Modèle probabiliste de systèmes distribués et concurrents Théorèmes limite

Samy Abbes

Projet IRISA DistribCom

IRISA / Université de Rennes 1

14 octobre 2004

Motivation and scientific context

Management of *networked* systems (e.g., telecommunication networks) *Probabilistic* model for:

- performance evaluation
- analysis of observations with *incomplete* information
 - distributed fault diagnosis
 - distributed statistical learning (inferring local parameters from local observations)

Requirements

Distributed architecture:

[Benveniste-Haar-Fabre-Jard 03]

occurrences of synchronous and asynchronous events

- 1. Nodes have *local clocks*
- 2. Asynchronous events cannot be *chronologically* compared:
 - no global clock
 - if a clock is imposed, different interleavings of asynchronous events must be identified
 - events in an execution form a causal partial order

Probabilistic extensions of concurrency models

Composition of probabilistic automata ([Segala 95,02]) a *2-steps* semantics

- 1. synchronisation w.r.t. labelling is *scheduled*
- 2. random decisions are *private* and do not interfere with synchronisation
- the probability is not defined up to interleaving: it does not match our requirements

Probabilistic extensions of concurrency models

Timed approaches (Continuous time Markov chains)

- Stochastic Petri nets based on race policies to solve conflicts
 - applications in queuing theory
 - connexions with (max, +) algebra (Baccelli, Mairesse,...)
- Stochastic process algebras: stochastic extensions of languages of timed processes
 - performance evaluation, bisimulation (Hermanns-Herzog-Katoen)

Probabilistic extensions of concurrency models

Timed approaches (Continuous time Markov chains)

■ Transform the model, e.g. the Petri net, into a stochastic process $(X_t)_{t \ge 0}$ on a (huge) state space

partial orders are randomised through the temporisation: what happens without global clock?

Probabilistic models: a new approach

In the model of safe Petri nets

- No global clock $t \ge 0$
- randomize the set Ω of *maximal executions* of the system
- randomize Ω in a *recursive* way

[Völzer 2001, Benveniste-Haar-Fabre 2003, Varacca-Winskel-Völzer 2004, Abbes 2004]

Summary

Objectives:

- provide a probabilistic framework for safe Petri nets without reference to a global clock
- obtain asymptotic results and statistical applications

Problematic:

is it true that a probabilistic Petri net is a Markov chain (DTMC) with *several* tokens?

Contributions

Continuous domain of configurations

- identification of the space of maximal configurations as a *projective limit*
- Iocally finite unfoldings for extension of probabilities
- Occurrence nets and event structures
 - decomposition of true-concurrent processes through branching cells (local states)
 - computability
- Probabilistic model
 - construction of the *distributed probabilities*
 - stopping operators and the Strong Markov property
 - part of a *recurrence* theory
 - Law of large numbers

1. Background: unfoldings and representations of space Ω

- 2. Extension of probabilities
- 3. Decomposition of true-concurrent processes
- 4. Distributed product of probabilities
- 5. Markov nets: the Markov property and the Law of large numbers
- 6. Computability of local finiteness
- 7. Conclusion and perspectives

Transition system (T.S.):

A partial execution is a sequence of moves of the token

= a *path* in the finite graph of the T.S.

A maximal execution $\omega \in \Omega$ is a sequence finite or infinite that cannot be continued

covering tree = *transition system* (infinite)

- acyclic
- same dynamics than the T.S.: a path in the T.S. is lifted into a unique path in the covering tree

covering tree = *transition system* (infinite)

- acyclic
- same dynamics than the T.S.: a path in the T.S. is *lifted* into a unique path in the covering tree
- $\boldsymbol{\Omega}$ is the **boundary at infinity** of the covering tree

Unfolding of a safe Petri net (Winskel 80)

Unfolding of a safe Petri net (Winskel 80)

A *trace* of the Petri net is lifted into a *trace* of the unfolding.

