Sur les A-infini-catégories
Kenji Lefèvre-Hasegawa

To cite this version:

HAL Id: tel-00007761
https://theses.hal.science/tel-00007761
Submitted on 15 Dec 2004

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Thèse de Doctorat
Spécialité : Mathématiques
présentée par
Kenji Lefèvre-Hasegawa
pour obtenir le grade de
Docteur de l’Université Paris 7

Sur les \mathbb{A}_∞-catégories

Soutenue le 6 novembre 2003 devant le jury composé de :
M. Johannes Huebschmann, rapporteur
M. Bernhard Keller, directeur
M. Pierre Cartier
M. Alain Prouté
M. Raphaël Rouquier
M. Alexander Zimmermann
Table des matières

Remerciements 7

Abstract/Résumé 9

Introduction 11

1 Théorie de l’homotopie des A_∞-algèbres 19

1.1 Rappels et notations .. 20
 1.1.1 Objets différentiels gradués 20
 1.1.2 Algèbres et cogèbres .. 22
1.2 A_∞-algèbres et A_∞-cogèbres 25
 1.2.1 Définitions .. 25
 1.2.2 Constructions bar et cobar 27
1.3 Cgc comme catégorie de modèles 31
 1.3.1 Le théorème principal ... 31
 1.3.2 Démonstration du théorème principal 34
 1.3.3 Alg$_\infty$ comme “catégorie de modèles sans limites” 44
 1.3.4 Homotopie au sens classique 50
 1.3.5 Equivalences faibles et quasi-isomorphismes 51
1.4 Transfert de structures le long d’équivalences d’homotopie .. 53
 1.4.1 Modèle minimal .. 53
 1.4.2 Lien avec le lemme de perturbation 54

2 Théorie de l’homotopie des polydules 61

2.1 Rappels et notations .. 62
 2.1.1 Modules sur une algèbre augmentée 62
 2.1.2 Comodules co-augmentés 64
2.2 Cgc comme catégorie de modèles 67
 2.2.1 Cochaîne tordante et produits tensoriels tordus 67
 2.2.2 Cgc comme catégorie de modèles 70
 2.2.3 Structure triangulée sur Ho Cgc 76
 2.2.4 Caractérisation de l’acyclicité des cochaines tordantes .. 77
2.3 Polydules .. 79
 2.3.1 Définitions .. 79
 2.3.2 Unités strictes, augmentations et réductions 81
 2.3.3 Construction bar .. 82
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.4 Algèbre Enveloppante</td>
<td>83</td>
</tr>
<tr>
<td>2.4 Catégorie dérivée d'une \mathcal{A}_∞-algèbre augmentée</td>
<td>85</td>
</tr>
<tr>
<td>2.4.1 Objets fibrants de $\text{Comc } B^+A$</td>
<td>85</td>
</tr>
<tr>
<td>2.4.2 Catégorie dérivée $\mathcal{D}_\infty A$</td>
<td>88</td>
</tr>
<tr>
<td>2.4.3 Structure triangulée sur $\mathcal{D}_\infty A$</td>
<td>89</td>
</tr>
<tr>
<td>2.5 Catégorie dérivée des bipolydules (le cas augmenté)</td>
<td>90</td>
</tr>
<tr>
<td>2.5.1 Définitions des bipolydules</td>
<td>91</td>
</tr>
<tr>
<td>2.5.2 Catégorie dérivée des \mathcal{A}_∞-bimodules</td>
<td>93</td>
</tr>
<tr>
<td>3 Unités à homotopie près et unités strictes</td>
<td>97</td>
</tr>
<tr>
<td>3.1 Définitions</td>
<td>97</td>
</tr>
<tr>
<td>3.2 \mathcal{A}_∞-algèbres homologiquement unitaires</td>
<td>98</td>
</tr>
<tr>
<td>3.2.1 Strictification unitaire des \mathcal{A}_∞-algèbres</td>
<td>99</td>
</tr>
<tr>
<td>3.2.2 Strictification unitaire des \mathcal{A}_∞-morphismes</td>
<td>103</td>
</tr>
<tr>
<td>3.2.3 Strictification unitaire des homotopies</td>
<td>104</td>
</tr>
<tr>
<td>3.2.4 Modèle minimal d'une \mathcal{A}_∞-algèbre strictement unitaire</td>
<td>105</td>
</tr>
<tr>
<td>3.3 Strictification unitaire des polydules</td>
<td>108</td>
</tr>
<tr>
<td>3.3.1 Polydules homologiquement unitaires</td>
<td>108</td>
</tr>
<tr>
<td>3.3.2 Bipolydules homologiquement unitaires</td>
<td>109</td>
</tr>
<tr>
<td>4 Catégorie dérivée</td>
<td>111</td>
</tr>
<tr>
<td>4.1 La catégorie dérivée des polydules</td>
<td>112</td>
</tr>
<tr>
<td>4.1.1 Les foncteurs standard</td>
<td>112</td>
</tr>
<tr>
<td>4.1.2 La catégorie dérivée d'une \mathcal{A}_∞-algèbre</td>
<td>118</td>
</tr>
<tr>
<td>4.1.3 La catégorie dérivée d'une \mathcal{A}_∞-algèbre strictement unitaire</td>
<td>122</td>
</tr>
<tr>
<td>4.2 La catégorie dérivée des bipolydules</td>
<td>129</td>
</tr>
<tr>
<td>5 $\mathcal{A}\infty$-catégories et $\mathcal{A}\infty$-foncteurs</td>
<td>133</td>
</tr>
<tr>
<td>5.1 Définitions</td>
<td>133</td>
</tr>
<tr>
<td>5.1.1 Les catégories de base $\mathcal{C}(\mathcal{O}, \mathcal{O}')$</td>
<td>133</td>
</tr>
<tr>
<td>5.1.2 Définitions</td>
<td>135</td>
</tr>
<tr>
<td>5.2 Catégories différentielles graduées des polydules</td>
<td>137</td>
</tr>
<tr>
<td>5.3 Lemme clef</td>
<td>139</td>
</tr>
<tr>
<td>6 Torsion d'\mathcal{A}_∞-structures</td>
<td>145</td>
</tr>
<tr>
<td>6.1 Le cas tensoriellement nilpotent</td>
<td>145</td>
</tr>
<tr>
<td>6.1.1 Éléments tordants</td>
<td>145</td>
</tr>
<tr>
<td>6.1.2 Torsion des \mathcal{A}_∞-catégories</td>
<td>146</td>
</tr>
<tr>
<td>6.1.3 Torsion des \mathcal{A}_∞-foncteurs</td>
<td>148</td>
</tr>
<tr>
<td>6.1.4 Torsion des \mathcal{A}-\mathcal{B}-bipolydules</td>
<td>151</td>
</tr>
<tr>
<td>6.2 Le cas topologique</td>
<td>152</td>
</tr>
<tr>
<td>6.2.1 Définitions</td>
<td>153</td>
</tr>
<tr>
<td>6.2.2 Éléments tordants</td>
<td>154</td>
</tr>
<tr>
<td>6.2.3 Algèbres locales</td>
<td>154</td>
</tr>
<tr>
<td>6.2.4 Torsion des \mathcal{A}_∞-catégories</td>
<td>156</td>
</tr>
<tr>
<td>6.2.5 Torsion des \mathcal{A}_∞-foncteurs</td>
<td>158</td>
</tr>
<tr>
<td>6.2.6 Torsion des \mathcal{A}-\mathcal{B}-bipolydules</td>
<td>159</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>7</td>
<td>Le plongement de Yoneda</td>
</tr>
<tr>
<td>7.1</td>
<td>Le plongement de Yoneda</td>
</tr>
<tr>
<td>7.2</td>
<td>L’A∞-catégorie des objets tordus</td>
</tr>
<tr>
<td>7.3</td>
<td>L’A∞-foncteur $y'' : twA \rightarrow C_\infty A$</td>
</tr>
<tr>
<td>7.4</td>
<td>L’équivalence entre les catégories $\text{tr}_{\mathcal{A}}A$ et H^0twA</td>
</tr>
<tr>
<td>7.5</td>
<td>Modèle différentiel gradué</td>
</tr>
<tr>
<td>7.6</td>
<td>Catégories stables</td>
</tr>
<tr>
<td>7</td>
<td>L’A∞-foncteur de Yoneda et les objets tordus</td>
</tr>
<tr>
<td>8</td>
<td>L’A∞-catégorie des A∞-foncteurs</td>
</tr>
<tr>
<td>8.1</td>
<td>L’A∞-catégorie des A∞-foncteurs</td>
</tr>
<tr>
<td>8.1.1</td>
<td>L’A∞-catégorie $\text{Nunc}_\infty(A,B)$</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Fonctorialité de $\text{Nunc}_\infty(A,B)$</td>
</tr>
<tr>
<td>8.1.3</td>
<td>L’A∞-catégorie $\text{Func}_\infty(A,B)$</td>
</tr>
<tr>
<td>8.2</td>
<td>Théorie de l’homotopie des A∞-foncteurs</td>
</tr>
<tr>
<td>8.2.1</td>
<td>L’A∞-foncteur de Yoneda généralisé</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Equivalences faibles d’A∞-foncteurs</td>
</tr>
<tr>
<td>9</td>
<td>Les A∞-équivalences</td>
</tr>
<tr>
<td>9.1</td>
<td>L’A∞-isomorphie</td>
</tr>
<tr>
<td>9.2</td>
<td>La caractérisation des A∞-équivalences</td>
</tr>
<tr>
<td>A</td>
<td>Catégories de modèles</td>
</tr>
<tr>
<td>B</td>
<td>Théorie de l’obstruction</td>
</tr>
<tr>
<td>B.1</td>
<td>Théorie de l’obstruction pour les A∞-algèbres</td>
</tr>
<tr>
<td>B.2</td>
<td>Théorie de l’obstruction pour les polydules</td>
</tr>
<tr>
<td>B.3</td>
<td>Théorie de l’obstruction pour les bipolydules</td>
</tr>
<tr>
<td>B.4</td>
<td>Cohomologie de Hochschild et théorie de l’obstruction pour les A∞-structures minimales</td>
</tr>
<tr>
<td>Bibliographie</td>
<td>216</td>
</tr>
<tr>
<td>Notations</td>
<td>223</td>
</tr>
</tbody>
</table>
Remerciements

Les années de thèse s’accumulent et les soutenances se succèdent avec leur suite infinie de remerciements. Finalement, tous les mots finissent usés par le protocole, vecteur de distance retenue ou de pudors obligées. Alors comment interpréter l’ordre des remerciements ? Il y a toujours le directeur en premier, puis les rapporteurs, suivis du jury et des autres. La hiérarchie se décline, impeccable, sans pulsions, trop sage. Ici aussi je vais dérouler cette carte classique des remerciements : je n’ai pas su inventer une forme qui m’aurait semblait plus adéquate. Mais je tenais quand même à écrire, à insister et répéter que s’il ne fallait qu’une ligne, ça serait celle-ci :

Merci Monsieur Keller. De tout mon cœur, merci. Vous seul devinez peut-être ce que je vous dois.

Je voudrais que cette ligne soit lue distinctement, répétée avec conviction, dans une respiration de gratitude. Je voudrais qu’elle s’imprime et qu’elle se souvienne de la distance mesurée qui fonde le respect que nous avons l’un pour l’autre. Alléluia ! Le hasard qui nous a menés l’un à l’autre fut une belle route.

Bien. Si ces remerciements ne tiennent pas en une ligne, c’est parce que chacun, et j’insiste sur cette évidence, mérite la ligne qui est la sienne.

L’intervention des rapporteurs, J. D. Stasheff et J. Huebschmann, fut tout sauf mineure. Par leurs remarques, ils ont grandement aidé à la lisibilité du texte. Je me permets de leur exprimer mes remerciements les plusobjectivement sincères.

Je me plais à recevoir dans mon jury P. Cartier. R. Rouquier (qui est aussi dans le jury) fait partie des personnes que je croisais avec plaisir dans le couloir des mathématiques. J’ai lu avec intérêt la thèse de doctorat d’A. Prouté (qui est dans le jury). Elle traitait d’A_∞-structures. J’espère que la suite que je présente ici lui fera plaisir.

Le beau sourire de M. Wasse, le professionnalisme à visage humain de l’équipe informatique, la féminité spontanée de M. Douchez ont su adoucir les tracas et obligations diverses qui savent immanquablement ponctuer les existences mathématiques.

Et puis, une fin à ces lignes, une impossible fin : il y a dans mon cœur un point précis qu’occupent ceux que j’aime et ceux qui m’aiment (des personnes parfois disjointes). Ce lieu ne saurait être décrit ici... Trois petits points de suspension, pirouettes, cacahuètes et puis s’en vont !
Abstract/Résumé

Abstract

We study (not necessarily connected) \(\mathbb{Z} \)-graded \(A_\infty \)-algebras and their \(A_\infty \)-modules. Using the cobar and the bar construction and Quillen’s homotopical algebra, we describe the localisation of the category of \(A_\infty \)-algebras with respect to \(A_\infty \)-quasi-isomorphisms. We then adapt these methods to describe the derived category \(D_{\infty} A \) of an augmented \(A_\infty \)-algebra \(A \). The case where \(A \) is not endowed with an augmentation is treated differently. Nevertheless, when \(A \) is strictly unital, its derived category can be described in the same way as in the augmented case. Next, we compare two different notions of \(A_\infty \)-unitarity: strict unitarity and homological unitarity. We show that, up to homotopy, there is no difference between these two notions. We then establish a formalism which allows us to view \(A_\infty \)-categories as \(A_\infty \)-algebras in suitable monoidal categories. We generalize the fundamental constructions of category theory to this setting: Yoneda embeddings, categories of functors, equivalences of categories... We show that any algebraic triangulated category \(T \) which admits a set of generators is \(A_\infty \)-pretriangulated, that is to say, \(T \) is equivalent to \(H^0 \text{tw} A \), where \(\text{tw} A \) is the \(A_\infty \)-category of twisted objects of a certain \(A_\infty \)-category \(A \).

Thus we give detailed proofs of a part of the results on homological algebra which M. Kontsevich stated in his course “Triangulated categories and geometry” [Kon98].

Résumé

Nous étudions les \(A_\infty \)-algèbres \(\mathbb{Z} \)-graduées (non nécessairement connexes) et leurs \(A_\infty \)-modules. En utilisant les constructions bar et cobar ainsi que les outils de l’algèbre homotopique de Quillen, nous décrivons la localisation de la catégorie des \(A_\infty \)-algèbres par rapport aux \(A_\infty \)-quasi-isomorphismes. Nous adaptons ensuite ces méthodes pour décrire la catégorie dérivée \(D_{\infty} A \) d’une \(A_\infty \)-algèbre augmentée \(A \). Le cas où \(A \) n’est pas muni d’une augmentation est traité différemment. Néanmoins, lorsque \(A \) est strictement unitaire, sa catégorie dérivée peut être décrite de la même manière que dans le cas augmenté. Nous étudions ensuite deux variantes de la notion d’unitarité pour les \(A_\infty \)-algèbres : l’unitarité stricte et l’unitarité homologique. Nous montrons que d’un point de vue homotopique, il n’y a pas de différence entre ces deux notions. Nous donnons ensuite un formalisme qui permet de définir les \(A_\infty \)-catégories comme des \(A_\infty \)-algèbres dans certaines catégories monoïdales. Nous généralisons à ce cadre les constructions fondamentales de la théorie des catégories : le foncteur de Yoneda, les catégories de foncteurs, les équivalences de catégories...

Nous montrons que toute catégorie triangulée algébrique engendrée par un ensemble d’objets est \(A_\infty \)-prétriangulée, c’est-à-dire qu’elle est équivalente à \(H^0 \text{tw} A \), où \(\text{tw} A \) est l’\(A_\infty \)-catégorie des objets tordus d’une certaine \(A_\infty \)-catégorie \(A \).

Nous démontrons ainsi une partie des énoncés d’algèbre homologique présentés par M. Kontsevich.
sevich pendant son cours “Catégories triangulées et géométrie” [Kon98].

l’associaèdre K_5
Nous renvoyons à [Kel01a] et [Kel01b] pour une introduction aux A_{∞}-algèbres et leurs modules. Cette thèse contient, entre autres, les démonstrations détaillées des énoncés de [Kel01a]. Hormis [Kon98] et [Kel01a], nous nous sommes appuyés principalement sur l’article de V. Hinich [Hin01] et sur les travaux suivants : [Sta63a], [Pro85], [GJ90], [HK91], [GLS91], [Mar96], [Hin97]. Certains des résultats de cette thèse ont été obtenus récemment et de manière indépendante par K. Fukaya [Fuk01a], P. Seidel [Sei], A. Lazarev [Laz02], V. Lyubashenko [Lyu02] et M. Kontsevich et Y. Soibelman [KS02b], [KS02a].

Structures strictes et structures à homotopie près

Les structures de l’algèbre classique que l’on appelle strictes, par exemple les algèbres associatives, commutatives ou les algèbres de Lie, se sont révélées insuffisantes en topologie car elles ne sont pas compatibles avec l’homotopie. Ainsi, si X est un espace de lacets et Y est un espace topologique homotope à X, il n’est pas toujours possible de transcrire la structure de H-espace (qui est stricte) de X vers Y. C’est pour pallier ce défaut que J. Stasheff [Sta63a] a introduit la notion de structure A_{∞}, qui est un assouplissement de celle de semigroupe topologique. Les structures A_{∞} font partie des structures à homotopie près, c’est à dire des structures dont “le défaut de strictitude” est contrôlé de manière cohérente par des homotopies d’ordre supérieur. Pour certaines structures à homotopie près, des homotopies d’ordre supérieur sont connues de longue date comme les opérations de Steenrod [Ste47], [Ste52] ou les produits de Massey. Les structures à homotopie près se comportent bien relativement aux équivalences d’homotopie : si un objet (topologique ou différentiel gradué) est muni d’une structure à homotopie près, on peut sous certaines conditions la translater sur un autre objet quand ce dernier est homotope à l’objet de départ. La première partie de cette thèse traitera des A_{∞}-structures algébriques, c’est-à-dire des A_{∞}-structures dans le cadre de l’algèbre différentielle graduée. Dans la deuxième partie nous étudierons leurs généralisations au cadre catégorique.

A_{∞}-structures algébriques

Soit K un corps. Une A_{∞}-algèbre [Sta63b] est un K-espace vectoriel Z-gradué A muni de morphismes gradués

$$m_i : A^\otimes i \to A, \quad i \geq 1,$$

de degré $2 - i$, vérifiant des équations dont la première dit que m_1 est une différentielle, la deuxième que m_1 est une dérivation pour la multiplication m_2 et la troisième

$$m_2(m_2 \otimes 1) - m_2(1 \otimes m_2) = \delta(m_3)$$
que le défaut d’associativité de m_2 est mesuré par le bord de m_3 dans l’espace différentiel gradué $\text{Hom}(A^{\otimes 3}, A)$. Intuitivement, une A_∞-algèbre est donc une “algèbre différentielle graduée dont le défaut d’associativité est contrôlé (au sens fort) par des homotopies d’ordre supérieur”. Si A et A' sont deux A_∞-algèbres, un A_∞-morphisme $f : A \rightarrow A'$ est une suite de morphismes gradués

$$f_i : A^{\otimes i} \rightarrow A', \quad i \geq 1,$$

de degré $1 - i$, vérifiant des équations dont les premières affirment que f_1 est un morphisme de complexes qui est compatible aux multiplications m_2 et m_2' à une homotopie f_2 près. De la même manière, si f et g sont des A_∞-morphismes $A \rightarrow A'$, une homotopie h entre f et g est une suite de morphismes

$$h_i : A^{\otimes i} \rightarrow A', \quad i \geq 1,$$

de degré $-i$, qui vérifient des équations dont les deux premières affirment que h_1 est une homotopie entre les “morphismes d’algèbres différentielles graduées”

$$f_1 \text{ et } g_1 : (A, m_1, m_2) \rightarrow (A', m_1', m_2').$$

Soit A une A_∞-algèbre. Un A-polydual (appelé A_∞-module sur A dans la littérature) est un K-espace vectoriel \mathbb{Z}-gradué M muni de morphismes gradués

$$m_i^M : M \otimes A^{\otimes i-1} \rightarrow M, \quad i \geq 1,$$

de degré $2 - i$, vérifiant des équations dont les premières affirment que m_i^M est une différentielle et que m_2^M définit une action de l’algèbre (fortement homotopiquement) associative A dont la compatibilité à la multiplication de A est contrôlée par l’homotopie d’ordre supérieur m_3^M. Comme pour les A_∞-algèbres, on a des A_∞-morphismes entre A-polydules et des homotopies entre les A_∞-morphismes.

Lien avec la théorie des opérades

Certains arguments de la thèse sont liés à la théorie des opérades (par exemple, la théorie de l’obstruction des A_∞-algèbres (B.1)). Nous n’utiliserons pas explicitement le formalisme des opérades dans nos énoncés (et leurs démonstrations), lui préférant une approche naïve. Rappelons néanmoins quelques faits et références sur ce sujet.

Les complexes cellulaires de Stasheff $\{K_i \times \Sigma_i\}_{i \geq 2}$ (voir [Sta63a]) forment une opérade topologique [May72]. Les complexes de chaînes qui leur sont associés forment donc une opérade différentielle graduée. C’est l’opérade des A_∞-algèbres. Les opérades différentielles graduées ont été étudiées abondamment au début des années 90 [HS93], [GJ94], [GK94] pour expliciter le lien entre les structures strictes et les structures à homotopie près [GK94], [Mar96], [Mar99], [Mar00]. En ce qui concerne les structures A_∞, on retiendra des opérades deux résultats : l’opérade des A_∞-algèbres est le modèle minimal cofibrant au sens de M. Markl [Mar96] de l’opérade des algèbres associatives Ass ; le dual de Koszul Ass' de Ass est la co-opérade des co-algèbres co-associatives.

Chapitre 1 : une théorie de l’homotopie des A_∞-algèbres.

Rappelons pour commencer un résultat de H. J. Munkholm. Soit DA la catégorie des algèbres différentielles graduées (vérifiant certaines conditions sur la graduation et sur la connectivité) et HoDA la localisation de DA par rapport aux quasi-isomorphismes. Soit DASH la catégorie des algèbres
Sur les A∞-catégories

différentielles graduées dont les morphismes sont les A∞-morphismes. Utilisant les idées de J. Stasheff et S. Halperin [SH70], H. J. Munkholm [Mun78] (voir aussi [Mun76]) a montré, premièrement, que la relation d’homotopie sur \(\text{Hom}_{DA}(A, A') \), \(A, A' \in DA \), (qui n’est pas une relation d’équivalence en général) s’étend en une relation sur les espaces de morphismes \(\text{Hom}_{DA}(A, A') \) qui est une relation d’équivalence quelles que soient \(A \) et \(A' \), et deuxièmement, que la catégorie \(\text{Ho DA} \) est équivalente au quotient de \(DA \) par cette relation d’équivalence. En d’autres termes, quitte à augmenter le nombre de morphismes entre algèbres différentielles graduées, la localisation par rapport aux quasi-isomorphismes est équivalente au passage au quotient par rapport à l’homotopie. Dans la première partie de ce chapitre, nous généraliserons les résultats de [Mun78] aux A∞-algèbres.

Un A∞-quasi-isomorphisme \(f \) est un A∞-morphisme tel que \(f_1 \) est un quasi-isomorphisme. Nous montrons les résultats suivants :

L’analogue topologique du théorème des A∞-quasi-isomorphismes est dû à M. Fuchs [Fuc65]). Dans sa thèse [Pro85], A. Prouté a montré les deux théorèmes sous des conditions sur la graduation ou la connexe (voir aussi [Kad87]). La nécessité de généraliser ces résultats est due Faith que dans les constructions de K. Fukaya et al. de A∞-algèbres (A∞-catégories), des composantes non nulles peuvent apparaître en tout degré entier. Dans le cas général, nous déduirons les théorèmes ci-dessus des résultats suivants : la construction \(B \) est une équivalence de catégories entre \(\text{Alg}_{\infty} \), la catégorie des A∞-algèbres, et la sous-catégorie des objets cofibrants et fibrants d’une catégorie de modèles \(\text{Cogc} \) de cogèbres (1.3.1.2). La construction \(B \) fait correspondre l’homotopie des A∞-morphismes à l’homotopie à gauche de \(\text{Cogc} \) entre morphismes entre objets cofibrants et fibrants (1.3.4.1) et les A∞-quasi-isomorphismes aux équivalences faibles (1.3.3.5).

La catégorie \(\text{Cogc} \) en question est la catégorie des cogèbres différentielles graduées cocomplètes. Soit \(\text{Alg} \) la catégorie des algèbres différentielles graduées et \(\Omega : \text{Cogc} \rightarrow \text{Alg} \) la construction cobar. La structure de catégorie de modèles de \(\text{Cogc} \) (1.3.1.2. a) est telle que le couple de foncteurs adjoints

\[
(\Omega, B) : \text{Cogc} \rightarrow \text{Alg},
\]

est une équivalence de Quillen (1.3.1.2. b). L’utilisation de ce couple de foncteurs adjoints pour étudier la catégorie \(\text{Alg}(Qis^{-1}) \) remonte aux années 70 avec les travaux de D. Husemoller, J. C. Moore et J. Stasheff [HMS74] (voir aussi [EM66]). Ils considèrent les algèbres augmentées différentielles, graduées positivement d’une part et les cogèbres co-augmentées différentielles, graduées positivement et connexes d’autre part, et montrèrent que la localisation de la catégorie des algèbres par rapport aux quasi-isomorphismes est équivalente à la localisation de la catégorie des cogèbres par rapport aux quasi-isomorphismes. Sans les hypothèses sur la graduation ou la connexe, leur énoncé n’est plus vrai. Dans le cas général (1.3.1.2), nous devons remplacer la classe des quasi-isomorphismes de \(\text{Cogc} \) par une classe de morphismes (appelés équivalences faibles) qui est strictement contenue dans celle des quasi-isomorphismes (1.3.5.1. c). Nous montrons qu’entre deux cogèbres graduées positivement, les équivalences faibles sont exactement les quasi-isomorphismes (voir 1.3.5.1. c). Nos résultats généralisent donc [HMS74, Chap. II, Thm. 4.4 et Thm. 4.5].

Notre démonstration du fait que \(\text{Cogc} \) admet une structure de catégorie de modèles (1.3.1.2) suit les idées de V. Hinich [Hin01] inspirées de celles de Quillen [Qui67], [Qui69]. Nous relevons
la structure de catégorie de modèles de Alg le long de l’adjonction \((\Omega, B)\). Cette adjonction est du même type que l’adjonction entre la catégorie des algèbres de Lie différentielles graduées et la catégorie des cogèbres cocommutatives différentielles graduées en homotopie rationnelle. Elle provient de la dualité de Koszul entre l’opérade Aς et la co-opérade des cogèbres co-associatives.

La caractérisation des objets fibrants de Cogc peut être interprétée comme une conséquence du fait que l’opérade des \(A^\infty\)-algèbres est le modèle minimal cofibrant au sens de M. Markl [Mar96] de l’opérade des algèbres associatives. Ce fait implique que l’obstruction à la construction par récurrence des morphismes gradués \(m_i\), \(i \geq 1\), définissant une \(A^\infty\)-structure sur un objet gradué \(A\) est de la forme “\(m_{n+1}\) doit tuer un certain cocycle (construit à partir des \(m_i\), \(1 \leq i \leq n\)” (voir B.1.2). La condition qui mesure l’obstruction à la construction par récurrence des \(A^\infty\)-morphismes est du même type (B.1.5). Nous appelons l’étude de ces obstructions la théorie de l’obstruction des \(A^\infty\)-algèbres. Cette théorie est l’objet de l’appendice (B.1).

A la fin du chapitre 1, nous redémontrerons (1.4.1.1) la “compatibilité des structures \(A^\infty\) à l’homotopie” : soit \(A\) une \(A^\infty\)-algèbre et

\[g : (V, d) \rightarrow (A, m_1^A) \]

une équivalence d’homotopie de complexes. Il existe une structure d’\(A^\infty\)-algèbre sur \(V\) telle que \(m_1^V\) est égale à \(d\) et telle que \(V\) et \(A\) sont homotopes en tant qu’\(A^\infty\)-algèbres. Ce résultat est bien connu. T. Kadeishvili [Kad80] et A. Prouté [Pro85] l’ont montré dans le cas où \(d = 0\) et sous des hypothèses sur la graduation et la connexité en utilisant la méthode des obstructions. Le cas général est dû à V. K. A. M. Gugenheim, L. A. Lambe et J. Stasheff [GLS91] qui utilisent “l’astuce du tenseur” inventée par J. Huebschmann [Hue86]. Le point essentiel de leur démonstration est que le lemme de perturbation [Gug72] est compatible à une structure additionnelle (de cogèbre dans notre cas). Sur ce sujet, voir aussi [HK91], [GL89] et les rappels historiques de la section 1.4. Notre démonstration de la “compatibilité à l’homotopie” (section 1.4.1.1) sera basée sur la théorie des obstructions (B.1). La “compatibilité à l’homotopie” implique que toute \(A^\infty\)-algèbre \(A\) admet un modèle minimal, i. e. une structure \(A^\infty\) sur l’homologie \(H^*A\) telle que \(H^*A\) et \(A\) sont homotopes en tant qu’\(A^\infty\)-algèbres (1.4.1.4). Le lien entre un certain modèle minimal obtenu par notre méthode et celui obtenu par le lemme de perturbation [GLS91] est décrit en (1.4.2.1).

La “minimalité” du modèle \(H^*A\) ci-dessus se réfère au fait que la cogèbre tensorielle \(B(H^*A)\) est un modèle minimal (au sens de H. J. Baues et J.-M. Lemaire [BL77]) de la cogèbre \(BA\).

Chapitre 2 : une théorie de l’homotopie des polydules.

Soit \(A\) une \(A^\infty\)-algèbre augmentée. Rappelons que dans cette thèse les structures communément appelées \(A^\infty\)-modules sur \(A\) sont appelées \(A\)-polydules (“poly” car la structure est donnée par plusieurs multiplications).

Le but de ce chapitre est de décrire la catégorie dérivée \(D^\infty A\) dont les objets sont les \(A\)-polydules strictement-unitaires. On adapte pour cela les méthodes d’algèbre homotopique du chapitre 1 aux \(A\)-polydules. La catégorie dérivée d’une \(A^\infty\)-algèbre qui n’est pas munie d’une augmentation sera étudiée au chapitre 4.

Soit \(C\) une cogèbre différentielle graduée co-augmentée cocomplète et \(\text{Comc} C\) la catégorie des \(C\)-comodules différentiels gradués co-unitaires cocomplets. Nous construisons (2.2.2.2) une structure de catégorie de modèles sur \(\text{Comc} C\) qui est telle que, si \(A\) est une algèbre différentielle graduée augmentée et \(\tau : C \rightarrow A\) une cochaîne tordante admissible acyclique, le couple de foncteurs adjoints “produits tensoriels tordus” (2.2.1)

\[(_ \otimes^\tau A, ? \otimes^\tau C) : \text{Comc} C \rightarrow \text{Mod} A \]
est une équivalence de Quillen. Les foncteurs “produits tensoriels tordus” remplacent ici les constructions bar et cobar du chapitre précédent. La catégorie homotopique $\text{Ho} \text{Comc} C$ (voir appendice A) est donc équivalente à la catégorie dérivée

$$\mathcal{D}A = \text{Ho} \text{Mod} A.$$

Dans [HMS74], D. Husemoller, J. C. Moore et J. Stasheff ont démontré un résultat (le théorème 5.15) un peu plus général mais sous des hypothèses sur la graduation et la connexité. Nous ne considérerons pas ici les algèbres et les cogèbres étendus (voir [HMS74]), nous restreignant à l’étude séparée des (co)algèbres et de leurs (co)modules. Remarquons juste que notre résultat (2.2.2.2) généralise la spécialisation du théorème 5.15 de [HMS74] à la sous-catégorie formée des algèbres étendues $(M, A, 0)$, où A est une algèbre fixée et M un A-module, et à son image dans la catégorie des cogèbres étendues.

Nous étudions ensuite les objets fibrants de $\text{Comc} C$ pour une certaine classe de cogèbres C. Soit A une Λ_∞-algèbre augmentée et $\text{Mod}_\infty A$ la catégorie des A-polydules strictement unitaires dont les morphismes sont les Λ_∞-morphismes strictement unitaires. Notons B^+A la construction bar co-augmentée de la réduction \mathcal{T} de A. Lorsque C est une cogèbre isomorphe à B^+A, nous montrons (2.4.1.3) à l’aide de la théorie de l’obstruction (B.2) qu’un objet de $\text{Comc} C$ est fibrant si et seulement si il est facteur direct d’un objet presque colibre. Comme tous les objets de $\text{Comc} C$ sont cofibrants, la sous-catégorie des objets cofibrants et fibrants est l’image essentielle de la construction bar des A-polydules strictement unitaires. Nous en déduisons (2.4.2.2) que la catégorie dérivée $\mathcal{D}_\infty A = \text{Mod}_\infty A[\{Q\delta s\}^{-1}]$ est équivalente au quotient de la catégorie $\text{Mod}_\infty A$ par la relation d’homotopie (ceci montre le théorème des Λ_∞-quasi-isomorphismes pour les A-polydules). La structure triangulaire de $\mathcal{D}_\infty A$ sera étudiée dans la section (2.4.3).

Dans la section 2.5, nous étudions, par les mêmes méthodes, la catégorie dérivée des bipolydules (appelés Λ_∞-bimodules dans la littérature) strictement unitaires sur deux Λ_∞-algèbres augmentées. Nous utiliserons les résultats de cette section dans la seconde partie de la thèse qui concerne les Λ_∞-catégories.

Chapitre 3 : les unités.

Une \mathbb{K}-algèbre associative (A, μ) est unitaire si elle est munie d’un morphisme $\eta : \mathbb{K} \to A$ vérifiant les relations

$$\mu(\eta \otimes 1) = 1 \quad \text{et} \quad \mu(1 \otimes \eta) = 1.$$

Il existe plusieurs relèvements de la notion d’unitarité aux Λ_∞-algèbres. Nous en étudions deux : l’unitarité stricte (déjà présente dans la version topologique de J. Stasheff [Sta63a]) et l’unitarité homologique. L’unitarité stricte est la notion qui nous permettra de généraliser certaines propriétés classiques des algèbres unitaires aux Λ_∞-algèbres. L’unitarité homologique, plus générale, apparaît dans les exemples géométriques [Fuk93]. Nous montrons que d’un point de vue homotopique il n’y a pas de différence entre ces deux relèvements possibles de la notion d’unitarité. Plus précisément, nous montrerons le résultat suivant : soit $(\text{Alg}_\infty)_{hu}$ la catégorie des Λ_∞-algèbres homologiquement unitaires dont les morphismes sont les Λ_∞-morphismes homologiquement unitaires et $(\text{Alg}_\infty)_{su}$ la catégorie des Λ_∞-algèbres strictement unitaires dont les morphismes sont les Λ_∞-morphismes strictement unitaires. Les catégories $(\text{Alg}_\infty)_{hu}$ et $(\text{Alg}_\infty)_{su}$ deviennent équivalentes après passage à l’homotopie (3.2.4.4). La démonstration de ce résultat sera basée sur une théorie de l’obstruction.
des A_∞-structures minimales (B.4) et sur l’existence d’un modèle minimal strictement unitaire pour les A_∞-algèbres strictement unitaires (3.2.4.1).

Récemment, K. Fukaya [FOOO01], [Fuk01b], P. Seidel [Sei], A. Lazarev [Laz02] et V. Lyubashenko [Lyu02] ont étudié le problème des unités de manière indépendante. Le relèvement de la notion d’unité de V. Lyubashenko se spécialise à notre notion d’unité homologique si on travaille sur un corps (V. Lyubashenko travaille sur un anneau commutatif quelconque).

Chapitre 4 : la catégorie dérivée.

Ici, nous définissons la catégorie dérivée d’une A_∞-algèbre quelconque A (non nécessairement strictement unitaire). Nous montrerons que, lorsque A est strictement unitaire, sa catégorie dérivée admet les quatre descriptions suivantes (4.1.3.1) :

D1. la sous-catégorie triangulée Tri_A de la catégorie dérivée $\mathcal{D}_\infty(A^+)$ (où A^+ est l’augmentation de A et $\mathcal{D}_\infty(A^+)$ est définie dans le chapitre 2),

D2. la catégorie $\mathcal{H}_\infty A = \text{Mod}_{\infty} A/\sim$

où $\text{Mod}_{\infty} A$ est la catégorie des A-polydules strictement unitaires et \sim est la relation d’homotopie,

D3. la catégorie localisée $\left(\text{Mod}_{\infty} A \right)[\text{Qis}^{-1}]$

où Qis est la classe des A_∞-quasi-isomorphismes de $\text{Mod}_{\infty} A$,

D4. la catégorie localisée $\left(\text{Mod}_{\infty}^{\text{strict}} A \right)[\text{Qis}^{-1}]$

où $\text{Mod}_{\infty}^{\text{strict}} A$ est la sous-catégorie non pleine de $\text{Mod}_{\infty} A$ dont les morphismes sont les A_∞-morphismes stricts.

Nous montrerons (4.1.3.8) que si A est une algèbre différentielle graduée unitaire, la catégorie dérivée $\mathcal{D}A$ (voir par exemple [Kel94a]) est équivalente aux catégories définies ci-dessus.

Chapitre 5 : préliminaires sur les A_∞-catégories.

La notion d’A_∞-catégorie est une généralisation naturelle de celle d’A_∞-algèbre. Au début des années 90, les travaux de K. Fukaya [Fuk93] (voir aussi [Fuk01b]) ont montré qu’elle apparaît naturellement dans l’étude de l’homologie de Floer. Inspiré par ces travaux, M. Kontsevich, dans son exposé [Kon95] au congrès international, a donné une interprétation conjecturale de la symétrie miroir comme l’”ombre” d’une équivalence entre les catégories dérivées de deux A_∞-catégories d’origine géométrique (voir aussi [PZ98] où cette conjecture a été démontrée pour les courbes elliptiques). Dans la suite de cette thèse, nous généralisons au cadre A_∞-catégorique les constructions fondamentales de la théorie des catégories : le foncteur de Yoneda, les catégories de foncteurs, les équivalences de catégories, etc., et démontrons certains des résultats énoncés ou implicites dans [Kon98]. Nous utiliserons ou adapterons pour cela certaines méthodes de la première partie de la thèse.

Une A_∞-catégorie est une A_∞-algèbre avec plusieurs objets, et réciproquement, une A_∞-algèbre est une A_∞-catégorie avec un objet. Les problèmes soulevés par l’augmentation du nombre d’objets
Sur les A_∞-catégories

sont nombreux et la généralisation des résultats des chapitres précédents est parfois très technique (par exemple pour l’homotopie entre A_∞-morphismes). Nous introduisons une bicatégorie C dont les objets sont les ensembles. Comme C est une bicatégorie, pour tout ensemble O, la catégorie des morphismes $C(O, O)$ est une catégorie monoïdale (voir [ML98, Chap. XII, §6]). Nous définissons (5.1.2.1) une petite A_∞-catégorie dont l’ensemble des objets est en bijection avec un ensemble O comme une A_∞-algèbre dans $C(O, O)$. Nous définissons ensuite les A_∞-foncteurs et les catégories différentielles graduées $C_\infty A$ et $C_\infty(A, B)$ de A-polydules et A-B-bipolydules strictement unitaires (A et B sont des A_∞-catégories strictement unitaires). Un lemme clef qui sera utile pour la construction de l’A_∞-foncteur de Yoneda (chapitre 7) est démontré en (5.3.0.1).

Chapitre 6 : la torsion d’A_∞-catégories.

Dans ce chapitre, nous généralisons aux A_∞-algèbres une technique de torsion bien connue en théorie des déformations (pour un panorama, voir par exemple [Hue99]). Soit A une A_∞-catégorie. Considérons l’équation de Maurer-Cartan généralisée

$$
\sum_{i=1}^{\infty} m_i(x \otimes \ldots \otimes x) = 0.
$$

Nous montrons (6.1.2 et 6.2.4) qu’une solution x de cette équation (lorsqu’elle a un sens) donne une nouvelle A_∞-catégorie A_x appelée la torsion de A par x. La torsion des A_∞-algèbres est due à K. Fukaya qui l’a introduite (ainsi que celle des L_∞-algèbres) dans [Fuk01b] et [Fuk01a] pour l’étude des A_∞-déformations. Nos formules pour les compositions tordues m_i^x, $i \geq 1$, de A_x sont les mêmes (à des signes équivalents près) que dans [Fuk01b] mais la démonstration du fait qu’elles définissent bien une structure d’A_∞-catégorie est différente. Nous décrivons ensuite la torsion des A_∞-foncteurs (6.1.3 et 6.2.5) et des (bi)polydules (6.1.4 et 6.2.6) par des solutions de l’équation de Maurer-Cartan. Nous montrons aussi que si un A_∞-foncteur f induit un quasi-isomorphisme dans les espaces de morphismes, sa torsion f_x induit elle aussi un quasi-isomorphisme dans les espaces de morphismes (6.1.3.4).

La torsion sera utile dans les chapitres 7 et 8.

Chapitre 7 : l’A_∞-foncteur de Yoneda et les objets tordus.

Soit A une catégorie. Rappelons que le foncteur de Yoneda est le foncteur

$$
A \to \text{Mod} A, \quad A \mapsto \text{Hom}_A(\cdot, A).
$$

Dans ce chapitre, nous relevons ce foncteur en un A_∞-foncteur (7.1.0.1)

$$
y : \mathcal{C}_\infty A, \quad A \mapsto \text{Hom}_A(\cdot, A),
$$

où A est une A_∞-catégorie. Si A est strictement unitaire, nous montrons que l’A_∞-foncteur y est strictement unitaire et qu’il se factorise par l’A_∞-catégorie des objets tordus $\text{tw} A$ (7.1.0.4). Les compositions de l’A_∞-catégorie $\text{tw} A$ sont obtenues par torsion (chapitre 6).

Si \mathcal{G} est une catégorie différentielle graduée unitaire, la catégorie (différentielle graduée) des objets tordus est due à A. I. Bondal et M. M. Kapranov [BK91] (ils la notent $\text{Pr-Tr}^+ \mathcal{G}$). Le but de [BK91] est de pallier un défaut des axiomes des catégories triangulées pour décrire les catégories dérivées [Ver77] : le cône n’est pas fonctoriel. Plutôt que les catégories triangulées,
ils considèrent les catégories pré-triangulées décrites à l’aide de la catégorie des objets tordus et montrent l’équivalence de catégories suivante : soit \mathcal{E} une catégorie pré-triangulée ($H^0\mathcal{E}$ est alors triangulée). Soit \mathcal{G} une sous-catégorie pleine de \mathcal{E}. La sous-catégorie triangulée $\text{tria}\mathcal{G} \subset H^0\mathcal{E}$ engendrée par \mathcal{G} est équivalente à la catégorie triangulée $H^0(\text{Pr-Tr}^+\mathcal{G})$. Dans le cas A_∞, on a les mêmes résultats : nous montrons (7.4) que si A est une A_∞-catégorie strictement unitaire, les catégories $H^0\text{tw}A$ et $\text{tria}A \subset D_\infty A$ sont équivalentes (comme annoncé dans [Kon95]). De plus, nous montrons (section 7.6) que toute catégorie triangulée algébrique qui est engendrée par un ensemble d’objets est A_∞-pré-triangulée, i. e. elle est équivalente à $H^0\text{tw}A$, pour une certaine A_∞-catégorie A

Soit A une A_∞-catégorie strictement unitaire. La catégorie $C_\infty A$ est différemment graduée et l’A_∞-foncteur de Yoneda $y : A \to C_\infty A$ induit (7.4.0.1) un quasi-isomorphisme dans les espaces de morphismes. Nous en déduisons que l’image $y(A)$ de A est une catégorie différemment graduée unitaire qui est quasi-isomorphe à A. Ceci montre que d’un point de vue homologique, l’étude des A_∞-catégories strictement unitaires (et même homologiquement unitaires, par le chapitre 3) revient à l’étude des catégories différemment graduées unitaires. Concernant les catégories différemment graduées et leurs catégories dérivées, on renvoie à [Kel94a], [Kel99].

Chapitre 8 : l’A_∞-catégorie des A_∞-foncteurs.

Soit A et B deux A_∞-catégories strictement unitaires. Nous définissons (8.1.1 et 8.1.3) une A_∞-catégorie $\text{Func}_\infty(A, B)$ dont les objets sont les A_∞-foncteurs strictement unitaires $A \to B$. La difficulté consiste à définir les compositions supérieures des morphismes entre A_∞-foncteurs. Nous utiliserons pour cela la méthode de la torsion du chapitre 6. Cette A_∞-catégorie est fonctorielle en A et B (8.1.2). Nous en déduisons une 2-catégorie cat_∞ dont les objets sont les petites A_∞-catégories strictement unitaires et les espaces de morphismes $A \to B$ sont les catégories $\text{cat}_\infty(A, B) = H^0\text{Func}_\infty(A, B)$, $A, B \in \text{Obj cat}_\infty$.

Nous caractérisons (8.2.2.3) ensuite les éléments $H \in \text{Hom}_{\text{Func}_\infty(A, B)}(f, g)$, $f, g : A \to B$ qui deviennent des isomorphismes $f \to g$ dans la catégorie $\text{cat}_\infty(A, B)$. La démonstration de cette caractérisation utilisera l’existence d’un A_∞-foncteur de Yoneda généralisé (8.2.1)

$z : \text{Func}_\infty(A, B) \to C_\infty(A, B)$

qui induit un quasi-isomorphisme dans les espaces de morphismes.

L’A_∞-catégorie $\text{Func}_\infty(A, B)$ a été construite indépendamment par K. Fukaya [Fuk01b], V. Lyubashenko [Lyu02] et M. Kontsevich et Y. Soibelman [KS02a], [KS02b]. Bien qu’obtenues par des méthodes différentes, les compositions de $\text{Func}_\infty(A, B)$ de [Lyu02] sont les mêmes que les nôtres.

Chapitre 9 : les A_∞-équivalences.

Soit A une A_∞-catégorie strictement unitaire. Dans (9.1), nous relevons la notion d’isomorphisme de $H^0 A$ à A. Nous montrons ensuite qu’un A_∞-foncteur $f : A \to B$ est une A_∞-équivalence si et seulement si f_1 est un quasi-isomorphisme et s’il induit une équivalence de catégories (au sens classique) entre $H^0 A$ et $H^0 B$ (9.2). D’autres démonstrations de cette caractérisation (annoncée dans [Kon98]) se trouvent dans [Fuk01b] et [Lyu02].
Chapitre 1

Théorie de l’homotopie des A_{∞}-algèbres

Introduction

Rappelons trois résultats classiques sur les A_{∞}-algèbres :

1. *(Relation d’homotopie)* La relation d’homotopie sur les A_{∞}-morphismes est une relation d’équivalence (1.3.1.3 a).

2. *(A$_{\infty}$-quasi-isomorphisme)* Tout A$_{\infty}$-quasi-isomorphisme d’A$_{\infty}$-algèbres est inversible à homotopie près (1.3.1.3 b).

3. *(Modèle minimal)* Toute A$_{\infty}$-algèbre admet un modèle minimal (1.4.1.4).

Dans la littérature, les résultats 1 et 2 sont démontrés pour les A$_{\infty}$-algèbres vérifiant certaines conditions sur leur graduation ou leur connexité (voir les références figurant dans le corps du chapitre). Le but de ce chapitre est de les généraliser aux A$_{\infty}$-algèbres quelconques.

Plan du chapitre

Le chapitre est divisé en quatre sections. Dans la section 1.1, on fixe les notations et on définit les algèbres libres et les cogèbres tensorielles.

Dans la section 1.2, on définit les A$_{\infty}$-algèbres, les A$_{\infty}$-morphismes et les homotopies entre A$_{\infty}$-morphismes. On rappelle les constructions bar et cobar (1.2.2).

Dans la section 1.3, nous montrons le résultat principal (1.3.1.2) de ce chapitre :

La catégorie Cogc des cogèbres différentielles graduées cocomplètes admet une structure de catégorie de modèles qui la rend Quillen-équivalente à la catégorie de modèles Alg des algèbres différentielles graduées. Tous les objets de Cogc sont cofibrants et les objets fibrants de Cogc sont ceux qui, en tant que cogèbres graduées, sont isomorphes à des cogèbres tensorielles réduites.

La démonstration du fait que la catégorie Cogc admet une telle structure nous a été inspirée du travail de V. Hinich [Hin01]. Nous considérons des objets filtrés et étudions dans ce cadre les propriétés des constructions bar et cobar. La caractérisation des objets cofibrants sera immédiate...
car les cofibrations sont les injections. La caractérisation des objets fibrants sera un résultat plus
profond, conséquence du théorème (1.3.3.1) : la catégorie des A_{∞}-algèbres Alg_{∞} admet une struc-
ture de “catégorie de modèles sans limites” dont la classe des équivalences faibles est formée des
A_{∞}-quasi-isomorphismes.

Notre démonstration de ce résultat sera entièrement basée sur la théorie de l’obstruction (voir
appendice B.1). Elle peut donc être interprétée comme une conséquence du fait que l’opérade des
A_{∞}-algèbres est un modèle cofibrant minimal au sens de M. Markl [Mar96] pour l’opérade des
algèbres associatives.

Les A_{∞}-algèbres s’identifient par la construction bar aux objets fibrants et cofibrants de Cogc.
Les résultats 1 et 2 cités plus haut apparaîtront alors comme des cas particuliers de résultats
fondamentaux de l’algèbre homotopique de Quillen (voir appendice A).

Dans la section 1.4, nous remontrons (1.4.1.4) le résultat 3 (modèle minimal). Notre démonstration
utilisera la théorie de l’obstruction. Ensuite, nous comparons (1.4.2.1) un modèle minimal obtenu
ainsi avec celui obtenu grâce au lemme de perturbation (voir par ex. [HK91]).

1.1 Rappels et notations

1.1.1 Objets différentiels gradués

Nous fixons des notations que nous utiliserons tout au long de ce chapitre.

La catégorie de base

Soit K un corps. Soit C une catégorie K-linéaire abélienne, semi-simple, cocomplète, aux colimites
filtrantes exactes (i.e. une K-catégorie de Grothendieck semi-simple). Nous supposons en outre que
C est munie d’une structure de catégorie monoïdale K-bilinéaire donnée par un foncteur

$\otimes : C \times C \to C$,

un objet neutre e, et des contraintes d’associativité et d’unitarité

$X \otimes (Y \otimes Z) \simeq (X \otimes Y) \otimes Z, \quad X \otimes e \simeq X \simeq e \otimes X, \quad X, Y, Z \in C.$

Nous supposons que pour tout objet X de C, les foncteurs $X \otimes -$ et $- \otimes X$ sont exacts et commutent
aux colimites filtrantes.

La catégorie des K-espaces vectoriels vérifie bien sûr ces hypothèses. La raison pour laquelle
nous travaillons dans un cadre plus général est l’apparition naturelle d’autres exemples dans l’étude
des A_{∞}-catégories (voir le chapitre 5).

Objets gradués

Un objet gradué (sur C) est une suite $M = (M^p)_{p \in \mathbb{Z}}$ d’objets de C. Soit deux objets gradués M
et L. La catégorie GrC des objets gradués a pour espace des morphismes de M dans L l’espace
vectoriel \mathbb{Z}-gradué de composantes

$\text{Hom}_{\text{GrC}}(M, L)^r = \prod_p \text{Hom}_{\mathbb{C}}(M^p, L^{p+r}), \quad r \in \mathbb{Z}.$
On appelle *morphismes gradués de degré* r les éléments de la r-ième composante. Le *produit tensoriel* de deux objets gradués M et L a pour composantes

$$(M \otimes L)^n = \bigoplus_{p+q=n} M^p \otimes L^q, \quad n \in \mathbb{Z}.$$

Soit $f : M \to M'$ et $g : L \to L'$ deux morphismes gradués de degré r et s. Le *produit tensoriel*

$$f \otimes g : M \otimes L \to M' \otimes L'$$

est le morphisme de degré $r + s$ dont la n-ième composante est induite par les morphismes

$$(-1)^{ps} f^p \otimes g^q : M^p \otimes L^q \to M'^{p+r} \otimes L'^{q+s}, \quad p + q = n.$$

L'élément neutre pour le produit tensoriel gradué est l'objet gradué dont toutes les composantes sont nulles sauf la 0-ième, qui vaut e. Nous le notons aussi e. La catégorie $\text{Gr}C$ est ainsi munie d'une structure de catégorie monoïdale. On définit le *foncteur suspension* $S : \text{Gr}C \to \text{Gr}C$ par

$$(SM)^i = M^{i+1}, \quad i \in \mathbb{Z}.$$

Nous notons

$$s_M : M \to SM$$

le *morphisme gradué fonctoriel* de degré -1 de composantes

$$s_M^i = 1_{M^i} : M^i \to (SM)^{i-1}, \quad i \in \mathbb{Z}.$$

Le morphisme s^{-1} est noté ω. Remarquons l'égalité

$$\omega^{\otimes i} \circ s_M^{\otimes i} = (-1)^{i(i-1)/2} 1_{M^{\otimes i}}.$$

Objets différentiels gradués

Un *objet différentiel gradué* (ou *complexe*) est un couple (M, d), où M est un objet gradué et d est une différentielle, c'est-à-dire un endomorphisme de M de degré $+1$, tel que $d^2 = 0$. Le *sous-objet* $Z^i M = \ker d^i$ de M^i est l'objet des *cycles* de degré i du complexe M. Le *sous-objet* $B^i M = \text{Im } d^{i-1}$ de $Z^i M$ est l'objet des *bords* de degré i du complexe M. Si (M, d_M) et (L, d_L) sont deux complexes, nous munissons l'espace des morphismes gradués $\text{Hom}_{\text{Gr}C}(M, L)$ de la différentielle δ dont les composantes sont

$$\delta^r : \text{Hom}_{\text{Gr}C}(M, L)^r \to \text{Hom}_{\text{Gr}C}(M, L)^{r+1}, \quad r \in \mathbb{Z}, \quad f \mapsto d_L \circ f - (-1)^r f \circ d_M.$$

La catégorie CC a pour objets les complexes et pour espaces de morphismes

$$\text{Hom}_{\text{CC}}(M, L) = Z^0(\text{Hom}_{\text{Gr}C}(M, L), \delta).$$

Si M et L sont deux complexes, on munit le produit tensoriel gradué $M \otimes L$ de la différentielle

$$d_{M \otimes L} = d_M \otimes 1_L + 1_M \otimes d_L.$$
Nous avons ainsi muni C d’une structure de catégorie monoïdale d’objet neutre l’objet gradué et muni de la différentielle nulle. Si M est un complexe, nous munissons sa suspension SM de la différentielle
\[d_{SM} = -s_M \circ d_M \circ s_M^{-1}. \]

Le foncteur homologie $H : CC \to GrC$ envoie un complexe M sur l’objet gradué HM de composantes
\[H^iM = Z^iM/B^iM, \quad i \in \mathbb{Z}. \]

Un quasi-isomorphisme de CC est un morphisme qui induit un isomorphisme en homologie. Un complexe est acyclique s’il est quasi-isomorphe à l’objet nul. Deux morphismes de complexes $f, g : M \to L$ sont homotopes s’il existe un morphisme $r : M \to L$ de degré -1 tel que $\delta(r) = f - g$. L’homotopie est une relation d’équivalence. La catégorie HC a pour objets les complexes et pour espaces de morphismes de M dans L les classes d’homotopie de morphismes de la catégorie CC :
\[Hom_{HC}(M, L) = H^0(Hom_{GrC}(M, L), \delta). \]

Nous notons encore $H : HC \to GrC$ le foncteur induit par le foncteur homologie.

1.1.2 Algèbres et cogèbres

Algèbres

Soit M l’une des catégories C, GrC ou CC. Une algèbre (A, μ) dans M est un objet A muni d’une multiplication $\mu : A \otimes A \to A$ associative (et de degré 0 si $M = GrC$). Définissons $\mu^{(2)} = \mu$, et pour tout $n \geq 3$, $\mu^{(n)} : A^{\otimes n} \to A$ par
\[\mu^{(n)} = \mu(1 \otimes \mu^{(n-1)}). \]

Pour $n \geq 1$, on appelle $\text{cok} \mu^{(n+1)}$ l’algèbre des n-irréductibles de A.

Soit $f, g : A \to B$ deux morphismes d’algèbres. Une (f, g)-dérivation est un morphisme $D : A \to B$ vérifiant la règle de Leibnitz
\[D \circ \mu = \mu \circ (f \otimes D + D \otimes g). \]

Une dérivation de l’algèbre A est une $(1, 1_A)$-dérivation.

Soit V un objet gradué de M. L’algèbre tensorielle réduite sur V est l’objet
\[TV = \bigoplus_{i \geq 1} V^{\otimes i} \]

muni de la multiplication μ dont les composantes
\[V^{\otimes i} \otimes V^{\otimes j} \to V^{\otimes i+j} \to TV \]

sont données par la contrainte d’associativité de la catégorie monoïdale M. Une algèbre A de M est libre si elle est isomorphe à TV pour un objet V de M. Nous avons alors $V \simeq \text{cok} \mu_A$.

Lemme 1.1.2.1 (propriété universelle de l’algèbre tensorielle)

Soit (A, μ) une algèbre. Pour $n \geq 1$, nous notons $f_n : V^{\otimes n} \to TV$ l’injection canonique.
1.1 : Rappels et notations

a. L’application $f \mapsto f \circ j_1$ est une bijection de l’ensemble des morphismes d’algèbres $\overline{T}(V) \to A$ sur l’ensemble des morphismes $V \to A$ de M (de degré 0 si $M = G_{\mathbb{C}}$). L’application inverse associée à $g : V \to A$ le morphisme d’algèbres $\text{mor}(g) : \overline{T}V \to A$ dont la n-ième composante est

$$V^\otimes n \xrightarrow{g^\otimes n} A^\otimes n \xrightarrow{\mu^{(n)}} A,$$

$n \geq 1$.

b. Soit $f, g : A \to B$ deux morphismes d’algèbres. L’application $D \mapsto D \circ j_1$ est une bijection de l’ensemble des (f, g)-dérivations sur l’ensemble des morphismes $V \to A$ de M. L’application inverse associée à $h : V \to A$ la (f, g)-dérivation $\text{der}(h) : \overline{T}V \to A$ dont la n-ième composante est

$$\mu^{(n)} \circ \left(\sum_{i+1+j=n} (f^\otimes l \otimes h^\otimes g^\otimes j) \right), \quad n \geq 1.$$

Une algèbre graduée (resp. différentielle graduée) est une algèbre de la catégorie $G_{\mathbb{C}}$ (resp. de la catégorie $C_{\mathbb{C}}$). Nous notons Alg la catégorie des algèbres différentielles graduées. Un morphisme de Alg est un quasi-isomorphisme s’il induit un isomorphisme en homologie. Une algèbre différentielle graduée est presque libre si elle est libre en tant qu’algèbre graduée. Deux morphismes $f, g : A \to B$ de Alg sont homotopes s’il existe une (f, g)-dérivation $H : A \to B$ graduée de degré -1 telle que

$$f - g = dH + Hd.$$

Il résultera de la proposition A.13 appliquée à l’exemple 1.3.1.1 que, si l’algèbre A est presque libre, la relation d’homotopie est une relation d’équivalence sur l’ensemble des morphismes d’algèbres de A dans B.

Cogèbres

Une cogèbre dans M est la donnée d’un objet C muni d’une comultiplication $\Delta : C \to C \otimes C$ co-associative, i.e. $(\Delta \otimes 1)\Delta = (1 \otimes \Delta)\Delta$. Définissons $\Delta^{(2)} = \Delta$ et, pour tout $n \geq 3$, $\Delta^{(n)} : C \to C^\otimes n$ par

$$\Delta^{(n)} = (1^\otimes n-2 \otimes \Delta) \circ \Delta^{(n-1)}.$$

Soit $n \geq 1$. Le noyau $C_{[n]} = \ker \Delta^{(n+1)}$ est une sous-cogèbre de C ; nous l’appelons la sous-cogèbre des n-primitifs de C. La suite croissante de sous-cogèbres

$$C_{[1]} \subset C_{[2]} \subset C_{[3]} \subset \cdots$$

est la filtration primitive de la cogèbre C. La cogèbre C est cocomplète si l’on a

$$\text{colim} C_{[n]} = C.$$

Soit f et $g : C \to B$ deux morphismes de cogèbres. Une (f, g)-codérivation est un morphisme $D : C \to B$ vérifiant l’identité duale de la règle de Leibniz

$$\Delta \circ D = (f \otimes D + D \otimes g) \circ \Delta.$$

Une codérivation de C est une $(1_C, 1_C)$-codérivation.
Soit V un objet de \mathbf{M}. La cogèbre tensorielle réduite sur V est l'objet
$$T^c V = \bigoplus_{i \geq 1} V^\otimes i$$
nuni de la comultiplication dont la n-ième composante
$$V^\otimes n \to \bigoplus_{i+j=n} V^\otimes i \otimes V^\otimes j \to T^c V \otimes T^c V,$$
est la somme des morphismes $V^\otimes n \to V^\otimes i \otimes V^\otimes j$ donnés par la contrainte d'associativité de la structure monoïdale de \mathbf{M}. Remarquons que si C est isomorphe à une cogèbre tensorielle réduite, elle est isomorphe à $T^c(C_{[1]})$. Les cogèbres tensorielles réduites sont cocomplètes.

Lemme 1.1.2.2 (propriété universelle de la cogèbre tensorielle)
Soit C une cogèbre cocomplète. Pour $n \geq 1$, nous notons $p_n : T^c(V) \to V^\otimes n$ la projection canonique.

a. L'application $f \mapsto p_1 \circ f$ est une bijection de l'ensemble des morphismes de cogèbres sur l'ensemble des morphismes $C \to V$ de \mathbf{M} (de degré 0 si $\mathbf{M} = \mathbf{GrC}$). L'application inverse associe à $g : C \to V$ le morphisme de cogèbres $\text{mor}(g) : C \to T^c V$ dont la n-ième composante est
$$C \overset{\Delta^{(n)}}{\to} C^\otimes n \overset{g^\otimes n}{\to} V^\otimes n, \quad n \geq 1.$$

b. Soit $f, g : C \to T^c V$ deux morphismes de cogèbres. L'application $D \mapsto p_1 \circ D$ est une bijection de l'ensemble des (f, g)-codérivations $C \to T^c V$ sur l'ensemble des morphismes $C \to V$. L'application inverse associe à $h : C \to V$ la (f, g)-codérivation $\text{cod}(h) : C \to T^c V$ dont la n-ième composante est
$$\left(\sum_{t+1+j=n} (f^\otimes t \otimes h \otimes g^\otimes j) \right) \circ \Delta^{(n)}, \quad n \geq 1.$$

Remarque 1.1.2.3 L'isomorphisme canonique
$$e \sim \rightarrow e \otimes e$$
fait de $C = e$ une cogèbre. Elle n'est pas cocomplète. Aucun morphisme non nul $C \to V$ ne se relève en un morphisme de cogèbres $C \to T^c V$.

Nous notons Cog la catégorie des cogèbres différentielles graduées et Cog_c la sous-catégorie de Cog formée des cogèbres cocomplètes. Deux morphismes $f, g : C \to B$ de cogèbres différentielles graduées sont *homotopes* s'il existe une (f, g)-codérivation graduée $H : C \to B$ de degré -1 telle que
$$f - g = dH + Hd.$$
Il résultera du théorème 1.3.1.2 et du lemme A.12 que, si la cogèbre graduée sous-jacente à B est isomorphe à une cogèbre graduée tensorielle réduite, l'homotopie est une relation d'équivalence sur l'ensemble des morphismes de cogèbres de C dans B.

Chapitre 1 : Théorie de l'homotopie des A_{∞}-algèbres
1.2 A_∞-algèbres et A_∞-cogèbres

1.2.1 Définitions

Définition 1.2.1.1 Soit n un entier ≥ 1. Une A_n-algèbre est un objet A de $\mathcal{G} \mathcal{C}$ muni d’une famille de morphismes gradués
\[m_i : A^\otimes i \rightarrow A, \quad 1 \leq i \leq n, \]
de degré $2 - i$ vérifiant, pour tout $1 \leq m \leq n$, l’équation
\[\sum (-1)^{j+k+l} m_i (1^\otimes j \otimes m_k \otimes 1^\otimes l) = 0 \]
dans $\text{Hom}_{\mathcal{G} \mathcal{C}}(A^m, A)$, où les entiers i, j, k, l sont tels que $j + k + l = m$ et $i = j + 1 + l$. Une A_∞-algèbre (ou algèbre fortement homotopiquement associative) est un objet A de $\mathcal{G} \mathcal{C}$ muni de morphismes gradués $m_i : A^\otimes i \rightarrow A$, $i \geq 1$, de degré $2 - i$ vérifiant l’équation $(*)_m$ pour tout $m \geq 1$.

Définition 1.2.1.2 Un A_n-morphisme d’A_n-algèbres $f : A \rightarrow B$ est une famille de morphismes gradués
\[f_i : A^\otimes i \rightarrow B, \quad 1 \leq i \leq n, \]
de degré $1 - i$ vérifiant, pour tout $1 \leq m \leq n$, l’équation
\[\sum (-1)^{j+k+l} f_i (1^\otimes j \otimes m_k \otimes 1^\otimes l) = \sum (-1)^{s} m_r (f_{i_1} \otimes \ldots \otimes f_{i_s}) \]
dans $\text{Hom}_{\mathcal{G} \mathcal{C}}(A^m, B)$, où les entiers i, j, k, l dans la somme de gauche sont tels que $j + k + l = m$ et $i = j + 1 + l$ et
\[s = \sum_{2 \leq u \leq r} ((1 - i_u) \sum_{1 \leq v \leq u} i_v). \]

Un A_n-morphisme f est strict si $f_i = 0$ pour tout $i \geq 2$. La composition d’un A_n-morphisme $f : A \rightarrow B$ avec un A_n-morphisme $g : B \rightarrow C$ est définie par
\[(gf)_m = \sum_r \sum_{i_1 + \ldots + i_r = m} (-1)^{s} g_r (f_{i_1} \otimes \ldots \otimes f_{i_r}) \]
en tant que morphisme de A^m sur C, où s est le même signe que précédemment. L’identité de l’A_n-algèbre A est le A_n-morphisme tel que $f_1 = 1_A$ et $f_i = 0$ si $2 \leq i \leq m$. Un A_∞-morphisme est une famille de morphismes gradués $f_i : A^\otimes i \rightarrow B$, $i \geq 1$, de degré $1 - i$ vérifiant l’équation $(**)_m$ pour tout $m \geq 1$. Pour les A_∞-algèbres, les composantes de la composition et de l’identité sont définies par les mêmes formules que pour les A_n-algèbres.

Il résultera de la section 1.2.2 qu’on obtient ainsi une catégorie. Notons Alg_∞ la catégorie des A_∞-algèbres. De même, pour tout $n \geq 1$, on obtient la catégorie Alg_n des A_n-algèbres.

Remarque 1.2.1.3 La définition des A_n-algèbres implique les formules suivantes qui expliquent l’autre appellation d’une A_∞-algèbre: algèbre fortement homotopiquement associative. L’égalité
\[(*_1) \quad m_1 m_1 = 0 \]
montre que \((A, m_1)\) est un complexe. L'égalité
\[
(\ast_2) \quad m_1 m_2 = m_2 (m_1 \otimes 1 + 1 \otimes m_1)
\]
de morphismes \(A^\otimes 2 \to A\) signifie que la différentielle \(m_1\) est une dérivation pour la multiplication \(m_2\). L'égalité
\[
(\ast_3) \quad m_2 (m_2 \otimes 1 - 1 \otimes m_2) = m_1 m_3 + m_3 (m_1 \otimes 1 \otimes 1 + 1 \otimes m_1 \otimes 1 + 1 \otimes 1 \otimes m_1)
\]
de morphismes \(A^\otimes 3 \to A\) exprime que le défaut d'associativité de \(m_2\) est égal au bord de \(m_3\) dans le complexe
\[
\text{Hom}_{\mathcal{C}}((A, m_1)^\otimes 3, (A, m_1)).
\]
Ceci signifie que l'objet gradué \(A\) muni de la multiplication \(m_2\) est une algèbre dont la multiplication est associative à homotopie près.

De même, la définition d'un \(A_{\infty}\)-morphisme \(f : A \to B\) implique les formules suivantes. L'égalité
\[
(\ast\ast_1) \quad f_1 m_1 = m_1 f_1
\]
signe que le morphisme gradué \(f_1\) est un morphisme de complexes. L'égalité
\[
(\ast\ast_2) \quad f_1 m_2 = m_2 (f_1 \otimes f_1) + m_1 f_2 + f_2 (m_1 \otimes 1 + 1 \otimes m_1)
\]
signe que le défaut de compatibilité de \(f_1\) aux multiplications de \(A\) et \(B\) est mesuré par le bord de \(f_2\) dans
\[
\text{Hom}_{\mathcal{C}}((A, m_1)^\otimes 2, (B, m_1)).
\]

Remarque 1.2.1.4 Si \((V, d)\) est un complexe, les morphismes
\[
m_1 = d, \quad m_i = 0 \quad \text{pour} \quad i \geq 2
\]
définissent une structure d'\(A_{\infty}\)-algèbre sur \(V\). La catégorie \(\mathcal{C}\) des complexes est une sous-catégorie non pleine de \(\text{Alg}_{\infty}\).

Remarque 1.2.1.5 Si \(((A, d), m)\) est une algèbre différentielle graduée, les morphismes
\[
m_1 = d, \quad m_2 = m, \quad m_i = 0 \quad \text{pour} \quad i \geq 3
\]
définissent une structure d'\(A_{\infty}\)-algèbre sur \(A\). Réciproquement, si dans une \(A_{\infty}\)-algèbre \(A\), les multiplications \(m_i\) sont nulles pour \(i \geq 3\), le complexe \((A, m_1)\) muni de la multiplication \(m_2 : A \otimes A \to A\) est une algèbre différentielle graduée. La catégorie \(\text{Alg}\) des algèbres différentielles graduées est une sous-catégorie non pleine de \(\text{Alg}_{\infty}\).

Définition 1.2.1.6 Un \(A_{\infty}\)-quasi-isomorphisme \(f\) est un \(A_{\infty}\)-morphisme tel que \(f_1\) est un quasi-isomorphisme de complexes.

Définition 1.2.1.7 Soit \(A\) et \(A'\) deux \(A_{\infty}\)-algèbres. Soit \(f\) et \(g\) deux \(A_{\infty}\)-morphismes \(A \to A'\). Une homotopie entre \(f\) et \(g\) est une famille de morphismes
\[
h_i : A^\otimes i \to B, \quad 1 \leq i,
\]
de degré $-i$ vérifiant, pour tout $1 \leq n$, l’équation $(\ast \ast_n)$

$$f_n - g_n = \sum (-1)^{i} m_{r+1+4} (f_{i_1} \otimes \ldots \otimes f_{i_r} \otimes h \otimes g_{j_1} \otimes \ldots \otimes g_{i_t})$$

$$+ \sum (-1)^{j+k+l} h \otimes m_k \otimes 1^{\otimes l}$$

dans $\text{Hom}_{\text{GrC}}(A^{\otimes n}, B)$, où la somme des entiers $i_1, \ldots, i_r, j, k, \ldots, j_t$ vaut n, où $j + k + l = n$ et où

$$s = t + \sum_{1 \leq \alpha \leq t} (1 - j_{\alpha})(n - \sum_{u \geq \alpha} j_u) + k \sum_{1 \leq u \leq r} i_u + \sum_{2 \leq \alpha \leq r} (1 - i_{\alpha}) \sum_{u < \alpha} i_u.$$

Deux A_∞-morphismes f et g sont homotopes si il existe une homotopie entre f et g.

Définition 1.2.1.8 Une A_∞-cogèbre (ou cogèbre fortement homotopiquement co-associative) est un objet C de GrC muni d’une famille de morphismes gradués

$$\Delta_i : C \rightarrow C^{\otimes i}, \quad i \geq 1,$$

de degré $2 - i$ telle que le morphisme

$$S^{-1}C \rightarrow \prod_{i \geq 1} (S^{-1}C)^{\otimes i}$$

dont les composantes sont les

$$-\omega^{\otimes i} \circ \Delta_i \circ s \quad (\text{où} \quad \omega = s^{-1})$$

se factorise par le monomorphisme

$$\bigoplus_{i \geq 1} (S^{-1}C)^{\otimes i} \rightarrow \prod_{i \geq 1} (S^{-1}C)^{\otimes i}$$

et que, pour tout $m \geq 1$, on a

$$\sum (-1)^{i+j+k} (1^{\otimes i} \otimes \Delta_j \otimes 1^{\otimes k}) \Delta_l = 0,$$

où les entiers i, j, k, l dans la somme de gauche sont tels que $i + j + k = m$ et $l = i + 1 + k$.

La construction cobar ci-dessous permettra de mieux comprendre cette définition.

1.2.2 Constructions bar et cobar

La construction bar est due à S. Eilenberg et S. Mac Lane [EML53] pour les algèbres différentielles graduées (voir aussi [Car55]) et à J. Stasheff [Sta63b] pour les A_∞-algèbres. Elle permet, entre autres, de reformuler la définition des A_∞-structures. Elle donne aussi une explication (1.2.2.2) des signes apparaissant dans les équations (\ast_m) de la définition des A_∞-algèbres. La construction cobar est l’analogue de la construction bar dans le cas des A_∞-cogèbres [Ada56].

Construction bar

Soit A un objet gradué. Soit une famille de morphismes gradués

$$m_i : A^{\otimes i} \rightarrow A, \quad i \geq 1,$$
de degré \(2 - i\). Pour tout \(i \geq 1\), nous définissons une bijection
\[
\text{Hom}_{GrC}(A^{\otimes i}, A) \rightarrow \text{Hom}_{GrC}((SA)^{\otimes i}, SA)
\]
par la relation
\[
b_i = -s \circ m_i \circ \omega^{\otimes i} \quad \text{où} \quad \omega = s^{-1}.
\]
Remarquons que le morphisme \(b_i\) est de degré +1.

Soit \(\mathcal{T}(SA)\) la cogèbre tensorielle réduite graduée sur \(SA\). En vertu du lemme 1.1.2.2, le morphisme
\[
\bigoplus_{i \geq 1} (SA)^{\otimes i} \rightarrow SA
\]
de composantes les \(b_i\) se relève en une unique codérivation
\[
b : \mathcal{T}(SA) \rightarrow \mathcal{T}(SA).
\]

Lemme 1.2.2.1 (J. Stasheff [Sta63b]) Les propositions suivantes sont équivalentes :

a. Les \(m_i\) définissent une structure de \(A_\infty\)-algèbre sur \(A\).

b. Pour chaque \(m \geq 1\), l’équation suivante est vérifiée
\[
\sum_{j+k+1=m, j+1+l=1} b_i (1^{\otimes j} \otimes b_k \otimes 1^{\otimes l}) = 0.
\]

c. La codérivation \(b\) est une différentielle, i.e. \(b^2 = 0\).

Démonstration : L’équivalence entre les deux premiers points résulte des égalités suivantes dans \(\text{Hom}_{GrC}(A^{\otimes i}, SA)\)
\[
b_i (1^{\otimes j} \otimes b_k \otimes 1^{\otimes l}) = \text{sm}_i \omega^{\otimes i} \circ (1^{\otimes j} \otimes \text{sm}_k \omega^{\otimes k} \otimes 1^{\otimes l})
\]
\[
= (-1)^j \text{sm}_i \circ (\omega^{\otimes j} \otimes (m_k \circ \omega^{\otimes k}) \otimes \omega^{\otimes l})
\]
\[
= (-1)^{j+k} \text{sm}_i \circ (1^{\otimes j} \otimes m_k \otimes 1^{\otimes l}) \circ \omega^{\otimes n}.
\]

Comme la codérivation \(b\) est de degré impair, son carré est encore une codérivation. Par le lemme 1.1.2.2, nous avons donc \(b^2 = 0\) si et seulement si \(p_1 b^2 = 0\). Ceci montre l’équivalence des deux derniers points.

Remarque 1.2.2.2 (signes) Le choix de la bijection \(m_i \leftrightarrow b_i\) n’est pas canonique. Un autre choix donnerait d’autres signes dans les équations \((*_m)\) de la définition 1.2.1.1.

Définition 1.2.2.3 La cogèbre différentielle graduée \((\mathcal{T}(SA), b)\) associée à une \(A_\infty\)-algèbre \(A\) est notée \(BA\) et s’appelle la construction bar de \(A\).
1.2 : A\(_\infty\)-algèbres et A\(_\infty\)-cogèbres

Soit \(A \) et \(A' \) deux A\(_\infty\)-algèbres. Pour tout \(i \geq 1 \), nous définissons une bijection
\[
\text{Hom}_{\text{Gr}C}(A^{\otimes i}, A') \to \text{Hom}_{\text{Gr}C}((SA)^{\otimes i}, SA')
\]
par la relation
\[
\omega \circ F_i = (-1)^{|F_i|} f_i \circ \omega^{\otimes i}
\]
où \(F_i \) est un morphisme gradué de degré \(|F_i| \). Soit une famille de morphismes gradués
\[
f_i : A^{\otimes i} \to A', \quad i \geq 1,
\]
de degré \(1 - i \). Soit
\[
F : BA \to BA'
\]
le morphisme de cogèbres graduées qui relève le morphisme
\[
\bigoplus_{i \geq 1} (SA)^{\otimes i} \to SA'
\]
de composantes les \(F_i \). Une démonstration similaire à celle du lemme 1.2.1.7 montre que les \(f_i \) définissent un morphisme d’A\(_\infty\)-algèbres si et seulement si \(F \) est compatibles aux différentielles. Ainsi, les équations (**m) sont la traduction du fait que la \((F, F)\)-codérivation \(F \circ b_{BA} - b_{BA'} \circ F \) s’annule.

Soit \(A \) et \(A' \) deux A\(_\infty\)-algèbres. Soit \(f \) et \(g \) deux A\(_\infty\)-morphismes d’A\(_\infty\)-algèbres. Notons \(F \) et \(G \) les morphismes de cogèbres \(BA \to BA' \) correspondant à \(f \) et \(g \). Soit \(H : BA \to BA' \) une \((F, G)\)-codérivation de degré \(-1 \). Elle est déterminée (1.1.2.2) par sa composée avec la projection sur \(SA' \)
\[
p_1 \circ H : BA \to SA'.
\]
dont les composantes sont notées
\[
H_i : (SA)^{\otimes i} \to SA', \quad i \geq 1.
\]
Les bijections \(F_i \leftrightarrow f_i \) envoient les morphismes \(H_i \) sur des morphismes \(h_i : A^{\otimes i} \to A', \quad i \geq 1 \). Ceci définit une bijection de l’ensemble des \((F, G)\)-codérivations de degré \(-1 \) vers le produit des espaces de morphismes gradués \(A^{\otimes i} \to A', \quad i \geq 1 \), de degré \(-i \). Cette bijection envoie une homotopie \(H : BA \to BA' \) entre les morphismes de cogèbres \(F \) et \(G \) sur l’homotopie entre les A\(_\infty\)-morphismes \(f \) et \(g \) définie par la famille
\[
h_i : A^{\otimes i} \to A', \quad i \geq 1.
\]
Les équations (**m) de la définition 1.2.1.7 sont la traduction de l’équation \(F - G = \delta(H) \).

On obtient ainsi un foncteur \(B : \text{Alg}_{\infty} \to \text{Cogc} \) appelé le foncteur construction bar. Il envoie des A\(_\infty\)-morphismes homotopes sur des morphismes homotopes de cogèbres. La construction bar induit une équivalence entre la catégorie des A\(_\infty\)-algèbres et la sous-catégorie pleine de \(\text{Cogc} \) formée des cogèbres différentielles graduées dont la cogèbre graduée sous-jacente est isomorphe à une cogèbre graduée tensorielle réduite.

Soit \(V \) un objet gradué et \(n \geq 1 \). La sous-cogèbre des \(n \)-primitifs de \(\mathcal{T}_V V \) a pour espace gradué sous-jacent
\[
\bigoplus_{1 \leq i \leq n} V^{\otimes i}.
\]
Nous notons $T^{\infty}_n V$ cette cogèbre. Un raisonnement analogue à celui que nous venons de faire pour les A_∞-algèbres permet de construire un foncteur pleinement fidèle

$$B_n : \text{Alg}_n \rightarrow \text{Cogc}$$

qui envoie une A_n-algèbre A sur la cogèbre différentielle graduée $(T^{\infty}_n (SA), b)$, où b est la différentielle construite à l’aide de la bijection $b_i \leftrightarrow m_i$.

Construction cobar

Soit C un objet gradué. Pour $i \geq 1$, définissons la bijection

$$\text{Hom}_{Gr:C}(C, C^{\otimes_i}) \xrightarrow{\sim} \text{Hom}_{Gr:C}(S^{-1}C, (S^{-1}C)^{\otimes_i})$$

par la relation

$$D_i = -\omega^{\otimes_i} \circ \Delta_i \circ s.$$

Soit une famille de morphismes gradués

$$\Delta_i : C \rightarrow C^{\otimes_i}, \quad i \geq 1,$$

de degré $2 - i$ telle que le morphisme

$$S^{-1}C \rightarrow \prod_{i \geq 1}(S^{-1}C)^{\otimes_i}$$

dont les composantes sont les D_i, $i \geq 1$, se factorise par le monomorphisme

$$\bigoplus_{i \geq 1}(S^{-1}C)^{\otimes_i} \rightarrow \prod_{i \geq 1}(S^{-1}C)^{\otimes_i}.$$

Grâce au lemme 1.1.2.1, le morphisme gradué $S^{-1}C \rightarrow T S^{-1}C$ obtenu ainsi s’étend en une unique dérivation d’algèbres de $T S^{-1}C$. À l’aide du lemme 1.1.2.1, nous montrons qu’on a $D^2 = 0$ si et seulement si les Δ_i définissent une structure d’A_∞-cogèbre sur C. Ainsi, les différentielles de l’algèbre $T S^{-1}C$ sont en bijection avec les structures d’A_∞-cogèbre sur l’objet gradué C.

