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Introduction

Dans cette thése, nous étudions la dynamique du flot géodésique de Teichmdiiller. L’origine
de cette question provient de I’étude d’une classe trés importante de systémes dynamiques :
celle des échanges d’intervalles. Dans des travaux classiques, Masur et Veech en 1982 relient
la dynamique de ces échanges d’intervalles avec celle du flot géodésique de Teichmiiller sur
I’espace des modules des courbes complexes. L’espace des phases de ce flot peut étre vu
comme l’espace des modules des différentielles quadratiques sur une surface. Ces espaces
sont naturellement stratifiés par le type des singularitées des formes et cette stratification
est préservée par 'action de ce flot. Des résultats classiques affirment que ces strates sont
des orbifolds complexes et sont non-vides et non-connexes en “général”.

La motivation du travail développé dans cette thése est donnée par le résultat fon-
damental, démontré indépendamment par Masur et par Veech (1982), qui affirme que le
flot géodésique de Teichmiiller agit de fagon ergodique sur chaque composante connexe de
chaque strate, par rapport & la mesure orbifoldique, qui est de masse finie.

Cette question de classification peut-étre vue comme une question de dynamique ou de

topologie. En accord avec les travaux de Rauzy (1979), ce probléme peut aussi étre abordé
d’un point de vue purement combinatoire & travers les classes de Rauzy.
Kontsevich et Zorich ont décris les composantes connexes d’une partie de ces strates ; les
strates de 'espace des modules des différentielles Abéliennes H,. Nous donnons dans cette
thése la description compléte des composantes connexes des strates de ’espace “complé-
mentaire” Q4. En particulier, nous utilisont alternativement les trois points de vue.

Par ailleurs, la structure spin est un des invariants dont se servent Kontsevich et Zorich
pour classifier les composantes. Ici nous donnons une formule explicite pour le calcul
de cette structure spin (d’une différentielle quadratique dans notre contexte) en terme
uniquement des singularités de la strate. Ceci contredit une conjecture de Kontsevich
Zorich sur la classification des composantes connexes non-hyperelliptiques de Q, par cette
struture spin. En utilisant cette formule, nous donnons une application dans le contexte
des billards dans un polygone rationnel.

Préliminaires

Une différentielle quadratique sur une surface de Riemann S est le carré d’une section
du faisceau des germes de 1—formes holomorphes. Si U est un ouvert de S et z une
coordonnée locale sur U, alors toute 1—forme w € Qg(U) peut s’écrire comme w = f(z)dz
pour f une fonction analytique sur U ; similairement, toute différentielle quadratique peut
s’écrire comme f(z)dz? = f(2)(dz)?. Pour ceux qui ne veulent pas utiliser la structure



de faisceau, ce qui sera le cas ici, nous pouvons voir une différentielle quadratique 1 sur
S comme n’importe quel atlas {(U;, z;)} avec une collection d’expressions f;(z;)dz2, ou le
terme “différentielle” signifie comment les fonctions de transitions f; et f; sont reliées sur

U;N Uj :
de g
fi(z5) d—z7 = 1(2i)

Nous aurons besoin de considérer des différentielles quadratiques méromorphes a poles sim-
ples. Si S est une surface de Riemann et P C S est un ensemble discret, nous considérerons
des différentielles quadratiques, holomorphes sur S\ P, et ayant des poles simples en tout
point de P. Si S est compacte alors P est fini et on peut voir que .fs 1| < oo, car

1
/ F drdy = 21 < 00 ou D est le disque unité |[z| =1
v RES

(ici la métrique [ || < oo est localement définie par |f;(z)|dzdy).

Le quotient de deux différentielles quadratiques est une fonction méromorphe sur S
qui doit avoir autant de zéros et de poles, comptés avec multiplicité. Il s’ensuit que toute
différentielle quadratique non nulle doit avoir le méme nombre de zéros et de poles, qui
doit étre le double du nombre de zéros d’une 1—forme holomorphe. Comme une 1—forme
s’annule exactement 2g — 2 fois sur une surface de genre g, une différentielle quadratique
posséde exactement 4g — 4 zéros et poles, comptés avec multiplicité.

Dans la suite, on utilisera souvent la géométrie de telles différentielles quadratiques.
En particulier la donnée d’une telle différentielle induit un feuilletage particulier sur la
surface : un feuilletage mesuré. Nous pouvons décrire cela de la maniére suivante.

Pour tout point p € S\P tel que 1(p) # 0 i.e. pour tout point régulier de 9, il existe
une coordonnée locale z sur un voisinage Ude p dans lequel 1) = dz?. On peut voir cela
comme suit : soit U une coordonnée locale telle que 1) = f(w)dw? ; quitte a réduire U,
on peut supposer qu’il existe une racine carrée analytique de f(w) dans U (car f(0) # 0).
Maintenant posons

y
1/2
) = [ (Fw) o
Jp
Cette application satisfait clairement aux conditions.

Nous appellerons de telles coordonnées des coordonnées naturelles pour 1. 1l est clair
que ces coordonnées sont uniques (& translation et au signe pres). Ainsi, en dehors des
singularités de 9, S a localement la structure d’une piéce de papier, en fait un papier
linéaire, puisque la direction horizontale ne dépend pas du choix des coordonnées naturelles.
Remarquons qu’il n’y a pas de direction donnée sur les droites horizontales. On peut
facilement voir qu’il est possible d’orienter le feuilletage horizontal si et seulement si la
différentielle quadratique 9 est globalement le carré d’'une 1—forme holomorphe w. Nous
emploierons aussi le terme différentielle abélienne pour désigner w.

Ainsi la surface de Riemann hérite d’une métrique Euclidienne. Le Théoréme de
Gauss—Bonnet affirme que la seule surface compacte Euclidienne orientable est le tore.
Donc il doit y avoir de la courbure concentrée aux singularités de 1, c’est-a-dire aux poles



et aux zéros. Comme ci-dessus, pour une singularité p de 4, il existe une coordonnée locale
z sur un ouvert U de p pour laquelle

P = 2Fdz?

Donc la surface S a localement la structure d’un céne Euclidien au voisinage des singularités
de 9. L’angle du cone est (k+2)m ou k > 0 est le degré du zéro de ¢ (k = —1 si le zéro est
un pdle). Dans un voisinage d’un point singulier, on peut trouver des coordonnées polaires
(r,0) telle que la métrique s’écrive

ds* = dr® + (crdf)?

ou ¢ est un demi-entier (2¢ € N). Nous dirons que la métrique a des singularités de type
conique avec un angle de 27c¢ (ici 2¢ = k +2). La courbure k au point singulier est définie
par la formule

Kk =2m — 27c

X ok ok

Ces surfaces arrivent naturellement dans ’étude des Systémes Dynamiques. Nous don-
nons ici deux exemples fondamentaux.

Pour le premier exemple, notons par P un polygone dans R?. Le flot du billard est donné
par le mouvement d’un point avec les régles usuelles de réflexion de I'optique géométrique
sur le bord 9P de P. L’orbite d'un élément pour ce flot (flot géodésique) est donné par un
point z € P et une direction § € R/27Z sur le fibré unitaire tangent de P. Les orbites de
ce flot ne sont pas continues quand elles rencontrent le bord de P. Nous voulons réfléchir
les trajectoires par rapport aux bords. Si e; est un coté de P et p; : S' — S' représente
la réflexion par rapport au coté e; (partie linéaire seulement) alors nous identifions (p,v)
avec (p, pi(v)) pour chaque p € e;.

Soit T C O(2) le groupe engendré par les parties linéraires des réflexions par rapport
aux cOtés. Nous sommes intéressés seulement par le cas ou I' est fini ; dans ce cas le
polygone est dit rationnel. Une définition équivalente est de demander, lorsque P est
simplement connexe, que tous les angles de P soient des multiples rationnels de w. Le cas
des billards irrationnels est pour le moment presque complétement ouvert. Par exemple,
pour un billard polygonal quelconque (méme dans un triangle), on ne sait toujours pas s'il
existe une trajectoire périodique.

Pour un billard rationnel, il existe une construction classique (voir [MaTa| pour un
“survey” agréable sur les billards rationnels) qui donne lieu & une surface plate S’g de genre
g i.e. une surface de Riemann munie d’une différentielle abélienne. Nous rappellons cette
construction.

Soit P C C et I' comme ci-dessus. Prenons |I'| copies disjointes de P, chacune étant
I'image de P par un élément de I'. Pour chaque copie P, de P et chaque réflexion r € T,
collons chaque coté E. de P, au coté r(E.) de r(F.). Quand le groupe I est fini, le résultat

est une surface de Riemann S
S=||]|np) / ~
vel



ol ~ est la relation d’équivalence décrite ci-dessus. La forme dz sur chaque copie y(P),
v € T, induit une 1—forme holomorphe & sur S. 1l est facile de vérifier que les singularités
de @ sont situées aux sommets des copies de P. Ainsi un billard rationnel définit une
surface plate S avec une différentielle quadratique holomorphe 1/; = @?%. On peut facilement
calculer le genre de la surface en fonction des angles de la table de billard. Ainsi, nous
pouvons donc voir I’ensemble des billards rationnels comme une sous-famille de I’ensemble
des différentielles quadratiques. Bien siir, cette inclusion est stricte.

Une trajectoire dans le billard dans un pentagone qui se développe sur la surface invariante.
Ici on obtient une surface de Veech de genre 2.

Pour le deuxiéme exemple fondamental, considérons un intervalle I sur une surface de
translation S, transverse au feuilletage vertical. Supposons de plus que ce feuilletage soit
minimal. Alors 'application de premier retour de Poincaré T : I — [ est un échange
d’intervalles i.e. une application bijective avec un nombre fini de points de discontinuités,
telle que la dérivée de T est égale & +1 presque partout. De telles applications sont com-
pletement déterminées par le nombre d’intervalles de continuités de T' et par la permutation
qui décrit comment ces intervals sont échangés sur [.

Réciproquement, pour tout échange d’intervalles T', on peut construire une différen-
tielle abélienne w sur une surface S et un intervalle horizontal I sur cette surface S tel
que ’application de premier retour du flot vertical induit par w sur I donne précisément
I’application initiale T'. Remarquons que la minimalité du flot implique ici que la permu-
tation sous-jacente soit irréductible. Nous présentons en Appendice une construction due
a Masur (voir [Mal]) pour obtenir une telle surface a partir d’'un échange d’intervalles.
Il existe aussi une construction classique due a Veech (voir [V1]) connue sous le nom de
“Zippered Rectangles”.

* k%
Nous avons vu que les surfaces avec une structure de droites paralléles et les surfaces

munies d'une différentielle quadratique (avec au plus des poles simples) définissent les
mémes objets. Nous allons donner une description supplémentaire de ces structures via la



théorie des feuilletages mesurés, introduite par Thurston (voir [FaLaPo]| et [Th]|).

Un feuilletage mesuré (F, ) est un feuilletage F avec une mesure de probabilité p
invariante et transverse. C’est a dire une mesure définie sur ’ensemble des arcs transverses
au feuilletage F et qui est invariante. Une telle mesure est dite invariante si pour deux
arcs v et 1, qui sont homotopes avec extrémités fixes dans deux feuilles de F, nous avons

Il est clair qu'une différentielle quadratique induit une paire de feuilletages mesurés
transverses : le feuilletage vertical et le feuilletage horizontal. En fait, nous avons la
réciproque : étant donné deuz feuilletages mesurés transverses, disons F; et Fa, on peut
toujours construire une différentielle quadratique 1) qui les réalise : le feuilletage horizontal
de 1 (respectivement vertical) est F; (respectivement Fj).

Si nous avons seulement un unique feuilletage mesuré, nous devons avoir quelques
propriétés supplémentaires pour 'existence d’une différentielle quadratique qui le réalise
comme feuilletage horizontal. En particulier il existe des contres exemples a l’existence
d’une différentielle quadratique qui réalise un feuilletage mesuré comme feuilletage hori-
zontal (voir [HuMal, voir aussi en Appendice).

Nous avons le critére suivant qui est le “dual” d’un Théoréme de Hubbard et Masur
(voir [HuMa], voir aussi [Cala] et [KoZo|)

Théoréme. Un feuilletage mesuré orientable sur une surface de Riemann est le feuilletage
horizontal d’une différentielle abélienne dans une structure complexe si et seulement si tout
cycle obtenu comme une union de lien de selles et de séparatrices dans la direction positive
n’est pas homologue a zéro.

X %k ok

Notons par (ki,...,ky,) Pordre des singularités de 9. Nous avons vu que ) k; = 49 —4.
Localement, dans un ouvert simplement connexe d’un point non singulier, en prenant la
racine carré , nous pouvons présenter une différentielle quadratique comme le carré d’une
différentielle abélienne. Mais globalement, ce n’est pas le cas en général. C’est précisément
le cas quand le feuilletage horizontal correspondant est orienté. S'’il existe au moins un
zéro de 1 d’ordre impair (ou au moins un pole) alors 9 n’est clairement pas le carré d'une
1—forme holomorphe. Mais si toutes les singularités de v sont de degré pair, il existe
des obstructions (holonomie de la métrique) pour que 1 soit globalement le carré d’une
1-forme.

Notons par HQ, 'espace des modules des paires (53,1,&), ol S; est une surface de
Riemann de genre g et ¢ une différentielle sur S. Nous déclarons que deux différentielles
1 et 9y sur S; et Sy sont équivalentes s’il existe un homéomorphisme f de Sy sur Sy qui
envoie des points singuliers sur les points singuliers avec le méme ordre et qui a la méme
forme que les fonctions de transitions au voisinage des autres points. Remarquons que cela
implique que f est un difféomorphisme sur le complémentaire des singularités de ;.

On peut voir que cela est équivalant a la condition suivante :

[ 1 = 9o
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Dans une formulation analogue, nous demandons qu’il existe un homéomorphisme f de S;
sur Sz, qui est un difféomorphisme dans le complémentaire des singularités et tel que f est
affine dans les cartes canoniques définies par 1 et 9.

L’espace des modules HQ, est naturellement stratifié par le type des singularités des
formes. En utilisant les notations de Veech, nous notons par Q(k1, ..., ky;e) C Qg la strate
des différentielles quadratiques [53,1/1] € Qg avec les singularités du type (ki,...,ky), ou
ki € {-1,0,1,2,...} et ou € = +1 si la différentielle 9 est globalement le carré d'une
différentielle abélienne et € = —1 sinon. Remarquons que € = +1 implique que tous les k;
sont nécessairement pairs.

Nous considérerons aussi l'espace des modules des différentielles abéliennes (ou de
maniére équivalente, I'’espace des modules des différentielles quadratﬁues qui sont le carré
de différentielles abéliennes). Nous notons ces espaces par Hg, et si k est un vecteur dans
N" avec Y k; = 2g — 2, nous notons par H(ki,...,k,) la strate correspondante. 11 y a un
isomorphisme naturel de la strate H(kq,...,k,) dans la strate Q(2kq,...,2k,;+1). Ceci
motive la convention suivante :

Convention.

e Nous notons par Q, I'espace des modules des paires (53,1/1), ol Sg est une surface
de Riemann de genre g et i une différentielle quadratique qui n’est pas globalement
le carré d’une 1—forme holomorphe.

e En accord avec les notations ci-dessus, nous posons :
Q(kl, ey k‘n) = Q(kl, ey k‘n; *1)
pour dénoter les strates de I’espace modulaire Q.

Dans toute cette thése, nous considérerons uniquement les différentielles quadratiques
qui ne sont pas globalement le carré d’une 1—forme holomorphe ; sauf mention explicite
du contraire.

Pour g fixé, 'union des ces strates est I’espace modulaire tout entier HQ, = ), UH,
au dessus de 'espace de Teichmiiller 7.

C’est une partie classique de la théorie de Teichmiiller que 'espace de Teichmiiller 7,
est une variété complexe et que HQ, s’identifie naturellement au fibré cotangent de 'espace
modulaire My = 7,/Mod(g), ot Mod(g) désigne le groupe modulaire en genre g.

Les strates ne sont pas fermées en général dans I'espace Q,UMH, (seule la strate minimale
Q(4g — 4) T'est). Ceci parce que 'on peut obtenir une suite de surfaces dans une strate
qui dégéneérent en une surface pincée (on peut contracter plusieurs zéros ou “liens de selles”
ensembles).

On peut obtenir une exhaustion de compacts dans chaque strate en considérant les
surfaces qui ont des longueurs de géodésiques bornées inférieurement :

QD(e) = {[S, 7], longueur de chaque feuille fermée sur S > ¢}

Il est bien connu que les strates ont une structure d’orbifold modelées par le premier
groupe de cohomologie. Nous décrirons cette structure plus tard en détail. Comme le
groupe modulaire Mod(g) n’agit pas librement, ces strates n’ont évidemment pas une
structure lisse. Masur et Veech ont calculé précisémment la dimension de telles strates :
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Théoréme (H. Masur; W. Veech).
Chaque strate H(ky,...,ky) est une orbifold complexe de dimension

dimcH (k1,..., k) =29g+n—1
Chagque strate Q(kq,...,ky) est une orbifold complexe de dimension

dimcQ(k1, ..., ky) =29+n—2

Une remarque trés importante qui joue un role crucial dans cette théorie est que le
groupe SL(2,R) agit sur ces espaces Qg et H, par transformation linéaire dans les coor-
données canoniques, en préservant chaque strate. Si un point [S, 1] est présenté par un atlas
de coordonnées canoniques {(U;, z)}, et A € SL(2,R) est une matrice, alors {(U;, Az;)}
définie une nouvelle famille de coordonnées canoniques pour la différentielle quadratique
(S, A1)). Nous déclarons que :

Nous requérons que A envoie les singularités de ¢ aux singularités de At en préservant
I’ordre.

On considére en particulier les trois sous-groupes (& un parameétre) de SL(2,R) qui ont
un intérét spécial

_ el/? 0 _ cosf  sinf b 1 s
9t = 0 e /2 0T\ —sinf cos® )T\ 0 1

en référence respectivement au flot géodésique, circulaire et horocyclique.

Le flot géodésique g; sur une différentielle quadratique (S, ) a pour effet d’étirer le long
des trajectoires horizontales de ¢ par un facteur e’ et de contracter le long des trajectoires
verticales par e’.

Le flot circulaire 7y sur une différentielle quadratique (S,) a pour effet de changer la
direction canonique définie par i par un facteur d’angle 6. Remarquons que ce flot laisse
la métrique invariante.

Il est clair que la définition implique que cette action préserve chaque strate. Par
ailleurs, il est possible de définir une mesure pg qui est SL(2, R)-invariante et absolument
continue par rapport & la structure obifoldique définie sur chaque strate.

Un résultat classique, obtenu indépendamment par Masur et par Veech, affirme que
ce flot agit ergodiquement sur chaque composante connexe de chaque strate (voir [Mal]

et [V1]) :

Théoréme (Masur; Veech). [1982/

Le volume d’une strate normalisée (surfaces plates d’aire 1) est finie par rapport a la
mesure .

Le flot géodésique de Teichmiiller g, agit ergodiquement sur chaque composante connexe
de chaque strate par rapport a la mesure pyg.

Motivés par ce résultat, nous sommes intéressés par la classification de ’ensemble des
composantes connexes des strates, c’est-a-dire I’ensemble des composantes ergodiques du
flot géodésique. Il est bien connu que ces strates sont non vides, excepté 4 cas exceptionnels
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en petit genre (voir [MaSm|), et non connexes en général. Néamoins, Veech a montré qu’il
n’y a qu'un nombre fini de composantes connexes pour chaque strate. FEn particulier,
en utilisant la théorie des Zippered Rectangles (voir [V1]), Veech montre que ’ensemble
des composantes connexes des strates des différentielles abéliennes est en bijection avec
I’ensemble des classes de Rauzy étendues. Avec cette description, Veech prouve que la
strate H(4) posséde 2 composantes connexes et P. Arnoux prouve que la strate 7(6)
posséde trois composantes connexes.

Cette classification est trés importante dans I’étude de certaines classes de Systémes
Dynamiques. L’étude de ce flot géodésique a beaucoup d’applications. FEn genre 1,
I'espace de Teichmiiller 7, munit de sa métrique de Teichmiiller, est isométrique au demi
plan supérieur H? munit de sa métrique hyperbolique standard. L’étude de I'action de
gt sur Hgy—1 coincide avec l'étude standard du flot géodésique sur la surface modulaire

PSL(2,7)\H2.

/W

\

\

PSL(2, Z)\HE ~ My

N
N
AN

Ainsi, dans le cas particulier du genre 1, le Théoréme de Masur et de Veech peut étre
reformulé comme le résultat classique, attribué a Hedlund (1935), qui affirme que le flot
géodésique agit de maniére ergodique sur la surface modulaire par rapport & la mesure
de Liouville. En particulier, cette théorie bien connue est reliée a la théorie classique des
fractions continues.

En genre plus grand, le flot géodésique est relié aux applications linéaires par morceaux :
les échanges d’intervalles, et & I'induction de Rauzy. Pour une liste (incompléte) d’auteurs
qui ont étudié cela, nous référons & Arnoux, Keane, Rauzy, Veech, Zorich...

Dans les papiers |EsMal, |[EsMaZo|, A. Eskin, H. Masur et A. Zorich décrivent les
propriétés asymptotiques sur les surfaces plates génériques dans une composante connexe
donnée d’une strate de I’espace des modules des différentielles abéliennes. 1ls comptent les
géodésiques fermeées de longueurs bornées. A. Eskin and A. Okounkov (voir [EsOk]|) ont
calculé le volume (par rapport a ug) de toutes ces strates (normalisées).

Dans ce contexte, un travail est en cours : Eskin et Okounkov (voir [EsOk2|) utilisent
nos résultats pour obtenir des résultats similaires dans le cadre des différentielles quadra-
tiques.

Enfin, en accord avec la correspondance entre I’ensemble des composantes connexes et
des classes de Rauzy étendues, cette classification donne une description compléte pour
I’ensemble des classes de Rauzy étendues. Ces classes ont été calculées en petit genre par
A. Zorich (voir [Zol]| et [Zo2]).
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Résultats connus

Kontsevich et Zorich (voir [KoZo|) ont obtenu une classification compléte des composantes
connexes pour toutes les strates des différentielles abéliennes. En particulier, ils ont montré
qu’il y a au plus trois composantes connexes et que cette borne supérieure est atteinte pour
la strate minimale H(2g — 2) et pour la strate H(2k, 2k). Ils utilisent deux invariants pour
obtenir une telle classification : I'invariant d’hyperellipticité et I'invariant de structure spin.
La structure spin est I'invariant qui permet de classifier toutes les composantes connexes
non hyperelliptiques de toutes les strates (voir plus tard pour les définitions). Ici nous
présentons les deux résultats principaux pour cette classification :

Théoréme (Kontsevich, Zorich). Toutes les composantes connexes d’une strate des
différentielles abéliennes sur une courbe de genre g > 4 sont décrites par la liste suivante :

La strate H(2g — 2) a trois composantes connexes : une hyperelliptique, H"P(2g — 2),
et deus autres composantes : HE"(2g — 2) et H%(2g — 2) correspondant auz structures
spin paire et impaire.

La strate H(21,21), pour | > 2, a trois composantes connexes : une hyperelliptique,
HMWP(21,21), et deuz autres composantes : HEe™(21,21) et HO(21,21).

Toutes les autres strates de la forme H(2ly,...,2l,), ot tout l; > 1, ont deur com-
posantes connexes : HE" (21, ..., 20,) et HOW(21y,...,2l,), correspondant aux structures
spin paire et impaire.

La strate H(20 — 1,21 —1), 1 > 2, a deuz composantes connezes une des deux, H"P (2] —
1,21 — 1), est hyperelliptique, U'autre H""WP(21 — 1,21 — 1) pas.

Toutes les autres strates des différentielles abéliennes sur une courbe de genre g > 4
sont non vides et connexes.

Il faut aussi considérer la liste des composantes connexes dans les cas de petits genres
1< g <3,ouilyades composantes qui manquent en comparaison au cas général.

Théoréme (Kontsevich, Zorich). L’unique strate en genre 1, H(0) est connexe.

L’espace des modules des différentielles abéliennes sur une courbe de genre g = 2 con-
tient deuz strates : H(1,1) et H(2). Chacune d’entre elles est conneze et coincide avec sa
composante connexe hyperelliptique.

Chaque strate H(2,2), H(4) de Uespace des modules des différentielles abéliennes sur
une courbe de genre 3 a deux composantes connexes : une hyperelliptique, et 'autre possé-
dant la structure spin impaire.

Les autres strates en genre 3 sont connezes.

Plan de la thése

Dans cette thése, nous donnons la description compléte des composantes connexes de toutes
les strates de l'espace des modules Q, des différentielles quadratiques. En particulier nous
montrons qu'il y a au plus 2 composantes connexes et que ce nombre est atteint pour
les strates hyperelliptiques et pour quelques strates exceptionnelles. Les constructions des
composantes connexes hyperelliptiques et le fait que cela produit des familles de strates
non connexes donne lieu a un article (voir [Lal] et I’Appendice).