- The **unfolding** \mathcal{U} of a safe Petri net \mathcal{N} is a *labelled* occurrence net, labelled by \mathcal{N} , and with the same true-concurrent dynamics than \mathcal{N} .
- \checkmark a finite *configuration* of $\mathcal U$ leads to a marking of net $\mathcal N$

- The **unfolding** \mathcal{U} of a safe Petri net \mathcal{N} is a *labelled* occurrence net, labelled by \mathcal{N} , and with the same true-concurrent dynamics than \mathcal{N} .
- $\Omega = \{ maximal configurations \} = boundary at infinity of U \}$

1. Background: unfoldings and representations of space Ω

2. Extension of probabilities

- 3. Decomposition of true-concurrent processes
- 4. Distributed product of probabilities
- 5. Markov nets: the Markov property and the Law of large numbers
- 6. Computability of local finiteness
- 7. Conclusion and perspectives

Finite approximations of Ω

Case of a transition system.

 Ω_n = finite set of executions after *n* moves

? Existence of \mathbb{P} : $\mathbb{P}(X_0, \ldots, X_n) = \mathbb{P}_n(X_0, \ldots, X_n) \quad \forall n \ge 0$ **?**

Kolmogorov-Prokhorov *extension* theorem: the extension occurs iff:

$$\mathbb{P}_n(X_0,\ldots,X_n) = \sum_{s\in S} \mathbb{P}_{n+1}(X_0,\ldots,X_n,s)$$

Finite approximations of Ω

Case of a transition system.

 Ω_n = finite set of executions after *n* moves

?Existence of \mathbb{P} : $\mathbb{P}(X_0, \ldots, X_n) = \mathbb{P}_n(X_0, \ldots, X_n) \quad \forall n \ge 0$?

Kolmogorov-Prokhorov *extension* theorem relies on:

extension theorem for projective limits of probabilities (Prokhorov, 1930's)

tree model

 $\Omega = \underline{\lim}_n \Omega_n +$

probability theory

Finite approximations of $\boldsymbol{\Omega}$

• For *concurrent* models $(\mathcal{N}, \mathcal{U}, \Omega)$, is there a projective systems of *finite* sets $(\Gamma_n)_n$ such that:

 $\Omega = \lim_{n \to \infty} \Gamma_n$? (*n* ranges over a countable lattice)

Finite approximations of Ω

• For *concurrent* models $(\mathcal{N}, \mathcal{U}, \Omega)$, is there a projective systems of *finite* sets $(\Gamma_n)_n$ such that:

 $\Omega = \lim_{n \to \infty} \Gamma_n$? (*n* ranges over a countable lattice)

Theorem: yes, if and only if Ω is compact in the Scott topology, and in this case we can take:

P finite prefix of \mathcal{U} , $\Gamma_P = \{ \omega \cap P, \ \omega \in \Omega \}$

 Ω is the limit of its traces over finite prefixes of \mathcal{U}

Locally finite unfoldings

A general **compact** case for Ω

- minimal conflict on \mathcal{U} : $e \#_{\mu} e'$
- a stopping prefix of \mathcal{U} is a prefix $\#_{\mu}$ -closed
- **Property:** for stopping prefix *B*:

$$\Omega_B = \{ \omega \cap B, \ \omega \in \Omega \}$$

the traces of Ω over stopping prefix *B* coincide with Ω_B \rightarrow interesting property from a *computational* point of view

Locally finite unfoldings

A general **compact** case for Ω

 an unfolding U is *locally finite* if for every node x of U, there is a stopping prefix B s.t.:

 $x \in B$, B is finite

• Theorem: if \mathcal{U} is locally finite, then Ω is compact, and:

 $\Omega = \varprojlim_B \Omega_B$

 \rightarrow restrict the study to nets with locally finite unfoldings

Examples

- Locally finite: unfoldings of
 - transition systems
 - confusion-free and free-choice nets
 - nets with finite unfoldings
 - some other nets
- Non locally finite:

transition c is in competition with *infinitely many* occurrences of transition a

