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AbstractIt has become a truism that memory accesses play the major role of degrading programperformance. This is because the continuous increasing of the gap between instructionlevel parallelism (ILP) processor speed and memory access latency. Optimizing compilersmust avoid requesting data from memory if possible by using at the best the availableregisters of underlying hardware.This thesis reconsiders the register pressure concept so that it gets higher priority thanILP scheduling, but with full respect to intrinsic �ne grain parallelism. We propose tohandle register pressure early in optimization process, before instruction scheduling. Twomain strategies are developed.In the �rst strategy, we handle data dependence graphs (DDGs) so that we guaranteeregister constraints without increasing critical execution paths if possible. We introduceand study the concept of register saturation (RS), which is the exact upper-bound ofregister requirement for all valid schedules independently of architectural constraints. Itsaim is to add some serial arcs to the original DDG such that the worst register needdoes not exceed the number of available registers. On the other hand, register su�ciency(RF) is the exact minimal register requirement. Its aim is to detect unavoidable spillingdecisions when it exceeds the number of available registers. After RS and RF analysissteps, ILP scheduler is free from register constraints and �nal allocator may not requireavoidable spilling.Our second strategy consists in directly applying an early register allocation with op-timized ILP loss. It is built directly into the input DDG and hence register constraintsare �xed.Our thesis addresses basic blocks, acyclic control 
ow graphs (multiple basic blocs withbranches) and innermost loops intended for software pipelining. We assume a generic ar-chitecture model so that it matches current ILP processors. We give an exact formulationwith integer programming for all register pressure problems. We also provide algorithmicsolutions. Experimental results show that our heuristics are nearly optimal. Our thesisproves that we can and must handle register constraints early while keeping freedom fora further ILP scheduling. This is more bene�cial than a combined approach which triesto carry out register allocation and ILP scheduling in a single complex pass.Keywords : Instruction Level Parallelism, Register Allocation, Register Saturation,Register Requirement, Register Su�ciency, Software Pipelining, Integer Linear Program-ming, Code Optimization, Optimizing Compilation.



R�esum�eAujourd'hui, le fait que la m�emoire constitue un goulot d'�etranglement pour les perfor-mances des programmes est consid�er�e comme un truisme. Ceci d�ecoule du grand �ecartentre la vitesse des processeurs �a parall�elisme d'instruction (ILP) et la latence d'acc�es �a lam�emoire. En e�et, cet �ecart est en constante croissance. Les compilateurs doivent doncoptimiser les programmes a�n d'�eviter, si possible, de recourir �a la m�emoire, et ceci enutilisant au mieux les registres disponibles dans le processeur cible. Ceci car les registressont plus proches du processeur et peuvent être acc�ed�es tr�es rapidement.Cette th�ese r�eexamine le concept de la pression des registres en lui donnant une plusforte priorit�e par rapport �a l'ordonnancement d'instructions, sans ôter �a ce dernier ses pos-sibilit�es d'extraction de parall�elisme. Nous proposons de traiter le probl�eme des registresavant la phase d'ordonnancement. Deux grandes strat�egies sont �etudi�ees en d�etail.La premi�ere consiste �a analyser et manipuler un graphe de d�ependance de donn�ees(GDD) pour garantir les contraintes de registres sans allonger son chemin critique (sipossible). Nous introduisons la notion de saturation en registres qui est la borne exactemaximale du besoin en registres de tout ordonnancement valide, ind�ependamment descontraintes architecturales. Son but est d'ajouter, le cas �ech�eant, des arcs au GDD pourque la saturation soit en dessous du nombre de registres disponibles. R�eciproquement, lasu�sance est le nombre minimal de registres dont il faut disposer pour produire au moinsun ordonnancement valide pour le GDD consid�er�e. Si cette su�sance est au dessus dunombre e�ectif de registres, alors l'utilisation de la m�emoire comme moyen de stockageauxiliaire est in�evitable en introduisant du code de vidage (\spilling").Notre deuxi�eme strat�egie construit une allocation de registres directement dans leGDD en optimisant la perte du parall�elisme intrins�eque. Ceci est aussi e�ectu�e avant laphase d'ordonnancement.Notre th�ese consid�ere des blocs de base, des graphes acycliques de 
ots de contrôle(plusieurs BB avec branchements) et des boucles internes destin�ees par la suite �a un�eventuel pipeline logiciel. Nous supposons une architecture g�en�erique qui mod�elise presquetous les processeurs ILP modernes. Nous donnons des formulations exactes des probl�emesde registres par programmation lin�eaire en nombres entiers. Nous apportons �egalementdes solutions algorithmiques. Nos exp�eriences sur un large �eventail de \benchmarks"montrent que nos heuristiques sont presque optimales. Notre th�ese prouve que nouspouvons et devons traiter les contraintes de registres avant la phase d'ordonnancementtout en garantissant une libert�e pour l'extraction et l'exploitation de l'ILP. Cet ordred'optimisation est plus b�en�e�que qu'une approche combin�ee et complexe qui e�ectue �a lafois l'allocation de registres et l'ordonnancement d'instructions.Mots-cl�es : parall�elisme d'instructions, parall�elisme �a grain �n, allocation de registres,consommation en registres, saturation en registres, su�sance en registres, pipeline logiciel,programmation lin�eaire en nombres entiers, optimisation de code, compilation.
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Chapter 1IntroductionFour decades of hard e�orts ! That's what hundreds of computer scientists spent, and stillspending, in developing compiler optimization techniques for high performance comput-ing. While old optimizations for sequential Von Neumann processors relied on reducingthe number of executed instructions, the introduction of instruction level parallelism (ILP)processors brought a new order. Optimizations for such machines maximize parallelismand memory locality instead of minimizing the number of operations [SCD+97, BGS94a].Dozens of methods analyze and transform programs to boost their performance. Datadependence analysis, loop transformation, code scheduling, speculative execution and soon aim to best utilize underlying hardware. We can use lots of optimization techniquesbut answering the question \Which optimization should we use, and in which order ?" isstill a dream.Some years ago, I was a student looking for a Ph.D. project in this area. I joined ateam called A3 in the INRIA french laboratory working on code optimization for highperformance processors. Its leader asked me a question as starting point for researchsubject : \Given a program and an ILP processor, what would be the limits of its perfor-mance ?". The answer is crucial since it constitutes a stopping criterion for optimizationprocess. I took this motivating challenge...Starting with simple numerical fortran loops, I spent more than a year and a halfexperimenting optimizations in both high and low level codes on di�erent platforms. Icannot report exactly how many techniques and combinations I used, but I checked al-most all of them. I spent several months in performance debugging by using both directmeasurements (hardware performance counters) and simulations. I wanted to understandwhy my painfully optimized codes didn't reach the performance limit. I �gured out thatthe main responsible for such performance degradation is memory. Well, I re-discoveredthe wheel.It is easy to see that memory performance in terms of access delays does not follow thesame curve as processor performances, see Figure 1.1 [PH94]. This gap makes it very hardto reach peak performances in real applications. Even if using specialized and optimizedbenchmarks (Dhrystone, LinPack), achieving a maximal MIPS1 or MFLOPS2 is nearly1Million Instruction Per Second.2Million Floating Point OPerations per Second.13
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Figure 1.1: Memory Performance Gapimpossible. Figure 1.2 shows the gap between peak and real performances3, and it keepsincreasing with years.In spite of many code optimization techniques and memory hierarchy enhancement,the time spent in the memory system remains substantial. The authors of [fLRB01] de-pict the performance of the SPEC CPU2000 benchmarks, see Figure 1.34. The last barrepresents the harmonic mean of all experiments. As can be seen, the system spends only31% of the overall execution time for useful computation. This poor useful ratio is causedby CPU idleness waiting for servicing data requests from memory hierarchy to CPU.Then, I decided to optimize programs so that they avoid accessing memory. Thisbrought me to optimize the �rst top level in memory hierarchy, which are registers.1.1 Problem DescriptionRegister allocation was, and still is, one of the most important code optimization. Itwould be ideal if all program variables could reside in registers. However, the limitednumber of registers accessible via programs brings us to search for tradeo�s. We mustdecide which computed data reside in registers, which are stored in memory (spill code),and what are the operations that use the same register (false dependences).Old register allocation techniques were implemented for sequential processors and theydid not assume any parallel execution of operations. If carried out before ILP scheduling,no enough parallelism would be allowed because of excessive false dependences. If carried3Numerical performance results have been down-loaded from [Net, Wei]. The peak performance ofeach processor is given by the vendors and computed as a linear function of processor frequency ILPdegree.4These experiments are obtained on a simulated 1.6GHz, 4-way issue, out-of-order core with 64KBsplit level-one caches; a four-way, 1MB on-chip level-two cache; and a straightforward Direct Rambusmemory system with four 1.6GB/s channels. As reported by the authors, they use the simplescalar[ALE02] tool to simulate Alpha-ISA binaries of the SPEC CPU200 benchmarks, produced with a recentCompaq compiler (C V5.9-008 and Fortran V5.3-915) and compiled with the \peak" compiler optionsfrom the Compaq submitted SPEC results.
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Figure 1.2: Peak vs. Achieved Performance in Sun and Intel Processors

Figure 1.3: Memory Bottleneck in the SPEC 2000 Benchmark Suite



16 CHAPTER 1. INTRODUCTIONout after, scheduled code may require more registers than available and hence excessivespilling operations are inserted. Also, a combined pass is too complex and limits thegenericity of the compiler, as explained later.In this thesis, we show how to handle register pressure in data dependence graphs(DDGs) targeting RISC5 ILP processors. We decided to respect some principles :1. priority of registers on scheduling. This is because we want to avoid requesting datafrom memory;2. registers should not hurt the parallel execution of operations, if possible;3. our methods should not imply a major investment in compiler implementation. Thatis, our methods must be as portable (generic) as possible, and should not bring amajor re-organization of an existing optimizing compiler;4. our architectural model must be as generic as possible, so that it agrees with almostall current ILP processors.We propose to handle register constraints at the level of the DDG and before schedulingunder resource constraints. We investigate two main strategies, both applied for basicblocks or loops, see Figure 1.4.
Register Saturation and Sufficiency Analysis

Register AllocationScheduling 

DDG

Scheduling 

DDG with antidependencies

DDG

Modified DDG

Register Pressure Management

(1) Early Register Pressure Management (2) Early Register Allocation

Schedule Independent Register Allocation

Figure 1.4: Two Strategies for Handling Register Constraints
First Strategy Taking an input DDG, we must guarantee that the scheduler wouldbe free from register constraints and would not require more registers than available.This is intended for existing compilers that carry out code scheduling before or duringregister allocation. Our new phase is inserted before these two tasks. The intrinsic registerpressure of a DDG is de�ned by a triplet (RS;RF;R), see Figure 1.5 :5Reduced Instruction Set Computer.



1.2. OUR MOTIVATIONS 171. register saturation (RS) is the maximal register need of all valid schedules. If RSis less than or equal to R, the number of available registers, then register pressureis zero and the DDG is left unchanged. Otherwise, we add serial arcs to reduce RSwith full respect to intrinsic ILP;2. register su�ciency (RF) is the minimal number of registers required to produce atleast one valid schedule. If RF is greater than R, using memory as a second storagelocation cannot be avoided. We insert explicit load-store operations directly intothe DDG to reduce RF.Second Strategy We propose an early register allocation phase, at the level of theDDG while keeping as much intrinsic ILP as possible for the further scheduler. Thismethod is proposed for existing optimizing compilers that perform register allocation be-fore scheduling. Our new phase must replace the old register allocator if this latter hurtsILP scheduling.What are our arguments for treating register constraints before scheduling ? The nextsection presents our motivations.1.2 Our MotivationsMemory Gap If we combine code scheduling with register constraints, this means thatboth processes have an equivalent impact on code performance. This is basically a wrongassumption. As mentioned before, memory access is much more a source of performancebottleneck than ILP. Even if the scheduler succeeds in exploiting a maximal static ILP,
R

(c) Unavoidable Spill Code(b) Possible Spill Code Insertion(a) Null Register Pressure

reduced by
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spilling

RF
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Figure 1.5: Register Pressure Con�gurations



18 CHAPTER 1. INTRODUCTIONmemory access delays and cache e�ects decrease the overall IPC6. Register pressure mustget full priority against scheduling, but the former should respect the latter. This isbecause a disturbed register pressure treatment (allocation or other) with a schedulingprocess may introduce avoidable spill code. That's exactly what we want to avoid.Genericity of Register Constraints Nowadays processors have heterogeneous andcomplex properties. Despite many e�orts of grouping resource constraints into genericmodels (reservation tables for functional units usage, templates for valid operation com-pactions, static issue width, dispersal rules, ...) this problem is still not well solved becauseeach new architecture brings its own performance bugs. This fact means that optimizingcompilers, especially their backends, are very architectural dependent, and each vendorprovides a new compiler for its new processor. Optimized codes involve re-scheduling fordi�erent hardware platforms.In contrast, register constraints are more generic. They can be modeled as a set ofregister types (or register �les), and a number of architectural registers per type. Also, anoperation that writes its result into a register makes this latter busy during a contiguoustime interval until the last reading of the stored result. Hence, register constraints aremore portable and may be incorporated into intermediate level optimization process.Complexity of Register Pressure Scheduling under resource constraints is a per-formance issue. Given a DDG, we are sure to �nd at least one valid schedule for anyunderlying hardware properties (a sequential schedule in extreme case, i.e., no ILP).However, scheduling a DDG with a limited number of registers is more complex. Wecannot guarantee the existence of at least one schedule. In some cases, we must introducespill code and hence change the input DDG.Also, a combined pass of scheduling with register allocation presents an importantdrawback if not enough registers are available. During scheduling, we may need to insertload-store operations. We cannot guarantee the existence of a valid issue time for theseintroduced memory access in an already scheduled code; resource or data dependenceconstraints may prevent from �nding a valid issue slot inside an already scheduled code.This forces to iteratively apply scheduling followed by spilling until reaching a solution.All the above arguments make us re-think new ways of handling register pressurebefore starting the scheduling process, so that the scheduler would be free from registerconstraints and would not su�er from excessive serializations.1.3 Dissertation OverviewOur dissertation is presented in two volumes, the current one is the main document andthe second is an appendix.The main document contains four distinct parts. We have made e�orts to write inde-pendent chapters, so that readers can be free to consult our study in any order.6Instructions per Cycle.



1.3. DISSERTATION OVERVIEW 19Part 1 is devoted to recall some basic notations on graphs. We give a brief survey onILP architectures and register allocation techniques for sequential processors. We presentalso the integer programming techniques used in this thesis.Part 2 details our studies on register pressure in basic blocks (DAGs). It is composedof four chapters :� Chapter 3 �xes underlying architecture properties and de�ne the DAG model. Itgives also an exact formulation of register requirement by integer programming;� Chapter 4 studies register saturation (RS). We show how to compute it and reduceit by adding serial arcs. We also present its application to early register allocation.RS in the presence of branches is studied too;� Chapter 5 studies register su�ciency (computing and reducing it by spilling);� Chapter 6 surveys the state of the art of register pressure in DAGs.Part 3 extends our DAG work to innermost loops intended for software pipelining(SWP) scheduling. This part is composed of �ve chapters :� Chapter 7 de�nes the loop and architectural models. We recall software pipeliningand its consequences on cyclic register requirement and allocation. We give an exactformulation of the cyclic register need;� Chapter 8 studies cyclic RS (computing and reducing it);� Chapter 9 studies cyclic RF (computing and reducing it);� Chapter 10 show how we carry out an early cyclic register allocation directly intothe DDG without hurting a further SWP;� Chapter 11 surveys related work on register pressure in software pipelined loops.Part 4 �nishes our dissertation by some research proposals and a global conclusion.The second volume of our thesis (appendix) contains some of our formal proofs, thosethat aren't necessary for 
uent reading. It contains also our experimental benchmarks,numerical results and plots, and an example of RS computation.Intended Audience The primary intended audience of this dissertation are computerscientists and engineers. We assume a knowledgeable reader in the area of code optimiza-tion, though not an expert.
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Chapter 2Background and BasicsAbstractThis chapter introduces basic notions, de�nitions and notations used in this the-sis. We �rst address some basics in integer programming and discrete mathematics(graph theory). Then, we give a survey on ILP architectures and register allocationfor sequential codes.This chapter is organized as follows. Section 2.1 presents some integer linear program-ming techniques (intLP) that we use in this thesis. Section 2.2 gives basic notions andnotations in graph theory. Section 2.3 is a synthetic survey on instruction level parallelism(ILP) architectures. Finally, Section 2.4 recalls the old register allocation techniques forsequential processors.This dissertation uses integer linear programming (intLP) to model exact solutions forregister pressure problems. The next section recalls some basic notions about intLP andpresents some modeling techniques.2.1 Some Integer Linear Programming TechniquesInteger linear programming (intLP) is mainly used to formalize combinatorial problems[Bea96, BT97, CCPS98]. An integer linear programming problem (PintLP ) consists in�nding the maximum of a linear function, called the objective function, under linear con-straints. Formally, it amounts to solving the following problem (standard formulation) :(PintLP )8<: Maximize (or Minimize)z = c � x objective functionA � x = b integer constraintsx 2 Nn integer variableswhere A is an (m�n) integer constraint matrix, b an m�vector, and c an n-vector calledcost vector. This formulation can be rewritten by using the inequality constraints (�,�,>, <).In general, �nding an exact solution to intLP problems is NP-complete [Bea96]. Thespecial case of totally unimodular constraints matrix (where the determinant of eachsquare sub-matrix is equal to 0, 1 or to - 1) can be solved with polynomial algorithms[Sch87]. Given a system with n variables and m linear equations where L is the number ofbits of the variables, the interior point method [Kar84] can compute the optimal solution21



22 CHAPTER 2. BACKGROUND AND BASICSwith O(n3:5L) operations in the worst case.Even in general cases, some solvers support certain features, which allow using heuris-tics to get approximated or suitable solutions. In our experiments, we use CPLEX [CPL93]because it allows tuning resolution algorithms if computing optimal solutions is very ex-pensive (out of memory or time). We can use one of the following techniques.1. Stop the optimization process if the objective function reaches a certain limit. Thesolution in this case is suitable even if it is not optimal.2. Fix a limit and stop the optimization process if we reach it. We can set limits oncomputation time, overall allocated work space and the number of (visited) feasiblesolutions. We can also use a suitable combination between these limits.3. Start from a solution. We can provide a known solution to serve as the �rst integersolution.4. Choose a heuristics to �nd integer solutions during the branch and cut procedure onthe solution tree. CPLEX supports tuning speci�c parameters that allow guidinghow solution tree nodes are traversed during optimization process.Our integer problem formulations written in this thesis use some modeling techniquesof logical operators and other functions such as \maximum" and \minimum". The fol-lowing sections describe how we use linear constraints to write them.2.1.1 Expressing Logical Operators with Linear ConstraintsIntrinsically, an intLP problem formulates two boolean operators ^ and :.� Having two constraints matrixA and A0 with dimensions (m�n) and (m0�n), sayingthat x must be a solution for both of them is modeled by de�ning an aggregatedmatrix Â of dimension (m+m0)� n where :Â = � AA0 �� Having a linear constraint f(x) � b, saying that x must not satisfy the conditionf(x) � b is modeled by setting f(x) < b. Since the variables are integrals, we canwrite f(x) � b� 1.� Having a constraints matrix A with m lines (m linear constraints f1; f2; � � � ; fm),saying that x must not satisfy Ax � b is modeled by :f1(x) < b1 _ f2(x) < b2 _ � � � _ fm(x) < bmIn [GN72], the authors show how to model the disjunctive operator _. A key conditionis that the domain set of each variable is bounded, i.e., each variable must have a �nitelower and upper bound. Consider the problem :1. maximize f(x), x 2 D (D is called the domain set of x)



2.1. SOME INTEGER LINEAR PROGRAMMING TECHNIQUES 232. subject to 0BBB@ g1(x) � 0g2(x) � 0...gm(x) � 0 1CCCA or0BBB@ h1(x) � 0h2(x) � 0...hm0(x) � 0 1CCCABy introducing a binary variable � 2 f0; 1g, this disjunction is equivalent to :8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

g1(x) � �g1g2(x) � �g2...gm(x) � �gmh1(x) � (1� �)h1h2(x) � (1� �)h2...hm0(x) � (1� �)hm0� 2 f0; 1gwhere gi 6= 0 and hi 6= 0 are two known nonzero �nite lower bounds for gi and hirespectively. Indeed, if we use a �nite lower bound (even if it is zero), the system remainscorrect.In our intLP model, we need to express the disjunctive formula with three linearconstraints :f1(x) � 0 _ f2(x) � 0 _ f3(x) � 0 = (f1(x) � 0 _ f2(x) � 0) _ f3(x) � 0We introduce a boolean binary variable h 2 f0; 1g to express the �rst disjunction :8<: f1(x)� hf1 � 0f2(x)� (1� h)f2 � 0h 2 f0; 1g 9=; _ f3(x) � 0where f1 and f2 are two �nite lower bounds of f1 and f2 respectively. To express thesecond disjunction, we introduce a second boolean binary variable h0 2 f0; 1g :8>><>>: f1(x)� hf1 � h0 � f 01f2(x)� (1� h)f2 � h0 � f 02f3(x) � (1� h0)f3h; h0 2 f0; 1gwhere (f 01; f 02; f3) are �nite lower bounds for (f1 � hf1; f2 � (1� h)f2; f3) respectively.We can also generalize to arbitrary number of constraints in a disjunctive formula _n :_n(f1; � � � ; fn) = (f1(x) � 0 _ f2(x) � 0 _ � � � _ fn(x) � 0)Since the disjunction operator _ is associative, we group the constraints two by two byusing a binary tree. We can either express _n by grouping the constraints using a balanced



24 CHAPTER 2. BACKGROUND AND BASICSbinary tree as shown in Figure 2.1.(a), or using a left associative binary tree as shown inFigure 2.1.(b). With both techniques, there are (n� 1) internal _ operators which need(n� 1) boolean variables (h1; � � � ; hn�1). The �nal constraints system to express _n hasO(n) constraints (f1; � � � ; fn) and O(n � 1) boolean variables (h1; � � � ; hn�1). The �nitebounds of the linear functions are always �nite. They can always be computed staticallyand propagated up in the binary tree, as explained in the following example.
(a) Perfect Binary Tree (b) Left Associative Binary Tree

_ __ _ _ _ _
f3(x) � 0 fn�1(x) � 0 fn(x) � 0 f1(x) � 0 f2(x) � 0f3(x) � 0fn�1(x) � 0fn(x) � 0__

f4(x) � 0f1(x) � 0 f2(x) � 0_ _
Figure 2.1: Expressing an n-Disjunction with Linear ConstraintsExample 2.1.1 Let us express f1(x) � 0 _ f2(x) � 0 _ f3(x) � 0 _ f4(x) � 0. Thissystem is written by expressing the �rst two disjunctions (as explained above) :8>><>>: f1(x)� h1f1 � h2 � f1 � 0f2(x)� (1� h1)f2 � h2f2 � 0f3(x)� (1� h2)f3 � 0h1; h2 2 f0; 1g 9>>=>>; or f4(x) � 0where f1; f2 are two known �nite �nite lower bounds for f1; f2 respectively. We introducea third binary variable h3 2 f0; 1g to write the last disjunction in linear constraints :8>>>><>>>>: f1(x)� h1f1 � h2 � f1 � h3 � f 01f2(x)� (1� h1)f2 � h2 � f2 � h3 � f 02f3(x)� (1� h2)f3 � h3 � f 03f4(x) � (1� h3)� f4h1; h2; h3 2 f0; 1gwhere (f 01; f 02; f 03; f4) are the �nite lower bounds for (f1(x)� h1f1 � h2 � f1; f2(x)� (1�h1)� f2 � h2 � f2; f3(x)� (1� h2)� f3; f4) respectively.Since the binary variables are bounded by 0 and 1, we can always compute the �nitelower bounds for any linear constraint at compile time if the integer variables are bounded.Since we know how to translate (:;^;_), we can easily deduce the linear constraintsof any other logical operator. Let g(x) � 0 and h(x) � 0 be two linear constraints on x :1. g(x) � 0 =) h(x) � 0 can be modeled by g(x) < 0 _ h(x) � 02. g(x) � 0() h(x) � 0 can be modeled by�g(x) � 0 ^ h(x) � 0� _ �h(x) < 0 ^ g(x) < 0�



2.1. SOME INTEGER LINEAR PROGRAMMING TECHNIQUES 25The problem g(x) � 0 =) h(x) � 0 becomes �� g(x)� 1 � 0 _ h(x) � 0�. Thereby,it can be written using the disjunctive expression :8<: �g(x)� 1 � �gh(x) � (1� �)h� 2 f0; 1gwhere g and h are two known �nite lower bounds for (�g � 1) and h respectively.The problem g(x) � 0() h(x) � 0 becomes�g(x) � 0 ^ h(x) � 0� _ �� g(x)� 1 � 0 ^ �h(x)� 1 � 0�and can be written using the disjunctive expression :8>>>><>>>>: g(x) � �gh(x) � �g�g(x)� 1 � (1� �)g0�h(x)� 1 � (1� �)h0� 2 f0; 1gwhere g and h are two known �nite lower bounds for g and h respectively, and g0 and h0are two known �nite lower bounds for (�g � 1) and (�h� 1) respectively.2.1.2 Expressing the \Maximum" and \Minimum" with LinearConstraintsThe function z = max(x; y) can be modeled by the constraints :� (x� y � 0) =) z = x(y � x � 0) =) z = yor by the constraints : 8<: z � xz � yz � x _ 8<: z � xz � yz � yBy introducing a binary variable � 2 f0; 1g and by assuming bounded domain sets (�xand x for x, �y and y for y), the domain set of z is also bounded by �z = max(�x; �y) andz = max(x; y). The system can then be written as follows :8>>>>>>>><>>>>>>>>:
z � x � �(z � �x)z � y � �(z � �y)x� z � �(x� �z)z � x � (1� �)(z � �x)z � y � (1� �)(z � �y)y � z � (1� �)(y � �z)We can also express the maxn function with arbitrary number of parametersz = maxn(x1; x2; � � � ; xn). Since max is associative, we use a binary tree as with the



26 CHAPTER 2. BACKGROUND AND BASICSor-operator. The general form of the maxn operator, using a left associative binary treefor instance, is : 8>>>>><>>>>>: y1 = max(x1; x2)y2 = max(y1; x3)...yn�2 = max(yn�3; xn�1)z = max(yn�2; xn)where each max operator consists of six linear constraints. As with the or-operator, thenumber of internal nodes including the root is equal to n� 1, so we need to de�ne n� 2intermediate variables (that hold intermediate maximums) and (n � 1) systems to com-pute the \max" operators. This leads to a complexity of O(n) intermediate variables andO(n) linear constraints.The lower bounds of the linear functions are always �nite if the domain sets of thevariables xi are bounded. They can always be statically computed and propagated up inthe binary tree, as explained in the following example.Example 2.1.2 Let us write the following system (z = max(x1; x2; x3)) with the linearconstraints of the implication (�rst method to compute the max);� y = max(x1; x2)z = max(y; x3)By replacing the formulas of max operators and introducing 4 binary variables hi 2 f0; 1g,we get : 8>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>:

�x1 + x2 � 1 � h1g1 with g1 a lower bound for � x1 + x2 � 1y � x1 � (1� h1)g2 with g2 a lower bound for y � x1x1 � y � (1� h1)g3 with g3 a lower bound for x1 � y�x2 + x1 � 1 � h2g4 with g4 a lower bound for � x2 + x1 � 1y � x2 � (1� h2)g5 with g5 a lower bound for y � x2x2 � y � (1� h2)g6 with g6 a lower bound for x2 � yh1; h2 2 f0; 1g�y + x3 � 1 � h3f1 with f1 a lower bound for � y + x3 � 1z � y � (1� h3)f2 with f2 a lower bound for z � yy � z � (1� h3)f3 with f3 a lower bound for y � z�x3 + y � 1 � h4f4 with f4 a lower bound for � x3 + y � 1z � x3 � (1� h4)f5 with f5 a lower bound for z � x3x3 � z � (1� h4)f7 with f6 a lower bound for x3 � zh3; h4 2 f0; 1gComputing the �nite lower bounds gi and fi is obvious if the domain sets of x1; x2; x3 arebounded. If (x1; x2; x3) are the three lower bounds of (x1; x2; x3), then y = max(x1; x2) isa lower bound for y and z = max(x1; x2; x3) is a lower bound for z. Deducing the lowerbounds gi and fi is statically done by taking into account both the �nite lower bounds xiand the upper bounds �xi. For instance :x1 � x1 � �x1x2 � x2 � �x2 � =) �x2 + x1 � 1 � g1 = x1 � �x2 � 1



2.2. DEFINITIONS AND NOTATIONS ON GRAPHS 27Finally, the \minimum" function can be expressed similarly. z = min(x; y) can bewritten either by computing z = �max(�x;�y) or by considering :8<: z � xz � yz � x _ 8<: z � xz � yz � ywhere the domain sets of x and y are bounded.The next section recalls some basic de�nitions and notations in graph theory.2.2 De�nitions and Notations on GraphsThis chapter only recall some notations and de�nitions that are used in this thesis. Tohave a complete overview of the theory, the reader should refer to standard books [Ber77,CLR90].GraphsA directed graph G = (V;E) is a pair of a set V and a binary relation E � V 2. We de�nethe following notations :� u 2 V is called a node;� e = (u; v) 2 E is called an arc;� 8e = (u; v) 2 E, u (respectively v) is called the source (respectively the target) ofthe arc e. Both u and v are called endpoints of e;� 8e = (u; v) 2 E : source(e) = u and target(e) = v;� �+G(u) = fv 2 V=(u; v) 2 Eg the set of the u's successors ;� ��G(u) = fv 2 V=(v; u) 2 Eg the set of the u's predecessors;� d+G(u) = j�+(u)j the outdegree of u;� d�G(u) = j��(u)j the indegree of u;� if d�G(u) = 0 then u is called a source of G;� if d+G(u) = 0 then u is called a sink of G;� Source(G) = fu 2 V=d�(u) = 0g;� Sink(G) = fu 2 V=d+(u) = 0g;� we note u e!? any arc e whose source is u. Similarly, ? e! u any arc e whose sink isu;� a path in G is a k-tuple p = fe1; : : : ; ekg 2 Ek such that8i = 1; :::; k : target(ei) = source(ei+1);



28 CHAPTER 2. BACKGROUND AND BASICS� we denote also by u; v a path from u to v without specifying intermediate arcs;� a circuit in G is a path p = fe1; : : : ; ekg 2 Ek such that 8i = 1; :::; k : target(ek) =source(e1).� two nodes u; v are adjacent i� there is an arc connecting them :9e 2 E fu; vg = endpoints(e)� two arcs e; e0 are adjacent i� there is a shared node between them;endpoints(e) \ endpoints(e0) 6= �G = (V;E) is a complete graph i� E = V 2.The subgraph GV 0 induced by V 0 � V is the graph that contains all nodes of V 0 andall arcs that have their endpoints in V 0. We also write GV�V 00 = G� V 00 for V 00 � V .The partial graph G0 of G = (V;E) generated by a subset E 0 � E is the graph thatcontains all the nodes of G but only the arcs contained in E 0. That is, we remove all thearcs in E � E 0. We write G0 = G=E0 .For the need of this thesis, we introduce the concept of extended graph. An extendedgraph is only the dual de�nition of a partial graph. An extended graph G0 of G = (V;E)generated by a subset E 0 � V 2 is the graph that contains all the nodes of G and the arcsin E extended by the arcs contained in E 0. In other words, we only add all the arcs inE 0. We write G0 = GnE0.The transitive closure of G, denoted by Gc, is an extended graph GnEc such that :Ec = f(u1; u2)=(u1; u2) 2 V 2 ^ 9 a path u1 ; u2gThat is, we only add all transitive arcs if they do not exist.The transitive reduction of G, noted Gr , is a partial graph G=Er such that :Er = fe = (u1; u2) 2 E=8 path p = u1 ; u2; p = f(u1; u2)ggThat is, we only remove transitive arcs if they exist.We can associate a cost function to arcs. Each arc holds a number which has aparticular meaning depending on the type of the graph (distance, delay, etc.). Then, thelongest path from u to v, denoted lp(u; v), is a path that produces the maximal cost sumthrough the arcs belonging to it. Note that such a path does not exist in the presenceof a cycle from u to v with a positive cost (a positive sum of the costs) because we maymake an in�nite number of tours, and hence the path cost is in�nite.



2.2. DEFINITIONS AND NOTATIONS ON GRAPHS 29Some Notions for Directed Acyclic GraphsA directed acyclic graph (DAG) is an oriented graph without a circuit. Let G = (V;E) bea DAG. A topological sort (also called linear extension ) of G = (V;E; �) is a permutation(u1; u2; : : : ; un) of the nodes in V such that(ui; uj) 2 E =) i < jThe transitive closure of a DAG de�nes the notion of parallel and comparable :� 8u; v 2 V : u � v () (u; v) 2 Ec _ (v; u) 2 Ec : u and v are said to be comparable ;� 8u; v 2 V : ujjv() :(u � v) : u and v are said to be parallel ;� 8u; v 2 V : u < v () (u; v) 2 Ec that is < de�nes a strict order between the nodes.� 8u; v 2 V : u � v () u = v _ u < vWe de�ne also the notions of descendants and ascendants of a node v 2 V :� " v = fu 2 V=u � vg the set of v's ascendants including v;� # v = fu 2 V=v � ug the set of v's descendants including v.We de�ne the notion of chain and antichain in an acyclic graph :� A subset C � V in G = (V;E) is a chain i� : 8u; v 2 C : u � v� A chain MC is said maximal i� 8C a chain : jCj � jMCj� A subset A � V in G = (V;E) is an antichain i� : 8u; v 2 A : u k v� An antichain MA is said maximal i� 8A an antichain : jAj � jMAjDilworth [CD73] proved that the problem of decomposing a DAG into a minimalnumber of chains can be done with a polynomial algorithm. It can be solved via amaximal cardinality matching in a bipartite graph [Bou97]. Dilworth also proved thatthe minimal number of chains is equal to the cardinality of a maximal antichain in theDAG.HypergraphsAn hypergraph H = (S;E) is a couple of two sets : S = fs1; s2; ::::; sng and a familyE = fE1; E2; :::; Emg of subsets from S such that :8j = 1; m : Ej 6= �and [j=1;mEj = S (covering constraint)The elements s1; s2; ::::; sn are the nodes of the hypergraph, and the subsets E1; E2; :::; Emare called edges. Graphically, a hypergraph H = (S;E) is represented by joining the nodessuch that :� if jEjj = 1 then we put a loop joined on the node ;� if jEjj = 2 then we join the two nodes by a line;� if jEjj > 2 then we surround all nodes by a closed line.



30 CHAPTER 2. BACKGROUND AND BASICSInterval OrdersIn this thesis, we use two of the interval order notations de�ned in [GS92].Let I1 = [a1; b1] � N and I2 = [a2; b2] � N be two intervals. Then :1. I1 � I2 () b1 < a2. We say that I1 is before I2;2. I1 f I2 () b1 = b2. We say that I1 �nishes I2.Given a set of intervals I = fI1; :::; Ing, we can associate with it a special DAG calledinterval graph. To each interval Ik corresponds a node nk. There exists an arc (nk; nk0) i�Ik � Ik0. This special DAG o�ers some important characteristics for register allocation.For instance, the computation of a maximal clique in an interval graph can be done inpolynomial time complexity, while the general problem is NP-complete [Gol80].We can wrap a set of intervals around a circle. In this case, the corresponding intervalgraph is cyclic. It is called a circular interval graph.Graphs are very useful in compilation techniques. The next section recalls the de�ni-tion of two well-known graphs used to model a program structure.Data Dependence and Control Flow GraphsA data dependence graph (DDG) is a directed graph used to model dependence relationsbetween the operations : each node corresponds to an operation, and each arc de�nes adependence. The DDG is acyclic inside a basic block (BB), but may become cyclic in thecase of a loop. Three kinds of dependences may be expressed. There exists a 
ow depen-dence from a to b, called also true or RaW (Read-after-Write) dependence, if a producesa result that is read by b. There exists an anti-dependence from a to b, called also WaR(Write-after-Read) dependence, if a reads a value from a memory location and then berases it. There exists an output dependence from a to b, called also WaW (Write-after-Write) dependence, if a writes a value into a memory location and then b erases it. BothWaR and WaW dependences are called false dependences because they result from thememory reuse. These storage-related dependences can be eliminated by variable renam-ing [CF87] or if in�nite storage space is assumed [CDRV98]. Then, a DDG allows twoinstructions a and b to be executed simultaneously if they are data-independent. Thereexists also another false dependence, called input dependence or RaR (Read-after-Read)dependence, if a and b read from the same memory location. However, this dependencekind is not present in the DDG since it does not impose any execution order. It is usedfor other optimization purposes such as redundant load elimination.DDGs do not contain information about control program structures (tests, loops, pro-cedural calls, etc.). Control 
ow graphs (CFG) are built for this purpose. Each nodecorresponds to a basic block, and each arc corresponds to a possible execution path(branch). CFGs may be cyclic because of loops and recursive calls.A program dependence graph (PDG) [FOW87] is used to jointly encode control anddata dependence informations in the same data structure. It has been successfully usedin a variety of compiler optimizations such as scalar optimizations, the detection and im-provement of parallelism in vector machines, multiprocessors and ILP processors, as well



2.3. INSTRUCTION LEVEL PARALLELISM ARCHITECTURES 31as debugging, integration of di�erent versions of a program, and translation of imperativeprograms for data 
ow machines.DDGs, CFGs and PDGs are used by compilers to \understand" and handle programs,and to detect ILP. A highly optimized code can be generated if the underlying hardwarecan execute the operations in parallel. The next section gives a brief survey on what iscalled ILP architectures.2.3 Instruction Level Parallelism ArchitecturesToday's microprocessors are the powerful descendants of the Von Neumann computer[SBU99]. Although various computer architectures have considerably changed and rapidlybeen developed over the last twenty years, the basic principles in Von Neumann computa-tional model are still the foundation of today's most widely used computer architecturesas well as high-level programming languages. The Von Neumann computational modelhas been proposed by Von Neumann and his colleagues in 1946; its key characteristicsresult from the multiple assignments of variables and from the control-driven execution.While the sequential operating principles of the Von Neumann architecture is stillthe basis for today's most used instruction sets, its internal structure has considerablychanged. The main goal of the Von Neumann machine model was to minimize the hard-ware structure, while today's designs are mainly oriented towards maximizing the perfor-mance. For this last reason, machines have been designed to be able to execute multipletasks in parallel. Architectures, compilers and operating systems have been striving formore than two decades to extract and utilize as much parallelism as possible in order toboost the performance.Parallelism can be exploited by a machine at three di�erent levels.1. Fine-grain parallelismThis is the parallelism available at instruction level (or say at machine-languagelevel) by means of executing instructions simultaneously. Instruction-level paral-lelism, commonly abbreviated as ILP, can be achieved by architectures that arecapable of parallel instruction execution. Such architectures are called instructionlevel parallel architectures, i.e., ILP architectures.2. Medium-grain parallelismThis is the parallelism available at thread level. A thread (lightweight process) isa sequence of instructions that may share a common register �le, a heap and astack. Multiple threads can be executed concurrently or in parallel. The hard-ware implementation of thread-level parallelism is called multi-threaded processor orsimultaneous multi-threaded processor.3. Coarse-grain parallelismThis is the parallelism available at process, task, program or user level. The hard-ware implementation of such parallelism is called multiprocessor machine or multi-processor chips. The latter integrates two or more complete processors in a singlechip.



32 CHAPTER 2. BACKGROUND AND BASICSThe discussion about coarse or medium-grain parallel architectures is outside the scopeof this dissertation. In this section, we focus on ILP architectures, which principally in-clude static issue processors (Very Long Instruction Word, Explicitly Parallel InstructionComputing, Transport Triggered Architectures) and dynamic issue processors (super-scalar).Pipelined processors overlap the execution of multiple instructions simultaneously, butissue only one instruction at every clock cycle, see Figure 2.2. The principal motivationof multiple issue processors was to break away from the limitation on the single issue ofpipelining processors, and to provide the facility to execute more than one instructionin one clock cycle. The substantial di�erence from pipelined processors is that multi-ple issue processors replicate functional units (FU) in order to deal with instructions inparallel, such as parallel instruction fetch, decode, execution, write back, etc. However,the constraints in multiple issue processors are the same as in pipelining processors, thatis the dependences between instructions have to be taken into account when multipleinstructions are issued and executed in parallel. Therefore, the following questions arise.� How to detect dependences between instructions ?� How to express instructions in parallel execution ?The answers to these two questions gave rise to the signi�cant di�erences between twoclasses of multiple issue processors, static issue processors and dynamic issue processors.In the next sections, we describe the characteristics of these two kinds of multiple issueprocessors.
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(b) Simultaneous Execution(a) Pipelined ExecutionFigure 2.2: Pipelined vs. Simultaneous Execution



2.3. INSTRUCTION LEVEL PARALLELISM ARCHITECTURES 332.3.1 Processors with Dynamic Instruction IssueThe hardware mechanism designed to increase the number of executed instruction per cy-cle is termed superscalar execution. The goal of a superscalar processor is to dynamicallyissue multiple independent operations in parallel (Figure 2.3), even though the hard-ware receives a sequential instruction stream. Consequently, the program is written asif it was to be executed by a sequential processor, but the underlying execution is parallel.
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Figure 2.3: Superscalar ExecutionThere are two families of superscalar processors : in-order and out-of-order (OoO)processors. A processor with an in-order issue sends the instructions to be executed inthe same order as they appear in the program. That is, if instruction a appears before b,then the instruction b may in the best case be executed in parallel with a but not before.However, an OoO processor can dynamically change the execution order if operations areindependent. This powerful mechanism enables to pursue the computation in the presenceof long delay operations or unexpected events such as cache misses. However, becauseof the hardware complexity of dynamic independence testing, the window size where theprocessor can dynamically reschedule operations is limited.Compared with VLIW architectures, as we will see soon, superscalar processors achievea comparable degree of parallel execution at the cost of increased hardware complexity.However, the advantages of a superscalar processor over a VLIW processor are in twoways.1. Varying numbers of instructions per cycle. Since the hardware determines the num-ber of instructions issued per cycle, we do not need to lay out instructions to matchthe maximum issue bandwidth. Accordingly, there is less impact on code densitythan for a VLIW processor.2. Binary code compatibility. The binary code generated for a scalar (sequential) pro-cessor can also be executed in a superscalar processor with the same ISA (instruction



34 CHAPTER 2. BACKGROUND AND BASICSset architecture), and vice versa. This means that the code can migrate betweensuccessive implementations even with di�erent numbers of issues and di�erent exe-cution times of functional units (FU).3. Di�erent execution scenarios. Superscalar processors schedule dynamically the op-erations in parallel. Then, there may be more than one parallel execution scenarios(dynamic schedule) because of the dynamic events. However, VLIW processorsalways execute the same ILP schedule computed at compile time.For the purpose of issuing multiple instructions per cycle, superscalar processing gen-erally consists of a number of subtasks, such as parallel decoding, superscalar instructionissue, parallel instruction execution, preserving the sequential consistency of executionand exception processing. These tasks are executed by a powerful hardware pipeline (seeFigure 2.4). Below, we illustrate the basic functions of these pipelined steps.
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Figure 2.4: Superscalar Pipelined Steps
Fetch A high-performance micro-processor usually contains two separate on-chip Instruction-cache and Data-cache. This is because the I-cache is less complicated to handle : it isread-only and is not subject to cache coherence in contrast to D-cache. The main prob-lem of instruction fetching is control transfers performed by procedural calls, branch,return, and interrupt instructions. The sequential stream of instructions is disturbed andhence the CPU may stall. This is why some architectural improvements must be added ifwe expect a full utilization of ILP. Such features include instruction prefetching, branchprediction and speculative execution.Decode Decoding multiple instructions in a superscalar processor is a much more com-plex task than in a scalar one, which only decodes a single instruction at each cycle. Sincethere are multiple functional units in a superscalar processor, the number of issued in-structions in a cycle is much greater than in a scalar case. Consequently, it becomes morecomplex for a superscalar processor to detect the dependences among the instructionscurrently in execution and to �nd out the instructions for the next issue. Superscalarprocessors often take two or three more pipeline cycles to decode and issue instructions.



2.3. INSTRUCTION LEVEL PARALLELISM ARCHITECTURES 35An increasingly used method to overcome the problem is pre-decoding : a partial decod-ing is performed in advance of e�ective decoding, while instructions are loaded into theinstruction cache.Rename The aim of register renaming is to dynamically remove false dependences (antiand output ones) by the hardware. This is done by associating speci�c rename registerswith the (instruction set architecture) ISA registers speci�ed by the program. The renameregisters cannot be accessed directly by the compiler or the user.Issue and Dispatch The notion of instruction window comprises all the waiting in-structions between the decode (rename) and execute stage of the pipeline. Instructionsin this reorder bu�er are free from control and false dependences. Thus, only data depen-dence and resources con
icts remain to be treated. The former ones are checked duringthis stage. An operation is issued to the FUs reservation bu�er if all operations on which itdepends have been completed. This issue can be done statically (in-order) or dynamically(OoO) depending on the processor [PH94].Execute Instructions inside the FUs reservation bu�er are free from data dependences.Only resource con
icts have to be solved. When a resource is freed, the instruction thatneeds it is initiated to execute. After one or more cycles (the latency depends on the FUtype), it completes and hence is ready to the next pipeline stage. The results are readyfor any forwarding. This latter technique, also called bypassing, enables other dependentinstructions to be issued before committing the results.Commit and Write Back After completion, instructions are committed in-order andin parallel to guarantee the sequential consistency of the Von Neumann execution model.This means that, if no interruptions or exceptions have been emitted, results of executionsare written back from rename registers to architectural registers. If any exception occurs,the instructions results are cancelled (without commit).2.3.2 Processors with Static Instruction IssueThese processors take advantage of the static ILP of the program and execute opera-tions in parallel (see Figure 2.2.(b)). This kind of architecture asks programs to provideinformation as to which operations are independent of one another. The compiler iden-ti�es the parallelism in the program and communicates it to the hardware by specifyingindependence information between operations. This information is directly used by thehardware, since it knows with no further checking which operations can be executed inthe same clock cycle. Parallel operations are packed by the compiler into instructions.Then, the hardware has to fetch, decode and execute them as they are.We group static issue processors into three main families, VLIW, TTA and EPICprocessors. The next sections de�ne their characteristics.VLIW ProcessorsVLIW (Very Long Instruction Word) architectures use a long instruction word that usu-ally contains a �xed number of operations (corresponding to RISC instructions). The



36 CHAPTER 2. BACKGROUND AND BASICSoperations in a VLIW instruction must be independent of one another so that they canbe fetched, decoded, issued and executed simultaneously (see Figure 2.5).
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Figure 2.5: VLIW ProcessorsThe key features of a VLIW processor are the following [SBU99] :� VLIW relies on a sequential stream of very long instruction words (128 to 1024 bitsper instruction).� Each instruction consists of multiple independent operations that can be issued andexecuted in one clock cycle. In general, the number of operations in an instructionis �xed.� VLIW instructions are statically built by the compiler, i.e., the compiler deals withdependences and encodes parallelism in long instructions.� The compiler must be aware of the hardware characteristics of the processor andmemory.� A central controller issues one VLIW instruction per cycle.� A global shared register �le connects the multiple functional units.In a VLIW processor, unlike in superscalar processors, the compiler takes full respon-sibility for building VLIW instructions. In other words, the compiler has to detect andremove dependences and create the packages of independent operations that can be issuedand executed in parallel. Furthermore, VLIW processors expose architecturally visible la-tencies to the compiler. This latter must take into account these latencies to generatevalid codes.



2.3. INSTRUCTION LEVEL PARALLELISM ARCHITECTURES 37The limitations on VLIW architectures arise in the following ways.Firstly, the full responsibility of the complex task for exploiting and extracting paral-lelism is delegated to the compiler. The compiler has to be aware of many details aboutVLIW architectures, such as the number and type of the available execution units, theirlatencies and replication numbers (number of same FUs), memory load-use delay, andso on. Although VLIW architectures have less hardware complexity, powerful optimizingand parallelizing compiler techniques are required to e�ectively achieve high performance.As a consequence, it is questionable whether the reduced complexity of VLIW architec-tures can be really utilized by the compiler, since the design and implementation of thislatter are generally much more expensive than expected.Secondly, the binary code generated by a VLIW compiler is sensitive to the VLIWarchitecture. This means that the code cannot migrate within a generation of processors,even though these processors are compatible in the conventional sense. The problem isthat di�erent versions of the code are required for di�erent technology-dependent parame-ters, like the latencies and the repetition rates of the functional units, etc. This sensitivityof the compiler restricts the use of the same compiler for subsequent models of a VLIWline. This is the most signi�cant drawback of VLIW architectures.Thirdly, the length of a VLIW long instruction word is usually �xed. Each instructionword provides a �eld for each available execution unit. Due to the lack of su�cientindependent operations, only some of the �elds may actually be used while other �eldshave to be �lled by no-ops. This results in increased code size, and wasted memoryspace and memory bandwidth. In order to overcome this problem, more and more VLIWarchitectures use a compressed code format that allows the removal of the no-ops.Lastly, the performance of a VLIW processor is very sensitive to unexpected dynamicevents such as cache misses, page faults and interrupts. All these events make the pro-cessor stall from its ILP execution. For instance, if a load operation has been assumedby the compiler as hitting the cache, and this unfortunately happens not to be the caseduring dynamic execution, the entire processor stalls until the satisfaction of the cacherequest.Transport Triggered ArchitecturesTTAs resemble VLIW architectures : both exploit ILP at compile time [Jan01]. However,there are some signi�cant architectural di�erences. Unlike VLIW, TTAs do not requirethat each FU has its own private connection to the register �le. In TTAs, FUs areconnected to registers by an interconnection network (see Fig 2.6). This design allows toreduce the register �le ports bottleneck. It also reduces the complexity of the bypassingnetwork since data forwarding is programmed explicitly.However, programming TTAs is di�erent from the classical RISC programming style.Traditional architectures are programmed by specifying operations. Data transports be-tween FUs and register �les are implicitly triggered by executing the operations. TTAs areprogrammed by specifying the data transports; as a side e�ect, operations are executed.In other words, data movements are explicited by the program, and executing operationsis implicitly done by the processor. Indeed, TTA is similar to data-
ow processors, exceptthat instruction scheduling is done statically.



