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Introduction

On s’intéresse à l’évolution de systèmes de particules se fragmentant au cours du temps. De
tels systèmes apparaissent dans des processus physiques variés : on peut penser par exemple à
la dégradation de polymères, à la fragmentation d’étoiles ou encore à l’industrie minière où des
blocs de roche sont brisés de manière répétitive jusqu’à l’obtention de petits fragments qui sont
ensuite traités chimiquement pour en extraire les minéraux.

Lorsque la fragmentation est intensive, on peut observer une perte de masse suite à l’appari-
tion de particules microscopiques, la masse perdue étant celle de l’ensemble de ces particules.
Cet ensemble, qui grossit avec le temps, est appelé poussière. Le thème principal de cette thèse
est l’étude d’un point de vue le plus souvent probabiliste, parfois déterministe, des fragmenta-
tions qui perdent de la masse par apparition de poussière.

Ce travail est divisé en quatre chapitres. Le premier chapitre est consacré à une famille de
modèles aléatoires et déterministes de fragmentation, et notamment à l’étude en fonction de la
dynamique de la fragmentation de l’existence de poussière et des propriétés asymptotiques de
sa masse. Le deuxième chapitre traite de la régularité de la masse de la poussière en fonction du
temps dans le cadre de fragmentations aléatoires vérifiant une propriété d’auto-similarité. Ces
mêmes fragmentations sont étudiées dans le troisième chapitre, qui est consacré à la description
de leur généalogie à l’aide d’arbres continus aléatoires. Enfin, le dernier chapitre, qui ne concerne
pas spécifiquement les fragmentations produisant de la poussière, porte sur l’étude de systèmes
avec fragmentation et immigration de particules et de leurs états d’équilibre.

Ces chapitres sont autonomes et sont rédigés en anglais. Les trois premiers chapitres sont, à
quelques modifications près, les versions d’articles publiés ([38],[39],[40]), le quatrième est une
version longue d’un article soumis pour publication.

Cette introduction a pour but de présenter les modèles de fragmentations avec lesquels nous
travaillons et de synthétiser les résultats de ce travail de thèse. Elle se compose de six parties :
une première partie introductive au sujet, quatre parties correspondant chacune à un chapitre
de la thèse et une conclusion.

0.1 Processus de fragmentation

En 1941, Kolmogorov [47] est le premier à considérer un modèle aléatoire pour la fragmenta-
tion. Son modèle est à temps discret n = 0,1,2,... et décrit l’évolution de particules se scindant
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en un nombre fini de morceaux à chaque étape. Il se construit par récurrence à partir de la
loi d’une suite finie aléatoire s1 ≥ s2 ≥ ... ≥ sN qui représente les fractions des masses des
morceaux obtenus. Les particules présentes à un temps n évoluent indépendamment les unes
des autres et suivent toutes la même dynamique : une particule de masse m au temps n se
scinde au temps n+ 1 en particules de masses ms1,...,msN où (s1,...,sN) est une suite aléatoire
de même loi que (s1,...,sN), indépendante de l’évolution du processus jusqu’au temps n. On
obtient ainsi une châıne de Markov homogène, dans le sens où la loi de cette châıne issue d’une
particule de masse m est la même que celle de m fois la châıne issue d’une particule de masse
1.

Nous nous intéressons ici à des modèles de fragmentation à temps continu généralisant celui-
ci. Ces processus sont à valeurs dans l’espace de suites décroissantes

S↓ =
{
s = (s1,s2,...) : s1 ≥ s2 ≥ ... ≥ 0,

∑
i≥1

si ≤ 1
}
,

muni de la topologie de la convergence terme à terme. Les termes d’une suite s ∈S↓ représentent
des masses de particules.

Définition 0.1 Soit (F (t),t ≥ 0) un processus de Markov à valeurs dans S↓, continu en proba-
bilité. Pour tout 0 < m ≤ 1, on note Pm la loi de F partant de (m,0,...). Le processus F est un
processus de fragmentation si pour tout t0 ≥ 0, conditionnellement à F (t0) = (s1,s2,...), le pro-
cessus (F (t + t0),t ≥ 0) a même loi que le processus obtenu en rangeant par ordre décroissant
les termes des suites F (i)(t), i ≥ 1, où les processus F (1),F (2),... sont indépendants, de lois
respectives Ps1,Ps2,... .

Cette propriété de fragmentation signifie simplement que les particules présentes au temps
t0, de masses s1,s2,..., vont évoluer indépendamment les unes des autres, chacune suivant une
loi qui ne dépend que de sa masse, à savoir, respectivement, Ps1,Ps2 ,... .

On peut construire de manière simple des exemples de tels processus. Soit ν une mesure
finie sur S↓ et α un réel. On part initialement d’une particule de masse m. Elle se fragmente
au bout d’un temps E de loi exponentielle de paramètre mαν(S↓) en particules de masses
mS1,mS2,... où S =(S1,S2,...) ∈ S↓ est une variable aléatoire de loi ν(·)/ν(S↓), indépendante du
temps E. Les particules obtenues se fragmentent à leur tour, suivant une dynamique similaire :
conditionnellement à E et S, soient (E(i),S(i)), i ≥ 1, des couples indépendants de variables
aléatoires où E(i) est distribuée suivant une loi exponentielle de paramètre (mSi)

αν(S↓) et
est indépendante de S(i), de loi ν(·)/ν(S↓). La particule de masse mSi se fragmente alors au

bout d’un temps E(i) en particules de masses mSiS
(i)
1 ,mSiS

(i)
2 ,..., ceci pour chaque i ≥ 1. On

construit ainsi par récurrence un système de particules où une particule de masse m présente à
un temps t se fragmente indépendamment des autres particules présentes avec un tauxmαν(ds).
Le processus de fragmentation F correspondant s’obtient en considérant à chaque temps t la
suite F (t) des masses des particules présentes, rangées par ordre décroissant. Notons que ce
processus possède une propriété d’auto-similarité : la loi de (F (t),t ≥ 0) sous Pm est la même
que celle de (mF (mαt),t ≥ 0) sous P1.
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Fragmentations auto-similaires

D’une manière générale, si F est un processus de fragmentation et si la loi de (F (t),t ≥ 0)
sous Pm est la même que celle de (mF (mαt),t ≥ 0) sous P1 pour tout m ≤ 1, on dit que
la fragmentation est auto-similaire d’indice α, α ∈ R. Ce paramètre α influence la vitesse de
fragmentation : lorsque α est positif, une particule se fragmente d’autant moins vite que sa
masse est petite et par conséquent la vitesse de fragmentation des particules ralentit au cours
du temps; tandis que si α est négatif une particule se fragmente d’autant plus vite que sa
masse est petite et la fragmentation des particules s’accélère. Dans le cas particulier où α = 0,
le taux de fragmentation d’une particule ne dépend pas de sa masse et la fragmentation est
dite homogène. Ces fragmentations auto-similaires ont été introduites et étudiées par Bertoin
([13],[14]) en 2001.

Bertoin [13] et Berestycki [9] montrent que la loi d’un processus de fragmentation homogène
F est entièrement caractérisée par deux paramètres : un coefficient d’érosion c ≥ 0 et une mesure
de dislocation ν sur S↓ qui ne charge pas (1,0,...) et telle que

∫
S↓

(1−s1)ν(ds) <∞. L’érosion est

un phénomème déterministe : le processus F peut s’écrire sous la forme F (t) = exp(−ct)F (t)
pour tout t ≥ 0 où F est un processus de fragmentation homogène sans érosion (c = 0) et
de même mesure de dislocation ν. Cette mesure ν décrit, par l’intermédiaire d’un processus
ponctuel de Poisson, la structure des sauts de F : informellement, la mesure ν(ds) représente
le taux de fragmentation d’une particule de masse m en particules de masses ms, s ∈S↓.

Bertoin [14] montre qu’à l’aide d’un changement de temps aléatoire complexe - que nous ne
détaillons pas ici - et bijectif, tout processus de fragmentation auto-similaire peut être trans-
formé en un processus de fragmentation homogène. La loi d’un processus de fragmentation
auto-similaire est donc caractérisée par trois paramètres : l’indice d’auto-similarité α, le coef-
ficient d’érosion c et la mesure de dislocation ν du processus homogène associé. La structure
des sauts d’un processus de fragmentation auto-similaire peut se résumer ainsi : une particule
de masse m se disloque en particules de masses ms, s ∈S↓, à un taux mαν(ds). Lorsque ν est
finie et c = 0, on retrouve les modèles décrits ci-dessus, où les particules attendent des temps
de lois exponentielles avant de se fragmenter.

Dans la suite, sauf cas particulier, on considèrera toujours que l’état initial d’un proces-
sus de fragmentation F est composé d’une seule particule de masse 1, c’est-à-dire :
F (0) = (1,0,...).

Fragmentation d’intervalles

Une fragmentation d’intervalles est une famille d’ouverts aléatoires emboités (I(t),t ≥ 0) de
(0,1) (I(t) ⊂ I(t′) lorsque t′ ≤ t) issue de I(0) = (0,1) et vérifiant une propriété de fragmentation
- et le cas échéant d’auto-similarité - semblable à celle d’une fragmentation à valeurs dans S↓.
Elle donne une structure généalogique de la fragmentation. Voici un exemple : si (Un,n ≥ 1)
est une famille de variables aléatoires indépendantes et uniformément distribuées sur (0,1) et si
(N(t),t ≥ 0) est un processus de Poisson de paramètre 1 indépendant de cette famille, alors le
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processus I défini par I(t) = (0,1) \{Un,n ≤ N(t)}, t ≥ 0, est une fragmentation auto-similaire
d’indice 1.

Il est possible d’associer à chaque fragmentation auto-similaire F un processus de fragmen-
tation (IF (t),t ≥ 0) à valeurs dans les ouverts de (0,1), de même indice d’auto-similarité que F ,
de sorte que si F ′(t) désigne la suite décroissante des longueurs des composantes connexes de

IF (t), t ≥ 0, alors F ′
loi
= F [14]. On dit alors que IF est une fragmentation d’intervalles associée

à F . Réciproquement, les suites rangées par ordre décroissant des longueurs des composantes
connexes d’une fragmentation auto-similaire (I(t),t ≥ 0) à valeurs dans (0,1), donnent une frag-
mentation auto-similaire à valeurs dans S↓. Notons qu’il existe également une correspondance
entre les lois des processus de fragmentation auto-similaires à valeurs dans S↓ et celles de pro-
cessus de fragmentation auto-similaires à valeurs dans les partitions de N∗= {1,2,...} ([9], [13],
[14]). C’est par l’intermédiaire des ces fragmentations à valeurs dans les ouverts de (0,1) et dans
les partitions de N∗ que Bertoin et Berestycki montrent leurs résultats sur la caractérisation
des fragmentations auto-similaires par les triplets (α,c,ν).

Le processus du fragment marqué

La structure d’un processus de fragmentation est complexe et parfois difficilement exploitable
pour obtenir des renseignements sur la fragmentation. Cette difficulté peut souvent être con-
tournée en utilisant le processus du fragment marqué. Soit F un processus de fragmentation
et IF une fragmentation d’intervalles associée. Soit U (la marque) une variable aléatoire uni-
formément distribuée sur (0,1), indépendante de IF . On s’intéresse à l’évolution au cours du
temps de l’intervalle de IF contenant U et on note Λ(t) sa longueur au temps t. Dans le cas
homogène, la construction Poissonnienne de la fragmentation implique l’existence d’un subor-
dinateur ξ [13], c’est-à-dire d’un processus croissant, càdlàg, à accroissements indépendants et
stationnaires, tel que

Λ
loi
= (exp(−ξ(t)),t ≥ 0).

Il est bien connu [10] qu’un subordinateur est caractérisé par son exposant de Laplace φ
(∀t,q ≥ 0, E [exp(−qξ(t)] = exp(−tφ(q))), et celui-ci s’exprime ici en termes du coefficient
d’érosion et de la mesure de dislocation, par

φ(q) = c(q + 1) +

∫

S↓
(1 −

∑
i≥1

sq+1
i )ν(ds), q ≥ 0. (1)

Dans le cas d’une fragmentation auto-similaire, le passage par changement de temps à une
fragmentation homogène et le résultat ci-dessus impliquent ([14]) que

Λ
loi
= (exp(−ξ(ρ(t))),t ≥ 0),

où ρ(t) = inf
{
u ≥ 0 :

∫ u
0

exp(αξ(r))dr > t
}
, t ≥ 0.

Les subordinateurs sont des processus bien étudiés ([10],[11]) et l’expression du fragment
marqué Λ comme fonctionnelle d’un subordinateur va nous apporter de précieuses informations
sur la fragmentation. Il faut préciser cependant que la loi de F n’est pas caractérisée par celle
de Λ, puisque deux fragmentations auto-similaires de paramètres différents peuvent avoir des
processus du fragment marqué de même loi.
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Fragmentation brownienne

On présente ici un exemple de processus de fragmentation construit à partir d’une excursion
brownienne normalisée (e(x),0 ≤ x ≤ 1) (informellement, e est un mouvement brownien sur
l’intervalle unité, conditionné à valoir 0 en x = 0 et en x = 1 et à être strictement positif
sur (0,1)). Cet exemple a été introduit et étudié par Bertoin [14] et va illustrer et motiver les
résultats des 4 chapitres de cette thèse. Pour tout t ≥ 0, soit

Ie(t) = {x ∈ (0,1) : e(x) > t}

et Fe(t) le réarrangement par ordre décroissant des longueurs des composantes connexes de
Ie(t). En utilisant la théorie des excursions browniennes, Bertoin montre que les processus
(Ie(t),t ≥ 0) et (Fe(t),t ≥ 0) sont des processus de fragmentation auto-similaires d’indice
αe = −1/2, sans érosion et de mesure de dislocation νe donnée par

νe(s1 ∈ dx) =

√
2√

πx3(1 − x)3
dx, x ∈ [1/2,1) et νe(s1 + s2 < 1) = 0.

La fragmentation est binaire : à chaque dislocation une particule se scinde en deux morceaux.
Ceci résulte du fait que les minima locaux du mouvement brownien sont presque sûrement
disjoints.

Il est évident sur cet exemple que la masse totale
∑

i≥1(Fe)i(t) décroit et atteint 0 en un temps
fini (égal à maxx∈[0,1] e(x)). Pourtant, il n’y a pas d’érosion et au moment où un intervalle se
disloque en sous-intervalles disjoints, aucune masse n’est perdue puisque la somme des longueurs
des sous-intervalles obtenus est égale à celle de l’intervalle qui vient de se disloquer. La masse
perdue au temps t, à savoir 1−∑i≥1(Fe)i(t), est la masse de la poussière (ensemble des particules
de masse 0) qui s’est formée suite à une accélération de la fragmentation.

Formation de poussière

Dans un système de fragmentation, la poussière peut apparâıtre de trois façons : soit par
érosion, soit au moment où une particule se disloque (la masse des morceaux obtenus est stricte-
ment plus petite que la masse de la particule qui vient de se disloquer), soit par accélération
de la fragmentation. Ce dernier phénomène est le plus intéressant et on peut espérer l’observer
lorsque les temps de fragmentation des particules s’accumulent, ce qui produit en temps fini des
particules de masse 0. Ceci peut être vu comme le phénomène dual de la gélification (apparition
d’une particule de masse infinie) qu’on observe dans certains systèmes de coagulation (voir par
exemple [41], [58]).

On considèrera dans la suite qu’il y a formation de poussière pour la fragmentation F si la
quantité de poussière produite est non négligeable, c’est-à-dire si elle occassionne une perte de
masse. Ceci se traduit par l’existence d’un temps t tel que la masse

∑
i≥1 Fi(t), qui ne tient pas

compte des particules de masse 0, soit strictement plus petite que sa valeur initiale, à savoir 1.
La différence 1 −∑i≥1 Fi(t) mesure la masse de poussière.
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L’apparition de poussière dans certaines fragmentations a été observée pour la première
fois par Filippov, un élève de Kolmogorov, en 1961 [35]. Dans le cas particulier d’une frag-
mentation auto-similaire d’indice α sans érosion et de mesure de dislocation ν finie telle que
ν(
∑

i≥1 si < 1) = 0 (aucune poussière n’est formée au moment où une particule se disloque),
son résultat s’énonce ainsi : il y a formation de poussière si et seulement si α < 0. En 2003,
Bertoin [15] généralise ce résultat au cas où ν est infinie : il y a formation de poussière si et
seulement si α < 0 et plus précisément, si α < 0, la masse initiale est entièrement réduite à
l’état de poussière en un temps presque sûrement fini.

La formation de poussière a intéressé également des physiciens (Edwards et al. [31], McGrady
et Ziff [54]), dans les années 80. Ils ont abordé le problème d’un point de vue déterministe en
étudiant l’équation de fragmentation suivante

∂tnt(x) =

∫ ∞

0

(2F (y + x,x)nt(x+ y) − F (x,y)1{y<x}nt(x))dy. (2)

La quantité nt(x)dx correspond au nombre moyen de particules ayant une masse dans l’intervalle
[x,x + dx) au temps t. Le taux de fragmentation d’une particule de masse x en particules de
masses y et x − y est donné par F (x,y)dy et la symétrie du problème impose que F (x,y) =
F (x,x−y). La partie positive de l’intégrale traduit alors l’augmentation de particules de masse
x suite à la fragmentation de particules de masses plus grandes, tandis que la partie négative
correspond à la diminution de particules de masse x suite à leur fragmentation en particules
de masses plus petites. Les résultats obtenus dans les papiers [31] et [54] concernent des taux
de fragmentation du type F (x,y) = xα−1h(x/y) (ce qui correspond à l’auto-similarité du cas
aléatoire) pour certaines fonctions h, et sont analogues à ceux de Filippov : il y a formation
de poussière si et seulement si α < 0. Plus récemment, Jeon [42] et Fournier et Giet [36] ont
étudié l’apparition de poussière pour des familles de taux de fragmentation ne se factorisant pas
nécessairement sous la forme xα−1h(x/y). Nous renvoyons à leurs travaux pour des résultats
précis.

0.2 Formation de poussière pour les fragmentations (τ,c,ν)

Dans ce premier travail, nous nous intéressons à des processus de fragmentation où une
particule de masse m se disloque en particules de masses ms, s ∈S↓, à un taux τ(m)ν(ds),
où τ est une fonction continue sur (0,1] qui vaut 1 en 1. Lorsque τ(m) = mα on retrouve
les fragmentations auto-similaires. Ces processus se construisent à partir des fragmentations
homogènes à l’aide d’un changement de temps dépendant de τ , de manière analogue à la
construction des fragmentations auto-similaires à partir des fragmentations homogènes. Ils sont
donc caractérisés par 3 paramètres : τ, c et ν.

Le modèle déterministe correspondant est l’équation “(τ,c,ν)” suivante :

∂t 〈µt,f〉 =

∫ 1

0

τ(x)

(
−cxf ′(x) +

∫

S↓

[∑
i≥1

f(xsi) − f(x)
]
ν(ds)

)
µt(dx) (3)

et nous considérons qu’à l’état initial µ0 = δ1, c’est-à-dire qu’il n’y a que des particules de
masse 1. Ici, l’ensemble des fonctions test f est l’ensemble noté C1

c (0,1] des fonctions réelles
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à support compact dans (0,1] et de dérivée continue. La mesure de Radon µt(dx) correspond
à la quantité moyenne de particules ayant une masse dans l’intervalle [x,x+ dx) au temps t.
L’intégrale impliquant

∑
i≥1 f(xsi) −f(x) modélise le remplacement de particules de masse x,

suite à leurs dislocations, par des particules de masses xs, s = (s1,s2,...)∈S↓. Enfin, le terme
impliquant c correspond à l’érosion. Dans le cas particulier où c = 0, où ν(s1 + s2 < 1) = 0 et
où ν(s1 ∈ dy) = 21{1/2≤y<1}h(y)dy, on retrouve l’équation de fragmentation (2) avec F (x,y) =
τ(x)x−1h(y/x) où pour z < 1/2, h(z) est défini par h(z) = h(1 − z).

Comme dans le cas auto-similaire, on montre qu’un fragment marqué Λ dans le modèle
aléatoire (τ,c,ν) peut être représenté sous la forme Λ(t) = exp(−ξ(ρ(t))) pour tout t ≥ 0, où ξ
est un subordinateur dont la transformée de Laplace φ est donnée par (1) et ρ un changement
de temps dépendant de τ . En suivant ce fragment marqué, nous établissons le lien suivant entre
le processus et l’équation de fragmentation (τ,c,ν).

Théorème 0.1 Il existe une unique solution (µt,t ≥ 0) à l’équation (τ,c,ν). Cette solution
se construit à l’aide d’un processus de fragmentation F de paramètres (τ,c,ν) de la manière
suivante : pour tout t ≥ 0,

〈µt,f〉 = E
[∑

i≥1
f(Fi(t))

]
, f ∈ C1

c (0,1] .

On cherche ensuite à savoir quelles fragmentations (τ,c,ν) produisent de la poussière. Dans
le cas stochastique ceci se traduit par l’existence d’un temps t tel que

∑
i≥1 Fi(t) < 1 et dans le

cas déterministe par l’existence d’un temps t tel que
∫ 1

0
xµt(dx) < 1. Compte tenu du résultat

précédent, ces deux notions sont étroitement liées.

Bien sûr, il y a formation de poussière dès qu’il y a de l’érosion (c > 0) ou production de
poussière au moment de la dislocation d’une particule (ν(

∑
i≥1 si < 1) > 0). L’intérêt de cette

étude concerne les modèles où c = 0 et ν(
∑

i≥1 si < 1) = 0 et nous supposerons dans la suite de
ce chapitre que ces deux conditions sont toujours réalisées. En étudiant le premier instant où
le fragment marqué est réduit à l’état de poussière, on obtient le résultat suivant (la fonction
φ est définie à partir du coefficient d’érosion c et de la mesure de dislocation ν par la formule
(1)).

Théorème 0.2 (i) Il y a formation de poussière pour la fragmentation stochastique (τ,c,ν) avec
probabilité 0 ou 1 et cette probabilité est égale à 1 si et seulement s’il y a formation de poussière
pour la fragmentation déterministe (τ,c,ν).

(ii) Si τ est décroissante au voisinage de 0, il y a formation de poussière pour les fragmen-
tations (τ,c,ν) si et seulement si

∫

0+

φ′(x)

τ(exp(−1/x))φ2(x)
dx <∞.

Si τ ≤ τ̃ , la fragmentation (τ̃ ,0,ν) est plus rapide que la fragmentation (τ,0,ν) et les modèles
(τ̃ ,0,ν) produisent donc de la poussière dès que les modèles (τ,0,ν) le font. Par conséquent,
lorsque τ n’est pas décroissante au voisinage de 0, il suffit de la comparer à des fonctions
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décroissantes et d’appliquer le résultat (ii) pour obtenir des conditions nécessaires et/ou suff-
isantes pour la formation de poussière.

On voit en particulier qu’il n’y a pas de poussière dès que τ est bornée près de 0 et on
retrouve le résultat déjà connu du cas auto-similaire : il y a de la poussière si et seulement si
α < 0. Remarquons également que lorsque φ′(0+) <∞, le résultat (ii) s’énonce plus simplement
ainsi : si τ est décroissante au voisinage de 0, on a formation de poussière si et seulement si∫
0+ dx/xτ(x) <∞. Filippov [35] avait établi ce critère dans le cas particulier où ν est finie.

On se place maintenant dans le cadre stochastique et on s’intéresse au premier instant ζ où
toute la masse initiale est réduite à l’état de poussière, i.e.

ζ = inf {t ≥ 0 : F1(t) = 0} .

Lorsque la fragmentation est auto-similaire d’indice α < 0, on sait (Proposition 2, [15]) que ζ
est fini presque sûrement. Ce phénomène de perte de toute la masse initiale n’a pas toujours
lieu pour une fragmentation (τ,c,ν) même s’il y a formation de poussière. Pour établir le critère
caractérisant la formation de poussière, on a suivi le fragment marqué. Pour obtenir un critère
caractérisant la perte de toute la masse, on raisonne de même en suivant un fragment particulier,
qui est cette fois un peu plus gros, à savoir le processus du plus gros sous-fragment : ce processus
part du fragment initial de masse 1 et à chaque fois qu’il y a une dislocation, il suit le plus gros
sous-fragment obtenu. On établit ainsi le résultat suivant.

Proposition 0.1 Supposons que τ soit décroissante au voisinage de 0 et que ν intègre |log s1|.
Alors, la probabilité P (ζ <∞) est soit égale à 0 soit égale à 1 et elle est égale à 1 si et seulement
si
∫

0+ dx/xτ(x) <∞.

En utilisant ce critère et le théorème précédent, on peut alors construire des exemples de
processus de fragmentation tels qu’il y ait formation de poussière et que ζ = ∞ presque
sûrement (Chapitre 1.5.2).

En dehors de quelques cas particuliers, dont l’exemple de la fragmentation brownienne
développé précédemment, on ne connait pas explicitement la loi de ζ . On peut cependant
montrer que sa queue de distribution P (ζ > t) décroit exponentiellement lorsque t → ∞ si
τ(x) ≥ Cαx

α pour un certain α < 0 et une constante Cα > 0. Ce taux de décroissance peut
être précisé (Proposition 1.8) en fonction de la mesure ν. Il est à noter que la masse totale

déterministe m(t) =
∫ 1

0
xµt(dx) a le même comportement asymptotique lorsque t → ∞ que

P (ζ > t) (Proposition 1.6).

0.3 Régularité de la masse de poussière

On s’intéresse ici à la régularité de l’évolution de la masse de poussière M(t) = 1−∑i≥1 Fi(t)
d’une fragmentation auto-similaire F de paramètres (α,c,ν) sous l’hypothèse

α < 0, c = 0, et ν(
∑

i≥1
si < 1) = 0. (4)
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Commençons par regarder le cas de la fragmentation brownienne Fe où la masse totale
de la poussière au temps t est donnée par Me(t) =

∫ 1

0
1{e(x)<t}dx. En utilisant la formule

des temps d’occupation (voir par exemple [60]), on peut réécrire cette masse sous la forme
Me(t) =

∫ t
0
Le(u)du où Le est le processus de temps local de l’excursion brownienne. Il est bien

connu que le temps local Le(t) peut s’approximer par différentes fonctionnelles de l’excursion
brownienne et en particulier que pour tout t ≥ 0,

Le(t)
p.s.
= lim

ε→0

√
2π

ε
Me(t,ε)

p.s.
= lim

ε→0

√
2πεNe(t,ε)

où Me(t,ε) est la somme des longueurs des excursions de e au-dessus de t de longueur inférieure
à ε et Ne(t,ε) le nombre d’excursions de e au-dessus de t de longueur supérieure à ε. Du point de
vue de la fragmentation Fe, Me(t,ε) représente la masse totale de particules de masse inférieure
à ε présentes au temps t et Ne(t,ε) le nombre de particules ayant une masse supérieure à ε
présentes au temps t.

On cherche à savoir dans quelle mesure ces résultats se généralisent à une fragmentation
F de paramètres vérifiant l’hypothèse (4). On commence par étudier l’absolue continuité et la
singularité par rapport à la mesure de Lebesgue de la mesure dM . Sous une contrainte technique
sur la mesure ν (on renvoie au Théorème 2.1 pour un énoncé précis) on obtient :

Théorème 0.3 (i) Si α > −1 et
∫
S↓

∑
1≤i<j<∞ s

1+α
i sjν(dx) < ∞, alors presque sûrement la

mesure dM a une densité L par rapport à la mesure de Lebesgue et cette densité appartient à
l’espace L2(dt⊗ dP).

(ii) Si α ≤ −1, la mesure dM est p.s. singulière par rapport à la mesure de Lebesgue.

La preuve de la première assertion est plus technique que celle de la deuxième, qui repose sur
le fait (cf. [15]) que les fragmentations d’indice α ≤ −1 n’ont qu’un nombre presque sûrement fini
de masses non nulles à un temps t fixé, ce qui nous permet de conclure que ε−1(M(t+ε)−M(t))
converge vers 0 quand ε→ 0 presque sûrement pour presque tout t. L’existence d’une densité se
montre à l’aide du théorème de Plancherel. Le second moment de la transformée de Fourier de
la mesure dM est estimé en suivant deux fragments marqués indépendamment et en évaluant
le comportement de leurs masses au premier instant où ils sont disjoints.

Il est facile de vérifier que l’intégrale
∫
S↓

∑
1≤i<j<∞ s

1+α
i sjν(ds) est toujours finie lorsque

α > −1 et lorsque ν(sN > 0) = 0 pour un entier positif N (ce qui signifie que chaque particule,
à chaque étape, se disloque en N − 1 morceaux au plus). Pour de telles mesures de dislocation,
l’existence d’une densité pour le mesure dM ne dépend donc que de l’indice α et de sa position
par rapport à −1.

Introduisons maintenant, par analogie avec l’exemple brownien, la fonction

M(t,ε) =
∑

i≥1
Fi(t)1{Fi(t)≤ε},

qui mesure la masse totale des particules de masse inférieure à ε au temps t, et la fonction

N(t,ε) =
∑

i≥1
1{Fi(t)≥ε},
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qui compte le nombre de particules de masse supérieure à ε présentes au temps t. On pose
µ = φ′(0+), φ étant la transformée de Laplace (1) et on suppose dans le théorème suivant que
µ < ∞ et que la fragmentation n’est pas géométrique, c’est-à-dire qu’il n’existe pas de réel
0 < r < 1 tel que tous les Fi(t), t ≥ 0, i ≥ 1, appartiennent à {rk : k ∈ N}.

Théorème 0.4 Supposons que la mesure dM ait une densité L appartenant à Lp(dt ⊗ dP)
pour un p > 1. Alors, pour presque tout t,

εαM(t,ε)
p.s.→
ε→0

L(t)/ |α|µ

et
ε1+αN(t,ε)

p.s→
ε→0

L(t) (1 − |α|) / |α|2 µ.

Ce résultat se montre en deux étapes : tout d’abord, en utilisant la propriété d’auto-similarité
de la fragmentation, on établit que εαE[M(t,εD1/α) | F ] → L(t) p.s. quand ε→ 0, où D est une
variable aléatoire indépendante de F , de même loi que inf {t : Λ(t) = 0} le premier instant où le
fragment marqué a une masse nulle. On utilise ensuite un théorème taubérien qui nous permet
d’“oublier” D dans l’espérance précédente et d’obtenir la limite quand ε → 0 de εαM(t,ε).
Le comportement de N se déduit de celui de M à l’aide de théorèmes abéliens-taubériens.
Ce lien entre les comportements de M et N est montré par Bertoin dans [16], où il étudie le
comportement de ces fonctions quand ε → 0 dans le cas α > 0. Il est intéressant de noter la
différence de ses résultats avec ceux obtenus ci-dessus : quand α > 0 et à condition que ν vérifie
certaines propriétés de régularité, il existe une fonction f(ε) ne dépendant que de ν telle que
f(ε)M(t,ε) et εf(ε)N(t,ε) convergent presque sûrement vers une limite non triviale. Ici, lorsque
α < 0, les vitesses de convergence dépendent de α, pas de ν.

Lorsque α ≤ −1, on a vu que la mesure dM est singulière par rapport à la mesure de
Lebesgue. On peut préciser ce résultat en calculant sa dimension de Hausdorff dimH(dM).
On rappelle que la dimension de Hausdorff d’un sous-ensemble E d’un espace métrique est
l’infimum des γ > 0 tel que supε>0 inf(Bi)i≥1∈Cε(E)

∑
i≥1 |Bi|γ = 0 où Cε(E) est l’ensemble des

recouvrements de E par des boules de diamètre inférieur à ε. La dimension de Hausdorff de la
mesure dM est alors définie par

dimH(dM) = inf {dimH(E) : dM(E) = 1} .

Pour simplifier, on énonce ici le résultat dans le cas où ν(sN > 0) = 0 pour un certain N ∈ N.

Proposition 0.2 S’il existe un entier N tel que ν(sN > 0) = 0, alors dimH(dM) = 1 ∧ |α|−1

presque sûrement.

La mesure dM est donc portée par des ensembles d’autant plus “fins” que l’indice α est
négatif. La majoration dimH(dM) ≤ 1 ∧ |α|−1 est obtenue à l’aide d’une famille explicite de
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recouvrements d’un ensemble E portant la mesure dM . Pour la minoration, on utilise à nouveau
un couple de fragments marqués, ce qui nous permet de montrer que

E

[∫ ∞

0

∫ ∞

0

|u− t|−γ dM(u)dM(t)

]
<∞

dès que γ < 1 ∧ |α|−1. D’où la conclusion par application du lemme de Frostman.

Enfin, un dernier résultat sur la régularité de M concerne sa continuité höldérienne.

Proposition 0.3 Supposons que ν(sN > 0) = 0 pour un certain N ∈ N. Alors, il existe un
paramètre Cν ne dépendant que de ν tel que presque sûrement M est γ-höldérienne pour tout
γ < 1 ∧ (Cν/ |α|) et n’est pas γ-höldérienne pour tout γ > 1 ∧ (1/ |α|).

La masse M est donc d’autant moins régulière que l’indice α est négatif.

0.4 Généalogie des fragmentations auto-similaires d’indice

négatif

Ce travail, réalisé en collaboration avec Grégory Miermont, a été motivé par des exemples
de processus de fragmentation construits à partir d’arbres continus aléatoires tels qu’Aldous les
a introduits dans [2],[3]. Commençons par définir ces arbres.

Arbres continus. Un arbre réel est un espace métrique complet (T ,d) ayant une structure
d’arbre :

- ∀ (v,w) ∈ T 2, il existe une unique isométrie f(v,w) : [0,d(v,w)] → T telle que f(v,w)(0) = v
et f(v,w)(d(v,w)) = w; on note [[v,w]] son image.

- si f : [0,1] → T est une fonction continue injective telle que f(0) = v et f(1) = w, alors
f([0,1]) = [[v,w]].

On considèrera toujours qu’un arbre réel est enraciné; on note ∅ la racine. Une feuille de T
est un noeud de l’arbre qui n’appartient à aucun chemin de la forme [[∅,v[[, v ∈ T . On note
L(T ) l’ensemble des feuilles de T . Son complémentaire S(T ) = T \L(T ) est appelé squelette
de l’arbre.

Définition 0.2 Un arbre continu est une paire (T ,µ) où T est un arbre réel et µ une mesure de
probabilité non-atomique sur T qui ne charge que les feuilles et telle que
µ {v ∈ T : [[∅,v]] ∩ [[∅,w]] = [[∅,w]]} > 0 pour tout w ∈ S(T ). La mesure µ est appelée mesure
masse de l’arbre.

Aldous [2] a introduit la notion d’arbres continus aléatoires (dont l’abréviation anglaise est
CRT ) en construisant le “CRT brownien” comme limite d’arbres de Galton-Watson renor-
malisés. Une autre façon de construire cet arbre ([3]) consiste à partir de l’excursion brown-
ienne normalisée e : soit de(x,y) = e(x) + e(y) − 2 infz∈[x,y] e(z) une pseudo-distance sur
[0,1] et soit Te = [0,1] / ∼e l’espace métrique quotient associé à la relation d’équivalence
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x ∼e y ⇔ de(x,y) = 0. Alors, l’espace Te muni de la mesure µe induite par la mesure de
Lebesgue sur [0,1] est un CRT. La racine de cet arbre est la classe d’équivalence du point 0. La
fragmentation brownienne Fe se construit à partir du CRT (Te,µe) de la manière suivante : pour
tout t ≥ 0, Fe(t) est le réarrangement par ordre décroissant des µe-masses des composantes
connexes de {v ∈ Te : de(∅,v) > t}. D’autres exemples de fragmentations auto-similaires se con-
struisent de cette façon à partir de CRTs [56].

Il est naturel de vouloir généraliser ces exemples en associant à une fragmentation quelconque
un CRT décrivant sa structure généalogique. Les CRTs (T ,µ) ont leurs feuilles à distance finie
de la racine. Par conséquent, µ ({v ∈ T : d(∅,v) > t}) décroit vers 0 quand t → ∞ et seules
les fragmentations dont la masse totale diminue ont une chance de pouvoir être construites,
de manière analogue au cas brownien, à partir d’un CRT. On se place donc dans le cas où
α < 0. On suppose également que c = 0 (pour éviter d’obtenir une mesure masse chargeant le
squelette) et que ν(

∑
i≥1 si < 1) = 0 (pour éviter d’obtenir une mesure masse atomique). Sous

ces hypothèses, nous montrons le résultat suivant.

Théorème 0.5 Il existe un CRT (TF ,µF ) tel que si pour tout t ≥ 0, F ′(t) désigne la suite
décroissante des µF -masses des composantes connexes de {v ∈ TF : d(∅,v) > t}, alors F ′ a
même loi que F . De plus, l’arbre TF est p.s. compact et lorsque la mesure de dislocation intègre
la fonction (s−1

1 − 1), dimH(L(TF )) = |α|−1 p.s.

La dimension de Hausdorff du squelette, qui est une réunion dénombrable de segments, est
égale à 1. Par conséquent, lorsque ν intègre la fonction (s−1

1 − 1), la dimension de Hausdorff de
l’arbre TF est 1 ∨ |α|−1 .

L’arbre TF est la limite en loi d’une suite consistante d’arbres discrets non-ordonnés
(T nF ,n ≥ 1) que l’on construit de la manière suivante. Soit IF une fragmentation d’intervalles
associée à F et soit (Un,n ≥ 1) une suite de variables aléatoires indépendantes uniformément
distribuées sur (0,1), indépendantes de IF . L’arbre T 1

F est une branche de longueur D1 où
D1 = sup {t : U1 ∈ IF}. Soit ensuite D{1,2} le premier instant où U1 et U2 n’appartiennent plus
à la même composante connexe de IF . L’arbre T 2

F s’obtient à partir de T 1
F en ajoutant à distance

D{1,2} de la racine une branche de longueur D2−D{1,2} = sup {t : U2 ∈ IF}−D{1,2}. A la n-ième
étape, on introduit D{(1,...,n−1),n} le premier instant où la composante connexe contenant Un ne
contient aucun des Ui, i ≤ n− 1, et on considère un j ≤ n− 1 tel qu’au temps (D{(1,...,n−1),n}−)
Un et Uj appartiennent à la même composante connexe. On ajoute sur le chemin reliant la
j-ième feuille à la racine une nouvelle branche - de longueur sup {t : Un ∈ IF} −D{(1,...,n−1),n} -
à distance D{(1,...,n−1),n} de la racine. On construit ainsi par récurrence des arbres T nF à n feuilles
et on utilise un résultat d’Aldous [3] pour conclure que ces arbres convergent en loi vers un
arbre continu TF . La mesure µF est alors la limite des mesures empiriques associées aux feuilles
des T nF .

La majoration dimH(L(TF )) ≤ |α|−1 s’obtient à l’aide d’une famille de recouvrements
adéquats de l’arbre. On obtient de la même façon la compacité. La preuve de la minoration est
plus technique. Une première approche consiste à utiliser le lemme de Frostman, ce qui nous
permet d’obtenir le minorant |α|−1 dans les cas où ν est finie et ν(sN > 0) = 0 pour un N ∈ N.
Pour une mesure de dislocation ν quelconque, l’idée est de se ramener au cas précédent en
considérant le sous-arbre T N,ε

F ⊂ TF construit à partir de TF en ne gardant à chaque noeud :
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- soit que le plus gros sous-arbre issu de ce noeud si la masse relative de ce sous-arbre par
rapport à la masse totale des sous-arbres issus du noeud est supérieure à 1 − ε;

- soit, si ce n’est pas le cas, que les N plus gros sous-arbres.

On obtient ainsi un CRT (T N,ε
F ,µN,εF ). Le lemme de Frostman permet d’obtenir un minorant

pour la dimension de Hausdorff de L(T N,ε
F ) et donc de L(TF ). Ce minorant converge vers |α|−1

quand ε ↓ 0 et N ↑ ∞ dès que
∫
S↓

(s−1
1 − 1)ν(ds) <∞.

On a construit un CRT codant la fragmentation F . Dans le cas de l’exemple brownien, ce
CRT est lui même codé par une fonction continue positive sur [0,1], s’annulant en 0 et en 1. A
nouveau, on aimerait savoir si ces exemples se généralisent aux fragmentations. On sait qu’il
n’est pas toujours possible de construire un CRT à partir d’une fonction continue. Aldous [3]
montre que pour que ce soit possible il faut et il suffit que l’arbre soit compact et ordonné de
façon à ce que les feuilles soient denses dans l’arbre en respectant l’ordre. Pour appliquer ce
résultat à l’arbre TF , on commence par mettre un ordre par récurrence sur les arbres T nF . On
vérifie ensuite facilement que les feuilles sont denses si et seulement si ν(S↓) = ∞. Comme
l’arbre est compact, on en déduit l’existence d’une fonction HF (appelée fonction de hauteur
de l’arbre) continue positive sur [0,1] s’annulant en 0 et en 1, telle que TF = [0,1] / ∼HF

où

x ∼HF
y ⇔ d(x,y) = HF (x) +HF (y) − 2 inf

z∈[x,y]
HF (z) = 0

et telle que µF soit la mesure image par la projection sur l’espace quotient de la mesure de
Lebesgue. Ainsi, une version de F peut se construire à partir de la fonction continue HF de
manière identique à la construction de la fragmentation brownienne à partir de l’excursion nor-
malisée brownienne : si F ′(t) est la suite décroissante des longueurs des composantes connexes

de {x ∈ [0,1] : HF (x) > t}, t ≥ 0, alors F ′
loi
= F .

Théorème 0.6 Supposons que la fonction x 7→ ν(s1 < 1−x) varie régulièrement quand x → 0
avec indice ϑ ∈ (0,1). Alors presque sûrement, la fonction HF est höldérienne d’indice γ,
∀γ < ϑ ∧ |α|, et n’est pas höldérienne d’indice γ, ∀γ > ϑ ∧ |α|.

On obtient plus généralement, si la fonction x 7→ ν(s1 < 1−x) n’est pas à variation régulière
en 0, un encadrement de l’indice de Hölder maximal de HF (Théorème 3.4).

Ces résultats sur la dimension de Hausdorff de l’arbre TF et sur la régularité höldérienne de
sa fonction de hauteur s’appliquent en particulier à l’arbre stable d’indice β, 1 < β ≤ 2. Lorsque
β = 2, cet arbre est le CRT brownien. Lorsque 1 < β < 2, c’est un CRT qui est la limite en loi
quand n→ ∞ d’arbres de Galton-Watson critiques ayant une loi de reproduction (η(k),k ≥ 0)
telle que η(k) ∼

k→∞
Ck−1−β, et conditionnés à avoir n feuilles et des arêtes de longueur nβ

−1−1,

[28], [29].

Soit (Tβ,µβ) un arbre stable d’indice β et pour tout t ≥ 0, soit Fβ(t) la suite décroissante
des µβ-masses des composantes connexes de {v ∈ Tβ : d(∅,v) > t}. Miermont [56] montre que le
processus (Fβ(t),t ≥ 0) est un processus de fragmentation auto-similaire d’indice 1/β − 1 sans
érosion et calcule explicitement sa mesure de dislocation νβ . On vérifie que cette mesure intègre
la fonction (s−1

1 − 1) et que νβ(s1 < 1 − x) ∼ Cxβ
−1−1 au voisinage de 0. Il résulte alors des
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théorèmes ci-dessus que la dimension de Hausdorff de l’arbre stable Tβ est presque sûrement
égale à β/(β − 1) et que sa fonction de hauteur est presque sûrement höldérienne d’indice γ
pour tout γ < (β − 1)/β et n’est pas höldérienne d’indice γ pour tout γ > (β − 1)/β. Ces
résultats ont été obtenus indépendamment par Duquesne et Le Gall [30].

0.5 Fragmentation avec immigration

On introduit ici des modèles aléatoires et déterministes qui décrivent l’évolution d’un système
avec fragmentation et immigration (arrivée régulière) de particules. Ceci correspond à l’exemple
sus-cité des industries minières où des blocs de roche sont amenés en permanence pour être
fragmentés. On s’intéresse en particulier à l’existence d’un état d’équilibre pour de tels systèmes,
ce qui peut être interprété comme un moyen de compenser grâce à l’immigration la perte de
masse par formation de poussière, et plus généralement la fragmentation de particules.

Les processus de fragmentation avec immigration sont à valeurs dans l’espace des suites
décroissantes tendant vers 0 à l’infini

D = {s = (sj)j≥1 : s1 ≥ s2 ≥ ... ≥ 0, lim
j→∞

sj = 0},

muni de la distance d(s,s′) = supj≥1

∣∣sj − s′j
∣∣. Ils modélisent des systèmes où l’immigration

et la fragmentation se déroulent indépendamment. L’immigration est codée par un processus
ponctuel de Poisson à valeurs dans D de mesure d’intensité I telle que

∫

D

∑
j≥1

(sj ∧ 1) I(ds) <∞,

ce qui assure que la masse totale des particules immigrant dans un intervalle de temps fini est
presque sûrement finie. La fragmentation est une fragmentation auto-similaire de paramètres
(α,c,ν) .

Définition 0.3 Soient u = (u1,u2,...) ∈ D une suite aléatoire et ((s(ti),ti) ,i ≥ 1) les atomes
d’un processus ponctuel de Poisson d’intensité I, indépendante de u. Soit
(F (n),F (i,j),n,i,j, ≥ 1) une famille de fragmentations (α,c,ν) mutuellement indépendantes et
indépendantes de u et ((s(ti),ti) ,i ≥ 1). Alors, presque sûrement pour tout t ≥ 0, le
réarrangement par ordre décroissant

FI(u)(t) = {unF (n)(uαnt),sj(ti)F
(i,j)(sαj (ti)(t− ti)),n,j ≥ 1,ti ≤ t}↓

existe et appartient à D. Le processus FI(u) est appelé processus de fragmentation avec immi-
gration de paramètres (α,c,ν,I) partant de u.

Autrement dit, la suite FI(u)(t) est la suite des masses de particules provenant d’une part de
la fragmentation pendant un temps t des particules de masses u1,u2,... présentes au temps 0 et,
d’autre part, de la fragmentation pendant un temps t−ti de particules de masses s1(ti),s2(ti),...
ayant immigrées au temps ti, ti ≤ t. Le processus FI(u) est fellérien.
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Voici un exemple de processus de fragmentation avec immigration. Soit B un mouvement
brownien réel issu de 0 et

B(d)(x) = B(x) + dx,x ≥ 0,

un mouvement brownien avec une dérive d > 0. Pour chaque t ≥ 0, on note FI(d)(t) la suite
rangée par ordre décroissant des longueurs des excursions finies de B(d) au dessus de t. Grâce à
la théorie des excursions browniennes, on voit que FI(d) est un processus de fragmentation avec
immigration : la fragmentation est celle construite à partir de l’excursion brownienne normalisée,
de paramètres (αe,0,νe); et l’immigration est caractérisée par I(d)(s2 > 0) = 0 (les particules
arrivent une par une) et

I(d)(s1 ∈ dx) =
√

(2π)−1x−3/2 exp(−xd2/2)dx, x > 0.

Par ailleurs, la propriété de Markov forte du mouvement brownien implique que le processus

FI(d) est stationnaire, c’est-à-dire que FI(d)(t)
loi
= FI(d)(0) pour tout t ≥ 0. Le Théorème de

Girsanov permet d’obtenir explicitement cette loi stationnaire (Proposition 4.2 (ii)).

Ceci nous amène à la question suivante : existe-t-il dans le cas général un état d’équilibre,
c’est-à-dire une loi stationnaire pour le processus FI, et si oui, quelle est la vitesse de con-
vergence vers cet équilibre ? Un candidat naturel pour une loi stationnaire est la limite en
loi éventuelle du processus FI partant de (0,0,...). Cette limite, si elle existe, se construit
de la manière suivante : soient F (i,j), i,j ≥ 1, des fragmentations (α,c,ν) indépendantes et
((s(ti),ti) ,i ≥ 1) un processus ponctuel de Poisson d’intensité I, indépendant des fragmenta-
tions F (i,j). Si les termes sj(ti)F

(i,j)(sαj (ti)ti), i,j ≥ 1, peuvent être rangés par ordre décroissant
de manière à former une suite de D, alors la loi de cette suite

Ustat = {sj(ti)F (i,j)(sαj (ti)ti),i,j ≥ 1}↓

est la limite cherchée. En combinant des résultats sur les processus ponctuels de Poisson et sur
les fragmentations auto-similaires, on obtient alors la caractérisation suivante pour l’existence
d’une loi stationnaire. Soit

αI = − sup

{
a ≥ 0 :

∫

D

sa11{s1≥1}I(ds) <∞
}
. (5)

Si αI < 0 et si α > αI , alors Ustat existe presque sûrement et sa loi est l’unique loi stationnaire.
Si α < αI , il n’y a pas de loi stationnaire. Dans ce dernier cas, avec une probabilité non nulle les
particules de masses supérieures à un (qui se fragmentent d’autant moins vite que l’indice α est
négatif) s’accumulent et la suite Ustat n’existe pas. Des résultats concernant les cas critiques
αI = 0 ou α = αI et la structure de Ustat, c’est-à-dire son appartenance à certains espaces
lp = {s ∈ D :

∑
i≥1 s

p
i <∞}, p ≥ 0, sont donnés dans les Théorèmes 4.1, 4.2 et 4.3.

En ce qui concerne la vitesse de convergence vers la loi stationnaire, on obtient des résultats
très différents suivant que α > 0, α = 0 ou α < 0. La distance considérée sur les mesures de
probabilité sur D est la distance de Fortet-Mourier

D(µ,µ′) = sup
f 1-Lipschitzienne,

sup
s∈D |f(s)|≤1

∣∣∣∣
∫

D

f(s)µ(ds) −
∫

D

f(s)µ′(ds)

∣∣∣∣ .
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On rappelle qu’une fonction 1-Lipschitzienne est une fonction telle que |f(s) − f(s′)| ≤ d(s,s′)
pour tous s,s′ ∈ D, et que la distance D induit la topologie de la convergence faible. Dans
l’énoncé suivant, v(t) =

∥∥L(FI(u)(t)) − L(Ustat)
∥∥ est la vitesse de convergence vers la loi sta-

tionnaire; L(FI(u)(t)) désigne la loi de FI(u)(t) et L(Ustat) la loi stationnaire. Les suites initiales
u sont déterministes.

Théorème 0.7 (i) Supposons que α > 0, que
∫
D

∑
j≥1 s

p
jI(ds) < ∞ pour un certain p > 0 et

que u ∈ lp. Alors, pour tout a < 1/α, v(t) = o(t−a) quand t→ ∞.

(ii) Supposons que α = 0, que
∫
D

∑
j≥1 s

1+ε
j I(ds) <∞ pour un certain ε > 0 et que u ∈ l1+ε.

Alors, pour tout a < φ(ε)/ (2 + ε), v(t) = o(exp(−at)) quand t→ ∞.

(iii) Supposons que α < 0, que
∫
D

∑
j≥1 s

−α
j 1{sj≥1}I(ds) < ∞ et que

∑
j≥1 exp(−uαj ) < ∞.

Alors, il existe une constante A > 0 telle que lorsque t→ ∞,

v(t) = O(

∫

D

∑
j≥1

s−αj exp(−Atsαj )I(ds) + exp(−Atuα1 ))

Le résultat dans le cas où α est négatif peut-être précisé (Théorème 4.4) et rendu plus
explicite lorsque la fonction x 7→

∫
D

∑
j≥1 1{sj≥x}I(ds) vérifie certaines propriétés de variation

régulière (Corollaire 4.1). Le principe de la preuve de ce théorème est le même dans les trois
cas α > 0, α = 0 et α < 0. Il repose sur une méthode de couplage : on considère FI(u) une
version du processus partant de u et FI(Ustat) une version partant de Ustat et on arrête ces
processus à un même temps T au-delà duquel seules les particules provenant de l’immigration
jouent un rôle “non-négligeable”, dans le sens où toutes les particules issues des états initiaux
u et Ustat ont une masse inférieure à une certaine quantité r(t) pour tout t > T . Comme
l’évolution des particules immigrées est la même (en loi) pour FI(u) et FI(Ustat), il s’ensuit que
v(t) ≤ 2(r(t)+P (T > t)) et le résultat découle de la vitesse de convergence vers 0 de P (T > t).
La différence entre les trois cas α > 0, α = 0 et α < 0 est dans le choix du couple (r,T ).

Pour finir, nous considérons un modèle déterministe pour la fragmentation avec immigration,
à savoir l’équation “(α,c,ν,I)”

∂t 〈µt,f〉 =

∫ ∞

0

xα
(
−cxf ′(x) +

∫

S↓

[∑
j≥1

f(xsj) − f(x)
]
ν(ds)

)
µt(dx)

+

∫

D

∑
j≥1

f(sj)I(ds),

(6)

qui ajoute un facteur d’immigration à l’équation (3) étudiée ci-dessus. L’ensemble de fonctions
tests ici est l’ensemble des fonctions f définies sur (0,∞), à support compact et de dérivée con-
tinue. On le note C1

c (0,∞). Soit µ0 une mesure de Radon sur (0,∞) telle que µ0 [1,∞) <∞ et soit
(u(ti),i ≥ 1) un processus ponctuel de Poisson d’intensité µ0. On note u(µ0) le réordonnement
décroissant des termes de cette suite et on considère FI(u(µ0)) un processus de fragmentation
avec immigration partant de u(µ0). A l’aide du Théorème 0.1 ci-dessus on montre que la famille
de mesures (µt,t ≥ 0) définies par

〈µt,f〉 = E
[∑

k≥1
f(FI

(u(µ0))
k (t))

]
, f ∈ C1

c (0,∞) ,



0.6. Conclusion 25

est l’unique solution à l’équation (6), pourvu que les mesures µt soient de Radon. On renvoie à
la Proposition 4.4 pour des conditions suffisantes sur µ0 et I pour que les mesures µt soient de
Radon et également pour une extension de ce résultat à une mesure initiale µ0 ne vérifiant pas
nécessairement l’hypothèse µ0 [1,∞) <∞.

On s’intéresse ensuite aux solutions stationnaires de l’équation (6), c’est-à-dire aux mesures
de Radon µstat telles que la famille constante µt = µstat, t ≥ 0, soit une solution à (6). Le
subordinateur ξ intervenant dans le résultat suivant est toujours celui associé au fragment
marqué de la fragmentation.

Proposition 0.4 Supposons que
∫
D

∑
j≥1 sjI(ds) < ∞. Il y a alors une unique solution sta-

tionnaire µstat et pour tout α ∈ R, µstat(dx) = x−αµ
(hom)
stat (dx) où la mesure µ

(hom)
stat est indé-

pendante de α et est définie pour toute fonction f ∈ C1
c (0,∞) par

〈µ(hom)
stat (dx),f〉 =

∫ ∞

0

∫

D

∑
j≥1

E [f(sj exp(−ξ(t))) exp(ξ(t))] I(ds)dt.

Si de plus (µt,t ≥ 0) est la solution à l’équation (6) partant d’une mesure µ0 telle que∫∞
1
xµ0(dx) <∞, alors µt

vaguement→ µstat quand t→ ∞.

Contrairement au cas stochastique, la condition d’existence de la loi stationnaire ne dépend
pas ici de l’indice d’auto-similarité α. On montre réciproquement que si E [ξ(1)] < ∞ (ce qui
est équivalent à c = ν(

∑
i≥1 si < 1) = 0 et φ′(0+) < ∞) et si

∫
D

∑
j≥1 sjI(ds) = ∞, il n’y

a pas de solution stationnaire à l’équation (6). Sous ces hypothèses sur ξ et I, les masses des
particules s’accumulent dans des compacts [a,b], 0 < a < b, et la mesure µstat définie dans la
proposition ci-dessus (qui de toute façon est la seule mesure stationnaire possible) n’est pas une
mesure de Radon.

0.6 Conclusion

Il est intéressant de noter que la plupart des résultats obtenus dans le cadre des fragmenta-
tions auto-similaires sans érosion et sans production de poussière au moment de la dislocation
d’une particule (nous supposons dans cette conclusion que ces deux conditions sont toujours
réalisées) dépendent essentiellement de l’indice d’auto-similarité α et de sa position par rapport
à certains indices “critiques”. Ainsi, trois indices critiques apparaissent : α = 0, α = −1 et, pour
les modèles avec immigration, α = αI (ce dernier indice étant défini par la formule (5)).

La condition α < 0 caractérise l’existence de poussière et nous montrons ainsi que dès que
α < 0, la structure généalogique de la fragmentation aléatoire se décrit à l’aide d’un arbre
continu aléatoire compact, dont la dimension de Hausdorff est égale à 1 ∨ |α|−1 (pourvu que
le plus gros fragment obtenu lors d’une dislocation ne soit pas trop petit, i.e. que ν intègre
s−1
1 − 1).

Cette dimension atteint donc un seuil critique en α = −1, en dessous duquel l’arbre est très
fin et la fragmentation très rapide. La même limite intervient dans les résultats sur la régularité
de la masse (aléatoire) de poussière M puisque presque sûrement, la mesure dM est singulière
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lorsque α ≤ −1, tandis que si α > −1 et si la fragmentation est N -aire (chaque particule se
fragmente en au plus N morceaux), la mesure dM a une densité. Lorsque la fragmentation
n’est pas N -aire, la condition α > −1 n’est pas suffisante a priori pour établir l’existence d’une
densité et le critère que nous obtenons dépend de manière plus significative de la mesure de
dislocation ν.

Pour les systèmes aléatoires avec immigration, le paramètre αI correspond à une limite en
deçà de laquelle la fragmentation des grosses particules immigrées n’est pas assez rapide, ce
qui entrâıne l’accumulation de grosses particules et l’absence d’un état d’équilibre. Par contre,
lorsque α > αI , l’immigration “compense” la fragmentation et le système converge vers un état
stationnaire à une vitesse qui dépend fortement de la position de α par rapport l’indice critique
0. Dans les modèles déterministes, l’indice α n’influence pas l’existence d’une loi stationnaire
(il suffit pour cela que la masse moyenne immigrant par unité de temps soit finie).

Notons cependant qu’il y a quelques résultats qui dépendent significativement de la mesure
ν. En particulier, nous avons vu que si l’indice α est strictement négatif, il existe une fonction
continue codant la fragmentation si et seulement si ν(S↓) = ∞, et la continuité höldérienne de
cette fonction dépend alors à la fois de l’indice α et du comportement au voisinage de 0 de la
fonction x 7→ ν(s1 < 1 − x).

Dans le cadre plus général où les particules se fragmentent à un taux τ(x)ν(ds), nous avons
vu que c’est essentiellement le comportement de τ en 0 qui caractérise l’existence de poussière :
dans la mesure où τ est décroissante au voisinage de 0 et où les fragments produits par ν ne
sont pas trop gros (φ′(0+) <∞), l’existence de poussière est équivalente à

∫
0+ dx/xτ(x) <∞.

