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Instabilités hydrodynamiques

des liquides magnétiques miscibles et non miscibles

dans une cellule de Hele-Shaw

Jury :

M. Jean-Claude BACRI Directeur de thèse
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Hele-Šou šūnā
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Introduction

The work treats theoretically the dynamics of magnetic fluids in a Hele-Shaw
cell.

As the magnetic fluid (MF, or a ferrofluid) is a suspension of magnetic
nanoparticles in a carrier liquid, its nature is twofold. On the one hand, it is
a fluid with peculiar body and interfacial forces acting upon it; on the other
hand, diverse diffusion phenomena occur in magnetic colloids. In some situ-
ations it is possible that both qualities come into play. Namely, the particle
ensemble subjected to a macroscopically non-potential force can entrain the
carrier liquid, thus exciting a convective instability. The applied field being
uniform, the instability is due to the self-magnetic (demagnetizing) field of an
inhomogeneous ferrofluid: a “superparamagnetic” MF parcel is entrained into
a stronger resulting field, i.e. where the demagnetizing influence of the MF
sample diminishes. Advection by the MF motion and diffusion redistribute
the particles and, in their turn, affect the self-magnetic field.

In a thin plane layer with rigid transparent walls (a Hele-Shaw cell), mis-
cible instabilities with MF’s can be observed directly (with a microscope). In
the field applied perpendicularly to the cell, an intricate labyrinthine pattern
(Fig. 1) developed [1] at a narrow straight “diffusion front” between MF and
its pure carrier liquid. A peak pattern was observed for another field ori-
entation. The pattern length scale was approximately as small as the layer
thickness (less than 10−2 cm). Having formed rapidly, both patterns were
gradually blurred out by diffusion.

In the forced Rayleigh scattering experiments [2] with transient optical
gratings induced in thin MF layers, very recently reported was the first ex-
perimental evidence of a microconvection [3]. That the subject requires in-
vestigation is further exemplified by the controversy [4] around the nature of
the effects observed in a MF layer heated by a perpendicular laser beam.

We cautiously adopt the approach of averaging across the gap in our
work. We note that even the linear stability of miscible interfaces was al-
most unexplored until recently. However, a careful analysis of this sort can
reveal a lot. In many known miscible and immiscible instabilities in a Hele-
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2 INTRODUCTION

Figure 1: Magnetic microconvection on a diffused interface (top view of the
cell). Courtesy of M. M. Maiorov and A. Cēbers. See [1] for details.

Shaw cell, the driving force is such that the shortest wavelengths are the
most amplified, and other effects regularize the problem. What selects a fi-
nite length scale at the interface? A common opinion is that diffusion and
surface tension prevent small-scale perturbations from growing. As we will
demonstrate, at strong forcing the length is comparable to the gap thickness
and cannot decrease, for which responsible is the viscous dissipation that
is usually treated incompletely in the Hele-Shaw flow because of the Darcy
approximation. Interfaces between magnetic fluids are especially sensitive to
the thickness of the cell. The reason is that the self-magnetic field and the
inhomogeneous force it causes translate the transverse dimension into the
plane of the Hele-Shaw cell.

This is why the convection in a thin MF layer typically occurs on a
microscale. Hereby the above-mentioned convective instabilities [1] leading
quickly to a highly intricate patterns (Fig. 1) can drastically increase the
length of the interface between miscible MF’s. By exciting a microconvection,
an external field thus allows to importantly enhance mixing inside the sample.
Let us recall now that the simple and convenient configuration of a Hele-
Shaw cell is ubiquitous both in experimentation and technology (by the way,
ferroparticles can be functionalized, drug-loaded, etc.). However, the flows in
a Hele-Shaw cell are viscosity dominated and therefore laminar and difficult
to mix. Being quite important in technological applications, laminar mixing
on a microscale is a subject of intensive research in what is currently known
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as “microfluidics” [5].
Until recently, in studies of interfacial instabilities in Hele-Shaw cells im-

miscible magnetic fluids forming sharp, well-defined interfaces were a subject
of theoretical analysis (e.g. [6]) and experimental treatment (e.g. [7]). How-
ever, the notions of the miscible “interface” and the true immiscible one turn
out to be not completely antagonistic. Under discussion [8, 9] is the role of
the non-conventional Korteweg stresses that emerge at high concentration
gradients and reduce to the classical surface tension in the limit of vanishing
interface thickness. Although our particular results do not concern this is-
sue, important analogy between the miscible and immiscible interfaces should
indeed take place and be traceable.

In the second half of our study, we model the non-linear dynamics of
immiscible MF interfaces in the same configuration as before. This is the
classical problem [10] modified by the presence of a magnetostatic force due
to the self-magnetic field of a ferrofluid. Historically, the interest to the
original problem of “viscous fingering” was motivated by its relation to the
oil-extraction process. Later (in 1980’s), it proved to be interesting in its
own right for both physicists and mathematicians, for the interface was ob-
served to form beautiful complex patterns. The Hele-Shaw flow is currently
recognized as the simplest physical process capable of pattern formation [11].
In ferrofluids, the evolving patterns are modified substantially by the long-
range magnetostatic repulsion to become interesting “dendritic” structures
[12, 7], different from both the viscous fingers and the crystalline dendrites.
Theoretically, some of their features can be explained using the notion of
the effective surface tension [6, 13]. Nevertheless, numerical modelling is in-
dispensable for providing a complete understanding of the process. Efficient
modelling in the Darcy approximation is possible owing to the fact that the
immiscible problem can be rendered one-dimensional in effect, and we de-
scribe the corresponding computational techniques. Of course, in a system
that complex, it is difficult even to pose a question that can be answered,
but we have made a try to get some insight into the physics.



Chapter 1

Governing equations

1.1 About ferrofluids

The particular subject of the present work is a magnetic fluid (MF, also
known as ferrofluid). For a general reference on MF’s, see [14, 15]. Here we
give only a superficial account of some most basic ideas.

Conceptually, ferrofluid is a colloidal suspension of magnetic particles.
In order to prevent the dipolar particles from agglomeration, the energy of
their dipole-dipole interaction should not exceed the thermal one, for which
the particles should be small enough. The upper bound for particle sizes is
of the order of 10 nm, so that the volume of a particle is a single magnetic
domain. Besides, as in any colloid, the van der Waals attraction should be
counteracted, which is achieved by adsorbing either a surfactant coat (the
steric stabilization), or ions of the same sign (the charge stabilization) on the
surface of a particle. For details, see texts on the physical chemistry of col-
loids. The size of a particle should not be too small, however, to facilitate the
preparation and to have an acceptable magnetic susceptibility. Sometimes
we will distinguish between the magnetic and hydrodynamic radii of a par-
ticle; the latter is somewhat higher because the surface layer of the material
is non-magnetic, and besides, particles can be coated with a surfactant.

Being both a magnetic media and a fluid, MF can exhibit peculiar features
not known for other existing materials. Thus, its free horizontal surface in
a (strong enough) perpendicular magnetic field undergoes the static “peak”
instability. The peaks form either a hexagonal or square lattice [14, 15],
which was a subject of intensive theoretical analysis [16]. The known fluid-
mechanical instabilities are also modified in the case of magnetized ferrofluids,
as we will see. One more peculiarity is associated with the possibility to
materialize, by ferrofluids in rapidly rotating fields, the hydrodynamics “with

4



1.2. GAP-AVERAGING, DIFFUSION, AND STRESSES 5

a spin” (or internal rotations), when the stress tensor is non-symmetric. The
reason is that the magnetization of a particle requires certain time to align
with the applied field, either by rotating with respect to the material of the
particle, or by rotating the particle as a whole in the viscous fluid. We,
however, will be dealing solely with a quasi-static field.

We will not give any further generalities on magnetic fluids. We mention
now only some facts that are of immediate relevance to our subject. (Later
some more information about ferrofluids will also be given.)

The field interacts with MF through the magnetic ponderomotive force.
(The force will be addressed in detail in §1.4.) Now consider the fact the
force, in fact, acts upon the particles. A particle moves with some velocity
relative to the carrier liquid, and the Stokes drag on it equals, on the average,
the force exerted upon the particle. However, the particles can also drive the
carrier, in which case an overall MF flow results. Its velocity is determined
by the friction at the walls of the cell (according to the Darcy law, §1.3).
The friction experienced by a given MF volume at the walls is (more or less)
balanced by the force that all particles in the volume exert on the carrier.
It gives the ratio of two velocities: the one of MF relative to the walls and
the one of particles relative to the carrier. The ratio is very large unless
the concentration is very low. Specifically, for the magnetophoretic particle
transport to be neglected with respect to the advective one, the condition

ϕ≫ (a/h)2 (1.1)

must hold [17], where a is the average radius of a particle, ϕ is the vol-
ume fraction of the suspended matter, and h is the gap spacing. Obviously,
the condition is not restrictive at all, given the concentration of normally
employed ferrofluids. The estimate is only a necessary condition since it as-
sumes that the force on magnetic particles entrains MF, for which it must
be non-potential. Otherwise, the pressure gradient can counter-balance the
particle force, which is the case, by the way, for the one-dimensional MF
concentration distributions whose stability (against two-dimensional convec-
tion) we will analyze later (§§2.3, 2.4). Nevertheless, in the present study
the magnetodiffusion will not be taken into account.

1.2 Gap-averaging, diffusion, Korteweg stresses

In this paragraph we will discuss the process of mixing by diffusion in a
Hele-Shaw geometry. This material refers to general miscible fluids.

Let us consider the Brownian diffusion of ferromagnetic particles in MF.
The velocity ~v will be that of the center of mass of the suspension (i.e. of
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MF as a whole). Then for the velocity the equation of continuity holds

∂ρ/∂t+ div(ρ~v) = 0 , (1.2)

ρ being the density of MF, and the momentum equation (see §1.3 later) can
be written down for the mixture in the same form as it is for a single fluid
(Chapter VI of [18]). In addition, the conservation of species gives

∂(ρC)/∂t+ div(ρC~v) + div~ = 0 ,

where C is the mass fraction of magnetic particles, ~ is the density of the
diffusive mass flux associated with the diffusive fluxes ~0, ~1 of the carrier
liquid and magnetic particles, respectively, [18]. Then

dc/dt+ c div~v + (1/mp) div~ = 0 , (1.3)

where c is the number of magnetic particles per unit volume, and mp is the
mass of a particle. It is reasonable to assume that the density ρ of MF varies
linearly with c (a “simple mixture”):

ρ(c) = ρ0

(

1 +
c

c∗

)

,

where ρ0, ρ1 are the densities of the carrier liquid and the magnetic material,
respectively, and

1

c∗
= mp

(

1

ρ0

− 1

ρ1

)

.

(I.e. by introducing a particle into a certain volume, the mass of the volume
increases by dρ/dn = Vp(ρ1 − ρ0), Vp being the volume of a particle.) Then
from Eq.(1.2) it follows that

dc/dt+ (c+ c∗) div~v = 0 .

Finally, comparing with Eq.(1.3), we obtain

div~v =

(

1

ρ0

− 1

ρ1

)

div~ . (1.4)

Thus a very basic argument, involving only conservation laws and a simple
ρ(c) dependence, reveals an obvious but usually forgotten fact that even if
both components of a flowing inhomogeneous mixture are incompressible,
the mass-averaged flow velocity does not satisfy div~v = 0. (In the present
context, the mixture is called “incompressible” if the density of none of the
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constituents varies with pressure.) The velocity is divergence-free (solenoidal)
only if the densities ρ0 and ρ1 are equal.

Nevertheless, we still will assume that variations in the particle concen-
tration throughout MF result in a negligible change in the density. Putting
div~v = 0 leads to a considerable simplification of the further analysis.

Among several variables any of which can describe the composition of a
mixture (such as the mass or molar concentration, volume fraction, etc.), it
is the mass fraction C that is associated to our reference frame of the center
of mass (§§4.3, 4.17 of [19]). The first Fick’s law introduces the diffusion
coefficient D in the usual way if the fluxes (taken relative to our reference

frame) are expressed through C: div~ = −ρD~∇C. (However, the range of
validity of the first Fick’s law remains unclear to us.) But in dilute ferrofluids,
and since the density difference will anyway be neglected, the composition
variables are interchangeable, e.g. we can write the equations in terms of the
volumic molar concentration c (i.e. the number of particles per unit volume,
as defined above). The incurred error will be indeed negligible. For example,
from Eqs.(1.3), (1.4) we have

dc

dt
+

1

mp

[

1 + ϕ

(

ρ1

ρ0

− 1

)]

div~ = 0 , (1.5)

which simplifies to the standard convection–diffusion equation

dc

dt
+

1

mp

div~ = 0

if the ferrofluid is dilute enough:

1

ϕ
≫ ρ1

ρ0

− 1 . (1.6)

Of course, the volume-averaged velocity is solenoidal without any approx-
imations, as noted in [20, 21]. As the Hele-Shaw flow that will be of interest
to us is free from inertia, it may seem appealing to reformulate the problem
in terms of the volume-averaged velocity. However, the advantage is quite
illusory. For example, the correct boundary conditions for mixtures are not
known as yet [22]. (The no-slip of which velocity holds?) This uncertainty af-
fects the friction term involving velocity in the averaged equations of motion
(§1.3). So one anyway resorts to approximations of the above sort.

That the assumption div~v = 0 is generally wrong for mixtures and, in
particular, for miscible fluids, was studied extensively by D. D. Joseph with
collaborators. (Our simple Eq.(1.4) is essentially Eq.(2.30) of [23].) Another
closely related issue are the so-called gradient stresses that may arise in
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the regions of high concentration and density (not present in the Navier–
Stokes stress tensor of a Newtonian fluid). In the work [24] the history of
the subject is presented over more than a century with many excerpts and
experimental illustrations. It appears that many researchers recognized the
existence of what can phenomenologically be described as a transient surface
tension at the miscible “interface.” Back in 1901, Korteweg composed a
general stress tensor for compressible and incompressible fluids and showed
that it leads to boundary conditions mimicing those at a curved interface with
surface tension. This “capillary” tensor is a second order tensor composed
non-linearly of the first and second gradients of density and/or concentration;
for details, see the works cited below. In [25], by introducing a modified
velocity that turns out to be divergence-free, the momentum equation is
represented in the form of the Navier–Stokes equation with two viscosities, a
non-trivial driving force, and a modified pressure (a conventional one plus a
“concentration pressure”). Under some assumptions (of constant coefficients),
four of the five Korteweg coefficients entering the stress tensor effectively drop
out. Non-linear stability of a vertically stratified fluid is analyzed by energy
methods. It is suggested that the Taylor dispersion problem (see below) and
the Hele-Shaw problems with miscible fluids be reworked to take the gradient
stresses and the non-solenoidality into account. The Hele-Shaw case is indeed
investigated in [20], where a linear analysis of a Rayleigh–Taylor instability
is carried out. The effect of div~v 6= 0 proved to be minor if the diffusion
coefficient is small. The step-like concentration distribution in the Hele-
Shaw geometry does not evolve into the one-dimensional error-function one
if the non-solenoidal velocity due to mixing is taken into account [22]. In
[25, 20] some constraints are obtained on the coefficients appearing in the
Korteweg stress tensor to avoid, on the one hand, the ill-posedness and, on
the other hand, an unconditional non-linear stability. Let us note that even
the signs of the Korteweg coefficients are not yet established, although the
order of magnitude of the transient surface tension is more or less clear from
experiments, [24]. In [23], the (in-)validity of putting div~v = 0 is discussed
further. The pressure difference across a plane mixing layer is found to be
zero even allowing for the Korteweg stresses; the diffusion in a pipe is also
considered. For the spherical diffusion fronts, the t−1/2 scaling is obtained.

In a review [8], the diffuse-interface models are presented in several situ-
ations. For a single-component fluid, of interest can be the behaviour near a
critical point (that the interface thickness grows without bound was shown
already by van der Waals with a simpler model) or at the contact line (as
of a droplet creeping along the wall). For the binary fluid, the modified
Cahn–Hilliard equation enters the governing equations, the spinodal decom-
position being a typical application. Interestingly, the question about the



1.2. GAP-AVERAGING, DIFFUSION, AND STRESSES 9

non-solenoidality of the velocity arises in this context as well and has strong
consequences: it is argued by some authors that the thermodynamical role of
pressure changes. It is also demonstrated how the classical Laplace–Young
condition with a variable surface tension is recovered in the sharp-interface
limit.1 (See also [26].) The work also identifies some “subtle differences”
between the applicable models. Another important point elucidated in [8]
is the connection between the Korteweg stress tensor and the Cahn–Hilliard
term in the density of the free energy f = f0(c, T, . . .) + β(~∇c)2 [this is a
spatial development of f ; the shape of f0(c, . . .) is responsible for the (im-)
miscibility]. In [27, 28], the diffuse-interface models are also reviewed. For
a Hele-Shaw flow, the Hele-Shaw–Cahn–Hilliard model (HSCH) is analyzed
in particular. The average velocity being non-solenoidal is taken into ac-
count, non-conventional stresses enter the Darcy equation (§1.3), and the
concentration is governed by the Cahn–Hilliard equation that becomes the
convection–diffusion equation (CDE) in the limit of a slow concentration
variation. (Note that Joseph et al. use CDE in the above-cited works.)

Above we have discussed the still somewhat exotic Korteweg stresses.
The classical approach due to Taylor, however, would be to treat the par-
ticles as a passive scalar, i.e. as an admixture having no influence on the
flow. This results in the convection–diffusion equation for the velocity and
concentration averaged across the flow, but with an effective diffusion co-
efficient Deff that exceeds the molecular one D: for a capillary tube [29],
Deff − D = (Ur)2/(48D), where U is the average velocity and r is the ra-
dius, while for a Hele-Shaw cell of a thickness h the result is Deff − D =
(Uh)2/(210D). The higher the diffusivity, the lower the difference, since the
diffusion spreads the scalar away from the center into the near-wall region
of low advection velocity. However, normally the fluid viscosity is strongly
concentration dependent.

At this point we would like to present a brief overview of the past the-
oretical work on miscible flows in a Hele-Shaw cell and porous media. (See
the next paragraph on the relation between the two types of flow. The
mechanical dispersion is the porous-media counterpart of the diffusion in a
Hele-Shaw cell.) A review of the early results can be found in [30]. We would
note in particular the asymptotic stability analysis of [31] of a vertical misci-
ble displacement and the study [32] (discussed later on p. 17). Much of the
research concentrated around the porous-media flow. The work [33] became
seminal for much of the research that followed. There, a popular approxi-
mate framework (so-called QSSA, also of use in the present work, see p. 27)

1As the second part of the present work concerns immiscible ferrofluids, the Korteweg
stresses could serve as a common basis for the whole work.
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for the stability analysis of time-dependent flows with diffusion (dispersion)
is established. It is partially validated by the comparison to the solution
of the initial-value stability problem (§2.2). The anisotropy of the disper-
sion is taken into account in [33]. The radial geometry is analyzed in [34].
Velocity-dependent dispersion is found to have a destabilizing effect in [35].
An asymptotic solution for thin diffused interfaces (but still with QSSA) is
found. It is stated explicitly that the sharp-interface stability result depends
on the jump of the concentration derivative of the viscosity rather than on
the jump in viscosity (the latter is the case for an immiscible interface). The
conditions are found at which there is no short-wave cutoff (i.e. however large
the wavenumbers, they all are unstable despite the transversal dispersion).
In [36, 37], the gravity effect is in addition taken into account, the density of
the fluid being an arbitrary function of the concentration; the dispersion is
considered an arbitrary function of velocity. In [37] the cross-over between
the diffusive regime (no instability) and the convective one (fingers) is traced
experimentally. The presence of a tangential velocity discontinuous at the
interface is found to stabilize the displacement in the presence of gravity in
[38]. In [39] the effect of the non-monotonic concentration–viscosity depen-
dence (“profile”), such as that of a water solution of propanols, is investigated.
At some conditions, the diffusive smearing of a stable basic state can render
it unstable. Asymptotic analysis of [35] for almost sharp interfaces is ex-
tended for any concentration–viscosity dependence. However, the work [39]
is also important for stressing the presence of the continuous spectrum in
the stability problem (we will develop this subject in §2.2). Identified is the
physical reason why it is the concentration derivative of the viscosity, and
not the viscosity itself, that determines stability. In this regard, let us note
that in the earlier review [30], the viscosity difference (in the form of the
viscosity Atwood ratio, Eq.(3.18)) is still erroneously listed among the para-
meters that determine stability. In [21] the conditions for the equivalence of
the flow under gravity, on the one hand, and by displacement, on the other,
are established with respect to the concentration dependence of viscosity and
density. (Note that with immiscible interfaces, the two flows are equivalent,
see references in [21] and, for the flow in a Hele-Shaw cell, see §3.1.2.) Numer-
ical simulations are presented e.g. in [40, 21, 41]. The above studies mainly
concern the porous-media flows. The interest to the Hele-Shaw miscible flow
as such was sporadic ([42, 32, 20]) until the late 1990’s.

At the moment, the miscible interfaces are a subject of growing inter-
est, as exemplified by [9]. In [43] (extended in [44]), miscible displacements
are studied experimentally in capillaries. If the finger of the less-viscous dis-
placing fluid, whose thickness is the main concern of the work, occupies more
than half of the cross-section of the capillary, a thin spike (needle) is observed
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to grow from its tip. (The intruding finger exists at large Péclet numbers
Pe = Uh/D and for a finite time because of mixing; U is e.g. the average
displacement velocity.) The flow structure (recirculations) giving rise to the
spike is investigated (Fig. 12 of [43]). In the accompanying numerical study
[45], where a constant diffusion coefficient, the linear concentration–density
dependence, and the exponential concentration–viscosity one are assumed, an
analogous protrusion is obtained in simulations for the geometry of a Hele-
Shaw cell as well. In this work, a noteworthy argument is presented that,
contrary to intuition and if viscosity is concentration dependent, the conven-
tional viscous stresses can mask the velocity-independent Korteweg stresses
at high Péclet numbers. The numerical analysis is extended to include the
new effects in [46], where it was found that taking the Korteweg stresses, but
not the velocity non-solenoidality, into account allows to reproduce the ex-
perimental observations. The results of simulations by a different numerical
technique [47] are in good agreement with [45] (under the same assumptions,
but at no gravity). The Stokes [45] or even Navier-Stokes [47] equations are
used in these simulations of a Hele-Shaw flow; see [48, 28] for the numerical
modelling of the gap-averaged Darcy flow with the Korteweg stresses. Apart
from the above-cited earlier works (see [24] and references therein), many
attempts are made to conduct, with miscible fluids, the classical experiments
known for the immiscible case, with the aim to establish the effective surface
tension. Thus, Rayleigh–Taylor fingers, drop formation, and other phenom-
ena with miscible interfaces are analysed in [49]. The interfaces vibrated
horizontally or vertically and the known interfacial singularity above a pair
of horizontal parallel immersed counter-rotating cylinders, are carefully stud-
ied experimentally [50, 51] in the miscible case. Direct measurements of the
effective surface tension are also done [52].

For the concentration-dependent fluid viscosity, when the velocity profile
at displacement deviates from parabolic, an asymptotic integro-differential
equation is obtained for the velocity in [53] by making use of the small ratio
of the gap width to the extension of the mixing region along the cell. At finite
Péclet numbers, having adopted the “quarter-power” concentration–viscosity
dependence and constant diffusivity, they [53] study the distribution of the
concentration across the cell at various viscosity ratios. It is established that
if Pe . 10δ, then the angle between the isolines of concentration and the
normal to the cell will not exceed δ ≪ 1. In the limit of zero diffusion,
regardless of the (monotonic, however) concentration–viscosity relation, the
gap-averaged concentration develops a “shock,” i.e. at the tip of the tongue
its thickness changes abruptly to zero, which possibility is noted already in
[42]. The necessary condition for this not to happen is that M < 3/2, where
M is the ratio of displaced fluid’s viscosity to that of the injected fluid. The
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asymptotic analysis is checked against the simulations [47, 46].
In an experimental study [54] of a miscible Saffman–Taylor instability in

a vertical Hele-Shaw cell, the theory [53] finds an unexpected outcome. The
experiment is conducted with the heavier fluid resting below the lighter one,
which stabilizes the interface at no displacement. Then the upper fluid is
pumped into the gap, and a downward displacement occurs. The heavier
fluid is also the more viscous one. The Péclet number is quite high, > 104,
so that the diffusion can be neglected. If M exceeds ≈ 2 and, in addition, if
the non-dimensional injection rate is above critical Uc(M) [Uc(M) decreases
with M ], then the horizontal, in the plane of the cell, uniformity of the dis-
placement gets broken, and thin jets of the lower fluid divide the falling one
into plane fingers. The width of the fingers is found to be ≈ 5h (see the
next paragraph on what we believe is the reason for this relation), and they
resemble in shape the “deep cells” occurring at directional solidification of
binary liquids (e.g. [55]). The distribution of the gap-averaged concentration
c of the upper fluid is recorded in [54]. Obviously, c gives also the thickness of
the downward tongue. After short transients, the concentration field propa-
gates downwards in a self-similar manner and in some cases indeed decreases
in a non-smooth manner along the vertical. Found in [54] is an unexpected
relation between the occurrence of the fingering in the plane of the cell and
the occurrence of the shock at the vertical c curve (i.e. of the jump in the
tongue thickness measured across the gap). Namely, the fingering instability
sets in if, and only if, the tongue thickness abruptly goes to zero (a “frontal”
shock). Thus, the flow in the perpendicular direction remains uniform if
the thickness varies smoothly downwards or if it changes abruptly, but to a
non-zero value (an “internal” shock). The latter case refers to the protru-
sion simulated numerically in [45]. In [56] the theory of [53] is extended to
include the buoyancy effects. A theoretical diagram in M–U coordinates is
delineated which distinguishes between the three cases. The diagram shows
a satisfactory agreement with the experimental data. However, the origin of
the correlation between the shape of the concentration isolines in the vertical
perpendicular section of the cell and the onset of convection in the plane of the
cell remains practically unexplained; a three-dimensional stability analysis is
required to understand the instability. Using some experimental relations,
an ad-hoc analysis is attempted in their later note [57].

As for the object of our study, although we routinely call it a “misci-
ble magnetic fluid” (“miscible” in all proportions), it is essentially a single
fluid with an inhomogeneous concentration of suspended ferroparticles. The
surface-tension-like effects are due to attractive dipole–dipole particle inter-
actions at concentration gradients and discontinuities. The same effects are
in operation at field-induced phase separation of MF’s in thin layers at a
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diffused boundary between the concentrated and dilute MF phases (see e.g.
[58, 59, 60, 61, 62, 63, 64]). In [58, 65, 66] a general model of magnetic
suspensions is developed where the free energy of the suspension contains
the Cahn–Hilliard term. However, we will eventually adopt the simplest MF
model in which interparticle interactions are neglected. Hence it would be in-
consequent to take the Korteweg stresses into account and, at the same time,
use the Langevin law for the MF magnetization. Very recently, a miscible
radial gap-averaged MF flow in the perpendicular field was simulated with
the Korteweg stresses [67]; for the same problem simulated without them,
see [68]. The subject of these works is particularly close to ours. Now the
lack of the quantitative experimental data for ferrofluids becomes apparent.

As this paragraph has shown, the common reduction of the problem
to a two-dimensional one by averaging the concentration and the assumed
Poiseuille velocity profile across the gap simplifies the analysis at the cost
of leaving possibly important effects out of account. The suspended parti-
cles can be a “very active” scalar. In our further analysis, we will put aside
non-conventional Korteweg stresses, neglect the Taylor dispersion, and in
most cases we will neglect the concentration dependence of the viscosity; D
will be a constant isotropic diffusion coefficient. Thus, analyzing a miscible
Hele-Shaw flow in a technically tractable way and interpreting the results of
such analysis requires known caution for the reasons clear from the above
exposition. In the next paragraph we will consider the conventional viscous
stresses; even their treatment in the Hele-Shaw context is commonly incom-
plete, but our results will prove the necessity to take them fully into account.
So, having said all the above, we eventually adopt for the concentration the
simplest CDE with the gap-averaged variables and the solenoidal average
velocity field.2

1.3 The Darcy law and the Brinkman equation

for a Hele-Shaw flow

Let us consider an incompressible fluid of a constant viscosity η flowing be-
tween parallel plates at a velocity ~v = (vx, vy, vz), the plates being z = ±h/2.
It is well-known and simple to check that the equations vy = vz = 0,

vx(z) = − 1

2η

dp

dx

(

h2

4
− z2

)

, (1.7)

2 “Presumably the practitioners of these arts know what they are doing and recognize
that they are making an approximation . . . ” (D. D. Joseph, [23].)
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describe the planar Poiseuille flow driven by a constant pressure gradient
dp/dx. At any gradient, this is a solution to the full stationary Navier–
Stokes equations (NSE) with the no-slip conditions at the plates (we lay
aside the question of its stability).

Now imagine that the flow for some reason is not unidirectional. The
exact solution becomes prohibitively complicated, if feasible at all, because
of the non-linear term in NSE. However, at low enough velocity the term
is negligible throughout the entire flow domain (§2.7 of [69]), so that NSE
simplifies to the linear Stokes equation:

− ~∇p+ η∆~v = 0 . (1.8)

With some reservations, this equation admits an important reduction that
we are going to describe now.

Consider a flow that approaches the Poiseuille one at infinity. Let us try
the possibility of the same kind of z dependence in the entire flow domain:

vx =
6

h2

(

h2

4
− z2

)

ux(x, y) ,

vy =
6

h2

(

h2

4
− z2

)

uy(x, y) ,

(1.9)

where the coefficient is so chosen that ~u is the z-averaged velocity (vx, vy).
In addition, let us demand that

div⊥ ~u = 0 , ~u = ~∇⊥φ , (1.10)

where φ(x, y) is some sufficiently smooth function, and the index “⊥” refers
to an operator in two dimensions x, y. Physically, the assumption is that the
flow responds to the local pressure gradient as if it were globally constant.
Then by the continuity

0 = div~v =
6

h2

(

h2

4
− z2

)

div⊥ ~u+
∂vz

∂z

we have vz = 0, and p = inv(z) from Eq.(1.8). Substituting Eq.(1.9) into
Eq.(1.8), we obtain

− ∂p

∂x
+

6η

h2

(

h2

4
− z2

)

∆⊥ux −
12η

h2
ux = 0 , (1.11)

and analogously for ∂p/∂y, uy. The term in the middle vanishes, for Eqs.(1.10)
lead to ∆⊥ux = ∆⊥uy = 0. Thus,

−∂p
∂x

− 12η

h2
ux = 0 ,

−∂p
∂y

− 12η

h2
uy = 0 .

(1.12)
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It is remarkable that the pressure gradients are indeed independent of z.
Besides, this relation proves that ~u can be potential.

We have demonstrated that Eqs.(1.9), (1.10) solve the incompressible
Stokes equation (1.8). A z-independent potential force density can be added
to Eq.(1.8) and absorbed into the pressure gradient, changing nothing in the
analysis. Essentially, we have found that with such driving force, a three-
dimensional laterally unbounded flow exactly reduces, by the substitution
(1.9), to a two-dimensional one at a gap-averaged velocity. The unbounded-
ness is essential for the following reason. Imagine a cylindric obstacle situated
between the plates perpendicularly to them, filling the gap entirely; at the
boundary of the obstacle some conditions are posed in terms of the velocity ~v
(§4.8 of [70]). Then, apart from reducing the number of dimensions, the sub-
stitution also effectively reduces the order of the differential equation. Not
all boundary conditions posed for the Stokes equation (1.8) can be satisfied
at solving the reduced Eq.(1.10). (The exact analogy can also break at free
surfaces and discontinuities.) The no-flux (non-permeability) condition can
be satisfied, but not together with the no-slip condition. However, the flow
“feels” the presence of the no-slip condition only within a thin belt of thickness
∼ h around the obstacle. Indeed, if vx and vy are required to vanish at the
boundary as well as at the plates, their second derivatives in Eq.(1.8) across
the gap and along the plates can be estimated to relate as (l/h)2, where l is
a distance from the boundary. Therefore at l ≫ h the boundary condition
has no impact on the pressure gradient and, by Eq.(1.12), on velocity. The
same result is valid near the lateral sides of a Hele-Shaw cell [71].

Eq.(1.12) for the gap-averaged velocity is exactly (to within the coeffi-
cient) a two-dimensional version of the Darcy law that is widely used to
describe, at coarse enough scales, the groundwater flow [72] in porous media
with permeability α = 12η/h2 (we will call it the friction coefficient). Due
to this direct analogy, the Hele-Shaw device (cell) was often employed to
model the percolation processes. However, originally it was introduced by
H. J. S. Hele-Shaw back in 1898 to model steady two-dimensional incom-
pressible potential inviscid flows around various obstacles (§330 of [73]; see
photos in [74]). At a sufficiently narrow separation between the plates (com-
pared to the dimensions L of the obstacle in the x, y plane, L ≫ h), the
difference in the boundary conditions is negligible and the above approach
can indeed be reverted. Of course, the pressure p of the Hele-Shaw flow will
have nothing in common with the pressure piv of the inviscid flow (see §3.9
in [75]) that is calculated from the velocity through a non-linear relation:

ρ(~u · ~∇)~u = −~∇piv ,

ρ being the density. Phenomena such as a flow with non-zero circulation
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around the obstacle (i.e. with a multiple-valued potential) and flow detach-
ment cannot be reproduced in a Hele-Shaw cell (§3.9 of [75], §4.8 of [70]).
About a century ago, A. N. Krylov suggested to use the device to model
stresses in 2D elasticity problems arising in shipbuilding, while Hele-Shaw
himself employed the device to solve some potential problems in electrody-
namics.