En outre, nous montrons que pour l'espace des modules des différentielles quadratiques
(qui ne sont pas globalement le carré d'une 1—forme holomorphe), la structure spin est
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constante sur chaque strate. De plus, nous donnons une formule explicite pour déterminer
la parité de cette structure spin, connaissant le type des singularités (ki,...,k,) de la
strate. Ceci contredit une conjecture de Kontsevich Zorich qui affirme que la structure
spin distingue les composantes non hyperelliptiques d’une strate Q(kq, ..., k). Cela donne
lieu & un article (voir [La2| et I’Appendice).

Tout au long de cette thése, nous notons par (S,) une surface de demie translation
avec une holonomie non triviale dans une strate Q(k1,...,ky,) en genre g a n singularités.
Nous supposons que l'aire de la surface S, par rapport a la métrique plate définie par 9, est
finie. De maniére équivalente, la forme 1) a au plus des poéles simples, c’est a dire k; > —1
pour tout 7. Nous ne considérons pas les points marqués, donc k; # 0. La classification
dans le cas particulier oit k; = 0 pour certains i coincide avec notre classification. Le
Théoreme de Gauss—Bonnet implique :

n

D k=494

=1
Dans le Chapitre 6 de cette thése, nous prouvons le résultat de classification suivant :

Théoréme Principal 1. Fizons le genre g > 5. Considérons les familles de strates
suivantes :

Fo={ Q4(g—k)—6: 4k +2) | 0<k<g-2}
Fz={ QM4(g—k)—6;2k+1; 2k+1) . 0<k<g-1}
Fr={ Q(2(g—k)—3; 2(9g—k)—3; 2k+1;2k+1) | —-1<k<g-—2}

dans l’espace des modules des différentielles quadratiques Q4. Alors nous avons :

o Toutes les strates listées dans la famille ci-dessus ont exactement 2 composantes
connexes ; une hyperelliptiqgue — [’autre non.

e Toutes les autres strates de l’espace modulaire Qg sont connezes.

En petit genre, il y a quelques exceptions pour la classification : il y a quelques com-
posantes qui manquent par rapport au cas général. Il y a aussi quelques composantes
additionnelles exceptionnelles. Tout d’abord, certaines strates peuvent étre vides :

Théoréme (Masur et Smillie). Considérons un vecteur (ki,...,kn) tel que tous les
k; € NU{—1}. Supposons que > ki = 0mod4 et > k; > —4. Alors la strate correspondante
Q(k1, ..., kn) est non-vide, excepté dans les 4 cas particuliers suivants :

Q(0), 9(1,—1) (en genre g =1) et Q(4), 9(1,3) (en genre g = 2)

Le Théoréme suivant donne la classification des composantes connexes pour les strates
de I'espace des modules en genre g =0,....4 :



15

Théoréme Principal 2. Fizons le genre 0 < g < 4. Alors :

e FEn genre 0 et 1 toutes les strates de Qg sont connexes.

e Fn genre 2 toutes les strates sont connexes exceptées les deux strates
Q(—1,-1,6) et Q(—1,-1,3,3)

pour lesquelles nous avons exactement 2 composantes connexes ; une hyperelliptique
Uautre non.

e Fn genre 3, les strates qui contiennent une composante hyperelliptique ont exactement
2 composantes connexes ; une hyperelliptique autre non.

1l existe 3 strates particuliéres
Q(ilvg) Q(71a376) Q(7173a373)

qui ont 2 composantes connezes ; une adjacente a la strate minimale Q(8) lautre
nomn.

Toutes les autres strates en genre 3 sont connezes.

e Fn genre 4, les strates qui contiennent une composante hyperelliptique ont exactement
2 composantes connezxes ; une hyperelliptigue — [’autre non.

La strate minimale Q(12) posséde exactement 2 composantes connezes.

Toutes les autres strates en genre 4 sont connezes.

Stratégie de la preuve

La preuve de ces résultats utilise une combinaison d’idées venant de la dynamique, de
la géométrie algébrique et de la combinatoire des classes de Rauzy et des permutations
généralisées. Nous décomposons la démonstration générale en trois étapes comme suit.

Tout d’abord, il y a trois séries & un parameétre de strates correspondantes aux courbes
complexes hyperelliptiques. Ces strates sont non-connexes : elles possédent une com-
posante connexe hyperelliptique et une composante connexe non-hyperelliptique.

Ensuite nous montrons la dichotomie suivante : excepté trois cas particulier en genre 3,
toute composante connexe est soit hyperelliptique soit attachée a la strate minimale ; c’est
a dire la strate Q(4g —4). Afin de prouver ceci, nous montrons que toutes composante non-
hyperelliptique, excepté 3 cas particuliers en genre 3, posséde une surface avec un lien de
selle de multiplicité 1 que I'on peut “écraser”. Ainsi toute composante non-hyperelliptique
est adjacente & une strate de dimension plus petite, et donc par récurrence & la strate
minimale. Cette preuve est basée sur la combinatoire et la dynamique des feuilletages
mesurés.

La derniére étape est consacrée a la strate minimale. Nous montrons qu’elle est connexe
pour le genre g > 5 et, en utilisant un résutat de Kontsevich Zorich sur la connexité
locale, que toute strate attachée a cette strate minimale 1’est aussi. Nous procédons par
récurrence sur le genre des surfaces. On montre directement que la strate Q(16) en genre
5 est connexe, et de maniére récursive pour g > 5, que la strate minimale de genre g est
connexe en utilisant 'argument de chirurgie “bubbling a handle”.
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Plan de la preuve

Les Chapitres 1 et 2 sont principalement consacrés a 1’étude et a la géométrie des dif-
férentielles quadratiques : nous donnons le background nécessaire en terme de feuilletages
mesurés induits par une différentielle quadratique. Les surfaces sont considérées comme
des surfaces Euclidiennes avec des singularités coniques ou comme des sufaces munie d’une
paire de feuilletages mesurés transverses. Dans ce langage, nous avons la notion de feuilles.

Nous appelons une séparatrice (separatriz) une feuille qui contient un point singulier.
Un lien de selle (saddle connection) est une séparatrice compacte homéomorphe a un
segment : un lien de selle entre deux selles différentes.

Une boucle de séparatrice (separatriz loop) est une séparatrice compacte homéomorphe a
un cercle : un lien de selle qui part d’une selle et revient a la méme selle.

Dans la derniére section du Chapitre 1, nous obtenons une construction (basée sur
une construction de Hubbard et Masur (voir [HuMa|) et sur une idée de Kontsevich) qui
produit un invariant topologique : les composantes connexes hyperelliptiques.

Le nombre maximal de composantes connexes des strates est 2. Ce nombre est atteint
pour les familles de strates pour lesquelles nous possédons un invariant : une composante
peut étre hyperelliptique ou non. Ce nombre est aussi atteint pour quelques strates excep-
tionnelles en genre 3 et 4. En utilisant ces invariants et des propriétées géométriques des
feuilletages mesurés, nous montrons que les strates listées dans le Théoréme 1 ont au moins
deux composantes connexes. Ceci donne lieu & un article (voir [Lal|). Nous distinguons les
composantes exceptionnelles plus tard en utilisant des propriétées combinatoires, a savoir
les classes de Rauzy. Pour notre programme de classification, nous montrons dans la suite
que toutes les autres strates sont connexes et que les strates ci-dessus ont au plus deux
composantes connexes.

Dans le Chapitre 1 nous donnons deux constructions “classiques” de surfaces de demie
translation. La premiére (“breaking up a singularity”) donne une méthode de construction
de différentielles quadratiques avec beaucoup de singularités en “éclatant” un zéro de la
différentielle initiale. La seconde (“bubbling a handle”) nous permet de construire une
différentielle quadratique en genre g + 1 en partant d’une différentielle quadratique sur
une surface de genre g. Nous terminons ce Chapitre en introduisant une construction
de revétement double ramifié. Cette construction nous permet d’obtenir les composantes
connexes hyperelliptiques.

Dans le second Chapitre, nous présentons tous les outils que nous allons utiliser dans
la preuve. En particulier, nous prouvons un résultat de densité (dans toute strate) de
I’ensemble de différentielles de type Jenkins—Strebel a un cylindre. De plus, nous pro-
posons un moyen de coder ces formes en utilisant la notion de “permutations généralisées”.
Le codage de telles formes n’est pas unique mais une permutation détermine uniquement
le type des singularités et aussi le type topologique de la strate sous-jacente. En partic-
ulier, on montre plusieurs résultats en utilisant les propriétés de ces objets combinatoires.
En ce sens, les “permutations généralisées” sont 'outil principal pour notre programme de
classification. Dans le Chapitre 3, en utilisant cette notion de permutations, nous donnons
des représentants explicites pour chaque composante connexe.
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Dans le Chapitre 4, nous présentons le premier résultat principale pour la preuve
de la classification. Nous y étudions 1’adjacence des strates. Nous montrons que toute
composante connexe non-hyperelliptique d’une strate posséde une surface plate qui peut
se dégénérée en contractant un lien de selle pour donner une surface de Riemann non-
singuliére dans une strate de dimension plus petite. En ce sens, on obtient une description
précise de 'adjacence des strates. En utilisant cette description, nous concluons que toute
composante connexe d’'une strate en genre g > 5 est soit hyperelliptique, soit adjacente a
la strate minimale Q(4g — 4).

Dans la derniére section du Chapitre 4, nous donnons quelques résultats sur la connexité
locale des strates au voisinage de la strate minimale. Nous en déduisons que pour une strate
fixée, le nombre de composantes connexes non-hyperelliptiques est borné par le nombre de
composante connexe de la strate minimale correspondante. Ceci nous donne une borne
supérieure sur le nombre de composantes connexes : il y a au plus #my(Q(4g — 4)) + 1
composantes connexes dans chaque strate.

Le Chapitre 5 est consacré a I’étude de la strate minimale Q(4¢ — 4). Nous y montrons
qu’elle est connexe & partir du genre g > 5. Nous procédons par induction sur le genre g
des surfaces. L’étape d’induction est la chirurgie “bubbling a handle” décrite au Chapitre 1.
Nous montrons que I'on peut toujours trouver, dans chaque composante connexe de Q(4g—
4), une surface de demie-translation qui est obtenue par la chirurgie “bubbling a handle”
sur une surface de la strate Q(4(g — 1) — 4) en genre g — 1. En d’autres termes, nous
pouvons “oublier” une anse pour abaisser le genre des surfaces. La preuve est basée sur la
combinatoire des permutations généralisées.

Dans le Chapitre 6 nous montrons les deux principaux résultats de cette thése ; c’est-
a-dire les Théoréme 1 et Théoréme 2. Nous montrons que toute composante connexe qui
n’est ni hyperelliptique, ni un des 3 cas particuliers donnés dans le Chapitre 3, est adjacente
a la strate minimale Q(4g — 4). Ceci nous donne une borne supérieure sur le nombre de
composantes connexes non-hyperelliptique: il y a au plus #mo(Q(4g — 4)) composantes
non-hyperelliptiques. Le Théoréme 1 est alors une conséquence directe du résultat du
Chapitre 5 (connexité de la strate minimale en genre plus grand que 5) et de la description
des composantes connexes hyperelliptiques (voir |Lal|). La suite de la preuve en petit
genre est complétement similaire : nous distinguons plusieurs cas suivant le nombre et la
parité des singularités de la strate.

Structure spin

En Appendice, nous donnons la définition de la structure spin sur une courbe complexe.
Dans l'espace des modules des différentielles abéliennes, la struture spin est 'invariant
basique qui permet de classifier les composantes connexes non-hyperelliptiques.

En utilisant le point de vue géométrique de cette struture spin, nous montrons le
Théoréme 3 qui contredit une conjecture de Kontsevich—Zorich qui affirme que la structure
spin distingue les composantes connexes hyperelliptiques des strates de I’espace des modules
Q4. En outre, nous donnons une formule explicite pour calculer la parité de cette structure
spin, connaissant seulement le type des singularités de la forme. Nous montrons les deux
Théorémes suivants correspondants aux résultats énoncés (voir aussi [La2]) :



18

Théoréme Principal 3. La parité de la structure spin d’une différentielle quadratique 1,

qui n’est pas le carré d’une 1—forme holomorphe, est indépendante du choiz de 1 dans une
strate Q(k1,...,k;) donnée.

Utilsant la construction explicite du revétement des orientations, nous claculons ex-
plicitement la parité de cette structure spin en terme uniquement du type des singularités
des formes :

Théoréme Principal 4. Soit ¢ une différentielle quadratique méromorphe sur une surface
de Riemann S avec le type de singularités Q(ki,... k). Soit nyq1 le nombre de zéros de
Y de degré k; = 1 mod4, et soit n_q1 le nombre de zéros de ¢ de degré k; = 3 mod4. En
outre, nous supposons que tous les degrés des zéros restants satisfont k., = 0 mod4. Awvec
ces conditions, la struture spin de & sur S le revétement double associé, a un sens. Alors
la parité de la structure spin déterminée par ¢ est donné par :

m41 —n1]

D) = [ 1 ] mod 2

ot les crochets dénotent la partie entiére.

En utilisant cette formule, nous donnons une application dans le contexte des billards
rationnels.
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Chapter 1

Surgeries and branched coverings

In this Chapter, we describe some “classical” constructions of half translation surfaces
(see also [EsMaZo|, [MaZo| and [KoZo|). We also use an analogous construction of the
“orientating” double ramified covering associated to a quadratic differential (see [HuMa|).
Constructions are geometric and use only the point of view of measured foliations on S. In
the last section of this Chapter, we give a construction of a double ramified covering and
deduce an invariant to distinguish the connected components: hyperellipticity.

1.1 Breaking up a singularity

In this section, we want to “break up a singularity” of order k; into two singularities of
orders | and r with » +1 = k;. According to the parity of I and r, the surgery that we
propose is local or global.

1.1.1 Local construction
Breaking up a singularity into two singularities

In this section, we consider the two cases where [ and r are even or &y is odd. The surgery
we will describe is local (see Figure 1.1). We have

Lemma 1. Consider a surface in Q(ki,...,ky). Choose l,r € {—1,1,2,3.4,...}, as
follows

o ifky is odd, | +r =ky; and l,7 any.
o if ki is even, l +1r = ky; and [, r even.

For any 1o € Q(k1, ko, ..., kn) and for any sufficiently small € > 0 (depending on 1) it is
possible to construct a deformation 1 € Q(l,r, ko, ..., kn) of 1o such that the corresponding
flat metric would have a horizontal saddle connection of length € joining the singularities
Py and Py of orders | and r.

The deformation can be chosen to be local: the flat metric does not change outside of a
small neighborhood of the zero of multiplicity k.

Proof of Lemma 1. See references in Annexes (see also [Lal]). O
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Breaking up a singularity into three singularities

Next, we will see that for breaking up an even zero into two odd zeroes, the construction
is global. Nevertheless we can extend the last construction to obtain another local one: we
“break up a zero” into three zeroes (see Figure 1.2)

Lemma 2. Consider a surface in Q(ky,...,k,). Choose l,r,s € {-1,1,2,3,4,...} with
l+r+4+s==Fk andl,r s any. For any g € Q(k1, ks, ..., k) and for any sufficiently small
e > 0 (depending on 1)) it is possible to construct a deformation 9 € Q(l,r, s, ko, ... ky)
of Py such that the corresponding flat metric would have two horizontal saddle connection
of length ¢ joining the singularities Py, Po and Py, Py of orders l,r,s correspondingly.

The deformation can be chosen to be local: the flat metric does not change outside of a
small neighborhood of the zero of multiplicity k.

Proof of Lemma 2. See references in Annexes (see also [Lall). O

Figure 1.1: Breaking up a zero of order 4 into two zeros of orders 2. Note that the surgery
is local: we do not change the flat metric outside of the neighborhood of the zero.

Figure 1.2: Breaking up a zero of order 3 into three zeros of orders 1. Note that the surgery
is local: we do not change the flat metric outside of the neighborhood of the zero.
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1.1.2 Global construction

In this section, we consider “breaking up a singularity” in two cases where [ and r are odd
(then k; is even).

The surgery is global. We use section 1.2.3 to obtain a flat surface S’ with an additional
handle. We required that the angle between the two new sectors is ny =142 (ng = r + 2
if we consider the complementary angle). Now let us “erase” this handle to obtain a flat
surface, also denoted by S’, with a boundary component. The boundary of the new surface
S’ is exactly union of two separatrix loops 7y, and 79 of length €. We cut this surface along
the point P; to obtain a flat surface with a boundary homeomorphic to a circle. Then
we identify the two geodesics segments ; by an isometry. We obtain a compact Riemann
surface, also denoted by S’. We can explicitly describe this surgery in terms of the flat
metric so S’ is also a flat surface. The types of singularities of S and S’ coincide except
that instead of P; we obtain two singularities @)1 and Q9. Conical angle around these
points are m1 and ny. So the resulting flat surface satisfy the desired conditions: two “new”
zeroes of order I = ny — 2 and r = ny — 2. Note that we have

ki=mn1+ny—4=(n—2)+(na—2)=1+r

1.2 Bubbling a handle

Let S be a half translation surface with non-trivial holonomy. Let P; € S be a point of
multiplicity k7 with respect to the flat metric (k1 = 0 if Py is a regular point, ky = —1 if
Py is a pole and ky > 0 if P; is a zero). We want to construct a half translation surface
S’ in genus g + 1 starting with S in genus g. We first give a construction in a special case
and then we describe this surgery in full generality.

1.2.1 A particular construction
Construction

Let # € S' denote a direction on S. In this direction, we choose a separatrix v which
contains the point P;. Let () € v be a point at distance at most € from P; with € < gg.
Here we suppose that [S, 9] € QD(gg) (see Introduction for definition of these sets). So
there are no singular points in the geodesic segment |Py; Q)[. Then we cut the flat surface
S along this segment [Py; Q]. The resulting surface, denoted by S’; is a flat surface with a
boundary component. By construction, the boundary is homeomorphic to a circle S: the
union of two saddle connections between the two singularities P; and @ on S’. We identify
these two points. The quotient surface, still denoted by S’, is also a half translation surface
with a boundary component homeomorphic to a bouquet of two circles: «; and ~y. The
lengths of each of these two separatrix loops is €. Then we consider a straight metric
cylinder C of perimeter . We glue the top boundary component of this cylinder to y; and
the bottom component to 7s. The resulting surface is a non-singular closed flat surface.
We obtain on S’ a measured foliation F'. By construction, holonomy of the two foliations
F of S in the direction # and F’ on S’ coincide; that is F is oriented if and only if F' also.
Moreover, the surface S’ possesses the same type of singularities as S for all singular points
different from P; = ). In this particular point the conical angle in terms of the flat metric
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is (k1 + 2 + 4)7 so the corresponding differential 1’ has a zero of order k; + 4. With our
notation in terms of strata, if [S, 9] € Q(k1, ko, ..., k) then [S", 9] € Q(k1+4, ko, ..., kp).

Parameter space

We can calculate the parameters for the above surgery; that is the parameters space. The
parameters responsible for the cylinder are the height h and the twist ¢. The parameters
responsible for the direction and the cutting on S are 6 and the length € of the geodesic
segment [P;, @]. In other words, we have

({0 €S'y x{0<e<eg}) x ({0<h<h}x{peS'}) =D* xD?

We would like to extend this construction which will give us an additional discrete param-
eter: the angle between the two “new” sectors. In the previous construction, angle between
the two separatrix loops y; and vy are 27 (or (k1 + 2)7 if we consider the complementary
angle).

Let m1 and no satisfy ny + n9 = k1 + 4. In section 1.2.2 and 1.2.3 we are going to
construct a flat surface S’ with a simple cylinder by “bubbling” a handle such that the
angle of this handle is ny7 (or nom if we consider the complementary angle) in the flat
metric.

F

1

Figure 1.3: Here the construction of “bubbling a handle” at a zero of order 8. The angle
between the two new sectors is ni7m with ny = 2.

1.2.2 Local construction

In this section, we consider “bubbling a handle” in two cases where ni, ny are even or ky
is odd. In these two cases, it is easy to generalize the previous construction. We can break
the zero of order k; into two zeroes of orders ny — 2 and ny — 2 (see previous section 1.1.1).
We can do it by a local construction: the flat metric does not change outside of a small
neighborhood of the zero of multiplicity k; (see Lemma 1). Then we cut the resulting
surface along the saddle connection between these two zeroes. We identify the zeroes to
obtain a flat surface S’ with a boundary component which is exactly the union of two
separatrix loops of angle ny. Note that the surgery is local.
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1.2.3 Global construction

In this section, we consider “bubbling a handle” in the case where the angles between the
two new sectors are nm and nom with ny and ny odd.

In this case, the construction is global. We refer to [MaZo| for details of this construc-
tion.

Remark 1. The two above surgeries are related. In the local construction, we can think
of the parameters space as one punctured complex disc times a discrete parameter for
the surgery “breaking up a singularity”. For the surgery “bubbling a handle”, there is an
additional parameter: a punctured complex disc for the additional metric cylinder.

Remark 2. Using these surgeries, we obtain the following fact: there are some compo-
nents of the stratum Q(ki,ko,ks,...,k,) which are “accessible” by a surgery “breaking
up a singularities” on a surface inside the stratum Q(ki + ko, k3,...,k,). For the case
“bubbling a handle”, we have an analogous fact: there are some components of the stra-
tum Q(k1,..., ki +4,...,k,) which are “accessible” by a surgery “bubbling a handle” on a
surface inside the stratum Q(kq,..., ki, ..., kp).

In Chapter 4 and Chapter 3, we classify all components in all strata which contain a
half-translation surface constructs by one of these two surgeries. This classification allows
us to describe in details the adjacency of the strata.

1.3 Branched coverings

The main result of this section is the construction of four one-parameters family of strata
which are not connected. This invariant which is used is the notion of hyperelliptic con-
nected component. First we describe a classical construction of the “orientating double
covering” (see [HuMa|). Then we construct the hyperelliptic components and prove the
announced statement. We refer to [Lal] for details and proofs.

1.3.1 Orientating double covering

Proposition. Let Sg be a Riemann surface and let 1 be a quadratic differential on it.
Then there exists a canonical (ramified) double covering m : 5'; — S; such that ¢ =
@2, where & is an Abelian differential on S’g
Moreover, the images P € Sg of ramification points of the covering m are exactly the

singularities of odd degrees of 1. The covering m : Sg — Sg is the minimal (ramified) cov-

ering such that the quadratic differential 71 becomes the square of an Abelian differential
on S2.
g

Note that the surface S is connected if and only if ¢ is not the global square of an
Abelian differential.

Proof of the Proposition. Consider an atlas (U, z;); on 5'3 = Sg\{singularities of 9} where
we punctured all zeros and poles of 1. We assume that all the charts U; are connected
and simply-connected. The quadratic differential 1) can be represented in this atlas by a
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collection of holomorphic functions f;(z;), where z; € U;, satisfying the relations:

(127 2
fi (zi(25)) - <d_z]) = fi(z;) on U;NU;

Since we have punctured all singularities of 9 any function f;(z;) is nonzero at U;. Consider
two copies Uii of every chart U;: one copy for every of two branches qli(z7) of g*(z) :=

fi(z) (of course, the assignment of “4” or “—" is not canonical). Now for every ¢ identify
the part of UZ.Jr corresponding to U; NU; with the part of one of U7i corresponding to U; NU;
in such way that on the overlap the branches would match

dz;
67 (5() - - = 9 () on U U}
=]

Apply the analogous identification to every U; . We get a Riemann surface with punc-
tures provided with a holomorphic 1-form @ on it, where @ is presented by the collection
of holomorphic functions gii in the local charts. It is an easy exercise to check that filling
the punctures we get a closed Riemann surface S’g, and that @ extends to an Abelian

differential on it. We get a canonical (possibly ramified) double covering = : S’g — S; such
that 7*¢ = @2,

By construction the only points of the base Sg where the covering might be ramified
are the singularities of 4. In a small neighborhood of zero of even degree 2k of 1 we can
chose coordinates in which 1 is presented as z%¥(dz)?. In this chart we get two distinct
branches +2¥dz of the square root. Thus the zeros of even degrees of ¢ and the marked
points are the regular points of the covering . However, it easy to see that the covering
7 has a ramification point over any zero of odd degree and over any simple pole of ¢. [

1.3.2 Orientating double covering and homological group

Let [S,¢] € O(ki,...,kn) be a point. Consider the orientating (or canonical) double
covering T : S — S described in the above construction such that the pull-back T = @2
becomes the global square of an Abelian differential @ on S. Let 7 be the natural involution
of S interchanging the points in the fibers of w. Let Py,..., P, € § be the true zeros of @.
Since by construction 7*@w = —w, the set {]51, . ,]5,«} is sent to itself by the involution 7.
Consider the induced involution

™ HY(S,{P,,...,P.};C) = H'(S.{P\,...,P,};C)

of the relative cohomology group. The vector space Hl(g, {15] e PT}; C) splits into direct
sum

H](‘gv{pla"'apr};(c) =VieV,

of invariant and anti-invariant subspaces of the involution 7*. We have already seen that
[(:)] eV .

In Chapter 2, we will use these groups to describe locally the structure of the strata.
In particular, a small neighborhood of [@] in the anti-invariant subspace V_; gives local
coordinates charts of a regular point [S, 9] (not a fixed point for a elliptic element of the
modular group I'y) inside the stratum Q(kq,. .., ky).
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1.3.3 Construction

Here we present a construction of a natural mapping of the strata induced by a ramified
covering of the fixed combinatorial type.

