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Abstract

It has become a truism that memory accesses play the major role of degrading program
performance. This is because the continuous increasing of the gap between instruction
level parallelism (ILP) processor speed and memory access latency. Optimizing compilers
must avoid requesting data from memory if possible by using at the best the available
registers of underlying hardware.

This thesis reconsiders the register pressure concept so that it gets higher priority than
ILP scheduling, but with full respect to intrinsic fine grain parallelism. We propose to
handle register pressure early in optimization process, before instruction scheduling. Two
main strategies are developed.

In the first strategy, we handle data dependence graphs (DDGs) so that we guarantee
register constraints without increasing critical execution paths if possible. We introduce
and study the concept of register saturation (RS), which is the exact upper-bound of
register requirement for all valid schedules independently of architectural constraints. Its
aim is to add some serial arcs to the original DDG such that the worst register need
does not exceed the number of available registers. On the other hand, register sufficiency
(RF) is the exact minimal register requirement. Its aim is to detect unavoidable spilling
decisions when it exceeds the number of available registers. After RS and RF analysis
steps, ILP scheduler is free from register constraints and final allocator may not require
avoidable spilling.

Our second strategy consists in directly applying an early register allocation with op-
timized ILP loss. It is built directly into the input DDG and hence register constraints
are fixed.

Our thesis addresses basic blocks, acyclic control flow graphs (multiple basic blocs with
branches) and innermost loops intended for software pipelining. We assume a generic ar-
chitecture model so that it matches current ILP processors. We give an exact formulation
with integer programming for all register pressure problems. We also provide algorithmic
solutions. Experimental results show that our heuristics are nearly optimal. Our thesis
proves that we can and must handle register constraints early while keeping freedom for
a further ILP scheduling. This is more beneficial than a combined approach which tries
to carry out register allocation and ILP scheduling in a single complex pass.

Keywords: Instruction Level Parallelism, Register Allocation, Register Saturation,
Register Requirement, Register Sufficiency, Software Pipelining, Integer Linear Program-
ming, Code Optimization, Optimizing Compilation.



Résumé

Aujourd’hui, le fait que la mémoire constitue un goulot d’étranglement pour les perfor-
mances des programmes est considéré comme un truisme. Ceci découle du grand écart
entre la vitesse des processeurs a parallélisme d’instruction (ILP) et la latence d’acces a la
mémoire. En effet, cet écart est en constante croissance. Les compilateurs doivent donc
optimiser les programmes afin d’éviter, si possible, de recourir a la mémoire, et ceci en
utilisant au mieux les registres disponibles dans le processeur cible. Ceci car les registres
sont plus proches du processeur et peuvent étre accédés tres rapidement.

Cette these réexamine le concept de la pression des registres en lui donnant une plus
forte priorité par rapport a I'ordonnancement d’instructions, sans oter a ce dernier ses pos-
sibilités d’extraction de parallélisme. Nous proposons de traiter le probléme des registres
avant la phase d’ordonnancement. Deux grandes stratégies sont étudiées en détail.

La premiere consiste a analyser et manipuler un graphe de dépendance de données
(GDD) pour garantir les contraintes de registres sans allonger son chemin critique (si
possible). Nous introduisons la notion de saturation en registres qui est la borne exacte
maximale du besoin en registres de tout ordonnancement valide, indépendamment des
contraintes architecturales. Son but est d’ajouter, le cas échéant, des arcs au GDD pour
que la saturation soit en dessous du nombre de registres disponibles. Réciproquement, la
suffisance est le nombre minimal de registres dont il faut disposer pour produire au moins
un ordonnancement valide pour le GDD considéré. Si cette suffisance est au dessus du
nombre effectif de registres, alors 'utilisation de la mémoire comme moyen de stockage
auxiliaire est inévitable en introduisant du code de vidage (“spilling”).

Notre deuxieme stratégie construit une allocation de registres directement dans le
GDD en optimisant la perte du parallélisme intrinseque. Ceci est aussi effectué avant la
phase d’ordonnancement.

Notre these considere des blocs de base, des graphes acycliques de flots de controle
(plusieurs BB avec branchements) et des boucles internes destinées par la suite & un
éventuel pipeline logiciel. Nous supposons une architecture générique qui modélise presque
tous les processeurs ILP modernes. Nous donnons des formulations exactes des problemes
de registres par programmation linéaire en nombres entiers. Nous apportons également
des solutions algorithmiques. Nos expériences sur un large éventail de “benchmarks”
montrent que nos heuristiques sont presque optimales. Notre these prouve que nous
pouvons et devons traiter les contraintes de registres avant la phase d’ordonnancement
tout en garantissant une liberté pour l'extraction et l'exploitation de I'ILP. Cet ordre
d’optimisation est plus bénéfique qu’'une approche combinée et complexe qui effectue a la
fois I’allocation de registres et I’ordonnancement d’instructions.

Mots-clés: parallélisme d’instructions, parallélisme a grain fin, allocation de registres,
consommation en registres, saturation en registres, suffisance en registres, pipeline logiciel,
programmation linéaire en nombres entiers, optimisation de code, compilation.
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Chapter 1

Introduction

Four decades of hard efforts! That’s what hundreds of computer scientists spent, and still
spending, in developing compiler optimization techniques for high performance comput-
ing. While old optimizations for sequential Von Neumann processors relied on reducing
the number of executed instructions, the introduction of instruction level parallelism (ILP)
processors brought a new order. Optimizations for such machines maximize parallelism
and memory locality instead of minimizing the number of operations [SCD*97, BGS94a].
Dozens of methods analyze and transform programs to boost their performance. Data
dependence analysis, loop transformation, code scheduling, speculative execution and so
on aim to best utilize underlying hardware. We can use lots of optimization techniques
but answering the question “Which optimization should we use, and in which order 7 is
still a dream.

Some years ago, I was a student looking for a Ph.D. project in this area. I joined a
team called A3 in the INRIA french laboratory working on code optimization for high
performance processors. Its leader asked me a question as starting point for research
subject: “Given a program and an ILP processor, what would be the limits of its perfor-
mance 7. The answer is crucial since it constitutes a stopping criterion for optimization
process. I took this motivating challenge...

Starting with simple numerical fortran loops, I spent more than a year and a half
experimenting optimizations in both high and low level codes on different platforms. I
cannot report exactly how many techniques and combinations I used, but I checked al-
most all of them. I spent several months in performance debugging by using both direct
measurements (hardware performance counters) and simulations. I wanted to understand
why my painfully optimized codes didn’t reach the performance limit. T figured out that
the main responsible for such performance degradation is memory. Well, I re-discovered
the wheel.

It is easy to see that memory performance in terms of access delays does not follow the
same curve as processor performances, see Figure 1.1 [PH94]. This gap makes it very hard
to reach peak performances in real applications. Even if using specialized and optimized
benchmarks (Dhrystone, LinPack), achieving a maximal MIPS' or MFLOPS? is nearly

'Million Instruction Per Second.
2Million Floating Point OPerations per Second.

13
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Processor vs. Memory Performance Evolution
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Figure 1.1: Memory Performance Gap

impossible. Figure 1.2 shows the gap between peak and real performances®, and it keeps
increasing with years.

In spite of many code optimization techniques and memory hierarchy enhancement,
the time spent in the memory system remains substantial. The authors of [fLRBO01] de-
pict the performance of the SPEC CPU2000 benchmarks, see Figure 1.3%. The last bar
represents the harmonic mean of all experiments. As can be seen, the system spends only
31% of the overall execution time for useful computation. This poor useful ratio is caused
by CPU idleness waiting for servicing data requests from memory hierarchy to CPU.

Then, I decided to optimize programs so that they avoid accessing memory. This
brought me to optimize the first top level in memory hierarchy, which are registers.

1.1 Problem Description

Register allocation was, and still is, one of the most important code optimization. It
would be ideal if all program variables could reside in registers. However, the limited
number of registers accessible via programs brings us to search for tradeoffs. We must
decide which computed data reside in registers, which are stored in memory (spill code),
and what are the operations that use the same register (false dependences).

Old register allocation techniques were implemented for sequential processors and they
did not assume any parallel execution of operations. If carried out before ILP scheduling,
no enough parallelism would be allowed because of excessive false dependences. If carried

3Numerical performance results have been down-loaded from [Net, Wei]. The peak performance of
each processor is given by the vendors and computed as a linear function of processor frequency ILP
degree.

“These experiments are obtained on a simulated 1.6GHz, 4-way issue, out-of-order core with 64KB
split level-one caches; a four-way, 1MB on-chip level-two cache; and a straightforward Direct Rambus
memory system with four 1.6GB/s channels. As reported by the authors, they use the simplescalar
[ALEO2] tool to simulate Alpha-ISA binaries of the SPEC CPU200 benchmarks, produced with a recent
Compaq compiler (C V5.9-008 and Fortran V5.3-915) and compiled with the “peak” compiler options
from the Compaq submitted SPEC results.
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16 CHAPTER 1. INTRODUCTION

out after, scheduled code may require more registers than available and hence excessive
spilling operations are inserted. Also, a combined pass is too complex and limits the
genericity of the compiler, as explained later.

In this thesis, we show how to handle register pressure in data dependence graphs
(DDGs) targeting RISC® ILP processors. We decided to respect some principles :

1. priority of registers on scheduling. This is because we want to avoid requesting data
from memory;

2. registers should not hurt the parallel execution of operations, if possible;

3. our methods should not imply a major investment in compiler implementation. That
is, our methods must be as portable (generic) as possible, and should not bring a
major re-organization of an existing optimizing compiler;

4. our architectural model must be as generic as possible, so that it agrees with almost
all current ILP processors.

We propose to handle register constraints at the level of the DDG and before scheduling
under resource constraints. We investigate two main strategies, both applied for basic
blocks or loops, see Figure 1.4.

(Register Saturation and Sufficiency Analysis | [ Schedule Independent Register Allocation |

[ Register Pressure Management } DDG with antidependencies

Scheduling

(1) Early Register Pressure Management (2) Early Register Allocation

Figure 1.4: Two Strategies for Handling Register Constraints

First Strategy Taking an input DDG, we must guarantee that the scheduler would
be free from register constraints and would not require more registers than available.
This is intended for existing compilers that carry out code scheduling before or during
register allocation. Our new phase is inserted before these two tasks. The intrinsic register
pressure of a DDG is defined by a triplet (RS, RF, R), see Figure 1.5:

5Reduced Instruction Set Computer.
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1. register saturation (RS) is the maximal register need of all valid schedules. If RS
is less than or equal to R, the number of available registers, then register pressure
is zero and the DDG is left unchanged. Otherwise, we add serial arcs to reduce RS
with full respect to intrinsic ILP;

2. register sufficiency (RF) is the minimal number of registers required to produce at
least one valid schedule. If RF is greater than R, using memory as a second storage
location cannot be avoided. We insert explicit load-store operations directly into
the DDG to reduce RF.

Second Strategy We propose an early register allocation phase, at the level of the
DDG while keeping as much intrinsic ILP as possible for the further scheduler. This
method is proposed for existing optimizing compilers that perform register allocation be-
fore scheduling. Our new phase must replace the old register allocator if this latter hurts
ILP scheduling.

What are our arguments for treating register constraints before scheduling I" The next
section presents our motivations.

1.2 Owur Motivations

Memory Gap If we combine code scheduling with register constraints, this means that
both processes have an equivalent impact on code performance. This is basically a wrong
assumption. As mentioned before, memory access is much more a source of performance
bottleneck than ILP. Even if the scheduler succeeds in exploiting a maximal static ILP,

RS
RS —
reduced by
adding arCs
RF reduced by
. I spilling
e =
RF
RF
(a) Null Register Pressure (b) Possible Spill Code Insertion (¢) Unavoidable Spill Code
Figure 1.5: Register Pressure Configurations
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memory access delays and cache effects decrease the overall IPC®. Register pressure must
get full priority against scheduling, but the former should respect the latter. This is
because a disturbed register pressure treatment (allocation or other) with a scheduling
process may introduce avoidable spill code. That’s exactly what we want to avoid.

Genericity of Register Constraints Nowadays processors have heterogeneous and
complex properties. Despite many efforts of grouping resource constraints into generic
models (reservation tables for functional units usage, templates for valid operation com-
pactions, static issue width, dispersal rules, ...) this problem is still not well solved because
each new architecture brings its own performance bugs. This fact means that optimizing
compilers, especially their backends, are very architectural dependent, and each vendor
provides a new compiler for its new processor. Optimized codes involve re-scheduling for
different hardware platforms.

In contrast, register constraints are more generic. They can be modeled as a set of
register types (or register files), and a number of architectural registers per type. Also, an
operation that writes its result into a register makes this latter busy during a contiguous
time interval until the last reading of the stored result. Hence, register constraints are
more portable and may be incorporated into intermediate level optimization process.

Complexity of Register Pressure Scheduling under resource constraints is a per-
formance issue. Given a DDG, we are sure to find at least one valid schedule for any
underlying hardware properties (a sequential schedule in extreme case, i.e., no ILP).
However, scheduling a DDG with a limited number of registers is more complex. We
cannot guarantee the existence of at least one schedule. In some cases, we must introduce
spill code and hence change the input DDG.

Also, a combined pass of scheduling with register allocation presents an important
drawback if not enough registers are available. During scheduling, we may need to insert
load-store operations. We cannot guarantee the existence of a valid issue time for these
introduced memory access in an already scheduled code; resource or data dependence
constraints may prevent from finding a valid issue slot inside an already scheduled code.
This forces to iteratively apply scheduling followed by spilling until reaching a solution.

All the above arguments make us re-think new ways of handling register pressure

before starting the scheduling process, so that the scheduler would be free from register
constraints and would not suffer from excessive serializations.

1.3 Dissertation Overview

Our dissertation is presented in two volumes, the current one is the main document and
the second is an appendix.

The main document contains four distinct parts. We have made efforts to write inde-
pendent chapters, so that readers can be free to consult our study in any order.

6Instructions per Cycle.
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Part 1 is devoted to recall some basic notations on graphs. We give a brief survey on
ILP architectures and register allocation techniques for sequential processors. We present
also the integer programming techniques used in this thesis.

Part 2 details our studies on register pressure in basic blocks (DAGs). It is composed
of four chapters:

e Chapter 3 fixes underlying architecture properties and define the DAG model. It
gives also an exact formulation of register requirement by integer programming;

e Chapter 4 studies register saturation (RS). We show how to compute it and reduce
it by adding serial arcs. We also present its application to early register allocation.
RS in the presence of branches is studied too;

e Chapter 5 studies register sufficiency (computing and reducing it by spilling);

e Chapter 6 surveys the state of the art of register pressure in DAGs.

Part 3 extends our DAG work to innermost loops intended for software pipelining
(SWP) scheduling. This part is composed of five chapters:

e Chapter 7 defines the loop and architectural models. We recall software pipelining
and its consequences on cyclic register requirement and allocation. We give an exact
formulation of the cyclic register need;

e Chapter 8 studies cyclic RS (computing and reducing it);
e Chapter 9 studies cyclic RF (computing and reducing it);

e Chapter 10 show how we carry out an early cyclic register allocation directly into
the DDG without hurting a further SWP;

e Chapter 11 surveys related work on register pressure in software pipelined loops.

Part 4 finishes our dissertation by some research proposals and a global conclusion.

The second volume of our thesis (appendix) contains some of our formal proofs, those
that aren’t necessary for fluent reading. It contains also our experimental benchmarks,
numerical results and plots, and an example of RS computation.

Intended Audience The primary intended audience of this dissertation are computer
scientists and engineers. We assume a knowledgeable reader in the area of code optimiza-
tion, though not an expert.
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Chapter 2

Background and Basics

Abstract
This chapter introduces basic notions, definitions and notations used in this the-
sis. We first address some basics in integer programming and discrete mathematics
(graph theory). Then, we give a survey on ILP architectures and register allocation
for sequential codes.

This chapter is organized as follows. Section 2.1 presents some integer linear program-
ming techniques (intLP) that we use in this thesis. Section 2.2 gives basic notions and
notations in graph theory. Section 2.3 is a synthetic survey on instruction level parallelism
(ILP) architectures. Finally, Section 2.4 recalls the old register allocation techniques for
sequential processors.

This dissertation uses integer linear programming (intLP) to model exact solutions for
register pressure problems. The next section recalls some basic notions about intLLP and
presents some modeling techniques.

2.1 Some Integer Linear Programming Techniques

Integer linear programming (intLP) is mainly used to formalize combinatorial problems
[Bea96, BT97, CCPS98]. An integer linear programming problem (P;,;;p) consists in
finding the maximum of a linear function, called the objective function, under linear con-
straints. Formally, it amounts to solving the following problem (standard formulation):

Maximize (or Minimize)z = ¢ -z objective function
(Piizp) § Az =10 integer constraints
reN integer variables

where A is an (m x n) integer constraint matriz, b an m_Lvector, and ¢ an n-vector called
cost vector. This formulation can be rewritten by using the inequality constraints (>,
<,>, <).

In general, finding an exact solution to intLLP problems is NP-complete [Bea96]. The
special case of totally unimodular constraints matrix (where the determinant of each
square sub-matrix is equal to 0, 1 or to - 1) can be solved with polynomial algorithms
[Sch87]. Given a system with n variables and m linear equations where L is the number of
bits of the variables, the interior point method [Kar84] can compute the optimal solution

21
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with O(n35L) operations in the worst case.

Even in general cases, some solvers support certain features, which allow using heuris-
tics to get approximated or suitable solutions. In our experiments, we use CPLEX [CPL93]
because it allows tuning resolution algorithms if computing optimal solutions is very ex-
pensive (out of memory or time). We can use one of the following techniques.

1. Stop the optimization process if the objective function reaches a certain limit. The
solution in this case is suitable even if it is not optimal.

2. Fix a limit and stop the optimization process if we reach it. We can set limits on
computation time, overall allocated work space and the number of (visited) feasible
solutions. We can also use a suitable combination between these limits.

3. Start from a solution. We can provide a known solution to serve as the first integer
solution.

4. Choose a heuristics to find integer solutions during the branch and cut procedure on
the solution tree. CPLEX supports tuning specific parameters that allow guiding
how solution tree nodes are traversed during optimization process.

Our integer problem formulations written in this thesis use some modeling techniques
of logical operators and other functions such as “maximum” and “minimum”. The fol-
lowing sections describe how we use linear constraints to write them.

2.1.1 Expressing Logical Operators with Linear Constraints

Intrinsically, an intLLP problem formulates two boolean operators A and —.

e Having two constraints matrix A and A’ with dimensions (mxn) and (m'xn), saying
that = must be a solution for both of them is modeled by defining an aggregated
matrix A of dimension (m + m') x n where:

-(4)

e Having a linear constraint f(z) > b, saying that z must not satisfy the condition
f(z) > b is modeled by setting f(z) < b. Since the variables are integrals, we can
write f(z) <b L 1.

e Having a constraints matrix A with m lines (m linear constraints fi, fo, -, fim),
saying that z must not satisfy Az > b is modeled by :

filz) <bi V folw) <by V -0V fro(2) < by

In [GN72], the authors show how to model the disjunctive operator V. A key condition
is that the domain set of each variable is bounded, i.e., each variable must have a finite
lower and upper bound. Consider the problem :

1. maximize f(x), z € D (D is called the domain set of z)
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2. subject to

gi1(z) >0 hy(z) >0
ga(z) >0 ha(z) >0
gm(x) >0 hmr(x) >0

By introducing a binary variable « € {0, 1}, this disjunction is equivalent to:

( g1(z) > ag
92(x) > agy

| a€{0,1}

where g; # 0 and h; # 0 are two known nonzero finite lower bounds for g; and h;
respectively. Indeed, if we use a finite lower bound (even if it is zero), the system remains
correct.

In our intLP model, we need to express the disjunctive formula with three linear
constraints:

filz) 20V fo(z) 20V fs(z) 20 = (fi(z) 20 V fo(z) 20) V fs(x) 20
We introduce a boolean binary variable h € {0,1} to express the first disjunction:

filz) Lhfi >0
fale) LA LA)f>0 pV fs(z)>0
h € {0,1}

where f; and f; are two finite lower bounds of f; and f; respectively. To express the
second disjunction, we introduce a second boolean binary variable b’ € {0,1}:

fi(x) Lhfi > B x fi
fa(z) L(LLA)fa >N x f3
fal@) > (L LI

h,h' € {0,1}

where (f1, f3, f3) are finite lower bounds for (fi; L hfi, fo L (1 L h)fs, f3) respectively.
We can also generalize to arbitrary number of constraints in a disjunctive formula Vv, :

Valfi, oo f) = (i) 20V fo(z) 20V -V foz) 2 0)

Since the disjunction operator V is associative, we group the constraints two by two by
using a binary tree. We can either express V,, by grouping the constraints using a balanced
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binary tree as shown in Figure 2.1.(a), or using a left associative binary tree as shown in
Figure 2.1.(b). With both techniques, there are (n L 1) internal V operators which need
(n L 1) boolean variables (hy,- -+, hy11). The final constraints system to express V,, has
O(n) constraints (fi,---, f,) and O(n L 1) boolean variables (hy,--- ,h,11). The finite
bounds of the linear functions are always finite. They can always be computed statically
and propagated up in the binary tree, as explained in the following example.

\/ V
AN AN
LV v, Y Fulz) >0
Y, V ]\C\L1(:I:)>0

,,,,,,,,,,, Y%
NN e
0 fulz) >0 fi(

F1(2) >0 fa(2)>0 fa(2) >0 fale) >0 faoi(z) > z) >0 faox

v
o

(a) Perfect Binary Tree (b) Left Associative Binary Tree

Figure 2.1: Expressing an n-Disjunction with Linear Constraints

Example 2.1.1 Let us express fi(x) >0 V fa(x) >0 V f3(x) >0 V fi(x) > 0. This
system is written by expressing the first two disjunctions (as explained above) :

fi(@) Lhafi Lhy x f >0
fa(x) L (1L hy)fy Lhyfy >0
fa(z) L (1 Lhy)fs >0
hl,hQE{O,l}

r f4(ﬂf) Z 0

where fi, fy are two known finite finite lower bounds for fi, fa respectively. We introduce
a third binary variable hy € {0, 1} to write the last disjunction in linear constraints:

fi(x) Lhifi Lhy X fi > hy x fi
fg(:r)J_(IJ_hl)éJ_hgxézhgxf_é
fa(x) L(1 Lha)fs > hy x f3

fa(z) > (1 L hs) x fu

hi, hs, hs € {0,1}

where (f1, f3, f3, f4) are the finite lower bounds for (fi(z) L hifi L hy x fi, fa(z) L (1L

hi) x fa L hy x fy, fa(x) L (1 L hy) X fs, f1) respectively.
Since the binary variables are bounded by 0 and 1, we can always compute the finite
lower bounds for any linear constraint at compile time if the integer variables are bounded.

Since we know how to translate (—, A, V), we can easily deduce the linear constraints
of any other logical operator. Let g(x) > 0 and h(xz) > 0 be two linear constraints on x:

1. g(x) > 0= h(z) > 0 can be modeled by g(z) <0V h(xz) >0
2. g(x) > 0 <= h(xz) > 0 can be modeled by
(9(z) > 0Ah(z) > 0) V (h(z) <0 A g(z) <0)
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The problem g(z) > 0 = h(z) > 0 becomes ( L g(z) L1 >0V h(z) > 0). Thereby,
it can be written using the disjunctive expression :

lg(z) L1>ag
hz) > (1 La)h
a € {0,1}

where g and h are two known finite lower bounds for (Lg L 1) and & respectively.
The problem g(z) > 0 <= h(z) > 0 becomes
(9(x) > 0AR(z) >0)V (Lg(x) L1>0A Lh(z) L1>0)

and can be written using the disjunctive expression :

g9(z) > ag
()>a9
lg(z) L1>(1La )g’
Lh(z) L1> (1 La)k
o€ {0,1}

where g and h are two known finite lower bounds for g and & respectively, and ¢' and %
are two known finite lower bounds for (Lg L 1) and (Lh L 1) respectively.

2.1.2 Expressing the “Maximum” and “Minimum” with Linear
Constraints

The function z = max(z, y) can be modeled by the constraints:

(xLly>0)=z=x
(ylaz>0)=z=y

or by the constraints:

Z2>T z2>T
zzy V z2>y
z<x z2 <y

By introducing a binary variable a € {0, 1} and by assuming bounded domain sets (=
and z for z, 7 and y for y), the domain set of z is also bounded by z = max(Z,7) and
z = max(z,y). The system can then be written as follows:

(z1lz>a(zlI)
zLly>a(zLly)
rlz>azl2)

zlz>(11La)(zlz)
zly>(1La)(zLy)
Ly Llz>(1La)ylz)

We can also express the max, function with arbitrary number of parameters
z = max,(x1, 2y, -+ ,x,). Since max is associative, we use a binary tree as with the
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or-operator. The general form of the max, operator, using a left associative binary tree
for instance, is:

( y1 = max(xy, )
Y2 = max(yi, v3)

Ynl2 = max(ynjja xnj_l)
L z = maX(ynJ_Q; xn)

where each max operator consists of six linear constraints. As with the or-operator, the
number of internal nodes including the root is equal to n L 1, so we need to define n L 2
intermediate variables (that hold intermediate maximums) and (n L 1) systems to com-
pute the “max” operators. This leads to a complexity of O(n) intermediate variables and
O(n) linear constraints.

The lower bounds of the linear functions are always finite if the domain sets of the
variables x; are bounded. They can always be statically computed and propagated up in
the binary tree, as explained in the following example.

Example 2.1.2 Let us write the following system (z = max(x1,xs,3)) with the linear
constraints of the implication (first method to compute the maz);

y = max(xy, Ts)
z = max(y, 73)

By replacing the formulas of max operators and introducing 4 binary variables h; € {0,1},
we get:

laoi 429 L1 > higr with g1 a lower bound for 1L xq1+x9 L1
y Lo > (1L hl)gz_ with gy a lower bound for y L x;

rp Ly> (11 hl)g with g3 a lower bound for z; Ly
lrs+21 L 1> h;h with_g4 a lower bound for L x4+ x; L1
yLlaoy> (11 h,g)g5_ with gs a lower bound for y L s

Ty Ly > (1L hy)ge with g5 a lower bound for x5 Ly

hi,hy €{0,1} o

ly+4+x3 L 1> hsfi with fi a lower bound for L y+ x5 L1
zLy>(1Lhg)fo with f, a lower bound for z Ly
yLz>(1Lhg)fs with f5 a lower bound fory L z

las+y L 1> hyfs with fy a lower bound for Lxs+y L1
zlax3> (11 h4)ﬁ with fs a lower bound for z L 3

xg Lz> (11 h4)E with E a lower bound for x5 L z

hs, hy € {U, 1}

Computing the finite lower bounds g; and f; is obvious if the domain sets of x1,x9, T3 are
bounded. If (x1,xq,x3) are the three lower bounds of (x1, %, x3), then y = max(z1,zs) is
a lower bound for y and z = max(x1, 9, x3) is a lower bound for z. Deducing the lower
bounds g; and f; is statically done by taking into account both the finite lower bounds x;
and the upper bounds %;. For instance :

\

T, <11 <Iy

EZS"EZSI‘Q}:>J_x2+x1l12$:ﬂlx2ll
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Finally, the “minimum” function can be expressed similarly. z = min(z,y) can be
written either by computing z = | max(Lx, Ly) or by considering:

z<x z<x
<y V Z2<y
Z>x z2>y

where the domain sets of z and y are bounded.

The next section recalls some basic definitions and notations in graph theory.

2.2 Definitions and Notations on Graphs

This chapter only recall some notations and definitions that are used in this thesis. To
have a complete overview of the theory, the reader should refer to standard books [Ber77,
CLR90].

Graphs

A directed graph G = (V, E) is a pair of a set V and a binary relation £ C V2. We define
the following notations:

u € V is called a node;
e = (u,v) € E is called an arc;

Ve = (u,v) € E, u (respectively v) is called the source (respectively the target) of
the arc e. Both u and v are called endpoints of e;

Ve = (u,v) € E : source(e) = v and target(e) = v;

Lh(u) = {v € V/(u,v) € E} the set of the u’s successors ;
I'5(u) = {v € V/(v,u) € E} the set of the u’s predecessors;
d&(u) = [T (u)| the outdegree of u;

dg(u) = [T (u)| the indegree of u;

if d5(u) = 0 then u is called a source of G;

if d5(u) = 0 then u is called a sink of G;

Source(G) = {u € V/d*+(u) = 0};
Sink(G) = {u € V/d*(u) = 0};

e . . . e . .
we note u —[" any arc e whose source is u. Similarly, ' = u any arc e whose sink is
u;

a path in G is a k-tuple p = {ey, ... ,ex} € E¥ such that
Vi=1,..,k : target(e;) = source(e;i1);
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we denote also by u ~» v a path from u to v without specifying intermediate arcs;

a circuitin G is a path p = {ey,... ,ex} € E¥ such that Vi = 1,....k : target(e;) =
source(ey).

two nodes u, v are adjacent iff there is an arc connecting them :

Jee E {u, v} = endpoints(e)

two arcs e, e’ are adjacent iff there is a shared node between them;

endpoints(e) N endpoints(e') # ¢
G = (V,E) is a complete graph iff E = V2.

The subgraph Gy induced by V' C V' is the graph that contains all nodes of V' and
all arcs that have their endpoints in V'. We also write Gy yv =G L V" for V' C V.

The partial graph G' of G = (V, E) generated by a subset E' C FE is the graph that
contains all the nodes of G but only the arcs contained in E’. That is, we remove all the
arcs in E L E'. We write G' = G/p .

For the need of this thesis, we introduce the concept of extended graph. An extended
graph is only the dual definition of a partial graph. An extended graph G’ of G = (V, E)
generated by a subset E' C V2 is the graph that contains all the nodes of G and the arcs
in E extended by the arcs contained in E’. In other words, we only add all the arcs in
E'. We write G' = G\ 7.

The transitive closure of G, denoted by G., is an extended graph G\ such that :
E, = {(u1,us)/(u1,us) € VAT apath uy ~ uy}
That is, we only add all transitive arcs if they do not exist.
The transitive reduction of G, noted G, , is a partial graph G/, such that :
E, = {e = (u1,u2) € E/V path p =uy ~ us,p = {(ul,u2)}}
That is, we only remove transitive arcs if they exist.

We can associate a cost function to arcs. Each arc holds a number which has a
particular meaning depending on the type of the graph (distance, delay, etc.). Then, the
longest path from u to v, denoted Ip(u,v), is a path that produces the maximal cost sum
through the arcs belonging to it. Note that such a path does not exist in the presence
of a cycle from u to v with a positive cost (a positive sum of the costs) because we may
make an infinite number of tours, and hence the path cost is infinite.
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Some Notions for Directed Acyclic Graphs

A directed acyclic graph (DAG) is an oriented graph without a circuit. Let G = (V, E) be
a DAG. A topological sort (also called linear extension ) of G = (V, E, §) is a permutation
(uy,ug, ... ,u,) of the nodes in V' such that

(wij,u;) E E=1i<j
The transitive closure of a DAG defines the notion of parallel and comparable:
o Vu,v € V:iunr~v<= (u,v) € E.V(v,u) € E.: uand v are said to be comparable ;
o Vu,v €V :ul||lv <= —(u~v): uand v are said to be parallel ;
o Vu,v € V:u<wv<= (u,v) € E, that is < defines a strict order between the nodes.
e VuveV : u<v<<=u=vVu<v
We define also the notions of descendants and ascendants of a node v € V':

e T v={u€V/u<wv} the set of v’s ascendants including v;

o | v={u € V/v<u} the set of v’s descendants including v.
We define the notion of chain and antichain in an acyclic graph :
e Asubset C CVinG=(V,E)isa chainiff: Vu,o € C:u~wv

e A chain MC is said mazimal iff VC' a chain : |C| < |MC|
e Asubset ACVin G = (V,E) is an antichain iff : Yu,v € A:u || v

e An antichain M A is said mazimal iff VA an antichain : |A| < |[MA|

Dilworth [CD73] proved that the problem of decomposing a DAG into a minimal
number of chains can be done with a polynomial algorithm. It can be solved via a
maximal cardinality matching in a bipartite graph [Bou97]. Dilworth also proved that
the minimal number of chains is equal to the cardinality of a maximal antichain in the
DAG.

Hypergraphs

An hypergraph H = (S, €) is a couple of two sets: S = {s1,$9,....,$,} and a family
& ={FE\, E, ..., E,} of subsets from S such that:

Vi=1m:E;#¢
and

U E; = S (covering constraint)
ji=1m
The elements sy, S, ...., s, are the nodes of the hypergraph, and the subsets Ey, Es, ..., B,
are called edges. Graphically, a hypergraph H = (S, €) is represented by joining the nodes
such that :

e if |[E;| =1 then we put a loop joined on the node ;
o if |[E;| = 2 then we join the two nodes by a line;

o if |[E;| > 2 then we surround all nodes by a closed line.
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Interval Orders

In this thesis, we use two of the interval order notations defined in [GS92].
Let I} = [a1,b;] € N and I, = [ag,b3] C N be two intervals. Then:

1. I < I <= by < ay. We say that I; is before Is;
2. I f Iy <= by = by. We say that I finishes I5.

Given a set of intervals I = {I4, ..., I,,}, we can associate with it a special DAG called
interval graph. To each interval Iy corresponds a node ny. There exists an arc (ng, ny ) iff
I, < I,. This special DAG offers some important characteristics for register allocation.
For instance, the computation of a maximal clique in an interval graph can be done in
polynomial time complexity, while the general problem is NP-complete [Gol80].

We can wrap a set of intervals around a circle. In this case, the corresponding interval
graph is cyclic. It is called a circular interval graph.

Graphs are very useful in compilation techniques. The next section recalls the defini-
tion of two well-known graphs used to model a program structure.

Data Dependence and Control Flow Graphs

A data dependence graph (DDG) is a directed graph used to model dependence relations
between the operations: each node corresponds to an operation, and each arc defines a
dependence. The DDG is acyclic inside a basic block (BB), but may become cyclic in the
case of a loop. Three kinds of dependences may be expressed. There exists a flow depen-
dence from a to b, called also true or RaW (Read-after-Write) dependence, if a produces
a result that is read by b. There exists an anti-dependence from a to b, called also WaR
(Write-after-Read) dependence, if a reads a value from a memory location and then b
erases it. There exists an output dependence from a to b, called also WaW (Write-after-
Write) dependence, if a writes a value into a memory location and then b erases it. Both
WaR and WaW dependences are called false dependences because they result from the
memory reuse. These storage-related dependences can be eliminated by variable renam-
ing [CF87| or if infinite storage space is assumed [CDRV98|. Then, a DDG allows two
instructions a and b to be executed simultaneously if they are data-independent. There
exists also another false dependence, called input dependence or RaR (Read-after-Read)
dependence, if a and b read from the same memory location. However, this dependence
kind is not present in the DDG since it does not impose any execution order. It is used
for other optimization purposes such as redundant load elimination.

DDGs do not contain information about control program structures (tests, loops, pro-
cedural calls, etc.). Control flow graphs (CFG) are built for this purpose. Each node
corresponds to a basic block, and each arc corresponds to a possible execution path
(branch). CFGs may be cyclic because of loops and recursive calls.

A program dependence graph (PDG) [FOW8T] is used to jointly encode control and
data dependence informations in the same data structure. It has been successfully used
in a variety of compiler optimizations such as scalar optimizations, the detection and im-
provement of parallelism in vector machines, multiprocessors and ILP processors, as well
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as debugging, integration of different versions of a program, and translation of imperative
programs for data flow machines.

DDGs, CFGs and PDGs are used by compilers to “understand” and handle programs,
and to detect ILP. A highly optimized code can be generated if the underlying hardware
can execute the operations in parallel. The next section gives a brief survey on what is
called ILP architectures.

2.3 Instruction Level Parallelism Architectures

Today’s microprocessors are the powerful descendants of the Von Neumann computer
[SBU99|. Although various computer architectures have considerably changed and rapidly
been developed over the last twenty years, the basic principles in Von Neumann computa-
tional model are still the foundation of today’s most widely used computer architectures
as well as high-level programming languages. The Von Neumann computational model
has been proposed by Von Neumann and his colleagues in 1946; its key characteristics
result from the multiple assignments of variables and from the control-driven execution.

While the sequential operating principles of the Von Neumann architecture is still
the basis for today’s most used instruction sets, its internal structure has considerably
changed. The main goal of the Von Neumann machine model was to minimize the hard-
ware structure, while today’s designs are mainly oriented towards maximizing the perfor-
mance. For this last reason, machines have been designed to be able to execute multiple
tasks in parallel. Architectures, compilers and operating systems have been striving for
more than two decades to extract and utilize as much parallelism as possible in order to
boost the performance.

Parallelism can be exploited by a machine at three different levels.

1. Fine-grain parallelism
This is the parallelism available at instruction level (or say at machine-language
level) by means of executing instructions simultaneously. Instruction-level paral-
lelism, commonly abbreviated as ILP, can be achieved by architectures that are
capable of parallel instruction execution. Such architectures are called instruction
level parallel architectures, i.e., ILP architectures.

2. Medium-grain parallelism
This is the parallelism available at thread level. A thread (lightweight process) is
a sequence of instructions that may share a common register file, a heap and a
stack. Multiple threads can be executed concurrently or in parallel. The hard-
ware implementation of thread-level parallelism is called multi-threaded processor or
simultaneous multi-threaded processor.

3. Coarse-grain parallelism
This is the parallelism available at process, task, program or user level. The hard-
ware implementation of such parallelism is called multiprocessor machine or multi-
processor chips. The latter integrates two or more complete processors in a single
chip.
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The discussion about coarse or medium-grain parallel architectures is outside the scope
of this dissertation. In this section, we focus on ILP architectures, which principally in-
clude static issue processors (Very Long Instruction Word, Explicitly Parallel Instruction

Computing, Transport Triggered Architectures) and dynamic issue processors (super-
scalar).

Pipelined processors overlap the execution of multiple instructions simultaneously, but
issue only one instruction at every clock cycle, see Figure 2.2. The principal motivation
of multiple issue processors was to break away from the limitation on the single issue of
pipelining processors, and to provide the facility to execute more than one instruction
in one clock cycle. The substantial difference from pipelined processors is that multi-
ple issue processors replicate functional units (FU) in order to deal with instructions in
parallel, such as parallel instruction fetch, decode, execution, write back, etc. However,
the constraints in multiple issue processors are the same as in pipelining processors, that
is the dependences between instructions have to be taken into account when multiple
instructions are issued and executed in parallel. Therefore, the following questions arise.

e How to detect dependences between instructions I’
e How to express instructions in parallel execution I’

The answers to these two questions gave rise to the significant differences between two
classes of multiple issue processors, static issue processors and dynamic issue processors.
In the next sections, we describe the characteristics of these two kinds of multiple issue
processors.
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Figure 2.2: Pipelined vs. Simultaneous Execution
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2.3.1 Processors with Dynamic Instruction Issue

The hardware mechanism designed to increase the number of executed instruction per cy-
cle is termed superscalar execution. The goal of a superscalar processor is to dynamically
issue multiple independent operations in parallel (Figure 2.3), even though the hard-
ware receives a sequential instruction stream. Consequently, the program is written as
if it was to be executed by a sequential processor, but the underlying execution is parallel.
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Figure 2.3: Superscalar Execution

There are two families of superscalar processors: in-order and out-of-order (0O00)
processors. A processor with an in-order issue sends the instructions to be executed in
the same order as they appear in the program. That is, if instruction a appears before b,
then the instruction b may in the best case be executed in parallel with a but not before.
However, an OoO processor can dynamically change the execution order if operations are
independent. This powerful mechanism enables to pursue the computation in the presence
of long delay operations or unexpected events such as cache misses. However, because
of the hardware complexity of dynamic independence testing, the window size where the
processor can dynamically reschedule operations is limited.

Compared with VLIW architectures, as we will see soon, superscalar processors achieve
a comparable degree of parallel execution at the cost of increased hardware complexity.

However, the advantages of a superscalar processor over a VLIW processor are in two
ways.

1. Varying numbers of instructions per cycle. Since the hardware determines the num-
ber of instructions issued per cycle, we do not need to lay out instructions to match
the maximum issue bandwidth. Accordingly, there is less impact on code density
than for a VLIW processor.

2. Binary code compatibility. The binary code generated for a scalar (sequential) pro-
cessor can also be executed in a superscalar processor with the same ISA (instruction
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set architecture), and wvice versa. This means that the code can migrate between
successive implementations even with different numbers of issues and different exe-
cution times of functional units (FU).

3. Different execution scenarios. Superscalar processors schedule dynamically the op-
erations in parallel. Then, there may be more than one parallel execution scenarios
(dynamic schedule) because of the dynamic events. However, VLIW processors
always execute the same ILP schedule computed at compile time.

For the purpose of issuing multiple instructions per cycle, superscalar processing gen-
erally consists of a number of subtasks, such as parallel decoding, superscalar instruction
issue, parallel instruction execution, preserving the sequential consistency of execution
and exception processing. These tasks are executed by a powerful hardware pipeline (see
Figure 2.4). Below, we illustrate the basic functions of these pipelined steps.
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Figure 2.4: Superscalar Pipelined Steps

Fetch A high-performance micro-processor usually contains two separate on-chip Instruction-
cache and Data-cache. This is because the I-cache is less complicated to handle: it is
read-only and is not subject to cache coherence in contrast to D-cache. The main prob-

lem of instruction fetching is control transfers performed by procedural calls, branch,
return, and interrupt instructions. The sequential stream of instructions is disturbed and
hence the CPU may stall. This is why some architectural improvements must be added if

we expect a full utilization of ILP. Such features include instruction prefetching, branch
prediction and speculative execution.

Decode Decoding multiple instructions in a superscalar processor is a much more com-
plex task than in a scalar one, which only decodes a single instruction at each cycle. Since
there are multiple functional units in a superscalar processor, the number of issued in-
structions in a cycle is much greater than in a scalar case. Consequently, it becomes more
complex for a superscalar processor to detect the dependences among the instructions
currently in execution and to find out the instructions for the next issue. Superscalar
processors often take two or three more pipeline cycles to decode and issue instructions.
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An increasingly used method to overcome the problem is pre-decoding: a partial decod-
ing is performed in advance of effective decoding, while instructions are loaded into the
instruction cache.

Rename The aim of register renaming is to dynamically remove false dependences (anti
and output ones) by the hardware. This is done by associating specific rename registers
with the (instruction set architecture) ISA registers specified by the program. The rename
registers cannot be accessed directly by the compiler or the user.

Issue and Dispatch The notion of instruction window comprises all the waiting in-
structions between the decode (rename) and execute stage of the pipeline. Instructions
in this reorder buffer are free from control and false dependences. Thus, only data depen-
dence and resources conflicts remain to be treated. The former ones are checked during
this stage. An operation is issued to the FUs reservation buffer if all operations on which it
depends have been completed. This issue can be done statically (in-order) or dynamically
(000) depending on the processor [PH94].

Execute Instructions inside the FUs reservation buffer are free from data dependences.
Only resource conflicts have to be solved. When a resource is freed, the instruction that
needs it is initiated to execute. After one or more cycles (the latency depends on the FU
type), it completes and hence is ready to the next pipeline stage. The results are ready
for any forwarding. This latter technique, also called bypassing, enables other dependent
instructions to be issued before committing the results.

Commit and Write Back After completion, instructions are committed in-order and
in parallel to guarantee the sequential consistency of the Von Neumann execution model.
This means that, if no interruptions or exceptions have been emitted, results of executions
are written back from rename registers to architectural registers. If any exception occurs,
the instructions results are cancelled (without commit).

2.3.2 Processors with Static Instruction Issue

These processors take advantage of the static ILP of the program and execute opera-
tions in parallel (see Figure 2.2.(b)). This kind of architecture asks programs to provide
information as to which operations are independent of one another. The compiler iden-
tifies the parallelism in the program and communicates it to the hardware by specifying
independence information between operations. This information is directly used by the
hardware, since it knows with no further checking which operations can be executed in
the same clock cycle. Parallel operations are packed by the compiler into instructions.
Then, the hardware has to fetch, decode and execute them as they are.

We group static issue processors into three main families, VLIW, TTA and EPIC
processors. The next sections define their characteristics.
VLIW Processors

VLIW (Very Long Instruction Word) architectures use a long instruction word that usu-
ally contains a fixed number of operations (corresponding to RISC instructions). The
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operations in a VLIW instruction must be independent of one another so that they can
be fetched, decoded, issued and executed simultaneously (see Figure 2.5).
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Figure 2.5: VLIW Processors

The key features of a VLIW processor are the following [SBU99] :

VLIW relies on a sequential stream of very long instruction words (128 to 1024 bits
per instruction).

Each instruction consists of multiple independent operations that can be issued and
executed in one clock cycle. In general, the number of operations in an instruction

is fixed.

VLIW instructions are statically built by the compiler, i.e., the compiler deals with
dependences and encodes parallelism in long instructions.

The compiler must be aware of the hardware characteristics of the processor and
memory.

A central controller issues one VLIW instruction per cycle.

A global shared register file connects the multiple functional units.

In a VLIW processor, unlike in superscalar processors, the compiler takes full respon-
sibility for building VLIW instructions. In other words, the compiler has to detect and
remove dependences and create the packages of independent operations that can be issued
and executed in parallel. Furthermore, VLIW processors expose architecturally visible la-
tencies to the compiler. This latter must take into account these latencies to generate
valid codes.
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The limitations on VLIW architectures arise in the following ways.

Firstly, the full responsibility of the complex task for exploiting and extracting paral-
lelism is delegated to the compiler. The compiler has to be aware of many details about
VLIW architectures, such as the number and type of the available execution units, their
latencies and replication numbers (number of same FUs), memory load-use delay, and
so on. Although VLIW architectures have less hardware complexity, powerful optimizing
and parallelizing compiler techniques are required to effectively achieve high performance.
As a consequence, it is questionable whether the reduced complexity of VLIW architec-
tures can be really utilized by the compiler, since the design and implementation of this
latter are generally much more expensive than expected.

Secondly, the binary code generated by a VLIW compiler is sensitive to the VLIW
architecture. This means that the code cannot migrate within a generation of processors,
even though these processors are compatible in the conventional sense. The problem is
that different versions of the code are required for different technology-dependent parame-
ters, like the latencies and the repetition rates of the functional units, etc. This sensitivity
of the compiler restricts the use of the same compiler for subsequent models of a VLIW
line. This is the most significant drawback of VLIW architectures.

Thirdly, the length of a VLIW long instruction word is usually fixed. Each instruction
word provides a field for each available execution unit. Due to the lack of sufficient
independent operations, only some of the fields may actually be used while other fields
have to be filled by no-ops. This results in increased code size, and wasted memory
space and memory bandwidth. In order to overcome this problem, more and more VLIW
architectures use a compressed code format that allows the removal of the no-ops.

Lastly, the performance of a VLIW processor is very sensitive to unexpected dynamic
events such as cache misses, page faults and interrupts. All these events make the pro-
cessor stall from its ILP execution. For instance, if a load operation has been assumed
by the compiler as hitting the cache, and this unfortunately happens not to be the case
during dynamic execution, the entire processor stalls until the satisfaction of the cache
request.

Transport Triggered Architectures

TTAs resemble VLIW architectures: both exploit ILP at compile time [Jan01]. However,
there are some significant architectural differences. Unlike VLIW, TTAs do not require
that each FU has its own private connection to the register file. In TTAs, FUs are
connected to registers by an interconnection network (see Fig 2.6). This design allows to
reduce the register file ports bottleneck. It also reduces the complexity of the bypassing
network since data forwarding is programmed explicitly.

However, programming TTAs is different from the classical RISC programming style.
Traditional architectures are programmed by specifying operations. Data transports be-
tween FUs and register files are implicitly triggered by executing the operations. TTAs are
programmed by specifying the data transports; as a side effect, operations are executed.
In other words, data movements are explicited by the program, and executing operations
is implicitly done by the processor. Indeed, TTA is similar to data-flow processors, except
that instruction scheduling is done statically.
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EPIC/IA64 Processors

EPIC (Explicitly Parallel Instruction Computing [SC00]) technology is introduced to the
[A64 architecture and compiler optimizations [KFL99] in order to deliver explicit paral-
lelism, massive resources, and inherent scalability. It is, in a way, a mix between VLIW
and superscalar programming styles. On one hand, EPIC, like VLIW, allows the compiler
to statically specify independent instructions. On the other hand, EPIC is like superscalar
in the sense that the code semantics may be sequential, while guaranteeing the binary
compatibility between different IA64 implementations.