Il est naturel de se demander alors si les résultats des chapitres 2, 3 et 4 sur les fragmen-
tations auto-similaires se généralisent aux fragmentations (τ,0,ν). Pour la plupart la réponse
est positive, et souvent ces résultats se déduisent des cas auto-similaires par comparaison, sim-
plement parce que les particules se fragmentent plus vite dans le modèle (τ,0,ν) que dans le
modèle (τ ′,0,ν) lorsque τ ≥ τ ′.

Ainsi, si τ décrôıt dans un voisinage de 0 et si
∫
0+ dx/xτ(x) < ∞, on montre que la frag-

mentation peut être codée par un arbre aléatoire continu d’Aldous et, si de plus la mesure ν est
infinie, par une fonction continue. Des encadrements de la dimension de Hausdorff de l’arbre et
des coefficients de Hölder de la fonction continue associée peuvent être obtenus en fonction du
comportement de τ en 0.

De même, les résultats sur l’immigration s’adaptent bien aux modèles dépendant de τ (dans
ce cas il faut considérer des fonctions τ définies sur (0,∞)) : si τ(m) ≤ Cmα sur (0,∞) avec
α < αI , il n’y pas de loi stationnaire, tandis que si τ(m) ≥ Cmβ sur (0,∞) avec β > αI ,
il y a une loi stationnaire et la vitesse de convergence vers la loi stationaire est plus rapide
pour une fragmentation (τ,0,ν) que pour une fragmentation (β,0,ν). Par ailleurs, les conditions
d’existence d’un état d’équilibre pour l’équation déterministe associée (on remplace mα par
τ(m) dans l’équation (6)), sont exactement les mêmes que dans le cas auto-similaire et la

solution stationnaire est alors donnée par µstat(dx) = (τ(x))−1µ
(hom)
stat (dx) avec la même mesure

µ
(hom)
stat que dans la Proposition 0.4.

Il semble plus difficile de généraliser les résultats sur la régularité de la masse de poussière M
aux cas (τ,0,ν). Seule la preuve de la singularité de la masse dM s’adapte bien : par comparaison,
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on voit que dM est presque sûrement singulière dès que τ(m) ≥ Cm−1 près de 0. On peut
d’ailleurs améliorer ce critère et montrer que la masse dM est presque sûrement singulière dès
que

∫
0+ dx/x2τ(x) < ∞ et que la fonction m 7→ mτ(m) décroit dans un voisinage de 0. Dans

le cas auto-similaire, les résultats sur l’existence d’une densité et sur l’approximation de cette
densité par des fonctionnelles dépendant des petits fragments reposent sur les égalités en loi
de (F (t),t ≥ 0) sous Pm et de (mF (τ(m)t),t ≥ 0) sous P1, m ≥ 0. Ces égalités, et par suite
nos preuves, ne sont plus valables si la fonction τ n’est pas proportionnelle à une puissance.
Par comparaison, on obtient quand même des résultats sur le comportement asymptotique des
fonctionnelles dépendant des petits fragments.

Enfin, pour compléter l’étude entreprise au chapitre 3 sur la généalogie des fragmentations
auto-similaires, nous signalons qu’il est possible de décrire la généalogie des fragmentations
d’indice α positif ou nul à l’aide d’arbres continus aléatoires dont toutes les feuilles sont à une
même distance de la racine. Il serait intéressant d’étudier la structure de ces arbres, ainsi que
celle de leurs feuilles.
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Chapitre 1

Loss of mass in deterministic and
random fragmentations

Abstract: We consider a linear rate equation, depending on three parameters, that modelizes
fragmentation. For each of these fragmentation equations, there is a corresponding stochastic
model, from which we construct an explicit solution to the equation. This solution is proved
unique. We then use this solution to obtain criteria for the presence or absence of loss of mass
in the fragmentation equation, as a function of the equation parameters. Next, we investigate
small and large times asymptotic behavior of the total mass for a wide class of parameters.
Finally, we study the loss of mass in the stochastic models.

1.1 Introduction

Fragmentation of particles appears in various physical processes, such as polymer degradation,
grinding, erosion and oxidation. In the models we consider, there are only particles with mass
one at the initial time. Those particles split independently of each others to give smaller
particles and each obtained particle splits in turn, independently of the past and of others
particles. And so on ... The splitting of a particle of mass x gives rise to a sequence of smaller
particles with masses xs1, xs2, ... where s1 ≥ s2 ≥ ... ≥ 0. Thus, it is convenient to introduce
the following set:

S↓ :=

{
s = (si)i∈N∗ , s1 ≥ s2 ≥ ... ≥ 0 :

∞∑

i=1

si ≤ 1

}
.

Note that we take into account the case when
∞∑
i=1

si < 1, which corresponds to the loss of a

part of the initial mass during the splitting. The rate at which a particle with mass one splits
is then described by a non-negative measure ν on S∗ = S↓ \ {(1, 0, 0, ...)} , called the splitting
measure. This measure is supposed to fit the requirement

∫

S∗
(1 − s1)ν(ds) <∞ (1.1)
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(see the Appendix for an explanation). Note that the case when ν(S∗) = ∞, which is often
excluded from fragmentation studies, is here included.

A linear rate equation has been developed (see e.g. [31]) to study the time evolution of
the mass distribution of particles involved in a fragmentation phenomenon (see also [20] for
physical studies on fragmentation). Here, we consider the special case when the splitting rate
for a particle with mass x is proportional to that of a particle with mass one. More precisely,
this splitting rate is equal to τ(x)ν(ds), where τ is a continuous and positive function on ]0, 1]
such that τ(1) = 1. As we will see in the next section, τ should be seen as the speed of
fragmentation. Our deterministic fragmentation model is the weak form of this linear rate
equation and describes the evolution of the family (µt, t ≥ 0) of non-negative Radon measures
on ]0, 1] , where µt(dx) corresponds to the average number per unit volume of particles with
mass in the interval (x, x+ dx) at time t. This so-called fragmentation equation is





∂t 〈µt, f〉 =

∫ 1

0

τ(x)

(
−cxf ′(x) +

∫

S↓

[
∞∑

i=1

f(xsi) − f(x)

]
ν(ds)

)
µt(dx)

µ0 = δ1(dx)

(1.2)

for test-functions f belonging to C1
c (]0, 1]) , the set of differentiable functions with compact

support in ]0, 1] . The second term between parentheses on the right side of equation (1.2)
corresponds to a growth in the number of particles of masses xs1, xs2, ... and to a decrease in
the number of particles of mass x, as a consequence of the splitting of particles of mass x. The
first term between parentheses on the right side of (1.2) represents a loss of particles of mass x,
as a result of erosion. The constant c is non-negative and called the erosion coefficient of the
fragmentation. The function τ, the constant c and the measure ν are called the parameters of
the fragmentation equation.

We next introduce a random fragmentation model, called fragmentation process. A fragmen-
tation process (F (t), t ≥ 0) is a Markov process with values in S↓ satisfying the fragmentation
property, which will be defined rigorously in Section 1.2. Informally, this means that given the
system at a time t, say F (t) = (s1, s2, ...), then for each i ∈ N∗, the fragmentation system stem-
ming from the particle with mass si evolves independently of the others particles and with the
same law as the process F starting from a unique particle with mass si. And then, if we denote
by (si,j(r))j≥1 the masses of the particles stemming from the one with mass si after a time r, the
sequence F (t+ r) will consist in the non-increasing rearrangement of the masses (si,j(r))i,j≥1.
A family of fragmentation processes with a scaling property (namely the self-similar fragmen-
tation processes) was studied by Bertoin in [13], [14] and [15]. In Section 1.2, the main results
on these processes are recalled and a larger set of fragmentation processes, characterized each
by the three parameters τ, c and ν of a fragmentation equation, is constructed.

This set of fragmentation processes is used to study the fragmentation equation. More pre-
cisely, given the parameters τ, c and ν, we construct in Section 1.3 the unique solution to the
fragmentation equation with parameters τ, c and ν, by following a specific fragment (the so-
called size-biased picked fragment process) of the corresponding fragmentation process. Let F τ

denote this fragmentation process. The solution to the fragmentation equation is then given
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for each t ≥ 0 by

〈µt, f〉 = E

[
∞∑

i=1

f(F τ
i (t))

]
for f ∈ C1

c (]0, 1]) , (1.3)

where (F τ
1 (t), F τ

2 (t), ...) is the sequence F τ(t). As a general rule, given a fragmentation process
F, we denote by (F1(t), F2(t), ...) the sequences F (t), t ≥ 0.

The main purpose of our work is to study the possible loss of mass in these deterministic
and stochastic fragmentation models. If the family (µt, t ≥ 0) is a solution to the fragmentation
equation (1.2) , it is easy to see that the total mass 〈µt, id〉 is non-increasing in t. We say that
there is loss of mass in the fragmentation equation if there exists a time t such that

〈µt, id〉 < 〈µ0, id〉 = 1.

We will see that this is equivalent to loss of mass in the corresponding fragmentation process,
as a result of:

∃t ≥ 0 : 〈µt, id〉 < 1 ⇔ a.s. ∃t ≥ 0 :
∞∑

i=1

F τ
i (t) < 1.

There are three distinct ways to lose mass. The first two are intuitively obvious: there is loss
of mass if the erosion coefficient is positive or if the splitting of a particle with mass x gives
rise to a sequence of particles with total mass strictly smaller than x. However, there is also
an unexpected loss of mass, due to the formation of dust (i.e. an infinite number of particles
with mass zero). This latter is of course the most interesting and one of our purposes is to
establish for which parameters τ and ν it occurs. This formation of dust has to be compared
with gelation which may happen in the context of coagulation models and which corresponds to
the creation of an infinite-mass particle in finite time (see for example Jeon [41] and Norris [58]
for gelation studies). We mention also Aldous [4] for a survey on coagulation and fragmentation
phenomena. Concerning loss of mass studies, [15] proves the occurrence of loss of mass to dust
in fragmentation processes with function τ(x) = xα as soon as α < 0 and, in that case, that the
mass vanishes entirely in finite time. Filippov [35] obtains some conditions for the presence or
absence of loss of mass (to compare with Corollary 1.2 in this paper) in the special case where
ν (S∗) <∞. Let us also mention Fournier and Giet [36], who investigate this appearance of dust
in some coagulation-fragmentation equations, whose fragmentation part is rather different than
ours (their fragmentations are binary, with absolutely continuous rates that are not necessarily
proportional to the one-mass rate). See also Jeon [42].

Formula (1.3) is the key point in the study of loss of mass, which is undertaken in Section
1.4. We get necessary (respectively, sufficient) conditions on the parameters τ, c and ν for loss
of mass to occur and when there is loss of mass, we obtain results on small times and large
times behavior of the total mass 〈µt, id〉. Section 1.5 is devoted to loss of mass and total loss of
mass for a fragmentation process F τ with parameters τ, c and ν. Define ζ to be the first time
at which all the mass has disappeared, i.e.

ζ := inf {t ≥ 0 : F τ
1 (t) = 0} .

We state necessary (respectively, sufficient) conditions on (τ, c, ν) for P (ζ <∞) to be positive.
Then, we look at connections between loss of mass and total loss of mass and study the
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asymptotic behavior of P (ζ > t) as t→ ∞, for a large class of parameters τ, c and ν.

This paper ends with an appendix containing on the one hand some results on the mass
behavior of a fragmentation model constructed from the Brownian excursion of length 1 and
on the other hand a proof that (1.1) is a necessary condition for our fragmentation models to
exist.

1.2 Preliminaries on fragmentation processes

Let (F (t), t ≥ 0) be a Markov process with values in S↓ and denote by Ps the law of F starting
from (s, 0, ...), 0 ≤ s ≤ 1. The process F is a fragmentation process if it satisfies the following
fragmentation property: for each t0 ≥ 0, conditionally on F (t0) = (s1, s2, ...), the process
(F (t+ t0), t ≥ 0) has the same law as the process obtained, for each t ≥ 0, by ranking in the
non-increasing order the components of the sequences F 1(t), F 2(t), ..., where the r.v. F i are
independent with respective laws Psi

.

In this section, we first recall some results on homogeneous and self-similar fragmentation
processes. Then we construct a larger family of fragmentation processes, depending on the
parameters τ, c and ν of the fragmentation equation (1.2) . Given a fragmentation process F ,
recall the notation (F1(t), F2(t), ...) for the sequence F (t), t ≥ 0.

1.2.1 Homogeneous and self-similar fragmentation processes

A self-similar fragmentation process (F (t), t ≥ 0) with index α is a fragmentation process having
the following scaling property: if Ps is the law of F starting from (s, 0, ...) , then the law of
(sF (sαt), t ≥ 0) under P1 is Ps. If α = 0, the fragmentation process F is said to be homogeneous.
We now recall some results on those processes. For more details, see [13], [14] and [9]. The
state S↓ is endowed with the topology of pointwise convergence.

• Interval representation. Let F be a self-similar fragmentation process. It may be
convenient, for technical reasons, to work with an interval representation of F. Roughly, consider
a Markov process (I(t), t ≥ 0) with state space the open sets of ]0, 1[ and such that I(t′) ⊂ I(t)
if t′ ≥ t ≥ 0. The process (I(t), t ≥ 0) is called self-similar interval fragmentation process if
it satisfies a scaling and a fragmentation property (for a precise definition, we refer to [14]).
The interesting point is that there is a càdlàg version of F (which we also call F and which we
implicitly consider in the following), and a self-similar interval fragmentation process IF with
the same index of similarity as F , such that F (t) is the non-increasing sequence of the lengths
of the interval components of IF (t), t ≥ 0. In the sequel, we call IF the interval representation
of F. For each t ≥ 0, we call fragments the interval components of IF (t) and denote by Ix(t)
the fragment containing the point x at time t. If such a fragment does not exist, Ix(t) := ∅.
The length |Ix(t)| is called the mass of the fragment.

• Characterization and Poisson point process description of homogeneous frag-
mentation processes. The law of a homogeneous fragmentation process starting from
(1, 0, ...) is characterized by two parameters: a non-negative real number c (the erosion co-
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efficient) and a non-negative measure ν on S∗ = S↓\ {(1, 0, ...)} (the splitting measure)
satisfying the requirement (1.1) . The erosion coefficient corresponds to the continuous part
of the process, whereas the splitting measure describes the jumps of the process. More pre-
cisely, consider such a measure ν and a Poisson point process ((∆(t), k(t)) , t ≥ 0) with values
in S∗×N∗ and whose characteristic measure is ν⊗#, # denoting the counting measure on N∗.
As proved in [9], there is a pure jump càdlàg homogeneous fragmentation process F starting
from (1, 0, ...) , whose jumps are the times of occurrence of the Poisson point process and are
described as follows: let t be a jump time, then the k(t)-th term of F (t−), namely Fk(t)(t

−),
is removed and “replaced” by the sequence Fk(t)(t

−)∆(t), that is F (t) is obtained by ranking
in the non-increasing order the components of sequences (Fi(t

−)i∈N∗\{k(t)} and Fk(t)(t
−)∆(t).

Now, consider a real number c ≥ 0. The process (e−ctF (t), t ≥ 0) is also a càdlàg homogeneous
fragmentation process. The point is that the distribution of each homogeneous fragmentation
process can be described like this for a constant c ≥ 0 and a splitting measure ν. Such process
is then called a homogeneous (c, ν)-fragmentation process. Remark that when ν(S∗) = ∞, each
particle splits a.s. immediately.

• Size-biased picked fragment process. Let F denote a homogeneous (c, ν)- fragmenta-
tion process starting from (1, 0, ...) and IF be the interval representation of F . Consider a point
picked at random in ]0, 1[ according to the uniform law on ]0, 1[ and independently of F and
note λ(t) the length of the fragment of IF containing this point at time t. We call the process
(λ(t), t ≥ 0) the size-biased picked fragment process of F . An important part of our work relies
on the following property (see [13] for a proof): the process

(ξ(t), t ≥ 0) := (− log(λ(t)), t ≥ 0) (1.4)

is a subordinator (i.e. a right-continuous non-decreasing process with values in [0,∞] , started
from 0 and with independent and stationary increments on [0, ς[ , where ς is the first time when
the process reaches ∞). We refer to [11] for background on subordinators. The distribution of
ξ is then characterized by its Laplace exponent φ which is determined by

E [exp (−qξt)] = exp(−tφ(q)), t ≥ 0, q ≥ 0

and which can be expressed here as a function of the parameters ν and c. More precisely:

φ(q) = c(q + 1) +

∫

S∗

(
1 −

∞∑

i=1

sq+1
i

)
ν(ds), q ≥ 0. (1.5)

In others words, the subordinator ξ has the following characteristics, which we will often refer
to:

• the killing rate k = c+
∫
S∗

(
1 −

∞∑
i=1

si

)
ν(ds),

• the drift coefficient d = c,

• the Lévy measure L(dx) = e−x
∞∑
i=1

ν(− log(si) ∈ dx), x ∈ ]0,∞[ .

(1.6)

Recall that the first time ς when the process ξ reaches ∞ has an exponential law with parameter
k and that there exists a subordinator η independent of ς, with the same drift coefficient and
Lévy measure as ξ but with killing rate 0, such that ξt = ηt when t < ς.
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We should point out that two different homogeneous fragmentation processes may lead to
subordinators having the same distribution. For example, consider F 1 and F 2, two homoge-
neous fragmentation processes with erosion coefficient 0 and with respective splitting measures
ν1 and ν2, where

ν1(ds) =
1

2
δ( 1

2
, 1
2
,0...)(ds) +

1

2
δ( 1

2
, 1
4
, 1
4
,0...)(ds)

and

ν2(ds) =
3

4
δ( 1

2
, 1
2
,0...)(ds) +

1

4
δ( 1

4
, 1
4
, 1
4
, 1
4
,0...)(ds).

Then in both cases, the Laplace exponent φ is given by

φ(q) = 1 − 3

2

(
1

2

)q+1

−
(

1

4

)q+1

.

• Characterization of self-similar fragmentation processes. We have seen that the
law of a homogeneous fragmentation process is characterized by the two parameters c and ν.
This property extends to self-similar fragmentation processes, which are characterized by three
parameters: an index of self-similarity α, an erosion coefficient c and a splitting measure ν (this
follows from a combination of results of [14] and [9]).

1.2.2 Fragmentation processes (τ, c, ν)

The purpose is to build fragmentation processes depending on the parameters τ, c and ν of the
fragmentation equation (1.2). Recall that the function τ is continuous and positive on ]0, 1]
and such that τ(1) = 1. Throughout this paper, we will use the convention τ(0) := ∞. Now,
consider F a homogeneous (c, ν)-fragmentation process and (Ix(t), x ∈ ]0, 1[ , t ≥ 0) its interval
representation. We introduce the time-change functions

T τx (t) := inf

{
u ≥ 0 :

∫ u

0

dr

τ(|Ix(r)|)
> t

}
, t ≥ 0, x ∈ ]0, 1[ ,

with the convention inf {∅} := ∞. Then, for each t ≥ 0, consider the family of open intervals

Ĩx(t) := Ix(T
τ
x (t)), x ∈ ]0, 1[ ,

and remark that if y 6= x, either Ĩx(t) = Ĩy(t) or Ĩx(t) ∩ Ĩy(t) = ∅. Let F τ(t) denote the non-

increasing sequence of the lengths of the disjoint intervals of
(
Ĩx(t), x ∈ ]0, 1[

)
. Then, following

the proof of Theorem 2 in [14], we get:

Proposition 1.1 The process (F τ(t), t ≥ 0) is a fragmentation process.

We call the process F τ a (τ, c, ν)-fragmentation process. Note that if τ(x) = xα on ]0, 1] ,
α ∈ R, Theorem 2 in [14] states that F τ is a self-similar fragmentation process with parameters
α, c and ν.
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If F τ1 and F τ2 are respectively (τ1, c, ν) and (τ2, c, ν)-fragmentation processes constructed
from the same homogeneous interval fragmentation and such that τ1 ≤ τ2, the time-change
functions T τ1 and T τ2 satisfy

T τ1x (t) ≤ T τ2x (t), for x ∈ ]0, 1[ and t ≥ 0.

Then, at each time t and for each point x ∈ ]0, 1[ , the fragment Ix(T
τ1
x (t)) is larger than

Ix(T
τ2
x (t)). Informally, fragmentation is faster in the process F τ2 than in F τ1 .

As in the homogeneous case, consider the process

(λτ (t), t ≥ 0) :=
(∣∣∣ĨU(t)

∣∣∣ , t ≥ 0
)

where U is a random variable uniformly distributed on ]0, 1[, independent of the fragmentation
process F τ . In other words, λτ (t) represents the mass at time t of the fragment containing a
point picked at random uniformly in ]0, 1[ at time 0. It is easy to see that for each t ≥ 0, if
F τ (t) = (F τ

1 (t), F τ
2 (t), ...), the law of λτ (t) is obtained as follows: consider i(t) an integer-valued

random variable such that

P (i(t) = i|F τ (t)) = F τ
i (t), i ∈ N∗,

P (i(t) = 0|F τ (t)) = 1 −
∞∑
i=1

F τ
i (t).

Then,

λτ (t)
law∼ F τ

i(t)(t), (1.7)

where F τ
0 (t) := 0. We call (λτ (t), t ≥ 0) the size-biased picked fragment process of F τ . The

following proposition will be essential in the sequel. Its proof is straightforward.

Proposition 1.2 If F τ(0) = (1, 0, ...), the process (λτ (t), t ≥ 0) has the same distribution
as
(
exp(−ξρτ (t)), t ≥ 0

)
, where ξ is the subordinator (1.4) constructed from the homogeneous

process F and ρτ the time-change:

ρτ (t) := inf

{
u ≥ 0 :

∫ u

0

dr

τ (exp(−ξr))
> t

}
. (1.8)

It is then easy to see that F τ
i (t)

a.s.→ 0 as t → ∞ for each i ≥ 0 when the fragmentation
process F τ does not remain constant.

1.3 Existence and uniqueness of the solution to the frag-

mentation equation

Consider the fragmentation equation (1.2) with parameters τ, c and ν and recall that a solution
to this equation is a family of non-negative Radon measures on ]0, 1], satisfying (1.2) at least
for test-functions f belonging to C1

c (]0, 1]) . Let F τ be a (τ, c, ν)-fragmentation process starting
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from F τ (0) = (1, 0, ...). From F τ , we build a solution to this fragmentation equation starting
from µ0 = δ1 and prove that this solution is unique. More precisely, we have:

Theorem 1.1 The fragmentation equation (1.2) has a unique solution (µt, t ≥ 0), which is
given for all t ≥ 0 by:

〈µt, f〉 = E

[
∞∑

i=1

f(F τ
i (t))

]
for f ∈ C1

c (]0, 1]) .

Remark the following consequence of (1.7): for all t ≥ 0 and all f ∈ C1
c (]0, 1]) ,

E

[
∞∑

i=1

f(F τ
i (t))

]
= E

[
f (λτ (t))

]
, (1.9)

where λτ is the size-biased picked fragment process related to F τ and f the function defined
from f by f(x) := f(x)/x, x ∈ ]0, 1] . This will be a key point of the proof of Theorem 1.1. In
this proof, the notation C1

K refers to the set of differentiable functions on ]0, 1] with support
in K.

Proof. (i) First, we turn the problem into an existence and uniqueness problem for an equation
involving non-negative measures on K = [a, 1] , 0 < a ≤ 1. The advantage is that τ is bounded
on K. Now, consider (πt, t ≥ 0) a family of measures on ]0, 1] and set Πt(dx) := xπt(dx), t ≥ 0.
It is easy to see that (πt, t ≥ 0) solves equation (1.2) if and only if (Πt, t ≥ 0) satisfies

{
∂t 〈Πt, f〉 = 〈Πt, τA(f)〉 , f ∈ C1

c (]0, 1])
Π0(dx) = δ1(dx),

(1.10)

where A is the linear operator on C1
c (]0, 1]) defined by

A(f)(x) = −cxf ′(x) − cf(x) +

∫

S↓

[
∞∑

i=1

f(xsi)si − f(x)

]
ν(ds), x ∈ ]0, 1] .

Note that if f is equal to 0 on ]0, a], so is A(f). Then, τA(f) is well-defined on [0, 1] for functions
f ∈ C1

c (]0, 1]) . Moreover, this implies that the family (Πt, t ≥ 0) is a solution to equation (1.10)
if and only if, for each 0 < a ≤ 1, the family

(
1[a,1]Πt, t ≥ 0

)
is a solution to

{
∂t 〈νt, f〉 = 〈νt, τA(f)〉 , f ∈ C1

[a,1]

ν0(dx) = δ1(dx).
(1.11)

Then consider formula (1.9) and write lt for the distribution of λτ (t), t ≥ 0. Proving Theorem 1.1
is equivalent to prove that (lt, t ≥ 0) is the unique solution to (1.10), which is true if and only
if, for each 0 < a ≤ 1, the family

(
1[a,1]lt, t ≥ 0

)
is the unique family of non-negative measures

on [a, 1] satisfying (1.11) .

(ii) In the sequel, K = [a, 1] , 0 < a ≤ 1. Consider the subordinator ξ such that
λτ = exp(−ξρτ ) where ρτ is the time-change

ρτ (t) = inf

{
u ≥ 0 :

∫ u

0

dr

τ (exp(−ξr))
> t

}
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(see Proposition 1.2). As a subordinator, ξ is a Feller process on [0,∞] and its generator Gξ

has a domain containing the set of differentiable functions with compact support in [0,∞[ . It
is well-known that for every function f belonging to this set, the function Gξ(f) is given by

Gξ(f)(x) = −kf(x) + df ′(x) +

∫

]0,∞[

(f(x+ y) − f(x))L(dy), x ∈ ]0, 1] ,

where k is the killing rate, d the drift coefficient and L the Lévy measure of ξ. From this and
(1.6) , we deduce that the generator Gexp(−ξ) of the Feller process exp(−ξ) has a domain D
containing C1

c (]0, 1]) and is given by

Gexp(−ξ)(f)(x) = −kf(x) − dxf ′(x) +
∫
]0,∞[

(f(x exp(−y)) − f(x))L(dy)

= A(f)(x)

at least for f ∈ C1
c (]0, 1]) . Then, introduce the function

τ̃ (x) =

{
τ(x), if x ∈ K
τ(a), if 0 ≤ x ≤ a

and consider the time-changed process exp(−ξρτ̃ (·)), where

ρτ̃ (t) = inf

{
u ≥ 0 :

∫ u

0

dr

τ̃ (exp(−ξr))
> t

}
.

Observing that τ̃ is bounded away from 0 and ∞ on [0, 1] , we apply Theorem 1 and its corollary

in [50] to conclude that exp(−ξρτ̃ ) is a Feller process and that its generator Gexp(−ξ
ρτ̃ ) has the

same domain D as Gexp(−ξ) and is given by

Gexp(−ξ
ρτ̃ )(f) = τ̃Gexp(−ξ)(f), f ∈ D. (1.12)

This formula can also be found in Section III.21 of Rogers and Williams [63] (however they
do not consider the Feller property for the time-changed process). For each t ≥ 0, denote by

l̃t the law of the random variable exp(−ξρτ̃ (t)). The family
(
l̃t, t ≥ 0

)
is then a solution to the

Kolmogorov’s forward equation:

{
∂t 〈νt, f〉 =

〈
νt, G

exp(−ξ
ρτ̃ )(f)

〉
, f ∈ D

ν0(dx) = δ1(dx).
(1.13)

Note that if the test-functions set is reduced to C1
K , (1.13) is the same as equation (1.11) , since

Gexp(−ξ
ρτ̃ ) = τA on C1

K . In particular, (1Klt, t ≥ 0) is a solution to (1.11) , since for each t ≥ 0
and each function f supported in K, the following identity holds:

E
[
f(exp(−ξρτ (t))

]
= E

[
f(exp(−ξρτ̃ (t))

]
.

This is due to the equality

{
t ≥ 0 : ξρτ (t) ≤ − log a

} a.s.
=
{
t ≥ 0 : ξρτ̃ (t) ≤ − log a

}
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and the fact that ρτ (t)
a.s.
= ρτ̃ (t) on this set. All this follows easily from the definitions of ρτ

and ρτ̃ .

(iii) Now, it remains to prove that a non-negative solution to equation (1.13) is uniquely
determined on K if the test-functions set is C1

K . To prove this, it is sufficient to show that

for each γ > 0, the image of C1
K by the operator

(
γid−Gexp(−ξ

ρτ̃ )
)

is dense in C0
K (the set of

continuous functions with support in K) endowed with the uniform norm - see for instance the
proof of Proposition 9.18 of chapter 4 in [32] and note that if (νt, t ≥ 0) is a solution to (1.13) ,
the functions t 7→ 〈νt, f〉 are continuous on [0,∞) for each f ∈ C1

K . Thus, we just have to prove
this density. To that end, observe that if x < a and if f ∈ C0

K ,

Ex [f(exp(−ξt))] := E [f(exp(−ξt)) | exp(−ξ0) = x] = E1 [f(x exp(−ξt))] = 0.

Therefore, the function x 7→ Ex [f(exp(−ξt))] belongs to C0
K if f ∈ C0

K . This allows us to
consider the restriction of the generator Gexp(−ξ) to C0

K , denoted by Gexp(−ξ)/C0
K . This operator

is the generator of the strongly continuous contraction semigroup on C0
K defined by

T (t) : f ∈ C0
K 7→ T (t) (f) ∈ C0

K ,
T (t) (f) (x) = E1 [f(x exp(−ξt)]), x ∈ ]0, 1] .

Its domain is C0
K ∩ D. The same remark holds for the process exp(−ξρτ̃ ) (because we know

that it is a Feller process and then the function x 7→ Ex
[
f(exp(−ξρτ̃ (t)))

]
is continuous if f

is continuous). We denote by Gexp(−ξ
ρτ̃ )/C0

K the restriction of Gexp(−ξ
ρτ̃ ) to C0

K . Its domain is
C0
K ∩ D as well. Now, to conclude, we just have to apply the forthcoming Lemma 1.1 to

E = K, B = C0
K , G = Gexp(−ξ)/C0

K , G̃ = Gexp(−ξ
ρτ̃ )/C0

K and D = C1
K .

Indeed, generators G and G̃ satisfy (1.12) , with τ̃ bounded away from 0. The set C1
K is dense

in C0
K and it is clear that the function x 7→ E1 [f(x exp(−ξt))] belongs to C1

K as soon as f does.

Lemma 1.1 Let E be a metric space and B the Banach space of real-valued continuous bounded
functions on E, endowed with the uniform norm. Let G be the generator of a strongly continuous
contraction semigroup (T (t), t ≥ 0) on B, with domain D (G) . Consider D ⊂ D (G), a dense
subspace of B such that T (t) : D → D for all t ≥ 0, and τ̃ ∈ B such that τ̃ ≥ m on E for some

positive constant m. If G̃ is the generator of a strongly continuous contraction semigroup on B
such that D

(
G̃
)

= D (G) and G̃(f) = τ̃G(f) on D (G) , then for every γ > 0,
(
γid− G̃

)
(D)

is dense in B.

Proof. We need the notion of core. If A is a closed linear operator on B, a subspace C of
D (A) is a core for A if the following equivalence holds:

f ∈ D (A) and g = A(f)
⇔

there is a sequence (fn) ∈ C such that fn → f and A(fn) → g.
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The assumptions on D and (T (t), t ≥ 0) and Proposition 3.3 of chapter 1 in [32] ensure that

D is a core for G. But then, D is also a core for G̃: if (fn) is a sequence in D such that

fn → f and G̃(fn) → g, then, since G̃(fn) = τ̃G(fn) and τ̃ ≥ m > 0 on E, G(fn)→g/τ̃ . Thus

f ∈ D (G) = D
(
G̃
)

and G̃(f) = τ̃G(f) = g. Conversely, given f belonging to D
(
G̃
)

= D (G)

and g = G̃(f), there is a sequence (fn) ∈ D such that fn → f and G(fn) → G(f). But τ̃

is bounded on E and then G̃(fn) → G̃(f). At last, we conclude by using Proposition 3.1 of

chapter 1 in [32]. This proposition states that since D is a core for the generator G̃, then(
γid − G̃

)
(D) is dense in B for some γ > 0, but it is easy to see with Lemma 2.11 (chapter 1

in [32]) that it holds for all γ > 0.

Remark. As shown in Section 1.2, two homogeneous fragmentation processes with different
laws may lead to subordinators with the same laws. Therefore, it may happen that two
different fragmentation equations (i.e. with different parameters) have the same solution.

From Theorem 1.1, we deduce that the unique solution (µt, t ≥ 0) to the fragmentation
equation (1.2) is the hydrodynamic limit of stochastic fragmentation models. More precisely:

Corollary 1.1 For each n ∈ N∗, let F τ,n be a (τ, c, ν)-fragmentation process starting from
F τ,n(0) = (1, 1, ..., 1︸ ︷︷ ︸

n terms

, 0, ...). Then for each t ≥ 0, with probability one,

1

n

∞∑

i=1

δF τ,n
i (t)(dx)

vaguely on ]0,1]→
n→∞

µt.

Proof. For each k ∈ {1, ..., n} , we denote by
((
F τ,n
k,1 (t), ..., F τ,n

k,i (t), ...
)
, t ≥ 0

)
the fragmenta-

tion process stemming from the k-th fragment of F τ,n(0). These processes are independent and
identically distributed, with the distribution of a (ν, c, τ)-fragmentation process starting from
(1, 0, ...). Then fix t ≥ 0. Using the strong law of large numbers for each f ∈ C1

c (]0, 1]) , we get

1

n

(
∞∑

i=1

f(F τ,n
i (t))

)
=

1

n

n∑

k=1

(
∞∑

i=1

f(F τ,n
k,i (t))

)
a.s.→
n→∞

〈µt, f〉 . (1.14)

With probability one, this convergence holds for each function f such that for a n ∈ N∗

f(x) =





0 on
]
0, 1

n

]
(
x− 1

n

)2
P (x) on

]
1
n
, 1
]

where P is a polynomial with rational coefficients

since this set of functions - denoted by T - is countable. Observe that this set is dense in
C1
c (]0, 1]) for the uniform norm and for each f ∈ C1

c (]0, 1]) consider a sequence (gk)k≥0 of

functions of T such that gk →
k→∞

f/id. Since
∞∑
i=1

F τ,n
i (t) ≤ n,

1

n

(
∞∑

i=1

F τ,n
i (t)gk (F τ,n

i (t))

)
uniformly in n→

k→∞

1

n

(
∞∑

i=1

f(F τ,n
i (t))

)
a.s.
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and then it is easily seen that with probability one the convergence (1.14) holds for each
f ∈ C1

c (]0, 1]) .

Note that the question whether a similar result holds for the Smoluchowski’s coagulation
equation or not is still open (see [4]). The problem is that the Smoluchowski’s coagulation
equation is non-linear and then the mean frequencies of the stochastic models do not evolve
as the Smoluchowski’s coagulation equation, contrary to what happens for the fragmentation
equation. Nonetheless, Norris [57] proved that under suitable assumptions on the coagulation
kernel, the solution to Smoluchowski’s coagulation equation may be obtained as the hydrody-
namic limit of stochastic systems of coagulating particles.

1.4 Loss of mass in the fragmentation equation

Let (µt, t ≥ 0) be the unique solution to the fragmentation equation (1.2) with parameters τ, c
and ν and consider for each t ≥ 0 the total mass of the system at time t

m(t) =

∫ 1

0

xµt(dx).

In this section, we give necessary (resp. sufficient) conditions on the parameters τ, c and ν for
the occurrence of loss of mass (i.e. the existence of a time t such that m(t) < m(0)). Then,
when loss of mass occurs, we describe the asymptotic behavior of m(t) as t → 0 or t → ∞
for a large class of parameters. This loss of mass study relies on the fact that the solution
(µt, t ≥ 0) can be constructed from a (τ, c, ν)-fragmentation process, denoted by F τ (see the
previous section). In particular, by monotone convergence, one can extend formula (1.9) to the
pair of functions

(
f, f
)

= (id, 1x>0) . Hence,

m(t) = E

[
∞∑

i=1

F τ
i (t)

]
= P (λτ(t) > 0), t ≥ 0,

where (λτ (t), t ≥ 0) is the size-biased picked fragment process related to F τ . Then recall Propo-
sition 1.2 and introduce the random variable

Iτ :=

∫ ∞

0

dr

τ(exp(−ξr))
. (1.15)

Since τ(0) = ∞, it is clear that Iτ is the first time when λτ is equal to 0. This leads to another
expression of the mass

m(t) = P (Iτ > t) (1.16)

which will be useful in this section. Note that for self-similar fragmentations, i.e. τ(x) = xα on
]0, 1], α ∈ R, Iτ is the well-known exponential functional of the Lévy process αξ (for background,
we refer e.g. to [19] and [25]).

At last, we recall that φ denotes the Laplace exponent of the subordinator ξ and can be
expressed as a function of c and ν (see (1.5)) and that k, c and L are the characteristics of ξ
(see (1.6)).

From now on, we exclude the degenerate case when the splitting measure ν and the erosion
rate c are 0, for which there is obviously no loss of mass.
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1.4.1 A criterion for loss of mass

If k > 0, either the erosion coefficient c is positive or a part of the mass of a particle may be
lost during its splitting (i.e. ν (

∑∞
i=1 si < 1) > 0) . Therefore, it is intuitively clear that if k > 0,

there is loss of mass. Nevertheless, loss of mass may occur even when k = 0, as some particles
may be reduced to dust in finite time. This phenomenon can be explained as follows when
τ decreases near 0. Small fragments split even faster since their mass is smaller. Therefore,
particles split faster and faster as time passes and so they may be reduced to dust in finite
time. We now present a qualitative criterion for loss of mass.

Proposition 1.3 (i) If k > 0, there is loss of mass and inf {t ≥ 0 : m(t) < m(0)} = 0.

(ii) If k = 0, then
∫

0+

φ′(x)

τinf(exp(−1/x))φ2(x)
dx <∞ ⇒ there is loss of mass

∫

0+

φ′(x)

τsup(exp(−1/x))φ2(x)
dx = ∞ ⇒ there is no loss of mass

where τinf and τsup are the continuous non-increasing functions defined on ]0, 1] by

τinf(x) = infy∈]0,x] τ(y) and τsup(x) = supy∈[x,1] τ(y).

Remarks. • If τ is bounded on ]0, 1] , we have that
∫

0+

φ′(x)

τsup(exp(−1/x))φ2(x)
dx = ∞

since τsup is then bounded on ]0, 1] and
∫
0+ φ

′(x)φ−2(x)dx = ∞ (recall that φ(0) = 0). Thus, if
τ is bounded on ]0, 1] and k = 0, there is no loss of mass. In particular, when k = 0, there is
no loss of mass in the homogeneous case (i.e. τ = 1).

• If τ is non-increasing near 0 and k = 0, either limx→0+ τ(x) < ∞ and then
there is no loss of mass or limx→0+ τ(x) = ∞ and then the functions τinf , τ and τsup coincide on
some neighborhood of 0. In both cases, the following equivalence holds:

∫

0+

φ′(x)

τ(exp(−1/x))φ2(x)
dx <∞ ⇔ there is loss of mass.

In order to prove Proposition 1.3, observe that loss of mass occurs if and only if
P (Iτ <∞) > 0, which justifies the use of the forthcoming lemma (see Lemma 3.6 in [11]):

Lemma 1.2 Let σ be a subordinator with killing rate 0 and U its potential measure, which
means that for each measurable function f,

∫∞
0
f(x)U(dx) = E

[∫∞
0
f(σt)dt

]
. Let h : [0,∞) →

[0,∞) be a non-increasing function. Then the following are equivalent

(i)
∫∞
0
h(x)U(dx) <∞

(ii) P
(∫∞

0
h(σt)dt <∞

)
= 1

(iii) P
(∫∞

0
h(σt)dt <∞

)
> 0.
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Proof of Proposition 1.3. (i) Let e(k) denote the exponential random variable with pa-
rameter k at which the subordinator ξ is killed and η the subordinator with killing rate 0,
independent of e(k) and such that ξt = ηt if t < e(k) and ξt = ∞ if t ≥ e(k). Then, set

T τ (t) := inf

{
u ≥ 0 :

∫ u

0

dr

τ (exp(−ηr))
> t

}
.

This random variable is independent of e(k) and using that for each time t

P (Iτ > t) ⇔ T τ (t) ≤ e(k)

we get,
m(t) = E

[
e−kT

τ (t)
]
.

Note that this is true even if k = 0, with the convention 0 ×∞ := ∞. Now if k > 0 and t > 0,
kT τ (t) > 0 with probability one and then m(t) < 1.

(ii) Let U denote the potential measure of the subordinator ξ. It is straightforward that
∫ ∞

0

U(dx)

τinf(exp(−x)) <∞ ⇒ P (Iτ <∞) = 1

and it follows from Lemma 1.2 that
∫ ∞

0

U(dx)

τsup(exp(−x)) = ∞ ⇒ P (Iτ <∞) = 0.

Thus we just have to prove that for each continuous positive and non-increasing function f on
]0, 1] ∫ ∞

0

U(dx)

f(exp(−x)) <∞ ⇔
∫

0+

φ′(x)

f(exp(−1/x))φ2(x)
dx <∞. (1.17)

To that end, recall that the repartition function U(x) =
∫ x
0
U(dy) satisfies

U ≍ 1

φ(1/·), (1.18)

where the notation g ≍ h indicates that there are two positives constants C and C ′ such that
Cg ≤ h ≤ C ′g (see Proposition 1.4 in [11]). Then if limx→0+ f(x) <∞,

∫ ∞

0

U(dx)

f(exp(−x)) =

∫

0+

φ′(x)

f(exp(−1/x))φ2(x)
dx = ∞

since U(∞) = ∞ and
∫
0+ φ

′(x)φ−2(x)dx = ∞. Next, if limx→0+ f(x) = ∞, introduce the
non-negative finite measure V defined on [0,∞[ by

∫ x

0

V (dy) =
1

f(1)
− 1

f(exp(−x)) .

Note that ∫ ∞

0

U(dx)

f(exp(−x)) =

∫ ∞

0

∫ ∞

x

V (dy)U(dx) =

∫ ∞

0

U(y)V (dy).



1.4. Loss of mass in the fragmentation equation 43

Combining this with (1.18) leads to the following equivalences

∫ ∞

0

U(dx)

f(exp(−x)) <∞ ⇔
∫ ∞

0

V (dy)

φ(1/y)
<∞

⇔
∫ ∞

0

∫ ∞

1/y

φ′(z)

φ2(z)
dzV (dy) <∞

⇔
∫ ∞

0

φ′(z)

f(exp(−1/z))φ2(z)
dz <∞

and then to equivalence (1.17) , since

∫ ∞

·

φ′(z)

f(exp(−1/z))φ2(z)
dz <∞ (the case when ξ = 0 is excluded).

Provided that τ is non-increasing near 0 and φ′(0+) < ∞, the following corollary gives a
simple necessary and sufficient condition on τ for loss of mass to occur. This result may be
found in Filippov’s paper ([35]) in the special case when ν(S∗) < ∞. Recall the notations τinf

and τsup introduced in Proposition 1.3.

Corollary 1.2 Suppose that k = 0. Then,

(i)

∫

0+

dx

xτinf(x)
<∞ ⇒ loss of mass.

(ii) If φ′(0+) <∞
(
i.e.

∫
S↓

(
∞∑
i=1

|log(si)| si
)
ν(ds) <∞

)
,

loss of mass ⇒
∫

0+

dx

xτsup(x)
<∞.

If τ is non-increasing in a neighborhood of 0, τinf and τsup can be replaced by τ .

In particular, as soon as τ(x) ≥ |log x|α near 0 for some α > 1, there is loss of mass.

Proof. The assumption k = 0 leads to

φ(q)

q
→
q→0

∫ ∞

0

xL(dx) =

∫

S↓

(
∞∑

i=1

(− log(si))si

)
ν(ds).

Remark that
∫∞
0
xL(dx) 6= 0, since L 6= 0 and then φ′(0+) > 0. If moreover φ′(0+) < ∞, we

have
φ′(x)

τsup(exp(−1/x))φ2(x)
∼

x→0+

1

φ′(0+)x2τsup(exp(−1/x))
.

Combining this with Proposition 1.3 (ii) leads to result (ii). Now, if φ′(0+) = ∞, the function
x 7→ x2φ′(x)φ−2(x) is still bounded near 0 and then we deduce (i) in the same way.
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1.4.2 Asymptotic behavior of the mass

Our purpose is to study the asymptotic behavior of the mass m(t) = 〈µt, id〉 as t → 0 or t →
∞.

1.4.2.1 Small times asymptotic behavior

Proposition 1.4 Assume that φ′(0+) < ∞ and τ(x) ≤ Cxα, 0 < x ≤ 1, with C > 0 and
α < 0. Then, m is differentiable at 0+ and m′(0+) = −k.

Remark. We will see in the proof that the upper bound

lim sup
t→0+

m(t) − 1

t
≤ −k

remains valid without any assumption on τ and φ.

Proof. As shown in the first part of the proof of Proposition 1.3

m(t) = E
[
e−kT

τ (t)
]
, t ≥ 0,

where T τ is the time-change

T τ (t) = inf

{
u ≥ 0 :

∫ u

0

dr

τ (exp(−ηr))
> t

}

and η a subordinator with killing rate 0, drift coefficient c and Lévy measure L. Hence,

1 −m(t)

t
= E

[
1 − e−kT

τ (t)

t

]
. (1.19)

Observe that it is sufficient to prove the statement for functions τ bounded on ]0, 1] or non-
increasing and such that τ(x) ≤ Cxα on ]0, 1] for some C > 0 and α < 0. Indeed, for each
continuous positive function τ such that τ(x) ≤ Cxα on ]0, 1] with C > 0 and α < 0, there are
two continuous positive functions τ1 and τ2 such that τ1 ≤ τ ≤ τ2 on ]0, 1] and

• τ1 is bounded on ]0, 1] and τ1(1) = 1
• τ2 is non-increasing, τ2(x) ≤ Cxα on ]0, 1] and τ2(1) = 1

(we may take for example τ2(x) := supy∈[x,1] τ(y)). Then combine this with the fact that

1 −mτ̃ (t)

t
≤ 1 −mτ (t)

t
, ∀t ≥ 0, (1.20)

when τ̃ ≤ τ on ]0, 1] (here mτ̃ and mτ denote the respective masses of a (τ̃ , c, ν)-fragmentation
equation and a (τ , c, ν)-fragmentation equation).
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(i) For t such that T τ (t) <∞, the time-change T τ can be expressed as follows:

T τ (t) =

∫ t

0

τ(exp(−ηT τ (r)))dr (1.21)

= t

∫ 1

0

τ(exp(−ηT τ (tr)))dr.

Note that the first time when T τ reaches ∞ is positive with probability one. Then if τ is
bounded (respectively, non-increasing), we get by the dominated convergence theorem (resp.
monotone convergence theorem), that

1 − e−kT
τ (t)

t

a.s.→
t→0+

k.

If τ is bounded the dominated convergence theorem applies and gives

1 −m(t)

t
→
t→0+

k.

(ii) To conclude when τ is non-increasing and smaller than the function x 7→ Cxα, it remains
to show that

(
1 − e−kT

τ (t)
)
/t is dominated - independently of t - by a random variable with

finite expectation. To see this, first note that it is sufficient to prove the domination for(
1 − e−kT

α(t)
)
/t, where

T α(t) = inf

{
u ≥ 0 :

∫ u

0

exp(αηr)dr > Ct

}

(since T τ (t) ≤ T α(t) for t ≥ 0). Next remark that if η1 is a subordinator such that η1 ≥ η, the
following inequality between time-changes holds

T α1 (t) := inf

{
u ≥ 0 :

∫ u

0

exp(αη1
r)dr > Ct

}
≥ T α(t)

and then
1 − e−kT

α(t)

t
≤ 1 − e−kT

α
1 (t)

t
for each t ≥ 0.

Thus it is sufficient to prove the domination for a subordinator bigger than η and so we can
(and will) assume that the subordinator η has a drift coefficient c ≥ k/ |α| . Now introduce the
exponential functional

Iα :=

∫ ∞

0

exp(αηr)dr.

Observe that
C−1Iα = inf {t ≥ 0 : T α(t) = ∞} .

If t < C−1Iα, we get that

d

dt

(
e−kT

α(t)
)

= −kCe−αηTα(t)e−kT
α(t) (1.22)
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(by using (1.21) for the function τ = Cxα). But the (random) function t 7→ −αηt − kt is
non-decreasing, since c ≥ k/ |α| and the process (ηt − ct, t ≥ 0) is a (pure jump) non-decreasing
process (according to the Lévy-Itô decomposition of a subordinator - see Proposition 1.3 in
[11]). Thus the derivative (1.22) is non-increasing and t 7→ e−kT

α(t) is a concave function on
[0, C−1Iα[ . From this, it follows that the slope

(
1 − e−kT

α(t)
)
/t is non-decreasing on [0, C−1Iα[

and it is straightforward that it is decreasing on [C−1Iα,∞[ . This leads to the upper bound:

1 − e−kT
τ (t)

t
≤ C

Iα
∀t ≥ 0.

By Proposition 3.1 (iv) in [25], the expectation

E
[
I−1
α

]
= (−α)φ′(0+) <∞,

and this ends the proof.

If k = 0, there is a more precise result. Recall (1.16) and set A := sup {a ≥ 0 : E [I−aτ ] <∞} .
Then for each ε > 0 such that A− ε > 0,

tε−A (1 −m(t)) ≤
∫ t

0

x
ε−A

PIτ (dx) →
t→0+

0,

since E
[
Iε−Aτ

]
<∞. (Actually, it is easy to see that

lim inf
t→0+

log(1 −m(t))

log(t)
= A).

For self-similar fragmentation processes, this points out the influence of α on the loss of mass
behavior near 0. Indeed, consider a family of self-similar fragmentation processes such that the
subordinator ξ is fixed (with killing rate k = 0) and α varies, α < 0. Then introduce the set

Q :=

{
q ∈ R :

∫

x>1

eqxL(dx) <∞
}
.

This set is convex and contains 0. Let p be its right-most point. According to Theorem 25.17
in [64],

q ∈ Q ⇔ E
[
eqξt
]
<∞ ∀t ≥ 0

and in that case E
[
eqξt
]

= e−tφ(−q). Then, following the proof of Proposition 2 in [19], we get

E
[
I−q−1
α

]
=

−φ(αq)

q
E
[
I−qα
]

for q <
p

|α| ,

which leads to
p

|α| ≤ sup
{
q : E

[
I−q−1
α

]
<∞

}
.

And then

lim inf
t→0+

log(1 −m(t))

log(t)
≥ 1 +

p

|α| .
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1.4.2.2 Large times asymptotic behavior

The main result of this subsection is the existence of exponential bounds for the mass m(t)
when t is large enough and when the parameters τ , c and ν satisfy the conditions (i) and (ii) of
the following Proposition 1.6. Before proving this, we point out the following intuitive result,
which is valid for all parameters τ , c and ν.

Proposition 1.5 When loss of mass occurs, m(t) →
t→∞

0.

Proof. From formula (1.16), we get that m(t) →
t→∞

P (Iτ = ∞). When k > 0, the subordinator

ξ is killed at a finite time e(k) and then

Iτ ≤ e(k) × sup
x∈[exp(−ξe(k)− ),1]

(1/τ(x))

is a.s. finite. When k = 0, our goal is to prove that the probability P (Iτ = ∞) is either 0 or 1.
To that end, we introduce the family of i.i.d. random variables, defined for all n ∈ N by

Fn := (ξn+t − ξn)0≤t≤1 .

It is clear that Iτ can be expressed as a function of the random variables Fn. Then, since for
all n ∈ N

{Iτ = ∞} =

{∫ ∞

n

dr

τ (exp(−ξr))
= ∞

}
,

it is easily seen that the set {Iτ = ∞} is invariant under finite permutations of the r.v. Fn,
n ∈ N. Hence, we can conclude by using the Hewitt-Savage 0-1 law (see e.g. Th.3 Section IV
in [34]).

Our sharper study of the asymptotic behavior of the mass m(t) as t → ∞ relies on the
moments properties of the random variable Iτ . If τ(x) = xα, α < 0, it is well known that the
entire moments of Iτ are given by

E [Inτ ] =
n!

φ(−α)...φ(−αn)
, n ∈ N∗, (1.23)

and then, that
E [exp(rIτ )] <∞ for r < φ(∞) := lim

q→∞
φ(q).

(See Proposition 3.3 in [25]). From this and formula (1.16) we deduce that the mass m(t)
decays at an exponential rate as t→ ∞, since for a positive r < φ(∞),

m(t) = P (Iτ > t) ≤ exp(−rt)E [exp(rIτ )] , t ≥ 0. (1.24)

This result is still valid for a function τ(x) ≥ Cxα, where α < 0 and C > 0, because Iτ ≤
C−1

∫∞
0

exp(αξr)dr. Remark that until now, we have made no assumption on φ. We now state
deeper results when φ behaves like a regularly varying function. Recall that a real function f
varies regularly with index a ≥ 0 at ∞ if

f(rx)

f(x)
→
x→∞

ra ∀r > 0.
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If a = 0, f is said to be slowly varying. Recall also that the notation f ≍ g indicates that there
exist two positives constants C and C ′ such that Cg ≤ f ≤ C ′g.

Proposition 1.6 Assume that

(i) C2x
β ≤ τ(x) ≤ C1x

α, 0 < x ≤ 1, α ≤ β < 0, C1 > 0, C2 > 0.
(ii) φ ≍ f on [1,∞) , where f varies regularly at ∞ with index a ∈ ]0, 1[ .

Denote by ψ the inverse of the function t 7→ t/φ(t), which is a bijection from [1,∞) to
[1/φ(1),∞). Then there exist two positive constants A and B such that for t large enough

exp(−Bψ(t)) ≤ m(t) ≤ exp(−Aψ(t)). (1.25)

Actually, if φ satisfies (ii), it is sufficient to suppose that C2x
β ≤ τ(x) with β < 0 and

C2 > 0 to obtain the upper bound m(t) ≤ exp(−Aψ(t)) and conversely, if τ(x) ≤ C1x
α with

α < 0 and C1 > 0, the lower bound exp(−Bψ(t)) holds.

Remark. If τ(x) = xα for x ∈ ]0, 1] , α < 0, and φ varies regularly at ∞ with index
a ∈ ]0, 1[ , it follows from a result in [61] that

log(m(t)) ∼
t→∞

(1 − a)a
a

a−1

α
ψ

(−αt
aa

)
.

We should also point out that there are some homogeneous fragmentation processes such that
the associated Laplace exponent φ satisfies assumption (ii) without varying regularly.

Proof. The proof relies on Theorem 1 and Theorem 2 of Kôno [48], which we now recall. Let
σ be a non-decreasing and “nearly regularly varying function with index b”, b ∈ ]0, 1[, which
means that there exist two positive constants r1 ≥ r2 and a slowly varying function s such that

r2x
bs(x) ≤ σ(x) ≤ r1x

bs(x) for x ≥ 1. (1.26)

Let Y be a positive random variable such that, for n large enough,

c2n2

2n∏

k=1

σ(k) ≤ E
[
Y 2n

]
≤ c2n1

2n∏

k=1

σ(k) (1.27)

where c1 and c2 are positive constants. Then, there exist three positive constants A, B and C
such that for x large enough,

exp(−Bx) ≤ P (Y ≥ Cσ(x)) ≤ exp(−Ax).

Coming back to the proof, we set

σ(x) :=
x

φ(x)
, x ≥ 1.
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This is an increasing continuous function (by the concavity of φ) such that limx→∞ σ(x) = ∞
(by assumption (ii)). In particular, its inverse ψ is well-defined and increasing on [σ(1),∞) .
Since f varies regularly with index a ∈ ]0, 1[ , there exists a slowly varying function g such
that f(q) = qag(q) for q ≥ 1. Then it follows from assumption (ii) that σ satisfies (1.26) with
b = 1 − a and s = 1/g (note that g is a positive function on [1,∞)). On the other hand, recall
that if τ(x) = xα, α < 0, the entire moments of the random variable Iτ are given by (1.23) .
Thus, for each function τ satisfying assumption (i), we have

C−n1

n∏

k=1

k

φ(−αk) ≤ E [Inτ ] ≤ C−n2

n∏

k=1

k

φ(−βk) .

Moreover, the assumption (ii) implies that for each C > 0, φ(Ct) ≍ φ(t) at least for t ∈ [1,∞) .
Therefore, the moments of Iτ satisfy (1.27). Then, by applying the theorems recalled at the
beginning of the proof, we get

exp(−Bψ (t/C)) ≤ m(t) = P (Iτ > t) ≤ exp(−Aψ (t/C)) for t large enough. (1.28)

It remains to remove the constant C. To that end, introduce h(x) := x/f(x) on [1,∞) and
consider the generalized inverse of h:

h←(x) := inf {y ∈ [1,∞) : h(y) > x} , x ∈ [1/f(1),∞) .

The function h varies regularly with index 1−a and so, according to Theorem 1.5.12 in [21], h←

varies regularly with index 1/ (1 − a) and h(h←(x)) ∼
x→∞

x. From this latter and assumption

(ii), we deduce the existence of two positive constant D1 and D2 such that

D1x ≤ σ (h←(x)) ≤ D2x for x large enough.

And since ψ is increasing, we have

ψ (D1x) ≤ h←(x) ≤ ψ (D2x) for x large enough.

But then, since h← varies regularly, the function x 7→ ψ (x/C) /ψ (x) is bounded away from 0
and ∞ when x → ∞. Then combine this with (1.28) to obtain (1.25) .

Note that the assumption (ii) in Proposition 1.6 implies that the erosion rate c is equal to
0. Now, if c > 0 and if τ(x) ≥ Axα on ]0, 1], with α < 0 and A > 0, we observe that the mass
m(t) is equal to 0, as soon as t ≥ 1/|Aαc|. Indeed, recall that

k ≥ c and ξt ≥ ct for each t ≥ 0.

Then,

Iτ ≤
(1 − exp(αce(k)))

|Aαc|
which leads to {

m(t) = 0 if t ≥ 1/|Aαc|
m(t) ≤ (1 + Aαct)k/|αc| if t ≤ 1/|Aαc|.

In the same way, we obtain that m(t) ≤ e−kat if τ ≥ a on ]0, 1] (before that, we had
exponential upper bounds only when τ(x) ≥ Axα, with α < 0 and A > 0).



50 1. Loss of mass in deterministic and random fragmentations

1.5 Loss of mass in fragmentation processes

Let F τ be a (τ, c, ν)-fragmentation process starting from (1, 0, ...) . We say that there is loss of
mass in this random fragmentation if

P

(
∃t ≥ 0 :

∞∑

i=1

F τ
i (t) < 1

)
> 0.