- 1. Background: unfoldings and representations of space Ω
- 2. Extension of probabilities
- 3. Decomposition of true-concurrent processes
- 4. Distributed product of probabilities
- 5. Markov nets: the Markov property and the Law of large numbers
- 6. Computability of local finiteness
- 7. Conclusion and perspectives

 \mathcal{N} a finite safe Petri net with unfolding \mathcal{U} from marking M_0 For v a configuration of \mathcal{U}

 $\mathcal{U}^{v} =$ future of v = unfolding of \mathcal{N} from m(v)

Nodes not in v and not in conflict with v

 \mathcal{N} a finite safe Petri net with unfolding \mathcal{U} from marking M_0 For v a configuration of \mathcal{U}

 $\mathcal{U}^{v} =$ future of v = unfolding of \mathcal{N} from m(v)

 \mathcal{N} a finite safe Petri net with unfolding \mathcal{U} from marking M_0 For v a configuration of \mathcal{U}

 $\mathcal{U}^{v} =$ future of v = unfolding of \mathcal{N} from m(v)

 \mathcal{N} a finite safe Petri net with unfolding \mathcal{U} from marking M_0 For v a configuration of \mathcal{U}

 $\mathcal{U}^v =$ future of v =unfolding of \mathcal{N} from m(v)

• associative composition v + w

defined for w a configuration of \mathcal{U}^v

 \rightarrow suggests recursive decompositions of maximal processes

Decompositions of configurations

Safe Petri net \mathcal{N} , unfolding \mathcal{U} . *Fix* a maximal configuration ω . **Definition:** An **initial branching cell** of \mathcal{U} is a minimal $\neq \emptyset$ stopping prefix of \mathcal{U} .

Decompositions of configurations

Safe Petri net \mathcal{N} , unfolding \mathcal{U} . *Fix* a maximal configuration ω . **Definition:** An **initial branching cell** of \mathcal{U} is a minimal $\neq \emptyset$ stopping prefix of \mathcal{U} .

Step 1: select a initial branching cell, say λ_3
Safe Petri net \mathcal{N} , unfolding \mathcal{U} . *Fix* a maximal configuration ω . **Definition:** An **initial branching cell** of \mathcal{U} is a minimal $\neq \emptyset$ stopping prefix of \mathcal{U} .

Step 1: select a initial branching cell, say λ_3 **Set** $v_1 = \omega \cap \lambda_3$. v_1 is *maximal* in λ_3

Safe Petri net \mathcal{N} , unfolding \mathcal{U} . *Fix* a maximal configuration ω . **Definition:** An **initial branching cell** of \mathcal{U} is a minimal $\neq \emptyset$ stopping prefix of \mathcal{U} .

Step 1: select a initial branching cell, say λ_3 **Set** $v_1 = \omega \cap \lambda_3$. v_1 is *maximal* in λ_3

Step 2: consider $\mathcal{U}^{v_1} = future \text{ of } v_1$

Safe Petri net \mathcal{N} , unfolding \mathcal{U} . *Fix* a maximal configuration ω . **Definition:** An **initial branching cell** of \mathcal{U} is a minimal $\neq \emptyset$ stopping prefix of \mathcal{U} .

Step 1: select a initial branching cell, say λ_3 **Set** $v_1 = \omega \cap \lambda_3$. v_1 is *maximal* in λ_3

Step 2: consider $\mathcal{U}^{v_1} = future \text{ of } v_1$ Initial branching cells of \mathcal{U}^{v_1} are: $\lambda_1, \lambda_2, \lambda_4$

Safe Petri net \mathcal{N} , unfolding \mathcal{U} . *Fix* a maximal configuration ω . **Definition:** An **initial branching cell** of \mathcal{U} is a minimal $\neq \emptyset$ stopping prefix of \mathcal{U} .