As for the criterion to neglect inertia in NSE, a simple comparison of the
non-linear term in NSE against the friction at the plates in Eq.(1.12) gives
Re∗ ≪ 1, where Re∗ is the “reduced” Reynolds number calculated with h2/L
as the length scale [76, 70]. Another issue regarding the validity of Eq.(1.12)
is the possibility to omit the non-stationary term ρ ∂~u/∂t (or ρ ∂~v/∂t in NSE)
while preserving the ∂c/∂t term in the convection–diffusion equation. It is
not difficult to retain both and solve, e.g., the stability problem. Then it
turns out that the reverse time scale of the flow (e.g. the instability growth
increment) λ must remain sufficiently small in the sense that λρ0 ≪ α, i.e.
λh2/D ≪ η/(ρD) = Sc (the Schmidt number Sc is of the order of 107 in
the typical case). Such rapid processes are of no interest for us. Were λ not
small, the non-stationary term ∂~u/∂t would become significant, and besides,
the vorticity would have no time to diffuse in the transverse direction to form
the stationary velocity profile.

What happens at a general driving force not satisfying the above condi-
tions – at a non-potential and/or z-dependent one? Then the reduction does
not take place. For example, if the force is z-independent but non-potential,
neither is the average velocity ~u, cf. Eq.(1.12). The middle term in Eq.(1.11)
no longer vanishes at an arbitrary z, while the other terms are z-independent,
so there is no solution. This indicates that the velocity profile in fact devi-
ates from the parabolic one. Of course, if the spatial scale L of the flow in
the plane of the cell is large compared to h, the term can be neglected with
respect to the friction at walls, and the Darcy law is recovered. Without the
assumption that L≫ h, averaging the Stokes equation across the gap gives

− ∂ < p >

∂x
+ η∆⊥ux − αux + fx = 0 (1.13)

(and analogously for the y-components), where ~f is a gap-averaged driving
force. Here it is assumed that it is possible to introduce a friction coefficient
α such that η < ∂2vx/∂z

2 >= −αux, where ux =< vx >. Although this
is generally not the case, and Eq.(1.13) cannot be justified in this way, the
equation looks rather reasonable from the physical point of view. The near-
wall friction is the only viscous effect that is allowed for by the Darcy law.
The Brinkman term η∆⊥ux in Eq.(1.13) describes the viscous dissipation
due to the flow non-uniformity in the plane of the cell and the associated
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additional shear stresses. Like the Darcy law, Eq.(1.13) is known in the
context of porous media flows, where it is named after Brinkman (sometimes
it is referred to as the Darcy-Stokes equation). It describes both a free fluid
flow and a flow in porous media and is useful at analyzing flows bounded by
permeable walls.

For the Hele-Shaw flow, however, a rigorous argument for Eq.(1.13) was
missing until recently. In [77] a unidirectional Stokes flow in a Hele-Shaw cell
was analyzed in several particular situations. In one of them, the flow in a
vertical Hele-Shaw cell was directed along the gravity force, and the density
was non-uniformly distributed perpendicularly to the flow, but was constant
along the flow and across the gap. Then the volume-averaged gravity force
is non-potential (as can be seen by taking its curl). Still, the gap-averaged
Stokes equation was demonstrated to reduce indeed to Eq.(1.13), but at long
enough wavelength and with the Brinkman term multiplied by a constant
prefactor 12/π2 ≈ 1.2. The exact form of the Brinkman term is compli-
cated and non-local (integral) [77]. The prefactor is not known in the more
complicated cases involving magnetic forces that will be under consideration.
Moreover, we don’t know the shape of the velocity profile when the magnetic
forces are in operation; one cannot expect it to be the Poiseuille one, so the
expression for α in Eq.(1.13) is also not known exactly. Therefore we will
follow the previous research and leave the Brinkman term equal to unity in
Eq.(1.13).

In another case studied in [77], it was viscosity that varied perpendicularly
to the flow. Note that our equations presented in this paragraph hold at
constant viscosity. The case of a variable viscosity will be modelled in the
present work only with the Darcy law (1.12). Nevertheless, it is noteworthy
that the same conclusions as stated above hold in this case as well [77].

The Darcy law was conventional at describing the Hele-Shaw flow. How-
ever, the Brinkman equation is more adequate to describe the microconvec-
tion occurring on the scale of the gap width of the Hele-Shaw cell. First of all,
one recalls the early work [32], both analytical and experimental one, where
the viscous shear in the plane of the Hele-Shaw cell is considered as the only
dissipation mechanism in the radial miscible flow (i.e neither surface tension
nor diffusion are in operation). At a large radius, when the interface becomes
almost straight, the most unstable mode is found to scale linearly with the
gap width, which conclusion is substantiated by experimental results [32].
In [78] the same miscible Hele-Shaw experiment is conducted with a recti-
linear displacement; again, the results (Fig. 11(a) of [78]) give (1 . . . 3)h for
the finger width. (As for the immiscible case, let us note the experimentally
observed [79] saturation of the radius of curvature of the anomalous Saffman–
Taylor fingers at the value of (2.2±0.1)h at high capillary numbers.) In some
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other situations [80, 81, 82, 83, 84, 85] the introduction of the Brinkman term
in Eq.(1.13) was considered essential for a Hele-Shaw flow. In the context
of the Rayleigh–Taylor instability with non-magnetic miscible or immiscible
fluids in a Hele-Shaw cell, recently a comparison [86, 87] was done between
the stability results given by experiments, a three-dimensional numerical lin-
ear analysis and non-linear simulations (all with the Stokes equation and the
3D CDE), on the one hand, and the stability results of [88] for the sharp
interface (based on the Brinkman equation and the 2D CDE), on the other
hand. (Contrary to the works discussed in §1.2, the concentration was as-
sumed viscosity independent in these studies.) In [88, 89], a linear stability
analysis of a sharp interface was conducted analytically in both the misci-
ble and immiscible cases, and the Brinkman equation was found to render

the most dangerous wavenumber of the instability equal to
√

6
(√

5 − 1
)

/

h

(the corresponding wavelength is ≈ 2.3h) in the limit of large Péclet or
capillary (§3.1.2) numbers. A slightly more general dispersion relation was
obtained, using different characteristic time and space scales, in [90] [their
Eqs.(6), (9)] for an arbitrary Schmidt number Sc, and verified using their 3D
lattice-gas code [47]. The comparison [88, 86, 87] of the Brinkman results to
the more general Stokes ones revealed a “somewhat surprising” [86] general
ability of the Brinkman formulation to capture stability details – despite its
gap-averaging (and QSSA, see p. 27 later). The non-linear simulations [86]
demonstrated the transition between the two-dimensional Hele-Shaw mode of
instability with a gap-invariant concentration field to the three-dimensional
regime with a strongly z-dependent driving force and non-Poiseuille velocity
profile. (We have already discussed on p. 11 the velocity profile at the vis-
cously driven displacement.) Naturally, the transition occurs at high values
of the dimensionless group (∆ρ)gh/(αD), ∆ρ being the density difference
and g being the free-fall acceleration.

The effect of the wavelength “saturation” at ∼ h was also found and like-
wise attributed to the additional viscous stresses in our early communication
[91] in the context of miscible MF’s (see §2.3.4, Figs. 2.10, 2.11 later). It is
noteworthy that an analogous effect for chemical fronts in a Hele-Shaw cell
is contained in Eq.(16) of [81] as their driving parameter tends to infinity,
which is due to the adopted Brinkman equation (cf. [92]). We would like to
note here also the analytical work [93] which explored the Rayleigh–Taylor
instability of a horizontal mixing front in an unbounded three-dimensional
geometry (see also [94]). It was found that a new type of dissipation (vis-
cosity) added into a stability problem with another stabilizing mechanism
(diffusion), can couple with the latter, seriously modifying the behaviour of
the most unstable mode by introducing a short-wavelength cut-off. [Note
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that our dimensionless Cm number (Eq.(2.19)) that will govern the stability
of our problem also involves a product ηD.]

We would like to stress once again that h being the length scale of an
unstable interface in a Hele-Shaw cell at high Péclet or capillary numbers is
consistent with the experimental evidence (for more references, see [88, 87]).
Significant part of the forthcoming results are obtained assuming the flow is
governed by the Brinkman equation.

1.4 The magnetic ponderomotive force

In this paragraph we will present the expressions for magnetic ponderomotive
force and magnetic field that will be used throughout the following work.

In the approximation of magnetostatics for a non-conducting ferrofluid
the Maxwell equations give

div ~B = 0 , (1.14)

rot ~H = 0 . (1.15)

Relaxation of the magnetization ~M will be considered instantaneous, so that
~M ‖ ~H.

The general formula for the ponderomotive-force density in a liquid mag-
netic reads (Eq.(4.33) of [14] in Gaussian units3)

~fm = −~∇
[

∫ H

0

(

∂(Mv)

∂v

)

H,T

dH

]

+M~∇H , (1.16)

where v = 1/ρ is the reverse density. This expression was derived in mid-
sixties, since before the advent of magnetic fluids it would have had no practi-
cal applications. If M = ((µ− 1)/4π)H with µ = const, the simpler classical
expression due to Korteweg and Helmholtz is recovered:

~fm =
1

8π
~∇
[

H2ρ

(

∂µ

∂ρ

)

T

]

− H2

8π
~∇µ (1.17)

(Eq.(4.47) of [14], Eq.(35.3) of [95]). However, Eq.(1.16) was derived for a
single-phase media, and is not obviously valid for a multi-phase dispersed
media such as magnetic fluids. Indeed, the variables T , ρ, and H are no
longer enough to define the thermodynamic state of MF; for example, the
concentration c can also vary independently, while in the approach of Cowley
& Rosensweig the product cv is effectively fixed. Then M becomes a function

3The CGS system of units is in use throughout the present work.
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of the following three variables: c, T , and H. This point was made in [96],

where the expression for ~fm was derived in the form of Eq.(1.16), but with
the fragment

(

∂(Mv)

∂v

)

H,T

= M − ρ

(

∂M

∂ρ

)

H,T

replaced by the expression

M − c

(

∂M

∂c

)

H,T

.

The two formulations of the magnetic force were apparently in contradic-
tion. However, it was reconciled by V. V. Gogosov and his collaborators (see
Gogosov’s footnote comment at pp. 130–131 of [14], pp. 90–91 of [97], and
references therein). It turns out that

ρ

(

∂M

∂ρ

)

H,T

= c

(

∂M

∂c

)

H,T

, (1.18)

where the derivative in the left-hand side is taken also at a constant mass
concentration of the magnetic phase (equal to cv times particle mass), which
condition is implicit in Eq.(1.16). We assume again that MF is quite dilute so
that the particle dipole-dipole interaction may be neglected: cm2

∗/kBT ≪ 1,
where m∗ is the magnetic moment of a particle, kB is Boltzmann’s constant,
and T is the temperature. (Equivalently, ϕ≪ kBT/(M

2
SVp), where MS is the

magnetization of the particle material, and Vp is the volume of a particle,
cVp = ϕ; usually the inequality is close to ϕ ≪ 1.) Consequently, the MF
magnetization M in the field H obeys the Langevin law (with M ≪ H)
and is directly proportional to the concentration c. Then by Eq.(1.18) the
integral term in Eq.(1.16) vanishes, and one obtains simply

~fm = M~∇H . (1.19)

(Of course, the integral term in Eq.(1.16), entering as a gradient, can be
absorbed into the pressure and forgotten in the absence of discontinuities.)

That the result (1.19) is not trivial becomes evident if one attempts to

calculate ~fm statistically as the volume-averaged force on the gas of dipoles
(magnetic particles) in an external field. The force on a single dipole is indeed
a scalar product of its momentum and the gradient of some microscopic field.
The analogous problem of computing the “effective” or “local” field arises in
the long-developed and quite subtle theories of dielectric media with dipolar
molecules. The analogy is formal though (cf. §31 of [95]), e.g. averaging
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the microscopic magnetic field gives the magnetic induction ~B, while the
averaged electric field gives the intensity ~E. Here we only note that Eq.(1.19)
was obtained by a macroscopic thermodynamical argument. (See also §8 of
[98].)

Eq.(1.15) allows us to introduce the potential of the self-magnetic (de-

magnetizing) field ~H− ~H0 = −~∇ψs of the MF volume in the uniform applied

field ~H0. Since ~B = ~H + 4π ~M , Eq.(1.14) gives the Poisson equation in three
dimensions for ψs:

∆ψs = 4π div ~M

with appropriate conditions at infinity. Its solution is

ψs(~r0) = −
∫

R3

div ~M(~r)

|~r0 − ~r| dV . (1.20)

At the boundary S between magnetic and non-magnetic media there is a
jump in the magnetization ~M , and div ~M becomes a delta function there.
Equivalently, instead of integrating the delta functions, a corresponding in-
tegral over S can be added to the right-hand side of Eq.(1.20):

ψs(~r0) = −
∫

R3\S

div ~M(~r)

|~r0 − ~r| dV +

∫

S

Mn(~r)

|~r0 − ~r| dS , (1.21)

where ~n(~r) is the normal to S outward with respect to the magnetic media.
The formulas for the magnetostatic potential can be found in many books
on electromagnetism [99]; interestingly, they were first obtained by Poisson,
who, apart from all other, was interested in the magnetostatics and founded
its mathematical theory. In the electric terminology, if ψs were the electro-
static potential, then −div ~M and Mn would be, respectively, the volume and
surface densities of charge, both free and induced ones.

The field, potential, magnetization, and force density can be formally
expanded in, e.g., volume fraction ϕ→ 0: ~H = ~H0 +ϕ ~H1 + . . .. Then in the
lowest order ~M is directed along ~H0 (or equivalently, along ~B0) and

~M =
ϕm0

Vp

~H0

H0

+O(ϕ2) ,

where m0 6 m∗ is the average magnetic moment in the direction of ~H0. Since
~H0 is uniform,

div ~M =

(

~∇ϕm0

Vp

·
~H0

H0

)

+O(ϕ2) =

(

~H0

H0

· ~∇M
)

+O(ϕ2) .
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This expression allows to rewrite Eq.(1.21) as

ψs(~r0) = ψ∗(~r0) +O(ϕ2) , (1.22)

where

ψ∗(~r0) = −
∫

(

~H0

H0

· ~∇M
)

dV

|~r0 − ~r| +

∫

H0nM dS

H0 |~r0 − ~r| = O(ϕ) (1.23)

(ϕ ~H1 = −~∇ψ∗). Now we calculate

H =

√

H2
0 + 2ϕ( ~H0 · ~H1) +O(ϕ2) = H0 + ϕ

(

~H0

H0

· ~H1

)

+O(ϕ2) .

Let us adopt the following notation: the magnetic media (MF) will occupy

the layer z = 0 . . . h (a Hele-Shaw cell), while ~H0 will be directed either
along the z axis (the “perpendicular” field), or along the x axis (the “normal”
field; this notation is adopted from [100]). The properties of the media will
be further assumed to be constant across the layer: ϕ, M = inv(z). Then
the gap-averaged density of the magnetostatic ponderomotive force (1.19)
becomes

< ~fm >= −M
h

∫ h

0

~∇
(

~H0

H0

· ~∇ψ∗

)

dz +O(ϕ3) . (1.24)

In the case of the normal field, the surface integral in Eq.(1.23) vanishes
due to H0n = 0. Then

ψ∗(~r) = −
∫

∂M

∂x ′

dV ′

|~r − ~r ′| , (1.25)

< ~fm >= −M
h

∫ h

0

~∇∂ψ∗

∂x
dz +O(ϕ3) = −M

h
~∇⊥

∂

∂x

∫ h

0

ψ∗ dz +O(ϕ3) ,

(1.26)

where ~∇⊥ is the two-dimensional Laplacian, and it is assumed possible to
differentiate outside the integral. Further transformations will be undertaken
in §2.4.1.

In the case of the perpendicular field we have ( ~H0 · ~∇M) = 0 and it is the
volume integral that vanishes in Eq.(1.23):

ψ∗(~r) =

(∫

S2

−
∫

S1

)

M dS ′

|~r − ~r ′| , (1.27)
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where S2 and S1 are the upper (z = h) and lower (z = 0) walls of the cell,
respectively. The gap-averaged density of the force follows as

< ~fm > = −M
h
~∇⊥

∫ h

0

∂ψ∗

∂z
dz +O(ϕ3) = −M

h
~∇⊥ (ψ∗|z=h − ψ∗|z=0) +O(ϕ3)

= −2M

h
~∇⊥ ψ∗|z=h +O(ϕ3) . (1.28)

For future reference, we expand Eq.(1.27):

ψ∗|z=h =

∫

S2

(

1
√

(x− x′)2 + (y − y′)2
− 1
√

(x− x′)2 + (y − y′)2 + h2

)

M dS ′ .

(1.29)
This approximation for the magnetic force was also employed by others

(e.g. [101], §4.6 of [15], [102]). Note that M = m0c in our description with
a constant m0. The degree of magnetic saturation is not important. The
forces (1.26), (1.28) and the resulting flow are in general not potential in the
miscible case owing to the inhomogeneity of c.



Chapter 2

Linear stability analysis

of a miscible interface

in a Hele-Shaw cell

2.1 Miscible interfaces in a Hele-Shaw cell:

an overview and model

In a magnetic fluid, the transport processes allow an extra control parameter:
the applied magnetic field. They attract scientific interest because of their
specific cooperative nature, since the self-magnetic field of the colloid as a
whole influences the magnetophoretic motion of colloidal particles and leads
to the field-dependent anisotropic effective diffusion.

However, as we have discussed in the Introduction, even if the external
field is uniform, the self-magnetic field can give rise to a convective instabil-
ity.1 In a thin plane layer with rigid transparent walls (a Hele-Shaw cell),
miscible instabilities with MF’s can be observed directly with a microscope.
In the experiment [1] MF and its pure carrier liquid were brought into con-
tact in a Hele-Shaw cell forming a narrow straight “diffusion front.” In the
perpendicular (to the cell) external field, the interface developed an intricate
labyrinthine pattern, while a peak pattern was obtained in the normal field
(i.e. in the field applied along the cell perpendicularly to the front). The
pattern length scale was approximately as small as the layer thickness (less
than 10−2 cm). Having quickly formed, the patterns were gradually blurred
out by diffusion.

1This term should be understood in our context as an instability of a quiescent state
with respect to convection and not as the opposite to the “absolute” instability of a flow.

24
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Recently, the diffusion in magnetic fluids under an applied magnetic field
was investigated [2, 103, 104, 105] by the forced Rayleigh scattering (FRS)
on the optical gratings induced in thin layers (between transparent plates)
of MF’s heated by an intensive non-uniform illumination (“pumping”) [106].
By exposing the layer for a long enough time, a stationary grating – usu-
ally a periodic array of parallel stripes – was created. After the pumping
is switched off, thermal inhomogeneities relax almost immediately, whereas
the concentration grating decays gradually. This allowed to determine the
effective diffusion coefficient of magnetic particles. If the magnetic field was
applied along the layer parallel to the concentration gradients (in the “peak”
configuration with respect to the stripes), the effective diffusion coefficient
was observed to increase up to several times as the field increased. This ef-
fect was attributed [2, 103] to the magnetophoresis in the self-magnetic field.
However, the mixing might have also been enhanced through breaking the
one-dimensionality of the concentration distribution. The magnetophoresis
alone is hardly capable of producing this effect [107]. Even though the oc-
currence of microconvection was not checked in these FRS experiments, such
possibility should be investigated. And indeed, very recently, reported were
the first experimental indications of a microconvection in the FRS setup
[3, 108].

In this regard the experiments [109] also deserve mentioning; their in-
terpretation was controversial [109, 110, 4]. An MF layer was heated by a
focused perpendicular laser beam. The diffraction pattern was observed to
loose its axisymmetric shape if the perpendicular magnetic field was raised
above a critical value. Further on, if in addition a field was applied along
the cell, the diffraction pattern would oscillate. While the authors of the
experiment believe that a convection sets in there, it is argued in [110] that
the circular symmetry is lost owing to a static instability akin to that of mag-
netic bubbles in a Hele-Shaw cell, with the concentration gradients playing
the role of an effective surface tension (§1.2). The nature of observed effects
remains unclear. (See also [111].)

In a circular geometry, a miscible MF flow in a Hele-Shaw cell under a
perpendicular field was recently simulated in [68] and an intensive fingering
was reported.

An instability of the Darcy flow of magnetic fluids in porous media in the
field applied along the concentration gradients (the peak configuration) was
studied in [112]. To extend these results to the case of a Hele-Shaw cell, its
finite thickness must be taken into account at deriving the self-magnetic field
of MF. We will consider several concentration distributions along the cell in
order to be close to real experimental conditions. The case of an isolated
miscible interface admits a pen-and-paper analysis for both orientations of
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Figure 2.1: A sketch of a Hele-Shaw cell with a perturbed step-like concen-
tration distribution.

the field. Studying the smoothed step-like and Gaussian (an isolated stripe;
it will be studied only in the normal field) distributions allows to assess
the impact of smearing on stability. Besides, the continuous formulation of
the problem makes it possible to incorporate the Brinkman (Darcy–Stokes)
equation for the Hele-Shaw flow that is an improvement over the conventional
Darcy law (§1.3). The array of sharp parallel stripes specifically reproduces
the periodicity of the FRS grating.

We will consider a MF confined in a horizontal Hele-Shaw cell of spacing h.
An inhomogeneous gap-invariant concentration of magnetic particles serves
to model a particular case of a miscible MF pair in contact. (Indeed, generally
one would expect two MF’s to have e.g. different diffusion coefficients, etc.)
The MF concentration c(x, y) (the number of magnetic particles per unit
volume) is assumed constant across the cell, and the whole problem is to be
rendered two-dimensional by averaging across the cell gap.

According to §1.2, we take the two-dimensional mass-averaged MF veloc-
ity field ~v to satisfy

div~v = 0 , (2.1)

and the convection–diffusion equation holds:

∂c

∂t
+ (~v · ~∇)c = D∆c , (2.2)

where D is a constant diffusion coefficient. According to §1.1, the magne-
tophoresis is not taken into account.



2.2. MISCIBLE PROBLEM AND CONTINUOUS SPECTRUM 27

The flow is governed by the Brinkman (Darcy–Stokes) equation for the
gap-averaged variables [see Eq.(1.13) in §1.3]:

− ~∇p+ (η∆ − α)~v + ~fm = 0 , (2.3)

where p is the pressure, ~v is the velocity (relative to the walls), η is the vis-
cosity, and α = 12η/h2 is the friction coefficient estimated for the Poiseuille
velocity profile. We remind (§1.3) that we can expect the full Eq.(2.3) to
be valid for η = const; however, in the Darcy case it holds also at the
concentration-dependent viscosity η = η(c). ~fm stands for the gap-averaged
density of the magnetostatic body force that depends on the field orienta-
tion.

2.2 The miscible stability problem

and the continuous spectrum2

Let us consider the linear stability of some one-dimensional concentration
distribution c0(x, t0). The miscible basic flow is time-dependent due to dif-
fusion so that a quasi-steady-state approximation (QSSA) must be adopted
to study the linear stability by means of the normal-mode analysis at some
moment t0 [33]. Hereby we discard the further diffusion of the basic state as
the flow perturbations evolve; their diffusion is taken into account, however.
Technically, this amounts to “freezing” the time-dependent coefficients in the
linearized perturbation equations. QSSA is considered [33] valid for diffused
enough interfaces. Non-QSSA attempts were an exception [31], though re-
cently a quite general QSSA-free approach to the long-wave linear stability
of miscible interfaces was suggested [113]. Note also the boundary condi-
tions introduced in [20] that render the basic flow with diffusion steady and
can perhaps be used experimentally to create a controlled diffusion front (the
solute spreads by diffusion upwards into a vertical Hele-Shaw cell whose open
bottom side is immersed into a large reservoir, with a downward flow of the
solvent opposing the spreading). In principle, a time-independent basic state
can be maintained also by a chemical reaction [114].

Keeping in mind the situation of slow displacement and weak external
field, we introduce h and h2/D as space and time scales, respectively, to

2 “It should be kept in mind that the subject of instabilities in an infinite domain
is intrinsically difficult, in particular because of the appearance of problems related to
the continuous spectrum. Many seemingly innocent questions have, to date, not even
the beginning of a satisfactory mathematical answer. . . ” (P. Collet and J.-P. Eckmann,
Instabilities and Fronts in Extended Systems, Princeton University Press, 1990.)
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render our independent variables dimensionless. Further on, we scale the
concentration, velocity, magnetic potential, viscosity, friction coefficient, and
pressure with their respective reference values c̃, D/h, c̃m0h, η̃, α̃ = 12η̃/h2,
and α̃D. We preserve the same notation for the dimensionless variables.

Now we take the curl of Eq.(2.3) and linearize it along with Eq.(2.2) about
the basic state. Since the coefficients of the linearized equations depend only
on x (and on the “frozen” time t0 which enters as a parameter), we can sep-
arate out the variables t and y, as one would do if no integral terms were
present. Thus we expand a velocity disturbance into discrete Fourier modes
{

v′x(x; k), v
′
y(x; k)

}

exp(iky + λ(k)t) (and likewise we expand the perturba-
tions of c and ψ), where λ is a temporal growth increment of the mode of a
dimensionless wavenumber k. We proceed with a singled out mode.

The linearized Eq.(2.2) becomes now

d2c′

dx2
− (k2 + λ) c′ = v′x

∂c0
∂x

, (2.4)

The flow incompressibility immediately yields

ikv′y = −dv′x
dx

. (2.5)

In the next paragraphs we will present the further steps of the stability
analysis in the case of magnetic fluids. In the rest of the present paragraph,
we will explore some general issues concerning the stability analysis. This
matter will be of no direct use further in the work. In particular, let us con-
sider now in some detail the occurrence of the continuous spectrum, since we
will encounter later (in §2.3) a linearized problem that can possess no dis-
crete spectrum. In order to clarify the issue without technical complications,
we temporarily set ~fm = 0, omit the Brinkman term in Eq.(2.3), and take
α = const.

Making use of the incompressibility, one obtains now the linearized Eq.(2.3)
simply as

d2v′x
dx2

− k2v′x = 0 . (2.6)

The equations (2.4) and (2.6) together with the boundary conditions (that
c′ and v′x vanish) at infinity compose an eigenvalue problem.

However, it can be readily seen that at any λ the boundary conditions
are not satisfied. Thus there are no normal modes. Under some conditions,
we will meet the same difficulty in our analysis of complete MF equations.
However, it is the behaviour of infinitesimal perturbations that is of inter-
est to us. Their dynamics is nevertheless governed by the linearized system.
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The decomposition into normal modes [115] is only a convenient way, but not
always an appropriate one, to reduce the problem for an arbitrary pertur-
bation into a simpler problem for the single-mode solutions, whose temporal
behaviour is given by a compact dispersion relation.

Let us outline briefly a not rigorous argument (ch. 4 of [116], §7.10 of
[117]) by which a generalization of the usual normal-mode approach can be
obtained. Many assumptions, reservations, etc. will be omitted to make the
idea clear. Consider a linear operator L whose set of eigenfunctions uk(x),
Luk = λkuk, is complete:

u =
∑

k

αkuk

for an arbitrary u(x). Then

Lu =
∑

k

αkλkuk ,

and we can introduce other operators by the following formal definition:

f(L)u =
∑

k

αkf(λk)uk .

Let us consider f(t) = 1/(λ− t):

f(L)u =
∑

k

αkuk

λ− λk

. (2.7)

Obviously, this f(L) is the inverse of −(L − λE), E being the identity
operator. Now if L is a differential operator, the inverse is expressed through
a Green’s function G:3

f(L)u = −
∫

G(x, ξ, λ)u(ξ) dξ . (2.8)

Integrating Eqs.(2.7) and (2.8) over a large circle in the λ plane and taking
the residues at the poles in Eq.(2.7), we obtain

u(x) = − 1

2πi

∮

dλ

∫

G(x, ξ, λ)u(ξ) dξ . (2.9)

Thus the decomposition of a function in terms of the eigenfunctions of L is
related to the Green’s function of L− λE. From Eq.(2.9) it follows that

− 1

2πi

∮

G(x, ξ, λ) dλ = δ(x− ξ) . (2.10)

3Alternatively, the right-hand sides of Eqs.(2.7), (2.8) can be shown to be equal by
expanding the Green’s function in terms of the eigenfunctions (J. D. Jackson, Classical

Electrodynamics, Wiley, 1962, §3.11.)
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The resulting formulas hold in fact for a wider class of situations than one
might think.

To be more specific, let us write down our system (2.4), (2.6). We have
a generalized eigenvalue problem:

L

(

c′

v′x

)

= λB

(

c′

v′x

)

,

where

B =

(

1 0
0 0

)

and

L =





d2

dx2 − k2 −∂c0
∂x

0 d2

dx2 − k2



 .

In this case the Green’s function becomes a Green’s matrix (§16.5 of [118]).
For illustration purposes let us consider, however, the trivial case ∂c0/∂x =

0. Then the equations for c′ and v′x decouple so that the Green’s function for
the concentration given by

(L11 − λE)G(x, ξ, λ) = δ(x− ξ)

can be easily found as

G =
−1

2
√
k2 + λ

exp
(

−|x− ξ|
√
k2 + λ

)

.

Now we want to integrate G over the circle of an infinite radius. G is analytic
in λ with the exception of a branch cut λ ∈ (−∞,−k2), on the upper side
of which we choose ℑm

√
k2 + λ > 0. The sum of the integral over the circle

and the integral over the branch cut (both paths are followed in the same
direction) equals zero by Cauchy’s theorem. The integral over the branch
cut is easy to evaluate, and we obtain the following formula:

− 1

2πi

∮

G(x, ξ, λ) dλ =
1

2π

−k2
∫

−∞

cos
(

|x− ξ|
√

−(k2 + λ)
)

√

−(k2 + λ)
dλ , (2.11)

where the square root takes on its arithmetic value. In accordance with
Eq.(2.10), the right-hand side indeed reduces to a delta-function by a well-
known representation

∫ +∞

−∞

exp(ikx) dk = 2πδ(x) .
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Eq.(2.9) takes on the form

c′(x) =
1

2π

−k2
∫

−∞

dλ
√

−(k2 + λ)

+∞
∫

−∞

cos
(

|x− ξ|
√

−(k2 + λ)
)

c′(ξ) dξ =

−k2
∫

−∞

dλ

2πσ



cos (σx)

+∞
∫

−∞

c′(ξ) cos (σξ) dξ + sin (σx)

+∞
∫

−∞

c′(ξ) sin (σξ) dξ



 (2.12)

(here σ =
√

−(k2 + λ)). This is nothing else but the desired decomposition
of (the k-th y-mode of) an arbitrary instantaneous concentration field in
terms of functions of a prescribed temporal behaviour ∼ exp(λt). If the
Green’s function had pole singularities in addition to the branch cut, there
would appear a sum of residues in Eqs.(2.11), (2.12) corresponding to the
decomposition into the conventional normal modes. The inner integration in
Eq.(2.12) would still give the coefficients of the decomposition. We remind
that usually the expansion is implicit, and normal modes are analyzed from
the beginning. However, we have a decomposition in terms of functions that
do not satisfy the boundary conditions at infinity, where the functions are
only bounded but do not vanish. The corresponding eigenvalues λ are said
to belong to the so-called continuous spectrum of the stability operator as
opposed to the discrete spectrum (§12 in [118]). (Indeed, one has to integrate
over the continuous spectrum but sum over the enumerable set of discrete
eigenvalues.) Although every eigenfunction of the continuous spectrum is
not admissible in the sense of the boundary conditions, their continuous
infinite set can represent a valid vanishing perturbation. The situation is the
same as with the Fourier integral (our illustration (2.12) is a version of the
Fourier decomposition). Infinity of the domain is a root of the continuous
spectrum. Indeed, shift the boundary conditions to finite points, and the
continuous spectrum will usually condense into a countable set of discrete
eigenvalues. (Another common cause for the continuous spectrum to emerge
is the singularity of coefficients.)

A by-product of our analysis (2.12) is that λ ≤ −k2, i.e. every perturba-
tion belonging to the continuous spectrum will disappear. Of course, with
our simplifications, it follows directly from the diffusion equation that any
disturbance will. Thus the continuous spectrum can be neglected if one asks
about the instability. How general is this conclusion?

Later we will study situations where the analogue of Eq.(2.6) will contain
additional, integral terms related to the magnetic field, which will render the
stability operator integro-differential. Analysis of the inverse operator and
its singularities seems to be intractable. A finite number of discrete modes
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will appear; the discrete eigenvalues will have either ℜeλ > −k2 or ℑmλ 6= 0
(it is easy to see that complex-valued eigenvalues come in conjugate pairs).

Nevertheless, Eq.(2.4) remains valid and has the following property. As
in our problems ∂c0/∂x and other variable coefficients vanish at infinity,
the convection–diffusion equation (2.2) and the analogue of Eq.(2.6) always
decouple at infinity. Thus we will have the same behaviour of the eigen-
functions at infinity. If the conditions of vanishing are imposed there, the
discrete eigenfunctions result that can be real or complex valued, while the
corresponding eigenvalues can be stable or unstable. If we demand that the
solutions be only bounded, the continuum eigenfunctions result. In this case
it is guaranteed, by virtue of Eq.(2.4), that λ is real and negative. Of course
we realize that this argument, extended from [39], is not rigorous, still we
believe the conclusion is right.