Let Sg be a Riemann surface and let 1y be a quadratic differential on it which is not a
square of an Abelian differential. Let (ki,...,ky,) be its singularity pattern. We do not
exclude the case when some of k; are equal to zero: by convention this means that we have
some marked points.

Let 7 : g_g — Sg be a (ramified) covering such that the image of any ramification
point of 7 is a marked point, or a zero, or a pole of the quadratic differential 1y. Fix the
combinatorial type of the covering 7: the degree of the covering, the number of critical
fibers and the ramification index of the points in every critical fiber. Consider the induced
quadratic differential 7y on g_g; let (k1,...,kmn) be its singularity pattern.

Deforming slightly the initial point [Mg, o] € Q(ki,...,ky,) we can consider a ramified
covering over the deformed Riemann surface of the same combinatorial type as the covering
m. This new covering would have exactly the same relation between the position and types
of the ramification points and the degrees and position of singularities of the deformed
quadratic differential. This means that the induced quadratic differential 7*v would have
the same singularity pattern (ki,...,km) as 7. Thus we get a local mapping

Oky, ... kn) = Qlky,... km)
[S2,4] = (2, m*4p)

Note that in general the corresponding global mapping is multi-valued. See |Lal| for details
and proofs for this construction.
Using this construction, we prove

Proposition 1. The mapping

Q(kla"'akn)_)Q(lz‘lla"'akm) (11)

1s locally an embedding.

Note that the image of above mapping belongs to the set of quadratic differential which
is not the global square of an Abelian differential.

Proof of the Proposition 1. We use the cohomological coordinates (see section 2.1.2)~ in the
neighborhood of [S,9] € Q(k1,...,kyn) and in the neighborhood of its image [S,%] €

Q(k1, ..., km), where p = 7*1). These coordinates linearize the mapping, and the proof
becomes an exercise in algebraic topology. See the Annexes for details of the proof (see
also [Lall). O

1.3.4 Hyperelliptic connected components

In [Lal], we classify all combinatorial types of strata such that the dimension of the two
orbifolds Q(k1,...,k,) and Q(k1, ..., k) in the above Proposition coincide. For the strata
Q(l::l, e l}m) we get exactly the list Fy L F3 U Fy given by Main Theorem 1.

Moreover, the genus of surfaces in the corresponding strata Q(ki,...,k,) is always
zero. Next, we present an explicitly construction of the list F4. We will use the following
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Proposition 2 (Kontsevich). Any stratum Q(kq, ..., kn) with Y ki = —4 is connected.

Proof of the Proposition. Since there is only one complex structure on CP' we can work
in the standard atlas on CP! = CU (C* U co). In this atlas, we can easily find quadratic
differentials f(z)(dz)? with any prescribed singularities at any prescribed points (with

the evident condition on the zeros, Y k; = —4) just by choosing an appropriate rational
function f(z). The space of configurations of points on a sphere is connected; this implies
the statement of the Proposition. ]

Here, we present an explicitly construction of the list F4. Let us consider the following
example. Let us apply Construction 1.3.3 in the following particular case. Consider a
meromorphic quadratic differential 9 on CP' having the singularity pattern (2(9g — k) —
3,2k +1,-129%2) where k > —1, g > 1 and g — k > 2. Consider a ramified double
covering m over CP! having ramification points over 2g + 2 poles of 4, and no other
ramification points. We obtain a hyperelliptic Riemann surface M of genus g with a
quadratic differential 7*4 on it. Obviously, the induced quadratic differential 7*1) has the
singularity pattern (2(g — k) —3,2(g — k) — 3,2k + 1,2k 4+ 1). Thus we get a local mapping

Q@2(g — k) —3,2k+1,-1%72) 5 Q(2(g — k) — 3,2(9g — k) — 3,2k + 1,2k + 1),

where £ > —1,9 > 1 and g — k > 2. Using formula on the dimension of the strata (see
Introduction) we get

dime Q(2(g — k) — 3,2k +1,-1%9%2) =2.04 (29 +4) =2 =29+ 2
dimc Q(2(g — k) — 3,2(g — k) — 3,2k + 1,2k + 1) =29+ 4 -2 =2g + 2

The dimensions of the strata coincide. Above Proposition imply that the mapping is non-
degenerate. Since the stratum Q(2(g — k) — 3,2k + 1, —129%2) is connected, as any other
stratum on CP' by Proposition 2 the image of the mapping in the stratum Q(2(g — k) —
3,2(g — k) — 3,2k + 1,2k + 1) is also connected.

We obtain an open set on the stratum Q(2(g — k) —3,2(9 — k) — 3,2k + 1,2k +1) which
is invariant by the SL(2,R)—action. By ergodicity of the geodesic flow the image of the

mapping

Q(2(g — k) — 3,2k +1,—1%972) — Q(2(g — k) — 3,2(g — k) — 3,2k + 1,2k + 1)
gives us a full measure set in the corresponding connected component of the stratum
Q(2(g — k) —3,2(9g — k) — 3,2k + 1,2k + 1).

Thus we obtain a whole connected component of these stratum. We call it the hyperelliptic
connected component and denote it by

OMP(2(g — k) — 3,2(g — k) — 3,2k + 1,2k + 1).

Note that the singularities data of this stratum belongs to the list Fy.
Similarly to the previous case we can easily check coincidence of the dimensions of the
strata
Q(2(g — k) — 3,2k, 1271 — Q(2(g — k) — 3,2(g — k) — 3,4k + 2),
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with K >0,g>1and g —k > 1 and
Q(2g — 2k — 4,2k, —1%) — Q(4(g — k) — 6,4k +2)

with K >0,9g>2and g — k > 2.
The images of these mappings give us connected components in the strata

0(2(g — k) — 3,2(g — k) — 3,4k +2).

and

Q(4(g — k) — 6,4k +2).

Definition 1. The connected components constructed above are called the hyperelliptic
components and denoted by:

1. Q(2(g — k) — 3,2k + 1, —129%2) — QMP(2(g — k) — 3,2(g — k) — 3,2k + 1,2k + 1),
where k > —1, g > 1, g—k > 2. The corresponding double covering has ramification
points over 2¢g + 2 poles of meromorphic quadratic differential on CP*.

2. Q(2(g — k) — 3,2k, —1%29+1) — QMP(2(g — k) — 3,2(g — k) — 3,4k + 2),
where k > 0, g > 1 and g—k > 1. The corresponding double covering has ramification
points over 2g + 1 poles and over the zero of degree 2k of meromorphic quadratic
differential on CP'.

3. Q(2g — 2k — 4,2k, —1%9) — QhvP(4(g — k) — 6,4k + 2),
where k > 0, g > 2 and g—k > 2. The corresponding double covering has ramification
points over all singularities of the quadratic differential on CP!.

In Main Theorem 1, we have denoted above families of strata by Fo LI F3 LI Fy.
The Theorem below proves that there are no other connected components which can
be obtained using a similar construction.

Theorem 1. Let Q(ky,. .., ky,) be a stratum in the moduli space of meromorphic quadratic
differentials and let w: S — S be a covering of finite degree d > 1. Consider the mapping

Q(kla"'akn) - Q(,;“laakm)

induced by the covering m (see Construction 1.3.3). Suppose that the image stratum is not
a stratum of squares of Abelian differentials, and suppose that the mapping is neither of
one of the three types corresponding to hyperelliptic components. Then

dime Q(ky, ..., ky) < dime Q(ky, ..., km)
Proof. See |Lal]. O
Remark 3. Hyperelliptic connected components of the type Fy was first discovered by

M. Kontsevich.

In [Lal], we proved that all of those strata (which contain an hyperelliptic component)
are not connected in genera higher than 3. We show, using the geometry of measured
foliation that it necessarily exists a non-hyperelliptic component. Namely, we have the
following
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Corollary 1. Let us fix g > 3. Let us consider the following families of strata

Fo={ Q(4(g — k) — 6 ; 4k + 2) 0<k<g-2}
Fs={ QMUg—k)—6;2k+1; 2k+1) | 0<k<g-1}
Fr={ Q((2(g —k)—3; (qfk)73;2k+1;2k+1) ~1<k<g—2}

Then all strata listed in the above families are not connected: there is one hyperelliptic

connected component and at least one non-hyperelliptic connected component.

In the next of this thesis, we are going to prove that, in genera higher that 5, any
connected component is either hyperelliptic or attached to the minimal stratum. This will

prove Main Theorem 1.



Chapter 2

Tools

In this Chapter, we remind key results on the moduli space and on the geometry of half
translation surfaces. We propose a way to encode particular flat surfaces: the Jenkins
Strebel forms with one cylinder. We refer to [DoHu|, [HuMa| and |KoZo].

2.1 Jenkins—Strebel surfaces

An important class of quadratic differentials is given by Jenkins—Strebel differentials. In
this section, we explain these particulars forms and we present some results about the
density in the moduli space. In addition, we propose a natural way to encode such forms.
2.1.1 Completely periodic foliations

Let T be the critical graph of (S, ) for the horizontal foliation, that is the union of all
separatrices in the horizontal direction. We want to study a particular class of flat surfaces:
the one where I' is compact.

Proposition 3. ' is compact if and only if the horizontal measured foliation of ¢ is
completely periodic; that is in the horizontal direction, any leaf is compact.

Proof of the Proposition. If I' is compact, one can defined an é—neighborhood of I':
I(e)={P€S; d(PT)<¢e}

for all € > 0 (d is defined by the flat metric). Now let us consider P € S\I'. We choose ¢
small enough such that P ¢ I'(¢). Let us consider the (horizontal) leaf 7 through P. The
distance of P from I'(g) is positive thus

d(Q,T'(e)) >0 for all points Qe

If the leaf -y is non compact then it is dense in a minimal component and so d(vy,T'(¢)) =
0 which leads to a contradiction.
Thus any regular leaf is compact and so the foliation is completely periodic.

In this case, we say that the form ) is of type Jenkins Strebel.

33
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Example 1. A very large class of these forms is given by Veech surfaces in a periodic
direction, and, in particular, by arithmetics surfaces.

Recall that an arithmetic translation surface (endow with an Abelian differential) is a
ramified covering over the two torus with only one critical value. In an equivalent way,
the group generated by absolutes and relatives periods is a lattice in C. A Theorem of
Gutkin and Judge (see [GuJu|) asserts that this condition is also equivalent to the fact that
the Veech group is commensurable to PSL(2,7Z) (and so as consequence it is a lattice).

An arithmetic translation surface (endowed with a quadratic differential) is a surface
such that the orientating double covering is an arithmetic surface.

2.1.2 Cohomological coordinates

It is a well-known part of the Teichmiiller theory that 7, is a complex manifold and HQ,
is the cotangent bundle over the modular space My = T,/Mod(g). Here we describe this
structure in the case of the principal stratum: the stratum Q(1,...,1) = Q(1%9%). We
recall that the dimension of this stratum is

dimeQ(1,...,1) =2 dimcT, = 6g — 6 (2.1)

We refer to [DoHu| for details. For a Riemann surface S endowed with a quadratic dif-
ferential 1 which is not the global square of an Abelian differential, recall that we note
by Sd) the connected Riemann surface which is the double cover of S and 7 : § — §
the projection. Let @ = y/7*1 be one of the two square roots (see section 1.3.1 for the
notations).

Let [S,1] € Q4 be a point in the total space with only simple zeroes. The Riemann
surface S has a natural involution and so the various homology and cohomology spaces
attached to it. The vector space HY(S;Q%?) can be identified with H°(S;Q)~ with the

identification
u— U= vVr*u

This allows us to define the following map

by HY(S;0%?) - Hom(H,(S) ;R)

u = dy(u)(y) = Re/ﬁ,
g

This map ¢y, is an R—isomorphism. Now we want to parametrized locally the principal
stratum. Let [So, 0] € Q(1,...,1) be a quadratic differential with only simples zeroes and
let U be a simply-connected open neighborhood of vy inside the principal stratum. With
these considerations, we can identify

Hy(Sy)” and Hi(Sy,)” forall¢p € U (2.2)

We define the map x : U — HOH}(H1(S’¢,O)*;]R) by x(¢) = ¢y(4), thus x()(v) =
Re fw wy,, where vy, is the cycle on Sy, corresponding to v with equation (2.2).

Proposition (Douady, Hubbard). The map x is R—analytic and its derivative at 1

1
18 Ecﬁwo .
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Proof of the Proposition. To compute the value of the derivative on u € Ty, = HO(S; Q%)
evaluated at 4 € HI(S'%)’, one must find the derivative at 0 of the function

t— Re / Wiy +tu (2.3)
JA(t)

where 4(t) is the cycle in H1(5’1/,0+m) corresponding to 4 (see equation (2.2)). One may

suppose that 4 is a loop on Sy, which is the double cover of a saddle connection v on S
between the two zeroes Py and P, (see [La2|). The function (2.3) can be rewritten

P> (f)
t — 2Re Vo + tu
P (f)

where Pj(t) and P,(t) are the zeroes of 19 + tu near P; and Py. The derivative of this
integral gives the result.
|

Using the implicit function Theorem we have the following

Corollary. The map x is open in a neighborhood of ¥g. In addition, the moduli space
Q(1,...,1) inherit of the structure of a complex orbifold of dimension 6g — 6.

O
Using the cohomology group with relative periods, we have the following classical result

Theorem (H. Masur; W. Veech).
Any stratum H(ki, ..., kyn) is a complex orbifold of dimension

dimcH (k1,...,ky) =29g+n—1
Any stratum Q(k1,...,ky) is a complex orbifold of dimension
dimcQ(ky, ..., kn) =29+ n — 2

In the case of the principal stratum, above formula corresponds to the formula (2.1)
with n = 49 — 4. The general formula is obtained by subtracting a dimension any time a
zero is collapsed to higher order.

2.1.3 Density results

Jenkins—Strebel forms

Locals coordinates, which were introduced independently by Masur and by Veech, show
that arithmetics surfaces play the role of rational points inside the moduli space. More
precisely, a stratum is locally modeled by the cohomology group HI(S;singularities;C).
Taking points given by

H'(S;singularities; Q @ iQ),

we obtain immediately the following

Lemma 3. Jenkins Strebel differentials are dense in each stratum of the moduli space.
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Proof. Obviously, a form whose absolutes and relatives periods are rational is a Jenkins
Strebel form. O

Douady and Hubbard proved something stronger: the Jenkins—Strebel differentials
are dense on each Riemann surface (see [DoHu|) not just in a stratum.

The complement of I'(7) in S is a disjoint union of mazimal periodic components for the
horizontal foliation. These components are isometric to vertical metric straight cylinders,
foliated by regular horizontal leaves. A simple computation on the Euler characteristic,
using these cylinders, shows that the maximal numbers of such cylinders is 3g — 3, and
it is obtain only by quadratic differentials having simple zeroes. By considering a thiner
triangulation we obtain

Proposition 4. Let S be a half translation surface and i the associated quadratic differ-
ential (here we do not suppose that the holonomy is non-trivial). We denote by E, the
number of zeroes of 1 of even multiplicity and by 204 the number of zeroes (or poles) of
¥ of odd multiplicity. Let g be the genus of the surface. Let us assume that the horizontal
foliation 1s completely periodic. Then the mazimal number of cylinders is

g—14+FE,+ 04
and this upper bound is sharp.

Lemma 3 gives us a density result for the Jenkins Strebel differential in each stratum.
We can also ask if the set of Jenkins Strebel differentials with ezactly r cylinders is dense
in the moduli spaces (where 7 is any integer in {1,...,9g—1+ E, +O4}). H. Masur proved
a result of this type for the principal stratum (see [Ma3|)

Theorem 2 (Masur). Let r be an integer with 1 < r < 3g — 3. The set of Jenkins—
Strebel differential with exactly v cylinders is dense inside the principal stratum Q(1,...,1)

of genus g.

Jenkins Strebel forms with one cylinder

We would like to extend this result (in the case of r = 1) for all strata. The proof is
geometric and use an idea of M. Kontsevich and A. Zorich in the particular case where the
form 1) is the global square of an Abelian differential w on S.

Theorem 3. Let Q(ki,...,ky) be a stratum. Then the set of quadratic differentials such
that the horizontal foliation is completely periodic, and decompose the surface into a unique
stratght metric cylinder, is dense in each connected component of this stratum.

We stress that we formulate this statement for each connected component. There is
now such additional difficulty since for the principal stratum it is obviously connected.

Proof of Theorem 3. We follow the main idea given by the proof of the equivalent result
in the case of Abelian differentials. First of all, let us prove that there exists an half
translation surface, in each connected component, such that the horizontal foliation is
completely periodic and decomposes the surface into a unique cylinder.
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Let [S,4] be a point in a given connected component. Without loss of generality, we
may suppose that the surface (S, @) over (S, ) is an arithmetic surface; that is a ramified
covering over the standard torus. The vertical foliation on S is completely periodic and
decompose the surface into many (horizontal) cylinders C;. Let us consider 7 a closed
regular curve, transversal to this foliation, of the following type. The surface S is a ramified
covering 7 : S — T?. Obviously, the measured foliation in a given direction # on S is given
by the lift under the map m of the standard linear foliation on the two-torus T? in the

1
direction §. We consider a foliation on T? in the direction § = — with ¢ arbitrary large.

The lift of this foliation allows us to obtain a closed regular geodesic v on S, transversal to
the vertical foliation of 1, such that 7 does not contains any singularity of 4. In addition,
we can choose y such that it length is arbitrary large with respect to the flat metric defined
by .

The closed loop v cuts vertical sides of cylinders C; (that is the set of vertical saddle
connections and separatrix loops) many times. By construction, dC;\y is a disjoint union
of vertical intervals. We can always choose v long enough to obtain there is at most one
singularity of 1 in each vertical interval. Now we want to modify slightly the transverse
structure to obtain a periodic horizontal foliation with only one cylinder. We do this as
follow.

We cut the surface along the vertical critical graph I'(¢)) of 1 and also along . We
obtain a finite union of parallelogram R;. The set of horizontal sides is a part of v and
the set of vertical sides is a part of the set of separatrix loops and saddle connections (for
the vertical foliation induced by ). By construction, in each vertical side of R;, there is
at most one singularity of .

Let us construct a new foliation as follow. We conserve all horizontal parameters and
we change vertical parameters in the following way: we declare that the length of any
vertical side of R; is 1 for all 7. In addition, if there is a singularity located on a vertical
side, we declare that it is located on the middle of this side. With our above consideration,
there is no contradiction. Finally we obtain a new set of parallelogram R} endowed with
the natural metric dz?.

Let (S',4") be the flat surface construct from the new rectangles R; with the corre-
sponding identifications of vertical and horizontal sides given by gluing described above.
We obtain a flat surface with the same singularities data of .

The surface S and S’ are topologically the same. One can see that by construction the
vertical critical graph T'(¢)) and T'(¢') on S coincide. We just have change absolute and
relative periods of the form 1. The subvariety of quadratic differentials sharing the same
vertical foliation is connected and depends continuously on the suitable of deformations
of the vertical foliation (see |[HuMa| and [V1]). Thus it implies the two points [S, 1] and
[S’, '] belongs to the same connected component. One can see that, by construction, the
horizontal foliation on S’ induced by 9’ is completely periodic and decomposes the surface
into one cylinder, which prove the first assertion.

Now let us prove the second assertion: the set of such forms is dense in each connected
component. We denote by 7 : § — S the orientating double covering and w? = 7*4.
By direct corollary of the main result of Veech and Masur (see [Mal] and [V1]), without
loss of generality, we may assume that the vertical foliation of w on S is periodic and
the horizontal foliation of w is uniquely ergodic. By construction the corresponding loop
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4 on S is transverse to the vertical foliation. Always by construction, the corresponding
form w' = 7*1)’ is obtained as the corresponding element of ¥ € Hy(S,R) by the Poincaré
duality. Thus:
/?Re(w) = i#(pﬁf?) s i/é}?e(w')
p 1] 71/,

for any path p transverse to the vertical foliation induced by w’. According to the coho-
mological coordinates, choosing -y sufficiently long, we can make ¢'/|y| arbitrary close to
the initial form 1.

This achieves the proof of the Theorem. O

Remarks on the directional flow

There are several results concerning dynamics of €4 with fixed 9 and variable § € S'. In
particular we have the following well-known result, which should be attributed to Katok
and Keane

Proposition. Let i be a quadratic differential on S. Then we have
1 ({0 € S'| such that Fy is minimal }) = 1
where p denotes the normalized Lebesque measure on the circle.

Proof of the Proposition. The set of direction such that there exists a compact separatrix
is countable. See Masur Tabachnikov [MaTa]. O

Proposition above shows that completely periodic directions are “rare”. Moreover, for
a generic translation surface there is no 6 such that the directional flow Fy is periodic
(see [Ma2]).

Surfaces having completely periodic direction producing a single cylinder are even more
rare (for the measure). Say, an arithmetic surface which has many completely periodic
directions may have no one-cylinder decompositions. We present an example in the Ap-
pendix of an arithmetic surface for which any periodic decomposition produces at least
two cylinders.

2.2 Generalized permutations

In the previous section, we have shown that the set of Jenkins Strebel differentials with
one cylinder is dense in each connected component. We want now to study the geometry of
such surfaces. In all of this section, let (S, ) denote a flat surface such that the horizontal
foliation is periodic and decompose the surface into only one cylinder.

We cut S along the critical graph T'(¢)) of ¢ (note that this graph is compact so it
makes sense). We obtain a vertical straight metric cylinder Cyl(S), such that the boundary
components are represented by a union of saddle connections; by construction each saddle
connection is presented twice on the boundary of Cyl(S). To reconstruct our surface
S, we identify these pairs of intervals in the following way: let !, 72 denote intervals
corresponding to the saddle connection «. If intervals y', % are present in the same
side of Cyl(S), we identify them by a central symmetry, otherwise we identify them by a
translation. The quotient surface Cyl(S)/~ is a half translation surface, affinely equivalent
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to S. The form 1 is the image of the form dz? on Cyl(S) which is compatible with the
equivalence relation (note that in the case of Abelian differential, identifications are only
translations so, the form dz is compatible with the equivalence relation and we obtain a
global 1—form on Cyl(S)/~). Endpoints of intervals produce singular points on S for .
The action of the horocyclic flow

1 ¢
ht—<01>, teR

on S preserves the cylinder and twists the boundary. Action of PSL(2, R) is continuous on
the strata, so we can assume that in each connected component there exists a surface as
above with a vertical saddle connection v. Now we cut S along I' and 7 to obtain a metric
rectangle Rec(S) = [0;1] x [0; h]; where [ is the length of a horizontal regular leaf and h
is the length of the vertical saddle connection y with respect to the transverse measure.
Recall that the two horizontal sides of this rectangle, that is [0;1] x 0 and [0;] x h, are a
disjoint union of intervals. We can encode identifications of gluing of theses intervals by a
“permutation” as follows: we attribute to each interval a number between 1 to r with the
property that we put the same number on two intervals if and only if they are equivalent
by ~. We obtain a (generalized) permutation 7. We will give a formal definition later.
Note that, as above, if ¢y = w? for w a global 1—form on S then 7 is a “true” permutation
from the group S, and the coding of intervals is given by the first return map of the vertical
flow on a regular horizontal leaf.

Thus to each connected component, we can associated a “generalized” permutation. Of
course, this construction is not canonical and we obtain a family of permutations, depend-
ing the choice of surface, direction and twist. Conversely, given a permutation 7, we can
suspend a continuous family of flat surfaces over 7 as follows.

Let 7 be an arbitrary (generalized) permutation. Let Rec = [0;] x [0; 1] be a Euclidian
rectangle endowed with the form dz?. Choose a partition of the top and of the bottom
boundary of R into a finite number of intervals (given by the number of elements of 7). Let
A; denote the length of these intervals. We suppose that the vector A is admissible for 7
(see below for a formal definition). We construct the surface S := S(w, A) by the same way
as above: we identify horizontal intervals between them with respect to the combinatorics
of m (see Fig 2.1). Parameters of this construction are the length of the intervals. Using
this remark, we can prove the following

Lemma 4. The family of surfaces S(mw, A) belongs to the same connected component for
all admissible vectors X.

Proof of the Lemma. Note that the length \; of the intervals correspond to the absolute
and to the relative periods of the corresponding form v on S. Thus the Lemma is a direct
consequence of the local description using the cohomological coordinates. O

This construction implies a simple fact: we can encode the set of connected component
by using generalized permutations. In particular, such permutation determines completely
the type of singularities and so a stratum. In addition, above Lemma proves that it also
determines the connected component of the stratum. The set of generalized permutations,
for a fix stratum is obviously finite. This gives an independent proof of the following

Theorem (Veech). The set of connected components of a stratum Q(kq,...,k,) in the
moduli space Qg of meromorphic quadratic differentials is finite.
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In the next, we will use this remark to show the connectedness for some strata in low
genera; surfaces where the combinatorics is very simple. More precisely, we prove that the
strata Q(—1,5), Q(2,2) and Q(8) are connected (see section 3.1.2).

Now we give the formal definition of a generalized permutation. In section 2.2.5 we
describe a correspondence between dynamical properties of the vertical foliation on the
surface S(m, lambda) and combinatorics properties of the permutation 7, namely the notion
of irreducibility.

2.2.1 A definition

We first give a practical definition and then we give a formal definition which is obviously
equivalent.