The results on the occurrence of this (stochastic) loss of mass as a function of the parameters
τ, c and ν are exactly the same as those on the occurrence of loss of mass for the corresponding
deterministic model (constructed from F τ by formula (1.3)). Indeed, the point is that, as shown
in the proof of Proposition 1.5, the probability P (Iτ < ∞) is either 0 or 1 and then that the

events

{
∃t ≥ 0 :

∞∑
i=1

F τ
i (t) < 1

}
and {Iτ <∞} coincide apart from an event of probability 0.

Thus, Proposition 1.3 and its corollary are still valid for the loss of mass in the fragmentation
process F τ and when there is loss of mass, it occurs with probability one.

When there is loss of mass, one may wonder if there exists a finite time at which all the mass
has disappeared, i.e. if

ζ := inf {t ≥ 0 : F τ
1 (t) = 0} <∞.

In the sequel, we will say that there is total loss of mass if P (ζ <∞) > 0. Bertoin [15] proves
that total loss of mass occurs with probability one for a self similar fragmentation process
with a negative index. Here, we give criteria on the parameters τ , c and ν for the presence or
absence of total loss of mass. From this we deduce that even if k = 0, there is no equivalence in
general between loss of mass and total loss of mass. Then, we study the asymptotic behavior
of P (ζ > t) as t → ∞, when the parameters τ, c and ν satisfy the same assumptions as in
Proposition 1.6. The following remark will be useful in this study of ζ : if F τ and F τ ′ are two
fragmentation processes constructed from the same homogeneous one and if τ ≤ τ ′ on ]0, 1] ,
then

inf
{
t ≥ 0 : F τ ′

1 (t) = 0
}
≤ inf {t ≥ 0 : F τ

1 (t) = 0} . (1.29)

Eventually, we investigate in the last subsection the behavior as t → 0 of the random mass
M(t) = 1 −∑∞i=1 F

τ
i (t).

1.5.1 A criterion for total loss of mass

Proposition 1.7 Consider the continuous non-increasing functions τinf and τsup constructed
from τ as in the statement of Proposition 1.3.

(i) If

∫

0+

dx

xτinf(x)
<∞, then P (ζ <∞) = 1.

(ii) If k = 0 and
∫
S↓

|log(s1)| ν(ds) <∞, then

P (ζ <∞) > 0 ⇒
∫

0+

dx

xτsup(x)
<∞.

If τ is non-increasing in a neighborhood of 0, τinf and τsup can be replaced by τ .
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Remarks. • This should be compared with Corollary 1.2 which states similar connec-
tions between loss of mass and the integrability near 0 of functions x 7→ 1/xτinf(x) and
x 7→ 1/xτsup(x).

• The condition
∫
S↓

|log(s1)| ν(ds) < ∞ is satisfied as soon as ν(s1 ≤ ε) = 0
for a positive ε, since |log(s1)| ≤ ε−1 (1 − s1) when s1 belongs to ]ε, 1] . In particular, this last
condition on the measure ν is satisfied for fragmentation models where k = 0 and such that
the splitting of a particle gives at most n fragments (i.e. ν(sn+1 > 0) = 0). Indeed, we have
then that ν (s1 < 1/n) = 0, since ν (

∑∞
i=1 si < 1) = 0 when k = 0.

Proof. We just have to prove these assertions for a non-increasing function τ and then use
the remark (1.29). Thus in this proof τ is supposed to be non-increasing on ]0, 1].

As shown in Section 1.2.2, the interval representation
(
Ĩx(t), x ∈ ]0, 1[ , t ≥ 0

)
of F τ is con-

structed from the interval representation (Ix(t), x ∈ ]0, 1[ , t ≥ 0) of a homogeneous (c, ν) frag-
mentation process F in the following way:

Ĩx(t) = Ix(T
τ
x (t)),

where

T τx (t) = inf

{
u ≥ 0 :

∫ u

0

dr

τ(|Ix(r)|)
> t

}
.

For every x in ]0, 1[, set ζx := inf {t : Ix(t) = 0} . Then,

T τx (t) < ζx if and only if t <

∫ ∞

0

dr

τ (|Ix(r)|)
,

which leads to

ζ = sup
x∈]0,1[

∫ ∞

0

dr

τ(|Ix(r)|)
. (1.30)

(i) This part is merely adapted from the proof of Proposition 2 (i) in [15]. In particular, as
mentioned there,

lim sup
r→∞

r−1 logF1(r) < 0.

Thus there exists a random positive number C such that

1

τ(|Ix(r)|)
≤ 1

τ (exp(−Cr)) for all x ∈ ]0, 1[ and all r ≥ 0,

since moreover τ is non-increasing. Now, we just have to combine this with equality (1.30) and
the fact that the function x 7→ 1/xτ(x) is integrable near 0 to conclude that ζ <∞ a.s.

(ii) Since k = 0, the drift coefficient c is equal to 0 and then the homogeneous fragmentation
process F is a pure jump process constructed from a Poisson point process ((∆(t), k(t)) , t ≥ 0)
∈ S∗ ×N∗, with characteristic measure ν ⊗ # (see Section 1.2.1). From this process, we build
another jump process Y which we first describe informally: Y (0) = 1 and for each time t, Y (t)
is an element of the sequence F (t). When the fragment with mass Y splits, we keep the largest
fragment and Y jumps to the mass of this new fragment. And so on ... Note that generally,
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the jump times may accumulate. Now, we give a rigorous construction of Y, by induction.
To that end, we build simultaneously a sequence of particular times (tn)n∈N

. Set t0 := 0 and
Y (t0) := 1. Suppose that tn−1 is known, that it is a randomized stopping time, and that Y
is constructed until tn−1. Let k(n − 1) be such that Y (tn−1) = Fk(n−1)(tn−1) and consider the
fragmentation process stemming from Fk(n−1)(tn−1). Since F is homogeneous, there exists a
homogeneous (c, ν)-fragmentation process independent of (F (t), t ≤ tn−1), denoted by F n−1,
such that the fragmentation process stemming from Fk(n−1)(tn−1) is equal to Y (tn−1)F

n−1. Let
λn−1 and ((∆n−1(t), kn−1(t)) , t ≥ 0) be respectively the size-biased picked fragment process and
the Poisson point process related to F n−1. Then set

tn := tn−1 + inf
{
t : λn−1(t) < 1

2

}

Y (t) := Y (tn−1)F
n−1
1 (t− tn−1), tn−1 ≤ t < tn

Y (tn) :=

{
∆n−1

1 (tn − tn−1)Y (tn−1)F
n−1
1 ((tn − tn−1)

−) if kn−1(tn − tn−1) = 1
Y (tn−1)F

n−1
1 (tn − tn−1) otherwise.

Time tn is a randomized stopping time. Note that the random variables (tn − tn−1) are iid with
a positive expectation. So tn → ∞ and Y is then well-defined on [0,∞) .

Call σ the non-decreasing process (− log(Y )) and consider the jumps ∆̃(t) := σ(t) − σ(t−),

t ≥ 0. It is easily seen that
(
∆̃(t), t ≥ 0

)
is a Poisson point process on ]0,∞[ with characteristic

measure ν(− log s1 ∈ dx). In other words, σ is a subordinator with Laplace exponent

ϕ(q) =

∫

S↓
(1 − sq1)ν(ds), q ≥ 0.

It can be shown that for each t ≥ 0 there exists a (random) point xt ∈ ]0, 1[ such that
Y (r) = |Ixt(r)| for r ≤ t. Combine this with equality (1.30) to conclude that

ζ ≥
∫ t

0

dr

τ(exp(−σ(r))
for all t ≥ 0

and then

ζ ≥
∫ ∞

0

dr

τ(exp(−σ(r))
.

Therefore, the assumption P (ζ <∞) > 0 implies that

P

(∫ ∞

0

dr

τ(exp(−σ(r))
<∞

)
> 0

and so, following the proof of Proposition 1.3 (ii), we conclude that
∫

0+

ϕ′(x)

τ(exp(−1/x))ϕ2(x)
dx <∞.

Together with the assumption

ϕ′(0+) =

∫

S↓
|log(s1)| ν(ds) <∞,

this implies that

∫

0+

1

xτ(x)
dx <∞.
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1.5.2 Does loss of mass imply total loss of mass ?

If the killing rate k is positive, loss of mass always occurs, but in general total loss of mass
does not. Think for example of a pure erosion process. Now, we focus on what happens when
k = 0, i.e. when the loss of mass corresponds only to particles reduced to dust. First, if the
Laplace exponent φ has a finite right-derivative at 0 and if τ is non-increasing near 0, loss of
mass is equivalent to total loss of mass and both occur with probability zero or one. This just
follows from a combination of Corollary 1.2 (ii) and Proposition 1.7 (i). However, without this
assumption on φ there may be loss of mass but no total loss of mass. Here is an example: fix
a ∈ ]0, 1[ and take the parameters τ , c and ν as follows:

• τ(x) =

{
1 if x ≥ e−1

(− log x) if 0 < x ≤ e−1,
• c = 0,

• ν(ds) =
∞∑
n=1

(
1

na
− 1

(n+ 1)a

)
δ


1

2
,

1

2n+1
, ...,

1

2n+1︸ ︷︷ ︸
, 0, ...




2n terms

(ds).

It is clear that τ is decreasing on ]0, e−1] and k = 0.

Lemma 1.3 Let φ be the Laplace exponent specified by (1.5) for the parameters above. Then
φ(q) ≥ Cqa for some C > 0 and for all q ∈ [0, 1] .

Proof. Consider the function

f(q) =

∫ ∞

1

(1 − e−(log 2)qx)x−1−adx

= (q log 2)a
∫ ∞

q log 2

(1 − e−x)x−1−adx.

The integral
∫∞
0

(1 − e−x)x−1−adx is positive and finite since a ∈ ]0, 1[ . Then there exists a
positive real number C such that

f(q) ≥ Cqa, ∀q ∈ [0, 1] .

On the other hand, remark that

f(q) =

∞∑

n=1

∫ n+1

n

(1 − e−(log 2)qx)x−1−adx

≤
∞∑

n=1

(1 − e−(log 2)q(n+1))

∫ n+1

n

x−1−adx

≤ 1

a

∞∑

n=1

(1 − e−(log 2)q(n+1))

(
1

na
− 1

(n+ 1)a

)
.

As a consequence, the following inequality holds

∞∑

n=1

(
1 − 1

2q(n+1)

)(
1

na
− 1

(n+ 1)a

)
≥ aCqa, ∀q ∈ [0, 1] .
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This leads to:

φ(q) =

∫

S∗

(
1 −

∞∑

i=1

sq+1
i

)
ν(ds)

=
∞∑

n=1

(
1

na
− 1

(n + 1)a

)(
1 −

(
1

2

)q+1

− 2n × 1

2(n+1)(q+1)

)

≥ 1

2

∞∑

n=1

(
1

na
− 1

(n+ 1)a

)(
1 − 1

2(n+1)q

)

≥ a

2
Cqa, ∀q ∈ [0, 1] .

From this we deduce that there is loss of mass. Indeed, φ′(x) ≤ x−1φ(x) for positive x since
φ is a concave function. Then combine this with Lemma 1.3 to obtain that

1

τ(exp(−1/x))
× φ′(x)

φ2(x)
≤ 1

Cxa
for 0 < x ≤ 1

and conclude with Proposition 1.3 (ii). On the other hand, there is no total loss of mass since
the equalities ∫

S↓
|log(s1)| ν(ds) = log 2 and

∫ 1

0

dx

xτ(x)
= ∞

imply with Proposition 1.7 (ii) that P (ζ <∞) = 0.

1.5.3 Asymptotic behavior of P (ζ > t) as t→ ∞
In this subsection, we consider functions τ such that C2x

β ≤ τ(x) ≤ C1x
α for x ∈ ]0, 1] ,

where α ≤ β < 0 and C1 and C2 are positive constants. Thus there is total loss of mass with
probability one. The following proposition states that P (ζ > t) and m(t) have then the same
type of behavior as t→ ∞ (see also Proposition 1.6). More precisely, we have

Proposition 1.8 Suppose that C2x
β ≤ τ(x) ≤ C1x

α for x ∈ ]0, 1] , where α ≤ β < 0, C1 > 0
and C2 > 0. Then,

(i) ∃C > 0 such that P (ζ > t) ≤ exp(−Ct) for t large enough.

(ii) If φ ≍ f on [1,∞) , for a function f varying regularly with index a ∈ ]0, 1[ at ∞, there
are two positive constants A and B such that for t large enough

exp(−Bψ(t)) ≤ P (ζ > t) ≤ exp(−Aψ(t))

where ψ is the inverse of the bijection t ∈ [1,∞) 7→ t/φ(t) ∈ [1/φ(1),∞) .

Actually, the upper bounds hold as soon as τ(x) ≥ C2x
β , with β < 0 and C2 > 0 and the

lower bound holds for functions τ satisfying only τ(x) ≤ C1x
α, with α < 0 and C1 > 0.

To prove the proposition we need the following lemma:
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Lemma 1.4 Let F be a self-similar fragmentation process with parameters (α, c, ν), α < 0,
and ζ the first time at which the entire mass has disappeared. Fix α′ ≥ α. Then, there exists a
self-similar fragmentation process with parameters (α′, c, ν), denoted by F ′, such that

ζ ≤
∫ ∞

0

(F ′1(r))
α′−α

dr.

Proof. Consider (Ix(t), x ∈ ]0, 1[ , t ≥ 0) the interval representation of F. There ex-
ists a self-similar interval representation process with parameters (α′, c, ν), denoted by
(I ′x(t), x ∈ ]0, 1[ , t ≥ 0) , such that

Ix(t) = I ′x(Tx(t))

where

Tx(t) = inf

{
u ≥ 0 :

∫ u

0

|I ′x(r)|α
′−α

dr > t

}
.

(See Section 3.2. in [14]). For each t ≥ 0, call F ′(t) the non-increasing rearrangement of the
lengths of the disjoint intervals components of (I ′x(t), x ∈ ]0, 1[) . Then F ′ is the required self-
similar fragmentation process with index α′. Let x be in ]0, 1[. Since |I ′x(r)| ≤ F ′1(r) for each
r ≥ 0, we have that

Tx

(∫ ∞

0

(F ′1(r))
α′−α

dr

)
= ∞.

Then,

ζ ≤
∫ ∞

0

(F ′1(r))
α′−α

dr,

because I ′x(∞) = 0 for every x in ]0, 1[.

Proof of Proposition 1.8. If τ ′ = Kτ for a positive constant K and if F τ and F τ ′ are
two fragmentation processes constructed from the same homogeneous one, it is easily seen that
F τ ′

1 (t) = F τ
1 (Kt) for each t ≥ 0. Recall moreover the remark (1.29) . Since it is supposed that

C2x
β ≤ τ(x) ≤ C1x

α on ]0, 1] , where α ≤ β < 0, it is then enough to prove results (i) and (ii)
for a self-similar fragmentation process with a negative index. Thus, consider F a self-similar
fragmentation process with parameters (α, c, ν), α < 0. Applying the previous lemma to F and
α′ = α/2, we get

P (ζ > 2t) ≤ P (
∫∞
0

(F ′1(rt))
−α/2 dr > 2)

≤ P (
∫∞
1

(F ′1(rt))
−α/2 dr > 1)

≤
∫∞
1
E
[
(F ′1(rt))

−α/2
]
dr,

(1.31)

since F ′1(t) ≤ 1, ∀t ≥ 0. Now, recall that

E [F ′1(t)] ≤ E

[
∞∑

i=1

F ′i (t)

]
= mτ ′(t),

where mτ ′ is the total mass of the fragmentation equation with parameters τ ′(x) = xα/2, c and
ν. This leads to

E
[
(F ′1(t))

−α/2
]
≤
{
mτ ′(t) if (−α/2) ≥ 1

(mτ ′(t))
−α/2 if (−α/2) < 1 (by Jensen’s inequality).

(1.32)
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(i) Combining (1.31), (1.32) and (1.24), we obtain that for t large enough

P (ζ > 2t) ≤
∫ ∞

1

exp(−C ′rt)dr =
1

C ′t
exp(−C ′t),

where C ′ is a positive constant.

(ii) As stated in Proposition 1.6, since φ ≍ f, with f a regularly varying function with index
a ∈ ]0, 1[, and since τ ′(x) = xα/2, the function

σ : t ∈ [1,∞) 7→ t/φ(t) ∈ [1/φ(1),∞)

is an increasing bijection and its inverse ψ satisfies mτ ′(t) ≤ exp(−A1ψ(t)) for a constant A1 > 0
and t large enough. From this and inequalities (1.31) and (1.32) , we deduce the existence of a
positive constant A2 so that for t large enough,

P (ζ > 2t) ≤
∫ ∞

1

exp(−A2ψ(rt))dr.

Moreover, σ is differentiable and its derivative is positive and smaller than
1

φ
(recall that φ′ is

positive) and then σ′ is bounded on [1,∞). Thus for t large enough,

P (ζ > 2t) ≤ t−1
∫∞
ψ(t)

exp(−A2r)σ
′(r)dr

≤ A2

∫∞
ψ(t)

exp(−A2r)dr

= exp(−A2ψ(t)).

Then, as in the proof of Proposition 1.6 the constant 2 can be removed by using the assumption
(ii).

Eventually, introduce the r.v. Iτ (see definition (1.15)) to conclude for the lower bound. This
random variable is the first time when the size-biased picked fragment vanishes and so Iτ ≤ ζ
a.s. Then, we get the desired lower bound from Proposition 1.6 (recall that m(t) = P (Iτ > t)).

1.5.4 Small times asymptotic behavior

We are interested in the asymptotic behavior as t → 0 of the random mass
M(t) = 1 −∑∞i=1 F

τ
i (t) of the (τ, c, ν) fragmentation process F τ starting from (1, 0, ...).

Proposition 1.9 One has,
M(t)

t
a.s.→ c as t→ 0.

More generally, when F τ denotes a (τ, c, ν)-fragmentation process starting from (s, 0, ...),
s > 0, one easily checks, by adapting the following proof, that (s−∑∞i=1 F

τ
i (t))/t

a.s.→ csτ(s) as
t→ 0.
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Proof. On the one hand, among the F τ
i (t)’s, i ≥ 1, there is the size-biased picked fragment,

and therefore
∞∑

i=1

F τ
i (t) ≥ λτ (t) = exp(−ξρτ (t)), t ≥ 0,

where ξ is a subordinator with Laplace exponent (1.5) and ρτ the time change (1.8). It is easily

seen that a.s. ρτ (t)/t
t→0→ τ(1) = 1 and it is well known that a.s. ξt/t

t→0→ c (see chapter 3, [10]).
Hence

lim sup
t→0

(M(t)/t) ≤ c a.s.

On the other hand, in the homogeneous case (τ ≡ 1), it is clear that
∑∞

i=1 F
τ
i (t) ≤ e−ct. This

a fortiori holds when τ ≥ 1 on ]0, 1], since the fragmentation is then faster than a homogeneous
one. Therefore, in such cases,

lim inf
t→0

(M(t)/t) ≥ c a.s. (1.33)

and the conclusion follows. To prove that this lower limit holds for all functions τ , we study the
mass lost by erosion by the size-biased picked fragment λτ until time t. First, in the homogeneous
case (we write λhom for the size-biased picked fragment), λhom(t) = e−ctλhom

0 (t), t ≥ 0, where
λhom

0 is the size-biased picked fragment of some homogeneous fragmentation without erosion.
If λhom

0 (t) ≥ m for t ∈ [t1, t2], the mass lost by erosion by λhom between times t1 and t2 is then
larger than m(exp(−ct1)− exp(−ct2)). In particular, the mass lost by erosion by λhom between
times 0 and t is larger than λhom

0 (t)(1−exp(−ct)). Now, for any function τ , λτ (t) = λhom(ρτ (t))
for some size-biased picked fragment λhom of some homogeneous fragmentation, and therefore,
the mass lost by erosion by λτ until time t is larger than λhom

0 (ρτ (t))(1− exp(−cρτ (t)) for some
process λhom

0 . Consequently, M(t) ≥ λhom
0 (ρτ (t))(1 − exp(−cρτ (t)). Since, λhom

0 (u) → 1 a.s. as
u→ 0 and since ρτ (t)/t→ 1 a.s. as t→ 0, one gets

lim inf
t→0

(M(t)/t) ≥ c a.s.

We point out that it is possible to check (by refining the above argument) that the mass lost
by erosion by the size-biased picked fragment in the homogeneous case is equal to

∫ t
0
cλhom(s)ds

and therefore that it is equal to

∫ ρ(t)

0

cλhom(s)ds =

∫ t

0

cλτ (s)τ(λτ (s))ds

in the general case, which, from a physical view point, was intuitive.

1.6 Appendix

1.6.1 An example

Let us consider the self-similar fragmentation process constructed from the Brownian excursion
of length 1. This process was introduced in [14] and can be constructed as follows. Write
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e = (e(t), 0 ≤ t ≤ 1) for the Brownian excursion of length 1 and introduce the family of random
open sets of ]0, 1[ defined by

I(t) = {s ∈ ]0, 1[ : e(s) > t} , t ≥ 0.

Then the process (I(t), t ≥ 0) is a self-similar interval fragmentation process with index −1/2.
For each t ≥ 0, define by F (t) the non-increasing sequence of the lengths of the interval
components of I(t). The required fragmentation process is this process (F (t), t ≥ 0) , which is
obviously self-similar with index −1/2. Consider then the deterministic fragmentation model
constructed from F and especially its mass, which is denoted by m(t) for all time t. Since the
process F is self-similar with a negative index, there is loss of mass. Moreover, as shown in
[14], the Laplace exponent of the associated subordinator ξ is given by

φ(q) = 2q

√
2

π
B

(
q +

1

2
,
1

2

)
,

and this leads to the following equivalence

φ(q) ∼
q→∞

2
√

2q
1
2

(B denotes here the beta function). Hence, the remark following Proposition 1.6 ensures that

logm(t) ∼
t→∞

−2t2

and Proposition 1.8 gives exponential bounds for P (ζ > t) as t 7→ ∞.

However, we may obtain sharper results. First, recall that Iτ denotes the first time when the
size-biased picked fragment of F is equal to 0. We know from [14] that 2Iτ follows the Rayleigh
distribution, that is

P (2Iτ ∈ dr) = r exp(−r2/2)dr,

and then the mass is explicitly known:

m(t) = P (Iτ > t) = exp(−2t2), t ≥ 0.

On the other hand, the random variable ζ is obviously the maximum of the Brownian excursion
with length 1. And then, as proved in [43], the tail distribution of this random variable is given
by

P (ζ > t) = 2
∞∑

n=1

(
4t2n2 − 1

)
exp(−2t2n2), t > 0.

This implies that
P (ζ > t) ∼

t→∞
8t2 exp(−2t2).
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1.6.2 Necessity of condition (1.1)

We discuss here the necessity of assumption (1.1) for the splitting measure ν in the fragmenta-
tion equation (1.2) (that (1.1) is needed to construct a random fragmentation was pointed out
in [13]).

Suppose that
∫
S∗

(1− s1)ν(ds) = ∞ and that there exists a solution (µt, t ≥ 0) to (1.2) . Let
f be a function of C1

c (]0, 1]) whose support is exactly [3/4, 1] and such that f(1) 6= 0. Since the
function t 7→ 〈µt, f〉 is continuous on R+ and µ0 = δ1, there exists a positive time t0 such that

suppµt ∩ [3/4, 1] 6= ∅ (1.34)

for t < t0. Then define by g an non-decreasing non-negative function on ]0, 1] , smaller than id,
belonging to C1

c (]0, 1]) and such that

g(x) =

{
0 on ]0, 1/2]
x on [3/4, 1] .

Take x in [3/4, 1] . For each s ∈ S↓ and each i ≥ 2, g(xsi) = 0 since si ≤ 1/2 for i ≥ 2. Thus

∫
S↓

[
∞∑
i=1

g(xsi) − g(x)

]
ν(ds) =

∫
S↓

(g(xs1) − g(x)) ν(ds)

≤ x
∫
S↓

(s1 − 1) ν(ds) = −∞.

By combining this with (1.34) , we conclude that the derivative ∂t 〈µt, g〉 = −∞ on [0, t0[ and
then that the fragmentation equation (1.2) has no solution.
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Chapitre 2

Regularity of formation of dust in
self-similar fragmentations

Abstract: In self-similar fragmentations with a negative index, fragments split even faster as
their mass is smaller, so that the fragmentation runs away and some mass is reduced to dust.
Our purpose is to investigate the regularity of this formation of dust. Let M(t) denote the
mass of dust at time t.We give some sufficient and some necessary conditions for the measure
dM to be absolutely continuous. In case of absolute continuity, we obtain an approximation
of the density by functions of small fragments. We also study the Hausdorff dimension of dM
and of its support, as well as the Hölder-continuity of the dust’s mass M .

2.1 Introduction

Fragmentation processes are random models for the evolution of an object that splits as time
goes on. These models, together with their deterministic counterparts, have been widely studied
by both mathematicians and physicists. We mention Aldous’ survey [4] of the literature on the
subject and Les Houches proceedings [20] for physical view points.

The self-similar fragmentations processes we consider in this work are those studied by
Bertoin in [13], [14], [15]. Informally, a self-similar fragmentation is a process that enjoys both
a fragmentation property and a scaling property. By fragmentation property, we mean that the
fragments present at a time t will evolve independently with break-up rates depending on their
masses. The scaling property specifies these mass-dependent rates. More precisely, there is a
real number α, called index of self-similarity, such that the process starting from a fragment
with mass m has the same distribution as m times the process starting from a fragment with
mass 1, up to the time change t 7→ tmα. The definition will be made rigorous in Section 2.2.

Our interest is more specifically in self-similar fragmentations with negative indices of self-
similarity, in which a loss of mass occurs (see e.g. [15]), corresponding to the appearance of dust
- or microscopic fragments - whose total mass is non-zero. This phenomenon is a consequence
of an intensive splitting that results from the scaling property: when α < 0, small fragments
split faster than large ones, so that the average speed of splitting increases as time goes on and
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the fragmentation runs away and produces some dust. Let us mention [35], [36], [38] and [42]
for discussions on the appearance of dust for some different classes of random fragmentations
and for some deterministic fragmentation models.

The purpose of this paper is to study the regularity of this formation of dust. To be more
precise, let M(t) be the dust’s mass at time t, t ≥ 0. It is a non-decreasing function that
can be written as M(t) =

∫ t
0
dM(u) for some non-negative measure dM . Our main point of

interest is to investigate the existence of a Lebesgue density for the mass measure dM. We
are also concerned with questions such as the approximation of the density (when it exists) by
functions depending on small fragments, the Hausdorff dimensions of dM and dM ’s support
when dM is singular and the Hölder-continuity of the dust’s mass M.

This study is motivated and illustrated by the “Brownian excursion fragmentation” exam-
ple, introduced first in [14] and that we now roughly present. Let e = (e(x), 0 ≤ x ≤ 1) be
the normalized Brownian excursion (informally, e is a Brownian motion on the unit interval,
conditioned by e(0) = e(1) = 0 and e(x) > 0 for 0 < x < 1) and consider the family of random
nested open sets of ]0, 1[

Ie(t) = {x ∈ ]0, 1[ : e(x) > t} , t ≥ 0.

This family corresponds to a fragmentation of the interval ]0, 1[ as time passes (actually, one
may prove that it is a self-similar fragmentation with index α = −1/2 - see [14]). The interval
components of Ie(t) are the “fragments” present at time t with a positive mass (the mass of
a fragment being the length of the corresponding interval) and their total mass is equal to∫ 1

0
1{e(u)>t}du. The dust’s mass Me(t) is thus equal to

∫ 1

0
1{e(u)≤t}du, which is positive for all

t > 0. According to the Brownian motion theory, there is a local time process (Le(t), t ≥ 0)
such that

Me(t) =

∫ t

0

Le(s)ds for all t ≥ 0, a.s.,

so that the mass measure dMe has Le for Lebesgue density a.s. It is further known that this
density Le can be approximated by functions of small interval components (i.e. fragments) as
follows (see e.g. [60]): for every t ≥ 0,

lim
ε→0

√
2π

ε
Me(t, ε)

a.s.
= lim

ε→0

√
2πεNe(t, ε)

a.s.
= Le(t),

where Me(t, ε) denotes the total length of excursions intervals of e above t of length less or equal
to ε (that is, in terms of fragments, the total mass of fragments present at time t having a mass
in ]0, ε]); and Ne(t, ε) is the number of excursions of e above t of length greater then ε (i.e. the
number of fragments present at time t of mass greater than ε). Another point we are interested
in, as mentioned above, is the Hölder-continuity of the dust’s mass Me. It is well-known that
that the local time Le is bounded a.s.: the dust’s mass Me is therefore Lipschitz a.s.

Miermont [56] constructs similarly some fragmentations from the normalized excursions of
some random continuous processes possessing a local time, which gives some more examples of
fragmentations with absolutely continuous mass measure dM.
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Our goal is to see how these regularity results extend to general self-similar fragmentations
with negative indices. The paper is organized as follows. In Section 2.2, self-similar fragmenta-
tions are introduced and their main properties recalled. Section 2.3 concerns some preliminary
results on the dust’s mass M and on tagged fragments, a tagged fragment being a fragment
containing a point tagged at random, independently of the fragmentation. The evolution of
such fragments is well-known and is closely connected to the mass M as we shall see later.
Following one or several tagged fragments as time passes will then be a key tool in the study
of regularity.

There are some self-similar fragmentations for which the mass measure dM does not have
a Lebesgue density. Section 2.4 presents some sufficient (respectively necessary) conditions for
dM to be absolutely continuous. These conditions are stated in terms of the index of self-
similarity α and of a dislocation measure, introduced in Section 2.2, that, roughly, describes
the distribution of sudden dislocations. For a large class of fragmentations the critical value is
α = −1, in the sense that almost surely dM has a Lebesgue density if and only if α > −1. The
sufficient conditions’ proofs are coarser than the necessary ones and rely on Fourier analysis.

For fragmentations with an absolutely continuous mass measure dM, the approximation of
the density is discussed in Section 2.5. Let L(t) := dM(t)/dt. In most cases, we prove the
existence of a finite deterministic constant C such that for a.e. t, the functions εαM(t, ε) and
ε1+αN(t, ε) converge a.s. to CL(t) as ε → 0. As in the Brownian excursion fragmentation,
M(t, ε) denotes the total mass of fragments of mass in ]0, ε] at time t and N(t, ε) the number
of fragments of mass greater than ε at time t.

Section 2.6 is devoted to the Hölder-continuity of the dust’s mass M and, in cases where
dM is singular, to its Hausdorff dimension and that of its support. The paper ends with an
Appendix containing a technical proof of a result stated in Section 2.3.

2.2 Background on self-similar fragmentations

Since for us the only distinguishing feature of a fragment is its mass, the fragmentation system
is characterized at a given time t by the ranked sequence s1 ≥ s2 ≥ ... ≥ 0 of masses of
fragments present at that time. Starting from a single object with mass one, the appropriate
space for our models is then S↓, the state of non-increasing non-negative sequences with total
sum at most 1, i.e.

S↓ :=

{
s = (si)i∈N∗ , s1 ≥ s2 ≥ ... ≥ 0 :

∞∑

i=1

si ≤ 1

}
,

endowed with the topology of pointwise convergence. The difference 1−∑i si may be thought
as the mass of dust.

Definition 2.1 Let (F (t), t ≥ 0) be a S↓-valued Markov process continuous in probability and
denote by Pr, 0 < r ≤ 1, the law of F starting from (r, 0, ...) .

(i) The process F is a fragmentation process if for each t0 ≥ 0, conditionally on F (t0) =
(s1, s2, ...), the process (F (t+ t0), t ≥ 0) has the same law as the process obtained, for each
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t ≥ 0, by ranking in the decreasing order the components of sequences F 1(t), F 2(t), ..., where
the r.v. F i are independent with respective laws Psi

.

(ii) If further F enjoys the scaling property, which means that there exists a real number α,
called index of self-similarity, such that the law of (F (t), t ≥ 0) under Pr is the same as that of
(rF (trα), t ≥ 0) under P1, then F is a self-similar fragmentation process with index α. When
α = 0, F is called a homogeneous fragmentation process.

We consider fragmentation processes starting from F (0) = (1, 0, 0, ...) and denote by Fi(t),
i ≥ 1, the components of the sequence F (t), t ≥ 0, and by F = (F (t) , t ≥ 0), the natural
filtration generated by F , completed up to P -null sets. According to Berestycki [9] and Bertoin
[14], a self-similar fragmentation is Feller (then possesses a càdlàg version which we may always
consider) and its distribution is entirely characterized by three parameters: the index of self-
similarity α, an erosion coefficient c ≥ 0 and a dislocation measure ν, which is a sigma-finite
measure on S↓ that does not charge (1, 0, ...) and such that

∫

S↓
(1 − s1)ν(ds) <∞.

Roughly speaking, the erosion is a deterministic continuous phenomenon and the dislocation
measure describes the rates of sudden dislocations: a fragment with mass x splits in fragments
with mass xs, s ∈ S↓, at rate xαν(ds). Conversely, given α, c, ν satisfying the requirements
above, one can construct a corresponding self-similar fragmentation. As a consequence of the
Feller property, the fragmentation property holds for F -stopping times and we shall refer to it
as the strong fragmentation property.

For technical reasons, we may need to work with an interval representation of the fragmen-
tation: by combination of results of [9] and [14], there is no loss of generality in assuming that
a α-self-similar fragmentation F is constructed from a family (I(t), t ≥ 0) of nested random
open sets of ]0, 1[ so that, for every t ≥ 0, F (t) = (F1(t), ...) is the ordered sequence of the
lengths of the interval components of I(t). This process I possesses both the α-self-similarity
and fragmentation properties (we refer to [14] for precise definitions). Moreover it is Fellerian
and as such, satisfies a strong fragmentation property. From now on, we call I an interval rep-
resentation of F. There is actually a one-to-one correspondence between the laws of S↓-valued
and interval-valued self-similar fragmentations.

The advantage of this interval’s view point is the passage from homogeneous to self-similar
fragmentations by appropriate time-changes: consider a homogeneous interval fragmentation
(I0(t), t ≥ 0) and define by Ix(t) the interval component of I0(t) that contains x if x ∈ I0(t)
and set Ix(t) := ∅ if x /∈ I0(t), x in ]0, 1[ . Then introduce the time-changed functions

T αx (t) := inf

{
u ≥ 0 :

∫ u

0

|Ix(r)|−α dr > t

}
, (2.1)

and consider the family of nested open sets of ]0, 1[ defined by

Iα(t) =
⋃

x∈]0,1[

Ix(T
α
x (t)), t ≥ 0.
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As proved in [14], Iα is an α-self-similar interval fragmentation and each self-similar interval
fragmentation can be constructed like this from a homogeneous one. This associated homoge-
neous fragmentation has the same dislocation measure and erosion coefficient as the self-similar
fragmentation.

This interval setting is particularly appropriate to tag fragments at random as explained in
detail in the following section.

2.3 Tagged fragments and dust’s mass

From now on, we shall focus on self-similar fragmentations such that

α < 0, c = 0, ν 6= 0 and ν
(∑

i
si < 1

)
= 0. (H)

That ν (
∑

i si < 1) = 0 means that no mass is lost within sudden dislocations and c = 0 means
there is no erosion. In terms of the fragmentation F, the dust’s mass at time t then writes

M(t) = 1 −
∞∑

i=1

Fi(t). (2.2)

The index α being negative, we know by Proposition 2 in [15], that with probability one M is
càdlàg, non-decreasing and reaches 1 in finite time. It can then be viewed as the distribution
function of some random probability measure, that we denote by dM :

M(t) =

∫ t

0

dM(u), t ≥ 0.

A useful tool to study this mass of dust is to tag a fragment at random in the fragmentation.
To do so, consider I an interval representation of F as recalled in the previous section and let
U be a random variable uniformly distributed on ]0, 1[ and independent of I. At each time t, if
U ∈ I(t), denote by λ(t) the length of the interval component of I(t) containing U. If U /∈ I(t),
set λ(t) := 0. Bertoin, in [13] and [14], has determined the law of the process λ :

λ
law
= exp(−ξρ(.)) (2.3)

where ξ is a subordinator with Laplace exponent φ given for all q ≥ 0 by

φ(q) =

∫

S↓

(
1 −

∞∑

i=1

s1+q
i

)
ν(ds), (2.4)

and ρ is the time-change

ρ(t) = inf

{
u ≥ 0 :

∫ u

0

exp(αξr)dr > t

}
, t ≥ 0.

We refer to [11] for background on subordinators and recall that E
[
e−qξr

]
= e−rφ(q) for r, q ≥ 0.

Remark that formula (2.4) defines in fact a function φ on R such that φ(q) ∈ [0,∞[ for q ≥ 0



66 2. Regularity of formation of dust in self-similar fragmentations

and φ(q) ∈ [−∞, 0[ for q < 0. Let p be the largest q such that φ(−q) > −∞. Since ν integrates
(1 − s1) , this definition is equivalent to

p = sup

{
q ≥ 0 :

∫

S↓

∞∑

i=2

s1−q
i ν(ds) <∞

}
. (2.5)

Here we use the convention 0−a = ∞ for a > 0. Hence, when q > 1 the series
∞∑
i=2

s1−q
i = ∞

for any sequence in S↓ and consequently p ≤ 1. The Hölder-continuity of the dust’s mass M ,
studied in Section 2.6.2, depends on this coefficient p.

The law of the first time D at which the tagged fragment is reduced to dust, i.e.

D := inf {t ≥ 0 : λ(t) = 0} ,

can then be expressed as a function of α and ξ :

D
law
=

∫ ∞

0

exp(αξr)dr. (2.6)

One first important example of the use of tagged fragments is that the dust’s mass M then
coincides with the distribution function of D conditional on F , that is, a.s.

M(t) = P (D ≤ t | F ), t ≥ 0. (2.7)

Indeed, D ≤ t if and only if U /∈ I(t) and the conditional probability of this event given F is
the total length of ]0, 1[ \I(t), i.e. 1− F1(t)−F2(t)− ... = M(t). The point is that the law of D
has been extensively studied (see e.g. [25],[18]) and it will therefore give us some information
on M.

The rest of the section concerns some preliminary results that will be needed in the sequel.
Subsection 2.3.1 deals with some regularity properties of D’s distribution. The main results
of Carmona et al. [25] are recalled and some other properties developed. In Subsection 2.3.2,
we tag several fragments independently and study their masses at the first time at which some
tagged fragments are different. Subsection 2.3.3 is devoted to the first time at which all the
mass is reduced to dust.

2.3.1 On the regularity of D’s distribution

By (2.6) , D has the same law as
∫∞
0

exp(αξr)dr. Carmona, Petit and Yor studied in [25] these
exponential functionals. They showed (Prop. 3.1 iv, Prop. 3.3) that D has entire moments of
all positive orders and that

µ := E [ξ1] =
1

|α|E
[
D−1

]
. (2.8)

Remark with (2.4) , that

µ = E [ξ1] = φ′(0+) =

∫

S↓

(
∞∑

i=1

|log(si)| si
)
ν(ds).
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In the sequel, we will often assume that µ <∞, because of the following lemma:

Lemma 2.1 Suppose that µ <∞ and
∫
S↓

(1 − s1)
β ν(ds) <∞ for some β < 1. Then, there is

an infinitely differentiable function k : ]0,∞[ → [0,∞[ such that

(i) P (D ∈ dx) = k(x)dx

(ii) for all a ≥ 0, the function x 7→ xak(x) is bounded on ]0,∞[ .

We point out that the existence of some β < 1 such that
∫
S↓

(1 − s1)
β ν(ds) < ∞ is not

necessary to prove the assertion (i).

Proof. (i) It is Proposition 2.1 of [25].

(ii) The point is to show that for all a ≥ 0, the function x 7→ eaxk(ex) is bounded on R. To
that end, we need the following result of [25] (Prop. 2.1): the density k is a solution of the
equation

k(x) =

∫ ∞

x

π

(
1

|α| log
(u
x

))
k(u)du, x > 0,

where π denotes the Lévy measure of ξ and π(x) := π (]x,∞[) , x > 0. This leads to

eaxk(ex) =
∫∞
−∞

1{u−x>0}π((u− x)/ |α|)ea(x−u)e(a+1)uk(eu)du

=
(
1{·<0}π(− · / |α|)ea· ∗ e(a+1)·k(e·)

)
(x),

(2.9)

where ∗ denotes the convolution product. It is well-known (by Hölder inequality) that for p ≥ 1
the convolution product of a function of Lp(dx) with a function of Lp/(p−1)(dx) is bounded on
R. So if we prove that the functions x 7→ 1{x<0}π(−x/ |α|)eax and x 7→ e(a+1)xk(ex) respectively
belong to Lp(dx) and Lp/(p−1)(dx) for some p ≥ 1, the proof will be ended.

Let us first show that π ∈ Lγ(dx) for all 1 < γ < 1/β such that
∫
S↓

(1 − s1)
β ν(ds) < ∞

(such β exists by assumption). To see this, note that

π(dx) = e−xν(− log(s1) ∈ dx) on ]0, log 2[

(see e.g. the remarks at the end of [13]), which gives

∫ log 2

0

xcπ(dx) =

∫

S↓
1{s1>1/2}s1 |log s1|c ν(ds), c ∈ R.

Then combine this with
∫∞
0
xπ(dx) = φ′(0+) < ∞ (which is a consequence of µ < ∞ and

(2.4)) to get that
∫∞
0

(
xβ ∨ x

)
π(dx) < ∞ for the β < 1 such that

∫
S↓

(1 − s1)
β ν(ds) < ∞.

Therefore, there exists C > 0 such that π(x) ≤ C
(
x−1 ∧ x−β

)
for x > 0. Then π, and a fortiori

x 7→ 1{x<0}π(−x/ |α|)eax, belongs to Lγ(dx) for all 1 < γ < 1/β.

It remains to prove that for all a ≥ 0, the function x 7→ e(a+1)xk(ex) belongs to Lγ/(γ−1)(dx)
for some γ ∈ ]1, 1/β[. Fix such a γ and remark that it is sufficient to show that this function
belongs to Lγ

n
(dx) for all n ∈ N (because L1 ∩ Lγ

n ⊂ Lγ/(γ−1) when γn ≥ γ/ (γ − 1) ≥
1). We prove this by induction on n. For n = 0, this is an immediate consequence of
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∫∞
−∞

e(a+1)uk(eu)du = E [Da] , which is finite for all a ≥ 0 by Proposition 3.3 of [25]. For
the next step, we need the following result: for all p, q ≥ 1,

if f ∈ Lp(dx) ∩ L1(dx) and if g ∈ Lq(dx), then f ∗ g ∈ Lpq(dx),

which we first prove. By applying Hölder inequality twice, first to the measure |f(x− y)| dy
and second to |g(y)|q dy, we get

|f ∗ g(x)| ≤
(∫∞
−∞

|g(y)|q |f(x− y)| dy
)1/q (∫∞

−∞
|f(x− y)| dy

)(q−1)/q

≤
(∫∞
−∞

|g(y)|q |f(x− y)|p dy
)1/pq (∫∞

−∞
|g(y)|q dy

)(p−1)/pq

×
(∫∞
−∞

|f(x− y)| dy
)(q−1)/q

.

The last two integrals do not depend on x and are finite. The first integral, seen as a function
of x, is integrable by Fubini’s Theorem. So, f ∗ g ∈ Lpq(dx). Now we apply this result to
functions x 7→ 1{x<0}π(−x/ |α|)eax and x 7→ e(a+1)xk(ex), which belong respectively to Lγ(dx)
and L1(dx), and this shows with (2.9) that x 7→ eaxk(ex) ∈ Lγ(dx) for a ≥ 0. Applying this
recursively, we get that the function x 7→ eaxk(ex) ∈ Lγ

n
(dx) for all a ≥ 0 and n ∈ N.

2.3.2 Tagging n fragments independently

We consider the joint behavior of n fragments tagged independently. More precisely, let
U1, ...,Un be n independent random variables, uniformly distributed on ]0, 1[ and independent
of the fragmentation process, and for i = 1, ..., n and t ≥ 0, let λi(t) be the length of the interval
component of I(t) containing the point Ui if Ui ∈ I(t) and set λi(t) := 0 if Ui /∈ I(t). The law
of (λ1, λ2, ..., λn) is exchangeable, but the processes λ1, λ2, ..., λn are not independent. They
coincide on [0, Tn[ , where Tn denotes the first time at which the Ui’s, i = 1, ..., n, do not all
belong to the same fragment, that is

Tn := sup {t ≥ 0 : U1, ..., Un ∈ same interval component of I(t)} .

Note that Tn > 0 a.s., since, by independence of the Ui’s, P (Tn > t | λ1)
a.s.
= λ1(t)

n−1 which
tends to 1 as t→ 0. At time Tn, there are L distinct tagged fragments - for some random L ≥ 2
- which, according to the fragmentation and scaling properties, evolve independently and with
a law depending on their masses. The aim of this subsection is to give some information on
these masses.

Consider an integer l ≥ 2. Conditionally on L = l, we may assume, by exchangeability, that
U1, U2, ...,Ul belong all to different fragments at time Tn, so that the masses of the l distinct
tagged fragments at time Tn are λ1(Tn), λ2(Tn), ..., λl(Tn). For each l-tuple (n1, n2, ..., nl) ∈
(N\ {0})l such that n1 + n2 + ... + nl = n, define then by A(n1,...,nl) the event

A(n1,...,nl) :=

{
L = l and at time Tn, there are nk tagged points
in the fragment containing Uk, 1 ≤ k ≤ l

}
.

The following lemma provides an integrability property of a function depending on the masses
of tagged fragments at time Tn. It will be a key point in the study of regularity. More precisely,
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it will be used to prove the Hölder-continuity of the dust’s mass M (see Section 2.6) and, in
the special case where n = 2, to show the absolute continuity of the mass measure dM for some
(α, ν)-fragmentations (see Section 2.4).

Lemma 2.2 For all a1, ..., al in R, the following assertions are equivalent

(i) E

[∏l
k=1 λ

−ak
k (Tn)1{λ1(Tn)≥λ2(Tn)≥...≥λl(Tn)}1{A(n1,n2,...,nl)

}
]
<∞

(ii)
∑l

k=1 ak < n− 1 and
∫
S↓

∑
i1<i2<...<il

∏l
k=1 s

nk−ak
ik

1{sik
>0}ν(ds) <∞.

The proof of this technical result is provided in the Appendix at the end of the paper.

2.3.3 First time at which all the mass is reduced to dust

The first time at which the mass is entirely reduced to dust, i.e.

ζ := inf {t ≥ 0 : F1(t) = 0} (2.10)

is almost surely finite (see [15]). The asymptotic behavior of P (ζ > t) as t → ∞ is discussed
in [38] and leads us to

Lemma 2.3 E [ζ ] <∞ and P (ζ > t) < 1 for every t > 0.

Proof. According to Section 5.3 in [38], there exist two positive finite constants A and B
such that

P (ζ > t) ≤ Ae−Bt, for all t ≥ 0. (2.11)

That E [ζ ] <∞ is then immediate. To prove the second assertion, assume first that

{t > 0 : P (ζ < t) = 0} 6= ∅ (2.12)

and denote by t0 its largest element. Define then u by (t0 − u) /t0 = 1/2|α|. Since u < t0, ζ ≥ u
a.s. Thus, applying the fragmentation and scaling properties at time u,

ζ = u+ sup
1≤i<∞

F
|α|
i (u)ζ (i),

where the ζ (i) are iid with the same law as ζ and independent of F(u). In other words, if (2.12)
holds, then for all ε ∈ ]0, t0 − u[ ,

∏

i

P
(
F
|α|
i (u)ζ (i) ≤ t0 − u− ε | F(u)

)
= P (ζ ≤ t0 − ε | F(u))

a.s.
= 0. (2.13)

To prove the statement, we therefore have to show that (2.13) is false. In that aim, suppose
first that

P
(
F
|α|
1 (u)ζ (1) ≤ t0 − u− ε | F(u)

)
a.s.
= 0 for all ε ∈ ]0, t0 − u[ . (2.14)
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By definition of t0 and u, this implies that a.s. (t0 − u)/F
|α|
1 (u) ≤ t0 and then F1(u) ≥ 1/2.

Using the connections between homogeneous fragmentations and self-similar ones as explained
in Section 2.2, we see that this leads to the existence of a homogeneous fragmentation F h with
dislocation measure ν such that a.s. for all t ≥ 0, F h

1 (t) ≥ F1(t). In particular, F h
1 (u) ≥ 1/2

a.s. From Proposition 12 in [9] and its proof, we know the existence of a subordinator σ with
Laplace exponent given by (2.4) such that F h

1 = exp(−σ) on [0, u] . We then have σ(u) ≤ ln 2
a.s. However, it is well known that the jump process of σ is a Poisson point process with
intensity the Lévy measure of σ and since here this Lévy measure is not trivial and u > 0, the
r.v. σ(u) can not have a deterministic upper bound. Thus (2.14) can not be true and for some

ε0 in ]0, t0 − u[ , P
(
F
|α|
1 (u)ζ (1) ≤ t0 − u− ε0 | F(u)

)
> 0 with a positive probability. Since

P
(
F
|α|
i (u)ζ (i) ≤ t0 − u− ε0 | F(u)

)
ր 1 as i ր ∞, this would imply, if (2.13) holds, that the

sum ∑

i

(
1 − P

(
F
|α|
i (u)ζ (i) ≤ t0 − u− ε0 | F(u)

))
(2.15)

diverges on the event
{
P
(
F
|α|
1 (u)ζ (1) ≤ t0 − u− ε0 | F(u)

)
> 0
}
, which has positive proba-

bility. Yet, this is not possible: by (2.11) ,

∑
i P
(
F
|α|
i (u)ζ (i) > t0 − u− ε0 | F(u)

)
≤ A

∑
i e
−B(t0−u−ε0)Fα

i (u)1{Fi(u)>0}

≤ AC
∑

i Fi(u) a.s.,

where C := sup0≤x<∞ x−1e−B(t0−u−ε0)xα
< ∞. Since

∑
i Fi(t) ≤ 1 a.s., the sum (2.15) is then

finite a.s. and consequently (2.13) is false.

2.4 Regularity of the mass measure dM

This section is devoted to the study of existence or absence of a Lebesgue density for the
mass measure dM of a fragmentation F with parameters α, c and ν satisfying hypothesis (H).
More precisely, we give some sufficient conditions on α and ν for the existence of a density in
L2(dt⊗dP ) and some sufficient conditions for the measure dM to be singular a.s. In the sequel,
we will often assume 1 that the constant µ introduced in (2.8) is finite, i.e.

µ =

∫

S↓

(
∞∑

i=1

|log(si)| si
)
ν(ds) =

1

|α|E
[
D−1

]
<∞ (A1)

and that ∫

S↓
(1 − s1)

β ν(ds) <∞ for some β < 1. (A2)

We recall that D is a random variable that corresponds to the first time at which a tagged
fragment vanishes and that its distribution is given by (2.6) . Here is our main result:

1These assumptions (A1) and (A2) hold as soon as p > 0 ( p defined by (2.5)). However, it is easy to find
some fragmentations for which p = 0 and (A1) and (A2) hold nonetheless.
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Theorem 2.1 Suppose (A1) .

(i) If (A2) holds, α > −1 and
∫
S↓

∑
i<j s

1+α
i sjν(ds) <∞, then the measure dM is absolutely

continuous a.s. and its density belongs to L2(dt⊗ dP ).

(ii) If α ≤ −1, then dM is singular a.s.

In (i), the criterion
∫
S↓

∑
i<j s

1+α
i sjν(ds) < ∞ is optimal in the sense that there are

some fragmentations satisfying assumptions (A1) and (A2) on ν, with index α > −1 and∫
S↓

∑
i<j s

1+α
i sjν(ds) = ∞, and such that dM is not absolutely continuous with a density in

L2(dt⊗ dP ). Some illustrating examples are given after the proof of Theorem 2.1 (i).

In the special case where ν(sN+1 > 0) = 0 for some given N ≥ 2 (that is each dislocation
gives rise to at most N fragments), note that when α > −1,

∫

S↓

∑

i<j

s1+α
i sjν(ds) ≤

∫

S↓
(N − 1)

∑

2≤j≤N

sjν(ds) ≤ (N − 1)

∫

S↓
(1 − s1) ν(ds) <∞. (2.16)

Both parts of Theorem 2.1 then complement each other and give the following result.

Corollary 2.1 Assume that ν(sN+1 > 0) = 0 for some integer N and that (A1) and (A2) hold.
Then, with probability one, the measure dM is absolutely continuous if and only if α > −1.
When α > −1, the density of dM is in L2(dt⊗ dP ) and when α ≤ −1, dM is singular a.s.

We now turn to the proofs. That of Theorem 2.1 (i) uses Fourier analysis.

Proof of Theorem 2.1 (i). Introduce the Fourier transform of dM , i.e.

M̂(θ) =

∫ ∞

0

eiθtdM(t), θ ∈ R. (2.17)

It is well-known that the measure dM is absolutely continuous with a density L in L2(dt) if

and only if the integral
∫∞
−∞

∣∣∣M̂(θ)
∣∣∣
2

dθ is finite and then that
∫∞
−∞

∣∣∣M̂(θ)
∣∣∣
2

dθ =
∫∞
0
L2(t)dt.

Consequently, taking the expected values, dM is absolutely continuous with a density in L2(dt⊗
dP ) if and only if E

[∫∞
−∞

∣∣∣M̂(θ)
∣∣∣
2

dθ

]
is finite. To see when the latter happens, let us first

rewrite M̂ in a more convenient way. We know, by (2.7) , that the dust’s mass can be expressed
a.s. as M(t) = P (D ≤ t | F ), t ≥ 0, where D corresponds to the first time at which a tagged

fragment vanishes. In others words, dM is the conditional law of D given F and M̂ can be
written as

M̂(θ) = E
[
eiθD | F

]
, θ ∈ R, a.s. (2.18)

Dealing with
∣∣∣M̂(θ)

∣∣∣
2

suggests then to work with two fragments tagged independently. So,

consider U1 and U2, two independent random variables uniformly distributed on ]0, 1[ and
independent of F, and the corresponding tagged fragments, as explained in Section 2.3.2. LetD1
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(resp. D2) denote the first time at which the tagged fragment containing U1 (resp. U2) vanishes.
These random variables are not independent, however they are independent conditionally on
F and then, by (2.18) ,

E

[∣∣∣M̂(θ)
∣∣∣
2
]

= E
[
E
[
eiθD1 | F

]
E
[
e−iθD2 | F

]]

= E
[
eiθ(D1−D2)

]
, θ ∈ R.

Recall the notations of Section 2.3.2: T2 is the first time at which the fragments containing
the tagged points U1 and U2 are different and λ1(T2) (resp. λ2(T2)) the mass of the fragment
containing U1 (resp. U2) at that time T2. An application of the scaling and strong fragmentation
properties at this (randomized) stopping time T2 leads to the existence of two independent

random variables D̃1 and D̃2, independent of F(T2) and (λ1(T2), λ2(T2)), and with the same
distribution as D, such that

D1 = T2 + λ
|α|
1 (T2)D̃1 and D2 = T2 + λ

|α|
2 (T2)D̃2.

This yields to

E

[∣∣∣M̂(θ)
∣∣∣
2
]

= E

[
e
iθ
(
λ
|α|
1 (T2)D̃1−λ

|α|
2 (T2)D̃2

)]
. (2.19)

Our goal is then to show that the characteristic function of the random variable λ
|α|
1 (T2)D̃1 −

λ
|α|
2 (T2)D̃2 belongs to L1(dθ).

To prove this, we use the following result (see [22], p.20): if a function f ∈ L1(dx), is

bounded in a neighborhood of 0 and has a non-negative Fourier transform f̂ , then f̂ ∈ L1(dx).

We already know that the characteristic function of λ
|α|
1 (T2)D̃1 − λ

|α|
2 (T2)D̃2 is non-negative,

since it is equal to E

[∣∣∣M̂(θ)
∣∣∣
2
]
. Next, recall that D̃1, D̃2 and (λ1(T2), λ2(T2)) are independent

and that D has a bounded density k, according to Lemma 2.1 and assumptions (A1) and
(A2). Let C be an upper bound of k. Then, easy calculation shows that the random variable

λ
|α|
1 (T2)D̃1 − λ

|α|
2 (T2)D̃2 has a density f given by

f(x) =

∫ ∞

x∨0

E [λα1 (T2)λ
α
2 (T2)k (uλα1 (T2)) k ((u− x)λα2 (T2))] du, x ∈ R (2.20)

which is bounded by

0 ≤ f(x) ≤ C
∫∞
x∨0

E
[
λα1 (T2)λ

α
2 (T2)k ((u− x)λα2 (T2)) 1{λ1(T2)≥λ2(T2)}

]
du

+C
∫∞
x∨0

E
[
λα1 (T2)λ

α
2 (T2)k (uλα1 (T2)) 1{λ2(T2)≥λ1(T2)}

]
du.

The first integral is bounded from above by E
[
λα1 (T2)1{λ1(T2)≥λ2(T2)}

]
(recall that∫∞

0
k(v)dv = 1) and the second one by E

[
λα2 (T2)1{λ2(T2)≥λ1(T2)}

]
. These two expectations

are equal. By applying Lemma 2.2 to a1 = |α| and a2 = 0, we see that there are finite as
soon as α > −1 and

∫
S↓

∑
i<j s

1+α
i sjν(ds) < ∞. Therefore f is bounded and the function

θ ∈ R 7→ f̂(θ) = E

[∣∣∣M̂(θ)
∣∣∣
2
]

belongs to L1(dθ).
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Some examples. Let us now give some examples of fragmentation processes with parameters
α, ν satisfying assumptions (A1) , (A2) , such that α > −1 and

∫
S↓

∑
i<j s

1+α
i sjν(ds) = ∞, and

such that the mass measure dM does not have a density in L2(dt⊗dP ). Specifically, fix α > −1
and consider the dislocation measure

ν(ds) =
∑

n≥1

anδ(
n−1, n−1, ..., n−1

︸ ︷︷ ︸,0,...
)

n times

(ds),

where (an)n≥1 is a sequence of non-negative real numbers such that

∑
n≥1 an lnn <∞ and

∑
n≥1 ann

|α| = ∞.