Définition 1.2.2.4 On note ΩC l’algèbre différentielle graduée $(T S^{-1}C, D)$ associée à une A_∞-cogèbre C. Elle s’appelle la construction cobar de C.

La catégorie Cog_∞ des A_∞-cogèbres a pour objets les A_∞-cogèbres. On définit ses morphismes de telle manière que la construction cobar

$$\Omega : \text{Cog}_\infty \rightarrow \text{Alg}$$

devienne un foncteur pleinement fidèle. La catégorie des cogèbres différentielles graduées s’identifie alors à une sous-catégorie (non pleine) de la catégorie des A_∞-cogèbres.

On note encore B (resp. Ω) la restriction de la construction bar (resp. cobar) aux algèbres (resp. cogèbres cocomplètes) différentielles graduées.

Lemme 1.2.2.5 *Le foncteur $\Omega : \text{Cogc} \rightarrow \text{Alg}$ est adjoint à gauche au foncteur $B : \text{Alg} \rightarrow \text{Cogc}$.***
Démonstration : Ce lemme est bien connu. Soit A une algèbre et C une cogèbre cocomplète. Il s’agit de montrer que nous avons un isomorphisme fonctoriel

$$\Hom_{\text{Cogc}}(C, BA) \sim \Hom_{\text{Alg}}(\Omega C, A).$$

Soit $F : C \to BA$ un morphisme de cogèbres. Comme BA est une cogèbre tensorielle réduite en tant que cogèbre graduée, la donnée de F équivaut (1.1.2.2) à celle de

$$f = p_1 F : C \to SA.$$

Posons $\tau = \omega \circ f$. La condition $d_{BA} \circ F - F \circ d_C = 0$ se traduit par le fait que τ est une cochaîne tordante, c’est-à-dire que l’on a

$$d_A \circ \tau + \tau \circ d_C + m \circ \tau \otimes 2 \circ \Delta = 0.$$

Le morphisme gradué $f' = \tau \circ s$ s’étend de manière unique (1.1.2.1) en un morphisme d’algèbres $F' : \Omega C \to A$ car ΩC est libre sur $S^{-1}C$ en tant qu’algèbre graduée. La compatibilité de F' à la différentielle est équivalente au fait que τ est une cochaîne tordante. □

1.3 Cogc comme catégorie de modèles

Plan de la section

Cette section est divisée en cinq sous-sections.

Dans la première sous-section (1.3.1), nous rappelons [Hin97] la structure de catégorie de modèles sur la catégorie Alg des algèbres différentielles graduées. Nous énonçons le théorème principal (1.3.1.2) et en déduisons théorème des A_∞-quasi-isomorphismes (1.3.1.3. a) et le théorème de l’homotopie (1.3.1.3. b).

Dans la deuxième sous-section 1.3.1, nous montrons le théorème principal (1.3.1.2). Pour la caractérisation des objets fibrants de Cogc, nous aurons besoin de certains résultats de la sous-section suivante.

Dans la sous-section 1.3.3, nous montrons que la catégorie Alg_{∞} admet une structure de “catégorie de modèles sans limites” (1.3.3.1). Nous montrons ensuite que la construction bar $B : \text{Alg}_{\infty} \to \text{Cogc}$ est compatible aux structures de catégorie de modèles (“sans limites”) de Alg_{∞} et Cogc (1.3.3.5).

Dans la sous-section 1.3.4, nous comparons l’homotopie à gauche (au sens des catégories de modèles) avec l’homotopie “au sens classique” sur les morphismes de cogèbres différentielles graduées cocomplètes.

Dans la sous-section 1.3.5, nous comparons les équivalences faibles de Cogc avec les quasi-isomorphismes de Cogc.

1.3.1 Le théorème principal

Le lecteur qui n’est pas familier avec les catégories de modèles au sens de Quillen trouvera dans l’appendice A quelques rappels de certains énoncés clés et les références classiques.

La catégorie de modèles Alg

Dans la catégorie Alg des algèbres différentielles \mathbb{Z}-graduées (1.1.2), considérons les trois classes de morphismes suivantes :
Chapitre 1 : Théorie de l’homotopie des A_∞-algèbres

- la classe Qis des quasi-isomorphismes,
- la classe Fib des morphismes $f : A \to B$ tels que f^n est un épimorphisme pour tout $n \in \mathbb{Z}$,
- la classe Cof des morphismes qui ont la propriété de relèvement à gauche par rapport aux morphismes appartenant à $\text{Qis} \cap \text{Fib}$.

Soit \mathcal{E} l’une des sous-catégories pleines de Alg dont les objets sont respectivement
(I) les algèbres A telles que $A^p = 0$ pour tout $p > 0$,
(II) les algèbres A telles que $A^p = 0$ pour tout $p \leq 0$.

H. Munkholm a démontré dans [Mun78] que \mathcal{E} devient une catégorie de modèles si on la munit de $\mathcal{E} \cap \text{Qis}$, $\mathcal{E} \cap \text{Fib}$ et de la classe des morphismes de \mathcal{E} qui ont la propriété de relèvement à gauche par rapport aux morphismes de $\mathcal{E} \cap \text{Qis} \cap \text{Fib}$. Le résultat de H. Munkholm a été renforcé par V. Hinich :

Théorème 1.3.1.1 (Hinich [Hin97]) La catégorie Alg munie des classes de morphismes définies ci-dessus est une catégorie de modèles. Les algèbres cofibrantes sont les algèbres qui sont isomorphes à une algèbre presque libre. Toutes les algèbres sont fibrantes. \square

Le cas plus général où l’anneau de base n’est pas un corps est dû à J. F. Jardine [Jar97]. S. Schwede et B. Shipley [SS00] ont généralisé ces résultats à des catégories d’algèbres dans des catégories de modèles monoïdales1.

Le théorème principal et ses conséquences

Dans la catégorie Cogc des cogèbres cocomplètes différentielles graduées, nous considérons les trois classes de morphismes suivantes :

- la classe $\mathcal{E}q$ des équivalences faibles est formée des morphismes $f : C \to D$ tels que $\Omega F : \Omega C \to \Omega D$ est un quasi-isomorphisme d’algèbres,
- la classe Cof des cofibrations est formée des morphismes $f : C \to D$ qui, en tant que morphismes de complexes, sont des monomorphismes,
- la classe Fib des fibrations est formée des morphismes qui ont la propriété de relèvement à droite par rapport aux cofibrations triviales.

Il s’avère que la classe des équivalences faibles est strictement incluse dans la classe des quasi-isomorphismes de cogèbres (voir 1.3.5). De l’autre côté, il est bien connu (et nous le redémontrerons, voir la proposition 1.3.5.1) qu’un quasi-isomorphisme entre cogèbres cocomplètes est une équivalence faible si les deux cogèbres sont concentrées en degrés < -1 ou en degrés ≥ 0.

Théorème 1.3.1.2 a. La catégorie Cogc munie des trois classes de morphismes ci-dessus est une catégorie de modèles. Tous ses objets sont cofibrants. Un objet de Cogc est fibrant si et seulement si sa cogèbre graduée sous-jacente est isomorphe à une cogèbre tensorielle réduite.

b. Munissons la catégorie Alg de la structure de catégorie de modèles du théorème 1.3.1.1. La paire de foncteurs adjoints (Ω, B) de Cogc dans Alg est une équivalence de Quillen.

1"monoïdales" se rapporte à "catégories" ("modèle" est masculin).
Démonstration : Voir la section suivante 1.3.2.

Le point b du théorème renforce des théorèmes classiques (voir [Moo71], [HMS74, th. 4.4 et 4.5]). Il semble être nouveau sous la forme que nous donnons. Notre démonstration est une adaptation de celle de Hinich [Hin01], basée à son tour sur celle de Quillen [Qui69]. Le fait que les foncteurs bar et cobar induisent des équivalences inverses l’une de l’autre dans les catégories homotopiques est non trivial mais sa démonstration n’est pas très difficile. Déduisons maintenant, grâce aux techniques d’algèbre homotopique de Quillen (voir appendice A) le théorème des A_{∞}-quasi-isomorphismes, le théorème de l’homotopie et la généralisation du théorème [Mun78, Thm. 6.2] de H. J. Munkholm.

Corollaire 1.3.1.3 a. La relation d’homotopie (voir 1.2.1.7) dans Alg_{∞} est une relation d’équivalence.

b. Un quasi-isomorphisme d’A_{∞}-algèbres est une équivalence d’homotopie (i.e. un isomorphisme dans la catégorie quotient de Alg_{∞} par la relation d’homotopie).

c. Soit dash la sous-catégorie pleine de Alg_{∞} formée des algèbres différentielles graduées. Notons \sim la relation d’homotopie sur dash. L’inclusion $\text{Alg} \hookrightarrow \text{dash}$ induit une équivalence

$$\text{Alg}[Qis^{-1}] \sim \rightarrow \text{dash}/\sim .$$

L’idée du point c remonte à J. Stasheff et S. Halperin [SH70]. Il a été démontré sous les conditions (I) ou (II) (voir en haut de cette section) par H. J. Munkholm [Mun78]. Les points a et b sont connus (surtout parmi les spécialistes de l’homotopie rationnelle) depuis le début des années 80, au moins pour des A_{∞}-algèbres connexes (i.e. concentrées en degrés homologiques ≥ 1), voir par exemple A. Prouté [Pro85, chap. 4] ou T. V. Kadeishvili [Kad87].

Démonstration : Par la section 1.2.2, nous savons que deux morphismes d’A_{∞}-algèbres

$$f, g : A \rightarrow A'$$

sont homotopes si et seulement si Bf et Bg sont des morphismes de cogèbres homotopes. Par le théorème principal (1.3.1.2), la cogèbre BA' est fibrante dans Cogc et tout objet de Cogc est cofibrant. Acceptons provisoirement (voir 1.3.4.1 plus bas) le résultat suivant : la relation d’homotopie au sens classique sur $\text{Hom}_{\text{Cogc}}(BA, BA')$ est égale à la relation d’homotopie à gauche pour la catégorie de modèles Cogc.

a. C’est le lemme A.12 appliqué à la catégorie de modèles fermée Cogc.

b. Un A_{∞}-quasi-isomorphisme $f : A \rightarrow A'$ induit (voir 1.3.3.5 plus bas) un morphisme

$$Bf : BA \rightarrow BA',$$

qui est une équivalence faible de Cogc entre objets fibrants et cofibrants. Il est donc inversible à homotopie près dans Cogc (voir la proposition A.13).

c. Par le théorème principal 1.3.1.2, le foncteur B induit une équivalence

$$\text{Alg}[Qis^{-1}] = \text{Ho Alg} \sim \rightarrow \text{Ho Cogc} .$$

Nous avons l’équivalence (voir A.13)

$$\text{Cogc}_{\text{cd}}/\sim \sim \rightarrow \text{Ho Cogc} .$$
Le foncteur B prend ses valeurs dans Cogc_{cf}. Il induit donc une équivalence

$$\text{Alg}[Qis^{-1}] \sim \sim \text{Cogc}_{\text{cf}}/\sim.$$

Son image est isomorphe à dash/\sim. □

1.3.2 Démonstration du théorème principal

Notre démonstration du théorème principal 1.3.1.2 nécessite l’étude préalable des algèbres et des cogèbres filtrées.

Objets filtrés

Soit \mathcal{M} l’une des catégories \mathcal{Gr} ou \mathcal{CC}. Une filtration d’un objet X de \mathcal{M} est une suite croissante

$$X_0 \subset X_1 \subset \cdots \subset X_i \subset X_{i+1} \subset \cdots, \quad i \in \mathbb{N}$$

de sous-objets de X. Elle est exhaustive si l’on a

$$\text{colim} X_i = X.$$

Elle est admissible si elle est exhaustive et si $X_0 = 0$. Un objet filtré de \mathcal{M} est un objet de \mathcal{M} muni d’une filtration. Soit X et Y deux objets filtrés. L’objet gradué $\text{Gr}X$ associé à X est défini par la suite d’objets de \mathcal{M}

$$\text{Gr}_0 X = X_0, \quad \text{Gr}_i X = X_i/X_{i-1}, \quad i \geq 1.$$

Un morphisme $f : X \to Y$ de \mathcal{M} est un morphisme d’objets filtrés si on a

$$f(X_i) \subset Y_i$$

pour tout $i \in \mathbb{N}$. Le produit tensoriel $X \otimes Y$ est muni de la filtration définie par la suite

$$(X \otimes Y)_i = \sum_{p+q=i} X_p \otimes Y_q, \quad i \in \mathbb{N}.$$

Ceci munit la catégorie des objets filtrés de \mathcal{M} d’une structure de catégorie monoïdale dont l’élément neutre est l’objet e muni de la filtration $e_i = e$, $i \in \mathbb{N}$. La suspension SX de l’objet de \mathcal{M} sous-jacent à X est muni de la filtration donnée par $(SM)_i = SM_i$, $i \in \mathbb{N}$.

Un complexe filtré est un objet filtré de \mathcal{CC}.

Définition 1.3.2.1 Soit X et Y deux complexes filtrés. Un morphisme $f : X \to Y$ est un quasi-isomorphisme filtré si les morphismes

$$\text{Gr}_i C \to \text{Gr}_i D, \quad i \in \mathbb{N},$$

induits par f sont des quasi-isomorphismes de complexes.

Une algèbre filtrée (resp. cogèbre filtrée) est une algèbre (resp. cogèbre) dans la catégorie des complexes filtrés. Une cogèbre filtrée admissible est une cogèbre C munie d’une filtration admissible. Notons qu’on a alors

$$\Delta C_{i+1} \subset C_i \otimes C_i, \quad i \in \mathbb{N}.$$
Nous montrerons (1.3.2.2) que tout quasi-isomorphisme filtré entre cogèbres filtrées admissibles est une équivalence faible de Cogc.

Soit C une cogèbre filtrée, cocomplète en tant que cogèbre. La filtration de C induit une filtration sur chaque puissance tensorielle de $S^{-1}C$. Nous obtenons ainsi une filtration d’algèbre sur la construction cobar ΩC. Soit C et D deux cogèbres filtrées cocomplètes. Munissons les constructions cobar ΩC et ΩD des filtrations induites par celles de C et D. La construction cobar envoie un morphisme de cogèbres filtrées $f : C \rightarrow D$ sur un morphisme d’algèbres filtrées $\Omega f : \Omega C \rightarrow \Omega D$.

Soit A une algèbre filtrée. La filtration de A induit une filtration de cogèbre sur la construction bar BA de A. Soit A et A' deux algèbres filtrées. Munissons les constructions bar BA et BA' des filtrations induites par celles de A et A'. La construction bar envoie un morphisme d’algèbres filtrées $f : A \rightarrow A'$ sur un morphisme de cogèbres filtrées $Bf : BA \rightarrow BA'$.

Soit C une cogèbre cocomplète. La filtration primitive de la cogèbre C est définie par la suite des sous-cogèbres des i-primitifs $C[i]$, $i \geq 1$, complétée par $C[0] = 0$. Comme la catégorie de base C est semi-simple, la filtration primitive de C est une filtration de cogèbre. Elle est admissible et induit une filtration sur ΩC, qui induit une filtration sur la construction bar $B\Omega C$. Nous appelons cette dernière filtration la filtration C-primitive de $B\Omega C$.

Lemme 1.3.2.2 Un quasi-isomorphisme filtré de cogèbres filtrées admissibles est une équivalence faible.

Démonstration : Soit C et D deux cogèbres admissibles et $f : C \rightarrow D$ un quasi-isomorphisme filtré. Nous allons montrer que le morphisme d’algèbre

$$\Omega f : \Omega C \rightarrow \Omega D$$

est un quasi-isomorphisme filtré pour les filtrations de ΩC et ΩD induites par celles de C et D. On rappelle que la différentielle de ΩC est l’unique codérivation d qui relève le morphisme

$$S^{-1}C \rightarrow \Omega C$$

de composantes non nulles $\omega d_C s$ et $\omega \Delta s \otimes 2$. Munissons ΩC de la filtration induite par celle de C. Soit $i \geq 1$. Comme la filtration de C est admissible, $Gr_i(C \otimes j) = 0$ si $j > i$. Munissons

$$Gr_i \Omega C = Gr_i \left(\bigoplus_{1 \leq j \leq i} C \otimes j \right)$$

de la filtration

$$F_l = Gr_l \left(\bigoplus_{i-l \leq j \leq i} C \otimes j \right), \quad l \geq 0.$$

La contribution de $\omega \Delta s \otimes 2$ dans la différentielle d de $Gr_i \Omega C$ fait décroître la filtration. Ainsi, seul le morphisme $\omega d_C s$ contribue à la différentielle de l’objet gradué associé au F_l, $l \geq 1$. Le morphisme

$$Gr_i \Omega C \rightarrow Gr_i \Omega D$$

est filtré pour cette filtration et il induit clairement un quasi-isomorphisme dans les objets gradués. □
Lemme 1.3.2.3 a. Soit A et A' deux algèbres différentielles graduées. La construction bar envoie un quasi-isomorphisme d’algèbres $f : A \rightarrow A'$ sur un quasi-isomorphisme filtré $f : BA \rightarrow BA'$ pour la filtration primitive.

b. Soit A une algèbre différentielle graduée. Le morphisme d’adjonction
$$\phi : \Omega BA \rightarrow A$$
est un quasi-isomorphisme d’algèbres.

c. Soit C une cogèbre cocomplète. Munissons C de la filtration primitive et $B\Omega C$ de la filtration C-primitive. Le morphisme d’adjonction
$$\psi : C \rightarrow B\Omega C$$
est un quasi-isomorphisme filtré.

Démonstration : a. La filtration primitive de BA a pour objet gradué associé
$$\text{Gr}_i(BA) = (S A)^{\otimes_i}, \quad i \in \mathbb{N}.$$Par le théorème de Künneth, un quasi-isomorphisme $f : A \rightarrow A'$ induit un quasi-isomorphisme dans ces sous-quotients.

b. Nous allons donner des filtrations exhaustives sur A et ΩBA de façon à ce que le morphisme d’adjonction devienne un quasi-isomorphisme filtré. Soit la filtration de A définie par
$$A_i = A, \quad i \geq 1 \text{ et } A_0 = 0.$$Munissons ΩBA de la filtration induite par la filtration primitive de BA. Le morphisme d’adjonction
$$\phi : \Omega BA \rightarrow A$$est clairement un morphisme filtré. Il induit un morphisme
$$\text{Gr}_i(\Omega BA) \rightarrow \text{Gr}_i A, \quad i \in \mathbb{N},$$dans les objets gradués qui est l’identité de A si $i = 1$, et qui est nul si $i \geq 2$. Pour montrer que le morphisme d’adjonction est un quasi-isomorphisme filtré, il suffit donc de montrer que, pour $i \geq 2$, le complexe $\text{Gr}_i(\Omega BA)$ est contractile. Soit le complexe $V = SA$. Remarquons que nous avons un isomorphisme de complexes
$$\bigoplus_{i \geq 1} \text{Gr}_i(\Omega BA) \xrightarrow{\sim} \Omega^T V$$qui identifie à la composante $\text{Gr}_i(\Omega BA)$, $i \geq 1$, à la somme des
$$S^{-1} V^{\otimes i_1} \otimes \ldots \otimes S^{-1} V^{\otimes i_k} \subset (S^{-1} T^e V)^{\otimes k},$$où $k \geq 1$ et où $i_1 + \ldots + i_k = i$. Soit $i \geq 2$. Soit le morphisme gradué $r : \text{Gr}_i(\Omega BA) \rightarrow \text{Gr}_i(\Omega BA)$ de degré -1 donné par les morphismes
$$S^{-1} V^{\otimes i_1} \otimes S^{-1} V^{\otimes i_2} \otimes \ldots \otimes S^{-1} V^{\otimes i_k} \rightarrow S^{-1} V^{\otimes (i_1 + i_2 + \ldots + i_k)}$$que nous définissons comme nuls si $i_1 \neq 1$ et valant $\eta \circ (s \otimes 1^{\otimes k})$ sinon ; ici η est l’isomorphisme naturel
$$V \otimes S^{-1} V^{\otimes i_2} \otimes \ldots \otimes S^{-1} V^{\otimes i_k} \xrightarrow{\eta} S^{-1} V^{\otimes (1 + i_2 + \ldots + i_k)}.$$
Nous vérifions que le morphisme gradué \(r \) est une homotopie contractante du complexe \(\text{Gr}_r(\Omega BA) \).

c. Nous devons montrer que le morphisme de complexes

\[\psi : \text{Gr} C \to \text{Gr}(B\Omega C) \]

est un quasi-isomorphisme. Posons \(W = \text{Gr}(S^{-1} C) \). Comme \(C \) est admissible, la comultiplication de \(\text{Gr} C \) est nulle et

\[\text{Gr}(B\Omega C) \xrightarrow{\sim} B\Omega(\text{Gr} C) \]

est la somme des complexes

\[V_i = \bigoplus SW^{\otimes i_1} \otimes \ldots \otimes SW^{\otimes i_k}, \quad i \geq 1, \]

où \(k \geq 1 \) et \(i_1 + \ldots + i_k = i \). La composée du morphisme

\[\text{Gr} C \to \text{Gr} B\Omega C \]

avec la projection sur les \(V_i \) est nulle si \(i \geq 2 \) et c’est l’identité de \(\text{Gr} C \) si \(i = 1 \). Il reste à montrer que \(V_i \) est contractile pour \(i \geq 2 \). Soit \(i \geq 2 \). Soit \(r : V_i \to V_i \) le morphisme gradué de degré \(-1\) défini par les morphismes

\[SW^{\otimes i_1 + i_2} \otimes \ldots \otimes SW^{\otimes i_k} \quad \longrightarrow \quad SW^{\otimes i_1} \otimes SW^{\otimes i_2} \otimes \ldots \otimes SW^{\otimes i_k} \]

que nous définissons comme nuls si \(i_1 \neq 1 \) et, comme \(\eta \circ (s \otimes 1^{i_1-1}) \) sinon ; ici \(\eta \) est l’isomorphisme naturel

\[S^{-1}W^{\otimes i_1 + i_2} \otimes \ldots \otimes S^{-1}W^{\otimes i_k} \xrightarrow{\sim} W \otimes S^{-1}W^{\otimes i_2} \otimes \ldots \otimes S^{-1}W^{\otimes i_k} \]

Nous vérifions que le morphisme \(r \) est une homotopie contractante de \(V_i \).

Démonstration du théorème principal 1.3.1.2

Commençons par quelques lemmes préliminaires.

Lemme 1.3.2.4 Soit \(C \) une cogèbre et \(C' \) une sous-cogèbre de \(C \) telle que \(\Delta C \subset C' \otimes C' \). La construction cobar envoie l’inclusion \(C' \hookrightarrow C \) sur une cofibration standard (1.3.2.5).

Pour démontrer ce lemme et le suivant, nous aurons besoin de la description suivante [Hin97] des cofibrations de \(\text{Alg} \) : notons \(A^i \) le complexe sous-jacent à une algèbre différentielle graduée \(A \) et \(FV = T V \) l’algèbre différentielle graduée libre sur le complexe \(V \). Soit \(A \) une algèbre différentielle graduée et \(M \) un complexe. Soit \(\alpha : M \to A^1 \) un morphisme de complexes. On note \(C(\alpha) \) le cône de \(\alpha \) dans la catégorie \(CC \). Notons \(A(M, \alpha) \) la colimite dans \(\text{Alg} \) du diagramme

\[A \leftarrow F(A^1) \to FC(\alpha). \]

Définition 1.3.2.5 Un morphisme \(f : A \to B \) est une cofibration standard s’il est la colimite d’une suite de morphismes composés

\[A = A_0 \to A_1 \to \ldots \to A_{n-1} \to A_n, \quad n \geq 1, \]

où toutes les flèches \(A_i \to A_{i+1} \) sont données par les morphismes canoniques

\[A_i \to A_i(M_i, \alpha_i) = A_{i+1} \]

pour des morphismes de complexes \(\alpha_i : M_i \to A_i^1 \). Une cofibration standard triviale est une cofibration standard telle que tous les complexes \(M_i \) sont contractiles (i. e. isomorphes à 0 dans \(\mathcal{H}C \)).
Les faits suivants sont démontrés dans [Hin97] : Toute cofibration est rétract d’une cofibration standard. De même, toute cofibration triviale est rétract d’une cofibration standard triviale.

Démonstration du lemme 1.3.2.4 : Soit E le conoyau dans la catégorie des complexes de l’inclusion $C' \hookrightarrow C$. Choisissons une section de $C \twoheadrightarrow E$ dans la catégorie graduée pour obtenir un isomorphisme

$$C' \oplus E \xrightarrow{\cong} C$$

d’objets gradués. En tant qu’algèbre graduée, la construction cobar $\Omega C = \Omega(C' \oplus E)$ est isomorphe au coproduit d’algèbres graduées

$$FS^{-1} C' \amalg FS^{-1} E,$$

où $F = \overline{T}$ comme dans (1.3.1). La différentielle de ΩC est induite par la comultiplication de C et la différentielle du complexe C. Selon la décomposition $C = C' \oplus E$, la comultiplication de C est donnée par deux composantes

$$\Delta_{C'} : C' \to C' \otimes C' \quad \text{et} \quad \Delta_{E} : E \to C' \otimes C',$$

et la différentielle de C est donnée par la différentielle de C', celle de E et un morphisme gradué $d : E \to C'$ de degré $+1$. Soit le morphisme de complexes

$$[D_1, D_2] : S^{-2} E \to S^{-1} C' \oplus (S^{-1} C' \otimes S^{-1} C')$$

dont les composantes sont définies par $s^{\otimes 2} \circ D_2 = \Delta_{E} \circ s^2$ et par $s \circ D_1 = d \circ s^2$. Nous notons

$$D : S^{-2} E \to FS^{-1} C' \amalg FS^{-1} E$$

sa composition avec l’injection de $S^{-1} C' \oplus (S^{-1} C' \otimes S^{-1} C')$ dans $FS^{-1} C' \amalg FS^{-1} E$. Par construction, l’algèbre différentielle graduée

$$\Omega C'[S^{-2} E, D]$$

est l’algèbre graduée $FS^{-1} C' \amalg FS^{-1} E$ dont la différentielle est induite par la comultiplication de C', les différentielles des complexes C' et E, le morphisme Δ_{E} et le morphisme d. Elle est donc isomorphe à ΩC en tant qu’algèbre différentielle graduée. □

Lemme 1.3.2.6

a. La construction cobar préserve les cofibrations et les équivalences faibles.

b. La construction bar préserve les fibrations et les équivalences faibles.

Démonstration : a. Soit $i : C \twoheadrightarrow D$ une cofibration de cogèbres. Soit la filtration de D définie par la suite des $D_i = i(C) + D_{i,1}$, $i \in \mathbb{N}$. Remarquons que D_0 est isomorphe à C et que, pour tout $i \geq 1$, on a

$$\Delta(D_{i+1}) \subset D_i \otimes D_i.$$

Nous pouvons donc appliquer le lemme 1.3.2.4. Il certifie que $\Omega D_i \to \Omega D_{i+1}$ est une cofibration standard. Le morphisme $\Omega C \to \Omega D$ est la composition dénombrable des cofibrations standard $\Omega D_i \to \Omega D_{i+1}$. Il est donc aussi une cofibration standard. La construction cobar préserve les équivalences faibles par définition des équivalences faibles de Cogc.

b. Soit $p : A \to A'$ une fibration d’algèbres. Le morphisme Bf est une fibration s’il vérifie la propriété de relèvement à droite par rapport aux cofibrations triviales $i : C \to D$ de cogèbres.
Grâce à l’adjonction entre les constructions bar et cobar, cette propriété est équivalente au fait que \(\Omega \) ait la propriété de relèvement à gauche par rapport à \(p \). Mais ceci est toujours vrai par le point a. Le morphisme \(Bf \) est donc une fibration de \(\text{Cogc} \).

Soit \(f : A \to A' \) un quasi-isomorphisme d’algèbres. Nous voulons montrer que \(Bf \) est une équivalence faible, c’est-à-dire que \(\Omega Bf \) est un quasi-isomorphisme. Grâce au point b du lemme 1.3.2.3, les flèches verticales du diagramme commutatif

\[
\begin{array}{ccc}
A & \xrightarrow{f} & A' \\
\downarrow & & \downarrow \\
\Omega BA & \xrightarrow{Bf} & \Omega BA'
\end{array}
\]

sont des quasi-isomorphismes. Par la propriété de saturation des quasi-isomorphismes, le morphisme \(\Omega Bf \) est aussi un quasi-isomorphisme.

\(\square \)

Démonstration du point a du théorème 1.3.1.2 :

(CM1) Les colimites de diagrammes finis de cogèbres sont données par les colimites des diagrammes de complexes sous-jacents. Les constructions de produits et d’égalisateurs dans la catégorie des cogèbres cocomplètes sont duales de celles de coproduits et de co-égalisateur dans la catégorie des algèbres, qui sont décrites dans [Mun78, 3.3].

(CM2) Ceci est une conséquence de la définition des équivalences faibles et de l’axiome (CM2) pour la structure de catégorie de modèles sur \(\text{Alg} \).

(CM3) Les cofibrations sont stables par rétract car elles sont les monomorphismes. Les équivalences faibles aussi car le foncteur \(\Omega \) envoie un rétract sur un rétract. Pour les fibrations, on rappelle qu’un morphisme \(p \) est une fibration s’il a la propriété de relèvement à droite par rapport aux cofibrations triviales. On vérifie qu’un rétract d’un tel morphisme \(p \) a la même propriété de relèvement.

(CM4) Après (CM5).

(CM5) factorisation :
Soit \(f : C \to D \) un morphisme de \(\text{Cogc} \). Par l’axiome (CM5) pour la structure de catégorie de modèles sur \(\text{Alg} \), nous avons une factorisation de \(\Omega f \) en

\[
\begin{array}{ccc}
\Omega C & \xrightarrow{f} & \Omega D \\
\downarrow i & & \downarrow p \\
A & \Rightarrow & B
\end{array}
\]

où la cofibration \(i \) (resp. la fibration \(p \)) de \(\text{Alg} \) est un quasi-isomorphisme. Ainsi, le morphisme
\(B\Omega f : B\Omega C \to B\Omega D \) se factorise en \(Bp \circ Bi \). Soit le diagramme suivant dans \(\text{Cogc} \)

\[
\begin{array}{c}
\begin{tikzpicture}
\node (A) at (0,0) {\text{BA \prod_{BDD} D}};
\node (B) at (-3,-3) {\text{B\Omega C}};
\node (C) at (3,-3) {\text{B\Omega D}};
\node (D) at (0,-6) {\text{BA}};
\node (E) at (0,-9) {\text{E}};
\node (F) at (0,-12) {\text{F}};
\node (G) at (-6,-12) {\text{C}};
\node (H) at (6,-12) {\text{D}};
\draw[->] (A) to node [above] {\(f\)} (D);
\draw[->] (A) to node [right] {\(\varepsilon\varepsilon q\)} (D);
\draw[->] (B) to node [right] {\(Bp\)} (C);
\draw[->] (B) to node [right] {\(Bi\)} (D);
\draw[->] (C) to node [above] {\(q\)} (A);
\draw[->] (D) to node [right] {\(\varepsilon\varepsilon q\)} (A);
\draw[->] (G) to node [below] {\(f\)} (H);
\draw[->] (G) to node [right] {\(\varepsilon\varepsilon q\)} (H);
\end{tikzpicture}
\end{array}
\]

Comme il est commutatif, le morphisme \(f : C \to D \) et la composition

\[
C \to B\Omega C \xrightarrow{Bi} BA
\]
déterminent un morphisme \(\tilde{i} : C \to BA \prod_{BDD} D \). Nous allons montrer que

\[
\begin{array}{c}
\begin{tikzpicture}
\node (A) at (0,0) {\text{BA \prod_{BDD} D}};
\node (B) at (-3,-3) {\text{C}};
\node (C) at (3,-3) {\text{D}};
\node (D) at (0,-6) {\text{BA}};
\node (E) at (0,-9) {\text{E}};

\draw[->] (A) to node [above] {\(q\)} (D);
\draw[->] (A) to node [right] {\(\varepsilon\varepsilon q\)} (D);
\draw[->] (B) to node [right] {\(\tilde{i}\)} (A);
\draw[->] (C) to node [below] {\(f\)} (H);
\draw[->] (G) to node [right] {\(\varepsilon\varepsilon q\)} (H);
\end{tikzpicture}
\end{array}
\]

fournit une factorisation du morphisme \(f \) dans \(\text{Cogc} \), où \(\tilde{i} \) est une cofibration et \(q \) est une fibration. Nous montrerons ensuite que la cofibration \(\tilde{i} \) (resp. la fibration \(q \)) est triviale.

D’après le point \(b \) du lemme 1.3.2.6, le morphisme \(Bp \) est une fibration dans \(\text{Cogc} \). La projection \(q : BA \prod_{BDD} D \to D \) est aussi une fibration car les fibrations sont stables par changement de base. Admettons pour l’instant que nous savons que \(BA \prod_{BDD} D \to BA \) est cofibration (voir le lemme 1.3.2.7 ci-dessous). Le morphisme \(\tilde{i} \) est un monomorphisme (c’est-à-dire une équivalence faible dans \(\text{Cogc} \)) puisque la composition

\[
C \to B\Omega C \xrightarrow{Bi} BA
\]
en est une. Il reste à montrer que la cofibration \(\tilde{i} \) (resp. la fibration \(q \)) est une équivalence faible dans \(\text{Cogc} \). Admettons pour l’instant que nous savons que \(BA \prod_{BDD} D \to BA \) est équivalence faible (voir le lemme 1.3.2.7 ci-dessous). Nous savons par le point \(b \) du lemme 1.3.2.6 que le morphisme \(Bi \) (resp. \(Bp \)) est une équivalence faible. Comme le morphisme \(C \to B\Omega C \) (resp. \(D \to B\Omega D \)) est une équivalence faible, \(\tilde{i} \) (resp. \(q \)) en est aussi une par la propriété de saturation de la classe des équivalences faibles de \(\text{Cogc} \).

(CM4) relèvement :

a. Soit le diagramme commutatif dans \(\text{Cogc} \)

\[
\begin{array}{c}
\begin{tikzpicture}
\node (A) at (0,0) {E};
\node (B) at (1,0) {C};
\node (C) at (2,0) {D};
\node (D) at (0,-1) {F};
\draw[->] (A) to node [above] {\(i\)} (B);
\draw[->] (A) to node [right] {\(f\)} (C);
\draw[->] (D) to node [above] {\(f\)} (C);
\end{tikzpicture}
\end{array}
\]
où \(t \) est une fibration triviale et \(u \) une cofibration. Nous cherchons un morphisme \(\alpha \) tel que les deux triangles du diagramme

\[
\begin{array}{ccc}
E & \xrightarrow{\alpha} & C \\
\downarrow{u} & & \downarrow{t} \\
F & \rightarrow & D
\end{array}
\]

soient commutatifs. En utilisant la construction de la démonstration de (CM5), nous factorisons \(t \) en \(q \circ \tilde{i} \), où le morphisme \(q : BA\prod_{\Omega D} D \rightarrow D \) est une fibration et où le morphisme \(\tilde{i} : C \rightarrow BA\prod_{\Omega D} D \) est une cofibration. Par la propriété de saturation de la classe \(\mathcal{E}_q \), les morphismes \(\tilde{i} \) et \(q \) sont tous les deux des équivalences faibles. Les fibrations étant les morphismes ayant la propriété de relèvement à droite par rapport aux cofibrations triviales, il existe un relèvement \(r : BA\prod_{\Omega D} D \rightarrow C \) dans le diagramme de \(\text{Cogc} \)

\[
\begin{array}{ccc}
C & \xrightarrow{1} & C \\
\downarrow{i} & & \downarrow{t} \\
BA\prod_{\Omega D} D & \rightarrow & D.
\end{array}
\]

Il nous suffit donc de trouver un relèvement dans le diagramme

\[
\begin{array}{ccc}
E & \xrightarrow{u} & BA\prod_{\Omega D} D \\
\downarrow{F} & & \downarrow{q} \\
D & \rightarrow & D
\end{array}
\]

ou de manière équivalente dans le diagramme.

\[
\begin{array}{ccc}
E & \xrightarrow{\alpha} & BA\prod_{\Omega D} D \\
\downarrow{u} & & \downarrow{\text{cart.}} \\
F & \rightarrow & BA
\end{array}
\]

Un tel relèvement existe grâce à l’adjonction entre \(\Omega \) et \(B \) et grâce à l’axiome de relèvement (CM4) de la structure de catégorie de modèles fermée sur \(\text{Alg} \).

Objets cofibrants et fibrants

Tous les objets de \(\text{Cogc} \) sont cofibrants puisque les cofibrations sont les monomorphismes.

Montrons qu’un objet de \(\text{Cogc} \) est fibrant si et seulement si il est isomorphe, en tant que cogèbre graduée, à une cogèbre tensorielle réduite.

Soit \(C \) un objet fibrant de \(\text{Cogc} \). Par l’axiome de relèvement (CM4), la cofibration triviale \(\psi : C \rightarrow B\Omega C \) admet une rétraction \(r \) dans \(\text{Cogc} \). Notons \(p_1 : B\Omega C \rightarrow (B\Omega C)_[1] \) la projection canonique et posons \(\tilde{p}_1 = r_{[1]} \circ p_1 \circ \psi \). Nous vérifions facilement que le morphisme \(\tilde{p}_1 : C \rightarrow C_{[1]} \) est universel parmi les morphismes d’objets gradués \(C' \rightarrow C_{[1]} \), où \(C' \) est une cogèbre graduée cocomplète. Ainsi \(\tilde{p}_1 \) induit un isomorphisme de cogèbres graduées

\[
C \xrightarrow{\sim} \mathcal{T}(C_{[1]}).
\]
La réciproque utilise les résultats de la section 1.3.3. Enonçons les deux résultats de cette section qui nous seront utiles ici.

(1.3.3.1) La catégorie \mathbf{Alg}_{∞} peut être munie d’une structure de catégorie de modèles dont la classe des équivalences faibles est exactement celle des A_{∞}-quasi-isomorphismes et dont la classe des cofibrations (resp. des fibrations) est formée des morphismes $f : A \rightarrow A'$, où A, A' sont des A_{∞}-algèbres, tel que f_1 est un monomorphisme (resp. un épimorphisme).

(1.3.3.5. a) Un morphisme f est une équivalence faible de \mathbf{Alg}_{∞} si et seulement si sa construction $\text{bar} \, Bf$ est une équivalence faible de \mathbf{Cogc}.

Notre démonstration de (1.3.3.1) est basée sur la théorie de l’obstruction (voir B.1). On peut donc interpréter la réciproque que nous allons montrer comme une conséquence du fait que l’opérade des A_{∞}-algèbres est le modèle minimal cofibrant au sens de M. Markl [Mar96] de celle des algèbres associatives (voir l’introduction à l’appendice B.1).

Supposons que C est une cogèbre isomorphe, en tant que cogèbre graduée, à une cogèbre tensorielle réduite. Nous voulons montrer qu’elle est fibrante. On rappelle que la sous-catégorie de \mathbf{Cogc} formée de telles cogèbres est équivalente à la catégorie \mathbf{Alg}_{∞} des A_{∞}-algèbres. La cogèbre $B\Omega C$ appartient elle aussi à cette sous-catégorie. Le morphisme $C \rightarrow B\Omega C$ est une équivalence faible de \mathbf{Cogc}. Par la proposition (1.3.3.5. a), il induit un quasi-isomorphisme dans les primitifs. L’axiome (CM4) du théorème (1.3.3.1) nous donne un relèvement dans le diagramme

$$D \quad \xrightarrow{\text{cart.}} \quad D$$

La cogèbre C est donc un rétract de $B\Omega C$. Comme la construction bar conserve les fibrations et comme ΩC est une algèbre fibrante, la cogèbre $B\Omega C$ est une cogèbre fibrante. Le rétract d’une cogèbre fibrante étant aussi fibrant, la cogèbre C est fibrante.

Démonstration du point b du théorème 1.3.1.2 :

C’est un corollaire du lemme 1.3.2.3 qui nous dit que les morphismes d’adjonction $C \rightarrow B\Omega C$, où C est une cogèbre, et $\Omega BA \rightarrow A$, où A est une algèbre, sont des équivalences faibles dans \mathbf{Cogc} et dans \mathbf{Alg}. □

Le lemme suivant complète la démonstration ci-dessus.

Lemme 1.3.2.7 Soit A une algèbre et D une cogèbre. Soit une fibration $p : A \rightarrow \Omega D$ de \mathbf{Alg}. Le morphisme $j : BA \prod_{B\Omega D} D \rightarrow BA$ de cogèbres du diagramme cartésien

$$BA \prod_{B\Omega D} D \longrightarrow D$$

est une cofibration triviale de \mathbf{Cogc}.

Démonstration : Nous allons donner des filtrations sur les cogèbres

$$BA \prod_{B\Omega D} D \quad \text{et} \quad BA$$
telles qu'elles soient des cogèbres filtrées admissibles et telles que j soit un quasi-isomorphisme filtré.

Soit la suite exacte de complexes

$$0 \rightarrow K \rightarrow A \overset{p}{\rightarrow} \Omega D \rightarrow 0.$$

Comme l’algèbre ΩD est libre, nous avons un scindage de p dans la catégorie des algèbres graduées. La différentielle de

$$A \overset{\sim}{\rightarrow} K \oplus \Omega D$$

est alors donnée par une matrice

$$\begin{bmatrix}
 d_K & d' \\
 0 & d_{\Omega D}
\end{bmatrix}.$$

Le scindage nous donne des isomorphismes de cogèbres graduées

$$BA \overset{\sim}{\rightarrow} BK \prod B\Omega D,$$

$$BA \prod_{B\Omega D} D \overset{\sim}{\rightarrow} BK \prod D.$$

Munissons la cogèbre $B\Omega D$ de la filtration D-primitive. Nous définissons des filtrations sur BA et $BA \prod_{B\Omega D} D$ par les suites

$$(BA)_j = \sum_{p+q=j} (BK)_{[p]} \prod (B\Omega D)_{[q]}, \quad j \in \mathbb{N},$$

$$(BA \prod_{B\Omega D} D)_j = \sum_{p+q=j} (BK)_{[p]} \prod D_{[q]}, \quad j \in \mathbb{N}. $$

Elles sont admissibles et respectent les différentielles des cogèbres BA et $BA \prod_{B\Omega D} D$. Pour ces filtrations, le morphisme j est un morphisme filtré. Soit $j \geq 1$. En tant qu’objet gradué, le complexe $\text{Gr}(BA)$ est la somme des

$$(I) \quad \text{Gr}(B\Omega D) \otimes K^\otimes p_1 \otimes \ldots \otimes \text{Gr}(B\Omega D) \otimes K^\otimes p_k, \quad k \geq 1.$$

La différentielle de $\text{Gr}(BA)$ est construite à partir des différentielles de K, GrD et du morphisme $d' : \Omega D \rightarrow K$. En tant qu’objet gradué, le complexe

$$\text{Gr}(BA \prod_{B\Omega D} D) \overset{\sim}{\rightarrow} \text{Gr}(BA) \prod \text{GrD}$$

est la somme des

$$(II) \quad GrD \otimes K^\otimes p_1 \otimes \ldots \otimes GrD \otimes K^\otimes p_k, \quad k \geq 1.$$

La différentielle de $\text{Gr}(BA \prod_{B\Omega D} D)$ est construite à partir des différentielles de K, $Gr(B\Omega D)$ et du morphisme $d' : \Omega D \rightarrow K$. Ainsi, la différentielle “naïve” sur la somme des termes (I), respectivement (II), est perturbée par la contribution de $d' : \Omega D \rightarrow K$. Pour montrer que j induit néanmoins un quasi-isomorphisme entre les sommes, nous introduisons une filtration supplémentaire telle que dans les objets gradués associés, la contribution de $d' : \Omega D \rightarrow K$ s’annule. Soit la filtration $F_l\text{Gr}(BA), l \in \mathbb{N}$, de $\text{Gr}(BA)$ induite par la suite

$$(BA)_l = BK \prod (B\Omega D)_{[l]}, \quad l \in \mathbb{N}.$$
Soit la filtration $F_l \text{Gr}(BA \prod_{BD} D)$, $l \in \mathbb{N}$, de $\text{Gr}(BA \prod_{BD} D)$ dont le l-ième sous-objet, $l \in \mathbb{N}$, est la somme des objets de type (II) comprenant un nombre de termes $\text{Gr} D$ inférieur ou égal à l.
Le morphisme
$$\text{Gr}j : \text{Gr}(BA \prod_{BD} D) \to \text{Gr}(BA)$$
induit des morphismes
$$F_l \text{Gr}(BA \prod_{BD} D) \to F_l \text{Gr}(BA), \quad l \in \mathbb{N}.$$
Il induit donc un morphisme entre les objets gradués associés aux filtrations selon l'indice l. Ce dernier a pour composantes les morphismes de complexes (avec les différentielles “ naïves”)
$$\text{Gr}_{q_1} D \otimes K^{\otimes p_1} \otimes \ldots \otimes \text{Gr}_{q_k-1} D \otimes K^{\otimes p_k}$$
$$\downarrow$$
$$\text{Gr}_{q_1} (B\Omega D) \otimes K^{\otimes p_1} \otimes \ldots \otimes \text{Gr}_{q_k-1} (B\Omega D) \otimes K^{\otimes p_k}$$
qui sont des quasi-isomorphismes (voir 1.3.2.3). Le morphisme
$$\text{Gr}j : \text{Gr}(BA \prod_{BD} D) \sim \to \text{Gr}(BA)$$
est donc un quasi-isomorphisme. Nous venons ainsi de montrer que j est un quasi-isomorphisme filtré de cogèbres admissibles. Par le lemme 1.3.2.2, le morphisme j est une équivalence faible. Il est une cofibration car il est clairement un monomorphisme.

1.3.3 \(\text{Alg}_\infty \) comme “catégorie de modèles sans limites”

Dans la catégorie \(\text{Alg}_\infty \) des A_∞-algèbres, nous considérons les trois classes de morphismes suivantes :

- la classe $\mathcal{E}q$ est formée des équivalences faibles, c'est-à-dire des morphismes $f : A \to A'$ tels que f_1 est un quasi-isomorphisme,
- la classe $\mathcal{C}of$ est formée des cofibrations, c'est-à-dire des morphismes $f : A \to A'$ tels que f_1 un monomorphisme,
- la classe $\mathcal{F}ib$ est formée des fibrations, c'est-à-dire des morphismes $f : A \to A'$ tels que f_1 un épimorphisme.

\[\text{Théorème 1.3.3.1} \] La catégorie \(\text{Alg}_\infty \), munie des trois classes définies ci-dessus, vérifie l'axiome (A) ci-dessous et les axiomes (CM2) – (CM5) de la définition A.7. Tous les objets sont fibrants et cofibrants.

(A) Soit $q : A \to A'$ une fibration et $f : A'' \to A'$ un morphisme. Il existe un produit fibré au-dessus de
$$A \overset{q}{\longrightarrow} A' \overset{f}{\longrightarrow} A''.$$
L’axiome (A) est un affaiblissement de l’axiome (CM1) de la définition A.7. Notre démonstration de ce théorème est entièrement basée sur la théorie de l’obstruction (B.1).

Lemme 1.3.3.2 Soit A une A_∞-algèbre et K un complexe considéré comme A_∞-algèbre (1.2.1.4). Supposons que le complexe K est contractile. Soit $g : (A, m^A_1) \to (K, m^K_1)$ un morphisme de complexes. Il existe un morphisme d’A_∞-algèbres

$$f : A \to K$$

tel que $f_1 = g$.

Démonstration : Nous construisons par récurrence les morphismes

$$f_i : A^{\otimes i} \to K, \quad i \geq 1.$$

Soit $f_1 = g$. Supposons que nous avons déjà construit des morphismes f_i, $1 \leq i \leq n$, qui définissent un A_n-morphisme $A \to K$. Nous cherchons un morphisme f_{n+1} dont le bord est le cycle $-r(f_1, \ldots, f_n)$, i.e.

$$\delta(f_{n+1}) + r(f_1, \ldots, f_n) = 0$$

(voir B.1.5).

Comme (K, m^K_1) est contractile, il existe bien un tel morphisme f_{n+1}.

Lemme 1.3.3.3 a. Soit $j : A \to D$ une cofibration de \mathbf{Alg}_∞. Il existe une A_∞-algèbre D' et un isomorphisme d’A_∞-algèbres $k : D \to D'$ tels que la composition $k \circ j : A \to D'$ est un morphisme strict.

b. Soit $q : C \to E$ une fibration de \mathbf{Alg}_∞. Il existe une A_∞-algèbre C' et un isomorphisme $l : C' \to C$ tels que la composition $q \circ l : C' \to E$ est un morphisme strict.

Démonstration :

a. Nous construisons par récurrence des morphismes

$$k_i : D^{\otimes i} \to D, \quad i \geq 1,$$

homogènes de degré $1 - i$ tels que $k \circ j$ est un morphisme strict. Posons $k_1 = 1_D$. Supposons que nous avons déjà construit des morphismes k_i, $1 \leq i \leq n$, tels que l’équation

$$(eq_m)\sum_{1 \leq i \leq m} \sum_{r_i = m} (-1)^s k_i \circ (j_{i_1} \otimes \ldots \otimes j_{i_1}) = 0, \quad 2 \leq m \leq n,$$

où s est le signe apparaissant dans 1.2.1.2, est vérifiée pour tout $2 \leq m \leq n$. Soit r une rétraction dans GrC de $j_1 : A \to D$. Soit k_{n+1} le morphisme défini par la somme

$$- \left[\sum_{1 \leq i \leq n} \sum_{r_i = n+1} (-1)^s k_i \circ (j_{i_1} \otimes \ldots \otimes j_{i_1}) \right] \circ r^{\otimes n+1}.$$

La suite (k_1, \ldots, k_{n+1}) vérifie l’équation (eq_m) pour $2 \leq m \leq n+1$. Comme k_1 est un isomorphisme d’objets gradués, les morphismes k_i, $i \geq 1$, induisent un isomorphisme

$$K : T(c)(SD) \overset{\sim}{\longrightarrow} T(c)(SD).$$
Nous définissons D' comme l’A_{∞}-algèbre dont l’objet gradué sous-jacent est D et dont les multiplications m'_i, $i \geq 1$, sont définies grâce aux bijections $m'_i \leftrightarrow b'_i$ (voir 1.2.2), par les égalités

$$b'_i = (K \circ b \circ K^{-1})_i, \quad i \geq 1.$$

Alors le morphisme $k : D \to D'$ est clairement un isomorphisme de Alg_{∞} et la composée $k \circ j$ est stricte par construction de k.

b. La démonstration est similaire. Il faut utiliser une section de q_1 au lieu d’une rétraction de j_1. \hfill \Box$

Démonstration du théorème 1.3.3.1 :

(A) : Soit $q : A \to A'$ une fibration et $f : A'' \to A'$ un morphisme de Alg_{∞}. La construction bar envoie les morphismes q et f sur les morphismes $Q : BA \to BA'$ et $F : BA'' \to BA'$. Nous allons montrer que le produit fibré de Cocg au-dessus de

$$BA \xrightarrow{Q} BA' \leftarrow BA''$$

est encore une cogèbre tensorielle réduite dans GrC. Une section de Q_1 dans GrC induit un isomorphisme

$$SA \xrightarrow{\sim} SA' \oplus K,$$

où K est le noyau de Q_1. Le produit fibré $BA \prod_{BA'} BA''$ est isomorphe, en tant que cogèbre graduée, à

$$T^c K \prod T^c(SA'') \xrightarrow{\sim} T^c(K \oplus SA'').$$

(CM2) et (CM3) : immédiat.

(CM4) *relèvement* : Soit un diagramme d’A_{∞}-algèbres

$$\begin{array}{ccc}
 A & \xrightarrow{f} & C \\
 j \downarrow & & \downarrow q \\
 D & \xrightarrow{g} & E,
\end{array}$$

où q est une fibration et j est une cofibration. Par le lemme 1.3.3.3, quitte à remplacer ce diagramme par un diagramme isomorphe, nous pouvons supposer que les morphismes j et q sont stricts. Supposons que la fibration q (resp. la cofibration j) est triviale. Nous cherchons un relèvement α qui rend commutatifs les deux triangles du diagramme

$$\begin{array}{ccc}
 A & \xrightarrow{f} & C \\
 j \downarrow & \alpha \downarrow & \downarrow q \\
 D & \xrightarrow{g} & E.
\end{array}$$

Nous allons construire par récurrence les morphismes correspondants

$$\alpha_i : D^{\otimes 1} \to C, \quad i \geq 1.$$
Grâce au point a de l’axiome (CM4) pour la catégorie de modèles \mathcal{C}, il existe un relèvement α_1 qui rend commutatifs les deux triangles

$$
(\alpha_1, m_1^C) \xrightarrow{f_1} (C, m_1) \xleftarrow{j_1} (A, m_1^A)
$$

$$
(D, m_1^D) \xrightarrow{g_1} (E, m_1^E).
$$

Supposons que nous avons déjà construit des morphismes α_i, $1 \leq i \leq n$, tels que le diagramme (I^+) commute dans la catégorie des A_i-algèbres. Nous devons trouver un α_{n+1} tel que

1. $\delta(\alpha_{n+1}) + r(\alpha_1, \ldots, \alpha_n) = 0$, (voir B.1.5)
2. $\alpha_{n+1} \cdot j_1^\otimes n+1 = f_{n+1},$
3. $q_1 \cdot \alpha_{n+1} = g_{n+1}.$

Choisissons une solution β de (2) et (3). Par exemple, si ρ est une rétraction de j_1 et σ une section de q_1 dans $\mathcal{G}_r\mathcal{C}$, nous pouvons choisir

$$\beta = f_{n+1} \rho^\otimes n+1 + \sigma g_{n+1} - \sigma q_1 f_{n+1} \rho^\otimes n+1.$$

Le morphisme j est strict. Par le lemme B.1.6, nous avons donc

$$(\delta(\beta) + r(\alpha_1, \ldots, \alpha_n)) \circ j_1 = \delta(\beta \circ j_1) + r(\alpha_1 \circ j_1, \ldots, \alpha_n \circ j_1^\otimes n),$$

et le terme de droite est égal à

$$\delta(f_{n+1}) + r(f_1 \circ j_1, \ldots, f_n) = 0.$$

De même, nous avons $q_1 \circ (\delta(\beta) + r(\alpha_1, \ldots, \alpha_n)) = 0$. Le cycle $\delta(\beta) + r(\alpha_1, \ldots, \alpha_n)$ se factorise donc en

$$D^\otimes n+1 \xrightarrow{p} \text{cok}(j_1^\otimes n+1) \xrightarrow{\iota'} \ker q_1 \xrightarrow{i} C,$$

où p est la projection canonique et i l’injection canonique. Comme $\ker q_1$ (resp. $\text{cok}(j_1^\otimes n+1)$) est contractile, le cycle ι' est le bord d’un morphisme h'. Le morphisme $\alpha_{n+1} = \beta - i \circ h' \circ p$ vérifie alors les équations (1), (2) et (3).

Remarque 1.3.3.4 La démonstration de l’axiome de relèvement (CM4) montre que pour tout relèvement α_1 dans la catégorie \mathcal{C} du diagramme (II), on a un relèvement $\alpha : D \to C$ dans le diagramme (I).

(CM5) factorisation : Soit $f : A \to B$ un morphisme d’A_∞-algèbres.

a. Soit $C = B \oplus S^{-1}B$ le cône de l’identité de $S^{-1}B$. Considérons le complexe C comme une A_∞-algèbre (voir 1.2.1.4). Soit $j : A \to A \prod C$ le morphisme d’A_∞-algèbres de composantes 1_A et 0. Le morphisme $q_1 : A \oplus C \to B$ de composantes le morphisme f et la projection canonique $C \to B$ est un relèvement du diagramme de \mathcal{C}

$$
\begin{array}{ccc}
A & \xrightarrow{j_1} & B \\
\downarrow & & \downarrow \\
A \oplus C & \xrightarrow{j} & 0
\end{array}
$$
La remarque 1.3.3.4 appliquée au point a de l’axiome (CM4) nous donne un relèvement dans le diagramme de Alg_{∞}

![Diagramme](image)

Dans la factorisation $f = q \circ j$, j est une cofibration triviale et q est une fibration.

b. Soit $C = SA \oplus A$ le cône de l’identité du complexe (A, m_1). Considérons C comme une A_{∞}-algèbre. Par le lemme 1.3.3.2, il existe un morphisme d’A_{∞}-algèbres $i : A \to C$ tel que i_1 est l’injection canonique $A \to C$. Soit $j : A \to B \prod C$ le morphisme d’A_{∞}-algèbres de composantes f et i. C’est une cofibration triviale. Notons q la projection canonique $B \prod C \to B$. C’est une fibration et le morphisme f se factorise en $q \circ j$.

□

Liens entre la “catégories de modèles sans limites” Alg_{∞} et la catégorie de modèles Cogc

Soit Cogtr la sous-catégorie de Cogc formée des cogèbres qui sont tensorielles réduites en tant que cogèbres graduées. La construction bar induit un isomorphisme de catégories $\text{Alg}_{\infty} \to \text{Cogtr}$. Munissons Cogtr de la structure de “catégorie de modèles sans limites” donnée par cet isomorphisme. Les équivalences faibles (resp. les cofibrations, resp. les fibrations) sont donc les morphismes $F : (\overline{T}V, b) \to (\overline{T'}V', b')$ qui induisent dans les primitifs un quasi-isomorphisme $F_1 : (V, b_1) \to (V', b'_1)$ (resp. un monomorphisme, resp. un épimorphisme).

Proposition 1.3.3.5 Soit A et A' deux A_{∞}-algèbres.

a. Un morphisme $f : BA \to BA'$ est une équivalence faible de Cogtr si et seulement si c’est une équivalence faible de Cogc.

b. Un morphisme $j : BA \to BA'$ est une cofibration de Cogtr si et seulement si c’est une cofibration de Cogc.

c. Un morphisme $q : BA \to BA'$ est une fibration de Cogtr si et seulement si c’est une fibration de Cogc.

Démonstration : Il s’agit de montrer que le morphisme $\phi_{[1]}$ est un quasi-isomorphisme ou, de façon équivalente, que le morphisme

$$\overline{S_0} \phi_{[1]} : (A, m_1) \to \Omega BA$$

est un quasi-isomorphisme. Le morphisme $\overline{S_0} \phi_{[1]}$ est l’injection canonique de A dans ΩBA. Munissons ΩBA de la filtrations induite par la filtration primitive de BA. Tout comme à la fin de la démonstration du point b du lemme 1.3.2.3, nous montrons que

$$\text{Gr}_0(\Omega BA) = A \quad \text{et} \quad \text{Gr}_i(\Omega BA) = 0 \quad \text{pour} \quad i \geq 1.$$
Déémonstration de la proposition 1.3.3.5

a. Soit \(f : BA \to BA' \) une équivalence faible de \(\text{Cogtr} \). Le morphisme \(f \) est clairement un quasi-isomorphisme filtré pour la filtration primitive. Il est donc une équivalence faible de \(\text{Cogc} \). Supposons que \(f \) est une équivalence faible de \(\text{Cogc} \). Par définition des équivalences faibles de \(\text{Cogc} \), le morphisme \(\Omega f \) est un quasi-isomorphisme et, par suite, le morphisme \(B\Omega f \) est une équivalence faible de \(\text{Cogtr} \). Par le lemme 1.3.3.6, les deux flèches horizontales du diagramme commutatif

\[
\begin{array}{ccc}
BA & \longrightarrow & B\Omega BA \\
f & \downarrow & \downarrow B\Omega f \\
BA' & \longrightarrow & B\Omega BA',
\end{array}
\]

sont des équivalences faibles de \(\text{Cogtr} \), et \(f \) est donc aussi une équivalence faible de \(\text{Cogtr} \).

b. Comme les cofibrations de \(\text{Cogc} \) sont les monomorphismes, une cofibration de \(\text{Cogtr} \) est une cofibration de \(\text{Cogc} \). Réciproquement, si \(j : BA \to BA' \) est une cofibration de \(\text{Cogc} \), sa restriction aux primitifs \((BA)_{[1]} = SA \) est un monomorphisme. Comme nous avons \(f((BA)_{[1]}) \subset (BA')_{[1]} \), le morphisme \(j_{[1]} : SA \to SA' \) est un monomorphisme et \(j \) est donc une cofibration de \(\text{Cogtr} \).

c. On rappelle que les fibrations d'une catégorie de modèles sont les morphismes ayant la propriété de relèvement par rapport aux cofibrations triviales. Ce fait résulte des axiomes (CM5) et (CM3) et vaut donc aussi pour \(\text{Cogtr} \). Par les points a et b, une fibration de \(\text{Cogc} \) est une fibration de \(\text{Cogtr} \). Supposons que \(q \) est fibration de \(\text{Cogtr} \). Soit le diagramme de \(\text{Cogc} \)

\[
\begin{array}{ccc}
C & \longrightarrow & BA \\
j & \downarrow & \downarrow q \\
C' & \longrightarrow & BA',
\end{array}
\]

où \(j \) est une cofibration triviale de \(\text{Cogc} \). Nous cherchons un relèvement de \(g \) relatif à \(f \). Dans le diagramme de \(\text{Cogc} \) ci-dessous

\[
\begin{array}{ccc}
C & \longrightarrow & BA \\
j & \downarrow & \downarrow q \\
C' & \longrightarrow & BA',
\end{array}
\]

\(\phi \) est une cofibration triviale de \(\text{Cogc} \) et \(BA \) est fibrant dans \(\text{Cogc} \). Nous avons donc une factorisation de \(f \) en \(f' \circ \phi \) pour un morphisme \(f' : B\phi C \to BA \). Comme \(\Omega f \) est un monomorphisme et un quasi-isomorphisme, le morphisme \(B\Omega f \) est une cofibration triviale de \(\text{Cogtr} \). L'objet \(BA' \) étant cofibrant dans \(\text{Cogtr} \), le morphisme \(q \circ f' \) se factorise en \(g' \circ B\Omega f \) pour un morphisme \(g' : B\phi C' \to BA' \). Il suffit donc de trouver un relèvement de \(g' \) relatif à \(f' \). Par l'axiome (CM4) pour la catégorie \(\text{Cogtr} \), il en existe un.

\[\square\]
1.3.4 Homotopie au sens classique

Soit C et C' deux cogèbres cocomplètes. Soit f et g deux morphismes de cogèbres $C \to C'$. Ils sont homotopes au sens classique s'il existe une (f,g)-codérivation $h : C \to C'$ de degré -1 tel que $\delta(h) = f - g$. Nous comparons cette notion à la notion d'homotopie au sens des catégories de modèles (voir l'appendice A).

Proposition 1.3.4.1 Soit C et C' deux cogèbres cocomplètes et f, g deux morphismes $C \to C'$.

a. Si f et g sont homotopes au sens classique, ils sont homotopes à gauche (voir la définition A.9).

b. Si la cogèbre C' est fibrante, alors f et g sont homotopes au sens classique si et seulement si ils sont homotopes à gauche.

Démonstration :

a. Nous allons construire un cylindre $C \wedge I$ pour la cogèbre C, puis nous allons montrer que la notion d'homotopie classique est équivalente à la notion de $C \wedge I$-homotopie à gauche.

Nous notons I le complexe dont la composante de degré 0 est $e \oplus e$, la composante de degré -1 est e, toutes les autres composantes sont nulles. Nous notons e_0 et e_1 les composantes de I_0. La différentielle $d : I \to I$ est donnée par

$$d_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix} : e \to e_0 \oplus e_1.$$

Soit $\Delta : I \to I \otimes I$ le morphisme dont les composantes non nulles sont les morphismes

$$e_0 \sim e_0 \otimes e_0, \quad e_1 \sim e_1 \otimes e_1, \quad e \sim e_0 \otimes e, \quad e \sim e \otimes e_1$$

donnés par la contrainte d'unitarité de la catégorie monoïdale de base (1.1.1). Ceci définit sur I une structure de cogèbre co-associative différentielle graduée.

Soit C une cogèbre cocomplète. Le produit tensoriel $C \otimes I$ de complexe hérite naturellement d'une structure de cogèbre différentielle graduée par la comultiplication $C \otimes I \to (C \otimes I) \otimes C \otimes I \simeq C \otimes C \otimes I \otimes I$. Elle est cocomplète. Nous notons C_0 et C_1 les composantes de $C \prod I$. Nous définissons le cylindre $C \wedge I = C \otimes I$ pour C par les deux morphismes de cogèbres différentielles graduées i et p

$$C_0 \prod C_1 \xrightarrow{i} C \otimes I \xrightarrow{p} C,$$

où le morphisme i a pour composantes non nulles

$$C_0 \sim C \otimes e_0, \quad C_1 \sim C \otimes e_1,$$

et où le morphisme p a pour composantes non nulles

$$C \otimes e_0 \sim C, \quad C \otimes e_1 \sim C,$$

données par les contraintes d'unitarité de la catégorie de base. Le morphisme i est une cofibration et le morphisme p une équivalence faible.

Soit C' une cogèbre cocomplète. Soit f, g et h trois morphismes gradués $C \to C'$ respectivement
de degré zéro, zéro et -1.
Soit le morphisme gradué de degré nul $H : C \otimes I \to B$ dont les composantes sont les trois morphismes gradués
$$C \otimes e_0 \simeq C \overset{f}{\longrightarrow} C', \quad C \otimes e_1 \simeq C \overset{g}{\longrightarrow} C'$$
et $C \otimes e \simeq C \overset{h}{\longrightarrow} C'$.
Le morphisme $H : C \otimes I \to C'$ est un morphisme de cogèbres si et seulement si
- les morphismes f et g sont des morphismes de cogèbres $C \to C'$,
- le morphisme $h : C \to C'$ est une (f,g)-codérivation.
Il est compatible aux différentielles si et seulement si
- les morphismes f et g sont des morphismes de complexes $C \to C'$
- le morphisme $h : C \to C'$ réalise une homotopie entre les morphismes de complexes f et g.
Pour finir, nous vérifions que le morphisme H est bien une $C \wedge I$-homotopie entre f et g.

b. Soit C' une cogèbre fibrante. Soit f et $g : C \to C'$ deux morphismes homotopes au sens des catégories de modèles. Notons toujours $C \wedge I$ le cylindre construit ci-dessus. Par le lemme A.12, il existe une $C \wedge I$-homotopie à gauche $H : C \wedge I \to C'$ entre f et g. Par la démonstration du point a, il existe une homotopie $h : C \to C'$ au sens classique entre f et g. □

1.3.5 Équivalences faibles et quasi-isomorphismes
Nous notons Qis la classe des quasi-isomorphismes de Cogc et $Qisf$ la classe des morphismes $f : C \to D$ de Cogc tels que C et D admettent des filtrations admissibles pour lesquelles f est un quasi-isomorphisme filtré.
Cette section est consacrée à la comparaison des trois classes E_q, Qis et $Qisf$. Nous allons montrer en particulier les inclusions suivantes
$$Qisf \subseteq E_q \subset Qis.$$

Proposition 1.3.5.1

a. **Nous avons l’inclusion $Qisf \subseteq E_q$.** De l’autre côté, le foncteur canonique
$$\text{Cogc}[Qisf^{-1}] \longrightarrow \text{Cogc}[E_q^{-1}] = \text{Ho Cogc}$$
est une équivalence.

b. **Les équivalences faibles de Cogc sont des quasi-isomorphismes.**

c. **La classe E_q est strictement incluse dans la classe Qis.**

d. **Soit C et D deux objets de Cogc concentrés en degrés < -1. Tout quasi-isomorphisme de cogèbres $C \to D$ est une équivalence faible.**

e. **Soit C et D deux objets de Cogc concentrés en degrés ≥ 0. Tout quasi-isomorphisme de cogèbres $C \to D$ est une équivalence faible.**
Démonstration :

a. On rappelle (1.3.2.2) qu’un quasi-isomorphisme filtré de cogèbres est une équivalence faible de Cogc. Il nous faut donc montrer que les équivalences faibles deviennent des isomorphismes dans la catégorie localisée Cogc[Qisf\(^{-1}\)]. Soit \(f : C \to C' \) une équivalence faible de Cogc. Le morphisme

\[
\Omega f : \Omega C \to \Omega C'
\]
est donc un quasi-isomorphisme d’algèbre. Par le lemme 1.3.2.3, le morphisme \(B\Omega f : B\Omega C \to B\Omega C' \) est un quasi-isomorphisme filtré. On rappelle (1.3.2.3) que les morphismes d’adjonction \(C \to B\Omega C \) et \(D \to B\Omega D \) sont des quasi-isomorphismes filtrés. Nous déduisons du diagramme commutatif de Cogc

\[
\begin{array}{ccc}
C & \longrightarrow & B\Omega C \\
f \downarrow & & \downarrow B\Omega f \\
C' & \longrightarrow & B\Omega C'
\end{array}
\]

que le morphisme \(f \) devient un isomorphisme dans la catégorie Cogc[Qisf\(^{-1}\)].

b. Les quasi-isomorphismes filtrés sont des quasi-isomorphismes. La propriété de saturation de la classe Qis, appliquée au diagramme ci-dessus montre qu’une équivalence faible est un quasi-isomorphisme.

c. Nous allons construire un exemple de cogèbre qui est acyclique mais qui n’est pas faiblement équivalente à la cogèbre nulle.

Soit \(A \) une algèbre unitaire non nulle de la catégorie de base \(C \). Considérons \(A \) comme une algèbre associative (dont on oublie l’unité), c’est-à-dire comme un objet de la catégorie Alg du théorème (1.3.1.2) Comme \(A \) n’est pas quasi-isomorphe à l’algèbre nulle, la cogèbre \(BA = (T^\infty SA, b) \) n’est pas faiblement équivalente à la cogèbre nulle (1.3.1.2, b). Or, elle est bien quasi-isomorphe à la cogèbre nulle : en effet, le complexe sous-jacent à \(S^{-1}BA \) est le complexe

\[
\cdots \to A \otimes A \otimes A \to A \otimes A \to A \to 0,
\]

qui est isomorphe à la résolution bar de l’algèbre \(A \). Ce complexe est acyclique car \(A \) est unitaire (voir [CE99, IX.6] où ce complexe se nomme “résolution standard”).

d. Soit \(C \) et \(D \) deux cogèbres cocomplètes concentrées en degrés \(-1\). Nous allons montrer que le morphisme \(\Omega f : \Omega C \to \Omega D \) est un quasi-isomorphisme de Alg. Munissons \(\Omega C \) (resp. \(\Omega D \)) de la filtration décroissante donnée par

\[
F_l\Omega C = \bigoplus_{p \geq l} (S^{-1}C)^{\otimes p} \quad \text{(resp. } F_l\Omega D = \bigoplus_{p \geq l} (S^{-1}D)^{\otimes p} \text{)}, \quad l \in \mathbb{N}.
\]

Par notre hypothèse, le morphisme \(\Omega f \) induit des quasi-isomorphismes dans les sous-quotients de ces filtrations. Il en résulte que, pour tout \(n \in \mathbb{N} \), il induit un isomorphisme en \(H^{-n} \), car nous avons

\[
(F_l\Omega C)^n = (F_l\Omega D)^n = 0 \quad \text{pour } l > n,
\]

d’après l’hypothèse sur \(C \) et \(D \).

e. La démonstration est la même que pour le point \(d \). Il suffit de remarquer que le complexe \(S^{-1}C \) est concentré en degrés \(> 0 \) (au lieu de \(< 0 \)). \(\square \)
1.4 Transfert de structures le long d’équivalences d’homotopie

Le but de cette section est de (re)montrer le théorème du modèle minimal (1.4.1.4).

1.4.1 Modèle minimal

Théorème 1.4.1.1 Soit A une A_∞-algèbre. Soit une équivalence d’homotopie dans \mathcal{C}

$$g : (V,d) \rightarrow (A,m^1_1),$$

où (V,d) est un complexe. Il existe une structure d’A_∞-algèbre sur V telle que $m^1_V = d$ et un morphisme d’A_∞-algèbres

$$f : V \rightarrow A$$

telle que $f_1 = g$.

Ce résultat est connu depuis les années 70 dans le cas d’une A_∞-algèbre connexe (i.e. concentrées en degrés homologiques ≥ 1) et d’un complexe (V,d) où la différentielle d est nulle (V est alors isomorphe à H^*A). Il y a deux méthodes pour montrer ce théorème, celle utilisant la “méthode des obstructions” [Che77a], [Che77b], [Kad80], [Smi80], [Gug82] et celle utilisant “l’astuce du tenseur” [Hue86], [GS86], [GL89], [GLS91], [HK91], [Mer99], [KS01]. L’article [JL01] présente l’unification de ces différentes méthodes. Nous donnons ici une démonstration utilisant les obstructions.

Démonstration : Par l’axiome (CM5) pour la catégorie de modèles \mathcal{C}, le morphisme g se factorise en $q \circ j$, où q est une fibration triviale et où j est une cofibration triviale. Il suffit donc de montrer le théorème dans le cas où l’équivalence d’homotopie est un épimorphisme et dans le cas où elle est un monomorphisme.

Supposons que g est une fibration triviale de \mathcal{C}. Soit K le noyau de g. Comme K est contractile, nous pouvons scinder g dans la catégorie des complexes. Ce scindage induit un isomorphisme de complexes

$$V \xrightarrow{\sim} K \oplus A$$

par lequel le morphisme g s’identifie à la projection $K \oplus A \rightarrow A$. Considérons K comme une A_∞-algèbre (voir 1.2.1.4). Munissons l’objet gradué sous-jacent à V de la structure d’A_∞-algèbre de $K \prod A$. Le morphisme f est le morphisme canonique $K \prod A \rightarrow A$ de Alg_{∞}.

Supposons que g est une cofibration triviale de \mathcal{C}. Soit K le conoyau de g. Comme il est contractile, on peut scinder g dans la catégorie des complexes. Ce scindage induit un isomorphisme de complexes

$$A \xrightarrow{\sim} K \oplus V$$

par lequel le morphisme g s’identifie à l’injection $V \rightarrow K \oplus V$. Considérons K comme une A_∞-algèbre. Par le lemme 1.3.3.2, il existe un morphisme d’A_∞-algèbres $h : A \rightarrow K$ tel que h_1 est la projection $K \oplus V \rightarrow K$ dans \mathcal{C}. Grâce à l’axiome (A) du théorème 1.3.3.1, morphisme h admet un noyau dans la catégorie Alg_{∞}. L’objet gradué sous-jacent à $\ker h$ est V. Nous avons ainsi muni V d’une structure d’A_∞-algèbre telle que m^1_V est la différentielle de V. Le morphisme canonique $V \rightarrow A$ est tel que $f_1 = g$. □
Modèle minimal

Définition 1.4.1.2 Une A_{∞}-algèbre est *minimale* si $m_1 = 0$. Soit A une A_{∞}-algèbre. Un *modèle minimal pour A* est un A_{∞}-quasi-iso morphisme d’A_{∞}-algèbres $A' \rightarrow A$ où A' est minimale.

Remarque 1.4.1.3 Cette utilisation du terme “modèle minimal”, due à M. Kontsevich, est différente de l’usage conventionnel en homotopie rationnelle (modèle minimal de Sullivan). On peut la justifier par le fait que la construction bar BA' est un modèle minimal au sens de H. J. Baues et J.-M. Lemaire [BL77] de la cogèbre BA. Remarquons qu’un modèle minimal de BA ne donne pas en général un modèle minimal de A : soit $(T^c SV, b)$ une cogèbre tensorielle réduite sur SV dont la différentielle b induit zéro dans les 1-primitifs ; si $(T^c SV, b)$ est un modèle minimal de BA, c’est-à-dire si on a un quasi-isomorphisme de cogèbres

$$F : (T^c SV, b) \rightarrow BA,$$

l’A_{∞}-algèbre V telle que $BV = (T^c SV, b)$ n’est pas en général un modèle minimal pour l’A_{∞}-algèbre A. Cependant, si F est une équivalence faible de Cogc, V est un modèle minimal de l’A_{∞}-algèbre A.

Corollaire 1.4.1.4 Soit A une A_{∞}-algèbre. Il existe une structure d’A_{∞}-algèbre sur son homologie $H^* A$ telle que

a. $m_1 = 0$ et m_2 est induite par m_A^3,

b. il existe un morphisme d’A_{∞}-algèbres $H^* A \rightarrow A$ relevant l’identité de $H^* A$.

Cette structure est unique à un isomorphisme (non unique) près.

Démonstration : Comme la catégorie de base C est semi-simple, nous avons un isomorphisme dans la catégorie des complexes

$$(A, m^4_A) \overset{\sim}{\rightarrow} H^* A \oplus K$$

pour un complexe contractile K. Le résultat est déduit du théorème 1.4.1.1 appliqué à l’injection canonique

$$g : H^* A \rightarrow A.$$

L’unicité de la structure provient du fait qu’un morphisme f entre A_{∞}-algèbres minimales est un quasi-isomorphisme si et seulement si f_1 est un isomorphisme si et seulement si f est un isomorphisme.

1.4.2 Lien avec le lemme de perturbation

Une perturbation δ de la différentielle d d’un complexe filtré W est un morphisme gradué $\delta : W \rightarrow W$ de degré $+1$ qui diminue la filtration et tel que $d + \delta$ est encore une différentielle, c’est-à-dire, tel que

$$d \circ \delta + \delta \circ d + \delta^2 = 0.$$

Une contraction [EML53] (voir aussi [HK91] et les références données dans [HK91])

$$(V \overset{\rho}{\rightarrow} W, H)$$
est donnée par deux complexes V et W, deux morphismes de complexes $i : V \to W$ et $\rho : V \to W$

et un morphisme gradué $H : W \to W$ de degré -1 tels que

$$\rho \circ i = 1_V, \quad i \circ \rho = 1_W + \delta(H), \quad H \circ i = 0, \quad \rho \circ H = 0 \quad \text{et} \quad H^2 = 0.$$

On dit aussi que W se contracte sur V. Si les complexes sont filtrés, la contraction est filtrée si les morphismes sont filtrés relativement à ces filtrations.

Soit V et W des complexes munis de filtrations exhaustives et soit

$$(V, d_V) \xrightarrow{i} (W, d_W) \xrightarrow{\rho} (W, d_W + \delta) \xrightarrow{H^\delta} (W, d_W) \xrightarrow{\rho} (W, d_W)$$

une contraction filtrée et δ une perturbation de la différentielle d_W. Le lemme de perturbation ([Gug72], [HK91]) donne une nouvelle différentielle d'_V de V et des morphismes i^δ, ρ^δ et H^δ tels que

$$(V, d'_V) \xrightarrow{i^\delta} (W, d_W + \delta) \xrightarrow{H^\delta} (W, d_W)$$

est une contraction filtrée. Supposons que la contraction filtrée ci-dessus est une contraction filtrée de cogèbres : les objets V et W sont des cogèbres différrentielles graduées filtrées, les morphismes i et ρ sont des morphismes de cogèbres filtrées, H est une 1-(ip)-côdrivation filtrée de W. Supposons aussi que la perturbation δ est une perturbation d’une différentielle de cogèbres, i. e. δ est une 1-1-côdrivation de W. Le lemme de perturbation produit alors une contraction de cogèbres ([HK91], [GS86], [GL89], [GLS91], [Mer99]).

Soit A une A_∞-algèbre et soit

$$0 \xrightarrow{} (V, d_V) \xrightarrow{i} (A, m_1) \xrightarrow{\sigma} (K, d_K) \xrightarrow{} 0$$

une suite exacte scindée de complexes telle que

$$\rho \circ \sigma = 0 \quad \text{et} \quad i \circ \rho + \sigma \circ p = 1_A.$$

Soit h une homotopie contractante de K telle que $h^2 = 0$. A partir de ces données, nous avons
deux manières naturelles de définir une structure d’A_∞-algèbre sur V et un A_∞-morphisme

$$V \to A$$

dont la première composante est i.

Première méthode : le lemme de perturbation

Nous appliquons le lemme de perturbation à la contraction filtrée et à la perturbation de cogèbres

$$(\mathcal{T}^c S(V,d_V)) \xrightarrow{R_F} (\mathcal{T}^c S(A,m_1),H) \quad \text{et} \quad \delta : \mathcal{T}^c S A \to \mathcal{T}^c S A,$$

où $F = \mathcal{T}^c S i$, $R = \mathcal{T}^c S \rho$, H est l’unique 1-(FR)-côdrivation relevant $\sigma \circ h \circ p$ et $\delta = b - b_1$ (ici b est la différentielle de BA). Nous obtenons une nouvelle différentielle b' sur $\mathcal{T}^c S V$ et un morphisme de cogèbres

$$F^\delta : (\mathcal{T}^c S V, b') \to (\mathcal{T}^c S A, b).$$
Nous obtenons une structure d’A_∞-algèbre sur V (notons cette A_∞-algèbre V^δ) et un A_∞-morphisme $f^\delta : V^\delta \to A$.

Deuxième méthode : le noyau d’un A_∞-morphisme g

Définissons par récurrence des morphismes

$g_i : A^\otimes i \to K, \quad i \geq 1,$

en posant

$g_1 = p$ et $g_i = -h \circ r(g_1, \ldots, g_{i-1}), \quad i \geq 2,$

où $r(g_1, \ldots, g_{i-1})$ est le cycle du lemme (B.1.5). Le lemme (B.1.5) montre qu’ils définissent un A_∞-morphisme $g : A \to K$ (où K est le complexe K considéré comme A_∞-algèbre). L’axiome (A) du théorème (1.3.3.1) montre qu’il existe un noyau de g dans la catégorie Alg_{A_∞}

$V^g = \ker g \to A.$

Comme l’objet gradué sous-jacent de l’A_∞-algèbre V^g est V, cela définit une A_∞-structure sur V et un A_∞-morphisme

$f^g : V^g \to A.$

Lemme 1.4.2.1 Nous avons un isomorphisme $\theta : V^\delta \to V^g$ tel que $\theta_1 = 1$ et $f^\delta = f^g \circ \theta$.

Démonstration : Rappelons les descriptions de l’A_∞-structure de V^δ et de f^δ en terme d’arbres due à M. Kontsevich et Y. Soibelman [KS01, 6.4].

