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Introduction

On s’intéresse a I’évolution de systemes de particules se fragmentant au cours du temps. De
tels systemes apparaissent dans des processus physiques variés: on peut penser par exemple a
la dégradation de polymeres, a la fragmentation d’étoiles ou encore a I'industrie miniere ou des
blocs de roche sont brisés de maniere répétitive jusqu’a I'obtention de petits fragments qui sont
ensuite traités chimiquement pour en extraire les minéraux.

Lorsque la fragmentation est intensive, on peut observer une perte de masse suite a ’appari-
tion de particules microscopiques, la masse perdue étant celle de I’ensemble de ces particules.
Cet ensemble, qui grossit avec le temps, est appelé poussiere. Le theme principal de cette these
est I’étude d’un point de vue le plus souvent probabiliste, parfois déterministe, des fragmenta-
tions qui perdent de la masse par apparition de poussiere.

Ce travail est divisé en quatre chapitres. Le premier chapitre est consacré a une famille de
modeles aléatoires et déterministes de fragmentation, et notamment a 1’étude en fonction de la
dynamique de la fragmentation de ’existence de poussiere et des propriétés asymptotiques de
sa masse. Le deuxieme chapitre traite de la régularité de la masse de la poussiere en fonction du
temps dans le cadre de fragmentations aléatoires vérifiant une propriété d’auto-similarité. Ces
mémes fragmentations sont étudiées dans le troisieme chapitre, qui est consacré a la description
de leur généalogie a I’aide d’arbres continus aléatoires. Enfin, le dernier chapitre, qui ne concerne
pas spécifiquement les fragmentations produisant de la poussiere, porte sur I’étude de systemes
avec fragmentation et immigration de particules et de leurs états d’équilibre.

Ces chapitres sont autonomes et sont rédigés en anglais. Les trois premiers chapitres sont, a
quelques modifications pres, les versions d’articles publiés ([38],[39],[40]), le quatrieme est une
version longue d’un article soumis pour publication.

Cette introduction a pour but de présenter les modeles de fragmentations avec lesquels nous
travaillons et de synthétiser les résultats de ce travail de these. Elle se compose de six parties:
une premiere partie introductive au sujet, quatre parties correspondant chacune a un chapitre
de la these et une conclusion.

0.1 Processus de fragmentation

En 1941, Kolmogorov [47] est le premier & considérer un modele aléatoire pour la fragmenta-
tion. Son modele est a temps discret n = 0,1,2,... et décrit I’évolution de particules se scindant
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en un nombre fini de morceaux a chaque étape. Il se construit par récurrence a partir de la
loi d’une suite finie aléatoire s; > sy > ... > sy qui représente les fractions des masses des
morceaux obtenus. Les particules présentes a un temps n évoluent indépendamment les unes
des autres et suivent toutes la méme dynamique: une particule de masse m au temps n se
scinde au temps n + 1 en particules de masses msy,...,msx ou (5i,...,Sy) est une suite aléatoire
de méme loi que (s1,...,sy), indépendante de I’évolution du processus jusqu’au temps n. On
obtient ainsi une chaine de Markov homogene, dans le sens ou la loi de cette chaine issue d’une

particule de masse m est la méme que celle de m fois la chaine issue d’une particule de masse
1.

Nous nous intéressons ici a des modeles de fragmentation a temps continu généralisant celui-
ci. Ces processus sont a valeurs dans ’espace de suites décroissantes

Sl = {S = (81,82,...) 051 Z S9 Z Z O,Z'>1 Si S 1},

muni de la topologie de la convergence terme a terme. Les termes d'une suite s €S! représentent
des masses de particules.

Définition 0.1 Soit (F(t),t > 0) un processus de Markov d valeurs dans S, continu en proba-
bilité. Pour tout 0 < m < 1, on note P,, la loi de F' partant de (m,0,...). Le processus F' est un
processus de fragmentation si pour tout to > 0, conditionnellement a F(ty) = (s1,52,...), le pro-
cessus (F(t+to),t > 0) a méme loi que le processus obtenu en rangeant par ordre décroissant
les termes des suites FO(t), i > 1, ou les processus FY F® ... sont indépendants, de lois
respectives Ps P, ,... .

Cette propriété de fragmentation signifie simplement que les particules présentes au temps
to, de masses s1,S9,..., vont évoluer indépendamment les unes des autres, chacune suivant une
loi qui ne dépend que de sa masse, a savoir, respectivement, P, P, ,... .

On peut construire de maniere simple des exemples de tels processus. Soit ¥ une mesure
finie sur S' et o un réel. On part initialement d’une particule de masse m. Elle se fragmente
au bout d'un temps E de loi exponentielle de parametre m®v(S') en particules de masses
mSy,mSs,... o S =(51,5,...) € S! est une variable aléatoire de loi v(-)/v(S'), indépendante du
temps E. Les particules obtenues se fragmentent a leur tour, suivant une dynamique similaire :
conditionnellement & E et S, soient (E® S®)) 4 > 1, des couples indépendants de variables
aléatoires ot B est distribuée suivant une loi exponentielle de parametre (m.S;)*v(S!) et
est indépendante de S, de loi v(-)/v(S'). La particule de masse m.S; se fragmente alors au
bout d’un temps E® en particules de masses mSZ-S?),mSisg),..., ceci pour chaque ¢ > 1. On
construit ainsi par récurrence un systeme de particules ou une particule de masse m présente a
un temps ¢ se fragmente indépendamment des autres particules présentes avec un taux m®v(ds).
Le processus de fragmentation F' correspondant s’obtient en considérant a chaque temps ¢ la
suite F'(t) des masses des particules présentes, rangées par ordre décroissant. Notons que ce
processus possede une propriété d’auto-similarité: la loi de (F(t),t > 0) sous P, est la méme
que celle de (mF (m“t),t > 0) sous P.
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Fragmentations auto-similaires

D’une maniere générale, si F' est un processus de fragmentation et si la loi de (F(t),t > 0)
sous P, est la méme que celle de (mF(m®t),t > 0) sous P, pour tout m < 1, on dit que
la fragmentation est auto-similaire d’indice a, a € R. Ce parametre « influence la vitesse de
fragmentation : lorsque « est positif, une particule se fragmente d’autant moins vite que sa
masse est petite et par conséquent la vitesse de fragmentation des particules ralentit au cours
du temps; tandis que si « est négatif une particule se fragmente d’autant plus vite que sa
masse est petite et la fragmentation des particules s’accélere. Dans le cas particulier ou o = 0,
le taux de fragmentation d’une particule ne dépend pas de sa masse et la fragmentation est
dite homogéne. Ces fragmentations auto-similaires ont été introduites et étudiées par Bertoin

([13],[14]) en 2001.

Bertoin [13] et Berestycki [9] montrent que la loi d’un processus de fragmentation homogene
F est entierement caractérisée par deux parametres : un coefficient d’érosion ¢ > 0 et une mesure
de dislocation v sur S qui ne charge pas (1,0,...) et telle que [g, (1—s1)v(ds) < co. L’érosion est
un phénomeéme déterministe: le processus F' peut s’écrire sous la forme F(t) = exp(—ct)F(t)
pour tout + > 0 olt F est un processus de fragmentation homogene sans érosion (¢ = 0) et
de méme mesure de dislocation v. Cette mesure v décrit, par I'intermédiaire d'un processus
ponctuel de Poisson, la structure des sauts de F': informellement, la mesure v(ds) représente

le taux de fragmentation d’une particule de masse m en particules de masses ms, s €S'.

Bertoin [14] montre qu’a I'aide d’un changement de temps aléatoire complexe - que nous ne
détaillons pas ici - et bijectif, tout processus de fragmentation auto-similaire peut étre trans-
formé en un processus de fragmentation homogene. La loi d’'un processus de fragmentation
auto-similaire est donc caractérisée par trois parametres: 'indice d’auto-similarité «, le coef-
ficient d’érosion ¢ et la mesure de dislocation v du processus homogene associé. La structure
des sauts d’un processus de fragmentation auto-similaire peut se résumer ainsi: une particule
de masse m se disloque en particules de masses ms, s €S', & un taux m®v(ds). Lorsque v est
finie et ¢ = 0, on retrouve les modeles décrits ci-dessus, ou les particules attendent des temps
de lois exponentielles avant de se fragmenter.

Dans la suite, sauf cas particulier, on considerera toujours que I’état initial d’un proces-
sus de fragmentation F' est composé d’une seule particule de masse 1, c¢’est-a-dire:
F(0) = (1,0,...).

Fragmentation d’intervalles

Une fragmentation d’intervalles est une famille d’ouverts aléatoires emboités (I(t),t > 0) de
(0,1) (I1(t) C I(t') lorsque t’ < t)issuede I(0) = (0,1) et vérifiant une propriété de fragmentation
- et le cas échéant d’auto-similarité - semblable a celle d'une fragmentation & valeurs dans S'.
Elle donne une structure généalogique de la fragmentation. Voici un exemple: si (U,,n > 1)
est une famille de variables aléatoires indépendantes et uniformément distribuées sur (0,1) et si
(N(t),t > 0) est un processus de Poisson de parametre 1 indépendant de cette famille, alors le
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processus I défini par I(t) = (0,1) \{U,,n < N(t)}, t > 0, est une fragmentation auto-similaire
d’indice 1.

Il est possible d’associer a chaque fragmentation auto-similaire F' un processus de fragmen-
tation (Ip(t),t > 0) a valeurs dans les ouverts de (0,1), de méme indice d’auto-similarité que F,

de sorte que si F'(t) désigne la suite décroissante des longueurs des composantes connexes de

Ip(t), t >0, alors F’ ey [14]. On dit alors que Iy est une fragmentation d’intervalles associée

a F'. Réciproquement, les suites rangées par ordre décroissant des longueurs des composantes
connexes d'une fragmentation auto-similaire (/(t),t > 0) a valeurs dans (0,1), donnent une frag-
mentation auto-similaire & valeurs dans St. Notons qu'il existe également une correspondance
entre les lois des processus de fragmentation auto-similaires a valeurs dans S* et celles de pro-
cessus de fragmentation auto-similaires & valeurs dans les partitions de N*={1,2....} ([9], [13],
[14]). C’est par I'intermédiaire des ces fragmentations a valeurs dans les ouverts de (0,1) et dans
les partitions de N* que Bertoin et Berestycki montrent leurs résultats sur la caractérisation
des fragmentations auto-similaires par les triplets (a,c,v).

Le processus du fragment marqué

La structure d’un processus de fragmentation est complexe et parfois difficilement exploitable
pour obtenir des renseignements sur la fragmentation. Cette difficulté peut souvent étre con-
tournée en utilisant le processus du fragment marqué. Soit F' un processus de fragmentation
et Ir une fragmentation d’intervalles associée. Soit U (la marque) une variable aléatoire uni-
formément distribuée sur (0,1), indépendante de Ir. On s’intéresse a 1’évolution au cours du
temps de U'intervalle de I contenant U et on note A(t) sa longueur au temps ¢. Dans le cas
homogene, la construction Poissonnienne de la fragmentation implique ’existence d’un subor-
dinateur & [13], c’est-a-dire d’un processus croissant, cadlag, a accroissements indépendants et
stationnaires, tel que

A= (exp(—£(1)),t > 0).

Il est bien connu [10] qu'un subordinateur est caractérisé par son exposant de Laplace ¢
(Vt,qg > 0, E[exp(—q¢&(t)] = exp(—tgp(q))), et celui-ci s’exprime ici en termes du coefficient
d’érosion et de la mesure de dislocation, par

_ - q+1

o) = cla+ 1)+ [ (1=F0 stwlds). g >0, 1)
Dans le cas d’'une fragmentation auto-similaire, le passage par changement de temps a une
fragmentation homogene et le résultat ci-dessus impliquent ([14]) que

A= (exp(=€(p(1)) 1 > 0),
ou p(t) = inf {u >0 [ exp(ag(r))dr > t}, ¢t > 0.

Les subordinateurs sont des processus bien étudiés ([10],[11]) et I'expression du fragment
marqué A comme fonctionnelle d’'un subordinateur va nous apporter de précieuses informations
sur la fragmentation. Il faut préciser cependant que la loi de F' n’est pas caractérisée par celle
de A, puisque deux fragmentations auto-similaires de parametres différents peuvent avoir des
processus du fragment marqué de méme loi.
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Fragmentation brownienne

On présente ici un exemple de processus de fragmentation construit a partir d’une excursion
brownienne normalisée (e(z),0 < z < 1) (informellement, e est un mouvement brownien sur
I'intervalle unité, conditionné a valoir 0 en z = 0 et en x = 1 et a étre strictement positif
sur (0,1)). Cet exemple a été introduit et étudié par Bertoin [14] et va illustrer et motiver les
résultats des 4 chapitres de cette these. Pour tout ¢t > 0, soit

L(t) = {z € (0,1): e(z) > t}

et F.(t) le réarrangement par ordre décroissant des longueurs des composantes connexes de
I.(t). En utilisant la théorie des excursions browniennes, Bertoin montre que les processus
(L(t),t > 0) et (Fo(t),t > 0) sont des processus de fragmentation auto-similaires d’indice
ae = —1/2, sans érosion et de mesure de dislocation v, donnée par

V2
V3l —x)3
La fragmentation est binaire: a chaque dislocation une particule se scinde en deux morceaux.

Ceci résulte du fait que les minima locaux du mouvement brownien sont presque strement
disjoints.

Ve(s1 € dz) = dr, z €[1/2,1) et ve(s;+s2<1)=0.

Il est évident sur cet exemple que la masse totale > .., (F,);(t) décroit et atteint 0 en un temps
fini (égal & max,ejp 1) e(x)). Pourtant, il n’y a pas d’érosion et au moment olt un intervalle se
disloque en sous-intervalles disjoints, aucune masse n’est perdue puisque la somme des longueurs
des sous-intervalles obtenus est égale a celle de l'intervalle qui vient de se disloquer. La masse
perdue au temps ¢, a savoir 1— ., (F¢);(%), est la masse de la poussiere (ensemble des particules
de masse 0) qui s’est formée suite & une accélération de la fragmentation.

Formation de poussiere

Dans un systeme de fragmentation, la poussiere peut apparaitre de trois facons: soit par
érosion, soit au moment ou une particule se disloque (la masse des morceaux obtenus est stricte-
ment plus petite que la masse de la particule qui vient de se disloquer), soit par accélération
de la fragmentation. Ce dernier phénomene est le plus intéressant et on peut espérer ’observer
lorsque les temps de fragmentation des particules s’accumulent, ce qui produit en temps fini des
particules de masse 0. Ceci peut étre vu comme le phénomene dual de la gélification (apparition
d’une particule de masse infinie) qu’on observe dans certains systemes de coagulation (voir par
exemple [41], [58]).

On considerera dans la suite qu’il y a formation de poussiere pour la fragmentation F' si la
quantité de poussiere produite est non négligeable, c’est-a-dire si elle occassionne une perte de
masse. Ceci se traduit par I'existence d'un temps ¢ tel que la masse ) .., F;(¢), qui ne tient pas
compte des particules de masse 0, soit strictement plus petite que sa valeur initiale, & savoir 1.
La différence 1 — ) .., F;(t) mesure la masse de poussiere.
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L’apparition de poussiere dans certaines fragmentations a été observée pour la premiere
fois par Filippov, un éleve de Kolmogorov, en 1961 [35]. Dans le cas particulier d’'une frag-
mentation auto-similaire d’indice « sans érosion et de mesure de dislocation v finie telle que
V(Y > 8 < 1) = 0 (aucune poussiere n’est formée au moment ot une particule se disloque),
son résultat s’énonce ainsi: il y a formation de poussiere si et seulement si @ < 0. En 2003,
Bertoin [15] généralise ce résultat au cas ou v est infinie: il y a formation de poussiere si et
seulement si a < 0 et plus précisément, si @ < 0, la masse initiale est entierement réduite a
I’état de poussiere en un temps presque surement fini.

La formation de poussiére a intéressé également des physiciens (Edwards et al. [31], McGrady
et Ziff [54]), dans les années 80. Ils ont abordé le probleme d’un point de vue déterministe en
étudiant [’équation de fragmentation suivante

Oyny () = /OOO(QF(y +x2)ne(x 4+ y) — F(2,y)Ly<myn(x))dy. (2)

La quantité ny(x)dz correspond au nombre moyen de particules ayant une masse dans l'intervalle
[z,x + dz) au temps t. Le taux de fragmentation d’une particule de masse = en particules de
masses y et © — y est donné par F(z,y)dy et la symétrie du probleme impose que F(z,y) =
F(z,x —y). La partie positive de l'intégrale traduit alors I'augmentation de particules de masse
x suite a la fragmentation de particules de masses plus grandes, tandis que la partie négative
correspond a la diminution de particules de masse = suite a leur fragmentation en particules
de masses plus petites. Les résultats obtenus dans les papiers [31] et [54] concernent des taux
de fragmentation du type F(z,y) = x* 'h(z/y) (ce qui correspond & Pauto-similarité du cas
aléatoire) pour certaines fonctions h, et sont analogues a ceux de Filippov: il y a formation
de poussiere si et seulement si o < 0. Plus récemment, Jeon [42] et Fournier et Giet [36] ont
étudié 'apparition de poussiere pour des familles de taux de fragmentation ne se factorisant pas
nécessairement sous la forme 2% *h(z/y). Nous renvoyons a leurs travaux pour des résultats
précis.

0.2 Formation de poussiéere pour les fragmentations (7,c,)

Dans ce premier travail, nous nous intéressons a des processus de fragmentation ou une
particule de masse m se disloque en particules de masses ms, s €S!, a un taux 7(m)v(ds),
ou 7 est une fonction continue sur (0,1] qui vaut 1 en 1. Lorsque 7(m) = m® on retrouve
les fragmentations auto-similaires. Ces processus se construisent a partir des fragmentations
homogenes a 1'aide d'un changement de temps dépendant de 7, de maniere analogue a la
construction des fragmentations auto-similaires a partir des fragmentations homogenes. Ils sont
donc caractérisés par 3 parametres: 7, c et v.

Le modele déterministe correspondant est 1’équation “(7,c,v)” suivante:

) = [ 70 (~eas@+ [ [ sas) 1) vas) mian) @

et nous considérons qu’a ’état initial pg = d;, c’est-a-dire qu’il n'y a que des particules de
masse 1. Ici, 'ensemble des fonctions test f est ensemble noté C! (0,1] des fonctions réelles
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a support compact dans (0,1] et de dérivée continue. La mesure de Radon pu,(dz) correspond
a la quantité moyenne de particules ayant une masse dans Uintervalle [x,z + dz) au temps t.
L’intégrale impliquant » .., f(xs;) —f(x) modélise le remplacement de particules de masse z,
suite & leurs dislocations, par des particules de masses s, s = (s1,9,...)€S!. Enfin, le terme
impliquant ¢ correspond & 1’érosion. Dans le cas particulier ot ¢ = 0, out v(s; + 55 < 1) =0 et
ot ¥(s1 € dy) = 213 /2<y<13h(y)dy, on retrouve I'équation de fragmentation (2) avec F(xz,y) =
7(z)x 'h(y/x) ot pour z < 1/2, h(z) est défini par h(z) = h(1 — 2).

Comme dans le cas auto-similaire, on montre qu’'un fragment marqué A dans le modele
aléatoire (7,c,v) peut étre représenté sous la forme A(t) = exp(—&(p(t))) pour tout ¢t > 0, ou &
est un subordinateur dont la transformée de Laplace ¢ est donnée par (1) et p un changement
de temps dépendant de 7. En suivant ce fragment marqué, nous établissons le lien suivant entre
le processus et ’équation de fragmentation (7,c,v).

Théoréme 0.1 [l existe une unique solution (ui,t > 0) a l'équation (7,c,v). Cette solution
se construit a 'aide d’un processus de fragmentation F de paramétres (T,c,v) de la maniére
susvante : pour tout t > 0,

(o) = B [Y._ FE®)] fectol].

On cherche ensuite a savoir quelles fragmentations (7,c,v) produisent de la poussiére. Dans
le cas stochastique ceci se traduit par l'existence d’'un temps ¢ tel que ) .., F;(t) < 1 et dans le

cas déterministe par I'existence d’un temps t tel que fol xp(dz) < 1. Compte tenu du résultat
précédent, ces deux notions sont étroitement liées.

Bien sur, il y a formation de poussiere des qu’il y a de 1’érosion (¢ > 0) ou production de
poussiere au moment de la dislocation d’une particule (v( .-, s; < 1) > 0). L’intérét de cette
étude concerne les modeles ot ¢ = 0 et (3,5, s; < 1) = 0 et nous supposerons dans la suite de
ce chapitre que ces deux conditions sont toujours réalisées. En étudiant le premier instant ol
le fragment marqué est réduit a 1’état de poussiere, on obtient le résultat suivant (la fonction
¢ est définie a partir du coefficient d’érosion ¢ et de la mesure de dislocation v par la formule

(1))

Théoréme 0.2 (i) Il y a formation de poussiére pour la fragmentation stochastique (T,c,v) avec
probabilité 0 ou 1 et cette probabilité est égale a 1 si et seulement s’il y a formation de poussiére
pour la fragmentation déterministe (T,c,v).

(ii) Si 7 est décroissante au voisinage de 0, il y a formation de poussiére pour les fragmen-
tations (T,c,v) si et seulement si

¢ (x)
/0+ e Y s R

Si 7 <7, la fragmentation (7,0,v) est plus rapide que la fragmentation (7,0,v) et les modeles
(7,0,v) produisent donc de la poussiere des que les modeles (7,0,v) le font. Par conséquent,
lorsque 7 n’est pas décroissante au voisinage de 0, il suffit de la comparer a des fonctions
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décroissantes et d’appliquer le résultat (ii) pour obtenir des conditions nécessaires et/ou suff-
isantes pour la formation de poussiere.

On voit en particulier qu’il n'y a pas de poussiere des que 7 est bornée pres de 0 et on
retrouve le résultat déja connu du cas auto-similaire: il y a de la poussiere si et seulement si
a < 0. Remarquons également que lorsque ¢'(0%) < oo, le résultat (ii) s’énonce plus simplement
ainsi: si 7 est décroissante au voisinage de 0, on a formation de poussiere si et seulement si
Jo dz/z7(x) < oo. Filippov [35] avait établi ce critere dans le cas particulier ol v est finie.

On se place maintenant dans le cadre stochastique et on s’intéresse au premier instant ¢ o
toute la masse initiale est réduite a 1’état de poussiere, i.e.

(=inf{t>0: F(t) =0}.

Lorsque la fragmentation est auto-similaire d’indice ov < 0, on sait (Proposition 2, [15]) que ¢
est fini presque surement. Ce phénomene de perte de toute la masse initiale n’a pas toujours
lieu pour une fragmentation (7,c,r) méme s’il y a formation de poussiere. Pour établir le critere
caractérisant la formation de poussiere, on a suivi le fragment marqué. Pour obtenir un critere
caractérisant la perte de toute la masse, on raisonne de méme en suivant un fragment particulier,
qui est cette fois un peu plus gros, a savoir le processus du plus gros sous-fragment : ce processus
part du fragment initial de masse 1 et a chaque fois qu’il y a une dislocation, il suit le plus gros
sous-fragment obtenu. On établit ainsi le résultat suivant.

Proposition 0.1 Supposons que T soit décroissante au voisinage de 0 et que v intégre |log s;|.
Alors, la probabilité P(¢ < oo) est soit égale a 0 soit égale a1 et elle est égale a1 si et seulement
si [y da/aT(z) < oo,

En utilisant ce critere et le théoreme précédent, on peut alors construire des exemples de
processus de fragmentation tels qu’il y ait formation de poussiere et que ( = oo presque
sturement (Chapitre 1.5.2).

En dehors de quelques cas particuliers, dont I'exemple de la fragmentation brownienne
développé précédemment, on ne connait pas explicitement la loi de (. On peut cependant
montrer que sa queue de distribution P(¢ > t) décroit exponentiellement lorsque ¢ — oo si
7(z) > Chx® pour un certain a < 0 et une constante C, > 0. Ce taux de décroissance peut
étre précisé (Proposition 1.8) en fonction de la mesure v. Il est a noter que la masse totale
déterministe m(t) = fol zp(de) a le méme comportement asymptotique lorsque ¢ — oo que
P(¢ > t) (Proposition 1.6).

0.3 Régularité de la masse de poussiere

On s’intéresse ici a la régularité de I’évolution de la masse de poussiere M (t) = 1-> .o, F;(t)
d’une fragmentation auto-similaire F' de parametres («,c,v) sous ’hypothese

a<0, c¢=0, et I/(Z_>1s,~<1)20. (4)
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Commencons par regarder le cas de la fragmentation brownienne F. ou la masse totale
de la poussiere au temps t est donnée par M.(t) = fol lfe(z)<ydz. En utilisant la formule
des temps d’occupation (voir par exemple [60]), on peut réécrire cette masse sous la forme
M.(t) = fot Le(u)du ou L, est le processus de temps local de I'excursion brownienne. Il est bien
connu que le temps local L. (t) peut s’approximer par différentes fonctionnelles de I’excursion
brownienne et en particulier que pour tout ¢t > 0,

S. 2 .S.
Lo(t) %2 lim ¢/ “2 M, (t.2) %2 lim v/271e N, (£
e—0 g e—0

ou M,(t,e) est la somme des longueurs des excursions de e au-dessus de t de longueur inférieure
ae et N(t,e) le nombre d’excursions de e au-dessus de ¢ de longueur supérieure a . Du point de
vue de la fragmentation F,, M,(t,e) représente la masse totale de particules de masse inférieure
a ¢ présentes au temps t et N,(t,e) le nombre de particules ayant une masse supérieure a &
présentes au temps .

On cherche a savoir dans quelle mesure ces résultats se généralisent a une fragmentation
F de parametres vérifiant I’hypothese (4). On commence par étudier I’absolue continuité et la
singularité par rapport a la mesure de Lebesgue de la mesure dM. Sous une contrainte technique
sur la mesure v (on renvoie au Théoreme 2.1 pour un énoncé précis) on obtient :

Théoréme 0.3 (i) Sia > —1 et ¢, i sites;v(dz) < oo, alors presque sirement la

mesure dM a une densité L par rapport a la mesure de Lebesque et cette densité appartient a
Uespace L*(dt @ dP).

(i) Si a < —1, la mesure dM est p.s. singuliére par rapport a la mesure de Lebesgue.

La preuve de la premiere assertion est plus technique que celle de la deuxieme, qui repose sur
le fait (cf. [15]) que les fragmentations d’'indice &« < —1 n’ont qu’un nombre presque strement fini
de masses non nulles & un temps ¢ fixé, ce qui nous permet de conclure que e~ (M (t+¢)— M(t))
converge vers 0 quand € — 0 presque stirement pour presque tout ¢. L’existence d'une densité se
montre a l’aide du théoreme de Plancherel. Le second moment de la transformée de Fourier de
la mesure dM est estimé en suivant deux fragments marqués indépendamment et en évaluant
le comportement de leurs masses au premier instant ou ils sont disjoints.

I est facile de vérifier que l'intégrale [g > ;o sits;v(ds) est toujours finie lorsque

a > —1 et lorsque v(sy > 0) = 0 pour un entier positif N (ce qui signifie que chaque particule,
a chaque étape, se disloque en N — 1 morceaux au plus). Pour de telles mesures de dislocation,
I’existence d'une densité pour le mesure dM ne dépend donc que de I'indice « et de sa position
par rapport a —1.

Introduisons maintenant, par analogie avec ’exemple brownien, la fonction

M(t,&) = Zi>1 E(t)]—{Fi(t)Se}7

qui mesure la masse totale des particules de masse inférieure a ¢ au temps t, et la fonction

N(te) = ZM Lir2e)s
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qui compte le nombre de particules de masse supérieure a ¢ présentes au temps t. On pose
w=¢'(0%), ¢ étant la transformée de Laplace (1) et on suppose dans le théoréme suivant que
1 < oo et que la fragmentation n’est pas géométrique, c’est-a-dire qu’il n’existe pas de réel
0 < r <1 tel que tous les Fi(t), t >0, i > 1, appartiennent a {r* : k € N}.

Théoréme 0.4 Supposons que la mesure dM ait une densité L appartenant o LP(dt @ dP)
pour un p > 1. Alors, pour presque tout t,

e M(te) ™5 L(t)/[al

et
ON(te) B2 L) (1 |al) /|of p.

Ce résultat se montre en deux étapes: tout d’abord, en utilisant la propriété d’auto-similarité
de la fragmentation, on établit que e*E[M (t,e D) | F] — L(t) p.s. quand € — 0, oit D est une
variable aléatoire indépendante de F', de méme loi que inf {t : A(¢) = 0} le premier instant ou le
fragment marqué a une masse nulle. On utilise ensuite un théoreme taubérien qui nous permet
d’“oublier” D dans 'espérance précédente et d’obtenir la limite quand ¢ — 0 de e*M (t,e).
Le comportement de N se déduit de celui de M a l'aide de théoremes abéliens-taubériens.
Ce lien entre les comportements de M et N est montré par Bertoin dans [16], ou il étudie le
comportement de ces fonctions quand ¢ — 0 dans le cas a > 0. Il est intéressant de noter la
différence de ses résultats avec ceux obtenus ci-dessus: quand a > 0 et a condition que v vérifie
certaines propriétés de régularité, il existe une fonction f(¢) ne dépendant que de v telle que
fe)M(te) et ef(e)N(t,e) convergent presque siurement vers une limite non triviale. Ici, lorsque
a < 0, les vitesses de convergence dépendent de «, pas de v.

Lorsque o < —1, on a vu que la mesure dM est singuliere par rapport a la mesure de
Lebesgue. On peut préciser ce résultat en calculant sa dimension de Hausdorff dim 4 (dM).
On rappelle que la dimension de Hausdorff d’'un sous-ensemble E dun espace métrique est
Vinfimum des 7 > 0 tel que sup..inf(g,). cc.(m) 2> |Bil” = 0 olt C.(E) est 'ensemble des
recouvrements de F par des boules de diametre inférieur a €. La dimension de Hausdorff de la
mesure dM est alors définie par

dim 3(dM) = inf {dim »(F) : dM(F) = 1}.
Pour simplifier, on énonce ici le résultat dans le cas ot v(sy > 0) = 0 pour un certain N € N.

Proposition 0.2 S’il existe un entier N tel que v(sy > 0) = 0, alors dim 3 (dM) = 1 A |a| ™"
presque surement.

La mesure dM est donc portée par des ensembles d’autant plus “fins” que l'indice a est
négatif. La majoration dim s (dM) < 1A |a|™" est obtenue & l'aide d’une famille explicite de
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recouvrements d’un ensemble E portant la mesure dM . Pour la minoration, on utilise a nouveau
un couple de fragments marqués, ce qui nous permet de montrer que

E UOOO /OOO lu— ¢ dM (u)dM(#) | < oo

des que v < 1A \a\_l. D’ou la conclusion par application du lemme de Frostman.

Enfin, un dernier résultat sur la régularité de M concerne sa continuité holdérienne.

Proposition 0.3 Supposons que v(sy > 0) = 0 pour un certain N € N. Alors, il existe un
parametre C, ne dépendant que de v tel que presque stirement M est v-holdérienne pour tout
v <1A(C,/|a]) et n'est pas y-héldérienne pour tout v > 1 A (1/ |a).

La masse M est donc d’autant moins réguliere que l'indice « est négatif.

0.4 Généalogie des fragmentations auto-similaires d’indice
négatif

Ce travail, réalisé en collaboration avec Grégory Miermont, a été motivé par des exemples
de processus de fragmentation construits a partir d’arbres continus aléatoires tels qu’Aldous les
a introduits dans [2],[3]. Commengons par définir ces arbres.

Arbres continus. Un arbre réel est un espace métrique complet (7,d) ayant une structure
d’arbre:

-V (v,w) € T2, il existe une unique isométrie f(, ) : [0,d(v,w)] — 7 telle que f(yu)(0) = v
et fw)(d(v,w)) = w; on note [[v,w]] son image.

-si f:[0,1] — 7 est une fonction continue injective telle que f(0) = v et f(1) = w, alors
£([0,1)) = [[v,w]].

On considerera toujours qu’un arbre réel est enraciné; on note () la racine. Une feuille de 7
est un noeud de 'arbre qui n’appartient & aucun chemin de la forme [[(,v[[, v € 7. On note
L(T) 'ensemble des feuilles de 7. Son complémentaire S(7) = 7\L(7) est appelé squelette
de I'arbre.

Définition 0.2 Un arbre continu est une paire (7 ,u) ou T est un arbre réel et 1 une mesure de
probabilité  non-atomique sur 7T qui ne charge que les feuilles et telle que
piv e T (0] N[[0,w]] = [[0,w]]} > 0 pour tout w € S(T). La mesure p est appelée mesure
masse de [’arbre.

Aldous [2] a introduit la notion d’arbres continus aléatoires (dont 'abréviation anglaise est
CRT) en construisant le “CRT brownien” comme limite d’arbres de Galton-Watson renor-
malisés. Une autre fagon de construire cet arbre ([3]) consiste a partir de 'excursion brown-
ienne normalisée e : soit dc(w,y) = e(x) + e(y) — 2inf.cjp, e(2) une pseudo-distance sur
[0,1] et soit 7, = [0,1] / ~. Pespace métrique quotient associé a la relation d’équivalence
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T ~e y & de(z,y) = 0. Alors, l'espace 7, muni de la mesure p, induite par la mesure de
Lebesgue sur [0,1] est un CRT. La racine de cet arbre est la classe d’équivalence du point 0. La
fragmentation brownienne F, se construit a partir du CRT (7,,u.) de la maniere suivante : pour
tout ¢t > 0, F.(t) est le réarrangement par ordre décroissant des p.-masses des composantes
connexes de {v € 7 : d.(D,v) > t}. D’autres exemples de fragmentations auto-similaires se con-
struisent de cette facon a partir de CRT's [56].

I1 est naturel de vouloir généraliser ces exemples en associant a une fragmentation quelconque
un CRT décrivant sa structure généalogique. Les CRTs (7 ,u) ont leurs feuilles a distance finie
de la racine. Par conséquent, u ({v € 7 : d(Q,v) > t}) décroit vers 0 quand ¢t — oo et seules
les fragmentations dont la masse totale diminue ont une chance de pouvoir étre construites,
de maniere analogue au cas brownien, a partir d'un CRT. On se place donc dans le cas ou
a < 0. On suppose également que ¢ = 0 (pour éviter d’obtenir une mesure masse chargeant le
squelette) et que v(> .o, s; < 1) = 0 (pour éviter d’obtenir une mesure masse atomique). Sous
ces hypotheses, nous montrons le résultat suivant.

Théoréeme 0.5 [l existe un CRT (Tp,ur) tel que si pour tout t > 0, F'(t) désigne la suite
décroissante des pp-masses des composantes connexes de {v € T : d(Q,v) > t}, alors F' a

meme loi que F'. De plus, l’arbre Tp est p.s. compact et lorsque la mesure de dislocation intégre
la fonction (s7t — 1), dimy(L(Tp)) = |a| ™" p.s.

La dimension de Hausdorff du squelette, qui est une réunion dénombrable de segments, est
égale & 1. Par conséquent, lorsque v integre la fonction (s;! — 1), la dimension de Hausdorff de
Parbre Ty est 1V |a| " .

L’arbre 77 est la limite en loi d’une suite consistante d’arbres discrets non-ordonnés
(Th,n > 1) que on construit de la maniere suivante. Soit Ir une fragmentation d’intervalles
associée a F' et soit (U,,n > 1) une suite de variables aléatoires indépendantes uniformément
distribuées sur (0,1), indépendantes de Ir. L’arbre T est une branche de longueur D; olt
Dy =sup{t: U, € Ir}. Soit ensuite Dyy 2y le premier instant ou U et U, n’appartiennent plus
a la méme composante connexe de . L’arbre T2 s’obtient a partir de T en ajoutant & distance
Dy, 9y de la racine une branche de longueur Dy — Dy; 2y = sup {t: Uy € Ip} —Dy19y. A la n-ieme
étape, on introduit Dy, n—1),} le premier instant ou la composante connexe contenant U, ne
contient aucun des U;, 7 < n —1, et on considere un j < n —1 tel qu'au temps (D, n—1)n}—)
U, et U; appartiennent a la méme composante connexe. On ajoute sur le chemin reliant la
j-ieme feuille & la racine une nouvelle branche - de longueur sup {t : U,, € Ir} — Dyq,.on—1)n} -
a distance Dy(1,...n—1),n} de la racine. On construit ainsi par récurrence des arbres 1% a n feuilles
et on utilise un résultat d’Aldous [3] pour conclure que ces arbres convergent en loi vers un
arbre continu 7. La mesure pp est alors la limite des mesures empiriques associées aux feuilles
des T.

La majoration dimy(L(7r)) < |a|™" s'obtient & l'aide d'une famille de recouvrements
adéquats de I'arbre. On obtient de la méme facon la compacité. La preuve de la minoration est
plus technique. Une premiere approche consiste a utiliser le lemme de Frostman, ce qui nous
permet d’obtenir le minorant ||~ dans les cas ot v est finie et v(sy > 0) = 0 pour un N € N.
Pour une mesure de dislocation v quelconque, l'idée est de se ramener au cas précédent en
considérant le sous-arbre ’TFN’6 C T construit a partir de 7 en ne gardant a chaque noeud :
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- soit que le plus gros sous-arbre issu de ce noeud si la masse relative de ce sous-arbre par
rapport a la masse totale des sous-arbres issus du noeud est supérieure a 1 — ¢;

- soit, si ce n’est pas le cas, que les NV plus gros sous-arbres.

On obtient ainsi un CRT (7,°,un°). Le lemme de Frostman permet d’obtenir un minorant
pour la dimension de Hausdorff de £(7T ) et donc de £(7z). Ce minorant converge vers |a| ™"
quand € | 0 et N T oo deés que fsl(sfl — 1r(ds) < oc.

On a construit un CRT codant la fragmentation F. Dans le cas de 'exemple brownien, ce
CRT est lui méme codé par une fonction continue positive sur [0,1], s’annulant en 0 et en 1. A
nouveau, on aimerait savoir si ces exemples se généralisent aux fragmentations. On sait qu’il
n’est pas toujours possible de construire un CRT a partir d’une fonction continue. Aldous [3]
montre que pour que ce soit possible il faut et il suffit que ’arbre soit compact et ordonné de
fagon a ce que les feuilles soient denses dans l'arbre en respectant ’ordre. Pour appliquer ce
résultat a I’arbre 7p, on commence par mettre un ordre par récurrence sur les arbres 77%. On
vérifie ensuite facilement que les feuilles sont denses si et seulement si v(S') = co. Comme
I'arbre est compact, on en déduit l'existence d'une fonction Hp (appelée fonction de hauteur
de 'arbre) continue positive sur [0,1] s’annulant en 0 et en 1, telle que 7p = [0,1] / ~p, on

T ~ppy < dzy) = He(z) + He(y) — 2 él[lf }HF(Z) =0
zelx,y
et telle que pp soit la mesure image par la projection sur l’espace quotient de la mesure de
Lebesgue. Ainsi, une version de F peut se construire a partir de la fonction continue Hp de
maniere identique a la construction de la fragmentation brownienne a partir de I’excursion nor-
malisée brownienne: si F’(t) est la suite décroissante des longueurs des composantes connexes

de {x € [0,1] : Hp(z) > t}, t > 0, alors FeF,

Théoréme 0.6 Supposons que la fonction x — v(s; < 1—z) varie réguliérement quand x — 0
avec indice ¥ € (0,1). Alors presque surement, la fonction Hp est héldérienne d’indice 7,
Vy <9I A |al, et nest pas héldérienne d’indice v, Yy > 9 A |a.

On obtient plus généralement, si la fonction x — v(s; < 1 —x) n’est pas a variation réguliere
en 0, un encadrement de l'indice de Holder maximal de Hp (Théoreme 3.4).

Ces résultats sur la dimension de Hausdorff de ’arbre 7 et sur la régularité holdérienne de
sa fonction de hauteur s’appliquent en particulier a I’arbre stable d’indice 3,1 < 8 < 2. Lorsque
B = 2, cet arbre est le CRT brownien. Lorsque 1 < 8 < 2, ¢’est un CRT qui est la limite en loi
quand n — oo d’arbres de Galton-Watson critiques ayant une loi de reproduction (n(k),k > 0)
telle que n(k) ~ Ck~'17P et conditionnés & avoir n feuilles et des arétes de longueur nﬁfl_l,

k
28], [29].

Soit (73,15) un arbre stable d’indice 8 et pour tout ¢ > 0, soit Fj(t) la suite décroissante
des pg-masses des composantes connexes de {v € 73 : d(0,v) > t}. Miermont [56] montre que le
processus (Fp(t),t > 0) est un processus de fragmentation auto-similaire d’indice 1/8 — 1 sans

érosion et calcule explicitement sa mesure de dislocation vg. On vérifie que cette mesure integre
la fonction (57! — 1) et que vg(s; < 1 —x) ~ Cz® ' au voisinage de 0. Il résulte alors des
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théoremes ci-dessus que la dimension de Hausdorff de ’arbre stable 73 est presque strement
égale a /(0 — 1) et que sa fonction de hauteur est presque strement holdérienne d’indice
pour tout v < (8 — 1)/8 et n’est pas holdérienne d’indice v pour tout v > (8 — 1)/3. Ces
résultats ont été obtenus indépendamment par Duquesne et Le Gall [30].

0.5 Fragmentation avec immigration

On introduit ici des modeles aléatoires et déterministes qui décrivent I’évolution d'un systeme
avec fragmentation et immigration (arrivée réguliere) de particules. Ceci correspond a ’exemple
sus-cité des industries minieres ou des blocs de roche sont amenés en permanence pour étre
fragmentés. On s’intéresse en particulier a ’existence d’un état d’équilibre pour de tels systemes,
ce qui peut étre interprété comme un moyen de compenser grace a l'immigration la perte de
masse par formation de poussiere, et plus généralement la fragmentation de particules.

Les processus de fragmentation avec tmmigration sont a valeurs dans l'espace des suites
décroissantes tendant vers 0 a l'infini
D={s= (sj)].>1 181> 89 > ... >0, lim s; =0},
> 00
muni de la distance d(s,s’) = sup;s, |s; — s}|. Ils modélisent des systémes ou I'immigration
et la fragmentation se déroulent indépendamment. L’immigration est codée par un processus
ponctuel de Poisson a valeurs dans D de mesure d’intensité [ telle que

/Dzjzl (s; A1) I(ds) < oo,

ce qui assure que la masse totale des particules immigrant dans un intervalle de temps fini est
presque strement finie. La fragmentation est une fragmentation auto-similaire de parametres
(av,c,v) .

Définition 0.3 Soient u = (uj,ug,...) € D une suite aléatoire et ((s(t;),t;),i > 1) les atomes
d’un  processus ponctuel de Poisson d’intensité I, indépendante de u. Soit
(F™ F@) ni g > 1) une famille de fragmentations (a,c,v) mutuellement indépendantes et
indépendantes de u et ((s(t;),t;),i > 1). Alors, presque surement pour tout t > 0, le
réarrangement par ordre décroissant

FIM(t) = {un ™ (upt),s;(8) F O (5 (83) (¢ = )0, > 1ty <t}

existe et appartient ¢ D. Le processus FI™ est appelé processus de fragmentation avec immi-
gration de paramétres (c,c,v,I) partant de u.

Autrement dit, la suite F'7™ (¢) est la suite des masses de particules provenant d’une part de
la fragmentation pendant un temps ¢ des particules de masses uy,us,... présentes au temps 0 et,
d’autre part, de la fragmentation pendant un temps ¢t —¢; de particules de masses s1(t;),s2(t;),...
ayant immigrées au temps t;, t; < t. Le processus F 1™ est fellérien.
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Voici un exemple de processus de fragmentation avec immigration. Soit B un mouvement
brownien réel issu de 0 et
Ba(z) = B(z) + dz,x > 0,

un mouvement brownien avec une dérive d > 0. Pour chaque ¢ > 0, on note F4)(t) la suite
rangée par ordre décroissant des longueurs des excursions finies de B(g) au dessus de t. Grace a
la théorie des excursions browniennes, on voit que F'/4) est un processus de fragmentation avec
immigration : la fragmentation est celle construite a partir de I’excursion brownienne normalisée,
de parametres (ae,0,v.); et 'immigration est caractérisée par I(g(sy > 0) = 0 (les particules
arrivent une par une) et

Lay(s1 € dz) = \/(27) Lo ™3/? exp(—ad®/2)dz, x >0,

Par ailleurs, la propriété de Markov forte du mouvement brownien implique que le processus

F4) est stationnaire, c’est-a-dire que F'Ig (1) o F[(d)(O) pour tout ¢ > 0. Le Théoreme de
Girsanov permet d’obtenir explicitement cette loi stationnaire (Proposition 4.2 (ii)).

Ceci nous amene a la question suivante: existe-t-il dans le cas général un état d’équilibre,
c’est-a-dire une loi stationnaire pour le processus F'I, et si oui, quelle est la vitesse de con-
vergence vers cet équilibre”? Un candidat naturel pour une loi stationnaire est la limite en
loi éventuelle du processus FI partant de (0,0,...). Cette limite, si elle existe, se construit
de la maniere suivante: soient F®9) 45 > 1, des fragmentations (a,c,v) indépendantes et
((s(t;),t;) i > 1) un processus ponctuel de Poisson d’intensité I, indépendant des fragmenta-
tions F(7). Si les termes sj(ti)F(i’j)(s?‘(ti)ti), i,J > 1, peuvent étre rangés par ordre décroissant
de maniere a former une suite de D, alors la loi de cette suite

Usar = {8;(t:) FO) (3 (t;)t:),i.5 > 1}

est la limite cherchée. En combinant des résultats sur les processus ponctuels de Poisson et sur
les fragmentations auto-similaires, on obtient alors la caractérisation suivante pour l’existence
d’une loi stationnaire. Soit

ap = —sup {a >0: / s11¢s, 131 (ds) < oo} . (5)
D

Siar < 0etsia>ar,alors Ug, existe presque stirement et sa loi est I'unique loi stationnaire.
Sia < ar, il n’y a pas de loi stationnaire. Dans ce dernier cas, avec une probabilité non nulle les
particules de masses supérieures a un (qui se fragmentent d’autant moins vite que I'indice « est
négatif) s’accumulent et la suite Ugy,g n’existe pas. Des résultats concernant les cas critiques
ar = 0 ou a = ay et la structure de Ug,,, c’est-a-dire son appartenance a certains espaces
P={seD:> ., s <oo}, p>0,sont donnés dans les Théoremes 4.1, 4.2 et 4.3.

En ce qui concerne la vitesse de convergence vers la loi stationnaire, on obtient des résultats
tres différents suivant que @ > 0, @ = 0 ou o < 0. La distance considérée sur les mesures de
probabilité sur D est la distance de Fortet-Mourier

[ remtas) = [ sonas).

D(pp') = sup
f 1-Lipschitzienne,
supsep|f(s)|<1



24 Introduction

On rappelle qu'une fonction 1-Lipschitzienne est une fonction telle que |f(s) — f(s')| < d(s,s)
pour tous s,s’ € D, et que la distance ® induit la topologie de la convergence faible. Dans
I'énoncé suivant, v(t) = HE(FI(“) (1) — E(Ustat)H est la vitesse de convergence vers la loi sta-
tionnaire; £(F 1™ (t)) désigne la loi de FI™(t) et £(Uygy) la loi stationnaire. Les suites initiales
u sont déterministes.

Théoréme 0.7 (i) Supposons que a > 0, que [, 2321 si1(ds) < oo pour un certain p > 0 et
que u € [P. Alors, pour tout a < 1/a, v(t) = o(t™®) quand t — oo.

(ii) Supposons que o =0, que [, Zj>1 s;ﬁl(ds) < oo pour un certain € > 0 et que u € [},

Alors, pour tout a < ¢(e)/ (2 +¢), v(t) = o(exp(—at)) quand t — oc.

(ili) Supposons que a < 0, que [, 3 ":; 85 1g>1yI(ds) < oo et que Y., exp(—uf) < 0.
Alors, 1l existe une constante A > 0 telle que lorsque t — 00,

v(t) = O(/D 2]21 s;“ exp(—Ats;?‘)I(ds) + exp(—Atuf))

Le résultat dans le cas ou « est négatif peut-étre précisé (Théoreme 4.4) et rendu plus
explicite lorsque la fonction z +— fD 2]21 15,211 (ds) vérifie certaines propriétés de variation
réguliere (Corollaire 4.1). Le principe de la preuve de ce théoreme est le méme dans les trois
cas @ > 0, a = 0 et a < 0. Il repose sur une méthode de couplage: on considere FI™ une
version du processus partant de u et FI(Ustat) une version partant de Ug,, et on arréte ces
processus a un méme temps 71" au-dela duquel seules les particules provenant de 'immigration
jouent un role “non-négligeable”, dans le sens ou toutes les particules issues des états initiaux
u et Ugye ont une masse inférieure a une certaine quantité r(t) pour tout ¢ > T. Comme
I’évolution des particules immigrées est la méme (en loi) pour FIM et FI(Ustat) ] ’ensuit que
v(t) <2(r(t)+ P(T > t)) et le résultat découle de la vitesse de convergence vers 0 de P(T > t).
La différence entre les trois cas a > 0, « =0 et o < 0 est dans le choix du couple (r,T).

Pour finir, nous considérons un modele déterministe pour la fragmentation avec immigration,
a savoir I’équation “(a,c,v,1)”

ot = [Tt (err)+ [ X ) - 1) vas)) ulan

< [ X s,

qui ajoute un facteur d’immigration a I’équation (3) étudiée ci-dessus. L’ensemble de fonctions
tests ici est I’ensemble des fonctions f définies sur (0,00), & support compact et de dérivée con-
tinue. On le note C}(0,00). Soit pp une mesure de Radon sur (0,00) telle que g [1,00) < 0o et soit
(u(t;),i > 1) un processus ponctuel de Poisson d’intensité . On note u(pg) le réordonnement
décroissant des termes de cette suite et on considere FI(#0) un processus de fragmentation
avec immigration partant de u(ug). A 'aide du Théoreme 0.1 ci-dessus on montre que la famille
de mesures (p,t > 0) définies par

(o) = E[Y2,_ FER )], fect000),

(6)
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est 'unique solution a ’équation (6), pourvu que les mesures p; soient de Radon. On renvoie a
la Proposition 4.4 pour des conditions suffisantes sur pg et I pour que les mesures p; soient de
Radon et également pour une extension de ce résultat a une mesure initiale yy ne vérifiant pas
nécessairement 'hypothese i [1,00) < oo.

