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10 Abstract

Abstract

“Shape From Shading” is considered as an ill-posed problem which is there-
fore difficult to solve. In order to understand the difficulty of this problem and
to design reliable and relevant solutions, we propose a rigorous approach based
on the notion of viscosity solutions. In particular, we systematically prove the
existence and uniqueness of the solution; if necessary (when uniqueness does
not hold) we characterize the solutions. We also demonstrate the convergence
of our algorithms.

After having considered and fully exploited the (partial differential) equa-
tions provided by the classical modeling of the Shape From Shading problem,
we propose and study some new equations arising from modelings which are
more realistic than the ones considered in the Shape From Shading literature.
In particular, this allows us to demonstrate that, with more realistic model-
ings, the Shape From Shading problem is generally well-posed. In effect, we
prove that the classical version of the Shape From Shading problem is ill-posed
because of an over-simplification in the modeling.

In this work, we also propose an extension of the notion of the singular
viscosity solutions developed recently in [26, 27]. This extension allows to pro-
pose a new characterization of the discontinuous viscosity solutions. This new
mathematical framework also allows to unify the various theoretical results that
have been obtained in the Shape From Shading area.
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Résumé

Le probleme du “Shape From Shading” est aujourd’hui considéré comme un
probleme mal posé et difficile & résoudre. Afin de bien comprendre les diffi-
cultés de ce probleme et d’apporter des solutions fiables et pertinentes, nous
proposons une approche rigoureuse basée sur la notion de solution de viscosité.
En particulier, nous prouvons systématiquement I'existence et I'unicité de la so-
lution; le cas échéant, nous proposons des caractérisations des solutions. Nous
prouvons aussi la convergence de nos algorithmes.

Apreés avoir considéré et exploité au maximum les équations (aux dérivées
partielles) obtenues a partir de la modélisation classique du probleme du “Shape
From Shading”, nous proposons et étudions de nouvelles équations provenant
de modélisations plus réalistes que celles qui avaient été traitées classiquement
dans la littérature. Cette démarche nous permet alors de démontrer qu’avec
de telles nouvelles modélisations, le probléme du “Shape From Shading” est
généralement un probleme complétement bien posé. En d’autres termes, nous
prouvons que la version classique du probléeme du “Shape from Shading” est
devenu mal posée a cause d’une trop grande simplification de la modélisation.

Dans ce travail, nous proposons aussi une extension de la notion de solu-
tions de viscosité singulieres développée récemment dans [26, 27]. Cette ex-
tension nous permet de proposer une nouvelle caractérisation des solutions de
viscosité discontinues. Ce nouveau cadre théorique nous permet aussi d’unifier
les différents résultats théoriques proposés dans le domaine du “Shape From
Shading”.
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We start this document by a detailed introduction written in french.
Afterwards, this manuscript is written in english. The english-

speaking reader is invited to start reading from the page 35.

. Introduction et
COIItI‘lbllthIlS (en frangais)

Le probleme du “Shape From Shading” (SFS) consiste a calculer la
forme tridimensionnelle d’une surface a partir de [’intensité d’une seule

image en niveaux de gris de cette surface; voir figure 1. C’est un probléme

Probléme -
:

Surface Photo Retrouver la surface
donnant la méme image

Figure 1: Le probleme du “Shape-from-Shading”.

de vision monoculaire basé sur 1’ information photométrique.

Selon Durou [49, 48], dans le début des années 50, Van Diggelen [162]
fat le premier a considérer le probleme de reconstruction 3D a partir
d’indices photométriques. La premiere solution fit suggérée par Rind-
fleisch [131] dans les années 60. Plus tard, Horn [67] fit le premier a
formuler le probleme du “Shape From Shading” de maniere simple et
rigoureuse, sous la forme d’une Equation Différentielle Partielle (EDP)
appelée I’équation d’irradiance. C’est aussi Horn qui suggéra d’appeler ce
probleme “Shape From Shading”. Par la suite, tous les travaux publiés

jusqu’a ce jour en “Shape From Shading” reposent sur les travaux de
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Horn. Dans un premier temps (dans les années 80) les auteurs se concen-
traient sur la partie numérique du probleme. Les questions d’existence et
d’unicité de la solution du probleme n’étaient pas évoquées en ce temps
a l'exception notable du travail de Bruss et Brooks [22, 16]. Cepen-
dant, en raison de la médiocrité des résultats obtenus, ces questions,
ainsi que celles relatives a la convergence des schémas numériques, dev-
inrent essentielles dans la derniére décennie du 20eme siecle. Suite a
ces travaux théoriques, le probleme du “Shape From Shading” est au-
jourd’hui considéré comme étant un probleme mal posé. Par exemple,
un grand nombre d’articles montrent qu’il n’y a pas unicité de la solution

[16, 106, 107, 134, 11, 51, 127, 120]. Les difficultés rencontrées ont souvent

Figure 2: L’illusion du cratére [115]. Dans I'image a), nous percevons deux
crateres: un petit et un grand. Mais nous pouvons transformer ces crateres en
volcans (bien qu’a I'envers) si nous imaginons que la scéne est illuminée par le
bas plutét que par le haut. En fait, cette image est celle d’une paire de volcans
dans les iles Hawaiennes, et non pas d’une paire de cratéres. L’image b) affiche

la photographie dans le bon sens.