L’A_∞-structure de V^δ est définie par les formules suivantes :

$m_1^\delta = 0, \quad m_2^\delta = \rho \circ m_2 \circ (i \otimes i), \quad m_i^\delta = \sum_{T \in T} (-1)^s m_{i,T}, \quad i \geq 3,$

où s, T, T et $m_{i,T}$ sont définis ainsi : Considérons l’ensemble T des arbres planaires orientés T avec $i + 1$ sommets terminaux (la racine et les feuilles), tels que l’arité $|v|$ de tout sommet interne $v \in T$ (i. e. le nombre de flèches arrivant à v) est ≥ 2. Pour décrire le morphisme

$m_{i,T} : (V^\delta)^{\otimes i} \to V^\delta, \quad i \geq 3, \quad T \in \mathcal{T},$

on a besoin de considérer l’arbre \overline{T} construit à partir de T en rajoutant un sommet interne au milieu de chaque arête interne. L’arbre \overline{T} est ainsi constitué de deux types de sommets internes : les *anciens* qui correspondent aux sommets internes de T et les *nouveaux* que l’on vient de rajouter. On colorie les sommets de \overline{T} par les morphismes suivants :

- ρ sur la racine,
- i sur les feuilles,
- $m_{|v|}$ sur les sommets internes anciens v (dont l’arité est $|v|$),
- H sur les sommets internes nouveaux.

A chaque arbre \overline{T} ainsi colorié, on associe le morphisme $m_{i,T}$ qui consiste à composer les coloriages en descendant le long de l’arbre des feuilles vers la racine. Voici un exemple :
Le morphisme $m_{i,T}$ vaut
\[\rho \circ m_2 \circ (H \otimes 1) \circ (m_3 \otimes 1) \circ (1 \otimes H \otimes 1^{\otimes 2}) \circ (1 \otimes m_3 \otimes 1^{\otimes 2}) \circ (i^\otimes 6). \]
Le signe $(-1)^s$ associé à T est donné par l’égalité
\[\rho \circ m_2 \circ (H \otimes 1) \circ (m_3 \otimes 1) \circ (1 \otimes H \otimes 1^{\otimes 2}) \circ (1 \otimes m_3 \otimes 1^{\otimes 2}) \circ (i^\otimes 6) \circ (\omega^\otimes 6) = (-1)^s \rho' \circ b_2 \circ (H' \otimes 1) \circ (b_3 \otimes 1) \circ (1 \otimes H' \otimes 1^{\otimes 2}) \circ (1 \otimes b_3 \otimes 1^{\otimes 2}) \circ (i^\otimes 6), \]
ôù
\[\rho' = s \circ \rho \circ \omega, \quad H' = -s \circ H \circ \omega \quad et \quad i' = s \circ i \circ \omega. \]
Le signe dans le cas général s’obtient de la même manière.

Le morphisme $f^\delta : V^\delta \to A$ est donné par les formules
\[f^\delta_1 = i, \quad f^\delta_i = \sum_{T \in T} (-1)^s f_{i,T}, \quad i \geq 2, \]
ôté les morphismes $f_{i,T}$ et le signe s sont construits de la même manière en coloriant la racine de l’arbre T par H au lieu de ρ. La remarque (1.4.2.2) ci-dessous montrera que les morphismes m_i^δ, $i \geq 1$, et f_i^δ, $i \geq 1$, définissent bien des A_{∞}-structures.

Remarquons que les signes ci-dessus sont tels que
\[b_i^\delta = \sum_{T \in T} b_{i,T} \quad et \quad F_i^\delta = \sum_{T \in T} F_{i,T}, \quad i \geq 1, \]
ôù $b_{i,T}$ et $F_{i,T}$ sont obtenus en coloriant les sommets des arbres T par des b_i (resp. i', ρ', H') sur les sommets qui étaient précédemment de couleur m_i (resp. i, ρ, H).

Nous allons maintenant expliciter l’A_{∞}-morphisme
\[g : A \to K \]
en terme d’arbres. Un calcul facile (nous utilisons le fait que $h^2 = 0$) montre que le morphisme g_i, $i \geq 1$, est donné par les formules
\[g_1 = p \quad et \quad g_i = -p \circ h \circ m_i, \quad i \geq 2. \]
Comme $h \circ p = p \circ H$, les morphismes g_i correspondent aux arbres coloriés (ils n’appartiennent pas nécessairement à T)
Le signe intervenant dans la formule pour g implique les égalités
\[G_1 = p' \quad \text{et} \quad G_i = -p' \circ H' \circ b_i, \quad i \geq 2, \]
où $p' = s \circ p \circ \omega$.

Montrons que la composition $g \circ f^\delta$ est nulle. Il suffit de montrer les égalités
\[\sum_{\sum \alpha_k = n} G_i(F_{\alpha_1}^\delta \otimes \ldots \otimes F_{\alpha_i}^\delta) = 0, \quad n \geq 1. \]

Soit $n \geq 1$. Comme les G_i et les $F_{\alpha_k}^\delta$ sont des sommes de compositions associées à des arbres coloriés, la somme ci-dessus est la somme de compositions associées aux arbres coloriés concaténés. Nous vérifions que les arbres coloriés concaténés intervenant dans les sommes
\[\sum_{\sum \alpha_k = n, \ i \geq 2} G_i(F_{\alpha_1}^\delta \otimes \ldots \otimes F_{\alpha_i}^\delta) \quad \text{et} \quad G_1 \circ F_{\alpha_k}^\delta \]
sont les mêmes. Dans la première somme, le signe intervenant devant chaque composition associée à un arbre colorié concaténé est négatif car, pour $i \geq 2$, nous avons $G_i = -p' \circ H' \circ b_i$. Dans la seconde somme, il est positif car $G_1 = p'$. Nous avons donc $G \circ F^\delta = 0$. Le morphisme f^δ se factorise en $f^g \circ \theta$. Comme $f_1^\delta = f_1^\delta$, nous avons $\theta_1 = 1_V$. Il s’ensuit que $\theta : V^\delta \rightarrow V^g$ est un isomorphisme.

\textbf{Remarque 1.4.2.2} La démonstration montre que les morphismes m_i^δ, $i \geq 1$, et f_i^δ, $i \geq 1$, définis en termes d’arbres définissent bien des A_∞-structures (voir [KS01, 6.4] pour une autre preuve).

\textbf{Remarque 1.4.2.3} Si A est une algèbre différentielle graduée, l’A_∞-morphisme
\[g : A \rightarrow K \]
n’a que deux composantes non nulles g_1 et g_2. La complexité des formules pour les m_i^δ, $i \geq 1$, provient donc de la complexité des formules des f_i^δ, $i \geq 1$, définissant le noyau de g dans A_{alg}
\[f^\delta : V^\delta \hookrightarrow A. \]

\textbf{Remarque 1.4.2.4} Le lemme de perturbation nous donne, outre V^δ et f^δ, une contraction d’A_∞-algèbres
\[(V^\delta \xrightarrow{q^\delta} A, H^\delta). \]
Remarquons que l’$\Lambda\infty$-morphisme q^δ est le conoyau de l’$\Lambda\infty$-morphisme

$$j : K \rightarrow A$$
donné par les formules

$$j_i = \sigma, \quad j_i = - m_i \circ (\sigma^0) \circ (h \otimes 1^0)^{-1}, \quad i \geq 2.$$

□

Remarque 1.4.2.5 Soit V et W des complexes munis de filtrations exhaustives et soit

$$\left((V, d_V) \xrightarrow{i} (W, d_W), H \right)$$

une contraction filtrée de complexes. Alors il existe une suite exacte scindée de complexes

$$\begin{array}{cccc}
0 & \rightarrow & (V, d_V) & \xrightarrow{i} (W, d_W) & \xrightarrow{\sigma} (K, d_K) & \rightarrow & 0 \\
& & \rho & & \sigma & & \\
& & i & & p & & \\
\end{array}$$

telle que

$$\rho \circ \sigma = 0 \quad \text{et} \quad i \circ \rho + \sigma \circ p = 1_A$$
et une homotopie contractante h de K telle que

$$h^2 = 0 \quad \text{et} \quad H = \sigma \circ h \circ p.$$

Le complexe contractile K est donc un facteur direct de W. Soit δ une perturbation de la différentielle d_W. Le lemme de perturbation produit une contraction filtrée de complexes

$$\left((V, d_V^\delta) \xrightarrow{i^\delta} (W, d_W + \delta), H^\delta \right).$$

Un calcul montre que les morphismes

$$(p - pH\delta) : (W, d_W + \delta) \rightarrow (K, d_K) \quad \text{et} \quad (\sigma - \delta H\sigma) : (K, d_K) \rightarrow (W, d_W + \delta)$$

sont des morphismes de complexes et qu’ils sont le conoyau et le noyau de i^δ et ρ^δ. La composition

$$(p - pH\delta) \circ (\sigma - \delta H\sigma) : (K, d_K) \rightarrow (K, d_K)$$

induit un isomorphisme dans les objets gradués associés à la filtration. C’est donc un isomorphisme. Le complexe contractile (K, d_K) est donc aussi un facteur direct du complexe perturbé $(W, d_W + \delta)$ et l’inclusion

$$\sigma : K \rightarrow W$$
est “perturbée” en $\sigma - \delta H\sigma$ pour devenir compatible à $d_W + \delta$.
Chapitre 1 : Théorie de l’homotopie des A_∞-algèbres
Chapitre 2

Théorie de l’homotopie des polydules

Introduction

Soit A une A_∞-algèbre augmentée. Rappelons que dans cette thèse les structures communément appelées A_∞-modules sur A sont appelées A-polydules ("poly" car la structure est donnée par plusieurs multiplications). Le but de ce chapitre est de décrire la catégorie dérivée $D_\infty A$ dont les objets sont les A-polydules strictement unitaires. Nous utiliserons pour cela les outils de l’algèbre homotopique de Quillen (voir l’appendice A) en adaptant les méthodes du chapitre 1 aux polydules. La catégorie dérivée d’une A_∞-algèbre quelconque sera étudiée au chapitre 4.

Plan du chapitre

Ce chapitre est divisé en deux parties.

La première partie qui composée des sections (2.1) et (2.2) ne traitera pas des A_∞-structures proprement dites. Dans la première section (2.1), on définit les (co)modules différentiels gradués (co)unitaires. Dans la section 2.2, nous démontrons le théorème (2.2.2.2) :

Soit C une cogèbre différentielle graduée cocomplète co-augmentée. La catégorie ComC des C-comodules différentiels gradués co-unitaires cocomplets admet une unique structure de catégorie de modèles telle que, pour toute algèbre différentielle graduée augmentée A et toute cochaîne tordante admissible acyclique $\tau : C \to A$, le couple de foncteurs adjoints

$$(? \otimes_\tau A, - \otimes_\tau C) : \text{ComC} \to \text{ModA}$$

est une équivalence de Quillen. Tous les objets de ComC sont cofibrants.
Nous caractérisons ensuite l’acyclicité des cochaînes tordantes (2.2.4.1).

La deuxième partie est consacrée aux A_∞-structures concernées par ce chapitre : les (bi)polydules strictement unitaires sur des A_∞-algèbres augmentées. Dans la section 2.3, on définit les polydules, leurs suspensions, les A_∞-morphismes et les homotopies entre A_∞-morphismes. Nous définissons ensuite la notion d’unitarité stricte pour les A_∞-structures. Cette notion sera étudiée plus précisément dans le chapitre 3. On rappelle ensuite les constructions bar et cobar et l’algèbre enveloppante. Dans la section 2.4, nous affinons le théorème (2.2.2.2) précité. Nous montrons que,
si la cogèbre C est isomorphe, en tant que cogèbre graduée, à une cogèbre tensorielle co-augmentée, les objets fibrants de $\text{Comc} C$ sont exactement les facteurs directs des C-comodules presque colibres. En particulier, dans le cas où C est égale à la construction bar d’une A_{∞}-algèbre augmentée A, la catégorie des objets fibrants et cofibrants de $\text{Comc} C$ est l’image essentielle par la construction bar des A-polydules strictement unitaires. Nous déduirons de ce résultat plusieurs descriptions de la catégorie dérivée

$$D_{\infty} A = \text{Mod}_{\infty} A[Q_{\text{is}}^{-1}],$$

où $\text{Mod}_{\infty} A$ désigne la catégorie des A-polydules strictement unitaires.

Dans la section 2.5, nous étudions la catégorie dérivée $D_{\infty}(A, A')$ des bipolydules strictement unitaires sur A et A', deux A_{∞}-algèbres augmentées. Les méthodes étant similaires, les détails seront omis. Les bipolydules seront utiles dans l’étude des A_{∞}-catégories.

2.1 Rappels et notations

Soit (C, \otimes, e) une K-catégorie de Grothendieck semi-simple monoidale et C' une K-catégorie de Grothendieck semi-simple (non nécessairement monoidale). Nous supposons que la catégorie monoidale C agit à droite sur C', i. e. C' est munie d’un foncteur

$$C' \times C \to C', \quad (M, A) \mapsto M \otimes A$$

tel que

$$\text{Hom}_C(M, M') \times \text{Hom}(A, A') \to \text{Hom}_C(M \otimes A, M' \otimes A'),$$

où A, A' sont dans C et M, M' sont dans C', est K-bilinéaire. Nous demandons en outre que cette action soit associative et unitaire à des isomorphismes donnés près (voir [ML98, chap. XI]).

2.1.1 Modules sur une algèbre augmentée

Soit M (resp. M') l’une des catégories GrC ou CC (resp. GrC' ou CC') définies à la section 1.1.1. La catégorie M est monoidale et agit clairement sur M'.

Algèbres augmentées, réduites

Une algèbre (A, μ) dans M est **unitaire** si elle est munie d’un morphisme $\eta : e \to A$ tel que $\mu(1 \otimes \eta) = \mu(\eta \otimes 1) = 1$. On appelle le morphisme η l’**unité** de A. Si A et A' sont des algèbres unitaires, un **morphisme** d’algèbres unitaires $f : A \to A'$ est un morphisme d’algèbres f tel que $f \eta_A = \eta_{A'}$. Le morphisme $e \otimes e \to e$ donné par la contrainte d’unité de la catégorie de base (1.1.1) définit une structure d’algèbre unitaire sur l’objet neutre e. Une algèbre A est **augmentée** si elle est unitaire et munie d’un morphisme d’algèbres unitaires $\varepsilon : A \to e$.

Le morphisme ε s’appelle l’**augmentation** de A. Si A et A' sont des algèbres augmentées, un **morphisme** d’algèbres augmentées $f : A \to A'$ est un morphisme d’algèbres unitaires f tel que $\varepsilon_{A'} f = \varepsilon_A$.

Si A est une algèbre augmentée de M, l’**algèbre réduite** \overline{A} associée à A est le noyau de l’augmentation. Si A est une algèbre de M, l’**algèbre augmentée** associée à A est l’algèbre A^+ dont l’objet sous-jacent est $e \oplus A$, et dont la multiplication est définie par les morphismes

$$e \otimes e \to e, \quad e \otimes A \to A, \quad A \otimes e \to A \quad \text{et} \quad A \otimes A \xrightarrow{\mu} A,$$
où les trois premiers morphismes sont donnés par la contrainte d’unitarité de la catégorie de base. L’augmentation de A^+ est la projection canonique $A^+ \to e$. On note Alg_a la catégorie des algèbres augmentées de \mathbb{C}. Le foncteur

$$\text{Alg} \longrightarrow \text{Alg}_a, \quad A \mapsto A^+,$$

est une équivalence dont le quasi-inverse est le foncteur $A \mapsto A$.

Modules

Soit A une algèbre dans \mathbf{M}. Un A-module (à droite) dans \mathbf{M}' est un objet M de \mathbf{M}' muni d’un morphisme $\mu^M : M \otimes A \to M$ (de degré 0 si $\mathbf{M}' = \mathcal{G}\mathcal{C}'$) tel que

$$\mu^M(\mu^M \otimes 1) = \mu^M(1 \otimes \mu^A).$$

On appelle μ^M la multiplication de M. Si M et N sont deux modules, un morphisme de modules $f : M \to N$ est un morphisme f tel que

$$f_{\mu^M} = \mu^N(f \otimes 1).$$

Si l’algèbre A est unitaire, un A-module M est unitaire si on a

$$\mu^M(1 \otimes \eta^A) = 1_M.$$

Soit A une algèbre graduée (resp. différentielle graduée). Un A-module gradué (resp. différentiel gradué) est un A-module dans la catégorie $\mathcal{G}\mathcal{C}$ (resp. \mathcal{C}'). Si A est une algèbre différentielle graduée, un A-module différentiel gradué est donc un objet M de $\mathcal{G}\mathcal{C}'$, muni d’une multiplication $\mu^M : M \otimes A \to M$ et d’une différentielle $d^M : M \to M$ telle que

$$d^M(\mu^M) = \mu^M(d^M \otimes 1_A + 1_M \otimes d^A).$$

Si (M, μ^M) est un A-module gradué, une dérivation de modules est un morphisme $d^M : M \to M$ vérifiant l’équation ci-dessus. Une différentielle de module est une dérivation de degré +1 et de carré nul. Si A est une algèbre différentielle graduée unitaire, on note $\text{Mod} A$ la catégorie des A-modules différentiels gradués unitaires.

Soit $f : A \to A'$ un morphisme de Alg. La restriction long de f d’un A'-module M est le A-module dont l’objet sous-jacent est M et dont la multiplication est $\mu^M(f \otimes 1)$. Le A'-module induit par f d’un A-module M a pour objet sous-jacent $M \otimes_A A'$ et pour multiplication $1 \otimes \mu^{A'}$. Soit A une algèbre augmentée et soit $i : A \to A$ l’injection canonique. Le foncteur restriction est une équivalence de $\text{Mod} A$ sur la catégorie des modules différentiels gradués sur A, son quasi-inverse est le foncteur induction.

Soit A une algèbre différentielle graduée et M et N deux modules différentiels gradués. Si f et g sont deux morphismes $M \to N$, une homotopie entre f et g est un morphisme gradué de A-modules $h : M \to N$ de degré -1 tel que $h \circ d + d \circ h = f - g$. Deux morphismes f et g sont homotopes s’il existe une homotopie entre f et g.

Modules libres

Soit A une algèbre de \mathbf{M}. Soit V un objet de \mathbf{M}'. Le morphisme $1_V \otimes \mu^A$ définit une structure de A-module sur $V \otimes A$. Un A-module M est libre sur V s’il existe un isomorphisme de A-modules $M \longrightarrow V \otimes A$. Un module différentiel gradué est presque libre s’il est libre en tant que module gradué.
Lemme 2.1.1.1 Soit A un objet de Alg_A. Soit M un objet de Mod_A et V un objet de GrC'.

a. L’application $f \mapsto f(1 \otimes \eta)$ est une bijection de l’ensemble des morphismes de modules gradués $V \otimes A \to M$ vers l’ensemble des morphismes gradués $V \to M$. L’application inverse associe à $g : V \to M$ le morphisme de modules

$$V \otimes A \xrightarrow{g \otimes 1} M \otimes A \xrightarrow{\mu} M.$$

b. L’application $d \mapsto d(1 \otimes \eta)$ est une bijection de l’ensemble E des dérivations des modules gradués $V \otimes A$ vers l’ensemble des morphismes gradués $g : V \to V \otimes A$. L’application inverse associe à $g : M \to N$ la différentielle

$$1 \otimes d^A + (1 \otimes \mu^A)(g \otimes 1).$$

Cette bijection fait correspondre le sous-ensemble de E formé des différentielles de modules au morphisme de degré $+1$ tel que

$$(1_V \otimes \mu^A)(g \otimes 1)g + (1 \otimes d^A)g = 0.$$

□

2.1.2 Comodules co-augmentés

Cogèbres co-augmentées, réduites

Une cogèbre (C, Δ) de M est co-unitaire si elle est munie d’un morphisme $\eta : C \to e$ tel que $(1 \otimes \eta)\Delta = (\eta \otimes 1)\Delta = 1$. Le morphisme η s’appelle la co-unité de C. Si C et C' sont deux cogèbres co-unitaires, un morphisme de cogèbres co-unitaires $f : C \to C'$ est un morphisme de cogèbres f tel que $\eta_C \cdot f = \eta_{C'}$. Le morphisme $e \to e \otimes e$ donné par la contrainte d’unitarité de la catégorie de base déﬁnit une structure de cogèbre co-unitaire sur l’objet neutre e. Une cogèbre C est co-augmentée si elle est munie d’un morphisme de cogèbres co-unitaires

$$\varepsilon : e \to C.$$

Le morphisme ε s’appelle la co-augmentation de la cogèbre C. Si C et C' sont deux cogèbres co-augmentées, un morphisme de cogèbres co-augmentées $f : C \to C'$ est un morphisme de cogèbres unitaires f tel que $f \varepsilon_C = \varepsilon_{C'}$.

Si C est une cogèbre co-augmentée de M, la cogèbre réduite \overline{C} est le conoyau de la co-augmentation. Si C est une cogèbre de M, la $\text{cogèbre co-augmentée}$ C^+ est la cogèbre dont l’objet sous-jacent est $C \oplus e$ et dont la comultiplication est le morphisme défini par les composantes

$$e \mapsto e \otimes e, \quad C \mapsto e \otimes C, \quad C \mapsto C \otimes e \quad \text{et} \quad C \xrightarrow{\Delta} C \otimes C,$$

où les trois premiers morphismes sont définis par la contrainte d’unitarité de la catégorie de base. La co-augmentation de C^+ est l’injection canonique $e \to C^+$. Si V est un objet gradué de C, on note T^cV la cogèbre $(T^cV)^+$. Soit Cogca la catégorie des cogèbres co-augmentées de CC dont les cogèbres réduites sont cocomplètes. Le foncteur

$$\text{Cogc} \to \text{Cogca}, \quad C \mapsto C^+,$$
est une équivalence dont le quasi-inverse est le foncteur $C \rightarrow \mathcal{C}$.

Comodules

Soit C une cogèbre de M. Un *C-comodule (à droite) dans M'* est un objet gradué N de M' muni d’un morphisme $\Delta^N : N \rightarrow N \otimes C$ (de degré 0 si $M' = \mathcal{G}rC$) tel que

$$(1 \otimes \Delta^C)\Delta^N = (\Delta^N \otimes 1)\Delta^N.$$

Si N et N' sont deux C-comodules, un *morphisme de C-comodules $f : N \rightarrow N'$* est un morphisme de M' tel que $\Delta^{N'} f = (f \otimes 1)\Delta^N$. Si la cogèbre C est co-unitaire, un C-comodule N est *co-unitaire* si $\Delta^N(1 \otimes \eta) = 1_N$.

Soit C une cogèbre graduée (resp. différentielle graduée). Un *C-comodule gradué* (resp. *différentiel gradué*) est un C-comodule dans la catégorie $\mathcal{G}rC'$ (resp. CC'). Si C est une cogèbre différentielle graduée, un comodule différentiel gradué est donc un objet N de $\mathcal{G}rC'$, muni d’une comultiplication $\Delta^N : N \rightarrow N \otimes C$ et d’une différentielle $d^N : N \rightarrow N$ telle que

$$\Delta^N d^N = (d^N \otimes 1_A + 1_N \otimes d^A)\Delta^N.$$

Si (N, Δ^N) est un C-comodule gradué, une *codérivation de comodules* est un morphisme $d^N : N \rightarrow N$ vérifiant l’équation ci-dessus. Une *différentielle de comodule* est une codérivation de degré $+1$ et de carré nul. Si la cogèbre C est co-unitaire, on note $\text{Com} C$ la catégorie des comodules différentiels gradués co-unitaires.

Soit $f : C \rightarrow C'$ un morphisme de Cog. La *corestriction le long de f* d’un C-comodule N est le C'-comodule dont l’objet sous-jacent est N et dont la comultiplication est $(1 \otimes f)\Delta^N$. Le *C-comodule co-induit par f associé à un C'-comodule N* a pour objet sous-jacent le noyau

$$\ker(N \otimes C \xrightarrow{u} N \otimes C' \otimes C),$$

où $u = \Delta^N \otimes 1_C - (1_N \otimes f \otimes 1_C)(1_N \otimes \Delta^C)$, et pour comultiplication le morphisme induit par $1^N \otimes \Delta^C : N \otimes C \rightarrow N \otimes C \otimes C$.

Soit C une cogèbre co-augmentée et soit $p : C \rightarrow \mathcal{C}$ la projection canonique. Le *foncteur corestriction* est une équivalence de la catégorie $\text{Com} C$ sur la catégorie des \mathcal{C}-comodules différentiels gradués. Son quasi-inverse est le *foncteur co-induction*.

Soit C une cogèbre différentielle graduée et soit N et N' deux comodules différentiels gradués. Si f et g sont deux morphismes $N \rightarrow N'$, une *homotopie entre f et g* est un morphisme gradué de C-comodules $h : N \rightarrow N'$ de degré -1 tel que $h \circ d + d \circ h = f - g$. Deux morphismes f et g sont *homotopes* s’il existe une homotopie entre f et g.

Comodules cocomplètes

Soit C une cogèbre co-augmentée de M et N un C-comodule co-unitaire dans M'. On définit $\Delta^{(2)} = \Delta^N$ et, pour tout $n \geq 3$, on définit $\Delta^{(n)} : N \rightarrow N \otimes C^\otimes n - 1$ par

$$\Delta^{(n)} = (1^\otimes n - 2 \otimes \Delta^C)\Delta^{(n-1)}.$$

Soit $n \geq 1$. Le noyau $N_{[n]}$ du morphisme

$$N \xrightarrow{\Delta^{(n+1)}} N \otimes C^\otimes n \xrightarrow{1 \otimes p^n} N \otimes \mathcal{C}^\otimes n$$
(où \(p : C \rightarrow \overline{C} \) est la projection canonique) est un sous-comodule de \(N \). Il s'appelle le sous-comodule des \(n \)-primitifs de \(N \). Pour \(n = 1 \), on obtient le sous-comodule des primitifs de \(N \). La suite croissante de sous-comodules
\[
N_{[1]} \subset N_{[2]} \subset N_{[3]} \subset \cdots
\]
est la filtration primitive du comodule \(N \). Si \(C \) est un objet de \(\text{Cogca} \), un \(C \)-comodule différentiel gradué co-unitaire \(N \) est \textit{cocomplet} si sa filtration primitive est exhaustive. On note \(\text{Comc} C \) la catégorie des comodules cocomplets.

Comodules colibres

Soit \(C \) une cogèbre co-augmentée dans \(M \). Soit \(V \) un objet de \(M' \). Le morphisme
\[
1 \otimes \Delta^C : V \otimes C \rightarrow V \otimes C \otimes C
\]
munit \(V \otimes C \) d’une structure de \(C \)-comodule. Son sous-comodule des primitifs est le comodule \(V \otimes e \).

Pour \(n \geq 2 \), son sous-comodule des \(n \)-primitifs est le \(C \)-comodule \(V \otimes C_{[n-1]} \). Le \(C \)-comodule \(V \otimes C \) est donc cocomplet si \(C \) est un objet de \(\text{Cogca} \). Un \(C \)-module \(N \) est \textit{colibre sur} \(V \) s’il existe un isomorphisme de \(C \)-comodules \(N \cong V \otimes C \). Si \(C \) est un objet de \(\text{Cogca} \), un comodule différentiel gradué est \textit{presque colibre} s’il est libre en tant que comodule gradué. La sous-catégorie de \(\text{Comc} C \) formée des objets presque colibres est notée \(\text{prcol} C \).

Lemme 2.1.2.1 Soit \(C \) une cogèbre différentielle graduée co-unitaire, \(N \) un objet dans \(\text{Comc} C \) et \(V \) un objet gradué.

\begin{enumerate}
\item L’application \(f \mapsto (1 \otimes \eta^C) f \) est une bijection de l’ensemble des morphismes de comodules gradués \(N \rightarrow V \otimes C \) sur l’ensemble des morphismes gradués \(N \rightarrow V \). L’application inverse envoie \(g : N \rightarrow V \) sur le morphisme de \(C \)-comodules
\[
N \xrightarrow{\Delta} N \otimes C \xrightarrow{g \otimes 1} V \otimes C.
\]
\item L’application \(d \mapsto (1 \otimes \eta^C) d \) est une bijection de l’ensemble
\[
\text{coder}(V \otimes C)
\]
des codérivations du comodule \(V \otimes C \) sur l’ensemble des morphismes gradués \(g : V \otimes C \rightarrow V \). L’application inverse envoie \(g \) sur la codérivation
\[
(g \otimes 1)(1_V \otimes \Delta^C) + 1_V \otimes d^C.
\]
Cette bijection fait correspondre les différentielles de comodules aux morphismes gradués de degré +1 tels que
\[
g(1_V \otimes d^C) + g(g \otimes 1_C)(1_V \otimes \Delta^C) = 0.
\]
\end{enumerate}
2.2 Comc C comme catégorie de modèles

2.2.1 Cochaîne tordante et produits tensoriels tordus

Définition 2.2.1.1 Soit C une cogèbre différentielle graduée et A une algèbre différentielle graduée. Une cochaîne tordante est un morphisme gradué $\tau : C \to A$ de degré +1 tel que

$$d_{\tau} + \tau d_C + m(\tau \circ \tau)\Delta = 0.$$

Si $f : A \to A'$ est un morphisme dans Alg (resp. si $g : C' \to C$ est un morphisme dans Cog) la composition $f \circ \tau$ (resp. $\tau \circ g$) est encore une cochaîne tordante. Ainsi, une cochaîne tordante $\tau : C \to A$ induit une cochaîne tordante $\tau^t = i \circ \tau \circ p : C^+ \to A^+$, où i est l’injection canonique $A \to A^+$ et p la projection canonique $C^+ \to C$. Soit A un objet de Alg et C un objet de Cog. Une cochaîne tordante $C \to A$ est admissible si elle est induite par une cochaîne tordante $\tau : A \to C$.

Soit A une algèbre différentielle graduée augmentée et C une cogèbre différentielle graduée co-augmentée. Soit $\tau : C \to A$ une cochaîne tordante admissible. Soit M un objet de Mod A. Soit le morphisme $t_\tau : M \otimes C \to M \otimes C$ défini comme la composition

$$M \otimes C \xrightarrow{1 \otimes \Delta} M \otimes C \otimes C \xrightarrow{1 \otimes \tau \otimes 1} M \otimes A \otimes C \xrightarrow{\mu^M \otimes 1} M \otimes C.$$

Comme τ est une cochaîne tordante, la somme

$$b_\tau = b + t_\tau : M \otimes C \longrightarrow M \otimes C$$

où b est la différentielle du produit tensoriel $M \otimes C$, donne une différentielle sur le C-comodule gradué co-unitaire $M \otimes C$. Le produit tensoriel $M \otimes C$ muni de la différentielle tordue (par τ) b_τ est noté $M \otimes_{\tau} C$. Si M et M' sont deux objets de Mod A, un morphisme $f : M \to M'$ induit un morphisme de C-comodules gradués co-unitaires $f \otimes 1_C : M \otimes_{\tau} C \to M' \otimes_{\tau} C$ compatible aux différentielles. Nous obtenons ainsi un foncteur

$$R_\tau : \text{Mod } A \to \text{Com } C, \quad M \mapsto M \otimes_{\tau} C.$$

Lorsqu’il n’y aura pas d’ambiguïté nous noterons ce foncteur R.

De manière duale, si N est C-comodule différentiel gradué co-unitaire, le morphisme T_τ est défini comme la composition

$$N \otimes A \xrightarrow{\Delta^N \otimes 1} N \otimes C \otimes A \xrightarrow{1 \otimes \tau \otimes 1} N \otimes A \otimes A \xrightarrow{\mu^A} N \otimes C.$$

La somme de la différentielle D du produit tensoriel $N \otimes A$ et du morphisme T_τ définit une nouvelle différentielle sur l’A-module gradué unitaire $N \otimes A$. Le produit tensoriel $N \otimes A$ muni de la différentielle tordue (par τ) $D_\tau = D + T_\tau$ est noté $N \otimes_{\tau} A$. Si N et N' sont deux objets de Comc C, un morphisme $f : N \to N'$ induit un morphisme de A-modules gradués unitaires $f \otimes 1_A : N \otimes_{\tau} A \to N' \otimes_{\tau} A$ compatible aux différentielles. Nous obtenons ainsi un foncteur

$$L_\tau : \text{Com } C \to \text{Mod } A, \quad N \to N \otimes_{\tau} A$$

que nous noterons L lorsqu’il n’y aura pas d’ambiguïté.

Lemme 2.2.1.2 Le foncteur $L : \text{Com } C \to \text{Mod } A$ est adjoint à gauche au foncteur $R : \text{Mod } A \to \text{Com } C$.

Démonstration : Soit N un objet de $\text{Com} C$ et M un objet de $\text{Mod} A$. Nous allons donner la bijection fonctorielle

$$\phi : \text{Hom}_{\text{Mod} A} (LN, M) \rightarrow \text{Hom}_{\text{Com} C} (N, RM).$$

Soit $f : LN \rightarrow M$ un morphisme de $\text{Mod} A$. Par le lemme 2.1.1.1, il est déterminé par sa composition $\alpha = f \circ (1_N \otimes \eta^A) : N \rightarrow M$. Par le lemme 2.1.2.1, le morphisme α détermine à son tour un morphisme gradué de C-comodules co-unitaires $\phi(f) : N \rightarrow RM$ tel que $(1 \otimes \eta^C) \phi(f) = \alpha$. On vérifie que la condition $b_\tau \phi(f) - \phi(f) d_N = 0$ équivaut à la condition $d_M f - f D_\tau = 0$. \square

Définition 2.2.1.3 Une cochaîne tordante admissible $\tau : C \rightarrow A$ est acyclique si, pour tout objet M de $\text{Mod} A$, le morphisme d’adjonction

$$\phi : LRM \rightarrow M$$

est un quasi-isomorphisme (voir la proposition 2.2.4.1 ci-dessous pour des conditions équivalentes).

Notation 2.2.1.4 (Construction bar et cobar) Soit A un objet de Alga. Nous notons $B^+ A$ la cogèbre co-augmentée $(B \underline{A})^+$, où \underline{A} est l’algèbre réduite associée à A. Attention à ne pas confondre les cogèbres co-augmentées $B^+ A$ et $(BA)^+$. Soit C un objet de Cogca. Nous notons Ω^C l’algèbre augmentée $(\Omega \underline{C})^+$, où \underline{C} est le cogèbre réduit associée à C. Elle n’est pas isomorphe à $(\Omega C)^+$.

Lemme 2.2.1.5 a. Soit A un objet de Alga. Soit $p : B \underline{A} \rightarrow S \underline{A}$ la projection canonique. La composition

$$\tau_A : B^+ A \rightarrow B \underline{A} \xrightarrow{\omega_{op}} \underline{A} \rightarrow A,$$

où la première flèche est la projection canonique et la dernière l’injection canonique, est une cochaîne tordante admissible. La cochaîne τ_A est universelle parmi les cochaînes tordantes admissibles de but A, i. e. si C est un objet de Cogca et $\tau : C \rightarrow A$ est une cochaîne tordante admissible, il existe un unique morphisme g_τ tel que $\tau_A \circ g_\tau = \tau$.

b. De façon duale, nous associons à un objet C de Cogca une cochaîne tordante admissible

$$\tau_C : C \rightarrow \underline{C} \xrightarrow{i_{op}} \Omega \underline{C} \rightarrow \Omega^+ C$$

où $i : S^{-1} \underline{C} \rightarrow \Omega \underline{C}$ est l’injection canonique. La cochaîne τ_C est universelle parmi les cochaînes tordantes admissibles de source C, i. e. si $\tau : C \rightarrow A$ est une cochaîne tordante admissible, il existe un unique morphisme f_τ tel que $f_\tau \circ \tau_C = \tau$.

Démonstration : Soit C un objet de Cogca et A un objet de Alga. Soit $\tau : C \rightarrow A$ un morphisme gradué de degré +1 dont la composition avec la co-augmentation de C et l’augmentation de A est nulle. Soit

$$f_\tau : \Omega^+ C \rightarrow A$$

le morphisme gradué d’algèbres augmentées relevant (1.1.2.1) la composition $\tau \circ s$ et

$$g_\tau : C \rightarrow B^+ A$$

le morphisme gradué de cogèbres co-augmentées relevant (1.1.2.2) la composition $s \circ \tau$. Par la démonstration du lemme 1.2.2.5, le morphisme gradué τ est une cochaîne tordante si et seulement si f_τ est compatible aux différentielles si et seulement si g_τ est compatible aux différentielles.

a. La composition $\omega \circ p : B \underline{A} \rightarrow \underline{A}$ est une cochaîne tordante car le relèvement (1.1.2.2) de $p : B \underline{A} \rightarrow S \underline{A}$ est l’identité de la cogèbre $B \underline{A}$ (et cette dernière commute évidemment à la différentielle de $B \underline{A}$). L’universalité est immédiate. \square

b. Idem.
Définition 2.2.1.6 On appelle τ_A la cochaîne tordante universelle de A et τ_C la cochaîne tordante universelle de C.

Remarque 2.2.1.7 Dans [HMS74], le foncteur

\[R_{\tau_A} : \text{Mod} A \rightarrow \text{Comc} B^+A, \quad M \mapsto M \otimes_{\tau_A} B^+A, \]

est noté $B_A M$.

Remarque 2.2.1.8 Le foncteur restriction le long de f_τ et

\[\text{Ind} : \text{Mod} \Omega^+C \rightarrow \text{Mod} A \]

le foncteur induction. On sait que (Ind, Res) est une paire de foncteurs adjoints de la catégorie $\text{Mod} \Omega^+C$ vers la catégorie $\text{Mod} A$. Notons

\[\text{Res}_{\text{op}} : \text{Comc} C \rightarrow \text{Comc} B^+A \]

le foncteur corestriction le long de g_τ et

\[\text{Ind}_{\text{op}} : \text{Comc} B^+A \rightarrow \text{Comc} C \]

le foncteur co-induction. On sait que ($\text{Res}_{\text{op}}, \text{Ind}_{\text{op}}$) est une paire de foncteurs adjoints de la catégorie $\text{Comc} C$ vers la catégorie $\text{Comc} B^+A$.

Démonstration : a. Soit M un objet de $\text{Mod} A$. Montrons que $LRM = (M \otimes B^+A \otimes A, d)$ est une résolution (dité résolution bar normalisée) de M

\[\text{bar}_A(M) = \cdots \rightarrow M \otimes \overline{A}^{s1} \otimes A \rightarrow \cdots \rightarrow M \otimes \overline{A} \otimes A \rightarrow M \otimes A, \]

et que le morphisme Φ correspondant au morphisme $\text{bar}_A(M) \rightarrow M$ est un quasi-isomorphisme. Comme dans le cas où M est concentré en degré 0, (voir [CE99, IX.6] où ce complexe se nomme le complexe standard normalisé) les morphismes

\[h_{i-1} = 1^{s1} \otimes p \otimes \varepsilon : M \otimes \overline{A}^{s1-1} \otimes A \rightarrow M \otimes \overline{A}^{s1} \otimes A, \]

où p est la projection canonique, définissent une homotopie contractante du complexe

\[\cdots \rightarrow M \otimes \overline{A}^{s1} \otimes A \rightarrow \cdots \rightarrow M \otimes \overline{A} \otimes A \rightarrow M \otimes A \rightarrow M \rightarrow 0. \]
b. Soit M un objet de $\text{Mod} \Omega^\times C$. Montrons que $\Phi : LRM \to M$ est un quasi-isomorphisme filtré. Munissons ΩC de la filtration induite par la filtration primitive de C considéré comme cogèbre. Nous avons alors une filtration de $\Omega^\times C$ définie par la suite

$$(\Omega^\times C)_i = (\Omega C)_i \oplus e, \quad i \geq 0.$$

Munissons C, considéré comme objet de $\text{Com} C$, de sa filtration primitive de C-module (nous la complètons par $C_{[0]} = e$). Munissons M de la filtration définie par la suite $M_i = M$, $i \geq 0$. Ces filtrations induisent sur $LRM = (M \otimes C \otimes \Omega^\times C)$ une filtration de complexes. Le morphisme $\Phi : LRM \to M$ devient un morphisme filtré pour ces filtrations. Il induit un morphisme $\text{Gr}_0(LRM) \to \text{Gr}_0 M$ qui est l'identité de M. Comme $\text{Gr}_i M = 0$ pour tout $i \geq 1$, il nous suffit de montrer que $\text{Gr}_i(LRM)$, $i \geq 1$, est contractile. Soit $i \geq 1$. Par construction, nous avons un isomorphisme d'objets gradués

$$\text{Gr}_i(LRM) = M \otimes e \otimes \text{Gr}_i \Omega^\times C \oplus \bigoplus_{i_1 + i_2 = i, i_1 \neq 0} M \otimes \text{Gr}_{i_1} C \otimes \text{Gr}_{i_2} \Omega^\times C.$$

La différentielle a pour matrice

$$\begin{bmatrix} 0 & \rho \\ 0 & 0 \end{bmatrix}$$

où ρ est le morphisme induit par T_{γ_C}.

$$\bigoplus_{i_1 + i_2 = i, i_1 \neq 0} M \otimes \text{Gr}_{i_1} C \otimes \text{Gr}_{i_2} \Omega^\times C \to M \otimes e \otimes \text{Gr}_i \Omega^\times C.$$

Ce dernier est un isomorphisme car il est induit par l'isomorphisme

$$\bigoplus_{i_1 + i_2 = i, i_1 \neq 0} \text{Gr}_{i_1} C \otimes \text{Gr}_{i_2} \Omega^\times C \to \text{Gr}_i \Omega^\times C.$$

\[\square\]

2.2.2 Comc C comme catégorie de modèles

Soit C un objet de Cogca. Dans cette section, nous allons munir $\text{Comc} C$ d’une structure de catégorie de modèles. Nous commençons par rappeler la structure de catégorie de modèles sur $\text{Mod} A$, où A est un objet de Alga et nous énonçons ensuite le théorème principal (2.2.2.2). Nous ne détaillerons pas toute sa démonstration car elle est similaire à celle de (1.3.1.2). Seul les points qui diffèrent seront développés.

Rappels sur la catégorie $\text{Mod} A$

Soit A une algèbre différentielle graduée unitaire. Dans la catégorie $\text{Mod} A$, considérons les trois classes de morphismes suivantes
- la classe Qis des quasi-isomorphismes,
- la classe Fib des morphismes $f : M \to M'$ tels que f^n est un épimorphisme pour tout $n \in \mathbb{Z}$,
- la classe Cof des morphismes qui ont la propriété de relèvement à gauche par rapport aux morphismes appartenant à $Qis \cap Fib$.

Théorème 2.2.2.1 (Hinich [Hin97]) La catégorie $\text{Mod} A$ munie des classes de morphismes définies ci-dessus est une catégorie de modèles. Tous les objets sont fibrants. Les objet cofibrants sont décrits dans la remarque 2.2.2.10 ci-dessous.

Le théorème principal

Soit A un objet de $\text{Alg} a$ et C un objet de $\text{Cogc} a$. Soit $\tau : C \to A$ une cochaîne tordante admissible acyclique. Dans la catégorie $\text{Comc} C$ des comodules différentiels gradués co-unitaires cocomplets, nous considérons les trois classes de morphismes suivantes :

- la classe $\mathcal{E}q$ des équivalences faibles est formée des morphismes $f : N \to N'$ tels que $L_f : LN \to LN'$ est un quasi-isomorphisme de modules,
- la classe $\mathcal{C}of$ des cofibrations est formée des morphismes $f : N \to N'$ qui, en tant que morphismes de complexes, sont des monomorphismes,
- la classe $\mathcal{F}ib$ des fibrations est formée des morphismes qui ont la propriété de relèvement à droite par rapport aux cofibrations triviales.

Théorème 2.2.2.2

a. La catégorie $\text{Comc} C$ munie des trois classes de morphismes ci-dessus est une catégorie de modèles. Tous ses objets sont cofibrants. Un objet de $\text{Comc} C$ est fibrant si et seulement si il est un facteur direct d’un objet RM, où M est un objet de $\text{Mod} A$.

b. Munissons la catégorie $\text{Mod} A$ de la structure de catégorie de modèles du théorème 2.2.2.1. La paire de foncteurs adjoints (L, R) de $\text{Comc} C$ dans $\text{Mod} A$ est une équivalence de Quillen.

c. La structure de catégorie de modèles sur $\text{Comc} C$ ne dépend pas de la cochaîne tordante admissible acyclique τ.

En particulier, la catégorie $\text{Ho} \text{Comc} C$ est équivalente à la catégorie dérivée $\mathcal{D}A$ (voir la définition dans 2.2.3). Le théorème 2.2.2.2 et le lemme 2.2.1.9 implique le corollaire suivant :

Corollaire 2.2.2.3 La catégorie $\text{Comc} C$ admet une unique structure de catégorie de modèles telle que pour toute cochaîne tordante admissible acyclique $\tau : C \to A$, où A est un objet de $\text{Alg} a$, le couple de foncteurs adjoints (L, R) est une équivalence de Quillen.

Définition 2.2.2.4 Nous appelons la structure de catégorie de modèles sur $\text{Comc} C$ du corollaire la structure canonique.

Pour montrer le théorème 2.2.2.2, nous avons besoin (comme pour la démonstration du théorème 1.3.1.2) d’introduire des filtrations.

Si l’algèbre A (resp. la cogèbre C) est filtrée, un A-module différentiel gradué filtré (resp. C-comodule différentiel gradué filtré) est un A-module (resp. C-comodule) dans la catégorie des complexes filtrés. Un C-comodule filtré M est admissible si sa filtration est exhaustive et si $M_0 = 0$. Par définition, tous les objets de $\text{Comc} C$, munis de leur filtration primitive sont admissibles.
Lemme 2.2.2.5 Si \(C\) est munie d’une filtration exhaustive de cogèbres telle que \(C_0 = e\), un quasi-isomorphisme filtré de \(C\)-comodules admissibles est une équivalence faible.

Démonstration : Soit \(f : N \to N'\) un quasi-isomorphisme filtré de \(C\)-comodules admissibles. La filtration de \(N\) induit une filtration de \(A\)-module définie par la suite

\[(LN)_i = N_i \otimes A, \quad i \geq 0.\]

La différentielle de \((LN)_i\), \(i \geq 0\), est la somme de la différentielle du produit tensoriel \(N_i \otimes A\) et de la contribution de \(D_\tau\). Comme la filtration de \(N\) est admissible et que la cochaîne \(\tau : C \to A\) est admissible, la contribution de \(D_\tau\) fait décroître la filtration de \(LN\). Ainsi, la différentielle de

\[Gr LN \sim \to Gr N \otimes A\]

est celle du produit tensoriel \(Gr N \otimes A\) et le morphisme \(Lf\) est bien un quasi-isomorphisme de \(A\)-modules. □

Lemme 2.2.2.6 a. Soit \(M\) et \(M'\) deux objets de \(\text{Mod} A\). Le foncteur \(R\) envoie un quasi-isomorphisme \(f : M \to M'\) sur une équivalence faible \(Rf : RM \to RM'\) dans \(\text{Comc} \ C\).

b. Soit \(M\) un objet de \(\text{Mod} A\). Le morphisme d’adjonction

\[\Phi : LRM \longrightarrow M\]

est un quasi-isomorphisme de \(A\)-modules.

c. Soit \(N\) un objet de \(\text{Comc} \ C\). Le morphisme d’adjonction

\[\Psi : N \longrightarrow RLN\]

est une équivalence faible de \(\text{Comc} \ C\).

Démonstration :

b. La cochaîne \(\tau\) est acyclique.

a. Le morphisme \(Rf\) est une équivalence faible si et seulement si \(LRf\) est un quasi-isomorphisme. Par le point b, \(\Phi\) est un quasi-isomorphisme. Par ailleurs, on a

\[\Phi_M \circ f = LRf \circ \Phi_{M'}\]

La saturation des quasi-isomorphismes dans \(\text{Mod} A\) nous donne le résultat.

c. Nous voulons montrer que \(\Psi\) est une équivalence faible, c’est-à-dire que \(L\Psi : LN \to LR LN\) est un quasi-isomorphisme. Nous savons que

\[\Phi_{LN} \circ L\Psi_N = 1_{LN}\]

et que \(\Phi\) est un quasi-isomorphisme. Le morphisme \(L\Psi\) est donc aussi un quasi-isomorphisme. □

Rappelons la description de [Hin97] des cofibrations de \(\text{Mod} A\). Les cofibrations standard (resp. triviales) de \(\text{Mod} A\) sont définies comme dans la définition 1.3.2.5, à la différence près que \(M^2\) désigne le complexe sous-jacent à un objet \(M\) de \(\text{Mod} A\) et que \(FV\) désigne le module différentiel gradué libre sur un complexe \(V\). Nous avons alors la même description (voir juste dessous 1.3.2.5) des cofibrations (resp. triviales) de \(\text{Mod} A\) à partir des cofibrations standard (resp. triviales).
Lemme 2.2.2.7 Soit N un objet de $\text{Comc}C$ et N' un sous-objet de N tel que $\Delta N \subset N \otimes e \oplus N' \otimes C$. Le foncteur L envoie l’inclusion $N' \hookrightarrow N$ sur une cofibration standard.

Démonstration : Soit E le conoyau de l’inclusion $N' \hookrightarrow N$. Choisissons un scindage dans la catégorie des objets gradués

$$N \sim \to N' \oplus E.$$

Selon cette décomposition, la comultiplication Δ^N est donnée par deux composantes

$$\Delta^N : N' \to N' \otimes C \quad \text{et} \quad \Delta^E = \left[\begin{array}{c} \Delta^E_1 \\ \Delta^E_2 \end{array} \right] : E \to N \otimes e \oplus N' \otimes C,$$

et la différentielle est donnée par la différentielle de N', celle de E et un morphisme

$$d' : E \to N'.$$

Nous avons un isomorphisme d’objets gradués

$$LN \sim \to LN' \oplus LE.$$

La différentielle est la somme de celle de $LN' \oplus LE$, du morphisme

$$d' \otimes 1 : E \otimes A \to N' \otimes A$$

et du morphisme d'_τ qui est la composition

$$E \otimes A \xrightarrow{\Delta^E \otimes 1} N' \otimes C \otimes A \xrightarrow{1 \otimes \tau \otimes 1} N' \otimes A \otimes A \xrightarrow{1 \otimes \mu^A} N' \otimes A.$$

Remarquons qu’il n’y a pas de contribution de Δ^E_1 car la cochaîne τ est admissible. Posons

$$D' = (d' \otimes 1 + d'_\tau)s : S^{-1}E \to N' \otimes A.$$

Nous vérifions que LN est isomorphe à

$$LN'(S^{-1}E, D').$$

□

Lemme 2.2.2.8

a. Le foncteur L préserve les cofibrations et les équivalences faibles.

b. Le foncteur R préserve les fibrations et les équivalences faibles.

Démonstration :

a. Soit $j : N' \hookrightarrow N$ une cofibration de $\text{Comc}C$. Soit la filtration de N donnée par la suite

$$N_i = j(N') + N_{[i]}, \quad i \geq 0,$$

où $N_{[i]}, i \geq 1$, est la filtration primitive de N (complétée par $N_0 = 0$). Remarquons que, pour tout $i \geq 1$, nous avons

$$\Delta N_i \subset N_i \otimes e \oplus N_{i-1} \otimes C.$$

Nous pouvons donc appliquer le lemme 2.2.2.7. Il certifie que $LN_i \to LN_{i+1}$ est une cofibration standard. Le morphisme $L_j : LN' \to LN$ est ainsi la composition dénombrable des cofibrations standard $LN_i \to LN_{i+1}$, il est donc une cofibration. Par définition des équivalences faibles dans $\text{Comc}C$, le foncteur L préserve les équivalences faibles.

b. Par le point a et l’adjonction (L, R, ϕ) de $\text{Comc}C$ dans $\text{Mod}A$, le foncteur R conserve les fibrations. Le fait qu’il conserve les équivalences faibles est le point a du lemme 2.2.2.6. □
Lemme 2.2.2.9 Soit M un objet de $\text{Mod} A$ et N un objet de $\text{Comc} C$. Soit une fibration $p : M \to LN$ de $\text{Mod} A$. Le morphisme $j : RM \prod_{RLN} N \to RM$ de comodules du diagramme cartésien

$$\begin{array}{ccc}
RM \prod_{RLN} N & \xrightarrow{j} & N \\
\downarrow_{\text{cart.}} & & \downarrow_{\Psi} \\
RM & \xrightarrow{R_{p}} & RLN.
\end{array}$$

est une cofibration triviale de $\text{Comc} C$.

Démonstration : Soit K le noyau de p. Nous avons des isomorphismes d'objets gradués

$$RM \xrightarrow{\sim} RK \oplus RLN, \quad RM \prod_{RLN} N \xrightarrow{\sim} RK \oplus N.$$

Le morphisme j s'écrit alors

$$\begin{bmatrix}
1 & 0 \\
0 & \Psi
\end{bmatrix}.$$

Nous avons donc un diagramme de $\text{Mod} A$

$$\begin{array}{cccc}
0 & \xrightarrow{L_{1}} & LRK & \xrightarrow{Lj} & L \left(RM \prod_{RLN} N\right) & \xrightarrow{L_{\Psi}} & LN & \xrightarrow{0} \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & \\
0 & \xrightarrow{L_{1}} & LRK & \xrightarrow{R_{p}} & RM & \xrightarrow{L_{\Psi}} & LRLN & \xrightarrow{0},
\end{array}$$

où les lignes sont exactes et où la flèche verticale de droite et celle de gauche sont des quasi-isomorphismes. Le morphisme Lj est donc un quasi-isomorphisme, et j est une équivalence faible de $\text{Comc} C$. Il est clairement un monomorphisme, donc une cofibration de $\text{Comc} C$.

Démonstration du théorème 2.2.2.2

Par les lemmes ci-dessus, la démonstration du fait que les classes E_{q}, C_{of} et F_{ib} définissent une structure de catégorie de modèles est la même que celle du théorème 1.3.1.2.

Objets cofibrants et objets fibrants de $\text{Comc} C$

Tous les objets de $\text{Comc} C$ sont cofibrants puisque les cofibrations sont les monomorphismes.

Montrons qu’un objet de $\text{Comc} C$ est fibrant si et seulement si il est un facteur direct d’un objet RM, où M est un objet de $\text{Mod} A$. Nous rappelons (2.2.2.1) que tous les objets de $\text{Mod} A$ sont fibrants. Par le lemme 2.2.2.8, l’image du foncteur R est donc formé d’objets fibrants de $\text{Comc} C$. Ainsi, tous les objets de la forme RM et leurs facteurs directs sont fibrants. Réciproquement si N est fibrant, par l’axiome (CM4), le morphisme $\Psi : N \to RLN$ (qui est une cofibration triviale) est scindé. L’objet N est donc un facteur direct de RLN.

Remarque 2.2.2.10 La dualisation de cette démonstration montre que les objets cofibrants de $\text{Mod} A$ sont les facteurs directs des LN, $N \in \text{Comc} C$.

Le point b du théorème 2.2.2.2 est un corollaire du lemme 2.2.2.5. Il nous reste à montrer le point c.

Unicité de la structure de catégorie de modèles sur Comc C

Soit A' un objet de Alg. Soit $\tau' : A' \to C$ une cochaîne tordante admissible acyclique. Nous voulons montrer que la structure de catégorie de modèles sur Comc C (définie au point a de 2.2.2.2) relative à τ est la même que celle relative à τ'.

Il suffit de le montrer dans le cas où τ' est la cochaîne universelle τ_C. Nous allons montrer que les classes des cofibrations et les classes des équivalences faibles relatives aux deux structures coïncident. C’est vrai pour les cofibrations puisqu’elles sont les monomorphismes. Nous rappelons (2.2.1.8) que la paire de foncteurs adjoints (L_τ, R_τ) de Mod A vers Comc C est la composition de la paire (Ind, Res) avec la paire (L_{τ_C}, R_{τ_C}). Comme le foncteur Res induit une équivalence entre les localisations de Mod A et Mod Ω^+C par rapport aux quasi-isomorphismes (voir [Kel94a, exple 6.1]), les équivalences faibles des deux structures sur Comc C coïncident par le point b du théorème 2.2.2.2.

Quasi-isomorphismes filtrés et équivalences faibles

Nous notons Qisf la classe des morphismes $f : N \to N'$ tels que C admet une filtration exhaustive de cogèbre telle que $C_0 = e$ et tels que N et N' admettent des filtrations admissibles de C-comodules pour lesquelles f est un quasi-isomorphisme filtré. Le lemme 2.2.2.5 montre que nous avons une inclusion

$$\text{Qisf} \subset \mathcal{E}_q.$$

On rappelle (voir appendice A) que la catégorie homotopique $\text{Ho Comc} C$ est la localisation

$$\left(\text{Comc} C\right)[\mathcal{E}_q^{-1}].$$

Lemme 2.2.2.11 Le foncteur canonique

$$\left(\text{Comc} C\right)[\text{Qisf}^{-1}] \xrightarrow{\sim} \text{Ho Comc} C$$

est une équivalence.

Démonstration : La démonstration est similaire à celle du point a de la proposition 1.3.5.1. Nous vérifions que le morphisme d’adjonction

$$\Psi : N \to R_{\tau_C}L_{\tau_C}N$$

est un morphisme quasi-isomorphisme filtré pour la filtration primitive sur N et la filtration sur $R_{\tau_C}L_{\tau_C}N$ induite par les filtrations primitives de N et C. Le morphisme $R_{\tau_C}L_{\tau_C}f$ est clairement un quasi-isomorphisme filtré. La propriété de saturation des quasi-isomorphismes filtrés appliquée à l’égalité $RLf \circ \Psi_N = \Psi_{N'} \circ f$ nous donne le résultat. □
2.2.3 Structure triangulée sur \(\text{Ho} \text{Comc} \ C \)

Rappel sur la structure triangulée sur \(\text{Ho} \text{Mod} \ A \)

Rappelons qu’une catégorie de Frobenius est une catégorie exacte au sens de Quillen [Qui73] qui possède assez d’injectifs et assez de projectifs et dont la classe des projectifs coïncide avec celle des injectifs. Il est connu [Hel60], [Hap87], [KV87] que le quotient d’une catégorie de Frobenius \(A \) par l’idéal des morphismes se factorisant par un projectif est une catégorie triangulée [Ver77]. On l’appelle la catégorie stable associée à \(A \).

Soit \(A \) une algèbre différentielle graduée unitaire. La catégorie \(\text{Mod} \ A \), munie de la classe \(E \) formée des suites exactes

\[
0 \rightarrow M' \xrightarrow{f} M \xrightarrow{g} M'' \rightarrow 0
\]

qui sont scindées dans la catégorie de modules gradués, est une catégorie exacte. La classe des objets injectifs est formée des complexes de la forme

\[
IM = \left(M \oplus SM, \begin{pmatrix} 0 & \omega \\ 0 & 0 \end{pmatrix} \right), \quad M \in \text{Mod} \ A.
\]

Elle coïncide avec la classe des objets projectifs. La catégorie \(\text{Mod} \ A \) est donc une catégorie de Frobenius. Nous notons \(\mathcal{H} \text{A} \) la catégorie stable associée à \(\text{Mod} \ A \). Elle est une catégorie triangulée. Son foncteur suspension est le foncteur \(M \mapsto SM \). Ses triangles standard proviennent des suites exactes de \(E \). Les quasi-isomorphismes de \(\text{Mod} \ A \) sont exactement les morphismes \(f \) dont l’image \(f \) par le foncteur canonique \(\text{Mod} \ A \rightarrow \mathcal{H} \text{A} \) s’insère dans un triangle

\[
N \rightarrow M \xrightarrow{f} M' \rightarrow SN,
\]

où \(N \) est acyclique. La catégorie dérivée \(\mathcal{D} \text{A} \) est la localisation de la catégorie \(\mathcal{H} \text{A} \) par rapport aux quasi-isomorphismes. Les triangles standard de \(\mathcal{D} \text{A} \) sont l’image par le foncteur

\[
Q : \mathcal{H} \text{A} \rightarrow \mathcal{D} \text{A}
\]

des triangles standard de \(\mathcal{H} \text{A} \). La catégorie dérivée \(\mathcal{D} \text{A} \), munie de l’endofoncteur suspension est triangulée pour la classe des triangles distingués, i. e. les triangles isomorphes à des triangles standard. Si \(f \) est un morphisme de \(\text{Mod} \ A \), on note \(C(f) \) son cône. Si

\[
0 \rightarrow M' \xrightarrow{i} M \xrightarrow{p} M'' \rightarrow 0
\]

est une suite exacte (non nécessairement scindée) de \(\text{Mod} \ A \), le morphisme \([p, 0] : C(i) \rightarrow M'' \) est un quasi-isomorphisme et la suite

\[
M' \xrightarrow{Q_i} M \xrightarrow{Q_p} M'' \xrightarrow{\delta} SM',
\]

où le morphisme \(\delta \) est le morphisme de \(\mathcal{D} \text{A} \) défini par

\[
M'' \xrightarrow{[p, 0]} C(i) \xrightarrow{[-1, 0]} SM',
\]

est un triangle distingué de \(\mathcal{D} \text{A} \).
Structure triangulée sur Ho InvComc

Soit C un objet de Cogca. La catégorie $\text{Comc}C$, munie de la classe \mathcal{F} des suites exactes courtes qui sont scindées dans la catégorie des comodules gradués, est une catégorie de Frobenius dont la classe des objets injectifs est formée des objets

$$IN = \left(N \oplus SN, \begin{bmatrix} 0 & \omega \\ 0 & 0 \end{bmatrix} \right), \quad N \in \text{Comc}C.$$

Nous notons $\mathcal{H}C$ la catégorie stable associée. Elle est triangulée. Son foncteur suspension est $N \mapsto SN$. Les suites exactes de \mathcal{F} donnent lieu aux triangles standard. Les triangles distingués sont les triangles isomorphes aux triangles standard.

Soit $\tau : C \to A$ une cochaîne tordante admissible acyclique où A est un objet de Alga. Les foncteurs L et R forment un couple de foncteurs exacts entre les catégories $\text{Comc}C$ et $\text{Mod}A$ et conservent l’injectivité. Ils induisent donc un couple de foncteurs adjoints triangulés entre les catégories stables $\mathcal{H}C$ et $\mathcal{H}A$. La catégorie dérivée $\mathcal{D}C$ est la catégorie localisée $(\mathcal{H}C)[Eq^{-1}]$. Elle est clairement isomorphe à la catégorie $\text{Ho InvComc}C$. Rappelons (thm 2.2.2.2) que les foncteurs R et L (d définis en 2.2.1) induisent des équivalences inverses l’une de l’autre entre les catégories localisées

$$\mathcal{D}A = (\mathcal{H}A)[Qis^{-1}] \quad \text{et} \quad (\mathcal{H}C)[Eq^{-1}] = \mathcal{D}C.$$

En particulier, le système multiplicatif Eq est compatible aux triangles de $\mathcal{H}C$ car il est l’image réciproque du système multiplicatif des isomorphismes de $\mathcal{D}A$ par le foncteur triangulé composé

$$\mathcal{H}C \xrightarrow{L} \mathcal{H}A \to \mathcal{D}A.$$

Il en résulte que $\mathcal{D}C$ porte une structure triangulée canonique et que les équivalences induites entre $\mathcal{D}A$ et $\mathcal{D}C$ sont des foncteurs triangulés.

2.2.4 Caractérisation de l’acylicité des cochaînes tordantes

Nous rappelons que le foncteur $-^+ : \text{Cogc} \to \text{Cogca}$ est une équivalence de catégories (2.1.2). Munissons Cogca de la structure de catégorie de modèles induite par celle de Cogc (voir 1.3.1.2).

Proposition 2.2.4.1 Soit A un objet de Alga et C un objet de Cogca. Soit $\tau : C \to A$ une cochaîne tordante admissible. Les conditions suivantes sont équivalentes.

a. La cochaîne tordante τ est acyclique, i.e. si M est un objet de $\text{Mod}A$, le morphisme d’adjonction

$$\Phi : LRM \to M$$

est un quasi-isomorphisme de $\text{Mod}A$.

b. Si N est un objet de $\text{Comc}C$, le morphisme d’adjonction

$$\Psi : N \to RLN$$

est une équivalence faible de $\text{Comc}C$.

c. Le morphisme d’adjonction

$$LRA = A \otimes_{\tau} C \otimes_{\tau} A \xrightarrow{\Phi, A} A$$

est un quasi-isomorphisme de $\text{Mod}A$.

d. Le morphisme
\[\eta_A \otimes \varepsilon_C : e \to A \otimes C \]
est une équivalence faible de $\text{Comc} C$.

e. Le morphisme d’algèbres f_τ (2.2.1.5) est un quasi-isomorphisme.

f. Le morphisme de cogèbres g_τ (2.2.1.5) est une équivalence de Cogca.

Démonstration :
\[a \Rightarrow b. \] C’est une conséquence du point b du théorème 2.2.2.2.
\[a \Rightarrow c. \] C’est clair.
\[b \Rightarrow d. \] Nous avons l’égalité $\Psi_e = \eta_A \otimes \varepsilon_C$.
\[c \Rightarrow a. \] La sous-catégorie de DA formée des objets M tel que $\Phi : LRM \to M$
est un quasi-isomorphisme est une sous-catégorie triangulée aux sommes infinies contenant A par hypothèse. Elle coïncide donc (voir [Kel94a, 4.2]) avec DA.
\[d \Rightarrow e. \] Rappelons que $\tau_C : C \to \Omega^+ C$ est acyclique (2.2.1.9). Cela implique que le morphisme
\[L_{\tau_C} e = \Omega^+ C \longrightarrow L_{\tau_C} (A \otimes C) = L_{\tau_C} R_{\tau_C} \text{Res} A \]
est des quasi-isomorphismes. Le morphisme f_τ est un quasi-isomorphisme car il est égal à la composée
\[\Omega^+ C \longrightarrow L_{\tau_C} R_{\tau_C} \text{Res} A \longrightarrow \text{Res} A. \]
\[e \iff f. \] C’est le point b du théorème 1.3.1.2.
\[e \Rightarrow a. \] Comme la cochaîne τ_C est acyclique, le morphisme d’adjonction
\[L_{\tau_C} R_{\tau_C} M = M \otimes C \otimes \Omega^+ C \to M \]
est un quasi-isomorphisme. Par ailleurs, il est égal à la composée
\[M \otimes C \otimes \Omega^+ C \overset{\Phi_M}{\longrightarrow} M \otimes C \otimes \Omega^+ C = M. \]
Il nous suffit donc de montrer que le morphisme ϕ_M induit par le morphisme f_τ est un quasi-isomorphisme. Munissons le comodule $M \otimes C$ de sa filtration primitive. Nous avons alors
\[\text{Gr}(M \otimes C) = M \otimes \text{Gr} C \]
et des filtrations induites sur $M \otimes C \otimes A$ et $M \otimes C \otimes \Omega^+ C$ qui vérifient
\[\text{Gr}(M \otimes C) = M \otimes \text{Gr} C \otimes A \quad \text{et} \quad \text{Gr}(M \otimes C \otimes \Omega^+ C) = M \otimes \text{Gr} C \otimes \Omega^+ C. \]
Pour ces filtrations, le morphisme ϕ_M est un morphisme filtré et il induit des quasi-isomorphismes dans les objets gradués car f_τ est un quasi-isomorphisme. Il est donc un quasi-isomorphisme. \blacksquare
2.3 Polydules

2.3.1 Définitions

Définition 2.3.1.1 Soit A une A_n-algèbre. Un A_n-module sur A dans la catégorie $\mathcal{Gr}C'$ est un objet gradué M dans $\mathcal{Gr}C'$ muni d'une famille de morphismes gradués

$$m_i^M : M \otimes A^{\otimes i-1} \to M, \quad 1 \leq i \leq n,$$

de degré $2-i$, telle qu'une équation ($*'_m$) de la même forme que l'équation ($*_m$) de la définition 1.2.1.1 est vérifiée pour tout $1 \leq m \leq n$. Dans l'équation ($*'_m$), pour $j > 0$, les termes

$$m_i(1^{\otimes j} \otimes m_k \otimes 1^{\otimes l})$$
de l'équation ($*_m$) doivent être interprétés comme

$$m_i^M(1^{\otimes j} \otimes m_k \otimes 1^{\otimes l}) : M \otimes A^{\otimes m-1} \to M,$$

et, pour $j = 0$, comme

$$m_i^M(m_k^M \otimes 1^{\otimes l}) : M \otimes A^{\otimes m-1} \to M.$$

Définition 2.3.1.2 Soit A une A_∞-algèbre. Un A_∞-polydule dans $\mathcal{Gr}C'$ (dans la littérature, cette structure est communément appelée un A_∞-module sur A) est un objet gradué M muni d'une famille de morphismes gradués

$$m_i^M : M \otimes A^{\otimes i-1} \to M, \quad 1 \leq i,$$
de degré $2-i$, telle que l'équation ($*'_m$) est vérifiée pour tout $1 \leq m$.

Définition 2.3.1.3 La suspension SM d'un A-polydule est le A-polydule dont l'objet gradué sous-jacent est la suspension SM et dont les multiplications sont définies par

$$m_i^{SM} = (-1)^s m_i^M \circ (\omega \otimes 1^{\otimes i-1}), \quad i \geq 1.$$

La section 2.3.3 nous certifiera que ceci définit bien un A-polydule.

Définition 2.3.1.4 Soit A une A_n-algèbre, et M et N deux A_n-modules sur A. Un A_n-morphisme de A_n-modules $f : M \to N$ est une famille de morphismes gradués de C'

$$f_i : M \otimes A^{\otimes i-1} \to N, \quad 1 \leq i \leq n,$$
de degré $1-i$, vérifiant, pour tout $1 \leq m \leq n$, l'égalité

$$(*'_m) \sum_{k+l=i} (-1)^{k+l} f_i(1^{\otimes k} \otimes m_k \otimes 1^{\otimes l}) = \sum_{s+1} m_{s+1}(f_r \otimes 1^{\otimes s})$$
daus $\text{Hom}_{\mathcal{Gr}C'}(M \otimes A^{\otimes m-1}, N)$, où $j+k+l = m$, $i = j+k+1$ et $r+s = m$. Un A_n-morphisme f est strict si $f_i = 0$ pour tout $i \geq 2$. Soit M, N et T trois A_n-modules sur A. Soit $g : M \to N$ et $f : N \to T$ deux A_n-morphismes de A_n-modules. La composition $f \circ g : M \to T$ est définie par la suite

$$(f \circ g)_i = \sum_{k+l=i} f_{i+k+l} g_k \otimes 1^{\otimes l}, \quad 1 \leq i \leq n.$$
Définition 2.3.1.5 Soit A une A_{∞}-algèbre et M et N deux A-polydules. Un A_{∞}-morphisme $f : M \rightarrow N$ est une famille de morphismes gradués
$$f_i : M \otimes A^{\otimes i-1} \rightarrow N, \quad 1 \leq i,$$
de degré $1-i$, telle que l’équation $(**'_{m})$ est vérifiée pour tout $1 \leq m$. La composition des A_{∞}-morphismes est définie par les mêmes formules que celle de la composition d’A_{i}-morphismes. Un A_{∞}-morphisme f est strict si $f_i = 0$ pour tout $i \geq 2$.

Il résultera de la section 2.3.3 que nous obtenons bien ainsi une catégorie. Nous la notons $\text{Nod}_{\infty} A$. La lettre N remplace la lettre M de Mod et se rapporte au Non dans “A_{∞}-module Non unitaires”. Notons $\text{Nod}_{\infty}^{\text{strict}} A$ la sous-catégorie de $\text{Nod}_{\infty} A$ dont les objets sont les A-polydules et dont les morphismes sont les A_{∞}-morphismes stricts.

Remarque 2.3.1.6 Soit A une A_{∞}-algèbre. De manière analogue à la remarque 1.2.1.3, si M est un A-polydule,
- (M, m_1) est un complexe;
- le morphisme $m_2^M : M \otimes A \rightarrow M$ définit une action à homotopie près de l’algèbre fortement homotopiquement associative (1.2.1.3) sur M. Le défaut de compatibilité de la multiplication m_2^A et de l’action m_2^M est égal au bord de m_3^M dans
$$\text{Hom}_{G,C}(M \otimes A^{\otimes 2}, M, \delta),$$
où δ est défini à l’aide de m_1^M et m_1^A.
- Si $f : M \rightarrow N$ est un A_{∞}-morphisme de A-polydules, le morphisme f_1 est un morphisme de complexes $(M, m_1^M) \rightarrow (N, m_1^N)$.

Remarque 2.3.1.7 Soit A une A_{∞}-algèbre. Les morphismes m_i^A, $i \geq 1$, définissent une structure de A-polydule sur l’objet sous-jacent à A.

Remarque 2.3.1.8 Soit A un objet de Alg et (M, d^M, Δ^M) un A-module différentiel gradué. Les morphismes
$$m_1^M = d^M, \quad m_2^M = \Delta^M, \quad m_i^M = 0 \quad \text{pour} \quad i \geq 3$$
définissent sur l’objet sous-jacent à M une structure de A-polydule. La catégorie des A-modules différentiels gradués est une sous-catégorie non pleine de la catégorie des A-polydules.

Définition 2.3.1.9 Soit A une A_{∞}-algèbre et M et N deux A-polydules. Un A_{∞}-morphisme de A-polydules $f : M \rightarrow N$ est un A_{∞}-quasi-isomorphisme si f_1 est un quasi-isomorphisme de complexes.

Définition 2.3.1.10 Soit A une A_{∞}-algèbre et M et N deux A-polydules. Soit f et g deux A_{∞}-morphismes $M \rightarrow N$. Une homotopie entre f et g est une famille de morphismes
$$h_i : M \otimes A^{\otimes i-1} \rightarrow N, \quad 1 \leq i,$$
de degré $-i$ vérifiant, pour tout $1 \leq m$, l’équation
$$(**'_{m}) \quad f_m - g_m = \sum (-1)^s m_{i+s} (h_r \otimes 1^{\otimes s}) + \sum (-1)^{k+l} h_i (1^{\otimes j} \otimes m_k \otimes 1^{\otimes l})$$
dans $\text{Hom}_{G,C}(M \otimes A^{\otimes m-1}, N)$, où $r+s = m$ et $j+k+l = m$. Deux A_{∞}-morphismes d’A_{∞}-algèbres f et g sont homotopes s’il existe une homotopie entre f et g.
2.3.2 Unités strictes, augmentations et réductions

Définition 2.3.2.1 Une A_∞-algèbre A est strictement unitaire si elle est munie d’un morphisme gradué $\eta : e \rightarrow A$ de degré 0 tel que $m_i(1 \ldots 1 \otimes \eta \otimes 1 \ldots 1) = 0$ pour tout $i \neq 2$ et

$$m_2(1_A \otimes \eta) = m_2(\eta \otimes 1_A) = 1_A.$$

Le morphisme η s'appelle l’unité (stricte) de A. Si A et A' sont deux A_∞-algèbres strictement unitaires, un A_∞-morphisme $f : A \rightarrow A'$ est strictement unitaire si $f_1 \eta^A = \eta^{A'}$ et $f_i(1 \ldots 1 \otimes \eta \otimes 1 \ldots 1) = 0$ pour tout $i \geq 2$.

Par la remarque 1.2.1.5, une algèbre différentielle graduée unitaire est une A_∞-algèbre strictement unitaire. En particulier, l’algèbre e est une A_∞-algèbre strictement unitaire.

Définition 2.3.2.2 Une A_∞-algèbre A est augmentée si elle est strictement unitaire et munie d’un A_∞-morphisme strict A_∞-algèbres strictement unitaires $\varepsilon : A \rightarrow e$. Le morphisme ε s'appelle l’augmentation de A.

L’A_∞-algèbre réduite \overline{A} est le noyau de ε. Soit A une A_∞-algèbre. L’A_∞-algèbre augmentée A^+ a pour objet sous-jacent $A \oplus e$, ses multiplications m_i, $i \geq 1$, sont telles que l’injection canonique $e \rightarrow A \oplus e$ est l’unité stricte et telles qu’elles coïncident avec m_i^A, $i \geq 1$, sur A. Son augmentation est la projection canonique $A \oplus e \rightarrow e$. Nous notons Alg_∞ la catégorie des A_∞-algèbres augmentées. Le foncteur augmentation $\text{Alg}_\infty \rightarrow \text{Alg}_\infty$ est une équivalence dont le quasi-inverse est le foncteur réduction.

Définition 2.3.2.3 Soit A une A_∞-algèbre strictement unitaire. Un A-polydule M est strictement unitaire si $m_i^M(1_M \otimes 1 \ldots 1 \otimes \eta \otimes 1 \ldots 1) = 0$ pour tout $i \geq 3$ et

$$m_2^M(1_M \otimes \eta) = 1_M.$$

Un morphisme strictement unitaire de A-polydules strictement unitaires est un A_∞-morphisme f de A-polydules tel que

$$f_i(1_M \otimes 1 \ldots 1 \otimes \eta \otimes 1 \ldots 1) = 0, \quad i \geq 2.$$

Si f et g sont deux morphismes strictement unitaires, une homotopie h entre f et g est strictement unitaire si

$$h_i(1_M \otimes 1 \ldots 1 \otimes \eta \otimes 1 \ldots 1) = 0, \quad i \geq 2.$$

Si h est une homotopie strictement unitaire entre deux morphismes strictement unitaires f et g, on dit que f et g sont homotopes (relativement à h) et on note $f \sim g$. Nous notons $\text{Mod}_\infty A$ la catégorie des A-polydules strictement unitaires dont les morphismes sont les morphismes strictement unitaires et $\text{Mod}^{\text{strict}}_\infty A$ la catégorie des A-polydules strictement unitaires dont les morphismes sont les A_∞-morphismes stricts et strictement unitaires.
Si A est une A_∞-algèbre et M un A-polydule, M^+ est l’$A^+\text{-polydule}$ (strictement unitaire) qui a pour objet sous-jacent M et dont la multiplication m^M_1, $i \geq 1$, est telle que, restreinte à A, elle coïncide avec m^M_i, $i \geq 1$ (en particulier le m_1 ne change pas). Ceci définit un isomorphisme

$$+ : \text{Nod}_\infty A \xrightarrow{\sim} \text{Mod}_\infty A^+$$

compatible à l’homotopie. Le quasi-inverse est donné par le foncteur qui envoie M sur le A-polydule M dont l’objet sous-jacent est M et dont la multiplication m_1^M, $i \geq 2$, est la restriction de m^M_i, $i \geq 2$, à $M \otimes A^{S_{i-1}}$.

2.3.3 Construction bar

Les démonstrations de cette section étant presque identiques à celles de la section 1.2.2, nous nous contentons d’énoncer les résultats.

Construction bar des polydules

Soit A et M deux objets gradués. Pour chaque $i \geq 1$, nous définissons une bijection

$$\text{Hom}_{\text{gr-C}}(M \otimes A^{S_{i-1}}, M) \rightarrow \text{Hom}_{\text{gr-C}}(SM \otimes (SA)^{S_{i-1}}, SM)$$

$m^M_1 \mapsto b^M_1$ par la relation

$$\omega \circ b^M_i = -m^M_i \circ \omega^{S_i} \quad (\text{où} \quad \omega = s^{-1}).$$

Soit A une A_∞-algèbre. Nous rappelons (2.1.2.1) qu’une différentielle b^M sur le $(BA)^+$-comodule (co-unitaire) gradué $SM \otimes (BA)^+$ est déterminée par la composition

$$(1 \otimes \eta^{(BA)^+}) \circ b^M : SM \otimes (BA)^+ \rightarrow SM$$

dont nous notons les composantes b^M_i, $i \geq 1$. Les bijections $m^M_1 \leftrightarrow b^M_1$ induisent une bijection de l’ensemble des structures de A-polydule sur M sur l’ensemble des différentielles b^M sur le $(BA)^+$-comodule gradué $SM \otimes (BA)^+$.

Soit A, M et N trois objets gradués. Pour chaque $i \geq 1$, nous définissons une bijection

$$\text{Hom}_{\text{gr-C}}(M \otimes A^{S_{i-1}}, M) \rightarrow \text{Hom}_{\text{gr-C}}(SM \otimes (SA)^{S_{i-1}}, SM)$$

$f_1 \mapsto F_1$ par les relations

$$\omega \circ F_i = (-1)^{|F_i|} f_i \circ \omega^{S_i}, \quad i \geq 1,$$

où F_i est un morphisme gradué de degré $|F_i|$. Soit A une A_∞-algèbre. On rappelle (2.1.2.1) qu’un morphisme gradué de $(BA)^+$-comodules (co-unitaires)

$$F : SM \otimes (BA)^+ \rightarrow SN \otimes (BA)^+$$

est déterminé par la composition

$$(1 \otimes \eta^{(BA)^+}) \circ F : SM \otimes (BA)^+ \rightarrow SM$$

$\text{Nod}_\infty A \xrightarrow{\sim} \text{Mod}_\infty A^+$

compatible à l’homotopie. Le quasi-inverse est donné par le foncteur qui envoie M sur le A-polydule M dont l’objet sous-jacent est M et dont la multiplication m_1^M, $i \geq 2$, est la restriction de m^M_i, $i \geq 2$, à $M \otimes A^{S_{i-1}}$.
2.3 : Polydules

dont nous notons les composantes F_i, $i \geq 1$. Les bijections $f_i \leftrightarrow F_i$ induisent une bijection du produit des ensembles de morphismes gradués

$$f_i : M \otimes A^\otimes i \rightarrow N, \quad i \geq 1,$$

de degré $1 - i + n$, sur l’ensemble des morphismes gradués de $(BA)^+\text{-comodules} F : SM \otimes (BA)^+ \rightarrow SN \otimes (BA)^+$ de degré n. Si M et N sont des A-polydules, cette bijection envoie bijectivement l’ensemble des familles définissant un A_∞-morphisme $f : M \rightarrow N$ sur l’ensemble des morphismes différentiels gradués de $(BA)^+\text{-comodules}$

$$F : SM \otimes (BA)^+ \rightarrow SN \otimes (BA)^+.$$

Si f et g sont deux A_∞-morphismes de A-polydules, la même bijection envoie bijectivement l’ensemble des homotopies entre f et g sur l’ensemble des homotopies entre les morphismes de $(BA)^+\text{-comodules} F$ et G correspondant à f et g.