Consider the multi-set X = {1,1,2,2,... k,k} where each element 1,2,... k, k is
taken with a multiplicity two. A generalized permutation is an ordered partition of X into
two ordered multi-sets, X = Y; UY5. In the present thesis we shall always consider only
those generalized permutations, for which each of Y7, Y, contains at least one entry of
multiplicity two. Y7 and Y5 are not necessarily of the same cardinality. Usually we present
a generalized permutation by a tabular:

(1 2 3 4 3 5 4
" 6615 2
This tabular represents a permutation of type r = 7 and [ = 5 where r = card(Y})
[ =card(Yy) and k = (r +1)/2.

One can check that suspension over this generalized permutation gives surfaces in the
stratum Q(—1,9) (see Figure 2.1).

Example 2.

Y

Now, let us give a formal definition equivalent to the above definition.

Let r,[ be non negative integers. A generalized permutation w is an involution without
fix points of the set {1,....r,r +1,...,r+1}.

This notion is justified by the fact that a “true” permutation 7; of the group S, is a
generalized permutation with » =1 and

w(i) =r+m (i), i<r
(i) =m@—r), i>r

In the present thesis, we required the following technical condition which is the dual of
the condition in the first given definition

there exists ¢ < r and j > r 4+ 1 such that n(i) <r and n(j) >r+1
This condition comes from the geometry of the surface: there is at least two pairs of interval

on each horizontal side of the cylinder which are identify by a central symmetry. Note that
this correspond to measured foliations which are non-orientable.
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2.2.2 Admissible vectors

Let 7 denote a generalized permutation of type (r,1). We say that A € ]R:H is an admissible
vector (for m) if

>‘7:)‘7r(z) forallz'zl,...,r—l—l

S A= A
Some times, we normalize the last expression to 1. Geometrically Y7 ; A; is the perimeter
of the cylinder, so when the height of the cylinder is chosen to be 1, the area of the flat
surface S(m, A) in terms of the metric defined by 4 is 1.
Note that for the “true” permutations 7 of the group S,, the vector

(>\17"'a>‘7”a>‘7r(1)a"'a>‘7r(r))

is admissible for any A; > 0. Thus the set of admissible vectors in this case is the simplex
A of R, .

In the general case, the set of admissible vectors is a simplicial cone of dimension
(r +1)/2 — 1: we have an additional equation given by the length of intervals which are
presented twice on the same boundary

o= Y (2.4)

i<r jzr+l

r@<r  a()>rl

There is no cancellations of terms in the last equation.

2.2.3 Suspension over a generalized permutation

Let m be a generalized permutation and A an admissible vector for m. We denote by p
(perimeter) the quantity

r l
b= ZAz = ZArJrj
i=1 j=1

Let Rec = [0;p] x [0;1] be a Euclidian rectangle endowed with the form dz2. Consider
the partition of the two horizontal sides of Rec in intervals of length A;. Now identify
these horizontal intervals with respect the combinatorics of 7 in the following way. If two
intervals are presented twice on a side, we identify them by a centrally symmetry and else
we identify them by a translation. Identify also the two vertical sides between them by a
translation.

The resulting space is a Riemann surface, denoted by S := S(m,A) endowed with a
natural quadratic differential 1) = dz2. We call the flat surface S := S(m, \) the suspension
over the element (m, A).

Notation. The surface S = S(m, \) decomposes into a single cylinder in the horizontal
direction. By construction we always have, in the vertical direction, a separatrix on this
surface. We denote it by y(7) C S.

In our main program of classification, we want to show that in each connected com-
ponent, one can find a saddle connection which we can collapse it to a point. In the
next sections, we will give sufficient conditions for the vertical saddle connection ~y(r) is
“contractible”, namely the notion of irreducibility.
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.\

7r—<;;2) S(m, A) 772/
'\/’

Figure 2.1: A suspension over a permutation 7 with an appropriate admissible vector A.
The resulting point [S(m, \), dz?] belongs in the stratum Q(—1,—1,2). The white bullets
correspond to the poles and the black bullets to the unique zero of the differential.

2.2.4 Irreducibility

We want to have a notion of irreducibility analogous to that for “true” permutations. Here
we first give the notion of weak reducibility and then the definition of the irreducibility for

a generalized permutation.
These notions are related to the dynamics of the vertical foliation of the corresponding

quadratic differential obtained by suspension.

The weak irreducibility

We say that 7 is weakly reducible if there exists 1 < iy < rand r +1 < jg < r + [ such
that we have one of the three following decomposition cases

o w({l,...;i0})={r+1,...,50}
o 1({ip+1,....,r+1}) ={jo+1,....,7+1}

e For all i <ig, if w(i) > r+1 then (i) < jo else w(i) > iy.
For all r +1 < j < jo, if 7(j) < r then w(j) < ig else 7w(j) > jo.

We say that m is weakly irreducible if there does not exist such ig < 7, jo < r + 1. We
can check that this condition is equivalent to the classical condition of irreducibility for
“true” permutations in the group S,: 7{l,..., k} #{1,...,k} forall 1 <k <r.

For instance, the permutation in Example 2 is weakly irreducible.

The above permutation
1 2 314 3 5
6 1 2(6 5 4

is weakly reducible with corresponding 79 = 3 and j5 = 9. We note by a vertical line the
corresponding “invariant” multi-set.

Remark 4. Let us consider the surface S(m, A). We normalize the length of the separatrix
~v(m) to 1. Obviously, the condition of weak irreducibility of 7 is equivalent to the following
fact: there exists a full Lesbesgue measure set of admissible vectors A such that all vertical
separatrices n (different from (7)) on the flat surface S(w, A), if any, verifies

In| > 2
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In other words, if 7 is weakly reducible then for all A, there exist a vertical separatrix 7,
different from (), of length 1.

Proof of Remark 4. It is obvious. O

Our main goal is to obtain a combinatorial condition which implies a stronger statement
of above Remark 4. We want to obtain

in| > 3 for any vertical separatrix 7

This leads to the discussion of the condition Irreds and the notion of irreducibility.

The condition Irredsy

This notion is a little bit technical to present. We give in the next section a geometric
interpretation. It is related to the length of the vertical separatrices.

We say that m does not satisfy the condition Irreds if there exist a decomposition of 7
into the following way (up to a permutation of lines of 7):

We can decompose the ordered multi-set Y7 (respectively Y3) into three ordered multi-
sets

Y{, Y{', Y/"( respectively Yy, Yy, Y5")

such that the permutation is as follow (in terms of tabular)
YI YII YIII
= GE LR

Y] 1|V
( . .
Vie vy (i) € Yo = 7(i) € Yy
") e vy = w(i) € V)"

with

Vi ey (i) €Yo = (i) € Yy
" r() e vy = w(i) e VY

g ey {T0) €V =l e ¥
2\ 7(j) € Yo = =(j) € V"
n(j) €Y1 = n(j) € Y/

VieY)
! Q{Mﬂenﬁwmew’

\

Example 3. The following permutation does not satisfy the condition Irreds

122 3 31
0 0

We have a decomposition as above given by Y{ = {1}, Y = {2,2,3,3}, Y{" = {1} and
Yy = {0}, ¥5' =0, v3" = {0}
The permutation in Example 2 satisfy the condition Irreds.
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Using this notion, we have a statement analogous to Remark 4 on the length of the
vertical separatrices:

Proposition 5. Let us consider the surface S(m,\). We normalize the length of the sepa-
ratriz y(m) to 1. Then the following conditions are equivalents:

o 7 satisfy the condition Irreds.

e there exists a full Lesbesque measure set of admissible vectors A such that all vertical
separatrices n (different from ~y(m)) on the flat surface S(m, ), if any, verifies

| # 2

Proof of Proposition 5. Obviously, if 7 does not satisfy the condition Irreds then for all
A, there exists a vertical separatrix of length 2. Now let us prove that this condition is
sufficient.

Let m be a generalized permutation. We are going to prove that for an admissible

A.
vector A, if )\—7 ¢ Q, for any 7 # j and if there exists a vertical separatrix of length 2, then

the permutat'iyon will not satisfy the condition Irreds.

So let us assume that there exists a closed vertical separatrix n of length 2. We obtain
(up to a permutation of sides of the cylinder) one of the following two cases Figure 2.2 and
Figure 2.3.

€ J

Figure 2.2: A separatrix of length 2 (here the canonical separatrix «y(m) has length 1). The
two corresponding intervals of length )\']-0 and )\;, numbered by jy and 4; are glued by a
translation.

10 i

00O o—0O
L S(m, A) I I y(m)
O—C
15} 15}
Jo J1

Figure 2.3: A separatrix of length 2 (here the canonical separatrix () has length 1). The
two corresponding intervals of length )\;-0 and )\;1 numbered by jo and j; are glued by a
centrally symmetry.

To fix the notations, we denote by A; the length of the intervals on the upper horizontal
part of the cylinder and by )\Ij the length of the intervals on the lower horizontal part of
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the cylinder. In addition, we have a linear relation on the \; and )\; given by the perimeter
of the cylinder (see Equation 2.4). With these notations, we have for the first case:

and for the second case

Now, for each case, we get two equations given by the fact that there exists a vertical
separatrix of length 2 (see Figures 2.2 and 2.3 for details). For the first case, we get:

i Jj i J
Zoxl:zoxj—e and Z1>\i—€:z])\;
i=1 =1 i=1 =1

which gives by adding these two formulas

ZZA + Z Ai fzzx + Z X; (2.5)

i=ig+1 7=jo0+1

And for the second case, we get:

io—1 Jo—1
IIED IR ST
i=1 j=1 j=1
which gives by adding these two formulas
ig—1 Jo—1 J1—1
22)\—1—2)\*22)\4— DN 42N, (2.6)
i=ig J=jo+1

In order to prove the Proposition, recall that the A; and )\; are independents over Q.
First we remark that Equation (2.5) is not satisfy: the coefficient of \;, and )\;-0 is different.

Secondly, Equation (2.6) must be trivial (that is we must obtain 0 = 0). Comparing
the coefficients on the length of the intervals and using relation (2.4) we get that 7 does
not satisfy the condition Irreds.

Proposition 5 is proved. U

Irreducibility

Definition 2. We say that 7 is irreducible if m is weakly irreducible and satisfies the
condition Irreds.

There is obviously many generalized permutations which are weakly irreducible but
does not satisfy the condition Irreds; for instance the permutation of Example 3.

In Chapter 3 we consider a particular class of generalized permutations for which the
condition Irreds is a consequence of the weak irreducibility.
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2.2.5 A geometric property

We want to use the notion of irreducibility of a generalized permutation m to obtain some
properties on the vertical foliation on the surface S(m, A) for specific A. By construction,
we always have a vertical separatrix y(n) on the surface S. We normalize its length to 1.
The next Proposition is obviously the consequence of Remark 4 and Proposition 5.

Proposition 6. Let © be an irreducible permutation. Let us normalize the length of the
canonical vertical separatriz v(m) to 1 on the corresponding surface S = S(m,\) obtained
by suspension over w. Then there exists a full Lesbesque measure set of admissible vectors
A such that all vertical separatrices n, different from v(n), on the flat surface S(mw,\), if
any, verifies

Inl >3

Proof of Proposition 6. The proof is obvious using Remark 4 and Proposition 5: the length
of any separatrix is an integer different from 1 and 2 for a full Lesbesgue measure set. [

This condition is related to the notion of multiplicity of a separatrix (see section 2.3.3
below). We will prove that, under this condition, the vertical saddle connection ~y(7) can
be collapsed to a point.

For “true” permutations, irreducibility coincides with the classical definition. Moreover
the Keane condition implies the i.d.o.c. property for the corresponding interval exchange
map as soon as all \; are independents over QQ (see |Ke|). Thus for “true” permutations,
we obtain that vertical critical leaves satisfy |n| = oo, except for the canonical vertical
separatrix y(m).

2.2.6 Irreducibility and weakly irreducibility

Here we present a class of permutations for which the irreducibility is a consequence of the
weakly irreducibility.

Condition (). Let m be a generalized permutation. We suppose that there exist only one
index iy < n (respectively jo > n + 1) such that 7(ig) < n (respectively w(jo) > n + 1).

We can translate this combinatorics condition in terms of flat surfaces. Let S denote
the flat surface obtained by suspension over m with an arbitrary admissible vector. Then
one can see that the above condition is equivalent to the following one:

there exists ezactly two separatrix loops 71 and ~ys such that for all other separatrix loop
n, the two corresponding intervals n' and 7? are not in the same horizontal side of the
straight cylinder S\I'(¢).

Obviously, if = satisfy the condition (*) then the weak irreducibility imply the irre-
ducibility.

2.2.7 Cyeclic order

We always assume that the elements of the submultisets Y7 and Y5 of a generalized per-
mutation (for the first Definition) are organized in the natural cyclic order. Say, for the
permutation of Example 2 we have 1 = 2 — ... —4— and 6~ 6 — 1+— 5~ 2 —. We
defined a natural equivalence relation on the set of generalized permutation by rotating
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elements of the multi-set Y7 and Y,. For example, permutation of Example 2 is equivalent
to the following one

4 5 2 4

6 3

541 23 4 3\
T 526 6 1 -

Note that this relation does not preserve the condition of irreducibility but by construc-
tion, it preserves the stratum and also the connected component. This combinatorial
transformation corresponds to the action of the horocyclic flow on the suspension S(m, A):
it preserves the cylinder and twist the boundary.

2.3 Homologous saddles connections

2.3.1 Canonical double covering and homological group

Let S be a half translation surface with non-trivial holonomy. We denote by 7 : S S
the standard orientating double covering (see section 1.3.1). Let 7 be a compact separatriz
on S. We consider 4" and v~ the two lifts of v by #. We choose an orientation of . So,
according to this choice, we can define
F=0h"1-Ir]

(4 is well defined up to a sign). If P; denote singularities of ¥ on S and P; singularities
of *1h = (@)% on S, we note by H; (S, {P;},C) the first homological group invariant with
respect to the involution and H, (S,{F;},C) the first homological group anti-invariant
with respect to the involution (see section 1.3.2). By definition:

y€ H /£

2.3.2 Homologous saddles connections

We say that two closed loops 7 and 5 are homologous if corresponding loops 4 and 7 on S
are proportional in the group H; . Note that this definition does not depend of choice of
orientation of cycles neither choice of direction on S. Moreover, v and 7 do not need to be
closed. For instance, we can have a saddle connection (homeomorphic to a segment) which
is Bomologous to a separatrix loop (homeomorphic to a circle). The following Proposition
gives a necessary condition for two separatrices to be homologous (see [MaZo| for details)

Example 4. In Figure 2.1, one can see that the vertical saddle connection y(7) and the
vertical separatrix loop n are homologous. More precisely, we have

—

[y(m)] = [7]

Proposition 7. If y and n are two homologous separatriz (saddle connection or separatriz
loop), then they are parallel and their length satisfy (with respect to the transverse measure)

1
hl €{1,2,~
7] 2

Proof of Proposition 7. See [MaZo. O
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2.3.3 Multiplicity
Multiplicity of a separatrix

Let v be a separatrix. We say that v has multiplicity n if there exists ezactly n different
separatrices homologous to 7. In the next, we are interested to obtain separatrices of
multiplicity 1.

Multiplicity of a simple cylinder

Here we give the Definition of a simple cylinder.

Definition 3. Let S be a flat surface. Let us assume that S possesses a cylinder (in the
horizontal direction). We say that this cylinder is simple if each boundary component of
it is a single compact separatrix

A classical way to obtain simple cylinders on a surface is the construction “bubbling a
handle” at a singularities (see Figure 1.2).

We say that the simple cylinder has multiplicity n if the the multiplicity of the corre-
sponding separatrix is n.

2.4 Properties of surgeries of Chapter 1

In this section, we give some properties concerning constructions described in Chapter 1.
We denote by (S,%) a flat surface in the stratum Q(kq,...,k,). We will consider the two
surgeries “break up a singularity” and “bubbling a handle” on a point P; on S of order k; for
the quadratic differential ¥. We want to give necessary and sufficient conditions, in terms
of homology, to obtain surfaces by the surgery “break up a singularity” and “bubbling a
handle”.

2.4.1 Properties of “breaking up a singularity”
Multiplicity 1 and surgery “breaking up a singularity”

Let S’ be constructed from S by “breaking up” the zero P € S into two zeroes P, € S’
and P, € §’. The saddle connection -y, between P; and P, on S’, can be chosen arbitrary
small with respect to the other. In particular, Proposition 7 imply that

mult(y) =1

Reciprocally, it is possible to show that if a surface S’, with two zeroes P| and Py, possesses
a saddle connection 7y, between these two points, of multiplicity 1 then it is possible to
“collapse” this saddle to a point to obtain a non-degenerated Riemann surface. In other
word this surface is obtained from a surface in a lower dimentionnal stratum, by “breaking
up” a zero P into the two zeroes P; and Pi.

We first present an informal argument how to collapse a saddle connection of multi-
plicity one. Then we give the general statement.
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How to collapse a saddle connection ?

Let us assume that we have obtained a surface S(m,A) such that the vertical saddle con-
nection y(w) has multiplicity 1. Recall that it is the case for a full Lebesgue measure set
of A when the generalized permutation is irreducible. For simplicity, we assume that this
surface is in the stratum Q(k,4g — 4 — k); the general case is similar.

The surface has two conical singularities of angle (k + 2)7 and (49 — 2 — k)w. So there
are precisely 4¢g intervals on the horizontal sides of the corresponding rectangle. Let us
deform slightly these horizontal intervals of the rectangle to obtain a polygon in C (see
Figure 2.4). The continuous deformation family belongs to a fix connected component. We
can compute complex parameters responsible for this deformation: there are 4g intervals
which are identifying one-to-one, so it produces 2g complex parameters. There is also the
vertical parameter. In addition, we have a restriction given by the equation on the length
of the perimeter of the cylinder. So we obtain

29+ 1 —1 = 2g complex parameters
According to Masur and Veech, the complex dimension of the orbifold Q(k,4g — 4 — k) is
dimc Q(k,4g —4— k) =29+2-2=2g

So we obtain a small open set inside this stratum.

For each surfaces in this open set, there exists a saddle connection of multiplicity
one. Thus we can present, by deformation of theses surfaces in this particular connected
component, a polygon with a “small” vertical saddle connection (see Figure 2.4).

(S, 41) (S, 42)

Figure 2.4: Let us consider the following two polygons in R?. We make identifications on
the boundary according to the number of intervals by the following way: we identify the
corresponding intervals 5 and 6 by a centrally symmetry. We identify the corresponding
intervals 0,1,2, 3,4 by a translation. The resulting spaces are Riemann surfaces S of genus
3. The form dz? is compatible with identifications so it induces two quadratic differentials
11 and 19 on S. For the polygon on the left, one can check that the white bullet give a
zero with conical angle of 67 and the black bullet give a zero with conical angle of 67. In
other word, we obtain a point [S, 1] inside the stratum Q(4,4). With the same type of
arguments, [S, 2] € Q(8). One can see that we can collapse the vertical saddle connection
numbered 0 on S to a single point. The resulting surface is the non-degenerated flat surface

(571:02)'

One can easily see that we can collapse the vertical saddle connection y(7) to a point
to obtain a regular Riemann surface endowed with a flat metric with a single conical
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singularity of angle (4g — 2)m; that is a zero, for the corresponding quadratic differential,
of degree 49 — 4.
Now, we give a precise announced and proof of the above result.

Proposition 8. Let [S",¢'] € Q(ki,...,k,) be a flat surface with multiplicity 1 saddle
connection between the two different singularities P; and P;. Then there exists a flat

surface [S, 9] € Q(ky,... ks, ... ,l;j, ook ki + ) such that we can “break up” the zero
of order P+ Pj on S into two zeroes of order P; and Pj to obtain the surface (S',¢').

Here, the notation (kq, ..., ki ..., k) stands for the list where we forgot the index k;.

Proof of Proposition 8. We present a proof of this result in the case where the surgery is
local that is k; and k; are not both odd. For instance, we consider the case where k; and
k; are even. For the general case we refer to [MaZo].

Let us assume that (S,4) has a multiplicity 1 saddle connection. This property is
defined in terms of the homology of S thus, the cohomological coordinates imply that
this property is true in a small open set of [S, %] inside the corresponding stratum. This
property is also stable by the geodesic flow, so ergodicity of this flow give us a full measure
set of surfaces with a saddle connection of multiplicity 1, inside the connected component.

In other words, we can assume that the saddle connection which has multiplicity 1 has
length £ and all other separatrices (in the same direction) have length at least € + 1. Now
let us consider a metric neighborhood U of the two points P; and P; on S. That is the
reunion of k; + k; 4+ 2 half Euclidian discs. This is possible with assumption on the parity
of k; and k; (we present such neighborhood in Figure 1.1).

The length of this saddle connection can be chosen arbitrary small with respect to the
other thus we can assume that there is no other separatrix in U. Now we can take this
open set U and construct locally a single zero of order k;+k; (see Lemma 1). The resulting
surface (S', 1)) satisfy to the Proposition.

Proposition 8 is proved. U

Lift of paths

We consider the surgery “breaking up a singularity” at the point P;. Let us denote the
resulting surface (S’, ') in the corresponding stratum Q(ky,..., I, 7, ... k,) with k; = [+r.
We suppose in addition that [ and r are not odd at the same time. There are many ways
to break up the singularity into two singularity of order I and r. One can see that the
surgery is local: the flat metric does not change outside of a small neighborhood of the
singularity P;. Hence all surfaces (S’,%') obtained by breaking up the zero P; of order k;
into two zeroes of order [ and r belong to the same connected component. Moreover, this
construction allows us to obtain a fiber bundle

Q(kl,...,l,’f‘,...,k)n) — Q(k‘l,,kn)
with fibers homeomorphic to a product of two complex discs. Thus we have

Proposition 9. Let [S',¢'] € Q(k1,...,l,r,... k) be as above.

Let p : [0,1] — Q(k1,...,kn) be any continuous path with p(0) = [S,4]. Then we can
construct a continuous path p' : [0,1] — Q(k1,...,l,r,... k) with p'(0) = [S",¢'] by
breaking up the singularity P; of the flat surface p(t).
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We will reformulate these results in terms of adjacency and local connectedness in
Chapter 4.

2.4.2 Properties of “bubbling a handle”
Multiplicity 1 and simple cylinder

We consider the surgery “bubbling a handle” at the point P;. Let us denote the resulting
surface (S’,4') in the corresponding stratum Q(ky,...,k; + 4,...,k,). We suppose in
addition that the angle between the two new sectors is not odd if k; is even (see Chapter 1
for details). One can prove easily the following two Propositions. Essentially, it is a direct
corollary of the previous Proposition in terms of the surgery “breaking up a singularity”.

Let [S,1] € Q(4g — 4) be a point with g > 3. Let S’ be construct from S by “bubbling
a handle” to the unique zero of S. By construction, the separatrix loop -y, which is the
boundary component of the additional cylinder, can be chosen arbitrary small with respect
to the other (see section 1.2). Thus Proposition 7 imply that

mult(y) =1

Reciprocally, it is possible to show that if a surface S’ in the minimal stratum of genus
g, possesses a simple cylinder of multiplicity 1, then it is possible to “shrink” this cylinder.
In other word this surface is obtain from a surface in the minimal stratum of genus g — 1,
by “bubbling a handle” at the unique zero of the differential.

How to shrink a simple cylinder ?

It is easy to see that the two constructions “bubbling a handle” and “breaking up a singu-
larity” are related. Using this relation and Proposition 8, we easily prove

Proposition 10. Let [S',¢'] € Q(4g — 4) be a flat surface with a simple cylinder of
multiplicity 1. Then there exists a flat surface [S,vy] € Q(4(g — 1) — 4) such that we can
“bubbling a handle” at the unique zero of 1 on S to obtain the surface (S',v').

Proof of Proposition 10. In Figure 2.5 we give the relation between the two above con-
structions. Then Proposition 10 is a direct corollary of Proposition 8. O

Lift of paths

Proposition 11. Let [S], ¢], [S5, ¥5] be two points in the stratum Q(ki, ... ki+4,..., kp).
Suppose that these surfaces are obtained by “bubbling a handle” at the same zero P; of a
surface [S, 1] in Q(k1,...,ky). In addition let us assume the angle between the new sectors
15 the same in the two constructions.

Then [S1,4)] and [Sh, 5] belong to the same connected component of the stratum

Qky, ... ki+4,... k).
The following Proposition is a direct corollary of the Proposition 9

Proposition 12. Let p : [0,1] — Q(k1, ..., ky) be any continuous path with p(0) = [S,v].
Then we can construct a continuous path p' : [0,1] — OQ(ky,..., ki +4,...,ky,) with
p'(0) = [S", 4] by “bubbling a handle” at the singularity P; along the path p.
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47 Y2

1 Q1

7

Q2
A\, @1 =0Q1 = Q2

Figure 2.5: On the left, the diagram represent a simple cylinder “attached” to a zero of
order 8. We cut the surface along this cylinder to obtain two homologous separatrix loops
Y1, Y2. We can deform the flat metric to obtain a flat surface with two singularities. The
degree of these saddles depends of the degree of the initial zero and the angle between
~v1 and . Here we have a zero of order 8 and the angle between the sector is 4. Thus
we obtain two zeroes of order 2. If the initial simple cylinder has multiplicity 1, then the
multiplicity of the saddle connection v is 1. Applying Proposition 8, we can collapse this
saddle connection to a point. The resulting surface is a non-singular Riemann surface. At
the point P, the differential has a zero of order 4.