In the spectral theory ([119, 120]) the exact definitions of the discrete,
continuous, and the so-called residual spectrum are given. The linear or-
dinary differential operators do not possess the residual spectrum (p.184 of
[117], p.200 of [116]). The spectral theory for the self-adjoint operators is es-
pecially well developed. We will obtain complex-valued eigenvalues though,
which automatically implies that the problem is not self-adjoint. For the
Sturm-Liouville problem, there are many simple criteria allowing to judge
upon the spectrum merely by coefficients. The continuous spectrum of the
boundary-value problems is quite important in quantum mechanics [121].

In hydrodynamics, the most studied stability problem is that of the in-
ertial instability (governed by the Orr-Sommerfeld equation) of the viscous
parallel shear flow, and its inviscid limit. The continuous spectrum of the
problem in the unbounded domain is discussed, e.g., in [122, 123, 124]. The
complete and mathematically rigorous approach to the linear stability prob-
lem with time-invariant coefficients is to solve the initial-boundary-value
problem for an arbitrary perturbation, which allows to take the continuous
spectrum into account in a natural way. This is usually achieved through
the one-sided Laplace transform of the equations in time combined with the
Fourier transform in those spacial variables of which the coefficients are in-
dependent ([125, 126, 127, 128]; see also [129], §2.3.2 in [130]). At inverting
the solution obtained in the transform space, the poles in the variable of the
Laplace transform correspond to the discrete eigenmodes, while the branch
cuts correspond to the continuum eigenfunctions, much the same as for the
above-demonstrated technique employing the Green’s function. Indeed, the
homogeneous linear stability equations such as Eq.(2.4) for c′ exp(λt + . . .),
etc, are exactly the equations for the Laplace-transformed Fourier modes of
linear perturbations of c(t, . . .), etc, but without the inhomogeneous terms
due to initial conditions. Integrating over the unstable part of the contin-
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uous spectrum, one obtains that the associated temporal behaviour is non-
exponential (§47.1 in [131]).

We would like to touch briefly the so-called transient-growth phenomena
[132, 133, 134]. It turns out that the notion of linear stability must be gen-
eralized to describe the observed phenomena more adequately. Consider the
case of non-orthogonal eigenfunctions, all of them decaying monotonically in
time (a linearly stable situation). Then possible are their linear combinations
such that they, being initially small, grow temporarily because of the differ-
ence in growth rates between individual modes. A simplistic analogue is the
early behaviour of exp(−t) − exp(−2t) ∼ t. The transient growth can be so
substantial (orders of magnitude) that the disturbance enters the non-linear
regime, where its fate is no longer controlled by the linear theory.

We also just mention the so-called energy methods in (non-linear) stabil-
ity theory that are based on the estimates of solutions to differential equations
(§§VI.8–9 in [135], [136], [137]). If the flow is found to be non-linearly sta-
ble, it is of course stable with respect to infinitesimal disturbances as well.
Hydrodynamic stability problems are treated from the stand-point of the
non-equilibrium thermodynamics in [138].

The theory of the hydrodynamic stability is a respectable but demanding
field4 at the interface between fluid mechanics and applied mathematics. As
a reference, we would recommend [131]; for a detailed overview of inertial
instabilities and transition, see Chapter 2 of [139].

2.3 The labyrinthine instability

In the next four paragraphs,5 we will consider the magnetic field applied
perpendicularly to the cell and the “labyrinthine” instability it causes. Then
the gap-averaged density of the magnetostatic body force ~fm is given by
Eq.(1.28) as

~fm = −2h−1m0c~∇ψ . (2.13)

Herem0 is an average particle moment component along ~H0, and by Eq.(1.29),

ψ(~r, t) = m0

∫

c(~r ′, t)K (~r ′ − ~r) dS ′ (2.14)

with K(~ρ) = 1/ρ− 1/
√

ρ2 + h2.

4 “Research on hydrodynamic stability has been deep but narrow. . . ” (P. G. Drazin
and W. H. Reid, [131].)

5Results of §2.3 were mostly published in [140] and communicated in part as [141, 91]
and at [9].
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2.3.1 Derivation of the dispersion relation

We investigate the linear stability of the initially step-like concentration dis-
tribution (i.e. of the straight “front” separating half-planes each occupied by
its respective MF). For the sake of generality, a steady displacement of the
fluid perpendicularly to the front with the velocity U relative to the walls is
also allowed for, which, at the concentration-dependent viscosity, allows us
to take the Saffman–Taylor mechanism of instability into account. We can
allow for viscosity variations only in the Darcy case.

We adopt the (x,y) Cartesian rectilinear reference frame that moves with

the velocity ~U , the x axis being directed along the ~U vector (Fig. 2.1). The
quiescent state is then as follows:

~v0 = 0 , (2.15)

∂c0/∂t = ∂2c0/∂x
2 , (2.16)

− ∂p0/∂x− Peα− 2 Cm c0 ∂ψ0/∂x = 0 , (2.17)

ψ0 =

∫ +∞

−∞

c0(ξ + x, t0) ln
(

1 + ξ−2
)

dξ , (2.18)

where Pe = Uh/D is the Péclet number.6 The dimensionless group

Cm =
(c̃m0)

2

α̃D
(2.19)

is the ratio of the time h2/D it takes for diffusion to act over the character-
istic distance h to the time h2α̃/(c̃m0)

2 of the advection due to the magnetic
force. In fact, the gap width h is introduced as the characteristic length by
the magnetic field – through the dimensional form of Eq.(2.18). The driving
force being due to a self-magnetic field, Cm is quadratic in magnetization.
Hence Cm parallels the magnetic Rayleigh number ∼ (∂M/∂T )2(∆T/h)2h4

characterizing a thermomagnetic instability [142] of a thin MF layer in a uni-
form perpendicular field with a temperature difference ∆T imposed across
the layer. However, even though Cm resembles the magnetic concentration
(solute) Rayleigh number, it has nothing to do with gradients across the cell.
Cm is essentially independent of the viscosity, for the Stokes drag entering
the Einstein formula for D and the friction coefficient α̃ both vary linearly
with η̃ (so that Cm ∼ (c̃m0)

2h2a/(kBT ), where kB is the Boltzmann con-
stant). As MF saturates, a field increase cannot yield an arbitrarily high Cm
with a given MF sample (unless a thicker cell is taken). For the only available

6Everywhere we use “ ln” for the natural logarithm and “ lg” for the decimal one.



2.3. LABYRINTHINE INSTABILITY 35

experimental situation [1] (h = 0.01 cm, H0 = 100 Oe, MF saturated mag-
netization of 10 G) we substitute reasonable guesses for the missing values
(a = 5 × 10−7 cm for the radius of a particle, and 500 G for the particle
material magnetization), which yields Cm ≈ 104.

Interestingly, the dimensional analysis of the problem (the Π-theorem
[143]) with constant coefficients reveals that only one more dimensionless
parameter could in principle emerge: h3c̃. Obviously, we are working in the
limit h3c̃≫ 1 (moreover, h3c̃≫ h/a by Eq.(1.1)).

As described in §2.2, we expand all disturbances into discrete Fourier
modes ∼ exp(iky + λ(k)t). Then, introducing the McDonald (modified
Bessel) function

K0(x) =

∫ ∞

0

cos(xt)dt√
t2 + 1

, (2.20)

the perturbation of the potential is expressed as

ψ′ = 2

∫ +∞

−∞

c′(ξ + x)
(

K0(k |ξ|) −K0(k
√

ξ2 + 1)
)

dξ . (2.21)

The linearized CDE has already been obtained as Eq.(2.4). Taking into
account the incompressibility of the flow, Eq.(2.5), one obtains the linearized
curl of Eq.(2.3) as

1

k2

d

dx

[

− η

12

d3v′x
dx3

+
(

k2 η

12
+ α

) dv′x
dx

]

+
η

12

(

d2v′x
dx2

− k2v′x

)

− αv′x

−Pe
dα

dc
c′ − 2 Cm

(

c′
∂ψ0

∂x
− ψ′∂c0

∂x

)

= 0 .

(2.22)

The appearance of Eq.(2.22) is somewhat misleading, since it is valid, in its
full form, only at η = const, when the term with the Pe factor vanishes.
However, a varying viscosity is allowed in the Darcy approximation when
(h/L)2 = k2 + ‖d2/dx2‖≪ 1, where L is the two-dimensional (in the plane
of the cell) flow scale. Recalling the definition of α we find that the terms
explicitly containing η should be omitted to have the Darcy case.

Equations (2.21)–(2.22) compose a system of linear ordinary differential
and integro-differential equations. Imposing the relevant boundary condi-
tions

c′ = v′x = 0 (2.23)

at x = ±∞ yields an eigenvalue problem for the system (these conditions
refer to the eigenfunctions of the discrete spectrum, §2.2).

We start with the Darcy case L2 ≫ h2 in the formal limit t0 = 0 when the
concentration distribution is step-like. This linear stability problem can be



36 CHAPTER 2. STABILITY OF A MISCIBLE INTERFACE

solved analytically. Let c, α, and dα/dc be equal 1, a1, and b1, respectively,
if x < 0 and 0, a2, and b2 if x > 0. From Eq.(2.18) we calculate the magnetic
potential ψ0 of the basic state:

∂ψ0(x, 0)/∂x = − ln
(

1 + x−2
)

. (2.24)

Equations (2.4), (2.22) in both half-planes x < 0 and x > 0 take on the form

d2c′/dx2 = (k2 + λ) c′ , (2.25)

k−2 d2v′x/dx
2 − v′x = a−1

1,2 c
′
(

b1,2 Pe − 2 Cm ln
(

1 + x−2
))

. (2.26)

Now, we demand that the discrete perturbation modes vanish at infinity and
introduce the following conditions at the discontinuity:

[v′x]
+0
−0 = 0 , (2.27)

[dc′/dx]
+0
−0 = v′x(0) [c0]

+0
−0 , (2.28)

[c′]
+0
−0 = 0 , (2.29)

[α(c0)dv
′
x/dx]

+0
−0 = −2 Cm k2ψ′(0) [c0]

+0
−0 . (2.30)

The jump conditions (2.27), (2.28), and (2.30) are obtained from the inte-
gral form of Eqs.(2.1)–(2.3) and essentially represent, respectively, the con-
servation of mass, species, and momentum (the latter amounts here to the
pressure continuity). Condition (2.29) corresponds to a phenomenological
law (the first Fick’s law) and perhaps has no immediately apparent physical
interpretation in the sharp-interface limit. It may be deduced from Eq.(2.4)
e.g. by “balancing” the delta functions (p. 41 in [144]). Even though the
reduced Eqs.(2.25), (2.26) are purely differential, the non-local nature of the
problem survives through the boundary condition (2.30).

From Eqs.(2.25) and (2.29) it follows that

c′(x) = A exp(−sk|x|) , (2.31)

where A is the dimensionless amplitude of the perturbation mode, and

s =
√

1 + λ/k2 . (2.32)

For the concentration to vanish at infinity we suppose (§2.2)

ℜe s > 0 . (2.33)
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The perturbation of the field is found from Eq.(2.21) as ψ′(0) = 4AJ(s, k)/k,
where

J(p, q) =

∫ +∞

0

exp(−pz)
(

K0(z) −K0(
√

z2 + q2)
)

dz .

From Eq.(2.26) we obtain (s 6= 1)

v′x = C1,2 exp (k|x|) +D1,2 exp (−k|x|) + Aa−1
1,2 b1,2 Pe (s2 − 1)−1 exp (−sk|x|)

−Aa−1
1,2 Cm k [exp (+k|x|) g (|x|, k(s+ 1)) − exp (−k|x|) g (|x|, k(s− 1))] ,

(2.34)

where

g(z, a) =

∫ z

0

exp(−aζ) ln
(

1 + ζ−2
)

dζ ,

and C1,2, D1,2 are the dimensionless amplitudes in their respective domains.
(For a neutral perturbation, s = 1, the necessary expressions are the recov-
ered as the limit of the written ones.) In order for the velocity to vanish at
infinity we demand

C1,2 = Aa−1
1,2 Cm k f(k(s+ 1)) , (2.35)

where

f (a) ≡ g (+∞, a) = 2 (γ + ln a− ci a cos a− si a sin a) /a , (2.36)

γ = 0.5772 . . . is the Euler constant, and

si x = −
∫ +∞

x

sin t

t
dt , ci x = −

∫ +∞

x

cos t

t
dt

are the integral sine and cosine functions. Conditions (2.27)–(2.30) now yield

D1,2/A = 2ks− a−1
1,2 Cm k f(k(s+ 1)) − a−1

1,2 b1,2 Pe/(s2 − 1) (2.37)

and the dispersion relation

a1 + a2

2
ks+ Cm [2J(s, k) − k f(k(s+ 1))] +

b1 + b2
4

Pe

s+ 1
= 0 . (2.38)

Equation (2.38), solved for λ, in a zero field agrees with the expressions
obtained previously by other authors (e.g. [36] at a constant isotropic disper-
sion). However, it is now obvious that the dispersion relation and Eq.(2.33)
should preferably be written in terms of s rather than λ. In dimensional
variables, the gap width h at Cm = 0 drops out of Eq.(2.38), as it should do.
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Given that b1,2 > 0, an unstable displacement occurs for the non-magnetic
fluid at negative Péclet numbers (Fig. 2.1). Concentration–viscosity profile
is often [33] assumed exponential, η ∼ exp(Rc), in which case (b1 + b2)/(a1 +
a2) = R. Note that contrary to the immiscible case, the dispersion relation
(2.38) does not involve the viscosity contrast a2 − a1 due to a different nature
of perturbations and boundary conditions (see p. 10).

At any Cm only the solutions of Eq.(2.38) that satisfy the condition
(2.33) correspond to admissible, vanishing at infinity perturbations and thus
comprise a discrete eigenvalue spectrum. (A similar observation was made
in [39]; see §2.2.) Obviously, an arbitrary initial data cannot be decomposed
in terms of a finite set of discrete normal modes alone. The continuous part
of the perturbation spectrum (ℜe s = 0) consists of improper eigenfunctions
that are only bounded as x → ±∞. These elementary perturbations are
stationary (ℑmλ = 0) and stable (λ 6 −k2).

In the case when both the applied field and the displacement favour the
instability, the dispersion relation (2.38) may lead to a double-humped λ(k)
curve. The presence of two preferred wavelengths may result in an interesting
mode competition and interaction. But further on in the present article we
restrict ourselves to the case α(c) = α̃ = const, i.e. in the dispersion relation
(2.38) we set

a1 = a2 = 1 , b1 = b2 = 0 . (2.39)

This renders the system insensitive to the displacement and Pe is no longer
a control parameter. For a sharp interface, however, conditions (2.39) are
not as restrictive as for a diffused one. Indeed, according to Eq.(2.38), an
arbitrary α(c) at no displacement can be absorbed in a rescaled Cm, in which
case there is no loss of generality in imposing a1 = a2 = 1. This way or that,
relation (2.38) implicitly defines the possibly multiple-valued λ = λ(k,Cm)
dependence to be explored in detail in the next paragraph.

2.3.2 The stability diagram and the asymptotic analysis

of the dispersion relation7

At Cm = 0 (the pure convective diffusion) no discrete modes are present.
For small Cm the following expression may be derived from Eq.(2.38) by
differentiating the implicit function s = s(Cm):

λ = −k2 + Cm2 (k f(k) − 2J(0, k))2 +O(Cm3) , (2.40)

7 “Divergent series are the invention of the devil, and it is shameful to base on them any
demonstration whatsoever. . . by using them one can draw any conclusion he pleases. . . ”
(Niels Henrik Abel, 1828).
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where J(0, q) = 1
2
π (1 − e−q). Owing to Eq.(2.33), the parentheses in Eq.(2.40)

must be positive, which condition is equivalent to k > k0 = 1.673.
For an arbitrary Cm the number of eigenvalues was checked by applying

the Cauchy principle of argument [145] to the left-hand side of Eq.(2.38),
with the latter being regarded as a function h(s) of a complex variable s in
the half-plane (2.33). Consider a semicircle C of a large radius in the half-
plane ℜe s > 0, closed by a segment ℜe s = 0. Then the number of zeroes the
left-hand side of Eq.(2.38) has within the semicircle is equal, in the absence
of poles, to the number of winds the image h(C) makes around the origin.8

The dispersion curves are presented in Fig. 2.3 (k > k0) and Fig. 2.4
(k < k0). We begin with the case k > k0, when just one solution to Eq.(2.38)
for a given Cm exists. This mode is stationary. The value Cmcr = 5.572
appears to be critical, with the mode losing its stability at kcr = 5.343.
The most dangerous wavenumber quickly increases with Cm, which is to be
discussed below. At k = k0 the value s = 0 satisfies the dispersion relation
(2.38) with any Cm. As k varies slightly, the solution to Eq.(2.38) departs
from zero and either becomes admissible in the sense of Eq.(2.33) or not.
Indeed, as soon as k gets smaller than k0, one discrete mode disappears (if
Cm < Cm0 = 7.135) or emerges (Cm > Cm0). In general, if k < k0, either
no solutions or two (complex-conjugate or real distinct) solutions exist. The
occurrence of two modes is illustrated by Fig. 2.4 (which extends Fig. 2.3). If
the pair is stationary, we term “dominant” the mode with larger increment,
referring to the other one as “secondary.” Fig. 2.5 presents the classification
of solutions in the k, Cm plane. There is a long-wave region on the parameter
plane that corresponds to the absence of the discrete modes.9 If Cm < Cm0,
the region spans over the whole 0 < k < k0 range, but it contracts at larger
Cm (the region h of Fig. 2.5). Further on, the dispersion relation (2.38)
subject to the constraint (2.33) has two complex-conjugate solutions in the
regions f , g (with the frequency of oscillations tending to zero on the border
curves 3 and 4); these two solutions are real in c–e; at entering the regions a,
b the secondary mode disappears. Closing the path of the clockwise circular
“walk” over the stability map, we observe a disappearance of the only mode
on the a–h boundary. On the whole, the complexity of Fig. 2.5 is largely due
to the condition (2.33), for there always are two solutions to the standalone
dispersion relation (2.38), either real or complex.

The neutral curves for oscillatory and stationary modes intersect in the

8The idea of this beautiful application of the complex analysis is due to Professor
A. Cēbers.

9 “What happens then with a small disturbance?” – this apparently simple question,
asked by Professor J.-C. Bacri, has in fact motivated us to investigate the issue of the
continuous spectrum (§2.2).
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0

(b) k = 1.70, Cm = 30: 1 mode.

0

(c) k = 1.65, Cm = 30: 2 modes.

0

(g) k = 1.0, Cm = 15: 2 modes.

0

(h) k = 1.0, Cm = 9: no modes.

Figure 2.2: The number of discrete modes as the number of winds around
the origin: an application of the Cauchy principle of argument. Plotted is
the image of a large semicircle in the half-plane ℜe s > 0 under the complex
transform generated by the dispersion relation (2.38), (2.39). The plots are
labelled according to the lettering of the stability diagram (Fig. 2.5).
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Figure 2.3: The growth rate – wavenumber dependence for short wavelengths
k > k0. Numbers near the curves indicate the corresponding Cm values. The
dotted curve is the zero-field limit λ = −k2. Only the Cm = 15.0 curve
extends leftwards beyond k0 (where a ℜeλ segment is visible).
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Figure 2.4: The growth rate – wavenumber dependence for k < k0. 1 – the
pair of real increments; 2 – the real part of two complex-conjugate increments;
3 – along this curve the two increments converge; 4 – the secondary increment
in the infinite field.
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Figure 2.5: The stability diagram and classification of modes. 1, 2 – the
neutral curves for the stationary and oscillatory instabilities, respectively;
3 – the boundary of the domain of the oscillatory instability; 4 – the lower
boundary (ℜe s = 0, ℑm s 6= 0) of the region of the discrete spectrum; 5 –
k = k0 (s = 0). There is one stationary mode in the regions a, b; two
stationary modes in c–e; two complex-conjugate oscillatory modes in f , g;
no admissible modes in h.
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point k = 1.443, Cm = 31.68. To the right of this point along the real
neutral curve (curve 1 in Fig. 2.5), a perturbation mode (the dominant one
in d or the only one in a) loses its stability as Cm increases. On the contrary,
since the secondary increment diminishes with the field (see Fig. 2.4), to
the left of the point (in e) along the real neutral curve the secondary mode
acquires stability as Cm increases. This branch of the neutral curve has an
asymptote k = 1.225 (i.e. however intense, the field cannot stabilize a long-
wave secondary mode, see the curve 4 in Fig. 2.4). The field destabilizes the
complex-conjugate modes: the neutral curve 2 in Fig. 2.5 corresponds to a
long-wave cutoff. Two complex-conjugate modes imply the presence of an
oscillatory convection. Its physical origin will be addressed in §2.3.3. Here
we just remark that the convective self-oscillations sought in [146, 147] are
very different in that they involve temperature and concentration gradients
across the cell (as well as additional diffusive effects).

The dispersion relation (2.38) calls for an approximate representation
that would enable us to derive simple, explicit asymptotic formulas for some
relationships found above. The structure of Eq.(2.38) suggests exploring
the limit of large increments rather than a common long-wave expansion.
Specifically, the left-hand side of relation (2.38) is asymptotically expanded
in s in the limiting case

|s| → ∞ , |s| ≫ 1/k . (2.41)

The senior terms of the expanded equation read:

ks/(2 Cm) − s−1F (k) + s−2 (ln(ks) + γ − 1) + . . . = 0 , (2.42)

where F (q) = ln(q/2) +K0(q) + γ. The first two terms in Eq.(2.42) immedi-
ately give a single mode

λ = −k2 + 2 Cm kF (k) . (2.43)

The diffusive smearing of the perturbations is responsible here for the −k2

term that replaces the known for the immiscible case cubic-in-k damping
term in Eq.(3.36) due to the surface tension. Relation (2.43) also reveals
the fact that the diffusion is of no influence when Cm → ∞ (for the −k2

term becomes negligible) and that the diffusion coefficient D drops out from
the dimensional growth increment – magnetization dependence. In other
words, h2/(CmD) = h2α̃/(c̃m0)

2 should be chosen as a true time scale of the
instability. In a strong field the new scale becomes much less than several
hours (the typical value of h2/D). In the Cm → ∞ limit from Eq.(2.43)
one recovers the result of [101] for the comb-like instability in zero gravity



44 CHAPTER 2. STABILITY OF A MISCIBLE INTERFACE

and with zero surface tension. (The only difference is a factor of 2, which is
due to the inviscid nature of the non-magnetic ambient liquid used in [101],
i.e. a2 = 0.) It can be inferred also that the QSSA validity must improve
as Cm → ∞, since the time scale of perturbations varies inversely with
Cm, whereas the basic distribution is Cm independent. The results of [101]
required no QSSA at all.

In the second approximation we solve the three-term Eq.(2.42) to find at
a small k some important corrections to Eq.(2.43). If Cm is large enough
for the given k, another real s to satisfy Eq.(2.42) exists (the secondary
mode). As Cm increases, this s asymptotically approaches from above a
constant value 4/k2 (which corresponds to the curve 4 of Fig. 2.4), while the
dominant eigenvalue (2.43) increases without bound. On the contrary, if the
field decreases, the two roots approach one another and converge at s = 6/k2

(curve 3 of Fig. 2.4) with 1/CmB = (1/216)k5(− ln k) (curve 3 of Fig. 2.5).
The roots become complex-valued and conjugate. As the field decreases
further, the frequency of oscillations grows rapidly and attains a maximum
of ℑmλ ≈ 20/k2 at about half the CmB. The pair of oscillatory modes gains
stability at (2/27)CmB, having ℑm s ≈ ℜe s = 2/k2 (i.e. the frequency of
the neutral oscillations is asymptotically ℑmλ = 8/k2), which corresponds
to the curve 2 of Fig. 2.5. Thus, given a fixed k ≪ 1, the range of unstable
oscillations covers about a decade in Cm. (However, the oscillatory mode is
not dominant at a fixed large Cm.) Finally, at much lower Cm values, the
solutions fail to satisfy the conditions (2.41); indeed, on the boundary of the
domain of the discrete spectrum (curve 4 of Fig. 2.5) we have kℑm s ∼ 1
(λ ∼ −1).

The validity of the presented asymptotic analysis was verified, among
many other means, by direct evaluation of the dispersion relation.

2.3.3 Physical mechanism of oscillations10

In this paragraph we attempt to explain the mechanism of the instability in
physical terms. To this end, a feedback is established between a driving force
and the motion it causes. For clarity, we analyze the case of no displacement.
We will be using primed capitals to denote a fully qualified perturbation:
c − c0 ∼ C ′(x, y, t) = ℜe [c′(x) exp(λt)] cos(ky), etc. Let us consider the

10 “The apparent indication of some form of instability or growth by the linearized plane
wave analysis requires rather more by way of interpretation than might at first sight
be supposed.” (P. C. Clemmow and J. P. Dougherty, Electrodynamics of Particles and

Plasmas, Addison-Wesley, 1969, §6.1.1.)
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linearized dimensionless Eqs.(2.3) and (2.13):

− ~∇P ′ − α~V ′ + ~F ′
1 + ~F ′

2 = 0 , (2.44)

where ~F ′
1 = −2 CmC ′~∇ψ0, ~F

′
2 = −2 Cm c0~∇Ψ′, and ~V ′ =

{

V ′
x, V

′
y

}

. The

perturbation ~F ′
2 of the magnetic force is peculiar to plane layers of polariz-

able media in a perpendicular field, and we are not aware of instabilities of
different origin driven by an analogous force. We note that F ′

1 y = 0, and at
x = 0 additionally F ′

2 x = 0 (eigenfunctions V ′
x, C

′, and Ψ′ have all been found
to be even in x). Importantly, it is only at the interface that the velocity
field has direct influence upon the concentration and thus is of interest for
our purposes.

If the stationary instability sets in, the mechanism seems rather clear.
Close enough to the interface, a positive concentration perturbation C ′ gives
rise to a force in the x-direction: F ′

1 x > 0. The force naturally induces a
likewise-directed velocity disturbance (V ′

x > 0). This velocity advects inho-
mogeneous basic concentration at x = 0 (Eq.(2.28)) so as to increase the con-
centration perturbation. Diffusive smearing competes the self-intensification
(as expressed by Cm). All in all, a “superparamagnetic” ferrofluid parcel
is entrained into a stronger resulting field, i.e. into the region of smaller
demagnetizing influence of MF. (This is the case for the above-mentioned
thermomagnetic instability [142] as well.)

Now we turn to the intriguing nature of a self-sustained oscillatory con-
vection that is also predicted for the system. We begin with establishing
an overall pattern of the normal modes that is exemplified by Fig. 2.6. An
oscillating x-component of the velocity causes by turns positive and negative
concentration variations at the interface. The variations are spread outwards
by diffusion and form two semi-infinite sequences of vanishing spots. The
spots are alternately either rich or deficient in suspended matter, with new
spots being continuously “born” at x = 0 (as shown in Fig. 2.6). The process
reminds one of “heat waves”, or also of a one-dimensional diffusion over a
semi-axis with an oscillating source at the end-point. Specifically, according
to Eq.(2.31),

C ′ = A exp(µt− ak|x|) cos(bk|x| − ωt) cos(ky) , (2.45)

where s = a + ib and λ = k2(s2 − 1) = µ + iω. Essential is that the
sequences propagate away from x = 0 (in both directions) at a velocity

w = ω/(bk) = 2ak > 0. As for the velocity ~V ′, from the curl of Eq.(2.44) it

may be seen that concentration spots at x 6= 0 owing to ~F ′
1 are associated

with the local flow vorticity rotz(α~V
′) = 2 Cm (∂ψ0/∂x) ∂C

′/∂y. According
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x

y

0

Figure 2.6: Example of an oscillatory perturbation mode (t0 = 0, the Darcy
approximation, k = 1.2, Cm = 53.88, neutral, of a period T = 1.246) plotted
over k|y| 6 π, k|x| 6 3π/4. Upper panels: concentration (contours) and ve-
locity (arrows). Lower panels: the field potential (contours) and the density

of the magnetic force ~F ′
1 + ~F ′

2 (arrows). Light and dark areas correspond to
positive and negative values, respectively. Arrow lengths depend non-linearly
on vector magnitudes. Left to right: t = 0; T/4; T/3. By t = T/2, the t = 0
pattern is exactly inverted throughout. The basic concentration is non-zero
at the left-hand side of every panel (x < 0).
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to Eq.(2.30), the velocity component V ′
y is discontinuous at the interface (it

changes sign), so it is set to zero at x = 0 when plotting Fig. 2.6.

What is the restoring force reversing the velocity at x = 0? Such reversal
is evidently important for the overall pattern inversion. As stated above, the
direct action of the magnetic force at x = 0 is always to amplify the concen-
tration perturbation. Then Eq.(2.44) leaves the only possibility: the pressure
gradient across the interface may oppose the force, and ∂P ′/∂x is periodi-
cally larger in magnitude than F ′

1 x. (The latter was never the case with the
stationary instability). One local origin of the counter-pressure may be easily
identified. By ensuring the flow incompressibility, the pressure involves the
y-component F ′

2 y of the force into balance. This F ′
2 y is zero outside MF, but

inside MF it is directed against ~∇Ψ′ (Fig. 2.6), i.e. approximately against
~∇C ′ (since Ψ′ is a smoothed version of C ′). Along this side of the interface,
the force tends to stretch y-wise the region of positive C ′, thereby creating a
depression inside MF that favours an inward motion and hence the transport
of negative C ′. In like manner, if C ′ is negative, an excess pressure induced
inside MF would provide a positive ∂C ′/∂t. Thus the oscillatory regime is
indirectly enabled by F ′

2 y.

In the above analysis a weak divergence of F ′
1 x at x = 0 has been left

out of account. However, an integrable force density may be redistributed
over an arbitrarily narrow stripe containing the interface line, which would
not affect our conclusions. This applies also to the counter-pressure gradient.
Note that F ′

1 x − ∂P ′/∂x remains finite as x→ 0.

Obviously, oscillations are possible so far as certain phase relations exist
between the velocity, competing forces, and concentration. The eigenfunc-
tions are out of phase even if taken at the same point. Indeed, Eq.(2.45) at
y = 0 and x = 0 becomes simply C ′ = A exp(µt) cos(ωt). However, from the
jump condition (2.28) it follows that at this point V ′

x = 2Akℜe [s exp(λt)] =
2Ak|s| exp(µt) cos(ωt + arg s). The velocity disturbance is always ahead of
the concentration (with the time difference (arg s)/ω). This may be noticed
in Fig. 2.6: at a quarter period, the concentration must be exactly zero at
x = 0, but the velocity has the “negative” direction already and has worked
for some time to decrease C ′ locally. This phase shift must also be attributed
to the pressure, for the x-component of the magnetic force oscillates in phase
with the concentration. Since ∂P ′/∂x and αV ′

x sum to make a force of a zero
lag, it is quite evident that the pressure must fall behind with C ′. (Strictly
speaking, since the force is divergent at x = 0, the pressure gradient is a
sum of an unbounded part that must be in phase with the force, and a fi-
nite part that lags behind.) The importance of the F ′

2 y contribution to the
pressure at x = 0 has been established above. The force F ′

2 y is determined
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by the perturbation of the field potential Ψ′. But Ψ′ must lag behind the
concentration at x = 0 for the following simple reason: it is defined through
a smoothing (over x) integral operator acting upon a specific time-dependent
concentration distribution. Namely, the concentration inhomogeneities travel
away from x = 0, so that averaging across the interface involves the earlier-
delivered ones. Therefore the potential at x = 0 falls behind with C ′, and
the time lag may be easily expressed as −[arg J(s, k)]/ω > 0. In particular,
at a quarter period the potential at the interface is non-zero yet. In short,
after ~F ′

1 and diffusion have worked to produce a large enough concentration

spot, ~F ′
2 takes over and initiates the reversion.

On the whole, self-oscillations occur through the spatial and temporal in-
terplay between diffusion and advection, with the latter being driven by con-
centration inhomogeneity (via the magnetic force). Since diffusion is crucial
for such oscillations to occur, they are absent in the well-studied immiscible
case.

2.3.4 Labyrinthine instability of a diffused interface:

numerical stability analysis

One might expect the stability features found for small k in §2.3.2 to persist
in the case of the more general Brinkman equation. Unfortunately, it is
for the weakly diffused interfaces that our numerical results for the Darcy
approximation prove rather different from those obtained without it.