Step 1: select an initial branching cell, say λ_3 **Set** $v_1 = \omega \cap \lambda_3$. v_1 is *maximal* in λ_3

Step 2: consider $\mathcal{U}^{v_1} = future \text{ of } v_1$ Initial branching cells of \mathcal{U}^{v_1} are: $\lambda_1, \lambda_2, \lambda_4$

Repeat to construct

 v_1, v_2, \ldots

- Finite well stopped (w.s) configurations are all the v_n that can be constructed, for ω ranging over Ω
- Branching cells are initial branching cells of U^v, for v finite w.s

Theorem: a finite **w.s** configuration *v* admits a *unique* decomposition:

$$v = \bigcup_{\text{finite}} \xi_{\lambda}, \quad \xi_{\lambda} \in \Omega_{\lambda}$$

and branching cells λ are *disjoint*

Properties

- if *B* is a finite stopping prefix, then every maximal configuration $\omega_B \in \Omega_B$ is well stopped
- Stability under concatenation
 if v is well stopped in U, if w is well stopped in U^v,
 then v + w is well stopped in U

Remark: Well stopped configurations form the smallest class with both properties.

Comments:

branching cells are *dynamic*, because of *concurrency* An event t can belong to different branching cells,
 according to the *context* of t

Comments:

branching cells are *dynamic*, because of *concurrency* An event t can belong to different branching cells,
 according to the *context* of t

Comments:

- branching cells are *dynamic*, because of *concurrency*
- **Case of a tree:** branching cells do not overlap

- 1. Background: unfoldings and representations of space Ω
- 2. Extension of probabilities
- 3. Decomposition of true-concurrent processes
- 4. Distributed product of probabilities
- 5. Markov nets: the Markov property and the Law of large numbers
- 6. Computability of local finiteness
- 7. Conclusion and perspectives

Data: a *countable* family of *finite* probabilities $(q_{\lambda})_{\lambda}$, λ ranging over the branching cells of \mathcal{U}

Define, for configuration $v = \bigcup_{\lambda} \xi_{\lambda}$ finite **w.s**

$$p(v) = \prod_{\lambda} q_{\lambda}(\xi_{\lambda})$$

Data: a *countable* family of *finite* probabilities $(q_{\lambda})_{\lambda}$, λ ranging over the branching cells of \mathcal{U}

Define, for configuration $v = \bigcup_{\lambda} \xi_{\lambda}$ finite **w.s**

$$p(v) = \prod_{\lambda} q_{\lambda}(\xi_{\lambda})$$

- for every finite stopping prefix B, $\mathbb{P}_B(\omega_B) =_{\mathsf{def}} p(\omega_B)$ is a probability on Ω_B
- $(\mathbb{P}_B)_B$ is a projective system of probabilities on $(\Omega_B)_B$

$$B \subseteq B', \quad \forall \omega_B \in \Omega_B, \quad \mathbb{P}_B(\omega_B) = \sum_{\omega_{B'} \in \Omega_{B'}} \mathbb{P}_{B'}(\omega_{B'})$$

Data: a *countable* family of *finite* probabilities $(q_{\lambda})_{\lambda}$, λ ranging over the branching cells of \mathcal{U} **Define** for configuration $w = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} finite w s$

Define, for configuration $v = \bigcup_{\lambda} \xi_{\lambda}$ finite **w.s**

$$p(v) = \prod_{\lambda} q_{\lambda}(\xi_{\lambda})$$

Extension theorem: there is a unique probability \mathbb{P} on Ω s.t. for all B:

$$\mathbb{P}(\omega \supseteq \omega_B) = p(\omega_B)$$

and then for every v finite w.s: $\mathbb{P}(\omega \supseteq v) = p(v)$

 $\Omega(v) = \{\omega \in \Omega : \ \omega \supseteq v\}$ is the *shadow* of v

Call \mathbb{P} the **distributed product** of family $(q_{\lambda})_{\lambda \subseteq \mathcal{U}}$

$$\mathbb{P} = \bigotimes_{\lambda \subseteq \mathcal{U}}^{\mathsf{d}} q_{\lambda}$$

$$\Omega(v) = \{ \omega \in \Omega : \ \omega \supseteq v \} \text{ is the } shadow \text{ of } v$$

