ⇒ m′(e)#v
d m′(e′) .

Since λ is a stopping prefix in U v, it implies that m(λ) is a stopping prefix in V.
Conversely, since m is a morphism λ → V, if B is a non empty stopping prefix
of V with B ⊆ m(λ), then m′(B) is a stopping prefix of U v, that encounters λ. It
follows that m′(B) = λ and then B = m(λ). We have shown that m(λ) is an initial
branching cell of V.

Now let λ′ ∈ ΛU with Min� (λ) ∼= Min� (λ′). We have as above an injective
morphism q : λ′ → V. m(λ) and q(λ′) have the same initial cut in V. Two initial
branching cells with a condition in common in their initial cuts coincide (it is a
consequence of Ch. 3, IV-3.1 for event structures). It implies that m(λ) = q(λ ′),
whence the isomorphism q−1 ◦m : λ → λ′. The uniqueness of λ → λ′ follows from
the uniqueness of m and q. �

IV-1.4 Remark. If N is a compact net, the set LU of equivalence classes of
branching cells of the unfolding U of N is finite.

Indeed, a branching cell has the form:

λ ∈ ∆+ (v) = ∆⊥ (Ev) = ∆⊥
(

Eγ(v)
)

.

There is a finite number of Eγ(v) modulo isomorphism of labelled occurrence nets.
There are finitely many branching cells in ∆+ (v) for each v, hence there are finitely
many classes of branching cells.
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IV-2 Distributed Markov Nets.

IV-2.1 Collection of Spaces Ωλ . Proposition IV-1.3 implies that, if λ ∼= λ′,
then the isomorphism λ→ λ′ is unique. This natural isomorphism induces through
its actions on subsets an isomorphism of partial orders mapping Wλ onto Wλ′ . In
turn we get by restriction to maximal configurations a bijection between the finite
sets Ωλ → Ωλ′ .

This allows to identify each class l ∈ LU with a labelled occurrence net l, such
that for each λ of the class l, there are isomorphisms:

Wl →Wλ , Ωl → Ωλ ,

induced by the action on sets of the unique isomorphism of labelled occurrence nets
λ→ l. In particular, a probability law µ on Ωλ is seen on Ωl .

IV-2.2 Definition. (Homogeneous family of branching probabilities) Let U be
the unfolding of a safe compact marked net N . A family of branching probabilities
(µλ)λ∈ΛU

is said to be homogeneous if the following holds:

∀λ, λ′ ∈ ΛU , λ ∼= λ′ ⇒ µλ = µλ′ ,

where we identify the probabilities µλ and µλ′ and their images in Ωl , with l the
common class of λ and λ′. Equivalently, a homogeneous family of branching prob-
abilities is given by a finite collection (µl)l∈LU

, where µl is a probability measure
on Ωl for every class of branching cell l ∈ LU .

(Distributed Markov net) We define a distributed Markov net as a pair
(N , (µλ)λ∈ΛU

) as above: N a compact safe marked net, and (µλ)λ a homogeneous
family of branching probabilities on its unfolding. We associate the probability P on

Ω given by the distributed product P =
⊗d

λ∈ΛU

µλ .

IV-2.3 Theorem. Let (N , (µλ)λ∈ΛU
) be a distributed Markov net. Let P be

the distributed product of the family (µλ)λ. Then (N , P) is d-homogeneous. In
particular, the well-stopped Markov property holds.

Proof – Let v, v′ ∈ X0 with p(v), p(v′) > 0 and γ(v) ∼= γ(v′). The isomorphism of
foldings f : Uv → Uv′ from II-1.2 induces a one-to-one mapping:

f̂ : ΛUv → ΛUv′ , f̂(λ) ∼= λ ∀λ ∈ ΛUv ,

and for each λ ∈ ΛU , a bijection fλ : Ωλ → Ωf̂(λ) conjugated to the identity Ωl → Ωl

where l is the common class of λ and of f̂(λ).
Since the family (µλ)λ is homogeneous, we have µλ = µf̂(λ) for all λ ∈ ΛU . By

the composition formula (4.18) in Ch. 4, Th. IV-2.2, we get:

Pv′ =
⊗d

λ′⊆Uv′

µλ′ =
⊗d

λ⊆Uv

µf̂(λ) =
⊗d

λ⊆Uv

µλ = Pv . (5.22)

�
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IV-2.4 Remark. What we require for distributed Markov nets is stronger than
a pair (N , P), where P is distributed and d-homogeneous. Indeed, nothing in general
prevents two induced branching probabilities Pλ and Pλ′

to be different, even if P is
d-homogeneous and λ ∼= λ′, since λ and λ′ may be activated by cuts that are not
equivalent.

IV-3 Sequential Systems.

We continue the example I-1.2 of a sequential net N associated with a probabilis-
tic transition system (S,A, x0 , (µx)x∈S). P denotes the probability on Ω that comes
from the Markov chains (Xn)n≥0 (the markings) and (Yn)n≥1 (the transitions). We
show that we can obtain P and the Markov property for P from our construction.

Every branching cell λ ∈ ΛT is one-to-one with its image in A, which is given
by a set ∂−1

− (x), for x a certain state of S (Ch. 3, VII-2). The state x is unique and
is the label of the initial cut of λ, which reduces to a unique condition. We set the
branching probability over λ:

νλ(t) = µx

(
∂+(t)

)
. (5.23)

IV-3.1 Theorem. Let N be the sequential net associated with a probabilis-
tic transition system (S,A, x0 , (µx)x∈S). The canonical probability measure P on
Ω defined by the Markov chain (Xn)n≥0 makes (N , P) a distributed Markov net,
with branching probabilities given by (5.23). In particular, (Xn)n satisfies the usual
Strong Markov property ( II-4.3).

Proof – The family (νλ)λ∈ΛU
is homogeneous, let Q be the distributed product Q =

⊗d
λ⊆U νλ . We compute the likelihood q of Q on a chain of events v = (e1 , . . . , en).

Let ti = ρ(ei) the label of ei , with (λ1 , . . . , λn) the sequence of encountered branching
cells, and (x0 , . . . , xn) the associated sequence of states. Using the form (5.23), we
compute the likelihood of Q according to Proposition III-3.4 in Ch. 3:

q(v) = νλ1(e1) . . . νλn
(en)

= µx0

(
∂+(t1)

)
µx1

(
∂+(t2)

)
. . . µxn−1

(
∂+(tn)

)

= µx0(x1) . . . µxn−1(xn)

= P
(
(X0 , . . . , Xn) = (x0 , . . . , xn)

)
= p(v) ,

where p denotes the likelihood of P. Since T is locally finite (Ch. 3, VII-2), the
uniqueness in the extension theorem (Ch. 2, III-3.1) implies that P = Q . Now Q , and
thus P, has the required properties: By IV-2.3, Q is d-homogeneous as a distributed
product. Since all finite configurations are well-stopped (Ch. 3, VII-1.1), Q is actually
homogeneous. By II-5.8, it follows that Q satisfies the Strong Markov property for
Markov chains II-4.3. �
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IV-3.2 Remark. The chains (Xn, Yn)n≥1 and the embedded Markov chain
(Mn, Zn)n≥1 (defined in III-3.2) are image one from the other by Mn = Xn ,
Yn = ρ(Zn) , where ρ : U → N is the folding.

IV-3.3 Non homogeneous Markov Chains. For the sake of completeness, let
us analyse the case of non-homogeneous Markov chains. Let E be a finite set, and let (P i)i≥0

be a sequence of stochastic matrixes on E. As for homogeneous Markov chains, the canonical
probability space is A = EN, and (Xi)i denotes the sequence of components. We say that
(Xi)i is a (non homogeneous) Markov chain associated with the family (Pi)i if A is equipped
with the unique probability P satisfying, for all i and for all tuple (x0, . . . , xi):

P
(
X0 = x0 , . . . , Xi = xi

)
= ν(x0)P

0
x0 ,x1

. . . P i−1
xi−1,xi

,

with ν the starting probability on E. P is a probability on the border at infinity of a tree,
and we have shown that every probability on the border at infinity of a locally finite tree is
a distributed probability, and can be expressed as a distributed product (Ch. 4, V-2.4).

The branching cells of the unfolding are given by the collection:

λ(b) = b + b• + (b•)• , b = Min� (λ(b)) .

with b a condition of the unfolding. Remark that the equivalence ∼= on cuts reduces to an
equivalence on conditions. Let h(b) denote the height of a condition b, i.e. the number of
events in configuration [ b [ . A probability P on Ω defines a (non homogeneous) Markov chain
if and only if, for all conditions b, b′ in U :

h(b) = h(b′) , b ∼= b′ ⇒ Pλ(b) = Pλ(b′) .

That is, on each row of the unfolding, the branching probability only depends on the
initial condition. This is illustrated in Figure 5.2. Whereas the probability P defines a
homogeneous Markov chain if and only if, for all condition b, b′ ∈ U , and without the height
constraint:

b ∼= b′ ⇒ Pλ(b) = Pλ(b′) .

'&%$ !"# '&%$ !"# '&%$ !"# '&%$ !"# '&%$ !"# '&%$ !"#
OO OO OO OO OO OO

'&%$ !"#

\\999999
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<<
b

'&%$ !"#

\\999999
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λ(b)

︷ ︷
λ(c)

Figure 5.2: Non homogeneous Markov chain.
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V—Examples of Distributed Markov Nets.

This Section examines some examples of distributed Markov nets. We show how
parametric families of probabilities can be defined on compact nets. The lower
precision bound of our study is the branching cell, and thus the branching probability.
Which branching probability shall be chosen depends on what one needs to model.
We present some simple examples of parametric families obtained by renormalisation
of weights.

We also present the case of confusion-free nets, a model introduced by G. Winskel
and Nielsen-Plotkin-Winskel ([47, 33]) in relation with concrete domains. Confusion-
free nets are also studied as a particular class of “simple” safe nets. They are the
model examined by H. Völzer and Varacca-Völzer-Winskel ([45, 44]) for probabilistic
true-concurrent nets. They constitute a sub-class of compact nets, that share many
properties with sequential systems. In particular, the material introduced in our
theory (stopping prefixes, branching cells, well-stopped configurations) have simple
expressions.

V-1 Additive and Multiplicative Probability.

Let N be a safe compact marked net. To construct a distributed Markov net
based on N , it is enough to specify a homogeneous collection of branching proba-
bilities. Although we do not know precisely the set LU of classes of branching cells,
we can define a homogeneous collection of branching probabilities by following a
renormalisation construction. We use this technique to define the additive and the
multiplicative branching probabilities. Many others can be considered. We apply
these examples to illustrate the difference between homogeneous and d-homogeneous
probabilities on Ω.

V-1.1 Additive Probability. Let N = (P, T,M0) be the safe compact marked
net, and let φ > 0 be a positive function φ : T → R defined on the transitions of N .
Denote by ρ : U → N the folding mapping, and let l ∈ LU be a class of branching
cells. We define the additive branching probability over l by:

∀z ∈ Ωl , µl(z) =
1

Yl

∑

e∈z

φ ◦ ρ(e) ,

where e ranges over the events of z, and Yl is a renormalisation constant. We sum the
weights of transitions encountered, and then we renormalise. We define the d-product
of the family (µl)l∈LU

as the additive probability on Ω, with weight function φ.

V-1.2 Application: a Probability Non Strongly Homogeneous. Addi-
tive probabilities are d-homogeneous by construction. They can give examples of
non homogeneous probabilities.
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Consider for instance the net depicted in Figure 5.3 (a). Use the notation α =
φ(α), β = φ(β), etc, for φ a positive weight function and transitions α, β, etc. Let
κ be the cut of the unfolding, filled by the tokens of Figure 5.3 (b). Then κ is
equivalent to the initial cut c0 . Remark that κ is not well-stopped. We check that
the probabilistic futures of κ and of c0 are isomorphic if and only if (see [1] for
details):

α = β + δ = δ + γ . (5.24)

It follows that P is strongly homogeneous if and only if (5.24) holds. In general—
i.e., excepted on a thin set of parameters—the additive probability is not homoge-
neous on this example. This is related to the height of the branching cell λ.
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Figure 5.3: Additive probability.

V-1.3 Multiplicative Probability. Using again the renormalisation tech-
nique, we define in a similar way the multiplicative probability. We consider a
positive weight function φ : T → R on the transitions of the net. For l ∈ LU a class
of branching cell of the unfolding, let νl be the branching probability over l defined
on Ωl by:

∀v ∈ Ωl , νl(v) =
1

Al

∏

e∈v

φ ◦ ρ(e) ,
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where e ranges over the events of v, Yl is a renormalisation constant, and ρ : U → N
is the folding mapping. νl is called the multiplicative branching probability over l,
w.r.t. the weight function φ. The distributed product of multiplicative branching
probabilities constitutes the multiplicative probability w.r.t. φ.

Modulo re-parametrisation, the multiplicative branching probabilities over a
branching cell l form an exponential statistical model (see [1]).

V-1.4 Example. If Q denotes a multiplicative probability defined for the net
of Figure 5.3, then we check that Q is strongly homogeneous. It follows that, on
this example, additive and multiplicative probabilities coincide only on the set of
probabilities described by (5.24).

V-2 A Case of Homogeneity: Confusion-Free Nets.

We follow [33] for the presentation of confusion-free nets and confusion free event
structures. Confusion-free nets and event structures form a restricted class of systems
where the concurrency behaviour is severely controlled. This class has been studied
by H. Völzer, D. Varacca and G. Winskel for probabilistic applications from a domain
theory point of view. Confusion-free nets are compact. This explains a posteriori
that authors have studied this class for the construction of probability measures
without the powerful tools of projective systems of probabilities.

We briefly present confusion-free nets and event structures from [33, 44], and we
describe our familiar objects (stopping prefixes, branching cells) in this framework.
We show that confusion free event structures share several properties with trees. In
particular, we show that d-homogeneity and homogeneity of probabilities coincide.
By comparison with confusion-free event structures, we can interpret locally finite
event structures as event structures with finite confusion.

V-2.1 Definition. (Confused nets) Let (N ,M0) be a safe marked net. We say
that (N ,M0) is symmetrically confused if there is a reachable marking M and
transitions t, t′, t′′ that can play from M , and such that:

{
•t ∩ •t′ 6= ∅ , •t′ ∩ •t′′ 6= ∅

but: •t ∩ •t′′ = ∅ .
(5.25)

We say that (N ,M0) is asymmetrically confused if there is a reachable mark-
ing M and transitions t, t′, t′′ such that:







t and t′′ can play concurrently from M
t′ cannot play from M , but t′ can play from M − •t + t•
•t′ ∩ •t′′ 6= ∅
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We say that (N ,M0) is confused if it is either symmetrically or asymmetrically
confused. Confused nets are illustrated in Figure 5.4.

Remark that confusion-freeness of a safe marked net is easily checked on the net,
since reachable markings of safe nets are computable (Cf. Ch. 8 for more details).
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Figure 5.4: Confused nets.

V-2.2 Remark. The class of confusion-free nets contains in particular the well-
known extended free-choice nets, defined for N = (P, T,M0) by one of the equivalent
properties ([39, 17]):

∀t, t′ ∈ T , •t ∩ •t′ 6= ∅ ⇒ •t = •t′ ,

or:

∀s, s′ ∈ P , s• ∩ s′• 6= ∅ ⇒ s• = s′• .

V-2.3 Confusion-Free Nets and Concrete Domains. Confusion-Free
Event Structures. Confusion-free nets are introduced in [33] for their relation
with concrete domains. Let E be the event structure associated with the unfolding
of a safe marked net (N ,M0). Then N is confusion free if and only if the domain
W of configurations of E satisfies the so-called Q axiom of concrete domains:

Axiom Q: For every v, v′ ∈ W with v ⊆ v′ and for every e ∈ E such that:

e ∈ Min� (Ev) ,

we have:

e# v′ ⇒ ∃!f ∈Min� (Ev) : f ∈ v′, e# f .
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(Recall that e# v′ means that that e is in conflict with at least one event of v ′).

It is observed in [33] that the Q axiom has two components: existence and unique-
ness. Existence corresponds to asymmetric confusion, and uniqueness corresponds
to symmetric confusion.

We will say that an event structure E is confusion-free if the domainW of config-
urations of E satisfies axiom Q. Clearly, any cone of future E v is then confusion-free.

V-2.4 Confusion-Free Event Structures and Stopping Prefixes. It can
be shown, as stated in [44], that banning symmetric and asymmetric confusion in
an event structure corresponds to the following properties of the dynamic conflict
relation #d:

1. e#d e′ ⇒ [ e [ = [ e′ [ ,

2. the reflexive closure of #d is transitive.

For each event x ∈ E , denote by F (e) the following subset of E—we call it the
flower of event e:

F (e) = {x ∈ E | e#d x} ,

and assume that E is the unfolding of a safe net (confusion-free). Then F (e) is finite,
since the events of F (e) are indexed by some of the transitions t that can play from
the marking M , obtained from configuration [ e [ . Moreover consider the following
subset, for e a given event:

B =
⋃

f∈[ e ]

F (f) . (5.26)

Then B is a #d-closed prefix of E , i.e. a stopping prefix, and B is finite. Actually
B = B(e), i.e. B is the smallest stopping prefix that contains e. It implies that E is
locally finite. Whence the following result.

V-2.5 Proposition. ([44]) Any confusion-free net is compact.

We re-obtain the result for sequential systems, since sequential nets are confusion-
free. We also have the following result, which extends a property already shown for
trees:

V-2.6 Proposition. In a confusion-free event structure, every configuration is
stopped.

Proof – Let v be a configuration, and let ω be a maximal configuration containing v.
From the expression (5.26) of B(e) for every event e, we have:

v = ω ∩B , B =
⋃

e∈v

B(e) ,

which implies the statement. �
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V-2.7 Corollary. Let (N ,M0) be a confusion-free net. Then any distributed
Markov net defined on (N ,M0) is strongly homogeneous.