The philosophy behind EPIC is much more about scalability. OoO processors get
their issue unit saturated because of the architectural complexity. EPIC incorporates the
combination of speculation, predication (guarded execution) and explicit parallelism to
increase performance by reducing the number of branches and branch mispredicts, and
by reducing the effects of memory-to-processor latency.

The key features of the EPIC technology are:

e static speculative execution of memory load operations, i.e., loading data from mem-
ory is allowed for issue before knowing whether it is required or not, and thus
reducing the effects of memory latency;

e a fully predicated (quarded) instruction set, which allows to remove branches so as to
minimize the impact of branch mispredicts. Both speculative loads and predicated
instructions aim to make it possible to handle static uncertainties (what compilers
cannot determine or assert);

o specifying ILP explicitly in the machine code, i.e., the parallelism is encoded directly
into the instructions as in a VLIW architecture;

e more registers: the [A-64 instruction set specifies 128 64-bit general-purpose regis-
ters, 128 80-bit floating-point registers and 64 1-bit predicate registers.

e an inherently scalable instruction set, i.e., the ability to scale to a larger number of
functional units. But this point remains debatable !

Finally, we must note that VLIW and superscalar processors suffer from the hardware
complexity of register ports. The number of register ports depends in a quadratic func-
tion of the number FUs. Thus, both architectures do not scale very well since increasing
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Figure 2.6: Block Diagram of a TTA
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the ILP degree (number of FUs) results in creating a bottleneck on register ports. Con-
sequently, the time required to access registers increases. An architectural alternative
to this limitation is clustered-processors [Fer98]. Clustered architectures group FUs into
clusters. Each cluster has its own private register file: registers inside a cluster are strictly
accessed by the FUs belonging the this cluster. If a FU needs a result from a remote reg-
ister file (from another cluster), an inter-cluster communication (move operation) must
be performed. Then, clustered architectures offer better scalability than VLIW and su-
perscalar processors since the additional clusters do not require new register ports (given
a fixed number of FUs per cluster). However, inserting move operations into the program
may decrease the performance since more operations must be executed. Furthermore, the
communication network between clusters may become a new source of bottleneck.

To take full advantage of ILP architectures, compiler techniques have been continu-
ously improved since the 80’s [RF93]. The next section gives a brief survey of these code
optimization techniques.

2.3.3 Compiler Techniques for ILP Architectures

ILP compilers enhance performance by customizing application code to a target processor
[SCD*97]. By doing a global analysis of a program, compilers get better knowledge of
intrinsic ILP. By using a detailed description of the underlying hardware, they can guide
machine-specific optimizations. Static optimization and scheduling eliminate the complex
processing needed to parallelize a code, which the hardware would otherwise perform
during execution within a limited instruction window.

Program Analysis

Code analysis is very important to enhance the performance of ILP codes. This major
goal is especially achieved by improving memory reference analysis, as for instance alias
and data dependence analysis.

Alias analysis or memory disambiguation concerns the task of determining if two dis-
tinct memory references access the same memory location. The data dependence analysis
is used to highlight the references to memory in order to define an execution order which
must be obeyed by the scheduler. This analysis may enable, at first, eliminating unnec-
essary dependences to expose more ILP to the scheduler. Second, redundant load/store
operations may be eliminated to improve code quality.

ILP Scheduling

In order to achieve high performance, powerful scheduling algorithms aim at fully utilizing
FUs by exposing more parallelism to the processor. They are classified according to the
properties of the control flow graph: whether it consists of a single or of multiple basic
blocks, and whether it is an acyclic or cyclic control flow graph.

Algorithms that can only schedule single basic blocks are called local schedulers. Al-
gorithms that jointly schedule multiple basic blocks (even if these are the instances of an
iterative execution) are named global schedulers. In the case of loops, cyclic schedulers
aim at overlapping multiple basic blocks executions.



40 CHAPTER 2. BACKGROUND AND BASICS

Local scheduling, also referred to as local code compaction, is concerned with generat-
ing as short schedule as possible within a single basic block; operations are assumed not
to cross control barriers. Since the general problem of scheduling under FUs constraints is
NP-complete [Cof76], many list scheduling heuristics have been implemented; they deliver
acceptable performances [ACD74].

Since the intrinsic ILP inside basic blocks is limited, global scheduling strategies move
operations from one basic block to another in order to expose more parallelism. These
basic blocks were adjacent in the early strategies [TTT81], but the delivered performance
was not as satisfactory as expected. This method is enhanced by other techniques, such
as trace scheduling [Fis81], super-block scheduling [HMC*93], hyper-block scheduling
[MLC*92] and percolation [Nic85].

Cyclic scheduling is a global scheduling technique but the multiple basic blocks are
executed by a loop. Loop unrolling followed by code compaction is the natural idea for
cyclic scheduling. However, it still doesn’t use all the available ILP. Other loop optimizing
techniques, such as peeling, fusion and distribution try to increase the amount of ILP.
Software pipelining [AJLA95] is, till now, the best cyclic scheduling technique that allows
the overlap of successive iterations in a compact code. We will discuss software pipelining
in Chapter 7.

As mentioned before, register allocation is one of the most important code optimization
technique in an optimizing compiler; it allows to discover great amounts of parallelism, by
avoiding unnecessary and costly memory accesses. The next section recalls the classical
register allocation techniques used for non ILP processors.

2.4 Register Allocation for Sequential Programs

The main goal of register allocation in single-issue processors is to optimize the register
usage inside a linear code (vertical code). This is because the program performance in
a Von Neumann architecture is a direct function of the number of executed operations.
Therefore, eliminating unnecessary load/store operations is a crucial issue. Since there is
no ILP and since operation latencies are assumed unitary, a register allocator for this kind
of architectures is not sensible to the scheduling process (does not consider schedule time).

We say that a variable is alive at a certain static program point p iff it is defined strictly
before p and read at p, or after this point. We call a variable live-range the portion of
static code between the definition point of the variable (value) and the last read of it. The
set of variable live-ranges defines an interval graph inside a BB. However, these ranges
may become circular in the presence of a loop and hence the set of all the live-ranges
defines a circular interval graph.

Register allocation for sequential processors is usually treated as a graph coloring
problem. An undirected interference graph is built for expressing the fact that two nodes
(representing two distinct variables) are (or may) be alive or not at the same program
point.

Depending on whether the register allocation is pursued inside a basic block, or within
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multiple basic blocks (even if they result from a loop iterative execution), we refer it to
local or global register allocation. The next sections examine the most important results
in related work.

2.4.1 Local Register Allocation

The DDG inside a BB is presents a DAG that defines precedence constraints between
operations. If the execution order is fixed, then the set of live ranges defines an interval
graph and hence the problem of optimal coloring the interference graph is easily solved
with a polynomial complexity algorithm [CF87].

The problem in local register allocation arises when we try to look for an execu-
tion order of a DAG (topological sort) which needs a minimal number of simultaneously
alive variables. This problem, also known as minimal register sufficiency, is NP-complete
[Set75]. However, if the DDG is a tree, the problem can be solved in linear time com-
plexity, as proved by Nakata [Nak67] and Redziejowski [Red69]. Their algorithms use
a postorder evaluation of the tree and execute in time proportional to the number of
operations to be scheduled. Aho et al [ASU70] gave an O(n) algorithm for local register
allocation (where n is the number of operations) for binary expression trees. The previ-
ous algorithm assumed a RISC style machine, i.e., operations cannot be performed from
memory to memory. A dynamic programming solution, which can be applied to a wider
range of architectures (including memory-to-memory operations), has been presented by
Aho and Johnson in [AJ76]. Their algorithm also runs in time linearly proportional to
the size of the input expression tree.

The previous work on trees assumed identical registers. However, some realistic prob-
lems consider single and double length operands, using several models of register-pair
machines allowing both single and double word instructions. Hence, for producing an
optimal execution order under a bounded number of registers, it may be necessary to
switch back and forth between evaluating subexpressions. Aho et al presented a linear-
time optimal algorithm for this problem in [AJU77].

Some code optimization techniques, like common subexpression elimination, are done
before the register allocation step and may transform an expression tree to a general
DAG, making the task of register allocation harder. Fortunately, some heuristics exist for
solving this general problem. The authors of [AKR91] gave a polynomial algorithm based
on a flow problem resolution which finds a topological sort of a DAG with a minimum
number of registers. They formalized the register need as a cut in a network flow such
that the number of registers required is the number of values which cross this cut. Their
algorithm guarantees that the number of registers needed is within O(log?n) factor of the
optimal (n is the total number of operations). Another heuristics using a randomized
algorithm has been presented in [KPR91]. It generates contiguous evaluations for expres-
sion DAGs representing BB of straight line code with a minimized number of registers. It
was implemented in a vector PASCAL compiler [Rau90]. More recently, an algorithmic
heuristics for the problem of DAG ordering with limited registers has been presented in
[GYZ7199]. Tt is based on the notion of lineage formation. It is, in a way, a minimal chain
decomposition of the DAG, such that each chain does not contain interfering variables.
They also propose an exact (optimal) formulation for this problem. Their integer program
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builds a linear extension of the DAG. If the live-ranges of two variables do not interfere
with each other, then they can be mapped to the same chain of non interfering variables.
Such chain reflects a register that is allocated to all the variables in this chain, while
distinct chains require distinct registers. Hence, the topological sort is constrained so as
to minimize the total number of chains.

The number of operations inside BBs in real programs is (generally) relatively small.
To expect great performance increase, compilers must look for optimization opportunities
in the whole program structure by extending their analysis to cross BB barriers. The
most important register allocation techniques are based on global CFGs as explained in
the next section.

2.4.2 Global Register Allocation

As we have seen in the previous section, local register allocators in the case of a fixed
execution order use optimal polynomial algorithms because the interference graph is an
easily colorable interval graph. In the case of loops, the interference graph defines a cir-
cular interval graph. In this case, we can get a chromatic number [Lel96]: even if the
problem of finding the minimal chromatic number of this circular interval graph is NP-
complete, looking for a ¢Lcoloring solution (fixing the chromatic number) can be done
with an O(n ¢! q log q) algorithm [GJMP80], where n is the number of nodes. Practical
experiments [Lel96] show that the solution is intractable when ¢ > 11.

The problem of global register allocation arises if we consider functions, branches and
loops with branches. In this case, live ranges cannot be analyzed by compilers since they
cannot statically know the direction of the control flow. Live ranges cannot be modeled
by intervals and thus interference graphs become general undirected graphs. Optimal col-
oring of such graphs is unfortunately NP-complete [Kar72], where lot of heuristics have
been developed. A detailed comparison between old standard register allocation tech-
niques using graph coloring before scheduling was done by Wu in [Wu96].

Chaitin [Cha82] was the first who defined the interference graph devoted to graph
coloring for register allocation. He gave a heuristics for introducing spill code using a cost
function which resulted in pessimistic spilling decisions. An amelioration of Chaitin color-
ing graph method was given by Bernstein [BGG'89]. An amelioration of Chaitin spilling
strategy was studied by Briggs [Bri92]. He focused on removing unnecessary moves pro-
duced by a global register allocation in a conservative way so as to avoid spilling. George
and Appel gave a less conservative heuristics than that of Briggs in [GA96] to remove
more move operations in a more aggressive approach. However, the problem of spilling
everywhere did still exist. Chow’s method [CH90| overcame this drawback by comput-
ing the live ranges on the basic block granularity and not at the instruction level. A
live interval is split into several smaller live ranges, where each smaller range could be
assigned to a register or to a memory cell. An amelioration of node splitting methods
by load/store range analysis has been presented in [KH93|. In contrast, the authors in
[LGATO0] used fusion (to get contiguous intervals) instead of partitioning the interference
graph to ameliorate Chaitin’s method: their algorithm starts with an interference graph
for each program region, then the interference graphs of adjacent regions are fused to
build up a complete interference graph. Proebsting and Fisher [PF92] proposed a method
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for global register allocation based on probability: they assigned a probability to each
variable to reflect its chance to be still stored in a register when reaching a certain pro-
gram point.

The overhead of coloring methods for general interference graphs can be quite high,
not only in execution time but also in memory since the interference graphs can be quite
large. Gupta et al proposed a heuristics in [GSS89] that decomposes the interference
graph into smaller segments based on clique separators. Each subgraph is separately col-
ored and then the partitions are recombined to build a global register allocation.

Instead of decomposing the interference graph, Zobel, in her thesis [Zob92|, preferred
to transform the code in order to make the interference graph an easily colorable interval
one. She proved that some interference graphs, as those of loops without branches, can
be equivalent to an interval graph if we remove backward live ranges. The complex case
of loops with branches can be treated with some restrictions on the code. If these restric-
tions are not satisfied, the register conflict graph is transformed by node merging. Also,
she tried to decompose the interference graph with node removal technique in order to
get interval subgraphs.

The problem with graph coloring methods results from its lack of ways to encode pro-
gram structure information into the interference graph. Although spill costs give higher
priorities to variables inside a loop, variables in a conditional structure are still treated
equally with values outside a conditional structure. Callahan and Koblenz’s algorithm
[CK91] overcomes this drawback by using a tree structure, called a tile tree, to represent
program structure (loops, branches, procedural calls). The algorithm performs register
allocation in two steps. First, the tree is visited in a bottom-up way and an interference
graph is built for each tile and is colored with pseudo registers and with possible local spill
decisions. Second, the tree is visited in a top-down fashion to update spill decisions and
to map pseudo registers to architectural ones. Using tile structure, program sections with
different execution frequencies can be separated. Unfortunately, detailed and effective
experiments done by Wu [Wu96] showed that this algorithm generates worse code than
Briggs’ method. The author recommended not using it! Norris and Pollock [NP98] used
a program dependence graph (PDG) to encode program structures. They improved the
traditional global graph coloring register allocators by exploiting the region partitioning
of the PDG.

Note that there exist some expensive algorithms that look for optimal register alloca-
tion. For instance, authors in [KNDK96| presented an exponential complexity algorithm
for register allocation in loops (minimal spill). Their technique was intended for embed-
ded code generation where the time spent for code optimizations is less important than
the targeted program performance.

Some techniques do not rely on live range interference analysis. For instance, scalar
replacement [CCK90] analyses vector references and data dependence information to find
opportunities to reuse subscripted variables in loops. It replaces the references to tempo-
rary scalar variables that are expected to be stored in registers.

Traditional register allocators assume that the underlying processor have identical
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registers. However, in some architectures, we can have multiple register types (global,
general purpose, specific, etc.) and some registers may share common bits. Consequently,
choosing a register instead of another affects the execution time, the instruction size or
both. Authors in [KW98] presented an integer programming method for register alloca-
tion if the register file is not regular.

The main goal behind all register allocation techniques is to optimize the register
usage. Another goal is to minimize the amount of spill code. The next section gives a
brief survey of related work in this area.

2.4.3 Spill Code Minimization

The common problem of finding an execution order of a DAG on a single issue proces-
sor with a minimal introduced spill code is NP-complete, as proved by Bruno and Sethi
in [BS76]. They assumed an accumulator-based architecture (each operation implicitly
stores its result in the unique available register), which is different from a RISC-style
(load/store) architecture. However, if the DDG is a tree, the problem becomes polyno-
mial [SU70].

Another problem (perhaps easier) consists in minimizing spill code (number of memory
accesses) while the execution order of a DAG is fixed (that amounts to fixing the number
of registers needed). Unfortunately, this is also an NP-complete problem [Car91, FL98].

Many heuristics for spill insertion have been presented in the literature and imple-
mented in practical compilers. Heuristics for the spill insertion problem based on dy-
namic programming and pruning rules are described by Horwitz et al [HKMWG66] and
Hsu, Fischer, and Goodman [HFG89]. More practical heuristics for global register al-
location and spill insertion are described and evaluated by Chaitin [Cha82], Chow and
Hennessy [CH90], Bernstein [BGG'89] and Gupta et al [GSS89]. Their heuristics use
cost functions (which include the parameter of execution frequency) in order to evaluate
which node (value) should be spilled. Bergner’s algorithm [BDEO97] improved Chaitin
local spilling heuristics by making decisions on a global level. Other improved allocation
algorithms were evaluated by Callahan and Koblenz [CK91], and Briggs [Bri92].

These algorithms attempt to minimize the number of spills within a basic block or
over an entire program, but without explicitly handling pipelines or instruction-level paral-
lelism. The next section relates some work on register allocation algorithms for single-issue
pipelined processors.

2.4.4 Register Allocation for Pipelined Processors

Such works consider pipelined machines which can issue one instruction at every proces-
sor clock cycle. The issue of the instruction that uses the result of a preceding in-pipe
instruction must be delayed. Thus, the problem of finding a strict execution order with
a minimal number of required registers is slightly modified. Indeed, if an operation is
pipelined, we know (at compile time) that there are some free slots after its issue time.
Hence, we want to insert other operations to cover these bubbles (otherwise, the pipelined
processor stalls).
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Particularly, Kurlander et al [KPF95] assumed a delayed-load machine with a unit
delay (a load-dependent operation must be delayed by only one clock cycle after the load
issue). They presented an O(n) algorithm that performs optimal operation ordering under
a limited number of registers for an expression tree. It also predicts optimal location for
register spilling. However, if the delay is greater than 1, the problem becomes more dif-
ficult, perhaps intractable. Experimental results showed that their algorithm gives good
results, even for general DAGs.

After this first part, we are now ready to present our work. We begin by studying the
register pressure in DAGs.
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Part 11

Register Pressure in Basic Blocks
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Chapter 3
DAG Model

Abstract

This chapter introduces our directed acyclic graph (DAG) model and defines the
characteristics of the targeted ILP processor. Our model is sufficiently generic to
be applied to both static and dynamic issue processors. We also recall the notion
of register need for a schedule and present a better intLP model for computing it :
given a directed acyclic data dependence graph G = (V, E), the complexity of our
integer linear programming model is bounded by O(|V|?) variables and O(|E|+|V|?)
constraints. This constraint matrix size is better than existing techniques, which
include a worst total schedule time factor.

This chapter is organized as follows. Section 3.1 defines our DAG model and presents
our notations. Section 3.2 defines the concept of register requirement for a fixed schedule.
If we assume an arbitrary schedule, Section 3.3 presents an intLP formulation of the
register requirement in this case. This intLP system is used, in the next chapters, to
analyze the register saturation and sufficiency in DAGs. Finally, we conclude with some
remarks.

3.1 Definitions and Notations

The precedence relations between operations inside a basic block (BB) are described by
a directed acyclic graph (DAG) G = (V, E, §), such that:

e U is the set of operations inside the BB. Each operation u has a positive latency
lat(u) > 0;

e F is the set of precedence constraints (data dependences);

e §(e) is the latency of the arc e (in terms of processor clock cycles), where initially!
we have

Ve = (u,v) € E : 6(e) = lat(u)

An acyclic schedule o of this DAG is an integer function that associates an issue time
to each operation. It is walid iff it satisfies all the precedence constraints defined by the
DAG:

Ve = (u,v) € E : o(v) Lo(u) > 6(e)

'We will see, in the next chapter, that we may insert new arcs where their latencies are not equal to
the latencies of operations.
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The set of all valid acyclic schedules of G is denoted by X(G).

The target ILP processor may have multiple register types (int, float, guard, con-
ditional flags, general purpose, etc.). T denotes the set of register types (for instance
T = {int, float}). Therefore, we make a difference between the operations and the prece-
dence constraints depending whether they refer to a value to be stored in a register or
not, and if so, in which register type:

1. Vg, is the set of operations that define values to be stored in registers of type ¢t € 7.
We consider that each operation u € Vg, writes into at most one register of type
t € T. Operations that define multiple values with different types are accepted in
our model iff they do not define more than one value of each type. For instance,
operations that write into floating point registers and set conditional flags are taken
into account in our model. The node u is simply called value. We denote by u' the
value of type ¢ defined by the operation u.

2. Epr; is the set of flow dependence arcs due to a value of type ¢ € T. Since we accept
statements producing more than one value but with different types, these sets are
not disjoint: for instance, we may have an arc e = (u,v) such that e € Egy, and
e € ER’Q.

Lastly, we consider that reading from and writing into a register may be delayed from
the beginning of the schedule time, and that these delays are visible to the compiler
(architecturally visible). We define two delay (offset) functions 6, and 6,,; such that:

6w,t . VR,t — N
U= Oy r(u)/ buwe(u) < lat(u)
the write cycle of u® into a register of type ¢ is o(u) + 6y ()

6rt . V—-N
w = 6pg(w)/ 6ri(u) < byy(u) < lat(u)
the read cycle of u' from a register of type t is o(u) + 6,4(u)

For instance, a superscalar processor has a sequential semantics. Thus, the reading and
writing offsets are not visible at the architectural level, i.e., 6,+(u) = 6,4 (u) = 0.

If some values are not read inside the considered DAG but are read in a further
BB, they must be kept in registers since they are alive when exiting the current BB. We
introduce a virtual bottom node L that reads these values. We introduce a flow arc e from
each exiting value u to L with the latency of the operation 6(e) = lat(u). Accordingly,
the total schedule time is the last execution step ¢ = o(L). Figure 3.1 is an example
of a DAG, where bold nodes are floating point (fp) values, and bold lines are flow arcs
through fp registers. We assume that each operation writes its fp value at the last cycle
of its execution (latency), and reads its fp operands at cycle 0.

Given a fixed schedule, the register need is the maximal number of values simultane-
ously alive. The next section formally defines this quantity.

3.2 Register Need of Acyclic Schedules

Given a DDG G = (V, E, §), a value u’ € Vg, is alive at the first step after the writing
of u until its last reading (consumption). We define the set of consumers for each value
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u' € Vg, as the set of its readers:
Cons(u') = {v € V/(u,v) € Er,}

Given a schedule o € X(G), the last consumption of a value is called the killing date and
is noted :

vul € Ve kill,(u') = max (J(U) + 5r,t(”))

veCons(ut)

All consumers whose reading time is equal to u’s killing date are called killers of u, and
are noted killers,(u). We assume that a value written at clock cycle ¢ in a register is
available one step later. That is to say, if operation u reads from a register at clock cycle
¢ while operation v is writing in it at the same clock cycle, v does not get v’s result but
gets the value previously stored in that register®. Then, the lifetime interval LT, (u') of
the value u according to o is Jo(u) + 6y 1 (), kill,(u)].

Having all value’s lifetime intervals, the register need of ¢ is the maximum number of
values simultaneously alive, which is the minimum number of registers needed to avoid
spill code for that schedule.

Definition 3.1 (Register Need (Requirement, MAXLIVE)) Let G = (V, E,6) be
a DAG. Then any schedule o € ¥(G) needs RN (G) registers of type t € T, such that :

RN? (6) = ma 0507 (c)
where

vsaf (¢) = {u' € Vgy/c € LT, (u")} is the set of values alive at clock cycle ¢

The values simultaneously alive that define the register need of type t are called ezcessive
values.

Definition 3.2 (Excessive Values) Given a DDG G = (V, E,6) and a schedule o €
Y(G), a set of excessive values noted EV,7(G) C Vg, is a set that contains a mazimal
number of values of type t simultaneously alive :

dc/0<c<T: EV(G)=wsa](c) /|RN](G) = |vsaj(c)|

where ¢ is a clock cycle where the number of values simultaneously alive is mazimum.

2This is not a constraint but a choice in our work.

(a) fload [i1l, fRa

(b) fload [i2], fR,

(c) 1d [i31, iR,

(d) fmult fRy, 3, fRqg
(e) fadd fRa, fRy, fR.
(f) fsub fR4q, fRy, fRy
() add iR., 4, iR,

(h) fdiv fR., fRy, fRn
(i) fmult fRy, iRy, fR;

(1) code before scheduling and register allocation (2) the DDG G

Figure 3.1: DAG Model
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Note that this set may not be unique, since we may have more than one clock cycle when
the number of values simultaneously alive is maximum. We call an ezcessive clock cycle
of type t a time ¢ when there is a maximum number of values of type t simultaneously
alive.

Definition 3.3 (Excessive Clock Cycle) Given a DAG G = (V, E, ) and a schedule
o € X(G), an excessive clock cycle of type t is an instant when there is a mazimum
number of values of type t simultaneously alive :

c is an excessive clock cycle of type t € T <= RN/ (G) = |vsaj ()

Figure 3.2 is an example of a valid schedule for the previous DAG that needs three fp
registers. Here, we highlight fp values with bold circles and flow fp arcs with bold ones.
The bars represent the lifetime intervals. {e, f} are the killers of »/?. {a,b,d} is a set
of fp excessive values since they are the maximum number of values simultaneously alive
of type float. 9 is a fp excessive clock cycle since at this time there are three fp values
simultaneously alive. Note that we may have more than one set of excessive values, since
the register need may be defined with many sets of values simultaneously alive.

\ Oa;b;c

LT(a) LT(b)

T - ﬂ ———————————— M isthe write cycle of thevalue
! Le;f _LiLTe r7(f)

. S I
time y o9 1 .. _________LILI.

RN{,(G) =3

Figure 3.2: Register Need of Acyclic Schedules

Computing the register need of a fixed schedule is easy : in the case of an interval graph
[Ber77], its width (MAXLIVE) is equal to the size of a maximal clique in its interference
graph. In the general case, computing a maximal clique is NP-complete [GJ79]. But,
this problem becomes polynomial in the case of perfect graphs [Gol80]. Since an interval
graph is perfect [Ber77], a maximal clique can be computed with an optimal coloring
algorithm of an interval graph in O(]V| x log|V|). Note that, if the intervals are provided,
there exists a linear algorithm that computes a maximal clique in an interval graph; for
a detailed description, please refer to [Lel96].

However, we need to formulate the register need according to an arbitrary schedule,
i.e., without fixing any scheduling information. The next section gives an exact intLP
formulation of register requirement according to an arbitrary schedule. This formulation
will enable us in further chapters to compute the exact register pressure.
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3.3 Exact Formulation of Register Need

A “good” intLLP model is important in our study because it must be used for maximizing
(saturation) or minimizing (sufficiency) the register need. Furthermore, we need to give a
“good” intLLP complexity in terms of the number of generated variables and constraints.
This complexity should be a polynomial function of the size of the input DAG, i.e., it
should only depends on the number of nodes and arcs without introducing a total schedule
time factor like in existing techniques.

Since we will need to compute a maximal register need (register saturation) and a
minimal one (register sufficiency), we provide two formulations. The first one computes
a maximal clique (maximization version), and the second computes a minimal chain de-
composition (minimization version). Note that if Vg, = 0, i.e., no results of type t is
produced in the DAG, the register need of type ¢ is zero. Hence, we assume that |Vg,| > 0.

3.3.1 Exact Register Need with Maximal Clique
Scheduling Variables

For all operations u € V', we define the integer variable o, > 0 that holds the schedule
time. The first linear constraints are those that describe validity conditions (precedence
relations), so we write into the model:

Ve = (u,v) € E o, Loy, >6(e)

There are O(|V]) scheduling variables and O(|E|) linear constraints. In order to bound
the domain set of our variables, we define T" a worst possible schedule time. We choose T
sufficiently large, where for instance T' = ) _ lat(u) is a suitable worst total schedule
time?. Then, we write the following constraint :

(o] S T
As a consequence, we deduce for any u € V':

¢ 0, > 0, = LongestPathTo(u) is the “as soon as possible” schedule time;

e 0, <7, =T L LongestPathFrom(u) is the “as late as possible” schedule time
according to the worst total schedule time T'.

Register Constraints

Interference Graph The lifetime interval of a value u! of type ¢ is

LT, (u') =|oy + 6u(u), éna)i : (00 + 6rt(v))]
vECons(ut
We define for each value ' the variable k,» > 0 that computes its killing date. The
number of such defined variables is O(|Vg;|). Since our variable domains are bounded
(assuming a finite T'), we know that k,: is bounded by the two following finite schedule
times:

vVt e T, vu' € VR,t : byt < kyt < kyt

where

3The case where no ILP is exploited.
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o kyt =0y + 6y, (u) is the first possible definition date of u’;

o Ly = MAXye Cons(ut) (a_,, + 6,%(1))) is the latest possible killing date of u'.

We use the max,, linear constraints to compute k,: as explained in Section 2.1: we need
to define for each k,: O(|Cons(u')|) variables and O(|Cons(u')|) linear constraints to com-
pute it. The total complexity to define all killing dates for all registers types is bounded
by O(|V|?) variables and O(|V'|?) constraints.

Now, we can consider H; the undirected interference graph of GG for the register type t.
For any couple of distinct values u‘, v* € Vi, we define a binary variable s}, , € {0, 1} such
that it is set to 1 if the two lifetimes intervals of type ¢ interfere: V¢ € T, V couple u!, v €
VR,t .

otherwise

: _{ 1 if LT, (u') N LT, (v") # ¢
ur =0

The number of variables s}, , is the number of combinations of 2 values among |Vg,/, i.e.,
(IViral x ([Vigl L1))/2.

LT,(u') N LT,(v') = ¢ means that one of the two lifetime intervals is “before” the
other, i.e., (LT,(u') < LT,(v")) v (LT,(v') < LT,(u")). Then, we have to express the
following constraints :

st =1+ =(LT,(u') < LT,(v") V LT,(v") < LT,(u"))

where LT, (u') < LT,(v") iff kyt < 0, + 64 4(v). The negation of this constraint is k,: >
Oy + bwy(v), ie., kye Loy L 6yy(v) L1 > 0. Since s, € {0,1}, these variables are
constrained as follows [Tou01d] :

st > 1 «—

uv =

kut 1 Oy 1 6w’t(”0) 11 2 0
kyt Loy Loy (u)L1>0

Given three logical expressions (P, @, S), (P <= (Q A S)) is equivalent to the expression
(PANQAS)V (=P A-=Q)V (-P A ~S). We write these two disjunctions with linear
constraints by introducing two binary variables h,h’ € {0,1} (see Section 2.1) and by
computing the finite lower bounds of the linear functions. This leads to write in the
model : V couple u’, v* € Vg,

(sh,+h+Dh 11>0
kut Loy L 6y(v) L (kut LTy L 6yy(v) L1) x (R+H)L1>0

kot Loy L 8 y(u) L (it L7y L 6uy(u) L1) x (h+h)L1>0

Lst, Lh+h +1>0
Lky + 0y + 60(v) + (Lkyt + 0y + uy(v)) x (AL A 1L1) >0

Lsh, LA +1>0
Lhye + 0y + 0 () + (Lkyt + 0y + 6w i(u)) x (B L1) >0
( h,h € {0,1}
The complexity of computing all the s/, variables is bounded by O(|Vg,|?) binary vari-

ables and constraints. The total complexity of considering the interference graphs H; is
then bounded by O(|Vg,|?) variables and O(|Vg,|?) constraints.
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Maximal Clique in the Interference Graph The maximum number of values of
type ¢ simultaneously alive corresponds to a maximal clique in H; = (Vgy, &), where

(u',v") € &, iff their lifetime intervals interfere (s!, = 1). For simplicity, rather than

U,
considering the interference graph itself, we prefer to consider its complementary graph
H} = (Vgy, €}) where (u,v") € &} iff their lifetime intervals do not interfere (sl , = 0).

Then, the maximum number of values of type ¢ simultaneously alive corresponds to a
maximal independent set in Hj.

To write the constraints that describe independent sets (IS), we define a binary variable
zyue € {0,1} for each value z,¢ € Vg, such that x,« = 1 iff u' belongs to some IS of H, (to
be determined). We express in the model the following linear constraints :

Vayt, Ty € Vg sz’v =0=xy +x, <1

The number of variables z,¢ is O(|Vg,|). The number of introduced binary variables to
express all the implications is bounded by O(|Vgz,|?). The number of linear constraints to
define the IS is bounded by O(|Vgz.|?).

Linear Function of Register Need

The register requirement of type ¢ is a maximal IS in Hj, i.e., the maximal ZutGVR,t
This formulation is the core of our intLP models, previously defined in [Tou01d, Tou01a,
TouOlc]. As we will see in Chapter 4, maximizing this function amounts to compute the
register saturation (RS).

Tyt .

Summary
The total variables and constraints of our exact formulation for the register need is:

1. the total number of integer variables is bounded by O(|V']?) :

(a) O(]V]) scheduling variables: o, for each node u € V;

(b) O(|Vg,|) killing variables for each register type: ky, > 0 for each value u' €
Vr.t;

(¢) O((|Vaye| % (|Vge| L 1))/2) interference binary variables for each register type ¢
s € {0,1} for all couples (u',v") € V3 ;

(d) O(|Vry|) binary independent set variables for the complementary interference
graph H, of the register type t: x, € {0,1} for each value u' € Vgy;

(e) the total number of intermediate and binary variables to write max,, n-disjunctions

and equivalence with linear constraints is bounded by O(|V]?).
2. the total number of linear constraints is bounded by O(|E| + [V'|?) :
(a) O(|E]) scheduling constraints:
Ve = (u,v) € E o, Lo, >d(e)

(b) the total number of interval lifetime interference constraints is bounded by
O(|Vg,|?) for each register type ¢:

s, =1<= ~(LT,(u") < LT,(v") v LT,(v") < LT,(u"))

u,
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(c) the total number of independent sets constraints for the complementary inter-
ference graph H, is bounded by O(|Vg,|*) for the register type ¢:

SZ’U:0:>ZL’Ut 4z, <1

(d) the total number of linear constraints to express maz,, n-disjunctions and,
equivalences and implications is bounded by O(|V'[?).

RN, (G) is expressed by the linear function :

Max Z Tyt

3.3.2 Exact Register Need with Minimal Chain Decomposition

Another formulation uses a minimization objective function. Instead of considering a
maximal clique in the interference graph, we consider a minimal chain decomposition of
the interval graph. Thus, the register need is equal to the number of distinct chains.
The intLP system uses some of the variables and constraints defined above (for maximal
clique).

1.
2.

Now,

O(|V]) scheduling variables: o, for each node u € V;
O(|Vr,.|) killing variables for each register type: ky¢ for each value u' € Vpy;

O((|Vaye| x (|Vry| L 1))/2) interference binary variables for each register type ¢:
st ., € {0,1} for all couples (u',v') € V3 ,;

U,V

. the total number of intermediate and binary variables to write max,,, n-disjunctions,

equivalences and implications with linear constraints is bounded by O(|V]?).

O(|E|) scheduling constraints:
Ve = (u,v) € E o, Loy, > 6(e)
the total number of interval lifetime interference constraints is bounded by O(|Vz,|?)
for each register type t¢:
st,,=1<= =(LT,(u") < LT,(v") v LT,(v") < LT,(u"))

U,

we consider the variables and constraints for a minimal chain decomposition.

. We declare a variable ¢,: > 0 for each u' € Vg, that holds the number of the chain

in which the lifetime interval of u! belongs. c,: is positive because we assume that
there exists at least one value of type ¢ in the DAG. Otherwise, the register need of
type t is obviously zero.

If two lifetime intervals interfere, then if must not belong to the same chain:
Vu,v € Vg, : sfw =1 = cyt # Cyt
These constraints are equivalent to Vu,v € Vg:

Cyt > Cyt
sfl’v >1l=<V
Cyt < Cyt
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3. The register need of type ¢ is the minimal number of chains z; = min,, c,:.

As we will see in Chapter 5, minimizing z; enables to compute the register sufficiency.

Our intLP formulations may be optimized by considering that;

e an arc ¢ = (u,v) is redundant for the scheduling constraints and can be safely
removed iff Ip(u,v) > 6(e) where Ip(u, v) denotes the longest path from u to v (with
the condition that this arc doesn’t belong to this path);

e two values (u',v') € Vi, can never be simultaneously alive iff for all the possible
schedules, one value is always defined after the killing date of the other. This is the
case if any of the two following conditions is satisfied :

(") L 6y (u)
1

Vo' € Cons(vt)  Ip(v' Or
o (u)

)
V. Vu' € Cons(u') Ip(u',v)

\VAY

3.4 Conclusion

This chapter introduced our hypothesis about targeted ILP architectures and defined
some important terms that we use in this part of thesis devoted to register pressure in
DAGs. The register need is formulated with a novel integer programming model and is
used in the next chapters for computing the register pressure.

Our architecture is sufficiently generic for modeling most of modern processors. We
assume architecturally visible delays in reading from and writing into registers, then a
register does not have to be occupied before the operation result is available, and isn’t
freed before the last reading. Multiple register types are considered with two restrictions.
First, only one result of a certain type can be produced. This restriction is not important
for the intLP models: we can easily write an intLP formulation that consider multiple
results per node; we have only to consider multiple lifetime intervals per node. However,
we will see, in the next chapter, that this restriction is important, because we will use
some graph theory algorithms that do not allow us to consider nodes with multiple results
of the same type. Thus, in our current model, multiple results are accepted if they have
different types. The second restriction is that the register types are orthogonal: an
operation producing a value of type ¢ stores it in registers of that type, i.e., it cannot have
the choice between more than one register type. However, some non regular architectures
may offer the possibility of storing results into, for instance, a register of type ¢; or into
another of type t,. For the moment, we do not consider this case. We will discuss an
extension to this architectural model in our chapter devoted to future work (Chapter 12).
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Chapter 4

Acyclic Register Saturation

) ) Abstract . .
This chapter details and synthesizes our work previously presented in [TT00,

Tou01d, TouOla, TouOle, TouOlb, TouOlc]. It consists in manipulating directed
acyclic graphs (DAG), before to the scheduling process, in order to prohibit this
latter from exceeding the number of values simultaneously alive without hurting
the ILP. We study theoretically the exact upper-bound of the register need (register
saturation) for all valid schedules. We prove that this problem is NP-complete,
and we propose a nearly optimal greedy heuristic. If the saturation exceeds the
number of registers, we add serial arcs to the DAG to reduce it without hurting
the ILP if possible. We prove that this problem is NP-hard, and we propose an
efficient heuristic. We also see how we can use register saturation to perform local
register allocation before to the scheduling step while saving intrinsic parallelism.
The register saturation in the presence of branches is discussed too. Experiments
show that our algorithms give nearly optimal results.

This chapter is organized as follows. Section 4.1 defines and studies the concept of register
saturation (RS) in basic blocks. We provide an exact method based on integer program-
ming. We also provide an algorithmic approximation based on a DAG decomposition
into levels. We will see in Chapter 6 that our algorithmic approach is an extension of
the URSA technique [Ber96, BGS93|, where the authors assumed a simpler DAG model
(identical registers, no writing and reading offsets). We write an appropriate mathemati-
cal formalism for this problem. Our formulation allows us to provide better heuristics and
strategies (experimentally, nearly optimal). We will prove in Chapter 6 that the URSA
technique is not sufficient to compute the maximal register requirement, even if its solution
is optimal. Section 4.2 studies the problem of RS reduction while minimizing the increase
of critical path. We provide an exact formulation with integer programming, as well as
an algorithmic approximation based on interval serialization. Section 4.3 shows how RS
analysis can be applied for local register allocation sensitive to instruction scheduling.
Section 4.4 extends the concept of RS to acyclic control flow graphs. Before concluding,
we give detailed comments on our experiments in Section 4.5.

4.1 Computing Register Saturation
First of all, if |Vg,/|, the total number of values of type t, is less than or equal to R;, the

number of available registers of type ¢, then we are sure that any schedule cannot require
more than [V, < R, registers. Otherwise, we must analyze the register saturation (RS).

29
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The RS of a register type ¢ is the maximal register need for all valid schedules of the
DAG:
RS, (G) = grenzz%)é) RN/ (G)
and we call o a saturating schedule for type t iff RN7(G) = RS;(G). The exact intLP

model that computes RS is derived from the integer program that computes the register
need in Section 3.3 (with maximal clique). We only have to maximize MAXLIVE:

Maximize RN;(G)
that is,

Maximize g Tyt

’utEVR,t

In this section, we study how to compute RS;(G) with a pure algorithmic solution. For
clarity and without loss of generality, let us focus on only one register type. Accordingly,
our notations become Vg for the set of values of the implicit type we consider, Ep for
the set of flow arcs through a register of that type, 6, and 6, for reading/writing delays,
and RN“(G) for the register need of the type we consider. Also, we use the notation u
for both the operation u and the value of that type it produces. Figure 4.1 illustrates an
example of a DAG that we use in this chapter. The values of the considered types are in
bold nodes, and the flow arcs are in bold lines.

Figure 4.1 gives an example of such a DAG that we use in this chapter.

(a) fload [i1l]l] — fR,

(b) fload [i2] — fRs

(c) fload [i3] — fR.

(d) fmult fR,, fRy — fRa

(e) imultadd fR,, fRy, fR. — iR,
(g) ftoint fR. — iR,

(i) iadd iRy, 4 — iR,

(f) fmultadd_setz fRy, iR;, fR. — fRy,gs
(h) fdiv fRg4, tRe — fRp

(j) faddsetbnz fRj;, gy, 1 — fR;, g;
(k) fsub gf, gj, 1 — fRi

(a) code before scheduling and register alocation

Figure 4.1: DAG Model

We will see in this section that the problem of computing RS is derived from answering
the question “which operation must kill this value 7. When looking for saturating sched-
ules, we do not worry about the total schedule time. Our aim is only to prove that the
register need can reach the RS but cannot exceed it. Minimizing the total schedule time
is considered in a further section when we reduce the RS. So, the purpose of this section
is to select a suitable killer (last reader) for each value to saturate the register requirement.

Since we do not assume any schedule, the life intervals are not defined so we cannot
know at which date a value is killed. However, we can deduce which consumers in Cons(u)
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are impossible killers for the value u. If vy, v, € Cons(u) and there exists a path vy ~ vs,
vy is always scheduled before vy with at least lat(v;) processor cycles. Therefore, v; can
never be the last read of u (remember that we assume strictly positive latencies). We can
consequently deduce which consumers may potentially kill a value (possible killers). We
note pkillg(u) the set of operations that may kill a value u € Vg:

Definition 4.1 (Potential Killing Operations) Given a« DAG G = (V, E, ), the set
of potential killing operations of a value u € Vi form the subset pkill(u) C Cons(u) such
that :

pkill(u) = {v € Cons(u)/ | vN Cons(u) = {v}}

One can check that all operations in pkill(u) are parallel in G. Any operation that does
not belong to pkillg(u) can never kill the value u. Furthermore, for any potential killer
v € pkill(u), there exists a schedule that makes v a killer of u, as proved by the following
lemma.

Lemma 4.1 Given a DAG G = (V, E. ), then Yu € Vg

—~
=~
—_

Vo € X(G), Fv € pkillg(u) :  o(v) + 6,.(v) = kill,(u)
Vo € pkillg(u), Jo € X(G): kill,(u) = o(v) + 6,(v) (4.2)

Proof:

See Appendix A (Section A.1.1 page 247).
_

A potential killing DAG of G, denoted by PK(G) = (V, Epk), is built to model the
potential killing relations between operations, see Figure 4.1(c). Since only flow arcs are
considered, serial arcs do not belong to PK(G). Note, for instance, that the value f is
not consumed inside the current BB. Since we assume that it is still alive when exiting
the BB, we add an arc from f to L to model this fact.

Definition 4.2 (Potential Killing DAG) Given a« DAG G = (V,E,$), the potential
killing DAG of G, denoted by PK(G) = (V, Epg), is the partial graph G/ g,,. such that:

Yu,v € Vi (u,v) € Epg <= u € Vg Av € pkill(u)

There may be more than one operation candidate for killing a value. Next, we prove
that for maximizing the register need, looking for only one suitable killer each value is
sufficient rather than looking for a group of killers: for any schedule that assigns more
than one killer for a value, we can obviously build another schedule with at least the same
register need such that this value is killed by only one consumer.

Theorem 4.1 Let G = (V, E,6) be a DAG and a schedule o € X(G). If there is at least
one excessive value that has more than one killer according to o, then there exists another
schedule o' € Y(G) such that :

RN’ (G) > RN°(G)

and each excessive value is killed by a unique killer according to o'.
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Proof:

See Appendix A (Section A.1.2 page 248).
|

Corollary 4.1 Given a DDG G = (V, E,0), there is always a saturating schedule for G
with the property that each saturating value has a unique killer.

Proof:

Direct consequence of Theorem 4.1.
_

Then, our purpose is now to select a suitable killer for each value to saturate the register
requirement. Let us begin by assuming a killing function which enforces an operation
v € pkillg(u) to be the killer of u € V.

Definition 4.3 (Killing Function) Given a DDG G = (V, E, ), a killing function k is
defined by

k: Vr — pkill(u)
u  — k(u)

If we assume that k(u) is the unique killer of u € Vg, we always must satisfy the
following assertion :

Vo € pkillg(u) L {k(u)} o(v)+ 6 () <o(k(uw)) + 6 (k(u)) (4.3)

There is a family of schedules that ensure this assertion. To define them, we extend G
by new serial arcs that enforce all the potential killing operations of each value u to be
scheduled before k(u). This leads us to define an extended DAG associated with k.

Definition 4.4 (DAG Associated with a Killing Function) Given a« DAGG = (V, E, )
and a killing function k, the extended DAG associated with k noted G_;, = G\"* is defined

by :

Ey = {e = (v,k(u))/u € Vg : v € pkill(u) L {k(u)} A 6(e) =6, (v) L& (k(u)) + 1}

Then, any schedule o € £(G_y) ensures Property 4.3. The condition of the existence of
such a schedule defines the condition of a walid killing function.

Definition 4.5 (Valid Killing Function) Given a DAG G = (V,E,$) and a killing
function k, then :

k is valid <= G_yj is acyclic
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(a) PK(G) with k (b) G4 (c) DVi(@) (d) B(@)

Figure 4.2: Valid Killing Function and Bipartite Decomposition

(a) the DAG G with killing operations (b) the extended graph associated to the killing function

Figure 4.3: Non Valid Killing Function
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Since G_, is acyclic, we are sure that we can always schedule this DAG :
k is a valid killing function = X(G_y) # ¢

Figure 4.2 gives an example of a valid killing function k. This function is shown by
bold arcs in part (a) in which each target kills its sources. Part (b) is the DAG associated
with k. Figure 4.3 describes an example in which an arbitrary choice of killing operations
is not correct, since there is no valid schedule ensuring that choice (there is a circuit in
Gﬁk).

Given a valid killing function k, we can deduce some values which can never be si-
multaneously alive for any o € X(G_j). Let | u be the set of the descendant values of
weVinG_y:

lru=lunVg

At this point, we can build a DAG that models values that can never be simultaneously
alive for for any o € X(G_j). Indeed, any descendant value v €| k(u) of some killer
k(u) can never be simultaneously alive with u in any schedule o € X(G_}).

Definition 4.6 (Disjoint Value DAG) Given a DAG G = (V, E, 6) and a killing func-
tion k, the disjoint value DAG of G, denoted by DVi(G) = (Vr, Epyv) is defined by :

Epy = {(u,v)/u,v € Vo A v €lgk(u)}

Any arc (u,v) in DVi(G) means that u’s life interval is always before v’s life interval
according to any schedule of G_ (see Figure 4.2(c)!).

This definition allows us to state through the following theorem that the register need
of any schedule of G_ is always less than or equal to a maximal antichain in DVj(G).
Also, there is always a schedule that makes simultaneously alive all the values of a maximal
antichain in DV (G).

Theorem 4.2 Given a DAG G = (V, E,6) and a valid killing function k then :
e Vo € X(G_y): RN(G) < |M A
e Jo € X(G_): RN (G) = | M Ag|

where M Ay is a maximal antichain in DVj(Q)

Proof:

First property Let us begin by proving that:
Vo € X(G_): RN (G) < |M Ay

DV, (G), the disjoint value DAG, models the order between value lifetime in
any schedule of G_ . The definition of the disjoint value DAG states that
Vo € X(G_y),Yu,v € Vi:

u <vin DVi(G) <= u < k(u) < vin G_

!This DAG is simplified by transitive reduction.
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If v = k(u), then o(u)+6,(u) < 0(v)+6,(v), because of true data dependence.
By hypothesis on DAG model we have 6,(v) < 6,(v), then o(u) + 6,(u) <
o(v) + 6y(v). In the case where v # k(u), any path from k(u) to v is a data
dependence path with strictly positive integer latencies. We deduce that :

Vo € £(G_g) o(k(u) + 6, (k(u)) < o(v) + 6,(v)

That is,
kill,(u) < o(v) + 64(v)

We deduce that the following assertion is correct :

Vo € ¥(G_y) u~wvin DVi(G) = LT,(u)N LT,(v)=¢

We rewrite it: Vo € S(G_)

LT,(u)NLT,(v) # ¢ = ul|vin DVi(G)
= {u,v} € wvsa’(c),c € LT,(u) N LT, (v)

Then, any values simultaneously alive for o € ¥(G_j) belong to an antichain
in DVi(G):

V0 < ¢ <@, 3A an antichain of DV, (G) wsa’(c) C A

Since RN?(G_) = maxg<.<z |vsa’(c)| and |vsa’(c)| < |[MAg|, we conclude
that RN?(G) = maxo<.<z |vsa’(c)| < |MAg|.