The case t0 > 0 is studied both in the Darcy approximation (L2 ≫ h2)
and without it. The viscosity is assumed constant. To obtain an algebraic
eigenvalue problem from Eqs.(2.4), (2.21)–(2.23), the spatial derivatives are
approximated (with the second order) with finite differences, while the in-
volved integral operator with a logarithmically singular kernel is handled as
follows. The logarithm is subtracted from the kernel and a simple quadra-
ture rule based on it as a weight function is constructed; the rule is exact
for piecewise-linear integrand functions; a smooth remainder is integrated
by the trapezoidal rule. To be resolved are several spatial scales: of the
basic concentration distribution; of the basic field [which vanishes as 1/x2

for |x| ≫ max(1,
√
t0)]; of the perturbations [in a weak field these extend

beyond 1/k, see Eq.(2.31)]. This is partially achieved by adopting a non-
uniform grid. Grid points are uniformly distributed along the z axis, where
z = x/

√
x2 + a2 is a transform of the physical coordinate x (along the basic-

state gradients). In the present calculations we take a =
√
t0 + 5 + 5/k with

N grid points. The results are checked against the change in N . Normally
we focus upon the dominant mode. The spectrum of the resulting matrix



2.3. LABYRINTHINE INSTABILITY 49

Cm Wavenumber k

0.14 0.2 0.3 0.5 0.7 1.0 1.4 2.0 3.0

300 2* 2* 2* / 2 3 3 / 2 3 / 2 3 / 2 3 / 2 3 / 2

150 2* 2* 2* 2 3 / 2 2 2 3 / 2 3 / 2

100 2* 2* 2* 2* / 2 3 / 1 2 2 2 3 / 2

75 2* 2* 2* 2* / 2 2 / 1 2 / 1 2 2 2

50 0 2* 2* 2* / 2 2 / 1 1 2 / 1 2 2

30 0 0 2* 2* / 2 2 / 1 1 1 2 / 1 2 / 1

20 0 0 0 2* 2* / 1 1 1 1 2 / 1

10 0 0 0 0 2* / 1 1 1 1 1

5 0 0 0 0 0 / 1 1 1 1 1

3 0 0 0 0 0 / 1 1 1 1 1

Table 2.1: The number of numerical modes at t0 = 0.01 for various k, Cm
values. The Darcy and Brinkman results, where different, are separated by
a slash. An asterisk denotes two complex-conjugate modes (counted both
in the preceding number). The case k = 0.14 is computed with N=320; for
other columns N=288. To compare with Fig. 2.5 (p. 42).

becomes quite “dense” for t0 > 1, which prevents from efficient solving by
power method for just this mode alone. We resort to a standard eigenvalue
finder to calculate the whole discrete spectrum. The cases explored include
t0=0.01; 0.03; 0.1; 0.3; 1; 3; 10; 30; 100 with k in the range 0.05 . . . 20 (17
values) and Cm in the range 3 . . . (3 × 104) (32 values). Many Figures to be
introduced in this paragraph are curve fits of the pointwise data.

For the smallest t0 values we numerically obtain a satisfactory agreement
with our Darcy analytic findings. In particular, the absence of the discrete
modes (region h in Fig. 2.5) indeed manifests itself as an absence of the
matrix eigenvalues satisfying ℜe s > 0. The number of eigenvalues given by
both numerical codes is listed in Table 2.1 for the smallest t0 tried.

Given fixed t0, k, and Cm, a rough threshold value of N exists such
that the number of modes does not change upon further grid refinement.
The smaller t0 and k, the higher the threshold, which makes the respec-
tive results computationally more expensive. As t0 increases, the oscillatory
“tongue” on the k, Cm plane (regions f , g in Fig. 2.5) shrinks and shifts to
smaller wavenumbers, and the domain of no modes (region h) behaves cor-
respondingly. As early as at t0 = 1, even with our best resolution N = 320,
we could locate neither oscillatory modes nor the absence of any modes in
the whole k range, while both were still present at t0 = 0.3, k 6 0.2. Exam-
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Figure 2.7: An example of the full (discrete) spectrum of growth increments:
the Darcy law (top) and the Brinkman equation (bottom). N=160, t0 = 1,
Cm = 1000.
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ining the numerical oscillatory modes, and both Darcy and Brinkman ones,
suggests that at t0 > 0 the presented mechanism of oscillations does not
change essentially. For t0 > 1 all the numerical modes are stationary, and
their number increases with t0 and Cm (being artificially limited by N). For
the Darcy case, the number also increases with k. As to the Brinkman case,
the number follows more or less the Darcy pattern for small k, but attains
a maximum at some k value, being at larger k well lower than it is in the
Darcy case (Fig. 2.7).

The growth increment of the dominant mode is plotted in Figs. 2.8, 2.9.
For the Darcy approximation we observe an unlimited shift of the most dan-
gerous wavelength towards the successively shorter scales as the field in-
creases, which invalidates the approximation for a weak field already. Besides,
large-k concentration being gap-invariant contradicts intuition, especially in
the miscible case. Relaxing the Darcy approximation inhibits the instabil-
ity at shorter scales and leads to a new effect: as Cm increases, the most
dangerous wavelength tends to a limiting value that is of the order of h, or
unity in the dimensionless notation (Fig. 2.10), and that weakly depends on
the thickness of the diffused interface (Fig. 2.11). It remains to be seen how
this wavelength dynamics is related to finger coarsening at early stages (cf.
[113] for the Darcy case). The linearly most dangerous wavelength is often
compared against the typical length of a non-linear pattern. Unfortunately,
the latter cannot be recovered with certainty from the experimental pho-
tographs [1]. However, if we admit that they all are of the same scale, the
typical length may be estimated to be as small as about one third of the gap
width (thus considerably smaller than allowed by Figs. 2.10, 2.11). In this
case the assumption of a gap-invariant concentration is questionable, though
it may be argued that the apparent length scale might have decreased by a
tip-splitting at a non-linear stage.

For both the Darcy and the Brinkman cases, the growth rates are asymp-
totically (Cm → ∞) linear in Cm for any fixed k value. As a function of k,
the rescaled by Cm growth rate in the Brinkman case approaches a limiting
curve as Cm → ∞ (plotted in Fig. 2.12; cf. Fig. 3 of [88]), while the growth
increment of the most dangerous wavelength roughly scales as Cm/t0 for t0 >

1 (Fig. 2.13). Relative to QSSA it deserves mentioning that the rate of change
of the basic state (1/c0) ∂c0/∂t0 is independent of Cm and decreases as 1/t0 at

x =
√
t0, but not slower than t

−3/2
0 for any fixed x. Strictly speaking, we can

expect QSSA to hold if 1/|λ| ≪ c0/ (∂c0/∂t0) =
√
πt0 erfcx(ξ)/ξ for all range

of ξ = x/(2
√
t0) wherein the solution is localized (which is obviously not the

case with a sharp interface). The function erfcx(z) is defined as erfcx(z) =
exp(z2) (1 − erf(z)) and thus asymptotically erfcx(z)/z ∼ 1/(

√
πz2) as z →
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Figure 2.8: The dominant mode for the Darcy equation. N=160, t0 = 1.
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Figure 2.10: The most unstable wavenumber: Darcy (solid lines) vs.
Brinkman (dashed lines). Results for the diffused interfaces are numeri-
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Figure 2.11: The asymptotic (Cm → ∞) most unstable wavenumber (top)
and the critical wavenumber (bottom) vs. the diffusion time. The Brinkman
case (N=160).
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unstable mode with the diffusion time t0 in the Brinkman case (solid line,
N=160); the 1/t0 apparent scaling (dashed line).
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ones (dashed lines) as the interface diffuses. The t0 = 0 Darcy curve is
obtained analytically (Fig. 2.5). On the t0 = 0.01 curves (N=256), empty
circles denote a stationary mode, while the filled ones stand for an oscillatory
pair. The other neutral curves (N=160) correspond to stationary modes.
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+∞ and erfcx(z)/z ∼ 1/z as z → +0.

As the basic state diffuses out, the critical wavenumber decreases some-
what (Fig. 2.11). Fig. 2.14 presents the neutral curves and leads to the follow-
ing conclusions about the long-wave perturbations (k < 1). First, it is only
when t0 is not small that the inequality ‖d/dx‖≪ 1 holds for the eigenfunc-
tions, so that the Brinkman case reduces to the Darcy one. Fig. 2.10 brings
more evidence to this point. Conversely, when the interface is sharp enough,
higher velocity derivatives in Eq.(2.22) (and additional boundary conditions
for the discontinuous problem) come into play if the Brinkman formulation
is employed. Table 2.1 (t0 = 0.01) also exhibits the difference in the number
of modes between the cases. Secondly, Fig. 2.14 demonstrates that the in-
terface smearing at an early stage diminishes the stability of the long-wave
perturbations. Moreover, they are more unstable for the Brinkman-governed
system than for the Darcy-governed one, i.e. adding more dissipation reduces
stability. This is not impossible, a celebrated example, though distant one,
being the inertial instability (governed by the Orr-Sommerfeld equation) of
the viscous planar Poiseuille flow which is stable in the inviscid limit (by
the Rayleigh’s inflection-point theorem). In the case of the Rayleigh–Taylor
instability with miscible fluids, however, analytical dispersion relations are
available at t0 = 0 for both Brinkman and Darcy formulations [88], and
in the Darcy case the increment appears to be always higher than in the
Brinkman case. Finally, we note that the numerically obtained critical Cm
for t0 = 0.01 in the Darcy approximation is somewhat lower than the an-
alytically obtained Cmcr for the sharp interface. The possibly destabilizing
effect of the basic-state diffusion at its early rapid phase was also observed,
and also with QSSA, in [39, 38] (cf. also Fig. 18 of [87]). The critical Cm –
t0 dependence will be shown later (Fig. 2.21).

2.4 The peak instability in a Hele-Shaw cell

In the next four paragraphs,11 we will consider the uniform external magnetic
field ~H0 applied in the plane of the cell normally to the interface (along the
x-axis, Fig. 2.1). The equations of §2.1 hold, but the gap-averaged density

of the magnetostatic body force ~fm is now given by Eq.(1.26) as

~fm = −m0c~∇
∂ψ

∂x
, (2.46)

11The results of §2.4.1 were mostly published in [148], the results of §§2.4.2–2.4.4 were
published as [149]. Besides, all this was presented as [150].
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where m0 is the average magnetic moment of a particle along ~H0. (The
particles are non-interacting.) The gap-averaged potential ψ of the self-

magnetic field of MF ( ~H = ~H0 − ~∇Ψ, ψ =< Ψ >) reads by Eq.(1.25):

ψ = −m0

h

h
∫

0

dz

h
∫

0

dz′
+∞
∫

−∞

+∞
∫

−∞

∂c(x′, y′)

∂x′
dx′ dy′

((x− x′)2 + (y − y′)2 + (z − z′)2)1/2
.

(2.47)

2.4.1 Perturbation analysis and a sharp interface in the

normal field

In this paragraph, we undertake the stability analysis for a sharp interface
under the normal field. The analysis follows largely the lines of §2.3.1 (and
§2.2). We again non-dimensionalize Eqs.(2.2), (2.3), (2.46), and (2.47) intro-
ducing h and h2/D as space and time scales, respectively. The concentration,
magnetic potential, viscosity, friction coefficient, and pressure are scaled with
their respective reference values c̃, c̃m0h, η, α, and αD. The existing notation
is kept for the dimensionless variables.

Let us consider the linear stability of the quiescent state for some con-
centration distribution c = c0(x, t0) in the external field ~H0. We again em-
ploy the quasi-stationary-state approximation (QSSA) and “freeze” the co-
efficients of linearized equations to simplify significantly the analysis. We
introduce two-dimensional normal modes: c(x, y) = c0(x, t0) + c′(x) eıky+λt,
~v = ~v ′(x)eıky+λt, etc. The linearized Eqs.(2.3), (2.46) are

− v′x −
dp′

dx
− Cm c′

∂2ψ0

∂x2
− Cm c0

d2ψ′

dx2
= 0 , (2.48)

− v′y − ikp′ − Cm ikc0
dψ′

dx
= 0 . (2.49)

Expressing v′y by incompressibility from Eq.(2.5) and the pressure perturba-
tion p′ from Eq.(2.49), one rewrites Eq.(2.48) as

1

k2

d

dx

[

− 1

12

d3v′x
dx3

+

(

k2

12
+ 1

)

dv′x
dx

]

+
1

12

(

d2v′x
dx2

− k2v′x

)

− v′x−

Cm

(

c′
∂2ψ0

∂x2
− ∂c0
∂x

dψ′

dx

)

= 0 .

(2.50)

Eq.(2.4) is the linearized equation for the concentration perturbation. From
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Eq.(2.47) the derivative of the potential follows as

∂ψ

∂x
= 2

+∞
∫

−∞

+∞
∫

−∞

(x− x′)
∂c

∂x′
J
(

√

(x− x′)2 + (y − y′)2
)

dx′ dy′ (2.51)

with J(ρ) = (
√

ρ2 + 1 − ρ)
/

ρ2 . Then the magnetic potential ψ0 induced by

the basic distribution c0(x, t0) is given by

∂ψ0

∂x
= 2

+∞
∫

−∞

∂c0
∂x′

[

2 arctan
1

x− x′
− (x− x′) ln

(

1 +
1

(x− x′)2

)]

dx′ ,

(2.52)
so that

∂2ψ0

∂x2
= 4π

∂c0
∂x

− 2

+∞
∫

−∞

∂c0(ξ + x)

∂ξ
ln

(

1 +
1

ξ2

)

dξ . (2.53)

The field perturbation is also calculated from Eq.(2.51) as

dψ′

dx
= 4

+∞
∫

−∞

(x− x′)
dc′

dx′
J0(x− x′, k) dx′ = 4πc′ + 4

+∞
∫

−∞

c′(ξ + x)J1(ξ, k) dξ ,

(2.54)
where J1(η, k) = d (ηJ0(η, k))/ dη − πδ(η) is only logarithmically singular,
and

J0(ξ, k) =

∫ ∞

0

cos(kζ) J
(

√

ζ2 + ξ2
)

dζ .

Now we are in position to solve analytically the stability problem for
a straight sharp interface if the simpler Darcy law is assumed for the flow
instead of Eq.(2.3). The corresponding version of Eq.(2.50) is recovered by
omitting the terms that involve division by 12, while other equations of this
paragraph remain valid.

Let us consider a step-like concentration distribution: ∂c0/∂x = −δ(x).
Then Eqs.(2.52), (2.53) immediately give

[

∂ψ0

∂x

]+0

−0

= −4π ,
∂2ψ0

∂x2
= 4π

∂c0
∂x

+ 2 ln

(

1 +
1

x2

)

. (2.55)

At the discontinuity of c0 additional conditions hold [cf. Eqs.(2.27)–(2.30) in
§2.3.1]. Three of them are the same as in the case of the perpendicular field:
the continuity of c′ and v′x and [dc′/dx] = v′x [c0] . Only the condition for the
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jump of the pressure differs. It can be derived by integrating Eq.(2.50) over
x along the interval (−δ,+δ) and taking the limit δ → 0:

1

k2

[

dv′x
dx

]+0

−0

= Cm

(

c′(0)

[

∂ψ0

∂x

]+0

−0

− dψ′(0)

dx
[c0]

+0
−0

)

. (2.56)

This relation can also be derived as a balance of pressures in the same way
as it has been done for the perpendicular field. If one wishes not to deal with
magnetic forces divergent at the interface where magnetic properties change,
the “magnetic pressure” (§5.2 of [14]) can be introduced instead. Indeed,
Eq.(5.23) of [14] translated into the CGS units reads [p] = 2πM2

n , where Mn

is the magnetization normal to the interface. Upon linearization and non-
dimensionalization we obtain [p′] = 4πCm c′. We also have from Eqs.(2.49),
(2.5) at x 6= 0:

p′ = − 1

k2

dv′x
dx

− Cm c0
dψ′

dx
.

Now with Eq.(2.55) we recover Eq.(2.56).
The solution of Eq.(2.4) is again simply

c′ = A exp(−sk|x|) , (2.57)

where s =
√

1 + λ/k2 as before. Eq.(2.50) at x 6= 0 becomes

1

k2

d2v′x
dx2

− v′x = 2ACm exp(−sk|x|) ln

(

1 +
1

x2

)

.

The solution of this equation that vanishes at infinity and is continuous at
x = 0 reads

v′x = C exp(−k|x|)

− AkCm exp(+k|x|)
+∞
∫

|x|

exp(−kx′(s+ 1)) ln

(

1 +
1

x′2

)

dx′

− AkCm exp(−k|x|)
|x|
∫

0

exp(−kx′(s− 1)) ln

(

1 +
1

x′2

)

dx′ , (2.58)

The boundary conditions on the derivatives of the velocity and concentration
then give, respectively,

− 2Ck − 2Ak2 Cm f (k(s+ 1)) = −4πAk2 Cm + k2 Cm
dψ′(0)

dx
, (2.59)
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2As = C − AkCm f (k(s+ 1)) , (2.60)

where f (a) is defined by Eq.(2.36).
To obtain a dispersion relation from Eqs.(2.59), (2.60), the field pertur-

bation dψ′(0)/dx must be found from Eq.(2.54):

dψ′(0)

dx
= 4A(π + Ĵ(s, k)) (2.61)

with

Ĵ(s, k) =

+∞
∫

−∞

exp(−sk|ξ|)J1(ξ, k) dξ . (2.62)

Then the dispersion relation for the growth increment follows as

s/Cm + Ĵ(s, k) + f (k(s+ 1)) = 0 . (2.63)

It yields a single monotonous perturbation mode. After some manipulations,
it is possible to obtain the neutral curve in the following form:

1

Cm
=
π

2
+

2

3k
− 2 − k2

3
K1(k)−

k

3
K0(k)+

(

1 − k2

3

)

Ki1 (k)− f (2k) , (2.64)

where K0 is the Macdonald function (2.20),

Ki1 (k) =

∫ ∞

k

K0(t)dt ,

and K1 = −K0
′

. The neutral curve is shown in Fig. 2.15. For k → 0 it may
be expanded as

1

Cm
= k
(5

2
− γ − ln (8k) +O(k)

)

. (2.65)

This approximation becomes unsatisfactory at k ≈ 0.3 already where it
falsely predicts a minimum (Fig. 2.15). For k → ∞ the neutral curve behaves
asymptotically as follows:

1

Cm
∼ π

2
+

1

k

(

2

3
− γ − ln(2k)

)

. (2.66)

The critical field is Cmcr = 2/π. Our dispersion relation and neutral curve
should be compared against that of [112] for the case of porous media,
which at zero displacement read 2s2 = Cm + 1 −

√
1 + 2 Cm = inv(k) and

Cm = 4 = inv(k), respectively. Nevertheless the critical Cm’s are compara-
ble. Despite the finite thickness of the Hele-Shaw cell, the critical wavenum-
ber is infinite. This indicates of course that at small scales our analysis
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Figure 2.15: The exact neutral curve for the miscible “peak” instability (solid
line) in a Hele-Shaw cell and its asymptotic behaviour (dashed lines).

in inadequate. The real concentration distribution (for which the Rayleigh
scattering technique was applied) does not correspond to a sharp interface;
it rather resembles a diffused transition layer between two miscible magnetic
liquids. At studying a diffused interface, it is desirable to use the Brinkman
(Darcy-Stokes) equation to ensure adequate description of the Hele-Shaw
flow at short scales. But before these problems are addressed, let us check
first the effect of the periodicity of the concentration distribution.

2.4.2 A periodic stripe pattern in the normal field.

In this section we analyze the stability of the periodic array of parallel MF
stripes in a Hele-Shaw cell. The applied magnetic field is directed perpendic-
ularly to the stripes. The interface between a stripe and the adjacent pure
carrier liquid is sharp. Then, if the simpler Darcy law is again assumed for
the flow instead of Eq.(2.3), the stability problem can be solved analytically.
The coefficients of the linearized equations in §2.4.1 and the boundary con-
ditions change in the present case. Let us consider the 2L-periodic array of
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Figure 2.16: The neutral curves for the instability of the periodic array of
sharp stripes in the Darcy flow. Dotted lines : L = 2, l = 1; dash-dotted
lines : L = 10, l = 1; dashed lines: L = 10, l = 5; solid line (from Fig. 2.15):
L→ ∞, l → ∞.

stripes, the stripe width being 2l (l < L). Then

∂c0
∂x

=
+∞
∑

m=−∞

[δ(x− 2mL+ l) − δ(x− 2mL− l)] ,

which, according to Eq.(2.53), gives

∂2ψ0

∂x2
− 4π

∂c0
∂x

= −2 ln
Φ(x+ l)

Φ(x− l)
,

where Φ(y) = 1 + sinh2(π/(2L))
/

sin2(πy/(2L)) .
With the exception of the magnetic potential, whose perturbation ψ′

needs to be evaluated numerically through an infinite sum, the due pro-
cedure is much the same as in the previous paragraph. Writing down general
solutions of linear homogeneous Eqs.(2.50), (2.4) for every domain where c0
is constant, one makes use of the jump conditions and periodicity to obtain
a linear algebraic system for the amplitudes of eigenmodes. The dispersion
relation follows as the zero determinant of this system. Lengthy details of
this straightforward derivation are omitted. The resulting dispersion relation
is of the form F (s,Cm, k, L, l) = 0, where s =

√

1 + λ/k2. In fact, F is poly-
nomial in Cm, which facilitates finding the roots of the dispersion relation.
As common [15] for the problems with the self-magnetic field, a kind of “reci-
procity” relation holds: F (s,Cm, k, L, l) = F (s,Cm, k, L, L− l), i.e. inverting
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Figure 2.17: The neutral curves for the instability of the periodic array of
narrow (l = 0.1) sharp stripes in the Darcy flow. Dotted lines : L = 0.2;
dashed lines: L = 2; solid lines : L = 10.

the underlying stripe pattern (MF ↔ non-MF) does not change the flow and
its stability. Indeed, for an arbitrary concentration distribution c(x, y), the
formal change of sign and the shift by a constant (here c̃) together modify
our initial Eqs.(2.3), (2.46), (2.47), and (2.2) only insignificantly. (The mod-
ification consists in the addition to the pressure that further drops out both
from the equations and from the jump conditions.)

Computing the neutral curves (ℜeλ = 0), we found no oscillatory neutral
modes, so that the “exchange of stabilities” takes place at the threshold. For
all values L, l that we tried, the neutral curves appear to have two branches.
The upper branch corresponds to the undulation (bending) mode, in which
the perturbed velocity at the opposite edges of each stripe is of the same
direction. The critical mode is the “peristaltic” one, in which the edges of a
stripe spread away in the opposite directions or move toward one another.
As l increases (along with L), the mutual influence of the edges vanishes.
Therefore, at l → ∞ the branches converge (the higher the wavenumber k,
the faster) to the neutral curve for the instability of the sharp discontinuity
obtained in the preceding paragraph. At fixed L, l the convergence also seems
to be the case as k → ∞ (Figs. 2.16, 2.17). In fact, since we evaluated the
dispersion relation only approximately, it cannot be excluded that at some
point the two modes fully coalesce into a single one.

We note in conclusion that in the periodical stripe pattern a second per-
turbation mode exists. This peristaltic mode becomes unstable at finite (and
rather low) Cm values even in the limit of large wavelength (Figs. 2.16, 2.17).

A comparison of several sharp-interface neutral curves obtained in the



2.4. PEAK INSTABILITY IN A HELE-SHAW CELL 65

-1 0

0

2

1

lg Cm

lg kh

Figure 2.18: The neutral curves for the sharp interface (the Darcy flow): the
labyrinthine (dashed line) and peak (solid line) instabilities of an isolated
interface; the peristaltic mode of the peak instability of an array of stripes
(dash-dotted line: L = 10, dash-dot-dotted line: L = 2, dotted line: L = 0.2;
l = L/2 for all).

present work is made in Fig. 2.18.

2.4.3 Numerical stability analysis of a diffused interface

in the normal field.

Substituting Eqs.(2.53), (2.54) into Eq.(2.50) yields, together with Eq.(2.4)
and boundary conditions, an eigenvalue problem that is generally similar to
the one considered in §2.3.4. Thus we follow the same procedure to discretize
the problem. Unlike the case of the labyrinthine instability, the kernel J1 of
the integro-differential equation (2.50) is itself expressed through an integral.
We represent the kernel as J1(η, k) = J2(η, k) −K0(kη) + kη K1(kη) (k > 0,
η > 0). As η → 0, J1(η, k) becomes logarithmically singular, while J2 remains
finite:

J2(η, k) +
πk

2
e−kη = k Ki1 (k) +K0(k) − kK1(k) +O(η2) .

We resolved this problem by constructing a quadrature rule based on the
kernel J1 as a weight function. The rule is exact for piecewise-linear integrand
functions. The equations were solved on a non-uniform grid. Grid points
were uniformly distributed along the z-axis, where z = x

/√
x2 + a2 . We

took a =
√
t0 + 5 + 5/k with N grid points. The spatial derivatives were

approximated (with the second order) with finite differences. The whole
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Figure 2.19: The neutral curves for the instability of the originally step-
like concentration distribution in the Brinkman flow (solid lines, t0 = 0.03;
0.1; 0.3; 1; 3; 10; 30 bottom to top) and in the Darcy flow (dashed lines,
t0 = 0.03 for the upper curve, t0 = 0 for the lower analytical one repeated
from Fig. 2.15).
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Figure 2.20: The neutral curves for the instability of the Gaussian concen-
tration distribution in the Brinkman flow. Right to left: t0 = 0.03; 0.1; 0.3;
1; 3; 10; 30.
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Figure 2.21: The critical Cm number as the basic concentration distribution
diffuses out in the Brinkman flow: the labyrinthine (dashed line) and peak
(solid line) instabilities of a single initially step-like interface c1(x); the peak
instability of a Gaussian stripe c2(x) (dash-dotted line).

spectrum of the algebraic system for a given (k, Cm) pair was obtained by
a standard eigenvalue finder. Since eigenfunctions of the discrete spectrum
are required to vanish at infinity, numerical real eigenvalues λ ≤ −k2 must be
discarded [see §2.2, Eqs.(2.4), (2.33)]. In many cases several valid eigenvalues
were obtained. However, we traced only the highest (dominant) one. All the
results presented correspond to N = 512 but were checked against the change
in resolution.

We did the numerical stability analysis for two basic concentration distri-
butions c0(x, t0): c1 = 0.5 erfc (0.5x/

√
t0) and c2 = exp (−0.25x2/ t0), where t0

is the time elapsed since the distribution was step-like or delta-function-like,
respectively. Both distributions are normalized by the maximum concentra-
tion value, which for the Gaussian one (c2) implies a progressive scaling down
of the Cm number as the diffusion process evolves. Generally, t0 in our analy-
sis may just parametrize a family of instantaneous “frozen” distributions that
not necessarily result from the diffusion of a definite initial one. The cases
explored include t0 = 0.03; 0.1; 0.3; 1; 3; 10; 30 with 17 k values within
the range 0.05 . . . 20 and 18 Cm values such that 4πt0 Cm ranged from 0.2
to (1 × 105). (For t0 = 10, 30 additional series of computations with higher
Cm numbers were undertaken as well).

For both concentration distributions the dominant normal mode was
found to be stationary. The neutral curves of the instability are plotted
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Figure 2.22: The Cm dependence of the most unstable wavenumber for the
initially step-like concentration distribution (solid lines) and for the Gaussian
one (dashed lines) in the Brinkman flow. Black circles correspond to λ = 10.
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Figure 2.23: The most unstable wavelength at infinite Cm (top) and the crit-
ical wavelength (bottom) for the initially step-like concentration distribution
(solid lines) and for the Gaussian one (dashed lines) at various t0 values in
the Brinkman flow.
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Figure 2.24: The asymptotic (Cm → ∞) value of the λ/Cm ratio for the
initially step-like (solid line) and Gaussian (dashed line) concentration dis-
tributions in the Brinkman flow.

in Figs. 2.19, 2.20 for the originally step-like concentration distribution and
for the Gaussian one, respectively. Along with the curves for the Brinkman
flow at various t0 values, two neutral curves for the Darcy flow are also plot-
ted in Fig. 2.19: the one obtained analytically in §2.4.1 for t0 = 0 and the
numerical one for t0 = 0.03. These curves demonstrate that numerical results
are consistent with earlier analytic findings. Besides, the Darcy critical Cm
numbers are just a little lower than the Brinkman ones. In the rest of the
Section we will consider the Brinkman flow only. The critical Cm numbers
provided by Fig. 2.21 generally increase as the concentration gradients get
smoother (even though their amplitude is fixed). Therefore, to verify experi-
mentally the onset of convection, it may be appropriate to switch on the field
as soon as the desired distribution develops and not earlier. The Gaussian
distribution proves to be less stable than the c1 one for all t0’s tried. The
Cm dependence of the most dangerous wavenumber is presented in Fig. 2.22.
As Cm increases, the most unstable wavelength tends to the limit of several
gap widths, as summarized in Fig. 2.23. While being typical for the mi-
croconvection in a Hele-Shaw cell, such behaviour is not reproduced by the
Darcy law (see §2.3.4). It should be noted that the limiting (“saturation”)
wavelength is almost the same for both distributions and weakly depends
on t0. The growth increment λ increases along the curves (upwards) plot-
ted in Fig. 2.22. Their lower end-points correspond to λ = 0 (and thus to
the minimum of the neutral curves in Figs. 2.19, 2.20). Since the validity
of QSSA improves as the instability growth rate increases, the Cm numbers
that correspond to λ = 10 are also given in Fig. 2.22. For large Cm the
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increment of the most unstable wavenumber is asymptotically linear in Cm.
This indicates that the proper time scale of the problem becomes h2/(CmD)
(p. 43). The limit of the λ/Cm ratio is given in Fig. 2.24.

2.4.4 A comparison to FRS experiments

In the FRS case the developed models concern the situation when the ther-
mal variations have relaxed already after the light source was switched off.
Though thermodiffusion is no longer in action, the concentration structure
is still present, because it requires much longer time to vanish [106]. Note
that only the experiment [3] specifically concerned the convection in the FRS
setup. We begin with discussing other cases, where the instability was nei-
ther sought nor detected; its presence can now be judged upon by evaluating
the corresponding Cm number. As for t0 for the diffused distributions, it will
be taken to be unity, since the pattern period is comparable to h.

Let us estimate the maximum Cm number attained in works [2, 103].
The magnetization of the particle material (maghemite) is MS = 4 × 102 G,
while the magnetic radius of particles is am = 6 nm. In the highest field
H0 = 1.4 × 103 Oe used, the magnetization of such paramagnetic colloid
becomes almost saturated. The diffusion coefficient D of particles of the
hydrodynamic radius ah = 15 nm may be found by the Einstein–Stokes
formula. Then, if the average MF concentration cav is substituted for c̃ in
the Cm definition (p. 34), for the colloid of the volume fraction ϕav = 0.09
in a h = 0.01 mm thick cell one obtains Cm = 7 × 104.

However, it is the concentration modulation (and not cav) that is respon-
sible for the instability. The concentration difference δc between the dark
and bright fringes in the developed grating was in fact introduced above as
c̃ and may differ considerably from the average concentration; unfortunately,
it was not measured [2, 103]. Nevertheless it may be estimated considering
the preceding stage of the FRS experiment. Refs. [147, 151, 106] analyze this
steady-state regime, when the light source is still on, and the non-uniform
heating sustains the concentration pattern through thermodiffusion (assum-
ing the absence of any convection at this stage). In particular, in these works
the amplitudes of the spatial Fourier modes of the temperature are derived in
the framework of the two-timescale model. In our case the formulas for the
first mode of the time-averaged temperature T0 would be T0 = θ cos qx+const
with

θ =
2I[1 − exp(−aph)]

Sh(q2χ+ ρcp/τ0)

where I is the average power of the pumping laser, S is the overall area of the
periodic interference pattern, q = 2π/Λ, Λ is the fringe pattern period, ap,
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χ, ρ, and cp are the MF absorption coefficient, thermal conductivity, density,
and specific heat capacity, respectively. (At 532 nm ap/ϕ = 2 × 104 cm−1

[152], so for exp(−aph) ≪ 1 the constant mean value at ϕ = ϕav may be
used.) The τ0 constant is the characteristic time of the thermal decay due to
the heat flux through the walls. Since in the steady state the net diffusive flux
is zero, we have dϕ0/dx = −S∗

Tϕ0 dT0/dx, where the Soret coefficient S∗
T is

employed. Integrating this relation between the adjacent minimum and max-
imum, one derives the variation of the relative volume fraction as δϕ/ϕav =
2 sinh (|S∗

T|θ)/ I0 (|S∗
T|θ), where I0 is the modified Bessel function of the first

kind. Substituting I ≤ 0.2 W, S = 3 × 10−7 m2, and Λ = (2 . . . 6.5) × 10−5 m
[2, 103], τ0 = 1.9 × 10−4 s [152], S∗

T = −9 × 10−2 K−1 [153] and taking χ,
ρ, and cp values to equal those of water, we obtain θ = (1.5 . . . 4) K and
δϕ/ϕav = 0.3 . . . 0.7. This corresponds to Cm = (0.5 . . . 4)× 104.

Then from Fig. 2.21 it may be inferred that the instability indeed develops
in the circumstances of the FRS experiment [2, 103] as soon as the pumping
is switched off. However, the microconvection intensifies mixing and thus
destroys the concentration inhomogeneity that feeds the instability. Though
the non-linear stage of the process in the periodical concentration structure
is unclear, it is possible that having disturbed the original structure, the
microconvection vanishes soon after its onset (similar to what was observed
in [1]). Subsequently, only the diffusion is in operation, which could have
hindered the identification of the convection phenomenon. We remind that
Refs. [2, 103, 154] attributed the increase of the diffusion coefficient in the
applied magnetic field solely to the transport effects. It should be noted also
that convection may be in fact essentially three-dimensional, so that our 2D
approach cannot describe it correctly. Anyway, the convective instability,
if present, impacts the FRS measurements of the diffusion coefficient in the
applied magnetic field. The onset of the threshold convection will be probably
marked by a break on the Deff(H0) (effective diffusion coefficient – applied
field) curve, which makes more detailed measurements desirable.

The Cm number was much lower in the experiment [105], mostly owing to
a less powerful light source. For the MF magnetization of 7.8 G, ϕ = 2.14%,
h = 0.1 mm, D = 6.1 × 10−11 m2/s, η = 4.2 × 10−4 kg/(m s) (toluene at
50◦C), and δϕ = 0.126% (also found [105, 155] from the two-timescale model)
we have Cm = 7 × 102. Still this value probably exceeds the critical one.