V-2.8 Branching Cells for Confusion-Free Event Structures. To study
the branching cells of a confusion-free event structure, and since the cones of future
are confusion-free, it is enough to study the initial branching cells. Let λ ∈ ∆⊥ (E) be
an initial branching cell, i.e. a minimal non void stopping prefix. For any pair (e, e ′)
of events in λ, the transitivity of #d implies that e 6= e′ ⇒ e#d e′, and therefore
e � e′ ⇒ e = e′. It follows that:

For λ ∈ ∆⊥ (E), with E a confusion-free event structure, every event e ∈ λ
is minimal in E and satisfies λ = B(e). Each maximal configuration v ∈ Ωλ

consists of a unique event.

As noticed, this can be done with any branching cell. Remark that we consider
branching cells in the unfolding, not the classes:

V-2.9 Proposition. Any branching cell λ ∈ ΛU of the unfolding of a confusion
free net has the form:

λ = {x ∈ E |x#d e} ,

for any event e ∈ λ. Any event x ∈ λ is minimal in λ, and any element v ∈ Ωλ

consists of a unique event.

As a consequence, branching cells are disjoint in the unfolding. This is an other
property shared with trees. However, the projection of branching cells in the net
might not be disjoint, as shown by the example of Ch. 6, Figure 6.2, p. 193. The
computation of branching cells is simpler for confusion-free nets than for general
compact nets; see Chapter 8.

VI—Conclusion

In this chapter we have proposed a definition for true-concurrent and memory-less
random systems. Natural geometric isomorphisms come from the intrinsic memory-
less properties of the dynamics of Petri nets. We add a probabilistic counterpart
to this property to define the homogeneous probabilities, basis of a memory-less
randomisation. The distributed product of branching probabilities defines “almost”
homogeneous probabilities, for which a Strong Markov property holds in a true-
concurrent framework. The concurrent Markov property implies the Strong Markov
property for finite Markov chains.
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Extending the definition of the transition matrix of a Markov chain, the branching
probabilities form the finite set of parameters of a distributed Markov net. Each of
these parameters is given by a finite probability vector, which gives the law of a local
process.

With the embedded Markov chain, we interpret the random dynamics in the
graph of markings of the net. For computational reasons, the embedded Markov
chain is not intended to be of practical use excepted maybe for small examples, but
constitutes a theoretical auxiliary tool. It shows that the global dynamics of any
homogeneous net is isomorphic to the dynamics of a finite Markov chain on a large
state space.
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N , (U , ρ), E • a safe net or a safe marked net (according to
the context), the unfolding of a safe marked
net, the associated event structure.

γ(v) • the cut γ(v) = Max� (v) associated with a fi-
nite configuration v.

Uv, Uc • the cone of future for occurrence nets associ-
ated with configuration v, or associated with
cut c. Uv = Uc if c = γ(v).

P, p • a probability on the space Ω, the associated
likelihood p = P

(
Ω( · )

)

c ∼= c′ • two equivalent cuts (II-1)
D, D′ • the set of equivalence classes of cuts, the set

of equivalence classes of well-stopped cuts (III-
1.1)

(Uc,Fc, Pc) • the probabiltic future associated with cut c, or
with the class c ∈ D is P is homogeneous, or
with the class c ∈ D′ if P is d-homogeneous

V , γV • a stopping operator V : Ω → W or a well-
stopping operator V : Ω → X0 . γV is the
random cut γV (ω) = γ(V (ω)).

g = (gc)c∈D • a homogeneous function (II-5.2)
g = (gc)c∈D′ • a d-homogeneous function (III-2.3)
(Vn, Zn)n≥1 • the sequence of random variables given by the

normal decomposition (III-3.1)
(Mn, Zn)n≥1 • the embeded Markov chain in a probabilistic

d-homogeneous net (III-3.1)
λ ∼= λ′ • two equivalent branching cells in the unfolding

(IV-1.2)
ΛU , LU • the set of branching cells of U , the quotient set

LU = ΛU
/
∼= (IV-1.2)

Table 5.1: Summary of notations for Markov nets.
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Chapter 6

Recurrent Nets

In this chapter, we try to adapt some results from the theory of recurrent Markov
chains to probabilistic nets. Recurrence will be a natural assumption in Chapter 7
for establishing limit theorems. Our main tool is the Markov property for concurrent
systems.

Recurrent states of a Markov chain have a very simple and intuitive definition:
those states where the chain comes back infinitely often. The definition is not so
clear for nets: starting from a marking, several definitions can be proposed to say
that the net is back in the initial marking. The definition that we propose requires
that all the tokens have moved before returning back to the marking. We introduce
a stopping operator that fits this definition. This tool allows to adapt some results
from recurrent Markov chains theory. We show in particular the two following results
for d-homogeneous nets:

• A marking has probability 0 or 1 to be recurrent.

• Markings reached from a recurrent marking are recurrent.

Since our definition considers the whole marking of a net, i.e. its global state, the
stopping operator is called a global renewal operator. We use it the same way as
we use the usual renewal operator(or balayage operator) in Markov chains theory,
where it is defined as a stopping time.

We also introduce the notion of local renewal. For sequential systems, there is
no difference between local and global renewal, since the global state of a sequential
system consists in its unique local state. To obtain results concerning the local
renewal, it is natural to consider distributed Markov nets, instead of general d-
homogeneous nets. The sequence of germs defined by the successive arrivals of
a same branching cell (modulo isomorphism) define an i.i.d sequence of random
variables. This is a comfortable framework for statistical estimation, as shown in
Chapter 8.

The recurrence is typically an almost sure property. When we say that a marking
is recurrent, it means that it has probability one to return infinitely often. In other
words, although there exists in general processes that never return to the initial
marking, they are very rare since all together they have probability zero. Hence we
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characterise properties of nets that cannot be stated without the probabilistic frame-
work: properties that are not always true, but almost always true in the probabilistic
sense.

In Section I, Global renewal operator, we introduce the global renewal operator.
We also study the iterates of this operator. Globally recurrent nets and conservativity
of the global recurrence are the topic of Section II, Recurrent nets. The local renewal
is the subject of Section III, Local renewal, where we particularise the study to
distributed probabilities.
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I—Global Renewal Operator.

This section introduces some preliminary notions for studying the recurrence of mark-
ings. In particular, we introduce a stopping operator, called renewal operator, that
stops any ω at its first return to the initial marking, in a sense to be precised. We
insist on that all the tokens must have moved to bring the net back to its initial
marking.

Using the renewal operator, we will follow the theory of Markov chains and adapt
to our framework the well-known notion of recurrent state for a Markov chain. Hence
we study probabilistic nets that have probability 1 to return infinitely often to the
initial marking.

In I-1 we define the return to the initial marking, which brings us to the definition
of the renewal operator. A recursive construction leads in I-2 to the recursive renewal
operators.

I-1 The Renewal Operator.

I-1.1 Returning to the Initial Marking. Let (N ,M0) be a safe compact
marked net. Let U be the unfolding of (N ,M0), which is locally finite, with c0 the
initial cut of U . We will focus on topics related to well-stopped configurations, but
the definitions can be relaxed toW0 instead of X0 , and then the correponding results
hold.

We recall that γ(y) denotes the cut associated with a finite configuration y. For
ω a maximal configuration of U , we denote by:

X(ω) = {y ∈ X0 | y ⊆ ω}

the lattice of finite well-stopped sub-configurations of ω (X(ω) is a lattice according
to Ch. 3, VI-2.3). We set the following subset of X(ω):

C(ω) = {y ∈ X(ω) | γ(y) ∼= c0} .

Hence C(ω) contains the finite well-stopped sub-configurations of ω that lead back
to the initial marking. The two following results do not present any difficulty.

I-1.2 Lemma. Let v, v′ be two compatible finite configurations. Then we have:

γ(v ∪ v′) = Max�

(
γ(v) ∪ γ(v′)

)
, γ(v ∩ v′) = Min�

(
γ(v) ∪ γ(v′)

)
.

I-1.3 Lemma. For every ω ∈ Ω, C(ω) is a sub-lattice of X(ω).
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I-1.4 Leaving the Initial Cut. The lattice C(ω) describes the many different
ways ω has to come back to the initial marking. We want to identify configurations
of C(ω) that have left the initial cut, or equivalently, that have moved all the tokens
of the initial marking M0 .

For this, we set the following subset of C(ω), for each condition b of the initial
cut:

∀b ∈ c0 , Cb(ω) = {y ∈ C(ω) | b /∈ γ(y)} .

It follows from Lemma I-1.2 that Cb(ω) is a sub-lattice of C(ω). We define thus the
following element if Cb(ω) is non empty:

Db(ω) = min
(
Cb(ω)

)
. (6.1)

I-1.5 Definition. (Renewal operator) Let (N ,M0) be a safe Petri net, and let
U denote the unfolding of (N ,M0). We define the renewal operator R : Ω → W
by:

R(ω) =

{

ω , if ∃b ∈ c0 : Cb(ω) = ∅ ,
⋃

b∈c0
Db(ω) , if Cb(ω) 6= ∅ for all b ∈ c0 .

Hence the renewal operator applied to ω gives the smallest well-stopped sub-
configuration of ω that leads back to M0 , without sharing any condition with the
initial cut c0 . In the net, it means that all tokens have moved.

I-1.6 Lemma. The renewal operator R is a well stopping operator.

Proof – To show that R is measurable, remark first that for every finite stopping
prefix B of U , B and U share the same initial cut. We denote by CB , DB

b and RB

the analogous of C, Db and R in ΩB . Well-stopped configurations of B are those of
E contained in B (Ch. 3, IV-2.1), hence we have:

∀ω ∈ Ω , CB(ωB) = C(ω) ∩B , CB
b (ωB) = Cb(ω) ∩B ,

with the usual notation ωB = ω ∩ B , and with the intersections C(ω) ∩ B and
Cb(ω)∩B in the sense of restriction to configurations contained in B. It implies that
we have:

∀b ∈ c0 , Db(ω) =
⋃

B∈S0

↑ DB
b (ωB) ,

and thus: R =
⋃

B∈S0
↑ RB. Since all RB are FB-measurable, it follows that R is

F -measurable.
We show that R satisfies the property of stopping operators (Ch. 5, II-3.1): Let

ω, ω′ ∈ Ω such that ω′ ⊇ R(ω), we have to show that R(ω) = R(ω ′). We assume
without loss of generality that R(ω) ∈ X0 . Then for every initial condition b ∈ c0 ,
Db(ω) is a finite well-stopped configuration contained in ω ′, leading back to M0 and
such that b /∈ Db(ω), hence Db(ω) ∈ Cb(ω

′), and thus Db(ω
′) ⊆ Db(ω) ⊆ R(ω).

Taking the union over b ∈ c0 , we get: R(ω′) ⊆ R(ω).
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For the converse inclusion, let b be an initial condition, and let v = Db(ω
′)∩R(ω).

Since Db(ω
′) and R(ω) are two compatible well-stopped configurations, v is well-

stopped (Ch. 3, VI-2.3). It follows from I-1.3 that v leads back to M0 , and it follows
from I-1.2 that b /∈ γ(v). Since v ⊆ R(ω) ⊆ ω, we have v ∈ Cb(ω) and thus v ⊇ Db(ω).
It implies that Db(ω

′) ⊇ Db(ω), from which follows that R(ω′) ⊇ R(ω), and finally:
R(ω) = R(ω′). �

I-1.7 Remark. The cut γR, if defined, is equivalent to the initial cut c0 . The
shift operator θR associated with R (Ch. 5, II-5.1) is defined by θR(ω) = ω 	 R(ω).
Modulo the isomorphism Ω→ ΩγR , θR satisfies:

∀ω ∈ Ω , R(ω) /∈ Ω⇒ θR(ω) ∈ Ω .

The shift operator associated with the renewal operator acts “almost” on Ω, whereas
in general, shift operators do not act at all on Ω.

I-2 Successive Renewal Operators.

We introduce a very natural construction, that gives a sequence of stopping
operators. It consists in applying recursively the renewal operator.

I-2.1 Successive Renewal Operators. As noticed in I-1.7, the renewal shift
operator θR is not far from being defined Ω → Ω. We can thus define inductively
the sequence (Sn)n≥0 :

S0 = ∅ , Sn+1 = Sn ⊕R ◦ θSn , ∀n ≥ 0 . (6.2)

More precisely, we set:

Sn+1(ω) =

{

ω if Sn(ω) ∈ Ω ,

Sn(ω)⊕R
(
ω 	 Sn(ω)

)
if Sn(ω) /∈ Ω .

S1 = R is the first well-stopped sub-configuration of ω that leaves the initial cut
and returns to the initial marking. Then ξ = ω 	 S1(ω) is a maximal configuration
of UγR(ω) → U , so ξ is an element of Ω. We apply the renewal operator to ξ to
get S2(ω) = S1(ω)⊕R(ξ), and we repeat the process: subtract R(ξ) from ξ, get an
element of Ω, etc. See an illustration of the process in Figure 6.1.

It is straightforward to see that all Sn are well-stopping operators satisfying
γ(Sn) ∼= c0 . The shift operators are defined θSn : Ω→ Ω , with the same restrictions
than for R (Cf. Remark I-1.7). Remark that if Sj(ω) = ω, then Sn(ω) = ω for all
n ≥ j.
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S1

S2

S3

ω

Figure 6.1: The successive renewal operators Sn .

I-2.2 Remark. The construction of the successive renewal operators is general.
Although we have used the particularity that the renewal operator is defined Ω→ Ω,
what matters is that R is a universal operator: R acts on Ωv for all finite configu-
rations v of the unfolding U , and the action on Ωv is a well-stopping operator w.r.t.
the cone Uv, for every v. In this case, the recursive formulas:

S1 = R, Sn = Sn−1 ⊕R ◦ θSn ,

define as sequence Sn of well stopping operators. This has to be compared with the
well-known result for stopping times in sequential systems: if S, T are two stopping
times, then S + T ◦ θS : ω → S(ω) + T

(
θS(ω)

)
is a stopping time.

I-2.3 Lemma. Let (N ,M0) be a safe marked net. Then for every ω ∈ Ω ,
(
Sn(ω)

)

n≥0
is non-decreasing in X , and converges to ω.

Proof – Let vn = Sn(ω). That (vn)n is non-decreasing follows from (6.2). To show
the convergence to ω, and since vn ⊆ ω for all n ≥ 0, we assume without loss of
generality that Sn(ω) /∈ Ω for all n ≥ 0. Let v =

⋃

n vn , we show that v is maximal.

Assume that v is not maximal. Then there is an event e /∈ v, compatible with v
and such that •e ⊆ v. Then every condition b ∈ •e is maximal in v (otherwise
e ∈ v). Let b ∈ •e, then there is an integer n with b ∈ vn , and b is maximal
in vn , which implies: b ∈ γ(vn). The same holds for vn+1 , hence γ(vn) and γ(vn+1)
share condition b. It follows that γ(vn+1 	 vn) owns an initial condition of U vn ,
which contradicts vn+1 	 vn = R(ω 	 vn). This shows that v is maximal, and thus
⋃

n vn = ω . �
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II—Recurrent Nets

Using the renewal operators introduced above, we adapt to probabilistic nets the
notion of recurrent state of a Markov chain. This leads to define recurrent markings
and recurrent nets. We show the counterpart of some well-known results for Markov
chains; in particular, markings return infinitely often with probability 0 or 1.

In II-1, we recall the notion of recurrent states for Markov chains, and state the
analogous for nets. We establish the 0-1 alternative for markings. In II-2, we show
that markings reachable from a recurrent marking are recurrent, an other well-known
result for Markov chains.

II-1 Recurrent Nets.

We first recall the notion of recurrent state for Markov chains.

II-1.1 Recurrent States of Markov Chains. We write below Proposi-
tion 1.2, p. 64, of [37]. We use the notations of Ch. 1, III-1.1, concerning a Markov
chain (Xn)n≥0 on a finite set E, defined on the canonical measurable space (A,F).

For every x ∈ E, there are only two possibilities:

(i) Px

(
limn{Xn = x}

)
= 0 ,

(ii) Px

(
limn{Xn = x}

)
= 1 .

We recall that the limit sup of a sequence of subsets An ⊆ A is defined as follows
(Cf. Ch. 4, I-5.1):

limnAn =
⋂

N≥0

⋃

n≥N

An

= {ω ∈ Ω |ω ∈ An for infinitely many n}

= {An i.o} ,

where “An i.o” is to be read: “An infinitely often”.

In case (i) the state x is said to be transient, in case (ii) x is said to be recurrent.
In the framework of safe nets, and with our definition of renewal, we are brought to
the question of the infinite return of the initial marking, with an action on all tokens
at each passage.

We state the counterpart of II-1.1 for nets as follows.
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II-1.2 Proposition. Let (N , P) be a compact probabilistic net. Assume that
P is d-homogeneous, and let (Sn)n≥1 denote the successive renewal operators of N .
Then there are only two possibilities:

(i) P
(
limn{Sn /∈ Ω}

)
= 0 ,

(ii) P
(
limn{Sn /∈ Ω}

)
= 1 .

Case (ii) holds if and only if we have: R /∈ Ω, P-a.s.