 $p(v) = \mathbb{P}\big(\Omega(v)\big)$

● Probabilistic future of configuration v: probability \mathbb{P}^v on the shadow $\Omega(v)$

$$A \subseteq \Omega(v), \quad \mathbb{P}^{v}(A) = \frac{1}{p(v)}\mathbb{P}(A)$$

$$\Omega(v) = \{\omega \in \Omega : \omega \supseteq v\}$$
 is the *shadow* of v

• **Probabilistic future** of configuration v: probability \mathbb{P}^{v} on the *boundary* at infinity Ω^{v} of the future \mathcal{U}^{v}

$$A \subseteq \Omega^{v}, \quad \mathbb{P}^{v}(A) = \frac{1}{p(v)}\mathbb{P}(A)$$

$$\Omega(v) = \{\omega \in \Omega : \omega \supseteq v\}$$
 is the *shadow* of v

Property: conservation of distributed products w.r.t. future

$$\mathbb{P} = \bigotimes_{\lambda \subseteq \mathcal{U}}^{\mathsf{d}} q_{\lambda} \implies \mathbb{P}^{v} = \bigotimes_{\lambda \subseteq \mathcal{U}^{v}}^{\mathsf{d}} q_{\lambda}$$

■ *B* stopping prefix (*past*) → probability \mathbb{P}_B on Ω_B $\mathbb{P}_{\mathcal{D}}(\cup p) = \mathbb{P}(\mathcal{O}(\cup p))$

$$\mathbb{P}_B(\omega_B) = \mathbb{P}\big(\Omega(\omega_B)\big)$$

Property: conservation of distributed products w.r.t. past

$$\mathbb{P} = \bigotimes_{\lambda \subseteq \mathcal{U}}^{\mathsf{d}} q_{\lambda} \implies \mathbb{P}_{B} = \bigotimes_{\lambda \subseteq B}^{\mathsf{d}} q_{\lambda}$$

• Let \mathbb{P} be a distributed product $\mathbb{P} = \bigotimes_{\lambda \subset \mathcal{U}}^{\mathsf{d}} q_{\lambda}$. Fix v w.s

Set stopping prefix $B = \lambda_1 \cup \lambda_2$. Then: $\Omega_B = \Omega_{\lambda_1} \times \Omega_{\lambda_2}$ and

$$\mathbb{P}_B^v = \mathbb{P}_{\lambda_1}^v \otimes \mathbb{P}_{\lambda_2}^v = q_{\lambda_1} \otimes q_{\lambda_2}$$

• if \mathbb{P} is a distributed product $\mathbb{P} = \bigotimes^{d} q_{\lambda}$. Fix v w.s

$$v' = v + \xi, \quad \xi \in \Omega_{\lambda_2}$$

 $\lambda \subseteq \mathcal{U}$

Set stopping prefix $B' = \lambda_1 \cup \lambda_3$. Then:

$$\mathbb{P}_{B'}^{v'} = \mathbb{P}_{\lambda_1}^{v'} \otimes \mathbb{P}_{\lambda_3}^{v'} = q_{\lambda_1} \otimes q_{\lambda_3}$$

Theorem: a probability \mathbb{P} is a distributed product *iff*

for every v finite w.s, the product decomposition holds:

$$\mathbb{P}^{v}_{B} = \mathbb{P}^{v}_{\lambda_{1}} \otimes \cdots \otimes \mathbb{P}^{v}_{\lambda_{n}}$$

with
$$B = B^{\perp}(\mathcal{U}^v) = \lambda_1 \cup \ldots \cup \lambda_n$$

 \checkmark and for λ fixed, $\mathbb{P}_{\lambda}^{v}=q_{\lambda}$ is independent of v

In this case: $\mathbb{P} = \bigotimes_{\lambda \subseteq \mathcal{U}}^{\mathsf{d}} q_{\lambda}$ \mathbb{P} is a **distributed** probability

● product form for a distributed probability \mathbb{P}

 $B = \lambda_1 \cup \ldots \cup \lambda_n, \quad \mathbb{P}^v_B = q_{\lambda_1} \otimes \cdots \otimes q_{\lambda_n}$