The map &

We want to describe precisely properties of the surgery “bubbling a handle”. In this section
we formalize this notion. For our main classification program, we need to consider only
two strata but all results can easily be generalized when constructions are local.

Let Q(—1,4g — 3) be a stratum in genus g > 2. Let C be a connected component of
this stratum and [S, 4] € C be a point. We construct the flat surface (S’, ') from (S, )
by the surgery “bubbling a handle” at the unique zero of 1 with corresponding parameters:
arbitrary continuous parameters and discrete parameter s (angles between the two new
sectors). By Proposition 12, the connected component C' C Q(—1,4g + 1) which contains
the point [S’, 4'] does not depends of [S, 9] inside C. Moreover, Proposition 11 asserts that
for s fix, the component C' does not depends of choice of continuous parameters. In other
word, we have as an immediately corollary

Lemma 5. With above notations, the following map

@ : m(Q(—1,49 — 3)) x N = mo(Q(—1,4g + 1))
C, s)—»Cohds:=C

15 well defined for all g > 2.

Here m(E) denote the set of connected component of the topological space E.
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Remark 5. In Appendix, we give an example of a flat surface in the stratum Q(2,6)
and we present two ways to obtain surfaces from our initial surface using the surgery
“bubbling a handle” on the zero of order 6. The angle between the two additional sectors
in the two constructions is 37. Thus we obtain two points inside the stratum Q(2,10).
The surgery is not local. We describe one way to obtain a point inside the hyperelliptic
connected component of the stratum Q(2,10) and one way to obtain a point inside the
non-hyperelliptic connected component.
In this sense, the map & does not extend when the surgery is not local

Nevertheless, a consequence of Theorem 6 is that this map is also well defined for the
minimal stratum. Namely, the following Lemma holds

Lemma 6. With the above notation, the following map

@ : m(Q(4g —4)) x N = m3(Q(49))
C, s)—»Cos:=C

1s well defined for all g > 3.

Note that in the two above Lemma the corresponding angle between the two new sectors
is chosen modulo 2¢g hence we can fix s € {1,...,2g}.
We can easily prove the following properties for the map @

Property. Let us fix C a connected component of a stratum in genus g > 5. The map &
satisfy the three following properties

e @ is commutative “on the right” C ® s1 @B s9 = C @ s9 @ s1 for all s1, so.
e CDs1Dsa=CD(s9—2)D(s1+2) of 89 >3

e CDs1Dso=CD(s9—4) D s if 59 — 81 >4

Proof. The proof is obvious using the description in terms of diagrams. ]

2.5 Two fundamentals observations

Here we present two fundamentals observations. We give some conditions on a generalized
permutation 7 such that the suspended flat surface S(m, ) is obtain by one of the two
surgeries “breaking up a singularity” or “bubbling a handle”) on a zero on a surface.

2.5.1 “Breaking up a singularity”

Here we translate the surgery “breaking up a singularity” in terms of the combinatorics of
the generalized permutation.

Let 7 be a generalized permutation. Recall that for an admissible vector A, there is
a canonical separatrix 7y(m) on the flat surface S = S(m, A) (see above construction in
section 2.2). By Proposition 6 and property of homologous separatrix of Proposition 7,
one can easily deduced the following
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Corollary 2. Let w be a generalized permutation. We consider the half-translation surface
S = S(m, A). If m is irreducible then there exists a full Lesbesgue measure set of A such that
the corresponding separatriz y(m) on S satisfies

mult(y(m)) =1

Proposition 13. Let us assume that the vertical separatriz y(mw) on S(mw, ) is a saddle
connection. Let also assume that 7 is irreducible.

Then the surface S is obtained by the surgery “breaking up a singularity” on a surface
i a lower dimensional stratum.

In Chapter 4, we calculate all components which contain above surface. That is, we will
show any connected component (in genus greater than 4) is either hyperelliptic or attached
to the minimal stratum. Surprisingly, the answer is quite difficult and we find that some
component, in small genera, is not hyperelliptic neither adjacent to the minimal stratum.

2.5.2 “Bubbling a handle”

In the following, we will use the practical notation:

Notation. Let m be a generalized permutation of the set {1,...,n+m}. Let also assume
that it satisfies w(1) = n 4+ 1. Then we denote by @ the restricted generalized permutation

of the set {/1\, 2... ,n,n/—l-\l, n + 2,n + m}; where i says that we forgot the corresponding
element ¢. In notation of tabular, this gives

~(18) e e(3)

Clearly, the surface S(m, A), with 7 as above, possesses a simple cylinder in the vertical
direction (see also Figure 2.6).

Thus, using Corollary 2 one can deduced easily the following

Proposition 14. Let us consider a flat surface S(m,\) C Q4(4g — 4). Let also assume
that T is wrreducible.

Then the surface S is obtained by the surgery “bubbling a handle” on a surface in a the
stratum Qq_1(4g — 8).

In terms of Lemma 6, this Proposition asserts that the map
@ : m(Qg—1(49 — 8)) x N = my(Qy(4g — 4))

18 surjective for all g > 4.



2.5. TWO FUNDAMENTALS OBSERVATIONS 95

1 P P 1
p 7
— - 471—
” K o ”
P o2 P P
7

Figure 2.6: Here on the left, the figure represents a flat surface of the form S(m,\). In
the vertical direction, one can easily see that there is a simple cylinder. The boundary
component of this cylinder is 7y(w). On the figure on the right, we have represented the
diagram of the vertical foliation on S. In this example, the angle of this cylinder is 47 (or 67
is we consider the complementary angle). If the generalized permutation 7 is irreducible,
one can choose lengths of horizontal parameters in the way that ~(pi) has multiplicity 1.
In this case this surface is obtained from a surface in genus g — 1, where g =genus(.S), by
“bubbling a handle” (see Figure 1.3).

In Chapter 3, we calculate all components of the minimal stratum which contain above
surface. That is, we will show that any connected component (in genus greater than 4)
is accessible by considering the surgery “bubbling a handle” on a surface in a lower genus
stratum.
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Chapter 3

Representative elements

In this Chapter, we give a “bestiary” of half-translations surfaces. We present the surfaces
(S,1) in terms of generalized permutations. Recall that, in order to proof our classification
result, the second step is that any connected component, except 3 particulars cases, is either
hyperelliptic or attached to the minimal stratum.

Here we give a family of representative elements of any hyperelliptic connected compo-
nent. We also give a representative element of the three particular case discussed above:
we call it the irreducible connected component.

On the last section, we use these elements to obtain some properties on the adjacency
inside the moduli space Q,.

3.1 Hyperelliptic connected components

We want to construct representatives elements for hyperelliptic connected components. Let
us fix r and [ arbitrary non-negative integers. We consider the generalized permutation
IIy(r,1) given by Figure 3.1.
H(nm)— 01 1 r 0 I4+1 ... r+1
e N o A e 1 T S B

Figure 3.1: A permutation of type (r,1). For instance, when r = 4 and [ = 0, it corresponds
to the stratum Q(—1,—1,3,3).

3.1.1 Representative elements

We would like to identify the stratum which contains surfaces construct by suspension
over the permutation Iy (n,m). It depends of the parity of the two integers r and . More
precisely, we have

Lemma 7. Let (S,4) be the surface given by S(I1y(r,1),\) for an admissible vector \. If
r and | are odd then S has two singularities. If r and | have different parities then S has
three singularities. If r and l are even then S has four singularities. The following tabular

o7
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give the type of singularities in terms of r and |

r l stratum which contain [S, ]
% +1|2(g—k) —3 O(4k 12, 4(g—k) —6)
2% +2|2(g k)3 O(2k+1,2k+1, 49 k) —6)
2% +2|29g k) —2|Q(2k+1,2+1, 29—k 3,29k —3)

Proof of the Lemma. It is obvious by direct computation of the type of singularities. [

According to Chapter 1, the above strata contain an hyperelliptic connected compo-
nent. We can ask if these points, defined by [S(II;(r,1)),%], belong in this hyperelliptic
component. This is done by the following

Lemma 8. For any A, surfaces S(ITy(r,1), \) belong to the hyperelliptic connected compo-
nents of the corresponding stratum.

Proof of Lemma 8. Here we present the proof in the first case; that is r and [ are odd. The
other are similar. Take r = 2k 4+ 1 and | = 2(g — k) — 3. We consider the rectangle

r+1 r+1
R = iyl X ]=1,1]

We denote by 7 : R — R the involution of R given by 7(x,y) = (-, —y). Obviously, 7
induces a global involution on the surface Sy = S(IT;(r,1), A). We denote still it by 7. By
Lemma 7, [So, %] belongs to the stratum Q(4k +2,4(g — k) — 6).

Recall that the hyperelliptic component of this stratum is, by definition, the image of
the map

Q(2k7 2(9 - k) - 47 _129) - Q(4k + 274(9 - k) - 6)
[P', dz?] — [S, n*dz?]

In order to prove that [Sp, ] belongs to the hyperelliptic component, we have to
construct a double ramified covering 7 : P! — Sj such that 7*dz? = .

Let us count the number of fixed point of the map 7:

There are r + | fixed points of 7 on the horizontal sides of R located at the middle
of the intervals (precisely at the middle of separatrix loops).

There is a fixed point located at the middle of the vertical side.

There is a fixed point located at the point (0, 0).

There are 2 fixed points which corresponds to the two zeroes of 1.
Thus the total number of fixed points of 7 on Sy:

n+m+1+1+2=2k+1+2(g k) -3+4=29+2
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The Riemann Hurwitz formula imply that the genus of S /(z ~ 7(z)) is zero. Let us
consider the projection map
7:8y — P!

It is easy to check that above covering gives the announced statement.
Lemma 8 is proved. ]

Remark 6. We can also construct other representative elements for hyperelliptic connected
components. For instance we can prove, using the same way, that surfaces S(Ila(r,1), A),
with IIy(r,[) given by the permutation of Figure 3.2, belong to the hyperelliptic connected
component of the corresponding stratum (which depends also of the values of 7 and ).

1 T 1 T
HQ(n’m)<r+1 .o+l r+1 ... r+l>

Figure 3.2: A permutation of type (r,1). For instance, when r = 4 and [ = 1, it corresponds
to the stratum Q(—1, —1,6).

Here we present a result which is a corollary of a general result proved in Chapter 4.

Corollary 3. Let [S, 9] be a point in an hyperelliptic connected component. Suppose that
in the horizontal direction, the surface decompose into one cylinder. Let m denote the
corresponding generalized permutation (well defined up to the cyclic order). Then there
exists non-negatives integers r,l and i € {1, 2} such that

™= Hi(’ra l)

3.1.2 Hyperelliptic strata in low genera

Here we present, as a consequence of these combinatorics objects, an independent combi-
natorics proof of the following Theorem of Masur and Smillie (see [MaSm]):

Theorem. The following strata are empty
Q(0), (1, 1) (in genus g =1) and Q(4),9(1,3) (in genus g = 2)

Proof of the Theorem. Let us assume that the stratum Q(4) is non-empty. By “breaking
up a singularity” at the unique zero of a point in this stratum, we obtain a point in
a non-hyperelliptic component of the stratum Q(2,2) (see Chapter 4). Now we prove
that this stratum is connected and equals to its hyperelliptic component which leads to a
contradiction.

We can calculate all generalized permutations (up to a cyclic order) which produced
by suspension flat surfaces in the stratum Q(2,2). We obtain only two permutations (up
to a cyclic order) which are

(1 2 13 (1 21 2
=4 34 2 ™= 3 4 34
According to Lemma 8, these two permutations give rise to surfaces in the component
QMP(2,2). So it proves Q(2,2) is connected and hence the stratum Q(4) = §.

We can proceed with the by the same way for the strata Q(1,—1) and Q(1,3) by
considering respectively the connected hyperelliptic strata Q(—1,—1,2) and Q(1,1,2). O
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3.2 Irreducible connected components

3.2.1 The stratum Q(—1,9)

Let [So, 0] € Q(—1,9) be the particular flat surface defined by Figure 3.3. See also
Figure 3.4 which present a suspension over the corresponding permutation. We call the
irreducible connected component Q" (—1,9), the component of Q(—1,9) which contains

this point.
0 0
4 5

Figure 3.3: This permutation gives rise by suspension flat surfaces with two singularities
for the metric, of angle 7 and 117. In other words, it produces a continuous family of
points inside the stratum Q(—1,9).

2 3
2 5

—_

1
3

Figure 3.4: Let us consider the following polygon in R?. We make identifications on the
boundary according to the number of intervals. If two intervals are in the same boundary
component, we identify them by a centrally symmetry and else we identify them by a
translation. We also identify the two vertical by a translation. The resulting surface is a
Riemann surface S of genus 3. The form dz? is compatible with identifications so it induce
a quadratic differential ¥ on S. One can check that the white bullet give a pole for the
differential and black bullets give a single zero with conical angle of 117. So in other word,
we obtain a point [S, 9] inside the stratum Q(—1,9). Here [S, 9] belongs to the component

Q"(—1,9).

3.2.2 The stratum Q(—1,3,6)

Let [S1,91] € Q(—1,3,6) be the particular flat surface defined by Figure 3.5. We call
the drreducible connected component Q" (—1,3,6), the component of Q(—1,3,6) which

contains this point.
0 0
5 6

Figure 3.5: This permutation gives rise by suspension flat surfaces with three singularities
for the metric, of angle w, 37 and 8. In other words, it gives points inside the stratum

Q(—1,3,6).

1 2 3 4 5
4 3 2 6 1
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3.2.3 The stratum 9(-1,3,3,3)

Let [Sa,19] € Q(—1,3,3,3) be the particular flat surface defined by Figure 3.6. We call
the irreducible connected component Q" (—1,3,3,3), the component of Q(—1,3,3,3) which

contains this point.
0 0
6 7

Figure 3.6: This permutation gives rise by suspension flat surfaces with three singularities
for the metric of angles 57 and one singularity of angle w. In other words, it gives points
inside the stratum Q(—1, 3,3, 3).

3 4
2 7

—

1 2 S
5 3 4

3.2.4 The minimal stratum Q(12)

We denote by Q'(12) the connected component of the stratum Q(12) which contain the
surface [S3, 3] given in Figure 3.7. We call Q'/(12) the connected component of Q(12)
which contain the surface [S4, 4] given in Figure 3.8.

We can check that the vertical foliation gives a diagram of separatrices with a handle
of angle 27 for the first surface and a handle of 67 for the second surface. Using notations
of Chapter 2, we have

01(12) := 9(8) @ 2

and

Q'1(12) := Q(8) ® 6

1 6
1 3
Figure 3.7: This permutation gives rise by suspension flat surfaces with only one singularity

for the metric. The conical singularity has angle 14x. In other words, it gives point inside
the stratum Q(12). We call Q'(12) the connected component which contain this point.

123 43 5 6
1 567 42 6 7

Figure 3.8: This permutation gives rise by suspension flat surfaces with only one singularity
for the metric. The conical singularity has angle 147. In other words, it gives point inside
the stratum Q(12). We call Q'/(12) the connected component which contain this point.

2 3 4 2 5
4 57 6 7

In Chapter 4, we present a proof for the description of connected component which
contains a multiplicity one saddle connection. The statement of our result is that any
non-hyperelliptic and any non-irreducible component is attached to the minimal stratum.
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Chapter 4

Adjacency

In Chapter 1, we have describe some connected components inside

a particular stratum Q(kq, kg, k3, . .., ky) which are “accessible” by the surgery “breaking
up a singularity” on a surface in the stratum Q(ky + ko, k3, ..., k,). In general, it is not
true for all connected components. In this Chapter, we want to classify all component of
such type: those which possess a surface with a saddle connection between two singularities
which we can “collapse” it to a point. The problem is not trivial: given a generic surface with
a saddle connection, if we collapse this saddle, the resulting surface could be a degenerated
Riemann surface and we do not consider this type of surfaces for our problem. In other
words, we do not consider the compactification of the Modular spaces. In Figure 4.1 we
present an example of a collapse of a saddle connection which leads to a degenerated
surface.

Figure 4.1: Let us consider the following polygon in R? given by the figure on the left.
We make identifications on the boundary, according to the number of the intervals, by
translation. The form dz induces a holomorphic 1—form on the quotient surface. Obviously,
we obtain a point [S, w] inside the stratum #(1,1). The saddle connection 7; is homologous
to 2. Thus if we deform the flat metric to collapse v, to a point, the resulting surface S’
would be a degenerated surface.

First, we give some examples of connected components which are not accessible by
“breaking up a zero” on a surface in a lower strata. That is, component C for which for
any flat surface [S,4] in C, and for any saddle connection on S, if we collapse this saddle
connection to a point, the resulting surface would be a degenerated Riemann surface. Then
classify all components which contain a surface with a “contractible” saddle connection.

63
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4.1 Flat surfaces and “Breaking up a singularity”

4.1.1 Multiplicity one and “Breaking up a singularity”

Here we recall the necessary and sufficient conditions in terms of homology to obtain
surfaces by the surgery “break up a singularity” (see section 2.4.1).

Let S’ be constructed from S by “breaking up” the zero P € S into two zeroes P, € S’
and P, € §’. The saddle connection -y, between P; and P, on S’, can be chosen arbitrary
small with respect to the other. In particular, Proposition 7 imply that

mult(y) =1

Reciprocally, if a surface S’, with two zeroes P; and P,, possesses a saddle connection 7,
between these two points, of multiplicity 1 then it is possible to “collapse” this saddle to a
point to obtain a non-degenerated Riemann surface. In other word this surface is obtained
from a surface in a lower dimentionnal stratum, by “breaking up” a zero P into the two
zeroes P; and P.

4.1.2 Exceptionnal cases

Here we describe some connected components which does not contain any flat surface with
a saddle connection of multiplicity 1 (between two different zeroes).

Hyperelliptic connected components

Proposition 15. Let [S,9] € Q™P(4(g — k) — 6,4k + 2) be a point in the hyperelliptic
connected component of the stratum Q(4(g — k) — 6,4k + 2). Then any saddle connection
on S has multiplicity at least 2.

Proof. Let [S,1] € Q"P(4(g — k) — 6,4k + 2) be a flat surface.
By construction, there is a canonical element in the affine group of S: the hyperelliptic
involution

T € Aff(S, )

Suppose that v is a saddle connection on S between the two different zeroes of ¢. Then
7(y) is also a saddle connection. It is clear that 7(v) # ~: by construction (see 1.3.3), 7
fixes the two distinct zeroes and 7 is different from the identity map. One can see that
[¥] = [7(7)] on the orientating canonical double covering S. In other word, v and 7(v) are
two different homologous saddle connection. Thus we have

mult(y) > 2 for any saddle connection y on S

Proposition 15 is proved. O

In this terms, there is no surface in this hyperelliptic connected component which is
constructed from a surface in the minimal stratum Q(4g — 4) by breaking up the zero into
two zeroes.

Obviously, we can prove a similar statement for the hyperelliptic connected component

thp(ila 71749 o 2)

Proposition 16. Let [S,¢] € QMP(—1, 1,49 —2) be a point in the hyperelliptic connected
component of the stratum Q(—1,—1,4g — 2). Then any saddle connection on S, between
the zero and a pole, has multiplicity at least 2.
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The genus 2

According to [MaSm], the stratum Q(4) is empty. Thus we have obviously a similar result
for the strata Q(—1,5) and 9Q(2,2). Note that the last stratum is contained in the list of
Proposition 15: Q(2,2) = Q"MP(4(g — k) — 6,4k + 2) with g = 2 and k = 0.

Proposition 17. Let [S,v¢] € Q(—1,5) be a point. Then any saddle connection on S has
multiplicity at least 2.

Notation

Let us denote by [Sy,10] € Q(—1,9) the particular flat surface (see Fig 3.3). We call
irreducible connected component Q”"(—1,9) the connected component of Q(—1,9) which
contains this point.

In Appendix, using Rauzy classes, we prove a similar statement on the multiplicity of
saddle connections on surfaces in the irreducible component Q”"(—1,9). In this Chapter,
we will not use this result. The proof that we will present in the next fails for this particular
component. That explains why we consider this choice.

4.2 Main result of this Chapter

In this section, we want to prove that, except the above described particular connected
components, all other possess a surface with a multiplicity 1 saddle connection; that is a
saddle connection which we can “collapse” to a point.

For the hyperelliptic connected component Q™P(4(g — k) — 6,4k 4 2), the hyperelliptic
connected component Q™P(—1,—1,4g — 2) and the stratum Q(—1,5) it is a necessarily
condition (see Propositions 15, 16 and 17).

For the irreducible connected component Q"(—1,9) the proof which we are going to
describe fails in this special case. In Appendix, we will see that in fact, this component
satisfy a property as above: any saddle connection (between the zero and the pole) of any
half-translation surface in this particular component has multiplicity at least 2.

Theorem 4. Let C be a connected component of a stratum Q(ky,...,k,) in genus g > 1
with n > 2. We assume that C is not one of the following list of component

e hyperelliptic connected components Q"P(4(g—k)—6,4k+2) and Q"MP(—1,—1,4g—2).
. C ¢ ml(Q(1,5))

e irreducible component Q7" (—1,9).

Then there exists a flat surface M in a lower dimentionnal stratum that Q(kq,...,k,) and
a surgery “breaking up a singularity” at a singular point P € M such that the resulting
surface [S, 1] belongs inside the given component C

The proof of this result is based on the combinatorics of the unique cylinder given in a
completely periodic direction. The main remark is that two homologous separatrices are
always parallel and their lengths are equal or differ by a factor 2 (see Proposition 7). We
are going to show that we can always found a saddle connection of length arbitrary small
with respect to the length of other parallel separatrix, if any.
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4.2.1 Sketch of the proof
Remark on the multiplicity

In order to proof the Theorem, according to Proposition 8, we have to construct a surface
[S,7] € C with a multiplicity 1 saddle connection between two different singularities (not
two poles).

In section 2.3, we have shown that two homologous saddle connections v and 7 are

always parallel and satisfy ||l: 1,2 or 1/2.
n

We are going to construct a surface, in each connected component given by the Theorem,
with a saddle connection 7y of length 1 and such that

1vi| > 3 for all vertical separatrices -; parallel to vy

which will imply mult(y) = 1.

Combinatorics of one cylinder decomposition

We consider a Jenkins Strebel differential (S,1)) with one cylinder for the horizontal
foliation; that is horizontal foliation is completely periodic and the complement of the
critical graph of ¢ in S is connected.

By density, (see Theorem 3), we can consider such forms without loss of generality. So
Let S(m, A) be a surface in C with an arbitrary generalized permutation 7. In the horizontal
direction, we denote by R(S) the corresponding rectangle. Recall that the vertical side of
this rectangle is a separatrix denoted by ~y(m) of 9.

For a horizontal separatrix v, we denote by ' and 2 the two corresponding intervals
on the horizontal side of R(S). Recall that if these two intervals are presented twice in the
same horizontal side of the rectangle then we glue them by a centrally symmetry and else
we glue them by a translation. The quotient surface, R(S)/~, is affinely equivalent to our
initial flat surface (S,).

We will use the two fundamental obvious remarks. We suppose that v is a horizon-
tal saddle connection, between two distinct zeroes, and 7 is a horizontal separatrix (not
necessarily a saddle connection).

Fundamental Remark 1. Ify', 42 are in two different horizontal sides of the rectangle
R(S) then we have no conditions on the horizontal parameter |y'| = |y?| = || (see equa-
tion (2.4)). So we can choose the length of v in the flat metric, arbitrary small with respect
to the other length of horizontal separatrices. Thus we have

mult(y) =1

Fundamental Remark 2. If all intervals 7', v? and n', n? are in a same horizontal side
then we have only one linear relation on the length of v: the rectangle is a metric rectangle
so the length of the two horizontal sides must coincide. Thus we obtain (see equation (2.4))

A+ P+ It P+ =

There 1s no cancellation of terms in the left part given by the length of the saddle connection
7 and the separatriz 1. In particular, we can choose |y'| +|v%| +|n'| +|n?| arbitrary small
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and hence |y'| = |42 = |y| arbitrary small with respect to the other length of horizontal
separatrices. Thus we have

mult(y) =1

Note that in the case of Abelian differentials, all gluing are translations so Fundamental
Remark 1 holds every time and hence the corresponding statement for Abelian differentials
is trivial.

Now, if one of the two Fundamental Remarks holds, the Theorem is proved. Thus Let us
assume that it is not not the case. Hence we obtain some restrictions on the combinatorics
of the permutation w. We will study these restrictions.

Next we consider the vertical foliation on the surface S(n’, ) with 7’ ~ & for the cyclic
order (see section 2.2.7). Or in an equivalent way, we study the action of the horocyclic
flow on the point [S(m, A\),%]. Our result is that there always exist a nice twist parameter
such that the canonical vertical saddle connection y(n') has multiplity 1.

This proof fails for some kinds of combinatorics of permutations: such permutations are
then completely determined. By direct computation (see Chapter 3) we check that they
correspond to hyperelliptic curves in a hyperelliptic connected component or to exceptional
case listed in genera 2 and 3. These cases correspond to surfaces of section 4.1.2.