The assumption
∑

n≥1 an lnn < ∞ leads both to the integrability of
∑

i≥1 |log(si)| si with

respect to ν and to the finiteness of
∫
S↓

(1 − s1)
β ν(ds) for β ≥ 0. Hence both assumptions (A1)

and (A2) are satisfied. The assumption
∑

n≥1 ann
|α| = ∞ implies

∫
S↓

∑
i<j s

1+α
i sjν(ds) = ∞

and this in turn will imply that dM has no density in L2(dt⊗ dP ). To see this, note that the
measure ν is constructed so that when a fragment splits, it splits into n fragments with same
masses for some 1 ≤ n <∞. Combined with (2.19) , this remarks leads to

E

[∣∣∣M̂(θ)
∣∣∣
2
]

= E
[
eiθλ

|α|
1 (T2)(D̃1−D̃2)

]
= E

[∣∣∣ψD(θλ
|α|
1 (T2))

∣∣∣
2
]
,

where ψD denotes the characteristic function of D. This characteristic function is in L2(dx),

since the density k of the law of D is in L2(dx) (see Lemma 2.1). Hence
∫∞
−∞

E

[∣∣∣M̂(θ)
∣∣∣
2
]
dθ

is finite if and only if E [λα1 (T2)] = E
[
λα1 (T2)1{λ1(T2)≥λ2(T2)}

]
is finite. And according to Lemma

2.2, this last expectation is infinite when
∫
S↓

∑
i<j s

1+α
i sjν(ds) = ∞, which is the case here.

Therefore,
∫∞
−∞

E

[∣∣∣M̂(θ)
∣∣∣
2
]
dθ is infinite and dM cannot be absolutely continuous with a den-

sity in L2(dt⊗ dP ).

The proof of Theorem 2.1 (ii) relies essentially on the following lemma:

Lemma 2.4 If α ≤ −1, for a.e. t, the number of fragments with positive mass present at time
t is finite a.s.

This has already been proved in the last section of [15] for α < −1 and extends to α ≤ −1
as follows.

Proof. For fixed time t, by applying the fragmentation and scaling properties at that time,
we see that we can rewrite the differences M(t+ ε) −M(t), ε > 0, as

M(t+ ε) −M(t) =
∑

i

Fi(t)1{Fi(t)>0}M
(i)(εFi(t)

α), for all ε > 0, (2.21)



74 2. Regularity of formation of dust in self-similar fragmentations

where the processes M (i) are mutually independent and independent of F(t), and have the
same law as M. Let then ζ (i), i ≥ 1, denote the first time at which the dust’s mass M (i) reaches
1 and remark that for all a > 0,

M(t+ ε) −M(t) ≥
∑

i

Fi(t)1{0<Fi(t)|α|≤ε/a}1{ζ(i)≤a}, ε > 0. (2.22)

The Lebesgue differentiation theorem implies that a.s., for a.e. t, limε→0 (M(t+ ε) −M(t)) /ε
exists and is finite. By Fubini’s theorem, the order of “almost surely” and “for almost every t”
can be exchanged and therefore, for a.e. t, there exists a finite r.v. L(t) such that

M(t+ ε) −M(t)

ε

a.s.→
ε→0

L(t). (2.23)

For such a time t, denote by Et the event

“the number of macroscopic fragments at time t is infinite”

and take ω in Et such that (2.23) holds. Given a positive a, we introduce the (random) sequence
εn = aFn(t)(ω). Since |α| ≥ 1 and εn > 0 for all n ≥ 1, we deduce from (2.22) (ω being dropped
from notations) that

L(t) ≥ 1
a

lim supn→∞
1

Fn(t)

∑
i

Fi(t)1{0<Fi(t)≤Fn(t)}1{ζ(i)≤a}
≥ 1

a
lim supn→∞ 1{ζ(n)≤a}.

By Lemma 2.3, P (ζ (1) ≤ a) > 0 and then, since the ζ (n) are iid,

lim sup
n→∞

1{ζ(n)≤a} = 1 a.s.

This holds for every a > 0. In other words, for a.e. ω ∈ Et, L(t)(ω) = ∞. But L(t) < ∞ a.s,
and so P (Et) = 0.

Proof of Theorem 2.1 (ii). According to Proposition 1.9, Chapter 1, M(ε)/ε
a.s.→ 0 as ε→ 0.

So, if t is a time such that the number of fragments with positive mass present at that time is
a.s. finite, one sees with formula (2.21) that

M(t + ε) −M(t)

ε

a.s.→ 0 as ε→ 0.

According to the previous lemma, this holds for a.e. t ≥ 0 when α ≤ −1, and this implies the
a.s. singularity of dM , by the Lebesgue differentiability theorem.

2.5 Approximation of the density

When the mass measure dM of some (α, ν)-fragmentation F (satisfying hypothesis (H)) pos-
sesses a Lebesgue density, a question that naturally arises, is to know if, as in the Brownian
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excursion fragmentation discussed in the Introduction, this density can be approximated by
functions of small fragments. In most cases, the answer is positive. To see this, introduce for
t ≥ 0 and ε > 0

M(t, ε) :=
∑

i≥1

Fi(t)1{0<Fi(t)≤ε},

the total mass at time t of macroscopic fragments with mass at most ε, and

N(t, ε) :=
∑

i≥1

1{Fi(t)>ε}

the number of fragments present at time t with mass greater than ε. We then have:

Theorem 2.2 Consider a dislocation measure ν such that (A1) holds and suppose that

(a) the mass measure dM is absolutely continuous with a density L in Lp(dx⊗dP ) for some
p > 1,

(b) the fragmentation is not geometric, i.e. there exists no r > 0 such that the mass of every
fragment at every time t belongs to the set

{
e−kr : k ∈ N

}
.

Then, for a.e. t,
εαM(t, ε)

a.s.→
ε→0

L(t)/ |α|µ

and
ε1+αN(t, ε)

a.s.→
ε→0

L(t) (1 − |α|) / |α|2 µ.

The assumptions (a) and (b) are not so restrictive. First, recall that Theorem 2.1 (i), Section
2.4, gives sufficient conditions for the mass measure to have a density in L2(dx ⊗ dP ). Next,
concerning assumption (b), it is easy to see that the fragmentation is not geometric as soon as
ν
(
S↓
)

= ∞. This is a consequence of Corollary 24.6 in [64] and its proof (to see this, consider
the subordinator ξ introduced in Section 2.3 and note that its Lévy measure is finite if and
only if ν is finite).

To prove Theorem 2.2, we need the following lemma and the Wiener-Pitt Tauberian Theo-
rem, which is recalled just after the proof of the Lemma.

Lemma 2.5 Let D be a r.v. independent of F, with the same distribution as the first time of
vanishing of a tagged fragment (given by (2.6)). If the mass measure dM is absolutely continuous
with a density L in Lp(dx⊗ dP ) for some p > 1, then for a.e. t,

lim
ε→0

εαE
[
M(t, εD−1/|α|) | F

] a.s.
= L(t). (2.24)

Proof. As in the proof of Lemma 2.4, we rewrite the difference M(t+ ε) −M(t), as

M(t+ ε) −M(t) =
∑

i

Fi(t)1{Fi(t)>0}

(
M (i)(εFi(t)

α)
)
, for all ε > 0, (2.25)
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where the processes M (i) are independent copies of M and independent of F(t). If D denotes
a r.v. independent of F and with the same distribution as (2.6) , we get from (2.7) that
E[M(s)] = P (D ≤ s) , for s ≥ 0, and then that

E
[
M (i)(εFi(t)

α) | F(t)
] a.s.

= P (D ≤ εFi(t)
α | F(t))

a.s.
= P (D ≤ εFi(t)

α | F ), i ≥ 1.

Hence, almost surely,

E [M(t+ ε) −M(t) | F(t)] =
∑

i Fi(t)1{Fi(t)>0}P (D ≤ εFi(t)
α | F )

= E
[∑

i Fi(t)1{0<Fi(t)|α|≤εD−1} | F
]

= E
[
M(t, ε1/|α|D−1/|α|) | F

]
.

(2.26)

For a.e. t, (M(t + ε) −M(t)) /ε converges to L(t) as ε → 0, L being the density of dM. Since
this density is supposed to belong to Lp(dx⊗ dP ) for some p > 1, we may apply the maximal
inequality of Hardy-Littlewood (see e.g. [65], p.5), which yields

∫ ∞

0

sup
ε>0

(
M(t) −M(t+ ε)

ε

)p
dt ≤ C

∫ ∞

0

Lp(t)dt

for some deterministic constant C. Then, for a.e. t, the r.v. supε>0 (M(t + ε) −M(t)) /ε has
a moment of order p and the dominated convergence theorem can be applied in the left-hand
side of (2.26). Therefore, for a.e. t,

lim
ε→0

εαE
[
M(t, εD−1/|α|) | F

] a.s.
= E [L(t) | F(t)]

a.s.
= L(t),

since L(t) is F(t) -measurable, F being a right-continuous filtration. This right-continuity of
F is a classical consequence of the Feller property of F (proved in [9]).

The following Wiener-Pitt Tauberian Theorem is proved in [21], on page 227. We recall that
a function g with values in R is said to be slowly decreasing if

lim
λց1

lim inf
x→∞

inf
l∈[1,λ]

(g(lx) − g(x)) ≥ 0.

Hence a slowly decreasing function is a function whose decrease, if any, is slow. As example,
an increasing function is slowly decreasing.

Theorem 2.3 (Wiener-Pitt) Consider f, g : (0,∞) → R and let f̌(z) :=
∫∞
0
tzf(1/t)dt/t for

z ∈ C such that the integral converges. If f̌(z) exists and is non-zero for Re(z) = 0 and if g is
bounded, measurable and slowly decreasing, then

∫ ∞

0

f(x/t)g(t)dt/t →
x→∞

cf̌(0)

implies
g(x) →

x→∞
c.
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By definition, a function g is slowly increasing if (−g) is slowly decreasing. The Wiener-Pitt
Theorem thus remains valid for slowly increasing functions g.

Proof of Theorem 2.2. Let us start with the convergence of εaM(t, ε) as ε → 0. In that
aim, consider D a r.v. independent of F and with the same distribution as the first time of
vanishing of a tagged fragment and fix t ≥ 0 such that (2.24) holds. Then set

f(x) := k(1/x), x ∈ (0,∞) (k is the density of D)

and
g(x) := xM(t, x−1/|α|), x ∈ (0,∞) ,

(g is a random function). The convergence (2.24) is equivalent to

∫ ∞

0

f(x/u)g(u)du/u
a.s.→
x→∞

L(t),

so that, provided that the Wiener-Pitt Theorem applies,

g(x)
a.s.→
x→∞

L(t)/f̌(0).

This is equivalent to εαM(t, ε)
a.s.→
ε→0

L(t)/ |α|µ, since f̌(0) =
∫∞
0
k(t)dt/t = E [D−1] = |α|µ (by

(2.8)). Thus, we just have to check that f and g satisfy the assumptions of the Wiener-Pitt
Theorem.

Consider first f. For every x in R, f̌(ix) = E [Dix−1] exists since E [D−1] is finite. We would
like to show that E [Dix−1] is non-zero for all x ∈ R. When x = 0, E [D−1] > 0 since D is a
positive random variable. Now for x 6= 0, consider the subordinator ξ introduced in Section
2.3.2 and related to the law of D by (2.6) . As a consequence of assumption (b), the Lévy
measure πα of the subordinator |α| ξ is not supported by a set rN, for some r > 0, so that the
characteristic exponent ψ(x) =

∫∞
0

(1−eixu)πα(du) of this subordinator is non-zero when x 6= 0.
Then, following the proof of Proposition 3 in [25], we get that E [Dix−1] = E [Dix]ψ(x)/ix for
x 6= 0. Thus we just have to prove that E [Dix] is non-zero. We know ([18]) that there exists a

random variable R, independent of D, such that DR
law
= e where e denotes the exponential r.v.

with parameter 1. Therefore,

E
[
Dix
]
E
[
Rix
]

=

∫ ∞

0

tixe−tdt.

This last integral is equal to Γ(1+ix), Γ being the analytic continuation of the Gamma function,
and it is well-known (see e.g. [6]) that Γ(z) 6= 0 for all z in the complex plane. Thus E [Dix] is
non-zero.

Now consider the function g. Since x 7→M(t, x) is non-decreasing, g is bounded from above
by

xE
[
M(t, x−1/|α|D−1/|α|)1{D≤1} | F

]
/P (D ≤ 1),
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which is a.s. bounded on R∗+ (by (2.24) and since P (D ≤ 1) ≥ P (ζ ≤ 1) > 0 by Lemma 2.3).
The function x 7→ M(t, x) is a limit of step functions, thus it is measurable and g is measurable.
It remains to show that g is slowly increasing, that is

lim
λց1

lim inf
x→∞

inf
l∈[1,λ]

(g(x) − g(lx)) ≥ 0.

We have that

g(x) − g(lx) = x(1 − l)M(t, x−1/|α|) + lx
(
M(t, x−1/|α|) −M(t, (lx)−1/|α|)

)
.

For all l ≥ 1, the second term in the right-hand side of this identity is non-negative, which
leads to

inf
l∈[1,λ]

(g(x) − g(lx)) ≥ (1 − λ)g(x).

Now, since g is a.s. bounded, there exists a positive random constant C such that a.s.

lim inf
x→∞

inf
l∈[1,λ]

(g(x) − g(lx)) ≥ C(1 − λ),

and finally,
lim
λց1

lim inf
x→∞

inf
l∈[1,λ]

(g(x) − g(lx)) ≥ 0.

The Wiener-Pitt Theorem therefore applies to f and g and the convergence of εαM(t, ε) to
L(t)/ |α|µ as ε → 0 is proved.

The last point to show, is the a.s. convergence of ε1+αN(t, ε) to L(t) (1 − |α|) / |α|2 µ as
ε→ 0. Bertoin’s proof, p.4. in [16], which relies on Abelian-Tauberian theorems, adapts easily
here to give

N(t, ε) ∼
ε→0

(
1 − |α|
|α|

)
M(t, ε)

ε
. (2.27)

The asymptotic behavior of N(t, ε) as ε→ 0 can then be deduced from that of M(t, ε).

Some remarks on small fragments behavior. Theorem 2.2 shows that for most of frag-
mentations with an index of self-similarity in ]−1, 0[ , the small fragments functions εαM(t, ε)
and ε1+αN(t, ε) converge, for a.e. fixed time t, to non-degenerate limits as ε → 0. Moreover,
for negative-index fragmentations that are not taken into account in Theorem 2.2, one can see2

2With the notations of the proof of Lemma 2.4 and using (2.22) and (2.23) , one gets that for a.e. t,

sup
ε>0

1

ε

∑

i

Fi(t)1{0<Fi(t)|α|≤ε/a}1{ζ(i)≤a} is a.s. finite for all a > 0.

Consider then a1/2 such that P
(
ζ(1)≤a1/2

)
≥ 1/2. Since the r.v. ζ(i) are iid and independent of F(t),

P

(
supε>0

1
ε

∑
i

Fi(t)1{0<Fi(t)|α|≤ε}1{ζ(i)>a1/2} < ∞
)

≥ P

(
supε>0

1
ε

∑
i

Fi(t)1{0<Fi(t)|α|≤ε}1{ζ(i)≤a1/2} < ∞
)

= 1.

By taking the sum, we see that εαM(t, ε) is a.s. bounded for t such that (2.23) holds and so does ε1+αN(t, ε)
in view of equivalence (2.27) .
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that for a.e. t ≥ 0, εαM(t, ε) and ε1+αN(t, ε) are anyway bounded a.s. When α ≤ −1, we more
precisely have that M(t, ε) = 0 and N(t, ε) is constant for ε small enough, almost surely and
for almost every t (it is Lemma 2.4).

This completes in some way the discussion on the asymptotic behavior of M(t, ε) and N(t, ε)
as ε→ 0 undertaken by Bertoin in [16] for fragmentations with a positive index of self-similarity.
The investigating methods (and the results) are completely different according whether the
index of self-similarity is positive or negative. The positive case relies on a martingale approach
(that cannot be shifted to the negative case) and gives, with suitable assumptions on ν, that

M(t, ε)
a.s.∼
ε→0

C(t, ω)f(ε) and N(t, ε)
a.s.∼
ε→0

C(t, ω)Cf(ε)/ε

for some constants C(t, ω), C and where f(ε) =
∫
S↓

∑
i si1{si<ε}ν(ds). Note that this function

depends on ν but not on α, whereas in the negative case the convergence rate depends only on
α.

Another remark when α < 0 and (A1) holds is that the measure dM is singular if and only
if εαM(t, ε)

a.s.→ 0 for a.e t. To see this, combine equations (2.22) and (2.26) .

2.6 Hausdorff dimension and Hölder-continuity

When the measure dM is singular, it may be interesting to estimate the “size” of the sup-
port of dM (denoted here by supp(dM)), which is the smallest closed set C of R+ such that
dM(R+\C) = 0. An appropriate concept is then that of Hausdorff dimension:

dimH(E) := inf {γ > 0 : mγ(E) = 0} , E ⊂ R+, (2.28)

where
mγ(E) := sup

ε>0
inf
∑

i

|Bi|γ , (2.29)

the infimum being taken over all collections of intervals with length |Bi| < ε, whose union
covers E. For background on the subject, see e.g. [33]. In Subsection 2.6.1, we give some lower
and upper bounds for dimH(supp(dM)) and dimH(dM), the latter being defined as

dimH(dM) := inf {dimH(E) : dM(E) = 1} .

That dimH(dM) ≤ dim H(supp(dM)) holds anyway and we show below that when ν
(
S↓
)

= ∞
and α < −1, these dimensions are different.

It is well known, since the dust’s mass M is the distribution function of dM , that the
Hausdorff dimension of dM is connected to the Hölder-continuity of M, in the sense that
dimH(dM) ≥ γ as soon as M is Hölder-continuous of order γ. Subsection 2.6.2 is devoted to
this Hölder-continuity of the mass.

For the sequel, we recall that p is defined as

p = sup

{
q :

∫

S↓

∑

i≥2

s1−q
i ν(ds) <∞

}
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and set

A := sup

{
a ≤ 1 :

∫

S↓

∑

i<j

s1−a
i sjν(ds) <∞

}
.

Remark that 0 ≤ p ≤ A ≤ 1.

2.6.1 Hausdorff dimensions of dM and supp(dM)

Recall that ζ denotes the first time at which all the initial mass is reduced to dust, so that
supp(dM) ⊂ [0, ζ ].

Proposition 2.1 (i) If (A1) and (A2) hold, then dimH(dM) ≥ 1 ∧ (A/ |α|) a.s.

(ii) A.s., dimH(dM) ≤ 1 ∧ (1/ |α|) .
(iii) If ν(S↓) <∞, then dimH(supp(dM)) ≤ 1 ∧ (1/ |α|) a.s.

(iv) If ν(S↓) = ∞, then the mass M is strictly increasing on [0, ζ ] and dimH(supp(dM)) = 1
a.s.

Let us make two remarks about these results. First, the difference between the above state-
ments (iii) and (iv), can mainly be explained by the Poisson point process construction of ho-
mogeneous fragmentations (see [13] and [9]) and the passage from homogeneous to self-similar
fragmentations. Indeed, this construction shows that when ν is finite the notion of “first split-
ting” is well-defined and that it occurs at an exponential time T with parameter ν(S↓), so that
M is null near 0, whereas when ν is infinite the splitting times are dense in R+. This will be a
key point in the proofs below.

Second, the parameter A = 1 as soon as ν(sN+1 > 0) = 0 for some integer N (this was
shown in (2.16)). Hence in that case, if moreover assumptions (A1) and (A2) hold, the results
(i) and (ii) above give

dimH(dM) = 1 ∧ (1/ |α|) a.s.

We now turn to the proofs. The upper bound stated in Proposition 2.1 (ii) was recently shown
in [40] and we refer to this paper for the proof. Concerning statement (i), it is a standard result
(see e.g. Theorem 4.13 of Falconer [33]) that the convergence of

∫∞
0

∫∞
0

|u− v|−a dM(u)dM(v)
for some real number a ≤ 1 leads to dimH(dM) ≥ a. Thus, the proof of Proposition 2.1 (i) is
an immediate consequence of the following lemma:

Lemma 2.6 Consider a positive real number a and suppose that assumptions (A1) and (A2)
hold. Then

E

[∫ ∞

0

∫ ∞

0

dM(u)dM(v)

|u− v|a
]
<∞ ⇔ a < 1 ∧ (A/ |α|) .

We point out that the implication ⇒ does not take into account the assumptions (A1) and
(A2) .
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Proof. Using the same notations as in the proof of Theorem 2.1 (i), we have that

E

[∫ ∞

0

∫ ∞

0

|u− v|−a dM(u)dM(v)

]
= E

[
|D1 −D2|−a

]
= E

[∣∣∣λ|α|1 (T2)D̃1 − λ
|α|
2 (T2)D̃2

∣∣∣
−a
]
.

(2.30)

Suppose first that a < 1∧(A/ |α|) . By assumptions (A1) and (A2) and Lemma 2.1, we know
that D has a density k such that k(x) and xk(x) are bounded on R∗+, say by C and C ′ and

then that λ
|α|
1 (T2)D̃1 − λ

|α|
2 (T2)D̃2 has a density f (see (2.20) for an explicit expression). Our

goal is to prove that
∫∞
−∞

|θ|−a f(θ)dθ is finite. From (2.20) , we get that
∫∞
0
θ−af(θ)dθ

≤
∫∞
0
θ−a

∫∞
0
E
[
λα1 (T2)λ

α
2 (T2)k ((u+ θ)λα1 (T2)) k (uλα2 (T2)) 1{λ1(T2)≥λ2(T2)}

]
dudθ

+C
∫∞
0
θ−a

∫∞
θ
E
[
λα1 (T2)λ

α
2 (T2)k (uλα1 (T2)) 1{λ2(T2)≥λ1(T2)}

]
dudθ.

(2.31)

By Fubini’s Theorem, the second term in the right-hand side of this inequality is proportional
to (∫ ∞

0

u1−ak(u)du

)
E
[
λ
|α|(1−a)
1 (T2)λ

α
2 (T2)1{λ2(T2)≥λ1(T2)}

]
,

which is finite. Indeed, recall that D has positive moments of all orders and remark that the
expectation is bounded from above by E

[
λαa2 (T2)1{λ2(T2)≥λ1(T2)}

]
, which is finite by Lemma 2.2,

as a |α| < A ≤ 1. Next, in order to bound the first term in the right-hand side of (2.31), remark
that ∫ ∞

0

θ−ak ((u+ θ)λα1 (T2))λ
α
1 (T2)dθ = (λ1(T2))

aα

∫ ∞

0

θ−ak (θ + uλα1 (T2)) dθ.

Using the upper bounds C of k(x) and C ′ of xk(x), one gets
∫ ∞

0

θ−ak (θ + uλα1 (T2)) dθ ≤ C

∫ 1

0

θ−adθ + C ′
∫ ∞

1

θ−a−1dθ <∞

and so, the first term in the right-hand side of (2.31) is bounded from above by

E

[
(λ1(T2))

aα λα2 (T2)1{λ1(T2)≥λ2(T2)}

∫ ∞

0

k (uλα2 (T2)) du

]

multiplied by a finite constant. Since λα2 (T2)
∫∞
0
k (uλα2 (T2)) du = 1, this expectation is bounded

by E
[
(λ1(T2))

aα 1{λ1(T2)≥λ2(T2)}

]
, which is finite, according to Lemma 2.2 and the assumption

on a. All this shows that
∫∞
0
θ−af(θ)dθ < ∞ and then that

∫∞
−∞

|θ|−a f(θ)dθ < ∞ since the

random variable λ
|α|
1 (T2)D̃1 − λ

|α|
2 (T2)D̃2 is symmetric.

To prove the converse implication, first note that

E

[∣∣∣λ|α|1 (T2)D̃1 − λ
|α|
2 (T2)D̃2

∣∣∣
−a
]

≥ E

[
1{λ1(T2)≥λ2(T2)},{D̃1≥D̃2}

∣∣∣λ|α|1 (T2)D̃1 − λ
|α|
2 (T2)D̃2

∣∣∣
−a
]

≥ E
[
1{λ1(T2)≥λ2(T2)}λ

aα
1 (T2)

]
E
[
1{D̃1≥D̃2}D̃

−a
1

]
,

since (λ1(T2), λ2(T2)) and
(
D̃1, D̃2

)
are independent. Therefore, by identity (2.30) ,

E

[∫ ∞

0

∫ ∞

0

|u− v|−a dM(u)dM(v)

]
<∞ ⇒ E

[
1{λ1(T2)≥λ2(T2)}λ

aα
1 (T2)

]
<∞,
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which is, by Lemma 2.2 and the definition of A, equivalent to a < (A/ |α|) . On the other hand,
one can show that v 7→

∫∞
0

|u− v|−a dM(u) = ∞ on

V =

{
v > 0 : lim sup

ε→0
ε−a (M(v + ε) −M(v − ε)) > 0

}

and the Lebesgue theory implies dM(V ) = 1 when a ≥ 1. Hence∫∞
0

∫∞
0

|u− v|−a dM(u)dM(v) = ∞ when a ≥ 1.

Proof of Proposition 2.1 (iii). Consider an interval representation I of the fragmentation as
explained in Section 2.2 and denote by ζx, x ∈ ]0, 1[ , the time at which the fragment containing
x vanishes, that is ζx = inf {t > 0 : x /∈ I(t)} . Then set

A := {ζx, x ∈ ]0, 1[} .

By formula (2.7) , M(t) = P (D ≤ t | F ) for all t ≥ 0 a.s., and since D is the first time at

which a tagged fragment vanishes, we have M(t) =
∫ 1

0
1{ζx≤t}dx, t ≥ 0. Then the closure A of

A contains the support of the measure dM and it is sufficient to bound from above dimH

(
A
)
.

Since ν(S↓) < ∞, we may consider the first splitting time, denoted by T . It is a stopping
time. Let J1, J2,... denote the non-empty disjoint intervals obtained after this first split so that
F1(T ) ≥ F2(T ) ≥ ... are their respective sizes and remark that

A = {T}
⋃

i

{ζx, x ∈ Ji} .

We first need to prove that

A = {T}
⋃

i

{ζx, x ∈ Ji}. (2.32)

To that end, take a in ∪i {ζx, x ∈ Ji} and consider a sequence (xn) in ∪iJi such that ζxn → a.
Extracting a subsequence if necessary, we may assume that (xn) converges. Call x its limit
and Jxn the interval that contains xn, n ≥ 1. Either |Jxn| 9 0 as n → ∞ and then there is a
subsequence

(
xϕ(n)

)
such that the number of disjoint Jxϕ(n)

, n ≥ 1, is finite, so that there is at

least one of these intervals containing an infinite number of xϕ(n) and then a ∈ ∪i{ζx, x ∈ Ji}.
Or, |Jxn | → 0 as n → ∞, which implies that ζxn

a.s.→ T as n → ∞. To see why this last point
holds, introduce ζn the first time at which the fragment Jxn vanishes during the fragmentation,
n ≥ 1. Of course, T < ζxn ≤ ζn. By application of the scaling and strong fragmentation
properties at time T, we see that there exists a r.v. ζ (n), independent of F(T ) and with the

same distribution as ζ (see (2.10)) such that ζn−T = |Jxn||α| ζ (n). Hence, using that E [ζ ] <∞
(see Lemma 2.3) and extracting a subsequence if necessary,

0 ≤ ζxn − T ≤ |Jxn||α| ζ (n) →
n→∞

0 a.s.

So, in both cases, ∪i {ζx, x ∈ Ji} ⊂ {T} ∪i {ζx, x ∈ Ji} and then A ⊂ {T} ∪i {ζx, x ∈ Ji}. The
opposite inclusion is obvious.

Now, for each i ≥ 1 set Ai := ({ζx, x ∈ Ji} − T ) (Fi(T ))α. It follows from the scaling
and strong fragmentation properties that the sets Ai are iid with the same law as A and are
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independent of F(T ). Combining this with (2.32) will lead us to mγ(A) = 0 for γ > 1/ |α|,
which in turn will imply that dimH

(
A
)
≤ 1/ |α| , by the definitions of mγ and dimH (see

respectively (2.29) and (2.28)). To see this, fix γ > 1/ |α| and ε > 0 and define for every subset
E of R+

mε
γ(E) := inf

coverings of E
by intervals Bn of lengths≤ε

∑

n

|Bn|γ .

Using that

A = {T}
⋃

i

(
T + (Fi(T ))−αAi

)

we have
mε
γ(A) ≤

∑

i

(Fi(T ))−αγmε(Fi(T ))α

γ (Ai) ≤
∑

i

(Fi(T ))−αγmε
γ(Ai). (2.33)

Since the first time ζ at which all the mass has been reduced to dust has a finite expectation and
since A ⊂ [0, ζ ] , E

[
mesεγ(A)

]
is finite. Moreover,

∑
i (Fi(T )) = 1 and F1(T ) < 1 a.s., which

implies that E
[∑

i (Fi(T ))−αγ
]
< 1 when γ > 1/ |α| . Combining this with (2.33) and the fact

that the random variables Ai are independent of F(T ) and have the same law as A implies
that E

[
mesεγ(A)

]
= 0 for all positive ε as soon as γ > 1/ |α| . So by definition, mγ(A)

a.s.
= 0 for

γ > 1/ |α| and then dimH(A) ≤ 1/ |α| a.s.

Proof of Proposition 2.1 (iv). We first prove that P (M(t) = 0) = 0 for all t > 0. To do so,
fix t > 0 and take s such that 0 < s < t. Recall that the fragmentation and scaling properties
applied at time s give

M(t) = M(s) +
∑

i

Fi(s)1{Fi(s)>0}M
(i) ((t− s)F α

i (s)) (2.34)

where the M (i) are mutually independent, independent of F (s) and with the same distribution
as M. Since ν

(
S↓
)

= ∞, the number of splits before time s is almost surely infinite. So if
M(s) = 0, that is no mass is lost at time s, none of the fragments with positive mass appeared
before s has entirely vanished at time s, so that there is an infinite number of fragments with
positive mass present at time s. In particular, if M(t) = 0, then M(s) = 0 and Fi(s) > 0
for all i ≥ 1. This gives with (2.34) that when M(t) = 0, then M (i) ((t− s)F α

i (s)) = 0 and
F α
i (s) ր

i→∞
∞. But this event has probability 0 since P (M(u) = 0) < 1 for some u large enough.

Therefore, P (M(t) = 0) = 0 and this holds for all t > 0.

Next, take again 0 < s < t. The mass M (1) being that introduced in (2.34) , remark that
conditionally on F1(s) > 0, we have that 1{F1(s)>0}M

(1) ((t− s)F α
1 (s)) > 0 a.s. since we have

just proved that P (M(u) > 0) = 1 for all u > 0. Hence, by (2.34) , M(t) > M(s) a.s.
conditionally on F1(s) > 0. In others words, P (M(s) < M(t) | s < ζ) = 1. Since this holds for
all 0 < s < t and since the dust’s mass M is a non-decreasing function,

P (M(s) < M(t) for all 0 ≤ s < t ≤ ζ) = 1.

Hence M is a.s. strictly increasing on [0, ζ ] and supp(dM) = [0, ζ ]
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2.6.2 Hölder continuity of the dust’s mass M

Notice that Proposition 2.1 (ii) implies that a.s. M cannot be Hölder continuous of order
γ > 1∧ (1/ |α|) , since the γ-Hölder-continuity of M yields to dimH(dM) ≥ γ (see Section 13.7
in [33]). We have moreover:

Proposition 2.2 Suppose that assumptions (A1) and (A2) hold. Then,

(i) the mass M is a.s. Hölder-continuous of order γ for every γ < (1/2) ∧ (A/2 |α|).
(ii) if ν (sN+1 > 0) = 0 for some integer N, the mass M is a.s. Hölder-continuous of order

γ for every γ < 1 ∧
(
p/ |α|

)
.

The upper bound 1∧
(
p/ |α|

)
is larger than (1/2)∧ (A/2 |α|) as soon as p ≥ A/2 or |α| ≤ 2p.

Remark also that when ν (sN+1 > 0) = 0 for some integer N, the coefficient A = 1 (see (2.16))
and the coefficient p = 1 if and only if ν is moreover finite.

Part (i) of Proposition 2.2 is just a consequence of Lemma 2.6:

Proof of Proposition 2.2 (i). Consider γ ∈ ]0, 1 ∧ (A/ |α|)[ and remark that for all t > s ≥ 0,

(M(t) −M(s))2 =

∫ t

s

∫ t

s

dM(u)dM(v)

≤ (t− s)γ
∫ t

s

∫ t

s

dM(u)dM(v)

|u− v|γ .

The integral
∫∞
0

∫∞
0

|u− v|−γ dM(u)dM(v) is a.s. finite by Lemma 2.6, and then,

|M(t) −M(s)| ≤ B(t− s)γ/2 for all t > s ≥ 0

for some a.s. finite constant B.

The proof of the second part of Proposition 2.2 is slightly longer. The point is to use the
well-known Kolmogorov criterion (see e.g. [60], p. 26, Theorem 2.1). In that aim, we first
prove the following lemma.

Lemma 2.7 Suppose that there exists an integer N such that ν (sN+1 > 0) = 0 and fix an
integer n ≥ 2. Suppose moreover that for all k ∈ {1, ..., n− 1} there exist a finite constant Ck
and a positive real number ak < k ∧

((
k − 1 + p

)
/ |α|

)
such that

E
[
(M(t) −M(s))k

]
≤ Ck (t− s)ak for all t ≥ s ≥ 0. (2.35)

Then, for all a < infn1+n2+...+nl=n
ni∈N\{0}

(an1 + ...+ anl
)∧ ((n− 1) / |α|) , there exists a finite constant

Cn,a such that
E [(M(t) −M(s))n] ≤ Cn,a (t− s)a for all t ≥ s ≥ 0.
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Proof. Consider n points tagged independently, as explained in Section 2.3.2, and denote by
D1, ..., Dn their respective times of reduction to dust. The r.v. Di, 1 ≤ i ≤ n, have the same
distribution as D (see (2.6)). By construction, the Di’s are independent conditionally on F, and
therefore, by formula (2.7) , we have that

E

[
n∏

i=1

1{s<Di≤t}

]
= E [(M(t) −M(s))n] . (2.36)

As in the proof of Theorem 2.1 (i), the goal is now to “introduce some independence” in order
to bound from above this expectation. To that end, consider Tn, the first time at which the n
tagged points do not belong to the same fragment and consider the distribution of the tagged
points at that time. More precisely, for each integer l ≥ 2 and each l-tuple (n1, n2, ..., nl) ∈
(N\ {0})l satisfying n1 + n2 + ... + nl = n, consider the event

A(n1,...,nl) =

{
U1, U2, ..., Ul belong all to different fragments at time Tn and there
are nk tagged points in the fragment containing Uk, 1 ≤ k ≤ l.

}

Since the number of such events is finite and since the law of (D1, ..., Dn) is exchangeable, we just
have to prove that for a fixed l-tuple (n1, n2, ..., nl) and all a < (an1 + ... + anl

) ∧ (n− 1) / |α| ,
there exists a finite constant C such that

E

[
n∏

i=1

1{s<Di≤t}1
{
A(n1,n2,...,nl)

}

]
≤ C (t− s)a for all t ≥ s ≥ 0. (2.37)

Conditionally on A(n1,n2,...,nl), there are l tagged fragments at time Tn, with respective masses,
λ1(Tn), ..., λl(Tn) and containing each, respectively, n1, ..., nl tagged points. Write then

n∏

i=1

1{s<Di≤t}1
{
A(n1,n2,...,nl)

} =

l∏

k=1

∏

i: Ui,Uk∈same
fragment at time Tn

1{s<Di≤t}1
{
A(n1,n2,...,nl)

}

and recall that the l fragments evolve independently after time Tn. Recall also the scaling
property of the fragmentation and consider the identity (2.36) (that holds for every integer n,

and in particular the nk’s). Then, setting M(t) := 0 for t < 0, there exists a random process M̃
with the same law as M and independent of F (Tn) , (λ1(Tn), ..., λn(Tn)) and A(n1,n2,...,nl) such
that

E

[∏n
i=1 1{s<Di≤t}1

{
A(n1,n2,...,nl)

}
]

= E
[∏l

k=1E
[(
M̃ ((t− Tn)λ

α
k (Tn)) − M̃ ((s− Tn)λ

α
k (Tn))

)nk

| F (Tn) , λ1(Tn), ..., λl(Tn), A(n1,n2,...,nl)

]
1{

A(n1,n2,...,nl)

}
]
.

Now consider the assumptions we have made in the statement. Since M is a.s. bounded by
1, the inequality (2.35) holds actually by replacing ank

by any bnk
≤ ank

and Cnk
by Cnk

∨ 1.
Therefore, for each l-tuple (bn1 , ..., bnl

) such that bnk
≤ ank

, 1 ≤ k ≤ l, there exists a finite
deterministic constant C such that
∏l

k=1

[
E
(
M̃ ((t− Tn)λ

α
k (Tn)) − M̃ ((s− Tn)λ

α
k (Tn))

)nk | F (Tn) , λ1(Tn), ..., λl(Tn), A(n1,n2,...,nl)

]

≤
a.s.

C (t− s)bn1+...+bnl
∏l

k=1 λ
αbnk
k (Tn).
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And then

E

[
n∏

i=1

1{s<Di≤t}1{An1,n2,...,nl}

]
≤ C (t− s)bn1+...+bnl E

[
l∏

k=1

λ
αbnk
k (Tn)1{A(n1,n2,...,nl)

}

]
. (2.38)

To see when the latter expectation is finite we use Lemma 2.2. Since, by assumption,
ν (sN+1 > 0) = 0 and |α| bnk

< nk (recall that p ≤ 1) for 1 ≤ k ≤ l,

∫

S↓

∑

1≤i1<...<il≤N

l∏

k=1

s
nk−|α|bnk
ik

1{sik
>0}ν(ds) ≤ N l−1

∫

S↓

∑

2≤i2≤N

s
n2+...+nl−|α|bn2−...−|α|bnl
i2

ν(ds),

which is finite, by definition of p, as soon as n2 + ... + nl − |α| bn2 − ... − |α| bnl
> 1 − p. This

holds here since |α| bnk
< nk − 1 + p for k ≥ 2. Thus, by Lemma 2.2,

E

[
l∏

k=1

λ
αbnk
k (Tn)1{λ1(Tn)≥λ2(Tn)≥...≥λl(Tn)}1{A(n1,n2,...,nl)

}

]
<∞

as soon as
∑l

k=1 bnk
< (n− 1) / |α| . By exchangeability, the expectation in the right hand side

of inequality (2.38) is then finite and thus the upper bound (2.37) and the required result are
proved.

Proof of Proposition 2.2 (ii). For all integer n ≥ 1, define

γn := sup {a ≥ 0 : ∃ C <∞ such that E [(M(t) −M(s))n] ≤ C (t− s)a for all t ≥ s ≥ 0} .

It is well-defined since M is a.s. bounded by 1. Our goal is to prove that the claim

C(k) : γn ≥ n

(
k − 1

k
∧

p

|α| ∧
k − 1

k |α|

)
for all n ≥ 1,

holds for all integers k ≥ 1. If this is true, the proof is finished, since the Kolmogorov criterion
then asserts that for each k ≥ 1 and every γ such that

γ <

(
k − 1

k
∧

p

|α| ∧
k − 1

k |α|

)

there is a γ-Hölder-continuous version of M. Since M is non-decreasing, it is actually M that is
a.s. Hölder-continuous with these orders γ. Letting k → ∞, M is then a.s. γ-Hölder-continuous
for every γ <

(
p/ |α|

)
∧ 1.

So let us prove by induction the claims C(k), k ≥ 1. That C(1) holds is obvious.
To prove C(2), remark first that γ1 = 1. This is a consequence of formula (2.7) , which
gives E [M(t) −M(s)] = E

[
1{s<D<t}

]
and then of assumptions (A1) and (A2) , which, by

Lemma 2.1, imply that D has a bounded density. Then, γ1 = 1 and Lemma 2.7 lead to
γ2 ≥ 2

(
1 ∧

((
p ∧ 1/2

)
/ |α|

))
. And next, using recursively the same lemma and the fact that

p ≤ 1, we get that

γn ≥ n
(
1 ∧

(
p/ |α|) ∧ (1/2 |α|

))
for all n ≥ 1.
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Which proves the claim C(2). Fix now an integer k ≥ 2 and suppose that C(k) holds. We want
to prove C(k + 1). By Hölder’s inequality,

E
[
(M(t) −M(s))k+1

]
≤ E

[
(M(t) −M(s))kn

]1/n
E
[
(M(t) −M(s))n/(n−1)

](n−1)/n

. (2.39)

First, remark the existence of a finite constant C such that E
[
(M(t) −M(s))n/(n−1)

]
≤ C(t−s)

since 0 ≤M(t)−M(s) ≤ 1 for t ≥ s and since D has a bounded density. Next, by claim C(k),

γnk ≥ n
(
(k − 1) ∧

(
kp/ |α|

)
∧ ((k − 1) / |α|)

)
for all n ≥ 1,

and this implies, with the previous remark and (2.39) , that

γk+1 ≥ (k − 1) ∧
(
kp/ |α|

)
∧ ((k − 1) / |α|) + (n− 1) /n for all n ≥ 1.

Letting n→ ∞ and using that k − 1 > 0, it is easy to see that

γk+1 ≥ (k − 1) ∧
(
kp/ |α|

)
∧ ((k − 1) / |α|) + 1

≥ k ∧
(
(k + 1) p/ |α|

)
∧ (k/ |α|) .

When n ≤ k + 1,

E [(M(t) −M(s))n] ≤ E
[
(M(t) −M(s))(k+1)

]n/(k+1)

and then γn ≥ nγk+1/(k + 1). Hence,

γn ≥ n
(
k ∧

(
(k + 1)p/ |α|

)
∧ (k/ |α|)

)
/ (k + 1) for all n ≤ k + 1.

Next, by applying Lemma 2.7 recursively, we get that

γn ≥ n
(
k ∧

(
(k + 1)p/ |α|

)
∧ (k/ |α|)

)
/ (k + 1) for n > k + 1

and so C(k + 1) holds. Hence the claims C(k) hold for every integers k ≥ 1.

2.7 Appendix: proof of Lemma 2.2

For this technical proof, it is easier to work with partition-valued fragmentations, so we first
recall some background on the subject. The following recalls hold for any self-similar fragmen-
tation. We refer to [9], [13] and [14] for details.

Define by P the set of partitions of N\ {0} and for π ∈ P and i ∈ N\ {0} , denote by πi the
block of π having i as least element, when such a block exists, and set πi := ∅ otherwise, so that
(π1, π2, ...) are the blocks of π. A random partition is called exchangeable if its distribution is
invariant under finite permutations. Kingman [45] shows that the blocks of every exchangeable
partition π have asymptotics frequencies a.s., that is (# denoting the counting measure on
N\ {0}) :

lim
n→∞

#(πi ∩ {1, ...n})
n

exists a.s. for all i.
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Let |π|↓ denote the decreasing rearrangement of these limits.

Now, let F be a S↓-valued fragmentation with index of self-similarity α and consider I,
one of its interval representation as explained in Section 2.2. By picking independent r.v. Ui,
i ≥ 1, uniformly distributed on ]0, 1[ and independent of I, we can construct an α-self-similar
partition-valued fragmentation (Π(t), t ≥ 0) as follows: for each t ≥ 0, Π(t) is the random
partition of N\ {0} such that two integers i, j belong to the same block of Π(t) if and only if
Ui and Uj belong to the same interval component of I(t). If Ui /∈ I(t), then the block of Π(t)
containing i is {i} . This process Π is exchangeable and called partition-valued representation
of F . By the strong law of large number, the law of F can be recovered from Π, as the law of
the decreasing rearrangement of asymptotic frequencies of Π :

(
|Π(t)|↓ , t ≥ 0

)
law
= F.

In the homogeneous case (α = 0), the partition-valued fragmentation (Π(t), t ≥ 0) can be
constructed from a Poisson point process (PPP) with an intensity measure depending on the
dislocation measure ν. We explain the construction for a fragmentation with no erosion and
a dislocation measure ν such that ν (

∑
i si < 1) = 0. First, for every s = (s1, s2, ...) ∈ S↓,

consider the paintbox partition Πs (introduced by Kingman, see e.g. [45]) defined as follows:
let (Zi)i≥1 be an iid sequence of random variable such that P (Z1 = j) = sj for j ≥ 1 and let
then Πs be the partition such that two integers i, j are in the same block if and only if Zi = Zj .
Introduce next the measure κν defined by

κν(B) =

∫

S↓
P (Πs ∈ B)ν(ds), B ∈ P. (2.40)

Bertoin [13] shows that κν is an exchangeable measure and that the fragmentation Π is a
pure jumps process whose jumps correspond to the atoms of a PPP ((∆(t), k(t)) , t ≥ 0) on
P × N\ {0} with intensity κν ⊗ #. By this, we mean that Π jumps exactly at the times of
occurrence of atoms of the PPP and that at such times t, Π(t−) jumps to Π(t) as follows: the
blocks of Π(t) are the same as those of Π(t−), except Π(t−)k(t), which is replaced by the blocks
{ni : i ∈ ∆(t)1} , {ni : i ∈ ∆(t)2} , ... where n1 < n2 < ... are the elements of the block Π(t−)k(t).
Berestycki adapts in [9] this PPP-construction to homogeneous S↓-valued fragmentations.

This partition point of view and the Poissonian construction lead to the following lemma.

Lemma 2.8 Let Ih be a homogeneous interval fragmentation, with no erosion and with a dis-
location measure ν such that ν (

∑
i si < 1) = 0. In this fragmentation, tag independently n

fragments as explained in Section 2.3.2 and let U1,h, ..., Un,h denote the tagged points. De-
fine λ1,h(t), ..., λn,h(t) to be the masses at time t of these tagged fragments and Tn,h the first
time at which the tagged points do not all belong to the same fragment. For every l-tuple
(n1, n2, ..., nl) ∈ (N\ {0})l such that n1 + n2 + ...+ nl = n, define then A(n1,...,nl),h by

A(n1,...,nl),h :=

{
U1,h, U2,h, ..., Ul,h belong all to different fragments at time Tn,h and
there are nk tagged points in the fragment containing Uk,h, 1 ≤ k ≤ l.

}

Then,
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(i) λ1,h(Tn,h−) = λ2,h(Tn,h−) = ... = λn,h(Tn,h−) by definition of Tn,h,

(ii) A(n1,...,nl),h and
(

λ1,h(Tn,h)

λ1,h(Tn,h−)
,
λ2,h(Tn,h)

λ1,h(Tn,h−)
, ...,

λn,h(Tn,h)

λ1,h(Tn,h−)

)
are independent of λ1,h(Tn,h−),

(ii) there is a positive finite constant C such that for every positive measurable function f
on ]0, 1]l ,

E

[
f
(

λ1,h(Tn,h)

λ1,h(Tn,h−)
,
λ2,h(Tn,h)

λ1,h(Tn,h−)
...,

λl,h(Tn,h)

λ1,h(Tn,h−)

)
1{

A(n1,n2,...,nl),h

}
]

= C

∫

S↓

∑

i1 6=i2 6=... 6=il

sn1
i1
sn2
i2
...snl

il
f(si1, ..., sil)1{si1

>0,...,sil
>0}ν(ds).

Proof. Let (Πh(t), t ≥ 0) be the homogeneous partition-valued fragmentation constructed
from Ih and the Ui,h’s, and let ((∆(t), k(t)) , t ≥ 0) be the PPP on P × N\ {0} with intensity
κν ⊗ # describing the jumps of Πh. Define then P∗n to be the set of partitions of N\ {0} such
that integers 1, 2, ..., n do not belong to the same block and remark that

Tn,h = inf {t ≥ 0 : Πh(t) ∈ P∗n} = inf {t ≥ 0 : ∆(t) ∈ P∗n and k(t) = 1} .

Setting ∆i for the block of ∆(Tn,h) containing i, 1 ≤ i ≤ n, the event A(n1,n2,...,nl),h can therefore
be written as

A(n1,n2,...,nl),h =

{
1, 2, ..., l belong to distinct blocks of ∆(Tn,h)
and Card(∆k ∩ {1, ..., n}) = nk, 1 ≤ k ≤ l.

}
(2.41)

and using the exchangeability of κν and the independence of ∆(Tn,h) and Πh(Tn,h−), we get
that

#(∆i ∩ {1, ...k})
k

a.s.→
k→∞

λi,h(Tn,h)

λ1,h(Tn,h−)
, 1 ≤ i ≤ n,

and then assertion (ii).

Next, to prove (iii), note that formula (2.40) leads to

κν (P∗n) =

∫

S↓

(
1 −

∑

i

sni

)
ν(ds)

which is positive and finite since 1−∑i s
n
i ≤ n (1 − s1) and (1 − s1) is integrable with respect to

ν. It is then a standard result of PPP’s theory that Tn,h has an exponential law with parameter
κν (P∗n) and that the distribution of ∆(Tn,h) is given by κν (· ∩ P∗n) /κν (P∗n) . Thus, by definition
of κν ,

E

[
f
(

λ1,h(Tn,h)

λ1,h(Tn,h−)
,
λ2,h(Tn,h)

λ1,h(Tn,h−)
, ...,

λl,h(Tn,h)

λ1,h(Tn,h−)

)
1{

A(n1,n2,...,nl),h

}
]

=
1

κν (P∗n)

∫

S↓
E

[
f (Πs,1, ...,Πs,l) 1{

As
(n1,n2,...,nl),h

}

]
ν(ds),

where As(n1,n2,...,nl),h
is defined as A(n1,n2,...,nl),h by replacing in (2.41) ∆(Tn,h) by Πs. It is then

easy to check with the definition of Πs that the required formula holds.

Proof of Lemma 2.2. The first part of the proof consists in shifting the problem to a
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homogeneous fragmentation with the same dislocation measure ν. This can be done by using
the construction of self-similar fragmentations from homogeneous ones recalled in Section 2.2.
So, consider a homogeneous interval fragmentation Ih from which we construct the α-self-similar
one by time-change (2.1) . In this homogeneous fragmentation, tag independently n fragments
as in the previous lemma. Keeping the notation introduced there, is easy to see that

(
λ1,h(Tn,h), ..., λn,h(Tn,h), 1{A(n1,n2,...,nl),h

}
)

law
=

(
λ1(Tn), ..., λn(Tn)1{A(n1,n2,...,nl)

}
)
.

So that the aim of this proof is to find for which l-tuples (a1, ..., al) , the expectation

E

[
l∏

k=1

λ−ak
k,h (Tn,h)1{λ1,h(Tn,h)≥λ2,h(Tn,h)≥...≥λl,h(Tn,h)}1{

A(n1,n2,...,nl),h

}

]

is finite.

By Lemma 2.8, we have that

E

[∏l
k=1 λ

−ak
k,h (Tn,h)1{λ1,h(Tn,h)≥...≥λl,h(Tn,h)}1{

A(n1,n2,...,nl),h

}
]

= E
[
(λ1,h(Tn,h−))−

∑l
k=1 ak

]

×E
[∏l

k=1

(
λk,h(Tn,h)

λ1,h(Tn,h−)

)−ak

1{λ1,h(Tn,h)≥...≥λl,h(Tn,h)}1{
A(n1,n2,...,nl),h

}
]

and that

E

[∏l
k=1

(
λk,h(Tn,h)

λ1,h(Tn,h−)

)−ak

1{λ1,h(Tn,h)≥...≥λl,h(Tn,h)}1{An1,n2,...,nl,h}
]
<∞

⇔
∫
S↓

∑
i1<...<il

∏l
k=1 s

nk−ak
ik

1{sik
>0}ν(ds) <∞.

So it just remains to specify for which (a1, ..., al) , the expectation E
[
(λ1,h(Tn,h−))−

∑l
k=1 ak

]
is

finite. To that end, remark that given λ1,h, the probability that the tagged points U2,h, ..., Un,h
belong to the same fragment as U1,h at time t is equal to λn−1

1,h (t), since the Ui,h’s are independent
and uniformly distributed on ]0, 1[ . In other words,

P (Tn,h > t | λ1,h) = λn−1
1,h (t) ∀t > 0.

As recalled in Section 2.3, the process (λ1,h(t), t ≥ 0) can be expressed in the form (exp(−ξt), t ≥
0), for some pure jumps subordinator ξ with Laplace exponent φ given by (2.4) . Therefore
P (Tn,h > t | λ1,h) = e−(n−1)ξt and for all a ∈ R:

E
[
λ−a1,h(Tn,h−)

]
= E

[∫∞
0
eaξt−P (Tn,h ∈ dt | λ1,h)

]

= E

[∫∞
0

∑
0<s<t

(
eaξs − eaξs−

)
P (Tn,h ∈ dt | λ1,h)

]
+ 1

= E

[ ∑
0<s<∞

(
eaξs − eaξs−

)
e−(n−1)ξs

]
+ 1

= E

[ ∑
0<s<∞

e(a−(n−1))ξs−
(
e(a−(n−1))∆s − e−(n−1)∆s

)]
+ 1 (∆s = ξs − ξs−).
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Finally, using the Master Formula (see [60], p.475), we get

E
[
λ−a1,h(Tn,h−)

]
= E

[∫ ∞

0

e(a−(n−1))ξsds

] ∫ ∞

0

(e(a−(n−1))x − e−(n−1)x)π(dx) + 1,

π being the Lévy measure of ξ. The integral
∫∞
0

(e(a−(n−1))x − e−(n−1)x)π(dx) is finite as soon

as a ≤ n − 1 and the expectation E
[∫∞

0
e(a−(n−1))ξsds

]
is finite if and only if a < n − 1, since

E
[
e−qξs

]
= e−sφ(q) where φ > 0 on ]0,∞[ , φ ∈ [−∞, 0] on ]−∞, 0] . This completes the proof.
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Chapitre 3

The genealogy of self-similar
fragmentations with a negative index
as a continuum random tree

Abstract: We encode a certain class of stochastic fragmentation processes, namely self-similar
fragmentation processes with a negative index of self-similarity, into a metric family tree which
belongs to the family of Continuum Random Trees of Aldous. When the splitting times of
the fragmentation are dense near 0, the tree can in turn be encoded into a continuous height
function, just as the Brownian Continuum Random Tree is encoded in a normalized Brownian
excursion. Under mild hypotheses, we then compute the Hausdorff dimensions of these trees,
and the maximal Hölder exponents of the height functions.

3.1 Introduction

Self-similar fragmentation processes describe the evolution of an object that falls apart, so that
different fragments keep on collapsing independently with a rate that depends on their sizes
to a certain power, called the index of the self-similar fragmentation. A genealogy is naturally
associated with such fragmentation processes, by saying that the common ancestor of two
fragments is the block that included these fragments for the last time, before a dislocation had
definitely separated them. With an appropriate coding of the fragments, one guesses that there
should be a natural way to define a genealogy tree, rooted at the initial fragment, associated
with any such fragmentation. It would be natural to put a metric on this tree, e.g. by letting the
distance from a fragment to the root of the tree be the time at which the fragment disappears.

Conversely, it turns out that trees have played a key role in models involving self-similar
fragmentations, notably, Aldous and Pitman [5] have introduced a way to log the so-called
Brownian Continuum Random Tree (CRT) [3] that is related to the standard additive coales-
cent. Bertoin [14] has shown that a fragmentation that is somehow dual to the Aldous-Pitman
fragmentation can be obtained as follows. Let TB be the Brownian CRT, which is considered
as an “infinite tree with edge-lengths” (formal definitions are given below). Let T 1

t , T 2
t , . . .

be the distinct tree components of the forest obtained by removing all the vertices of T that
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are at distance less than t from the root, and arranged by decreasing order of “size”. Then
the sequence FB(t) of these sizes defines as t varies a self-similar fragmentation. A moment
of thought points out that the notion of genealogy defined above precisely coincides with the
tree we have fragmented in this way, since a split occurs precisely at branchpoints of the tree.
Fragmentations of CRT’s that are different from the Brownian one and that follow the same
kind of construction have been studied in [56].

The goal of this paper is to show that any self-similar fragmentation process with negative
index can be obtained by a similar construction as above, for a certain instance of CRT. We
are interested in negative indices, because in most interesting cases when the self-similarity
index is non-negative, all fragments have an “infinite lifetime”, meaning that the pieces of the
fragmentation remain macroscopic at all times. In this case, the family tree defined above will
be unbounded and without endpoints, hence looking completely different from the Brownian
CRT. By contrast, as soon as the self-similarity index is negative, a loss of mass occurs, that
makes the fragments disappear in finite time (see [15]). In this case, the metric family tree will
be a bounded object, and in fact, a CRT. To state our results, we first give a rigorous definition
of the involved objects. Call

S↓ =

{
s = (s1, s2, . . .) : s1 ≥ s2 ≥ . . . ≥ 0;

∑

i≥1

si ≤ 1

}
,

and endow it with the topology of pointwise convergence.

Definition 3.1 A Markovian S↓-valued process (F (t), t ≥ 0) starting at (1, 0, . . .) is a ranked
self-similar fragmentation with index α ∈ R if it is continuous in probability and satisfies the
following fragmentation property. For every t, t′ ≥ 0, given F (t) = (x1, x2, . . .), F (t + t′) has
the same law as the decreasing rearrangement of the sequences x1F

(1)(xα1 t
′), x2F

(2)(xα2 t
′), . . .,

where the F (i)’s are independent copies of F .

By a result of Bertoin [14] and Berestycki [9], the laws of such fragmentation processes are
characterized by a 3-tuple (α, c, ν), where α is the index, c ≥ 0 is an “erosion” constant, and ν is
a σ-finite measure on S↓ that integrates s 7→ 1− s1 such that ν({(1, 0, 0 . . .)}) = 0. Informally,
c measures the rate at which fragments melt continuously (a phenomenon we will not be much
interested in here), while ν measures instantaneous breaks of fragments: a piece with size x
breaks into fragments with masses xs at rate xαν(ds). Notice that some mass can be lost within
a sudden break: this happens as soon as ν(

∑
i si < 1) 6= 0, but we will not be interested in this

phenomenon here either. The loss of mass phenomenon stated above is completely different
from erosion or sudden loss of mass: it is due to the fact that small fragments tend to decay
faster when α < 0.

On the other hand, let us define the notion of CRT. An R-tree (with the terminology of
Dress and Terhalle [27]; it is called a continuum tree set in Aldous [3]) is a complete metric
space (T, d), whose elements are called vertices, which satisfies the following two properties:

• For v, w ∈ T , there exists a unique geodesic [[v, w]] going from v to w, i.e. there exists a
unique isomorphism ϕv,w : [0, d(v, w)] → T with ϕv,w(0) = v and ϕv,w(d(v, w)) = w, and
its image is called [[v, w]].



3.1. Introduction 95

• For any v, w ∈ T , the only non-self-intersecting path going from v to w is [[v, w]], i.e.
for any continuous injective function s 7→ vs from [0, 1] to T with v0 = v and v1 = w,
{vs : s ∈ [0, 1]} = [[v, w]].

We will furthermore consider R-trees that are rooted, that is, one vertex is distinguished
as being the root, and we call it ∅. A leaf is a vertex which does not belong to [[∅, w[[:=
ϕ∅,w([0, d(∅, w))) for any vertex w. Call L(T ) the set of leaves of T , and S(T ) = T \ L(T ) its
skeleton. An R -tree is leaf-dense if T is the closure of L(T ). We also call height of a vertex v
the quantity ht(v) = d(∅, v). Last, for T an R-tree and a > 0, we let a ⊗ T be the R-tree in
which all distances are multiplied by a.