On s’intéresse ensuite aux solutions stationnaires de 1’équation (6), c’est-a-dire aux mesures
de Radon pigat telles que la famille constante p; = figar, ¢ > 0, soit une solution a (6). Le
subordinateur ¢ intervenant dans le résultat suivant est toujours celui associé au fragment
marqué de la fragmentation.

Proposition 0.4 Supposons que [, 2]21 s;I(ds) < oco. Il y a alors une unique solution sta-

tionnaire figay €t pour tout a € R, pgpar(dz) = x*apggn)(dx) ot la mesure ué?;):l) est indé-

pendante de « et est définie pour toute fonction f € Cl(0,00) par

Wl @op) = [ [ 52 BLfssexp(-€) exple(o)) 1)t

Si de plus (p,t > 0) est la solution a l’équation (6) partant d’une mesure o telle que

foo zpo(dr) < oo, alors iy vaguement Istat quand t — o0o.

1

Contrairement au cas stochastique, la condition d’existence de la loi stationnaire ne dépend
pas ici de l'indice d’auto-similarité a. On montre réciproquement que si E[{(1)] < oo (ce qui
est équivalent & ¢ = v(3 ;s < 1) = 0 et ¢'(07) < oo) et si [, s;I(ds) = oo, il 'y
a pas de solution stationnaire & ’équation (6). Sous ces hypotheses sur £ et I, les masses des
particules s’accumulent dans des compacts [a,b], 0 < a < b, et la mesure ., définie dans la
proposition ci-dessus (qui de toute fagon est la seule mesure stationnaire possible) n’est pas une
mesure de Radon.

0.6 Conclusion

Il est intéressant de noter que la plupart des résultats obtenus dans le cadre des fragmenta-
tions auto-similaires sans €érosion et sans production de poussiere au moment de la dislocation
d’une particule (nous supposons dans cette conclusion que ces deux conditions sont toujours
réalisées) dépendent essentiellement de I'indice d’auto-similarité « et de sa position par rapport
a certains indices “critiques”. Ainsi, trois indices critiques apparaissent : o = 0, « = —1 et, pour
les modeles avec immigration, a = «; (ce dernier indice étant défini par la formule (5)).

La condition o < 0 caractérise I'existence de poussiere et nous montrons ainsi que des que
a < 0, la structure généalogique de la fragmentation aléatoire se décrit a I'aide d’un arbre
continu aléatoire compact, dont la dimension de Hausdorff est égale a 1V |04\_1 (pourvu que
le plus gros fragment obtenu lors d'une dislocation ne soit pas trop petit, i.e. que v integre
s;t—1).

Cette dimension atteint donc un seuil critique en a = —1, en dessous duquel ’arbre est tres
fin et la fragmentation tres rapide. La méme limite intervient dans les résultats sur la régularité
de la masse (aléatoire) de poussiere M puisque presque surement, la mesure dM est singuliere
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lorsque a@ < —1, tandis que si @« > —1 et si la fragmentation est N-aire (chaque particule se
fragmente en au plus N morceaux), la mesure dM a une densité. Lorsque la fragmentation
n’est pas N-aire, la condition a@ > —1 n’est pas suffisante a priori pour établir I'existence d’une
densité et le critere que nous obtenons dépend de maniere plus significative de la mesure de
dislocation v.

Pour les systemes aléatoires avec immigration, le parametre «; correspond a une limite en
deca de laquelle la fragmentation des grosses particules immigrées n’est pas assez rapide, ce
qui entraine I’accumulation de grosses particules et 'absence d’un état d’équilibre. Par contre,
lorsque @ > oy, 'immigration “compense” la fragmentation et le systeme converge vers un état
stationnaire a une vitesse qui dépend fortement de la position de o par rapport l'indice critique
0. Dans les modeles déterministes, l'indice o n’influence pas l'existence d’une loi stationnaire
(il suffit pour cela que la masse moyenne immigrant par unité de temps soit finie).

Notons cependant qu’il y a quelques résultats qui dépendent significativement de la mesure
v. En particulier, nous avons vu que si I'indice « est strictement négatif, il existe une fonction
continue codant la fragmentation si et seulement si v(S') = oo, et la continuité holdérienne de
cette fonction dépend alors a la fois de I'indice o et du comportement au voisinage de 0 de la
fonction z — v(s; < 1 — x).

Dans le cadre plus général ot les particules se fragmentent a un taux 7(z)v(ds), nous avons
vu que c’est essentiellement le comportement de 7 en 0 qui caractérise I'existence de poussiere:
dans la mesure ou 7 est décroissante au voisinage de 0 et ou les fragments produits par v ne
sont pas trop gros (¢'(07) < 00), 'existence de poussiere est équivalente & [, dz/27(z) < co.

Il est naturel de se demander alors si les résultats des chapitres 2, 3 et 4 sur les fragmen-
tations auto-similaires se généralisent aux fragmentations (7,0,v). Pour la plupart la réponse
est positive, et souvent ces résultats se déduisent des cas auto-similaires par comparaison, sim-
plement parce que les particules se fragmentent plus vite dans le modele (7,0,r) que dans le
modele (7/,0,v) lorsque 7 > 7'.

Ainsi, si 7 décroit dans un voisinage de 0 et si [, dz/z7(x) < oo, on montre que la frag-
mentation peut étre codée par un arbre aléatoire continu d’Aldous et, si de plus la mesure v est
infinie, par une fonction continue. Des encadrements de la dimension de Hausdorff de I’arbre et
des coefficients de Hoélder de la fonction continue associée peuvent étre obtenus en fonction du
comportement de 7 en 0.

De méme, les résultats sur 'immigration s’adaptent bien aux modeles dépendant de 7 (dans
ce cas il faut considérer des fonctions 7 définies sur (0,00)): si 7(m) < Cm® sur (0,00) avec
a < ay, il n’y pas de loi stationnaire, tandis que si 7(m) > Cm? sur (0,00) avec 8 > ar,
il y a une loi stationnaire et la vitesse de convergence vers la loi stationaire est plus rapide
pour une fragmentation (7,0,) que pour une fragmentation (3,0,v). Par ailleurs, les conditions
d’existence d’un état d’équilibre pour 1’équation déterministe associée (on remplace m® par
7(m) dans I'équation (6)), sont exactement les mémes que dans le cas auto-similaire et la

solution stationnaire est alors donnée par pga;(dz) = (7(z)) ™! pulhom) (dz) avec la méme mesure

1™ que dans la Proposition 0.4.

Il semble plus difficile de généraliser les résultats sur la régularité de la masse de poussiere M
aux cas (7,0,v). Seule la preuve de la singularité de la masse dM s’adapte bien : par comparaison,
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on voit que dM est presque stirement singuliere dés que 7(m) > Cm™! pres de 0. On peut
d’ailleurs améliorer ce critere et montrer que la masse dM est presque stirement singuliere des
que [, dz/z*7(z) < oo et que la fonction m — m7(m) décroit dans un voisinage de 0. Dans
le cas auto-similaire, les résultats sur 'existence d'une densité et sur 'approximation de cette
densité par des fonctionnelles dépendant des petits fragments reposent sur les égalités en loi
de (F(t),t > 0) sous P, et de (mF(r(m)t),t > 0) sous P;, m > 0. Ces égalités, et par suite
nos preuves, ne sont plus valables si la fonction 7 n’est pas proportionnelle a une puissance.
Par comparaison, on obtient quand méme des résultats sur le comportement asymptotique des
fonctionnelles dépendant des petits fragments.

Enfin, pour compléter I’étude entreprise au chapitre 3 sur la généalogie des fragmentations
auto-similaires, nous signalons qu’il est possible de décrire la généalogie des fragmentations
d’indice « positif ou nul a ’aide d’arbres continus aléatoires dont toutes les feuilles sont a une
meéme distance de la racine. Il serait intéressant d’étudier la structure de ces arbres, ainsi que
celle de leurs feuilles.
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Chapitre 1

Loss of mass in deterministic and
random fragmentations

Abstract: We consider a linear rate equation, depending on three parameters, that modelizes
fragmentation. For each of these fragmentation equations, there is a corresponding stochastic
model, from which we construct an explicit solution to the equation. This solution is proved
unique. We then use this solution to obtain criteria for the presence or absence of loss of mass
in the fragmentation equation, as a function of the equation parameters. Next, we investigate
small and large times asymptotic behavior of the total mass for a wide class of parameters.
Finally, we study the loss of mass in the stochastic models.

1.1 Introduction

Fragmentation of particles appears in various physical processes, such as polymer degradation,
grinding, erosion and oxidation. In the models we consider, there are only particles with mass
one at the initial time. Those particles split independently of each others to give smaller
particles and each obtained particle splits in turn, independently of the past and of others
particles. And so on ... The splitting of a particle of mass = gives rise to a sequence of smaller
particles with masses xsq, xss, ... where s; > s > ... > 0. Thus, it is convenient to introduce
the following set:

Note that we take into account the case when > s; < 1, which corresponds to the loss of a
i=1

part of the initial mass during the splitting. The rate at which a particle with mass one splits

is then described by a non-negative measure v on S* = St \ {(1,0,0,...)}, called the splitting

measure. This measure is supposed to fit the requirement

/*(1 — s1)r(ds) < o0 (1.1)
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(see the Appendix for an explanation). Note that the case when v(S*) = oo, which is often
excluded from fragmentation studies, is here included.

A linear rate equation has been developed (see e.g. [31]) to study the time evolution of
the mass distribution of particles involved in a fragmentation phenomenon (see also [20] for
physical studies on fragmentation). Here, we consider the special case when the splitting rate
for a particle with mass x is proportional to that of a particle with mass one. More precisely,
this splitting rate is equal to 7(z)v(ds), where 7 is a continuous and positive function on |0, 1]
such that 7(1) = 1. As we will see in the next section, 7 should be seen as the speed of
fragmentation. Our deterministic fragmentation model is the weak form of this linear rate
equation and describes the evolution of the family (i, ¢ > 0) of non-negative Radon measures
on |0, 1], where u(dx) corresponds to the average number per unit volume of particles with
mass in the interval (x,x + dz) at time ¢. This so-called fragmentation equation is

ot )= [ ) (—cxf’(x) -/

po = 01(dx)

=1

S flwsi) - f(af)] u(ds>) pld)

for test-functions f belonging to C! (]0,1]), the set of differentiable functions with compact
support in ]0,1]. The second term between parentheses on the right side of equation (1.2)
corresponds to a growth in the number of particles of masses xsy, s, ... and to a decrease in
the number of particles of mass x, as a consequence of the splitting of particles of mass x. The
first term between parentheses on the right side of (1.2) represents a loss of particles of mass x,
as a result of erosion. The constant ¢ is non-negative and called the erosion coefficient of the
fragmentation. The function 7, the constant ¢ and the measure v are called the parameters of
the fragmentation equation.

We next introduce a random fragmentation model, called fragmentation process. A fragmen-
tation process (F'(t),t > 0) is a Markov process with values in St satisfying the fragmentation
property, which will be defined rigorously in Section 1.2. Informally, this means that given the
system at a time t, say F'(t) = (s, S2, ...), then for each i € N*, the fragmentation system stem-
ming from the particle with mass s; evolves independently of the others particles and with the
same law as the process I’ starting from a unique particle with mass s;. And then, if we denote
by (s;,;(r));>1 the masses of the particles stemming from the one with mass s; after a time r, the
sequence F'(t + r) will consist in the non-increasing rearrangement of the masses (s; (1)) j>1-
A family of fragmentation processes with a scaling property (namely the self-similar fragmen-
tation processes) was studied by Bertoin in [13], [14] and [15]. In Section 1.2, the main results
on these processes are recalled and a larger set of fragmentation processes, characterized each
by the three parameters 7, ¢ and v of a fragmentation equation, is constructed.

This set of fragmentation processes is used to study the fragmentation equation. More pre-
cisely, given the parameters 7, ¢ and v, we construct in Section 1.3 the unique solution to the
fragmentation equation with parameters 7, ¢ and v, by following a specific fragment (the so-
called size-biased picked fragment process) of the corresponding fragmentation process. Let F'
denote this fragmentation process. The solution to the fragmentation equation is then given
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for each t > 0 by

(e, f) = E for f € C, (]0,1]), (1.3)

> FE )

where (F7(t), F5(t),...) is the sequence F7(t). As a general rule, given a fragmentation process
F, we denote by (Fi(t), F5(t), ...) the sequences F'(t), t > 0.

The main purpose of our work is to study the possible loss of mass in these deterministic
and stochastic fragmentation models. If the family (u;, ¢ > 0) is a solution to the fragmentation
equation (1.2), it is easy to see that the total mass (u,id) is non-increasing in ¢. We say that
there is loss of mass in the fragmentation equation if there exists a time ¢ such that

(e, id) < (o, id) = 1.

We will see that this is equivalent to loss of mass in the corresponding fragmentation process,
as a result of:

oo
>0 (u,id) <1l as I >0: ZF[(t) <L
i=1

There are three distinct ways to lose mass. The first two are intuitively obvious: there is loss
of mass if the erosion coefficient is positive or if the splitting of a particle with mass x gives
rise to a sequence of particles with total mass strictly smaller than z. However, there is also
an unexpected loss of mass, due to the formation of dust (i.e. an infinite number of particles
with mass zero). This latter is of course the most interesting and one of our purposes is to
establish for which parameters 7 and v it occurs. This formation of dust has to be compared
with gelation which may happen in the context of coagulation models and which corresponds to
the creation of an infinite-mass particle in finite time (see for example Jeon [41] and Norris [58]
for gelation studies). We mention also Aldous [4] for a survey on coagulation and fragmentation
phenomena. Concerning loss of mass studies, [15] proves the occurrence of loss of mass to dust
in fragmentation processes with function 7(z) = x® as soon as a < 0 and, in that case, that the
mass vanishes entirely in finite time. Filippov [35] obtains some conditions for the presence or
absence of loss of mass (to compare with Corollary 1.2 in this paper) in the special case where
v (8*) < oo. Let us also mention Fournier and Giet [36], who investigate this appearance of dust
in some coagulation-fragmentation equations, whose fragmentation part is rather different than
ours (their fragmentations are binary, with absolutely continuous rates that are not necessarily
proportional to the one-mass rate). See also Jeon [42].

Formula (1.3) is the key point in the study of loss of mass, which is undertaken in Section
1.4. We get necessary (respectively, sufficient) conditions on the parameters 7, ¢ and v for loss
of mass to occur and when there is loss of mass, we obtain results on small times and large
times behavior of the total mass (u, id). Section 1.5 is devoted to loss of mass and total loss of
mass for a fragmentation process F7 with parameters 7, ¢ and v. Define ( to be the first time
at which all the mass has disappeared, i.e.

C:=inf{t >0: F/(t) =0}.

We state necessary (respectively, sufficient) conditions on (7, ¢, v) for P(¢{ < oo) to be positive.
Then, we look at connections between loss of mass and total loss of mass and study the
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asymptotic behavior of P({ > t) as t — oo, for a large class of parameters 7, ¢ and v.

This paper ends with an appendix containing on the one hand some results on the mass
behavior of a fragmentation model constructed from the Brownian excursion of length 1 and
on the other hand a proof that (1.1) is a necessary condition for our fragmentation models to
exist.

1.2 Preliminaries on fragmentation processes

Let (F(t),t > 0) be a Markov process with values in S! and denote by P, the law of F starting
from (s,0,...), 0 < s < 1. The process F is a fragmentation process if it satisfies the following

fragmentation property: for each ty > 0, conditionally on F(ty) = (si, S2,...), the process
(F(t+1tp),t > 0) has the same law as the process obtained, for each ¢ > 0, by ranking in the
non-increasing order the components of the sequences F'(t), F%(t),..., where the r.v. F' are

independent with respective laws P, .

In this section, we first recall some results on homogeneous and self-similar fragmentation
processes. Then we construct a larger family of fragmentation processes, depending on the
parameters 7, ¢ and v of the fragmentation equation (1.2). Given a fragmentation process F,
recall the notation (Fi(t), F»(t),...) for the sequence F(t), t > 0.

1.2.1 Homogeneous and self-similar fragmentation processes

A self-similar fragmentation process (F(t),t > 0) with index « is a fragmentation process having
the following scaling property: if Py is the law of F' starting from (s,0,...), then the law of
(sF(s*t),t > 0) under P, is P;. If a = 0, the fragmentation process F' is said to be homogeneous.
We now recall some results on those processes. For more details, see [13], [14] and [9]. The
state St is endowed with the topology of pointwise convergence.

e Interval representation. Let [’ be a self-similar fragmentation process. It may be
convenient, for technical reasons, to work with an interval representation of F. Roughly, consider
a Markov process (I(t),t > 0) with state space the open sets of |0, 1] and such that I(¢") C I(¢)
if >t > 0. The process (I(t),t > 0) is called self-similar interval fragmentation process if
it satisfies a scaling and a fragmentation property (for a precise definition, we refer to [14]).
The interesting point is that there is a cadlag version of F' (which we also call F' and which we
implicitly consider in the following), and a self-similar interval fragmentation process Ir with
the same index of similarity as F', such that F'(¢) is the non-increasing sequence of the lengths
of the interval components of Ir(t), t > 0. In the sequel, we call I the interval representation
of F. For each t > 0, we call fragments the interval components of Ir(t) and denote by I,(t)
the fragment containing the point z at time ¢. If such a fragment does not exist, I.(t) := 0.
The length |I,(t)| is called the mass of the fragment.

e Characterization and Poisson point process description of homogeneous frag-
mentation processes. The law of a homogeneous fragmentation process starting from
(1,0,...) is characterized by two parameters: a non-negative real number ¢ (the erosion co-
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efficient) and a non-negative measure v on §* = S\ {(1,0,...)} (the splitting measure)
satisfying the requirement (1.1). The erosion coefficient corresponds to the continuous part
of the process, whereas the splitting measure describes the jumps of the process. More pre-
cisely, consider such a measure v and a Poisson point process ((A(t),k(t)),t > 0) with values
in §* x N* and whose characteristic measure is v ® #, # denoting the counting measure on N*.
As proved in [9], there is a pure jump cadlag homogeneous fragmentation process F' starting
from (1,0, ...), whose jumps are the times of occurrence of the Poisson point process and are
described as follows: let ¢ be a jump time, then the k(¢)-th term of F(¢t7), namely Fjq (™),
is removed and “replaced” by the sequence Fjq)(t7)A(t), that is F(¢) is obtained by ranking
in the non-increasing order the components of sequences (Fi(t™);cp rry 20d Fige (E7)A(D).
Now, consider a real number ¢ > 0. The process (e”“F(t),t > 0) is also a cadlag homogeneous
fragmentation process. The point is that the distribution of each homogeneous fragmentation
process can be described like this for a constant ¢ > 0 and a splitting measure v. Such process
is then called a homogeneous (¢, v)-fragmentation process. Remark that when v(S*) = oo, each
particle splits a.s. immediately.

e Size-biased picked fragment process. Let F' denote a homogeneous (¢, v)- fragmenta-
tion process starting from (1,0, ...) and Iz be the interval representation of F'. Consider a point
picked at random in |0, 1] according to the uniform law on |0, 1] and independently of F' and
note A(¢) the length of the fragment of I containing this point at time ¢. We call the process
(A(t),t > 0) the size-biased picked fragment process of F. An important part of our work relies
on the following property (see [13] for a proof): the process

(£(t),t = 0) := (=log(A(t)), 1 = 0) (1.4)

is a subordinator (i.e. a right-continuous non-decreasing process with values in [0, co] , started
from 0 and with independent and stationary increments on [0, ¢[, where ¢ is the first time when
the process reaches oo). We refer to [11] for background on subordinators. The distribution of
¢ is then characterized by its Laplace exponent ¢ which is determined by

Elexp (—q&)] = exp(—t¢(q)), t >0, ¢>0

and which can be expressed here as a function of the parameters v and c¢. More precisely:

Plq) =clg+1)+ /S (1 - Z 8?“) v(ds), ¢=>0. (1.5)

In others words, the subordinator £ has the following characteristics, which we will often refer
to:

i=1
o the drift coefficient d = c, (1.6)

e the Lévy measure L(dz) = e "> v(—log(s;) € dx), = € ]0, 00].

i=1

e the killing rate k = ¢+ [,. (1 -> si) v(ds),

Recall that the first time ¢ when the process £ reaches oo has an exponential law with parameter
k and that there exists a subordinator n independent of ¢, with the same drift coefficient and
Lévy measure as £ but with killing rate 0, such that & = 1, when ¢ < q.
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We should point out that two different homogeneous fragmentation processes may lead to
subordinators having the same distribution. For example, consider F' and F?, two homoge-
neous fragmentation processes with erosion coefficient 0 and with respective splitting measures
v, and vy, where

I/1<d8) = %(5( )(dS) + (5(

11l
2°2°

)

and

22

3 1
VQ(dS) 45(1 L. )(dS) + 15(%7%&&70“_)(618).
Then in both cases, the Laplace exponent ¢ is given by

3 /1 q+1 1 q+1
—1_2(z N _
¢(q) 5 <2) 1
e Characterization of self-similar fragmentation processes. We have seen that the
law of a homogeneous fragmentation process is characterized by the two parameters ¢ and v.
This property extends to self-similar fragmentation processes, which are characterized by three

parameters: an index of self-similarity «, an erosion coefficient ¢ and a splitting measure v (this
follows from a combination of results of [14] and [9]).

1.2.2 Fragmentation processes (7,c, 1)

The purpose is to build fragmentation processes depending on the parameters 7, ¢ and v of the
fragmentation equation (1.2). Recall that the function 7 is continuous and positive on |0, 1]
and such that 7(1) = 1. Throughout this paper, we will use the convention 7(0) := co. Now,
consider F' a homogeneous (¢, v)-fragmentation process and (I,.(t), x € |0, 1[,¢ > 0) its interval
representation. We introduce the time-change functions

TI(t) ::inf{uZO:/Oum>t}, t>0, z€]0,1],

with the convention inf {(}} := co. Then, for each ¢ > 0, consider the family of open intervals
I.(t) == L(T](t), = €]0,1],

and remark that if y # z, either () = I,(t) or I(t) N I,(t) = 0. Let F7(t) denote the non-
increasing sequence of the lengths of the disjoint intervals of (I ,x €]0,1] ) Then, following
the proof of Theorem 2 in [14], we get:

Proposition 1.1 The process (F7(t),t > 0) is a fragmentation process.

We call the process F™ a (7, ¢, v)-fragmentation process. Note that if 7(z) = x on ]0,1],
a € R, Theorem 2 in [14] states that F'7 is a self-similar fragmentation process with parameters
a, ¢ and v.



1.3. Existence and uniqueness of the solution to the fragmentation equation 35

If F™* and F™ are respectively (1y,¢,v) and (72, ¢, v)-fragmentation processes constructed
from the same homogeneous interval fragmentation and such that 7 < 75, the time-change
functions T™ and T™ satisfy

T (t) < Tr(t), for x €]0,1[ and t > 0.

Then, at each time ¢ and for each point x € ]0,1[, the fragment I,(T7'(¢)) is larger than
I.(T7*(t)). Informally, fragmentation is faster in the process F'™ than in F™.

As in the homogeneous case, consider the process

(N (), > 0) = ()TU(t)

,tZO)

where U is a random variable uniformly distributed on ]0, 1[, independent of the fragmentation
process F'7. In other words, A7(¢) represents the mass at time ¢ of the fragment containing a
point picked at random uniformly in ]0, 1[ at time 0. It is easy to see that for each t > 0, if
F7(t) = (F7(t), F5(t),...), the law of A7(t) is obtained as follows: consider i(¢) an integer-valued
random variable such that

P(i(t) =il F7(t)) = F7(t), i € N,

PGi(t) = 017 (1)) =1~ £ F (1),
Then,
(1) ' F (1), (1.7)

where FJ(t) := 0. We call (A\"(¢),t > 0) the size-biased picked fragment process of FT. The
following proposition will be essential in the sequel. Its proof is straightforward.

Proposition 1.2 If F7(0) = (1,0,...), the process (\"(t),t > 0) has the same distribution
as (exp(—gpf(t)),t > O), where & is the subordinator (1.4) constructed from the homogeneous
process F' and p” the time-change:

7 (t) == inf {u >0 /0 m > t} . (1.8)

It is then easy to see that F7(t) “3 0 as t — oo for each i > 0 when the fragmentation
process F'™ does not remain constant.

1.3 Existence and uniqueness of the solution to the frag-
mentation equation
Consider the fragmentation equation (1.2) with parameters 7, ¢ and v and recall that a solution

to this equation is a family of non-negative Radon measures on |0, 1], satisfying (1.2) at least
for test-functions f belonging to C! (]0,1]). Let F" be a (1, ¢, v)-fragmentation process starting
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from F7(0) = (1,0,...). From F7, we build a solution to this fragmentation equation starting
from pg = 6; and prove that this solution is unique. More precisely, we have:

Theorem 1.1 The fragmentation equation (1.2) has a unique solution (u,t > 0), which is
giwen for allt > 0 by:

(g, f) = for f €C(]0,1]).

Zf (Fr

Remark the following consequence of (1.7): for all t > 0 and all f € C!(]0,1]),

B> 1)

where \™ is the size-biased picked fragment process related to F'” and f the function defined
from f by f(x):= f(x)/z, x €]0,1]. This will be a key point of the proof of Theorem 1.1. In
this proof, the notation C} refers to the set of differentiable functions on ]0,1] with support
in K.

=E[f(\7®)], (1.9)

Proof. (i) First, we turn the problem into an existence and uniqueness problem for an equation
involving non-negative measures on K = [a, 1], 0 < a < 1. The advantage is that 7 is bounded
on K. Now, consider (m,t > 0) a family of measures on |0, 1] and set II;(dx) := zm(dx), t > 0.
It is easy to see that (m, ¢ > 0) solves equation (1.2) if and only if (II;,¢ > 0) satisfies

)
i (e, f) = (I, TA(S)) . f € C2(]0,1])
{ Iy (dz) = 6, (dz), (1.10)

where A is the linear operator on C} (]0, 1]) defined by

A(f)(x) = —caf () — cf (x /

Zf xS;) )] v(ds), = €]0,1].

Note that if f is equal to 0 on ]0, a], so is A(f). Then, T A(f) is well-defined on [0, 1] for functions
f € C1(]0,1]) . Moreover, this implies that the family (IT;, ¢ > 0) is a solution to equation (1.10)
if and only if, for each 0 < a < 1, the family (1[%1}1_[,5, t> O) is a solution to

{ i (v, ) = (v, TA(S)) s [ € C[la,l]
vo(d ) = 01 (dw).

Then consider formula (1.9) and write [; for the distribution of A"(¢), t > 0. Proving Theorem 1.1
is equivalent to prove that (I;,¢ > 0) is the unique solution to (1.10), which is true if and only

if, for each 0 < a < 1, the family (l[aﬂ ly, t > 0) is the unique family of non-negative measures
on [a, 1] satisfying (1.11).

(ii) In the sequel, K = [a,1], 0 < a < 1. Consider the subordinator ¢ such that
A" = exp(—&,-) where p7 is the time-change

pT(t):inf{uZO:/Oum>t}

(1.11)
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(see Proposition 1.2). As a subordinator, £ is a Feller process on [0, 00] and its generator G*
has a domain containing the set of differentiable functions with compact support in [0, oo[. It
is well-known that for every function f belonging to this set, the function G¢(f) is given by

G*(f)(x) = —kf(2) + df'(2) +/ (f(z+y) = f(x))L{dy), =€]0,1],

]0,00]

where k is the killing rate, d the drift coefficient and L the Lévy measure of £. From this and
(1.6), we deduce that the generator G**(=9 of the Feller process exp(—¢) has a domain D
containing C! (]0,1]) and is given by

GO (f)() = —kf(x) — daf'(x) + fi . (Flaexp(~y)) — f(2)L(dy)
— A(f)(a)

at least for f € C! (]0,1]). Then, introduce the function

v J 1(x), fzre K
T(x)_{ 7(a), f0<z<a

and consider the time-changed process exp(—¢,7(.)), where

/ﬁ(t):inf{uzo:/oumn}.

Observing that 7 is bounded away from 0 and oo on [0, 1], we apply Theorem 1 and its corollary
in [50] to conclude that exp(—¢,7) is a Feller process and that its generator G757 has the
same domain D as GP(=%) and is given by

G () = 7GoPCO(f), f e D. (1.12)

This formula can also be found in Section II1.21 of Rogers and Williams [63] (however they
do not consider the Feller property for the time-changed process). For each ¢ > 0, denote by

Z; the law of the random variable exp(—&,7 (). The family (E,t > 0) is then a solution to the

Kolmogorov’s forward equation:

{ O v, f) = (v, GPC(f)), feD (1.13)
vo(dx) = d01(dz).

Note that if the test-functions set is reduced to Ck, (1.13) is the same as equation (1.11), since
G747 = 1A on CL. In particular, (1xl;,¢ > 0) is a solution to (1.11), since for each ¢ > 0
and each function f supported in K, the following identity holds:

E [f(exp(=&rw)] = E [ flexp(=E)] -

This is due to the equality

{t >0:&rw < —log a} = {t >0: §pf(t) < —loga}
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a.s.

and the fact that p7(t)
and p7.

p(t) on this set. All this follows easily from the definitions of p”

(iii) Now, it remains to prove that a non-negative solution to equation (1.13) is uniquely
determined on K if the test-functions set is C}. To prove this, it is sufficient to show that
for each v > 0, the image of C'; by the operator (w'd — GeXp(fgﬂ;)> is dense in CY (the set of

continuous functions with support in K') endowed with the uniform norm - see for instance the
proof of Proposition 9.18 of chapter 4 in [32] and note that if (14,¢ > 0) is a solution to (1.13),
the functions ¢ — (v, f) are continuous on [0, 00) for each f € C'k. Thus, we just have to prove
this density. To that end, observe that if x < a and if f € C¥,

By [f(exp(=€)] = E[f(exp(=£)) | exp(—&o) = 2] = Ev [f(z exp(=&))] = 0.

Therefore, the function x — E, [f(exp(—&))] belongs to C% if f € CY%. This allows us to
consider the restriction of the generator G®*P(=¢) to CY%, denoted by GP(=¢) /C"%.. This operator
is the generator of the strongly continuous contraction semigroup on C9% defined by

T(t): f € Ck — T(t)(f) € Ck,
T(t)(f) (x) = Ex [f(wexp(=&)]), = €]0,1].

Its domain is C; N D. The same remark holds for the process exp(—¢,7) (because we know
that it is a Feller process and then the function z — E, [f(exp(—&,7())] is continuous if f
is continuous). We denote by G™P(%7) /9 the restriction of G™P57) to €Y. Its domain is
CY% N'D as well. Now, to conclude, we just have to apply the forthcoming Lemma 1.1 to

E=K, B=C% G=@G=9/0% G=¢g""%)/CY% and D=CL.

Indeed, generators G and G satisfy (1.12), with 7 bounded away from 0. The set C'} is dense
in CY% and it is clear that the function x — Fy [f(zexp(—&;))] belongs to C'k as soon as f does.
n

Lemma 1.1 Let E be a metric space and B the Banach space of real-valued continuous bounded
functions on E, endowed with the uniform norm. Let G be the generator of a strongly continuous
contraction semigroup (T'(t),t > 0) on B, with domain D (G). Consider D C D(G), a dense
subspace of B such that T(t) : D — D for allt > 0, and T € B such that T > m on E for some

positive constant m. If G is the generator of a strongly continuous contraction semigroup on B
such that D (6’) = D(G) and G(f) = 7G(f) on D(G), then for every vy > 0, (fyid — 6’) (D)

1s dense in B.

Proof. We need the notion of core. If A is a closed linear operator on B, a subspace C of
D (A) is a core for A if the following equivalence holds:

feD(A) and g = A()
=
there is a sequence (f,) € C such that f, — f and A(f,) — g¢.
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The assumptions on D and (7'(t),¢ > 0) and Proposition 3.3 of chapter 1 in [32] ensure that
D is a core for G. But then, D is also a core for G: if (fn) is a sequence in D such that
fo — f and G(f,) — g, then, since G(f,) = 7G(f,) and ¥ > m > 0 on E, G(f,)—g/7. Thus
feD(G)=D (é) and é(f) =T7G(f) = g. Conversely, given f belonging to D (é) =D (G)
and g = G(f), there is a sequence (f,) € D such that f, — f and G(f,) — G(f). But 7
is bounded on F and then G(fn) — G(f) At last, we conclude by using Proposition 3.1 of
chapter 1 in [32]. This proposition states that since D is a core for the generator é, then

<7id — é) (D) is dense in B for some v > 0, but it is easy to see with Lemma 2.11 (chapter 1
in [32]) that it holds for all v > 0. m

Remark. As shown in Section 1.2, two homogeneous fragmentation processes with different
laws may lead to subordinators with the same laws. Therefore, it may happen that two
different fragmentation equations (i.e. with different parameters) have the same solution.

From Theorem 1.1, we deduce that the unique solution (u, ¢ > 0) to the fragmentation
equation (1.2) is the hydrodynamic limit of stochastic fragmentation models. More precisely:

Corollary 1.1 For each n € N*, let F™™ be a (7,c,v)-fragmentation process starting from
Fm(0) = (1,1,...,1,0,...). Then for each t > 0, with probability one,
——

n terms

1 Z 5FT . d{[’) vaguely on ]0,1] s,

n—oo

Proof. For each k € {1,...,n}, we denote by ((Fle"(t), s BN, ) > O) the fragmenta-
tion process stemming from the k-th fragment of F'7"(0). These processes are independent and
identically distributed, with the distribution of a (v, ¢, 7)-fragmentation process starting from
(1,0, ...). Then fix ¢ > 0. Using the strong law of large numbers for each f € C!(]0,1]), we get

1 (& . I o n a.s.
H(Suren) <230 (S o) = e, L1y
i=1 k=1 \i=1
With probability one, this convergence holds for each function f such that for a n € N*
0 on ]0 l]

@) =4 (x—2)"P(a) on ]2,1]

where P is a polynomial with rational coefficients

since this set of functions - denoted by 7 - is countable. Observe that this set is dense in
C: (]0,1]) for the uniform norm and for each f € C!(]0,1]) consider a sequence (gi);s, of

functions of 7 such that g i f/id. Since > F""(t) < n,
—o0 i=1

% (Z F;Tm(t)gk (F;Tm(t))) unlf(:jlo};mn 1 (Zf FTn ) a.s.

i=1
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and then it is easily seen that with probability one the convergence (1.14) holds for each
fect(o,1]). =

Note that the question whether a similar result holds for the Smoluchowski’s coagulation
equation or not is still open (see [4]). The problem is that the Smoluchowski’s coagulation
equation is non-linear and then the mean frequencies of the stochastic models do not evolve
as the Smoluchowski’s coagulation equation, contrary to what happens for the fragmentation
equation. Nonetheless, Norris [57] proved that under suitable assumptions on the coagulation
kernel, the solution to Smoluchowski’s coagulation equation may be obtained as the hydrody-
namic limit of stochastic systems of coagulating particles.

1.4 Loss of mass in the fragmentation equation

Let (pt,t > 0) be the unique solution to the fragmentation equation (1.2) with parameters 7, ¢
and v and consider for each ¢ > 0 the total mass of the system at time ¢

mi#) = /0 ().

In this section, we give necessary (resp. sufficient) conditions on the parameters 7, ¢ and v for
the occurrence of loss of mass (i.e. the existence of a time t such that m(¢) < m(0)). Then,
when loss of mass occurs, we describe the asymptotic behavior of m(t) as ¢t — 0 or t — oo
for a large class of parameters. This loss of mass study relies on the fact that the solution
(e, t > 0) can be constructed from a (7, ¢, v)-fragmentation process, denoted by F7 (see the
previous section). In particular, by monotone convergence, one can extend formula (1.9) to the
pair of functions (f, ?) = (id, 1,~0) . Hence,

>_F)

where (A7 (t),t > 0) is the size-biased picked fragment process related to F'7. Then recall Propo-
sition 1.2 and introduce the random variable

°° dr
I, .:/0 P (1.15)

Since 7(0) = oo, it is clear that I, is the first time when A" is equal to 0. This leads to another
expression of the mass

m(t) = E = P(\T(£) > 0), t >0,

m(t) = P(I. > t) (1.16)
which will be useful in this section. Note that for self-similar fragmentations, i.e. 7(z) = 2 on

10,1], @ € R, I is the well-known exponential functional of the Lévy process o (for background,
we refer e.g. to [19] and [25]).

At last, we recall that ¢ denotes the Laplace exponent of the subordinator & and can be
expressed as a function of ¢ and v (see (1.5)) and that k,c and L are the characteristics of &

(see (1.6)).

From now on, we exclude the degenerate case when the splitting measure v and the erosion
rate ¢ are 0, for which there is obviously no loss of mass.
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1.4.1 A criterion for loss of mass

If k£ > 0, either the erosion coefficient c¢ is positive or a part of the mass of a particle may be
lost during its splitting (i.e. v (D> =, s; < 1) > 0). Therefore, it is intuitively clear that if & > 0,
there is loss of mass. Nevertheless, loss of mass may occur even when k£ = 0, as some particles
may be reduced to dust in finite time. This phenomenon can be explained as follows when
7 decreases near 0. Small fragments split even faster since their mass is smaller. Therefore,
particles split faster and faster as time passes and so they may be reduced to dust in finite
time. We now present a qualitative criterion for loss of mass.

Proposition 1.3 (i) If k > 0, there is loss of mass and inf {t > 0 : m(t) < m(0)} = 0.
(i) If k = 0, then

¢'(z) .
/0+ Tmf(exp(—l/x))gb?(x)dx < 0o = there is loss of mass
¢'(x)
o+ Tup(€xp(—1/7))¢*(z)

where Tine and Teyp are the continuous non-increasing functions defined on |0, 1] by

dr = oo => there is no loss of mass

Tint(7) = infyepo2) 7(y) and  Toup(z) = SUDye[,1] 7(y).

Remarks. e If 7 is bounded on ]0, 1], we have that

/ ¢'(z) dr — o0
o+ Tsup(eXp(—1/2))¢?(7)

since Tuyp is then bounded on ]0,1] and [, ¢/(x)¢*(z)dx = oo (recall that ¢(0) = 0). Thus, if
7 is bounded on |0, 1] and k = 0, there is no loss of mass. In particular, when k = 0, there is
no loss of mass in the homogeneous case (i.e. 7=1).

e If 7 is non-increasing near 0 and k& = 0, either lim, o+ 7(2) < oo and then
there is no loss of mass or lim, ¢+ 7(z) = oo and then the functions 7i,¢, 7 and 7., coincide on
some neighborhood of 0. In both cases, the following equivalence holds:

/
/ () dxr < 00 & there is loss of mass.
o+ T(exp(

—1/x))¢*()

In order to prove Proposition 1.3, observe that loss of mass occurs if and only if
P(I; < o0) > 0, which justifies the use of the forthcoming lemma (see Lemma 3.6 in [11]):

Lemma 1.2 Let o0 be a subordinator with killing mte O and U its potemﬁz’al measure, which

means that for each measurable function f, fooo flx Uo (0¢) dt} Let h : [0,00) —
[0,00) be a non-increasing function. Then the followmg are equwalent
fo ) <0

(fo crtdt<oo)—1
(vi1) (fo (oy)dt < oo) > 0.



42 1. Loss of mass in deterministic and random fragmentations

Proof of Proposition 1.3. (i) Let e(k) denote the exponential random variable with pa-
rameter k£ at which the subordinator ¢ is killed and 7 the subordinator with killing rate 0,
independent of e(k) and such that & =, if t < e(k) and & = oo if t > e(k). Then, set

T%t):=inf{u20:/j%>t}.

This random variable is independent of e(k) and using that for each time ¢
P(I, >1t) < T7(t) <e(k)
we get,
m(t) =FE [e*kTT(t)] .

Note that this is true even if £ = 0, with the convention 0 X oo := co. Now if £ > 0 and ¢ > 0,
kKT7(t) > 0 with probability one and then m(¢) < 1.

(ii) Let U denote the potential measure of the subordinator £. It is straightforward that

0 U(dx) ~ o) =
/O—Tmf(exp(_x))< =PI, <) =1

and it follows from Lemma 1.2 that

o d
/ U)o  p(L < 00) =0
o Teup(exp(—1))
Thus we just have to prove that for each continuous positive and non-increasing function f on
0, 1]
¢'(x)
0 & dxr < oo. 1.17
= o TR 1
To that end, recall that the repartltlon function U(x fo (dy) satisfies
U= (1.18)
Toe(1/) '

where the notation g < h indicates that there are two positives constants C' and C’ such that
Cg < h < (C'g (see Proposition 1.4 in [11]). Then if lim, .o+ f(z) < oo,

/ = () dr = 00
f exp(—1) o+ flexp(—1/z))¢?(x)

since U(oo) = oo and [, qﬁ’(x)gb”(:p)d:ﬁ = oo. Next, if lim, o+ f(z) = oo, introduce the
non-negative finite measure V' defined on [0, co[ by

z 1 1
/o VW) = 505 ™ Flow(—a))’

| o= [ vawvan = [owvi,

Note that
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Combining this with (1.18) leads to the following equivalences

/fexp—x O‘”:’/ ¢>1/y)>

/o //y ¢(( ))sz(dy)

o) .
‘:’/o Fep(-1/)@@) " <

and then to equivalence (1.17), since

dz < 0o (the case when & = 0 is excluded).

/ S (exp( 1/Z))¢2()

Provided that 7 is non-increasing near 0 and ¢'(0%) < oo, the following corollary gives a
simple necessary and sufficient condition on 7 for loss of mass to occur. This result may be
found in Filippov’s paper ([35]) in the special case when v(S*) < co. Recall the notations 7i,¢
and 7y, introduced in Proposition 1.3.

Corollary 1.2 Suppose that k = 0. Then,
d
(i) /0+ mefx(x) < 00 = loss of mass.
(11) If ¢'(07) < oo (i.e. [s (Z llog(s;)| si) v(ds) < oo) :
i=1

dx

o+ LTsup(7)

loss of mass = < 00.

If T is non-increasing in a neighborhood of 0, Tins and 7s,, can be replaced by .

In particular, as soon as 7(x) > |log z|* near 0 for some « > 1, there is loss of mass.

Proof. The assumption k£ = 0 leads to

A [ enan = [ (Z<—1og<si>>si) v(ds).

i=1
Remark that [~ 2L(dx) # 0, since L # 0 and then ¢/(0%) > 0. If moreover ¢/(0%) < oo, we
have
¢'(x) 1
Toup (€xp(—1/2)) ¢ (2) a—0t ¢ (0F)22Toyp (exp(—1/z))

Combining this with Proposition 1.3 (ii) leads to result (ii). Now, if ¢/(07) = oo, the function
x — 22¢'(x)¢~%(z) is still bounded near 0 and then we deduce (i) in the same way. m
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1.4.2 Asymptotic behavior of the mass

Our purpose is to study the asymptotic behavior of the mass m(t) = (u,id) ast — 0 or t —
0.

1.4.2.1 Small times asymptotic behavior

Proposition 1.4 Assume that ¢'(07) < oo and 7(z) < Cz*, 0 < < 1, with C > 0 and
a < 0. Then, m is differentiable at 0% and m'(0") = —k.

Remark. We will see in the proof that the upper bound

remains valid without any assumption on 7 and ¢.

Proof. As shown in the first part of the proof of Proposition 1.3
m(t) = E [e "], ¢ >0,

where T is the time-change

TT(t):inf{uzO:/oum>t}

and 7 a subordinator with killing rate 0, drift coefficient ¢ and Lévy measure L. Hence,

L—m(t) _ {1 - e—kTWt)]

; . (1.19)

Observe that it is sufficient to prove the statement for functions 7 bounded on |0, 1] or non-
increasing and such that 7(z) < Cz® on ]0,1] for some C' > 0 and a < 0. Indeed, for each
continuous positive function 7 such that 7(z) < Cz® on |0, 1] with C' > 0 and « < 0, there are
two continuous positive functions 71 and 75 such that 73 <7 < 75 on ]0, 1] and

e 71 is bounded on ]0,1] and 74 (1) =1
e 75 is non-increasing, m(x) < Cz® on |0,1] and m(1) =1

(we may take for example 73(x) := sup,c(, 1) 7(y)). Then combine this with the fact that

1 — mx(t) < 1-— m;(t)’
t - t

vt >0, (1.20)

when 7 < 7 on |0, 1] (here mz and ms= denote the respective masses of a (7, ¢, v)-fragmentation
equation and a (7, ¢, v)-fragmentation equation).
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(i) For ¢ such that T (t) < oo, the time-change T can be expressed as follows:
t
(1) = / r(exp(—ir())dr (1.21)
0

1
:t/ T(exp(—=nr= @) )dr.
0

Note that the first time when 77 reaches co is positive with probability one. Then if 7 is
bounded (respectively, non-increasing), we get by the dominated convergence theorem (resp.
monotone convergence theorem), that

k()
1= 7 as

t t—0t

If 7 is bounded the dominated convergence theorem applies and gives

1 —mf(t) ok
t t—0+

(ii) To conclude when 7 is non-increasing and smaller than the function x — Cz®, it remains
to show that (1 — e‘kTT(t)) /t is dominated - independently of ¢ - by a random variable with
finite expectation. To see this, first note that it is sufficient to prove the domination for
(1 — e *1"®) /t, where

T(t) = inf {u >0: / exp(am,)dr > Ct}
0

(since T7(t) < T*(t) for t > 0). Next remark that if ' is a subordinator such that n' > 7, the
following inequality between time-changes holds

Ty (t) := inf {u >0: / exp(any)dr > Ct} > T(t)
0

and then
| — o=kTo() | _ o kTP®)
<
t - t
Thus it is sufficient to prove the domination for a subordinator bigger than n and so we can
(and will) assume that the subordinator 7 has a drift coefficient ¢ > k/|a|. Now introduce the
exponential functional

for each t > 0.

I, ::/ exp(amn, )dr.
0

Observe that
C ', =inf{t >0:T*(t) = oo} .

If t < C711,, we get that

% (e_kTa(t)) = —kCe e we kT (1.22)
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(by using (1.21) for the function 7 = Cx®). But the (random) function ¢ — —amn, — kt is
non-decreasing, since ¢ > k/ |a| and the process (n; — ct,t > 0) is a (pure jump) non-decreasing
process (according to the Lévy-It6 decomposition of a subordinator - see Proposition 1.3 in
[11]). Thus the derivative (1.22) is non-increasing and ¢ +— e ¥ is a concave function on
[0, C~'1,[. From this, it follows that the slope (1 — e *""(")) /¢ is non-decreasing on [0, C 11, ]
and it is straightforward that it is decreasing on [C'1,, oo[. This leads to the upper bound:
1 — o kT7(®)

C
<= Vi>0.
t -1, viz0

By Proposition 3.1 (iv) in [25], the expectation
BI17] = (ca) #(0) < oo,

and this ends the proof. m

If &£ = 0, there is a more precise result. Recall (1.16) and set A :=sup{a > 0: E[I7%] < co}.
Then for each € > 0 such that A —e¢ > 0,

t—0t

== (1 —m(t) < /Ot P (de) — 0,

since F [[ﬁ_ﬂ < 00. (Actually, it is easy to see that

1 1—
i i 1080 = m(?))

= A).
t—0+ log(t) )

For self-similar fragmentation processes, this points out the influence of a on the loss of mass
behavior near 0. Indeed, consider a family of self-similar fragmentation processes such that the
subordinator ¢ is fixed (with killing rate £ = 0) and « varies, @ < 0. Then introduce the set

Q= {q eER: / e L(dr) < oo}.
r>1

This set is convex and contains 0. Let p be its right-most point. According to Theorem 25.17
in [64],
gEQ & E[ef] <ooVt>0

and in that case F [eq&} = 7%= Then, following the proof of Proposition 2 in [19], we get

B = 22D 5 ] for g < L

q a’
which leads to

And then
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1.4.2.2 Large times asymptotic behavior

The main result of this subsection is the existence of exponential bounds for the mass m(t)
when t is large enough and when the parameters 7, ¢ and v satisfy the conditions (i) and (ii) of
the following Proposition 1.6. Before proving this, we point out the following intuitive result,
which is valid for all parameters 7, ¢ and v.

Proposition 1.5 When loss of mass occurs, m(t) — 0.

t—o0

Proof. From formula (1.16), we get that m(t) o P(I; = c0). When k > 0, the subordinator
¢ is killed at a finite time e(k) and then

I <e(k) x sup (1/7(x))
xe[exp(_ge(k)*)vl]

is a.s. finite. When k = 0, our goal is to prove that the probability P(I, = o) is either 0 or 1.
To that end, we introduce the family of i.i.d. random variables, defined for all n € N by

F, = (& — fn)ogtgl :

It is clear that I, can be expressed as a function of the random variables F),. Then, since for

all n € N . 0
=t ={ [ remien =)

it is easily seen that the set {I, = oo} is invariant under finite permutations of the r.v. F,,
n € N. Hence, we can conclude by using the Hewitt-Savage 0-1 law (see e.g. Th.3 Section IV
in [34]). m

Our sharper study of the asymptotic behavior of the mass m(t) as t — oo relies on the
moments properties of the random variable .. If 7(x) = 2%, o < 0, it is well known that the
entire moments of I, are given by

E[I" = neN, (1.23)

d(—a)...p(—an)’

and then, that
Elexp(rl;)] < oo for r < ¢(c0) := lim ¢(q).

q—00

(See Proposition 3.3 in [25]). From this and formula (1.16) we deduce that the mass m(t)
decays at an exponential rate as t — 0o, since for a positive r < ¢(o0),

m(t) = P(I. > t) < exp(—rt)E [exp(rl;)], t>0. (1.24)

This result is still valid for a function 7(z) > Cx®, where a < 0 and C' > 0, because I, <
1 fooo exp(a&,)dr. Remark that until now, we have made no assumption on ¢. We now state
deeper results when ¢ behaves like a regularly varying function. Recall that a real function f
varies reqularly with index a > 0 at oo if

— r® ¥r>0.

f(x) =—eo
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If a =0, f is said to be slowly varying. Recall also that the notation f < g indicates that there
exist two positives constants C' and C” such that Cg < f < ('g.

