

Equilibres oxydo-réducteurs dans les MQ₂ (M = Pt, Pd; Q = Se,Te) -Influence de la pression sur la redistribution du nuage électronique

Institut des Matériaux Jean Rouxel

Laboratoire de Chimie des Solides

Jeudi 30 Septembre 2004

<u>1. Intérêt de l'étude haute pression pour les tellurures</u> potentialités de la haute pression intérêt de l'étude des tellurures sous pression choix des matériaux : analogie structurale avec IrTe₂

- 2. Etude expérimentale et théorique de PtTe₂
- 3. Etude expérimentale et théorique de PdTe₂
- 4. Etude expérimentale et théorique de PdSe₂

Pourquoi la haute pression ?

Importantes potentialités de la haute pression :

Intérêt de l'étude haute pression des tellurures : exemple de IrTe₂

HfTe₂: structure CdI₂ classique

IrTe₂: structure CdI₂ polymère

lacune de vdw

c/a = 1,68

transfert sp(Te) → d(M) c/a = 1,38 créations trous

Intérêt de l'étude haute pression des tellurures : MTe₂ - 2D

Effet de la pression sur IrTe₂ : nouvelles variétés allotropiques

Développement d'une chimie des trous = variation de la charge de l'anion au lieu du cation par modulation (mécanique) des liaisons Te-Te

→ compréhension des mécanismes rédox accompagnant les transferts et réarrangements structuraux

→ stabilisation de nouvelles variétés allotropiques

• Comment continuer ce type d'étude?

• Quels matériaux choisir?

Choix des matériaux soumis à haute pression

PtTe₂ et PdTe₂ : structure à pression ambiante voisine de IrTe₂

	Te-Te	Te-Te	c/a	$\chi(M)$	$V(A^3)$
	(interfeuillet)	(intrafeuillet	:)		
PdTe ₂	3,333Å	3,441Å	1,27	2,20	72,33
PtTe ₂	3,464Å	3,526Å	1,30	2,28	73,28
rTe ₂	3,498Å	3,558Å	1,38	2,20	75,47

 $M(0\ 0\ 0)$ et $Te(1/3\ 2/3\ z)$

Furuseth et al, Acta Chem. Scan. 19, 257 (1965). *Groenvold et al., Acta Chem. Scan.* 14, 1879 (1960).

Mais systèmes non isoélectroniques

Comportement analogue à IrTe₂ sous haute pression?

1. Intérêt de l'étude haute pression sur les tellurures

<u>2. Etude de PtTe</u>₂

diffraction X sous haute pression : évolution structurale

Etude des structures électroniques : différence par rapport à IrTe₂

3. Etude expérimentale et théorique de PdTe₂

4. Etude expérimentale et théorique de PdSe₂

PtTe₂: diffraction X sous pression

Pas de transition de phase à T ambiante ?

PtTe₂: résultats des affinements Rietveld

PtTe₂ : résultats des affinements Rietveld et évolution structurale

Type CdI₂ polymère conservé pendant compression

Confirmation de l'absence de transition pour PtTe₂

Origine de l'absence de transition dans PtTe₂?

 $IrTe_2 = transfert \, \acute{e}lectronique \, sp(Te) \rightarrow d(M)$

Concentration-seuil en trous atteinte

PtTe₂ = **absence** ou **insuffisance** du transfert électronique ?

Evolution de l'équilibre des charges sous pression

PtTe₂ : Equilibre des charges et Nombre d'oxydation ajusté (NOA)

<u>Ou'est-ce qu'un NO?</u>

A--B avec $\chi_A > \chi_B$, entiers

Pourquoi s'y intéresser ?

équilibres rédox → transferts électroniques + réarrangements structuraux possibles

Quelles sont ses limites ?

Environnements très différents

Introduction d'un NO ajusté (NOA) à la covalence, fractionnaire

PtTe₂ : Equilibre des charges et Nombre d'oxydation ajusté (NOA)

NO(Pt) = +4 pas de sens chimique \Rightarrow NOA(Te) = -1,5 ?