Definition 3.2 A continuum tree is a pair (T, µ) where T is an R-tree and µ is a probability
measure on T , called the mass measure, which is non-atomic and satisfies µ(L(T )) = 1 and
such that for every non-leaf vertex w, µ{v ∈ T : [[∅, v]] ∩ [[∅, w]] = [[∅, w]]} > 0. The set
of vertices just defined is called the fringe subtree rooted at w. A CRT is a random variable
ω 7→ (T (ω), µ(ω)) on a probability space (Ω,F , P ) whose values are continuum trees.

Notice that the definition of a continuum tree implies that the R-tree T satisfies certain
extra properties, for example, its set of leaves must be uncountable and have no isolated point.
Also, the definition of a CRT is a little inaccurate as we did not endow the space of R-trees
with a σ-field. This problem is in fact circumvented by the fact that CRTs are in fact entirely
described by the sequence of their marginals, that is, of the subtrees spanned by the root and k
leaves chosen with law µ given µ, and these subtrees, which are interpreted as finite trees with
edge-lengths, are random variables (see Sect. 3.2.2). The reader should keep in mind that by
the “law” of a CRT we mean the sequence of these marginals. Another point of view is taken
in [30], where the space of R-trees is endowed with a metric.

For (T, µ) a continuum tree, and for every t ≥ 0, let T1(t), T2(t), . . . be the tree components
of {v ∈ T : ht(v) > t}, ranked by decreasing order of µ-mass. A continuum random tree (T, µ)
is said to be self-similar with index α < 0 if for every t ≥ 0, conditionally on (µ(Ti(t)), i ≥ 1),
(Ti(t), i ≥ 1) has the same law as (µ(Ti(t))

−α ⊗ T (i), i ≥ 1) where the T (i)’s are independent
copies of T .

Our first result is

Theorem 3.1 Let F be a ranked self-similar fragmentation process with characteristic 3-tuple
(α, c, ν), with α < 0. Suppose also that F is not constant, that c = 0 and ν(

∑
i si < 1) = 0.

Then there exists an α-self-similar CRT (TF , µF ) such that, writing F ′(t) for the decreasing
sequence of masses of connected components of the open set {v ∈ TF : ht(v) > t}, the process
(F ′(t), t ≥ 0) has the same law as F . The tree TF is leaf-dense if and only if ν has infinite total
mass.

The next statement is a kind of converse to this theorem.

Proposition 3.1 Let (T , µ) be a self-similar CRT with index α < 0. Then the process F (t) =
((µ(Ti(t), i ≥ 1), t ≥ 0) is a ranked self-similar fragmentation with index α, it has no erosion
and its dislocation measure ν satisfies ν(

∑
i si < 1) = 0. Moreover, TF and T have the same

law.
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These results are proved in Sect. 3.2. There probably exists some notion of continuum
random tree extending the former which would include fragmentations with erosion or with
sudden loss of mass, but we do not pursue this here.

The next result, to be proved in Sect. 3.3, deals with the Hausdorff dimension of the set of
leaves of the CRT TF .

Theorem 3.2 Let F be a ranked self-similar fragmentation with characteristics (α, c, ν) satis-
fying the hypotheses of Theorem 3.1. Writing dimH for Hausdorff dimension, one has

dimH (L(TF )) =
1

|α| a.s. (3.1)

as soon as
∫
S↓

(
s−1
1 − 1

)
ν(ds) <∞.

Some comments about this formula. First, notice that under the extra integrability assump-
tion on ν, the dimension of the whole tree is dimH(TF ) = (1/|α|) ∨ 1 because the skeleton
S(TF ) has dimension 1 as a countable union of segments. The value −1 is therefore critical for
α, since the above formula shows that the dimension of TF as to be 1 as soon as α ≤ −1. It was
shown in a previous work by Bertoin [15] that when α < −1, for every fixed t the number of
fragments at time t is a.s. finite, so that −1 is indeed the threshold under which fragments decay
extremely fast. One should then picture the CRT TF as a “dead tree” looking like a handful of
thin sticks connected to each other, while when |α| < 1 the tree looks more like a dense “bush”.
Last, the integrability assumption in the theorem seems to be reasonably mild; its heuristic
meaning is that when a fragmentation occurs, the largest resulting fragment is not too small.
In particular, it is always satisfied in the case of fragmentations for which ν(sN+1 > 0) = 0,
since then s1 > 1/N for ν-a.e. s. Yet, we point out that when

∫
S↓

(
s−1
1 − 1

)
ν(ds) = ∞, one

anyway obtains the following bounds for the Hausdorff dimension of L(TF ):

̺

|α| ≤ dimH (L(TF )) ≤ 1

|α| a.s.

where

̺ := sup

{
p ≤ 1 :

∫

S↓

(
s−p1 − 1

)
ν(ds) <∞

}
. (3.2)

We do not know whether the condition
∫
S↓

(s−1
1 − 1)ν(ds) < ∞ is necessary for (3.1), as we

are not aware of any self-similar fragmentation with index α such that the associated CRT has
leaf-dimension strictly less than 1/|α|.

It is worth noting that these results allow as a special case to compute the Hausdorff dimen-
sion of the so-called stable trees of Duquesne and Le Gall [29], which were used to construct
fragmentations in the manner of Theorem 3.1 in [56]. The dimension of the stable tree (as well
as finer results of Hausdorff measures on more general Lévy trees) has been obtained indepen-
dently in [30]. The stable tree is a CRT whose law depends on parameter β ∈ (1, 2], and it
satisfies the required self-similarity property of Proposition 3.1 with index 1/β − 1. We check
that the associated dislocation measure satisfies the integrability condition of Theorem 3.2 in
Sect. 3.3.5, so that

Corollary 3.1 Fix β ∈ (1, 2]. The β-stable tree has Hausdorff dimension β/(β − 1).
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An interesting process associated with a given continuum tree (T, µ) is the so-called cumula-
tive height profile W̄T (h) = µ{v ∈ T : ht(v) ≤ h}, which is non-decreasing and bounded by 1 on
R+. It may happen that the Stieltjes measure dW̄T (h) is absolutely continuous with respect to
Lebesgue measure, in which case its density (WT (h), h ≥ 0) is called the height profile, or width
process of the tree. In our setting, for any fragmentation F satisfying the hypotheses of Theo-
rem 3.1, the cumulative height profile has the following interpretation: one has (W̄TF

(h), h ≥ 0)
has the same law as (MF (h), h ≥ 0), where MF (h) = 1 −∑i≥1 Fi(h) is the total mass lost by
the fragmentation at time h. Detailed conditions for existence (or non-existence) of the width
profile dMF (h)/dh have been given in [39]. It was also proved there that under some mild
assumptions dimH (dMF ) ≥ 1 ∧A/ |α| a.s., where A is a ν-dependent parameter introduced in
(3.10) below, and

dimH(dMF ) := inf{dimH(E) : dMF (E) = 1}.
The upper bound we obtain for dimH (L(TF )) allows us to complete this result:

Corollary 3.2 Let F be a ranked self-similar fragmentation with same hypotheses as in The-
orem 3.1. Then dimH (dMF ) ≤ 1 ∧ 1/ |α| a.s.

Notice that this result re-implies the fact from [39] that the height profile does not exist as
soon as |α| ≥ 1.

The last motivation of this paper (Sect. 3.4) is about relations between CRTs and their so-
called encoding height processes. The fragmentation FB of [14], as well as the fragmentations
from [56], were defined out of certain random functions (Hs, 0 ≤ s ≤ 1). Let us describe
briefly the construction of FB. Let Bexc be the standard Brownian excursion with duration
1, and consider the open set {s ∈ [0, 1] : 2Bexc

s > t}. Write F (t) for the decreasing sequence
of the lengths of its interval components. Then F has the same law as the fragmentation F ′B
defined out of the Brownian CRT in the same way as in Theorem 3.1. This is immediate
from the description of Le Gall [51] and Aldous [3] of the Brownian tree as being encoded in
the Brownian excursion. To be concise, define a pseudo-metric on [0, 1] by letting d(s, s′) =
2Bexc

s + 2Bexc
s′ − 4 infu∈[s,s′]B

exc
u , with the convention that [s, s′] = [s′, s] if s′ < s. We can

define a true metric space by taking the quotient with respect to the equivalence relation
s ≡ s′ ⇐⇒ d(s, s′) = 0. Call (TB, d) this metric space. Write µB for the measure induced on
TB by Lebesgue measure on [0, 1]. Then (TB, µB) is the Brownian CRT, and the equality in law
of the fragmentations FB and F ′B follows immediately from the definition of the mass measure.
Our next result generalizes this construction.

Theorem 3.3 Let F be a ranked self-similar fragmentation with same hypotheses as in Theo-
rem 3.1, and suppose ν has infinite total mass. Then there exists a continuous random func-
tion (HF (s), 0 ≤ s ≤ 1), called the height function, such that HF (0) = HF (1), HF (s) > 0
for every s ∈ (0, 1), and such that F has the same law as the fragmentation F ′ defined by:
F ′(t) is the decreasing rearrangement of the lengths of the interval components of the open set
IF (t) = {s ∈ (0, 1) : HF (s) > t}.

An interesting point in this construction is also that it shows that a large class of self-similar
fragmentation with negative index has a natural interval representation, given by (IF (t), t ≥ 0).
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Bertoin [14, Lemma 6] had already constructed such an interval representation, I ′F say, but ours
is different qualitatively. We will see in the sequel that our representation is intuitively obtained
by putting the intervals obtained from the dislocation of a largest interval in exchangeable
random order, while Bertoin’s method is to put these same intervals from left to right by size-
biased random order. In particular, For example, Bertoin’s interval fragmentation I ′F cannot
be written in the form I ′F (t) = {s ∈ (0, 1) : H(s) > t} for any continuous process H .

In parallel to the computation of the Hausdorff dimension of the CRTs built above, we are
able to estimate Hölder coefficients for the height processes of these CRTs. Our result is

Theorem 3.4 Suppose ν(S↓) = ∞, and set

ϑlow := sup

{
b > 0 : lim

x↓0
xbν(s1 < 1 − x) = ∞

}
,

ϑup := inf

{
b > 0 : lim

x↓0
xbν(s1 < 1 − x) = 0

}
.

Then the height process HF is a.s. Hölder-continuous of order γ for every γ < ϑlow ∧ |α|,
and, provided that

∫
S↓

(s−1
1 − 1)ν(ds) < ∞, a.s. not Hölder-continuous of order γ for every

γ > ϑup ∧ |α|.

Again we point out that one actually obtains an upper bound for the maximal Hölder
coefficient even when

∫
S↓

(s−1
1 − 1)ν(ds) = ∞ : with ̺ defined by (3.2) , a.s. HF cannot be

Hölder-continuous of order γ for any γ > ϑup ∧ |α|/̺.
Note that ϑlow, ϑup depend only on the characteristics of the fragmentation process, and more

precisely, on the behavior of ν when s1 is close to 1. By contrast, our Hausdorff dimension
result for the tree depended on a hypothesis on the behavior of ν when s1 is near 0. Remark
also that ϑup may be strictly smaller than 1. Therefore, the Hausdorff dimension of TF is in
general not equal to the inverse of the maximal Hölder coefficient of the height process, as one
could have expected. However, this turns out to be true in the case of the stable tree, as will
be checked in Section 3.4.4:

Corollary 3.3 The height process of the stable tree with index β ∈ (1, 2] is a.s. Hölder-
continuous of any order γ < 1 − 1/β, but a.s. not of order γ > 1 − 1/β.

When β = 2, this just states that the Brownian excursion is Hölder-continuous of any order
< 1/2, a result that is well-known for Brownian motion and which readily transfers to the
normalized Brownian excursion (e.g. by rescaling the first excursion of Brownian motion whose
duration is greater than 1). The general result had been obtained in [29] by completely different
methods.

Last, we mention that most of our results extend to a more general class of fragmentations
in which a fragment with mass x splits to give fragments with masses xs, s ∈ S↓, at rate
τ(x)ν(ds) for some non-negative continuous function τ on (0, 1] (see [38] for a rigorous def-
inition). The proofs of the above theorems easily adapt to give the following results: when
lim infx→0 x

−bτ(x) > 0 for some b < 0, the fragmentation can be encoded as above into a
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CRT and, provided that ν is infinite, into a height function. The set of leaves of the CRT
then has a Hausdorff dimension smaller than 1/ |b| and the height function is γ-Hölder con-
tinuous for every γ < ϑlow ∧ |b| . If moreover lim supx→0 x

−aτ(x) < ∞ for some a < 0 and∫
S↓

(
s−1
1 − 1

)
ν(ds) <∞, the Hausdorff dimension is larger than 1/ |a| and the height function

cannot have a Hölder coefficient γ > ϑsup ∧ |a|.

3.2 The CRT TF
Building the CRT TF associated with a ranked fragmentation F will be done by determining
its “marginals”, i.e. the subtrees spanned by a finite but arbitrary number of randomly chosen
leaves. To this purpose, it will be useful to use partition-valued fragmentations, which we first
define, as well as a certain family of trees with edge-lengths.

3.2.1 Exchangeable partitions and partition-valued self-similar frag-
mentations

Let P∞ be the set of (unordered) partitions of N = {1, 2, . . .} and [n] = {1, 2, . . . , n}. For
i, j ∈ N, we write i

π∼ j if i and j are in the same block of π. We adopt the following

ordering convention: for π ∈ P∞, we let (π1, π2, . . .) be the blocks of π, so that πi is the block
containing i provided that i is the smallest integer of the block and πi = ∅ otherwise. We
let O = {{1}, {2}, . . .} be the partition of N into singletons. If B ⊂ N and π ∈ P∞ we let
π ∩B (or π|B) be the restriction of π to B, i.e. the partition of B whose collection of blocks is
{πi ∩ B, i ≥ 1}. If π ∈ P∞ and B ∈ π is a block of π, we let

|B| = lim
n→∞

#(B ∩ [n])

n

be the asymptotic frequency of the block B, whenever it exists. A random variable π with values
in P∞ is called exchangeable if its law is invariant under the natural action of permutations of
N on P∞. By a theorem of Kingman [44, 1], all the blocks of such random partitions admit
asymptotic frequencies a.s. For π whose blocks have asymptotic frequencies, we let |π| ∈ S↓
be the decreasing sequence of these frequencies. Kingman’s theorem more precisely says that
the law of any exchangeable random partition π is a (random) “paintbox process”, a term we
now explain. Take s ∈ S↓ (the paintbox) and consider a sequence U1, U2, . . . of i.i.d. variables
in N ∪ {0} (the colors) with P (U1 = j) = sj for j ≥ 1 and P (U1 = 0) = 1 −∑k sk. Define
a partition π on N by saying that i 6= j are in the same block if and only if Ui = Uj 6= 0
(i.e. i and j have the same color, where 0 is considered as colorless). Call ρs(dπ) its law, the
s-paintbox law. Kingman’s theorem says that the law of any random partition is a mixing
of paintboxes, i.e. it has the form

∫
s∈S↓

m(ds)ρs(dπ) for some probability measure m on S↓.
A useful consequence is that the block of an exchangeable partition π containing 1, or some
prescribed integer i, is a size-biased pick from the blocks of π, i.e. the probability it equals a
non-singleton block πj conditionally on (|πj|, j ≥ 1) equals |πj|. Similarly,
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Lemma 3.1 Let π be an exchangeable random partition which is a.s. different from the trivial
partition O, and B an infinite subset of N. For any i ∈ N, let

ĩ = inf{j ≥ i : j ∈ B and {j} /∈ π},
then ĩ <∞ a.s. and the block π̃ of π containing ĩ is a size-biased pick among the non-singleton
blocks of π, i.e. if we denote these by π′1, π

′
2, . . .,

P (π̃ = π′k|(|π′j|, j ≥ 1)) = |π′k|/
∑

j

|π′j |.

For any sequence of partitions (π(i), i ≥ 1), define π =
⋂
i≥1 π

(i) by

k
π∼ j ⇐⇒ k

π(i)

∼ j ∀i ≥ 1.

Lemma 3.2 Let (π(i), i ≥ 1) be a sequence of independent exchangeable partitions and set
π :=

⋂
i≥1 π

(i). Then, a.s. for every j ∈ N,

|πj | =
∏

i≥1

∣∣∣π(i)
k(i,j)

∣∣∣ ,

where (k(i, j), j ≥ 1) is defined so that πj =
⋂
i≥1 π

(i)
k(i,j).

Proof. First notice that k(i, j) ≤ j for all i ≥ 1 a.s. This is clear when πj 6= ∅, since j ∈ πj
and then j ∈ π

(i)
k(i,j). When πj = ∅, j ∈ πm for some m < j and then m and j belong to the

same block of π(i) for all i ≥ 1. Thus k(i, j) ≤ m < j. Using then the paintbox construction
of exchangeable partitions explained above and the independence of the π(i)’s, we see that the
r.v.

∏
i≥1 1

{m∈π
(i)
k(i,j)

}
, m ≥ j + 1, are iid conditionally on (|π(i)

k(i,j)|, i ≥ 1) with a mean equal to
∏

i≥1 |π
(i)
k(i,j)|. The law of large numbers therefore gives

∏

i≥1

∣∣∣π(i)
k(i,j)

∣∣∣ = lim
n→∞

1

n

∑

j+1≤m≤n

∏

i≥1

1{
m∈π

(i)
k(i,j)

} a.s.

On the other hand, the random variables
∏

i≥1 1
{m∈π

(i)
k(i,j)

}
= 1{m∈πj}, m ≥ j + 1, are i.i.d.

conditionally on |πj | with mean |πj| and then the limit above converges a.s. to |πj | , again by
the law of large numbers.

We now turn our attention to partition-valued fragmentations.

Definition 3.3 Let (Π(t), t ≥ 0) be a Markovian P∞-valued process with Π(0) = {N,∅,∅, . . .}
that is continuous in probability and exchangeable as a process (meaning that the law of Π is
invariant under the action of permutations). Call it a partition-valued self-similar fragmen-
tation with index α ∈ R if moreover Π(t) admits asymptotic frequencies for all t, a.s., if the
process (|Π(t)|, t ≥ 0) is continuous in probability, and if the following fragmentation property is
satisfied. For t, t′ ≥ 0, given Π(t) = (π1, π2, . . .), the sequence Π(t+ t′) has the same law as the
partition with blocks π1 ∩Π(1)(|π1|αt′), π2 ∩Π(2)(|π2|αt′), . . ., where (Π(i), i ≥ 1) are independent
copies of Π.
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Bertoin [14] has shown that any such fragmentation is also characterized by the same 3-tuple
(α, c, ν) as above, meaning that the laws of partition-valued and ranked self-similar fragmenta-
tions are in a one-to-one correspondence. In fact, for every (α, c, ν), one can construct a version
of the partition-valued fragmentation Π with parameters (α, c, ν), and then (|Π(t)|, t ≥ 0)
is a ranked fragmentation with parameters (α, c, ν). Let us build this version now. It is
done following [13, 14] by a Poissonian construction. Recall the notation ρs(dπ), and define
κν(dπ) =

∫
S↓
ν(ds)ρs(dπ). Let # be the counting measure on N and let (∆t, kt) be a P∞ × N-

valued Poisson point process with intensity κν ⊗#. We may construct a process (Π0(t), t ≥ 0)
by letting Π0(0) be the trivial partition (N,∅,∅, . . .), and saying that Π0 jumps only at times
t when an atom (∆t, kt) occurs. When this is the case, Π0 jumps from the state Π0(t−) to the
following partition Π0(t): replace the block Π0

kt
(t−) by Π0

kt
(t−)∩∆t, and leave the other blocks

unchanged. Such a construction can be made rigorous by considering restrictions of partitions
to the first n integers and by a consistency argument. Then Π0 has the law of the fragmentation
with parameters (0, 0, ν).

Out of this “homogeneous” fragmentation, we construct the (α, 0, ν)-fragmentation by intro-
ducing a time-change. Call λi(t) the asymptotic frequency of the block of Π0(t) that contains
i, and write

Ti(t) = inf

{
u ≥ 0 :

∫ u

0

λi(r)
−αdr > t

}
. (3.3)

Last, for every t ≥ 0 we let Π(t) be the random partition such that i, j are in the same block of
Π(t) if and only if they are in the same block of Π0(Ti(t)), or equivalently of Π0(Tj(t)). Then
(Π(t), t ≥ 0) is the wanted version. Let (G(t), t ≥ 0) be the natural filtration generated by
Π completed up to P -null sets. According to [14], the fragmentation property holds actually
for G-stopping times and we shall refer to it as the strong fragmentation property. In the
homogeneous case, we will rather call G0 the natural filtration.

When α < 0, the loss of mass in the ranked fragmentations shows up at the level of partitions
by the fact that a positive fraction of the blocks of Π(t) are singletons for some t > 0. This
last property of self-similar fragmentations with negative index allows us to build a collection
of trees with edge-lengths.

3.2.2 Trees with edge-lengths

A tree is a finite connected graph with no cycles. It is rooted when a particular vertex (the root)
is distinguished from the others, in this case the edges are by convention oriented, pointing from
the root, and we define the out-degree of a vertex v as being the number of edges that point
outward from v. A leaf in a rooted tree is a vertex with out-degree 0. For k ≥ 1, let Tk be the
set of rooted trees with exactly k labeled leaves (the names of the labels may change according
to what we see fit), the other vertices (except the root) begin unlabeled , and such that the
root is the only vertex that has out-degree 1. If t ∈ Tk, we let E(t) be the set of its edges.

A tree with edge-lengths is a pair ϑ = (t, e) for t ∈ ⋃
k≥1 Tk and e = (ei, i ∈ E(t)) ∈

(R+ \ {0})E(t). Call t the skeleton of ϑ. Such a tree is naturally equipped with a distance
d(v, w) on the set of its vertices, by adding the lengths of edges that appear in the unique path
connecting v and w in the skeleton (which we still denote by [[v, w]]). The height of a vertex is
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its distance to the root. We let Tk be the set of trees with edge-lengths whose skeleton is in Tk.
For ϑ ∈ Tk, let eroot be the length of the unique edge connected to the root, and for e < eroot

write ϑ− e for the tree with edge-lengths that has same skeleton and same edge-lengths as ϑ,
but for the edge pointing outward from the root which is assigned length eroot − e.

We also define an operation MERGE as follows. Let n ≥ 2 and take ϑ1, ϑ2, . . . , ϑn respectively
in Tk1 ,Tk2 , . . . ,Tkn , with leaves (L1

i , 1 ≤ i ≤ k1), (L
2
i , 1 ≤ i ≤ k2), . . . , (L

n
i , 1 ≤ i ≤ kn)

respectively. Let also e > 0. The tree with edge-lengths MERGE((ϑ1, . . . , ϑn); e) ∈ T∑
i ki

is
defined by merging together the roots of ϑ1, . . . , ϑn into a single vertex •, and by drawing a
new edge root → • with length e.

Last, for ϑ ∈ Tk and i vertices v1, . . . , vi, define the subtree spanned by the root and v1, . . . , vi
as follows. For every p 6= q, let b(vp, vq) be the branchpoint of vp and vq, that is, the highest
point in the tree that belongs to [[root, vp]] ∩ [[root, vq]]. The spanned tree is the tree with
edge-lengths whose vertices are the root, the vertices v1, . . . , vi and the branchpoints b(vp, vq),
1 ≤ p 6= q ≤ i, and whose edge-lengths are given by the respective distances between this subset
of vertices of the original tree.

3.2.3 Building the CRT

Now for B ⊂ N finite, define R(B), a random variable with values in T#B, whose leaf-labels
are of the form Li for i ∈ N , as follows. Let Di = inf{t ≥ 0 : {i} ∈ Π(t)} be the first time
when {i} “disappears”, i.e. is isolated in a singleton of Π(t). For B a finite subset of N with at
least two elements, let DB = inf{t ≥ 0 : #(B∩Π(t)) 6= 1} be the first time when the restriction
of Π(t) to B is non-trivial, i.e. has more than one block. By convention, D{i} = Di. For every
i ≥ 1, define R({i}) as a single edge root → Li, and assign this edge the length Di. For B with
#B ≥ 2, let B1, . . . , Bi be the non-empty blocks of B ∩Π(DB), arranged in increasing order of
least element, and define a tree R(B) recursively by

R(B) = MERGE((R(B1) −DB, . . . ,R(Bi) −DB);DB).

Last, define R(k) = R([k]). Notice that by definition of the distance, the distance between Li
and Lj in R(k) for any k ≥ i ∨ j equals Di +Dj − 2D{i,j}.

We now state the key lemma that allows us to describe the CRT out of the family
(R(k), k ≥ 1) which is the candidate for the marginals of TF . By Aldous [3], it suffices to
check two properties, called consistency and leaf-tightness. Notice that in [3], only binary trees
(in which branchpoint have out-degree 2) are considered, but as noticed therein, this translates
to our setting with minor changes.

Lemma 3.3 (i) The family (R(k), k ≥ 1) is consistent in the sense that for every k and j ≤ k,
R(j) has the same law as the subtree of R(k) spanned by the root and j distinct leaves Lk1, . . . , L

k
j

taken uniformly at random from the leaves L1, . . . , Lk of R(k), independently of R(k).

(ii) The family (R(k), k ≥ 1) is leaf-tight, that is, with the above notations,

min
2≤j≤k

d(Lk1, L
k
j )

p→ 0.
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Proof. The consistency property is an immediate consequence of the fact that the process Π
is exchangeable. Taking j leaves uniformly out of the k ones of R(k) is just the same as if we
had chosen exactly the leaves L1, L2, . . . , Lj, which give rise to the tree R(j), and this is (i).

For (ii), first notice that we may suppose by exchangeability that Lk1 = L1. The only
point is then to show that the minimal distance of this leaf to the leaves L2, . . . , Lk tends to
0 in probability as k → ∞. Fix η > 0 and for ε > 0 write t1ε = inf{t ≥ 0 : |Π1(t)| < ε},
where Π1(t) is the block of Π(t) containing 1. Then t1ε is a stopping time with respect to
the natural filtration (Ft, t ≥ 0) associated with Π and t1ε ↑ D1 as ε ↓ 0. By the strong
Markov property and exchangeability, one has that if K(ε) = inf{k > 1 : k ∈ Π1(t

1
ε)}, then

P (D1 + DK(ε) − 2t1ε < η) = E[PΠ(t1ε)(D1 + DK(ε) < η)] where Pπ is the law of the fragmen-
tation Π started at π (the law of Π under Pπ is the same as that of the family of partitions({

blocks of π1 ∩ Π(1)(|π1|αt), π2 ∩ Π(2)(|π2|αt), . . .
}
, t ≥ 0

)
where the Π(i)’s, i ≥ 1, are indepen-

dent copies of Π under P{N,∅,∅,...}). By the self-similar fragmentation property and exchange-
ability this is greater than P (D1 + D2 < εαη), which in turn is greater than P (2ζ < εαη)
where ζ is the first time where Π(t) becomes the partition into singletons, which by [15] is
finite a.s. This last probability thus goes to 1 as ε ↓ 0. Taking ε = ε(n) ↓ 0 quickly enough as
n → ∞ and applying the Borel-Cantelli lemma, we a.s. obtain a sequence K(ε(n)) such that
d(L1, LK(n)) ≤ D1 +DK(ε(n)) − 2tε(n) < η. Hence the result.

For a rooted R-tree T and k vertices v1, . . . , vk, we define exactly as for marked trees the
subtree spanned by the root and v1, . . . , vk, as an element of Tk. A consequence of [3, Theorem
3] is then:

Lemma 3.4 There exists a CRT (TΠ, µΠ) such that if Z1, . . . , Zk is a sample of k leaves picked
independently according to µΠ conditionally on µΠ, the subtree of TΠ spanned by the root and
Z1, . . . , Zk has the same law as R(k).

In the sequel, sequences like (Z1, Z2, . . .) will be called exchangeable sequences with directing
measure µΠ.

Proof of Theorem 3.1. We have to check that the tree TΠ of the preceding lemma gives
rise to a fragmentation process with the same law as F = |Π|. By construction, we have that
for every t ≥ 0 the partition Π(t) is such that i and j are in the same block of Π(t) if and
only if Li and Lj are in the same connected component of {v ∈ TΠ : ht(v) > t}. Hence, the
law of large numbers implies that if F ′(t) is the decreasing sequence of the µ-masses of these
connected components, then F ′(t) = F (t) a.s. for every t. Hence, F ′ is a version of F , so we
can set TF = TΠ. That TF is α-self-similar is an immediate consequence of the fragmentation
and self-similar properties of F .

We now turn to the last statement of Theorem 3.1. With the notation of Lemma 3.4 we will
show that the path [[∅, Z1]] is almost-surely in the closure of the set of leaves of TF if and only if
ν(S↓) = ∞. Then it must hold by exchangeability that so do the paths [[∅, Zi]] for every i ≥ 1,
and this is sufficient because the definition of the CRTs implies that S(TF ) =

⋃
i≥1[[∅, Zi[[, see

[3, Lemma 6] (the fact that TF is a.s. compact will be proved below). To this end, it suffices
to show that for any a ∈ (0, 1), the point aZ1 of [[∅, Z1]] that is at a proportion a from ∅ (the
point ϕ∅,Z1(ad(∅, Z1)) with the above notations) can be approached closely by leaves, that is,
for η > 0 there exists j > 1 such that d(aZ1, Zj) < η. It thus suffices to check that for any
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δ > 0
P (∃2 ≤ j ≤ k : |D{1,j} − aD1| < δ and Dj −D{1,j} < δ) →

k→∞
1, (3.4)

with the above notations derived from Π (this is a slight variation of [3, (iii) a). Theorem 15]).

Suppose that ν(S↓) = ∞. Then for every rational r > 0 such that |Π1(r)| 6= 0 and for
every δ > 0, the block containing 1 undergoes a fragmentation in the time-interval (r, r + δ/2).
This is obvious from the Poisson construction of the self-similar fragmentation Π given above,
because ν is an infinite measure so there is an infinite number of atoms of (∆t, kt) with kt = 1
in any time-interval with positive length. Therefore, there exists an infinite number of elements
of Π1(r) that are isolated in singletons of Π(r + δ), e.g. because of Lemma 3.5 below which
asserts that only a finite number of the blocks of Π(r+ δ/2) “survive” at time r+ δ, i.e. is not
completely reduced to singletons. Thus, an infinite number of elements of Π1(r) correspond to
leaves of some R(k) for k large enough. By taking r close to aD1 we thus have the result.

On the other hand, if ν(S↓) < ∞, it follows from the Poisson construction that the state
(1, 0, . . .) is a holding state, so the first fragmentation occurs at a positive time, so the root
cannot be approached by leaves.

Remark. We have seen that we may actually build simultaneously the trees (R(k), k ≥ 1)
on the same probability space as a measurable functional of the process (Π(t), t ≥ 0). This
yields, by redoing the “special construction” of Aldous [3], a stick-breaking construction of the
tree TF , by now considering the trees R(k) as R-trees obtained as finite unions of segments
rather than trees with edge-lengths (one can check that it is possible to switch between the two
notions). The mass measure is then defined as the limit of the empirical measure on the leaves
L1, . . . , Ln. The special CRT thus constructed is a subset of ℓ1 in [3], but we consider it as
universal, i.e. up to isomorphism. The tree R(k + 1) is then obtained from R(k) by branching
a new segment with length Dk+1 − maxB⊂[k],B 6=∅DB∪{k+1}, and TF can be reinterpreted as the
completion of the metric space

⋃
k≥1 R(k). On the other hand, call L1, L2, . . . as before the

leaves of
⋃
k≥1 R(k), Lk being the leaf corresponding to the k-th branch. One of the subtleties

of the special construction of [3] is that L1, L2, . . . is not itself an exchangeable sample with
the mass measure as directing law. However, considering such a sample Z1, Z2, . . ., we may
construct a random partition Π′(t) for every t by letting i ∼Π′(t) j if and only if Zi and Zj are in
the same connected component of the forest {v ∈ TF : ht(v) > t}. Then easily Π′(t) is again a
partition-valued self-similar fragmentation, and in fact |Π′(t)| = F (t) a.s. for every t so Π′ has
same law as Π (Π′ can be interpreted as a “relabeling” of the blocks of Π). As a conclusion, up
to this relabeling, we may and will assimilate TF as the completion of the increasing union of
the trees R(k), while L1, L2, . . . will be considered as an exchangeable sequence with directing
law µF .

Proof of Proposition 3.1. The fact that the process F defined out of a CRT (T , µ) with
the stated properties is a S↓-valued self-similar fragmentation with index α is straightforward
and left to the reader. The treatment of the erosion and sudden loss of mass is a little more
subtle. Let Z1, Z2, . . . be an exchangeable sample directed by the measure µ, and for every
t ≥ 0 define a random partition Π(t) by saying that i and j are in the same block of Π(t) if
Zi and Zj fall in the same tree component of {v ∈ T : ht(v) > t}. By the arguments above,
Π defines a self-similar partition-valued fragmentation such that |Π(t)| = F (t) a.s. for every t.
Notice that if we show that the erosion coefficient c = 0 and that no sudden loss of mass occur,
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it will immediately follow that T has the same law as TF .

Now suppose that ν(
∑

i si < 1) 6= 0. Then (e.g. by the Poisson construction of fragmenta-
tions described above) there exist a.s. two distinct integers i and j and a time D such that i
and j are in the same block of Π(D−) but {i} ∈ Π(D) and {j} ∈ Π(D). This implies that
Zi = Zj, so µ has a.s. an atom and (T , µ) cannot be a CRT. On the other hand, suppose that
the erosion coefficient c > 0. Again from the Poisson construction, we see that there a.s. exists
a time D such that {1} /∈ Π(D−) but {1} ∈ Π(D), and nevertheless Π(D) ∩ Π1(D−) is not
the trivial partition O. Taking j in a non-trivial block of this last partition and denoting its
death time by D′, we obtain that the distance from Z1 to Zj is D′ − D, while the height of
Z1 is D and that of Zj is D′. This implies that Z1 is a.s. not in the set of leaves of T , again
contradicting the definition of a CRT.

3.3 Hausdorff dimension of TF
Let (M, d) be a compact metric space. For E ⊆ M , the Hausdorff dimension of E is the real
number

dimH(E) := inf {γ > 0 : mγ(E) = 0} = sup {γ > 0 : mγ(E) = ∞} , (3.5)

where
mγ(E) := sup

ε>0
inf
∑

i

∆(Ei)
γ, (3.6)

the infimum being taken over all collections (Ei, i ≥ 1) of subsets of E with diameter ∆(Ei) ≤ ε,
whose union covers E . This dimension is meant to measure the “fractal size” of the considered
set. For background on this subject, we mention [33] (in the caseM = Rn, but the generalization
to general metric spaces of the results we will need is straightforward).

The goal of this section is to prove Theorem 3.2 and more generally that

̺

|α| ≤ dimH (L(TF )) ≤ 1

|α| a.s.

where ̺ is the ν-dependent parameter defined by (3.2). The proof is divided in the two usual
upper and lower bound parts. In Section 3.3.1, we first prove that TF is indeed compact and that
dimH (L(TF )) ≤ 1/ |α| a.s., which is true without any extra integrability assumption on ν. We
then show that this upper bound yields dimH (dMF ) ≤ 1∧ 1/ |α| a.s. (Corollary 3.2). Sections
3.3.2 to 3.3.4 are devoted to the lower bound dimH (L(TF )) ≥ ̺/ |α| a.s. This is obtained by
using appropriate subtrees of TF (we will see that the most naive way to apply Frostman’s
energy method with the mass measure µF fails in general). That Theorem 3.2 applies to stable
trees is proved in Sect. 3.3.5.

3.3.1 Upper bound

We begin by stating the expected

Lemma 3.5 The tree TF is a.s. compact.
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Proof. For t ≥ 0 and ε > 0, denote by N ε
t the number of blocks of Π(t) not reduced to

singletons that are not entirely reduced to dust at time t + ε. We first prove that N ε
t is a.s.

finite. Let (Πi(t), i ≥ 1) be the blocks of Π(t), and (|Πi(t)| , i ≥ 1), their respective asymptotic
frequencies. For integers i such that |Πi(t)| > 0, that is Πi(t) 6= ∅ and Πi(t) is not reduced to
a singleton, let ζi := inf {s > t : Πi(t) ∩ Π(s) = O} be the first time at which the block Πi(t)
is entirely reduced to dust. Applying the fragmentation property at time t, we may write ζi
as ζi = t + |Πi(t)||α| ζ̃i where ζ̃i is a r.v. independent of G (t) that has same distribution as
ζ = inf{t ≥ 0 : Π(t) = O}, the first time at which the fragmentation is entirely reduced to
dust. Now, fix ε > 0. The number of blocks of Π(t) that are not entirely reduced to dust at
time t+ ε, which could be a priori infinite, is then given by

N ε
t =

∑

i:|Πi(t)|>0

1{|Πi(t)|
|α|ζ̃i>ε}.

From Proposition 15 in [38], we know that there exist two constants C1, C2 such that
P (ζ > t) ≤ C1e

−C2t for all t ≥ 0. Consequently, for all δ > 0,

E [N ε
t | G (t)] ≤ C1

∑

i:|Πi(t)|>0

e−C2ε|Πi(t)|
α

(3.7)

≤ C(δ)ε−δ
∑

i

|Πi(t)||α|δ ,

where C(δ) = supx∈R+

{
C1x

δe−C2x
}
< ∞. Since

∑
i |Πi(t)| ≤ 1 a.s, this shows by taking

δ = 1/|α| that N ε
t <∞ a.s.

Let us now construct a covering of supp (µ) with balls of radius 5ε. Recall that we may
suppose that the tree TF is constructed together with an exchangeable leaf sample (L1, L2, . . .)
directed by µF . For each l ∈ N∪{0}, we introduce the set

Bε
l = {k ∈ N : {k} /∈ Π(lε), {k} ∈ Π((l + 1) ε)} ,

some of which may be empty when ν(S↓) <∞, since the tree is not leaf-dense. For l ≥ 1, the
number of blocks of the partition Bε

l ∩ Π((l − 1) ε) of Bε
l is less than or equal to N ε

(l−1)ε and
so is a.s. finite. Since the fragmentation is entirely reduced to dust at time ζ < ∞ a.s., N ε

lε is
equal to zero for l ≥ ζ/ε and then, defining

Nε :=

[ζ/ε]∑

l=0

N ε
lε

we have Nε < ∞ a.s. ([ζ/ε] denotes here the largest integer smaller than ζ/ε). Now, con-
sider a finite random sequence of pairwise distinct integers σ(1), ..., σ(Nε) such that for each
1 ≤ l ≤ [ζ/ε] and each non-empty block of Bε

l ∩Π((l − 1) ε), there is a σ(i), 1 ≤ i ≤ Nε, in this
block. Then each leaf Lj belongs then to a ball of center Lσ(i), for an integer 1 ≤ i ≤ Nε, and
of radius 4ε. Indeed, fix j ≥ 1. It is clear that the sequence (Bε

l )l∈N∪{0} forms a partition of N.

Thus, there exists a unique block Bε
l containing j and in this block we consider the integer σ(i)

that belongs to the same block as j in the partition Bε
l ∩Π(((l−1)∨0)ε). By definition (see Sec-

tion 3.2.3), the distance between the leaves Lj and Lσ(i) is d(Lj , Lσ(i)) = Dj +Dσ(i) −2D{j,σ(i)}.
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By construction, j and σ(i) belong to the same block of Π(((l − 1) ∨ 0) ε) and both die before
(l + 1) ε. In other words, max(Dj , Dσ(i)) ≤ (l + 1) ε and D{j,σ(i)} ≥ ((l − 1) ∨ 0) ε, which implies
that d(Lj , Lσ(i)) ≤ 4ε. Therefore, we have covered the set of leaves {Lj , j ≥ 1} by at most Nε

balls of radius 4ε. Since the sequence (Lj)j≥1 is dense in supp (µ) , this induces by taking balls
with radius 5ε instead of 4ε a covering of supp (µ) by Nε balls of radius 5ε. This holds for all
ε > 0 so supp (µ) is a.s. compact. The compactness of TF follows.

Let us now prove the upper bound for dimH(L(TF )). The difficulty for finding a “good”
covering of the set L(TF ) is that as soon as ν is infinite, this set is dense in TF , and thus
one cannot hope to find its dimension by the plain box-counting method, because the skeleton
S(TF ) has a.s. Hausdorff dimension 1 as a countable union of segments. However, we stress
that the covering with balls of radius 5ε of the previous lemma is a good covering of the whole
tree, because the box-counting method leads to the right bound dimH(TF ) ≤ (1/|α|) ∨ 1, and
this is sufficient when |α| < 1. When |α| ≥ 1 though, we may lose the details of the structure
of L(TF ). We will thus try to find a sharp “cutset” for the tree, motivated by the computation
of the dimension of leaves of discrete infinite trees.

Proof of Theorem 3.2: upper bound. For every i ∈ N and t ≥ 0 let Π(i)(t) be the block
of Π(t) containing i and for ε > 0 let

tεi = inf{t ≥ 0 : |Π(i)(t)| < ε}.

Define a partition Πε by i ∼Πε
j if and only if Π(i)(t

ε
i ) = Π(j)(t

ε
j). One easily checks that this

random partition is exchangeable, moreover it has a.s. no singleton. Indeed, notice that for any
i, Π(i)(t

ε
i ) is the block of Π(tεi ) that contains i, and this block cannot be a singleton because the

process (|Π(i)(t)|, t ≥ 0) reaches 0 continuously. Therefore, Π(ε) admits asymptotic frequencies
a.s., and these frequencies sum to 1. Then let

ζε(i) = sup
j∈Π(i)(t

ε
i )

inf{t ≥ tεi : |Π(j)(t)| = 0} − tεi

be the time after tεi when the fragment containing i vanishes entirely (notice that ζε(i) = ζε(j)
whenever i ∼Πε

j). We also let bεi be the unique vertex of [[∅, Li]] at distance tεi from the root,
notice that again bεi = bεj whenever i ∼Πε

j.

We claim that
L(TF ) ⊆

⋃

i∈N

B(bεi , ζ
ε
(i)),

where B(v, r) is the closed ball centered at v with radius r in TF . Indeed, for L ∈ L(TF ), let
bL be the vertex of [[∅, L]] with minimal height such that µF (TbL) < ε, where TbL is the fringe
subtree of TF rooted at bL. Since bL ∈ S(TF ), µF (TbL) > 0 and there exist infinitely many
i’s with Li ∈ TbL . But then, it is immediate that for any such i, tεi = ht(bL) = ht(bεi ). Since
(Li, i ≥ 1) is dense in L(TF ), and since for every j with Lj ∈ Tbεi one has d(bεi , Lj) ≤ ζε(i) by

definition, it follows that L ∈ B(bεi , ζ
ε
(i)). Therefore, (B(bεi , ζ

ε
(i)), i ≥ 1) is a covering of L(TF ).

The next claim is that this covering is fine as ε ↓ 0, namely

sup
i∈N

ζε(i) →
ε↓0

0 a.s.
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Indeed, if it were not the case, we would find η > 0 and in, n ≥ 0, such that ζ
1/2n

(in) ≥ η and

d(b
1/2n

in
, Lin) ≥ η/2 for every n. Since TF is compact, we may extract a subsequence such that

Lin → v for some v ∈ TF . Now, since µF (T
b
1/2n

in

) ≤ 2−n, it follows that we may find a vertex

b ∈ [[∅, v]] at distance at least η/4 from v, such that µF (Tb) = 0, and this does not happen a.s.

To conclude, let ζεi = ζε(i)1{Π(i)(t
ε
i )=Πi(tεi )} (we just choose one i representing each class of Πε

above). By the self-similarity property applied at the (G(t), t ≥ 0)-stopping time tεi , ζ
ε
i has the

same law as |Πi(t
ε
i )||α|ζ , where ζ has same law as inf{t ≥ 0 : |Π(t)| = (0, 0, . . .)} and is taken

independent of |Πi(t
ε
i )|. Therefore,

E

[
∑

i≥1

(ζεi )
1/|α|

]
= E[ζ1/|α|]E

[
∑

i≥1

|Πi(t
ε
i )|
]

= E[ζ1/|α|] <∞. (3.8)

The fact that E[ζ1/|α|] is finite comes from the fact that ζ has exponential moments. Because
our covering is a fine covering as ε ↓ 0, it finally follows that (with the above notations)

m1/|α|(L(TF )) ≤ lim inf
ε↓0

∑

i:Π(i)(t
ε
i )=Πi(tεi )

(ζεi )
1/|α| a.s.,

which is a.s. finite by (3.8) and Fatou’s Lemma.

Proof of Corollary 3.2. By Theorem 3.1, the measure dMF has same law as dW TF
, the Stielt-

jes measure associated with the cumulative height profile W TF
(t) = µF {v ∈ TF : ht(v) ≤ t} ,

t ≥ 0. To bound from above the Hausdorff dimension of dW TF
, note that

dW TF
(ht (L (TF ))) =

∫

TF

1{ht(v)∈ht(L(TF ))}µF (dv) = 1

since µF (L (TF )) = 1. By definition of dimH

(
dW TF

)
, it is thus sufficient to show that

dimH (ht(L (TF ))) ≤ 1/ |α| a.s. To do so, remark that ht is Lipschitz and that this property
easily leads to

dimH (ht(L (TF ))) ≤ dimH (L (TF )) .

The conclusion hence follows from the majoration dimH (L (TF ))) ≤ 1/ |α| proved above.

3.3.2 A first lower bound

Recall that Frostman’s energy method to prove that dimH(E) ≥ γ where E is a subset of a metric

space (M, d) is to find a nonzero positive measure η(dx) on E such that
∫
E

∫
E
η(dx)η(dy)
d(x,y)γ < ∞.

A naive approach for finding a lower bound of the Hausdorff dimension of TF is thus to apply
this method by taking η = µF and E = L(TF ). The result states as follows.

Lemma 3.6 For any fragmentation process F satisfying the hypotheses of Theorem 3.1, one
has

dimH(L(TF )) ≥ A

|α| ∧
(

1 +
p

|α|

)
,
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where

p := − inf

{
q :

∫

S↓

(
1 −

∑

i≥1

sq+1
i

)
ν(ds) > −∞

}
∈ [0, 1], (3.9)

and

A := sup

{
a ≤ 1 :

∫

S↓

∑

1≤i<j

s1−a
i sjν(ds) <∞

}
∈ [0, 1]. (3.10)

Proof. By Lemma 3.4 (recall that (TΠ, µΠ) = (TF , µF ) by Theorem 3.1) we have

∫

TF

∫

TF

µF (dx)µF (dy)

d(x, y)γ
a.s.
= E

[
1

d(L1, L2)γ
|TF , µF

]

so that

E

[∫

TF

∫

TF

µF (dx)µF (dy)

d(x, y)γ

]
= E

[
1

d(L1, L2)γ

]

and by definition, d(L1, L2) = D1 +D2 − 2D{1,2}. Applying the strong fragmentation property
at the stopping time D{1,2}, we can rewrite D1 and D2 as

D1 = D{1,2} + λ
|α|
1 (D{1,2})D̃1 D2 = D{1,2} + λ

|α|
2 (D{1,2})D̃2

where λ1(D{1,2}) (resp. λ2(D{1,2})) is the asymptotic frequency of the block containing 1 (resp.

2) at time D{1,2} and D̃1 and D̃2 are independent with the same law as D1 and independent of
G
(
D{1,2}

)
. Therefore,

d(L1, L2) = λ
|α|
1 (D{1,2})D̃1 + λ

|α|
2 (D{1,2})D̃2,

and

E

[
1

d(L1, L2)γ

]
≤ 2E

[
λαγ1 (D{1,2});λ1(D{1,2}) ≥ λ2(D{1,2})

]
E
[
D−γ1

]
. (3.11)

By [39, Lemma 2] the first expectation in the right-hand side of inequality (3.11) is finite as soon
as |α| γ < A, while by [38, Sect. 4.2.1] the second expectation is finite as soon as γ < 1+ p/ |α|.
That dimH(L(TF ))

a.s.

≥
(
(A/ |α|) ∧

(
1 + p/ |α|

))
follows.

Let us now make a comment about this bound. For dislocation measures such that
ν(sN+1 > 0) = 0 for some N ≥ 1, the constant A equals 1 since for all a < 1,

∫

S↓

∑

i<j

s1−a
i sjν(ds) ≤

∫

S↓
(N − 1)

∑

2≤j≤N

sjν(ds) ≤ (N − 1)

∫

S↓
(1 − s1) ν(ds) <∞.

In such cases, if moreover p = 1, the “naive” lower bound of Lemma 3.6 is thus equal to 1/ |α|.
A typical setting in which this holds is when ν(S↓) < ∞ and ν(sN+1 > 0) = 0 and therefore,
for such dislocation measures the “naive” lower bound is also the best possible.
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3.3.3 A subtree of TF and a reduced fragmentation

In the general case, in order to improve this lower bound, we will thus try to transform the
problem on F into a problem on an auxiliary fragmentation that satisfies the hypotheses above.
The idea is as follows: fix an integer N and 0 < ε < 1. Consider the subtree T N,ε

F ⊂ TF
constructed from TF by keeping, at each branchpoint, the N largest fringe subtrees rooted
at this branchpoint (that is the subtrees with the largest masses) and discarding the others
in order to yield a tree in which branchpoints have out-degree at most N . Also, we remove
the accumulation of fragmentation times by discarding all the fringe subtrees rooted at the
branchpoints but the largest one, as soon as the proportion of its mass compared to the others
is larger than 1 − ε. Then there exists a probability µN,εF such that (T N,ε

F , µN,εF ) is a CRT, to
which we will apply the energy method.

Let us make the definition precise. Define LN,ε ⊂ L(TF ) to be the set of leaves L such that
for every branchpoint b ∈ [[∅, L]], L ∈ FN,ε

b with FN,ε
b defined by

{
FN,ε
b = T 1

b ∪ . . . ∪ T N
b if µF (T 1

b )/µF
(⋃

i≥1 T i
b

)
≤ 1 − ε

FN,ε
b = T 1

b if µF (T 1
b )/µF

(⋃
i≥1 T i

b

)
> 1 − ε

, (3.12)

where T 1
b , T 2

b . . . are the connected components of the fringe subtree of TF rooted at b, from
whom b has been removed (the connected components of {v ∈ TF : ht(v) > b}) and ranked in
decreasing order of µF -mass. Then let T N,ε

F ⊂ TF be the subtree of TF spanned by the root
and the leaves of LN,ε, i.e.

T N,ε
F = {v ∈ TF : ∃L ∈ LN,ε, v ∈ [[∅, L]]}.

The set T N,ε
F ⊂ TF is plainly connected and closed in TF , thus an R-tree.

Now let us try to give a sense to “taking at random a leaf in T N,ε
F ”. In the case of TF , it was

easy because, from the partition-valued fragmentation Π, it sufficed to look at the fragment
containing 1 (or some prescribed integer). Here, it is not difficult to show (as we will see
later) that the corresponding leaf L1 a.s. never belongs to T N,ε

F when the dislocation measure
ν charges the set {s1 > 1 − ε} ∪ {sN+1 > 0}. Therefore, we will have to use several random
leaves of TF . For any leaf L ∈ L(TF ) \ L(T N,ε

F ) let b(L) be the highest vertex v of [[∅, L]] such
that v ∈ T N,ε

F . Call it the branchpoint of L and T N,ε
F .

Now take at random a leaf Z1 of TF with law µF conditionally on µF , and define recursively
a sequence (Zn, n ≥ 1) with values in TF as follows. Let Zn+1 be independent of Z1, . . . , Zn
conditionally on (TF , µF , b(Zn)), and take it with conditional law

P (Zn+1 ∈ ·|TF , µF , b(Zn)) = µF (· ∩ FN,ε
b(Zn))/µF (FN,ε

b(Zn)).

Lemma 3.7 Almost surely, the sequence (Zn, n ≥ 1) converges to a random leaf ZN,ε ∈
L(T N,ε

F ). If µN,εF denotes the conditional law of ZN,ε given (TF , µF ), then (T N,ε
F , µN,εF ) is a

CRT, provided ε is small enough.

To prove this and for later use we first reconnect this discussion to partition-valued frag-
mentations. Recall from Sect. 3.2.1 the construction of the homogeneous fragmentation Π0
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with characteristics (0, 0, ν) out of a P∞×N-valued Poisson point process ((∆t, kt), t ≥ 0) with
intensity κν ⊗ #. For any partition π ∈ P∞ that admits asymptotic frequencies whose ranked
sequence is s, write π↓i for the block of π with asymptotic frequency si (with some convention
for ties, e.g. taking the order of least element). We define a function GRIND

N,ε : P∞ → P∞
that reduces the smallest blocks of the partition to singletons as follows. If π does not admit
asymptotic frequencies, let GRINDN,ε(π) = π, else let

GRIND
N,ε(π) =





(
π↓1, ..., π

↓
N , singletons

)
if s1 ≤ 1 − ε(

π↓1, singletons
)

if s1 > 1 − ε.

Now for each t ≥ 0 write ∆N,ε
t = GRIND

N,ε(∆t), so ((∆N,ε
t , kt), t ≥ 0) is a P∞×N-valued Poisson

point process with intensity measure κνN,ε ⊗ #, where νN,ε is the image of ν by the function

s ∈ S↓ 7→
{

(s1, ..., sN , 0, ...) if s1 ≤ 1 − ε
(s1, 0, ...) if s1 > 1 − ε.

From this Poisson point process we construct first a version Π0,N,ε of the
(
0, 0, νN,ε

)
fragmen-

tation, as explained in Section 3.2.1. For every time t ≥ 0, the partition Π0,N,ε(t) is finer than
Π0(t) and the blocks of Π0,N,ε(t) non-reduced to singleton are blocks of Π0(t). Next, using the
time change (3.3) , we construct from Π0,N,ε a version of the

(
α, 0, νN,ε

)
fragmentation, that we

denote by ΠN,ε.

Note that for dislocation measures ν such that νN,ε (
∑
si < 1) = 0, Theorem 3.2 is already

proved, by the previous subsection. For the rest of this subsection and next subsection, we
shall thus focus on dislocation measures ν such that νN,ε (

∑
si < 1) > 0. In that case, in Π0,N,ε

(unlike for Π0) each integer i is eventually isolated in a singleton a.s. within a sudden break
and this is why a µF -sampled leaf on TF cannot be in T N,ε

F , in other words, µF and µN,εF are
a.s. singular. Recall that we may build TF together with an exchangeable µF -sample of leaves
L1, L2, . . . on the same probability space as Π (or Π0). We are going to use a subfamily of
(L1, L2, . . .) to build a sequence with the same law as (Zn, n ≥ 1) built above. Let i1 = 1 and

in+1 = inf{i > in : Lin+1 ∈ FN,ε
b(Lin )}.

It is easy to see that (Lin , n ≥ 1) has the same law as (Zn, n ≥ 1). From this, we build a
decreasing family of blocks B0,N,ε(t) ∈ Π0(t), t ≥ 0, by letting B0,N,ε(t) be the unique block of
Π0(t) that contains all but a finite number of elements of {i1, i2, . . .}.

Here is a useful alternative description of B0,N,ε(t). Let D0,N,ε
i be the death time of i for the

fragmentation Π0,N,ε that is

D0,N,ε
i = inf{t ≥ 0 : {i} ∈ Π0,N,ε(t)}.

By exchangeability the D0,N,ε
i ’s are identically distributed and

D0,N,ε
1 = inf{t ≥ 0 : kt = 1 and {1} ∈ ∆N,ε

t }
so it has an exponential law with parameter

∫
S↓

(1−∑i si)ν
N,ε(ds). Then notice that B0,N,ε(t)

is the block admitting in as least element when D0,N,ε
in ≤ t < D0,N,ε

in+1
. Indeed, by construction

we have
in+1 = inf{i ∈ B0,N,ε(D0,N,ε

in −) : {i} /∈ Π0,N,ε(D0,N,ε
in )}.
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Moreover, the asymptotic frequency λ0,N,ε
1 (t) of B0,N,ε(t) exists for every t and equals the µF -

mass of the tree component of {v ∈ TF : ht(v) > t} containing Lin for D0,N,ε
in

≤ t < D0,N,ε
in+1

.

Notice that at time D0,N,ε
in

, either one non-singleton block coming from B0,N,ε(D0,N,ε
in

−), or

up to N non-singleton blocks may appear; by Lemma 3.1, B0,N,ε(D0,N,ε
in

) is then obtained by
taking at random one of these blocks with probability proportional to its size.

Proof of Lemma 3.7. For t ≥ 0 let λ0,N,ε(t) = |B0,N,ε(t)| and

T 0,N,ε(t) := inf

{
u ≥ 0 :

∫ u

0

(
λ0,N,ε(r)

)−α
dr > t

}
(3.13)

and write BN,ε(t) := B0,N,ε(T 0,N,ε(t)), for T 0,N,ε(t) < ∞ and BN,ε(t) = ∅ otherwise, so for
all t ≥ 0, BN,ε(t) ∈ ΠN,ε(t). Let also DN,ε

in
:= T 0,N,ε(D0,N,ε

in
) be the death time of in in the

fragmentation ΠN,ε. It is easy to see that bn = b(Lin) is the branchpoint of the paths [[∅, Lin ]]
and [[∅, Lin+1 ]], so the path [[∅, bn]] has length DN,ε

in
. The “edges” [[bn, bn+1]], n ∈ N, have

respective lengths DN,ε
in+1

− DN,ε
in , n ∈ N. Since the sequence of death times (DN,ε

in , n ≥ 1) is
increasing and bounded by ζ (the first time at which Π is entirely reduced to singletons), the
sequence (bn, n ≥ 1) is Cauchy, so it converges by completeness of TF . Now it is easy to show
that D0,N,ε

in
→ ∞ as n → ∞ a.s., so λ0,N,ε(t) → 0 as t → ∞ a.s. (see also the next lemma).

Therefore, the fragmentation property implies d(Lin , bn) → 0 a.s. so Lin is also Cauchy, with
the same limit, and the limit has to be a leaf which we denote LN,ε (of course it has same
distribution as the ZN,ε of the lemma’s statement). The fact that LN,ε ∈ T N,ε

F a.s. is obtained
by checking (3.12), which is true since it is verified for each branchpoint b ∈ [[∅, bn]] for every
n ≥ 1 by construction.

We now sketch the proof that (T N,ε
F , µN,εF ) is indeed a CRT, leaving details to the reader.

We need to show non-atomicity of µN,εF , but it is clear that when performing the recursive
construction of ZN,ε twice with independent variables, (Zn, n ≥ 1) and (Z ′n, n ≥ 1) say, there
exists a.s. some n such that Zn and Z ′n end up in two different fringe subtrees rooted at some
of the branchpoints bn, provided that ε is small enough so that ν(1 − s1 ≥ ε) 6= 0 (see also
below the explicit construction of two independently µN,εF -sampled leaves). On the other hand,
all of the subtrees of TF rooted at the branchpoints of T N,ε

F have positive µF -mass, so they will
end up being visited by the intermediate leaves used to construct a µN,εF -i.i.d. sample, so the
condition µN,εF ({v ∈ T N,ε

F : [[∅, v]] ∩ [[∅, w]] = [[∅, w]]}) > 0 for every w ∈ S(T N,ε
F ) is satisfied.