Proposition 1.6 Assume that

(i) Cya® < 7(x) < Cra®, 0<z<1, a<fp<0, Cy >0, Cy>0.
(17) ¢ < f on [1,00), where f varies reqularly at oo with index a € ]0,1].

Denote by 1 the inverse of the function t — t/¢(t), which is a bijection from [1,00) to
[1/6(1),00). Then there exist two positive constants A and B such that for t large enough

exp(=By(t)) < m(t) < exp(—=Ay(t)). (1.25)

Actually, if ¢ satisfies (ii), it is sufficient to suppose that Coz® < 7(z) with 3 < 0 and
Cy > 0 to obtain the upper bound m(t) < exp(—A(t)) and conversely, if 7(z) < Ciaz® with
a < 0 and Cy > 0, the lower bound exp(—B1(t)) holds.

Remark. If 7(z) = z* for x € ]0,1], a < 0, and ¢ varies regularly at oo with index
a €10,1[, it follows from a result in [61] that

log(m(t)) ~ LD, (‘“t) |

t—o00 «

We should also point out that there are some homogeneous fragmentation processes such that
the associated Laplace exponent ¢ satisfies assumption (ii) without varying regularly.

Proof. The proof relies on Theorem 1 and Theorem 2 of Kéno [48], which we now recall. Let
o be a non-decreasing and “nearly regularly varying function with index b”, b € ]0, 1], which
means that there exist two positive constants r; > 79 and a slowly varying function s such that

rox’s(x) < o(x) < riabs(z) for x > 1. (1.26)

Let Y be a positive random variable such that, for n large enough,

2n

Ha <E[Y"] <" [[ok) (1.27)

k=1

where ¢; and ¢y are positive constants. Then, there exist three positive constants A, B and C'
such that for x large enough,

exp(—Bz) < P(Y > Co(z)) < exp(—Ax).

Coming back to the proof, we set
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This is an increasing continuous function (by the concavity of ¢) such that lim, .., o(x) = oo
(by assumption (ii)). In particular, its inverse 1 is well-defined and increasing on [o(1), 00).
Since f varies regularly with index a € |0, 1[, there exists a slowly varying function g such
that f(q) = q%g(q) for ¢ > 1. Then it follows from assumption (ii) that o satisfies (1.26) with
b=1—aand s = 1/g (note that g is a positive function on [1,00)). On the other hand, recall
that if 7(z) = 2% a < 0, the entire moments of the random variable I, are given by (1.23).
Thus, for each function 7 satisfying assumption (i), we have

“ qu 04/<;)S 1;[ ﬁk

Moreover, the assumption (ii) implies that for each C' > 0, ¢(Ct) < ¢(t) at least for t € [1,00).
Therefore, the moments of I, satisfy (1.27). Then, by applying the theorems recalled at the
beginning of the proof, we get

exp(—By (t/C)) <mf(t) = P (I, >t) < exp(—Ay (t/C)) for t large enough. (1.28)

It remains to remove the constant C. To that end, introduce h(z) := z/f(z) on [1,00) and
consider the generalized inverse of h:

h™(x) :=inf{y € [1,00) : h(y) >z}, x € [1/f(1),00).

The function h varies regularly with index 1—a and so, according to Theorem 1.5.12 in [21], h™
varies regularly with index 1/ (1 —a) and h(h~(x)) ~ . From this latter and assumption

(ii), we deduce the existence of two positive constant D; and Dy such that
Dix <o (h™(x)) < Doz for x large enough.
And since 1) is increasing, we have
Y (Dix) < h™(z) < ¢ (Dyx) for z large enough.

But then, since h™ varies regularly, the function x — ¢ (z/C) /¢ (x) is bounded away from 0
and oo when x — oo. Then combine this with (1.28) to obtain (1.25). m

Note that the assumption (ii) in Proposition 1.6 implies that the erosion rate c¢ is equal to
0. Now, if ¢ > 0 and if 7(z) > Axz® on |0, 1], with & < 0 and A > 0, we observe that the mass
m(t) is equal to 0, as soon as t > 1/|Aac|. Indeed, recall that

k > cand & > ct for each t > 0.

Then,

L < (= oxplace(h))
- | Aac|
which leads to
m(t) =0if t > 1/|Aac]|
m(t) < (14 Aact)?/leelif ¢ < 1/|Aac|.

In the same way, we obtain that m(t) < e % if 7 > a on ]0,1] (before that, we had
exponential upper bounds only when 7(x) > Ax®, with a < 0 and A > 0).
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1.5 Loss of mass in fragmentation processes

Let F7 be a (7, ¢, v)-fragmentation process starting from (1,0, ...). We say that there is loss of
mass in this random fragmentation if

P (31520:211«7(15) < 1) > 0.
=1

The results on the occurrence of this (stochastic) loss of mass as a function of the parameters
7, ¢ and v are exactly the same as those on the occurrence of loss of mass for the corresponding
deterministic model (constructed from F7 by formula (1.3)). Indeed, the point is that, as shown
in the proof of Proposition 1.5, the probability P(I, < co) is either 0 or 1 and then that the

events {Elt >0:) FI(t) < 1} and {I, < oo} coincide apart from an event of probability 0.
i=1

Thus, Proposition_l.?) and its corollary are still valid for the loss of mass in the fragmentation
process F'™ and when there is loss of mass, it occurs with probability one.

When there is loss of mass, one may wonder if there exists a finite time at which all the mass
has disappeared, i.e. if
C:=inf{t >0: F(t) =0} < occ.

In the sequel, we will say that there is total loss of mass if P ({ < co) > 0. Bertoin [15] proves
that total loss of mass occurs with probability one for a self similar fragmentation process
with a negative index. Here, we give criteria on the parameters 7, ¢ and v for the presence or
absence of total loss of mass. From this we deduce that even if k = 0, there is no equivalence in
general between loss of mass and total loss of mass. Then, we study the asymptotic behavior
of P(¢ > t) as t — oo, when the parameters 7, ¢ and v satisfy the same assumptions as in
Proposition 1.6. The following remark will be useful in this study of ¢: if F7 and F™ are two
fragmentation processes constructed from the same homogeneous one and if 7 < 7/ on |0, 1],
then

inf{tZO:F{/(t):O} <inf{t>0:FI(t)=0}. (1.29)

Eventually, we investigate in the last subsection the behavior as ¢t — 0 of the random mass
M(t) =1 =32, 7 (t).

1.5.1 A criterion for total loss of mass

Proposition 1.7 Consider the continuous non-increasing functions Tine and Tg,, constructed
from 7 as in the statement of Proposition 1.3.
dx
1) [ < 00, then P(( < o00) =1.
e (¢ < )

(1) If k = 0 and [, |log(s1)|v(ds) < oo, then

d
P(( <o) >0= ~ T
o+ TTsup ()

If T is non-increasing in a neighborhood of 0, Tins and Ts,, can be replaced by T.
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Remarks. e This should be compared with Corollary 1.2 which states similar connec-
tions between loss of mass and the integrability near 0 of functions z +— 1/x7n(z) and
= 1/ 2T (7).

e The condition [, |log(s1)|v(ds) < oo is satisfied as soon as v(s; < €) = 0
for a positive ¢, since |log(s;)| < &7 (1 — s1) when s; belongs to |e, 1] . In particular, this last
condition on the measure v is satisfied for fragmentation models where £ = 0 and such that
the splitting of a particle gives at most n fragments (i.e. v(s,;1 > 0) = 0). Indeed, we have
then that v (s; < 1/n) =0, since v (32, s; < 1) = 0 when k = 0.

Proof. We just have to prove these assertions for a non-increasing function 7 and then use
the remark (1.29). Thus in this proof 7 is supposed to be non-increasing on ]0, 1].

As shown in Section 1.2.2, the interval representation (E(t), r €]0,1[,t > O) of F'™ is con-

structed from the interval representation (1,(t),z € ]0,1[,¢ > 0) of a homogeneous (c,v) frag-
mentation process F' in the following way:

L(t) = L(T{(t)),

Yo dr
T;(t):inf{uzo:/ 7>t}.
o T(L(r)])
For every z in |0, 1], set (, :=inf {¢ : I.(t) = 0} . Then,

where

< dr
T7(t) < ¢ if and only if t < / S —
o 7 (L))

which leads to

< dr
¢ = sup / —. (1.30)
x€]0,1[ Jo (|12 (r)])
(i) This part is merely adapted from the proof of Proposition 2 (i) in [15]. In particular, as
mentioned there,
lim sup 7' log Fi(r) < 0.

rT—00

Thus there exists a random positive number C' such that
1 1
<
T([Lz(r)]) = 7 (exp(=CTr))

since moreover 7 is non-increasing. Now, we just have to combine this with equality (1.30) and
the fact that the function x — 1/x7(x) is integrable near 0 to conclude that ¢ < co a.s.

for all x € 10,1[ and all » > 0,

(ii) Since k = 0, the drift coefficient ¢ is equal to 0 and then the homogeneous fragmentation
process F' is a pure jump process constructed from a Poisson point process ((A(t), k(t)),t > 0)
€ S* x N*, with characteristic measure v ® # (see Section 1.2.1). From this process, we build
another jump process Y which we first describe informally: Y'(0) = 1 and for each time ¢, Y (¥)
is an element of the sequence F'(t). When the fragment with mass Y splits, we keep the largest
fragment and Y jumps to the mass of this new fragment. And so on ... Note that generally,
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the jump times may accumulate. Now, we give a rigorous construction of Y, by induction.
To that end, we build simultaneously a sequence of particular times (t,),cy. Set to := 0 and
Y (ty) := 1. Suppose that ¢,_; is known, that it is a randomized stopping time, and that Y
is constructed until ¢,_;. Let k(n — 1) be such that Y (t,-1) = Fin-1)(tn—1) and consider the
fragmentation process stemming from Fk(n,l)(tn,l). Since F' is homogeneous, there exists a
homogeneous (c, v)-fragmentation process independent of (F(t),t <t,_;), denoted by F"~1,
such that the fragmentation process stemming from Fj,_1y(t,—1) is equal to Y (t,,—1) F =1 Let
A Vand (A" (1), k"1(t)) , ¢ > 0) be respectively the size-biased picked fragment process and
the Poisson point process related to F”~!. Then set

tn = to_1 +inf {t: A1) < 1}

Y(#) =Yt ) F]" 7 (t —th1), tha <t<t,

Yit,) = { Aty =t )Y (b)) FP 7 (ty — taey) ™) iE RNt —teoy) = 1
" Y (t_1)F" ' (t, —t,_1) otherwise.

Time t,, is a randomized stopping time. Note that the random variables (t,, — t,,_1) are iid with
a positive expectation. So t,, — oo and Y is then well-defined on [0, 00).

Call o the non-decreasing process (—log(Y)) and consider the jumps A(t) := o(t) — o(t7),
t > 0.1t is easily seen that <£(t),t > O) is a Poisson point process on |0, co[ with characteristic

measure v(—log s; € dx). In other words, o is a subordinator with Laplace exponent

olq) = /Sl(l — sNw(ds), ¢ > 0.

It can be shown that for each ¢ > 0 there exists a (random) point x; € |0, 1] such that
Y (r) = |1,(r)| for r < t. Combine this with equality (1.30) to conclude that

t dr
CZ/OW forallt >0

© dr
<2 / (oo ()’

Therefore, the assumption P({ < co) > 0 implies that

P(/OWWW)”

and so, following the proof of Proposition 1.3 (ii), we conclude that

¢'(v)
/o+ (exp (1) (@) " <

and then

Together with the assumption
o'(0%) = / [log(s1)| v(ds) < oo,
Sl

dr < oco.m

this implies that /
o+ 2T ()
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1.5.2 Does loss of mass imply total loss of mass ?

If the killing rate k is positive, loss of mass always occurs, but in general total loss of mass
does not. Think for example of a pure erosion process. Now, we focus on what happens when
k = 0, i.e. when the loss of mass corresponds only to particles reduced to dust. First, if the
Laplace exponent ¢ has a finite right-derivative at 0 and if 7 is non-increasing near 0, loss of
mass is equivalent to total loss of mass and both occur with probability zero or one. This just
follows from a combination of Corollary 1.2 (ii) and Proposition 1.7 (i). However, without this
assumption on ¢ there may be loss of mass but no total loss of mass. Here is an example: fix
a €10, 1] and take the parameters 7, ¢ and v as follows:

o 7(z) = lifx>e!
= (—loga) f0<z < el

ec=0,
e 1 1
[ ] l/(dS) == ngl (E — m) 5 1 1 1 O (dS)
57 2n+17...7ﬁ7 PIERRY
—_—

It is clear that 7 is decreasing on ]0,e™!] and k = 0.

Lemma 1.3 Let ¢ be the Laplace exponent specified by (1.5) for the parameters above. Then
o(q) > Cq* for some C' > 0 and for all g € [0,1].

Proof. Consider the function
fla) = [ (- etoreytey
1

= (qlog 2)“/ (1—e ")z .
q

log 2

The integral [[°(1 — e *)xz~'"“dx is positive and finite since a € ]0,1[. Then there exists a
positive real number C' such that

fla) > Cq",¥q € [0, 1].
On the other hand, remark that

NE

n+1
f(q) / (1 — ¢~ Uor2amy,~1-a g,

1

3
I

n+1
(1 o e(log2)q(n+1))/ {L‘iliadl‘

1 n

(1- e*(logZ)q(nH)) (i — 1 a) i

n® (n+1)

WE

S
Il

AN
Q| =
(]

n=1

As a consequence, the following inequality holds

A1 - > a .
2 <1 2q(n+1)) (na n+ 1)0) > aCq",Vq € [0,1]

n=1
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This leads to:

1 1 1\t 1
— ) 1= ) L —
n® (n+1)° 2 2(n+1)(g+1)
1 1 1 1
na (n + 1)a 9(n+1)q

v

N l\l|H
NE

From this we deduce that there is loss of mass. Indeed, ¢'(z) < x7'¢(x) for positive z since
¢ is a concave function. Then combine this with Lemma 1.3 to obtain that

0
(ew(—1/2) ~ #(z) = Cae

and conclude with Proposition 1.3 (ii). On the other hand, there is no total loss of mass since
the equalities

for0<x<1

/|1<>|<d>12 d/ld‘”
(0] S 1% S) = 10 all =0
Sl &i81 & oxT(x)

imply with Proposition 1.7 (ii) that P (¢ < oo) = 0.

1.5.3 Asymptotic behavior of P({ > t) as t — o©

In this subsection, we consider functions 7 such that Cyz® < 7(x) < Cyz® for x € ]0,1],
where o < 3 < 0 and C] and C5 are positive constants. Thus there is total loss of mass with
probability one. The following proposition states that P(¢ > ¢) and m(t) have then the same
type of behavior as ¢ — oo (see also Proposition 1.6). More precisely, we have

Proposition 1.8 Suppose that Cox® < 7(x) < Ci1a® for x € ]0,1], where a < 3 <0, C; > 0
and Cy > 0. Then,

(i) 3C > 0 such that P({ > t) < exp(—Ct) fort large enough.
(ii) If o < f on [1,00), for a function f varying reqularly with index a € |0, 1] at oo, there
are two positive constants A and B such that for t large enough

exp(—By(t)) < P(C > t) < exp(—Ay(t))

where 1 is the inverse of the bijection t € [1,00) +— t/o(t) € [1/p(1),0).

Actually, the upper bounds hold as soon as 7(z) > Cyz”, with 3 < 0 and Cy > 0 and the
lower bound holds for functions 7 satisfying only 7(x) < Cyz®, with o < 0 and C; > 0.

To prove the proposition we need the following lemma:
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Lemma 1.4 Let F be a self-similar fragmentation process with parameters (a,c,v), a < 0,
and ( the first time at which the entire mass has disappeared. Fiz o > «. Then, there exists a
self-similar fragmentation process with parameters (o, c,v), denoted by F', such that

c< [ EE)Tar

Proof. Consider (I,(t),z €]0,1[,t > 0) the interval representation of F. There ex-
ists a self-similar interval representation process with parameters (o/,c,v), denoted by
(I.(t),z €]0,1[,t > 0), such that

Lo(t) = I(T:(1))
where

T,(t) = inf {u >0: / 1I(r)|* ™ dr > t} .
0

(See Section 3.2. in [14]). For each ¢ > 0, call F’(t) the non-increasing rearrangement of the
lengths of the disjoint intervals components of (I’ (t),x € ]0,1[). Then F”’ is the required self-
similar fragmentation process with index «/. Let = be in ]0, 1[. Since |I.(r)| < F|(r) for each

r > 0, we have that
T, < / (Flr)* ™ dr) — 0.
0

c< [T

because I/ (c0) = 0 for every z in |0, 1[. m

Then,

Proof of Proposition 1.8. If 7/ = K7 for a positive constant K and if F7 and F™ are
two fragmentation processes constructed from the same homogeneous one, it is easily seen that
F7'(t) = F7(Kt) for each t > 0. Recall moreover the remark (1.29). Since it is supposed that
Cox”® < 7(z) < C12® on ]0,1], where a < 3 < 0, it is then enough to prove results (i) and (ii)
for a self-similar fragmentation process with a negative index. Thus, consider F' a self-similar
fragmentation process with parameters (o, ¢, v), o < 0. Applying the previous lemma to F’ and
o =a/2, we get
P(¢>2t) < P (F(rt) *dr > 2)
< P(J;° (F{(rt)) ™" dr > 1) (1.31)
< [ B [(Frn) ] ar,

since F{(t) <1, ¥t > 0. Now, recall that

I =

E[F{t)] < E = m.(t),

>_F )

where m. is the total mass of the fragmentation equation with parameters 7/(z) = /2, ¢ and
v. This leads to

< { my(t) if (—a/2) >1 (132)

E [(F{(t))iaﬂ] =\ (mo(8))"*? if (—a/2) <1 (by Jensen’s inequality).
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(i) Combining (1.31), (1.32) and (1.24), we obtain that for ¢ large enough

o 1
P((>2t) < / exp(—C'rt)dr = o exp(—C"t),
1
where C' is a positive constant.

(i) As stated in Proposition 1.6, since ¢ =< f, with f a regularly varying function with index
a €10, 1[, and since 7/(x) = /2, the function

o:te[l,o0)—t/o(t) € [1/o(1),00)

is an increasing bijection and its inverse v satisfies m./(t) < exp(—A;j1(t)) for a constant A; > 0
and t large enough. From this and inequalities (1.31) and (1.32), we deduce the existence of a
positive constant Ay so that for ¢ large enough,

P((>2t) < /100 exp(—Agt)(rt))dr.

1
Moreover, o is differentiable and its derivative is positive and smaller than — (recall that ¢’ is

positive) and then ¢’ is bounded on [1,00). Thus for ¢ large enough,

P(¢>2t) <t! f;?t) exp(—Aqr)o’(r)dr
< Ay I@Z?t) exp(—Ayr)dr
= exp(—Az9(t)).

Then, as in the proof of Proposition 1.6 the constant 2 can be removed by using the assumption
(ii).

Eventually, introduce the r.v. I, (see definition (1.15)) to conclude for the lower bound. This
random variable is the first time when the size-biased picked fragment vanishes and so I, < ¢
a.s. Then, we get the desired lower bound from Proposition 1.6 (recall that m(t) = P(I, > t)).
|

1.5.4 Small times asymptotic behavior

We are interested in the asymptotic behavior as t — 0 of the random mass
M(t)=1-=735"7, F7(t) of the (7,¢,v) fragmentation process F" starting from (1,0, ...).

Proposition 1.9 One has,
M(t)

T(gcastﬁO.

More generally, when F7 denotes a (7, ¢, v)-fragmentation process starting from (s,0,...),
s > 0, one easily checks, by adapting the following proof, that (s — Y02, F7(t))/t = cs7(s) as
t— 0.
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Proof. On the one hand, among the F(t)’s,i > 1, there is the size-biased picked fragment,
and therefore

Y OF(t) = N (1) = exp(—&prn), £ =0,
=1

where ¢ is a subordinator with Laplace exponent (1.5) and p” the time change (1.8). It is easily

seen that a.s. p7(t)/t =) 7(1) = 1 and it is well known that a.s. &/t = (see chapter 3, [10]).

Hence
limsup(M(t)/t) < c a.s.
t—0
On the other hand, in the homogeneous case (7 = 1), it is clear that ) >, F7(t) < e~“. This
a fortior: holds when 7 > 1 on |0, 1], since the fragmentation is then faster than a homogeneous

one. Therefore, in such cases,
lim ting(M(t)/t) > cas. (1.33)

and the conclusion follows. To prove that this lower limit holds for all functions 7, we study the
mass lost by erosion by the size-biased picked fragment A\™ until time ¢. First, in the homogeneous
case (we write A" for the size-biased picked fragment), A\°m(t) = e~ \bom(¢), ¢ > 0, where
Abom ig the size-biased picked fragment of some homogeneous fragmentation without erosion.
If )\gom(t) > m for t € [ty,ts], the mass lost by erosion by APom hetween times ¢; and ¢ is then
larger than m(exp(—ct;) — exp(—cts)). In particular, the mass lost by erosion by A!™ between
times 0 and ¢ is larger than A2°™(¢)(1 —exp(—ct)). Now, for any function 7, \7(t) = \hom(p7(¢))
for some size-biased picked fragment A\'™ of some homogeneous fragmentation, and therefore,
the mass lost by erosion by A\™ until time ¢ is larger than A3°™(p"(t))(1 — exp(—cp” (t)) for some
process AL°™. Consequently, M (t) > A°m(p7(¢))(1 — exp(—cp™(t)). Since, A2 (u) — 1 a.s. as
u — 0 and since p7(t)/t — 1 a.s. ast — 0, one gets

lim inf (M (t)/t) > c a.s.

t—0

We point out that it is possible to check (by refining the above argument) that the mass lost
by erosion by the size-biased picked fragment in the homogeneous case is equal to fot eAbom(s)ds
and therefore that it is equal to

/Op(t> AP (5)ds — /Ot N(5)r (N (s))ds

in the general case, which, from a physical view point, was intuitive. =

1.6 Appendix

1.6.1 An example

Let us consider the self-similar fragmentation process constructed from the Brownian excursion
of length 1. This process was introduced in [14] and can be constructed as follows. Write
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e = (e(t),0 <t < 1) for the Brownian excursion of length 1 and introduce the family of random
open sets of |0, 1[ defined by

I(t) ={s€]0,1[:e(s) > t}, t > 0.

Then the process (I(t),t > 0) is a self-similar interval fragmentation process with index —1/2.
For each t > 0, define by F(t) the non-increasing sequence of the lengths of the interval
components of I(t). The required fragmentation process is this process (F'(¢),t > 0), which is
obviously self-similar with index —1/2. Consider then the deterministic fragmentation model
constructed from F' and especially its mass, which is denoted by m(t) for all time ¢. Since the
process F' is self-similar with a negative index, there is loss of mass. Moreover, as shown in
[14], the Laplace exponent of the associated subordinator ¢ is given by

?(q) = 2<J\/gB <q + % %) ,

and this leads to the following equivalence

dlq) ~ 2v2q>

q—00
(B denotes here the beta function). Hence, the remark following Proposition 1.6 ensures that

logm(t) ~ —2t*

t—oo

and Proposition 1.8 gives exponential bounds for P({ > t) as t — oc.

However, we may obtain sharper results. First, recall that I denotes the first time when the
size-biased picked fragment of F' is equal to 0. We know from [14] that 21, follows the Rayleigh
distribution, that is

P(2I, € dr) = rexp(—r*/2)dr,

and then the mass is explicitly known:
m(t) = P(I, > t) = exp(—2t?), t > 0.

On the other hand, the random variable ( is obviously the maximum of the Brownian excursion
with length 1. And then, as proved in [43], the tail distribution of this random variable is given
by

P((>t)=2) (4°n® —1)exp(—2t*n%), t>0.

WE

n=1

This implies that
P(¢>1) o 8t? exp(—2t?).
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1.6.2 Necessity of condition (1.1)

We discuss here the necessity of assumption (1.1) for the splitting measure v in the fragmenta-
tion equation (1.2) (that (1.1) is needed to construct a random fragmentation was pointed out
in [13]).

Suppose that [s.(1 — s1)v(ds) = oo and that there exists a solution (y,t > 0) to (1.2) . Let
f be a function of C! (]0, 1]) whose support is exactly [3/4, 1] and such that f(1) # 0. Since the
function ¢ — (ju, f) is continuous on R™ and ug = &1, there exists a positive time ¢y such that

suppp: N [3/4,1] # 0 (1.34)

for t < tg. Then define by g an non-decreasing non-negative function on |0, 1], smaller than id,
belonging to C! (]0, 1]) and such that

0 on ]0,1/2]
9(z) = { xon [3/4,1].

Take z in [3/4,1]. For each s € S! and each i > 2, g(xs;) = 0 since s; < 1/2 for i > 2. Thus
Joo | S atam) — o) ds) = f (atos) = gt o)
< [g (s1—1)v(ds) = —oc.

By combining this with (1.34), we conclude that the derivative d; (i, g) = —oo on [0, to[ and
then that the fragmentation equation (1.2) has no solution.
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Chapitre 2

Regularity of formation of dust in
self-similar fragmentations

Abstract: In self-similar fragmentations with a negative index, fragments split even faster as
their mass is smaller, so that the fragmentation runs away and some mass is reduced to dust.
Our purpose is to investigate the regularity of this formation of dust. Let M(t) denote the
mass of dust at time ¢. We give some sufficient and some necessary conditions for the measure
dM to be absolutely continuous. In case of absolute continuity, we obtain an approximation
of the density by functions of small fragments. We also study the Hausdorft dimension of dM
and of its support, as well as the Holder-continuity of the dust’s mass M.

2.1 Introduction

Fragmentation processes are random models for the evolution of an object that splits as time
goes on. These models, together with their deterministic counterparts, have been widely studied
by both mathematicians and physicists. We mention Aldous’ survey [4] of the literature on the
subject and Les Houches proceedings [20] for physical view points.

The self-similar fragmentations processes we consider in this work are those studied by
Bertoin in [13], [14], [15]. Informally, a self-similar fragmentation is a process that enjoys both
a fragmentation property and a scaling property. By fragmentation property, we mean that the
fragments present at a time ¢ will evolve independently with break-up rates depending on their
masses. The scaling property specifies these mass-dependent rates. More precisely, there is a
real number «, called index of self-similarity, such that the process starting from a fragment
with mass m has the same distribution as m times the process starting from a fragment with
mass 1, up to the time change t — tm®. The definition will be made rigorous in Section 2.2.

Our interest is more specifically in self-similar fragmentations with negative indices of self-
similarity, in which a loss of mass occurs (see e.g. [15]), corresponding to the appearance of dust
- or microscopic fragments - whose total mass is non-zero. This phenomenon is a consequence
of an intensive splitting that results from the scaling property: when o < 0, small fragments
split faster than large ones, so that the average speed of splitting increases as time goes on and
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the fragmentation runs away and produces some dust. Let us mention [35], [36], [38] and [42]
for discussions on the appearance of dust for some different classes of random fragmentations
and for some deterministic fragmentation models.

The purpose of this paper is to study the reqularity of this formation of dust. To be more
precise, let M(t) be the dust’s mass at time ¢, ¢ > 0. It is a non-decreasing function that
can be written as M(t) = fot dM (u) for some non-negative measure dM. Our main point of
interest is to investigate the existence of a Lebesgue density for the mass measure dM. We
are also concerned with questions such as the approximation of the density (when it exists) by
functions depending on small fragments, the Hausdorff dimensions of dM and dM’s support
when dM is singular and the Holder-continuity of the dust’s mass M.

This study is motivated and illustrated by the “Brownian excursion fragmentation” exam-
ple, introduced first in [14] and that we now roughly present. Let e = (e(z),0 <z <1) be
the normalized Brownian excursion (informally, e is a Brownian motion on the unit interval,
conditioned by e(0) = e(1) = 0 and e(z) > 0 for 0 < x < 1) and consider the family of random
nested open sets of ]0, 1|

I.(t) ={z €]0,1[: e(x) > t}, t > 0.

This family corresponds to a fragmentation of the interval |0, 1[ as time passes (actually, one
may prove that it is a self-similar fragmentation with index o = —1/2 - see [14]). The interval
components of I.(t) are the “fragments” present at time ¢ with a positive mass (the mass of
a fragment being the length of the corresponding interval) and their total mass is equal to
fol Lie(>tydu. The dust’s mass M, (t) is thus equal to fol L{e(u)<tydu, which is positive for all
t > 0. According to the Brownian motion theory, there is a local time process (L.(t),t > 0)
such that

t
M.(t) = / Le(s)ds forallt >0, a.s.,
0

so that the mass measure dM, has L. for Lebesgue density a.s. It is further known that this
density L. can be approximated by functions of small interval components (i.e. fragments) as
follows (see e.g. [60]): for every t > 0,

2 a.s. q. a.s.
lim\/—wMe(t, g) = lnré V2meN(t,e) = L.(t),
5 e—

e—0

where M,(t, ) denotes the total length of excursions intervals of e above ¢ of length less or equal
to e (that is, in terms of fragments, the total mass of fragments present at time ¢ having a mass
in |0,¢]); and N.(t,¢) is the number of excursions of e above ¢ of length greater then ¢ (i.e. the
number of fragments present at time ¢ of mass greater than £). Another point we are interested
in, as mentioned above, is the Holder-continuity of the dust’s mass M,. It is well-known that
that the local time L. is bounded a.s.: the dust’s mass M, is therefore Lipschitz a.s.

Miermont [56] constructs similarly some fragmentations from the normalized excursions of
some random continuous processes possessing a local time, which gives some more examples of
fragmentations with absolutely continuous mass measure dM.
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Our goal is to see how these regularity results extend to general self-similar fragmentations
with negative indices. The paper is organized as follows. In Section 2.2, self-similar fragmenta-
tions are introduced and their main properties recalled. Section 2.3 concerns some preliminary
results on the dust’s mass M and on tagged fragments, a tagged fragment being a fragment
containing a point tagged at random, independently of the fragmentation. The evolution of
such fragments is well-known and is closely connected to the mass M as we shall see later.
Following one or several tagged fragments as time passes will then be a key tool in the study
of regularity.

There are some self-similar fragmentations for which the mass measure dM does not have
a Lebesgue density. Section 2.4 presents some sufficient (respectively necessary) conditions for
dM to be absolutely continuous. These conditions are stated in terms of the index of self-
similarity a and of a dislocation measure, introduced in Section 2.2, that, roughly, describes
the distribution of sudden dislocations. For a large class of fragmentations the critical value is
a = —1, in the sense that almost surely dM has a Lebesgue density if and only if « > —1. The
sufficient conditions’ proofs are coarser than the necessary ones and rely on Fourier analysis.

For fragmentations with an absolutely continuous mass measure dM, the approximation of
the density is discussed in Section 2.5. Let L(t) := dM(t)/dt. In most cases, we prove the
existence of a finite deterministic constant C' such that for a.e. ¢, the functions e*M (t, ) and
et N(t, ) converge a.s. to CL(t) as € — 0. As in the Brownian excursion fragmentation,
M(t, ) denotes the total mass of fragments of mass in ]0,¢] at time ¢ and N(¢,e) the number
of fragments of mass greater than ¢ at time ¢.

Section 2.6 is devoted to the Holder-continuity of the dust’s mass M and, in cases where
dM is singular, to its Hausdorff dimension and that of its support. The paper ends with an
Appendix containing a technical proof of a result stated in Section 2.3.

2.2 Background on self-similar fragmentations

Since for us the only distinguishing feature of a fragment is its mass, the fragmentation system
is characterized at a given time t by the ranked sequence s; > s > ... > 0 of masses of
fragments present at that time. Starting from a single object with mass one, the appropriate
space for our models is then S', the state of non-increasing non-negative sequences with total
sum at most 1, i.e.

endowed with the topology of pointwise convergence. The difference 1 — ), s; may be thought
as the mass of dust.

Definition 2.1 Let (F(t),t > 0) be a St-valued Markov process continuous in probability and
denote by P,, 0 < r <1, the law of F starting from (r,0,...).

(i) The process F' is a fragmentation process if for each to > 0, conditionally on F(ty) =
(s1,82,...), the process (F(t +1ty),t > 0) has the same law as the process obtained, for each
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t > 0, by ranking in the decreasing order the components of sequences F'(t), F?(t), ..., where
the r.v. F' are independent with respective laws P;,.

(i) If further F enjoys the scaling property, which means that there exists a real number «,
called index of self-similarity, such that the law of (F(t),t > 0) under P, is the same as that of
(rF(tr*),t > 0) under Py, then F is a self-similar fragmentation process with index . When
a =0, F is called a homogeneous fragmentation process.

We consider fragmentation processes starting from F'(0) = (1,0,0, ...) and denote by F;(t),
i > 1, the components of the sequence F(t), ¢ > 0, and by F = (F (t),t > 0), the natural
filtration generated by F', completed up to P-null sets. According to Berestycki [9] and Bertoin
[14], a self-similar fragmentation is Feller (then possesses a cadlag version which we may always
consider) and its distribution is entirely characterized by three parameters: the index of self-
similarity «a, an erosion coefficient ¢ > 0 and a dislocation measure v, which is a sigma-finite
measure on St that does not charge (1,0, ...) and such that

/Slu — s)u(ds) < oo.

Roughly speaking, the erosion is a deterministic continuous phenomenon and the dislocation
measure describes the rates of sudden dislocations: a fragment with mass x splits in fragments
with mass xs,s € S', at rate z°v(ds). Conversely, given «,c, v satisfying the requirements
above, one can construct a corresponding self-similar fragmentation. As a consequence of the
Feller property, the fragmentation property holds for F-stopping times and we shall refer to it
as the strong fragmentation property.

For technical reasons, we may need to work with an interval representation of the fragmen-
tation: by combination of results of [9] and [14], there is no loss of generality in assuming that
a a-self-similar fragmentation F' is constructed from a family (I(¢),¢ > 0) of nested random
open sets of |0, 1] so that, for every t > 0, F(t) = (Fi(t),...) is the ordered sequence of the
lengths of the interval components of I(t). This process I possesses both the a-self-similarity
and fragmentation properties (we refer to [14] for precise definitions). Moreover it is Fellerian
and as such, satisfies a strong fragmentation property. From now on, we call I an interval rep-
resentation of F. There is actually a one-to-one correspondence between the laws of St-valued
and interval-valued self-similar fragmentations.

The advantage of this interval’s view point is the passage from homogeneous to self-similar
fragmentations by appropriate time-changes: consider a homogeneous interval fragmentation
(I°(t),t > 0) and define by I,(t) the interval component of I°(t) that contains z if x € I°(¢)
and set I, (t) := 0 if z ¢ I°(t), z in |0, 1[. Then introduce the time-changed functions

TS (t) := inf {UZO: / |]$(T)|_ad7“>t}, (2.1)
0
and consider the family of nested open sets of ]0, 1] defined by

)= |J L@, t=o.
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As proved in [14], I® is an a-self-similar interval fragmentation and each self-similar interval
fragmentation can be constructed like this from a homogeneous one. This associated homoge-
neous fragmentation has the same dislocation measure and erosion coefficient as the self-similar
fragmentation.

This interval setting is particularly appropriate to tag fragments at random as explained in
detail in the following section.

2.3 Tagged fragments and dust’s mass

From now on, we shall focus on self-similar fragmentations such that

a<0 ¢=0 v+40 and y(z,si<1>:0. (H)

That v (>, s; < 1) = 0 means that no mass is lost within sudden dislocations and ¢ = 0 means
there is no erosion. In terms of the fragmentation F, the dust’s mass at time ¢ then writes

M) =1- im@). (2.2)

The index a being negative, we know by Proposition 2 in [15], that with probability one M is
cadlag, non-decreasing and reaches 1 in finite time. It can then be viewed as the distribution
function of some random probability measure, that we denote by dM:

M(t) = /Ot dM(u), t > 0.

A wuseful tool to study this mass of dust is to tag a fragment at random in the fragmentation.
To do so, consider I an interval representation of F' as recalled in the previous section and let
U be a random variable uniformly distributed on ]0, 1] and independent of I. At each time ¢, if
U € 1(t), denote by A(t) the length of the interval component of I(t) containing U. If U ¢ I(t),
set A(t) := 0. Bertoin, in [13] and [14], has determined the law of the process A :

A2 exp(—&,()) (2.3)

where ¢ is a subordinator with Laplace exponent ¢ given for all ¢ > 0 by

o(q) = / (1 -y s§+Q> v(ds), (2.4)
st i=1
and p is the time-change
p(t) = inf {u >0: / exp(aé, )dr > t} , t>0.
0

We refer to [11] for background on subordinators and recall that E [e*qgr] = e forr g > 0.
Remark that formula (2.4) defines in fact a function ¢ on R such that ¢(q) € [0, 00 for ¢ > 0
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and ¢(q) € [—o0,0[ for ¢ < 0. Let p be the largest ¢ such that ¢(—¢) > —oo. Since v integrates
(1 — s1), this definition is equivalent to

p = sup {qZO:/SlZsil_ql/(ds)<oo}. (2.5)

1-q __

o
Here we use the convention 07% = oo for @ > 0. Hence, when ¢ > 1 the series > s; ¢ = o0

i=2
for any sequence in S and consequently p < 1. The Holder-continuity of the dust’s mass M,
studied in Section 2.6.2, depends on this coefficient p.

The law of the first time D at which the tagged fragment is reduced to dust, i.e.
D :=inf{t > 0: A(t) = 0},

can then be expressed as a function of v and ¢ :

D'& /OO exp(aé,)dr. (2.6)
0

One first important example of the use of tagged fragments is that the dust’s mass M then
coincides with the distribution function of D conditional on F', that is, a.s.

M(t)=P(D<t|F), t >0. (2.7)

Indeed, D <t if and only if U ¢ I(t) and the conditional probability of this event given F' is
the total length of |0, 1[\I(¢), i.e. 1— Fy(t) — F5(t) — ... = M(t). The point is that the law of D
has been extensively studied (see e.g. [25],[18]) and it will therefore give us some information
on M.

The rest of the section concerns some preliminary results that will be needed in the sequel.
Subsection 2.3.1 deals with some regularity properties of D’s distribution. The main results
of Carmona et al. [25] are recalled and some other properties developed. In Subsection 2.3.2,
we tag several fragments independently and study their masses at the first time at which some
tagged fragments are different. Subsection 2.3.3 is devoted to the first time at which all the
mass is reduced to dust.

2.3.1 On the regularity of D’s distribution

By (2.6), D has the same law as [ exp(a&,)dr. Carmona, Petit and Yor studied in [25] these
exponential functionals. They showed (Prop. 3.1 iv, Prop. 3.3) that D has entire moments of

all positive orders and that
1 _
pi=FEl&] = mE [D7]. (2.8)

Remark with (2.4), that
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In the sequel, we will often assume that p < oo, because of the following lemma:

Lemma 2.1 Suppose that pn < 0o and [g, (1 — s1)° v(ds) < oo for some B < 1. Then, there is
an infinitely differentiable function k : )0, 00[ — [0, 00| such that

(i) P(D € dx) = k(x)dx

(i) for all a > 0, the function x — x%k(z) is bounded on ]0, 00 .

We point out that the existence of some § < 1 such that [g (1 — s1)" v(ds) < oo is not
necessary to prove the assertion (i).

Proof. (i) It is Proposition 2.1 of [25].

(ii) The point is to show that for all @ > 0, the function = — e*k(e”) is bounded on R. To
that end, we need the following result of [25] (Prop. 2.1): the density k is a solution of the

equation
o 1
k(x) = /x T <m log (g)) k(u)du, x>0,

where 7 denotes the Lévy measure of £ and 7(x) := 7 (Jz, 0c[), > 0. This leads to

ek(e”) = [T lpu—wsoy®((u— )/ |a]) e el (") du
= (Li<oy@(= - /|a])e” # eV k(e)) (z),

where * denotes the convolution product. It is well-known (by Holder inequality) that for p > 1
the convolution product of a function of LP(dz) with a function of LP/®~1)(dz) is bounded on
R. So if we prove that the functions  — 1< 7(—2/ |a])e® and z — e @7k (e®) respectively
belong to LP(dz) and LP/?*=Y(dz) for some p > 1, the proof will be ended.

Let us first show that @ € L7(dx) for all 1 < v < 1/ such that [ (1 — s1)" v(ds) < oo
(such 3 exists by assumption). To see this, note that

(2.9)

m(dx) = e “v(—log(s1) € dx) on |0,log2[

(see e.g. the remarks at the end of [13]), which gives

log 2
/ zém(dz) = / Lis,>1/2351 [log s1]“v(ds), ¢ € R.
0 St

Then combine this with [~ 27 (dz) = ¢/(07) < oo (which is a consequence of y < co and
(2.4)) to get that [ (2° v x) 7(dzx) < oo for the 3 < 1 such that [g (1 —s1)" v(ds) < cc.
Therefore, there exists C' > 0 such that 7(z) < C (:fl A :fﬁ) for > 0. Then 7, and a fortiori
T = lpeoym(—2/ |af)e®®, belongs to LY(dx) for all 1 <~ < 1/8.

It remains to prove that for all @ > 0, the function z — e(**)?k(e”) belongs to L/~ (dx)
for some vy € |1,1/(]. Fix such a v and remark that it is sufficient to show that this function
belongs to L”"(dz) for all n € N (because L' N L"" C LVO~Y when 4" > ~/(y—1) >
1). We prove this by induction on n. For n = 0, this is an immediate consequence of
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[ eletug(er)du = E[D®], which is finite for all @ > 0 by Proposition 3.3 of [25]. For
the next step, we need the following result: for all p,q > 1,

if f € LP(dr)N L' (dz) and if g € L(dx), then f * g € LP(dx),

which we first prove. By applying Holder inequality twice, first to the measure |f(z — y)|dy
and second to |g(y)|? dy, we get

Frg@) < (Sl 1@~ y)ldy) v (S @ =)l dy) e
< (S bl e o dy>1/pq (S o)l dy) o
< (71— wlay)

The last two integrals do not depend on x and are finite. The first integral, seen as a function
of x, is integrable by Fubini’s Theorem. So, f % g € LP!(dx). Now we apply this result to
functions © — 1< 7(—z/ |a])e® and x — e@ 7k (e”), which belong respectively to L7(dx)
and L'(dz), and this shows with (2.9) that z +— e*k(e”) € L7(dx) for a > 0. Applying this
recursively, we get that the function z — e*k(e®) € L7 (dx) for all a > 0 and n € N.

2.3.2 Tagging n fragments independently

We consider the joint behavior of n fragments tagged independently. More precisely, let
Uy, ...,U, be n independent random variables, uniformly distributed on ]0, 1] and independent
of the fragmentation process, and fori = 1,...,n and t > 0, let A;(¢) be the length of the interval
component of I(t) containing the point U; if U; € I(t) and set \;(t) := 0 if U; ¢ I(t). The law
of (A, Ag,..., \,) is exchangeable, but the processes Ai, Ag, ..., A, are not independent. They
coincide on [0,T,[, where T,, denotes the first time at which the U’s, i = 1,...,n, do not all
belong to the same fragment, that is

T, :=sup{t >0:U,..,U, € same interval component of (t)} .

Note that 7}, > 0 a.s., since, by independence of the U’s, P(T,, >t | A1) = A\ (¢)"~! which
tends to 1 as t — 0. At time T,, there are L distinct tagged fragments - for some random L > 2
- which, according to the fragmentation and scaling properties, evolve independently and with
a law depending on their masses. The aim of this subsection is to give some information on
these masses.

Consider an integer [ > 2. Conditionally on L = [, we may assume, by exchangeability, that
Uy, Us,...,U; belong all to different fragments at time 7,,, so that the masses of the [ distinct
tagged fragments at time T, are A\(7},), A2(T3,), ..., \i(T},,). For each [-tuple (ni,nse,...,n;) €

J L =1and at time T;,, there are n;, tagged points
""" ™) "7 ) in the fragment containing Uy, 1 < k <1 ’

The following lemma provides an integrability property of a function depending on the masses
of tagged fragments at time 7,. It will be a key point in the study of regularity. More precisely,
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it will be used to prove the Holder-continuity of the dust’s mass M (see Section 2.6) and, in
the special case where n = 2, to show the absolute continuity of the mass measure dM for some
(o, v)-fragmentations (see Section 2.4).

Lemma 2.2 For all ay,...,a; in R, the following assertions are equivalent

. ! —a
(i) E |1 Teet M ’“(Tn)1{A1(Tn>2A2<Tn>z...zm<Tn>}1{A( <00

.. l l ng—a
(i1) >y ax <n—1 and fsl Zz‘1<i2<...<z‘l [Ties Sy kl{sik>o}’/(d3) < Q.

The proof of this technical result is provided in the Appendix at the end of the paper.

2.3.3 First time at which all the mass is reduced to dust

The first time at which the mass is entirely reduced to dust, i.e.

¢:=inf{t>0: Fi(t) =0} (2.10)
is almost surely finite (see [15]). The asymptotic behavior of P(¢ > t) as t — oo is discussed
in [38] and leads us to

Lemma 2.3 E[(] < oo and P({ >t) <1 for every t > 0.

Proof. According to Section 5.3 in [38], there exist two positive finite constants A and B
such that
P({>1t) < Ae™ P forall t > 0. (2.11)

That F [(] < oo is then immediate. To prove the second assertion, assume first that
{t>0:P((<t)=0}#0 (2.12)

and denote by tg its largest element. Define then u by (to — u) /to = 1/2/°l. Since u < to, ¢ > u
a.s. Thus, applying the fragmentation and scaling properties at time u,

¢=u+ sup F*l(u)¢",

1<i<oo

where the () are iid with the same law as ¢ and independent of F(u). In other words, if (2.12)
holds, then for all € € ]0,¢y — u[,

[1r (F;.‘a'(u)g(i) <tg—u—c| f(u)) =P <to—c| Fw) 0. (2.13)

To prove the statement, we therefore have to show that (2.13) is false. In that aim, suppose
first that
P (Fl‘a‘(u)g(l) <to—u—c| f(u)) 0 for all € €10, — ul. (2.14)
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By definition of ¢y and wu, this implies that a.s. (o — u)/Fllal(u) < to and then Fj(u) > 1/2.
Using the connections between homogeneous fragmentations and self-similar ones as explained
in Section 2.2, we see that this leads to the existence of a homogeneous fragmentation F'* with
dislocation measure v such that a.s. for all ¢t > 0, F}*(t) > Fi(t). In particular, F{*(u) > 1/2
a.s. From Proposition 12 in [9] and its proof, we know the existence of a subordinator o with
Laplace exponent given by (2.4) such that FJ' = exp(—c) on [0,u]. We then have o(u) < In2
a.s. However, it is well known that the jump process of ¢ is a Poisson point process with
intensity the Lévy measure of o and since here this Lévy measure is not trivial and v > 0, the
r.v. o(u) can not have a deterministic upper bound. Thus (2.14) can not be true and for some

g0 in ]0,to —u[, P (Fl‘O"(u)C(l) <ty—u—gg| f(u)) > (0 with a positive probability. Since
P (Fi‘a'(u)g“(i) <ty—u—eo| f(u)) /" 1asi / oo, this would imply, if (2.13) holds, that the
sum '

S (1P (Bl ) <ty —u e | F(u)) (2.15)
diverges on the event {P (Fl‘al(u)f(l) <ty—u—eg| f(u)) > 0} , which has positive proba-
bility. Yet, this is not possible: by (2.11),

S, P (Fi|°‘|(u)§(i) > tg—u—gp | f(u)) < AN, e Bllomumed FRW 1 a0y
< ACY, Fi(u) as.,

where C' := supgc, o, 2 e B2 < o0 Since Y, F;(t) < 1 a.s., the sum (2.15) is then
finite a.s. and consequently (2.13) is false.

2.4 Regularity of the mass measure dM

This section is devoted to the study of existence or absence of a Lebesgue density for the
mass measure dM of a fragmentation F' with parameters «, ¢ and v satisfying hypothesis (H).
More precisely, we give some sufficient conditions on a and v for the existence of a density in
L?(dt ® dP) and some sufficient conditions for the measure dM to be singular a.s. In the sequel,
we will often assume ! that the constant p introduced in (2.8) is finite, i.e.

o] 1 .
= /Sl (2 llog(s;)] si> v(ds) = EE [D7'] < (A1)

and that
/ (1 —s1)" v(ds) < oo for some 3 < 1. (A2)
st

We recall that D is a random variable that corresponds to the first time at which a tagged
fragment vanishes and that its distribution is given by (2.6). Here is our main result:

!These assumptions (A1) and (A2) hold as soon as p > 0 ( p defined by (2.5)). However, it is easy to find
some fragmentations for which p = 0 and (A1) and (A2) hold nonetheless.
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Theorem 2.1 Suppose (Al).

(i) If (A2) holds, a > —1 and [¢, 37, _, sit@s;v(ds) < oo, then the measure dM is absolutely
continuous a.s. and its density belongs to L*(dt ® dP).

(ii) If o < —1, then dM 1is singular a.s.

In (i), the criterion [g 37, ;8; %s;v(ds) < oo is optimal in the sense that there are

some fragmentations satisfying assumptions (Al) and (A2) on v, with index @ > —1 and
Js ZK]‘ sit@s;v(ds) = oo, and such that dM is not absolutely continuous with a density in

L*(dt ® dP). Some illustrating examples are given after the proof of Theorem 2.1 (i).

In the special case where v(sy;; > 0) = 0 for some given N > 2 (that is each dislocation
gives rise to at most IV fragments), note that when o > —1,

/Slzzsﬁo‘sjl/(ds) g/Sl(N—n > sulds) < (N—l)/ (1 —s1)v(ds) <oo. (2.16)

i<j 2<<N st

Both parts of Theorem 2.1 then complement each other and give the following result.

Corollary 2.1 Assume that v(syy1 > 0) = 0 for some integer N and that (A1) and (A2) hold.
Then, with probability one, the measure dM 1is absolutely continuous if and only if o > —1.
When o > —1, the density of dM is in L*(dt @ dP) and when o < —1, dM s singular a.s.

We now turn to the proofs. That of Theorem 2.1 (i) uses Fourier analysis.