Proof – We follow the proof of [37]. Let n ≥ 0. From (6.2) we have:

{Sn+1 /∈ Ω} = {Sn /∈ Ω} ∩ {R ◦ θSn /∈ Ω} . (6.3)

We use the following property of conditional expectations:

E(h) = E
(
E(h | G)

)
,

applied with h = 1{Sn+1 /∈Ω} and G = FSn to get from (6.3):

P(Sn+1 /∈ Ω) = E(h) = E
(

E(1{Sn /∈Ω}1{R◦θSn /∈Ω} | FSn)
)

= E
(
1{Sn /∈Ω}E(1{R◦θSn /∈Ω} | FSn)

)
,

the later since {Sn /∈ Ω} is FSn -measurable, and by applying the property that
FSn -measurable functions pass through the conditional expectation ( (4.5) in Ch. 4,
I-3.4). By the well-stopped Markov property (Ch. 5, Th. III-2.4) we have:

E(1{R◦θSn /∈Ω} | FSn) = EγSn (1{R/∈Ω}) = P(R /∈ Ω) ,

since γSn
∼= c0 . Let a = P(R /∈ Ω), we obtain:

P(Sn+1 /∈ Ω) = aP(Sn /∈ Ω) .

If a = 1 then P(Sn /∈ Ω) = 1 for all n ≥ 0 and thus P(Sn /∈ Ω i.o) = 1, that is
case (ii). If a < 1 then

∑

n≥0 P(Sn /∈ Ω) < ∞, and by the Borel-Cantelli Lemma
(Ch. 4, I-5.2) it implies: P(Sn /∈ Ω i.o) = 0, case (i). �

II-1.3 Definition. (Recurrent and transient nets) A d-homogeneous probabilis-
tic net (N ,M0 , P) satisfying Proposition II-1.2 (ii) is said to be recurrent. In
case (i), the net is said to be transient.

II-1.4 Example. Consider a d-homogeneous probabilistic net based on the net
depicted in Figure 6.2 (notice that the net is confusion free), where the places with
same labels (P and Q) are identified. Clearly, the net is recurrent if the branching
probabilities are positive. Observe that there are maximal configurations ω satisfying
R(ω) = ω, although they have probability zero. For instance:

ω = β ⊕ (a⊕ α)⊕ (a⊕ α)⊕ · · · ,

keeps a token frozen in place Q. Recurrence is thus an example of a natural property
of nets, that needs to be formulated in the probabilistic framework.
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Figure 6.2: A recurrent net. Places with same labels are identical.

II-2 Conservativity of Recurrence.

We continue our reading of Markov chains theory, with in mind the idea of
applying it to probabilistic nets. A useful result is the conservativity of recurrence:
a marking reached from a recurrent marking is recurrent itself. This is the topic of
Proposition II-2.3.

Recall that a marking M is said to be positive well-stopped if there is a P-positive
configuration v, finite and well-stopped, leading to M .

For P a d-homogeneous probability, and for M a positive well-stopped marking,
PM denotes the probability on ΩM given by any probabilistic future Pv = P

(
· |Ω(v)

)
,

for v ∈ X0 , P-positive and leading to M .

II-2.1 Lemma. Let (N , P) be a d-homogeneous recurrent net, and let R and
(Sn)n≥0 denote respectively the renewal and the successive renewal operators. For
each k ≥ 1, we set up a random variable κk : Ω→ X0 , defined on limn{Sn /∈ Ω} by:

κk(ω) = Sk(ω)	 Sk−1(ω) .

Then (κk)k≥1 is an i.i.d sequence of random variables with values in X0 , and with
probability law the law of κ1 = R.

Proof – Since the net is recurrent, P
(
limn{Sn /∈ Ω}

)
= 1, hence κk : Ω→ X0 is well

defined. To show that (κk)k≥1 is i.i.d, we show that for all n ≥ 2, and for all tuples
(k1, . . . , kn) ∈ X0 × · · · × X0, we have:

P
(
κ1 = k1 , . . . , κn = kn

)
= P(R = k1) . . . P(R = kn) . (6.4)
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Let (k1, . . . , kn) ∈ X0× · · · ×X0. We condition by FSn−1 to get, using the properties
of conditional expectations (4.4) and (4.5) of Ch. 4, I-3.4:

P
(
κ1 = k1 , . . . , κn = kn

)
= E

(
1{κ1=k1} . . . 1{κn=kn}

)

= E
(
1{κ1=k1} . . . 1{κn−1=kn−1}E(1{κn=kn} | FSn−1)

)

Let c0 be the initial cut of the unfolding. We apply the well-stopped Markov property
(Ch. 5, III-2.4) to get, since γ(Sn−1) ∼= c0 , P-a.s:

E(1{κn=kn} | FSn−1) = E(1{R=kn}) = P(R = kn) .

We obtain thus:

P
(
κ1 = k1 , . . . , κn = kn

)
= E

(
1{κ1=k1} . . . 1{κn−1=kn−1}

)
P(R = kn) .

By induction, (6.4) follows. �

II-2.2 Lemma. Let (N , P) be a d-homogeneous net. Let U be the unfolding
of N , with initial cut c0, and let R be the renewal operator. Assume that an element
ω ∈ Ω contains a non-decreasing sequence of configurations (vn)n≥1, converging to ω
and such that, for all n ≥ 1:

vn ∈ X0 , γ(vn) ∼= c0 , γ(vn) ∩ γ(vn−1) = ∅.

Then ω ∈ lim{Sn /∈ Ω}.

Proof – Assume that ω /∈ lim{Sn /∈ Ω}. There is then a maximal integer n such
that Sn /∈ Ω. Since vp ↑p ω, there is an integer p such that vp ⊇ Sn . The existence
of vp+1 implies R(ω 	 Sn) /∈ Ω, contradicting Sn+1(ω) = ω.

�

II-2.3 Proposition. Let (N ,M0, P) be a d-homogeneous recurrent net. Then
for every positive well-stopped marking M , (N ,M, PM ) is recurrent.

Proof – Let M be a positive well-stopped marking, and assume that (N ,M, PM ) is
transient. Let v be a finite well-stopped configuration of U , with positive likelihood
and leading to M . According to Lemma I-2.3, we have:

Ω(v) =
⋃

p≥1

{Sp ⊇ v} .

Since P
(
Ω(v)

)
> 0, it implies there is an integer p ≥ 1 such that: P(Sp ⊇ v) > 0.

Referring to the notations of II-2.1, we set the sequence of random variables (Kn)n≥1

by:

Kn = Snp 	 · · · 	 S(n−1)p = κ(n−1)p+1 ⊕ · · · ⊕ κnp .
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It follows from II-2.1 that (Kn)n≥1 is i.i.d, with probability law the law of K1 = Sp .
Let Un = {Kn ⊇ v}. Every ω ∈ limnUn contains a sequence of sub-configurations
(vq)q≥1 satisfying:

vq ∈ X0 , vq ↑q ω , γ(vq) ∼= γ(v) , γ(vq) ∩ γ(vq−1) = ∅ . (6.5)

The sequence of subsets (Un)n≥1 is independent and P(Un) = P(Sp ⊇ v) > 0, a
positive constant. The Borel-Cantelli lemma (I-5.2) implies: P

(
limnUn

)
= 1.

Let ξ ∈ ΩM . Then ω = v ⊕ ξ is PM -a.s in limnUn. Using the sequence (vq)q≥1

associated with ω as in (6.5), we set yq = vq 	 v, and we have:

yq ∈ X0 , yq ↑ ξ , γ(yq) ∼= γ(v) , γ(yq) ∩ γ(yq−1) = ∅.

By Lemma II-2.2, it implies that the successive renewal operators SM
n in ΩM , satisfy:

PM
(
lim{SM

n /∈ ΩM}
)

= 1 .

This shows that (N ,M, PM ) is recurrent. �

III—Local Renewal.

In the framework that we have proposed in Chapter 3 for the analysis of processes, the
concurrency of processes is reflected through the concurrency of germs and branching
cells. Since germs are local processes, is it possible to define local states and a
local renewal? We study this question for distributed probabilities, for which the
concurrency of germs has a simple probabilistic expression.

The successive germs of a process in a same class of branching cell modulo isomor-
phism form a sequence of independent and identically distributed random variables.
This is the main result of this section, only valid for distributed probabilities, and
which has important consequences for the statistical estimation of parameters (See
Ch. 8).

The techniques involved are similar to the techniques used in the study of the
global renewal. In particular we define local and successive local renewal operators.
We show that these stopping operators are adapted for the study of the local re-
newal of distributed probabilities. Again, the main tool is the Markov property for
concurrent systems. Note that the distinction between global and local renewal is
trivial for sequential systems.

III-1 defines the local renewal operator associated with a class of branching cell.
The successive local renewal operators are defined in III-2, together with the succes-
sive l-branching cells of a maximal process ω. The successive l-germs are studied
in III-3 for distributed probabilities.
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III-1 Local Renewal Operator.

III-1.1 Hitting a Class of Branching Cells. Let (N ,M0) be a safe marked
net, with unfolding U and event structure E . Let l be an equivalence class of branch-
ing cell: l ∈ LU , with the notation of Chapter 5. For λ a branching cell of U , we
write λ ∼= l to denote that λ is in the class of l. We have remarked that l actually
identifies with a labelled occurrence net, up to a unique isomorphism, such that
if λ ∼= l, there is a unique isomorphism of labelled occurrence nets l → λ (Ch. 5,
IV-2.1). The isomorphism induces through the action on sets a one-to-one mapping
between the finite sets Ωl → Ωλ .

Let l ∈ LU . For ω an element of Ω, we want to identify the “first instant” where
ω “activates” a branching cell λ ∼= l. We set:

F l(ω) = {v ∈ X0 , v ⊆ ω | ∃λ ∈ ∆+ (v) : λ ∼= l, λ /∈ ∆⊥ (E)} . (6.6)

F l contains the sub-configurations of ω that activate a non-initial branching cell
equivalent to l (Cf. Ch. 3, Table 3.1, p. 3.1, for the notations). We consider non
initial branching cells in order to force the process to go forward.

III-1.2 Lemma. For every l ∈ LU and for every ω ∈ Ω, F l(ω) is a lattice.

Proof – Let ω ∈ Ω, we note F l = F l(ω). We show that F l is stable under pairwise
intersections. Let v, v′ ∈ F l and λ, λ′ be the associated branching cells as in (6.6),
and let y = v ∩ v′. Then y is well-stopped (Ch. 3, VI-2.3). There are two cases.

If λ = λ′ then λ ∈ ∆+ (y) since Min� (λ) ⊆ γ(y) by I-1.2, and thus we have:
y ∈ F l.

Otherwise
◦
λ ∩

◦

λ′ = ∅, the branching cells have disjoint events by Ch. 3, VI-
3.4. λ ∩ ω and λ′ ∩ ω cannot be concurrent since their minimal elements have same
labels, and the labelling is injective on ‖-cliques. It follows that there is condition
b ∈ Min� (λ) and a condition b′ ∈ Min� (λ′) such that, say: b � b′. It implies that

v′ ∩
◦
λ 6= ∅ and thus v′ ∩ λ is maximal in λ. In particular Min� (λ) ⊆ v′. Applying

Lemma I-1.2, we get that Min� (λ) ⊆ γ(y), and thus λ ∈ ∆+ (y). Since λ /∈ B⊥ (E),
we have that y ∈ F l.

The stability under union is shown in the same way. �

The meaning of Lemma III-1.2 is clear: if a branching cell is activated at two com-
patible instants, it cannot disappear, neither through union nor through intersection.
The above proof also shows that Ll(ω) is totally ordered:

III-1.3 Lemma. For l ∈ LU , let Ll(ω) be the set of branching cells of Λ (ω)
equivalent to l, that is:

Ll(ω) = {λ ∈ Λ (ω) |λ ∼= l} .

Then Ll is totally ordered by the relation �ω, defined by for λ, λ′ ∈ Ll(ω) by λ �ω λ′

if and only if:
∃c ∈ Min� (λ) , ∃c′ ∈ Min�

(
λ′
)

: c � c′ . (6.7)
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Since F l(ω) may be empty, we define the local renewal operator associated with
l as follows.

III-1.4 Definition. (Local renewal operator) Let U be the unfolding of a safe
marked net N , and let l ∈ LU , a class of branching cells. We define the local
renewal operator of l by:

Rl(ω) =

{

min
(
F l(ω)

)
, if F l(ω) 6= ∅ ,

ω , if F l(ω) = ∅ .

It is straightforward to check that Rl is a well stopping operator. Remark that,
in general, F l(ω) does not leave the initial cut, in the sense of I-1.4.

III-2 Successive Local Renewals.

The technique for defining successive local renewal operators is the same than
for the global renewal.

III-2.1 Successive Local Renewals. For l ∈ LU , we define the successive
renewal W l

n : Ω → X as in I-2.1 and I-2.2: the local renewal operator is indeed a
universal well stopping operator. Recall that the shift operator θV associated with a
stopping operator V is defined by θV (ω) = ω	V (ω), a configuration of EV (ω) (Ch. 5,
II-4.2).

For a short definition, we set the successive local renewal by W l
1 = Rl, and

for n ≥ 1:

W l
n = W l

n−1 ⊕Rl ◦ θWn−1 .

More precisely, we set for n ≥ 1:

W l
n(ω) =

{

W l
n−1(ω)⊕Rl

(
θWn−1(ω)

)
, if Wn−1(ω) /∈ Ω ,

ω , if Wn−1(ω) = ω .

Remark that Rl
(
θW l

n−1
(ω)
)

= Rl
(
ω 	W l

n−1(ω)
)

is the result of the local renewal

operator Rl in U
γ

Wl
n−1

(ω) , not in U .

We formalise the “infinite return of local state” as the property that the above
construction always remains in the case: Wn−1(ω) /∈ Ω, for ω fixed, and for P-a.s
all ω. Equivalently, the set limn{Wn /∈ Ω} = {Wn /∈ Ω i.o} has probability 1.

The following proposition says that, in a recurrent and d-homogeneous net, if a
branching cell is activated once, it will be activated infinitely often, and in P-a.s all
maximal processes. Remark that we dot not require P to be a distributed probability.
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III-2.2 Proposition. Let (N , P) be a d-homogeneous probabilistic net, with U
the unfolding. If (N , P) is recurrent, then every positive class l ∈ LU (i.e.: ∃v ∈ X0 :
p(v) > 0, l ∈ ∆+ (v)) satisfies:

P
(
limn{W

l
n /∈ Ω}

)
= 1 .

Proof – We proceed as in Proposition II-2.3. We use the sequence of i.i.d random
variables (κk)k≥1 , defined in II-2.1 by κk = Sk	Sk−1, with Sk the successive renewals
of N . Let v ∈ X0 with positive likelihood (p(v) > 0) and such that l ∈ ∆+ (v).
Since N is recurrent, we have Ω(v) =

⋃

k≥1{Sk ⊇ v}, as a consequence of I-2.3.

As P
(
Ω(v)

)
> 0, there is thus an integer q such that P(Sq ⊇ v) > 0. Then we

consider the i.i.d sequence Kn = Snq	S(n−1)q, with law Sq in X0 . Since (Kn)n≥1 is

independent, the Borel-Cantelli lemma implies that lim{Kn ⊇ v} has probability 1.
We have shown tor P-a.s all ω, ω contains infinitely many branching cells λ ∼= l.

By a lemma analogous to Lemma II-2.2, it implies that P-a.s all ω belong to lim{W l
n /∈

Ω} . �

III-2.3 The Successive l-Branching Cells. Assume that (N , P) is d-
homogeneous recurrent, and let l ∈ LU be a positive equivalence class of branching
cell. For every n ≥ 1, and for P-a.s all ω, W l

n(ω) ( ω, and there is a branching cell
ln ∈ ∆+ (Wn(ω)) with ln ∼= l. For each n, there is a unique ln that satisfies these two
conditions. We say that the sequence of branching cells (ln)n ≥ 1 is the sequence of
successive l-branching cells of ω.

We have the following result, where Ll(ω) denotes as in Lemma III-1.3 the branch-
ing cells of Λ (ω) equivalent to l. Basically, the result is due to the safety assumption
on the net.

III-2.4 Lemma. Let (N , P) be a d-homogeneous recurrent net. Let l ∈ LU

be a class of branching cell of the unfolding, and let ln(ω) denote the successive
occurrences of l of ω, defined for all n ≥ 1 and for P-a.s all ω. We have the equality
of sets:

Ll(ω) = {ln(ω) , n ≥ 1} ,

where we add {λ0} to the right hand member if there is a λ0 ∈ ∆⊥ (E) such that
λ0
∼= l.

Proof – For every n ≥ 1, the branching cell ln+1(ω) is the successor of ln(ω) in the
total order Ll(ω), w.r.t. the relation �ω defined in III-1.3. The result of the lemma
follows. �

III-3 The Case of Distributed Probabilities: Successive l-Germs.

With the successive l-branching cells of a maximal process ω, we want now to
study the associated l-germs of ω. For this, it is natural to assume that the proba-
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bility is distributed, i.e. that the net is a distributed Markov net in the sense seen
in Chapter 5.

III-3.1 The Successive l-Germs. Let (N , P) be a d-homogeneous probabilis-
tic net, and assume that (N , P) is recurrent. Fix a class of branching cells l ∈ LU ,
and let ln(ω) denote the successive l-branching cells of ω, defined for P-a.s ω and for
all n ≥ 1 as seen in III-2.3. We have ln(ω) ∈ Λ (ω), and since ω is maximal we have
ω ∩ ln(ω) ∈ Ωln(ω) = Ωl for all n. We define thus a sequence of l-germs by setting:

∀n ≥ 1 , Z l
n(ω) = ω ∩ ln(ω) ∈ Ωl .

We can go further in the analysis if we consider distributed probabilities.

III-3.2 Theorem. Let (N , (µl)l∈LU
) be a distributed Markov net, with U the

unfolding, and let P be the associated distributed probability. Assume that (N , P) is
recurrent. Then for every positive class l ∈ LU , the sequence (Z l

n)n≥1 of successive
l-germs is i.i.d with law µl in Ωl .

We begin with a lemma.

III-3.3 Lemma. With the notations of Theorem III-3.2, the probability law of
Z l

1 in Ωl is µl .