été illustrées par des ambiguités concaves/convexes comme celle présentée
par la Figure 2. Sur cette figure, 'ambiguité résulte d’un changement
d’estimation des parametres de ’éclairage. En fait, ce type d’ambiguité
peut étre largement généralisé. En effet, dans [11], Belhumeur et ses
co-auteurs démontrent que lorsque la direction de I’éclairage! et ’albedo

d’une surface Lambertienne sont inconnus, alors la méme image peut étre

'Dans le cas d’une source de lumiére éloignée.
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obtenue par une famille continue de surfaces (dépendant linéairement de
trois parametres). En d’autres termes, ils montrent que ni la brillance ni
les ombres portées d’un objet, ne peuvent, a partir d'un unique point de
vue, réveler exactement sa structure 3D. Ceci est 1’“Ambiguité du Bas-

relief”, voir [11] et la Figure 3. Etant conscients de ces difficultés, nous

a) b)

Figure 3: “Ambiguité du Bas-relief” [11]: Vues frontale et de profil d’une sculp-
ture en bas-relief. Bien que la profondeur réelle de cette sculpture ne dépasse
pas la dizaine de centimeétres, la vue frontale a) semble avoir une profondeur 3D
correcte. La vue de profil b) révele I’écrasement. Ceci prouve donc que I'image
a) peut étre obtenue par deux surfaces: la surface 3D que nous imaginions en
regardant 'image a) et 'actuel bas-relief qui est a l'origine des deux photos a)
et b). Pour plus de détails, le lecteur peut se référer a [11].

supposons donc ici que tous les parametres de la source de lumiere, de la
réflectance de la surface et de ’appareil photographique sont connus.

Comme nous avons mentionné ci-dessus, la modélisation du probleme du
“Shape From Shading” introduite par Horn aboutit a une EDP: I’équation

de brillance. Cette équation peut étre grossierement abrégée par
E(z1,22) = R(n(z1, 22)).

L’équation de brillance relie la carte de réflectance (R) & la brillance de
I'image (E); voir le chapitre 5 pour plus de détails.

A notre connaissance, a I’exception des travaux présentés dans [3, 92, 130],
toutes les méthodes pour résoudre le probleme du “Shape From Shading”

supposent que la scene est Lambertienne. Dans ce cas, la réflectance
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correspond au cosinus de Pangle entre le vecteur lumiere L(zq,z9) et le

vecteur normal a la surface n(xy, z):
R=cos(Lyn) = — - —

(R, L et n dépendent de (z1,z2)).
La premiere EDP ezplicite déduite de 1’équation de brillance et étudiée

dans la littérature du “Shape From Shading” est I’équation Eikonale:

Vu(z)| =

-1, Vo= (x1,22) €

o1 Q C R? représente le support de I'image et I : 2 — R représente la bril-
lance de 'image. Cette équation est obtenue a partir de la modélisation
la plus simple du probléme du “Shape From Shading”: projection or-
thographique, source de lumiere frontale disposée a l'infini, réflectance
Lambertienne. C’est 1'équation la plus étudiée dans la littérature du
“Shape From Shading”. Dans la section 2.1 nous décrivons différentes
modélisations du probléeme du “Shape From Shading” et nous détaillons
plusieurs EDP associées.

Comme nous l'avions mentionné plus haut, le probleme du “Shape
From Shading” peut se formuler mathématiquement sous la forme
d’équations aux dérivées partielles du premier ordre. Ainsi, la premiere
catégorie de méthodes pour résoudre ce probleme consiste & résoudre di-
rectement les équations exactes formulées. Ces méthodes ne font aucune
linéarisation (contrairement aux méthodes présentées dans la section 1.4.2)
et elles n’introduisent aucun biais. Je les nommerai “méthodes de prop-
agation et d’EDP”. La principale difficulté rencontrée par les méthodes
de propagation et EDP est due au caractere mal posé du probleme. Ces
méthodes peuvent étre divisées en deux classes. Les méthodes “single-
pass” et les méthodes itératives. Les principales méthodes “single-pass”

sont:
e la méthode des bandes caractéristiques (introduite par Horn dans [65]),

e les méthodes de propagation des contours (lignes de niveaux) introduites

par Bruckstein [21] et améliorées par Kimmel et Bruckstein [80],
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e la méthode de “fast marching” introduite par Sethian [138, 139] et
légerement modifiée par Kimmel et Sethian [81] pour le “Shape From

Shading orthographique” avec une source de lumiere oblique.