- a horizontal independence due to concurrency
- Jocality in space: new feature
- randomization by *local agents*:
 - dynamic
 - without communication during asynchronous actions

- 1. Background: unfoldings and representations of space Ω
- 2. Extension of probabilities
- 3. Decomposition of true-concurrent processes
- 4. Distributed product of probabilities
- 5. *Markov nets: the Markov property and the Law of large numbers*
- 6. Computability of local finiteness
- 7. Conclusion and perspectives

Markov nets

- A distributed product is given by a *countable* family of finite probabilities $(q_{\lambda})_{\lambda}$
- there are *finitely many* classes of branching cells as labelled occurrence nets

finite alphabet $\Sigma = \{ \text{ classes of branching cells } \}$

Markov nets

- A distributed product is given by a *countable* family of finite probabilities $(q_{\lambda})_{\lambda}$
- there are *finitely many* classes of branching cells as labelled occurrence nets

finite alphabet $\Sigma = \{ \text{ classes of branching cells } \}$

- a Markov net is a pair $(\mathcal{N}, (q_s)_{s \in \Sigma})$, q_s a (finite) probability on Ω_s
- the associated distributed probability:

$$\langle \lambda \rangle =$$
class of λ , $\mathbb{P} = \bigotimes_{\lambda \subseteq \mathcal{U}}^{\mathsf{d}} q_{\langle \lambda \rangle}$

Homogeneity: Markov net (N, (q_s)_∑),
 2 configurations v, v' finite w.s leading to same marking m

Homogeneity: Markov net (N, (q_s)_Σ),
 2 configurations v, v' finite w.s leading to same marking m

Homogeneity: Markov net (N, (q_s)_Σ),
 2 configurations v, v' finite w.s leading to same marking m

The probabilistic future \mathbb{P}^{v} only depends on the marking m(v)

- Stopping operators generalize stopping times for sequential systems
 A stopping operator is a random variable V such that:
 - $V(\omega)$ is a **w.s** configuration, $V(\omega) \subseteq \omega$
 - $\forall \omega, \omega' \in \Omega, \quad \omega' \supseteq V(\omega) \Rightarrow V(\omega') = V(\omega)$
- **Example:** (sequential) first return of the initial state

- Reformulated with stopping operators, the Strong
 Markov Property (from Markov chains) holds for
 Markov nets
- adapt the (beginning of) recurrence theory of Markov chains → *global recurrence* of Markov nets
 - in a recurrent Markov net, reachable markings have probability 1 to return infinitely often
- there are results for a *local recurrence* (coincides with global recurrence for Markov chains)

- Case of a recurrent Markov chain (X_n)_{n≥1} with state space S
 f: S → ℝ a test function
 For *integer* n ≥ 1:
 ergodic sum: S_nf = f(X₁) + ··· + f(X_n)
 - ergodic **mean**: $M_n f = \frac{1}{n} S_n f = \frac{\text{sum of outputs of } f}{\text{time elapsed}}$

LLN: there is a probability α on S such that:

$$\lim_{n \to \infty} M_n f = \alpha(f), \quad \mathbb{P}\text{-a.s.} \qquad \alpha(f) = \sum_{s \in S} \alpha(s) f(s)$$

• Case of a recurrent Markov chain $(X_n)_{n\geq 1}$ with state space S $f: S \to \mathbb{R}$ a test function For *integer* $n \geq 1$: ergodic **sum**: $S_n f = f(X_1) + \dots + f(X_n)$ 1 sum of output

ergodic **mean**: $M_n f = \frac{1}{n} S_n f = \frac{\text{sum of outputs of } f}{\text{time elapsed}}$

- For concurrent systems
 - what is the state space? what are the test functions?
 - what is the time elapsed?