Proof of Theorem 2.1 (i). Introduce the Fourier transform of dM, i.e.

M(6) = /Ooo M (t), 0 €R. (2.17)

It is well-known that the measure dM is absolutely continuous with a density L in L*(dt) if
and only if the integral [~ ‘M(G)r df is finite and then that [~ ‘M(G)r do = [;° L?(t)dt.
Consequently, taking the expected values, dM is absolutely continuous with a density in L?(dt®
dP) if and only if £ [ ffooo ‘]\//.7 (0)‘2 d@} is finite. To see when the latter happens, let us first

rewrite M in a more convenient way. We know, by (2.7), that the dust’s mass can be expressed
a.s. as M(t) = P(D <t | F),t >0, where D corresponds to the first time at which a tagged
fragment vanishes. In others words, dM is the conditional law of D given F' and M can be
written as

—

M(9) = E [P | F], 0€R, as. (2.18)

2
Dealing with ‘M (0)‘ suggests then to work with two fragments tagged independently. So,

consider U; and Uy, two independent random variables uniformly distributed on ]0, 1] and
independent of F', and the corresponding tagged fragments, as explained in Section 2.3.2. Let D;
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(resp. Ds) denote the first time at which the tagged fragment containing U (resp. Us) vanishes.
These random variables are not independent, however they are independent conditionally on
F and then, by (2.18),

Eﬂﬂ@

2} — B[E[P | F]E [ | F]]
= B[P geR

Recall the notations of Section 2.3.2: T, is the first time at which the fragments containing
the tagged points U; and U, are different and A\;(73) (resp. Ao(7%)) the mass of the fragment
containing U; (resp. Us) at that time T5. An application of the scaling and strong fragmentation
properties at this (randomized) stopping time T3 leads to the existence of two independent
random variables D; and D, independent of F(T) and (Ay(T), A2(T3)), and with the same
distribution as D, such that

D1 = T2 -+ )\‘f'(TQ)ﬁl and D2 = T2 -+ )\‘2a|<T2)ﬁ2

2
E UM(@)
Our goal is then to show that the characteristic function of the random variable )\‘lal(T 2)51 —
)\‘2a‘(T2)D2 belongs to L'(df).
To prove this, we use the following result (see [22], p.20): if a function f € Ll(daz) is

bounded in a neighborhood of 0 and has a non-negative Fourier transform f then f € LY(dz).
We already know that the characteristic function of )\‘f‘(TQ)Dl - )\‘2a‘<T2)D2 is non-negative,

2 -~
since it is equal to £ UM(H)} ] . Next, recall that Dy, Dy and (A1 (1%), Ao(7»)) are independent

This yields to

D (\lol i S slalmy 7
} _ g [eze(,\l (T5) Dy —\) (TQ)D2> . (2.19)

and that D has a bounded density k, according to Lemma 2.1 and assumptions (Al) and
(A2). Let C be an upper bound of k. Then, easy calculation shows that the random variable

)\‘ﬁ‘(Tg)ﬁl - )\‘zal(Tz)ﬁz has a density f given by

fx) = /Oo EN(T2)A5 (T)k (uAT(T2) k ((u — 2) A5 (T2))] du, = € R (2.20)

i

which is bounded by

0< f(o) < Cfg:;)o E NH(T2)AS (To)k ((u — 2) AS(T2)) i (1) he(m)} ] du
+C fl«\/o E P‘?(TQ))‘S(T?)k (u)‘(lx(TQ)) 1{>\2(T2)Z>\1(T2)}} du.

The first integral is bounded from above by E [A(To)10(1)>r(m)y] (recall that
Jo k(v)dv = 1) and the second one by E [A§(T3)1{,(s)>x (1)} - These two expectations

are equal. By applying Lemma 2.2 to a; = |o| and ay = 0, we see that there are finite as
soon as a > —1 and [5 > i<i sit@s;v(ds) < oo. Therefore f is bounded and the function

heR— f(0) “M

} belongs to L!(df). m
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Some examples. Let us now give some examples of fragmentation processes with parameters
a, v satisfying assumptions (A1), (A2), such that a > —1 and [ >, si7*s;v(ds) = oo, and

1<j “1

such that the mass measure dM does not have a density in L?(dt @ dP). Specifically, fix a > —1
and consider the dislocation measure

v(ds) =) apo
=

n>1

-1 -1 -1 (d8)7
noo,n ,..,n 0.

TV
n times

where (a,),-, is a sequence of non-negative real numbers such that
ol —
Yonsi@nnn <oo and Y o a,n!® = oco.

The assumption ) . a,Inn < oo leads both to the integrability of >~ [log(s;)|s; with

respect to v and to the finiteness of [, (1 — s1)? v(ds) for 3 > 0. Hence both assumptions (A1)

and (A2) are satisfied. The assumption }_ -, a,nl® = co implies [, >ici sitos;u(ds) = oo
and this in turn will imply that dM has no density in L?*(dt @ dP). To see this, note that the
measure v is constructed so that when a fragment splits, it splits into n fragments with same

masses for some 1 < n < co. Combined with (2.19), this remarks leads to

E Uﬂ(e) } = B [ (D) — wa'(%))ﬂ ,

where 1p denotes the characteristic function of D. This characteristic function is in L*(dz),

2
since the density & of the law of D is in L?(dz) (see Lemma 2.1). Hence [ F [ M(G)’ } df

is finite if and only if E [A{(13)] = E [A$(T2)1 {5 (1)>xe(72)y] 18 finite. And according to Lemma
1

2.2, this last expectation is infinite when [g, 37, s;7%s;v(ds) = oo, which is the case here.

2
Therefore, ffooo E UM (0)‘ ] df is infinite and dM cannot be absolutely continuous with a den-
sity in L2(dt ® dP).

The proof of Theorem 2.1 (ii) relies essentially on the following lemma:

Lemma 2.4 If a < —1, for a.e. t, the number of fragments with positive mass present at time
t is finite a.s.

This has already been proved in the last section of [15] for & < —1 and extends to o < —1
as follows.

Proof. For fixed time ¢, by applying the fragmentation and scaling properties at that time,
we see that we can rewrite the differences M(t +¢) — M(t), € > 0, as

M(t+e¢e)—M(t) = Z E(t)1pm>0y MY (eF(t)*), for all & > 0, (2.21)
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where the processes M are mutually independent and independent of F(t), and have the
same law as M. Let then (@, i > 1, denote the first time at which the dust’s mass M@ reaches
1 and remark that for all a > 0,

M(t+e)— M(t) = Z Ei(1rocr i</l Hcor<a)r €>0- (2.22)

The Lebesgue differentiation theorem implies that a.s., for a.e. ¢, lim._o (M (t +¢) — M(t)) /e
exists and is finite. By Fubini’s theorem, the order of “almost surely” and “for almost every ¢”
can be exchanged and therefore, for a.e. t, there exists a finite r.v. L(¢) such that
M t - M t a.s.
(t+e)= M) as pyy (2.23)

£ e—0

For such a time ¢, denote by FE; the event
“the number of macroscopic fragments at time ¢ is infinite”

and take w in E; such that (2.23) holds. Given a positive a, we introduce the (random) sequence
e, = aF,(t)(w). Since |a| > 1 and g, > 0 for all n > 1, we deduce from (2.22) (w being dropped
from notations) that

1

L(t) > ;Hmsup, . 70 2 E(t)o<r<ra@ {co<a)

v

> ilim SUD,,_ 00 1{<(n)<a}'
By Lemma 2.3, P(C™") < a) > 0 and then, since the ¢ are iid,

lim sup 1{C<">§a} =1 a.s.

n—oo

This holds for every a > 0. In other words, for a.e. w € E;, L(t)(w) = oo. But L(t) < oo a.s,
and so P(FE;) = 0.

Proof of Theorem 2.1 (ii). According to Proposition 1.9, Chapter 1, M(¢)/e 5 0 ase — 0.
So, if ¢ is a time such that the number of fragments with positive mass present at that time is
a.s. finite, one sees with formula (2.21) that

M(t +€) — M(t)
£

a.s.
—0ase—0.

According to the previous lemma, this holds for a.e. ¢ > 0 when a < —1, and this implies the
a.s. singularity of dM, by the Lebesgue differentiability theorem. m

2.5 Approximation of the density

When the mass measure dM of some («, v)-fragmentation F' (satisfying hypothesis (H)) pos-
sesses a Lebesgue density, a question that naturally arises, is to know if, as in the Brownian
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excursion fragmentation discussed in the Introduction, this density can be approximated by
functions of small fragments. In most cases, the answer is positive. To see this, introduce for
t>0ande>0

M(t,e) = Z Fi(t)10<F)<e)»

i>1

the total mass at time ¢ of macroscopic fragments with mass at most ¢, and

N(te) ==Y imwse

i>1

the number of fragments present at time ¢ with mass greater than €. We then have:

Theorem 2.2 Consider a dislocation measure v such that (A1) holds and suppose that

(a) the mass measure dM 1is absolutely continuous with a density L in LP(dx @ dP) for some
p>1

(b) the fragmentation is not geometric, i.e. there exists no r > 0 such that the mass of every
fragment at every time t belongs to the set {e_’” ke N} .

Then, for a.e. t,
e*M(t,e) = L(t)/ || u

e—0

and
e N (te) “3 L(t) (1 - |a]) / |af® p.

e—0

The assumptions (a) and (b) are not so restrictive. First, recall that Theorem 2.1 (i), Section
2.4, gives sufficient conditions for the mass measure to have a density in L?(dx ® dP). Next,
concerning assumption (b), it is easy to see that the fragmentation is not geometric as soon as
v (Sl) = 00. This is a consequence of Corollary 24.6 in [64] and its proof (to see this, consider
the subordinator ¢ introduced in Section 2.3 and note that its Lévy measure is finite if and
only if v is finite).

To prove Theorem 2.2, we need the following lemma and the Wiener-Pitt Tauberian Theo-
rem, which is recalled just after the proof of the Lemma.

Lemma 2.5 Let D be a r.v. independent of F, with the same distribution as the first time of
vanishing of a tagged fragment (given by (2.6)). If the mass measure dM is absolutely continuous
with a density L in LP(dx ® dP) for some p > 1, then for a.e. t,

lime®E [M(t,eD7V1l) | F] = L(t). (2.24)

e—0
Proof. Asin the proof of Lemma 2.4, we rewrite the difference M (t + ) — M(t), as

M(t+e) = M(t) =Y F(D)1rws0 (MY (F(t)*)), for all > 0, (2.25)
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where the processes M@ are independent copies of M and independent of F(t). If D denotes
a r.v. independent of F' and with the same distribution as (2.6), we get from (2.7) that
E[M(s)] = P(D < s), for s > 0, and then that

E[MY(EE®#)") | Ft)] E P(D<cF(H)* | Ft) = P(D <eFt)* | F), i>1.
Hence, almost surely,

EM(t+¢e)—M@) | F@)] =3 FEO)lLrep-0qP D <eFi@)* ]| F)
— B[S FiO) o pgerzen1y | F] (2.26)
= E |M(t,e"/lelp=1/lal) | F] .

For a.e. t, (M(t+¢) — M(t)) /e converges to L(t) as ¢ — 0, L being the density of dM. Since
this density is supposed to belong to LP(dz ® dP) for some p > 1, we may apply the maximal
inequality of Hardy-Littlewood (see e.g. [65], p.5), which yields

[P (M=) ose [ oo

e>0 €

for some deterministic constant C'. Then, for a.e. ¢, the r.v. sup..o (M (¢t +¢) — M(t)) /e has
a moment of order p and the dominated convergence theorem can be applied in the left-hand
side of (2.26). Therefore, for a.e. t,

lime®E [M(t,eD™ VIl | F] 2 E[L(t) | F(t)] & L),

e—0

since L(t) is F(t) -measurable, F being a right-continuous filtration. This right-continuity of
F is a classical consequence of the Feller property of F' (proved in [9]).

The following Wiener-Pitt Tauberian Theorem is proved in [21], on page 227. We recall that
a function g with values in R is said to be slowly decreasing if

limlim inf inf (g(lz)— > 0.
il inf | inf (9(lx) — g(z)) = 0

Hence a slowly decreasing function is a function whose decrease, if any, is slow. As example,
an increasing function is slowly decreasing.

Theorem 2.3 (Wiener-Pitt) Consider f,g : (0,00) — R and let f(z) = Jo e f(1/tydt/t for
z € C such that the integral converges. If f(z) exists and is non-zero for Re(z) = 0 and if g is
bounded, measurable and slowly decreasing, then

| sttt —_cito)

implies
g(z) — c

Tr—00
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By definition, a function g is slowly increasing if (—g) is slowly decreasing. The Wiener-Pitt
Theorem thus remains valid for slowly increasing functions g.

Proof of Theorem 2.2. Let us start with the convergence of ¢*M(t,¢) as ¢ — 0. In that
aim, consider D a r.v. independent of F' and with the same distribution as the first time of
vanishing of a tagged fragment and fix ¢ > 0 such that (2.24) holds. Then set

f(z) :=k(1/z), x € (0,00) (k is the density of D)

and
g(x) == zM(t,z= Y1), 2 € (0,00),

(g is a random function). The convergence (2.24) is equivalent to

r—00

/ f(z/u)g(uw)du/u %5 L(t),
so that, provided that the Wiener-Pitt Theorem applies,

g(x) =5 L(t)/f(0).

Tr—00

a.s.

This is equivalent to e*M (¢, 5) — L(t)/ |a| p, since f(0 = [ k(t)dt/t = E[D7] = |a| u (by

(2.8)). Thus, we just have to check that f and g¢ satlsfy the assumptions of the Wiener-Pitt
Theorem.

Consider first f. For every z in R, f(iz) = E[D*~!] exists since E [D~'] is finite. We would
like to show that E [D*™!] is non-zero for all z € R. When x = 0, E[D~!] > 0 since D is a
positive random variable. Now for x # 0, consider the subordinator ¢ introduced in Section
2.3.2 and related to the law of D by (2.6). As a consequence of assumption (b), the Lévy
measure 7, of the subordinator |oz|§ is not supported by a set rN, for some r > 0, so that the
characteristic exponent ¢ (z fo €)1 (du) of this subordinator is non-zero when z # 0.
Then, following the proof of Proposmon 3 in [25], we get that E [D®~1] = E[D®](x)/iz for
x # 0. Thus we just have to prove that £ [D™] is non-zero. We know ([18]) that there exists a

random variable R, independent of D, such that DR " ¢ where e denotes the exponential r.v.
with parameter 1. Therefore,

E[D"| E[R"] = / tedt.
0
This last integral is equal to I'(1+ix), I" being the analytic continuation of the Gamma function,
and it is well-known (see e.g. [6]) that T'(z) # 0 for all z in the complex plane. Thus E [D*] is
non-zero.

Now consider the function g. Since x — M (t, z) is non-decreasing, g is bounded from above
by
aB [M(t,z /1D YN peyy | F] /P(D < 1),
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which is a.s. bounded on R (by (2.24) and since P(D <1) > P(¢ < 1) > 0 by Lemma 2.3).
The function x — M (¢, z) is a limit of step functions, thus it is measurable and g is measurable.
It remains to show that ¢ is slowly increasing, that is

o B .-
N lim inf - inf (9(z) —g(lz)) = 0

We have that
g(z) — g(lz) = z(1 = DM (t, z~ Y1) 4 1z (M(t, a1l — M (¢, (1z) 7o)

For all [ > 1, the second term in the right-hand side of this identity is non-negative, which
leads to

nf (9(@) = 9(12)) = (1= A)g(z).

Now, since ¢ is a.s. bounded, there exists a positive random constant C' such that a.s.

lim inf inf (g(z) —g(lz)) > C(1 = \),

x—00 l€[1,M]

and finally,

lim lim inf inf — g(lz)) > 0.
Jim lin inf | inf (9(x) = g(lx)) = 0

The Wiener-Pitt Theorem therefore applies to f and g and the convergence of e*M(t,¢) to
L(t)/ |a| p as € — 0 is proved.

The last point to show, is the a.s. convergence of e "N (t, &) to L(t) (1 — |a]) / |af* 1 as
e — 0. Bertoin’s proof, p.4. in [16], which relies on Abelian-Tauberian theorems, adapts easily

here to give
1— M
N(t,e) ~ ( 'O‘|) (te) (2.27)
e—0 |a| e

The asymptotic behavior of N(¢,¢) as ¢ — 0 can then be deduced from that of M(¢,¢). m

Some remarks on small fragments behavior. Theorem 2.2 shows that for most of frag-
mentations with an index of self-similarity in |]—1,0[, the small fragments functions e*M (t, ¢)
and e'™*N(t,e) converge, for a.e. fixed time ¢, to non-degenerate limits as ¢ — 0. Moreover,
for negative-index fragmentations that are not taken into account in Theorem 2.2, one can see?

2With the notations of the proof of Lemma 2.4 and using (2.22) and (2.23), one gets that for a.e. t,
1 . .
igg B ; Fi(t)1{0<Fi(t)“"‘Ss/a}l{g(i)ga} is a.s. finite for all a > 0.
Consider then a; /o such that P (g(UgaW) > 1/2. Since the r.v. ¢ are iid and independent of F(t),
P (SUP5>0 % ZE(t)1{0<Fi(t)\a\gg}l{g(i)>a1/2} < OO>
> P (Supe>o : 2 EMLocpmyeical e <a, ) <00) =1

By taking the sum, we see that e*M (t,¢) is a.s. bounded for ¢ such that (2.23) holds and so does e!T*N (¢, ¢)
in view of equivalence (2.27).
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that for a.e. t >0, e*M(t,¢) and e!T*N(t, €) are anyway bounded a.s. When a@ < —1, we more
precisely have that M(t,e) = 0 and N(t,¢) is constant for £ small enough, almost surely and
for almost every ¢ (it is Lemma 2.4).

This completes in some way the discussion on the asymptotic behavior of M (t,¢) and N(t,¢)
as ¢ — 0 undertaken by Bertoin in [16] for fragmentations with a positive index of self-similarity.
The investigating methods (and the results) are completely different according whether the
index of self-similarity is positive or negative. The positive case relies on a martingale approach
(that cannot be shifted to the negative case) and gives, with suitable assumptions on v, that

M(t,e) af'\% C(t,w)f(e) and N(t,¢) “;3-0 C(t,w)Cf(e)/e
£e— PN
for some constants C(t,w), C' and where f(g) = [¢ >, sils,<c3v(ds). Note that this function

depends on v but not on «, whereas in the negative case the convergence rate depends only on
a.

Another remark when o < 0 and (A1) holds is that the measure dM is singular if and only
if €M (t,e) “3 0 for a.e t. To see this, combine equations (2.22) and (2.26).

2.6 Hausdorff dimension and Holder-continuity

When the measure dM is singular, it may be interesting to estimate the “size” of the sup-
port of dM (denoted here by supp(dM)), which is the smallest closed set C' of Ry such that
dM (R, \C) = 0. An appropriate concept is then that of Hausdorff dimension.:

dim y(E) :=inf {7y >0: m,(E) =0}, ECR,, (2.28)

where
m.(FE) := supinf Bi|", 2.29
() = spinr 37 154 (229)

the infimum being taken over all collections of intervals with length |B;| < e, whose union
covers F. For background on the subject, see e.g. [33]. In Subsection 2.6.1, we give some lower
and upper bounds for dim g (supp(dM)) and dim g (dM), the latter being defined as

dim y(dM) := inf {dim y(F) : IM(E) = 1}.
That dim y(dM) < dim g (supp(dM)) holds anyway and we show below that when v (S') = oo

and a < —1, these dimensions are different.

It is well known, since the dust’s mass M is the distribution function of dM, that the
Hausdorff dimension of dM is connected to the Hoélder-continuity of M, in the sense that
dim g (dM) > ~ as soon as M is Holder-continuous of order «y. Subsection 2.6.2 is devoted to
this Holder-continuity of the mass.

For the sequel, we recall that p is defined as

p = sup {q : /31 Zsifqu(ds) < oo}

i>2
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and set

A= <1: 1sv(ds) < .
sup{a_ /SLZSZ s;v(ds) oo}

1<j

Remark that 0 < p < A<1.

2.6.1 Hausdorff dimensions of dM and supp(dM)

Recall that ¢ denotes the first time at which all the initial mass is reduced to dust, so that
supp(dM) C [0, ¢].

Proposition 2.1 (i) If (A1) and (A2) hold, then dim g (dM) > 1 A (A/ |a) a.s.
(ii) A.s., dim g (dM) < 1A (1/]af).
(iii) If v(S') < oo, then dim g (supp(dM)) < 1A (1/|a]) a.s.

(iv) If v(S') = oo, then the mass M is strictly increasing on [0,¢] and dim g(supp(dM)) = 1
a.s.

Let us make two remarks about these results. First, the difference between the above state-
ments (iii) and (iv), can mainly be explained by the Poisson point process construction of ho-
mogeneous fragmentations (see [13] and [9]) and the passage from homogeneous to self-similar
fragmentations. Indeed, this construction shows that when v is finite the notion of “first split-
ting” is well-defined and that it occurs at an exponential time T with parameter v(S'), so that
M is null near 0, whereas when v is infinite the splitting times are dense in R, . This will be a
key point in the proofs below.

Second, the parameter A = 1 as soon as v(sy41 > 0) = 0 for some integer N (this was
shown in (2.16)). Hence in that case, if moreover assumptions (A1) and (A2) hold, the results
(i) and (ii) above give

dim g (dM) =11 (1/]a]) a.s.

We now turn to the proofs. The upper bound stated in Proposition 2.1 (ii) was recently shown
in [40] and we refer to this paper for the proof. Concerning statement (i), it is a standard result
(see e.g. Theorem 4.13 of Falconer [33]) that the convergence of [ [ |u — v|™* dM (u)dM (v)
for some real number a < 1 leads to dimy(dM) > a. Thus, the proof of Proposition 2.1 (i) is
an immediate consequence of the following lemma:

Lemma 2.6 Consider a positive real number a and suppose that assumptions (Al) and (A2)

hold. Then
E{/OOO/OOOW} <o a<lA(A|al).

ju—o[*

We point out that the implication = does not take into account the assumptions (A1) and

(A2).
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Proof. Using the same notations as in the proof of Theorem 2.1 (i), we have that

E UOOO /OOO lu—v| " dM(u)dM(v)| = E[|Dy — Dy| *] = E “Af"(Tg)f)l — NNy Dy

(2:30)

Suppose first that a < 1A(A/ |a|) . By assumptions (A1) and (A2) and Lemma 2.1, we know
that D has a density k such that k(x) and xk(z) are bounded on R?, say by C' and C" and

then that A*(T3) Dy — A1) D, has a density f (see (2.20) for an explicit expression). Our
goal is to prove that [ 0] f(0)d0 is finite. From (2.20), we get that

Jo 6

< fO 0 fO [}\a T2 )\Q(Tg)k} ((U + 0) )\Q(Tg)) k (U)\Q(TQ)) 1{)\1(T2)>)\2 Ty }] dudf (231)
+C fo 0~ fe [)‘a TQ))‘O%T?)]{; <U)‘?<T2)) 1{>\2(T2)>>\1 T5) ] dud®.

By Fubini’s Theorem, the second term in the right-hand side of this inequality is proportional
to

(/ ul%<u)du) B TN (To)1 patryzracran |
0

which is finite. Indeed, recall that D has positive moments of all orders and remark that the
expectation is bounded from above by E [)\S(I(Tg)l{)\2 (TQ)ZAI(TQ)}} , which is finite by Lemma 2.2,
as a o] < A < 1. Next, in order to bound the first term in the right-hand side of (2.31), remark
that

e}

i 0% ((u+ 0) \{(T2)) \{ (T2)dO = (M (T3))* /OOO 07k (6 + uX$(T2)) db.

Using the upper bounds C' of k(x) and C’ of zk(x), one gets

0o 1 o)
/ 0~k (0 + ur¥(T3)) df < C/ 0=de + C’/ 0~ 1df < oo
0 0 1

and so, the first term in the right-hand side of (2.31) is bounded from above by

E [(M(TQ))““ T oy [ O5(T) du]
0

multiplied by a finite constant. Since A3 (T%) [~k (uAg(T2)) du = 1, this expectation is bounded
by E [(M(T2))™ L (1m)> )\Q(TQ)}] which is finite, according to Lemma 2.2 and the assumption
on a. All this shows that [~ 6~*f(0)df < co and then that [ [0]™* f(#)df < oo since the

random variable )\Ila‘(TQ)Dl )\‘2 ‘(TQ)DQ is symmetric.

To prove the converse implication, first note that

E [ ] = |:1{>\1(T2)2)\2( )
> E [1pamzrnmp ()] B [1{51252}1)1_“} )
since (A1(73), A2(T3)) and (51, 52) are independent. Therefore, by identity (2.30),

E UOOO /OOO lu — v~ M (w)dM (v)

ANTy) Dy — M(T3) Dy AN To) Dy — M (1) Dy

<00 = E 1 m)zampA® (12)] < oo,
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which is, by Lemma 2.2 and the definition of A, equivalent to a < (A/|a|). On the other hand,
one can show that v — [ |u—v|™*dM(u) = co on

V= {v>0:limsupz—:“(M(v+5)—M(v—€)) >0}

e—0

and the Lebesgue theory implies dM (V) = 1 when a > 1. Hence
J52 5% fu = v~ dM(u)dM (v) = oo when a > 1.

Proof of Proposition 2.1 (iii). Consider an interval representation I of the fragmentation as
explained in Section 2.2 and denote by (., z € ]0, 1], the time at which the fragment containing
x vanishes, that is ¢, =inf{t > 0:x ¢ I(t)}. Then set

A= {Cz €]0,1[}.

By formula (2.7), M(t) = P(D <t | F) for all t > 0 a.s., and since D is the first time at
which a tagged fragment vanishes, we have M (t) = fol lic,<pydz, t > 0. Then the closure A of
A contains the support of the measure dM and it is sufficient to bound from above dimg (7l) .
Since v(S') < oo, we may consider the first splitting time, denoted by T. It is a stopping
time. Let Ji, Js,... denote the non-empty disjoint intervals obtained after this first split so that
Fi(T) > F5(T) > ... are their respective sizes and remark that

A= {T}U{Cx,xe Ji}

We first need to prove that
A={1}|J{G .z e Ji}. (2.32)

To that end, take a in U; {(;,x € J;} and consider a sequence (z,) in U;J; such that (,, — a.
Extracting a subsequence if necessary, we may assume that (z,) converges. Call x its limit
and J,, the interval that contains x,, n > 1. Either |J,, | - 0 as n — oo and then there is a

subsequence (SL’@(”)) such that the number of disjoint gy M = 1,18 finite, so that there is at

least one of these intervals containing an infinite number of x,,) and then a € U{(,, z € J;}.
Or, |J,,| — 0 as n — oo, which implies that (,, “> T as n — oo. To see why this last point
holds, introduce ¢, the first time at which the fragment .J, vanishes during the fragmentation,
n > 1. Of course, T' < (,, < (,. By application of the scaling and strong fragmentation
properties at time 7', we see that there exists a r.v. ¢, independent of F(T) and with the
same distribution as ¢ (see (2.10)) such that ¢, — T = |.J,, |' ¢™. Hence, using that E[¢] < oo
(see Lemma 2.3) and extracting a subsequence if necessary,

0<Co, =T < |, ¢ = 0as.

So, in both cases, U; {¢,, 7 € J;} C{T}U; {C, x € J;} and then A C {T} U; {(,, x € J;}. The

opposite inclusion is obvious.

Now, for each i > 1 set A; == ({{,z € J;i} —T)(F(T))". It follows from the scaling
and strong fragmentation properties that the sets A; are iid with the same law as A and are
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independent of (7). Combining this with (2.32) will lead us to m,(A) = 0 for v > 1/]a],
which in turn will imply that dimy (A) < 1/]af, by the definitions of m, and dimy (see
respectively (2.29) and (2.28)). To see this, fix ¥ > 1/ |a| and € > 0 and define for every subset
FE of R+

m; (B) = coveriinlzglsf of E Z | Bl
by intervals B, of lengths<e ™
Using that
A=A{TYJ (T + (F(T)) ™ A&)
we have
ms(A) <Y (F(T)) ™ ma BT (A <3 (F(T)) ™ m (A). (2.33)

Since the first time ¢ at which all the mass has been reduced to dust has a finite expectation and
since A C [0,¢], E [mes? (A)] is finite. Moreover, >, (F;(T)) = 1 and Fi(T) < 1 a.s., which
implies that £ [, (F;(T))"*"] <1 when v > 1/|a|. Combining this with (2.33) and the fact
that the random variables A; are independent of F(7T") and have the same law as A implies
that E [mes? (A)] = 0 for all positive ¢ as soon as v > 1/ |a|. So by definition, m.,(A) =0 for
v >1/|a| and then dimgy(A) <1/|al as. =

Proof of Proposition 2.1 (iv). We first prove that P(M(t) = 0) =0 for all £ > 0. To do so,
fix t > 0 and take s such that 0 < s < t. Recall that the fragmentation and scaling properties
applied at time s give

M) = M(5) + 37 B0 MO (¢ = 5)F(5) (2.34)

where the M® are mutually independent, independent of F (s) and with the same distribution
as M. Since v (Sl) = 00, the number of splits before time s is almost surely infinite. So if
M(s) = 0, that is no mass is lost at time s, none of the fragments with positive mass appeared
before s has entirely vanished at time s, so that there is an infinite number of fragments with
positive mass present at time s. In particular, if M(¢) = 0, then M(s) = 0 and Fi(s) > 0
for all i > 1. This gives with (2.34) that when M(t) = 0, then M@ ((t — 5)F*(s)) = 0 and
F2(s) ,/ oo.But this event has probability 0 since P(M(u) = 0) < 1 for some u large enough.
Therefore, P(M(t) = 0) = 0 and this holds for all ¢ > 0.

Next, take again 0 < s < t. The mass MY being that introduced in (2.34), remark that
conditionally on Fi(s) > 0, we have that 1(p =0 MY ((t — s)F(s)) > 0 a.s. since we have
just proved that P(M(u) > 0) = 1 for all w > 0. Hence, by (2.34), M(t) > M(s) a.s.
conditionally on Fj(s) > 0. In others words, P(M(s) < M(t) | s < ) = 1. Since this holds for
all 0 < s <t and since the dust’s mass M is a non-decreasing function,

P(M(s) < M(t)forall0 <s<t<()=1.

Hence M is a.s. strictly increasing on [0, ¢] and supp(dM) = [0,¢] =
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2.6.2 Holder continuity of the dust’s mass M

Notice that Proposition 2.1 (ii) implies that a.s. M cannot be Holder continuous of order
v >1A(1/]a|), since the y-Holder-continuity of M yields to dim g (dM) > v (see Section 13.7
in [33]). We have moreover:

Proposition 2.2 Suppose that assumptions (Al) and (A2) hold. Then,
(i) the mass M is a.s. Holder-continuous of order «y for every v < (1/2) A (A/2|a]).

(i) if v (syy1 > 0) = 0 for some integer N, the mass M is a.s. Hélder-continuous of order
v for every v < 1A (Q/ |0z|) :

The upper bound 1A (p/ |a|) is larger than (1/2) A (A/2]a]) as soon asp > A/2 or o] < 2p.

Remark also that when v (sy4; > 0) = 0 for some integer N, the coefficient A = 1 (see (2.16))
and the coefficient p = 1 if and only if v is moreover finite.

Part (i) of Proposition 2.2 is just a consequence of Lemma 2.6:

Proof of Proposition 2.2 (i). Consider v € ]0,1 A (A/ |a|)[ and remark that for all ¢ > s > 0,
t t
e - ) = [ [ artare)

< @ [ [

The integral [~ [° |u— o] dM(u)dM (v) is a.s. finite by Lemma 2.6, and then,
IM(t) — M(s)| < B(t—s)?forallt >s>0

for some a.s. finite constant B. m

The proof of the second part of Proposition 2.2 is slightly longer. The point is to use the
well-known Kolmogorov criterion (see e.g. [60], p. 26, Theorem 2.1). In that aim, we first
prove the following lemma.

Lemma 2.7 Suppose that there exists an integer N such that v(syy1 > 0) = 0 and fix an
integer n > 2. Suppose moreover that for all k € {1,...,n — 1} there exist a finite constant Cj,
and a positive real number a;, < k A ((k—1+p) /|al) such that

E [(M(t) - M(s))ﬂ <Oy (t—8)™ forallt>s>0. (2.35)

Then, for all a < infn,+no+t.. +n=n(an, + ... +an,) A((n —1) /|a|), there exists a finite constant

n;EN\{0}
Ch,q such that
E[(M(t) — M(s)"] < Cha(t—s)" forallt >s>0.
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Proof. Consider n points tagged independently, as explained in Section 2.3.2, and denote by
Dy, ..., D, their respective times of reduction to dust. The r.v. D;,; 1 < i < n, have the same
distribution as D (see (2.6)). By construction, the D;’s are independent conditionally on F, and
therefore, by formula (2.7), we have that

H 1{s<Di§t}
i=1

As in the proof of Theorem 2.1 (i), the goal is now to “introduce some independence” in order
to bound from above this expectation. To that end, consider T,,, the first time at which the n
tagged points do not belong to the same fragment and consider the distribution of the tagged
points at that time. More precisely, for each integer [ > 2 and each [-tuple (ny,ns,...,n;) €
(N\ {0})" satistying ny + ny + ... +n; = n, consider the event

E — B[(M(t) — M(s))"]. (2.36)

A | U1,Us,...,U; belong all to different fragments at time 7, and there
(n1m) = are ny, tagged points in the fragment containing Uy, 1 < k < [.

Since the number of such events is finite and since the law of (Dy, ..., D,,) is exchangeable, we just
have to prove that for a fixed I-tuple (ny,no,...,n;) and all a < (an, + ... + an,) A(n—1) /|o],
there exists a finite constant C' such that

E

11 1{S<Di§t}1{A(n N <C(t—s)* forallt>s>0. (2.37)
i:l 1M seeey n

Conditionally on A, n,,. ), there are | tagged fragments at time 7;,, with respective masses,
M(T), .., M(T,,) and containing each, respectively, ny, ..., n; tagged points. Write then

l
W H H 1{s<D¢St}1{A(nbn2 7777 )

k=1 i U;,UpEsame
fragment at time Tr,

Lis<p,<ty1
g <P

and recall that the [ fragments evolve independently after time 7,,. Recall also the scaling
property of the fragmentation and consider the identity (2.36) (that holds for every integer n,
and in particular the ng’s). Then, setting M (t) := 0 for ¢t < 0, there exists a random process M
with the same law as M and independent of F (T},) , (A1 (T,), ..., An(T7)) and Ap, s, ny) sSuch
that

.....

E [H?:l 1{s<DiSt}1{A(nl’n2 """" nz)}}
= 5 [T, 2 [ (31t = T () - M (s~ T (T2)))
| F(T,), \M(Tn), ..., \(Th), Awmina,... "l)} 1{A(n1,n2 AAAAA nl)}:| .

Now consider the assumptions we have made in the statement. Since M is a.s. bounded by
1, the inequality (2.35) holds actually by replacing a,, by any b,, < a,, and C,, by C,, V 1.
Therefore, for each I-tuple (b,,,...,b,,) such that b,, < a,,, 1 < k <[, there exists a finite
deterministic constant C' such that

— — ng
[Ty [B (M (= T) X (7)) = M (s = T) M(T)) | F (L) s M (T)s o M(T): Ay

< C(t— ) T, ().
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And then

( . S)b”1+"'+b"l B

l

ab

Ak (7)1 (9.3
l}_[l ; ( ) {A("Lng ,,,,, nl)} ( )

To see when the latter expectation is finite we use Lemma 2.2. Since, by assumption,
v (sny41 > 0) =0 and |a| by, < ny (recall that p < 1) for 1 <k <1,

ng—|albn 1—1 n2+ An—|albpy —...—|albn
[ X I gy [ 5 ),

1<i1<..<i;<N k=1 b acia<N

which is finite, by definition of p, as soon as ny + ... +n; — |a| by, — ... — |a| b, > 1 — p. This
holds here since || by, < ny — 14 p for k¥ > 2. Thus, by Lemma 2.2,

abn,
H )\ k 1{)\1 (Tn)>A2(Tn)>.. >>‘l(T")}1{A (n1,mg,... ”l)}] =

as soon as v, by, < (n — 1)/ |a|. By exchangeability, the expectation in the right hand side
of inequality (2.38) is then finite and thus the upper bound (2.37) and the required result are
proved.

Proof of Proposition 2.2 (ii). For all integer n > 1, define
Yn i =sup{a > 0:3 C < oo such that E[(M(t) — M(s))"] < C(t —s)* forallt >s>0}.
It is well-defined since M is a.s. bounded by 1. Our goal is to prove that the claim

E—1 p k-1
Ck): w>n|——A=A——] foralln>1,
©: 020 (A S )
holds for all integers k& > 1. If this is true, the proof is finished, since the Kolmogorov criterion
then asserts that for each £ > 1 and every ~ such that

- k—1 A p A k—1
TSk Mal Kl
there is a y-Holder-continuous version of M. Since M is non-decreasing, it is actually M that is

a.s. Holder-continuous with these orders 7. Letting k£ — oo, M is then a.s. y-Holder-continuous
for every v < (p/ |a|) A 1.

So let us prove by induction the claims C(k), & > 1. That C(1) holds is obvious.
To prove C(2), remark first that 43 = 1. This is a consequence of formula (2.7), which
gives E[M(t) — M(s)] = E [l{s<p<y] and then of assumptions (A1) and (A2), which, by
Lemma 2.1, imply that D has a bounded density. Then, 74 = 1 and Lemma 2.7 lead to
72 >2 (1A ((pA1/2)/]al)). And next, using recursively the same lemma and the fact that
p <1, we get that

Yo =n (1A (p/lal) A(1/2]al)) forall n > 1.
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Which proves the claim C'(2). Fix now an integer k£ > 2 and suppose that C'(k) holds. We want
to prove C'(k + 1). By Holder’s inequality,

1/n

B[00 - M) < B[0a0) - M) 2[00 - 1)) (@2.30)

First, remark the existence of a finite constant C such that £ [(M(t) - M(s))"/("_l)] < C(t—s)
since 0 < M(t) — M(s) <1 for t > s and since D has a bounded density. Next, by claim C(k),

Yok =1 (k= 1) A (kp/ |a]) A ((k—1) /]a])) forall n >1,
and this implies, with the previous remark and (2.39), that
Yes1 = (k= 1) A (kp/ |a]) A((k=1)/|a]) + (n — 1) /n for all n > 1.
Letting n — oo and using that £ — 1 > 0, it is easy to see that

Yerr = (k=1 A (kp/lal) A((k=1)/]a]) +1
> kA ((k+1)p/lal) AR/ |a]).

When n < k + 1,

E[(M(t)— M(s))"| < E [(M@) M (s)) n/(k+1)

and then ~,, > nvy..1/(k + 1). Hence,
Yo =n (kA ((k+p/lal) A(k/]al)) / (k+1) forall n < k+ 1.
Next, by applying Lemma 2.7 recursively, we get that
Yo =n (kA ((k+1Dp/lal) A(k/]al)) / (k+1) forn>k+1
and so C'(k + 1) holds. Hence the claims C'(k) hold for every integers k > 1. =

2.7 Appendix: proof of Lemma 2.2

For this technical proof, it is easier to work with partition-valued fragmentations, so we first
recall some background on the subject. The following recalls hold for any self-similar fragmen-
tation. We refer to [9], [13] and [14] for details.

Define by P the set of partitions of N\ {0} and for 7 € P and i € N\ {0}, denote by 7; the
block of 7 having 7 as least element, when such a block exists, and set 7; := () otherwise, so that
(71, o, ...) are the blocks of m. A random partition is called exchangeable if its distribution is
invariant under finite permutations. Kingman [45] shows that the blocks of every exchangeable
partition 7 have asymptotics frequencies a.s., that is (# denoting the counting measure on
N\ {0}) :

lim #(mN{1,..n})

n—oo n

exists a.s. for all 1.
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Let \W\l denote the decreasing rearrangement of these limits.

Now, let F be a S'-valued fragmentation with index of self-similarity o and consider I,
one of its interval representation as explained in Section 2.2. By picking independent r.v. U;,
i > 1, uniformly distributed on |0, 1] and independent of I, we can construct an a-self-similar
partition-valued fragmentation (II(¢),¢ > 0) as follows: for each ¢ > 0, II(¢) is the random
partition of N\ {0} such that two integers 7, j belong to the same block of II(¢) if and only if
U; and U; belong to the same interval component of I(t). If U; ¢ I(t), then the block of II(¢)
containing ¢ is {7} . This process II is exchangeable and called partition-valued representation
of F'. By the strong law of large number, the law of F' can be recovered from II, as the law of
the decreasing rearrangement of asymptotic frequencies of II :

<|H(t)|l,t > o) '

In the homogeneous case (a = 0), the partition-valued fragmentation (II(¢),¢ > 0) can be
constructed from a Poisson point process (PPP) with an intensity measure depending on the
dislocation measure v. We explain the construction for a fragmentation with no erosion and
a dislocation measure v such that v (3} ;s; < 1) = 0. First, for every s = (sy,52,...) € S,
consider the paintboxr partition Il (introduced by Kingman, see e.g. [45]) defined as follows:
let (Z;),», be an iid sequence of random variable such that P (Z; = j) = s; for j > 1 and let
then II, be the partition such that two integers 4, j are in the same block if and only if Z; = Z;.
Introduce next the measure k, defined by

o (B) = /S P, € Blu(ds), BeP. (2.40)

Bertoin [13] shows that k, is an exchangeable measure and that the fragmentation II is a
pure jumps process whose jumps correspond to the atoms of a PPP ((A(t),k(t)),t > 0) on
P x N\ {0} with intensity x, ® #. By this, we mean that Il jumps exactly at the times of
occurrence of atoms of the PPP and that at such times ¢, II(¢7) jumps to II(¢) as follows: the
blocks of II(t) are the same as those of II(¢7), except II(¢™)x), which is replaced by the blocks
{niie A(t)i}, {n; i € A(t)s}, ... wheren; < ny < ... are the elements of the block IT(¢7 ).
Berestycki adapts in [9] this PPP-construction to homogeneous St-valued fragmentations.

This partition point of view and the Poissonian construction lead to the following lemma.

Lemma 2.8 Let I}, be a homogeneous interval fragmentation, with no erosion and with a dis-
location measure v such that v (>, s, <1) = 0. In this fragmentation, tag independently n
fragments as explained in Section 2.3.2 and let Uyp, ..., U, denote the tagged points. De-
fine Ay p(t), ..., Ann(t) to be the masses at time t of these tagged fragments and T, the first
time at which the tagged points do not all belong to the same fragment. For every l-tuple
(n1,n2, ...,m) € (N\ {0} such that ny + ng + ... +ny = n, define then Atny,nih by

A _ J Ui, Usp, ..., Upp, belong all to different fragments at time T, ;, and
(n1m)h =N there are ny, tagged points in the fragment containing Uy, 1 < k <.

Then,
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(1) M (Tapn—=) = Mep(Ton—) = ... = Aan(Ton—) by definition of T, p,
(i) Aeny,...n)n and (/\Allh}z(Tn”thV A?Qh’z(Tinh’lj), . /\);"h’z(TZ"h’:))> are independent of Ay p(Thn—),

(ii) there is a positive finite constant C' such that for every positive measurable function f
on 10,1],

)‘l,h(Tn,h) X2 h (Ta,n) A,n(Th,n)
E |:f <>\1 h(Tn,n=)" A p(Tnn—) " )\1,h(Tn,h—)) 1{A(

_C/ Z 5?115?22,. Snz (5217"'781'1)1{3 >0,..., 8”>0}V(d8)

i1 F#ieF . F

Proof.  Let (II,(¢),t > 0) be the homogeneous partition-valued fragmentation constructed
from I, and the U, ;’s, and let ((A(%),k(t)),t > 0) be the PPP on P x N\ {0} with intensity
K, ® # describing the jumps of II,. Define then P to be the set of partitions of N\ {0} such
that integers 1,2, ...,n do not belong to the same block and remark that

Top=inf{t>0:1,(t) € P} =inf{t >0: At) € P and k(t) = 1} .

Setting A; for the block of A(T}, ;) containing ¢, 1 < i < n, the event Ap,, 1,
be written as

),k can therefore

-----

A ~ [ 1,2,...,1 belong to distinct blocks of A(T}, 1) (2.41)
(n1,nz2,...m0) and Card(A, N{1,..,n}) =mng, 1 <k <L '
and using the exchangeability of x, and the independence of A(T,, ;) and I, (7, ,—), we get
that
#(A AL, . k}) as. Ain(Ton) l<i<n,
k k—>oo )\1 h( n,h )

and then assertion (ii).

Next, to prove (iii), note that formula (2.40) leads to

i (e

which is positive and finite since 1 - . s?* < n (1 — s1) and (1 — s1) is integrable with respect to
v. It is then a standard result of PPP’s theory that 7T;, , has an exponential law with parameter
k, (P2) and that the distribution of A(T,, ) is given by &, (- N P%) /K, (P%). Thus, by definition
of k,,

E|f ( Aa(Tnn)  Aon(Tnon) Aa (Ton) )
AMoap(Tnp=)" Mp(Toan—=) "7 A (Tnyn—) {A(nlﬂ12 """ nl),h}

1
= FE
ki (Pr) /sl

where Afm nam)h 1 defined as A, n,,....n),n by Teplacing in (2.41) A(T, ) by II,. It is then

easy to check with the definition of [T, that the required formula holds.

S (s, s y) 1{As }] v(ds),

(nl,ng,“wnl),h

Proof of Lemma 2.2. The first part of the proof consists in shifting the problem to a
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homogeneous fragmentation with the same dislocation measure v. This can be done by using
the construction of self-similar fragmentations from homogeneous ones recalled in Section 2.2.
So, consider a homogeneous interval fragmentation [, from which we construct the a-self-similar
one by time-change (2.1). In this homogeneous fragmentation, tag independently n fragments
as in the previous lemma. Keeping the notation introduced there, is easy to see that

So that the aim of this proof is to find for which [-tuples (ay, ..., a;) , the expectation

H Mo {)\1 h(Tn,n) 22,0 (Ton) 2 2 A0 (Th, h)}l{A(nl,nQ """ nl)’h}]

is finite.

By Lemma 2.8, we have that

l —a
E [Hk:l Mo Do) Loz 2@} ag, nl)’h}}
v,
= B | (Aa(Top)) ™00
l Men(Ton) |~
xXE szl (M,h(Tn,h*)) 1{>\1h(Tnh)> 2 ( nh} {A (n1mzom nl),h}:|
and that

< 00

WNACEND) F
E Hk 1 (M w(Tn,n— )) 1{>\1h (Tn,n)Z- -2 A0 (T h)}l{Anl,nQ AAAAA nph )
< fsl 11<...<9; Hk 1 zk le{s >O}V<d8) < 0.

So it just remains to specify for which (ay, ..., ;) , the expectation F [(Al,h(Tmh—))_Eﬁf:l“’“] is
finite. To that end, remark that given A; j, the probability that the tagged points Us, ..., Up s
belong to the same fragment as U, j, at time ¢ is equal to )\?;Ll(t), since the U, j,’s are independent
and uniformly distributed on ]0, 1[. In other words,

P(Ton >t ] M) = A0, (t) V> 0.

As recalled in Section 2.3, the process (A1 4(t),t > 0) can be expressed in the form (exp(—¢&;),t >
0), for some pure jumps subordinator ¢ with Laplace exponent ¢ given by (2.4). Therefore
P(Tpp >t | Mp) = e V¢ and for all a € R:

ENWTu—)] =E UO°° e~ P(T,p, € dt | A p)]
=F fOOO E (eaﬁs _ eafs*) P<Tn,h c dt | )\1,h>:| +1

0<s<t

— E Z (eags — eags—) 6(n1)55:| + 1

|0<s<o0

=B| ¥ ot (e“‘("‘”ms—6‘("‘%)} 1 (A =& 6).

L0<s<o0
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Finally, using the Master Formula (see [60], p.475), we get

E [)‘;,Z(Tmh_)] =F [/ e(“_("_l))gsds} / (e(“_("_l))x — e_("_l)x)ﬂ(dx) +1,
0 0

7 being the Lévy measure of £. The integral [;°(el@~ (=)= — e=(=U)7(dy) s finite as soon
as a < n — 1 and the expectation F UOOO e(a*(”*l))gsds} is finite if and only if a < n — 1, since
E [e‘q&} = ¢7*%(@) where ¢ > 0 on ]0,00[, ¢ € [~00,0] on |—00,0]. This completes the proof.
[
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Chapitre 3

The genealogy of self-similar
fragmentations with a negative index
as a continuum random tree

Abstract: We encode a certain class of stochastic fragmentation processes, namely self-similar
fragmentation processes with a negative index of self-similarity, into a metric family tree which
belongs to the family of Continuum Random Trees of Aldous. When the splitting times of
the fragmentation are dense near 0, the tree can in turn be encoded into a continuous height
function, just as the Brownian Continuum Random Tree is encoded in a normalized Brownian
excursion. Under mild hypotheses, we then compute the Hausdorff dimensions of these trees,
and the maximal Holder exponents of the height functions.

3.1 Introduction

Self-similar fragmentation processes describe the evolution of an object that falls apart, so that
different fragments keep on collapsing independently with a rate that depends on their sizes
to a certain power, called the index of the self-similar fragmentation. A genealogy is naturally
associated with such fragmentation processes, by saying that the common ancestor of two
fragments is the block that included these fragments for the last time, before a dislocation had
definitely separated them. With an appropriate coding of the fragments, one guesses that there
should be a natural way to define a genealogy tree, rooted at the initial fragment, associated
with any such fragmentation. It would be natural to put a metric on this tree, e.g. by letting the
distance from a fragment to the root of the tree be the time at which the fragment disappears.