Parmi les méthodes itératives citons en particulier: I’algorithme introduit
par Rouy et Tourin pour I’équation Eikonale [134], ses extensions par
Prados et Faugeras [127, 120], les algorithmes de Dupuis et Oliensis [47]
basés sur la théorie du controle et les jeux différentiels, les algorithmes de
Falcone et al. [24, 55, 56] basés sur les éléments finis. Insistons sur le fait
que globalement toutes ces méthodes calculent une approximation

de la méme solution.

Il est bien connu que, méme si l'image est continue, 1’équation
d’irradiance n’a pas nécessairement de solution différentiable (solution au
sens classique) [19, 18, 17, 82]. En particulier, en raison du bruit, des
erreurs faites sur les parametres (longueur focale, position de la lumiére,
etc) et d’une modélisation incorrecte (interréflections, source de lumiere
non ponctuelle, réflectance non lambertienne...), dans la pratique avec
des images réelles il n’existe presque jamais de solution au sens classique.
Ainsi, les algorithmes basés sur les EDP calculent des approximations de
solutions faibles. Par ailleurs, mis a part des systemes expérimentaux qui
sont physiquement instables, une surface non lisse (i.e. non différentiable)
ne peut donner une image continue. Donc, il peut paraitre judicieux de
ne pas vouloir calculer une solution faible de I’équation d’irradiance mais
de vouloir calculer une surface lisse (i.e. différentiable) qui satisfasse “ap-
proximativement” ’équation d’irradiance. Ceci nous mene a considérer un
autre type d’algorithmes basés sur les méthodes d’optimisation et sur les
approches variationnelles. Dans ces méthodes, deux ingrédients de base
doivent étre choisis: la fonctionnelle qui va étre minimisée et la méthode
de minimisation. Voir la section 1.3 pour plus de détails... En plus de
ces deux grandes catégories (méthodes de propagation/EDP et méthodes
d’optimisation), nous pouvons définir deux catégories plus petites: les

méthodes locales et les méthodes linéaires. Voir la section 1.4.

D’un point de vue algorithmique, les méthodes que nous développons
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dans ce manuscrit sont des “méthodes de propagation et EDP” (voir sec-
tion 1.2). Nos méthodes numériques sont décrites principalement dans le
chapitre 3 et la section 5.4. D’un point de vue théorique, notre travail
prend place dans le cadre des solutions de viscosité. Initialement, il était
basé sur les travaux de Lions, Rouy et Tourin [134, 96] qui utilisent la
notion de solutions de viscosité continues [39, 95, 41]. Mais ici, nous ex-
ploitons également au maximum le potentiel d’autres notions de solutions
de viscosité. En particulier, nous considérons les notions de solutions de
viscosité discontinues [76, 75| et singuliéres [77, 26, 23, 27]. Enfin, en
modifiant légérement ces notions nous définissons une nouvelle notion de
solutions de viscosité: la notion de “solutions de viscosité singulieres dis-
continues” (SDVS); voir le chapitre 4. Cette nouvelle notion permet de
généraliser et d’unifier les résultats théoriques démontrés par Lions et al.
(96, 134], par Dupuis et Oliensis [47], par Falcone et al. [24, 55, 56] et
par Prados et Faugeras [127, 120]. Plus généralement, le cadre des solu-
tions de viscosité permet également de démontrer I'existence et 1'unicité
du probleme du SF'S; voir par exemple les sections 2.2, 4.3 et 5.3.
Insistons sur le fait que notre travail est basé sur I'intéraction des trois

domaines suivants:
e les mathématiques,
e l'algorithmique,
e la modélisation.

Nous apportons notre contribution tout d’abord dans le domaine des
Mathématiques: nous adaptons la notion de solutions de viscosité
singuliéres (récemment développée par Camilli et Siconolfi [26, 27]) afin
d’obtenir une “nouvelle” classe de solutions de viscosité bien mieux
adaptée au probleme “classique” du SFS que les précédentes. Du point
de vue de la vision par ordinateur, ce cadre mathématique permet
d’améliorer et d’unifier tous les précédents travaux théoriques sur le
“Shape From Shading” [134, 96, 47, 127, 120, 56]. Du point de vue

mathématique, ce cadre original nous permet d’obtenir une nouvelle
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caractérisation des solutions de viscosité discontinues classiques par leur
“minima” locaux (voir le chapitre 4).