Second Property Now, given a set of excessive values M Ay, we must prove
that :

3o € S(G_y) : RN?(G) = | M A

We have to build a schedule o such that RN?(G) = |M Ag|. For this purpose,
we consider G_, in order to ensure the killing relation, and we add some serial
arcs to enforce the values in M Ay in order to be simultaneously alive. This
leads us to a new extended DAG G’ = G_;\* and

Vo € X(G') Yu,v € M Ay, : LT,(u) N LT,(v) # ¢

A sufficient condition that two values u, v in M A}, must satisfy to be simulta-
neously alive for any schedule of G_,}, is

{v <u < k(v) Np(v,u) > 6y(v) L 6yp(u) A
A Ip(u, k() > 8,(u) L 5,,(16(7))): (4.4)

% [u <v<k(u) A Ip(u,v) > 6y(u) L b6y(v) A

A Ip(v,k(w)) > 8,(v) L 6r(k(u)): (4.5)
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with Ip(u,v) for u,v € V denoting the longest path from u to v.
These conditions ensure that Vo € X(G_) Yu,v € Vg:

u, v satisfy (4.4) = o(u)+ 6p(u) > o(v) + 6y(v)
A o(k(v))+ 6,(k(v)) > o(u) + 6, (u)
u, v satisfy (4.5) = o(v) + 6y(v) > o(u) + du(u

)
A o(k(u)) + 6.(k(u)) > a(v) + 6y (v)
u, v satisfy (4.6) = Fkill,(u) = kill,(v)

Then, by using interval order algebra notations (Section 2.2):

u, v satisfy Cond. (4.4) =— =(LT,(u) < LT,(v) V LT,(u) > LT,(v))
u, v satisfy Cond. (4.5) = =(LT,(u) > LT,(v) V LT,(u) < LT,(v))
u, v satisfy Cond. (4.6) = LT,(u) fLT,(v)

If two values in u,v € M A, do not satisfy any of these conditions, then we
use Algorithm 1 to enforce them. This algorithm uses the boolean function
vsag (u,v) to check if two values u,v satisfy one of the above conditions.
We add iteratively serial arcs until all values in M Ay satisfy one of these
conditions. The added serial arcs do not introduce circuits and any schedule
o of G' has RN?(G") = |M Ag|. All this is proved by Lemma 4.2, as follows.

Lemma 4.2 Let G = (V, E,$) be a DAG and k be a killing function. The extended graph
G' = Gﬁk\E' produced by Algorithm 1 is a DAG, and

Vu,v € M Ay, Yo € X(G') : LT,(u) N LT,(v) # ¢

in which M Ay is a mazimal antichain in DVi(G).

Proof:

See Appendix A (Section A.1.3 page 250).

Corollary 4.2 Given a DAG G = (V, E,§) and a valid killing function, then :

1. the descendant values of k(u) cannot be simultaneously alive with u :

Vu € Vg, Yo € X(G_y), Yv €lg k(u) :  LT,(u) < LT,(v) (4.7)

2. there exists a valid schedule that makes the other values non descendant of k(u)
simultaneously alive with u, i.e., Vu € Vg, 3o € L(G_}),

Vo € U lev' | Llrk(u) : LT, (u)NLT,(v) # ¢ (4.8)

v' Epkillc(u)
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Algorithm 1 Extended G _; to enforce values to be simultaneously alive
Require: a valid killing function &
construct the extended graph G_; associated with k
G’ — G_j {the final extended graph is initialized}
search for a maximal antichain M A, in the disjoint value DAG DV (G)
for all u € M A, do
for all v € MAy/ u # v do
if —vsag (u,v) then
if u||v in G’ then
if =(k(u) < v) then
add the serial arcs e = (u,v),e
and 6(€') = 6,( 6, (K( )
else {—(k(v) < u) certamly}
add the serial arcs e = (v,u), e = (u, k(v)) to G' with 6(e) = 6y,(v) L 6y (u)
and 6(e') = 6, (u) L &, (k(v )) +1
end if
else
if v < u then
add the serial arcs e = (v,u) and €' = (u, k(v)) to G’ with §(e) = 6,(v) L
6w(u) and 6(e’) = b6, (u) L &, (k(v)) +1
else {u < v}
add the serial arcs e = (u,v) and ¢’ = (v, k(u)) to G' with 6(e) = 6,,(u) L
6w (v) and 6(e') = 6,,(v) L 6, (k(uw)) + 1;
end if
end if
end if
end for
end for

(v, k(u)) to G' with 6(e) = 6,(u) L 6,(v)

7

+1
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Proof:

See Appendix A (Section A.1.4 page 253).

Theorem 4.2 allows us to rewrite the RS formula as

RS(G) =~ max - [MA
k a valid killing function
where M Ay, is a maximal antichain in DVj(G). We refer to the problem of finding such
killing functions as the mazimizing maximal antichain problem (MMA). We call each
solution for the MMA problem a saturating killing function, and M A, its saturating
values. Unfortunately, computing a saturating killing function is an NP-complete problem,
as proved by the following theorem.

Theorem 4.3 Given a DAG G = (V, E,¢), finding a saturating killing function is NP-

complete.

Proof:

See Appendix A (Section A.1.5 page 253).

_

Corollary 4.3 Given a DAG G = (V, E, ), computing the register saturation of type t
1s NP-complete.

Proof:

See Appendix A (Section A.1.6 page 257).

_

The next section describes an efficient heuristics for solving MMA i.e., for finding a good
approximation for RS.

4.1.1 An Efficient Heuristics for Computing RS

This section presents our heuristics to approximate an optimal £ by another valid killing
function £*. It is the same problem of scheduling with a maximal number of values
simultaneously alive. We have to choose a killing operation for each value such that we
maximize the parallel values in DV, (G) the disjoint value DAG. Our heuristics focuses
on the potential killing DAG PK(G), starting from source nodes to sinks. Our aim is to
select a group of killing operations for a group of parents to keep alive as many descendant
values as possible. In other words, we want to minimize the number of arcs in DV (G).
The main steps of our heuristics are:
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1. decompose the potential killing DAG PK(G) into connected bipartite components
(producers and consumers, see the definition hereafter);

2. for each bipartite component, search for the best saturating killing set (defined
below);

3. choose a killing operation within the saturating killing set (defined below).

Each step is explained in the following paragraphs.

Step 1: Decomposing PK(G) into Connected Bipartite Components

We decompose the potential killing DAG into connected bipartite components (CBC) in
order to choose a common saturating killing set for a group of parents (producers). Our
purpose is to have the maximum number of children (consumers) and their descendants
values simultaneously alive with their parents. A CBC ¢b = (Su, Tep, Ep) is a partition
of a subset of operations into two disjoint sets in which :

e F., C Epg is a subset of the potential killing relations;

e S, C Vg is a set of parent values with the property that each parent is killed by at
least one operation in T,;

e T, C V is a set of children with the property that any operation in 7., may poten-
tially kill at least a value in Sg.

A formal definition will be given below. Let us begin by defining a relation between the
arcs of a general DAG.

Definition 4.7 (Zigzag Relation) Let G = (V, E,$) be a DAG. We say that two con-
nected arcs e, e’ € E are in zigzag relation, denoted by <, iff :

e 1 e < target(e) = target(e') V source(e) = source(e’)

We then define the zigzag equivalence, which is the reflexive and transitive closure of the
zigzag relation.

Definition 4.8 (Zigzag Equivalence) Let G = (V, E, ) be a DAG. The zigzag equiva-
lence, noted 1, is the the reflexive and transitive closure of the zigzag relation, i.e.,

e Veec E, ele
e Ve, € B, exe —cele
o Ve, e € E, (exte)A(xe)=ele"

We group the arcs of a DAG into classes according to this zigzag relation (see Fig-
ure 4.4), which are the equivalence classes of the relation 1.

Definition 4.9 (Zigzag Class) Let G = (V, E,6) be a DAG. We say that a non empty
set zc C F is a zigzag class iff it is an equivalence class of the zigzag equivalence relation.
Formally :

1. ele < e,e € zc
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2. Pec ELzc/ 3 €zc A ele

We decompose the set of arcs of a DAG into zigzag classes, which are the set of equivalence
classes of the relation 1.

Definition 4.10 (Zigzag Decomposition) Let G = (V, E,6) be a DAG. We say that
Z(Q) a set of zigzag classes is a zigzag decomposition iff :

Ve € E, 3zc € Z(G) : e € zc

Then, since Z(G) is the set of equivalence classes of the relation {, a zigzag decomposition
is unique.

Now, after understanding the zigzag decomposition, we are ready to define a connected
bipartite component (CBC) of the potential killing DAG PK(G). For each zigzag class
of PK(G), we define a connected bipartite component as a triplet : a set of parent values,
a set of children (potential killers) and a set of arcs connecting parents to children.

Definition 4.11 (Connected Bipartite Component) Let G = (V,E,$) be a DAG,
and PK(G) = (V,Epk) its potential killing DAG. A connected bipartite component
cb = (Se, Tep, Eep) is constructed from a zigzag class zc € Z(PK(G)) of a potential
killing DAG PK(G) = (V, Epk) such that :

o Sy ={u€ Vg/ Je € zc: u=source(e)} is the set of parent values (producers);

e Ty ={ueV/ug Sy N Je € zc:u=target(e)} is the set of children nodes
(consumers);

e By ={e=(u,v) € Epg/u € Sey ANv € Tep}, i.e., cb is bipartite :

According to this definition, there is a unique connected bipartite component per zigzag
class (see Figure 4.4). Note that the children of a connected bipartite component are
parallel, by definition, in the potential killing DAG :

Vi,t' € Ty t|t' in PK(Q)

The set of all connected bipartite components is called a bipartite decomposition of
the potential killing graph PK(G).

: ¢
DESIZIES

(a) Genera DAG (b) Two Zigzag Classes (c) Two Bipartite Components

Figure 4.4: Zigzag Classes
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Definition 4.12 (Bipartite Decomposition) Given a DAG G = (V, E,¢), a bipartite
decomposition of its potential killing DAG PK(G) is the set

B(G) = {cb = (Sep, Tep, Ep)/ Fzc € Z(PK(G)) : ¢b is a CBC of zc}

Since the zigzag decomposition is unique, and each zigzag class has a unique CBC, then
the bipartite decomposition is also unique (see Figure 4.2.d).

Algorithm 2 computes the bipartite decomposition of a potential killing DAG. Tt pro-
ceeds by selecting one value as an entry point for constructing a new bipartite component.
Then, each child is added to the T, set and each parent is inserted into the S, set. This
algorithm iterates until no new parent or child is found.

Algorithm 2 Constructing the bipartite decomposition B(G)
Require: PK(G) of a DAG G = (V, E, 0)
B(G) « ¢ {bipartite decomposition is initially empty}
list_arc « Epg
for all u € Vi do {initialization}
visited[u] «— false
end for
for all v € Vi do
if — visited[u] then {we select one non visited value...}
Sep — {u} {...to initialize Sq}
Ecb = ¢
T, — F;K(G)(u)
S «— ¢ {last S}
T «— ¢ {last T}
while (S # Su) V (T # Tw) do {grab all connected children with their parents}
S — Scb
T «— ch
Sep UteTebFILDK(G)(t)
Top — USGSCbF;K(G)(S)
end while
for all s € S.;, do {mark parent values as visited}
visited|[s] «— true
if s € T, then {cb must be bipartite}
remove s from T,
end if
end for
for all e = (u, v) € list_arcs do
ifueSy N veT, then
add e to E
remove e from list_arcs
end if
end for
B(G) — B(G) U {cb}
end if
end for
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After constructing all the CBC, we compute a saturating killing set for each CBC as
explained below.

Step 2 :Finding a Saturating Killing set

A saturating killing set SKS(cb) of a bipartite component ¢b = (S, Tep, Egp) is a subset
T C T, such that if we choose a killing operation from this subset, then we get a
maximized number of values in (|p T L |z T') simultaneously alive with the parents in
S (this is the consequence of Corollary 4.2). In other words, if T is the set of children and
T" C T is a saturating killing set, maximizing | [ T L |g T'| corresponds to minimizing
| lg T'|. This amount to minimizing the number of arcs in the disjoint value DAG
DVi(G).

Definition 4.13 (Saturating Killing Set (SKS)) :
Given a DAG G = (V, E,¢), a saturating killing set SKS(cb) of a connected bipartite
component cb € B(G) is a subset T}, C T,y with the following properties :

1. killing constraints :

U Fé;(t) = Seb

teT!,
2. minimizing the number of descendant values of T,

min | U Ir

teT),

It is clear that computing SK S(cb) is NP-complete too. The proof is exactly the same
as for MMA problem, i.e., by reducing SKS from MKS, the minimum killing set problem
(see Section A.1.5 Page253).

Step 3 : A Heuristics for Finding a SKS and a Suitable Killer for Each Value

Intuitively, we should choose a subset of children in a bipartite component that would
kill the greatest number of parents while minimizing the number of descendant values.
We define a cost function p that enables us to choose the best candidate child. Given a
bipartite component ¢b = (Se, T, Fep), a set Y of (cumulated) descendant values, and a
set X of non (yet) killed parents, the cost of a child t € T, is :

1
17 ,(H)NX]

e it gtUY #¢

pxy(t) =
IT5(t) N X| otherwise

The first case enables us to select the child which covers the most unkilled parents
with the minimum descendant values. If there is no descendant value, then we choose the
child that covers the most unkilled parents. Algorithm 3 gives a greedy heuristics that
searches for an approximation SKS* and computes a killing function £* in polynomial
time. Our heuristics ensures that there exists at least one schedule which needs |M A~
registers, i.e., k* is valid since it does not introduce a circuit into G_« the DAG associated
with it. For this purpose, we maintain dynamically G_ ;- in order to ensure that each
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Algorithm 3 Greedy-£: a heuristics for the MMA problem
Require: a DAG G = (V, E, 0)
G_+ < G {initialization}
for all values u € Vi do
k*(u) «— L {all values are initially unkilled}
end for
build B(G) the bipartite decomposition of PK(G).
for all bipartite component cb = (S, Tep, Eey) € B(G) do
X < S {all parents are initially uncovered}
Y «— ¢ {initially, no cumulated descendant values}
SKS*(cb) «— ¢
while X # ¢ do {build the SKS for ¢b}
select the child ¢ € T, with the maximal cost px y (%)
SKS*(cb) «— SKS*(cb) U {t}
X « X L I} (t){remove covered parents}
Y «— YU | g t {update the cumulated descendent values}
end while
for all t € SKS*(cb) do {in decreasing cost order}
for all parent s € [';;(t) do
if £*(s) = L then {kill unkilled parents of ¢}
if fv € pkill(s)/t < v in G_;- then {k* must be valid}
k*(s) — t
else
choose t € pkill(s) such fv € pkill(s)/t < v in G_-
k*(s) «— t
end if
update G_ -
end if
end for
end for
end for
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killing decision is valid. Before inserting an arc, we must check if it does not introduce a
circuit. This is because the connected bipartite components of PK(G) do not contain all
the arcs of GG, since we may have multiple register types. If we do not take care and we
choose the killers locally inside the connected bipartite components, we may introduce a
circuit. Figure 4.5 is an illustration. Bold arcs are the flow arcs of the type we consider.
Some serial arcs (other flow types, in thin arcs) may join CBC1 and CBC2. If no care
is taken for choosing the killers locally inside these bipartite components, a circuit may
be introduced. Note that if the initial DAG is a pure data flow graph with one register
type, we can use Algorithm 11 (Appendix, page 11) to choose a killer without checking if
a circuit would be introduced. Hence, Greedy-k is simplified.

Figure 4.5: Avoiding Circuits in Joined Bipartite Components

As a consequence, our heuristics does not compute an upper bound of the optimal
register saturation. Therefore, the optimal RS may be greater than the one computed
by Greedy-k. A conservative heuristics, which computes a solution exceeding the optimal
RS, cannot ensure the existence of a valid schedule which reaches the computed limit,
and may then imply an obsolete RS reduction process and a waste of registers. The va-
lidity of a killing function is a key condition because it ensures that there exists a register
allocation with exactly | M Aj«| registers.

Thanks to our RS problem formulation, we easily deduce that:

Corollary 4.4 Given a DAG G = (V, E, ), then
PK(G) is an inverted tree => computing the optimal RS(G) is a polynomial problem

In inverted trees, each node has at most one child.

Proof:

Trivial ! Each value has at most one potential killer, i.e., there is only one
choice for the killing function. Then, the saturating values are simply the
sources of the potential killing DAG PK(G).

_

Such graphs are, for instance, arithmetic expressions. Their DDGs are inverted trees, and
hence saturating values are simply the sources of the DAG. Thus, we do not need to apply
Greedy-k.
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4.1.2 Summary

Here are our steps to approximate RS.

1.

2.

Apply Greedy-k on GG. The result is a valid killing function k*.
Construct the disjoint value DAG DVj-(G).

. Find a maximal antichain M Ay of DVj-(G) using Dilworth decomposition [CD73].

Saturating values are then M Ay« and RS*(G) = |M Aj-| < RS(G). Since a maximal
antichain is not necessarily unique, we may have multiple sets of saturating values.

Figure 4.6: Computing Register Saturation

Example 4.1.1 Figure 4.6 gives an example. Part (a) presents a saturating killing func-
tion k* computed by Greedy-k : bold arcs denote that each target kills its sources. FEach
killer is labeled by its cost p. Part (b) gives the disjoint value DAG associated with k*.
For instance, there is an arc from ¢ to h because h €| g e, as can be seen in the initial
DAG (Figure 4.1). Saturating values are {a,b,c,d, f,j, k}, so RS*=17.

We can optimize the computation of RS by exploiting some DAG properties. If the
DAG G = (V, E, ¢) is composed of a family of disjoint sub-DAGs Gy, ... ,G,, such that
Gi(0 < i < m) is connected, then the global DAG G has the following properties.

1.

The register saturation is the sum of register saturation of each sub-DAG:
RS(G) =) _RS(Gy)
i=1

This is because we can schedule the sub-DAGs in parallel.

. The saturating values are the union of saturating values of each sub-DAG:

MA = U M A

0<i<m

in which M A is the set of all saturating values and M A’ is the set of saturating
values of G;. This is because we can schedule the saturating values of each sub-
DAG in parallel with the saturating values of another sub-DAG, so as to make
them simultaneously alive.
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3. The saturating values of each sub-DAG are disjoint :
VMA!, MA", i #i  MANMA" =¢

Consequently, the RS of each sub-DAG can be independently computed in order to re-
duce the complexity. In one hand, our exact formulation consists of independent intLLP
models (one for each sub-DAG). In the other hand, our algorithmic heuristics consists in
independently applying Greedy-k on each sub-DAG.

The RS analysis is performed on DAGs before code scheduling. If the computed RS is
lower than the number of available registers, then the DAG is left unchanged. Otherwise,
we must add serial arcs to reduce the RS. The next section explores this issue.

4.2 Reducing Register Saturation

Reducing register saturation of type t € T for DAG G = (V, E, §) consists in adding extra
serial arcs to build a new DAG G = G\F such that the register saturation is limited by a
strictly positive integer (the number of available registers) without increasing the critical
(longest) path if possible. Let R; be the number of available registers of type ¢t and P a
positive integer. Then :

Vo € X(G) : RN/ (G) < RSi(G) <Ry A Critical Path(G) < P

We prove in this section that finding such an extended DAG is NP-hard, and we give an
intLP model to build an optimal one. We also present an efficient algorithmic approxi-
mation. Formally, the problem is defined by :

Definition 4.14 (ReduceRS problem) Let G = (V,E,0) be a DAG and R;, P two
positive integers. Does there exist an extended DDG G = G\F of G such that :

RS(G) <Ry

and B
Critical Path(G) < P

Theorem 4.4 ReduceRS problem is NP-hard.

Proof:

For the clarity of this proof, let us focus on one register type. If more than
one type exists, we handle them one by one.

We prove that ReduceRS reduces from the problem of scheduling under reg-
ister constraints. Let us start by defining the latter problem.

Definition 4.15 (SRC problem) Let G = (V,E,$) be a DAG, R be a pos-
itive integer, and P be a length. Does it exist a valid schedule o € ¥.(G) such
that :
RN?(G) <R
and
o(L) <P
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SRC problem has been proven NP-hard in [EGS95]%. Below, we show how we
reduce ReduceRS from SRC.

1. ReduceRS — SRC
Let G be a solution for the ReduceRS problem. Then trivially, any valid

schedule ¢ € ¥(G) is a solution for SRC.

2. SRC = ReduceRS
Let o be a solution for SRC, i.e., RN?(G) < R and o(L) < P. We build
an extended DDG G by adding serial arcs to impose value lifetimes of any

schedule of G to have same precedence relation as defined by o. Vu,v €
Vr/LT,(u') < LT,(v") then we add the following arcs:

e if v € pkillg(u), then add serial arcs from the other u’s potential killers
(except v) to v; the set of added arcs is:

{e=(u',v)/ ' € pkillg(u) L {v} with 6(e) = 6,(u") L 6,(v)}

e else, add serial arcs from all u’s potential killers to v; the set of added
arcs is:

{e=(u',v)/ v € pkillg(u) with §(e) =6,(u') L 6,(v)}

That is, we force the following assertion :

LT,(u) < LT,(v) = Vo' € X(G) LT, (u) < LT, (v)
Then, for all values non simultaneously alive according to o, there is no sched-
ule ¢’ of G that makes them simultaneously alive. Formally, it is written :

—|<E|u, v € Vi, LT, (1) < Ly(v), 30" € S(G)/ LTy (u) N LTy (v) # ¢>)

In other words, we ensure that any schedule of G will guarantee the prece-
dence relations between the value lifetime intervals of G' according to o. Con-
sequently, any ¢’ cannot need more than the register need of o and

RS(G)=RN°(G) < R
A solution for SRC problem may create a circuit in the solution of ReduceRS.
We are sure that if any circuit is introduced in G, then it must be nonpositive
because there exists at least the valid schedule o € ¥(G). Then, a solution of
the ReduceRS problem may produce a cyclic DDG. We will see later how to

eliminate these solutions.

With regard to the critical path of G, the introduced serial arcs ensure that at

least 0 € 3(G). Since there exists such a schedule with o(L) < P, the critical
path of G cannot be longer than P.

_

The proof of Theorem 4.4 gives the intuition for optimally solving the ReduceRS problem
using integer programming. The next section defines our variables and constraints.

2In fact this problem is NP-complete. The authors could prove that it belongs to NP but they didn’t.
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4.2.1 Exact Formulation of RS Reduction

An optimal solution of the ReduceRS problem is computed in two steps:
1. we first compute a valid schedule ¢ such that the register need of type ¢ is maximized
and does not exceed R;, while the total schedule time o (L) is bounded;

2. then, we add serial arcs as described by the proof of Theorem 4.4. This results in
an extended DDG that has a bounded register saturation with a minimized critical
path.

To compute such schedule, we use our formulation previously defined in Section 3.3
(with maximal clique) that maximizes the register need. We must bound the total schedule
time and the register need.

1. The objective function is: maximize }_ ey, , Tur
2. The integer variables are:

(a) scheduling variables: o, > 0 for each node u € V;
(b) bound the total schedule time:

O'J_Sip

(c) interference binary variables for each registers type ¢: sl , € {0,1} for all

couples u',v" € Vgy. s, is set to 1 iff the lifetime intervals of u' and v’
interfere with each other;

(d) binary independent sets variables for the complementary interference graph H,
of the register type ¢: x,¢ € {0,1} for each value u’ € Vg,. ¢ is set to 1 if
u' belongs to a maximal clique in the interference graph (i.e., belongs to an
independent set in the complementary graph).

3. The linear constraints are :
(a) scheduling constraints:
Ve = (u,v) € E o, Lo, >6(e)
(b) interference constraints for each register type ¢:
sty =1+ (LT, (u") < LT,(v") V LT,(v") < LT,(v"))

(c) independent sets constraints for the complementary interference graph H; of

type t:
Tyt + 2t < 1= s, =0

(d) the number of values of type ¢ which are simultaneously alive must not exceed
the number of available registers R; :

Vte T Yz <Ry

’utEVR,t
There are at most O(|V'|?) variables and O(|V'|? + |E|) constraints (see Section 3.3).
In some cases, the optimal RS reduction needs to introduce nonpositive circuits into

the original DAG. We must eliminate such optimal solutions. Thus, the extended DAGs
may have longer critical paths. The next section discusses this problem.
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4.2.2 Eliminating Circuits with Nonpositive Latencies

We must remind that the purpose of the register saturation analysis is to proceed by
ensuring in the first steps of compilation that any schedule of a given DAG will not
require more registers than those available. The scheduling phase is mainly constrained
by resources (functional units) of the target architecture. If the extended DDG produced
by the register saturation reduction contains a nonpositive circuit, we cannot guarantee
the existence of a schedule under resource constraints. This is because nonpositive circuits
introduce some scheduling constraints of types “not later than” which may not be satisfied
in the presence of resource constraints.

For instance, let us assume a zero weighted circuit between two operations v and v.
Theoretically, any schedule such that o(u) = o(v) satisfies this zero weighted circuit.
However, if we introduce the resource constraints such that the two operations conflict
with each other if they are scheduled at the same issue time, then there is not a valid
schedule that meets these constraints. When we reduce the register saturation, we must
ensure than there is always a schedule for any resource constraints. In the following, we
provide an example to illustrate when negative circuits are introduced.

Figure 4.7: Optimal RS Reducing with Possibly Nonpositive Circuits

Example 4.2.1 A nonpositive circuit is introduced when the lifetime interval of a given
value is before the lifetimes of at least two of its consumers (this is a sufficient condition).
For instance, Figure 4.7 is the extended DAG of Figure 3.1 constructed from the schedule
of Figure 3.2. The negative circuit introduced between the operations e and f is due to
the fact that they consume the same value b while none is simultaneously alive with b
according to the considered schedule.

To overcome the problem of nonpositive circuits in the extended DDG, we propose
two solutions.

First Solution As a first solution, we assume a sequential semantics, i.e., we do not
introduce serial arcs with nonpositive latencies (all introduced serial arcs have a unit
latency). This is because an arc with a latency equal to zero (6, = 6, = 0) will be
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processed as an arc with a positive latency in the sequential case. Thereby, since all
latencies in the extended DDG are positive, we cannot introduce a circuit, otherwise a
valid schedule does not exist. This solution does not alter the optimality of sequential
(superscalar) codes, since all arcs have a positive latency (no visible delays). But, this
method may produce sub-optimal solutions for static issue codes (VLIW). This is because
we do not consider writing and reading offsets, and hence we may require more registers
than the optimal number or we may extend the critical path.

Hence, any introduced serial arc with this method must have a latency equal to 1.
This solution does not add additional constraints to the intLLP system, and does not alter
the optimality of superscalar codes®. If we want an optimal solution for VLIW semantics,
we have to allow nonpositive latencies while guaranteeing that the extended DDGs is
acyclic. This solution is described in the next paragraph.

Second Solution We have to ensure that the produced DDG remains acyclic. Then,
we must guarantee the existence of a topological sort for the DAG. For this purpose, we
add some variables and constraints to the optimal intLLP system.

e We define integer variables that holds a topological sort of the DDG. For each u € V|
we associate an integer variable d,,.

e We bound the topological sort by the number of nodes:
VueV : d, <|V|

e We write the topological sort constraints for each arc in the original DAG:

Ve=(u,v) € E: d,<d,

e If we add a serial arc in the extended DDG, we have to satisfy the topological sort
constraints. If two lifetime intervals LT, (u') and LT, (v") do not interfere with each
other, serial arcs will be introduced. Vu,v € Vg, :

— if v € pkill(u), serial arcs will be added from the other u’s potential killers to
v. We then write the constraints:

LT, (ut) < LT, (v") = (vu' € pkill(u) L {v} = dy < dv>
That is,

o+ 60a(0) L kut >0 = (vu' € pkill(u) L {0} : dy < dv>

— if v & pkill(u), serial arcs will be added from all u’s potential killers to v. We
then write the constraints:

LT, (u') < LT, (v') = (vu' € pkill() : dy < dv>
That is,

Oy + (V) Ly > 0= (Vu' € pkill(u) : dy < dv>

3Recall that superscalar codes are sequential. Thus, any zero weighted arc can be replaced by a
unitary weighted arc, because we cannot express statically the ILP.
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Note that these constraints may be optimized by considering the fact that some values
can never be in interference (detected at compile time). We add at most O(|V|*) variables
and O(|V]* + |E|) constraints to guarantee that the optimal solution produces an acyclic
extended DAG.

This second solution is optimal in VLIW codes, under the restriction that nonpositive
circuits are not allowed. It fully takes benefit from reading/writing offsets, since arcs are
allowed to have nonpositive latencies. However, the restriction of nonpositive circuits may
not allow to decrease the register saturation in some critical cases, even if a final schedule
may use less registers when resource constraints are used. This is not a limitation of the
approach, but a mathematical fact. Compiler designers have two choices.

1. They can allow nonpositive circuits in the extended graph. Then, the register sat-
uration may be reduced in the optimal sense but there is no guarantee about the
existence of a schedule under resource constraints.

2. They can prohibit nonpositive circuits, but some critical cases may not allow to
reduce the register saturation as low as possible compared to the above case. Of
course, we advice this approach.

The next section presents an efficient algorithm for the ReduceRS problem.

4.2.3 Pure Algorithmic Heuristics for RS Reduction

In this section, we build an extended DAG G = G\¥ such that the RS is limited by
a positive integer R (the number of available registers) with a minimized critical path
increase. For clarity and without loss of generality, let us focus on only one register type
4. Then, our notations become V5 for the set of values of the implicit type we consider,
ER for the set of flow arcs through a register of that type, 6, and é,, for reading/writing
delays, and RN?(G) for the register need of the type we consider. Also, we use the
notation u for both the operation u and the value of the considered type it produces.

To simplify the writing of some mathematical formulas, we assume that the DAG has
one source (T). If not, we introduce a virtual node T representing a nop (removed at
the end of the RS analysis). We add a virtual serial arc e; = (T, s) to each source with
6(e1) = 0. The zero latency of such added arc is not inconsistent with our assumption
that latencies must be positive because the added virtual serial arcs no longer represent
data dependences. Besides, we can avoid introducing this virtual node without any con-
sequence on our theoretical study since its purpose is only to simplify some mathematical
expressions. Figure 4.1 shows the DAG that we use in this section.

Our heuristics relies on the Greedy-k algorithm previously defined in Section 4.1. Tt
adds serial arcs to prevent some saturating values in M A;, from being simultaneously alive
for any schedule, according to a saturating killing function k. Also, we must care to not
increase the critical path if possible.

Serializing two values (lifetime intervals) u,v € Vg means that the kill of « must
always be performed before the definition of v, or vice-versa, as illustrated in Figure 4.8.
An interval serialization u — v for two values u, v € Vg is defined by :

4If more than one register type exists, we apply our algorithm on each type.
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e if v € pkillg(u), then add the serial arcs {e = (v',v)/
v' € pkillg(u) L {v} with §(e) = 6,(v") L 6y(v)}
(see Figure 4.8.(c))

e else, add the serial arcs {e = (v/,v)/
u' € pkillg(u) A =(v < u') with §(e) = 6,(u') L 6,(v)}
(see Figure 4.8.(d)).

In order to preserve the DAG property (we must not introduce a circuit), some serial-
izations must be filtered out. The condition for applying u — v is that Yo' € pkillg(u) :
(v < v'"). We choose the best serialization within the set of all the possible ones by using
a cost function w(u — v) = (wy,ws) in which:

e w; = 13 L po is the prediction (benefit) of the reduction obtained within the satu-
rating values if we perform this value serialization, where:

— pq is the number of saturating values serialized after u if we carry out the
serialization;

— W is the predicted number of u’s descendant values that may become simulta-
neously alive with u.

We choose a value serialization with a minimal benefit in order to keep maximized
the maximal register requirement. A maximal benefit may reduce RS* with a larger
value, thus the reduced RS* would not remain maximized.

e ws is the increase in the critical path (cost).

Our heuristics is described in Algorithm 4. It iterates the value serializations within the
saturating values until we get a register saturation RS* < R or until no more serializations
are possible (or none is expected to reduce the RS). One can check that if there is no
possible value serialization in the original DAG, our algorithm exits at the first iteration
of the outer while-loop. If it succeeds, then any schedule of G needs at most R registers.

(a) the DDG G (b) PK(G)

Figure 4.8: Value Serialization
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If not, it may still decrease the original RS, and thus may limit the register need. Intro-
ducing and minimizing spill code is another NP-complete problem: a heuristics will be
presented further when we study register sufficiency in DAGs.

__ Now, we explain how to compute the prediction parameters pu, f12,ws. We denote by
G; the extended DAG of step i, k; its saturating function, M Ay, its saturating values,
and |p, u the descendant values of u in G| :

1. (v — v) ensures that ki 1(u) < v in G;;;. Then, v will belongs to |r, kiyi(u).
According to Corollary 4.2 Page 66,
p = | lr, v MAy,| is the number of saturating values in G; which cannot be
simultaneously alive with u in Gj1;

2. Since we may have multiple sets of saturating values®, new saturating values could
be introduced into Gyyq: if v € pkillg(u), we force k;yi(u) = v. According to
Corollary 4.2,

fto = U et |Llrv
v’ EpkillG—i(u)

is the number of values that could be simultaneously alive with u in G; ;. s =0
otherwise;

3. if we perform (u — v) in Gj, the introduced serial arcs may increase the critical
path. Let Ip;(v',v) be the longest path going from v’ to v in G;. The new longest
path in G;;; going through the serialized nodes is:

max Ipi(T,v") + Ipi(v, L) + 6(e)
introduced e=(v',v)
8(e)>Ip;(v',v)

If this path is greater than the critical path in G;, then w, is the difference between
them, 0 otherwise.

At the end of the algorithm, we apply a general check step to ensure the potential killing
property proven in Lemma 4.1 for the original DAG. We have proven in Lemma 4.1 (Page
61) that operations that do not belong to pkillg(u) cannot kill the value u. After adding
the serial arcs to build G, we may violate this assertion because we introduce some arcs
with nonpositive latencies. Figure 4.9 is an illustration. In the initial DAG, we have
pkill(¢) = {e, f} since both e and f may kill the value c. After two value serializations
(parts 1 and 2 of Figure 4.9), we have introduced a path from e to f with a nonpositive
latency. Consequently, e is no longer a potential killer for ¢ in the extended DDG. However,
the latency of the path e ~ f does not prevent ¢ from being scheduled as a killer, which
violates our pkill assertion in Lemma 4.1. Since our Greedy-k algorithm assumes that
only potential killers may be scheduled as killers, then the computed register saturation
of the extended DDG may not be correct. In order to make it so, we have to prevent e
from being scheduled as a killer for ¢ by just adjusting the latency of the path e ~ f.
To generalize the above ideas, we must guarantee the following assertion :
Vu € Vg, Yo' € Cons(u) L pkillg(u)

v € pkillg(u) /v < vin G = Ipg(v',v) > 6,.(v') L 6,(v) (4.9)

Recall that a maximal antichain in DV} (G) may not be unique.
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Algorithm 4 Value Serialization Heuristic
Require: a DAG G = (V, F,¢) and a positive integer R
G—G
compute M Ay, a set of saturating values of G;
while |[M Ai| > R do {recall that RG(G) = |M Ax|}
construct the set Uy of all admissible serializations between saturating values in M Ay
with their costs (w1, ws);
if #(u — v) € U/w;(u — v) > 0 then {no more possible RS reduction}
exit;
end if
X « {(u — v) € Ulwy(u — v) = 0} {the set of value serializations that do not
increase the critical path}
if X # ¢ then
Choose a value serialization (v — v) in X with the minimal benefit wy > R L
RS(G);
else
Choose a value serialization (v — v) in X with the minimal cost ws;
end if
Carry out the serialization (u — v) in G;
compute the new saturating values M A;, of G;
end while
ensure potential killing operations property {check longest paths between pkill opera-
tions}

As explained above, this problem occurs if we create a path in G from v’ to v in which
v,v" € pkillg(u). If assertion (4.9) is not satisfied, we add a serial arc e = (v',v) with
6(e) = 6,(v") L 6,(v) + 1, as illustrated in Figure 4.9 (part 3). Note that longest paths in
a DAG can be computed by the ALL_PAIRS SHORTEST _PATH algorithm [MN99] by
reversing the sign of the latencies.

initial DAG (1)b—d

Figure 4.9: Check Potential Killers Property

Example 4.2.2 Figure 4.10 gives an example for reducing the RS* of our DAG from 7
to 4 registers. We remind that the saturating values of G are M Ay = {a,b,c,d, f,j,k}
(Figure 4.6 Page 75). Sub-figure (a) of Figure 4.10 shows all possible value serializations
within these saturating values. Our heuristics selects a — f as a candidate, since it s
expected to eliminate 3 saturating values without increasing the critical path. The longest
path introduced through this serialization is (T,a,d, f,k, L) = 8, which is less than the
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original critical path (26). The extended DAG G is presented in Sub-figure (b) where the
value serialization a — f is introduced : we add the serial arcs (e, f) and (d, f) with a
-4 latency. Lastly, we add the serial arcs (e, f) and (d, f) with a unit latency to ensure
the pkills(b) property. The whole critical path does not increase and RS* is reduced to 4.
Sub-figure (c) gives a saturating killing function for G, shown with bold arcs in PK(G).

DV« (G) is presented in Sub-figure (d) to show that the new RS* becomes 4 floating point
registers.

Figure 4.10: Reducing Register Saturation

We can optimize this iterative algorithm by improving the way we build all possible
value serializations: in fact, we do not need to compute all of them. We stop when we find
a suitable one, i.e., when its cost w; > RS(G) L R while wy = 0. Another optimization
consists in iteratively updating longest paths and transitive closure: since we add few arcs
at each iteration, we can look for an iterative algorithm instead of global re-computation.

The RS analysis (computing and reducing it) intends to reduce the register pressure
previously to a scheduling phase. Our aim is to provide a compilation pre-pass for a mixed
scheduler-allocator algorithm or for a scheduler followed by an allocator. However, some
existing compilers use the old strategy consisting in allocating registers before scheduling.
As stated before, an early register allocation, that does not consider a possible parallel
execution, inhibits the scheduler from exploiting a maximal ILP. The cost of changing the
compiler structure is high. A better approach is to only change the allocator box so as to
become sensitive to the underlying scheduler. The next section elaborates on this.

4.3 Register Saturation for Local Register Allocation

In this section, we show how to apply a register allocation previously to a scheduler with-
out increasing the critical path if possible. We assume a DAG G = (V, E, 6) such that
RS;(G) < R, for each register type. If not so, we reduce the RS as explained in the
previous section, with a possible spill code insertion as will be explained in Chapter 5.

We build a register allocation for this DAG as follows:

1. search for a saturating killing function k; for each register type ¢ € T, sequentially
to avoid introducing circuits, as shown in Section 4.1;
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2. build G_, the DAG associated with k;. Any value u’ € Vi, is killed by one node
ky(u);

3. build the disjoint value DAG DV}, (G_y,). According to Theorem 4.2, any chain in
this DAG is a list of non interfering lifetimes in any schedule of G_,;

4. build a minimal chain decomposition [CD73| for DVj,(G_x,) (described in Sec-
tion 4.5);

5. allocate the same register to all the values in the same chain, but different regis-
ters for two different chains. According to Dilworth’s Theorem [CD73|, we need
RS;(G) < R, registers since a minimal chain decomposition is equal to the cardi-
nality of the maximal antichain.

Choosing only one killer is an important issue. This is because choosing two or more
killers of a value introduces nonpositive circuits in the DDG (as shown in Section 4.2)
that may not guarantee the existence of a valid schedule under resource constraints.

However, we must not prevent other potential killers from being scheduled in parallel
with the chosen killer. We slightly change some latencies in the DAG G_,; associated
with a killing function. Indeed, k(u) is a unique killer of u in G— k, even if we have
the ability of scheduling more than one operation as killers. This conservative restriction
may increase the critical path. So, the added serial arcs in G_; must have their latencies
changed so as they express the fact that k(u) is a killer of u without preventing other
potential killers from being last consumers of . This is done by considering the set of
added serial arcs as:

B, = {e — (v, k(u)/u € Vi : v € pkill(u) L {k(u)} A 8(e) = 6,(v) L 6T(k(u))}

Note that their latencies have changed from 6,(v) L 6, (k(u)) + 1 to é,(v) L &, (k(u)) so
as to allow other potential killers to be last consumers (as k(u)) in the final schedule.

le fR2 fR3 fR4

(a) Minimal Chain Decomposition of DVj(G) (b) Allocating registers in G_(G)

Figure 4.11: Register Saturation for Local Register Allocation

Example 4.3.1 Let us build a register allocation for Figure .10 Page 85 with 4 fp reg-
isters. Sub-figure 4.11.(a) is a minimal chain decomposition of the disjoint value DAG
of Sub-figure 4.10.(d). There are four chains, so we allocate four different fp registers.
Sub-figure 4.11.(b) shows the allocated DAG. Dashed arcs are the new serial constraints
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(we removed redundant arcs from the figure for clarity reasons): {(d,e), (e, f)} ensures
the killing function (so that RS < 4), and (e, k) is an anti-dependence since the node k
reuses the register freed by a (killed by e). Note that the arcs in Sub-figure (a) represents
the reuse register relation between values: and arc from a to k for instance means that k
reuses the register previously used by a and killed by e.

Performing a register allocation by considering a saturating killing function tries to
maximize the register usage. This amounts to minimize the amount of introduced anti-
dependencies. Hence, the maximal ILP degree (DAG weight) is maximized. However,
minimizing the amount of introduced anti-dependencies does not consider the increase of
critical path. This is because choosing a killer for each value that saturates the register
need may merge two long paths.

Another approach is to select a killing function so as to minimize the critical path
increase. If the optimal RS, is lower than or equal to the number of available registers of
type t, then any valid killing function produces an allocated DAG that does not require
more than R; registers. We have to choose for each value u € Vg, a killer v € pkill(u')
such that it does not increase the critical path.

For this purpose, we consider an “as soon as possible” schedule of G, which is defined
as o(u) = Ip(T,u); Ip denotes the longest path from T to u in G. Then, if v is a unique
killer of u according to o, then set k(u) = v. If more than one killer exist, then choose
only one killer k(u) so as the killing function remains valid, i.e., G is a DAG. This
killing function does not increase the critical path because o is a valid schedule of G_
and has a total schedule time equal to the original critical path of G.

However, selecting a killing function that does not increase the critical path does not
necessarily means that it introduces a minimized amount of anti-dependencies. Thus, the
further ILP scheduler has more false data dependence constraints to satisfy (compared to
the previous approach) which may increase the final total schedule time (under resources
constraints).

In order to get a good average speedup, compilers should look for global allocations
in CFGs. This is because local register allocators may assign different registers to the
same value in distinct BBs and hence move operations must be inserted to guarantee the
correctness of the code. The next section shows how we perform RS analysis in the case
of branches.

4.4 Global Register Saturation in Acyclic CFGs

Our model assumes that there is only one possible definition per value. This assumption is
correct inside a BB, i.e., if the code does not contain branches. In the case of a global CFG,
a static data dependence analysis may provide for some values more than one definition
because it cannot determine which execution path is taken. As an illustration, the value
x read by operation (8) in the CFG of Figure 4.12 may be the result of operation (4) or
the result of operation (5). We cannot determine at compile time which of the two values
are read by operation (8). As a result, we cannot statically determine the lifetime interval
of the value z.
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bbo

(1) t=load
(2) z=load
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Figure 4.12: Global Register Saturation
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Our idea for handling branches is to take each BB and to insert global variables (entry
and exit values). In each BB, we add nodes of entry values and we insert serial arcs from
them to T to reflect the fact that they are previously scheduled to any other operation
inside the considered BB. Also, we insert a flow arc from each entry value to each operation
consuming it. Exit values are handled by inserting flow arcs to the bottom node L. The
new constructed DAG represents values defined inside the BB, and those which enter and
traverse it. Then, we apply RS analysis on each BB. The global RS is equal to:

GRS,(CFG) = RS/(G)

max
G build for each BB in CFG

Figure 4.12 shows an example. DAG, constructed for bby contains three exit values
{2,3,4}. DAG, constructed for bb; contains two entry values, one produced from oper-
ation (3) and the other from operation (4). It has also two exit values {5,6}. DAG,
constructed for bby contains two entry values {2.,4.}. Note that the value 4, previously
produced in bby by operation (4) may be still alive after exiting bby, so a flow arc goes
from it to L. DAGj; constructed for bbs contains two entry values {6,4.5.}. The value
read by operation (8) may come from operation (4) or (5) depending on the executed
path. The RS of the BBs are respectively 3, 3, 2 and 2. So global RS is 3. We can have
at most 3 values simultaneously alive in this CFG, and this for any schedule that respects
control barriers.

However, a further scheduler may move some operations in the CFG to expose more
ILP within each basic block (BB). Useful techniques like code motion, trace scheduling,
hyper-block and super-block scheduling may be used to move operations across branch
boundaries. Such static speculation could introduce new recovery operations to preserve
code semantics (shift and move operations for instance). These move and recovery oper-
ations must be included in DAGs prior to global RS analysis, so operations have to be
moved before RS analysis.

Remark In contrast to local register assignment, a global register assignment in an
acyclic CFG may need to introduce move operations. This is done to satisfy the data
flow dependences for each possible execution path. For instance, if we assign two distinct
registers Ry and Ry to operation (4) and operation (5) resp. in Figure 4.12, we must
insert a move operation move Ry — R; before exiting bb; so that operation (8) reads the
correct value if the path bby — bb; — bbs is taken. These move operations may require
additional registers since all assigned registers may contain alive values. For instance, if
R, contains an alive value in bb;, inserting move Ry — R, will erase it and the generated
code becomes incorrect. Consequently, we need another register R’ to permute the stored
values in Ry and Ry. Optimizing the introduced move operations have been studied in
many works (see Section 2.4.2 Page 42).

4.5 Experiments

This section presents our experimental results done on some benchmarks (loops) presented
in Appendix B. In our experiments, we focus on floating point registers and we assume
that we target superscalar codes.
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Our software is implemented using the LEDA API [MN99]. We use also the integer
optimizer CPLEX [CPL93] to solve our intLP programs. Our tool is object oriented and
consists of four components.

1. Two heuristics: one for RS computation (Greedy-k) and one for reducing it (value
serialization).

2. Two optimal tools for the two above tasks: they generate and solve the intLLP
models presented in this chapter.

We have implemented the Dilworth decomposition (minimal chain decomposition). We
also build an antichain decomposition from a minimal chain decomposition using the
algorithm of Vincent Bouchitté [Bou97]. Thus, computing a maximal antichain of a DAG
is done in two steps:

1. The minimal chain decomposition can be solved via a maximum cardinality match-
ing in bipartite graphs. Several polynomial algorithms exist for this task. We used
the LEDA library that offer an implementation of an Oy/n x m algorithmS5.

2. The maximal bipartite decomposition allows us to construct a maximal antichain
using a linear complexity algorithm [Bou97].

The software of Dilworth decomposition and maximal antichain extraction can be
retrieved via anonymous FTP from the following :

ftp://ftp.inria.fr/INRIA/Projects/a3/touati/thesis/sw

Detailed numerical results and plots are shown in Appendix C. This section presents
our concluding analysis.

4.5.1 Computing RS

The first experiments check the efficiency of our Greedy-k compared to optimal RS (com-
puted by integer programming). The next section summarizes our results.

Greedy-k versus Optimal RS

We experimentally check the error introduced by Greedy-£ heuristic. Experimental results
show that Greedy-k is very efficient: in almost all cases, it computes the exact register
saturation. The maximal experimental error is 1, i.e., the optimal register saturation is
greater by one than the saturation computed by Greedy-k.

The right side of Table C.1 gives optimal (with integer linear programming model)
and computed (with Greedy-k heuristic) RS for loop bodies. We have unrolled these
loops to increase register pressure in order to study Greedy-k efficiency in case of larger
DAGs. DAGs are the bodies of unrolled loops (we evict inter-iteration dependences). As
computing optimal solution has an exponential complexity, we cannot unroll these loops
with big factors, otherwise the computation time would be extremely long. We unroll
these loops from 2 to 6. Table C.1, Table C.2 and Table C.3 give detailed results with
different unrolling degrees (the number of nodes in all these unrolled loops ranges from 4

6n is the number of nodes and m is the number of arcs.
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to 120, and the number of values ranges from 1 to 114).

