Vendredi 19 Novembre 2004

Caractérisation statistique des sources aéroacoustiques en jets supersoniques par vélocimétrie Laser à effet Doppler: application à la prédiction du bruit de jet.

F. Kerhervé

Laboratoire d'Etudes Aérodynamiques

Trinity College Dublin

Introduction (1/3)

« Caractérisation statistique des sources aéroacoustiques en jets supersoniques par vélocimétrie laser à effet Doppler:

application à la prédiction du bruit de jet. »

Enjeux des études de prédiction du bruit d'écoulements

- Respect des règles environnementales (aviation civile)
- Enjeux stratégiques, choix technologiques (industries, aviation militaire, aérospatiale etc...)

Cas des lanceurs spatiaux ARIANE (CNES*)

Puissance acoustique au décollage de l'ordre de 190dB

Effets vibro-acoustiques non-négligeables

Effets dommageables possibles sur

- les éléments sensibles du lanceur
- la charge utile
- Etudes technologiques de réduction de bruit (injection d'eau, carneaux etc...)

Introduction (2/3)

Problématique sous-jacente à la prédiction du bruit rayonné:

Identification des mécanismes de génération de bruit internes à l'écoulement

- Etude directe du champ acoustique rayonné
 - ➡ Localisation des régions sources
 (pas de réelle prédiction possible d'une configuration à l'autre)
- Etude de la dynamique de l'écoulement
 - ➡ Identification des sources
 - ➡ Lien avec le champ acoustique rayonné

Approches prédictives possibles

- Approches numériques complètes (LES, DNS)
- Approches statistiques
 - Modélisation des sources de bruit pour un écoulement permanent
 - Traitement statistique des sources et de leurs interactions (analogie aéroacoustique)

Approche statistique du champ acoustique rayonné

Relier les organisations spatiale et temporelle des sources de bruit au champ acoustique rayonné.

- Modélisation de la distribution spatiale de l'énergie des termes sources (Grandeurs aérodynamiques)

- Champ de vitesse moyen et rms
- Energie cinétique de turbulence
- Composition spectrale du champ turbulent

- Modélisation des organisations spatiales et temporelles des sources (Grandeurs statistiques caractéristiques des sources aéroacoustiques)

- Tenseur de corrélations spatio-temporelles
- Echelles intégrales de temps et de longueur
- Vitesse de convection

Métrologie employée pour la phase expérimentale:

Vélocimétrie Laser à effet Doppler

➡ Technique non invasive et adaptée aux écoulements très chauds

Plan de la présentation

- Introduction
- Bases théoriques
 Analogie aéroacoustique de Lighthill et Application au bruit de jet
- Dispositifs expérimentaux et outils d'analyse
- Grandeurs aérodynamiques et Dynamique spectrale
- Caractérisation statistique des composantes aéroacoustiques
- Propositions de modélisation
- Application à la prédiction du bruit de jet Simulations numériques
- Conclusions et Perspectives

Bases théoriques: ANALOGIE AEROACOUSTIQUE et Application au bruit de jet supersonique

Relier la turbulence au champ acoustique rayonné

Etablir une expression analytique de l'intensité acoustique rayonnée par un écoulement libre à partir des équations 'classiques' de la mécaniques des fluides.

Conservation de la quantité de mouvement (Navier-Stokes):

$$\frac{\partial \rho u_i}{\partial t} + \frac{\partial \rho u_i u_j}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \rho g_i + \frac{\partial \tau_{ij}}{\partial x_j}$$

Conservation de la masse: $\frac{\partial \rho}{\partial t} + \frac{\partial \rho u_i}{\partial x_i} = 0$

volume de fluide élémentaire V

Equation d'onde inhomogène (milieu extérieur au repos), Lighthill 1952

$$\underbrace{\frac{\partial^2 \rho}{\partial t^2} - c_o^2 \Delta \rho}_{\text{opérateur d'onde}} = \frac{\partial^2}{\partial x_i x_j} \Big[\underbrace{\rho u_i u_j + (p - c_o^2 \rho) \delta_{ij} - \tau_{ij}}_{T_{ij}} \Big]$$