Case of a recurrent Markov chain

 $f \text{ is tested along} \\ \text{configuration } v \\ \langle f, v \rangle = \sum_{x \in v} f(\mathbf{x}) \\ = f(\mathbf{s_1}) + f(\mathbf{s_2}) + f(\mathbf{s_1}) \qquad \mathbf{s_2}$

duration of $v = \langle 1, v \rangle = 3$

Ergodic mean of f along v

$$Mf(v) = \frac{\langle f, v \rangle}{\langle 1, v \rangle}$$

limit of ergodic means:

$$Mf(v) = \frac{\langle f, v \rangle}{\langle \mathbf{1}, v \rangle}, \quad v \to \omega?$$

A sequence of stopping operators $(V_n)_{n\geq 1}$ is **regular** if:

- for all $n, V_n \subseteq V_{n+1}$
- $\bigcup_n V_n(\omega) = \omega$ with probability 1
- there are $K_1, K_2 > 0$ such that for all n:

$$K_1 \le \frac{\langle \mathbf{1}, V_n \rangle}{n} \le K_2$$
A sequence of stopping operators $(V_n)_{n\geq 1}$ is **regular** if:

- for all $n, V_n \subseteq V_{n+1}$
- $\bigcup_n V_n(\omega) = \omega$ with probability 1
- there are $K_1, K_2 > 0$ such that for all n:

$$K_1 \le \frac{\langle \mathbf{1}, V_n \rangle}{n} \le K_2$$

Definition: For a distributed function $f = (f_s)_{s \in \Sigma}$, the ergodic means $Mf(\cdot) = \frac{\langle f, \cdot \rangle}{\langle 1, \cdot \rangle}$ **converge** to a function $\mu : \Omega \to \mathbb{R}$ if, for *every* regular sequence of stopping operators $(V_n)_{n \ge 1}$:

$$\lim_{n\to\infty} Mf(V_n(\omega)) = \mu(\omega), \quad \mathbb{P}\text{-a.s.}$$

The convergence of ergodic means **cannot** hold if net \mathcal{N} is the product of two independent components $\mathcal{N}_1 \cup \mathcal{N}_2$ \rightarrow need for a *synchrony* assumption

 $Mf(V_n)$ and $Mf(W_n)$ have different limits

The convergence of ergodic means **cannot** hold if net \mathcal{N} is the product of two independent components $\mathcal{N}_1 \cup \mathcal{N}_2$ \rightarrow need for a *synchrony* assumption

Markov net *N* has integrable concurrency height if for each partial execution of the system, leading to marking *m*, and for each place *P* of *m*, there is a time of *finite expectation* before the token in place *P* moves.

Theorem (LLN) Let $(\mathcal{N}, (q_s)_{s \in \Sigma})$ be a Markov net, recurrent and with integrable concurrency height.

- For $f = (f_s)_{s \in \Sigma}$ a distributed function, the *ergodic means* $Mf(\cdot)$ *converge* to a function $\mu f : \Omega \to \mathbb{R}$, and μf is *constant* with probability 1.
- There is a (finite) probability α on Σ s.t.:

$$\mu f = \sum_{s \in \Sigma} \alpha(s) q_s(f_s)$$

Comments on the LLN

$$\mu f = \sum_{s \in \Sigma} \alpha(s) q_s(f_s)$$

- If \mathcal{N} is actually a Markov chain, $\alpha(s)$'s are the coefficients from the sequential LLN (*stationary* measure).
- Classes of branching cells $s \in \Sigma$ appear as *local states* of the concurrent system.
- coefficients $\alpha(s)$ is the *asymptotic density* of local state $\alpha(s)$

- 1. Background: unfoldings and representations of space Ω
- 2. Extension of probabilities
- 3. Decomposition of true-concurrent processes
- 4. Distributed product of probabilities
- 5. Markov nets: the Markov property and the Law of large numbers
- 6. Computability of local finiteness
- 7. Conclusion and perspectives

Conjecture and consequences

Conjecture: \mathcal{U} the unfolding of a safe Petri net \mathcal{N} . Assume that for every event e, the set:

 $\{f \in \mathcal{U} : f \#_{\mu} e\}$

is *finite*.

Then \mathcal{U} is *locally finite*.