4.2.2 Proof of the main result of this Chapter

We decompose the proof into severals cases. Recall that n denote the number of the
singularities. First we consider the general case n > 4. Then we prove the case n = 3.
Finally we conclude by the holomorphic case n = 2 and the meromorphic case; that is the
stratum Q(—1,4g — 3); which is more technical.

Proof in the particular case where n > 4

Let (S,1) be a Jenkins—Strebel differential with only one (vertical) cylinder for the hor-
izontal foliation. Let Cyl(S) be this cylinder. We denote the boundary component of
Cyl(S) by I and J. We have a decomposition of this boundary into a disjoint union of
intervals given by the cutting of the critical graph of 9 on S.

First of all, it necessarily exists a zero, say P;, of the differential 1 and a saddle
connection v between this zero P; and another singularity F; for ¢ > 2, say P,. One can
see this in the following way. Assumption of the genus ¢ > 1 imply that there exists a
zero P, say located in I. If there is no saddle connection starting of this zero then the
endpoints of intervals located in I give precisely the zero P. Now n > 4, thus it exists
another singularities, necessarily located in J. It is easy to see that there exists at last one
zero P; on J and hence one saddle connection «y attached to this zero.

Up to a permutation, we assume that v' C I. If 42 C .J then we have done by
Fundamental Remarks 1. Thus let us assume that

Y, I

Then let P3 be a singularity different from P, and P,. If P3 € I then it necessarily exists
a saddle connection a between P3 and a singularity P; such that a' C I. In this case, we
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have also done by one of the two Fundamental Remarks 1 or 2 corresponding respectively
to the case where a® C .J or I. So we can assume that for all singularities P; different from
Py and P, we have P; € J (see Figure 4.2).

P, i=1,2 P, i=1,2
Py Py h N P Py - Py
1 oo ° 2 I
Y Y m
Cyl(S) v()
e ol o2 ;
Py Py Py P, Py Py

Figure 4.2: An example of a decomposition of a Jenkins Strebel differential with one
(vertical) cylinder (for the horizontal direction).

The point P; is a zero so there must exist a separatrix n which contains P; and with
n' c I. If > C I the Theorem holds by Fundamental Remark 2. Thus we can assume
that n? C J. We refer to Figure 4.2 for details.

Recall that n > 4 so there exists a saddle connection a between P; and P; such that
a' C J. If o® C I then P3 € I which contradicts assumptions so a? C J.
We conclude by the fact that n > 4. Thus there exists Py different from F; for 1 = 1,2,3
with Py € J. It necessarily exists a saddle connection ( between P, and another singularity.
Now by a direct checking, one can see that ¢ has multiplicity one.

The proof for the case n = 3 is similar to the previous one with a refinement.

Proof in the particular case where n =3

As above, let us assume that (S, 1)) is a Jenkins—Strebel differential with only one vertical
cylinder Cyl(S).

We can apply the above argument to obtain the following dichotomy: either there ex-
ists a zero Py of ¢ and a saddle connection v between Py and a singularity Py of 4 (precisely
as above) or the quadratic differential possesses exactly two poles and one zero. Moreover
in this last situation we have for the combinatorics of the corresponding permutation, the

following description
Now we will discuss these two cases.

Our goal is to prove that if [S(m, A), 9] € Q(—1, —1,4g—2) then one can find a multiplicity
1 vertical saddle connection on (S,%). For the particular stratum Q(—1,—1,4g — 2), we
will show that we also have this result except in only two cases. In these two particulars
cases, the corresponding generalized permutation 7 is completely determined and equal to
(up to a cyclic order) Iy (r, 1) or Tly(r, ) for adequate values of r and [ (see Section 3.1). In
Chapter 3 we have proved that all surfaces construct by suspension over these particular
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permutations belong to the hyperelliptic connected component Q™P(—1, —1,4g — 2) which
will give the proof. Now let us discuss details.

Let us assume that the first case discussed above arise, that is 7y is a saddle connection
between the zero P; and a singularity P of ¢. By the same type of argument discussed
in the case n > 4, one can see that either we obtain a multiplicity one saddle connection
or the permutation 7 possesses a prescribed combinatorial type. Namely, the following
Lemma holds

Lemma. Let C be a connected component of a stratum Q(ki, ks, ks) in genus g > 1.
Then either there exists in C a flat surface [S, 1] with a multiplicity 1 saddle connection
v between two different singularities (not two poles) or the singularity pattern is exactly
(k1,ka,ks3) = (—1,—1,4g9 — 2) and there exists a surface [S(mw,\),9] € C such that 7 is
given by one of the two following type

(o o) o (0 )
Il

It remains to prove the Theorem for n = 3 to consider the two permutations given by
the above Lemma. Now we will consider the wvertical on the surface.
We will prove that if 7 is different (up to a cyclic order) from the two particular permu-
tations II;(r,1), for i = 1 and 2, then we always have a cyclic order on 7 such that the
corresponding saddle connection y(m) on S has multiplicity 1. The way to obtain this is
Corollary 2; that is, if 7 is irreducible then the vertical separatrix -y(m) has multiplicity 1.
We will show that there exists in the class of 7 an irreducible permutation such that the
corresponding vertical separatrix is a saddle connection except when 7 is equivalent to II;
fori =1, 2.

Case 1. Let us consider the first permutation

T~ ( 2 . T 0] 0] 1 )
02 7(1) =(2) ... =(r) Og
Note that 7 satisfy the condition (*) thus it is sufficient to obtain a weakly irreducible
generalized permutation in the class of 7 (see Chapter 2).
The above generalized permutation is weakly reducible if and only if w(r) = 1. We can
repeat this process to prove that either there exists an weakly irreducible permutation in

the class of m or we have
(i) =r—i+1

Obviously, the last condition correspond to 7 ~ IIy(r, 0)

Case 2. It remain to finish the proof for n = 3 to consider the second permutation
of the Lemma. Recall that the corresponding suspension S = S(m, \) is in the stratum
Q(—1,—1,4g — 2) so for any permutations in the class of 7 for the cyclic order on the first
line, the corresponding separatrix y(m) on S is a saddle connection between the zero and
one of the two poles. We will prove that there always exists an irreducible permutation
equivalent to m, unless 7 is the particular permutation given by m = IIs(r, 1). In this last
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case, the surface is hyperelliptic and belongs to the hyperelliptic connected component of
the stratum Q(—1,—1,4g — 2) (see Chapter 3).

First of all, we prove that there always exist a permutation equivalent to 7w which is
weakly irreducible, unless 7 is the particular permutation given by IT = mo(r, 1).

If = is weakly reducible then we have the following decomposition

A|B
010
We rewrite A = (1 A3) and B = (B; 1 By). Then 7 is equivalent to the following

generalized permutation
1 BQ 1 A2 Bl
" \o 0

This last permutation is weakly reducible if and only if B; = (. In this case, we can repeat
this process with the new set A for Ay and the new set B for By. Thus either we obtain
a weakly irreducible generalized permutation or A = B = (12 ... r). In the last case we
have m = Ily(r, 1).

To achieve the proof, it remain to show that if = is weakly reducible then we can obtain
an irreducible permutation in the class of « for the cyclic order. This is done with the
same type of argument as above. This gives the Theorem for n = 3.

Remark 7. We have shown that there always exists a surface, in a non-hyperelliptic con-
nected component of the stratum Q(kq, ko, k3), which possesses a multiplicity one saddle
connection. But we have no control on the multiplicity of the saddles attached to this
saddle connection. It is easy to have a refinement of the precedent proof to obtain a more
precise result. We announced such statement in the next section.

Proof in the holomorphic case n = 2

Let Py, P, be the two different zeroes of 1) on the Jenkins—Strebel surface S = S(m, A).
Obviously, we have the following dichotomy: either there is no saddle connection between
P, and P, or there is at least one saddle connection on the surface (for the horizontal
foliation).

We can apply the same type of argument in the discussion of the case n = 3 to see
that in the second case, we obtain a multiplicity one horizontal saddle connection or the
permutation m must obey to some combinatorics restrictions. We can summarize this into
the following

Lemma. Let C be a connected component of a stratum Q(ky,ks) in genus g > 1 with any
ki, ko >0 and k1 4+ k9 = 49 — 4.

Then either there exists a flat surface [S, ] € C with a multiplicity 1 saddle connection
between the two different zeroes or there exists a surface [S(m,\),%] € C such that the
combinatorics of ™ is given by one of the two following type (corresponding of the two
above case of the dichotomy)

. 0] 1 T 0] T+1 ’l"+l
o 02 01(1) 01(7") 02 0’2(7"+ 1) (72(7"+l)
or

7r—<g> and  w(A) = A, n(B) — B
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where oy is a “true” permutation of the set {1,...,r} and o9 is a “true” permutation of the
set {r+1,....r+1}.

O

Thus the proof of the Theorem in the holomorphic case n = 2 is reduced to considering

these two permutations. As in the case n = 3, one can prove, using the notion of cyclic

order and irreducibility, that there exists a surface S(#’,\), with #’ ~ 7, and having a

multiplicity one saddle connection. The proof fails in two cases: it corresponds to the case
(up to a cyclic order) where

m = I;(r,1) fori=1or 2

In Chapter 3, we prove hove seen that these surfaces are hyperelliptic and belong to the
hyperelliptic connected component QP (ky, ky). Thus it achieves the proof of the Theorem
in the case n = 2 and where all singularities are non-negatives.

Here we adresse the proof of the first case. The idea is essentially the same to the one
given previously in the case n = 3 (for the stratum Q(—1,—-1,4g — 2)). The generalized
permutation 7 is equivalent to the following one:

04 1 r 01 r—+1 . r+1
o1(r) 0y oo(r+1) ... oo(r+1) 0o o1(1) ... o1(r—1)

First the corresponding separatrix loop 7y(m) on the surface S(m, \) obtained by suspension
over this permutation is a saddle connection. Then one can easily see that this permutation
is weakly irreducible, and so irreducible, if and only if we have

o1(r)=1

Repeating this process, we obtain that either there exists a cyclic order such that the
vertical saddle connection «y(7) has multiplicity 1 or we have

o1(1) =r—i+1 fori=1,...,r
and
o9(j)=2r+1—j5+1 forg=r+1,...,7+1

namely, these last conditions are equivalents to

7w = Iy(r, 1)

Proof in the meromorphic case n = 2

Let us consider the stratum Q(kq,...,k,) = Q(—1,4g —3) in genera higher than 3. In this
case, the situation is more complicated. In particular we found a connected component
in the stratum of genus 3 for which there are no surfaces with a saddle connection of
multiplicity 1.

First we will prove a result less general than the Theorem: one can find a saddle connection
or a simple cylinder of multiplicity one. Then we prove the
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Theorem. Let C C Q(4g — 3, 1) be a connected component. Suppose that g > 4. Then
there exists a flat surface [S,] € C and a saddle connection y on S, between the pole and
the zero of v, such that

mult(y) =1

In the particular case of the genus g = 3, we also have the result with an additional
assumption that is C # Q""" (—1,9).

In order to prove this result, we will consider the two following Propositions. Recall
that a simple cylinder is a maximal straight cylinder such that each boundary component of
this cylinder is a single separatrix. A simple cylinder has multiplicity 1 if the corresponding
separatrix on the boundary has multiplicity 1 (see Chapter 3 and Figure 2.5).

Proposition 18. Let C C Q(4g9—3,—1) be a connected component with g > 3. Then there
exists a flat surface [S,1] € C with one of the two following properties

e There exists a saddle connection v on S of multiplicity one.

e There exists a multiplicity one simple cylinder on S (using notations of section 2.4.2,
we have C =C' @ s with s € {1,...,29} and C' C Q(—1,4(¢9 — 1) — 3)).

The first assertion of this Proposition is the result of the Theorem. So it remains to
obtain the Theorem in full generalities to consider the second assertion. It is given by the
following

Proposition 19.

e Any connected component of Q(—1,13) possesses a flat surface [S, ] with a saddle
connection of multiplicity one.

o Let Cp = Q(—1,5) be the unique connected component of the stratum Q(—1,5). Let
s € {1,2,4} be an integer. Then there exists a flat surface [S,v] € Co ® s with a
saddle connection v on S of multiplicity one.

Note that we have by construction
Co®3= Q" (-1,9)
which explain why we do not consider the case n = 3.

Proof of the Theorem. If there exists a flat surface [S,9] € C C Q(—1,4g9 — 3) (g > 4) with
a saddle connection of multiplicity 1 then there also exist a flat surface [S’,9'] € C® s with
a saddle connection of multiplicity 1 by “bubbling a handle” on S.

Thus the Theorem follows immediately from Propositions 18 and 19. O

Proof of Proposition 18. The proof of the Proposition is based on the combinatorics of
generalized permutations. Let us suppose that [S, 9] is a Jenkins-Strebel differential inside
the connected component C C Q(—1,4g — 3). We can suppose, without loss of generality,
that the surface S decomposes into only one cylinder for the horizontal foliation given by
Sm(1)). Let w denote the corresponding generalized permutation which encodes the gluing
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of the horizontal intervals of the horizontal sides of the cylinder S\I'(4). Suppose that we
have a horizontal saddle connection v and a separatrix loop 7 such that the corresponding
intervals ¢ and ' for i = 1,2 are in a same boundary component. Then we can choose an
admissible vector A\ with the corresponding length of  arbitrary small. Thus the surface
S = S(m, A) satisfies to the first property. In other word, if 7 is not described by the
following permutation (up to a cyclic order)

w—<31 Lo 0) with  7({1,...,n}) C A

Proposition 18 holds. So we can assume that m is equal to the upper permutation. We are
going to consider the cyclic order on 7 to obtain a suspension S = (7', ) with a saddle
connection of multiplicity one or a simple cylinder of multiplicity one. One can remark
that the separatrix y constructed on S(m, A) is a saddle connection for all cyclic order on
the elements of the set A. In addition, if 7 is irreducible, there exists a dense set of A such
that + has multiplicity 1.

First we consider some permutations 7' in the class of 7 such that the surface S(#', \)
has a simple cylinder. To fix the notations, we denote by

( 1 ‘ 2 ... n 0 0 )

Tr~O =

The vertical measured foliation on S(o, A) has a vertical simple cylinder. The boundary
of this cylinder is the separatrix loop y. By Corollary 2, there exists a dense set of A such
that the multiplicity of v is 1 if and only if the restricted permutation & is irreducible. In
addition, in this particular case, it is easy to see that if ¢ is weakly irreducible but not
irreducible then there exists o1 ~ ¢ such that &7 is irreducible.

Let us assume that & is weakly reducible. We have one of the two possibilities for the
combinatorics of o

k+1 ... n 0 0
B

or
(112 ... n 0|0
=)
One can see that the first permutation is equivalent (with respect to the element k) to
a permutation as in Proposition 23. So in this case, we have the result: there exists a
simple cylinder of multiplicity one. It remain to consider the second permutation. We

have o(B) C A. Let us denote A = (A; r Ag) with 0(A4s) C B and r < n. With these
notations, the permutation ¢ is equivalent to the following one

r
g ~
r

Fact. If r # n then the above permutation satisfy assumptions of Proposition 23. So we
obtain a simple cylinder of multiplicity one.

r+1 ... n 0 01 2 ... r—1
As B 1 A
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Thus let us consider the particular case where r = n.

0o 1 ... n O .
7T—<n A, B 1A1> with m(Ag) C B

One can see that the vertical separatrix = is a saddle connection. Thus Corollary 2 imply
that if #’ ~ « (for the cyclic order on the second line) is irreducible then the Proposition
holds: « has multiplicity one.

Fact. The permutation 7 is weakly reducible if and only if we have Ay = () and A; = (C B’)
with B' = n(B) and C = (7(2) ... w(n —1)).

In other words we have proved the following Lemma

Lemma. Let C C Q(4g — 3,—1) be a connected component with g > 3. Let [S, 9] € C be a
Jenkins-Strebel form with one cylinder for the horizontal foliation. Then the surface (S, 1))
satisfies one of the two properties given by Proposition 18 or the corresponding permutation
for the combinatorics of the boundary component of the cylinder S\I'(¢) is given by the
following one (up to a cyclic order)

(0 1 ... n 0
"“\n B 1 C B
with m1(B) = B' and C = (n(2) ... w(n —1)).

O

So we have reduced the proof of Proposition 18 to the particular type of permutations

of above Lemma. We consider the two cases following the values of n: n > 2 and n = 1.

In the first case, we show that there exists ' ~ « (for the cyclic order on the second line)

such that «' is irreducible. So it implies the Proposition. The case n = 1 is more technical.
This correspond to the two following Lemma.

Lemma. Let n > 2 be an integer. Let w be the following generalized permutation
0O 1 ... n O
T = ,
n B 1 C B
with 7(B) = B" and C = (w(2) ... w(n —1)). We assume the technical condition that the

genus g of the surface satisfy
genus (S(m,A)) >3

Then there exists a permutation @ ~ 7 (for the cyclic order on the second line) such that
7' is irreducible.

Proof of the Lemma. Suppose that n > 3. Then we have n — 1 # 1. Let us denote
C = (C1 n—1 Cy). With these notations, 7 is equivalent to

! — 0 1 ... ... n—1 n O
\n—-1 Cy, B n B 1

It is easy to see that this permutation is weakly irreducible.



4.2. MAIN RESULT OF THIS CHAPTER 75

Suppose that n = 2. Let us denote B’ = (B"” 3) with 7(3) € B. With these notations

we obtain
, (0 1 2 0
TT=\13 B" 2 B 1

This permutation is weakly reducible if and only if B” = (). This last condition is always
satisfy else we obtain a particular flat surface with a simple pole and a zero of order 5.
The surface has genus 2 which is a contradiction.

To finish the proof, it is easy to see that if 7 is weakly irreducible and not reducible,
we can always find a permutation in the class of © which is irreducible.

The Lemma is proved. ]

To finish the proof of the Proposition, it remain to consider the case n = 1.

Lemma. Let w be a generalized permutation given by

/(01 0
"“\B 1 B
with w(B) = B'. Then one of the two following affirmations holds

e There exists a permutation ' ~ 7 (for the cyclic order on the second line) such that
7' is irreducible.

e Combinatorics of the permutation w is given by B=B' = (23 ... n).

Moreover, in the last case, there exists ©' ~ 7 and an admissible vector X such that the
vertical foliation on S(n',\) is completely periodic. In addition the surface decompose (in
this direction) into exactly g — 1 cylinders. One of this cylinder is a simple cylinder and it
has multiplicity 1.

This achieve the proof of Proposition 18. O

Proof of the Lemma. Let us denote B and B’ by B = (2 By) and B' = (B} 2 B)). Thus

(0 1 0
2 By 2 B, 1 B

One can see that this permutation is weakly reducible if and only if B} = (). The Lemma
follow by induction with B = By and B' = B),.

To finish the proof it remain to show for the second affirmation that we have a ver-
tical periodic decomposition into exactly g — 1 cylinders. Let us consider the following
generalized permutation 7', which is equivalent to 7

(0 1 0
TET =34 ..on 234 ... n 12

We consider the Jenkins Strebel surface S = S(n’, A) with the admissible vector A given

by

M= n-Da;a; (n-1Na; a; ... ; « for any @ € RY (4.1)
—_———

2n—1 times
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The vertical foliation on S decompose the surface into g — 1 cylinders. One can check that
the vertical cylinder given by the interval numbered n is a simple cylinder of multiplicity
1. Here we present a complete description for a surface of genus ¢ = 3 which correspond
to the case n = 5 (see Figure 4.3).

o
<
=
S
DO
S
=
> mm ==

3n
o—>=0
Ty n 3 4
In changing continuously
8y To the vertical parameters 2 n 1
_—
1, 2, 1 Cy |3
6, Cy By 0 4
°
3
v n 5, 0 2
O—>= 0
0, 8, 1, 6,
°
Oy o g, 3,
O—>20
3n o,

Figure 4.3: Here we present a surface “suspended” over the permutation 7’ and the admis-
sible vector given by Equation (4.1). The vertical foliation on S produces a decomposition
into two cylinders €y and C5. One can observe that the cylinder Cy is a simple cylin-
der. The conical angle is w. The corresponding vertical separatrix loop n can be choose
arbitrary small with respect to other vertical parameters. Thus C5 has multiplicity 1.

This achieve the proof of the Lemma and so of Proposition 18. O

Remark 8. Let us remark that the cylinder Cy in Figure 4.3 has an angle of (n + 1)7 (or
n — 2 if we consider the complementary angle). Thus, in terms of section 2.4.2, the surface
of genus g presented above is in a component of the form C&® (n+1) where C is a component
of the stratum Q(—1,4(9 — 1) — 3).

In the example of n = 5, we obtain a surface in the component Q" (—1,9).
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Now let us prove Proposition 19 to establish the Theorem in the meromorphic case
n =2
First we prove the following

Lemma 9. The stratum Q(—1,5) is connected.

Proof. The proof is completely analogous to the proof of the connectedness of the stratum
Q(8) (see Lemma 16). O

Proof of Proposition 19. Let us prove the second point of the Proposition; that is the
result for the stratum Q(—1,9). We want to prove that all connected component of this
stratum of the form Q(—1,5) ® s with s = 1,2, 4 has a surface with a saddle connection of
multiplicity one. Let us consider the two following permutations

(01 2 3 40 (01 23 40
"‘(453521) "2<352451>
We consider A = (1,...,1) an admissible vector for o;. We consider the cyclic order for oy
with respect to the elements 3 and 1. It is easy to see that the two corresponding surfaces
S(o, A) are respectively in Q(—1,5) @1 and Q(—1,5) & 4. In addition, the second permu-
tation with the cyclic order with respect to the element 2 give an element in Q(—1,5) & 2.

We finish the proof by the following remark. The action of the horocyclic flow on these
two points

hi([S(o1,A),41])  and  hy([S(o2,A),92])

give surfaces with a saddle connection of multiplicity 1.

Second, we prove the result for the stratum Q(—1,13). We want to prove that all
connected component of this stratum has a surface with a saddle connection of multiplicity
one.

By Proposition 18 it remain to consider all connected component of this stratum which
contain a surface with a simple cylinder of multiplicity one; that is all component of the
form C@s with C C Q(—1,9). We have proved that all component of the stratum Q(—1,9),
except the irreducible component, has the a surface with a saddle connection of multiplicity
one. So it is sufficient to prove the Proposition for all component of the form

Q" (-1,9)@s foralls=1,...,6

Recall that Q""(—1,9) = Q(—1,5) @ 3. Moreover all components Q(—1,5) @ s with
s = 1,2,4,5 possess a flat surface with a saddle connection of multiplicity one. Using
property of the map &, one can see that

Q(-1,9)"" @s=0(-1,5) ®s®3

Thus the Proposition holds for s = 1,2,4,5. We can reduce the case s = 6 to the case
s=3
Q(-1,9"" ®6=0(-1,5)®6®3=0(-1,9"" @3

We finish the proof for the case s = 3 by using the second property of the map &
O(-1,5)@3@d3=09(-1,5)d1®5

This achieve the proof of Proposition 19. U
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4.3 Refinement of the main result

In the previous section, we have shown that there always exists a surface, in a connected
component given in the assumptions of Theorem 4, which possesses a multiplicity one
saddle connection of multiplicity one. But we have no control of the multiplicity of the
singularities attached to this saddle connection. Here we can prove a stronger result in
the special cases of n = 3 and n = 4. The proof is just a refinement of the proof of the
Theorem 4.

Corollary 4. Let C be a connected component of the stratum Q(ky, ko, k3). We suppose that
C is not hyperelliptic when it makes a sense. We choose a particular degree of singularity,
say ky for instance ((ki,ka,ks) is consider as an unordered set). Then there exists a flat
surface [S,v] € C and an index i, € {2, 3} such that S possesses a multiplicity one saddle
connection between the two distinct singularities Py € S of order kv and P;, € S of order
k

Q-

For strata with four singularities, we have

Corollary 5. Let C be a connected component of the stratum Q(ky, ko, ks, ks). We sup-
pose that C is not hyperelliptic when it make sense. We choose two particulars degree of
singularities, say ki and ko for instance ((k1, ks, ks, kq) is consider as an unordered set).
Then there ezists a surface [S,v] € C and index iy € {1, 2} and jy € {3, 4} such that S
possesses a multiplicity one saddle connection between the two distinct singularities P;, € S
of order k;, and Pj, € S of order kj,.

4.4 Adjacency of strata

In this section we study the adjacency of the strata. We translate Theorem 4 in terms of
the description of the adjacency. We also give some description on the local connectedness
in a neighboorhod of the minimal stratum and of some particular strata.

4.4.1 Adjacency

Let C' C Q(ly,...,1,) be a connected component and

Tit+1

ki= Y 1  fori=1,...,n (4.2)
j=ri+1

with 0 =7r; <79 < --- <71y < ryyy =r. By definition, we say that C' is adjacent to C if
ccc
where C’ denote the closure inside the moduli space Qg.

We have the following criterion

Proposition 20. Let [S,9] € C. Suppose that we “break up a singularity” of 1 into two
singularities on S. We obtain a flat surface S'. Let C' be the connected component which
contains this point [S',4']. Then

ccc
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It follows by induction

Corollary 6. Let Q(ly,...,l,) be a stratum and C be a connected component of the stratum
Q(ky, ..., k). Suppose that vectors (I1,...,1,) and (ki1,. .., k) are related by formula (4.2).
Then there exists a connected component C' C Q(ly,...,l,) which is adjacent to C.