38 CHAPTER 2. BACKGROUND AND BASICSEPIC/IA64 ProcessorsEPIC (Explicitly Parallel Instruction Computing [SC00]) technology is introduced to theIA64 architecture and compiler optimizations [KFL99] in order to deliver explicit paral-lelism, massive resources, and inherent scalability. It is, in a way, a mix between VLIWand superscalar programming styles. On one hand, EPIC, like VLIW, allows the compilerto statically specify independent instructions. On the other hand, EPIC is like superscalarin the sense that the code semantics may be sequential, while guaranteeing the binarycompatibility between di�erent IA64 implementations.The philosophy behind EPIC is much more about scalability. OoO processors gettheir issue unit saturated because of the architectural complexity. EPIC incorporates thecombination of speculation, predication (guarded execution) and explicit parallelism toincrease performance by reducing the number of branches and branch mispredicts, andby reducing the e�ects of memory-to-processor latency.The key features of the EPIC technology are :� static speculative execution of memory load operations, i.e., loading data from mem-ory is allowed for issue before knowing whether it is required or not, and thusreducing the e�ects of memory latency;� a fully predicated (guarded) instruction set, which allows to remove branches so as tominimize the impact of branch mispredicts. Both speculative loads and predicatedinstructions aim to make it possible to handle static uncertainties (what compilerscannot determine or assert);� specifying ILP explicitly in the machine code, i.e., the parallelism is encoded directlyinto the instructions as in a VLIW architecture;� more registers: the IA-64 instruction set speci�es 128 64-bit general-purpose regis-ters, 128 80-bit 
oating-point registers and 64 1-bit predicate registers.� an inherently scalable instruction set, i.e., the ability to scale to a larger number offunctional units. But this point remains debatable !Finally, we must note that VLIW and superscalar processors su�er from the hardwarecomplexity of register ports. The number of register ports depends in a quadratic func-tion of the number FUs. Thus, both architectures do not scale very well since increasing
FU-1 FU-2 FU-3 FU-4Register File

Interconnection networkBus SocketFigure 2.6: Block Diagram of a TTA



2.3. INSTRUCTION LEVEL PARALLELISM ARCHITECTURES 39the ILP degree (number of FUs) results in creating a bottleneck on register ports. Con-sequently, the time required to access registers increases. An architectural alternativeto this limitation is clustered-processors [Fer98]. Clustered architectures group FUs intoclusters. Each cluster has its own private register �le : registers inside a cluster are strictlyaccessed by the FUs belonging the this cluster. If a FU needs a result from a remote reg-ister �le (from another cluster), an inter-cluster communication (move operation) mustbe performed. Then, clustered architectures o�er better scalability than VLIW and su-perscalar processors since the additional clusters do not require new register ports (givena �xed number of FUs per cluster). However, inserting move operations into the programmay decrease the performance since more operations must be executed. Furthermore, thecommunication network between clusters may become a new source of bottleneck.To take full advantage of ILP architectures, compiler techniques have been continu-ously improved since the 80's [RF93]. The next section gives a brief survey of these codeoptimization techniques.2.3.3 Compiler Techniques for ILP ArchitecturesILP compilers enhance performance by customizing application code to a target processor[SCD+97]. By doing a global analysis of a program, compilers get better knowledge ofintrinsic ILP. By using a detailed description of the underlying hardware, they can guidemachine-speci�c optimizations. Static optimization and scheduling eliminate the complexprocessing needed to parallelize a code, which the hardware would otherwise performduring execution within a limited instruction window.Program AnalysisCode analysis is very important to enhance the performance of ILP codes. This majorgoal is especially achieved by improving memory reference analysis, as for instance aliasand data dependence analysis.Alias analysis or memory disambiguation concerns the task of determining if two dis-tinct memory references access the same memory location. The data dependence analysisis used to highlight the references to memory in order to de�ne an execution order whichmust be obeyed by the scheduler. This analysis may enable, at �rst, eliminating unnec-essary dependences to expose more ILP to the scheduler. Second, redundant load/storeoperations may be eliminated to improve code quality.ILP SchedulingIn order to achieve high performance, powerful scheduling algorithms aim at fully utilizingFUs by exposing more parallelism to the processor. They are classi�ed according to theproperties of the control 
ow graph : whether it consists of a single or of multiple basicblocks, and whether it is an acyclic or cyclic control 
ow graph.Algorithms that can only schedule single basic blocks are called local schedulers. Al-gorithms that jointly schedule multiple basic blocks (even if these are the instances of aniterative execution) are named global schedulers. In the case of loops, cyclic schedulersaim at overlapping multiple basic blocks executions.



40 CHAPTER 2. BACKGROUND AND BASICSLocal scheduling, also referred to as local code compaction, is concerned with generat-ing as short schedule as possible within a single basic block; operations are assumed notto cross control barriers. Since the general problem of scheduling under FUs constraints isNP-complete [Cof76], many list scheduling heuristics have been implemented; they deliveracceptable performances [ACD74].Since the intrinsic ILP inside basic blocks is limited, global scheduling strategies moveoperations from one basic block to another in order to expose more parallelism. Thesebasic blocks were adjacent in the early strategies [TTT81], but the delivered performancewas not as satisfactory as expected. This method is enhanced by other techniques, suchas trace scheduling [Fis81], super-block scheduling [HMC+93], hyper-block scheduling[MLC+92] and percolation [Nic85].Cyclic scheduling is a global scheduling technique but the multiple basic blocks areexecuted by a loop. Loop unrolling followed by code compaction is the natural idea forcyclic scheduling. However, it still doesn't use all the available ILP. Other loop optimizingtechniques, such as peeling, fusion and distribution try to increase the amount of ILP.Software pipelining [AJLA95] is, till now, the best cyclic scheduling technique that allowsthe overlap of successive iterations in a compact code. We will discuss software pipeliningin Chapter 7.As mentioned before, register allocation is one of the most important code optimizationtechnique in an optimizing compiler; it allows to discover great amounts of parallelism, byavoiding unnecessary and costly memory accesses. The next section recalls the classicalregister allocation techniques used for non ILP processors.2.4 Register Allocation for Sequential ProgramsThe main goal of register allocation in single-issue processors is to optimize the registerusage inside a linear code (vertical code). This is because the program performance ina Von Neumann architecture is a direct function of the number of executed operations.Therefore, eliminating unnecessary load/store operations is a crucial issue. Since there isno ILP and since operation latencies are assumed unitary, a register allocator for this kindof architectures is not sensible to the scheduling process (does not consider schedule time).We say that a variable is alive at a certain static program point p i� it is de�ned strictlybefore p and read at p, or after this point. We call a variable live-range the portion ofstatic code between the de�nition point of the variable (value) and the last read of it. Theset of variable live-ranges de�nes an interval graph inside a BB. However, these rangesmay become circular in the presence of a loop and hence the set of all the live-rangesde�nes a circular interval graph.Register allocation for sequential processors is usually treated as a graph coloringproblem. An undirected interference graph is built for expressing the fact that two nodes(representing two distinct variables) are (or may) be alive or not at the same programpoint.Depending on whether the register allocation is pursued inside a basic block, or within



2.4. REGISTER ALLOCATION FOR SEQUENTIAL PROGRAMS 41multiple basic blocks (even if they result from a loop iterative execution), we refer it tolocal or global register allocation. The next sections examine the most important resultsin related work.2.4.1 Local Register AllocationThe DDG inside a BB is presents a DAG that de�nes precedence constraints betweenoperations. If the execution order is �xed, then the set of live ranges de�nes an intervalgraph and hence the problem of optimal coloring the interference graph is easily solvedwith a polynomial complexity algorithm [CF87].The problem in local register allocation arises when we try to look for an execu-tion order of a DAG (topological sort) which needs a minimal number of simultaneouslyalive variables. This problem, also known as minimal register su�ciency, is NP-complete[Set75]. However, if the DDG is a tree, the problem can be solved in linear time com-plexity, as proved by Nakata [Nak67] and Redziejowski [Red69]. Their algorithms usea postorder evaluation of the tree and execute in time proportional to the number ofoperations to be scheduled. Aho et al [ASU70] gave an O(n) algorithm for local registerallocation (where n is the number of operations) for binary expression trees. The previ-ous algorithm assumed a RISC style machine, i.e., operations cannot be performed frommemory to memory. A dynamic programming solution, which can be applied to a widerrange of architectures (including memory-to-memory operations), has been presented byAho and Johnson in [AJ76]. Their algorithm also runs in time linearly proportional tothe size of the input expression tree.The previous work on trees assumed identical registers. However, some realistic prob-lems consider single and double length operands, using several models of register-pairmachines allowing both single and double word instructions. Hence, for producing anoptimal execution order under a bounded number of registers, it may be necessary toswitch back and forth between evaluating subexpressions. Aho et al presented a linear-time optimal algorithm for this problem in [AJU77].Some code optimization techniques, like common subexpression elimination, are donebefore the register allocation step and may transform an expression tree to a generalDAG, making the task of register allocation harder. Fortunately, some heuristics exist forsolving this general problem. The authors of [AKR91] gave a polynomial algorithm basedon a 
ow problem resolution which �nds a topological sort of a DAG with a minimumnumber of registers. They formalized the register need as a cut in a network 
ow suchthat the number of registers required is the number of values which cross this cut. Theiralgorithm guarantees that the number of registers needed is within O(log2n) factor of theoptimal (n is the total number of operations). Another heuristics using a randomizedalgorithm has been presented in [KPR91]. It generates contiguous evaluations for expres-sion DAGs representing BB of straight line code with a minimized number of registers. Itwas implemented in a vector PASCAL compiler [Rau90]. More recently, an algorithmicheuristics for the problem of DAG ordering with limited registers has been presented in[GYZ+99]. It is based on the notion of lineage formation. It is, in a way, a minimal chaindecomposition of the DAG, such that each chain does not contain interfering variables.They also propose an exact (optimal) formulation for this problem. Their integer program



42 CHAPTER 2. BACKGROUND AND BASICSbuilds a linear extension of the DAG. If the live-ranges of two variables do not interferewith each other, then they can be mapped to the same chain of non interfering variables.Such chain re
ects a register that is allocated to all the variables in this chain, whiledistinct chains require distinct registers. Hence, the topological sort is constrained so asto minimize the total number of chains.The number of operations inside BBs in real programs is (generally) relatively small.To expect great performance increase, compilers must look for optimization opportunitiesin the whole program structure by extending their analysis to cross BB barriers. Themost important register allocation techniques are based on global CFGs as explained inthe next section.2.4.2 Global Register AllocationAs we have seen in the previous section, local register allocators in the case of a �xedexecution order use optimal polynomial algorithms because the interference graph is aneasily colorable interval graph. In the case of loops, the interference graph de�nes a cir-cular interval graph. In this case, we can get a chromatic number [Lel96] : even if theproblem of �nding the minimal chromatic number of this circular interval graph is NP-complete, looking for a q�coloring solution (�xing the chromatic number) can be donewith an O(n q! q log q) algorithm [GJMP80], where n is the number of nodes. Practicalexperiments [Lel96] show that the solution is intractable when q � 11.The problem of global register allocation arises if we consider functions, branches andloops with branches. In this case, live ranges cannot be analyzed by compilers since theycannot statically know the direction of the control 
ow. Live ranges cannot be modeledby intervals and thus interference graphs become general undirected graphs. Optimal col-oring of such graphs is unfortunately NP-complete [Kar72], where lot of heuristics havebeen developed. A detailed comparison between old standard register allocation tech-niques using graph coloring before scheduling was done by Wu in [Wu96].Chaitin [Cha82] was the �rst who de�ned the interference graph devoted to graphcoloring for register allocation. He gave a heuristics for introducing spill code using a costfunction which resulted in pessimistic spilling decisions. An amelioration of Chaitin color-ing graph method was given by Bernstein [BGG+89]. An amelioration of Chaitin spillingstrategy was studied by Briggs [Bri92]. He focused on removing unnecessary moves pro-duced by a global register allocation in a conservative way so as to avoid spilling. Georgeand Appel gave a less conservative heuristics than that of Briggs in [GA96] to removemore move operations in a more aggressive approach. However, the problem of spillingeverywhere did still exist. Chow's method [CH90] overcame this drawback by comput-ing the live ranges on the basic block granularity and not at the instruction level. Alive interval is split into several smaller live ranges, where each smaller range could beassigned to a register or to a memory cell. An amelioration of node splitting methodsby load/store range analysis has been presented in [KH93]. In contrast, the authors in[LGAT00] used fusion (to get contiguous intervals) instead of partitioning the interferencegraph to ameliorate Chaitin's method : their algorithm starts with an interference graphfor each program region, then the interference graphs of adjacent regions are fused tobuild up a complete interference graph. Proebsting and Fisher [PF92] proposed a method



2.4. REGISTER ALLOCATION FOR SEQUENTIAL PROGRAMS 43for global register allocation based on probability : they assigned a probability to eachvariable to re
ect its chance to be still stored in a register when reaching a certain pro-gram point.The overhead of coloring methods for general interference graphs can be quite high,not only in execution time but also in memory since the interference graphs can be quitelarge. Gupta et al proposed a heuristics in [GSS89] that decomposes the interferencegraph into smaller segments based on clique separators. Each subgraph is separately col-ored and then the partitions are recombined to build a global register allocation.Instead of decomposing the interference graph, Zobel, in her thesis [Zob92], preferredto transform the code in order to make the interference graph an easily colorable intervalone. She proved that some interference graphs, as those of loops without branches, canbe equivalent to an interval graph if we remove backward live ranges. The complex caseof loops with branches can be treated with some restrictions on the code. If these restric-tions are not satis�ed, the register con
ict graph is transformed by node merging. Also,she tried to decompose the interference graph with node removal technique in order toget interval subgraphs.The problem with graph coloring methods results from its lack of ways to encode pro-gram structure information into the interference graph. Although spill costs give higherpriorities to variables inside a loop, variables in a conditional structure are still treatedequally with values outside a conditional structure. Callahan and Koblenz's algorithm[CK91] overcomes this drawback by using a tree structure, called a tile tree, to representprogram structure (loops, branches, procedural calls). The algorithm performs registerallocation in two steps. First, the tree is visited in a bottom-up way and an interferencegraph is built for each tile and is colored with pseudo registers and with possible local spilldecisions. Second, the tree is visited in a top-down fashion to update spill decisions andto map pseudo registers to architectural ones. Using tile structure, program sections withdi�erent execution frequencies can be separated. Unfortunately, detailed and e�ectiveexperiments done by Wu [Wu96] showed that this algorithm generates worse code thanBriggs' method. The author recommended not using it ! Norris and Pollock [NP98] useda program dependence graph (PDG) to encode program structures. They improved thetraditional global graph coloring register allocators by exploiting the region partitioningof the PDG.Note that there exist some expensive algorithms that look for optimal register alloca-tion. For instance, authors in [KNDK96] presented an exponential complexity algorithmfor register allocation in loops (minimal spill). Their technique was intended for embed-ded code generation where the time spent for code optimizations is less important thanthe targeted program performance.Some techniques do not rely on live range interference analysis. For instance, scalarreplacement [CCK90] analyses vector references and data dependence information to �ndopportunities to reuse subscripted variables in loops. It replaces the references to tempo-rary scalar variables that are expected to be stored in registers.Traditional register allocators assume that the underlying processor have identical



44 CHAPTER 2. BACKGROUND AND BASICSregisters. However, in some architectures, we can have multiple register types (global,general purpose, speci�c, etc.) and some registers may share common bits. Consequently,choosing a register instead of another a�ects the execution time, the instruction size orboth. Authors in [KW98] presented an integer programming method for register alloca-tion if the register �le is not regular.The main goal behind all register allocation techniques is to optimize the registerusage. Another goal is to minimize the amount of spill code. The next section gives abrief survey of related work in this area.2.4.3 Spill Code MinimizationThe common problem of �nding an execution order of a DAG on a single issue proces-sor with a minimal introduced spill code is NP-complete, as proved by Bruno and Sethiin [BS76]. They assumed an accumulator-based architecture (each operation implicitlystores its result in the unique available register), which is di�erent from a RISC-style(load/store) architecture. However, if the DDG is a tree, the problem becomes polyno-mial [SU70].Another problem (perhaps easier) consists in minimizing spill code (number of memoryaccesses) while the execution order of a DAG is �xed (that amounts to �xing the numberof registers needed). Unfortunately, this is also an NP-complete problem [Car91, FL98].Many heuristics for spill insertion have been presented in the literature and imple-mented in practical compilers. Heuristics for the spill insertion problem based on dy-namic programming and pruning rules are described by Horwitz et al [HKMW66] andHsu, Fischer, and Goodman [HFG89]. More practical heuristics for global register al-location and spill insertion are described and evaluated by Chaitin [Cha82], Chow andHennessy [CH90], Bernstein [BGG+89] and Gupta et al [GSS89]. Their heuristics usecost functions (which include the parameter of execution frequency) in order to evaluatewhich node (value) should be spilled. Bergner's algorithm [BDEO97] improved Chaitinlocal spilling heuristics by making decisions on a global level. Other improved allocationalgorithms were evaluated by Callahan and Koblenz [CK91], and Briggs [Bri92].These algorithms attempt to minimize the number of spills within a basic block orover an entire program, but without explicitly handling pipelines or instruction-level paral-lelism. The next section relates some work on register allocation algorithms for single-issuepipelined processors.2.4.4 Register Allocation for Pipelined ProcessorsSuch works consider pipelined machines which can issue one instruction at every proces-sor clock cycle. The issue of the instruction that uses the result of a preceding in-pipeinstruction must be delayed. Thus, the problem of �nding a strict execution order witha minimal number of required registers is slightly modi�ed. Indeed, if an operation ispipelined, we know (at compile time) that there are some free slots after its issue time.Hence, we want to insert other operations to cover these bubbles (otherwise, the pipelinedprocessor stalls).



2.4. REGISTER ALLOCATION FOR SEQUENTIAL PROGRAMS 45Particularly, Kurlander et al [KPF95] assumed a delayed-load machine with a unitdelay (a load-dependent operation must be delayed by only one clock cycle after the loadissue). They presented an O(n) algorithm that performs optimal operation ordering undera limited number of registers for an expression tree. It also predicts optimal location forregister spilling. However, if the delay is greater than 1, the problem becomes more dif-�cult, perhaps intractable. Experimental results showed that their algorithm gives goodresults, even for general DAGs.After this �rst part, we are now ready to present our work. We begin by studying theregister pressure in DAGs.



46 CHAPTER 2. BACKGROUND AND BASICS



Part IIRegister Pressure in Basic Blocks

47





Chapter 3DAG Model AbstractThis chapter introduces our directed acyclic graph (DAG) model and de�nes thecharacteristics of the targeted ILP processor. Our model is su�ciently generic tobe applied to both static and dynamic issue processors. We also recall the notionof register need for a schedule and present a better intLP model for computing it :given a directed acyclic data dependence graph G = (V;E), the complexity of ourinteger linear programming model is bounded by O(jV j2) variables and O(jEj+jV j2)constraints. This constraint matrix size is better than existing techniques, whichinclude a worst total schedule time factor.This chapter is organized as follows. Section 3.1 de�nes our DAG model and presentsour notations. Section 3.2 de�nes the concept of register requirement for a �xed schedule.If we assume an arbitrary schedule, Section 3.3 presents an intLP formulation of theregister requirement in this case. This intLP system is used, in the next chapters, toanalyze the register saturation and su�ciency in DAGs. Finally, we conclude with someremarks.3.1 De�nitions and NotationsThe precedence relations between operations inside a basic block (BB) are described bya directed acyclic graph (DAG) G = (V;E; �), such that :� V is the set of operations inside the BB. Each operation u has a positive latencylat(u) > 0;� E is the set of precedence constraints (data dependences);� �(e) is the latency of the arc e (in terms of processor clock cycles), where initially1we have 8e = (u; v) 2 E : �(e) = lat(u)An acyclic schedule � of this DAG is an integer function that associates an issue timeto each operation. It is valid i� it satis�es all the precedence constraints de�ned by theDAG : 8e = (u; v) 2 E : �(v)� �(u) � �(e)1We will see, in the next chapter, that we may insert new arcs where their latencies are not equal tothe latencies of operations. 49



50 CHAPTER 3. DAG MODELThe set of all valid acyclic schedules of G is denoted by �(G).The target ILP processor may have multiple register types (int, 
oat, guard, con-ditional 
ags, general purpose, etc.). T denotes the set of register types (for instanceT = fint; f loatg). Therefore, we make a di�erence between the operations and the prece-dence constraints depending whether they refer to a value to be stored in a register ornot, and if so, in which register type :1. VR;t is the set of operations that de�ne values to be stored in registers of type t 2 T.We consider that each operation u 2 VR;t writes into at most one register of typet 2 T. Operations that de�ne multiple values with di�erent types are accepted inour model i� they do not de�ne more than one value of each type. For instance,operations that write into 
oating point registers and set conditional 
ags are takeninto account in our model. The node u is simply called value. We denote by ut thevalue of type t de�ned by the operation u.2. ER;t is the set of 
ow dependence arcs due to a value of type t 2 T. Since we acceptstatements producing more than one value but with di�erent types, these sets arenot disjoint : for instance, we may have an arc e = (u; v) such that e 2 ER;t1 ande 2 ER;t2 .Lastly, we consider that reading from and writing into a register may be delayed fromthe beginning of the schedule time, and that these delays are visible to the compiler(architecturally visible). We de�ne two delay (o�set) functions �r;t and �w;t such that :�w;t : VR;t ! Nu 7! �w;t(u)= �w;t(u) < lat(u)the write cycle of ut into a register of type t is �(u) + �w;t(u)�r;t : V ! Nu 7! �r;t(u)= �r;t(u) � �w;t(u) < lat(u)the read cycle of ut from a register of type t is �(u) + �r;t(u)For instance, a superscalar processor has a sequential semantics. Thus, the reading andwriting o�sets are not visible at the architectural level, i.e., �r;t(u) = �w;t(u) = 0.If some values are not read inside the considered DAG but are read in a furtherBB, they must be kept in registers since they are alive when exiting the current BB. Weintroduce a virtual bottom node ? that reads these values. We introduce a 
ow arc e fromeach exiting value u to ? with the latency of the operation �(e) = lat(u). Accordingly,the total schedule time is the last execution step �� = �(?). Figure 3.1 is an exampleof a DAG, where bold nodes are 
oating point (fp) values, and bold lines are 
ow arcsthrough fp registers. We assume that each operation writes its fp value at the last cycleof its execution (latency), and reads its fp operands at cycle 0.Given a �xed schedule, the register need is the maximal number of values simultane-ously alive. The next section formally de�nes this quantity.3.2 Register Need of Acyclic SchedulesGiven a DDG G = (V;E; �), a value ut 2 VR;t is alive at the �rst step after the writingof u until its last reading (consumption). We de�ne the set of consumers for each value



3.2. REGISTER NEED OF ACYCLIC SCHEDULES 51ut 2 VR;t as the set of its readers :Cons(ut) = fv 2 V=(u; v) 2 ER;tgGiven a schedule � 2 �(G), the last consumption of a value is called the killing date andis noted : 8ut 2 VR;t : kill�(ut) = maxv2Cons(ut) ��(v) + �r;t(v)�All consumers whose reading time is equal to u's killing date are called killers of u, andare noted killers�(u). We assume that a value written at clock cycle c in a register isavailable one step later. That is to say, if operation u reads from a register at clock cyclec while operation v is writing in it at the same clock cycle, u does not get v's result butgets the value previously stored in that register2. Then, the lifetime interval LT�(ut) ofthe value u according to � is ]�(u) + �w;t(u); kill�(u)].Having all value's lifetime intervals, the register need of � is the maximum number ofvalues simultaneously alive, which is the minimum number of registers needed to avoidspill code for that schedule.De�nition 3.1 (Register Need (Requirement, MAXLIVE)) Let G = (V;E; �) bea DAG. Then any schedule � 2 �(G) needs RN�t (G) registers of type t 2 T, such that :RN�t (G) = max0�c�� jvsa�t (c)jwhere vsa�t (c) = fut 2 VR;t=c 2 LT�(ut)g is the set of values alive at clock cycle cThe values simultaneously alive that de�ne the register need of type t are called excessivevalues.De�nition 3.2 (Excessive Values) Given a DDG G = (V;E; �) and a schedule � 2�(G), a set of excessive values noted EV �t (G) � VR;t is a set that contains a maximalnumber of values of type t simultaneously alive :9c =0 � c � � : EV �t (G) = vsa�t (c) =RN�t (G) = jvsa�t (c)jwhere c is a clock cycle where the number of values simultaneously alive is maximum.2This is not a constraint but a choice in our work.
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52 CHAPTER 3. DAG MODELNote that this set may not be unique, since we may have more than one clock cycle whenthe number of values simultaneously alive is maximum. We call an excessive clock cycleof type t a time c when there is a maximum number of values of type t simultaneouslyalive.De�nition 3.3 (Excessive Clock Cycle) Given a DAG G = (V;E; �) and a schedule� 2 �(G), an excessive clock cycle of type t is an instant when there is a maximumnumber of values of type t simultaneously alive :c is an excessive clock cycle of type t 2 T() RN�t (G) = jvsa�t (c)jFigure 3.2 is an example of a valid schedule for the previous DAG that needs three fpregisters. Here, we highlight fp values with bold circles and 
ow fp arcs with bold ones.The bars represent the lifetime intervals. fe; fg are the killers of bfp. fa; b; dg is a setof fp excessive values since they are the maximum number of values simultaneously aliveof type 
oat. 9 is a fp excessive clock cycle since at this time there are three fp valuessimultaneously alive. Note that we may have more than one set of excessive values, sincethe register need may be de�ned with many sets of values simultaneously alive.
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Figure 3.2: Register Need of Acyclic SchedulesComputing the register need of a �xed schedule is easy : in the case of an interval graph[Ber77], its width (MAXLIVE) is equal to the size of a maximal clique in its interferencegraph. In the general case, computing a maximal clique is NP-complete [GJ79]. But,this problem becomes polynomial in the case of perfect graphs [Gol80]. Since an intervalgraph is perfect [Ber77], a maximal clique can be computed with an optimal coloringalgorithm of an interval graph in O(jV j� log jV j). Note that, if the intervals are provided,there exists a linear algorithm that computes a maximal clique in an interval graph; fora detailed description, please refer to [Lel96].However, we need to formulate the register need according to an arbitrary schedule,i.e., without �xing any scheduling information. The next section gives an exact intLPformulation of register requirement according to an arbitrary schedule. This formulationwill enable us in further chapters to compute the exact register pressure.



3.3. EXACT FORMULATION OF REGISTER NEED 533.3 Exact Formulation of Register NeedA \good" intLP model is important in our study because it must be used for maximizing(saturation) or minimizing (su�ciency) the register need. Furthermore, we need to give a\good" intLP complexity in terms of the number of generated variables and constraints.This complexity should be a polynomial function of the size of the input DAG, i.e., itshould only depends on the number of nodes and arcs without introducing a total scheduletime factor like in existing techniques.Since we will need to compute a maximal register need (register saturation) and aminimal one (register su�ciency), we provide two formulations. The �rst one computesa maximal clique (maximization version), and the second computes a minimal chain de-composition (minimization version). Note that if jVR;tj = 0, i.e., no results of type t isproduced in the DAG, the register need of type t is zero. Hence, we assume that jVR;tj > 0.3.3.1 Exact Register Need with Maximal CliqueScheduling VariablesFor all operations u 2 V , we de�ne the integer variable �u � 0 that holds the scheduletime. The �rst linear constraints are those that describe validity conditions (precedencerelations), so we write into the model :8e = (u; v) 2 E �v � �u � �(e)There are O(jV j) scheduling variables and O(jEj) linear constraints. In order to boundthe domain set of our variables, we de�ne T a worst possible schedule time. We choose Tsu�ciently large, where for instance T = Pu2V lat(u) is a suitable worst total scheduletime3. Then, we write the following constraint :�? � TAs a consequence, we deduce for any u 2 V :� �u � �u = LongestPathTo(u) is the \as soon as possible" schedule time;� �u � �u = T � LongestPathFrom(u) is the \as late as possible" schedule timeaccording to the worst total schedule time T .Register ConstraintsInterference Graph The lifetime interval of a value ut of type t isLT�(ut) =]�u + �w;t(u); maxv2Cons(ut) ��v + �r;t(v)�]We de�ne for each value ut the variable kut � 0 that computes its killing date. Thenumber of such de�ned variables is O(jVR;tj). Since our variable domains are bounded(assuming a �nite T ), we know that kut is bounded by the two following �nite scheduletimes : 8t 2 T; 8ut 2 VR;t : kut � kut � kutwhere3The case where no ILP is exploited.



54 CHAPTER 3. DAG MODEL� kut = �u + �w;t(u) is the �rst possible de�nition date of ut;� kut = maxv2Cons(ut) ��v + �r;t(v)� is the latest possible killing date of ut.We use the maxn linear constraints to compute kut as explained in Section 2.1 : we needto de�ne for each kut O(jCons(ut)j) variables and O(jCons(ut)j) linear constraints to com-pute it. The total complexity to de�ne all killing dates for all registers types is boundedby O(jV j2) variables and O(jV j2) constraints.Now, we can consider Ht the undirected interference graph of G for the register type t.For any couple of distinct values ut; vt 2 VR;t, we de�ne a binary variable stu;v 2 f0; 1g suchthat it is set to 1 if the two lifetimes intervals of type t interfere : 8t 2 T; 8 couple ut; vt 2VR;t : stu;v = � 1 if LT�(ut) \ LT�(vt) 6= �0 otherwiseThe number of variables stu;v is the number of combinations of 2 values among jVR;tj, i.e.,�jVR;tj � (jVR;tj � 1)�=2.LT�(ut) \ LT�(vt) = � means that one of the two lifetime intervals is \before" theother, i.e., �LT�(ut) � LT�(vt)� _ �LT�(vt) � LT�(ut)�. Then, we have to express thefollowing constraints :stu;v = 1() :�LT�(ut) � LT�(vt) _ LT�(vt) � LT�(ut)�where LT�(ut) � LT�(vt) i� kut � �v + �w;t(v). The negation of this constraint is kut >�v + �w;t(v), i.e., kut � �v � �w;t(v) � 1 � 0. Since stu;v 2 f0; 1g, these variables areconstrained as follows [Tou01d] :stu;v � 1() � kut � �v � �w;t(v)� 1 � 0kvt � �u � �w;t(u)� 1 � 0Given three logical expressions (P;Q; S), (P () (Q^S)) is equivalent to the expression(P ^ Q ^ S) _ (:P ^ :Q) _ (:P ^ :S). We write these two disjunctions with linearconstraints by introducing two binary variables h; h0 2 f0; 1g (see Section 2.1) and bycomputing the �nite lower bounds of the linear functions. This leads to write in themodel : 8 couple ut; vt 2 VR;t8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
stu;v + h+ h0 � 1 � 0kut � �v � �w;t(v)� (kut � �v � �w;t(v)� 1)� (h + h0)� 1 � 0kvt � �u � �w;t(u)� (kvt � �u � �w;t(u)� 1)� (h+ h0)� 1 � 0�stu;v � h+ h0 + 1 � 0�ku + �v + �w(v) + (�kut + �v + �w;t(v))� (h� h0 � 1) � 0�stu;v � h0 + 1 � 0�kvt + �u + �w(u) + (�kvt + �u + �w;t(u))� (h0 � 1) � 0h; h0 2 f0; 1gThe complexity of computing all the stu;v variables is bounded by O(jVR;tj2) binary vari-ables and constraints. The total complexity of considering the interference graphs Ht isthen bounded by O(jVR;tj2) variables and O(jVR;tj2) constraints.



3.3. EXACT FORMULATION OF REGISTER NEED 55Maximal Clique in the Interference Graph The maximum number of values oftype t simultaneously alive corresponds to a maximal clique in Ht = (VR;t;Et), where(ut; vt) 2 Et i� their lifetime intervals interfere (stu;v = 1). For simplicity, rather thanconsidering the interference graph itself, we prefer to consider its complementary graphH 0t = (VR;t;E0t) where (ut; vt) 2 E0t i� their lifetime intervals do not interfere (stu;v = 0).Then, the maximum number of values of type t simultaneously alive corresponds to amaximal independent set in H 0t.To write the constraints that describe independent sets (IS), we de�ne a binary variablexut 2 f0; 1g for each value xut 2 VR;t such that xut = 1 i� ut belongs to some IS of H 0t (tobe determined). We express in the model the following linear constraints :8xut; xvt 2 VR;t : stu;v = 0 =) xut + xvt � 1The number of variables xut is O(jVR;tj). The number of introduced binary variables toexpress all the implications is bounded by O(jVR;tj2). The number of linear constraints tode�ne the IS is bounded by O(jVR;tj2).Linear Function of Register NeedThe register requirement of type t is a maximal IS in H 0t, i.e., the maximal Put2VR;t xut .This formulation is the core of our intLP models, previously de�ned in [Tou01d, Tou01a,Tou01c]. As we will see in Chapter 4, maximizing this function amounts to compute theregister saturation (RS).SummaryThe total variables and constraints of our exact formulation for the register need is :1. the total number of integer variables is bounded by O(jV j2) :(a) O(jV j) scheduling variables : �u for each node u 2 V ;(b) O(jVR;tj) killing variables for each register type : kut � 0 for each value ut 2VR;t;(c) O�(jVR;tj � (jVR;tj � 1))=2� interference binary variables for each register type tstu;v 2 f0; 1g for all couples (ut; vt) 2 V 2R;t;(d) O(jVR;tj) binary independent set variables for the complementary interferencegraph H 0t of the register type t : xut 2 f0; 1g for each value ut 2 VR;t;(e) the total number of intermediate and binary variables to write maxn, n-disjunctionsand equivalence with linear constraints is bounded by O(jV j2).2. the total number of linear constraints is bounded by O(jEj+ jV j2) :(a) O(jEj) scheduling constraints :8e = (u; v) 2 E �v � �u � �(e)(b) the total number of interval lifetime interference constraints is bounded byO(jVR;tj2) for each register type t :stu;v = 1() :�LT�(ut) � LT�(vt) _ LT�(vt) � LT�(ut)�



56 CHAPTER 3. DAG MODEL(c) the total number of independent sets constraints for the complementary inter-ference graph H 0t is bounded by O(jVR;tj2) for the register type t :stu;v = 0 =) xut + xvt � 1(d) the total number of linear constraints to express maxn, n-disjunctions and,equivalences and implications is bounded by O(jV j2).3. RNt(G) is expressed by the linear function :Max Xut2VR;t xut3.3.2 Exact Register Need with Minimal Chain DecompositionAnother formulation uses a minimization objective function. Instead of considering amaximal clique in the interference graph, we consider a minimal chain decomposition ofthe interval graph. Thus, the register need is equal to the number of distinct chains.The intLP system uses some of the variables and constraints de�ned above (for maximalclique).1. O(jV j) scheduling variables : �u for each node u 2 V ;2. O(jVR;tj) killing variables for each register type : kut for each value ut 2 VR;t;3. O�(jVR;tj � (jVR;tj � 1))=2� interference binary variables for each register type t :stu;v 2 f0; 1g for all couples (ut; vt) 2 V 2R;t;4. the total number of intermediate and binary variables to writemaxn, n-disjunctions,equivalences and implications with linear constraints is bounded by O(jV j2).5. O(jEj) scheduling constraints :8e = (u; v) 2 E �v � �u � �(e)6. the total number of interval lifetime interference constraints is bounded by O(jVR;tj2)for each register type t :stu;v = 1() :�LT�(ut) � LT�(vt) _ LT�(vt) � LT�(ut)�Now, we consider the variables and constraints for a minimal chain decomposition.1. We declare a variable cut > 0 for each ut 2 VR;t that holds the number of the chainin which the lifetime interval of ut belongs. cut is positive because we assume thatthere exists at least one value of type t in the DAG. Otherwise, the register need oftype t is obviously zero.2. If two lifetime intervals interfere, then if must not belong to the same chain :8u; v 2 VR;t : stu;v = 1 =) cut 6= cvtThese constraints are equivalent to 8u; v 2 VR;t:stu;v � 1 =) 8<: cut > cvt_cut < cvt



3.4. CONCLUSION 573. The register need of type t is the minimal number of chains zt = minu cut.As we will see in Chapter 5, minimizing zt enables to compute the register su�ciency.Our intLP formulations may be optimized by considering that;� an arc e = (u; v) is redundant for the scheduling constraints and can be safelyremoved i� lp(u; v) > �(e) where lp(u; v) denotes the longest path from u to v (withthe condition that this arc doesn't belong to this path);� two values (ut; vt) 2 VR;t can never be simultaneously alive i� for all the possibleschedules, one value is always de�ned after the killing date of the other. This is thecase if any of the two following conditions is satis�ed :8v0 2 Cons(vt) lp(v0; u) � �r(v0)� �w(u)_ 8u0 2 Cons(ut) lp(u0; v) � �r(u0)� �w(v)3.4 ConclusionThis chapter introduced our hypothesis about targeted ILP architectures and de�nedsome important terms that we use in this part of thesis devoted to register pressure inDAGs. The register need is formulated with a novel integer programming model and isused in the next chapters for computing the register pressure.Our architecture is su�ciently generic for modeling most of modern processors. Weassume architecturally visible delays in reading from and writing into registers, then aregister does not have to be occupied before the operation result is available, and isn'tfreed before the last reading. Multiple register types are considered with two restrictions.First, only one result of a certain type can be produced. This restriction is not importantfor the intLP models : we can easily write an intLP formulation that consider multipleresults per node; we have only to consider multiple lifetime intervals per node. However,we will see, in the next chapter, that this restriction is important, because we will usesome graph theory algorithms that do not allow us to consider nodes with multiple resultsof the same type. Thus, in our current model, multiple results are accepted if they havedi�erent types. The second restriction is that the register types are orthogonal : anoperation producing a value of type t stores it in registers of that type, i.e., it cannot havethe choice between more than one register type. However, some non regular architecturesmay o�er the possibility of storing results into, for instance, a register of type t1 or intoanother of type t2. For the moment, we do not consider this case. We will discuss anextension to this architectural model in our chapter devoted to future work (Chapter 12).
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Chapter 4Acyclic Register SaturationAbstractThis chapter details and synthesizes our work previously presented in [TT00,Tou01d, Tou01a, Tou01e, Tou01b, Tou01c]. It consists in manipulating directedacyclic graphs (DAG), before to the scheduling process, in order to prohibit thislatter from exceeding the number of values simultaneously alive without hurtingthe ILP. We study theoretically the exact upper-bound of the register need (registersaturation) for all valid schedules. We prove that this problem is NP-complete,and we propose a nearly optimal greedy heuristic. If the saturation exceeds thenumber of registers, we add serial arcs to the DAG to reduce it without hurtingthe ILP if possible. We prove that this problem is NP-hard, and we propose ane�cient heuristic. We also see how we can use register saturation to perform localregister allocation before to the scheduling step while saving intrinsic parallelism.The register saturation in the presence of branches is discussed too. Experimentsshow that our algorithms give nearly optimal results.This chapter is organized as follows. Section 4.1 de�nes and studies the concept of registersaturation (RS) in basic blocks. We provide an exact method based on integer program-ming. We also provide an algorithmic approximation based on a DAG decompositioninto levels. We will see in Chapter 6 that our algorithmic approach is an extension ofthe URSA technique [Ber96, BGS93], where the authors assumed a simpler DAG model(identical registers, no writing and reading o�sets). We write an appropriate mathemati-cal formalism for this problem. Our formulation allows us to provide better heuristics andstrategies (experimentally, nearly optimal). We will prove in Chapter 6 that the URSAtechnique is not su�cient to compute the maximal register requirement, even if its solutionis optimal. Section 4.2 studies the problem of RS reduction while minimizing the increaseof critical path. We provide an exact formulation with integer programming, as well asan algorithmic approximation based on interval serialization. Section 4.3 shows how RSanalysis can be applied for local register allocation sensitive to instruction scheduling.Section 4.4 extends the concept of RS to acyclic control 
ow graphs. Before concluding,we give detailed comments on our experiments in Section 4.5.4.1 Computing Register SaturationFirst of all, if jVR;tj, the total number of values of type t, is less than or equal to Rt, thenumber of available registers of type t, then we are sure that any schedule cannot requiremore than jVR;tj � Rt registers. Otherwise, we must analyze the register saturation (RS).59



60 CHAPTER 4. ACYCLIC REGISTER SATURATIONThe RS of a register type t is the maximal register need for all valid schedules of theDAG : RSt(G) = max�2�(G)RN�t (G)and we call � a saturating schedule for type t i� RN�t (G) = RSt(G). The exact intLPmodel that computes RS is derived from the integer program that computes the registerneed in Section 3.3 (with maximal clique). We only have to maximize MAXLIVE :Maximize RNt(G)that is, Maximize Xut2VR;t xutIn this section, we study how to compute RSt(G) with a pure algorithmic solution. Forclarity and without loss of generality, let us focus on only one register type. Accordingly,our notations become VR for the set of values of the implicit type we consider, ER forthe set of 
ow arcs through a register of that type, �r and �w for reading/writing delays,and RN�(G) for the register need of the type we consider. Also, we use the notation ufor both the operation u and the value of that type it produces. Figure 4.1 illustrates anexample of a DAG that we use in this chapter. The values of the considered types are inbold nodes, and the 
ow arcs are in bold lines.Figure 4.1 gives an example of such a DAG that we use in this chapter.
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(c) PK(G)(b) the DDG GFigure 4.1: DAG ModelWe will see in this section that the problem of computing RS is derived from answeringthe question \which operation must kill this value ?". When looking for saturating sched-ules, we do not worry about the total schedule time. Our aim is only to prove that theregister need can reach the RS but cannot exceed it. Minimizing the total schedule timeis considered in a further section when we reduce the RS. So, the purpose of this sectionis to select a suitable killer (last reader) for each value to saturate the register requirement.Since we do not assume any schedule, the life intervals are not de�ned so we cannotknow at which date a value is killed. However, we can deduce which consumers in Cons(u)



4.1. COMPUTING REGISTER SATURATION 61are impossible killers for the value u. If v1; v2 2 Cons(u) and there exists a path v1 ; v2,v1 is always scheduled before v2 with at least lat(v1) processor cycles. Therefore, v1 cannever be the last read of u (remember that we assume strictly positive latencies). We canconsequently deduce which consumers may potentially kill a value (possible killers). Wenote pkillG(u) the set of operations that may kill a value u 2 VR :De�nition 4.1 (Potential Killing Operations) Given a DAG G = (V;E; �), the setof potential killing operations of a value u 2 VR form the subset pkill(u) � Cons(u) suchthat : pkill(u) = �v 2 Cons(u)= # v \ Cons(u) = fvg	One can check that all operations in pkillG(u) are parallel in G. Any operation that doesnot belong to pkillG(u) can never kill the value u. Furthermore, for any potential killerv 2 pkill(u), there exists a schedule that makes v a killer of u, as proved by the followinglemma.Lemma 4.1 Given a DAG G = (V;E; �), then 8u 2 VR8� 2 �(G); 9v 2 pkillG(u) : �(v) + �r(v) = kill�(u) (4.1)8v 2 pkillG(u); 9� 2 �(G) : kill�(u) = �(v) + �r(v) (4.2)Proof :See Appendix A (Section A.1.1 page 247). yA potential killing DAG of G, denoted by PK(G) = (V;EPK), is built to model thepotential killing relations between operations, see Figure 4.1(c). Since only 
ow arcs areconsidered, serial arcs do not belong to PK(G). Note, for instance, that the value f isnot consumed inside the current BB. Since we assume that it is still alive when exitingthe BB, we add an arc from f to ? to model this fact.De�nition 4.2 (Potential Killing DAG) Given a DAG G = (V;E; �), the potentialkilling DAG of G, denoted by PK(G) = (V;EPK), is the partial graph G=EPK such that :8u; v 2 V : (u; v) 2 EPK () u 2 VR ^ v 2 pkill(u)There may be more than one operation candidate for killing a value. Next, we provethat for maximizing the register need, looking for only one suitable killer each value issu�cient rather than looking for a group of killers : for any schedule that assigns morethan one killer for a value, we can obviously build another schedule with at least the sameregister need such that this value is killed by only one consumer.Theorem 4.1 Let G = (V;E; �) be a DAG and a schedule � 2 �(G). If there is at leastone excessive value that has more than one killer according to �, then there exists anotherschedule �0 2 �(G) such that : RN�0(G) � RN�(G)and each excessive value is killed by a unique killer according to �0.



62 CHAPTER 4. ACYCLIC REGISTER SATURATIONProof :See Appendix A (Section A.1.2 page 248). yCorollary 4.1 Given a DDG G = (V;E; �), there is always a saturating schedule for Gwith the property that each saturating value has a unique killer.Proof :Direct consequence of Theorem 4.1. yThen, our purpose is now to select a suitable killer for each value to saturate the registerrequirement. Let us begin by assuming a killing function which enforces an operationv 2 pkillG(u) to be the killer of u 2 VR.De�nition 4.3 (Killing Function) Given a DDG G = (V;E; �), a killing function k isde�ned by k : VR ! pkill(u)u 7! k(u)If we assume that k(u) is the unique killer of u 2 VR, we always must satisfy thefollowing assertion :8v 2 pkillG(u)� fk(u)g �(v) + �r(v) < ��k(u)�+ �r�k(u)� (4.3)There is a family of schedules that ensure this assertion. To de�ne them, we extend Gby new serial arcs that enforce all the potential killing operations of each value u to bescheduled before k(u). This leads us to de�ne an extended DAG associated with k.De�nition 4.4 (DAG Associated with a Killing Function) Given a DAG G = (V;E; �)and a killing function k, the extended DAG associated with k noted G!k = GnEk is de�nedby :Ek = ne = (v; k(u))=u 2 VR : v 2 pkill(u)� fk(u)g ^ �(e) = �r(v)� �r�k(u)�+ 1oThen, any schedule � 2 �(G!k) ensures Property 4.3. The condition of the existence ofsuch a schedule de�nes the condition of a valid killing function.De�nition 4.5 (Valid Killing Function) Given a DAG G = (V;E; �) and a killingfunction k, then : k is valid () G!k is acyclic
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64 CHAPTER 4. ACYCLIC REGISTER SATURATIONSince G!k is acyclic, we are sure that we can always schedule this DAG :k is a valid killing function =) �(G!k) 6= �Figure 4.2 gives an example of a valid killing function k. This function is shown bybold arcs in part (a) in which each target kills its sources. Part (b) is the DAG associatedwith k. Figure 4.3 describes an example in which an arbitrary choice of killing operationsis not correct, since there is no valid schedule ensuring that choice (there is a circuit inG!k).Given a valid killing function k, we can deduce some values which can never be si-multaneously alive for any � 2 �(G!k). Let #R u be the set of the descendant values ofu 2 V in G!k : #R u =# u \ VRAt this point, we can build a DAG that models values that can never be simultaneouslyalive for for any � 2 �(G!k). Indeed, any descendant value v 2#R k(u) of some killerk(u) can never be simultaneously alive with u in any schedule � 2 �(G!k).De�nition 4.6 (Disjoint Value DAG) Given a DAG G = (V;E; �) and a killing func-tion k, the disjoint value DAG of G, denoted by DVk(G) = (VR; EDV ) is de�ned by :EDV = �(u; v)=u; v 2 VR ^ v 2#R k(u)	Any arc (u; v) in DVk(G) means that u's life interval is always before v's life intervalaccording to any schedule of G!k (see Figure 4.2(c)1).This de�nition allows us to state through the following theorem that the register needof any schedule of G!k is always less than or equal to a maximal antichain in DVk(G).Also, there is always a schedule that makes simultaneously alive all the values of a maximalantichain in DVk(G).Theorem 4.2 Given a DAG G = (V;E; �) and a valid killing function k then :� 8� 2 �(G!k) : RN�(G) � jMAkj� 9� 2 �(G!k) : RN�(G) = jMAkjwhere MAk is a maximal antichain in DVk(G)Proof :First property Let us begin by proving that :8� 2 �(G!k) : RN�(G) � jMAkjDVk(G), the disjoint value DAG, models the order between value lifetime inany schedule of G!k. The de�nition of the disjoint value DAG states that8� 2 �(G!k); 8u; v 2 VR :u < v in DVk(G)() u < k(u) � v in G!k1This DAG is simpli�ed by transitive reduction.