Conversely, it turns out that trees have played a key role in models involving self-similar
fragmentations, notably, Aldous and Pitman [5] have introduced a way to log the so-called
Brownian Continuum Random Tree (CRT) [3] that is related to the standard additive coales-
cent. Bertoin [14] has shown that a fragmentation that is somehow dual to the Aldous-Pitman
fragmentation can be obtained as follows. Let 7p be the Brownian CRT, which is considered
as an “infinite tree with edge-lengths” (formal definitions are given below). Let 7.}, 772, ...
be the distinct tree components of the forest obtained by removing all the vertices of 7 that
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are at distance less than t from the root, and arranged by decreasing order of “size”. Then
the sequence Fp(t) of these sizes defines as ¢ varies a self-similar fragmentation. A moment
of thought points out that the notion of genealogy defined above precisely coincides with the
tree we have fragmented in this way, since a split occurs precisely at branchpoints of the tree.
Fragmentations of CRT’s that are different from the Brownian one and that follow the same
kind of construction have been studied in [56].

The goal of this paper is to show that any self-similar fragmentation process with negative
index can be obtained by a similar construction as above, for a certain instance of CRT. We
are interested in negative indices, because in most interesting cases when the self-similarity
index is non-negative, all fragments have an “infinite lifetime”, meaning that the pieces of the
fragmentation remain macroscopic at all times. In this case, the family tree defined above will
be unbounded and without endpoints, hence looking completely different from the Brownian
CRT. By contrast, as soon as the self-similarity index is negative, a loss of mass occurs, that
makes the fragments disappear in finite time (see [15]). In this case, the metric family tree will
be a bounded object, and in fact, a CRT. To state our results, we first give a rigorous definition
of the involved objects. Call

Sl:{52(31,52,...):512522...20;Zsi§1},

i>1

and endow it with the topology of pointwise convergence.

Definition 3.1 A Markovian S'-valued process (F(t),t > 0) starting at (1,0,...) is a ranked
self-similar fragmentation with index o« € R if it is continuous in probability and satisfies the
following fragmentation property. For every t,t' > 0, given F(t) = (x1,22,...), F(t +1t') has
the same law as the decreasing rearrangement of the sequences x1 FM (x8t)), 2o F® (25t'), . . .,
where the F® s are independent copies of F.

By a result of Bertoin [14] and Berestycki [9], the laws of such fragmentation processes are
characterized by a 3-tuple («, ¢, V), where « is the index, ¢ > 0 is an “erosion” constant, and v is
a o-finite measure on S that integrates s — 1 — s; such that v({(1,0,0...)}) = 0. Informally,
¢ measures the rate at which fragments melt continuously (a phenomenon we will not be much
interested in here), while v measures instantaneous breaks of fragments: a piece with size x
breaks into fragments with masses xs at rate x*v(ds). Notice that some mass can be lost within
a sudden break: this happens as soon as (). s; < 1) # 0, but we will not be interested in this
phenomenon here either. The loss of mass phenomenon stated above is completely different
from erosion or sudden loss of mass: it is due to the fact that small fragments tend to decay
faster when o < 0.

On the other hand, let us define the notion of CRT. An R-tree (with the terminology of
Dress and Terhalle [27]; it is called a continuum tree set in Aldous [3]) is a complete metric
space (T, d), whose elements are called vertices, which satisfies the following two properties:

e For v,w € T, there exists a unique geodesic [[v, w]] going from v to w, i.e. there exists a
unique isomorphism ¢, ,, : [0, d(v, w)] — T with ¢, ,,(0) = v and ¢, ,(d(v,w)) = w, and
its image is called [[v, w]].
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e For any v,w € T, the only non-self-intersecting path going from v to w is [[v, w]], i.e.
for any continuous injective function s +— vg from [0, 1] to 7" with vg = v and v; = w,
{'US LS € [07 1]} = [[v,w]]

We will furthermore consider R-trees that are rooted, that is, one vertex is distinguished
as being the root, and we call it @. A leaf is a vertex which does not belong to [[&, w[[:=
0o.w([0,d(D,w))) for any vertex w. Call L(T') the set of leaves of T', and S(T') =T \ L(T) its
skeleton. An R -tree is leaf-dense if T is the closure of L(T'). We also call height of a vertex v
the quantity ht(v) = d(@,v). Last, for 7" an R-tree and a > 0, we let a ® T be the R-tree in
which all distances are multiplied by a.

Definition 3.2 A continuum tree is a pair (T, p) where T is an R-tree and p is a probability
measure on T, called the mass measure, which is non-atomic and satisfies W(L(T)) = 1 and
such that for every non-leaf vertex w, p{v € T : [[@,v]] N [[@,w]] = [[&,w]]} > 0. The set
of wvertices just defined is called the fringe subtree rooted at w. A CRT is a random variable
wi— (T(w), u(w)) on a probability space (2, F, P) whose values are continuum trees.

Notice that the definition of a continuum tree implies that the R-tree T satisfies certain
extra properties, for example, its set of leaves must be uncountable and have no isolated point.
Also, the definition of a CRT is a little inaccurate as we did not endow the space of R-trees
with a o-field. This problem is in fact circumvented by the fact that CRTs are in fact entirely
described by the sequence of their marginals, that is, of the subtrees spanned by the root and k
leaves chosen with law p given p, and these subtrees, which are interpreted as finite trees with
edge-lengths, are random variables (see Sect. 3.2.2). The reader should keep in mind that by
the “law” of a CRT we mean the sequence of these marginals. Another point of view is taken
in [30], where the space of R-trees is endowed with a metric.

For (T, 1) a continuum tree, and for every ¢ > 0, let T (t), T5(t), ... be the tree components
of {v € T : ht(v) > t}, ranked by decreasing order of p-mass. A continuum random tree (7', p)
is said to be self-similar with index o < 0 if for every ¢ > 0, conditionally on (u(7;(t)),7 > 1),
(T;(t),i > 1) has the same law as (u(T;(t))™® ® T®,i > 1) where the T™’s are independent
copies of T.

Our first result is

Theorem 3.1 Let F be a ranked self-similar fragmentation process with characteristic 3-tuple
(a,c,v), with a < 0. Suppose also that F' is not constant, that ¢ = 0 and v(>_,;s; < 1) = 0.
Then there exists an a-self-similar CRT (T, up) such that, writing F'(t) for the decreasing
sequence of masses of connected components of the open set {v € Tp : ht(v) > t}, the process
(F'(t),t > 0) has the same law as F. The tree T is leaf-dense if and only if v has infinite total
mass.

The next statement is a kind of converse to this theorem.

Proposition 3.1 Let (7, 1) be a self-similar CRT with index o < 0. Then the process F(t) =
((u(7Ti(t),i > 1),t > 0) is a ranked self-similar fragmentation with index «, it has no erosion
and its dislocation measure v satisfies v(3_,s; < 1) = 0. Moreover, Tr and T have the same
law.
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These results are proved in Sect. 3.2. There probably exists some notion of continuum
random tree extending the former which would include fragmentations with erosion or with
sudden loss of mass, but we do not pursue this here.

The next result, to be proved in Sect. 3.3, deals with the Hausdorff dimension of the set of
leaves of the CRT 7f.

Theorem 3.2 Let F' be a ranked self-similar fragmentation with characteristics (o, c,v) satis-
fying the hypotheses of Theorem 3.1. Writing dim « for Hausdorff dimension, one has

dim 4 (L(7F)) = ﬁ a.s. (3.1)

as soon as [g (s7" —1) v(ds) < oo,

Some comments about this formula. First, notice that under the extra integrability assump-
tion on v, the dimension of the whole tree is dim(7r) = (1/|a]) V 1 because the skeleton
S(7r) has dimension 1 as a countable union of segments. The value —1 is therefore critical for
a, since the above formula shows that the dimension of 7 as to be 1 as soon as o < —1. It was
shown in a previous work by Bertoin [15] that when o < —1, for every fixed ¢ the number of
fragments at time t is a.s. finite, so that —1 is indeed the threshold under which fragments decay
extremely fast. One should then picture the CRT 7 as a “dead tree” looking like a handful of
thin sticks connected to each other, while when |a| < 1 the tree looks more like a dense “bush”.
Last, the integrability assumption in the theorem seems to be reasonably mild; its heuristic
meaning is that when a fragmentation occurs, the largest resulting fragment is not too small.
In particular, it is always satisfied in the case of fragmentations for which v(sy;1 > 0) = 0,
since then s; > 1/N for v-a.e. s. Yet, we point out that when [g, (s;' —1) v(ds) = oo, one
anyway obtains the following bounds for the Hausdorff dimension of £(7F):

O dim g (L(T0) < — as.

| |

e 0 = sup {p <1: /Sl (s;7 = 1) v(ds) < oo} : (3.2)

We do not know whether the condition [ (s;' — 1)r(ds) < oo is necessary for (3.1), as we
are not aware of any self-similar fragmentation with index a such that the associated CRT has
leaf-dimension strictly less than 1/|«|.

It is worth noting that these results allow as a special case to compute the Hausdorff dimen-
sion of the so-called stable trees of Duquesne and Le Gall [29], which were used to construct
fragmentations in the manner of Theorem 3.1 in [56]. The dimension of the stable tree (as well
as finer results of Hausdorff measures on more general Lévy trees) has been obtained indepen-
dently in [30]. The stable tree is a CRT whose law depends on parameter § € (1,2], and it
satisfies the required self-similarity property of Proposition 3.1 with index 1/8 — 1. We check
that the associated dislocation measure satisfies the integrability condition of Theorem 3.2 in
Sect. 3.3.5, so that

Corollary 3.1 Fiz € (1,2]. The (3-stable tree has Hausdorff dimension 3/(3 — 1).
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An interesting process associated with a given continuum tree (7', i) is the so-called cumula-
tive height profile Wr(h) = u{v € T : ht(v) < h}, which is non-decreasing and bounded by 1 on
R, . It may happen that the Stieltjes measure dWy(h) is absolutely continuous with respect to
Lebesgue measure, in which case its density (Wr(h),h > 0) is called the height profile, or width
process of the tree. In our setting, for any fragmentation F' satisfying the hypotheses of Theo-
rem 3.1, the cumulative height profile has the following interpretation: one has (W, (h), h > 0)
has the same law as (Mp(h),h > 0), where Mp(h) =1 —> .., F;(h) is the total mass lost by
the fragmentation at time h. Detailed conditions for existence (or non-existence) of the width
profile dMg(h)/dh have been given in [39]. It was also proved there that under some mild
assumptions dimy (dMp) > 1 A A/ |af a.s., where A is a v-dependent parameter introduced in
(3.10) below, and

The upper bound we obtain for dim 4 (£(7F)) allows us to complete this result:

Corollary 3.2 Let F' be a ranked self-similar fragmentation with same hypotheses as in The-
orem 3.1. Then dimy (AMp) < 1A1/|a| a.s.

Notice that this result re-implies the fact from [39] that the height profile does not exist as
soon as |a| > 1.

The last motivation of this paper (Sect. 3.4) is about relations between CRTs and their so-
called encoding height processes. The fragmentation Fp of [14], as well as the fragmentations
from [56], were defined out of certain random functions (H;,0 < s < 1). Let us describe
briefly the construction of Fg. Let B be the standard Brownian excursion with duration
1, and consider the open set {s € [0,1] : 2B&¢ > t}. Write F(t) for the decreasing sequence
of the lengths of its interval components. Then F' has the same law as the fragmentation Fj
defined out of the Brownian CRT in the same way as in Theorem 3.1. This is immediate
from the description of Le Gall [51] and Aldous [3] of the Brownian tree as being encoded in
the Brownian excursion. To be concise, define a pseudo-metric on [0, 1] by letting d(s,s’) =
2B + 2B — 4inf,cs o) BY, with the convention that [s,s'] = [¢/,s] if s < s. We can
define a true metric space by taking the quotient with respect to the equivalence relation
s=s <= d(s,s)=0. Call (7,d) this metric space. Write up for the measure induced on
75 by Lebesgue measure on [0, 1]. Then (75, up) is the Brownian CRT, and the equality in law
of the fragmentations Fp and FJj; follows immediately from the definition of the mass measure.
Our next result generalizes this construction.

Theorem 3.3 Let F' be a ranked self-similar fragmentation with same hypotheses as in Theo-
rem 3.1, and suppose v has infinite total mass. Then there exists a continuous random func-
tion (Hp(s),0 < s < 1), called the height function, such that Hp(0) = Hp(1), Hp(s) > 0
for every s € (0,1), and such that F has the same law as the fragmentation F' defined by:
F'(t) is the decreasing rearrangement of the lengths of the interval components of the open set
Irp(t) ={s€(0,1): Hp(s) > t}.

An interesting point in this construction is also that it shows that a large class of self-similar
fragmentation with negative index has a natural interval representation, given by (Ig(t),t > 0).
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Bertoin [14, Lemma 6] had already constructed such an interval representation, I}. say, but ours
is different qualitatively. We will see in the sequel that our representation is intuitively obtained
by putting the intervals obtained from the dislocation of a largest interval in exchangeable
random order, while Bertoin’s method is to put these same intervals from left to right by size-
biased random order. In particular, For example, Bertoin’s interval fragmentation /7. cannot
be written in the form I,.(t) = {s € (0,1) : H(s) > t} for any continuous process H.

In parallel to the computation of the Hausdorff dimension of the CRTs built above, we are
able to estimate Holder coefficients for the height processes of these CRTs. Our result is

Theorem 3.4 Suppose v(S') = oo, and set

V9w 1= sup{b>0:li?01xbl/(sl < l—x):oo},
Dup = inf{b>0:1iﬁ)ll‘bl/(81 <1l-—ux) :O}.

Then the height process Hp is a.s. Holder-continuous of order ~ for every v < Oow A |a],
and, provided that [ (s7' — 1)v(ds) < oo, a.s. not Hélder-continuous of order v for every
v > U A .

Again we point out that one actually obtains an upper bound for the maximal Holder
coefficient even when [ (sy' — 1)v(ds) = oo : with o defined by (3.2), a.s. Hp cannot be
Hoélder-continuous of order v for any v > vy, A ||/ 0.

Note that Uiy, Uyp depend only on the characteristics of the fragmentation process, and more
precisely, on the behavior of ¥ when s; is close to 1. By contrast, our Hausdorff dimension
result for the tree depended on a hypothesis on the behavior of v when s; is near 0. Remark
also that ¥, may be strictly smaller than 1. Therefore, the Hausdorff dimension of 7p is in
general not equal to the inverse of the maximal Holder coefficient of the height process, as one
could have expected. However, this turns out to be true in the case of the stable tree, as will
be checked in Section 3.4.4:

Corollary 3.3 The height process of the stable tree with index 5 € (1,2] is a.s. Holder-
continuous of any order v < 1 —1/f3, but a.s. not of order v >1—1/p.

When 3 = 2, this just states that the Brownian excursion is Holder-continuous of any order
< 1/2, a result that is well-known for Brownian motion and which readily transfers to the
normalized Brownian excursion (e.g. by rescaling the first excursion of Brownian motion whose
duration is greater than 1). The general result had been obtained in [29] by completely different
methods.

Last, we mention that most of our results extend to a more general class of fragmentations
in which a fragment with mass z splits to give fragments with masses xs, s € S!, at rate
7(x)v(ds) for some non-negative continuous function 7 on (0,1] (see [38] for a rigorous def-
inition). The proofs of the above theorems easily adapt to give the following results: when
liminf, .oz °7(z) > 0 for some b < 0, the fragmentation can be encoded as above into a
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CRT and, provided that v is infinite, into a height function. The set of leaves of the CRT
then has a Hausdorff dimension smaller than 1/ |b| and the height function is y-Hélder con-
tinuous for every 7 < o A [b]. If moreover limsup,_ ,,x %7(x) < oo for some a < 0 and
Jsi (si" = 1) v(ds) < oo, the Hausdorff dimension is larger than 1/ |a| and the height function
cannot have a Holder coefficient v > Yy A |al.

Building the CRT 7 associated with a ranked fragmentation F' will be done by determining
its “marginals”, i.e. the subtrees spanned by a finite but arbitrary number of randomly chosen
leaves. To this purpose, it will be useful to use partition-valued fragmentations, which we first
define, as well as a certain family of trees with edge-lengths.

3.2.1 Exchangeable partitions and partition-valued self-similar frag-
mentations

Let Py be the set of (unordered) partitions of N = {1,2,...} and [n] = {1,2,...,n}. For
i,j € N, we write i ~ j if ¢ and j are in the same block of 7. We adopt the following

ordering convention: for m € P, we let (my, 72, ...) be the blocks of 7, so that m; is the block
containing ¢ provided that ¢ is the smallest integer of the block and m; = & otherwise. We
let O = {{1},{2},...} be the partition of N into singletons. If B C N and 7 € P, we let
mN B (or 7|p) be the restriction of 7 to B, i.e. the partition of B whose collection of blocks is
{mNB,i >1}. If € Py, and B € 7 is a block of 7, we let
Bl — 1 2EOD
n—oo n

be the asymptotic frequency of the block B, whenever it exists. A random variable 7 with values
in Py is called ezchangeable if its law is invariant under the natural action of permutations of
N on P,. By a theorem of Kingman [44, 1], all the blocks of such random partitions admit
asymptotic frequencies a.s. For m whose blocks have asymptotic frequencies, we let |7| € S
be the decreasing sequence of these frequencies. Kingman’s theorem more precisely says that
the law of any exchangeable random partition 7 is a (random) “paintbox process”, a term we
now explain. Take s € S' (the paintbox) and consider a sequence Uy, Uy, ... of i.i.d. variables
in NU {0} (the colors) with P(U; = j) = s; for j > 1 and P(U; = 0) =1 — )", sx. Define
a partition 7 on N by saying that ¢ # j are in the same block if and only if U; = U; # 0
(i.e. i and j have the same color, where 0 is considered as colorless). Call ps(dm) its law, the
s-paintbor law. Kingman’s theorem says that the law of any random partition is a mixing
of paintboxes, i.e. it has the form [ _g m(ds)ps(dr) for some probability measure m on S*.
A useful consequence is that the block of an exchangeable partition 7 containing 1, or some
prescribed integer 4, is a size-biased pick from the blocks of m, i.e. the probability it equals a
non-singleton block 7; conditionally on (|7;|,j > 1) equals |r;|. Similarly,
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Lemma 3.1 Let w be an exchangeable random partition which is a.s. different from the trivial
partition Q, and B an infinite subset of N. For any i1 € N, let

i=inf{j>i:jeBand{j} ¢}

theni < 0o a.s. and the block & of m contammg; 1s a size-biased pick among the non-singleton
blocks of w, i.e. if we denote these by @\, 7, ...,

P = a5 > 1) = |mil/ 3 I,
J

For any sequence of partitions (7,4 > 1), define 7 = ﬂz‘zl 7@ by
T ONS .
k~j <= k'~j5 Vi>1.
Lemma 3. 2 Let (™ i > 1) be a sequence of independent exchangeable partitions and set
= ﬂ2>1 7. Then, a.s. for every j € N,

;| = k(i,5)

[T}t

i>1

where (k(i,7),j > 1) is defined so that m; = (5, Wlii()i,j).

Proof. First notice that k(7,7) < j for all i > 1 a.s. This is clear when 7; # @, since j € ;
and then j € 7T . When 7; = @, j € 7, for some m < j and then m and j belong to the

same block of 7T(Z for all i > 1. Thus k(7,j) < m < j. Using then the pamtbox construction
of exchangeable partitions explained above and the 1ndependence of the 7’s, we see that the
r.v. [Lisy 1{me 9y m > j + 1, are iid conditionally on (\ﬁk yl;7 = 1) with a mean equal to

[T \ﬂk il The law of large numbers therefore gives

= tm = S T

i>1 7+1<m<n i>1

k(i,5)

On the other hand, the random variables HiZl 1{7”6”;(:()1-,]-)} = limer,}, m > j + 1, are i.id.
conditionally on |7;| with mean |7;| and then the limit above converges a.s. to |m;|, again by
the law of large numbers. m

We now turn our attention to partition-valued fragmentations.

Definition 3.3 Let (II(¢),t > 0) be a Markovian P -valued process with I1(0) = {N, &, &,...}
that is continuous in probability and exchangeable as a process (meaning that the law of 11 is
invariant under the action of permutations). Call it a partition-valued self-similar fragmen-
tation with index o € R if moreover I1(t) admits asymptotic frequencies for all t, a.s., if the
process (|11(t)],t > 0) is continuous in probability, and if the following fragmentation property is
satisfied. Fort,t' >0, given I1(t) = (my, mo, . . ) the sequence II(t +t') has the same law as the
partition with blocks w1 NIIW (|7 |*t), m NP (|7e|®t), . . ., where (II¥) 5 > 1) are independent
copies of 11.
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Bertoin [14] has shown that any such fragmentation is also characterized by the same 3-tuple
(av, ¢, v) as above, meaning that the laws of partition-valued and ranked self-similar fragmenta-
tions are in a one-to-one correspondence. In fact, for every (o, ¢, v), one can construct a version
of the partition-valued fragmentation II with parameters (a,c,v), and then (|II(¢)|,t > 0)
is a ranked fragmentation with parameters («,c,v). Let us build this version now. It is
done following [13, 14] by a Poissonian construction. Recall the notation ps(dw), and define
Ky (dm) fsi v(ds)ps(dm). Let # be the counting measure on N and let (A4, k) be a Py x N-
Valued Poisson point process with intensity , ® #. We may construct a process (II°(¢), ¢ > 0)
by letting I1°(0) be the trivial partition (N, &, &, ...), and saying that IT° jumps only at times
t when an atom (A, k;) occurs. When this is the case, IIY jumps from the state IT°(t—) to the
following partition I1°(¢): replace the block II}) (t—) by II{, (t—) N A, and leave the other blocks
unchanged. Such a construction can be made rigorous by considering restrictions of partitions
to the first n integers and by a consistency argument. Then II° has the law of the fragmentation
with parameters (0,0, v).

Out of this “homogeneous” fragmentation, we construct the («, 0, v)-fragmentation by intro-
ducing a time-change. Call \;(¢) the asymptotic frequency of the block of TI°(¢) that contains
1, and write

T;(t) = inf {u >0: /Ou Ai(r)~%dr > t} . (3.3)

Last, for every t > 0 we let II(¢) be the random partition such that 7, j are in the same block of
I1(¢) if and only if they are in the same block of II°(T;(¢)), or equivalently of II°(7}(¢)). Then
(I1(¢),t > 0) is the wanted version. Let (G(t),£ > 0) be the natural filtration generated by
IT completed up to P-null sets. According to [14], the fragmentation property holds actually
for G-stopping times and we shall refer to it as the strong fragmentation property. In the
homogeneous case, we will rather call G the natural filtration.

When a < 0, the loss of mass in the ranked fragmentations shows up at the level of partitions
by the fact that a positive fraction of the blocks of II(¢) are singletons for some ¢ > 0. This
last property of self-similar fragmentations with negative index allows us to build a collection
of trees with edge-lengths.

3.2.2 Trees with edge-lengths

A tree is a finite connected graph with no cycles. It is rooted when a particular vertex (the root)
is distinguished from the others, in this case the edges are by convention oriented, pointing from
the root, and we define the out-degree of a vertex v as being the number of edges that point
outward from v. A leaf in a rooted tree is a vertex with out-degree 0. For k > 1, let T, be the
set of rooted trees with exactly k labeled leaves (the names of the labels may change according
to what we see fit), the other vertices (except the root) begin unlabeled , and such that the
root is the only vertex that has out-degree 1. If t € Ty, we let E(t) be the set of its edges.

A tree with edge-lengths is a pair ¥ = (t,e) for t € |, Tx and e = (e;,i € E(t)) €
(R, \ {0})P®) . Call t the skeleton of . Such a tree is naturally equipped with a distance

d(v,w) on the set of its vertices, by adding the lengths of edges that appear in the unique path
connecting v and w in the skeleton (which we still denote by [[v, w]]). The height of a vertex is
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its distance to the root. We let Ty be the set of trees with edge-lengths whose skeleton is in T.
For @ € Ty, let e,o0r be the length of the unique edge connected to the root, and for e < e;gt
write ¥ — e for the tree with edge-lengths that has same skeleton and same edge-lengths as 1,
but for the edge pointing outward from the root which is assigned length e,,o; — €.

We also define an operation MERGE as follows. Let n > 2 and take 94,75, ..., 9, respectively
in Ty, Th,, .., Tk, with leaves (L}, 1 < i < ky), (L34 1 < @ < ko), ..o, (L1 < 0 < k)
respectively. Let also e > 0. The tree with edge-lengths MERGE((V1,...,U,);e) € Ty j, is
defined by merging together the roots of 9;,...,19, into a single vertex e, and by drawing a
new edge root — e with length e.

Last, for 9 € T}, and ¢ vertices vy, ..., v;, define the subtree spanned by the root and vy, ..., v;
as follows. For every p # ¢, let b(v,,v,) be the branchpoint of v, and v,, that is, the highest
point in the tree that belongs to [[root,v,]] N [[root, v,]]. The spanned tree is the tree with
edge-lengths whose vertices are the root, the vertices vy, ..., v; and the branchpoints b(v,, v,),
1 < p # q < i, and whose edge-lengths are given by the respective distances between this subset
of vertices of the original tree.

3.2.3 Building the CRT

Now for B C N finite, define R(B), a random variable with values in Typ, whose leaf-labels
are of the form L, for i € N | as follows. Let D; = inf{t > 0 : {i} € II(¢)} be the first time
when {i} “disappears”, i.e. is isolated in a singleton of II(¢). For B a finite subset of N with at
least two elements, let Dp = inf{t > 0 : #(BNII(t)) # 1} be the first time when the restriction
of II(t) to B is non-trivial, i.e. has more than one block. By convention, Dy, = D;. For every
i > 1, define R({i}) as a single edge root — L;, and assign this edge the length D;. For B with
#B > 2, let By,...,B; be the non-empty blocks of BNII(Dpg), arranged in increasing order of
least element, and define a tree R(B) recursively by

Last, define R(k) = R([k]). Notice that by definition of the distance, the distance between L;
and L; in R(k) for any k > iV j equals D; + D; — 2Dy ;.

We now state the key lemma that allows us to describe the CRT out of the family
(R(k),k > 1) which is the candidate for the marginals of 7. By Aldous [3], it suffices to
check two properties, called consistency and leaf-tightness. Notice that in [3], only binary trees
(in which branchpoint have out-degree 2) are considered, but as noticed therein, this translates
to our setting with minor changes.

Lemma 3.3 (i) The family (R(k),k > 1) is consistent in the sense that for every k and j < k,
R(j) has the same law as the subtree of R(k) spanned by the root and j distinct leaves LY, ..., L%
taken uniformly at random from the leaves Ly, ..., Ly of R(k), independently of R(k).

(ii) The family (R(k),k > 1) is leaf-tight, that is, with the above notations,

min d(L}, L%) 5 0.

2<j<k
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Proof. The consistency property is an immediate consequence of the fact that the process I1
is exchangeable. Taking j leaves uniformly out of the k ones of R(k) is just the same as if we
had chosen exactly the leaves Ly, Lo, ..., L;, which give rise to the tree R(j), and this is (i).

For (ii), first notice that we may suppose by exchangeability that L*¥ = L;. The only
point is then to show that the minimal distance of this leaf to the leaves Lo, ..., Ly tends to
0 in probability as k& — oo. Fix n > 0 and for ¢ > 0 write t! = inf{¢t > 0 : |[II;(¢)| < &},
where TI;(t) is the block of TI(¢) containing 1. Then ¢! is a stopping time with respect to
the natural filtration (F;,¢ > 0) associated with IT and ¢! 1 Dy as € | 0. By the strong
Markov property and exchangeability, one has that if K(¢) = inf{k > 1 : k € II;(t})}, then
P(D1 + Dgy — 2tL < n) = E[Pyg) (D1 + Dk < 1)) where Py is the law of the fragmen-
tation II started at m (the law of II under P, is the same as that of the family of partitions
({blocks of m NIIW (Jmi[*t), m NII@(|mo|*t), ...} ,t > 0) where the II)’s,i > 1, are indepen-
dent copies of IT under P{N7g7g7“_}>. By the self-similar fragmentation property and exchange-
ability this is greater than P(D; + Dy < €®n), which in turn is greater than P(2¢ < &%)
where ( is the first time where II(¢) becomes the partition into singletons, which by [15] is
finite a.s. This last probability thus goes to 1 as ¢ | 0. Taking € = e(n) | 0 quickly enough as
n — oo and applying the Borel-Cantelli lemma, we a.s. obtain a sequence K (g(n)) such that
d(L1, Lgn)) < D1+ Dk(en)) — 2te(ny < 1. Hence the result. =

For a rooted R-tree T" and k vertices vy, ..., v, we define exactly as for marked trees the
subtree spanned by the root and vy, ..., vk, as an element of Ty. A consequence of [3, Theorem
3] is then:

Lemma 3.4 There exists a CRT (Tr, un) such that if Zy, ..., Zy is a sample of k leaves picked
independently according to ur conditionally on pr, the subtree of Irp spanned by the root and
Zv, ..., Zy has the same law as R(k).

In the sequel, sequences like (Z;, Zs, .. .) will be called exchangeable sequences with directing
measure .

Proof of Theorem 3.1. We have to check that the tree 75y of the preceding lemma gives
rise to a fragmentation process with the same law as F' = |II|. By construction, we have that
for every t > 0 the partition II(¢) is such that ¢ and j are in the same block of II(¢) if and
only if L; and L; are in the same connected component of {v € 7y : ht(v) > t}. Hence, the
law of large numbers implies that if F”(¢) is the decreasing sequence of the p-masses of these
connected components, then F’(t) = F(t) a.s. for every t. Hence, F’ is a version of F', so we
can set 7p = 7y;. That T is a-self-similar is an immediate consequence of the fragmentation
and self-similar properties of F.

We now turn to the last statement of Theorem 3.1. With the notation of Lemma 3.4 we will
show that the path [[&, Z1]] is almost-surely in the closure of the set of leaves of 7 if and only if
v(8') = co. Then it must hold by exchangeability that so do the paths [[@, Z;]] for every i > 1,
and this is sufficient because the definition of the CRTs implies that S(7r) = (,+,[[9, Zi[], see
3, Lemma 6] (the fact that 75 is a.s. compact will be proved below). To this end, it suffices
to show that for any a € (0,1), the point aZ; of [[&, Z1]] that is at a proportion a from & (the
point vg 7, (ad(@, Z1)) with the above notations) can be approached closely by leaves, that is,
for n > 0 there exists j > 1 such that d(aZ;, Z;) < n. It thus suffices to check that for any
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6>0
P(32<j<k:|Dugy —aDi| <dand D;— Dy <6) = 1, (3.4)

with the above notations derived from II (this is a slight variation of [3, (iii) a). Theorem 15]).

Suppose that v(S') = oo. Then for every rational r > 0 such that |[II;(r)| # 0 and for
every ¢ > 0, the block containing 1 undergoes a fragmentation in the time-interval (r,r + §/2).
This is obvious from the Poisson construction of the self-similar fragmentation Il given above,
because v is an infinite measure so there is an infinite number of atoms of (A, k;) with k, = 1
in any time-interval with positive length. Therefore, there exists an infinite number of elements
of ITy(r) that are isolated in singletons of II(r + d), e.g. because of Lemma 3.5 below which
asserts that only a finite number of the blocks of II(r 4 0/2) “survive” at time r + ¢, i.e. is not
completely reduced to singletons. Thus, an infinite number of elements of I1;(r) correspond to
leaves of some R (k) for k large enough. By taking r close to aD; we thus have the result.

On the other hand, if v(S') < oo, it follows from the Poisson construction that the state
(1,0,...) is a holding state, so the first fragmentation occurs at a positive time, so the root
cannot be approached by leaves. m

Remark. We have seen that we may actually build simultaneously the trees (R(k),k > 1)
on the same probability space as a measurable functional of the process (II(¢),¢ > 0). This
yields, by redoing the “special construction” of Aldous [3], a stick-breaking construction of the
tree 7, by now considering the trees R(k) as R-trees obtained as finite unions of segments
rather than trees with edge-lengths (one can check that it is possible to switch between the two
notions). The mass measure is then defined as the limit of the empirical measure on the leaves
Li,...,L,. The special CRT thus constructed is a subset of ¢! in [3], but we consider it as
universal, i.e. up to isomorphism. The tree R(k + 1) is then obtained from R(k) by branching
a new segment with length Dy, — maxpci), B£e Dpugk+1}, and 7r can be reinterpreted as the
completion of the metric space |J,~,; R(k). On the other hand, call Ly, Lo, ... as before the
leaves of | J,~, R(k), Lx being the leaf corresponding to the k-th branch. One of the subtleties
of the special construction of [3] is that Ly, Ly, ... is not itself an exchangeable sample with
the mass measure as directing law. However, considering such a sample 7, Z,, ..., we may
construct a random partition IT'(t) for every ¢ by letting i ~'® j if and only if Z; and Z; are in
the same connected component of the forest {v € 7p : ht(v) > t}. Then easily II'(¢) is again a
partition-valued self-similar fragmentation, and in fact [II'(¢)| = F(t) a.s. for every ¢ so Il has
same law as II (II' can be interpreted as a “relabeling” of the blocks of IT). As a conclusion, up
to this relabeling, we may and will assimilate 7z as the completion of the increasing union of
the trees R(k), while Ly, Lo, ... will be considered as an exchangeable sequence with directing
law pip.

Proof of Proposition 3.1. The fact that the process F' defined out of a CRT (7, ) with
the stated properties is a St-valued self-similar fragmentation with index « is straightforward
and left to the reader. The treatment of the erosion and sudden loss of mass is a little more
subtle. Let Zi,Z,,... be an exchangeable sample directed by the measure u, and for every
t > 0 define a random partition II(¢) by saying that ¢ and j are in the same block of II(¢) if
Z; and Z; fall in the same tree component of {v € 7 : ht(v) > t}. By the arguments above,
IT defines a self-similar partition-valued fragmentation such that |II(¢)| = F'(t) a.s. for every t.
Notice that if we show that the erosion coefficient ¢ = 0 and that no sudden loss of mass occur,
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it will immediately follow that 7 has the same law as 7p.

Now suppose that v(>_,s; < 1) # 0. Then (e.g. by the Poisson construction of fragmenta-
tions described above) there exist a.s. two distinct integers ¢ and j and a time D such that ¢
and j are in the same block of II(D—) but {i} € II(D) and {j} € II(D). This implies that
Z; = Zj, so i has a.s. an atom and (7, ) cannot be a CRT. On the other hand, suppose that
the erosion coefficient ¢ > 0. Again from the Poisson construction, we see that there a.s. exists
a time D such that {1} ¢ II(D—) but {1} € II(D), and nevertheless II(D) N II;(D—) is not
the trivial partition @. Taking j in a non-trivial block of this last partition and denoting its
death time by D', we obtain that the distance from Z; to Z; is D' — D, while the height of
Zy is D and that of Z; is D’. This implies that Z; is a.s. not in the set of leaves of 7, again
contradicting the definition of a CRT. m

3.3 Hausdorff dimension of 75

Let (M,d) be a compact metric space. For & C M, the Hausdorff dimension of £ is the real
number

dim (&) :=1inf{y > 0:m,(€) =0} =sup{y > 0:m,(€) = oo}, (3.5)
where
my (&) := selig inf Z A(E;)?, (3.6)

the infimum being taken over all collections (E;,i > 1) of subsets of £ with diameter A(E;) < ¢,
whose union covers £. This dimension is meant to measure the “fractal size” of the considered
set. For background on this subject, we mention [33] (in the case M = R", but the generalization
to general metric spaces of the results we will need is straightforward).

The goal of this section is to prove Theorem 3.2 and more generally that

where o is the v-dependent parameter defined by (3.2). The proof is divided in the two usual
upper and lower bound parts. In Section 3.3.1, we first prove that 7 is indeed compact and that
dim 4 (£(7r)) < 1/|a| a.s., which is true without any extra integrability assumption on v. We
then show that this upper bound yields dim 4 (dMp) < 1A1/|af a.s. (Corollary 3.2). Sections
3.3.2 to 3.3.4 are devoted to the lower bound dim 4 (L(7F)) > o/ |a| a.s. This is obtained by
using appropriate subtrees of 7r (we will see that the most naive way to apply Frostman’s
energy method with the mass measure up fails in general). That Theorem 3.2 applies to stable
trees is proved in Sect. 3.3.5.

3.3.1 Upper bound
We begin by stating the expected

Lemma 3.5 The tree Tr is a.s. compact.
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Proof. Fort > 0 and ¢ > 0, denote by Nf the number of blocks of II(¢) not reduced to
singletons that are not entirely reduced to dust at time ¢ + . We first prove that Ny is a.s.
finite. Let (I1;(¢),7 > 1) be the blocks of II(¢), and (|II;(¢)|,7 > 1), their respective asymptotic
frequencies. For integers ¢ such that |II;(¢)| > 0, that is I1;(¢) # @ and II;(¢) is not reduced to
a singleton, let ¢; := inf {s > ¢ : II;(¢) N II(s) = O} be the first time at which the block I1;(#)
is entirely reduced to dust. Applying the fragmentation property at time ¢, we may write ¢;
as G = t + |IL;(1)|'* ¢ where ( is a r.v. independent of G (¢) that has same distribution as
¢ = inf{t > 0 : II(t) = O}, the first time at which the fragmentation is entirely reduced to
dust. Now, fix ¢ > 0. The number of blocks of II(¢) that are not entirely reduced to dust at
time ¢ 4 ¢, which could be a prior: infinite, is then given by

Ni= D Lmeise}

i:‘Hi(t)‘>0

From Proposition 15 in [38], we know that there exist two constants Cj,Cy such that
P(¢ >t) < Cie=! for all t > 0. Consequently, for all § > 0,

EIN;[G()] < €1 ) e mor (3.7)

Z':|Hi(t)‘>0

< C@e Y (n)e,

where C(0) = sup,ep+ {C12%¢™ "} < oo. Since >, [I;(t)] < 1 as, this shows by taking
d = 1/|a| that Nf < oo a.s.

Let us now construct a covering of supp (u) with balls of radius 5¢. Recall that we may
suppose that the tree 7 is constructed together with an exchangeable leaf sample (Lq, Lo, . . .)
directed by pp. For each | € NU{0}, we introduce the set

B ={keN:{k} ¢ II(le),{k} € I((I+1)e)},

some of which may be empty when v(S') < oo, since the tree is not leaf-dense. For [ > 1, the
number of blocks of the partition Bf N1II((l —1)¢) of By is less than or equal to Nj_;). and
so is a.s. finite. Since the fragmentation is entirely reduced to dust at time ¢ < oo a.s., N is
equal to zero for [ > (/e and then, defining

[¢/€]

N.:=> N
=0

we have N, < oo a.s. ([(/e] denotes here the largest integer smaller than (/¢). Now, con-
sider a finite random sequence of pairwise distinct integers o(1),...,0(N.) such that for each
1 <1 < [(/e] and each non-empty block of Bf NTI((I — 1) ¢), thereis a o(i),1 < i < N, in this
block. Then each leaf L; belongs then to a ball of center L,;), for an integer 1 < ¢ < N, and
of radius 4e. Indeed, fix j > 1. It is clear that the sequence (B} ).y, (o} forms a partition of N.
Thus, there exists a unique block B} containing j and in this block we consider the integer o(7)
that belongs to the same block as j in the partition Bf NII((({—1)V0)e). By definition (see Sec-
tion 3.2.3), the distance between the leaves L; and Ly is d(L;, Lo@)) = Dj+ Doy — 2D 03)3 -
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By construction, j and o (i) belong to the same block of II(((I — 1) V 0) €) and both die before
(I + 1) e. In other words, max(D;, Dy;y) < (14 1) e and Dyj o)y = ((I — 1) V 0) &, which implies
that d(L;, L,(;)) < 4e. Therefore, we have covered the set of leaves {L;,j > 1} by at most IV,
balls of radius 4e. Since the sequence (Lj)j21 is dense in supp (u), this induces by taking balls
with radius 5e instead of 4e a covering of supp (u) by N. balls of radius 5e. This holds for all
e > 0 so supp (u) is a.s. compact. The compactness of 7r follows. =

Let us now prove the upper bound for dim«(L(7r)). The difficulty for finding a “good”
covering of the set L£(7r) is that as soon as v is infinite, this set is dense in 7, and thus
one cannot hope to find its dimension by the plain box-counting method, because the skeleton
S(7r) has a.s. Hausdorff dimension 1 as a countable union of segments. However, we stress
that the covering with balls of radius 5¢ of the previous lemma is a good covering of the whole
tree, because the box-counting method leads to the right bound dim #(7r) < (1/|a|) V 1, and
this is sufficient when |a| < 1. When |a| > 1 though, we may lose the details of the structure
of L(Tr). We will thus try to find a sharp “cutset” for the tree, motivated by the computation
of the dimension of leaves of discrete infinite trees.

Proof of Theorem 3.2: upper bound. For every i € N and ¢ > 0 let II;(¢) be the block
of II(t) containing i and for € > 0 let

= inf{t >0: |H(i)(t)| < 6}.

Define a partition II° by ¢ ~' j if and only if IIj;)(¢5) = IT(;)(5). One easily checks that this
random partition is exchangeable, moreover it has a.s. no singleton. Indeed, notice that for any
i, ;) (t5) is the block of TI(¢;) that contains 7, and this block cannot be a singleton because the
process (|IL;(¢)|,t > 0) reaches 0 continuously. Therefore, I1¥) admits asymptotic frequencies
a.s., and these frequencies sum to 1. Then let

Gy = sup inf{t > : T (t)| =0} — ¢
JEI (3 (t5)
be the time after ¢ when the fragment containing ¢ vanishes entirely (notice that C(EZ.) = C(aj)
whenever i ~'" j). We also let b5 be the unique vertex of [[@, L;]] at distance 5 from the root,
notice that again b5 = b5 whenever 7 ~" j.
We claim that
TF g U g(z

eN

where B(v,r) is the closed ball centered at v with radius 7 in Zp. Indeed, for L € L(7F), let
by, be the vertex of [[@, L]] with minimal height such that pr(7,,) < e, where 7, is the fringe
subtree of 7p rooted at by. Since by € S(7r), ur(7y,) > 0 and there exist infinitely many
i's with L; € T,,. But then, it is immediate that for any such ¢, t; = ht(by) = ht(bf). Since
(Liyi > 1) is dense in £(7F), and since for every j with L; € 7y one has d(b5, L;) < () by
definition, it follows that L € B(b3, (i) Therefore, (B(¥, () @ = 1) is a covering of L(7F).

The next claim is that this covering is fine as € | 0, namely

sup (3 a.s.
1eN 5l0



108 3. The genealogy of self-similar fragmentations with a negative index as a CRT

Indeed, if it were not the case, we would find n > 0 and ¢,,n > 0, such that C(lf)n > n and

d(bz1 7{ 2n, L;,) > n/2 for every n. Since 7r is compact, we may extract a subsequence such that

L;, — v for some v € Tp. Now, since ,uF(Tl/zn) < 277" it follows that we may find a vertex
b € [[@,v]] at distance at least n/4 from v, such that pr(7y) = 0, and this does not happen a.s.

To conclude, let (7 = C(i)l{H(i)(tf):Hi(tf)} (we just choose one i representing each class of 1
above). By the self-similarity property applied at the (G(t),t > 0)-stopping time ¢, ¢{ has the
same law as |I1;(#5)[1%1¢, where ¢ has same law as inf{t > 0 : |TI(¢)| = (0,0,...)} and is taken
independent of |IL;(¢5)]. Therefore,

)| =

i>1

¢Vl B B[V < . (3.8)

E | ()]

>1

The fact that E[¢!/1]] is finite comes from the fact that ¢ has exponential moments. Because
our covering is a fine covering as € | 0, it finally follows that (with the above notations)

Mol (£(Tp)) <lminf 3 ()Y as,

iy (¢5) =1L (¢5)

which is a.s. finite by (3.8) and Fatou’s Lemma. =

Proof of Corollary 3.2. By Theorem 3.1, the measure dMp has same law as dW r., the Stielt-
jes measure associated with the cumulative height profile W, (t) = up {v € Tp : ht(v) < t},
t > 0. To bound from above the Hausdorff dimension of dI¥/ 7., note that

AT 7, (t (£ (Tr))) = / L oyee(ri e (dv) = 1
Tr

since pp(L(Tr)) =
dim 3¢ (ht(£ (7r))) <

easily leads to

1. By definition of dim (dWTF), it is thus sufficient to show that
1/ |a| a.s. To do so, remark that ht is Lipschitz and that this property
dim 4 (ht(£ (Zr))) < dimy (£ (7F)) -

The conclusion hence follows from the majoration dim 4 (£ (7r))) < 1/ |a| proved above. m

3.3.2 A first lower bound

Recall that Frostman’s energy method to prove that dim 4(£) > v where £ is a subset of a metric
space (M, d) is to find a nonzero positive measure n(dz) on € such that [ [ % < 00.
A naive approach for finding a lower bound of the Hausdorff dimension of 7z is thus to apply

this method by taking n = pp and € = L(7r). The result states as follows.

Lemma 3.6 For any fragmentation process F satisfying the hypotheses of Theorem 3.1, one
has

dim(e(7) = fn (142,

] |
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where

p:= —inf {q : /sl (1 - Zs?“) v(ds) > —oo} € [0,1], (3.9)

A—sup{a<1 /SLZS —ag }e[(),l]. (3.10)

1<i<y

and

Proof. By Lemma 3.4 (recall that (7r, punn) = (7p, ur) by Theorem 3.1) we have

o dx ,UF dy) as. [ 1 }
£l IE—
/TF /TF d(Ly, Ly)" Te 1

ol /TF i) i

and by definition, d(Lq, L) = Dy + Dy — 2D{1,2}. Applying the strong fragmentation property
at the stopping time Dy 2y, we can rewrite D; and D, as

so that

Dy = Dg gy + )\‘1a‘<D{1,2})51 Dy = Dy 9y + ALQ‘(D{LQ})Ez

where A\;(Dy1,2)) (resp. A2(Dqi,23)) is the asymptotic frequency of the block containing 1 (resp.

2) at time Dy12y and Dy and D, are independent with the same law as D; and independent of
g (D{Lg}) . Therefore,

d(Ly, Ly) = )\|1Q|(D{1,2})151 + )\|2a|(D{1,2})152,

and

E {m} < 2E X7 (D gy)ih(Dpay) = Ao(Dpgy)] E[D17] (3.11)

By [39, Lemma 2] the first expectation in the right-hand side of inequality (3.11) is finite as soon
as |a|y < A, while by [38, Sect. 4.2.1] the second expectation is finite as soon as v < 1+4p/ |al.

That dimH(ﬁ(Tp)) > ((A/ la]) A (14 p/ |a])) follows. =

Let us now make a comment about this bound. For dislocation measures such that
v(syy1 > 0) =0 for some N > 1, the constant A equals 1 since for all a < 1,

/SHZ s "sjv(ds) —/SL(N_I)Z;NSJ‘V(dS) < (N—l)/sl (1—s,)v(ds) < oo

In such cases, if moreover p = 1, the “naive” lower bound of Lemma 3.6 is thus equal to 1/ |a/|.
A typical setting in which this holds is when v(S') < oo and v(sy;; > 0) = 0 and therefore,
for such dislocation measures the “naive” lower bound is also the best possible.
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3.3.3 A subtree of 7r and a reduced fragmentation

In the general case, in order to improve this lower bound, we will thus try to transform the
problem on F' into a problem on an auxiliary fragmentation that satisfies the hypotheses above.
The idea is as follows: fix an integer N and 0 < & < 1. Consider the subtree 72° C Tp
constructed from 77 by keeping, at each branchpoint, the N largest fringe subtrees rooted
at this branchpoint (that is the subtrees with the largest masses) and discarding the others
in order to yield a tree in which branchpoints have out-degree at most N. Also, we remove
the accumulation of fragmentation times by discarding all the fringe subtrees rooted at the
branchpoints but the largest one, as soon as the proportion of its mass compared to the others
is larger than 1 — . Then there exists a probability up° such that (7%, i) is a CRT, to
which we will apply the energy method.

Let us make the definition precise. Define £ C L(7F) to be the set of leaves L such that
for every branchpoint b € [[@, L]], L € F,° with F}° defined by
Fyt =1, it pur(T) /e (U 7)) > 1—¢

where 7;', 7,2 ... are the connected components of the fringe subtree of 7r rooted at b, from
whom b has been removed (the connected components of {v € 7 : ht(v) > b}) and ranked in
decreasing order of pp-mass. Then let TP{V ° C T be the subtree of 7 spanned by the root
and the leaves of LV i.e.

TV ={veTp:3L e LN ve e, L]}

The set TP{V ° C Tr is plainly connected and closed in 7r, thus an R-tree.

Now let us try to give a sense to “taking at random a leaf in ’TP{V “?_ In the case of Tf, it was
easy because, from the partition-valued fragmentation II, it sufficed to look at the fragment
containing 1 (or some prescribed integer). Here, it is not difficult to show (as we will see
later) that the corresponding leaf L; a.s. never belongs to 7, Iiv “ when the dislocation measure
v charges the set {s; > 1—¢} U {sy41 > 0}. Therefore, we will have to use several random
leaves of Tp. For any leaf L € £(Tz) \ L(T;2°) let b(L) be the highest vertex v of [[@, L]] such
that v € 72, Call it the branchpoint of L and 7,*.

Now take at random a leaf Z; of 7 with law pp conditionally on g, and define recursively
a sequence (Z,,n > 1) with values in 7z as follows. Let Z,,; be independent of Z1,..., 7,
conditionally on (7g, ur,b(Z,)), and take it with conditional law

P(Znar € |Tp, o, b(Zn)) = (- O Fyy ) w(Fyy )

Lemma 3.7 Almost surely, the sequence (Z,,n > 1) converges to a random leaf Z™N*< €
L(TYF). If uy® denotes the conditional law of ZN< gwen (Tp, pr), then (T2°, uh®) is a
CRT, provided € is small enough.

To prove this and for later use we first reconnect this discussion to partition-valued frag-
mentations. Recall from Sect. 3.2.1 the construction of the homogeneous fragmentation IT°
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with characteristics (0,0, ) out of a P, x N-valued Poisson point process ((Ay, kt),t > 0) with
intensity x, ® #. For any partition m € P, that admits asymptotic frequencies whose ranked
sequence is s, write 7Tl~l for the block of 7 with asymptotic frequency s; (with some convention
for ties, e.g. taking the order of least element). We define a function GRINDY* : P, — Py
that reduces the smallest blocks of the partition to singletons as follows. If 7 does not admit
asymptotic frequencies, let GRIND™<(rr) = 7, else let

N ﬂ%, - 7T]lV, singletons) ifsg<1—¢
GRIND™*(7) = |
7, singletons) if s9>1—c¢.