Let us also estimate the Cm number attained in [1], where an instability
was observed directly at a diffusion front in the normal field. Given h =
0.1 mm, H0 = 200 Oe, and ϕMS = 10 G and substituting reasonable guesses
for the missing values am = 5 nm, ah = 8 nm, and MS = 500 G, one obtains
Cm = 4 × 104. This value is indeed high enough for the instability to develop.

Finally, we turn to a very recent FRS experiment [3, 108], where a con-
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vection is detected in the field parallel to the temperature gradient while the
light source is on. The temporal behaviour of the intensity of the diffracted
pattern cannot be explained by diffusive processes alone. In particular, in
the steady-state regime the intensity is observed to fluctuate about a mean
value. The results [3] are presented in terms of the magnetic solute Rayleigh
number Rm = 48π(L/h)2 Cm/µ, where µ is the permeability (we will take
µ = 1), and the variation of the diffusion coefficient with the field is ne-
glected. At 2L = 3 × 10−3 cm and h = 1 × 10−2 cm, the observed critical
Rm ≈ 1.7 translates into Cm ≈ 0.5. This value is in a remarkably good
accordance with our prediction (the dotted line in Figs. 2.17, 2.18) despite
the fact that temperature inhomogeneities are not allowed for in our model.
To our knowledge, this experiment is the only one that provides a direct
quantitative test for our theory.



Chapter 3

The Saffman–Taylor instability

with immiscible ferrofluids

3.1 The free-boundary problem

3.1.1 The context of the problem

The phenomenon of viscous fingering in a Hele-Shaw cell became widely
known thanks to the classical paper by Saffman and Taylor [10]. We are not
going to present the overview of this vast field [156, 157, 30, 158, 11, 159],
mentioning only the basic facts. In [10], as a less viscous fluid displaced a
more viscous one, the former was observed to penetrate the latter taking on,
in the plane of the cell, the shape of a finger. The finger shape was registered
for several fluid pairs; as the surface tension (the reverse capillary number)
tended to zero, the finger width was observed to decrease approaching one
half of the cell width. The asymptotic shapes observed at a small surface
tension were found to fit closely the analytically obtained solution, provided
one substitutes 1/2 for the relative width of the finger. The analytical solu-
tion at zero surface tension (Eq.(3.35)) involves the relative finger width λ as
an undetermined parameter. Many other exact solutions are known at zero
surface tension, e.g. [160], but this problem is ill-posed and some solutions
become singular in finite time. (Few known exact solutions for a non-zero
surface tension describe quite artificial flows, e.g. [161].) The surface tension
regularizes the problem in the sense that, e.g., at a finite capillary number Ca
(defined on p. 79), the amplitude of the disturbance required for a secondary
instability of the tip of the finger is ∼ exp(−

√
Ca · const) ([11], §IX.6). How

and why does a small but non-zero surface tension select the λ = 1/2 shape
from all other? The problem attracted an extreme interest in 1980’s, and
tremendous mathematical and experimental effort was exerted in order to

73
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understand the “selection” problem. In the work [162], the problem of width
selection by surface tension was addressed along with the issue of stability of
steady fingers. For steady-state ST fingers with surface tension a system of
non-linear integro-differential equations was obtained which allowed to find
a unique finger width for any given surface tension. (Later it turned out
that in fact, there is a discrete set of solutions, but other ones are unsta-
ble. It is also noteworthy that the analysis in [162] of the finger stability
was inconclusive.) The solvability condition for the equations of McLean &
Saffman gave a mathematical understanding of how a shape gets selected at
small surface tensions (§§VIII.2–VIII.4 of [11]). The main complication in
the selection problem is that apparently small effects are not negligible and
lead to a qualitatively different behaviour. Analytically, it turned out that
exponentially small terms are of primary importance in certain asymptotic
expansions (“asymptotics beyond all orders”). This is the reason why many
earlier analytic attempts failed (cf. the “undetected inconsistency” in [162],
etc.). The surface tension, however small it be, is crucial for the selection
since it comes with interfacial curvature and is a singular perturbation (a
structurally unstable problem). A classical analogue, also from fluid me-
chanics, is the relation between viscous and inviscid flows as distinguished
by viscosity that comes with higher velocity derivatives. Experimentally, fin-
gers were observed to undergo some instabilities such as tip-splitting and to
be “pathologically” sensitive to various artificial perturbations, transforming
into strikingly beautiful patterns. Thus, fractal patterns were obtained at the
viscous displacement of non-Newtonian fluids, both miscible and immiscible
[163, 164, 165]. These examples are particularly relevant to our case since
we also study a “complex fluid.”

The immiscible Hele-Shaw flow with magnetic fluids under the influence
of the perpendicular magnetic field was extensively analyzed and modelled by
A. Cēbers with collaborators. Their first work on the subject [166] develops
a so-called boundary-integral formulation of the problem for an MF droplet
confined in a Hele-Shaw cell. The method was applied [166, 167, 168] to the
analysis of the over-extension (i.e. peristaltic) and bending (i.e. undulation)
instabilities of MF drops as well as multi-lobe shapes. The treatment of
the integral terms describing magnetic interactions was improved in [168].
These and some other numerical results are accumulated in §4.7 of [15]. For
a later work, see [169], where modelled was vertex-splitting and a long-time
behaviour of a drop similar to the rearrangement of the Steiner trees, and
[170]. Rising bubbles in a vertical Hele-Shaw cell filled with a ferrofluid were
simulated by the algorithm e.g. in [171]. However, these works dealt with
the radial geometry (for experimental results, see e.g. [172]). In [173], a
single MF stripe was modelled, and its undulations and side-branching were
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obtained. The rupture of a MF layer in a vertical cell was simulated in [174].
Of interest to us is the rectilinear geometry that was modelled in [175, 176].
Our treatment of magnetic terms (§3.1.5) will be quite close to that of [175],
which, in its turn, was adapted from [168]. Tip-splitting under artificial
perturbations was studied in [175]. In [176] a longer magnetic Saffman–
Taylor finger was simulated as well as a branched structure.

Now let us mention very briefly the analyses of the labyrinthine instability
and related issues (for a general presentation, see §4.6 of [15]). In [177], the
threshold of instability was obtained. In [178], a variational formalism is
developed for the dynamics of dipolar domains. In [179], a weakly non-
linear analysis of the viscous fingering with MF’s in a perpendicular field
was undertaken, while in [100], the Kelvin–Helmholtz instability in a Hele-
Shaw cell is addressed and some other results are summarized. In [6], the
important notion of the effective surface tension (p. 133) is overviewed.

All the above research on the immiscible Hele-Shaw flow with ferrofluids
was undertaken for the magnetic field perpendicular to the cell, in which “per-
pendicular” configuration a labyrinthine instability was known to be possible
since mid-1970’s. Of the three physically selected mutually perpendicular
orientations of the magnetic field, the one tangential to the straight interface
and parallel to the cell is known to be stabilizing (e.g. [100], or Refs. 6, 7
of [175]). The other potentially destabilizing configuration is the “normal”
one, when the field is directed parallel to the cell, but normally to the inter-
face line. Then a (Hele-Shaw version of the) peak pattern can be observed
[180, 7, 181]. The interface dynamics in this case has not yet been simu-
lated. In the present work, we report such preliminary simulations for the
first time. The study of the normal-field instability will be deferred to §3.4,
and we begin with the perpendicular configuration.

However, a systematic study of the immiscible labyrinthine instability in
a rectilinear geometry is also lacking. In this second half of our work, we will
develop the approach of the above-cited work [176]. It requires elaboration
(e.g., in terms of accuracy) and extension to enable the computation of richly
branched, highly ramified in the long run “dendritic” structures.

The latter motivation emerges in the light of the new experimental data
[12, 7, 181]. In [12], the Rayleigh–Taylor instability was explored in the
perpendicular field. A comparison of the observed near-critical (in the sense
of stability) behaviour to the linear stability theory was undertaken. Some
reported [12] features of the far-from-threshold pattern will be commented
upon in §3.3.2. In [7], the viscous fingering with ferrofluids was investigated
in both perpendicular and normal configurations, and the relative width of
the magnetic ST finger was measured (in the perpendicular case). Finger-
like patterns will be simulated in §3.3.1. For further details about these
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experiments, we refer the reader to these original works [12, 7]. To be close
in our simulations to the experimental conditions, let now us estimate the
relevant values of the dimensionless parameters. (For their definitions, see
p. 79 and p. 84 later). For the Saffman–Taylor experiment [12, 181], the Hele-
Shaw cell used was T = 2 cm wide and its gap was h = 0.1 cm thick. The
magnetic Bond number Bm was of the order of unity. MF of the dynamic
viscosity coefficient η2 = 0.35 g/(cm · s) was displaced by air of a negligible
viscosity ∼ 10−3η2, so that At = 1. The surface tension at the interface was
evaluated to be σ = 60 g/s2. Then the flow rate Q = u0hT of 600 ml/h
corresponded to Ca ≈ 12u0η2/σ = 7/120. Experiments were done in the
range of flow rates (0.1 . . . 10)Q, i.e. Ca did not exceed unity there. As for
the Rayleigh–Taylor experiments [7, 181], T = 14 cm, h = 5 × 10−2 cm.
An MF of the dynamic viscosity coefficient η2 = 1.4 g/(cm · s) and density
ρ2 = 1.7 g/cm3 rests on top of white spirit, whose viscosity is η1 = η2/140,
and density is ρ1 = 0.8 g/cm3. Therefore 1 − At ≈ 2η1/η2 ≈ 1.4 × 10−2.
Besides, taking into account the surface tension at the interface, σ = 12 g/s2,
one obtains the gravitational Bond number as Bg ≈ 0.18 (we will use later
the value 3/16). The magnetization curve presented in Fig. 3.4 of [181] allows
to determine that at the external field of 23 kA/m the MF magnetization
was about 21 kA/m (21 G), while at 40 kA/m it becomes M = 24 kA/m
(24 G). (By the way, these values question the validity of our approximation
of a magnetization negligibly small with respect to the applied field.) This
corresponds to the magnetic Bond numbers Bm = 3.675 and 4.8, respectively.

3.1.2 Formulation of the problem

Consider a vertical Hele-Shaw cell filled with two fluids (Fig. 3.1).1 Each of
them may be magnetic. The cell is supposed infinite in both directions. Let
us reference the two fluids by an index i. Their viscosity, density, and mag-
netization are denoted by ηi, ρi, and Mi, respectively. As with the miscible
fluids, we may describe the gap-averaged flow in a cell of the thickness h by
the Darcy law or by the Brinkman equation. The latter option, however, will
not be explored in this Chapter, as it complicates the problem substantially.
In each fluid, the Darcy law reads:

− ~∇p− αi(~v + ~u0) + ρi~g + ~fm = 0 , (3.1)

where p is the pressure, αi = 12ηi/h
2 is the friction coefficient, ~u0 is the

constant injection velocity at infinity relative to the cell walls, ~v is the velocity
in the reference frame moving with ~u0, and ~g is the free-fall acceleration.

1Please observe that we interchange the x and y axes relative to the previous definition.
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Figure 3.1: The geometry of the immiscible problem.

When p, ~v and other variables are evaluated at the interface, we will also
assign the index to them to distinguish at which side of the interface the
variable is taken. With the exception of the last paragraph, in this Chapter
we will consider a field perpendicular to the cell. The gap-averaged density of
the magnetic ponderomotive force ~fm is the same as for the miscible problem
(see Chapter 1). However, since in the region Si occupied by the i-th fluid

the corresponding concentration is constant now, ~fm becomes potential away
from the boundary: ~fm = −(2Mi/h)~∇Ψ, where the scalar magnetostatic
potential on one of the walls is

Ψ(~r0) =

[

M1

∫

S1

+M2

∫

S2

]

K (~r − ~r0) d2~r

= (M2 −M1)

∫

S2

K (~r − ~r0) d2~r + const ,

(3.2)

and K(~ρ) = 1/ρ − 1/
√

ρ2 + h2. We note parenthetically that with a sharp
interface, it can be advantageous to use an alternative formulation for the
magnetic force (the “current” formulation as opposed to our “charge” one); for
details, see [171, 102, 6, 182]. Both fluids are incompressible: div~v = 0. At
the interface between the fluids the normal velocities are equal (the kinematic
boundary condition): v1n = v2n, while the tangential velocities may differ.
Therefore the flow vorticity is infinite at the interface. For the fluids are
immiscible, the Laplace law holds at the interface (the dynamic boundary
condition): p2−p1 = σκ, where σ is the surface tension, and κ is the curvature
positive if the region 2 is locally convex.

Strictly speaking, the interface is not two-dimensional. In [183, 184] as-
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ymptotic boundary conditions at the immiscible interface in a Hele-Shaw
cell were derived that took into account the film of a viscous fluid that is
left during the displacement at the walls, and the transverse variations of the
meniscus shape. According to this theory, owing to the meniscus, σ should
have been replaced with (π/4)σ plus a presumably constant term [10]. How-
ever, since the reference experiments [7, 181, 12, 180] are conducted with
prewetted cell walls and surface tension was measured in situ there in a cer-
tain way, we will assume that σ is already rescaled, and ignore other effects
due to the contact angle being dependent upon the displacement velocity,
etc.

Then from (3.1) it is obvious that the Saffman–Taylor and Rayleigh–
Taylor problems for a vertical cell are identical in the Hele-Shaw approxima-
tion and transform one into another by substitution ρi~g ↔ −αi~u0. The flow
is unbounded but we demand that it is periodic in the lateral direction (i.e.
perpendicularly to ~u0), the period being T (T ≫ h). Note that owing to the

non-locality of ~fm, the stated problem is different from that of a laterally
bounded flow, while for non-magnetic fluids one problem is typically substi-
tuted by the other. The issue of the horizontally bounded cell will be touched
in §3.1.5. The Hele-Shaw flow with the magnetic ponderomotive force (3.1)
was first studied by Cēbers [101].

As in the miscible problem, the gap-averaged magnetic force translates
the transverse dimension h through the length scale of the magnetic force
into the 2D problem. Now we will render the problem dimensionless by in-
troducing h and h3(α1 + α2)/σ as length and time scales, correspondingly.
The time scale is characteristic for the relaxation of an interfacial perturba-
tion of dimension h by the surface tension alone. If a viscosity difference,
buoyancy, or magnetic effects dominate, then thus non-dimensionalized times
can be far from unity for a physically selected phase of the process (e.g. when
non-linear effects come into play, etc.). Other choices for the scales are also
possible and are used in the literature, but neither of them is universally con-
venient and physical in every limit. For example, at studying the “dendritic
structures” (§3.3), whose scale is much less than T , it is reasonable not to
introduce T into the dimensionless parameters that will enter the equations.
Quite similar solutions may be expected for the dendritic problems that in
dimensional variables differ only in the value of the imposed period T , and
this similarity should remain evident in the dimensionless formulation. To
non-dimensionalize the “dynamical” variables containing the unit of mass,
we use the surface tension that is almost always required anyway to regu-
larize the problem (see §3.2.1). Then we arrive at the following equation in
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dimensionless variables ~r, p, ~v, κ (for them the existing notation is kept):

− ~∇p− αi

α2 + α1

~v−
(

αi

α2 − α1

Ca+
ρi

ρ2 − ρ1

Bg

)

~ey−
Mi

M2 −M1

Bm ~∇Im = 0 ,

(3.3)
where ~ey is the unit vertical vector (see Fig. 3.1), and

Im(~r0) =

∫

S2

(

1

|~r − ~r0|
− 1
√

(~r − ~r0)2 + 1

)

d2~r (3.4)

(the integration is performed over the non-dimensionalized S2). The following
dimensionless groups have been introduced:

1. the modified capillary number Ca= h2u0(α2− α1)/σ = 12u0(η2− η1)/σ;

2. the gravitational Bond number Bg = h2g(ρ2 − ρ1)/σ;

3. the magnetic Bond number Bm = 2(M2 −M1)
2h/σ.

The dynamic boundary condition at the interface becomes p2 − p1 = κ.
Introducing the effective pressure

p̃ = p+

(

αi

α2 − α1

Ca+
ρi

ρ2 − ρ1

Bg

)

y +
Mi

M2 −M1

Bm Im , (3.5)

one can rewrite Eq.(3.3)

~v = − [(α2 + α1)/αi] ~∇p̃ . (3.6)

Thus the flow is potential away from the interface, the potential being ϕ =
− ((α2 + α1)/αi) p̃, but at the interface the vorticity is infinite. The dynamic
boundary condition gives

− (α2ϕ2 − α1ϕ1)/(α2 + α1) = p̃2 − p̃1 = κ+ (Ca + Bg) y + Bm Im . (3.7)

Note that in (3.7) the right-hand side is known. According to what has
been said above on the identity of the Saffman–Taylor and Rayleigh–Taylor
instabilities, the effects of Ca and Bg are additive. Besides, individual Mi

have dropped out from the equations governing the velocity, and now only the
combination (M2−M1)

2 enters the problem (via Bm). It means again that it
is not important which of the fluids is (more) magnetic, i.e. the solution will
remain the same if the fluids are interchanged (the “reciprocity”, cf. §2.4.2).
Without any loss of generality, we may assume that the (more) magnetic
fluid is always above the other, regardless of their densities and viscosities.
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The flow being two-dimensional, the stream function2 can also be intro-
duced:

vx = ∂ψ/∂y, vy = −∂ψ/∂x . (3.8)

The kinematic boundary condition at the interface may be expressed via the
stream function as ∂(ψ2 − ψ1)/∂τ = 0, where ~τ is the unit tangent vector of
the interface, or, adjusting the unimportant constant, simply

ψ2 = ψ1 . (3.9)

Given the initial interface, the above equations allow to compute the in-
stantaneous “material” (Lagrangian) velocity at the interface. The velocity
component normal to the interface gives the rate of deformation of the inter-
face. This allows to integrate the system with respect to time to obtain the
shape evolution. Note that the boundary conditions hold at the boundary
throughout the process without change, while the boundary itself evolves and
its determination is the aim of the analysis. Thus our problem falls into the
category of moving-boundary problems that are rather common in fluid me-
chanics – groundwater and free-surface flows, water waves (such problems are
commented upon in §3.2.1), etc. Interestingly, if the evolution is expected
to end up with a certain final stationary state, determining this unknown
state is a free-boundary problem [185]. (There is some confusion in the liter-
ature regarding what the free-boundary problem and the moving-boundary
one precisely are; sometimes the terms are used interchangeably.)

On the other hand, at a given moment of time, we have a boundary-
value problem (BVP). We have established that the two-dimensional flow in
consideration is incompressible and potential within both domains. Then it
follows immediately that both the potential and ψ are harmonic, i.e. we have
an elliptic BVP for one of these unknown functions that needs to be solved
a large number of times in the course of the domain evolution.

The BVP will indeed be solved, step by step, in the present work. How-
ever, before turning to the issue of how this should be done, let us mention
briefly a moving-boundary problem of a quite different origin that turns out
to be equivalent to computing a Hele-Shaw flow. The problem naturally ad-
mits a very different approach not requiring to solve the Laplace equation (it
is “generated” instead) and resolve the boundary conditions explicitly. We are
speaking of the so-called diffusion-limited aggregation (DLA) and stochastic
methods stemming from it [11]. The DLA process was originally understood
as the Brownian motion of tiny particles released far from the first fixed one
either one by one or as a steady flux; if a particle doesn’t escape to infin-
ity, it sooner or later touches and sticks to some of the particles that have

2Avoid confusing it with the magnetic potential.
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“aggregated” earlier. The probability density for a particle to be at a given
point away form the cluster obeys the Laplace equation but equals zero at the
boundary of the aggregate. The boundary moves at a velocity proportional
to the gradient of the probability density. The growing aggregates turned out
fascinating [186] and having a fractal dimension (≈ 1.7 for a planar case),
which raised extreme interest [187] to this apparently simple model. Very
quickly the exact analogy was noticed between DLA and the pattern forma-
tion in viscous displacements in porous media [188]. It also became possible
to incorporate the effect of surface tension [157] into a two-dimensional DLA
to have a complete analogy with a Hele-Shaw model as well. Here we regard
the DLA model as suggesting another point of view on our problem. The
discrete “random-walk” methods were indeed used to model the Hele-Shaw
flow (e.g. [189, 190]).

3.1.3 Alternative formulations of BVP

In principle, it is possible to solve the Laplace equation directly in both do-
mains e.g. by finite differences, satisfying the somehow approximated bound-
ary conditions. For the elliptic BVP’s in two dimensions, however, a number
of alternative mathematical formulations is available, some of which offer
numerically more efficient treatment. In this paragraph we will give a brief
(and incomplete) account of these analytical approaches.

The first such example is the restatement of BVP as the variational prob-
lem for the functional for which the original PDE is the Euler-Lagrange
equation (the “Dirichlet principle”). This can always be done for self-adjoint
problems. This variational problem may be solved by the Galerkin (or other
projection) method with basis functions of local support, which constitutes
the finite-element method [191].

Another example are the powerful complex-analytic methods whose appli-
cation to fluid dynamics in two dimensions is long established. The conformal
mapping technique reduces BVP to the computation of the conformal map of
the unit disk onto the given domain or vice versa, which leads to an integral
equation for the map (§§V.8, V.9, VI.4 in [192]). (The map is simply related
to the Green’s function of BVP, e.g. [145].) Moreover, if for some domain the
map is known, the map for a slightly deformed domain at the next time step
may be approximated by special efficient methods [145]. On the application
of such methods to the Hele-Shaw flow (also with surface tension), see §3.2.1.

Yet another example from this theory are the methods of singular integral
equations with Cauchy-type kernels (further referred to as the Cauchy-type,
or singular, integral equations) [193, 194] – the main tool for studying various
BVP’s of the theory of analytic functions. Interestingly, our problem can also
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be posed in the form studied in the literature on the Cauchy-type integral
equations. Indeed, for the complex potential Φ = ϕ+iψ our kinematic bound-

ary condition may be rewritten as ℑm
(

d(Φ2−Φ1)
dz

(τx + iτy)
)

= v2n − v1n = 0.

The dynamic condition at α1 = α2 is ℜe
(

d(Φ2−Φ1)
dz

(τx + iτy)
)

= v2τ − v1τ =

−2 d
dτ

(p̃2− p̃1), and this latter function is known for a given interface (3.7). In
other words, known is the jump of (τx + iτy)

dΦ
dz

. This problem is a particular
case of the following problem solved analytically in [194]: find a piecewise-
analytical function (i.e. the one analytical away from some contour in the
complex plane) by a given jump at the contour of a linear combination (with
continuous complex-valued coefficients) of the sought function, its derivatives
of given orders, and contour integrals of the function multiplied by some Fred-
holm kernels (zeroes in our case). For the exact formulation see §35 of [194],
where this problem is called “the boundary problem of the Riemann type
with the boundary condition that contains derivatives”; a variety of other
BVP’s are considered there as well.

The theory of BVP’s for analytic functions is closely related to (and more
general than) the classical potential theory. Indeed, consider the Cauchy-type
integral defined as

Φ̃(z) =
1

2πi

∮

C

µ(t)dt

t− z
. (3.10)

Away from the contour C parametrized by a real s and defined by t = t(s),
Φ̃(z) is an analytic function of a complex variable z, µ being the density of
the Cauchy-type integral. If z ∈ C, the contour integral is taken in the sense
of the principal value [193, 194, 145]. Then it is easy to demonstrate ([193],
§10 in [194]) that the imaginary part of the Cauchy-type integral with the
real density µ(t(c)) is the single-layer logarithmic potential

1

2π

∮

C

dµ

ds
ln |t− z|ds , (3.11)

with density dµ/ds, while the real part of the Cauchy-type integral is exactly
the double-layer potential. In like manner, the formulas for the jump at
the contour of potentials and their derivatives are related to the Sokhotski-
Plemelj formulas for the Cauchy-type integral, etc.

Employing a potential to resolve the boundary condition results again in
an integral equation on the potential density (the equation is real, however).
The potential is usually chosen so as to avoid the ill-posed Fredholm equations
of the first kind, while welcome are the Fredholm equations of the second kind
and, to a certain extent, the singular integral equations (“sometimes blessings
in disguise” [195]). Having obtained the density, the harmonic function in
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question is found at any point from the definition of the potential (i.e. by
integration). It is this technique that is called the boundary-integral method.
More precisely, it is an indirect boundary-integral method, since the problem
is solved through an intermediate function: the potential density. The direct
boundary-integral methods involve only the functions that are contained in
the original formulation and are obtained usually as follows. According to
the main Green’s identity for the contour C : ~ρ = ~ρ(s) and an arbitrary
harmonic function u [196],

Ωu(~r) =
1

2π

∮

C

(

u(~ρ)
∂

∂nρ

ln |~ρ− ~r| − ∂u(~ρ)

∂nρ

ln |~ρ− ~r|
)

ds ,

where ∂/∂nρ = (~n, ∂/∂~ρ), and Ω = 2π (Ω = 0) if ~r points inside (outside) C,
and Ω = π if ~r ∈ C. This formula allows to take into account the Dirichlet or
Neumann boundary conditions, leading immediately to an integral equation.

3.1.4 The integral equation

In this paragraph we will present the boundary-integral formulation of the
problem developed by Cēbers [175, 176]. We will use the single-layer potential
to present the stream function in both domains:

ψ(~r) =
1

2π

∫ −∞

−∞

γ(s′) ln |~ρ(s′) − ~r|ds′ , (3.12)

where s′ is the arclength parameter. The integration is carried out along the
infinitely long interface that is a closed curve on the Riemann sphere. Eq.(3.9)
is satisfied automatically by the single-layer representation. To determine γ
and solve the problem, we have to satisfy now only the dynamic boundary
condition (3.7). To express the condition through ψ, we differentiate Eq.(3.7)
along the interface and take into account one of the Cauchy-Riemann condi-
tions for the complex potential (∂ϕ/∂τ = −∂ψ/∂n, ∂/∂n = (~n, ∂/∂~r)):

(∂/∂n)(α2ψ2−α1ψ1)/(α2+α1) = (∂/∂τ) [κ+ (Ca + Bg) y + Bm Im] . (3.13)

Now we need the formula for the normal derivative of the single-layer poten-
tial at the contour. The formula is in our notation as follows (e.g. §II.6 of
[197], §IV.1 of [135], §IV.5 of [196]):

(

∂

∂n

∫ −∞

−∞

γ(s′) ln |~ρ(s′) − ~r|ds′
)∣

∣

∣

∣

~r→~ρ(s)

=

± πγ(s) +

∫ −∞

−∞

γ(s′)

(

∂

∂n
ln |~ρ(s′) − ~r|

)∣

∣

∣

∣

~r=~ρ(s)

ds′ , (3.14)
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where the upper (lower) sign holds if ~r points to the domain for which ~n is
the inward (outward, respectively) unit normal. Let us introduce

(

∂ψ

∂n

)

0

=
1

2π

∫ −∞

−∞

γ(s′)

(

∂

∂n
ln |~ρ(s′) − ~r|

)∣

∣

∣

∣

~r=~ρ(s)

ds′ . (3.15)

Then Eq.(3.14) gives

∂ψ1

∂n
= +

γ

2
+

(

∂ψ

∂n

)

0

,
∂ψ2

∂n
= −γ

2
+

(

∂ψ

∂n

)

0

. (3.16)

Substituting these equations into (3.13) finally yields

− γ

2
+ At

(

∂ψ

∂n

)

0

=
∂

∂τ
[κ+ (Ca + Bg) y + Bm Im] , (3.17)

where the dimensionless viscosity Atwood ratio is introduced:

At =
α2 − α1

α2 + α1

=
η2 − η1

η2 + η1

. (3.18)

The three parameters listed on p. 79, At, the dimensionless period T , and
the initial conditions determine our problem completely.

As soon as this integral equation is solved for γ, the velocities at each
side of the interface can be obtained by differentiating ψ by definition (3.8).
Essentially we need only the normal velocity that is equal to ∂ψ/∂τ . The
actual tangential velocity is discontinuous at the interface according to (3.14),
but we may take whatever value is convenient; we take the average velocity,
though other choices are also used in the literature. Then the differentiation
of the single-layer potential can be carried out effectively inside the integral
(3.12).
{

vx

vy

}

=
1

2π
v.p.

∫ −∞

−∞

γ(s′)

({

+∂/∂y

−∂/∂x

}

ln |~ρ(s′) − ~r|
)∣

∣

∣

∣

~r=~ρ(s)

ds′ . (3.19)

This equation completes the formal solution for a given time step.
To obtain computable formulas, let us first expand Eqs. (3.15) and (3.19).

We introduce complex variables z = x+ iy, z′(s′) = ρx + iρy. Then
(

∂

∂x
ln |~ρ(s′) − ~r|

)∣

∣

∣

∣

~r=~ρ(s)

=
1

2

∂

∂x
[ln(z′ − z) + ln(z′∗ − z∗)] = −ℜe

1

z′ − z
,

and analogously
(

∂

∂y
ln |~ρ(s′) − ~r|

)∣

∣

∣

∣

~r=~ρ(s)

= +ℑm
1

z′ − z
.
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Therefore

vx − ivy =
1

2πi

∮

C

γ(z′)dz′

z′ − z
. (3.20)

Employing the formula of integration by parts in the Cauchy-type integral
(§3.5 in [194]), this equation could have also been derived immediately owing
to the connection (3.10), (3.11) between the complex flow potential Φ, the
flow function ℑm Φ (3.12), and velocities. In fact, Eq.(3.20) solves the equa-
tion ∆ψ = −ω, where ω is the vorticity concentrated along C as a vortex
sheet.

Now let us make use of the periodicity: γ(z′+mT ) = γ(z′) for any integer
m. Then, if C ′ is a part of C that comprises the full period,

vx − ivy =
1

2πi

+∞
∑

m=−∞

∮

C

γ(z′)dz′

z′ − z +mT

=
1

2πi

∫

C′

γ(z′)dz′
+∞
∑

m=−∞

1

z′ − z +mT

=
1

2Ti

∫

C′

γ(z′) cot
π(z′ − z)

T
dz′ .

(3.21)

The just-used formula
+∞
∑

m=−∞

1

z +mπ
= cot z

is cited in [145] (p.402) as known to Leonard Euler back in 1742.

The obtained expressions follow in the real form:

vx(s) = − 1

2T
v.p.

∫ L

0

γ(s′)
sinh b cosh b

sin2 a+ sinh2 b
ds′ ,

vy(s) = +
1

2T
v.p.

∫ L

0

γ(s′)
sin a cos a

sin2 a+ sinh2 b
ds′ .

(3.22)

Here a = π (x(s′) − x(s)) /T , b = π(y(s′)−y(s))/T , and L is the length of the
interface. We remind that the principal value of the singular Cauchy-type
integral (3.20) must be taken.

Eq.(3.15) can be represented in the same manner since

(

∂ψ

∂n

)

0

= −nxvy + nyvx = −(τxvx + τyvy) .
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It enables us to obtain the final form of the integral equation on γ:

γ(s) +
At

T

∫ L

0

γ(s′)
τy(s) sin a cos a− τx(s) sinh b cosh b

sin2 a+ sinh2 b
ds′

= −2
∂

∂τ
[κ+ (Ca + Bg) y + Bm Im] . (3.23)

Note that the limiting value of the fraction in the integrand as s′ → s is

T

2π

(

τy
d2x

ds2
− τx

d2y

ds2

)

.

The kernel of the integral equation is non-singular and smooth, so that
Eq.(3.23) is the Fredholm integral equation of the second kind.

We end up this paragraph with a remark that the case of negative At
numbers needs not to be studied separately – owing to a symmetry present
in our equations, it reduces to that of positive At’s. Indeed, consider two
interfaces, one of which is a reflection of the other with respect to y = 0
axis. For clarity, let us set Ca = 0. The first interface has the more viscous
and heavy fluid above and the less viscous and light one below, so that
At = At∗ > 0, Bg = Bg∗ > 0. The second interface is formed by two other
fluids: on the top there is a heavier but less viscous fluid, while a light and
more viscous one is below, and their properties are such that At = −At∗ < 0,
and Bg = Bg∗. We also demand that the magnetic Bond number be the
same. Now consider Eq.(3.23) for the two cases. Its right-hand sides differ
only in sign, since so do y and κ, while the Im’s in sum give a constant, cf.
Eq.(3.2). If we now demand that γ also take on the exactly opposite value,
so will do the integral term of Eq.(3.23), so that the latter equation in both
cases will be equivalent. Then it is easy to see from Eq.(3.22) that vx will be
the same in both cases, but vy will have different signs, thus preserving the
relation between the interfaces. In other words, the solution of a problem
with At = −At∗ is exactly the solution of the same problem with At = +At∗

but turned upside down. Therefore it suffices to study only non-negative At’s
in the range 0 . . . 1.

3.1.5 The magnetic force and the ST finger

in a laterally bounded cell

Let us carry out some analytical work on transforming the expression (3.4)
for the magnetic integral Im. First we transform it by Green’s formula

∫

G

(

∂Q

∂x
− ∂P

∂y

)

dx dy =

∮

∂G+

Pdx+Qdy :
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0

Figure 3.2: The contour of integration for the magnetic term.

Im(~r) =

∫

(

1

|~r ′ − ~r| −
1

√

(~r ′ − ~r)2 + 1

)

d2~r ′

=

∫ +∞

−∞

τx(s
′) ln

y − y′ +
√

(x− x′)2 + (y − y′)2

y − y′ +
√

(x− x′)2 + (y − y′)2 + 1
ds′ .