PtTe₂: nouvel équilibre des charges à pression ambiante

Analyse des distances Te-Te = comparaison entre composés

Groupements (Te_n)^{x-}

Te-Te > Te-x-Te-x (0 < x < 1)

 $Ni(Te^{-1,2})_2 < Pt(Te^{-n})_2 < Ir(Te^{-1,5})_2$

NOA(Te) $\approx -1,5$

PtTe₂: nouvel équilibre des charges à pression ambiante

Charges partielles sur d(M): $Pt = 7,6 e^{-1}$ $Ir = 6,7 e^{-1}$

1 e- supplémentaire sur Pt / Ir

PtTe₂ : effet de la pression sur l'équilibre des charges

 $Pt^{3+}(Te^{-1,5})_{2}$

Pas de modification de l'équilibre des charges sous pression = pas de transfert électronique = pas de transition

Qu'en est-il pour PdTe₂?

- 1. Intérêt de l'étude haute pression sur les tellurures:
- 2. Etude expérimentale et théorique de PtTe₂
- 3. Etude expérimentale et théorique de PdTe₂
 - **Diffraction X sous haute pression : évolution structurale**
 - **Etude des structures électroniques : différence par rapport à IrTe₂**
 - **PdTe₂ : étude du Te élémentaire comme modèle** prédictif
 - **Caractérisation thermodynamique**
- 5. Etude expérimentale et théorique de PdSe₂

PdTe₂ : diffraction X sous pression

Elargissement et diminution intensité liés à pression Ni apparition ni disparition de pics

PdTe₂ : résultats des affinements Rietveld

gof = 0,37 Rwall = 0,037

Comportement haute pression de PdTe₂

PdTe₂ : évolution structurale

PdTe₂ : évolution structurale

Sous-réseau $2/_{\infty}$ [Te] en nid d'abeille = même forme que Te-type As

	Те-Те	Te-Te
	interfeuillet	intrafeuillet
PdTe ₂ (20 GPa)	2,68 Å	3,95 Å
As (3 GPa)	2,87 Å	3,48 Å

Etude Te élémentaire = modèle prédictif pour $PdTe_2$?

6 variétés allotropiques :

β-Po, 3D, CN = 6

Stabilité relative des polymorphes gouvernée par le caractère covalent

Transition Te-I' (As) \rightarrow Te-II/III (mono)

Transition Te-II/III (mono) \rightarrow Te-IV/V (β -Po)

PdTe₂ : expériences haute température

Chauffage résistif 300°C, ID30

Pas de transition supplémentaire induite par T

1) PdTe₂ subit-il une transition de phase ?

2) Comment expliquer l'augmentation des distances Pd-Te ?

3) Quelle est l'influence de la pression sur l'équilibre des charges ?

PdTe₂ : caractérisation thermodynamique

Pas de transition (point de vue thermo)

1) PdTe₂ subit-il une transition de phase ?

2) Comment expliquer l'augmentation des distances Pd-Te ?

3) Quelle est l'influence de la pression sur l'équilibre des charges ?

PdTe₂: nouvel équilibre des charges à pression ambiante

 $NOA(Te) \approx -1 \Rightarrow Pd^{2+}(Te^{-1})_2$

PdTe₂ : nouvel équilibre des charges à pression ambiante

Charges partielles sur d(M): Pd = 8,2 e⁻ (+0,5/Pt)

PdTe₂: effet de la pression sur l'équilibre des charges

18 GPa, réseau de type As = $Pd^0Te_2^0$?

Evolution des distances :

 $Pd^{1+}(Te^{-0.5})_2$ ou $Pd^{2+}(Te^{-1})_2$

Distances Pd-Te

$$Pd^{2+}(Te^{-1})_2 \xrightarrow{?} Pd^{1+}(Te^{-0.5})_2$$

Pression = transfert électronique ou redistribution du nuage électronique

Comportement d'autres sous-réseaux anioniques d'éléments lourds = MSe₂ ?

Tendances structurales dans les MSe₂

R. Rouxel et al., Comments Inorg. Chem. 14 (1993) 207

Barricelli, L.B., Acta Cryst. 1 (1967) 1948.