Now for each ¢ > 0 write A;° = GRIND™<(A,), so (AN, k;),t > 0) is a Pa x N-valued Poisson
point process with intensity measure s,~. ® #, where v’ is the image of v by the function

! (51, 8N,0,...) if sy <1—¢
s€S H{ (51,0,..) if 1 > 1 —¢.

From this Poisson point process we construct first a version II%"< of the (0,0,"¢) fragmen-
tation, as explained in Section 3.2.1. For every time ¢ > 0, the partition I1°"¢(¢) is finer than
I1°(¢) and the blocks of I1%"(¢) non-reduced to singleton are blocks of I1°(¢). Next, using the
time change (3.3), we construct from II1%"¢ a version of the (a, 0,V ’5) fragmentation, that we
denote by ITV<.

Note that for dislocation measures v such that v™¢ (3" s; < 1) = 0, Theorem 3.2 is already
proved, by the previous subsection. For the rest of this subsection and next subsection, we
shall thus focus on dislocation measures v such that vV (3~ s; < 1) > 0. In that case, in 1%V
(unlike for I1%) each integer i is eventually isolated in a singleton a.s. within a sudden break
and this is why a pp-sampled leaf on 77 cannot be in 7, FN’a, in other words, pur and ,ug’g are
a.s. singular. Recall that we may build 7 together with an exchangeable pp-sample of leaves
Ly, Ly, ... on the same probability space as I (or I1°). We are going to use a subfamily of

(L1, Lo, . ..) to build a sequence with the same law as (Z,,n > 1) built above. Let i; = 1 and
in1 = inf{i >y : Ly, € Fi )}

It is easy to see that (L;,,n > 1) has the same law as (Z,,n > 1). From this, we build a
decreasing family of blocks B%™:¢(t) € TI°(¢), t > 0, by letting B%"#(¢) be the unique block of
I1°(¢) that contains all but a finite number of elements of {iy,s,...}.

Here is a useful alternative description of B%V<(t). Let D™ be the death time of 7 for the
fragmentation I1%V:¢ that is

D?vN,E — mf{t Z 0: {Z} c HO’N’a(t)}_
By exchangeability the D?N,ea

DY = inf{t > 0: k = 1 and {1} € A}

s are identically distributed and

so it has an exponential law with parameter [¢ (1 — 3", s;)v"(ds). Then notice that B®™=(t)

is the block admitting i, as least element when D)™ <t < D)=

. ~. Indeed, by construction
n+1
we have

ing1 = inf{i € BON(DINE) - (i} ¢ IONe(DYNA),
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Moreover, the asymptotic frequency A\0™V(t) of B%N<(t) exists for every ¢ and equals the f-
mass of the tree component of {v € 7p : ht(v) > t} containing L;, for D?;N’s <t < DNe

Int+1 °
Notice that at time D;"""°, either one non-singleton block coming from B%N<(D{"™*—), or

up to N non-singleton blocks may appear; by Lemma 3.1, BOV= (D?;N’a) is then obtained by
taking at random one of these blocks with probability proportional to its size.

Proof of Lemma 3.7. For t > 0 let \>V¢(¢) = |B%V¢(¢)] and

TON<(t) == inf {u >0: /Ou (A2 () " dr > t} (3.13)

and write BN<(t) := BONe(TON:(t)), for TON4(t) < oo and BM¢(t) = @ otherwise, so for
all t > 0, BV<(t) € TIV4(t). Let also D, := T%N<(D"™*) be the death time of 4, in the
fragmentation ITV<. Tt is easy to see that b, = b(L;, ) is the branchpoint of the paths [[&, L; ]|
and [[@, L;,, ]|, so the path [[@,b,]] has length DfZ’E. The “edges” [[bn,bn11]], n € N, have
respective lengths D;Zfl — Dg’s, n € N. Since the sequence of death times (D;Z’a,n > 1) is
increasing and bounded by ( (the first time at which I is entirely reduced to singletons), the
sequence (b,,n > 1) is Cauchy, so it converges by completeness of 7r. Now it is easy to show
that D} — oo as n — 00 a.s., so AV<(1) — 0 as t — 0o a.s. (see also the next lemma).
Therefore, the fragmentation property implies d(L;,,b,) — 0 a.s. so L;, is also Cauchy, with
the same limit, and the limit has to be a leaf which we denote LY (of course it has same
distribution as the ZV< of the lemma’s statement). The fact that LY € T2° a.s. is obtained
by checking (3.12), which is true since it is verified for each branchpoint b € [[&, b,]] for every
n > 1 by construction.

We now sketch the proof that (TFN’a, ug’a) is indeed a CRT, leaving details to the reader.
We need to show non-atomicity of ,ug’e, but it is clear that when performing the recursive
construction of ZV¢ twice with independent variables, (Z,,n > 1) and (Z/,n > 1) say, there
exists a.s. some n such that Z,, and Z/, end up in two different fringe subtrees rooted at some
of the branchpoints b,, provided that ¢ is small enough so that v(1 —s; > ¢) # 0 (see also
below the explicit construction of two independently ug’a—sampled leaves). On the other hand,
all of the subtrees of 7 rooted at the branchpoints of ’TFN’5 have positive pp-mass, so they will
end up being visited by the intermediate leaves used to construct a ,ug’e—i.i.d. sample, so the
condition X ({v € T,)° : [[@,v]] N [[@,w]] = [[@,w]]}) > 0 for every w € S(T*) is satisfied.
|

It will also be useful to sample two leaves (L%, L)) that are independent with same
distribution ,ug’g conditionally on ug’a out of the exchangeable family Li, Lo, .... A natural
way to do this is to use the family (L, Ls, Ls, . ..) to sample the first leaf in the same way as
above, and to use the family (Lo, Ly, ...) to sample the other one. That is, let j1 = 1,57 = 2
and define recursively (j!,j2,n > 1) by letting

{ oy =inf{j € 2N+1,5 > j1: L € i )}
In

Jrn =f{j € 2N, > Giyy Ly € i}

It is easy to check that (L;1,n > 1) and (L;2,n > 1) are two independent sequences distributed

as (Z1,Zs,...) of Lemma 3.7. Therefore, these sequences a.s. converge to limits lev’e, Lév’e, and
these are independent with law p2° conditionally on . We let Dy = ht(L, %), k = 1,2.
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Similarly as above, for every t > 0 we let By™(t), k = 1,2 (resp B*(t)) be the block of
T1°(¢) (resp. I1(t)) that contains all but the first few elements of {j%, 3% ...}, and we call \)™4 ()
(resp. A (1)) its asymptotic frequency. Last, let DY),y =inf{t >0: BONa( )N BYNE(t ) o}
(and define similarly Dy12)). Notice that for ¢ < DY, ., we have BYVe(t) = BYM(t), and by

construction the two least elements of the blocks (2N41)NBY™*(t) and (2N)NBY""*(t) are of the
form jy, j7, for some n,m. On the other hand, for ¢ > DY, ,,, we have BYet)ynByNe(t) = @,

and again the least elements of (2N + 1) N BY™V*(¢) and (2N) N By™¢(t) are of the form j., j2,
for some n, m. In any case, we let j'(t) = 5! 72(t) = j2 for these n,m.
3.3.4 Lower bound

Since ug’a is a measure on L(7r), we want to show that for every a < p, the integral

N (da) o (dy) . . . .
fTN,E fTN,E up @oup (4) 5o 5 5. finite for suitable N and e. So consider a < o, and note
F F

d(zy)*/ 1]
that
/ / d:c Jur(dy) | _ 1
Ne JrNe  d(x,y)e/lel d(LiV’E,LéV’E)a/\al

where d(L{V e Lév °) = D1 + Dy — 2Dy 93, with notations above. The fragmentation property at
the stopping time Dy 9y leads to

Dy =Dpay + A (Dy) Dy, k=1,2,

where 51,52 are independent with the same distribution as D, the height of the leaf LY
constructed above, and independent of G(Dyy,9y). Therefore, the distance d(LY, LYY can be

rewritten as o
(7

€ € 5 o ~ € ~
(LY, LyF) = <)\§V (D{m})> D+ <)\§V (D{m})) D,

and
e 3y ] <28 [ (WD) D) 2 A Da)] 2 07

Therefore, that dimy(L(7r)) > o/ |a| is directly implied by the following Lemmas 3.8 and
3.10.

Lemma 3.8 The quantity E[D™"] is finite for every 0 < v < o/ |a].
The proof uses the following technical lemma. Recall that AV:<(t) = |BV<(¢)].

Lemma 3.9 One can write A\ = exp (—Sp(_)) , where & (tacitly depending on N,€) is a sub-
ordinator with Laplace exponent

N
S’il S1 —E&
ve(o) = | ((1 =) Lpsra + (1) A)u(dsx ¢>0.  (314)
=1

S1+ ...+ SN
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and p s the time-change
p(t) = inf {u >0: / exp(ag,)dr > t} , t>0.
0

Proof. Recall the construction of the process B%"¢ from I1°, which itself was constructed
from a Poisson process (Ay, ki, t > 0). From the definition of B%"<(t), we have

B™Ne(t) = () AN,

0<s<t

where the sets AM< are defined as follows. For each s > 0, let i(s) be the least element of the
block B%"¢(s—) (so that B*"<(s—) =TI}, (s—)), so (i(s), s > 0) is an (F(s—), s > 0)-adapted
jump-hold process, and the process {A; : ks = i(s),s > 0} is a Poisson point process with
intensity x,. Then for each s such that k, = i(s), AN consists in a certain block of A,, and

precisely, AN< is the block of A, containing
inf {i € B®V*(s—) : {i} ¢ A)°},

the least element of B%"¢(s—) which is not isolated in a singleton of AN (such an integer
must be of the form 4, for some n by definition). Now B%":#(s—) is F(s—)-measurable, hence
independent of A,. By Lemma 3.1, A< is thus a size-biased pick among the non-void blocks
of AN and by definition of the function GRIND™  the process (JAN=], s > 0) is a [0, 1]-valued
Poisson point process with intensity w(s) characterized by

--+5N> I/(dS),

for every positive measurable function f. Then |B%™*(t)| =[], |AN<] as. for every t > 0.
To see this, denote for every k > 1 by ANk ANer - the atoms AN< s < ¢, such that
|ANe| € [1—k™1 1—(k+1)7!). Complete this a.s. finite sequence of partitions by partitions 1

and call T'®) their intersection, i.e. T*) := Niz1(AY=F). By Lemma 3.2, \Fg?\ = [Tis1 |ZN’E’k

S; ‘ )
where 7y, is the index of the block (5, Zg’e’k in the partition I'®). These partitions I'*®), k > 1,

. . . . k), a.s.
are exchangeable and clearly independent. Applying again Lemma 3.2 gives |ﬂk21 rg,}| =

~Nek . . . . .
[T [Tiss |Ag€ |, which is exactly the equality mentioned above. The exponential formula

for Poisson processes then shows that (&,¢ > 0) = (—log(A\*V(¢)),¢ > 0) is a subordinator
with Laplace exponent ®,. The result is now obtained by noticing that (3.3) rewrites \V<(¢) =
AONE(p(t)) in our setting. m

Proof of Lemma 3.8. By the previous lemma, D = inf{t > 0 : AM<(t) = 0}, which equals
J. > exp(aé;)dt by the definition of p. According to Theorem 25.17 in [64], if for some positive

0
~ the quantity

N
_ o Silys, 0}1{3 <l-e}
Oy (—) = 1—s,7) 1y, _5+E 1—3s" iz = v(ds
=) /si <( ! ) for=1=e) il( ’ ) 51+ ...+ sn (ds)

N
f(s)w(ds) = /31 (1{81>1—e}f(51) + 1{8131—5}Zf(5i)51 n i
i=1 ’

[0,1]
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is finite, then FElexp(v&)] <
Pe(—y) > —oo for v < p <
definition and

al i< s
[ =) = sy < v [ S,
Sl S1 + ...+ SN

s
i=1 St 1

oo for all ¢ > 0 and it equals exp(—tP¢(—7)). Notice that
1. Indeed for such v’s, [¢ (s77 —1) 1{551-av(ds) < oo by

which is finite by the definition of p and since v integrates (1 — s;). This implies in particular
that & has finite expectation for every ¢, and it follows by [25] that E[D~!] < oo. Then,
following the proof of Proposition 2 in [19] and using again that ®¢(—v) > —oo for v < p,

(/OOO exp(aft)dt) _H] _ wbﬂ </Ooo eXp((X@dt) .

for every integer k < o/ |oo|. Hence, using induction, E[( [} exp(a&)) 1] is finite for k =
lo/|al] if o/]a| ¢ N and for k = o/|a| — 1 otherwise. In both cases, we see that E[D™7] < oo
for every v < po/|ar|. m

E

Lemma 3.10 For any a < o, there exists N, e such that
E {(A{“E(D{Lz})) AN (Do) > A (Dray) | < oo

The ingredient for proving Lemma 3.10 is the following lemma, which uses the notations
around the construction of the leaves (LY, L%).

Lemma 3.11 With the convention log(0) = —oo, the process
o(t) = —log ’B?’N’E(t) N BS’N’E(t)’ . >0

is a killed subordinator (its death time is D({)I,Z}) with Laplace exponent

B0 =6+ [

N 2
<1
T e s LCC IR LR
S

i1 ($1+...+SN

where the killing rate k= := [4 37, . sisj(sll{jlgﬁl/(ds) € (0,00). Moreover, the pair

(17, 17) = exp(o (DY 5, ) (A (DY ). A2V (DY, 1))

is independent of U(D?LQ}—) with law characterized by

1 Sisilyg <ci—arlig.~onlrs.
B ()] = gk [ stttz

2
1<i#j<N ($1+...+SN)

for any positive measurable function f.
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Proof. We again use the Poisson construction of I1° out of (A, ks, ¢ > 0) and follow closely
the proof of Lemma 3.9. For every ¢ > 0 we have

Bty = () AF . k=12,

0<s<t

where A* is defined as follows. Let J*(s),k = 1,2 be the integers such that By™*(s—) =
Hgk(s)(s—), so {A, : ky = J*(s),s > 0}, k = 1,2 are two Poisson processes with same intensity
Ky, which are equal for s in the interval [0, D({)m}). Then for s with k, = J*(s), let A* be the
block of A, containing j*(s). If BY™V(s—) = BY™*(s—) notice that j!(s), j2(s) are the two
least integers of (2N + 1) N BY™Y(s—) and (2N) N BY™*(s—) respectively that are not isolated
as singletons of AN so Al = A2 if these two integers fall in the same block of AY<. Hence by
a variation of Lemma 3.1, (JA! N A2|,s > 0) is a Poisson process whose intensity is the image
measure of £, v.:(7T1l{i2) by the map 7 +— [7|, and killed at an independent exponential time
(namely DE{)LZ}) with parameter k,~.-(1 » 2) (here 1 ~ 2 means that 1 and 2 are in the same
block of 7). This implies (3.15).

The time D({)l oy 18 the first time when the two considered integers fall into two distinct blocks

of AN Tt is then easy by the Poissonian construction and the paintbox representation to check
that these blocks have asymptotic frequencies (I}, [5°) which are independent of (DY) 5y,
and have the claimed law. =

Proof of Lemma 3.10. First notice, from the fact that self-similar fragmentations are
time-changed homogeneous fragmentations, that

€ & d N, ,N,e
(NP2 Ao “(Dpaay)) = (A5 (Day): A ™ (D ay)-

Thus, with the notations of Lemma 3.11,
E |:<)\iv’€(D{172})> AV (Dpgy) > AQV’E(D{LQ})}

= F [exp(ao’(D({)LQ}—))} E |:<Z{V7€) ;l{vﬁf > lévvg] .

First, define for every a > 0 ®,(—a) by replacing ¢ by —a in (3.15) and then remark that
®,(—a) > —oo when a < p. Indeed, [, (31_“ — 1) 1¢5,51-v(ds) is then finite and, since

_a 2—a
Zlgz‘gz\/ S? < (Zlgz‘gN Si) (2-a>1),

T T
S (o) Hns sy
1<i<N (514 ...+ sn) S1

which, by assumption, is integrable with respect to v. Then, consider a subordinator o with
Laplace transform ®, — k™ and independent of D, ,,, such that o = & on (0,D{, ,,). As
in the proof of Lemma 3.8, we use Theorem 25.17 of [64], which gives F [exp(ac(t))] =

exp (—t (CIDU(—a) — kNve)) for all ¢ > 0. Hence, by independence of ¢ and D?m},
E [GXP(‘W(D?LQ}_))] = E [exp(ag(D?l,z}))}

= kN’E/ exp(—tk™<) exp (—t((IJU(—a) — kN’a)) dt,
0
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which is finite if and only if ®,(—a) > 0. Recall that ®,(—a) is equal to

_a W o<1

1<i#j<N 1<i<N
(3.16)

Since
2 2—a\ __ 2 2—a
Y st Y (ST =) s > s
1<i#j<N 1<i<N 1<i<N 1<i<N

the integrand in the second term converges to (1 — Y, 577%) 145, <1-} as N — oo and is domi-
nated by (1 + 31_“) 1¢5,<1-}- So, by dominated convergence, the second term of (3.16) converges
to o (1 =357 “)1is,<1—pv(ds) as N — oo. This last integral converges to a strictly positive
quantity as ¢ | 0, and since [¢ (1 —57%) 1{g,>1-cv(ds) — 0 as ¢ — 0, ®,(—a) is strictly
positive for N and 1/e large enough. Hence E[exp(aa(l)?1 9y—))] < oo for N and 1/e large

enough.

On the other hand, Lemma 3.11 implies that the finiteness of E[(Z{V’E)_al{l{v,gﬂév,s}] is equiv-

alent to that of [ > ..oy si s, &Efﬁl/(ds). But this integral is finite for all integers

3
N and every 0 < e < 1, since 3o, ey si %s; < N?s77* and v integrates s;*1s,<i_}. Hence
the result. m

3.3.5 Dimension of the stable tree

This section is devoted to the proof of Corollary 3.1. Recall from [56] that the fragmentation
F_ associated with the (-stable tree has index 1/ — 1 (where 5 € (1,2]). In the case 8 = 2,
the tree is the Brownian CRT and the fragmentation is binary (it is the fragmentation Fj of
the Introduction), so that the integrability assumption of Theorem 3.2 is satisfied and then
the dimension is 2. So suppose 3 < 2. The main result of [56] is that the dislocation measure
v_(ds) of F_ has the form

v_(ds) = C(B)E [Tl; Ago’” € ds]
1

for some constant C'(/3), where (T, > 0) is a stable subordinator with index 1/3 and AT} 3 =
(A1, Ay, . ..) is the decreasing rearrangement of the sequence of jumps of 7" accomplished within
the time-interval [0, 1] (so that ), A; = T}). By Theorem 3.2, to prove Corollary 3.1 it thus
suffices to check that E[Ty(Ty/A; — 1)] is finite. The problem is that computations involving
jumps of subordinators are often quite involved; they are sometimes eased by using size-biased
picked jumps, whose laws are more tractable. However, one can check that if A, is a size-
biased picked jump among (Ay, Ao, ...), the quantity E[T7(71/A. —1)] is infinite, therefore we
really have to study the joint law of (77, A;). This has been done in Perman [59], but we will
re-explain all the details we need here.

Recall that the process (T,,x > 0) can be put in the Lévy-Ito form T, = >, . A(y),
where (A(y),y > 0) is a Poisson point process with intensity cu='"'/#du (the Lévy measure
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of T') for some constant ¢ > 0. Therefore, the law of the largest jump of T" before time 1 is
characterized by

P(Ay<v)=P < sup A(y) < v) = exp (—cﬁv_l/ﬁ) v >0,
0<y<1

and by the restriction pro;oerty of Poisson processes, conditionally on A; = v, one can write

T =v+ Tl(v), where (ngv ,x > 0) is a subordinator with Lévy measure cu™'"1/91 5, <,y du.

The Laplace transform of T ) g given by the Lévy-Khintchine formula

v —u
ATOY —exp (= [ L)
Elexp(—=A\T")] —exp< :L‘/O pRESYIE du | ANz >0,

in particular, Tl(v) admits moments of all order (by differentiating in A) and U_1T1(v) has the

same law as TU(})I /5 (by changing variables). We then obtain

Tl(Al) Tl(Al)-
ET(Ty/A—1)] = E|[A|1
[T(Th/ Ay = 1)] B R
i (v) (v)
= KI/ dvv Ve PR <1—|—TI—> ho
R, v v
— K1/ dv v~ YBe=er™ _(1+TU(1)1/5> qui)l/ﬁ]
R, -

where Ky = K(f) > 0. Since Tl(l) has a moment of orders 1 and 2, the expectation in the
integrand is dominated by some Kyv™/8 4+ K3v~2/8. It is then easy to see that the integrand
is integrable both near 0 and oo since 3 < 2. Hence fsl (31’1 — 1) v_(ds) < oo.

3.4 The height function

We now turn to the proof of the results related to the height function, starting with Theorem
3.3. The height function we are going to build will in fact satisfy more than stated there: we
will show that under the hypotheses of Theorem 3.3, there exists a process Hp that encodes
Tr in the sense given in the introduction, that is, 7 is isometric to the quotient ((0,1),d)/ =,
where d(u,v) = Hp(u) + Hp(v) — 2infsepy, Hr(s) and u =v <= d(u,v) = 0. Once we have
proved this, the result is obvious since Ir(t)/ = is the set of vertices of 7 that are above level
t.

3.4.1 Construction of the height function

Recall from [3] that to encode a CRT, defined as a projective limit of consistent random R—trees
(R(k),k > 1), in a continuous height process, one first needs to enrich the structure of the R-
trees with consistent orders on each set of children of some node. The sons of a given node of
R(k) are thus labelled as first, second, etc... This induces a planar representation of the tree.
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This representation also induces a total order on the vertices of R(k), which we call <, by the
rule v < w if either v is an ancestor of w, or the branchpoint b(v, w) of v and w is such that the
edge leading toward v is earlier than the edge leading toward w (for the ordering on children
of b(v,w)). In turn, the knowledge of R(k), =, or even of R(k) and the restriction of < to
the leaves Ly, ..., Ly of R(k), allows us to recover the planar structure of R(k). The family
of planar trees (R(k), <k, k > 1) is said to be consistent if furthermore for every 1 < j < k
the planar tree (R(j), <;) has the same law as the planar subtree of (R(k), <)) spanned by j
leaves L1, ..., L? taken independently uniformly at random among the leaves of R(k).

We build such a consistent family out of the consistent family of unordered trees
(R(k),k > 1) as follows. Starting from the tree R(1), which we endow with the trivial or-
der on its only leaf, we build recursively the total order on R(k+1) from the order <, on R(k),
so that the restriction of <y to the leaves Ly, ..., L of R(k) equals <;. Given R(k + 1), <k,
let b(Lyy1) be the father of Ly,. We distinguish two cases:

1. if b(Lg11) is a vertex of R(k), which has r children ¢, ¢y, ..., ¢, in R(k), choose J uni-
formly in {1,2,...,r 4+ 1} and let ¢;_1 =<g41 Lgy1 =<ky1 ¢J, that is, turn Ly, into the
j-th son of b(Lyy1) in R(k + 1) with probability 1/(r + 1) (here ¢q (resp. ¢,4+1) is the
predecessor (resp. successor) of ¢; (resp. ¢,) for <;; we simply ignore them if they do not
exist)

2. else, b(Lgy1) must have a unique son s besides Li.1. Let s’ be the predecessor of s for
=k and s” its successor (if any), and we let " <p11 Lri1 <gi1 s with probability 1/2 and
S =k+1 Lk+1 Sk+1 §” with probability 1/2.

It is easy to see that this procedure uniquely determines the law of the total order <4, on
R(k+1) given R(k+1), =<, and hence the law of (R(k), <k, k > 1) (the important thing being
that the order is total).

Lemma 3.12 The family of planar trees (R(k), <k, k > 1) is consistent. Moreover, given
R(k), the law of <} can be obtained as follows: for each vertex v of R(k), endow the (possibly
empty) set {c1(v),...,c;(v)} of children of v in uniform random order, this independently over
different vertices.

Proof. The second statement is obvious by induction. The first statement follows, since we
already know that the family of unordered trees (R(k),k > 1) is consistent. m

As a consequence, there exists a.s. a unique total order < on the set of leaves {Lj, Ly ...}
such that the restriction =<|j==%. One can check that this order extends to a total order on
the set L(7F) : if L, L' are distinct leaves, we say that L < L’ if and only if there exist two
sequences Lgx) = Lym), k > 1, the first one decreasing and converging to L and the second
increasing and converging to L’. In turn, this extends to a total order (which we still call <)
on the whole tree 7p. Theorem 3.3 is now a direct application of [3, Theorem 15 (iii)], the
only thing to check being the conditions a) and b) therein (since we already know that 7p is
compact). Precisely, condition (iii) a) rewritten to fit our setting spells:

lim P(EI2 S] < k: |D{17j} — aD1| < 6 and Dj — D{Lj} < ¢ and Lj < Ll) =1.

k—oo
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This is thus a slight modification of (3.4), and the proof goes similarly, the difference being
that we need to keep track of the order on the leaves. Precisely, consider again some rational
r < aD; close to aDy, so that |II;(r)] # 0. The proof of (3.4) shows that within the time-
interval [r,r + ¢], infinitely many integers of II;(r) have been isolated into singletons. Now, by
definition of =<, the probability that any of these integers j satisfies L; <; Ly is 1/2. Therefore,
infinitely many integers of II; (1) give birth to a leaf L; that satisfy the required conditions, a.s.
The proof of [3, Condition (iii) b)] is exactly similar, hence proving Theorem 3.3.

It is worth recalling the detailed construction of the process Hp, which is taken from the
proof of [3, Theorem 15] with a slight modification (we use the leaves L; rather than a new
sample Z;,7 > 1, but one checks that the proof remains valid). Given the continuum ordered
tree (Tp, pp, =, (L;,1 > 1)),

U, — lim #{j<n:L; ﬁLi}’
n—oo n
a limit that exists a.s. Then the family (U;,i > 1) is distributed as a sequence of independent
sequence of uniformly distributed random variables on (0, 1), and since < is a total order, one
has U; < U; if and only if L; < L;. Next, define Hr(U;) to be the height of L; in 7, and
extend it by continuity on [0, 1] (which is a.s. possible according to [3, Theorem 15]) to obtain
Hp. In fact, one can define H r(U;) = L; and extend it by continuity on 7z, in which case Hp
is an isometry between 7 and ((0,1),d)/ = that maps (the equivalence class of) U; to L; for
1 > 1, and which preserves order.

Writing Ip(t) = {s € (0,1) : Hp(s) > t}, and |Ip(t)| for the decreasing sequence of the
lengths of the interval components of Ir(t), we know from the above that (|Ix(t)|,¢ > 0) has
the same law as F'. More precisely,

Lemma 3.13 The processes (|Ir(t)|,t > 0) and (F(t),t > 0) are equal.

Proof. Let II'(t) be the partition of N such that i ~"® j if and only if U; and U
fall in the same interval component of Ix(t). The isometry Hp allows us to assimilate L; to
U;, then the interval component of Ir(t) containing U; corresponds to the tree component of
{v € Tp : ht(v) > t} containing L;, therefore U; falls in this interval if and only if i ~1® j,
and II'(t) = II(¢). By the law of large numbers and the fact that (U;,j > 1) is distributed
as a uniform i.i.d. sample, it follows that the length of the interval equals the asymptotic
frequency of the block of II(t) containing i, a.s. for every ¢t. One inverts the assertions
“a.s.” and “for every t” by a simple monotony argument, showing that if (U;,i > 1) is a
uniform i.i.d. sample, then a.s. for every sub-interval (a, b) of (0, 1), the asymptotic frequency
lim, oo n '#{i <n:U; € (a,b)} = b — a (use distribution functions). m

We will also need the following result, which is slightly more accurate than just saying, as
in the introduction, that (Ig(t),¢ > 0) is an “interval representation” of F:

Lemma 3.14 The process (Ip(t),t > 0) is a self-similar interval fragmentation, meaning that
it is nested (Ip(t') C Ip(t) for every 0 < t < t'), continuous in probability, and for every
t,t' >0, given Ip(t) = U;s, Ii where I; are pairwise disjoint intervals, Ir(t +t') has the same
law as Ui21gi(lg)(t/|li|a)), where the Ig),z’ > 1 are independent copies of Ir, and g; is the
orientation-preserving affine function that maps (0,1) to I;.
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Here, the “continuity in probability” is with respect to the Hausdorff metric D on compact
subsets of [0, 1], and it just means that P(D(I%(t,,), I5(t)) > €) — 0 as n — oo for any sequence
tp, — t and € > 0 (here A°=[0,1]\ A).

Proof. The fact that Ir(t) is nested is trivial. Now recall that the different interval compo-
nents of Ir(t) encode the tree components of {v € 7p : ht(v) > t}, call them 7;(t), T5(t), . . ..
We already know that these trees are rescaled independent copies of 7, that is, they have
the same law as pp(7;(t))™ ® T@,i > 1, where 7(® i > 1 are independent copies of 7f.
So let 7O = up(T;(t))* ® T;(t). Now, the orders induced by =< on the different 7@)’s have
the same law as =< and are independent, because they only depend on the L;’s that fall in
each of them. Therefore, the trees (7@, 4, <)) are independent copies of (7, pir, <), where
pOC) = pr((pr(Ti(t) ™ @ )N Ti(t) /pr(Ti(t) and <@ is the order on 7@ induced by the
restriction of < to 7;(t). It follows by our previous considerations that their respective height
processes H®) are independent copies of Hp, and it is easy to check that given Ir(t) = J,», I;
(where I; is the interval corresponding to 7;(t)), the excursions of Hp above t are precisely the
processes u(7Z;(t))"*H® = |L|~*H®. The self-similar fragmentation property follows at once,
as the fact that Ir is Markov. Thanks to these properties, we may just check the continuity in
probability at time 0, and it is trivial because Hp is a.s. continuous and positive on (0,1). m

It appears that besides these elementary properties, the process Hp is quite hard to study.
In order to move one step further, we will try to give a “Poissonian construction” of Hp, in the
same way as we used properties of the Poisson process construction of I1° to study 7. To begin
with, we move “back to the homogeneous case” by time-changing. For every x € (0, 1), let I,.(t)
be the interval component of Ir(t) containing z, and |I,(t)| be its length (= 0 if I.(t) = @).
Then set

T, '(x) = inf {u >0: / |1 (r)|*dr > t} ,
0

and let I1%(¢) be the open set constituted of the union of the intervals I,(7; *(z)),r € (0,1)
(it suffices in fact to take the union of the Iy, (T, *(U;)),i > 1). From [14] and Lemma 3.14,
(I%(t),t > 0) is a self-similar homogeneous interval fragmentation.

3.4.2 A Poissonian construction

Recall that the process (II(t),t > 0) is constructed out of a homogeneous fragmentation
(T1%(¢),t > 0), which has been appropriately time-changed, and where (IT°(¢),¢ > 0) has it-
self been constructed out of a Poisson point process (A, ki, t > 0) with intensity k, ® #.
Further, we mark this Poisson process by considering, for each jump time ¢ of this Poisson
process, a sequence (U;(t),7 > 1) of i.i.d. random variables that are uniform on (0, 1), so that
these sequences are independent over different such t’s. We are going to use the marks to build
an order on the non-void blocks of I1°. It is convenient first to formalize what we precisely call
an order on a set A: it is a subset O of A x A satisfying:

1. (i,i) € O for every i € A
2. (i,7) € O and (j,i) € O imply i = j
3. (i,7) € O and (j,k) € O imply (i,k) € O.
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If B C A, the restriction to B of the order O is O3 = O N (B x B). We now construct a
process (O(t),t > 0), with values in the set of orders of N, as follows. Let O(0) = {(4,7),7 € N}
be the trivial order, and let n € N. Let 0 < t; < ty < ... < tg be the times of occurrence of
jumps of the Poisson process (A¢, k¢, t > 0) such that both k; < n and (Ay)|py (the restriction
of A; to [n]) is non-trivial. Let O™(0) = Oy,(0), and define a process O"(t) to be constant on
the time-intervals [¢;_1,t;) (where ty = 0), where inductively, given O™ (t;,_1) = O™(t;—), O"(t;)
is defined as follows. Let J,(t;) = {j € I}, (t;i—) : j < n and II}(t;) # @} so that ki, € Ju(t;)
as soon as IT}, (t;i—) # @. Let then

o) =o"t—uv |J kv UJ  {GRIU U {kir

JkE€In(t;): 3:(d,ke; ) EO™ (t5—) gi(ke, ,5)€O™(ti—)
Uj (tl)<Uk (tl) J;’éktl J;’éktl
keJn(ti) keJn(t;)

In words, we order each set of new blocks in random order in accordance with the variables
Un(t;),1 < m < n, and these new blocks have the same relative position with other blocks as
had their father, namely the block IT) (t;—).

It is easy to see that the orders thus defined are consistent as n varies, i.e. (O™ (t))) =
O"(t) for every n,t, and it easily follows that there exists a unique process (O(t),t > 0) such
that Oy (t) = O"(t) for every n,t (for existence, take the union over n € N, and unicity
is trivial). The process O thus obtained allows us to build an interval-valued version of the
fragmentation I1°(¢), namely, for every ¢ > 0 and j > 0 let

po={ Y mo. Y [me

k#35:(k,7)€O(t) k:(k,j)eO(t)

(notice that I7(t) = @ if TI)(t) = @). Write I°(t) = U5, I7(t), and notice that the length
[19(t)| of I7(t) equals the asymptotic frequency of IT}(t) for every j > 1,¢ > 0.

Proposition 3.2 The processes (I%(t),t > 0) and (I°(t),t > 0) have the same law.

As a consequence, we have obtained a construction of an object with the same law as I%
with the help of a marked Poisson process in P, and this is the one we are going to work with.

Proof. Let I%(i,t) be the interval component of I%(¢) containing U; if i is the least j such
that U; falls in this component, and Iy(i,t) = @ otherwise. Let Op(t) = {(i,4),i € N} U
{(4,k) : IX(4,t) is located to the left of I%(k,t) and both are nonempty}. Since the lengths of
the interval components of I% and I° are the same, the only thing we need to check is that the
processes O and Of have the same law. But then, for j # k, (j, k) € Op(t) means that the
branchpoint b(L;, L) of L; and Ly has height less than ¢, and the subtree rooted at b(L;, Ly)
containing L; has been placed before that containing L;. Using Lemma 3.12, we see that given
Tr, L1, Lo, . . ., the subtrees rooted at any branchpoint b of 75 are placed in exchangeable random
order independently over branchpoints. Precisely, letting 7 be the subtree containing the leaf
with least label, 7.? the subtree different from 7;* containing the leaf with least label, and so
on, the first subtrees 7, ..., 7, are placed in any of the k! possible linear orders, consistently
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as k varies. Therefore (see e.g. [3, Lemma 10]), there exist independent uniform(0, 1) random
variables U?, U?, .. . independent over b’s such that 7" is on the “left” of ’]}b (for the order OF)
if and only if U} < U?. This is exactly how we defined the order O(t). =

Remark. As the reader may have noticed, this construction of an interval-valued fragmen-
tation has in fact little to do with pure manipulation of intervals, and it is actually almost
entirely performed in the world of partitions. We stress that it is in fact quite hard to construct
directly such an interval fragmentation out of the plain idea: “start from the interval (0, 1),
take a Poisson process (s(t), ki, ¢ > 0) with intensity v(ds) ® #, and at a jump time of the
Poisson process turn the k;-th interval component Iy, (t—) of I(t—) (for some labelling con-
vention) into the open subset of Ij,(t—) whose components sizes are |Ix,(t—)|s;(t),7 > 1, and
placed in exchangeable order”. Using partitions helps much more than plainly giving a natu-
ral “labelling convention” for the intervals. In the same vein, we refer to the work of Gnedin
[37], which shows that exchangeable interval (composition) structures are in fact equivalent to
“exchangeable partitions+order on blocks”.

For every x € (0,1), write I2(¢) for the interval component of I%(¢) containing x, and notice
that ID(t—) = (N, I2(s) is well-defined as a decreasing intersection. For ¢ > 0 such that
I%(t) # I0(t—), let s*(t) be the sequence |I%(t) N IO(t—)|/|I2(t—)|, where |I%(t) N I2(t—)| is the
decreasing sequence of lengths of the interval components of I%(¢) N I2(¢t—). The useful result
on the Poissonian construction is given in the following

Lemma 3.15 The process (s°(t),t > 0) is a Poisson point process with intensity v(ds), and
more precisely, the order of the interval components of I%(t) NI2(t—) is exchangeable: there ex-
ists a sequence of i.i.d. uniform random variables (UF(t),i > 1), independent of (G°(t—), s*(t))
such that the interval with length s?(t)|I0(t—)| is located on the left of the interval with length
sT()|I2(t=)| if and only if UF(t) < UF(t).

Proof. Leti(t,z) =inf{i € N: U; € I°(t)}. Then i(¢, ) is an increasing jump-hold process in
N. If now I0(t) # I%(t—), it means that there has been a jump of the Poisson process Ay, k; at
time ¢, so that k; = (¢, ), and then s*(t) is equal to the decreasing sequence |A;| of asymptotic
frequencies of A, therefore s*(t) = |A| when k;, = i(t—, x), and since i(t—, x) is progressive,
its jump times are stopping times so the process (s%(t),t > 0) is in turn a Poisson process with
intensity v(ds). Moreover, by Proposition 3.2 and the construction of I°, each time an interval
splits, the corresponding blocks are put in exchangeable order, which gives the second half of
the lemma. m

3.4.3 Proof of Theorem 3.4
3.4.3.1 Holder-continuity of Hp

We prove here that the height process is a.s. Holder-continuous of order v for every v < tow Al
The proof will proceed in three steps.

First step: Reduction to the behavior of Hy near 0. By a theorem of Garsia, Rodemich
and Rumsey (see e.g. [26]), the finiteness of fol ! |Hr (@)= Hr )"0 dzdy leads to the (M)—

0 |x—y[7" n+mno
Holder-continuity of Hp, so that when the previous integral is finite for every n, the height
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process Hp is Holder-continuous of order 9 for every § < v, whatever is ng. To prove Theorem
3.4 it is thus sufficient to show that for every v < U)oy A || there exists a ng(7y) such that

1 .1 n+no(y)
H - H
/ / | F($)| F(y) dxdy] < oo for every positive integer n.
0o Jo x

E D
-yl

Now take Vj, V3 uniform independent on (0, 1), independently of Hr. The expectation above

|Hp (Vi) —Hp (Vo)[" "0
then becomes F [ TSR .

Consider next Ir the interval fragmentation constructed from Hp (see Section 3.4.1). By
Lemma 3.14, Hr(Vy) and Hp(V3) may be rewritten as

Hp(V;) = Doy + A (Do) Dy, i = 1,2,

where Dy 9y is the first time at which V; and V3 belong to different intervals of Ir and 51, 152
have the same law as Hp(V}) and are independent of H(Dy; 2y), where H(t),¢ > 0 is the natural
completed filtration associated with Ir. The r.v. l~?1 and 132 can actually be described more
precisely. Say that at time Dy 2y, Vi belongs to an interval (al,al + )\1(D{172})) and V5 to
(a2, as + A2(Dy12y)) . Then there exist two iid processes independent of H(Dy; 03) and with the

same law as Hp, let us denote them Hl(pl) and Hg), such that IN), = Hg) (/\,(‘%:f;})) ,1=1,2.

Since V; € (ai,ai + )\i(D{LQ})), the random variables \7, = (V; —ay) )\i_l(D{l,Q}) are iid, with
the uniform law on (0, 1) and independent of Hl(pl), HI(;Z) and H(Dg2y). And when Vi > V5,

Vi = Vo = M(Dpop)Vi + Xao(Dya2y) (1 - ‘72>
since a; is then larger than as + )\Q(D{LQ}). This gives

[ He(Vi) — He(Vo)|"™)
(Vvl — VvQ)ﬂm {(Vi>Va}

o 54\l 5 ) e
()\1 (Dg1,2y) D1+ Ag (D{LQ})DQ)

<A1(D{1,2})‘~/1 + A2 (D1 93) (1 B %))Wz

) |

The expectation involving A; is bounded by 1 since 7 < |a|. And since V] is independent of
Hp, the two expectations in the parenthesis are equal (reversing the order < and performing

E = 2F

|[He (Vi) = Hp (V)"
Vi = Vo™

IA

2F

and this last expectation is bounded from above by

Hy™ (1)
&

Hy™ ) (14)

E
M AR

gntno(v) i [(Al(D{LQ}))(n+n0(7))|a|—7n} (E

the construction of Hp gives a process with the same law and shows that Hp(z) ' gy r(1—x)
for every x € (0,1)) and finite as soon as

sup B [Hp(z)""™ 0] 27" < . (3.17)
z€(0,1)
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The rest of the proof thus consists of finding an integer ny(7y) such that (3.17) holds for every n.
To do so, we will have to observe the interval fragmentation I at nice stopping times depending

on x, say ']I';(,;/), and then use the strong fragmentation property (which also holds for interval

fragmentations, see [14]) at time T. This gives

laf =

Hp(x) =T + (So(TS)) " Hr(Pe(TS)) (3.18)
where S, (T$) is the length of the interval containing z at time TS, P,(TY) the relative
position of z in that interval and Hr a process with the same law as Hr and independent of

H(TS).

Second step: Choice and properties of Tg”. Let us first introduce some notation in order
to prove the forthcoming Lemma 3.16. Recall that we have called I% the homogeneous interval
fragmentation related to I by the time changes T, '(z) introduced in Section 3.4.1. In this
homogeneous fragmentation, let

I%(t) = (a.(t),b.(t)) be the interval containing x at time ¢
S%(t) the length of this interval
PO(t) = (v — a,(t))/S°(t) the relative position of z in I,(t).
Similarly, we define P?(t—) to be the relative position of z in the interval I9(¢t—), which is

well-defined as an intersection of nested intervals. S%(¢t—) is the size of this interval. We will
need the following inequalities in the sequel:

P(t) <x/SR(t)  Pl(t=) < x/Sy(t-).

Next recall the Poisson point process construction of the interval fragmentation I%, and the
Poisson point process (s%(t)),-, of Lemma 3.15. Set

o(t) ;= —In (H sf(t)> t>0,

with the convention s{(¢) = 1 when ¢ is not a time of occurrence of the point process. By
Lemma 3.15, the process o is a subordinator with intensity measure v(—Ins; € x), which is
infinite. Consider then T the first time at which z is not in the largest sub-interval of I°
when IV splits, that is

T = inf {t : SY(t) < exp(—0o(t))}.

By definition, the size of the interval containing x at time ¢ < T is given by SY(t) =
exp(—o(t)). We will need to consider the first time at which this size is smaller than a, for a in
(0,1), and so we introduce

T? :=inf{t : exp(—0o(t)) < a}.

Note that P?(t) < xexp(o(t)) when t < T and that P(T*—) < zexp(o (T —)).

Finally, to obtain a nice T

fragmentation at time

as required in the preceding step, we stop the homogeneous

TS AT
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for some ¢ to be determined (and depending on v) and then take for TS the self-similar

counterpart of this stopping time, that is T =72 (). More precisely, we have

Texlt /\TO'

Lemma 3.16 For every v < Q10w A |a|, there exists a family of random stopping times ']I‘;(ﬁ),

€ (0,1), and an integer N(v) such that
(i) for every n >0, 3Cy(n) : E [(T(V ) } < Cy(n)z™ Vxe(0,1),

(i) 3Cy such that E [(SAT@))T < Cyx? for every x in (0,1) and n > N(7).

Proof. Fix v < oy A |a] and then € < 1 such that /(1 —¢) < J)5. The times T;(ry), x € (0,1),
are constructed from this ¢ by

T( ) T’Z:exlt/\To' (x)

and it may be clear that these times are stopping times with respect to H. A first remark is
that the function z € (0,1) — S,(T{”) is bounded from above by 1 and that z € (0,1) — T4
is bounded from above by (, the first time at which the fragmentation is entirely reduced
to dust, that is, in others words, the supremum of Hp on [0,1]. Since { has moments of
all orders, it is thus sufficient to prove statements (i) and (ii) for = € (0,z¢) for some well
chosen xy > 0. Another remark, using the definition of 7, *(z), is that T < Tet A TS,
and S, (TS ) SY (TS ATS ), so that we just have to prove (i) and (ii) by replacing in the
statement TS by Tt A T% and S,(T") by S° (TSATE).

We shall thus work with the homogeneous fragmentation. When I? splits to give smaller
intervals, we divide these sub-intervals into three groups: the largest sub-interval, the group
of sub-intervals on its left and the group of sub-intervals on its right. With the notations of
Lemma 3.15, the lengths of the intervals belonging to the group on the left are the s¥(¢)S%(t—)
with ¢ such that UF(t) < U7 (t) and similarly, the lengths of the intervals on the right are the
s?(t)S%(t—) with 4 such that U¥(t) > U{(t). An important point is that when T < T% . then
at time T the point z belongs to the group of sub-intervals on the left resulting from the
fragmentation of I2(Te—). Indeed, when T < T9% then exp(—o(T2)) > 2° > x, which
becomes s¥(T) exp(—o(T*—)) > x. Then using that P2(T™*—) < zexp(o(T™-)), we
obtain s§(T) > PY(T™*—) and thus that x does not belong to the group on the right at time
T (x belongs to the group on the right at a time ¢ if and only if Pf(t—) > Zi:Uf(t)SUf ) Si (1))
Hence x belongs to the union of intervals on the left at time 7 when T2 < T2%. In other
words,

exit __ . z Oy exit o
T = inf {t : Zi:Uf(t)<U{‘(t) si(t) > P,(t )} when T, < Ty..

The key-point, consequence of Lemma 3.15, is that the process (Zi-U¢(t)<Uf(t) sf(t)) is a
i >0

marked Poisson point process with an intensity measure on [0, 1] given by

p(du) == /Slp(s,du)y(ds), u e [0,1],
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where for a fixed s in S', p(s, du) is the law of > iv.<v, Si» the Uy’s being uniform and indepen-
dent random variables. We refer to Kingman [46] for details on marked Poisson point processes.
Observing then that for any a in (0,1/2) and for a fixed s in S

1{1—51>2a} S 1{Zi:Ui<U1 Si>a} + 1{Zi:Ui>U1 si>a}’
we obtain that 1g_g 504 < 2P (Z@U v, Si > a) and then the following inequality

v(sy <1—2a).

N | —

p((a,1]) =

This, recalling the definition of ¥, and that v/(1 — &) < VYow, leads to the existence of a
positive xg and a positive constant C' such that

p((z21]) > € (a7 0=9)""" Z 027 forall z in (0, 2p). (3.19)

Proof of (i). We again have to introduce a hitting time, that is the first time at which the
Poisson point process <Zi:U.z(t)<Uf(t) st(t),t > O) belongs to (z'7¢,1) :

—i . T 1—¢
H,i-- = inf {t : Zi;Ug(t)<Uf(t) si(t) >x } .

By the theory of Poisson point processes, this time has an exponential law with parame-
ter u((z'7¢,1]). Hence, given inequality (3.19), it is sufficient to show that T A T <
H,i-- to obtain (i) for = in (0,z9) and then (i) (we recall that it is already known that

SUDgelpo ) & E [(']I'Sﬁ) ] is finite). On the one hand, since P2(t) < zexp(o(t)) when
t< T

PY(Hy--—) < zexp(o(Hy--—)) < vexp(o(Hy-<)) when Hyoo < T

xT

On the other hand, H,1-- < T yields

rexp(o(Hye)) S a'° < Z@'W(H 1-)<UF(H )8f(Hzl_E>’
i zi—€ 1 zi—€

and combining these two remarks, we get that Hyi-- < T A T% implies

0 - x .
PY(Hi-- )<Zi:Uf(H11,E)<U{”(H11,E)Sl(Hxl ).

Yet this is not possible, because this last relation on H,i1-- means that, at time H,1--, x is not in
the largest sub-interval resulting from the splitting of I9(H,1--—), which implies H,i-- > T
and this does not match with H,i-- < T A T%. Hence TS A T% < Hyi-- and (i) is proved.

Proof of (). Take N(v) > ~v/eV 1. When T% < T using the definition of 7% and the right
continuity of o, we have .
ST ATE) < exp(—a(T2) < o*
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and consequently (Sg (T8 A T;}))Nm < 27. Thus it just remains to show that

E(SAT AT O L gy | <27 for o <

When T < T2, we know - as explained at the beginning of the proof - that z belongs at time

T to the group of sub-intervals on the left resulting from the fragmentation of I9(7*—)
and hence that SO(T A TZ)NO) < s2(TM) for some ¢ such that UF(T) < UF(TS). More
roughly,

0 Xi o \N Xi
Sm (Tme it A ng) ™) 1{T§"“<T;’E} < Zi:U?”(T;;X“)<U{‘ (Texit) Sim (Tf lt)l{Tgxit<ng } .

To evaluate the expectation of this random sum, recall from the proof of (i) that T < H,i-.
when T2 < T9 and remark that either 7% < H,i-. and then

x exit < 1—¢ < Y _ < _
Zi:Uf(T;Xit)<Uf(T§Xit) sHTy) <<z’ (y<Ohow(l—¢)<1—¢)

or T = H,.-. and then

exit E : x
S5 = S H 1—e ).
Zi;Ug(T;xitKUf(T;xit) () wUF(H,1—e )<UF(H 1-c) i (Hote)

There we conclude with the following inequality

E Z S (Hp )| = fle [Zi:Ui<U1 Sil{Z¢:U¢<Ul si>at=e} v(ds)
At R 1)

< Ccla /sl (1 —s1)v(ds), = € (0,x).

Third step: Proof of (3.17). Fix v < U0y A || and take TS and N(v) as introduced in
Lemma 3.16. Let then ng(y) be an integer larger than N(v)/|a|. According to the first step,
Theorem 3.4 is proved if (3.17) holds for this ny(7y) and every integer n > 1. To show this, it is
obviously sufficient to prove that for all integers n > 1 and m > 0, there exists a finite constant
C(n,m) such that

E [Hp(z)™ 0] < O(n,m)2™ Va € (0,1).