Proof – We note Z = Z l
1; we have to show that P(Z = z) = µl(z) for all z ∈ Ωl .

Let z ∈ Ωl , we will apply the well-stopped Markov property to the local renewal
operator Rl . Let D denote the class of equivalent cuts, and let g = (gc)c∈D be the
d-homogeneous function defined by:

∀ c ∈ D ,∀ξ ∈ Ωc , gc(ξ) =

{

0 , if: @λ ∈ ∆⊥ (Uc) , λ ∼= l ,

1{ξ∩λ=z} , if: ∃λ ∈ ∆⊥ (Uc) , λ ∼= l .

Remark that, if there is a λ ∈ ∆⊥ (Uc) with λ ∼= l, then λ is unique, hence ξ∩λ ∈ Ωλ

is well defined. We have the equality of sets:

{Z = z} =
{
ω ∈ Ω | g

(
ω 	Rl(ω)

)
= 1
}

= {g ◦ θRl = 1} ,

where θRl denotes the shift operator associated with Rl (Ch. 5, II-5.1). We apply
the well stopped Markov property (Ch. 5, III-2.4) to g and Rl to get:

P(Z = z) = E(g ◦ θRl)

= E
(

E(g ◦ θRl | FRl)
)

, conditioning by FRl ,

= E
(

Eγ
Rl (gγ

Rl )
)
, by the Markov property. (6.8)
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To compute this expectation, let c be a well-stopped cut, such that λ ∼= l for a
λ ∈ ∆⊥ (Uc). Then we have:

Ec(gc) = Pc(ξ ∩ λ = z) ,

where ξ denotes the variable in Ωc. Since P is distributed, and c is well-stopped, Pc

is distributed, and induces the same branching probabilities (µλ)λ than P. It follows
that Pc(ξ∩λ = z) = µl(z). Hence c 7→ Ec(gc) is constant, equal to µl(z). From (6.8),
it follows that: P(Z = z) = µl(z), what was to be shown. �

III-3.4 Proof of III-3.2 . We fix l ∈ LU and n ≥ 1, and we have to show that
for every n ≥ 0, and for every tuple (z1 , . . . , zn) ∈ Ωl× · · ·×Ωl , the following holds:

P
(
Z l

1 = z1 , . . . , Z l
n = zn

)
= µl(z1) . . . µl(zn) . (6.9)

We will apply the well stopped Markov property (Ch. 5, III-2.4). Let g be the
homogeneous function defined as in the proof of Lemma III-3.3, with z = zn , that is
for every cut c:

∀ξ ∈ Ωc , gc(ξ) =

{

1 , if l ∈ ∆⊥ (Uc) and if ξ ∩ l = zn ,

0 , otherwise.

Assume for the moment that the following holds:

E(g ◦ θWn | FWn−1) = µl(zn) . (6.10)

Let q = P
(
Z l

1 = z1 , . . . , Z l
n = zn

)
. We have by the usual transformations:

q = E
(
1{Zl

1=z1}
. . . 1{Zl

n−1=zn−1}
E(g ◦ θWn | FWn−1)

)

= P
(
Z l

1 = z1 , . . . , Z l
n−1 = zn−1

)
µl(zn) ,

the later by (6.10). By induction, (6.9) follows.
It remains to show (6.10). We note Wn = W l

n and R = Rl. Then we have
Wn = Wn−1 ⊕R ◦ θWn−1 , from which follows:

ω 	Wn = (ω 	Wn−1)	R ◦ θWn−1

θWn = θWn−1 	R ◦ θWn−1 . (6.11)

We set the d-homogeneous function h, defined by h(ξ) = g
(
ξ 	R(ξ)

)
. Applying the

well stopped Markov property, and by (6.11), we get:

E(g ◦ θWn | FWn−1) = E
(
g(θWn−1 	R ◦ θWn−1) | FWn−1

)

= E(h ◦ θWn−1 | FWn−1)

= EγWn−1 (hγWn−1 )

= PγWn−1 (Z l
1 = zn) . (6.12)
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Remark that the right hand member of (6.12) is the composite of ω ∈ Ω→ γWn−1 and
c→ Pc(Z l

1 = zn), where Z l
1 represents the first l-germ in U c. For every well stopped

cut c, we apply Lemma III-3.3 in the cone of future U c, since Pc is distributed and
consistent with the family (µl)l∈LU

, to get that the probability law of Z1
l is µl . Hence

for every well-stopped cut c, Pc(Z l
1 = zn) = µl(zn). With (6.12), it implies (6.10).

�

IV—Conclusion

We have shown that the Markov property for concurrent systems is a basis for a recur-
rence theory of probabilistic nets. We have established for compact d-homogeneous
nets some results on recurrent markings, classical for finite Markov chains: alterna-
tive 0-1 between recurrent and transient markings, conservativity of recurrence.

We have also introduced the notion of local renewal. Defining a local renewal
operator, we establish the character i.i.d of the sequence of successive l-germs, for l
a class of branching cell.

The “next” result to be established, and that we miss, is the positive recurrence
of markings. In a finite recurrent Markov chain, not only the states are recurrent,
they also come back within a random time with finite expectation. An analogous
can certainly be expected for concurrent systems. We will face this difficulty in next
chapter.





Chapter 7

Chapter 7

Ergodicity and
Limit Theorems

Among the most powerful results from probability theory are certainly the so-called
limit theorems. Limit theorems as the Strong law of large numbers and the Central
Limit Theorem, and more generally ergodic properties, characterise the asymptotic
behaviour of a dynamical system. Since we have adapted until a certain point the
recurrence theory of finite Markov chains to concurrent systems, the question of limit
theorems becomes natural.

The aim of this chapter is first to propose a formulation of the Strong law of
large numbers for concurrent systems, in the model of compact probabilistic nets. In
concurrent systems, unlike in sequential systems, the appropriate unit of time is not
the event. For instance the prefixes of an event structure formed by chains of events
with bounded length do not define interesting prefixes from the dynamics point of
view, since in general they are not intrinsic. For distributed probabilities, branching
cells represent the atomic probabilistic “actions”, related to the local resolution of
conflicts. Therefore we adopt the branching cell as a unit of time, by simply counting
the branching cells that the process passes through. The difference with sequential
systems is that causally related events can be involved in a same atomic action. With
this new unit of time, we propose a statement for the Strong law of large numbers.

For this we also introduce distributed functions. A distributed function can be
seen as a local test function, that outputs for instance 1 each time the net satisfies
a given local property. By summing the outputs of the distributed function along a
finite process, we count the number of occurrences of the local property along the
finite process. For instance the time elapsed along a process is obtained by summing
the distributed function with constant value 1. The Strong law of large numbers
for concurrent systems that we propose gives the limit of the summed outputs of
any distributed function, normalised by the growth of concurrent time for the same
process. The limit is almost sure, and is taken with the process growing to its
maximal value.

The stationary measure of an ergodic finite Markov chain, that gives the asymp-
totic repartition of the chain through its set of states, becomes in the concurrent
framework a measure on the finite set of branching cells (modulo isomorphism), that
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is a density coefficient for each class of branching cell. The asymptotic ratios of dis-
tributed functions have then two components: a local component, concerned by the
local branching probability, and a global component, given by the density coefficients
of branching cells. This only holds for distributed Markov nets and not for general
concurrent memory-less systems. For distributed probabilities, the interactions be-
tween all components reduce to the finite collection of density coefficients.

To establish the Strong law of large numbers, we use the embedded Markov chain
of a safe net as an auxiliary tool. To derive an intrinsic result from the ergodic result
for the embedded Markov chain, we need to analytically control the concurrency
range of the system. For this we introduce the notion of concurrent height of a
net, given by an integer random variable, and the definition of a net with integrable
concurrent height. With the recurrence property, the integrable concurrent height
is a second example of an analytical tool for studying concurrent systems. For
instance a bounded concurrent height would be too much restricting. Although it
is not shown, we can expect that every net decomposes through components with
integrable concurrent height.

We show two ergodic results directly on nets. A first lemma translates for nets
a useful lemma, often used in the theory of dynamical systems. A second results
establishes, with the vocabulary of ergodic theory, that recurrent nets are ergodic.
To obtain the Strong law of large numbers we use two other tools: a simplification
derives from the properties of distributed probabilities, and the embedded Markov
chain brings the last ingredient. Finally the state-of-work concerning the use of
Martingales is the topic of a separated section. The aim is to obtain the Central
Limit Theorem in a future work.

In Section I, Ergodic means, we recall the form of ergodic means for sequential
systems, and the convergence result for finite ergodic Markov chains. We introduce
the distributed functions and we define concurrent ergodic means. In II, The Strong
law of large numbers, we introduce the remaining material needed to establish the
Strong law of large numbers, in particular the notion of net with integrable concur-
rent height.
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I—Ergodic Means

This section describes the form of ergodic means for sequential systems like Markov
chains, and introduces an analogous notion for concurrent systems. Concurrent
ergodic means are based on the notion of distributed function. Both forms of ergodic
means are identical for a sequential net. We also introduce the “unit of time” that
we use, obtained by counting branching cells along a process. We show that, due
to concurrency, to expect the Strong law of large numbers to hold, it is natural to
consider processes that grow to infinity in a “regular” way.

In I-1, we recall the form of sequential ergodic means and the convergence result
for ergodic means of a finite ergodic Markov chain. We introduce in I-2 the form
that we consider for concurrent ergodic means. Then we state in I-3 the Strong law
of large numbers for concurrent systems, to be established later.

I-1 Sequential Ergodic Means.

I-1.1 The Strong Law of Large Numbers for Markov Chains. Let X =
(Xn)n≥1 be a Markov chain on a finite set E, starting from state x0 . Let f : E → R
be a function. Assume that X is recurrent (all the states x ∈ E are recurrent) and
irreducible (there is a positive path from x to y for every pair x, y ∈ E). Then the
ergodic theory of stationary processes ([10, 36]) states that the ergodic means:

1

n

n∑

k=1

f(Xk) (7.1)

converge for Px0-a.s all ω, and the limit is given by
∫

f dµx0 , where µx0 is a probabil-
ity measure on E. Moreover the measure does not depend on x0 , and thus the limit
does not depend on x0 . The measure µ = µx0 on E is called the stationary measure
of X. This result constitutes the Strong Law of large numbers, strong referring to
the almost sure convergence. If X is not recurrent and irreducible, the convergence
still holds, but the stationary measure depends on x0 .

I-1.2 Measure of Time. In the model of nets for concurrent systems, since
the nature of time varies from an execution to an other, what should be the unit
of time seems not clear. We propose to use the tools of well-stopped configurations
and branching cells for the definition of a unit of time.

If v is a finite well-stopped configuration of a locally finite event structure, we
have defined in Ch. 4, III-3.3, the number of branching cells associated with v:

〈N, v〉 = Card
(
ΛE (v)

)
.

We will consider 〈N, v〉 as the time elapsed during the process v. We will also
consider that 〈N, · 〉 is a function defined for all configurations of all locally finite
event structures.
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If y is a finite well-stopped configuration of the cone E v, then we have the disjoint
union: ΛE(v ⊕ y) = ΛE(v) t ΛEv(y) (Ch. 3, VI-3.7). It implies:

〈N, v ⊕ v′〉 = 〈N, v〉 + 〈N, v′〉 ,

an additivity relation expected for a measure of time.

I-2 Distributed Functions and Concurrent Ergodic Means.

Let (N ,M) be a safe compact net, and let U be the unfolding. Let ΛU denote
the set of branching cells of U , and let LU denote the quotient modulo equivalence
of branching cells, as in Ch. 5, IV-1.2. We recall that LU is a finite set.

A distributed function is like a local test function.

I-2.1 Definition. We define a distributed function of N as a function de-
fined on the disjoint union:

f :
⊔

λ∈LU

Ωλ → R .

Equivalently, f is given by a collection (f λ)λ∈ΛE
of functions fλ : Ωλ → R, such

that:

∀λ, λ′ ∈ ΛE , λ ∼= λ′ ⇒ fλ = fλ′

,

modulo the unique isomorphism Ωλ → Ωλ′ (Ch. 5, IV-1.3). We identify the dis-
tributed function f , the collection (f λ)λ with λ ranging over LU and the collection
(f l)l with l ranging over LU .

If f = (fλ)λ is a distributed function, f defines a mapping 〈f, · 〉 : X0 → R by:

∀v ∈ X0 , 〈f, v〉 =
∑

λ∈Λ(v)

fλ(v ∩ λ) , (7.2)

where Λ (v) denotes the dynamic puzzle around v (Ch. 3, VI-3.1). Since v ∩ λ is
maximal in λ for every λ ∈ Λ (v) (Ch. 3, VI-3.3), f λ(v ∩ λ) is well-defined.

I-2.2 Remark. Distributed functions form a R-vector space of finite dimension,
equal to Card(LU )

(∑

l∈U Card(Ωl)
)
. The scalar notation of (7.2) is justified since

〈 · , · 〉 is indeed bilinear, w.r.t. the usual addition for the left argument, and w.r.t. the
concatenation ⊕ for the right argument.

I-2.3 Example. The function 〈N, v〉 of I-1.2 is given by the distributed function
(1)λ , with constant functions Ωλ → R with value 1 for all λ.
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I-2.4 Example. Let λ0 ∈ LU . We define the distributed function N λ0 by
Nλ0 = (f l)l∈LU

, with:

∀l ∈ LU , ∀z ∈ Ωl , f l(z) =

{

1 , if l = λ0 ,

0 , if l 6= λ0 .

Hence 〈Nλ0 , · 〉 counts the number of occurrences of branching cells within the
class λ0 . We have:

∀v ∈ X0 , 〈N, v〉 =
∑

λ∈LU

〈Nλ, v〉 . (7.3)

I-2.5 Ergodic Means for Nets. We interpret the sequential ergodic
means (7.1) as a mean along the path drawn by Xn in the covering tree. For concur-
rent systems, we are prompted to define ergodic means as a function Tf : X0 → R :

∀v ∈ X0 , T f(v) =
1

〈N, v〉
〈f, v〉 . (7.4)

In particular for B a finite stopping prefix, and with the usual notation ωB = ω∩B,
we define the FB-measurable random variable:

TBf : Ω→ R , TBf(ω) = Tf(ωB) =
1

〈N,ωB〉
〈f, ωB〉 .

I-2.6 Ergodic Means Coincide for Sequential Nets. Assume that N is
a sequential net associated with a probabilistic transition system (S,A, x0, (µx)x)
(Ch. 1, III-2). Let X = (Xn)n≥0 and Y = (Yn)n≥1 be the canonical Markov chains
associated with the transition system, X for the chain of states and Y for the chain
of transitions. The unfolding is associated with a tree of events T , all branching
cells are disjoint in T and in the set of transitions A (Ch. 3, VII-2). It follows that
a distributed function identifies with a function f : A→ R .

Let B be a stopping prefix of T , and let tB : Ω → N be the FB-measurable
random variable defined by tB(ω) = 〈N,ωB〉 (we have seen in Ch. 5 that tB is
actually a stopping time in the usual sense). Then we have:

TBf(ω) =
1

tB(ω)

tB(ω)
∑

k=1

f(Yk) . (7.5)

Assume that (Bn)n is a non decreasing sequence of finite stopping prefixes, with
Bn → E . Then (tBn)n converges P-a.s to +∞. From the ergodic theory of Markov
chains, the ergodic sums (7.5) with B = Bn converge P-a.s , and the limit does not
depend on the sequence (Bn)n . Typically, this last point will not hold anymore with
concurrency: see I-3.3.
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I-3 Regular Sequences of Stopping Operators. Nets Satisfying the
Strong Law of Large Numbers.

We give the statement that we consider for the Strong law of large numbers. The
growth of time is formalised by a sequence (Vn)n of finite stopping operators, such
that Vn(ω) ↑ ω. We require that the growth of Vn is linear in n. This condition
concerns the observations. A second condition, intrinsic to the net, is introduced
in II-1.

I-3.1 Definition. (Regular sequences of stopping operators) Let (Vn)n≥1 be a
sequence of finite stopping operators of a locally finite probabilistic event structure.
We say that the sequence is regular if:

1. (Vn)n is non decreasing: ∀n, Vn ⊆ Vn+1 ,

2.
⋃

n Vn(ω) = ω, for P-a.s ω of Ω ,

3. There are two constants K1,K2 such that:

∀n ≥ 1 , 0 < K1 ≤
〈N,Vn〉

n
≤ K2 <∞ , P-a.s . (7.6)

For example, assume that E = T is a tree of events with no maximal event. If
Bn is the prefix of height n, (Bn)n is regular with K1 = K2 = 1.

I-3.2 Definition. (Nets with the Strong law of large numbers) Let (N , P) be a
(compact) probabilistic net. We say that the Strong law of large numbers holds
for (N , P) if every distributed function f defined on the unfolding of N satisfies
the following property: For every regular sequence (Vn)n of stopping operators, the
ergodic means:

Tf(Vn) =
1

〈N,Vn〉
〈f, Vn〉 ,

converge P-a.s, and for every other regular sequence (Wn)n, we have:

lim
n→∞

Tf(Vn) = lim
n→∞

Tf(Wn) , P-a.s .

I-3.3 Remark. As shown by the following example, and for concurrent systems, the
regularity of stopping operators is mandatory to expect the uniqueness in Definition I-3.1.
Let N be the safe marked net represented in Figure 7.1, consisting in two independent
deterministic loops.

