Soutenance de Thèse Vendredi 8 Octobre 2004

Modélisation des structures Métal-Oxyde-Semiconducteur (MOS) : Applications aux dispositifs mémoires

Sandrine **BERNARDINI**

□ La capacité MOS

□ Le transistor MOS

□ La mémoire à nodules de silicium

□ Conclusions

□ Perspectives

1947 : 1^{er} transistor bipolaire en Germanium
 1963 : 1^{er} transistor MOSFET

> 1965 : La loi de Moore

12 mois : Nombre de composants X2

Réduction de la taille des composants

Multimédia

Stockage des données

Mémorisation de l'information

Automobile

Électronique embarquée

Télécommunication

Objectif de la thèse

Étude des phénomènes parasites liés à l'évolution des dispositifs

- Deux outils : la modélisation et la caractérisation
 - Comprendre les mécanismes de fonctionnement
 - Élaborer des algorithmes pour décrire un phénomène

Comparer les simulations avec des données expérimentales
Élaborer des modèles plus complexes

Capacité

Capacité

Capacité

- ✓ La capacité MOS
- □ Le transistor MOS
- □ La mémoire à nodules de silicium
- □ Conclusions
- Perspectives

Modélisation classique de la capacité

\square Calcul du potentiel de surface $\Psi_{\rm S}$

Neutralité électrique et équation aux potentiels

Résolution de l'équation implicite : Méthode de Newton-Raphson

Modélisation classique de la capacité

$\hfill\square$ Calcul du potentiel de surface Ψ_{S}

Neutralité électrique et équation aux potentiels

Résolution de l'équation implicite : Méthode de Newton-Raphson

Calcul de la charge dans le semiconducteur

• Eq. de Poisson, Th. de Gauss \longrightarrow $Q_{SC}(\Psi_S)$

Modélisation classique de la capacité

\Box Calcul du potentiel de surface Ψ_{s}

Neutralité électrique et équation aux potentiels

Résolution de l'équation implicite : Méthode de Newton-Raphson

Calcul de la charge dans le semiconducteur

• Eq. de Poisson, Th. de Gauss \square $Q_{SC}(\Psi_S)$

$$V_{GB} = \Phi_{MS} + \Psi_{S} - \Psi_{SG} - \frac{Q_{SC}(\Psi_{S})}{C_{ox}}$$

Rajout d'un terme dans l'équation implicite

Étude de la capacité

Poly-désertion de la grille Non uniformité de N_A

Résolution de l'équation de Poisson méthode des différences finis

Création d'abaques

Étude de la capacité

Poly-désertion de la grille Non uniformité de N_A

□ Non uniformité Q_{ox}

coll. M. Houssa et F. Lalande

Non uniformité de t_{ox}
coll. L. Raymond et X. Cuinet

Modèle 2D : Code C⁺⁺ développé par L. Raymond

- Non uniformité du ξ transverse
- Méthode des éléments finis
- Maillage triangulaire
- Discrétisation de l'équation de Poisson

Capacité MOS à tox non constant

Comparaison entre les modèles 2D et pseudo 2D

Rms = 0, 0.33nm et 0.77nm

 t_{ox} moyen = 3 nm

Comparaison entre les modèles 2D et pseudo 2D

Rms = 0, 0.33nm et 0.77nm

- Bon accord (à faible rugosité)
- Pseudo 2D : outil de base pour tester ≠ approximations

- Structure Métal / SiO₂ / Si : Simulations et mesures
- Structure Métal / HfO₂ / SiO₂ / Si : Simulations

Modélisation des charges fixes

• Équation aux potentiels $V_{GB} = \Phi_{MS} + \Psi_S - \Psi_{SG} - \frac{Q_{SC}(\Psi_S)}{C_{OX}} - \frac{Q_{Oxeff}}{C_{OX}}$