- Instationarité des forces convectives non linéaires

- Source d'origine thermique
- Fluctuations du tenseur des contraintes visqueuses

terme source

Fluctuations de masse volumique en champ lointain

Etude en champ lointain

formalisme des fonctions de Green en espace libre –
 résolution de l'équation d'onde inhomogène de Lighhtill,
 fluctuations de masse volumique

$$\rho'(\overrightarrow{x},t) = \frac{x_i x_j}{4\pi c_o^4 |\overrightarrow{x}|^3} \int_V \frac{\partial^2 T_{ij}}{\partial t^2} \Big(\overrightarrow{y},t - \frac{|\overrightarrow{x}|}{c_o}\Big) d\overrightarrow{y}$$

Intensité acoustique rayonnée en champ lointain

Le champ acoustique rayonné résulte de la contribution d'un ensemble de sources de bruit qui interagissent entre elles (Lighthill, 1952).

Goldstein, 1966:

tenseur de corrélations spatio-temporelles

Reformulation dans un repère mobile

Nature convective

Modification des fréquences intrinsèques perçues par un observateur fixe (effet Doppler) Introduction du concept de repère mobile se déplaçant avec le champ turbulent.

(changement de variables: $\overrightarrow{\xi}=\overrightarrow{\eta}-\overrightarrow{i}U_c au$)

Nature potentiellement non compacte (efficacité acoustique)

Conservation du temps de retard lié au décalage perçue entre les ondes émises par deux volumes sources

Ffowcs-Williams, 1963

$$I(x,\tau) = \frac{x_i x_j x_k x_l}{16\pi^2 c_o^5 \rho_o |x|^6} \iint_V \frac{1}{C_D^5} \frac{\partial^4}{\partial \tau^4} R_{ijkl}(y',\xi,\tau/C_D) dy' d\xi$$

facteur d'amplification Doppler $C_D(M_c,\theta) = \left[(1 - M_c \cos \theta)^2 + \alpha^2 M_c^2 \right]^{1/2}$

Interprétation physique

$$\ell_{ijkl}^{m} = \int_{0}^{+\infty} R_{ijkl}^{*}(y,\xi_{m},0)d\xi_{k} \qquad \tau_{ijkl}^{m} = \int_{0}^{+\infty} R_{ijkl}^{*}(y,\xi_{m}=0,\tau)d\tau_{k}$$

Nature des contributions

Identification des différentes contributions

Tenseur de Lighthill,

$$T_{ij} = \rho u_i u_j + (p - c_o^2 \rho) \delta_{ij}$$
sources d'origine thermique $S = \frac{\partial}{\partial t} (p - \rho c_o^2)$
sources d'origine aérodynamique $A_{ii} = \rho u_i u_i$

$$\begin{split} I(x,\tau) &= \frac{x_i x_j x_k x_l}{16\pi^2 c_o^5 \rho_o |x|^6} \Big[\frac{\partial^4}{\partial \tau^4} \iint \frac{1}{C_D^5} \underbrace{\widetilde{A_{ij}} \widetilde{A_{kl}}}_{D} r_{ijkl}^a(y,\xi,\tau/C_D) dy'd\xi \\ &+ \frac{\partial^2}{\partial \tau^2} \iint \frac{1}{C_D^5} \underbrace{\widetilde{S_{ij}}}_{D} r_{ijkl}^s(y,\xi,\tau/C_D) dy'd\xi \\ &+ 2 \frac{\partial^3}{\partial \tau^3} \iint \frac{1}{C_D^5} \underbrace{\widetilde{A_{ij}} \widetilde{S_{kl}}}_{D} r_{ijkl}^m(y,\xi,\tau/C_D) dy'd\xi \Big] & \text{``thermique'thermique''} \\ &\text{mesures 1-point} & \text{mesures 2-points} \end{split}$$

