Modélisation et simulation de micro systèmes magnétiques Application aux têtes de lecture GMR pour enregistreur sur bande et aux mémoires magnétiques de type MRAM

Thèse CIFRE

- <u>Laboratoire d'accueil</u> : SPINTEC (CEA/DSM/DRFMC)
- <u>Entreprises partenaires</u> : ALDITECH / CEA-Valorisation
- Directeur de Thèse : Jean-Pierre NOZIERES
- <u>Co-directeur</u> : Jean-Christophe TOUSSAINT
- <u>Rapporteurs</u>: Florence OSSART et Claude FERMON
- Examinateurs : Gérard MEUNIER et Yves BIGAY

18 Oct 2004

Sommaire

- 1. Problématiques liées à la modélisation d'un micro système magnétique
 - S Définition d'un micro système magnétique
 - S Echelles des différentes interactions
 - § Méthodes de modélisation

2. Tête de lecture GMR pour enregistreur sur bande

- § Enregistreur sur bande magnétique
- **S** Solutions techniques et physiques
- § Modélisation et design du dispositif

3. Mémoire magnétique à accès aléatoire (MRAM)

- § Mémoire vive et MRAM
- § Méthodologie de modélisation
- S Modèle Spice pour la conception automatique
- § Diaphonie

4. Conclusions et perspectives

spintec

Spintec

Sommaire

- 1. Problématiques liées à la modélisation d'un micro système magnétique
 - § Définition d'un micro système magnétique
 - S Echelles des différentes interactions
 - § Méthodes de modélisation

2. Tête de lecture GMR pour enregistreur sur bande

- § Enregistreur sur bande magnétique
- **S** Solutions techniques et physiques
- § Modélisation et design du dispositif

3. Mémoire magnétique à accès aléatoire (MRAM)

- § Mémoire vive et MRAM
- § Méthodologie de modélisation
- S Modèle Spice pour la conception automatique
- § Diphonie

4. Conclusions et perspectives

Microsystème magnétique

Propriétés macroscopiques

spintec

Matériaux **ferromagnétiques** (T<T_C) (Co, Fe, Ni)

Génère un champ magnétique dans l'espace (influence sur l'environnement)

Sensible aux champs magnétiques extérieurs (couplage avec l'environnement)

18 Oct 2004

Soutenance de thèse - Fabrice BERNARD-GRANGER

Ŵ

 $\vec{M} = \frac{1}{N}\sum_{i=1}^N \vec{m}_i$

Interactions magnétiques

18 Oct 2004

spintec

Modélisation électromagnétique

Prend en compte deux interactions

Spintec

interactions dipolaires / anisotropie magnétocristalline

Plan

- 1. Problématiques liées à la modélisation d'un micro système magnétique
 - S Définition d'un micro système magnétique
 - S Echelles des différentes interactions
 - § Méthode de modélisation

2. Tête de lecture GMR pour enregistreur sur bande

- § Enregistreur sur bande magnétique
- § Solutions techniques
- § Modélisation et optimisation design du dispositif

3. Mémoire magnétique à accès aléatoire (MRAM)

- § Positionnement du produit vis a vis des autres mémoires
- § Méthodologie de modélisation
- § Modèle Spice pour la conception automatique

4. Conclusion et perspectives

- S Subtilité de la modélisation de systèmes magnétique complexe
- § Magspice

18 Oct 2004

Enregistrement magnétique

Enregistreur sur bande

spintec

Forte capacité de stockage

Faible coût du dispositif

Temps de vie important (20 ans)

Application à **l'archivage de données** pour les serveurs, bibliothèques, etc....

Contraintes liées à l'enregistrement sur bande

Mode contact entre la tête et la bande

Usure mécanique

Décharges électrostatiques (ESD)

Capacité (GigaByte)

Tête de lecture magnétorésistive

Spintec

18 Oct 2004

Optimisation du design en statique

spintec

Mise en place du modèle dynamique

Limite du logiciel Flux3D

Impossibilité de prendre en compte le mouvement de la bande devant la tête

Ne convient pas pour le modèle dynamique du dispositif

<u>Première étape</u> : analytique statique

Modèle de réluctance équivalente de la tête

Comparaison avec résultats Flux3D

<u>Deuxième étape</u> : analytique dynamique

Prise en compte du déplacement de la bande à haute vitesse

Modèle dynamique complet

18 Oct 2004

Modélisation dynamique (1)

Modèle analytique statique en réluctance équivalente

18 Oct 2004

spintec

Modélisation dynamique (2)