4.1. COMPUTING REGISTER SATURATION 65If v = k(u), then �(u)+�w(u) < �(v)+�r(v), because of true data dependence.By hypothesis on DAG model we have �r(v) � �w(v), then �(u) + �w(u) <�(v) + �w(v). In the case where v 6= k(u), any path from k(u) to v is a datadependence path with strictly positive integer latencies. We deduce that :8� 2 �(G!k) ��k(u)�+ �r�k(u)� � �(v) + �w(v)That is, kill�(u) � �(v) + �w(v)We deduce that the following assertion is correct :8� 2 �(G!k) u � v in DVk(G) =) LT�(u) \ LT�(v) = �We rewrite it : 8� 2 �(G!k)LT�(u) \ LT�(v) 6= � =) ujjv in DVk(G)=) fu; vg 2 vsa�(c) ; c 2 LT�(u) \ LT�(v)Then, any values simultaneously alive for � 2 �(G!k) belong to an antichainin DVk(G) :80 � c < �; 9A an antichain of DVk(G) vsa�(c) � ASince RN�(G!k) = max0�c�� jvsa�(c)j and jvsa�(c)j � jMAkj, we concludethat RN�(G) = max0�c�� jvsa�(c)j � jMAkj.Second Property Now, given a set of excessive values MAk, we must provethat : 9� 2 �(G!k) : RN�(G) = jMAkjWe have to build a schedule � such that RN�(G) = jMAkj. For this purpose,we consider G!k in order to ensure the killing relation, and we add some serialarcs to enforce the values in MAk in order to be simultaneously alive. Thisleads us to a new extended DAG G0 = G!knE0 and8� 2 �(G0) 8u; v 2MAk : LT�(u) \ LT�(v) 6= �A su�cient condition that two values u; v in MAk must satisfy to be simulta-neously alive for any schedule of G!k ishv < u < k(v) ^ lp(v; u) � �w(v)� �w(u) ^^ lp�u; k(v)� > �w(u)� �r�k(v)�i (4.4)_ hu < v < k(u) ^ lp(u; v) � �w(u)� �w(v) ^^ lp�v; k(u)� > �w(v)� �r�k(u)�i (4.5)_ hk(u) = k(v)i (4.6)



66 CHAPTER 4. ACYCLIC REGISTER SATURATIONwith lp(u; v) for u; v 2 V denoting the longest path from u to v.These conditions ensure that 8� 2 �(G!k) 8u; v 2 VR :u; v satisfy (4.4) =) �(u) + �w(u) � �(v) + �w(v)^ �(k(v)) + �r(k(v)) > �(u) + �w(u)u; v satisfy (4.5) =) �(v) + �w(v) � �(u) + �w(u)^ �(k(u)) + �r(k(u)) > �(v) + �w(v)u; v satisfy (4.6) =) kill�(u) = kill�(v)Then, by using interval order algebra notations (Section 2.2) :u; v satisfy Cond. (4.4) =) :(LT�(u) � LT�(v) _ LT�(u) � LT�(v))u; v satisfy Cond. (4.5) =) :(LT�(u) � LT�(v) _ LT�(u) � LT�(v))u; v satisfy Cond. (4.6) =) LT�(u) f LT�(v)If two values in u; v 2 MAk do not satisfy any of these conditions, then weuse Algorithm 1 to enforce them. This algorithm uses the boolean functionvsaG0(u; v) to check if two values u; v satisfy one of the above conditions.We add iteratively serial arcs until all values in MAk satisfy one of theseconditions. The added serial arcs do not introduce circuits and any schedule� of G0 has RN�(G0) = jMAkj. All this is proved by Lemma 4.2, as follows.yLemma 4.2 Let G = (V;E; �) be a DAG and k be a killing function. The extended graphG0 = G!knE0 produced by Algorithm 1 is a DAG, and8u; v 2MAk; 8� 2 �(G0) : LT�(u) \ LT�(v) 6= �in which MAk is a maximal antichain in DVk(G).Proof :See Appendix A (Section A.1.3 page 250). yCorollary 4.2 Given a DAG G = (V;E; �) and a valid killing function, then :1. the descendant values of k(u) cannot be simultaneously alive with u :8u 2 VR; 8� 2 �(G!k); 8v 2#R k(u) : LT�(u) � LT�(v) (4.7)2. there exists a valid schedule that makes the other values non descendant of k(u)simultaneously alive with u, i.e., 8u 2 VR; 9� 2 �(G!k);8v 2 0@ [v02pkillG(u) #R v01A� #R k(u) : LT�(u) \ LT�(v) 6= � (4.8)
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Algorithm 1 Extended G!k to enforce values to be simultaneously aliveRequire: a valid killing function kconstruct the extended graph G!k associated with kG0  G!k fthe �nal extended graph is initializedgsearch for a maximal antichain MAk in the disjoint value DAG DVk(G)for all u 2MAk dofor all v 2MAk= u 6= v doif :vsaG0(u; v) thenif ujjv in G0 thenif :(k(u) < v) thenadd the serial arcs e = (u; v); e0 = (v; k(u)) to G0 with �(e) = �w(u)� �w(v)and �(e0) = �w(v)� �r�k(u)�+ 1else f:(k(v) < u) certainlygadd the serial arcs e = (v; u); e0 = (u; k(v)) to G0 with �(e) = �w(v)� �w(u)and �(e0) = �w(u)� �r�k(v)�+ 1end ifelseif v < u thenadd the serial arcs e = (v; u) and e0 = (u; k(v)) to G0 with �(e) = �w(v) ��w(u) and �(e0) = �w(u)� �r�k(v)�+ 1else fu < vgadd the serial arcs e = (u; v) and e0 = (v; k(u)) to G0 with �(e) = �w(u)��w(v) and �(e0) = �w(v)� �r�k(u)�+ 1;end ifend ifend ifend forend for



68 CHAPTER 4. ACYCLIC REGISTER SATURATIONProof :See Appendix A (Section A.1.4 page 253). yTheorem 4.2 allows us to rewrite the RS formula asRS(G) = maxk a valid killing function jMAkjwhere MAk is a maximal antichain in DVk(G). We refer to the problem of �nding suchkilling functions as the maximizing maximal antichain problem (MMA). We call eachsolution for the MMA problem a saturating killing function, and MAk its saturatingvalues. Unfortunately, computing a saturating killing function is an NP-complete problem,as proved by the following theorem.Theorem 4.3 Given a DAG G = (V;E; �), �nding a saturating killing function is NP-complete.Proof :See Appendix A (Section A.1.5 page 253). yCorollary 4.3 Given a DAG G = (V;E; �), computing the register saturation of type tis NP-complete.Proof :See Appendix A (Section A.1.6 page 257). yThe next section describes an e�cient heuristics for solving MMA, i.e., for �nding a goodapproximation for RS.4.1.1 An E�cient Heuristics for Computing RSThis section presents our heuristics to approximate an optimal k by another valid killingfunction k�. It is the same problem of scheduling with a maximal number of valuessimultaneously alive. We have to choose a killing operation for each value such that wemaximize the parallel values in DVk(G) the disjoint value DAG. Our heuristics focuseson the potential killing DAG PK(G), starting from source nodes to sinks. Our aim is toselect a group of killing operations for a group of parents to keep alive as many descendantvalues as possible. In other words, we want to minimize the number of arcs in DVk(G).The main steps of our heuristics are :



4.1. COMPUTING REGISTER SATURATION 691. decompose the potential killing DAG PK(G) into connected bipartite components(producers and consumers, see the de�nition hereafter);2. for each bipartite component, search for the best saturating killing set (de�nedbelow);3. choose a killing operation within the saturating killing set (de�ned below).Each step is explained in the following paragraphs.Step 1: Decomposing PK(G) into Connected Bipartite ComponentsWe decompose the potential killing DAG into connected bipartite components (CBC) inorder to choose a common saturating killing set for a group of parents (producers). Ourpurpose is to have the maximum number of children (consumers) and their descendantsvalues simultaneously alive with their parents. A CBC cb = (Scb; Tcb; Ecb) is a partitionof a subset of operations into two disjoint sets in which :� Ecb � EPK is a subset of the potential killing relations;� Scb � VR is a set of parent values with the property that each parent is killed by atleast one operation in Tcb;� Tcb � V is a set of children with the property that any operation in Tcb may poten-tially kill at least a value in Scb.A formal de�nition will be given below. Let us begin by de�ning a relation between thearcs of a general DAG.De�nition 4.7 (Zigzag Relation) Let G = (V;E; �) be a DAG. We say that two con-nected arcs e; e0 2 E are in zigzag relation, denoted by ./, i� :e ./ e0 () target(e) = target(e0) _ source(e) = source(e0)We then de�ne the zigzag equivalence, which is the re
exive and transitive closure of thezigzag relation.De�nition 4.8 (Zigzag Equivalence) Let G = (V;E; �) be a DAG. The zigzag equiva-lence, noted o, is the the re
exive and transitive closure of the zigzag relation, i.e.,� 8e 2 E; e o e� 8e; e0 2 E; e ./ e0 =) e o e0� 8e; e0; e00 2 E; (e ./ e0) ^ (e0 ./ e00) =) e o e00We group the arcs of a DAG into classes according to this zigzag relation (see Fig-ure 4.4), which are the equivalence classes of the relation o.De�nition 4.9 (Zigzag Class) Let G = (V;E; �) be a DAG. We say that a non emptyset zc � E is a zigzag class i� it is an equivalence class of the zigzag equivalence relation.Formally :1. e o e0 () e; e0 2 zc



70 CHAPTER 4. ACYCLIC REGISTER SATURATION2. @e 2 E � zc = 9e0 2 zc ^ e o e0We decompose the set of arcs of a DAG into zigzag classes, which are the set of equivalenceclasses of the relation o.De�nition 4.10 (Zigzag Decomposition) Let G = (V;E; �) be a DAG. We say thatZ(G) a set of zigzag classes is a zigzag decomposition i� :8e 2 E; 9zc 2 Z(G) : e 2 zcThen, since Z(G) is the set of equivalence classes of the relation o, a zigzag decompositionis unique.Now, after understanding the zigzag decomposition, we are ready to de�ne a connectedbipartite component (CBC) of the potential killing DAG PK(G). For each zigzag classof PK(G), we de�ne a connected bipartite component as a triplet : a set of parent values,a set of children (potential killers) and a set of arcs connecting parents to children.De�nition 4.11 (Connected Bipartite Component) Let G = (V;E; �) be a DAG,and PK(G) = (V;EPK) its potential killing DAG. A connected bipartite componentcb = (Scb; Tcb; Ecb) is constructed from a zigzag class zc 2 Z (PK(G)) of a potentialkilling DAG PK(G) = (V;EPK) such that :� Scb = fu 2 VR= 9e 2 zc : u = source(e)g is the set of parent values (producers);� Tcb = fu 2 V=u 62 Scb ^ 9e 2 zc : u = target(e)g is the set of children nodes(consumers);� Ecb = fe = (u; v) 2 EPK=u 2 Scb ^ v 2 Tcbg, i.e., cb is bipartite :According to this de�nition, there is a unique connected bipartite component per zigzagclass (see Figure 4.4). Note that the children of a connected bipartite component areparallel, by de�nition, in the potential killing DAG :8t; t0 2 Tcb : tjjt0 in PK(G)The set of all connected bipartite components is called a bipartite decomposition ofthe potential killing graph PK(G).
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4.1. COMPUTING REGISTER SATURATION 71De�nition 4.12 (Bipartite Decomposition) Given a DAG G = (V;E; �), a bipartitedecomposition of its potential killing DAG PK(G) is the setB(G) = fcb = (Scb; Tcb; Ecb)= 9zc 2 Z (PK(G)) : cb is a CBC of zcgSince the zigzag decomposition is unique, and each zigzag class has a unique CBC, thenthe bipartite decomposition is also unique (see Figure 4.2.d).Algorithm 2 computes the bipartite decomposition of a potential killing DAG. It pro-ceeds by selecting one value as an entry point for constructing a new bipartite component.Then, each child is added to the Tcb set and each parent is inserted into the Scb set. Thisalgorithm iterates until no new parent or child is found.Algorithm 2 Constructing the bipartite decomposition B(G)Require: PK(G) of a DAG G = (V;E; �)B(G) � fbipartite decomposition is initially emptyglist arc  EPKfor all u 2 VR do finitializationgvisited[u] falseend forfor all u 2 VR doif : visited[u] then fwe select one non visited value...gScb  fug f...to initialize ScbgEcb  �Tcb  �+PK(G)(u)S  � flast ScbgT  � flast Tcbgwhile (S 6= Scb) _ (T 6= Tcb) do fgrab all connected children with their parentsgS  ScbT  TcbScb  [t2Tcb��PK(G)(t)Tcb  [s2Scb�+PK(G)(s)end whilefor all s 2 Scb do fmark parent values as visitedgvisited[s] trueif s 2 Tcb then fcb must be bipartitegremove s from Tcbend ifend forfor all e = (u; v) 2 list arcs doif u 2 Scb ^ v 2 Tcb thenadd e to Ecbremove e from list arcsend ifend forB(G) B(G) [ fcbgend ifend for



72 CHAPTER 4. ACYCLIC REGISTER SATURATIONAfter constructing all the CBC, we compute a saturating killing set for each CBC asexplained below.Step 2 :Finding a Saturating Killing setA saturating killing set SKS(cb) of a bipartite component cb = (Scb; Tcb; Ecb) is a subsetT 0cb � Tcb such that if we choose a killing operation from this subset, then we get amaximized number of values in (#R T� #R T 0) simultaneously alive with the parents inScb (this is the consequence of Corollary 4.2). In other words, if T is the set of children andT 0 � T is a saturating killing set, maximizing j #R T� #R T 0j corresponds to minimizingj #R T 0j. This amount to minimizing the number of arcs in the disjoint value DAGDVk(G).De�nition 4.13 (Saturating Killing Set (SKS)) :Given a DAG G = (V;E; �), a saturating killing set SKS(cb) of a connected bipartitecomponent cb 2 B(G) is a subset T 0cb � Tcb with the following properties :1. killing constraints : [t2T 0cb ��cb(t) = Scb2. minimizing the number of descendant values of T 0cbmin j [t2T 0cb #R tjIt is clear that computing SKS(cb) is NP-complete too. The proof is exactly the sameas for MMA problem, i.e., by reducing SKS from MKS, the minimum killing set problem(see Section A.1.5 Page253).Step 3 : A Heuristics for Finding a SKS and a Suitable Killer for Each ValueIntuitively, we should choose a subset of children in a bipartite component that wouldkill the greatest number of parents while minimizing the number of descendant values.We de�ne a cost function � that enables us to choose the best candidate child. Given abipartite component cb = (Scb; Tcb; Ecb), a set Y of (cumulated) descendant values, and aset X of non (yet) killed parents, the cost of a child t 2 Tcb is :�X;Y (t) = 8><>: j��cb(t)\Xjj#Rt[Y j if #R t [ Y 6= �j��cb(t) \Xj otherwiseThe �rst case enables us to select the child which covers the most unkilled parentswith the minimum descendant values. If there is no descendant value, then we choose thechild that covers the most unkilled parents. Algorithm 3 gives a greedy heuristics thatsearches for an approximation SKS� and computes a killing function k� in polynomialtime. Our heuristics ensures that there exists at least one schedule which needs jMAk�jregisters, i.e., k� is valid since it does not introduce a circuit intoG!k� the DAG associatedwith it. For this purpose, we maintain dynamically G!k� in order to ensure that each



4.1. COMPUTING REGISTER SATURATION 73

Algorithm 3 Greedy-k: a heuristics for the MMA problemRequire: a DAG G = (V;E; �)G!k�  G finitializationgfor all values u 2 VR dok�(u) ? fall values are initially unkilledgend forbuild B(G) the bipartite decomposition of PK(G).for all bipartite component cb = (Scb; Tcb; Ecb) 2 B(G) doX  Scb fall parents are initially uncoveredgY  � finitially, no cumulated descendant valuesgSKS�(cb) �while X 6= � do fbuild the SKS for cbgselect the child t 2 Tcb with the maximal cost �X;Y (t)SKS�(cb) SKS�(cb) [ ftgX  X � ��cb(t)fremove covered parentsgY  Y [ #R t fupdate the cumulated descendent valuesgend whilefor all t 2 SKS�(cb) do fin decreasing cost ordergfor all parent s 2 ��cb(t) doif k�(s) = ? then fkill unkilled parents of tgif @v 2 pkill(s)= t < v in G!k� then fk� must be validgk�(s) telsechoose t 2 pkill(s) such @v 2 pkill(s)= t < v in G!k�k�(s) tend ifupdate G!k�end ifend forend forend for



74 CHAPTER 4. ACYCLIC REGISTER SATURATIONkilling decision is valid. Before inserting an arc, we must check if it does not introduce acircuit. This is because the connected bipartite components of PK(G) do not contain allthe arcs of G, since we may have multiple register types. If we do not take care and wechoose the killers locally inside the connected bipartite components, we may introduce acircuit. Figure 4.5 is an illustration. Bold arcs are the 
ow arcs of the type we consider.Some serial arcs (other 
ow types, in thin arcs) may join CBC1 and CBC2. If no careis taken for choosing the killers locally inside these bipartite components, a circuit maybe introduced. Note that if the initial DAG is a pure data 
ow graph with one registertype, we can use Algorithm 11 (Appendix, page 11) to choose a killer without checking ifa circuit would be introduced. Hence, Greedy-k is simpli�ed.
CBC1 CBC2

Figure 4.5: Avoiding Circuits in Joined Bipartite ComponentsAs a consequence, our heuristics does not compute an upper bound of the optimalregister saturation. Therefore, the optimal RS may be greater than the one computedby Greedy-k. A conservative heuristics, which computes a solution exceeding the optimalRS, cannot ensure the existence of a valid schedule which reaches the computed limit,and may then imply an obsolete RS reduction process and a waste of registers. The va-lidity of a killing function is a key condition because it ensures that there exists a registerallocation with exactly jMAk�j registers.Thanks to our RS problem formulation, we easily deduce that :Corollary 4.4 Given a DAG G = (V;E; �), thenPK(G) is an inverted tree =) computing the optimal RS(G) is a polynomial problemIn inverted trees, each node has at most one child.Proof :Trivial ! Each value has at most one potential killer, i.e., there is only onechoice for the killing function. Then, the saturating values are simply thesources of the potential killing DAG PK(G). ySuch graphs are, for instance, arithmetic expressions. Their DDGs are inverted trees, andhence saturating values are simply the sources of the DAG. Thus, we do not need to applyGreedy-k.



4.1. COMPUTING REGISTER SATURATION 754.1.2 SummaryHere are our steps to approximate RS.1. Apply Greedy-k on G. The result is a valid killing function k�.2. Construct the disjoint value DAG DVk�(G).3. Find a maximal antichain MAk� of DVk�(G) using Dilworth decomposition [CD73].Saturating values are thenMAk� and RS�(G) = jMAk�j � RS(G). Since a maximalantichain is not necessarily unique, we may have multiple sets of saturating values.
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1/1 ?(a) PK(G) with k� (b) DVk� (G)Figure 4.6: Computing Register SaturationExample 4.1.1 Figure 4.6 gives an example. Part (a) presents a saturating killing func-tion k� computed by Greedy-k : bold arcs denote that each target kills its sources. Eachkiller is labeled by its cost �. Part (b) gives the disjoint value DAG associated with k�.For instance, there is an arc from c to h because h 2#R e, as can be seen in the initialDAG (Figure 4.1). Saturating values are fa; b; c; d; f; j; kg, so RS� = 7.We can optimize the computation of RS by exploiting some DAG properties. If theDAG G = (V;E; �) is composed of a family of disjoint sub-DAGs G1; : : : ; Gm such thatGi(0 � i � m) is connected, then the global DAG G has the following properties.1. The register saturation is the sum of register saturation of each sub-DAG :RS(G) = mXi=1 RS(Gi)This is because we can schedule the sub-DAGs in parallel.2. The saturating values are the union of saturating values of each sub-DAG :MA = [0�i�mMAiin which MA is the set of all saturating values and MAi is the set of saturatingvalues of Gi. This is because we can schedule the saturating values of each sub-DAG in parallel with the saturating values of another sub-DAG, so as to makethem simultaneously alive.



76 CHAPTER 4. ACYCLIC REGISTER SATURATION3. The saturating values of each sub-DAG are disjoint :8MAi;MAi0 ; i 6= i0 MAi \MAi0 = �Consequently, the RS of each sub-DAG can be independently computed in order to re-duce the complexity. In one hand, our exact formulation consists of independent intLPmodels (one for each sub-DAG). In the other hand, our algorithmic heuristics consists inindependently applying Greedy-k on each sub-DAG.The RS analysis is performed on DAGs before code scheduling. If the computed RS islower than the number of available registers, then the DAG is left unchanged. Otherwise,we must add serial arcs to reduce the RS. The next section explores this issue.4.2 Reducing Register SaturationReducing register saturation of type t 2 T for DAG G = (V;E; �) consists in adding extraserial arcs to build a new DAG G = GnE such that the register saturation is limited by astrictly positive integer (the number of available registers) without increasing the critical(longest) path if possible. Let Rt be the number of available registers of type t and P apositive integer. Then :8� 2 �(G) : RN�t (G) � RSt(G) � Rt ^ CriticalPath(G) � PWe prove in this section that �nding such an extended DAG is NP-hard, and we give anintLP model to build an optimal one. We also present an e�cient algorithmic approxi-mation. Formally, the problem is de�ned by :De�nition 4.14 (ReduceRS problem) Let G = (V;E; �) be a DAG and Rt, P twopositive integers. Does there exist an extended DDG G = GnE of G such that :RSt(G) � Rtand CriticalPath(G) � PTheorem 4.4 ReduceRS problem is NP-hard.Proof :For the clarity of this proof, let us focus on one register type. If more thanone type exists, we handle them one by one.We prove that ReduceRS reduces from the problem of scheduling under reg-ister constraints. Let us start by de�ning the latter problem.De�nition 4.15 (SRC problem) Let G = (V;E; �) be a DAG, R be a pos-itive integer, and P be a length. Does it exist a valid schedule � 2 �(G) suchthat : RN�(G) � Rand �(?) � P



4.2. REDUCING REGISTER SATURATION 77SRC problem has been proven NP-hard in [EGS95]2. Below, we show how wereduce ReduceRS from SRC.1. ReduceRS =) SRCLet G be a solution for the ReduceRS problem. Then trivially, any validschedule � 2 �(G) is a solution for SRC.2. SRC =) ReduceRSLet � be a solution for SRC, i.e., RN�(G) � R and �(?) � P. We buildan extended DDG G by adding serial arcs to impose value lifetimes of anyschedule of G to have same precedence relation as de�ned by �. 8u; v 2VR=LT�(ut) � LT�(vt) then we add the following arcs :� if v 2 pkillG(u), then add serial arcs from the other u's potential killers(except v) to v; the set of added arcs is :�e = (u0; v)= u0 2 pkillG(u)� fvg with �(e) = �r(u0)� �w(v)	� else, add serial arcs from all u's potential killers to v; the set of addedarcs is : �e = (u0; v)= u0 2 pkillG(u) with �(e) = �r(u0)� �w(v)	That is, we force the following assertion :LT�(u) � LT�(v) =) 8�0 2 �(G) LT�0(u) � LT�0(v)Then, for all values non simultaneously alive according to �, there is no sched-ule �0 of G that makes them simultaneously alive. Formally, it is written ::�9u; v 2 VR; LT�(u) � L�(v); 9�0 2 �(G)= LT�0(u) \ LT�0(v) 6= ��In other words, we ensure that any schedule of G will guarantee the prece-dence relations between the value lifetime intervals of G according to �. Con-sequently, any �0 cannot need more than the register need of � andRS(G) = RN�(G) � RA solution for SRC problem may create a circuit in the solution of ReduceRS.We are sure that if any circuit is introduced in G, then it must be nonpositivebecause there exists at least the valid schedule � 2 �(G). Then, a solution ofthe ReduceRS problem may produce a cyclic DDG. We will see later how toeliminate these solutions.With regard to the critical path of G, the introduced serial arcs ensure that atleast � 2 �(G). Since there exists such a schedule with �(?) � P, the criticalpath of G cannot be longer than P. yThe proof of Theorem 4.4 gives the intuition for optimally solving the ReduceRS problemusing integer programming. The next section de�nes our variables and constraints.2In fact this problem is NP-complete. The authors could prove that it belongs to NP but they didn't.



78 CHAPTER 4. ACYCLIC REGISTER SATURATION4.2.1 Exact Formulation of RS ReductionAn optimal solution of the ReduceRS problem is computed in two steps :1. we �rst compute a valid schedule � such that the register need of type t is maximizedand does not exceed Rt, while the total schedule time �(?) is bounded;2. then, we add serial arcs as described by the proof of Theorem 4.4. This results inan extended DDG that has a bounded register saturation with a minimized criticalpath.To compute such schedule, we use our formulation previously de�ned in Section 3.3(with maximal clique) that maximizes the register need. We must bound the total scheduletime and the register need.1. The objective function is : maximizePut2VR;t xut2. The integer variables are :(a) scheduling variables : �u � 0 for each node u 2 V ;(b) bound the total schedule time : �? � P(c) interference binary variables for each registers type t : stu;v 2 f0; 1g for allcouples ut; vt 2 VR;t. stu;v is set to 1 i� the lifetime intervals of ut and vtinterfere with each other;(d) binary independent sets variables for the complementary interference graph H 0tof the register type t : xut 2 f0; 1g for each value ut 2 VR;t. xut is set to 1 ifut belongs to a maximal clique in the interference graph (i.e., belongs to anindependent set in the complementary graph).3. The linear constraints are :(a) scheduling constraints :8e = (u; v) 2 E �v � �u � �(e)(b) interference constraints for each register type t :stu;v = 1() :�LT�(ut) � LT�(vt) _ LT�(vt) � LT�(vt)�(c) independent sets constraints for the complementary interference graph H 0t oftype t : xut + xvt � 1() stu;v = 0(d) the number of values of type t which are simultaneously alive must not exceedthe number of available registers Rt :8t 2 T : Xut2VR;t xut � RtThere are at most O(jV j2) variables and O(jV j2 + jEj) constraints (see Section 3.3).In some cases, the optimal RS reduction needs to introduce nonpositive circuits intothe original DAG. We must eliminate such optimal solutions. Thus, the extended DAGsmay have longer critical paths. The next section discusses this problem.



4.2. REDUCING REGISTER SATURATION 794.2.2 Eliminating Circuits with Nonpositive LatenciesWe must remind that the purpose of the register saturation analysis is to proceed byensuring in the �rst steps of compilation that any schedule of a given DAG will notrequire more registers than those available. The scheduling phase is mainly constrainedby resources (functional units) of the target architecture. If the extended DDG producedby the register saturation reduction contains a nonpositive circuit, we cannot guaranteethe existence of a schedule under resource constraints. This is because nonpositive circuitsintroduce some scheduling constraints of types \not later than" which may not be satis�edin the presence of resource constraints.For instance, let us assume a zero weighted circuit between two operations u and v.Theoretically, any schedule such that �(u) = �(v) satis�es this zero weighted circuit.However, if we introduce the resource constraints such that the two operations con
ictwith each other if they are scheduled at the same issue time, then there is not a validschedule that meets these constraints. When we reduce the register saturation, we mustensure than there is always a schedule for any resource constraints. In the following, weprovide an example to illustrate when negative circuits are introduced.
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Figure 4.7: Optimal RS Reducing with Possibly Nonpositive CircuitsExample 4.2.1 A nonpositive circuit is introduced when the lifetime interval of a givenvalue is before the lifetimes of at least two of its consumers (this is a su�cient condition).For instance, Figure 4.7 is the extended DAG of Figure 3.1 constructed from the scheduleof Figure 3.2. The negative circuit introduced between the operations e and f is due tothe fact that they consume the same value b while none is simultaneously alive with baccording to the considered schedule.To overcome the problem of nonpositive circuits in the extended DDG, we proposetwo solutions.First Solution As a �rst solution, we assume a sequential semantics, i.e., we do notintroduce serial arcs with nonpositive latencies (all introduced serial arcs have a unitlatency). This is because an arc with a latency equal to zero (�r = �w = 0) will be



80 CHAPTER 4. ACYCLIC REGISTER SATURATIONprocessed as an arc with a positive latency in the sequential case. Thereby, since alllatencies in the extended DDG are positive, we cannot introduce a circuit, otherwise avalid schedule does not exist. This solution does not alter the optimality of sequential(superscalar) codes, since all arcs have a positive latency (no visible delays). But, thismethod may produce sub-optimal solutions for static issue codes (VLIW). This is becausewe do not consider writing and reading o�sets, and hence we may require more registersthan the optimal number or we may extend the critical path.Hence, any introduced serial arc with this method must have a latency equal to 1.This solution does not add additional constraints to the intLP system, and does not alterthe optimality of superscalar codes3. If we want an optimal solution for VLIW semantics,we have to allow nonpositive latencies while guaranteeing that the extended DDGs isacyclic. This solution is described in the next paragraph.Second Solution We have to ensure that the produced DDG remains acyclic. Then,we must guarantee the existence of a topological sort for the DAG. For this purpose, weadd some variables and constraints to the optimal intLP system.� We de�ne integer variables that holds a topological sort of the DDG. For each u 2 V ,we associate an integer variable du.� We bound the topological sort by the number of nodes :8u 2 V : du � jV j� We write the topological sort constraints for each arc in the original DAG :8e = (u; v) 2 E : du < dv� If we add a serial arc in the extended DDG, we have to satisfy the topological sortconstraints. If two lifetime intervals LT�(ut) and LT�(vt) do not interfere with eachother, serial arcs will be introduced. 8u; v 2 VR;t :{ if v 2 pkill(u), serial arcs will be added from the other u's potential killers tov. We then write the constraints :LT�(ut) � LT�(vt) =) �8u0 2 pkill(u)� fvg : du0 < dv�That is, �v + �w;t(v)� kut � 0 =) �8u0 2 pkill(u)� fvg : du0 < dv�{ if v 62 pkill(u), serial arcs will be added from all u's potential killers to v. Wethen write the constraints :LT�(ut) � LT�(vt) =) �8u0 2 pkill(u) : du0 < dv�That is, �v + �w;t(v)� kut � 0 =) �8u0 2 pkill(u) : du0 < dv�3Recall that superscalar codes are sequential. Thus, any zero weighted arc can be replaced by aunitary weighted arc, because we cannot express statically the ILP.



4.2. REDUCING REGISTER SATURATION 81Note that these constraints may be optimized by considering the fact that some valuescan never be in interference (detected at compile time). We add at most O(jV j3) variablesand O(jV j3 + jEj) constraints to guarantee that the optimal solution produces an acyclicextended DAG.This second solution is optimal in VLIW codes, under the restriction that nonpositivecircuits are not allowed. It fully takes bene�t from reading/writing o�sets, since arcs areallowed to have nonpositive latencies. However, the restriction of nonpositive circuits maynot allow to decrease the register saturation in some critical cases, even if a �nal schedulemay use less registers when resource constraints are used. This is not a limitation of theapproach, but a mathematical fact. Compiler designers have two choices.1. They can allow nonpositive circuits in the extended graph. Then, the register sat-uration may be reduced in the optimal sense but there is no guarantee about theexistence of a schedule under resource constraints.2. They can prohibit nonpositive circuits, but some critical cases may not allow toreduce the register saturation as low as possible compared to the above case. Ofcourse, we advice this approach.The next section presents an e�cient algorithm for the ReduceRS problem.4.2.3 Pure Algorithmic Heuristics for RS ReductionIn this section, we build an extended DAG G = GnE such that the RS is limited bya positive integer R (the number of available registers) with a minimized critical pathincrease. For clarity and without loss of generality, let us focus on only one register type4. Then, our notations become VR for the set of values of the implicit type we consider,ER for the set of 
ow arcs through a register of that type, �r and �w for reading/writingdelays, and RN�(G) for the register need of the type we consider. Also, we use thenotation u for both the operation u and the value of the considered type it produces.To simplify the writing of some mathematical formulas, we assume that the DAG hasone source (>). If not, we introduce a virtual node > representing a nop (removed atthe end of the RS analysis). We add a virtual serial arc e1 = (>; s) to each source with�(e1) = 0. The zero latency of such added arc is not inconsistent with our assumptionthat latencies must be positive because the added virtual serial arcs no longer representdata dependences. Besides, we can avoid introducing this virtual node without any con-sequence on our theoretical study since its purpose is only to simplify some mathematicalexpressions. Figure 4.1 shows the DAG that we use in this section.Our heuristics relies on the Greedy-k algorithm previously de�ned in Section 4.1. Itadds serial arcs to prevent some saturating values inMAk from being simultaneously alivefor any schedule, according to a saturating killing function k. Also, we must care to notincrease the critical path if possible.Serializing two values (lifetime intervals) u; v 2 VR means that the kill of u mustalways be performed before the de�nition of v, or vice-versa, as illustrated in Figure 4.8.An interval serialization u! v for two values u; v 2 VR is de�ned by :4If more than one register type exists, we apply our algorithm on each type.



82 CHAPTER 4. ACYCLIC REGISTER SATURATION� if v 2 pkillG(u), then add the serial arcs �e = (v0; v)=v0 2 pkillG(u)� fvg with �(e) = �r(v0)� �w(v)	(see Figure 4.8.(c))� else, add the serial arcs �e = (u0; v)=u0 2 pkillG(u) ^ :(v < u0) with �(e) = �r(u0)� �w(v)	(see Figure 4.8.(d)).In order to preserve the DAG property (we must not introduce a circuit), some serial-izations must be �ltered out. The condition for applying u! v is that 8v0 2 pkillG(u) ::(v < v0). We choose the best serialization within the set of all the possible ones by usinga cost function !(u! v) = (!1; !2) in which :� !1 = �1 � �2 is the prediction (bene�t) of the reduction obtained within the satu-rating values if we perform this value serialization, where :{ �1 is the number of saturating values serialized after u if we carry out theserialization;{ �2 is the predicted number of u's descendant values that may become simulta-neously alive with u.We choose a value serialization with a minimal bene�t in order to keep maximizedthe maximal register requirement. A maximal bene�t may reduce RS� with a largervalue, thus the reduced RS� would not remain maximized.� !2 is the increase in the critical path (cost).Our heuristics is described in Algorithm 4. It iterates the value serializations within thesaturating values until we get a register saturation RS� � R or until no more serializationsare possible (or none is expected to reduce the RS). One can check that if there is nopossible value serialization in the original DAG, our algorithm exits at the �rst iterationof the outer while-loop. If it succeeds, then any schedule of G needs at most R registers.
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4.2. REDUCING REGISTER SATURATION 83If not, it may still decrease the original RS, and thus may limit the register need. Intro-ducing and minimizing spill code is another NP-complete problem : a heuristics will bepresented further when we study register su�ciency in DAGs.Now, we explain how to compute the prediction parameters �1; �2; !2. We denote byGi the extended DAG of step i, ki its saturating function, MAki its saturating values,and #Ri u the descendant values of u in Gi :1. (u ! v) ensures that ki+1(u) < v in Gi+1. Then, v will belongs to #Ri ki+1(u).According to Corollary 4.2 Page 66,�1 = j #Ri v \ MAki j is the number of saturating values in Gi which cannot besimultaneously alive with u in Gi+1;2. Since we may have multiple sets of saturating values5, new saturating values couldbe introduced into Gi+1 : if v 2 pkillGi(u), we force ki+1(u) = v. According toCorollary 4.2, �2 = ������0@ [v02pkillGi(u) #Ri v01A� #Ri v������is the number of values that could be simultaneously alive with u in Gi+1. �2 = 0otherwise;3. if we perform (u ! v) in Gi, the introduced serial arcs may increase the criticalpath. Let lpi(v0; v) be the longest path going from v0 to v in Gi. The new longestpath in Gi+1 going through the serialized nodes is :maxintroduced e=(v0;v)�(e)>lpi(v0;v) lpi(>; v0) + lpi(v;?) + �(e)If this path is greater than the critical path in Gi, then !2 is the di�erence betweenthem, 0 otherwise.At the end of the algorithm, we apply a general check step to ensure the potential killingproperty proven in Lemma 4.1 for the original DAG. We have proven in Lemma 4.1 (Page61) that operations that do not belong to pkillG(u) cannot kill the value u. After addingthe serial arcs to build G, we may violate this assertion because we introduce some arcswith nonpositive latencies. Figure 4.9 is an illustration. In the initial DAG, we havepkill(c) = fe; fg since both e and f may kill the value c. After two value serializations(parts 1 and 2 of Figure 4.9), we have introduced a path from e to f with a nonpositivelatency. Consequently, e is no longer a potential killer for c in the extended DDG. However,the latency of the path e; f does not prevent c from being scheduled as a killer, whichviolates our pkill assertion in Lemma 4.1. Since our Greedy-k algorithm assumes thatonly potential killers may be scheduled as killers, then the computed register saturationof the extended DDG may not be correct. In order to make it so, we have to prevent efrom being scheduled as a killer for c by just adjusting the latency of the path e; f .To generalize the above ideas, we must guarantee the following assertion :8u 2 VR; 8v0 2 Cons(u)� pkillG(u)9v 2 pkillG(u)=v0 < v in G =) lpG(v0; v) > �r(v0)� �r(v) (4.9)5Recall that a maximal antichain in DVk(G) may not be unique.



84 CHAPTER 4. ACYCLIC REGISTER SATURATIONAlgorithm 4 Value Serialization HeuristicRequire: a DAG G = (V;E; �) and a positive integer RG Gcompute MAk, a set of saturating values of G;while jMAkj > R do frecall that RG(G) = jMAkjgconstruct the set Uk of all admissible serializations between saturating values inMAkwith their costs (!1; !2);if @(u! v) 2 U=!1(u! v) > 0 then fno more possible RS reductiongexit;end ifX  f(u ! v) 2 U=!2(u ! v) = 0g fthe set of value serializations that do notincrease the critical pathgif X 6= � thenChoose a value serialization (u ! v) in X with the minimal bene�t !1 � R �RS(G);elseChoose a value serialization (u! v) in X with the minimal cost !2;end ifCarry out the serialization (u! v) in G;compute the new saturating values MAk of G;end whileensure potential killing operations property fcheck longest paths between pkill opera-tionsgAs explained above, this problem occurs if we create a path in G from v0 to v in whichv; v0 2 pkillG(u). If assertion (4.9) is not satis�ed, we add a serial arc e = (v0; v) with�(e) = �r(v0)� �r(v) + 1, as illustrated in Figure 4.9 (part 3). Note that longest paths ina DAG can be computed by the ALL PAIRS SHORTEST PATH algorithm [MN99] byreversing the sign of the latencies.
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4.3. REGISTER SATURATION FOR LOCAL REGISTER ALLOCATION 85original critical path (26). The extended DAG G is presented in Sub-�gure (b) where thevalue serialization a ! f is introduced : we add the serial arcs (e; f) and (d; f) with a-4 latency. Lastly, we add the serial arcs (e; f) and (d; f) with a unit latency to ensurethe pkillG(b) property. The whole critical path does not increase and RS� is reduced to 4.Sub-�gure (c) gives a saturating killing function for G, shown with bold arcs in PK(G).DVk�(G) is presented in Sub-�gure (d) to show that the new RS� becomes 4 
oating pointregisters.
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? (c) PK(G) with k� (d) DVk� (G)(b) GFigure 4.10: Reducing Register SaturationWe can optimize this iterative algorithm by improving the way we build all possiblevalue serializations : in fact, we do not need to compute all of them. We stop when we �nda suitable one, i.e., when its cost !1 � RS(G) � R while !2 = 0. Another optimizationconsists in iteratively updating longest paths and transitive closure : since we add few arcsat each iteration, we can look for an iterative algorithm instead of global re-computation.The RS analysis (computing and reducing it) intends to reduce the register pressurepreviously to a scheduling phase. Our aim is to provide a compilation pre-pass for a mixedscheduler-allocator algorithm or for a scheduler followed by an allocator. However, someexisting compilers use the old strategy consisting in allocating registers before scheduling.As stated before, an early register allocation, that does not consider a possible parallelexecution, inhibits the scheduler from exploiting a maximal ILP. The cost of changing thecompiler structure is high. A better approach is to only change the allocator box so as tobecome sensitive to the underlying scheduler. The next section elaborates on this.4.3 Register Saturation for Local Register AllocationIn this section, we show how to apply a register allocation previously to a scheduler with-out increasing the critical path if possible. We assume a DAG G = (V;E; �) such thatRSt(G) � Rt for each register type. If not so, we reduce the RS as explained in theprevious section, with a possible spill code insertion as will be explained in Chapter 5.We build a register allocation for this DAG as follows :1. search for a saturating killing function kt for each register type t 2 T, sequentiallyto avoid introducing circuits, as shown in Section 4.1;



86 CHAPTER 4. ACYCLIC REGISTER SATURATION2. build G!kt the DAG associated with kt. Any value ut 2 VR;t is killed by one nodekt(u);3. build the disjoint value DAG DVkt(G!kt). According to Theorem 4.2, any chain inthis DAG is a list of non interfering lifetimes in any schedule of G!kt;4. build a minimal chain decomposition [CD73] for DVkt(G!kt) (described in Sec-tion 4.5);5. allocate the same register to all the values in the same chain, but di�erent regis-ters for two di�erent chains. According to Dilworth's Theorem [CD73], we needRSt(G) � Rt registers since a minimal chain decomposition is equal to the cardi-nality of the maximal antichain.Choosing only one killer is an important issue. This is because choosing two or morekillers of a value introduces nonpositive circuits in the DDG (as shown in Section 4.2)that may not guarantee the existence of a valid schedule under resource constraints.However, we must not prevent other potential killers from being scheduled in parallelwith the chosen killer. We slightly change some latencies in the DAG G!k associatedwith a killing function. Indeed, k(u) is a unique killer of u in G! k, even if we havethe ability of scheduling more than one operation as killers. This conservative restrictionmay increase the critical path. So, the added serial arcs in G!k must have their latencieschanged so as they express the fact that k(u) is a killer of u without preventing otherpotential killers from being last consumers of u. This is done by considering the set ofadded serial arcs as :Ek = ne = (v; k(u))=u 2 VR : v 2 pkill(u)� fk(u)g ^ �(e) = �r(v)� �r�k(u)�oNote that their latencies have changed from �r(v) � �r�k(u)� + 1 to �r(v) � �r�k(u)� soas to allow other potential killers to be last consumers (as k(u)) in the �nal schedule.
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4.4. GLOBAL REGISTER SATURATION IN ACYCLIC CFGS 87(we removed redundant arcs from the �gure for clarity reasons) : f(d; e); (e; f)g ensuresthe killing function (so that RS � 4), and (e; k) is an anti-dependence since the node kreuses the register freed by a (killed by e). Note that the arcs in Sub-�gure (a) representsthe reuse register relation between values : and arc from a to k for instance means that kreuses the register previously used by a and killed by e.Performing a register allocation by considering a saturating killing function tries tomaximize the register usage. This amounts to minimize the amount of introduced anti-dependencies. Hence, the maximal ILP degree (DAG weight) is maximized. However,minimizing the amount of introduced anti-dependencies does not consider the increase ofcritical path. This is because choosing a killer for each value that saturates the registerneed may merge two long paths.Another approach is to select a killing function so as to minimize the critical pathincrease. If the optimal RSt is lower than or equal to the number of available registers oftype t, then any valid killing function produces an allocated DAG that does not requiremore than Rt registers. We have to choose for each value u 2 VR;t a killer v 2 pkill(ut)such that it does not increase the critical path.For this purpose, we consider an \as soon as possible" schedule of G, which is de�nedas �(u) = lp(>; u); lp denotes the longest path from > to u in G. Then, if v is a uniquekiller of u according to �, then set k(u) = v. If more than one killer exist, then chooseonly one killer k(u) so as the killing function remains valid, i.e., G!k is a DAG. Thiskilling function does not increase the critical path because � is a valid schedule of G!kand has a total schedule time equal to the original critical path of G.However, selecting a killing function that does not increase the critical path does notnecessarily means that it introduces a minimized amount of anti-dependencies. Thus, thefurther ILP scheduler has more false data dependence constraints to satisfy (compared tothe previous approach) which may increase the �nal total schedule time (under resourcesconstraints).In order to get a good average speedup, compilers should look for global allocationsin CFGs. This is because local register allocators may assign di�erent registers to thesame value in distinct BBs and hence move operations must be inserted to guarantee thecorrectness of the code. The next section shows how we perform RS analysis in the caseof branches.4.4 Global Register Saturation in Acyclic CFGsOur model assumes that there is only one possible de�nition per value. This assumption iscorrect inside a BB, i.e., if the code does not contain branches. In the case of a global CFG,a static data dependence analysis may provide for some values more than one de�nitionbecause it cannot determine which execution path is taken. As an illustration, the valuex read by operation (8) in the CFG of Figure 4.12 may be the result of operation (4) orthe result of operation (5). We cannot determine at compile time which of the two valuesare read by operation (8). As a result, we cannot statically determine the lifetime intervalof the value x.
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4.5. EXPERIMENTS 89Our idea for handling branches is to take each BB and to insert global variables (entryand exit values). In each BB, we add nodes of entry values and we insert serial arcs fromthem to > to re
ect the fact that they are previously scheduled to any other operationinside the considered BB. Also, we insert a 
ow arc from each entry value to each operationconsuming it. Exit values are handled by inserting 
ow arcs to the bottom node ?. Thenew constructed DAG represents values de�ned inside the BB, and those which enter andtraverse it. Then, we apply RS analysis on each BB. The global RS is equal to :GRSt(CFG) = maxG build for each BB in CFGRSt(G)Figure 4.12 shows an example. DAG0 constructed for bb0 contains three exit valuesf2; 3; 4g. DAG1 constructed for bb1 contains two entry values, one produced from oper-ation (3) and the other from operation (4). It has also two exit values f5; 6g. DAG2constructed for bb2 contains two entry values f2e; 4eg. Note that the value 4e previouslyproduced in bb0 by operation (4) may be still alive after exiting bb2, so a 
ow arc goesfrom it to ?. DAG3 constructed for bb3 contains two entry values f6; 4 5eg. The valueread by operation (8) may come from operation (4) or (5) depending on the executedpath. The RS of the BBs are respectively 3, 3, 2 and 2. So global RS is 3. We can haveat most 3 values simultaneously alive in this CFG, and this for any schedule that respectscontrol barriers.However, a further scheduler may move some operations in the CFG to expose moreILP within each basic block (BB). Useful techniques like code motion, trace scheduling,hyper-block and super-block scheduling may be used to move operations across branchboundaries. Such static speculation could introduce new recovery operations to preservecode semantics (shift and move operations for instance). These move and recovery oper-ations must be included in DAGs prior to global RS analysis, so operations have to bemoved before RS analysis.Remark In contrast to local register assignment, a global register assignment in anacyclic CFG may need to introduce move operations. This is done to satisfy the data
ow dependences for each possible execution path. For instance, if we assign two distinctregisters R1 and R2 to operation (4) and operation (5) resp. in Figure 4.12, we mustinsert a move operation move R2 ! R1 before exiting bb1 so that operation (8) reads thecorrect value if the path bb0 ! bb1 ! bb3 is taken. These move operations may requireadditional registers since all assigned registers may contain alive values. For instance, ifR1 contains an alive value in bb1, inserting move R2 ! R1 will erase it and the generatedcode becomes incorrect. Consequently, we need another register R0 to permute the storedvalues in R1 and R2. Optimizing the introduced move operations have been studied inmany works (see Section 2.4.2 Page 42).4.5 ExperimentsThis section presents our experimental results done on some benchmarks (loops) presentedin Appendix B. In our experiments, we focus on 
oating point registers and we assumethat we target superscalar codes.



90 CHAPTER 4. ACYCLIC REGISTER SATURATIONOur software is implemented using the LEDA API [MN99]. We use also the integeroptimizer CPLEX [CPL93] to solve our intLP programs. Our tool is object oriented andconsists of four components.1. Two heuristics : one for RS computation (Greedy-k) and one for reducing it (valueserialization).2. Two optimal tools for the two above tasks : they generate and solve the intLPmodels presented in this chapter.We have implemented the Dilworth decomposition (minimal chain decomposition). Wealso build an antichain decomposition from a minimal chain decomposition using thealgorithm of Vincent Bouchitt�e [Bou97]. Thus, computing a maximal antichain of a DAGis done in two steps :1. The minimal chain decomposition can be solved via a maximum cardinality match-ing in bipartite graphs. Several polynomial algorithms exist for this task. We usedthe LEDA library that o�er an implementation of an Opn�m algorithm6.2. The maximal bipartite decomposition allows us to construct a maximal antichainusing a linear complexity algorithm [Bou97].The software of Dilworth decomposition and maximal antichain extraction can beretrieved via anonymous FTP from the following :ftp://ftp.inria.fr/INRIA/Projects/a3/touati/thesis/swDetailed numerical results and plots are shown in Appendix C. This section presentsour concluding analysis.4.5.1 Computing RSThe �rst experiments check the e�ciency of our Greedy-k compared to optimal RS (com-puted by integer programming). The next section summarizes our results.Greedy-k versus Optimal RSWe experimentally check the error introduced by Greedy-k heuristic. Experimental resultsshow that Greedy-k is very e�cient : in almost all cases, it computes the exact registersaturation. The maximal experimental error is 1, i.e., the optimal register saturation isgreater by one than the saturation computed by Greedy-k.The right side of Table C.1 gives optimal (with integer linear programming model)and computed (with Greedy-k heuristic) RS for loop bodies. We have unrolled theseloops to increase register pressure in order to study Greedy-k e�ciency in case of largerDAGs. DAGs are the bodies of unrolled loops (we evict inter-iteration dependences). Ascomputing optimal solution has an exponential complexity, we cannot unroll these loopswith big factors, otherwise the computation time would be extremely long. We unrollthese loops from 2 to 6. Table C.1, Table C.2 and Table C.3 give detailed results withdi�erent unrolling degrees (the number of nodes in all these unrolled loops ranges from 46n is the number of nodes and m is the number of arcs.