This can be proved by induction: for n = 1 and every m > 0, using (3.18) , we have

E [HF@)m—H—Fno(v) < gm-+14no(7)

y (E |:<T(m,y)>m+1+n0(7):| B [(Sm(Téy))) || (m+14n0(7)) Z‘m+1+n0(v)])

where  is the maximum of Hp on (0,1). Recall that this maximum is independent of Sm(Tg’))
and has moments of all orders. Since moreover || (m + 1+ no(y)) > N(v), we can apply
Lemma 3.16 to deduce the existence of a constant C'(1,m) such that

E [Hp(z)™Hm0)] < C(1,m)2” for x in (0,1).
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Now suppose that for some fixed n and every m > 0,
E [Hp(z)™ 0] < O(n,m)2™ Va € (0,1).

Then,

IA

C(n,m+ 1) (P,(TO))™

T

B [(fp (PT0)) "0 31 (1))

< C(n,m+1) (Sm(ng)))’”" "

since PJC(T(IV)) < x/Sx(T(J)). Next, by (3.18),

m4n+1+no(7y)
E [HF<x)m+n+1+no(v)] S 2m+n+1+no(v)E [(11?;{)) oY

|laf(m+n+14+no(y))—yn
f2mtntltnoM O (n,m + 1)E {(Sm(ﬂ‘(mv))) 0 2

Since v < |a], the exponent || (m +n+14ng(y)) —yn > N(v), and hence Lemma 3.16
applies to give, together with the previous inequality, the existence of a finite constant
C(n + 1,m) such that

B {HF(x)m+n+1+no(w)} <C(n+1, m)ﬂ("“)

for every x in (0,1). This holds for every m and hence the induction, formula (3.17) and
Theorem 3.4 are proved.

3.4.3.2 Maximal Holder exponent of the height process

The aim of this subsection is to prove that a.s. Hp cannot be Holder-continuous of order v for
any v > Uy A |/ 0.

We first prove that Hpr cannot be Holder-continuous with an exponent +y larger than v,,. To
see this, consider the interval fragmentation I and let U be a r.v. independent of Ir and with
the uniform law on (0,1). By Corollary 2 in [14], there is a subordinator (6(¢),¢ > 0) with no
drift and a Lévy measure given by

[e.e]

mo(dx) = e™" Zu(—log s; € dx),z € (0,00),

i=1

such that the length of the interval component of Ir containing U at time ¢ is equal to
exp(—0(pg(t))), t > 0, ps being the time-change

po(t) = inf {u >0 /0 exp (ad(r)) dr > t} > 0.

Denoting by Leb the Lebesgue measure on (0,1), we then have that

Leb{z € (0,1) : Hp(x) >t} > exp(—0(ps(t))). (3.20)
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On the other hand, recall that Hp is anyway a.s. continuous and introduce for every ¢ > 0
xy:=1inf{zx : Hp(z) =t},

so that © < 2y = Hp(z) < t. Hence x; <Leb{z € (0,1) : Hp(z) < t} and this yields, together
with (3.20),
x <1 —exp(—0(po(t)) a.s. for every t > 0.

Now suppose that Hp is a.s. Holder-continuous of order 7. The previous inequality then gives
t = Hp(w) < Ca] < C (0(pn(1)))" (3.21)

so that it is sufficient to study the behavior of 8(py(t)) as t — 0 to obtain an upper bound for 7.
It is easily seen that pg(t) ~ t ast | 0, so we just have to focus on the behavior of (t) as t — 0.
By [10, Theorem I11.4.9], for every § > 1, limy_q (6(¢)/t°) = 0 as soon as fol 7(t0)dt < oo,
where Tg(t°) = [; mo(dx). To see when this quantity is integrable near 0, remark first that

1
To(u) = (1) +/ e “v(—log s € dr) when u < 1,

(since s; < 1/2 for i > 2) and second that

1
/ e “v(—logsy € dx) <v(sy <e™).

Hence,
1 1
/ 7o (t0)dt < (1) +/ v(s; < e ¥)dt
0 0

and by the definition of 9, this integral is finite as soon as 1/§ > 0. Thus lim,_q (6(¢)/t°) =0
for every 6 < 1/v,, and this implies, recalling (3.21), that v0 < 1 for every § < 1/9,,. Which
gives 7 < Vyp.

It remains to prove that Hr cannot be Hoélder-continuous with an exponent v larger than
|a| /o. This is actually a consequence of the results we have on the minoration of dim »(7z).
Indeed, recall the definition of the function Hp : (0,1) — Tp introduced Section 3.4.1 and in
particular that for 0 <z <y <1

d (F[F@), ﬁF(y)) — Hp(z) + He(y) — 2 inf Hp(2),

z€[z,y]

which shows that the v-Hélder continuity of Hp implies that of Hp. It is now well known that,
since Hp : (0,1) — Tz, the v-Hélder continuity of Hp leads to dim 4 (75) < dim#((0,1))/y =
1/~. Hence Hp cannot be Holder-continuous with an order v > 1/dim 4 (7). Recall then that
dim #(7F) > o/ |a| . Hence Hp cannot be Holder-continuous with an order v > |a| /.
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3.4.4 Height process of the stable tree

To prove Corollary 3.3, we will check that v_(1 — s, > x) ~ C2'/#~! for some C' > 0 as z | 0,
where v_ is the dislocation measure of the fragmentation F_ associated with the stable ()
tree. In view of Theorem 3.4 this is sufficient, since the index of self-similarity is 1/ — 1 and
Js (31_1 — 1) v(ds) < oo, as proved in Sect. 3.3.5. Recalling the definition of v_ in Sect. 3.3.5
and the notations therein, we want to prove

E [T11{17A1/T1>m}} ~ Cg'/P! asw | 0

Using the above notations, the quantity on the left can be rewritten as

E |:(A1 + Tl(Al))1{T1(A1)/(A1+T1(A1))>33}:| =F |:A1(1 + Al_lTl(Al))l{AllTl(Al)>m(1x)—l}:| .

1)

Recalling the law of A; and the fact that v‘lTl(v) has same law as T" 15, this is

OO -1/ _—cBv=1/8 1)
C/o dvv=Te E [<1 +Tv1/6)1{Tv(1)1/5>m(1:v)_l}:| '

By [64, Proposition 28.3], since T and T share the same Lévy measure on a neighborhood

of 0, TV admits a continuous density qf,l)(x), x > 0 for every v > 0. We thus can rewrite the

preceding quantity as
> do —cBu-1/8 o0 00 © dw o
C/ 175°¢ ’ / (14 ), (w)du = Cﬁ/ du(1 + u) / —e ¢ (w)
oY z/(1-2) z/(1—x) 0o W

by Fubini’s theorem and the change of variables w = v='/#. The behavior of this as = | 0 is the
same as that of ¢8.J(z) where J(z) = [ duj(u), and where j(u) = [;°dw w‘ﬁe_cﬁwqg)(u).
Write J(z) = [y J(u)du for > 0, and consider the Stieltjes-Laplace transform J of I
evaluated at A > 0:

T\ = / Ooe—w(u)du = / Oo(l—e_’\“)j(u)du
0 0
= )\1/ d—wecﬁw/ dugl (u)(1 — e™)
0 A 0

w

— )\—1 /OO d_,lge—cﬁw(l . 6—w<1>(1)()\))
0 w

where as above ®()()\) = cfo1 w1 7YB(1 — e )du. Integrating by parts yields

N )\71 o0 d 1
IO = ﬁ—l/o (B + 2V — )

S (e a0 - (@9))

Changing variables in the definition of ®(), we easily obtain that ®™®(\) ~ CAY# as A — oo for
some C > 0, so finally we obtain that j()\) ~ CA\7Y/8 as A — oo for some other C' > 0. Since
J is non-decreasing, Feller’s version of Karamata’s Tauberian theorem [21, Theorem 1.7.1’]
gives J(x) ~ Cx'/# as x | 0, and since J is monotone, the monotone convergence theorem [21,
Theorem 1.7.2b] gives J(z) ~ ~1Cz/#~! as z | 0, as wanted.

)\71
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Chapitre 4

Equilibrium for fragmentation with
immigration

Abstract: This paper introduces stochastic processes that describe the evolution of systems
of particles in which particles immigrate according to a Poisson measure and split according to
a self-similar fragmentation. Criteria for existence and absence of stationary distributions are
established and uniqueness is proved. Also, convergence rates to the stationary distribution
are given. Linear equations which are the deterministic counterparts of fragmentation with
immigration processes are next considered. As in the stochastic case, existence and uniqueness
of solutions, as well as existence and uniqueness of stationary solutions, are investigated.

4.1 Introduction

The aim of this paper is to study random and deterministic models that describe the evolu-
tion of systems of particles in which two independent phenomena take place: immigration and
fragmentation of particles. Particles immigrate and split into smaller particles, which in turn
continue splitting, at rates that depend on their mass. Such situation occurs for example in
grinding lines ([7], [53]) where macroscopic blocks are continuously placed in tumbling ball
mills that reduce them to microscopic fragments. These microscopic fragments then undergo a
chemical process to extract the minerals. In such systems, one may expect to attain an equilib-
rium, as the immigration may compensate for the fragmentation of particles. The investigation
of existence and uniqueness of such stationary state, as well as convergence to the stationary
state, is one of the main points of interest of this paper. It will be undertaken both in random
and deterministic settings.

We first introduce continuous times fragmentation with immigration Markov processes.
Roughly, their dynamics are described as follows. The immigration is coded by a Poisson
measure with intensity I(ds)d¢, ¢ > 0, where I is a measure supported on D, the set of de-
creasing sequences s = (s;,j > 1) that converge to 0. That is, if (s(¢;), t;) denotes the atoms of
this Poisson measure, a group of particles with masses (s1(t;), s2(%;), ...) immigrates at time ¢;
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for each ¢; > 0. We further impose that I integrates >_,.,(s; A 1), which means that the total
mass of immigrants on a finite time interval is finite a.s. The particles fragment independently
of the immigration, according to a “self-similar fragmentation with index o € R” as introduced
by Bertoin in [13],[14]. This means that each particle split independently of others with a rate
proportional to its mass to the power a and that the resulting particles continue splitting with
the same rules. Rigorous definitions are given in Subsections 4.1.1 and 4.1.2 below. Some
examples of such processes arise from classical stochastic processes, as Brownian motions with
positive drift. This is detailed in Section 4.4.

Let FI denote a fragmentation with immigration process. Our first purpose is to know
whether it is possible to find a stationary distribution for F'I. Under some conditions that
depend both on the dynamics of the fragmentation and on the immigration, we construct a
random variable Ug,; in D whose distribution is stationary for F'I. Let o be the I-dependent
parameter defined by

Qp = —sup {a >0: / s11g>131(ds) < OO} :
D

When a; < 0, we obtain that the stationary state Ug,; exists as soon as the index of self-
similarity « is larger than a; and that there is no stationary distribution when « is smaller
than «y. In this latter case, too many large particles are brought in the ball mill which is not
able to grind them fast enough. These results are made precise in Theorems 4.1, 4.2 and 4.3,
Section 4.2, where we also study whether Ug,; is in [P, p > 0. In addition, the stationary
solution is proved unique.

It is easily checked from the construction of Ug, that

law

F.[(t) — Ustat

as soon as the stationary distribution exists and that this convergence holds independently
of the initial distribution. One standard problem is to investigate the rate of convergence to
this stationary state. Our approach is based on a coupling method. This provides rates of
convergence that differ significantly according as a@ < 0, & = 0 or o > 0: one obtains that the
convergence takes place at a geometric rate when o = 0, at rate t~'/® when a > 0, whereas the
rate of convergence depends both on [ and a when a < 0.

We next turn to deterministic models, namely fragmentation with immigration equations.
Roughly, these equations are obtained by adding an immigration term to a family of well-
known fragmentation equations with mass loss ([31],[55],[38]): we consider that particles with
mass in the interval (z,x 4+ dz) arrive at rate py(dz) which is defined from I by

/ooo f@hui(de) := /DZQ f(s;)1(ds),

for all positive measurable functions f. Solutions to the fragmentation with immigration equa-
tion do not always exist. We give conditions for existence and then show uniqueness. The
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obtained solution is closely related to the stochastic model (FI(t),t > 0): it is - in a sense to
be specified - related to the expectations of the random measures ), 0pz, 1), t > 0. In this
deterministic setting, one may also expect the existence of stationary solutions. Provided the
average mass immigrated by unit time is finite, we construct explicitly a stationary solution
which is proved unique. Note that here the hypothesis for existence only involves I, not «,
contrary to the stochastic case.

This paper is organized as follows. In the remainder of this section we first review the defi-
nition and some properties of self-similar fragmentations (Subsection 4.1.1), then we set down
the definition of fragmentation with immigration processes (Subsection 4.1.2). The study of
existence and uniqueness of a stationary distribution is undertaken in Section 4.2, where we
also give criteria for existence of a stationary distribution for more general Markov processes
with immigration. In Section 4.3, we investigate the rate of convergence to the stationary
distribution. Section 4.4 is devoted to examples of fragmentation with immigration processes
constructed from Brownian motions with positive drift or from height functions coding contin-
uous state branching processes with immigration, as introduced in [49]. Section 4.5 concerns
the fragmentation with immigration equation.

4.1.1 Self-similar fragmentations

State space. We endow the state space

D={s=(sj);5 181 =52 >..20, lim s; =0}
> Fae

with the uniform distance
!

d(s,s') :=sup|s; — 5| .

Jj=1
Clearly, as n — o0, d(s,s") — 0 is equivalent to s} — s; for all j > 1 which in turn is equivalent
to D51 f(s7) — 22,51 f(s;) for all continuous functions f with compact support in (0, c0).
Hence D identifies with the set of Radon counting measures on (0, 00) with bounded support
endowed with the topology of vague convergence through the homeomorphism

s€D Zj21 58j1{5j>0}'

With a slight abuse of notations, we also call s the measure ) i>1 ds; 15,50y It is then natural
to denote by “s + s’” the decreasing rearrangement of the concatenation of sequences s, s’ and
by (s, f) the sum >°.., f(s)1(s,50). More generally, we denote by “3°..,s” the measure
Zizl 2]21 553 1 {si>0}- This point measure does not necessarily corresponds to a sequence in D,
but when it does, it represents the decreasing rearrangement of the concatenation of sequences
st,s? ...

For all p > 0, let [ be the subset of D of sequences s; > so > ... > 0 such that 2j21 sf < 00.
When p = 0, we use the convention 0° = 0, which means that {° is the space of sequences with

at most a finite number of non-zero terms. Let also D; be the subset of D of sequences such
that Y., s; < 1. Clearly I? C I* when p < p/ and D; C I'. At last, set 0 : = (0,0, ...).
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Self-similar fragmentations.

Definition 4.1 A standard self-similar fragmentation (F(t),t > 0) with index o € R is a Dy -
valued Markov process continuous in probability such that:

- F(0) = (1,0,...)

- for each ty > 0, conditionally on F(ty) = (s1,S2,...), the process (F(t+tg),t > 0) has
the same law as the process obtained for each t > 0 by ranking in the decreasing order the
components of sequences 51 F'M (s81), s,F 2 (s5t), ..., where the FY)’s are independent copies of

F.

This means that the particles present at a time ¢y evolve independently and that the evolution
process of a particle with mass m has the same distribution as m times the process starting from
a particle with mass 1, up to the time change t — tm®. According to [9] and [14], a self-similar
fragmentation is Feller - hence possesses a cadlag version which we shall always consider - and
its distribution is characterized by a 3-tuple (o, ¢, v): « is the index of self-similarity, ¢ > 0 an
erositon coefficient and v a dislocation measure, which is a sigma-finite non-negative measure
on D that does not charge (1,0, ...) and satisfies

/Dla — s)v(ds) < oo.

Roughly speaking, the erosion is a deterministic continuous phenomenon and the dislocation
measure describes the rates of sudden dislocations: a fragment with mass m splits into fragments
with masses ms,s € Dy, at rate m“v(ds). In case v(D;) < oo, this means that a particle with
mass m splits after a time 7" with an exponential law with parameter m®v(D;) into particles
with masses ms, where s is distributed according to v(-)/v(D;) and is independent of T'. For
more details on these fundamental properties of self-similar fragmentations, we refer to [9],[13]
and [14].

Definition 4.2 For any random u €D, a fragmentation process («,c,v) starting from u is
defined by

FW(4) = Zj>1(qu(j)(u;?‘t)), t>0, (4.1)

where the FYU)’s are i.i.d copies of a standard («, ¢, v)-fragmentation F, independent of .

Clearly, F™(t) € D for all t > 0 and, according to the branching property of F, F® is
Markov. It is plain that such fragmentation process converges a.s. to 0 as t — oo, provided

V(Dl) 7é 0.

We now review some facts about standard («, ¢, v)-fragmentations that we will need. In the
remainder of this subsection, F' denotes a standard (a, ¢, v)-fragmentation.

Tagged particle. We are interested in the evolution process of the mass of a particle tagged
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at random in the fragmentation. So, consider a point tagged at random at time 0 according to
the mass distribution of the particle, independently of the fragmentation, and let A(¢) denotes
the mass at time ¢ of the particle containing this tagged point. Conditionally on F'; \(t) = Fj(t)
with probability Fj(t), k¥ > 1, and A(t) = 0 with probability 1 — ", o, F(?).

aw

Suppose first that o = 0. Bertoin [13] shows that A g exp(—&(.)), where £ is a subordi-
nator (i.e. a right-continuous increasing process with values in [0, co] and with stationary and
independent increments on the interval {¢ : £(t) < co}), with Laplace exponent ¢ given by

o(q) :==clg+1)+ /1)1 (1 — 2]21 s;+q) v(ds), ¢ > 0. (4.2)
We recall that ¢ characterizes &, since E [exp(—¢&(t))] = exp(—tp(q)) for all ¢,¢ > 0 (for
background on subordinators, we refer to [10], chapter III). When ¢ > 0 or v(}_,,s; <1) >0,
one sees that the subordinator ¢ is killed at rate k = ¢(0) > 0: that is there exists a subordinator
€ with Laplace exponent ¢ = ¢ —k and an exponential r.v. e (k) with parameter k, independent
of €, such that

§(t) = E(1)1jt<e(r)y + 0L t>e(k))
for all t > 0.

Now when « € R, Bertoin [14] shows that A 4 exp(—&(p(.))) where ¢ is the same subordi-
nator as above and p is the time-change

p(t) :=inf {u >0: / exp(a(r))dr > t} , t>0. (4.3)
0
This implies that

Zk21 f(Fi(t) = E[f(exp(=€(p(1)))) exp(§(p(t))) | F] (4.4)

for every positive measurable function f supported on a compact of (0, 00) (with the convention
0 x oo = 0), and in particular that

B[S T E(0)] = Bl (esp(~&00) exple(o(t)] (15)

Formation of dust when a < 0. When the index of self-similarity « is negative, for all
dislocation measures v, the total mass >, ., Fi(t) of the fragmentation F' decreases as time
passes to reach 0 in finite time even if there is no erosion (¢ = 0) and no mass is lost within
sudden dislocations (v(3_,-,s; < 1) = 0). This is due to an intensive fragmentation of small
particles which reduces macroscopic particles to an infinite number of zero-mass particles or
dust. To say this precisely, introduce

¢ = inf{t >0:) Bt = o} (4.6)

the first time at which the total mass reaches 0. According to Proposition 14 in [38], there exist
C, C" some positive finite constants such that for any ¢ > 0,

P({ >t) < Cexp(—C'th) (4.7)
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where I' is a (¢, v)-dependent parameter defined by

(4.8)

L. (1 — X)~! when ¢(q) — cq varies regularly with index 0 < A < 1 as ¢ — oo
" | 1 otherwise.

Note that E[¢] < co.

4.1.2 Fragmentation with immigration processes

As said previously, the immigration and fragmentation phenomena occur independently. The
immigration is coded by a Poisson measure on ! x [0, 00) with an intensity I(ds)d¢ such that

/u Zm (s; A1) I(ds) < oo (H1)

and we call such measure I an immigration measure. The hypothesis (H1) implies that the
total mass of particles that have immigrated during a time ¢ is almost surely finite (for an
introduction to Poisson measures, we refer to [46]). On the other hand, the particles fragment
according to a self-similar fragmentation (o, c,v).

Definition 4.3 Let u be a random sequence of D and let ((s(t;),t;),i > 1) be the atoms of
a Poisson measure with intensity I1(ds)dt independent of u. Then, conditionally on u and
((s(t;),t;),i > 1), let FW FG®) > 1, be independent fragmentation processes (o, ¢, v) start-
ing respectively from u, s(t1), s(tz), ... . With probability one, the sum

FIW(t) .= FW(¢) 4 Zt'q FEED (4 — ;)

belongs to D for all t > 0, and the process FI™ s called a fragmentation with immigration
process with parameters («,c,v, I) starting from u.

The reason why >, _, FGE)(t —t;) € D as. is that > ti<t 21 Si(ti) < oo (by hypothesis
(H1)) and then that 3>, ., FEE)(t — t;) € 1!, since Y20 FE(t — ;) < 3,0, s;(t:). Note
also that when p > 1, FI™ € [P as soon as u €[”.

In this definition, the sequence u represents the masses of particles present at time 0 and at
each time ¢; > 0, some particles of masses s(t;) immigrate. At time ¢, two families of particles
are then present: those resulting from the fragmentation of u during a time ¢ and those resulting
from the fragmentation of s(¢;) during a time t — ¢;, t; < t.

It is easy to see that the process 1™ is Markov and even Feller (cf. the proof of Proposition
1.1, [9]). Hence we may and will always consider cadlag versions of FIM.

In the rest of this paper, we denote by F'I a fragmentation with immigration («,c,v,I)
(without any specified starting point) and we always exclude the trivial cases v =0 or I = 0.

Remark. One may wonder why we do not more generally consider some fragmentation with
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immigration processes with values in R, the set of Radon point measures on (0, 00). Indeed,
for all (random) u €R and all ¢ > 0, it is always possible to define the point measure

FIW(4) .= FO(¢) + ZN FEED ¢ 1)), ¢t >0, (4.9)

where F(W(t) is defined similarly as (4.1) and is independent of F®*)) 4 > 1, some independent
fragmentations («, ¢, v) starting respectively from s(t1), s(t2), ... . The sum involving the terms
FGUD(t—t,),t; < t,isin D, as noticed in the definition 4.3 above. The issue is that in general,
starting from some u € R\D, the measures F("(¢) do not necessarily belong to R, as the masses
of the initial particles may accumulate in some bounded interval (a, b) after fragmentation. As
an example, one can check that for most of dislocation measures v, F(W(t) ¢ R a.s. as soon as
a >0, u €R\D and ¢t > 0. That is why we study fragmentation with immigration processes
on D. However, in Section 4.5, we shall use some of these measures FI™(t), u €R, and we
give (Proposition 4.4) some sufficient conditions on u and a for F™(t) (equivalently FIM(t))
to be a.s. Radon. These conditions do not ensure that the process FI™ is R-valued, as we do
not know if a.s. for all t, FI™(t) € R.

4.2 Existence and uniqueness of the stationary distribu-
tion

This section is devoted to the existence and uniqueness of a stationary distribution for F'I and
to properties of the stationary state, when it exists. We begin by establishing some criteria
for existence and uniqueness of a stationary distribution, which are available for a class of
Markov processes with immigration including fragmentation with immigration processes. This
is undertaken in Subsection 4.2.1 where we more specifically obtain an explicit construction of
a stationary state. We then apply these results to fragmentation with immigration processes
(Subsection 4.2.2).

From now on, for any r.v. X, £ (X) denotes the distribution of X.

4.2.1 The candidate for a stationary distribution for Markov pro-
cesses with immigration

Recall that R denotes the set of Radon point measures on (0, 00) and equip it with the topology
of vague convergence. We first study R-valued branching processes with immigration and then
extend the results to a larger class of Markov processes.

Let X be a R-valued Markov process that satisfies the following branching property: for all
u,v € R, the sum of two independent processes X and X starting respectively from u and
v is distributed as X V) A moment of thought shows that this is equivalent to 2121 X (w)

X@i>19) for all sequences (u;,7 > 1) such that ) ., u; € R a.s., where X ) x(u) - are
independent processes, starting respectively from uy, us, ... . Consider then I, a non-negative o-
finite measure on R, and let ((s(t;),t;),7 > 1) be the atoms of a Poisson measure with intensity

law
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I(ds)dt,t > 0. Conditionally on this Poisson measure, let X ¢*)) be independent versions of X,
starting respectively from s(t1), s(t2), ... . In order to define an X -process with immigration,
we need and will suppose in this section that a.s.

Zt_<tX(5(“))(t — ;) € R for all t > 0.

In particular, this holds when [ is an immigration measure and X a fragmentation process, as
explained just after Definition 4.3.

Definition 4.4 For every random u € R, let X be a version of X starting from u and
consider (X)) v;), 4 > 1) a version of (X®®) t,),i > 1) independent of X™. Then, the
process defined by

(W) 4y .— x W () (¢ _ .
XTW () = XW(¢) + wa (t—u;), t >0, (4.10)
1s a R-valued Markov process and is called X -process with immigration starting from u.

We point out that the Markov property of XTI results both from the Markov property and
from the branching property of X. A moment of reflection shows that the law of the point

measure
Ustat = Zt'>0 X(S(tl))(tl) (41]‘)

is a natural candidate for a stationary distribution for X7 (in some sense, it is the limit as
t — oo of X1(©)(t)), provided that it belongs to R. The problem is that it does not necessarily
belong to R, as the components of Ug,, may accumulate in some bounded interval (a, b).

Lemma 4.1 (i) If Uy € R a.s., then the distribution L(Ugat) is a stationary distribution
for XTI and for any random u € R such that X ™ (t) 20 ast — oo,

X[(“)(t) tay Ugiat a5 t — 00.

(i) If P(Ugat & R) > 0, then there exists no stationary distribution for X1 and if P(Ug ¢
D) > 0, then there exists no stationary distribution on D for X1.

Ust at

Proof. (i) Assume Ug,; € R a.s. and consider a version X[ ( ) of the X-process with

immigration starting from Uy, We want to prove that X [(Ust)(t) faw Ugiar for every t > 0.
So fix t > 0. By definition of X/ and using the Markov and branching properties of X, we see
that there exists ((XT®)) v;),i > 1) an independent copy of ((X®®) ¢,),i > 1) such that

X[(Uscac)<t) 12” Z

By independence of ((r(v;),v;),i > 1) and ((s(t;),t;),7 > 1), the concatenation of

X(S(ti))(ti +1) + Z > X(l‘(m))(,j — ;).

t; >0

((r(v;),t —v;),v; <t) and ((s(t;),t; +1),i>1)
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has same law as ((s(¢;),t;),7 > 1). Hence

XI(Uscat) (t) la:w X(S(t')) (tz) = Ustat-

t; >0
Similarly, one obtains that for all ¢ > 0,

XIW() = X0+ XD (4.12)
where ((X®®)) v,),7 > 1) is distributed as ((X®®)) ¢,),4 > 1) and is independent of X ™,
Suppose now that X (t) L 0ast — oo. Clearly, > i<t X E@D) () ta%s' D 030 X)) (y;) and

therefore

Since the limit here is distributed as Ug.; and since (4.12) holds, one has X T™ (¢) tay Ustat-

(ii) Suppose that there exists a stationary distribution Lgae. Our aim is to show that
P(Uga € R) = 0. To do so, let XI(¥sat) he an X-process with immigration starting from
an initial sequence distributed according to Lga:. Replacing u by X I=t)(0) in (4.12), we get

X[(l:scat) (0) lgv X(X[(Cstat)(o)) (t) + X(S(tz)) (u)

t; <t

Introduce then for any 0 < a < b < oo the event

Ea7b = {Zt>O<X(5(tz))(tl)’ 1(a,b)> — oo}

and fix some N > 0. The identity in law obtained above yields

(@p)) < N)

P ({(XT5=0(0), Lap)) < N) < P, (X0 (), 1,
1(a,b)> < N, Ea,b) + P (Q\Ea,b) .

< P(Et¢§t<X(s(ti))(ti)a

The first probability in this latter sum converges to 0 as t — oo by definition of E,; and
therefore

P(XT*9(0), 1(4p) < N) < P(Q\FE,;) YN > 0.

Letting N — oo, we get P (2\E, ;) = 1 (because Lt is supported on R) and then P(E,;) = 0.
This implies that P(Ugat ¢ R) = 0.

Now, replacing R by D and E,; by E, ~, we obtain similarly that P(Ug.e ¢ D) = 0 as soon
as there exists a stationary distribution Ly such that Ly (D) =1. =

Let us now extend these results to Markov processes that take values in some o-compact
space F and that do not necessarily possess a branching property. In order to introduce some
immigration and some branching property, we will work on Mg, the set of point measures on
E: if m € My, either m = >, d, for some sequence (z®,i > 1) of points of £, or m = o,
where o is the trivial measure: o(FE) = 0. The subset of measures of 9z that are Radon is
denoted by 9MRadon and is equipped with the topology of vague convergence. Consider then I,
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a non-negative o-finite measure on E, and (X(t),t > 0), a Markov process with values in FE.
For any m = 2221 0, € Mg, set

X =) Sy 20,

where X(x(l)), X(:”(Q)), ... are independent versions of X, starting respectively from z™®, z® ..

If m=o0, X™(t):=o, ¥t > 0.

We now construct some X-process with immigration. Let m be a random element of gJiRadon
and ((z(t;),t;),7 > 1) be the atoms of a Poisson measure with intensity I(ds)dt, ¢ > 0, inde-
pendent of m. Conditionally on this Poisson measure and on m, let X™ and X Gat)) § > 1, be
independent versions of X" starting respectively from m,d,(,), 0z (t,), ... - Define then

XZ(m)(t) — X(m)(t) + X(‘Sw(ti))(t —t;), t >0,

t; <t

and suppose that a.s. for all ¢t > 0, XZ™ e giadon  Then XZM™ is Markovian and called
X-process with immigration starting from m. Introduce next the point measure

Ustat = XC=0) (1) = Z@'>1 O X (ot 1)

t; >0

We the same kind of arguments as above, one obtains the following result.

Lemma 4.2 (i) Assume Uy, € MR2dM g5 Then the distribution L(Usas) is a stationary

distribution for XT and XT™(t) Y Uoar as soon as X™ (t) Lo ast — oo.

(ii) If P(Ustar & MB2M) > 0, there exists no stationary distribution for XT.

4.2.2 Conditions for existence and properties of F'I’s stationary dis-
tribution

Up to now, I is an immigration measure as defined in Section 4.1.2, that is I satisfies hy-
pothesis (H1). Let FI denote a fragmentation with immigration (a,c,v,I). By definition,
the fragmentation process satisfies the branching property and for every u €D, FW(t) 5 0
as t — oo. Then the results of Lemma 4.1 can be rephrased as follows: if ((s(¢;),%;),i > 1)
are the atoms of a Poisson measure with intensity /(ds)d¢ and if conditionally on this Poisson
measure, Ft)) F6t2) - are independent («, ¢, v)-fragmentations starting respectively from
s(t1),s(t2), ... then there is a stationary distribution for the fragmentation with immigration
(e, ¢, v, I) if and only if
Ugat = F(S(t"))(ti) €D as.

t; >0
In this case,
FIW (t) g Ugar a5t — 00

for all u €D and therefore £(Ugay) is the unique stationary distribution for F'1. The point is
then to see when Uy, belongs to D and when it does not. The results are given in Subsection
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4.2.2.1 where we further investigate whether Ug is in [? or not, p > 0. This is particularly
interesting when Uy, € I! a.s.: then the total mass of the system converges to an equilibrium,
which means that the immigration compensates the mass lost by formation of dust (when
a < 0), by erosion or within sudden dislocations. When Ug,; € D a.s., we also investigate the
behavior of its small components. The proofs are detailed in Subsection 4.2.2.2.

4.2.2.1 Statement of results

Let F' denote an (a, ¢, v)-fragmentation. In the statements below, we shall sometimes suppose
that

c=0, v (Zm 55 < 1) =0 and /D 1 Zm log(s;)] s;v(ds) < oo (H2)
or
PO<r<1:Fit)e{r",neN} Vt>0,i>1, and (H2) holds. (H3)
In term of &, the subordinator driving a tagged fragment of F', the hypothesis (H2) means that
E[£(1)] < oo. We shall also use the convention 7 = [ when p < 0.

We now state our results on the existence of a stationary distribution; they depend heavily
on the value of the index «.

Theorem 4.1 Suppose a < 0.

(i) If either [, 37,5, 85 “Lis;>131(ds) < 00 or [, 57%Ins11,, 5131 (ds) < oo, then the station-
ary state Ugiay € P a.s. for allp > 1+ a.

(ii) There exists no stationary distribution when [, s7%1(,>131(ds) = oo.

Theorem 4.2 Suppose a = 0.

(i) If fll Ins11¢5,>13/(ds) < oo, then with probability one, Uy € IP for all p > 1 and does
not belong to I* when ¢ =0 and V(Y518 <1)=0.

ii) There exists no stationary distribution when |, In sl >3 I(ds) = oo and (H2) holds.
l {s1>1}

Theorem 4.3 Suppose o > 0. If j;l s11s,>13(ds) < oo for some e > 0, then Ugyy € IP a.s.
for p large enough and if (H3) holds, then Ugy ¢ 177 a.s. More precisely, for every v > 0,

() if [ 2251 8) Lgs=1yI(ds) < 0o, then Ugar € 1P a.s. for allp > 1+a/(y A1),
(i) if [i1 81155131 (ds) = oo and (H3) holds, then Uy ¢ 1M7/0ND q.s.

When —1 < a < 0, the result of Theorem 4.1 (i) can be completed (see the remark following
Proposition 4.1 below): in most cases, either Ug, € [T a.s. or both events {Ug,; = 0} and
{Ugas & 17} have positive probabilities.
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It is interesting to notice that the above conditions for existence or absence of a stationary
distribution depend only on « and I, provided hypothesis (H3) holds. For a fixed immigration
measure [, let

ay = inf {a <0: / 57 %1gg =131 (ds) < oo} (4.13)
ll
and let then « vary. According to the above theorems, the values @ = a; and @ = —1 are

critical. Indeed, provided «; < 0, the stationary distribution exists when a > «a; and does not
exist when o < aj. Moreover, the stationary state Uy, is a.s. composed by a finite number
of particles as soon as oy < a < —1, whereas when a > —1, Ug, ¢ [ with a positive
probability (which equals 1 when o > 0 and depends on further hypothesis on I and « when
-1<a<0)

Let us try to explain these results. By the scaling property of fragmentation processes,
particles with mass > 1 split faster when « is larger. This explains that when « is too small
some particles may accumulate in intervals of type (a,00), a > 0, which implies that Ug. ¢ D.
For a large enough, particles with mass > 1 become rapidly smaller, but particles with mass
< 1 split more slowly when « is larger. Therefore, small particles accumulate and Ugy ¢ P
when p is too small. Moreover the smallest p such that Ug,; € [? increases as « increases. When
a < —1, it is known that small particles are very quickly reduced to dust (see e.g. Proposition
2, [15]). This implies that Ugy,, € 1° provided it belongs to D.

Small particles behavior. Suppose that —1 < a < 0and [, >, 5;1(,>131(ds) < oo, s0
that Ugas € D a.s., according to Theorem 4.1 (i). Consider then the random function

€ ﬁstan;<<‘5) = Usat([g, 00))

which counts the number of components of U, larger than €. We want to investigate the
limiting behavior of Ug(g) as € — 0. In that aim, we make the following technical hypothesis

/ Z'>,>1 sit@s;v(ds) < oo and / (1—s1)" v (ds) < oo for some 6 < 1 (H4)
Dy J>rz

D1

as well as hypothesis (H3).

Proposition 4.1 Under the previous hypotheses,

(i) of [u Y5155 “Ls;<i3(ds) < oo, there exists a finite r.v. X, 0 < P(X =0) < 1, such
that B

Ustat(5)51+a — X a.s.

e—0

(i) if [, s1%1(s,<13/(ds) = 0o, one has liminf, e ™ Ugyi(e) > 0 a.s.

In particular, this implies that P(Ugy: ¢ ™) = 1 when the assumption of the second
statement is satisfied. This is not true when the assumption of the first statement holds: in
such case, 0 < P(Ugt = 0) < P(Ugae € 117%) < 1 (see the proof of (i) for the first inequality).

When o« > 0 or @ < —1, some information on the bihavior of ﬁstat(s) as ¢ — 0 can be
deduced from Theorems 4.1, 4.2 and 4.3. As an example, U, (0) < oo a.s. when oy < oo < —1.
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Remark. It is possible to show that Ug, € R a.s. as soon as fll ijl silgs;>131(ds) < o0

and that P(Uga, ¢ R) > 0 as soon as « > —1, [, s7%1,,>13/(ds) = oo and hypotheses (H3)
and (H4) hold. The first claim can be proved by using some arguments of the proof of the
forthcoming Proposition 4.5 and the second claim is a consequence of Theorems 4 (i) and 7 of
[39], which are also used below to prove Proposition 4.1.

4.2.2.2 Proofs

Let F be a standard («, ¢, v)-fragmentation and for every p € R and ¢ > 0, define

M(p,t) == ZM (Fr (1))" Ly 0)>03

which is a.s. finite at least when p > 1 (since it is bounded from above by 1). That Ug
belongs to some [P-space is closely related to the behavior of the function ¢t — M(p,t). Indeed,

stat - Zz>1 Z]>1 F(ZJ ( ]( Z)tl>

where the F7)s 4, j > 1, are i.i.d copies of F, independent of ((s(t;),t;),i > 1). Then,
Ustat SRS M(p) < 0o with

M(p) = / )ZL' Ustat(dx)
Zz>1 Z]>1 J Zj)(pa j( ) )1{3](t)>0}

where the M@ (p,-)’s, i,j > 1, are i.i.d copies of M(p,-), independent of ((s(t;),t;),i > 1).
Using the tagged particle approach as explained in Section 4.1.1, one obtains the following
results on M (p,-).

Lemma 4.3 (i) Suppose a < 0. Then [;° exp(M)E [M(p,t)]dt < co as soon as p > 1+« and
A< é(p—1—a). In particular, E[M(p,t)] < oo for a.e. t >0 as soon asp > 1+ a.

(ii) Suppose a > 0. Then for every n > 0 and every p > 1, there exists a random variable
Iy p) with positive moments of all orders such that

M(p,t) < I(n,p)f% a.s. for everyt > 0.

Consequently [ E [M(p,t)]dt < oo when p > 1+ o
Bertoin (Corollary 3, [15]) shows that when o > 0 and p > 1, the process t%M(p, t)
converges in probability to some deterministic limit as ¢ — oo, provided the fragmentation

satisfies hypothesis (H3). See also Brennan and Durrett [23],[24] who prove the almost sure
convergence for binary fragmentations (v(s; + s2 < 1) = 0) with a finite dislocation measure.

Proof. We use the notations introduced in Section 4.1.1.
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(i) According to (4.5),
E[M(p.t)] = E [exp((L = p)E(p(t))) Lit<n)]
where D = inf {t : p(t) > e (k)}. Therefore

Sy exp (B [M(p, )] dt = E | ;7 exp(Xt) exp((1 = p)E(p(1)))dt]

i (4.14)
= B[ J;™ exp(0p (1)) exp((1 = p + a)E(t))at]

using for the last equality the change of variables ¢ +— p(t) and that, by definition of p,
exp(a(p(t)))dp(t) = dt on [0, D). The function p~! denotes the right inverse of p and clearly
p1(t) <t since @ < 0. When p > 1+ «, this leads to

E fe( exp(—o(p —l—a)t)dt} if A <0

/0 SPONEME OISy Fa o —1—a)tdi] ifA>0

and in both cases, the integral is finite as soon as A < ¢p(p —1 —a) = ¢p(p — 1 — a) + k.
(ii) Fix @ > 0, p > 1 and > 0 and recall that, according to (4.4),

M(p,t) = E [exp(—(p — DE&(p(t))Li<ny | F].
On the one hand, one has
p(t) 00
o(t) exp(—nE(p(t)) < / exp(—né(r))dr < / exp(—n(r))dr = Iy,

And on the other hand, for ¢t < D,

p(t)
t= / exp(at (r)dr < p(t) exp(at (p(t)).

Combining these inequalities, we obtain exp(— (a+n) &(p(t))) < t711, for all ¢ < D. Hence

M(p,t) < t_%[(nvp) where [,y == E [[fﬁ;l)/(aJr") | F} Carmona, Petlt and Yor [25] have

shown that I(;y has moments of all positive orders, which, by Holder inequality, is also true for
Iyp). ®

We now turn to the proofs of Theorems 4.1, 4.2 and 4.3.

Proof of Theorem 4.1. (i) Fix p > 1+ « and split M(p) into two sub-sums:

1nf ZZ>1 Z]>1 J 1{0<5( )<1}M( J)<p7 ]( ) )
and Mg, (p) = M(p) — Mins(p). One has

M)l = [ ("L Tas) x [ B0
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and both of these integrals are finite according to hypothesis (H1) and Lemma 4.3, since
p > 1+ . It remains to show that Mg,,(p) < oo when I integrates 2321 ;15,513 Or

Sfa In 811{5121}.

Suppose first that [, 35, 871 (s;>131(ds) < co and let ¢¢7) be the first time at which the
fragmentation F(7) is entirely reduced to dust. Equivalently, ((*/) is the first time at which
M@ reaches 0. If the number of pairs (7,7) such that sF(tits < ¢%) and s;(t;) > 1 is
finite, then the sum M,,(p) is finite because it involves at most a finite number of non-zero
M) (p, s$(t;)t;) (which are a.s. all finite according to Lemma 4.3 (i)). To prove that this is

the case, we use Poisson measures theory. Since the v.a. (@9, i, j > 1, are i.i.d, the measure

Zizl 5’5;1 Supjs () >1 (€755 % (t4))

is a Poisson measure with intensity m defined for any positive measurable function f by

| s@man = [ [

The integral [ m(dz) is bounded from above by E [¢(("V] [, 37, 5715131 (ds) which is
finite by assumption on I and since E [(("V] < oo (by (4.7)). This implies that a.s. there is
only a finite number of integers i > 1 such that ¢;* SUD s, (1) 21 L(¢) s;%(t;)) > 1. For each of

these 7, there is at most a finite number of integers j > "1 such that s;(t;) > 1. Hence the
number of pairs (i, 7) such that s¢(¢;)¢; < (%) and s;(¢;) > 1 is indeed a.s. finite.

Assume now that le 51" Ins11(5,>13/(ds) < oo. For any a > 0, the number of integers ¢ > 1
such that at; < s7%(t;)In (s1(¢;)) and s1(¢;) > 1 is then a.s. finite. The sum My, (p) is therefore

finite if
Zmzm i) Yt (1) n(en (1)) Loy 021y MO (p, 85 (1))

is finite for some (and then all) a > 0. The expectation of this latter sum is bounded from
above by

' sup (C(l’j)sj_o‘)) I(ds)dt.

Jisj=>1

| [ sty o) B [, 550] Tds)at (a5 < )
[ 30 s t@s) [ explato — ) E M(p. 1)
it = 0

which is finite for a sufficiently small, according to Lemma 4.3 (i). Hence M,,(p) < oo a.s.
(ii) Suppose [ 5715513/ (ds) = oo and let Cl(;zl = inf{t > 0: F"Y(t) < 1/2} be the first
time at which all components of F!) are smaller than 1/2, i > 1. Note that E[({Z/; ] > 0 since
Fl(l Vs cadlag. The measure
Zigl:sl(ti)zl 581_“(%)15[1(3’;)

is a Poisson measure with intensity m’ given by

/0 f(z)m’(dz) = /0 /l E[f(s;“t—lcl(}’;)) 1(a 5131 (ds)dt.
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By assumption on I and since E[(Szl)] > 0, the integral f1 m’(dx) is infinite and consequently

the number of integers ¢ such that <1/2 > s%(t;)t; and s1(¢;) > 1 is a.s. infinite. For those i,

sl(ti)Fl(i’l)(s‘f‘(ti)ti) > 1/2 and therefore Ug,; contains a sequence of terms all larger than 1/2,
which implies that it is not in D a.s. m

Proof of Theorem 4.2. (i) The second part of the proof of Theorem 4.1 (i) (replacing
there a by 0) shows that Ugat € Np=1? when fll In (1) 145,>13/(ds) < oo. Now, if ¢ = 0 and
V(D gs1 8k < 1) =0, the sum M(1) equals } .o, > s;(ti), which is clearly a.s. infinite since
I#0.

(ii) Assume that [, In(s1)1g,>13/(ds) = oo and E[(1)] < oo. For each i >
1, let exp(—£0Y(.)) denote the process of masses of the tagged particle in the frag-
mentation F®Y.  To prove that Ugpy ¢ D, it suffices to show that its subsequence

{s1(t;) exp(—€@V (L)), i > 1}l ¢ D. The components of this sequence are the atoms of a
P01sson measure with intensity m” given by

/Ooof( (dz) / /l (51 exp(—£(t))] I(ds)dt.

Take then a > E[£(1)]. Since £(¢)/t 23 E[¢€(1)] as t — oo, there exists some ¢, such that
P(&(t) < at) >1/2 for t > t5. Then

/1oom"(dx) = / /n t) < Ins;)I(ds)dt
= /l / " Pe(s) < andras)

Z 5/ ( ln31 —to) 1{(1 11n51>t0}j(dS)
A

and this last integral is infinite by assumption. Hence )., 0, (1) exp(—ctn ) & D a.s. and a
fortiori Ugy ¢ D a.s. ®

Proof of Theorem 4.3. Fix p > 1+ a. According to the Campbell formula for Poisson
measures (see [46]), the sum M(p) is finite if and only if

/ /1 1 — exp(— Z sPMM) (p, s ))] I(ds)dt < co. (4.15)

>1J

(1) We first prove assertion (i) and that Ug,, € [P a.s. for p large enough when [ integrates
s71¢s,>13. Suppose p > 1 + o and note that the integral (4.15) is bounded from above by

/zlzj21 S?al{%ﬂ}[(ds)/o E[M(p,t)]dt
+A /l; FE |:1 — eXp(— Z]Zl 8§1{5j21}M(17j)(p, SjOét)) I(dS)dt
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According to Lemma 4.3 (ii), the first component of this sum is finite and for all > 0 there
exists some i.i.d r.v. I((f] )p) having finite moments of all positive orders and independent of

(s(t;),i > 1) such that the second component is bounded from above by

/ /11 [1—exp Z]>1 s °*+"1{SJ>1}[(() t a+n)] I(ds)dt
Pn+a

atn
= [a—er S [0 5T 1 Fase [, ).

0 l

If p > 1+ a+n, the first integral in this latter product is finite. So, take 1 small enough so
that p > 1+ a + 7 and notice then that

pnto atn p_;]j_la
/p(zpl s;" Lszny) 71 (ds) < /pzpl s 1,1y (ds). (4.16)

The integral (4.15) is therefore finite as soon as the integral in the right hand side of (4.16) is
finite for some 7 > 0 small enough. Hence we get (i).

The same argument holds to show that U, € [P for p sufficiently large when there exists
some ¢ > 0 such that fll sﬁl{slzl}l(ds) < o0. Indeed, let p > 1 4+ a + n. It suffices then to
show that the integral on the left hand of inequality (4.16) is finite and to do so we replace the
upper bound there by

pnta

“atn atn p—
/N(ijsj+ 1{sjzl})’“1(ds)5/51 I(Z eyt H1(ds),

ll

which, by Holder inequality, is finite as soon as p is large enough and 7 small enough.

(ii) We now turn to the proof of assertion (ii) and that Uga ¢ [T when (H3) holds. The
integral (4.15) is bounded from below by

/ / s1“F [(1 — exp(—s{ M (p, t)))1{M(p7t)2ﬁ_(p_1)/a}] I(ds)dt

0 11

/ 5o / (1 exp(—srt==D/") P(M(p, £) > rt==D/")d¢I (ds).
A3 0

According to Corollary 3, [15], the hypothesis (H3) ensures that t®=1/®M(p,t) converges in
probability to some finite deterministic constant as ¢ — oo. Hence, taking r > 0 small enough
and then ¢, large enough, one has P(M(p,t) > rt==D/®) > 1/2 for t > ¢, and therefore the
integral (4.15) is bounded from below by

]' —Q (6% 1 o0 o o
2 /l; 81 811) /(p ) {Szfa/(pfl)z(to/t)}[<ds) A (1 — eXp<_Tt (p 1)/ )dt
which is infinite as soon as p <1+« or [, s?‘/(”_l)l{sﬁto}[(ds) —00. H

Proof of Proposition 4.1. For the standard fragmentation F', let N )(t) := Zk21 Lip t)>e)
denote the number of terms larger than € present at time t. Under the hypotheses (H3), (H4)
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and o > —1, Theorems 4 (i) and 7 of [39] describe the behavior of N, OO) ) as 5 — 0. Theorem
4 (i) states the existence of a random function L such that Y, ., Fi(t)= [~ L(u)du a.s. for all
t. Then Theorem 7 says that

e Nicoo)(t) = KL(t) ase — 0 (4.17)

a.s. for almost every ¢, where K = (1 +«) /a?E [£(1)]. Note that the sum U, (e) rewrites
Uit (€) = Ziﬁl N((E’/S)J(t o) (85 (8) ) (4.18)

where the N((‘ii))(-)’s are 1.1.d copies of N(. «)(+), independent of ((s(t;),t;),4 > 1).

(i) Let (@) be the first time at which F() reaches 0, 7, 7 > 1. With the same arguments as in
the proof of Theorem 4.1 (i), one sees that with probability one there is at most a finite number
of t; < sup,», (s (t;)) if and only if [, E [sup;s, ("¥)s;%] I(ds) < co. This integral is
finite by assumption. A moment of thought then show that there is at most a finite number of
integers i, j > 1 - independent of ¢ - such that Ne’/jS)J (t), C>o)(sa(ti)ti) > 0. Consequently, the sum
(4.18) involves a finite number of non-zero terms and

e Ustar(€) = K . L(Z’])(s?(ti)ti)sjl-+a(ti) a.s.
where the functions L7)’s are i.i.d and distributed as L. This limit, which we denote by X,
is null as soon as Ug,, = 0, that is as soon as there is no integer ¢+ > 1 such that ¢; <
sup;>1(¢ (i’j)s;a(ti)). This occurs, according to the Poissonian construction, with a positive
probability. On the other hand, the Lebesgue measure of By, := {z > 0: L(z) > 0} (denoted
by Leb(B)) is a.s. non-zero and then P(X > 0) > 0.