interactions

Développement du tenseur de corrélation turbulentes Théorie de Ribner, 1969

$$\begin{split} R^{a}_{ijkl}(y,\xi,\tau) &= \overline{u'_{ti}u'_{tj}u''_{tk}u''_{tl}} \\ &+ U'U''(\delta_{ik}\overline{u'_{tj}u''_{tl}} + \delta_{jl}\overline{u'_{ti}u''_{tk}} + \delta_{jk}\overline{u'_{ti}u''_{tl}} + \delta_{il}\overline{u'_{tj}u''_{tk}}) \\ &+ -U'U''(\delta_{i}\overline{u'_{tj}u''_{tk}u''_{tl}} + \delta_{j}\overline{u'_{ti}u''_{tk}u''_{tl}}) - - \\ &- + -U''(\delta_{k}\overline{u'_{ti}u'_{tj}u''_{tl}} + \delta_{t}\overline{u'_{ti}u''_{tj}u''_{tk}}) - - \end{split}$$

ordre 4 « bruit propre » ordre 2 « bruit de cisaillement » ordre 3

Dimensiondutenseurdecorr élation:

		Br. Cisaillement		Br. Propre	
$\overline{u_1'u_1'u_1''u_1''}$	$\int =$	$4U'U''\overline{u'_{t1}u''_{t1}}$	+	$u_{t1}^{\prime 2}u_{t1}^{\prime 2}$	1
$u_1' u_2' u_1'' u_2''$	$\int =$	$U'U''\overline{u'_{t2}u''_{t2}}$	+	$u_{t1}'u_{t2}'u_{t1}''u_{t2}''$	4
$u_1'u_3'u_1''u_3''$	$\int =$	$U'U''\overline{u'_{t3}u''_{t3}}$	+	$u_{t1}'u_{t3}'u_{t1}''u_{t3}''$	4
$u_1' u_1' u_2'' u_2''$	$\int =$			$u_{t1}^{\prime 2}u_{t2}^{\prime \prime 2}$	2
$u_1'u_1'u_3''u_3''$	$\int =$			$u_{t1}^{\prime 2}u_{t3}^{\prime \prime 2}$	2
$u_2' u_2' u_2'' u_2''$	$\int =$			$u_{t2}^{\prime 2}u_{t2}^{\prime \prime 2}$	1
$u'_{3}u'_{3}u''_{3}u''_{3}$	$\int =$			$u_{t3}^{\prime 2}u_{t3}^{\prime \prime 2}$	1
$u_2' u_3' u_2'' u_3''$	$\int =$			$u_{t2}'u_{t3}'u_{t2}''u_{t3}''$	2
$u_2^\prime u_2^\prime u_3^{\prime\prime} u_3^{\prime\prime}$	$\int =$			$u_{t2}^{\prime 2}u_{t3}^{\prime \prime 2}$	2

 Indépendance de la directivité de chacune des composantes quadripolaires.

Détermination complète du tenseur de corrélation **irréaliste**:

- 36 corrélations quadripolaires x 4D
- hypothèses simplificatrices

Cas particulier d'hypothèse de turbulence isotrope

 $R^{a}_{ijkl}(y,\xi,\tau) \sim \overline{u_{t1}^{'2} u_{t1}^{''2}} + 4U'U'' \overline{u_{t1}' u_{t1}''}$

Travaux expérimentaux existants

régimes	détermination des échelles turbulentes caractéristiques	calcul du champ acoustique rayonné	
	Laurence, 1956	Х	
subsonique ou subcritique	Davies et al, 1963	X	
	Fisher and Davies, 1964	X	
	Chu, 1966	turbulence inhomogène, anisotropie, modèle de corrélation gaussien	
	[Seiner and Reethof, 1974]	x	
	Jordan et al, 2003	hypothèse d'anisotropie, modèle de corrélation gaussien, contribution individuelle des quadrupoles	
	Harper-Bourne, 2003	référentiel fixe, hypothèse d'anisotropie, modèle de corrélation gaussien, dépendance fréquentielle des échelles de turbulences	
	[Ohara et al, 2004	anisotropie, inhomogénéité]	
supersonique	Lau et al, 1979	X	
	Lau, 1980	X	