4.5. EXPERIMENTS 91to 120, and the number of values ranges from 1 to 114).Greedy-k clearly computes nearly optimal solutions in polynomial time complexity. Inthe 134 experimented DAGs (number of nodes up to 120), we do not reach RS optimalityin only 7 cases. Our worst empirical error is 1, i.e., RS� � RS � RS� + 1. Appendix Dgives an example where the optimal RS is greater by one than the RS computed byGreedy-k and explains why our heuristics gets sub-optimal result.After evaluating the Greedy-k e�ciency, we use it to experiment the RS behavior inunrolled loops.RS Behavior in Unrolled LoopsIn this experiment, we study the RS evolution as a function of the unrolling degree ineach loop. Figure C.1 shows the plots of RS (computed by Greedy-k) versus the unrollingdegree (from 1 to 20 in each loop, producing a number of nodes ranging from 4 to 400which is su�cient to study the RS behavior in real applications). As we expect, RS is anincreasing function : since unrolling a loop produces more values because of loop bodiesduplication, RS could not decrease. This is not necessary for any code, i.e., RS is neithera linear nor an increasing function according to the unrolling degree : indeed, unrolling aloop produces new arcs because of cyclic and inter-iteration dependences. For instance,whetstone-loop1 and loop3 have constant RS when we unroll. The only case where theRS is linear according to the unrolling degree is the case of acyclic loops with only loop-independent arcs. In this case, unrolling a loop n-times produces n independent DAGsand hence multiplies the RS by a factor of n.If the number of available registers is bounded, we must keep RS under control. Thenext section summarizes our results.4.5.2 Reducing RSIn this section, we experimentally study our techniques used for reducing RS while mini-mizing the critical path. At �rst, we investigate the e�ciency of our algorithm.Value Serialization Heuristics versus Optimal RS ReductionLet us begin by stressing our algorithm to see its limitations. We consider DAGs of loopbodies and we try to reduce the register saturation to the lowest possible value. This isdone by setting the number of available registers R = 1 as a target limit. Table C.4 showsoptimal versus approximated solutions : the �rst two numerical columns show the num-ber of nodes and values in each DAG. Optimal RS of loop bodies are shown in the thirdnumerical column. Optimal RS reduction with the corresponding result of our heuristicsbetween brackets are shown in the fourth. Value serialization heuristics gets sub-optimalresults in only 7 cases within the 27 experimented DAGs. Optimal reduced RS was inworst cases less by one register than our heuristics results (remember that this is an NP-hard problem). We must note that since RS computation in value serialization heuristicsis done by Greedy-k, we add its worst experimental error (1 register) which leads to atotal maximal error of two registers. This is for the stressing case of R = 1.



92 CHAPTER 4. ACYCLIC REGISTER SATURATIONIn a second set of experiments, we unroll these loops twice and we try to reduce theirRS under a limit computed as the �rst power of 2 lower than RS, i.e., if RS is 12 then wereduce it to 8, etc. Detailed results are summarized in Table C.5. The two �rst numericalcolumns show the number of nodes and values in each DDGs. Then, we give optimal RSof these loops unrolled twice in the third numerical column. The fourth column showsthe targeted limit of RS reduction. Optimal RS reduction with the corresponding resultsof our heuristics between brackets are given in the last two columns. Here, we also seethat maximal experimental error is 1 (remember also that Greedy-k introduces a maximalexperimental error of 1).The same experiment was done on loops unrolled 3 times (Table C.6) and 4 times(Table C.7). We didn't check for larger unrolling degrees because computing optimalRS reduction of larger DAGs is computational intractable (more than 120 nodes). Webelieve that the experiments that we have performed are su�cient to study our strategiese�ciency (the number of nodes in all these unrolled loops goes ranges 4 to 80, and thenumber of values ranges from 1 to 76).After evaluating the value serialization e�ciency, we use it to experiment unrolledloops in the next section.Value Serialization Heuristics Behavior in Unrolled LoopsWe study the limit of RS reduction versus the unrolling degree (we consider the DAG ofthe loop body after unrolling). Figure C.2 plots reduced RS to 32 using our heuristicson various unrolled loops with factors ranging from 1 to 20. As can be seen, in almostall practical cases, RS is maintained under the limit 32, except for Livermore-loop23. Inthat case, RS is maintained under 32 until the unrolling degree 12. After that, the reg-ister pressure is su�ciently high to always keep the register need above 32. The reasonis shared by both intrinsic data dependences properties (intrinsic register pressure, i.e.,register su�ciency) and our heuristics limitations. A special remark is that reduced RSin unrolled loops is not an increasing function. That is, if we reduce the RS to R1 > R inthe loop unrolled n-times, and to R2 > R in the loop unrolled (n+1)-times, this does notnecessary mean that R1 � R2 (see Livermore-loop23 in Figure C.2). The explanation isthat the more parallel values are available in a DDG, the more value serializations are pos-sible. Consequently, this results in giving more freedom and more choices to our heuristics.4.5.3 ILP Loss after RS ReductionIn this last section, we study the ILP loss evolution resulted from RS reduction. Weevaluate the maximal theoretical ILP of a DAG G = (V;E; �) as :ILP (G) = jV jCriticalPath(G)The ratio used for expressing the ILP loss isoriginal ILP� new ILPoriginal ILPWe start by examining the value serialization heuristics e�ciency in terms of ILP loss.



4.5. EXPERIMENTS 934.5.4 Optimal versus Approximated ILP LossLet us examine the ILP loss in our 108 experiments in Table C.4, Table C.5, Table C.6,and Table C.7. The number of nodes goes up 60. Optimal versus approximated (betweenbrackets) ILP loss is shown in the last columns of theses tables. Results can be decomposedinto �ve families, depending on the obtained RS and ILP loss after reduction. We noteRS and ILP the RS reduction and ILP loss resulted from optimal intLP programs; wenote RS� and ILP � the RS reduction and ILP loss resulted from our value serializationalgorithm. Then, the �ve families of results are the following.1. In the case where RS = RS�, our algorithm succeeds in optimally reducing RS.Then, the ILP loss may be :(a) ILP = ILP � (family 1). Our algorithm succeeds in optimally reducing RSwith the optimal ILP loss. 78 cases belong to this family, i.e., 72.22% of all theresults.(b) ILP < ILP � (family 2). Our algorithm succeeds in optimally reducing RS butwith sub-optimal ILP loss. 20 cases belong to this family, i.e., 18.5% of all theresults.(c) ILP > ILP � impossible !2. In the case where RS > RS�, our algorithm did not succeed in optimally reducingRS. Then, the ILP loss may be :(a) ILP = ILP � (family 3). Our algorithm has sub-optimal RS reduction butoptimal ILP loss. 5 cases belong to this family, i.e., 4.63% of all the results.(b) ILP < ILP � (family 4). Our algorithm has sub-optimal RS reduction withsub-optimal ILP loss. Only one case belongs to this family (Livermore-loop1in Table C.6), i.e., less than 1% of all the results.(c) ILP > ILP � (family 5). Our algorithm has sub-optimal RS reduction butwith super-optimal ILP loss. This case is interesting : since our algorithm hassub-optimal RS reduction, then it gets one extra register which releases him toexploit more ILP. 4 cases belong to this family, i.e., 3.7% of all the results.3. The case where RS < RS� is impossible, since our Greedy-k heuristics producesvalid killing function and hence we always ensure the existence of a schedule whichneeds RS� registers.Clearly, value serialization is very e�cient : it, in most of times, optimally reducesRS with optimal ILP loss. Sub-optimal ILP loss is, in most of times, accompanied withoptimal RS reducing, while sub-optimal RS reducing is mostly accompanied with super-optimal ILP loss. We get both sub-optimal ILP loss and sub-optimal RS reducing in lessthan 1% of the cases.After proving value serialization e�ciency, we use it to study ILP loss in unrolledloops.



94 CHAPTER 4. ACYCLIC REGISTER SATURATION4.5.5 ILP Loss after RS reduction in Unrolled LoopsWe unroll the loops up to 20 times to get larger DAGs (up to 400 nodes). We try tomaintain their RS under 32 fp registers. Figure C.3 plots ILP loss according to unrollingdegree. In most cases, ILP loss is maintained to zero by our heuristic, i.e., critical pathsdo not increase. However, in some cases, ILP loss exceeds 60% (case of spec-spice-loop8)to maintain RS under 32.As in the experiment of RS reduction, the ILP loss is not an increasing function. Theexplanation is that the more values are available in the DDG, the more value serializationsare possible. Our heuristics has more freedom to choose the best value serialization thatminimize the critical path growth. We note that, in these experiments, some operationshave long speci�ed latencies (up to 17). These long latencies may produce dramaticalincrease in critical path since we introduce new serial arcs that may merge two longpaths.4.5.6 Local Register AllocationWe have implemented an early local register allocation based on RS analysis. We experi-mented unrolled loops to get large DAGs. Loops were unrolled till 20 times (the numberof nodes ranges from 4 to 400). Then, we allocate RS� registers in each loop body, whereRS� is the register saturation computed by Greedy-k. Figure C.4 plots the increase ofcritical path (ILP loss) if we saturate the register usage. As can be seen, the critical pathdoes not increase in most of cases, except in two loops. Note that if RS� is greater thanthe number of available registers, we must �rst reduce it before applying a local registerallocation. If RS reduction does not succeed, spill code must be inserted (studied in thenext chapter).The second approach of local register allocation selects a killing function that does notincrease the critical path (ILP loss=0). It does not necessarily means that it introduces aminimized amount of false dependencies. Furthermore, since RS� may be lower than theoptimal RS, we cannot guarantee that RS� registers are su�cient if we choose anotherkilling function instead of k� (the approximated saturating killing function). Of course,if we use an optimal method to compute RS (NP-complete problem), this limitation doesnot arise. For this reason, we recommend to use k� for building a local register allocationwhich is already computed by RS analysis. In this case, we guarantee that we can allocateRS� registers in the DAG G!k� with the expense of a possible ILP loss.4.6 Discussion and ConclusionIn this chapter, we mathematically study and de�ne the register saturation (RS) notion tomanage register pressure and to avoid spill code before scheduling and register allocationsteps. Computing the register saturation of a DAG is NP-complete. An intLP formula-tion is presented. Our formal mathematical modeling and theoretical study, which is notpresent in URSA [Ber96, BGS93], enable us to give a nearly optimal heuristics. RS iscomputed by choosing a suitable killer for each value. In the presence of branches, globalRS of an acyclic CFG is brought back to RS in DAGs by inserting entry and exit values



4.6. DISCUSSION AND CONCLUSION 95with the corresponding 
ow arcs.If RS exceeds the number of available registers, we must reduce it while minimizingthe increase of critical path. This is an NP-hard problem. An optimal RS reductionmethod based on integer programming is presented. If we assume writing o�sets, someoptimal solutions require, in some cases, to insert nonpositive circuits in the original DAG.These circuits may prevent the extended DDG from being scheduled in the presence ofresource constraints. A su�cient and necessary condition to overcome this problem isto guarantee the existence of a topological sort for the extended DDG. This is done byadding new constraints to the intLP formulation. We also present an e�cient algorithmicheuristics for RS reduction that serializes values lifetimes while minimizing the ILP loss.It guarantees that the extended DDG remains a DAG.Possible limitation ? Our experimental results are presented in the form of jointstatements about critical path length and register requirement. Can anything formalbe said about machines having �nite resources ? Since our techniques assume in�niteresources, it is theoretically possible that edges inserted to decrease register pressuremight lead to unbalanced function unit usage. Thus, edges might accidentally (for registerbut not resource needs) dictate bursts of all integer, all memory, or all 
oating pointoperations. This is �ne on the in�nite machine. But, if we assume that a real machinehas a �xed number of function units of types integer, 
oating point, and memory, thereis risk that the edge insertion unnecessarily constrains the scheduling process. Maybeadding arcs into the DAG to re
ect con
icts on resources would be bene�cial.Our arguments Let us answer to this possible limitation. First, our work focus ondata dependence graphs. Thus, a schedule can certainly be found on a machine with�nite resources. Reporting resource con
icts at the graph level can only be done withsimple resource descriptions (no structural hazards, i.e., a FU is used during a contiguousinterval of time), as done by Berson et al in [Ber96, BGS93]. This strategy gives exactlythe same solution of scheduling under resource and register constraints, i.e., it is nothingbut a combined approach. However, the case of complex resources where FUs are usedin a complex pattern (complex reservation tables) is di�erent. An optimal exact solutioncannot be modeled at the graph level (without assuming a schedule), unless we allownonpositive circuits in the graph.Second, we re-invoke the �rst point in our chart (Section 1.1 Page 14) : \priorityof registers against ILP scheduling, but the former should respect the latter". If thecomputed register saturation is lower than the number of available registers, the graphis let as it is and no unbalanced FU usage occurs. If RS is excessive, we introduce aminimized amount of arcs (false dependences) since we try to reduce the register saturationand not the register usage. This point makes the FU usage unbalance limited. Finally,if the register pressure is quite high, we agree that we may create a critical executionpath because of a bad FUs usage restricted by the added arcs. Maybe some experimentsthat highlight this fact would be bene�cial. We could consider to apply a list-schedulingalgorithm after adding arcs to see how FUs usage is a�ected. But we become faced tothe question \which resource model should we use ?". The exploration space of resourcecon�gurations is quite large, which one to use ? Our work is intended to make portablethe handling of register pressure, since they are more generic than resources while they



96 CHAPTER 4. ACYCLIC REGISTER SATURATIONprovide good bene�t to ILP.Despite the e�orts in many works to �nd e�cient heuristics to improve the perfor-mance of late register assignment phase, taking register constraints early in the codeoptimization process (before scheduling) still generates faster executing code because ofspilling that may be avoided [BSBC95, Jan01, FR92]. Experiments show that registerconstraints may be obsolete in many codes, and can therefore be ignored in order to sim-plify the scheduling process. The heuristics we use manages to reduce RS in most caseswhile some ILP is lost in few DAGs. We think that reducing RS is better than minimizingthe register need : this is because minimizing the register need increases the register reuse,and as a consequence, the ILP loss must increase.Our DAGmodel is su�ciently general to meet all current architecture properties (RISCor CISC). However, our heuristics assume positive latencies. Some architectures supportissuing dependent instructions at the same clock cycle, which would require representa-tion using zero latencies. We think that this restriction should not be a major drawbacknor an important factor in performance degradation, since zero latency operations do notgenerally contribute to the critical execution paths.In the case where the register pressure is very high, RS cannot be maintained underthe number of available registers. Spill code cannot be avoided and must be introducedin the DAG before scheduling. The next chapter studies the register su�ciency notionand shows how we handle spill code directly into the DAG.



Chapter 5Acyclic Register Su�ciencyAbstractThis chapter details and synthesizes our work previously presented in [TT00,Tou01d, TE02]. It consists in computing the minimal number of registers needed to�nd a least one valid schedule. If the su�ciency is large enough, spill code cannotbe avoided. We describe our method of introducing such operations directly intothe DAG. Experiments show that spill code is useless in many cases.This chapter is organized as follows. Section 5.1 de�nes and studies the classical con-cept of register su�ciency (RF) in directed acyclic graphs (DAG). In order to computeit, we provide an exact formulation with integer programming, as well as an algorith-mic approximation based on interval serialization. Reducing RF is done with insertingspill operations in Section 5.2. As previously described in Section 2.4, both problemsof computing RF and inserting a minimal number of spill operations are well studied inthe literature for sequential programs. We only extend these studies to take into accountthe parallel execution of operations. Before concluding with some remarks, we show ourexperiments in Section 5.3.5.1 Computing Register Su�ciencyFirst of all, if jVR;tj, the total number of values of type t, is less than or equal to Rt,the number of available registers of type t, then we obviously are sure that any schedulecannot require more than jVR;tj � Rt registers. Computing the register su�ciency (RF) oftype t enables us to check if a given DAG can be scheduled without spill code. Formally,the RF of type t is : RFt(G) = min�2�(G)RN�t (G)where RN�t (G) is the register need of type t for a schedule � 2 �(G). We call � a suf-�cient schedule i� RN�t (G) = RFt(G). Su�cient values are the excessive values of suchschedule, i.e., those which prevent MAXLIVE from being < RFt(G).Regarding the complexity of computing RF, it remains an open problem (as far as weknow). It was proved that scheduling under a �xed number of registers is NP-complete inthe case of sequential codes [Set75], i.e., when we compute a strict sequential executionorder for a DAG (a topological sort). However, the case when we assume a parallel exe-cution (in�nite ILP degree) is di�erent, because the scheduling function is not restricted97



98 CHAPTER 5. ACYCLIC REGISTER SUFFICIENCYto be sequential. It was proved in [EGS95] that the problem of scheduling under registerconstraints is NP-complete if the total schedule time is bounded. But, as far as we know,nothing is said in the literature about the problem of scheduling parallel operations un-der a �xed number of registers (spill-free, in�nite resources) without bounds on the totalschedule time.Let us begin with an exact formulation.5.1.1 Exact FormulationThe exact intLP model that computes RF is derived from the integer program whichcomputes the register need with a minimal chain decomposition, as previously describedin Section 3.3 Page 53. Minimize ztunder the constraints 8ut 2 VR;t; cut � ztWe can optimize the optimal computation of RF by exploiting some DAG properties.If the DAG G = (V;E; �) is composed of a family of disjoint sub-DAGs G1; : : : ; Gm suchthat Gi(0 � i � m) is connected, then :RF (G) = mmini=1 RF (Gi)This is because we can sequentially schedule these sub-DAGs : each sub-DAG can bescheduled strictly before another so as to prevent the su�cient values of a sub-DAG frombeing simultaneously alive with the su�cient values of another sub-DAG. Therefore, webuild a reduced intLP system for each connected sub-DAGs, which is less complex thanbuilding an intLP system for the global DAG.We must be aware that when we combine all register types, a su�cient schedule for alltypes may not exist. In other words, a schedule that needs the exact register su�ciency ofall types together may not exist. This is because minimizing the register requirement ofone type may increase the register requirement of another type. So, some spill operationsmay be unavoidable even if the register su�ciency of each type is lower or equal to thenumber of available registers. We have then to bound the register requirement of all types,even if we compute the register su�ciency of only one register type :8t0 2 T� ftg; 8ut0 2 VR;t0 : cut0 � Rt0These constraints guarantee the existence of at least one schedule that does not requiremore registers of any type than available.However, a problem arises regarding the maximal number of parallel operations (staticILP degree) of the underlying code. Our architecture model does not assume any staticissue (bound on the ILP degree) for the target processor : we assume in�nite �ne grainparallelism for the considered DAG. This assumption may lead to under-estimating theactual su�ciency if we target a certain code with a bounded ILP degree. In other words,we cannot ensure that we can always generate a code needing the computed registersu�ciency because we cannot specify an unlimited instruction parallelism statically. As



5.1. COMPUTING REGISTER SUFFICIENCY 99illustrated by the DAG in Figure 5.1, its acyclic su�ciency is 2 registers since we canschedule in parallel the slot fc; dg after fa; bg (here we assume null writing and readingdelays). However, superscalar codes have a static ILP equal to 1. The semantics of thegenerated code is sequential (straight-line). We cannot generate a superscalar code whichneeds only 2 registers. We have two choices.1. We continue to assume an unlimited static ILP degree. Thereby, the real su�ciency,given some constraints on code generation, may be greater than what we compute.If this real su�ciency is still less than or equal to Rt the number of available registersof type t, no problem arises and spill code is avoided. However, if we are not luckyand if the real su�ciency is greater than Rt while what we have computed is � Rt,then the underlying register allocator may introduce spill code, even if this step ofcompilation asserts that it is not necessary ;2. The second choice considers introducing an upper-bound for the ILP degree. This isa bad choice, from our point of view, because it introduces target processor resourceconstraints and thereby we lose our generic model. Furthermore, other resourcecharacteristics (on FUs, etc.) may still add constraints to RF. We prefer not to usethis choice in this thesis.The next section presents our algorithm, which approximates RF while overcomingthe above problem.5.1.2 A Pure Algorithmic HeuristicsOur algorithm for approximating RF is simply a value serialization heuristics (Algorithm 4in Section 4.2), the one we used to reduce RS. However, we do not consider ILP loss, sincethe purpose of computing RF is to minimize the register requirement, even if it increasesthe critical path. Practically, we parameterize the algorithm as follows.� We set R = 1 as a target RS reduction, which is equivalent to minimizing RS as lowas possible (serializing lifetime intervals as much as possible).� We do not consider the cost !2 (increase of critical path). Thus, we set !2 = 0 forall possible value serializations. This amounts to �rst select the value serializationthat reduces RS a low as possible, even if it increases the critical path.We are sure that there is at least one valid code (unlimited or limited static ILP) whichrequires exactly as much registers as the reduced RS. In other words, if the reduced RS
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100 CHAPTER 5. ACYCLIC REGISTER SUFFICIENCYcomputed by setting R = 1 is 3, then we can generate a linear (or parallel) code with 3values simultaneously alive. This is because the produced extended DDG remains a DAG.Hence, Algorithm 4 can be used in both RS reduction and RF computation. Experiments,presented later, show that this method is nearly optimal.5.2 Reducing Acyclic Register Su�ciencyIf RF is greater than Rt, then we introduce spill code in the DAG to reduce its su�ciency.Our strategy relies on minimizing introduced load-store operations.Before spilling, we must detect which values are su�cient, i.e., which ones are alwayssimultaneously alive. We use our value serialization algorithm with a target R = 1 tocompute them. The resulted extended DAG has the following properties :1. the register saturation of the extended DAG cannot be reduced, and hence it isequal to its register su�ciency;2. saturating values of the extended DAG are the su�cient ones;3. any two su�cient values u; v 2 VR;t are always simultaneously alive for any schedule.That is, we cannot serialize the lifetime interval of u before the lifetime interval ofv, and vice versa. Hence, they must satisfy the following necessary and su�cientcondition (see Figure 5.2) : v < k(u) ^ u < k(v)^ lp�u; k(v)� > �w(u)� �r�k(v)�^ lp�v; k(u)� > �w(v)� �r�k(u)� (5.1)in which u < v means that it exists a path from u to v, and lp(u; v) denotes the sizeof the longest path from u to v. k(u) is the killer1 of u de�ned by the saturatingkilling function. This condition is necessary since it prohibits any serialization ofthe lifetime intervals, otherwise we introduce a circuit. It is su�cient since if twovalues satisfy this condition, then their lifetime intervals are in con
ict necessarily.Our algorithm iteratively inserts spill code until it reaches the target su�ciency. Asan example, Figure 5.3.(a) is a DAG in a butter
y shape such that its RS is 5 (we ignorethe latencies for clarity reasons), where values are in bold circles and 
ow arcs in boldlines. Its RS cannot be decreased, its RF is equal to 5 too. We want to reduce the registersu�ciency to 2. The su�cient (saturating) values are fu1; u2; u3; u4; u5g since any pair ofthem satis�es Condition (5.1).Condition (5.1) de�nes an intrinsic relative order between lifetime intervals of the suf-�cient values, as illustrated in Figure 5.3.(b). We use this ordering to guide our spillingalgorithm. We name integer point the logical time (relative date) when a value is de�nedor killed. The points are graduated starting from 1 according to the relative order de�nedby the precedence relation <. As an example, (1,2,3,4,5) are �ve points in Figure 5.3.(b).Note that some de�nition or kill events are not related by any precedence relation (as1Note that k(u) and k(v) are not necessarily distinct.



5.2. REDUCING ACYCLIC REGISTER SUFFICIENCY 101
k(v)k(u)

u v

(a) Precedence Relation between

LT(u) meets LT(v) LT(u) overlaps LT(v)

LT(u) starts LT(v) LT(u) includes LT(v) LT(u) finishes LT(v)

LT(u) equals LT(v)

Sufficient Values
(b) All Possible Lifetime Intervals InterferencesFigure 5.2: Su�cient Values Property

u7
u9

u3

u5

u4

u8u6

u2

u1

u4

st(u4)st(u2)

st(u5)

u1 u3

u6

ld(u2)ld(u1)

u2

u5

u7

ld(u5)

u9

u8

ld(u3)ld(u4)

st(u3)st(u1)

(a) the butterfly DAG

(b) Unavoidable live ranges interferences

u1

u2

u5

u4

u3

3

4

5

(c) Reducing the register sufficiency by spilling

2

1

Figure 5.3: Register Spilling in Basic Blocs



102 CHAPTER 5. ACYCLIC REGISTER SUFFICIENCYthe de�nition of u1 and u3) and may be assigned to the same point. We will use thesepoints to highlight the regions (date intervals) where the register need exceeds the desiredone. For instance, the excessive regions in Figure 5.3.(b) are [2; 3] because it requires 4registers, and [3; 4] because it requires 5 registers. Since we de�ne a virtual dating, weassign to each value a de�nition point dp(u) and a kill point kp(u) . The relative order wede�ne enables to use any e�cient spilling strategy in the literature.The register need changes only at the dating points, i.e., at the beginning or at theend of an interval. The su�cient values are managed in a sorted list in increasing orderof de�nition points. Thanks to this list, our algorithm can quickly scan forward the liveranges by skipping from one de�nition point to the next one. Our strategy is inspiredfrom the Poletto approach [PS99] applied to spill code insertion for straight-line code. Hisheuristics has a linear complexity with good experimental results. It is explained below.However, the Poletto's algorithm consider sequential codes. We have to adapt it to theparallel case. For this purpose, we use our notion of de�nition and kill point, and datingDAG (de�ned later).The algorithm iterates over the integer dating points starting from 1. At each step, wemaintain an active list of live ranges which overlap the current point. The active list is keptsorted in increasing order of end points. For each new life interval, the algorithm scansthe active list to remove any expired value, i.e., the one which has been necessarily killedwhen treating the current dating point. When the length l of the active list is greater thanRt, at least l�Rt values must be spilled. There are several possible heuristics for selectingwhich value to spill. We can for instance choose the one that do not increase the criticalpath. We prefer to minimize the amount of introduced spill code. Our heuristics selectsthe the value which would be the last killed. Since the active list is sorted, this valuesis the last item in the active list. For each spilled value u, we insert a store operation.Poletto approach loads the stored value for every use : the spilled life interval is splitedinto several small parts and the original interval is removed from the active list. Thisaggressive approach may insert an excessive number of loads.The algorithm iterates until the register su�ciency is reduced2 to Rt = 2. Fig-ure 5.3.(c) gives the resulted DAG in which all the values have been spilled becauseof high register pressure. Dashed arcs represent the serial arcs added for reducing theregister saturation to 2 to show that the register su�ciency of this DAG is 2 too. Notethat these dashed arcs are not present in the �nal DAG (they are shown to only provethat the saturation can be reduced to 2).Now, we give full algorithms for our heuristics explained above. In order to adapt thePoletto's algorithm to the parallel case, we start by de�ning the dating points.5.2.1 Relative DatingWe build a DAG which re
ects the relative order between value de�nitions and kills.2It is clear that in the presence of a RISC architecture with n-ary statements, we cannot use less thann registers since we need at least n distinct operands to execute the statement. Here, we have binarystatements with two distinct operands, so we cannot reduce the su�ciency below 2. We could imagineanother architecture where this number is higher n > 2, or this number n = 1 (unary operations).



5.2. REDUCING ACYCLIC REGISTER SUFFICIENCY 103De�nition 5.1 (Dating DAG) Let G = (V;E; �) be a DAG. A dating DAG, notedGtd = (Vd; Ed), and associated with G for register type t is de�ned by :� Vd = fv=v = dpu _ kpu where u 2 VR;tg. dpu corresponds to the de�nition nodeof the value ut. kpu corresponds to the killing node k(u) of the value ut de�nedby the saturating killing function of G. If some values share the same killer, theynecessarily share the same kp. Any node in Vd (killing or de�nition node) is calleda dating node;� 8dpu; kpu 2 Vd (dpu; kpu) 2 Ed;� 8u; v 2 VR;t (dpv; kpu); (dpu; kpv) 2 Ed () u; v satisfy Condition 5.1� 8u; v 2 VR;t (kpu; kpv) 2 Ed () k(u) < k(v) ^ lp�k(u); k(v)� � �r;t(u)��r;t(v)Figure 5.4.(a) is the dating DAG of Figure 5.3.(a). Note that the dating nodes dpu1and dpu2 share the same killing node kpu1 2 because the values u1 and u2 have the samesaturating killer in G (k(u1) = k(u2) = u6). A dating date can be safely optimized byremoving transitive arcs if they exist.
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Figure 5.4: Relative DatingA dating function assigns an integer starting from 1 to each dating node in Gtd in whichdate(d) � date(d0) i� d < d0 in Gtd. A topological sort of Gtd is a dating function. How-ever, since the dating points are used in our heuristics to sort the life intervals assumingpossible parallelism between the operations, a topological sort is not really appropriatebecause it assigns di�erent dates to two dating nodes even if they are not constrained byany precedence relation. This fact in
uences the results of the spilling decision becauseit de�nes a kind of priority. We prefer to de�ne the dating function by an \as soon aspossible" schedule of Gtd. This enables us to give the same dating point to parallel datingnodes, see Figure 5.4.(b). At this step, each value u 2 VR;t has an integer de�nition pointdp(u) and a killing point kp(u) which are de�ned by the dating function.The dating DAG and the dating function allows us slightly modify Poletto's algorithmin order to inset spill code into a DAG instead of a straight-line code, as follows.



104 CHAPTER 5. ACYCLIC REGISTER SUFFICIENCYAlgorithm 5 Reducing Acyclic Register Su�ciencyRequire: a DAG G = (V;E; �) and a target su�ciency Rtwhile RFt(G) > Rt dobuild the dating DAG Gtdcompute the dating functionactive fgfor all value u in increasing order of de�nition points doExpireOldValues�dp(u)�add u to active, sorted by increasing killing pointsif size(active) > Rt thenSpill�dp(u); length(active)� Rt�end ifend forend whileAlgorithm 6 Expire Old ValuesRequire: a de�nition point i.for all value v 2 active in increasing order of killing points doif kp(v) < i thenremove v from activeelsereturnend ifend for5.2.2 Algorithms for Reducing Acyclic Su�ciencyAlgorithm 5 presents our techniques to reduce the RF. It maintains an active list ofcurrent alive values. At each de�nition point, it spills the last killed values if the registerrequirement exceeds the target su�ciency. Algorithm 6 removes killed values when itreaches a de�nition point. Algorithm 7 de�nes the inserted memory operations and arcsresulting from spilling : note that this algorithm aggressively inserts a load for each readin order to split the original life interval into several small parts. We can optimize it bydoing a post-pass for reducing the number of inserted loads by merging two small liveranges if they do not increase the RF (remove those that do not belong to an excessiveregion).5.3 ExperimentsThis section presents our experimental results made on some benchmarks presented inAppendix B. We focus on 
oating point registers and we assume that we target super-scalar codes.Detailed numerical results and plots are summarized in Table C.8 of Appendix C. Ascan be seen, our heuristics is nearly optimal : in 27 experimented DAGs, we get sub-optimal results in only 7 cases. However, recall that optimal RF assumes in�nite staticILP. We cannot guarantee the existence of a schedule with optimal RF if the static ILPis bounded. Fortunately, our heuristics has not this property. Since it uses RS reduction,



5.4. CONCLUSION 105Algorithm 7 SpillRequire: a de�nition point i and the number m of values to be spilled.for l = 1 to m do fspill the m last killed valuesgs = last value in activeif kp(s) > i thenremove s from activeinsert store(s) in Ginsert a 
ow e = (s; store) with �(e) = lat(s)for all v 2 Cons(st) do finsert a load for each readgremove the 
ow (u; v) 2 ER;tinsert load(s) in Ginsert a 
ow e = (load; v) with �(e) = lat(load)insert an arc (store; load) with �(e) = lat(store)end forend ifend forwe always guarantee the existence of a schedule that requires the computed RF, even withbounded static ILP.We have no experiments for our spilling strategy since we did not implement ourheuristics. This is because, as mentioned before, we can use any e�cient existing techniqueafter determining su�cient values and their relative dating DAG. Lot of spilling methodsare actually implemented and proved e�cient (Section 2.4).5.4 ConclusionThis chapter investigates the classical register su�ciency problem. Existing techniquesare intended to sequential problems. We extend the study to ILP codes where operationsmay be scheduled in parallel with multiple register types and delays in reading and writing.Optimal RF assumes in�nite parallelism. This gives an under-estimate of the real RFsince the target code has limited issue. To overcome this problem, we propose to use thevalue serialization heuristics (de�ned in the previous chapter) by setting 1 as target limitof RS reduction. This algorithm overcomes the problem of in�nite issue width, since weguarantee the existence of at least one schedule with the reduced RS, and this for anytarget static ILP. Experiments show that our method is nearly optimal.If RF is greater than the number of registers, then spilling cannot be avoided. Ourheuristics determines su�cient values and enables us to build a relative order between theirlifetime intervals. We introduce the notion of a dating DAG and a dating function in orderto adapt, to ILP, any e�cient spilling strategy in the literature, originally written for asequential (superscalar) code. We propose a �rst approach based on Poletto's algorithm[PS99] because it has a linear complexity. Other techniques based on cost functions,execution frequencies and so on can also be used.
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Chapter 6Related Work in DAGsAbstractThis chapter gives an overview of most important work in the �eld of registerpressure in DAGs. We survey the techniques proposed to handle register constraintsprior, during or after scheduling, and how each of these two important phases in-teracts with the other.6.1 Register SaturationOur RS study is an extension and amelioration of URSA [BGS93, Ber96]. Their minimumkilling set technique tries to saturate the register requirement in a DAG by keeping valuesalive as late as possible : the authors proceeded by keeping as many children alive aspossible in a bipartite component by computing the minimum set which killed all theparent's values. First, the authors did not formalize the RS problem. They claimed thatthe register saturation can be computed by minimum killing sets. We can easily giveexamples to show that a minimum killing set does not saturate the register need, even ifthe solution of the minimum killing set problem is optimal [TT00, Tou01e]. Figure 6.1shows an example in which the RS computed by our heuristics (Part b) is 6 and theoptimal solution for URSA yields to a RS of 5 (part c). We have two connected bipartitecomponents : cb1 = �fa; b; cg; fd; e; hg� and cb2�fdg; fi; f; gg�. The minimum killing setof the �rst CBC is fdg. The disjoint value DAG associated to this killing decisions isgiven in Part (c). However, a saturating killing set for this CBC is fe; hg. The disjointvalue DAG associated to this killing decisions is given in Part (b). The second CBC doesnot constitute a problem, since we have a unique parent with multiple leaf killers : allkilling decisions for cb2 are acceptable.This example, shows the limitation of URSA. This latter did not take into accountdescendant values while computing killing sets. Second, the validity of killing functions isan important condition to compute RS and unfortunately it was not included in URSA.We have shown in Section 4.1 that non valid killing functions may exist if no care is taken.Finally, the URSA DAG model did not distinguish types of registers and did not takeinto account delays in reading from and writing into the registers.The authors give a heuristics in [BGS92] to reduce the register saturation. They useserializations like in our approach, but instead serializing two values, they rather serializetwo sub-DAGs. They look for two sub-DAGs such that the local register saturation of thesecond does not exceed the limit R. Then, they serialize it after the �rst one. They didnot provide an algorithm to �nd two suitable sub-DAGs. However, their approach should107



108 CHAPTER 6. RELATED WORK IN DAGSbe more complex than our heuristics because searching for a suitable sub-DAG is morecomplex than searching for a suitable single value node. Furthermore, they didn't provethe e�ciency of their methods versus optimal results.6.2 Register Su�ciencyRecently, Govindarajan et al in [GZG99, GYZ+01] presented a new approach to computeRF on ILP processors with identical registers in which operations may dynamically bescheduled in parallel, but the semantic of the code is sequential (superscalar). Indeed, it isequivalent to the classical register su�ciency problem for sequential codes (Section 2.4.1).They try to solve the problem by a minimal chain cover : 
ow arcs belonging to thesame chain use the same register. They developed an interference graph representationwhere nodes of this graph correspond to the chains in the DAG, and edges representwhich chains de�nitively overlap. A �rst problem with this method is that, as observedby the authors, optimal coloring of chain interference graph may lead to a deadlock whenscheduling. Second, they assume that register allocation is done on arcs not on nodes.This may introduce additional interferences, as registers get committed early in the chainand hence register su�ciency is over-estimated.6.3 Register AllocationThis section gives an overview of several strategies of ordering register allocation andinstruction scheduling.6.3.1 Register Allocation Sensitive to SchedulingRegister allocation techniques for sequential processors are not well adapted to modernprocessors because they limit ILP opportunities for the scheduler. New techniques havebeen developed to perform register allocation prior to scheduling without hurting the ILP.DAG-Driven Register Allocation [GH88] Goodman and Hsu [GH88] introduced aregister allocation method that uses DDGs of each basic block (BB) to avoid the introduc-
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6.3. REGISTER ALLOCATION 109tion of false dependences. Their method is only able to allocate registers for superscalarstraight-line codes.They de�ned the width of a DAG as the maximal number of mutually independentnodes requiring a register. It is a maximal antichain in the initial DAG, which is di�erentfrom a maximal antichain in the disjoint value DAG. This is because, in DVk, the killingfunction is �xed ; thus, we can guarantee the existence of a saturating schedule for k.However, it is not the case for the width, since the killers are not known. In other words,we cannot guarantee the existence of a schedule that require \width" registers. Similarly,the authors de�ned the height of a DAG as its critical path. If there is not a insu�cientnumber of available registers, their algorithm reduces the width. While the width isreduced, the height may increase since register reuse may merge two independent pathsof the DDG into one. This may result in a longer schedule time.To minimize the increase of critical path, the register allocator tries to select a registerso as to introduce redundant anti-dependences : newly added arcs must not induce newserial constraints between the operations, i.e., the added constraint is satis�ed by otherexisting paths. If redundancy isn't possible, the algorithm minimizes the increase of theheight by giving the priority to merging short paths.The problem with this technique is that it is conservative (the width is upper boundof RS). It adds serial arcs to the initial DAG, even if there is not a schedule that requiresmore registers than the number of available ones. This results in introducing extra falsedependences. Although these extra arcs do not increase the critical path, they restrictthe scheduler.Pinter's Approach [Pin93] In [Pin93], a register allocator is proposed with the prop-erty that no false dependences are introduced if enough registers are available. Therefore,no degree of freedom in ILP is lost for the scheduler. Her technique is intended for su-perscalar processors : the semantics of the code is sequential (no static ILP and no delaysin reading/writing from/to registers) while all registers are identical (no types). Themethod is based on graph coloring. However, instead of coloring an interference graph, aparallel interference graph is used. It is an undirected graph which contains, in additionto interference edges induced by the original code prior to scheduling, all possible falsedependences (all precedence relations that are not induced by 
ow dependences). It isproved that an optimal coloring of this graph results in an optimal register allocationwhere no false dependence is introduced.When no valid coloring is found, heuristics are used which make a tradeo� between ILPand spilling. Pinter proposes to add a cost to each node in order to re
ect its importanceif we violate its interferences, i.e., how much is the bene�t in terms of parallelism againstspilling.Unfortunately, coloring algorithms are costly, especially in this method since the num-ber of edges in the parallel interference graph may be very high. No experiments havebeen provided to support her technique.Dependence-Conscious Global Register Allocation [AEBK94] Ambrosch et alproposed in [AEBK94] a register allocator based on graph coloring. Instead of building theinterference graph from ordered intermediate code that might not be correct in the �nalscheduled code, they rather rely on the DAG to examine which interference would alwaysoccur for any schedule. They de�ne the relations of before and after between live range
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ect that a value would always be killed before, or de�ned after, another value.Such an interference graph is called a minimal interference graph because it containsminimal interfering information. During coloring, the algorithm cares about the anti-dependences it introduces. It gives priority to redundant false dependences if possible.For each such introduced arc, the minimal interference graph is updated to re
ect theallocation decision.This method has the drawback of considering only a subset of interfering information.Some interferences cannot exist in the minimal interference graph : for instance, beforeand after relations cannot be analyzed for values that have multiple parallel killers in theDAG. This is because the DAG is not scheduled yet and hence the killing date is notknown. This lack of information makes the coloring algorithm result less e�cient.Scheduler-Sensitive Global Register Allocator [NP93] Norris and Pollock havepresented in [NP93] a global allocator based on coloring an interference graph. As in[AEBK94], they rely on the DAG of each BB instead of the ordered intermediate code.However, the constructed interference graph is more conservative because they assumedthat a variable alive at entry and exit points of a BB is alive through all the BB. This is notthe case if this variable is rede�ned inside. This produces false interferences and hencetheir interference graph contains more edges which slow down the coloring algorithm.The authors propose to add serial arcs into the DAG to reduce these interferences, forinstance arcs induced by resource constraints. When no legal coloring is found, the nodein the interference graph with the greatest number of neighbors is selected to add falsedependences. If there does not exist enough possibilities to eliminate interferences so thatthe node is colorable, no arcs are added and a minimal-cost node is selected for spilling.The limitation of this method, as stated before, is its conservative assumptions. Extrainterference edges result in over-estimating register requirement.Dependence-Conscious Register Allocation for TTAs [Jan01] Recently, Janssenhas presented in his Ph.D. [Jan01] a global register allocator based on Pinter's strategybut intended for Transport Triggered Architectures (TTA). His technique relies on theimprovement of the parallel interference graph proposed by Hoogerbrugge [Hoo96]. Heproceeds by reducing the number of false dependences taken into account. In fact, somefalse dependences computed by Pinter's algorithm are hardly relevant. This is becausethe involved operations are \far" from each other in the global CFG. It is very unlikelythat such false dependence restrict the scheduler, since other constraints (FUs, otherprecedence paths) would restrict their possible interference. The experiments of the authorshow that his techniques are e�cient for TTAs.6.3.2 Scheduling under Register ConstraintsWhen a schedule does not need more than the number of available registers, building aregister allocation for such acyclic ordered code is easy. Lots of techniques rely on a �rstpass instruction scheduling to optimally exploit the FUs but with a limited number ofvalues simultaneously alive.Integrated Pre-pass Scheduling [GH88] Goodman and Hsu presented a second ap-proach in [GH88] which consists in performing an early scheduling followed by a registerallocation. The list scheduler combines two techniques : one exploits the ILP and another



6.3. REGISTER ALLOCATION 111reduces the number of values simultaneously alive. It �rst selects operations that saturatethe FU usage, unless the register need is greater than or equal to the limit. Then, it triesto schedule operations to reduce MAXLIVE. If the limit is still exceeded, spill code isinserted. In the presence of global variables, they �rst assign registers to them and thenthey schedule the individual BBs. The number of available registers is reduced by theassigned global ones. Experiments show that this method produces lot of spilling.Bradlee et al proposed in [BEH91] a variant of Goodman and Hsu's method by using aglobal register allocator. They �rst assign registers to global variables and then schedulethe individual BBs. The number of available registers is reduced by only global registersthat are referenced within the considered BB.The (�; �)-Combined Heuristics [MPSR95] Motwani et al in [MPSR95] proposeto combine controlling register need and ILP. Prior to list scheduling, operations are or-dered in the list thanks to a static cost function. This priority function favors operationsthat read variables in short live ranges. Scheduling these readers close to their de�nitionreduces live ranges hoping to minimize MAXLIVE. Then, a list scheduler pick up oper-ations from the ordered list so that the FUs usage is saturated. The algorithm try tokeep the register under control thanks to the assigned cost function. This cost is com-puted statically, so the scheduler does not adapt dynamically its selection priority. If theregister requirement becomes excessive, spill code is inserted. Experiments on randomlygenerated DAGs show that this technique is better than a strictly late or prior registerallocation.Register Pressure Sensitive Scheduler [SWGG97] Silvera et al described in [SWGG97]a local instruction scheduler with limited registers for superscalar out-of-order processors.The semantics of such a code is sequential, so they look for a topological sort of operationswhich takes advantage of dynamic register renaming. Their algorithm proceeds by assign-ing a scheduling priority to each operation that tries to minimize its live range. Even iftheir experiments show good average speedup, they are closely related to out-of-orderprocessors abilities to eliminate false dependences during execution. Consequently, it ishard to generalize their method to all ILP processors.Optimality with Dynamic Programming Approach [Kes98] Kessler in [Kes98]proposes to use a dynamic programming algorithm to get an optimal schedule with alimited number of registers. He assumes RISC-style operations (binary or unary arith-metic operations, no memory-to-memory operations) with identical registers. He tries toovercome the drawback of intLP approaches which are very time-consuming. While intLPmethods handle DAGs up to 20 nodes only, the proposed algorithm can schedule DAGsup to 50 nodes but with the restriction of contiguous schedules with all unit latencies. Acontiguous schedule is restricted so that all nodes in the sub-DAG of one child of somenode u are scheduled �rst, before scheduling any node belonging to the remaining sub-DAGs of other children. Generalizing to arbitrary latencies makes the problem harderand the proposed algorithm �nds optimal solution for smaller DAGs (up to 25 nodes).Register-Sensitive Instruction Scheduling for TTAs [Jan01] Janssen proposesin [Jan01] a method for an early scheduler for TTAs. A particular problem arises forstatic issue architectures : if an operation has to be moved, or a spill operation has to



112 CHAPTER 6. RELATED WORK IN DAGSbe inserted, the static schedule may be violated since we cannot guarantee the existenceof a free slot. To avoid rescheduling all the code many times until �nding a solution, heproposes to limit the greediness of the scheduler. Instead of optimizing the use of FUs, hisalgorithm favors operations that free a register if MAXLIVE exceeds a certain threshold.Unfortunately, this technique is not e�cient (according to his experiments) because ofspill code.6.3.3 Dual-Issue Scheduling under Register ConstraintsThe general problem of instruction scheduling under resources and/or register constraintsis NP-complete. However, in the case of a dual issue machine which may execute in par-allel a load and an arithmetic operation on two separate FU, some optimal algorithmssolve the problem for binary expression trees. This case is special because the precedencerelations between loads and arithmetic operations are limited by nature : loads have noprecedence constraints among themselves.The problem of optimal scheduling of expression trees on such dual-issue machineswith unbounded registers has �rst been solved by Bernstein et al in [BJR89], where oper-ations latencies are all unit. Their algorithm has the complexity of O(n logn) for binaryexpression (n is the number of nodes), and O(n log2 n) if the arithmetic operation hasmore than two arguments.Meleis in [Mel01] extended this result to a bounded number of registers and withpossible pipelined load delays of one clock cycle. Arithmetic operations latencies must beall unit, and all load operations must have a unit latency or all load operations have alatency of 2. The proposed optimal algorithm has a complexity of O(n � k) in which kis the number of spill operations. The length of the computed schedule is proved to beR + 2k + g + jAj, in which R is the number of registers, g the number of empty slots inthe associated sequential schedule, and jAj is the number of arithmetic operations.6.3.4 Interleaved Register Allocation with SchedulingInterleaving register allocation and instruction scheduling apply both passes multipletimes to get correct estimation of the expected constraints imposed by one phase tothe other. This strategy leads to excessive compilation time. So, not much work has beendone in this area.Register Allocation with Schedule Estimate [BEH91] Bradlee et al proposed in[BEH91] a strategy consisting of three steps. A �rst step performs multiple times localregister allocation followed by instruction scheduling while varying the number of availableregisters. A cost is associated with each schedule to estimate the number of clock cyclesrequired to execute a BB under a �xed register limit. In a second step, a global allocatordetermines the appropriate balance between global and local variables in BBs : spill costsand scheduling costs guide the decision of such assignment. The third step schedules eachBB under the appropriate limit of registers (computed during the previous step).Combining Register Assignment and Instruction Scheduling [BSBC95] Brasieret al describe in [BSBC95] how they combine register allocation with instruction schedul-



6.3. REGISTER ALLOCATION 113ing. First, they perform scheduling to exploit ILP. If MAXLIVE does not exceed thelimit, then no spilling is required and the computed schedule is accepted. Otherwise,they build an interference graph based on the original unscheduled code expecting lessinterferences. If coloring this graph does not succeed, they insert load/store operationsand re-invoke the scheduler. If coloring succeeds, they try to improve the original execu-tion order since false dependences could be added by this early register allocation. Theyproceed by removing anti-dependences unless spilling is required. Their experiments usea random-based selection criteria to remove false dependences. As a result, not all ofthese latter are removed. The authors observed that a more accurate selection strategymust be found to increase the performance.6.3.5 Integrated Scheduling and Register AllocationInstead of deciding which of the two phases (allocation and scheduling) should be done�rst and hence which one in
uences the other, lots of strategies prefer to combine theminto a uni�ed complex pass. Past proposals suggest that this technique would be toocomplex [BEH91], but with the increasing will of exploiting ILP more and more, registerpressure becomes a part of scheduling and vice-versa.Integrated Register Assignment in the Bulldog Compiler [Ell86] The approachdescribed by Ellis in [Ell86] combines register allocation with trace scheduling. A listscheduler packs independent operations of di�erent traces into instructions and takesas many registers it needs from a pool of available registers. If a value is allocated todi�erent registers in di�erent traces, move operations are required to guarantee executioncorrectness. As showed by the author, trace scheduling makes it hard to manage registerse�ectively since the greediness of the list scheduler utilizes all available registers. Nospilling strategy has been proposed for this method.Trace Scheduling with Global Register Allocation [FR92] Freudenberger andRuttenberg observed in [FR92] that registers prevent the scheduler from fully utilizingFUs. They proposed to integrate a global register allocation to trace scheduling to e�-ciently generate a code in the Multi
ow Compiler [LFK+93]. Based on Ellis' approachwhich allocates registers inside a trace, their algorithm optimizes repairing code (moveoperations) inserted to correct the execution if a value is assigned to di�erent registers indistinct traces.Uni�ed Resource Allocator [Ber96, BGS93, BGS92, BGS94c] Berson et al pre-sented a combined framework, called URSA, to perform register allocation and schedulingon DAGs for VLIW architectures. As in our work, they add serial arcs between nodes toreduce resource and register requirement. They assume identical registers without delaysin reading nor writing. They proceed by measuring resource requirement as a maximalantichain of con
icting operations in the DAG, then they add arcs to reduce it withoutincreasing the critical path if possible. The added serializations inhibit con
icting opera-tions from being scheduled in parallel. Reducing MAXLIVE in URSA has been previouslyexplained in Section 6.1. URSA was extended to global scheduling with code motion in[BGS94b] in CFGs. Resource requirement is measured within a BB as in the local case.Operations are moved from regions in which FUs are over-used to other BBs where holes



114 CHAPTER 6. RELATED WORK IN DAGSexist.However, the con
icting de�nition they use is too conservative : they assume that twooperations using the same FU con
ict with each other. This is not the case of complexVLIW processors in which resource constraints are modeled by reservation tables. Paralleloperations using the same FU cannot con
ict if they access a shared resource but withdi�erent o�sets after their issue time.Integrated Assignment and Local Scheduling [Jan01] Recently, Janssen [Jan01]described a combined BB instruction scheduler and a global register allocator for TTAs.His method constructs a set of registers which are mapped to a value during schedulingand register allocation. False dependences are introduced if not enough registers areavailable. To reduce the register need, he uses some speci�c architectural characteristicsof TTAs, as software bypassing, which enables to suppress unnecessary write-back toregisters. Experiments show that speedup goes up to %100 compared to other methods.Nevertheless, his approach is highly correlated to TTAs abilities and it is di�cult togeneralize it to other ILP processors. This is because TTAs o�er opportunities to eliminatedead-result move operations. Hence, lifetime intervals may be considerably reduced. Notall of ILP processors have this ability.6.3.6 Register Constraints with Integer ProgrammingAcyclic scheduling under registers and/or resource constraints is a classical problem wherelots of intLP formulations have been written.An intLP formulation (SILP) was de�ned in [Zha96] to compute an optimal schedulewith register allocation under resource constraints only. This model contains at mostO(jV j2) variables and O(jV j2) constraints. This formulation does not introduce registerconstraints, i.e., it does not limit the number of values simultaneously alive. Moreover,resource usage patterns (FUs model) are simple and do not formalize the structural haz-ards that are present in most current ILP processors.A formulation, called OASIC, introduced register constraints in [Geb92, GE90]. Thenumber of variables is O(jV j2) but the number of linear constraints grows exponentiallydue to register constraints. An extension of OASIC formulation was written in [KL99]to take into account non regular register sets (some registers must not be used by someoperations) and some other special constraints on ILP which are speci�c to their targetprocessor characteristics. Register constraints were formulated but not integrated in themodel because of the exponential number of generated constraints.A better formulation of register constraints was de�ned in [EGS95] and generatesO(T�jV j) variables and O(jEj+T�jV j) constraints, in which T is the total schedule time.Similar approaches minimize the register requirement in exact cyclic scheduling problem(software pipelining) under registers and resource constraints [Alt95, ES96a, EDA96]. Itis easy to rewrite these intLP models to solve the acyclic scheduling problem. All theseformulations of register constraints generate a number of variables and constraints thatdepends on the worst total schedule time T . Indeed, they de�ne a binary variable �u;c foreach operation u and for each execution step c during the whole execution interval [0; T ].