(ii) Suppose [, s7%1qs,<13I(ds) = oo and let By = {x > 0 : L") (z) > 0}, which are
i.i.d copies of By. One checks that there a.s. exists a time t; € szlsj_“(ti)BL(i,j) if and only if
the integral [, F [Leb(U i>18; “Bra, »)] I(ds) is infinite and that this integral is indeed infinite
here, according to the assumption on I and since Leb(By) > 0 a.s. From this we deduce that

G3) (@ (£t st (¢
ZKM<NL P(s§(ti)ti)s; T (t:) > 0 as. for N large enough

J

and then, by (4.17) and (4.18), that liminf, o' Ugai(c) > 0. m

4.3 Rate of convergence to the stationary distribution

We are interested in the convergence in law to the stationary regime Ug,;. It is already known,
according to Lemma 4.1, that for every random u €D the process F'I™(t) converges in law as
t — oo to the stationary state Ugy,s, provided it belongs to D a.s. The aim of this section is to
strengthen this result by providing upper bounds for the rate at which this convergence takes
place. The norm considered on the set of signed finite measures on D is

lpll:= sup
f1- LlpSChltZ

supgep|f(s)[<1
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By f is 1-Lipschitz, we mean that |f(s) — f(s')| < d(s,s’) for all s,8" € D. It is well-known
that this norm induces the topology of weak convergence.

The main results are stated in the following Theorem 4.4. In case a < 0, the rate of
convergence depends on I and it is worthwhile making the result a little more explicit. This is
done, under some regular variation type hypotheses on I, in Corollary 4.1.

Theorem 4.4 The starting points u considered here are all deterministic.

(i) Suppose that o < 0 and [, 35,51 57 15,2131 (ds) < oo. Then, for every v € [I,T] (T is
defined by formula (4.8) ), there exists a positive finite constant A such that for every u satisfying
Zj21 exp(—uf) < oo,

2RI ®) ~ LU = O O [ 37 57 exp(= A1) () + exp(-APu))
A j=1

ast — 00.

(ii) Suppose that o =0 and [, 3.5, s}“](ds) < oo for some € > 0. Then for every u €l'*¢
and a < ¢(e)/ (2+¢),

H,C(F[(“) (1)) = L(Ugat)|| = o(exp(—at)) as t — oco.

(iii) Suppose that o > 0 and fll i>1 sﬁl(ds) < 00 for some p > 0. Then, for every u € [P
and every a < 1/a,

HE(FI(“)(t)) - E(Ustat)H =o(t™) ast — oo.

Note first that, by Theorems 4.1, 4.2 and 4.3, the assumptions we make on [ imply in each
case that Uy, € D a.s. In case a < 0, the given upper bound may be infinite for some v’s. The
point is then to find the ~’s in [1,T] that give the best rate of convergence. This is possible, for
example, when fll Ejzl 1{s,;>211(ds) behaves regularly as x — oo. In such case the statement
(i) turns to:

Corollary 4.1 Suppose a < 0 and fiz u such that 2]21 exp(—uf) < oo.

(D) If [ 20,51 Ys;zeyI(ds) ~ I(x)x™¢ as x — oo for some slowly varying function I and
some ¢ > 0, then, provided —a < o,

|L(FI® () = £(Ugae)|| = O (1 /1)t~ s ¢ — o0,

(i) If —log (fll > s 1{sjzm}[(ds)) ~ l(z)x? as x — oo for some slowly varying function

[ and some ¢ > 0, then there exists a slowly varying function l' (which is constant when [ is
constant) such that

| L(FI™ () — L(Ugtar)|| = O (T exp(=1/(¢)te/12ITH))) g5 ¢ — oo
In the special case when I(s; > a) =0 for some a > 0,
|L(FT® (1)) — £(Us)| = Ocxp(—BiY))

for some constant B > 0.
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Proof. (i) First, by integrating by parts and then using e.g. Prop. 1.5.10 of [21], one obtains
that for v € [1,0/ — )

/l1 2]21 sj_ml{mZS;m}I(ds) ~ (zVN)z™179 a5 1z — 0
(the notation &~ means that the functions are equivalent up to a multiplicative constant). Then,
using Karamata’s Abelian-Tauberian Theorem (Th. 1.7.1 of [21]), one deduces that

/ Z . s; 7 exp(—tsj’)I(ds) ~ [t Yenypitelar a5 ¢ — 0.
A JZ

Now if —a < p, statement (i) of Theorem 4.4 applies and one can plug the above equivalence
into the upper bound obtained there. Hence the conclusion.

(ii) Let 1 < v < T. By integrating by parts and then by using Theorem 4.12.10 in [21],
one sees that —log( [ 25185 " 1{s;2ay1(ds)) ~ I(x)2? as @ — oo. According to de Bruijn’s
Abelian-Tauberian Theorem 4.12.9 in [21], this implies that

—log ( /l stj—w exp(—ts?”)](ds)) ~ f(t) ast — oo (4.19)

where f(t) = 1/U—(t) with ¥(t) = ®(t)/t and & (t) = t/@N) /It Here & (t) =
sup {u > 0: ¢(u) >t} and similarly for W. Therefore f(t) ~ [(t)t¢/(@e) for some slowly
varying function T(to inverse regularly varying functions, we refer to chapter 1.5.7 of [21]) which
is constant when [ is constant. The assumption we have on [ allows us to apply Theorem 4.4
(i) and the conclusion then follows by taking there v = I' and using the equivalence (4.19). The

special case when I(s; > a) = 0 is obvious. =

Hence, our bounds for the rate of convergence depend significantly on I when a < 0, whereas
they are essentially independent of I when o > 0. Also, in any case they are essentially inde-
pendent of the starting point u.

We now turn to the proof of Theorem 4.4, which relies on a coupling method that holds for D-
valued X-processes with immigration, as defined in Section 4.2.1. We first explain the method
in this general context and then make precise calculus for fragmentation with immigration
processes. In this latter case, if ¢, and I are fixed so that I(s; > 1) = 0 and if « varies, one
sees (without any calculations, just using that particles with mass < 1 split faster when « is
smaller) that the employed method provides a better rate of convergence when « is smaller.
When [(s; > 1) > 0 the comparison of rates of convergence as a varies is no longer possible
because particles with mass larger than 1 split more slowly when « is smaller.

Proof of Theorem 4.4. Let X be a D-valued branching process and I an immigration measure
such that the processes XI™ u €D, defined by formula (4.10), are D-valued X-processes with
immigration. Let then ((s(¢;),t;),7 > 1) be the atoms of a Poisson measure with intensity
I(ds)dt, t > 0, and suppose that the stationary sum Ug, constructed from ((s(t;),t;),i > 1)
as explained in (4.11) belongs a.s. to D. Suppose moreover that X ™ (¢) 2% 0 for all u €D.
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Then, fix u €D and consider X and X (Ustat) some versions of X starting respectively from u
and Ustat. Consider next X1(® an X-process with immigration starting from 0, independent of
X@ and X(Ustat) Then, the processes X 1™ and X (Uset) | defined respectively by X1 (t) :=
X® ) 4+ XTO(t) and X[Useo)(t) := XUst)(t) 4 XTO)(¢), t > 0, are X-processes with
immigration starting respectively from u and Uyg.

Let now r be a deterministic function and call () the first time ¢ at which X fu)(s) < r(s)
for all s > t and similarly ¢ the first time t at which Xl(US““)(s) < r(s) for all s > ¢t. Of

stat

course the interesting cases are Q < oo and Q < 00 a.s. Such cases exist, take e.g. r = 1.

Our goal is to evaluate the behavior of the norm HE(XI(“)(t)) — L(Ugat)|| as t — oo, To
do so, let f : D — R denote a 1-Lipschitz function on D such that supycp |f(s)] < 1. For all
t > 0, we construct a function f, from f and r(¢) by setting

| f(0) when s; < r(t)
fry(s) = (5150, Sir()),0,0, ...) when sy > r(t)

where i(r(t)) is the unique integer such that s;,q)) > ( ) and. S;(r(1))+1
1-Lipschitz and d(s,s') = sup;s; |s; — 8 (s) — ( )|
and therefore

B [FXT™ (1) = f(Usar)]| =:\E[f (XT™(1)) = FXT = (0))]| (4.20)
< 20(t) + |E [ (XTI (@) = frn (XTI (1))] |

< r(t). Clearly, as f is
<7

) for every s €D

t
(

The time (™ and the function [r@t) are defined so that for times ¢ > ¢, fry (XT™ (1)) takes
only into account the masses of particles that are descended from immigrated particles, not
from u. Therefore, one has

E [fuo (XI® ()] = E [ Frio(XT(0))1, C<u>vg<sm>>t}} +E [ Fro(XIOW)1,, Cﬁuwsm)}}

and similarly

E [frn(XIU=) (1) = E [fr@ (XIO ()1, Cﬁmwx}} +E [ Frioy(XTO ()1 s, Cﬁsm)}] :

Combined with (4.20) this gives

|E [F(XT (1) ~ f (Ustar)]|

IA

r(t) )E[f (XTI (1) = fu (XIU“‘“)(>>>1{<£“)vcﬁ“‘"‘”>t}”
< 2r(t) +2P(¢™ v (™ > 1)

since supgep |f(s)| < 1. This holds for all 1-Lipschitz functions f such that supgep |[f(s)| < 1
and therefore

|LXTW(1)) = LUsa)|| < 200(0) + P > £) + P > 1), (4.21)

The point is thus to find a function r such that the above upper bound gives the best possible
rate of convergence.
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In the rest of this proof, we replace X by an (a, ¢, v) fragmentation process F', in order to
make precise calculus. We recall that F™(¢) 3 0 and that the assumptions of Theorem 4.4
involving I ensure that Ug, € D a.s. for all @ € R, so that inequality (4.21) holds for F'I (u),
The choice of the function r then differs according as a < 0, « =0 and o > 0.

Proof of (i). Here we take r = 0. According to the definitions above, qu) is the first time

at which F reaches 0 (it may be a priori infinite) and Q}gswt) the first time at which F(Ustat)
reaches 0. As recalled in Section 4.1.1, the first time ( at which a 1-mass particle splitting
according to the (a, ¢, v)-fragmentation reaches 0 is a.s. finite since a < 0. By self-similarity,
the first time at which a particle with mass m is reduced to 0 is distributed as m~“(. Hence,
by definitions of F(W and FUstat),

G =supu; ¢t and (O = sup (s°(1)C) — 1)

Jjz1 i21,j>1

where (¢V),5 > 1) and ((®9,4,5 > 1) denote families of ii.d copies of ¢ such that
(¢@9) 4,5 > 1) is independent of ((s(t;),t;),i > 1).

Now fix v € [1,I']. On the one hand, one has
(u) () a
P>t <y PEY > )

which by (4.7) is bounded from above by C, } "/, exp(—C.t"uj") for some constant C.,,C >
0. Let 0 < & < (. It is easy that this sum is in turn bounded for all ¢ > 1 by
Bexp(—(C] —¢)t"uj”), where B is a constant (depending on v,¢ and u, not on ¢ > 1) which
is finite as soon as ) ;- exp(—u§) < oo. On the other hand,

P(CE > p) SAWAZjZIP(g> (t+v)s9)I(ds)dv

which, again by (4.7), is bounded from above by

C’Y —Qy I ary
W /11 2]21 s; T exp(—=CLt7s; ") I(ds)
for t > 0. Hence the result.

Proof of (ii). When a = 0, the fragmentation does not reach 0 in general. We thus have to
choose some function r # 0. By assumption, [, 2]21 s}“](ds) < oo for some ¢ > 0. So, fix
such ¢, fix n > 1 and set a := ¢(¢)/ (1 + (1 +¢)). Then take r(t) := exp(—at), t > 0.

In order to bound from above P(Cﬁu) > t) and P(Cﬁswt) > t), introduce for all x > 0
Caw =sup{t > 0: Fi(t) > xexp(—at)}

the last time ¢ at which the largest fragment of a standard fragmentation process F' starting
from (1,0, ...) has a mass largest than x exp(—at). Here we use the convention sup () = 0. This
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time (, is a.s. finite because exp(at)F(t) =5 0 when 0 < a < sup, % as explained in [15].

More precisely, one can show the existence of a positive constant C'(a) such that
P(Cop > t) < Cla)z 9 exp(—at) for all 2 > 0,¢ > 1. (4.22)
Indeed, let ¢ > 1 and note that

Pt > (o >t) =P (3ue [t,nt]: Fi(u)explau) > x)
< P (Fi(t)exp(ant) > x) (as F1 \\)
< a1 exp(an(1 + ) E [(Fi(1)] .

This last expectation is bounded from above by E [}, (Fk(t))He] = exp(—¢(e)t), which
yvields P(nt > (u0 > t) < 2~ 0F9) exp(—at), since a = ¢(g) — an (1 +¢). Then, setting C(a) :=
> ns1 &XD(—a (""" = 1)), one obtains (4.22).

By definition, ¢\ is the supremum of times ¢ such that F\") (t) > exp(—at). Hence there
exist some independent random variables fol) Juy j > 1, where Qéjl) Ju; has the same distribution
as Cq,1/u;, Such that

W) _ qup ¢
Cr ]211) ga,l/uj
Then, by inequality (4.22),

P(C™ > ) < C(a) exp(—at) Z ulte (4.23)

j>1 7

(stat)

Next, by definition of Q» , there exists a family of r.v. C

aexp(at )/85(t:) Z7.] > 17 such that

(stat) __ (i-7) — ;)"
G, = Ssup <Cavexp(ati)/8j(ti) t:)

i>1,j>1

and, conditionally on ((s(¢;),t;),7 > 1), C(i,j) law

d a,exp(ati)/s;(ti)
Cé“ ) /s; (ti)’s are independent. This implies that

exp(at;)
stat) (Z] .
PG>0} Zj>1 Caexplat)/s;(e) > Li 1)

and then, by (4.22), that

C(a
(stat) >t t / 1+z—:[ d
P(¢, ) < exp(—a g E s)

_2a+6 j=1 %

Caexp aty)/s;(ti)s t,7 > 1, and the

Combining this last inequality with (4.21) and (4.23), one obtains

HE(F](U)(t)) - ‘C(Ustat)H < 2€Xp(—at)(1+0(a)z ulte +(2a) IC’ /llz 1+s] ds))

]1] J>1J

This holds for every n > 1 and therefore HE(FI(“)(t)) - E(Ustat)H = O(exp(—at)) for every
a < ¢(e)/ (2+ ¢), provided u €/**=.



156 4. Equilibrium for fragmentation with immigration

Proof of (iii). Fix 0 < a < 1/a and set r(t) :=t~% ¢t > 0. By assumption, there exists some
p > 0 such that [, > i>1 st1(ds) < co and we call z the real number such that za(a+1) =
p(1 — aa — az). Note that 0 < 2 < ™! — a. Define then for z > 0

Ca,:v ‘= sup {t >0: F1<t) > l’tia} .

The fact that 2z € (0,a™!) allows us to choose some 7 > 0 and ¢ > 1 such that Z;Jr; —aq =
q(a™! — a — 2), which, by definition of z, is also equal to gza(a + 1)/p. According to Lemma
4.3 (ii), there exists a r.v. I, o) with positive moments of all orders such that

1O FI(E) < Tyt % 0 = Iy gt 0@+ D/p
a.s. for every t > 0. This implies that

P((o t) < P(Fu>t:uFl(u) > a?)

P (Hu >t I(mq)u_qm(““)/p > xq)
Bx*p/(m)f(aﬂ)’

ININ V

where B := F [[f’n/gﬂm)} < 00.

A moment of thought shows that the times ¢({*) = sup{t > 0 : Fl(u)(t) >t~} and ¢l =
sup{t > 0 : Fl(Us““)(t) > 7} satisfy

Crgu) = Supjgl(u;agi]iqa—l) and Q(Stat) < sup;>; ]>1( 7a§(m —t;)"
]
where the r.v. C(j)aa_l, 7 > 1, are independent such that C(j) _ lgv Cquoe—1 and, conditionally
au; J

on ((s(t;),t;),i>1), the r.v. C( Sha1s 4§ 2 1, are mdependent such that C ’ja)a L faw (, gaa—1.
]
Using then the upper bound P((a,x > 1) < BxP/(z)¢=(@+1) one obtains

(g(u > t) < Bt (a+1) Z —a(a+1)+p(1—aa)/za

7j>1 ‘7

which is equal to Bt~ (¢+1 Z]>1 ; by definition of z. Similarly, one obtains
stat -1 —a
PP > ) < a !Bt / Zm s1(ds).
Hence by (4.21),

|L(FI™ () — £L(Ugtar)|| < REH(1 + ]>1 u? /Z sP1(ds))

7>1 ‘7

where R is a finite real number depending on the parameters of the fragmentation and on a,
but not on t and f. m
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4.4 Some examples

Here we turn our attention to examples of fragmentation with immigration processes con-
structed from two families of continuous processes. First, Brownian motions with positive drift
provide examples of stationary fragmentation with immigration processes where particles im-
migrate one by one. The stationary distribution is explicit and constructed from a Poisson
measure depending on the drift. Second, height functions of continuous state branching pro-
cesses with immigration (as introduced in [49]) code fragmentation with immigration processes
where some particles immigrate in groups and others on their own. We will see that those
processes do not all have a stationary distribution.

4.4.1 Construction from Brownian motions with positive drift

Let B be a standard linear Brownian motion and for every d > 0, consider the Brownian motion
with drift d

For any ¢ > 0, define
L(d) (t) = inf {J} > 0: B(d) (SL’) = t} R(d) (t) = Sup {SL’ > 0: B(d) (:1:) = t}

the first and the last hitting times of ¢ by B(g). Clearly 0 < L(g)(t) < Ra)(t) < oo a.s., since
d > 0. It is thus possible to consider the decreasing rearrangement of lengths of the connected
components of

g(d)(t) = {SL’ c [L(d)(t),R(d) (t)] : B(d) (a:) > t}
which we denote by F'Ii4(t).

Proposition 4.2 (i) The process (FI4(t),t > 0) is a fragmentation immigration process with
parameters

® (p — —1/2

® Cp = 0

o vp(s1+s,<1)=0 and vp(s; €dr)=V2r o321 —2)=%2dx, x€[1/2,1),
o [(g(s2>0)=0 and Ig)(s1 € dz) = /(27) 1z exp(—xd?/2)dz, z > 0.

(ii) The process is stationary. The stationary law is that of a Cox measure (that is a Poisson
measure with random intensity) with intensity T'(d)\/(87) "1z =32 exp(—zd?/2)dx, x > 0, where
T(d) is an exponential r.v. with parameter d.

(iii) There ezists a constant L € (0,00) such that for every u €D satisfying
Zj21exp(—u;1/2) < 00, an (aB,cB,I/B,I(d)) fragmentation immigration FI™ starting from
u converges in law to the stationary distribution L£(Ugyy) at rate

|LFI ) ~ £(Uss)]| = Ot exp(~L1).
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Note that the immigrating particles arrive one by one.

The fragmentation part of these processes, that does not depend on d, is a well-known
fragmentation process that was first constructed by Bertoin in [14]. Let Fg) denote this frag-
mentation starting from 1 = (1,0, ...). It is a binary fragmentation, that is each particle splits

O]
B

exactly into two pieces, which is constructed from a Brownian excursion ey conditioned to

have length [ as follows :
1
Fg) (t) :== {lengths of connected components of {x €[0,1]: eg) (x) > t}} (4.24)

for all ¢ > 0. In [14] it is proved that this process is indeed a fragmentation process with index
ap = —1/2, no erosion and a dislocation measure vp as given above.

Proof. (i) According to Corollaries 1 and 2 in [62], the process defined by
Y(@(SL’) = Ba) (x + R(d)<0))7 x>0,

is a BES?(3,d) (which means that it is identical in law to the norm of a three dimensional
Brownian motion with drift d) and is independent of (Bg)(z),0 <z < R)(0)). This last
process codes the fragmentation of particles present at time 0, whereas the process Y4y codes
the immigration and fragmentation of immigrated particles. More precisely,

o let 6%1), ...,egj) ... denote the finite excursions of B(g) above 0, with respective lengths

l1,ls,... . The Cameron-Martin-Girsanov theorem implies that the (l;,7 > 1) are the finite

jumps of a subordinator with Lévy measure +/(87)~1z~%/ 20=2d*/2qz killed at an exponential

time with parameter d, and that conditionally on (I/;,7 > 1) the excursions e%l),egf), ... are

independent Brownian excursions with respective lengths [y, ...l;, ... . This gives the distribution
)

of FI4(0) = (I, 1, ...)" and implies that the process (FI([ZSR(‘I © (t),t > 0) defined by

F[([SSR“)(O)] (t) := {lengths of connected comp. of {z € [La(t), R4)(0)] : Bay(z) > t}}l

is an (—1/2,0,vp) fragmentation starting from FI(4(0).

o let Jiy,)(2) == inf,>, Y(g)(y), > 0 be the future infimum of Y(4). One has to see Jiy,)
as the process coding the arrival of immigrating particles and Y4 — Jvay) @s the process
coding their fragmentation. According to a generalization of Pitman’s theorem (Corollary 1,
[62]), (Jvi)s Yia) = Jiviay)) is distributed as (Ma), M(a) — B(a)) where M(a)(z) := supyg_, Ba) (v),
x > 0. Moreover according to the Cameron-Martin-Girsanov theorem, My is distributed as
the inverse of a subordinator with Lévy measure

Lay(s1 € dz) = /(27)Lo™*? exp(—ad®/2)dz, = >0,

and conditionally on their lengths the excursions above 0 of M4 — B4y are Brownian excursions.
Let ((Aw)(t:),t;),i > 1) denote the family of jump sizes and times of the subordinator inverse
of M. The sequence

0),00)

F[[R(d)(

(@) (t) := {lengths of connected comp. of {z € [R(4)(0), Ra)(t)] : Ba(z) > t}}l
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is the decreasing rearrangement of masses of particles that have immigrated at time ¢; < t with
mass Ag)(t;) and that have split independently (conditionally on their masses) until time ¢ —¢;
according to the fragmentation (—1/2,0,vg).

® ['I(4(t) is the concatenation of FI([ZSR@ ©) () and FI([(?)(d) (0)’00)(75), which leads to the result.

Note that (4 satisfies the hypothesis (H1).

(ii) That FI4 (1) o I14(0) is a simple consequence of the strong Markov property of B
applied at time Lq)(t). The stationary distribution L£(F'I(4)(0)) is calculated in the first part
of this proof.

(iii) It is easy to check that the vp-dependent parameter I'g (defined in (4.8)) is here equal

to 2 and that
o d*z
— log Iigy(s1€dy) ) ~ — a8 T — 00,

Then we conclude with Corollary 4.1 (ii). =
Remark. Let Y{y be a BES?(3,d), d > 0, and set
i
Fly, (t) = {lengths of connected comp. of {:p € [Ly, (), Ry, ()] : Yia)(x) > t}}

where Ly, (t) := inf {z>0:Yy(z) =1t} and Ry, (t) := sup {z>0:Yy(z)=t}. According
to the proof above, F'ly, is an (—1/2, 0,vp, I(d)) fragmentation with immigration starting from
0 (clearly, this is also valid for d = 0). Recall then the construction of the stationary state Ugay
as explained in (4.11) . Tt is easy to see that U, has the same law as the point measure whose
atoms are the lengths of the excursions below 0 of the process obtained by reflecting Y{4) at the
level of its future infimum. By Corollary 1, [62], this reflected process is a Brownian motion
with drift d. Therefore, if d > 0, Ug.; € D a.s. and the stationary distribution is that of the
reordering of the lengths of the excursions below 0 of a Brownian motion with drift d, which is
indeed the distribution of F'I(4(0) (by Girsanov’s theorem). On the other hand, if d = 0, Ugat
is clearly not in D a.s. and then there is no stationary distribution (which was already known,
according to Theorem 4.1 (ii)).

This latter example of fragmentation with immigration constructed from a BES?(3,0) be-
longs to a class of fragmentation with immigration processes which are constructed from height
functions coding continuous state branching processes with immigration, that we now study.

4.4.2 Construction from height processes

The height processes we are interested in are those introduced by Lambert [49] to code con-
tinuous state branching processes with immigration. Roughly speaking, such height process is
a positive continuous process whose total time spent at a level ¢ corresponds to the amount
of population belonging to the generation t. Here we are interested in height processes con-
structed from stable Lévy processes. Let us first remind their construction: fix 5 € (1,2]
and consider X g, a stable Lévy process with no negative jumps and with Laplace exponent
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E [exp(—AX(5)(t))] = exp(tX?), A > 0; consider next a subordinator ¥ which is not a com-
pound Poisson process and which is independent of X 3. We denote by dy its drift and by my
its Lévy measure.

Definition 4.5 The height process (Hy)(x), v > 0) is defined by

_ 1
Hgy)(2) =Y (=Jig) (@) + im = [ Lixy g)-int,cpen Xz (0o} Y
where  Jigy(r) = infocy<: X(p)(y); X(p(x) = Xp(o) + Y o Y (=Jp(r) and
gz =sup{0 <y <z : X5 (y—) = 0} (sup (0) =

In the special case when 8 = 2 (X9 = V2B for some standard Brownian motion B) and
Y = id, one has ([29]) Hq) = X(2)—2J(2), which, according to Pitman’s theorem, is distributed
as a v/2BES’(3,0).

By Theorem VII.1.1 in [10], the right-continuous inverse of (—J(3)), which we denote by T{g
and which is defined as

Tig)(x) :=inf {u>0:—Jg(u) >z} x>0,

is a stable subordinator with Laplace exponent ¢*/?. In others words, T, (3 has no drift and
a Lévy measure given by Cgz~'""dz, 2 > 0, where Cs := (6T(1—1/8))"". In the sequel,
At ([0,z]) denotes the decreasing rearrangement of jumps of 7{ before time x.

According to [49], the process Hsy) is continuous and converges to co as x — oo. Let

then Lzy)(t) and Rsy)(t) be respectively the first and the last time at which H gy reaches
t, t > 0, and introduce

Epy)(t) = {Ly)(t) <z < Rpy(t) : Hpyy(z) > t}.

The decreasing rearrangement of lengths of connected components of £ yy(t) is denoted by
Fligy)(t).

Proposition 4.3 Suppose E [Y (1)] = dy + [ amy(dz) < oo. Then, the process Flgyy is a
fragmentation with immigration process starting from 0 and with values in I*. Its parameters
are

ag=1/6—-1
0520

fD Vﬁ dS - ﬁQFF(Z /5’ [T(ﬁ)(Uf((T(ﬁ)(l)_l)AT(@) ([07 1]))] when 3 < 2

= g 1/2 fll/Q fl,1—2,0,..) (z(1 —2)"**dz when 3 =2

Jo f(8)gy(ds) = " F [f(xBAT(ﬁ) ([0, 1]))] my (da) + dyCp [7° f(,0,0..)27 " Vida

f denoting here any positive measurable function on D.
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Note that v, = vg/ V2, vp being the measure introduced in Proposition 4.2. As we shall see
below, this is directly related to the fact that X9 = V2B.

Note also that there are two distinct and independent kinds of immigration: the first integral
in the definition of Iy codes the immigration of grouped particles (each immigrating group
contains an infinite number of particles) whereas the second integral codes the immigration of
particles arriving one by one.

One may show that I3y is in some sense a fragmentation with immigration process even
when the extra condition £ [Y(1)] < oo is not satisfied, the only difference being then that the
immigration intensity does not satisfy the hypothesis (H1). One may also prove the existence
of a fragmentation immigration process FIgy) when Y is a compound Poisson process: it
suffices to extend the definition 4.5 of Hzy) to compound Poisson processes Y. In such case,
Y~ o (—J) (and then Hgyy) is not continuous (there are some positive jumps) and so
L y)(t) and R(sy)(t) may not exist for some ¢. Setting F'I(5y)(t) := O for those t and keeping
the previous definitions for the others, we obtain a fragmentation with immigration process.

Proof. Informally, in the definition of Hsy) the piecewise constant process Y ' o (—J(g))
contributes to the immigration and the continuous process

T

z +— lim — 1 ) .
e—0 ¢ . {X(*B)(y)_lnfygrgx X(ﬁ)(r)gf}

to the fragmentation. The process Y1 o (—J) is the future infimum of Hyzy). We claim
(details are left to the reader, see e.g. [29]) that the excursions of Hgy) above this future
infimum are independent conditionally on their lengths and distributed as excursions of H g,
above 0 where

Hp () _lli%s/ (X ()t 2 Xy ()<} Y-

This process is the height process that codes a continuous state branching process with branch-
ing mechanism function A — M (see [52]). Let e(f?w) be an excursions of H(g) conditioned to

have length [ > 0 (this makes sense, although H g is not Markovian for § < 2; see [29]) and
for t > 0 let

1
F(lﬁ)(t) = {lengths of the connected comp. of {:1: € [0, : eH(m( x) > t}} :

When ( = 2, it is known ([29]) that ¢! H( > = /2el 2ey where eg) is a Brownian excursion with length

[ and therefore F(l 5 is an (—1/2,0, vp/V/2) fragmentation starting from (I,0,...) as explained
n (4.24). When § < 2, Miermont [56] shows that F(ﬁ) is a self-similar fragmentation with
parameters (1/8 — 1,0, vg) starting from (1,0, ...).

Note that Y~! o (—Jg) is the inverse of the pure jump subordinator T{g o Y, and let
(AT( B)Oy(ti), t;) denote the jumps and jump times of this subordinator. Then the process FI gy,
is a fragmentation with immigration process where

e particles arrive at times t; in the following manner: either ¢; is a jump time of Y and
a group of particles with masses A, (s), s € [V (t;—),Y(t;)), immigrates at time ¢; (the
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AT(B)(S), s > 0, being the jumps of T(4)); or t; is not a jump time of ¥ and a unique particle
with mass T{g) (Y (t;)) — T(5) (Y (t;)—) immigrates at time ;;

e cach particle splits according to the (1/8 — 1,0, v3)-fragmentation.

It remains to compute the immigration intensity Iy . For each jump time ¢; of Tig) oY, set

s(t;) = { {AT(5)< s),s € [Y(t;—),Y(t;))} when t; is a jump time of Y
! (A, (Y (%)), 0, ...) otherwise.

The points (s(t;),t;)’s are the atoms of a Poisson measure with intensity Iy (ds)dt, ¢ > 0.
Call Jy the set of jump times of Y and Jr,, that of T(s. Then fix f a positive measurable
function on D and ¢t > 0. Using the independence of Y and T{s), Fubini’s theorem and that

(T(s)(x), > 0) 2 (2P T(5 (1), 2 > 0), we get

B o 6O = B[S, 7 (8m 0. 8v(0D)
- t/ooo E [f(xﬁATw) ([0, 1]))} 7y (dz).

Next, set ImY := {Y(x),z > 0}. Again by independence of Y and T{g),

F((Ayy (5.0, »)} = G [ 0.0 P

Y (¢)
/ 1 {s€ImY} ds| .
0

Since foy(t) 1isctmyyds 2 tdy, the combination of computations above yields

E
SiGJT(B) N[0,Y (¢)]NImY

x F

B[Y,, 6] =1 /0 E | f(@” A, (10,1])] 7y (de) + tayC /O f(@,0,. )" " Voda
and Igy has the required form. It is easy to check that Igy satisfies the hypothesis (H1). m

Let us now apply the results of Sections 4.2 and 4.3 to the fragmentation with immigration
Flyy. First, we want to apply Theorem 4.1. To do so, note that when v < 1/8,

C
/pzp 55 1{S]>1}Iﬁy(ds) ﬁE—[l/(ﬁ)]

which is finite (provided that E[Y(1)] < oo). When < 2, this holds in particular for
v = —ag =1—1/3. On the other hand, the jumps of T(g) before time 1 being the atoms of a

large
Tis)
is given by P(Alff;g)e < z) = exp(—CsBz~"/?) and consequently [, s]1(;,>1315y (ds) = co when

Poisson measure with intensity Cpz~'=Y/fdx, > 0, the distribution of the largest jump A

v > 1/, for any subordinator Y # 0. In particular [, s;**1(,,>13/2,y(ds) = oo. Hence, by
Theorem 4.1, Uy € D as. < [0 < 2.
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Second, in order to apply Corollary 4.1 (i) to obtain the rate of convergence to the stationary
distribution, note that

/11 Za‘zl Lis,2aplpy (ds) = 2 VP BC B Y (1)].

This yields the following result.

Corollary 4.2 Suppose E[Y(1)] < oo and Y # 0. Then the fragmentation with immigra-
tion (1/8 —1,0,vs,1y) has a stationary distribution if and only if 8 < 2. When § < 2,
the stationary state Ugyy belongs to [P for every p > 1/ a.s. Moreover, a fragmentation
with immigration FIYW with parameters (1/3 —1,0,v,Isy) starting from w €D such that

> s exp(—u;/ﬁfl) < 00, converges in law to L(Usgt) at rate

2-8

|L(FI®(#)) = £(Uga)|| = O F7) as t — oo.

Moreover one checks that Ugg ¢ 17 a.s. as soon as dy > 0 or fo 2Pty (dz) = oo; see
Proposition 4.1 (ii).

Remark. Let FI© be an (o, ¢, v, I) fragmentation starting from 0. As in the above examples,

it is always possible to find a positive function iz on [0, 00) such that, writing F1¥ (t) for the
decreasing rearrangement of lengths of connected components of {0 < z < R(t) : hppo (z) > t},
R(t) :==sup{x > 0: hppo(z) < t}, then the process FI'” has same law as FI©. Indeed, let
((s(t;),t;) ,i > 1) be the atoms of a Poisson measure with intensity I(ds)d¢, ¢t > 0, and define

hi(z) == inf {t 2003 > st > :c} .

This function Ay is continuous if and only if I(I') = oo. Next, conditionally on ((s(t;),t;),i > 1),
let FGit) 5 > 1, be independent fragmentation processes starting respectively from
(sj(t:),0,...), 4,7 > 1. It is known ([14],[9]) that there exist some functions h;; such that
FGit) has same law as o (ti)), where T (ti))(t), t > 0, is the decreasing rearrangement of
lengths of connected components of {0 <z < s;(t;) : h; j(x) > t}. The idea, then, is to “put”
the functions h; j, 4,7 > 1, on hy, and a natural way to do this is to put them in exchangeable
random order as follows: let (U;;,4,j > 1) be a sequence of i.i.d uniform random variables,
independent of the h;;’s, i,j > 1, and h;. For a fixed 7, say that j <, j' if U;; < U, .
Then, for x € (0,35, s;(t:)), there exists a unique integer, let us denote it by j,, such that
D i< Siti) <z < zj‘<ijac sj(ti) + 85, (t:). Now, call hp; :x +— hij (), 0 <z <35 8(t),
and introduce

hpro(x) = Zm Liny@)=tiy (ti + hpi(w — by (ti—)), @ > 0.

This function codes the fragmentation with immigration FI(® in the sense required above.
Moreover, when ¢ =v(} ., s; < 1) =0, one knows (see Theorem 3, [40]) that it is possible to

choose some continuous functions h; ; to code the fragmentations FGit) 4 5> 1, if and only
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if v(Dy) = oo. Consequently, it is possible to construct a continuous function hgjw) to code
the process FI© if and only if I(I') = co and v(D;) = oco.

As in the examples of fragmentations with immigration constructed from BES’(3,d) pro-
cesses, it is easy to see that the law of stationary state Ug,; of a fragmentation with immigration
F'I is obtained by reflecting the function hp;o) at the level of its future infimum h; and by
considering the family of lengths of the excursions below 0 of the process obtained by this
reflection.

4.5 The fragmentation with immigration equation

The deterministic counterpart of the fragmentation with immigration process («, ¢, v, I) is the
following equation, namely the fragmentation with immigration equation (o, c,v, )

ety = [Tt (ear @+ [ [S s = )] vids) ) et

+/p D, J(sp)I(ds)

where (p;,t > 0) is a family of non-negative Radon measures on (0, 00) . The measure p;(dx) cor-
responds to the average number per unit volume of particles with mass in the interval (z, x 4+ dx)
at time t. The test-functions f belong to C} (0,00), the set of continuously differentiable func-
tions with compact support in (0, 00). Note that the hypothesis (H1) implies the finiteness of
the integral [, 37, f(s;)I(ds) for every f € Cl(0,00). In [§], the stationary solution to this
equation is studied in the special case when o = 1, ¢ = 0, v(s1 € dz) = 21zep/213de and
v(si+ 82 <1) =0, I(sg >0)=0and I(s; € de) = i(z)dx for some measurable function i.
Here we investigate solutions and stationary solutions to (E) in the general case.

(E)

4.5.1 Solutions to (E)

When I = 0, existence and uniqueness of a solution to equation (E) starting from 6;(dz) are
established in Theorem 3, [38]. More precisely, the unique solution to the equation starting
from 0, (dx) is given for all £ > 0 by

. f)=E [, FE®)], fect0,00), (4.25)

where F'is a standard fragmentation process («, ¢, ). Now, we generalize this to the case when
I # 0. In that aim, we recall that some fragmentation with immigration processes starting
from u € R were introduced in (4.9). Recall also that ¢ is the Laplace exponent given by (4.2)

and that ¢ = ¢ — ¢(0).

Proposition 4.4 Let uy be a non-negative Radon measure on (0,00) and let u be a Pois-
son measure with intensity po. Consider then an («,c,v,I) fragmentation with immigration
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(FIW(t),t > 0) as introduced in (4.9) and define a family of non-negative measures (p;,t > 0)
by
(g, f) : [E L FER )] , feCl(0,00), f>0. (4.26)

If one of the three following assertions is satisfied
(A1) a >0, [ 3255 8i1(ds) < oo and [ zpo(de) < oo

(A2) a =0, [, J>IS]¢<1HS 15,513 (ds) < 00 and [ 2¢()po(dz) < oo

(A3) @ <0, [ Dis1 85 1>y (ds) < 0o and [~ ' pug(de) < oo
then the measures g, t > 0, are Radon and the family (p, t > 0) is the unique solution to the
fragmentation with immigration equation (E) starting from .

Of course, FI™ is a “usual” D-valued fragmentation with immigration process as soon as
to [1,00) < 0.

Remarks. 1) Notice that for all f € C! (0,00), f >0,

e ) = B[S0 30, k@] + B[ ST ST fs )R- )]

where ((s(t;),t;),i > 1) (resp. (u;, 7 > 1)) are the atoms of a Poisson measure with intensity
I(ds)dt (resp. pp) and F'is an («, ¢, v)-fragmentation, independent of these Poisson measures.
By formula (4.5), this rewrites

(e f) = / " B[ (x exp(—€(p(a™t)))) expl€(p(”t)))] pold) (4.97)
*/0 /%ZBIE [/(s; exp(—£(p(s3u)))) exp(€(p(s5u)))] 1(ds)du

where £ is a subordinator with Laplace exponent ¢. It is not hard to see that there exists some
dislocation measures v # vy that lead to the same ¢. In this case, the previous formula shows
that the (o, c,1q,1) and (v, ¢, o, I) fragmentation with immigration equations have identical
solutions.

2) Assume that one of the assertions (A1), (A2) and (A3) is satisfied, so that the measures
i, t > 0, are Radon. Then, these measures are hydrodynamic limits of fragmentation with
immigration processes. Indeed, let u™ be a Poisson measure with intensity nuo and call £
a fragmentation with immigration process with parameters («, ¢, v, nI) starting from u™. Then,

for every t > 0,

]- vague
—FIM(¢) Bugly p(de) a.s
n

This holds because FI™(t) is the sum of n i.i.d point measures distributed as FI®")(¢t) for
some (a, ¢, v, I) fragmentation with immigration F'/ ()

implies that for every f € C! (0, 00)

. The strong law of large numbers then

_Zk>1f Fj(n =E [Zk>1f FI o ( )| = (e f)



166 4. Equilibrium for fragmentation with immigration

7

and the conclusion follows by inverting the order of “for every f € C! (0,00)” and “a.s.”, which

can be done e.g. as in the proof of Corollary 5 of [38].

Proof of Proposition 4.4. Let p;,t > 0, be defined by (4.27) (equivalently (4.26)).

e It is easily seen that these measures are Radon if (Al) holds. To prove this is also
valid for assertions (A2) or (A3), we need to evaluate the rate of convergence to 0 of
Pla < zexp(—&(p(z*t))) < b) asx — 00, 0 < a < b < oo, when a < 0. First, note that
this probability is bounded from above by P(zexp(—£(p(z°t))) < b) where £ = €1(ecnoy is a
subordinator with Laplace exponent ¢ = ¢ — ¢(0). Then for « > 0 and v > 0,

P(E(u) >v) <(1—e) " E[1 - exp(—vE(u))]
=(1—e D7 (1 —exp(—ug (v). (4.28)

When a = 0, this implies that
P(a < zvexp(—£(t) <b) = O(o((Inz) ™)) as x — oo. (4.29)

When «a < 0, by definition of p and conditionally on 2z°t < p(z*t) < oo,

_ 2%t _ p(xz™t) _
2%t exp(a€(227t)) < / exp(ag(r))dr < / exp(aé(r))dr = 2%t
0 0

and consequently, P(2z°t < p(z°t) < 00) < P(exp(af(22°t)) < 1/2) which, by (4.28), is a
O(2%) as & — o6. Moreover, again by (4.28), P(z exp(—£(22°t)) < b) = O(2%) and therefore,
Pla < zexp(—&(p(x®t)) < b) = O (z%) as 2 — 0o (4.30)
since
P(a < zexp(—£(p(z®t)) < b) < P(22°t < p(a®t) < 0o) + P(x exp(—&(22°t)) < b).

Now, suppose that (A2) or (A3) holds and take f(z) = 21ze(p), 0 < a < b < co. Using the
results (4.29) and (4.30), one sees that (u, f) is finite. Hence y, is Radon.

e Suppose that (A1), (A2) or (A3) holds, so that the measures p;,t > 0, are Radon. Consider
then the measures 7, t > 0, introduced in (4.25). One checks that

et = [ s thpotan)+ [ [0 g f @)

where f, : y — f(zy), z € (0,00), f € C! (0,00). Theorem 3 in [38] states that (n,,t > 0) is a
solution to (E) when I =0, i.e.

=1+ | s Af) dv

where

A = (~eor@)+ [ [S2 slos) = 1@)]vias) (431)
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This equation relies on the fact that for f € C} (0,00), A(id x f)(z) = 2'™*G(f)(z) where G is
the infinitesimal generator of the process exp(—¢) (see the proof of Th.3, [38] for details).

Using then that z*Af, = (Af),, one obtains

t
(et £) = F(0) + [ e (A1), 0 (432
0
and therefore, by Fubini’s Theorem?,

(e, f) = {po, f +f0 fo (Ngaw, (Af),) po(dz)du
+ 1y (fo S ot (AF), M (@S)do + fio s (57)T(d5))
= <M07 +f0 :uuaA.f du+tfll ijl f(sj)l(ds)-

Hence (pu,t > 0) is indeed a solution to (E). It remains to prove the uniqueness. This can
be done with some minor changes by adapting the proof of uniqueness of a solution to the
equation (E) when I = 0 (see the third part of the proof of Theorem 3, [38]). =

4.5.2 Stationary solutions to (E)

As in the stochastic case, we are interested in the existence of a stationary regime. We say
that a Radon measure i, is a stationary solution to (E) if the family (uy = pistas, t > 0) is a
solution to (E).

Proposition 4.5 (i) There is a stationary solution to (E) as soon as [, > ., s;I(ds) < oo
and conversely, provided that hypothesis (H2) holds, there is no stationary solution to (E) when
fll i1 51 (ds) = oco. In case fll 2j21 s;1(ds) < oo, the stationary solution jis: is unique and
given by
—a , (hom)
/~Lstat<dx> = :uétat (dx)v T2 07

where the measure Mgﬁ;f“) is independent of a and is constructed from c,v and I by

(k™ ) / /l D, Bl (s exp(=€(M)) exp(§(t)]) I(ds)dt, [ e CL(0,00).  (4.33)

(ii) Suppose [, > is181(ds) < oo and [ zpo(dz) < oo and let (p,t > 0) be the solution
to (E) starting from po. Then,

vaguely
Mt =" fstat @St — 00.

LCall [a,b] the support of f and suppose f > 0. Write (Af).(y) = Af(@y)lizyspy + Af(@y)l{a<ay<s)-
On the one hand, Af(ry)lizy>sy > 0 and Fubini’s Theorem holds for this function. On the
other hand, |Af(xy)1{a§$y§b}| < Clyg<gy<py for some constant C' since Af is continuous and
I fot (Nwous Lia<ay<py ) dupo(dz) < oo according to the assumptions made on po. Hence Fubini’s Theorem
applies to Af(7y)1lia<zy<p) and then to (Af),. The same argument holds for the integral involving I.
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Remarks. 1) It jiga exists, then Ug, € R a.s. and the distribution £(Ugg,) is linked to piggat
by

:ustah / Z]>1 f 8] Stat)(ds)7 f € C; (07 OO) :

2) Call A :=sup{A: [ >0.5, s71(ds) < oo} and suppose A > 1. Then the statement (i) and
the relations E [e~#")] = ¢~ ¢ ¢ >0, imply that forall 1 + o < A < A+ «a,

> A o A—a
/o T hstat (dz) = ¢(A — v — 1)~ /llzpl S I(ds), (4.34)

and that this integral is infinite as soon as A > A + o or A < 1 + «, provided ¢(0) = 0 (which
is equivalent to ¢ = v(3_,5;s; < 1) = 0). This characterizes fisar and is more explicit than
(4.33). -

As an example, it allows us to obtain the more convenient expression

fistat (A7) = (x“i(fc) + 227077 /x . yi(y)dy> dz

in case v is binary, v(s; € dv) = 21ecp/oa3de, ¢ = 0, and I(s; € dv) = i(x)dz, I(s; > 0) =0
(aw € R). This latter result is proved in a different way in [8].

Others examples are given by the equations corresponding to the fragmentation with im-
migration processes constructed from Brownian motions with drift d > 0 (Section 4.4.1). The
immigration measure (4 satisfies [, 3, s31(g)(ds) < oo for all A > 1/2 and therefore there
exists a stationary solution to the equation. One can use formula (4.34) to obtain

exp(—zd?/2)dz, x > 0.

(dz) = —~
sta xr) =
fistat dvV8ma3

This can also be shown by using remark 1) above and the stationary law £(Ug) given in
Proposition 4.2 (ii).

3) For fragmentations with immigration (1/5 — 1,0, v, I5y) constructed from height pro-
cesses (Section 4.4.2), the immigration term satisfies

/uzplf s;)15y(ds) / fx)Coa™ " YPdy

which shows the small influence of Y on the equation. Moreover, the latter integral is infinite
when f = id and one checks that the hypothesis (H2) holds, which implies that forall 1 < 5 < 2,
the equation does not have a stationary solution.

Proof of Proposition 4.5. (i) We first suppose that there exists a stationary solution
e = MHstat, © > 0, to the equation (E). Of course then 0 (u, f) = 0 for every t > 0 and
f €C!(0,00), and consequently

<,ustataAf /I;Z]>1f 8] dS
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where Af is given by (4.31). Letting t — oo in (4.32), we get by dominated convergence that
(Nzots fo) — 0 and then that f(z) = — [ (e, (Af),) dv, 2 € (0,00) . Hence

A = [ 35 [ g A1), w1 (as)

We point out that this formula characterizes pigia;, since A(id x f)(z) = 217*G(f)(z) where G is
the infinitesimal generator of exp(—¢) and since G (C} (0, 00)) is dense in the set of continuous
functions on (0, 00) that vanish at 0 and co. Using then the definition of 7, and formula (4.5),
one sees that for every measurable function ¢ with compact support in (0, c0)

g =[5 [ E lotss expl-elotson) explelotsgen)] auttas) (435
= [ s [ Elats e el + a)g(o)] dur(as)

using for the last equality the change of variables v — p(sfv) and that exp(af,))dp(v) = dv
on [0, D), D =inf {v : ) = co}. This gives the required expression for figas.

Note now that the previous argument implies that a stationary solution exists if and only if

/,1 Z]>1/ g(sjexp(—&(v))) exp(§(v))] dvI(ds) < oo

for all functions g of type g(x) = x1f<z<p}, 0 < a < b. For such function g, the previous
integral is equal to

3 ¢
/p ijl Sil(szal B | Thasy ) ~ T, /b>] I(ds) (4.36)

where T° := inf {u : £(u) > t}, t > 0. If hypothesis (H2) holds and ¢ is arlthmetic (that is if
(H3) holds), the renewal theorem applies (see e.g. Theorem 1.21, [10]) and E[T% n(t/a) Tlfﬁ(t/b)]

converges as t — 0o to some finite non-zero limit. In such case, the integral (4.36) is fi-
nite if and only if [, 37 s;1;>13I(ds) < oo, ¥ b > a > 0, and therefore, there ex-
ists a stationary solution if and only if fll Zj21sj1{sj21}l (ds) < oo. This conclusion re-
mains valid if (H2) holds and ¢ is not arithmetic, since the renewal theory then implies that
; 3 3 N 3 3

limsup; o, E[T}, /0 — Thﬁ(t/b)] < 00, and that liminf, o E[T}, ) — T} +(t/b)] > 0 as soon
as Inb — Ina is large enough. Last, to conclude when (H2) does not hold, remark first that
TF = TF A e(k) (the subordinator € and the exponential r.v. e(k) are those defined in Section
4.1.1) and then that

_ 7t

_7é
1 1n+(8j/b)}

3
BT 1n+(5j/b)}

£
In(s;/a) <k [T <k |:,I‘ln(b/a)} < 0.

n(s;/a)

In this case, the integral (4.36) is finite as soon as [;, 5,51 8;1(s,>13/(ds) < 00, Vb >a > 0.
(ii) Under the assumptions of the statement, the measures p;, t > 0, are Radon and therefore
satisfy (4.27) for all continuous function f with compact support in (0,00). The integral
involving 1y converges to 0 as t — oo, since, with the assumption floo zpo(dr) < oo, the
dominated convergence theorem applies. Hence (f, f) e (Ustat, f), using the definition (4.35)

Of Hstat- W
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