The unfolding U is given by the disjoint union of two chains: (A, t1 , A, t1 , . . .) and
(B, t2 , B, t2 , . . .). Ω has a unique element ω, and P is thus trivial: P(ω) = 1. U has two
classes of branching cells, say λ1 and λ2 . Let f be the distributed function f = Nλ1 that
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Figure 7.1: Two independent deterministic nets.

counts the occurrences of λ1 (defined in I-2.4). Let (Cn)n≥1 and (Dn)n≥1 be the sequences
of stopping prefixes defined by:

Cn = (A, t1 , . . . , t1 , A)
︸ ︷︷ ︸

n occurrences of A

t (B, t2 , . . . , t2 , B)
︸ ︷︷ ︸

n2 occurrences of B

,

and (Dn)n≥1 defined similarly, with n2 occurrences of A and n occurrences of B. We have
〈N, ω〉 = n + n2, and thus:

TCn
f(ω) =

1

1 + n
, TDn

f(ω) =
n

1 + n
.

Therefore the limit depends on the sequence.

The following lemma shows that the normal decomposition of maximal configu-
rations (Ch. 5, III-3.1) leads to a regular sequence of stopping operators.

I-3.4 Lemma. If the net is recurrent, the sequence (Vn)n of random variables
given by the normal decomposition of maximal configurations is a regular sequence
of stopping operators.

Proof – We have shown in Ch. 5, III-3.3 that Vn is a finite well-stopping operator.
Since (Vn)n is non-decreasing by construction, it remains only to show that (Vn)n
satisfies point 3 of Definition I-3.1. Since the net is recurrent, Vn(ω) is not maximal
for P-a.s all ω. Therefore the cone of future U Vn has a non empty stopping prefix,
and contains thus at least a branching cell. Hence: 〈N,Vn+1〉 ≥ 1 + 〈N,Vn〉, and
thus:

∀n ≥ 1 ,
〈N,Vn〉

n
≥ 1 .

For the converse equality, we have 〈N,Vn+1〉 ≤ 〈N,Vn〉+ k, where k is for instance
(not the optimal bound) the maximal number of concurrent transitions of the net,
whence:

∀n ≥ 1 ,
〈N,Vn〉

n
≤ k .

�
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II—The Strong Law of Large Numbers

The aim of this section is to show the Strong law of large numbers for concurrent
systems, with the statement that we have given above in I-3.2. We introduce for
this the class of probabilistic nets with integrable concurrent height. This analytical
condition is intended to control the range of concurrency inside a probabilistic net.
We underline the geometric interpretation of this condition in the unfolding. We
establish in the framework of nets some preliminary results that can be found in the
theory of mathematical dynamical systems. Then we show that, from the Strong law
of large numbers applied to the embedded Markov chain, we can derive the Strong
law of large numbers for a distributed Markov net.

In II-1 we introduce the definition of nets with integrable concurrent height. We
show two preliminary results on d-homogeneous probabilistic nets in II-2. Then we
show in II-3 the Strong law of large numbers for recurrent and distributed Markov
nets with integrable concurrent height.

II-1 Integrable Concurrent Height.

Let U be the unfolding of a probabilistic net (N , P). Let v be a finite well-stopped
and positive configuration of U , the probabilistic future (Ωv, Pv) is well defined. For
each condition b ∈ γ(v), we set the following random variable:

Lv
b : Ω(v)→W , Lv

b (ξ) = Sup{w ∈ X0 , w ⊆ v ⊕ ξ : b ∈ γ(w)} .

The interpretation in the net of Lv
b is that of a playing sequence that continues

v without moving the token associated with b.
Recall that Ev denotes the expectation w.r.t. probability Pv. We define the

branching distance D
(
v, Lv

b (ξ)
)

by counting the branching cells between v and Lv
b :

∀ξ ∈ Ω(v) , D
(
v, Lv

b (ξ)
)

= 〈N,Lv
b (ξ)〉 − 〈N, v〉 .

D
(
v, Lv

b (ξ)
)

may be infinite, and says how much Lv
b (ξ) is larger than v. It says how

far a process can go towards direction ξ ∈ Ω(v), keeping in place in the net the token
associated with b (See Example II-1.3 and Figure 7.2). The mean value is given by:

Ev
(
D(v, Lv

b )
)

.

II-1.1 Definition. (Nets with integrable concurrent height) We say that a prob-
abilistic net (N , P) has integrable concurrent height if for every v ∈ X0 with
P
(
Ω(v)

)
> 0:

Ev
(

sup
b∈γ(v)

D
(
v, Lv

b

))

<∞ .
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L
v
b

v
b

Figure 7.2: Integrable concurrent height.

II-1.2 Remark. For each v ∈ X0 , set Rv : Ωv → R defined by:

∀ξ ∈ Ωv , Rv(ξ) = sup
b∈γ(v)

D
(
v, Lv

b (ξ)
)

.

Then R = (Rv)v∈X0 is a d-homogeneous function, i.e. Rv only depends on the mark-
ing m(v), such that v leads to m(v) (Cf. Ch.5 III-2.3 for d-homogeneous functions).
Saying that the net has integrable concurrent height is equivalent to say that R is
integrable.

From Rv ≤
∑

b∈γ(v) D
(
v, Lv

b

)
, it follows that R is integrable if and only if the

mean values Ev
(
D(v, Lv

b )
)

are finite.

II-1.3 Example. Typically, the net of Ch. 6, Fig. 6.2, p. 193, has integrable
concurrent height. Figure 7.2 geometrically illustrates the random variable Lv

b with
finite mean Ev

(
Lv

b

)
<∞ . The piece cut up from the cone of future U v along Lv

b ( · )
has finite area. The net has integrable concurrent height if all the pieces cut up this
way have finite area.

In the unfolding of a net with integrable concurrent height, there cannot be
branches that never interact. In other words, all branches must synchronise. More-
over, the delay between synchronisations has a finite mean.

II-2 Preliminary Asymptotic and Ergodic Results.

We establish two asymptotic results as a preliminary for the Strong law of large
numbers. The analogous of these results for sequential systems are found in the
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theory of dynamical systems ([42]). Theorem II-2.2 is formulated as an ergodicity
result for recurrent nets: under some invariance condition, test functions are P-a.s
constant. Remark the use of a Martingale argument in the proof.

Proposition II-2.1 is a key for analytically controlling concurrent terms in the
equations. It has to be compared with the following well known result, a lemma
often used in the analysis of dynamical systems. Let (E, τ, µ) be a dynamical system,
i.e. µ is a probability on the space E and τ : E → E is a µ-invariant pointwise
transformation: τµ = µ. If f : E → R is integrable, then:

lim
n→∞

f ◦ τn

n
= 0 , µ-a.s .

We recall that a d-homogeneous function (Ch. 4, III-2.3) is a collection H =
(Hv)v∈X0 , where Hv : Ωv → R is a random variable for every v ∈ X0 , such that
Hv = Hv′ if γ(v) ∼= γ(v′), that is if v and v′ lead to equivalent cuts, or equivalently
if v and v′ lead to the same marking. H is said to be integrable if every H v is
Pv-integrable.

II-2.1 Proposition. Let (N , P) be a d-homogeneous probabilistic net, and let
(Vn)n be a regular sequence of stopping operators defined in the unfolding U of N .
For each n, θn denotes the shift operator θVn , defined by θn(ω) = ω 	 Vn(ω), with
θn(ω) ∈ ΩVn(ω).

Let H = (Hv)v∈X0 be a d-homogeneous integrable function defined on U . Then
we have:

lim
n→∞

HVn(θn)

〈N,Vn〉
= 0 , P-a.s . (7.7)

II-2.2 Theorem. (Ergodicity of recurrent nets) Let (N , P) be a d-homogeneous
and recurrent net. Let H = (Hv)v∈X0 be an integrable d-homogeneous function.
Assume that, for P-a.s all ω, we have:

∀v ∈ X0 , v ⊆ ω , Hv(ω 	 v) = H∅(ω) .

Then H∅ is P-a.s constant.

II-2.3 Proof of Prop. II-2.1. Since (Vn)n is a regular sequence of stopping
operators, there is a constant K1 > 0 such that 〈N,Vn〉 ≥ K1n, therefore it is
enough to show:

lim
n→∞

HVn(θn)

n
= 0 , P-a.s .

For this, denoting by Xn the random variable Xn = HVn (θn)
n , we use the classical

criterion that implies the convergence P-a.s of Xn to zero:

∀ε > 0 ,
∑

n≥1

P(Xn > ε) <∞ . (7.8)
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Let D denote the set of well-stopped markings of the net: those markings as-
sociated with finite well-stopped configurations. We denote by m(v) the marking
associated with a finite configuration v. Since P is d-homogeneous, we write Pm = Pv

for any m ∈ D with m = m(v). The d-homogeneous function H identifies with the
finite collection H = (Hm)m∈D .

For each n ≥ 0, we denote by En the set of values of Vn . By assumption, Vn(ω)
is finite for P-a.s ω, hence En is at most countable. As Vn is a stopping operator,
we have already observed this simple property:

∀u ∈ En , {Vn = u} = Ω(u) ,

which implies: P( · |Vn = u) = Pu( · ). From this we get:

P(Xn > ε) =
∑

u∈En

P(Vn = u)P

(
HVn(ω 	 Vn)

n
> ε

∣
∣
∣Vn = u

)

=
∑

u∈En

P(Vn = u)Pu

(
Hu

n
> ε

)

=
∑

m∈D

(
∑

u∈En
m(u)=m

P(Vn = u)

)

Pm

(
Hm

n
> ε

)

≤
∑

m∈D

Pm

(
Hm

n
> ε

)

. (7.9)

To show (7.8), and from (7.9), it is enough to show that for every m ∈ D, the
following sum is finite:

∑

n Pm
(
Hm > nε

)
< ∞. Recall the usual transformation

E
(∑

n≥0 1{f≥n}

)
≤ E(f) + 1 for f a non negative random variable. Using this

transformation, we get for each m ∈ D:

∑

n≥1

Pm
(
Hm > nε

)
= Em

(∑

n≥1

1{ 1
ε
Hm>n}

)

≤ 1 +
1

ε
Em
(
Hm

)
<∞ ,

since Hm is Pm-integrable for each m ∈ D. This completes the proof. �

II-2.4 Proof of Th. II-2.2. Let U denote the unfolding of N . We begin with
the following observation:

♦ If V is a finite well-stopping operator of U , then for every integrable function
f : Ω→ R, we have:

E
(
f |V ) =

∫

ΩγV

f(V ⊕ ξ) dPγV (ξ) .
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This has been shown in Ch. 5, I-3.3, for V ( · ) = · ∩B and B a finite stopping prefix.
This is shown in general in the same way, using again that {V = u} = Ω(u) for every
u ∈ X0 such that P(V = u) > 0.

Now let (Rn)n be the sequence of successive renewal operators. All Rn are P-
a.s finite since we assume that the net is recurrent. Let Fn denote the σ-algebra
Fn = 〈Rn〉 (since Rn is finite, we also have that Fn = FRn in the sense seen
in Chapter 6, but we will not use this fact). It is easily checked that we have
ω =

⋃

n Rn(ω) for P-a.s all ω, hence: 〈Fn , n ≥ 1〉 = F . And since H∅ is P-
integrable, the Martingale convergence theorem implies the convergence:

H∅ = lim
n→∞

E(H∅ | Fn) , P-a.s . (7.10)

Using ♦ with f = H∅, we get the following expression for the conditional expec-
tation E(H∅ | Fn):

E(H∅ | Fn) =

∫

ΩγRn

H∅(Rn ⊕ ξ) dPγRn (ξ)

=

∫

Ω
H∅(Rn ⊕ ξ) dP(ξ) , (7.11)

the later since P is d-homogeneous and since γRn
∼= c0 by construction of the succes-

sive renewal operators. Applying the assumption H ∅(ω) = Hv(ω 	 v) with v = Rn

we get:

∀ξ ∈ Ω , H∅(Rn ⊕ ξ) = HRn(ξ) = H∅(ξ) ,

since H is also a d-homogeneous function. Using together (7.10) and (7.11), we
obtain:

H∅(ω) = lim
n→∞

∫

Ω
H∅(ξ) dP(ξ) = E(H∅) , P-a.s .

This completes the proof. �

II-3 The Strong Law of Large Numbers.

Our goal in II-3 is to prove the following result.

II-3.1 Theorem. (Strong law of large numbers) Let (N,M0, (µl)l) be a dis-
tributed positive Markov net, with P the probability associated. We assume that
the net satisfies the following assumptions:

1. N is recurrent,

2. N has integrable concurrent height,
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Then (N , P) satisfies the Strong law of large numbers. There are non negative
numbers α(l) for l ∈ LU , such that for every distributed function f = (f l)l∈LU

defined on the unfolding, and for every regular sequence (Vn)n of stopping operators
of U , we have:

lim
n→∞

Tf(Vn) =
∑

l∈LU

α(l)µl(f
l) , P-a.s .

The Strong law of large numbers holds for any marking M reachable from M0 , with
the same coefficients α(l).

We have already shown some intermediate results in II-2. The rest of the proof
involves three steps.

II-3.2 First Step: Reduction to Densities of Branching Cells. We estab-
lish a result that reduces the Strong law of large numbers to the existence of limits
of the ergodic means TN l, with l ranging over LU . This result cannot be expected
in general for non distributed probabilities.

Assume that (N , P) is a probabilistic net satisfying Th. II-3.1. Applying the
Strong law to the distributed function N l that counts the occurrences of a class of
branching cells l ∈ LU (I-2.4), we find a non-negative random variable α(l) given by
the limit P-a.s :

α(l) = lim
n→∞

TN l(Vn) , (7.12)

for (Vn)n a regular sequence of stopping operators. The coefficient α(l) represents
the asymptotic ratio of the class l, among the other classes. Therefore we call it the
density of l.

The natural question is then to recover the Strong law of large numbers from
the coefficients α(l), if they exist. This holds for distributed probabilities. But it
cannot be expected for general probabilities since we miss the correlation information
between local processes.

Recall that a distributed Markov net (N , (µl)l∈LU
) is said to be positive if all

µl are positive. In this case, the associated probability gives positive probability to
every finite shadow Ω(v).

II-3.3 Lemma. Let (N , (µl)l∈LU
) be a distributed and recurrent positive

Markov net, with P the associated probability on Ω. Assume that for every class of
branching cell l ∈ LU , and for every regular sequence (Vn)n of stopping operators,
the ergodic means converge:

lim
n→∞

TN l(Vn) = α(l) , P-a.s ,

with a limit independent of the regular sequence (Vn)n . Then the Strong law of large
numbers holds for (N , P), and we have for every distributed function f = (f l)l∈LU

and every regular sequence (Vn)n :

lim
n→∞

Tf(Vn) =
∑

l∈LU

α(l)µl(f
l) , (7.13)
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where µl(f
l) denotes the expectation of f l under µl .

II-3.4 Second Step: Using the Embedded Markov Chain. Let (N , (µl)l)
be a distributed positive Markov net. We fix a class l of branching cells in the
unfolding U of N . We set f the distributed function f = N l.

We consider the random variables (Vn, Zn)n≥1 given by the normal decomposition
of maximal configurations (Cf. Ch. 5, III-3.1). The embedded Markov chain (Ch. 5,
III-3.2) is given by (Mn, Zn)n≥1 , with Mn = m(Vn) the marking associated with Vn .
We have:

〈f, Vn〉

〈N,Vn〉
=
〈f, Vn〉

n

n

〈N,Vn〉

=

∑n−1
k=1 1{

l∈∆⊥(UMk)
}

n

︸ ︷︷ ︸

ergodic means

n
∑n−1

k=1 Card
(
∆⊥ (UMk)

)

︸ ︷︷ ︸

ergodic means

.

The ergodic theory of finite Markov chains, applied to the embedded Markov chain,
implies that the above expression converges P-a.s, to a random variable G. Since
〈f, Vn〉 = 〈N l, Vn〉 ≤ 〈N,Vn〉, G is bounded by 1. The idea is to study G without
studying the embedded Markov chain, which has a set of states that we do not want
to manipulate. From the embedded Markov chain, we only derive the existence of G.

For each v ∈ X0 , the same construction applies to the probabilistic future
(Uv, Pv). This defines a collection of measurable mappings H v : Ωv → R , with
H∅ = G. The collection H = (Hv)v∈X0 is d-homogeneous by construction.

II-3.5 Lemma. Assume that N satisfies the assumptions of Theorem II-3.1.
Fix l a class of branching cells. Using the above notation f = N l, H = (Hv)v∈X0

and G = H∅, we have:

1. For every regular sequence (Wn)n of stopping operators, the following conver-
gence holds:

lim
n→∞

Tf(Wn) = G , P-a.s .

2. For each v ∈ X0 , and for P-a.s all ω ∈ Ω(v):

Hv(ω 	 v) = H∅(ω) .

II-3.6 Last Step: Putting All Together. Proof of Theorem II-3.1.
Let (N ,M0, (µl)l∈LU

be a distributed Markov net as in Th. II-3.1. We fix a class
of branching cells l ∈ LU . According to the second step II-3.4, we define the d-
homogeneous function H = (Hv)v∈X0 . According to Lemma II-3.5, H satisfies:

∀v ∈ X0 , Hv( · 	 v) = H∅( · ) .
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H is bounded by 1, and is thus integrable. Theorem II-2.2 implies that H ∅ is constant,
and it also follows that Hv is constant with the same value for all v ∈ X0 · Let α(l)
denote this constant. Then we have for every regular sequence (Vn)n of stopping
operators:

lim
n→∞

TN l(Vn) = α(l) , P-a.s .

This holds for all classes l ∈ LU . By Lemma II-3.3, it implies the Strong law of large
numbers. Since Hv has the same value than H∅ = α(l), the Strong law of large
numbers holds in the cones of future with the same density coefficients α(l).

II-3.7 Proof of Lemma II-3.3. By linearity of f → Tf , we assume without
loss of generality that there is a class l ∈ LU such that fλ = 0 if λ 6= l.