We can deduced from Theorem 4 and local description of local coordinates (see Chap-
ter 2) that we have a precise description of adjacency. More precisely, we have

Proposition 21. Let C C Q(ky + ko, ks, ..., kyn) be a connected component. Suppose that
we have a component C' C Q(ky, ko, ks ..., k,) adjacent to C. Then there exists a flat
surface [S,1] € C such that we can “break up the singularity” P on S of order ky + ko into
two singularities of order ki and ko to obtain a surface [S',9'] € C'.

Now we can translate Corollaries 4 and 5 and Theorem 4 in terms of adjacency:

Theorem 5. Any component component in a stratum in genus g > 4 is either hyperelliptic
or adjacent to a lower dimensional stratum.

We use this description in Chapter 6 in order to prove Main Theorem 1. In Chapter 6
we will prove a stronger result; that is the following dichotomy holds: any component
component in a stratum in genus g > 4 is either hyperelliptic or adjacent to the minimal
stratum.

4.4.2 Local connectedness

In general, we can “break up a singularity” P into different ways (see Chapter 1). When the
surgery is local and when there is many zero of order k = order(P), we can break the zero
into many ways to obtain different surfaces and so different connected components. For
example, in Appendix we construct two connected components C; and C inside the stratum
9Q(2,3,3) and a connected component C inside the stratum Q(2,6) such that C C C] U C}.
Here we first give some trivial conditions to obtain the local connectedness in a neigh-
boorhod of some special strata. Then, we cite a direct corrolary of a result of Kontsevich
Zorich concerning the local connectedness in a neighboorhod of the minimal stratum.

Local surgeries

We present the following result obtained as a direct corollary of the local constructions of
Lemma 1 and Lemma 2:

Proposition 22. Let [S,¢] € C C Q(k1,...,ky) be an arbitrary point. We consider the
stratum Q(l,r, ko, ... kn) with I +r = ky. Suppose that | +r = ki # k; for all i > 2 and
I, r are not both odd. Then there exists an arbitrary small neighborhood U of [S, ] in the
whole space Q4 such that

UNO(,r k... kn)

1s non-empty and connected.
We have the same type of result for the stratum Q(l,r, s, ka, ... ky) withl +r 4+ s =
ki1 # k; for alli > 2 and l,r,s any.
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Local connectedness in the neighborhood of the minimal stratum

Following Kontsevich  Zorich (see [KoZo|), we have:

Theorem 6 (Kontsevich, Zorich). Let p € Q(4g —4) be a point in the minimal stratum.
Then there exist an arbitrary small neighborhood U (p) of p in the whole space Q4 such that

Ulp) N Q(k1, - s k)

is mon-empty and connected for any k; with the condition Y k; = 4g — 4.
We can reformulate the above result in terms of adjacency:

Theorem. Let Q(ky,...,ky,) be an arbitrary stratum in genus g. Then there are at most s
connected components of this stratum which are adjacent to the minimal stratum Q(4g—4),
where s denote the number of component of the minimal stratum.

Chapter 5 is devoted the show the connectedness of the minimal stratum in genera
higher than 5. Thus, according to above result, Main Theorem 1 is reduce to prove the
dichotomy: any component component in a stratum in genus g > 5 is either hyperelliptic
or adjacent to the minimal stratum. This is done in Chapter 6.



Chapter 5

The Minimal Stratum Q(4g — 4)

This Chapter is devoted to a particular type of strata, the so-called minimal stratum
Q(4g — 4) in genus g. Our goal is to prove that it is connected for all genera g > 5. The
proof is based on induction on g > 3. The step of induction is given by the following
fact: in each connected component of the minimal stratum in genus higher than 4, there
exists a flat surface for which we can “erase” a handle. The initialization of the induction
is reduced to the proof of the connectedness of the stratum Q,_5(16), which we establish
by a direct argument. The main result of this Chapter is the following

Theorem 7. Any connected components of the stratum Q(4g — 4) is describe by the fol-
lowing list:

e The stratum Q(8) in genus 3 is connected.

o The stratum Q(12) in genus 4 possesses two components — corresponding to Q' (12)
and Q' (12).

e Any other stratum Q(4g — 4), in genera g > 5, is connected.

Here, we prove the above result in a weakly version: for the case g = 4: we will show
that the stratum possesses at most two connected components.
In Appendix, using combinatorics on Rauzy classes, we proved that the stratum Q(12) is
not connected thus it proves the Main classification Theorem for the minimal strata.

In a first section we show the step for the induction. In a second section we prove the
main statement.

5.1 Simple cylinder and the minimal stratum

Recall that the minimal stratum Q(4g — 4) in genus g is non-empty for all genera g > 3.
In Chapter 1, we have described a surgery to “bubbling a handle” on a flat surface. This
shows that there are some connected components of Q(4g — 4) which are “accessible” from
a surface in the stratum Q(4(g — 1) —4) by “bubbling a handle” at the unique zero of the
differential. As in Chapter 4, we would like to classify all connected components of this
type. This will give us the step for our main induction. First we give some restrictions to
obtain such property. Then, we prove that all connected components in genera higher than
4 are “accessible” by this surgery on a half-translation surface of lower genus. Namely, we
will show the

81
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Theorem 8. Let C be a connected component of the stratum Q(4g — 4) in genus g > 4.
Then there exists a flat surface [S, 9] € Q(4g — 8) and an angle parameter s such that the
surgery “bubbling a handle” at the unique singularity of v in S (with discrete parameter s)
gives rise to surfaces belonging in the component C.

In other terms, using notations of section 2.4.2, above statements says that the map

® 1 m(Qg-1(49 — 8)) x N = m(Qy(4g — 4))
C, s)—»Cas:=C

is onto. Recall that up to consider the complementary angle, s can be choose in {1,...,2g—
2}.
First we give an independent geometric proof of an analogous result of Kontsevich—

Zorich in the particular case of Abelian differential. Then we give the proof in full gener-
ality.

5.1.1 Formulation of the statement

According to section 2.4.2, above Theorem is equivalent to the following one:

Theorem. Let C be a connected component of the stratum Q(4g —4) in genus g > 4. Then
there exists a flat surface [S,1] € C such that S possesses a multiplicity 1 simple cylinder.

According to [MaSm], the stratum Q(4) is empty so that no surface in the stratum
Q(8), in genus 3, is obtained from a surface in lower genus by “bubbling a handle”. In
other words, for all points [S,%] in the minimal stratum Q(8), if S possesses a simple
cylinder, and if [y] denote the separatrix loop which is the boundary of this cylinder, then

mult(y) > 2

This explain why the genus in the assumptions of the Theorem is assumed to be greater
or equal than 4.

As in Chapter 4, the proof of this result is based on the combinatorics of the cylinders
given in a completely periodic direction. First we present the idea on the proof. Next we
give an independent proof of an analogous result of Kontsevich Zorich in the particular
case of Abelian differential. Then we give the complete proof of above result.

5.1.2 Sketch of the proof

Let (S,1) be a point such that the horizontal foliation decompose the surface into a unique
cylinder. We denote by 7 the corresponding generalized permutation. We have to show
that (S,) has a multiplicity one simple cylinder.

We recall the main idea discussed in section 2.5.2. Let us assume that =« has the

following form
(0 A
"“\o B

Then the vertical foliation on S(m, A) produces a simple cylinder.
Moreover, if 7 is irreducible then one can see that this cylinder has multiplicity 1.
Then we show we can always find a twist on the element of « such that this is done
which gives the result. For the next, we restrict the proof of the Theorem to the proof of
a combinatorics Proposition.
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1 P P 1
p 7
— - 471—
” K o ”
P o2 P P
7

Figure 5.1: Here on the left, the figure represents a flat surface of the form S(m,\). In
the vertical direction, we can easily see that there is a simple cylinder. The boundary
component of this cylinder is 1. On the figure on the right, we have represented the
diagram of the vertical foliation on S. In this example, the angle of this cylinder is 47 (or
67 is we consider the complementary angle). If the generalized permutation 7 is irreducible,
one can choose lengths of horizontal parameters in the way that n has multiplicity 1. In
this case this surface is obtain from a surface in genus g — 1, if ¢ =genus(S), by “bubbling
a handle” (see Figure 1.3).

5.1.3 Proof of the main result of this section
Proof of the main result versus Abelian differentials

In this section we give a proof of the existence of surfaces with a simple cylinder in each
connected component of the minimal stratum of Abelian differentials H(2g — 2).

Theorem 9. Let C be a connected component of the minimal stratum H(2g —2) with g > 2.
Then there exists a surface [S',w'] € C with a one simple simple cylinder; that is (S',w')
is obtained from a surface (S,w) in the minimal stratum H(2(g — 1) — 2) by “bubbling a
handle” at the unique zero of the differential w.

This result was first proved by Kontsevich and Zorich. Here we give an independent
geometric proof using the combinatorics of surfaces with one cylinder. In particular, this
proof does not use the notion of Rauzy classes.

We first show a combinatorial Proposition in order to prove the Theorem

Proposition 23. Let m be a “true” permutation of the group S,. We assume that the
suspended surface has no marked point that is w(i + 1) # w(i) + 1 for all i =1,...,r with
the “dummy” condition w(r + 1) := w(1). Let us also assume that the genus of the surface
1s greater than 2. It implies in particular that v > 4.

Then there exists a permutation m in the class of © for the cyclic order with w1 (1) =1
and such that 71 s irreducible.

Now assuming above Proposition, one can prove the Theorem:

Proof of Theorem 9. Let C be a connected component of the minimal stratum #(2g — 2)
with g > 2. Let us take a Jenkins Strebel surface (S, w) inside this component.
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According to Proposition 23, we can assume that the permutation m which encode the
gluing of horizontal sides of the cylinder S\I'(w) satisfy

(1) =1 and 7 is irreducible

Thus Remark 2.5.2 imply that there exists on S a simple cylinder in the vertical direction.
In addition 7 is irreducible. Applying Corollary 2, we obtain a full Lesbesgue measure set
of admissible vectors A such that S(m, A) € C possesses a multiplicity one simple cylinder
(in the vertical direction).

Theorem 9 is proved. O

Proof of Proposition 23. Let m be a permutation of the set {1,...,r} with r > 4. We can
always assume, up to a cyclic order, that 7(1) = 1. If 7 is irreducible then the Proposition
holds with 71 = . Thus let us assume that the restrict permutation 7 is reducible. Then
by definition there exist 2 < 4y < r such that

7({2,...,i0}) ={2,...,ip}

Let us consider the following new set: 7(ig +1,...,7) = (A; r Ay). With these notations,

we have
A U O PR T B e |
TETE N A 1 ow(?) ... . w(in) A

It is easy to see that Ay # (): else the corresponding flat surface S(my, A) will possesses a
marked point and we do not consider such flat surfaces. Thus, with this condition, if 7y is
reducible, it is easy to see that the corresponding invariant set = ({1,...,i4}) = {1,...,44}
will satisfies the condition iy > 4941 > ig. The set {0,...,r} is finite, thus the Proposition
holds by repeating finitely many times this process.

Proposition 23 is proved. O

Proof of the main result

We want to prove an analogous result of Proposition 23 on the combinatorics of generalized
permutations. The proof is a little technical. First we show a combinatorial Proposition,
analogous to Proposition 23, under the technical assumption that permutations 7 satisfy
condition (x) (see section 2.2.6). Then we prove Theorem 8.

" A . . ,
Proposition 24. Let m = < B ) such that w satisfy the condition (x). In particular we

have #A = #B. Moreover we assume that the flat surface S = S(mw,A) has no marked
points. Let us also assume that #A > 7. This imply in particular that the genus of the flat
surface S = S(mw, \) satisfies

genus(S) =g >4

Then m is equivalent (with respect to the cyclic order) to

0] A’
™\ol|B

/

where T = ( B

) 1s irreducible.
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We forgot for the moment the proof of the Proposition in order the show the Theorem
assuming Proposition 24.

Proof of Theorem 8. Let C be a connected component of the stratum Q(4g — 4). If there
exists [S(m, A), %] € C such that 7 is irreducible then, applying the proof of Theorem 9 we
have done. Now the proof of Theorem 8 in full generality is reduced to the two following
Lemmas. U

Lemma 10. Let Cy be a connected component of the minimal stratum Q(4g — 4). Then
there exists a sequence of connected components C; for i =1,...,t (t > 0) of this stratum
and a sequence of connected components C/ for j =1,...,t of the stratum O(kj, 49 —4—kj)
(with k; even) such that

CiUC;i1 C Citl for all i=0,...,t—1

In addition, there exists a flat surface S = S(m,\) with [S,¢] € C; and w satisfy the
condition (x).

Lemma 11. Let Cy be a connected component of the minimal stratum Q(4g — 4). Suppose
that there exists a component C1 of the minimal stratum and a component C of the stratum
Q(k,4g — 4 — k) (k even) with

CoUCy C C

Let us also assume that there exists a flat surface [S,v] € C; with a simple cylinder of
multiplicity 1. Then there also exist a flat surface [S,v] € Co with a simple cylinder of
multiplicity 1.

Proof of Lemma 10. Let [S(mw, A),9] € Cy be a point. If 7 satisfies the condition (*) then
the Lemma holds. If not, there exists two separatrices vy and 7 such that +* and 7’
are present twice in a same side of the cylinder S\I'(¢)). Then, using representatives
elements (see Chapter 3), we can break up the unique zero into two zeroes by adding a
saddle connection ¢ such that ¢! and ¢? are not in a same side of the cylinder. Applying
Remark 2, we can collapse the saddle connection = to a point to obtain a new surface in
the component C; C Q(4g —4). Now let us remark that the “transition” surface belongs to

a component C' of a stratum with two singularities. We have

CoUC; C C_]
Repeating inductively this process, Lemma 10 holds. O
Proof of Lemma 11. Its follows from Proposition 11. O

Proof of Proposition 24. First of all note that, under the condition (x), a permutation
which is weakly irreducible is irreducible.

Recall that a generalized permutation is an ordered partition of X = {1,...,n 4+ m}
into two ordered sets, X = Y;UY5. In the present thesis we shall always consider only those
generalized permutations, for which each of Y7, Y5 contains at least one entry of multiplicity
two. The permutation satisfy the condition (%) that is each set Y7, Y5 contains ezactly
one entry of multiplicity two. Up to re-labeling, we can suppose for the next that the two
particulars elements are 1 in Y; and 2 in Y5.
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In order to prove this result, we use the representations of 7w by a tabular. Let « be a
generalized permutation of the set {1,...,n 4+ m}. We can always assume, up to a cyclic
order, that (1) = n + 1. If 7 is irreducible then the Proposition holds with 7 = w. Thus
let us assume that the restrict permutation 7 is reducible. According to the definition of
weakly reducibility, we have a decomposition of @ into the following way

(0 A C
™\o0o B D

The reducibility of 7 involves one of the three following decomposition cases:

For all i € A, if i # 1 then (i) € B else n(i) € C.
For all j € B, if j # 2 then ©(j) € A else n(j) € D.

In addition, we assume that this decomposition is minimal: we do not have a decomposition
into sets A’, B', C', D" which are strictly include into the set A, B, C, D. This condition, in
the case of “true” permutation, is equivalent to say that 4y is minimal.

Obviously, in the type (1) and (2) of reducibility we have the result: this is simply the
idea discuss in the proof of Proposition 24. The type (1) is a direct consequence of this
remark. We can reduce the type (2) to the type (1) as follow. Let us denote the two sets
A = (A; 3) and B = (B; 3 By). With this considerations the generalized permutation 7
is equivalent to the following one

3 C 0 A
T 3 B, D 0 B

This last one can be reducible but then it is necessarily of type (1).
Thus it remain to consider the type (3) of reducibility of 7.

Recall that m, so all permutations equivalent to 7, satisfy the condition (x). The
generalized permutation 7 is reducible and we have

le Aand n(1) € C 2€ Band n(2) € D

Let us consider the two sets C' = (Cy 1 Cy) and D = (D 2 Dy). With these notations, we

have
(0 AlC 1 Gy
™\o0o B|D, 2 D

There is the following dichotomy: either the two sets C'y and Dy are empty or one of them
is non-empty (say Cy up to a permutation of lines). In the last case, we can consider the
algorithm given in the proof of Proposition 23 to obtain either the result or a permutation
with a more restricted combinatorics.

Using this procedure, it is easy to prove that either there is a permutation 7; in the
class of 7 for the cyclic order such that 7; is irreducible or the combinatoric of 7 is given
by one of the two following type of permutation (up to a permutation of lines)

0 A|C 1 and 0 A|C 1 3
0 B|D 2 0 B|D 3 2
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Obviously, if the two sets C' and D are non-empty, we can repeat this algorithm to obtain
either a permutation in the class of m for which the Proposition holds or a permutation
with a very restricted combinatorics. Namely, the following Lemma holds

Lemma. Let w be a generalized permutation which satisfy assumptions of Proposition 2/.
Then either m is equivalent to w, and m satisfy to Proposition 24 or the combinatorics
of m is given by one of the four following type of permutations

0 A1l 0 A3 1 0 A3 1 0 A|4 3 1
0 B2 0 B3 2 0 B{2 3 0 B4 2 3
U

In order to prove Proposition 24, it remains to consider these four type of permutations
above. We will consider only the second case. The others are similar and it is an easy
exercise.

The main idea is to describe the structure of the sets A et B. For the next of the
proof, we will use the same notations not to have too many variables. Namely, we use the
notation A, B, C, D to describe the sets A, B.

Let us denote A = (A; 1 Ay) and B = (B; 2 By). Not to have two many notations,
we declare that A stands for Ay, B stands for By and C stands for Ay, D stands for Bs.

Lemma 12. Let w be a generalized permutation of the following form

0 A1 C|3 1
0 B 2 D|3 2
Let us suppose that #A + #C > 3.
Then m ~ m and the generalized permutation 7y is irreducible.

Proof of Lemma 12. By assumption on the minimality of the decomposition, we have one
of the two sets C' and D which is non-empty; else 7(A) = B which contradicts the fact on
the minimal invariant set.

Up to a permutation of the lines, we can assume that C' # (. Let us consider C' = (Cy 4)
with 7(4) € B U D. For the next of the proof we will forget the index 1; that is C' stand
for C; to simplify the notations.

We will consider the two following cases: the case where 7(4) € B and the case where
n(4) € D.

Case 1. For the first one, we denote the two sets By and By by B = (B 4 By). Thus the
permutation 7 is equivalent to the following one

(4 3 10 A1 C
TeTM =4 B, 2 D3 2 0 B

Obviously, the permutation 7 is reducible if we have By = D = ). On the other hand,
if one of the two sets By or D is non-empty, the permutation 7; can be reducible but the
corresponding decomposition is of type (1) and so the Lemma holds. For the case where
By = D = (), one can see that 7 is equal to

(0 A1 C 4|31
™\o B 4 2 3 92
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(B stands for By).

Assumptions on 7 implies that #B > 2. So we can write B = (B; 5) with n(5) € AUC.
If 7(5) € C then we decompose the set C' by C' = (C; 5 C3). Obviously, Co # 0: we do
not consider surfaces with marked points. Thus, using the same remarks as above, by
considering the cyclic order with respect to 5, we obtain the result. If 5 € A, we obtain
the same conclusion using the fact that C # (): it is a consequence of the assumption on
the minimality of the invariant set.

Case 2. For the second case, recall that we have w(4) € D. We note D = (D; 4 Dj) with
Dy # (. Thus the permutation 7 is equivalent to the following one

(4 3 10 A1 C
TYT =4 D, 32 0 B 2 D)

Obviously, the permutation 7o is reducible if we have m9(D3) C A. On the other hand, if
we does not have this condition, the permutation 79 can be reducible but the corresponding
decomposition is of type (1) and so the Lemma holds.

Thus, to finish the proof of this case and so the Lemma it remain to consider the case
where m9(Dy) C A and 7 is equal to

(0 A1 C 4 3 1
™\0 B 2 D, 4 Dy 32)°

As above, D is non-empty and so we can write Dy = (D9 5) and A = (A; 5 A). Let m3

be the generalized permutation in the class of 7w for the cyclic order with respect to the

element 5. By direct computation, one can see that if 73 is reducible, it is of type (1).
This achieve the proof of Lemma 12. ]

In order to prove Proposition 24, it remain to prove the three following Lemma. Proof
are analogous to the above so we left them in exercise.

Lemma 13. Let w be a generalized permutation of the form

0 A1 C|1
0 B 2 D|2

Let us suppose that #A + #C > 4. Then w ~ m with m1 holds for Proposition 2.

O
Lemma 14. Let 7 be a generalized permutation of the form
0 A1 C|3 1
0 B 2 D2 3
Then m ~ m with m holds for Proposition 24.
O

Lemma 15. Let 7 be a generalized permutation of the form
0 A1 Cl|4 31
0 B 2 D|4 2 3

Then m ~ m with m holds for Proposition 2/.
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O
Clearly, Proposition 24 follow from the Lemma which classify the type of combinatorics
of m and from Lemma 12, 13, 14 and 15 Thus it achieve the proof of Proposition 24. [

5.2 Connectedness of the minimal stratum

Now we are ready to prove the main statement announced at the beginning of this Chapter;
that is Theorem 7. We first prove directly that the stratum Q,—5(16), and inductively on
g, we show that the stratum Q(4g — 4) for g > 5 is also connected. The step of induction
is given by the previous section.

5.2.1 Initialization of the induction: genera g = 3, 4, 5
The genus g =3

First we prove

Lemma 16. The stratum Q(8) is connected.

Proof of Lemma 16. The proof of this Lemma is just based on a calculus.

Let (S, ) be a Jenkins—Strebel surface of genus 3, with a unique zero, which is decomposed
into a unique cylinder for the horizontal foliation. So that, there is a unique conical
singularity on S with a conical angle of 10r. We are going to see that there are few
possibilities for the combinatorics of the gluing for the set of horizontal separatrix loops.

Let us denote by 7 the corresponding generalized permutation. Obviously, there is two
possibilities for 7: either the number of elements of Y7 and Y5 are the same or it is different.
We call the set of generalized permutations which satisfy the first condition the class Sy
and the set of second type of permutations the class Ss.

Moreover using the fact that [S,¢] € Q(8), one can see by direct computation for
permutations in §; we have #Y; = Y5 = 5 and for permutations in §; we have #Y; =7,
#Y5 = 4 (up to a permutation of lines).

Now we can identify all permutations in the class §; and Sy up to the cyclic order and
a re-labeling of lines. We find 4 generalized permutations in the class &1 and 3 generalized
permutations in the class Sy (see the following list which gives representatives elements)

535 2 4 52 5 3 4 2
(12134)(1314 )
5 45 2 3 35425 2
(12134)(1314 )
5 45 3 2 53 25 4 2
(12134)(1314 )
535 3 4

(12124)

We proceed as in the proof of Proposition 19. At the present time, we have just proved
that there is at most 7 connected components inside the stratum Q(8). Now, we consider
surfaces S(m, \g) with 7 € Sy and with an appropriate admissible vector Ay equals to

>\0 = (11 13 la 17 la 17 2a 1a 2’ 1)
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We consider the vertical foliation on all surfaces S = S(m, Ag) for m € Ss.

One can that this foliation is completely periodic and decomposes the surface into only
one (horizontal) cylinder. Moreover the corresponding permutation, which encodes gluing
of the vertical separatrix loop, is contain (up to a cyclic order and a change of lines) in the
class §1. Thus it proves that there is at most 4 connected components inside the stratum
Q(8).

Now let us consider all surfaces S(m, A1) with 7 € S with the admissible vector A
equals to

A =(1,1,1,1,1,1,1,1,1,1)

Obviously, these surfaces are arithmetics surfaces: the corresponding orientating double
covering is a ramified covering over the two-torus with only 1 critical value. We conclude
by the fact that all of these arithmetics surfaces belongs in the same PSL(2,Z)—-orbit.
Lemma 16 is proved.

O

Now we will consider the two cases corresponding to the strata in genera g = 4 and
g=>5.
The genus g =4

Proof of Theorem 7 in the case g = 4. Here we prove that the stratum Q(12), in genus 4,
has at most two components. More precisely, using notations of Chapter 3, we show

0(12) = 0'(12) U Q! (12)

In Appendix, we give an argument, namely Rauzy Classes, to show that this union is a
disjoint union.

Let Cy be the unique connected component of the stratum Q(8) (see Lemma 16). Then,
Theorem 8, imply that any component C of the stratum Q(12) is of the following form

C=Cy®swiths=1,...,29g =6

We recall that by definition, Q' (12) = Cy @ 2 and Q'/(12) = Cy @ 6. Let us denote o
the generalized permutation given by Figure 3.7 and o9 the generalized permutation given
by Figure 3.8. We denote by (S1,11) (respectively (S2,)) the suspended flat surfaces
over oy (respectively o9) and the admissible vector

)‘0 = (17 la 17 la 17 1’ 1)
With our notations, we have
[Si,g1] € Q1(12)  and [y, 4] € Q' (12)

In the next we consider the cyclic order on permutations o; and gs. Our goal is to present
a nice twist on these permutations to obtain a flat surface which possesses (in the vertical
direction) a simple cylinder of multiplicity 1 with an angle kmw (kK =1,...,6).
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First, we consider the cyclic order on o; with respect to the element 5; that is
0__1234 6 0'—5612342
"\ 45 7 3 "T\s5 767 31 4
By direct computation, we see that S’ = S(o1’, \g) possesses (in the vertical direction) a
simple cylinder of multiplicity 1. In addition, this cylinder has angle 4, with respect to

the flat metric. In particular, S’ and S; belongs to the same connected components. In
other terms we have proved that

o N
~N Ot

Codd=Cod2=0'(12)

In an equivalent way, using the generalized permutation o9 and the cyclic order with
respect to the element 5, we show

Co@3=Co@6=0Q""(12)

To finish the prove, of the Theorem (in the case g = 4) it remains to consider the value
17 and 57 of s. Let us consider the following generalized permutation

> ( 1 234565 )
1 473726

By direct checking, the cyclic order on o with respect to the element 1 gives rise to a flat
surface with a simple cylinder of multiplicity 1 with an angle of 4.