6.4. CONCLUSION 115�u;c is set to 1 i� the operation u is scheduled at the clock cycle c. The complexity of theirmodels was clearly bounded by O(T � jV j) variables and O(jEj+T � jV j) constraints. Infact, the factor T may be very large in real codes since it depends on the input data itself(critical paths and speci�ed operations latencies). We think that the constraints matrixsize must depend only on the size of input DDG and not on the data itself. Otherwise, theresolution time would not scale very well. For instance, if we are sure in compile time thatthe access to the memory performed by a load is a cache miss, then we would specify thatits latency is a memory access (� 100) rather than a cache access in order to better exploitfree slots during scheduling. In this case, the number of variables and constraints in theintLP model is multiplied by a factor of hundred while it remains unchanged in our model.The coe�cients introduced by our formulation in the �nal constraints matrix maybe greater than T or lower than �T , which may be larger than the coe�cients in themodels de�ned in [Alt95, EGS95, ES96a, EGS95]. If T is huge, the resolution processmay be di�cult because of computational over
ows [Sch87]. Since the size of our modelis relatively smaller (at most O(jV j2) variables and O(jV j2 + jEj) constraints), resolvingit may be less critical (in term of time processing) than any one of the cited techniques.However, we must be aware that our formulations require a greater amount of work space(memory size for intLP solving). Consequently, our intLP systems may be faster in termsof processing time, but may solve smaller DAGs if the memory capacity is not largeenough.6.4 ConclusionOur RS analysis extends URSA [Ber96, BGS93, BGS92, BGS94c] by taking into accountvisible operation delays with di�erent types of values (
oat, integer, etc.). Our formalmathematical modeling and theoretical study allow us to give nearly optimal strategies.We also prove that the minimum killing set of URSA does not saturate the register needas the author claimed (even if the killing sets are optimally minimal).Our RS analysis has the particularity, as Pinter's method [Pin93], of not introducingfalse dependences if enough registers exist for all possible schedules. However, her col-oring algorithm is very costly because of the large number of possible false dependences.Furthermore, her model is intended for sequential superscalar programs in which delaysin reading/writing are not visible to compilers.Our intLP formulation enables us to use the same constraints and variables for lot ofproblems, as computing RS and RF, and optimal scheduling under register constraints oroptimal register allocation under critical path constraint. Our model outperforms existingones in term of the size of constraint matrix but may have larger coe�cients.The next part of our thesis extends the study to loops. We show how to compute andreduce RS and RF in the case of cyclic schedules, like software pipelining (SWP) in whichlifetime intervals become circular. We also propose an early register allocator, i.e., priorto scheduling, that respects ILP for any underlying SWP.
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Chapter 7Loop Model AbstractThis chapter introduces our data dependence graph (DDG) model. It consists ofinnermost loops without branches. As in the acyclic case, our model is su�cientlygeneric to be applied to both static and dynamic issue processors. We also recallsoftware pipelining (SWP) method and how this strategy in
uences a late registerallocation. The register need is slightly di�erent in cyclic schedules since lifetime in-tervals become cyclic. We present an intLP formulation for it with O(jV j2) variablesand O(jEj+ jV j2) constraints, given a DDG G = (V;E). The size of the constraintsmatrix is better than the complexity of the existing techniques which include aninitiation interval factor.This chapter is organized as follows. Section 7.1 de�nes our loop model (without branches)and presents our notations. The software pipelining technique is described in Section 7.2.We see that such periodic scheduling technique makes circular the value lifetimes inter-vals. Thus, the register requirement, studied in Section 7.3, is de�ned in a cyclic pattern.We present a method for computing it by decomposing the circular lifetime intervals intotwo classes : those which span the whole SWP kernel (correspond to di�erent instances ofthe same statement), and those which span a fraction of the motif. We give an exact for-mulation of the cyclic register requirement according to an arbitrary SWP schedule usinginteger programming. This intLP system is used in further chapters for analyzing cyclicregister saturation and su�ciency. Finally, before concluding with some remarks, Sec-tion 7.5 presents how a register allocation can be built cyclically on an already scheduledloop.7.1 De�nitions and NotationsA loop (without branches) in our study is represented by a graph G = (V;E; �; �) suchthat :� V is the set of the statements in the loop body. Each statement u has a latencylat(u) > 0. The instance of the statement u (an operation) of the iteration i isnoted u(i). By default, the operation u denotes the operation u(i);� E is the set of precedence constraints (data dependences or other serial constraints);
119



120 CHAPTER 7. LOOP MODEL� �(e) is the latency of the arc e in terms of processor clock cycles. Initially1, we have8e = (u; v) 2 E : �(e) = lat(u)� �(e) is the distance of the arc e in terms of number of iterations. If �(e) > 0, thedependence e is called loop carried. A valid schedule � must satisfy :8e = (u; v) 2 E : � (u(i)) + �(e) � � (v(i+ �(e)))We consider a target architecture with multiple register types, where T denotes the set ofregister types (for instance, T = fint; f loatg). We make a di�erence between statementsand precedence constraints depending if they refer to values to be stored in registers ornot :1. VR;t is the set of values to be stored in registers of type t 2 T. We consider that eachstatement u 2 V writes into at most one register of a type t 2 T. The statementswhich de�ne multiple values with di�erent types are accepted in our model i� theydo not de�ne more than one value of a certain type. For instance, statements thatproduces one 
oating point result and one integer result are taken into account inour model. We denote by ut the value of type t de�ned by the statement u;2. ER;t is the set of 
ow dependence arcs through a value of type t 2 T. Since we acceptthe statements producing more than one value but with di�erent types, these setsare not disjoined : for instance, we may have an arc e 2 ER;t1 \ ER;t2 .To consider static issue processors (as VLIW) in which the hardware pipeline steps aremade visible to compilers, we assume that reading from and writing into a register maybe delayed from the beginning of the schedule time, and these delays are visible to thecompiler (architectural visible). We de�ne two delay (o�set) functions �r;t and �w;t suchthat : �w;t : VR;t ! Nu 7! �w;t(u)= �w;t(u) < lat(u)the write cycle of ut into a register of type t is �(u) + �w;t(u)�r;t : V ! Nu 7! �r;t(u)= �r;t(u) � �w;t(u) < lat(u)the read cycle of ut from a register of type t is �(u) + �r;t(u)For instance, a superscalar processor has a sequential semantics. Thus, the reading andwriting o�sets are not visible at the architectural level, i.e., �r;t(u) = �w;t(u) = 0.Lastly, we assume that all the values produced in the loop are read at least once.A non consumed value in a loop is a statement which erases its result in the successiveiterations, producing a self-output dependence with distance 1. If a non consumed valueut exists in the loop, we can handle it in two ways :1. we can assume that the statement u is removed from the loop by a previous deadcode elimination process. Indeed, only the value produced at the last iteration hasto be computed, and hence the operation u(n) of the last iteration is inserted justafter the loop;1We will see, in the next chapter, that we may insert new arcs where their latencies are not equal tothe latencies of operations.



7.2. SOFTWARE PIPELINING 1212. since the value ut(i) is erased by u(i+1), and hence killed by it, we can consider theself output dependence on u as a virtual self-
ow dependence between u and itselfwith a distance 1 and a latency �w;t(u)+ 1 to model the fact that u(i+1) consumes(kills) ut(i).Till now, the best ILP scheduling strategy of simple innermost loops is software pipelin-ing (SWP). The next section gives a short description of SWP.7.2 Software PipeliningA software pipelined schedule � of a graph G = (V;E; �; �), representing precedence con-straints of a simple loop with n iterations, consists in overlapping the execution of theparallel operations belonging to di�erent iterations [AJLA95]. A new iteration is initiatedat constant rate during the steady state before the (possible) completion of the previousone. The advantage of software pipelining is that optimal performance may be achievedwith a more compact code size compared to loop unrolling followed by local scheduling. ASWP schedule is de�ned by an initiation interval2 h and the schedule of the �rst iteration.Every h steps, a new iteration is issued. The schedule is written :8u 2 V; 8i 2 [1; n] : � (u(i)) = �u + h� iwhere � (u(i)) is the schedule of the operation u(i), and �u = � (u(1)) is the scheduleof the operation u of the �rst iteration. The total schedule time of one iteration of theoriginal loop body is then equal to L = maxu2V �u. Figure 7.1.(b) is an example of asoftware pipelined schedule with h = 4 of the DDG shown in part (a), in which the valuesand 
ow arcs are drawn with bold lines.This periodic schedule de�nes a new compact loop body called the motif or the kernel.The successive iterations of the motif simulate the progression of the iterations of theoriginal loop in a pipeline. Let �(G) be the set of all valid software pipelined schedulesof a loop G. Also, we note �L(G) as the set of all valid software pipelined schedules withthe property that the total schedule time of one iteration does not exceed L3 :8� 2 �L(G); 8u 2 V; �u � LFor any � 2 �(G), the minimum initiation intervalMII, denoted by h0 , is determined bythe critical circuit of G, which de�nes the optimal execution rate. Let �(C) =Pe2C �(e)be the latency of the circuit C in G and �(C) =Pe2C �(e) its distance. Then a criticalcircuit C in G is de�ned by : �(C)�(C) � maxC0 a circuit in G �(C 0)�(C 0)This critical ratio constitutes a lower limit for the minimal feasible initiation interval :8� 2 �(G) : MII = � �(C)�(C)� � h2Denoted also by II in some papers.3L su�ciently large, i.e., greater than the critical path of the loop body.
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7.2. SOFTWARE PIPELINING 123Note that the critical circuit can be computed with polynomial complexity algorithms(O(jV j � jEj � log jV j) [Law72, Saw97]). An implementation of an algorithm with thecomplexity O�jV j:jEj: log(jV j:maxe �(e):maxe �(e)� is provided in [MN99].If the critical ratio is not integral, this rate cannot be achieved. Nevertheless, wecan avoid this loss of optimality by unrolling the loop j times before applying a periodicscheduling, where j is equal to the denominator of (rational) critical circuit cost to timeratio : the initiation interval of the unrolled loop becomes j �MII.If the DDG is acyclic, then MII = 0. This means that the loop is parallel (no circuitdependences) : theoretically, we can completely unroll the loop and perform all iterationsin parallel to obtain a maximal ILP4. We cannot assume such unbounded ILP degreescheduling because of code expansion and resource constraints. Since SWP focuses onbuilding kernels, MII = h0 is set to 1. Thus, the maximal number of parallel iterationsis L.The authors in [WEJS94] model the motif of a software pipelined schedule as a twodimensional matrix by de�ning a column number cn and row number rn for each state-ment. A SWP gets de�ned by three parameters, we denote it by �([rn]; [cn]; h). Theyde�ne � as : 8u 2 V; 8i 2 [1; n] : � (u(i)) = rn(u) + h� (cn(u) + i)where cn(u) = ��uh � and rn(u) = �u mod h.Graphically, the row number rn(u) is the step of the execution of the statement urelatively to the beginning of the motif, see Figure 7.1.(c) : every h clock cycles, a newoperation u is issued rn(u) cycles after the beginning of the kernel. Statements that havethe same row number are simply those that are issued in parallel. The column numbercn(u) represents the iteration number of the statement u, i.e., a statement u in the motifwith a column number cn(u) corresponds to the operation u(i � cn(u)) of the originalloop. For example, a statement u with a column number equal to zero corresponds tothe statement u of the original loop; a statement with a column number equal to 1 cor-responds to the operation u of the iteration i� 1 of the original loop, etc.Let us denote by B the acyclic data dependence graph of the loop body (G afterremoving the loop carried dependences). Then :8� 2 �L(G); 8u 2 V : �u � �u � �uin which :� �u = LongestPathTo(u) is the as soon as possible schedule time of u in B;� �u = L � LongestPathFrom(u) is the as late as possible schedule time of u in Baccording to the worst �xed total schedule time L of one original iteration.We conclude that cn(u) � cn(u) � cn(u)4This maximal parallelism may be implemented at thread level, which is outside the scope of SWPfor ILP.



124 CHAPTER 7. LOOP MODELwhere cn(u) = j�uh k ; cn(u) = ��uh �In order to reach a steady execution state for the software pipelined loop, we need to�ll the pipeline during a starting transient state. This is done by generating a prologuecode before the SWP kernel. This prologue state lasts L� h clock cycles so as to reach amaximal execution throughput for the pipelined execution of the loop (iterative executionof the kernel). Also, the last L � h clock cycles of the total execution time correspondto an ending transient state in order to empty the pipeline : an epilogue code has to begenerated, after the SWP motif, for this �nal state.A value ut 2 VR;t is de�ned at the relative de�nition date �u+�w;t(u) clock cycles afterthe beginning of the motif. The killers of this value ut 2 VR;t are all the last scheduledconsumers (readers). We note by Cons(ut) the set of the consumers of the value ut. Thelast step when a value issued in the current motif is consumed is called the relative killingdate : k�(ut) = maxv2Cons(ut)e=(u;v)2ER;t ��v + �r;t(v) + �(e)� h�That is, the value ut(i) of the ith iteration is de�ned at the absolute time �u+�w;t(u)+i�hand killed at the absolute time k�(u) + i� h.In our model, we assume that a value written at instant c is alive one step later5. Therelative acyclic life interval (range) of the value ut 2 VR;t is :LT�(ut) =]�u + �w;t(u); k�(ut)]The absolute life interval of the value ut(i) is :]�u + �w;t(u) + i� h; k�(ut) + i� h]The lifetime of a value ut 2 VR;t is the total number of clock cycles during which thisvalue is alive according to the schedule :lifetime�(ut) = k�(u)� �u � �w;t(u)7.3 Cyclic Register NeedThe cyclic register need (also known in the literature as register requirement or MAXLIVE)of type t is the maximum number of values of that type which are simultaneously alivein the software pipelining motif. In the case of a cyclic schedule, some values may bealive during many iterations and di�erent instances of the same variable may interfere.Figure 7.2 illustrates another schedule of the DDG previously shown in Figure 7.1.(a) :the value v3 interferes with itself6.5This is not a limitation on the model, but a choice for discussion.6Remember that the lifetime intervals are left open and right closed.



7.3. CYCLIC REGISTER NEED 125Lifetime intervals during the steady state describe a circular lifetime interval grapharound the motif : we \wrap" a circle of circumference h by the acyclic lifetime intervalsof values. Then, the lifetime intervals are cyclic.De�nition 7.1 (Circular Lifetime Interval) A circular lifetime interval produced bywrapping a circle of circumference h by an interval I =]a; b] is de�ned by a triplet ofintegers (l; r; p), such that :� l = a mod h is called the left of the cyclic interval;� r = b mod h is called the right of the cyclic interval;� p = � b�ah � is the number of complete periods (turns) around the circle, which corre-sponds to the number of interfering instances.As an example, the circular lifetime interval of v1 in Figure 7.2.(b) is (1; 3; 0), v2's one is(2; 1; 0) and v3's one is (2; 0; 1).
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(b) Life Intervals inside the MotifFigure 7.2: Cyclic Register Need in Software Pipelining SchedulesThe set of all the circular lifetime intervals around the motif de�nes a circular intervalgraph which we note Ch(G). In this thesis, we use the short term of circular intervalto indicate a circular lifetime interval, and the term of circular graph for indicating acircular lifetime intervals graph. Figure 7.3.(a) gives an example of a circular graph. The



126 CHAPTER 7. LOOP MODELmaximum number of values simultaneously alive is the width of this circular graph, i.e.,the maximum number of circular intervals which interfere at a certain point of the circle.For instance, the width of the circular graph of Figure 7.3.(a) is 4. Figure 7.2.(b) isanother representation of the circular graph when we cut the circle at the instant 0.
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Figure 7.3: Circular Life Intervals GraphDe�nition 7.2 (Cyclic Register Need (Requirement)) Let G = (V;E; �; �) be a loopand � 2 �(G) a software pipelined schedule. The cyclic register need of type t 2 T is thewidth of the circular graph produced by wrapping the lifetime intervals of type t around aperiod h. We denote it by CRN�t (G).We call circular excessive values a set of a maximum number of values simultaneouslyalive. In Figure 7.2.(b) for instance, v1(i); v3(i); v3(i� 1) and v2(i� 1) are circular exces-sive values.Computing the width of a circular interval graph is obvious. We can compute thenumber of values simultaneously alive at each clock cycle in the SWP kernel. This leadsto a method whose complexity depends on the initiation interval h. This factor may bevery large since it depends on the speci�ed latencies in the DDG, and on its structure(critical circuit). We want to provide a better method whose complexity only depends onthe DDG size, i.e., only depends on the number of statements and dependencies. For thispurpose, we study the relationship between the width of a circular interval graph with the



7.3. CYCLIC REGISTER NEED 127size a maximal clique in the interference graph7. The following paragraphs are devotedto this aim.In general, the width of a circular interval graph is not equal to the size of a maximalclique in the interference graph [Tuc75]. In order to e�ectively compute this width, wedecompose the circular graph Ch(G) into two parts.1. The �rst part is the integral part. It corresponds to the number of complete turnsaround the circle, i.e., the number of instances of each value that are simulta-neously alive at all times during the steady-state portion of the cyclic schedule :P(l;r;p) a circular interval p.2. The second part is the fractional part. It is composed of the remainder of thelifetime intervals after removing all the complete turns (see Figure 7.3.(b) and (c)).The size of the remaining intervals is strictly less than h, the size of the SWPmotif. Note that if the left of a circular interval is equal to its right (l = r), thenthe remaining interval after ignoring the complete turns around the circle is empty(]l; r] =]l; l] = �). These empty intervals are removed from this second part. Twoclasses of intervals remain.(a) The �rst class contains acyclic intervals that do not cross the kernel barrier,i.e., when the left is less than the right (l < r). v1 in Figure 7.3.(b) and (c),for instance, belongs to this class.(b) The second class contains intervals that cross the kernel barrier, i.e., when theleft is greater than the right (l > r). v2 and v3 in Figure 7.3.(b) and (c), forinstance, belong to this class. These acyclic intervals represent the left andthe right parts of the lifetime intervals. When merging the left and right partsof a value of two successive SWP motifs, we create a new contiguous circularinterval.These two classes of intervals de�ne a new circular graph. We call it an in fraction of h[Alt95] circular graph because the size of its lifetime intervals is less than h. This cir-cular graph contains the circular intervals of the �rst class, and those of the secondclass after merging the left of each value with its right.De�nition 7.3 (in fraction of h Circular Graph) Let Ch(G) be a circular graph ofa loop G = (V;E; �; �). The in fraction of h lifetime interval graph, denoted by Ch(G), isthe circular graph after ignoring the complete turns around the circle :Ch(G) = f(l; r; 0) = 9p; (l; r; p) 2 Ch(G) ^ r 6= lgWe call the circular interval (l; r; 0) a circular in fraction of h interval, and we can simplydenote it by (l; r). Any circular interval in (l; r) 2 Ch(G) has a length less than h clockcycles. Then, the total cyclic register need becomes :CRN�t (G) = � X(l;r;p)2Ch(G) p�+ w�Ch(G)�7Remember that the interference graph is an undirected graph that models interference relationsbetween lifetime intervals : two statements u and v are connected i� their (circular) lifetime intervalsshare a unit of time.



128 CHAPTER 7. LOOP MODELwhere w denotes the width of the in fraction of h circular graph.As stated before, in a general circular graph, the size of a maximal clique in theinterference graph is not equal to its width. To overcome this problem, we use the factthat the in fraction of h circular graph Ch(G) has circular intervals which do not makecomplete turns around the circle. Then, if we unroll the motif twice to consider the valuesproduced during two successive periods of the kernel, the complete interference patternis exhibited. For instance, the circular graph of Figure 7.4.(a) has a width equal to 2.Its interference graph in Figure 7.4.(b) has a maximal clique of size 3. Since the size ofthese intervals does not exceed a period h, we unroll twice the circular graph like shownin Figure 7.4.(c). The interference graph of the acyclic intervals in Figure 7.4.(d) has asize of a maximal clique equal to the width 2. The following theorem proves this fact.
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Figure 7.4: Width of Circular Interval GraphsTheorem 7.1 Let Ch(G) be a circular in fraction of h graph (no complete turns aroundthe circle exist). For each circular in fraction of h interval (l; r) 2 Ch(G), we create thetwo corresponding acyclic intervals I and I 0 after merging the lefts and the rights of twosuccessive kernels. Then, the cardinality of any maximal clique in the interference graphof all these acyclic intervals is equal to the width of Ch(G).Proof :See Appendix A (Section A.2.1 Page 258).



7.3. CYCLIC REGISTER NEED 129yWe call such an acyclic interval an acyclic in fraction of h interval. Given a circularin fraction of h interval (l; r) 2 Ch(G), the two corresponding acyclic in fraction of h in-tervals are :� I =]l; r] and I 0 =]l + h; r + h] if r � l;� I =]l; r + h] and I 0 =]l + h; r + 2� h] if r < l;Figure 7.5 shows the unrolled circular graph of the in fraction of h circular graph pre-viously described in Figure 7.3, page 126. The interference graph is an interval graph,and hence the maximal clique can be computed with a O(n� log(n)) complexity [Gol80].So, we have de�ned a method that computes the cyclic register need whose complexitydepends only on the size of the input DDG. The complete turns around the circles is com-puted in linear time (O(jV j)), and the width of the in fraction of h graph is computedwith a complexity O(jV j � log(jV j)).Note that if the length of a circular interval (l; r; p) is a multiple of h, then itsin fraction of h interval is empty since l = r (lifetime intervals are open from the left).Consequently, it is removed from the set of in fraction of h intervals. As an illustration,the circular interval of v3 in Figure 7.6 has lifetime(v3) = 4 with h = 4. Its corre-sponding in fraction of h interval is (0; 0). This latter corresponds to two empty acyclicin fraction of h intervals ]0; 0] and ]4; 4]. They must be removed from the set of acyclicin fraction of h intervals.When looking for a software pipelined schedule with a limited register need, choosing a\suitable" initiation interval is a crucial issue. It is intuitive that the lower the initiation
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130 CHAPTER 7. LOOP MODELinterval h is, the higher the register pressure is, since more parallelism requires morememory. If we succeed in �nding a software pipelined schedule which needs R registers,then it is possible to get another software pipelined schedule which needs R registers witha higher II if we relax the uper-bound L.Proposition 7.1 Let G = (V;E; �; �) be a DDG of a loop with a superscalar semantics(no visible delays in accessing registers). If there exists a software pipelining �([rn]; [cn]; h)which needs R registers of type t with h � L, then there exists a software pipelining�0([rn0]; [cn0]; h+1) which needs R registers of type t with L0 = L+1+ bL=hc. Formally :8�([rn]; [cn]; h) 2 �L(G)=h0 � h � L;9�0([rn0]; [cn0]; h+ 1) 2 �L+1+bL=hc(G) : CRN�0t (G) = CRN�t (G)Proof :See Appendix A (Section A.2.2 Page 259). This proposition is proved pnlyfor superscalar semantics (no visible delays in reading from and writing intoregisters). The general case (VLIW semantics) is more di�cult to prove, butwe think that this proposition remains correct. yComputing the cyclic register need of a SWP is easy : we build the circular lifetimegraph and we compute its width. However, we need to formulate it according to anarbitrary SWP, i.e., without �xing any scheduling information. The next section gives anexact intLP formulation of CRNt(G) according to a variable schedule. This formulationenables us in further chapters to compute the exact register pressure.7.4 Exact Formulation of Cyclic Register NeedA \good" exact intLP model is important in our study because it must be used furtherfor maximizing (saturation) or minimizing (su�ciency) the cyclic register need, and if
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7.4. EXACT FORMULATION OF CYCLIC REGISTER NEED 131possible, with the same variables and constraints. Furthermore, we need to give a \good"intLP complexity in terms of the number of generated variables and constraints. Thiscomplexity must be a polynomial function of the size of input DDG, i.e., it must onlydepend on the number of nodes and arcs without introducing the h factor like in existingtechniques.In this section, we show how to model the exact register requirement of arbitrary cyclicschedules. For this purpose, we use Theorem 7.1, which consists in unrolling twice thekernel to exhibit the complete interference pattern between the in fraction of h intervals.In our exact model, we suppose the following constants :� L : a worst total schedule time of one iteration;� h : the initiation interval.Since we will need to compute a maximal register need (register saturation) and aminimal one (register su�cieny), we provide two formulations. The �rst one uses amaximization objective function, and the second uses a minimization one. Note thatif jVR;tj = 0, i.e., no results of type t is produced in the DAG, the register need is zerobyde�nition. Hence, we assume that jVR;tj > 0.7.4.1 Cyclic Register Need with MaximizationThe �rst formulation computes a maximal clique for determining the interferences betweenthe in fraction of h intervals. The complete turns around the circles are the integer partsof the lifetimes.Basic Variables1. For lifetime intervals, we de�ne :� one schedule variable �u � 0 for each u 2 V ;� one variable which contains the killing date kut � 0 for each ut 2 VR;t.2. For cyclic register need, we de�ne :� put � 0 the number of the instances of ut 2 VR;t simultaneously alive, which isthe number of the complete turns around the circle produced by ut 2 VR;t;� lut � 0 and rut � 0 the left and the right of the cyclic lifetime interval ofut 2 VR;t;� the two acyclic in fraction of h intervals Iut =]aut; but] and I 0ut =]a0ut; b0ut] afterunrolling the kernel twice.3. For a maximal clique in the interference graph of the in fraction of h acyclic inter-vals, we de�ne :� interference binary variables stI;J for all the in fraction of h acyclic intervalsI; J of type t : stI;J = 1 i� I and J interfere with each other;� a binary variable xtI for each in fraction of h acyclic interval of type t : xtI = 1i� I belongs to a maximal clique.



132 CHAPTER 7. LOOP MODELLinear Objective Function The cyclic register requirement of type t is the maximalof : Xacyclic in fraction of h interval I xtI + Xut2VR;t putAs we will see in Chapter8, maximizing this function amounts to computes the cyclicregister saturation (CRS).Linear Constraints1. Cyclic scheduling constraints :8e = (u; v) 2 E : �u + �(e) � �v + �(e)� h2. The killing dates are computed by :8ut 2 VR;t : kut = maxv2Cons(ut)e=(u;v)2ER;t ��v + �r;t(v) + �(e)� h�We use the linear constraints of the \maximum" de�ned in Section 3.3. kut isbounded by kut and kut where :� kut = minv2Cons(ut) ��v + �r;t(v) + maxe=(u;v)2ER;t �(e)� h�� kut = maxv2Cons(ut) ��v + �r;t(v) + maxe=(u;v)2ER;t �(e)� h�3. The number of interfering instances of a value (complete turns around the circle) isthe integer division of the lifetime by h. We introduce an integer variable �ut � 0which holds the rest of the division :8<: kut � �u � �w;t(u) = put � h+ �ut�ut < h�ut 2 N4. The lefts of the circular intervals are the rest of the integer division of the de�nitiondate by h. We introduce an integer variable �ut � 0 which holds the integer quotientof the division : 8<: �u + �w;t(u) = �ut � h+ lutlut < h�ut 2 N5. The rights of the circular intervals are the rest of the integer division of the killingdate by h. We introduce an integer variable 
ut � 0 which holds the integer quotientof the division : 8<: kut = 
ut � h + rutrut < h
ut 2 N



7.4. EXACT FORMULATION OF CYCLIC REGISTER NEED 1336. The in fraction of h acyclic intervals are computed by unrolling the kernel twice,depending if the cyclic interval crosses the kernel barrier (Theorem 7.1) :8>>>><>>>>: aut = lutrut � lut =) but = rutrut < lut =) but = rut + h (case when the cyclic interval crosses h)a0ut = aut + hb0ut = but + hWe use the linear constraints of implication de�ned in Section 2.1 since the variabledomains are bounded. We know that 0 � lut < h, so 0 � aut < h and h � a0ut < 2h.Also, 0 � lut < h so 0 � but < 2h and h � b0ut < 3h.7. The interference binary variables stI;J are computed as in the acyclic case (Section 3.3Page 53), except that we must check if acyclic in fraction of h intervals are notempty. We have to express in the intLP the following constraints.8 acyclic intervals I; J :stI;J = 1() �(length(I) > 0) ^ (length(J) > 0) ^ :(I � J _ J � I)�where � denotes the relation before in the interval algebra. Assuming that I =]aI ; bI ]and J =]aJ ; bJ ], these constraints are written as follows. 8 acyclic intervals I; J :stI;J = 1() 8>><>>: bI � aI > 0 (i:e:; length(I) > 0)bJ � aJ > 0 (i:e:; length(J) > 0)bI > aJ (i:e:; :(I � J))bJ > aI (i:e:; :(J � I))8. A maximal clique in the interference graph is an independent set in the complemen-tary graph. Then, for two binary variables xtI and xtJ , only one is set to 1 if the twoacyclic intervals I and J of type t do not interfere with each other :8 acyclic intervals I; J : stI;J = 0 =) xtI + xtJ � 1Then, the cyclic register need is equal to :CRN�t (G) = ( PI xtI +Put2VR;t put if 9I an acyclic interval : length(I) > 0Put2VR;t put if 8 an acyclic interval : length(I) = 0Now, our intLP maximization version is completely de�ned. The next section describesthe minimization version.7.4.2 Cyclic Register Need with MinimizationThe second formulation computes a minimal chain decomposition for determining theinterferences between the in fraction of h intervals. The complete turns around the circlesare the integer parts of the lifetimes. We use some of the variables and constraints asde�ned above.



134 CHAPTER 7. LOOP MODELBasic Variables1. For lifetime intervals, we de�ne :� one schedule variable �u � 0 for each u 2 V ;� one variable which contains the killing date kut � 0 for each ut 2 VR;t.2. For cyclic register need, we de�ne :� put � 0 the number of the instances of ut 2 VR;t simultaneously alive, which isthe number of the complete turns around the circle produced by ut 2 VR;t;� lut � 0 and rut � 0 the left and the right of the cyclic lifetime interval ofut 2 VR;t;� the two acyclic in fraction of h intervals Iut =]aut; but] and I 0ut =]a0ut; b0ut] afterunrolling the kernel twice.3. For a minimal chain decomposition of the in fraction of h acyclic intervals, we de�ne(see Section 3.3, page 53) :� interference binary variables stI;J for all the in fraction of h acyclic intervalsI; J of type t : stI;J = 1 i� I and J interfere with each other;� an integar variable ctI > 0 for each in fraction of h acyclic interval of type t : Ibelongs to the chain ctI .Linear Objective Function The cyclic register requirement of type t is the minimalof : zt + Xut2VR;t putwhere zt = minI ctI .As we will see in Chapter 9, minimizing this function amounts to computes the cyclicregister su�ciency (CRF).Linear Constraints1. Cyclic scheduling constraints :8e = (u; v) 2 E : �u + �(e) � �v + �(e)� h2. The killing dates are computed by :8ut 2 VR;t : kut = maxv2Cons(ut)e=(u;v)2ER;t ��v + �r;t(v) + �(e)� h�We use the linear constraints of the \maximum" de�ned in Section 3.3. kut isbounded by kut and kut where :� kut = minv2Cons(ut) ��v + �r;t(v) + maxe=(u;v)2ER;t �(e)� h�� kut = maxv2Cons(ut) ��v + �r;t(v) + maxe=(u;v)2ER;t �(e)� h�



7.4. EXACT FORMULATION OF CYCLIC REGISTER NEED 1353. The number of interfering instances of a value (complete turns around the circle) isthe integer division of the lifetime by h. We introduce an integer variable �ut � 0which holds the rest of the division :8<: kut � �u � �w;t(u) = put � h+ �ut�ut < h�ut 2 N4. The lefts of the circular intervals are the rest of the integer division of the de�nitiondate by h. We introduce an integer variable �ut � 0 which holds the integer quotientof the division : 8<: �u + �w;t(u) = �ut � h+ lutlut < h�ut 2 N5. The rights of the circular intervals are the rest of the integer division of the killingdate by h. We introduce an integer variable 
ut � 0 which holds the integer quotientof the division : 8<: kut = 
ut � h+ rutrut < h
ut 2 N6. The in fraction of h acyclic intervals are computed by unrolling the kernel twice,depending if the cyclic interval crosses the kernel barrier (Theorem 7.1) :8>>>><>>>>: aut = lutrut � lut =) but = rutrut < lut =) but = rut + h (case when the cyclic interval crosses h)a0ut = aut + hb0ut = but + h7. The interference binary variables sI;J are computed as in the acyclic case (Sec-tion 3.3, page 53), except that we must check if acyclic in fraction of h intervals arenot empty. We have to express in the intLP the following constraints.8 acyclic intervals I; J :sI;J = 1() �(length(I) > 0) ^ (length(J) > 0) ^ :(I � J _ J � I)�8. If two acyclic in fraction of h intervals I and J do not interfere, then they must notbelong to the same chain (Section 3.3, page 53).8u; v 2 VR;t : stI;J = 1 =) ctI 6= ctJ9. The total number of chains is constrained by :8 acyclic intervals I : ctI � zt



136 CHAPTER 7. LOOP MODELThen, the cyclic register need is equal to :CRN�t (G) = ( zt +Put2VR;t put if 9I an acyclic interval : length(I) > 0Put2VR;t put if 8 an acyclic interval : length(I) = 0Now, our intLP minimization version is completely de�ned. Note that our two intLP for-mulations may be optimized. For instance, if two acyclic in fraction of h intervals Iut andI 0ut of a value ut cannot interfere, we do not de�ne nor compute sI;I0. Similar optimiza-tions can be done regarding redundant arcs or impossible interfering relations detected atcompile time (statically).Register allocation for acyclic scheduled codes is obvious if lifetime intervals are de-�ned. However, the cyclic case is slightly di�erent because the multiple values producedby the same statement may interfere. The next section presents register allocation ofsoftware pipelined loops.7.5 Register Allocation of Software Pipelined LoopsThis section gives a brief description of the meeting graph (MG) framework [ELM95,ELM97, dWELM99, Lel96] intended for cyclic register allocation of already scheduledloops. The meeting graph is based on a circular lifetime intervals graph. If w is thewidth of the circular graph, the problem is to allocate w available registers (colors) tothe circular intervals. Without loss of generality, the width w of the circular intervalsis assumed constant around the circle. If it is not really the case, Lelait claims that isalways possible to add unit-time �ctitious intervals around the circle where the width isless than w, as in Figure 7.7. This example is the MG of the circular intervals previouslypresented in Figure 7.2 and Figure 7.3.De�nition 7.4 (Meeting Graph) Let Ch(G) be a circular lifetime interval graph for aregister type t with a constant width w. The meeting graph related to Ch(G) of the registertype t is a directed weighted graph Mt = (VR;t; EM ; !). There is an arc between ut and vtin Mt i� the circular lifetime interval of ut ends when that of vt begins. Each ut 2 VR;t isweighted by !(ut) = lifetime(ut).Since there are some values which are alive during several iterations of the kernels, thesevalues interfere with themselves because every h steps a new value is de�ned by thestatement. In this case, we have to unroll the motif in order to be able to explicitlyallocate distinct registers to distinct values by coloring the circular interval graph.Theorem 7.2 [ELM95] Let Mt = (VR;t; EM ; !) be the meeting graph of a circular graphCh(G) with a width w. Let D be the set of all possible decompositions of Mt into circuits(Di 2 D; Di = fCi1 ; : : : ; Cing). Then, the minimal unrolling degree of the motif necessaryto obtain an optimal allocation with w registers is :u(Mt) = minDi2D lcm(�i1 ; : : : ; �in)in which �ij is the (width) number of turns around circle of the circuit Cij :�ij = Put2Cij !(ut)hand lcm denotes the least common multiple.



7.5. REGISTER ALLOCATION OF SOFTWARE PIPELINED LOOPS 137The width of a circuit in the meeting graph is equal to the number of turns aroundthe circle because we ensure that the width is constant by inserting �ctitious unitaryintervals. Computing the set of all possible decompositions into circuits is NP-complete.So the purpose is to write an algorithm which looks for a \good" decomposition, i.e., theone which reduces the unrolling degree. Assuming such a decomposition, the followingtheorem de�nes the unrolling degree necessary for coloring the circular interval graph.Theorem 7.3 [Lel96] Let Mt = (VR;t; EM ; !) be the meeting graph of a circular graphCh(G) with a width w. Assume that Mt is composed of n elementary circuits (C1; : : : ; Cn)with their corresponding width (�C1 ; : : : ; �Cn). Then, the corresponding loop can be allo-cated with w registers if we unroll the motif by the following degree :lcm(�C1 ; : : : ; �Cn)For instance, if we decompose the meeting graph of Figure 7.7 into two elementary circuitsC1 = (v1; I1; I4; v1) and C2 = (v3; I2; I3; v2; I5; v3), we need to unroll the loop lcm(1; 3) = 3times. We then allocate one register for C1 and 3 registers for C2.After unrolling the loop, a cyclic register allocation with w available registers is doneby coloring the corresponding circular interval graph with w colors. For this purpose, wehave to �nd a decomposition of the unrolled meeting graph into w elementary circuits.Theorem 7.4 [Lel96] Let Mt = (VR;t; EM ; !) be the meeting graph of a circular graphCh(G) with a width w. A register allocation of the modulo scheduled loop G is exactly adecomposition of Mt into w elementary circuits.The authors suggest to look for circuits with small costs if we want to reduce theunrolling degree. This latter constitutes a hard problem, because reducing a lcm isn'ta linear problem. Some architectures, as Cydra 5 and IA 64 o�er architectural supportfor register allocation of SWP loops. The next section shows how such a feature can beutilized.
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138 CHAPTER 7. LOOP MODELRotating Register FileA rotating register �le (RRF) [DHB89, DT93, RLTS92, SRM94] is a hardware featureto prevent successive lifetime intervals from being assigned to the same physical regis-ters. Conventional registers are accessed using absolute addresses, e.g., register number3. Nonetheless, in a RRF, a register number k speci�ed in a statement addresses thephysical register (RRB + k) mod s, where RRB is a rotating register base and s isthe number of physical registers. At the end of each kernel (special branch instruction),RRB is decremented so that the same register accessed in the next iteration is named(RRB�1+k) mod s. The compiler must take into account this behavior by generatingan adapted code. For instance, assuming 4 physical registers, the compiler must be awarethat a value written in the architectural register 0 (physical register 0) must be accessedfrom the architectural register 2 (physical register 0) two kernels latter.Thanks to RRF, we do not need to unroll the loop. We can always �nd a cyclic registerallocation with at most w + 1 registers if the size of the register �le is s � w + 1.Theorem 7.5 [Lel96] A loop can be allocated on a rotating register �le of size s if thereexists a hamiltonian circuit C in the meeting graph with a width �(C) � s
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Figure 7.8: Register Allocation in a Rotating Register FileThe meeting graph of Figure 7.7 has the hamiltonian circuit C = (v1; I1; I2; I3; v3; I4;I5; v2; v1). We can allocate the values v1; v2 and v3 to a rotating register �le of size 4.We allocate these values in the same order that they appear in the hamiltonian circuit.



7.5. REGISTER ALLOCATION OF SOFTWARE PIPELINED LOOPS 139Figure 7.8.(a) shows the generated code (loop kernel) with register allocation. Part (b)shows the distinct values in the RRF : for instance, the value v3 does not interfere withitself because it is written on a distinct physical register every h = 4 steps.If there is no hamiltonian circuit, we can always create one by adding a complete turnof unitary �ctitious intervals in the meeting graph. If no hamiltonian circuit exists in theMG, it has been shown that there is no cyclic register allocation with MAXLIVE registerson a RRF [Lel96]. One extra register is needed, which yields to allocate MAXLIVE+1registers. One of the intrinsic reasons is that the RRF simulates \shifting" actions tomove values within physical registers. Depending on the SWP schedule, we may needone extra register to complete this circular moving, since we need 3 registers to permutetwo values between two distinct registers. This problem arises particularly for superscalarcodes. Since we cannot express statically the parallelism between operations, two lifetimeintervals cannot meet and, thus, are serialized in the generated code. Consequently, wemay need one extra register to cyclically permute all the values in registers.Proposition 7.2 [Lel96] There always exists a hamiltonian circuit in the meeting graphof a software pipelined loop if we add a tour of unitary �ctitious circular intervals.Therefore, a su�cient condition for allocating MAXLIVE+1 registers on a RRF for asoftware pipelined loop arises :Theorem 7.6 [Lel96] Let Mt = (VR;t; EM ; !) be the meeting graph of a circular graphCh(G) with a width w. It is always possible to allocate registers to the loop G in a rotatingregister �le with at least w + 1 registers.The reader must keep in mind that, if loop unrolling is allowed, we do not need this extraregister to implement a cyclic register allocation on a RRF.Before concluding this chapter, we would like to introduce a loop transformation calledretiming. This transformation, as we will see, allows to solve some of the problems in thisthesis.Retiming TransformationRetiming [LS91] (also called loop shifting [DH00]) consists of the following graph trans-formation : for each statement u, we associate a shift r(u) which means that we delay theoperation u(i) by r(u) iterations. Basically, we only change the column numbers. Then,each statement u that was representing the operations of the form u(i) represents nowthe operations of the form u(i� r(u)). The new distance of each arc e = (u; v) becomes�r(e) = �(e) + r(v)� r(u) since the dependence is from u(i� r(u)) to v(i� r(v) + �(e)).Then, we have a one-to-one correspondence between the schedules of the original loop andthe schedules of the retimed one. �r is a schedule for the retimed graph i� the function �de�ned by �(u(i)) = �r(u(i+ r(v))) is a schedule for the original DDG.Consequently, a retiming does not change the sum of the distances in any circuit, northe sum of its delays, while preserving the same problem (loop). Indeed, the retimedgraph is only another representation of the loop.Note that a retiming is called valid if all the distances of the transformed graph arenonnegative. Finding a valid retiming (from a non valid one) is a polynomial problem[LS91]. Figure 7.9 gives an illustration. If we use the shifts of Part (b) to apply a retimingon the graph of Part (b), we obtain the retimed graph of Part (c).