Plan de la présentation

- Introduction
- Bases théoriques
 Analogie aéroacoustique de Lighthill et Application au bruit de jet
- Dispositifs expérimentaux et outils d'analyse
- Grandeurs aérodynamiques et Dynamique spectrale
- Caractérisation statistique des composantes aéroacoustiques Modélisation simplifié du tenseur de corrélation
- Amélioration de la modélisation
- Application à la prédiction du bruit de jet Simulations numériques
- Onclusions et Perspectives

Jet supersonique FROID (263K et 380m/s), tuyère 52mm

Mesures du champ de vitesse par VLD 1 point et 1D - grandeurs aérodynamiques – - dynamique spectrale du champ turbulent –

> Mesures par VLD 2 points et 1D - propriétés turbulentes statistiques -

Jet supersonique CHAUD (~900K et 1700m/s), tuyère 50mm

Mesures du champ de vitesse par VLD 1 point et 2D - grandeurs aérodynamiques –

Mesures simultanées de pression acoustique en champ lointain

Vélocimétrie Laser à Effet Doppler

Propriétés des signaux de vélocimétrie Laser Doppler

Jet supersonique froid: 25kHz~40kHz Jet supersonique chaud: 15kHz~20kHz

Echantillonnage irrégulier

Développement de procédures de traitement adaptées pour l'analyse spectrale

Reconstruction préalable du signal

Simon & Fitzpatrick 2004 ("sample-and-hold reconstruction scheme")

Calcul direct de la fonction de corrélation Nobach 1998 (technique de classification par case)

Etude comparative des deux techniques d'estimation pour des signaux réels Kerhervé *et al*, 2004

Jet supersonique FROID (263K et 380m/s), tuyère 52mm

Soufflerie supersonique S150 du CEAT* de Poitiers

Absence de traitement acoustique

*Centre d'Etudes Aérodynamiques et Thermiques

Jet supersonique CHAUD (<u>~900K et 1500m/s</u>), tuyère 50mm Banc MARTEL*

Contraintes

- Configuration de l'installation
- Règles de sécurité en phase de fonctionnement
- Ensemencement
- Gradients de température

Dispositifs mis en place

- Pilotage à distance
- Correction des faisceaux en temps réel
- Caméras de contrôle

* Moyen Aéroacoustique de Recherche et de Technologie sur l'Environnement des Lanceurs

Plan de la présentation

- Introduction
- Bases théoriques
 Analogie aéroacoustique de Lighthill et Application au bruit de jet
- Dispositifs expérimentaux et outils d'analyse
- Grandeurs aérodynamiques et Dynamique spectrale
- Caractérisation statistique des composantes aéroacoustiques
- Propositions de modélisation
- Application à la prédiction du bruit de jet Simulations numériques
- Onclusions et Perspectives

Caractérisation aérodynamique des jets étudiés

Jet supersonique froid

20

Jet supersonique froid S150 (380m/s 263K)

Spectre des fluctuations longitudinales de la vitesse

Jet supersonique froid S150 (380m/s 263K)

Evolution de l'instabilité dominante

Distributiondanslacouchedem élange

Caractérisation aérodynamique des jets étudiés

Jet supersonique chaud MARTEL

Vitesses moyennes longitudinale et radiale

- Expérience: 10D
- Simulations: 16D

x : mesures— : simulations numériques AMLJET (EADS-LV*)

Plan de la présentation

- Introduction
- Bases théoriques
 Analogie aéroacoustique de Lighthill et Application au bruit de jet
- Dispositifs expérimentaux et outils d'analyse
- Grandeurs aérodynamiques et Dynamique spectrale
- Caractérisation statistique des composantes aéroacoustiques
- Propositions de modélisation
- Application à la prédiction du bruit de jet Simulations numériques
- Onclusions et Perspectives