• Charge (m⁻²) vue de l'interface $Q_{\text{oxeff}} = \int_{0}^{t_{\text{ox}}} \frac{t_{\text{ox}} - y}{t_{\text{ox}}} Q_{\text{ox}}(y) dy$ • V_{GB} et Q_{OX} données $\square \square \square$

Profils simulés

Diagramme de bandes (C5)

Profils simulés

Étude expérimentale : effet des stress électriques

 $V_{G} = 8 V$

Étude expérimentale : effet des stress électriques

 $V_{c} = 8 V$ $V_{G} = -9.5 V$ Électrons Substrat — Grille Électrons Grille Substrat 10⁻⁵ 10⁻⁵ Grille Substrat **Substrat** Grille 10⁻⁷ 10^{-7} Substrat Grille Grille Substrat 10-9 10⁻⁹ courbe vierge courbe vierge l_G (A) I_G(A) stress négatif stress positif 10-11 **10⁻¹¹ 10**⁻¹³ **10**⁻¹³ -8 8 -8 $\mathbf{0}$ 4 8 -4 $V_{G}(V)$ $V_{G}(V)$ dissymétrique tun

Étude expérimentale : mesure C-V

W × L = 1000 × 75 μm²

Extraction des paramètres

Meilleurs résultats :
répartition exponentielle $Q_{OX} = Q_{max} \exp\left(\frac{-y}{\lambda}\right) + Q_{min}$ • Stress $\int_{\lambda} Q_{OX} \int_{\lambda} Q_{OX} \int_$

Origine possible des charges fixes

□ Modèle du transport de l'hydrogène : (*M. Houssa 2001*)

La génération de charges est limitée par

- les sauts aléatoires des ions H⁺
- leur piégeage dans la couche de SiO₂

Origine possible des charges fixes

e

 V_{G}

H+

□ Modèle du transport de l'hydrogène : (*M. Houssa 2001*)

La génération de charges est limitée par

- les sauts aléatoires des ions H⁺
- leur piégeage dans la couche de SiO₂

Comparaison mesures - simulations

Bon accord entre les mesures et les simulations

□ La capacité MOS

Le transistor MOS

□ La mémoire à nodules de silicium

□ Conclusions

Modèles simplifiés

- Tension de seuil
- Mobilité
- Dopage du substrat
- Potentiel de surface

Modèles continus pseudo 2D Pao et SahFeuillet

Approche segmentée pseudo 2D

Non uniformités

Modélisation du transistor MOS

Deux approches pour le calcul du courant

- Modèle de Pao et Sah [1966]
 - Intégrale de Q_n le long du canal (Φ_C)
- $I_{DS} = -\frac{W}{L} \mu_{eff} \int_{\Phi_C(0)}^{\Phi_C(L)} Q_n d\Phi_C$
- Prise en compte d'effets parasites : présence de pièges dans l'isolant ou à son interface, poly-déplétion de la grille...
- Calculs relativement lents

Modélisation du transistor MOS

Deux approches pour le calcul du courant

- Modèle de Pao et Sah [1966]
 - Intégrale de Q_n le long du canal (Φ_c)
- $I_{DS} = -\frac{W}{L} \mu_{eff} \int_{\Phi_C(0)}^{\Phi_C(L)} Q_n d\Phi_C$
- Prise en compte d'effets parasites : présence de pièges dans l'isolant ou à son interface, poly-déplétion de la grille...
- Calculs relativement lents

Modèle en feuillet [1978]

• Évaluation du potentiel de surface uniquement à la source et au drain • Calcul plus rapide $I_{DS} = \frac{W}{W} = W_{Cov} [F(L) - F(0)]$

 $I_{DS} = \frac{W}{I} \mu_0 C_{OX} [F(L) - F(0)]$

avec $F(x) = f(V_{GB}, \Psi_S, \Phi_C)$

Modèle segmenté

Découpage du TMOS en N TMOS élémentaires

- $\Phi_{\rm C}$ (0) = V_{BS} et $\Phi_{\rm C}$ (L)=V_{DB} V_{SB}
- N équations à (N–1) inconnues
- TMOS élémentaire = résistance
- Loi du pont diviseur couplée à un système itératif