Ceci nous donne un foncteur

$$\text{Nod}_\infty A \rightarrow \text{Comc}(BA)^+, \quad M \mapsto (SM \otimes (BA)^+, b^M).$$

Construction bar des polydules strictement unitaires sur une A_∞-algèbre augmentée

Soit A une A_∞-algèbre augmentée. Nous notons B^+A la cogèbre co-augmentée $(B\overline{A})^+$, où \overline{A} est l’A_∞-algèbre réduite associée à A. Attention à ne pas confondre les cogèbres co-augmentées B^+A et $(BA)^+$.

Par la section 2.3.2, le foncteur $M \mapsto \overline{M}$ est un isomorphisme de catégories

$$\text{Mod}_\infty A \sim \rightarrow \text{Nod}_\infty \overline{A}.$$

Le foncteur composé

$$B_A : \text{Mod}_\infty A \sim \rightarrow \text{Nod}_\infty \overline{A} \rightarrow \text{Comc} B^+A$$

est appelé le foncteur construction bar. Nous le noterons souvent B_A. La suspension SM d’un polydule est envoyée par le construction bar sur $BSN = (S^2N \otimes B^+A, b^{SN})$. Nous vérifions que ce dernier est isomorphe à SBN. Le foncteur construction bar envoie des A_∞-morphismes homotopiques de morphismes homotopiques de comodules et il induit une équivalence entre la catégorie $\text{Mod}_\infty A$ et la sous-catégorie $\text{procol} B^+A$ de $\text{Comc} B^+A$ formée des objets presque colibres.

2.3.4 Algèbre Enveloppante

Dans cette section, nous définissons l’algèbre enveloppante UA d’une A_∞-algèbre augmentée A puis montrons que la catégorie $\text{Mod} UA$ est isomorphe à la catégorie $\text{Mod}^{\text{strict}} A$.

Soit V un espace gradué (resp. différentiel gradué). L’algèbre tensorielle (augmentée) TV est l’augmentation $(TV)^{\dagger}$ de l’algèbre tensorielle réduite. Soit $i : V \rightarrow TV$ l’injection canonique.

Lemme 2.3.4.1 Soit M un objet gradué. L’application $\mu^M \mapsto \mu^M(1 \otimes i)$ est une bijection de l’ensemble des structures de TV-module unitaire sur M sur l’ensemble des morphismes gradués

$$M \otimes V \rightarrow M.$$
de degré 0. L’application inverse associe à g la multiplication

$$\mu: M \otimes TV \to M$$

dont la composante $M \otimes e \to M$ est l’identité et la composante $M \otimes V^{\otimes i} \to M$ est le morphisme

$$g \circ (g \otimes 1) \circ \cdots \circ (g \otimes 1^{\otimes i-1}).$$

Définition 2.3.4.2 Soit A une A_∞-algèbre augmentée. L’algèbre enveloppante de A est l’algèbre différentielle graduée $UA = \Omega^+ B^+ A$, c’est-à-dire l’algèbre $(\Omega B A)^+$.

Lemme 2.3.4.3 L’A_∞-morphisme $A \to UA$ donné par le morphisme d’adjonction

$$B^+ A \to B^+ UA = B^+ \Omega^+ B^+ A$$

est un A_∞-quasi-isomorphisme. Il est universel parmi les A_∞-morphismes de A vers une algèbre différentielle graduée. □

Démonstration : C’est un A_∞-quasi-isomorphisme par le lemme 1.3.3.6. L’universalité est immédiate grâce à l’adjonction (Ω, B). □

Lemme 2.3.4.4 Nous avons un isomorphisme de catégories

$$i: \text{Mod} UA \to \text{Mod}^{\text{strict}} \ A, \ M \to S^{-1} M.$$

Démonstration : Soit M un objet gradué. Nous allons montrer que les structures de UA-module unitaire sur SM sont les structures de A-polydule strictement unitaire sur M. Soit m_i^M, une différentielle sur M et soit

$$m_i^M: M \otimes A^{\otimes i-1} \to M, \ i \geq 2,$$

des morphismes gradués de degré $2 - i$. Nous définissons à l’aide des bijections $m_i^M \leftrightarrow b_i^M$ de la section 1.2.2, un morphisme

$$g: SM \otimes (B A) \to SM.$$

Par le lemme 2.3.4.1, le morphisme

$$SM \otimes S^{-1}(B A) \xrightarrow{1 \otimes g} SM \otimes (B A) \xrightarrow{g} SM$$

se relève en une structure μ^U de $\Omega^+ B^+ A$-module gradué unitaire sur SM. Nous vérifions que (SM, μ^U, Sm_1) définit un module différentiel gradué unitaire si et seulement si les $m_i^M, \ i \geq 1$, définissent une structure de A-polydule strictement unitaire sur M. Si SM et SN sont deux UA-modules, les morphismes de UA-modules $SM \to SN$ s’identifient clairement aux A_∞-morphismes stricts de A-polydules $M \to N$. □
2.4 Catégorie dérivée d’une A∞-algèbre augmentée

Introduction

Soit A une A_{∞}-algèbre augmentée. Le but de cette section est de montrer que la catégorie dérivée

$$D_{\infty}A = \text{Mod}_{\infty} A[Qis^{-1}]$$

est équivalente aux catégories

$$H_{\infty}A = \text{Mod}_{\infty} A/\sim \quad \text{et} \quad \left(\text{Mod}^{\text{strict}}_{\infty} A\right)[Qis^{-1}]$$

où \sim est la relation d’homotopie. La catégorie dérivée d’une A_{∞}-algèbre quelconque est étudiée au chapitre 4.

Plan de la section

Cette section est divisée en trois sous-sections. Dans la sous-section 2.4.1, nous démontrons le théorème de l’homotopie et celui des A_{∞}-quasi-isomorphismes pour les polydules. Pour cela, nous caractériserons les objets fibrants de la catégorie de modèles $\text{Comc} B^+A$: ils sont exactement les facteurs directs des objets presque colibres et nous montrons que les théorèmes ci-dessus apparaissent alors comme des cas particuliers de résultats fondamentaux de l’algèbre homotopique de Quillen (voir appendice A). Dans la sous-section 2.4.2, nous montrons les équivalences annoncées dans l’introduction ci-dessus (toujours grâce à l’algèbre homotopique de Quillen). Dans la section 2.4.3, nous étudions la structure triangulée de $D_{\infty}A$.

2.4.1 Objets fibrants de $\text{Comc} B^+A$

Soit A un objet de Alg_{∞}. Le but de cette section est de montrer la proposition suivante :

Proposition 2.4.1.1

a. La relation d’homotopie (2.3.2.3) dans $\text{Mod}_{\infty} A$ est une relation d’équivalence compatible à la composition.

b. Un A_{∞}-quasi-isomorphisme de A-polydules est une équivalence d’homotopie.

c. Soit A' un objet de Alg_{∞}. Soit $\text{Modsh} A'$ la sous-catégorie pleine de $\text{Mod}_{\infty} A'$ formée des A'-modules différentiels gradués unitaires. Notons \sim la relation d’homotopie sur $\text{Modsh} A'$. L’inclusion $\text{Mod} A' \hookrightarrow \text{Modsh} A'$ induit une équivalence

$$DA' \sim \text{Modsh} A'/\sim .$$

Remarque 2.4.1.2 Le point c reste vrai même dans le cas où l’algèbre différentielle graduée unitaire A' n’est pas augmentée (voir 4.1.3.8).

Démonstration : La démonstration est identique à celle du corollaire 1.3.1.3. Elle procède de la même manière en utilisant (à la place du théorème principal 1.3.1.2) le théorème 2.2.2.2 et la proposition 2.4.1.3 ci-dessous.
Un raffinement de la caractérisation des objets fibrants du théorème 2.2.2.2

Soit C un objet de Cogca. Munissons la catégorie $\text{Comc} C$ de sa structure canonique de catégorie de modèles (2.2.2.4). Soit $\tau : C \to A'$ une cochaîne tordante admissible acyclique, où A' est un objet de Alg_{ω} (il existe toujours une telle cochaîne grâce au lemme 2.2.1.9). Le théorème 2.2.2.2 dit que les objets fibrants de $\text{Comc} C$ sont les facteurs directs d'objets de la forme $R_{\tau} M$, où M est un objet de $\text{Mod} A'$. En particulier, les objets fibrants sont facteurs directs d'objets presque colibres de $\text{Comc} C$. Montrons que la réciproque est vrai pour certaines cogèbres :

Proposition 2.4.1.3 Soit C un objet de Cogca qui est isomorphe, en tant que cogèbre graduée, à une cogèbre tensorielle. Les objets fibrants de $\text{Comc} C$ sont exactement les facteurs directs d'objets presque colibres.

En particulier, puisque la cogèbre C est isomorphe à la construction $\text{Bar} B^+ A$ d’un objet A de Alg_{ω} les objets fibrants de $\text{Comc} C$ sont exactement les facteurs directs de comodules qui sont l’image par la construction Bar d’un A-polydule. La démonstration de ce résultat est reportée à la fin de cette section. Nous démontrons au préalable quelques propositions.

Mod$_\omega A$ comme “catégorie de modèles sans limites”

Soit A une A_{ω}-algèbre augmentée. Dans la catégorie $\text{Mod}_\omega A$, nous considérons les trois classes de morphismes suivantes :

- la classe $\mathcal{E}q$ est formée des équivalences faibles, c'est-à-dire des A_{ω}-quasi-isomorphismes,
- la classe $\mathcal{C}of$ est formée des cofibrations, c'est-à-dire des A_{ω}-morphismes $j : M \to M'$ tels que j_1 est un mono morphisme,
- la classe $\mathcal{F}ib$ est formée des fibrations, c'est-à-dire des A_{ω}-morphismes $q : M \to M'$ tels que q_1 est un épimorphisme.

Théorème 2.4.1.4 La catégorie $\text{Mod}_\omega A$, munie des trois classes définies ci-dessus, vérifie l'axiome (A) du théorème 1.3.3.1 et les axiomes (CM2) – (CM5) de la définition A.7. Tous les objets sont fibrants et cofibrants.

Démonstration : Elle est identique à celle de 1.3.3.1 car basée sur les lemmes d'obstruction (voir appendice B.2).

Liens entre la “catégorie de modèles sans limites” Mod$_\omega A$ et la catégorie de modèles Comc $B^+ A$

Proposition 2.4.1.5 Soit M et M' deux objets de $\text{Mod}_\omega A$.

a. Un A_{ω}-morphisme $f : M \to M'$ est un A_{ω}-quasi-isomorphisme de $\text{Mod}_\omega A$ si et seulement si le morphisme $Bf : BM \to BM'$ est une équivalence faible de $\text{Comc} B^+ A$.

b. Un A_{ω}-morphisme $j : M \to M'$ est une cofibration de $\text{Mod}_\omega A$ si et seulement si $Bj : BM \to BM'$ est une cofibration de $\text{Comc} B^+ A$.
2.4 : Catégorie dérivée d’une A_{∞}-algèbre augmentée

Un A_{∞}-morphisme $q : M \to M'$ est une fibration de $\text{Mod}_{\infty} A$ si et seulement si $Bq : BM \to BM'$ est une fibration de $\text{Comc} B^+ A$.

Démonstration : Soit UA l’algèbre enveloppante de A. Rappelons (2.2.1.5) que la cochaîne tordante universelle

$$\tau : B^+ A \to \Omega^+ B^+ A = UA$$

est acyclique. Par le corollaire 2.2.2.3, nous avons une équivalence de Quillen

$$(L, R) : \text{Comc} B^+ A \to \text{Mod} UA.$$

a. Si f est un A_{∞}-quasi-isomorphisme, le morphisme Bf est un quasi-isomorphisme filtré pour les filtrations primitives. Par le lemme 2.2.2.5, il est une équivalence faible de $\text{Comc} B^+ A$. Supposons que Bf est une équivalence faible de $\text{Comc} B^+ A$. Soit le diagramme de $\text{Comc} B^+ A$

$$
\begin{array}{ccc}
BM & \longrightarrow & RLBM \\
\downarrow^{Bf} & & \downarrow^{RLBf} \\
BM' & \longrightarrow & RLBM'.
\end{array}
$$

Comme $R = Bi$, ce diagramme est l’image par B d’un diagramme

$$
\begin{array}{ccc}
M & \longrightarrow & iLBM \\
\downarrow^{f} & & \downarrow^{iLBf} \\
M' & \longrightarrow & iLBM'.
\end{array}
$$

Comme Bf est une équivalence faible de $\text{Comc} B^+ A$, le morphisme LBf est un quasi-isomorphisme de $\text{Mod} UA$. Le morphisme (strict) $iLBf$ est donc un A_{∞}-quasi-isomorphisme dans $\text{Mod}_{\infty} A$. Le lemme 2.4.1.6 ci-dessous montre que les flèches horizontales du diagramme ci-dessus représentent des A_{∞}-quasi-isomorphismes. Par la propriété de saturation des A_{∞}-quasi-isomorphismes dans $\text{Mod}_{\infty} A$, f est donc un A_{∞}-quasi-isomorphisme.

b et c. Même démonstration que pour la proposition 1.3.3.5. □

Lemme 2.4.1.6 Soit M un objet de $\text{Mod}_{\infty} A$. Le morphisme d’adjonction $BM \to RLBM$ induit un quasi-isomorphisme dans les primitifs.

Démonstration : Il s’agit de montrer que le morphisme

$$SM \to SM \otimes B^+ A \otimes UA$$

est un quasi-isomorphisme. Notons C la cogèbre $B^+ A$. Nous rappelons que par définition $\Omega^+ C = \Omega C$. Il faut montrer que

$$SM \to SM \otimes C \otimes \Omega^+ C$$

est un quasi-isomorphisme. Munissons $\Omega^+ C$ de la filtration induite par la filtration primitive de C considéré comme cogèbre. Nous avons alors une filtration de $\Omega^+ C$ définie par la suite

$$(\Omega^+ C)_i = (\Omega C)_i \oplus e, \quad i \geq 0.$$
Chapitre 2 : Théorie de l’homotopie des polydules

Munissons C, considéré comme objet de $\text{Com}C$, de sa filtration primitive de C-module (on la complète par $C_{[0]} = e$). Munissons M de la filtration définie par la suite $M_i = M$, $i \geq 0$. Ces filtrations induisent sur $SM \otimes C \otimes \Omega^iC$ une filtration de complexes. Tout comme à la fin de la démonstration du point b du lemme 2.2.1.9, nous montrons que

$$\text{Gr}_0(SM \otimes C \otimes \Omega^iC) = SM, \quad \text{Gr}_i(SM \otimes C \otimes \Omega^iC) = 0 \quad \text{pour} \quad i \geq 1.$$

\[\square \]

Démonstration de la proposition 2.4.1.3 : Nous pouvons supposer que C est égal à B^+A, pour A une A_∞-algèbre augmentée. Soit τ la chaîne tordante universelle de B^+A. Nous savons que les objets fibrants de $\text{Comc}B^+A$ sont les facteurs directs d’objets de la forme $RM = M \otimes B^+A$, où M est un objet de $\text{Mod} \Omega^*B^+A$. Ils sont donc des facteurs directs des objets presque colibres.

Réciproquement, si N est un objet presque colibre, il est isomorphe à l’image par la construction bar d’un objet M de $\text{Mod}_\infty A$. Ce dernier étant fibrant dans $\text{Mod}_\infty A$, l’objet N est fibrant dans $\text{Comc} B^+A$ par le point c de la proposition 2.4.1.5.

\[\square \]

2.4.2 Catégorie dérivée $D_\infty A$

Dans cette section, nous définissons la catégorie dérivée $D_\infty A$ et en donnons plusieurs descriptions.

Le point a. de la proposition 2.4.1.1 montre que la définition suivante a un sens.

Définition 2.4.2.1 Soit A une A_∞-algèbre augmentée. Nous notons $\mathcal{H}_\infty A$ la catégorie $\text{Mod}_\infty A/\sim$, où \sim est la relation d’homotopie (voir 2.3.2.3). La catégorie dérivée $D_\infty A$ de $\text{Mod}_\infty A$ est la localisation par rapport aux A_∞-quasi-isomorphismes de la catégorie $\text{Mod}_\infty A$.

La proposition (2.4.1.1) entraîne le résultat suivant :

Corollaire 2.4.2.2 La projection canonique

$$\mathcal{H}_\infty A \to D_\infty A$$

est un isomorphisme.

Démonstration : Les A_∞-quasi-isomorphismes étant des équivalences d’homotopie, la projection canonique

$$\mathcal{H}_\infty A \to (\mathcal{H}_\infty A)[E^{-1}] \simeq D_\infty A$$

est une équivalence.

\[\square \]

Lemme 2.4.2.3 La composition des foncteurs (voir 2.3.4.4)

$$J : \text{Mod} UA \xrightarrow{i} \text{Mod}^\text{strict} A \hookrightarrow \text{Mod}_\infty A$$

induit un isomorphisme $DUA \to D_\infty A$.

\[\square \]
2.4 : Catégorie dérivée d’une \mathbb{A}_∞-algèbre augmentée

Démonstration : Nous avons un diagramme commutatif

$$
\begin{array}{ccc}
\text{Mod} \mathbb{A} & \xrightarrow{J} & \text{Mod}_{\mathbb{A}}^{\text{strict}} \\
R \downarrow & & \downarrow \text{incl.} \\
\text{Comc} B^+ \mathbb{A} & \xleftarrow{B} & \text{Mod}_\mathbb{A}
\end{array}
$$

et les foncteurs J, R et B induisent des équivalences entre les catégories

$\mathcal{D}_{\mathbb{A}}$, \mathcal{D}_C, $(\text{Mod}_{\mathbb{A}}^{\text{strict}})[\mathcal{E}q^{-1}]$ et $\mathcal{D}_\mathbb{A}$.

2.4.3 Structure triangulée sur $\mathcal{D}_\mathbb{A}$

Suites exactes de $\text{Mod}_\mathbb{A}$

Le foncteur

$$i : \text{Mod} \mathbb{A} \to \text{Mod}_\mathbb{A}, \quad SM \mapsto M,$$

identifie (voir 2.3.4.4) la catégorie $\text{Mod} \mathbb{A}$ à la sous-catégorie $\text{Mod}_{\mathbb{A}}^{\text{strict}}$ de $\text{Mod}_\mathbb{A}$. Il envoie la suspension d’un \mathbb{A}-module sur la suspension d’un \mathbb{A}-polymodule (voir 2.3.1.3). Il identifie les suites exactes courtes de $\text{Mod} \mathbb{A}$ qui sont scindées dans la catégorie des modules gradués aux suites de $\text{Mod}_\mathbb{A}$ formées d’\mathbb{A}-morphismes stricts

$$(*) \quad M' \xrightarrow{j} M \xrightarrow{q} M''$$

telles que

$$0 \to M' \xrightarrow{j_1} M \xrightarrow{q} M'' \to 0$$

est une suite exacte de $\mathcal{C} \mathcal{C}'$ et telles qu’il existe une rétraction ρ de j_1 dans $\text{Gr} \mathcal{C}'$ telle que, pour tout $i \geq 2$,

$$pm_i^M = m_i^{M'} (\rho \otimes 1^{i-1}).$$

Structure triangulée sur $\mathcal{D}_\mathbb{A}$

Nous munissons la catégorie dérivée $\mathcal{D}_\mathbb{A}$ de l’unique structure triangulée (unique à équivalence triangulée près) pour laquelle l’équivalence

$$J : \mathcal{D}_\mathbb{A} \to \mathcal{D}_\mathbb{A}$$

du lemme 2.4.2.3 est triangulée. Comme les foncteurs

$$R : \mathcal{D}_\mathbb{A} \to \mathcal{D} B^+ A \quad \text{et} \quad B : \mathcal{D}_\mathbb{A} \to \mathcal{D} B^+ A$$

sont des foncteurs triangulés nous en déduisons le théorème suivant.

Théorème 2.4.3.1 La structure triangulée sur $\mathcal{D}_\mathbb{A}$ a pour endofoncteur suspension celui défini en 2.3.1.3. Les triangles distingués sont exactement ceux qui sont isomorphes aux triangles provenant de suites exactes de la forme $(*)$ de $\text{Mod}_\mathbb{A}$.
Chapitre 2 : Théorie de l’homotopie des polydules

Cône d’un A_∞-morphisme.

Si $f : M \to M'$ est un A_∞-morphisme de A-polydules, son cône $C(f)$ est le A-polydule $M' \oplus SM$ dont les multiplications

$$m_i^{C(f)} : (M' \oplus SM) \otimes A^\otimes i - 1 \to M' \oplus SM, \quad i \geq 1,$$

sont données par les morphismes

$$m_i^{M'}, \quad m_i^{SM} \quad \text{(voir 2.3.1.3)} \quad \text{et} \quad f_i \circ (\omega \otimes 1^\otimes i - 1).$$

La construction bar envoie $C(f)$ sur le cône de Bf.

Lemme 2.4.3.2 Soit A un objet de \mathbf{A}_{Lg}. L’inclusion

$$\text{Mod} A \hookrightarrow \text{Mod}_\infty A$$

induit une équivalence triangulée

$$\mathcal{D}A \to \mathcal{D}_\infty A.$$

Démonstration : Comme $A \to UA$ (voir 1.3.3.6) est un quasi-isomorphisme, nous avons une équivalence triangulée entre la catégorie $\mathcal{D}A$ et la catégorie $\mathcal{D}UA$. L’inclusion (2.3.4.4)

$$i : \text{Mod} UA \hookrightarrow \text{Mod}_\infty A$$

induisant une équivalence triangulée de $\mathcal{D}UA$ sur $\mathcal{D}_\infty A$, nous en déduisons le résultat. \hfill \Box

2.5 Catégorie dérivée des bipolydules (le cas augmenté)

Introduction

Notations

Soit (C, \otimes, e) et (C'', \otimes, e) deux \mathbb{K}-catégories de Grothendieck semi-simples monoïdales et C' une \mathbb{K}-catégorie de Grothendieck semi-simple (non nécessairement monoïdale). Nous supposons que C est tressée (voir [ML98, Chap. XI]). Nous notons \otimes^{op} le produit tensoriel de C défini par

$$A \otimes^{op} B = B \otimes A.$$

Supposons que la catégorie monoïdale C agit à gauche sur C' et la catégorie monoïdale C'' agit à droite sur C' de manière compatible, i. e. C' est munie de deux foncteurs (\mathbb{K}-bilinéaires sur les espaces de morphismes)

$$C \times C'' \to C', \quad (M', A'') \mapsto M' \otimes A'' \quad \text{et} \quad C \times C' \to C', \quad (A, M') \mapsto A \otimes M'$$
associatifs et unitaires à des isomorphismes donnés près (voir [ML98, Chap. XI]) et tels que
\[(A \otimes M') \otimes A'' = A \otimes (M' \otimes A'').\]

Nous supposons en outre qu’on a une \(K\)-catégorie de Grothendieck semi-simple monoïdale \(C \otimes C''\), munie d’un foncteur monoïdal
\[(C, \otimes^{op}) \times (C'', \otimes) \rightarrow C \otimes C'', \quad (A, A'') \mapsto A \otimes A'',\]
bilinéaire sur les espaces de morphismes, d’une action sur \(C''\) et d’un isomorphisme
\[M \otimes (A \otimes A'') = A \otimes M \otimes A''.\]

L’exemple suivant apparaît naturellement dans l’étude des \(A_\infty\)-catégories (5.1.1).

Exemple 2.5.0.1 Soit \(A\) et \(B\) deux ensembles considérés comme des catégories discrètes. Nous notons \(C(A, B)\) la catégorie des foncteurs
\[B^{op} \times A \rightarrow \text{Vect}K.\]

Posons
\[C = C(A, A), \quad C' = C(A, B) \quad \text{et} \quad C'' = C(B, B).\]

Les produits tensoriels au-dessus de \(A\) et de \(B\) définissent les structures de catégories monoïdales (tressées) sur \(C\) et \(C''\) et les actions de \(C\) et \(C''\) sur \(C'\). La catégorie \(C \otimes C''\) est la catégorie
\[C(A \times B, A \times B)\]

en position les foncteurs
\[(A \times B)^{op} \times (A \times B) \rightarrow \text{Vect}K.\]

Le foncteur
\[C(A, A) \times C(B, B) \rightarrow C(A \times B, A \times B)\]
envoie \((L, M)\) sur le foncteur
\[(A, B, A', B') \mapsto L(A, A') \otimes_K M(B, B').\]

2.5.1 Définitions des bipolydules

Soit \(A\) et \(A''\) deux \(A_\infty\)-algèbres de \(C\) et \(C''\).

Définition 2.5.1.1 Un \(A_n\)-\(A_{n'}\)-bimodule sur \(A\) et \(A''\) est un objet de \(GrC'\) muni d’une famille de morphismes gradués dans \(GrC'\)
\[m_{i,j} : A^{\otimes i} \otimes M \otimes A'^{\otimes j} \rightarrow M, \quad 0 \leq i \leq n, \quad 0 \leq j \leq n',\]
de degré \(1-i-j\), telles qu’une équation \((\star)_{n', t}\) de la même forme que l’équation \((\star)_{r+1, t}\), \(r+1+t \geq 1\),
de la définition 1.2.1.1 est vérifiée pour tous \(0 \leq r \leq n\) et \(0 \leq t \leq n'\). Si \(M\) et \(M'\) sont deux \(A_n\)-\(A_{n'}\)-bimodule sur \(A\) et \(A''\), un morphisme
\[f : M \rightarrow M'\]
Chapitre 2 : Théorie de l’homotopie des polydules

est une famille de morphismes gradués dans $G r C'$

$$f_{i,j} : A^{⊗i} ⊗ M ⊗ A'^{⊗j} \to M', \quad 0 \leq i \leq n, \quad 0 \leq j \leq n',$$

de degré $-i - j$, vérifiant les égalités $(**'')_{r,t}$, $0 \leq r \leq n$ et $0 \leq t \leq n'$, des morphismes

$$A^{⊗r} ⊗ M ⊗ A'^{⊗t} \to M', \quad 0 \leq r \leq n, \quad 0 \leq t \leq n',$$

où $|m|$ est le degré de m; il faut interpréter convenablement les m par des m^A, $m^{A''}$ ou $m^{A'''}$ selon leur place. La composition $g \circ f$ de deux morphismes f et g est définie par la suite

$$(g \circ f)_n = \sum(-1)^{(i-j)}g_{i,j}(1^{⊗α} ⊗ f_{k,l} ⊗ 1^{⊗β}), \quad n \geq 1.$$

Définition 2.5.1.2 Un $A-A''$-bipolydulse dans C' (appelé communément $A_∞$-bimodule sur A et A'' dans la littérature) est un objet de $G r C'$ muni d’une famille de morphismes gradués dans $G r C'$

$$m_{i,j} : A^{⊗i} ⊗ M ⊗ A'^{⊗j} \to M, \quad i, j \geq 0,$$

de degré $1 - i - j$, telles que l’équation $(**'')_{n,n'}$, $n, n' \geq 0$ est vérifiée. Si M et M' sont deux $A-A''$-polydules, un morphisme

$$f : M \to M'$$

est une famille de morphismes gradués dans $G r C'$ tels que l’égalité $(**'')_{n,n'}$, $n + 1 + n' \geq 1$, est vérifiée. La composition $g \circ f$ de deux $A_∞$-morphismes f et g est définie par les mêmes formules que dans le cas des morphismes de $A_∞$-bimodules sur A et A''. Nous obtenons ainsi une catégorie $Nod_∞(A, A'')$. La lettre N de $Nod_∞$ remplace la lettre M dans $M o d_∞$ et se rapporte au N dans “$A_∞$-bimodules Non (nécessairement) unitaires”.

Nous supposons désormais que A et A'' sont augmentées.

Définition 2.5.1.3 Un $A-A''$-bipolydulse est strictement unitaire si pour tous $i,j \geq 0$, on a

$$m_{i,j}(1^{⊗α} ⊗ η ⊗ 1^{⊗β}) = 0, \quad α \neq i, \quad (i,j) \notin \{(0,1),(1,0)\}$$

et

$$m_{1,0} \circ (η ⊗ 1) = m_{0,1} \circ (1 ⊗ η) = 1.$$

Nous notons $M o d_∞(A, A'')$ la catégorie des $A-A''$-bipolydules strictement unitaires. Elle est isomorphe à la catégorie des $\mathcal{A}^{∞}$-\mathcal{A}''-bipolydules, où \mathcal{A} et \mathcal{A}'' sont les réductions de A et A''.

Construction bar

Nous définissons des bijections

$$\begin{align*}
\text{Hom}((S\mathcal{A})^{⊗i} ⊗ SM ⊗ (S\mathcal{A}'')^{⊗j}, SM) & \xrightarrow{m_{i,j}} \text{Hom}(\mathcal{A}^{⊗i} ⊗ M ⊗ \mathcal{A}'', M), \\
\text{Hom}((S\mathcal{A})^{⊗i} ⊗ SM ⊗ (S\mathcal{A}'')^{⊗j}, SM) & \xrightarrow{f_{i,j}} \text{Hom}(\mathcal{A}^{⊗i} ⊗ M ⊗ \mathcal{A}'', M),
\end{align*}$$

par les relations
\[\omega \circ b_{i,j} = -m_{i,j} \circ \omega^{\otimes i+1+j} \quad \text{et} \quad \omega \circ F_{i,j} = (-1)^{|F_{i,j}|} f_{i,j} \circ \omega^{\otimes i+1+j}. \]

Ces bijections définissent le foncteur \(\text{construction bar} \), pleinement fidèle,
\[B : \text{Mod}_\infty(A, A''') \rightarrow \text{Comc}(B^+A, B^+A''), \]

où \(\text{Comc}(B^+A, B^+A'') \) est la catégorie des objets de \(Gr C' \) munis de structures de \(B^+A-B^+A'' \)-bicomodule co-unitaire différentiel gradué cocomplet. Son image est formée des objets qui sont presque colibres.

2.5.2 Catégorie dérivée des \(A_\infty \)-bimodules

Soit \(A \) et \(A'' \) deux \(A_\infty \)-algèbres augmentées dans \(C \) et \(C'' \). Dans cette section, nous définissons la catégorie dérivée des \(A-A'' \)-bipolydules strictement unitaires, puis nous en donnons plusieurs descriptions.

Structure de catégorie de modèles sur \(\text{Comc}(B^+A, B^+A'') \)

Notons \((B^+A)^{\text{op}} \) la cogèbre opposée de \(B^+A \) définie à l'aide du tressage de \(C \). L'objet \((B^+A)^{\text{op}} \otimes B^+A'' \) de \(C \otimes C'' \) est une cogèbre différentielle graduée cocomplète. Notons qu'elle n'est pas cotensorielle en général. La catégorie \(\text{Comc}((B^+A)^{\text{op}} \otimes B^+A'') \) est munie de sa structure canonique de catégorie de modèles (2.2.2.4). La catégorie \(\text{Comc}(B^+A, B^+A'') \) devient une catégorie de modèles grâce à l'isomorphisme de catégories
\[\text{Comc}(B^+A, B^+A'') \rightarrow \text{Comc}((B^+A)^{\text{op}} \otimes B^+A''). \]

Nous allons maintenant montrer que les objets fibrants de \(\text{Comc}(B^+A, B^+A'') \) sont exactement les facteurs directs d'objets presque colibres.

Une cochaîne tordante acyclique

Notons \((UA)^{\text{op}} \) l'algèbre opposée de \(UA \) définie à l'aide du tressage de \(C \). L'objet \((UA)^{\text{op}} \otimes UA'' \) de \(C \otimes C'' \) est une algèbre différentielle graduée. Munissons la catégorie \(\text{Mod}((UA)^{\text{op}} \otimes UA'') \) de la structure de catégorie de modèles du théorème 2.2.1. Soit \(\text{Mod}(UA, UA'') \) la catégorie des bimodules différentiels gradués unitaires. La catégorie \(\text{Mod}(UA, UA'') \) devient une catégorie de modèles grâce à l'isomorphisme de catégories
\[\text{Mod}(UA, UA'') \rightarrow \text{Mod}((UA)^{\text{op}} \otimes UA''). \]

Nous allons construire une cochaîne tordante admissible acyclique
\[\tau : (B^+A)^{\text{op}} \otimes B^+A'' \rightarrow (UA)^{\text{op}} \otimes UA''. \]

Il s'ensuivra (2.2.2.3) que le couple de foncteurs adjoints associé à \(\tau \) (voir 2.2.1)
\[(L, R) : \text{Comc}((B^+A)^{\text{op}} \otimes B^+A'') \rightarrow \text{Mod}((UA)^{\text{op}} \otimes UA'') \]
est une équivalence de Quillen.
La cochaîne tordante universelle (2.2.1.5)
\[\tau_{B^+A} : B^+A \to \Omega^+B^+A = UA \]
induit une cochaîne tordante
\[\tau'_{B^+A} : (B^+A)^{op} \to (UA)^{op}. \]
Nous vérifions que
\[\tau = \tau_{B^+A} \otimes \eta \otimes \eta + \eta \otimes \eta \otimes \tau_{B^+A''} : (B^+A)^{op} \otimes B^+A'' \to (UA)^{op} \otimes UA'', \]
où les symboles \(\eta \) désignent les (co)unités de \(B^+A, B^+A'', UA \) et \(UA'' \), est une cochaîne tordante admissible. Par le critère d’acyclicité des cochaînes tordantes (2.2.4.1), l’objet de \(C \otimes C'' \)
\[\left((B^+A)^{op} \otimes B^+A'' \right) \otimes_{\tau} \left((UA)^{op} \otimes UA'' \right) = \left((B^+A)^{op} \otimes_{\tau_{B^+A''}} (UA)^{op} \otimes (B^+A'')^{op} \otimes_{\tau_{B^+A''}} UA'' \right) \]
est quasi-isomorphe à \(e_C \otimes e_{C''} = e_{C \otimes C''} \). La cochaîne tordante \(\tau \) est donc acyclique.

Objets fibrants de \(\text{Comc}((B^+A)^{op} \otimes B^+A'') \)

Comme dans le cas des polydules sur une \(\Lambda_{\infty}\)-algèbre augmentée (voir 2.4.1.4), nous montrons grâce à la théorie de l’obstruction (B.3) que la catégorie des \(A-A'' \)-bipolydules est munie d’une structure de “catégorie de modèles sans limites” : les équivalences faibles, les cofibrations et les fibrations sont définies de la même manière que dans le cas des \(A \)-polydules (2.4.1.4). Par le même raisonnement que celui de la preuve de la proposition 2.4.1.3, nous montrons que les objets fibrants de la catégorie de modèles \(\text{Comc}(B^+A, B^+A'') \) sont exactement les facteurs directs des comodules presque colibres.

La catégorie dérivée

La construction bar
\[B : \text{Mod}_{\infty}(A, A'') \to \text{Comc}(B^+A, B^+A'') \]
est un foncteur pleinement fidèle. La clôture par rétract de son image est la sous-catégorie des objets fibrants et cofibrants. La proposition A.13 et la compatibilité de la construction bar à l’homotopie et aux équivalences faibles montre que la définition suivante a un sens.

Définition 2.5.2.1 La catégorie \(\mathcal{H}_{\infty}(A, A'') \) est la catégorie \(\text{Mod}_{\infty}(A, A'')/\sim \), où \(\sim \) est la relation d’homotopie. La catégorie dérivée \(\mathcal{D}_{\infty}(A, A'') \) est la localisation par rapport aux \(\Lambda_{\infty} \)-quasi-isomorphismes de la catégorie \(\text{Mod}_{\infty}(A, A'') \).

Par la proposition A.13, nous avons un isomorphisme
\[\mathcal{H}_{\infty}(A, A'') \to \mathcal{D}_{\infty}(A, A''). \]

Nous avons un foncteur pleinement fidèle
\[I : \text{Mod}(UA, UA'') \to \text{Mod}^{\text{strict}}(A, A''), \quad M \mapsto S^{-1}M, \]
où $\text{Mod}^{\text{strict}}_{\infty}(A, A''')$ est la catégorie des A-A'''-polydules strictement unitaires dont les morphismes sont les A_∞-morphismes stricts. L’image de ce foncteur est formée des A-A'''-bipolydules M dont les morphismes

$$m_{i,j} : A^{i\otimes} \otimes M \otimes A'^{\otimes j} \to M, \quad i, j \geq 0,$$

sont nuls si les deux entiers i et j sont différents de 0. Rappelons que le foncteur analogue dans le cas des polydules est un isomorphisme (2.3.4.4).

Lemme 2.5.2.2 La composition des foncteurs

$$J : \text{Mod}(UA, UA'') \xrightarrow{I} \text{Mod}^{\text{strict}}_{\infty}(A, A''') \xleftarrow{\text{Mod}_{\infty}(A, A''')$$

induit une équivalence $\mathcal{D}(UA, UA'') \to \mathcal{D}_{\infty}(A, A''')$.

Démonstration : Nous avons un diagramme commutatif

$$
\begin{array}{ccc}
\text{Mod}(UA, UA'') & \xrightarrow{I} & \text{Mod}^{\text{strict}}_{\infty}(A, A''') \\
R \downarrow & & \downarrow \text{Mod}_{\infty}(A, A''') \\
\text{Comc}(B^+A, B^+A') & \xleftarrow{B} & \text{Mod}_{\infty}(A, A''')
\end{array}
$$

où R et B induisent des équivalences dans les catégories dérivées. Cela montre que le foncteur induit par J est pleinement fidèle. Montrons qu’il est essentiellement surjectif. Soit M un A-A'''-bipolydul. Le morphisme d’adjonction

$$BM \to RLBM = B^+A \otimes_{\tau_{B+A'}} UA \otimes_{\tau_{B+A''}} BM \otimes_{\tau_{B+A'''}} UA'' \otimes_{\tau_{B+A'''}} B^+A'$$

est une équivalence faible. Le bicomodule $RLBM$ est la construction bar du A-A'''-polydul

$$M' = S^{-1}(UA \otimes_{\tau_{B+A'}} BM \otimes_{\tau_{B+A'''}} UA'').$$

Nous avons alors un A_∞-quasi-isomorphisme de A-A'''-bipolydules

$$M \to M'$$

et, comme M' est dans l’image de J, nous avons le résultat. □
Chapitre 2 : Théorie de l'homotopie des polydules
Chapitre 3

Unités à homotopie près et unités strictes

Introduction

Les A_∞-espaces de [Sta63a] sont munis d’unités strictes. Dans le cadre algébrique, la notion correspondante a été définie en (2.3.2.1). Lorsque A est une A_∞-algèbre strictement unitaire, certaines propriétés des algèbres associatives unitaires pourront être généralisée à A. Par exemple, nous montrerons l’analogue de l’isomorphisme

$$M \otimes_B B \to M,$$

lorsque B est une algèbre associative unitaire et M un B-module unitaire (voir la généralisation en 4.1.1.6 dans le chapitre 4). Cependant, les A_∞-algèbres (en fait A_∞-catégories) apparaissant en géométrie [Fuk93] ne sont pas strictement unitaires mais homologiquement unitaires, i. e. H^*A munie de la multiplication induite par m_2 est une algèbre graduée unitaire. Le but de ce chapitre est de montrer que d’un point de vue homotopique, il n’y a pas de différence entre les unités strictes et les unités homologiques. Plus précisément, nous montrerons que la sous-catégorie des A_∞-algèbres homologiquement unitaires dont les morphismes sont les A_∞-morphismes homologiquement unitaires et la sous-catégorie des A_∞-algèbres strictement unitaires dont les morphismes sont les A_∞-morphismes strictement unitaires deviennent équivalentes après passage à l’homotopie (3.2.4.4).

Plan du chapitre

Ce chapitre est divisé en trois sections. Dans la section 3.1, nous définissons les unités homologiques relatives aux A_∞-structures. Dans la section 3.2, nous montrons le résultat énoncé ci-dessus. Dans la section 3.3, nous comparons les différents types de compatibilités aux unités des (bi)polydules.

3.1 Définitions

Soit C une catégorie de base telle que dans le chapitre 1. Soit A une A_∞-algèbre sur C et soit

$$\mu : H^*A \otimes H^*A \to H^*A$$
le morphisme induit par m_2.

Définition 3.1.0.1 Un morphisme $\eta^A : e \to A$ dans GrC est une unité homologique si $m_1 \circ \eta = 0$ et s'il induit une unité pour l'algèbre graduée associative (H^*A, μ). Si A est munie d'une unité homologique, nous dirons qu'elle est homologiquement unitaire. Si A et A' sont deux A_∞-algèbres homologiquement unitaires, un A_∞-morphisme $f : A \to A'$ est homologiquement unitaire si f_1 induit un morphisme unitaire

$$H^*A \xrightarrow{\sim} H^*A'.$$

Remarque 3.1.0.2 L'unité $e \to A$ d'une A_∞-algèbre strictement unaire (2.3.2.1) est clairement une unité homologique. Un morphisme strictement unitaire d'A_∞-algèbre strictement unaire est homologiquement unitaire.

On trouve dans les travaux de K. Fukaya [FOOO01] et V. Lyubashenko [Lyu02] d'autres relevements de la notion d'unitarité. Une A_∞-algèbre munie d'une "unité homotopique" (définie dans [FOOO01] à l'aide d'homotopies supérieures, voir aussi [Fuk01b]) donne une "A_∞-algèbre unitaire" au sens de [Lyu02]. Le relevement de la notion d'unitarité de V. Lyubashenko [Lyu02] se spécialise à notre notion d'unitarité homologique si on travaille sur un corps (V. Lyubashenko travaille sur un anneau commutatif quelconque). Remarquons que l'unitarité homologique n'est pas du type "à homotopie près" : elle n'est pas définie à l'aide d'homotopies supérieures vérifiant des conditions de cohérence. Elle est cependant une notion valide puisque (comme nous le verrons dans ce chapitre) la localisation de la catégorie des A_∞-algèbres homologiquement unataires par rapport aux A_∞-quasi-isomorphismes est équivalente à la localisation de la catégorie des algèbres unaires par rapport aux quasi-isomorphismes.

Définition 3.1.0.3 Si f et f' sont deux morphismes homotopiquement unaires $A \to A'$, une homotopie h entre f et f' est strictement unitaire si

$$h_i(1^{\otimes j} \otimes \eta \otimes 1^{\otimes l}) = 0, \quad i \geq 1 \text{ et } j + 1 + l = i.$$

Remarque 3.1.0.4 Si A est une A_∞-algèbre homologiquement unitaire et H^*A est un modèle minimal pour A (1.4.1.4), l'unité homologique η^A induit une unité homologique $\eta^{H^*A} : e \to H^*A$ qui vérifie en outre

$$m_2^{H^*A}(\eta^{H^*A} \otimes 1) = m_2^{H^*A}(1 \otimes \eta^{H^*A}) = 1.$$

Soit $f : A \to A'$ un morphisme homologiquement unitaire et H^*A et H^*A' des modèles minimaux de A et A'. Nous rappelons (1.4.1.4) qu'il existe des A_∞-quasi-isomorphismes

$$i : H^*A \to A \quad \text{et} \quad i' : H^*A' \to A'.$$

Par le point b du corollaire 1.3.1.3, il existe un inverse à homotopie près p' de i'. Le morphisme $g = p' \circ f_1 \circ i$ vérifie en outre $g_1 \eta^{H^*A} = \eta^{H^*A'}$.

3.2 A_∞-algèbres homologiquement unitaires

Cette section est divisée en quatre sous-sections.

Dans la sous-section 3.2.1, nous donnons deux démonstrations du fait que toute A_∞-algèbre minima homologiquement unitaire est isomorphe à une A_∞-algèbre strictement unitaire. La première de ces démonstrations est inspirée de la théorie des déformations des algèbres graduées et n'est
valable qu’en caractéristique nulle. La seconde est basée sur la théorie de l’obstruction des A_{∞}-algèbres minimales (voir l’appendice B.4).

Dans les sous-sections 3.2.2 et 3.2.3, nous démontrons, à l’aide de la théorie de l’obstruction, qu’on peut rendre strictement unitaire tout A_{∞}-morphisme homologiquement unitaire entre A_{∞}-algèbres strictement unitaires et toute homotopie entre A_{∞}-morphismes.

Dans la sous-section 3.2.4, nous montrons que toute A_{∞}-algèbre strictement unitaire A admet un modèle minimal strictement unitaire A' et des A_{∞}-quasi-isomorphismes strictement unitaires $A' \to A$ et $A \to A'$.

Nous déduirons de ce résultat et des sous-sections précédentes le résultat principal de ce chapitre (3.2.4.4) : la catégorie $(\text{Alg}_{\infty})_{hu}$ des A_{∞}-algèbres homologiquement unitaires dont les morphismes sont les A_{∞}-morphismes homologiquement unitaires et sa sous-catégorie non pleine $(\text{Alg}_{\infty})_{su}$ des A_{∞}-algèbres strictement unitaires dont les morphismes sont les A_{∞}-morphismes strictement unitaires deviennent équivalentes après passage à l’homotopie.

3.2.1 Strictification unitaire des A_{∞}-algèbres

Théorème 3.2.1.1 (A. Lazarev [Laz02], P. Seidel [Sei]) *Toute A_{∞}-algèbre minimale homologiquement unitaire est isomorphe à une A_{∞}-algèbre minimale strictement unitaire.*

Le théorème a été démontré de façon indépendante par P. Seidel [Sei], qui utilise la même méthode que nous, ainsi que par A. Lazarev [Laz02]. Notre première démonstration utilisera les déformations et n’est valable qu’en caractéristique zéro. Elle nous donne l’existence de l’A_{∞}-algèbre minimale strictement unitaire. La seconde démonstration est basée sur les lemmes d’obstruction de l’appendice B.4. Elle précise les choix possibles de l’A_{∞}-algèbre minimale strictement unitaire.

Les deux démonstrations sont liées : pour un m_2 donné, le complexe de Hochschild $C^*(A, A)$ (voir l’appendice B.4) contrôle l’obstruction à la construction par récurrence des m_i, $i \geq 3$, d’une structure d’A_{∞}-algèbre minimale sur A et il est aussi l’algèbre de Lie différentielle graduée qui décrit le problème des déformations de l’algèbre (A, m_2). Nous renvoyons aux articles [SS85] et [KS00] concernant ce point.

Corollaire 3.2.1.2 *Toute A_{∞}-algèbre homologiquement unitaire est homotopiquement équivalente à une A_{∞}-algèbre strictement unitaire.*

Démonstration : Soit A une A_{∞}-algèbre homologiquement unitaire et soit A' un modèle minimal de A. Nous savons que A et A' sont homotopiquement équivalents. Le résultat se déduit alors du théorème 3.2.1.1 appliqué à A'.

Remarque 3.2.1.3 Nous montrerons à la fin de ce chapitre (3.2.4.1) que toute A_{∞}-algèbre strictement unitaire A admet un modèle minimal strictement unitaire A' tel que l’A_{∞}-quasi-morphisme $A' \to A$ est strictement unitaire.
Première démonstration du théorème 3.2.1.1 :

Rappel sur les déformations

Supposons que la caractéristique de K est nulle. Soit $(g, \delta, \left[_, _\right])$ une K-algèbre de Lie différentielle graduée nilpotente, i. e. il existe un entier $N \geq 1$ tel que

$$\text{ad}X_1 \text{ad}X_2 \ldots \text{ad}X_N = 0, \quad X_1, \ldots, X_N \in g.$$

On note $\text{MC}(g)$ les éléments $X \in g$ de degré $+1$ qui sont solutions de l’équation de Maurer-Cartan

$$\delta(X) + \frac{1}{2}[X,X] = 0.$$

Soit Γ le groupe nilpotent associé à g^0. Il agit sur g^1 par transformations affines, c’est-à-dire, par l’exponentiation de l’action de son algèbre de Lie

$$g.x = \delta(g) + [g, x], \quad g \in g^0, x \in g^1.$$

Cette action conserve $\text{MC}(g)$ et on a l’ensemble

$$\text{MC}(g)/\sim = \text{MC}(g)/\Gamma.$$

On rappelle [GM90] le résultat suivant.

Théorème 3.2.1.4 Si \mathfrak{h} est une algèbre de Lie différentielle graduée nilpotente, une équivalence d’homotopie $f : \mathfrak{h} \rightarrow g$ induit une bijection

$$\text{MC}(\mathfrak{h})/\sim \rightarrow \text{MC}(g)/\sim.$$

Lien avec les A_{∞}-algèbres

Soit (A, μ) une K-algèbre graduée associative unitaire. L’application

$$(D, D') \mapsto [D, D'] = D \circ D' - (-1)^{pq} D' \circ D,$$

où D et D' sont homogènes de degré p et q, munit le complexe $(\text{coder}(BA)^+, \delta)$ d’une structure d’algèbre de Lie différentielle graduée. Notons LA cette algèbre de Lie. Nous avons un isomorphisme de complexes

$$LA \rightarrow SC(A, A),$$

où $C(A, A)$ est le complexe de Hochschild (voir l’appendice B.4). Il envoie le crochet de Lie de LA sur le crochet de Gerstenhaber [Ger63]. Soit $L^{2n} A \subset LA$, $n \geq 3$, la sous-algèbre de Lie

$$S \left(\prod_{i \geq n} \text{Hom}_{\text{Gr}} C(A^{\otimes i}, A) \right).$$
Les sous-algèbres $L^{≥ n}A$, $n ≥ 4$, sont des idéaux de $L^{≥ 3}A$ et nous avons

$$L^{≥ 3}A = \lim_{n≥4} g_n,$$

où g_n est l’algèbre $L^{≥ 3}A/L^{≥ n}A$. Comme nous avons

$$[L^{≥ n}A, L^{≥ n'}A] ⊂ L^{≥ n+n'-1}A, \quad n, n' ≥ 1,$$

les algèbres de Lie g_n sont nilpotentes et $L^{≥ 3}A$ est pronilpotente. Le sous-complexe réduit $S\overline{C}(A, A)$ est une sous-algèbre de Lie de LA pour le crochet de Gerstenhaber. Nous la notons $\overline{S}A$. Rappelons que l’inclusion $\overline{S}A \hookrightarrow LA$ est une équivalence d’homotopie (voir [CE99, Chap. IX]). Par le théorème 3.2.1.4, nous avons une bijection

$$\Theta : MC(\overline{L}^{≥ 3}A)/\sim \xrightarrow{\sim} MC(L^{≥ 3}A)/\sim,$$

où $\overline{L}^{≥ 3}A = \overline{S}A \cap L^{≥ 3}A$. Un élément $b' ∈ L^{≥ 3}A$ est dans $MC(\overline{L}^{≥ 3}A)$ si et seulement si $b = b' + b_2$ (où b_2 correspond à $m_2 = µ$) est une différentielle de $(BA)^+$. En d’autres termes, nous avons une bijection entre $MC(\overline{L}^{≥ 3}A)$ et l’ensemble des structures $A_∞$-algèbre minimale sur A dont la multiplication m_2 vaut $µ$. Sous cette bijection, les classes d’équivalence de $MC(L^{≥ 3}A)$ correspondent aux classes d’isomorphie de structures $A_∞$ minimales tel que m_2 vaut $µ$. Remarquons qu’un élément $b'' ∈ MC(L^{≥ 3}A)$ appartient à la sous-algèbre $\overline{L}^{≥ 3}A$ si et seulement si l’$A_∞$-structure correspondant à b'' est strictement unitaire sur A. Nous déduisons alors de la bijection $Θ$ que toute $A_∞$-structure (dont le m_2 vaut $µ$) homologiquement unitaire sur A est isomorphe à une $A_∞$-structure strictement unitaire.

Deuxième démonstration du théorème 3.2.1.1 :

La caractéristique de K est quelconque.

Lemme 3.2.1.5 Soit A une $A_∞$-algèbre minimale. Soit n un entier $≥ 2$ et $f_n : A^{⊗ n} → A$

un morphisme gradué de degré $1 - n$. Il existe une $A_∞$-algèbre minimale A', $A_∞$-isomorphe à A, dont l’objet gradué sous-jacent est A et dont les multiplications m'_i, $i ≥ 2$, sont telles que

$$m'_i = m_i \quad si \quad i ≤ n \quad et \quad m'_{i+1} = m_{i+1} + δ_{Hoch}(f_n).$$

Démonstration : Soit le morphisme de cogèbres graduées

$$F : BA → BA$$

déterminé par la suite

$$(1_{S,A}, 0, \ldots, 0, F_n, 0 \ldots),$$

où F_n est donné par la bijection $F_n ↷ f_n$ de la section 1.2.2. Le morphisme F est un isomorphisme. Posons

$$b' = F \circ b^A \circ F^{-1}.$$
C’est une différentielle sur $\mathcal{T}^c SA$. La cogèbre $(\mathcal{T}^c SA, b')$ est donc la construction bar d’une A_∞-algèbre A', A_∞-isomorphe à A, dont l’objet gradué sous-jacent est A. Il reste à vérifier les conditions sur les multiplications. La matrice du morphisme de cogèbres graduées

$$F : \mathcal{T}^c(SA) = \bigoplus_{p \geq 1} (SA)^{\otimes p} \rightarrow \mathcal{T}^c(SA) = \bigoplus_{q \geq 1} (SA)^{\otimes q}$$

est triangulaire supérieure et sa diagonale est formée d’identités. La matrice de la même forme. De plus la restriction de F à

$$\mathcal{T}^c_{[n]} SA = \bigoplus_{1 \leq p \leq n-1} (SA)^{\otimes p}$$

est l’identité. Il en est donc de même pour son inverse. La matrice de la différentielle b^A est strictement triangulaire supérieure puisque b^A_1 est nul. Le calcul montre alors que

$$b_i = F_1 b_i^A(F^{-1})_1, \quad \text{pour} \quad i \leq n,$$

$$b_{n+1} = F_1 b_n^A(F^{-1})_1 + F_1 b_{n+1}^A(F^{-1})_n + F_1 b^A_2(F^{-1})_1.$$

Nous déduisons le résultat des égalités

$$(F^{-1})_n = - F_n \quad \text{et} \quad F_1 = F_1^{-1} = 1_{SA}.$$

Démontrons maintenant le théorème 3.2.1.1. Nous raisonssons par récurrence sur n. Soit $n \geq 2$. Supposons que A est une A_∞-algèbre telle que, pour tout $3 \leq i \leq n$, on a

$$m_i(1^\otimes j \otimes \eta \otimes 1^\otimes k) = 0, \quad j + k = n.$$

Ceci est équivalent à demander que les m_i, $3 \leq i \leq n$, soient des éléments du sous-complexe de Hochschild réduit $\mathcal{C}(A, A)$ (voir B.4). Montrons que nous pouvons construire une A_∞-algèbre A', A_∞-isomorphe à A, dont l’objet gradué sous-jacent est A et dont les multiplications m'_i, $3 \leq i \leq n + 1$, sont des éléments de $\mathcal{C}(A, A)$. Par hypothèse sur les m_i, $3 \leq i \leq n$, le cycle de Hochschild $r(m_3, \cdots, m_{n-1})$ du lemme B.4.1 appartient à $\mathcal{C}(A, A)$. Comme A est une A_∞-algèbre, nous savons par le lemme B.4.1 que

$$\delta_{Hoch}(m_{n+1}) + r(m_3, \cdots, m_n) = 0$$

et que l’élément $r(m_3, \cdots, m_n)$ est un cycle de Hochschild. Ainsi, l’élément

$$(m_{n+1}, sr(m_3, \cdots, m_n))$$

du cône C sur l’inclusion $\mathcal{C}(A, A) \hookrightarrow C(A, A)$ est un cycle. Comme C est acyclique, cet élément est le bord d’un élément (f_n, sm'_{n+1}). En d’autres termes, il existe des éléments

$$m'_{n+1} \in \text{Hom}_{grC}(\mathcal{A}^{\otimes n+1}, A) \quad \text{et} \quad f_n \in \text{Hom}_{grC}(A^{\otimes n}, A)$$

tels que

$$\delta_{Hoch}(f_n) + m'_{n+1} = m_n \quad \text{et} \quad \delta_{Hoch}(m'_{n+1}) + r(m_3, \cdots, m_n) = 0.$$

Par le lemme précédent appliqué à l’A_∞-algèbre A' et au morphisme $-f_n$, il existe une A_∞-algèbre A', A_∞-isomorphe à A, telle que nous avons, pour tout $3 \leq i \leq n + 1$,

$$m'_i(1^\otimes j \otimes \eta \otimes 1^\otimes k) = 0, \quad j + k = n.$$

□
3.2.2 Strictification unitaire des \mathcal{A}_∞-morphismes

Théorème 3.2.2.1 Un morphisme d’\mathcal{A}_∞-algèbres minimales strictement unitaires est homotope à un morphisme strictement unitaire.

Lemme 3.2.2.2 Soit A et A' deux \mathcal{A}_∞-algèbres minimales et $f : A \rightarrow A'$ un \mathcal{A}_∞-morphisme. Soit n un entier ≥ 2 et

$$h_n : A^\otimes n \rightarrow A$$

un morphisme gradué de degré $-n$. Il existe un \mathcal{A}_∞-morphisme $f' : A \rightarrow A'$ homotope à f tel que

$$f'_i = f_i \quad \text{si} \quad i \leq n \quad \text{et} \quad f'_{n+1} = f_{n+1} - \delta_{Hoch}(h_n).$$

Démonstration : Nous allons construire un morphisme f' tel que la suite

$$(0, \ldots, 0, h_n, 0, \ldots)$$

définit une homotopie h entre f et f'. Nous construisons les f'_i par récurrence sur i. Soit $i \geq 1$. Supposons qu’il existe un \mathcal{A}_r-morphisme $f' : A \rightarrow A'$ tel que h définit une homotopie entre f et f' en tant que \mathcal{A}_r-morphisme. Posons

$$f'_{i+1} = f_{i+1} - \sum (-1)^r m_{r+1+i} (f_{i_1} \otimes \cdots \otimes f_{i_r} \otimes h_k \otimes f'_{j_1} \otimes \cdots \otimes f'_{j_l})$$

$$- \sum (-1)^{jk+l} h_k (1^\otimes j \otimes m_k \otimes 1^\otimes l),$$

où s est le signe apparaissant dans 1.2.1.7. Par construction, la suite des

$$(f'_1, \ldots, f'_i, f'_{i+1})$$

définit un \mathcal{A}_{i+1}-morphisme homotope à f. Le morphisme f' ainsi construit vérifie clairement les conditions souhaitées sur les f'_i, $1 \leq i \leq n + 1$.

Démonstration du théorème 3.2.2.1 :

Soit A et A' deux \mathcal{A}_∞-algèbres minimales strictement unitaires et

$$f : A \rightarrow A'$$

un \mathcal{A}_∞-morphisme homologiquement unitaire. Nous cherchons un morphisme f' homotope à f tel que les morphismes f'_i, $i \geq 1$, vérifient

$$f'_i (1^\otimes j \otimes \eta \otimes 1^\otimes l) = 0, \quad i \geq 2 \quad j + 1 + l = i.$$

Construisons les f'_i, $1 \leq i \leq n$, par récurrence sur n. Soit $n \geq 1$. Supposons qu’on a un morphisme f, tel que les morphismes f_i, $2 \leq i \leq n$, vérifient la condition précédente. En utilisant les mêmes arguments que pour le théorème 3.2.1.1 dans lesquels nous remplaçons le complexe $C(A, A)$ par le complexe $C(A, A')$ et le lemme d’obstruction B.4.1 par le lemme B.4.2, nous trouvons qu’il existe deux éléments

$$f'_{n+1} \in \operatorname{Hom}_{\mathcal{G}rC}(\mathcal{A}^\otimes n+1, A') \quad \text{et} \quad h_n \in \operatorname{Hom}_{\mathcal{G}rC}(\mathcal{A}^\otimes n, A')$$

tels que

$$\delta_{Hoch}(h_n) + f'_{n+1} = f_n \quad \text{et} \quad \delta_{Hoch}(f'_{n+1}) + r(f_2, \cdots, f_n) = 0.$$

Par le lemme 3.2.2.2 appliqué à f et h_n, il existe un morphisme f' homotope à f dont les morphismes f_i, $2 \leq i \leq n + 1$, vérifient les équations

$$f_i (1^\otimes j \otimes \eta \otimes 1^\otimes l) = 0, \quad i \geq 2 \quad j + 1 + l = i.$$

□
3.2.3 Strictification unitaire des homotopies

Théorème 3.2.3.1 Soit A et A' deux A_∞-algèbres minimales strictement unitaires. Si f et g sont deux A_∞-morphismes strictement unitaires homotopes $A \to A'$ il existe une homotopie strictement unitaire entre f et g.

Lemme 3.2.3.2 Soit A et A' deux A_∞-algèbres minimales. Soit f et g sont deux A_∞-morphismes homotopes $A \to A'$ et h une homotopie de f vers g. Soit $n \geq 2$ et

$$\rho_n : A^\otimes n \to A'$$

un morphisme gradué de degré $-n - 1$. Il existe une homotopie h' entre f et g telle que

$$h'_i = h_i \text{ si } 1 \leq i \leq n \text{ et } h_{n+1} = h'_{n+1} + \delta_{Hoch}(\rho_n).$$

Démonstration : Nous raisonnons comme dans le lemme 3.2.2.2. Posons $F = Bf$, $G =Bg$ et $H = Bh : BA \to BA'$ l'homotopie entre F et G. Soit R la (F,G)-codérivation de degré -2 qui est donnée (1.1.2.2) par la suite

$$(0, \ldots, 0, s\rho_n \omega^\otimes_n, 0, \ldots).$$

Soit H' défini par l'égalité

$$H' = H - h^A R + Rb^A.$$ C'est une (F,G)-codérivation qui est clairement une homotopie entre F et G. Nous vérifions qu'elle correspond à une homotopie h' entre f et g telle que

$$h'_i = h_i \text{ si } 1 \leq i \leq n \text{ et } h_{n+1} = h'_{n+1} + \delta_{Hoch}(\rho_n).$$

Nous déduisons des théorèmes 3.2.1.1, 3.2.2.1 et 3.2.3.1 le corollaire suivant :
Corollaire 3.2.3.3 Soit A et A' des A_∞-algèbres minimales strictement unitaires et $f : A \to A'$ une équivalence d'homotopie strictement unitaire. Il existe un inverse à homotopie près g de f qui est strictement unitaire et des homotopies h et h' strictement unitaires entre 1_A et $f \circ g$, et entre 1_A et $g \circ f$. □

3.2.4 Modèle minimal d’une A_∞-algèbre strictement unitaire

Le corollaire (3.2.1.2) montre que toute A_∞-algèbre homologiquement unitaire A admet un modèle minimal strictement unitaire A' tel que l'A_∞-quasi-isomorphisme $f : A' \to A$ vérifie $f \circ \eta = \eta$. Le but de cette section est de montrer la proposition suivante :

Proposition 3.2.4.1 Toute A_∞-algèbre strictement unitaire A admet un modèle minimal strictement unitaire A' tel que l'A_∞-morphisme $f : A' \to A$ est strictement unitaire.

Notre démonstration est basée sur le lemme de perturbation (voir [HK91], [GS86], [GL89], [GLS91], [Mer99] et [KS01]).

Démonstration : Posons $V = H^* A$. Soit $i : (V, 0) \to (A, m_1)$ un morphisme de complexes qui induit l'identité en homologie et tel que $i \circ \eta = \eta$. Soit $p : A \to K$ le conoyau de i. Le complexe K est contractile. La suite de complexes (i, p) est donc scindable. Choisissons une rétraction ρ et une section σ telles que

$$\rho \circ \sigma = 0 \quad \text{et} \quad i \circ \rho + \sigma \circ p = 1_A.$$

Soit h une homotopie contractante de K tel que $h^2 = 0$. Soit $A' = V^d$ l'A_∞-algèbre (de complexe sous-jacent V) et $f = f^d$ le morphisme d'A_∞-algèbres construits à partir de ces données dans (1.4.2.1). Montrons que A' est une A_∞-algèbre strictement unitaire et que l'A_∞-morphisme f est strictement unitaire. Nous utilisons les notations de la démonstration de (1.4.2.1). Nous avons clairement les égalités

$$m'_i \circ \eta = 0, \quad m'_2(\eta \otimes 1) = m'_2(1 \otimes \eta) = 1 \quad \text{et} \quad f_1 \circ \eta = \eta.$$

Il reste à montrer que la composition de f_i, $i \geq 2$, et m'_i, $i \geq 3$, par

$$\eta_\alpha = (1^{\otimes \alpha} \otimes \eta \otimes 1^{\otimes 1-\alpha}), \quad 0 \leq \alpha < i,$$

est nulle. Il suffit de montrer que les compositions

$$m_{i, T} \circ \eta_\alpha \quad \text{et} \quad f_{i, T} \circ \eta_\alpha, \quad T \in T,$$

sont nulles. Remarquons que ces compositions proviennent d’arbres T, coloriés comme pour $m_{i, T}$ (resp. $f_{i, T}$) sauf en une feuille qui est maintenant de couleur η. Comme A est strictement unitaire, nous avons

$$m_j \circ \eta_\beta = 0, \quad j \geq 3, \quad 0 \leq \beta < j.$$

Il suffit donc de vérifier la nullité des compositions provenant d’arbres coloriés dont un sous-arbre colorié est de la forme
Dans les deux premiers cas, \(m'_{i,T} \circ \eta \) et \(f_{i,T} \circ \eta \), s’annulent car \(H^2 = 0 \), dans les autres cas, car \(i \circ H = 0 \).

Remarque 3.2.4.2 Nous vérifions de la même manière que le morphisme \(q^5 \) et l’homotopie \(H^5 \) de la remarque (1.4.2.4) sont aussi strictement unitaires. Le lemme de perturbation produit donc une contraction dans la catégorie des \(A_\infty \)-algèbres strictement unitaires.

Soit \((\rm{Alg}_{\infty})_u \) (resp. \((\rm{Alg}_{\infty})_{su} \)) la catégorie des \(A_\infty \)-algèbres strictement unitaires dont les espaces de morphismes sont formés des morphismes homologiquement unitaires (resp. strictement unitaires). Notons \(\sim_u \) (resp. \(\sim_{su} \)) la relation d’homotopie relativement aux homotopies au sens de 1.2.1.7 (resp. aux homotopies strictement unitaires).

Proposition 3.2.4.3 L’inclusion

\[
(\rm{Alg}_{\infty})_{su} \hookrightarrow (\rm{Alg}_{\infty})_u
\]

induit une équivalence

\[
J : (\rm{Alg}_{\infty})_{su} / \sim_{su} \rightarrow (\rm{Alg}_{\infty})_u / \sim_u.
\]

Démonstration : La remarque (3.2.4.2) montre qu’il suffit de montrer que \(J \) induit un isomorphisme dans les espaces de morphismes dont le but et la source sont des \(A_\infty \)-algèbres minimales strictement unitaires. Nous strictifions les \(A_\infty \)-morphismes, puis les homotopies entre \(A_\infty \)-morphismes strictement unitaires grâce aux théorèmes (3.2.2.1) et (3.2.3.1).

Corollaire 3.2.4.4 La sous-catégorie \((\rm{Alg}_{\infty})_{hu} \subset \rm{Alg}_{\infty} \) des \(A_\infty \)-algèbres homologiquement unitaires dont les morphismes sont les \(A_\infty \)-morphismes homologiquement unitaires et la catégorie \((\rm{Alg}_{\infty})_{su} \) deviennent équivalentes après passage à l’homotopie.

Corollaire 3.2.4.4 La sous-catégorie \((\rm{Alg}_{\infty})_{hu} \subset \rm{Alg}_{\infty} \) des \(A_\infty \)-algèbres homologiquement unitaires dont les morphismes sont les \(A_\infty \)-morphismes homologiquement unitaires et la catégorie \((\rm{Alg}_{\infty})_{su} \) deviennent équivalentes après passage à l’homotopie.

Co(f)ibrations triviales strictement unitaires

Nous finissons cette section par des résultats qui nous seront utiles dans la section (4.1.3).

Lemme 3.2.4.5 Soit \(A \) et \(A' \) des \(A_\infty \)-algèbres strictement unitaires.

a. Soit \(i : A \rightarrow A' \) une cofibration triviale strictement unitaire. Il existe un \(A_\infty \)-morphisme \(p : A' \rightarrow A \) strictement unitaire tel que \(p \circ i = 1_A \).

b. Soit \(q : A' \rightarrow A \) une fibration triviale strictement unitaire. Il existe un \(A_\infty \)-morphisme \(j : A \rightarrow A' \) strictement unitaire tel que \(q \circ j = 1_A \).
Démonstration : Les arguments de la démonstration des deux points étant duaux nous ne prouvons que le point a. Supposons donné un A_{∞}-morphisme strictement unitaire p' tel que la composition $\alpha = p' \circ i$ est un automorphisme de A. Comme α est la composée d'A_{∞}-morphismes strictement unitaires, il est strictement unitaire. Le lemme (3.2.4.6) ci-dessous montre l'A_{∞}-morphisme α^{-1} est aussi strictement unitaire. Posons $p = \alpha^{-1} \circ p'$ et nous avons le résultat car $p \circ i = 1_A$.

Nous devons donc trouver un A_{∞}-morphisme p' strictement unitaire tel que $p' \circ i$ est un automorphisme de A.

Premier cas : l'unité η est un bord de A'. Dans cette situation, l'unité est nulle dans la cohomologie. Il en résulte que A et A' sont faiblement équivalentes à 0. Définissons p'_i comme un scindage de i_1. Il vérifie l'égalité $p'_1 \circ \eta = \eta$. Les morphismes p'_i, $i \geq 2$, sont définis par récurrence sur i. Soit h une homotopie contractante de A. Posons
$$p'_i = -h \circ r(p'_1, \ldots, p'_{i-1}),$$
où $r(p'_1, \ldots, p'_{i-1})$ est le cycle du lemme (B.1.5). Nous vérifions (par récurrence) que $r(p'_1, \ldots, p'_{i-1})$ composé avec
$$\begin{align*}
1 \circ \eta \circ 1, & \quad \alpha + 1 + \beta = i + 1, \\
\end{align*}$$
est mul. Les morphismes p'_i, $i \geq 1$, ainsi construits définissent bien un A_{∞}-morphisme grâce au lemme (B.1.5). Il est strictement unitaire et, comme nous avons l'égalité
$$(p' \circ i)_1 = p'_1 \circ i_1 = 1$$
pour i est un automorphisme de A.

Deuxième cas : l'unité η n'est pas un bord de A'. Comme i est une cofibration triviale, l'axiome (CM4) de la catégorie Alg_{∞} (voir 1.3.3.1) nous donne un A_{∞}-morphisme $q : A' \to A$ tel que $q \circ i = 1_A$. L'A_{∞}-morphisme q est clairement homologiquement unitaire qui vérifie l'égalité $q_0 \circ \eta = \eta$. Comme A et A' sont strictement unitaires, il existe (3.2.4.3) un A_{∞}-morphisme strictement unitaire $q' : A' \to A$ homotope à q. Comme l'unité η n'est pas un bord de A', il existe une rétraction de complexes de de $\eta : e \to A'$. Il induit un scindage $A' = e \oplus A$. Nous savons que le morphisme $q_1 - q'_1$ est homotope à zéro et qu'il s'annule sur e. Il se factorise en $z \circ t$, où t est la projection $A' \to A$. Comme cette projection est scindée dans la catégorie des complexes, e est homotope à zéro. Il existe donc une homotopie h_1 entre q_1 et q'_1 telle que $h_1 \circ \eta = 0$ et nous avons l'égalité $q'_1 \circ i_1 = 1_A + \delta(h_1) \circ i_1$.

Construisons les morphismes p'_i, $i \geq 1$, à partir des morphismes q'_j, $j \geq 1$, par récurrence sur i : Posons
$$p'_1 = q'_1 - \delta(h_1)$$
et, pour $i \geq 2$,
$$p'_i = q'_i - \sum (-1)^s m_{r+1+i}(p'_1 \otimes \ldots \otimes p'_i \otimes h_1 \otimes q'_1 \otimes \ldots \otimes q'_i) + \sum h_1 \circ m_i,$$
où s est défini en (1.2.1.7). Les morphismes p'_i, $i \geq 1$, définissent ainsi un A_{∞}-morphisme strictement unitaire $A' \to A$ tel que la suite
$$(h_1, 0, \ldots)$$
est une homotopie entre q' et p'. La composition $p' \circ i$ est un automorphisme car
$$(p' \circ i)_1 = (q'_1 - \delta(h_1)) \circ i_1 = q'_1 \circ i_1 - \delta(h_1) \circ i_1 = 1_A + \delta(h_1) \circ i_1 - \delta(h_1) \circ i_1 = 1_A.$$
Lemme 3.2.4.6 Soit A et A' deux A_∞-algèbres strictement unitaires. Soit $\alpha : A \to A'$ un A_∞-isomorphisme strictement unitaire. L'(A_∞)-morphisme $\beta = \alpha^{-1}$ est strictement unitaire.

Démonstration : On note η l'unité des A_∞-algèbres. Comme $\alpha_1 \circ \eta = \eta$, nous avons l'égalité $\beta_1 \circ \eta = \eta$. Nous savons que le morphisme

$$\alpha_2 \circ (\beta_1 \otimes \beta_1) + \alpha_1 \circ \beta_2 : A^\otimes 2 \to A$$

est nul. Si nous le composons avec $\eta \otimes 1$ (resp. $1 \otimes \eta$), nous trouvons que

$$\alpha_1 \circ \beta_2(\eta \otimes 1) \quad \text{(resp. } \alpha_1 \circ \beta_2(1 \otimes \eta))$$

est nul. Comme α_1 est un isomorphisme, ceci implique que

$$\beta_2(\eta \otimes 1) = 0 \quad \text{et} \quad \beta_2(1 \otimes \eta) = 0.$$

Nous continuons par récurrence sur n. Supposons que $\beta_n \eta = \eta$ et

$$\beta_i(1^\otimes j \otimes \eta \otimes 1^\otimes k) = 0, \quad j + 1 + k = i, \quad 2 \leq i \leq n.$$

Nous en déduisons l'égalité

$$(\alpha \circ \beta)_{n+1}(1^\otimes j \otimes \eta \otimes 1^\otimes k) = \alpha_1 \circ \beta_{n+1}(1^\otimes j \otimes \eta \otimes 1^\otimes k), \quad j + 1 + k = n + 1.$$

Comme le terme définissant $(\alpha \circ \beta)_{n+1}$ est nul, nous en déduisons que

$$\beta_{n+1}(1^\otimes j \otimes \eta \otimes 1^\otimes k) = 0, \quad j + 1 + k = n + 1.$$

□

3.3 Strictification unitaire des polydules

Cette section traite des différents types de compatibilité aux unités des A_∞-(bi)polydules. Les démonstrations sont omises car elles sont similaires à celles de la section 3.2.

3.3.1 Polydules homologiquement unitaires

Définition 3.3.1.1 Soit A une A_∞-algèbre homologiquement unitaire. Un A-polydule M est homologiquement unitaire si H^*M est un H^*A-module unitaire. Si M et M' sont deux A-polydules homologiquement unitaires, un A_∞-morphisme $f : M \to M'$ est toujours homologiquement unitaire, i.e. f_1 induit un morphisme de H^*A-modules unitaires $H^*M \to H^*M'$.

Soit A une A_∞-algèbre strictement unitaire. Un A-polydule strictement unitaire (2.3.2.3) est clairement homologiquement unitaire.

Les résultats

Soit A une A_∞-algèbre minimale et strictement unitaire.
Théorème 3.3.1.2 Tout A-polydule minimal homologiquement unitaire est isomorphe à un A-polydule strictement unitaire.

Corollaire 3.3.1.3 Tout A-polydule homologiquement unitaire est homotopiquement équivalent à un A-polydule strictement unitaire.

Théorème 3.3.1.4 Soit M et M' deux A-polydules minimaux strictement unitaires. Tout A_∞-morphisme $f : M \to M'$ est homotope à un A_∞-morphisme strictement unitaire.

Corollaire 3.3.1.6 Soit M et M' des A-polydules strictement unitaires et $f : M \to M'$ une équivalence d’homotopie strictement unitaire. Il existe un inverse à homotopie près g de f qui est strictement unitaire et des homotopies h et h' strictement unitaires entre $1_{M'}$ et $f \circ g$, et entre 1_M et $g \circ f$.

Soit A une A_∞-algèbre strictement unitaire.

Proposition 3.3.1.7 Tout A-polydule strictement unitaire M admet un modèle minimal strictement unitaire M' tel que l’A_∞-quasi-isomorphisme

$$f : M' \to M$$

est strictement unitaire.

Soit $(\text{Nod}_\infty A)_u$ la sous-catégorie pleine de $\text{Nod}_\infty A$ formée des A-polydules strictement unitaires.

Proposition 3.3.1.8 L’inclusion

$$\text{Mod}_\infty A \hookrightarrow (\text{Nod}_\infty A)_u$$

induit une équivalence

$$\text{Mod}_\infty A/\sim \overset{\sim}{\longrightarrow} (\text{Nod}_\infty A)_u/\sim,$$

où les symboles \sim désignent la relation d’homotopie (2.3.2.3) et (2.3.1.10).

3.3.2 Bipolydules homologiquement unitaires

Soit C et C' deux cogèbres différentielles graduées et soit N et N' deux $C-C'$-bicomodules différentiels gradués. Notons Δ^R et Δ^L la comultiplication à droite et à gauche de ces bicomodules.

Définition 3.3.2.1 Une codérivation de bicomodules est un morphisme

$$K : N \to N'$$

tel que

$$\Delta^L \circ K = (1 \otimes K) \circ \Delta^L \quad \text{et} \quad \Delta^R \circ K = (K \otimes 1) \circ \Delta^R.$$

$$\text{coder}(BM, BM)$$

joue dans cette section le rôle de l’espace

$$\text{coder}((BA)^+, (BA)^+)$$

de la section B.4.

Soit A et A' deux A_∞-algèbres strictement unitaires. Soit $(\text{Nod}_\infty(A, A'))_u$ la sous-catégorie pleine de $\text{Nod}_\infty(A, A')$ formée des A-A'-bipolydules strictement unitaires. Nous montrons de la même manière que précédemment la proposition suivante :

Proposition 3.3.2.2 L’inclusion

$$\text{Mod}_\infty(A, A') \hookrightarrow (\text{Nod}_\infty(A, A'))_u$$

induit une équivalence

$$\text{Mod}_\infty(A, A')/\sim \simto (\text{Nod}_\infty(A, A'))_u/\sim,$$

où les symboles \sim désignent les relations d’homotopies.

□
Chapitre 4

Catégorie dérivée

Introduction

Soit A une A_{∞}-algèbre augmentée. Dans le chapitre 2, nous avons montré que la catégorie dérivée $\mathcal{D}_{\infty}A$ admet trois descriptions :

$$\left(\text{Mod}_{\infty}A \right)[Qis^{-1}], \quad \mathcal{H}_{\infty}A = \text{Mod}_{\infty}A/\sim \quad \text{et} \quad \left(\text{Mod}_{\infty}^{\text{strict}}A \right)[Qis^{-1}]$$

où \sim est la relation d’homotopie. Dans ce chapitre, nous définissons la catégorie dérivée $\mathcal{D}_{\infty}A$ d’une A_{∞}-algèbre A quelconque. Nous montrons que les trois descriptions ci-dessus restent valables si A est strictement unitaire.

Plan du chapitre

Soit B, B' deux K-algèbres associatives et X un B-B'-bimodule. Les foncteurs standard associés à X sont les foncteurs adjoints

$$\text{Hom}_{B'}(X, -) \quad \text{et} \quad ? \otimes_{B} X.$$

Maintenant, soit A et A' des A_{∞}-algèbres et X un A-A'-bi.polymodule. Dans la section 4.1.1, nous définissons les foncteurs standard

$$\text{Hom}_{A'}(X, -) \quad \text{et} \quad ? \otimes_{A} X$$

et nous montrons qu’ils forment une paire de foncteurs adjoints.

Dans la section 4.1.2, nous définissons la catégorie $\mathcal{D}_{\infty}A$ d’une A_{∞}-algèbre quelconque et nous la décrivons dans le cas où A est H-unitaire (4.1.2.10). Dans la section 4.1.3, nous montrons (4.1.3.1) que si A est strictement unitaire, la catégorie $\mathcal{D}_{\infty}A$ telle que définie dans la section précédente est équivalente aux catégories

$$\left(\text{Mod}_{\infty}A \right)[Qis^{-1}], \quad \mathcal{H}_{\infty}A \quad \text{et} \quad \left(\text{Mod}_{\infty}^{\text{strict}}A \right)[Qis^{-1}].$$

En particulier, si A est une A_{∞}-algèbre augmentée, les définitions de la catégorie dérivée du chapitre 2 et de celui-ci sont équivalentes. Dans la section 4.2, nous étudions la catégorie dérivée $\mathcal{D}_{\infty}(A, A')$, où A et A' sont deux A_{∞}-algèbres.
4.1 La catégorie dérivée des polydules

4.1.1 Les foncteurs standard

Notations

Soit C une bicatégorie (voir [ML98, Chap. XII, §6]). Supposons que, pour tous $O, O', O'' \in \text{Obj } C,$
la catégorie

$$C(O, O') = \text{Hom}_C(O, O')$$
est une k-catégorie de Grothendieck semi-simple et que le foncteur de composition (associatif à un
isomorphisme donné près)

$$C(O', O'') \times C(O, O') \to C(O, O''), \quad (M, N) \mapsto M \circ N,$$
où $O, O', O'' \in \text{Obj } C,$ est k-bilinéaire dans les espaces de morphismes. Nous appelons produit
tensoriel au-dessus de O' ce foncteur et notons

$$M \otimes_{O'} N = M \circ N.$$

Supposons en outre que, pour tout objet X de $C(O', O'')$, le foncteur

$$? \otimes_{O'} X : C(O, O') \to C(O, O'')$$
admet un adjoint à droite

$$\text{Hom}_{C(O', ?)} : C(O, O'') \to C(O, O').$$

Remarquons que le produit tensoriel au-dessus de O

$$C(O, O) \times C(O, O) \to C(O, O), \quad (M, N) \mapsto M \otimes O N,$$
où $O \in \text{Obj } C,$ munit la catégorie $C(O, O)$ d'une structure de catégorie monoïdale. Notons e_O l'élément neutre pour le produit tensoriel. Soit O', O'' des objets de $C.$ La catégorie $C(O, O)$ agit à
droite sur la catégorie $C(O', O)$ et à gauche sur la catégorie $C(O, O')$ par le produit tensoriel $\otimes O.$

L'exemple suivant apparaît naturellement dans l'étude des A_∞-catégories (5.1.1).