(3.24)

Here and further x′, y′ mean x(s′), y(s′), and x, y mean x(s), y(s). We will
consider now a finite integration contour shown in Fig. 3.2. Then owing to
the τx factor, the integration contour is effectively divided into two parts
only. In the part where the integration is done at y′ = A, the integrand
tends as A→ +∞ to the expression − ln [1 + (x− x′)−2], giving the following
contribution to the integral:

I ′m(s) = (xb − x) ln

(

1 +
1

(xb − x)2

)

+ (x− xa) ln

(

1 +
1

(x− xa)2

)

+ 2 (arctan(xb − x) + arctan(x− xa)) .

(3.25)

If |xa,b| → ∞, I ′m tends to 2π and drops out upon differentiation (3.23). Nev-
ertheless, Eq.(3.25) will be needed as we are going to truncate the domain of
integration. Besides, I ′m is quite important in the case of the finite geometry
that will be discussed later in this paragraph.

The periodic interface will be tracked by N + 1 marker points. Marker
points have numbers n = 0 . . . N , with the last point (n = N) being the first
one (n = 0) for the next period. The “number variable” n, as we will call
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it, may be regarded as a curve parameter another than the arclength s(n).
Taking then the periodicity into account, we represent Eq.(3.24) as

Im(s) =

∫ n+N/2

n−N/2

τx(s
′) lnF

(

x− x′

T
,
y − y′

T

)

ds′

dn′
dn′−T lnT +I ′m(s)+I ′′m(s) ,

(3.26)
where only one logarithm evaluation is needed per point s′,

F (u, v) =
1

v +
√
u2 + v2 + 1

+∞
∏

m=−∞
m6=0

v +
√

(u−m)2 + v2

v +
√

(u−m)2 + v2 + 1
, (3.27)

and

I ′′m(s) =

∫ n+N/2

n−N/2

τx(s
′) ln

(

y − y′ +
√

(x− x′)2 + (y − y′)2
) ds′

dn′
dn′ . (3.28)

Note that with our moving limits of integration in Eq.(3.26), the periodicity
of the magnetic force is ensured. The integrand in Eq.(3.26) is always smooth,
while in I ′′m it is logarithmically singular at s′ = s, so we integrate it by parts
to obtain

I ′′m(s) =

∫ n+N/2

n−N/2

τx(s
′)(y − y′) − τy(s

′)(x− x′)
√

(x− x′)2 + (y − y′)2

ds′

dn′
dn′ − T

+ (x− xA) ln
(

y − yA +
√

(x− xA)2 + (y − yA)2
)

− (x− xB) ln
(

y − yB +
√

(x− xB)2 + (y − yB)2
)

.

(3.29)

Here xA = x(n−N/2), xB = x(n+N/2), and yA = yB = y(n±N/2).
In general, the product (3.27) cannot be calculated in a closed form.

Although it may be evaluated numerically using the series transformation and
convergence acceleration techniques, in the calculations that will be presented
here we will satisfy ourselves with taking a finite number of termsM = maxm
and truncating the rest. This corresponds to xa = xA −MT , xb = xB +MT
in Eq.(3.25). This formulation of the magnetic force is not identical to that
of [175, 176].

Now our problem is fully determined by the integral equation (3.23),
its right-hand side (3.26), (3.25), (3.29), and the velocity integrals (3.22).
Now we are in position to develop the numerical procedure of solving these
equations. But before, it is convenient now to analyze an important property
of the magnetic force that has direct consequences for computations of a
laterally bounded flow.
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Up to now in this Chapter, under study was a flow with periodic boundary
conditions, while the real conditions are at least that of no flux (no normal
flow). (The more realistic no-slip condition cannot be generally satisfied
with the Darcy equation.) With non-magnetic fluids, as long as symmetric
shapes are studied, both conditions are related (but not equivalent). Indeed,
vx(−T/2) = vx(+T/2) by periodicity, while from symmetry it follows that
vx(−T/2) = −vx(+T/2). Therefore vx(±T/2) = 0, and every symmetric
periodic Hele-Shaw flow is necessarily a valid laterally confined one. The
reverse statement is true only with one reservation: the symmetric interface
must approach the sides (x = ±T/2) at a straight angle. Otherwise, in the
periodic problem we effectively have an interface with corners, for which our
equations are not valid. This is easy to see.

For example, the integrand

τy(s) sin a cos a− τx(s) sinh b cosh b

sin2 a+ sinh2 b

in Eq.(3.23) at s′ = L − s takes on the value τy cot(2πx/T ) if the interface
is symmetric. At x = 0, thanks to the symmetry and smoothness, we have
τy = 0 and the indeterminate form may be resolved to produce a finite result.
However, as x → ±T/2, the limit is generally (τy 6= 0) infinity. To establish
the sort of singularity, it is necessary to investigate two independent limits:
s → 0 and s′ → L − s. We failed to adapt the algorithm developed for the
periodic boundary conditions to the non-periodic case.

Therefore we see the only tractable way to make the periodic boundary
conditions work: to demand that τy = 0 at x = ±T/2. In other words, the
interface should approach the sides of the cell at a straight angle. This is
indeed a common, often implicit though, assumption. For such an interface,
both types of boundary conditions are shown above to be equivalent.

Unfortunately, with magnetic fluids the situation is worse. It is likely that
a magnetic fluid cannot, at least in our description, develop any corners. The
absence of MF in the adjacent periods leads to a singularity of magnetic force
at the end-points of the interface. In order to have the non-periodic situation
in these transformations, one should set xa = xA = −T/2, xb = xB = +T/2,
and use the fixed limits of integration 0 . . . L. The following exact expression
can be easily obtained for the magnetic integral Im (3.24) if the interface is
planar:

dIm
dx

=
1

2
ln

1 + (T/2 + x)−2

1 + (T/2 − x)−2
(3.30)

This function is logarithmically divergent at the end-points. (We remark
here that with a planar interface, the whole problem may be solved by sepa-
ration of variables, which was done to check our boundary-integral results.)
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Note that Im enters the effective pressure p̃ (3.5), where its singularity can-
not be compensated by infinite dp/dτ , the “real” pressure gradient along
the interface. Indeed, dp/dτ can have only a finite jump given by the dy-
namic boundary condition at a regular interface, while the jump of dIm/dτ
is infinite anyway. Therefore, according to Eq.(3.6), as the effective pressure
gradient goes infinite, so does the tangential velocity (at least at one side of
the interface). We also observed the non-convergent behaviour of numerical
velocities for other (non-planar) interfaces that approached the sides of the
cell at a straight angle.

If the boundary of the domain occupied by MF has corners, the problem
has no bounded solutions in our model and, of course, cannot be simulated
numerically. We stress that this fact has physical grounds rather than numer-
ical ones. The more promontory the element of the interface, the stronger
indeed it is pushed outwards by the rest of the MF volume. This can be
seen from the dispersion relation (3.36) for a planar interface, where the Bm
contribution to the growth increment varies asymptotically as k ln k for large
wavenumbers k. Therefore the physical model must be changed in order to
simulate the interfaces that are not tangent to the sides of the cell. Perhaps,
the Darcy law and the two-dimensional approach to the magnetic force must
be abandoned.

However, if the task is to simulate a magnetic ST finger (see §3.2.4), then
the precise conditions at the sides of the cell can be not very important. Then
one can demand that the interface comes always tangent to the sides and sim-
ulate a long finger that will not “feel” this condition. The periodic algorithm
is incompatible with it, as we have shown above. Still the boundary-integral
technique can be applied to the non-periodic situation with a slight modifi-
cation. Apart from the way the magnetic force is computed, the kernel of the
integral equation and the velocity integrals (3.21)–(3.23) are modified. Be-
sides, the non-periodic case requires that γ be distributed not only along the
interface, but also along the sides of the cell. In principle, with such method
it is also possible to model an infinite interface that does not approach the
sides of the cell at all. This algorithm can be developed in the future.

3.2 The numerical method

3.2.1 Numerical modelling

with boundary integral equations

In this paragraph we present an overview of applications of the boundary-
integral method introduced above in §3.1.3 – the method that will ultimately
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serve us to obtain physical results. The review is method-oriented rather
than subject-oriented. As we will see, a considerable amount of research was
devoted by computational physicists to “taming” the boundary integrals. Nu-
merical instabilities inherent to the method have considerably complicated
and limited its use, and not only in the past. Nevertheless, the job is worth
doing thanks to important features shared by some of the approaches, includ-
ing the boundary-integral method, touched upon in §3.1.3. They lead to an
integral equation that involves only the values at the boundary, thus reduc-
ing the dimension of the problem by unity. Discontinuities of fluid quantities
at the interface are easy to take into account; besides, infinite domains are
handled naturally. These features are of course an important advantage both
theoretically and for modelling.

Elliptic BVP’s are among the most common problem types in physics
and engineering, emerging in a very wide range of disciplines. Thus the
boundary-integral approach has found its application, for example, in dif-
fraction problems in electromagnetism [198], acoustics, to solve the applied
problems of elasticity and viscoplasticity theories [199, 200], etc. The ap-
proach is natural and especially effective in the problems where only values
at the boundaries are in fact important or wanted, e.g. in the analysis of
cracks in the elasticity theory (according to the maximum principle, extremal
values of the stress are attained at the boundary). In engineering computa-
tions, even the complex-variable formulation via the Cauchy-type integrals
is in use [201]. On the evolution of the so-called “method of boundary el-
ements” (BEM) in applied mechanics, see [202]. (BEM essentially is the
boundary-integral method coupled with a special approach to the boundary
discretization.) Aero- and hydrodynamical applications of boundary inte-
grals are also numerous: Stokes flow [203, 200], scattering of surface gravity
waves [199], point-vortex [204] and 3D panel [205] methods in aerodynamics,
groundwater flow, inviscid non-linear surface waves, the Kelvin–Helmholtz
and Rayleigh–Taylor instabilities. For a recent overview on the boundary
integral methods for interfacial flows, see [206]. The first (to our knowl-
edge) numerical simulation of a Hele-Shaw flow with surface tension by the
boundary-integral method dates back to 1961 [207]. (On further progress,
see later in this paragraph.) Owing to the Darcy law, especially close to our
problem are the moving-boundary problems (oil extraction by displacement)
of the groundwater filtration (percolation) theory (§XVII.6 of [72], [208],
§12.3 in [200]). The conditions at the water–air “interface” in porous media
are not quite clear (see references in [209]), but are often assumed to be just
those of a continuous pressure. The groundwater problems were solved em-
ploying the boundary integrals, sometimes employing the jump of the normal
derivative of the single-layer potential (§§XVII.6, XIX.6 in [72], [208]). Of
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common use in that field, however, are the complex-analytic methods [72]).
See a review [157] on the application of the complex-analytic methods to the
Hele-Shaw flow with surface tension; on the recent developments and refer-
ences, see [159, 210] and §X.3 of [11]. As for the numerical solution of the
boundary-integral equations of potential theory, see [211] for a general sur-
vey. Remember however that we have an indirect boundary-integral method,
with velocity being linked to γ through a singular integral, even though the
integral equation per se is perfectly Fredholmic. Besides, in our case we need
to solve a large number of the BVP’s, with solution of the preceding problem
being used by the following one.

At this point it is necessary to identify and analyze the problem associated
with boundary integrals. A singular integral, in general, can be very sensitive
to small changes in its density. Consider

f(x) = v.p.

∫ π

0

[g(x+ α) + g(x− α)] cot
α

2
dα = v.p.

∫ x+π

x−π

g(α) cot
α− x

2
dα

and its “singular part” obtained by replacing cot z with 1/z. Then it can be
rigorously proved that an arbitrarily large change in the principal value f can
be caused by an arbitrarily small variation of the density g, provided that
the variation is only continuous; if the variation is square-integrable, however,
this effect is guaranteed not to take place and f is itself square-integrable in
x. The example of the first situation was built, and the statement for the
second situation was proved in [212] (§69 and comment 113). The sensitivity
of a singular integral to the small change in its density is also discussed
in [213] (§§5.1, 5.2, 7.1, 7.2), where special approximations to the density
are developed that are not subject to the sensitivity and can be used to
evaluate the integrals. In [204] (§13.1) it is pointed out that the sensitivity
can reveal itself, upon discretization, as numerical instability in the so-called
point-vortex method (see below in this paragraph). It is further suggested
in [204] that in order to avoid the instability, the point vortices should be
placed approximately halfway between the points where the equation is to
be satisfied.

Let us recall now that the very boundary-value problem may be ill-posed
(the solution to BVP might not continuously depend on the boundary con-
ditions). For an elliptical operator in a bounded domain, boundary-value
problems are ill-posed unless boundary values are specified on all boundaries
of the domain. A relevant here example of an ill-posed problem is the Cauchy
problem for the Laplace equation for which J. Hadamard constructed his cel-
ebrated illustration of ill-posedness (e.g. §III.6 of [135], [214]). In the numer-
ical solution of BVP, the ill-posedness appears as a numerical instability, and
the finer the mesh, the worse the result. In an advanced text on numerical
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analysis [215] it is shown that the two-dimensional Rayleigh–Taylor instabil-
ity (RTI) with ideal fluids without surface tension is an ill-posed numerical
problem, and it is quite difficult even to soften the ill-posedness. It turns
out that some boundary conditions must be given with the exponentially
small round-off error; high spatial resolution requires multiple-precision ma-
chine arithmetics. It is also pointed out that the application of an arbitrary
smoothing is a poor practice. In the dispersion relation for the instability
modes of a planar interface, the ill-posedness manifests itself as the unlimited
growth of the increment as the wavelength vanishes. (Indeed, as Ca → ∞
in Eqs.(3.36), (3.40) introduced later, the −k3 term becomes insignificant
leading to λ → ∞ at k → ∞. The same applies even more to the ef-
fect of Bm → ∞ for both perpendicular and normal field orientations.) In
the discretized equations, k may not be infinite; instead, the fastest-growing
wavenumber corresponds to the numerical mode of smallest wavelength (2
grid points per period – the “sawtooth” mode).

Many physically meaningful and important problems are ill-posed (in an
idealized description). We should mention the Kelvin–Helmholtz instability
(KHI) that occurs at the flat interface between ideal irrotational incompress-
ible fluids across which the tangential velocity is discontinuous. Under the
gravity, surface or internal water waves develop at a horizontal interface. If
the configuration is gravitationally unstable, and there is no velocity jump
at the interface at infinity, the Rayleigh–Taylor instability ensues, and a
non-uniform shear develops even though it was not present initially. The
problems of KHI, RTI, and the Saffman–Taylor instability are known to be
ill-posed at zero surface tension and to lead to curvature singularities, wave
break-ups, etc. in finite time; ill-posedness manifests itself in the correspond-
ing dispersion relations (e.g. §13.7 in [144]) as an unbounded growth rate at
large wavenumbers [214]. Note that RTI and ill-posedness can develop even
if the upper fluid is of zero density, in the regions of the deformed interface
where the local acceleration exceeds the free-fall one [216]. The numerical
approximations to these problems proved difficult to obtain even during the
regular stage.

Historically, advances in modelling these important problems numerically
by the boundary-integral method were ahead of and drove the understanding
of the similar method for Hele-Shaw flows. The velocity integrals in these
problems of interfaces between two ideal incompressible fluids in two dimen-
sions (referred to as the Birkhoff–Rott integrals in the case of the vortex
sheet) are exactly the same as in the Hele-Shaw problem, but the integral
equation differs from ours and is related to the Bernoulli’s law.

Vortex sheet and point-vortex arrays are a classical subject (e.g. §151 of
[73], §§13.62–13.71 of [217], §2.6 of [70]). The first simulation of the dynamics
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of the vortex sheet discretized into point vortices, was undertaken in early
1930’s by Rosenhead. Even at a low spatial resolution the instability lead to
a chaotic motion of the vortices. In 1960’s, G. Birkhoff could not obtain the
convergence of his results as N → ∞ because of the instability. A common
opinion formed that the point-vortex approach is inadequate. In 1965 (pub-
lished in 1980), the handling of the velocity integrals was improved in the
work [218] to take into account the “self-induction” of point vortices (the “van
de Vooren correction” discussed later). A real point vortex can drive other
vortices but not itself, as known from the hydrodynamics of two-dimensional
irrotational flows, e.g. [219]. Thus the (accurately) discretized problem for a
continuous vortex sheet indeed differs from the originally discrete problem for
a point-vortex array, though the formulas look almost identical. The number
of point vortices was kept low [218] to avoid the instability. Nevertheless, in
late 1970’s – early 1980’s, some new numerical results were obtained with the
method. In many works, an arbitrary smoothing was applied, whose effect on
convergence was hardly predictable. For later developments, important were
the works [220, 221] (no numerical instability was noticed there). Finally, in
mid-1980’s a correct numerical regularization was developed [222]. Namely,
high-wavenumber Fourier modes must be filtered out completely from the
solution at every time step if their amplitude is below a certain limit. (This
is referred to as “the Krasny filtering”. Since the solution, while it exists, and
the initial conditions should be analytic, the Fourier coefficients must any-
way decay quickly with wavenumber.) At small N it may be practical just to
do the computations in a higher precision. The filtering allowed to simulate
the vortex-sheet evolution from the initial conditions leading to a cusp up to
the time of singularity [222]. Yet later, a spectrally accurate quadrature was
applied in this problem [223] based upon the results of [224] (the spectral
accuracy is discussed in §3.2.3).

For quite a time, also under consideration were various more or less phys-
ical regularizations to render the above-mentioned problems well-posed, e.g.,
by taking into account the surface tension, (additional effects of) viscosity,
etc. [214]. In [225], e.g., rigorously proved was the well-posedness of a general
interface with surface tension between two ideal irrotational incompressible
fluids of different tangential velocities and densities. However, through nu-
merous attempts made by many researchers, a very unpleasant fact became
evident in this context that even a physically well-posed continuous problem
may upon discretization become an ill-posed one! Many early studies suf-
fered, e.g. [226], from purely numerical high-wavenumber instabilities, and it
was not clear why the surface tension cannot damp them. Some early simula-
tions [227, 228] of the Hele-Shaw flow with surface tension were performed by
the “vortex-in-cell” (VIC) method, which differs from the point-vortex one
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in the smoothing way the velocity is obtained from the vorticity distribu-
tion. The success of such eclectic methods was largely due to the mentioned
numerical problems with purely boundary-integral methods.

In [229] a perhaps first analysis of the “sawtooth” mode of numerical
instability was undertaken and approaches to remove it without indiscreet
smoothing were suggested. The important role played by the discretized sin-
gular velocity integrals was demonstrated for a spectrally accurate method
(using the van de Vooren correction) without surface tension. It is impor-
tant that singular integrals are not smoothing operators such as common
integrals. It can be shown [230] that such singular integrals as in Eq.(3.22)
are proportional at small scales to the Hilbert transform H of γ:

H[γ](s) =
1

π
v.p.

∫ +∞

−∞

γ(s′)

s− s′
ds′ .

The Hilbert transform, however, does not alter the amplitude of the Fourier
mode:

H[exp(ikx)] = −i sgn(k) exp(ikx), H[1] = 0 .

This quality holds at the discrete level (if singular integrals are computed
to the spectral accuracy, see §3.2.3). The spatial instability of boundary-
integral methods for two-fluid interfaces was extensively analyzed in [231] by
comparing the discrete dispersion relation against the exact continuous one.
Trying several conventional discretizations of the interface, derivatives, and
the velocity integral, it was revealed why it was so difficult to obtain a numer-
ically stable algorithm. The point was that certain compatibility should exist
between the quadrature rule for the singular integral and the way the differ-
entiation is done in other parts of the algorithm. These and related results
were presented independently in a series of works [225, 232, 233, 234, 235].
(It was also found there that analysis of the numerical stability at computing
a non-linear interface reduces essentially to the simpler question for a flat
interface.) Incompatible choices should be rendered stable by a properly ap-
plied filtering [232, 234]. Otherwise, numerical modes at high wavenumbers
remain unaffected by surface tension, having little in common with exact
ones, and grow without bound. In other words, most of seemingly innocent
numerical algorithms solve in fact another, ill-posed and unphysical problem,
and hence are unstable. A simple example of this behaviour will be given in
§3.2.2. We cite here [231]: “we are able to identify the main cause for the
growth of the sawtooth mode as the failure . . . to represent vorticity created
(i.e., redistributed) by surface tension effects. Besides, it was also found that
even a slight deviation of the discrete dispersion relation from the continuous
one can lead to false spurious non-linear resonances that are another source
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of numerical instability (see [229, 231] on Moore’s works). These results refer
to the case of a vortex sheet with surface tension. Unfortunately, so detailed
and delicate numerical analysis is not, to our knowledge, available for the
Hele-Shaw flow. Rather, a single spectral method of choice is being adver-
tised in [230] and subsequent works of their group, while stability of other
discretizations is poorly covered in the literature.

Described above is a specific sort of numerical instability, sometimes re-
ferred to as the “spatial” one. It should not be confused with the “temporal”
instability of time integration that we will discuss now. The “spatial” insta-
bility remains present even if time integration is carried out exactly (with
time continuous). Time integration is numerically stable unless the Courant-
Friedrichs-Levy (CFL) constraint on the time step is violated. Observing the
constraint guarantees that the round-off errors do not amplify in the course
of simulation. The constraint is very stringent for the explicit methods – the
ones that use the explicit discrete expression for new marker position solely
in terms of old ones. If time marching instead uses implicit formulas for
a new position that involve new positions for other markers, the constraint
becomes much less restrictive. (In finite-difference methods for partial differ-
ential equations, the notions of explicit and implicit templates are extremely
important as well.) For our set of equations and explicit method, the CFL
condition is [225, 230]

(∆t)max ∼ (∆s)3
min . (3.31)

It is (∆s)min, the minimum separation of markers in arclength, that con-
strains the maximum time step (∆t)max for which the explicit time integra-
tion is still numerically stable according to (3.31). The constraint is so severe
because of the curvature that introduces high-order derivatives. It has also
limited seriously the previous research. An implicit method is difficult to
obtain, but it allows to choose the time step from considerations of approx-
imation only. Nevertheless, in [230] an effectively implicit time-integration
method was developed. In this approach, the interface is represented not
in the Cartesian coordinates but in the tangent angle – arclength ones, in
order to have simple “linear” expression for the curvature. Further on, the
“small-scale decomposition” is applied to the velocity integral, which reveals
that at short scales, it behaves essentially like a Hilbert transform on the
density of the potential. The latter admits implicit treatment in the Fourier
space. The equations are set up in such way that the arclength remain equal
automatically. For details, we refer the reader to [230, 182]. (But mind the
remark in [231] that in order to have high accuracy, the low-order implicit
time-stepping of [230] can in fact require a yet smaller time step than a high-
order explicit marching would do.) Though this technique is a significant
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advance, allowing to compute the evolution in quite large time steps, we will
not employ it, being satisfied with an explicit time-marching.

It is worth mentioning that it is possible to solve the integral equation
and compute the velocity integrals at the computational cost of O(N) in-
stead of the standard O(N2) if fast summation methods are used, such as
the method of local corrections or a fast multipole method, and if special
interface parametrization is used. Such methods are used (e.g. [230]) occa-
sionally in computations with large N . The overall computational cost of
a method hereby becomes only O(N lnN) per time step. (In our problem
such effectiveness is more difficult to achieve, if possible at all, because of
magnetic integrals.)

The boundary-integral methods discussed in this paragraph are indirect,
i.e. some auxiliary function (the density γ of potential) must be computed
first, enabling one to have further two velocity components. However, direct
boundary-integral methods for Hele-Shaw flows with surface tension also ex-
ist and deserve mentioning. The integral equation is originally formulated for
the normal velocity in these methods (the tangential velocity being not im-
portant). We refer the reader to [236] for a working example of such method
and for references to other such formulations.

In conclusion, we note that the boundary-integral method cannot tackle
problems involving topological changes and may require modifications to
model singularity formation at the interface. Such problems are treated with
ease employing the level-set approach [233], where a two-dimensional inter-
face is considered to be an isoline of level (i.e. height) of a three-dimensional
and rather smooth shape. For this and other related computational tech-
niques, see also [8].

3.2.2 Interface and curvature

The periodic interface is tracked by N+1 marker points and is in fact defined
by their coordinates x, y. A general interface requires a parametric represen-
tation. Markers are always uniformly distributed in the “number variable”
(this quality is important at dicretizing the integrals, see §3.2.3). The ar-
clength, or natural, parametrization of the interface will also be needed.

To have the arclength s, every time step of the algorithm begins with com-
puting the lengths of the interface curvilinear segments between the markers.
This is done through the spline representation of the interface.

A cubic spline is a special case of the cubic Hermite interpolating func-
tion. The latter function is a piecewise-polynomial (cubic) interpolant with
continuous first derivative [237]. In general, di – the values of the derivative
at the knots – must also be supplied. However, they may be uniquely defined
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by the additional condition of continuity of the interpolant’s second deriva-
tive. (Note that the periodicity of the function being interpolated is in fact
never needed, but first and second derivatives must be periodic.) This con-
dition singles out the cubic spline from other Hermite cubic interpolants and
leads to a linear algebraic system on di, as discussed in detail in [237]. The
N ×N matrix aij of the system is cyclic tridiagonal, i.e. it contains non-zero
elements at the main diagonal j = i, two adjacent diagonals j = i ± 1, and
two elements at the corners that arise due to the periodicity: i = 0, j = N−1
and i = N − 1, j = 0. Such matrices also arise at solving the second-order
PDE’s with periodic boundary conditions by finite differences. There exist
methods of the Gauss elimination that take O(N) operations. One of them
is the standard tridiagonal (Thomas) algorithm applied to the matrix with-
out the two elements, with the obtained solution being corrected using the
Sherman–Morrison formula (§2.7 in [195]). We, however, use the the periodic
version of the tridiagonal algorithm [238, 239].

Now that we can interpolate by splines, let us describe how the interface
parametrization proceeds.

1. First, fit two splines parametrized by the number variable n to the
arrays of xi and yi. Then compute

∫ i+1

i

√

(

dx

dn

)2

+

(

dy

dn

)2

dn

for all i using the derivatives of the interpolating splines and the 7-point
Gauss quadrature rule [237, 240]. This allows to ascribe to every point
its arclength coordinate along the interface.

2. Secondly, reinterpolate xi and yi by a new pair of splines parametrized
by the arclength s̃ computed at the previous step, and compute the
new arclength values.

3. Thirdly, repeat the second step iteratively until convergence – till the
moment when the overall perimeter of the interface stabilizes to a pre-
scribed relative accuracy.

Throughout our code, we will assume that (dx/ds̃)2 + (dy/ds̃)2 ≡ 1 (i.e. s̃ is
the true arclength s) for thus constructed “self-consistent” splines.

As soon as the interface is interpolated, we may check how uniformly the
markers are distributed along it. We remind that the minimum separation of
markers in arclength should not be too small because of the CFL constraint
(3.31). The flow in our problem is such that the Lagrangian markers will
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Figure 3.3: The differential clustering of initially equidistant markers as the
interface evolves.

cluster into crowded groups in the course of interface evolution, leading to
prohibitively short time steps and leaving other parts of the interface under-
resolved (Fig. 3.3). It is necessary to redistribute the markers from time to
time, which is done in the code as follows. As soon as the interface is inter-
polated, we check if the minimum and maximum arclength separations are
within the prescribed margins. If any is not, the new positions are calculated
at an equal (and allowed) distance one from another, possibly changing the
number of markers. Then the interface is reinterpolated (as described above)
again using the new markers.

In our code the redistribution is a relatively rare event; most time steps
are performed without it. Sometimes the redistribution can have a smooth-
ing effect on solution [241]. Another possible approach is to use a non-
Lagrangian tangential velocity that can be chosen to automatically keep
markers uniformly distributed. On this and other approaches to redistri-
bution and/or new marker deletion and insertion, see e.g. [209], Appendix B
of [242], [243, 230], and §6.3 in [203].

The curvature is given by

κ = (y′′x′ − x′′y′)/(x′2 + y′2)3/2 ,

where primes denote the differentiation with respect to a curve parameter.
If the interface is parametrized by arclength, the curvature simplifies to κ =
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(d2y/ds2)/τx (where τx = dx/ds as before). However, we observed this form
to lead to numerical instability, so in the code we used

κ = τx d2y/ds2 − τy d2x/ds2 .

To have the curvature, we need to accurately and reliably compute the deriv-
atives of the interface-defining functions.

It is well-known ([244], §4.12 in [237]) that the cubic spline interpola-
tion of a smooth enough function offers the accuracy of O(h4), h being the
(maximum) distance between the knots. The n-th derivative of the spline ap-
proximates the n-th derivative of the function to the order (4−n). However,
in the special case of a periodical function interpolated over its period (i.e. if
the spline boundary conditions are periodic), the accuracy of the spline deriv-
atives can be improved owing to the fact (see [245] and references therein)
that the asymptotic error of the first derivative of a periodic cubic spline
remains O(h4) at a knot. Higher derivatives may be had to the same order
through the following procedure. First, one fits a spline to the function and
computes the spline’s first derivatives at the knots. To these values, another
spline is fit then; its derivative will be an excellent, O(h4) approximation to
the second derivative of the original function. (Note that the second deriva-
tive of the original spline would be only h2 accurate.) Yet higher derivatives
may be obtained in the like manner. This technique was referred to as the
“spline-on-spline” method (§2.5 in [244]), later as the “successive” or “iterated”
splines. It was used in the boundary-integral problems already in [226]; with
quintic splines it was used in [242].

We have just discussed the behaviour of the approximation error for a
given function and its derivatives as the mesh is refined. However, a compu-
tation is generally done once with a predefined number of markers, the mesh
being refined (doubled) for the purpose of stability rather than approxima-
tion. Thus the reverse situation is also of interest: the mesh is fixed, and
one tests how good the approximation is for the derivatives of various trial
functions, for which the Fourier modes exp(ikx) are naturally chosen. The
work [231] analyzed several ways to interpolate a function uniformly sam-
pled over a period of 2π. It was demonstrated that the quality of the spline
representation deteriorates as k approaches the “Nyquist frequency” which is
defined as the highest wavenumber kmax = N/2 visible to the N -point mesh
(the period being 2π). The derivatives of the interpolating spline at the knots
are underestimated, and the smoothing is characterized by the error factor
[233, 234, 231]

Es(kh) =
3

2 + cos(kh)

sin(kh)

kh
,
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where h = 2π/N is the uniform spacing. In a sense, even the periodic-spline
approximation to the derivative is local like the one by finite differences. In
compliance with the previous passage, 1 − Es ∼ (kh)4/180 as h → 0. The
“sawtooth” (Nyquist) mode has 2 sampling points per period that are the
points of extremum for the interpolating spline, whose derivative therefore
vanishes at the knots, Es(π) = 0. This property is a difficulty [231] for
a straightforward spline-on-spline procedure. The sawtooth mode does not
contribute to the computed interface curvature and is not damped by the
surface tension. Thus it can be a source of the numerical instability (of a
simple “spatial” one); as we have discussed already, the surface tension should
be enabled to act upon high numerical wavenumbers (see Section 3.2.1).

3.2.3 Discretization of integrals

Integral operators enter the formulation of our problem three times:

• in the magnetic force (quadrature);

• in the potential density (an integral equation);

• in the velocity (singular quadrature).

We shall consider these cases one by one.
The first issue are the numerically accurate quadratures in the magnetic

force (3.26), (3.29). Essentially we have our data in the tabular form: the
values of the integrand are known at the marker points, the markers being
equispaced in the number variable. Then it is natural and convenient to use
the Hermite cubic quadrature [237]. Consider the Hermite cubic interpolating
function (see §3.2.2) with equidistant knots of spacing h – a piecewise-cubic
polynomial c(x) with continuous first derivative. It is fully defined by two
arrays: the one of function values yi and the one of derivatives di. Since the
error of the Hermite interpolation of a smooth function is O(h4) (see above),
the original integral can be approximated by the integral of c(x) yielding an
interpolatory quadrature rule of the polynomial degree 4. The integral of
c(x) is given by a remarkably simple formula (§5.8 in [237]):

∫ xn

x1

c(x)dx =
n
∑

i=1

αiyi + (d1 − dn)h2/12 , (3.32)

where

αi =

{

h/2 if i = 1 or i = n,

h otherwise.
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Obviously, the sum in Eq.(3.32) is the standard compound rectangle rule,
while the other term is a correction that improves the accuracy. Note that
the correction term involves the derivatives only at the ends of the segment of
integration. In our code the derivatives of the integrand functions at the end-
points are computed analytically from the expressions (3.26), (3.29). Note
that in order to evaluate (3.29), the segment should be divided into two parts
at the point s′ = 0 because the integrand is non-smooth there, and the rule
(3.32) should be applied to both parts separately.

The second task is to solve the integral equation (3.23) for the potential
density γ. There are several methods available for the numerical solution of
the Fredholm integral equations of the second kind. In [166, 167, 168, 175,
176] the Galerkin method is used. The simplest yet efficient method consists,
however, in replacing the integral operator with a quadrature rule:

f(s) = γ(s) +

∫ b

a

γ(s′)K(s, s′)ds′ ≈ γ(s) +
∑

j

wjγ(sj)K(s, sj) , (3.33)

where K is the kernel of Eq.(3.23) including the prefactor At/T , f is its
right-hand side, wj are the quadrature weights, and sj are the quadrature
nodes. The formula (3.33) evaluated at the nodes s = si reduces the problem
to a system of linear algebraic equations. This direct approach to solve an
integral equation is usually called the (mechanical) quadrature method and
occasionally is referred to as the Nyström method. The latter term should
preferably be used if on obtaining γ(si) the values of γ at an arbitrary point s
are found through Eq.(3.33) used as an interpolation formula (the “Nyström
interpolation”). For our purposes it suffices to have γ at the nodes si only.