Étude des non uniformités du MOSFET

L2MP

Approche Segmentée : Modèle de base

Résistances séries

Sandrine BERNARDINI

Étude des non uniformités du MOSFET

Approche Segmentée : Modèle de base

Étude des non uniformités du MOSFET

Approche Segmentée : Modèle de base

Amincissement de t_{ox} coll. J.M. Portal

Analyse du problème

$\bullet \mathbf{I}_{\mathsf{D}} \neq \mathbf{I}_{\mathsf{S}}$

\Box Modification de la répartition de Φ_{c}

Paramètres de simulation $N_{\Delta} = 7 \times 10^{23} \text{ m}^{-3}$ $t_{ox} = 1.5 \text{ nm}$ $W = 1 \mu m$ $V_{FB} = -1 V$

Modification de la répartition du courant

Paramètres de simulation $N_A = 7 \times 10^{23} \text{ m}^{-3}$ $t_{ox} = 1.5 \text{ nm}$ $W = 1 \mu \text{m}$ $V_{FB} = -1 \text{ V}$

- Canaux courts : pas de modification des paramètres
- Canaux longs : I_D n'est pas donné par l'équation classique

Modélisation du TMOS avec fuite de grille

GLNMOS

Symétrie du modèle

Le courant tunnel est donné par l'équation :

$$G = \frac{WL}{2} (Q_{nS}F_{imp}T_{S} + Q_{nD}F_{imp}T_{D})$$

Modèle segmenté modifié : N GLNMOS

Utilisation du modèle en feuillet

• V_{GS} fixée, il faut trouver la variation de Φ_C en imposant :

 $I_{DS_{N-1}} G_{DS_{N-1}} O_{DS_{N}} O_{N-1} O_{DS_{N}} O_{N-1} O_{N$

Programme sous environnement Mathcad et ELDO

□ Modélisation avec fuite de grille *coll. JM Portal*

Syrzycki «Modeling of Gate Oxide Shorts in MOS Transistors », IEEE Trans. On Computer Aided Design, 1989

L2M7

Simulation TMOS référence : W×L = 10 ×10 µm² & t_{ox} = 1.5 nm

Simulation TMOS référence : W×L = 10 ×10 µm² & t_{ox} = 1.5 nm

□ Simulations TMOS défectueux : $W \times L = 10 \times 10 \mu m^2 \& t_{ox} = 1.2 nm$

Sandrine BERNARDINI

Influence de la position des défauts

Simulations réalisées pour V_{DS} = 50 mV et V_{GS} = 1.2 V

Influence de la position des défauts

Simulations réalisées pour V_{DS} = 50 mV et V_{GS} = 1.2 V

Influence de la taille des défauts

 $t_{ox} = 1.5 \text{ nm}$

Simulations réalisées pour V_{DS} = 50 mV et V_{GS} = 1.2 V

Influence de la taille des défauts

TMOS Référence

9 transistors défectueux

 $t_{ox} = 1.2 \text{ nm}$

Simulations réalisées pour V_{DS} = 50 mV et V_{GS} = 1.2 V

5

5

□ La capacité MOS

□ Le transistor MOS

La mémoire à nodules de silicium

□ Conclusions

La cellule Flash

Description de la cellule

- mémoire la plus importante des NVM
- Un seul transistor
- Densité d'intégration et rapidité d'écriture

La mémoire à nodule

□ Solution : stockage discret

La mémoire à nodule

□ Solution : stockage discret

Nano-cristaux de silicium en remplacement de la grille flottante

- Préservent d'une perte totale des charges
- Permettent de stocker 4 états : logique à deux bits