140 CHAPTER 7. LOOP MODEL7.6 ConclusionThis chapter has introduced our hypothesis about the generic ILP architecture and hasde�ned some important terms that we use in this part of the thesis. Circular register needis de�ned by circular intervals. An integer programming model with reduced constraintmatrix size is provided and is used in the next chapters to analyze the register pressure.While local register allocation of already scheduled DAGs is easy, cyclic register allo-cation of modulo scheduled loops is slightly di�erent. Since lifetime intervals are circular,some statements may produce interfering values inside the motif. We must unroll theloop to explicitly address these distinct values and to allocate them to di�erent registers.A theoretical framework, called the meeting graph [ELM95, ELM97, dWELM99, Lel96],formulates the exact unrolling degree depending on a circuit decomposition of MG.Optimizing the unrolling degree is a di�cult task. A hardware feature, called rotatingregister �le, allows to avoid unrolling the kernel. A su�cient condition for cyclic registerallocation with MAXLIVE registers on a RRF is the existence of a hamiltonian circuit inthe MG. If it does not exist, we can create it by using one extra register.The next chapter studies the cyclic RS devoted to keep register pressure under controlbefore SWP scheduling.
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Chapter 8Cyclic Register SaturationAbstractThis chapter describes our work on cyclic register saturation (CRS) [TE02]. Weprovide algorithms and intLP models to check if register constraints are obsolete(satis�ed) before scheduling. As in the acyclic case, this problem is NP-complete.We show how we handle the NP-hard problem of reducing CRS under the limit ofavailable registers.This chapter is organized as follows. Section 8.1 shows how we compute CRS. Weprovide an exact formulation based on integer programming. We also present an ap-proximative method that decomposes the problem into two parts. The �rst part, basedon integer programming, looks for a valid retiming that maximizes the interferences ofdistinct instances of the same statement. The second part, based on algorithmic ap-proximation, maximizes the interferences of distinct statements. Section 8.2 studies theproblem of CRS reduction under a �xed critical circuit. Before concluding, we show someexperiments in Section 8.3.Let G = (V;E; �; �) be a loop. The cyclic register saturation (CRS) is the maximalregister requirement for all valid software pipelined schedules :CRSt(G) = max�2�(G)CRN�t (G)where CRN�t (G) is the cyclic register need of type f for the SWP schedule �. A softwarepipelined schedule which needs the maximum number of registers is called a saturatingSWP schedule. The excessive values (maximum values simultaneously alive) in a saturat-ing schedule are called saturating values.Theorem 8.1 Computing the cyclic register saturation of a register type t 2 T is NP-complete.Proof :See Appendix A (Section A.2.3 Page 262). yThe next section presents how we compute CRS.141



142 CHAPTER 8. CYCLIC REGISTER SATURATION8.1 Computing Cyclic Register Saturation8.1.1 Exact Formulation of CRS ComputationBefore computing the exact CRS, we must �rst note that the exact maximal registerrequirement may be in�nite. This is, for instance, the case for acyclic DDGs (MII =0). We can theoretically schedule all the values of all iterations in parallel. Assumingin�nite number of iterations, this may lead, in theory, to an in�nite number of valuessimultaneously alive. As mentioned in Chapter 7, in�nite ILP degree is not considered inSWP since we focus on building a kernel (software pipelined loop). Then, we setMII � 1.Furthermore, if we do not bound L, the total schedule time of one original iteration,then the maximal number of parallel iterations (dL=MIIe) may be in�nite. In otherwords, even if we set MII � 1, the exact maximal register requirement may be in�niteif we do not bound L. Practically, compilers look for a SWP schedule with a �nite sizeof prologue and epilogue codes. Since, the prologue and epilogue lasts L� h clock cycles,and since h is bounded between MII and L, bounding the size of prologue and epiloguecodes is equivalent to bounding L.For these reasons, we bound our problem by computing the cyclic register saturationof a subset �L(G) � �(G). That is, we compute the maximal register requirement for allvalid software pipelined schedules with the property that the total schedule time of oneiteration does not exceed L. This is appropriate for us, since the domain set of variablesmust be bounded in our intLP formulation.The exact formulation of CRS computation is derived from Section 7.4 (maximizationversion) : Maximize Xacyclic in fraction of h interval I xI + Xut2VR;t putsubject to the variables and constraints de�ned in Section 7.3.The size of the model is O(jVR;tj2) variables and O(jEj+jVR;tj2) constraints (Section 7.4on page 130). The coe�cients of the constraints matrix are all bounded by �L� �maxh,where �max is the maximal dependence distance in the loop. To compute CRS, we scanthe admissible II, i.e., we iterate the initiation interval h from h0 to hmax = L (or by usinga binary search). The register saturation is the maximal solution of all these models. Thismethod may involve to solve too many intLP models. However, we can consider a tightupper-bound. The following corollary states that instantiating only one model for h = Lwhile relaxing the upper-bound L0 is su�cient to compute a conservative upper-boundfor CRS. Let us start by the following lemma.Lemma 8.1 Let G = (V;E; �; �) be a DDG of a loop. The maximal register requirementof all the software pipelined schedules �([rn]; [cn]; h) with an initiation interval h0 � h � Lis less or equal to the maximal register requirement of all the software pipelined scheduleswith an initiation interval h0 = h+ 1 with L0 = L + 1 + bL=hc. Formally :max�([rn];[cn];h)2�L(G)h0�h�L CRN�t (G) � max�0([rn0];[cn0];h+1)2�L+1+bL=hc(G)CRN�0t (G)



8.1. COMPUTING CYCLIC REGISTER SATURATION 143Proof :It is a direct consequence of Proposition 7.1 Page 130. If we increment h byone, we have to increment L by 1 + bL=hc to get at least one valid softwarepipelined schedule with the same register requirement :8�([rn]; [cn]; h) 2 �L(G)=h � L; 9�0([rn0]; [cn0]; h+ 1) 2 �L+1+bL=hc(G) :CRN�0t (G) = CRN�t (G) =) CRN�0t (G) � CRN�t (G) yCorollary 8.1 Let G = (V;E; �; �) be a DDG of a loop. Then, the exact CRS of Gassuming L as an upper-bound of the total schedule time of one iteration is lower or equalto the maximal register requirement with h = L if we relax the upper-bound L0 � L.Formally : max�([rn];[cn];h0�h�L)2�L(G)CRN�t (G) � max�([rn];[cn];L)2�L0(G)CRN�t (G)where L0 is the (L� h0)th term of the following recurrent sequence (L0 = UL) :� Uh0 = LUh+1 = Uh + 1 + bUh=hcProof :It is a direct consequence of Lemma 8.1 :max�([rn];[cn];h)2�L(G)CRN�t (G) � max�([rn];[cn];h+1)2�L+1+bL=hc(G)CRN�t (G) � :::::: � max�([rn];[cn];L)2�UL�h=UL�h�1+1+bUL�h�1=(L�h�1)c(G)CRN�t (G)That is, we relax the upper-bound L at each step, from h to L, i.e., (L � h)times. Since CRS is de�ned for all initiation intervals, starting from h = h0amounts to relax the upper-bound (L� h0) times, as follows.max�([rn];[cn];h0)2�L=Uh0 (G)CRN�t (G) � max�([rn];[cn];h0+1)2�Uh0+1=L+1+bL=hc(G)CRN�t (G) � :::::: � max�([rn];[cn];L)2�UL=UL�1+1+bUL�1=(L�1)c(G)CRN�t (G) yThis corollary states that the computed CRS with h = L and an upper-bound L0 � Lis greater than or equal to the optimal CRS by assuming L as an upper-bound of thetotal schedule time of one iteration. If L0 � L is not relaxed, the computed CRS maybe lower or equal to the optimal (non conservative). Figure 8.1 draws our assumptionabout the theoretical asymptotic curves to explain the meanings of Corollary 8.1. We



144 CHAPTER 8. CYCLIC REGISTER SATURATIONthink that if we �x L as an upper-bound of the total schedule time of one iteration, themaximal register requirement in function of the execution rate h may not be an increasingfunction of h. At a certain value of h, the maximal register requirement may decrease(not strictly) if the upper-bound is not relaxed. Also, we think that if the curve beginsto strictly decrease, it wouldn't strictly increase after. In other words, we think that thecurve has not a minimal point1. Thus, we can use a binary search (dichotomy), betweenhmin = h0 and hmax = L, for computing the exact CRS; the maximal register requirementat the point h = L may have a negative gap with the optimal CRS.However, we are sure that the curve is an increasing function if the the upper-boundL0 � L is relaxed when we increment h (Lemma 8.1 and Corollary 8.1). Thus, the maxi-mal register requirement at the point h = L has a positive gap with the optimal CRS.The next section investigates a heuristics to approximate the cyclic register saturation.It combines integer programming and a pure algorithmic solution.8.1.2 A FCLR Heuristic : First Columns Last RowsIn this section, we present a First-Columns-Last-Rows heuristics, which constructs a SWPmotif in order to approximate a saturating schedule in terms of cyclic register need. Ourheuristics consists of two main steps :1. We �rst �nd column numbers that maximize the number of iterations traversed byvalues. This intends to maximize the number of interfering instances of the values(turns around the circle).2. Once column numbers are computed, we can build the DAG of the motifs to �nd rownumbers that guarantee inter-motif dependences. We must maximize interferencesbetween lifetime intervals inside this motif. For this purpose, we use the DAGtechnique studied in Chapter 4 to construct an acyclic saturating schedule.1The curve does not decrease then increase.
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8.1. COMPUTING CYCLIC REGISTER SATURATION 145Maximizing the Number of Traversed Motifs (Column Numbers)A value does not span the motif if it is de�ned and consumed inside the same motif.If it is consumed i motifs later, then it spans i + 1 motif and there are at most i + 1interfering instances of this value. Given a software pipelined schedule, the number ofmotifs traversed by a value ut to be consumed by an operation v is equal to �cn(v) +maxe=(u;v)2ER;t �(e)�� cn(u). The total number of motifs spanned by a value ut is then :sut = maxv2Cons(ut) �cn(v) + maxe=(u;v)2ER;t �(e)�� cn(u)The number of motifs crossed by a value is not exactly the number of its interferinginstances (turns). For instance, the value v3 in Figure 7.2 (page 125) spans 3 successivemotifs but has only one interfering instance (complete turn). The general relation betweenthe number of interfering instances and the number of traversed motifs can be stated as(see Figure 8.2) : put � sut � 1
hh hh

(a) p=0, s =0 (c) p=0, s =1(b) p=1, s =0 (d) p=1, s =2Figure 8.2: Number of Turns versus Number of Crossed1 KernelsIn our heuristics, we want to maximize the number of interfering instances of all values.So, we have to �nd column numbers that maximize the number of traversed motifs. Thisis done by considering the following linear programming model :� Maximize Xut2VR;t sut� Subject to :{ the column numbers must be valid, i.e., there exists at least one softwarepipelined schedule with the computed column numbers (if h is large enough) :8e = (u; v) 2 E : cn(v)� cn(u) � ��(e)which is equivalent to �nding a valid retiming (r(u) = cn(u)).



146 CHAPTER 8. CYCLIC REGISTER SATURATION{ we bound the column numbers according to L :8u 2 V : cn(v) � cn(v){ the number of traversed motifs by a value is :8u 2 VR;t : sut = maxv2Cons(ut) �cn(v) + maxe=(u;v)2ER;t �(e)�� cn(u)We use the linear constraints of the \maximum" de�ned in Section 2.1, page 21.The size of this model is bounded by O(jV j2) variables and O(jEj + jV j2) constraints.Unfortunately, we do not have an algorithmic solution for this problem, nor do we have aproof for its computational complexity. We propose to use a heuristics to solve this intLPas described in Section 2.1.Remark In this section, we have maximized the number of traversed motifs by assumingthat a statement u de�nes its value ut during the current kernel. In fact, this may not becorrect depending on the row number and the write delay in the register of this statement :we can choose a row number and an initiation interval for u in such a way that thestatement u of the current motif de�nes its value in a further motif. This is becausethe de�nition of ut is done �w;t(u) clock cycles after rn(u) and may cross the h barrier.For instance, consider the SWP kernel of Figure 8.3 in which the value produced by a isconsumed one kernel later by d. According to our assumption, the value traverses onemotif. However, by considering the writing latency, the initiation interval and the rownumber of a, this value is de�ned during the next kernel, and hence does not cross amotif. This problem will be �xed in the next section when we compute row numbers andsuitable initiation interval.
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Figure 8.3: Value De�nition in a Further Motif
Maximizing the Interferences inside the Motif (Row Numbers)After determining column numbers in the �rst step, we have possibly maximized thenumber of interfering instances. In this second phase, we de�ne the row numbers of state-ments in such a way that interferences between (in fraction of h) lifetime intervals insidethe motif are maximized.



8.1. COMPUTING CYCLIC REGISTER SATURATION 147After �xing the column numbers, some dependences become inter-motif, i.e., theyinvolve operations from di�erent motifs and hence are satis�ed by the successive executionof iterations if h is large enough (see Figure 8.4). However, other dependences becomeintra-motif, i.e., they involve operations inside the same motif : determining row numbersis constrained by these dependences. For this purpose, we build a DAG from the originalDDG G which contains the set of statements and the set of intra-motif dependences :1. the inter-motif dependences are the set of arcs[Saw97]E1 = fe = (u; v) 2 E = cn(v)� cn(u) > ��(e)gthese dependences are satis�ed by the successive execution of the motif. So, weevict from G all arcs that belong to E1;2. the intra-motif dependences are the set of arcsE2 = fe = (u; v) 2 E = cn(v)� cn(u) = ��(e)gthese dependences must be ensured by row numbers. So, we keep these arcs to buildour inner-motif dependence DAG.
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Figure 8.4: Inter and Intra Motif DependencesOnce the DAG is built, we use our DAG technique (Chapter 4) to keep as many valuesalive as possible inside the motif. However, there are some values entering the motif(values produced backwards from precedent kernels) and some others exiting it (valuesproduced for forward motifs)2. These virtual values must be inserted into the DAG asfollows.1. We insert a virtual value utentry i� 9e = (u; v) 2 ER;t \ E1, i.e., if an operation vconsumes a value ut produced by previous motifs. To model the fact that theseentry values are alive from the top of the motif, we add serial arcs from utentry tothe sources of the DAG with a latency 0. We insert a 
ow arc from utentry to each vsuch that e = (u; v) 2 ER;t \ E1 with a latency �w;t(u) + 1.2. For all e = (u; v) 2 ER;t\E1, the value ut is consumed in a further motif. To modelthis fact, we add a 
ow arc from u to the bottom ? with the latency �w;t(u) + 1.2These entry and exit values are those which de�ne the lefts and the rights of cyclic lifetime intervals.



148 CHAPTER 8. CYCLIC REGISTER SATURATIONNow, we get a DAG with entry and exit values and inter motif dependences. We applyour e�cient Greedy-k heuristics to �nd a saturating acyclic schedule ��. Then, we set :8u 2 V : rn(u) = ��(u)We have determined row and column numbers. We still have to choose a valid value forh. The initiation interval must �rst ensure the inter-motif dependences. Second, it must�x the problem of traversed motif as we noted in the remark at the end of the previoussection (the fact that a statement must de�ne its value during the current motif). Thefollowing initiation interval ensures these two constraints :h = maxu2V rn(u) + lat(u)Lastly, we have de�ned a software pipelined schedule � which maximizes cyclic registerneed. So, CRS�, the approximated CRS, is :CRS(G) � CRS�t (G) = CRN�t (G)Example 8.1.1 Let us consider the DDG shown in Figure 7.1.(a) Page 122. Supposethat the column numbers which maximize the number of spanned motifs are :Statement cn Traversed Motifsv1 0 1v2 1 4v3 0 2v4 5 -According to these column numbers, there are no intra-motif dependences, i.e., all thedependences are satis�ed by inter-motif ones. The DAG built to compute row numbersdoes not contain any of the original dependences and then statements inside the motif arecompletely independent. Figure 8.5.(a) shows the DAG after inserting entry and exit val-ues. To �nd a saturating acyclic schedule for this DAG, we apply our Greedy-k algorithm.This leads to an acyclic schedule with 4 saturating values inside the motif : these valuesare v1; v1entry; v2entry; v3entry. This acyclic saturating schedule de�nes the following rownumbers : Statement rnv1 0v2 2v3 2v4 2The initiation interval is set to h = 5. Figure 8.5.(b) shows the circular lifetime intervalsin the motif : the width is 8 so the approximated cyclic register saturation is equal to 8.One can remark that the value v2 spans 5 successive motifs but has only 3 interferinginstances.When CRSt(G) is � Rt, the number of available registers of type t, the DDG G isde�nitively free from register pressure and can be left unchanged for a further schedul-ing process. Otherwise, we must reduce it to keep the cyclic register need under con-trol. However, if CRS�t (G) is � Rt, then some saturating schedules may still exist since



8.2. REDUCING CYCLIC REGISTER SATURATION 149CRS�t (G) � CRSt(G). Nevertheless, since CRS�t maximizes the cyclic register need, it isvery unlikely that a SWP process would require more registers than CRS�t (G). In somecritical cases, spill code may be introduced, even if CRS�t (G) � CRSt(G).The next section investigates the problem of CRS reduction.8.2 Reducing Cyclic Register SaturationThis section studies how to add serial arcs to a given DDG G = (V;E; �; �) such thatits cyclic register saturation of a register type t is limited by a strictly positive integerRt under a �xed critical circuit constraint MII. This allows us to guarantee that anysoftware pipelining of the new graph does not require more registers that those available.Consequently, we can always build a valid register allocation without spilling after theSWP process. Note that in the presence of a rotating register �le, we have to ensure thatthe cyclic register saturation does not exceed Rt�1 registers (consequence of Theorem 7.6Page 139).Problem 8.1 (ReduceCRS) Given a DDG G = (V;E; �; �), is there an extended DDGG of G such that CRSt(G) � Rt and MII �MII?It is clear that the limit Rt must be greater than or equal to the cyclic register su�-ciency (studied in the next chapter). Otherwise, there is no solution to this problem andspill code can not be avoided. Unfortunately :Theorem 8.2 Reducing the Cyclic Register Saturation is NP-hard.Proof :We prove that ReduceCRS can be reduced from the problem of cyclic schedul-ing under register constraints. We take the same instance for both problems.Let us start by de�ning the latter problem.
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150 CHAPTER 8. CYCLIC REGISTER SATURATIONDe�nition 8.1 (SRC problem) Let G = (V;E; �; �) be a DDG, Rt andMIItwo positive integers. Does it exist a valid schedule � 2 �L(G) such that :CRN�t (G) � Rt ^ h � MIIwhere h is the initiation interval of � ?This problem is NP-complete [EGS95]3.1. ReduceCRS =) SRCLet G be a solution for the ReduceCRS problem. Then, we can build an op-timal schedule � 2 �L(G) in a polynomial time complexity under only theserial constraints [GS94] with h = MII �MII.2. SRC =) ReduceCRSLet � be a solution for SRC, i.e., CRN�t (G) � Rt and h � MII. As anexample, let us consider the DDG previously shown in Figure 7.1.(a) (page122) with its corresponding modulo schedule � in Part (b). That DDG has aregister saturation at least equal to 8 as shown in Figure 8.5 (page 149). Wewant to reduce it to four registers based on the schedule of Figure 7.1.(b) inwhich the cyclic register requirement is shown in Figure 7.2 (page 125).We have to build an extended DDG G such that we guarantee that any soft-ware pipelining schedule �0 2 �(G) produces the same cyclic relative orderbetween values circular a lifetime intervals as de�ned by �. If a lifetime intervalLT�(ut(i)) is before lifetime interval LT�(vt(i + �)), then we must guaranteethat any software pipelining �0 makes LT�0(ut(i)) before LT�0(vt(i + �)), � isa distance to be de�ned.We model the relative cyclic order between circular lifetime intervals by agraph O = (VR;t; E�; �) : e = (ut; vt) 2 E� means that the value produced byu(i) is killed before the de�nition of the value vt(i + �(e)). �(e) is chosen sothat the killing date of ut(i) is as close as possible to the de�nition date ofvt(i + �(e)), i.e., both of the two dates must be in a window of size h. Sincethe schedule times of the distinct instances of the statement v are separatedby h clock cycles, there is a unique distance � that de�nes the cyclic orderbetween LT�(ut(i)) and LT�(vt(i+�)) in a window of size h. The constraintsthat de�ne such distance � between ut(i) and vt(i+�) are (ut not necessarilydistinct from vt) : LT�(ut(i)) � LT�(vt(i + �)) (8.1)�(v(i+ �)) + �w;t(v)� kut(i) < h (8.2)Since(8.1)() kut(i) � �(vt(i+ �)) + �w;t(v)() kut � �v + h� � + �w;t(v)3The authors proved that this problem is NP-hard; it is easy to see that this problem belongs to NP,since computing the cyclic register requirement of a SWP schedule, provided as a solution to SRC, canbe done with a polynomial algorithm.



8.2. REDUCING CYCLIC REGISTER SATURATION 151and (8.2)() �v + h� � + �w;t(v)� kut < h(8.1) and (8.2) amount to :0 � �v + h� � + �w;t(v)� kut < hThen, � is the unique integer that belongs to the interval :kut � �v � �w;t(v)h � � < 1 + kut � �v � �w;t(v)h=) � = �kut � �v � �w;t(v)h �Now, we have completely de�ned the cyclic ordering graph O = (VR;t; E�; �).Note that the arcs E� are de�ned from each values ut to another vt (ut notnecessarily distinct from vt), since a periodic schedule makes circular all thelifetime intervals : for any (ut; vt) 2 V 2R;t, there exists a unique � (under theconstraints just de�ned above) such that LT�(ut(i)) � LT�(vt(i+ �)). As anillustration, Figure 8.6.(a) shows the cyclic relative ordering between the valuesdeduced from Figure 7.2 (page 125). For instance, LT�(v2(i)) � LT�(v1(i+2)),thus there is a cyclic ordering arc e = (v2; v1) in Figure 8.6.(a) with �(e) = 2.Also, LT�(v1(i)) � LT�(v1(i+1)), thus there is a cyclic ordering arc e = (v1; v1)in Figure 8.6.(a) with �(e) = 1.
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Figure 8.6: Cyclic OrderingNow, let us see how to build an extended DDG G based on this cyclic ordering,i.e., how to report cyclic precedence relations between values lifetime intervals.For each order e = (u; v) 2 E� between two values ut and vt, we must guar-antee that the killing date of ut is always performed before the de�nition dateof v(i+ �(e)) : kut � � (v(i+ �(e))) + �w;t(v)This means that 8u0 2 Cons(ut) :� (u0(i + � ((u; u0))) + �r;t(u0) � � (v(i+ �(e))) + �w;t(v)() � (u0(i)) + �r;t(u0)� �w;t(v) � � (v(i+ �(e)� � ((u; u0)))



152 CHAPTER 8. CYCLIC REGISTER SATURATIONin which � ((u; u0)) is the distance of the 
ow dependence between u and itsconsumer u0. This is done by adding a serial arc e0 to G from each consumeru0 2 Cons(ut) to v with :�(e0) = �r;t(u0)� �w;t(v) and �(e0) = �(e)� � ((u; u0))Figure 8.6.(b) is the extended graph which reduces register saturation to 4.In that �gure, the added serial arcs appear with dashed lines and tagged withonly the distances. As an example, there is an order between v1 and v3 witha distance � = 1. Since v2 consumes v1 with distance � = 0, we add a serialarc from v2 to v2 with a distance �� � = 1. Note that some added serial arcsmay be redundant. As an illustration, there is an order between v3 and itselfwith a distance � = 2. Since v3 consumes itself with a distance � = 2, thisproduces a serial arc in G from v3 to itself with �� � = 0. This serial arc isalways satis�ed by any schedule and can be removed from G.By adding all these serial arcs, we build an extended DDG G that has thefollowing characteristics.� Any software pipelined schedule �0 of G produces a circular order be-tween circular lifetime intervals as de�ned by �. So, �0 cannot need moreregisters than �. This is because if two lifetime intervals do not interferewith each other according to � , they cannot interfere with each otheraccording to �0.1. The number of distinct interfering instances (turns around the circle)of each statements u with �0 cannot exceed the number put of distinctinterfering instances with �. This is because we have according to �LT�(ut(i)) � LT�(vt(i + put + 1)). Since we report the cyclic ordere = (ut; ut) with �(e) = put +1 in the extended DDG G, at most putinstances of ut may interfere according to a schedule �0 of G.2. The in fraction of h intervals inside the motif are constrained to sat-isfy the same precedence relation as de�ned by �. If two in fraction of hintervals (l; r) and (l0; r0) do not interfere with each other accordingto �, then they cannot interfere according to �0. Otherwise it meansthat �0 violates one of the added serial arcs.� � is a valid software pipelined schedule for G since it satis�es all theintroduced serial arcs. Then, the extended DDG remains schedulable.� Since the initiation interval h of � is lower than or equal to MII, a pos-sible introduced critical circuit in G is not greater than MII. Otherwiseit means that � isn't a valid software pipelined schedule for G.From above, we deduce :8� 2 �L(G) CRN�t (G) � CRN�t (G)and hence CRSt(G) � CRN�t (G) � Rt y



8.2. REDUCING CYCLIC REGISTER SATURATION 153From the previous proof, we deduce that reducing the cyclic register saturation isequivalent to �nding a software pipelined schedule with a minimal initiation intervalwhich does not require more than Rt registers. However, we must eliminate the solutionswith nonpositive circuits (circuits with nonpositive distance). We will see later how tosolve this problem.Our exact formulation uses the intLP system that computes MAXLIVE, previouslyde�ned in Section 7.4 (maximization version). Since we express in the latter formulationthe exact register requirement, we only have to maximize the register requirement butunder a bounded constant :8t 2 T : Xacyclic in fraction of h interval I xI + Xut2VR;t put � RtSolving this intLP system yields to two cases.1. If a feasible solution is found, then there exists a software pipelined schedule � suchthat CRN�t (G) � Rt. Then, we add serial arcs to the DDG as described in theprevious proof. The critical circuit of the extended DDG is lower than or equal toh.2. If no solution exists, then a software pipelined schedule of initiation h such thatCRN�t (G) � Rt does not exist. We cannot reduce the cyclic register saturationwith respect to the critical circuit MII � h. We have to increment h (in binarysearch between hmin = h and hmax = L), until reaching a solution or not. If nosolution exists, spill code must be introduced.The complexity of the intLP system is bounded by O(jV j2) variables and O(jEj + jV j2)constraints.However, an optimal solution may need to introduce a circuit C with a nonpositivedistance �(C) � 0. The next section discusses this problem.Eliminating Solutions with Nonpositive CircuitsThis section explains why a circuit C with a nonpositive distance �(C) � 0 constitutesa problem, even if, from the theoretical perspective, there exists a modulo schedule thatsatis�es such circuits.First, if a circuit C has a distance �(C) � 0, it latency �(C) is necessarily nonpositive.This is because the extended DDG is schedulable with a SWP schedule � that has astrictly positive h > 0. Let us look it in details. Let C = (u; ::::; u) be a circuit such that�(C) � 0. Then, the data dependence constraints are :��u(i)�+ �(C) � ��u(i+ �(C))�() ��u(i)�+ �(C) � ��u(i)�+ h� �(C)That is, �(C) � h� �(C) � 0Our extended DDG must not include such circuits, otherwise the initiation intervalwould be constrained by an upper-bound :MII � h � mina circuit C �(C)�(C)



154 CHAPTER 8. CYCLIC REGISTER SATURATIONWe must remind the reader that the purpose of register saturation analysis is to pro-ceed by ensuring in the �rst steps of compilation that any schedule of a given DDGwould not require more registers than those available. The scheduling phase is mainlyconstrained by resources (functional units or other rules) of the target architecture. If theextended DDG produced by the register saturation reduction contains a circuit with anonpositive distance, we cannot guarantee the existence of a software pipelined scheduleunder resource constraints. This is because the nonpositive latency of a circuit introducesscheduling constraints of types \not later than" which may not be satis�ed in the presenceof resource constraints.A su�cient condition so that these circuits are present is if � enforces the fact thatmore than one consumer on the same iteration of a value u does not interfere with u.In this case, a nonpositive circuit is introduced to ensure that no one of the consumersinterfere with the value u (and the fact that these consumers belongs to the same iter-ations makes the distance of the circuit null). For instance, let us consider the DDG ofFigure 8.7.(a). A schedule which requires four registers is presented in part (b). We seethat the two consumers v2 and v3 of the value v1 are in the same iteration (the distanceof the dependence between v1 and his two consumers is null); the schedule makes both oflifetime intervals v2 and v3 ordered after v1 as shown in the cyclic ordering graph in part(c). To guarantee this cyclic ordering, we extend the initial DDG with the serial arcs asshown in part (d) : here, we see that there is a circuit from v2 to v3 with a distance equalto zero and a negative latency. In the presence of resource constraints, we may not beable to �nd a valid software pipelined schedule which satis�es this circuit.A First Solution to this problem is to not introduce serial arcs with nonpositive laten-cies. This method does not change the intLP system, since we only have to set �r;t(u) = 0and �w;t(u) = 0 for each statement u. Furthermore, we set the latency of any any in-troduced serial arc to 1 (since an arc with a latency equal to zero will be processed asan arc of with positive latency in the sequential case). This method does not alter theoptimality of the solution in the case of sequential codes (superscalar), but may do so instatic issue codes (VLIW). An optimal solution is explained below (under the restrictionof eliminating nonpositive circuits).A Second Solution The problem of circuits with nonpositive distance is overcameas follows. Circuits with negative distances are eliminated by the existence of a validretiming (su�cient and necessary condition). Thus, any circuit will a have nonnegativedistance (�(C) � 0).Now, to eliminate circuits with distances equal to zero (�(C) = 0), we must guaranteethe existence of a topological sort of the loop body (su�cient and necessary condition).The loop body is de�ned by the arcs that have a distance equal to zero. However, sincethe constructed DDG may contain some arcs with negative distances, we may not be ableto detect some circuits (or paths) with distances equal to zero. We have then to makeconstraints on the retimed graph since all its arcs have positive distances. Then, each arcwith a null distance in the retimed graph is an arc in the loop body. If we guarantee thatthere is no null distance circuit in the retimed graph, then the non retimed DDG doesnot contain a null circuit (and vice versa). For this purpose, we modify the intLP system
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156 CHAPTER 8. CYCLIC REGISTER SATURATIONby adding the following variables and constraints for retiming simulation.� We add the following variables.{ We add new topological sort variables. For each statement u 2 V , we de�nean integer variable du.{ We add new retiming shifts variables. For each statement u 2 V , we de�ne aninteger variable ru.{ For each couple of values (ut; vt), we add a new variable �tu;v so as to computethe distance of an introduced serial arc e = (u0; v) = u0 2 Cons(ut).� We add the following constraints.{ If the lifetime interval of a value u(i) precedes the lifetime interval of a valuev(i+�), then we introduce a serial arc from each consumer u0 2 Cons(ut) = e =(u; u0) 2 VR;t to v with a distance (���(e)), as explained in the previous proof.In order to compute �, we write the following constraints.� The lifetime interval of a value u(i) must precede the lifetime interval of avalue v(i+ �). Then, we must have in the retimed graph :8u; v 2 VR;t : kut � �v + �w;t(v) + h� �tu;v� The cyclic ordering of lifetime intervals is de�ned in a window [0; h[. Thatis, the de�nition date of v(i+�) and the killing date of u(i) must be insidea motif size. Then, we must have in the retimed graph :8u; v 2 VR;t : �v + �w;t(v) + h� �tu;v � kut < h{ There exists a valid retiming.� For each original arc :8e = (u; v) 2 E : �(e) + rv � ru � 0� For introduced serial arcs : 8u; v 2 VR;t,8u0 2 Cons(ut) = e = (u; u0) 2 VR;t : �tu;v � �(e) + rv � ru0 � 0{ We have to guarantee the existence of a topological sort of the retimed loopbody.� We write the bounding constraints :8u 2 V : du � jV j� For original arcs, we write :8e = (u; v) 2 E : �(e) + rv � ru = 0 =) du < dv� For introduced serial arcs : 8u; v 2 VR;t;8u0 2 Cons(ut) = e = (u; u0) 2 VR;t : �tu;v��(e)+rv�ru0 = 0 =) du0 < dvThere is at most O(jVR;tj3) added variables. The number of the added constraints isbounded by O(jVR;tj3 + jEj) linear inequalities.



8.3. EXPERIMENTS 1578.3 ExperimentsWe do not have experimental results for our exact formulations and heuristics for CRScomputation de�ned in this chapter. However, we have experimented upper-bound of CRSin [TT00]. These loops are the same experimented in this thesis (Appendix B Page 271)and are extracted from various benchmarks (livermore, whetstone, lin-ddot, spec95,..). Inthat previous work[TT00], we used an old method consisting in unrolling the loop with acertain factor. We de�ne a validity condition for this factor so that the acyclic RS of theunrolled loop body is an upper bound of cyclic RS. In other words, we use loop unrollingto compute the RS of its new body so that it constitutes an upper-bound for cyclic RS.The upper-bound L was taken as the sum of all operation latencies. Here is the synthesisof our CRS upper-bound results :� none of CRS exceeds 64, that is no SWP schedule will require more than 64 fpregisters;� 80.76% of the loops have a CRS � 32;� 76.92% of the loops have a CRS � 16;� 53.84 % of the loops have a CRS � 8;� 34.61 % of the loops have a CRS � 4.Hence, many loops of our panel do not need adding register constraints during moduloscheduling.Also, we used in [TT00] an old method for CRS reduction. It consists in addingserial arcs in the unrolled loop and then re-roll it. We have experimentally found thatthis old method is ine�cient (too aggressive). This is why we present a new method inthis chapter. Unfortunately, we have no experiments for the moment. However, the oldmethod succeeds in reducing CRS of all loops under 32 fp register while critical circuitsincrease in 3 cases (6 loops among 27 has a CRS greater than 32). These results showthat there are great opportunities for CRS reduction under critical circuit constraints.We are almost sure that the methods described in this chapter would be e�cient, even ifwe use heuristics for solving intLP models.8.4 ConclusionThis chapter extends RS analysis to innermost loops intended for SWP. Computing CRSis NP-complete and we provide an exact formulation with reduced constraints matrix size.Our heuristics tries to approximate a saturating schedule by decomposing this probleminto two steps. First, we compute column numbers so that we maximize the number ofvalues traversing the kernel. In the second step, we build the DAG of the motif and weuse our acyclic saturating technique as described in Chapter 4.If CRS exceeds the number of available registers, we must reduce it by adding se-rial arcs into the DDG without increasing the critical circuit if possible. We providean exact formulation for this NP-hard problem and we prove that it can be reduced toscheduling under register constraints under a �xed execution rate h. If we assume writing



158 CHAPTER 8. CYCLIC REGISTER SATURATIONo�sets, some optimal solutions require, in some cases, to insert circuits with nonposi-tive distances in the extended DDG. These circuits may prevent from �nding a softwarepipelined schedule in the presence of resource constraints. A su�cient and necessary con-dition to overcome this problem is to guarantee the existence of a valid retiming, and theexistence of a topological sort for the retimed loop body. This is done by adding newconstraints to the intLP formulation.Although we do not provide experimental results for our methods described in thischapter, previous experiments in [TT00] have shown that CRS is below 64 in our 27loops. In many cases, register constraints become redundant and can be evicted from thescheduling process. Also, previous work has shown that there are great opportunities forCRS reduction.The next chapter extends the notion of register su�ciency to loops. We give ourmethods to compute it in order to check if spilling is necessary. If spilling isn't avoidable,we give a method to insert load/store operations directly into the DDG to reduce thesu�ciency.



Chapter 9Cyclic Register Su�ciencyAbstractThis chapter summarizes our previous work [TE02]. It consists in computing theexact lower bound of register pressure for any software pipelined (SWP) schedule.If not enough registers exist, spill code must be introduced into the DDG prior toscheduling. We present our �rst approach that gives priority to spilling the variablesin circuits.This chapter is organized as follows. Section 9.1 de�nes and studies the concept of cyclicregister su�ciency (CRF). We provide an exact method based on integer programming.We also propose a pure algorithmic approximation that decomposes the problem intotwo parts. The �rst part is polynomial and is solved via retiming (loop shifting). Thesecond part is solved with an interval serialization heuristics. Contrary to cyclic registersaturation (CRS), the notion of CRF is well studied in the literature. However, mostexisting studies focus on �xed initiation intervals. Our work aims to extend this notion toarbitrary execution rates. If CRF exceeds the number of available registers, we proposea method that inserts memory operations in Section 9.2, directly into the DDG. Thismethod is a �rst proposal and is candidate for improvement. Before concluding with adiscussion, Section 9.3 shows our experiments.9.1 Computing Cyclic Register Su�ciencyThe cyclic register su�ciency is simply the minimum number of registers required to buildat least one valid cyclic schedule :CRFt(G) = min�2�(G)CRN�t (G)Contrary to the cyclic register saturation, CRF always exists. This is because the cyclicregister requirement is a positive integer, and hence there always exists a schedule whichrequires CRFt(G) registers.The register su�ciency allows us for instance to determine if spill code cannot beavoided for a given loop : if Rt is the number of available registers of type t, and ifCRFt(G) � Rt then there are not enough registers to schedule the loop. Spill code hasto be introduced.Regarding the complexity of computing CRF, it remains an open problem (as far aswe know). It is proved that scheduling under a �xed number of registers is NP-complete159



160 CHAPTER 9. CYCLIC REGISTER SUFFICIENCYin the case of sequential codes [Set75], i.e., when we compute a strict sequential executionorder. If we do not restrict the schedule to be sequential, the problem is di�erent. Itwas proved in [EGS95] that the problem of scheduling under register constraints is NP-complete if the total schedule time is bounded. But, as far as we know, nothing is said inthe literature about the problem of scheduling parallel operations under a �xed numberof registers (without spill, in�nite resources) without bounds on the total schedule time.Let us begin with an exact formulation.9.1.1 Exact FormulationThe absolute CRF is de�ned for �(G), the set of all valid SWP schedule of a DDG. How-ever, in order to be able to use our integer programming formulation in Section 7.4, page130 (minimization version), the domain set of our integer variables must be bounded.So, we compute the CRF of a subset �L(G) � �(G). That is, we compute the minimalregister requirement for all valid software pipelined schedules with the property that thetotal schedule time of one iteration does not exceed L. If L is su�ciently large, then thecomputed CRF of �L(G) is equal to the absolute CRF1. Indeed, since the absolute CRFexists necessarily, then there exists a SWP schedule � that requires CRFt(G) registers.Hence, its L, the total schedule time of one original iteration, exists and is �nite. Butcomputing it exactly remains an open problem for us.Our intLP system uses the exact formulation of the cyclic register need in Section 7.4,page 124 (with minimal chain decomposition). The objective function is :Minimize zt + Xut2VR;t putunder the constraints8I an in fraction of h acyclic interval; cI � ztWe must be aware that when we combine all register types, a su�cient schedule for alltypes may not exist. In other words, a software pipelined schedule that needs the exactregister su�ciency of all types together may not exist. This is because minimizing theregister requirement of one type may increase the register requirement of another type.So, some spill operations may be unavoidable even if the register su�ciency of each typeis less than the number of available registers. Thereby, we have to bound the registerrequirement of all types, even if we compute the register su�ciency of only one registertype : 8t0 2 T� ftg; zt0 + Xut02VR;t0 put0 � Rt0under the constraints8t0 2 T� ftg; 8I an in fraction of h acyclic interval of type t0 : cI � zt01We think that L = jV j �Pu2V lat(u) would be convenient. It corresponds to the case where alllifetime intervals constitute a single chain inside the motif.



9.1. COMPUTING CYCLIC REGISTER SUFFICIENCY 161These constraints guarantee the existence of at least one schedule that does not requiremore registers of any type than available.Solving this system yields to compute the minimal cyclic register requirement under a�xed execution rate h. In order to compute CRF, we must scan all the admissible II, i.e.,we iterate h starting from h0 to hmax = L (we instantiate an integer programming modelfor each h 2 [h0; L], or we use a binary search). Cyclic register su�ciency is the minimumregister requirement within all initiation intervals. This method may involve solving toomany models. However, the following corollary states that it is su�cient to compute CRFby only instantiating one model with h = L if the upper-bound L is relaxed. Let us startby the following lemma.Lemma 9.1 Let G = (V;E; �; �) be a DDG of a loop. The minimal register requirementof all the software pipelined schedules �([rn]; [cn]; h) with an initiation intervalh0 � h � L is greater or equal to the minimal register requirement of all the softwarepipelined schedules with an initiation interval h0 = h + 1 with L0 = L + 1 + bL=hc.Formally : min�([rn];[cn];h)2�L(G)h0�h�L CRN�t (G) � min�0([rn0];[cn0];h+1)2�L+1+bL=hc(G)CRN�0t (G)Proof :It is a direct consequence of Proposition 7.1 Page 130. If we increment h byone, we have to increment L by 1 + bL=hc to get at least one valid softwarepipelined schedule with the same register requirement :8�([rn]; [cn]; h) 2 �L(G)=h � L; 9�0([rn0]; [cn0]; h+ 1) 2 �L+1+bL=hc(G) :CRN�0t (G) = CRN�t (G) =) CRN�0t (G) � CRN�t (G) yCorollary 9.1 Let G = (V;E; �; �) be a DDG of a loop. Then, the exact CRF of Gassuming L as an upper-bound of the total schedule time of one iteration is greater orequal to the minimal register requirement with h = L if we relax the upper-bound L0 � L.Formally : : min�([rn];[cn];h0�h�L)2�L(G)CRN�t (G) � min�([rn];[cn];L)2�L0(G)CRN�t (G)where L0 is the (L� h0)th term of the following recurrent sequence (L0 = UL) :� Uh0 = LUh+1 = Uh + 1 + bUh=hc



162 CHAPTER 9. CYCLIC REGISTER SUFFICIENCYProof :It is a direct consequence of Lemma 9.1 :min�([rn];[cn];h�L)2�L(G)CRN�t (G) � min�([rn];[cn];h+1)2�L+1+bL=hc(G)CRN�t (G) � :::::: � min�([rn];[cn];L)2�UL�h=UL�h�1+1+bUL�h�1=(L�h�1)c(G)CRN�t (G)That is, we relax the upper-bound L at each step, from h to L, i.e., (L � h)times. Since CRF is de�ned for all initiation intervals, starting from h = h0amounts to relax the upper-bound (L� h0) times, as follows.min�([rn];[cn];h0)2�L=Uh0 (G)CRN�t (G) � min�([rn];[cn];h0+1)2�Uh0+1=L+1+bL=hc(G)CRN�t (G) � :::::: � min�([rn];[cn];L)2�UL=UL�1+1+bUL�1=(L�1)c(G)CRN�t (G) y
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Figure 9.1: Minimal Cyclic Register Need vs. Initiation IntervalsThis corollary enables us to only solve intLP systems with h = L; the upper-boundL0 must be relaxed. If L is su�ciently large, the computed CRF with h = L is equal tothe absolute CRF. If L isn't su�ciently large, we would compute an upper-bound of theabsolute CRF. Figure 9.1 draws our assumptions about the theoretical asymptotic curvesto explain the meanings of Corollary 9.1. We think that if we �x L as an upper-bound ofthe total schedule time of one iteration, the minimal register requirement under a �xedexecution rate h may not be a decreasing function of h. At a certain value of h, the min-imal register requirement may increase if the upper-bound is not relaxed. Furthermore,we think that if the curve begins to increase, it wouldn't decrease after. This behaviorhas been observed in some of our experiments (see Figure9.2). Thus, the minimal register



9.1. COMPUTING CYCLIC REGISTER SUFFICIENCY 163requirement at the point h = L may have a positive gap with the absolute CRF. However,we are sure that the curve is a decreasing function if the the upper-bound L is relaxedwhen we increment h (Lemma 9.1 and Corollary 9.1). If L is su�ciently large, the min-imal register requirement at the point h = L is exactly the absolute CRF. We are surethat a suitable L is bounded, since a su�cient schedule exists necessarily, but computingthis bound is an open problem.
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Figure 9.2: Example of Minimal Cyclic Register Need vs. Initiation IntervalOur architecture model does not assume any static ILP degree for the target proces-sor : we assume unbounded �ne grain parallelism for the considered DDG. Therefore, wecan build a kernel as \wide" as possible. Like in the acyclic case (Section 5.1.1, page 98),this assumption may lead to under-estimating the real su�ciency if we target a codewith a limited static ILP (superscalar for instance). This is because we cannot alwaysstatically specify the parallelism between operations. Thus, some intervals cannot be



164 CHAPTER 9. CYCLIC REGISTER SUFFICIENCYexpressed as parallel2. In other words, we cannot ensure that we can always generate acode needing the computed register su�ciency because we cannot statically specify anunlimited instruction parallelism (see the previous illustration in Figure 5.1 Page 99).As mentioned in Section 5.1.1, we propose two choices. First, we continue to assume anunlimited static ILP and leave to the register allocator (to be executed later on) the taskof introducing spill code, even if this step of compilation asserts that it isn't necessary.In a second choice, we introduce an upper-bound for the maximal static ILP degree inthe model. We must add new variables and constraints to specify the fact that no morethanMAXISSUE operations are scheduled in parallel. We do not advocate this methodbecause it breaks the genericity of the model since it introduces resource constraints.The next section gives a pure algorithmic heuristics which approximates CRF whileovercoming the above problem.9.1.2 A FCLR Algorithmic ApproximationIn this section, we present a First-Columns-Last-Rows (FCLR) heuristics which con-structs a software pipelining motif for approximating the register su�ciency of a registertype. Our heuristics is the minimization version of the one explained in the previousSection 8.1.2. It consists of the following steps.1. We �rst �nd column numbers that minimize the number of traversed iterations bya value. This intends to minimize the total number of interfering instances (turnsaround the circle). We can change the objective function of the intLP system inSection 8.1.2 from maximization into minimization. This problem has been solvedby Leiserson and Saxe with an optimal algorithm via retiming with a polynomialcomplexity in [LS91]. We explain their method below.2. Once the column numbers are computed, we build the DAG with respect to theinner-motif dependences and the entry/exit values as detailed in Section 8.1.2. Wemust minimize the interference between the lifetime intervals inside the motif, i.e.,within the DAG just built. We use the DAG technique of the register su�ciencystudied in Section 5.1.2 to construct an acyclic schedule � which requires a minimizednumber of registers. We are sure that we can construct such an acyclic schedulewith any static ILP, and hence any SWP scheduler can build a kernel that satis�esany static ILP constrained by the underlying processor. Row numbers are set to :8u 2 V : rn(u) = �(u)3. We choose a valid initiation interval with respect to the inter-kernel dependencesand the number of traversed motifs :h = maxu2V rn(u) + lat(u)4. Since we have computed �(h; [rn]; [cn]), a software pipelined schedule � 2 �L(G)minimizing the register need is completely de�ned. The approximated register suf-�ciency is : CRF �t (G) = CRN�t (G)2For instance, we cannot specify the instruction R2 R1 k R1 R2 in superscalar codes.



9.1. COMPUTING CYCLIC REGISTER SUFFICIENCY 165Steps 2, 3, and 4 have been detailed in Section 8.1.2. Step 1 is di�erent since it canbe performed with polynomial optimal algorithms. The next section gives more detailsabout this column number computation.Computing Column Numbers with Retiming Originally, retiming was intendedfor synchronous circuit design. In this area, a register has a di�erent meaning, let us callit circuit register. A distance in each 
ow arc represents the number of circuit registersneeded to pass the computed values. That is, if there are two 
ow arcs e1 = (u; v) ande2 = (u; v0) coming from the same node but going to two distinct consumers, the numberof required circuit registers, in the �eld of circuit design, is �(e1) + �(e2) : there is nosharing between the two 
ows. Leiserson and Saxe proved that seeking a retiming with aminimal number of circuit registers can be reduced to minimum cost 
ow [LS91], a wellsolved polynomial problem with lots of optimal algorithms [EK72, GT86, Orl88]. Theyassume identical registers, i.e., all nodes represent values and all arcs are 
ows. We showat the last how to consider di�erent types of registers.Problem 9.1 (Minimum Cost Flow Problem) Let G = (V;E) be a directed graph.For each arc e 2 E, we call cap(e) 2 R+ the capacity of e. A 
ow is a function f whichassociates with each arc a positive real f(e) 2 R+ with the following properties :8e 2 E 0 � f(e) � cap(e)8u 2 V P? e!u f(e) =Pu e!? f(e)A cost function associates with each arc e a cost !(e). The minimum cost problem is to�nd a 
ow f for G which minimizes Xe2E f(e)!(e)A variant of the min-cost 
ow problem, also polynomial, adds supply/demand parameters.The 
ow has to guarantee :8u 2 V X? e!u f(e)�Xu e!? f(e) = buwhere bu 2 N is the supply/demand parameter of the node u. As explained in Chapter 7,retiming a loop consists in computing a shift r(u) for each statement u which delaysthe operation u(i) with r(u) iterations. Each original distance �(e) of an arc e = (u; v)becomes �r(e) = �(e)� r(u) + r(v) in the retimed loop.Problem 9.2 (State-Minimization Problem [LS91]) Let G = (V;E; �; �) be a cir-cuit. The state-minimization problem is to �nd a valid retiming such that S(Gr) the totalstate of the retimed loop is minimized, in whichS(Gr) =Xe2E �r(e)S(Gr) can be rewritten as :S(Gr) = Xe=(u;v)2E ��(e) + r(v)� r(u)� = S(G) +Xu2V r(u):(d�G(u)� d+G(u))



166 CHAPTER 9. CYCLIC REGISTER SUFFICIENCYS(G) is constant (sum of all dependence distances), hence minimizing Sr(G) is equivalentto minimizing Xu2V r(u):(d�G(u)� d+G(u)) (9.1)which is a linear function of r(u) since the indegree and outdegree are constant for u.This minimization is constrained by the retiming validity, i.e., the fact that all registercounts �r(e) = �(e) + r(v)� r(u) are nonnegative :8e = (u; v) 2 E : �(e)� r(v) + r(u) � 0 (9.2)Leiserson and Saxe [LS91] showed that the intLP de�ned by (9.1) and (9.2) can be recastinto a min-cost 
ow by considering the dual problem of this intLP. Then, we look for a
ow f(e) for each arc such that :Xu e!? f(e)�X? e!u f(e) = d�G(u)� d+G(u) (9.3)while the total cost Pe2E f(e)�(e) is minimized. Each arc has a cost �(e) with in�nitecapacity. After computing the optimal minimum cost 
ow, the shifts r(u) are the dualvariables (potentials) of the optimal 
ow f �, computed by most existing algorithms.Another variant of the state minimization problem, that can also be reduced to mini-mum cost 
ow, includes �(e), a real cost to each arc called a breadth. This breadth modelssome special constraints to circuit design where adding circuit registers has di�erent costsdepending on 
ow arcs. Then, the state minimization problem minimizesXu2V r(u)(X? e!u �(e)�Xu e!? �(e))However, the state minimization problem does not exactly compute our column num-bers. This is because circuit registers are not shared, and each arc e uses �r(e) circuitregisters. In our case, we need to minimize the total numbers of traversed motifs, i.e., tominimize Xu2V maxu e!?2E �r(e)In terms of circuit design, it means that we wish to share the largest possible number ofcircuit registers between di�erent arcs (with greatest register counts). Leiserson and Saxegive a solution for this problem by using a trick. Figure 9.3 is an example. Part (a) showsa DDG in which a statement u writes a value read by k consumers. If we use the stateminimization algorithm on this DDG as it is, it considers that the value coming from thestatement u and going to the k consumers needs distinct registers. This is not true sincea value read by more than one consumer resides in only one register. So, we must modelsharing. It means that a value resides in a register until the last iteration needed. Theresult of the retiming must give a minimal register count S(Gr) =Pu2V (maxe=(u;v) �r(e)).This is done by transforming the DDG as follows (see Part (b)) :�rst we assume a breadth (cost) equal to �(e) = 1=k for each arc;second we add a virtual node û;



9.1. COMPUTING CYCLIC REGISTER SUFFICIENCY 167�nally we connect each consumer vi to û by an arc êi with breadth �(êi) = 1=k anddistance �(êi) = �max � �(ei), with �max = max1�i�k �(ei). Then, all paths from uto û have the same distance (= �max).Now, we are ready to re-time this DDG by minimum cost 
ow algorithms as mentionedbefore. It is easy to see that retiming this transformed graph gives the expected result.1. Since the dummy node û is a sink of the graph, retiming this graph makes thedistances �r(êi) as small as possible because they are not constrained by any circuit(the dummy node û is a sink). Then, one of these virtual arcs êj (1 � j � k) getsa retimed distance �r(êj) equal to zero.2. Retiming has the property of preserving the sum of distances of the paths u ; û,that is �r(u; û) is the same for all the paths from u to û since they are identicalin the un-retimed circuit (= �max). By considering the path u ! êj ! û where�r(êj) = 0, its distance is max0�j�k �r(ei) which is the distance of every path fromu to û. Sharing is completely de�ned.3. Since each arc has a breadth 1=k, the total register count isX1�j�k 1=k max1�j�k �r(ei) = max1�j�k�r(ei)Retiming the transformed DDG gives us column numbers cn(u) = r(u), where thenumber of traversed motifs is minimized. Now, in the presence of multiple register types,some arcs do not represent 
ows if we consider one of the types. To handle these serialarcs, we only have to set their breadth to 0 to model the fact that they do not requireany register of the type we consider. Accordingly, the register count (objective function)computes only values of the desired type. Our algorithmic approximation of CRF is nowcompletely de�ned.
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168 CHAPTER 9. CYCLIC REGISTER SUFFICIENCYThe next section investigates spill code insertion if CRF is higher than the number ofavailable registers.9.2 Reducing Cyclic Register Su�ciencyIf the register su�ciency of a loop G = (V;E; �; �) is CRFt(G) > Rt, we have not enoughregisters to pursue the computation and hence spill code must be introduced. In this sec-tion, we show how storing some variables in memory decreases the su�ciency, assuminga RISC processor (load-store architecture).Adding extra memory operations may cause cache misses which dramatically decreasethe performances, especially in VLIW architectures where long memory access delays arenot dynamically overlapped (recovered) as in superscalar processors. Since memory ac-cess latencies are hardly statically foreseeable, we try to minimize the amount of insertedload/store operations3. Furthermore, adding them directly into the DDG before schedul-ing is better than after scheduling. This is because we cannot guarantee the existence offree slots for additional load/store operations in a scheduled code. This leads to an iter-ative spilling and rescheduling. The method discussed in this section is a �rst approachand is candidate to improvement : it �rst gives priority to spilling values belonging tocircuits.If CRFt(G) > Rt, at least S = CRFt(G)�Rt values of type t have to be spilled. Ourheuristics proceeds by preventing some values from being alive during successive iterationsby storing them in memory. However, since CRF is likely constrained by dependencecircuits, we must privilege the values that belong to a circuit in the DDG4. Indeed, ifwe have a circuit C of 
ow dependences, we will always have �(C) values simultaneouslyalive. The variables that do not belong to a circuit are considered at last step.Our aim is then to reduce 
ow circuit distances. The distance of the circuit �(C)remains unchanged; we change only the kind of dependences, from register dependencesto memory dependences. The skeleton of our method is described as follows.1. Build active a sorted list of the values according to the number of iterations theyspan. Each value ut may span maxe=(u;v)2ER;t �(e) iterations. We �rst give thepriority to values that belong to a circuit. Then, we sort them in decreasing orderof distances in order to �rst spill those that are alive during the highest numberof iterations. For instance, the value u in Figure 9.4.(a) may span max(�1; �2)iterations. If no inter-iterations value exists (i.e., all the 
ow distances are null), goto 4.2. Pick ut the �rst value in the list which crosses � > 0 iterations. We build FarConsa list of u's consumers that do not belong to the current iteration of u, i.e., thosethat read u in further iterations. We may potentially reduce the register su�ciencyby � registers if we prevent the value from being alive in a register after exiting thecurrent iteration. We spill this value by considering one of the two following codetransformations.3Inserting minimal spill operations is a classical NP-complete problem [BS76, Car91, FL98].4They are determined by looking if there exists a path from each statement to itself in the DDG.ALL PAIR SHORTEST PATH, for instance, can be applied.