Greedy-k clearly computes nearly optimal solutions in polynomial time complexity. In
the 134 experimented DAGs (number of nodes up to 120), we do not reach RS optimality
in only 7 cases. Our worst empirical error is 1, i.e., RS* < RS < RS* + 1. Appendix D
gives an example where the optimal RS is greater by one than the RS computed by
Greedy-k and explains why our heuristics gets sub-optimal result.

After evaluating the Greedy-k efficiency, we use it to experiment the RS behavior in
unrolled loops.

RS Behavior in Unrolled Loops

In this experiment, we study the RS evolution as a function of the unrolling degree in
each loop. Figure C.1 shows the plots of RS (computed by Greedy-k) versus the unrolling
degree (from 1 to 20 in each loop, producing a number of nodes ranging from 4 to 400
which is sufficient to study the RS behavior in real applications). As we expect, RS is an
increasing function: since unrolling a loop produces more values because of loop bodies
duplication, RS could not decrease. This is not necessary for any code, i.e., RS is neither
a linear nor an increasing function according to the unrolling degree: indeed, unrolling a
loop produces new arcs because of cyclic and inter-iteration dependences. For instance,
whetstone-loopl and loop3 have constant RS when we unroll. The only case where the
RS is linear according to the unrolling degree is the case of acyclic loops with only loop-
independent arcs. In this case, unrolling a loop n-times produces n independent DAGs
and hence multiplies the RS by a factor of n.

If the number of available registers is bounded, we must keep RS under control. The
next section summarizes our results.

4.5.2 Reducing RS

In this section, we experimentally study our techniques used for reducing RS while mini-
mizing the critical path. At first, we investigate the efficiency of our algorithm.

Value Serialization Heuristics versus Optimal RS Reduction

Let us begin by stressing our algorithm to see its limitations. We consider DAGs of loop
bodies and we try to reduce the register saturation to the lowest possible value. This is
done by setting the number of available registers R = 1 as a target limit. Table C.4 shows
optimal versus approximated solutions: the first two numerical columns show the num-
ber of nodes and values in each DAG. Optimal RS of loop bodies are shown in the third
numerical column. Optimal RS reduction with the corresponding result of our heuristics
between brackets are shown in the fourth. Value serialization heuristics gets sub-optimal
results in only 7 cases within the 27 experimented DAGs. Optimal reduced RS was in
worst cases less by one register than our heuristics results (remember that this is an NP-
hard problem). We must note that since RS computation in value serialization heuristics
is done by Greedy-k, we add its worst experimental error (1 register) which leads to a
total maximal error of two registers. This is for the stressing case of R = 1.
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In a second set of experiments, we unroll these loops twice and we try to reduce their
RS under a limit computed as the first power of 2 lower than RS, i.e., if RS is 12 then we
reduce it to 8, etc. Detailed results are summarized in Table C.5. The two first numerical
columns show the number of nodes and values in each DDGs. Then, we give optimal RS
of these loops unrolled twice in the third numerical column. The fourth column shows
the targeted limit of RS reduction. Optimal RS reduction with the corresponding results
of our heuristics between brackets are given in the last two columns. Here, we also see
that maximal experimental error is 1 (remember also that Greedy-k introduces a maximal
experimental error of 1).

The same experiment was done on loops unrolled 3 times (Table C.6) and 4 times
(Table C.7). We didn’t check for larger unrolling degrees because computing optimal
RS reduction of larger DAGs is computational intractable (more than 120 nodes). We
believe that the experiments that we have performed are sufficient to study our strategies
efficiency (the number of nodes in all these unrolled loops goes ranges 4 to 80, and the
number of values ranges from 1 to 76).

After evaluating the value serialization efficiency, we use it to experiment unrolled
loops in the next section.

Value Serialization Heuristics Behavior in Unrolled Loops

We study the limit of RS reduction versus the unrolling degree (we consider the DAG of
the loop body after unrolling). Figure C.2 plots reduced RS to 32 using our heuristics
on various unrolled loops with factors ranging from 1 to 20. As can be seen, in almost
all practical cases, RS is maintained under the limit 32, except for Livermore-loop23. In
that case, RS is maintained under 32 until the unrolling degree 12. After that, the reg-
ister pressure is sufficiently high to always keep the register need above 32. The reason
is shared by both intrinsic data dependences properties (intrinsic register pressure, i.e.,
register sufficiency) and our heuristics limitations. A special remark is that reduced RS
in unrolled loops is not an increasing function. That is, if we reduce the RS to Ry > R in
the loop unrolled n-times, and to Ry > R in the loop unrolled (n+ 1)-times, this does not
necessary mean that R; < Ry (see Livermore-loop23 in Figure C.2). The explanation is
that the more parallel values are available in a DDG, the more value serializations are pos-
sible. Consequently, this results in giving more freedom and more choices to our heuristics.

4.5.3 ILP Loss after RS Reduction

In this last section, we study the ILP loss evolution resulted from RS reduction. We
evaluate the maximal theoretical ILP of a DAG G = (V, E, ¢) as:

W
ILP(G) = Critical Path(G)

The ratio used for expressing the ILP loss is

original ILP 1 new ILP
original ILP

We start by examining the value serialization heuristics efficiency in terms of ILP loss.
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4.5.4 Optimal versus Approximated ILP Loss

Let us examine the ILP loss in our 108 experiments in Table C.4, Table C.5, Table C.6,
and Table C.7. The number of nodes goes up 60. Optimal versus approximated (between
brackets) ILP loss is shown in the last columns of theses tables. Results can be decomposed
into five families, depending on the obtained RS and ILP loss after reduction. We note
RS and ILP the RS reduction and ILP loss resulted from optimal intLP programs; we
note RS* and ILP* the RS reduction and ILP loss resulted from our value serialization
algorithm. Then, the five families of results are the following.

1. In the case where RS = RS*, our algorithm succeeds in optimally reducing RS.
Then, the ILP loss may be:

(a) ILP = ILP* (family 1). Our algorithm succeeds in optimally reducing RS
with the optimal ILP loss. 78 cases belong to this family, i.e., 72.22% of all the
results.

(b) ILP < ILP* (family 2). Our algorithm succeeds in optimally reducing RS but
with sub-optimal ILP loss. 20 cases belong to this family, i.e., 18.5% of all the
results.

(¢c) ILP > ILP* impossible !

2. In the case where RS > RS*, our algorithm did not succeed in optimally reducing
RS. Then, the ILP loss may be:

(a) ILP = ILP* (family 3). Our algorithm has sub-optimal RS reduction but
optimal ILP loss. 5 cases belong to this family, i.e., 4.63% of all the results.

(b) ILP < ILP* (family 4). Our algorithm has sub-optimal RS reduction with
sub-optimal ILP loss. Only one case belongs to this family (Livermore-loopl
in Table C.6), i.e., less than 1% of all the results.

(¢) ILP > TLP* (family 5). Our algorithm has sub-optimal RS reduction but
with super-optimal ILP loss. This case is interesting: since our algorithm has
sub-optimal RS reduction, then it gets one extra register which releases him to
exploit more ILP. 4 cases belong to this family, i.e., 3.7% of all the results.

3. The case where RS < RS* is impossible, since our Greedy-k heuristics produces
valid killing function and hence we always ensure the existence of a schedule which
needs RS* registers.

Clearly, value serialization is very efficient: it, in most of times, optimally reduces
RS with optimal ILP loss. Sub-optimal ILP loss is, in most of times, accompanied with
optimal RS reducing, while sub-optimal RS reducing is mostly accompanied with super-
optimal TLP loss. We get both sub-optimal ILP loss and sub-optimal RS reducing in less
than 1% of the cases.

After proving value serialization efficiency, we use it to study ILP loss in unrolled
loops.
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4.5.5 ILP Loss after RS reduction in Unrolled Loops

We unroll the loops up to 20 times to get larger DAGs (up to 400 nodes). We try to
maintain their RS under 32 fp registers. Figure C.3 plots ILP loss according to unrolling
degree. In most cases, ILP loss is maintained to zero by our heuristic, i.e., critical paths
do not increase. However, in some cases, ILP loss exceeds 60% (case of spec-spice-loop8)
to maintain RS under 32.

As in the experiment of RS reduction, the ILP loss is not an increasing function. The
explanation is that the more values are available in the DDG, the more value serializations
are possible. Our heuristics has more freedom to choose the best value serialization that
minimize the critical path growth. We note that, in these experiments, some operations
have long specified latencies (up to 17). These long latencies may produce dramatical
increase in critical path since we introduce new serial arcs that may merge two long
paths.

4.5.6 Local Register Allocation

We have implemented an early local register allocation based on RS analysis. We experi-
mented unrolled loops to get large DAGs. Loops were unrolled till 20 times (the number
of nodes ranges from 4 to 400). Then, we allocate RS* registers in each loop body, where
RS* is the register saturation computed by Greedy-k. Figure C.4 plots the increase of
critical path (ILP loss) if we saturate the register usage. As can be seen, the critical path
does not increase in most of cases, except in two loops. Note that if RS* is greater than
the number of available registers, we must first reduce it before applying a local register
allocation. If RS reduction does not succeed, spill code must be inserted (studied in the
next chapter).

The second approach of local register allocation selects a killing function that does not
increase the critical path (ILP loss=0). It does not necessarily means that it introduces a
minimized amount of false dependencies. Furthermore, since RS* may be lower than the
optimal RS, we cannot guarantee that RS™ registers are sufficient if we choose another
killing function instead of k* (the approximated saturating killing function). Of course,
if we use an optimal method to compute RS (NP-complete problem), this limitation does
not arise. For this reason, we recommend to use k* for building a local register allocation
which is already computed by RS analysis. In this case, we guarantee that we can allocate
RS™* registers in the DAG G _ ;- with the expense of a possible ILP loss.

4.6 Discussion and Conclusion

In this chapter, we mathematically study and define the register saturation (RS) notion to
manage register pressure and to avoid spill code before scheduling and register allocation
steps. Computing the register saturation of a DAG is NP-complete. An intLP formula-
tion is presented. Our formal mathematical modeling and theoretical study, which is not
present in URSA [Ber96, BGS93], enable us to give a nearly optimal heuristics. RS is
computed by choosing a suitable killer for each value. In the presence of branches, global
RS of an acyclic CFG is brought back to RS in DAGs by inserting entry and exit values
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with the corresponding flow arcs.

If RS exceeds the number of available registers, we must reduce it while minimizing
the increase of critical path. This is an NP-hard problem. An optimal RS reduction
method based on integer programming is presented. If we assume writing offsets, some
optimal solutions require, in some cases, to insert nonpositive circuits in the original DAG.
These circuits may prevent the extended DDG from being scheduled in the presence of
resource constraints. A sufficient and necessary condition to overcome this problem is
to guarantee the existence of a topological sort for the extended DDG. This is done by
adding new constraints to the intLP formulation. We also present an efficient algorithmic
heuristics for RS reduction that serializes values lifetimes while minimizing the ILP loss.
It guarantees that the extended DDG remains a DAG.

Possible limitation ? Our experimental results are presented in the form of joint
statements about critical path length and register requirement. Can anything formal
be said about machines having finite resources’ Since our techniques assume infinite
resources, it is theoretically possible that edges inserted to decrease register pressure
might lead to unbalanced function unit usage. Thus, edges might accidentally (for register
but not resource needs) dictate bursts of all integer, all memory, or all floating point
operations. This is fine on the infinite machine. But, if we assume that a real machine
has a fixed number of function units of types integer, floating point, and memory, there
is risk that the edge insertion unnecessarily constrains the scheduling process. Maybe
adding arcs into the DAG to reflect conflicts on resources would be beneficial.

Our arguments Let us answer to this possible limitation. First, our work focus on
data dependence graphs. Thus, a schedule can certainly be found on a machine with
finite resources. Reporting resource conflicts at the graph level can only be done with
simple resource descriptions (no structural hazards, i.e., a FU is used during a contiguous
interval of time), as done by Berson et al in [Ber96, BGS93|. This strategy gives exactly
the same solution of scheduling under resource and register constraints, i.e., it is nothing
but a combined approach. However, the case of complex resources where FUs are used
in a complex pattern (complex reservation tables) is different. An optimal exact solution
cannot be modeled at the graph level (without assuming a schedule), unless we allow
nonpositive circuits in the graph.

Second, we re-invoke the first point in our chart (Section 1.1 Page 14): “priority
of registers against ILP scheduling, but the former should respect the latter”. If the
computed register saturation is lower than the number of available registers, the graph
is let as it is and no unbalanced FU usage occurs. If RS is excessive, we introduce a
minimized amount of arcs (false dependences) since we try to reduce the register saturation
and not the register usage. This point makes the FU usage unbalance limited. Finally,
if the register pressure is quite high, we agree that we may create a critical execution
path because of a bad FUs usage restricted by the added arcs. Maybe some experiments
that highlight this fact would be beneficial. We could consider to apply a list-scheduling
algorithm after adding arcs to see how FUs usage is affected. But we become faced to
the question “which resource model should we use I". The exploration space of resource
configurations is quite large, which one to use I' Our work is intended to make portable
the handling of register pressure, since they are more generic than resources while they
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provide good benefit to ILP.

Despite the efforts in many works to find efficient heuristics to improve the perfor-
mance of late register assignment phase, taking register constraints early in the code
optimization process (before scheduling) still generates faster executing code because of
spilling that may be avoided [BSBC95, Jan01, FR92|. Experiments show that register
constraints may be obsolete in many codes, and can therefore be ignored in order to sim-
plify the scheduling process. The heuristics we use manages to reduce RS in most cases
while some ILP is lost in few DAGs. We think that reducing RS is better than minimizing
the register need : this is because minimizing the register need increases the register reuse,
and as a consequence, the ILP loss must increase.

Our DAG model is sufficiently general to meet all current architecture properties (RISC
or CISC). However, our heuristics assume positive latencies. Some architectures support
issuing dependent instructions at the same clock cycle, which would require representa-
tion using zero latencies. We think that this restriction should not be a major drawback
nor an important factor in performance degradation, since zero latency operations do not
generally contribute to the critical execution paths.

In the case where the register pressure is very high, RS cannot be maintained under
the number of available registers. Spill code cannot be avoided and must be introduced
in the DAG before scheduling. The next chapter studies the register sufficiency notion
and shows how we handle spill code directly into the DAG.



Chapter 5

Acyclic Register Sufficiency

Abstract
This chapter details and synthesizes our work previously presented in [TT00,
Tou01ld, TE02]. It consists in computing the minimal number of registers needed to
find a least one valid schedule. If the sufficiency is large enough, spill code cannot
be avoided. We describe our method of introducing such operations directly into
the DAG. Experiments show that spill code is useless in many cases.

This chapter is organized as follows. Section 5.1 defines and studies the classical con-
cept of register sufficiency (RF) in directed acyclic graphs (DAG). In order to compute
it, we provide an exact formulation with integer programming, as well as an algorith-
mic approximation based on interval serialization. Reducing RF' is done with inserting
spill operations in Section 5.2. As previously described in Section 2.4, both problems
of computing RF and inserting a minimal number of spill operations are well studied in
the literature for sequential programs. We only extend these studies to take into account
the parallel execution of operations. Before concluding with some remarks, we show our
experiments in Section 5.3.

5.1 Computing Register Sufficiency

First of all, if |Vg,|, the total number of values of type ¢, is less than or equal to R,
the number of available registers of type ¢, then we obviously are sure that any schedule
cannot require more than |Vg,| < R, registers. Computing the register sufficiency (RF) of
type t enables us to check if a given DAG can be scheduled without spill code. Formally,
the RF of type t is:
RF,(G) = min RN/(G
H(G) ,min, RN (@)
where RNY (G) is the register need of type ¢ for a schedule o € X(G). We call o a suf-

ficient schedule iff RNJ(G) = RF(G). Sufficient values are the excessive values of such
schedule, i.e., those which prevent MAXLIVE from being < RF;(G).

Regarding the complexity of computing RF, it remains an open problem (as far as we
know). It was proved that scheduling under a fixed number of registers is NP-complete in
the case of sequential codes [Set75], i.e., when we compute a strict sequential execution
order for a DAG (a topological sort). However, the case when we assume a parallel exe-
cution (infinite ILP degree) is different, because the scheduling function is not restricted

97
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to be sequential. It was proved in [EGS95] that the problem of scheduling under register
constraints is NP-complete if the total schedule time is bounded. But, as far as we know,
nothing is said in the literature about the problem of scheduling parallel operations un-
der a fixed number of registers (spill-free, infinite resources) without bounds on the total
schedule time.

Let us begin with an exact formulation.

5.1.1 Exact Formulation

The exact intLP model that computes RF is derived from the integer program which
computes the register need with a minimal chain decomposition, as previously described
in Section 3.3 Page 53.

Minimize z;

under the constraints
Vut € VR,t; Cyt S Zt

We can optimize the optimal computation of RF by exploiting some DAG properties.
If the DAG G = (V, E, 6) is composed of a family of disjoint sub-DAGs G4, ... ,G,, such
that G;(0 <7 < m) is connected, then:

RF(G) = min RF(G;)
This is because we can sequentially schedule these sub-DAGs: each sub-DAG can be
scheduled strictly before another so as to prevent the sufficient values of a sub-DAG from
being simultaneously alive with the sufficient values of another sub-DAG. Therefore, we
build a reduced intLLP system for each connected sub-DAGs, which is less complex than
building an intLP system for the global DAG.

We must be aware that when we combine all register types, a sufficient schedule for all
types may not exist. In other words, a schedule that needs the exact register sufficiency of
all types together may not exist. This is because minimizing the register requirement of
one type may increase the register requirement of another type. So, some spill operations
may be unavoidable even if the register sufficiency of each type is lower or equal to the
number of available registers. We have then to bound the register requirement of all types,
even if we compute the register sufficiency of only one register type:

Vi'e TL{t}, Vu' € Vay : cu <Ry

These constraints guarantee the existence of at least one schedule that does not require
more registers of any type than available.

However, a problem arises regarding the maximal number of parallel operations (static
ILP degree) of the underlying code. Our architecture model does not assume any static
issue (bound on the ILP degree) for the target processor: we assume infinite fine grain
parallelism for the considered DAG. This assumption may lead to under-estimating the
actual sufficiency if we target a certain code with a bounded ILP degree. In other words,
we cannot ensure that we can always generate a code needing the computed register
sufficiency because we cannot specify an unlimited instruction parallelism statically. As
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illustrated by the DAG in Figure 5.1, its acyclic sufficiency is 2 registers since we can
schedule in parallel the slot {c;d} after {a;b} (here we assume null writing and reading
delays). However, superscalar codes have a static ILP equal to 1. The semantics of the
generated code is sequential (straight-line). We cannot generate a superscalar code which
needs only 2 registers. We have two choices.

1. We continue to assume an unlimited static ILP degree. Thereby, the real sufficiency,
given some constraints on code generation, may be greater than what we compute.
If this real sufficiency is still less than or equal to R; the number of available registers
of type ¢, no problem arises and spill code is avoided. However, if we are not lucky
and if the real sufficiency is greater than R; while what we have computed is < R;,
then the underlying register allocator may introduce spill code, even if this step of
compilation asserts that it is not necessary ;

2. The second choice considers introducing an upper-bound for the ILP degree. This is
a bad choice, from our point of view, because it introduces target processor resource
constraints and thereby we lose our generic model. Furthermore, other resource
characteristics (on FUs, etc.) may still add constraints to RF. We prefer not to use
this choice in this thesis.

The next section presents our algorithm, which approximates RF while overcoming
the above problem.

5.1.2 A Pure Algorithmic Heuristics

Our algorithm for approximating RF is simply a value serialization heuristics (Algorithm 4
in Section 4.2), the one we used to reduce RS. However, we do not consider ILP loss, since
the purpose of computing RF is to minimize the register requirement, even if it increases
the critical path. Practically, we parameterize the algorithm as follows.

e We set R =1 as a target RS reduction, which is equivalent to minimizing RS as low
as possible (serializing lifetime intervals as much as possible).

e We do not consider the cost wy (increase of critical path). Thus, we set wy = 0 for
all possible value serializations. This amounts to first select the value serialization
that reduces RS a low as possible, even if it increases the critical path.

We are sure that there is at least one valid code (unlimited or limited static ILP) which
requires exactly as much registers as the reduced RS. In other words, if the reduced RS
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Figure 5.1: Register Sufficiency with Limited Static ILP
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computed by setting R = 1 is 3, then we can generate a linear (or parallel) code with 3
values simultaneously alive. This is because the produced extended DDG remains a DAG.
Hence, Algorithm 4 can be used in both RS reduction and RF computation. Experiments,
presented later, show that this method is nearly optimal.

5.2 Reducing Acyclic Register Sufficiency

If RF is greater than R;, then we introduce spill code in the DAG to reduce its sufficiency.
Our strategy relies on minimizing introduced load-store operations.

Before spilling, we must detect which values are sufficient, i.e., which ones are always
simultaneously alive. We use our value serialization algorithm with a target R = 1 to
compute them. The resulted extended DAG has the following properties :

1. the register saturation of the extended DAG cannot be reduced, and hence it is
equal to its register sufficiency;

2. saturating values of the extended DAG are the sufficient ones;

3. any two sufficient values u,v € Vg, are always simultaneously alive for any schedule.
That is, we cannot serialize the lifetime interval of u before the lifetime interval of
v, and vice versa. Hence, they must satisfy the following necessary and sufficient
condition (see Figure 5.2):

v<k(u) AN u<k(v)
A lp(u, k(v)) > 6 (u) L 6, (k(v))
A lp(v, k(u)) > 6,(v) L 6, (k(u)) (5.1)

in which © < v means that it exists a path from u to v, and Ip(u, v) denotes the size
of the longest path from u to v. k(u) is the killer' of u defined by the saturating
killing function. This condition is necessary since it prohibits any serialization of
the lifetime intervals, otherwise we introduce a circuit. It is sufficient since if two
values satisfy this condition, then their lifetime intervals are in conflict necessarily.

Our algorithm iteratively inserts spill code until it reaches the target sufficiency. As
an example, Figure 5.3.(a) is a DAG in a butterfly shape such that its RS is 5 (we ignore
the latencies for clarity reasons), where values are in bold circles and flow arcs in bold
lines. Its RS cannot be decreased, its RF is equal to 5 too. We want to reduce the register
sufficiency to 2. The sufficient (saturating) values are {uy, us, ug, uyg, us} since any pair of
them satisfies Condition (5.1).

Condition (5.1) defines an intrinsic relative order between lifetime intervals of the suf-
ficient values, as illustrated in Figure 5.3.(b). We use this ordering to guide our spilling
algorithm. We name integer point the logical time (relative date) when a value is defined
or killed. The points are graduated starting from 1 according to the relative order defined
by the precedence relation <. As an example, (1,2,3,4,5) are five points in Figure 5.3.(b).
Note that some definition or kill events are not related by any precedence relation (as

Note that k(u) and k(v) are not necessarily distinct.
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the definition of u; and u3) and may be assigned to the same point. We will use these
points to highlight the regions (date intervals) where the register need exceeds the desired
one. For instance, the excessive regions in Figure 5.3.(b) are [2, 3] because it requires 4
registers, and [3, 4] because it requires 5 registers. Since we define a virtual dating, we
assign to each value a definition point dp(u) and a kill point kp(u) . The relative order we
define enables to use any efficient spilling strategy in the literature.

The register need changes only at the dating points, i.e., at the beginning or at the
end of an interval. The sufficient values are managed in a sorted list in increasing order
of definition points. Thanks to this list, our algorithm can quickly scan forward the live
ranges by skipping from one definition point to the next one. Our strategy is inspired
from the Poletto approach [PS99] applied to spill code insertion for straight-line code. His
heuristics has a linear complexity with good experimental results. It is explained below.
However, the Poletto’s algorithm consider sequential codes. We have to adapt it to the
parallel case. For this purpose, we use our notion of definition and kill point, and dating
DAG (defined later).

The algorithm iterates over the integer dating points starting from 1. At each step, we
maintain an active list of live ranges which overlap the current point. The active list is kept
sorted in increasing order of end points. For each new life interval, the algorithm scans
the active list to remove any expired value, i.e., the one which has been necessarily killed
when treating the current dating point. When the length [ of the active list is greater than
Ry, at least [ L R; values must be spilled. There are several possible heuristics for selecting
which value to spill. We can for instance choose the one that do not increase the critical
path. We prefer to minimize the amount of introduced spill code. Our heuristics selects
the the value which would be the last killed. Since the active list is sorted, this values
is the last item in the active list. For each spilled value u, we insert a store operation.
Poletto approach loads the stored value for every use: the spilled life interval is splited
into several small parts and the original interval is removed from the active list. This
aggressive approach may insert an excessive number of loads.

The algorithm iterates until the register sufficiency is reduced® to R, = 2. Fig-
ure 5.3.(c) gives the resulted DAG in which all the values have been spilled because
of high register pressure. Dashed arcs represent the serial arcs added for reducing the
register saturation to 2 to show that the register sufficiency of this DAG is 2 too. Note
that these dashed arcs are not present in the final DAG (they are shown to only prove
that the saturation can be reduced to 2).

Now, we give full algorithms for our heuristics explained above. In order to adapt the
Poletto’s algorithm to the parallel case, we start by defining the dating points.

5.2.1 Relative Dating

We build a DAG which reflects the relative order between value definitions and kills.

2Tt is clear that in the presence of a RISC architecture with n-ary statements, we cannot use less than
n registers since we need at least n distinct operands to execute the statement. Here, we have binary
statements with two distinct operands, so we cannot reduce the sufficiency below 2. We could imagine
another architecture where this number is higher n > 2, or this number n = 1 (unary operations).
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Definition 5.1 (Dating DAG) Let G = (V, E,6) be a DAG. A dating DAG, noted
G, = (Vy, Ey), and associated with G for register type t is defined by :

o Vy = {v/v =dp, V kp, where u € Vg;}. dp, corresponds to the definition node
of the value u'. kp, corresponds to the killing node k(u) of the value u' defined
by the saturating killing function of G. If some values share the same killer, they
necessarily share the same kp. Any node in Vy (killing or definition node) is called
a dating node;

L4 vdpm kpu € Va (dpua kpu) € Eq;
o Yu,v € Vg, (dpy, kpy), (dpy, kpy) € Eq <= u, v satisfy Condition 5.1
o Vu,v € Vg, (kpu, kpy) € Eq <= k(u) < k(v) A lp(k(u), k(v)) > 0p4(u) L6, 4(v)

Figure 5.4.(a) is the dating DAG of Figure 5.3.(a). Note that the dating nodes dp,
and dp,s share the same killing node kp,; » because the values u; and uy have the same
saturating killer in G (k(u;) = k(us) = ug). A dating date can be safely optimized by
removing transitive arcs if they exist.

(a) Dating DAG (b) Dating Function

Figure 5.4: Relative Dating

A dating function assigns an integer starting from 1 to each dating node in GY in which
date(d) < date(d') iff d < d' in G%. A topological sort of GY is a dating function. How-
ever, since the dating points are used in our heuristics to sort the life intervals assuming
possible parallelism between the operations, a topological sort is not really appropriate
because it assigns different dates to two dating nodes even if they are not constrained by
any precedence relation. This fact influences the results of the spilling decision because
it defines a kind of priority. We prefer to define the dating function by an “as soon as
possible” schedule of GY. This enables us to give the same dating point to parallel dating
nodes, see Figure 5.4.(b). At this step, each value u € Vg, has an integer definition point
dp(u) and a killing point kp(u) which are defined by the dating function.

The dating DAG and the dating function allows us slightly modify Poletto’s algorithm
in order to inset spill code into a DAG instead of a straight-line code, as follows.
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Algorithm 5 Reducing Acyclic Register Sufficiency
Require: a DAG G = (V, F, ) and a target sufficiency R,
while RF,(G) > R, do
build the dating DAG G,
compute the dating function
active «— {}
for all value u in increasing order of definition points do
ExpireOldValues (dp(u))
add u to active, sorted by increasing killing points
if size(active) > R; then
Spill(dp(u), length(active) L R;)
end if
end for
end while

Algorithm 6 Expire Old Values
Require: a definition point 7.
for all value v € active in increasing order of killing points do
if kp(v) < i then
remove v from active
else
return
end if
end for

5.2.2 Algorithms for Reducing Acyclic Sufficiency

Algorithm 5 presents our techniques to reduce the RF. It maintains an active list of
current alive values. At each definition point, it spills the last killed values if the register
requirement exceeds the target sufficiency. Algorithm 6 removes killed values when it
reaches a definition point. Algorithm 7 defines the inserted memory operations and arcs
resulting from spilling : note that this algorithm aggressively inserts a load for each read
in order to split the original life interval into several small parts. We can optimize it by
doing a post-pass for reducing the number of inserted loads by merging two small live
ranges if they do not increase the RF (remove those that do not belong to an excessive
region).

5.3 Experiments

This section presents our experimental results made on some benchmarks presented in
Appendix B. We focus on floating point registers and we assume that we target super-
scalar codes.

Detailed numerical results and plots are summarized in Table C.8 of Appendix C. As
can be seen, our heuristics is nearly optimal: in 27 experimented DAGs, we get sub-
optimal results in only 7 cases. However, recall that optimal RF assumes infinite static
ILP. We cannot guarantee the existence of a schedule with optimal RF if the static ILP
is bounded. Fortunately, our heuristics has not this property. Since it uses RS reduction,
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Algorithm 7 Spill
Require: a definition point ¢ and the number m of values to be spilled.
for I =1 to m do {spill the m last killed values}
s = last value in active
if kp(s) > i then
remove s from active
insert store(s) in G
insert a flow e = (s, store) with 6(e) = lat(s)
for all v € Cons(s') do {insert a load for each read}
remove the flow (u,v) € Eg,
insert load(s) in G
insert a flow e = (load, v) with 6(e) = lat(load)
insert an arc (store, load) with 6(e) = lat(store)
end for
end if
end for

we always guarantee the existence of a schedule that requires the computed RF, even with
bounded static ILP.

We have no experiments for our spilling strategy since we did not implement our
heuristics. This is because, as mentioned before, we can use any efficient existing technique
after determining sufficient values and their relative dating DAG. Lot of spilling methods
are actually implemented and proved efficient (Section 2.4).

5.4 Conclusion

This chapter investigates the classical register sufficiency problem. Existing techniques
are intended to sequential problems. We extend the study to ILP codes where operations
may be scheduled in parallel with multiple register types and delays in reading and writing.

Optimal RF assumes infinite parallelism. This gives an under-estimate of the real RF
since the target code has limited issue. To overcome this problem, we propose to use the
value serialization heuristics (defined in the previous chapter) by setting 1 as target limit
of RS reduction. This algorithm overcomes the problem of infinite issue width, since we
guarantee the existence of at least one schedule with the reduced RS, and this for any
target static ILP. Experiments show that our method is nearly optimal.

If RF is greater than the number of registers, then spilling cannot be avoided. Our
heuristics determines sufficient values and enables us to build a relative order between their
lifetime intervals. We introduce the notion of a dating DAG and a dating function in order
to adapt, to ILP, any efficient spilling strategy in the literature, originally written for a
sequential (superscalar) code. We propose a first approach based on Poletto’s algorithm
[PS99] because it has a linear complexity. Other techniques based on cost functions,
execution frequencies and so on can also be used.
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Chapter 6
Related Work in DAGs

Abstract
This chapter gives an overview of most important work in the field of register
pressure in DAGs. We survey the techniques proposed to handle register constraints
prior, during or after scheduling, and how each of these two important phases in-
teracts with the other.

6.1 Register Saturation

Our RS study is an extension and amelioration of URSA [BGS93, Ber96]. Their minimum
killing set technique tries to saturate the register requirement in a DAG by keeping values
alive as late as possible: the authors proceeded by keeping as many children alive as
possible in a bipartite component by computing the minimum set which killed all the
parent’s values. First, the authors did not formalize the RS problem. They claimed that
the register saturation can be computed by minimum killing sets. We can easily give
examples to show that a minimum killing set does not saturate the register need, even if
the solution of the minimum killing set problem is optimal [TT00, Tou0Ole]. Figure 6.1
shows an example in which the RS computed by our heuristics (Part b) is 6 and the
optimal solution for URSA yields to a RS of 5 (part ¢). We have two connected bipartite
components: cb; = <{a, b,c},{d,e, h}) and cby <{d}, {1, f, g}) The minimum killing set
of the first CBC is {d}. The disjoint value DAG associated to this killing decisions is
given in Part (c). However, a saturating killing set for this CBC is {e, h}. The disjoint
value DAG associated to this killing decisions is given in Part (b). The second CBC does
not constitute a problem, since we have a unique parent with multiple leaf killers: all
killing decisions for cb, are acceptable.

This example, shows the limitation of URSA. This latter did not take into account
descendant values while computing killing sets. Second, the validity of killing functions is
an important condition to compute RS and unfortunately it was not included in URSA.
We have shown in Section 4.1 that non valid killing functions may exist if no care is taken.
Finally, the URSA DAG model did not distinguish types of registers and did not take
into account delays in reading from and writing into the registers.

The authors give a heuristics in [BGS92] to reduce the register saturation. They use
serializations like in our approach, but instead serializing two values, they rather serialize
two sub-DAGs. They look for two sub-DAGs such that the local register saturation of the
second does not exceed the limit R. Then, they serialize it after the first one. They did
not provide an algorithm to find two suitable sub-DAGs. However, their approach should

107
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be more complex than our heuristics because searching for a suitable sub-DAG is more
complex than searching for a suitable single value node. Furthermore, they didn’t prove
the efficiency of their methods versus optimal results.

6.2 Register Sufficiency

Recently, Govindarajan et al in [GZG99, GYZ101] presented a new approach to compute
RF on ILP processors with identical registers in which operations may dynamically be
scheduled in parallel, but the semantic of the code is sequential (superscalar). Indeed, it is
equivalent to the classical register sufficiency problem for sequential codes (Section 2.4.1).
They try to solve the problem by a minimal chain cover: flow arcs belonging to the
same chain use the same register. They developed an interference graph representation
where nodes of this graph correspond to the chains in the DAG, and edges represent
which chains definitively overlap. A first problem with this method is that, as observed
by the authors, optimal coloring of chain interference graph may lead to a deadlock when
scheduling. Second, they assume that register allocation is done on arcs not on nodes.
This may introduce additional interferences, as registers get committed early in the chain
and hence register sufficiency is over-estimated.

6.3 Register Allocation

This section gives an overview of several strategies of ordering register allocation and
instruction scheduling.

6.3.1 Register Allocation Sensitive to Scheduling

Register allocation techniques for sequential processors are not well adapted to modern
processors because they limit ILP opportunities for the scheduler. New techniques have
been developed to perform register allocation prior to scheduling without hurting the ILP.

DAG-Driven Register Allocation [GH88] Goodman and Hsu [GH88] introduced a
register allocation method that uses DDGs of each basic block (BB) to avoid the introduc-

(a) original DAG (b) DVy (@) such {e, h} (¢) DVi(G) such {d}
isthe saturating killing set is the optimal minimum killing set

Figure 6.1: URSA Error
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tion of false dependences. Their method is only able to allocate registers for superscalar
straight-line codes.

They defined the width of a DAG as the maximal number of mutually independent
nodes requiring a register. It is a maximal antichain in the initial DAG, which is different
from a maximal antichain in the disjoint value DAG. This is because, in DV}, the killing
function is fixed; thus, we can guarantee the existence of a saturating schedule for k.
However, it is not the case for the width, since the killers are not known. In other words,
we cannot guarantee the existence of a schedule that require “width” registers. Similarly,
the authors defined the height of a DAG as its critical path. If there is not a insufficient
number of available registers, their algorithm reduces the width. While the width is
reduced, the height may increase since register reuse may merge two independent paths
of the DDG into one. This may result in a longer schedule time.

To minimize the increase of critical path, the register allocator tries to select a register
so as to introduce redundant anti-dependences: newly added arcs must not induce new
serial constraints between the operations, i.e., the added constraint is satisfied by other
existing paths. If redundancy isn’t possible, the algorithm minimizes the increase of the
height by giving the priority to merging short paths.

The problem with this technique is that it is conservative (the width is upper bound
of RS). It adds serial arcs to the initial DAG, even if there is not a schedule that requires
more registers than the number of available ones. This results in introducing extra false
dependences. Although these extra arcs do not increase the critical path, they restrict
the scheduler.

Pinter’s Approach [Pin93] In [Pin93], a register allocator is proposed with the prop-
erty that no false dependences are introduced if enough registers are available. Therefore,
no degree of freedom in ILP is lost for the scheduler. Her technique is intended for su-
perscalar processors: the semantics of the code is sequential (no static ILP and no delays
in reading/writing from/to registers) while all registers are identical (no types). The
method is based on graph coloring. However, instead of coloring an interference graph, a
parallel interference graph is used. It is an undirected graph which contains, in addition
to interference edges induced by the original code prior to scheduling, all possible false
dependences (all precedence relations that are not induced by flow dependences). It is
proved that an optimal coloring of this graph results in an optimal register allocation
where no false dependence is introduced.

When no valid coloring is found, heuristics are used which make a tradeoff between ILP
and spilling. Pinter proposes to add a cost to each node in order to reflect its importance
if we violate its interferences, i.e., how much is the benefit in terms of parallelism against
spilling.

Unfortunately, coloring algorithms are costly, especially in this method since the num-
ber of edges in the parallel interference graph may be very high. No experiments have
been provided to support her technique.

Dependence-Conscious Global Register Allocation [AEBK94] Ambrosch et al
proposed in [AEBK94| a register allocator based on graph coloring. Instead of building the
interference graph from ordered intermediate code that might not be correct in the final
scheduled code, they rather rely on the DAG to examine which interference would always
occur for any schedule. They define the relations of before and after between live range
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that reflect that a value would always be killed before, or defined after, another value.
Such an interference graph is called a minimal interference graph because it contains
minimal interfering information. During coloring, the algorithm cares about the anti-
dependences it introduces. It gives priority to redundant false dependences if possible.
For each such introduced arc, the minimal interference graph is updated to reflect the
allocation decision.

This method has the drawback of considering only a subset of interfering information.
Some interferences cannot exist in the minimal interference graph: for instance, before
and after relations cannot be analyzed for values that have multiple parallel killers in the
DAG. This is because the DAG is not scheduled yet and hence the killing date is not
known. This lack of information makes the coloring algorithm result less efficient.

Scheduler-Sensitive Global Register Allocator [NP93] Norris and Pollock have
presented in [NP93] a global allocator based on coloring an interference graph. As in
[AEBK94], they rely on the DAG of each BB instead of the ordered intermediate code.
However, the constructed interference graph is more conservative because they assumed
that a variable alive at entry and exit points of a BB is alive through all the BB. This is not
the case if this variable is redefined inside. This produces false interferences and hence
their interference graph contains more edges which slow down the coloring algorithm.
The authors propose to add serial arcs into the DAG to reduce these interferences, for
instance arcs induced by resource constraints. When no legal coloring is found, the node
in the interference graph with the greatest number of neighbors is selected to add false
dependences. If there does not exist enough possibilities to eliminate interferences so that
the node is colorable, no arcs are added and a minimal-cost node is selected for spilling.
The limitation of this method, as stated before, is its conservative assumptions. Extra
interference edges result in over-estimating register requirement.

Dependence-Conscious Register Allocation for TTAs [Jan01] Recently, Janssen
has presented in his Ph.D. [Jan01] a global register allocator based on Pinter’s strategy
but intended for Transport Triggered Architectures (TTA). His technique relies on the
improvement of the parallel interference graph proposed by Hoogerbrugge [Hoo96]. He
proceeds by reducing the number of false dependences taken into account. In fact, some
false dependences computed by Pinter’s algorithm are hardly relevant. This is because
the involved operations are “far” from each other in the global CFG. It is very unlikely
that such false dependence restrict the scheduler, since other constraints (FUs, other
precedence paths) would restrict their possible interference. The experiments of the author
show that his techniques are efficient for TTAs.

6.3.2 Scheduling under Register Constraints

When a schedule does not need more than the number of available registers, building a
register allocation for such acyclic ordered code is easy. Lots of techniques rely on a first
pass instruction scheduling to optimally exploit the FUs but with a limited number of
values simultaneously alive.

Integrated Pre-pass Scheduling [GH88] Goodman and Hsu presented a second ap-
proach in [GH88] which consists in performing an early scheduling followed by a register
allocation. The list scheduler combines two techniques: one exploits the ILP and another
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reduces the number of values simultaneously alive. It first selects operations that saturate
the FU usage, unless the register need is greater than or equal to the limit. Then, it tries
to schedule operations to reduce MAXLIVE. If the limit is still exceeded, spill code is
inserted. In the presence of global variables, they first assign registers to them and then
they schedule the individual BBs. The number of available registers is reduced by the
assigned global ones. Experiments show that this method produces lot of spilling.

Bradlee et al proposed in [BEH91] a variant of Goodman and Hsu’s method by using a
global register allocator. They first assign registers to global variables and then schedule
the individual BBs. The number of available registers is reduced by only global registers
that are referenced within the considered BB.

The (o, f)-Combined Heuristics [MPSR95] Motwani et al in [MPSR95] propose
to combine controlling register need and ILP. Prior to list scheduling, operations are or-
dered in the list thanks to a static cost function. This priority function favors operations
that read variables in short live ranges. Scheduling these readers close to their definition
reduces live ranges hoping to minimize MAXLIVE. Then, a list scheduler pick up oper-
ations from the ordered list so that the FUs usage is saturated. The algorithm try to
keep the register under control thanks to the assigned cost function. This cost is com-
puted statically, so the scheduler does not adapt dynamically its selection priority. If the
register requirement becomes excessive, spill code is inserted. Experiments on randomly
generated DAGs show that this technique is better than a strictly late or prior register
allocation.

Register Pressure Sensitive Scheduler [SWGG97] Silvera et al described in [SWGG97]
a local instruction scheduler with limited registers for superscalar out-of-order processors.
The semantics of such a code is sequential, so they look for a topological sort of operations
which takes advantage of dynamic register renaming. Their algorithm proceeds by assign-
ing a scheduling priority to each operation that tries to minimize its live range. Even if
their experiments show good average speedup, they are closely related to out-of-order
processors abilities to eliminate false dependences during execution. Consequently, it is
hard to generalize their method to all ILP processors.

Optimality with Dynamic Programming Approach [Kes98] Kessler in [Kes98]
proposes to use a dynamic programming algorithm to get an optimal schedule with a
limited number of registers. He assumes RISC-style operations (binary or unary arith-
metic operations, no memory-to-memory operations) with identical registers. He tries to
overcome the drawback of intLLP approaches which are very time-consuming. While intLLP
methods handle DAGs up to 20 nodes only, the proposed algorithm can schedule DAGs
up to 50 nodes but with the restriction of contiguous schedules with all unit latencies. A
contiguous schedule is restricted so that all nodes in the sub-DAG of one child of some
node u are scheduled first, before scheduling any node belonging to the remaining sub-
DAGs of other children. Generalizing to arbitrary latencies makes the problem harder
and the proposed algorithm finds optimal solution for smaller DAGs (up to 25 nodes).

Register-Sensitive Instruction Scheduling for TTAs [Jan01] Janssen proposes
in [Jan01] a method for an early scheduler for TTAs. A particular problem arises for
static issue architectures: if an operation has to be moved, or a spill operation has to
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be inserted, the static schedule may be violated since we cannot guarantee the existence
of a free slot. To avoid rescheduling all the code many times until finding a solution, he
proposes to limit the greediness of the scheduler. Instead of optimizing the use of FUs, his
algorithm favors operations that free a register if MAXLIVE exceeds a certain threshold.
Unfortunately, this technique is not efficient (according to his experiments) because of
spill code.

6.3.3 Dual-Issue Scheduling under Register Constraints

The general problem of instruction scheduling under resources and/or register constraints
is NP-complete. However, in the case of a dual issue machine which may execute in par-
allel a load and an arithmetic operation on two separate FU, some optimal algorithms
solve the problem for binary expression trees. This case is special because the precedence
relations between loads and arithmetic operations are limited by nature: loads have no
precedence constraints among themselves.

The problem of optimal scheduling of expression trees on such dual-issue machines
with unbounded registers has first been solved by Bernstein et al in [BJR89], where oper-
ations latencies are all unit. Their algorithm has the complexity of O(nlogn) for binary
expression (n is the number of nodes), and O(n log? n) if the arithmetic operation has
more than two arguments.

Meleis in [Mel01] extended this result to a bounded number of registers and with
possible pipelined load delays of one clock cycle. Arithmetic operations latencies must be
all unit, and all load operations must have a unit latency or all load operations have a
latency of 2. The proposed optimal algorithm has a complexity of O(n x k) in which k&
is the number of spill operations. The length of the computed schedule is proved to be
R+ 2k + g + |A|, in which R is the number of registers, g the number of empty slots in
the associated sequential schedule, and |A| is the number of arithmetic operations.

6.3.4 Interleaved Register Allocation with Scheduling

Interleaving register allocation and instruction scheduling apply both passes multiple
times to get correct estimation of the expected constraints imposed by one phase to
the other. This strategy leads to excessive compilation time. So, not much work has been
done in this area.

Register Allocation with Schedule Estimate [BEH91] Bradlee et al proposed in
[BEH91] a strategy consisting of three steps. A first step performs multiple times local
register allocation followed by instruction scheduling while varying the number of available
registers. A cost is associated with each schedule to estimate the number of clock cycles
required to execute a BB under a fixed register limit. In a second step, a global allocator
determines the appropriate balance between global and local variables in BBs: spill costs
and scheduling costs guide the decision of such assignment. The third step schedules each
BB under the appropriate limit of registers (computed during the previous step).

Combining Register Assignment and Instruction Scheduling [BSBC95] Brasier
et al describe in [BSBC95] how they combine register allocation with instruction schedul-



6.3. REGISTER ALLOCATION 113

ing. First, they perform scheduling to exploit ILP. If MAXLIVE does not exceed the
limit, then no spilling is required and the computed schedule is accepted. Otherwise,
they build an interference graph based on the original unscheduled code expecting less
interferences. If coloring this graph does not succeed, they insert load/store operations
and re-invoke the scheduler. If coloring succeeds, they try to improve the original execu-
tion order since false dependences could be added by this early register allocation. They
proceed by removing anti-dependences unless spilling is required. Their experiments use
a random-based selection criteria to remove false dependences. As a result, not all of
these latter are removed. The authors observed that a more accurate selection strategy
must be found to increase the performance.

6.3.5 Integrated Scheduling and Register Allocation

Instead of deciding which of the two phases (allocation and scheduling) should be done
first and hence which one influences the other, lots of strategies prefer to combine them
into a unified complex pass. Past proposals suggest that this technique would be too
complex [BEH91], but with the increasing will of exploiting ILP more and more, register
pressure becomes a part of scheduling and vice-versa.

Integrated Register Assignment in the Bulldog Compiler [El186] The approach
described by Ellis in [ElI86] combines register allocation with trace scheduling. A list
scheduler packs independent operations of different traces into instructions and takes
as many registers it needs from a pool of available registers. If a value is allocated to
different registers in different traces, move operations are required to guarantee execution
correctness. As showed by the author, trace scheduling makes it hard to manage registers
effectively since the greediness of the list scheduler utilizes all available registers. No
spilling strategy has been proposed for this method.

Trace Scheduling with Global Register Allocation [FR92] Freudenberger and
Ruttenberg observed in [FR92] that registers prevent the scheduler from fully utilizing
FUs. They proposed to integrate a global register allocation to trace scheduling to effi-
ciently generate a code in the Multiflow Compiler [LFK93]. Based on Ellis” approach
which allocates registers inside a trace, their algorithm optimizes repairing code (move
operations) inserted to correct the execution if a value is assigned to different registers in
distinct traces.

Unified Resource Allocator [Ber96, BGS93, BGS92, BGS94c] Berson et al pre-
sented a combined framework, called URSA, to perform register allocation and scheduling
on DAGs for VLIW architectures. As in our work, they add serial arcs between nodes to
reduce resource and register requirement. They assume identical registers without delays
in reading nor writing. They proceed by measuring resource requirement as a maximal
antichain of conflicting operations in the DAG, then they add arcs to reduce it without
increasing the critical path if possible. The added serializations inhibit conflicting opera-
tions from being scheduled in parallel. Reducing MAXLIVE in URSA has been previously
explained in Section 6.1. URSA was extended to global scheduling with code motion in
[BGS94b] in CFGs. Resource requirement is measured within a BB as in the local case.
Operations are moved from regions in which FUs are over-used to other BBs where holes
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exist.

However, the conflicting definition they use is too conservative: they assume that two
operations using the same FU conflict with each other. This is not the case of complex
VLIW processors in which resource constraints are modeled by reservation tables. Parallel
operations using the same FU cannot conflict if they access a shared resource but with
different offsets after their issue time.