Next, which quadrature rule should be chosen? The advice of the “Nu-
merical Recipes” [195] is that “for smooth, non-singular problems, nothing
beats Gaussian quadrature. . . ”. Indeed, it is obvious that the dimensional-
ity of the algebraic system should be kept as low as possible, the accuracy
being fixed. The Gauss quadrature rules are generally the most efficient in
this sense – for a given number or nodes, they provide the highest algebraic
accuracy (i.e. they exactly integrate algebraic polynomials of the highest or-
der) among other interpolatory rules. However, our case is not a general one.
The kernel is periodic, the right-hand side and γ are periodic as well, and the
markers are equidistant in the number variable. Then there exists an appeal-
ing alternative that we will employ [211]. The following result is important
(§6.4 in [215]; also formulated in other textbooks on numerical analysis, in
[223], etc.). For a periodic function being integrated over its period, the N -
point compound rectangle rule is exact for trigonometric polynomials of the
order N−1, which is the highest possible order for a N -point rule. Such algo-
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rithms are called spectrally accurate, of infinite accuracy ∼ exp(−const ·N),
or saturation-free.

The system of linear algebraic equations is solved for γ(si) by simple
iterations (this method is sometimes referred to as Richardson’s one, §2.3
in [246], the fixed-point iteration, or as successive substitutions, since the
system originates from the Fredholm equation of the second kind):

γi+1(s) = f(s) −
∑

j

wjγ
i(sj)K(s, sj) . (3.34)

The initial guess γ0 is taken from the previous time step. In [233] it is
suggested to use the γ0 extrapolated from several previous time steps. If a
redistribution has occurred at the beginning of the step, the old γ at new
marker positions is found by the spline interpolation. At the first time step,
the right-hand side is taken as the initial guess. On convergence of the
iterations, see [221, 216, 233, 243]. The condition to stop the process is that
the relative change (as compared to the previous iteration) of the absolute
value of any γ component no longer exceeds the prescribed threshold (i.e.
the error should be small in the “continuous” norm). More effective iterative
methods such as GMRES [182, 247] can also be applied.

Now let us turn to the third question – how the principal-value integrals
(3.22) can be computed numerically. They have the form

I(∞) = v.p.

∫ N

0

g(n, n′) dn′ ,

where n, n′ are the number variables, g is N-periodic in both variables and
singular but Cauchy-integrable at n′ = n. At the marker points n ∈ [0 . . . N)
takes the values 0 ≤ ni = i < N . A possible approach is to resolve the
singularity, which leads to the “van de Vooren correction” [218] to the rec-
tangle quadrature rule with the singular point omitted. The accuracy of the
corrected rule is determined by the way the derivatives that enter the correc-
tion term are computed; with the Fourier differentiation, the corrected rule
becomes spectrally accurate. Equivalently, the singularity can be subtracted
[218], leading to the spectral accuracy [223]. However, there exists a simpler
very accurate method. Integrating by the (compound) rectangle rule, let us
simply omit the node that corresponds to s′ = s (the “point vortex method”)

I(∞) ≈ I(N) =
N−1
∑

j=0
j 6=i

g(si, sj) ,
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Then it turns out that the relative (and hence absolute) error introduced
hereby is not just O(1/N), but, in addition, does not contain any algebraic
terms of higher order [224, 223]. Then this O(1/N) term can be exactly elim-
inated by the classical Richardson extrapolation [238] restoring the spectral
accuracy [224, 223]. The Richardson extrapolation in this case consists in
the following. Let N + 1 be odd; the error term to eliminate is C/N , where
C is a constant. Consider the same rule with a halved number N/2 + 1 of
points, i.e. the point with j = i is omitted as before, but starting with it
every other point is skipped as well:

I(N/2) = 2
N−1
∑

j=0
j 6=i

i+j even

g(si, sj) ,

Here the term is 2C/N . Then it follows that in the combination

2 I(N) − I(N/2) = 2
N−1
∑

j=0
i+j odd

g(si, sj) ,

the error terms cancel out, which leads to a spectrally accurate approximation
of I(∞). This is known as the alternate-point (or alternating) trapezoidal
(or rectangle) rule. We will use this rule, for which, we remind, N should be
even.

Yet another issue is an efficient evaluation of the trigonometric functions
in Eqs.(3.22), (3.23). Indeed, at every time step there are approximately N2

pairs of xj − xi and yj − yi of which trigonometric or hyperbolic functions
must be computed. However, it is possible to decrease the count of function
evaluations down to N using the formulas [229]

sinh(z − z′) = sinh z cosh z′ − sinh z′ cosh z ,

cosh(z − z′) = cosh z cosh z′ − sinh z sinh z′ ,

and analogous trigonometric identities. The functions in the right-hand side
are computed once during a time step. The tables of these values are used
subsequently in Eqs.(3.22), (3.23).

Note that the form of denominator in Eq.(3.22) is so chosen as to avoid
the cancellation of digits as s′ → s that would occur if it were replaced with
cosh2 b− cos2 a. This point was made in [218].
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3.2.4 Characterization and validation

In the previous paragraphs we have described a single time step of the algo-
rithm. Before turning to its verification, we must complete the definition of
the algorithm by specifying how the problem is integrated in time. Operation
count per time step is O(N2) for the equation setup (magnetic force, matrix
to solve the integral equation), solving for γ (operations with the matrix),
and evaluation of the velocity integrals. Then, if the perimeter increases
approximately linearly with model time (Saffman–Taylor fingers) (and since
markers are distributed approximately evenly along the interface), a com-
puting time needed to calculate up to a certain model time is a cube of the
model time. This imposes a practical prohibition to compute further than a
certain model time.

Given the expenses of computing the velocities of the markers, we perform
the time integration of the system by the explicit two-step Adams-Bashfort
method. At the first time step or after a redistribution of markers has oc-
curred, the second order Runge–Kutta method is employed. Both methods
are of the second order of approximation in the time step ∆t. The time step
is fixed throughout the run. Higher temporal convergence is not reasonable
because it is the stability constraint (3.31), and not the approximation, that
really limits from above the time step ∆t ∼ 1/N3 in our computations. Since
the error of the spatial approximation will be found to be asymptotically
1/N4, the error of the second-order time integration behaving as (1/N3)2 is
negligible at high N .

The program is written portably in the C programming language and
compiled with the free Digital Mars compiler [248]. Throughout the code,
we compute indiscriminately in the 80-bit “long-double” floating-point arith-
metic (ca. 20 decimal digits). With an Intelr PC, this is anyway the
lowest (or the only) hardware precision. Multiple precision defers the onset
of numerical instabilities and is good for computing nearly ill-posed problems
(§3.2.1). The algorithm requires O(N2) memory at At 6= 0 because of the
matrix of the integral operator. The matrix is computed once per time step
and stored to be reused several times as the corresponding linear system is
iterated. With N = 3000 markers the matrix takes about 100 Mbytes of
RAM.

Now we will verify the correctness of our implementation of the algorithm
to prove its suitability for the modelling. This will be done in a number of
ways. The code of course passes simple “internal-consistency” checks. It
passes the periodicity test (a comparison of results obtained with shifted
initial conditions). Doubling the period also gives consistent results, i.e. two
equal patterns are obtained side by side, each being equal to the pattern
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obtained with a single period. The volume of each fluid must conserve by
formulation; the numerically computed volume is of course non-zero and
increases with time, but is checked to remain reasonably low. (Other integral
invariants should also be constant and can be checked [218, 226].)

Note that we don’t use any explicit filtering. Smoothing other than that
naturally associated with the spline approximation (p. 100) is not present in
the presented computations. We were able to do many computations without
any visible signs of instability or irregularity in the plots of the interface, the
right-hand side (rhs) of the integral equation Eq.(3.23), its solution γ, or
velocities. However, in some rare cases we did observe that, independently
of the time step size, the (κ + Ca y + Bm Im) combination entering the rhs,
or rhs itself, developed a small-amplitude zigsaw pattern over some segments
of the interface. The amplitude of the zigsaw grew quite slowly with time or
saturated at a constant, quite low value. Usually we had to change the spatial
resolution to avoid this. We also noticed that too loose marker redistribution
conditions could provoke the zigsaw. There was also another, more serious
sort of numerical problem. With highly ramified and convoluted interfaces,
a numerical blow-up would occur quickly at a very localized segment of high
interfacial curvature: say, a dozen consequent markers would have irregular
rhs value, velocities, etc. The iterations of the integral equation on γ would no
longer converge. This problem caused the computation to stop, and we could
not find a remedy against it. By analogy to the two-dimensional interfacial
problems for ideal fluids, we may expect that full “spatial” numerical stability
can be achieved by application of a certain filter [232, 234]. Other possibilities
are also being tried, which is a subject of our ongoing work.

In Fig. 3.4 some numerically computed non-magnetic shapes are com-
pared to the ST finger of a relative width λ. The asymptotic shape of an
infinitely long finger with the tip at x = y = 0 is given by the formula

exp
πy

(1 − λ)T
= cos

πx

λT
. (3.35)

At any λ, the ST finger is an exact solution of the problem at zero surface
tension (Ca = ∞; §3.1.1). As the surface tension is non-zero but small, λ
tends to 1/2. Even at larger surface tensions the observed and modelled
shapes not predicted by the surface-tension-free theory, are well described
by Eq.(3.35) with a suitably adjusted λ (the problem of the finger-width
“selection”). If not specified otherwise, for λ we will take the first width
maximum, counting from the tip of the finger. As illustrated by Fig. 3.4, the
shapes with surface tension near tips are narrower than the ST finger, but
already at Ca as small as unity, the correspondence becomes quite close.

A common verification test for a Hele-Shaw numerical code is the compar-
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(a) Ca = 0.2, t = 500: λ = 0.59979.
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(b) Ca = 1, t = 100: λ = 0.53447.
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(c) Ca = 5, t = 20: λ = 0.51181.

Figure 3.4: A comparison of the computed finger shape to the classical ST
solution. Upper panels: A non-magnetic finger computed with At = 1,
T = 20, and the initial data y = 0.02 cos(2πx/T ). Lower panels: The
magnified tip of the computed finger (boxes) versus the Ca = ∞ ST finger
(solid line) of a relative width λ, which is defined by two points marked (solid
boxes) in the corresponding upper panel.
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Ca λ by [162] λ = b

1.339824 0.515 0.51538

0.062976 0.640 0.646

Table 3.1: The ST finger width λ – capillary number Ca dependence. Center:
results from Table I of [162]. Right: our corresponding numerical results
(Bm = 0, At = 1, T = 31.75, M = 3, y = 0.03 cos(2πx/T ) and N = 65
initially).

ison of the computed λ to the benchmark steady-state results of [162] (§3.1.1).
where a unique finger width for a given surface tension was computed. We
compute the ST fingers at several Ca, starting with a small cosine-like initial
interface perturbation. However, with a time-dependent model the limiting
λ can be difficult to recover. Even an apparently developed finger in fact
continues to deform. Namely, the lateral segments of its interface can un-
dulate slightly in a symmetric fashion, with humps emerging not far from
the tip, travelling slowly away from the nose, and increasing in amplitude
in the meanwhile. The distance between the extrema of symmetric humps
is natural to be taken for λ. Thus a convention is needed, when and which
hump should be used. On the other hand, the amplitude of the undula-
tion being rather small (about the last decimal place in lambda by [162]),
we can merely neglect the difference. In Fig. 3.5 this situation is shown for
Ca = 0.062976 (the undulations take place at small Ca). We assume that
the width of a hump follows approximately the model λ(t) = a/(t− t0) + b,
where a, b, and t0 are determined from λ values at several t. This b may be
thought of as the steady-state λ, though its precise value can be appreciably
model-dependent and should not be attributed too much importance in such
cases. Thus, it is clear from Fig. 3.5 that the computed λ may well tend
to the McLean&Saffman’s limit 0.640 instead of the value λ = b = 0.646
given by the fit. (Fit parameters were determined by a non-linear estimation
procedure available in [249], where the non-linear least-squares Marquardt-
Levenberg algorithm is implemented). Note that minute oscillations of the
tip curvature were reported in [250], where it was also shown that the these
oscillations can grow in amplitude with time leading to a late tip-splitting of
a seemingly stationary finger.

Table 3.1 lists two entries of Table I of [162] that were chosen here for
being extremal among those given by [162] – the first one corresponds to the
smallest surface tension, while the other corresponds to the largest surface
tension at which the interface is still linearly unstable. (Lower part of their
Table refers to the linearly stable situation.)
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Figure 3.5: Computed finger width λ vs time. Black and empty boxes cor-
respond to two different “humps” (see text). The dotted curve is a fit to a
part of the data, and the solid line is curve’s asymptote λ = b.

Now let us compare the computed growth increment to the theoretical
dispersion relation [176]

λ = −k3 + k

[

Ca + Bg + 2 Bm

(

K0(k) + γ + ln
k

2

)]

. (3.36)

(We use the same letter for the growth increment and finger width, which
should not lead to confusion; the Macdonald functionK0 is given by Eq.(2.20).)
Note that if y ∼ exp(λt), then vy/y = λ. Let us choose the parameter val-
ues with which the summands in Eq.(3.36) are of the same order: Ca = 1,
Bm = 1, T = 2π, i.e. k = 1, and λ = 0.610187. Besides, take M = 10, the
number of markers as low as N = 65, and the interface that was initially
just slightly perturbed: y = 2π × 10−7 cos(2πx/T ). Then for the marker in
the middle (x = 0, y = 2π × 10−7) the computed vertical velocity is found
to be vy = 3.833196 × 10−7, so that vy/y = 0.610072. Comparing this value
against the theoretical one, we recover a rather small error in the computed
value: 0.02%.

Now let us investigate the quality of the spatial approximation offered
by our algorithm. Specifically, we will find the actual rate of convergence
of the computed solution to the limit as the grid is refined (N → ∞). We
remind that the numerical algorithm was so constructed as to enable the
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fourth-order convergence. To check this feature, let us fix the following pa-
rameters: Ca = 7/120, Bm = 1.14, At = 1, T = 20, M = 3, and the initial
condition y = 7 cos(2πx/T ). The initial condition is non-linear in the sense
that its amplitude is comparable to the period T , so that the non-linear inte-
gral term in Eq.(3.23) can manifest itself. We distribute markers uniformly
in x, hence unevenly in arclength, to have the most general case possible.
The test consists in running the code with different numbers of markers and
comparing the results computed in the first time step (marker redistribution
being disabled). Namely, we will pick out several markers that are present
at any N and compare their computed velocities as N varies. “By construc-
tion,” the values are expected to be of the algebraic asymptotic behaviour:
v|N ∼ A+B/Nα, where v|N is either vx or vy computed with N markers per
period. Hopefully we should observe α = 4. To verify this, let us multiply N
repeatedly by a factor of 2, carrying out the computation with each value.
Now notice that

v|2N − v|N
v|4N − v|2N

N→∞∼ 1/(2N)α − 1/Nα

1/(4N)α − 1/(2N)α
= 2α . (3.37)

Thus the “apparent” order of convergence is easy to compute having the
results for 2N and 4N along with the ones for N . The results of such test
with our code are given in the Table 3.2 for 3 markers: far from the end of the
interface, close to it, and immediately at it. The reader may quickly verify,
for example, that the ratio (3.37) for vx at the marker with coordinates
x = −1.875, y = 7 cos(2πx/T ) ≈ +5.820 and for N as high as 1024, is
8550/519 ≈ 16.5. (The deviation from the exact power of two must be
attributed to the finite value of N .) The same behaviour is the case for
other markers and other quantities (γ, etc.). Hereby the so-called “apparent”
spatial convergence of the algorithm is proved to be of the fourth order. Even
though we won’t necessarily compute at that high resolutions, this property is
quite satisfying, for lower (and usually unchecked and unreported) precision
of existing previously algorithms was one of their serious drawbacks. In fact,
the ultimate goal in this direction might be to construct a (even better)
spectrally accurate algorithm for the Hele-Shaw flow with MF’s.

In the same manner we can verify the temporal convergence as the time
step is diminished. Specifically, the following was done (with the redistribu-
tion feature disabled):

• 4n time steps, each being equal ∆t;

• 2n time steps 2∆t;

• n time steps ∆t.
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Coordinates N vx × 102 vy × 102

x = −1.875,

y ≈ +5.820

32

64

128

256

512

1024

2048

4096

-7. 234440 452984838804
63000

-7. 297826 695220566467
7000

-7. 304908 078187593675
360

-7. 305266 384062836710
22

-7. 305288 399465865115
1 37

-7. 305289 769194312342
0855

-7. 305289 854700766376
00519

-7. 305289 859894237968

+8.1 00871 906452581012
4300

+8.1 05130 482414961237
5500

+8.1 10591 558746343030
290

+8.1 10878 551916856362
17 7

+8.1 10896 193374066252
1 10

+8.1 10897 291015752110
0685

+8.1 10897 359535596702
00416

+8.1 10897 363694727385

x = +9.375,

y ≈ −6.865

32

64

128

256

512

1024

2048

4096

-0. 271664 5569677863042
1. 000000

-1. 211184 109416471383
6500

-1. 217722 229490212754
1500

-1. 216234 375601009210
119

-1. 216115 418835572680
7 85

-1. 216107 566726906089
497

-1. 216107 069391478064
0314

-1. 216107 037973773322

-2.30025 0954391177648
2.00000

-4.34511 6893518365033
1500

-4.36056 0334594867185
340

-4.35712 0956443009651
27 5

-4.35684 5517651677088
1 82

-4.35682 7330862391562
1152

-4.35682 6178870820950
00728

-4.35682 6106092765834

x = +10,

y = −7

32

64

128

256

512

1024

2048

4096

+5.583641188300347835e-17

-1.253608761936364502e-17

+1.022876987104293089e-16

+3.272935308190616510e-17

-1.322027848250830612e-16

-1.905082977493328250e-17

-3.368252984536326996e-17

-9.493402997760839080e-17

+17.41071 883481683420
3.00000

+20.37177 215224953303
6100

+20.43251 766074224400
700

+20.42555 393928514361
61 4

+20.42494 009378124741
4 12

+20.42489 891147713024
262

+20.42489 629334124457
0164

+20.42489 612932692596

Table 3.2: Pointwise convergence of results as the discretization is refined.
For three markers, listed are their velocities computed at variousN . The rows
with the empty N entry contain instead the leading digits of the difference
between the values immediately above and below. See the text for details.
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The temporal convergence proved to be of the second order.

However, another issue may become important in this regard. As an
example, two competing fingers that have developed from the “symmetric”
initial conditions (i.e. that have been absolutely identical at the first time
step) and have preserved their resemblance to high accuracy till some mo-
ment, suddenly can break the symmetry. Which of the two will dominate is
determined essentially by the numerical noise, so that computing the same
problem with two different time steps (or other numerical parameters) can
lead to rather different shapes. This question will be explored in more detail
later (§3.3); now we just remark that for the purposes of establishing the
convergence, such events must be avoided.

Our code will be further checked in the following paragraph along with
presenting the results obtained with it. In particular, we will reproduce and
extend the results of Cēbers [176] regarding non-linear patterns exhibited by
magnetic fluids in a Hele-Shaw cell.

3.3 Numerical results for the perpendicular field3

In this paragraph we will present the results of our numerical simulations.
They will be split into two parts: the Saffman–Taylor fingers and the “den-
dritic” patterns, although the division is not strict. A small-amplitude per-
turbation, mostly one harmonic of a period T , will be taken as the initial
condition. In most cases the initial number of markers will be equal toN = 32
or N = 64; however, as the interface evolves and its perimeter increases, the
number of markers will vary directly, reaching in some cases several thou-
sands. The time step is chosen to be close to the largest one compatible with
numerical stability.

3.3.1 Magnetic Saffman–Taylor fingers

We begin with repeating the simulation [176] of a magnetic ST finger. In
Fig. 3.6 we present our results obtained with the same physical parameters as
in [176]. In particular, Fig. 3.6(a) corresponding to t = 0.44 shows excellent
agreement with the last panel in Fig.2b of [176] that corresponds to t = 0.4375
in our notation (note that gravity was directed upwards in [176]; aspect ratios
of the plots are the same). At a later stage, the characteristic “peristaltic”

3 “. . . du fait de la difficulté mathématique des modèles de croissance, l’analyse de
l’évolution des formes de croissance ne peut se faire en général que de façon numérique.”
(P. Pelcé, [11], p. 19.)
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Figure 3.6: Magnetic fingers computed with Ca = 12, Bm = 7, At = 29/31,
T = π, M = 3, and the initial data y = −0.05 cos(2πx/T ).
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Bm

Ca Bmcr 0.24 0.61 0.93 1.14

7/1200 0.821403 stable stable 0.521 nonstat.

7/240 0.615011 stable stable 0.5469 0.508

7/120 0.357022 stable 0.59805 0.54230 0.5117

7/40 0 0.58850 0.55736 0.53107 0.51468

7/12 0 0.54173 0.52999 0.51984 0.51325

Table 3.3: The finger width λ as a function of Ca and Bm. Other parameters:
At = 1, T = 20, M = 3, the initial condition is y = 0.02 cos(2πx/T ),
average spacing between markers ∆s = 0.61. Bmcr is a critical magnetic
Bond number at the given Ca. The entry “nonstat.” refers to a non-stationary
finger whose sides continuously deform and tip width oscillates too much.

deformations near tips of MF tongues falling down become more pronounced
(Fig. 3.6(b)).

Now we will present the width of simulated fingers at various Ca and
Bm. The initial condition is set to be a single small-amplitude harmonics
of a period T . As in §3.2.4, the relative width λ is measured by the width
maximum that is nearest to the tip. The results are listed in Table 3.3 and are
also plotted in Fig. 3.7 in the fashion of the experimental Fig. 2.31 of [181] and
Fig. 4 of [7]. The fingers are allowed to develop until their width converges to
several decimal places, except for the case shown in Fig. 3.8, where the same
extrapolation is used as in §3.2.4 (Fig. 3.5, p. 108). However, at low Ca and
high Bm numbers the fingers continuously deform “peristaltically” causing the
tip width to oscillate. This limits the accuracy of our computed λ. In one case
(Ca = 7/1200 and Bm = 1.14), the deformations are so large in amplitude
that no meaningful steady width can be ascribed to the finger (besides, the
finger spontaneously looses symmetry after a while and starts undulating,
cf. later). That at Bm > 0.9 fingers become unstable was mentioned in
[7, 181]. Comparing Fig. 3.7 to the above-mentioned experimental figures,
one can notice that in the experiment, but not in our simulations, it was
possible to obtain steadily propagating non-linear fingers in linearly stable
situations. From our experience with large-amplitude initial conditions and
also with finger-shaped ones, we tend to think that this discrepancy cannot be
attributed to the difference in initial conditions. Rather, the non-periodicity
of the experimental pattern should lead to different stability properties (see
the end of §3.1.5; it is likely that the non-periodic situation is more unstable).
On the other hand, some qualitative features are reproduced well with our
simulation: for a given Ca, λ generally decreases with Bm, and the higher
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Figure 3.7: A relative magnetic finger width for various Ca and Bm. The
data is taken from Table 3.3.
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Figure 3.8: Computed magnetic finger width λ versus time. Ca = 7/1200,
Bm = 0.93; other parameters are as in Table 3.3. The solid line is curve’s
asymptote.

Ca, the slower. Note also that at some Bm values, the finger width is a non-
monotonous function of Ca having its maximum at an intermediate Ca value.
The quantitative agreement with the experiments [181, 7] of the Bacri group
is unfortunately not satisfactory, the discrepancy in λ being at low Ca as high
as 0.08. We attribute this to the assumed periodicity of the magnetic force
(§3.1.5) and to a high magnetization that is in fact not negligible with respect
to the applied field (p. 76). None of the computed fingers had λ < 1/2.

Now we repeat another simulation by Cēbers – the one of a magnetic
branched pattern [176]. We find it convenient to present most patterns over
a period and a half, having the x-axis horizontal and the y-axis – vertical, if
not specified otherwise. Our pattern presented in Fig. 3.9 should be compared
against Fig. 3 of [176]. In comparing, we remember that in that simulation
of [176], the length scale was twice as long as ours (we preserve the same
aspect ratio in Fig. 3.9 though), their time scale was two thirds of ours, their
capillary number was defined in a different manner, and their gravity was di-
rected upwards. As early as at t = 0.5, our pattern shown in Fig. 3.9(a) looks
already quite different from that shown in the panel of [176] corresponding
to t = 0.75 in their notation. Namely, there are two tongues of falling MF
(fingers) per period in [176], with the wider one having started to tip-split
already, while Fig. 3.9(a) displays a single three-lobe tongue. A second fin-
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Figure 3.9: An interface computed with Ca = 3, Bm = 7, At = 29/31,
T = 2π, M = 3, and the initial data y = −0.1 cos(2πx/T ).
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ger appears at a later stage, but remains weaker than the finger appearing in
[176]. Nevertheless, the later structures bear much resemblance to those in
[176]. This is evidenced by comparing Fig. 3.9(b) against the corresponding
result of [176] (t = 2 in their notation, which corresponds to our t = 4/3).
Indeed, in both cases there are two (long) fingers of emerging non-magnetic
fluid. Of the two magnetic fingers, one is split into two (three, in our simula-
tion) lobes and exhibits two (one) “peristaltic” deformations, while the other
is partially (completely) shielded. In this regard the conjecture made in [250]
may be pointed out that two-lobe and three-lobe tip-splittings are caused by
the same instability mechanism and can substitute one another (three-lobe
splittings are indeed observed in experiments). As simulation goes on, the
peristaltic deformations increase in number and amplitude, becoming side
branches. About t = 2.1 the symmetry of the interface gets broken. Strictly
speaking, broken gets the parity of the interface (its evenness with respect
to the x = 0 line.) We are able to progress further with the simulation up to
t = 3.3 (Fig. 3.9(d)). To assess the accuracy of this result obtained with ini-
tial N = 32, we computed with a twice as high resolution (N = 64 initially)
up to t = 2, which is shortly before the symmetry breaks up. In Fig. 3.9(c),
we try to plot the low-resolution results in dots, while the higher-resolution
ones are plotted in solid. The two curves are almost indistinguishable, which
proves that the accuracy is high enough. Turning back to Fig. 3.9(d), we see
that the central finger has shifted towards one of its neighbours. We interpret
this as follows: the symmetric position has lost its stability. We believe that
the symmetry break-up and the emergence of bifurcation is indeed present in
the model. Which of the two new stable positions is selected? This of course
is determined by the noise, be it numerical or experimental (later we will see
an example of the noise effect). The event can be described physically as
the four-arm vertex (located at (x, y) = (0, 0) in Fig. 3.9(c)) being separated
into two 3-arm vertices (Fig. 3.9(d)). Such events were previously reported
and analyzed for the same problem in the radial geometry [169, 182] and are
analogous to the behaviour of two-dimensional foam films attached to sev-
eral pins. The vertex-splitting is believed to prevent the rupture of shapes
by the overextension mechanism. Later we will see a vertex-splitting in other
patterns as well.

Simulating another magnetic structure (Fig. 3.10), we will check the ef-
fect on the results of the time step size and that of changing the marker
redistribution criteria. Surprisingly, the latter effect is quite appreciable
(still not drastic). Besides, at plotting the pattern after the loss of sym-
metry (Fig. 3.10(b)), the interface computed at a decreased time step in fact
demanded a reflection with respect to x = 0 axis, which shows that small per-
turbations (noise) can determine which of the two new stable configurations
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Figure 3.10: An interface computed with Ca = 0.224/π ≈ 7.13 × 10−2,
Bm = 4.56/π ≈ 1.45, At = 0.92, T = 20, M = 3, and the initial data
y = 0.02 cos(2πx/T ). In Fig. 3.10(b), plotted with a dashed line is the
interface computed at a decreased time step (∆t = 0.020 instead of 0.025),
the interface plotted with dots is obtained at a tighter arclength spacing
constraint: 0.607 < ∆s < 0.613 (instead of 0.60 < ∆s < 0.62).
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Figure 3.11: The competition of two magnetic fingers. Parameters are the
same as in Fig. 3.9 with the exception of the initial data y = 0.1 cos(4πx/T )−
0.02 sin(2πx/T ).

is actually chosen.

It may be interesting to see what happens if we rerun the simulation pre-
sented in Fig. 3.9 with another initial condition: a harmonic perturbation
whose wavelength equals T/2, with a superimposed small-amplitude har-
monic of the basic period T . The growth increments of the modes, according
to the dispersion relation Eq.(3.36), are 17.4 and 6.3, correspondingly. The
faster-growing one besides has an advantage in the initial amplitude. So
there is no surprise that at an early non-linear stage we have two almost
indistinguishable fingers per period (Fig. 3.11(a)). Nevertheless, later on
the difference manifests itself (Fig. 3.11(b)), and yet later, the fingers loose
their symmetry with respect to the centerline (Fig. 3.11(c)). Notice two-lobe
tip-splittings and observe that fingers of the less-viscous fluid tend to undu-
late, while fingers of the more-viscous one would rather exhibit peristaltic
deformations.

Concerning the competition of fingers growing from the initial conditions
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Figure 3.12: Shielding: absent or present? (a): t = 1.18, initial shape
y = −0.05 cos(4πx/T ) + 0.01 cos(2πx/T ); (b): t = 0.48, initial shape y =
−0.05 cos(4πx/T ) − 0.0005 sin(2πx/T ). The initial shapes are schematically
shown below. Ca = 12, Bm = 7, At = 29/31, T = π, and M = 3 for both.
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of the above sort, we note the important role played by the phase differ-
ence between the interacting harmonics. Indeed, compare Figs. 3.12(a) and
3.12(b). In the first case, the (downward) humps of the more-viscous fluid
differ in amplitude, while the humps of the less-viscous one do not. The
stronger downward finger does not shield with time the shorter one, their
difference in length remains small, as if there were some stabilizing mecha-
nism. In the other case, the crests of the wavy interface differ just a little
bit, while the hollows are exactly the same. Nevertheless, the higher crest
quickly wins over the lower one (Fig. 3.12(b)). Thus we can cautiously infer
that fingers of the less-viscous fluid are more susceptible to mutual shielding
than fingers of the more-viscous one.

In Fig. 3.13 we present a long finger undergoing repetitive “peristaltic”
deformations. In Figs. 3.13(h)–3.13(k) it is shown how the finger looses its
symmetry with respect to the centerline. It occurs through the characteristic
vertex-splitting already described above.

One more pattern is shown in Fig. 3.14. Contrary to what one might
think, the strange shape of the downward finger proves stable.
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Figure 3.13: A long magnetic finger. Ca = 7/120, Bm = 1.3, At = 1, T = 20,
M = 3; the initial condition is y = −(1/π) cos(2πx/T ).
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Figure 3.13: A long magnetic finger (continued). A vertex-splitting event.
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Figure 3.14: Yet another pattern: Ca = 8, Bm = 1, At = 1, T = 10π,
M = 1; the initial condition is y = 0.05 cos(2πx/T ); t = 9.
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3.3.2 Dendritic patterns

Now we will study the development of a highly convoluted interface that
develops at a relatively low capillary number Ca, high Bm, and high viscosity
contrast. We will call the more-viscous upper (At > 0) fluid just “liquid”, and
the less-viscous fluid will be called “air”. Tracing the evolution of the interface
(Fig. 3.15) reveals some scenarios of pattern formation. Perhaps the most
common is the tip-splitting that is the first secondary instability to occur
(Figs. 3.15(a), 3.15(b)), both with liquid and air fingers. Some fingers exhibit
already the “peristaltic” deformations. At about t = 14 the pattern looses
its symmetry, and another instability sets in: A peristaltic bulge on a liquid
finger flattens out on one side, jutting out on the other (Fig. 3.15(c)). The
process ends up with a single side branch (Fig. 3.15(d); the pattern fragments
under consideration are marked by a rectangular contour). Thus a retraction
of a side branch is possible, which is indeed observed [12]. In parallel, adjacent
air fingers also develop corresponding branches, usually upon undulation, as
exemplified by Figs. 3.15(e)–3.15(g). Many fingers become shielded and stop
evolving shortly after appearing. Interpenetrating side branches form the
“hairpin” details [251]. Later stages are marked by the avalanche of tip-
splittings by air fingers. Interestingly, liquid fingers never tip-split again,
as was noted and explained by the unfavourable (for instability) viscosity
contrast in [12]. Near the tips, air tongues are thicker than liquid ones are
at their tips. Note that the top-bottom asymmetry in the pattern is caused
by a non-zero At (at a non-zero surface tension). We remind (see p. 86) that
were At opposite (negative), the pattern would exactly turn upside down to
within the noise effect. The sensitivity of patterns to small perturbations is
demonstrated by Fig. 3.16, we simulate two patterns that differ only in the
sign of At and should coincide in precise arithmetics. However, the numerical
results are slightly yet appreciably different because of the numerical error
that differs between the two simulations (mostly because of the magnetic
integrals being taken over different domains). Inside the contour, one can
notice that some side-branchings that have occurred in one case, have not
in the other, etc. We stress our belief that this sensitivity is a physical
effect and not numerical one. The same numerical observation is made in
[178] where it is conjectured that the energy functional has multiple local
minima in the space of accessible shapes. The final picture that we were
able to obtain without the numerical instability resembles rather closely the
patterns observed in the experiments [12, 181].

At Bm = 4.8, the pattern formed is shown in Fig. 3.17.