It will also be useful to sample two leaves (LN,ε1 , LN,ε2 ) that are independent with same
distribution µN,εF conditionally on µN,εF out of the exchangeable family L1, L2, . . .. A natural
way to do this is to use the family (L1, L3, L5, . . .) to sample the first leaf in the same way as
above, and to use the family (L2, L4, . . .) to sample the other one. That is, let j1

1 = 1, j2
1 = 2

and define recursively (j1
n, j

2
n, n ≥ 1) by letting

{
j1
n+1 = inf{j ∈ 2N + 1, j > j1

n : Lj ∈ FN,ε
b(L

j1n
)}

j2
n+1 = inf{j ∈ 2N, j > j1

n+1 : Lj ∈ FN,ε
b(L

j2n
)}

.

It is easy to check that (Lj1n , n ≥ 1) and (Lj2n, n ≥ 1) are two independent sequences distributed

as (Z1, Z2, . . .) of Lemma 3.7. Therefore, these sequences a.s. converge to limits LN,ε1 , LN,ε2 , and
these are independent with law µN,εF conditionally on µN,εF . We let Dk = ht(LN,εk ), k = 1, 2.
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Similarly as above, for every t ≥ 0 we let B0,N,ε
k (t), k = 1, 2 (resp. BN,ε

k (t)) be the block of
Π0(t) (resp. Π(t)) that contains all but the first few elements of {jk1 , jk2 , . . .}, and we call λ0,N,ε

k (t)
(resp. λN,εk (t)) its asymptotic frequency. Last, let D0

{1,2} = inf{t ≥ 0 : B0,N,ε
1 (t)∩B0,N,ε

2 (t) = ∅}
(and define similarly D{1,2}). Notice that for t < D0

{1,2}, we have B0,N,ε
1 (t) = B0,N,ε

2 (t), and by

construction the two least elements of the blocks (2N+1)∩B0,N,ε
1 (t) and (2N)∩B0,N,ε

1 (t) are of the
form j1

n, j
2
m for some n,m. On the other hand, for t ≥ D0

{1,2}, we have B0,N,ε
1 (t)∩B0,Nε

2 (t) = ∅,

and again the least elements of (2N + 1) ∩ B0,N,ε
1 (t) and (2N) ∩B0,Nε

2 (t) are of the form j1
n, j

2
m

for some n,m. In any case, we let j1(t) = j1
n, j

2(t) = j2
m for these n,m.

3.3.4 Lower bound

Since µN,εF is a measure on L(TF ), we want to show that for every a < ̺, the integral
∫
T N,ε

F

∫
T N,ε

F

µN,ε
F (dx)µN,ε

F (dy)

d(x,y)a/|α| is a.s. finite for suitable N and ε. So consider a < ̺, and note

that

E

[∫

T N,ε
F

∫

T N,ε
F

µN,εF (dx)µN,εF (dy)

d(x, y)a/|α|

]
= E

[
1

d(LN,ε1 , LN,ε2 )a/|α|

]
,

where d(LN,ε1 , LN,ε2 ) = D1 +D2 − 2D{1,2}, with notations above. The fragmentation property at
the stopping time D{1,2} leads to

Dk = D{1,2} + λN,εk (D{1,2})|α|D̃k, k = 1, 2,

where D̃1, D̃2 are independent with the same distribution as D, the height of the leaf LN,ε

constructed above, and independent of G(D{1,2}). Therefore, the distance d(LN,ε1 , LN,ε2 ) can be
rewritten as

d(LN,ε1 , LN,ε2 ) =
(
λN,ε1 (D{1,2})

)|α|
D̃1 +

(
λN,ε2 (D{1,2})

)|α|
D̃2

and

E
[
d(LN,ε1 , LN,ε2 )−a/|α|

]
≤ 2E

[(
λN,ε1 (D{1,2})

)−a
;λN,ε1 (D{1,2}) ≥ λN,ε2 (D{1,2})

]
E
[
D−a/|α|

]
.

Therefore, that dimH(L(TF )) ≥ ̺/ |α| is directly implied by the following Lemmas 3.8 and
3.10.

Lemma 3.8 The quantity E[D−γ] is finite for every 0 ≤ γ ≤ ̺/ |α| .

The proof uses the following technical lemma. Recall that λN,ε(t) = |BN,ε(t)|.

Lemma 3.9 One can write λN,ε = exp
(
−ξρ(·)

)
, where ξ (tacitly depending on N, ε) is a sub-

ordinator with Laplace exponent

Φξ(q) =

∫

S↓

(
(1 − sq1)1{s1>1−ε} +

N∑

i=1

(1 − sqi )
si1{s1≤1−ε}

s1 + ... + sN

)
ν(ds), q ≥ 0, (3.14)
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and ρ is the time-change

ρ(t) = inf

{
u ≥ 0 :

∫ u

0

exp(αξr)dr > t

}
, t ≥ 0.

Proof. Recall the construction of the process B0,N,ε from Π0, which itself was constructed
from a Poisson process (∆t, kt, t ≥ 0). From the definition of B0,N,ε(t), we have

B0,N,ε(t) =
⋂

0≤s≤t

∆̄N,ε
s ,

where the sets ∆̄N,ε
s are defined as follows. For each s ≥ 0, let i(s) be the least element of the

block B0,N,ε(s−) (so that B0,N,ε(s−) = Π0
i(s)(s−)), so (i(s), s ≥ 0) is an (F(s−), s ≥ 0)-adapted

jump-hold process, and the process {∆s : ks = i(s), s ≥ 0} is a Poisson point process with
intensity κν . Then for each s such that ks = i(s), ∆̄N,ε

s consists in a certain block of ∆s, and
precisely, ∆̄N,ε

s is the block of ∆s containing

inf
{
i ∈ B0,N,ε(s−) : {i} /∈ ∆N,ε

s

}
,

the least element of B0,N,ε(s−) which is not isolated in a singleton of ∆N,ε
s (such an integer

must be of the form in for some n by definition). Now B0,N,ε(s−) is F(s−)-measurable, hence
independent of ∆s. By Lemma 3.1, ∆̄N,ε

s is thus a size-biased pick among the non-void blocks
of ∆N,ε

s , and by definition of the function GRIND
N,ε, the process (|∆̄N,ε

s |, s ≥ 0) is a [0, 1]-valued
Poisson point process with intensity ω(s) characterized by

∫

[0,1]

f(s)ω(ds) =

∫

S↓

(
1{s1>1−ε}f(s1) + 1{s1≤1−ε}

N∑

i=1

f(si)
si

s1 + . . .+ sN

)
ν(ds),

for every positive measurable function f . Then |B0,N,ε(t)| =
∏

0≤s≤t |∆̄N,ε
s | a.s. for every t ≥ 0.

To see this, denote for every k ≥ 1 by ∆N,ε,k
s1

,∆N,ε,k
s2

,... the atoms ∆N,ε
s , s ≤ t, such that

|∆N,ε
s |1 ∈ [1−k−1, 1− (k+1)−1). Complete this a.s. finite sequence of partitions by partitions 1

and call Γ(k) their intersection, i.e. Γ(k) :=
⋂
i≥1(∆

N,ε,k
si

). By Lemma 3.2, |Γ(k)
nk |

a.s.
=
∏

i≥1 |∆
N,ε,k

si
|,

where nk is the index of the block
⋂
i≥1 ∆

N,ε,k

si
in the partition Γ(k). These partitions Γ(k), k ≥ 1,

are exchangeable and clearly independent. Applying again Lemma 3.2 gives |⋂k≥1 Γ
(k)
nk |

a.s.
=

∏
k≥1

∏
i≥1 |∆

N,ε,k

si
|, which is exactly the equality mentioned above. The exponential formula

for Poisson processes then shows that (ξt, t ≥ 0) = (− log(λ0,N,ε(t)), t ≥ 0) is a subordinator
with Laplace exponent Φξ. The result is now obtained by noticing that (3.3) rewrites λN,ε(t) =
λ0,N,ε(ρ(t)) in our setting.

Proof of Lemma 3.8. By the previous lemma, D = inf{t ≥ 0 : λN,ε(t) = 0}, which equals∫∞
0

exp(αξt)dt by the definition of ρ. According to Theorem 25.17 in [64], if for some positive
γ the quantity

Φξ(−γ) :=

∫

S↓

(
(
1 − s−γ1

)
1{s1>1−ε} +

N∑

i=1

(
1 − s−γi

) si1{si>0}1{s1≤1−ε}

s1 + ... + sN

)
ν(ds)
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is finite, then E[exp(γξt)] < ∞ for all t ≥ 0 and it equals exp(−tΦξ(−γ)). Notice that
Φξ(−γ) > −∞ for γ < ̺ ≤ 1. Indeed for such γ’s,

∫
S↓

(
s−γ1 − 1

)
1{s1>1−ε}ν(ds) < ∞ by

definition and

∫

S↓

(
N∑

i=1

(
s1−γ
i − si

) 1{s1≤1−ε}

s1 + ...+ sN

)
ν(ds) ≤ N

∫

S↓

s1−γ
1 1{s1≤1−ε}

s1

ν(ds),

which is finite by the definition of ̺ and since ν integrates (1 − s1). This implies in particular
that ξt has finite expectation for every t, and it follows by [25] that E[D−1] < ∞. Then,
following the proof of Proposition 2 in [19] and using again that Φξ(−γ) > −∞ for γ < ̺,

E

[(∫ ∞

0

exp(αξt)dt

)−k−1
]

=
−Φξ(− |α| k)

k
E

[(∫ ∞

0

exp(αξt)dt

)−k]

for every integer k < ̺/ |α|. Hence, using induction, E[(
∫∞
0

exp(αξt))
−k−1] is finite for k =

[̺/|α|] if ̺/|α| /∈ N and for k = ̺/|α| − 1 otherwise. In both cases, we see that E[D−γ] < ∞
for every γ ≤ ̺/|α|.

Lemma 3.10 For any a < ̺, there exists N, ε such that

E

[(
λN,ε1 (D{1,2})

)−a
;λN,ε1 (D{1,2}) ≥ λN,ε2 (D{1,2})

]
<∞.

The ingredient for proving Lemma 3.10 is the following lemma, which uses the notations
around the construction of the leaves (LN,ε1 , LN,ε2 ).

Lemma 3.11 With the convention log(0) = −∞, the process

σ(t) = − log
∣∣∣B0,N,ε

1 (t) ∩ B0,N,ε
2 (t)

∣∣∣ , t ≥ 0

is a killed subordinator (its death time is D0
{1,2}) with Laplace exponent

Φσ(q) = k
N,ε +

∫

S↓

(
(1 − sq1)1{s1>1−ε} +

N∑

i=1

(1 − sqi )
s2
i1{s1≤1−ε}

(s1 + ... + sN)2

)
ν(ds), q ≥ 0, (3.15)

where the killing rate k
N,ε :=

∫
S↓

∑
i6=j sisj

1{s1≤1−ε}

(s1+...+sN)2
ν(ds) ∈ (0,∞) . Moreover, the pair

(lN,ε1 , lN,ε2 ) = exp(σ(D0
{1,2}−))(λ0,N,ε

1 (D0
{1,2}), λ

0,N,ε
2 (D0

{1,2}))

is independent of σ(D0
{1,2}−) with law characterized by

E
[
f
(
lN,ε1 , lN,ε2

)]
=

1

kN,ε

∫

S↓

∑

1≤i6=j≤N

f(si, sj)
sisj1{s1≤1−ε}1{si>0}1{sj>0}

(s1 + ...+ sN)2 ν(ds)

for any positive measurable function f .
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Proof. We again use the Poisson construction of Π0 out of (∆t, kt, t ≥ 0) and follow closely
the proof of Lemma 3.9. For every t ≥ 0 we have

B0,N,ε
k (t) =

⋂

0≤s≤t

∆̄k
s , k = 1, 2,

where ∆̄k
s is defined as follows. Let Jk(s), k = 1, 2 be the integers such that B0,N,ε

k (s−) =
Π0
Jk(s)(s−), so {∆s : ks = Jk(s), s ≥ 0}, k = 1, 2 are two Poisson processes with same intensity

κν , which are equal for s in the interval [0,D0
{1,2}). Then for s with ks = Jk(s), let ∆̄k

s be the

block of ∆s containing jk(s). If B0,N,ε
1 (s−) = B0,N,ε

2 (s−) notice that j1(s), j2(s) are the two
least integers of (2N + 1)∩B0,N,ε

1 (s−) and (2N)∩B0,N,ε
2 (s−) respectively that are not isolated

as singletons of ∆N,ε
s , so ∆̄1

s = ∆̄2
s if these two integers fall in the same block of ∆N,ε

s . Hence by
a variation of Lemma 3.1, (|∆̄1

s ∩ ∆̄2
s|, s ≥ 0) is a Poisson process whose intensity is the image

measure of κνN,ε(π1{1∼2}) by the map π 7→ |π|, and killed at an independent exponential time
(namely D0

{1,2}) with parameter κνN,ε(1 ≁ 2) (here 1 ∼ 2 means that 1 and 2 are in the same

block of π). This implies (3.15).

The time D0
{1,2} is the first time when the two considered integers fall into two distinct blocks

of ∆N,ε
s . It is then easy by the Poissonian construction and the paintbox representation to check

that these blocks have asymptotic frequencies (lN,ε1 , lN,ε2 ) which are independent of σ(D0
{1,2}−),

and have the claimed law.

Proof of Lemma 3.10. First notice, from the fact that self-similar fragmentations are
time-changed homogeneous fragmentations, that

(λN,ε1 (D{1,2}), λN,ε2 (D{1,2})) d
= (λ0,N,ε

1 (D0
{1,2}), λ

0,N,ε
2 (D0

{1,2})).

Thus, with the notations of Lemma 3.11,

E

[(
λN,ε1 (D{1,2})

)−a
;λN,ε1 (D{1,2}) ≥ λN,ε2 (D{1,2})

]

= E
[
exp(aσ(D0

{1,2}−))
]
E

[(
lN,ε1

)−a
; lN,ε1 ≥ lN,ε2

]
.

First, define for every a > 0 Φσ(−a) by replacing q by −a in (3.15) and then remark that
Φσ(−a) > −∞ when a < ̺. Indeed,

∫
S↓

(
s−a1 − 1

)
1{s1>1−ε}ν(ds) is then finite and, since∑

1≤i≤N s
2−a
i ≤

(∑
1≤i≤N si

)2−a
(2 − a ≥ 1),

∑

1≤i≤N

(
s2−a
i − s2

i

) 1{s1≤1−ε}

(s1 + ... + sN)2 ≤ 1{s1≤1−ε}

sa1

which, by assumption, is integrable with respect to ν. Then, consider a subordinator σ̃ with
Laplace transform Φσ − k

N,ε and independent of D0
{1,2}, such that σ = σ̃ on (0,D0

{1,2}). As

in the proof of Lemma 3.8, we use Theorem 25.17 of [64], which gives E [exp(aσ̃(t))] =
exp

(
−t
(
Φσ(−a) − k

N,ε
))

for all t ≥ 0. Hence, by independence of σ̃ and D0
{1,2},

E
[
exp(aσ(D0

{1,2}−))
]

= E
[
exp(aσ̃(D0

{1,2}))
]

= k
N,ε

∫ ∞

0

exp(−tkN,ε) exp
(
−t(Φσ(−a) − k

N,ε)
)
dt,
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which is finite if and only if Φσ(−a) > 0. Recall that Φσ(−a) is equal to

∫

S↓

(
1 − s−a1

)
1{s1>1−ε}ν(ds) +

∫

S↓

(
∑

1≤i6=j≤N

sisj +
∑

1≤i≤N

(
s2
i − s2−a

i

)
)

1{s1≤1−ε}

(s1 + ...+ sN)2 ν(ds).

(3.16)
Since ∑

1≤i6=j≤N

sisj +
∑

1≤i≤N

(s2
i − s2−a

i ) = (
∑

1≤i≤N

si)
2 −

∑

1≤i≤N

s2−a
i ,

the integrand in the second term converges to
(
1 −∑i s

2−a
i

)
1{s1≤1−ε} as N → ∞ and is domi-

nated by
(
1 + s−a1

)
1{s1≤1−ε}. So, by dominated convergence, the second term of (3.16) converges

to
∫
S↓

(1−∑i s
2−a
i )1{s1≤1−ε}ν(ds) as N → ∞. This last integral converges to a strictly positive

quantity as ε ↓ 0, and since
∫
S↓

(
1 − s−a1

)
1{s1>1−ε}ν(ds) → 0 as ε → 0, Φσ(−a) is strictly

positive for N and 1/ε large enough. Hence E[exp(aσ(D0
{1,2}−))] < ∞ for N and 1/ε large

enough.

On the other hand, Lemma 3.11 implies that the finiteness of E[(lN,ε1 )−a1{lN,ε
1 ≥lN,ε

2 }] is equiv-

alent to that of
∫
S↓

∑
1≤i6=j≤N s

1−a
i sj

1{s1≤1−ε}

(s1+...+sN)2
ν(ds). But this integral is finite for all integers

N and every 0 < ε < 1, since
∑

1≤i6=j≤N s
1−a
i sj ≤ N2s2−a

1 and ν integrates s−a1 1{s1≤1−ε}. Hence
the result.

3.3.5 Dimension of the stable tree

This section is devoted to the proof of Corollary 3.1. Recall from [56] that the fragmentation
F− associated with the β-stable tree has index 1/β − 1 (where β ∈ (1, 2]). In the case β = 2,
the tree is the Brownian CRT and the fragmentation is binary (it is the fragmentation FB of
the Introduction), so that the integrability assumption of Theorem 3.2 is satisfied and then
the dimension is 2. So suppose β < 2. The main result of [56] is that the dislocation measure
ν−(ds) of F− has the form

ν−(ds) = C(β)E

[
T1;

∆T[0,1]

T1
∈ ds

]

for some constant C(β), where (Tx, x ≥ 0) is a stable subordinator with index 1/β and ∆T[0,1] =
(∆1,∆2, . . .) is the decreasing rearrangement of the sequence of jumps of T accomplished within
the time-interval [0, 1] (so that

∑
i ∆i = T1). By Theorem 3.2, to prove Corollary 3.1 it thus

suffices to check that E[T1(T1/∆1 − 1)] is finite. The problem is that computations involving
jumps of subordinators are often quite involved; they are sometimes eased by using size-biased
picked jumps, whose laws are more tractable. However, one can check that if ∆∗ is a size-
biased picked jump among (∆1,∆2, . . .), the quantity E[T1(T1/∆∗− 1)] is infinite, therefore we
really have to study the joint law of (T1,∆1). This has been done in Perman [59], but we will
re-explain all the details we need here.

Recall that the process (Tx, x ≥ 0) can be put in the Lévy-Itô form Tx =
∑

0≤y≤x ∆(y),

where (∆(y), y ≥ 0) is a Poisson point process with intensity cu−1−1/βdu (the Lévy measure
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of T ) for some constant c > 0. Therefore, the law of the largest jump of T before time 1 is
characterized by

P (∆1 < v) = P

(
sup

0≤y≤1
∆(y) < v

)
= exp

(
−cβv−1/β

)
v > 0,

and by the restriction property of Poisson processes, conditionally on ∆1 = v, one can write
T1 = v + T

(v)
1 , where (T

(v)
x , x ≥ 0) is a subordinator with Lévy measure cu−1−1/β1{0≤u≤v}du.

The Laplace transform of T
(v)
x is given by the Lévy-Khintchine formula

E[exp(−λT (v)
x )] = exp

(
−x
∫ v

0

c(1 − e−λu)

u1+1/β
du

)
λ, x ≥ 0,

in particular, T
(v)
1 admits moments of all order (by differentiating in λ) and v−1T

(v)
1 has the

same law as T
(1)

v−1/β (by changing variables). We then obtain

E[T1(T1/∆1 − 1)] = E

[
∆1

(
1 +

T
(∆1)
1

∆1

)
T

(∆1)
1

∆1

]

= K1

∫

R+

dv v−1/βe−βcv
−1/β

E

[(
1 +

T
(v)
1

v

)
T

(v)
1

v

]

= K1

∫

R+

dv v−1/βe−βcv
−1/β

E
[(

1 + T
(1)

v−1/β

)
T

(1)

v−1/β

]

where K1 = K(β) > 0. Since T
(1)
1 has a moment of orders 1 and 2, the expectation in the

integrand is dominated by some K2v
−1/β + K3v

−2/β . It is then easy to see that the integrand
is integrable both near 0 and ∞ since β < 2. Hence

∫
S↓

(
s−1
1 − 1

)
ν−(ds) <∞.

3.4 The height function

We now turn to the proof of the results related to the height function, starting with Theorem
3.3. The height function we are going to build will in fact satisfy more than stated there: we
will show that under the hypotheses of Theorem 3.3, there exists a process HF that encodes
TF in the sense given in the introduction, that is, TF is isometric to the quotient ((0, 1), d)/ ≡,
where d(u, v) = HF (u) +HF (v) − 2 infs∈[u,v]HF (s) and u ≡ v ⇐⇒ d(u, v) = 0. Once we have
proved this, the result is obvious since IF (t)/ ≡ is the set of vertices of TF that are above level
t.

3.4.1 Construction of the height function

Recall from [3] that to encode a CRT, defined as a projective limit of consistent random R−trees
(R(k), k ≥ 1), in a continuous height process, one first needs to enrich the structure of the R-
trees with consistent orders on each set of children of some node. The sons of a given node of
R(k) are thus labelled as first, second, etc... This induces a planar representation of the tree.
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This representation also induces a total order on the vertices of R(k), which we call �k, by the
rule v � w if either v is an ancestor of w, or the branchpoint b(v, w) of v and w is such that the
edge leading toward v is earlier than the edge leading toward w (for the ordering on children
of b(v, w)). In turn, the knowledge of R(k),�k, or even of R(k) and the restriction of �k to
the leaves L1, . . . , Lk of R(k), allows us to recover the planar structure of R(k). The family
of planar trees (R(k),�k, k ≥ 1) is said to be consistent if furthermore for every 1 ≤ j < k
the planar tree (R(j),�j) has the same law as the planar subtree of (R(k),�k) spanned by j
leaves L1

1, . . . , L
k
j taken independently uniformly at random among the leaves of R(k).

We build such a consistent family out of the consistent family of unordered trees
(R(k), k ≥ 1) as follows. Starting from the tree R(1), which we endow with the trivial or-
der on its only leaf, we build recursively the total order on R(k+1) from the order �k on R(k),
so that the restriction of �k+1 to the leaves L1, . . . , Lk of R(k) equals �k. Given R(k+ 1),�k,
let b(Lk+1) be the father of Lk+1. We distinguish two cases:

1. if b(Lk+1) is a vertex of R(k), which has r children c1, c2, . . . , cr in R(k), choose J uni-
formly in {1, 2, . . . , r + 1} and let cJ−1 �k+1 Lk+1 �k+1 cJ , that is, turn Lk+1 into the
j-th son of b(Lk+1) in R(k + 1) with probability 1/(r + 1) (here c0 (resp. cr+1) is the
predecessor (resp. successor) of c1 (resp. cr) for �k; we simply ignore them if they do not
exist)

2. else, b(Lk+1) must have a unique son s besides Lk+1. Let s′ be the predecessor of s for
�k and s′′ its successor (if any), and we let s′ �k+1 Lk+1 �k+1 s with probability 1/2 and
s �k+1 Lk+1 �k+1 s

′′ with probability 1/2.

It is easy to see that this procedure uniquely determines the law of the total order �k+1 on
R(k+1) given R(k+1),�k, and hence the law of (R(k),�k, k ≥ 1) (the important thing being
that the order is total).

Lemma 3.12 The family of planar trees (R(k),�k, k ≥ 1) is consistent. Moreover, given
R(k), the law of �k can be obtained as follows: for each vertex v of R(k), endow the (possibly
empty) set {c1(v), . . . , ci(v)} of children of v in uniform random order, this independently over
different vertices.

Proof. The second statement is obvious by induction. The first statement follows, since we
already know that the family of unordered trees (R(k), k ≥ 1) is consistent.

As a consequence, there exists a.s. a unique total order � on the set of leaves {L1, L2 . . .}
such that the restriction �|[k]=�k. One can check that this order extends to a total order on
the set L(TF ) : if L,L′ are distinct leaves, we say that L � L′ if and only if there exist two
sequences Lφ(k) � Lϕ(k), k ≥ 1, the first one decreasing and converging to L and the second
increasing and converging to L′. In turn, this extends to a total order (which we still call �)
on the whole tree TF . Theorem 3.3 is now a direct application of [3, Theorem 15 (iii)], the
only thing to check being the conditions a) and b) therein (since we already know that TF is
compact). Precisely, condition (iii) a) rewritten to fit our setting spells:

lim
k→∞

P (∃2 ≤ j ≤ k : |D{1,j} − aD1| ≤ δ and Dj −D{1,j} < δ and Lj � L1) = 1.
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This is thus a slight modification of (3.4), and the proof goes similarly, the difference being
that we need to keep track of the order on the leaves. Precisely, consider again some rational
r < aD1 close to aD1, so that |Π1(r)| 6= 0. The proof of (3.4) shows that within the time-
interval [r, r + δ], infinitely many integers of Π1(r) have been isolated into singletons. Now, by
definition of �, the probability that any of these integers j satisfies Lj �j L1 is 1/2. Therefore,
infinitely many integers of Π1(r) give birth to a leaf Lj that satisfy the required conditions, a.s.
The proof of [3, Condition (iii) b)] is exactly similar, hence proving Theorem 3.3.

It is worth recalling the detailed construction of the process HF , which is taken from the
proof of [3, Theorem 15] with a slight modification (we use the leaves Li rather than a new
sample Zi, i ≥ 1, but one checks that the proof remains valid). Given the continuum ordered
tree (TF , µF ,�, (Li, i ≥ 1)),

Ui = lim
n→∞

#{j ≤ n : Lj � Li}
n

,

a limit that exists a.s. Then the family (Ui, i ≥ 1) is distributed as a sequence of independent
sequence of uniformly distributed random variables on (0, 1), and since � is a total order, one
has Ui ≤ Uj if and only if Li � Lj. Next, define HF (Ui) to be the height of Li in TF , and
extend it by continuity on [0, 1] (which is a.s. possible according to [3, Theorem 15]) to obtain
HF . In fact, one can define H̃F (Ui) = Li and extend it by continuity on TF , in which case H̃F

is an isometry between TF and ((0, 1), d)/ ≡ that maps (the equivalence class of) Ui to Li for
i ≥ 1, and which preserves order.

Writing IF (t) = {s ∈ (0, 1) : HF (s) > t}, and |IF (t)| for the decreasing sequence of the
lengths of the interval components of IF (t), we know from the above that (|IF (t)|, t ≥ 0) has
the same law as F . More precisely,

Lemma 3.13 The processes (|IF (t)|, t ≥ 0) and (F (t), t ≥ 0) are equal.

Proof. Let Π′(t) be the partition of N such that i ∼Π′(t) j if and only if Ui and Uj
fall in the same interval component of IF (t). The isometry H̃F allows us to assimilate Li to
Ui, then the interval component of IF (t) containing Ui corresponds to the tree component of
{v ∈ TF : ht(v) > t} containing Li, therefore Uj falls in this interval if and only if i ∼Π(t) j,
and Π′(t) = Π(t). By the law of large numbers and the fact that (Uj , j ≥ 1) is distributed
as a uniform i.i.d. sample, it follows that the length of the interval equals the asymptotic
frequency of the block of Π(t) containing i, a.s. for every t. One inverts the assertions
“a.s.” and “for every t” by a simple monotony argument, showing that if (Ui, i ≥ 1) is a
uniform i.i.d. sample, then a.s. for every sub-interval (a, b) of (0, 1), the asymptotic frequency
limn→∞ n

−1#{i ≤ n : Ui ∈ (a, b)} = b− a (use distribution functions).

We will also need the following result, which is slightly more accurate than just saying, as
in the introduction, that (IF (t), t ≥ 0) is an “interval representation” of F :

Lemma 3.14 The process (IF (t), t ≥ 0) is a self-similar interval fragmentation, meaning that
it is nested (IF (t′) ⊆ IF (t) for every 0 ≤ t ≤ t′), continuous in probability, and for every
t, t′ ≥ 0, given IF (t) =

⋃
i≥1 Ii where Ii are pairwise disjoint intervals, IF (t+ t′) has the same

law as
⋃
i≥1 gi(I

(i)
F (t′|Ii|α)), where the I

(i)
F , i ≥ 1 are independent copies of IF , and gi is the

orientation-preserving affine function that maps (0, 1) to Ii.
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Here, the “continuity in probability” is with respect to the Hausdorff metric D on compact
subsets of [0, 1], and it just means that P (D(IcF (tn), I

c
F (t)) > ε) → 0 as n→ ∞ for any sequence

tn → t and ε > 0 (here Ac = [0, 1] \ A).

Proof. The fact that IF (t) is nested is trivial. Now recall that the different interval compo-
nents of IF (t) encode the tree components of {v ∈ TF : ht(v) > t}, call them T1(t), T2(t), . . ..
We already know that these trees are rescaled independent copies of TF , that is, they have
the same law as µF (Ti(t))−α ⊗ T (i), i ≥ 1, where T (i), i ≥ 1 are independent copies of TF .
So let T (i) = µF (Ti(t))α ⊗ Ti(t). Now, the orders induced by � on the different T (i)’s have
the same law as � and are independent, because they only depend on the Lj ’s that fall in
each of them. Therefore, the trees (T (i), µ(i),�(i)) are independent copies of (TF , µF ,�), where
µ(i)(·) = µF ((µF (Ti(t))−α ⊗ ·) ∩ Ti(t))/µF (Ti(t)) and �(i) is the order on T (i) induced by the
restriction of � to Ti(t). It follows by our previous considerations that their respective height
processes H(i) are independent copies of HF , and it is easy to check that given IF (t) =

⋃
i≥1 Ii

(where Ii is the interval corresponding to Ti(t)), the excursions of HF above t are precisely the
processes µ(Ti(t))−αH(i) = |Ii|−αH(i). The self-similar fragmentation property follows at once,
as the fact that IF is Markov. Thanks to these properties, we may just check the continuity in
probability at time 0, and it is trivial because HF is a.s. continuous and positive on (0, 1).

It appears that besides these elementary properties, the process HF is quite hard to study.
In order to move one step further, we will try to give a “Poissonian construction” of HF , in the
same way as we used properties of the Poisson process construction of Π0 to study TF . To begin
with, we move “back to the homogeneous case” by time-changing. For every x ∈ (0, 1), let Ix(t)
be the interval component of IF (t) containing x, and |Ix(t)| be its length (= 0 if Ix(t) = ∅).
Then set

T−1
t (x) = inf

{
u ≥ 0 :

∫ u

0

|Ix(r)|αdr > t

}
,

and let I0
F (t) be the open set constituted of the union of the intervals Ix(T

−1
t (x)), x ∈ (0, 1)

(it suffices in fact to take the union of the IUi
(T−1

t (Ui)), i ≥ 1). From [14] and Lemma 3.14,
(I0
F (t), t ≥ 0) is a self-similar homogeneous interval fragmentation.

3.4.2 A Poissonian construction

Recall that the process (Π(t), t ≥ 0) is constructed out of a homogeneous fragmentation
(Π0(t), t ≥ 0), which has been appropriately time-changed, and where (Π0(t), t ≥ 0) has it-
self been constructed out of a Poisson point process (∆t, kt, t ≥ 0) with intensity κν ⊗ #.
Further, we mark this Poisson process by considering, for each jump time t of this Poisson
process, a sequence (Ui(t), i ≥ 1) of i.i.d. random variables that are uniform on (0, 1), so that
these sequences are independent over different such t’s. We are going to use the marks to build
an order on the non-void blocks of Π0. It is convenient first to formalize what we precisely call
an order on a set A: it is a subset O of A× A satisfying:

1. (i, i) ∈ O for every i ∈ A

2. (i, j) ∈ O and (j, i) ∈ O imply i = j

3. (i, j) ∈ O and (j, k) ∈ O imply (i, k) ∈ O.
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If B ⊆ A, the restriction to B of the order O is O|B = O ∩ (B × B). We now construct a
process (O(t), t ≥ 0), with values in the set of orders of N, as follows. Let O(0) = {(i, i), i ∈ N}
be the trivial order, and let n ∈ N. Let 0 < t1 < t2 < . . . < tK be the times of occurrence of
jumps of the Poisson process (∆t, kt, t ≥ 0) such that both kt ≤ n and (∆t)|[n] (the restriction
of ∆t to [n]) is non-trivial. Let On(0) = O|[n](0), and define a process On(t) to be constant on
the time-intervals [ti−1, ti) (where t0 = 0), where inductively, given On(ti−1) = On(ti−), On(ti)
is defined as follows. Let Jn(ti) = {j ∈ Π0

kti
(ti−) : j ≤ n and Π0

j (ti) 6= ∅} so that kti ∈ Jn(ti)

as soon as Π0
kti

(ti−) 6= ∅. Let then

On(ti) = On(ti−) ∪
⋃

j,k∈Jn(ti):
Uj(ti)<Uk(ti)

{(j, k)} ∪
⋃

j:(j,kti
)∈On(ti−)
j 6=kti

k∈Jn(ti)

{(j, k)} ∪
⋃

j:(kti
,j)∈On(ti−)
j 6=kti

k∈Jn(ti)

{(k, j)}.

In words, we order each set of new blocks in random order in accordance with the variables
Um(ti), 1 ≤ m ≤ n, and these new blocks have the same relative position with other blocks as
had their father, namely the block Π0

kti
(ti−).

It is easy to see that the orders thus defined are consistent as n varies, i.e. (On+1(t))|[n] =
On(t) for every n, t, and it easily follows that there exists a unique process (O(t), t ≥ 0) such
that O|[n](t) = On(t) for every n, t (for existence, take the union over n ∈ N, and unicity
is trivial). The process O thus obtained allows us to build an interval-valued version of the
fragmentation Π0(t), namely, for every t ≥ 0 and j ≥ 0 let

I0
j (t) =


 ∑

k 6=j:(k,j)∈O(t)

|Π0
k(t)|,

∑

k:(k,j)∈O(t)

|Π0
k(t)|




(notice that I0
j (t) = ∅ if Π0

j(t) = ∅). Write I0(t) =
⋃
j≥1 I

0
j (t), and notice that the length

|I0
j (t)| of I0

j (t) equals the asymptotic frequency of Π0
j(t) for every j ≥ 1, t ≥ 0.

Proposition 3.2 The processes (I0
F (t), t ≥ 0) and (I0(t), t ≥ 0) have the same law.

As a consequence, we have obtained a construction of an object with the same law as I0
F

with the help of a marked Poisson process in P∞, and this is the one we are going to work with.

Proof. Let I0
F (i, t) be the interval component of I0

F (t) containing Ui if i is the least j such
that Uj falls in this component, and I0

F (i, t) = ∅ otherwise. Let OF (t) = {(i, i), i ∈ N} ∪
{(j, k) : I0

F (j, t) is located to the left of I0
F (k, t) and both are nonempty}. Since the lengths of

the interval components of I0
F and I0 are the same, the only thing we need to check is that the

processes O and OF have the same law. But then, for j 6= k, (j, k) ∈ OF (t) means that the
branchpoint b(Lj , Lk) of Lj and Lk has height less than t, and the subtree rooted at b(Lj , Lk)
containing Lj has been placed before that containing Lk. Using Lemma 3.12, we see that given
TF , L1, L2, . . ., the subtrees rooted at any branchpoint b of TF are placed in exchangeable random
order independently over branchpoints. Precisely, letting T b

1 be the subtree containing the leaf
with least label, T b

2 the subtree different from T b
1 containing the leaf with least label, and so

on, the first subtrees T b
1 , . . . , T b

k are placed in any of the k! possible linear orders, consistently
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as k varies. Therefore (see e.g. [3, Lemma 10]), there exist independent uniform(0, 1) random
variables U b

1 , U
b
2 , . . . independent over b’s such that T b

i is on the “left” of T b
j (for the order OF )

if and only if U b
i ≤ U b

j . This is exactly how we defined the order O(t).

Remark. As the reader may have noticed, this construction of an interval-valued fragmen-
tation has in fact little to do with pure manipulation of intervals, and it is actually almost
entirely performed in the world of partitions. We stress that it is in fact quite hard to construct
directly such an interval fragmentation out of the plain idea: “start from the interval (0, 1),
take a Poisson process (s(t), kt, t ≥ 0) with intensity ν(ds) ⊗ #, and at a jump time of the
Poisson process turn the kt-th interval component Ikt(t−) of I(t−) (for some labelling con-
vention) into the open subset of Ikt(t−) whose components sizes are |Ikt(t−)|si(t), i ≥ 1, and
placed in exchangeable order”. Using partitions helps much more than plainly giving a natu-
ral “labelling convention” for the intervals. In the same vein, we refer to the work of Gnedin
[37], which shows that exchangeable interval (composition) structures are in fact equivalent to
“exchangeable partitions+order on blocks”.

For every x ∈ (0, 1), write I0
x(t) for the interval component of I0

F (t) containing x, and notice
that I0

x(t−) =
⋂
s↑t I

0
x(s) is well-defined as a decreasing intersection. For t ≥ 0 such that

I0
x(t) 6= I0

x(t−), let sx(t) be the sequence |I0
F (t)∩ I0

x(t−)|/|I0
x(t−)|, where |I0

F (t)∩ I0
x(t−)| is the

decreasing sequence of lengths of the interval components of I0
F (t) ∩ I0

x(t−). The useful result
on the Poissonian construction is given in the following

Lemma 3.15 The process (sx(t), t ≥ 0) is a Poisson point process with intensity ν(ds), and
more precisely, the order of the interval components of I0

F (t)∩I0
x(t−) is exchangeable: there ex-

ists a sequence of i.i.d. uniform random variables (Ux
i (t), i ≥ 1), independent of (G0(t−), sx(t))

such that the interval with length sxi (t)|I0
x(t−)| is located on the left of the interval with length

sxj (t)|I0
x(t−)| if and only if Ux

i (t) ≤ Ux
j (t).

Proof. Let i(t, x) = inf{i ∈ N : Ui ∈ I0
x(t)}. Then i(t, x) is an increasing jump-hold process in

N. If now I0
x(t) 6= I0

x(t−), it means that there has been a jump of the Poisson process ∆t, kt at
time t, so that kt = i(t, x), and then sx(t) is equal to the decreasing sequence |∆t| of asymptotic
frequencies of ∆t, therefore sx(t) = |∆t| when kt = i(t−, x), and since i(t−, x) is progressive,
its jump times are stopping times so the process (sx(t), t ≥ 0) is in turn a Poisson process with
intensity ν(ds). Moreover, by Proposition 3.2 and the construction of I0, each time an interval
splits, the corresponding blocks are put in exchangeable order, which gives the second half of
the lemma.

3.4.3 Proof of Theorem 3.4

3.4.3.1 Hölder-continuity of HF

We prove here that the height process is a.s. Hölder-continuous of order γ for every γ < ϑlow∧|α|.
The proof will proceed in three steps.

First step: Reduction to the behavior of HF near 0. By a theorem of Garsia, Rodemich

and Rumsey (see e.g. [26]), the finiteness of
∫ 1

0

∫ 1

0
|HF (x)−HF (y)|n+n0

|x−y|γn dxdy leads to the
(
γn−2
n+n0

)
-

Hölder-continuity of HF , so that when the previous integral is finite for every n, the height
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process HF is Hölder-continuous of order δ for every δ < γ, whatever is n0. To prove Theorem
3.4 it is thus sufficient to show that for every γ < ϑlow ∧ |α| there exists a n0(γ) such that

E

[∫ 1

0

∫ 1

0

|HF (x) −HF (y)|n+n0(γ)

|x− y|γn dxdy

]
<∞ for every positive integer n.

Now take V1, V2 uniform independent on (0, 1), independently of HF . The expectation above

then becomes E
[
|HF (V1)−HF (V2)|n+n0(γ)

|V1−V2|
γn

]
.

Consider next IF the interval fragmentation constructed from HF (see Section 3.4.1). By
Lemma 3.14, HF (V1) and HF (V2) may be rewritten as

HF (Vi) = D{1,2} + λ
|α|
i (D{1,2})D̃i, i = 1, 2,

where D{1,2} is the first time at which V1 and V2 belong to different intervals of IF and D̃1, D̃2

have the same law as HF (V1) and are independent of H(D{1,2}), where H(t), t ≥ 0 is the natural

completed filtration associated with IF . The r.v. D̃1 and D̃2 can actually be described more
precisely. Say that at time D{1,2}, V1 belongs to an interval

(
a1, a1 + λ1(D{1,2})

)
and V2 to(

a2, a2 + λ2(D{1,2})
)
. Then there exist two iid processes independent of H(D{1,2}) and with the

same law as HF , let us denote them H
(1)
F and H

(2)
F , such that D̃i = H

(i)
F

(
Vi−ai

λi(D{1,2})

)
, i = 1, 2.

Since Vi ∈
(
ai, ai + λi(D{1,2})

)
, the random variables Ṽi = (Vi − a1)λ

−1
i (D{1,2}) are iid, with

the uniform law on (0, 1) and independent of H
(1)
F , H

(2)
F and H(D{1,2}). And when V1 > V2,

V1 − V2 ≥ λ1(D{1,2})Ṽ1 + λ2(D{1,2})
(
1 − Ṽ2

)

since a1 is then larger than a2 + λ2(D{1,2}). This gives

E

[
|HF (V1) −HF (V2)|n+n0(γ)

|V1 − V2|γn
]

= 2E

[
|HF (V1) −HF (V2)|n+n0(γ)

(V1 − V2)
γn 1{V1>V2}

]

≤ 2E




(
λ
|α|
1 (D{1,2})D̃1 + λ

|α|
2 (D{1,2})D̃2

)n+n0(γ)

(
λ1(D{1,2})Ṽ1 + λ2(D{1,2})

(
1 − Ṽ2

))γn




and this last expectation is bounded from above by

2n+n0(γ)E
[(
λ1(D{1,2})

)(n+n0(γ))|α|−γn
](

E

[
H
n+n0(γ)
F (V1)

V γn
1

]
+ E

[
H
n+n0(γ)
F (V1)

(1 − V1)
γn

])
.

The expectation involving λ1 is bounded by 1 since γ < |α| . And since V1 is independent of
HF , the two expectations in the parenthesis are equal (reversing the order � and performing

the construction of HF gives a process with the same law and shows that HF (x)
law
= HF (1− x)

for every x ∈ (0, 1)) and finite as soon as

sup
x∈(0,1)

E
[
HF (x)n+n0(γ)

]
x−γn <∞. (3.17)
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The rest of the proof thus consists of finding an integer n0(γ) such that (3.17) holds for every n.
To do so, we will have to observe the interval fragmentation IF at nice stopping times depending
on x, say T(γ)

x , and then use the strong fragmentation property (which also holds for interval

fragmentations, see [14]) at time T(γ)
x . This gives

HF (x) = T(γ)
x +

(
Sx(T

(γ)
x )
)|α|

HF (Px(T
(γ)
x )) (3.18)

where Sx(T
(γ)
x ) is the length of the interval containing x at time T(γ)

x , Px(T
(γ)
x ) the relative

position of x in that interval and HF a process with the same law as HF and independent of
H(T(γ)

x ).

Second step: Choice and properties of T(γ)
x . Let us first introduce some notation in order

to prove the forthcoming Lemma 3.16. Recall that we have called I0
F the homogeneous interval

fragmentation related to IF by the time changes T−1
t (x) introduced in Section 3.4.1. In this

homogeneous fragmentation, let

I0
x(t) = (ax(t), bx(t)) be the interval containing x at time t

S0
x(t) the length of this interval

P 0
x (t) = (x− ax(t))/S

0
x(t) the relative position of x in Ix(t).

Similarly, we define P 0
x (t−) to be the relative position of x in the interval I0

x(t−), which is
well-defined as an intersection of nested intervals. S0

x(t−) is the size of this interval. We will
need the following inequalities in the sequel:

P 0
x (t) ≤ x/S0

x(t) P 0
x (t−) ≤ x/S0

x(t−).

Next recall the Poisson point process construction of the interval fragmentation I0
F , and the

Poisson point process (sx(t))t≥0 of Lemma 3.15. Set

σ(t) := − ln

(
∏

s≤t

sx1(t)

)
t ≥ 0,

with the convention sx1(t) = 1 when t is not a time of occurrence of the point process. By
Lemma 3.15, the process σ is a subordinator with intensity measure ν(− ln s1 ∈ x), which is
infinite. Consider then T exit

x , the first time at which x is not in the largest sub-interval of I0
x

when I0
x splits, that is

T exit
x := inf

{
t : S0

x(t) < exp(−σ(t))
}
.

By definition, the size of the interval containing x at time t < T exit
x is given by S0

x(t) =
exp(−σ(t)). We will need to consider the first time at which this size is smaller than a, for a in
(0, 1) , and so we introduce

T σa := inf {t : exp(−σ(t)) < a} .
Note that P 0

x (t) ≤ x exp(σ(t)) when t < T exit
x and that P 0

x (T
exit
x −) ≤ x exp(σ(T exit

x −)).

Finally, to obtain a nice T(γ)
x as required in the preceding step, we stop the homogeneous

fragmentation at time
T exit
x ∧ T σxε
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for some ε to be determined (and depending on γ) and then take for T(γ)
x the self-similar

counterpart of this stopping time, that is T(γ)
x = T−1

T exit
x ∧Tσ

xε
(x). More precisely, we have

Lemma 3.16 For every γ < ϑlow ∧ |α| , there exists a family of random stopping times T(γ)
x ,

x ∈ (0, 1) , and an integer N(γ) such that

(i) for every n ≥ 0, ∃C1(n) : E
[(

T(γ)
x

)n]
≤ C1(n)xγn ∀ x ∈ (0, 1) ,

(ii) ∃C2 such that E
[(
Sx(T

(γ)
x )
)n]

≤ C2x
γ for every x in (0, 1) and n ≥ N(γ).

Proof. Fix γ < ϑlow∧|α| and then ε < 1 such that γ/(1−ε) < ϑlow. The times T(γ)
x , x ∈ (0, 1) ,

are constructed from this ε by
T(γ)
x = T−1

T exit
x ∧Tσ

xε
(x),

and it may be clear that these times are stopping times with respect to H. A first remark is
that the function x ∈ (0, 1) 7→ Sx(T

(γ)
x ) is bounded from above by 1 and that x ∈ (0, 1) 7→ T(γ)

x

is bounded from above by ζ, the first time at which the fragmentation is entirely reduced
to dust, that is, in others words, the supremum of HF on [0, 1] . Since ζ has moments of
all orders, it is thus sufficient to prove statements (i) and (ii) for x ∈ (0, x0) for some well

chosen x0 > 0. Another remark, using the definition of T−1
t (x), is that T(γ)

x ≤ T exit
x ∧ T σxε

and Sx(T
(γ)
x ) = S0

x

(
T exit
x ∧ T σxε

)
, so that we just have to prove (i) and (ii) by replacing in the

statement T(γ)
x by T exit

x ∧ T σxε and Sx(T
(γ)
x ) by S0

x

(
T exit
x ∧ T σxε

)
.

We shall thus work with the homogeneous fragmentation. When I0
x splits to give smaller

intervals, we divide these sub-intervals into three groups: the largest sub-interval, the group
of sub-intervals on its left and the group of sub-intervals on its right. With the notations of
Lemma 3.15, the lengths of the intervals belonging to the group on the left are the sxi (t)S

0
x(t−)

with i such that Ux
i (t) < Ux

1 (t) and similarly, the lengths of the intervals on the right are the
sxi (t)S

0
x(t−) with i such that Ux

i (t) > Ux
1 (t). An important point is that when T exit

x < T σxε , then
at time T exit

x , the point x belongs to the group of sub-intervals on the left resulting from the
fragmentation of I0

x(T
exit
x −). Indeed, when T exit

x < T σxε, then exp(−σ(T exit
x )) ≥ xε ≥ x, which

becomes sx1(T
exit
x ) exp(−σ(T exit

x −)) ≥ x. Then using that P 0
x (T exit

x −) ≤ x exp(σ(T exit
x −)), we

obtain sx1(T
exit
x ) ≥ P 0

x (T exit
x −) and thus that x does not belong to the group on the right at time

T exit
x (x belongs to the group on the right at a time t if and only if P 0

x (t−) >
∑

i:Ux
i (t)≤Ux

1 (t) s
x
i (t)).

Hence x belongs to the union of intervals on the left at time T exit
x when T exit

x < T σxε . In other
words,

T exit
x = inf

{
t :
∑

i:Ux
i (t)<Ux

1 (t)
sxi (t) > P 0

x (t−)

}
when T exit

x < T σxε.

The key-point, consequence of Lemma 3.15, is that the process
(∑

i:Ux
i (t)<Ux

1 (t) s
x
i (t)
)
t≥0

is a

marked Poisson point process with an intensity measure on [0, 1] given by

µ(du) :=

∫

S↓
p(s, du)ν(ds), u ∈ [0, 1] ,
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where for a fixed s in S↓, p(s, du) is the law of
∑

i:Ui<U1
si, the Ui’s being uniform and indepen-

dent random variables. We refer to Kingman [46] for details on marked Poisson point processes.
Observing then that for any a in (0, 1/2) and for a fixed s in S↓

1{1−s1>2a} ≤ 1{∑i:Ui<U1
si>a} + 1{∑i:Ui>U1

si>a},

we obtain that 1{1−s1>2a} ≤ 2P
(∑

i:Ui<U1
si > a

)
and then the following inequality

µ ((a, 1]) ≥ 1

2
ν (s1 < 1 − 2a) .

This, recalling the definition of ϑlow and that γ/(1 − ε) < ϑlow, leads to the existence of a
positive x0 and a positive constant C such that

µ
((
x1−ε, 1

])
≥ C

(
x−(1−ε)

)γ/(1−ε)
= Cx−γ for all x in (0, x0) . (3.19)

Proof of (i). We again have to introduce a hitting time, that is the first time at which the

Poisson point process
(∑

i:Ux
i (t)<Ux

1 (t) s
x
i (t), t ≥ 0

)
belongs to (x1−ε, 1) :

Hx1−ε := inf

{
t :
∑

i:Ux
i (t)<Ux

1 (t)
sxi (t) > x1−ε

}
.

By the theory of Poisson point processes, this time has an exponential law with parame-
ter µ ((x1−ε, 1]) . Hence, given inequality (3.19) , it is sufficient to show that T exit

x ∧ T σxε ≤
Hx1−ε to obtain (i) for x in (0, x0) and then (i) (we recall that it is already known that

supx∈[x0,1) x
−γnE

[(
T(γ)
x

)n]
is finite). On the one hand, since P 0

x (t) ≤ x exp(σ(t)) when

t < T exit
x ,

P 0
x (Hx1−ε−) ≤ x exp(σ(Hx1−ε−)) < x exp(σ(Hx1−ε)) when Hx1−ε < T exit

x .

On the other hand, Hx1−ε < T σxε yields

x exp(σ(Hx1−ε)) ≤ x1−ε <
∑

i:Ux
i (Hx1−ε )<Ux

1 (Hx1−ε )
sxi (Hx1−ε),

and combining these two remarks, we get that Hx1−ε < T exit
x ∧ T σxε implies

P 0
x (Hx1−ε−) <

∑
i:Ux

i (Hx1−ε )<Ux
1 (Hx1−ε )

sxi (Hx1−ε).

Yet this is not possible, because this last relation on Hx1−ε means that, at time Hx1−ε , x is not in
the largest sub-interval resulting from the splitting of I0

x(Hx1−ε−), which implies Hx1−ε ≥ T exit
x

and this does not match with Hx1−ε < T exit
x ∧ T σxε. Hence T exit

x ∧ T σxε ≤ Hx1−ε and (i) is proved.

Proof of (ii). Take N(γ) ≥ γ/ε∨ 1. When T σxε ≤ T exit
x , using the definition of T σxε and the right

continuity of σ, we have
S0
x(T

exit
x ∧ T σxε) ≤ exp(−σ(T σxε)) ≤ xε
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and consequently
(
S0
x(T

exit
x ∧ T σxε)

)N(γ) ≤ xγ. Thus it just remains to show that

E
[(
S0
x(T

exit
x ∧ T σxε)

)N(γ)
1{T exit

x <Tσ
xε}
]
≤ xγ for x < x0.

When T exit
x < T σxε, we know - as explained at the beginning of the proof - that x belongs at time

T exit
x to the group of sub-intervals on the left resulting from the fragmentation of I0

x(T
exit
x −)

and hence that S0
x(T

exit
x ∧ T σxε)N(γ) ≤ sxi (T

exit
x ) for some i such that Ux

i (T exit
x ) < Ux

1 (T exit
x ). More

roughly,

S0
x(T

exit
x ∧ T σxε)N(γ)1{T exit

x <Tσ
xε} ≤

∑
i:Ux

i (T exit
x )<Ux

1 (T exit
x )

sxi (T
exit
x )1{T exit

x <Tσ
xε}.

To evaluate the expectation of this random sum, recall from the proof of (i) that T exit
x ≤ Hx1−ε

when T exit
x < T σxε and remark that either T exit

x < Hx1−ε and then

∑
i:Ux

i (T exit
x )<Ux

1 (T exit
x )

sxi (T
exit
x ) ≤ x1−ε ≤ xγ (γ < ϑlow(1 − ε) ≤ 1 − ε)

or T exit
x = Hx1−ε and then

∑
i:Ux

i (T exit
x )<Ux

1 (T exit
x )

sxi (T
exit
x ) =

∑
i:Ux

i (Hx1−ε )<Ux
1 (Hx1−ε )

sxi (Hx1−ε).

There we conclude with the following inequality

E

[∑
i:Ux

i (Hx1−ε )<Ux
1 (Hx1−ε )

sxi (Hx1−ε)

]
=

∫
S↓
E
[∑

i:Ui<U1
si1{∑i:Ui<U1

si>x1−ε}
]
ν(ds)

µ ((x1−ε, 1])

≤ C−1xγ
∫

S↓
(1 − s1) ν(ds), x ∈ (0, x0) .

Third step: Proof of (3.17) . Fix γ < ϑlow ∧ |α| and take T(γ)
x and N(γ) as introduced in

Lemma 3.16. Let then n0(γ) be an integer larger than N(γ)/ |α|. According to the first step,
Theorem 3.4 is proved if (3.17) holds for this n0(γ) and every integer n ≥ 1. To show this, it is
obviously sufficient to prove that for all integers n ≥ 1 and m ≥ 0, there exists a finite constant
C(n,m) such that

E
[
HF (x)m+n+n0(γ)

]
≤ C(n,m)xγn ∀x ∈ (0, 1) .

This can be proved by induction: for n = 1 and every m ≥ 0, using (3.18) , we have

E
[
HF (x)m+1+n0(γ)

]
≤ 2m+1+n0(γ)

×
(
E

[(
T(γ)
x

)m+1+n0(γ)
]

+ E

[(
Sx(T

(γ)
x )
)|α|(m+1+n0(γ))

ζ̃m+1+n0(γ)

])

where ζ̃ is the maximum of HF on (0, 1) . Recall that this maximum is independent of Sx(T
(γ)
x )

and has moments of all orders. Since moreover |α| (m+ 1 + n0(γ)) ≥ N(γ), we can apply
Lemma 3.16 to deduce the existence of a constant C(1, m) such that

E
[
HF (x)m+1+n0(γ)

]
≤ C(1, m)xγ for x in (0, 1) .
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Now suppose that for some fixed n and every m ≥ 0,

E
[
HF (x)m+n+n0(γ)

]
≤ C(n,m)xγn ∀x ∈ (0, 1) .

Then,

E
[(
HF

(
Px(T

(γ)
x )
))m+n+1+n0(γ) | H

(
T(γ)
x

)]
≤ C(n,m+ 1)

(
Px(T

(γ)
x )
)γn

≤ C(n,m+ 1)
(
Sx(T

(γ)
x )
)−γn

xγn

since Px(T
(γ)
x ) ≤ x/Sx(T

(γ)
x ). Next, by (3.18) ,

E
[
HF (x)m+n+1+n0(γ)

]
≤ 2m+n+1+n0(γ)E

[(
T(γ)
x

)m+n+1+n0(γ)
]

+2m+n+1+n0(γ)C(n,m+ 1)E

[(
Sx(T

(γ)
x )
)|α|(m+n+1+n0(γ))−γn

]
xγn.

Since γ < |α| , the exponent |α| (m+ n+ 1 + n0(γ)) − γn ≥ N(γ), and hence Lemma 3.16
applies to give, together with the previous inequality, the existence of a finite constant
C(n+ 1, m) such that

E
[
HF (x)m+n+1+n0(γ)

]
≤ C(n+ 1, m)xγ(n+1)

for every x in (0, 1) . This holds for every m and hence the induction, formula (3.17) and
Theorem 3.4 are proved.

3.4.3.2 Maximal Hölder exponent of the height process

The aim of this subsection is to prove that a.s. HF cannot be Hölder-continuous of order γ for
any γ > ϑup ∧ |α|/̺.

We first prove that HF cannot be Hölder-continuous with an exponent γ larger than ϑup. To
see this, consider the interval fragmentation IF and let U be a r.v. independent of IF and with
the uniform law on (0, 1) . By Corollary 2 in [14], there is a subordinator (θ(t), t ≥ 0) with no
drift and a Lévy measure given by

πθ(dx) = e−x
∞∑

i=1

ν(− log si ∈ dx), x ∈ (0,∞) ,

such that the length of the interval component of IF containing U at time t is equal to
exp(−θ(ρθ(t))), t ≥ 0, ρθ being the time-change

ρθ(t) = inf

{
u ≥ 0 :

∫ u

0

exp (αθ(r)) dr > t

}
, t ≥ 0.

Denoting by Leb the Lebesgue measure on (0, 1) , we then have that

Leb {x ∈ (0, 1) : HF (x) > t} ≥ exp(−θ(ρθ(t))). (3.20)
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On the other hand, recall that HF is anyway a.s. continuous and introduce for every t > 0

xt := inf {x : HF (x) = t} ,

so that x < xt ⇒ HF (x) < t. Hence xt ≤Leb{x ∈ (0, 1) : HF (x) < t} and this yields, together
with (3.20) ,

xt ≤ 1 − exp(−θ(ρθ(t)) a.s. for every t ≥ 0.