Integrated Assignment and Local Scheduling [Jan01] Recently, Janssen [Jan01]
described a combined BB instruction scheduler and a global register allocator for TTAs.
His method constructs a set of registers which are mapped to a value during scheduling
and register allocation. False dependences are introduced if not enough registers are
available. To reduce the register need, he uses some specific architectural characteristics
of TTAs, as software bypassing, which enables to suppress unnecessary write-back to
registers. Experiments show that speedup goes up to %100 compared to other methods.
Nevertheless, his approach is highly correlated to TTAs abilities and it is difficult to
generalize it to other ILP processors. This is because TTAs offer opportunities to eliminate
dead-result move operations. Hence, lifetime intervals may be considerably reduced. Not
all of ILP processors have this ability.

6.3.6 Register Constraints with Integer Programming

Acyclic scheduling under registers and/or resource constraints is a classical problem where
lots of intLLP formulations have been written.

An intLP formulation (SILP) was defined in [Zha96] to compute an optimal schedule
with register allocation under resource constraints only. This model contains at most
O(|V']?) variables and O(|V|?) constraints. This formulation does not introduce register
constraints, i.e., it does not limit the number of values simultaneously alive. Moreover,
resource usage patterns (FUs model) are simple and do not formalize the structural haz-
ards that are present in most current ILP processors.

A formulation, called OASIC, introduced register constraints in [Geb92, GE90]. The
number of variables is O(|V|?) but the number of linear constraints grows exponentially
due to register constraints. An extension of OASIC formulation was written in [KL99)
to take into account non regular register sets (some registers must not be used by some
operations) and some other special constraints on ILP which are specific to their target
processor characteristics. Register constraints were formulated but not integrated in the
model because of the exponential number of generated constraints.

A better formulation of register constraints was defined in [EGS95] and generates
O(T x |V']) variables and O(|E|+T x |V|) constraints, in which T is the total schedule time.
Similar approaches minimize the register requirement in exact cyclic scheduling problem
(software pipelining) under registers and resource constraints [Alt95, ES96a, EDA96]. Tt
is easy to rewrite these intLLP models to solve the acyclic scheduling problem. All these
formulations of register constraints generate a number of variables and constraints that
depends on the worst total schedule time 7. Indeed, they define a binary variable o, . for
each operation u and for each execution step ¢ during the whole execution interval [0, T].
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ou,c is set to 1 iff the operation w is scheduled at the clock cycle c. The complexity of their
models was clearly bounded by O(T x |V|) variables and O(|E|+ T x |V'|) constraints. In
fact, the factor T" may be very large in real codes since it depends on the input data itself
(critical paths and specified operations latencies). We think that the constraints matrix
size must depend only on the size of input DDG and not on the data itself. Otherwise, the
resolution time would not scale very well. For instance, if we are sure in compile time that
the access to the memory performed by a load is a cache miss, then we would specify that
its latency is a memory access (~ 100) rather than a cache access in order to better exploit
free slots during scheduling. In this case, the number of variables and constraints in the
intLP model is multiplied by a factor of hundred while it remains unchanged in our model.

The coefficients introduced by our formulation in the final constraints matrix may
be greater than T or lower than L7, which may be larger than the coefficients in the
models defined in [Alt95, EGS95, ES96a, EGS95]. If T is huge, the resolution process
may be difficult because of computational overflows [Sch87]. Since the size of our model
is relatively smaller (at most O(]V|?) variables and O(|V|? + |E|) constraints), resolving
it may be less critical (in term of time processing) than any one of the cited techniques.
However, we must be aware that our formulations require a greater amount of work space
(memory size for intLP solving). Consequently, our intLP systems may be faster in terms
of processing time, but may solve smaller DAGs if the memory capacity is not large
enough.

6.4 Conclusion

Our RS analysis extends URSA [Ber96, BGS93, BGS92, BGS94c| by taking into account
visible operation delays with different types of values (float, integer, etc.). Our formal
mathematical modeling and theoretical study allow us to give nearly optimal strategies.
We also prove that the minimum killing set of URSA does not saturate the register need
as the author claimed (even if the killing sets are optimally minimal).

Our RS analysis has the particularity, as Pinter’s method [Pin93|, of not introducing
false dependences if enough registers exist for all possible schedules. However, her col-
oring algorithm is very costly because of the large number of possible false dependences.
Furthermore, her model is intended for sequential superscalar programs in which delays
in reading/writing are not visible to compilers.

Our intLP formulation enables us to use the same constraints and variables for lot of
problems, as computing RS and RF, and optimal scheduling under register constraints or
optimal register allocation under critical path constraint. Our model outperforms existing
ones in term of the size of constraint matrix but may have larger coefficients.

The next part of our thesis extends the study to loops. We show how to compute and
reduce RS and RF in the case of cyclic schedules, like software pipelining (SWP) in which
lifetime intervals become circular. We also propose an early register allocator, i.e., prior
to scheduling, that respects ILP for any underlying SWP.
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Chapter 7
Loop Model

Abstract

This chapter introduces our data dependence graph (DDG) model. It consists of
innermost loops without branches. As in the acyclic case, our model is sufficiently
generic to be applied to both static and dynamic issue processors. We also recall
software pipelining (SWP) method and how this strategy influences a late register
allocation. The register need is slightly different in cyclic schedules since lifetime in-
tervals become cyclic. We present an intLP formulation for it with O(|V|2) variables
and O(|E|+|V|?) constraints, given a DDG G = (V, E). The size of the constraints
matrix is better than the complexity of the existing techniques which include an
initiation interval factor.

This chapter is organized as follows. Section 7.1 defines our loop model (without branches)
and presents our notations. The software pipelining technique is described in Section 7.2.
We see that such periodic scheduling technique makes circular the value lifetimes inter-
vals. Thus, the register requirement, studied in Section 7.3, is defined in a cyclic pattern.
We present a method for computing it by decomposing the circular lifetime intervals into
two classes: those which span the whole SWP kernel (correspond to different instances of
the same statement), and those which span a fraction of the motif. We give an exact for-
mulation of the cyclic register requirement according to an arbitrary SWP schedule using
integer programming. This intLP system is used in further chapters for analyzing cyclic
register saturation and sufficiency. Finally, before concluding with some remarks, Sec-
tion 7.5 presents how a register allocation can be built cyclically on an already scheduled
loop.

7.1 Definitions and Notations

A loop (without branches) in our study is represented by a graph G = (V, E, §, \) such
that :

e U is the set of the statements in the loop body. Each statement u has a latency
lat(u) > 0. The instance of the statement u (an operation) of the iteration i is
noted u(i). By default, the operation u denotes the operation w(7);

e F is the set of precedence constraints (data dependences or other serial constraints);

119
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e §(e) is the latency of the arc e in terms of processor clock cycles. Initially', we have

Ve = (u,v) € E : §(e) = lat(u)

e A(e) is the distance of the arc e in terms of number of iterations. If A(e) > 0, the
dependence e is called loop carried. A valid schedule o must satisfy :

Ve = (u,v) € E : o (u(i)) 4+ o0(e) < o (v(i + Ale)))

We consider a target architecture with multiple register types, where T denotes the set of
register types (for instance, T = {int, float}). We make a difference between statements
and precedence constraints depending if they refer to values to be stored in registers or
not:

1. Vg, is the set of values to be stored in registers of type ¢ € T. We consider that each
statement v € V writes into at most one register of a type t € J. The statements
which define multiple values with different types are accepted in our model iff they
do not define more than one value of a certain type. For instance, statements that
produces one floating point result and one integer result are taken into account in
our model. We denote by u! the value of type ¢ defined by the statement u;

2. Epr;is the set of low dependence arcs through a value of type ¢ € T. Since we accept
the statements producing more than one value but with different types, these sets
are not disjoined: for instance, we may have an arc e € Ery, N Eg,.

To consider static issue processors (as VLIW) in which the hardware pipeline steps are
made visible to compilers, we assume that reading from and writing into a register may
be delayed from the beginning of the schedule time, and these delays are visible to the
compiler (architectural visible). We define two delay (offset) functions 6, and 6,,; such
that:

6w,t . VR,t — N
w = Oy g(u)/ bui(u) < lat(u)
the write cycle of u into a register of type ¢ is o(u) + 6y ()

6rt . V—-N
u = Opy(u)/ brp(u) < Oyy(u) < lat(u)
the read cycle of u" from a register of type t is o(u) + 6,4(u)

For instance, a superscalar processor has a sequential semantics. Thus, the reading and
writing offsets are not visible at the architectural level, i.e., 6, ;(u) = 6y ¢(u) = 0.

Lastly, we assume that all the values produced in the loop are read at least once.
A non consumed value in a loop is a statement which erases its result in the successive
iterations, producing a self-output dependence with distance 1. If a non consumed value
u! exists in the loop, we can handle it in two ways:

1. we can assume that the statement u is removed from the loop by a previous dead
code elimination process. Indeed, only the value produced at the last iteration has
to be computed, and hence the operation u(n) of the last iteration is inserted just
after the loop;

We will see, in the next chapter, that we may insert new arcs where their latencies are not equal to
the latencies of operations.
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2. since the value u'(7) is erased by u(i+ 1), and hence killed by it, we can consider the
self output dependence on u as a virtual self-flow dependence between u and itself
with a distance 1 and a latency 6, +(u) + 1 to model the fact that u(i+ 1) consumes
(kills) u! (7).

Till now, the best ILP scheduling strategy of simple innermost loops is software pipelin-
ing (SWP). The next section gives a short description of SWP.

7.2 Software Pipelining

A software pipelined schedule o of a graph G = (V, E, 6, \), representing precedence con-
straints of a simple loop with n iterations, consists in overlapping the execution of the
parallel operations belonging to different iterations [AJLA95]. A new iteration is initiated
at constant rate during the steady state before the (possible) completion of the previous
one. The advantage of software pipelining is that optimal performance may be achieved
with a more compact code size compared to loop unrolling followed by local scheduling. A
SWP schedule is defined by an initiation interval? h and the schedule of the first iteration.
Every h steps, a new iteration is issued. The schedule is written:

VueV, Viell,n]: o(u(i)) =0, +hxi

where o (u(7)) is the schedule of the operation u(i), and o, = o (u(1)) is the schedule
of the operation u of the first iteration. The total schedule time of one iteration of the
original loop body is then equal to L = maxy,cy 0,. Figure 7.1.(b) is an example of a
software pipelined schedule with A = 4 of the DDG shown in part (a), in which the values
and flow arcs are drawn with bold lines.

This periodic schedule defines a new compact loop body called the motif or the kernel.
The successive iterations of the motif simulate the progression of the iterations of the
original loop in a pipeline. Let ¥(G) be the set of all valid software pipelined schedules
of a loop G. Also, we note ¥;,(G) as the set of all valid software pipelined schedules with
the property that the total schedule time of one iteration does not exceed L?:

Vo € ¥1(G), Yu €V, oy < L

For any o € 3(G), the minimum initiation interval M1, denoted by hg , is determined by
the critical circuit of G, which defines the optimal execution rate. Let 6(C') =) . 6(e)
be the latency of the circuit C' in G and A\(C') = >___~ A(e) its distance. Then a critical
circuit C' in G is defined by :

ecC

n

§0)

(©)

This critical ratio constitutes a lower limit for the minimal feasible initiation interval :

RN ()
C" a circ%l)ii in G )\(C’)

>~

Vo eX(G):  MII = [%W <h

2Denoted also by IT in some papers.
3L sufficiently large, i.e., greater than the critical path of the loop body.
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Figure 7.1: Software Pipelining




7.2. SOFTWARE PIPELINING 123

Note that the critical circuit can be computed with polynomial complexity algorithms
(O(|V] x |E| x log |V]) [Law72, Saw97]). An implementation of an algorithm with the
complexity O(|V|.|E|.log(|V]. max, 6(e). max, A(e)) is provided in [MN99].

If the critical ratio is not integral, this rate cannot be achieved. Nevertheless, we
can avoid this loss of optimality by unrolling the loop j times before applying a periodic
scheduling, where j is equal to the denominator of (rational) critical circuit cost to time
ratio: the initiation interval of the unrolled loop becomes j x MII.

If the DDG is acyclic, then MII = 0. This means that the loop is parallel (no circuit
dependences) : theoretically, we can completely unroll the loop and perform all iterations
in parallel to obtain a maximal ILP*. We cannot assume such unbounded ILP degree
scheduling because of code expansion and resource constraints. Since SWP focuses on
building kernels, MII = hy is set to 1. Thus, the maximal number of parallel iterations
is L.

The authors in [WEJS94] model the motif of a software pipelined schedule as a two
dimensional matrix by defining a column number ¢n and row number rn for each state-
ment. A SWP gets defined by three parameters, we denote it by o([rn], [cn],h). They
define o as:

VueV, Viell,n]: o (u(i)) = rn(u) + h x (en(u) + 1)

where cn(u) = | %] and rn(u) =0, mod h.

Graphically, the row number rn(u) is the step of the execution of the statement u
relatively to the beginning of the motif, see Figure 7.1.(c): every h clock cycles, a new
operation u is issued rn(u) cycles after the beginning of the kernel. Statements that have
the same row number are simply those that are issued in parallel. The column number
cn(u) represents the iteration number of the statement w, i.e., a statement « in the motif
with a column number en(u) corresponds to the operation u(i L cn(u)) of the original
loop. For example, a statement u with a column number equal to zero corresponds to
the statement u of the original loop; a statement with a column number equal to 1 cor-

responds to the operation u of the iteration ¢ L 1 of the original loop, etc.

Let us denote by B the acyclic data dependence graph of the loop body (G after
removing the loop carried dependences). Then:

Vo e 2.(G), YueV : o0,<0,<7,

in which:
o 0, = LongestPathTo(u) is the as soon as possible schedule time of u in B;

e 5, = L | LongestPathFrom(u) is the as late as possible schedule time of u in B
according to the worst fixed total schedule time L of one original iteration.

We conclude that
en(u) < en(u) < en(u)

4This maximal parallelism may be implemented at thread level, which is outside the scope of SWP
for ILP.
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where

In order to reach a steady execution state for the software pipelined loop, we need to
fill the pipeline during a starting transient state. This is done by generating a prologue
code before the SWP kernel. This prologue state lasts L | h clock cycles so as to reach a
maximal execution throughput for the pipelined execution of the loop (iterative execution
of the kernel). Also, the last L L h clock cycles of the total execution time correspond
to an ending transient state in order to empty the pipeline: an epilogue code has to be
generated, after the SWP motif, for this final state.

A value u' € Vg, is defined at the relative definition date o, + 6, 4(u) clock cycles after
the beginning of the motif. The killers of this value u* € Vg, are all the last scheduled
consumers (readers). We note by Cons(u®) the set of the consumers of the value u'. The
last step when a value issued in the current motif is consumed is called the relative killing
date:

ko (u') = sommax (00 + 6r4(v) + A(e) x h)
e=(u,v)EER ¢

That is, the value u(4) of the i'" iteration is defined at the absolute time o, + &, (u)+ix h
and killed at the absolute time k,(u) + i x h.

In our model, we assume that a value written at instant c is alive one step later®. The
relative acyclic life interval (range) of the value u' € Vg, is:

LT, (u') =]y + 8u(u), ky(u')]

The absolute life interval of the value u'(i) is:
|ow + Ouwi(u) + i X hy ko(u') +1i X h)

The lifetime of a value u' € Vg, is the total number of clock cycles during which this
value is alive according to the schedule:

lifetime,(u') =k, (u) L oy L 6y 4(u)

7.3 Cyclic Register Need

The cyclic register need (also known in the literature as register requirement or MAXLIVE)
of type t is the maximum number of values of that type which are simultaneously alive
in the software pipelining motif. In the case of a cyclic schedule, some values may be
alive during many iterations and different instances of the same variable may interfere.
Figure 7.2 illustrates another schedule of the DDG previously shown in Figure 7.1.(a):
the value v; interferes with itself®.

5This is not a limitation on the model, but a choice for discussion.
6Remember that the lifetime intervals are left open and right closed.
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Lifetime intervals during the steady state describe a circular lifetime interval graph
around the motif: we “wrap” a circle of circumference h by the acyclic lifetime intervals
of values. Then, the lifetime intervals are cyclic.

Definition 7.1 (Circular Lifetime Interval) A circular lifetime interval produced by
wrapping a circle of circumference h by an interval I =la,b] is defined by a triplet of
integers (I, r,p), such that:

e [ =a mod h is called the left of the cyclic interval;

e r =b mod h is called the right of the cyclic interval;

o p= V’LT“J is the number of complete periods (turns) around the circle, which corre-

sponds to the number of interfering instances.

As an example, the circular lifetime interval of v; in Figure 7.2.(b) is (1, 3,0), vy’s one is
(2,1,0) and v3’s one is (2,0, 1).

Iteration i-2

vl

Iteration i-/

vl

h=4

- vl v2
7 7 3

B indicates the definition of the value

Iteration i v3

00N iR W N~ D

Steady State

Time -

(a) Software Pipelining (b) Life Intervals inside the Motif

Figure 7.2: Cyclic Register Need in Software Pipelining Schedules

The set of all the circular lifetime intervals around the motif defines a circular interval
graph which we note C,(G). In this thesis, we use the short term of circular interval
to indicate a circular lifetime interval, and the term of circular graph for indicating a
circular lifetime intervals graph. Figure 7.3.(a) gives an example of a circular graph. The
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maximum number of values simultaneously alive is the width of this circular graph, i.e.,
the maximum number of circular intervals which interfere at a certain point of the circle.
For instance, the width of the circular graph of Figure 7.3.(a) is 4. Figure 7.2.(b) is
another representation of the circular graph when we cut the circle at the instant 0.

(@) Circular Life Intervals Graph (b) in_fraction_of _h Circular Graph
v3

vl V2
| II
V V V 772
V V - 773

(c) in_fraction_of_h intervals

Figure 7.3: Circular Life Intervals Graph

Definition 7.2 (Cyclic Register Need (Requirement)) Let G = (V, E, 6, \) be a loop
and o € ¥(G) a software pipelined schedule. The cyclic register need of type t € T is the

width of the circular graph produced by wrapping the lifetime intervals of type t around a
period h. We denote it by CRN/ (G).

We call circular excessive values a set of a maximum number of values simultaneously
alive. In Figure 7.2.(b) for instance, vy (), v3(i), v3(¢i L 1) and vy(i L 1) are circular exces-
sive values.

Computing the width of a circular interval graph is obvious. We can compute the
number of values simultaneously alive at each clock cycle in the SWP kernel. This leads
to a method whose complexity depends on the initiation interval hA. This factor may be
very large since it depends on the specified latencies in the DDG, and on its structure
(critical circuit). We want to provide a better method whose complexity only depends on
the DDG size, i.e., only depends on the number of statements and dependencies. For this
purpose, we study the relationship between the width of a circular interval graph with the
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size a maximal clique in the interference graph”. The following paragraphs are devoted
to this aim.

In general, the width of a circular interval graph is not equal to the size of a maximal
clique in the interference graph [Tuc75]. In order to effectively compute this width, we
decompose the circular graph C(G) into two parts.

1. The first part is the integral part. It corresponds to the number of complete turns
around the circle, i.e., the number of instances of each value that are simulta-
neously alive at all times during the steady-state portion of the cyclic schedule:

Z(l,r,p) a circular interval P

2. The second part is the fractional part. It is composed of the remainder of the
lifetime intervals after removing all the complete turns (see Figure 7.3.(b) and (c)).
The size of the remaining intervals is strictly less than h, the size of the SWP
motif. Note that if the left of a circular interval is equal to its right (I = r), then
the remaining interval after ignoring the complete turns around the circle is empty
(Jl,r] =]I,1] = ¢). These empty intervals are removed from this second part. Two
classes of intervals remain.

(a) The first class contains acyclic intervals that do not cross the kernel barrier,
i.e., when the left is less than the right (I < r). vy in Figure 7.3.(b) and (c),
for instance, belongs to this class.

(b) The second class contains intervals that cross the kernel barrier, i.e., when the
left is greater than the right (I > r). v, and vy in Figure 7.3.(b) and (c), for
instance, belong to this class. These acyclic intervals represent the left and
the right parts of the lifetime intervals. When merging the left and right parts
of a value of two successive SWP motifs, we create a new contiguous circular
interval.

These two classes of intervals define a new circular graph. We call it an in_fraction_of_h
[A1t95] circular graph because the size of its lifetime intervals is less than . This cir-
cular graph contains the circular intervals of the first class, and those of the second
class after merging the left of each value with its right.

Definition 7.3 (in_fraction_of_h Circular Graph) Let C,(G) be a circular graph of
aloop G = (V,E,6,\). The in_fraction_of-h lifetime interval graph, denoted by Cy(G), is
the circular graph after ignoring the complete turns around the circle :

Cu(G) ={(l,r,0)/ 3p,(l,r,p) € Cu(G) A T #1}

We call the circular interval (I, r, 0) a circular in-_fraction_of-h interval, and we can simply
denote it by (I,r). Any circular interval in ({,7) € Cj(G) has a length less than A clock
cycles. Then, the total cyclic register need becomes :

CRN;f(G)z( > p)+w(@(G))

(l,T,p)ECh(G)

"Remember that the interference graph is an undirected graph that models interference relations
between lifetime intervals: two statements w and v are connected iff their (circular) lifetime intervals
share a unit of time.



128 CHAPTER 7. LOOP MODEL

where w denotes the width of the in_fraction_of_h circular graph.

As stated before, in a general circular graph, the size of a maximal clique in the
interference graph is not equal to its width. To overcome this problem, we use the fact
that the in_fraction_of_h circular graph C,(G) has circular intervals which do not make
complete turns around the circle. Then, if we unroll the motif twice to consider the values
produced during two successive periods of the kernel, the complete interference pattern
is exhibited. For instance, the circular graph of Figure 7.4.(a) has a width equal to 2.
Its interference graph in Figure 7.4.(b) has a maximal clique of size 3. Since the size of
these intervals does not exceed a period h, we unroll twice the circular graph like shown
in Figure 7.4.(c). The interference graph of the acyclic intervals in Figure 7.4.(d) has a
size of a maximal clique equal to the width 2. The following theorem proves this fact.
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(c) Unrolled Twice (d) Interferences after Unrolling

Figure 7.4: Width of Circular Interval Graphs

Theorem 7.1 Let Cy(G) be a circular in_fraction-of-h graph (no complete turns around
the circle exist). For each circular in_fraction_of-h interval (I,r) € Cy(G), we create the
two corresponding acyclic intervals I and I' after merging the lefts and the rights of two
successive kernels. Then, the cardinality of any mazimal clique in the interference graph
of all these acyclic intervals is equal to the width of Ci(G).

Proof:

See Appendix A (Section A.2.1 Page 258).
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We call such an acyclic interval an acyclic in_fraction_of-h interval. Given a circular
in_fraction_of_h interval (I,7) € Cj(G), the two corresponding acyclic in_fraction_of_h in-
tervals are:

o [ =|l,r|and I' =]l + h,r + h| if r > I;
o [ =|l,r+hland I' =]l + h,r +2 x h] if r < ;

Figure 7.5 shows the unrolled circular graph of the in_fraction_of_h circular graph pre-
viously described in Figure 7.3, page 126. The interference graph is an interval graph,
and hence the maximal clique can be computed with a O(n x log(n)) complexity [Gol80].
So, we have defined a method that computes the cyclic register need whose complexity
depends only on the size of the input DDG. The complete turns around the circles is com-
puted in linear time (O(|V])), and the width of the in_fraction_of_h graph is computed
with a complexity O(|V| x log(|V])).

Note that if the length of a circular interval (I,r,p) is a multiple of h, then its
in_fraction_of_h interval is empty since [ = r (lifetime intervals are open from the left).
Consequently, it is removed from the set of in_fraction_of_h intervals. As an illustration,
the circular interval of vz in Figure 7.6 has lifetime(vs) = 4 with h = 4. Tts corre-
sponding in_fraction_of_h interval is (0,0). This latter corresponds to two empty acyclic
in_fraction_of_h intervals ]0,0] and |4,4]. They must be removed from the set of acyclic
in_fraction_of_h intervals.

When looking for a software pipelined schedule with a limited register need, choosing a
“suitable” initiation interval is a crucial issue. It is intuitive that the lower the initiation
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vl — vie— vie—
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(8 Circular Intervalsinside the Motif (b) Unroll the Motif Twice to Get Precise Interferences
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@

(c) Interferences of the Acylic Intervals

Figure 7.5: The Width is the Maximal Clique after Unrolling Twice
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interval A is, the higher the register pressure is, since more parallelism requires more
memory. If we succeed in finding a software pipelined schedule which needs R registers,
then it is possible to get another software pipelined schedule which needs R registers with
a higher IT if we relax the uper-bound L.

Proposition 7.1 Let G = (V, E,6,\) be a DDG of a loop with a superscalar semantics
(no visible delays in accessing registers). If there exists a software pipelining o ([rn], [en], h)
which needs R registers of type t with h < L, then there exists a software pipelining
o'([rn'], [en'], h 4+ 1) which needs R registers of type t with L' = L+ 1+ |L/h]. Formally:

Vo([rn], [en],h) € (G)/hy < h < L,

30" ([rn'], [en'], h +1) € Spi14o/m (G) : ORNY (G) = CRNY (G)

Proof:

See Appendix A (Section A.2.2 Page 259). This proposition is proved pnly
for superscalar semantics (no visible delays in reading from and writing into
registers). The general case (VLIW semantics) is more difficult to prove, but
we think that this proposition remains correct.

Computing the cyclic register need of a SWP is easy: we build the circular lifetime
graph and we compute its width. However, we need to formulate it according to an
arbitrary SWP, i.e., without fixing any scheduling information. The next section gives an
exact intLP formulation of C RN;(G) according to a variable schedule. This formulation
enables us in further chapters to compute the exact register pressure.

7.4 Exact Formulation of Cyclic Register Need

A “good” exact intLP model is important in our study because it must be used further
for maximizing (saturation) or minimizing (sufficiency) the cyclic register need, and if

V2 ] V2 —
vl e—— vIie——M
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(a) Circular Life Intervals Graph (b) In_fraction_of_h intervals

Figure 7.6: Empty in_fraction_of_A Intervals
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possible, with the same variables and constraints. Furthermore, we need to give a “good”
intLP complexity in terms of the number of generated variables and constraints. This
complexity must be a polynomial function of the size of input DDG, i.e., it must only
depend on the number of nodes and arcs without introducing the h factor like in existing
techniques.

In this section, we show how to model the exact register requirement of arbitrary cyclic
schedules. For this purpose, we use Theorem 7.1, which consists in unrolling twice the
kernel to exhibit the complete interference pattern between the in_fraction_of_h intervals.
In our exact model, we suppose the following constants:

e [ : a worst total schedule time of one iteration;
e /: the initiation interval.

Since we will need to compute a maximal register need (register saturation) and a
minimal one (register sufficieny), we provide two formulations. The first one uses a
maximization objective function, and the second uses a minimization one. Note that
if |Vr4| = 0, i.e., no results of type ¢ is produced in the DAG, the register need is zeroby
definition. Hence, we assume that |Vg,| > 0.

7.4.1 Cyclic Register Need with Maximization

The first formulation computes a maximal clique for determining the interferences between
the in_fraction_of_h intervals. The complete turns around the circles are the integer parts
of the lifetimes.

Basic Variables
1. For lifetime intervals, we define:

e one schedule variable g, > 0 for each u € V;

e one variable which contains the killing date k,+ > 0 for each u" € Vg,.
2. For cyclic register need, we define:
e p,¢ > 0 the number of the instances of u’ € Vg, simultaneously alive, which is

the number of the complete turns around the circle produced by u' € Vg y;

e [, > 0 and r,e > 0 the left and the right of the cyclic lifetime interval of
ul e VR,t;

e the two acyclic in_fraction_of_h intervals I+ =|ayt, b,¢| and I, =|a),,b.,] after
unrolling the kernel twice.

3. For a maximal clique in the interference graph of the in_fraction_of_h acyclic inter-
vals, we define:

e interference binary variables 53, ; for all the in_fraction_of_h acyclic intervals
I,J of type t: s; ; = 1iff I and J interfere with each other;

e a binary variable z¢ for each in_fraction_of_h acyclic interval of type ¢t: x4 =1
iff I belongs to a maximal clique.
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Linear Objective Function The cyclic register requirement of type t is the maximal

of::
2. Tt D pu

acyclic in_fraction_of_h interval T utEVRy

As we will see in Chapter8, maximizing this function amounts to computes the cyclic
register saturation (CRS).

Linear Constraints

1. Cyclic scheduling constraints:

Ve = (u,v) € E : ou+6(e) <o, + Ne) xh

2. The killing dates are computed by :

Vu' € Vg, - kyt = énaf : (0'1, + 6,4 (v) + A(e) X h,)
veCons(ut
e=(u,v)EER ¢

We use the linear constraints of the “maximum” defined in Section 3.3. Ky is
bounded by k,: and k,: where:

o kyt = Milyecons(ut) (@ + b 1(v) + MAX,—(u0)c Ep., A(e) x h)
o Ly = MAaXyeCons(ut) (a_v + 6p4(v) + MaXe—(u,0)eEy, A€) X h)

3. The number of interfering instances of a value (complete turns around the circle) is
the integer division of the lifetime by h. We introduce an integer variable a,: > 0
which holds the rest of the division:

kyt Lo, L 6w,t(u) = Pyt X h 4+
oyt < h
oyt € N

4. The lefts of the circular intervals are the rest of the integer division of the definition
date by h. We introduce an integer variable 3,: > 0 which holds the integer quotient
of the division:

Oy + 6w,t(u) = But X h+ Lt
lyt < h
ﬂut €N

5. The rights of the circular intervals are the rest of the integer division of the killing
date by h. We introduce an integer variable ~,: > 0 which holds the integer quotient
of the division:

kyt = Yyt X b+ 1yt
Tyt < h
Yut € N
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6. The in_fraction_of_h acyclic intervals are computed by unrolling the kernel twice,
depending if the cyclic interval crosses the kernel barrier (Theorem 7.1):

Ayt = lut

Tut > Lyt = byt = 7Tyt

Tyt < ly = byt =71y +h (case when the cyclic interval crosses h)
a = ay +h

fut — but + h

We use the linear constraints of implication defined in Section 2.1 since the variable
domains are bounded. We know that 0 < /,: < h,s00 <a, <handh <a, <2h.
Also, 0 <l < hso0<b, <2hand h <0, < 3h.

7. The interference binary variables s} ; are computed as in the acyclic case (Section 3.3
Page 53), except that we must check if acyclic in_fraction_of h intervals are not
empty. We have to express in the intLLP the following constraints.

V acyclic intervals I, J :

si;=1<= [(length(I) > 0) A (length(J) >0) A (I <J Vv J=<1I)]

where < denotes the relation before in the interval algebra. Assuming that I =]ay, b;]
and J =]ay, by, these constraints are written as follows. V acyclic intervals I, .J :

0)

by La; >0 , length(I)
J) >0)

(i.e
by La; >0 (ie., length(J)
br > ay (ie, _I(I<J))
by > ay (i.e., =(J < 1))

>
>
siy =1

8. A maximal clique in the interference graph is an independent set in the complemen-
tary graph. Then, for two binary variables % and z%, only one is set to 1 if the two
acyclic intervals I and .J of type ¢ do not interfere with each other:

V acyclic intervals 1, J : sﬁ’J =0= 2t +2, <1

Then, the cyclic register need is equal to:

CRN?(G) Sorah+ Zutevm pyt if 3 an acyclic interval : length(I) > 0
t ZuteVR,t Dut if V an acyclic interval : length(I) = 0
Now, our intLP maximization version is completely defined. The next section describes
the minimization version.

7.4.2 Cyclic Register Need with Minimization

The second formulation computes a minimal chain decomposition for determining the
interferences between the in_fraction_of_h intervals. The complete turns around the circles
are the integer parts of the lifetimes. We use some of the variables and constraints as
defined above.
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Basic Variables
1. For lifetime intervals, we define:

e one schedule variable o, > 0 for each u € V;

e one variable which contains the killing date k,: > 0 for each u’ € Vg,.
2. For cyclic register need, we define:

e p,t > 0 the number of the instances of u' € Vg, simultaneously alive, which is
the number of the complete turns around the circle produced by u! € Vet

o [, > 0 and r, > 0 the left and the right of the cyclic lifetime interval of
ul € VR,t;

e the two acyclic in_fraction_of_h intervals I, =]ay,by¢| and I}, =]al,,b. ] after
unrolling the kernel twice.

3. For a minimal chain decomposition of the in_fraction_of_h acyclic intervals, we define
(see Section 3.3, page 53):

o interference binary variables s} ; for all the in_fraction_of_h acyclic intervals
I,J of type t: s7 ; = 1iff I and J interfere with each other;

e an integar variable ¢} > 0 for each in_fraction_of_h acyclic interval of type t: [
belongs to the chain cf.

Linear Objective Function The cyclic register requirement of type ¢ is the minimal

of :
2y + Z DPut

utEVR,t

where z; = ming c}.
As we will see in Chapter 9, minimizing this function amounts to computes the cyclic
register sufficiency (CRF).

Linear Constraints

1. Cyclic scheduling constraints:

Ve = (u,v) € E : ou+6(e) <o, + Ne) xh

2. The killing dates are computed by :

Vu' € Vg, - kyt = ma)g : (0'1, + 6,4 (v) + A(e) X h,)
veCons(ut
e=(u,v)EER ¢

We use the linear constraints of the “maximum” defined in Section 3.3. Ky is
bounded by k,: and k,: where:

L @ - minvECons(ut) (@ + 6r,t(v) + MaXe=(uw)€Ep,; )\(6) X h)

L4 k_u’ - maxveCons(ut) (U_v + 6r,t(v) + maxe:(u,v)eER,t )\(6) X h)
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3. The number of interfering instances of a value (complete turns around the circle) is
the integer division of the lifetime by h. We introduce an integer variable a,: > 0
which holds the rest of the division:

kyt L o, L 6w,t(u) = Pyt X h 4 e
Oyt < h
ot €N

4. The lefts of the circular intervals are the rest of the integer division of the definition
date by h. We introduce an integer variable 3, > 0 which holds the integer quotient
of the division:

Oy + 6w,t(u) = But X h+ Lyt
[yt < h
ﬁu’ €N

5. The rights of the circular intervals are the rest of the integer division of the killing
date by h. We introduce an integer variable 7, > 0 which holds the integer quotient
of the division :

kut = Yyt X h,—|—7‘ut
Tyt < h
rYutEN

6. The in_fraction_of_h acyclic intervals are computed by unrolling the kernel twice,
depending if the cyclic interval crosses the kernel barrier (Theorem 7.1):

Ayt = lut

Tut > Lyt == byt = Tyt

Tyt < ly => byt =14 +h (case when the cyclic interval crosses h)
[

a,=ay +h

ut

b;t = but +h

7. The interference binary variables s; ; are computed as in the acyclic case (Sec-
tion 3.3, page 53), except that we must check if acyclic in_fraction_of_h intervals are
not empty. We have to express in the intLLP the following constraints.

V acyclic intervals I, J :

s1,; =1 <= [(length(I) > 0) A (length(J) >0) A =(I <J V J <1I)]

8. If two acyclic in_fraction_of_h intervals I and .J do not interfere, then they must not
belong to the same chain (Section 3.3, page 53).

t 4 4
Vu,v €Vepy : sty =1=c1# ¢}

9. The total number of chains is constrained by :

Y acyclic intervals I : c? < z
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Then, the cyclic register need is equal to:

CRN?(G) = 20+ D utev, Put %f 37 an acyc‘]ic. interval : length(I) > 0

D utevi, Put if V an acyclic interval : length(I) = 0
Now, our intLP minimization version is completely defined. Note that our two intLLP for-
mulations may be optimized. For instance, if two acyclic in_fraction_of_h intervals I,,; and
I', of a value u' cannot interfere, we do not define nor compute s; ;. Similar optimiza-
tions can be done regarding redundant arcs or impossible interfering relations detected at
compile time (statically).

Register allocation for acyclic scheduled codes is obvious if lifetime intervals are de-
fined. However, the cyclic case is slightly different because the multiple values produced
by the same statement may interfere. The next section presents register allocation of
software pipelined loops.

7.5 Register Allocation of Software Pipelined Loops

This section gives a brief description of the meeting graph (MG) framework [ELM95,
ELM97, dAWELM99, Lel96] intended for cyclic register allocation of already scheduled
loops. The meeting graph is based on a circular lifetime intervals graph. If w is the
width of the circular graph, the problem is to allocate w available registers (colors) to
the circular intervals. Without loss of generality, the width w of the circular intervals
is assumed constant around the circle. If it is not really the case, Lelait claims that is
always possible to add unit-time fictitious intervals around the circle where the width is
less than w, as in Figure 7.7. This example is the MG of the circular intervals previously
presented in Figure 7.2 and Figure 7.3.

Definition 7.4 (Meeting Graph) Let C,(G) be a circular lifetime interval graph for a
register type t with a constant width w. The meeting graph related to Cy,(G) of the register
type t is a directed weighted graph M, = (Vgy, Err,w). There is an arc between u' and v*
in My iff the circular lifetime interval of u' ends when that of v* begins. Each u' € Vi, is
weighted by w(u') = lifetime(u').

Since there are some values which are alive during several iterations of the kernels, these
values interfere with themselves because every h steps a new value is defined by the
statement. In this case, we have to unroll the motif in order to be able to explicitly
allocate distinct registers to distinct values by coloring the circular interval graph.

Theorem 7.2 [ELM95] Let My = (Vry, Enr,w) be the meeting graph of a circular graph
Ch(G) with a width w. Let D be the set of all possible decompositions of My into circuits
(D; € D, D; ={C4,,...,C; }). Then, the minimal unrolling degree of the motif necessary
to obtain an optimal allocation with w registers is:

u(M,;) = glé%lcm(pil, s Piy)

in which p;; is the (width) number of turns around circle of the circuit Cy, :

e, w(u)

Pi; = L

and lem denotes the least common multiple.
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The width of a circuit in the meeting graph is equal to the number of turns around
the circle because we ensure that the width is constant by inserting fictitious unitary
intervals. Computing the set of all possible decompositions into circuits is NP-complete.
So the purpose is to write an algorithm which looks for a “good” decomposition, i.e., the
one which reduces the unrolling degree. Assuming such a decomposition, the following
theorem defines the unrolling degree necessary for coloring the circular interval graph.

Theorem 7.3 [Lel96] Let My = (Vry, En,w) be the meeting graph of a circular graph
Ch(G) with a width w. Assume that M, is composed of n elementary circuits (C,...,Cyp)
with their corresponding width (pcy, ..., pc,). Then, the corresponding loop can be allo-
cated with w registers if we unroll the motif by the following degree :

lem(pey,- - pc,)

For instance, if we decompose the meeting graph of Figure 7.7 into two elementary circuits
Cy = (v, I, I4,v1) and Cy = (v3, Iy, I3, v9, I5, v3), we need to unroll the loop lem(1,3) = 3
times. We then allocate one register for C'; and 3 registers for Cs.

After unrolling the loop, a cyclic register allocation with w available registers is done
by coloring the corresponding circular interval graph with w colors. For this purpose, we
have to find a decomposition of the unrolled meeting graph into w elementary circuits.

Theorem 7.4 [Lel96] Let M; = (Vry, Enyw) be the meeting graph of a circular graph
Cy(G) with a width w. A register allocation of the modulo scheduled loop G is exactly a
decomposition of M; into w elementary circuits.

The authors suggest to look for circuits with small costs if we want to reduce the
unrolling degree. This latter constitutes a hard problem, because reducing a lem isn’t
a linear problem. Some architectures, as Cydra 5 and IA 64 offer architectural support
for register allocation of SWP loops. The next section shows how such a feature can be
utilized.

(a) add fictitious unitary intervals (b) the meeting graph

Figure 7.7: The Meeting Graph




138 CHAPTER 7. LOOP MODEL

Rotating Register File

A rotating register file (RRF) [DHB89, DT93, RLTS92, SRM94] is a hardware feature
to prevent successive lifetime intervals from being assigned to the same physical regis-
ters. Conventional registers are accessed using absolute addresses, e.g., register number
3. Nonetheless, in a RRF, a register number k specified in a statement addresses the
physical register (RRB + k) mod s, where RRB is a rotating register base and s is
the number of physical registers. At the end of each kernel (special branch instruction),
RRB is decremented so that the same register accessed in the next iteration is named
(RRB L1+k) mod s. The compiler must take into account this behavior by generating
an adapted code. For instance, assuming 4 physical registers, the compiler must be aware
that a value written in the architectural register 0 (physical register 0) must be accessed
from the architectural register 2 (physical register 0) two kernels latter.

Thanks to RRF, we do not need to unroll the loop. We can always find a cyclic register
allocation with at most w + 1 registers if the size of the register file is s > w + 1.

Theorem 7.5 [Lel96] A loop can be allocated on a rotating register file of size s if there
exists a hamiltonian circuit C' in the meeting graph with o width p(C) < s

FOR i
RO=v1(i); R1=v3(i); R2=v2(i-1)
R N [ P
end FOR
(a) Allocated Loop kernel
. R3 v]iv]i §v3§v3§v3 v3§v3§v3§ §v2§v2§v2
% R2 §v2§v2§v2 v]iv]i §v3§v3§v3 v3§v3§v3§
o0 | | | | | | | | | | | |
& R1 v3§v3§v3§ §v2§v2§v2 v]iv]i §v3‘§v3§v3
RO §v3§v3§v3 v3§v3§v3§ §v2§v2§v2 vlivli ‘
0 h 2h 3h 4h

time

(b) Distinct Values in the RRF

Figure 7.8: Register Allocation in a Rotating Register File

The meeting graph of Figure 7.7 has the hamiltonian circuit C = (vy, I, I5, I3, v3, I4,
I5,v9,v1). We can allocate the values vy, vy and v3 to a rotating register file of size 4.
We allocate these values in the same order that they appear in the hamiltonian circuit.
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Figure 7.8.(a) shows the generated code (loop kernel) with register allocation. Part (b)
shows the distinct values in the RRF: for instance, the value vz does not interfere with
itself because it is written on a distinct physical register every h = 4 steps.

If there is no hamiltonian circuit, we can always create one by adding a complete turn
of unitary fictitious intervals in the meeting graph. If no hamiltonian circuit exists in the
MG, it has been shown that there is no cyclic register allocation with MAXLIVE registers
on a RRF [Lel96]. One extra register is needed, which yields to allocate MAXLIVE+1
registers. Omne of the intrinsic reasons is that the RRF simulates “shifting” actions to
move values within physical registers. Depending on the SWP schedule, we may need
one extra register to complete this circular moving, since we need 3 registers to permute
two values between two distinct registers. This problem arises particularly for superscalar
codes. Since we cannot express statically the parallelism between operations, two lifetime
intervals cannot meet and, thus, are serialized in the generated code. Consequently, we
may need one extra register to cyclically permute all the values in registers.

Proposition 7.2 [Lel96] There always exists a hamiltonian circuit in the meeting graph
of a software pipelined loop if we add a tour of unitary fictitious circular intervals.

Therefore, a sufficient condition for allocating MAXLIVE+1 registers on a RRF for a
software pipelined loop arises:

Theorem 7.6 [Lel96] Let M; = (Vry, Enyw) be the meeting graph of a circular graph
Cy(G) with a width w. It is always possible to allocate registers to the loop G in a rotating
register file with at least w + 1 registers.

The reader must keep in mind that, if loop unrolling is allowed, we do not need this extra
register to implement a cyclic register allocation on a RRF.

Before concluding this chapter, we would like to introduce a loop transformation called
retiming. This transformation, as we will see, allows to solve some of the problems in this
thesis.

Retiming Transformation

Retiming [L.S91] (also called loop shifting [DHO0]) consists of the following graph trans-
formation : for each statement u, we associate a shift 7(u) which means that we delay the
operation u(i) by r(u) iterations. Basically, we only change the column numbers. Then,
each statement u that was representing the operations of the form w(i) represents now
the operations of the form w(i L r(u)). The new distance of each arc e = (u,v) becomes
Ar(e) = A(e) + r(v) L r(u) since the dependence is from u(i L r(u)) to v(i L r(v) + A(e)).
Then, we have a one-to-one correspondence between the schedules of the original loop and
the schedules of the retimed one. o, is a schedule for the retimed graph iff the function o
defined by o(u(i)) = o, (u(i + r(v))) is a schedule for the original DDG.

Consequently, a retiming does not change the sum of the distances in any circuit, nor
the sum of its delays, while preserving the same problem (loop). Indeed, the retimed
graph is only another representation of the loop.

Note that a retiming is called valid if all the distances of the transformed graph are
nonnegative. Finding a valid retiming (from a non valid one) is a polynomial problem
[LS91]. Figure 7.9 gives an illustration. If we use the shifts of Part (b) to apply a retiming
on the graph of Part (b), we obtain the retimed graph of Part (c).



140 CHAPTER 7. LOOP MODEL

7.6 Conclusion

This chapter has introduced our hypothesis about the generic ILP architecture and has
defined some important terms that we use in this part of the thesis. Circular register need
is defined by circular intervals. An integer programming model with reduced constraint
matrix size is provided and is used in the next chapters to analyze the register pressure.

While local register allocation of already scheduled DAGs is easy, cyclic register allo-
cation of modulo scheduled loops is slightly different. Since lifetime intervals are circular,
some statements may produce interfering values inside the motif. We must unroll the
loop to explicitly address these distinct values and to allocate them to different registers.
A theoretical framework, called the meeting graph [ELM95, ELM97, dAWELM99, Lel96],
formulates the exact unrolling degree depending on a circuit decomposition of MG.

Optimizing the unrolling degree is a difficult task. A hardware feature, called rotating
register file, allows to avoid unrolling the kernel. A sufficient condition for cyclic register
allocation with MAXLIVE registers on a RRF is the existence of a hamiltonian circuit in
the MG. If it does not exist, we can create it by using one extra register.

The next chapter studies the cyclic RS devoted to keep register pressure under control
before SWP scheduling.

1
(@) (@) (@)
®
(b) ob) (b)
O © 2(e) (@)3 O ©
(a) Origina Graph (b) Shift Coefficients  (c) Retimed Graph

(€]

Figure 7.9: Valid Graph Retiming




Chapter 8

Cyclic Register Saturation

Abstract
This chapter describes our work on cyclic register saturation (CRS) [TE02]. We
provide algorithms and intLP models to check if register constraints are obsolete
(satisfied) before scheduling. As in the acyclic case, this problem is NP-complete.
We show how we handle the NP-hard problem of reducing CRS under the limit of
available registers.

This chapter is organized as follows. Section 8.1 shows how we compute CRS. We
provide an exact formulation based on integer programming. We also present an ap-
proximative method that decomposes the problem into two parts. The first part, based
on integer programming, looks for a valid retiming that maximizes the interferences of
distinct instances of the same statement. The second part, based on algorithmic ap-
proximation, maximizes the interferences of distinct statements. Section 8.2 studies the
problem of CRS reduction under a fixed critical circuit. Before concluding, we show some
experiments in Section 8.3.

Let G = (V, E,6,\) be a loop. The cyclic register saturation (CRS) is the maximal
register requirement for all valid software pipelined schedules :

CRS(G) = max CRN;(G)

where CRN{ (G) is the cyclic register need of type f for the SWP schedule 0. A software
pipelined schedule which needs the maximum number of registers is called a saturating
SWP schedule. The excessive values (maximum values simultaneously alive) in a saturat-
ing schedule are called saturating values.

Theorem 8.1 Computing the cyclic register saturation of a register type t € T is NP-
complete.

Proof:

See Appendix A (Section A.2.3 Page 262).

The next section presents how we compute CRS.

141
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8.1 Computing Cyclic Register Saturation

8.1.1 Exact Formulation of CRS Computation

Before computing the exact CRS, we must first note that the exact maximal register
requirement may be infinite. This is, for instance, the case for acyclic DDGs (M1I =
0). We can theoretically schedule all the values of all iterations in parallel. Assuming
infinite number of iterations, this may lead, in theory, to an infinite number of values
simultaneously alive. As mentioned in Chapter 7, infinite ILP degree is not considered in
SWP since we focus on building a kernel (software pipelined loop). Then, we set MIT > 1.

Furthermore, if we do not bound L, the total schedule time of one original iteration,
then the maximal number of parallel iterations ([L/MII]) may be infinite. In other
words, even if we set MII > 1, the exact maximal register requirement may be infinite
if we do not bound L. Practically, compilers look for a SWP schedule with a finite size
of prologue and epilogue codes. Since, the prologue and epilogue lasts L L h clock cycles,
and since h is bounded between MII and L, bounding the size of prologue and epilogue
codes is equivalent to bounding L.