For the cyclic order with respect to the element 3 we obtain a cylinder with an angle
of m.

For the cyclic order with respect to the element 2 we obtain a cylinder with an angle
of br.

In others terms
C0@4:CO®1:C0@5

which achieve the proof of Theorem 7 in the case g = 4. U

The genus g =5

Proof of Theorem 7 in the case g = 5. Let Cy be the unique connected component of the
stratum Q(8) (see Lemma 16). Let C; = Co ® 2 @ 2 be a component of Qg—5(16).
Our goal is to prove that the stratum Q(16) is connected. Recall that

Co®2=0"(12) and Co@6=0Q"(12)

Using Theorem 8 we obtain that for any component C' of the stratum Q(16), there exists
sg such that C' = C @ sg with C equals to one of the two components Qf(12), Q' (12) of
Q(12).

Using the properties of the map @ (see Chapter 2), one can easily proved that

Co®20s=Chp6Ds=Cyforalls=1,...,8

which will prove Theorem 7 in the case g = 5. U
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5.2.2 Induction on the genus g

Here we prove Theorem 7 in the full generality. The proof is based inductively on the
genus g of the surfaces. We use the main result of the previous section (see section 5.1) to
obtain the step of induction. We have shown that we can always find a surface, in each
connected component of the minimal stratum, with a multiplicity one simple cylinder.
Then the Theorem follows from properties of the map @ (see section 2.4.2). Now let us
discuss details of the proof.

Proof of Theorem 7 in the case g > 6. Let us fix ¢ > 6. Let us assume that Theorem 7 is
proved for all genera 5 < g’ < g and let us prove it for the genus g; that is let us prove that
the minimal stratum Q(4¢ —4) is connected. Recall that the initialization of the induction
is given by section 5.2.1.

Now g — 1 > 5 so that the minimal stratum in genus g — 1 is connected by assumption.
Let Cp = Q(4(g — 1) — 4) be the connected component of this stratum. We denote by
C1 C Q(4g — 4) the component obtained by “bubbling a handle” on a surface of Cy:

Cih=Cop1
By Theorem 8§, the map

& m(Qy 1(4g — 8)) x N = mo(Qy(4g — 4)
C, s)—»Cahs:=C(

is onto. But the stratum Q(4(g — 1) —4) is connected and s can be chosen in {1,...,2g9— 2}
(up to consider the complementary angle). Thus we obtain a surjective map

@ :{1,....29 — 2} = m(Qq(4g — 4))

Our goal is to show Cy @& s = C; for any s which will prove the Theorem.
Always by Theorem 8, there exists rg such that

C0:C6697"0

with C{, a component of the stratum Q(4(g—2)—4) (which is non-empty because g—2 > 3).
Recall that the stratum Q(4(g — 1) —4) is connected so we also have

Copr=2_Co for any r (5.1)
Using above equation (5.1) and properties of the map @, we conclude that
Codr=Cidsdr=C drds=C®s for any r, s

Taking r = 1, we obtain the desired relation.
Theorem 7 is proved. ]



Chapter 6

General Classification

In this Chapter, we give the complete description of the set of connected component of
any stratum inside the moduli space of quadratic differentials. This corresponds to Main
Theorem 1 and Main Theorem 2. First of all, we consider the description of components
in genera higher than 5 which corresponds to the “general” case. Then we describe the list
of component in small genera; that is 1 < g < 4, where some components are missing in
comparison to the general case and some “exceptional” components appear.

The scheme of the proof is the following. It uses results of Chapter 4 and Chapter 5.
In the general case (¢ > 5), the minimal stratum Q(4¢g — 4) is non-empty (see [MaSm]).
We show that any connected component of an arbitrary stratum in genus g is either
hyperelliptic or adjacent to the minimal stratum. Then Theorem 6 gives an upper bound
on the number of non-hyperelliptic component on each stratum. We conclude using the
complete description of the set of hyperelliptic component (see |Lal]).
In order to proof Main Theorem 2, we essentially follow the same way as above but it is
more technical. We consider several case depending the multiplicities of the singularities.

6.1 Paths inside the moduli space

In this section, we describe precisely the adjacency of some strata of the moduli spaces. We
show that a non-hyperelliptic (or non-irreducible) connected component which is adjacent
to a hyperelliptic connected component or an irreducible connected component is also
adjacent to a non-hyperelliptic (or non-irreducible) connected component. For proving
this fact, we give some explicit continuous path inside the whole moduli space by using
explicit permutations.

6.1.1 Case of hyperelliptic connected components
Case of two singularities

We have construct a surface in the hyperelliptic connected component of the stratum
Q(4k+2,4(g — k) — 6) using the permutation ITy (2k +1,2(g — k) — 3) (see Chapter 3). Here
we explicitly present a continuous locally deformation of this surface inside the stratum
Q(ky,ko,4(g — k) — 6) with ki + ko = 4k + 2 and k;, ko any even integers. We first prove
a combinatorial Lemma and then the main statement.

93
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Lemma 17. Let a be an even integer with 2 < a < r + 1. We choose r = 2k + 1 and
Il =2(9 — k) — 3. We consider the half translation surface (S,1) given by suspension over
the following generalized permutation

W](T,l,a):

04 03 1 oo 0 r+1 ... T4l

r+1l ... r+1 0 r ... a O3 a-—1 1 09
Then

[Saw]EQ(G_Qa 4k+4—(1, 4(g_k)_3)
Proof. 1t is obvious. O

Then we have the following

Proposition 25. Let [S,1)] € Q"P(k, k') be a point (necessarily k = k' = 2 modulo 4).
Let k; be any even positives integers with k1 + ko = k. Then there exists a continuous path
p:[0,1] — Qg of [0,1] into the whole space Qg with 4g — 4 =k + k' such that

p(0) =[S, ]
e p(t) € Qlky, ko, k') for all0 <t < 1.
e p(1) € Q(k, K\ Q" (k, k).

Proof. Taking a = k1 + 2 and applying Lemma 17, the statement follows. O

Case of three singularities

We can prove similar results for hyperelliptic strata with three and four singularities by
using explicit representatives elements with corresponding generalized permutations.
6.1.2 Case of irreducible connected components

We prove similar results for irreducible connected components. More precisely, we prove
that if a connected component C, which is non-hyperelliptic and non-irreducible, is adjacent
to the irreducible connected component of the stratum Q(—1,9) then it is also adjacent to
the minimal stratum. Namely, we have

Proposition 26. Let [S,9] € Q""(—1,9) be a point. Let ki, ks be any integers with
ki e {-1,1,2,4} and ki + ko = 9. Then there exists a continuous path p : [0,1] — Qg—3
of [0,1] into the whole space such that

p(0) =[S, 9]
e p(t) € Q(—1,k1,ky) forall0 <t <1.
p(1) € Q(=1,9)\Q""(-1,9).
Proof. We use explicit generalized permutations as Lemma 17. U

We also have an analogous result for stratum Q(—1,3,3,3).
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6.2 Main Theorem 1

Let us fix g > 5. In this section, we prove that any non-hyperelliptic connected component
in any stratum in @, is adjacent to the minimal stratum. Note that this restriction on the
set of non-hyperelliptic connected component is necessary (see Proposition 15).

Proposition 27. Let us fit n > 2. Let C C Q(k1,...,ky) be a connected component of
a stratum in genus g > 5. We assume that C is not an hyperelliptic connected component
(when it has a sense). Then there exists Co C Q(4g — 4) a connected component such that

CycC
Now, assuming above Proposition, we are ready to prove our Main result:

Proof of Main Theorem 1. Let Q(kq,...,k,) be an arbitrary stratum in genus g > 5. If
n = 1 then the Main Theorem follows from Theorem 7. So let us assume that n > 2.
By Proposition 27, the set of non-hyperelliptic components of this stratum is adjacent to
the minimal one. Using Theorem 7 and Theorem 6 we conclude that there is at most 1
non-hyperelliptic component.

Thus any stratum which have no hyperelliptic component is connected and any stratum
which have a hyperelliptic component has at most two components.
We conclude by the fact that in genera higher than 5, any stratum which contains an
hyperelliptic component is non-connected (see [Lal]).
Main Theorem 1 is proved.

O

It remains to obtain the main classification result in genera higher than 5 to prove
Proposition 27.

Proof of Proposition 27. We consider several cases, following the different values of n, the
number of singularities. First we prove the Proposition in the particulars cases n = 2, 3, 4.
Then we prove it in the general case n > 5.

First of all, let us remark that the case n = 2 is given by Theorem 5.

Then let us consider the stratum Q(kq, ko, k3). We consider different cases following
the parity of k;. Note that the case of the stratum Q(—1,-1,4¢g — 2) is also given by
Theorem 5. Let C be a connected component of this stratum.

First, let us assume that (up to a permutation of k;) k9, k3 are odd and ky even. If C is
non-hyperelliptic, Corollary 4 implies that this component is adjacent to a component of
the stratum Q(ky + k;, k;) with {k;, k;} = {k2, k3}. According to Theorem 1 this stratum
have not a hyperelliptic component (k; is odd) so Theorem 5 implies that C is adjacent to
the minimal stratum.

Secondly, let us assume that all k; are even. We choose k; = max{k;}. Corollary 4
implies that this component is adjacent to a component of the stratum Q(ky + k;, k;) with
{ki, k;} = {ko, ks}. If this stratum has not a hyperelliptic component, we have done.

If not then we can assume that C is adjacent to a hyperelliptic component (if not, we have
also done). Proposition 25 and Proposition 22 show that we can joint this hyperelliptic
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component to a non-hyperelliptic component through the component C which conclude the
proof in the case n = 3.

The proof of Proposition 27 in the case n = 4 is similar to the previous one.

Now let us prove the Proposition for all n > 5. According to [Lal|, a stratum
Q(k1,...,kn) which contains an hyperelliptic connected component must satisfy n < 4.
Thus if we prove the Proposition for n = 5, by transitivity of the property adjacency, we
have done for all arbitrary values of n > 5.

The proof for n = 5 follows of the main result of Chapter 4. Recall that we have proved
(see Theorem 5) any component is either hyperelliptic or adjacent to a lower dimensional
stratum.

Let C be a connected component of the stratum Q(ki,...,ks). We choose k1 =
max{k;}. So C is adjacent to a connected component of the stratum

O(ky + ki, koy ... kiy .. k) (6.1)

Now, if this stratum has not an hyperelliptic connected component, C is adjacent to a
non-hyperelliptic connected component and so the result follows from the study of the
case n = 4. If the stratum (6.1) contains a hyperelliptic connected component then in the
stratum Q(kq,...,ks), there exists a zero of order k1 + k;. Recall that k; has been defined
by the max of all k; thus it implies that k; = —1.

Now, using Theorem 4, we conclude that C is adjacent to a connected component of
the stratum X

O(k1 — 1+ kj ko, ... Ky, ... ks)

This stratum has no a hyperelliptic component so C is adjacent to the minimal stratum.
Proposition 27 is proved. U

6.3 Main Theorem 2

It remains to prove Main Theorem 2 to establish the complete classification of components
of the strata. Here we consider particular small values of g. The genus g = 0 is given by
Proposition 2. So we treat cases g = 1,2,3,4. For genera 3 and 4, we prove an analogous
Proposition of the previous section on the adjacency of the strata. There is some additional
condition: some “exceptionnal” components comparing to the general case.

Proposition 28. Let n be greater or equals 2. Let C C Q(k,...,k,) be a connected
component of a stratum in genus g = 3 or 4. We assume that C is not an hyperelliptic
component neither one of the three components given by the list

Q" (-1,9)  Q""(-1,3,6)  Q""(-1,3,3,3) in genus g = 3
Then there exists Co C Q(4g — 4) a connected component such that
Cy C C

Note that as above, Main Theorem 2 in genera 3 and 4 follows from above Proposition.
There is some additional cases to discuss providing to the fact that Q(12) is not connected.
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Proof of Proposition 28. The proof is similar to the proof of Proposition 27. Particulars
cases follow from Proposition 26. O

Proof of Main Theorem 2. The proof in the case g = 3,4 is given by Proposition 28. Here
we just consider the two last cases, that is genus 1 and genus 2.

In genus 1, the projection of a Teichmiiller disc of a point in the moduli space of curves
is the whole space H?/PSL(2,7). Thus it is sufficient to prove that the stratification
given by the type of singularities on the set of meromorphic quadratics differentials on a
particular surface is connected. For instance, one can consider the standard torus C/Z2.
Obviously, the space of meromorphic quadratics differentials on the two torus is one-to-one
with the space of doubly periodic meromorphic functions on the complex plane (doubly
periodic with respect to the lattice Z?2). It is a classical result that the stratification given
by the type of singularities produces connected strata.

The minimal stratum in genus 2 does not exist; that is all quadratic differential on
a curve of genus 2 with a single zero is automatically the global square of an Abelian
differential. Nevertheless, we can prove a result analogous to Proposition 27: any connected
components of any stratum of the moduli space Qo different from

QMwpP(—1,-1,6) and  Q™WP(—1,-1,3,3)
is adjacent to one of the two following strata
Q(_la 5) or Q(za 2)

There is finitely many cases to consider. Using results on local connectedness and ex-
plicit paths between the strata (see Chapter 4), we can prove that all strata which are
adjacent to one of the two above components are connected. In [Lal|, we prove that
that Q(—1,—1,6) and Q(—1,—1,3,3) are not connected thus it follows that they possess

precisely two components. Main Theorem 2 is proved.
O
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Chapter 7

Appendix

7.1 Spin Structure

The invariant, that classifies non-hyperelliptic connected components of the moduli spaces
of Abelian differentials with prescribed singularities, is the parity of the spin structure
(see [KoZo|). We show that in the case of quadratic differentials the spin structure is
constant on every stratum where it is defined. This disproves a conjecture of Kontsevich—
Zorich that it classifies the non-hyperelliptic connected components of the moduli spaces of
quadratic differentials with prescribed singularities. Moreover we give an explicit formula
for the parity of the spin structure.

7.1.1 Spin Structure Defined by an Abelian Differential

We remind first the algebraic-geometric definition of the spin structure given by an Abelian
differential, see M. Atiyah [At]; see also [KoZo|; see D. Johnson [Jo| for a topological
definition.

Let w be a 1-form with only even singularities. There are 229 solutions of the equation
2D = K(w) in the divisor group where K (w) is the canonical divisor determined by w. A
spin structure is the choice of D in the Picard group Pic(S) of S. For an Abelian differential
with only even zeros, one can write

K(w) =2k Py + -+ 2k, P,

With these notation, we declare that the spin structure defined by the form w on the
complex curve S is just the divisor D = k1P, + -+ + k,P,,. Thus a point [S,w] gives
canonically a spin structure.

7.1.2 Parity of a spin structure

The dimension of the linear space |D| may have quite different values for different choice
of D. For example, in genus 1, the dimension of the space given by the three solutions
different from 0 have non-zero dimension. We declare that the dimension modulo 2 of this
linear space is the parity of the spin structure D and we denote it by ®(D). On a curve
of genus g > 1, M. Atiyah [At] proved that there are 297 1(29 4+ 1) odd structure spin and
229 — 2971(29 4+ 1) even structure spin.

99
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7.1.3 Spin structure on a deformed curve

According the result of M. Atiyah [At] and D. Mumford [Mu], the dimension of the linear
space |D(w)| modulo 2 is invariant under continuous deformations of the Abelian differ-
ential w inside the corresponding stratum, and hence, it is constant for every connected
component of any stratum, where it is defined.

7.1.4 Spin Structure Defined by a Quadratic Differential

Let 7 : S — S be the orientating covering. We denote by @? = #*¢ the pull-back. The
parity of spin structure of v is the parity of the spin structure determined by w

O(4) = @(w)

One can see that the parity of the spin-structure is well defined.

According to these notations, we have

Main Theorem 4. Let 1 be a meromorphic quadratic differential on a Riemann surface
S with singularity pattern Q(ki,...,k;). Let nyq be the number of zeros of 1 of degrees
k; = 1 mod4, let n_y be the number of zeros of 1 of degrees k; = 3 mod4, and suppose
that the degrees of all the remaining zeros satisfy k, = 0 mod 4.

Then the parity of the spin structure defined by v is given by

() = [%} mod 2

where square brackets denote the integer part.

Proof of 4. See |[La2|. O

7.2 Suspension over an interval exchange map

7.2.1 Zippered rectangles (After Veech)

Having an interval exchange transformation 7' : I — I one can “suspend” a flat surface S
endowed with an Abelian differential w over T'. Here we present the idea of such “suspen-
sion”; one can find all the details in the paper of W.A.Veech [V1]. See also a nice Figure
of this construction in [KoZo|.

Place the interval I horizontally in the plane C. Place a rectangle R; over each subinter-
val I; C I; the rectangle R; has the width A\; = |I;| and some altitude h;. Later on we shall
pose some restrictions on the altitudes. Glue the top horizontal side of rectangle R; to the
interval T'(I;) at the base. There are still no identifications between the vertical sides of the
rectangles, so we get a Riemann surface with several “holes”; each boundary component is a
union of the vertical sides of the rectangles. Now start “zipping” the holes. If the altitudes
h; of the rectangles, and the altitudes a; till which we “zipper” the rectangles obey some
linear equations and inequalities (see [V1]), then we manage to eliminate all the holes. The
Riemann surface thus constructed has natural flat structure with cone-type singularities;
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the complex structure, coming from the initial complex structure on the plane C, extends
to the conical points. The Abelian differential w is locally represented as dz, where z is
the standard coordinate in C.

As we already mentioned the altitudes h;, and a; obey some linear relations; it is
proved in [V1] that the family of solutions is always nonempty. This family has dimension
m = 29+ k — 1 = dim H'(S,, {zeroes of w}), which coincides with the number m of
subintervals under exchange, 7 € 5.

7.2.2 Second construction (After Masur)

Here we present a nice construction, due to Masur (see [Mal]), analogous to the previous
one. Having an interval exchange transformation 7' : I — I one can “suspend” flat surface
S endowed with an Abelian differential w over T.

Recall that an irreducible permutation 7 is a permutation of the set {1,...,n} such
that

m({1,...,k}) #{1,...,k} forall k < n

Obviously, this condition is equivalent to

Lemma. The permutation 7 is irreducible if and only if
Z(W(z) —1) >0 foralll1<k<mn (7.1)

Let T be an interval exchange transformation on the segment I = (0;1) with corre-
sponding parameters (7, A). Let us assume that 7 is irreducible and > A; = 1. We consider
the 2n—gon in R? given by its vertex (the segment I is located on the horizontal axe)

k k
(0,0) (ZAi;Z(w(é)i)) (1,0)

i=1 i=1
and
k k
(S o)
i=1 i=1
According to formula (7.1), the polygon is well defined. We denote it by P(mw, \). Thus we
have the following obvious

Lemma. The opposite edges of the polygon P(mw,\) are parallel and of equal lengths.

We can glue by translation all edges to obtain a Riemann surface S endowed with an
Abelian differential w = dz. The singularities are located at the vertices of the polygon.
One can see that the first return map of the vertical flow of w on the interval (0;1) on S
gives the initial transformation 7T'.

Remark 9. This construction has been rediscovered by Veech in the hyperelliptic case.
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7.3 Rauzy classes

In this section, using combinatorics, namely, Rauzy classes, we present some particulars
non-connected strata (see [Zol| and [Zo2] for details). These strata are precisely those
exceptional strata which are non-connected and which do not possess an hyperellitpic
component. Permutations given in this section are different from permutations presents
in Chapter 2. Permutations in Chapter 2 encode the gluing of the horizontal sides of a
straight metric cylinder. In this section, all permutations are considered as the coding of
the “first return map” of the minimal vertical foliation on a transversal. In our cases, our
foliation is not oriented, thus we must pass to the double covering to obtain a notion of
flow. The main result of this section is to prove

Proposition. The four following strata

in genus 3 : Q(—1,9) Q(-1,3,6) Q(-1,3,3,3)
in genus 4 : Q(12)

are not connected.

Proof of the Proposition. The proof used combinatorics on Rauzy classes. For each above
stratum, we consider a flat surface. The “first return map” on an interval inside this
particular surface produces an linear involution, parametrized by a collection of intervals
and a generalized permutation (see [DaNo|). We denote this permutation by ;. Then
we compute the eztend Rauzy class R(m) corresponding to m; and we give an explicit
element my such that my ¢ R(m) and an explicit surface in the same initial stratum such
that the “first return map” on a transversal gives an linear involution, parametrized by the
permutation ms.

For instance, we treat the last case: the stratum Q(12). The us consider the two

following permutations
7T_8 1 6 3 726 7T_8 16 3 26 7
75135 8 24 " \75 135 24 8
Using an analogous construction of Veech, namely Zippered Rectangles, (see section 7.2),
we can check that flat surfaces (S1,41) and (S9,19) given by suspension over these two
permutations are flat surfaces inside the stratum Q(12). Moreover we can choose the
length of the corresponding horizontal intervals to be 1 to obtain surfaces with a vertical

simple cylinder of multiplicity 1. By direct computation of angle of this cylinder, we obtain
(according to the notation of Chapter 3)

[GANEN
[GANEN

[S1,1] € Q7(12)  and  [Sy, 4] € Q'7(12)
By direct computation of the corresponding Rauzy classes, one can see that
Ty & R(m)

In particular, this prove that Q'(12) and Q'/(12) are two disjoint connected components
of the stratum Q(12).
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We can prove the same fact for specials strata in genus 3. For example, for the stratum
Q(—1,9) we consider the two permutations

(26 5 4 773 (7T 2 4515 6
=16 3425 1 ME\73341 27
We can check that the second permutation give rise surfaces inside the irreducible connected

component Q(—1,9)"" of the stratum Q(—1,9) (the vertical foliation give rise to a simple
cylinder with an angle of 67).

Stratum Irreducible component Non-irreducible component
7T 2 4515 6 2 6 54 7 73
2(-1,9) (6334127) (1634251)
112 3 2 3 45 12 2 3 4 3 45
Q(-1.3,6) (46567878) <61786758

112345676
2(-1,3,3,3) (785824939)
8 416 37 26
(12) (75135824)

Table 7.1: Special strata.

In the tabular 7.1 we have present generalized permutations (in terms of Rauzy) which
produces surfaces in the “special” stratum. For each stratum, one can check that the Rauzy
classes are disjoint, which prove the Proposition.

O

7.4 Examples of measured foliations on surfaces

7.4.1 An Example of arithmetic surfaces

[Private communication with M.Schmoll|
For this section, we refer to [Sc2]. Let us consider the standard 2—torus S = C/Z2.
We also consider the following set P of points inside S

(0,0) (1/2,1/2) (1/2,0) (0,1/2)

The Veech group of S is SL(2,7Z). Obviously, the set P is preserved by the Dehn-Twist
and by the rotation thus the Veech group of the flat surface with marked points (S, P) is
still SL(2,7). In the vertical direction, the surface decompose into two cylinders, thus also
in all periodic direction (there is only 1 cusp for the Teichmiiller disc). One can consider
a ramified covering

T:85 — 8

of arbitrary degree such that the set consisting of critical values is equal to the set P.
Then the flat surface (S1,w = 7*dz) is a translation surface with no marked points. By
construction it is an arithmetic surface. One can check that in all periodic direction, there
is a decomposition into at least two straight cylinders (In any direction the number of
cylinders on S is at least the number of cylinders on S in the same direction).
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7.4.2 Measured foliations and transverse measured foliations

In this section, we present an example of a measured foliation, on a surface of genus 2,
with four simple zeroes which does not admits a transverse measured foliation. Note that
this example does not enter in our context (see [HuMa|).

(S, F)

Figure 7.1: A measured foliation F on a Riemann surface of genus 2. This foliation has
four simple zeros: at each singularities P;, there are three emanating saddle connections.

The measured foliation given in Figure 7.1 does not admits a transverse measured
foliation.

Proof. Let us assume that there is a transverse measured foliation ' to F . Then there
exist also a transverse measure for F'; that is a measure define on leaves of F. We denote
by I; the length of the saddle connections 7; with respect to this measure. In the direction
of F, the surface decompose into two metric cylinders. In comparing the perimeter of each
cylinders, we obtain

h4lg=lL+1lo+13+14 for the first cylinder

ly+1ls=1lo+13+15+ g for the second cylinder

We conclude that ls = I3 = 0 which leads to a contradiction (the length of a leaf is strictly
positive). O

Note that the measured foliation F; obtained by collapsing the two saddle connections
Y2, v3 to a point possesses two zeroes of order 2. Obviously there exist a transverse foliation
to F1. Thus it determines a point inside the stratum H(1,1).
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