Now suppose that HF is a.s. Hölder-continuous of order γ. The previous inequality then gives

t = HF (xt) ≤ Cxγt ≤ C (θ(ρθ(t)))
γ (3.21)

so that it is sufficient to study the behavior of θ(ρθ(t)) as t→ 0 to obtain an upper bound for γ.
It is easily seen that ρθ(t) ∼ t as t ↓ 0, so we just have to focus on the behavior of θ(t) as t→ 0.

By [10, Theorem III.4.9], for every δ > 1, limt→0

(
θ(t)/tδ

)
= 0 as soon as

∫ 1

0
πθ(t

δ)dt < ∞,
where πθ(t

δ) =
∫∞
tδ
πθ(dx). To see when this quantity is integrable near 0, remark first that

πθ(u) = πθ(1) +

∫ 1

u

e−xν(− log s1 ∈ dx) when u < 1,

(since si ≤ 1/2 for i ≥ 2) and second that

∫ 1

u

e−xν(− log s1 ∈ dx) ≤ ν(s1 < e−u).

Hence, ∫ 1

0

πθ(t
δ)dt ≤ πθ(1) +

∫ 1

0

ν(s1 < e−t
δ

)dt

and by the definition of ϑup this integral is finite as soon as 1/δ > ϑup. Thus limt→0

(
θ(t)/tδ

)
= 0

for every δ < 1/ϑup and this implies, recalling (3.21) , that γδ < 1 for every δ < 1/ϑup. Which
gives γ ≤ ϑup.

It remains to prove that HF cannot be Hölder-continuous with an exponent γ larger than
|α| /̺. This is actually a consequence of the results we have on the minoration of dimH(TF ).
Indeed, recall the definition of the function H̃F : (0, 1) → TF introduced Section 3.4.1 and in
particular that for 0 < x < y < 1

d
(
H̃F (x), H̃F (y)

)
= HF (x) +HF (y) − 2 inf

z∈[x,y]
HF (z),

which shows that the γ-Hölder continuity of HF implies that of H̃F . It is now well known that,
since H̃F : (0, 1) → TF , the γ-Hölder continuity of H̃F leads to dimH(TF ) ≤ dimH((0, 1))/γ =
1/γ. Hence HF cannot be Hölder-continuous with an order γ > 1/dimH(TF ). Recall then that
dimH(TF ) ≥ ̺/ |α| . Hence HF cannot be Hölder-continuous with an order γ > |α| /̺.



3.4. The height function 131

3.4.4 Height process of the stable tree

To prove Corollary 3.3, we will check that ν−(1 − s1 > x) ∼ Cx1/β−1 for some C > 0 as x ↓ 0,
where ν− is the dislocation measure of the fragmentation F− associated with the stable (β)
tree. In view of Theorem 3.4 this is sufficient, since the index of self-similarity is 1/β − 1 and∫
S↓

(
s−1
1 − 1

)
ν(ds) < ∞, as proved in Sect. 3.3.5. Recalling the definition of ν− in Sect. 3.3.5

and the notations therein, we want to prove

E
[
T11{1−∆1/T1>x}

]
∼ Cx1/β−1 as x ↓ 0

Using the above notations, the quantity on the left can be rewritten as

E

[
(∆1 + T

(∆1)
1 )1{

T
(∆1)
1 /(∆1+T

(∆1)
1 )>x

}
]

= E

[
∆1(1 + ∆−1

1 T
(∆1)
1 )1{

∆−1
1 T

(∆1)
1 >x(1−x)−1

}
]
.

Recalling the law of ∆1 and the fact that v−1T
(v)
1 has same law as T

(1)

v−1/β , this is

c

∫ ∞

0

dv v−1/βe−cβv
−1/β

E

[
(1 + T

(1)

v−1/β )1{
T

(1)

v−1/β
>x(1−x)−1

}
]
.

By [64, Proposition 28.3], since T (1) and T share the same Lévy measure on a neighborhood

of 0, T
(1)
v admits a continuous density q

(1)
v (x), x ≥ 0 for every v > 0. We thus can rewrite the

preceding quantity as

c

∫ ∞

0

dv

v1/β
e−cβv

−1/β

∫ ∞

x/(1−x)

(1 + u)q
(1)

v−1/β (u)du = cβ

∫ ∞

x/(1−x)

du(1 + u)

∫ ∞

0

dw

wβ
e−cβwq(1)

w (u)

by Fubini’s theorem and the change of variables w = v−1/β. The behavior of this as x ↓ 0 is the
same as that of cβJ(x) where J(x) =

∫∞
x

duj(u), and where j(u) =
∫∞
0

dww−βe−cβwq
(1)
w (u).

Write J (x) =
∫ x
0
J(u)du for x ≥ 0, and consider the Stieltjes-Laplace transform Ĵ of J

evaluated at λ ≥ 0:

Ĵ (λ) =

∫ ∞

0

e−λuJ(u)du = λ−1

∫ ∞

0

(1 − e−λu)j(u)du

= λ−1

∫ ∞

0

dw

wβ
e−cβw

∫ ∞

0

duq(1)
w (u)(1 − e−λu)

= λ−1

∫ ∞

0

dw

wβ
e−cβw(1 − e−wΦ(1)(λ))

where as above Φ(1)(λ) = c
∫ 1

0
u−1−1/β(1 − e−λu)du. Integrating by parts yields

Ĵ (λ) =
λ−1

β − 1

∫ ∞

0

dw

wβ−1
e−cβw((cβ + Φ(1)(λ))e−wΦ(1)(λ) − cβ)

= λ−1 Γ(2 − β)

β − 1
((cβ + Φ(1)(λ))β−1 − (cβ)β−1)

Changing variables in the definition of Φ(1), we easily obtain that Φ(1)(λ) ∼ Cλ1/β as λ→ ∞ for
some C > 0, so finally we obtain that Ĵ (λ) ∼ Cλ−1/β as λ → ∞ for some other C > 0. Since
J is non-decreasing, Feller’s version of Karamata’s Tauberian theorem [21, Theorem 1.7.1’]
gives J (x) ∼ Cx1/β as x ↓ 0, and since J is monotone, the monotone convergence theorem [21,
Theorem 1.7.2b] gives J(x) ∼ β−1Cx1/β−1 as x ↓ 0, as wanted.
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Chapitre 4

Equilibrium for fragmentation with
immigration

Abstract: This paper introduces stochastic processes that describe the evolution of systems
of particles in which particles immigrate according to a Poisson measure and split according to
a self-similar fragmentation. Criteria for existence and absence of stationary distributions are
established and uniqueness is proved. Also, convergence rates to the stationary distribution
are given. Linear equations which are the deterministic counterparts of fragmentation with
immigration processes are next considered. As in the stochastic case, existence and uniqueness
of solutions, as well as existence and uniqueness of stationary solutions, are investigated.

4.1 Introduction

The aim of this paper is to study random and deterministic models that describe the evolu-
tion of systems of particles in which two independent phenomena take place: immigration and
fragmentation of particles. Particles immigrate and split into smaller particles, which in turn
continue splitting, at rates that depend on their mass. Such situation occurs for example in
grinding lines ([7], [53]) where macroscopic blocks are continuously placed in tumbling ball
mills that reduce them to microscopic fragments. These microscopic fragments then undergo a
chemical process to extract the minerals. In such systems, one may expect to attain an equilib-
rium, as the immigration may compensate for the fragmentation of particles. The investigation
of existence and uniqueness of such stationary state, as well as convergence to the stationary
state, is one of the main points of interest of this paper. It will be undertaken both in random
and deterministic settings.

We first introduce continuous times fragmentation with immigration Markov processes.
Roughly, their dynamics are described as follows. The immigration is coded by a Poisson
measure with intensity I(ds)dt, t ≥ 0, where I is a measure supported on D, the set of de-
creasing sequences s = (sj , j ≥ 1) that converge to 0. That is, if (s(ti), ti) denotes the atoms of
this Poisson measure, a group of particles with masses (s1(ti), s2(ti), ...) immigrates at time ti
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for each ti ≥ 0. We further impose that I integrates
∑

j≥1(sj ∧ 1), which means that the total
mass of immigrants on a finite time interval is finite a.s. The particles fragment independently
of the immigration, according to a “self-similar fragmentation with index α ∈ R” as introduced
by Bertoin in [13],[14]. This means that each particle split independently of others with a rate
proportional to its mass to the power α and that the resulting particles continue splitting with
the same rules. Rigorous definitions are given in Subsections 4.1.1 and 4.1.2 below. Some
examples of such processes arise from classical stochastic processes, as Brownian motions with
positive drift. This is detailed in Section 4.4.

Let FI denote a fragmentation with immigration process. Our first purpose is to know
whether it is possible to find a stationary distribution for FI. Under some conditions that
depend both on the dynamics of the fragmentation and on the immigration, we construct a
random variable Ustat in D whose distribution is stationary for FI. Let αI be the I-dependent
parameter defined by

αI := − sup

{
a > 0 :

∫

D

sa11{s1≥1}I(ds) <∞
}
.

When αI < 0, we obtain that the stationary state Ustat exists as soon as the index of self-
similarity α is larger than αI and that there is no stationary distribution when α is smaller
than αI . In this latter case, too many large particles are brought in the ball mill which is not
able to grind them fast enough. These results are made precise in Theorems 4.1, 4.2 and 4.3,
Section 4.2, where we also study whether Ustat is in lp, p ≥ 0. In addition, the stationary
solution is proved unique.

It is easily checked from the construction of Ustat that

FI(t)
law→ Ustat

as soon as the stationary distribution exists and that this convergence holds independently
of the initial distribution. One standard problem is to investigate the rate of convergence to
this stationary state. Our approach is based on a coupling method. This provides rates of
convergence that differ significantly according as α < 0, α = 0 or α > 0: one obtains that the
convergence takes place at a geometric rate when α = 0, at rate t−1/α when α > 0, whereas the
rate of convergence depends both on I and α when α < 0.

We next turn to deterministic models, namely fragmentation with immigration equations.
Roughly, these equations are obtained by adding an immigration term to a family of well-
known fragmentation equations with mass loss ([31],[55],[38]): we consider that particles with
mass in the interval (x, x+ dx) arrive at rate µI(dx) which is defined from I by

∫ ∞

0

f(x)µI(dx) :=

∫

D

∑
j≥1

f(sj)I(ds),

for all positive measurable functions f . Solutions to the fragmentation with immigration equa-
tion do not always exist. We give conditions for existence and then show uniqueness. The
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obtained solution is closely related to the stochastic model (FI(t), t ≥ 0): it is - in a sense to
be specified - related to the expectations of the random measures

∑
k≥1 δFIk(t), t ≥ 0. In this

deterministic setting, one may also expect the existence of stationary solutions. Provided the
average mass immigrated by unit time is finite, we construct explicitly a stationary solution
which is proved unique. Note that here the hypothesis for existence only involves I, not α,
contrary to the stochastic case.

This paper is organized as follows. In the remainder of this section we first review the defi-
nition and some properties of self-similar fragmentations (Subsection 4.1.1), then we set down
the definition of fragmentation with immigration processes (Subsection 4.1.2). The study of
existence and uniqueness of a stationary distribution is undertaken in Section 4.2, where we
also give criteria for existence of a stationary distribution for more general Markov processes
with immigration. In Section 4.3, we investigate the rate of convergence to the stationary
distribution. Section 4.4 is devoted to examples of fragmentation with immigration processes
constructed from Brownian motions with positive drift or from height functions coding contin-
uous state branching processes with immigration, as introduced in [49]. Section 4.5 concerns
the fragmentation with immigration equation.

4.1.1 Self-similar fragmentations

State space. We endow the state space

D = {s = (sj)j≥1 : s1 ≥ s2 ≥ ... ≥ 0, lim
j→∞

sj = 0}

with the uniform distance
d(s, s′) := sup

j≥1

∣∣sj − s′j
∣∣ .

Clearly, as n→ ∞, d(s, sn) → 0 is equivalent to snj → sj for all j ≥ 1 which in turn is equivalent
to
∑

j≥1 f(snj ) → ∑
j≥1 f(sj) for all continuous functions f with compact support in (0,∞).

Hence D identifies with the set of Radon counting measures on (0,∞) with bounded support
endowed with the topology of vague convergence through the homeomorphism

s ∈ D 7→
∑

j≥1
δsj

1{sj>0}.

With a slight abuse of notations, we also call s the measure
∑

j≥1 δsj
1{sj>0}. It is then natural

to denote by “s + s′” the decreasing rearrangement of the concatenation of sequences s, s′ and
by 〈s, f〉 the sum

∑
j≥1 f(sj)1{sj>0}. More generally, we denote by “

∑
i≥1 si” the measure∑

i≥1

∑
j≥1 δsi

j
1{si

j>0}. This point measure does not necessarily corresponds to a sequence in D,

but when it does, it represents the decreasing rearrangement of the concatenation of sequences
s1, s2, ... .

For all p ≥ 0, let lp be the subset of D of sequences s1 ≥ s2 ≥ ... ≥ 0 such that
∑

j≥1 s
p
j <∞.

When p = 0, we use the convention 00 = 0, which means that l0 is the space of sequences with
at most a finite number of non-zero terms. Let also D1 be the subset of D of sequences such
that

∑
j≥1 sj ≤ 1. Clearly lp ⊂ lp

′
when p ≤ p′ and D1 ⊂ l1. At last, set 0 : = (0, 0, ...).
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Self-similar fragmentations.

Definition 4.1 A standard self-similar fragmentation (F (t), t ≥ 0) with index α ∈ R is a D1-
valued Markov process continuous in probability such that:

- F (0) = (1, 0, ...)

- for each t0 ≥ 0, conditionally on F (t0) = (s1, s2, ...), the process (F (t+ t0), t ≥ 0) has
the same law as the process obtained for each t ≥ 0 by ranking in the decreasing order the
components of sequences s1F

(1)(sα1 t), s2F
(2)(sα2 t), ..., where the F (j)’s are independent copies of

F.

This means that the particles present at a time t0 evolve independently and that the evolution
process of a particle with mass m has the same distribution as m times the process starting from
a particle with mass 1, up to the time change t 7→ tmα. According to [9] and [14], a self-similar
fragmentation is Feller - hence possesses a càdlàg version which we shall always consider - and
its distribution is characterized by a 3-tuple (α, c, ν): α is the index of self-similarity, c ≥ 0 an
erosion coefficient and ν a dislocation measure, which is a sigma-finite non-negative measure
on D that does not charge (1, 0, ...) and satisfies

∫

D1

(1 − s1)ν(ds) <∞.

Roughly speaking, the erosion is a deterministic continuous phenomenon and the dislocation
measure describes the rates of sudden dislocations: a fragment with massm splits into fragments
with masses ms, s ∈ D1, at rate mαν(ds). In case ν(D1) <∞, this means that a particle with
mass m splits after a time T with an exponential law with parameter mαν(D1) into particles
with masses ms, where s is distributed according to ν(·)/ν(D1) and is independent of T . For
more details on these fundamental properties of self-similar fragmentations, we refer to [9],[13]
and [14].

Definition 4.2 For any random u ∈D, a fragmentation process (α, c, ν) starting from u is
defined by

F (u)(t) :=
∑

j≥1
(ujF

(j)(uαj t)), t ≥ 0, (4.1)

where the F (j)’s are i.i.d copies of a standard (α, c, ν)-fragmentation F , independent of u.

Clearly, F (u)(t) ∈ D for all t ≥ 0 and, according to the branching property of F, F (u) is
Markov. It is plain that such fragmentation process converges a.s. to 0 as t → ∞, provided
ν(D1) 6= 0.

We now review some facts about standard (α, c, ν)-fragmentations that we will need. In the
remainder of this subsection, F denotes a standard (α, c, ν)-fragmentation.

Tagged particle. We are interested in the evolution process of the mass of a particle tagged
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at random in the fragmentation. So, consider a point tagged at random at time 0 according to
the mass distribution of the particle, independently of the fragmentation, and let λ(t) denotes
the mass at time t of the particle containing this tagged point. Conditionally on F , λ(t) = Fk(t)
with probability Fk(t), k ≥ 1, and λ(t) = 0 with probability 1 −∑k≥1 Fk(t).

Suppose first that α = 0. Bertoin [13] shows that λ
law
= exp(−ξ(.)), where ξ is a subordi-

nator (i.e. a right-continuous increasing process with values in [0,∞] and with stationary and
independent increments on the interval {t : ξ(t) <∞}), with Laplace exponent φ given by

φ(q) := c(q + 1) +

∫

D1

(
1 −

∑
j≥1

s1+q
j

)
ν(ds), q ≥ 0. (4.2)

We recall that φ characterizes ξ, since E [exp(−qξ(t))] = exp(−tφ(q)) for all t, q ≥ 0 (for
background on subordinators, we refer to [10], chapter III). When c > 0 or ν(

∑
j≥1 sj < 1) > 0,

one sees that the subordinator ξ is killed at rate k = φ(0) > 0: that is there exists a subordinator
ξ with Laplace exponent φ = φ−k and an exponential r.v. e (k) with parameter k, independent
of ξ, such that

ξ(t) = ξ(t)1{t<e(k)} + ∞1{t≥e(k)}

for all t ≥ 0.

Now when α ∈ R, Bertoin [14] shows that λ
law
= exp(−ξ(ρ(.))) where ξ is the same subordi-

nator as above and ρ is the time-change

ρ(t) := inf

{
u ≥ 0 :

∫ u

0

exp(αξ(r))dr > t

}
, t ≥ 0. (4.3)

This implies that
∑

k≥1
f (Fk(t)) = E [f(exp(−ξ(ρ(t)))) exp(ξ(ρ(t))) | F ] (4.4)

for every positive measurable function f supported on a compact of (0,∞) (with the convention
0 ×∞ = 0), and in particular that

E
[∑

k≥1
f (Fk(t))

]
= E [f(exp(−ξ(ρ(t)))) exp(ξ(ρ(t)))] . (4.5)

Formation of dust when α < 0. When the index of self-similarity α is negative, for all
dislocation measures ν, the total mass

∑
k≥1 Fk(t) of the fragmentation F decreases as time

passes to reach 0 in finite time even if there is no erosion (c = 0) and no mass is lost within
sudden dislocations (ν(

∑
j≥1 sj < 1) = 0). This is due to an intensive fragmentation of small

particles which reduces macroscopic particles to an infinite number of zero-mass particles or
dust. To say this precisely, introduce

ζ := inf
{
t ≥ 0 :

∑
k≥1

Fk(t) = 0
}

(4.6)

the first time at which the total mass reaches 0. According to Proposition 14 in [38], there exist
C,C ′ some positive finite constants such that for any t ≥ 0,

P (ζ > t) ≤ C exp(−C ′tΓ) (4.7)
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where Γ is a (c, ν)-dependent parameter defined by

Γ :=

{
(1 − λ)−1 when φ(q) − cq varies regularly with index 0 < λ < 1 as q → ∞
1 otherwise.

(4.8)

Note that E [ζ ] <∞.

4.1.2 Fragmentation with immigration processes

As said previously, the immigration and fragmentation phenomena occur independently. The
immigration is coded by a Poisson measure on l1 × [0,∞) with an intensity I(ds)dt such that

∫

l1

∑
j≥1

(sj ∧ 1) I(ds) <∞ (H1)

and we call such measure I an immigration measure. The hypothesis (H1) implies that the
total mass of particles that have immigrated during a time t is almost surely finite (for an
introduction to Poisson measures, we refer to [46]). On the other hand, the particles fragment
according to a self-similar fragmentation (α, c, ν) .

Definition 4.3 Let u be a random sequence of D and let ((s(ti), ti) , i ≥ 1) be the atoms of
a Poisson measure with intensity I(ds)dt independent of u. Then, conditionally on u and
((s(ti), ti) , i ≥ 1), let F (u), F (s(ti)), i ≥ 1, be independent fragmentation processes (α, c, ν) start-
ing respectively from u, s(t1), s(t2), ... . With probability one, the sum

FI(u)(t) := F (u)(t) +
∑

ti≤t
F (s(ti))(t− ti)

belongs to D for all t ≥ 0, and the process FI(u) is called a fragmentation with immigration
process with parameters (α, c, ν, I) starting from u.

The reason why
∑

ti≤t
F (s(ti))(t− ti) ∈ D a.s. is that

∑
ti≤t

∑
j≥1 sj(ti) < ∞ (by hypothesis

(H1)) and then that
∑

ti≤t
F (s(ti))(t − ti) ∈ l1, since

∑
k≥1 F

(s(ti))
k (t − ti) ≤ ∑

j≥1 sj(ti). Note

also that when p ≥ 1, FI(u) ∈ lp as soon as u ∈lp.
In this definition, the sequence u represents the masses of particles present at time 0 and at

each time ti ≥ 0, some particles of masses s(ti) immigrate. At time t, two families of particles
are then present: those resulting from the fragmentation of u during a time t and those resulting
from the fragmentation of s(ti) during a time t− ti, ti ≤ t.

It is easy to see that the process FI(u) is Markov and even Feller (cf. the proof of Proposition
1.1, [9]). Hence we may and will always consider càdlàg versions of FI(u).

In the rest of this paper, we denote by FI a fragmentation with immigration (α, c, ν, I)
(without any specified starting point) and we always exclude the trivial cases ν = 0 or I = 0.

Remark. One may wonder why we do not more generally consider some fragmentation with
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immigration processes with values in R, the set of Radon point measures on (0,∞). Indeed,
for all (random) u ∈R and all t ≥ 0, it is always possible to define the point measure

FI(u)(t) := F (u)(t) +
∑

ti≤t
F (s(ti))(t− ti), t ≥ 0, (4.9)

where F (u)(t) is defined similarly as (4.1) and is independent of F (s(ti)), i ≥ 1, some independent
fragmentations (α, c, ν) starting respectively from s(t1), s(t2), ... . The sum involving the terms
F (s(ti))(t− ti), ti ≤ t, is in D, as noticed in the definition 4.3 above. The issue is that in general,
starting from some u ∈ R\D, the measures F (u)(t) do not necessarily belong to R, as the masses
of the initial particles may accumulate in some bounded interval (a, b) after fragmentation. As
an example, one can check that for most of dislocation measures ν, F (u)(t) /∈ R a.s. as soon as
α > 0, u ∈R\D and t > 0. That is why we study fragmentation with immigration processes
on D. However, in Section 4.5, we shall use some of these measures FI(u)(t), u ∈R, and we
give (Proposition 4.4) some sufficient conditions on u and α for F (u)(t) (equivalently FI(u)(t))
to be a.s. Radon. These conditions do not ensure that the process FI(u) is R-valued, as we do
not know if a.s. for all t, FI(u)(t) ∈ R.

4.2 Existence and uniqueness of the stationary distribu-

tion

This section is devoted to the existence and uniqueness of a stationary distribution for FI and
to properties of the stationary state, when it exists. We begin by establishing some criteria
for existence and uniqueness of a stationary distribution, which are available for a class of
Markov processes with immigration including fragmentation with immigration processes. This
is undertaken in Subsection 4.2.1 where we more specifically obtain an explicit construction of
a stationary state. We then apply these results to fragmentation with immigration processes
(Subsection 4.2.2).

From now on, for any r.v. X, L (X) denotes the distribution of X.

4.2.1 The candidate for a stationary distribution for Markov pro-
cesses with immigration

Recall that R denotes the set of Radon point measures on (0,∞) and equip it with the topology
of vague convergence. We first study R-valued branching processes with immigration and then
extend the results to a larger class of Markov processes.

Let X be a R-valued Markov process that satisfies the following branching property : for all
u,v ∈ R, the sum of two independent processes X(u) and X(v) starting respectively from u and

v is distributed as X(u+v). A moment of thought shows that this is equivalent to
∑

i≥1X
(ui) law

=

X(
∑

i≥1 ui) for all sequences (ui, i ≥ 1) such that
∑

i≥1 ui ∈ R a.s., where X(u1), X(u2), ... are
independent processes, starting respectively from u1,u2, ... . Consider then I, a non-negative σ-
finite measure on R, and let ((s(ti), ti) , i ≥ 1) be the atoms of a Poisson measure with intensity
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I(ds)dt, t ≥ 0. Conditionally on this Poisson measure, let X(s(ti)) be independent versions of X,
starting respectively from s(t1), s(t2), ... . In order to define an X-process with immigration,
we need and will suppose in this section that a.s.

∑
ti≤t

X(s(ti))(t− ti) ∈ R for all t ≥ 0.

In particular, this holds when I is an immigration measure and X a fragmentation process, as
explained just after Definition 4.3.

Definition 4.4 For every random u ∈ R, let X(u) be a version of X starting from u and
consider ((X(r(vi)), vi), i ≥ 1) a version of ((X(s(ti)), ti), i ≥ 1) independent of X(u). Then, the
process defined by

XI(u)(t) := X(u)(t) +
∑

vi≤t
X(r(vi))(t− vi), t ≥ 0, (4.10)

is a R-valued Markov process and is called X-process with immigration starting from u.

We point out that the Markov property of XI results both from the Markov property and
from the branching property of X. A moment of reflection shows that the law of the point
measure

Ustat :=
∑

ti≥0
X(s(ti))(ti) (4.11)

is a natural candidate for a stationary distribution for XI (in some sense, it is the limit as
t→ ∞ of XI(0)(t)), provided that it belongs to R. The problem is that it does not necessarily
belong to R, as the components of Ustat may accumulate in some bounded interval (a, b).

Lemma 4.1 (i) If Ustat ∈ R a.s., then the distribution L(Ustat) is a stationary distribution

for XI and for any random u ∈ R such that X(u)(t)
P→ 0 as t→ ∞,

XI(u)(t)
law→ Ustat as t→ ∞.

(ii) If P (Ustat /∈ R) > 0, then there exists no stationary distribution for XI and if P (Ustat /∈
D) > 0, then there exists no stationary distribution on D for XI.

Proof. (i) Assume Ustat ∈ R a.s. and consider a version XI(Ustat) of the X-process with

immigration starting from Ustat. We want to prove that XI(Ustat)(t)
law
= Ustat for every t ≥ 0.

So fix t > 0. By definition of XI and using the Markov and branching properties of X, we see
that there exists ((X(r(vi)), vi), i ≥ 1) an independent copy of ((X(s(ti)), ti), i ≥ 1) such that

XI(Ustat)(t)
law
=
∑

ti≥0
X(s(ti))(ti + t) +

∑
vi≤t

X(r(vi))(t− vi).

By independence of ((r(vi), vi) , i ≥ 1) and ((s(ti), ti) , i ≥ 1), the concatenation of

((r(vi), t− vi) , vi ≤ t) and ((s(ti), ti + t) , i ≥ 1)



4.2. Existence and uniqueness of the stationary distribution 141

has same law as ((s(ti), ti) , i ≥ 1) . Hence

XI(Ustat)(t)
law
=
∑

ti≥0
X(s(ti))(ti) = Ustat.

Similarly, one obtains that for all t ≥ 0,

XI(u)(t)
law
= X(u)(t) +

∑
vi≤t

X(r(vi))(vi) (4.12)

where ((X(r(vi)), vi), i ≥ 1) is distributed as ((X(s(ti)), ti), i ≥ 1) and is independent of X(u).

Suppose now that X(u)(t)
P→ 0 as t→ ∞. Clearly,

∑
vi≤t

X(r(vi))(vi)
a.s.→
t→∞

∑
vi≥0X

(r(vi))(vi) and

therefore
X(u)(t) +

∑
vi≤t

X(r(vi))(vi)
P→
∑

vi≥0
X(r(vi))(vi) as t→ ∞.

Since the limit here is distributed as Ustat and since (4.12) holds, one has XI(u)(t)
law→ Ustat.

(ii) Suppose that there exists a stationary distribution Lstat. Our aim is to show that
P (Ustat /∈ R) = 0. To do so, let XI(Lstat) be an X-process with immigration starting from
an initial sequence distributed according to Lstat. Replacing u by XI(Lstat)(0) in (4.12), we get

XI(Lstat)(0)
law
= X(XI(Lstat)(0))(t) +

∑
ti≤t

X(s(ti))(ti).

Introduce then for any 0 < a < b <∞ the event

Ea,b :=
{∑

ti≥0
〈X(s(ti))(ti), 1(a,b)〉 = ∞

}

and fix some N > 0. The identity in law obtained above yields

P
(
〈XI(Lstat)(0), 1(a,b)〉 < N

)
≤ P (

∑
ti≤t

〈X(s(ti))(ti), 1(a,b)〉 < N)

≤ P (
∑

ti≤t
〈X(s(ti))(ti), 1(a,b)〉 < N,Ea,b) + P (Ω\Ea,b) .

The first probability in this latter sum converges to 0 as t → ∞ by definition of Ea,b and
therefore

P (〈XI(Lstat)(0), 1(a,b)〉 < N) ≤ P (Ω\Ea,b) ∀N > 0.

Letting N → ∞, we get P (Ω\Ea,b) = 1 (because Lstat is supported on R) and then P (Ea,b) = 0.
This implies that P (Ustat /∈ R) = 0.

Now, replacing R by D and Ea,b by Ea,∞, we obtain similarly that P (Ustat /∈ D) = 0 as soon
as there exists a stationary distribution Lstat such that Lstat(D) = 1.

Let us now extend these results to Markov processes that take values in some σ-compact
space E and that do not necessarily possess a branching property. In order to introduce some
immigration and some branching property, we will work on ME, the set of point measures on
E: if m ∈ ME, either m =

∑
i≥1 δx(i) for some sequence (x(i), i ≥ 1) of points of E, or m = 0,

where 0 is the trivial measure: 0(E) = 0. The subset of measures of ME that are Radon is
denoted by M

Radon
E and is equipped with the topology of vague convergence. Consider then I,
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a non-negative σ-finite measure on E, and (X(t), t ≥ 0), a Markov process with values in E.
For any m =

∑
i≥1 δx(i)∈ ME, set

X (m)(t) :=
∑

i≥1
δ
X(x(i))(t)

, t ≥ 0,

where X(x(1)), X(x(2)), ... are independent versions of X, starting respectively from x(1), x(2),...
If m = 0, X (m)(t) := 0, ∀t ≥ 0.

We now construct some X -process with immigration. Let m be a random element of M
Radon
E

and ((x(ti), ti) , i ≥ 1) be the atoms of a Poisson measure with intensity I(ds)dt, t ≥ 0, inde-
pendent of m. Conditionally on this Poisson measure and on m, let X (m) and X (δx(ti)

), i ≥ 1, be
independent versions of X starting respectively from m,δx(t1), δx(t2), ... . Define then

XI(m)(t) := X (m)(t) +
∑

ti≤t
X (δx(ti)

)(t− ti), t ≥ 0,

and suppose that a.s. for all t ≥ 0, XI(m) ∈ M
Radon
E . Then XI(m) is Markovian and called

X -process with immigration starting from m. Introduce next the point measure

Ustat :=
∑

ti≥0
X (δx(ti)

)(ti) =
∑

i≥1
δX(x(ti))(ti)

.

We the same kind of arguments as above, one obtains the following result.

Lemma 4.2 (i) Assume Ustat ∈ M
Radon
E a.s. Then the distribution L(Ustat) is a stationary

distribution for XI and XI(m)(t)
law→ Ustat as soon as X (m)(t)

P→ 0 as t→ ∞.

(ii) If P (Ustat /∈ M
Radon
E ) > 0, there exists no stationary distribution for XI.

4.2.2 Conditions for existence and properties of FI’s stationary dis-

tribution

Up to now, I is an immigration measure as defined in Section 4.1.2, that is I satisfies hy-
pothesis (H1). Let FI denote a fragmentation with immigration (α, c, ν, I). By definition,
the fragmentation process satisfies the branching property and for every u ∈D, F (u)(t)

a.s.→ 0
as t → ∞. Then the results of Lemma 4.1 can be rephrased as follows: if ((s(ti), ti) , i ≥ 1)
are the atoms of a Poisson measure with intensity I(ds)dt and if conditionally on this Poisson
measure, F (s(t1)), F (s(t2)), ... are independent (α, c, ν)-fragmentations starting respectively from
s(t1), s(t2), ... then there is a stationary distribution for the fragmentation with immigration
(α, c, ν, I) if and only if

Ustat =
∑

ti≥0
F (s(ti))(ti) ∈ D a.s.

In this case,

FI(u)(t)
law→ Ustat as t→ ∞

for all u ∈D and therefore L(Ustat) is the unique stationary distribution for FI. The point is
then to see when Ustat belongs to D and when it does not. The results are given in Subsection
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4.2.2.1 where we further investigate whether Ustat is in lp or not, p ≥ 0. This is particularly
interesting when Ustat ∈ l1 a.s.: then the total mass of the system converges to an equilibrium,
which means that the immigration compensates the mass lost by formation of dust (when
α < 0), by erosion or within sudden dislocations. When Ustat ∈ D a.s., we also investigate the
behavior of its small components. The proofs are detailed in Subsection 4.2.2.2.

4.2.2.1 Statement of results

Let F denote an (α, c, ν)-fragmentation. In the statements below, we shall sometimes suppose
that

c = 0, ν
(∑

j≥1
sj < 1

)
= 0 and

∫

D1

∑
j≥1

|log(sj)| sjν(ds) <∞ (H2)

or
∄ 0 < r < 1 : Fi(t) ∈ {rn, n ∈ N} ∀t ≥ 0, i ≥ 1, and (H2) holds. (H3)

In term of ξ, the subordinator driving a tagged fragment of F , the hypothesis (H2) means that
E[ξ(1)] <∞. We shall also use the convention lp = l0 when p ≤ 0.

We now state our results on the existence of a stationary distribution; they depend heavily
on the value of the index α.

Theorem 4.1 Suppose α < 0.

(i) If either
∫
l1

∑
j≥1 s

−α
j 1{sj≥1}I(ds) <∞ or

∫
l1
s−α1 ln s11{s1≥1}I(ds) <∞, then the station-

ary state Ustat ∈ lp a.s. for all p > 1 + α.

(ii) There exists no stationary distribution when
∫
l1
s−α1 1{s1≥1}I(ds) = ∞.

Theorem 4.2 Suppose α = 0.

(i) If
∫
l1

ln s11{s1≥1}I(ds) < ∞, then with probability one, Ustat ∈ lp for all p > 1 and does
not belong to l1 when c = 0 and ν(

∑
j≥1 sj < 1) = 0.

(ii) There exists no stationary distribution when
∫
l1

ln s11{s1≥1}I(ds) = ∞ and (H2) holds.

Theorem 4.3 Suppose α > 0. If
∫
l1
sε11{s1≥1}I(ds) < ∞ for some ε > 0, then Ustat ∈ lp a.s.

for p large enough and if (H3) holds, then Ustat /∈ l1+α a.s. More precisely, for every γ > 0,

(i) if
∫
l1

∑
j≥1 s

γ
j1{sj≥1}I(ds) <∞, then Ustat ∈ lp a.s. for all p > 1 + α/ (γ ∧ 1),

(ii) if
∫
l1
sγ11{s1≥1}I(ds) = ∞ and (H3) holds, then Ustat /∈ l1+α/(γ∧1) a.s.

When −1 < α < 0, the result of Theorem 4.1 (i) can be completed (see the remark following
Proposition 4.1 below): in most cases, either Ustat /∈ l1+α a.s. or both events {Ustat = 0} and
{Ustat /∈ l1+α} have positive probabilities.
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It is interesting to notice that the above conditions for existence or absence of a stationary
distribution depend only on α and I, provided hypothesis (H3) holds. For a fixed immigration
measure I, let

αI = inf

{
α < 0 :

∫

l1
s−α1 1{s1≥1}I(ds) <∞

}
(4.13)

and let then α vary. According to the above theorems, the values α = αI and α = −1 are
critical. Indeed, provided αI < 0, the stationary distribution exists when α > αI and does not
exist when α < αI . Moreover, the stationary state Ustat is a.s. composed by a finite number
of particles as soon as αI < α < −1, whereas when α > −1, Ustat /∈ l1+α with a positive
probability (which equals 1 when α ≥ 0 and depends on further hypothesis on I and α when
−1 < α < 0)

Let us try to explain these results. By the scaling property of fragmentation processes,
particles with mass ≥ 1 split faster when α is larger. This explains that when α is too small
some particles may accumulate in intervals of type (a,∞), a > 0, which implies that Ustat /∈ D.
For α large enough, particles with mass ≥ 1 become rapidly smaller, but particles with mass
≤ 1 split more slowly when α is larger. Therefore, small particles accumulate and Ustat /∈ lp

when p is too small. Moreover the smallest p such that Ustat ∈ lp increases as α increases. When
α < −1, it is known that small particles are very quickly reduced to dust (see e.g. Proposition
2, [15]). This implies that Ustat ∈ l0 provided it belongs to D.

Small particles behavior. Suppose that −1 < α < 0 and
∫
l1

∑
j≥1 s

−α
j 1{sj≥1}I(ds) < ∞, so

that Ustat ∈ D a.s., according to Theorem 4.1 (i). Consider then the random function

ε 7→ Ustat(ε) := Ustat([ε,∞))

which counts the number of components of Ustat larger than ε. We want to investigate the
limiting behavior of Ustat(ε) as ε→ 0. In that aim, we make the following technical hypothesis

∫

D1

∑
j>i≥1

s1+α
i sjν(ds) <∞ and

∫

D1

(1 − s1)
θ ν (ds) <∞ for some θ < 1 (H4)

as well as hypothesis (H3).

Proposition 4.1 Under the previous hypotheses,

(i) if
∫
l1

∑
j≥1 s

−α
j 1{sj≤1}I(ds) < ∞, there exists a finite r.v. X, 0 < P (X = 0) < 1, such

that
Ustat(ε)ε

1+α →
ε→0

X a.s.

(ii) if
∫
l1
s−α1 1{sj≤1}I(ds) = ∞, one has lim infε→0 ε

1+αUstat(ε) > 0 a.s.

In particular, this implies that P (Ustat /∈ l1+α) = 1 when the assumption of the second
statement is satisfied. This is not true when the assumption of the first statement holds: in
such case, 0 < P (Ustat = 0) ≤ P (Ustat ∈ l1+α) < 1 (see the proof of (i) for the first inequality).

When α ≥ 0 or α < −1, some information on the behavior of Ustat(ε) as ε → 0 can be
deduced from Theorems 4.1, 4.2 and 4.3. As an example, Ustat(0) <∞ a.s. when αI < α < −1.
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Remark. It is possible to show that Ustat ∈ R a.s. as soon as
∫
l1

∑
j≥1 sj1{sj≥1}I(ds) < ∞

and that P (Ustat /∈ R) > 0 as soon as α > −1,
∫
l1
s−α1 1{s1≥1}I(ds) = ∞ and hypotheses (H3)

and (H4) hold. The first claim can be proved by using some arguments of the proof of the
forthcoming Proposition 4.5 and the second claim is a consequence of Theorems 4 (i) and 7 of
[39], which are also used below to prove Proposition 4.1.

4.2.2.2 Proofs

Let F be a standard (α, c, ν)-fragmentation and for every p ∈ R and t ≥ 0, define

M(p, t) :=
∑

k≥1
(Fk (t))p 1{Fk(t)>0},

which is a.s. finite at least when p ≥ 1 (since it is bounded from above by 1). That Ustat

belongs to some lp-space is closely related to the behavior of the function t 7→M(p, t). Indeed,

Ustat =
∑

i≥1

∑
j≥1

sj(ti)F
(i,j)(sαj (ti)ti)

where the F (i,j)’s, i, j ≥ 1, are i.i.d copies of F , independent of ((s(ti), ti) , i ≥ 1) . Then,
Ustat ∈ lp ⇔M(p) <∞ with

M(p) =

∫

(0,∞)

xpUstat(dx)

=
∑

i≥1

∑
j≥1

spj (ti)M
(i,j)(p, sαj (ti)ti)1{sj(ti)>0}

where the M (i,j)(p, ·)’s, i, j ≥ 1, are i.i.d copies of M(p, ·), independent of ((s(ti), ti) , i ≥ 1).
Using the tagged particle approach as explained in Section 4.1.1, one obtains the following
results on M(p, ·).

Lemma 4.3 (i) Suppose α ≤ 0. Then
∫∞
0

exp(λt)E [M(p, t)] dt <∞ as soon as p ≥ 1 +α and
λ < φ(p− 1 − α). In particular, E [M(p, t)] <∞ for a.e. t ≥ 0 as soon as p ≥ 1 + α.

(ii) Suppose α > 0. Then for every η > 0 and every p ≥ 1, there exists a random variable
I(η,p) with positive moments of all orders such that

M(p, t) ≤ I(η,p)t
− p−1

α+η a.s. for every t > 0.

Consequently
∫∞
0
E [M(p, t)] dt <∞ when p > 1 + α.

Bertoin (Corollary 3, [15]) shows that when α > 0 and p ≥ 1, the process t
p−1

α M(p, t)
converges in probability to some deterministic limit as t → ∞, provided the fragmentation
satisfies hypothesis (H3). See also Brennan and Durrett [23],[24] who prove the almost sure
convergence for binary fragmentations (ν(s1 + s2 < 1) = 0) with a finite dislocation measure.

Proof. We use the notations introduced in Section 4.1.1.
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(i) According to (4.5),

E [M(p, t)] = E
[
exp((1 − p)ξ(ρ(t)))1{t<D}

]

where D = inf {t : ρ(t) ≥ e (k)}. Therefore

∫∞
0

exp(λt)E [M(p, t)] dt = E
[∫ D

0
exp(λt) exp((1 − p)ξ(ρ(t)))dt

]

= E
[∫

e(k)

0
exp(λρ−1(t)) exp((1 − p+ α)ξ(t))dt

]
.

(4.14)

using for the last equality the change of variables t 7→ ρ(t) and that, by definition of ρ,
exp(αξ(ρ(t)))dρ(t) = dt on [0, D). The function ρ−1 denotes the right inverse of ρ and clearly
ρ−1(t) ≤ t since α ≤ 0. When p ≥ 1 + α, this leads to

∫ ∞

0

exp(λt)E [M(p, t)] dt ≤





E
[∫

e(k)

0
exp(−φ(p− 1 − α)t)dt

]
if λ < 0

E
[∫

e(k)

0
exp((λ− φ(p− 1 − α))t)dt

]
if λ ≥ 0

and in both cases, the integral is finite as soon as λ < φ(p− 1 − α) = φ(p− 1 − α) + k.

(ii) Fix α > 0, p ≥ 1 and η > 0 and recall that, according to (4.4),

M(p, t) = E
[
exp(−(p− 1)ξ(ρ(t)))1{t<D} | F

]
.

On the one hand, one has

ρ(t) exp(−ηξ(ρ(t))) ≤
∫ ρ(t)

0

exp(−ηξ(r))dr ≤
∫ ∞

0

exp(−ηξ(r))dr := I(η).

And on the other hand, for t < D,

t =

∫ ρ(t)

0

exp(αξ(r))dr ≤ ρ(t) exp(αξ(ρ(t))).

Combining these inequalities, we obtain exp(− (α+ η) ξ(ρ(t))) ≤ t−1I(η) for all t < D. Hence

M(p, t) ≤ t−
p−1
α+η I(η,p) where I(η,p) := E

[
I

(p−1)/(α+η)
(η) | F

]
. Carmona, Petit and Yor [25] have

shown that I(η) has moments of all positive orders, which, by Hölder inequality, is also true for
I(η,p).

We now turn to the proofs of Theorems 4.1, 4.2 and 4.3.

Proof of Theorem 4.1. (i) Fix p > 1 + α and split M(p) into two sub-sums:

Minf(p) =
∑

i≥1

∑
j≥1

spj(ti)1{0<sj(ti)<1}M
(i,j)(p, sαj (ti)ti)

and Msup(p) = M(p) −Minf(p). One has

E [Minf(p)] =

∫

l1
(
∑

j≥1
sp−αj 1{sj<1})I(ds) ×

∫ ∞

0

E [M(p, t)] dt



4.2. Existence and uniqueness of the stationary distribution 147

and both of these integrals are finite according to hypothesis (H1) and Lemma 4.3, since
p > 1 + α. It remains to show that Msup(p) < ∞ when I integrates

∑
j≥1 s

−α
j 1{sj≥1} or

s−α1 ln s11{s1≥1}.

Suppose first that
∫
l1

∑
j≥1 s

−α
j 1{sj≥1}I(ds) <∞ and let ζ (i,j) be the first time at which the

fragmentation F (i,j) is entirely reduced to dust. Equivalently, ζ (i,j) is the first time at which
M (i,j) reaches 0. If the number of pairs (i, j) such that sαj (ti)ti ≤ ζ (i,j) and sj(ti) ≥ 1 is
finite, then the sum Msup(p) is finite because it involves at most a finite number of non-zero
M (i,j)(p, sαj (ti)ti) (which are a.s. all finite according to Lemma 4.3 (i)). To prove that this is

the case, we use Poisson measures theory. Since the v.a. ζ (i,j), i, j ≥ 1, are i.i.d, the measure

∑
i≥1

δt−1
i supj:sj(ti)≥1(ζ(i,j)s−α

j (ti))

is a Poisson measure with intensity m defined for any positive measurable function f by

∫ ∞

0

f(x)m(dx) =

∫ ∞

0

∫

l1
E

[
f(t−1 sup

j:sj≥1
(ζ (1,j)s−αj ))

]
I(ds)dt.

The integral
∫∞

1
m(dx) is bounded from above by E

[
ζ (1,1)

] ∫
l1

∑
j≥1 s

−α
j 1{sj≥1}I(ds) which is

finite by assumption on I and since E
[
ζ (1,1)

]
< ∞ (by (4.7)). This implies that a.s. there is

only a finite number of integers i ≥ 1 such that t−1
i supj:sj(ti)≥1(ζ

(i,j)s−αj (ti)) ≥ 1. For each of
these i, there is at most a finite number of integers j ≥ 1 such that sj(ti) ≥ 1. Hence the
number of pairs (i, j) such that sαj (ti)ti ≤ ζ (i,j) and sj(ti) ≥ 1 is indeed a.s. finite.

Assume now that
∫
l1
s−α1 ln s11{s1≥1}I(ds) <∞. For any a > 0, the number of integers i ≥ 1

such that ati ≤ s−α1 (ti) ln (s1(ti)) and s1(ti) ≥ 1 is then a.s. finite. The sum Msup(p) is therefore
finite if ∑

i≥1

∑
j≥1

spj(ti)1{ati>s−α
1 (ti) ln(s1(ti))}

1{sj(ti)≥1}M
(i,j)(p, sαj (ti)ti)

is finite for some (and then all) a > 0. The expectation of this latter sum is bounded from
above by

∫ ∞

0

∫

l1
(
∑

j≥1
spj1{at>s−α

j ln sj}
1{sj≥1})E

[
M(p, sαj t)

]
I(ds)dt (as sj ≤ s1)

≤
∫

l1

∑
j≥1

1{sj≥1}I(ds)

∫ ∞

0

exp(at(p− α))E [M(p, t)] dt

which is finite for a sufficiently small, according to Lemma 4.3 (i). Hence Msup(p) <∞ a.s.

(ii) Suppose
∫
l1
s−α1 1{s1≥1}I(ds) = ∞ and let ζ

(i,1)
1/2 := inf{t ≥ 0 : F

(i,1)
1 (t) < 1/2} be the first

time at which all components of F (i,1) are smaller than 1/2, i ≥ 1. Note that E[ζ
(i,1)
1/2 ] > 0 since

F
(i,1)
1 is càdlàg. The measure ∑

i≥1:s1(ti)≥1
δ
s−α
1 (ti)t

−1
i ζ

(i,1)
1/2

is a Poisson measure with intensity m′ given by
∫ ∞

0

f(x)m′(dx) =

∫ ∞

0

∫

l1
E
[
f(s−α1 t−1ζ

(1,1)
1/2 )

]
1{s1≥1}I(ds)dt.
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By assumption on I and since E[ζ
(1,1)
1/2 ] > 0, the integral

∫∞
1
m′(dx) is infinite and consequently

the number of integers i such that ζ
(i,1)
1/2 > sα1 (ti)ti and s1(ti) ≥ 1 is a.s. infinite. For those i,

s1(ti)F
(i,1)
1 (sα1 (ti)ti) ≥ 1/2 and therefore Ustat contains a sequence of terms all larger than 1/2,

which implies that it is not in D a.s.

Proof of Theorem 4.2. (i) The second part of the proof of Theorem 4.1 (i) (replacing
there α by 0) shows that Ustat ∈ ∩p>1l

p when
∫
l1

ln (s1)1{s1≥1}I(ds) < ∞. Now, if c = 0 and
ν(
∑

k≥1 sk < 1) = 0, the sum M(1) equals
∑

i≥1

∑
j≥1 sj(ti), which is clearly a.s. infinite since

I 6= 0.

(ii) Assume that
∫
l1

ln (s1) 1{s1≥1}I(ds) = ∞ and E [ξ(1)] < ∞. For each i ≥
1, let exp(−ξ(i,1)(·)) denote the process of masses of the tagged particle in the frag-
mentation F (i,1). To prove that Ustat /∈ D, it suffices to show that its subsequence{
s1(ti) exp(−ξ(i,1)(ti)), i ≥ 1

}↓
/∈ D. The components of this sequence are the atoms of a

Poisson measure with intensity m′′ given by

∫ ∞

0

f(x)m′′(dx) =

∫ ∞

0

∫

l1
E [f (s1 exp(−ξ(t))] I(ds)dt.

Take then a > E [ξ(1)]. Since ξ(t)/t
a.s.→ E [ξ(1)] as t → ∞, there exists some t0 such that

P (ξ(t) ≤ at) ≥ 1/2 for t ≥ t0. Then

∫ ∞

1

m′′(dx) =

∫ ∞

0

∫

l1
P (ξ(t) ≤ ln s1)I(ds)dt

≥
∫

l1

∫ a−1 ln s1

t0

P (ξ(t) ≤ at)dtI(ds)

≥ 1

2

∫

l1

(
a−1 ln s1 − t0

)
1{a−1 ln s1≥t0}I(ds)

and this last integral is infinite by assumption. Hence
∑

i≥1 δs1(ti) exp(−ξ(i,1)(ti)) /∈ D a.s. and a
fortiori Ustat /∈ D a.s.

Proof of Theorem 4.3. Fix p ≥ 1 + α. According to the Campbell formula for Poisson
measures (see [46]), the sum M(p) is finite if and only if

∫ ∞

0

∫

l1
E
[
1 − exp(−

∑
j≥1

spjM
(1,j)(p, sαj t))

]
I(ds)dt <∞. (4.15)

(i) We first prove assertion (i) and that Ustat ∈ lp a.s. for p large enough when I integrates
sε11{s1≥1}. Suppose p > 1 + α and note that the integral (4.15) is bounded from above by

∫

l1

∑
j≥1

sp−αj 1{sj<1}I(ds)

∫ ∞

0

E [M(p, t)] dt

+

∫ ∞

0

∫

l1
E
[
1 − exp(−

∑
j≥1

spj1{sj≥1}M
(1,j)(p, sαj t))

]
I(ds)dt.
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According to Lemma 4.3 (ii), the first component of this sum is finite and for all η > 0 there

exists some i.i.d r.v. I
(j)
(η,p) having finite moments of all positive orders and independent of

(s(ti), i ≥ 1) such that the second component is bounded from above by

∫ ∞

0

∫

l1
E

[
1 − exp(−

∑
j≥1

s
p−α p−1

α+η

j 1{sj≥1}I
(j)
(η,p)t

− p−1
α+η )

]
I(ds)dt

=

∫ ∞

0

(1 − exp(−t−
p−1
α+η ))dt×

∫

l1
(
∑

j≥1
s

pη+α
α+η

j 1{sj≥1})
α+η
p−1 I(ds)E

[
I

(1)
(η,p)

α+η
p−1

]
.

If p > 1 + α + η, the first integral in this latter product is finite. So, take η small enough so
that p > 1 + α + η and notice then that

∫

l1
(
∑

j≥1
s

pη+α
α+η

j 1{sj≥1})
α+η
p−1 I(ds) ≤

∫

l1

∑
j≥1

s
pη+α
p−1

j 1{sj≥1}I(ds). (4.16)

The integral (4.15) is therefore finite as soon as the integral in the right hand side of (4.16) is
finite for some η > 0 small enough. Hence we get (i).

The same argument holds to show that Ustat ∈ lp for p sufficiently large when there exists
some ε > 0 such that

∫
l1
sε11{s1≥1}I(ds) < ∞. Indeed, let p > 1 + α + η. It suffices then to

show that the integral on the left hand of inequality (4.16) is finite and to do so we replace the
upper bound there by

∫

l1
(
∑

j≥1
s

pη+α
α+η

j 1{sj≥1})
α+η
p−1 I(ds) ≤

∫

l1
s

pη+α
p−1

1 (
∑

j≥1
1{sj≥1})

α+η
p−1 I(ds),

which, by Hölder inequality, is finite as soon as p is large enough and η small enough.

(ii) We now turn to the proof of assertion (ii) and that Ustat /∈ l1+α when (H3) holds. The
integral (4.15) is bounded from below by

∫ ∞

0

∫

l1
s−α1 E

[
(1 − exp(−sp1M(p, t)))1{M(p,t)≥rt−(p−1)/α}

]
I(ds)dt

≥
∫

l1
s−α1

∫ ∞

0

(1 − exp(−sp1rt−(p−1)/α)P (M(p, t) ≥ rt−(p−1)/α)dtI(ds).

According to Corollary 3, [15], the hypothesis (H3) ensures that t(p−1)/αM(p, t) converges in
probability to some finite deterministic constant as t → ∞. Hence, taking r > 0 small enough
and then t0 large enough, one has P (M(p, t) ≥ rt−(p−1)/α) ≥ 1/2 for t ≥ t0 and therefore the
integral (4.15) is bounded from below by

1

2

∫

l1
s−α1 s

pα/(p−1)
1 1

{s
pα/(p−1)
1 ≥(t0/t)}

I(ds)

∫ ∞

0

(1 − exp(−rt−(p−1)/α)dt

which is infinite as soon as p ≤ 1 + α or
∫
l1
s
α/(p−1)
1 1{s1≥t0}I(ds) = ∞.

Proof of Proposition 4.1. For the standard fragmentation F , let N(ε,∞)(t) :=
∑

k≥1 1{Fk(t)>ε}

denote the number of terms larger than ε present at time t. Under the hypotheses (H3), (H4)
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and α > −1, Theorems 4 (i) and 7 of [39] describe the behavior of N(ε,∞)(t) as ε→ 0. Theorem
4 (i) states the existence of a random function L such that

∑
k≥1 Fk(t)=

∫∞
t
L(u)du a.s. for all

t. Then Theorem 7 says that

ε1+αN(ε,∞)(t) → KL(t) as ε→ 0 (4.17)

a.s. for almost every t, where K = (1 + α) /α2E [ξ(1)]. Note that the sum Ustat(ε) rewrites

Ustat(ε) =
∑

i,j≥1
N

(i,j)
(ε/sj(ti),∞)(s

α
j (ti)ti) (4.18)

where the N (i,j)
(·,∞)

(·)’s are i.i.d copies of N(·,∞)(·), independent of ((s(ti), ti) , i ≥ 1).

(i) Let ζ (i,j) be the first time at which F (i,j) reaches 0, i, j ≥ 1. With the same arguments as in
the proof of Theorem 4.1 (i), one sees that with probability one there is at most a finite number
of ti < supj≥1(ζ

(i,j)s−αj (ti)) if and only if
∫
l1
E
[
supj≥1 ζ

(1,j)s−αj
]
I(ds) < ∞. This integral is

finite by assumption. A moment of thought then show that there is at most a finite number of
integers i, j ≥ 1 - independent of ε - such that N

(i,j)
(ε/sj(ti),∞)(s

α
j (ti)ti) > 0. Consequently, the sum

(4.18) involves a finite number of non-zero terms and

ε1+αUstat(ε) →
ε→0

K
∑

i,j≥1
L(i,j)(sαj (ti)ti)s

1+α
j (ti) a.s.

where the functions L(i,j)’s are i.i.d and distributed as L. This limit, which we denote by X,
is null as soon as Ustat = 0, that is as soon as there is no integer i ≥ 1 such that ti <
supj≥1(ζ

(i,j)s−αj (ti)). This occurs, according to the Poissonian construction, with a positive
probability. On the other hand, the Lebesgue measure of BL := {x ≥ 0 : L(x) > 0} (denoted
by Leb(BL)) is a.s. non-zero and then P (X > 0) > 0.

(ii) Suppose
∫
l1
s−α1 1{s1≤1}I(ds) = ∞ and let BL(i,j) := {x ≥ 0 : L(i,j)(x) > 0}, which are

i.i.d copies of BL. One checks that there a.s. exists a time ti ∈ ∪j≥1s
−α
j (ti)BL(i,j) if and only if

the integral
∫
l1
E
[
Leb(∪j≥1s

−α
j BL(1,j))

]
I(ds) is infinite and that this integral is indeed infinite

here, according to the assumption on I and since Leb(BL) > 0 a.s. From this we deduce that
∑

1≤i,j≤N
L(i,j)(sαj (ti)ti)s

1+α
j (ti) > 0 a.s. for N large enough

and then, by (4.17) and (4.18), that lim infε→0 ε
1+αUstat(ε) > 0.

4.3 Rate of convergence to the stationary distribution

We are interested in the convergence in law to the stationary regime Ustat. It is already known,
according to Lemma 4.1, that for every random u ∈D the process FI(u)(t) converges in law as
t→ ∞ to the stationary state Ustat, provided it belongs to D a.s. The aim of this section is to
strengthen this result by providing upper bounds for the rate at which this convergence takes
place. The norm considered on the set of signed finite measures on D is

‖µ‖ := sup
f 1-Lipschitz,
sup

s∈D|f(s)|≤1

∣∣∣∣
∫

D

f(s)µ(ds)

∣∣∣∣ .
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By f is 1-Lipschitz, we mean that |f(s) − f(s′)| ≤ d(s, s′) for all s, s′ ∈ D. It is well-known
that this norm induces the topology of weak convergence.

The main results are stated in the following Theorem 4.4. In case α < 0, the rate of
convergence depends on I and it is worthwhile making the result a little more explicit. This is
done, under some regular variation type hypotheses on I, in Corollary 4.1.

Theorem 4.4 The starting points u considered here are all deterministic.

(i) Suppose that α < 0 and
∫
l1

∑
j≥1 s

−α
j 1{sj≥1}I(ds) < ∞. Then, for every γ ∈ [1,Γ] (Γ is

defined by formula (4.8)), there exists a positive finite constant A such that for every u satisfying∑
j≥1 exp(−uαj ) <∞,

∥∥L(FI(u)(t)) − L(Ustat)
∥∥ = O(t−(γ−1)

∫

l1

∑
j≥1

s−αγj exp(−Atγsαγj )I(ds) + exp(−Atγuαγ1 ))

as t→ ∞.

(ii) Suppose that α = 0 and
∫
l1

∑
j≥1 s

1+ε
j I(ds) <∞ for some ε > 0. Then for every u ∈l1+ε

and a < φ(ε)/ (2 + ε),
∥∥L(FI(u)(t)) −L(Ustat)

∥∥ = o(exp(−at)) as t→ ∞.