For these reasons, we bound our problem by computing the cyclic register saturation
of a subset ¥ (G) C X(G). That is, we compute the maximal register requirement for all
valid software pipelined schedules with the property that the total schedule time of one
iteration does not exceed L. This is appropriate for us, since the domain set of variables
must be bounded in our intLLP formulation.

The exact formulation of CRS computation is derived from Section 7.4 (maximization
version) :

Maximize Z rr + Z Dut

acyclic in_fraction_of_h interval T uteVp ¢

subject to the variables and constraints defined in Section 7.3.

The size of the model is O(|Vg,|?) variables and O(|E|+|Vg,|?) constraints (Section 7.4
on page 130). The coefficients of the constraints matrix are all bounded by +1L X Apu.h,
where A4, is the maximal dependence distance in the loop. To compute CRS, we scan
the admissible 7, i.e., we iterate the initiation interval h from hg to hyee = L (or by using
a binary search). The register saturation is the maximal solution of all these models. This
method may involve to solve too many intLP models. However, we can consider a tight
upper-bound. The following corollary states that instantiating only one model for h = L
while relaxing the upper-bound L' is sufficient to compute a conservative upper-bound
for CRS. Let us start by the following lemma.

Lemma 8.1 Let G = (V, E,6,\) be a DDG of a loop. The mazimal register requirement
of all the software pipelined schedules o([rn], [en], h) with an initiation interval hg < h < L
s less or equal to the maximal register requirement of all the software pipelined schedules
with an initiation interval h' = h+ 1 with L' = L+ 1+ |L/h]. Formally:

max CRN?(G) < max CRN? (G)
ol en} h)ex. () o' ([rn') [en]h+1)ES L 14 1./m) (G)
oxnN>
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Proof:

It is a direct consequence of Proposition 7.1 Page 130. If we increment h by
one, we have to increment L by 1 + |L/h] to get at least one valid software
pipelined schedule with the same register requirement :

Vo([rnl,[en],h) € £r(G)/h < L, 3o'([rn'],[en'],h+1) € Srpi41o/m) (G) -
CRN/' (G) = CRNY (G) = CRN/ (G) > CRN? (G)

Corollary 8.1 Let G = (V,E,6,\) be a DDG of a loop. Then, the exact CRS of G
assuming L as an upper-bound of the total schedule time of one iteration is lower or equal
to the maximal register requirement with h = L if we relax the upper-bound L' > L.
Formally :

max CRN/ (G) < max CRN/ (G)

a([rn],[en],ho<h<L)EXL(G) o([rn],[en], L)X/ (G)
where L' is the (L L ho)™ term of the following recurrent sequence (L' = Uy ) :

{Uh0 = L
U1 = U+ 1+ |Un/h|

Proof:

It is a direct consequence of Lemma 8.1 :

max CRN/ (G) < max CRN/ (G) < ...
a([rn],len],h)€XL(G) o([rn],len],h+1)€8 414 L/n)(G)
. < max CRN/ (G)

o([rnl,len],L)ESy, |, =vp | 141410 1p 11/ (ELhin)] (G)

That is, we relax the upper-bound L at each step, from h to L, i.e., (L L h)
times. Since CRS is defined for all initiation intervals, starting from h = hy
amounts to relax the upper-bound (L L hg) times, as follows.

max CRN/ (G) < max CRN/ (G) < ...

a([rn},[cn],ho)eZL:UhO (@) - a([rn},[cn],ho+1)€ZUh0+1=L+1+LL/hJ (@)

. < max CRN/ (G)

~o([rnl[en),.L)ESy, ;| 414U /(2 11)) (G)

_

This corollary states that the computed CRS with h = L and an upper-bound L' > L
is greater than or equal to the optimal CRS by assuming L as an upper-bound of the
total schedule time of one iteration. If L' > L is not relaxed, the computed CRS may
be lower or equal to the optimal (non conservative). Figure 8.1 draws our assumption
about the theoretical asymptotic curves to explain the meanings of Corollary 8.1. We
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think that if we fix L as an upper-bound of the total schedule time of one iteration, the
maximal register requirement in function of the execution rate A may not be an increasing
function of h. At a certain value of h, the maximal register requirement may decrease
(not strictly) if the upper-bound is not relaxed. Also, we think that if the curve begins
to strictly decrease, it wouldn’t strictly increase after. In other words, we think that the
curve has not a minimal point'. Thus, we can use a binary search (dichotomy), between
hmin = ho and hp,q, = L, for computing the exact CRS; the maximal register requirement
at the point h = L may have a negative gap with the optimal CRS.

However, we are sure that the curve is an increasing function if the the upper-bound
L' > L is relaxed when we increment h (Lemma 8.1 and Corollary 8.1). Thus, the maxi-
mal register requirement at the point h = L has a positive gap with the optimal CRS.

The next section investigates a heuristics to approximate the cyclic register saturation.
It combines integer programming and a pure algorithmic solution.

8.1.2 A FCLR Heuristic: First Columns Last Rows

In this section, we present a First-Columns-Last-Rows heuristics, which constructs a SWP
motif in order to approximate a saturating schedule in terms of cyclic register need. Our
heuristics consists of two main steps:

1. We first find column numbers that maximize the number of iterations traversed by
values. This intends to maximize the number of interfering instances of the values
(turns around the circle).

2. Once column numbers are computed, we can build the DAG of the motifs to find row
numbers that guarantee inter-motif dependences. We must maximize interferences
between lifetime intervals inside this motif. For this purpose, we use the DAG
technique studied in Chapter 4 to construct an acyclic saturating schedule.

IThe curve does not decrease then increase.

CRSwith fixed L

—— Max CRN with L fixed
---- Max CRN with L relaxed

[*] CRSwithrelaxed L

Max CRN

Y

h O h L

Figure 8.1: Maximal Cyclic Register Need vs. Initiation Intervals
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Maximizing the Number of Traversed Motifs (Column Numbers)

A value does not span the motif if it is defined and consumed inside the same motif.
If it is consumed ¢ motifs later, then it spans i + 1 motif and there are at most ¢ + 1
interfering instances of this value. Given a software pipelined schedule, the number of
motifs traversed by a value u! to be consumed by an operation v is equal to (cn(v) +
MaXe—(uu)ckn, A(€)) L cn(u). The total number of motifs spanned by a value u' is then:
Syt = veggggéut) (en(v) + e:(gl)?écER,t Ae)) L en(u)
The number of motifs crossed by a value is not exactly the number of its interfering
instances (turns). For instance, the value vz in Figure 7.2 (page 125) spans 3 successive
motifs but has only one interfering instance (complete turn). The general relation between
the number of interfering instances and the number of traversed motifs can be stated as
(see Figure 8.2):
Put Z Syt 11

(@ p=0,s=0 (b) p=1,s=0 (©)p=0,s=1 (d)yp=1,s=2

Figure 8.2: Number of Turns versus Number of Crossed1l Kernels

In our heuristics, we want to maximize the number of interfering instances of all values.
So, we have to find column numbers that maximize the number of traversed motifs. This
is done by considering the following linear programming model :

E Syt

utEVR,t

e Maximize

e Subject to:

— the column numbers must be valid, i.e., there exists at least one software
pipelined schedule with the computed column numbers (if A is large enough):

Ve = (u,v) € E : en(v) Len(u) > L)A(e)

which is equivalent to finding a valid retiming (r(u) = en(u)).



146 CHAPTER 8. CYCLIC REGISTER SATURATION

— we bound the column numbers according to L:
YueV en(v) < en(v)
— the number of traversed motifs by a value is:

Yu € Vg @ ut = a + a A 1
u € Viy Syt veggm)gut) (en(v) e:(ﬂ)é{Em (e)) L en(u)

We use the linear constraints of the “maximum” defined in Section 2.1, page 21.

The size of this model is bounded by O(|V|?) variables and O(|E| + |V'|?) constraints.
Unfortunately, we do not have an algorithmic solution for this problem, nor do we have a
proof for its computational complexity. We propose to use a heuristics to solve this intLLP
as described in Section 2.1.

Remark In this section, we have maximized the number of traversed motifs by assuming
that a statement u defines its value u! during the current kernel. In fact, this may not be
correct depending on the row number and the write delay in the register of this statement :
we can choose a row number and an initiation interval for » in such a way that the
statement u of the current motif defines its value in a further motif. This is because
the definition of u' is done é,,,(u) clock cycles after rn(u) and may cross the h barrier.
For instance, consider the SWP kernel of Figure 8.3 in which the value produced by a is
consumed one kernel later by d. According to our assumption, the value traverses one
motif. However, by considering the writing latency, the initiation interval and the row
number of a, this value is defined during the next kernel, and hence does not cross a
motif. This problem will be fixed in the next section when we compute row numbers and
suitable initiation interval.

2 1 0
b e the value produced by a
E} f scheduled in the current motif is
h ! c in fact defined in a further motif
d
° b e
a f
C
d
Figure 8.3: Value Definition in a Further Motif

Maximizing the Interferences inside the Motif (Row Numbers)

After determining column numbers in the first step, we have possibly maximized the
number of interfering instances. In this second phase, we define the row numbers of state-
ments in such a way that interferences between (in_fraction_of_h) lifetime intervals inside
the motif are maximized.
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After fixing the column numbers, some dependences become inter-motif, i.e., they
involve operations from different motifs and hence are satisfied by the successive execution
of iterations if A is large enough (see Figure 8.4). However, other dependences become
intra-motif, i.e., they involve operations inside the same motif: determining row numbers
is constrained by these dependences. For this purpose, we build a DAG from the original
DDG G which contains the set of statements and the set of intra-motif dependences:

1. the inter-motif dependences are the set of arcs[Saw97]
Ey={e=(u,v) € E/en(v) Len(u) > LA(e)}

these dependences are satisfied by the successive execution of the motif. So, we
evict from G all arcs that belong to Fy;

2. the intra-motif dependences are the set of arcs
Ey ={e=(u,v) € E/en(v) Len(u) = LA(e)}

these dependences must be ensured by row numbers. So, we keep these arcs to build
our inner-motif dependence DAG.

Intra-motif dependence

-

Inter-motif dependence

Figure 8.4: Inter and Intra Motif Dependences

Once the DAG is built, we use our DAG technique (Chapter 4) to keep as many values
alive as possible inside the motif. However, there are some values entering the motif
(values produced backwards from precedent kernels) and some others exiting it (values
produced for forward motifs)?. These virtual values must be inserted into the DAG as
follows.

1. We insert a virtual value u,,. iff 3¢ = (u,v) € Eg, N Ej, i.e., if an operation v
consumes a value u'! produced by previous motifs. To model the fact that these
entry values are alive from the top of the motif, we add serial arcs from u},,, to
the sources of the DAG with a latency 0. We insert a flow arc from u! to each v

entry
such that e = (u,v) € Egy N Ey with a latency 6, (u) + 1.

2. Forall e = (u,v) € Eg,N Fy, the value u' is consumed in a further motif. To model
this fact, we add a flow arc from u to the bottom L with the latency 6,,,(u) + 1.

2These entry and exit values are those which define the lefts and the rights of cyclic lifetime intervals.
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Now, we get a DAG with entry and exit values and inter motif dependences. We apply
our efficient Greedy-k heuristics to find a saturating acyclic schedule &. Then, we set :

VueV: rn(u) = 7(u)

We have determined row and column numbers. We still have to choose a valid value for
h. The initiation interval must first ensure the inter-motif dependences. Second, it must
fix the problem of traversed motif as we noted in the remark at the end of the previous
section (the fact that a statement must define its value during the current motif). The
following initiation interval ensures these two constraints:
h = max rn(u) + lat(u)

Lastly, we have defined a software pipelined schedule o which maximizes cyclic register
need. So, C'RS*, the approximated CRS, is:

CRS(G) > CRS;(G) = CRN?(G)

Example 8.1.1 Let us consider the DDG shown in Figure 7.1.(a) Page 122. Suppose
that the column numbers which maximize the number of spanned motifs are :

‘ Statement ‘ cn ‘ Traversed Motifs ‘

V1 0 1
V9 1 4
V3 0 2
V4 ) -

According to these column numbers, there are no intra-motif dependences, i.e., all the
dependences are satisfied by inter-motif ones. The DAG built to compute row numbers
does not contain any of the original dependences and then statements inside the motif are
completely independent. Figure 8.5.(a) shows the DAG after inserting entry and exit val-
ues. To find a saturating acyclic schedule for this DAG, we apply our Greedy-k algorithm.
This leads to an acyclic schedule with / saturating values inside the motif: these values
are V1, V1eptry, V2entry, V3entry. This acyclic saturating schedule defines the following row
numbers :

‘ Statement ‘ ™m ‘

U1 0
V9 2
U3 2
V4 2

The initiation interval is set to h = 5. Figure 8.5.(b) shows the circular lifetime intervals
in the motif: the width is 8 so the approrimated cyclic register saturation is equal to 8.
One can remark that the value vy spans 5 successive motifs but has only 3 interfering
instances.

When CRS;(G) is < R;, the number of available registers of type ¢, the DDG G is
definitively free from register pressure and can be left unchanged for a further schedul-
ing process. Otherwise, we must reduce it to keep the cyclic register need under con-
trol. However, if CRS;(G) is < Ry, then some saturating schedules may still exist since
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CRS;(G) < CRS,(G). Nevertheless, since CRS; maximizes the cyclic register need, it is
very unlikely that a SWP process would require more registers than CRS;(G). In some
critical cases, spill code may be introduced, even if CRS; (G) < CRS(G).

The next section investigates the problem of CRS reduction.

8.2 Reducing Cyclic Register Saturation

This section studies how to add serial arcs to a given DDG G = (V, E, 6, \) such that
its cyclic register saturation of a register type ¢ is limited by a strictly positive integer
R; under a fixed critical circuit constraint MII. This allows us to guarantee that any
software pipelining of the new graph does not require more registers that those available.
Consequently, we can always build a valid register allocation without spilling after the
SWP process. Note that in the presence of a rotating register file, we have to ensure that
the cyclic register saturation does not exceed R; 11 registers (consequence of Theorem 7.6
Page 139).

Problem 8.1 (ReduceCRS) Given a DDG G = (V, E, 4, A), is there an extended DDG
G of G such that CRS;(G) < Ry and MII < MII?

It is clear that the limit R, must be greater than or equal to the cyclic register suffi-
ciency (studied in the next chapter). Otherwise, there is no solution to this problem and
spill code can not be avoided. Unfortunately :

Theorem 8.2 Reducing the Cyclic Register Saturation is NP-hard.

Proof:

We prove that ReduceCRS can be reduced from the problem of cyclic schedul-
ing under register constraints. We take the same instance for both problems.
Let us start by defining the latter problem.

h=5

AN W N~ O

(a) the DAG of the motif (b) saturating cyclic schedule

Figure 8.5: A FCLR Heuristics for Computing the Cyclic Register Satura-
tion
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Definition 8.1 (SRC problem) LetG = (V, E,6,\) be a DDG, Ry and M1

two positive integers. Does it exist a valid schedule o € X1 (G) such that :
CRN](G) <Ry N h< MII
where h is the initiation interval of o ?

This problem is NP-complete [EGS95]3.
1. ReduceCRS =— SRC
Let G be a solution for the ReduceCRS problem. Then, we can build an op-

timal schedule o € ¥;(G) in a polynomial time complexity under only the
serial constraints [GS94] with h = MII < MII.

2. SRC = ReduceCRS

Let o be a solution for SRC, i.e., CRN?(G) < R, and h < MII. As an
example, let us consider the DDG previously shown in Figure 7.1.(a) (page
122) with its corresponding modulo schedule ¢ in Part (b). That DDG has a
register saturation at least equal to 8 as shown in Figure 8.5 (page 149). We
want to reduce it to four registers based on the schedule of Figure 7.1.(b) in
which the cyclic register requirement is shown in Figure 7.2 (page 125).

We have to build an extended DDG G such that we guarantee that any soft-
ware pipelining schedule o/ € %(G) produces the same cyclic relative order
between values circular a lifetime intervals as defined by . If a lifetime interval
LT,(u'()) is before lifetime interval LT, (v'(i + «)), then we must guarantee
that any software pipelining ¢’ makes LT,/ (u'(7)) before LT, (v'(i + «)), a is
a distance to be defined.

We model the relative cyclic order between circular lifetime intervals by a
graph O = (Vg4, EZ, ) e = (u',v') € E- means that the value produced by
u(i) is killed before the definition of the value v'(i + «(e)). a(e) is chosen so
that the killing date of u’(7) is as close as possible to the definition date of
v'(i 4+ a(e)), i.e., both of the two dates must be in a window of size h. Since
the schedule times of the distinct instances of the statement v are separated
by h clock cycles, there is a unique distance « that defines the cyclic order
between LT, (u'(:)) and LT,(v'(i + «)) in a window of size h. The constraints
that define such distance a between u'(i) and v'(i + a) are (u' not necessarily
distinct from v'):

LT,(u'(i)) < LT,(v'(i + a)) :
U(v(i + Oé)) + 6w’t(1)) 1L kuf(i) <h (82)

Since

(8.1) = kut(iy < U(vt(i + @) + 0u1(v) <= kyt <0y +h X a+ 6y(v)

3The authors proved that this problem is NP-hard; it is easy to see that this problem belongs to NP,
since computing the cyclic register requirement of a SWP schedule, provided as a solution to SRC, can
be done with a polynomial algorithm.
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and
(82) <= 0, +h X a0+ by (v) Lky <h

(8.1) and (8.2) amount to:
0<o,+hxa+by(v)Lky<h
Then, « is the unique integer that belongs to the interval:

kut 1 Oy 1 6w,t(v) kut 1 Oy 1 6w,t(v)

< 1+
3 o < i
kyt L oy L 6y
; [ ,t(v)-‘

Now, we have completely defined the cyclic ordering graph O = (Vg,, E, @).
Note that the arcs E_ are defined from each values u' to another v’ (u' not
necessarily distinct from o), since a periodic schedule makes circular all the
lifetime intervals: for any (u’,v') € V3, there exists a unique o (under the
constraints just defined above) such that LT, (u'(i)) < LT,(v'(i + )). As an
illustration, Figure 8.6.(a) shows the cyclic relative ordering between the values
deduced from Figure 7.2 (page 125). For instance, LT, (vs(7)) < LT, (v1(i+2)),
thus there is a cyclic ordering arc e = (v9,v;) in Figure 8.6.(a) with a(e) = 2.
Also, LT,(vi(i)) < LT, (v1(i+1)), thus there is a cyclic ordering arc e = (v1, v1)
in Figure 8.6.(a) with a(e) = 1.

(a) The circular order between life intervals (b) Reducing the cyclic register saturation

Figure 8.6: Cyclic Ordering

Now, let us see how to build an extended DDG G based on this cyclic ordering,
i.e., how to report cyclic precedence relations between values lifetime intervals.
For each order e = (u,v) € E between two values u' and o', we must guar-
antee that the killing date of u' is always performed before the definition date
of v(i + a(e)):

kut <o (v(i+ a(e))) + bui(v)

This means that Vu' € Cons(u'):
o (Ui +A((u,u) 4+ 64(u) <o (v(i+ ale))) + 6uwi(v)

< o (u'(i)) + 6rp(u') L bys(v) <o (v(i+ale) LA((u,u)))
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in which A ((u,u')) is the distance of the flow dependence between u and its
consumer u'. This is done by adding a serial arc €’ to G from each consumer
u' € Cons(u) to v with:

6(€") = 6pp(u') L 6y i(v) and Ae) = ale) LA ((u,u'))

Figure 8.6.(b) is the extended graph which reduces register saturation to 4.
In that figure, the added serial arcs appear with dashed lines and tagged with
only the distances. As an example, there is an order between v; and v3 with
a distance a = 1. Since vy consumes v; with distance A = 0, we add a serial
arc from vy to vy with a distance a« L. A = 1. Note that some added serial arcs
may be redundant. As an illustration, there is an order between v3 and itself
with a distance o = 2. Since w3 consumes itself with a distance A = 2, this
produces a serial arc in G from wv3 to itself with @ L. A = 0. This serial arc is
always satisfied by any schedule and can be removed from G.

By adding all these serial arcs, we build an extended DDG G that has the
following characteristics.

o Any software pipelined schedule ¢’ of G produces a circular order be-
tween circular lifetime intervals as defined by o. So, ¢’ cannot need more
registers than o. This is because if two lifetime intervals do not interfere
with each other according to o , they cannot interfere with each other
according to o’

1. The number of distinct interfering instances (turns around the circle)
of each statements « with ¢’ cannot exceed the number p,: of distinct
interfering instances with o. This is because we have according to o
LT,(u'(i)) < LT,(v'(i + put + 1)). Since we report the cyclic order
e = (u,u') with a(e) = py: + 1 in the extended DDG G, at most py
instances of u! may interfere according to a schedule o’ of G.

2. The in_fraction_of_h intervals inside the motif are constrained to sat-
isfy the same precedence relation as defined by . If two in_fraction_of_h
intervals (1,r) and (I',r") do not interfere with each other according
to o, then they cannot interfere according to ¢o’. Otherwise it means
that ¢’ violates one of the added serial arcs.

e o is a valid software pipelined schedule for G since it satisfies all the
introduced serial arcs. Then, the extended DDG remains schedulable.

e Since the initiation interval h of o is lower than or equal to MTI, a pos-
sible introduced critical circuit in G is not greater than MTI. Otherwise
it means that o isn’t a valid software pipelined schedule for G.

From above, we deduce:
Vo € X1(G) CRN/{(G) < CRN? (G)

and hence -
CRS;(G) < CRN/(G) < Ry
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From the previous proof, we deduce that reducing the cyclic register saturation is
equivalent to finding a software pipelined schedule with a minimal initiation interval
which does not require more than R; registers. However, we must eliminate the solutions
with nonpositive circuits (circuits with nonpositive distance). We will see later how to
solve this problem.

Our exact formulation uses the intLP system that computes MAXLIVE, previously
defined in Section 7.4 (maximization version). Since we express in the latter formulation
the exact register requirement, we only have to maximize the register requirement but
under a bounded constant :

Vte T : Z ZE]—FZputSth

acyclic in_fraction_of_h interval T uteVp

Solving this intLP system yields to two cases.

1. If a feasible solution is found, then there exists a software pipelined schedule o such
that CRN{(G) < R;. Then, we add serial arcs to the DDG as described in the
previous proof. The critical circuit of the extended DDG is lower than or equal to
h.

2. If no solution exists, then a software pipelined schedule of initiation h such that
CRN/(G) < R; does not exist. We cannot reduce the cyclic register saturation
with respect to the critical circuit MII < h. We have to increment h (in binary
search between h,,;, = h and hp., = L), until reaching a solution or not. If no
solution exists, spill code must be introduced.

The complexity of the intLP system is bounded by O(|V|?) variables and O(|E| + |V |?)
constraints.

However, an optimal solution may need to introduce a circuit C' with a nonpositive
distance A\(C') < 0. The next section discusses this problem.

Eliminating Solutions with Nonpositive Circuits

This section explains why a circuit C' with a nonpositive distance A\(C') < 0 constitutes
a problem, even if, from the theoretical perspective, there exists a modulo schedule that
satisfies such circuits.

First, if a circuit C has a distance A(C') < 0, it latency 6(C') is necessarily nonpositive.
This is because the extended DDG is schedulable with a SWP schedule o that has a
strictly positive h > 0. Let us look it in details. Let C' = (u,....,u) be a circuit such that
A(C) < 0. Then, the data dependence constraints are:

o(u(i)) +6(C) < o(u(i+ MC))) < a(u(i)) +6(C) < a(ui)) +h x A(C)
That is,
S(C)<hxAC)<0

Our extended DDG must not include such circuits, otherwise the initiation interval
would be constrained by an upper-bound:
6(C)

< h< i —
MII_h_acg(l:}lli}uC)\(

~—
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We must remind the reader that the purpose of register saturation analysis is to pro-
ceed by ensuring in the first steps of compilation that any schedule of a given DDG
would not require more registers than those available. The scheduling phase is mainly
constrained by resources (functional units or other rules) of the target architecture. If the
extended DDG produced by the register saturation reduction contains a circuit with a
nonpositive distance, we cannot guarantee the existence of a software pipelined schedule
under resource constraints. This is because the nonpositive latency of a circuit introduces
scheduling constraints of types “not later than” which may not be satisfied in the presence
of resource constraints.

A sufficient condition so that these circuits are present is if o enforces the fact that
more than one consumer on the same iteration of a value u does not interfere with u.
In this case, a nonpositive circuit is introduced to ensure that no one of the consumers
interfere with the value u (and the fact that these consumers belongs to the same iter-
ations makes the distance of the circuit null). For instance, let us consider the DDG of
Figure 8.7.(a). A schedule which requires four registers is presented in part (b). We see
that the two consumers vy and vz of the value v; are in the same iteration (the distance
of the dependence between v; and his two consumers is null); the schedule makes both of
lifetime intervals vy and vz ordered after v; as shown in the cyclic ordering graph in part
(c). To guarantee this cyclic ordering, we extend the initial DDG with the serial arcs as
shown in part (d): here, we see that there is a circuit from v, to v3 with a distance equal
to zero and a negative latency. In the presence of resource constraints, we may not be
able to find a valid software pipelined schedule which satisfies this circuit.

A First Solution to this problem is to not introduce serial arcs with nonpositive laten-
cies. This method does not change the intLLP system, since we only have to set 6, ,(u) =0
and 6, 4(u) = 0 for each statement u. Furthermore, we set the latency of any any in-
troduced serial arc to 1 (since an arc with a latency equal to zero will be processed as
an arc of with positive latency in the sequential case). This method does not alter the
optimality of the solution in the case of sequential codes (superscalar), but may do so in
static issue codes (VLIW). An optimal solution is explained below (under the restriction
of eliminating nonpositive circuits).

A Second Solution The problem of circuits with nonpositive distance is overcame
as follows. Circuits with negative distances are eliminated by the existence of a valid
retiming (sufficient and necessary condition). Thus, any circuit will a have nonnegative
distance (A\(C) > 0).

Now, to eliminate circuits with distances equal to zero (A(C) = 0), we must guarantee
the existence of a topological sort of the loop body (sufficient and necessary condition).
The loop body is defined by the arcs that have a distance equal to zero. However, since
the constructed DDG may contain some arcs with negative distances, we may not be able
to detect some circuits (or paths) with distances equal to zero. We have then to make
constraints on the retimed graph since all its arcs have positive distances. Then, each arc
with a null distance in the retimed graph is an arc in the loop body. If we guarantee that
there is no null distance circuit in the retimed graph, then the non retimed DDG does
not contain a null circuit (and vice versa). For this purpose, we modify the intLP system
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by adding the following variables and constraints for retiming simulation.
e We add the following variables.

— We add new topological sort variables. For each statement u € V, we define
an integer variable d,,.

— We add new retiming shifts variables. For each statement u € V', we define an
integer variable r,,.

— For each couple of values (u',v'), we add a new variable o, , so as to compute
the distance of an introduced serial arc e = (u',v) / u' € Cons(u').

e We add the following constraints.

— If the lifetime interval of a value wu(i) precedes the lifetime interval of a value
v(i+ ), then we introduce a serial arc from each consumer v’ € Cons(u') /e =
(u,u') € Vg, to v with a distance (awL A(e)), as explained in the previous proof.
In order to compute o, we write the following constraints.

« The lifetime interval of a value (i) must precede the lifetime interval of a
value v(i + ). Then, we must have in the retimed graph :

Vu,v € Ve o kut < 0y +6uy(v) +h x ay,

« The cyclic ordering of lifetime intervals is defined in a window [0, h[. That
is, the definition date of v(i+ «) and the killing date of «(7) must be inside
a motif size. Then, we must have in the retimed graph :

Vu, v E VR,t D0y + 6w’t(v) + h x Oéz’v 1 kut <h

— There exists a valid retiming.

* For each original arc:
Ve = (u,v) € E: Ae)+r, Lr,>0
* For introduced serial arcs: Vu,v € Vg,
Vu' € Cons(u') /e = (u,u') € Vry = aj, LX) +7y L1y >0

— We have to guarantee the existence of a topological sort of the retimed loop
body.

x We write the bounding constraints:
VueV : d,<|V]
x For original arcs, we write:
Ve = (u,v) € E: MNe)+r, Lr,=0=d, <d,
* For introduced serial arcs: Vu,v € Vg,
Vu' € Cons(u') /e = (u,u') € Vry : a ,LA(e)+ryLry =0= dy < d,

There is at most O(|Vg,|*) added variables. The number of the added constraints is
bounded by O(|Vg,|* + |E]) linear inequalities.
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8.3 Experiments

We do not have experimental results for our exact formulations and heuristics for CRS
computation defined in this chapter. However, we have experimented upper-bound of CRS
in [TT00]. These loops are the same experimented in this thesis (Appendix B Page 271)
and are extracted from various benchmarks (livermore, whetstone, lin-ddot, spec95,..). In
that previous work[TT00], we used an old method consisting in unrolling the loop with a
certain factor. We define a validity condition for this factor so that the acyclic RS of the
unrolled loop body is an upper bound of cyclic RS. In other words, we use loop unrolling
to compute the RS of its new body so that it constitutes an upper-bound for cyclic RS.
The upper-bound L was taken as the sum of all operation latencies. Here is the synthesis
of our CRS upper-bound results:

e none of CRS exceeds 64, that is no SWP schedule will require more than 64 fp
registers;

e 80.76% of the loops have a CRS < 32;
e 76.92% of the loops have a CRS < 16;
e 53.84 % of the loops have a CRS < §;
e 34.61 % of the loops have a CRS < 4.

Hence, many loops of our panel do not need adding register constraints during modulo
scheduling.

Also, we used in [TT00] an old method for CRS reduction. It consists in adding
serial arcs in the unrolled loop and then re-roll it. We have experimentally found that
this old method is inefficient (too aggressive). This is why we present a new method in
this chapter. Unfortunately, we have no experiments for the moment. However, the old
method succeeds in reducing CRS of all loops under 32 fp register while critical circuits
increase in 3 cases (6 loops among 27 has a CRS greater than 32). These results show
that there are great opportunities for CRS reduction under critical circuit constraints.
We are almost sure that the methods described in this chapter would be efficient, even if
we use heuristics for solving intLP models.

8.4 Conclusion

This chapter extends RS analysis to innermost loops intended for SWP. Computing CRS
is NP-complete and we provide an exact formulation with reduced constraints matrix size.
Our heuristics tries to approximate a saturating schedule by decomposing this problem
into two steps. First, we compute column numbers so that we maximize the number of
values traversing the kernel. In the second step, we build the DAG of the motif and we
use our acyclic saturating technique as described in Chapter 4.

If CRS exceeds the number of available registers, we must reduce it by adding se-
rial arcs into the DDG without increasing the critical circuit if possible. We provide
an exact formulation for this NP-hard problem and we prove that it can be reduced to
scheduling under register constraints under a fixed execution rate h. If we assume writing
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offsets, some optimal solutions require, in some cases, to insert circuits with nonposi-
tive distances in the extended DDG. These circuits may prevent from finding a software
pipelined schedule in the presence of resource constraints. A sufficient and necessary con-
dition to overcome this problem is to guarantee the existence of a valid retiming, and the
existence of a topological sort for the retimed loop body. This is done by adding new
constraints to the intLP formulation.

Although we do not provide experimental results for our methods described in this
chapter, previous experiments in [TT00] have shown that CRS is below 64 in our 27
loops. In many cases, register constraints become redundant and can be evicted from the
scheduling process. Also, previous work has shown that there are great opportunities for
CRS reduction.

The next chapter extends the notion of register sufficiency to loops. We give our
methods to compute it in order to check if spilling is necessary. If spilling isn’t avoidable,
we give a method to insert load/store operations directly into the DDG to reduce the
sufficiency.



Chapter 9

Cyclic Register Sufficiency

Abstract
This chapter summarizes our previous work [TE02]. It consists in computing the
exact lower bound of register pressure for any software pipelined (SWP) schedule.
If not enough registers exist, spill code must be introduced into the DDG prior to
scheduling. We present our first approach that gives priority to spilling the variables
in circuits.

This chapter is organized as follows. Section 9.1 defines and studies the concept of cyclic
register sufficiency (CRF). We provide an exact method based on integer programming.
We also propose a pure algorithmic approximation that decomposes the problem into
two parts. The first part is polynomial and is solved via retiming (loop shifting). The
second part is solved with an interval serialization heuristics. Contrary to cyclic register
saturation (CRS), the notion of CRF is well studied in the literature. However, most
existing studies focus on fixed initiation intervals. Our work aims to extend this notion to
arbitrary execution rates. If CRF exceeds the number of available registers, we propose
a method that inserts memory operations in Section 9.2, directly into the DDG. This
method is a first proposal and is candidate for improvement. Before concluding with a
discussion, Section 9.3 shows our experiments.

9.1 Computing Cyclic Register Sufficiency

The cyclic register sufficiency is simply the minimum number of registers required to build
at least one valid cyclic schedule:
CRF,(G) = min CRN/(G)
(&)

Contrary to the cyclic register saturation, CRF always exists. This is because the cyclic
register requirement is a positive integer, and hence there always exists a schedule which
requires C' RF;(G) registers.

The register sufficiency allows us for instance to determine if spill code cannot be
avoided for a given loop: if R; is the number of available registers of type ¢, and if

CRF,(G) > R, then there are not enough registers to schedule the loop. Spill code has
to be introduced.

Regarding the complexity of computing CRF, it remains an open problem (as far as
we know). It is proved that scheduling under a fixed number of registers is NP-complete

159



160 CHAPTER 9. CYCLIC REGISTER SUFFICIENCY

in the case of sequential codes [Set75], i.e., when we compute a strict sequential execution

order. If we do not restrict the schedule to be sequential, the problem is different. It

was proved in [EGS95] that the problem of scheduling under register constraints is NP-

complete if the total schedule time is bounded. But, as far as we know, nothing is said in

the literature about the problem of scheduling parallel operations under a fixed number

of registers (without spill, infinite resources) without bounds on the total schedule time.
Let us begin with an exact formulation.

9.1.1 Exact Formulation
The absolute CRF is defined for ¥(G), the set of all valid SWP schedule of a DDG. How-

ever, in order to be able to use our integer programming formulation in Section 7.4, page
130 (minimization version), the domain set of our integer variables must be bounded.
So, we compute the CRF of a subset ¥ (G) C ¥(G). That is, we compute the minimal
register requirement for all valid software pipelined schedules with the property that the
total schedule time of one iteration does not exceed L. If L is sufficiently large, then the
computed CRF of ¥1(G) is equal to the absolute CRF!. Indeed, since the absolute CRF
exists necessarily, then there exists a SWP schedule o that requires C RF;(G) registers.
Hence, its L, the total schedule time of one original iteration, exists and is finite. But
computing it exactly remains an open problem for us.

Our intLP system uses the exact formulation of the cyclic register need in Section 7.4,
page 124 (with minimal chain decomposition). The objective function is:

Minimize 2, + Z Dut

utGVRﬁt
under the constraints
VI an in_fraction_of_h acyclic interval, ¢y < 2

We must be aware that when we combine all register types, a sufficient schedule for all
types may not exist. In other words, a software pipelined schedule that needs the exact
register sufficiency of all types together may not exist. This is because minimizing the
register requirement of one type may increase the register requirement of another type.
So, some spill operations may be unavoidable even if the register sufficiency of each type
is less than the number of available registers. Thereby, we have to bound the register
requirement of all types, even if we compute the register sufficiency of only one register

type:

Ve TL{th, 2+ Y. pu <Ry

ut’GVR,t/

under the constraints

Vi' € T L {t},VI an in_fraction_of_h acyclic interval of type t' :  ¢; < 2y

'We think that L = |V| x 3 .y lat(u) would be convenient. It corresponds to the case where all
lifetime intervals constitute a single chain inside the motif.
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These constraints guarantee the existence of at least one schedule that does not require
more registers of any type than available.

Solving this system yields to compute the minimal cyclic register requirement under a
fixed execution rate h. In order to compute CRF, we must scan all the admissible 17, i.e.,
we iterate h starting from hgy to h,., = L (we instantiate an integer programming model
for each h € [hg, L], or we use a binary search). Cyclic register sufficiency is the minimum
register requirement within all initiation intervals. This method may involve solving too
many models. However, the following corollary states that it is sufficient to compute CRF
by only instantiating one model with h = L if the upper-bound L is relaxed. Let us start
by the following lemma.

Lemma 9.1 Let G = (V, E,6,\) be a DDG of a loop. The minimal register requirement
of all the software pipelined schedules o([rn], [en], h) with an initiation interval

ho < h < L is greater or equal to the minimal register requirement of all the software
pipelined schedules with an initiation interval h' = h + 1 with L' = L + 1+ |[L/h].
Formally :

min CRN/ (G) > min CRN?(G)
a([rn],[en],h)EXL(G) o' ([rn'],[en'T,h4+1)E€EX L 114 /0] (G)
ho<h<L

Proof:

It is a direct consequence of Proposition 7.1 Page 130. If we increment h by
one, we have to increment L by 1 + |L/h] to get at least one valid software
pipelined schedule with the same register requirement :

Vo([rnl,[en],h) € Sp(G)/h < L, 3o'([rn'], [en'],h+1) € Sppiy o/ (G) -
CRN?' (G) = CRN/ (G) = CRN/ (G) < CRN?(G)

Corollary 9.1 Let G =(V,E,6,\) be a DDG of a loop. Then, the exact CRF of G
assuming L as an upper-bound of the total schedule time of one iteration is greater or
equal to the minimal register requirement with h = L if we relax the upper-bound L' > L.
Formally : :

min CRN/ (G) > min CRN/ (G)

a([rn],[en],ho<h<L)EXL(G) o([rn],[en],L)EX 1 (G)

where L' is the (L L ho)™ term of the following recurrent sequence (L' = Uy) :

{Uh0 = L
Upt1 = Up+ 1+ |Uy/h|
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Proof:

It is a direct consequence of Lemma 9.1 :

min CRN/(G) > min CRN/ (G) > ...
o([rnl[en],h<L)eXL(G) a(frnl[en],h+1)€XL 114 L/n)(G)
> min CRN{ (G)

o([rnl,len],L)ESu, |, =vp |1 +141UL o1/ (ELhL1))(G)

That is, we relax the upper-bound L at each step, from h to L, i.e., (L L h)
times. Since CRF is defined for all initiation intervals, starting from h = h,
amounts to relax the upper-bound (L L hg) times, as follows.

min CRN/ (G) > min CRN/ (G) > ...

o((rn] [en] ho) €S 10, (G) o((rn el hot €S, —r 41tz (G)

> min CRN{ (G)

o([rnllen],.L)E€Xy, vy | +1+4 0 | 1/(211)) (G)

—— Min CRN with L fixed
-- Min CRN with L relaxed

[e] CRFwith relaxed L

Min CRN

CRF

Y

Figure 9.1: Minimal Cyclic Register Need vs. Initiation Intervals

This corollary enables us to only solve intLP systems with A = L; the upper-bound
L' must be relaxed. If L is sufficiently large, the computed CRF with h = L is equal to
the absolute CRF. If L isn’t sufficiently large, we would compute an upper-bound of the
absolute CRF. Figure 9.1 draws our assumptions about the theoretical asymptotic curves
to explain the meanings of Corollary 9.1. We think that if we fix L as an upper-bound of
the total schedule time of one iteration, the minimal register requirement under a fixed
execution rate h may not be a decreasing function of h. At a certain value of h, the min-
imal register requirement may increase if the upper-bound is not relaxed. Furthermore,
we think that if the curve begins to increase, it wouldn’t decrease after. This behavior
has been observed in some of our experiments (see Figure9.2). Thus, the minimal register
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requirement at the point A = L may have a positive gap with the absolute CRF. However,
we are sure that the curve is a decreasing function if the the upper-bound L is relaxed
when we increment h (Lemma 9.1 and Corollary 9.1). If L is sufficiently large, the min-
imal register requirement at the point h = L is exactly the absolute CRF. We are sure
that a suitable L is bounded, since a sufficient schedule exists necessarily, but computing
this bound is an open problem.

Min CRN for spec-spice-loop9
8 T T T T

T
MinCRN —o—

CRN

Figure 9.2: Example of Minimal Cyclic Register Need vs. Initiation Interval

Our architecture model does not assume any static ILP degree for the target proces-
sor: we assume unbounded fine grain parallelism for the considered DDG. Therefore, we
can build a kernel as “wide” as possible. Like in the acyclic case (Section 5.1.1, page 98),
this assumption may lead to under-estimating the real sufficiency if we target a code
with a limited static ILP (superscalar for instance). This is because we cannot always
statically specify the parallelism between operations. Thus, some intervals cannot be
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expressed as parallel?>. In other words, we cannot ensure that we can always generate a
code needing the computed register sufficiency because we cannot statically specify an
unlimited instruction parallelism (see the previous illustration in Figure 5.1 Page 99).
As mentioned in Section 5.1.1, we propose two choices. First, we continue to assume an
unlimited static ILP and leave to the register allocator (to be executed later on) the task
of introducing spill code, even if this step of compilation asserts that it isn’t necessary.
In a second choice, we introduce an upper-bound for the maximal static ILP degree in
the model. We must add new variables and constraints to specify the fact that no more
than M AXISSUFE operations are scheduled in parallel. We do not advocate this method
because it breaks the genericity of the model since it introduces resource constraints.

The next section gives a pure algorithmic heuristics which approximates CRF while
overcoming the above problem.

9.1.2 A FCLR Algorithmic Approximation

In this section, we present a First-Columns-Last-Rows (FCLR) heuristics which con-
structs a software pipelining motif for approximating the register sufficiency of a register
type. Our heuristics is the minimization version of the one explained in the previous
Section 8.1.2. Tt consists of the following steps.

1. We first find column numbers that minimize the number of traversed iterations by
a value. This intends to minimize the total number of interfering instances (turns
around the circle). We can change the objective function of the intLP system in
Section 8.1.2 from maximization into minimization. This problem has been solved
by Leiserson and Saxe with an optimal algorithm via retiming with a polynomial
complexity in [LS91]. We explain their method below.

2. Once the column numbers are computed, we build the DAG with respect to the
inner-motif dependences and the entry/exit values as detailed in Section 8.1.2. We
must minimize the interference between the lifetime intervals inside the motif, i.e.,
within the DAG just built. We use the DAG technique of the register sufficiency
studied in Section 5.1.2 to construct an acyclic schedule g which requires a minimized
number of registers. We are sure that we can construct such an acyclic schedule
with any static ILP, and hence any SWP scheduler can build a kernel that satisfies
any static ILP constrained by the underlying processor. Row numbers are set to:

VueV : rn(u) = o(u)

3. We choose a valid initiation interval with respect to the inter-kernel dependences
and the number of traversed motifs:

h = max rn(u) + lat(u)

4. Since we have computed o(h, [rn], [cn]), a software pipelined schedule o € X1 (G)
minimizing the register need is completely defined. The approximated register suf-
ficiency is :

CRF}(G) = CRN/(G)

2For instance, we cannot specify the instruction R2 « R1 || R1 « R2 in superscalar codes.
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Steps 2, 3, and 4 have been detailed in Section 8.1.2. Step 1 is different since it can
be performed with polynomial optimal algorithms. The next section gives more details
about this column number computation.

Computing Column Numbers with Retiming Originally, retiming was intended
for synchronous circuit design. In this area, a register has a different meaning, let us call
it circuit register. A distance in each flow arc represents the number of circuit registers
needed to pass the computed values. That is, if there are two flow arcs e; = (u,v) and
es = (u,v') coming from the same node but going to two distinct consumers, the number
of required circuit registers, in the field of circuit design, is A(e;) + A(ez): there is no
sharing between the two flows. Leiserson and Saxe proved that seeking a retiming with a
minimal number of circuit registers can be reduced to minimum cost flow [LS91], a well
solved polynomial problem with lots of optimal algorithms [EK72, GT86, Orl88]. They
assume identical registers, i.e., all nodes represent values and all arcs are flows. We show
at the last how to consider different types of registers.

Problem 9.1 (Minimum Cost Flow Problem) Let G = (V, E) be a directed graph.
For each arc e € E, we call cap(e) € R* the capacity of e. A flow is a function f which
associates with each arc a positive real f(e) € R" with the following properties :

Vec E 0< f(e) < cap(e)
VueV Y,o fle)=3c,f(e)

A cost function associates with each arc e a cost w(e). The minimum cost problem is to
find a flow f for G which minimizes

> fle)wle)

eck

A variant of the min-cost flow problem, also polynomial, adds supply/demand parameters.
The flow has to guarantee:

VueV Y fle) L fle)=b,

750 u>?

where b, € N is the supply/demand parameter of the node u. As explained in Chapter 7,
retiming a loop consists in computing a shift r(u) for each statement u which delays
the operation u(7) with r(u) iterations. Each original distance A(e) of an arc e = (u, v)
becomes A,(e) = A(e) L r(u)+ r(v) in the retimed loop.

Problem 9.2 (State-Minimization Problem [LS91]) Let G = (V,E,6,\) be a cir-
cuit. The state-minimization problem is to find a valid retiming such that S(G,) the total
state of the retimed loop is minimized, in which

S(Gr) =Y Ale)

eeE

S(G,) can be rewritten as:

S(Gy= Y, (Me)+r(v) Lr(w) =5(G)+ Y r(u).(dg(u) L di(w)

e=(u,w)EE ueV
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S(G) is constant (sum of all dependence distances), hence minimizing S, (G) is equivalent
to minimizing

> r(u).(dg(u) L dg(w) (9.1)

uev

which is a linear function of r(u) since the indegree and outdegree are constant for w.
This minimization is constrained by the retiming validity, i.e., the fact that all register
counts A.(e) = A(e) + r(v) L r(u) are nonnegative :

Ve = (u,v) € E: Me)Lr(w)+r(u)>0 (9.2)

Leiserson and Saxe [L.S91] showed that the intLP defined by (9.1) and (9.2) can be recast
into a min-cost flow by considering the dual problem of this intLLP. Then, we look for a
flow f(e) for each arc such that:

Y S LY fle) = dglu) L di(u) (9:3)

us? 75

while the total cost ) . f(e)A(e) is minimized. Each arc has a cost A(e) with infinite
capacity. After computing the optimal minimum cost flow, the shifts r(u) are the dual
variables (potentials) of the optimal flow f*, computed by most existing algorithms.

Another variant of the state minimization problem, that can also be reduced to mini-
mum cost flow, includes (3(e), a real cost to each arc called a breadth. This breadth models
some special constraints to circuit design where adding circuit registers has different costs
depending on flow arcs. Then, the state minimization problem minimizes

Y or@)(QoBe) LY Ble)

ueV

75u u-s?

However, the state minimization problem does not exactly compute our column num-
bers. This is because circuit registers are not shared, and each arc e uses \,(e) circuit
registers. In our case, we need to minimize the total numbers of traversed motifs, i.e., to
minimize

max A, (e)
uevui?eE

In terms of circuit design, it means that we wish to share the largest possible number of
circuit registers between different arcs (with greatest register counts). Leiserson and Saxe
give a solution for this problem by using a trick. Figure 9.3 is an example. Part (a) shows
a DDG in which a statement u writes a value read by k£ consumers. If we use the state
minimization algorithm on this DDG as it is, it considers that the value coming from the
statement u and going to the k£ consumers needs distinct registers. This is not true since
a value read by more than one consumer resides in only one register. So, we must model
sharing. It means that a value resides in a register until the last iteration needed. The
result of the retiming must give a minimal register count S(G,) = >, oy (maxe—(y,0) Ar(€)).
This is done by transforming the DDG as follows (see Part (b)):

first we assume a breadth (cost) equal to ((e) = 1/k for each arc;

second we add a virtual node u;
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finally we connect each consumer v; to 4 by an arc é; with breadth $(é;) = 1/k and
distance A(é;) = Amaz L A(€;), with A0 = maxi<;<x A(e;). Then, all paths from u
to 4 have the same distance (= A\pqz)-

Now, we are ready to re-time this DDG by minimum cost flow algorithms as mentioned
before. It is easy to see that retiming this transformed graph gives the expected result.

1. Since the dummy node 4 is a sink of the graph, retiming this graph makes the
distances A, (é;) as small as possible because they are not constrained by any circuit
(the dummy node @ is a sink). Then, one of these virtual arcs é; (1 < j < k) gets
a retimed distance A, (é;) equal to zero.