Let (Vn)n be a regular sequence of stopping operators. We denote by (Wn)n≥1

the successive local l-renewals, and by
(
ln(ω)

)

n≥1
the successive l-branching cells

of ω (Ch. 6, III-2.3). Since (Vn)n is non decreasing, the sequence:

In(ω) = {λ ∈ LU |λ ∼= l , λ ∈ Λ (Vn) }

is a non decreasing sequence of intervals w.r.t. the relation �ω defined in Ch. 6,
III-1.3. According to Lemma III-2.4 of Ch. 6, for every branching cell λ ∼= l satisfying
λ ∈ Λ (ω), there is an integer j such that λ = lj(ω). It follows that for every n ≥ 1,
there is an integer J(n) ≥ 1 such that:

In =
{
lp(ω), 1 ≤ p ≤ J(n)

}
.

Since we assume that f vanishes out of l, we have:

Tf(Vn) =
1

〈N,Vn〉
〈f, Vn〉

=
1

〈N,Vn〉
〈f,WJ(n)〉

=
〈N l, Vn〉

〈N,Vn〉

1

〈N l, Vn〉

J(n)
∑

k=1

f l(Z l
k) , (7.14)

where (Z l
n)n≥1 denote the successive l-germs (Ch. 6, III-3.1). Since the net is re-

current and all µl are positive, it follows from Proposition III-2.2 of Chapter 6 that
limn→∞ J(n) = +∞. Since the probability P is distributed, the sequence (Z l

n)n≥1

is i.i.d with law µl in Ωl , according to Theorem III-3.2 of Chapter 6. It follows from
the Strong law of large numbers for i.i.d sequences that we have:

1

〈N l, Vn〉

J(n)
∑

k=1

f l(Z l
k) =

1

〈N l,WJ(n)〉

J(n)
∑

k=1

f l(Z l
k)

=
1

J(n)

J(n)
∑

k=1

f l(Z l
k) −→n→∞ µl(f

l) , P-a.s.
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Figure 7.3: Proof of Lemma II-3.5.

We also have by hypothesis:

lim
n→∞

〈N l, Vn〉

〈N,Vn〉
= α(l) , P-a.s .

We get thus, from (7.14):

lim
n→∞

Tf(vn) = α(l)µl(f
l) , P-a.s,

which is (7.13) for f . This completes the proof. �

II-3.8 Proof of Lemma II-3.5. 1. Let (Wn)n be a regular sequence of stopping
operators. (Vj , Zj)j denotes as above the sequence of random variables given by the
normal decomposition of maximal configurations. For each n ≥ 1, we set Jn : Ω→ N
the integer random variable defined by:

Jn = inf{ p ≥ 1 : Vp(ω) ⊇Wn(ω) } <∞ .

VJn is seen as an approximation of Wn . The normal decomposition does not go
too fast: we have by Th. VI-3.5 of Ch. 3:

Λ (ω) =
⋃

n≥0

∆+ (Vn) .

It follows that the cuts γ(Wn) and γ(VJn) intersect, since we have (see an illustration
in Figure 7.3):

Jn = sup{p ≥ 1 |∆+ (Vp) ∩∆+ (Wn) 6= ∅} .

We note: Rv = supb∈γ(v) D(v, Lv
b ), where Lv

b denotes the concurrent height ran-
dom variable defined in II-1. Since γ(Wn)∩γ(VJn) 6= ∅ and since Wn ⊆ VJn , we have,
with D denoting the branching distance defined in II-1:

D(Wn, VJn) = 〈N,VJn 	Wn〉 ≤ RWn .
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Now we show that δn = Tf(Wn)−
〈f, VJn〉

〈N,VJn〉
converges P-a.s to zero.

δn =
〈f,Wn〉

〈N,Wn〉
−
〈f, VJn〉

〈N,VJn〉

=
〈f,Wn〉 − 〈f, VJn〉

〈N,Wn〉
+ 〈f, VJn〉

(
1

〈N,Wn〉
−

1

〈N,VJn〉

)

=
〈f, VJn〉

〈N,VJn〉

〈N,VJn 	Wn〉

〈N,Wn〉
−
〈f, VJn 	Wn〉

〈N,Wn〉
.

We use that 〈f, x〉 = 〈N l, x〉 ≤ 〈N,x〉 for all x ∈ X0 to get:

|δn| ≤ 2
〈N,VJn 	Wn〉

〈N,Wn〉
≤ 2

RWn(ω 	Wn)

〈N,Wn〉
. (7.15)

The collection R = (Rv)v∈X0 is d-homogeneous, and defines thus a d-homogeneous
function. R is integrable since we assume that N has integrable concurrent height.
It follows from Proposition II-2.1 that δn converges P-a.s to zero, what was to be
shown.

2. The second part of the Lemma follows from an analogous computation. �

III—Using Martingales

In this section we show that, for distributed Markov nets, a distributed function nat-
urally defines a partially ordered Martingale. It seems to be a convenient framework
to establish a Central Limit Theorem.

III-1 Definition of a Martingale.

III-1.1 Definition. (Mean and covariance distributed function) Let f = (f l)l∈LU

be a distributed function, defined on the unfolding U of a distributed Markov net
(N , (µl)l∈LU

). We define the mean of f as the distributed function denoted by E(f),
and given by E(f) = (gl)l∈LU

, with gl : Ωl → R the constant:

∀z ∈ Ωl , gl(z) = µl(f l) ,

the expectation of f l under µl . We say that f has zero mean if E(f) is identically
null. The covariance of f is the distributed function denoted by σ2(f) and given
by σ2(f) = (hl)l∈LU

, with hl constant for each l ∈ LU :

∀z ∈ Ωl , hl(z) = σ2(f l) = µl
(
(f l)2 − µl(f l)

)
,
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the covariance of f l under µl .

Then we have the following.

III-1.2 Proposition. Let f be a distributed function with zero mean defined
on the unfolding of a distributed Markov net (N , (µl)l∈LU

). For every B ∈ S0 , let
FB : Ω→ R be the FB-measurable function induced by f , defined by:

FB(ω) = 〈f, ωB〉 .

Then (FB)B∈S0 is a martingale, that is:

∀B,B′ ∈ S0 , B ⊆ B′ ⇒ E(FB′ | FB) = FB .

The covariance of the random variable FB is given by:

σ2(FB) = E
(
〈σ2(f), ωB〉

)
, (7.16)

where σ2(f) is the covariance distributed function, defined in III-1.1.

III-1.3 Remark. For sequential systems, the martingale is defined as follows.
Let (Xn)n≥0 be a Markov chain on a finite set E. For each x ∈ E, let fx : E → R
such that, if µx denotes the xth row of the transition matrix, we have: µx(fx) = 0.
Then the sequential martingale that we consider is:

Fn =
n∑

k=1

fXk−1
(Xk) .

Let Yk = fXk−1
(Xk). Equation (7.16) is analogous to the addition formula for square

means:

σ2(Fn) = E(F 2
n) = E(Y 2

1 ) + · · ·+ E(Y 2
n ) ,

and takes into account the horizontal independence—due to concurrency—that
comes with distributed probabilities.

III-1.4 Remark. Let f be a distributed function, and let E(f) denote the mean
of f as in III-1.1. Then g = f − E(f) has zero mean. Let FB , GB : Ω → R be the
FB-measurable functions defined by FB(ω) = 〈f, ωB〉, GB(ω) = 〈g, ωB〉. Then we
have:

FB = 〈E(f), ωB〉+ GB ,

with E(f) a constant distributed function and (GB)B∈S0 a martingale.
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III-2 Towards a Central Limit Theorem.

III-2.1 Background: Convergence in Law. The convergence in law is the
convergence stated by the Central Limit Theorem. Let (Xn)n≥1 be a sequence of
real random variables defined on a probability space (A,F , P). Let Fn denote the
probability law of Xn , Fn is a probability measure on R. Let µ be a probability
measure on R. We say that the sequence (Xn)n≥1 converges in law to the law µ if,
for all continuous and bounded function f : R→ R, we have:

lim
n→∞

∫

R

f(x) dFn(x) =

∫

R

f(x) dµ(x) .

We will denote this convergence by: Xn−→
L

µ

We recall below the Central Limit Theorem for martingale differences.

III-2.2 Theorem. (Central Limit Theorem for martingale differences, [35]) Let
(Fn)n≥0 be a non decreasing sequences of σ-algebras of a probability space (Ω,F , P),
and let (Yn)n≥1 be a sequence of martingale differences, that is:

∀n ≥ 1 , E(Yn | Fn−1) = 0 .

We assume that Yn is square integrable for all n, and we set:

σ2
n =

n∑

k=1

E(Y 2
k ) , Rn =

n∑

k=1

E(Y 2
k | Fk−1) .

We assume that two following conditions are satisfied:

1. The convergence:
Rn

σ2
n

−→ 1 holds in probability,

2. (Lindberg condition):

∀ε > 0 , lim
n→∞

1

σ2
n

n∑

k=1

E
(
Y 2

k 1{|Yk|>εσn}

)
= 0 .

Then we have the convergence in law:

Y1 + · · ·+ Yn

σn
−→
L
N (0, 1) ,

where N (0, 1) is the normal law.
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III-2.3 Conjecture. (Central Limit Theorem for concurrent systems) Let
(N , (µl)l∈LU

) be a distributed and recurrent Markov net, that we assume of inte-
grable concurrent height. Let f be a distributed function with zero mean defined on
the unfolding U . Let σ2(f) denote the covariance form of f (defined in III-1.1), and
for each B ∈ S0 , set:

σ2
B = E

(
〈σ2(f), ωB〉

)
.

Let (Bn)n≥1 be an non-decreasing sequence of stopping prefixes, such that Bn → E .
If (Bn)n is regular (in the sense of regular stopping operators), we expect the con-
vergence in law to the normal law N (0, 1):

〈f, ωBn〉

σBn

−→
L
N (0, 1) .

IV—Conclusion

We have given a framework to state the Strong law of large numbers for concurrent
systems. This framework is based on the notion of distributed function, that is
like a local test function. Distributed functions also provide a natural unit of time
for concurrent systems, that is not in general a single event, unlike in sequential
systems. The Strong law of large numbers establishes the limit of the asymptotic
ratio of the integrated value of a distributed function along a process, normalised
with the concurrent time elapsed along the process.

The density coefficients of branching cells replace the stationary measure for
Markov chains. We miss in this study the positivity of the density coefficients,
related to the finite expectation of the renewal.
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Chapter 8

Chapter 8

Algorithms for Statistics

In this chapter, we make a short insight into statistics for our model. We address
the problem of global parametric estimation for distributed Markov nets. Local
estimation is the crucial point for applications in management of networks, and is
the topic of a discussion in Chapter 9. A first case of interest consists however in
the simpler global estimation problem.

Unlike the local estimation problem, the global statistical estimation does not
present theoretical difficulties. Due to the treatment of concurrency by distributed
probabilities, a full observation of a recurrent and distributed Markov net leads to
the analysis of i.i.d sequence of random variables, the most well-know situation
for statistical estimation. Hence the statistical estimation itself does not present
difficulty.

The more interesting points of the estimation problem are twofolds. First, we
need to compute the geometric characteristics of a net, basis of the probabilistic
model. A first question is to decide if a net is compact—i.e., if its unfolding is
locally finite—, a second question is to compute the finite collection of branching
cells of compact nets. We propose procedures that always end for these two tasks,
but:

1. The procedure that decides if a net is compact may find that a net is compact,
whereas the net is not.

2. Computing branching cells involves several sub-procedures, one of them is miss-
ing.

Although the study is not complete, we can however expect that compactness of a
net is decidable and that branching cells of compact nets are computable.

The second question addressed by the estimation problem examines the compli-
cations introduced by a sequential treatment of concurrent data, since we consider
that an operational treatment of data always involves a phase with sequential com-
putations. The risk is to wait for an infinite time before receiving the data that we
are interested in. We formalise the situation with a non-deterministic variable1 that

1In Computer science, unlike in Probability, a non-deterministic variable is not a random variable,
but is a variable with undetermined value.
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gives a sequentialisation—the observed data—of a maximal true-concurrent process.
We show how this variable can be bounded by a purely random variable with finite
mean. As a consequence, the observation delay due to concurrency is asymptotically
negligible, and we obtain thus an operational estimation procedure.

Section I, Computation of branching cells, states and studies the computation
of geometric characteristics of nets: compactness, branching cells of the unfolding.
Section II, Operational statistical estimation, establishes the statistical estimation
procedure. We introduce and study the observation delay due to concurrency.
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I—Computation of Branching Cells

For efficient probabilistic procedures, we certainly need to compute the basic the-
oretical objects of this study: stopping prefixes and branching cells. We state the
computational questions that one encounters for the statistical procedure proposed
in II, and we bring some (partial) answers. We sow that some questions reduce to a
reachability problem in a sub-net of the original net.

I-1 Computational Problems.

I-1.1 Computing the Unfolding of a Safe Marked Net. It is well known
that prefixes of arbitrary size of the unfolding of a safe net can be recursively com-
puted. The model-checking of concurrent systems provides tools for constructing
a complete prefix of the unfolding, that is a finite prefix where all the reachable
markings of the net are present as cuts of the prefix [32, 19].

I-1.2 Computing Stopping Prefixes. However, we must be careful when
using the term “computed”, for a prefix of the unfolding. Consider for instance
the unfolding of the very simple net depicted in Figure 8.1. The condition labelled
by B has infinite branching, but this is not an information directly delivered by the
complete prefix. Whence the following questions.

1. Is there an algorithm that decides if a safe net is compact, i.e. if the unfolding
of the net is locally finite?

2. Is there an algorithm that computes the classes of branching cells of the un-
foldings of compact nets?

I-1.3 Flower of an Event. Both questions reduce more or less to the problem
of computing B(e), the smallest stopping prefix that contains an event e of the
unfolding. We recall that a stopping prefix is a prefix closed under the dynamic
conflict. The dynamic conflict relation is defined on events x, y ∈ E by:

x#d y ⇔ x# y , [x ] ∪ [ y [ ∈ W , [x [ ∪ [ y ] ∈ W , (8.1)

where W is the partial order of configurations. An intermediate object of interest
for computing B(e) is certainly the set of events:

F (e) = {x ∈ E : x#d e} .

We define F (e) as the flower of event e, and we formulate these questions:



228 Chapter 8—Algorithms for Statistics

?>=<89:;

��












��1
11

11
11

1
• ?>=<89:;

��











•//

α

��

β

?>=<89:;

'&%$ !"#
EEEEE '&%$ !"#

pppppppp

��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

α β

'&%$ !"#
CC

CC
CC

'&%$ !"#

α β

'&%$ !"#
CC

CC
CC

'&%$ !"#

α β

'&%$ !"#
CC

CC
CC

'&%$ !"#

α β

'&%$ !"# '&%$ !"#

_ _ _ _ _ _ _ _ _�
�
�
�
�
�

�
�
�
�
�
�

_ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�_ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�_ _ _ _ _ _ _ _ _ _

Figure 8.1: A single loop and a prefix of the unfolding. The infinite conflict is not
dynamic.

1. a. Can the finiteness of a flower be decided? b. Does the finiteness of all flowers
imply the compactness of the net?

2. If N is a compact net, the flowers of the unfolding of N are finite.
a. Can we compute the flowers? b. Can we compute the branching cells from
the flowers?

Question 2b, the computation of branching cells from flowers, is treated in I-2.
For question 2a, we reduce the computation of flowers to a reachability problem
(I-3) combined with an other related question. For question 1a, we give in I-3.6
a computable sufficient criterion for non compactness. The criterion concerns the
existence of a cycle in a finite and computable graph. The computation always ends,
and decides the validity of a condition that implies the non compactness of the net.
It must be noted that all the examples of this document behave as if the criterion
was necessary and sufficient.

I-2 Computing Branching Cells from Flowers.

If one can compute the flower F (e) of any given event in the unfolding of a net,
then on can compute the finite collection of branching cells of the unfolding of a
compact net. This is the result of I-2.

I-2.1 From Flowers to Stopping Prefixes. Assume that there is an algo-
rithm that computes the flower F (x) of any event of the unfolding of a safe marked
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and compact net. Then we can compute the stopping prefix B(e), smallest stopping
prefix that contains e, for every event e.

Indeed fix N a safe and compact marked net, and e an event of the unfolding
of N . The following increasing sequence of subsets of U is then computable, where
↓A denotes the downward closure of a subset A ⊆ U :

B0 = ∅ , B1 = [ e ] , Bn+1 = Bn ∪
⋃

x∈Bn\Bn−1

↓F (x) . (8.2)

I-2.2 Lemma. The sequence (Bn)n≥1 defined by (8.2) is a non decreasing se-
quence of prefixes, subsets of B(e). There is an integer j such that Bj = Bj+1 , and
then Bn = Bj = B(e) for all n ≥ j.

Proof – It is obvious that for every j, we have:

Bj = Bj+1 ⇒ ∀n ≥ j , Bn = Bj .

An induction shows the following properties of (Bn)n≥1:

1. Bn is a prefix subset of B(e).

2. For all x ∈ Bn , and for all event y ∈ U , x#d y ⇒ y ∈ Bn+1 .

Since (Bn)n is non decreasing, and since the net is compact, it follows form 1 that
there is an integer j such that Bj = Bj+1 . The point 2 implies that Bj is #d-closed.
Hence Bj is a stopping prefix that contains e, and is a subset of B(e): so Bj = B(e).
�

I-2.3 From Stopping Prefixes to Initial Branching Cells. Assume that
we know how to compute B(e) for any event e in the unfolding of a safe and compact
marked net N . Then we compute the initial branching cells λ ∈ ∆⊥ (U) as follows.
Observe that the minimal events in the unfolding represent the transitions that can
play from the initial marking of the net; they are thus in finite number.