Exemple 4.1.1.1 La bicatégorie C a pour objets les ensembles considérés comme des catégories
discrètes. Soit A et B deux ensembles. Nous définissons $C(A, B)$ comme la catégorie des foncteurs

$$B^{op} \times A \to \text{Vect}_K.$$

La composition de C est donnée par les produits tensoriels au-dessus des catégories. Le foncteur
adjoint au foncteur

$$A \otimes_B (B_X C) : C(A, B) \to C(A, C)$$
se récrit plus naturellement

$$\text{Hom}_C(B_X C, A \otimes C) : C(A, C) \to C(A, B).$$
Plan de la section

Soit \mathbb{P}, \mathcal{O} et \mathcal{O}' des objets de \mathcal{C}. Soit A et A' deux \mathcal{A}_{∞}-algèbres dans $\mathcal{C}(\mathbb{P}, \mathcal{O})$ et $\mathcal{C}(\mathbb{P}, \mathcal{O}')$ et X un A-A'-bipolydule dans $\mathcal{C}(\mathbb{P}, \mathcal{O}')$. Nous allons construire un couple de foncteurs adjoints

$$(\otimes^\infty_A X, \hat{\text{Hom}}_{A'}(X, -)) : \text{Nod}_{\infty} A \to \text{Nod}_{\infty} A'.$$

où $\text{Nod}_{\infty} A$ est la catégorie des A-polydules dans $\mathcal{C}(\mathbb{P}, \mathcal{O})$ et $\text{Mod}_{\infty} A'$ est la catégorie des A'-polydules dans $\mathcal{C}(\mathbb{P}, \mathcal{O}')$.

Le foncteur $\hat{\text{Hom}}_{A'}(X, -) : \text{Nod}_{\infty} A' \to \text{Nod}_{\infty} A$

Soit N' un A'-polydule. Remarquons que $SX \otimes T^cSA'$ est un objet de la catégorie $\mathcal{C}(\mathbb{P}, \mathcal{O}')$ et que $SN' \otimes T^cSA'$ est un objet de $\mathcal{C}(\mathbb{P}, \mathcal{O})$. Nous définissons l’objet gradué de $\mathcal{C}(\mathbb{P}, \mathcal{O})$ sous-jacent à $\hat{\text{Hom}}_{A'}(X, N')$ comme

$$\text{Hom}_{\text{Comc}} T^cSA'(SX \otimes T^cSA', SN' \otimes T^cSA'),$$

où Hom désigne le foncteur adjoint $\text{Hom}_{\mathcal{O}'}$. Sa différentielle est le morphisme

$$\delta : F \mapsto b^{BN'} \circ F - (-1)^{|F|} F \circ b^{BX_A'}$$

où $BX_A' = SX \otimes T^cSA'$ est la construction bar de X en tant que A'-polydule et où le morphisme F est de degré $|F|$. C’est un module différentiel gradué sur l’algèbre différentielle graduée

$$\text{End}(BX_A') = \{ \text{Hom}_{\mathcal{O}'} T^cSA'(SX \otimes T^cSA', SX \otimes T^cSA'), \delta \}.$$

La structure de A-polydule est donnée par la restriction du $\text{End}(BX_A')$-module différentiel gradué $\hat{\text{Hom}}_{A'}(X, N')$ le long de l’\mathcal{A}_{∞}-morphisme

$$A \to \text{End}(BX_A')$$

défini dans le lemme clef (5.3.0.1). Explicites cette structure. Le morphisme

$$m_i^H : \hat{\text{Hom}}_{A'}(X, N') \otimes A^{\otimes i+1} \to \hat{\text{Hom}}_{A'}(X, N'), \quad i \geq 1,$$

est donné par la différentielle de l’espace si $i = 1$ et, sinon, par le morphisme

$$\text{SHom}_{\text{Comc}} T^cSA'(SX \otimes T^cSA', SN' \otimes T^cSA') \otimes (SA)^{\otimes i-1}$$

qui envoie un élément $s\Gamma \otimes \phi \in \text{SHom}_{\text{Comc}} T^cSA'(SX \otimes T^cSA', SN' \otimes T^cSA') \otimes (SA)^{\otimes i-1}$ sur

$$b_2^c(s\Gamma \otimes s\Phi) \in \text{SHom}_{\text{Comc}} T^cSA'(SX \otimes T^cSA', SN' \otimes T^cSA'),$$

où le morphisme b_2^c correspond à la composition de la catégorie $\text{Comc} T^cSA'$ et Φ est défini dans le lemme clef (5.3.0.1). Un morphisme $f : N' \to N''$ dans $\text{Nod}_{\infty} A'$ induit un morphisme de $\text{End}(BX_A')$-modules différentiels gradués

$$F_* : \text{Hom}(SX \otimes T^cSA', SN' \otimes T^cSA') \to \text{Hom}(SX \otimes T^cSA', SN'' \otimes T^cSA'),$$
où F_* est induit par la construction bar F de f. Ainsi, le morphisme F_* est strict en tant que morphisme de A-polydèles. Ceci nous fournit un foncteur

$$\overset{\circ}{\text{Hom}}_{A'}(X, -): \text{Nod}_\infty A' \to \text{Nod}^{\text{strict}}_\infty A \hookrightarrow \text{Nod}_\infty A.$$

Remarque 4.1.1.2 Si A sont strictement unitaire et si X est un A-A'-bipolydèle strictement unitaire pour A, i.e. si la composition

$$m_{i,j}(1 \otimes \eta \otimes 1 \otimes 1, \ i, j \geq 0),$$

est nulle si $(i,j) \neq (1,0)$, égale à 1 sinon, le A-polydèle $\overset{\circ}{\text{Hom}}_{A'}(X, N)$ est strictement unitaire. Nous obtenons alors un foncteur

$$\overset{\circ}{\text{Hom}}_{A'}(X, -): \text{Nod}_\infty A' \to \text{Mod}^{\text{strict}}_\infty A \hookrightarrow (\text{Nod}_\infty A)_u,$$

où $(\text{Nod}_\infty A)_u$ est la sous-catégorie pleine de $\text{Nod}_\infty A$ formée des objets strictement unitaires.

Le foncteur ? $\otimes_A X: \text{Nod}_\infty A \to \text{Nod}_\infty A'$

Soit N un A-polydèle. L’objet gradué de $\mathcal{C}(P, O')$ sous-jacent à $N \otimes_A X$ est

$$N \otimes T^c SA \otimes X.$$

La structure de A'-polydèle sur $N \otimes T^c SA \otimes X$ est donnée par une différentielle b sur $(SN \otimes T^c SA) \otimes T^c SA'$. La suspension de ce $T^c SA'$-comodule différentiel gradué s’identifie au *produit cotensoriel*

$$(SN \otimes T^c SA) \Box T^c SA(T^c SA \otimes SX \otimes T^c SA'),$$

c’est-à-dire au noyau

$$\ker (BN \otimes BX \overset{\Delta \otimes 1 - 1 \otimes \Delta}{\longrightarrow} BN \otimes T^c SA \otimes BX),$$

où $BX = T^c SA \otimes SX \otimes T^c SA'$ est la construction bar de X en tant que $A^+ - A'^+$-bipolydèle strictement unitaire. Un morphisme de A-polydèles $f: N \to N'$ induit un morphisme strict

$$\left(\omega \circ F \circ s\right) \otimes 1_X: N \otimes T^c SA \otimes X \to N' \otimes T^c SA \otimes X.$$

Nous obtenons ainsi un foncteur

$$? \otimes_A X: \text{Nod}_\infty A \to \text{Nod}^{\text{strict}}_\infty A' \hookrightarrow \text{Nod}_\infty A'.$$

Remarque 4.1.1.3 Si A' sont strictement unitaire et si X est un A-A'-bipolydèle strictement unitaire pour A', i.e. si la composition

$$m_{i,j}(1 \otimes 1 \otimes \eta \otimes 1 \otimes 1, \ i, j \geq 0),$$

est nulle si $(i,j) \neq (0,1)$, égale à 1 sinon, le A'-polydèle $N \otimes_A X$ est strictement unitaire. Nous obtenons alors un foncteur

$$? \otimes_A X: \text{Nod}_\infty A \to \text{Mod}^{\text{strict}}_\infty A' \hookrightarrow (\text{Nod}_\infty A')_u.$$
Lemme 4.1.1.4 Le foncteur $\mathfrak{A}_A X$ est adjoint à gauche au foncteur $\mathfrak{Hom}_A'(X, ?)$

Démonstration : Soit L un objet de $\text{Nod}_\infty A$ et R un objet de $\text{Nod}_\infty A'$. Soit des morphismes gradués dans $C(O', O')$ de degré $2 - i$

$$f_j : L \otimes T^c SA \otimes X \otimes A'^{\otimes j} \rightarrow R, \quad j \geq 0.$$

Soit $F_j, j \geq 0$, les morphismes donnés par les bijections $f_j \leftrightarrow F_j$. Ils sont donnés par des morphismes de degré 0

$$F_{i,j} : SL \otimes (SA)^{\otimes i} \otimes X \otimes (SA')^{\otimes j} \rightarrow SR, \quad i, j \geq 0.$$

Soit $i \geq 0$. Soit g_i le morphisme gradué de $C(P, O')$ de degré $1 - i$

$$g_i : L \otimes A^{\otimes i} \rightarrow \mathfrak{Hom}_{T^c SA'}(SX \otimes T^c SA', SR \otimes T^c SA')$$

défini par l’équation

$$G_i(\lambda \otimes \phi) = s(\Gamma) \in S\mathfrak{Hom}_{T^c SA'}(SX \otimes T^c SA', SR \otimes T^c SA')$$

où $\lambda \otimes \phi$ est un élément de $SL \otimes (SA)^{\otimes i}$ de degré $r = |\lambda \otimes \phi|$, où G_i est donné par les bijections $g_i \leftrightarrow G_i$ et où le morphisme Γ est l’unique morphisme (voir 2.1.2.1) tel que la composition $p_1 \circ \Gamma$ a pour composantes les morphismes

$$SX \otimes (SA')^{\otimes j} \xrightarrow{(-1)^{|r|}} SN \otimes (SA)^{\otimes i} \otimes SX \otimes (SA')^{\otimes j} \xrightarrow{F_{i,j}} SR;$$

ici le morphisme $F_{i,j}$ est le morphisme $F_{i,j} \omega$. Nous devons montrer l’équivalence entre les deux points suivants.

a. Les morphismes g_j définissent un A_∞-morphisme d’A-polydules

$$L \rightarrow \mathfrak{Hom}_A'(X, R).$$

b. Les morphismes f_j définissent un A_∞-morphisme d’A'-polydules

$$L \otimes A X \rightarrow R.$$

Supposons que l’énoncé a est vrai : on a les égalités

$$\sum_{k+l+m=n} G_{k+1+m}(1^{\otimes k} \otimes b_l \otimes 1^{\otimes m}) = \sum_{k+m=n} b_{1+m}(G_k \otimes 1^{\otimes m}), \quad n \geq 1,$$

où les symboles b_l doivent être interprétés convenablement. Nous allons montrer que cela est équivalent aux équations dans les espaces de morphismes

$$\mathfrak{Hom}_{C(P, O')}(S(L \otimes A X) \otimes (SA')^{\otimes n-1}, SR), \quad n \geq 0,$$

$$\sum_{k+l+m=t} F_{k+1+m}(1^{\otimes k} \otimes b_l \otimes 1^{\otimes m}) = \sum_{k+m=t} b_{1+m}(F_k \otimes 1^{\otimes m}), \quad t \geq 1.$$
Soit $\lambda \otimes \phi \in SL \otimes (SA)^{\otimes n-1}$ et $\kappa \otimes \phi' \in SX \otimes (SA')^{\otimes t-1}$. Calculons

$$G_{k+1+m}(b_1^{k} \otimes b_1^{m})(\lambda \otimes \phi)(\kappa \otimes \phi').$$

Dans le cas où $k = 0$, on a

$$G_{1+m}(b_1^{1} \otimes b_1^{m})(\lambda \otimes \phi)(\kappa \otimes \phi') = s\Gamma(\kappa \otimes \phi').$$

où $\phi_1 \otimes \phi_2 = \phi$ et dans le cas où $k \neq 0$, on a

$$G_{k+1+m}(1^{\otimes k} \otimes b_1^{A} \otimes 1^{\otimes m})(\lambda \otimes \phi)(\kappa \otimes \phi') = s\gamma \Gamma(\kappa \otimes \phi').$$

vaut

$$b_1^{H}(G_n)(\lambda \otimes \phi)(\kappa \otimes \phi').$$

où $\phi_1' \otimes \phi_2' = \phi$ et les indices de la première somme sont tels que $\alpha + \beta = t - 1$, où les indices de la seconde somme sont tels que $\gamma_1 + \gamma_2 + \gamma_3 = t$ et les symboles b_{γ_2} doivent être interprétés selon leur place par b_1^{H} ou par b_1^{A}. Le terme

$$b_1^{H}(G_k \otimes 1^{\otimes m})(\lambda \otimes \phi)(\kappa \otimes \phi').$$
vaut

\[
\begin{align*}
& b_{l+m}^n(G_k(\lambda \otimes \phi_{k-1}) \otimes \phi_m)(\kappa \otimes \phi') \\
&= b_{l+m}^n(s\Gamma_{k-1} \otimes \phi_m)(\kappa \otimes \phi') \\
&= b_{2\text{conc}}^n(s\Gamma_{k-1} \otimes s\Phi_m)(\kappa \otimes \phi') \\
&= (-1)^{\lambda+\phi_{k-1}+1}b_{2\text{conc}}^n(s \otimes s)(\Gamma_{k-1} \otimes \Phi_1)(\kappa \otimes \phi') \\
&= (-1)^{\lambda+\phi_{k-1}+1}s\text{conc}^n(\Gamma_{k-1} \otimes \Phi_1)(\kappa \otimes \phi') \\
&= (-1)^{\lambda+\phi_{k-1}+1}(s\Gamma_{k-1} \otimes \Phi_1)(\kappa \otimes \phi') \\
&= (-1)^{\lambda+\phi_{k-1}+1+\lambda+\phi_{k-1}+1}m_{2\text{conc}}^n(\Gamma_{k-1} \otimes \Phi_1)(\kappa \otimes \phi') \\
&= (-1)^{m+1}m_{2\text{conc}}^n(\kappa \otimes \phi_{k-1} \otimes b_{m,a}^X(\phi_m \otimes \kappa \otimes \phi'_{m,\alpha} \otimes \phi'_{\beta})) \\
&= (-1)^{m+1}m_{2\text{conc}}^n(\kappa \otimes \phi_{k-1} \otimes b_{m,a}^X(1 \otimes 1 \otimes \kappa \otimes \phi'_{m,\alpha} \otimes \phi'_{\beta})) \\
&= (-1)^{m+1}m_{2\text{conc}}^n(\kappa \otimes \phi_{k-1} \otimes b_{m,a}^X(1 \otimes 1 \otimes \kappa \otimes \phi'_{m,\alpha} \otimes \phi'_{\beta})) \\
&= (-1)^{m+1}m_{2\text{conc}}^n(\kappa \otimes \phi_{k-1} \otimes b_{m,a}^X(1 \otimes 1 \otimes \kappa \otimes \phi'_{m,\alpha} \otimes \phi'_{\beta})) \\
&= (-1)^{m+1}m_{2\text{conc}}^n(\kappa \otimes \phi_{k-1} \otimes b_{m,a}^X(1 \otimes 1 \otimes \kappa \otimes \phi'_{m,\alpha} \otimes \phi'_{\beta}))
\end{align*}
\]

où les indices de la somme sont tels que \(\alpha + \beta = t - 1\). L’égalité \(F_{i,j} = F_{i,j,0}\) nous donne l’équivalence entre les points \(a\) et \(b\). \(\square\)

Remarque 4.1.1.5 Si \(A\) et \(A'\) sont strictement unitaires et si \(X\) est un \(A-A'\)-bipolydulé strictement unitaire, l’adjonction

\[
(\otimes_A X, \mathcal{H}\text{om}_{\infty}(X, ?)) : \text{Nod}_{\infty} A \to \text{Nod}_{\infty} A'
\]

ne se restreint pas aux sous-catégories \(\text{Mod}_{\infty} A\) et \(\text{Mod}_{\infty} A'\). Cependant, la proposition (3.3.1.8) montre que les foncteurs restreints

\[
(\otimes_A X : \text{Mod}_{\infty} A \to \text{Mod}_{\infty} A' \quad \text{et} \quad \mathcal{H}\text{om}_{\infty}(X, ?) : \text{Mod}_{\infty} A' \to \text{Mod}_{\infty} A)
\]

induisent des foncteurs adjoints dans les catégories dérivées \(\mathcal{D}_{\infty} A\) et \(\mathcal{D}_{\infty} A'\) (définis en 4.1.3).

Soit \(A\) une \(A_{\infty}\)-algèbre strictement unitaire. Considérons \(A\) comme un \(A-A\)-bipolydulé strictement unitaire. Notons aussi

\[
(\otimes_A X : \text{Mod}_{\infty} A \to \text{Mod}_{\infty} A' \quad \text{et} \quad \mathcal{H}\text{om}_{\infty}(X, ?) : \text{Mod}_{\infty} A' \to \text{Mod}_{\infty} A)
\]

les foncteurs standard restreints à la sous-catégorie \(\text{(Nod}_{\infty} A)_{u}\) (voir la définition en 3.3.1.8).

Lemme 4.1.1.6 Considérons la catégorie des endofoncteurs de la catégorie \((\text{Nod}_{\infty} A)_{u}\).

a. Il existe un morphisme canonique de foncteurs \(\otimes_A A \to 1\) qui est un quasi-isomorphisme.

b. Il existe un morphisme canonique de foncteurs \(1 \to \mathcal{H}\text{om}_{\infty}(A, ?)\) qui est un quasi-isomorphisme.

Démonstration : Par l’adjonction

\[
(\otimes_A A, \mathcal{H}\text{om}_{\infty}(A, ?)) : \text{(Nod}_{\infty} A)_{u} \to (\text{Nod}_{\infty} A)_{u},
\]

il suffit de montrer le point a. Soit \(M\) un \(A\)-polydulé strictement unitaire. Nous avons un \(A_{\infty}\)-morphisme de \(A\)-polydulés

\[
g : M \otimes_A A \to M
\]

dont les \(g_j, j \geq 1,\) sont définis par les morphismes

\[
m_{i+j+1}^M(1 \otimes \omega^i \otimes 1^\otimes j) : M \otimes (SA)^{\otimes i} \otimes A \otimes A^{\otimes j-1} \to M, \quad i \geq 0, j \geq 1.
\]
Montrons que le cône du morphisme
\[g_1 : M \otimes_A A \to M \]
est acyclique. Nous vérifions que le morphisme de degré -1
\[r : M \otimes T^c SA \otimes SA \to M \otimes T^c SA \otimes SA \]
donné par le morphisme
\[1 \otimes s \eta : M \otimes (SA)^{\otimes i} \otimes SA \to M \otimes (SA)^{\otimes i+1} \otimes SA, \quad i \geq 0, \]
où η est l’unité de A, est une homotopie contractante du cône de g_1. □

Remarque 4.1.1.7 Le morphisme de A-polydùles g est clairement strictement unitaire. Le morphisme de A-polydùles
\[f : M \to \text{Hom}^\infty_A(A, M) \]
correspondant par l’adjonction au morphisme g est défini de manière analogue au morphisme
\[f : A \to \text{End} = \text{Hom}^\infty_A(A, A) \]
du lemme clé (5.3.0.1) du chapitre 5. Il est aussi strictement unitaire.

4.1.2 La catégorie dérivée d’une A_∞-algèbre

Soit \mathcal{O} et \mathcal{P} deux objets de C. Soit A une A_∞-algèbre dans $C(\mathcal{O}, \mathcal{O})$. On rappelle que la catégorie $\text{Nod}_\infty A$ des A-polydùles dans $C(\mathcal{P}, \mathcal{O})$ est isomorphe à la catégorie $\text{Mod}_\infty A^+$ des A^+-polydùles strictement unitaires où A^+ est l’augmentation de A. Considérons l’objet $e = e_0$ comme une A_∞-algèbre augmentée dans $C(\mathcal{O}, \mathcal{O})$. Considérons l’objet e comme un A^+-bipolydùle strictement unitaire grâce à l’augmentation $A^+ \to e$. Par la section 4.1.1, nous avons un foncteur
\[? \otimes_{A^+} e : \text{Mod}_\infty A^+ \to \text{Mod}_\infty e. \]
Il induit un foncteur dans les catégories dérivées que nous notons de la même manière.

Définition 4.1.2.1 La catégorie dérivée d’une A_∞-algèbre est le noyau du foncteur
\[? \otimes_{A^+} e : \mathcal{D}_\infty A^+ \to \mathcal{D}_\infty e. \]

Remarque 4.1.2.2 Nous montrerons en (4.1.3.5) qu’un A^+-polydùle strictement unitaire est dans le noyau si et seulement si sa construction bar est acyclique.

Remarque 4.1.2.3 Le théorème (4.1.3.1) ci-dessous montrera que cette définition étend la définition de la catégorie dérivée d’une A_∞-algèbre augmentée (voir 2.4.2.1). En particulier, nous montrerons que si A est elle-même augmentée, nous avons une suite exacte de catégories triangulées
\[\mathcal{D}_\infty A \to \mathcal{D}_\infty A^+ \to \mathcal{D}_\infty e. \]
Théorème 4.1.2.4 Soit A et A' deux A_∞-algèbres et $f : A \rightarrow A'$ un A_∞-quasi-isomorphisme. La restriction le long de f induit une équivalence de catégories $D_\infty A' \rightarrow D_\infty A$.

Démonstration : Soit $f^+ : A^+ \rightarrow A'^+$ le morphisme augmenté associé à f. C’est un A_∞-quasi-isomorphisme. Les foncteurs

$$(\text{Res}^f)^? \otimes_{A^+} e \quad \text{et} \quad ? \otimes_{A'^+} e : \text{Mod}_{\infty} A'^+ \rightarrow \text{Mod}_{\infty} e$$

sont donc quasi-isomorphes. Il suffit donc de montrer que la restriction le long de f^+ induit une équivalence $D_\infty A'^+ \rightarrow D_\infty A^+$. Le lemme (2.3.4.3) implique que le morphisme entre les algèbres enveloppantes $U(f^+) : U(A^+) \rightarrow U(A'^+)$ est un quasi-isomorphisme. Il s’ensuit [Kel94a, 6.1] que la restriction le long de $U(f^+)$ est une équivalence de catégories $DU(A'^+) \rightarrow DU(A^+)$. Nous déduisons le résultat du lemme (2.4.2.3).

Cas des A_∞-algèbres H-unitaires

Définition 4.1.2.5 Une A_∞-algèbre H-unitaire est une A_∞-algèbre dont la construction bar non augmentée est quasi-isomorphe à 0.

La notion d’algèbre H-unitaire est due à M. Wodzicki [Wod88]. Il montre qu’une algèbre est H-unitaire si et seulement si elle satisfait la propriété d’excision (voir [Wod88], [Wod89]).

Lemme 4.1.2.6 Une A_∞-algèbre minimale (i.e. $m_1 = 0$) strictement unitaire est H-unitaire.

Démonstration : Soit (A, η) une A_∞-algèbre minimale strictement unitaire. Le morphisme de degré -1

$$h : BA \rightarrow BA$$

donné par les morphismes

$$1 \otimes (s\eta) : (SA)^{\otimes i} \rightarrow (SA)^{\otimes i} \otimes SA$$

definit une homotopie contractante de BA.

Corollaire 4.1.2.7 Une A_∞-algèbre homologiquement unitaire (voir la définition dans la section 3.1) est H-unitaire.

Démonstration : Soit A une A_∞-algèbre homologiquement unitaire. Le corollaire (3.2.1.2) montre que A admet un modèle minimal strictement unitaire A'. Comme BA' est faiblement équivalent à BA et comme les équivalences faibles sont des quasi-isomorphismes, nous avons le résultat.
La sous-catégorie $\text{Tria} A$

Soit $x : P \to O$ un morphisme de C. Le morphisme x induit un foncteur

$$x^* : C(P, O) \to C(P, P), \quad M \mapsto M(x).$$

On suppose que ce foncteur admet un adjoint à gauche

$$x_! : C(P, P) \to C(P, O).$$

Exemple 4.1.2.8 Regardons l'exemple apparaissant dans l'étude des A_∞-catégories (5.1.1). Soit P et O deux ensembles et soit

$$x : P \to O, \quad p \mapsto x(p)$$

une application. Le foncteur x^* envoie $M \in C(P, O)$ sur

$$(p, p') \mapsto M(x(p), p').$$

Le foncteur $x_!$ envoie un objet V de $C(P, P)$ sur le P-O-bimodule

$$(o, p) \mapsto V(o, x(p)).$$

Supposons maintenant que P est un ensemble à un élément. L'application x est déterminé par l'élément de $o = x(p)$ de O. Soit $V = e_P$. L'adjonction nous donne alors un isomorphisme

$$\text{Hom}_{C(P, O)}(e_O, o, M) \cong M(o).$$

Soit $x : P \to O$ un morphisme de C. Soit V un objet de $C(P, P)$. Munissons l'objet $x_!(V) \otimes_O A$ de la structure de A-polydule donnée par les multiplications de A. Comme nous avons un isomorphisme

$$\text{Hom}_{C(P, P)}(x_!(V), M) \cong \text{Hom}_{\text{Nod}_\infty A}(x_!(V) \otimes_O A, M), \quad M \in \text{Nod}_\infty A,$$

nous avons une adjonction

$$(x_!(?) \otimes_O A, x^*) : C(P, P) \to \text{Nod}_\infty A.$$

Notons $\text{Tria} A$ la plus petite sous-catégorie triangulée aux sommes infinies de $D_\infty A^+$ contenant les

$$x^\wedge = x_!(e_P) \otimes_O A, \quad x \in C(P, O).$$

Remarque 4.1.2.9 Cette notation est justifiée par le fait suivant. Dans l'exemple apparaissant dans l'étude des A_∞-catégories (5.1.1), si P est un ensemble à un élément, et x est l'application donné par un élément x de O, le A-polydule x^\wedge est l'I_∞-foncteur représenté par x

$$x^\wedge = A(?, x).$$

Proposition 4.1.2.10 Soit A une A_∞-algèbre H-unitaire. Nous avons une suite exacte de catégories triangulées

$$\text{Tria} A \hookrightarrow D_\infty A^+ \to D_\infty e.$$

En particulier, la catégorie dérivée $D_\infty A$ est égale à $\text{Tria} A$.
Dans le cas des algèbres différentielles graduées cette proposition est démontrée dans [Kel94b]. Dans la démonstration ci-dessous, nous utilisons une filtration qui est adaptée de celle de J. A. Guccione et J. J. Guccione [GG96]. Elle leur permet de montrer astucieusement la propriété d’excision des algèbres différentielles graduées H-unitaires.

Démonstration : Montrons que la composition

$$\text{Tria } A \hookrightarrow \mathcal{D}_\infty A^+ \to \mathcal{D}_\infty e$$

est nulle. Comme x^\wedge est le A-polydule $x(e) \otimes_A A$, il suffit de montrer que $A \otimes_A x^\wedge e$ est quasi-isomorphe à 0 dans la catégorie $\mathcal{C}(\mathcal{O}, \mathcal{O})$. Nous définissons une filtration de $A \otimes_A x^\wedge e = A \otimes T^c(SA^\wedge) \otimes e$ par

$$F_p = \left(\bigoplus_{0 \leq r < p} A \otimes (SA^\wedge)^{\otimes r} \right) \oplus \left(\bigoplus_{0 \leq r} A \otimes (SA)^{\otimes r} \otimes (SA^\wedge)^{\otimes p} \right), \quad p \geq 0.$$

Les F_p, $p \geq 0$, sont des sous-complexes de $A \otimes_A x^\wedge e$. Les objets gradués

$$\text{Gr}_p A \otimes_A x^\wedge e = A \otimes T^c(SA^\wedge) \otimes e = \bigoplus_{0 \leq r} A \otimes (SA)^{\otimes r} \otimes (Se)^{\otimes p}, \quad p \geq 0,$$

sont isomorphes en tant que complexes à

$$S^{-1}BA \otimes (Se)^{\otimes p}, \quad p \geq 0.$$

Ils sont donc acycliques, ce qui montre que $A \otimes_A x^\wedge e$ est acyclique.

Pour démontrer qu’on a une suite exacte de catégories triangulées, nous allons montrer que l’inclusion de $\text{Tria } A$ dans $\mathcal{D}_\infty A^+$ a pour adjoint à droite le foncteur

$$? \otimes A^+ : \mathcal{D}_\infty A^+ \to \text{Tria } A.$$

Ceci revient à montrer que pour chaque $X \in \text{Mod}_{\infty} A^+$, le triangle

$$X \otimes_A e \to X \to X \otimes_A e \to S(X \otimes_A e)$$

est tel que l’objet $X \otimes_A e \in \text{Tria } e$ est $(\text{Tria } A)$-local, i. e.

$$\text{Hom}_{\mathcal{D}_\infty A^+}(L, X \otimes_A e) = 0, \quad L \in \text{Tria } A.$$

Comme $A \otimes_A x^\wedge e$ est quasi-isomorphe à 0, la seconde flèche du triangle de \mathcal{O}-\mathcal{O}-bimodules

$$A \otimes_A e \to A^+ \otimes_A e \to e \otimes_A e \to S(A \otimes_A e)$$

est un isomorphisme dans la catégorie dérivée des A^+-polydultes dans $\mathcal{C}(\mathcal{O}, \mathcal{O})$. Par ailleurs, le morphisme

$$A^+ \otimes_A e \to e$$
est un quasi-isomorphisme car son cône, qui est la construction bar $BA^+ = T^e(SA^+)$, est acyclique (4.1.2.7). Ceci implique que

$$e \rightarrow e^\infty \otimes A^+$$

est un isomorphisme de A^+-A^+-bipolynules dans $\mathcal{C}(\mathcal{O}, \mathcal{O})$. Soit $X \in \mathcal{D}_{\infty} A^+$. Montrons que l’objet $X \otimes_{A^+} e \in \text{Tria} e$ est (Tria A)-local. Soit L un objet de Tria A et un morphisme $f : L \rightarrow X \otimes_{A^+} e$.

Nous avons un diagramme commutatif

$$
\begin{array}{ccc}
L & \rightarrow & X \otimes_{A^+} e \\
\downarrow & & \downarrow \\
L \otimes_{A^+} e & \rightarrow & X \otimes e_{A^+} \otimes_{A^+} e,
\end{array}
$$

où la flèche verticale de droite représente un isomorphisme de $\mathcal{D}_{\infty} A^+$ et où $L \otimes_{A^+} e$ est quasi-isomorphe à 0. Le morphisme f est donc nul. □

4.1.3 La catégorie dérivée d’une A_∞-algèbre strictement unitaire

Soit A une A_∞-algèbre strictement unitaire. Dans cette section, nous donnons plusieurs descriptions de la catégorie dérivée $\mathcal{D}_{\infty} A$ de (4.1.2.1). Plus précisément, nous allons montrer le théorème suivant :

Théorème 4.1.3.1 Les catégories suivantes sont équivalentes :

- **D1.** la catégorie dérivée $\mathcal{D}_{\infty} A$ de (4.1.2.1), c’est-à-dire, la sous-catégorie triangulée Tria A de $\mathcal{D}_{\infty} A^+$ (4.1.2.10),

- **D2.** la catégorie (dont nous montrerons qu’elle est bien définie)

 $$\mathcal{H}_{\infty} A : \text{Mod}_{\infty} A / \sim$$

 où \sim est la relation d’homotopie (2.3.2.3),

- **D3.** la catégorie localisée

 $$\left(\text{Mod}_{\infty} A\right)[\text{Qis}^{-1}]$$

 où Qis est la classe des A_∞-quasi-isomorphismes de $\text{Mod}_{\infty} A$,

- **D4.** la catégorie homotopique

 $$\text{HoMod}_{\infty}^{\text{strict}} A$$

 de la catégorie de modèles $\text{Mod}_{\infty}^{\text{strict}} A$ (défini plus bas).

Il en résulte de ce théorème que si A est augmentée, la définition de $\mathcal{D}_{\infty} A$ donnée dans (2.4.2.1) est équivalente à celle de (4.1.2.1).
Remarque 4.1.3.2 Les différentes descriptions de $\mathcal{D}_\infty A$ montrent que les résultats de la proposition (2.4.1.1) restent valides.

L’équivalence entre les catégories de $D1$ et $D2$

Comme A est strictement unitaire, nous avons un A_∞-morphisme strictement unitaire d’A_∞-algèbres

$$r = \begin{bmatrix} i \\ \eta \end{bmatrix} : A^+ = A \oplus e \to A$$

où η est l’unité de A. On a un foncteur restriction

$$\text{Res} : \text{Mod}_\infty A \to \text{Mod}_\infty A^+$$

qui est fidèle. Nous savons que l’isomorphisme de catégories (2.3.2)

$$\text{Nod}_\infty A \sim \rightarrow \text{Mod}_\infty A^+$$

est compatible à l’homotopie. La proposition (3.3.1.8) montre que le foncteur restriction induit un isomorphisme

$$\text{Hom}_{\text{Mod}_\infty A}(M, M')/\sim \rightarrow \text{Hom}_{\text{Mod}_\infty A^+}((\text{Res } M, \text{Res } M')/\sim, \ M, M' \in \text{Mod}_\infty A,$$

où \sim est la relation d’homotopie (2.3.2.3). Le corollaire (2.4.1.1) dit que la relation d’homotopie (2.3.2.3) dans $\text{Mod}_\infty A^+$ est une relation d’équivalence compatible à la composition. Ceci montre que la relation d’homotopie dans dans $\text{Mod}_\infty A$ est une relation d’équivalence compatible à la composition. Nous avons donc une catégorie bien définie

$$\mathcal{H}_\infty A = \text{Mod}_\infty A/\sim$$

et un foncteur pleinement fidèle

$$J : \mathcal{H}_\infty A \hookrightarrow \mathcal{H}_\infty A^+ \simeq \mathcal{D}_\infty A^+.$$

Proposition 4.1.3.3 Le foncteur restriction

$$\text{Res} : \text{Mod}_\infty A \to \text{Mod}_\infty A^+$$

induit une équivalence de catégorie

$$\mathcal{H}_\infty A \to \text{Tria } A.$$

Commençons par introduire quelques notions.

Définition 4.1.3.4 Un A^+-polydule est H-unitaire si son image par le foncteur

$$B : \text{Mod}_\infty A^+ \to \text{Comc } B^+A^+$$

est quasi-isomorphe à 0.

Remarque 4.1.3.5 Un A^+-polydule M est H-unitaire si et seulement si l’objet $M \otimes_{A^+} e$ est quasi-isomorphe à 0. La sous-catégorie des A^+-polydules H-unitaires est donc égale à la catégorie $\text{Tria } A$ par la proposition (4.1.2.10).
Remarque 4.1.3.6 Dans le cas où A est une algèbre associative unitaire et M un module unitaire, le complexe BM est le cône de l’augmentation $pM \to M$, où pM est la résolution bar de M (voir par exemple [CE99, IX.6]). En particulier, tout A-module unitaire est un A^+-module H-unitaire.

Lemme 4.1.3.7 Un A^+-polydule est H-unitaire si et seulement si il est homologiquement unitaire en tant que A-polydule.

Comme les équivalences faibles sont des quasi-isomorphismes, il nous suffit de montrer que $B(H^*M)$ est quasi-isomorphe à 0. Nous vérifions que le morphisme
\[r : SH^*M \otimes B^+(A^+) \to SH^*M \otimes B^+(A^+), \]
défini par les morphismes
\[(I \otimes s\eta) : SH^*M \otimes (SA)^{\otimes i} \to SH^*M \otimes (SA)^{\otimes i} \otimes SA, \quad i \geq 0, \]
où $\eta : e \to A$ est l’unité stricte de A, est une homotopie contractante de $B(H^*M)$.

Pour démontrer la réciproque nous introduisons quelques notions supplémentaires.

Les chaînées tordantes généralisées

Soit C un objet de $C\text{ogca}$ et A' un objet de Alga_∞. Une chaîne tordante généralisée $\tau : C \to A'$ est un morphisme gradué de degré +1 qui s’annule sur la co-augmentation ε^C, qui se factorise par $\ker(A^+ \to e)$ et qui vérifie
\[\sum_{i \geq 1} m_i \circ (\tau^{\otimes i}) \circ \Delta^{(i)} = 0. \]
Remarquons que la somme infinie est bien définie car τ s’annule sur la co-augmentation et C est cocomplète.

Soit M un objet de $\text{Mod}_\infty A'$. Nous munissons le produit tensoriel $M \otimes C$ du morphisme de degré +1 qui est la somme (bien définie) de la différentielle du produit tensoriel et des morphismes
\[M \otimes C \xrightarrow{\Delta^{(i)}} M \otimes C^{\otimes i} \xrightarrow{1 \otimes \tau^{\otimes i-1} \otimes 1} M \otimes A'^{\otimes i-1} \otimes C \xrightarrow{m_i^{\otimes 1}} M \otimes C, \quad i \geq 1. \]
Nous vérifions que ce morphisme de degré +1 est une différentielle de $M \otimes C$. Nous notons $M \otimes \tau C$ le produit tensoriel muni de cette différentielle. Soit N un objet de $\text{Comc} C$. Nous munissons le produit tensoriel $N \otimes A'$ de la différentielle qui est la somme (bien définie) de la différentielle du produit tensoriel et des morphismes
\[(1 \otimes m_i) \circ (1 \otimes \tau^{\otimes i-1} \otimes 1) \circ (\Delta^{(i)} \otimes 1) : N \otimes A' \to N \otimes A', \quad i \geq 1. \]
Nous munissons $N \otimes A'$ du morphisme m_1 donné par la différentielle ci-dessus et des morphismes m_i, $i \geq 2$, valant $1_N \otimes m_1^{A'}$. Ces morphismes définissent une structure de A'-polydule sur $N \otimes A'$. Notons ce A'-polydule $N \otimes \tau A'$. Ceci nous donne deux foncteurs
\[- \otimes \tau A' : \text{Comc} C \to \text{Mod}_\infty A' \quad \text{et} \quad - \otimes \tau C : \text{Mod}_\infty A' \to \text{Comc} C \]
appelés les produits tensoriels tordus généralisés.

Finalement, le lemme (4.1.3.7) : Soit M un A^+-polydule H-unitaire. Nous voulons montrer qu’il est homologiquement unitaire en tant que A-polydule. Nous vérifions que la composition

$$B^+A^+ = T^+SA \overset{\omega}{\rightarrow} A \hookrightarrow A^+$$

est un élément tordant généralisé. Nous avons un morphisme de A^+-polydules

$$\eta^{B^+A^+} \otimes \varepsilon^{A^+} : B^+A^+ \otimes \tau A^+ \rightarrow e$$

donné par l’unité de B^+A^+ et la co-augmentation de A^+. Le morphisme

$$M \otimes \tau (\eta^{B^+A^+} \otimes \varepsilon^{A^+}) : M \otimes \tau B^+A^+ \otimes \tau A^+ \rightarrow M = M \otimes e$$

est un quasi-isomorphisme (l’homotopie contractante de la démonstration du lemme 2.2.1.9 définit une homotopie contractante de son cône). La co-augmentation $A^+ \rightarrow e$ induit une suite exacte

$$0 \rightarrow M \otimes \tau B^+A^+ \otimes \tau A^+ \rightarrow M \otimes \tau B^+A^+ \otimes \tau A^+ \rightarrow M \otimes \tau B^+A^+ \otimes \tau e \rightarrow 0.$$}

Le A^+-polydule M étant H-unitaire, l’objet $M \otimes \tau B^+A^+ \otimes \tau e$ est quasi-isomorphe à 0 car isomorphe à $S^{-1}BM$. Il en résulte que le morphisme i est un quasi-isomorphisme. Le A^+-polydule M qui est quasi-isomorphe à $M \otimes \tau B^+A^+ \otimes \tau A^+$ est donc quasi-isomorphe à $M \otimes \tau B^+A^+ \otimes \tau A$. Comme ce dernier est strictement unitaire sur A, M est homologiquement unitaire sur A. □

Démonstration de la proposition (4.1.3.3)
Nous savons que le foncteur

$$J : \mathcal{H}_\infty A \hookrightarrow \mathcal{H}_\infty A^+ \simeq \mathcal{D}_\infty A^+$$

est pleinement fidèle. Il faut montrer que son image est formée des objets de $\text{Tria} A$. Le lemme (4.1.3.7) montre que tout objet de $\text{Mod}_\infty A$ est dans $\text{Tria} A$. Réciproquement, si un A^+-polydule M est dans $\text{Tria} A$, il est homologiquement unitaire sur A. Il est donc (3.3.1.3) quasi-isomorphe à un objet strictement unitaire. □

Nous munissons la catégorie $\mathcal{H}_\infty A$ de la structure triangulée induite par l’équivalence

$$\mathcal{H}_\infty A \rightarrow \text{Tria} A.$$}

Equivalence entre les catégories de D2 et D3

Le foncteur

$$J : \mathcal{H}_\infty A \rightarrow \mathcal{H}_\infty A^+$$

est pleinement fidèle et nous avons un isomorphisme de catégories (2.4.2.2)

$$\mathcal{H}_\infty A^+ \sim \mathcal{D}_\infty A^+.$$}

Les A_∞-quasi-isomorphismes sont donc les isomorphismes dans $\mathcal{H}_\infty A$. Comme

$$\text{Mod}_\infty A \rightarrow \mathcal{H}_\infty A$$
est un foncteur localisation (par rapport aux équivalences d’homotopie), nous avons un isomorphisme
\[\left(\text{Mod}_\infty A \right)[Qis^{-1}] \xrightarrow{\sim} \mathcal{H}_\infty A. \]

Équivalence entre les catégories de D3 et D4

Commençons par montrer quelques résultats sur la catégorie dérivée d’une algèbre différentielle graduée.

Lemme 4.1.3.8 Soit \(A \) une algèbre différentielle graduée unitaire. L’inclusion
\[J : \text{Mod} A \rightarrow \text{Mod}_\infty A \]
induit une équivalence
\[DA \rightarrow \left(\text{Mod}_\infty A \right)[Qis^{-1}]. \]

L’inverse est donné par le foncteur \(\otimes_A \).

Démonstration : Considérons \(A \) comme un \(A \)-bipolydule. Nous lui associons (4.1.1.3) le foncteur
\[\otimes_A : \text{Mod}_\infty A \rightarrow \text{Mod} A. \]
Nous savons par le lemme (4.1.1.6) que l’\(A_\infty \)-morphisme
\[g_M : M \otimes_A A \rightarrow M, \quad M \in \text{Mod}_\infty A, \]
est un \(A_\infty \)-quasi-isomorphisme. Si \(M \) est un module différentiel gradué sur \(A \), les multiplications \(m_i^M, i \geq 3 \), sont nulles et l’\(A_\infty \)-morphisme \(g_M \) (construit dans la démonstration du lemme (4.1.1.6)) est strict. L’\(A_\infty \)-morphisme \(g_M \) est alors un morphisme de \(A \)-modules différentiels gradués. Ceci montre que les foncteurs \(J \) et \(\otimes_A \) induisent des foncteurs quasi-inverses l’un de l’autre entre les catégories
\[DA \quad \text{et} \quad \left(\text{Mod}_\infty A \right)[Qis^{-1}]. \]

Définition 4.1.3.9 Soit \(A \) une algèbre différentielle graduée (non nécessairement unitaire). La catégorie dérivée \(DA \) est le noyau de
\[\otimes_A : \text{Mod}_\infty A \rightarrow D_{\infty}c. \]

Remarque 4.1.3.10 Dans le cas où \(A \) est unitaire, la catégorie dérivée définie ci-dessus est équivalente à la catégorie dérivée définie en (2.2.3).

Corollaire 4.1.3.11 Soit \(A \) une algèbre différentielle graduée (non nécessairement unitaire). Les catégories dérivées \(D_{\infty}A \) et \(DA \) sont équivalentes.

Démonstration : C’est une conséquence du lemme (4.1.3.8) et du fait que le foncteur \(\otimes_A \) est exactement le foncteur \(\otimes_A \).

□
La catégorie de modèles $\text{Mod}^\text{strict}_A$

Nous utilisons ci-dessous les notations et la terminologie standard des opérades différrentielles graduées (voir par exemple [Hin97]).

Une opérade asymétrique est une suite d'objets $\mathcal{O}(n)$, $n \geq 0$, de \mathbb{C} munie d'une composition μ vérifiant les mêmes conditions d'associativité que la composition d'une opérade au sens habituel.

Notons \mathfrak{S}_n, $n \geq 1$, le groupe symétrique. La suite $K\mathfrak{S}_n \otimes_k \mathcal{O}(n)$, $n \geq 0$, est un S-module dans \mathbb{C} et μ induit une structure d'opérade sur ce S-module. L'opérade Ass des algèbres associative est égale à $K\mathfrak{S}_n \otimes_k \text{Ass}'(n)$, $n \geq 0$, où Ass' est une opérade asymétrique.

Soit \mathcal{O} l'opérade asymétrique des \mathcal{A}_∞-algèbres strictement unitaires. On note $U(\mathcal{O}, A) = U(A)$ l'algèbre enveloppante de A relativement à l'opérade \mathcal{O}. La catégorie $\text{Mod}^\text{strict}_A$ des A-polydules strictement unitaires dont les morphismes sont les \mathcal{A}_∞-morphismes stricts est bien sûr isomorphe à la catégorie des modules (à droite) sur la \mathcal{O}-algèbre A. Nous avons donc un isomorphisme de catégories

$$\text{Mod} U(A) \cong \text{Mod}^\text{strict}_A.$$

Nous déduisons du théorème (2.2.2.1) le résultat suivant.

Proposition 4.1.3.12 Les trois classes de morphismes ci-dessous définissent une structure de catégorie de modèles sur $\text{Mod}^\text{strict}_A$:

- la classe $\mathcal{E}q$ formée des \mathcal{A}_∞-quasi-isomorphismes stricts,
- la classe $\mathcal{F}ib$ formée des morphismes $f : M \to M'$ tels que f^n est un épimorphisme pour tout $n \in \mathbb{Z}$,
- la classe $\mathcal{C}of$ formée des morphismes qui ont la propriété de relèvement à gauche par rapport aux morphismes appartenant à $\mathcal{Q}is \cap \mathcal{F}ib$.

□

Nous rappelons que la catégorie dérivée $\mathcal{D}U(A)$ est isomorphe à la catégorie localisée $\text{Ho} (\text{Mod}^\text{strict}_A)$.

Remarque 4.1.3.13 Si A est une \mathcal{A}_∞-algèbre augmentée, l'algèbre enveloppante $U(A)$ est isomorphe à $\Omega^* B^+ A$ (voir 2.3.4.2).

Proposition 4.1.3.14 Soit A une \mathcal{A}_∞-algèbre strictement unitaire. L'inclusion

$$J : \text{Mod}^\text{strict}_A \to \text{Mod}_A$$

induit une équivalence

$$\text{Ho} \left(\text{Mod}^\text{strict}_A \right) \cong \left(\text{Mod}_A \right)[\mathcal{Q}is^{-1}].$$

Démonstration :

Premier cas : A est une algèbre différentielle graduée unitaire. La suite d'inclusions

$$\text{Mod} A \hookrightarrow \text{Mod}^\text{strict}_A \hookrightarrow \text{Mod}_A$$

induit une suite de foncteurs fidèles

$$\mathcal{D}A \to \text{Ho} \left(\text{Mod}^\text{strict}_A \right) \to \left(\text{Mod}_A \right)[\mathcal{Q}is^{-1}].$$
Le lemme (4.1.3.8) nous donne la pleine fidélité de la composition. Le second foncteur est donc plein et nous avons le résultat.

Deuxième cas : A est une A_{∞}-algèbre strictement unitaire quelconque.

D’après la proposition (7.5.0.2), il existe un modèle différentiel gradué unitaire A' et une cofibration triviale

$$i : A \to A'$$

strictement unitaire. Le lemme (3.2.4.5) montre qu’il existe une fibration triviale $q : A' \to A$ telle que $q \circ i = 1_A$ et $i \circ q$ est homotope à 1_A. Les foncteurs restriction Res^i et Res^q induisent des foncteurs i^* et q^* entre les catégories homotopiques

$$\text{Ho} \left(\text{Mod}^{\text{strict}} A \right) \text{ et } \text{Ho} \left(\text{Mod}^{\text{strict}} A' \right).$$

Nous avons clairement $i^* \circ q^* = 1$. Montrons que $q^* \circ i^*$ est isomorphe au foncteur identité de $\text{Ho} \left(\text{Mod}^{\text{strict}} A' \right)$.

Soit A'' l’augmentation de A'. Son algèbre enveloppante $U(A'')$ est l’algèbre différentielle graduée $\Omega^B A''$ (voir 2.3.4.4). Soit $j : A'' \to U(A'')$ l’A_{∞}-morphisme universel construit en 2.3.4.3. Comme il est un A_{∞}-quasi-isomorphisme strictement unitaire augmenté, il induit une équivalence

$$\mathcal{D}_a(U(A'')) \to \mathcal{D}_a A''$$

compatible aux foncteurs

$$\mathcal{D}_a A'' \to \mathcal{D}_a e \text{ et } \mathcal{D}_a U(A'') \to \mathcal{D}_a e.$$

La sous-catégorie $\mathcal{D}_a A' = \text{Tria} A'$ est ainsi équivalente à la sous-catégorie $\mathcal{D}_a U(A'') = \text{Tria} U(A'')$ (l’algèbre $U(A'') = \Omega B^+ A''$ est la réduction de $U(A'')$). Notons f l’A_{∞}-morphisme composé $i \circ q$. Soit $f^* : A'' \to A'$ le morphisme augmenté associé à f. Notons g le morphisme

$$\Omega^B f^* : U(A'') \to U(A').$$

Le morphisme g est un morphisme d’algèbres différentielles graduées unitaires. Pour montrer que Res^j induit un endofoncteur de $\text{Ho} \text{Mod}^{\text{strict}} A'$ qui est isomorphe au foncteur identité, il suffit de montrer que Res^q induit un endofoncteur de $\mathcal{D}U(A'')$ isomorphe au foncteur identité. Le morphisme g est clairement homotope à 1 dans la catégorie Alg_{∞}. Les morphismes g et 1 deviennent donc égaux dans $\text{Alg}(Q_{is^{-1}})$ (voir 1.3.1.3). Comme $\Omega^B A''$ est une algèbre presque libre co-augmentée, elle est un objet fibrant et cofibrant de la catégorie de modèles Alg (voir 1.3.1). Il existe donc une homotopie à droite entre 1 et g. Le lemme (4.1.3.15) ci-dessous montre que l’endofoncteur g^* de $\mathcal{D}U(A'')$ induit par Res^q est isomorphe à l’identité.

Lemme 4.1.3.15 Soit A et B deux algèbres différentielles graduées unitaires. Soit g et g' deux morphismes $A \to B$ unitaires homotopes à droite. Les foncteurs restriction le long de g et g' induisent des foncteurs isomorphes

$$\mathcal{D}B \to \mathcal{D}A.$$

Démonstration : On rappelle qu’une algèbre de chemins B^I, c’est-à-dire un objet de chemins pour B dans la catégorie de modèles Alg, est un objet de Alg muni de morphismes

$$B \xrightarrow{i} B^I \xleftarrow{p} B_0 \times B_1,$$
où B_0 et B_1 sont égales à B, tels que i est une équivalence faible et $p \circ i$ est une factorisation de la diagonale $B \to B_0 \times B_1$. Notons p_0 et p_1 les morphismes composés

$$B^I \xrightarrow{p} B_0 \times B_1 \xrightarrow{\pi} B_0 \quad \text{et} \quad B^I \xrightarrow{p} B_0 \times B_1 \xrightarrow{\pi} B_1.$$ Nous avons les égalités $p_0 \circ i = p_1 \circ i = 1$.

Les morphismes g et g' sont homotopées à droite relativement à l’algèbre de chemins B^I, il existe donc un morphisme $H : A \to B^I$ tel que $p_0 \circ H = g$ et $p_1 \circ H = g'$. Ceci montre que

$$\text{Res}^p = \text{Res}^H \circ \text{Res}^{p_0} \quad \text{et} \quad \text{Res}^{p'} = \text{Res}^H \circ \text{Res}^{p_1}.$$ Pour montrer que Res^p et $\text{Res}^{p'}$ induisent des foncteurs isomorphes dans les catégories dérivées, il suffit de montrer que Res^{p_0} et Res^{p_1} induisent des foncteurs isomorphes dans les catégories dérivées. Nous avons les égalités

$$1 = \text{Res}^i \circ \text{Res}^{p_0} = \text{Res}^i \circ \text{Res}^{p_1}.$$ Comme i est un quasi-isomorphisme, Res^i induit une équivalence dans les catégories dérivées. Nous en déduisons que Res^{p_0} et Res^{p_1} induisent des foncteurs isomorphes dans les catégories dérivées. □

4.2 La catégorie dérivée des bipolydubes

Les démonstrations de cette section sont omises car similaires à celles de la section 4.1.

Le foncteur $M \infty \otimes M''$

Soit \mathcal{C}, \mathcal{C}', \mathcal{C}'' et \mathcal{C}''' des objets de \mathcal{C}. Soit A (resp. A', A'', A''') une A_∞-algèbre dans $\mathcal{C}(\mathcal{C}, \mathcal{C})$ (resp. $\mathcal{C}(\mathcal{C}', \mathcal{C})$, $\mathcal{C}(\mathcal{C}'', \mathcal{C}'')$, $\mathcal{C}(\mathcal{C}''', \mathcal{C}''')$). Soit M (resp. M'') un A-A'-bipolydule (resp. A''-A'''-bipolydule) dans $\mathcal{C}(\mathcal{C}, \mathcal{C}')$ (resp. $\mathcal{C}(\mathcal{C}'', \mathcal{C}'')$). On définit le foncteur

$$\text{Nod}_\infty(A', A'') \to \text{Nod}_\infty(A, A'''), \quad M' \mapsto M \otimes M' \otimes M,$$ par l’égalité de B^+A-B^+A'''-bicomodules différentiels gradués

$$B(M \otimes M' \otimes M) = BM \square_{B^+A} BM' \square_{B^+A''} BM,$$ où \square désigne le produit cotensoriel (voir 4.1.1).

La catégorie dérivée $\mathcal{D}_\infty(A, A')$

Soit $\epsilon_\mathcal{C}$ et $\epsilon_{\mathcal{C}'}$ les éléments neutres de $\mathcal{C}(\mathcal{C}, \mathcal{C})$ et $\mathcal{C}(\mathcal{C}', \mathcal{C})$ considérés comme des A_∞-algèbres augmentées. Considérons $\epsilon_\mathcal{C}$ et $\epsilon_{\mathcal{C}'}$ comme un $\epsilon_\mathcal{C}$-A^+-bipolydule et un $A'^+\epsilon_{\mathcal{C}'}$-bipolydule.

Définition 4.2.0.1 La catégorie dérivée $\mathcal{D}_\infty(A', A'')$ est le noyau du foncteur

$$\epsilon_\mathcal{C} \otimes_{A'^+} \otimes_{A'''} \epsilon_{\mathcal{C}'} : \mathcal{D}_\infty(A'^+, A''') \to \mathcal{D}_\infty(\epsilon_\mathcal{C}, \epsilon_{\mathcal{C}'})$$.
La sous-catégorie $\text{Tria}(A, A')$

Supposons que la catégorie C admet un objet final P. Soit $x : P \to \emptyset$ un morphisme de C. Le morphisme x induit un foncteur

$$x_* : C(\emptyset, P) \to C(\emptyset, P), \; M \mapsto M(x).$$

Nous supposons que ce foncteur admet un adjoint à gauche $r : C(P, \emptyset) \to C(P, \emptyset)$.

Nous avons un A-polybimodule $x^\vee = A \otimes_{\emptyset} r(e_P)$, dont la structure est donnée par les multiplications de A.

Remarque 4.2.0.2 Cette notation est justifiée par le fait suivant. Dans l’exemple apparaissant dans l’étude des A_{∞}-catégories (5.1.1), un objet final est un ensemble à un élément. Soit P un tel ensemble et \emptyset un ensemble. Soit x une l’application $P \to \emptyset$ donnée par un élément (noté aussi x) de \emptyset. Le A-polybimodule x^\vee est l’A_{∞}-foncteur coreprésenté par x

$$x^\vee = A(x, ?).$$

Soit $x : P \to \emptyset$ et $y : P \to \emptyset'$ des morphismes de C. Le $\emptyset-\emptyset'$-bimodule

$$x^\vee \otimes_{\emptyset} y^\wedge = A \otimes_{\emptyset} r(e_P) \otimes_{\emptyset} y(e_P) \otimes_{\emptyset'} A'$$

est un $A-A'$-bipolybimodule. La catégorie $\text{Tria}(A, A')$ est la sous-catégorie triangulée de $\mathcal{D}_{\infty}(A^+, A'^+)$ engendrée par les

$$x^\vee \otimes_{\emptyset} y^\wedge, \; x \in C(P, \emptyset), \; y \in C(P, \emptyset').$$

Proposition 4.2.0.3 Soit A et A' des A_{∞}-algèbres H-unitaires. Nous avons une suite exacte de catégories triangulées

$$\text{Tria}(A, A') \hookrightarrow \mathcal{D}_{\infty}(A^+, A'^+) \to \mathcal{D}_{\infty}(e_\emptyset, e'_\emptyset).$$

En particulier, la catégorie dérivée $\mathcal{D}_{\infty}A$ est égale à $\text{Tria}(A, A')$.

Théorème 4.2.0.4 Soit A et A' deux A_{∞}-algèbres strictement unitaires. Les catégories suivantes sont équivalentes :

- D1. la catégorie dérivée $\mathcal{D}_{\infty}(A, A')$ de (4.2.0.1), c’est-à-dire, la sous-catégorie triangulée $\text{Tria}(A, A')$ de $\mathcal{D}_{\infty}(A^+, A'^+)$ (4.1.2.10),

- D2. la catégorie (bien définie) $\mathcal{H}_{\infty}(A, A') = \text{Mod}_{\infty}(A, A')/\sim$

où \sim est la relation d’homotopie,
4.2 : La catégorie dérivée des bopolydèles

D3. la catégorie localisée

\[(\text{Mod}_\infty(A, A'))[Q\text{is}^{-1}]\]

où Qis est la classe des A_∞-quasi-isomorphismes de $\text{Mod}_\infty(A, A')$.

D4. la catégorie localisée

\[(\text{Mod}^{\text{strict}}_\infty(A, A'))[Q\text{is}^{-1}]\]

de la catégorie $\text{Mod}^{\text{strict}}_\infty(A, A')$.

Démonstration : Les équivalences entre les catégories de D1, D2 et D3 se montrent de la même manière que dans le théorème (4.1.3.1). L’équivalence entre les catégories de D3 et D4 dans le cas où A et A' sont des algèbres différentielles graduées unitaires se prouve comme dans la proposition (4.1.3.14). Si A et A' sont des A_\infty-algèbres strictement unitaires quelconques, nous procédons de la manière suivante. On montre comme dans la proposition (4.1.3.14) que l’inclusion

$$\text{Mod}(U(A), U(A')) \hookrightarrow \text{Mod}_\infty(A, A')$$

induit une équivalence

$$\text{Ho} (\text{Mod}(U(A), U(A'))) \rightarrow (\text{Mod}_\infty(A, A'))[Q\text{is}^{-1}]$$.

Comme cette équivalence est la composition des foncteurs fidèles

$$\text{Ho} (\text{Mod}(U(A), U(A'))) \rightarrow (\text{Mod}^{\text{strict}}_\infty(A, A'))[Q\text{is}^{-1}] \xrightarrow{K} (\text{Mod}_\infty(A, A'))[Q\text{is}^{-1}]$$

le foncteur K est plein. Il est donc une équivalence. □
Chapitre 5

A\(_\infty\)-catégories et A\(_\infty\)-foncteurs

Plan du chapitre

Une A\(_\infty\)-catégorie est une A\(_\infty\)-algèbre avec plusieurs objets, et réciproquement, une A\(_\infty\)-algèbre est une A\(_\infty\)-catégorie avec un objet. Les problèmes soulevés par l’augmentation du nombre d’objets sont nombreux et la généralisation des résultats des chapitres précédents est parfois très technique.

Dans la section 5.1, nous fixons des notations qui codent la variation des ensembles d’objets des petites A\(_\infty\)-catégories. Nous introduisons pour cela une bicatégorie C dont les objets sont les ensembles, puis nous définissons une petite A\(_\infty\)-catégorie dont l’ensemble des objets est en bijection avec un ensemble \(\mathcal{O}\) comme une A\(_\infty\)-algèbre dans la catégorie (monoïdale) \(\mathcal{C}(\mathcal{O}, \mathcal{O})\). Nous définissons ensuite les A\(_\infty\)-foncteurs.

Dans la section 5.2, nous définissons les catégories différentielles graduées des (bi)polydules sur des A\(_\infty\)-catégories.

Dans la section 5.3, nous établissons un lemme (dit lemme clé) qui sera fondamental dans la construction de l’A\(_\infty\)-foncteur de Yoneda (7.1.0.1) et celle de l’A\(_\infty\)-foncteur de Yoneda généralisé (8.2.1).

5.1 Définitions

5.1.1 Les catégories de base \(\mathcal{C}(\mathcal{O}, \mathcal{O}')\) et \(\mathcal{C}(\mathcal{O})\)

Nous fixons des notations que nous utiliserons tout au long de cette partie. Nous construisons une bicatégorie C dont les objets sont les ensembles (voir [ML98, Chap. XII, §6] pour les bicatégories).

Soit \(\mathbb{K}\) un corps. Le produit tensoriel au-dessus de \(\mathbb{K}\) est noté \(\otimes\). Soit \(\mathcal{O}\) un ensemble. Considérons le comme la petite catégorie dont les objets sont en bijection avec \(\mathcal{O}\) et dont l’espace des morphismes \(o \to o'\) est vide si \(o \neq o'\), et contient uniquement le morphisme identité \(I_o\) sinon.

Soit \(\mathcal{O}, \mathcal{O}'\) et \(\mathcal{O}''\) trois ensembles. Un \(\mathcal{O}'\)-\(\mathcal{O}\)-bimodule (resp. un \(\mathcal{O}\)-module à droite) est un foncteur

\[
M : \mathcal{O}^{op} \times \mathcal{O}' \to \text{Vect}\mathbb{K}, \quad (\text{resp. } M : \mathcal{O}^{op} \to \text{Vect}\mathbb{K})
\]

où \(\text{Vect}\mathbb{K}\) est la catégorie des \(\mathbb{K}\)-espaces vectoriels. Un morphisme de bimodules (resp. de modules) est un morphisme de foncteurs. Nous notons \(\mathcal{C}(\mathcal{O}, \mathcal{O}')\) et \(\mathcal{C}(\mathcal{O})\) ces catégories. Soit \(M\) un objet de
Chapitre 5 : A\(_\infty\)-catégories et A\(_\infty\)-foncteurs

C(Ω, Ω') et N un objet de C(Ω', Ω''). Le **produit tensoriel** \(M \circ_{Ω'} N \) **au-dessus de Ω'** est l'objet de C(Ω, Ω'') défini par

\[
(M \circ_{Ω'} N)((o', o)) = \bigoplus_{o' \in Ω'} M(o', o) \otimes N(o'', o').
\]

Nous noterons simplement \(\circ \) le tenseur au-dessus de Ω' lorsque cela ne prêtera pas à confusion.

Le produit tensoriel au-dessus de Ω' nous donne un foncteur

\[
C(Ω', Ω) \times C(Ω'', Ω') \to C(Ω'', Ω'), \quad (M, N) \mapsto M \circ_{Ω'} N,
\]

et si Ω''' est un ensemble et T un objet de C(Ω'', Ω'''), on a des contraintes d'associativité

\[
(M \circ_{Ω'} N) \circ_{Ω''} T \sim M \circ_{Ω'} (N \circ_{Ω''} T).
\]

Soit \(f : Ω \to Ω' \) une application. On a un foncteur

\[
C(Ω'', Ω') \to C(Ω', Ω), \quad M \mapsto f M
\]

qui envoie le Ω'-Ω'''-bimodule M sur le Ω-Ω''-bimodule

\[
M_f : Ω^{op} \times Ω' \to \text{Vect}_K, \quad o \times o'' \mapsto M(f o, o'').
\]

De manière similaire, si \(g : Ω \to Ω'' \) est une application, on a un foncteur

\[
C(Ω'', Ω') \to C(Ω, Ω'), \quad M \mapsto g M.
\]

La catégorie C(Ω, Ω') est \(K \)-linéaire abélienne, semi-simple, cocomplète, aux colimites filtrantes exactes (i.e. c'est une \(K \)-catégorie de Grothendieck semi-simple). Par la section 1.1.1, nous avons

Remarque 5.1.1.1 Soit \(A \) une petite \(K \)-catégorie dont l'ensemble des objets est en bijection avec un ensemble \(\mathcal{A} \). Le \(\mathcal{A} \)-\(\mathcal{A} \)-bimodule

\[
\text{Hom}_A : A \times A' \to \text{Hom}_A(A, A'),
\]

munis des morphismes

\[
\mu : \text{Hom}_A \circ \text{Hom}_A \to \text{Hom}_A \quad \text{et} \quad \eta : e_{\mathcal{A}} \to \text{Hom}_A, \quad I_A \mapsto 1_A,
\]

et si Ω'' est un ensemble et T un objet de C(Ω'', Ω'''), on a des contraintes d'associativité

\[
(M \circ_{Ω'} N) \circ_{Ω''} T \sim M \circ_{Ω'} (N \circ_{Ω''} T).
\]
5.1 : Définitions

définitions par la composition de \(A \) et par les morphismes identité \(1_A \) de \(A \), est une algèbre unitaire dans la catégorie des \(A-A \)-bimodules. Réciproquement, une algèbre unitaire dans la catégorie des \(A-A \)-bimodules définit une petite \(\mathbb{K} \)-catégorie dont l’ensemble des objets est en bijection avec \(A \).

Soit \(A \) et \(B \) deux petites \(\mathbb{K} \)-catégories dont les ensembles des objets sont en bijection avec des ensembles \(A \) et \(B \). Soit \(f : A \to B \) un foncteur. On note

\[\hat{f} : \text{Obj} A \to \text{Obj} B \]

l’application qui envoie \(A \) sur son image par le foncteur \(f \). Le foncteur \(f \) induit un morphisme d’algèbres unitaires

\[\text{Hom}_A \to \hat{f}\text{Hom}_B, \quad x \mapsto f(x) , \]

Réciproquement, si \(\Lambda \) et \(\Lambda' \) sont deux algèbres unitaires dans les catégories des \(A-A \)-bimodules et des \(B-B \)-bimodules, une application \(\hat{f} : A \to B \) et un morphisme d’algèbres unitaires \(\Lambda \to \hat{f} \Lambda' \hat{f} \) dans la catégorie \(C(\hat{A}, \hat{A}) \) définissent un foncteur entre les \(\mathbb{K} \)-catégories correspondantes.

Définition 5.1.1.2 Soit \(A \) un ensemble. Une (petite) catégorie différentielle graduée sur \(A \) est une algèbre différentielle graduée unitaire dans \(C(A, A) \).

5.1.2 Définitions

Définition 5.1.2.1 Soit \(A \) un ensemble. Une \(A_{\infty} \)-catégorie sur \(A \) est une \(A_{\infty} \)-algèbre dans la catégorie \((GrC(A, A), \circ, e_A) \).

Remarque 5.1.2.2 Soit \(A \) une \(A_{\infty} \)-catégorie. Elle est déterminée par

- un ensemble d’objets \(\text{Obj} A = \hat{A} \),
- pour tout couple \((A, A')\) d’objets de \(A \), un espace gradué de morphismes

\[\text{Hom}_A(A, A') = A(A, A') , \]

- pour toute suite \((A_0, \ldots, A_n)\) d’objets de \(A \), des compositions

\[m_n : A(A_{n-1}, A_n) \otimes \ldots \otimes A(A_0, A_1) \to A(A_0, A_n) , \]

vérifiant les équations \((*_{n}), n \geq 1\), de la définition 1.2.1.1.

Si \(A \) est homologiquement unitaire (en tant que \(A_{\infty} \)-algèbre dans \(GrC(A, A) \)) alors, pour tout objet \(A \in A \), nous avons un morphisme identité \(I_A \in A(A, A) \) tel que sa classe \([I_A]\) dans \(H^*A(A, A) \) vérifie

\[\mu(f, [I_A]) = f, \quad f \in H^*A(A, A') \quad \text{et} \quad \mu([I_A], g) = g, \quad g \in H^*A(A', A) , \]

où \(\mu \) est la composition de \(H^*A \) induite par \(m_2 \).

Remarque 5.1.2.3 La composition \(m_2 \) induit une composition associative

\[\mu : H^0A \otimes H^0A \to H^0A. \]

Si \(A \) est homologiquement unitaire alors \(H^0A \) est une catégorie au sens classique. Le morphisme identité d’un objet \(A \in H^0A \) est la classe \([I_A]\).
Lemme 5.1.2.4 Soit \mathcal{B} un ensemble, \mathcal{B} une \mathcal{A}_∞-catégorie sur \mathcal{B} homologiquement unitaire et $f : \mathcal{A} \to \mathcal{B}$ une application. Le \mathcal{A}-\mathcal{A}-bimodule gradué \mathcal{B}_f est une \mathcal{A}_∞-catégorie homologiquement unitaire pour les compositions et les morphismes identité induits par ceux de \mathcal{A}. □

Définition 5.1.2.5 Soit \mathcal{A} et \mathcal{B} deux ensembles et \mathcal{A} et \mathcal{B} deux \mathcal{A}_∞-catégories sur \mathcal{A} et \mathcal{B}. Un \mathcal{A}_∞-foncteur $f : \mathcal{A} \to \mathcal{B}$ est la donnée d’un couple $(\hat{f}, f_{\text{Hom}})$ formé d’une application $\hat{f} : \mathcal{A} \to \mathcal{B}$ et d’un \mathcal{A}_∞-morphisme dans la catégorie $\text{Gr}_C(\mathcal{A}, \mathcal{A})$ $f_{\text{Hom}} : \mathcal{A} \to f!\mathcal{B}_f$. Nous noterons souvent ce dernier f au lieu de f_{Hom}. L’\mathcal{A}_∞-foncteur identité de \mathcal{A} est noté $1_{\mathcal{A}} : \mathcal{A} \to \mathcal{A}$.

Attention à ne pas confondre ce symbole avec $1_{\mathcal{A}}$, le morphisme identité d’un objet $A \in \mathcal{A}$.

Remarque 5.1.2.6 Soit \mathcal{A} et \mathcal{B} deux petites \mathcal{A}_∞-catégories. Un \mathcal{A}_∞-foncteur $f : \mathcal{A} \to \mathcal{B}$ est déterminé par
- une application $\hat{f} : \text{Obj}\mathcal{A} \to \text{Obj}\mathcal{B}$,
- pour toute suite (A_0, \ldots, A_n) d’objets de \mathcal{A}, des morphismes $f_n : \mathcal{A}(\mathcal{A}_{n-1}, A_n) \otimes \cdots \otimes \mathcal{A}(A_0, A_1) \to \mathcal{B}(\hat{f}A_0, \hat{f}A_n)$, vérifiant les équations $(**_n)$, $n \geq 1$, de la définition 1.2.1.2.

Remarque 5.1.2.7 Soit \mathcal{A} et \mathcal{B} deux petites \mathcal{A}_∞-catégories sur \mathcal{A}. Un \mathcal{A}_∞-morphisme $f : \mathcal{A} \to \mathcal{B}$ dans $\text{C}(\mathcal{A}, \mathcal{A})$ donne un \mathcal{A}_∞-foncteur $(1_{\mathcal{A}}, f) : \mathcal{A} \to \mathcal{B}$, $x \mapsto f(x)$.

Réciproquement, un \mathcal{A}_∞-foncteur (\hat{f}, f) dont l’application sous-jacente \hat{f} est égale à $1_{\mathcal{A}}$ donne un \mathcal{A}_∞-morphisme $f : \mathcal{A} \to \mathcal{B}$.

Rappel sur la construction bar

Soit \mathcal{A} et \mathcal{B} deux \mathcal{A}_∞-catégories et $f : \mathcal{A} \to \mathcal{B}$ un \mathcal{A}_∞-foncteur. Rappelons que les bijections de la section 1.2.2, $m_i \leftrightarrow b_i$ (resp. $f_i \leftrightarrow F_i$), $i \geq 1$, entre les espaces de morphismes $\text{Hom}_{\text{Gr}_C(\mathcal{A}, \mathcal{A})}(\mathcal{A}^{\otimes i}, \mathcal{A})$ et $\text{Hom}_{\text{Gr}_C(\mathcal{A}, \mathcal{A})}((\mathcal{S}\mathcal{A})^{\otimes i}, \mathcal{S}\mathcal{A})$.
5.2 : Catégories différentielles graduées des polydules

La catégorie $\mathcal{C}_\infty B^+A$

Soit A un ensemble et \mathcal{A} une Λ_∞-catégorie sur A. La catégorie $\mathcal{C}_\infty B^+A$ a pour objets ceux de $\Comc B^+A$. Si N et N' sont deux objets de $\Comc B^+A$, l'espace de morphismes

$$\Hom_{\mathcal{C}_\infty B^+A}(N, N')$$

est l'espace des morphismes unitaires gradués de comodules $N \rightarrow N'$ muni de la différentielle

$$\delta : F \mapsto b^{N'} \circ F - (-1)^{|F|} F \circ b^N,$$
où F est de degré $|F|$. C’est une catégorie différentielle graduée. Remarquons que la catégorie $\text{Comc} B^+A$ est isomorphe à la catégorie $Z^0C_\infty B^+A$, i.e. la catégorie dont les objets sont ceux de $C_\infty B^+A$ et dont les morphismes sont les zéro-cycles des complexes de morphismes de $C_\infty B^+A$.

La catégorie $N_\infty A$

La catégorie $N_\infty A$ est la catégorie différentielle graduée dont les objets sont les A-polydules et dont les espaces de morphismes sont définis par

$$\text{Hom}_{N_\infty A}(M, M') = \text{Hom}_{C_\infty B^+A}(BM, BM')$$

où $M, M' \in N_\infty A$.

Un morphisme $f : M \to M'$ de degré n est donc donné par une suite de morphismes gradués de A-module

$$f_i : M \otimes A^{\otimes i-1} \to M'$$

de degré $1 - i + n$. Les A_∞-morphismes $f : M \to M'$ sont les zéro-cycles de $\text{Hom}_{C_\infty A}(M, M')$. (La lettre N se rapporte au “Non” dans “A-polydules non unitaires”.)

Remarque 5.2.0.1 Soit B une A_∞-catégorie et X un B-A-bipolydules. Nous avons un isomorphisme de complexes

$$\text{Hom}_A(X, M) = \text{Hom}_{N_\infty A}(X_A, M), \quad M \in N_\infty A,$$

où $\text{Hhom}_A(X, M)$ est défini en (4.1.1).

La catégorie $C_\infty A$

Supposons désormais que A est strictement unitaire. Si M et M' sont deux A-polydules strictement unitaires, un morphisme $f : M \to M'$ de degré n est strictement unitaire s'il vérifie les équations

$$f_i(1^{\otimes \alpha} \otimes \eta \otimes 1^{\otimes \beta}) = 0, \quad i \geq 2.$$

Nous notons $(N_\infty A)_\circ$ la sous-catégorie pleine de $N_\infty A$ formée des A-polydules strictement unitaires et $C_\infty A$ la sous-catégorie non pleine de $N_\infty A$ formée des A-polydules strictement unitaires dont les morphismes sont les morphismes strictement unitaires. Remarquons que si A est augmenté, nous avons un isomorphisme de catégories

$$C_\infty A \xrightarrow{\sim} N_\infty \overline{A}.$$

Remarque 5.2.0.2 La catégorie $H^0C_\infty A$ est clairement isomorphe à $H_\infty A$ (voir la définition 4.1.2.1). Elle est équivalente à la catégorie $D_\infty A$ par le corollaire 2.4.2.2.

Proposition 5.2.0.3 L'inclusion

$$C_\infty A \to N_\infty A$$

induit un quasi-isomorphisme dans les espaces de morphismes.

Démonstration : La démonstration est la même que celle de la proposition (3.3.1.8). Au lieu de considérer uniquement les A_∞-morphismes, i.e. les morphismes de $N_\infty A$ qui sont des cycles de degré zéro et les homotopies entre A_∞-morphismes, nous considérons les morphismes de degré...
La catégorie $C_{\infty}(A, B)$

Soit \mathbb{A} et \mathbb{B} deux ensembles et A et B des A_{∞}-catégories sur \mathbb{A} et \mathbb{B}. La catégorie $N_{\infty}(A, B)$ est construite de manière strictement analogue à $N_{\infty}A$. Soit la catégorie différentielle graduée $C_{\infty}(B+A, B+B)$ dont les objets sont ceux de $\text{Comc}(B+A, B+B)$. La catégorie $N_{\infty}(A, B)$ est la catégorie différentielle graduée qui a les mêmes objets que $\text{Mod}_{\infty}(A, B)$ et dont les espaces de morphismes sont définis par le sous-espaces

$$\text{Hom}_{N_{\infty}(A, B)}(M, M') = \text{Hom}_{C_{\infty}(B+A, B+B)}(BM, BM'), \quad M, M' \in C_{\infty}(A, B).$$

Si A et B sont strictement unitaires, on définit les catégories $(N_{\infty}(A, B))_u$ et $C_{\infty}(A, B)$ de manière analogue aux catégories $(N_{\infty}A)_u$ et $C_{\infty}A$. La catégorie $\text{Mod}_{\infty}(A, B)$ est isomorphe à $Z^0C_{\infty}(A, B)$.

Proposition 5.2.0.4 L’inclusion

$$C_{\infty}(A, B) \rightarrow N_{\infty}(A, B)$$

induit un quasi-isomorphisme dans les espaces de morphismes. □

5.3 Lemme clef

Le lemme ci-dessous sera utile pour la construction de l’A_{∞}-foncteur de Yoneda (voir 7.1.0.1).

Soit \mathbb{A} et \mathbb{B} deux ensembles, M un objet gradué de $C(\mathbb{A}, \mathbb{B})$ et A et B deux A_{∞}-catégories sur \mathbb{A} et \mathbb{B}. Soit une famille de morphismes gradués de $A_{\mathbb{B}}$-bimodules

$$m_{i,j} : A^{(i)} \circ_A M \circ_B B^{(j)} \rightarrow M, \quad i, j \geq 0,$$

de degré $1-i-j$. Munissons les cogèbres tensoriels co-augmentés T^cSB et T^cSA des différentielles b^A et b^B des constructions bar co-augmentées. Les morphismes

$$b_{0,j} : SM \circ_B (SB)^{(j)} \rightarrow SM, \quad j \geq 0,$$

donnés par les bijections $m_{0,j} \leftrightarrow b_{0,j}$ de la section 2.5.1, se relèvent (voir 2.1.2.1) en une unique codérivation de comodules gradués dans $C(\mathbb{A}, \mathbb{B})$

$$D : SM \circ_B T^c(SB) \rightarrow SM \circ_B T^c(SB).$$

Notons $\text{End} = \text{End}\left((SM \circ_B T^c(SB)) \right)$ l’algèbre des endomorphismes gradués de $B^{+}B$-comodules dans la catégorie $C(\mathbb{A}, \mathbb{B})$. Remarquons que cet un objet de la catégorie $C(\mathbb{A}, \mathbb{A})$ est aussi défini par

$$\text{End}(A, A') = \text{Hom}_{\mathbb{B}}(M, M(\underline{\cdot}, A'))(A), \quad A, A' \in \mathbb{A},$$

où Hom est le foncteur défini en (4.1.1). Nous munissons End des trois morphismes

$$m_0 : e_{\mathbb{A}} \rightarrow \text{End}, \quad 1 \mapsto -D^2$$

$$m_1 : \text{End} \rightarrow \text{End}, \quad f \mapsto D \circ f - (-1)^{r} f \circ D$$

$$m_2 : \text{End} \circ_{\mathbb{A}} \text{End} \rightarrow \text{End}, \quad f \circ g \mapsto f \circ g,$$
où f est un morphisme de degré r. Ils vérifient les équations

$$m_1 \cdot m_0 = 0, \quad m_2(m_0 \circ 1 + 1 \circ m_0) + m_1^2 = 0$$

$$m_2(m_1 \circ 1 + 1 \circ m_1) - m_1 m_2 = 0$$

et

$$m_2(1 \circ m_2 - m_2 \circ 1) = 0.$$

Une algèbre différentielle graduée (A,d,μ) vérifie clairement ces équations pour $m_0 = 0$, $m_1 = d$ et $m_2 = \mu$. Réciproquement, si M est un objet gradué muni de morphismes m_0, m_1 et m_2 vérifiant ces équations, (M,m_1,m_2) est une algèbre différentielle graduée si m_0 est nul.

Soit les morphismes gradués de A-A-bimodules

$$f_i : A^{\otimes i} \to \text{End}, \quad i \geq 1,$$

de degré $2-i$, définis par l’équation

$$F_i(\phi) = s(\Phi) \in S\text{End},$$

où F_i est donné par la bijection $f_i \leftrightarrow F_i$, où ϕ est un élément de $(S A)^{\otimes i}$ de degré $|\phi|$ et où le morphisme Φ est l’unique morphisme (voir 2.1.2.1) tel que la composition $p_1 \circ \Phi$ a pour composantes les morphismes

$$SM \circ (SB)^{\otimes j} \overset{(-1)^{|\phi|} \circ 1}{\longrightarrow} (S A)^{\otimes i} \circ SM \circ (SB)^{\otimes j} \overset{b_{i,j}}{\longrightarrow} SM, \quad j \geq 0.$$

Lemme 5.3.0.1 Les énoncés suivants sont équivalents.

a. Le triplet (End, m_1, m_2) est une algèbre différentielle graduée et les morphismes $f_i, i \geq 1$, définissent un A_∞-morphisme

$$f : A \to \text{End},$$

où End est munie de l’A_∞-structure de la remarque 1.2.1.5.

b. Les morphismes $m_{i,j}, i,j \geq 0$, définissent une structure de A-B-bipolydulle sur M.