9.2. REDUCING CYCLIC REGISTER SUFFICIENCY 169(a) Store the value at the iteration where it is de�ned, and load it for each consumer(in FarCons) as described in Figure 9.4.(b). This transformation may reducethe su�ciency by maxe=(u;v)2ER;t �(e) registers but it inserts jCons(ut)j loads.(b) Store the value at the iteration where it is de�ned, and load it for only the�rst consumer (in FarCons) in terms of dependence distance as described inFigure 9.4.(c)5. This transformation inserts only one load but may reduce thesu�ciency by only mine=(u;v)2ER;t �(e) registers.If S is smaller than the number of spanned iterations by this value, we do not need tostore the value in the memory during all the iterations it spans. In general, we spillthe values until the number of \saved" iterations is S. For this reason, FarCons issorted in increasing order of distances.3. If CRFt(G) > Rt, go to 1, else exit.4. At this point, the cyclic register su�ciency is still greater than Rt while all thevalues are consumed in the same loop body (i.e., all the 
ow distances are null).Then, we reduce the acyclic register su�ciency of the loop body only (described inSection 5.2).
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owarc e that does not belong to any circuit (see Figure 9.5). If this 
ow arc has the largestdistance among other 
ow arcs exiting from u, it will be chosen for spilling (see (u; v) inFigure 9.5). This may not be a good choice, since the distance of this arc can be reducedby retiming. To overcome this limitation, we must �rst retime the graph, before spilling,so as to reduce the distances of arcs that do not belong to a circuit. For this purpose,we use the Leiserson and Saxe method that minimizes the register count with maximalregister sharing, as described in Section 9.1.2.The steps of our heuristics are detailed in Algorithm 8. Our heuristics creates anactive list which contains the values that are alive during successive iterations. If S =CRFt(G)�Rt > 0, we have to prevent some values in active from being alive for at least5In this example, we suppose that �1 � �2.



170 CHAPTER 9. CYCLIC REGISTER SUFFICIENCYS successive iterations. If a value is produced at the current iteration and consumed �iterations later, we have to store it in the current iteration and load it � iterations laterhoping that we reduce the cyclic su�ciency by �. This creates a new dependence betweenthe store and the load with distance �, but this dependence is through memory and hencedoes not consume any register. Since we have to save at least S registers, we save inter-iteration values in memory until the sum of the introduced dependence distances becomesat least S. The active list is sorted by decreasing distances to give the highest priority tothe value which traverses the maximum number of iterations. If a value is consumed bymore than one operation in the successive iterations (�1; � � � ; �n), we load this value forevery further consumer6 until we reach S saved iterations, i.e., when we load it for theconsumer of the �k � S iteration later. Our algorithm optimizes the number of insertedloads where it reaches at least S saved iterations by connecting the last inserted load(the load of the �thk iteration) to the remaining consumers (�k+1; � � � ; �n), as shown inFigure 9.4.(c).Example 9.2.1 Let us give an example to understand how Algorithm 8 works. Fig-ure 9.6.(a) is a part of a DDG (arcs are labeled by distances) where we need to reduce itscyclic su�ciency by S = 3 registers. The value u traverses 5 iterations so we would spillit in successive steps, as follows.1. At the beginning, active = fug and FarCons = fv2; v3; v4; v5g are sorted by increas-ing distance;2. We �rst begin by storing u.6except those that belong the current iteration since they need the value produced at the same iteration
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9.3. EXPERIMENTS 1713. The �rst consumer in FarCons is v2, so we load u �v2 = 1 iteration later as shownin Figure 9.6.(b). The number of saved iterations is 1 < S, so we need to performloading u for the remaining consumers.4. At this step, FarCons = fv3; v4; v5g. We load u for �v3 = 3 iterations later asshown in Figure 9.6.(c). The number of saved iterations is 3 = S. We have savedenough iterations, and the remaining consumers FarCons = fv4; v5g use the lastload.5. Repeat this step until the cyclic register su�ciency is below the target limit. In thecase of unsuccess, i.e., when active is empty, transforming the loop-carried depen-dences from registers into loop-carried dependences through memory is not su�cient.We must decrease the register su�ciency in the DAG of loop body itself as explainedin Section 5.2.9.3 ExperimentsWe did not implement the intLP systems of this chapter, nor the heuristics. However, wehave computed the optimal CRF of our loop benchmarks (presented in Appendix B) byusing our SIRA tools, which will be presented in the next chapter. SIRA builds a minimalcyclic register allocation under a �xed execution rate, which is equivalent to compute theminimal cyclic register requirement under a �xed II. Table C.9 in Appendix C sum-marizes our results. We remark that some loops (such as spec-spice-loop4) have a nonnegligible su�ciency compared to the number of statements because of their intrinsicregister pressure (data dependence relations between the statements). Depending on thenumber of available registers, we may not avoid spilling. Other loops (as spec-dod-loop2)have a low su�ciency compared to the number of statements. We do not have experi-mental results for our heuristics, nor those about spilling strategy. We discuss both inthe next section.9.4 Discussion and ConclusionThis chapter investigates the cyclic register su�ciency problem which computes the min-imal register need for all valid schedules. The exact formulation is based on CRS intLPmodel but with bounding the register requirement. This is because we express the exactcyclic register need according to an arbitrary SWP kernel.As in the acyclic case, optimal CRF assumes in�nite parallelism. This leads to under-estimate the real CRF since the target code has limited static ILP. To overcome thisproblem, we propose a pure algorithmic approximation that looks for a su�cient SWPby decomposing the problem into two parts. The �rst part seeks column numbers thatminimize the total number of inter-kernel values. This is a polynomial problem solvedvia retiming by Leiserson and Saxe in [LS91] by using minimum cost 
ow algorithms.The second part of the problem looks for row numbers that minimize the total numberof intra-kernel values simultaneously alive. Since the operations belonging to the kernelhave been �xed, it remains to compute an issue slot for them. A DAG is built as in CRScomputation by adding entry and exit values with the inter-kernel 
ows. Accordingly,



172 CHAPTER 9. CYCLIC REGISTER SUFFICIENCYthe problem becomes an acyclic scheduling with limited registers. We use our acyclic RFcomputation technique which reduces the RS as minimum as possible by setting R = 1.This technique is (experimentally) nearly optimal and guarantees the existence of a kernelwith any static ILP degree.Our proposed spilling strategy transform register 
ow dependences in circuits to mem-ory dependences. We add load/store operations to prevent values from being alive duringmultiple iterations in registers. We insert spill code directly into the DDG before thescheduling phase. Existing techniques perform scheduling before spilling, so they haveto recompute the schedule when adding extra load/store operations. This post-schedulespilling strategy leads to iteratively applying scheduling followed by spilling until a solu-tion is found. Early spilling is a better approach since it reduces CRF and guarantees theexistence of a least one valid SWP schedule that satis�es register constraints.Some studies [LMEG96, Jan01] claim that inserting spill code in modulo scheduledloops is better than increasing the II. We do not adhere to this thesis at all. The reasonwhy these authors make this claim is that, �rst, they assume static memory operationlatencies and they remark after experiments that the SWP scheduler succeeds (in mostcases) in �nding free slots for inserted spill code. These experiments do not highlight thedisadvantages of spilling, since they assume �xed (static) memory access latencies, whichare not correct at execution time. Second, they confuse static loop performance de�nedby the computed II and the real (dynamic) one. Memory access operations have unfore-seeable e�ects and may play havoc with the computed schedule. Of course, we can beoptimistic and assume that spilled values reside in cache. We do not make this assumptionbecause any misprediction leads to cache misses which result in deep performance loss.On superscalar processors, the 
uidity of the dynamic execution of the pipelined loop isbroken since long miss latency scrambles the static schedule. Reusing registers is a betterchoice, since OoO processors can dynamically eliminate anti-dependences with registerrenaming. Also, a VLIW machine completely stalls because of cache misses. We preferto keep the dynamic execution under a static control when possible.Possible Limitation ? May be our pessimism about "Memory Gap" seems not realisticand the above discussion may overstate the memory spill and cache miss problem. A pairof spill operations (a write to save followed by a subsequent read to restore a value) wouldalmost always hit the �rst level cache. Spill references are typically both spatially andtemporally local and almost systematically hit a small cache. These represent operationsof modest cost and often can be justi�ed if registers are liberated to support more ILP.After all, we may be at risk that simple heuristics that allow spill provide a superiorapproach in many real-world settings.Our arguments Let us answer to this possible limitation.1. Regarding ILP execution, adding load/store operations makes a new stress on thememory FU, which is generally unique.2. Static memory disambiguation may not be able to reorder loads with respect tostores (con
ict on addresses). However, we agree that some static or dynamic spec-ulative features (speculation on loads) may improve this fact. But since spill op-



9.4. DISCUSSION AND CONCLUSION 173erations load a stored variable (and vice-versa), the con
icts on memory addresses(since the same memory address is accessed) limit the e�ciency of such speculations.Thus, spill operations are likely to be executed sequentially.3. Regarding the latency of memory operations, cache behavior is not easily foreseeableat compile time. Even if spill operations have a high spatial/temporal locality, wemust not forget con
ict misses7 and the interaction with the operating system8.In our point of view, compilers shouldn't be optimistic with caches and must avoidrequesting data from memory (if possible). Such requests may not be satis�ed unlesswe go outside the CPU.We agree that we can provide examples where spilling is better than using registers. How-ever, such statement may be true if we try to minimize the register use. Our work makesbetter usage of registers by maximizing the register requirement instead of minimizing it,which likely produces faster codes. In many situations (as proved by our experiments), weare able to state that registers does not play any pressure on ILP scheduling, so the graphis let as it is. In the other approaches, such graphs may be restricted even if registersare not stressed. I think that situations where memory use is better than maximizing theregister use are few compared to the contrary, especially with the actual trend of extend-ing register �les capacity in current processors. It is hardly di�cult to assert at compiletime that spilling is better than using registers, unless we are optimistic regarding cachebehavior. Should compilers do so ? If yes, let us be optimistic too regarding some aspectsto defend that register reuse is better than spilling.1. On a superscalar processor, we may be optimistic about the dynamic renamingfeature. We can assume that the processor would always be able to treat e�ciently(at execution time) the anti-dependences in the code.2. On a VLIW processor, we may be optimistic too about the ability of the compilerto �nd su�cient independent operations (with code motion and loop merging forinstance) so as to recover the holes (nops) in the code.Before inserting spill code, we must understand why the su�ciency may be higher thanRt. If the data dependence graph is extracted from an original loop written in a high levelprogramming language, the 
ow dependences are speci�ed implicitly through variables inmemory (arrays for instance). Compilers generally transform the high level code into anintermediate one, where each reference to the memory is replaced by a pair of load/store.At this point, the spill code exists in the loop, and the cyclic register su�ciency is lowenough, since all the values are loaded from memory at each use. Then, compilers makesome load/store optimizations [CCK90, DGS93, BG96, DET00] in order to remove redun-dant memory operations, and to exhibit more parallelism. Flow dependences during thisoptimization phase are transformed from memory dependences to register ones. Registersu�ciency increases as a consequence. Then, we must have a tradeo� between redun-dant memory elimination and CRF increase. Instead of eliminating all the redundantload/store, we must care not to increase the su�ciency more than Rt. We think thatcyclic register su�ciency must intervene during the load-store optimization process to7First-level caches are generally direct mapped8OS process scheduling 
ushes or pollutes the cache.



174 CHAPTER 9. CYCLIC REGISTER SUFFICIENCYkeep some of the original spill code instead of inserting new one.The next chapter investigates another approach for handling register pressure. Insteadof analyzing CRS and CRF before scheduling, we build a cyclic register allocation directlyinto the DDG without hurting intrinsic ILP.



9.4. DISCUSSION AND CONCLUSION 175Algorithm 8 Reducing the Cyclic Register Su�ciencyRequire: A DDG G = (V;E; �; �) and a target cyclic su�ciency Rtretime G with minimal register count, maximal register sharingfLeiserson and SaxeAlgorithmgwhile CRFt(G) > Rt doS  CRFt(G)� RtfWe must spill for at least S iterationsgvalues in circuits fu 2 VR;t=u 2 circuit ^ 9e = (u; v) 2 ER;t ^ �(e) > 0g fsortedby decreasing order of distancesgvalues not in circuits  fu 2 VR;t=u 62 circuit ^ 9e = (u; v) 2 ER;t ^ �(e) > 0gfsorted by decreasing order of distancesgbuild active by merging the list values in circuits before the listvalues not in circuitsif active = fg then fno inter-iteration values existgreduce the acyclic su�ciency in the loop body DAG (see Section 5.2)exitend ifwhile S > 0 dofor all u 2 active in the priority order dobuild FarCons  fv 2 Cons(ut)=e = (u; v) 2 ER;t ^ �(e) = �v > 0g a list offurther consumers in increasing order of distancesinsert store(u) in Ginsert a 
ow arc e = (u; store) into G with �(e) = lat(u) et �(e) = 0savedu  0 fcontains the number of saved iterations for ugfor all v 2 FarCons in the priority order doremove v from FarConsinsert l = load(u) in GLastLoadu = l�last = �v fthe latest iterations when a load occursgremove the 
ow arc (u; v) from Ginsert the arc e = (store(u); l) into G with �(e) = lat(st) and �(e) = �vinsert the 
ow arc e = (l; v) into G with �(e) = lat(load) and �(e) = 0savedu  �vif savedu � S then fwe have saved enough iterationsgbreakend ifend forif saved � S then fuse the latest load for the remaining farther consumersgfor all v 2 FarCons in the priority order doremove the 
ow arc (u; v) from Ginsert a 
ow arc e = (LastLoadu; v) into G with �(e) = lat(st) and �(e) =�v � �lastend forend ifend forS  S � saveduend whileend while
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Chapter 10Schedule Independent RegisterAllocation AbstractRegister allocation in loops is generally performed after or during the softwarepipelining (SWP) process. This is because when doing a conventional register al-location in the �rst step, there is no information of interferences between valueslive ranges. Consequently, the register allocator introduces an excessive amountof false dependences which dramatically reduces the intrinsic ILP. In this chapter,we present our work [TE02, TE01] that gives a new formulation for cyclic registerallocation before the scheduling process, directly on the data dependence graph byinserting anti-dependences(reuse arcs). This graph extension is �rst constrained byminimizing the critical circuit and hence minimizing the ILP loss due to registerpressure. The second constraint is to ensure that there is always a cyclic registerallocation with the set of available registers, and this for any software pipelining ofthe new graph. We give an exact formulation of this problem with integer linearprogramming. We also show how our method can be applied when a rotating reg-ister �le is present. We prove that, in some cases, optimal cyclic register allocationbecomes a polynomial problem. Experimental results show that our methods aree�cient.This chapter is organized as follows. We start by a motivating example in Section 10.1to introduce our ideas for minimal register allocation sensitive to ILP. Then, we formalizethe problem by reuse graphs in Section 10.2. We show the tradeo� between registerrequirement, parallelism and loop unrolling. We provide an exact method by integerprogramming in Section 10.4. The DDG that we generate has the property that its cyclicregister saturation is equal to its cyclic register su�ciency. In the presence of a rotatingregister �le, loop unrolling is not necessary to perform a cyclic register allocation. Weextend our formulation in order to take into account this hardware feature in Section 10.5.While the general problem of optimal register allocation under a �xed critical circuit isNP-complete, Section 10.6 presents the cases where this problem becomes polynomial.Before concluding, Section 10.7 details our experiments.10.1 Motivating ExampleThe starting point is based on the following idea. Let us consider a 
ow dependencebetween u and v of distance �. This means that the operation v reads the value produced177



178 CHAPTER 10. SCHEDULE INDEPENDENT REGISTER ALLOCATIONby u � iterations earlier. Hence, if we use � di�erent registers cyclically for carrying thisvalue, u(1) and u(� + 1) store their results in the same register R1 that will be readsubsequently by respectively v(� + 1) and v(� + � + 1). This means that u reuses thesame register used by itself � iterations earlier, and hence creates an anti-dependencebetween v(� + 1) and u(� + 1) with a distance � � �. Figure 10.1.(a) is an illustrationin which values are shown with bold circles and 
ow arcs with bold lines. Dashed onesrepresent anti-dependences. Since u has a delay to write into the register, the latency ofthis anti-dependence is set to ��w;t(u). This anti-dependence must in turn be countedwhen computing the new minimum initiation interval MII � l ���w;t(u)� m.
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(b) Killing Tasks(a) Simple Reuse Scheme (c) Another Reuse SchemeFigure 10.1: Examples of Register Reuse SchemesMore generally, if an operation v kills some register R that is subsequently reused byu � iterations later (and no other operation uses this register in between), then there isan anti-dependence created between v and u of distance �.When an operation creates a value that is read by more than one operation, we cannotknow in advance which of these consumers would actually kill the value (which one wouldbe scheduled to be the last reader), and hence we cannot know in advance when a registeris freed. We propose a trick which de�nes for each value ut of type t a virtual killing taskkut. We insert an arc from each consumer v 2 Cons(ut) to kut to re
ect the fact that thiskilling task is scheduled after every (the last) scheduled consumer, see Figure 10.1.(b).The latency of this serial arc is �r;t(v), and we set its distance to �� where � is the dis-tance of the 
ow dependence between u and its consumer v. We choose this nonpositivedistance to re
ect the fact that the operation kut(i+���), i.e., kut(i), is the virtual killerof ut(i). Since kut is a �ctitious task, we could have alternatively considered the positivedistance maxe2E �(e)� �(u; v), which is only a retimed distance.Now, a register allocation scheme consists in de�ning the arcs of reuse as de�ned justabove. This amounts to de�ne for each u the task v that reuses the same register. Weadd then an arc from kut to v (representing an anti-dependence from the killer of u tov) with a latency ��w;t(v) and a distance �u;v to be de�ned. Note that the dummy nodekut(i) needs not be inserted if ut has only one consumer (the killer is necessarily this singleconsumer).There are three main constraints that the resulting dependence graph must meet.First, the sum of distances along each circuit must be positive, else the scheduling prob-



10.2. REUSE GRAPHS FOR REGISTER ALLOCATION 179lem could have no solution. Second, the number of registers used by an allocation scheme(decision) is P� (we prove this assertion in the next section) and must be less than orequal to the number of available registers. Lastly, a register released by an operation canbe reused by only one operation, and each operation reuses only one register. This meansthat the added reuse arcs between the killing nodes and the values must be a bijection.Note that we may have more than one choice for an allocation decision. For instance,Figure 10.1.(b) gives a situation in which each value reuses the register released by it-self. Figure 10.1.(c) is another allocation decision where each value reuses the registerreleased by the other value. This third hypothesis is not mandatory since we can considern-periodic register allocation. That is, we can �rst unroll the loop and then we apply acyclic register allocation. However, we assume a reuse bijection because it is, �rst, theone used in practice. Second, it gives simple and elegant results.The reuse relation between values are described by de�ning a new graph called a reusegraph. Figure 10.2.(a) shows the �rst reuse decision where for instance u (v respectively)reuses the register used by itself �1 (�2 respectively) iterations earlier. Figure 10.2.(b) isthe second reuse choice in which u (v respectively) reuses the register used by v (u respec-tively) �1 (�2 respectively) iterations earlier. The resulted data dependence graph afteradding killing tasks and anti-dependences (Figure 10.1) to apply register reuse decisions iscalled the the DDG associated with a reuse graph : Figure 10.1.(b) is the DDG associatedwith Figure 10.2.(a), and Figure 10.1.(c) is the one associated with Figure 10.2.(b). In thenext section, we give a formal de�nition and modeling of the register allocation problembased on reuse graphs.
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10.2 Reuse Graphs for Register AllocationA register allocation consists in choosing which operation reuses which released register.We de�ne :De�nition 10.1 (Reuse Relation) Let G = (V;E; �; �) be a DDG. A reuse relationfor a register type t 2 T is a bijection from VR;t to itself such that reuset(u) = v i�the statement v reuses the register of type t released by the statement u. We note alsoreuse�1t (v) = u. We associate with this relation a reuse distance �tu;v such that the oper-ation v(i+ �tu;v) reuses the register of type t released by the operation u(i)We represent the reuse relation by a graph (see Figure 10.2) :



180 CHAPTER 10. SCHEDULE INDEPENDENT REGISTER ALLOCATIONDe�nition 10.2 (Reuse Graph) Let G = (V;E; �; �) be a DDG and reuset a reuse re-lation of a register type t 2 T. The reuse graph Gr = (VR;t; Er; �) is de�ned by :Er = fe = (ut; vt) = reuset(u) = v ^ �t(e) = �tu;vgWe call each arc in a reuse graph Gr a reuse arc, and each path in Gr a reuse path. Notethat we have some similarities between reuse graphs and meeting graphs : each circuitdecomposition of a meeting graph corresponds to a reuse graph. However, meeting graphsconsider already scheduled loops. A statement u reuses the register freed by a statementv in a MG decomposition i� their circular lifetime intervals meet at a certain clock cycle.We do not have this restriction in reuse graphs, since a reuse arc from u to v only meansthat the lifetime interval of ut(i) is before the lifetime interval of vt(i+�tu;v). The furtherscheduler is let free to schedule ut(i) and vt(i+ �tu;v) so that they do not meet.Lemma 10.1 Each reuse path P constructed by inserting all the successive nodes ui; ui+1with the property that : reuset(ui) = ui+1 =) ui+1 2 Pis an elementary circuit which we call a reuse circuit. Also, all the reuse circuits of Grare disjoint : 8C 6= C 0 two reuse circuits C \ C 0 = �Proof :See Appendix A (Section A.2.4 Page 263). yWe note C the set of all the reuse circuits of Gr.Lemma 10.2 Let Gr = (VR;t; Er; �) be a reuse graph according to a reuse relation reuset.Then, any value ut 2 VR;t of a register type t 2 T belongs to a unique reuse circuit C inGr.Proof :It is a direct consequence of Lemma 10.1. Since reuse circuits are elementary, avalue ut cannot belong to more than one reuse circuit. Furthermore, each valuebelongs to at least one reuse circuit because the reuse relation is a bijection.yLet �t(Gr) be the sum of all reuse distances between values of type t :�t(Gr) = Xe=(u;v)2Er �tu;v



10.2. REUSE GRAPHS FOR REGISTER ALLOCATION 181and we note also �t(C) the sum of all the reuse distances between values of type t whichbelong to the reuse circuit C :8C a reuse circuit in Gr : �t(C) = Xe=(u;v)2C �tu;vTo report register reuse decisions in the DDG, we have to ensure that if reuset(u) = vwith a distance �tu;v then ut(i) must be killed before the de�nition of vt(i+�tu;v). For thispurpose, we de�ne for each value ut of type t a virtual killing task kut which correspondsto its killing date. We insert an anti-dependence arc between kut and v i� reuset(u) = v.The distance of this anti-dependence is set to �tu;v.De�nition 10.3 (Killing Node) Let G = (V;E; �; �) be a DDG and T a set of registerstypes. A killing node kut of a value ut 2 VR;t of type t is a virtual statement that corre-sponds to the killer of ut. It is de�ned by inserting in the DDG G the node kut for allut 2 VR;t as follows :� we add a serial arc e = (v; kut) from each consumer v 2 Cons(ut) to kut;� for each inserted arc e = (v; kut), we set its latency to �(e) = �r;t(v), and its distanceto �(e) = �d such that d is the distance of the 
ow dependence from u to v througha register of type t : d = �(e0) with e0 = (u; v) 2 ER;t.The negative distance inserted from each consumer to the killing task virtually model thefact that ut and kut belong to the same iteration i.Note that the distance in terms of iterations of the path between each value and itskiller is null. The set of all killing nodes of type t is denoted by Kt :Kt = fkut = ut 2 VR;tgThe resulting data dependence graph after adding the killing tasks and the anti-dependences arcs is called the DDG associated with the reuse relation.De�nition 10.4 (DDG associated with a Reuse Relation) Let G = (V;E; �; �) bea DDG with its inserted killing nodes Kt. The DDG associated with a reuse relation reusetof a register type t 2 T is an extended DDG of G such that we add an arc e = (kut; v) i�reuset(u) = v. We set its latency to �(e) = ��w;t(v), and its distance to �(e) = �tu;v (tobe de�ned).Parts (b) and (c) of Figure 10.1 are two examples of the DDGs associated with thereuse relation de�ned in parts (a) and (b) of Figure 10.2 respectively. We note the DDGassociated with the reuse relation as G!r. One can remark that a reuse arc (u; v) isthe counterpart of a path (u; v) in the meeting graph of any software pipelined scheduleof G!r. Any arc (kut; v) in G!r according to a reuse relation ensures that the lifetimeinterval of the value ut(i) ends before the de�nition of the value vt(i+ �tu;v) :8� 2 �(G!r) : reuset(u) = v =) LT�(ut(i)) � LT�(vt(i + �tu;v))where �(G!r) is the set of all valid SWP schedules of the DDG G!r.



182 CHAPTER 10. SCHEDULE INDEPENDENT REGISTER ALLOCATIONEach reuse circuit has counterparts in G!r. Each counterpart is called an image ofthe reuse circuit :C = (u0; � � � ; un; u0) a reuse circuit() C = (u0; u00; ktu0; � � � ; un; u0n; ktun; u0) a circuit in G!rin which u0i is a consumer of ui. For instance, the reuse circuit (u; v; u) in Figure 10.2.(b)has an image (u; v1; ku; u0; v01; ku0; u) in Figure 10.1.(c). Note that a reuse circuit may havemore than one image in G!r because a value may have more than one consumer : forinstance, a second image for (u; v; u) in Figure 10.2.(b) is (u; v2; ku; u0; v02; ku0; u) in Fig-ure 10.1.(c).There are some constraints that a reuse relation must meet in order to be valid : theexistence of at least a software pipelined schedule for G!r (i.e., any introduced circuitmust have a positive distance) de�nes the validity condition of the reuse relation.De�nition 10.5 (Valid Reuse Relation) Let G!r be a DDG associated with a reuserelation reuset. We say that reuset is valid i� G!r is schedulable and all its circuits havepositive distances, i.e., there exists a distance �(e) = �tu;v for each arc e = (kut; v) withthe property that : �(G!r) 6= � ^ 8C a circuit �(C) > 0Figure 10.3 shows two examples of DDGs associated with valid reuse relations. Wemust be aware the the schedulability of G!r is not a su�cient condition for the nonexis-tence of nonpositive circuits. Indeed, a schedulable DDGmay contain nonpositive circuits.In other words, there exists a SWP schedule for G!r with an initiation interval h > 0 i�8C a circuit in G!r;8><>: �(C) > 0 =) h � �(C)�(C) > 0�(C) < 0 =) 0 < h � �(C)�(C)�(C) = 0 =) �(C) � 0
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Figure 10.3: Valid Reuse RelationsIf a reuse relation is valid, we can build a cyclic register allocation for its DDG asso-ciated DDG, as explained in the following theorem.Theorem 10.1 Let G!r be a reuse DDG associated with a valid reuse relation reusetsuch that there is only one reuse circuit in the reuse graph Gr. Then the unique reusecircuit C de�nes a cyclic register allocation for G!r with exactly �t(C) registers if weunroll the loop � = �t(C) times.



10.2. REUSE GRAPHS FOR REGISTER ALLOCATION 183Proof :Let us unroll G!r �t(C) times : each statement u 2 V has now � = �t(C)instances in the unrolled loop. We note ui the ith instance of the statementu 2 VR;t. To prove this theorem, we explicitly express the cyclic registerallocation, directly on G!r after loop unrolling, i.e., we assign registers to thestatements of the new loop body (after unrolling). We consider two cases :Case 1 : all the � distances are positive For the clarity of this proof,we illustrate it by the example of Figure 10.4 which builds a cyclic registerallocation with 3 registers for Figure 10.3.(b) : we have unrolled this loop 3times. We allocate �t(C) = 3 registers in the unrolled loop as explained inAlgorithm 9.1. We choose an arbitrary value ut in VR;t. It has � distinct instances in theunrolled loop. So, we allocate � distinct registers to these instances. Weare sure that such values exist in the unrolled loop body because � > 0.2. Since the reuse relation is valid, we are sure that for each reuse arc (u; v),the killing date of an operation ut(i) is scheduled before the de�nitiondate of vt(i + �tu;v). So, we allocate, in the unrolled loop body, thesame register of type t to v�(i+�tu;v) mod �� as the one allocated to ui.For instance in Figure 10.4, we allocate the same register R1 to u1 andu0((1+2) mod 3) = u00. We are sure that v�(i+�tu;v) mod �� exists in the unrolledloop body because �tu;v � 0.3. We follow the other reuse arcs to allocate the same register to the twovalues vi and v0�(i+�tu;v) mod �� i� reuse(v) = v0. We continue in the reusecircuit image until all values in the loop body are allocated.Since the original reuse circuit image in duplicated � times in the unrolled loop,and since each reuse circuit image in the unrolled loop consumes one register,we use in total � = �t(C) registers. Dashed lines in Figure 10.4 representanti-dependences with their corresponding distances after the unrolling.Case 2 : there exists a negative � distance Here, we cannot express thecyclic allocation directly in the DDG as in the previous case. This is becausethe involved operation belongs to a previous iteration. However, this doesnot prevent us from building a register allocation at all. For this purpose, wechange the distances of the anti-dependences by using the retiming technique.A valid retiming, as explained in Chapter 7, makes positive all the distances ofthe transformed graph, while preserving the same scheduling problem. So, weaim to build a transformed graph from G!r which contains positive distancesin order to come back to the �rst case. We are sure that a valid retimingexists because the reuse relation is assumed valid, and hence all circuits havepositive distances.



184 CHAPTER 10. SCHEDULE INDEPENDENT REGISTER ALLOCATIONBuilding a valid retimed graph from G!r is obvious. Since the reuse relationis valid, then we can build a periodic schedule �([rn]; [cn]; h) for G!r. Wesimply take the retiming function r(u) = cn(u) as explained in [DH00]. Thedistances become :8e = (u; v) 2 E �r(e) = cn(v)� cn(u) + �(e)The dependence constraints are still satis�ed :8e = (u; v) �(v; i+ �)� �(u) � �(e)8e = (u; v) rn(v)� rn(u) + h(cn(v)� cn(u) + �(e)) � �(e)8e = (u; v) h(cn(v)� cn(u) + �(e)) � �(e)� rn(v) + rn(u) > �r(v) > �hwhich implies �r(e) = cn(v) � cn(u) + �(e) � 0 and rn(v) � �(e) + rn(u) if�r(e) = 0 : the inter-motif dependences are satis�ed while the intra-motif onesbecome loop carried (satis�ed by the successive execution of the iterations).Finally, since all the distances of the retimed graph are now positive, we referto the �rst case to build a cyclic register allocation. yNote that we can also build a cyclic register allocation with exactly �t(C) registers ifwe unroll the loop k � � times, in which � = �t(C) and k 2 N+ , as follows :1. unroll the loop � times and build a cyclic register allocation with �t(C) registers asexplained in Theorem 10.1;2. unroll the allocated loop k times.If more than one reuse circuit exist, we state in the following theorem that the set ofall reuse circuits de�nes a cyclic register allocation with �t(Gr) registers.Theorem 10.2 Let G!r be a reuse DDG according to a valid reuse relation reuset of aregister type t 2 T. Then the reuse graph Gr de�nes a cyclic register allocation for G!rwith exactly �t(Gr) registers of type t if we unroll the loop � times where :� = lcm(�t(C1); � � � ; �t(Cn))in which C = fC1; � � � ; Cng is the set of all reuse circuits.
v’2

k_u’

v’1

u’u

v1 v2

k_u

u

v1 v2

k_u

v’2

k_u’

v’1

u’ u

v1 v2

k_u

v’2

k_u’

v’1

u’

R0 R1 R0R1 R2 R2
(1)

(0)
(1)

(1)

iter i iter i+1 iter i+2

(0)

(0)Figure 10.4: Cyclic Register Allocation with One Reuse Circuit



10.2. REUSE GRAPHS FOR REGISTER ALLOCATION 185Algorithm 9 Cyclic Register AllocationRequire: a DDG G!r associated to a valid reuse relation reusetunroll it � = �t(C) times fthis create � instances for each statementgfor all u 2 VR;t dofor all ui in the unrolled DDG do feach instance of ugalloc(ui) ? finitializationgend forend forchoose u 2 VR;tfor all ui in the unrolled DDG do feach instance of ugalloc(ui)  ListOfAvailableRegisters.pop()n uin0  v(i+�tu;v)mod � fwhere reuse(u) = vgwhile alloc(n0)=? doalloc(n0) alloc(n)n n0n0  n00 fwhere (kn0; n00) is an anti-dependence in the unrolled loopgend whileend forProof :It is a direct consequence of Theorem 10.1. The cyclic register allocation isbuilt as follows :1. unroll the loop � times; each reuse circuit C has ��t(C) images in theunrolled loop;2. build a cyclic register allocation for each reuse circuit image as explainedin Theorem 10.1.Figure 10.5 is an example of a cyclic register allocation of Figure 10.3.(a)which contains two reuse circuits; (u; u) with a distance 1, and (u0; u0) witha distance 2. The unrolling degree is hence lcm(1; 2) = 2. The dashed linesrepresent the anti-dependences after unrolling the loop. yCorollary 10.1 Let G!r be a reuse DDG according to a valid reuse relation reuset of aregister type t 2 T. Then, there exists a software pipelined schedule for G!r that needsless or equal registers than the number of allocated ones :9� 2 �(G!r) : CRN�t (G!r) � �t(Gr)Proof :



186 CHAPTER 10. SCHEDULE INDEPENDENT REGISTER ALLOCATIONAccording to Theorem 10.2, we can build a valid cyclic register allocation with�t(Gr) available registers. Then, there exists a software pipelined schedule thatdoes not require more than �t(Gr) registers. yCorollary 10.2 Let G = (V;E; �; �) be a loop with a set of register types T. To each typet 2 T is associated a valid reuse relation reuset with its reuse graph. The loop can beallocated with �t(Gr) registers for each type t if we unroll it � times, where� = lcm(�t1 ; � � � ; �tn)in which �ti is the unrolling degree of the reuse graph for the register type ti.Proof :Direct consequence of Theorem 10.2. The cyclic register allocation is built asfollows :1. unroll the loop � times; each reuse circuit image Ct of register type t inthe original loop is duplicated �t � ��t(C) times in the unrolled loop;2. build a cyclic register allocation for each reuse circuit image of each reg-ister type t as explained in Theorem 10.2. yThe next section presents an exact formulation of SIRA by integer programming.
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10.3. SIRA PROBLEM FORMULATION 18710.3 SIRA Problem FormulationFrom the previous section, we deduce that doing a cyclic register allocation of a DDG isequivalent to �nding a valid reuse relation. The formal de�nition of Schedule IndependentRegister Allocation (SIRA) is :Problem 10.1 (SIRA) Let G = (V;E; �; �) be a loop and Rt the number of availableregisters of type t. Find a valid reuse relation reuset such that the corresponding reusegraph Gr = (VR;t; Er; �) has �t(Gr) � Rtin which the critical circuit in G!r is minimized.Theorem 10.3 SIRA is NP-complete.Proof :See Appendix A (Section A.2.5 Page 264). y10.4 Exact SIRA ModelingIn this section, we give an intLP model for solving SIRA. It is built for a �xed executionrate h. We write linear constraints that de�ne a reuse relation for each register type.We �rst build a reuse relation that makes the associated DDG schedulable. As explainedbefore, a schedulable DDG may contain nonpositive circuits. We will see later how toeliminate the solutions with nonpositive circuits.Basic Variables� a schedule variable �u � L for each operation u 2 V including one for each killingnode kut;� a binary variable �tu;v for each (u; v) 2 V 2R;t and for each register type t 2 T which isset to 1 i� reuset(u) = v;� �tu;v for reuse distance for all (u; v) 2 V 2R;t.Linear ConstraintsCyclic Scheduling Constraints� We bound the scheduling variables (we assume a worst schedule time of one itera-tion) 8u 2 V : �u � �u � �u� data dependences8e = (u; v) 2 E : �u + �(e) � �v + h� �(e)



188 CHAPTER 10. SCHEDULE INDEPENDENT REGISTER ALLOCATION� schedule killing nodes for consumed values : 8ut 2 VR;t,8v 2 Cons(ut) = e = (u; v) 2 ER;t : �kut � �v + �r;t(v) + �(e)� h� if reuset(u) = v then there is an anti-dependence between ut's killer and v. We addan arc from kut to v : 8t 2 T; 8(u; v) 2 V 2R;t :�tu;v = 1 =) �kut � �w;t(v) � �v + h� �tu;vSince �tu;v is binary, we write in the model the following linear constraints :8t 2 T; 8(u; v) 2 V 2R;t : �u;v � 1 =) �kut � �w;t(v) � �v + h� �tu;vWe use the linear expression of implication de�ned in Section 2.1.� If there is no register reuse between two values (reuset(u) 6= v), then �tu;v = 0. Theanti-dependence distance �tu;v must be set to 0 in order to not be cumulated in theobjective function. 8t 2 T; 8(u; v) 2 V 2R;t :�tu;v = 0 =) �tu;v = 0Reuse Relation Constraints The reuse relation must be a bijection :� a register can be reused by only one operation :8t 2 T; 8u 2 VR;t : Xv2VR;t �tu;v = 1� one value can reuse only one released register :8t 2 T; 8u 2 VR;t : Xv2VR;t �tv;u = 1Objective Function We want to minimize the number of registers required for registerallocation. So, we choose an arbitrary register type t that we use as an objective function :Minimize X(u;v)2V 2R;t �tu;vThis function is necessarily positive, since all reuse circuit images have P� > 0. Otherregister types are bounded in the model by their respective number of available registers :8t0 2 T� ftg : X(u;v)2V 2R;t0 �t0u;v � Rt0



10.4. EXACT SIRA MODELING 189Summary The reuse relation produced is makes G!r the associated DDG schedulable,since we succeed in constructing a cyclic schedule. We will see below how to eliminatenonpositive circuits. The complexity of the model is bounded by O(jV j2) variables andby O(jEj+ jV j2) constraints. To solve SIRA, we proceed as follows.1. We start by solving an intLP with h = MII.2. If the solution is greater than Rt, then we increment h (a dichotomy between h anda maximum hmax = L).3. If we reach the maximum hmax without �nding a solution, then there is not a cyclicregister allocation with Rt registers. Therefore, spill code must be introduced (seeSection 9.2).In some cases, an optimal SIRA solution may introduce circuits with nonpositivedistance to the constructed DDG. The next section discusses this problem.Eliminating SIRA Solutions with Nonpositive CircuitsOur loop model admits explicit writing delays for statements. So, some anti-dependencearcs in G!r may have negative latencies. If we do not take care during the computation ofan optimal register allocation (minimizing the register requirement under a �xed executionrate), the produced DDGs according to the computed reuse relation may contain circuitswith nonpositive distance. Even if such a graph is schedulable, we cannot admit it sincewe cannot ensure that is would remain schedulable in the presence of resource constraints.Note that any circuitC with a non positive distance �(C) � 0 has necessarily a nonpositivelatency �(C) � 0, since the constructed DDG is schedulable.Figure 10.6 is an illustration. In the original loop shown in Part (a), there exists adependence path from u to v with a null distance (the path is in the loop body). Areuse relation as shown in Part (b) may assign the same register to u(i) and v(i) by�xing reuset(v) = u. This creates an anti-dependence from v(i)'s killer to u(i). Sincethe latency of the reuse arc (kv; u) is negative (-9) and the latency of the path u; kv is5, the null circuit (v; kv; u; v) does not prevent the associated DDG from being moduloscheduled but may be so in the presence of resource constraints. In this section, we showhow we include new constraints in the exact SIRA modeling to avoid this disadvantage.
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190 CHAPTER 10. SCHEDULE INDEPENDENT REGISTER ALLOCATIONTo eliminate optimal SIRA solutions that require circuits with nonpositive distances,we can use two solution. A �rst one is to not introduce anti-dependences with nonpos-itive latencies. This is done by considering sequential semantics for register usage, i.e.,by setting in the intLP model �r;t = 0 and �w;t = 0, and any introduced anti-dependencemust have a unitary latency1. This technique remains optimal in the case of sequentialsuperscalar codes, but may be sub-optimal in static issue (VLIW) codes. An optimalsolution is given below.A second solution is to guarantee the existence of a valid retiming, and a topologicalsort for the loop body of the constructed DDG G!r. The existence of a valid retimingguarantees that all circuits have nonnegative distances (�(C) � 0). This is a su�cientand necessary condition. It remains to eliminate circuits with distances equal to zero(�(C) = 0). A su�cient and necessary condition for that is to guarantee the existenceof a topological sort for the loop body. For this purpose, we consider the retimed graphbecause all its arcs have nonnegative distances. Then, each arc with a zero distance in theretimed graph is an arc in the loop body. If we guarantee that there is no zero distancecircuit in the retimed graph, then the non retimed DDG does not contain a zero distancecircuit (and vice versa).We include retiming and topological sort constraints as follows.� The objective function remains the same, since the number of allocated registers ina reuse circuit is not modi�ed by loop retiming :Minimize X(u;v)2V 2R;t �tu;v� The integer variables are the following.1. For each node u 2 V , we de�ne an integer retiming coe�cient ru.2. We add the variables of a topological sort. For each statement u 2 V , we de�nean integer du � jV j.� The linear constraints are the following.1. The retiming must be valid. We add the following constraints.{ For each original arc e = (u; v) 2 E, write :�(e) + rv � ru � 0{ For each introduced anti-dependence arc, the retimed distance must bepositive. So we write :8u; v 2 VR;t : �tu;v = 1 =) �tu;v + rv � rkut � 02. We add topological sort constraints as follows.1This is because an arc with a latency equal to zero will be processed as an arc with a positive latencyin the sequential case, since no ILP can be statically expressed in superscalar codes.



10.5. SIRA WITH ROTATING REGISTER FILES 191{ For the original arcs, we write :8e = (u; v) 2 E : �(e) + rv � ru = 0 =) du < dv{ For the introduced anti-dependences, we write :8u; v 2 VR;t : �tu;v = 1�tu;v + rv � rkut = 0 � =) dkut < dvWe add at most O(jV j2) variables and O(jV j2 + jEj) linear constraints to eliminateoptimal solution with nonpositive circuits.The unrolling degree is left free and over any control in our SIRA formulation. Thetheoretical upper-bound of the unrolling degree required for allocating R registers ise(1+O(1))pR lnR. This is a classical mathematical problem where, as far as we know, noexact upper-bound has been found yet !2 Minimizing the unrolling degree amounts tominimize lcm(�i) the least common multiple of the anti-dependence distances of reusecircuits. This problem is very di�cult since there is no way to linearly express the leastcommon multiple. We can consider two solutions.1. We set limits on the reuse distances with strictly positive constants (�1 � c1; � � � ;�n � cn). The smaller these constants, the more the unrolling degree is minimized,the more the critical circuit increases while the system becomes more di�cult tosolve. We think that this solution is ine�cient and inaccurate.2. We look for only one reuse (hamiltonian) circuit : the unrolling degree becomesequal to the number of allocated registers, and hence is minimized by the objectivefunction that minimizes the register requirement. This solution is studied in thenext section.10.5 SIRA with Rotating Register FilesA rotating register �le, as explained in Section 7.5, is a hardware feature that implicitlymoves (shifts) ISA (architectural) registers in a cyclic way. At each new kernel issue (spe-cial branch operation), each architectural register speci�ed by a program is mapped byhardware to a new physical register. The mapping function is (R denotes an architecturalregister and R0 a physical register) : Ri 7! R0(i+RRB) mod s where RRB is a rotating regis-ter base and s the total number of physical registers. The index of that physical registeris continuously decremented by 1 at each new kernel. Consequently, the intrinsic reusescheme between statements necessarily describes a hamiltonian reuse circuit. The hard-ware behavior of such register �les does not allow other reuse patterns. SIRA in this casemust be adapted in order to look for only hamiltonian reuse circuits. Figure 10.7 gives anexample to see how a hamiltonian reuse circuit describes a cyclic register allocation on aRRF. Part (b) shows the writing of values in physical registers.Furthermore, even if no rotating register �le exists, looking for a reuse relation witha unique hamiltonian reuse circuit makes the unrolling degree equal to the number of2This upper-bound corresponds to the order of the maximal cyclic subgroup of the permutation groupon R elements [Lan74].



192 CHAPTER 10. SCHEDULE INDEPENDENT REGISTER ALLOCATIONneeded registers. The objective function minimizes both of them.Since a reuse circuit is always elementary (Lemma 10.1), it is su�cient to state thata hamiltonian reuse circuit with n = jVR;tj nodes is a reuse circuit of size n. We proceedby forcing a numbering of the statements from 1 to n according to the reuse relation.De�nition 10.6 (Hamiltonian Ordering) Let G = (V;E; �; �) be a loop and reuset avalid reuse relation of a register type t 2 T. A hamiltonian ordering hot of this loopaccording to its reuse relation is a function de�ned by :hot : VR;t ! Nut 7! hot(u)such that 8u; v 2 VR;t : reuset(u) = v () hot(v) = �hot(u) + 1� mod jVR;tjFigure 10.8 is an example of a hamiltonian ordering of a reuse graph with 5 values.The existence of hamiltonian ordering is a su�cient and necessary condition to makethe reuse graph hamiltonian, as stated in the following theorem.Theorem 10.4 Let G = (V;E; �; �) be a loop and reuset a valid reuse relation of a reg-ister type t 2 T. There exists a hamiltonian ordering i� it the reuse graph is hamiltonian.
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10.5. SIRA WITH ROTATING REGISTER FILES 193Proof :See Appendix A (Section A.2.6 Page 265). yProblem 10.2 (SIRA HAM) Let G = (V;E; �; �) be a loop and Rt a positive integer.The SIRA HAM problem is to �nd a valid reuse relation reuset with a hamiltonian or-dering hot such that the corresponding reuse graph Gr = (VR;t; Er; �) has�t(Gr) � Rtand the critical circuit in G!r is minimized.Exact SIRA HAM FormulationWe add to the intLP model of SIRA (de�ned in Section 10.4) the variables and linearconstraints that de�ne a hamiltonian ordering :1. for each register type and for each value ut 2 VR;t, we de�ne an integer variable houtwhich corresponds to its hamiltonian ordering;2. we include in the model the bounding constraints of the hamiltonian ordering vari-ables : 8ut 2 VR;t : hout < jVR;tj3. we de�ne linear constraints of the modulo hamiltonian ordering by including in themodel : 8u; v 2 V 2R;t : �tu;v = 1() hout + 1 = jVR;tj � �tu;v + hovtwhere �tu;v is a binary variable that holds to the integer division of hout +1 on jVR;tj.We use the linear expression of equivalence previously de�ned in Section 2.1.We have expanded the exact SIRA intLP model by at most O(jV j2) variables and O(jV j2)linear constraints.When looking for a hamiltonian reuse circuit, we have some similarities with the prob-lem of �nding a hamiltonian circuit in a meeting graph (see Section 7.5 and Theorem 7.5).In the latter case, we may need one extra register to construct such a circuit.Proposition 10.1 Hamiltonian SIRA needs at most one more register than SIRA.Proof :See Appendix A (Section A.2.7 Page 266). yWe must keep in mind that, if loop unrolling is allowed for hamiltonian SIRA, we do notrequire this additional register to implement a cyclic register allocation on a RRF.Both SIRA and hamiltonian SIRA are NP-complete. Fortunately, we have some opti-mistic results. In the next section, we investigate the case in which SIRA can be solvedin polynomial time.