Procedure: Compute B(e) for each minimal event e ∈ U . The collection ∆⊥ (U)
of initial branching cells of U is formed by the minimal elements of the finite family
{B(e) , e minimal in U} .

Proof – Let B(e) be a minimal element of the family {B(e)} as stated by the
above procedure. We have to show that B(e) is an initial branching cell, i.e. that
B(e) is a minimal non void stopping prefix. Since U is an unfolding, the event
structure E associated with U has finite concurrent width. By Lemma III-1.2 of
Ch. 3, B(e) contains an initial branching cell λ. ( We could use instead that U is
locally finite to obtain the same result). Then λ admits a minimal event f , that
is also minimal in U , and B(f) ⊆ λ ⊆ B(e). Since B(e) is minimal it follows that
B(e) = B(f) = λ . Hence B(e) ∈ ∆⊥ (U).

Conversely, let λ be an initial branching cell of U . Then for any event e, minimal
in λ, e is minimal in U and satisfies λ = B(e). �
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I-2.4 Conclusion: From Flowers to Branching Cells. From the two above
procedures, if (N ,M0) is a safe compact marked net, and if the flowers are com-
putable, we can compute the initial branching cells of (N ,M0). With the complete
prefix technique we can compute all the reachable markings M , from which we can
compute the initial branching cells of (N ,M). The result of these finite computa-
tions contain all the branching cells of the unfolding of (N ,M0). We obtain more
than the branching cells, since the set of reachable markings contains markings that
are not well-stopped.

I-3 Finiteness of Flowers.

We analyse the flowers of events. We give a sufficient and computable condition
for non-finiteness of a flower, which implies the non local finiteness of the unfolding.

I-3.1 Labels of the Flower F (e). We say as in [33] that two events x, y of
the unfolding are in immediate conflict if they share a precondition: x 6= y and
•x ∩ •y 6= ∅. We have the following observation:

If x, y are two events in dynamic conflict, then x and y are in immediate
conflict.

Proof – Let x, y with x#d y. Since in particular x and y are in conflict, there is a
condition b and two distinct events e, f ∈ b• such that e � x and f � y. Since the
conflict between x and y is dynamic, [x [∪[ y ] is conflict-free. It implies that e /∈ [x [ ,
and then e = x. Symmetrically, we get that f = y. We have thus •x∩•y = •e∩•f 3 b,
so x and y are in immediate conflict. �

As a consequence, if e is an event labelled by the transition τ = ρ(e) of the net,
the events in the flower F (e) are labelled by transitions t that satisfy:

•t ∩ •τ 6= ∅ .

Hence we have reduced the labels of events in F (e) to a subset of transitions. An
other reduction arises if we consider a minimal event e. Remark that the minimal
events are easily computable, since they are one-to-one with the transitions of the
net that are enabled from the initial marking.

I-3.2 Lemma. Let N be a safe marked net, with unfolding ρ : U → N . Let
e be a minimal event of the unfolding, labelled by the transition τ = ρ(e), and let
L = •τ denote the preset of transition τ in N .

Let x ∈ F (e), and let v = [x [ . Then for every condition b of v, we have:

ρ(b) ∈ L⇒ b ∈ •e .
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Proof – Let b be a condition of v = [x [ . As x ∈ F (e), e is compatible with v, so we
have one of the three possibilities:

b ‖ e , b � e , b � e .

If b � e then x � e, which contradicts that x# e, so this possibility is discarded. If
b � e, as e is a minimal event, then b ∈ •e. Thus the possibilities reduce to:

b ‖ e , b ∈ •e .

Remark that if b ‖ e, then b ‖ •e. The mapping ρ is injective on ‖-cliques. Therefore:
ρ(b) ∈ L and b ‖ e imply b ∈ •e. Hence we always have: ρ(b) ∈ L⇒ b ∈ •e. �

I-3.3 Reduction to a Reachability Problem. Let v denote as in Lemma I-
3.2 the configuration v = [x [ , with x an event in the flower of a minimal event e,
and with τ = ρ(e). Let s = (t1 . . . , tk) be a playing sequence of the net compatible
with v. Then Lemma I-3.2 implies that τ 6= ti for all i. Denote by M0 the initial
marking of the net. Since τ 6= ti for all i, s is a playing sequence of the net (N ,M),
with M = M0 \

•τ . We have, in the net (N ,M):

(N ,M) : M −→s m ,

where m is a marking of N that satisfies: m ∩ •τ = ∅ . In the net (N ,M0), the
playing sequence s, compatible with v = [x [ , enables the transition t = ρ(x) since
e#d x. The marking reached by s in (N ,M0) is m ∪ •τ . Therefore:

•t ⊆ m ∪ •τ .

We have seen in I-3.1 that t satisfies: •t ∩ •τ 6= ∅.

Conclusion: If x is in the flower F (e) of a minimal event e with ρ(e) = τ , the
transition t = ρ(x) satisfies:

1. t 6= τ , •t ∩ •τ 6= ∅.

2. Let M = M0 \
•τ . There is a marking m reachable from (N ,M) and such

that: •t ⊆ m ∪ •τ .

The converse is the topic of the following result, which proof is straightforward.

I-3.4 Proposition. Let e be a minimal event in the unfolding (U , ρ) of a safe
marked net (N ,M0), labelled by transition τ = ρ(e). Let M = M0 \

•τ . Let s be a
finite playing sequence of the safe net (N ,M), leading from M to m. Let v be the
configuration of U that lifts the sequence s, seen as a playing sequence of (N ,M0).
Assume that there is a transition t of N that satisfies:

1. t 6= τ , •t ∩ •τ 6= ∅.

2. •t ⊆ m ∪ •τ .

Then there is an event x in the flower F (e), with ρ(x) = t and enabled by v.

From this characterisation we derive a computable sufficient condition for the
non finiteness of flowers, which implies the non-local finiteness of the unfolding.
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I-3.5 A Relation on the Sub-Markings. We still consider a minimal event
e of the unfolding (U , ρ) of (N ,M0), with τ = ρ(e), and we set:

M = M0 \
•τ .

Using the complete prefix algorithm applied with (N ,M), the following set is com-
putable:

M = {m reachable from (N ,M), and such that there is

a transition t satisfying points 1 and 2 of I-3.4 } .

Remark that, due to the safety hypothesis on (N ,M0), we have that m ∩ •τ = ∅ for
every m ∈M.

We define the binary transitive relation ≤ on M as follows. Let m,m′ ∈ M.
Let t denote a generic transition that comes with the definition of m ∈ M. By
Proposition I-3.4 applied to m and t, there is an event x ∈ F (e) labelled by t and
enabled by v. We set m ≤ m′ if and only if there is a sequence a transitions s such
that:

m −→s m′ ,

and containing a transition q with •q ∩ •t 6= ∅, for at least one such transition t.

I-3.6 Theorem. With the notations of I-3.5, if (M,≤) admits a non trivial
cycle, then the flower F (e) of the minimal event e is infinite.

Proof – (⇐) Set < the relation ≤ \ IdM onM, and assume thatM admits a chain
m1 < . . . < mn with m1 = mn . Let r and s be the playing sequences of N such that
we have:

M −→r m1 −→
s m1 .

Then we consider the concatenation zk = rsk for every integer k ≥ 0. Let vk be
the lifted configuration of zk in U . There is an event x0 , labelled by a transition t
and enabled by v0 , and such that: x0 ∈ F (e), and there is a transition q of s, with
•q ∩ •t 6= ∅.

For each k ≥ 1, there is an event xk ∈ F (e) labelled by the same transition t,
and enabled by vk . Since transition q ∈ s satisfies •q ∩ •t 6= ∅, all xk are disjoint,
and thus F (e) is infinite. �

I-4 Computing Flowers.

The work presented here to compute the flowers is not complete. We indicate
the result that can be expected, in our point of view.
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I-4.1 Reduction to Flowers of Initial Events. Let U be the unfolding of
a safe marked net (N ,M0). We recall from Ch. 3, II-4, that the dynamic conflict
relation #Uv

d in the cone of future of a configuration v satisfies:

#Uv

d = #d ∩ (Uv × Uv) .

In particular if e is an event of U , the flower F (e) coincides with the flower of e in

the cone of future U [ e [ of configuration [ e [ . Since e is minimal in U [ e [ , this shows
that computing flowers is equivalent to computing flowers of minimal events.

I-4.2 Computing the Flower of a Minimal Event. We keep the notations
of Proposition I-3.4, in particular the sub-marking M = M0 \

•τ . We assume that
the net N is compact. We fix t a transition satisfying points 1 and 2 of I-3.4, and we
want to determine the events of the flower F (e) labelled with transition t. Repeating
the operation for every t leads to the flower F (e).

Let Ω′ denote the set of maximal configurations of the unfolding of (N ,M), we
have an injection Ω′ ↪→W, withW the configurations of U . For each ω ′ ∈ Ω′, there is
a minimal v ⊆ ω′ such that the cut γ(v) contains all conditions labelled by •t. Each
cut enables an event of the flower F (e) labelled by t. It is clear that the set of all
these cuts is finite, otherwise the flower F (e) would not be finite, and the unfolding
would not be locally finite.

Although this set is finite, I am not sure of the way to compute it. Assume that
it has been computed. Then we repeat the operation in the cone of future U c for
each of these cuts c : computing the minimal cuts that contain the conditions of •t,
that enable as above an event of F (e) labelled with t. We continue the computation
as much as we can, and the computation ends since the net is compact.

I-4.3 Conclusion. The computation of flowers reduces to the computation of
flowers of minimal events. If some finite set in the unfolding of a sub-marking of
the initial marking can be computed, then one can compute the flower of a minimal
event.

II—Operational Statistical Estimation

In this section, we address the statistical estimation problem from a very pragmatic
point of view. A recurrent net is given, equipped with a distributed and homogeneous
probability. How can the parameters of the net be retrieved from observations? It
is important to precise what we mean by “observations”.

Unlike what can be called a “logical” observation, which is formally represented
by a partially ordered set of events, we can assume that a “physical” observation is
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given by a sequence of events. Indeed, if the events correspond for instance to alarms
in a network, the centralised observer will receive the events through a channel, that
delivers totally ordered sequences. The point is that the sequentialisation could make
the computational process wait during an infinite time: but this does not happen,
in probability.

The goal of this section is thus to provide an estimation algorithm, with accepts as
input a totally ordered sequence of transitions of a net, compatible with a maximal
trace of the net. The output at physical time n, the instant where the nth event
is received, is an approximation of the probabilistic parameters of the net. We
show that, under conditions on the concurrent height of the net, the approximations
converge to the true value, and we characterise the convergence rate.

II-1 Sequential Observations.

II-1.1 Computing the Unfolding. We assume that the geometric character-
istics of the unfolding of a safe and compact Petri net have been computed. Section I
has given some indications on this topic.

II-1.2 Receiving Sequences. Our theoretical results deal with stopped and
well-stopped configurations. But what we really observe are sequences of transitions.
We recall that any playing sequence of transitions (tn)n in a net N admits a unique
lifted sequence of events in the unfolding. If ρ : U → N denotes the folding mapping,
the lifted sequence (en)n is the unique sequence of events of the unfolding such that:

1. {e1 , . . . , ek} is a configuration of the event structure of the unfolding,

2. ρ(ek) = tk for all k.

Drawing the lifted configuration from the sequence is straightforward, since we
know the structure of the net N . Receiving a sequence of transitions, we want to
build the dynamic puzzle of branching cells around the lifted configuration, to isolate
the germs “on the fly”.

The remaining point is that nothing insures that the observations will entirely fill
in a germ before beginning an other one, which is needed for statistical computations.

II-2 Observation Delay.

II-2.1 Floating Events and Floating Front. Let w be a finite configuration
of the unfolding U of a compact net N . Since compatible well-stopped configurations
form a lattice, there is in particular an upper bound for the v ∈ X0 included in w.
We set:

∀w ∈ W0 , C(w) = sup{v ∈ X0 | v ⊆ w} .
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We say that the events contained in w \C(w) are the floating events of w. The
collection of floating events is called the floating front of w.

II-2.2 Integrable Floating Front. We denote by |v| the number of events of
a finite configuration v of the unfolding. Let v be a finite well-stopped configuration.
For each ξ ∈ Ω(v), we set:

fv(ξ) = sup{|w| − |v| : w ⊆ ξ , C(w) = v} .

The integer f v(ξ) is the maximal number of floating events of a configuration w ⊆ ξ,
satisfying C(w) = v. Clearly, v → f v is a congruence for v ∈ X0 . In other words,
(fv)v∈X0 is a d-homogeneous function (Ch. 5, III-2.3).

We say that the net N has an integrable floating front if (f v)v is integrable,
i.e. if there is a constant K such that:

∀v ∈ X0 , Ev(fv) ≤ K <∞ .

II-2.3 Consequences for the Receiving Sequences. Assume that we ob-
serve a net N with integrable floating front and integrable concurrent height. Let ω
be the maximal execution of the net from which we get an observation sequence (tn)n .
Let v ∈ X0 be a well-stopped sub-configuration of ω. We want to estimate the instant
n such that the lifted vn of (tk)1≤k≤n in the unfolding contains v.

Let n be the minimal integer such that vn ⊇ v . We have the chain:

v ⊆ C(vn) ⊆ vn .

There is a condition b common to both γ(v) and γ(vn). Hence b belongs also to
γ
(
C(vn)

)
. We have the decomposition:

vn = v ⊕
(
C(vn)	 v

)
⊕
(
vn 	 C(vn)

)
,

which implies the following:

n = |vn| = |v|+ pn + qn ,

where pn and qn are variables with a random part and a non-deterministic part, due
to the ordering of the sequence (tn)n . Both variables pn and qn are controlled by
purely random variables. One recalls the definitions of the random variable Lv

b and
of the branching distance D (Cf. Ch. 7, II-1.1). If we denote by k the maximal
number of events contained in a branching cell, we have:

pn ≤ k sup
b∈γ(v)

D(v, Lv
b ) , qn ≤ f v ,

where f v is the front variable (II-2.2). Setting Qv = k supb∈γ(v) D(v, Lv
b )+f v, we get

the following.
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Conclusion: Let v be a well-stopped sub-configuration of the maximal configu-
ration to be observed through an observation sequence (tn)n . Assume that the net
has integrable floating front and integrable concurrent height. The first instant n at
which we observe a lifted configuration vn that contains v, satisfies:

|v| ≤ n ≤ |v|+ Qv ,

where Qv is an integrable homogeneous function.

II-3 The Sequential Estimation Algorithm.

We consider a compact marked net (N ,M0). A statistical model associated to
(N ,M0) is the family of distributed Markov nets (N ,M0, (µ

l
θ)θ∈Θ), where θ is a

parameter. The natural parameter is the finite collection of branching probabilities
θ = (µl

θ)l∈LU
. Hence we assume that Θ is a subset of the R-vector space of finite

dimension that contains the probability vectors (µl
θ)l. For simplicity we assume that

µl
θ is a positive branching probability for each θ ∈ Θ.

We observe a process through a sequential observation, compatible with a max-
imal process under an unknown true value θ0 of the parameter. We want to esti-
mate θ0.

II-3.1 An Algorithm for Computing the Observed Well-Stopped Con-
figurations. Let (t1, t2, . . .) be the sequential observation of the net (N ,M0). We
consider first an algorithm that computes by successive increments the lifted configu-
ration vn of (t1 , . . . , tn) and the well-stopped configuration C(vn). We recall (Cf. II-
2.1) that C(vn) is the upper bound of the well-stopped configurations contained
in vn . Computing vn from vn−1 and tn is straightforward: add a new event en la-
belled by tn—the preconditions labelled by •tn are present in γ(vn−1)—and add the
postconditions labelled by t•n to en . We denote it shortly by: vn := vn−1 ⊕ en.

The following algorithm computes the lifted vn together with Cn = C(vn), pro-
vided that the branching cells can be computed.
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Initialisation: v0 := ∅, C0 := ∅.

Step n:

1. Receive tn, set vn := vn−1 ⊕ en with en labelled by tn .

2. Compute the branching cells in ∆+ (Cn−1) .

3. For: Each branching cell λ ∈ ∆+ (Cn−1) ,
Do: Compute vn ∩ λ and set:

Cn :=

{

Cn−1 ∪ (vn ∩ λ) , if vn ∩ λ ∈ Ωλ ,

Cn−1 , otherwise.

Done.

Step n + 1: . . .

Remark that the result of the loop 3 (b) does not depend on the order in which
the loop is processed.

II-3.2 The Successive Branching Cells Algorithm. It is then straightfor-
ward to obtain an algorithm that computes the successive branching cells λ within a
fixed class l ∈ LU , evaluated on the observed trace ω. In Chapter 6, we have called
them the successive l-branching cells.

From the above algorithm, we extract the sequence of integers (ni)i≥1 where Cn

is actually incremented:

ni+1 = inf{n > ni |Cn 6= Cn−1} .

A procedure to obtain the successive l-branching cells λj and the associated germs
Zj is then for instance the following.

Initialisation: W l
0 = ∅, k0 = 0 .

Step j:

1. Compute: kj := inf{i > kj−1 | ∃λ ∈ ∆+ (Cni
) : λ ∼= l} .

2. Set λj the unique branching cell λ ∈ ∆+
(
Cnkj

)
such that λ ∼= l.

3. Set Z l
j−1 := Cnkj

∩ λj−1 .

Step j + 1: . . .

II-3.3 The Sequential Empirical Estimator. The successive l-germs Z l
j are

independent i.i.d with the law µl
θ in Ωl (Ch. 6, Th. III-3.2). Hence the empirical
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estimator of µl
θ is computed, for the jth l-branching cell, by:

∀v ∈ Ωl , µ̂l
j(v) =

1

j
Card{i ≤ j : Z l

i = v} . (8.3)

We call the estimator (8.3) the sequential empirical l-estimator.