Démonstration : Supposons que l’énoncé a est vrai. Nous allons montrer qu’il est équivalent aux équations

$$\sum_{k+m=n} b_* (1^{\otimes k} \circ b_* \circ 1^{\otimes m}) = 0, \quad n \geq 0,$$

où les symboles b_* doivent être interprétés convenablement. Ces équations sont équivalentes aux équations (s'_n), $n+1+n' \geq 1$, de la définition 2.5.1.3.

Comme (End, m_1, m_2) est une algèbre différentielle graduée, le morphisme m_0 est nul. Ceci veut dire que D est une différentielle de comodules. L’équation $D^2 = 0$ est équivalente aux équations

$$\sum_{1+j+k=n} b_{0,j}(b_{0,j} \circ 1^{\otimes k}) + \sum_{k+j+m=n} b_{0,j}(1^{\otimes k} \circ b_j^{\otimes 1} \circ 1^{\otimes m}) = 0, \quad n \geq 0.$$

En vertu de la section 1.2.2, le fait que f est un A_∞-morphisme se traduit par le fait que la suite des morphismes $F_i, i \geq 1$, définit un morphisme de cogèbres différentielles graduées

$$F : B^\ast A \to B^\ast \text{End}.$$
Ceci équivaut aux équations \((**_n)\), \(n \geq 1\):

\[
\sum_{i+j+k=n} F_i(1^{\otimes i} \otimes b_j^A \otimes 1^{\otimes k}) - b_1^{\text{End}}(F_n) - \sum_{i+j=n} b_2^{\text{End}}(F_i \otimes F_j) = 0.
\]

On rappelle que la définition des bijections \(m^\text{End}_i \leftrightarrow b^\text{End}_i\), \(i \geq 2\), implique que

\[
b_1^{\text{End}} \circ s = -s \circ m^\text{End}_1 \quad \text{et} \quad b_2^{\text{End}} \circ s^{\otimes 2} = s \circ m_2^{\text{End}}.
\]

Soit \(m \circ y\) un élément de de \(SM \otimes (SB)^{\otimes n}\). Calculons l'image de \(m \circ y\) par \(b^\text{End}_2(F_i \otimes F_j)(\phi)\) où \(\phi = \phi_1 \circ \Phi_i\):

\[
b_2^{\text{End}}(F_i \otimes F_j)(\phi)(m \circ y) = b_2^{\text{End}}(s\Phi_i \circ s\Phi_j)(m \circ y)
\]

\[
= (-1)^{|b|} b_2^{\text{End}}(s \Phi_i \circ s \Phi_j)(m \circ y)
\]

\[
= (-1)^{|b|} s(m^{\text{End}}_1(\Phi_i \circ \Phi_j))(m \circ y)
\]

\[
= -s(b \cdot \Phi - (-1)^{|\Phi|} \Phi \cdot b)(m \circ y)
\]

\[
= -s \left[\sum_{k+l=n} (-1)^{|b|} b_{l+k}(\phi \circ 1^{SM} \circ 1^{\otimes k}) \otimes 1^{\otimes l} \right]
\]

\[
\quad + \sum_{u+v=n} (-1)^{|b|} b_{u+v+1+i}(\phi \circ 1^{SM} \circ 1^{\otimes u} \otimes 1^{\otimes v} \otimes 1^{\otimes f})
\]

\[
\quad + (-1)^{|b|} b_{u+v+1+i} \circ b_{0,n}(1^{SM} \circ 1^{\otimes u}) \circ (m \circ y)
\]

\[
= (-1)^{|\phi|+1} s \left[\sum_{k+l=n} b_{l+k}(1^{\otimes k} \otimes 1^{SM} \otimes 1^{\otimes k}) \otimes 1^{\otimes f} \right]
\]

\[
\quad + \sum_{u+v=n} b_{u+v+1+i}(1^{\otimes u} \otimes b_{0,n} \circ 1^{\otimes v} \otimes 1^{\otimes f})
\]

\[
\quad + b_{u+v+1+i} \circ b_{0,n}(1^{SM} \circ 1^{\otimes u}) \circ (m \circ y)
\]

et enfin \(F_i(1^{\otimes i} \otimes b_j^A \otimes 1^{\otimes k})(\phi)(m \circ y)\):

\[
F_i(1^{\otimes i} \otimes b_j^A \otimes 1^{\otimes k})(\phi)(m \circ y) = \sum_{u+v+i+j=n} (-1)^{|b|+1} b_{u+v+i+j,n}(1^{\otimes u} \otimes b_{0,n} \circ 1^{\otimes v} \otimes 1^{\otimes f}) \circ (m \circ y).
\]

Les équations \((**_n)\), \(n \geq 1\), et le fait que la codérivation \(D\) est une différentielle sont donc équivalents aux équations

\[
\sum b_\bullet(1^{\otimes u} \otimes b_\bullet \otimes 1^{\otimes v}) = 0
\]

où les \(b_\bullet\) et les \(1\) doivent être interprétés convenablement. \(\square\)

Soit \(M\) un \(A\)-\(B\)-bipolydile. Soit \(A\) un objet de \(A\). On munit le \(A\)-module \(M(\ _,A)\) de la structure de \(B\)-polydile donnée par les morphismes \(m_j, j \geq 1\), de \(B\)-modules

\[
m_{0,j-1}(\ _,A) : (M \circ B^{\otimes j-1})(\ _,A) \rightarrow M(\ _,A), \quad j \geq 1.
\]
Corollaire 5.3.0.2 L’application
\[\theta_M : A \rightarrow \text{Obj}\mathcal{N}_\infty \mathcal{B}, \quad A \mapsto M(\cdot, A) \]
se complète de manière canonique en un \(\Lambda\)-foncteur
\[\theta_M : A \rightarrow \mathcal{N}_\infty \mathcal{B}. \]

Démonstration : Le \(\Lambda\)-\(\Lambda\)-bimodule
\[\text{Hom}_{\mathcal{N}_\infty \mathcal{B}}(\theta_{M\cdot}, \theta_{M\cdot}) \]
est par définition l’algèbre des endomorphismes
\[\text{End}_{\mathcal{N}_\infty \mathcal{B}^{+\mathcal{B}}}((?, \cdot) \otimes T^c \mathcal{S} \mathcal{B}), \]
c’est-à-dire, l’algèbre \(\text{End} \) du lemme clé. Le foncteur canoniquement associé à \(M \) est donné par les morphismes
\[f_i : A^{\otimes i} \rightarrow \text{Hom}_{\mathcal{N}_\infty \mathcal{B}}(\theta_{M\cdot}, \theta_{M\cdot}), \quad i \geq 1, \]
du lemme 5.3.0.1. Ils définissent un \(\Lambda\)-foncteur car
\[f : A \rightarrow \text{End} \]
est un \(\Lambda\)-morphisme. \(\square \)

Corollaire 5.3.0.3 L’application \(M \mapsto \theta_M \) de la classe des \(\Lambda\)-\(\mathcal{B}\)-bipolydules sur la classe des \(\Lambda\)-foncteurs \(A \rightarrow \mathcal{N}_\infty \mathcal{B} \) est une bijection. Son application inverse associée à un \(\Lambda\)-foncteur
\[(\hat{g}, g) : A \rightarrow \mathcal{N}_\infty \mathcal{B} \]
le \(\Lambda\)-\(\mathcal{B}\)-bimodule
\[M(A, B) = (\hat{g}(A))(B) \]
mini les multiplications \(m_{i,j}, i, j \geq 0 \), données par
\[m_{i,j-1} = (g_i)_j. \]
\(\square \)

Le cas strictement unitaire

Supposons désormais que \(A \) et \(\mathcal{B} \) sont des \(\Lambda\)-catégories strictement unitaires.

Remarque 5.3.0.4 Soit \(M \) un \(\Lambda\)-\(\mathcal{B}\)-bipolydule. L’\(\Lambda\)-morphisme
\[f : A \rightarrow \text{End} \]
du lemme clé (5.3.0.1) est strictement unitaire si et seulement si les compositions
\[m_{i,j}^M(1^\otimes \eta \circ \eta \otimes 1^\otimes 1_M \otimes 1^\otimes 1), \quad i, j \geq 0, \]
sont nulles pour \((i, j) \neq (1, 0)\) et si elle est l’identité si \((i, j) = (1, 0)\).
Remarque 5.3.0.5 Si M est un \mathcal{A}-\mathcal{B}-bipolydule strictement unitaire, le \mathcal{B}-polydules $M(_; A)$, $A \in \mathcal{A}$, est strictement unitaire et l’\mathcal{A}_∞-foncteur

$$\mathcal{A} \to \mathcal{N}_\infty \mathcal{B}$$

du corollaire (5.3.0.2) se factorise par un foncteur

$$\mathcal{A} \to \mathcal{C}_\infty \mathcal{B}.$$

Remarque 5.3.0.6 La bijection $M \mapsto \theta_M$ du corollaire (5.3.0.3) se restreint en une bijection de la classe des \mathcal{A}-\mathcal{B}-bipolydules strictement unitaires sur la classe des \mathcal{A}_∞-foncteurs strictement unitaires $\mathcal{A} \to \mathcal{C}_\infty \mathcal{B}$.
Chapitre 6

Torsion d’A_∞-structures

Dans les chapitres 7 et 8, nous allons construire des A_∞-catégories dont les compositions sont construites par un processus de torsion que nous décrivons dans ce chapitre.

En théorie des déformations des algèbres de Lie différentielles graduées (ou algèbres associatives différentielles graduées), la technique de la torsion est bien connue (pour un panorama, voir par exemple [Hue99]). La version A_∞ (et L_∞) a été introduite dans [FOOO01, Chap. 4] (voir aussi [Fuk01a]). Notre démonstration du fait que les compositions tordues définissent bien une structure A_∞ est différente. La torsion d’une A_∞-algèbre A par une solution à l’équation de Maurer-Cartan généralisée modifie non seulement la différentielle m_1 mais aussi toutes les multiplications supérieures.

Ce chapitre est divisé en deux sections. Nous traitons d’abord le cas simple où la torsion est tensoriellement nilpotente, puis le cas où les A_∞-structures sont topologiques. Nous montrons que si $f : A \to B$ est un A_∞-foncteur qui induit des quasi-isomorphismes dans les espaces de morphismes, sa torsion induit aussi des quasi-isomorphismes dans les espaces de morphismes (6.1.3.4).

6.1 Le cas tensoriellement nilpotent

6.1.1 Éléments tordants

Soit A un ensemble et \mathcal{A} une A_∞-catégorie sur A. Munissons l’élément neutre $e = e_A$ pour le produit tensoriel \otimes_A de la structure de cogèbre donnée par la contrainte d’unitarité de la catégorie monoïdale de base $C(A,A)$ (voir 5.1.1 et 1.1.1)

$$e \sim \to e \otimes e.$$

Considérons e comme une cogèbre différentielle graduée concentrée en degré 0.

Définition 6.1.1.1 Un élément tordant (tensoriellement nilpotent) est un morphisme gradué $x : e \to \mathcal{A}$ de degré $+1$ tel que

1. la composée $s \circ x$ se relève en un morphisme de cogèbres

$$X : e \to BA,$$

2. et ce morphisme X est compatible aux différentielles.
Remarque 6.1.1.2 Notons p_1 la projection $BA \to SA$. La composition avec la projection donne une bijection

$$\text{Hom}_{cog}(e, B A) \xrightarrow{\sim} \text{Hom}_{nil}(e, S A),$$

où $\text{Hom}_{nil}(e, S A)$ est l’ensemble des morphismes gradués $\phi : e \to S A$ de degré 0 tels que, pour tout $A \in A$, il existe un N tel que $\phi^{\otimes n} \Delta^{n-1}(I_A) = 0$ pour $n \geq N$. Nous en déduisons qu’un morphisme gradué $x : e \to A$ de degré $+1$ est un élément tordant si et seulement si

1. il est tensoriellement nilpotent : pour tout objet $A \in A$, l’élément $x(I_A) \in A(A, A)$ de degré 1 est tel que $x(I_A)^{\otimes n}$ est nul pour un certain $n > 0$,

2. il vérifie l’équation de Maurer-Cartan

$$\sum_{i=1}^{\infty} m_i(x(I_A) \otimes \ldots \otimes x(I_A)) = 0, \quad A \in A.$$

(La somme est finie grâce à la propriété de nilpotence tensorielle).

6.1.2 Torsion des A_∞-catégories

Soit A un ensemble et A une A_∞-catégorie sur A. Soit x un élément tensoriellement nilpotent de A. Soit

$$g : T^c S A = e \oplus T^c S A \to S A$$

le morphisme de composantes $[sx, p_1]$, où p_1 est la projection $T^c S A \to S A$. Soit le morphisme de A-A-bimodules

$$\phi_x : T^c S A \to T^c S A = \bigoplus_{i \geq 0} (S A)^{\otimes i}$$

dont la composée avec la projection sur $(S A)^{\otimes i}$ est le morphisme

$$(g^{\otimes i}) \circ \Delta^{(i)} \quad \text{si} \quad i \geq 1, \quad 1_e \quad \text{sinon}.$$

Il est clairement un morphisme de cogèbres co-unitaire et il est bien défini car sa restriction au sous-objet $(S A)^{\otimes 1} \subset C(A, A)$ est égale à la somme (bien définie par la propriété de nilpotence tensorielle)

$$\sum_{i \geq 0} \sum_{l_0 + \ldots + l_i = l} ((sx)^{\otimes l_0} \circ 1_{S A} \circ (sx)^{\otimes l_1} \circ \ldots \circ 1_{S A} \circ (sx)^{\otimes l_i-1} \circ 1_{S A} \circ (sx)^{\otimes l_i}),$$

où $l_0 + \ldots + l_i = l$. Remarquons que la composition

$$\phi_x \circ \varepsilon : e \to T^c S A = e \oplus T^c S A,$$

où ε est la co-augmentation de $T^c S A$, a pour composantes le morphisme 1_e et le relèvement X de $s \circ x$. La matrice de

$$\phi_x : \bigoplus_{j \geq 0} (S A)^{\otimes j} \to \bigoplus_{i \geq 0} (S A)^{\otimes i}$$
est triangulaire inférieure et sa diagonale est celle de l’identité. Le morphisme ϕ_x est donc un automorphisme co-unitaire (non co-augmenté) de la cogèbre graduée co-augmentée $T^c S A$. La différentielle de la construction bar BA nous donne une différentielle

$$b : T^c S A \rightarrow T^c S A$$

qui s’annule sur la co-augmentation. Soit la composée

$$D_x = \phi_x^{-1} \circ b \circ \phi_x : T^c S A \rightarrow T^c S A.$$

Supposons que x vérifie l’équation de Maurer-Cartan. Le relèvement $X : e \rightarrow T^c S A$ de $s \circ x$ est différentiel gradué. La composition

$$b \circ \phi_x \circ \varepsilon = b \circ \left[\begin{array}{c} 1 \\ X \end{array} \right] : e \rightarrow T^c S A = e \oplus T^c S A$$

est donc nulle et on a $D_x \circ \varepsilon = 0$. Posons b_x le morphisme donné par la flèche verticale de droite du diagramme de suites exactes

$$
\begin{array}{c}
0 \\
0
\end{array}
\xymatrix{
& e \\
\ar@{=}[d] & T^c S A \\
\ar[r]^{D_x} & T^c S A \\
& T^c S A \\
\ar@{=}[u] & 0
}\xymatrix{\ar[r] & 0.
\end{array}
$$

Comme D_x est une $(1, 1)$-codérivation de $T^c S A$, le morphisme b_x est une $(1, 1)$-codérivation de $T^c S A$. Comme $D_x^2 = 0$, la codérivation b_x est une différentielle de la cogèbre $T^c S A$. Elle est déterminée (1.1.2.2) par les composantes

$$(b_x)_i : (S A)^{\otimes i} \rightarrow S A$$
de sa composition avec la projection sur $S A$.

Lemme 6.1.2.1 Soit $i \geq 1$. Le morphisme $(b_x)_i$ est la somme

$$\sum_l \sum_i b_{l+i} ((sx)^{\otimes l_0} \circ 1_{S A} \circ (sx)^{\otimes i_1} \circ \ldots \circ 1_{S A} \circ (sx)^{\otimes i_{l-1}} \circ 1_{S A} \circ (sx)^{\otimes i_l}),$$

où $l_0 + \ldots + l_i = l$.

Démonstration : Remarquons que D_x restreint au sous-objet $T^c S A$ de $T^c S A$ est égal à b_x. Nous devons calculer

$$(p_1 \circ D_x)_{(S A)^{\otimes i}} = (p_1 \circ \phi_x^{-1} \circ b \circ \phi_x)_{(S A)^{\otimes i}} \quad i \geq 1.$$

Comme la matrice des coefficients de

$$\phi_x : \bigoplus_{i \geq 0} (S A)^{\otimes i} \rightarrow \bigoplus_{i \geq 0} (S A)^{\otimes i}$$
est triangulaire inférieure et comme sa diagonale est celle de l’identité, la matrice de ϕ_x^{-1} est de la même forme. Ainsi, les morphisme $p_1 \circ \phi_x^{-1} \circ b \circ \phi_x$ et $p_1 \circ b \circ \phi_x$ restreints à $(S A)^{\otimes i}$ sont égaux. Ceci démontre le lemme. □
Définition 6.1.2.2 (K. Fukaya [FOOO01] (voir aussi [Fuk01a])) L’\(\text{A}_\infty\)-catégorie tordue \(\mathcal{A}_x\) sur \(\mathcal{A}\) est le \(\mathcal{A}\)-\(\mathcal{A}\)-bimodule \(\mathcal{A}_x = \mathcal{A}\) dont la construction bar \(BA_x\) est la cogèbre tensorielle réduite différentielle graduée

\[(T^c SA, b_x).\]

Ses compositions

\[m_i^x : \mathcal{A}_x^\otimes i \rightarrow \mathcal{A}_x, \quad i \geq 1,\]

sont donc définies par la somme

\[
\sum_l \sum_s (-1)^s m_{i+1, j, 1}^x (x^\otimes_{l} \circ \underbrace{1_A \circ \ldots \circ 1_A}_{s-1} \circ x^\otimes_l),
\]

où l’exposant du signe est

\[s = \sum_{1 \leq l \leq s} t \times l_b\]

(Cette somme infinie définit bien un morphisme grâce à la propriété de nilpotence tensorielle de \(x\)).

6.1.3 Torsion des \(\text{A}_\infty\)-foncteurs

Soit \(\mathcal{A}\) et \(\mathcal{B}\) deux ensembles, \(\mathcal{A}\) et \(\mathcal{B}\) deux \(\text{A}_\infty\)-catégories sur \(\mathcal{A}\) et \(\mathcal{B}\). Soit

\[(\hat{f}, f) : \mathcal{A} \rightarrow \mathcal{B}\]

un \(\text{A}_\infty\)-foncteur et \(x\) et \(x'\) des éléments tordants de \(\mathcal{A}\) et \(\mathcal{B}\) vérifiant une relation de compatibilité avec \(f\) qui sera précisée plus bas. Cette relation dit approximativement que l’image de \(x\) par \(f\) est \(x'\). Le but de cette section est de construire un \(\text{A}_\infty\)-foncteur tordu

\[\mathcal{A}_x \rightarrow \mathcal{B}_{x'}\]

Munissons le \(\mathcal{A}\)-\(\mathcal{A}\)-bimodule \(\hat{f}_B\) de la structure de \(\text{A}_\infty\)-catégorie sur \(\mathcal{A}\) du lemme 5.1.2.4. Nous notons \(\mathcal{B}'\) cette \(\text{A}_\infty\)-catégorie sur \(\mathcal{A}\). L’élément tordant

\[x' : e_{\mathcal{B}} \rightarrow \mathcal{B}\]

donne un élément tordant de \(\mathcal{B}'\)

\[e_\mathcal{A} \rightarrow \mathcal{B}', \quad 1_\mathcal{A} \mapsto x'(\hat{f}_A).\]

Nous le notons aussi \(x'\). Soit

\[F : B^+\mathcal{A} \rightarrow B^+\mathcal{B}'\]

la construction bar co-augmentée de l’\(\text{A}_\infty\)-morphisme \(f : \mathcal{A} \rightarrow \mathcal{B}'\). Nous allons construire l’\(\text{A}_\infty\)-foncteur tordu de façon à ce que le morphisme

\[G = \phi_{x'}^{-1} \circ F \circ \phi_x : T^c S\mathcal{A} \rightarrow T^c S\mathcal{B}'\]

soit sa construction bar co-augmentée. Remarquons que pour des éléments tordants \(x\) et \(x'\) quelconques, le morphisme \(G\) est bien un morphisme différentiel gradué

\[G : B^+\mathcal{A}_x \rightarrow B^+\mathcal{B}'_{x'}\]

Il n’y a cependant aucune raison pour qu’il soit co-augmenté car \(\phi_x\) et \(\phi_{x'}\) ne le sont pas. Demander qu’il le soit nous donne des relations de compatibilités entre \(x\) et \(x'\) : Supposons que \(G\) est augmenté. Nous avons l’égalité

\[\phi_{x'}^{-1} \circ F \circ \phi_x \circ \varepsilon = \varepsilon,\]
ou en d’autre terme, nous avons
\[F \circ \phi \circ \varepsilon = \phi_x \circ \varepsilon. \]

Comme les compositions \(\phi_x \circ \varepsilon \) et \(\phi_{x'} \circ \varepsilon \) sont égales aux morphismes \(1_e + X : e \rightarrow e \oplus T^cS \mathcal{A} \) et \(1_e + X' : e \rightarrow e \oplus T^cS \mathcal{B}' \)

où \(X \) et \(X' \) sont les relèvements de \(x : e \rightarrow A \) et \(x' : e \rightarrow B' \), la compatibilité entre \(x \) et \(x' \) affirme que la somme (bien définie par la propriété de nilpotence tensorielle de \(x \))

\[\sum_{i \geq 1} f_i(x^{\otimes i}) : e \rightarrow B' \]

est égale à l’élément tordant \(x' \).

Comme le morphisme \(G \) est co-augmenté, il est la co-augmentation d’un morphisme des cogèbres différentiels graduées réduites \(F_x : B A_x \rightarrow B B'_x \).

Lemme 6.1.3.1 Soit \(i \geq 1 \). Le morphisme \((F_x)_i : (S \mathcal{A})^{\otimes i} \rightarrow S \mathcal{B}' \) est la somme

\[\sum_l \sum F_{l+i}((sx)^{\otimes l_0} \circ 1_{S \mathcal{A}} \circ (sx)^{\otimes l_1} \circ \ldots \circ 1_{S \mathcal{A}} \circ (sx)^{\otimes l_{i-1}} \circ 1_{S \mathcal{A}} \circ (sx)^{\otimes l_i}), \]

où \(l_0 + \ldots + l_i = l \).

Démonstration : Similaire à celle du lemme 6.1.2.1.

Remarquons que l’\(\Lambda_\infty \)-catégorie \(B'_x \) est égale à \(f(B_x)'_j \).

Définition 6.1.3.2 L’\(\Lambda_\infty \)-foncteur tordu

\((f', f^x) : \mathcal{A}_x \rightarrow \mathcal{B}'_x \)

est le foncteur dont la construction bar est \(F_x \).

Il est donc défini par des morphismes

\[f^x_i : \mathcal{A}_x^{\otimes i} \rightarrow f(B_x)'_j, \quad i \geq 1, \]

définis par les sommes

\[\sum_l \sum (-1)^s f^x_{l+i}(x^{\otimes t_0} \circ 1_{H} \circ x^{\otimes t_1} \circ \ldots \circ 1_{H} \circ x^{\otimes t_{i-1}} \circ 1_{H} \circ x^{\otimes t_i}), \]

où l’exposant du signe est \(s = \sum_{0 \leq t \leq i} t \times l_t \).

Torsion et équivalences faibles

Lemme 6.1.3.3 Soit \(\mathcal{A} \) une \(\Lambda_\infty \)-catégorie et \(x \) un élément tordant tensoriellement nilpotent. Soit \(\mathcal{A} \) une \(\Lambda_\infty \)-catégorie faiblement équivalente à zéro, i. e. le morphisme dans \(C(\mathcal{A}, \mathcal{A}) \)

\[\mathcal{A} \rightarrow 0 \]
est un \(\Lambda_\infty \)-quasi-isomorphisme. La catégorie tordue \(\mathcal{A}_x \) est faiblement équivalente à zéro.
Démonstration : La catégorie ambiante du raisonnement ci-dessous est $\mathcal{C}(\mathcal{A}, \mathcal{A})$. Nous rappelons (5.1.2.7) qu’un A_∞-morphisme f entre deux A_∞-algèbres de $\mathcal{C}(\mathcal{A}, \mathcal{A})$ est un A_∞-foncteur dont l’application sous-jacente \tilde{f} est l’identité de \mathcal{A}. Soit K le complexe contractile (A, m_1). Considérons le comme une A_∞-algèbre (1.2.1.4). Le lemme (1.3.3.2) montre qu’il existe un A_∞-(iso)morphisme $f : A \rightarrow K$ tel que $f_1 = 1_K$. Munissons l’A_∞-algèbre K de l’élément tordant $x' = \sum_{i \geq 1} f_i(x^{\otimes i})$.

Le diagramme commutatif

\[
\begin{array}{ccc}
B^+A & \xrightarrow{F} & B^+K \\
\phi_x \downarrow & & \downarrow \phi_{x'} \\
B^+A_x & \xrightarrow{G} & B^+K_x
\end{array}
\]

montre que G est un isomorphisme. En particulier, A_x est A_∞-quasi-isomorphe à $K_{x'}$. Il suffit donc de montrer que $K_{x'}$ est faiblement équivalent à zéro. Par construction, les multiplications $m_i^{K_{x'}}$, $i \geq 2$, sont nulles. Nous en déduisons que

\[m_1^{K_{x'}} = m_1^K \text{ et } m_i^{K_{x'}} = 0 \quad i \geq 2.\]

Ainsi, l’A_∞-catégorie tordue $K_{x'}$ est égale à K et elle est faiblement équivalente à zéro. □.

Proposition 6.1.3.4 Soit A et B des A_∞-catégories sur \mathcal{A} et \mathcal{B}. Soit

\[(\tilde{f}, f) : A \rightarrow B\]

un A_∞-foncteur qui induit un quasi-isomorphisme dans les espaces de morphismes, i.e. les morphismes

\[f_1 : A(A, A') \rightarrow B(\tilde{f}A, \tilde{f}A'), \quad A, A' \in \mathcal{A},\]

sont des quasi-isomorphismes. Soit x et x' des éléments tordant nilpotents de A et B compatibles à f. L’A_∞-foncteur tordu

\[(\tilde{f}, f^x) : A_x \rightarrow B_{x'}\]

induit un quasi-isomorphisme dans les espaces de morphismes.

Démonstration : Notons B' l’A_∞-catégorie $\mathcal{P}B_{\tilde{f}}$ sur \mathcal{A} (voir 5.1.2.4). L’A_∞-foncteur f induit un quasi-isomorphisme dans les espaces de morphismes si et seulement si l’A_∞-morphisme dans la catégorie des A_∞-algèbres dans $\mathcal{C}(\mathcal{A}, \mathcal{A})$

\[f' : A \rightarrow B'\]

induit par f est une équivalence faible. Supposons donc que f est un A_∞-quasi-isomorphisme dans $\mathcal{C}(\mathcal{A}, \mathcal{A})$. La démonstration de l’axiome de factorisation (CM5) a. de la catégorie \mathcal{A}_{∞} (1.3.3.1) nous donne une factorisation de f en

\[A \xrightarrow{i} A \prod C \rightarrow B,\]
où $\mathcal{A} \prod C$ est le produit dans Alg_{∞} de \mathcal{A} du cône C de l’identité du complexe (\mathcal{B}, m_1) (considéré comme Λ_{∞}-algèbre), et i a pour composantes $1\mathcal{A}$ et 0. Il suffit de montrer le résultat dans le cas où f est égal à i et dans le cas où il est une fibration triviale. Commençons par la cofibration triviale i. Munissons $\mathcal{A} \prod C$ de l’élément tordant

$$x'' = \sum_{j \geq 1} i_j (x^{\otimes j}).$$

Nous avons les égalités

$$(\mathcal{A} \prod C)_{x''} = \mathcal{A}_x \prod C \text{ et } i^x = \left[\begin{array}{c} 1 \mathcal{A}_x \\ 0 \end{array} \right] : \mathcal{A}_x \to \mathcal{A}_x \prod C.$$

Il en résulte que i^x est une équivalence faible. Supposons maintenant que f est une fibration triviale. Un scindage de f_1 dans la catégorie des complexes nous donne un isomorphisme de complexes

$$j : \mathcal{A} \to \mathcal{B} \oplus K,$$

où K est un complexe contractile. Soit $\mathcal{B} \prod K$ le produit dans Alg_{∞} de l’Λ_{∞}-algèbre \mathcal{B} et du complexe K considéré comme Λ_{∞}-algèbre. La projection canonique $p : \mathcal{B} \prod K \to \mathcal{B}$ est une fibration triviale. La remarque (1.3.3.4) appliquée à l’axiome de relèvement (CM4) a nous donne un Λ_{∞}-isomorphisme

$$\tilde{f} : \mathcal{A} \to \mathcal{B} \prod K$$

tel que $\tilde{f}_1 = j$ et $p \circ \tilde{f} = f$. Munissons $\mathcal{B} \prod K$ de l’élément tordant

$$x'' = \sum_{j \geq 1} \tilde{f}_j (x^{\otimes j}).$$

Nous avons l’égalité

$$(\mathcal{B} \prod K)_{x''} = \mathcal{B}_x' \prod K$$

et l’Λ_{∞}-morphisme tordu $p^{x''}$ s’identifie à la projection canonique

$$\mathcal{B}_x' \prod K \to \mathcal{B}_x'.$$

Comme K est contractile, $p^{x''}$ est une équivalence faible. L’égalité $f^x = p^{x''} \circ \tilde{f}^x$ montre que f^x est une équivalence faible.

6.1.4 Torsion des \mathcal{A}-\mathcal{B}-bipolydules

Les détails sont omis car ils sont similaires aux deux dernières sections.

Soit \mathcal{A} et \mathcal{B} deux ensembles, \mathcal{A} et \mathcal{B} deux Λ_{∞}-catégories sur \mathcal{A} et \mathcal{B} et M un \mathcal{A}-\mathcal{B}-bipolydule. Soit x et x' des éléments tordants de \mathcal{A} et \mathcal{B}.

Définition 6.1.4.1 Le \mathcal{A}_x-$\mathcal{B}_{x'}$-bipolydule $\pi M_{x'}$ a pour multiplications les morphismes

$$m_{i,j}^{x,x'} : \mathcal{A}_x^{\otimes i} \otimes \pi M_{x'} \circ \mathcal{B}_{x'} \to \pi M_{x'}, \quad i,j \geq 0,$$
définis par les sommes

\[\sum_{l,k \geq 0} (-1)^s m_{i+l,j+k} (x^{\otimes l} \circ 1_A \cdots 1_A \circ x^{\otimes i} \circ 1_M \circ x^{\otimes k} \circ 1_B \cdots 1_B \circ x^{\otimes j}), \]

où l’exposant du signe est

\[s = \left(\sum_{1 \leq t \leq i} t \times l_t \right) + \left(\sum_{1 \leq t \leq j} (j + t) \times l_t \right) \]

(Les sommes infinies définissent bien des morphismes grâce à la propriété de nilpotence tensorielle de \(x\) et \(x'\)).

Remarque 6.1.4.2 La différentielle \(b_{x,x'}\) de la construction bar du \(A_x-B_x'-\)bipolydule \(xM_{x'}\) est la composée

\[(\phi_x^{-1} \circ 1 \circ \phi_{x'}^{-1}) \circ b \circ (\phi_x \circ 1 \circ \phi_{x'}) \]

où

\[b : T^c SA \circ SM \circ T^c SB \to T^c SA \circ SM \circ T^c SB \]

est la différentielle de la construction bar du \(A-B\)-bipolydule \(M\).

Remarque 6.1.4.3 Soit \(f : A \to B\) un \(A_\infty\)-foncteur. Supposons que les éléments tordants \(x\) et \(x'\) sont compatibles à \(f\) (voir 6.1.3). Soit

\[y : B \to C_\infty B \]

l’\(A_\infty\)-foncteur de Yoneda qui sera défini en 7.1.0.1. Par le corollaire 5.3.0.3, les deux compositions de \(A_\infty\)-foncteurs

\[A \xrightarrow{f} B \xrightarrow{y} C_\infty \quad et \quad A_x \xrightarrow{f_x} B_{x'} \xrightarrow{y} C_\infty B_{x'} \]

sont données par un \(A-B\)-bipolydule \(M\) et un \(A_x-B_{x'}\)-bipolydule \(N\). Nous vérifions qu’on a

\[xM_{x'} = N. \]

6.2 Le cas topologique

Soit \(A\) un ensemble et \(A\) une \(A_\infty\)-catégorie sur \(A\). Nous traitons ici de la torsion de \(A\) par un morphisme \(x : e \to A\) qui n’est pas tensoriellement nilpotent. La somme de gauche dans l’équation de Maurer-Cartan (voir 6.1.1.2)

\[\sum_{i \geq 1} m_i (x^{\otimes i}) = 0 \]

appliquée à \(1_A\) n’est plus finie mais l’égalité a encore un sens : si \(A\) est munie d’une topologie, nous interprétons l’équation ci-dessus comme la convergence de la série vers 0. Nous montrons à l’aide d’un artifice algébrique que les formules donnant les structures tordues dans le cas où \(x\) est un élément tordant tensoriellement nilpotent donnent aussi des structures tordues dans le cas où \(A\) est topologique et \(x\) vérifie l’équation de Maurer-Cartan.
6.2.1 Définitions

La terminologie des objets topologiques

Soit \((M, \otimes, e)\) une \(K\)-catégorie abélienne monoïdale. Une topologie sur un objet \(V \in M\) est une filtration décroissante

\[V_0 \supset V_1 \supset V_2 \supset \cdots \supset V_i \supset \cdots \]

(voir [Bou61, Chap. III §2 n°5]). La topologie est séparée si \(\cap_{i \in \mathbb{N}} V_i = 0\). On dira alors que les sous-objets \(V_i, i \geq 1\), sont un système de voisinsages de 0. Un objet topologique de \(M\) est un objet \(M\) muni d’une topologie. Sa complétion est la limite

\[\hat{V} = \lim_{i \geq 0} V / V_i. \]

Un objet \(V\) est complet si \(V = \hat{V}\). Soit \(V\) et \(V'\) deux objets topologiques. Un morphisme \(f : V \rightarrow V'\) est un morphisme continu. Il est contractant s’il vérifie

\[f(V_i) \subset V'_i, \quad i \geq 1. \]

L’élément neutre \(e\) pour le produit tensoriel est muni de la topologie discrète. Le produit tensoriel \(V \otimes V'\) est topologique pour le système de voisinsages

\[(V \otimes V')_i = \sum_{i_1 + i_2 \geq i} V_{i_1} \otimes V_{i_2}, \quad i \geq 0. \]

La catégorie des objets topologiques de \(M\), munie du produit tensoriel topologique et de l’objet neutre \(e\) est une catégorie monoïdale. Le produit tensoriel complet \(\hat{V} \hat{\otimes} V'\) est la limite

\[\hat{V} \hat{\otimes} V' = \lim_{i \geq 0} (V \otimes V')_i. \]

La catégorie des objets complets de \(M\), munie du produit tensoriel complet et de l’objet neutre \(e\) est une catégorie monoïdale.

\(A_{\infty}\)-structures topologiques

Soit \(C\) une catégorie de base (voir 1.1.1).

Définition 6.2.1.1 Une \(A_{\infty}\)-algèbre \(A\) dans \(C\) est topologique si \(A\) est muni d’une topologie séparée et si les multiplications \(m_i : A^{\otimes i} \rightarrow A, i \geq 1\), sont des morphismes continus contractants. Soit \(A\) et \(A'\) des \(A_{\infty}\)-algèbres topologiques. Un \(A_{\infty}\)-morphisme topologique \(f : A \rightarrow A'\) est un \(A_{\infty}\)-morphisme tel que les morphismes \(f_i, i \geq 1\), sont des morphismes continus contractants. Nous définissons de manière similaire les homotopies entre \(A_{\infty}\)-morphismes.

Soit \(C'\) une catégorie de Grothendieck munie d’une action à droite de la catégorie monoïdale \(C\). Cette action s’étend aux catégories des objets topologiques de \(C'\) et \(C\).

Définition 6.2.1.2 Un \(A\)-polydule topologique dans \(C'\) est un objet topologique séparé \(M\) dans \(C'\) muni d’une structure de \(A\)-polydule dont les multiplications \(m_i^M, i \geq 1\), sont des morphismes continus contractants. On définit de manière similaire les \(A_{\infty}\)-morphismes et les homotopies entre \(A_{\infty}\)-morphismes.
6.2.2 Éléments tordants

Définition 6.2.2.1 Soit A une A_{∞}-algèbre topologique. Un morphisme gradué $x : e \to A$ de degré $+1$ est un élément tordant (topologique) si son image est dans le voisinage A_1 et si la somme

$$\sum_{i \geq 1} m_i(x^{\otimes i})$$

converge vers 0.

Remarque 6.2.2.2 Cette somme converge vers une limite bien définie car la topologie de A est séparée, l’image de x est dans A_1 et les multiplications m_i, $i \geq 1$, sont contractantes.

6.2.3 Algèbres locales

Soit R la catégorie des K-algèbres commutatives locales R de corps résiduel K et dont l’idéal maximal m est nilpotent. Soit R un objet de R. Nous notons \mathcal{E} la catégorie des modules sur R. Soit \mathcal{O}, \mathcal{O}' et \mathcal{O}'' trois ensembles. Nous notons $C^R(\mathcal{O}, \mathcal{O}')$ la catégorie des foncteurs $\mathcal{O}'^{op} \times \mathcal{O} \to \mathcal{E}$

et $C^R(\mathcal{O}'')$ la catégorie $C^R(\{\ast\}, \mathcal{O}')$. Si M et N sont des objets de $C^R(\mathcal{O}, \mathcal{O}')$ et $C^R(\mathcal{O}', \mathcal{O}'')$, nous notons \otimes_R le produit tensoriel

$$(M \otimes_R N)(o'', o) = \bigoplus_{o' \in \mathcal{O}'} M(o', o) \otimes_R N(o'', o').$$

Définition 6.2.3.1 Soit A un ensemble. Une R-A_{∞}-catégorie est un objet M de $C^R(A, A)$, muni de morphismes

$$m_i : M^{\otimes n} \to M, \quad i \geq 1,$$

vérifiant l’équation (\ast_n), $n \geq 1$, de la définition 1.2.1.1 Les R-A_{∞}-foncteurs sont définis comme en 5.1.2.5.

Soit M et M' des objets de $C(A, A)$ et i un entier ≥ 1. Soit

$$\varphi : M^{\otimes i} \to M'$$

un morphisme gradué. Soit $\varphi^R : (M \otimes_K m)^{\otimes n} \to M' \otimes_K m$

le morphisme de $C^R(A, A)$ défini par la composition

$$\varphi \otimes \mu^{(i)} : (M \otimes_K m)^{\otimes n} \simeq (M^{\otimes n}) \otimes_K (m)^{\otimes n} \to M' \otimes_K m.$$

Remarquons que, comme m est nilpotent, il existe un entier N_0 tel que $m^{N_0} = 0$. Donc le morphisme φ^R est nul dès que $i \geq N_0$.

Remarque 6.2.3.2 Soit A un objet de $C(A, A)$ et

$$m_i : A^{\otimes i} \to A, \quad i \geq 1,$$
des morphismes gradués de degré $2 - i$. Nous vérifions que les morphismes m_i, $i \geq 1$, définissent une structure de A_∞-catégorie sur A si et seulement si, pour tout $R \in \mathcal{R}$, les morphismes m_i^R, $i \geq 1$, définissent une structure de R-A_∞-catégorie sur $A \otimes_K m$.

Soit A une A_∞-catégorie et R un objet de \mathcal{R}. Nous notons A^R la R-A_∞-catégorie $A \otimes_K m$ sur A associée à A.

Soit A et B deux ensembles et A et B deux A_∞-catégories sur A et B. Nous vérifions que des morphismes gradués f_i, $i \geq 1$, de degré $1 - i$, définissent un A_∞-foncteur

$$f : A \rightarrow B$$

si et seulement si, pour tout $R \in \mathcal{R}$, les morphismes f_i^R, $i \geq 1$, définissent un R-A_∞-foncteur

$$f^R : A^R \rightarrow B^R.$$

Notons que les morphismes m_i^R et f_i^R sont nuls dès que i excède le degré de nilpotence de l'idéal maximal de R.

Construction bar B^R

Soit R un objet de \mathcal{R}. Le lemme 1.1.2.2 reste valable dans la catégorie $C^R(A, A)$. En particulier la construction bar définit un foncteur pleinement fidèle

$$B^R : \text{Alg}_\infty^R \rightarrow \text{Cogc}^R,$$

où Alg_∞^R et Cogc^R sont les catégories Alg_∞ et Cogc dans $C^R(A, A)$.

Rappel sur la complétion

Soit R un objet de \mathcal{R}. Soit V et W des A-A-R-bimodules. Nous munissons la R-co-gébure tensorielle réduite

$$T^cV = \bigoplus_{i \geq 1} V^{\otimes_R i}$$

de la topologie canonique dont la base de voisinages de 0 est

$$\bigoplus_{i \geq n} V^{\otimes_R i}, \quad n \geq 1.$$

La comultiplication est un morphisme continu pour cette topologie. Rappelons que T^cV désigne la co-gébure co-augmentée $(T^cV)^{\ast}$. Nous la munissons des voisinages définis de la même manière.

Remarque 6.2.3.3 Un morphisme de $C^R(A, A)$

$$T^cV \rightarrow T^cW \quad \left(\text{resp.} T^cV \rightarrow T^cW\right)$$
est continu si et seulement si sa matrice des composantes

$$\bigoplus_{j \geq 0} V^{n_j \otimes_R j} \rightarrow \bigoplus_{i \geq 0} W^{n_i \otimes_R i} \quad \left(\text{resp.} \bigoplus_{j \geq 1} V^{n_j \otimes_R j} \rightarrow \bigoplus_{i \geq 1} W^{n_i \otimes_R i}\right)$$
a un nombre fini de coefficients non nuls sur chaque ligne. En particulier, un morphisme de cogèbres f (resp. une (f', f'')-codérivation h, où f' et f'' sont des morphismes de cogèbres)

$$\mathcal{T}^c V \to \mathcal{T}^c W$$

est continu si et seulement si les morphismes $f_i, i \geq 0$, (resp. les morphismes f'_i, f''_i et $h_i, i \geq 0$) sont presque tous nuls.

La R-cogèbre tensorielle complète réduite $\widehat{\mathcal{T}}^c V$ est la complétion de $\mathcal{T}^c V$. Elle a pour espace topologique sous-jacent

$$\prod_{i \geq 1} V^{\otimes n_i}.$$

Chaque morphisme continu $\varphi : \mathcal{T}^c V \to \mathcal{T}^c W$ de $C^R(\mathbb{A}, \mathbb{A})$ donne un morphisme

$$\hat{f} : \hat{\mathcal{T}}^c V \to \hat{\mathcal{T}}^c W.$$

La cogèbre tensorielle complète co-augmentée $\widehat{\mathcal{T}}^c + V$ est la co-augmentation de $\widehat{\mathcal{T}}^c V$.

Lemme 6.2.3.4 Soit V un objet de $Gr C^R(\mathbb{A}, \mathbb{A})$ et C une cogèbre graduée topologique topologique dans $C^R(\mathbb{A}, \mathbb{A})$. Soit f' et f'' deux morphismes continus de cogèbres

$$C \to \widehat{\mathcal{T}}^c + V.$$

Un morphisme continu co-unitaire de cogèbres complètes (resp. une (f', f'')-codérivation) $C \to \widehat{\mathcal{T}}^c + V$ est déterminé par sa composition avec la projection $\widehat{\mathcal{T}}^c + V \to V$.

6.2.4 Torsion des A_∞-catégories

Torsion de la différentielle de BA^R

Soit \mathbb{A} un ensemble. Soit A une A_∞-catégorie topologique sur \mathbb{A}, i.e. une A_∞-algèbre topologique dans $C(\mathbb{A}, \mathbb{A})$. Soit $x : e \to A$ un élément tordant (topologique) de A.

Soit R un objet de \mathcal{R}. Notons N_0 l’indice de nilpotence de son idéal maximal m. Soit A^R la R-A_∞-catégorie sur \mathbb{A} associée à A. Soit $\mathcal{T}^c S A^R$ la R-cogèbre tensorielle réduite et $\widehat{\mathcal{T}}^c + S A^R$ la R-cogèbre co-augmentée associée à sa complétion. La différentielle de la construction bar B^R_A

$$b^R : \mathcal{T}^c S A^R \to \mathcal{T}^c S A^R$$

est continue car les morphismes m^R_i sont nuls pour $i \geq N_0$. Notons \hat{b}^R la différentielle de $\widehat{\mathcal{T}}^c + S A^R$ induite par b^R. Soit

$$x^R : e^R \to A^R$$

le morphisme induit par x et

$$g : e \oplus \widehat{\mathcal{T}}^c S A^R = \widehat{\mathcal{T}}^c + S A^R \to S A^R.$$

le morphisme de composantes le morphisme x^R et la projection p_1 sur $S A^R$. Soit le morphisme de \mathbb{A}-\mathbb{A}-R-bimodules

$$\phi^R_x : \widehat{\mathcal{T}}^c + A^R \to \widehat{\mathcal{T}}^c + A^R$$
6.2 : Le cas topologique

dont la composition avec la projection sur \((SA^R)^{\otimes n}\) vaut
\[g^{\otimes n} \circ \Delta^{(n)} : \hat{T}^c + SA^R \to (SA^R)^{\otimes n} \]

si \(n \geq 1\) et \(1_x\) sinon. Comme le morphisme \(\phi_x\) de la section 6.1.2, le morphisme \(\phi_x^R\) est un automorphisme continu co-unitaire (non co-augmenté) de cogèbres graduées et la matrice de ses coefficients
\[\prod_{j \geq 0} (SA^R)^{\otimes n_j} \to \prod_{i \geq 0} (SA^R)^{\otimes n_i} \]
est triangulaire inférieure ; sa diagonale est celle de l'identité. Soit la composée
\[D_x^R = (\phi_x^R)^{-1} \circ b^R \circ \phi_x^R. \]

Comme \(x\) est un élément tordant, nous avons
\[\sum_{1 \leq i \leq N_0} b_i^R ((x^R)^{\otimes n_i}) = 0. \]

Notons que le défaut de nilpotence tensorielle est pallié par l'annulation des morphismes \(b_i^R\) pour \(i \geq N_0\). Comme dans la section 6.1.2, la composée \(D_x^R \circ \varepsilon\) est nulle. Soit \(b_x^R\) le morphisme donné par la flèche verticale de droite du diagramme de suites exactes
\[
\begin{array}{cccccc}
0 & \to & e & \to & \hat{T}^c + SA^R & \to & \hat{T}^c SA^R & \to & 0 \\
& & 0 \downarrow D_x^R \downarrow b_x^R & & \downarrow \varepsilon & & \downarrow \varepsilon & & 0.
\end{array}
\]

C'est une différentielle de la cogèbre \(\hat{T}^c SA^R\).

Lemme 6.2.4.1 La sous-cogèbre \(T^c SA^R\) de \(\hat{T}^c SA^R\) est stable par la différentielle \(b_x^R\). La composée \(p_x^R \circ b_x^R\) restreinte à \((SA^R)^{\otimes i}\) est égale à la somme
\[\sum_l \sum_{l_0 + \ldots + l_i = l} b_{1+l}^R ((sx)^{\otimes l_0} \circ 1_{SA^R} \circ (sx)^{\otimes l_1} \circ \ldots \circ 1_{SA^R} \circ (sx)^{\otimes l_{i-1}} \circ 1_{SA^R} \circ (sx)^{\otimes l_i}), \]
où \(l_0 + \ldots + l_i = l\).

Démonstration : Identique à celle du lemme 6.1.2.1 □

A_∞-catégorie tordue par \(x\)

Soit \(A\) un ensemble, \(A\) une \(A_\infty\)-catégorie topologique sur \(A\) et \(x : e \to A\) un élément tordant. Soit les morphismes
\[m_i^x : A^{\otimes i} \to A, \quad i \geq 1, \]
définis par la somme
\[\sum_l \sum_s (-1)^s m_{l+1}^A ((x^{\otimes l_0} \circ 1_{A} \circ x^{\otimes l_1} \circ \ldots \circ 1_{A} \circ x^{\otimes l_{i-1}} \circ 1_{A} \circ x^{\otimes l_i}), \]
où l'exposant du signe est \(s = \sum_{1 \leq j \leq l} t \times l_i\). Remarquons que ces sommes convergent vers des limites bien définies car \(A\) est topologiquement séparé, l'image de \(x\) est dans le voisinage \(A_1\) et les compositions \(m_i, i \geq 1\), sont des morphismes continus contractants.
Lemme 6.2.4.2 Les morphismes m^x_i, $i \geq 1$, définissent une structure d’A_∞-catégorie sur le A-A-bimodule sous-jacent à A.

Démonstration : Le lemme sera valide si, pour tout objet $R \in \mathcal{R}$, les morphismes $(m^x_i)^R$, $i \geq 1$, définissent une structure de R-A_∞-catégories sur le R-A-A-bimodule sous-jacent à A^R.

Soit R un objet de \mathcal{R}. Nous vérifions que le morphisme b^x_R du lemme 6.2.4.1 est la coévaluation $T^c(SA^R) \to T^c(SA^R)$ construite à partir des $(m^x_i)^R$, $i \geq 1$. Comme elle est une différentielle nous avons le résultat. □

Définition 6.2.4.3 L’A_∞-catégorie (topologique) tordue A_x est le A-A-bimodule $A_x = A$ munie des compositions

$$m^x_i : A_x^\otimes 1 \to A_x, \quad i \geq 1,$$

définies ci-dessus.

6.2.5 Torsion des A_∞-foncteurs

Soit A et B deux ensembles, A et B deux A_∞-catégories topologiques sur A et B et x et x' des éléments tordants de A et B tel que pour tout $A \in \mathcal{A}$,

$$\sum_{i \geq 1} f_i(x^{(i)}(I_A)) = I_{fA}.$$

Remarquons que la somme de gauche converge vers une limite bien définie car B' est topologiquement séparé, l’image de x est dans le voisinage A_1 et car les morphismes f_i, $i \geq 1$, sont contractants. L’égalité ci-dessus exprime la compatibilité de x et x' à f (voir 6.1.3). Reprenons les notations B', B'_x' de la section 6.1.3. Soit les morphismes

$$f^x_i : A^{\otimes i} \to B', \quad i \geq 1,$$

définis par la somme (convergente)

$$\sum_l \sum_{i \geq 1} (-1)^s f^A_{i+1}(x^{(i)} \otimes 1_A \otimes x^{(1)} \otimes \ldots \otimes 1_A \otimes x^{(i-1)} \otimes 1_A \otimes x^{(i)}),$$

où l’exposant du signe est $s = \sum 1 \leq t \leq i t \times l_t$.

Lemme 6.2.5.1 Les morphismes f^x_i, $i \geq 1$, définissent un A_∞-foncteur

$$(f, f_x) : A_x' \to B'_x.$$

Démonstration : Nous allons montrer que, pour tout objet $R \in \mathcal{R}$, les morphismes f^R_i, $i \geq 1$, définissent un A_∞-foncteur

$$f^R_x : A^R_x \to B^R_x,$$

ou, de façon équivalente, un morphisme différentiel gradué de cogèbres

$$F^R_x : B^R A^R_x \to B^R B^R_x.$$
Soit $R \in \mathcal{R}$. Grâce à la compatibilité de x et x' à f, le morphisme différentiel gradué de cogèbres complètes co-unitaires

$$G^R = (\phi^R_x)^{-1} \circ \hat{F}^+ \circ \phi^R_x : \hat{T}^e S \mathcal{A}^R_x \to \hat{T}^e S \mathcal{B}^R_{x'}$$

est co-augmenté. Il induit donc un morphisme différentiel gradué

$$F_x : (\hat{T}^e S \mathcal{A}^R_x, \hat{b}^R_x) \to (\hat{T}^e S \mathcal{B}^R_{x'}, \hat{b}^R_{x'}).$$

Soit $i \geq 1$. Nous montrons de manière similaire à la démonstration du lemme 6.2.4.1 que la restriction de F_x au sous-objet $(S \mathcal{A}^R_x)^{\otimes i}$ est égale à la somme

$$\sum_i \sum_{l,k} F^R_{i+m}(sx)^{\otimes l_0} \circ A_1 \circ (sx)^{\otimes l_1} \circ \ldots \circ A_{i-1} \circ (sx)^{\otimes l_{i-1}} \circ A_i \circ (sx)^{\otimes l_i},$$

où $l_0 + \ldots + l_i = l$. Cette somme est finie car les morphismes F^R_i sont nuls si i excède le degré de nilpotence de l'idéal maximal de R. Nous obtenons ainsi un morphisme de cogèbres

$$F^R_x : (\hat{T}^e S \mathcal{A}^R_x, \hat{b}^R_x) \to (\hat{T}^e S \mathcal{B}^R_{x'}, \hat{b}^R_{x'})$$

qui est différentiel gradué. Nous avons donc le résultat.

DÉFINITION 6.2.5.2 L'\(A_\infty\)-foncteur tordu

$$(\hat{f}, f^x) : \mathcal{A}_x \to \mathcal{B}_{x'}$$

est donné par les morphismes $f^x_i, \ i \geq 1$, définis ci-dessus.

La proposition (6.1.3.4) reste clairement valide dans le cas topologique.

6.2.6 Torsion des \(A-B\)-bipolydulues

Les détails sont omis car ils sont similaires aux deux dernières sections.

Soit A et B deux ensembles, \mathcal{A} et \mathcal{B} deux A_∞-catégories topologiques sur A et B et M un $\mathcal{A-B}$-bipolydulues topologique. Soit x et x' des éléments tordants de \mathcal{A} et \mathcal{B}.

DÉFINITION 6.2.6.1 Le $\mathcal{A}_x-B_{x'}$-bipolydulues $x M_{x'}$ a pour multiplications

$$m^{x,x'}_{i,j} : A^{\otimes i} \circ x M_{x'} \circ B_{x'} \to x M_{x'}, \ i, j \geq 0,$$

définies par la somme (convergente)

$$\sum_{l,k \geq 0} (-1)^s m_{i+l,j+k} (x^{\otimes l} \circ 1_A \ldots 1_A \circ x^{\otimes l} \circ 1_M \circ x^{\otimes k} \circ 1_B \ldots 1_B \circ x^{\otimes k}),$$

où l'exposant du signe est

$$s = \left(\sum_{1 \leq t \leq i} t \times l_t \right) + \left(\sum_{1 \leq t \leq j} (j + t) \times l_t \right).$$
Chapitre 7

L’A_{∞}-foncteur de Yoneda et les objets tordus

Introduction

Soit A un ensemble et \mathcal{A} une A_{∞}-catégorie strictement unitaire sur A. Notons $Gr(H^*A)$ la catégorie des H^*A-modules gradués dont les morphismes sont les morphismes gradués. Dans cette section, nous relevons le foncteur de Yoneda

$$H^*A \to Gr(H^*A), \quad A \mapsto (H^*A)(-, A),$$

en un A_{∞}-foncteur

$$y : A \to C_{\infty}\mathcal{A}, \quad A \mapsto A(-, A).$$

Nous montrons ensuite le résultat principal de ce chapitre (7.1.0.4) : l’A_{∞}-foncteur y se factorise en

$$A \xrightarrow{y'} tw\mathcal{A} \xrightarrow{y''} C_{\infty}\mathcal{A}$$

où $tw\mathcal{A}$ est l’A_{∞}-catégorie des objets tordus, y' est un A_{∞}-foncteur strict et pleinement fidèle et y'' induit une équivalence

$$H^0tw\mathcal{A} \xrightarrow{\sim} tria\mathcal{A} \subset D_{\infty}\mathcal{A}.$$

La construction des objets tordus dans le cas où \mathcal{A} est différentielle graduée est due à A. I. Bondal et M. M. Kapranov [BK91], sa généralisation aux A_{∞}-catégories à M. Kontsevich [Kon95]. Récemment, K. Fukaya a construit indépendamment l’A_{∞}-foncteur de Yoneda [Fuk01b].

Plan du chapitre

Dans la section 7.1, nous définissons l’A_{∞}-foncteur de Yoneda et nous énonçons le théorème principal (7.1.0.4). Le reste du chapitre (sauf la section 7.5) est dédié à la démonstration de ce théorème. Dans la section 7.2, nous construisons l’A_{∞}-catégorie $tw\mathcal{A}$ des objets tordus. Les compositions de l’A_{∞}-catégorie $tw\mathcal{A}$ sont obtenues par torsion (voir chapitre 6). Nous montrons ensuite que l’A_{∞}-catégorie $tw\mathcal{A}$ jouit d’une propriété universelle. Nous en déduisons l’existence de la factorisation $y''\circ y'$ de y. Dans la section 7.3, nous construisons explicitement l’A_{∞}-foncteur y''. Dans la section 7.4, nous montrons que l’A_{∞}-foncteur de Yoneda y induit des quasi-isomorphismes entre les
espaces de morphismes et nous en déduisons l’équivalence

\[H^0 \text{tw} \mathcal{A} \simeq \text{tria} \mathcal{A} \subset \mathcal{D}_\infty \mathcal{A}. \]

Dans la section 7.5, nous montrons que toute \(A_\infty \)-catégorie homologiquement unitaire \(\mathcal{A} \) admet un \textit{modèle différentiel gradué strictement unitaire}, c'est-à-dire un \(A_\infty \)-quasi-isomorphisme homologiquement unitaire \(f : \mathcal{A} \to \mathcal{A}' \) vers une catégorie différentielle graduée strictement unitaire.

Dans la section 7.6, nous montrons que toute catégorie triangulée algébrique qui est engendrée par un ensemble d'objets est \(A_\infty \)-pré-triangulée, i. e. elle est équivalente à \(H^0 \text{tw} \mathcal{A} \), pour une certaine \(A_\infty \)-catégorie \(\mathcal{A} \).

7.1 Le plongement de Yoneda

Comme \(\mathcal{A} \) est une \(A_\infty \)-catégorie, le \(\mathcal{A} \)-\(\mathcal{A} \)-bimodule \(\mathcal{A} \), muni des morphismes \(m_{i,j} = m_{i+1,j}^A \); \(i, j \geq 0 \), est un \(\mathcal{A} \)-\(\mathcal{A} \)-bipolydule. Par la remarque 5.3.0.5, nous avons un \(A_\infty \)-foncteur

\[y : \mathcal{A} \to \mathcal{C}_\infty \mathcal{A}, \]

dont l'application sous-jacente

\[\dot{y} : \mathcal{A} \to \mathcal{C}_\infty \mathcal{A} \]

envoie un objet \(A \in \mathcal{A} \) sur le \(\mathcal{A} \)-polydule

\[A^\land = \mathcal{A}(_ , A). \]

Pour tout \(i \geq 1 \), le morphisme gradué

\[y_i : \mathcal{A}^{\otimes i} \to \mathcal{C}_\infty \mathcal{A}_j \]

envoie un élément \(x \in (\mathcal{A}^{\otimes i})(A, A') \) sur la suite de morphismes de \(\mathcal{A} \)-modules gradués

\[A(_ , A') \circ A^{\otimes j-1} \to A(_ , A'), \]

\[x' \otimes x'' \mapsto (-1)^{|x|+1}m_{i+1,j}(x' \otimes x''), \quad j \geq 1. \]

Définition 7.1.0.1 L’\(A_\infty \)-foncteur de Yoneda est l’\(A_\infty \)-foncteur \(y : \mathcal{A} \to \mathcal{C}_\infty \mathcal{A} \).

Définition 7.1.0.2 Un \(A_\infty \)-foncteur strict \(f \) est \textit{pleinement fidèle} si

\[f : \mathcal{A} \to \mathcal{B}, \]

est un isomorphisme de complexes.

Définition 7.1.0.3 Soit \(T \) une catégorie triangulée et \(T' \) un sous-ensemble de l’ensemble \(T \) des objets de \(T \). Notons \(\text{tria} T' \) la \textit{plus petite sous-catégorie triangulée} de \(T \) qui contient les objets de \(T' \). Elle est stable par sommes finies. Soit \(\mathcal{A} \) une \(A_\infty \)-catégorie strictement unitaire et \(\mathcal{D}_\infty \mathcal{A} \) sa catégorie dérivée (voir 4.1.2). Notons \(\text{tria} \mathcal{A} \) la plus petite sous-catégorie triangulée de \(\mathcal{D}_\infty \mathcal{A} \) qui contient tous les \(\mathcal{A} \)-polydules \(A^\land \), \(A \in \text{Obj} \mathcal{A} \).

Dans ce chapitre, nous allons montrer l’énoncé de M. Kontsevich [Kon95], [Kon98] suivant :
Théorème 7.1.0.4 (voir aussi K. Fukaya [Fuk01b]) Soit une A_∞-catégorie A avec des identités strictes. Il existe une A_∞-catégorie $\text{tw}A$ et une factorisation de l'A$_\infty$-foncteur de Yoneda

$$A \xrightarrow{y'} \text{tw}A \xrightarrow{y''} \mathcal{C}_\infty A$$

telle que l'A$_\infty$-foncteur y' est strict et pleinement fidèle et l'A$_\infty$-foncteur y'' induit une équivalence

$$H^0\text{tw}A \simeq \text{tria} A \subset \mathcal{D}_\infty A.$$

Démonstration : Voir les trois sections suivantes.

7.2 L'A$_\infty$-catégorie des objets tordus

Soit Λ une algèbre associative unitaire (non graduée). Nous notons $\mathcal{C}^b(\text{free} \Lambda)$ la sous-catégorie de $\mathcal{C} \Lambda$ formée des complexes bornés de Λ-modules libres de rang fini. L'image $\mathcal{D}^b(\text{free} \Lambda)$ de la catégorie $\mathcal{C}^b(\text{free} \Lambda)$ par le foncteur $\mathcal{C} \Lambda \rightarrow \mathcal{D} \Lambda$ est équivalente à la catégorie tria Λ. Les objets de $\mathcal{C}^b(\text{free} \Lambda)$ sont fibrants et cofibrants dans la catégorie des complexes $\mathcal{C} \Lambda$. Si M et M' sont des objets de $\mathcal{D}^b(\text{free} \Lambda)$, les morphismes $M \rightarrow M'$ dans tria Λ sont donc en bijection avec les classes d'homotopie de morphismes $M \rightarrow M'$ de $\text{Mod} \Lambda$.

Cette description des morphismes permet de faire des calculs dans tria Λ. Le but de cette section est de généraliser la construction $\Lambda \rightarrow \mathcal{C}^b(\text{free} \Lambda)$ aux A$_\infty$-catégories. Soit A une A$_\infty$-catégorie. Le rôle de la catégorie $\mathcal{C}^b(\text{free} \Lambda)$ sera joué par l'A$_\infty$-catégorie $\text{tw}A$ des objets tordus. L'équivalence entre $\mathcal{D}^b(\text{free} \Lambda)$ et tria Λ sera remplacée par une équivalence

$$H^0\text{tw}A \xrightarrow{\sim} \text{tria} A \subset \mathcal{D}_\infty A.$$

La construction $\Lambda \rightarrow \text{tw} \Lambda$ est la généralisation aux A$_\infty$-catégories [Kon95] de la construction due à A. I. Bondal et M. M. Kapranov [BK91] qui associe à une catégorie différentielle graduée la catégorie de ses objets tordus (voir 7.2.0.4).

Pour rendre la construction qui suit plus intuitive, commençons par réinterpréter les objets de $\mathcal{C}^b(\text{free} \Lambda)$. Un complexe borné M de Λ-modules libres de rang fini est donné par ses composantes

$$(M_r,M_{r+1},\ldots,M_{l-1},M_l), \quad r \leq l, \quad r,l \in \mathbb{Z},$$

où chaque M_i, $r \leq i \leq l$, est la suspension itérée d'un Λ-module libre de rang fini, et par un morphisme de degré $+1$

$$\delta : \bigoplus_{r \leq j \leq l} M_j \rightarrow \bigoplus_{r \leq i \leq l} M_i$$

dont la matrice est strictement triangulaire inférieure et telle que $\delta \circ \delta = 0$.

Supposons maintenant que Λ est une algèbre différentielle graduée. Les extensions itérées dans la catégorie des complexes munie de la structure exacte donnée par les suites de complexes qui se scindent en tant que suites de Λ-modules gradués sont décrites de la manière suivante. Soit M_i, $r \leq i \leq l$, des objets de $\text{Mod} \Lambda$ qui sont des sommes finies de suspensions itérées de Λ. Notons d
la différentielle de la somme des \(M_i, r \leq i \leq l \). Une extension itérée des objets \(M_i, r \leq i \leq l \), est donnée par une matrice de la même forme que ci-dessus qui vérifie l’équation de Maurer-Cartan

\[
d \circ \delta + \delta \circ d + \delta^2 = 0.
\]

La différentielle de l’extension itérée \(M = \bigoplus_{r \leq j \leq l} M_j \) est la somme \(d + \delta \).

Saturation par décalages de \(A \)

Soit \(\mathcal{Z}A \) l’\(\mathbb{A}_\infty \)-catégorie dont les objets sont des couples \((A, n)\), où \(A \) est un objet de \(A \) et \(n \) un entier. Les espaces de morphismes sont définis par

\[
\mathcal{Z}A((A, n), (B, m)) = S^{m-n} A(A, B).
\]

Les compositions \(m^\mathcal{Z}A_i, i \geq 1 \),

\[
\mathcal{Z}A((A_{i-1}, n_{i-1}), (A_i, n_i)) \otimes \ldots \otimes \mathcal{Z}A((A_0, n_0), (A_1, n_1))
\]

sont définies par

\[
(-1)^{l(n_1-n_0)} s^{n_1-n_0} \circ m_i \circ \left((s^{n_1-n_1-1})^{-1} \otimes \ldots \otimes (s^{n_1-n_0})^{-1}\right)
\]

(une calcul montre que ces compositions définissent bien une \(\mathbb{A}_\infty \)-catégorie).

Saturation par extensions de \(\mathcal{Z}A \)

Définition 7.2.0.1 Une extension itérée \(M \) d’objets de \(\mathcal{Z}A \) est une suite

\[
(M_r, M_{r+1}, \ldots, M_{l-1}, M_l), \quad r \leq l, \quad r, l \in \mathbb{Z},
\]

munie d’une matrice à coefficients dans \(\mathcal{Z}A \) de degré +1

\[
\delta^M : \bigoplus_{r \leq j \leq l} M_j \rightarrow \bigoplus_{r \leq i \leq l} M_i
\]

qui est strictement triangulaire inférieure et vérifie l’équation de Maurer-Cartan

\[
\sum_{i \geq 1} m^\mathcal{Z}A_i ((\delta^M)^{\otimes i}) = 0.
\]

Ici, le produit tensoriel \(\otimes \) est l’extension du produit tensoriel de \(C(\mathbb{A}, \mathbb{A}) \) aux espaces de matrices à coefficients dans \(\mathcal{Z}A \). L’entier \(l - n + 1 \) s’appelle la hauteur de l’extension. Une extension itérée \(M \) est dégénérée ou scindée si \(\delta^M = 0 \). Les extensions itérées dégénérées peuvent être considérées comme les sommes formelles d’objets de \(\mathcal{Z}A \). Nous notons \(E \) l’ensemble des extensions itérées de \(\mathcal{Z}A \).
Définition 7.2.0.2 Soit M et M' deux extensions itérées de $\mathbb{Z}A$. Notons $\text{Mat}^{\mathbb{Z}A}(M, M')$ l'espace gradué des matrices à coefficients dans $\mathbb{Z}A$

$$f : \bigoplus_{r \leq j \leq l} M_j \to \bigoplus_{r' \leq i \leq l'} M'_i.$$

Les compositions $m^{\mathbb{Z}A}_i$, $i \geq 1$, de $\mathbb{Z}A$ s'étendent clairement en des compositions de matrices à coefficients dans $\mathbb{Z}A$. Notons \mathcal{E}_A l'\(\mathcal{A}_\infty\)-catégorie dont les objets sont les extensions itérées d'objets de $\mathbb{Z}A$ et dont les espaces de morphismes sont

$$\text{Hom}_{\mathcal{E}_A}(M, M') = \text{Mat}^{\mathbb{Z}A}(M, M').$$

Nous avons clairement une suite d'inclusions de \mathcal{A}_∞-catégories

$$\mathcal{A} \subset \mathbb{Z}A \subset \mathcal{E}_A.$$

L'élément tordant nilpotent de l'\(\mathcal{A}_\infty\)-catégorie \mathcal{E}_A

Nous rappelons (5.1.1) que I_M est le générateur de l'espace $e_{\mathbb{E}}(M, M)$. Soit

$$x : e_{\mathbb{E}} \to \mathcal{E}_A$$

le morphisme de \mathbb{E}-\mathbb{E}-bimodules qui envoie I_M, $M \in \mathbb{E}$, sur

$$\delta^M \in \text{Mat}^{\mathbb{Z}A}(M, M).$$

Le morphisme x est de degré +1. Il vérifie la condition de nilpotence tensorielle (6.1.1.2) car les matrices δ^M sont strictement triangulaires inférieures. Comme les morphismes δ^M, $M \in \mathbb{E}$, vérifient l’équation de Maurer-Cartan, le morphisme x est un élément tordant tensoriellement nilpotent.

La catégorie tw_A

Définition 7.2.0.3 Un objet tordu est une extension itérée d'objets de $\mathbb{Z}A$. Notons TW_A l'ensemble de objets tordus. Il est égal à l'ensemble \mathbb{E}. La catégorie tw_A des objets tordus est la catégorie tordue $(\mathcal{E}_A)_x$ (voir 6.1.2), où x est l'élément tordant ci-dessus.

Si M et M' sont des objets tordus, l'espace de morphismes $M \to M'$ est donc

$$\text{Hom}_{\text{tw}_A}(M, M') = \text{Mat}^{\mathbb{Z}A}(M, M').$$

Remarquons que sur la sous-\(\mathcal{A}_\infty\)-catégorie formée des extensions dégénérées, les compositions tordues $m^\mathbb{E}_i = m^\text{tw}_A i$, $i \geq 1$, sont égales aux compositions $m^\mathbb{E}_i$, $i \geq 1$. Soit \mathbb{E}_1 l'ensemble des extensions (forcément dégénérée) de hauteur 1 et soit

$$\hat{y}' : A \to \mathbb{E}_1,$$

l'application qui envoie A sur l'extension dégénérée de hauteur 1 dont la suite sous-jacente est le 1-uplet $((A, 0))$. C'est une bijection et nous avons un isomorphisme

$$\hat{y}' : \mathcal{A} \xrightarrow{\sim} \hat{y}' \text{Mat}^{\mathbb{Z}A}_{\hat{y}'} = \hat{y}' \text{tw}_A \hat{y}'$$
qui donne clairement un A_∞-foncteur strict et pleinement fidèle

$$y' : A \rightarrow \text{tw} A.$$

La propriété universelle de $\text{tw} A$

Nous nous inspirons de l'article [BK91].

Soit $f : A \rightarrow B$ un A_∞-foncteur. Il induit clairement un A_∞-foncteur

$$f : \mathcal{E}_A \rightarrow \mathcal{E}_B$$

tel que les éléments tordants x_A et x_B des A_∞-catégories \mathcal{E}_A et \mathcal{E}_B sont compatibles à f (voir 6.1.3). Nous obtenons donc un A_∞-foncteur tordu (voir 6.1.3)

$$\text{tw} f : \text{tw} A \rightarrow \text{tw} B.$$

La construction qui associe à une A_∞-catégorie A la catégorie des objets tordus $\text{tw} A$ est un foncteur

$$\text{tw} : \text{cat}_\infty \rightarrow \text{cat}_\infty,$$

où cat_∞ est la catégorie des petites A_∞-catégories. Nous allons construire un morphisme de foncteurs

$$\text{Tot} : \text{tw} \circ \text{tw} \rightarrow \text{tw}.$$

Soit A une petite A_∞-catégorie. L’A_∞-foncteur strict $\text{Tot}(A)$ associe à un objet N de $\text{tw} \circ \text{tw} A$, donné par une suite d’objets de $\text{tw} A$

$$(N_r, \ldots, N_l), \quad r \leq l, \quad r, l \in \mathbb{Z},$$

et une matrice δ^N à coefficients dans $\mathbb{Z}tw A$, l’objet tordu de A dont la suite sous-jacente est la concaténation des suites définissant les N_i, $r \leq i \leq l$, et dont la matrice

$$\delta^{\text{tot}} : \text{Tot}(N) = \bigoplus (N_j)_k \rightarrow \text{Tot}(N) = \bigoplus (N_i)_l$$

est construite à partir de la matrice δ^N en remplaçant les coefficients $\delta^N_{i,j}$ par les blocs donnés par les matrices δ^N_i. Nous vérifions que les morphismes de foncteurs de cat_∞

$$\eta = y' : 1_{\text{cat}_\infty} \rightarrow \text{tw} \quad \text{et} \quad \text{Tot} : \text{tw} \circ \text{tw} \rightarrow \text{tw}$$

définissent une monade de la catégorie des A_∞-catégories au sens de Quillen et Mac Lane [May72]. On rappelle qu’une tw-algèbre G est une A_∞-catégorie munie d’un A_∞-foncteur

$$\text{tw} G \rightarrow G$$

compatible à la structure de monade. La catégorie $\text{tw} A$ est clairement la tw-algèbre libre sur A. En particulier, l’A_∞-foncteur $y' : A \rightarrow \text{tw} A$ est universel parmi les A_∞-foncteurs

$$A \rightarrow G$$

où G est une algèbre sur la monade.
Remarque 7.2.0.4 Si \mathcal{G} est une catégorie différentielle graduée, $\text{tw}\mathcal{G}$ est une catégorie différentielle graduée. La construction $\mathcal{G} \rightarrow \text{tw}\mathcal{G}$ correspond à la construction de A. I. Bondal et M. M. Kapranov qui associe à \mathcal{G} la catégorie $\text{Pr-Tr}^+\mathcal{G}$ des objets tordus unilatéraux [BK91, §4].

Existence de l’A_∞-foncteur y''

Soit \mathcal{A} une petite A_∞-catégorie. Soit

$$\text{tw}C_\infty\mathcal{A} \rightarrow C_\infty\mathcal{A}$$

l’A_∞-foncteur strict qui associe à une extension itérée M la somme des M_i, $r \leq i \leq l$, munie de la différentielle $d + \delta_M$, où d est la différentielle de la somme des M_i. Cet A_∞-foncteur définit une structure de tw-algèbre sur $C_\infty\mathcal{A}$. En particulier, l’A_∞-foncteur

$$y : \mathcal{A} \rightarrow C_\infty\mathcal{A}$$

se factorise en $y = y'' \circ y'$, où y'' est l’A_∞-foncteur

$$\text{tw}\mathcal{A} \rightarrow C_\infty\mathcal{A}$$

donné par la propriété universelle de $\text{tw}\mathcal{A}$.

7.3 L’A_∞-foncteur $y'' : \text{tw}\mathcal{A} \rightarrow C_\infty\mathcal{A}$

Dans cette section, nous construisons explicitement l’A_∞-foncteur

$$y'' : \text{tw}\mathcal{A} \rightarrow C_\infty\mathcal{A}.$$

Par la remarque 5.3.0.6, les A_∞-foncteurs

$$\text{tw}\mathcal{A} \rightarrow C_\infty\mathcal{A}$$

sont en bijection avec les $\text{tw}\mathcal{A}$-\mathcal{A}-bipolydules strictement unitaires. Le $\text{tw}\mathcal{A}$-\mathcal{A}-bipolydule N'' associé à y'' est construit en tordant (voir la section 6.1.4) un E-\mathcal{A}-bipolydule N. L’A_∞-foncteur

$$f : \mathcal{E} \rightarrow C_\infty\mathcal{A}$$

associé à N est l’extension de l’A_∞-foncteur de Yoneda $y : \mathcal{A} \rightarrow C_\infty\mathcal{A}$. Nous donnons les formules explicites pour les A_∞-foncteurs f et y''.

Construction de $f : \mathcal{E} \rightarrow C_\infty\mathcal{A}$

Nous rappelons (7.2.0.2) que nous avons une suite d’inclusions de A_∞-catégories

$$\mathcal{A} \subset \mathcal{Z}\mathcal{A} \subset \mathcal{E}$$

et que $y : \mathcal{A} \rightarrow C_\infty\mathcal{A}$ désigne l’A_∞-foncteur de Yoneda (7.1.0.1). Ce dernier s’étend en un A_∞-foncteur

$$\mathcal{Z}\mathcal{A} \rightarrow C_\infty\mathcal{A}, \quad (A, n) \mapsto S^n(yA) = S^n A^\wedge$$
qui envoie un élément
\[x \in \mathbf{ZA}((A_{i-1}, n_{i-1}), (A_i, n_i)) \otimes \ldots \otimes \mathbf{ZA}((A_0, n_0), (A_1, n_1)) \]
sur le morphisme de \(A\)-polydules \(S^{n_0}A_0 \wedge \to S^{n_i}A_i \wedge\) défini par l’élément de
\[\text{Hom}_{C_{\infty}A}(S^{n_0}A_0 \wedge, S^{n_i}A_i \wedge) \simeq S^{n_i-n_0}\text{Hom}_{C_{\infty}A}(A_0 \wedge, A_i \wedge) \]
donné par
\[s^{n_i-n_0} \circ y_i \circ (s^{n_i-n_i-1} \circ \ldots \circ (s^{n_i-n_0})^{-1})(x). \]
Nous notons aussi \(y\) cet \(A_{\infty}\)-foncteur. Nous l’étendons maintenant en un \(A_{\infty}\)-foncteur
\[\mathcal{E} \to C_{\infty}A. \]

Nous définissons une application
\[\hat{f} : \mathcal{E} \to \text{Obj} C_{\infty}A \]
qui envoie une extension itérée \(M\), donnée par une suite \(M_i, r \leq i \leq l\), et une matrice \(\delta^M\), sur le \(A\)-module qui est la somme
\[\sum_{r \leq i \leq l} \hat{y}M_i. \]
Sa structure de \(A\)-polydule est induite par celle de la remarque 5.1.2.9. Notons que la matrice \(\delta^M\) n’intervient pas dans la définition de l’image de \(M\). Les morphismes \(y_i : (\mathbf{ZA})^{\otimes i} \to C_{\infty}A\) s’étendent clairement en des morphismes
\[\left(\text{Mat}(\mathbf{ZA})^{\otimes i}\right) \to C_{\infty}A. \]

Ceci nous fournit un \(A_{\infty}\)-foncteur que nous notons \(f : \mathcal{E} \to C_{\infty}A\) et nous avons clairement la factorisation \(y = f \circ y'\). Par la remarque 5.3.0.6, l’\(A_{\infty}\)-foncteur \(f\) est donné par un \(\mathcal{E}-A\)-bipolydul \(N\) qui, en tant que \(\mathcal{E}-A\)-bimodule, est
\[(A, M) \mapsto \bigoplus_{r \leq i \leq l} S^{n_i}A(A, A_i), \]
ôù \(M_i = (A_i, n_i), r \leq i \leq l\). Notons
\[m_{i,j}^N : \mathcal{E}^{\otimes i} \otimes N \otimes A^{\otimes j} \to N, \quad i, j \geq 0. \]
les multiplications du \(\mathcal{E}-A\)-bipolydul \(N\). Elles sont clairement induites par l’extension à \(\mathbf{ZA}\), puis à \(\mathcal{E}\), des compositions
\[m_{i,j}^A = m_{i+1,j}^A : A^{\otimes i} \otimes A \otimes A^{\otimes j} \to A, \quad i, j \geq 0. \]

L’\(A_{\infty}\)-foncteur \(y'' : \text{tw}A \to C_{\infty}A\)

Nous rappelons (7.2.0.2) que \(x\) désigne l’élément tordant (nilpotent) de \(\mathcal{E}\). Par la section 6.1.4, nous pouvons tordre \(N\) en un \(\mathcal{E}_x-A\)-polydul \(xN = N''\). Comme l’\(A_{\infty}\)-catégorie \(\text{tw}A\) est par définition l’\(A_{\infty}\)-catégorie tordue \(\mathcal{E}_x\), nous obtenons ainsi un \(\text{tw}A-A\)-bipolydul \(N''\) et par la remarque (5.3.0.6), un \(A_{\infty}\)-foncteur
\[y'' : \text{tw}A \to C_{\infty}A. \]
 Nous donnons ci-dessous les formules explicites le définissant. Le \(\mathbb{T} \mathbb{W} \mathcal{A} \)-bimodule \(N'' \) est donné par
\[
(A, M) \mapsto \bigoplus_{r \leq t \leq l} S^n(A, A_t).
\]
Comme \(\mathbb{T} \mathbb{W} \mathcal{A} = \mathcal{E} \), il est isomorphe en tant que \(\mathcal{E} \)-\(\mathcal{A} \)-bimodule à \(N \). En tant que \(\mathcal{E} \)-\(\mathcal{A} \)-bipolydule, ses multiplications \(m_{ij}^{N''} \), \(i, j \geq 0 \) sont données (6.1.4.1) par la somme
\[
\sum_{l,k \geq 0} \sum_{j} (-1)^{j} m_{l,i+l,j+k}^N (x_{\otimes l} \odot 1_{\mathcal{E}} \odot x_{\otimes k} \odot \ldots \odot 1_{\mathcal{E}} \odot x_{\otimes l} \odot 1_{\mathcal{N}} \odot 1_{\mathcal{A}} \ldots \odot 1_{\mathcal{A}}),
\]
où \(1_{\mathcal{E}} \) désigne l’identité de l’espace des matrices \(\text{Mat}^{\mathcal{Z} \mathcal{A}} \) et l’exposant du signe est
\[
s = \sum_{1 \leq j \leq i} t \times s_i.
\]
Détailons maintenant l’application sous-jacente à l’\(\mathcal{A} \)-foncteur \(y'' \)
\(y'' : \text{tw} \mathcal{A} \rightarrow \mathcal{C}_{\infty \mathcal{A}}. \)
Elle envoie une extension itérée \(M \), donnée par une suite \(M_i, r \leq i \leq l \), et une matrice \(\delta^M \), sur le \(\mathcal{A} \)-module qui est la somme
\[
y'' M = \sum_{r \leq i \leq l} y M_i.
\]
Les multiplications \(m_{ij}^{y'' \mathcal{M}} \), \(j \geq 1 \), définissant sa structure de \(\mathcal{A} \)-polydule sont les morphismes \(m_{0,j-1}^{N''} \), \(j \geq 1 \), c’est-à-dire la somme
\[
\sum_{l \geq 0} m_{l,j-1}^N (x_{\otimes l} \odot 1_{y'' M} \odot 1_{\mathcal{A}}^{j-1}) = \sum_{l \geq 0} m_{l,j-1}^N \left([y(\delta^M)]_{\otimes l} \odot 1_{y'' M} \odot 1_{\mathcal{A}}^{j-1} \right).
\]
Remarquons que même si \(y'' M \) et \(\hat{f} M \) sont isomorphes en tant que \(\mathcal{A} \)-modules, ils diffèrent en tant que \(\mathcal{A} \)-polydules. Le \(\mathcal{A} \)-polydule \(y'' M \) doit être considéré comme la torsion de \(\hat{f} M \) par \(y(\delta^M) \). Regardons maintenant les morphismes \(y''_i \), \(i \geq 1 \), de l’\(\mathcal{A} \)-foncteur \(y'' \). Ils sont définis (5.3.0.3) par la relation
\[
(y''_i)_j = m_{ij}^{N''}.
\]
En d’autre termes, le morphisme \(y''_i \), \(i \geq 1 \), envoie un élément de
\[
\text{tw} \mathcal{A}(M_{i-1}, M_i) \otimes \ldots \otimes \text{tw} \mathcal{A}(M_0, M_1)
\]
sur le morphisme de \(\mathcal{A} \)-polydules \(\varphi : (y'' M_0) \rightarrow (y'' M_i) \) donné par la suite des morphismes \(\varphi_j : (y'' M_0) \odot \mathcal{A}^{j-1} \rightarrow (y'' M_i) \) valant
\[
\sum_{l \geq 0} \sum_{j} (-1)^{j} m_{l,i+l,j-1} (x_{\otimes l} \odot 1_{\text{tw} \mathcal{A}} \ldots \odot 1_{\text{tw} \mathcal{A}} \odot [y(\delta^M)]_{\otimes l} \odot 1_{y'' M_0} \odot 1_{\mathcal{A}}^{j-1}),
\]
où \(1_{\text{tw} \mathcal{A}} \) désigne l’identité de l’espace des matrices \(\text{Mat}^{\mathcal{Z} \mathcal{A}} \) et l’exposant du signe est
\[
s = \sum_{1 \leq j \leq i} t \times s_i.
\]
Remarquons que l’unitarité stricte de \(\mathcal{A} \) n’est pas intervenue dans la démonstration de la factorisation du théorème 7.1.0.4. Elle joue un rôle essentiel dans la prochaine section.
7.4 L’équivalence entre les catégories $\text{tria} \mathcal{A}$ et $H^0\text{tw} \mathcal{A}$

Nous rappelons (5.2.0.2) que les catégories $H^0\mathcal{C}_{\infty} \mathcal{A}$ et $\mathcal{D}_{\infty} \mathcal{A}$ sont équivalentes. Nous montrons ci-dessous que l’\mathcal{A}_{∞}-foncteur $y'' : \text{tw} \mathcal{A} \to \mathcal{C}_{\infty} \mathcal{A}$ induit un foncteur pleinement fidèle

$$H^0\text{tw} \mathcal{A} \to \mathcal{D}_{\infty} \mathcal{A},$$
dont l’image est la catégorie $\text{tria} \mathcal{A}$.