(iii) Suppose that α > 0 and
∫
l1

∑
j≥1 s

p
jI(ds) < ∞ for some p > 0. Then, for every u ∈ lp

and every a < 1/α, ∥∥L(FI(u)(t)) − L(Ustat)
∥∥ = o(t−a) as t→ ∞.

Note first that, by Theorems 4.1, 4.2 and 4.3, the assumptions we make on I imply in each
case that Ustat ∈ D a.s. In case α < 0, the given upper bound may be infinite for some γ’s. The
point is then to find the γ’s in [1,Γ] that give the best rate of convergence. This is possible, for
example, when

∫
l1

∑
j≥1 1{sj≥x}I(ds) behaves regularly as x → ∞. In such case the statement

(i) turns to:

Corollary 4.1 Suppose α < 0 and fix u such that
∑

j≥1 exp(−uαj ) <∞.

(i) If
∫
l1

∑
j≥1 1{sj≥x}I(ds) ∼ l(x)x−̺ as x → ∞ for some slowly varying function l and

some ̺ > 0, then, provided −α < ̺,
∥∥L(FI(u)(t)) −L(Ustat)

∥∥ = O
(
l(t1/|α|)t−(̺/|α|−1)

)
as t→ ∞.

(ii) If − log
(∫

l1

∑
j≥1 1{sj≥x}I(ds)

)
∼ l(x)x̺ as x → ∞ for some slowly varying function

l and some ̺ > 0, then there exists a slowly varying function l′ (which is constant when l is
constant) such that

∥∥L(FI(u)(t)) − L(Ustat)
∥∥ = O

(
t−(Γ−1) exp(−l′(t)t̺Γ/(|α|Γ+̺))

)
as t→ ∞.

In the special case when I(s1 > a) = 0 for some a > 0,
∥∥L(FI(u)(t)) − L(Ustat)

∥∥ = O(exp(−BtΓ))

for some constant B > 0.
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Proof. (i) First, by integrating by parts and then using e.g. Prop. 1.5.10 of [21], one obtains
that for γ ∈ [1, ̺/− α)

∫

l1

∑
j≥1

s−αγj 1{x≥sαγ
j }I(ds) ≈ l(x1/αγ)x−1−̺/αγ as x→ 0

(the notation ≈ means that the functions are equivalent up to a multiplicative constant). Then,
using Karamata’s Abelian-Tauberian Theorem (Th. 1.7.1’ of [21]), one deduces that

∫

l1

∑
j≥1

s−αγj exp(−tsαγj )I(ds) ≈ l(t−1/αγ)t1+̺/αγ as t→ ∞.

Now if −α < ̺, statement (i) of Theorem 4.4 applies and one can plug the above equivalence
into the upper bound obtained there. Hence the conclusion.

(ii) Let 1 ≤ γ ≤ Γ. By integrating by parts and then by using Theorem 4.12.10 in [21],
one sees that − log(

∫
l1

∑
j≥1 s

−αγ
j 1{sj≥x}I(ds)) ∼ l(x)x̺ as x → ∞. According to de Bruijn’s

Abelian-Tauberian Theorem 4.12.9 in [21], this implies that

− log

(∫

l1

∑
j≥1

s−αγj exp(−tsαγj )I(ds)

)
≈ f(t) as t→ ∞ (4.19)

where f(t) = 1/Ψ←(t) with Ψ(t) = Φ(t)/t and Φ←(t) = t̺/(αγ)/l(t1/(−αγ)). Here Φ←(t) =

sup {u ≥ 0 : φ(u) > t} and similarly for Ψ. Therefore f(t) ∼ l̃(t)t̺/(̺+|α|γ) for some slowly

varying function l̃ (to inverse regularly varying functions, we refer to chapter 1.5.7 of [21]) which
is constant when l is constant. The assumption we have on I allows us to apply Theorem 4.4
(i) and the conclusion then follows by taking there γ = Γ and using the equivalence (4.19). The
special case when I(s1 > a) = 0 is obvious.

Hence, our bounds for the rate of convergence depend significantly on I when α < 0, whereas
they are essentially independent of I when α ≥ 0. Also, in any case they are essentially inde-
pendent of the starting point u.

We now turn to the proof of Theorem 4.4, which relies on a coupling method that holds for D-
valued X-processes with immigration, as defined in Section 4.2.1. We first explain the method
in this general context and then make precise calculus for fragmentation with immigration
processes. In this latter case, if c, ν and I are fixed so that I(s1 > 1) = 0 and if α varies, one
sees (without any calculations, just using that particles with mass ≤ 1 split faster when α is
smaller) that the employed method provides a better rate of convergence when α is smaller.
When I(s1 > 1) > 0 the comparison of rates of convergence as α varies is no longer possible
because particles with mass larger than 1 split more slowly when α is smaller.

Proof of Theorem 4.4. LetX be a D-valued branching process and I an immigration measure
such that the processes XI(u), u ∈D, defined by formula (4.10), are D-valued X-processes with
immigration. Let then ((s(ti), ti) , i ≥ 1) be the atoms of a Poisson measure with intensity
I(ds)dt, t ≥ 0, and suppose that the stationary sum Ustat constructed from ((s(ti), ti) , i ≥ 1)
as explained in (4.11) belongs a.s. to D. Suppose moreover that X(u)(t)

a.s.→ 0 for all u ∈D.
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Then, fix u ∈D and considerX(u) andX(Ustat) some versions ofX starting respectively from u
and Ustat. Consider next XI(0) an X-process with immigration starting from 0, independent of
X(u) and X(Ustat). Then, the processes XI(u) and XI(Ustat), defined respectively by XI(u)(t) :=
X(u)(t) + XI(0)(t) and XI(Ustat)(t) := X(Ustat)(t) + XI(0)(t), t ≥ 0, are X-processes with
immigration starting respectively from u and Ustat.

Let now r be a deterministic function and call ζ
(u)
r the first time t at which X

(u)
1 (s) ≤ r(s)

for all s ≥ t and similarly ζ
(stat)
r the first time t at which X

(Ustat)
1 (s) ≤ r(s) for all s ≥ t. Of

course the interesting cases are ζ
(u)
r <∞ and ζ

(stat)
r <∞ a.s. Such cases exist, take e.g. r ≡ 1.

Our goal is to evaluate the behavior of the norm
∥∥L(XI(u)(t)) − L(Ustat)

∥∥ as t → ∞. To
do so, let f : D → R denote a 1-Lipschitz function on D such that sup

s∈D |f(s)| ≤ 1. For all
t ≥ 0, we construct a function fr(t) from f and r(t) by setting

fr(t)(s) :=

{
f(0) when s1 ≤ r(t)
f(s1, ..., si(r(t)),0, 0, ...) when s1 > r(t)

where i(r(t)) is the unique integer such that si(r(t)) > r(t) and si(r(t))+1 ≤ r(t). Clearly, as f is
1-Lipschitz and d(s, s′) = supj≥1

∣∣sj − s′j
∣∣ for s, s′ ∈ D,

∣∣f(s) − fr(t)(s)
∣∣ ≤ r(t) for every s ∈D

and therefore

∣∣E
[
f(XI(u)(t)) − f(Ustat)

]∣∣ =
∣∣E
[
f(XI(u)(t)) − f(XI(Ustat)(t))

]∣∣ (4.20)

≤ 2r(t) +
∣∣E
[
fr(t)(XI

(u)(t)) − fr(t)(XI
(Ustat)(t))

]∣∣ .

The time ζ
(u)
r and the function fr(t) are defined so that for times t ≥ ζ

(u)
r , fr(t)(XI

(u)(t)) takes
only into account the masses of particles that are descended from immigrated particles, not
from u. Therefore, one has

E
[
fr(t)(XI

(u)(t))
]

= E
[
fr(t)(XI

(u)(t))1
{ζ

(u)
r ∨ζ

(stat)
r >t}

]
+ E

[
fr(t)(XI

(0)(t))1
{t≥ζ

(u)
r ∨ζ

(stat)
r }

]

and similarly

E
[
fr(t)(XI

(Ustat)(t))
]

= E
[
fr(t)(XI

(Ustat)(t))1
{ζ

(u)
r ∨ζ

(stat)
r >t}

]
+E

[
fr(t)(XI

(0)(t))1
{t≥ζ

(u)
r ∨ζ

(stat)
r }

]
.

Combined with (4.20) this gives

∣∣E
[
f(XI(u)(t)) − f(Ustat)

]∣∣ ≤ 2r(t) +
∣∣∣E
[
(fr(t)(XI

(u)(t)) − fr(t)(XI
(Ustat)(t)))1

{ζ
(u)
r ∨ζ

(stat)
r >t}

]∣∣∣
≤ 2r(t) + 2P (ζ (u)

r ∨ ζ (stat)
r > t)

since sups∈D |f(s)| ≤ 1. This holds for all 1-Lipschitz functions f such that sups∈D |f(s)| ≤ 1
and therefore

∥∥L(XI(u)(t)) −L(Ustat)
∥∥ ≤ 2(r(t) + P (ζ (u)

r > t) + P (ζ (stat)
r > t)). (4.21)

The point is thus to find a function r such that the above upper bound gives the best possible
rate of convergence.
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In the rest of this proof, we replace X by an (α, c, ν) fragmentation process F , in order to
make precise calculus. We recall that F (u)(t)

a.s.→ 0 and that the assumptions of Theorem 4.4
involving I ensure that Ustat ∈ D a.s. for all α ∈ R, so that inequality (4.21) holds for FI(u).
The choice of the function r then differs according as α < 0, α = 0 and α > 0.

Proof of (i). Here we take r ≡ 0. According to the definitions above, ζ
(u)
r is the first time

at which F (u) reaches 0 (it may be a priori infinite) and ζ
(stat)
r the first time at which F (Ustat)

reaches 0. As recalled in Section 4.1.1, the first time ζ at which a 1-mass particle splitting
according to the (α, c, ν)-fragmentation reaches 0 is a.s. finite since α < 0. By self-similarity,
the first time at which a particle with mass m is reduced to 0 is distributed as m−αζ. Hence,
by definitions of F (u) and F (Ustat),

ζ (u)
r = sup

j≥1
u−αj ζ (j) and ζ (stat)

r = sup
i≥1,j≥1

(s−αj (ti)ζ
(i,j) − ti)

+

where (ζ (j), j ≥ 1) and (ζ (i,j), i, j ≥ 1) denote families of i.i.d copies of ζ such that
(ζ (i,j), i, j ≥ 1) is independent of ((s(ti), ti) , i ≥ 1).

Now fix γ ∈ [1,Γ]. On the one hand, one has

P (ζ (u)
r > t) ≤

∑
j≥1

P (ζ (j) > tuαj )

which by (4.7) is bounded from above by Cγ
∑

j≥1 exp(−C ′γtγuαγj ) for some constant Cγ, C
′
γ >

0. Let 0 < ε < C ′γ. It is easy that this sum is in turn bounded for all t ≥ 1 by
B exp(−(C ′γ − ε)tγuαγ1 ), where B is a constant (depending on γ, ε and u, not on t ≥ 1) which
is finite as soon as

∑
j≥1 exp(−uαj ) <∞. On the other hand,

P (ζ (stat)
r > t) ≤

∫ ∞

0

∫

l1

∑
j≥1

P (ζ > (t+ v)sαj )I(ds)dv

which, again by (4.7) , is bounded from above by

Cγ
C ′γγt

γ−1

∫

l1

∑
j≥1

s−αγj exp(−C ′γtγsαγj )I(ds)

for t > 0. Hence the result.

Proof of (ii). When α = 0, the fragmentation does not reach 0 in general. We thus have to
choose some function r 6= 0. By assumption,

∫
l1

∑
j≥1 s

1+ε
j I(ds) < ∞ for some ε > 0. So, fix

such ε, fix η > 1 and set a := φ(ε)/ (1 + η(1 + ε)). Then take r(t) := exp(−at), t ≥ 0.

In order to bound from above P (ζ
(u)
r > t) and P (ζ

(stat)
r > t), introduce for all x > 0

ζa,x = sup {t ≥ 0 : F1(t) > x exp(−at)}

the last time t at which the largest fragment of a standard fragmentation process F starting
from (1, 0, ...) has a mass largest than x exp(−at). Here we use the convention sup (∅) = 0. This
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time ζa,x is a.s. finite because exp(at)F1(t)
a.s.→ 0 when 0 ≤ a < supp≥0

φ(p)
p+1

as explained in [15].

More precisely, one can show the existence of a positive constant C(a) such that

P (ζa,x > t) ≤ C(a)x−(1+ε) exp(−at) for all x > 0, t ≥ 1. (4.22)

Indeed, let t ≥ 1 and note that

P (ηt ≥ ζa,x > t) = P (∃u ∈ [t, ηt[ : F1(u) exp(au) > x)
≤ P (F1(t) exp(aηt) > x) (as F1 ց )

≤ x−(1+ε) exp(aη(1 + ε)t)E
[
(F1(t))

1+ε] .

This last expectation is bounded from above by E
[∑

k≥1 (Fk(t))
1+ε] = exp(−φ(ε)t), which

yields P (ηt ≥ ζa,x > t) ≤ x−(1+ε) exp(−at), since a = φ(ε) − aη (1 + ε). Then, setting C(a) :=∑
n≥1 exp(−a (ηn−1 − 1)), one obtains (4.22).

By definition, ζ
(u)
r is the supremum of times t such that F

(u)
1 (t) > exp(−at). Hence there

exist some independent random variables ζ
(j)
a,1/uj

, j ≥ 1, where ζ
(j)
a,1/uj

has the same distribution

as ζa,1/uj
, such that

ζ (u)
r = sup

j≥1
ζ

(j)
a,1/uj

.

Then, by inequality (4.22) ,

P (ζ (u)
r > t) ≤ C(a) exp(−at)

∑
j≥1

u1+ε
j . (4.23)

Next, by definition of ζ
(stat)
r , there exists a family of r.v. ζ

(i,j)
a,exp(ati)/sj(ti)

, i, j ≥ 1, such that

ζ (stat)
r = sup

i≥1,j≥1
(ζ

(i,j)
a,exp(ati)/sj(ti)

− ti)
+

and, conditionally on ((s(ti), ti) , i ≥ 1), ζ
(i,j)
a,exp(ati)/sj(ti)

law
= ζa,exp(ati)/sj(ti), i, j ≥ 1, and the

ζ
(i,j)
a,exp(ati)/sj(ti)

’s are independent. This implies that

P (ζ (stat)
r > t) ≤

∑
i≥1

∑
j≥1

P (ζ
(i,j)
a,exp(ati)/sj(ti)

> ti + t)

and then, by (4.22), that

P (ζ (stat)
r > t) ≤ C(a)

2a+ ε
exp(−at)

∫

l1

∑
j≥1

s1+ε
j I(ds).

Combining this last inequality with (4.21) and (4.23) , one obtains

∥∥L(FI(u)(t)) −L(Ustat)
∥∥ ≤ 2 exp(−at)(1+C(a)

∑
j≥1

u1+ε
j +(2a)−1C(a)

∫

l1

∑
j≥1

s1+ε
j I(ds)).

This holds for every η > 1 and therefore
∥∥L(FI(u)(t)) −L(Ustat)

∥∥ = O(exp(−at)) for every
a < φ(ε)/ (2 + ε), provided u ∈l1+ε.
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Proof of (iii). Fix 0 < a < 1/α and set r(t) := t−a, t > 0. By assumption, there exists some
p > 0 such that

∫
l1

∑
j≥1 s

p
jI(ds) < ∞ and we call z the real number such that zα2(a + 1) =

p(1 − αa− αz). Note that 0 < z < α−1 − a. Define then for x > 0

ζa,x := sup
{
t ≥ 0 : F1(t) > xt−a

}
.

The fact that z ∈ (0, α−1) allows us to choose some η > 0 and q > 1 such that q−1
α+η

− aq =

q(α−1 − a − z), which, by definition of z, is also equal to qzα(a + 1)/p. According to Lemma
4.3 (ii), there exists a r.v. I(η,q) with positive moments of all orders such that

tqaF q
1 (t) ≤ I(η,q)t

qa− q−1
α+η = I(η,q)t

−qzα(a+1)/p

a.s. for every t > 0. This implies that

P (ζa,x > t) ≤ P (∃u ≥ t : uqaF q
1 (u) > xq)

≤ P
(
∃u ≥ t : I(η,q)u

−qzα(a+1)/p > xq
)

≤ Bx−p/(zα)t−(a+1),

where B := E
[
I
p/(qzα)
(η,q)

]
<∞.

A moment of thought shows that the times ζ
(u)
r = sup{t ≥ 0 : F

(u)
1 (t) > t−a} and ζ

(stat)
r =

sup{t ≥ 0 : F
(Ustat)
1 (t) > t−a} satisfy

ζ
(u)
r = supj≥1(u

−α
j ζ

(j)

a,uαa−1
j

) and ζ
(stat)
r ≤ supi≥1,j≥1(s

−α
j ζ

(i,j)

a,sαa−1
j

− ti)
+

where the r.v. ζ
(j)

a,uαa−1
j

, j ≥ 1, are independent such that ζ
(j)

a,uαa−1
j

law
= ζa,uαa−1

j
and, conditionally

on ((s(ti), ti) , i ≥ 1) , the r.v. ζ
(i,j)

a,sαa−1
j

, i, j ≥ 1, are independent such that ζ
(i,j)

a,sαa−1
j

law
= ζa,sαa−1

j
.

Using then the upper bound P (ζa,x > t) ≤ Bx−p/(zα)t−(a+1), one obtains

P (ζ (u)
r > t) ≤ Bt−(a+1)

∑
j≥1

u
−α(a+1)+p(1−αa)/zα
j

which is equal to Bt−(a+1)
∑

j≥1 u
p
j by definition of z. Similarly, one obtains

P (ζ (stat)
r > t) ≤ a−1Bt−a

∫

l1

∑
j≥1

spjI(ds).

Hence by (4.21),

∥∥L(FI(u)(t)) −L(Ustat)
∥∥ ≤ Rt−a(1 +

∑
j≥1

upj +

∫

l1

∑
j≥1

spjI(ds))

where R is a finite real number depending on the parameters of the fragmentation and on a,
but not on t and f .
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4.4 Some examples

Here we turn our attention to examples of fragmentation with immigration processes con-
structed from two families of continuous processes. First, Brownian motions with positive drift
provide examples of stationary fragmentation with immigration processes where particles im-
migrate one by one. The stationary distribution is explicit and constructed from a Poisson
measure depending on the drift. Second, height functions of continuous state branching pro-
cesses with immigration (as introduced in [49]) code fragmentation with immigration processes
where some particles immigrate in groups and others on their own. We will see that those
processes do not all have a stationary distribution.

4.4.1 Construction from Brownian motions with positive drift

Let B be a standard linear Brownian motion and for every d > 0, consider the Brownian motion
with drift d

B(d)(x) := B(x) + dx, x ≥ 0.

For any t > 0, define

L(d)(t) := inf
{
x ≥ 0 : B(d)(x) = t

}
R(d)(t) := sup

{
x ≥ 0 : B(d)(x) = t

}

the first and the last hitting times of t by B(d). Clearly 0 < L(d)(t) < R(d)(t) < ∞ a.s., since
d > 0. It is thus possible to consider the decreasing rearrangement of lengths of the connected
components of

E(d)(t) :=
{
x ∈

[
L(d)(t), R(d)(t)

]
: B(d)(x) > t

}

which we denote by FI(d)(t).

Proposition 4.2 (i) The process
(
FI(d)(t), t ≥ 0

)
is a fragmentation immigration process with

parameters

• αB = −1/2
• cB = 0

• νB(s1 + s2 < 1) = 0 and νB(s1 ∈ dx) =
√

2π−1x−3/2(1 − x)−3/2dx, x ∈ [1/2, 1) ,

• I(d)(s2 > 0) = 0 and I(d)(s1 ∈ dx) =
√

(2π)−1x−3/2 exp(−xd2/2)dx, x > 0.

(ii) The process is stationary. The stationary law is that of a Cox measure (that is a Poisson
measure with random intensity) with intensity T (d)

√
(8π)−1x−3/2 exp(−xd2/2)dx, x > 0, where

T (d) is an exponential r.v. with parameter d.

(iii) There exists a constant L ∈ (0,∞) such that for every u ∈D satisfying∑
j≥1 exp(−u−1/2

j ) < ∞, an
(
αB, cB, νB, I(d)

)
fragmentation immigration FI(u) starting from

u converges in law to the stationary distribution L(Ustat) at rate

∥∥L(FI(u)(t)) −L(Ustat)
∥∥ = O(t−1 exp(−Lt)).
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Note that the immigrating particles arrive one by one.

The fragmentation part of these processes, that does not depend on d, is a well-known
fragmentation process that was first constructed by Bertoin in [14]. Let F

(l)
B denote this frag-

mentation starting from l = (l, 0, ...) . It is a binary fragmentation, that is each particle splits

exactly into two pieces, which is constructed from a Brownian excursion e
(l)
B conditioned to

have length l as follows :

F
(l)
B (t) :=

{
lengths of connected components of

{
x ∈ [0, l] : e

(l)
B (x) > t

}}↓
(4.24)

for all t ≥ 0. In [14] it is proved that this process is indeed a fragmentation process with index
αB = −1/2, no erosion and a dislocation measure νB as given above.

Proof. (i) According to Corollaries 1 and 2 in [62], the process defined by

Y(d)(x) := B(d)(x+R(d)(0)), x ≥ 0,

is a BES0(3, d) (which means that it is identical in law to the norm of a three dimensional
Brownian motion with drift d) and is independent of

(
B(d)(x), 0 ≤ x ≤ R(d)(0)

)
. This last

process codes the fragmentation of particles present at time 0, whereas the process Y(d) codes
the immigration and fragmentation of immigrated particles. More precisely,

• let e
(l1)
B , ..., e

(li)
B , ... denote the finite excursions of B(d) above 0, with respective lengths

l1, l2, ... . The Cameron-Martin-Girsanov theorem implies that the (li, i ≥ 1) are the finite
jumps of a subordinator with Lévy measure

√
(8π)−1x−3/2e−xd

2/2dx, killed at an exponential

time with parameter d, and that conditionally on (li, i ≥ 1) the excursions e
(l1)
B , e

(l2)
B , ... are

independent Brownian excursions with respective lengths l1, ...li, ... . This gives the distribution

of FI(d)(0) = (l1, l2, ...)
↓ and implies that the process (FI

[0,R(d)(0)]

(d) (t), t ≥ 0) defined by

FI
[0,R(d)(0)]

(d) (t) :=
{
lengths of connected comp. of

{
x ∈

[
L(d)(t), R(d)(0)

]
: B(d)(x) > t

}}↓

is an (−1/2, 0, νB) fragmentation starting from FI(d)(0).

• let J(Y(d))(x) := infy≥x Y(d)(y), x ≥ 0 be the future infimum of Y(d). One has to see J(Y(d))

as the process coding the arrival of immigrating particles and Y(d) − J(Y(d)) as the process
coding their fragmentation. According to a generalization of Pitman’s theorem (Corollary 1,
[62]), (J(Y(d)), Y(d)−J(Y(d))) is distributed as (M(d),M(d) −B(d)) where M(d)(x) := sup[0,x]B(d)(y),
x ≥ 0. Moreover according to the Cameron-Martin-Girsanov theorem, M(d) is distributed as
the inverse of a subordinator with Lévy measure

I(d)(s1 ∈ dx) =
√

(2π)−1x−3/2 exp(−xd2/2)dx, x > 0,

and conditionally on their lengths the excursions above 0 ofM(d)−B(d) are Brownian excursions.
Let (

(
∆(d)(ti), ti

)
, i ≥ 1) denote the family of jump sizes and times of the subordinator inverse

of M(d). The sequence

FI
[R(d)(0),∞)

(d) (t) :=
{
lengths of connected comp. of

{
x ∈

[
R(d)(0), R(d)(t)

]
: B(d)(x) > t

}}↓
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is the decreasing rearrangement of masses of particles that have immigrated at time ti ≤ t with
mass ∆(d)(ti) and that have split independently (conditionally on their masses) until time t− ti
according to the fragmentation (−1/2, 0, νB).

• FI(d)(t) is the concatenation of FI
[0,R(d)(0)]

(d) (t) and FI
[R(d)(0),∞)

(d) (t), which leads to the result.

Note that I(d) satisfies the hypothesis (H1).

(ii) That FI(d)(t)
law
= FI(d)(0) is a simple consequence of the strong Markov property of B

applied at time L(d)(t). The stationary distribution L(FI(d)(0)) is calculated in the first part
of this proof.

(iii) It is easy to check that the νB-dependent parameter ΓB (defined in (4.8)) is here equal
to 2 and that

− log

(∫ ∞

x

I(d)(s1 ∈ dy)

)
∼ d2x

2
as x→ ∞.

Then we conclude with Corollary 4.1 (ii).

Remark. Let Y(d) be a BES0(3, d), d ≥ 0, and set

FIY(d)
(t) :=

{
lengths of connected comp. of

{
x ∈ [LY(d)

(t), RY(d)
(t)] : Y(d)(x) > t

}}↓

where LY(d)
(t) := inf

{
x ≥ 0 : Y(d)(x) = t

}
and RY(d)

(t) := sup
{
x ≥ 0 : Y(d)(x) = t

}
. According

to the proof above, FIY(d)
is an

(
−1/2, 0, νB, I(d)

)
fragmentation with immigration starting from

0 (clearly, this is also valid for d = 0). Recall then the construction of the stationary state Ustat

as explained in (4.11) . It is easy to see that Ustat has the same law as the point measure whose
atoms are the lengths of the excursions below 0 of the process obtained by reflecting Y(d) at the
level of its future infimum. By Corollary 1, [62], this reflected process is a Brownian motion
with drift d. Therefore, if d > 0, Ustat ∈ D a.s. and the stationary distribution is that of the
reordering of the lengths of the excursions below 0 of a Brownian motion with drift d, which is
indeed the distribution of FI(d)(0) (by Girsanov’s theorem). On the other hand, if d = 0, Ustat

is clearly not in D a.s. and then there is no stationary distribution (which was already known,
according to Theorem 4.1 (ii)).

This latter example of fragmentation with immigration constructed from a BES0(3, 0) be-
longs to a class of fragmentation with immigration processes which are constructed from height
functions coding continuous state branching processes with immigration, that we now study.

4.4.2 Construction from height processes

The height processes we are interested in are those introduced by Lambert [49] to code con-
tinuous state branching processes with immigration. Roughly speaking, such height process is
a positive continuous process whose total time spent at a level t corresponds to the amount
of population belonging to the generation t. Here we are interested in height processes con-
structed from stable Lévy processes. Let us first remind their construction: fix β ∈ (1, 2]
and consider X(β) a stable Lévy process with no negative jumps and with Laplace exponent
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E
[
exp(−λX(β)(t))

]
= exp(tλβ), λ ≥ 0; consider next a subordinator Y which is not a com-

pound Poisson process and which is independent of X(β). We denote by dY its drift and by πY
its Lévy measure.

Definition 4.5 The height process (H(β,Y )(x), x ≥ 0) is defined by

H(β,Y )(x) := Y −1(−J(β)(x)) + lim
ε→0

1

ε

∫ x

gx

1{X∗
(β)

(y)−infy≤r≤xX
∗
(β)

(r)≤ε}dy

where J(β)(x) := inf0≤y≤xX(β)(y); X∗(β)(x) := X(β)(x) + Y ◦ Y −1(−J(β)(x)) and

gx = sup{0 ≤ y ≤ x : X∗(β)(y−) = 0} (sup (∅) = 0).

In the special case when β = 2 (X(2) =
√

2B for some standard Brownian motion B) and
Y = id, one has ([29])H(2,id) = X(2)−2J(2), which, according to Pitman’s theorem, is distributed

as a
√

2BES0(3, 0).

By Theorem VII.1.1 in [10], the right-continuous inverse of (−J(β)), which we denote by T(β)

and which is defined as

T(β)(x) := inf
{
u ≥ 0 : −J(β)(u) > x

}
, x ≥ 0,

is a stable subordinator with Laplace exponent q1/β . In others words, T(β) has no drift and

a Lévy measure given by Cβx
−1−1/βdx, x > 0, where Cβ := (βΓ(1 − 1/β))−1 . In the sequel,

∆T(β)
([0, x]) denotes the decreasing rearrangement of jumps of T(β) before time x.

According to [49], the process H(β,Y ) is continuous and converges to ∞ as x → ∞. Let
then L(β,Y )(t) and R(β,Y )(t) be respectively the first and the last time at which H(β,Y ) reaches
t, t ≥ 0, and introduce

E(β,Y )(t) :=
{
L(β,Y )(t) ≤ x ≤ R(β,Y )(t) : H(β,Y )(x) > t

}
.

The decreasing rearrangement of lengths of connected components of E(β,Y )(t) is denoted by
FI(β,Y )(t).

Proposition 4.3 Suppose E [Y (1)] = dY +
∫∞
0
xπY (dx) < ∞. Then, the process FI(β,Y ) is a

fragmentation with immigration process starting from 0 and with values in l1. Its parameters
are

• αβ = 1/β − 1
• cβ = 0

•
∫
D1
f(s)νβ(ds) = β2 Γ(2−β−1)

Γ(2−β)
E
[
T(β)(1)f((T(β)(1)−1)∆T(β)

([0, 1]))
]

when β < 2

= π−1/2
∫ 1

1/2
f(x, 1 − x, 0, ...) (x(1 − x))−3/2 dx when β = 2

•
∫
l1
f(s)Iβ,Y (ds) =

∫∞
0
E
[
f(xβ∆T(β)

([0, 1]))
]
πY (dx) + dYCβ

∫∞
0
f(x, 0, 0...)x−1−1/βdx

f denoting here any positive measurable function on D.
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Note that ν2 = νB/
√

2, νB being the measure introduced in Proposition 4.2. As we shall see
below, this is directly related to the fact that X(2) =

√
2B.

Note also that there are two distinct and independent kinds of immigration: the first integral
in the definition of Iβ,Y codes the immigration of grouped particles (each immigrating group
contains an infinite number of particles) whereas the second integral codes the immigration of
particles arriving one by one.

One may show that FI(β,Y ) is in some sense a fragmentation with immigration process even
when the extra condition E [Y (1)] <∞ is not satisfied, the only difference being then that the
immigration intensity does not satisfy the hypothesis (H1) . One may also prove the existence
of a fragmentation immigration process FI(β,Y ) when Y is a compound Poisson process: it
suffices to extend the definition 4.5 of H(β,Y ) to compound Poisson processes Y . In such case,
Y −1 ◦ (−J(β)) (and then H(β,Y )) is not continuous (there are some positive jumps) and so
L(β,Y )(t) and R(β,Y )(t) may not exist for some t. Setting FI(β,Y )(t) := 0 for those t and keeping
the previous definitions for the others, we obtain a fragmentation with immigration process.

Proof. Informally, in the definition of H(β,Y ) the piecewise constant process Y −1 ◦ (−J(β))
contributes to the immigration and the continuous process

x 7→ lim
ε→0

1

ε

∫ x

gx

1{
X∗

(β)
(y)−infy≤r≤xX

∗
(β)

(r)≤ε
}dy

to the fragmentation. The process Y −1 ◦ (−J(β)) is the future infimum of H(β,Y ). We claim
(details are left to the reader, see e.g. [29]) that the excursions of H(β,Y ) above this future
infimum are independent conditionally on their lengths and distributed as excursions of H(β)

above 0 where

H(β)(x) := lim
ε→0

1

ε

∫ x

0

1{X(β)(y)−infy≤r≤xX(β)(r)≤ε}dy.

This process is the height process that codes a continuous state branching process with branch-
ing mechanism function λ 7→ λβ (see [52]). Let e

(l)
H(β)

be an excursions of H(β) conditioned to

have length l > 0 (this makes sense, although H(β) is not Markovian for β < 2; see [29]) and
for t ≥ 0 let

F l
(β)(t) :=

{
lengths of the connected comp. of

{
x ∈ [0, l] : e

(l)
H(β)

(x) > t
}}↓

.

When β = 2, it is known ([29]) that e
(l)
H(2)

=
√

2e
(l)
B where e

(l)
B is a Brownian excursion with length

l and therefore F l
(β) is an (−1/2, 0, νB/

√
2) fragmentation starting from (l, 0, ...) as explained

in (4.24). When β < 2, Miermont [56] shows that F l
(β) is a self-similar fragmentation with

parameters (1/β − 1, 0, νβ) starting from (l, 0, ...).

Note that Y −1 ◦ (−J(β)) is the inverse of the pure jump subordinator T(β) ◦ Y, and let
(∆T(β)◦Y (ti), ti) denote the jumps and jump times of this subordinator. Then the process FI(β,Y )

is a fragmentation with immigration process where

• particles arrive at times ti in the following manner: either ti is a jump time of Y and
a group of particles with masses ∆T(β)

(s), s ∈ [Y (ti−), Y (ti)) , immigrates at time ti (the
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∆T(β)
(s), s ≥ 0, being the jumps of T(β)); or ti is not a jump time of Y and a unique particle

with mass T(β)(Y (ti)) − T(β)(Y (ti)−) immigrates at time ti;

• each particle splits according to the (1/β − 1, 0, νβ)-fragmentation.

It remains to compute the immigration intensity Iβ,Y . For each jump time ti of T(β) ◦ Y , set

s(ti) :=

{ {∆T(β)
(s), s ∈ [Y (ti−), Y (ti))}↓ when ti is a jump time of Y

(∆T(β)
(Y (ti)), 0, ...) otherwise.

The points (s(ti), ti)’s are the atoms of a Poisson measure with intensity Iβ,Y (ds)dt, t ≥ 0.
Call JY the set of jump times of Y and JT(β)

that of T(β). Then fix f a positive measurable
function on D and t > 0. Using the independence of Y and T(β), Fubini’s theorem and that

(T(β)(x), x ≥ 0)
law
= (xβT(β)(1), x ≥ 0), we get

E

[∑
ti∈JY ∩[0,t]

f (s(ti))

]
= E

[∑
ti∈JY ∩[0,t]

f
(
∆T(β)

([0,∆Y (ti)])
)]

= t

∫ ∞

0

E
[
f(xβ∆T(β)

([0, 1]))
]
πY (dx).

Next, set ImY := {Y (x), x ≥ 0}. Again by independence of Y and T(β),

E

[∑
si∈JT(β)

∩[0,Y (t)]∩ImY
f((∆T(β)

(si), 0, ..))

]
= Cβ

∫ ∞

0

f(x, 0, ..)x−1−1/βdx

×E
[∫ Y (t)

0

1{s∈ImY }ds

]
.

Since
∫ Y (t)

0
1{s∈ImY }ds

a.s.
= tdY , the combination of computations above yields

E
[∑

0≤ti≤t
f(s(ti))

]
= t

∫ ∞

0

E
[
f(xβ∆T(β)

([0, 1]))
]
πY (dx) + tdYCβ

∫ ∞

0

f(x, 0, ...)x−1−1/βdx

and Iβ,Y has the required form. It is easy to check that Iβ,Y satisfies the hypothesis (H1).

Let us now apply the results of Sections 4.2 and 4.3 to the fragmentation with immigration
FI(β,Y ). First, we want to apply Theorem 4.1. To do so, note that when γ < 1/β,

∫

l1

∑
j≥1

sγj1{sj≥1}Iβ,Y (ds) =
CβE [Y (1)]

γ − 1/β

which is finite (provided that E [Y (1)] < ∞). When β < 2, this holds in particular for
γ = −αβ = 1 − 1/β. On the other hand, the jumps of T(β) before time 1 being the atoms of a

Poisson measure with intensity Cβx
−1−1/βdx, x > 0, the distribution of the largest jump ∆large

T(β)

is given by P (∆large
T(β)

≤ x) = exp(−Cββx−1/β) and consequently
∫
l1
sγ11{s1≥1}Iβ,Y (ds) = ∞ when

γ ≥ 1/β, for any subordinator Y 6= 0. In particular
∫
l1
s−α2
1 1{s1≥1}I2,Y (ds) = ∞. Hence, by

Theorem 4.1, Ustat ∈ D a.s. ⇔ β < 2.
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Second, in order to apply Corollary 4.1 (i) to obtain the rate of convergence to the stationary
distribution, note that

∫

l1

∑
j≥1

1{sj≥x}Iβ,Y (ds) = x−1/ββCβE [Y (1)] .

This yields the following result.

Corollary 4.2 Suppose E [Y (1)] < ∞ and Y 6= 0. Then the fragmentation with immigra-
tion (1/β − 1, 0, νβ, Iβ,Y ) has a stationary distribution if and only if β < 2. When β < 2,
the stationary state Ustat belongs to lp for every p > 1/β a.s. Moreover, a fragmentation
with immigration FI(u) with parameters (1/β − 1, 0, νβ, Iβ,Y ) starting from u ∈D such that∑

j≥1 exp(−u1/β−1
j ) <∞, converges in law to L(Ustat) at rate

∥∥L(FI(u)(t)) −L(Ustat)
∥∥ = O(t−

2−β
β−1 ) as t→ ∞.

Moreover one checks that Ustat /∈ l1/β a.s. as soon as dY > 0 or
∫
0
xβ−1πY (dx) = ∞; see

Proposition 4.1 (ii).

Remark. Let FI(0) be an (α, c, ν, I) fragmentation starting from 0. As in the above examples,

it is always possible to find a positive function hFI(0) on [0,∞) such that, writing FI
(0)

(t) for the
decreasing rearrangement of lengths of connected components of {0 ≤ x ≤ R(t) : hFI(0)(x) > t},
R(t) := sup {x ≥ 0 : hFI(0)(x) ≤ t}, then the process FI

(0)
has same law as FI(0). Indeed, let

((s(ti), ti) , i ≥ 1) be the atoms of a Poisson measure with intensity I(ds)dt, t ≥ 0, and define

hI(x) := inf
{
t ≥ 0 :

∑
ti≤t

∑
j≥1

sj(ti) > x
}
.

This function hI is continuous if and only if I(l1) = ∞. Next, conditionally on ((s(ti), ti) , i ≥ 1),
let F (sj(ti)), i, j ≥ 1, be independent fragmentation processes starting respectively from
(sj(ti), 0, ...), i, j ≥ 1. It is known ([14],[9]) that there exist some functions hi,j such that

F (sj(ti)) has same law as F
(sj(ti))

, where F
(sj(ti))

(t), t ≥ 0, is the decreasing rearrangement of
lengths of connected components of {0 ≤ x ≤ sj(ti) : hi,j(x) > t} . The idea, then, is to “put”
the functions hi,j, i, j ≥ 1, on hI , and a natural way to do this is to put them in exchangeable
random order as follows: let (Ui,j, i, j ≥ 1) be a sequence of i.i.d uniform random variables,
independent of the hi,j’s, i, j ≥ 1, and hI . For a fixed i, say that j ≺i j

′ if Ui,j < Ui,j′.
Then, for x ∈ [0,

∑
j≥1 sj(ti)), there exists a unique integer, let us denote it by jx, such that∑

j≺ijx
sj(ti) ≤ x <

∑
j≺ijx

sj(ti) + sjx(ti). Now, call hF,i : x 7→ hi,jx(x), 0 ≤ x <
∑

j≥1 sj(ti),
and introduce

hFI(0)(x) :=
∑

i≥1
1{hI(x)=ti}(ti + hF,i(x− h−1

I (ti−)), x ≥ 0.

This function codes the fragmentation with immigration FI(0) in the sense required above.
Moreover, when c = ν(

∑
j≥1 sj < 1) = 0, one knows (see Theorem 3, [40]) that it is possible to

choose some continuous functions hi,j to code the fragmentations F (sj(ti)), i, j ≥ 1, if and only
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if ν(D1) = ∞. Consequently, it is possible to construct a continuous function hFI(0) to code
the process FI(0) if and only if I(l1) = ∞ and ν(D1) = ∞.

As in the examples of fragmentations with immigration constructed from BES0(3, d) pro-
cesses, it is easy to see that the law of stationary state Ustat of a fragmentation with immigration
FI is obtained by reflecting the function hFI(0) at the level of its future infimum hI and by
considering the family of lengths of the excursions below 0 of the process obtained by this
reflection.

4.5 The fragmentation with immigration equation

The deterministic counterpart of the fragmentation with immigration process (α, c, ν, I) is the
following equation, namely the fragmentation with immigration equation (α, c, ν, I)

∂t 〈µt, f〉 =

∫ ∞

0

xα
(
−cxf ′(x) +

∫

D1

[∑
j≥1

f(xsj) − f(x)
]
ν(ds)

)
µt(dx)

+

∫

l1

∑
j≥1

f(sj)I(ds)

(E)

where (µt, t ≥ 0) is a family of non-negative Radon measures on (0,∞) . The measure µt(dx) cor-
responds to the average number per unit volume of particles with mass in the interval (x, x+ dx)
at time t. The test-functions f belong to C1

c (0,∞) , the set of continuously differentiable func-
tions with compact support in (0,∞) . Note that the hypothesis (H1) implies the finiteness of
the integral

∫
l1

∑
j≥1 f(sj)I(ds) for every f ∈ C1

c (0,∞) . In [8], the stationary solution to this
equation is studied in the special case when α = 1, c = 0, ν(s1 ∈ dx) = 21{x∈[1/2,1]}dx and
ν(s1 + s2 < 1) = 0, I(s2 > 0) = 0 and I(s1 ∈ dx) = i(x)dx for some measurable function i.
Here we investigate solutions and stationary solutions to (E) in the general case.

4.5.1 Solutions to (E)

When I = 0, existence and uniqueness of a solution to equation (E) starting from δ1(dx) are
established in Theorem 3, [38]. More precisely, the unique solution to the equation starting
from δ1(dx) is given for all t ≥ 0 by

〈ηt, f〉 := E
[∑

k≥1
f(Fk(t))

]
, f ∈ C1

c (0,∞) , (4.25)

where F is a standard fragmentation process (α, c, ν). Now, we generalize this to the case when
I 6= 0. In that aim, we recall that some fragmentation with immigration processes starting
from u ∈ R were introduced in (4.9). Recall also that φ is the Laplace exponent given by (4.2)
and that φ = φ− φ(0).

Proposition 4.4 Let µ0 be a non-negative Radon measure on (0,∞) and let u be a Pois-
son measure with intensity µ0. Consider then an (α, c, ν, I) fragmentation with immigration
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(FI(u)(t), t ≥ 0) as introduced in (4.9) and define a family of non-negative measures (µt, t ≥ 0)
by

〈µt, f〉 := E
[∑

k≥1
f(FI

(u)
k (t))

]
, f ∈ C1

c (0,∞) , f ≥ 0. (4.26)

If one of the three following assertions is satisfied

(A1) α > 0,
∫
l1

∑
j≥1 sjI(ds) <∞ and

∫∞
1
xµ0(dx) <∞

(A2) α = 0,
∫
l1

∑
j≥1 sjφ( 1

ln sj
)1{sj≥1}I(ds) <∞ and

∫∞
1
xφ( 1

lnx
)µ0(dx) <∞

(A3) α < 0,
∫
l1

∑
j≥1 s

1+α
j 1{sj≥1}I(ds) <∞ and

∫∞
1
x1+αµ0(dx) <∞,

then the measures µt, t ≥ 0, are Radon and the family (µt, t ≥ 0) is the unique solution to the
fragmentation with immigration equation (E) starting from µ0.

Of course, FI(u) is a “usual” D-valued fragmentation with immigration process as soon as
µ0 [1,∞) <∞.

Remarks. 1) Notice that for all f ∈ C1
c (0,∞), f ≥ 0,

〈µt, f〉 = E
[∑

i≥1

∑
k≥1

f (uiFk (uαi t))
]
+E

[∑
ti≤t

∑
j≥1

∑
k≥1

f(sj(ti)Fk(s
α
j (ti)(t− ti)))

]
,

where ((s(ti), ti) , i ≥ 1) (resp. (ui, i ≥ 1)) are the atoms of a Poisson measure with intensity
I(ds)dt (resp. µ0) and F is an (α, c, ν)-fragmentation, independent of these Poisson measures.
By formula (4.5) , this rewrites

〈µt, f〉 =

∫ ∞

0

E [f(x exp(−ξ(ρ(xαt)))) exp(ξ(ρ(xαt)))]µ0(dx) (4.27)

+

∫ t

0

∫

l1

∑
j≥1

E
[
f(sj exp(−ξ(ρ(sαj u)))) exp(ξ(ρ(sαj u)))

]
I(ds)du

where ξ is a subordinator with Laplace exponent φ. It is not hard to see that there exists some
dislocation measures ν1 6= ν2 that lead to the same φ. In this case, the previous formula shows
that the (α, c, ν1, I) and (α, c, ν2, I) fragmentation with immigration equations have identical
solutions.

2) Assume that one of the assertions (A1), (A2) and (A3) is satisfied, so that the measures
µt, t ≥ 0, are Radon. Then, these measures are hydrodynamic limits of fragmentation with
immigration processes. Indeed, let u(n) be a Poisson measure with intensity nµ0 and call FI(n)

a fragmentation with immigration process with parameters (α, c, ν, nI) starting from u(n). Then,
for every t ≥ 0,

1

n
FI(n)(t)

vaguely→ µt(dx) a.s.

This holds because FI(n)(t) is the sum of n i.i.d point measures distributed as FI(u(1))(t) for

some (α, c, ν, I) fragmentation with immigration FI(u(1)). The strong law of large numbers then
implies that for every f ∈ C1

c (0,∞)

1

n

∑
k≥1

f(FI
(n)
k (t))

a.s.→ E
[∑

k≥1
f(FI

(u(1))
k (t))

]
= 〈µt, f〉
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and the conclusion follows by inverting the order of “for every f ∈ C1
c (0,∞)” and “a.s.”, which

can be done e.g. as in the proof of Corollary 5 of [38].

Proof of Proposition 4.4. Let µt, t ≥ 0, be defined by (4.27) (equivalently (4.26)).

• It is easily seen that these measures are Radon if (A1) holds. To prove this is also
valid for assertions (A2) or (A3), we need to evaluate the rate of convergence to 0 of
P (a ≤ x exp(−ξ(ρ(xαt))) ≤ b) as x → ∞, 0 < a < b < ∞, when α ≤ 0. First, note that
this probability is bounded from above by P (x exp(−ξ(ρ(xαt))) ≤ b) where ξ = ξ1{ξ<∞} is a

subordinator with Laplace exponent φ = φ− φ(0). Then for u ≥ 0 and v > 0,

P (ξ(u) > v) ≤ (1 − e−1)
−1
E
[
1 − exp(−v−1ξ(u))

]

= (1 − e−1)
−1 (

1 − exp(−uφ (v−1)
)
.

(4.28)

When α = 0, this implies that

P (a ≤ x exp(−ξ(t)) ≤ b) = O(φ((ln x)−1)) as x→ ∞. (4.29)

When α < 0, by definition of ρ and conditionally on 2xαt ≤ ρ(xαt) <∞,

2xαt exp(αξ(2xαt)) ≤
∫ 2xαt

0

exp(αξ(r))dr ≤
∫ ρ(xαt)

0

exp(αξ(r))dr = xαt

and consequently, P (2xαt ≤ ρ(xαt) < ∞) ≤ P (exp(αξ(2xαt)) ≤ 1/2) which, by (4.28) , is a
O(xα) as x→ ∞. Moreover, again by (4.28) , P (x exp(−ξ(2xαt)) ≤ b) = O(xα) and therefore,

P (a ≤ x exp(−ξ(ρ(xαt)) ≤ b) = O (xα) as x→ ∞ (4.30)

since

P (a ≤ x exp(−ξ(ρ(xαt)) ≤ b) ≤ P (2xαt ≤ ρ(xαt) <∞) + P (x exp(−ξ(2xαt)) ≤ b).

Now, suppose that (A2) or (A3) holds and take f(x) = x1{x∈(a,b)}, 0 < a < b < ∞. Using the
results (4.29) and (4.30), one sees that 〈µt, f〉 is finite. Hence µt is Radon.

• Suppose that (A1), (A2) or (A3) holds, so that the measures µt, t ≥ 0, are Radon. Consider
then the measures ηt, t ≥ 0, introduced in (4.25). One checks that

〈µt, f〉 =

∫ ∞

0

〈ηxαt, fx〉µ0(dx) +

∫ t

0

∫

l1

∑
j≥1

〈ηsα
j u
, fsj

〉I(ds)du

where fx : y 7→ f(xy), x ∈ (0,∞), f ∈ C1
c (0,∞). Theorem 3 in [38] states that (ηt, t ≥ 0) is a

solution to (E) when I = 0, i.e.

〈ηt, f〉 = f(1) +

∫ t

0

〈ηv, Af〉dv

where

Af(x) = xα
(
−cxf ′(x) +

∫

D1

[∑
j≥1

f(xsj) − f(x)
]
ν(ds)

)
. (4.31)
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This equation relies on the fact that for f ∈ C1
c (0,∞), A(id× f)(x) = x1+αG(f)(x) where G is

the infinitesimal generator of the process exp(−ξ) (see the proof of Th.3, [38] for details).

Using then that xαAfx = (Af)x , one obtains

〈ηxαt, fx〉 = f(x) +

∫ t

0

〈ηxαv, (Af)x〉 dv (4.32)

and therefore, by Fubini’s Theorem1,

〈µt, f〉 = 〈µ0, f〉 +
∫ t
0

∫∞
0

〈ηxαu, (Af)x〉µ0(dx)du

+
∫ t
0

(∫ u
0

∫
l1

∑
j≥1〈ηsα

j v
, (Af)sj

〉I(ds)dv +
∫
l1

∑
j≥1 f(sj)I(ds)

)

= 〈µ0, f〉 +
∫ t
0
〈µu, Af〉du+ t

∫
l1

∑
j≥1 f(sj)I(ds).

Hence (µt, t ≥ 0) is indeed a solution to (E). It remains to prove the uniqueness. This can
be done with some minor changes by adapting the proof of uniqueness of a solution to the
equation (E) when I = 0 (see the third part of the proof of Theorem 3, [38]).

4.5.2 Stationary solutions to (E)

As in the stochastic case, we are interested in the existence of a stationary regime. We say
that a Radon measure µstat is a stationary solution to (E) if the family (µt = µstat, t ≥ 0) is a
solution to (E).

Proposition 4.5 (i) There is a stationary solution to (E) as soon as
∫
l1

∑
j≥1 sjI(ds) < ∞

and conversely, provided that hypothesis (H2) holds, there is no stationary solution to (E) when∫
l1

∑
j≥1 sjI(ds) = ∞. In case

∫
l1

∑
j≥1 sjI(ds) <∞, the stationary solution µstat is unique and

given by
µstat(dx) := x−αµ

(hom)
stat (dx), x ≥ 0,

where the measure µ
(hom)
stat is independent of α and is constructed from c, ν and I by

〈µ(hom)
stat , f〉 :=

∫ ∞

0

∫

l1

∑
j≥1

E [f(sj exp(−ξ(t))) exp(ξ(t))] I(ds)dt, f ∈ C1
c (0,∞) . (4.33)

(ii) Suppose
∫
l1

∑
j≥1 sjI(ds) < ∞ and

∫∞
1
xµ0(dx) < ∞ and let (µt, t ≥ 0) be the solution

to (E) starting from µ0. Then,

µt
vaguely→ µstat as t→ ∞.

1Call [a, b] the support of f and suppose f ≥ 0. Write (Af)x(y) = Af(xy)1{xy>b} + Af(xy)1{a≤xy≤b}.
On the one hand, Af(xy)1{xy>b} ≥ 0 and Fubini’s Theorem holds for this function. On the

other hand,
∣∣Af(xy)1{a≤xy≤b}

∣∣ ≤ C1{a≤xy≤b} for some constant C since Af is continuous and∫∞

0

∫ t

0

〈
ηxαu,1{a≤xy≤b}

〉
duµ0(dx) < ∞ according to the assumptions made on µ0. Hence Fubini’s Theorem

applies to Af(xy)1{a≤xy≤b} and then to (Af)x. The same argument holds for the integral involving I.
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Remarks. 1) It µstat exists, then Ustat ∈ R a.s. and the distribution L(Ustat) is linked to µstat

by

〈µstat, f〉 =

∫

R

∑
j≥1

f(sj)L(Ustat)(ds), f ∈ C1
c (0,∞) .

2) Call Λ := sup{λ :
∫
l1

∑
j≥1 s

λ
j I(ds) <∞} and suppose Λ > 1. Then the statement (i) and

the relations E
[
e−qξ(t)

]
= e−tφ(q), t, q ≥ 0, imply that for all 1 + α < λ < Λ + α,

∫ ∞

0

xλµstat(dx) = φ(λ− α− 1)−1

∫

l1

∑
j≥1

sλ−αj I(ds), (4.34)

and that this integral is infinite as soon as λ > Λ + α or λ ≤ 1 + α, provided φ(0) = 0 (which
is equivalent to c = ν(

∑
j≥1 sj < 1) = 0). This characterizes µstat and is more explicit than

(4.33).

As an example, it allows us to obtain the more convenient expression

µstat(dx) =

(
x−αi(x) + 2x−α−2

∫ ∞

x

yi(y)dy

)
dx

in case ν is binary, ν(s1 ∈ dx) = 21{x∈[1/2,1]}dx, c = 0, and I(s1 ∈ dx) = i(x)dx, I(s2 > 0) = 0
(α ∈ R). This latter result is proved in a different way in [8].

Others examples are given by the equations corresponding to the fragmentation with im-
migration processes constructed from Brownian motions with drift d > 0 (Section 4.4.1). The
immigration measure I(d) satisfies

∫
l1

∑
j≥1 s

λ
j I(d)(ds) < ∞ for all λ > 1/2 and therefore there

exists a stationary solution to the equation. One can use formula (4.34) to obtain

µstat(dx) =
1

d
√

8πx3
exp(−xd2/2)dx, x ≥ 0.

This can also be shown by using remark 1) above and the stationary law L(Ustat) given in
Proposition 4.2 (ii).

3) For fragmentations with immigration (1/β − 1, 0, νβ, Iβ,Y ) constructed from height pro-
cesses (Section 4.4.2), the immigration term satisfies

∫

l1

∑
j≥1

f(sj)Iβ,Y (ds) = E [Y (1)]

∫ ∞

0

f(x)Cβx
−1−1/βdx

which shows the small influence of Y on the equation. Moreover, the latter integral is infinite
when f = id and one checks that the hypothesis (H2) holds, which implies that for all 1 < β ≤ 2,
the equation does not have a stationary solution.

Proof of Proposition 4.5. (i) We first suppose that there exists a stationary solution
µt = µstat, t ≥ 0, to the equation (E). Of course then ∂t 〈µt, f〉 = 0 for every t ≥ 0 and
f ∈ C1

c (0,∞) , and consequently

〈µstat, Af〉 = −
∫

l1

∑
j≥1

f(sj)I(ds)
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where Af is given by (4.31). Letting t → ∞ in (4.32) , we get by dominated convergence that
〈ηxαt, fx〉 → 0 and then that f(x) = −

∫∞
0

〈ηxαv, (Af)x〉 dv, x ∈ (0,∞) . Hence

〈µstat, Af〉 =

∫

l1

∑
j≥1

∫ ∞

0

〈ηsα
j v
, (Af)sj

〉dvI(ds).

We point out that this formula characterizes µstat, since A(id×f)(x) = x1+αG(f)(x) where G is
the infinitesimal generator of exp(−ξ) and since G (C1

c (0,∞)) is dense in the set of continuous
functions on (0,∞) that vanish at 0 and ∞. Using then the definition of ηt and formula (4.5),
one sees that for every measurable function g with compact support in (0,∞)

〈µstat, g〉 =

∫

l1

∑
j≥1

∫ ∞

0

E
[
g(sj exp(−ξ(ρ(sαj v)))) exp(ξ(ρ(sαj v)))

]
dvI(ds) (4.35)

=

∫

l1

∑
j≥1

s−αj

∫ ∞

0

E [g(sj exp(−ξ(v))) exp((1 + α)ξ(v))] dvI(ds)

using for the last equality the change of variables v 7→ ρ(sαj v) and that exp(αξρ(v))dρ(v) = dv

on [0, D) , D = inf
{
v : ξρ(v) = ∞

}
. This gives the required expression for µstat.

Note now that the previous argument implies that a stationary solution exists if and only if
∫

l1

∑
j≥1

∫ ∞

0

E [g(sj exp(−ξ(v))) exp(ξ(v))] dvI(ds) <∞

for all functions g of type g(x) = x1{a≤x≤b}, 0 < a < b. For such function g, the previous
integral is equal to ∫

l1

∑
j≥1

sj1{sj≥a}E
[
T ξln(sj/a)

− T ξ
ln+(sj/b)

]
I(ds) (4.36)

where T ξt := inf {u : ξ(u) > t} , t ≥ 0. If hypothesis (H2) holds and ξ is arithmetic (that is if
(H3) holds), the renewal theorem applies (see e.g. Theorem I.21, [10]) and E[T ξln(t/a) − T ξ

ln+(t/b)
]

converges as t → ∞ to some finite non-zero limit. In such case, the integral (4.36) is fi-
nite if and only if

∫
l1

∑
j≥1 sj1{sj≥1}I(ds) < ∞, ∀ b > a > 0, and therefore, there ex-

ists a stationary solution if and only if
∫
l1

∑
j≥1 sj1{sj≥1}I(ds) < ∞. This conclusion re-

mains valid if (H2) holds and ξ is not arithmetic, since the renewal theory then implies that
lim supt→∞E[T ξln(t/a) − T ξ

ln+(t/b)
] < ∞, and that lim inf t→∞E[T ξln(t/a) − T ξ

ln+(t/b)
] > 0 as soon

as ln b − ln a is large enough. Last, to conclude when (H2) does not hold, remark first that

T ξt = T ξt ∧ e(k) (the subordinator ξ and the exponential r.v. e(k) are those defined in Section
4.1.1) and then that

E
[
T ξln(sj/a)

− T ξ
ln+(sj/b)

]
≤ E

[
T ξln(sj/a)

− T ξ
ln+(sj/b)

]
≤ E

[
T ξln(b/a)

]
<∞.

In this case, the integral (4.36) is finite as soon as
∫
l1

∑
j≥1 sj1{sj≥1}I(ds) <∞, ∀ b > a > 0.

(ii) Under the assumptions of the statement, the measures µt, t ≥ 0, are Radon and therefore
satisfy (4.27) for all continuous function f with compact support in (0,∞). The integral
involving µ0 converges to 0 as t → ∞, since, with the assumption

∫∞
1
xµ0(dx) < ∞, the

dominated convergence theorem applies. Hence 〈µt, f〉 →
t→∞

〈µstat, f〉, using the definition (4.35)

of µstat.
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[47] A.N. Kolmogorov, Über das logarithmisch normale Verteilungsgesetz der Dimensionen
der Teilchen bei Zerstückelung, C.R. Acad. Sci. U.R.S.S., 31 (1941) pp. 99-101.
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