The consistency and the convergence rate of the estimator (8.3) are well know,
provided that the sample (Z l

j)j is infinite. We recall the result below. Then we
will have to consider the growth of index j w.r.t. the arrivals of events. Unlike the
convergence w.r.t. index j, this last growth let appear the concurrency properties of
the system.

II-3.4 Proposition. Let (N , (µl
θ)l,θ) be a statistical model associated to a com-

pact marked net N . We assume that for the true value θ0 of the parameter, with
probability Pθ0 associated, the net (N , Pθ0) is recurrent. Then the sequential empir-
ical estimator (8.3) is strongly consistent, that is we have the convergence Pθ0-a.s:

∀v ∈ Ωl , lim
j→∞

µ̂l
j(v) = µl

θ0
− v) .

If Ωl = {v1 , . . . , vr}, we have the convergence in law:

√

j

{
1

√

µl
θ0

(vk)

(

µ̂l
j(vk)− µl

θ0
(vk)

)}

1≤k≤r

−→
L

j→∞ Nr(0,Γ) ,

with Nr(0,Γ) the normal law in Rr with zero mean and covariance matrix Γi,j =

δj
i −

√

µl
θ0

(vi)
√

µl
θ0

(vj) .

Proof – As noticed above, it is enough to show that the Z l
j are in infinite num-

ber. But this is stated by Prop. III-2.2, Chapter 6, since the net is recurrent and
d-homogeneous. The convergence in law comes from the Central Limit Theorem
applied to the sequence (Z l

j)j of i.i.d variables ([15], p. 92). �

II-4 Convergence Rate of the Sequential Empirical Estimator.

Estimating the rate of convergence of the sequential empirical estimator involves
two steps. We have to compute first the rate of convergence in j of the estima-
tor (8.3)—this comes from classical statistical theory, and is stated in Proposition II-
3.4. Second, we have to estimate the number of observed events needed to obtain
the jth l-germ Z l

j .

This second term is typically a concurrency delay. We show below that this delay
is related to the concurrent height and to the size of the floating front.
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II-4.1 Lemma. Let (N , (µl)l∈LU
) be a distributed and recurrent Markov net.

Assume that l is a positive branching cell (i.e., there is a positive v ∈ X0 with
l ∈ ∆+ (v)), and that the net has integrable concurrent height. Let (W l

n)n≥1 be the
successive local renewal operators of l (Cf. Ch. 6, III). Then we have:

W l
n(ω) ↑n→∞ ω , P-a.s .

Proof – Since the net is recurrent, and since l is positive, Prop. III-2.2 of Ch. 6
states that the successive renewal operators W l

n are defined for all integers n ≥ 1.
Let ω such that

⋃

n W l
n(ω) 6= ω. Then there is a branching cell λ ∈ ∆+

(
W l

n(ω)
)

for infinitely many n. Let v = W l
n(ω) for such an integer n. For b a condition

b ∈ Min� (λ), we have (Cf. Ch.7, II-1):

Lv
b (ω) = sup{w ∈ X0 : w ⊆ ω , b ∈ γ(b)} ,

⊇W l
j , for infinitely many j.

It follows that we have an infinite branching distance: D
(
v, Lv

b (ω)
)

= ∞.
Since the net has integrable concurrent height, we have the finite expectation:
Ev
(
D(v, Lv

b )
)

< ∞. It implies that the set of ω with
⋃

n W l
n(ω) 6= ω has proba-

bility 0. This is equivalent to the statement of the lemma. �

Lemma II-4.1 is intended to justify our application of the Strong law of large
numbers, along the sequence W n

l . However, we have not shown the Strong law of
large numbers for nets with integrable concurrent height. We admit the following
result.

II-4.2 The Positive Recurrence of Branching Cells. We now encounter
the problem that we have already remarked: the positivity of the density coefficients
of branching cells. We miss here this result, so we have to admit the following
statement:

Let (N , (µl)l∈LU
) be a recurrent and distributed Markov net, with integrable

concurrent height. Assume that every branching probability µl is positive
(i.e.: µl(v) > 0 for all v ∈ Ωl). Then the density coefficients α(l) are positive.

II-4.3 Consequence on the Arrival Rate of the l-Germs. The positivity
of branching cells also implies that the local renewal operators are regular. Applying
theStrong law of large numbers to the distributed function N l we get:

〈N l,W l
j〉

〈N,W l
j〉

=
j

〈N,W l
j〉
−→j→∞ α(l) .

Since α(l) > 0, it implies the following equivalent:

〈N,W l
j〉 ∼j→∞

j

α(l)
. (8.4)
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To observe the jth l-germ Z l
j , we have to observe the configuration W l

j ⊕ Z l
j .

Using the conclusion of II-2.3, this requires a number n of events estimated by:

∣
∣W l

j ⊕ Z l
j

∣
∣ ≤ n ≤

∣
∣W l

j ⊕ Z l
j

∣
∣+ QW l

j⊕Zl
j ,

where Q is an integrable homogeneous function. Denoting by k the maximal number
of events contained in a branching cell, we get:

n ≤ k
(
1 + 〈N,W l

j〉
)

+ QW l
j⊕Zl

j .

By Proposition II-2.1 of Ch. 7 we have:

lim
j→∞

QW l
j⊕Zl

j

j
= 0 , P-a.s .

Using (8.4), we obtain the following result.

II-4.4 Theorem. (Under positive recurrence of branching cells) Let (N , (µl)l) be
a distributed and recurrent Markov net with all branching probabilities positive,
with integrable concurrent height and with integrable floating front. Let l ∈ LU

be a class of branching cells. Let n be the number of transitions received from an
observation sequence (tn)n before Algorithm II-3.2 computes the jth l-germ from an
observation sequence (tn)n . Then we have for a constant K:

n

j
≤ K +

Qj

j
,

where (Qj)j is a sequence of random variables defined on ΩW l
j⊕Zl

j , satisfying
limj→∞

1
j Qj = 0·

III—Conclusion

We have made a short analysis of the computational questions that arise with the
theoretical objects introduced in this document. In particular we have brought some
answers for deciding the compactness of a safe net and for computing the geometric
characteristics of its unfolding.

These elements are set up to be applied to a statistical procedure that addresses
the problem of global parametric estimation in the probabilistic model of distributed
Markov nets.
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Chapter 9

Chapter 9

Conclusions and Perspectives

I—Contributions

In this document, we have presented a mathematical analysis of models from Con-
currency theory: prime event structures and safe Petri nets. The probabilistic model
is applied to a statistical estimation procedure.

The contributions of this document cover the following topics:

• Projective formalism for topological event structures. Compactness of the bor-
der at infinity for a class of concurrent systems.

• Geometric tools for event structures: cone of future, well-stopped configura-
tions, germs and branching cells. Algorithms for computing germs and branch-
ing cells.

• Definition and construction of distributed probabilities and of memory-less
concurrent systems: distributed Markov nets.

• Formalism for a Strong Markov property for concurrent systems: stopping and
shift operators, homogeneous functions. The Markov property. Application to
recurrent nets. Global and local renewal. Existence of the embedded Markov
chain.

• A unit of time for concurrent systems. Ergodic nets. The Strong law of large
numbers. Definition of a martingale.

• Statistical estimation. The problem of sequentialisation.

We have introduced a new formalism adapted to concurrent systems in order to
generalise the techniques and results from finite Markov chains theory (Chapters 2
and 5). The new formalism allows to express for concurrent systems several notions
from dynamical systems theory, without reference to a global totally ordered time.
In several aspects, the behaviour of concurrent systems can be compared with that
of Markov chains’: for instance global recurrence of both models are similar, and
both models satisfy the Strong law of large numbers (Chapter 7).
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The concurrency properties of models introduce specificities that have been
treated through the use of new mathematical objects. The class of distributed prob-
abilities, leading to the definition of distributed Markov nets (Chapters 4 and 5),
properly expresses local properties of concurrent systems, as illustrated by the study
of local renewal for concurrent systems (Chapter 6). As shown by the statistical
study of Chapter 8, the model that we propose improves the study of probabilistic
distributed systems.

Many questions remain open. We discuss some of them below.

II—Open Questions

II-1 Topological and Computational Questions

We have studied in Chapter 2 the topology of the space of maximal configuration
of event structures, showing its compactness if the event structure is locally finite.
We expect this condition to be necessary, which remains to be proved. The examples
that we have studied encourage us to expect the equivalence. This would fully justify
the name of “compact nets” for nets with a locally finite unfolding.

From a computational point of view, there is an open question concerning the
decidability of compactness of safe nets. We expect that the procedure that we have
given in Chapter 8 is actually sound and complete for deciding the compactness of
nets.

II-2 Limit Theorems

We have shown in Chapter 7 the Strong law of large numbers for nets. This
important ergodic result justifies the introduction of a new unit of time, adapted to
concurrent systems. In general this unit of time differs from the single event, that
is the natural unit of time for concurrent systems, although it actually reduces to
the single event for systems without concurrency. The stationary measure involved
in the formulation of the Strong law of large numbers for concurrent systems such
as finite Markov chains is replaced for concurrent systems by a finite collection of
density coefficients.

Our ergodic study misses the result according to which the density coefficients
are positive. We related this topic to the finite mean, counting with the concurrent
unit of time, of the renewal operator.

The conditions that we have introduced, recurrence and integrable concurrent
height of concurrent systems, seem well adapted to the treatment of ergodic proper-
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ties. We can expect decompositions of nets into components with these properties,
analogous to the recurrence classes of Markov chains.

The introduction of the density coefficients of a net, associated with the finite
collection of branching cells of its unfolding, let us consider this collection as a new
space of states, adapted to the treatment of concurrent systems. In particular, the
density coefficients sum to 1 over this space of states. The advantage is that in most
cases, this space of states will be much smaller than the set of reachable markings.
A more extensive study from this point of view could be initiated. In particular, can
we impose a “net structure” on this space of states?

III—Perspectives

Our study is based on locally finite event structures, what about non locally finite
event structures? For nets, it appears that the non-compactness is related to com-
positionality problems. We also use this point of view to consider the problem of
local statistical estimation.

III-1 Product of Nets.

G. Winskel has introduced a categorical framework for Petri nets, defining in
particular categories of safe Petri nets and of event structures [48, 50] in which a
product exists. Combined with a restriction operation, and with a labelling defined
on two nets, the product leads to a synchronous product of nets defined w.r.t. the
labelling, generalising for instance the product “à la Arnold-Nivat” often used by
the model-checking school. Several classical applications of Probability in Computer
science, such as simulation and bisimulation [29, 22], are based on a close framework.

The product of nets is the essential ingredient for defining a language of commu-
nicating processes closed to the family of CCS, SCCS from Milner, and semantically
interpreted in the category of safe nets. In the following grammar of processes, X is
a set of elementary processes and L a set of labels1, with x and λ variables in X and
in L [48, 50]:

p ::= Nil
∣
∣ x

∣
∣ λp

∣
∣ p + p

∣
∣ p|Q

∣
∣ p[Ξ]

∣
∣ pSynL p

∣
∣ Rec x.p

Q is a subset of labels Q ⊆ L, and Ξ : L→ L is a relabelling mapping.

The semantics in nets is informally described as follows. Nil represents a dead
process that cannot perform any event. λp stands for a guarding label λ, that must

1More precisely, L is a synchronisation algebra.
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occur for process p to hold. The sum p + q of two processes consists in p or in q. If
Q is a set of labels, an execution of process p|Q is any execution of p where only Q-

events occur. p[Ξ] stands for the action of the relabelling function Ξ on p. pSynL q is
the synchronous product defined w.r.t. L. Finally, Rec x.b stands for a recursive
evaluation of the expression b, closed w.r.t. the variable x.

III-2 Probabilistic Composition. Non Compact Probabilistic Nets.

The important observation is that the composition operations in the above gram-
mar of processes, in particular the sum and the product, do not preserve local finite-
ness. Consider for instance the two nets N0 and N1 depicted in Figure 9.1. Taking
their synchronous product by synchronising on transitions labelled by the common
label c, we obtain our usual non compact example, depicted in Figure 9.2.
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Figure 9.1: Two safe nets N0 and N1.

III-2.1 Meaning of the Space Ω. Let Ω denote the set of maximal processes
of the product net. An element ω contains three informations: ω determines first a
process v0 in N0, obtained by forgetting simply the actions in N1 and looking only
at N0 . In the same way, ω determines a process v1 in N1. Finally, ω determines also
the precise interleaving of v0 and v1 . Whence the following observations:

1. A simplification is brought if we assume that v0 and v1 are maximal processes
of N0 and of N1 .

2. Do we really need to keep the whole information about the interleaving of
processes?

Condition 1 means that no deadlock is introduced by the synchronisation product.
Figure 9.3 depicts a simple example of product without this property. It seems that
this deadlock problem has not been treated in the literature. For point 2, I think
that there is a better space than Ω to consider, and I give some details below.

I propose to consider two compact nets N0,N1 such that their product is max-

synchronous: maximal processes of the product project into maximal processes
of each net. Given two probabilities P0, P1 respectively on Ω0,Ω1 (with obvious
notations), consider the synchronisation set: the set of pairs (ω0, ω1) ∈ Ω0 × Ω1
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Figure 9.2: Non compact net N obtained by synchronisation of N0 and N1 from
Figure 9.1 (synchronisation on c). We recognise in U the event structure of Ch. 2,
Fig. 2.1.
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Figure 9.3: Synchronisation on transition a: introduction of a dead-lock. Configu-
ration ∅ is maximal in the product but not in the left component.
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that can synchronise. Remark that we do not pay attention to the many ways in
which two maximal processes can synchronise in general (although in the examples
depicted here, this consideration is meaningless since there is at most 1 way for a
pair ω0, ω1 to synchronise). If this set has P0×P1 probability non zero, consider the
conditional probability:

Q = P0 × P1

(
· | D

)
,

where D is the synchronisation set.
Observing one of the net under the product dynamics is like observing the net

under an observation probability different from the original probability in general.
For instance for the net depicted in Figure 9.2, the observation set is, with obvious
notations:

D = {an ⊕ c, n ≥ 0} × {c} ∪ {(a∞, b)}.

Since a∞ has P0 probability 0, D differs with a P0 × P1-zero set from:

{an ⊕ c, n ≥ 0} × {c}.

Therefore, the observation probability in N0 matches the initial probability, whereas
the observation probability in N1 is the degenerated probability P1(c) = 1. For
the live double loop depicted in Figure 9.5, obtained from the product of nets of
Figure 9.4, the observation probabilities match the original probabilities. In this
example the global space Ω can be equipped with a probability Q that makes (Ω, Q )
isomorphic as a probability space to the product space (Ω0 × Ω1, P0 × P1). For
compactness reasons, the isomorphism is not topological.

N0
?>=<89:;

����
��

��
�

��6
66

66
66
• A

��6
66

66
66a

����
��

��
� c

?>=<89:; A

?>=<89:;

����
��

��
�

��6
66

66
66
•B N1

��6
66

66
66c

����
��

��
� b

?>=<89:;B

Figure 9.4: Two safe nets for the live double loop. Synchronisation on c.

III-2.2 Distributed Estimation and Systems Management. In this com-
positional context, a distributed estimation can be addressed as an estimation of
the intrinsic probabilistic parameters from local observations under the observation
probability. Estimating the observation probability is like the global estimation prob-
lem treated in Chapter 8. Retrieving the original probability from the observation
probability is an other problem. As shown by the example of Figure 9.1, this is not
always possible: in this example, the observation probability is always trivial, and
contains thus no information on the original probability.

Distributed estimation of parameters is an example of application of the proba-
bilistic model to the management of networked systems. The labelling of systems also
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Figure 9.5: The live double loop.

introduces many ways to modelise hidden informations. The HMM (Hidden Markov
Models) are common tools in classical system management. Analogous theory and
tools for distributed Markov nets are expected, with applications for instance to the
distributed diagnosis of systems [6].

III-2.3 Conclusion. Compositionality seems to be a rich topic for probabilis-
tic and statistical applications, as well as for probabilistic bisimulations of true-
concurrent systems. They provide examples of randomisation of non compact nets.
A challenging work with applications to the management of systems is the introduc-
tion of HMM techniques.



250 Chapter 9—Conclusions and Perspectives



BIBLIOGRAPHY 251

Bibliography

[1] S. Abbes. A probabilistic model for true concurrency, second version. Technical
Report PI-1591, IRISA, 2004.

[2] F. Baccelli. Ergodic theory of stochastic petri networks. The Annals of Prob.,
20:375–396, 1992.

[3] F. Baccelli, G. Bohen, G. Olsder, and J.P. Quadrat. Synchronisation and lin-
earity. Wiley, 1992.

[4] F. Baccelli, S. Foss, and B. Gaujal. Free choice nets, an algebraic approach.
IEEE Transaction on Automatic Control, 41(12):1751–1778, 1996.

[5] C. Baier, H. Hermanns, J.-P. Katoen, and V. Wolf. Comparative branching-
time semantics for markov chains. In CONCUR 03, volume 2761 of LNCS,
pages 482–497. Sp. V., 2003.

[6] A. Benveniste, E. Fabre, S. Haar, and C. Jard. Diagnosis of asynchronous
discrete event systems, a net unfolding approach. IEEE Trans. on Aut. Control,
48(5):714–727, 2003.

[7] A. Benveniste, S. Haar, and E. Fabre. Markov nets: probabilistic models for
distributed and concurrent systems. IEEE Trans. on Aut. Control, 48(11):1936–
1950, Nov. 2003.

[8] A. Benveniste, S. Haar, E. Fabre, and C. Jard. Distributed monitoring of con-
current and asynchronous systems. In Proc. of CONCUR 2003, volume 2761 of
LNCS, pages 1–26, 2003.
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