Il s’agit de montrer que le foncteur H^0y'' est pleinement fidèle. Nous devons donc montrer que, pour tous M, M' objets de $\text{tw} \mathcal{A}$, nous avons

$$H^0\text{Hom}_{\text{tw} \mathcal{A}}(M, M') \xrightarrow{\sim} H^0\text{Hom}_{\mathcal{C}_{\infty} \mathcal{A}}(y''M, y''M').$$

Une extension M, donnée par une suite

$$(M_r, \ldots, M_i, \ldots, M_l), \quad r \leq i \leq l,$$
et une matrice δ^M, est clairement filtrée dans la catégorie des objets tordus $\text{tw} \mathcal{A}$ par

$$F_k = (M_{r+k}, \ldots, M_l), \quad 0 \leq k \leq l - r,$$
(Le morphisme $\delta^M : M \to M$ est compatible à cette filtration). Les objets gradués de cette filtration sont des extensions tordues dégénérées, i. e. des sommes formelles finies de $\mathbb{Z} \mathcal{A}$ considérée comme objets de $\text{tw} \mathcal{A}$. Il nous suffit donc de montrer qu’on a un isomorphisme

$$H^0\text{Hom}_{\text{tw} \mathcal{A}}(M, M') = H^0\text{Hom}_{\mathcal{C}_{\infty} \mathcal{A}}(y''M, y''M').$$
où M et M' sont des objets de $\mathbb{Z} \mathcal{A}$ considérés comme objets de $\text{tw} \mathcal{A}$. Nous devons donc montrer le lemme suivant

Lemme 7.4.0.1 Pour toute paire d’objets A et A' dans \mathcal{A}, l’\mathcal{A}_{∞}-foncteur de Yoneda $y : \mathcal{A} \to \mathcal{C}_{\infty} \mathcal{A}$ induit un isomorphisme

$$H^*\text{Hom}_A(A, A') = H^*\text{Hom}_{\mathcal{C}_{\infty} \mathcal{A}}(A^\wedge, A'^\wedge).$$

Démonstration : Le foncteur pleinement fidèle (4.1.2.10)

$$\mathcal{D}_{\infty} \mathcal{A} \to \mathcal{D}_{\infty} \mathcal{A}^+$$
induit un isomorphisme

$$H^*\text{Hom}_{\mathcal{C}_{\infty} \mathcal{A}}(A^\wedge, A'^\wedge) \xrightarrow{\sim} H^*\text{Hom}_{\mathcal{C}_{\infty} \mathcal{A}^+}(A^\wedge, A'^\wedge).$$

Il suffit donc de montrer l’isomorphisme

$$H^*\mathcal{A}(A, A') \xrightarrow{\sim} H^*\text{Hom}_{\mathcal{C}_{\infty} \mathcal{A}^+}(A^\wedge, A'^\wedge).$$
Nous avons les égalités

$$\mathcal{A}(A, A') = A'^\wedge(A) \quad \text{et} \quad \mathcal{\tilde{H}}\text{om}_A(A, A'^\wedge)(A) = \text{Hom}_{\mathcal{C}_{\infty} \mathcal{A}^+}(A^\wedge, A'^\wedge).$$
Nous déduisons alors le résultat du lemme (4.1.1.6) et de la remarque (4.1.1.7) qui montrent que

$$A'^\wedge \to \mathcal{\tilde{H}}\text{om}_A(A, A'^\wedge)$$
est un quasi-isomorphisme. \qed
7.5 Modèle différentiel gradué

Dans cette section, la catégorie de base C est égale à $C(\mathbb{A}, \mathbb{A})$.

Définition 7.5.0.1 Soit A une A_∞-algèbre dans C. Un modèle différentiel gradué de A est une algèbre différentielle graduée A' munie d'un A_∞-quasi-isomorphisme $A \to A'$.

Proposition 7.5.0.2 Toute A_∞-algèbre strictement unitaire A admet un modèle différentiel gradué unitaire tel que l'A_∞-morphisme $A \to A'$ est strictement unitaire.

Remarquons que dans le cas où A est une A_∞-algèbre augmentée, son algèbre enveloppante UA (2.3.4.3) est un modèle différentiel gradué unitaire de A qui est augmenté.

Démonstration : Nous définissons A' comme le A-A-bimodule $$(A_0, A_1) \mapsto \text{Hom}_{C_\infty A}(A_0 \wedge, A_1 \wedge).$$ La structure différentielle graduée est celle induite par la composition et la différentielle de la catégorie différentielle graduée $C_\infty A$. Grâce au théorème (7.1.0.4), l'A_∞-foncteur de Yoneda nous donne un A_∞-quasi-isomorphisme d'A_∞-algèbres dans $C(\mathbb{A}, \mathbb{A})$ $A \to A'$ qui est strictement unitaire.

Corollaire 7.5.0.3 Toute A_∞-algèbre homologiquement unitaire A admet un modèle différentiel gradué unitaire tel que l'A_∞-morphisme $f : A \to A'$ est unitaire, i. e. $f \circ \eta = \eta$.

Démonstration : Soit A une A_∞-algèbre homologiquement unitaire. Nous rappelons (3.2.1.2) qu'on peut munir H^*A d'une structure d'A_∞-algèbre strictement unitaire. Comme l'A_∞-morphisme $A \to H^*A$ est unitaire et il est A_∞-quasi-isomorphisme, nous avons le résultat.

7.6 Catégories stables

Dans cette section, nous montrons que toute catégorie triangulée algébrique qui est engendrée par un ensemble d’objets est A_∞-pré-triangulée, i. e. elle est équivalente à $H^\text{tw}A$, pour une certaine A_∞-catégorie A.
Définition 7.6.0.1 Une \(\mathbb{K} \)-catégorie triangulée est \textit{algébrique} si elle est équivalente à la catégorie stable d’une \(\mathbb{K} \)-catégorie de Frobenius (voir 2.2.3).

Définition 7.6.0.2 Soit \(T \) une catégorie triangulée aux sommes infinies. Un objet \(X \in T \) est \textit{compact} si le foncteur \(\text{Hom}_T(X,-) \) commute aux sommes infinies.

Définition 7.6.0.3 Soit \(T \) une catégorie triangulée et \(A \) un sous-ensemble de l’ensemble \(T \) des objets de \(T \). Nous notons \(\text{tria} A \) la \textit{plus petite sous-catégorie triangulée strictement pleine} de \(T \) qui contient la sous-catégorie pleine formée des objets de \(A \). Elle est stable par sommes finies. Les objets de \(A \) engendrent \(T \) en tant que catégorie triangulée aux sommes infinies si \(T = \text{tria} A \).

Théorème 7.6.0.4 Soit \(T \) une \(\mathbb{K} \)-catégorie triangulée algébrique aux sommes infinies qui est engendrée, en tant que catégorie triangulée aux sommes infinies, par un ensemble \(A \) d’objets compacts. Il existe une \(\mathbb{A}_\infty \)-catégorie \(\mathcal{A} \) strictement unitaire et minimale sur \(A \) et une équivalence triangulée

\[
\mathcal{D}_\infty \mathcal{A} \rightarrow T, \quad A^\wedge \mapsto A.
\]

Démonstration : Par définition des catégories triangulées algébriques, \(T \) est la catégorie stable \(\mathcal{E} \) d’une catégorie de Frobenius \(\mathcal{E} \). Nous rappelons [Kel94a, 4.3] qu’il existe une catégorie différentielle graduée unitaire \(\mathcal{A}' \) sur \(A \) et une équivalence triangulée

\[
\mathcal{D} \mathcal{A}' \rightarrow \mathcal{E}, \quad A^\wedge \mapsto A.
\]

Nous rappelons que \(\mathcal{D} \mathcal{A}' \) est engendrée par les \(A \)-modules libres \(A'(-,A) \), \(A \in A \). Choisissons un modèle minimal \(\mathcal{A} \) de \(A' \) qui est strictement unitaire (3.2.4.1). Nous déduisons du théorème (4.1.2.4) que la restriction le long de \(A' \rightarrow A \) induit une équivalence de catégories

\[
\mathcal{D}_\infty \mathcal{A} \rightarrow \mathcal{D} \mathcal{A}',
\]

Comme, pour tout \(A \in A \), le \(A' \)-polydue restreint \(A^\wedge = A(-,A) \) est \(\mathbb{A}_\infty \)-quasi-isomorphe à \(\mathcal{A}'(-,A) \), nous avons une équivalence

\[
\mathcal{D}_\infty \mathcal{A} \rightarrow \mathcal{E}, \quad A^\wedge \mapsto A.
\]

Remarque 7.6.0.5 Par construction de la catégorie \(\mathcal{A}' \) dans [Kel94a, 4.3], le \(A \)-\(A \)-bimodule sous-jacent à \(\mathcal{A} \) est donné par

\[
(A, A') \mapsto \mathcal{A}(A,A') = \bigoplus_{n \in \mathbb{Z}} \text{Hom}_T(A,S^n A'), \quad A, A' \in A,
\]

et \(m^3_A \) par la composition de \(T \).

Théorème 7.6.0.6 Soit \(T \) une \(\mathbb{K} \)-catégorie triangulée algébrique qui est engendrée par un ensemble d’objets \(A \). Il existe une \(\mathbb{A}_\infty \)-catégorie \(\mathcal{A} \) strictement unitaire et minimale sur \(A \) et une équivalence triangulée

\[
\text{tria} \mathcal{A} \rightarrow T, \quad A^\wedge \mapsto A,
\]

où \(\text{tria} \mathcal{A} \) est la sous-catégorie de \(\mathcal{D}_\infty \mathcal{A} \) engendrée par les objets libres \(A^\wedge, A \in A \).
Démonstration : Par définition des catégories triangulées algébriques, T est la catégorie stable \mathcal{E} d’une catégorie de Frobenius \mathcal{E}. La construction de [Kel94a, 4.3] nous donne une catégorie différentielle graduée unitaire A' sur A telle que nous avons une équivalence triangulée

$$\text{tria} A' \to \mathcal{E}, \quad A' \mapsto A,$$

où $\text{tria} A'$ est la sous-catégorie de $\mathcal{D}A'$ engendrée par les A-modules libres $A'(-, A)$, $A \in A$. Choisissons un modèle minimal A de A' qui est strictement unitaire (3.2.4.1). L’équivalence de catégories

$$\mathcal{D}A' \to \mathcal{D}_\infty A.$$

induit une équivalence

$$\text{tria} A' \to \text{tria} A$$

car le A-polydule $A^\wedge = A(-, A)$, $A \in A$ est Λ_∞-quasi-isomorphe à la restriction de $A'(-, A)$. Nous en déduisons qu’on a une équivalence (triangulée)

$$\text{tria} A \to \mathcal{E}, \quad A^\wedge \mapsto A.$$

\[\square\]

Corollaire 7.6.0.7 Soit T une K-catégorie triangulée algébrique telle que dans le théorème (7.6.0.6). Il existe une Λ_∞-catégorie A strictement unitaire et minimale sur A et une équivalence triangulée

$$H^0(\text{tw} A) \to T, \quad A \mapsto A.$$

Démonstration : Immédiat par les théorèmes (7.1.0.4) et (7.6.0.6). \[\square\]
Chapitre 7 : L’A_∞-foncteur de Yoneda et les objets tordus
Chapitre 8

L’A∞-catégorie des A∞-foncteurs

Introduction

Le but de ce chapitre est de construire l’analogue A∞ de la 2-catégorie cat des petites catégories. Nous construisons une 2-catégorie cat∞ dont les objets sont les A∞-catégories strictement unitaires. La catégorie des espaces de morphismes

\[\text{cat}_∞(A, B), \quad A, B \in \text{Obj cat}_∞, \]

sera définie comme l’homologie \(H^0\text{Func}_∞(A, B) \) d’une A∞-catégorie dont les objets sont les A∞-foncteurs strictement unitaires.

La catégorie Func∞(A,B) a été construite indépendamment par K. Fukaya [Fuk01b], V. Lyubashenko [Lyu02] et M. Kontsevich et Y. Soibelman [KS02a], [KS02b]. Les compositions de Func∞(A,B) de V. Lyubashenko, bien qu’obtenues par une méthode différente, sont les mêmes que les nôtres.

Plan du chapitre

Soit \(A \) et \(B \) deux petites A∞-catégories (non nécessairement unitaires). Dans la section 8.1.1, nous construisons une A∞-catégorie Nunc∞(A, B) dont les objets sont les A∞-foncteurs \(A \to B \). Les compositions de Nunc∞(A, B) seront construites par un processus de torsion (voir le chapitre 6). Dans la section 8.1.2, nous montrons que Nunc∞(A, B) est fonctoriel en \(A \) et \(B \) et nous définissons la catégorie nat∞ dont les objets sont les A∞-catégories. Dans la section 8.1.3, nous montrons que toutes les constructions des deux sections précédentes sont compatibles aux A∞-structures strictement unitaires (A∞-catégories, A∞-foncteurs...) et nous définissons la 2-catégorie cat∞ comme une sous-catégorie non pleine de nat∞.

Dans la section (8.2), nous construisons un A∞-foncteur

\[z : \text{Func}_∞(A, B) \to C_∞(A, B), \quad A, B \in \text{cat}_∞, \]

où \(C_∞(A, B) \) est la catégorie différentielle graduée des A-B-bipolydules strictement unitaires (8.2.1). Ce foncteur généralise l’A∞-foncteur de Yoneda construit en (7.1.0.1). Nous montrons qu’il induit des quasi-isomorphismes dans les espaces de morphismes. Dans la section 8.2.2, nous définissons les équivalences faibles d’A∞-foncteurs strictement unitaires (elles sont l’analogue A∞-catégorique des homotopies entre A∞-morphismes) et nous les caractériserons à l’aide de leurs images par l’A∞-foncteur \(z \).
8.1 L’A\(_\infty\)-catégorie des A\(_\infty\)-foncteurs

8.1.1 L’A\(_\infty\)-catégorie Nunc\(_\infty\)(A, B)

Soit \(\mathbb{A}\) et \(\mathbb{B}\) deux ensembles et \(A\) et \(B\) des A\(_\infty\)-catégories sur \(\mathbb{A}\) et \(\mathbb{B}\). Nous construisons dans cette section, l’A\(_\infty\)-catégorie Nunc\(_\infty\)(A, B) des A\(_\infty\)-foncteurs non nécessairement strictement unitaires. La lettre \(\mathbb{N}\) remplace la lettre \(\mathbb{F}\) dans Func\(_\infty\) et se rapporte au \(\mathbb{N}\) de “Non unitaires”.

Soit \(f_1\) et \(f_2\) deux A\(_\infty\)-foncteurs \(A \to B\). Nous rappelons que \(f_2 B f_1\) est le \(\mathbb{k}\-\mathbb{A}\)-bimodule

\[(A', A) \mapsto B(f_1 A', f_2 A).\]

Définition 8.1.1.1 Nous posons

\[\text{Hom}_{\text{Nunc}_{\infty}}(f_1, f_2) = \text{Hom}_{\text{GrC}(\mathbb{A}, \mathbb{B})}(T^r S A, f_2 B f_1).\]

Nous obtenons ainsi un objet gradué dans la catégorie de base \(\text{Vect}\mathbb{K}\).

Remarque 8.1.1.2 Soit \(H\) un élément de degré \(r\) de \(\text{Hom}_{\text{Nunc}_{\infty}}(f_1, f_2)\). Pour tout entier \(i \geq 0\), nous notons incl l’inclusion de \((SA)^{\otimes i}\) dans \(T^r S A\). Soit \(h_i\), \(i \geq 0\), la composition

\[\text{Hom}_{\text{Nunc}_{\infty}}(f_1, f_2) \xrightarrow{\text{incl}} T^r S A \xrightarrow{h} f_2 B f_1.\]

Nous définissons les morphismes

\[h_i : A^{\otimes i} \to f_2 B f_1, \quad i \geq 0,\]

par les relations

\[H_i \circ (\omega^{\otimes i})^{-1} = (-1)^r h_i, \quad i \geq 0.\]

Les applications \(h_i : h_i, i \geq 0\), sont clairement des bijections. Le morphisme \(H\) est donc déterminé par des morphismes gradués

\[h_i : A(A_{i-1}, A_i) \otimes \ldots \otimes A(0, A_1) \to B(f_1 A_0, f_2 A_i), \quad i \geq 0.\]

de degré \(r - i\), pour toute suite \((A_0, \ldots, A_i)\) d’objets de \(\mathbb{A}\). En particulier, si \(i = 0\), nous avons un morphisme

\[h_0 : e_\mathbb{A} \to f_2 B f_1, \quad I_\mathbb{A} \mapsto h_0(I_\mathbb{A}).\]

Nous noterons souvent \(h_\mathbb{A} \in \text{Hom}_\mathbb{G}(f_1 A, f_2 A)\) l’élément \(h_0(I_\mathbb{A})\).

Remarque 8.1.1.3 Soit \(f : A \to B\) un A\(_\infty\)-foncteur. Posons \(h_i = f_i\) si \(i \geq 1\) et \(h_0 = 0\). Ceci nous fournit un élément \(H\) de degré +1 de \(\text{Hom}_{\text{Nunc}_{\infty}}(f, f)\). Nous avons alors un diagramme commutatif

\[
\begin{array}{c}
(SA)^{\otimes r} \\
\xrightarrow{h_i} \\
B^+ A \\
H_i \\
\xrightarrow{H} \\
n^i \\
B^+ B f_j \\
\xrightarrow{p_i} \\
S f_j B j
\end{array}
\]

dont nous déduisons les égalités \(H_i = \omega \circ F_i\), où \(F\) est la construction bar co-augmentée de \(f\).
Compositions naïves de morphismes d'\(A_\infty \)-foncteurs

Nous construisons dans ce paragraphe une \(A_\infty \)-catégorie \(F(A,B) = \mathcal{F} \) dont les objets sont les \(A_\infty \)-foncteurs \(A \to B \) et dont les espaces gradués de morphismes sont les

\[
\text{Hom}_\mathcal{F}(f_1,f_2) = \text{Hom}_{\text{Gr}(A,A)}(T^eSf_1Bf_2).
\]

Nous montrons que \(\mathcal{F} \) est munie d'une topologie pour laquelle elle est une \(A_\infty \)-catégorie topologique. Nous construisons ensuite un élément tordant topologique de \(\mathcal{F} \) (voir 6.2).

Au lieu de construire les compositions \(m_i^\mathcal{F}, i \geq 1 \), nous allons construire des morphismes (voir les bijections \(m_i \leftrightarrow b_i \) dans la section 1.2.2)

\[
b_i^\mathcal{F} : S\mathcal{F}^i \to S\mathcal{F}, \quad i \geq 1,
\]

puis nous vérifions que cela définit bien une \(A_\infty \)-catégorie. Remarquons que nous avons un isomorphisme

\[
S\mathcal{F}(f_1,f_2) \sim \text{Hom}_{\text{Gr}(A,A)}(B^+A,Sf_2Bf_1).
\]

Le morphisme

\[
b_i^\mathcal{F} : \text{Hom}_{\text{Gr}(A,A)}(B^+A,Sf_2Bf_1) \to \text{Hom}_{\text{Gr}(A,A)}(B^+A,Sf_2Bf_1)
\]

est la différentielle de l'espaces de morphismes gradués entre complexes : elle est définie par

\[
\varphi \mapsto b_1^\mathcal{F} \circ \varphi - (-1)^{|\varphi|} \circ b^{B^+A},
\]

où \(\varphi \) est de degré \(|\varphi| \). Soit \(i \geq 2 \) et \((f_0, \ldots, f_i)\) une suite d'\(A_\infty \)-foncteurs \(A \to B \). Le morphisme

\[
b_i^\mathcal{F}\text{ envoie un élément}
\]

\[
g_i \circ \ldots \circ g_1 \in \text{Hom}_{\text{Gr}(A,A)}(B^+A,Sf_iB_{f_{i-1}}) \circ \ldots \circ \text{Hom}_{\text{Gr}(A,A)}(B^+A,Sf_1B_{f_0})
\]

sur la composition

\[
B^+A \xrightarrow{\Delta^{(i)}} (B^+A)^{\otimes i} \xrightarrow{g_i \circ \ldots \circ g_1} S_{f_i}B_{f_{i-1}} \circ \ldots \circ S_{f_1}B_{f_0} \xrightarrow{b_i^\mathcal{F}} S_{f_i}B_{f_0}.
\]

Lemme 8.1.1.4 Les morphismes \(m_i^\mathcal{F}, i \geq 1 \), définissent une structure de \(A_\infty \)-catégorie sur \(\mathcal{F} \).

\[\text{Démonstration :} \quad \text{Nous avons clairement } b_i^\mathcal{F} \circ b_i^\mathcal{F} = 0. \text{ Soit } n \geq 2 \text{ et soit } g_i, 1 \leq i \leq n, \text{ des éléments de } S\mathcal{F} \text{ de degré } |g_i| \text{. Les termes de la somme}
\]

\[
\left[\sum_{j+k+i=n} b_i^\mathcal{F} (f^{\otimes j} \circ b_k^\mathcal{F} \circ f^{\otimes k}) \right] (g_n \circ \ldots \circ g_1)
\]

sont des trois types : ceux où \(i = n \) et \(k = 1 \), ceux où \(i = 1 \) et \(k = n \) et ceux où \(i,j \neq 1 \).
Lorsque \(i = n \) et \(k = 1 \) nous trouvons
\[
[b^F_n \circ b^F_1 \circ I^{\otimes j}](g_n \circ \ldots \circ g_1)
\]
\[
= (-1)^{\sum_{r < i+1} |g_r|} b^F_n(g_n \circ \ldots \circ b^F_1 (g_{i+1}) \circ \ldots \circ g_1)
\]
\[
= (-1)^{\sum_{r < i+1} |g_r|} b^F_n(g_n \circ \ldots \circ b^F_{g_{i+1}} \circ \ldots \circ g_1)
\]
\[
- (-1)^{\sum_{r \leq i+1} |g_r|} b^F_n(g_n \circ \ldots \circ g_{i+1} b B^{+A} \circ \ldots \circ g_1)
\]
\[
= b^F_n(I^{\otimes j} \circ b^F_r \circ I^{\otimes l})(g_n \circ \ldots \circ g_1) \Delta^{(n)}
\]
\[
- (-1)^{\sum |g_r|} b^F_n(g_n \circ \ldots \circ g_{i+1} \circ \ldots \circ g_1)(I^{\otimes j} \circ b^{B^{+A}} \circ I^{\otimes l}) \Delta^{(n)}
\]
\[
= b^F_n(I^{\otimes j} \circ b^F_r \circ I^{\otimes l})(g_n \circ \ldots \circ g_1) \Delta^{(n)}
\]
\[
- (-1)^{\sum |g_r|} b^F_n(g_n \circ \ldots \circ g_{i+1} \circ \ldots \circ g_1) b^{B^{+A}}
\]

Lorsque \(i = 1 \) et \(k = n \) nous trouvons
\[
b^F_1 \circ b^F_n(g_n \circ \ldots \circ g_1)
\]
\[
= b^F_1(b^F_n(g_n \circ \ldots \circ g_1))
\]
\[
- (-1)^{t+\sum |g_r|} b^F_n(g_n \circ g_{i+1} \circ \ldots \circ g_1) b^{B^{+A}}
\]
\[
= b^F_1(b^F_n(g_n \circ \ldots \circ g_1)) \Delta^{(n)}
\]
\[
- (-1)^{t+\sum |g_r|} b^F_n(g_n \circ g_{i+1} \circ \ldots \circ g_1) b^{B^{+A}}
\]

Lorsque \(i \neq 1 \) et \(k \neq n \) nous trouvons
\[
[b^F_1 \circ b^F_k \circ I^{\otimes j}](g_n \circ \ldots \circ g_1)
\]
\[
= (-1)^{\sum_{r < i+1} |g_r|} b^F_1 \circ b^F_k(g_n \circ \ldots \circ b^F_{g_{i+1}} \circ \ldots \circ g_1)
\]
\[
= (-1)^{\sum_{r < i+1} |g_r|} b^F_1 \circ b^F_k(g_n \circ \ldots \circ b^{g_{i+1}}(g_1) \Delta^{(k)} \circ \ldots \circ g_1)
\]
\[
= (-1)^{\sum_{r < i+1} |g_r|} b^F_1 \circ b^F_k(g_n \circ \ldots \circ b^{g_{i+1}}(g_1) \Delta^{(k)} \circ \ldots \circ g_1)
\]
\[
= b^F(I^{\otimes j} \circ b^F \circ I^{\otimes l})(g_n \circ \ldots \circ g_1)(I^{\otimes j} \circ \Delta^{(k)} \circ I^{\otimes l}) \Delta^{(i)}
\]
\[
= b^F_1 \circ b^F_k \circ I^{\otimes j}(g_n \circ \ldots \circ g_1) \Delta^{(n)}
\]

Les dernières lignes des deux premiers cas se compensent grâce aux signes et la somme de ce qui reste est nulle car \(B \) est une \(\Lambda_\infty \)-catégorie.

\[\square\]

Remarque 8.1.1.5 L'\(\Lambda_\infty \)-catégorie \(\mathcal{F}(A, B) \) ainsi construite est clairement fonctorielle en \(A \) et \(B \). Si \(f : A \rightarrow A' \) est un \(\Lambda_\infty \)-foncteur, l'\(\Lambda_\infty \)-foncteur induit \(\mathcal{F}(A', B) \rightarrow \mathcal{F}(A, B) \) est strict. Il envoit
\(H \in \text{Hom}_{\text{Nunc}_\infty}(f_1, f_2) \) sur sa composition avec \(Bf \). Si \(f : B \rightarrow B' \) est un \(A_\infty \)-foncteur, l’\(A_\infty \)-foncteur induit \(\mathcal{F}(A', B) \rightarrow \mathcal{F}(A, B) \) n’est plus strict. Notons le \(g \). Soit \(G \) sa construction bar. Le morphisme \(G_1 \) envoie \(H \in \text{Hom}_{\text{Nunc}_\infty}(f_1, f_2) \) sur sa composition avec \(F_1 \). Les formules définissant les \(G_i, i \geq 2 \), sont obtenues à partir des formules définissant les \(b_i^{F}, i \geq 2 \), en remplaçant les \(b_i^{F} \) par des \(F_i \). Les problèmes de fonctorialité seront étudiés plus en détails dans la section 8.1.2.

Description concrète

Regardons ce que sont les compositions de morphismes d’\(A_\infty \)-catégories du point de vue de la remarque 8.1.1.2.

Soit \(H \) un élément de \(\text{Hom}_{\text{Nunc}_\infty}(f_1, f_2) \) de degré \(|H| \). Le morphisme \(h_i^F(H) \) est déterminé par des morphismes

\[
h'_i : A^{\otimes i} \rightarrow f_2B_{f_1}, \quad i \geq 0.
\]

Nous vérifions que \(h'_i \) est égal à la somme

\[
m^B_i \circ h_i = (-1)^{|H|} \sum (-1)^{i+k} h_{j+1+i}(1^{\otimes j} \circ m^A_k \circ 1^{\otimes i}).
\]

Soit \(i \geq 2 \). Soit \(f_0, \ldots, f_i \) des \(A_\infty \)-foncteurs \(A \rightarrow B. \) Pour tout \(1 \leq t \leq i \), soit \(H_t \) un élément de \(\text{Hom}_{\text{Nunc}_\infty}(f_{t-1}, f_t) \) de degré \(|H_t| \). Notons \(|H| \) la somme des degrés \(|H_t| \). Soit \(H' \) l’élément de \(\text{Hom}_{\text{Nunc}_\infty}(f_0, f_i) \) égal à \(m^F_i(H_0 \circ \ldots \circ H_1) \). Alors \(H' \) est donné par des morphismes gradués

\[
h'_n : A(A_{n-1}, A_n) \circ \ldots \circ A(A_0, A_1) \rightarrow B(f_0A_0, f_1A_1), \quad n \geq 0.
\]

de degré \(|H| - n \), pour toute suite \((A_0, \ldots, A_n) \) d’objets de \(A \). Soit \(x_k \in A(A_{k-1}, A_k), 1 \leq k \leq n \).

Nous notons incl l’inclusion de \((SA)^{\otimes i} \) dans \(B^*A. \) L’élément \(h'_n(x_n \circ \ldots \circ x_1) \) est égal à

\[
-\omega \circ b^B_i \circ [\omega^{-1}(H_0 \circ \ldots \circ H_1)] \circ \Delta^{(i)} \circ \text{incl} \circ (\omega^{-1})^{-1}(x_n \circ \ldots \circ x_1)
\]

Prenons un exemple simple.

Exemple 8.1.1.6 Supposons que \(i = 3 \) et \(n = 2 \). La composition \(\Delta^{(3)} \circ \text{incl} \circ (\omega^{-2})^{-1}(x_2 \circ x_1) \) est égale à la somme dans \(B^*A^{\otimes 3} \)

\[
[\Lambda_2 \circ \Lambda_2 \circ (\omega^{-2})^{-1} - \Lambda_2 \circ (\omega)^{-1} \circ (\omega)^{-1} -
(\omega)^{-1} \circ \Lambda_2 \circ (\omega)^{-1} + \Lambda_2 \circ (\omega) \circ (\omega)^{-1} - \text{incl}]
\]

Nous trouvons donc que \(m^F_3(h_3 \circ h_2 \circ h_1)(x_2 \circ x_1) \) est égal à la somme des éléments

\[
m^B_3 \left(\pm (h_3)A_2 \circ (h_2)A_2 \circ (h_1)A_2 + (h_3)A_2 \circ (h_2)_1 \circ (h_1)A_2 +
\pm (h_3)_1 \circ (h_2)_2 \circ (h_1)_1 + (h_3)_1 \circ (h_2)A_2 \circ (h_1)_1 + (h_3)_1 \circ (h_2)_2 \circ (h_1)_1 + (h_3)_1 \circ (h_2)_2 \circ (h_1)_1 \right)(x_2 \circ x_1).
\]

Le morphisme

\[
h'_2(x_2 \circ x_1) : f_0A_0 \rightarrow f_3A_2
\]

est donc la somme des compositions (au sens près) des suites de morphismes représentées par un chemin de flèches menant de \(f_0A_0 \) à \(f_3A_2 \) dans le diagramme ci-dessous.
180 Chapitre 8 : L’A_∞-catégorie des A_∞-foncteurs

\[
\begin{array}{ccccccc}
 & f_0 & h_1 & f_1 & h_2 & f_2 & h_3 & f_3 \\
 A_0 & f_0A_0 & f_1A_1 & f_2A_2 & (h_3)A_2 & f_2A_2 & f_3A_2 \\
 x_1 & x_2 & x_1 & x_2 & x_1 & (h_2)A_2 & (h_3)A_2 \\
 A_1 & A_2 & A_1 & A_2 & A_1 & A_2 & A_2 \\
\end{array}
\]

(\(h_3)A_2(x_2 \otimes x_1)\)

Remarquons qu’il n’y a aucune flèche verticale (qui correspondrait à un \((f_j)_1(x_i)\) ou un \((f_j)_2(x_2 \otimes x_1)\)) dans ces chemins de flèches.

De façon générale, nous trouvons que l’élément \(H'\) de \(\text{Hom}_{\text{Nunc}_\infty}(f_0, f_n)\) est donné par

\[
h'_n = \sum_{j_1 + \ldots + j_l = n} (-1)^s m^F_l((h_i)_{j_1} \otimes \ldots \otimes (h_1)_{j_l}), \quad n \geq 0,
\]

où les entiers \(j_\alpha\) sont \(\geq 0\), et où le signe est donné par l’égalité

\[
(-1)^s((H_1)_{j_1} \otimes \ldots \otimes (H_1)_{j_l}) \circ (\omega^\otimes n) = ((h_i)_{j_1} \otimes \ldots \otimes (h_1)_{j_l}).
\]

Remarque 8.1.1.7 Soit \(H\) l’élément de \(\text{Hom}_{\text{Nunc}_\infty}(f, f)\) construit à la remarque (8.1.1.3). Si \(f_t = f\), \(0 \leq t \leq i\), et \(H_t = H\), \(1 \leq t \leq i\), le signe \((-1)^s\) ci-dessus est le même que le signe \((-1)^s\) de l’équation (**n), \(n \geq 1\), dans la définition des A_∞-foncteurs (5.1.2.5).

Topologie sur \(F\)

Nous munissons l’espace

\[
\text{Hom}_F(f_1, f_2) = \text{Hom}_{\text{GrC}(A, A)}(B^+, f_2 B f_1)
\]

de la topologie définie par la filtration décroissante \(F_i, i \geq 0\), où

\[
F_i = \text{Hom}_{\text{GrC}(A, A)} \left(\bigoplus_{j \geq i} (SA)^j, f_2 B f_1 \right).
\]

Cette topologie est séparée. La description ci-dessus montre que les compositions de \(F\) sont des morphismes continus contractants (voir 6.2.1). L’A_∞-catégorie \(F\) est donc topologique (6.2.1.1).

Elément tordant de \(F\)

Notons \(F\) l’ensemble des A_∞-foncteurs \(A \to B\). L’élément tordant

\[
x : e_F \to F
\]

envoie le générateur \(I_f\) de \(e_F(f, f)\) sur l’élément \(H\) de degré +1 de \(\text{Hom}_{\text{Nunc}_\infty}(f, f)\) construit à partir de \(f\) (voir 8.1.1.3).
8.1 : L’A∞-catégorie des A∞-foncteurs

Vériﬁons maintenant que x est un élément tordant topologique. Comme le morphisme h₀ est nul, l’image de x est dans le voisinage 𝐹₁. La restriction de la somme

\[\sum_{i \geq 1} m_i^F (H^\otimes i)(I_f) : B^\circ A \to fB_f \]

to (SA)⊗ⁿ est la somme

\[- \sum (-1)^{i+k} h_i (1^\otimes i \otimes m_k \otimes 1^\otimes j) + \sum_{j_1 + \ldots + j_n = n} (-1)^s m_i^B (h_{j_1} \circ \ldots \circ h_{j_n}) \]

Rappelons que \(h_i = f_i, i \geq 1 \). L’équation de Maurer-Cartan appliquée à \(f_i \) est donc équivalente à l’ensemble de équations (**) n, \(n \geq 1 \), de la déﬁnition d’un A∞-foncteur (5.1.2.5).

L’A∞-catégorie \(\text{Nunc}_\infty(A, B) \)

Déﬁnition 8.1.1.8 (Voir aussi [Fuk01b], [Lyu02] et [KS02a], [KS02b])

L’A∞-catégorie \(\text{Nunc}_\infty(A, B) \) est la catégorie tordue \(\mathcal{F}_x \) (voir 6.2.4.3 pour la torsion).

Remarquons que les compositions \(m_i^{\text{Nunc}_\infty} \), \(i \geq 1 \), de [Fuk01b], [Lyu02] sont les mêmes mais obtenues de manière différentes.

Description concrète

Donnons maintenant une description du morphisme

\[m_i^{\text{Nunc}_\infty} : \text{Hom}_{\text{Nunc}_\infty}(f_1, f_2) \to \text{Hom}_{\text{Nunc}_\infty}(f_1, f_2). \]

Soit H un élément de degré \(|H|\) de \(\text{Hom}_{\text{Nunc}_\infty}(f_1, f_2) \). Le morphisme \(H' = m_1^{\text{Nunc}_\infty}(H) \) est déterminé par des morphismes

\[h'_i : A^\otimes i \to f_2 B_{f_1}, \quad i \geq 0. \]

Nous vériﬁons que \(h'_i \) est égal à la somme

\[\sum_{j_1 + \ldots + j_n = n} (-1)^s m_i^B ((f_2)_{j_1} \circ \ldots \circ (f_2)_{j_t} \circ (f_1)_{j_{t+1}} \ldots \circ (f_1)_{j_n}) \]

- \((-1)^{h_i + l + k} h_{j_1 + \ldots + j_n} (1^\otimes i) \otimes m_1^A \otimes 1^\otimes j \),

où l’exposant du signe \(s \) est la somme du signe apparaissant dans la torsion (6.1.2) et du signe donné par l’égalité

\[(-1)^s ((\omega F_2)_{j_1} \circ \ldots \circ (\omega F_2)_{j_t} \circ H_{j_{t+1}} \circ (\omega F_1)_{j_{t+1}} \ldots \circ (\omega F_1)_{j_n}) \circ (\omega^n) \]

\[= ((f_2)_{j_1} \circ \ldots \circ (f_2)_{j_t} \circ h_{j_{t+1}} \circ (f_1)_{j_{t+1}} \ldots \circ (f_1)_{j_n}). \]

La description des compositions supérieures \(m_i^{\text{Nunc}_\infty} \), \(i \geq 2 \), se fait de façon similaire. Reprenons l’exemple 8.1.1.6 et posons

\[H'' = m_3^{\text{Nunc}_\infty} (h_3 \circ h_2 \circ h_1) \in \text{Hom}_{\text{Nunc}_\infty}(f_0, f_3). \]

Le morphisme

\[h''_2 (x_2 \circ x_1) : f_0 A_0 \to f_3 A_2 \]

est la somme des compositions (au signes près) des suites de morphismes représentées par un chemin de flèches menant de \(f_0 A_0 \) à \(f_3 A_2 \) dans le diagramme ci-dessous.
Graphiquement, la torsion consiste donc à autoriser les flèches verticales dans les chemins.

Remarque 8.1.1.9 Si B est une catégorie différentielle graduée, la catégorie $\text{Nunc}_\infty(A,B)$ est aussi une catégorie différentielle graduée car les compositions $m_i^{\text{Nunc}_\infty}$, $i \geq 3$ sont nulles.

8.1.2 Fonctorialité de $\text{Nunc}_\infty(A,B)$

Fonctorialité en A

Soit A, A', B des petites A_∞-catégories. Soit $g \in A' \to A$, $f_1, f_2 : A \to B$ des A_∞-foncteurs. Soit H un élément de $\text{Hom}_{\text{Nunc}_\infty}(f_1, f_2)$. Nous définissons l’élément

$$ H \ast g \in \text{Hom}_{\text{Nunc}_\infty}((f_1 \circ g), (f_2 \circ g)) $$

comme la composition

$$ B^+ A' \xrightarrow{G} B^+ B_{A \circ B} \xrightarrow{f_2 \circ g} B_{f_1 \circ g} $$

où la seconde flèche est induite par H. Comme G est un morphisme de cogèbres différentielles graduées, le morphisme de \mathcal{E}-\mathcal{E}-bimodules

$$ \ast : \text{Nunc}_\infty(f_1, f_2) \to \text{Nunc}_\infty((f_1 \circ g), (f_2 \circ g)) $$

est un A_∞-foncteur strict.

Fonctorialité en B

Soit A, B et B' des petites A_∞-catégories. Soit $g \in B \to B'$, $f_1, f_2 : A \to B$ des A_∞-foncteurs. Soit H un élément de $\text{Hom}_{\text{Nunc}_\infty}(f_1, f_2)$. Nous allons construire un élément

$$ g \ast H \in \text{Hom}_{\text{Nunc}_\infty}((g \circ f_1), (g \circ f_2)). $$

Cela nous fournira un A_∞-foncteur strict

$$ g \ast ? : \text{Nunc}_\infty(f_1, f_2) \to \text{Nunc}_\infty((g \circ f_1), (g \circ f_2)) $$

Commençons par introduire quelques notions.
Soit M un $\mathcal{A}\mathcal{A}$-bimodule différentiel gradué. Soit C, C_1 et C_2 des cogèbres cocomplètes dans la catégorie des cogèbres différentielles graduées de la catégorie de base $\mathcal{C}(\mathcal{A}, \mathcal{A})$. Nous munissons le $\mathcal{A}\mathcal{A}$-bimodule $C_2 \odot M \odot C_1$ de la structure de C_2-C_1-bicomodule (cocomplet) induite par les comultiplications de C_2 et C_1. Soit

$$F_1 : C \to C_1 \quad \text{et} \quad F_2 : C \to C_2$$

des morphismes de cogèbres.

Définition 8.1.2.1 Une (F_1, F_2)-codérivation est un morphisme de $\mathcal{A}\mathcal{A}$-bimodules

$$K : C \to C_2 \odot M \odot C_1$$

tel que

$$(\Delta^{C_2} \odot 1 \odot 1) \circ K = (F_2 \odot K) \circ \Delta^C \quad \text{et} \quad (1 \odot 1 \odot \Delta^{C_1}) \circ K = (K \odot F_1) \circ \Delta^C.$$

Lemme 8.1.2.2 Soit p_1 la projection $C_2 \odot M \odot C_1$ sur M. L’application $K \circ p_1 \circ K$ est une bijection de l’ensemble des (F_1, F_2)-codérivations sur les morphismes de $\mathcal{A}\mathcal{A}$-bimodules $C \to M$. \hfill \Box

Soit C_1, C_2 et C_3 des cogèbres cocomplètes dans la catégorie des cogèbres différentielles graduées de la catégorie de base $\mathcal{C}(\mathcal{A}, \mathcal{A})$. Le produit cotensoriel d’un C_1-C_2-bicomodule M avec un C_2-C_3-bicomodule N est le noyau

$$M \boxtimes N = \ker \left(M \otimes N \xrightarrow{\Delta \otimes 1 \otimes \Delta} M \otimes C_2 \otimes N \right).$$

Reprenons la construction de $H \ast g$. Nous rappelons que les $\mathcal{A}\mathcal{A}$-bimodules $f_1 B_{f_1}$ et $f_2 B_{f_2}$ sont des A_∞-catégories sur \mathcal{A}. Soit

$$F_1 : B^+ A \to B^+ f_1 B_{f_1} \quad \text{et} \quad F_2 : B^+ A \to B^+ f_2 B_{f_2}$$

les constructions bar co-augmentées de f_1 et f_2. Le morphisme

$$H : B^+ A \to f_2 B_{f_1}$$

se relève en une (F_1, F_2)-codérivation de comodules

$$K : B^+ A \to B^+ f_2 B_{f_2} \odot f_2 B_{f_1} \odot B^+ f_1 B_{f_1}.$$ L’A_∞-foncteur $g : B \to B^\wedge$ induit un morphisme G de degré 0

$$B^+ f_2 B_{f_2} \odot f_2 B_{f_1} \odot B^+ f_1 B_{f_1} \to B^+ g f_2 B_{g f_2} \odot g f_2 B_{g f_1} \odot B^+ g f_1 B_{g f_1}.$$

Nous vérifions que la composition $G \circ K$ définit une (GF_1, GF_2)-codérivation

$$B^+ A \to B^+ g f_2 B_{g f_2} \odot g f_2 B_{g f_1} \odot B^+ g f_1 B_{g f_1}$$

et nous définissons l’élément $g \ast H$ par la composition

$$p_1 \circ (G \circ K) : B^+ A \to g f_2 B_{g f_1}.$$

Munissons $B^+ f_2 B_{f_2} \odot f_2 B_{f_1} \odot B^+ f_1 B_{f_1}$ de la différentielle induite par les b_i^B, $i \geq 1$, et notons $D(f_2, f_1)$ le bicomodule différentiel gradué obtenu ainsi. Nous pouvons considérer $D(f_1, f_2)$ comme la construction bar du $f_2 B_{f_2} f_1$-bipolydule $f_2 B_{f_1}$.
Remarque 8.1.2.3 Soit H un élément de $\text{Hom}_{\text{Nat}}(f_1, f_2)$ et K la codérivation associée. L’élément $m^1_{\text{Nat}}(H)$ correspond à la codérivation $\delta(K)$ dans l’espace différentiel gradué des morphismes gradués

$$(\text{Hom}_{\mathcal{G}^{(A\mathcal{A})}}(B^+A, D(f_2, f_1)), \delta).$$

Soit $i \geq 2$. Soit f_0, \ldots, f_i des A_∞-foncteurs $A \rightarrow B$. Pour tout $1 \leq t \leq i$, soit H_t un élément de $\text{Hom}_{\text{Nat}}(f_{t-1}, f_t)$ de degré $|H_t|$. Notons C_i la cogèbre différentielle graduée $B^+_i B_{f_t}$. Le C_i-Co-bicomodule

$$D(f_i, f_{i-1}) \square \ldots \square D(f_1, f_0)$$

est isomorphe en tant qu’objet gradué à

$$C_i \circ f_i B_{f_{i-1}} \circ C_{i-1} \circ f_{i-1} B_{f_{i-2}} \circ C_{i-2} \circ \ldots \circ C_1 \circ f_1 B_{f_0} \circ C_1.$$

Nous le munissons de la différentielle induite par les $b^g_{\leq i}$, $i \geq 1$. L’élément

$$m_i(H_1 \circ \ldots \circ H_1) : B^+_i A \rightarrow f_i B_{f_0}$$

correspond à la F_i-F_1-codérivation

$$K : B^+_i A \rightarrow D(f_i, f_0)$$

correspondant au relèvement

$$B^+_i A \xrightarrow{\Delta^{(i)}} (B^+_i A)^\otimes_{K_i \square \ldots \square K_1} D(f_i, f_{i-1}) \square \ldots \square D(f_1, f_0) \xrightarrow{q} f_i B_{f_0},$$

où q est induit par les $b^g_{\leq i}$, $i \geq 1$.

L’A_∞-foncteur g induit des morphismes

$$D(f_i, f_{i-1}) \square \ldots \square D(f_1, f_0) \rightarrow D(g f_i, g f_{i-1}) \square \ldots \square D(g f_1, g f_0)$$

e et un relèvement vers $D(g f_i, g f_0)$ de

$$D(f_i, f_{i-1}) \square \ldots \square D(f_1, f_0) \rightarrow g f_i B_{g f_0}$$

qui sont compatibles aux différentielles. Nous en déduisons que le morphisme de F-F-bimodules

$$g \circ ? : \text{Nat}(f_1, f_2) \rightarrow \text{Nat}((g \circ f_1), (g \circ f_2))$$

definit un A_∞-foncteur strict.

La catégorie nat\(_\infty\)

Soit nat_∞ la catégorie dont les objets sont les petites A_∞-catégories (non nécessairement strictement unitaires), dont les espaces de morphismes sont les catégories (sans unités en général)

$$\text{nat}_\infty(A, B) = H^0 \text{Nat}(A, B).$$

Il résulte de la fonctorialité de $\text{Nat}(A, B)$ que nat_∞ est une “2-catégorie sans unités pour les 2-morphismes”. La lettre n remplace la lettre c de cat_∞ et exprime le fait que les objets de nat_∞ sont les A_∞-“cat”égories “n”on (nécessairement) strictement unitaires.
Remarque 8.1.2.4 Soit f_1 et f_2 in $\text{Nunc}_\infty(\mathcal{A}, \mathcal{B})$. Soit H un morphisme de $\text{Hom}_{\text{Nunc}_\infty}(f_1, f_2)$ qui est un zéro cycle. Soit x un élément de $\mathcal{A}(A_0, A_1)$. Comme H est un cycle, nous avons la relation
\[
m^B_1(h_1(x)) - m^B_1(h_{A_1} \odot f_1 x) + m^B_2(f_2 x \odot h_{A_0}) = 0.
\]
Nous avons donc un diagramme commutatif dans $H^0 \mathcal{B}$
\[
\begin{array}{ccc}
\hat{f}_1 A_0 & \xrightarrow{f_1 x} & \hat{f}_1 A_1 \\
h_{A_0} & \downarrow & \downarrow h_{A_1} \\
f_2 A_0 & \xrightarrow{f_2 x} & f_2 A_1.
\end{array}
\]

8.1.3 L’A_∞-catégorie $\text{Func}_\infty(\mathcal{A}, \mathcal{B})$

Reprenons les notations de la section 8.1.1 mais supposons désormais que \mathcal{A} et \mathcal{B} sont strictement unitaires. L’A_∞-catégorie $\text{Func}_\infty(\mathcal{A}, \mathcal{B})$ dont les objets sont les A_∞-foncteurs strictement unitaires est définie de la manière suivante :

Soit f_1 et f_2 deux A_∞-foncteurs $\mathcal{A} \rightarrow \mathcal{B}$. Un élément H de $\text{Hom}_{\text{Nunc}_\infty}(f_1, f_2)$ est strictement unitaire s’il vérifie
\[
h_i(1^{\otimes \alpha} \otimes \eta \otimes 1^{\otimes \beta}) = 0, \quad i \geq 1.
\]
Les A_∞-foncteurs strictement unitaires et les morphismes strictement unitaires d’A_∞-foncteurs strictement unitaires forment une sous-A_∞-catégorie de $\text{Nunc}_\infty(\mathcal{A}, \mathcal{B})$. Nous la notons $\text{Func}_\infty(\mathcal{A}, \mathcal{B})$. Nous vérifions que $\text{Func}_\infty(\mathcal{A}, \mathcal{B})$ est fonctoriel par rapport aux A_∞-foncteurs strictement unitaires.

La 2-catégorie cat_∞

Définition 8.1.3.1 Soit cat_∞ la catégorie dont les objets sont les petites A_∞-catégories strictement unitaires, dont les espaces de morphismes sont les catégories
\[
\text{cat}_\infty(\mathcal{A}, \mathcal{B}) = H^0 \text{Func}_\infty(\mathcal{A}, \mathcal{B}).
\]
Il résulte de la fonctorialité de $\text{Func}_\infty(\mathcal{A}, \mathcal{B})$ que cat_∞ est une 2-catégorie.

Remarque 8.1.3.2 Soit f_1 et $f_2 \in \text{Func}_\infty(\mathcal{A}, \mathcal{B})$. Soit H un morphisme de $\text{Hom}_{\text{Func}_\infty}(f_1, f_2)$ qui est un zéro cycle. Soit \mathbf{I}_A le morphisme identité de $A \in \mathcal{A}$. Comme H est un cycle, nous avons la relation
\[
m^B_1(h_1(\mathbf{I}_A)) - m^B_1(h_{A_1} \odot f_1 \mathbf{I}_A) + m^B_2(f_2 \mathbf{I}_A \odot h_{A_0}) = -m^B_2(h_{A_1} \odot \mathbf{I}_{f_1 A}) + m^B_2(\mathbf{I}_{f_2 A} \odot h_{A_0}) = 0.
\]
Nous avons donc un diagramme commutatif dans $H^0 \mathcal{B}$
\[
\begin{array}{ccc}
\hat{f}_1 A & \xrightarrow{1} & \hat{f}_1 A \\
h_{A_0} & \downarrow & \downarrow h_{A_1} \\
f_2 A & \xrightarrow{1} & f_2 A.
\end{array}
\]
8.2 Théorie de l’homotopie des A_∞-foncteurs

Cette section est divisée en deux sous-sections. Soit \mathcal{A} et \mathcal{B} deux A_∞-catégories strictement unitaires sur \mathcal{A} et \mathcal{B}. Dans la première, nous construisons une généralisation de l’A_∞-foncteur de Yoneda y (7.1.0.1) : nous définissons un A_∞-foncteur z : $\text{Func}_\infty(\mathcal{A}, \mathcal{B}) \to C_\infty(\mathcal{A}, \mathcal{B})$, $\mathcal{A}, \mathcal{B} \in \text{cat}_\infty$, qui nous redonne l’$A_\infty$-foncteur de Yoneda pour \mathcal{A} égal à \mathcal{B}. Nous montrons ensuite que l’A_∞-foncteur de Yoneda généralisé z induit un quasi-isomorphisme dans les espaces de morphismes. Dans la seconde partie, nous définissons les équivalences faibles de l’A_∞-catégorie $\text{Func}_\infty(\mathcal{A}, \mathcal{B})$ (elles sont l’analogue A_∞-catégorique des homotopies entre A_∞-morphismes) et nous les caractérisons à l’aide de leurs images par l’A_∞-foncteur z.

8.2.1 L’A_∞-foncteur de Yoneda généralisé

L’A_∞-foncteur de Yoneda généralisé

\[z : \text{Func}_\infty(\mathcal{A}, \mathcal{B}) \to C_\infty(\mathcal{A}, \mathcal{B}) \]

est défini comme la composition

\[\text{Func}_\infty(\mathcal{A}, \mathcal{B}) \to \text{Func}_\infty(\mathcal{A}, C_\infty \mathcal{B}) \xrightarrow{\theta^{-1}} C_\infty(\mathcal{A}, \mathcal{B}) \]

où la première flèche est induite par le foncteur de Yoneda $y : \mathcal{B} \to C_\infty \mathcal{B}$ du chapitre 7 et où θ est définie dans la proposition ci-dessous.

Proposition 8.2.1.1 Soit \mathcal{A} et \mathcal{B} deux A_∞-catégories sur \mathcal{A} et \mathcal{B}. Il existe un isomorphisme fonctoriel de catégories différentielles graduées

\[\theta : \mathcal{N}_\infty(\mathcal{A}, \mathcal{B}) \isomorphisme \rightarrow \text{Nunc}_\infty(\mathcal{A}, \mathcal{N}_\infty \mathcal{B}). \]

Il se restreint en un isomorphisme

\[\theta : C_\infty(\mathcal{A}, \mathcal{B}) \isomorphisme \rightarrow \text{Func}_\infty(\mathcal{A}, C_\infty \mathcal{B}) \]

si \mathcal{A} et \mathcal{B} sont strictement unitaires.

Démonstration de la proposition (8.2.1.1) :

Le foncteur θ

Nous rappelons (5.3.0.3) que l’application

\[\text{Obj} \mathcal{N}_\infty(\mathcal{A}, \mathcal{B}) \rightarrow \text{Obj} \text{Nunc}_\infty(\mathcal{A}, \mathcal{N}_\infty \mathcal{B}), \quad M \mapsto \theta_M, \]

est une bijection. Nous allons étendre cette application en un isomorphisme de catégories différentielles graduées

\[\theta : \mathcal{N}_\infty(\mathcal{A}, \mathcal{B}) \rightarrow \text{Nunc}_\infty(\mathcal{A}, \mathcal{N}_\infty \mathcal{B}). \]
Soit X et X' deux A-B-bipolydules et

$$f : X \to X'$$

un morphisme de $N(A, B)$. Il est donné par des morphismes

$$f_{i,j} : A^{\otimes i} \otimes X \otimes B^{\otimes j} \to X', \quad i, j \geq 0.$$

Le morphisme

$$\theta(f) \in \text{Hom}_{N_{\infty}}(\theta_X, \theta_{X'})$$

est donné par un morphisme

$$B^+ A \to \theta_X, (N^\infty B)_{\theta_X} = \text{Hom}_{T^c SB}(SX \otimes T^c SB, SX' \otimes T^c SB)$$

qui envoie un élément ϕ de $(SA)^{\otimes i}$ de degré $|\phi|$ sur l’unique morphisme (voir 2.1.2.1) Υ tel que la composition $p_1 \circ \Upsilon$ a pour composantes les morphismes

$$SX \otimes (SB)^{\otimes j} \xrightarrow{(-1)^{|i|\phi \otimes 1}} (SA)^{\otimes i} \otimes SX \otimes (SB)^{\otimes j} \xrightarrow{F_{i,j}} SX', \quad j \geq 0.$$

Remarquons que si $i = 0$, le morphisme

$$\Upsilon : SX \otimes T^c SB \to SX' \otimes T^c SB$$
est le morphisme donné par les morphismes $F_{0,j}, \ j \geq 0$. Nous avons ainsi défini un isomorphisme d’objets gradués

$$\text{Hom}_{N_{\infty}(A, B)}(X, X') \to \text{Hom}_{N_{\infty}(A, N_{\infty} B)}(\theta_X, \theta_{X'}).$$

Montrons que cet isomorphisme définit un isomorphisme de catégories différentielles graduées. Soit f de degré p. La compatibilité à la composition m_2 est immédiate. Montrons la compatibilité à m_1. Soit $\phi \in (SA)^{\otimes n}$ de degré $|\phi|$ et soit $\kappa \circ \psi \in SX \otimes (SB)^{\otimes n'}$. Nous avons les égalités (le calcul est le même que pour la démonstration du lemme cuf 5.3.0.1)

$$m_1^F(\theta(f))(\phi)(\kappa \circ \psi) = (-1)^{|\phi|+1} \sum b^X_{i,j, \kappa}(f_{\alpha, \beta} \circ 1^{\otimes \beta})(\phi \circ \kappa \circ \psi) - (-1)^p \sum f_{i,j}(1^{\otimes n} \circ b^X_{\phi, \kappa}(\phi \circ \kappa \circ \psi) - (-1)^p \sum f_{i,j}(1^{\otimes n} \circ 1 \circ 1^{\otimes n'})(\phi \circ \kappa \circ \psi).$$

$$m_2^F(\theta(f), \theta_X)(\phi)(\kappa \circ \psi) = (-1)^{|\phi|+1} \sum b^{X'}_{\alpha, \beta}(1^{\otimes \alpha} \circ f^{X'}_{\alpha, \beta} \circ 1^{\otimes \beta})(\phi \circ \kappa \circ \psi),$$

$$m_2^F(\theta(f), \theta_X)(\phi)(\kappa \circ \psi) = (-1)^{p+|\phi|+1} \sum b^{X'}_{\alpha, \beta}(1^{\otimes \alpha} \circ f^{X'}_{\alpha, \beta} \circ 1^{\otimes \beta})(\phi \circ \kappa \circ \psi).$$

Nous en déduisons l’égalité

$$d(\theta(f)) = m_1^F(\theta(f)) - m_2^F(\theta_X \circ \theta(f)) + m_2^F(\theta(f) \circ \theta_X) = \theta(d(f))$$
et nous avons le résultat.
Compatibilité de θ à la fonctorialité

Si $f : A' \to A$ et $g : B \to B'$ sont des A_∞-foncteurs, ils induisent clairement des morphismes qui rendent commutatifs les carrés

\[
\begin{array}{ccc}
N_\infty(A, B) & \xrightarrow{f_*} & N_\infty(A', B) \\
\downarrow{\theta} & & \downarrow{\theta} \\
\text{Nunc}_\infty(A, \text{Nunc}_\infty B) & \xrightarrow{f_*} & \text{Nunc}_\infty(A', \text{Nunc}_\infty B) \\
\end{array}
\quad
\begin{array}{ccc}
N_\infty(A, B) & \xrightarrow{g_*} & N_\infty(A, B') \\
\downarrow{\theta} & & \downarrow{\theta} \\
\text{Nunc}_\infty(A, \text{Nunc}_\infty B) & \xrightarrow{g_*} & \text{Nunc}_\infty(A, \text{Nunc}_\infty B').
\end{array}
\]

Le cas strictement unitaire

Supposons maintenant que A et B sont des A_∞-catégories strictement unitaires. Nous avons les sous-catégories

\[
C_\infty(A, B) \subset N_\infty(A, B) \quad \text{et} \quad \text{Nunc}_\infty(A, C_\infty B) \subset \text{Func}_\infty(A, N_\infty B).
\]

Par la remarque (5.3.0.6), la bijection

\[
\text{Obj} N_\infty(A, B) \to \text{Obj} \text{Nunc}_\infty(A, N_\infty B),
\]

$M \mapsto \theta M$, se restreint en une bijection

\[
\text{Obj} C_\infty(A, B) \to \text{Obj} \text{Func}_\infty(A, C_\infty B)
\]

et il est clair que, pour X et X' dans $C_\infty(A, B)$, l’application $f \mapsto \theta(f)$ induit un isomorphisme

\[
\text{Hom}_{C_\infty(A, B)}(X, X') \cong \text{Hom}_{\text{Func}_\infty(A, C_\infty B)}(\theta X, \theta X').
\]

Nous avons donc un isomorphisme de catégories différentielles graduées

\[
\theta : C_\infty(A, B) \cong \text{Func}_\infty(A, C_\infty B).
\]

\[\square\]

Théorème 8.2.1.2 L’A_∞-foncteur de Yoneda généralisé

\[z : \text{Func}_\infty(A, B) \to C_\infty(A, B)\]

induit un quasi-isomorphisme dans les espaces de morphismes.

Commençons par quelques lemmes.

Soit $(\text{Nunc}_\infty(A, B))_u$ la sous-catégorie pleine de $\text{Nunc}_\infty(A, B)$ formée des A_∞-foncteurs strictement unitaires.

Lemme 8.2.1.3 Le foncteur fidèle

\[\text{Func}_\infty(A, B) \to \text{Nunc}_\infty(A, B)\]

induit un isomorphisme

\[H^*\text{Func}_\infty(A, B) \to H^*(\text{Nunc}_\infty(A, B))_u.
\]

8.2 : Théorie de l’homotopie des A_∞-foncteurs

Démonstration : Dans cette démonstration, nous utilisons une filtration qui est adaptée de celle de J. A. Guccione et J. J. Guccione [GG96].

Soit f_1 et f_2 deux A_∞-foncteurs strictement unitaires $\mathcal{A} \to \mathcal{B}$. Nous rappelons que l’espace des éléments strictement unitaires de

$$
\text{Hom}_{\text{Nunc}_{\infty}}(f_1, f_2) = \text{Hom}_{C(A, A)}(T^\infty S\mathcal{A}, f_2 B_{f_1})
$$

est formé des H qui se factorisent par $T^\infty S\mathcal{A}$, où \mathcal{A} est le conoyau de l’unité de \mathcal{A}. Nous avons donc l’égalité

$$
\text{Hom}_{\text{Func}_{\infty}}(f_1, f_2) = \text{Hom}_{C(A, A)}\left(\bigoplus_{0 \leq p} (S\mathcal{A})^p, f_2 B_{f_1} \right).
$$

Pour tout $p \geq 0$, nous posons

$$
F_p = \text{Hom}_{C(A, A)}\left(\bigoplus_{0 \leq i < p} (S\mathcal{A})^i, f_2 B_{f_1} \right) \oplus \text{Hom}_{C(A, A)}\left(\bigoplus_{0 \leq j} (S\mathcal{A})^j \circ (S\mathcal{A})^0, f_2 B_{f_1} \right).
$$

Nous avons clairement l’inclusion $F_{i+1} \subset F_i$, $i \geq 0$. La limite inverse des F_p, $p \geq 0$, est l’espace $\text{Hom}_{\text{Func}_{\infty}}(f_1, f_2)$ et F_0 est l’espace $\text{Hom}_{\text{Nunc}_{\infty}}(f_1, f_2)$. Nous avons une injection d’espaces gradués

$$
J_p : F_p \hookrightarrow \text{Hom}_{C(A, A)}(T^\infty S\mathcal{A}, f_2 B_{f_1}), \quad p \geq 0.
$$

Munisons $\text{Hom}_{C(A, A)}(T^\infty S\mathcal{A}, f_2 B_{f_1})$ de la différentielle m^Nunc_{∞} et montrons qu’elle induit une différentielle sur F_p, $p \geq 1$.

Soit $p \geq 1$. Notons Q_p la projection sur le conoyau de J_p. Soit $H \in \text{Hom}_{\text{Nunc}_{\infty}}(f_1, f_2)$ tel que $Q_p(H) = 0$. Cette condition est équivalente au fait que les morphismes h_i, $i \geq 0$, (définis en 8.1.1.2) vérifient les équations

$$
h_i((1^\odot \alpha \odot \eta \odot 1^\odot \beta) \odot 1^\odot \gamma) = 0, \quad \alpha + 1 + \beta + \gamma = i, \quad \alpha + 1 + \beta \leq p.
$$

Nous déduisons de la description concrète (8.1.1.8) de l’élément $m^\text{Nunc}_{\infty}(H)$ que la composition de $m^\text{Nunc}_{\infty}(H)$ avec

$$
((1^\odot \alpha \odot \eta \odot 1^\odot \beta) \odot 1^\odot \gamma), \quad \alpha + 1 + \beta + \gamma = i, \quad \alpha + 1 + \beta \leq p,
$$

s’annule. Ceci montre que $Q_p(m^\text{Nunc}_{\infty}(H)) = 0$. Nous en déduisons que la différentielle m^Nunc_{∞} induit une différentielle sur l’objet gradué F_p, $p \geq 1$.

Montrons que le quotient de l’inclusion $F_{i+1} \subset F_i$, $p \geq 0$, est contractile. Soit G_p le conoyau de cette inclusion. Il est isomorphe à

$$
\text{Hom}_{C(A, A)}\left(\bigoplus_{0 \leq j} (S\mathcal{A})^p \circ (S\mathcal{A})^0, f_2 B_{f_1} \right) = \text{Hom}_{C(A, A)}\left((S\mathcal{A})^p \circ T^\infty S\mathcal{A}, f_2 B_{f_1} \right).
$$

Soit H un élément de F_i de degré $|H|$. Nous déduisons de la description concrète (8.1.1.8) de $m^\text{Nunc}_{\infty}(H)(\phi)$, où ϕ est un élément de $(S\mathcal{A})^p \circ T^\infty S\mathcal{A}$, l’égalité

$$
m^{G_p}_i(H) = m^{F(A, B)}_i(H),
$$

où $F(A, B)$ est la catégorie munie des compositions naïves (8.1.1). Par définition, l’élément $m^{F(A, B)}_i(H)$ est égal à

$$
b^{B^+A} \circ H - (-1)^{|H|} H \circ m^B_1.
$$
Comme l’A_∞-catégorie A est strictement unitaire, elle est H-unitaire (4.1.3.7). Sa construction par est donc quasi-isomorphe à 0. Nous en déduisons que G_p est contractile.

Montrons que l’inclusion

$$J : \text{Hom}_{\text{Func}_\infty}(f_1, f_2) \hookrightarrow \text{Hom}_{\text{Nunc}_\infty}(f_1, f_2)$$

est un quasi-isomorphisme. Les complexes $G_p, p \geq 0$, sont tous contractiles. Nous en déduisons que le conoyau de l’injection $J_p, p \geq 0$, est isomorphe à

$$\bigoplus_{0 \leq i \leq p} G_i.$$

C’est un espace contractile. L’espace $\text{Hom}_{\text{Nunc}_\infty}(f_1, f_2)$ est donc isomorphe à

$$F_p \oplus \bigoplus_{0 \leq i \leq p} G_i, \quad p \geq 0.$$

Le conoyau de J est donc

$$\prod_{0 \leq i} G_i.$$

Il est clairement contractile, d’où le résultat.

\[\square\]

Lemme 8.2.1.4 Soit A' et B' des A_∞-catégories sur A et B et

$$g : A \to A' \quad \text{et} \quad g' : B \to B'$$

des A_∞-quasi-isomorphismes dans $C(A, A)$ et $C(B, B)$. Considérons les comme des A_∞-foncteurs (5.1.2.7). Les A_∞-foncteurs

$$g^* : \text{Nunc}_\infty(A', B) \to \text{Nunc}_\infty(A, B) \quad \text{et} \quad g'^* : \text{Nunc}_\infty(A, B) \to \text{Nunc}_\infty(A, B')$$

induisent des quasi-isomorphismes dans les espaces de morphismes.

Nous déduisons de ce lemme et du lemme (8.2.1.3) le corollaire suivant :

Corollaire 8.2.1.5 Reprenons les hypothèses du lemme (8.2.1.4). Si les A_∞-catégories A, A', B et B' sont strictement unitaires et que les A_∞-morphismes g et g' sont strictement unitaires, les A_∞-foncteurs restreints

$$\text{Func}_\infty(A', B) \to \text{Func}_\infty(A, B) \quad \text{et} \quad \text{Func}_\infty(A, B) \to \text{Func}_\infty(A, B')$$

induisent des quasi-isomorphismes dans les espaces de morphismes.

\[\square\]

Démonstration du lemme 8.2.1.4 : Par la proposition (6.1.3.4), il suffit de montrer que les A_∞-foncteurs induits par g et g'

$$\mathcal{F}(A', B) \to \mathcal{F}(A, B) \quad \text{et} \quad \mathcal{F}(A, B) \to \mathcal{F}(A, B'),$$

où $\mathcal{F}(A', B), \mathcal{F}(A, B), \mathcal{F}(A, B)$ et $\mathcal{F}(A, B')$ sont les catégories munies des compositions naïves (voir 8.1.1), donnent des quasi-isomorphismes dans les espaces de morphismes. Les espaces de morphismes

$$\text{Hom}_{\mathcal{F}(A, B)}(f_1, f_2) = \text{Hom}_{C(A, A)}(T^c S A, f_1 f_2 B f_2)$$
8.2 : Théorie de l’homotopie des $A\infty$-foncteurs

sont munies de la différentielle

$$\delta : H \mapsto m_1^B \circ H - (-1)^{|H|} H \circ b^{B+A}.$$

Comme les morphismes $g'_1 : B \to B'$ et $B^+g : B^+A \to B^+A'$ sont des quasi-isomorphismes, nous avons le résultat. \(\square \)

Démonstration du théorème (8.2.1.2) :

Nous allons d’abord montrer que nous pouvons nous ramener au cas où les $A\infty$-catégories strictement unitaires sont différentielles graduées unitaires, puis nous prouverons le résultat en utilisant des arguments d’algèbre homologique classique.

La proposition (7.5.0.2) nous donne des modèles différentiels gradués unitaires A' et B' munis d’$A\infty$-quasi-isomorphismes strictement unitaires $A \to A'$ et $B \to B'$.

Le lemme 8.2.1.4 et son corollaire 8.2.1.5 nous donne un diagramme

$$\begin{align*}
\text{Func}_{\infty}(A, B) & \xrightarrow{z} C_{\infty}(A, B) \\
\downarrow & \downarrow \\
\text{Func}_{\infty}(A, B') & \xrightarrow{z} C_{\infty}(A, B') \\
\downarrow & \downarrow \\
\text{Func}_{\infty}(A', B') & \xrightarrow{z} C_{\infty}(A', B')
\end{align*}$$

dont toutes les flèches verticales induisent des quasi-isomorphismes dans les espaces de morphismes. Ils nous suffit donc de montrer que

$$z : \text{Func}_{\infty}(A, B) \to C_{\infty}(A, B)$$

est un quasi-isomorphisme dans le cas où A et B sont différentielles graduées unitaires. Le lemme (8.2.1.4) et la proposition (5.2.0.4) montrent qu’il est équivalent de montrer que

$$z : (\text{Nunc}_{\infty}(A, B))_u \to (N_{\infty}(A, B))_u$$

est un quasi-isomorphisme. Soit f_1 et f_2 des $A\infty$-foncteurs strictement unitaires $A \to B$. Nous avons un isomorphisme

$$\text{Hom}_{\text{C}_{(A,A)}}(B^+A, f_2B_{f_1}) \xrightarrow{\text{Hom}_{A^{+\odot A}}(A \odot B^+A \odot A, f_2B_{f_1})} \text{Hom}_{A^{+\odot A}}(A \odot B^+A \odot A, f_2B_{f_1}).$$

Rappelons (7.4.0.1) que l’$A\infty$-foncteur de Yoneda

$$y : B \to C_{\infty}B$$

induit un quasi-isomorphisme dans les espaces de morphismes. Nous avons donc un quasi-isomorphisme

$$\text{Hom}_{A^{+\odot A}}(A \odot B^+A \odot A, f_2B_{f_1}) \xrightarrow{\text{Hom}_{A^{+\odot A}}(A \odot B^+A \odot A, \text{Hom}_{C_{\infty}B}(y \circ f_1, y \circ f_2))} \text{Hom}_{A^{+\odot A}}(A \odot B^+A \odot A, \text{Hom}_{C_{\infty}B}(y \circ f_1, y \circ f_2)).$$
Notons $R\text{Hom}$ le foncteur dérivé à droite qui calcule les groupes Ext^*. Le dernier terme ci-dessus se récrit

$$R\text{Hom}_{A \otimes A}(A, R\text{Hom}_B(y \circ f_1, y \circ f_2)).$$

Il est isomorphe à

$$R\text{Hom}_{A \otimes B}(y \circ f_1, y \circ f_2)$$

qui est isomorphe à

$$\text{Hom}_{A \otimes B}(A \otimes T^*SA \otimes S(y \circ f_1) \otimes T^*SB \otimes B, S(y \circ f_2)) \simeq$$

$$\text{Hom}_{C(A, B)}(T^*SA \otimes S(y \circ f_1) \otimes T^*SB, S(y \circ f_2)) \simeq$$

$$\text{Hom}_{(T^*SA) \otimes (T^*SB)}(B(y \circ f_1), B(y \circ f_2)).$$

Comme nous avons des égalités de A-B-bipolydules

$$y \circ f = z(f), \quad f \in \text{Nuc}_\infty(A, B),$$

le lemme (8.2.1.1) montre que le dernier espace de morphismes ci-dessus est

$$\text{Hom}_{N_{\infty}(A, B)}(z(f_1), z(f_2)).$$

La composition de tous les (quasi-)isomorphismes ci-dessus étant le morphisme

$$z(f_1, f_2) : \text{Hom}_{N_{\infty}(A, B)}(f_1, f_2) \to \text{Hom}_{N_{\infty}(A, B)}(f_1, f_2),$$

nous avons le résultat. \hfill \Box

Remarque 8.2.1.6 Par construction, l'image de l'\(A_\infty\)-foncteur z est formée des A-B-bipolydules qui sont de la forme

$$B(?, ?), \quad f \in \text{Func}_\infty(A, B).$$

Ils sont libres en tant que B-polydules.

8.2.2 Équivalences faibles d’A_∞-foncteurs

Les équivalences faibles entre A_∞-foncteurs sont l’analogue A_∞-catégorique des *homotopies* entre A_∞-morphismes.

Définition 8.2.2.1 Soit A et B deux A_∞-catégories sur A et B. Soit f et g deux A_∞-foncteurs $A \to B$. Un élément $H \in Z^0\text{Hom}_{\text{Nuc}_\infty}(f, g)$ est une *équivalence faible* s'il devient un isomorphisme dans $H^0\text{Nuc}_\infty(A, B)$. Nous dirons alors que f et g sont faiblement équivalents et écrirons $f \sim g$.

Remarque 8.2.2.2 Supposons que A et B sont strictement unitaires et f et g sont des A_∞-foncteurs strictement unitaires. D’après le lemme (8.2.1.3) f et g sont faiblement équivalents si et seulement si il existe un morphisme strictement unitaire $H \in Z^0\text{Hom}_{\text{Func}_\infty}(f_1, f_2)$ qui devient un isomorphisme dans $H^0\text{Func}_\infty(A, B)$.

Proposition 8.2.2.3 Soit A et B deux A_∞-catégories strictement unitaires sur A et B. Soit f et g deux A_∞-foncteurs strictement unitaires $A \to B$. Un élément $H \in Z^0\text{Hom}_{\text{Func}_\infty}(f, g)$ est une *équivalence faible* si et seulement si $h_0 : e_A \to \text{Hom}_B(f^?, g^?)$ induit un isomorphisme de foncteurs $H^0f \to H^0g$ de H^0A dans H^0B.

Définition : D’après le théorème (8.2.1.2), nous avons un isomorphisme
\[H^0\text{Func}_\infty(A, B) \cong H^0\mathcal{C}_\infty(A, B). \]

L’élément \(H \) est donc une équivalence faible si et seulement si le morphisme de \(A\-B \)-bipolydules
\[z(H) : z(f) \to z(g) \]
est une équivalence d’homotopie dans \(\mathcal{C}_\infty(A, B) \), c’est-à-dire (voir l’équivalence entre D2 et D3 dans 4.1.3.1) si et seulement si \(z(H) \) est un \(A_\infty \)-quasi-isomorphisme de \(A\-B \)-bipolydules. Par définition des \(A_\infty \)-quasi-isomorphismes, ceci est équivalent au fait que le morphisme de \(\mathcal{C}(A, B) \)
\[S^{-1}(z(H))_{0,0} : \mathcal{B}(?, f- \to \mathcal{B}(?, g-) \]
est un quasi-isomorphisme, c’est-à-dire qu’il devient un isomorphisme en cohomologie. Comme le foncteur de Yoneda au sens classique envoie la classe dans \(H^*B \) de
\[h_A = h_0(I_A) : \hat{f}A \to \hat{g}A, \quad A \in A, \]
sur
\[S^{-1}(z(H))_{0,0} : H^*\mathcal{B}(?, fA) \to H^*\mathcal{B}(?, gA), \]
\(S^{-1}(z(H))_{0,0} \) est un quasi-isomorphisme si et seulement si \(h_A \) induit un isomorphisme dans \(H^*B \), ou de manière équivalente dans \(H^0\mathcal{B} \). \(\square \)
Chapitre 8 : L’A_∞-catégorie des A_∞-foncteurs
Chapitre 9

Les A_∞-équivalences

Ce chapitre est divisé en deux parties. Dans la section 9.1, nous définissons l’A_∞-isomorphie dans une A_∞-catégorie A et nous montrerons que cette notion est un relèvement A_∞-catégorique de l’isomorphie dans H^0A au sens classique. Dans la section 9.2, nous définissons les A_∞-équivalences et nous montrons qu’un A_∞-foncteur f est une A_∞-équivalence si et seulement si f_1 est un quasi-isomorphisme et $H^0f_1 : H^0A \to H^0B$ est une équivalence de catégories au sens classique. Cette caractérisation des A_∞-équivalences a été énoncée par M. Kontsevich [Kon98]. K. Fukaya l’a démontré de manière indépendante [Fuk01b, thm. 8.6], ainsi que V. Lyubashenko [Lyu02].

9.1 L’A_∞-isomorphie

Soit \mathbb{O} un ensemble. Considérons comme une catégorie de la manière suivante : les objets sont en bijection avec \mathbb{O} et, pour $i, j \in \mathbb{O}$, l’espace de morphismes $\text{Hom}_\mathbb{O}(i, j)$ contient un unique élément noté (i, j). La composition est alors nécessairement donnée par

$$(j, k) \circ (i, j) = (i, k), \quad i, j, k \in \mathbb{O}.$$

En particulier, l’identité de $i \in \mathbb{O}$ est le morphisme (i, i) et tous les morphismes (i, j) sont des isomorphismes.

Définition 9.1.0.1 Soit $n \geq 1$. Considérons l’ensemble à n éléments $\{1, \ldots, n\}$. Soit I_n la K-catégorie engendrée par la catégorie $\{1, \ldots, n\}$.