Conjecture and consequences

Consequences

- \mathcal{U} locally finite $\Rightarrow \Omega$ compact **OK** With the conjecture:
 - the converse holds
 - locally finite constructions are made easy
- Local finiteness is *decidable*,
 branching cells are *computable*

 ${\cal N}$ a safe Petri net with unfolding ${\cal U}$

Question: is \mathcal{U} locally finite?

Reductions:

- decide the finiteness of {f ∈ U : f #µ e} for e ∈ U
 (conjecture)
- assume that e is *minimal* in \mathcal{U}
- decide the finiteness of
 *F*_{t'}(*e*) = {*f* ∈ U : *f* #_µ *e*, *f* labelled by *t'*}
 for *t'* a fixed transition

• assume that $F_{t'}(e)$ contains an event f minimal in \mathcal{U}

 \mathcal{N} a safe Petri net with unfolding \mathcal{U} , $\rho: \mathcal{U} \to \mathcal{N}$

- **•** fix e minimal event of \mathcal{U} , labelled by transition t
- assume that $F_{t'}(e) = \{f \in \mathcal{U} : f \#_{\mu} e, \rho(f) = t'\}$ contains an event minimal in \mathcal{U}
- **Question:** finiteness of $F_{t'}$?

 \mathcal{N} a safe Petri net with unfolding $\mathcal{U}, \quad \rho: \mathcal{U} \to \mathcal{N}$

- **•** fix e minimal event of \mathcal{U} , labelled by transition t
- assume that $F_{t'}(e) = \{f \in \mathcal{U} : f \#_{\mu} e, \rho(f) = t'\}$ contains an event minimal in \mathcal{U}
- **Question:** finiteness of $F_{t'}$?

If v is a configuration that enables $f_2 \in F_{\mathbf{t}'}(e)$

- tokens in •t have not moved
- at least one token in •t' has moved

– p.30/33

 \mathcal{N} a safe Petri net with unfolding \mathcal{U} , $\rho: \mathcal{U} \to \mathcal{N}$

- **•** fix e minimal event of \mathcal{U} , labelled by transition t
- assume that $F_{t'}(e) = \{f \in \mathcal{U} : f \#_{\mu} e, \rho(f) = t'\}$ contains an event minimal in \mathcal{U}
- **Question:** finiteness of $F_{t'}$?
 - Draw a finite graph in the submarkings of $M_0 \setminus {}^{\bullet}\mathbf{t}$, $M_0 = \text{initial marking of } \mathcal{N}$
 - $F_{\mathbf{t}'}(e)$ is infinite *if and only if* the graph has a cycle
- Conclusion: under the conjecture, local finiteness is decidable

- 1. Background: unfoldings and representations of space Ω
- 2. Extension of probabilities
- 3. Decomposition of true-concurrent processes
- 4. Distributed product of probabilities
- 5. Markov nets: the Markov property and the Law of large numbers
- 6. Computability of local finiteness
- 7. Conclusion and perspectives

Conclusion

- probabilistic framework for true-concurrency models
 - extension finite Markov chains theory to safe Petri nets
 - construction of a *Markovian* probability, from a *finite* number of *local* parameters
 - concurrency matches a probabilistic independence

Conclusion

Contributions

- Continuous domain of configurations
 - identification of the space Ω as a *projective limit*
 - *locally finite* unfoldings and extension of probabilities
- Occurrence nets
 - decomposition of true-concurrent processes through branching cells (local states)
 - computability
- Probabilistic model
 - construction of the *distributed product*
 - stopping operators and the Strong Markov property
 - part of a *recurrence* theory
 - Law of large numbers

Extensions

Open questions

- above conjecture: topological consequences and decidability of local finiteness
- more about the density coefficients of the LLN: positivity? (potential theory)
- Central Limit Theorem? (Martingales)
- branching cells form a (non prime) event structure?

Extensions

Extensions

- non locally finite nets and products of nets
- Distributed HMM (Hidden Markov Models)? Probabilistic extension of diagnosis algorithms
- Temporisation
 - add *temporisation* after randomization of runs \rightarrow performance evaluation
 - Markov nets as a "uniformisation" of stochastic Petri nets?