It is interesting to note that the number of fingers per period in Fig. 3.15 is
n = 5 . . . 6 long fingers of the same direction, while the period 2π/k = 3.5092
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Figure 3.15: The development of a magnetic dendrite: Ca = 3/16, Bm =
3.675, At = 0.986, T = 24, M = 3, and the initial data y = −0.5 sin(2πx/T ).
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Figure 3.15: The development of a magnetic dendrite (continued).
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Figure 3.15: The development of a magnetic dendrite (continued).
This dendrite is available animated at the CNRS “thèses-en-ligne” web-
site <tel.ccsd.cnrs.fr>. (Search for “Igonin” there; the SVG Viewer
<www.adobe.com/svg> is needed to run the animation file.)

http://tel.ccsd.cnrs.fr/
http://www.adobe.com/svg/
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Figure 3.16: The sensitivity of pattern formation to small perturbations.
The pattern shown in Fig. 3.15 is reproduced in solid lines. The pattern
obtained under the same conditions except for the opposite At = −0.986
and the opposite initial data y = +0.5 sin(2πx/T ) is plotted upside down in
dots. (In the last panel the y-axis is reversed explicitly.) While the exact
solutions coincide, numerical noise in the two runs was different, which lead
to appreciably distinct patterns.
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Figure 3.17: A magnetic dendrite at a higher Bm (t = 64): Ca = 3/16, Bm =
4.8, At = 0.986, T = 24, M = 3, and the initial data y = −0.5 sin(2πx/T ).
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Figure 3.18: The equilibrium width δ of straight magnetic stripes as a
function of Bm. Solid line: a stripe in a 2δ-periodic pattern [59]; dotted line:
an isolated stripe [252].

of the most dangerous linear mode (for a planar interface) is some 7 times
less than T = 24. In the same time, the width δ of long fingers measured in
the middle of the structure (far from top and bottom) is about 1.2 . . . 1.4 for
the fingers of both sorts. (The closer to the tip, the thinner the finger, unless
the distance from the tip is less than several widths.) The deviation of the
width from T/(2n) is due to the “defects” of the structure (side branches,
undulation, shielded fingers). Judging by late panels of Fig. 3.15, apart from
the drift as a whole, the middle of the structure stops to evolve, which means
that internally this region has arrived to a static equilibrium. In this regard
let us note that it is possible to compute the magnetic energy (per unit length)
of the pattern of long parallel MF stripes [253, 59]. This energy summed with
the energy due to surface tension can be minimized at a constant stripe area
to yield the equilibrium parameters of the pattern. From formula (11) of
[59], in the case when stripes of both kinds are of the same length, it follows
that (in our notations)

(

2δ

π

)2 ∫ π/(2δ)

0

y ln

(

1 +
1

sinh2 y

)

dy =
2

Bm
. (3.38)

Another particular case of that formula in [59] is the equilibrium width4 of

4Bm is defined in [59, 252] to be one half of ours. Our Bm in SI units is
(µ0/(4π)) 2(∆M)2h/σ, where µ0 is the “permeability of vacuum.”
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a single straight stripe [252]:

δ2 ln(1 + δ−2) + ln(1 + δ2) = 4/Bm . (3.39)

These relations are plotted in Fig. 3.18. It may be seen that at Bm = 3.675,
δ = 1.36 for the system of parallel straight stripes, which agrees well with
our measured finger width of 1.2 . . . 1.4. We point out that our fingers are
appreciably narrower than the half-period π/k = 1.75 of the most unstable
mode of a planar interface. At Bm = 4.8, the obtained finger width is
1.0 . . . 1.1, also in agreement with δ = 1.12 given by Fig. 3.18, and also
less than the half-period π/k = 1.40 of the most unstable mode. Thus the
patterns evolve by adapting to the change of preferred spatial scales that
takes place in the course of their evolution.

On the other hand, a larger width that the fingers inherit from the linear
stage of instability is the equilibrium one for a pattern of parallel stripes at
a lower Bm. It is remarkable that the energy of magnetostatic interactions
across an undulating stripe (or stripe pattern) undergoing large-wavelength
undulations scales with wavelength (at large wavelength where it is more im-
portant) the same way the energy due to surface tension does. This allows to
introduce [254] the notion of an effective surface tension. This quantity is zero
at the critical Bm (see [177], §4.6 of [15] for a single stripe), which is equiva-
lently the equilibrium one defined by Eqs.(3.38), (3.39). The effective surface
tension becomes negative at larger Bm values, leading to long-wavelength un-
dulations (cf. simulations of a single stripe in [173]). For the analogy of MF
stripe patterns to liquid-crystal smectics, see [6, 13]. Thus it can be expected
that a magnetic Bond number too high for a given period will force the fingers
to undulate. “Chevrons” and “hairpins” should [254, 255, 62] develop from
the undulations in the non-linear regime, as indeed observed experimentally
in [13, 251]. Now we can add to this our numerically obtained hairpin-like
side branches in Fig. 3.15 and, especially, Fig. 3.17, where they are rather
pronounced and regular.

Fig. 3.19 shows the effect of viscosity contrast on the pattern shown in
Fig. 3.15 – At = 0 for this simulation, other parameters being the same as
in Fig. 3.15. Though the basic mechanisms (tip-splitting, side-branching)
are still in operation, the resulting differences are obvious. Notice that the
pattern no longer transforms into itself by reflection about the x-axis com-
bined with a translation by a half-period. (In precise arithmetics, the pattern
should so transform as long as the initial conditions do.)

Now let us determine how long-range the magnetic interactions between
the parts of a branched pattern are. In other words, how small M = maxm
in Eq.(3.27) is sufficient at calculating the magnetic force? Fig. 3.20 proves
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Figure 3.19: A pattern at a zero viscosity contrast: At = 0. Other parameters
are as in Fig. 3.15; t = 55.
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Figure 3.20: On the effective range of magnetic interactions in Fig. 3.15
(t = 19). The pattern interface computed at M = 0 is plotted with a dotted
line. The shapes at M = 3 (usual) and M = 1, both plotted in solid, are
indistinguishable.

that in the case under review just above, M = 1 is already a very good
approximation, while M = 0 is perhaps not. (We remind that M = 0
means that interactions with about a half of the period in any direction are
taken into account, M = 1 implies one period more, etc.) Nevertheless,
since anyway not much computing time would be gained (10–20 %), we will
normally proceed with M = 3 as before.

At low surface tension, we observe other interesting events such as the
formation of a pending viscous drop and the air-bubble trapping. Pinching
and rupture of the necks cannot be modelled with the present algorithm (cf.
[174]); other approaches are capable of handling topological changes, e.g. the
level-set algorithm (see p. 97).

In Fig. 3.22 we demonstrate that while the interface can be quite branched
and convoluted, it adapts to the driving forces in such a way that they vary in
a rather regular manner along the interface. This includes not only vertical
segments, but also the side branches.

In Fig. 3.23 we compare the early dynamics of the perimeter in the case of
a single finger (Fig. 3.6) against the case of a branched interface (Fig. 3.15).
Rapid growth of the interface length in Fig. 3.23(b) at about t = 6 . . . 9 is ex-
plained by higher harmonics generated (Fig. 3.15(a)) by the initial imposed
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Figure 3.21: Drops and trapped bubbles. Ca = 100, At = 0, T = π, M = 3,
and initially y = +0.05 cos(4πx/T ) − 0.01 sin(2πx/T ) for both figures.
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Figure 3.22: The dynamical structure of the branched interface shown in
Fig. 3.15(k). The combination 2(κ+ Ca y + Bm Im) + const, the “forcing” of
the integral Eq.(3.23), is plotted versus arclength.
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(b) The case of a branched pattern (Fig. 3.15).

Figure 3.23: Evolution of the perimeter. Solid line: the scaled surplus
perimeter L/T − 1; dotted line: its early asymptotics exp(2λt).
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mode of the basic period T in the non-linear regime, with the higher har-
monics being more unstable than the initial mode. (It is easy to see that the
surplus perimeter, L−T , of a sinusoidal deformation whose amplitude grows
exponentially with rate λ, grows as exp(2λt) in the linear regime and slows
down afterwards to exp(λt).) In both cases T is larger than the period of the
most unstable wavelength. However, the growth rate at the imposed period
in the case of the finger is only 1.6 times lower than the growth rate of the
most unstable mode, while in the case of the branched interface the ratio is
about 24. This explains the difference between Figs. 3.23(a) and 3.23(b) as
well as why the imposed mode dominates in the finger case but not in the
case of the branched pattern. Later, the perimeter of the branched structure
evolves rather smoothly, but somewhat slower that linearly with time. On
the contrary, the interfacial length of a developed finger varies linearly with
time to an excellent precision, as might be expected.

In conclusion we mention the so-called comb-like instability [256] that es-
sentially is the Rayleigh–Taylor instability of MF’s with stable density strat-
ification, Bg < 0. We have made some runs for this situation, finding the
obtained patterns to be very similar to the usual case Bg > 0 (Ca > 0). We
remark that the present algorithm enables us to verify the non-linear analysis
of [257] of the type of bifurcation in the near-critical conditions.

3.4 Numerical results for the normal field

In fact, at this point we have all the ingredients necessary to easily derive the
equations of the evolution of an initially straight interface in the “normal”
field (i.e. in the “peak” configuration, where the field is perpendicular to
the interface and parallel to the plane of the Hele-Shaw cell). The dispersion
relation for linearized perturbations of a planar interface [180] can be written
in our notation as

λ = −k3 + k (Ca + Bg + 2 Bm Inorm(k)) , (3.40)

where

Inorm(k) =

∫ +∞

0

1 − cos(kt)

t2

(√
t2 + 1 − t

)

dt .

Both perpendicular (Eq.(3.36)) and normal fields tend to destabilize every
wavelength of a perturbed immiscible interface (and the shorter the wave-
length, the higher the tendency towards its destabilization by the fields).

Let the field be directed along the y-axis in the geometry of Fig. 3.1.
Then to use the formulas derived in §1.4 and Chapter 2.4, we only have to
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substitute there x with −y and y with x. Indeed, Eq.(2.46) for the magnetic
force at a constant magnetization becomes

~fm = Mi
~∇∂ψ

∂y
. (3.41)

The (gap-averaged) magnetic potential ψ is written according to the dimen-
sional form of Eq.(2.51) as

∂ψ

∂y
= −2

h

+∞
∫

−∞

+∞
∫

−∞

(y − y′)
∂M

∂y′
Jh

(

√

(x− x′)2 + (y − y′)2
)

dx′ dy′ (3.42)

with Jh(ρ) = (
√

ρ2 + h2 − ρ)
/

ρ2 . Since we have now two domains of con-

stant magnetization, the derivative of the latter in Eq.(3.42) is zero away
from the interface, being in fact a delta function. This allows to perform one
of integrations in Eq.(3.42). First imagine that the interface is such that y
is a single-valued function of x. Then we immediately obtain (whatever the
slope of the interface)

∂ψ

∂y
= −2(M2 −M1)

h

+∞
∫

−∞

(y − y′)Jh

(

√

(x− x′)2 + (y − y′)2
)

dx′

= −2(M2 −M1)

h

+∞
∫

−∞

(y − y′)Jh

(

√

(x− x′)2 + (y − y′)2
)

τx(s
′) ds′ ,

(3.43)

where s′ is the arclength variable parametrizing the infinite interface. If
we remove the limitation of single-valuedness, it suffices to split the (x′, y′)
domain into the pieces where x′ can be used as a curve parameter and sum
the resulting integrals, obtaining the same final result. If we now proceed
with the same further manipulations as we have done for the case of the
perpendicular field in §3.3, we will obtain exactly the same equations except
for Im (see Eq.(3.24)) which needs to be replaced with

Ĩm =

v.p.

+∞
∫

−∞

√

(x− x′)2 + (y − y′)2 + 1 −
√

(x− x′)2 + (y − y′)2

(x− x′)2 + (y − y′)2
(y − y′)τx(s

′) ds′ .

(3.44)
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Unlike Eq.(3.24), Eq.(3.44) involves a principal-value integral. We will again
truncate the infinite path of integration in same manner as it has been done in
§3.1.5. Our ability to simulate extensively the normal-field instability turns
out to be seriously limited by violent numerical instabilities. To have a stabler
method, some special desingularization of Eq.(3.44) is perhaps needed. Nev-
ertheless we are able to produce a preliminary result presented in Figs. 3.24,
3.25. (Keep in mind that these Figures are stretched y-wise unlike most pre-
vious ones.) Interestingly, it proves possible to reproduce the experimentally
observed behaviour noted in [7, 181] at Ca = 7/720, Bm = 0.84, At = 1, and
T = 20, although some our parameter values differ from the experimental
ones. Namely, in the transient regime several peaks per period can develop
from the initial perturbation of a period T . At this stage, the development
is quite fast (Figs. 3.24(a), 3.24(b)). Then the evolution of the dominant
peak and its smaller neighbours slows down, as shown in Fig. 3.24(c), with
the interfacial period being quite constant. After a while the dominant peak
resumes advancing fast, absorbing the smaller ones that recede. Then there
is only one peak with straight slopes that develops into a finger with high
curvature at the tip. Fig. 3.25 shows the case of the maximum viscosity
contrast. The transition from a multiple-peak interface to a single peak oc-
curs in a slightly different way, while the preceding stage shows no difference
between the At = 0 and At = 1 cases. We note also that the At = 1 pat-
tern almost restores its symmetry with respect to the y = 0 line by about
t = 90 . . . 100. In the long run, the fingers take on a typical “fish-like” shape.

The development of the boundary-integral method is under way.
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Figure 3.24: Development of a magnetic finger in the normal field: Ca =
7/120, Bm = 1.14, At = 0, T = 20, M = 1, and the initial data y =
0.2 cos(2πx/T ).
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Figure 3.25: Development of a magnetic finger in the normal field at infinite
viscosity contrast. Parameters are the same as in Fig. 3.24 except for At = 1.
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Figure 3.26: The normal-field magnetic fingers at t = 360: the At = 1 shape
(solid line) and the At = 0 one (dotted line). Other parameters are the same
as in Figs. 3.24, 3.25.
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Figure 3.27: A normal-field magnetic finger from Fig. 3.25 at t = 840.



Conclusion

In conclusion, the present work analyzes some fluid-mechanical instabilities
exhibited by isothermal magnetized ferrofluids in a Hele-Shaw cell. The non-
potential driving force of the instability is due to the self-magnetic field of the
ferrofluid. By taking the approach of averaging across the gap, we consider
both the case of a single fluid with an inhomogeneous (possibly discontinuous)
concentration of magnetic particles, and the case of two immiscible magnetic
fluids forming a sharp interface with surface tension. Two orientations of the
uniform external field are considered: “perpendicular” and “normal” ones.

In the first part, an extensive linear stability analysis is performed for the
miscible case with selected basic concentration distributions along the cell
that model experimental conditions reported in the literature. For a step-like
concentration distribution, we obtain analytically the neutral curves along
with the critical wavelength and the critical magnetization. In the perpen-
dicular field, an oscillatory instability and the absence of discrete instability
modes are found possible under certain conditions, and the stability diagram
is presented. A mechanism of the oscillatory instability mode is explained
physically. Self-oscillations occur through the interplay between diffusion and
advection driven via a magnetic body force by concentration inhomogene-
ity. An asymptotic treatment of the dispersion relation is presented as well.
These results refer to the known experimental situation when a ferrofluid is
brought into contact with its pure carrier liquid, and convective instabilities
(the miscible labyrinthine and peak ones) are observed at the diffusion front
between the fluids. In the normal field, we additionally consider the stability
of a periodic pattern of sharp parallel stripes and find that the peristaltic
mode is critical. These results apply to the forced Rayleigh scattering ex-
periments, and our threshold conditions for the onset of microconvection are
consistent with recent experimental observations.

The above analysis is carried out with the assumption that the flow is
governed by the conventional Darcy law that takes into account only the
near-wall friction. The Brinkman equation offers a much better gap-averaged
approximation of viscous stresses if the typical flow length scale is expected

144
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to be as small as the gap width. It is the simplest equation that allows to
reproduce realistically such Hele-Shaw flows. With both the Brinkman equa-
tion and the Darcy law, we undertake the numerical stability analysis of the
family of smoothed step-like concentration distributions (in both fields) and
of the Gaussian concentration distributions (in the normal field only). The
Darcy results for the smoothed step-like distributions are proven to converge
to the analytical ones as the interface gets sharper. With the Brinkman
equation, we find that it is viscosity (and not diffusion, as one might think)
that determines the scale of the instability at strong forcing by rendering
the most unstable wavelength comparable to several gap widths. This result
proves to be robust, being quite weakly dependent on the basic concentra-
tion gradient. We trace the evolution of the neutral curves as the step-like
concentration distribution diffuses out. Although the wavelength selection
is seriously modified, the critical magnetization is not much affected by the
adoption of the Brinkman equation.

In the second half of our study, we model the non-linear dynamics, gov-
erned by the Darcy equation, of an immiscible interface between ferrofluids.
The boundary-integral method makes modelling efficient by rendering the
problem effectively one-dimensional. We describe the corresponding compu-
tational technique, indicate some associated pitfalls, and pay proper attention
to the validity of the developed algorithm. We note that the Saffman–Taylor
finger in a laterally bounded cell cannot be modelled with our approach,
although the same problem in the laterally infinite periodic geometry is han-
dled with ease. In the latter case, we observe the decrease of the finger
width as the magnetization increases. We also obtain picturesque “dendritic”
structures close to those observed experimentally and analyze some aspects
of pattern formation such as two-lobe and three-lobe tip-splittings, vertex-
splitting, side-branching, and finger shielding. We notice the intrinsic sensi-
tivity of the patterns to small perturbations. The change of the preferable
length scale in the course of the pattern evolution is identified as a reason for
the complexity of patterns. These results concern the case of the perpendicu-
lar field. We also present, here for the first time, some numerical simulations
for the normal field. In particular, we obtain a typical finger shape.

As for perspectives, an obvious extension is to unify the miscible and im-
miscible problems by following the current trend and allowing for the Korte-
weg stresses at the concentration gradients. The non-linear simulations of the
Brinkman-governed miscible and immiscible flows might also be interesting;
modelling in three dimensions is an ideal. However, these options would com-
plicate any treatment considerably. Without any doubt, more experiments
are needed for the development of the subject. The general context for this is
quite favourable thanks to the technological trend towards miniaturization.
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[11] P. Pelcé. Théorie des formes de croissance. Digitations, dendrites et
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[62] A. Cēbers. Instabilities of concentration stripe patterns in ferrocolloids.
Phys. Rev. E, 61(1):700–708, 2000.

[63] D. Lacoste and T. C. Lubensky. Phase transitions in a ferrofluid
at magnetic-field-induced microphase separation. Phys. Rev. E, 64,
041506, 2001. See also <arxiv.org/abs/cond-mat/0103429>.
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[182] I. Driķis. Dynamique non-linéaire de la surface libre d’un liquide
magnétique dans une cellule de Hele-Shaw. PhD thesis, Université
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Villars, Paris, 1934. In French.

[198] D. Colton and R. Kress. Integral Equation Methods in Scattering The-
ory. Wiley, N. Y., 1983.

[199] T. A. Cruse and F. J. Rizzo, editors. Boundary-Integral Equation
Method: Computational Applications in Applied Mechanics. The Amer-
ican Society of Mechanical Engineers, N. Y., 1975.

[200] C. A. Brebbia, J. C. F. Telles, and L. C. Wrobel. Boundary Element
Techniques: Theory and Applications in Engineering. Springer, Berlin,
Heidelberg, 1984.

[201] T. V. Hromadka II and C. Lai. The Complex Variable Boundary Ele-
ment Method in Engineering Analysis. Springer, N. Y., 1987.

[202] J. O. Watson. Boundary elements from 1960 to the present day. Elec-
tronic J. Boundary Elem., 1(1):34–46, 2003.

[203] C. Pozrikidis. Boundary Integral and Singularity Methods for Lin-
earized Viscous Flow. Cambridge University Press, Cambridge, 1992.

http://lib-www.lanl.gov/numerical/bookcpdf.html
http://lib-www.lanl.gov/numerical/bookcpdf.html


166 BIBLIOGRAPHY

[204] S. M. Belotserkovsky and I. K. Lifanov. Method of Discrete Vortices.
CRC Press, Boca Raton, Fl., 1992. Paragraphs are cited by the original
Russian edition: Белоцерковский С. М., Лифанов И. К. Численные
методы в сингулярных интегральных уравнениях (и их применение
в аэродинамике, теории упругости, электродинамике). – М.: Наука,
1985.

[205] Boundary element methods in aerodynamics. Lecture course
of the Institut für Aerodynamik und Gasdynamik, Univer-
sität Stuttgart. <www.iag.uni-stuttgart.de/luftfahrzeugaerodynamik
/download/bem/lecture.pdf>.

[206] T. Y. Hou, J. S. Lowengrub, and M. J. Shelley. Boundary in-
tegral methods for multicomponent fluids and multiphase materi-
als. J. Comp. Phys., 169:302–362, 2001. Full text is available as:
<www.acm.caltech.edu/ hou/papers/jcpreview.pdf>.

[207] V. L. Danilov. On the motion of the interface of viscous fluids in a
narrow gap. Dokl. Akad. Nauk SSSR, 137(2):299–302, 1961. In Russian.
[Данилов В. Л. О движении границы раздела вязких жидкостей в
узкой щели, Доклады АН СССР, т. 137, N2, сс. 299–302 (1961)].

[208] A. Begmatov. Problems of Non-Stationary Filtration in Domains with
Moving Boundary. Fan, Tashkent, 1991. In Russian. [Бегматов А.
Задачи нестационарной фильтрации в областях с подвижной
границей. – Ташкент: Фан, 1991].

[209] A. J. DeGregoria and L. W. Schwartz. A boundary-integral method for
2-phase displacement in Hele–Shaw cells. J. Fluid Mech., 164:383–400,
1986.

[210] B. Gustafsson and A. Vasil’ev. Conformal and potential analy-
sis in Hele-Shaw cells, 2004. <docencia.mat.utfsm.cl/˜avassili
/BOOK2.pdf>.

[211] K. E. Atkinson. The numerical solution of boundary integral equations.
In I. Duff and G. Watson, editors, The State of the Art in Numerical
Analysis, pages 223–259. Clarendon Press, Oxford, 1997. Full text is
available as: <www.math.uiowa.edu/ftp/atkinson/bie_survey.pdf>.

[212] N. N. Lusin. An Integral and the Trigonometric Series. GITTL,
Moscow, Leningrad, 1951. Edited and commented by N. K.
Bari and D. E. Men’shov. In Russian. [Лузин Н. Н. Интеграл и
тригонометрический ряд. – М., Л.: ГИТТЛ, 1951].

http://www.iag.uni-stuttgart.de/luftfahrzeugaerodynamik/download/bem/lecture.pdf
http://www.iag.uni-stuttgart.de/luftfahrzeugaerodynamik/download/bem/lecture.pdf
http://www.acm.caltech.edu/~hou/papers/jcpreview.pdf
http://docencia.mat.utfsm.cl/~avassili/BOOK2.pdf
http://docencia.mat.utfsm.cl/~avassili/BOOK2.pdf
http://www.math.uiowa.edu/ftp/atkinson/bie_survey.pdf


BIBLIOGRAPHY 167

[213] G. N. Pihteev. Approximate Methods for Computing the Cauchy-type
Integrals of a Special Kind. Nauka, Novosibirsk, 1982. In Russian.
[Пыхтеев Г. Н. Приближенные методы вычисления интегралов
типа Коши специального вида. – Новосибирск: Наука, 1982].

[214] D. D. Joseph and J. C. Saut. Short wave instabilities and ill-posed
initial value problems. Theoret. Comp. Fluid Dynamics, 1:191–227,
1990. Full text is available at [259].

[215] K. I. Babenko. Fundamentals of Numerical Analysis. Nauka, Moscow,
1986. In Russian. [Бабенко К. И. Основы численного анализа. – М.:
Наука, 1986].

[216] J. T. Beale, T. Y. Hou, and J. S. Lowengrub. Growth rates for the
linear motion of fluid interfaces far from equilibrium. Comm. Pure
Appl. Math., 46:1269–1301, 1993.

[217] L. M. Milne-Thomson. Theoretical Hydrodynamics. Macmillan, Lon-
don, 4th edition, 1960.

[218] A. I. van de Vooren. A numerical investigation of the rolling-up of
vortex sheets. Proc. Roy. Soc. London Ser. A, 373:67–91, 1980.

[219] P. Ya. Kochina. Selected Works: Hydrodynamics and Percolation The-
ory. Nauka, Moscow, 1991. In Russian. [Кочина П. Я. Гидродинамика
и теория фильтрации: Избранные труды. – М.: Наука, 1991].

[220] G. R. Baker, D. I. Meiron, and S. A. Orszag. Vortex simulations of the
Rayleigh–Taylor instability. Phys. Fluids, 23:1485–1490, 1980.

[221] G. R. Baker, D. I. Meiron, and S. A. Orszag. Generalized vortex meth-
ods for free-surface flow problems. J. Fluid Mech., 123:477–501, 1982.

[222] R. Krasny. A study of singularity formation in a vortex sheet by the
point-vortex approximation. J. Fluid Mech., 167:65–93, 1986.

[223] M. J. Shelley. A study of singularity formation in vortex-sheet motion
by a spectrally accurate vortex method. J. Fluid Mech., 244:493–526,
1992.

[224] A. Sidi and M. Israeli. Quadrature methods for periodic singular and
weakly singular Fredholm integral equations. J. Sci. Comput., 3:201–
231, 1988.



168 BIBLIOGRAPHY

[225] J. T. Beale, T. Y. Hou, and J. S. Lowengrub. On the well-posedness
of two fluid interfacial flows with surface tension. In R. E. Caflisch
and G. C. Papanicolaou, editors, Singularities in Fluids, Plasmas and
Optics, Nato Adv. Sci. Inst. Ser. A, pages 11–38. Kluwer, Amsterdam,
1993.

[226] D. I. Pullin. Numerical studies of surface-tension effects in nonlinear
Kelvin–Helmholtz and Rayleigh–Taylor instabilities. J. Fluid Mech.,
119:507–532, 1982.

[227] G. Tryggvason and H. Aref. Numerical experiments on Hele-Shaw flow
with a sharp interface. J. Fluid Mech., 136:1–30, 1983.

[228] G. Tryggvason and H. Aref. Finger-interaction mechanisms in stratified
Hele-Shaw flow. J. Fluid Mech., 154:287–301, 1985.

[229] A. J. Roberts. A stable and accurate numerical method to calculate
the motion of a sharp interface between fluids. IMA J. Appl. Math.,
31:13–35, 1983.

[230] T. Y. Hou, J. S. Lowengrub, and M. J. Shelley. Removing the stiff-
ness from interfacial flows with surface tension. J. Comput. Phys.,
114(2):312–338, 1997.

[231] G. Baker and A. Nachbin. Stable methods for vortex sheet motion in
the presence of surface tension. SIAM J. Sci. Comput., 19(5):1737–
1766, 1998.

[232] J. T. Beale, T. Y. Hou, J. S. Lowengrub, and M. J. Shelley. Spatial
and temporal stability issues for interfacial flows with surface tension.
Mathematical and Computer Modelling, 20(10/11):1–27, 1994.

[233] T. Y. Hou. Numerical solutions to free boundary problems. Acta
Numerica, pages 335–415, 1995.

[234] J. T. Beale, T. Y. Hou, and J. Lowengrub. Convergence of a boundary
integral method for water waves. SIAM J. Numer. Anal., 33(5):1797–
1843, 1996.

[235] H. D. Ceniceros and T. Y. Hou. Convergence of a non-stiff boundary
integral method for interfacial flows with surface tension. Mathemat-
ics of Computation, 67(221):137–182, 1998. Full text is available as:
<www.ams.org/journal-getitem?pii=S0025-5718-98-00911-9>.

http://www.ams.org/journal-getitem?pii=S0025-5718-98-00911-9


BIBLIOGRAPHY 169

[236] E. B. Hansen and H. Rasmussen. A numerical study of unstable Hele-
Shaw flow. Computers & Mathematics With Applications, 38:217–230,
1999.

[237] D. Kahaner, C. Moler, and S. Nash. Numerical Methods and Software.
Prentice-Hall, Englewood Cliffs, N. J., 1989.

[238] R. P. Fedorenko. Introduction to Computational Physics. MFTI
Press, Moscow, 1994. In Russian. [Федоренко Р. П. Введение в
вычислительную физику. – М.: Изд-вo MФTИ, 1994].

[239] H. Kalis. Methods of Approximate Solution of Differential Equations
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ABSTRACT

The dissertation treats analytically and numerically the instabilities exhibited
by magnetic fluids in a Hele-Shaw cell under a uniform magnetic field. Considered
are both two immiscible magnetic fluids whose interface is a well-defined planar
curve and a single fluid with an inhomogeneous gap-averaged concentration of
magnetic particles (or a diffused interface between miscible ferrofluids). The in-
homogeneous demagnetizing field of a ferrofluid sample excites a two-dimensional
convection or modifies the existing flow. In the first part, we undertake a detailed
linear stability analysis in the miscible case for selected concentration distribu-
tions along the cell. The results apply also to the periodical grating induced in
the forced Rayleigh scattering experiments. We demonstrate that the Brinkman
equation better describes the viscous dissipation in a Hele-Shaw flow than the con-
ventional Darcy law. We find that viscosity, and not diffusion, renders the length
scale of the flow comparable to the cell thickness at strong forcing. In the second
half of our study, we model the non-linear dynamics of an immiscible interface
between ferrofluids by a boundary-integral method. We describe the modification
of the Saffman–Taylor finger by the magnetostatic force. We also obtain “den-
dritic” structures close to those observed experimentally and analyze some aspects
of pattern formation.

KEYWORDS: Ferrofluid – Stability analysis – Mixing – Convection–diffusion
– Viscous fingering – Boundary integral equations



RÉSUMÉ

Ce manuscrit décrit analytiquement et numériquement les instabilités d’un
fluide magnétique dans une cellule de Hele-Shaw. On considère l’interface entre
un fluide magnétique et un autre fluide non magnétique, miscible ou non, soumise
à un champ magnétique homogène normal à la cellule ou à l’interface. Le champ
démagnétisant est inhomogène à cette interface et génère un mouvement convectif
des fluides. Dans la première partie, nous avons utilisé une analyse linéaire de
stabilité entre deux liquides miscibles pour une distribution donnée de concentra-
tion à l’interface. Les résultats s’appliquent aussi à la stabilité d’un réseau de
concentration induit par une expérience de Rayleigh forcé. Nous avons démontré
que l’équation de Brinkman décrit mieux la dissipation visqueuse dans une cellule
de Hele-Shaw que celle de Darcy. Nous avons trouvé que la viscosité (et non la
diffusion massique) donnait à l’écoulement une échelle de longueur de l’ordre de
l’épaisseur de la cellule dans le cas des forçages élevés. Dans la seconde partie de
notre étude, nous avons modélisé la dynamique non linéaire de l’interface avec une
tension superficielle par la méthode des équations intégrales de frontière. Nous
avons décrit la modification des doigts de Saffman–Taylor par les forces magnéto-
statiques. Nous avons obtenu des structures dendritiques proches de celles ob-
servées expérimentalement et analysé quelques aspects de la formation des motifs.

MOTS CLÉS: Liquide magnétique – Analyse de stabilité – Mélange –
Convection–diffusion – Digitation visqueuse – Équations intégrales de frontière

KOPSAVILKUMS

Disertācijā anal̄ıtiski un skaitliski tiek analizētas magnētisko šķidrumu nestabili-
tātes Hele-Šou slān̄ıt̄ı homogenā magnētiskā laukā. Aplūkots kā divu nesamaisošos
magnētisku šķidrumu gad̄ıjums, robeža starp kuriem ir gluda plakana l̄ıkne, gan
šķidruma gad̄ıjums ar nehomogenu pa slān̄ı̌sa biezumu vidējoto magnētisku da̧liņu
koncentrāciju. Lielu koncentrācijas gradientu gad̄ıjumā pēdējo situāciju var apraks-
t̄ıt ar asu robežvirsmu starp diviem samaisošiem ferošķidrumiem. Ferošķidruma at-
magnetizējošā lauka nehomogenitāte izsauc divdimensionālu konvekciju vai modificē
esošo plūsmu. Disertācijas pirmajā da̧lā veikta izsmȩloša lineārās stabilitātes anal̄ıze
samaisošos šķidrumu gad̄ıjumā izvēlētiem koncentrācijas sadal̄ıjumiem Hele-Šou
slān̄ı̌sa plaknē. Rezultāti piemēroti ar̄ı periodiskam koncentrācijas sadal̄ıjumam,
kurš tiek rad̄ıts uzspiestās Releja izkliedes eksperimentos. Mēs parādam, ka Brink-
mana vienādojums labāk apraksta viskozo disipāciju Hele-Šou plūsmās nekā tradici-
onāli apskat̄ıtais Dars̄ı likums. Tika atrasts, ka viskozitāte (bet ne difūzija) nosaka
plūsmas telpisko mērogu, kurš stipru iedarb̄ıbu gad̄ıjumā ir samērojams ar slān̄ı̌sa
biezumu. Darba otrajā da̧lā ar robežintegrālvienādojumu metodi tiek modelēta
nesamaisošos ferošķidrumu robežas nelineārā dinamika. Tiek aprakst̄ıtas Safmena–
Teilora pirkstu izmaiņas, ko izsauc magnetostatiskie spēki. Mēs iegūstam ar̄ı dend-
r̄ıttipa struktūras, kuras ir tuvas eksperimentos novērojamām un analizējam dažus
struktūru veidošanās aspektus.

ATSLĒGAS VĀRDI: Ferošķidrums – Stabilitātes anal̄ıze – Samais̄ı̌sanās –
Konvekcija–difūzija – Viskozā pirkstu veidošanās – Robežintegrālvienādojumi
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