Remarque 9.1.0.2 Soit $n \geq 2$. Soit A une K-catégorie et des objets $A_i \in \text{Obj } A$, $1 \leq i \leq n$. Ils sont isomorphes si et seulement si il existe un foncteur

$$f : I_n \to A$$

qui envoie i sur A_i. Nous disons alors que f est un foncteur d’isomorphie pour les objets $A_i \in \text{Obj } A$, $1 \leq i \leq n$.

Définition 9.1.0.3 Soit $n \geq 2$. Soit A une A_∞-catégorie strictement unitaire sur A et des objets $A_i \in A$, $1 \leq i \leq n$. Les objets $A_i \in A$, $1 \leq i \leq n$, sont A_∞-isomorphes s’il existe un A_∞-foncteur strictement unitaire

$$f : I_n \to A$$
qui envoie i sur A_i. Nous disons alors que f est un A_∞-foncteur d’A_∞-isomorphie pour les objets $A_i \in \mathcal{A}$, $1 \leq i \leq n$.

Nous prouvons maintenant un lemme énoncé dans [Kon98] :

Lemme 9.1.0.4 Soit \mathcal{A} une A_∞-catégorie strictement unitaire. Soit $n \geq 1$. Des objets $A_i \in \mathcal{A}$, $1 \leq i \leq n$, sont A_∞-isomorphes dans \mathcal{A} si et seulement ils sont isomorphes dans $H^0\mathcal{A}$.

Démonstration : Comme \mathcal{A} est strictement unitaire, il existe (3.2.4.1) un modèle minimal strictement unitaire $H^*\mathcal{A}$ pour \mathcal{A} et des A_∞-foncteurs strictement unitaires (3.2.4.2)

$$i : H^*\mathcal{A} \rightarrow \mathcal{A} \text{ et } q : \mathcal{A} \rightarrow H^*\mathcal{A}.$$

Nous en déduisons que des objets $A_i \in \mathcal{A}$, $1 \leq i \leq n$, sont A_∞-isomorphes dans \mathcal{A} si et seulement si ils sont A_∞-isomorphes dans $H^*\mathcal{A}$. Nous pouvons donc supposer que l’A_∞-catégorie \mathcal{A} est minimale.

Soit \mathcal{A} une A_∞-catégorie minimale. Montrons que l’A_∞-isomorphie dans \mathcal{A} entraîne l’isomorphie dans $H^0\mathcal{A}$. Soit $f : I_n \rightarrow \mathcal{A}$ un A_∞-foncteur d’A_∞-isomorphie pour $A_i \in \mathcal{A}$, $1 \leq i \leq n$. Comme les A_∞-catégories I_n et \mathcal{A} sont minimales, $f_0 : I_n \rightarrow A^0 = H^0\mathcal{A}$ définit un foncteur d’isomorphie pour les objets $A_i \in \mathcal{A}$, $1 \leq i \leq n$.

Montrons que l’isomorphie dans $H^0\mathcal{A}$ implique l’A_∞-isomorphie dans \mathcal{A}. Soit $g : I_n \rightarrow H^0\mathcal{A}$ un foncteur d’isomorphie pour les objets $A_i \in \Obj H^0\mathcal{A}$, $1 \leq i \leq n$. Nous cherchons un A_∞-foncteur strictement unitaire $f : I_n \rightarrow \mathcal{A}$ tel que $f_1 = i \circ g$, où i est l’inclusion $A^0 \hookrightarrow \mathcal{A}$. D’après le théorème (3.2.2.1), il suffit de construire un A_∞-foncteur f' (non nécessairement strictement unitaire) tel que $f'_1 = f_1$. Nous allons construire les f'_r, $r \geq 2$, par récurrence sur r. Supposons donné des morphismes gradués f'_i, $1 \leq i \leq r$, de degré $1 - i$, définissant un A_r-foncteur $I_n \rightarrow \mathcal{A}$. Soit f'_{r+1} un morphisme de degré $-r$. Le lemme (B.4.2) affirme que la suite des f'_i, $1 \leq i \leq r+1$, définit un A_{r+1}-foncteur si nous avons l’égalité

$$\delta_{\text{Hoch}}(f'_{r+1}) = -r(f'_2, \ldots, f'_r)$$

où $r(f'_2, \ldots, f'_r)$ est un certain cycle du complexe de Hochschild $C^*(I_n, j, A_f)$. Comme la catégorie I_n est équivalente à la catégorie triviale I_1, le complexe de Hochschild $C^*(I_n, j, A_f)$ est acyclique. Il existe donc un morphisme f'_{r+1} tel que les morphismes gradués f'_i, $1 \leq i \leq r+1$, définissent un A_{r+1}-foncteur $I_n \rightarrow \mathcal{A}$.

9.2 La caractérisation des A_∞-équivalences

Définition 9.2.0.1 Deux A_∞-catégories strictement unitaires \mathcal{A} et \mathcal{B} sur \mathcal{A} et \mathcal{B} sont A_∞-équivalentes s’il existe des A_∞-foncteurs strictement unitaires

$$f : \mathcal{A} \rightarrow \mathcal{B} \text{ et } g : \mathcal{B} \rightarrow \mathcal{A}$$

tels que $f \circ g$ et $1_\mathcal{B}$ sont A_∞-isomorphes dans $\Func(\mathcal{B}, \mathcal{B})$ et $g \circ f$ et $1_\mathcal{A}$ sont A_∞-isomorphes dans $\Func(\mathcal{A}, \mathcal{A})$. Nous dirons alors que f (ou g) est une A_∞-équivalence entre \mathcal{A} et \mathcal{B}.
Définition 9.2.0.2 Soit \mathcal{A} et \mathcal{B} deux catégories différentielles graduées unitaires sur \mathcal{A} et \mathcal{B}. Elles sont équivalentes (au sens classique) s’il existe des foncteurs

$$f : \mathcal{A} \to \mathcal{B} \quad \text{et} \quad g : \mathcal{B} \to \mathcal{A}$$

et des isomorphismes des foncteurs

$$\mu : f \circ g \to 1_{\mathcal{B}} \quad \text{et} \quad \nu : g \circ f \to 1_{\mathcal{A}}.$$

Nous dirons alors que f (ou g) est une équivalence entre \mathcal{A} et \mathcal{B}.

Remarque 9.2.0.3 Soit \mathcal{A} et \mathcal{B} deux catégories différentielles graduées unitaires sur \mathcal{A} et \mathcal{B}. Supposons qu’elles sont équivalentes. Soit f une équivalence entre \mathcal{A} et \mathcal{B}. Soit g, μ et ν comme dans la définition (9.2.0.2). L’élément $H \in \text{Hom}_{\text{Func}_\infty}(f \circ g, 1_{\mathcal{B}})$ (resp. $H' \in \text{Hom}_{\text{Func}_\infty}(g \circ f, 1_{\mathcal{A}})$) défini par

$$h_0 = \mu, \quad h_i = 0, \quad i \geq 1, \quad \text{(resp.} \quad h'_0 = \mu, \quad h'_i = 0, \quad i \geq 1)$$

est un cycle dans $\text{Func}_\infty(\mathcal{B}, \mathcal{B})$ (resp. dans $\text{Func}_\infty(\mathcal{A}, \mathcal{A})$). Il induit un isomorphisme dans $H^0\text{Func}_\infty(\mathcal{B}, \mathcal{B})$ (resp. $H^0\text{Func}_\infty(\mathcal{A}, \mathcal{A})$). Ceci montre que \mathcal{A} et \mathcal{B} sont Λ_∞-équivalentes en tant que Λ_∞-catégories.

L’énoncé du théorème suivant est du à M. Kontsevich [Kon98].

Théorème 9.2.0.4 (Voir aussi K. Fukaya [Fuk01b] et V. Lyubashenko [Lyu02]) Soit \mathcal{A} et \mathcal{B} deux Λ_∞-catégories strictement unitaires sur \mathcal{A} et \mathcal{B} et $f : \mathcal{A} \to \mathcal{B}$ un Λ_∞-foncteur strictement unitaire. Les énoncés suivants sont équivalents :

a. f est une Λ_∞-équivalence.

b. f_1 induit une équivalence $H^*\mathcal{A} \to H^*\mathcal{B}$, où $H^*\mathcal{A}$ et $H^*\mathcal{B}$ sont la cohomologie de \mathcal{A} et \mathcal{B} considérées comme \mathbb{K}-catégories graduées.

c. f_1 est un quasi-isomorphisme et induit une équivalence $H^0\mathcal{A} \to H^0\mathcal{B}$.

Démonstration :

$a \Rightarrow b$: Supposons que f est une Λ_∞-équivalence. Soit $g : \mathcal{B} \to \mathcal{A}$ vérifiant les conditions de la définition (9.2.0.1). D’après le lemme (9.1.0.4), l’Λ_∞-isomorphie dans $\text{Func}_\infty(\mathcal{B}, \mathcal{B})$ (resp. dans $\text{Func}_\infty(\mathcal{A}, \mathcal{A})$) est équivalente à l’isomorphie dans $H^0\text{Func}_\infty(\mathcal{B}, \mathcal{B})$ (resp. dans $H^0\text{Func}_\infty(\mathcal{A}, \mathcal{A})$). Comme $f \circ g$ et $1_{\mathcal{B}}$ sont isomorphes dans $H^0\text{Func}_\infty(\mathcal{A}, \mathcal{A})$, il existe donc un élément

$$H \in Z^0\text{Hom}_{\text{Func}_\infty}(g \circ f, 1_{\mathcal{B}})$$

induisant un isomorphisme dans $H^0\text{Func}_\infty(\mathcal{B}, \mathcal{B})$. D’après la proposition (8.2.2.3), le morphisme h_0 induit un isomorphisme de foncteurs

$$H^0(h_0) : H^*(g_1 \circ f_1) \to H^*1_{\mathcal{B}}.$$

L’isomorphisme de foncteurs entre $H^*(f_1 \circ g_1)$ et $1_{\mathcal{B}}$ est construit de la même manière.

$b \Rightarrow c$: C’est clair.

c \Rightarrow a : Nous allons montrer cette implication dans deux cas particuliers puis nous montrerons que cela implique le cas général.
Premier cas : l’application $\hat{f} : \mathcal{A} \to B$ est une bijection.

Nous pouvons considérer que \mathcal{A} est égal à B et que \hat{f} est l’identité de \mathcal{A}. L’A_{∞}-foncteur f est ainsi $(5.1.2.7)$ un A_{∞}-morphisme dans la catégorie $C(\mathcal{A}, \mathcal{A})$. D’après le point b du corollaire $(1.3.1.3)$, il existe un A_{∞}-morphisme $g : B \to \mathcal{A}$ et des homotopies h et h' de $f \circ g$ vers 1_B et de $g \circ f$ vers 1_A.

Grâce à la proposition $(3.2.4.3)$, nous pouvons supposer que l’A_{∞}-morphisme g et les homotopies h et h' sont strictement unitaires. Soit H l’élément de $\text{Hom}_{\text{Func}_{\infty}}(f \circ g, 1_B)$ donné (voir $8.1.1.2$) par les morphismes $h_i, i \geq 1$, et $h_A = 1_A, A \in \mathcal{A}$. Posons $Z = m_1^*_{\text{Func}_{\infty}}(H)$. Il est donné par des morphismes $z_i, i \geq 0$. Montrons que H est un cycle dans $\text{Hom}_{\text{Func}_{\infty}}(\mathcal{A}, B)$. Le morphisme z_0 est clairement nul. Pour $n \geq 1$, nous vérifions (en utilisant le fait que $f \circ g, 1_B$ et h sont strictement unitaires) que

$$z_n = (f \circ g)_n - (1_B)_n - \sum_{i=1}^n (-1)^i m_{r+1+i}((f \circ g)_i \otimes \ldots \otimes (f \circ g)_i) \otimes h_k \otimes (1_B)_j, \ldots \otimes (1_B)_i, \ldots)$$

où s est le signe intervenant dans l’équation $(* \cdots_n)$ de $(1.2.1.7)$. Comme h est une homotopie entre $f \circ g$ et 1_B, le terme de droite est nul. Ceci montre que H est un cycle de $\text{Hom}_{\text{Func}_{\infty}}(f \circ g, 1_B)$. Le morphisme $h_A, A \in \mathcal{A}$ valant 1_A valant 1_A, la proposition $(8.2.2.3)$ implique que H induit un isomorphisme dans $H^0\text{Func}_{\infty}(B, B)$. Nous en déduisons $(9.1.0.4)$ que les A_{∞}-foncteurs 1_B et $f \circ g$ sont A_{∞}-isomorphes dans $\text{Func}_{\infty}(B, B)$. L’$A_{\infty}$-isomorphie entre $g \circ f$ et 1_A se montre de la même manière.

Remarque 9.2.0.5 En particulier, ceci implique qu’une A_{∞}-catégorie strictement unitaire \mathcal{A} est A_{∞}-équivalente à son modèle minimal $(3.2.4.1)$ et à tout ses modèles différentiels gradués $(7.5.0.2)$.

Deuxième cas : f est une inclusion $\mathcal{A} \hookrightarrow B$ où \mathcal{A} est une sous-A_{∞}-catégorie pleine de B.

Grâce à la remarque précédente, nous pouvons supposer que B est différentielle graduée. Comme $H^0 f : H^0 \mathcal{A} \to H^0 B$ est une équivalence, il suffit de montrer le théorème dans le cas suivant : Choisissons dans chaque classe d’isomorphie $[B]$ de B un représentant B_0. Soit \mathcal{A} l’ensemble de ces représentants. Nous posons A égale à la sous-catégorie pleine de B formée des objets $A \in \mathcal{A}$. Soit $r : B \to A$, $B \mapsto r(B) = B_0$.

Soit \mathcal{A}' la catégorie différentielle graduée \mathcal{A} sur B (voir $5.1.2.4$). Nous avons alors les égalités

$$\mathcal{A}'(B, B') = \mathcal{A}(B_0, B'_0) = B(B_0, B'_0)$$

et les catégories différentielles graduées \mathcal{A} et \mathcal{A}' sont équivalentes au sens classique. Ils nous suffit donc de montrer que \mathcal{A}' et B sont A_{∞}-équivalentes. Soit $i : \mathcal{A} \to \mathcal{A}'$ l’inclusion. Nous allons construire une A_{∞}-équivalence

$$g : \mathcal{A}' \to B$$

tel que $f = g \circ i$.

Construction de g : Posons $g = 1_B$. L’A_{∞}-foncteur g est donc donné par un A_{∞}-morphisme $\mathcal{A}' \to B$ dans $C(B, B)$. Par hypothèse, tout élément $B \in B$ est A_{∞}-isomorphe à $r(B)$. Pour chaque $B \in B$, choisissons un élément α_B de $B(r(B), B)$ qui devient un isomorphisme dans $H^0 B(r(B), B)$. Considérons le diagramme de B-B-bimodules différentiels gradués

$$B(\ldots, ?)$$

\[\begin{array}{c}
\downarrow_{\alpha^*} \\
\mathcal{A}'(\ldots, ?) = B(r(\ldots), r(?)) \xrightarrow{\alpha} B(r(\ldots), ?)
\end{array} \]
L’A∞-foncteur de Yoneda \(y : B \to C_\infty B \) (7.1.0.1) envoie le diagramme quasi-isomorphe de \(B \)-\(B \)-bimodules
\[
\begin{array}{c}
C_\infty B(y_-, y^?) \\
\downarrow^{(y\alpha)_*} \\
C_\infty B(yr(-), yr(?)) \xrightarrow{(y\alpha)_*} C_\infty B(yr(-), y^?).
\end{array}
\]
Pour chaque \(B \in B \), le morphisme \(\alpha_B \) devient un isomorphisme dans \(H^0 B \). Comme le foncteur de Yoneda induit un quasi-isomorphisme dans les espaces de morphismes (7.4.0.1), il induit un isomorphisme \(H^0 B \to H^0 C_\infty B \). Nous en déduisons que le morphisme \(y\alpha_B : yr(B) \to y(B) \) est un morphisme de \(B \)-modules différentiels gradués. L’axiome (CM5) de la catégorie \(\text{Mod}_B \) nous donne une factorisation de \(y\alpha_B \) en une cofibration triviale et une fibration triviale
\[
yr(B) \xrightarrow{i_n} m(B) \xrightarrow{p_n} yB.
\]
Grâce à l’axiome (CM4) de la catégorie \(\text{Mod}_B \), il existe un quasi-isomorphisme \(\sigma_B \) tel que \(p_B \circ \sigma_B = 1_{yB} \). Le morphisme
\[
C_\infty B(y_-, y^?) \to C_\infty B(m_-, m^?), \quad x \mapsto \sigma \circ x \circ p,
\]
est un quasi-isomorphisme d’algèbres différentielles graduées. Le diagramme
\[
\begin{array}{c}
C_\infty B(m_-, m^?) \\
\downarrow^{i^*} \\
C_\infty B(yr(-), yr(?)) \xrightarrow{(y\alpha)_*} C_\infty B(yr(-), y^?)
\end{array}
\]
est ainsi quasi-isomorphe à \((I') \). Les cofibrations étant des monomorphismes, la flèche verticale du diagramme \((I'') \) est une surjection. Nous en déduisons que les projections canoniques
\[
C_\infty B(yr(-), yr(?)) \xleftarrow{P} C_\infty B(m_-, m^?),
\]
où \(P \) est le produit fibré au-dessus du diagramme \((I'') \) sont des quasi-isomorphismes. Comme \(C_\infty B(yr(-), yr(?)) \) et \(C_\infty B(m_-, m^?) \) sont des algèbres différentielles graduées unitaires, \(P \) est une algèbre différentielle graduée unitaire et les projections canoniques ci-dessus sont des morphismes d’algèbres différentielles graduées unitaires. Nous avons ainsi construit une suite de quasi-isomorphisme d’algèbres différentielles graduées unitaires dans \(C(B, B) \)
\[
A' \to C_\infty B(yr(-), yr(?)) \xleftarrow{P} C_\infty B(m_-, m^?) \xleftarrow{C_\infty B(y(-), y^?)} B.
\]
Les quasi-isomorphismes d’algèbres étant inversibles à homotopie près dans la catégorie \(\text{Alg}_\infty \), nous obtenons un \(A_\infty \)-quasi-isomorphisme homologiquement unitaire
\[
g' : A' \to B.
\]
D’après la proposition 3.2.4.3, il existe un A_{∞}-morphisme strictement unitaire g homotope à g'. En particulier, g est un A_{∞}-quasi-isomorphisme. C’est une A_{∞}-équivalence (voir le premier cas.)

Le cas général : Soit \mathcal{A} et \mathcal{B} deux A_{∞}-catégories strictement unitaires sur \mathcal{A} et \mathcal{B} et f un A_{∞}-foncteur tel que f_1 est un quasi-isomorphisme et induit une équivalence $H^0\mathcal{A} \to H^0\mathcal{B}$. Choisissons dans chaque classe d’A_{∞}-isomorphie $[\mathcal{A}]$ de \mathcal{A} un représentant A_0 et notons B_0 son image par f. Comme $H^0f : H^0\mathcal{A} \to H^0\mathcal{B}$ est une équivalence, nous déduisons du lemme (9.1.0.4) que toute classe d’A_{∞}-isomorphie $[\mathcal{B}]$ dans \mathcal{B} admet un unique représentant parmi les B_0. Notons \mathcal{A}' (resp. \mathcal{B}') la sous-catégorie pleine de \mathcal{A} (resp. \mathcal{B}) formée des A_0 (resp. des B_0). L’inclusion

$$\mathcal{A}' \to \mathcal{A} \quad (\text{resp. } \mathcal{B}' \to \mathcal{B})$$

est une A_{∞}-équivalence (voir le deuxième cas). Pour montrer que f est une A_{∞}-équivalence, il suffit donc de montrer que le foncteur

$$f' : \mathcal{A}' \to \mathcal{B}'$$

induit par l’A_{∞}-foncteur f est une A_{∞}-équivalence. Son application sous-jacente f'_1 est une bijection et f'_1 est un quasi-isomorphisme. Nous sommes donc dans le premier cas et f' est une A_{∞}-équivalence. □

Chapitre A

Catégories de modèles

Dans cet appendice, nous rappelons la définition, due à D. Quillen [Qui67], d’une catégorie de modèles (fermée), quelques notions fondamentales (objets fibrants, cofibrants, homotopies, foncteurs de Quillen) et quelques énoncés-clés. Nous rappelons ensuite les exemples dont nous avons besoin dans ce manuscrit. Nous renvoyons au livre de M. Hovey [Hov99] et à l’article de W. Dwyer et J. Spalinski [DS95] pour plus de détails.

Définitions et propositions

Définition A.6 Soit E une catégorie. Un relèvement (de g relatif à f) dans le diagramme

\[
\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow{i} & & \downarrow{p} \\
C & \xrightarrow{g} & D \\
\end{array}
\]

est un morphisme $\alpha : C \to B$ tel que les deux triangles du diagramme

\[
\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow{i} & & \downarrow{p} \\
C & \xrightarrow{\alpha} & D \\
\end{array}
\]

sont commutatifs. Soit i et p deux morphismes dans E. Nous dirons que p a la propriété de relèvement à droite par rapport à i et que i a la propriété de relèvement à gauche par rapport à p si tout diagramme de la forme (1) admet un relèvement α.

Soit $f : X \to X'$ et $g : Y \to Y'$ deux morphismes. Le morphisme f est un rétract de g s’il existe un diagramme commutatif

\[
\begin{array}{ccc}
X & \xrightarrow{f} & X \\
\downarrow{g} & & \downarrow{f} \\
Y & \xrightarrow{g} & Y \\
\end{array}
\]

\[
\begin{array}{ccc}
X' & \xrightarrow{f} & X' \\
\downarrow{g} & & \downarrow{f} \\
Y' & \xrightarrow{g} & Y' \\
\end{array}
\]

tel que les compositions horizontales sont l'identité de X et l'identité de X'.
Définition A.7 Une catégorie de modèles est un quadruplet
\[(\mathcal{E}, \mathcal{E}q, \mathcal{F}ib, \mathcal{C}of)\],

où
- \(\mathcal{E}\) est une catégorie,
- \(\mathcal{E}q\) est une classe de morphismes appelés \(\text{équivalences faibles}\),
- \(\mathcal{F}ib\) est une classe de morphismes appelés \(\text{fibrations}\) (elles sont représentées par des flèches à double tête \(\to\)),
- \(\mathcal{C}of\) est une classe de morphismes appelés \(\text{cofibrations}\) (elles sont représentées par des flèches avec une queue \(\rightsquigarrow\)),
tel que les axiomes (CM1) – (CM5) ci-dessous sont vérifiés. Un morphisme appartenant à \(\mathcal{E}q \cap \mathcal{C}of\) sera appelé une \(\text{cofibration triviale}\) et un morphisme de \(\mathcal{E}q \cap \mathcal{F}ib\) sera appelé une \(\text{fibration triviale}\).

(CM1) La catégorie \(\mathcal{E}\) admet toutes les limites finies et toutes les colimites finies.

(CM2) La classe des équivalences faibles est \(\text{saturée}\), i.e. si deux morphismes parmi \(f, g, fg\) sont des équivalences faibles, le troisième l’est aussi.

(CM3) Les trois classes de morphismes sont stables par rétracts.

(CM4) \(\text{relèvement}:\)
- Les cofibrations ont la propriété de relèvement à gauche par rapport aux fibrations triviales,
- Les fibrations ont la propriété de relèvement à droite par rapport aux cofibrations triviales.

(CM5) \(\text{factorisation}:\)
- Tout morphisme \(f: A \to B\) se factorise en \(f = pi\) où \(i: A \Rightarrow A'\) est une cofibration triviale et \(p: A' \to B\) est une fibration.
- Tout morphisme \(f: A \to B\) se factorise en \(f = pi\) où \(i: A \Rightarrow B'\) est une cofibration et \(p: B' \to B\) est une fibration triviale.

Remarque A.8 Nous nous conformons à la terminologie de [DS95] en appelant “catégorie de modèles” ce que Quillen [Qui67], [Qui69] appelle “catégorie de modèles fermée”. Notons que les axiomes sont auto-duaux.

Soit \((\mathcal{E}, \mathcal{E}q, \mathcal{F}ib, \mathcal{C}of)\) une catégorie de modèles. On a les propriétés suivantes :
- La catégorie \(\mathcal{E}\) a un objet initial \(\emptyset\) et un objet final \(*\).
- Les fibrations sont exactement les morphismes ayant la propriété de relèvement à droite par rapport aux cofibrations triviales.
- Les fibrations triviales sont exactement les morphismes ayant la propriété de relèvement à droite par rapport aux cofibrations.
- Les cofibrations ont les propriétés de relèvement duales.

Définition A.9 Soit \(X\) un objet de \(\mathcal{E}\). Un \(\text{cylindre}\) pour \(X\) est un objet \(X \Join I\) muni de morphismes
\(i: X \Join X \to X \Join I\) et \(p: X \Join I \to X\) tels que
1. le morphisme p est une équivalence faible,

2. la composition $p \circ i : X \coprod X \to X \land I \to X$ est le morphisme $[1, 1] : X \coprod X \to X$.

Soit $X \land I$ un cylindre pour X. Deux morphismes $f, g : X \to Y$ de \mathcal{E} sont $X \land I$-homotopes à gauche si le morphisme $[f, g] : X \coprod X \to Y$ se factorise en

$$X \coprod X \xrightarrow{i} X \land I \xrightarrow{H} Y$$

pour un morphisme H. Un tel morphisme H est appelé une $X \land I$-homotopie à gauche de f à g. Les morphismes f et g sont homotopes à gauche s'ils sont $X \land I$-homotopes pour un cylindre $X \land I$ pour X. Nous écrirons alors $f \sim_{i} g$.

La définition d'un objet de chemins pour X est duale de celle d'un cylindre pour X. La notion d'homotopie à droite (notée \sim_{r}) est duale de celle d'homotopie à gauche.

Définition A.10 Un objet X de \mathcal{E} est cofibrant si le morphisme $\emptyset \to X$ est une cofibration. Il est fibrant si le morphisme $X \to \ast$ est une fibration. La sous-catégorie pleine des objets fibrants est notée \mathcal{E}_{f}, celle des objets cofibrants \mathcal{E}_{c} et celle des objets fibrants et cofibrants est notée \mathcal{E}_{cf}.

Définition A.11 Soit X un objet de \mathcal{E}. Une résolution cofibrante de X est une fibration triviale $X_{c} \looparrowright X$, où X_{c} est cofibrant. Une résolution fibrante de X est une cofibration triviale $Y \hookrightarrow X_{f}$, où X_{f} est fibrant.

Il résulte de l'axiome (CM5) que tout objet admet une résolution cofibrante et une résolution fibrante.

Lemme A.12 Soit X un objet cofibrant et Y un objet fibrant.

a. La relation de $X \land I$-homotopie à gauche ne dépend pas du choix du cylindre $X \land I$. De même, la relation de PY-homotopie à droite ne dépend pas du choix de l'objet de chemins PY.

b. Les relations d'homotopie à gauche et d'homotopie à droite coïncident sur $\mathcal{E}(X, Y)$. On définit la relation d'homotopie \sim comme égale à ces deux relations.

c. La relation d'homotopie est une relation d'équivalence sur $\mathcal{E}(X, Y)$.

d. Soit X' un objet cofibrant et Y' un objet fibrant. La relation $f \sim g$ implique $fh \sim gh$ et $h'f \sim h'g$ quels que soient les morphismes

$$h : X' \to X \quad \text{et} \quad h' : Y \to Y'.$$

\[\square\]

Le quotient \mathcal{E}_{cf}/ \sim est donc une catégorie. On définit la catégorie homotopique $\text{Ho}\mathcal{E}$ comme la localisation $\mathcal{E}[Eq^{-1}]$ de \mathcal{E} par rapport à la classe des équivalences faibles (voir [GZ67, I.1]).

Proposition A.13 a. L'inclusion $\mathcal{E}_{cf} \to \mathcal{E}$ induit une équivalence

$$\mathcal{E}_{cf}/ \sim \to \text{Ho}\mathcal{E}.$$
b. Soit X et Y deux objets de E. Soit $X_c \rightarrow X$ une résolution cofibrante de X et $Y \rightarrow Y_f$ une résolution fibrante de Y. On a une bijection canonique
\[
HoE(X, Y) \simeq E(X_c, Y_f)/\sim.
\]

Équivalence de Quillen

Définition A.14 Soit E et F deux catégories de modèles. Un foncteur $G : E \rightarrow F$ est un foncteur de Quillen à gauche s'il admet un adjoint à droite et s'il préserve les cofibrations et les cofibrations triviales. Un foncteur $D : F \rightarrow E$ est un foncteur de Quillen à droite s'il admet un adjoint à gauche et s'il préserve les fibrations et les fibrations triviales. Soit une paire de foncteurs adjoints (G, D, ϕ), c'est-à-dire que G est adjoint à gauche à D et que ϕ est une bijection fonctorielle
\[
\text{Hom}_E(GX, Y) \sim \rightarrow \text{Hom}_F(X, DY).
\]
On dira qu'elle est une adjonction de Quillen si G est un foncteur de Quillen à gauche. (Ceci implique que D est un foncteur de Quillen à droite.) Une adjonction de Quillen est une équivalence de Quillen si, pour tout objet cofibrant X de E et tout objet fibrant Y de F, un morphisme $f : GX \rightarrow Y$ est une équivalence faible si et seulement si $\phi f : X \rightarrow DY$ est une équivalence faible. Nous renvoyons à [DS95, Sect. 9] pour les détails de la définition suivante.

Définition A.15 Soit G un foncteur de Quillen à gauche. Le foncteur dérivé à gauche de G est le foncteur
\[
L_E G : HoE \longrightarrow HoF
\]
qui envoie un objet X de E sur GX_c, où $X_c \rightarrow X$ est une résolution cofibrante de X. Soit D un foncteur de Quillen à droite. Le foncteur dérivé à droite de D est le foncteur
\[
R_D : HoF \longrightarrow HoE
\]
qui envoie un objet Y de F sur GY_f, où $Y \rightarrow Y_f$ est une résolution fibrante de Y.

Remarque A.16 Notons que si un foncteur G (resp. D) comme dans la définition préserve les équivalences faibles, alors il induit un foncteur entre les catégories homotopiques, et $L_E G$ (resp. R_D) est canoniquement isomorphe à ce foncteur induit.

Proposition A.17 Soit (G, D, ϕ) une adjonction de Quillen de E dans F. Les propositions suivantes sont équivalentes

a. (G, D, ϕ) est une équivalence de Quillen.

b. Les foncteurs $L_E G$ et R_D sont des équivalences inverses l'une de l'autre entre HoE et HoF.

Exemples de catégories de modèles

Exemple A.18 (Complexes de C) Soit C la catégorie de base (1.1.1). La catégorie CC de (1.1.1) admet une structure de catégorie de modèles telle que
- la classe des équivalences faibles est la classe \(Q_{is} \) des quasi-isomorphismes (notons que ce sont exactement les morphismes qui sont inversibles à homotopie près),
- les fibrations sont les épimorphismes (c’est-à-dire, les morphismes dont les composantes sont des épimorphismes),
- les cofibrations sont les monomorphismes (c’est-à-dire, les morphismes dont les composantes sont des monomorphismes).

Tous les complexes sont fibrants et cofibrants pour cette structure. La catégorie homotopique associée est \(\mathcal{H}C \).

Exemple A.19 (Complexes de chaînes non bornés) Soit \(R \) un anneau. Soit \(CR \) la catégorie des complexes de chaînes
\[
\cdots \to M^{p-1} \to M^{p} \to M^{p+1} \to \cdots, \quad p \in \mathbb{Z},
\]
de \(R \)modules à droite. Les trois classes de morphismes suivantes définissent une structure de catégorie de modèles sur \(CR \) (voir [Hov99, Chap. 2]).
- Les équivalences faibles sont les quasi-isomorphismes.
- Les fibrations sont les morphismes \(f : X \to Y \) tels que \(f^n \) est surjectif pour tout \(n \in \mathbb{Z} \).
- Les cofibrations sont les morphismes qui ont la propriété de relèvement à gauche par rapport aux fibrations triviales.

Tous les complexes sont fibrants pour cette structure. Si un complexe \(X \) est cofibrant, alors toutes ses composantes \(X^n, n \in \mathbb{Z}, \) sont projectives. La réciproque est fausse. Cependant, si on suppose que le complexe \(X \) est borné à droite et que ses composantes sont toutes projectives, alors il est cofibrant.
Chapitre B

Théorie de l’obstruction

B.1 Théorie de l’obstruction pour les A_{∞}-algèbres

Nous étudions la théorie de l’obstruction des A_{∞}-algèbres. Soit C une catégorie de base telle que dans le chapitre 1. (A, m_1, \ldots, m_n) une A_n-algèbre. Il s’agit de mesurer l’obstruction à l’existence d’un morphisme $m_{n+1} : A^\otimes n+1 \to A$ tel que $(A, m_1, \ldots, m_{n+1})$ soit une A_{n+1}-algèbre (B.1.2). Soit A et A' deux A_{n+1}-algèbres. Soit une famille de morphismes gradués

$$f_i : A^\otimes i \to B, \quad 1 \leq i \leq n,$$

définissant un A_n-morpisme $A \to A'$. Nous mesurons ensuite l’obstruction à l’existence d’un morphisme $f_{n+1} : A^\otimes n+1 \to A'$ tel que les f_i, $1 \leq i \leq n + 1$, définissent un A_{n+1}-morpisme $A \to A'$ (B.1.5). Nous montrerons que cette obstruction est fonctorielle par rapport aux A_{n+1}-morphismes stricts (B.1.6).

L’étude des obstructions est un outil classique, voir par exemple T. Kadeishvili [Kad80], A. Prouté [Pro85]. Elle doit son existence au fait que l’opérade des A_{∞}-algèbres est un modèle cofibrant minimal au sens de M. Markl [Mar96] pour l’opérade des algèbres associatives. Nous n’adoptons pas ici ce point de vue lui préférant une approche naïve.

Les A_{∞}-algèbres

Soit V un objet gradué. Soit des morphismes gradués

$$b_i : V^\otimes i \to V, \quad 1 \leq i \leq n + 1,$$

de degré +1. Notons b la codérivation de $\overline{T_{[n+1]}^c}V$ donnée par la suite

$$(b_1, \ldots, b_n, b_{n+1}).$$

Posons

$$c(b_2, \ldots, b_n) = \sum_{2 \leq i \leq n} b_i(1^\otimes j \otimes b_k \otimes 1^\otimes l)$$

où les entiers j, k, l vérifient $j + k + l = n + 1$ et $j + 1 + l = i$. Rappelons que i_1 et p_{n+1} désignent les morphismes canoniques

$$V \longrightarrow \overline{T_{[n+1]}^c}V \quad \text{et} \quad \overline{T_{[n+1]}^c}V \longrightarrow V^\otimes n+1.$$
Lemme B.1.1 Supposons que la codérivation de la cogèbre $\mathcal{T}_c^n V$ donnée par la suite

$$(b_1, \ldots, b_n)$$

est une différentielle.

a. La codérivation

$$b^2 : \mathcal{T}_c^n V \to \mathcal{T}_c^n V$$

est égale à $i_1 \circ \zeta \circ p_{n+1}$, où $\zeta : V^{\otimes n+1} \to V$ est donné par

$$\zeta = b_1 b_{n+1} + b_{n+1} b_1 + c(b_2, \ldots, b_n);$$

ici la dernière occurrence de b_1 désigne la différentielle de $(V, b_1)^{\otimes n+1}$.

b. Le morphisme gradué $c(b_2, \ldots, b_n)$ est un cycle de

$$(\text{Hom}_{\mathcal{G}_c}(V^{\otimes n+1}, V), \delta),$$

où la différentielle δ est induite par celle du complexe (V, b_1).

En particulier, la codérivation b est une différentielle si et seulement si le cycle $c(b_2, \ldots, b_n)$ est égal au bord $-\delta(b_{n+1})$.

\[\text{Démonstration :} \quad a.\ \text{Notre hypothèse implique que le carré } b^2 \text{ se factorise par } p_{n+1}. \text{L'image de la comultiplication } \Delta \text{ est incluse dans}
\]

$$\mathcal{T}_c^n V \otimes \mathcal{T}_c^n V \subset \mathcal{T}_c^n V \otimes \mathcal{T}_c^{n+1} V.$$

On a donc l'égalité

$$\Delta b^2 = (1 \otimes b^2 + b^2 \otimes 1) \Delta = 0.$$

On en déduit que l'image de b^2 est incluse dans $\ker \Delta = V$. Ceci nous donne la factorisation par i_1. Un calcul direct nous donne la formule pour ζ.

b. D'après le premier point, on a

$$b_1 \circ b^2 = b \circ b^2 = b^2 \circ b = b^2 \circ b_1,$$

où la dernière occurrence de b_1 désigne la différentielle de $(V, b_1)^{\otimes n+1}$. Ceci montre que ζ est un cycle dans le complexe

$$(\text{Hom}_{\mathcal{G}_c}(V^{\otimes n+1}, V), \delta).$$

Comme nous avons

$$\zeta = \delta(b_{n+1}) + c(b_2, \ldots, b_n)$$

il en est de même pour $c(b_2, \ldots, b_n)$.

\[\square\]

Corollaire B.1.2 Soit (A, m_1) un complexe. Soit des morphismes gradués

$$m_i : A^{\otimes i} \to A, \quad 2 \leq i \leq n + 1$$

de degré $2 - i$. Supposons que les morphismes m_i, $1 \leq i \leq n$, définissent une structure de Λ_n-algèbre sur A. La sous-expression

$$\sum_{i,k \neq 1} (-1)^{ik+l} m_i(1^{\otimes j} \otimes m_k \otimes 1^{\otimes l})$$
de l'équation \(*_{n+1}\) de (1.2.1.1) définit un cycle de \((\text{Hom}_{\mathcal{G}_C}(A^{\otimes n+1}, A), \delta)\). Nous le notons \(r(m_2, \ldots, m_n)\). L'équation \(*_{n+1}\) se récrit alors
\[
r(m_2, \ldots, m_n) + \delta(m_{n+1}) = 0.
\]

\textbf{Démonstration :} Nous appliquons le lemme précédent à l'espace gradué \(V = SA\) et aux morphismes gradués \(b_i\) définis à l'aide des bijections \(b_i \leftrightarrow m_i\). Ces mêmes bijections envoient le morphisme \(r(m_2, \ldots, m_n)\) sur le morphisme \(c(b_2, \ldots, b_n)\) et le morphisme \(\delta(m_{n+1})\) sur \(\delta(b_{n+1})\). □

\textbf{Les \(A_\infty\)-morphismes d'\(A_\infty\)-algèbres}

Les lemmes suivant se montrent de manière similaire.

Soit \(V\) et \(W\) deux objets gradués. Soit \(b\) et \(b'\) des différentielles de cogèbres sur les cogèbres \(T^n_{[n+1]}V\) et \(T^n_{[n+1]}W\). Soit une famille de morphismes gradués
\[
F_i : V^\otimes i \to W, \quad 1 \leq i \leq n+1,
\]
de degré 0. Soit \(F\) le morphisme de cogèbres
\[
T^n_{[n+1]}V \to T^n_{[n+1]}W
\]
qui relève les \(F_i\). Posons
\[
c(F_1, \ldots, F_n) = \sum_{k \geq 2} F_k(1^\otimes j \otimes b_k \otimes 1^\otimes l) - \sum_{r \geq 2} b'_r(F_{i_1} \otimes \ldots \otimes F_{i_r}),
\]
ôù les entiers \(j, k, l\) de la somme de gauche vérifient \(j + k + l = n + 1\) et \(j + 1 + l = i\), et où la somme des entiers \(i_r\) de la somme de droite vaut \(n + 1\).

\textbf{Lemme B.1.3} Supposons que le morphisme
\[
F_{[n]} : T^n_{[n]}V \to T^n_{[n]}W
\]
induit par \(F\) dans les \(n\)-primitifs est compatible aux différentielles.

a. La \((F, F)\)-codérivation
\[
b'F - Fb : T^n_{[n+1]}V \to T^n_{[n+1]}W
\]
est égale à \(i_1 \circ \zeta \circ p_{n+1}\), où \(\zeta : V^\otimes_{n+1} \to W\) est donné par
\[
\zeta = b_1 F_{n+1} + F_{n+1} b_1 + c(F_1, \ldots, F_n);
\]
ici la dernière occurrence de \(b_1\) désigne la différentielle de \((V, b_1)^{\otimes n+1}\).

b. Le morphisme gradué \(c(F_1, \ldots, F_n)\) est un cycle de
\[
(\text{Hom}_{\mathcal{G}_C}(V^{\otimes n+1}, W), \delta),
\]
où la différentielle \(\delta\) est induite par celles des complexes \((V, b_1)\) et \((W, b'_1)\).
En particulier, le morphisme F est compatible aux différentielles de cogèbres si et seulement si on a
\[\delta(F_{n+1}) + c(F_1, \ldots, F_n) = 0. \]

Regardons maintenant le comportement de l'obstruction par rapport à la composition des A_{n+1}-morphismes.
Soit V' et W' deux objets gradués. Soit d et d' deux différentielles de cogèbres sur les cogèbres $T_{[n+1]}^*V'$ et $T_{[n+1]}^*W'$. Soit deux morphismes de cogèbres différentielles graduées
\[G : T_{[n+1]}^*V' \to T_{[n+1]}^*V \quad \text{et} \quad H : T_{[n+1]}^*W \to T_{[n+1]}^*W'. \]
Des calculs directs nous donnent le lemme suivant.

Lemme B.1.4
\[a. \text{ On a l'égalité} \]
\[c(F_1, \ldots, F_n) \circ G_1 \circ n^{n+1} + G_1 \circ \delta(G_{n+1}) = c((FG)_1, \ldots, (FG)_n) \]
\[\text{de morphismes de } (V')^\otimes_{n+1} \text{ dans } W; \]
\[b. \text{ On a l'égalité} \]
\[\delta(H_{n+1}) \circ F_1 \circ n^{n+1} + H_1 \circ c(F_1, \ldots, F_n) = c((HF)_1, \ldots, (HF)_n) \]
\[\text{de morphismes de } V^\otimes_{n+1} \text{ dans } W'. \]

Corollaire B.1.5 Soit A et B deux A_{n+1}-algèbres. Soit des morphismes gradués
\[f_i : A^\otimes i \to B, \quad 1 \leq i \leq n + 1, \]
de degré $1 - i$. Supposons que les morphismes $f_i, 1 \leq i \leq n$, définissent un A_n-morphisme $A \to B$. La sous-expression
\[\sum_{k \neq 1} (-1)^{k+1} f_i (\mathbf{1} \otimes m_k \otimes \mathbf{1}^\otimes j) - \sum_{r \neq 1} (-1)^{s} m_r (f_{i_1} \otimes \ldots \otimes f_{i_r}) \]
de l'équation (\ast^*_{n+1}) de (1.2.1.2) définit un cycle dans $(\text{Hom}_{GrC}(A^\otimes_{n+1}, B), \delta)$. Nous le notons $r(f_1, \ldots, f_n)$. L'équation (\ast^*_{n+1}) se récrit
\[r(f_1, \ldots, f_n) + \delta(f_{n+1}) = 0. \]

Corollaire B.1.6 Soit A' et B' deux A_{n+1}-algèbres. Soit $g : A' \to A$ et $h : B \to B'$ deux A_{n+1}-morphismes stricts. On a les égalités de morphismes
1. $r(f_1, \ldots, f_n) \circ g = r((fg)_1, \ldots, (fg)_n)$,
2. $h \circ r(f_1, \ldots, f_n) = r((hf)_1, \ldots, (hf)_n)$.

L'obstruction est donc fonctorielle par rapport aux morphismes stricts.

Démonstration : C'est la traduction du lemme B.1.6 appliqué aux constructions bar des algèbres A, A', B et B'. Les morphismes g et h étant stricts, on a $H_{n+1} = 0$ et $G_{n+1} = 0$. Les équations de (B.1.6) se traduisent alors par celles du corollaire.
B.2 Théorie de l’obstruction pour les polydules

Les démonstrations de cette section étant presque identiques à celles de la section 1.2.2, nous nous contentons d’enoncer les résultats. Soit \mathcal{C} et \mathcal{C}' les catégories de base de la section 2.1.

Lemme B.2.1 Soit A une A_n-algèbre. Soit (M, m^M_i) un complexe. Soit des morphismes gradués

$$m^M_i : M \otimes A^{\otimes i-1} \rightarrow M, \quad 2 \leq i \leq n + 1,$$

de degré $2 - i$. Supposons que les morphismes $m_i, 1 \leq i \leq n$, définissent une structure de A_n-module sur M. La sous-expression

$$\sum_{i,k \neq 1} (-1)^{j+k+l}m_i(1^{\otimes j} \otimes m_k \otimes 1^{\otimes l})$$
de l’équation (\ast'_{n+1}) de (2.3.1.2) définit un cycle de $(\text{Hom}_{\mathcal{GrC'}}(M \otimes A^{\otimes n}, M), \delta)$, où δ est induit par m_1^+ et m_1^-. Nous le notons $r(m_2, \ldots, m_n)$. L’équation (\ast'_{n+1}) se récrit alors

$$r(m_2, \ldots, m_n) + \delta(m_{n+1}) = 0.$$

□

Lemme B.2.2 Soit A une A_n-algèbre. Soit M et N deux A_{n+1}-modules sur A. Soit des morphismes gradués

$$f_i : M \otimes A^{\otimes i-1} \rightarrow N, \quad 1 \leq i \leq n + 1,$$
de degré $1 - i$. Supposons que les morphismes $f_i, 1 \leq i \leq n$, définissent un A_n-morphisme $M \rightarrow N$. La sous-expression

$$\sum_{k \neq 1} (-1)^{j+l}f_i(1^{\otimes j} \otimes m_k \otimes 1^{\otimes l}) = \sum_{s \neq 0} m_{n+1}(f_r \otimes 1^{\otimes s})$$
de l’équation (\ast'^{n+1}) de (2.3.1.5) définit un cycle dans

$$(\text{Hom}_{\mathcal{GrC'}}(M \otimes A^{\otimes n}, N), \delta).$$

Nous le notons $r(f_1, \ldots, f_n)$. L’équation (\ast'^{n+1}) se récrit alors

$$r(f_1, \ldots, f_n) + \delta(f_{n+1}) = 0.$$

□

Lemme B.2.3 Soit A une A_n-algèbre. Soit M' et N' deux A_{n+1}-modules. Soit $g : M' \rightarrow M$ et $h : N \rightarrow N'$ deux A_{n+1}-morphismes stricts. On a les égalités de morphismes

1. $r(f_1, \ldots, f_n) \circ g_1 \otimes 1^{\otimes n} = r((fg)_1, \ldots, (fg)_n)$.
2. $r(h, f_1, \ldots, f_n) = r((hf)_1, \ldots, (hf)_n)$.

□
B.3 Théorie de l’obstruction pour les bipolydules

Les démonstrations de cette section sont omises car elles sont similaires à celles de la section B.1. Soit C, C' et C'' les catégories de base de la section 2.5.

Soit A et A'' deux A_{∞}-algèbres dans C et C''. Dans ce qui suit, r et t désignent deux entiers ≥ 0 et E désigne l’ensemble des couples d’entiers (i,j) tels que $0 \leq i \leq r$ et $0 \leq j \leq t-1$, ou, $0 \leq i \leq r-1$ et $0 \leq j \leq t$ (voir le graphique ci-dessous). L’ensemble E' est égal à $E \setminus (0,0)$.

![Graphique](image)

Soit M un objet différentiel gradué de C'. On note sa différentielle $m_{0,0}$. Soit $m_{i,j} : A \otimes^i M \otimes A'' \otimes^j \rightarrow M \rightarrow M$, $0 \leq j \leq t$, $0 \leq i \leq r$, $(i,j) \neq (0,0)$, un morphisme gradué de degré $1-i-j$ dans C'.

Lemme B.3.1 Supposons que les morphismes $m_{i,j}$, $(i,j) \in E'$, vérifient les équations $(s''_{k,l})$, $(k,l) \in E$, de la définition 2.5.1.1. La sous-expression

$$\sum_{* \in \{1, (0,0), (r,t)\}} (-1)^{i+j+1(m_{i,j})}m_{i,j}(1 \otimes^i m_{i,j} \otimes 1 \otimes^j)$$

de l’équation $(s''_{r,t})$ définit un cycle de $\text{Hom}_{GrC}(A^{\otimes r} \otimes M \otimes A''^{\otimes t}, M)$.

On le note $c(m_{i,j}, (i,j) \in E')$. Les morphismes $m_{i,j}$, $0 \leq j \leq t$, $0 \leq i \leq r$, vérifient l’équation $(s''_{r,t})$ si et seulement si on a l’égalité

$$\delta(m_{r,t}) = c(m_{i,j}, (i,j) \in E').$$

□

Soit M et N deux $A-A''$-bipolydules dans C. Soit $f_{i,j} : A^{\otimes i} \otimes M \otimes A''^{\otimes j} \rightarrow M \rightarrow M$, $0 \leq j \leq t$, $0 \leq i \leq r$, un morphisme gradué de degré $-i-j$ dans GrC'.
B.4 : Cohomologie de Hochschild et théorie de l’obstruction pour les A_{∞}-structures minimales

Lemme B.3.2 Supposons que les morphismes $f_{i,j}$, $(i, j) \in \mathcal{E}$, vérifient les équations $(**^\prime_{k,l})$, $(k, l) \in \mathcal{E}$, de la définition 2.5.1.1. La sous-expression

$$\sum_{(\alpha, \beta) \neq (0, 0)}(-1)^{\alpha(-i-j)}m_{\alpha, \beta}(1^\otimes \alpha \otimes f_{k,l} \otimes 1^\otimes \beta) = \sum_{* \in \{1, (0, 0)\}}(-1)^{j+i(|m_*|)}f_{*, *}((1^\otimes \alpha \otimes m_* \otimes 1^\otimes \beta)$$

de l’équation $(**^\prime_{r,t})$ est un cycle de

$$\text{Hom}_{GrC}(A^\otimes r \otimes M \otimes A^\otimes t, N).$$

On le note $c'(f_{i,j}, (i, j) \in \mathcal{E})$. Les morphismes $f_{i,j}$, $0 \leq j \leq t$, $0 \leq i \leq r$, vérifient l’équation $(**^\prime_{r,t})$ si et seulement si on a l’égalité

$$\delta(f_{r,i}) = c'(f_{i,j}, (i, j) \in \mathcal{E}).$$

□

On regarde maintenant la compatibilité de l’obstruction aux morphismes stricts.

Soit M' et N' deux $A\!$-A'-bipolydules et

$$g : M' \rightarrow M \quad \text{et} \quad h : N \rightarrow N'$$
deux A_{∞}-morphismes stricts de bipolydules donnés par des morphismes gradués de degré 0 dans GrC'

$$g_{0,0} : M' \rightarrow M \quad \text{et} \quad h_{0,0} : N \rightarrow N'.$$

On définit les morphismes

$$(f \circ g)_{i,j} \quad \text{et} \quad (h \circ f)_{i,j}, \quad 0 \leq j \leq t, \quad 0 \leq i \leq r,$$

par les mêmes formules que celles donnant la compositions des morphismes de bipolydules.

Lemme B.3.3 On a les égalités suivantes :

1. $c'(f_{i,j}, (i, j) \in \mathcal{E}) \circ (1^\otimes r \otimes g_{0,0} \otimes 1^\otimes t) = c'((f \circ g)_{i,j}, (i, j) \in \mathcal{E}),$

2. $h_{0,0} \circ c'(f_{i,j}, (i, j) \in \mathcal{E}) = c'((h \circ f)_{i,j}, (i, j) \in \mathcal{E}).$

□

B.4 Cohomologie de Hochschild et théorie de l’obstruction pour les A_{∞}-structures minimales

Dans cette section, on rappelle la cohomologie de Hochschild d’une algèbre graduée à coefficients dans un bimodule gradué. Nous établissons ensuite une théorie de l’obstruction des A_{∞}-algèbres minimales (resp. des A_{∞}-morphismes entre A_{∞}-algèbres minimales et des homotopies entre ces A_{∞}-morphismes).
Rappel sur la cohomologie de Hochschild

Soit C une catégorie de base telle que dans le chapitre 1. Soit $A \in \mathcal{G}r\mathcal{C}$ une algèbre associative. On considère A comme une A_∞-algèbre dont $m_2 = \mu_A$ et $m_i = 0$ pour tout $i \neq 2$. Rappelons que $(BA)^+$ est la construction bar co-augmentée de A. Soit \(\text{coder}((BA)^+) \) l’espace des codérivations $(BA)^+ \to (BA)^+$. Il est gradué par le degré des codérivations. L’application

$$\delta : D \mapsto b^A \circ D - (-1)^{|D|} D \circ b^A,$$

où b^A est la différentielle de $(BA)^+$ et D est de degré $|D|$, définit une différentielle sur $\text{coder}((BA)^+)$. Nous montrons (comme dans le lemme 1.1.2.2) que nous avons une bijection naturelle

$$\text{coder}((BA)^+) \xrightarrow{\sim} \lim_{i \geq 0} \text{Hom}_{\mathcal{G}C}((BA)^+, SA).$$

Ainsi, une codérivation D est déterminée par les composantes de $p_1 \circ D$

$$D_i : (SA)^{\otimes i} \to SA, \quad i \geq 0.$$

Les bijections $b_i \leftrightarrow m_i$, $i \geq 1$, de la section 1.2.2 (complétée de la bijection qui associe au morphisme $b_0 : e \to SA$ le morphisme $m_0 = -\omega b_0 : e \to A$) nous donnent une bijection

$$\text{Hom}_{\mathcal{G}C}((BA)^+, SA) \xrightarrow{\sim} \prod_{i \geq 0} \text{Hom}_{\mathcal{G}C}(A^{\otimes i}, A).$$

Le complexe de Hochschild est défini par ces bijections comme

$$C(A, A) = S^{-1} \prod_{i \geq 0} \text{Hom}_{\mathcal{G}C}(A^{\otimes i}, A).$$

Sa différentielle δ_{Hoch} envoie un morphisme $f : A^{\otimes n} \to A$ de degré r sur le morphisme

$$\delta_{\text{Hoch}}(f) : A^{\otimes n+1} \to A$$

donné par la somme

$$\sum (-1)^{r+n+k} f_i (1^{\otimes j} \otimes \mu \otimes 1^{\otimes k}) + (-1)^{r+n+1} \mu(1 \otimes f_i) + (-1)^r \mu(f_i \otimes 1).$$

Si le degré de f est nul, nous retrouvons la définition habituelle (voir par exemple [CE99, Chap. IX]). Soit $M \in \mathcal{G}C$ un A-A-bimodule. Le complexe de Hochschild à coefficients dans M est l’espace

$$C(A, M) = \prod_{i \geq 0} \text{Hom}_{\mathcal{G}C}(A^{\otimes i}, M),$$

sa graduation est induite par la graduation de l’espace

$$\prod_{i \geq 0} \text{Hom}_{\mathcal{G}C}((SA)^{\otimes i}, SM)$$

et sa différentielle δ_{Hoch} est définie par la même formule que précédemment. La cohomologie de Hochschild de A à coefficients dans M est la cohomologie de $C(A, M)$. Si A est unitaire, le
B.4 : Cohomologie de Hochschild et théorie de l’obstruction pour les Λ_{∞}-structures minimales

Le complexe $C(A, M)$ est homotopiquement équivalent au sous-complexe de Hochschild réduit (voir [CE99, Chap. IX])

$$\mathcal{C}(A, M) = \prod_{i \geq 0} \text{Hom}_{\text{GrC}}(\mathcal{T}^{\otimes i}, M),$$

où \mathcal{T} est le conoyau de l’unité de A. La différentielle de $\mathcal{C}(A, M)$ est induite par celle de $C(A, M)$.

Obstruction à l’extension d’une A_n-algèbre minimale en une A_{n+1}-algèbre minimale

Lemme B.4.1 Soit A une algèbre graduée de GrC. Soit des morphismes gradués $m_i : A^{\otimes i} \to A$, $3 \leq i \leq n$, de degré $2 - i$. Nous posons $m_2 = \mu^A$. Supposons que les morphismes m_i, $2 \leq i \leq n-1$, définissent une structure de A_n-algèbre minimale sur A. La sous-expression

$$\sum_{i,k \notin \{1,2\}} (-1)^{j+kl} m_i(1^{\otimes j} \otimes m_k \otimes 1^{\otimes l})$$

de l’équation (\ast_{n+1}) de (1.2.1.1) définit un cycle de Hochschild. Nous le notons $r(m_3, \ldots, m_{n-1})$.

L’équation (\ast_{n+1}) se récrit alors

$$\delta_{\text{Hoch}}(m_n) + r(m_3, \ldots, m_{n-1}) = 0.$$

Démonstration : Soit la suite des morphismes b_i, $2 \leq i \leq n$, donnés par les bijections $b_i \leftrightarrow m_i$ (voir 1.2.2). On note D la codérivation de $(BA)^+$ telle que les composantes de $p_1 \circ D$ sont données par la suite

$$(0, 0, b_2, \ldots, b_{n-1}, b_n, 0, \ldots).$$

Comme les m_i, $2 \leq i \leq n-1$, définissent une structure de A_n-algèbre minimale, le carré de la codérivation D restreint à la sous-cogèbre $T_{[n]}SA$ est nul. On en déduit que la composition

$$\Delta \circ D^2 = (1 \otimes D^2 + D^2 \otimes 1) \circ \Delta$$

s’annule sur le sous-espace $(SA)^{\otimes n+1}$. Il s’ensuit que l’image par D^2 du sous-espace $(SA)^{\otimes n+1}$ est contenue dans $\ker \Delta = SA$ et que celle du sous-espace $(SA)^{\otimes n+2}$ est contenue dans $(SA)^{\otimes 2} \oplus SA$. Ainsi, sur le sous-espace $(SA)^{\otimes n+2}$, on a l’égalité

$$D^2 \circ b_2 = D^3 = b_2 \circ D^2.$$

Ceci montre que l’élément

$$D^2|_{(SA)^{\otimes n+1}} \in \text{Hom}((SA)^{\otimes n+1}, SA)$$

est un cycle. La première assertion du lemme est déduite du fait que l’élément

$$\omega(D^2|_{(SA)^{\otimes n+1}})$$

correspond à l’élément $r(m_3, \ldots, m_{n-1})$ par l’isomorphisme de complexes

$$S^{-1}\text{Hom}_{\text{GrC}}((BA)^+, SA) \xrightarrow{\sim} C(A, A).$$

La dernière assertion du lemme est immédiate. □

Obstruction à l’extension d’un A_n-morphisme entre A_{∞}-algèbres minimales en un A_{n+1}-morphisme
Lemme B.4.2 Soit A et A' deux Λ_∞-algèbres minimales. Soit
$$g : (A, m_2) \to (A', m'_2)$$
un morphisme d’algèbres graduées. Soit des morphismes gradués
$$f_i : A'^i \to A', \quad 2 \leq i \leq n,$$
de degré $1 - i$. Nous posons $f_1 = g$. Supposons que les morphismes f_i, $1 \leq i \leq n - 1$, définissent un Λ_n-morphisme $A \to A'$. La sous-expression
$$\sum_{k \in \{1,2\}} (-1)^{jk+i} f_i(1^\otimes j \otimes m_k \otimes 1^\otimes l) - \sum_{r \in \{1,2\}} (-1)^s m'_r(f_{i_1} \otimes \ldots \otimes f_{i_r})$$
de l’équation $(\ast \ast \ast_{n+1})$ de (1.2.1.7) définit un cycle de Hochschild dans $C(A, A')$; la structure de A-bimodule sur A' est donnée par g. Nous notons ce cycle $r(f_2, \ldots, f_{n-1})$. L’équation $(\ast \ast \ast_{n+1})$ se récrit alors
$$\delta_{Hoch}(f_n) + r(f_2, \ldots, f_{n-1}) = 0.$$
□

Obstruction à l’extension d’une Λ_n-homotopie entre Λ_∞-morphismes d’Λ_∞-algèbres minimales en une Λ_{n+1}-homotopie

Lemme B.4.3 Soit A et A' deux Λ_∞-algèbres minimales. Soit f et g deux Λ_∞-morphismes $A \to A'$. Soit des morphismes gradués
$$h_i : A'^i \to A', \quad 2 \leq i \leq n,$$
de degré $-i$. Posons $h_1 = 0$. Supposons que les morphismes h_i, $1 \leq i \leq n - 1$, définissent une homotopie entre f et g considérés comme Λ_n-morphisme $A \to A'$ (on a alors $f_1 = g_1$). La sous-expression
$$\left(- \sum_{r+1+i \in \{1,2\}} (-1)^s m_{r+1+i}(f_{i_1} \otimes \ldots \otimes f_{i_r} \otimes h_k \otimes g_{j_1} \otimes \ldots \otimes g_{j_t}) + \right.$$
$$\left. - \sum_{k \in \{1,2\}} (-1)^{jk+i} h_k(1^\otimes j \otimes m_k \otimes 1^\otimes l) + f_{n+1} - g_{n+1} \right)$$
de l’équation $(\ast \ast \ast_{n+1})$ de la définition 1.2.1.7 définit un cycle de Hochschild dans $C(A, A')$; la structure de A-bimodule sur A' est donnée par f_1 et g_1. Nous notons ce cycle $r(h_2, \ldots, h_{n-1})$. L’équation $(\ast \ast \ast_{n+1})$ se récrit alors
$$\delta_{Hoch}(h_n) + r(h_2, \ldots, h_{n-1}) = 0.$$
□
Bibliographie

Notations

Les notations de base

<table>
<thead>
<tr>
<th>Symbole</th>
<th>Définition</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{K}</td>
<td>corps de base</td>
<td>20</td>
</tr>
<tr>
<td>$\mathcal{C}, \mathcal{C}', \mathcal{O}(\mathcal{O}, \mathcal{O})$</td>
<td>catégories monoïdales ambiantes</td>
<td>20, 62, 112</td>
</tr>
<tr>
<td>\otimes, \otimes_0</td>
<td>produit tensoriel</td>
<td>20, 112</td>
</tr>
<tr>
<td>e, e_0</td>
<td>élément neutre pour le produit tensoriel</td>
<td>20, 112</td>
</tr>
<tr>
<td>$\mathcal{G}\mathcal{r}\mathcal{C}$</td>
<td>catégorie des objets gradués de \mathcal{C}</td>
<td>20</td>
</tr>
<tr>
<td>$\mathcal{C}\mathcal{C}$</td>
<td>catégorie des objets différentiels gradués de \mathcal{C}</td>
<td>21</td>
</tr>
<tr>
<td>\mathcal{C}</td>
<td>bicatégorie ambiante (à partir du chapitre 4)</td>
<td>112, 133</td>
</tr>
<tr>
<td>S</td>
<td>suspension des objets de $\mathcal{G}\mathcal{r}\mathcal{C}$ et $\mathcal{C}\mathcal{C}$</td>
<td>21</td>
</tr>
<tr>
<td>s</td>
<td>morphisme de foncteurs $\mathbf{1} \to S$</td>
<td>21</td>
</tr>
<tr>
<td>$\omega = s^{-1}$</td>
<td>morphismes de foncteur $S \to \mathbf{1}$</td>
<td>21</td>
</tr>
<tr>
<td>$C(f)$</td>
<td>cône d’un morphisme f</td>
<td>76</td>
</tr>
<tr>
<td>$\delta(f)$</td>
<td>bord d’un morphisme gradué entre deux complexes</td>
<td>21</td>
</tr>
</tbody>
</table>

Les catégories de modèles et catégories triangulées

<table>
<thead>
<tr>
<th>Symbole</th>
<th>Définition</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{E}\mathcal{q}$</td>
<td>classe des équivalences faibles</td>
<td>202</td>
</tr>
<tr>
<td>$\mathcal{C}\mathcal{o}\mathcal{f}$</td>
<td>classe des cofibrations</td>
<td>202</td>
</tr>
<tr>
<td>$\mathcal{F}\mathcal{i}\mathcal{b}$</td>
<td>classe des fibrations</td>
<td>202</td>
</tr>
<tr>
<td>$\mathcal{E}_c, \mathcal{E}t, \mathcal{E}{cf}$</td>
<td>sous-catégories des objets cofibrants, des objets fibrants et de objets cofibrants et fibrants de \mathcal{E}</td>
<td>203</td>
</tr>
<tr>
<td>$\text{Ho } \mathcal{E}$</td>
<td>catégorie homotopique de \mathcal{E}</td>
<td>203</td>
</tr>
<tr>
<td>$\text{tria } \mathcal{A}$</td>
<td>sous-catégorie triangulée engendrée par les objets de \mathcal{A}</td>
<td>172</td>
</tr>
<tr>
<td>$\text{Tria } \mathcal{A}$</td>
<td>sous-catégorie triangulée (aux sommes infinies) engendrée par les objets de \mathcal{A}</td>
<td>172</td>
</tr>
</tbody>
</table>

Les Λ_{∞}-algèbres et les algèbres

<table>
<thead>
<tr>
<th>Symbole</th>
<th>Définition</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>η</td>
<td>unité</td>
<td>62</td>
</tr>
<tr>
<td>ε</td>
<td>morphisme d’augmentation</td>
<td>62</td>
</tr>
<tr>
<td>A^+</td>
<td>augmentation de A</td>
<td>62</td>
</tr>
<tr>
<td>\overline{A}</td>
<td>réduction d’une algèbre augmentée</td>
<td>62</td>
</tr>
<tr>
<td>$\overline{T}V, TV$</td>
<td>algèbre tensorielle réduite et augmentée</td>
<td>22, 83</td>
</tr>
<tr>
<td>BA</td>
<td>construction bar réduite d’une Λ_{∞}-algèbre</td>
<td>28</td>
</tr>
</tbody>
</table>
Notations

B^+A construction bar augmentée d’une A_∞-algèbre augmentée 83, 68

b^A, b différentielle de la construction bar 28

$(*)_m^r, (**)_m^r$ équations de type A_∞ 25, 25, 26

$r(m_1,\ldots,m_n)$ cycle mesurant les obstructions 208, 215

$r(f_1,\ldots,f_n)$ cycle mesurant les obstructions 210, 216

UA algèbre enveloppante d’une A_∞-algèbre 84

Alg catégorie des algèbres différentielles graduées 23

$Alga$ catégorie des algèbres dg augmentées dont les morphismes sont augmentés 63

Alg_∞ catégorie des A_∞-algèbres 25

Alg_a_∞ catégorie formée des A_∞-algèbres augmentées dont les morphismes sont augmentés 81

$(Alg_\infty)_{hu}$ catégorie des A_∞-algèbres homologiquement unitaires dont les morphismes sont homologiquement unitaires 106

$(Alg_\infty)_{su}$ catégorie des A_∞-algèbres strictement unitaires dont les morphismes sont homologiquement unitaires 106

$(Alg_\infty)_u$ catégorie des A_∞-algèbres strictement unitaires dont les morphismes sont strictement unitaires 106

$A \hookrightarrow A(M, \alpha)$ cofibration standard de Alg 37

$C^+(A, M)$ complexe de Hochschild de A à coefficients dans M 214

δ_{Hoch} bord de Hochschild 214

τ cochaîne tordante 67

$\tau_{A, C}$ cochaînes tordantes universelles 69

Les A_∞-cogèbres et les cogèbres

$C^r_{[n]}$ n-primitifs de C 23

η co-unité 64

ε morphisme de co-augmentation 64

C^+ co-augmentation d’une cogèbre C 64

\overline{C} réduction d’une cogèbre co-augmentée C 64

$T^c V, T^c C$ cogèbre tensorielle réduite et co-augmentée 24, 64

$\overline{T}^r V, \overline{T}^r C$ n-primitifs de la cogèbre $T^c C$ 30

Ω^+_C, Ω^+_C construction cobar réduite et co-augmentée 30, 68, 68

Cog catégorie des cogèbres différentielles graduées 24

Cogc catégorie des cogèbres dg cocomplètes 24

Qis classe des quasi-isomorphismes 51

$Qisf$ classe des quasi-isomorphismes filtrés 51

Cog∞ catégorie des A_∞-cogèbres 30

Les polydules, les bipolydules et les modules

BM construction bar d’un A-polydule 83
Les notations et définitions suivantes sont utilisées dans ce texte.

- R, M, RM: produit tensoriel tordu $M \otimes C$
- $M \otimes C$: produit tensoriel tordu
- τ: cycle mesurant les obstructions
- $\Hom_A(X, -)$: foncteur standard
- $? \otimes A X$: foncteur standard
- Mod_A: catégorie des A-modules différentiels gradués unitaires
- Mod^∞_A: catégorie des A-modules différentiels gradués unitaires
- Nod^∞_A: catégorie des A-polydules (non nécessairement strictement unitaires)
- $\text{Nod}^\infty_{(A, A')}$: catégorie des $A-A'$-polydules (non nécessairement strictement unitaires)
- $\text{Mod}^\infty_{(A, A')}$: catégorie des $A-A'$-polydules strictement unitaires
- $\text{Nod}^\infty_{(A, A')}$: sous-catégorie pleine de Nod^∞_A formée des A-polydules strictement unitaires
- $\text{C}^\infty_{(A, A')}$: catégorie différentielle graduée des $A-A'$-polydules strictement unitaires
- $\text{D}^\infty_{(A, A')}$: catégorie dérivée de $\text{Mod}^\infty_{(A, A')}$
- $\text{N}^\infty_{(A, A')}$: sous-catégorie pleine de $\text{Nod}^\infty_{(A, A')}$ formée des $A-A'$-polydules strictement unitaires
- $\text{C}^\infty_{(A, A')}$: catégorie différentielle graduée des $A-A'$-polydules strictement unitaires
- $\text{N}^\infty_{(A, A')}$: sous-catégorie pleine de $\text{Nod}^\infty_{(A, A')}$ formée des $A-A'$-polydules strictement unitaires
- $\text{C}^\infty_{(A, A')}$: catégorie différentielle graduée des $A-A'$-polydules strictement unitaires

Les comodules

- $N_{[n]}$: n-primitifs de N
|\(L_N, LN\) & produit tensoriel tordu \(N \otimes_{\tau} A\) & 67 \\
|\(N \otimes_{\tau} A\) & produit tensoriel tordu & 67 \\
|\(\square, C\) & produit cotensoriel au-dessus de \(C\) & 114 \\
|\(\text{Com} C\) & catégorie des comodules dg unitaires & 65 \\
|\(\text{Comc} C\) & catégorie des comodules dg cocomplets sur \(C\) & 66 \\
|\(DC\) & catégorie dérivée de \(\text{Comc} C\) & 77 \\

Les \(A_\infty\)-catégories et les \(A_\infty\)-foncteurs

- \(\mathcal{C}\): bicatégorie des ensembles
- \(\mathcal{A}, \mathcal{B}\): \(A_\infty\)-catégories
- \(\mathcal{A}, \mathcal{B}\): ensembles des objets des \(A_\infty\)-catégories \(\mathcal{A}\) et \(\mathcal{B}\)
- \(\circ, \circ_{\mathcal{A}}\): produit tensoriel de \(\mathcal{C}(\mathcal{A}, \mathcal{A})\)
- \(f, g\): \(A_\infty\)-foncteurs
- \(\hat{f}, \hat{g}\): applications sous-jacentes des \(A_\infty\)-foncteurs
- \(\mathbf{1}_{\mathcal{A}}, 1\): \(A_\infty\)-foncteur identité de \(\mathcal{A}\)
- \(\mathbf{1}_{\mathcal{A}}\): morphisme identité d’un objet \(A \in \mathcal{A}\)
- \(\mathcal{A}_x\): \(A_\infty\)-catégorie tordue par \(x\) \\
- \(f^x\): \(A_\infty\)-foncteur tordu par \(x\) \\
- \(x, M_{x'}\): bipolydyne tordu par \(x\) et \(x'\) \\
- \(\widehat{V}\): complétion d’un objet topologique \\
- \(\otimes\): produit tensoriel complet \\
- \(\mathcal{R}\): catégorie des algèbres locales commutatives \\
- \(\mathcal{T}_V\): cogèbre tensorielle complète réduite \\
- \(\text{twA}\): \(A_\infty\)-catégorie des objets tordus de \(\mathcal{A}\) \\
- \(A^\wedge\): polydyne représenté \(\mathcal{A}(\wedge, A)\) \\
- \(\mathbf{y}\): \(A_\infty\)-foncteur de Yoneda \\
- \(\text{Nunc}_{\infty}(\mathcal{A}, \mathcal{B})\): \(A_\infty\)-catégorie des \(A_\infty\)-foncteurs \(\mathcal{A} \to \mathcal{B}\) (non nécessairement strictement unitaires) \\
- \(\mathcal{F}(\mathcal{A}, \mathcal{B})\): \(A_\infty\)-catégorie \(\text{Nunc}_{\infty}(\mathcal{A}, \mathcal{B})\) munie des compositions naïves \\
- \((\text{Nunc}_{\infty}(\mathcal{A}, \mathcal{B}))_u\): sous-catégorie pleine de \(\text{Nunc}_{\infty}(\mathcal{A}, \mathcal{B})\) formée des \(A_\infty\)-foncteurs strictement unitaires \\
- \(\text{Func}_{\infty}(\mathcal{A}, \mathcal{B})\): \(A_\infty\)-catégorie des \(A_\infty\)-foncteurs \(\mathcal{A} \to \mathcal{B}\) strictement unitaires \\
- \(\square\): produit cotensoriel \\
- \(\text{nat}_{\infty}\): 2-catégorie (non 2-unitaire) des petites \(A_\infty\)-catégories (non nécessairement strictement unitaires) \\
- \(\text{cat}_{\infty}\): 2-catégorie des petites \(A_\infty\)-catégories strictement unitaires \\
- \(z\): \(A_\infty\)-foncteur de Yoneda généralisé \\
- \(\theta\): 186 \\
- \(I_n\): 195
Index

A∞-algèbre, 25
 topologique, 153
A∞-catégorie, 135
 tordue, 148, 158
A∞-cogèbre, 27
A∞-équivalence, 196
A∞-foncteur, 136
 de Yoneda, 162
 de Yoneda généralisé, 186
 pleinement fidèle, 162
 tordu, 149, 159
A∞-isomorphie, 195
A∞-module, 79
A∞-morphismisme, 25, 80
 strict, 25, 80
A∞-pré-triangulée (catégorie), 171
A∞-quasi-isomorphisme, 26, 80
Aₙ-algèbre, 25
Aₙ-module, 79
Aₙ-morphismisme, 25, 79
acyclique (cochaîne), 68
adjonction de Quillen, 204
admissible
 cochaîne, 67
 cogèbre, 34
 comodule, 71
 filtration, 34
algèbre, 22
 différentielle graduée, 23
 enveloppante, 84, 127
 graduée, 23
 libre, 22
 presque libre, 23
 réduite, 62
 tensorielle augmentée, 83
 tensorielle réduite, 22
augmentation, 62, 81
A-B-bimodule, 133
bipolydyule, 92, 137
 tordu, 151, 159
catégorie
 A∞-pré-triangulée, 171
 de Frobenius, 76
 de modèles, 202
dérivée, 76, 88, 94, 118, 126, 129
différentielle graduée, 135
 homotopique, 203
 stable, 76
 triangulée algébrique, 172
co-augmentée (cogèbre), 64
co-augmentation, 64
co-induction, 65
co-unitaire, 64, 65
cochaîne tordante, 31, 67
 acyclique, 68
 admissible, 67
 généralisée, 124
 universelle, 69
cocomplète (cogèbre), 23
cocomplet (comodule), 66
codérivation, 23, 65, 109, 183
colibrant, 203
colibration, 202
colibration standard (de Alg), 37
 colibration standard (de Mod A), 72
cogèbre, 23
 admissible, 34
 co-augmentée, 64
 cocomplète, 23
 réduite, 64
 tensorielle réduite, 24
colibre (comodule), 66
comodule, 65
 admissible, 71
 cocomplet, 66
colibre, 66
différentiel gradué, 65
gradué, 65
presque colibre, 66
compact (objet), 172
complétion, 153
complexe, 21
filtré, 34
cône d’un A_∞-morphisme, 90
construction bar, 28, 68, 83, 93
construction cobar, 30, 68
contractant, 153
contraction, 54
corestriction, 65
cylindre, 202
d’équation, 22, 63
différentielle tordue, 67
cône filtré, 34
d’A_∞-foncteurs, 192
filtration, 34
extension, 164
extension scindée, 164
fibrant, 203
fibration, 202
filtration, 34
admissible, 34
tori, 35
primitif, 23, 35, 66
foncteur
de Quillen, 204
dérivé, 204
standard, 113, 114
générateur, 172
H-unitaire, 119, 123
hauteur, 164
Hochschild
complexe, 214
complexe réduit, 215
homotopie, 22–24, 50, 63, 65
à gauche, 203
A_∞-morphismes, 26, 80, 81
identité
d’objet, 135
le foncteur, 136
induction, 63
irréductible, 22
isomorphie, 195
lemme clé, 140
lemme de perturbation, 54
libre
algèbre, 22
module, 63
Maurer-Cartan (équation), 100, 146
modèle différentiel gradué, 171
modèle minimal, 54, 105
module, 63
différentiel gradué, 63
gradué, 63
libre, 63
presque libre, 63
A-module, 133
objet de chemins, 203
objet filtré, 34
objet gradué, 20
objet tordu, 163, 165
obstruction, 207
perturbation, 54
polydule, 79, 137
topologique, 153
presque colibre (comodule), 66
presque libre
algèbre, 23
module, 63
p-primitifs, 23, 66
produit tensoriel tordu, 67, 125
quasi-isomorphisme filtré, 34
R-A_∞-catégorie, 154
réduite (algèbre), 62
réduite (cogèbre), 64
résolution cofibrante, 203
résolution fibrante, 203
réduction, 81
relèvement, 201
restriction, 63

saturée (classe), 202
scindée (extension), 164
strict (A\(_\infty\)-morphisme), 25, 80
strictement unitaire
\(A_\infty\)-algèbre, 81
bipolydure, 92
élément de \(\text{Hom}_{\text{Nunc}_\infty}\)\((f_1, f_2)\), 185
homotopie, 98
polydure, 81
suspension, 21, 79
tensorielle augmentée (algèbre), 83
tensorielle réduite (algèbre), 22
tensorielle réduite (cogèbre), 24
tensoriellement nilpotent, 146
topologie, 153
torsion, 148, 149, 151, 158, 159
triviale (cofibration), 202
triviale (fibration), 202
unité
homologique, 98
stricte, 81
universelle (cochaîne), 69

Yoneda (\(A_\infty\)-foncteur de), 162
Yoneda généralisé (\(A_\infty\)-foncteur de), 186
Sur les A_{∞}-catégories
Kenji Lefèvre-Hasegawa

Résumé : Nous étudions les A_{∞}-algèbres \mathbb{Z}-graduées (non nécessairement connexes) et leurs A_{∞}-modules. En utilisant les constructions bar et cobar ainsi que les outils de l’algèbre homotopique de Quillen, nous décrivons la localisation de la catégorie des A_{∞}-algèbres par rapport aux A_{∞}-quasi-isomorphismes. Nous adaptons ensuite ces méthodes pour décrire la catégorie dérivée $\mathcal{D}_{\infty}A$ d’une A_{∞}-algèbre augmentée A. Le cas où A n’est pas muni d’une augmentation est traité différemment. Néanmoins, lorsque A est strictement unitaire, sa catégorie dérivée peut être décrite de la même manière que dans le cas augmenté. Nous étudions ensuite deux variantes de la notion d’unitarité pour les A_{∞}-algèbres : l’unitarité stricte et l’unitarité homologique. Nous montrons que d’un point de vue homotopique, il n’y a pas de différence entre ces deux notions. Nous donnons ensuite un formalisme qui permet de définir les A_{∞}-catégories comme des A_{∞}-algèbres dans certaines catégories mono-idéales. Nous généralisons à ce cadre les constructions fondamentales de la théorie des catégories : le foncteur de Yoneda, les catégories de foncteurs, les équivalences de catégories... Nous montrons que toute catégorie triangulée algébrique engendrée par un ensemble d’objets est A_{∞}-prétriangulée, c’est-à-dire qu’elle est équivalente à $H^0\text{tw}A$, où $\text{tw}A$ est l’A_{∞}-catégorie des objets tordus d’une certaine A_{∞}-catégorie A.

Discipline : mathématiques
Mots-clés : A_{∞}-catégorie, algèbre à homotopie près, catégorie dérivée, algèbre homologique, catégorie triangulée, construction bar

Adresse : Kenji Lefèvre-Hasegawa, Théorie des Groupes, Case 7012, 2 place Jussieu, F-75251 Paris Cedex 05, France
Adresse électronique : lefevre@math.jussieu.fr

On A_{∞}-categories
Kenji Lefèvre-Hasegawa

Abstract : We study (not necessarily connected) \mathbb{Z}-graded A_{∞}-algebras and their A_{∞}-modules. Using the cobar and the bar construction and Quillen’s homotopical algebra, we describe the localisation of the category of A_{∞}-algebras with respect to A_{∞}-quasi-isomorphisms. We then adapt these methods to describe the derived category $\mathcal{D}_{\infty}A$ of an augmented A_{∞}-algebra A. The case where A is not endowed with an augmentation is treated differently. Nevertheless, when A is strictly unital, its derived category can be described in the same way as in the augmented case. Next, we compare two different notions of A_{∞}-unitarity : strict unitarity and homological unitarity. We show that, up to homotopy, there is no difference between these two notions. We then establish a formalism which allows us to view A_{∞}-categories as A_{∞}-algebras in suitable monoidal categories. We generalize the fundamental constructions of category theory to this setting : Yoneda embeddings, categories of functors, equivalences of categories... We show that any algebraic triangulated category T which admits a set of generators is A_{∞}-pretriangulated, that is to say, T is equivalent to $H^0\text{tw}A$, where $\text{tw}A$ is the A_{∞}-category of twisted objects of a certain A_{∞}-category A.

Keywords : A_{∞}-category, homotopy algebra, derived category, homological algebra, triangulated category, bar construction

Adresse : Kenji Lefèvre-Hasegawa, Théorie des Groupes, Case 7012, 2 place Jussieu, F-75251 Paris Cedex 05, France
Adresse électronique : lefevre@math.jussieu.fr