Bilan première étape : réponse statique

Modèle de réluctance \longrightarrow Signal_{GMR}(f=0) = Fⁿ(géométrie, matériaux, ϕ_e)

Deuxième étape : réponse dynamique

Bilan

Tête de lecture GMR-Yoke pour bande

Design 'Yoke 'optimal

Bon comportement à basse fréquence

Forte diminution du signal à haute fréquence

Les têtes GMR Yoke pas adaptées avec les bandes actuelles

18 Oct 2004

Sommaire

- 1. Problématiques liées à la modélisation d'un micro système magnétique
 - § Définition d'un micro système magnétique
 - S Echelles des différentes interactions
 - S Méthode de modélisation

2. Tête de lecture GMR pour enregistreur sur bande

- § Enregistreur sur bande magnétique
- **S** Solutions techniques et physiques
- § Modélisation et design du dispositif

3. Mémoire magnétique à accès aléatoire (MRAM)

- § Mémoire vive et MRAM
- § Méthodologie de modélisation
- § Modèle Spice pour la conception automatique
- § Diphonie

4. Conclusions et perspectives

spintec

Mémoires

Mémoires Vives

	Type semiconductrice			Hybride		Magnétique
1 March	DRAM	SRAM	FLASH	FeRAM	PCRAM	MRAM
Vitesse écriture	Modérée ≈ 50 ns	Rapide ≈ 10 ns	Lente ≈ 100 ns	Modérée ≈ 50 ns	Modérée ≈ 50 ns	Rapide ≈ 10 ns
Vitesse lecture	Modérée	Rapide	Rapide	Modérée	Rapide	Rapide
Densité	Haute $\approx 8 F^2$	Faible ≈ 100 F ²	Haute ≈ 10 F ²	Modérée ≈ 20 F ²	Haute $\approx 8 F^2$	Modérée ≈ 20 F ²
Endurance	Bonne	Bonne	Faible	Faible	Bonne	Bonne
Puissance consommée	Haute	Faible	Faible	Faible	Faible	Faible
Rafraîchissement	Oui	Non	Non	Non	Non	Non
Rétention	Non	Non	Oui	Partielle	Oui	Oui
Scalabilité	Mauvaise	Bonne	Bonne	Modérée	Bonne	Bonne
				5		

Optimale

18 Oct 2004

Cellule mémoire FIMS

18 Oct 2004

Modèle d'écriture

Finalités du modèle

spintec

Outils pour la conception de mémoire

Évaluer les interactions entre les cellules mémoires

Design du point mémoire

Compréhension physique des processus de retournement de l'aimantation

Contraintes imposées

Intégrable dans une chaîne de conception microélectronique (Cadence®)

Temps de calcul **rapide** (10 à quelques milliers de points)

Formulations analytiques

Suffisamment précis

18 Oct 2004

Couche libre de la jonction tunnel magnétique

Méthodes de modélisation (1)

Stratégie en deux étapes

spintec

18 Oct 2004

Méthodes de modélisation (2)

Comparaison micromagnétique # Stoner Wohlfarth

spintec

Macro spin # micromagnétique (1)

Macro spin # micromagnétique (2)

En fonction de la taille

spintec

18 Oct 2004

18 Oct 2004

Diaphonie induite

Sélectivité

Spintec

Bilan

MRAM

Mise au point d'un **modèle de conception** pour une forme elliptique à température nulle

> Diaphonie importante pour la technologie actuelle

18 Oct 2004

Sommaire

- 1. Problématiques liées à la modélisation d'un micro système magnétique
 - S Définition d'un micro système magnétique
 - S Echelles des différentes interactions
 - § Méthode de modélisation

2. Tête de lecture GMR pour enregistreur sur bande

- § Enregistreur sur bande magnétique
- Solutions techniques et physiques
- § Modélisation et design du dispositif

3. Mémoire magnétique à accès aléatoire (MRAM)

- § Mémoire vive et MRAM
- § Méthodologie de modélisation
- § Modèle Spice pour la conception automatique
- § Diphonie

4. Conclusions et perspectives

spintec

Conclusion

Modélisation

Importance des stratégies de modélisation dans le cas des microsystèmes

Différentes approches selon la taille caractéristique

Modèles analytiques simples et performants

18 Oct 2004

Perspectives

Activité GMR-Yoke suspendue

Améliorer le modèle comportemental

de la cellule MRAM (intégration T, géométries plus complexes, dynamique)

18 Oct 2004

spintec