2. Retiming has the property of preserving the sum of distances of the paths u ~ u,
that is A\, (u ~ @) is the same for all the paths from u to 4 since they are identical
in the un-retimed circuit (= Apqz). By considering the path v — é; — @ where
Ar(€;) = 0, its distance is maxo<j<k Ar(€;) which is the distance of every path from
u to @. Sharing is completely defined.

3. Since each arc has a breadth 1/k, the total register count is

o VRN ) = i e
1<j<k

Retiming the transformed DDG gives us column numbers c¢n(u) = r(u), where the
number of traversed motifs is minimized. Now, in the presence of multiple register types,
some arcs do not represent flows if we consider one of the types. To handle these serial
arcs, we only have to set their breadth to 0 to model the fact that they do not require
any register of the type we consider. Accordingly, the register count (objective function)
computes only values of the desired type. Our algorithmic approximation of CRF is now
completely defined.

(a) Original DDG (b) Transformed DDG to be Retimed

Figure 9.3: Retiming DDGs with Maximal Register Sharing
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The next section investigates spill code insertion if CRF is higher than the number of
available registers.

9.2 Reducing Cyclic Register Sufficiency

If the register sufficiency of a loop G = (V, E, 6, \) is CRF;(G) > R;, we have not enough
registers to pursue the computation and hence spill code must be introduced. In this sec-
tion, we show how storing some variables in memory decreases the sufficiency, assuming
a RISC processor (load-store architecture).

Adding extra memory operations may cause cache misses which dramatically decrease
the performances, especially in VLIW architectures where long memory access delays are
not dynamically overlapped (recovered) as in superscalar processors. Since memory ac-
cess latencies are hardly statically foreseeable, we try to minimize the amount of inserted
load/store operations®. Furthermore, adding them directly into the DDG before schedul-
ing is better than after scheduling. This is because we cannot guarantee the existence of
free slots for additional load/store operations in a scheduled code. This leads to an iter-
ative spilling and rescheduling. The method discussed in this section is a first approach
and is candidate to improvement: it first gives priority to spilling values belonging to
circuits.

If CRF,(G) > Ry, at least S = CRF;(G) L R, values of type t have to be spilled. Our
heuristics proceeds by preventing some values from being alive during successive iterations
by storing them in memory. However, since CRF is likely constrained by dependence
circuits, we must privilege the values that belong to a circuit in the DDG?. Indeed, if
we have a circuit C' of flow dependences, we will always have A(C') values simultaneously
alive. The variables that do not belong to a circuit are considered at last step.

Our aim is then to reduce flow circuit distances. The distance of the circuit A(C)
remains unchanged; we change only the kind of dependences, from register dependences
to memory dependences. The skeleton of our method is described as follows.

1. Build active a sorted list of the values according to the number of iterations they
span. FEach value u' may span max.—(,)cp,, A(e) iterations. We first give the
priority to values that belong to a circuit. Then, we sort them in decreasing order
of distances in order to first spill those that are alive during the highest number
of iterations. For instance, the value u in Figure 9.4.(a) may span max(\i, Ag)
iterations. If no inter-iterations value exists (i.e., all the flow distances are null), go
to 4.

2. Pick u! the first value in the list which crosses A > 0 iterations. We build FarCons
a list of u’s consumers that do not belong to the current iteration of u, i.e., those
that read « in further iterations. We may potentially reduce the register sufficiency
by A registers if we prevent the value from being alive in a register after exiting the
current iteration. We spill this value by considering one of the two following code
transformations.

3Inserting minimal spill operations is a classical NP-complete problem [BS76, Car91, FL98].
“They are determined by looking if there exists a path from each statement to itself in the DDG.
ALL_PAIR_.SHORTEST_PATH, for instance, can be applied.
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(a) Store the value at the iteration where it is defined, and load it for each consumer
(in FarCons) as described in Figure 9.4.(b). This transformation may reduce
the sufficiency by max.—(uv)ecr,, A(€) registers but it inserts [Cons(u')| loads.

(b) Store the value at the iteration where it is defined, and load it for only the
first consumer (in FarCons) in terms of dependence distance as described in
Figure 9.4.(c)?. This transformation inserts only one load but may reduce the
sufficiency by only min,—(y .)cr,, A(e) registers.

If S is smaller than the number of spanned iterations by this value, we do not need to
store the value in the memory during all the iterations it spans. In general, we spill
the values until the number of “saved” iterations is S. For this reason, FarCons is
sorted in increasing order of distances.

3. If CRF,(G) > Ry, go to 1, else exit.

4. At this point, the cyclic register sufficiency is still greater than R, while all the
values are consumed in the same loop body (i.e., all the flow distances are null).
Then, we reduce the acyclic register sufficiency of the loop body only (described in
Section 5.2).

Al A2

(0) ©

Q) (2)

(a) Inter-Iteration Values (b) Spilling for Eliminating the Values (c) Spilling for Reducing the Number
Traversing many Iterations of Values Traversing many Iterations

Figure 9.4: Register Spilling in Loops

A possible limitation of this approach arises if a value v belongs to a circuit but has a flow
arc e that does not belong to any circuit (see Figure 9.5). If this flow arc has the largest
distance among other flow arcs exiting from u, it will be chosen for spilling (see (u,v) in
Figure 9.5). This may not be a good choice, since the distance of this arc can be reduced
by retiming. To overcome this limitation, we must first retime the graph, before spilling,
so as to reduce the distances of arcs that do not belong to a circuit. For this purpose,
we use the Leiserson and Saxe method that minimizes the register count with maximal
register sharing, as described in Section 9.1.2.

The steps of our heuristics are detailed in Algorithm 8. Our heuristics creates an
active list which contains the values that are alive during successive iterations. If S =
CRF,(G) L Ry > 0, we have to prevent some values in active from being alive for at least

°In this example, we suppose that Ay < As.



170 CHAPTER 9. CYCLIC REGISTER SUFFICIENCY

S successive iterations. If a value is produced at the current iteration and consumed A
iterations later, we have to store it in the current iteration and load it A iterations later
hoping that we reduce the cyclic sufficiency by A. This creates a new dependence between
the store and the load with distance A, but this dependence is through memory and hence
does not consume any register. Since we have to save at least S registers, we save inter-
iteration values in memory until the sum of the introduced dependence distances becomes
at least S. The active list is sorted by decreasing distances to give the highest priority to
the value which traverses the maximum number of iterations. If a value is consumed by
more than one operation in the successive iterations (A1, -, A,), we load this value for
every further consumer® until we reach S saved iterations, i.e., when we load it for the
consumer of the Ay > S iteration later. Our algorithm optimizes the number of inserted
loads where it reaches at least S saved iterations by connecting the last inserted load
(the load of the A iteration) to the remaining consumers (Agyi,--+,A,), as shown in
Figure 9.4.(c).

Example 9.2.1 Let us give an example to understand how Algorithm 8 works. Fig-
ure 9.6.(a) is a part of a DDG (arcs are labeled by distances) where we need to reduce its
cyclic sufficiency by S = 3 registers. The value u traverses 5 iterations so we would spill
it in successive steps, as follows.

1. At the beginning, active = {u} and FarCons = {vs, v3, 04,05} are sorted by increas-
ing distance;

2. We first begin by storing u.

6except those that belong the current iteration since they need the value produced at the same iteration

We must retime the DDG
before spilling

V .
v /
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Figure 9.5: Values in Circuits
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(a) u traverses 5 iterations (b) spill for 1iteration (c) spill for 3 iterations

Figure 9.6: Spilling for Reducing Cyclic Sufficiency
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3. The first consumer in FarCons is vy, so we load u \,, = 1 iteration later as shown
in Figure 9.6.(b). The number of saved iterations is 1 < S, so we need to perform
loading u for the remaining consumers.

4. At this step, FarCons = {vz,v4,v5}. We load u for \,, = 3 iterations later as
shown in Figure 9.6.(c). The number of saved iterations is 3 = S. We have saved
enough iterations, and the remaining consumers FarCons = {vy4,v5} use the last
load.

5. Repeat this step until the cyclic register sufficiency is below the target limit. In the
case of unsuccess, i.e., when active is empty, transforming the loop-carried depen-
dences from registers into loop-carried dependences through memory is not sufficient.
We must decrease the register sufficiency in the DAG of loop body itself as explained
in Section 5. 2.

9.3 Experiments

We did not implement the intLP systems of this chapter, nor the heuristics. However, we
have computed the optimal CRF of our loop benchmarks (presented in Appendix B) by
using our SIRA tools, which will be presented in the next chapter. SIRA builds a minimal
cyclic register allocation under a fixed execution rate, which is equivalent to compute the
minimal cyclic register requirement under a fixed II. Table C.9 in Appendix C sum-
marizes our results. We remark that some loops (such as spec-spice-loop4) have a non
negligible sufficiency compared to the number of statements because of their intrinsic
register pressure (data dependence relations between the statements). Depending on the
number of available registers, we may not avoid spilling. Other loops (as spec-dod-loop2)
have a low sufficiency compared to the number of statements. We do not have experi-
mental results for our heuristics, nor those about spilling strategy. We discuss both in
the next section.

9.4 Discussion and Conclusion

This chapter investigates the cyclic register sufficiency problem which computes the min-
imal register need for all valid schedules. The exact formulation is based on CRS intLP
model but with bounding the register requirement. This is because we express the exact
cyclic register need according to an arbitrary SWP kernel.

As in the acyclic case, optimal CRF assumes infinite parallelism. This leads to under-
estimate the real CRF since the target code has limited static ILP. To overcome this
problem, we propose a pure algorithmic approximation that looks for a sufficient SWP
by decomposing the problem into two parts. The first part seeks column numbers that
minimize the total number of inter-kernel values. This is a polynomial problem solved
via retiming by Leiserson and Saxe in [LS91] by using minimum cost flow algorithms.
The second part of the problem looks for row numbers that minimize the total number
of intra-kernel values simultaneously alive. Since the operations belonging to the kernel
have been fixed, it remains to compute an issue slot for them. A DAG is built as in CRS
computation by adding entry and exit values with the inter-kernel flows. Accordingly,
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the problem becomes an acyclic scheduling with limited registers. We use our acyclic RF
computation technique which reduces the RS as minimum as possible by setting R = 1.
This technique is (experimentally) nearly optimal and guarantees the existence of a kernel
with any static ILP degree.

Our proposed spilling strategy transform register flow dependences in circuits to mem-
ory dependences. We add load/store operations to prevent values from being alive during
multiple iterations in registers. We insert spill code directly into the DDG before the
scheduling phase. Existing techniques perform scheduling before spilling, so they have
to recompute the schedule when adding extra load/store operations. This post-schedule
spilling strategy leads to iteratively applying scheduling followed by spilling until a solu-
tion is found. Early spilling is a better approach since it reduces CRF and guarantees the
existence of a least one valid SWP schedule that satisfies register constraints.

Some studies [LMEG96, Jan01] claim that inserting spill code in modulo scheduled
loops is better than increasing the I7. We do not adhere to this thesis at all. The reason
why these authors make this claim is that, first, they assume static memory operation
latencies and they remark after experiments that the SWP scheduler succeeds (in most
cases) in finding free slots for inserted spill code. These experiments do not highlight the
disadvantages of spilling, since they assume fixed (static) memory access latencies, which
are not correct at execution time. Second, they confuse static loop performance defined
by the computed IT and the real (dynamic) one. Memory access operations have unfore-
seeable effects and may play havoc with the computed schedule. Of course, we can be
optimistic and assume that spilled values reside in cache. We do not make this assumption
because any misprediction leads to cache misses which result in deep performance loss.
On superscalar processors, the fluidity of the dynamic execution of the pipelined loop is
broken since long miss latency scrambles the static schedule. Reusing registers is a better
choice, since OoO processors can dynamically eliminate anti-dependences with register
renaming. Also, a VLIW machine completely stalls because of cache misses. We prefer
to keep the dynamic execution under a static control when possible.

Possible Limitation ? May be our pessimism about ” Memory Gap” seems not realistic
and the above discussion may overstate the memory spill and cache miss problem. A pair
of spill operations (a write to save followed by a subsequent read to restore a value) would
almost always hit the first level cache. Spill references are typically both spatially and
temporally local and almost systematically hit a small cache. These represent operations
of modest cost and often can be justified if registers are liberated to support more ILP.
After all, we may be at risk that simple heuristics that allow spill provide a superior
approach in many real-world settings.

Our arguments Let us answer to this possible limitation.

1. Regarding ILP execution, adding load/store operations makes a new stress on the
memory FU, which is generally unique.

2. Static memory disambiguation may not be able to reorder loads with respect to
stores (conflict on addresses). However, we agree that some static or dynamic spec-
ulative features (speculation on loads) may improve this fact. But since spill op-
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erations load a stored variable (and vice-versa), the conflicts on memory addresses
(since the same memory address is accessed) limit the efficiency of such speculations.
Thus, spill operations are likely to be executed sequentially.

3. Regarding the latency of memory operations, cache behavior is not easily foreseeable
at compile time. Even if spill operations have a high spatial/temporal locality, we
must not forget conflict misses” and the interaction with the operating system?®.
In our point of view, compilers shouldn’t be optimistic with caches and must avoid
requesting data from memory (if possible). Such requests may not be satisfied unless
we go outside the CPU.

We agree that we can provide examples where spilling is better than using registers. How-
ever, such statement may be true if we try to minimize the register use. Our work makes
better usage of registers by maximizing the register requirement instead of minimizing it,
which likely produces faster codes. In many situations (as proved by our experiments), we
are able to state that registers does not play any pressure on ILP scheduling, so the graph
is let as it is. In the other approaches, such graphs may be restricted even if registers
are not stressed. I think that situations where memory use is better than maximizing the
register use are few compared to the contrary, especially with the actual trend of extend-
ing register files capacity in current processors. It is hardly difficult to assert at compile
time that spilling is better than using registers, unless we are optimistic regarding cache
behavior. Should compilers do so T If yes, let us be optimistic too regarding some aspects
to defend that register reuse is better than spilling.

1. On a superscalar processor, we may be optimistic about the dynamic renaming
feature. We can assume that the processor would always be able to treat efficiently
(at execution time) the anti-dependences in the code.

2. On a VLIW processor, we may be optimistic too about the ability of the compiler
to find sufficient independent operations (with code motion and loop merging for
instance) so as to recover the holes (nops) in the code.

Before inserting spill code, we must understand why the sufficiency may be higher than
R;. If the data dependence graph is extracted from an original loop written in a high level
programming language, the flow dependences are specified implicitly through variables in
memory (arrays for instance). Compilers generally transform the high level code into an
intermediate one, where each reference to the memory is replaced by a pair of load/store.
At this point, the spill code exists in the loop, and the cyclic register sufficiency is low
enough, since all the values are loaded from memory at each use. Then, compilers make
some load/store optimizations [CCK90, DGS93, BG96, DET00] in order to remove redun-
dant memory operations, and to exhibit more parallelism. Flow dependences during this
optimization phase are transformed from memory dependences to register ones. Register
sufficiency increases as a consequence. Then, we must have a tradeoff between redun-
dant memory elimination and CRF increase. Instead of eliminating all the redundant
load/store, we must care not to increase the sufficiency more than R;. We think that
cyclic register sufficiency must intervene during the load-store optimization process to

"First-level caches are generally direct mapped
80S process scheduling flushes or pollutes the cache.
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keep some of the original spill code instead of inserting new one.

The next chapter investigates another approach for handling register pressure. Instead
of analyzing CRS and CRF before scheduling, we build a cyclic register allocation directly
into the DDG without hurting intrinsic ILP.



9.4. DISCUSSION AND CONCLUSION 175

Algorithm 8 Reducing the Cyclic Register Sufficiency
Require: A DDG G = (V, E,6,\) and a target cyclic sufficiency R;
retime G with minimal register count, maximal register sharing{Leiserson and Saxe
Algorithm}
while CRF,(G) > R; do
S «— CRFy(G) L R{We must spill for at least S iterations}
values_in_circuits < {u € Vg, /u € circuit A Je = (u,v) € Ery A X(e) > 0} {sorted
by decreasing order of distances}
values_not__in_circuits «— {u € Vgi/u & circuit A e = (u,v) € Egy A M) > 0}
{sorted by decreasing order of distances}
build active by merging the list waluessin_circuits before the list
values_not__in_circuits
if active = {} then {no inter-iteration values exist}
reduce the acyclic sufficiency in the loop body DAG (see Section 5.2)
exit
end if
while S > 0 do
for all u € active in the priority order do
build FarCons «— {v € Cons(u')/e = (u,v) € Er; A Me) = A\, > 0} a list of
further consumers in increasing order of distances
insert store(u) in G
insert a flow arc e = (u, store) into G with 6(e) = lat(u) et A(e) =0
saved, < 0 {contains the number of saved iterations for u}
for all v € FarCons in the priority order do
remove v from FarCons
insert | = load(u) in G
LastLoad, =1
Aast = Ay {the latest iterations when a load occurs}
remove the flow arc (u,v) from G
insert the arc e = (store(u),l) into G with 6(e) = lat(st) and A(e) = A,
insert the flow arc e = (I,v) into G with ¢(e) = lat(load) and A(e) =0
saved, — A,
if saved, > S then {we have saved enough iterations}
break
end if
end for
if saved > S then {use the latest load for the remaining farther consumers}
for all v € FarCons in the priority order do
remove the flow arc (u,v) from G
insert a flow arc e = (LastLoad,,v) into G with §(e) = lat(st) and A(e) =
)\v 1 )\last
end for
end if
end for
S «— S 1 saved,
end while
end while
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Chapter 10

Schedule Independent Register
Allocation

Abstract

Register allocation in loops is generally performed after or during the software
pipelining (SWP) process. This is because when doing a conventional register al-
location in the first step, there is no information of interferences between values
live ranges. Consequently, the register allocator introduces an excessive amount
of false dependences which dramatically reduces the intrinsic ILP. In this chapter,
we present our work [TE02, TEO1] that gives a new formulation for cyclic register
allocation before the scheduling process, directly on the data dependence graph by
inserting anti-dependences(reuse arcs). This graph extension is first constrained by
minimizing the critical circuit and hence minimizing the ILP loss due to register
pressure. The second constraint is to ensure that there is always a cyclic register
allocation with the set of available registers, and this for any software pipelining of
the new graph. We give an exact formulation of this problem with integer linear
programming. We also show how our method can be applied when a rotating reg-
ister file is present. We prove that, in some cases, optimal cyclic register allocation
becomes a polynomial problem. Experimental results show that our methods are
efficient.

This chapter is organized as follows. We start by a motivating example in Section 10.1
to introduce our ideas for minimal register allocation sensitive to ILP. Then, we formalize
the problem by reuse graphs in Section 10.2. We show the tradeoff between register
requirement, parallelism and loop unrolling. We provide an exact method by integer
programming in Section 10.4. The DDG that we generate has the property that its cyclic
register saturation is equal to its cyclic register sufficiency. In the presence of a rotating
register file, loop unrolling is not necessary to perform a cyclic register allocation. We
extend our formulation in order to take into account this hardware feature in Section 10.5.
While the general problem of optimal register allocation under a fixed critical circuit is
NP-complete, Section 10.6 presents the cases where this problem becomes polynomial.
Before concluding, Section 10.7 details our experiments.

10.1 Motivating Example

The starting point is based on the following idea. Let us consider a flow dependence
between u and v of distance A. This means that the operation v reads the value produced

177
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by u A iterations earlier. Hence, if we use p different registers cyclically for carrying this
value, u(1) and u(p + 1) store their results in the same register R; that will be read
subsequently by respectively v(A + 1) and v(\ + g + 1). This means that u reuses the
same register used by itself p iterations earlier, and hence creates an anti-dependence
between v(A + 1) and u(u + 1) with a distance g L . Figure 10.1.(a) is an illustration
in which values are shown with bold circles and flow arcs with bold lines. Dashed ones
represent anti-dependences. Since u has a delay to write into the register, the latency of
this anti-dependence is set to L6, (u). This anti-dependence must in turn be counted

when computing the new minimum initiation interval M 11 > {%Au)-‘
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(a) Simple Reuse Scheme (b) Killing Tasks (c) Another Reuse Scheme

Figure 10.1: Examples of Register Reuse Schemes

More generally, if an operation v kills some register R that is subsequently reused by
u p iterations later (and no other operation uses this register in between), then there is
an anti-dependence created between v and u of distance pu.

When an operation creates a value that is read by more than one operation, we cannot
know in advance which of these consumers would actually kill the value (which one would
be scheduled to be the last reader), and hence we cannot know in advance when a register
is freed. We propose a trick which defines for each value u! of type ¢ a virtual killing task
k.:. We insert an arc from each consumer v € Coons(u') to k., to reflect the fact that this
killing task is scheduled after every (the last) scheduled consumer, see Figure 10.1.(b).
The latency of this serial arc is 6, ,(v), and we set its distance to L\ where A is the dis-
tance of the flow dependence between u and its consumer v. We choose this nonpositive
distance to reflect the fact that the operation ky:(i+ X LX), i.e., ky: (i), is the virtual killer
of u'(7). Since k,: is a fictitious task, we could have alternatively considered the positive
distance max.cp A(e) L A(u,v), which is only a retimed distance.

Now, a register allocation scheme consists in defining the arcs of reuse as defined just
above. This amounts to define for each u the task v that reuses the same register. We
add then an arc from k,: to v (representing an anti-dependence from the killer of u to
v) with a latency L6, +(v) and a distance pu,,, to be defined. Note that the dummy node
k.t (i) needs not be inserted if u' has only one consumer (the killer is necessarily this single
consumer).

There are three main constraints that the resulting dependence graph must meet.
First, the sum of distances along each circuit must be positive, else the scheduling prob-
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lem could have no solution. Second, the number of registers used by an allocation scheme
(decision) is Y p (we prove this assertion in the next section) and must be less than or
equal to the number of available registers. Lastly, a register released by an operation can
be reused by only one operation, and each operation reuses only one register. This means
that the added reuse arcs between the killing nodes and the values must be a bijection.
Note that we may have more than one choice for an allocation decision. For instance,
Figure 10.1.(b) gives a situation in which each value reuses the register released by it-
self. Figure 10.1.(c) is another allocation decision where each value reuses the register
released by the other value. This third hypothesis is not mandatory since we can consider
n-periodic register allocation. That is, we can first unroll the loop and then we apply a
cyclic register allocation. However, we assume a reuse bijection because it is, first, the
one used in practice. Second, it gives simple and elegant results.

The reuse relation between values are described by defining a new graph called a reuse
graph. Figure 10.2.(a) shows the first reuse decision where for instance u (v respectively)
reuses the register used by itself y; (p9 respectively) iterations earlier. Figure 10.2.(b) is
the second reuse choice in which u (v respectively) reuses the register used by v (u respec-
tively) uy (p2 respectively) iterations earlier. The resulted data dependence graph after
adding killing tasks and anti-dependences (Figure 10.1) to apply register reuse decisions is
called the the DDG associated with a reuse graph: Figure 10.1.(b) is the DDG associated
with Figure 10.2.(a), and Figure 10.1.(c) is the one associated with Figure 10.2.(b). In the
next section, we give a formal definition and modeling of the register allocation problem
based on reuse graphs.
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Figure 10.2: Reuse Graphs

10.2 Reuse Graphs for Register Allocation

A register allocation consists in choosing which operation reuses which released register.
We define:

Definition 10.1 (Reuse Relation) Let G = (V,E,6,\) be a DDG. A reuse relation
for a register type t € T is a bijection from Vg, to itself such that reuse;(u) = v iff
the statement v reuses the register of type t released by the statement u. We note also
reuse; (v) = u. We associate with this relation a reuse distance 1t , such that the oper-

ation v(i + pi, ) reuses the register of type t released by the operation u(i)

We represent the reuse relation by a graph (see Figure 10.2):
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Definition 10.2 (Reuse Graph) Let G = (V,E,6,\) be a DDG and reuse; a reuse re-
lation of a register type t € T. The reuse graph G" = (Vgy, By, p) is defined by :

E, ={e=(u',0") [ reuse,(u) = v A p(e) = pl,,}

We call each arc in a reuse graph G" a reuse arc, and each path in G" a reuse path. Note
that we have some similarities between reuse graphs and meeting graphs: each circuit
decomposition of a meeting graph corresponds to a reuse graph. However, meeting graphs
consider already scheduled loops. A statement u reuses the register freed by a statement
v in a MG decomposition iff their circular lifetime intervals meet at a certain clock cycle.
We do not have this restriction in reuse graphs, since a reuse arc from u to v only means
that the lifetime interval of u(7) is before the lifetime interval of v*(i + 4, ,,). The further
scheduler is let free to schedule u(i) and v*(i + 4!, ) so that they do not meet.

Lemma 10.1 FEach reuse path P constructed by inserting all the successive nodes u;, Uiy,
with the property that :
reuse;(u;) = uj1 = uj1 € P

is an elementary circuit which we call a reuse circuit. Also, all the reuse circuits of G"
are disjoint :

VO # C' two reuse circuits cCnc' =¢

Proof:

See Appendix A (Section A.2.4 Page 263).

We note € the set of all the reuse circuits of G".

Lemma 10.2 Let G" = (Vgy, E,, i) be a reuse graph according to a reuse relation reuse;.
Then, any value u* € Vi of a register type t € T belongs to a unique reuse circuit C in

G".

Proof:

It is a direct consequence of Lemma 10.1. Since reuse circuits are elementary, a
value u' cannot belong to more than one reuse circuit. Furthermore, each value
belongs to at least one reuse circuit because the reuse relation is a bijection.

Let 14(G") be the sum of all reuse distances between values of type ¢:

/Lt(GT) = Z /LZ,U

e=(u,v)EE,
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and we note also p;(C') the sum of all the reuse distances between values of type ¢ which
belong to the reuse circuit C':

VC a reuse circuit in G : w(C) = Z it

e=(uw)eC

To report register reuse decisions in the DDG, we have to ensure that if reuse;(u) = v
with a distance p, , then u(7) must be killed before the definition of v*(i + i, ). For this
purpose, we define for each value u' of type t a virtual killing task k,: which corresponds
to its killing date. We insert an anti-dependence arc between k,: and v iff reuse;(u) = v.
The distance of this anti-dependence is set to u, ,,.

Definition 10.3 (Killing Node) Let G = (V,E,6,\) be a DDG and T a set of registers
types. A killing node kye of a value u* € Vi, of type t is a virtual statement that corre-
sponds to the killer of u. It is defined by inserting in the DDG G the node ky: for all
u' € Vg, as follows :

e we add a serial arc e = (v, kyt) from each consumer v € Cons(u') to kye;

o for each inserted arc e = (v, kyt), we set its latency to 6(e) = 6,,(v), and its distance
to M) = Ld such that d is the distance of the flow dependence from u to v through
a register of type t : d = \(€') with €' = (u,v) € Ep,.

The negative distance inserted from each consumer to the killing task virtually model the
fact that u! and k,: belong to the same iteration i.

Note that the distance in terms of iterations of the path between each value and its
killer is null. The set of all killing nodes of type ¢ is denoted by Kj;:

Kt = {kut/ ut € VR,t}

The resulting data dependence graph after adding the killing tasks and the anti-
dependences arcs is called the DDG associated with the reuse relation.

Definition 10.4 (DDG associated with a Reuse Relation) Let G = (V,E, 6, \) be
a DDG with its inserted killing nodes K;. The DDG associated with a reuse relation reuse;
of a register type t € T is an extended DDG of G such that we add an arc e = (kyt,v) iff
reuse,(u) = v. We set its latency to 6(e) = Loy (v), and its distance to M) = pi, , (to
be defined).

Parts (b) and (c) of Figure 10.1 are two examples of the DDGs associated with the
reuse relation defined in parts (a) and (b) of Figure 10.2 respectively. We note the DDG
associated with the reuse relation as G_,. One can remark that a reuse arc (u,v) is
the counterpart of a path (u,v) in the meeting graph of any software pipelined schedule
of G_,. Any arc (k,t,v) in G_, according to a reuse relation ensures that the lifetime
interval of the value u'(i) ends before the definition of the value v*(i + 4, )

Vo € B(G_,) : reuse;(u) = v => LT,(u'(i)) < LT,(v"(i + ,ufw))

where 3(G_,) is the set of all valid SWP schedules of the DDG G_,.
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Each reuse circuit has counterparts in GG_,,. Each counterpart is called an image of
the reuse circuit :

C = (uo, "+, Un, up) a reuse circuit <= C' = (ug, ug, kl, + , Un, U, ki, ,ug) a circuit in G_,

in which u} is a consumer of u;. For instance, the reuse circuit (u,v,u) in Figure 10.2.(b)
has an image (u, vy, ky, u', v}, ky, u) in Figure 10.1.(c). Note that a reuse circuit may have
more than one image in GG_,, because a value may have more than one consumer: for
instance, a second image for (u,v,u) in Figure 10.2.(b) is (u, vy, ky, ', v}, ky,u) in Fig-
ure 10.1.(c).

There are some constraints that a reuse relation must meet in order to be valid: the
existence of at least a software pipelined schedule for G_,, (i.e., any introduced circuit
must have a positive distance) defines the validity condition of the reuse relation.

Definition 10.5 (Valid Reuse Relation) Let G_., be a DDG associated with a reuse
relation reuse;. We say that reuse; is valid iff G_,, is schedulable and all its circuits have
positive distances, i.e., there exists a distance N(e) = p, , for each arc e = (ky,v) with
the property that :

Y(G_,)#¢ N VC a circuit \(C) >0

Figure 10.3 shows two examples of DDGs associated with valid reuse relations. We
must be aware the the schedulability of G_,, is not a sufficient condition for the nonexis-
tence of nonpositive circuits. Indeed, a schedulable DDG may contain nonpositive circuits.
In other words, there exists a SWP schedule for G_,, with an initiation interval h > 0 iff

MC)>0 = h>$D>0
VC a circuit in G_,, ¢ MC)<0 = 0<h< %
AMC)=0 = 6(C)<0

32

ST 17 \(3‘0) @0

) @ 22
R E 00  (©0 0-1"
(a) First Valid Reuse Scheme (b) Second Valid Reuse Scheme

Figure 10.3: Valid Reuse Relations

If a reuse relation is valid, we can build a cyclic register allocation for its DDG asso-
ciated DDG, as explained in the following theorem.

Theorem 10.1 Let G_,, be a reuse DDG associated with a valid reuse relation reuse;
such that there is only one reuse circuit in the reuse graph G". Then the unique reuse
circuit C' defines a cyclic register allocation for G_,, with exactly pu,(C) registers if we
unroll the loop p = pu(C) times.
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Proof:

Let us unroll G_, 1;(C) times: each statement u € V has now p = 1, (C)
instances in the unrolled loop. We note u; the i'" instance of the statement
u € Vg To prove this theorem, we explicitly express the cyclic register
allocation, directly on G'_,, after loop unrolling, i.e., we assign registers to the
statements of the new loop body (after unrolling). We consider two cases:

Case 1 : all the p distances are positive For the clarity of this proof,
we illustrate it by the example of Figure 10.4 which builds a cyclic register
allocation with 3 registers for Figure 10.3.(b): we have unrolled this loop 3
times. We allocate y;(C') = 3 registers in the unrolled loop as explained in
Algorithm 9.

1. We choose an arbitrary value u' in Vg,. It has p distinct instances in the
unrolled loop. So, we allocate p distinct registers to these instances. We
are sure that such values exist in the unrolled loop body because p > 0.

2. Since the reuse relation is valid, we are sure that for each reuse arc (u,v),
the killing date of an operation u'(i) is scheduled before the definition
date of v*(i + pi,,). So, we allocate, in the unrolled loop body, the

same register of type ¢ to v((,+ t ) mod ) as the one allocated to u;.
i+pf,,,) mod p

For instance in Figure 10.4, we allocate the same register R; to u; and

! ! . .
U((149) mod 3) = Uo- Ve are sure that v((iﬂﬁu,v) od p) exists in the unrolled

loop body because pf, , > 0.

3. We follow the other reuse arcs to allocate the same register to the two

values v; and v’ iff reuse(v) = v’. We continue in the reuse
((i+n,,) mod p

circuit image until all values in the loop body are allocated.

Since the original reuse circuit image in duplicated p times in the unrolled loop,
and since each reuse circuit image in the unrolled loop consumes one register,
we use in total p = pu(C) registers. Dashed lines in Figure 10.4 represent
anti-dependences with their corresponding distances after the unrolling.

Case 2 : there exists a negative i distance Here, we cannot express the
cyclic allocation directly in the DDG as in the previous case. This is because
the involved operation belongs to a previous iteration. However, this does
not prevent us from building a register allocation at all. For this purpose, we
change the distances of the anti-dependences by using the retiming technique.

A valid retiming, as explained in Chapter 7, makes positive all the distances of
the transformed graph, while preserving the same scheduling problem. So, we
aim to build a transformed graph from G_,, which contains positive distances
in order to come back to the first case. We are sure that a valid retiming
exists because the reuse relation is assumed valid, and hence all circuits have
positive distances.
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Building a valid retimed graph from G_., is obvious. Since the reuse relation
is valid, then we can build a periodic schedule o([rn], [en], h) for G_,. We
simply take the retiming function r(u) = en(u) as explained in [DH00]. The
distances become:

Ve = (u,v) € E Ar(€) = en(v) L en(u) + A(e)

The dependence constraints are still satisfied :

Ve = (u,v) o(v,i+ ) Lo(u) > 6(e)
Ve = (u,v) rn(v) Lrn(u) + h(en(v) L en(u) + A(e)) > 6(e)
Ve = (u,v) h(cn(v) L en(u) + Ae)) > 6(e) L rn(v) + rn(u) > Lr(v) > Lh

which implies A,(e) = en(v) L en(u) + A(e) > 0 and rn(v) > 6(e) + rn(u) if
Ar(e) = 0: the inter-motif dependences are satisfied while the intra-motif ones
become loop carried (satisfied by the successive execution of the iterations).

Finally, since all the distances of the retimed graph are now positive, we refer
to the first case to build a cyclic register allocation.
_
Note that we can also build a cyclic register allocation with exactly p,(C) registers if
we unroll the loop k£ X p times, in which p = ;1;,(C) and k € N* | as follows:

1. unroll the loop p times and build a cyclic register allocation with u,(C') registers as
explained in Theorem 10.1;

2. unroll the allocated loop k times.

If more than one reuse circuit exist, we state in the following theorem that the set of
all reuse circuits defines a cyclic register allocation with u;(G") registers.

Theorem 10.2 Let G_,, be a reuse DDG according to a valid reuse relation reuse; of a
register type t € T. Then the reuse graph G" defines a cyclic register allocation for G_,
with exactly p(G") registers of type t if we unroll the loop « times where :

a=lem(pu(Cr), -+, e (Cp))

in which € = {Cy,---,Cy,} is the set of all reuse circuits.

iter i

Figure 10.4: Cyclic Register Allocation with One Reuse Circuit
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Algorithm 9 Cyclic Register Allocation
Require: a DDG G_,, associated to a valid reuse relation reuse;
unroll it p = u(C') times {this create p instances for each statement}
for all u € Vz; do
for all u; in the unrolled DDG do {each instance of u}
alloc(u;)«< L {initialization}
end for
end for
choose u € Vg,
for all u; in the unrolled DDG do {each instance of u}
alloc(u;) < ListOfAvailableRegisters.pop()
n < u;
n' e Vit ymod p {Where reuse(u) = v}
while alloc(n')=1 do
alloc(n')«alloc(n)
n «—n'
n' « n" {where (k,,n") is an anti-dependence in the unrolled loop}
end while
end for

Proof:

It is a direct consequence of Theorem 10.1. The cyclic register allocation is
built as follows:

1. unroll the loop « times; each reuse circuit C' has m‘(lc) images in the

unrolled loop;

2. build a cyclic register allocation for each reuse circuit image as explained
in Theorem 10.1.

Figure 10.5 is an example of a cyclic register allocation of Figure 10.3.(a)
which contains two reuse circuits; (u,u) with a distance 1, and («/,u') with
a distance 2. The unrolling degree is hence lem(1,2) = 2. The dashed lines
represent the anti-dependences after unrolling the loop.

Corollary 10.1 Let G_., be a reuse DDG according to a valid reuse relation reuse; of a
register type t € T. Then, there exists a software pipelined schedule for G_,, that needs
less or equal registers than the number of allocated ones :

I eX(G.,) . CRN(G_,) < u(G")

Proof:
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According to Theorem 10.2, we can build a valid cyclic register allocation with
pi(G") available registers. Then, there exists a software pipelined schedule that
does not require more than u(G") registers.

Corollary 10.2 Let G = (V, E, 6, ) be a loop with a set of register types T. To each type
t € T s associated a valid reuse relation reuse; with its reuse graph. The loop can be
allocated with p,(G") registers for each type t if we unroll it o times, where

a=lem(ay,, -, q)

in which oy, is the unrolling degree of the reuse graph for the register type t;.

Proof:

Direct consequence of Theorem 10.2. The cyclic register allocation is built as
follows :

1. unroll the loop « times; each reuse circuit image C; of register type t in

the original loop is duplicated a; X ﬁ times in the unrolled loop;

2. build a cyclic register allocation for each reuse circuit image of each reg-
ister type t as explained in Theorem 10.2.

The next section presents an exact formulation of SIRA by integer programming.

o

)

Figure 10.5: Cyclic Register Allocation
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10.3 SIRA Problem Formulation

From the previous section, we deduce that doing a cyclic register allocation of a DDG is
equivalent to finding a valid reuse relation. The formal definition of Schedule Independent
Register Allocation (SIRA) is:

Problem 10.1 (SIRA) Let G = (V,E,6,\) be a loop and Ry the number of available
registers of type t. Find a valid reuse relation reuse; such that the corresponding reuse
graph G" = (Vry, E,, p) has

p(G) < Ry

i which the critical circuit in G_,, 18 minimized.

Theorem 10.3 SIRA is NP-complete.

Proof:

See Appendix A (Section A.2.5 Page 264).

10.4 Exact SIRA Modeling

In this section, we give an intLP model for solving STRA. It is built for a fixed execution
rate h. We write linear constraints that define a reuse relation for each register type.
We first build a reuse relation that makes the associated DDG schedulable. As explained
before, a schedulable DDG may contain nonpositive circuits. We will see later how to
eliminate the solutions with nonpositive circuits.

Basic Variables

e a schedule variable o, < L for each operation u € V including one for each killing
node kyt;

e a binary variable 6}, , for each (u,v) € V}%t and for each register type ¢t € T which is
set to 1 iff reuse;(u) = v;

e 4, for reuse distance for all (u,v) € V3.
Linear Constraints

Cyclic Scheduling Constraints

e We bound the scheduling variables (we assume a worst schedule time of one itera-
tion)
YueV : oy <oy, <7y

e data dependences

Ve = (u,v) € E : oy +6(e) <o, +hx A(e)
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schedule killing nodes for consumed values: Vu! € Vit

Vv € Cons(u') /e = (u,v) € Egy : O, > 0y + 0p(v) + A(e) X h

if reuse;(u) = v then there is an anti-dependence between u'’s killer and v. We add
an arc from ke to v : Vt € T, Y(u,v) € Vg, :

Oh,=1= 0k, Lbys(v) <oy +hxp,
Since 6., is binary, we write in the model the following linear constraints:
Vi e T, Y(u,v) € V}%,t : Onw > 1= 0y, , L Swi(v) < 0, + h X ufw
We use the linear expression of implication defined in Section 2.1.

If there is no register reuse between two values (reuse;(u) # v), then 0}, , = 0. The
anti-dependence distance !, , must be set to 0 in order to not be cumulated in the
objective function. Vt € T, VY(u,v) € Vg, :

012’1) = 0 :> /’LZ,U = 0

Reuse Relation Constraints The reuse relation must be a bijection :

e a register can be reused by only one operation :

VieT, Yu e Viy: > oo, =1

’UEVR,t

e one value can reuse only one released register :

VieT, Yu e Viy: > oo, =1

’UEVR,t

Objective Function We want to minimize the number of registers required for register
allocation. So, we choose an arbitrary register type ¢ that we use as an objective function:

Minimize 5 .
b

(u,v)EVI%,t

This function is necessarily positive, since all reuse circuit images have > x> 0. Other
register types are bounded in the model by their respective number of available registers:

veTL{ty: Y ol <R

(u,v)evlg,t,
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Summary The reuse relation produced is makes GG_,, the associated DDG schedulable,
since we succeed in constructing a cyclic schedule. We will see below how to eliminate
nonpositive circuits. The complexity of the model is bounded by O(]V|?) variables and
by O(|E| + |V|?) constraints. To solve STRA, we proceed as follows.

1. We start by solving an intLP with h = MI1.

2. If the solution is greater than R;, then we increment h (a dichotomy between h and
a maximum hy,e, = L).

3. If we reach the maximum h,,,, without finding a solution, then there is not a cyclic
register allocation with R, registers. Therefore, spill code must be introduced (see
Section 9.2).

In some cases, an optimal SIRA solution may introduce circuits with nonpositive
distance to the constructed DDG. The next section discusses this problem.

Eliminating SIRA Solutions with Nonpositive Circuits

Our loop model admits explicit writing delays for statements. So, some anti-dependence
arcs in G_,, may have negative latencies. If we do not take care during the computation of
an optimal register allocation (minimizing the register requirement under a fixed execution
rate), the produced DDGs according to the computed reuse relation may contain circuits
with nonpositive distance. Even if such a graph is schedulable, we cannot admit it since
we cannot ensure that is would remain schedulable in the presence of resource constraints.
Note that any circuit C' with a non positive distance A(C') < 0 has necessarily a nonpositive
latency 6(C') < 0, since the constructed DDG is schedulable.

Figure 10.6 is an illustration. In the original loop shown in Part (a), there exists a
dependence path from u to v with a null distance (the path is in the loop body). A
reuse relation as shown in Part (b) may assign the same register to u(:) and v(i) by
fixing reuse;(v) = u. This creates an anti-dependence from v(i)’s killer to u(i). Since
the latency of the reuse arc (k,,u) is negative (-9) and the latency of the path u ~ k, is
5, the null circuit (v, ky, u,v) does not prevent the associated DDG from being modulo
scheduled but may be so in the presence of resource constraints. In this section, we show
how we include new constraints in the exact STRA modeling to avoid this disadvantage.

(a) Original Loop (b) DDG associated with a Valid Reuse Relation

Figure 10.6: Possible Nonpositive Circuits
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To eliminate optimal SIRA solutions that require circuits with nonpositive distances,
we can use two solution. A first one is to not introduce anti-dependences with nonpos-
itive latencies. This is done by considering sequential semantics for register usage, i.e.,
by setting in the intLP model ¢, , = 0 and 6,,; = 0, and any introduced anti-dependence
must have a unitary latency!. This technique remains optimal in the case of sequential
superscalar codes, but may be sub-optimal in static issue (VLIW) codes. An optimal
solution is given below.

A second solution is to guarantee the existence of a valid retiming, and a topological
sort for the loop body of the constructed DDG G_.,. The existence of a valid retiming
guarantees that all circuits have nonnegative distances (A(C) > 0). This is a sufficient
and necessary condition. It remains to eliminate circuits with distances equal to zero
(AM(C) = 0). A sufficient and necessary condition for that is to guarantee the existence
of a topological sort for the loop body. For this purpose, we consider the retimed graph
because all its arcs have nonnegative distances. Then, each arc with a zero distance in the
retimed graph is an arc in the loop body. If we guarantee that there is no zero distance
circuit in the retimed graph, then the non retimed DDG does not contain a zero distance
circuit (and vice versa).

We include retiming and topological sort constraints as follows.

e The objective function remains the same, since the number of allocated registers in
a reuse circuit is not modified by loop retiming:

Minimize Z MZ,U
(u,v)evlg,t
e The integer variables are the following.

1. For each node u € V', we define an integer retiming coefficient r,.

2. We add the variables of a topological sort. For each statement u € V', we define
an integer d, < |V|.

e The linear constraints are the following.

1. The retiming must be valid. We add the following constraints.

— For each original arc e = (u,v) € E, write:
Ae)+ry, Lr, >0

— For each introduced anti-dependence arc, the retimed distance must be
positive. So we write :

Vu,v € Vg, HZ’U =1 :>/LZ’U+TUJ-Tkut >0

2. We add topological sort constraints as follows.

1 This is because an arc with a latency equal to zero will be processed as an arc with a positive latency
in the sequential case, since no ILP can be statically expressed in superscalar codes.
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— For the original arcs, we write :
Ve=(u,v) e E: Xe)+r,Lr,=0=d, <d,

— For the introduced anti-dependences, we write :

o =1
VU,U € VR,t : /,LZ’U—i-TvJ_Tkut —0 }:dkut <d'u

We add at most O(|V'|?) variables and O(]V|* 4+ |E]) linear constraints to eliminate
optimal solution with nonpositive circuits.

The unrolling degree is left free and over any control in our SIRA formulation. The
theoretical upper-bound of the unrolling degree required for allocating R registers is
c(IHOMVRINR — Thig is a classical mathematical problem where, as far as we know, no
exact upper-bound has been found yet!? Minimizing the unrolling degree amounts to
minimize lem(p;) the least common multiple of the anti-dependence distances of reuse
circuits. This problem is very difficult since there is no way to linearly express the least
common multiple. We can consider two solutions.

1. We set limits on the reuse distances with strictly positive constants (p; < ¢y, -+,
fn < ¢,). The smaller these constants, the more the unrolling degree is minimized,
the more the critical circuit increases while the system becomes more difficult to
solve. We think that this solution is inefficient and inaccurate.

2. We look for only one reuse (hamiltonian) circuit: the unrolling degree becomes
equal to the number of allocated registers, and hence is minimized by the objective
function that minimizes the register requirement. This solution is studied in the
next section.

10.5 SIRA with Rotating Register Files

A rotating register file, as explained in Section 7.5, is a hardware feature that implicitly
moves (shifts) ISA (architectural) registers in a cyclic way. At each new kernel issue (spe-
cial branch operation), each architectural register specified by a program is mapped by
hardware to a new physical register. The mapping function is (R denotes an architectural
register and R’ a physical register): R; — REHRRB) mod s Where RRB is a rotating regis-
ter base and s the total number of physical registers. The index of that physical register
is continuously decremented by 1 at each new kernel. Consequently, the intrinsic reuse
scheme between statements necessarily describes a hamiltonian reuse circuit. The hard-
ware behavior of such register files does not allow other reuse patterns. STRA in this case
must be adapted in order to look for only hamiltonian reuse circuits. Figure 10.7 gives an
example to see how a hamiltonian reuse circuit describes a cyclic register allocation on a
RRF. Part (b) shows the writing of values in physical registers.

Furthermore, even if no rotating register file exists, looking for a reuse relation with
a unique hamiltonian reuse circuit makes the unrolling degree equal to the number of

2This upper-bound corresponds to the order of the maximal cyclic subgroup of the permutation group
on R elements [Lan74].
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needed registers. The objective function minimizes both of them.

Since a reuse circuit is always elementary (Lemma 10.1), it is sufficient to state that
a hamiltonian reuse circuit with n = |Vg,| nodes is a reuse circuit of size n. We proceed
by forcing a numbering of the statements from 1 to n according to the reuse relation.

Definition 10.6 (Hamiltonian Ordering) Let G = (V, E, 6, A) be a loop and reuse; a
valid reuse relation of a register type t € T. A hamiltonian ordering ho; of this loop
according to its reuse relation is a function defined by :

ho, : Vgy — N
u' —  hoy(u)

such that Vu,v € Vg @ reuse(u) = v <= hoy(v) = (hot(u) + 1) mod |Vg.4|

Figure 10.8 is an example of a hamiltonian ordering of a reuse graph with 5 values.
The existence of hamiltonian ordering is a sufficient and necessary condition to make
the reuse graph hamiltonian, as stated in the following theorem.

Theorem 10.4 Let G = (V, E, 6, \) be a loop and reuse; a valid reuse relation of a reg-
ister type t € T. There exists a hamiltonian ordering iff it the reuse graph is hamiltonian.

iterations
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(a) Hamiltonian Reuse Circuit (b) Cyclic Register Allocation on a RRF

Figure 10.7: SIRA with a Rotating Register File
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Proof:

See Appendix A (Section A.2.6 Page 265).
_

Problem 10.2 (SIRA HAM) Let G = (V, E,6,\) be a loop and R, a positive integer.
The SIRA_HAM problem is to find a valid reuse relation reuse; with a hamiltonian or-
dering hoy such that the corresponding reuse graph G" = (Vgy, Ey, 1) has

pe(G") < Ry

and the critical circuit in G_,, is minimized.