Sandrine BERNARDINI

Simulations statiques des mémoires à nodules

R_{eff} : Surface occupée par les nodules

$$R_{eff} = N_{dot} \prod \left(\frac{D_{dot}}{2}\right)^2$$

Simulations statiques des mémoires à nodules

R_{eff} : Surface occupée par les nodules

$$R_{eff} = N_{dot} \prod \left(\frac{D_{dot}}{2}\right)^2$$

□ Modélisation : variation de la charge stockée

- Modification du simulateur de mémoires Flash
- Segmentation du TMOS
- Chargement des dots (porteurs chauds)

Le nombre d'électrons stockés = f (du temps d'écriture et de D_{Dot})

□ Modélisation : variation de V_T

- Modification du simulateur de mémoires Flash
- Prise en compte de la taille et de la densité des nano-cristaux

Bon comportement
 qualitatif du simulateur

 \otimes Aucune plaque sans nodule \implies impossible de calibrer le modèle

Études expérimentales

 $t_{ox1} = 5.5 \text{ nm}$ $t_{ox2} = 8 \text{ nm}$ IEDM 2003

Demi- plaques	Ddot (nm)	Ndot (10 ¹¹ cm- ²)	
1	4.5	16	
2	5.5	9.6	
3	8.5	4	
4	10	2.8	

 $R_{eff} \approx constant$

- Bonne uniformité des demi-plaques
- Position de la courbe de la plaque 1 ?

Extraction des paramètres : mesure C-V

Demi-plaques	D _{Dot} (nm)	N _{Dot} (10 ¹¹ / cm ²)	N _A (10 ²⁴ m ⁻³)	t _{ox} (nm)	V _{FB} (V)
1	4.5	16	1.29	12.4	
2	5.5	9.6	1.32	13.76	4 4 \/
3	8.5	4	1.33	13.32	- I.I V
4	10	2.8	1.27	11.3	

□ Influence du paramètre R_{eff}

- sans nodule (tox = $tox_1 + tox_2$)

- avec des dots entre t_{ox1} et t_{ox2}

 1 couche de silicium entre t_{ox1} et t_{ox2}

Fonctionnement 2 bits Lecture état effacé

Sandrine BERNARDINI

- Fonctionnement 2 bits
- Lecture état effacé
- Écriture : $V_G = 8V$ et $V_D = 3.5V$
- Lecture : mode direct et inverse

Décalage plus important en mode de lecture inverse

Conclusions

- poly-désertion
- non uniformité de N_A
- non uniformité de t_{ox}
- non uniformité de Q_{ox}

Créer des modèles pour tenir compte de leur influence

Conclusions

- poly-désertion
- non uniformité de N_A
- non uniformité de t_{ox}
- non uniformité de Q_{ox}

Créer des modèles pour tenir compte de leur influence

- Approche segmentée
- Résistances d'accès
- Dopage de substrat
- Amincissement de tox localisé

Dégradation des caractéristiques électriques

Outils pour l'étude des dispositifs MEMOIRES au sein du L2MP

Conclusions

- poly-désertion
- non uniformité de N_A
- non uniformité de t_{ox}
- non uniformité de Q_{ox}

Créer des modèles pour tenir compte de leur influence

- Approche segmentée
- Résistances d'accès
- Dopage de substrat
- Amincissement de tox localisé

Dégradation des caractéristiques électriques

- Caractérisations électriques
- Modification des modèles des structures MOS
- Modélisation de la phase d'écriture

Variations des paramètres clefs Limitation dues aux effets canaux courts

Perspectives

• Loi de variation de $Q_{ox} = F(t_{stress}, V_{stress})$

Étude avec des matériaux high κ

- Stress électriques : Variation de V_{th} et I_D
- Étude des rugosités de surface
- TMOS segmenté : effets canaux courts

- Calibration du modèle : Nouvelles structures de test
- Effets canaux courts
- Fuites entre nano-cristaux
- Étude en température