Détermination des propriétés turbulentes intégrales Configuration de jet supersonique (380m/s) et froid (263K)

Fonction de corrélation spatio-temporelle d'ordre 2

$$r_{ij}(y,\eta,\tau) = \frac{\overline{u_{ti}(y,t) \cdot u_{tj}(y+\eta,t+\tau)}}{[\sigma_i \cdot \sigma_j]^{1/2}} \qquad \sigma_i = \overline{u_{ti}^2}$$

Caractérise la région du fluide sur laquelle le champ turbulent local reste bien corrélé et son évolution temporelle

$$r_{ij}(y,\eta,\tau) = f(\ell_{ij}^1, \ell_{ij}^2, \ell_{ij}^3, \tau_{ij})$$

 échelles caractéristiques relatives aux sources aéroacoustiques

➡ Détermination des échelles caractéristiques

(efficacité et dynamique des mécanismes de conversion de l'énergie cinétique turbulente)

➡ Validation d'un modèle de distribution de sources en écoulement supersonique

Détermination des échelles caractéristiques intégrales

Détermination de la vitesse de convection

iso-contours de corrélation

Echelle intégrale de longueur

Evolution des échelles intégrales turbulentes

Echelle intégrale de temps

de bruit propre et de bruit de cisaillement

Distribution radiale de la vitesse de convection

- → Pas de valeur unique pour la vitesse de convection
- ➡ Indépendance des composantes spectrales turbulentes ?

Modélisation de la fonction de corrélation

$$r_{ij}(y,\xi,\tau) = R_{ij}(y,\xi) \ g_{ij}(\tau)$$

Décroissance spatiale

Ribner,1969

$$R(y,\xi,0) = \exp\left[-\pi\frac{\xi^2}{\ell^2}\right]$$

Décroissance temporelle

Plan de la présentation

- Introduction
- Bases théoriques
 Analogie aéroacoustique de Lighthill et Application au bruit de jet
- Dispositifs expérimentaux et outils d'analyse
- Grandeurs aérodynamiques et Dynamique spectrale
- Caractérisation statistique des composantes aéroacoustiques

• Propositions de modélisation

- Application à la prédiction du bruit de jet Simulations numériques
- Onclusions et Perspectives

Modélisation de la décroissance spatiale

 $r_{ij}(y,\xi,\tau) = R_{ij}(y,\xi) \ g_{ij}(\tau)$

$$R_{\kappa}(y,\xi_{1}) = \frac{1}{\cosh(\kappa\xi_{1})} \Big[1 - \frac{\kappa}{2}\xi_{1} \tanh(\kappa\xi_{1}) \Big]$$

avec $\kappa = \frac{1}{2} \frac{\sqrt{\pi}}{\ell}$

(dérivede Batchelor, 1953 et de Bailly, 1997)

 Reproduction des oscillations à grandes longueurs d'ondes (caractère tourbillonnaire)

Modélisation de la corrélation spatio-temporelle dans le repère mobile

résultats expérimentauxmodélisation proposée

Dépendance fréquentielle de l'échelle intégrale de longueur

Prendre en compte la nature multi-échelle du champ turbulent dans la modélisation du tenseur de corrélation

$$r_{11}(y,\eta_{1},\tau) = \frac{\overline{u_{t1}(y,t) \cdot u_{t1}(y+\eta_{1},t+\tau)}}{\left[\overline{u_{t1}(y,t)^{2}} \cdot \overline{u_{t1}(y+\eta_{1},t)^{2}}\right]^{1/2}} \qquad r_{11}(y,\eta_{1},\tau) = \frac{\int_{0}^{+\infty} S_{11}(y,\eta_{1},\omega)e^{j\omega\tau}d\omega}{\left[\int_{0}^{+\infty} S_{1}(y,\omega)d\omega\int_{0}^{+\infty} S_{1}(y+\eta_{1},\omega)d\omega\right]^{1/2}}$$