• Ir⁺⁴ • Se⁻²

Tendances structurales dans les MSe₂

c/a faible = transfert e- + répulsion entre orbitales p remplies D. Dai et al., JSSC, 173 (2003) 114

Tendances structurales dans les MSe₂

$PdSe_2 = structure originale$

PdSe₂ : description structurale dans les conditions ambiantes

Gronvold, F.; Rost, E., Acta Cryst.1 (1967) 1948.

Structure 2D, paires Se₂, Pd²⁺(Se₂)²⁻

PdSe₂ : mise en évidence de la transition par EDX

Ligne DW11, LURE

Élargissement et diminution en intensité des pics puis mieux définis Disparition (1) et apparition (2) de pics

PdSe₂ : affinements Le Bail

Egalisation paramètres de maille \rightarrow maille cubique = pyrite

PdSe₂ : modélisation de la transition par calculs VASP (1)

Optimisation de géométrie :

 $P = 0,1 \text{ GPa} \rightarrow \text{type PdS}_2$

P > 0,1 GPa \rightarrow type pyrite :

P(GPa)	10	20	30
a _{exp}	6,039	5,930	5,901
a _{calcul}	6,086	5,949	5,847
Erreur relative(%)	0,8	0,3	0,9

Validation des calculs par comparaison exp/théorie + transition displacive

PdSe₂ : modélisation de la transition par calculs VASP (2)

•<u>Calcul des distances</u> $d_{inter} = d_{intra}$ d_{inter}

Type PdS_2 : 4 voisins équivalents + 2 à plus grande distance

Effet de la pression : rapprochement feuillets 6 voisins équivalents

C. Soulard et al., Inorg. Chem. 43 (2004) 1943

PdSe₂ : interprétation électronique de la transition

Distorsion Jahn-Teller coopérative

Pas de transfert MAIS réarrangement électronique

PdSe₂ : caractérisation thermodynamique (1)

Transition displacive <u>MAIS</u> $\Delta V \neq 0$ (grandes incertitudes)

Vérification par calculs des potentiels thermodynamiques

PdSe₂ : caractérisation thermodynamique (2)

$$dg = -sdT + vdp$$
 et $dT = 0 \Rightarrow dg = vdp$

g discontinue \rightarrow 1er ordre

PdSe₂ : effet de la température (1)

EDX, ligne DW11

Réarrangement drastique de la structure : annonciateur transition

PdSe₂ : effet de la température (2)

ADX, ligne ID30

> 10 GPa type pyrite présent d'après exp à ambiante

Meilleure cristallisation nouvelle phase + disparition de la phase pyrite

PdSe₂ : effet de la température et identification nouvelle phase

•Haute pression = outil très porteur pour caractériser des nouvelles variétés allotropiques + étude des transferts/réarrangements e-

 Chimie des trous = pas aussi simple + difficulté à définir équilibre des charges

•Substitution de Te par halogène, synthèse sous pression

•Liens entre toutes les structures des MQ₂

Directeurs de thèse:

S. Jobic, M. Evain

Expériences HP:

P.E. Petit, P. Munsch, J.P. Itié, M. Mezouar, A.C. Dhaussy

Thermodynamique:

V. Grigorova

Calculs:

M.H. Whangbo, X. Rocquefelte, D. Dai, H.J. Koo

• RKmax = 7 \rightarrow 8 $\Delta E = 0.04$ Ry

• Convergence en énergie et en k points

• Incertitudes 10 meV/atome

PdTe₂: effet de la pression sur a combinaison des orbitales

P modifie les combinaisons entre orbitales

PtTe₂: effet de la pression sur la combinaison des orbitales

Pas de transfert de charges sous pression

PtTe₂: effet de la pression sur la redistribution du nuage électronique

Distorsion Jahn Teller coopérative (DJTC)

= minimiser les interactions magnétiques déstabilisantes 2C-2E entre 2 sites adjacents

Pyrite = interactions déstabilisantes suivant xyz