194 CHAPTER 10. SCHEDULE INDEPENDENT REGISTER ALLOCATION10.6 Polynomial Cases for SIRAIn this section, we show that if we �x reuse arcs, i.e., if we �x the register sharing decisionamong statements, then determining � distances so as to minimize the register require-ment and the critical circuit is solvable in polynomial time. We neglect for the momentthe problem of nonpositive circuits (we discuss it later).Let G = (V;E; �; �) be a loop and G!r the DDG associated with a reuse relationreuset according to a register type t, such that the reuse distances �tu;v are not �xed yet.In the following, we write the integer programming model to solve SIRA. The intLP isconsiderably simpli�ed and we show that its constraint matrix is totally unimodular.As we know, the graph G!r = (V!r; E!r; �!r; �!r) have the following nodes :� the set of the nodes V of the original loop G. The set VR;t � V!r is the set ofstatements writing into the registers of type t;� the set of killing nodes ku;t for each u 2 VR;t.The set of arcs E!r contains :� the set of the arcs E of the original loop G, where �!r(e) = �(e) and �!r(e) = �(e)for each e 2 E. The set ER;t � E is the set of 
ow dependences through the valuesof type t;� the set of arcs which connect the consumers to the killing nodesfe = (v; kut)= v 2 Cons(ut)g, in which�!r(e) = �r;t(v) for e = (v; kut)and �!r(e) = ��(e) for e = (u; v) 2 ER;t� the set of reuse arcs e = (kut; v) for reuset(u) = v, where �!r(e) = ��w(v) and thedistance �!r(e) = �tu;v has to be de�ned. We note the set of these reuse arcs byEr � E!r. Remember that the reuse relation is a bijection, and hence each value uthas one and only one reuse arc leaving kut, and one and only one reuse arcs enteringu. Therefore, jErj = jVR;tj.Hence, the intLP system that solve SIRA with �xed reuse arcs is considerably simpli�ed.Hence, the intLP system of SIRA becomes as follows.Minimize P(kut ;v)2Er �tu;vSubject to:h�tu;v + �v � �kut � ��w(v) 8(kut; v) 2 Er�v � �u � �(e)� h�(e) 8e = (u; v) 2 (E!r � Er) (10.1)Since h is a constant, we do the variable substitution �0u = h � �tu;v and System 10.1becomes : Minimize Pu2VR;t �0uSubject to:�0u + �v � �kut � ��w(v) 8(kut; v) 2 Er�v � �u � �(e)� h�(e) 8e = (u; v) 2 (E!r � Er) (10.2)



10.6. POLYNOMIAL CASES FOR SIRA 195There are O(jV!rj) = O(jV j) variables and O(jE!rj = O(jV j + jEj)) constraints in thissystem.Theorem 10.5 The constraint matrix of the integer programming model in System 10.2is totally unimodular, i.e., the determinant of each square sub-matrix is equal to 0 or to� 1.Proof :See Appendix A (Section A.2.8 Page 267). yThanks to Theorem 10.5, we can optimally solve the integer programming model of Sys-tem 10.2 with a polynomial time method, in which the complexity depends on the size ofV!r and E!r (see Section 2.1). We think that we can provide an algorithmic solution forthis problem by using minimal cost 
ow algorithms.The case described in this section can be used in practical compilers in di�erent ways.Here are some examples.1. For each value u 2 VR;t, we can decide that reuset(u) = u. This means that eachstatement reuses the register freed by itself (no sharing of registers between di�erentstatements). This is similar to the bu�er minimization problem as described in[NG93].2. We can �x reuse arcs according to the anti-dependences present in the originalcode : if there is an anti-dependence between two statement u and v in the originalcode, then �x reuset(u0) = v with the property that u kills u0. This decision isa generalization of the problem of reducing the register requirement as studied in[WKE95]. The authors assumed �xed row numbers and �xed anti-dependencies.Our result shows that the problem is still polynomial for non �xed row numbers.3. With a rotating register �le, we can �x an arbitrary (or with a cleverer method)hamiltonian reuse circuit among statements.Finally, it remains to eliminate optimal solutions with circuits with nonpositive dis-tances.Eliminating Polynomial Solutions with Nonpositive CircuitsAs described before, this problem arises for static issue processors (VLIW) with explicitwriting o�sets.A solution for this problem has been provided by Alain Darte [Dar02], deduced from[DSV96, DSV98]. It adds a quadratic number of retiming constraints to avoid nonpositivecircuits, while keeping the optimality of the solution, and the problem remains polynomialtoo.



196 CHAPTER 10. SCHEDULE INDEPENDENT REGISTER ALLOCATIONWe de�ne a retiming re for each arc e 2 E!r. We have then a shift re(u) for eachnode u 2 V!r. Then, we let an integer re;u for all (e; u) 2 (E!r � V!r). Any retiming remust satisfy the following constraints :8e0 = (u0; v0) 6= e; re;v0 � re;u0 + �(e0) � 0for the considered arc e = (u; v); re;v � re;u + �(e) � 1 (10.3)Note that if an arc e = (kut; v) is an anti-dependence, its distance is �(e) = �tu;t. Sincewe have jE!rj distinct retiming functions, we add jE!rj � jV!rj variables and jE!rj �jE!rj constraints. Satisfying all these constraints is a polynomial problem (retimingconstraints), i.e., the constraint matrix remains totally unimodular. Now, we prove thatsatisfying System 10.3 is a necessary and su�cient condition for building a DDG G!rwith positive circuits.Lemma 10.3 [Dar02] Let G!r the solution graph of System 10.2. Then :System 10.3 is satis�ed () any circuit in G!r has a positive distance.Proof :See Appendix A (Section A.2.9 page 269). y10.7 ExperimentsWe have developed a tool to cyclically allocate registers in loops using SIRA. It is basedon two underlying softwares.1. LEDA-4.1 (Library of E�cient Data types and Algorithms [MN99]) from Algorith-mic Solutions Software. This library is used for handling the graphs (DDGs, reuseDDGs, etc.) and generating the integer linear programs;2. CPLEX-7.0 (see [CPL93]) from Ilog. It is an optimizer for solving linear, mixed-integer and quadratic programming problems.Our tool uses the two strategies : the classical SIRA in which the reuse circuits are freefrom any control, and the hamiltonian case where we look for a hamiltonian reuse circuit.We have also developed the polynomial SIRA case as studied in Section 10.6. Two mainstrategies have been experimented : self reuse arcs where we �x reuse(u) = u for anyvalue, and a �xed hamiltonian reuse circuit. In the latter case, the hamiltonian circuitis arbitrary : we arbitrarily numbered the values from 1 to n and we �xed reuse(ui) =reuse(u(i+1) mod n).Our benchmarks are presented in Appendix B. The performance of these loops arebounded by 
oating point computation. So, we focus on this register type and we assumethat we target superscalar codes (null reading and writing delays). Full detailed numericaland plotting results are given in Appendix C. This section summarizes our conclusions.



10.7. EXPERIMENTS 19710.7.1 Optimal SIRAThe optimal SIRA solutions are described in Table C.10. The two main columns corre-spond to the two SIRA formulations : the �rst is the \classical SIRA" as explained inSection 10.3, in which the unrolling degree is left free from any constraint, and the secondis the hamiltonian SIRA formulation as explained in Section 10.5 intended for both min-imizing the unrolling degree (in this case, it is equal to the number of allocated registers)and to the rotating register �le. Note that we didn't succeed in �nding an optimal solutionin three cases because of the computation complexity. We treat the latter cases by usingheuristics in a further paragraph..Table C.10 shows the minimum number of fp registers required to perform cyclicregister allocation if we do not want to increase the critical circuit (no ILP loss) :1. 64 fp registers are su�cient for all loop;2. 32 fp registers are su�cient for 91.66% of loops;3. 16 fp registers are su�cient for 91.66% of loops;4. 8 fp registers are su�cient for 83.33% of loops;5. 4 fp registers are su�cient for 50.00% of loops;The di�erence between the solutions of the two SIRA formulations is shown in Ta-ble C.11. Hamiltonian SIRA needs in the worst case one more register than SIRA (2 casesonly). The unrolling degree is kept under control with hamiltonian SIRA since it is equalto the number of registers. However, even if SIRA exhibits better unrolling degrees inmost cases, the case of spec-spice-loop7 shows that this factor may grow exponentially ifit is left free.We also have experimented SIRA on these loops with di�erent critical ratios h, start-ing from MII to L. Figures C.5 and C.6 give some representative results. As expected,the number of registers decreases if we increment the execution rate. The lower the criti-cal circuit is, the higher is the number of registers. In some cases, increasing the criticalcircuit by only one clock period dramatically decreases the register need : for instancespec-dod-loop7 needs 35 fp registers with a critical circuit MII = 1, but needs only 18 fpregisters if the critical circuit isMII = 2. In other cases, the number of required registersis the same for any critical circuit : for instance spec-dod-loop3 needs 3 fp registers forany execution rate. The optimal solutions for hamiltonian SIRA (not plotted) are in mostcases equal to those computed by the \classical" SIRA, except in very few cases wherewe need one extra register.Using Heuristics for Solving Optimal SIRADuring our experiments, the solver could not �nd the optimal solution of some loopsbecause of the problem complexity : the computation space was saturated and CPLEXran out of memory (remember that the problem is NP-complete). In such cases, we usedsome heuristics techniques to get a suitable approximate solution. Fortunately, CPLEX



198 CHAPTER 10. SCHEDULE INDEPENDENT REGISTER ALLOCATIONsupports such features as explained in Section 2.1.Table C.12 describes our SIRA experiments using some of these resolution techniques.The �rst column gives the results if we stop the optimization process when the numberof allocated registers is less than or equal to 16. In the second one, we have set a limitof �ve minutes to the computation time. In the third, we have limited the work space to20 mega bytes. Lastly, we have limited the number of integer solutions to 3. As can beseen, we can always use intLP formulation to get an approximated solution.10.7.2 SIRA with Fixed Reuse ArcsWe have experimented SIRA with �xed reuse arcs (polynomial cases) on all the loopswith various initiation intervals. Results are shown in Figure C.7 to C.11. Clearly, ex-cept in few cases, the self reuse strategy needs the highest number of registers. This isbecause each value needs at least one register, since we prevent two distinct statementsfrom sharing the same register. So, the minimum number of needed registers with a selfreuse strategy is always bounded from below by jVRj the number of values (statements)in the loop body. This is because each statement needs at least one register (bu�er) ifno sharing exists. The di�erence between the registers needed with this strategy and a�xed arbitrary hamiltonian reuse circuit may be large. An interesting result is that thenumber of registers needed when �xing an arbitrary hamiltonian reuse circuit is near tothe optimal in many cases. The maximal experimental di�erence between the registerrequirement of �xed hamiltonian SIRA with the optimum is 4 registers.10.7.3 Unrolling DegreesFigure C.12 to C.16 plot the unrolling degrees of all the SIRA strategies : optimal SIRA,optimal hamiltonian SIRA, and the two polynomial cases (self reuse and �xed hamiltoniancircuit). While the self reuse strategy needs the highest number of registers, its unrollingdegrees exhibit the lowest ones in most cases. This is useful technique if the code sizeexpansion is a critical constraint (as in embedded softwares). In most cases, the unrollingdegrees are acceptable (less than the number of allocated registers). Unfortunately, theexample of spec-spice-loop7 in Figure C.14 shows that the unrolling degree may be veryhigh if not kept under control. In this case, using a hamiltonian reuse circuit is bettersince the objective function minimizes this factor.10.8 ConclusionThis chapter presents a new approach consisting in building an early cyclic register allo-cation before code scheduling with multiple register types and delays in reading/writing.Our formulation is based on reuse graphs to model the fact that two statements use thesame register as storage location. An intLP model gives optimal solution and enablesus to make a tradeo� between ILP loss (increase of MII) and the number of requiredregisters.Each reuse decision implies loop unrolling with a factor depending on reuse circuits foreach register type. Optimizing this factor is a hard problem and no satisfactory solution



10.8. CONCLUSION 199exists (as far as we know). However, we do not need to unroll in the presence of a rotatingregister �le. We only need to seek a unique hamiltonian reuse circuit. For this purpose,we add new variables and linear constraints to SIRA intLP model that build such circuitby using hamiltonian numbering. The penalty for this hamiltonian circuit constraint is atmost one extra register than the optimal for the same MII. Experimental results showthat only few cases need this extra register.While looking for optimal register allocation is NP-complete, �xing reuse arcs and�nding the minimal number of required registers can be optimally solved with polynomialalgorithms. We can use this result in di�erent ways, as setting self-reuse arcs or �xingan arbitrary (or with a cleverer technique) hamiltonian circuit. Experiments show thatself-reuse decision needs the highest number of registers, while �xing an arbitrary hamil-tonian reuse circuit needs much less registers. However, unrolling degrees with self-reuseare better.Our experiments show that performing a minimal register allocation with a self reusestrategy (bu�er minimization) isn't a good decision in terms of register requirement.We think that how registers are shared between di�erent statements is one of the mostimportant issues, and preventing this sharing by a self reuse strategy consumes muchmore registers than needed by other reuse decisions.
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Chapter 11Related Work in LoopsAbstractThis chapter draws up a panorama on most important work in the �eld of registerpressure in loops. Most of the techniques are based on SWP scheduling with limitednumber of registers.11.1 Cyclic Register Saturation and Su�ciencyAs far as we know, there is no study on CRS and CRF. The only work that may beconsidered as related to our study (up to our knowledge) was provided by Lilja and Birdin [LB94], and William Mangione-Smith et al in [MSAD92]. They built an approximatelinear analytical model for the register requirement. They assume that a new register isallocated to each value at a constant rate (every h step). With this linear model, they areable to give a conservative approximation of upper and lower bounds for cyclic registerrequirement. Their approximations are not tight (exact) in the sense where they cannotguarantee the existence of a schedule that needs the computed register count.11.2 Software Pipelining under Register ConstraintsSWP with register constraints tries to ensure that the number of values simultaneouslyalive does not exceed the number of available registers, while guaranteeing the existenceof a register allocation with the set of available registers.Hu�'s Technique [Huf93] Hu� [Huf93] was the �rst who proposed a SWP heuristicswhich tries to minimize values lifetimes, hoping that this would minimize the registerrequirement. It is based on de�ning for each statement an interval of possible issue times,called slack, depending on circuit dependences. Initially, slacks contain as soon and as lateas possible issue times that are dynamically updated during scheduling. Some statementsare scheduled early while others are delayed. Slack length de�nes a priority : the longer isa slack, the more freedom we have to schedule the statement, and the less is its priority.Backtracking is used to cancel computed issue slots if a statement cannot be scheduledwithin its slack.
201



202 CHAPTER 11. RELATED WORK IN LOOPSBu�ers Minimization [NG93, Nin93] Ning and Gao [NG93, Nin93] de�ned an ap-proximation of register requirement called bu�ers. The di�erence between a bu�er and aregister is that if two lifetime intervals do not interfere with each other, they can share aregister but not a bu�er. In fact, a bu�er is a special register which passes the successivecopies of the values produced from one SWP motif to successive ones 1. The authors claimthat bu�er minimization is a polynomial problem, but their proof is not correct. Indeed,they use an approximation of bu�ers in order to prove that their constraints matrix istotally unimodular. However, their linear constraints compute an upper-bound of bu�ers,not the exact number. Nonetheless, bu�ers can be considered by our polynomial SIRAmethodology when we �x self-reuse arcs.Decomposed SWP [WKEE94, WKE95] Wang et al [WKEE94, WKE95] proposed aSWP technique that builds a kernel with a reduced register requirement. Their algorithmdynamically maintains a graph that re
ects an approximation of register requirementduring scheduling. Their model uses a similar formulation to SIRA (with reuse edges),but with restrictions. First, they assume that each value is consumed by only one opera-tion and hence they did not investigate killing nodes. Second, they make reuse decisionsaccording to anti-dependences present in the original code : if there is an anti-dependencebetween two statement in the original code, then they report this decision to schedulingconstraints. They proved that when we �x row numbers (i.e., when the reservation tableof the kernel is computed) and original anti-dependences (�xed register reuse), then �nd-ing columns numbers that minimize register requirement under a �xed II is a polynomialproblem. In fact, it is a special case of Theorem 10.5 (Section 10.6).RESIS [SC96] RESIS methodology [SC96] tries to minimize MAXLIVE in an exist-ing kernel. Their algorithm has two main steps. First, they build a new DDG from anexisting SWP motif. Variable lifetimes are shortened by reducing the iteration index ofsome statements. This is similar to de�ning column numbers via retiming as we do inSection 9.1.2. Second step tries to reduce MAXLIVE de�ned inside the kernel by com-puting row numbers so that interferences are reduced.Hypernode Reduction and SWING Modulo Scheduling [LVA95, LGAV96,Llo96] HRMS for Hypernode Reduction Modulo Scheduling [LVA95] is a heuristicswhich constructs a SWP motif that shortens lifetimes while minimizing II at the sametime. Before scheduling, operations are ordered so that only all direct predecessors of anode u or only all direct successors of u are scheduled before treating u. That is, authorsavoid scheduling direct predecessors and direct successors before scheduling u itself. Ac-cording to which node has been scheduled �rst, their direct predecessors or successors arescheduled as soon or as late as possible. However, this technique does not distinguish thestatements : those belonging to critical circuits are more critical than others.SWING [LGAV96, Llo96] overcomes HRMS drawback by taking into account laten-cies. Statements producing values are placed near to their consumers in order to shorten1Bu�ers are similar to circuit registers with maximal register sharing in Leiserson and Saxe terminology[LS91].



11.2. SOFTWARE PIPELINING UNDER REGISTER CONSTRAINTS 203lifetimes. Full priority is given to statements belonging to critical circuits.Universal Occupancy Vector [SCFS98] Strout et al [SCFS98] give a theoreticalformulation of the relationship between storage (memory) requirement and parallelism ina loop nest. When an iteration ~i2 stores a value in the same location used by anotheriteration ~j, this creates an output dependence between these two iterations with distance~j �~i. Furthermore, if an iteration ~k reads the value de�ned by ~i, this creates an anti-dependence with distance ~k �~i. These distances are called Universal Occupancy Vectors(UOV). The introduction of false dependences because of storage limitations create newcircuits that limit the throughput MII. So the problem is to �nd these UOVs. Theauthors show that determining if a vector is a UOV is NP-complete and propose analgorithmic approximation to �nd a good one.Our reuse relation studied in previous chapter may be considered as a variant of UOVsince registers are indeed a memory. However, UOV de�nes reuse patterns between it-erations and not statements. Hence, it cannot be used for register allocation because itdoes not model precisely reuse relationship between statements. Furthermore, registersare slightly di�erent than classical memory cells since they are accessed directly (withoutaddressing) and need loop unrolling to be allocated.Recently, Thies et al [TVSA01] presented an application of UOV vectors for a�nescheduling of loop nests. They presented an elegant uni�ed framework to determine agood storage mapping for a given schedule, a good schedule for a given storage mapping,and good storage mapping that is valid for all legal a�ne schedules. Their technique has adirect application in the context of array expansion, where the cost of adding one dimen-sion to an array may give more freedom for parallelism (removal of false dependences).Our SIRA reuse model can be considered as a specialization of this theoretical framework,since we only consider registers as a storage mapping for innermost loops. However, reusegraphs are especially thought up to be directly applied to cyclic register allocation in ILPcodes. Loop unrolling and hamiltonian reuse circuits are modeled in a better and simplerway with reuse graphs. Furthermore, our reuse model enables us to prove that �ndingthe best reuse distances, with �xed reuse arcs, is a polynomial problem.Integer Programming Techniques First, there are many approaches in the literaturethat build SWP kernels under resource constraints. Hanen wrote an original formulationto linearize the disjunctive resource constraints in [Han90]. The drawback of her formu-lation is the fact that it treats only simple resources, i.e., an operation can execute onlyon a single FU. Feautrier in [Fea94] extended this latter to take into account multiplecopies of one FU. However, his formulation does not treat complex and heterogeneousFUs (structural hazards). Both Hanen and Feautrier intLP systems do not consider reg-ister requirement.Integer linear programming to build a SWP schedule under register constraints was�rst introduced by Altman [Alt95, GAG94]. However, he did not exactly express theregister requirement, but an approximation based on the bu�ers. Thus, it cannot beconsidered as an exact formulation of register need.2Recall that iterations in multidimensional loops are vectors.



204 CHAPTER 11. RELATED WORK IN LOOPSSawaya [ES96a, ES96b, Saw97] wrote an integer programming model which reducedthe exact register requirement. The complexity of his model was O(jV j��maxh) variablesand O(jEj + jV j � �maxh) constraints. Coe�cients inside constraints matrix are upper-bounded by Lmax � �max.Another formulation was given in [EDA96] with O(jV j�h) variables and O(jEj+ jV j�h) constraints, in which the coe�cients inside constraints matrix are upper-bounded byh� �max. However, this model needs a �xed reservation table : the row numbers must becomputed and �xed in a �rst step so as to satisfy resource constraints. Then, it tries to�nd column numbers that minimize MAXLIVE. A similar formulation to Eichenberger'sintLP system was recently given by Huard in [Hua01]. Indeed, the size of his constraintsmatrix has the same complexity than Eichenberger's method. However, Huard provedthat this problem is NP-complete in the strong sense (minimizing MAXLIVE under �xedrow numbers and initiation interval).Recently, Fimmel et al have written in [FM01] an exact formulation of software pipelin-ing under register and resource constraints. Since they compute the number of valuessimultaneously alive at each time step within [0; h[, their intLP system generates anequivalent number of variables and constraints as Sawaya's method. However, as in ourmodel, they assume writing delays (o�sets) such that a register does not have to be oc-cupied before the operation result is available. Furthermore, they remarked that whensharing of registers is disabled (as our self-reuse strategy), their intLP system is consid-erably simpli�ed. Indeed, we proved in the last chapter that this problem is polynomialand can be formulated with a totally unimodular constraints matrix. Their constraintsmatrix wasn't proven so.All the above intLP techniques su�er from their model size. Since they introduce hin their size complexity, constraints matrix growth depends on speci�ed latencies (inputdata) and how nodes are connected (structure of the DDG). This is because they de�nean integer variable for each clock cycle within the interval [0; II[ that computes valuessimultaneously alive. Our modeling is O(jV j2) variables and O(jEj + jV j2) constraintswhile coe�cients are bounded by �Lmax��max. This is because we compute MAXLIVEby using circular intervals, i.e., only during dates when a value is de�ned or killed. Hence,the number of variables and constraints in our intLP model depends only on the size ofthe input DDG.If we succeed in �nding a SWP schedule that does not require more than R registers,register allocation with R available registers can be performed. Some work in this �eld isexplained below.11.3 Register Allocation of Software Pipelined LoopsHendren's Approach [HGAM92, H+92] Laurie Hendren et al [HGAM92, H+92]proposed a heuristics for cyclic register allocation based on an empirical remark : in al-most all cases, a cyclic graph is R or (R + 1) -colorable (R is the maximal number ofvalues simultaneously alive). Thei heuristics proceeds by �rst trying to color the intervalswhich cross the motif barrier. The intervals inside the motif itself are acyclic and hencecan be easily colored. If there are not enough registers, spill code is introduced. Cyclic



11.4. CONCLUSION 205life intervals with multiple turns around the motif may contain several colors which corre-spond to the multiple copies of values : a �rst approach introduces some shift operationsto move these copies from one register to another. Introducing these extra operationsincrease the initiation interval of the motif. Another approach consists in unrolling theloop to exhibit the di�erent copies and to allocate each copy to a di�erent register.Rotating Register Files [RLTS92] Rau [RLTS92] proposed a method for a cyclicregister allocation if a rotating register �le (RRF) is present. After determining the SWPmotif, circular lifetime intervals are completely de�ned. If the underlying hardware doesnot implement a RRF, we must unroll the loop and rename the copies of values in orderto avoid con
icts. In the presence of a RRF, we only consider the motif without unrollingfor cyclic register allocation. The problem becomes to �t all the circular intervals into acylinder where its axis is the time (in terms of clock cycles) while minimizing its circum-ference as shown in Section 7.5. Experimental results show that in 80% of the cases, thegain in terms of required registers on a RRF is not signi�cant compared to loop unrolling,but the code is more compact.Software Simulation of RRF [DGS92] Duesterwald et al [DGS92] introduced theconcept of register pipeline to improve the register reuse between iterations. It is a set ofregisters allocated to lifetimes intervals without considering copies of values. It is indeed asort of software simulation of a rotating register �le. Their approach consists of a variantof graph coloring with multiple colors, since multiple physical registers may be assignedto the same value to hold all its copies. In the presence of a RRF, the code is easilygenerated without loop unrolling. Otherwise, they introduce move operations to simulatea RRF, which may increase the II and may need rescheduling the code if these moveoperations do not �t into the kernel.Meeting Graphs [ELM95, Lel96, ELM97, dWELM99] A complete theoreticalframework on cyclic register allocation was built by Eisenbeis and Lelait [ELM95, Lel96,ELM97, dWELM99]. They introduce the meeting graph structure de�ned in Section 7.5.They show how to always �nd a cyclic register allocation with R registers if we su�cientlyunroll the already scheduled SWP motif. They proceed by decomposing the meetinggraph into elementary circuits, in which each circuit correspond to a reuse pattern. Thedrawback was that the unrolling factor depended on the circuit decomposition, and itwas di�cult to succeed in �nding a circuit decomposition with a minimized unrollingfactor. However, in the presence of a rotating register �le, a cyclic register allocation maybe done without unrolling [Lel96] if the meeting graph contained an hamiltonian circuit.If no such circuit is present, they need a rotating register �le with R + 1 instead of Rregisters to build a cyclic register allocation.11.4 ConclusionThis chapter presents most of related work in the �eld of register pressure in moduloscheduled loops. While no study has been done in cyclic register saturation and su�-



206 CHAPTER 11. RELATED WORK IN LOOPSciency (as far as we know), many strategies rely on scheduling with a limited number ofregisters. Register Allocation of such pipelined loops with R values simultaneously aliveneeds R registers if loop unrolling is applied, or at most R + 1 in the presence of a RRF(without loop unrolling). Almost all techniques described in this chapter do not considerneither multiple register types nor explicit delays in reading from and writing into regis-ters, while our model do.Our approach is di�erent since it takes into account register constraints prior toscheduling. Two main strategies have been explored. First, the CRS and CRF anal-ysis enables us to guarantee the existence of at least one valid SWP schedule under a�xed number of registers with an optimized critical circuit. Then, we can apply schedul-ing and register allocation in any order we want. The second strategy (SIRA) consistsin applying cyclic register allocation, prior to scheduling, directly into the DDG whileminimizing the critical circuit.
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Chapter 12Future Research ProposalsAbstractIn this chapter, we provide some open problems and we propose some advancedimprovement for our register pressure thesis. We give our �rst ideas and impressionsabout future research subjects.12.1 Pursuing the Study12.1.1 Algorithmic SolutionsThis dissertation presents many algorithmic solutions for most of intLP formulations, butnot for all of them. Two main algorithms are required.Register Su�ciency As mentioned in Chapters 5 and 9, the problem of schedulingparallel operations so as to minimize the register requirement without bounds on the totalschedule time remains an open problem (assuming in�nite resources). We have no ideaabout its complexity, except in the case of sequential codes, which is NP-complete. Thisproblem needs to be studied carefully.Column Numbers for CRS Section 8.1.2 presents a heuristics for computing cyclicregister saturation (CRS) by �rst �xing column numbers. The intLP formulation maxi-mizes the number of traversed motifs (turns around the circle). Unlike the minimizationversion of this problem (solved by Leiserson and Saxe via a polynomial retiming algo-rithm), we have no algorithm for this task, and no idea about the complexity of thisproblem (is it NP-complete ?).SIRA Cyclic register allocation with SIRA is completely computed by intLP. Even ifwe can use heuristics for solving intLP systems, algorithmic solutions are more suitablein general compilers. We proved that �xing reuse arcs makes the problem polynomial.We think that it can be easily solved via minimum cost 
ow algorithms. We advise tofocus on hamiltonian reuse circuits since they enable register sharing and exhibit goodexperimental results. Also, these hamiltonian reuse decisions can be directly implementedon rotating register �les.
209



210 CHAPTER 12. FUTURE RESEARCH PROPOSALS12.1.2 Load-Store Optimization with Register Su�ciencySection 9.2 investigates spill code insertion to reduce cyclic register su�ciency (CRF).However, as explained before, we think that CRF must intervene during load-store opti-mization process to keep some of the original spill code instead of inserting a new one.We propose to re-think load-store optimization so that it becomes constrained by CRF.12.2 Extending Architectural Model12.2.1 Multiple Outputs to a Register FileMultiple outputs to a common register �le type arise commonly, for instance a load withauto increment of address. Our generic architectural model assumes that each operationmay use and produce multiple results, but writes into only one register per type. If theloaded data is written into a register of type t where the incremented address register isof another type t0, then our model considers this fact. If the load operation accesses aregister of type t and increments another register of the same type t, then the currentmodel used in this thesis does not support this fact. However, our exact formulations canobviously be extended to support it : for each operation u that writes k results of type t,we consider k distinct lifetime intervals (u1; :::; uk), one for each produced value.Fortunately, such model extension implies to re-think our algorithmic solutions. Wehave to set some integer \cost" k per type on the nodes of the data dependence graph inorder to re
ect the fact that an operation (node) has k results per type t. We used somegraph theory algorithms that are di�cult to adapt in this case. For instance, minimalchain (Dilworth) decomposition and graph retiming algorithms do not support integercosts on nodes. Some graph theory e�orts must �rst be done.12.2.2 Non Regular Register SetsOur architecture model has regular register sets : registers of the same type are identical.However, in some architectures, register types are not canonical, i.e., some operationsmay have the choice of writing into more than one register set (as clustered processors).As a �rst solution, we can decide and �x (at the beginning) a unique register type inwhich a statement writes. However, this may restrict the ability of using more availableregisters since we cannot know in advance which register type is suitable for a value (soas to reduce the register requirement). Another solution can be an iterative strategy : wecan use a heuristics to decide at the beginning in which register type resides a value, andwe try to �t the register constraints for all the register types for the �xed decision. If not,we iterate over another decision. However, the number of choices may be combinatoryin function of the number of register types. We circumvent this problem by consideringvirtual register types as described in [ZW01] which tries to extend [CER99]. A virtualregister type is a combination of the original types. This creates new canonical virtualtypes where each new type is composed of a union of some of the original types. Thisallows us to use our loop/architecture model. Nevertheless, we must come back at theend to the original register types by doing a register assignment phase, i.e., to decide inwhich type of registers resides a value. Unfortunately, they did a mistake. Contrary towhat has been stated but not proven in [ZW01], the existence of a valid schedule underthe register constraints with the virtual types does not guarantee the existence of a valid



12.2. EXTENDING ARCHITECTURAL MODEL 211register assignment. This is because a value lifetime interval may need to change a registertype at a certain point of time in order not to exceed MAXLIVE. We can handle thisaspect by inserting move operations, but this is another issue.12.2.3 Cache E�ectsIn the area of �ne grain scheduling, the cache e�ects are rarely taken into account be-cause their behavior di�ers from one platform to another. Furthermore, recovering fromcache e�ects by data prefetching (early scheduled loads) may require more registers toissue more operations during miss stall cycles, and sometimes may require extensive codesize expansion due to loop unrolling to exhibit more parallelism. To exploit this ILP, thememory load which causes a cache miss must be issued well ahead of the operation thatrequires the loaded data in order to reduce the cache miss stall cycles to a minimum.In [Tou01c], we give a �rst intLP formulation of optimal scheduling with cache e�ects.That work handles only compulsory (cold start) cache misses in DAGs where memoryaccess operations exhibit some spatial or temporal locality. We propose to continue thestudy to the cyclic case (loop) with a limited cache size. This section shows how cachemisses can be incorporated into scheduling.Given some memory load operations accessing the same cache line, the �rst issuedload causes a cache compulsory miss and brings the entire line into the cache, while thesubsequent accesses to the loaded cache line are hits. To �x ideas, we assume the fol-lowing scenario. We call a leading cache e�ect the penalty for a miss reference, and wenote it lce. A subsequent reference to the same cache line su�ers from a trailing cachee�ect tce due to the latency of fully servicing the miss : the requested data which causesthe miss bypasses the cache and goes directly from the memory bus to the CPU, whilethe subsequent hits must wait tce cycles for loading the whole cache line into the cache.According to this scenario, cache e�ects make the memory operation latencies variablethat depend on their schedule times. There is an inter-dependence between the scheduleand the cache e�ects. For instance, suppose that a load operation a is scheduled beforeb and c, all of them access the same cache line. This load is an essential (compulsory)miss which can not be eliminated, then the latency of a must be set to �(a) = lce if wewant to avoid stalling the processor. In order to eliminated the trailing cache e�ects of band c, we must issue them after the schedule time of a with at least (lce+tce) clock cycles.To write the linear constraints of cache e�ects in acyclic scheduling with in�nite cachecapacity, we start by grouping memory access operations into subsets Vli � Vl, such thatall the operations belonging to the same subset Vli access the same cache line i. To identifywhich load operation is being scheduled �rst and causes a miss, we de�ne a variable mifor each subset Vli which holds the �rst (minimal) issue time :8Vli � Vl mi = minu2Vli �uAny memory access operation u 2 Vli scheduled at time mi must have a miss latency toavoid stalling the processor. We write in the model the following linear constraints :8Vli � Vl; 8u 2 Vli (�u = mi) =) (�u = lce)



212 CHAPTER 12. FUTURE RESEARCH PROPOSALSin which �u is an integer variable representing the latency of the load operation. All thesubsequent memory access operations in Vli are hits and must be delayed to avoid thetrailing edge e�ects. We write in the model the linear constraints of :8Vli � Vl; 8u 2 Vli : (�u > mi) =) � �u = hit�u �mi � lce + tceThe total number of these linear constraints and variables is bounded by O(jV j).12.3 Extending Loop Model12.3.1 Branches inside LoopsOur loop model doesn't include control dependences inside bodies. This problem is stillnot well solved because the presence of branches inhibits static data dependence analysisfrom extracting precise 
ow information, and hence prevents us from getting precise life-times intervals. Furthermore, it is questionable if SWP with branches would give betterspeedups compared to speculative execution.Note that the IF-conversion technique converts control 
ow to predicated instructions.Therefore, control dependences become data dependences [Hu00]. Since branches areremoved, guards add new values and 
ow arcs of type \predicate", which are taken intoaccount in our model. We must make a deeper study on the in
uence of such guards onlifetimes intervals, for instance by using a guard-aware data 
ow analysis [GcRJJS96] inloops.12.3.2 Loop NestSoftware Pipelining is generally applied to innermost loops because the �ne grain par-allelism is enhanced at this level. However, some work has been done for extending itto the multi-dimensional case of perfectly nested loops [Ram94, GQD94]. Consider thefollowing code :for I1 = l_1, u_1...for Im = l_m, u_mS1 (I1, ..., Im)...Sk (I1, ..., Im)endfor...endforA multi-dimensional periodic schedule of a perfect loop nest considers the iteration countand the initiation interval are two integer m-vectors (m is the depth of the nest), ~i =(i1; � � � ; im) and ~h = (h1; � � � ; hm). Then, a SWP is de�ned as follows :�(u(~i)) = �u + ~h�~iwhere �u is the schedule of the �rst multi-dimensional iteration (l1; � � � ; lm). Each com-ponent of the initiation interval vector corresponds to a loop level in which hj denotes



12.3. EXTENDING LOOP MODEL 213the initiation interval of the jth loop in the nest. If hj > 0, this means that the nextloop (j+1) has to be unrolled hj times. Ramanujam [Ram94] builds a schedule where hjmay be negative. This means that the next loop j + 1 has to be unrolled hj times in thereverse order. The generated kernel for a multidimensional schedule is not as compact asin the mono-dimensional case, but the sustained performance is optimal. Unfortunately,the cyclic register requirement and allocation in the multidimensional case is not wellunderstood yet.A Method as Starting Example In the case of non perfectly nested loops, we assumethat the scheduler would not overlap the iterations of two distinct loops. This sectionpresents a �rst method in order to deduce the cyclic register saturation of non perfectloop nest. To �x ideas, consider the following example :LOOP1: FOR i=1, nS1: A(i)= A(i-2) * 2LOOP2: FOR j=1, mS2: B(i,j) = A(i-1) +yS3: C(i) = B(i, j)S4: D(j) = D(j-2) +1ENDFORS5: x = A(i) - 3LOOP3: FOR j=1, mS6: E(j) = A(i-1) / xS7: F(j) = E(j) + F(j-2)S8: G(j, i) = G(j-2, i) + E(j)ENDFORS8: y = A(i-1) + xENDFORThe data 
ow graph with the control dependences (program dependence graph PDG) isshown in Figure 12.1.(a) in which arc labels denote dependence distances (some have twodimensions since the depth of the loop nest is 2). Values and 
ow arcs are shown with boldlines, and control dependences are shown with dashed lines. A dashed block represents aloop : an arc from a block A to another block B means that all the operations of A mustbe scheduled before those of B. This PDG models the fact that the scheduler does notoverlap the iterations of two distinct loops. The steps of our (starting) heuristics whichcomputes the register saturation of this loop nest are the following.1. We look for �2; �3 the two saturating SWP schedule for each of the two innermostloops.2. We extract the prologue and the epilogue of these inner loops and insert them intothe outer loop.3. We construct a new PDG for the outer loop where each inner loop is considered asan atomic loop operation. Figure 12.1.(b) gives the PDG constructed for the outerloop. The two inner loops are considered as atomic operations which read (consume)
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12.3. EXTENDING LOOP MODEL 215a value (for instance, loop2 reads the value produced by S1). The prologue andepilogue code is also presented with the correct 
ow and serial arcs.4. We look for �1 a saturation SWP schedule for the outermost PDG : reporting thecontrol dependences to the scheduler ensures that no iteration overlap is possible atthe �rst level of the loop nest.5. At this point, we report the complete interference between the values in the loopnest by replacing the atomic operation of the two innermost loops by their kernelas shown in Figure 12.2. The values produced by the outermost loop interfere withthe values produced by the two innermost loops. The register saturation is equal tothe maximum number of values simultaneously alive.
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Figure 12.2: Cyclic Register Saturation in Non Perfectly Nested LoopsLet us generalize to arbitrary loop nests. Our proposed heuristics �rst looks for a saturat-ing schedule for each loop from the innermost to the outermost depth. At each level, weconsider the loops of the next level as atomic. Then, we reverse the traversal to replaceat each level (starting from the top to the innermost) all the atomic operations by thekernels of their corresponding saturating schedules. The main steps of our approach arethe following.1. Build a tree to re
ect the loop nest : each loop corresponds to a node in the tree.A node b is a child of a node a if the loop a surrounds the loop b, i.e., i� nest(b) =nest(a) + 1.



216 CHAPTER 12. FUTURE RESEARCH PROPOSALS2. Proceed from leaf nodes by searching a saturating schedule for each loop. Algo-rithm 10 gives a recursive method that saturates the cyclic register need of a loopnest represented by a tree. It proceeds by �rst saturating the innermost loops. Then,it builds a PDG for all the outer loops by considering loops of next level as atomic.Note that for innermost loops, the scheduler may overlap iterations to build a SWPschedule. In this case, we must extract the prologue and the epilogue operationsand insert them into the surrounding loop. We assume that any non innermost loopis scheduled without iteration overlap because we report control dependences in thePDG. Consequently, the prologue/epilogue code is inexistent.3. From the top level to the leaf loops, replace the atomic operations by the kernels oftheir corresponding saturating schedules. The register saturation is the maximumnumber of values simultaneously alive produced in all the loop nest.Algorithm 10 Saturate(T )Require: A tree T of a loop nest.l root(T )if T:children(l) = � then finnermost loopgbuild a cyclic SWP saturating schedule for the DDG of the loop l.elsefor all l0 2 T:children(l) do fa depth �rst traversal of the tree to saturate the innerloopsgSaturate(T � fl0g)if T:children(l0) = � then finnermost loopginsert the prologue/epilogue code of l0.end ifend forbuild the PDG of the loop l by considering each child l0 as an atomic loop node.build a cyclic saturating schedule for the PDG of l.end if12.4 Reusing Other Storage LocationsA good perspective is to extend reuse graphs (SIRA) in order to take into account cachelines instead of registers. The aim is to provide some compilation techniques for softwaremanaged caches in which the compiler has the control on replacement policy. Reuse arcswould express the fact that two memory operations reuse the same cache location. Theproblem would be for instance to prevent a loop from accessing more cache lines thancache capacity, or to decide which memory line should reside in the cache. Some work[Gen98] addresses a similar problem that minimizes cache interferences.Cache lines may also be replaced by memory cells. Hence, another perspective isto study some new memory management techniques (used for out-of-core computation,data layout optimization, etc.). In this case, a reuse arc would express the fact that twovirtual memory addresses share the same physical memory location. This perspectiveis a continuation to some existing works about the tradeo� between parallelism and thestorage requirement in a loop nest [SCFS98, TVSA01].



Chapter 13ConclusionThis thesis, that we know it can never be exhaustive, addresses the area of register pres-sure in ILP codes. The target architecture is su�ciently generic so that it models most ofexisting ILP processors. In addition to parallel execution of operations, we assume mul-tiple register �les (or sets) with visible delays in reading from and writing into registers.While most studies suggest that register constraints in ILP must be incorporated dur-ing or after scheduling, our thesis proposes to come back to the �rst old strategies whereregisters are handled earlier. We re-think these problems to take into account ILP : ourregister pressure analysis takes care of critical execution paths so that the further sched-uler would not be handicapped by useless serializations.Dissociating register pressure from scheduling has many reasons.A �rst goal is to build more generic optimizing compilers. While resource and archi-tectural constraints are very heterogeneous from one processor to another, registers aremore generic. ILP scheduling is tightly dependent on the hardware, hence compiling fordistinct target architectures requires re-writing this phase.A second reason for decoupling register constraints from ILP scheduling is that memorywall is the hardest performance bottleneck in today processors, much more harder thanILP extraction and utilization. It is an important necessity to avoid requesting data frommemory by making the best use of available registers.Third and last, register pressure is more di�cult to handle than scheduling under re-source constraints. This is because we are always sure to have at least one valid schedulefor any data dependence graph (DDG) on any target processor, while we cannot guaranteethe existence of such schedule under a limited number of registers without spilling.Our thesis contributes to register pressure optimization with two distinct strategies,both of which do not require full re-writing of compiler backends.The �rst strategy is aimed at existing ILP compilers where register allocation is per-formed after or during scheduling. Our method is based on register saturation and suf-�ciency analysis. It takes, prior but sensitive to ILP scheduling, an input DDG andguarantees register pressure constraints. In one hand, the register saturation (RS) anal-ysis allows to check if register pressure plays critical constraints on ILP scheduling. Wehave proved that computing RS is an NP-complete problem. We have provided an opti-mal method with integer programming, and an algorithmic heuristics that exhibit nearlyoptimal results. If RS exceeds the number of available registers, serial arcs are introduced217



218 CHAPTER 13. CONCLUSIONto limit values lifetimes interferences so as to reduce RS while optimizing the increaseof critical execution path. An optimal solution to this problem is proved NP-hard. Wehave provided an optimal method based on integer programming as well as e�cient algo-rithmic heuristics. On the other hand, register su�ciency (RF) analysis allows to checkif spill code may be avoided before entering instruction scheduling process. In order tocompute RF, we have also provided an optimal method with integer programming and analgorithmic heuristics. If RF exceeds the number of available registers, we have proposedan approach that inserts memory operations into DDGs so as to reduce RF. However, wethink that RF analysis must take part in the redundant load/store removal phase so asto keep some of the original spill operations.Regarding the second strategy, it is aimed at existing compilers that perform an earlyregister allocation step, originally written for sequential code. This old scheme isn'tadapted to ILP processors. So, we just improve it by replacing the register allocationphase by our SIRA technique (Schedule Independent Register Allocation) so that registerallocation leaves most of opportunities for ILP extraction. On one hand, register alloca-tion in basic blocks is based on RS analysis. We try to use a maximal number of registersso as to minimize ILP loss. On the other hand, register allocation in loops is modeledby reuse relations so as to minimize the number of required registers under a �xed exe-cution rate. We have provided a theoretical frameworks for register allocation with loopunrolling as well as with rotating register �les. While an optimal solution for SIRA inNP-complete in the general case, we have proved that �xing reuse decisions yields to apolynomial problem.Finally, I want to say that I have felt a real pleasure of making this thesis in the INRIAlaboratory. I hope that it will contribute positively, would be this only with an epsilonfactor, to the preceding e�orts in the �eld of code optimization for high performancecomputing.
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Problem Complexity Proposed Solu-tions RemarksRS Computation(Chapter 4) NP-complete(Section 4.1) - exact (intLP, Sec-tions 3.3 and 4.1)- algorithmic heuris-tics (Greedy-k, Sec-tion 4.1.1) - linear complexity in thecase of trees and forests oftreesRS Reduction withMinimal CriticalPath (Chapter 4) NP-hard (Sec-tion 4.2) - exact (intLP, Sec-tions 3.3 and 4.2)- algorithmic heuris-tics (value serializa-tion, Section 4.2.3)RF Computation(Chapter 5) NP-complete forsequential codes[Set75], remainsopen problem forILP codes exact (intLP, Sec-tions 3.3 and 5.1.1 - resource constraints mayproduce sub-optimal regis-ter su�ciencyalgorithmic heuris-tics (value serializa-tion, Section 5.1.2) - the approximated RF isvalid for any resource con-straintRF Reduction withMinimal Num-ber of Introducedload/store NP-complete(classical prob-lem) algorithmic heuris-tics (Section 5.2)Register Alloca-tion with MinimalCritical Path (Sec-tion 4.3) NP-complete(classical prob-lem) RS analysis + mini-mal chain decompo-sition (Section 4.3) polynomial problem in thecase of trees if RS is loweror equal to the number ofavailable registersTable 13.1: Summary of our Contributions on Register Pressure in DAGs and acyclicCFGs



220 CHAPTER 13. CONCLUSION
Problem Complexity Proposed Solu-tions RemarksCRS Computation(Chapter 8) NP-complete(Chapter 8) exact (intLP, Sec-tions 7.3 and 8.1.1)heuristics : intLP +algorithm the complexity of theintLP part remains unde-�nedCRS Reduction withMinimal Critical Cir-cuit (Section 8.2) NP-hard (Sec-tion 8.2) exact (intLP, Sec-tion 8.2)CRF Computation(Chapter 9) NP-complete forsequential codes[Set75], remainsopen problem forILP codes exact (intLP, Sec-tion 9.1.1) resource constraints mayproduce sub-optimal CRFalgorithmic heuris-tics : retiming + RF(Section 9.1.2) the approximated CRF isvalid for any resource con-straintCRF Reductionwith Minimal Num-ber of load/store(Section 9.2) NP-complete(classical prob-lem) algorithmic heuris-tics CRF must take part ofredundant memory opera-tions elimination stepMinimal Cyclic Reg-ister Allocation withMinimal Critical Cir-cuit (Chapter 10) NP-complete(classical prob-lem) exact (intLP, Sec-tion 10.4) minimizing the unrollingdegree remains an openand hard problemMinimal Cyclic Reg-ister Allocation withMinimal CriticalCircuit on Rotat-ing Register Files(Section 10.5)

NP-complete(classical prob-lem) exact (intLP, Sec-tion 10.5) - only a unique reuse cir-cuit (hamiltonian) is al-lowed- loop unrolling is not nec-essary- at most one extra registerneededMinimal Cyclic Reg-ister Allocation with�xed reuse relations,Critical Circuit Min-imized (Section 10.6) polynomial (Sec-tion 10.6) exact (intLP witha totally unimodu-lar constraints ma-trix, (Section 10.6))Table 13.2: Summary of our Contributions on Register Pressure in Innermost Loops(without branches)
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