Exact SIRA_HAM Formulation
We add to the intLP model of SIRA (defined in Section 10.4) the variables and linear
constraints that define a hamiltonian ordering:

1. for each register type and for each value u' € Vg, we define an integer variable ho,

which corresponds to its hamiltonian ordering;

2. we include in the model the bounding constraints of the hamiltonian ordering vari-
ables:
Vut € VR,t . h,Out < |VR,t‘

3. we define linear constraints of the modulo hamiltonian ordering by including in the
model :
Vu,v e Vi, 0,,=1<= hoy +1=|Vgy| x B, + hoy

where ﬂfw is a binary variable that holds to the integer division of ho,: +1 on |Vg4|.
We use the linear expression of equivalence previously defined in Section 2.1.

We have expanded the exact STRA intLP model by at most O(|V|?) variables and O(|V|?)
linear constraints.

When looking for a hamiltonian reuse circuit, we have some similarities with the prob-
lem of finding a hamiltonian circuit in a meeting graph (see Section 7.5 and Theorem 7.5).
In the latter case, we may need one extra register to construct such a circuit.

Proposition 10.1 Hamiltonian SIRA needs at most one more register than SIRA.

Proof:

See Appendix A (Section A.2.7 Page 266).

_

We must keep in mind that, if loop unrolling is allowed for hamiltonian SIRA, we do not
require this additional register to implement a cyclic register allocation on a RRF.

Both SIRA and hamiltonian SIRA are NP-complete. Fortunately, we have some opti-
mistic results. In the next section, we investigate the case in which SIRA can be solved
in polynomial time.
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10.6 Polynomial Cases for SIRA

In this section, we show that if we fix reuse arcs, i.e., if we fix the register sharing decision
among statements, then determining p distances so as to minimize the register require-
ment and the critical circuit is solvable in polynomial time. We neglect for the moment
the problem of nonpositive circuits (we discuss it later).

Let G = (V,FE,6,\) be a loop and G_,, the DDG associated with a reuse relation
reuse; according to a register type ¢, such that the reuse distances ,uft’v are not fixed yet.
In the following, we write the integer programming model to solve SIRA. The intLP is
considerably simplified and we show that its constraint matrix is totally unimodular.

As we know, the graph G_., = (V_,, E_.,,6_,, A_,) have the following nodes:

e the set of the nodes V of the original loop G. The set Vi, C V_,, is the set of
statements writing into the registers of type ¢;

e the set of killing nodes £, ; for each u € Vg,.
The set of arcs E_,, contains:

e the set of the arcs E of the original loop G, where ¢_,.(e) = 6(e) and A_,.(e) = A(e)
for each e € E. The set Er; C E is the set of low dependences through the values
of type t;

e the set of arcs which connect the consumers to the killing nodes
{e = (v,kyt)/ v € Cons(u")}, in which

bp(€) = bpp(v) for e = (v, kyt)

and
Ar(e) = LA(e) for e = (u,v) € Epy

e the set of reuse arcs e = (kyt, v) for reuse;(u) = v, where 6_,.(e) = L6,(v) and the
distance A_,(e) = pl,, has to be defined. We note the set of these reuse arcs by
E, C E_,,. Remember that the reuse relation is a bijection, and hence each value u!
has one and only one reuse arc leaving k,:, and one and only one reuse arcs entering
u. Therefore, |E,| = |Vr4|.

Hence, the intLLP system that solve SIRA with fixed reuse arcs is considerably simplified.
Hence, the intLP system of STRA becomes as follows.

Minimize Dk o ers P

Subject to: (10.1)
hutu’v + oy Log, > Low(v) V(ku,v) € E,

oy, Lo, >6(e) L hA(e) Ve = (u,v) € (E_, L E,)

Since h is a constant, we do the variable substitution y;, = h x p, , and System 10.1
becomes :

Minimize > ucvi, M

Subject to: (10.2)
oy + 0y Loy, > L6y(v) V(kut,v) € E,
oy Loy, >6(e) LhXe) Ve=(u,v)€ (E., LE,)
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There are O(|V_.,|) = O(]V]) variables and O(|E_,| = O(|V| + |E|)) constraints in this
system.

Theorem 10.5 The constraint matriz of the integer programming model in System 10.2

15 totally unimodular, i.e., the determinant of each square sub-matriz is equal to 0 or to
+ 1.

Proof:

See Appendix A (Section A.2.8 Page 267).

Thanks to Theorem 10.5, we can optimally solve the integer programming model of Sys-
tem 10.2 with a polynomial time method, in which the complexity depends on the size of
V_, and E_, (see Section 2.1). We think that we can provide an algorithmic solution for
this problem by using minimal cost flow algorithms.

The case described in this section can be used in practical compilers in different ways.
Here are some examples.

1. For each value u € Vg,, we can decide that reuse;(u) = u. This means that each
statement reuses the register freed by itself (no sharing of registers between different

statements). This is similar to the buffer minimization problem as described in
ING93].

2. We can fix reuse arcs according to the anti-dependences present in the original
code: if there is an anti-dependence between two statement v and v in the original
code, then fix reuse;(u') = v with the property that u kills «’. This decision is
a generalization of the problem of reducing the register requirement as studied in
[WKE95]. The authors assumed fixed row numbers and fixed anti-dependencies.
Our result shows that the problem is still polynomial for non fixed row numbers.

3. With a rotating register file, we can fix an arbitrary (or with a cleverer method)
hamiltonian reuse circuit among statements.

Finally, it remains to eliminate optimal solutions with circuits with nonpositive dis-
tances.

Eliminating Polynomial Solutions with Nonpositive Circuits

As described before, this problem arises for static issue processors (VLIW) with explicit
writing offsets.

A solution for this problem has been provided by Alain Darte [Dar02], deduced from
[DSV96, DSV98|. It adds a quadratic number of retiming constraints to avoid nonpositive
circuits, while keeping the optimality of the solution, and the problem remains polynomial
too.
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We define a retiming r, for each arc e € E_,. We have then a shift r.(u) for each
node u € V_,,. Then, we let an integer r, for all (e,u) € (E_, x V_,,). Any retiming r,
must satisfy the following constraints :

Ve' = (u',0v") # e, Tew L Tew + A

e¢)>0
for the considered arc e = (u,v), Tey L ey + A(e) > 1

(10.3)
Note that if an arc e = (k,,v) is an anti-dependence, its distance is A(e) = pf,,. Since
we have |E_,| distinct retiming functions, we add |E_,,| x |V_,| variables and |E_.,| x
|E_.,| constraints. Satisfying all these constraints is a polynomial problem (retiming
constraints), i.e., the constraint matrix remains totally unimodular. Now, we prove that

satisfying System 10.3 is a necessary and sufficient condition for building a DDG G_.,
with positive circuits.

Lemma 10.3 [Dar02] Let G_., the solution graph of System 10.2. Then :
System 10.3 is satisfied <= any circuit in G_, has a positive distance.

Proof:

See Appendix A (Section A.2.9 page 269).

10.7 Experiments

We have developed a tool to cyclically allocate registers in loops using SIRA. Tt is based
on two underlying softwares.

1. LEDA-4.1 (Library of Efficient Data types and Algorithms [MN99]) from Algorith-
mic Solutions Software. This library is used for handling the graphs (DDGs, reuse
DDGs, etc.) and generating the integer linear programs;

2. CPLEX-7.0 (see [CPL93]) from Ilog. It is an optimizer for solving linear, mixed-
integer and quadratic programming problems.

Our tool uses the two strategies: the classical SIRA in which the reuse circuits are free
from any control, and the hamiltonian case where we look for a hamiltonian reuse circuit.
We have also developed the polynomial SIRA case as studied in Section 10.6. Two main
strategies have been experimented: self reuse arcs where we fix reuse(u) = u for any
value, and a fixed hamiltonian reuse circuit. In the latter case, the hamiltonian circuit
is arbitrary: we arbitrarily numbered the values from 1 to n and we fixed reuse(u;) =
reuse(U(i1) mod n)-

Our benchmarks are presented in Appendix B. The performance of these loops are
bounded by floating point computation. So, we focus on this register type and we assume
that we target superscalar codes (null reading and writing delays). Full detailed numerical
and plotting results are given in Appendix C. This section summarizes our conclusions.
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10.7.1 Optimal SIRA

The optimal SIRA solutions are described in Table C.10. The two main columns corre-
spond to the two SIRA formulations: the first is the “classical STRA” as explained in
Section 10.3, in which the unrolling degree is left free from any constraint, and the second
is the hamiltonian STRA formulation as explained in Section 10.5 intended for both min-
imizing the unrolling degree (in this case, it is equal to the number of allocated registers)
and to the rotating register file. Note that we didn’t succeed in finding an optimal solution
in three cases because of the computation complexity. We treat the latter cases by using
heuristics in a further paragraph..

Table C.10 shows the minimum number of fp registers required to perform cyclic
register allocation if we do not want to increase the critical circuit (no ILP loss):

—_

. 64 fp registers are sufficient for all loop;

[\

. 32 fp registers are sufficient for 91.66% of loops;

w

. 16 fp registers are sufficient for 91.66% of loops;
4. 8 fp registers are sufficient for 83.33% of loops;
5. 4 fp registers are sufficient for 50.00% of loops;

The difference between the solutions of the two SIRA formulations is shown in Ta-
ble C.11. Hamiltonian SIRA needs in the worst case one more register than SIRA (2 cases
only). The unrolling degree is kept under control with hamiltonian SIRA since it is equal
to the number of registers. However, even if SIRA exhibits better unrolling degrees in
most cases, the case of spec-spice-loop7 shows that this factor may grow exponentially if
it is left free.

We also have experimented SIRA on these loops with different critical ratios h, start-
ing from MII to L. Figures C.5 and C.6 give some representative results. As expected,
the number of registers decreases if we increment the execution rate. The lower the criti-
cal circuit is, the higher is the number of registers. In some cases, increasing the critical
circuit by only one clock period dramatically decreases the register need: for instance
spec-dod-loop7 needs 35 fp registers with a critical circuit M I = 1, but needs only 18 fp
registers if the critical circuit is M II = 2. In other cases, the number of required registers
is the same for any critical circuit: for instance spec-dod-loop3 needs 3 fp registers for
any execution rate. The optimal solutions for hamiltonian SIRA (not plotted) are in most
cases equal to those computed by the “classical” SIRA, except in very few cases where
we need one extra register.

Using Heuristics for Solving Optimal SIRA

During our experiments, the solver could not find the optimal solution of some loops
because of the problem complexity: the computation space was saturated and CPLEX
ran out of memory (remember that the problem is NP-complete). In such cases, we used
some heuristics techniques to get a suitable approximate solution. Fortunately, CPLEX
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supports such features as explained in Section 2.1.

Table C.12 describes our SIRA experiments using some of these resolution techniques.
The first column gives the results if we stop the optimization process when the number
of allocated registers is less than or equal to 16. In the second one, we have set a limit
of five minutes to the computation time. In the third, we have limited the work space to
20 mega bytes. Lastly, we have limited the number of integer solutions to 3. As can be
seen, we can always use intLP formulation to get an approximated solution.

10.7.2 SIRA with Fixed Reuse Arcs

We have experimented SIRA with fixed reuse arcs (polynomial cases) on all the loops
with various initiation intervals. Results are shown in Figure C.7 to C.11. Clearly, ex-
cept in few cases, the self reuse strategy needs the highest number of registers. This is
because each value needs at least one register, since we prevent two distinct statements
from sharing the same register. So, the minimum number of needed registers with a self
reuse strategy is always bounded from below by |Vz| the number of values (statements)
in the loop body. This is because each statement needs at least one register (buffer) if
no sharing exists. The difference between the registers needed with this strategy and a
fixed arbitrary hamiltonian reuse circuit may be large. An interesting result is that the
number of registers needed when fixing an arbitrary hamiltonian reuse circuit is near to
the optimal in many cases. The maximal experimental difference between the register
requirement of fixed hamiltonian SIRA with the optimum is 4 registers.

10.7.3 Unrolling Degrees

Figure C.12 to C.16 plot the unrolling degrees of all the SIRA strategies: optimal SIRA,
optimal hamiltonian STRA, and the two polynomial cases (self reuse and fixed hamiltonian
circuit). While the self reuse strategy needs the highest number of registers, its unrolling
degrees exhibit the lowest ones in most cases. This is useful technique if the code size
expansion is a critical constraint (as in embedded softwares). In most cases, the unrolling
degrees are acceptable (less than the number of allocated registers). Unfortunately, the
example of spec-spice-loop7 in Figure C.14 shows that the unrolling degree may be very
high if not kept under control. In this case, using a hamiltonian reuse circuit is better
since the objective function minimizes this factor.

10.8 Conclusion

This chapter presents a new approach consisting in building an early cyclic register allo-
cation before code scheduling with multiple register types and delays in reading/writing.
Our formulation is based on reuse graphs to model the fact that two statements use the
same register as storage location. An intLP model gives optimal solution and enables
us to make a tradeoff between ILP loss (increase of MII) and the number of required
registers.

Each reuse decision implies loop unrolling with a factor depending on reuse circuits for
each register type. Optimizing this factor is a hard problem and no satisfactory solution
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exists (as far as we know). However, we do not need to unroll in the presence of a rotating
register file. We only need to seek a unique hamiltonian reuse circuit. For this purpose,
we add new variables and linear constraints to SIRA intLP model that build such circuit
by using hamiltonian numbering. The penalty for this hamiltonian circuit constraint is at
most one extra register than the optimal for the same MITI. Experimental results show
that only few cases need this extra register.

While looking for optimal register allocation is NP-complete, fixing reuse arcs and
finding the minimal number of required registers can be optimally solved with polynomial
algorithms. We can use this result in different ways, as setting self-reuse arcs or fixing
an arbitrary (or with a cleverer technique) hamiltonian circuit. Experiments show that
self-reuse decision needs the highest number of registers, while fixing an arbitrary hamil-
tonian reuse circuit needs much less registers. However, unrolling degrees with self-reuse
are better.

Our experiments show that performing a minimal register allocation with a self reuse
strategy (buffer minimization) isn’t a good decision in terms of register requirement.
We think that how registers are shared between different statements is one of the most
important issues, and preventing this sharing by a self reuse strategy consumes much
more registers than needed by other reuse decisions.
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Chapter 11

Related ork in Loops

Abstract
This chapter draws up a panorama on most important work in the field of register
pressure in loops. Most of the techniques are based on SWP scheduling with limited
number of registers.

11.1 Cyclic Register Saturation and Sufficiency

As far as we know, there is no study on CRS and CRF. The only work that may be
considered as related to our study (up to our knowledge) was provided by Lilja and Bird
in [LB94], and William Mangione-Smith et al in [MSAD92]. They built an approximate
linear analytical model for the register requirement. They assume that a new register is
allocated to each value at a constant rate (every h step). With this linear model, they are
able to give a conservative approximation of upper and lower bounds for cyclic register
requirement. Their approximations are not tight (exact) in the sense where they cannot
guarantee the existence of a schedule that needs the computed register count.

11.2 Software Pipelining under Register Constraints

SWP with register constraints tries to ensure that the number of values simultaneously
alive does not exceed the number of available registers, while guaranteeing the existence
of a register allocation with the set of available registers.

Huff’s Technique [Huf93] Huff [Huf93] was the first who proposed a SWP heuristics
which tries to minimize values lifetimes, hoping that this would minimize the register
requirement. It is based on defining for each statement an interval of possible issue times,
called slack, depending on circuit dependences. Initially, slacks contain as soon and as late
as possible issue times that are dynamically updated during scheduling. Some statements
are scheduled early while others are delayed. Slack length defines a priority : the longer is
a slack, the more freedom we have to schedule the statement, and the less is its priority.
Backtracking is used to cancel computed issue slots if a statement cannot be scheduled
within its slack.

201
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Buffers Minimization [NG93, Nin93] Ning and Gao [NG93, Nin93] defined an ap-
proximation of register requirement called buffers. The difference between a buffer and a
register is that if two lifetime intervals do not interfere with each other, they can share a
register but not a buffer. In fact, a buffer is a special register which passes the successive
copies of the values produced from one SWP motif to successive ones '. The authors claim
that buffer minimization is a polynomial problem, but their proof is not correct. Indeed,
they use an approximation of buffers in order to prove that their constraints matrix is
totally unimodular. However, their linear constraints compute an upper-bound of buffers,
not the exact number. Nonetheless, buffers can be considered by our polynomial SIRA
methodology when we fix self-reuse arcs.

Decomposed SWP [WKEE94, WKE95] Wang et al [ WKEE94, WKE95] proposed a
SWP technique that builds a kernel with a reduced register requirement. Their algorithm
dynamically maintains a graph that reflects an approximation of register requirement
during scheduling. Their model uses a similar formulation to SIRA (with reuse edges),
but with restrictions. First, they assume that each value is consumed by only one opera-
tion and hence they did not investigate killing nodes. Second, they make reuse decisions
according to anti-dependences present in the original code: if there is an anti-dependence
between two statement in the original code, then they report this decision to scheduling
constraints. They proved that when we fix row numbers (i.e., when the reservation table
of the kernel is computed) and original anti-dependences (fixed register reuse), then find-
ing columns numbers that minimize register requirement under a fixed I7 is a polynomial
problem. In fact, it is a special case of Theorem 10.5 (Section 10.6).

RESIS [SC96] RESIS methodology [SC96] tries to minimize MAXLIVE in an exist-
ing kernel. Their algorithm has two main steps. First, they build a new DDG from an
existing SWP motif. Variable lifetimes are shortened by reducing the iteration index of
some statements. This is similar to defining column numbers via retiming as we do in
Section 9.1.2. Second step tries to reduce MAXLIVE defined inside the kernel by com-
puting row numbers so that interferences are reduced.

Hypernode Reduction and SWING Modulo Scheduling [LVA95, LGAV96,
L1096] HRMS for Hypernode Reduction Modulo Scheduling [LVA95] is a heuristics
which constructs a SWP motif that shortens lifetimes while minimizing /1 at the same
time. Before scheduling, operations are ordered so that only all direct predecessors of a
node u or only all direct successors of u are scheduled before treating w. That is, authors
avoid scheduling direct predecessors and direct successors before scheduling u itself. Ac-
cording to which node has been scheduled first, their direct predecessors or successors are
scheduled as soon or as late as possible. However, this technique does not distinguish the
statements: those belonging to critical circuits are more critical than others.

SWING [LGAV96, L1096] overcomes HRMS drawback by taking into account laten-
cies. Statements producing values are placed near to their consumers in order to shorten

! Buffers are similar to circuit registers with maximal register sharing in Leiserson and Saxe terminology
[LS91].
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lifetimes. Full priority is given to statements belonging to critical circuits.

Universal Occupancy Vector [SCFS98] Strout et al [SCFS98] give a theoretical
formulation of the relationship between storage (memory) requirement and parallelism in
a loop nest. When an iteration i2 stores a value in the same location used by another
iteration f, this creates an output dependence between these two iterations with distance
7 L 7. Furthermore, if an iteration k reads the value defined by 7, this creates an anti-
dependence with distance k L 7. These distances are called Universal Occupancy Vectors
(UOV). The introduction of false dependences because of storage limitations create new
circuits that limit the throughput MII. So the problem is to find these UOVs. The
authors show that determining if a vector is a UOV is NP-complete and propose an
algorithmic approximation to find a good one.

Our reuse relation studied in previous chapter may be considered as a variant of UOV
since registers are indeed a memory. However, UOV defines reuse patterns between it-
erations and not statements. Hence, it cannot be used for register allocation because it
does not model precisely reuse relationship between statements. Furthermore, registers
are slightly different than classical memory cells since they are accessed directly (without
addressing) and need loop unrolling to be allocated.

Recently, Thies et al [TVSAO01] presented an application of UOV vectors for affine
scheduling of loop nests. They presented an elegant unified framework to determine a
good storage mapping for a given schedule, a good schedule for a given storage mapping,
and good storage mapping that is valid for all legal affine schedules. Their technique has a
direct application in the context of array expansion, where the cost of adding one dimen-
sion to an array may give more freedom for parallelism (removal of false dependences).
Our STRA reuse model can be considered as a specialization of this theoretical framework,
since we only consider registers as a storage mapping for innermost loops. However, reuse
graphs are especially thought up to be directly applied to cyclic register allocation in ILP
codes. Loop unrolling and hamiltonian reuse circuits are modeled in a better and simpler
way with reuse graphs. Furthermore, our reuse model enables us to prove that finding
the best reuse distances, with fixed reuse arcs, is a polynomial problem.

Integer Programming Techniques First, there are many approaches in the literature
that build SWP kernels under resource constraints. Hanen wrote an original formulation
to linearize the disjunctive resource constraints in [Han90]. The drawback of her formu-
lation is the fact that it treats only simple resources, i.e., an operation can execute only
on a single FU. Feautrier in [Fea94] extended this latter to take into account multiple
copies of one FU. However, his formulation does not treat complex and heterogeneous
FUs (structural hazards). Both Hanen and Feautrier intLP systems do not consider reg-
ister requirement.

Integer linear programming to build a SWP schedule under register constraints was
first introduced by Altman [Alt95, GAG94|. However, he did not exactly express the
register requirement, but an approximation based on the buffers. Thus, it cannot be
considered as an exact formulation of register need.

2Recall that iterations in multidimensional loops are vectors.
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Sawaya [ES96a, ES96b, Saw97] wrote an integer programming model which reduced
the exact register requirement. The complexity of his model was O(|V'| X Apqah) variables
and O(|E| + |V| X Apazh) constraints. Coefficients inside constraints matrix are upper-
bounded by Lez X Apmaz-

Another formulation was given in [EDA96] with O(|V| x h) variables and O(|E|+ |V| X
h) constraints, in which the coefficients inside constraints matrix are upper-bounded by
h X Apmaz. However, this model needs a fixed reservation table: the row numbers must be
computed and fixed in a first step so as to satisfy resource constraints. Then, it tries to
find column numbers that minimize MAXLIVE. A similar formulation to Eichenberger’s
intLP system was recently given by Huard in [HuaO1]. Indeed, the size of his constraints
matrix has the same complexity than Eichenberger’s method. However, Huard proved
that this problem is NP-complete in the strong sense (minimizing MAXLIVE under fixed
row numbers and initiation interval).

Recently, Fimmel et al have written in [FM01] an exact formulation of software pipelin-
ing under register and resource constraints. Since they compute the number of values
simultaneously alive at each time step within [0, A[, their intLP system generates an
equivalent number of variables and constraints as Sawaya’s method. However, as in our
model, they assume writing delays (offsets) such that a register does not have to be oc-
cupied before the operation result is available. Furthermore, they remarked that when
sharing of registers is disabled (as our self-reuse strategy), their intLP system is consid-
erably simplified. Indeed, we proved in the last chapter that this problem is polynomial
and can be formulated with a totally unimodular constraints matrix. Their constraints
matrix wasn’t proven so.

All the above intLP techniques suffer from their model size. Since they introduce h
in their size complexity, constraints matrix growth depends on specified latencies (input
data) and how nodes are connected (structure of the DDG). This is because they define
an integer variable for each clock cycle within the interval [0, [T that computes values
simultaneously alive. Our modeling is O(|V|?) variables and O(|E| + |V'|?) constraints
while coefficients are bounded by +L,,,, X Ajuee. This is because we compute MAXLIVE
by using circular intervals, i.e., only during dates when a value is defined or killed. Hence,
the number of variables and constraints in our intLP model depends only on the size of
the input DDG.

If we succeed in finding a SWP schedule that does not require more than R registers,
register allocation with R available registers can be performed. Some work in this field is
explained below.

11.3 Register Allocation of Software Pipelined Loops

Hendren’s Approach [HGAM92, H"92] Laurie Hendren et ol [HGAM92, H*92]
proposed a heuristics for cyclic register allocation based on an empirical remark: in al-
most all cases, a cyclic graph is R or (R + 1) -colorable (R is the maximal number of
values simultaneously alive). Thei heuristics proceeds by first trying to color the intervals
which cross the motif barrier. The intervals inside the motif itself are acyclic and hence
can be easily colored. If there are not enough registers, spill code is introduced. Cyclic
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life intervals with multiple turns around the motif may contain several colors which corre-
spond to the multiple copies of values: a first approach introduces some shift operations
to move these copies from one register to another. Introducing these extra operations
increase the initiation interval of the motif. Another approach consists in unrolling the
loop to exhibit the different copies and to allocate each copy to a different register.

Rotating Register Files [RLTS92] Rau [RLTS92| proposed a method for a cyclic
register allocation if a rotating register file (RRF) is present. After determining the SWP
motif, circular lifetime intervals are completely defined. If the underlying hardware does
not implement a RRF, we must unroll the loop and rename the copies of values in order
to avoid conflicts. In the presence of a RRF, we only consider the motif without unrolling
for cyclic register allocation. The problem becomes to fit all the circular intervals into a
cylinder where its axis is the time (in terms of clock cycles) while minimizing its circum-
ference as shown in Section 7.5. Experimental results show that in 80% of the cases, the
gain in terms of required registers on a RRF is not significant compared to loop unrolling,
but the code is more compact.

Software Simulation of RRF [DGS92] Duesterwald et al [DGS92] introduced the
concept of register pipeline to improve the register reuse between iterations. It is a set of
registers allocated to lifetimes intervals without considering copies of values. It is indeed a
sort of software simulation of a rotating register file. Their approach consists of a variant
of graph coloring with multiple colors, since multiple physical registers may be assigned
to the same value to hold all its copies. In the presence of a RRF, the code is easily
generated without loop unrolling. Otherwise, they introduce move operations to simulate
a RRF, which may increase the Il and may need rescheduling the code if these move
operations do not fit into the kernel.

Meeting Graphs [ELM95, Lel96, ELM97, dWELM99] A complete theoretical
framework on cyclic register allocation was built by Eisenbeis and Lelait [ELM95, Lel96,
ELM97, dAWELM99]. They introduce the meeting graph structure defined in Section 7.5.
They show how to always find a cyclic register allocation with R registers if we sufficiently
unroll the already scheduled SWP motif. They proceed by decomposing the meeting
graph into elementary circuits, in which each circuit correspond to a reuse pattern. The
drawback was that the unrolling factor depended on the circuit decomposition, and it
was difficult to succeed in finding a circuit decomposition with a minimized unrolling
factor. However, in the presence of a rotating register file, a cyclic register allocation may
be done without unrolling [Lel96] if the meeting graph contained an hamiltonian circuit.
If no such circuit is present, they need a rotating register file with R + 1 instead of R
registers to build a cyclic register allocation.

11.4 Conclusion

This chapter presents most of related work in the field of register pressure in modulo
scheduled loops. While no study has been done in cyclic register saturation and suffi-
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ciency (as far as we know), many strategies rely on scheduling with a limited number of
registers. Register Allocation of such pipelined loops with R values simultaneously alive
needs R registers if loop unrolling is applied, or at most R + 1 in the presence of a RRF
(without loop unrolling). Almost all techniques described in this chapter do not consider
neither multiple register types nor explicit delays in reading from and writing into regis-
ters, while our model do.

Our approach is different since it takes into account register constraints prior to
scheduling. Two main strategies have been explored. First, the CRS and CRF anal-
ysis enables us to guarantee the existence of at least one valid SWP schedule under a
fixed number of registers with an optimized critical circuit. Then, we can apply schedul-
ing and register allocation in any order we want. The second strategy (SIRA) consists
in applying cyclic register allocation, prior to scheduling, directly into the DDG while
minimizing the critical circuit.
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Chapter 12

Future Research Proposals

Abstract
In this chapter, we provide some open problems and we propose some advanced
improvement for our register pressure thesis. We give our first ideas and impressions
about future research subjects.

12.1 Pursuing the Study

12.1.1 Algorithmic Solutions

This dissertation presents many algorithmic solutions for most of intLLP formulations, but
not for all of them. Two main algorithms are required.

Register Sufficiency As mentioned in Chapters 5 and 9, the problem of scheduling
parallel operations so as to minimize the register requirement without bounds on the total
schedule time remains an open problem (assuming infinite resources). We have no idea
about its complexity, except in the case of sequential codes, which is NP-complete. This
problem needs to be studied carefully.

Column Numbers for CRS Section 8.1.2 presents a heuristics for computing cyclic
register saturation (CRS) by first fixing column numbers. The intLP formulation maxi-
mizes the number of traversed motifs (turns around the circle). Unlike the minimization
version of this problem (solved by Leiserson and Saxe via a polynomial retiming algo-
rithm), we have no algorithm for this task, and no idea about the complexity of this
problem (is it NP-complete T).

SIRA Cyclic register allocation with SIRA is completely computed by intLP. Even if
we can use heuristics for solving intLP systems, algorithmic solutions are more suitable
in general compilers. We proved that fixing reuse arcs makes the problem polynomial.
We think that it can be easily solved via minimum cost flow algorithms. We advise to
focus on hamiltonian reuse circuits since they enable register sharing and exhibit good
experimental results. Also, these hamiltonian reuse decisions can be directly implemented
on rotating register files.
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12.1.2 Load-Store Optimization with Register Sufficiency

Section 9.2 investigates spill code insertion to reduce cyclic register sufficiency (CRF).
However, as explained before, we think that CRF must intervene during load-store opti-
mization process to keep some of the original spill code instead of inserting a new one.
We propose to re-think load-store optimization so that it becomes constrained by CRF.

12.2 Extending Architectural Model

12.2.1 Multiple Outputs to a Register File

Multiple outputs to a common register file type arise commonly, for instance a load with
auto increment of address. Our generic architectural model assumes that each operation
may use and produce multiple results, but writes into only one register per type. If the
loaded data is written into a register of type ¢ where the incremented address register is
of another type ¢, then our model considers this fact. If the load operation accesses a
register of type ¢ and increments another register of the same type ¢, then the current
model used in this thesis does not support this fact. However, our exact formulations can
obviously be extended to support it : for each operation u that writes k£ results of type t,
we consider k distinct lifetime intervals (uy, ..., ug), one for each produced value.

Fortunately, such model extension implies to re-think our algorithmic solutions. We
have to set some integer “cost” k per type on the nodes of the data dependence graph in
order to reflect the fact that an operation (node) has k results per type t. We used some
graph theory algorithms that are difficult to adapt in this case. For instance, minimal
chain (Dilworth) decomposition and graph retiming algorithms do not support integer
costs on nodes. Some graph theory efforts must first be done.

12.2.2 Non Regular Register Sets

Our architecture model has regular register sets: registers of the same type are identical.
However, in some architectures, register types are not canonical, i.e., some operations
may have the choice of writing into more than one register set (as clustered processors).
As a first solution, we can decide and fix (at the beginning) a unique register type in
which a statement writes. However, this may restrict the ability of using more available
registers since we cannot know in advance which register type is suitable for a value (so
as to reduce the register requirement). Another solution can be an iterative strategy: we
can use a heuristics to decide at the beginning in which register type resides a value, and
we try to fit the register constraints for all the register types for the fixed decision. If not,
we iterate over another decision. However, the number of choices may be combinatory
in function of the number of register types. We circumvent this problem by considering
virtual register types as described in [ZWO01] which tries to extend [CER99]. A virtual
register type is a combination of the original types. This creates new canonical virtual
types where each new type is composed of a union of some of the original types. This
allows us to use our loop/architecture model. Nevertheless, we must come back at the
end to the original register types by doing a register assignment phase, i.e., to decide in
which type of registers resides a value. Unfortunately, they did a mistake. Contrary to
what has been stated but not proven in [ZWO01], the existence of a valid schedule under
the register constraints with the virtual types does not guarantee the existence of a valid
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register assignment. This is because a value lifetime interval may need to change a register
type at a certain point of time in order not to exceed MAXLIVE. We can handle this
aspect by inserting move operations, but this is another issue.

12.2.3 Cache Effects

In the area of fine grain scheduling, the cache effects are rarely taken into account be-
cause their behavior differs from one platform to another. Furthermore, recovering from
cache effects by data prefetching (early scheduled loads) may require more registers to
issue more operations during miss stall cycles, and sometimes may require extensive code
size expansion due to loop unrolling to exhibit more parallelism. To exploit this ILP, the
memory load which causes a cache miss must be issued well ahead of the operation that
requires the loaded data in order to reduce the cache miss stall cycles to a minimum.

In [TouOlc, we give a first intLP formulation of optimal scheduling with cache effects.
That work handles only compulsory (cold start) cache misses in DAGs where memory
access operations exhibit some spatial or temporal locality. We propose to continue the
study to the cyclic case (loop) with a limited cache size. This section shows how cache
misses can be incorporated into scheduling.

Given some memory load operations accessing the same cache line, the first issued
load causes a cache compulsory miss and brings the entire line into the cache, while the
subsequent accesses to the loaded cache line are hits. To fix ideas, we assume the fol-
lowing scenario. We call a leading cache effect the penalty for a miss reference, and we
note it lce. A subsequent reference to the same cache line suffers from a trailing cache
effect tce due to the latency of fully servicing the miss: the requested data which causes
the miss bypasses the cache and goes directly from the memory bus to the CPU, while
the subsequent hits must wait tce cycles for loading the whole cache line into the cache.
According to this scenario, cache effects make the memory operation latencies variable
that depend on their schedule times. There is an inter-dependence between the schedule
and the cache effects. For instance, suppose that a load operation a is scheduled before
b and ¢, all of them access the same cache line. This load is an essential (compulsory)
miss which can not be eliminated, then the latency of @ must be set to 6(a) = lce if we
want to avoid stalling the processor. In order to eliminated the trailing cache effects of b
and ¢, we must issue them after the schedule time of a with at least (lce+tce) clock cycles.

To write the linear constraints of cache effects in acyclic scheduling with infinite cache
capacity, we start by grouping memory access operations into subsets V), C V), such that
all the operations belonging to the same subset V;, access the same cache line ¢. To identify
which load operation is being scheduled first and causes a miss, we define a variable m;
for each subset V}, which holds the first (minimal) issue time:

YV, CV, m; = min g,
uevy,

Any memory access operation u € V, scheduled at time m; must have a miss latency to
avoid stalling the processor. We write in the model the following linear constraints:

vV, TV, Yu eV, (0w = my) = (6, = lce)
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in which ¢, is an integer variable representing the latency of the load operation. All the
subsequent memory access operations in Vj, are hits and must be delayed to avoid the
trailing edge effects. We write in the model the linear constraints of:

0y = hit

. C - i
YV, C Vi, Yu eV, (0u>m2):>{guj_mi2lce+tce

The total number of these linear constraints and variables is bounded by O(|V]).

12.3 Extending Loop Model

12.3.1 Branches inside Loops

Our loop model doesn’t include control dependences inside bodies. This problem is still
not well solved because the presence of branches inhibits static data dependence analysis
from extracting precise flow information, and hence prevents us from getting precise life-
times intervals. Furthermore, it is questionable if SWP with branches would give better
speedups compared to speculative execution.

Note that the IF-conversion technique converts control flow to predicated instructions.
Therefore, control dependences become data dependences [Hu00]. Since branches are
removed, guards add new values and flow arcs of type “predicate”, which are taken into
account in our model. We must make a deeper study on the influence of such guards on
lifetimes intervals, for instance by using a guard-aware data flow analysis [GcRJJS96] in
loops.

12.3.2 Loop Nest

Software Pipelining is generally applied to innermost loops because the fine grain par-
allelism is enhanced at this level. However, some work has been done for extending it
to the multi-dimensional case of perfectly nested loops [Ram94, GQD94]. Consider the
following code:

for I1 = 1_1, u_1

for Im = 1_m, u_m

S1 (I1, ..., Im)
Sk (I1, ..., Im)
endfor

endfor
A multi-dimensional periodic schedule of a perfect loop nest considers the iteration count

and the initiation interval are two integer m-vectors (m is the depth of the nest), i =
(i1,- -+ ,im) and h = (hy,- -+, hy). Then, a SWP is defined as follows:

o(u(@) =0, +hxi

where o, is the schedule of the first multi-dimensional iteration (ly,+-- ,l,;). Each com-
ponent of the initiation interval vector corresponds to a loop level in which h; denotes
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the initiation interval of the j** loop in the nest. If hj > 0, this means that the next
loop (j +1) has to be unrolled h; times. Ramanujam [Ram94] builds a schedule where h;
may be negative. This means that the next loop j + 1 has to be unrolled h; times in the
reverse order. The generated kernel for a multidimensional schedule is not as compact as
in the mono-dimensional case, but the sustained performance is optimal. Unfortunately,
the cyclic register requirement and allocation in the multidimensional case is not well
understood yet.

A Method as Starting Example In the case of non perfectly nested loops, we assume
that the scheduler would not overlap the iterations of two distinct loops. This section
presents a first method in order to deduce the cyclic register saturation of non perfect
loop nest. To fix ideas, consider the following example :

LOOP1: FOR i=1, n

S1: A(i)= A(i-2) * 2

LOOP2: FOR j=1, m

S2: B(i,j) = A(i-1) +y

S3: c(i) =BG, j)

S4: D(j) = D(j-2) +1
ENDFOR

S5: x = A@) - 3

LO0OP3: FOR j=1, m

S6: E(j) = A@Gi-1) / x

S7: F(j) = E() + F(j-2)

S8: G(j, 1) = G(j-2, 1) + E(J)
ENDFOR

S8: y = A(i-1) + x

ENDFOR

The data flow graph with the control dependences (program dependence graph PDG) is
shown in Figure 12.1.(a) in which arc labels denote dependence distances (some have two
dimensions since the depth of the loop nest is 2). Values and flow arcs are shown with bold
lines, and control dependences are shown with dashed lines. A dashed block represents a
loop: an arc from a block A to another block B means that all the operations of A must
be scheduled before those of B. This PDG models the fact that the scheduler does not
overlap the iterations of two distinct loops. The steps of our (starting) heuristics which
computes the register saturation of this loop nest are the following.

1. We look for o9, 03 the two saturating SWP schedule for each of the two innermost
loops.

2. We extract the prologue and the epilogue of these inner loops and insert them into
the outer loop.

3. We construct a new PDG for the outer loop where each inner loop is considered as
an atomic loop operation. Figure 12.1.(b) gives the PDG constructed for the outer
loop. The two inner loops are considered as atomic operations which read (consume)
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(a)Merged Control and Data Flow Graph (b) The DDG of the Outer Loop

Figure 12.1: Flow Description in Non Perfectly Nested Loops
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a value (for instance, loop2 reads the value produced by S1). The prologue and
epilogue code is also presented with the correct flow and serial arcs.

4. We look for o, a saturation SWP schedule for the outermost PDG : reporting the
control dependences to the scheduler ensures that no iteration overlap is possible at
the first level of the loop nest.

5. At this point, we report the complete interference between the values in the loop
nest by replacing the atomic operation of the two innermost loops by their kernel
as shown in Figure 12.2. The values produced by the outermost loop interfere with
the values produced by the two innermost loops. The register saturation is equal to
the maximum number of values simultaneously alive.

s1

LOOP2

O 0N O TR~ W N PO

LOOP1

10 S5(0)

12 LOOP3
13

9

Time

Figure 12.2: Cyclic Register Saturation in Non Perfectly Nested Loops

Let us generalize to arbitrary loop nests. Our proposed heuristics first looks for a saturat-
ing schedule for each loop from the innermost to the outermost depth. At each level, we
consider the loops of the next level as atomic. Then, we reverse the traversal to replace
at each level (starting from the top to the innermost) all the atomic operations by the
kernels of their corresponding saturating schedules. The main steps of our approach are
the following.

1. Build a tree to reflect the loop nest: each loop corresponds to a node in the tree.
A node b is a child of a node a if the loop a surrounds the loop b, i.e., iff nest(b) =
nest(a) + 1.
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2. Proceed from leaf nodes by searching a saturating schedule for each loop. Algo-
rithm 10 gives a recursive method that saturates the cyclic register need of a loop
nest represented by a tree. It proceeds by first saturating the innermost loops. Then,
it builds a PDG for all the outer loops by considering loops of next level as atomic.
Note that for innermost loops, the scheduler may overlap iterations to build a SWP
schedule. In this case, we must extract the prologue and the epilogue operations
and insert them into the surrounding loop. We assume that any non innermost loop
is scheduled without iteration overlap because we report control dependences in the
PDG. Consequently, the prologue/epilogue code is inexistent.

3. From the top level to the leaf loops, replace the atomic operations by the kernels of
their corresponding saturating schedules. The register saturation is the maximum
number of values simultaneously alive produced in all the loop nest.

Algorithm 10 Saturate(T)
Require: A tree T of a loop nest.
[ — root(T)
if T.children(l) = ¢ then {innermost loop}
build a cyclic SWP saturating schedule for the DDG of the loop [.
else
for all I € T.children(l) do {a depth first traversal of the tree to saturate the inner
loops}
Saturate(T L {l'})
if T.children(l') = ¢ then {innermost loop}
insert the prologue/epilogue code of I'.
end if
end for
build the PDG of the loop [ by considering each child [ as an atomic loop node.
build a cyclic saturating schedule for the PDG of [.
end if

12.4 Reusing Other Storage Locations

A good perspective is to extend reuse graphs (SIRA) in order to take into account cache
lines instead of registers. The aim is to provide some compilation techniques for software
managed caches in which the compiler has the control on replacement policy. Reuse arcs
would express the fact that two memory operations reuse the same cache location. The
problem would be for instance to prevent a loop from accessing more cache lines than
cache capacity, or to decide which memory line should reside in the cache. Some work
[Gen98] addresses a similar problem that minimizes cache interferences.

Cache lines may also be replaced by memory cells. Hence, another perspective is
to study some new memory management techniques (used for out-of-core computation,
data layout optimization, etc.). In this case, a reuse arc would express the fact that two
virtual memory addresses share the same physical memory location. This perspective
is a continuation to some existing works about the tradeoff between parallelism and the
storage requirement in a loop nest [SCFS98, TVSAO1].
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Conclusion

This thesis, that we know it can never be exhaustive, addresses the area of register pres-
sure in ILP codes. The target architecture is sufficiently generic so that it models most of
existing ILP processors. In addition to parallel execution of operations, we assume mul-
tiple register files (or sets) with visible delays in reading from and writing into registers.

While most studies suggest that register constraints in ILP must be incorporated dur-
ing or after scheduling, our thesis proposes to come back to the first old strategies where
registers are handled earlier. We re-think these problems to take into account ILP: our
register pressure analysis takes care of critical execution paths so that the further sched-
uler would not be handicapped by useless serializations.

Dissociating register pressure from scheduling has many reasons.

A first goal is to build more generic optimizing compilers. While resource and archi-
tectural constraints are very heterogeneous from one processor to another, registers are
more generic. ILP scheduling is tightly dependent on the hardware, hence compiling for
distinct target architectures requires re-writing this phase.

A second reason for decoupling register constraints from ILP scheduling is that memory
wall is the hardest performance bottleneck in today processors, much more harder than
ILP extraction and utilization. It is an important necessity to avoid requesting data from
memory by making the best use of available registers.

Third and last, register pressure is more difficult to handle than scheduling under re-
source constraints. This is because we are always sure to have at least one valid schedule
for any data dependence graph (DDG) on any target processor, while we cannot guarantee
the existence of such schedule under a limited number of registers without spilling.

Our thesis contributes to register pressure optimization with two distinct strategies,
both of which do not require full re-writing of compiler backends.

The first strategy is aimed at existing ILP compilers where register allocation is per-
formed after or during scheduling. Our method is based on register saturation and suf-
ficiency analysis. It takes, prior but sensitive to ILP scheduling, an input DDG and
guarantees register pressure constraints. In one hand, the register saturation (RS) anal-
ysis allows to check if register pressure plays critical constraints on ILP scheduling. We
have proved that computing RS is an NP-complete problem. We have provided an opti-
mal method with integer programming, and an algorithmic heuristics that exhibit nearly
optimal results. If RS exceeds the number of available registers, serial arcs are introduced
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to limit values lifetimes interferences so as to reduce RS while optimizing the increase
of critical execution path. An optimal solution to this problem is proved NP-hard. We
have provided an optimal method based on integer programming as well as efficient algo-
rithmic heuristics. On the other hand, register sufficiency (RF) analysis allows to check
if spill code may be avoided before entering instruction scheduling process. In order to
compute RF, we have also provided an optimal method with integer programming and an
algorithmic heuristics. If RF exceeds the number of available registers, we have proposed
an approach that inserts memory operations into DDGs so as to reduce RF. However, we
think that RF analysis must take part in the redundant load/store removal phase so as
to keep some of the original spill operations.

Regarding the second strategy, it is aimed at existing compilers that perform an early
register allocation step, originally written for sequential code. This old scheme isn’t
adapted to ILP processors. So, we just improve it by replacing the register allocation
phase by our SIRA technique (Schedule Independent Register Allocation) so that register
allocation leaves most of opportunities for ILP extraction. On one hand, register alloca-
tion in basic blocks is based on RS analysis. We try to use a maximal number of registers
so as to minimize ILP loss. On the other hand, register allocation in loops is modeled
by reuse relations so as to minimize the number of required registers under a fixed exe-
cution rate. We have provided a theoretical frameworks for register allocation with loop
unrolling as well as with rotating register files. While an optimal solution for SIRA in
NP-complete in the general case, we have proved that fixing reuse decisions yields to a
polynomial problem.

Finally, I want to say that I have felt a real pleasure of making this thesis in the INRIA
laboratory. I hope that it will contribute positively, would be this only with an epsilon
factor, to the preceding efforts in the field of code optimization for high performance
computing.
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Problem Complexity Proposed Solu- | Remarks
tions
RS Computation | NP-complete - exact (intLP, Sec-

(Chapter 4)

(Section 4.1)

tions 3.3 and 4.1)

- algorithmic heuris-
tics (Greedy-k, Sec-
tion 4.1.1)

- linear complexity in the
case of trees and forests of
trees

RS Reduction with
Minimal Critical
Path (Chapter 4)

NP-hard
tion 4.2)

(Sec-

- exact (intLP, Sec-
tions 3.3 and 4.2)

- algorithmic heuris-
tics (value serializa-
tion, Section 4.2.3)

RF Computation
(Chapter 5)

NP-complete for
sequential codes
[Set75], remains
open problem for
ILP codes

exact (intLP, Sec-
tions 3.3 and 5.1.1

algorithmic  heuris-
tics (value serializa-
tion, Section 5.1.2)

- resource constraints may
produce sub-optimal regis-
ter sufficiency

- the approximated RF is
valid for any resource con-
straint

RF Reduction with

NP-complete

algorithmic  heuris-

Minimal Num- | (classical  prob- | tics (Section 5.2)

ber of Introduced | lem)

load/store

Register Alloca- | NP-complete RS analysis + mini- | polynomial problem in the

tion with Minimal
Critical Path (Sec-
tion 4.3)

(classical ~ prob-

lem)

mal chain decompo-
sition (Section 4.3)

case of trees if RS is lower
or equal to the number of
available registers

Table 13.1: Summary of our Contributions on Register Pressure in DAGs and acyclic

CFGs
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Problem Complexity Proposed Solu- | Remarks
tions
CRS Computation | NP-complete exact (intLP, Sec-
(Chapter 8) (Chapter 8) tions 7.3 and 8.1.1)
heuristics : intLP + | the complexity of the
algorithm intLP part remains unde-
fined
CRS Reduction with | NP-hard (Sec- | exact (intLP, Sec-
Minimal Critical Cir- | tion 8.2) tion 8.2)
cuit (Section 8.2)
CRF Computation | NP-complete for | exact (intLP, Sec- | resource constraints may
(Chapter 9) sequential codes | tion 9.1.1) produce sub-optimal CRF
[Set75], remains
open problem for
ILP codes
algorithmic  heuris- | the approximated CRF is

tics : retiming + RF
(Section 9.1.2)

valid for any resource con-
straint

CRF Reduction | NP-complete algorithmic  heuris- | CRF must take part of
with Minimal Num- | (classical  prob- | tics redundant memory opera-
ber of load/store | lem) tions elimination step
(Section 9.2)
Minimal Cyclic Reg- | NP-complete exact (intLP, Sec- | minimizing the unrolling
ister Allocation with | (classical  prob- | tion 10.4) degree remains an open
Minimal Critical Cir- | lem) and hard problem
cuit (Chapter 10)
Minimal Cyclic Reg- | NP-complete exact (intLP, Sec- | - only a unique reuse cir-
ister Allocation with | (classical ~ prob- | tion 10.5) cuit (hamiltonian) is al-
Minimal Critical | lem) lowed
Circuit on Rotat-
ing Register Files
(Section 10.5)
- loop unrolling is not nec-
essary
- at most one extra register
needed
Minimal Cyclic Reg- | polynomial (Sec- | exact (intLP with

ister Allocation with
fixed reuse relations,
Critical Circuit Min-
imized (Section 10.6)

tion 10.6)

a totally unimodu-
lar constraints ma-
trix, (Section 10.6))

Table 13.2: Summary of our Contributions on Register Pressure in Innermost Loops

(without branches)
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