Décomposition par bande de fréquence Towsend, 1976 Lumley & Takeuchi, 1976

$$r_{11}(y,\eta_1,0)[\omega] = \frac{\text{Re}\Big[S_{11}(y,\eta_1,\omega)\Big]}{\Big[S_1(y,\omega)S_1(y+\eta_1,\omega)\Big]^{1/2}}$$

''Echelle de longueur singulière''
$$\lambda[\omega] = \int_0^{+\infty} r_{11}(y,\eta_1,0)[\omega] \ d\eta_1$$

Fonction de cohérence spatiale

36

modélisation proposée

Modélisation proposée					
$\lambda[\omega] \simeq$	$\frac{\ell\sqrt{1+\beta^2}}{2}$	$\exp\left[-\right]$	$\frac{\beta^2\tau_\xi^2\omega^2}{4(1+\beta^2)}\Big]$		

➡ Relation à l'échelle intégrale de longueur

Plan de la présentation

- Introduction
- Bases théoriques
 Analogie aéroacoustique de Lighthill et Application au bruit de jet
- Dispositifs expérimentaux et outils d'analyse
- Grandeurs aérodynamiques et Dynamique spectrale
- Caractérisation statistique des composantes aéroacoustiques
- Propositions de modélisation

Application à la prédiction du bruit de jet Simulations numériques

Onclusions et Perspectives

Intensité acoustique rayonnée en champ lointain

$$I(x,\tau) = \frac{x_i x_j x_k x_l}{16\pi^2 c_o^5 \rho_o |x|^6} \left[\frac{\partial^4}{\partial \tau^4} \iint \frac{1}{C_D^{5i}} \frac{1}{A_{kl}} \int \frac{1}{r_{ijkl}^{5i}} \frac{1}{A_{kl}} \int \frac{1}{r_{ijkl}^{6i}} \frac{1}{q_{ijkl}^{6i}} \frac{1}{q_{i$$

Résolution numérique (code **EBENI** - Fortuné & Gervais 1999, Moriniere 2002)

Contribution des différentes sources:

Basses fréquences: aérodynamiques et thermiques

> Hautes fréquences: aérodynamique

 Directivité calculée imposée par la singularité du facteur Doppler même modifié (artefact de calcul)

Obs.

Prédiction du bruit de jet par approche statistique des sources aéroacoustiques

- Analogie aéroacoustique
- Distribution spatiale de l'énergie des termes sources
- Modélisation du tenseur de corrélations

Mesures expérimentales par VLD 1 point

- Structure aérodynamique de jets supersoniques froid et chaud
- **Composition spectrale** des composantes de 'bruit propre" et de 'bruit de cisaillement" dans un jet supersonique froid
- ⇒ validation de codes de calculs aérodynamiques

Mesures expérimentales par VLD 2 points

- Caractérisation statistique de sources aéroacoustiques
- Détermination des échelles intégrales relatives aux mécanismes sources
- ⇒ modélisation statistique de la distribution des sources dans l'écoulement

Travaux en cours et Perspectives

Modélisation du tenseur de corrélation

- Nature anisotrope du champ turbulent
 Couplage PIV+LDV ⇒ tenseur de corrélations spatio-temporelles 2D
 Chatellier (2004)
- Nature inhomogène Couplage avec calculs numériques LES
- Nature multi-échelle du champ turbulent Dépendance fréquentielle des échelles intégrales

Sources d'origine thermique

 Nature des interactions Mesures des fluctuations instantanées de la température Corrélation <u>vitesse-température</u>

Contribution individuelle des sources au champ total rayonné

- Techniques d'identifications (LDV/Microphones) Fitzpatrick (2005)

Simulations numériques

Contributions et Confrontations aux approches expérimentales	(DNS,)
--	--------

Jordan (2004)