Nous apportons également notre contribution dans le domaine
de I’Algorithmique. Par exemple, nous décrivons deux schémas
d’approximation et leurs algorithmes associés pour les équations de
Hamilton-Jacobi-Bellman. Nous démontrons plusieurs résultats généraux
afin de prouver la stabilité et la convergence de nos méthodes (voir le
chapitre 3). Nous démontrons également que cette méthode s’applique &
d’autres équations en l'appliquant a une autre équation de “Shape From
Shading” (voir le chapitre 5)...

Enfin, nous apportons notre contribution au domaine du “Shape From
Shading”, en particulier dans sa modélisation. En effet, nous sommes
les premiers a fournir des formulations simples et correctes et une
étude théorique rigoureuse du probléme du “Shape From Shading” en
modélisant I’appareil photographique a I’aide d’une projection en perspec-
tive (voir le chapitre 2). Finalement, dans le chapitre 5, nous terminons
cette these en présentant des résultats théoriques et algorithmiques
révolutionnaires dans le domaine: nous démontrons que le probleme du
“Shape From Shading” peut étre en fait un probleme complétement bien
posé et nous proposons un algorithme qui permet de retrouver la forme
tridimensionnelle d’une surface Lambertienne a partir d’une seule image
et sans utiliser aucune donnée additionnelle: nous utilisons juste 'image

de départ.

Plus précisément, pour chacun des chapitres, nos contribu-

tions sont:
e pour le chapitre 2:

o Contrairement a la plupart des méthodes de “Shape From
Shading” (développées sous I’hypothése d’une projection or-
thographique), dans ce chapitre, nous modélisons le probleme
du SF'S en supposant que I'appareil photographique effectue une

projection en perspective de la scene. Nous formulons les EDP
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explicites adéquates simplement et rigoureusement (équations
(2.6) et (2.8)) et des Hamiltoniens associés H;;e/’; et HZ'"®. La
source de lumiere peut étre localisée & D’infini (elle peut étre
frontale ou oblique) ou au centre optique. Ces formulations
explicites permettent en particulier de démontrer des résultats
d’existence et d’unicité de la solution. Nous appelons probleme
“classique” du SFS celui qui consiste a résoudre les EDP intro-

duites dans ce chapitre.

o Nous développons une étude mathématique compléte des

problemes “classiques” du SFS orthographique et perspectif.
Apres avoir introduit et démontré I'intéret de la notion de so-
lutions de viscosité discontinues pour le probleme du “Shape
From Shading”, nous prouvons |’ existence des solutions de
viscosité des EDP associées. Par ailleurs, nous démontrons que
la caractérisation du SFS orthographique introduite par
Rouy et Tourin dans [134] reste valable pour le SFS per-
spectif. Plus précisément, les solutions de viscosité continues
des problemes de SEFS “classiques” peuvent étre caractérisées
par leurs valeurs sur le bord de I'image et aux points singuliers

(c’est-a-dire les points z tels que I(z) = 1).

o Finalement, en introduisant un Hamiltonien “générique”, nous

unifions les problemes de SFS “orthographique” et
“perspectif” et nous simplifions le formalisme. De plus, nous
réécrivons |’ “Hamiltonien générique du SFS” sous la forme de I’

Hamiltonien d’une équation de Hamilton-Jacobi-Bellman.

e pour le chapitre 3:

o Nous décrivons des outils et une méthode générale permettant de

traiter les schémas monotones. En particulier, nous donnons
et prouvons un théoreme général assurant la stabilité de ces
schémas. Des résultats de convergence pour les algorithmes

associés s’ensuivent automatiquement. Les outils décrits sont
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principalement basés sur la monotonie et sur ’existence de sous-
solutions ou de sur-solutions.

Par ailleurs, nous proposons des schémas d’approximation
monotones adaptés (et “consistents”) aux équations de
Hamilton-Jacobi-Bellman et nous montrons comment appli-
quer nos résultats de stabilité a ces équations.

Notons que ces outils s’appliquent aux grilles irrégulieres et
qu’ils ne nécessitent pas de régularité sur la variable

d’espace.

o Nous appliquons les outils algorithmiques au probleme du “SFS
classique”. Ainsi, nous proposons deux nouveaux algorithmes
“génériques” de SFS (un algorithme semi-implicite et un
implicite) et nous prouvons la convergence des solutions
numériques calculées par nos algorithmes vers la solution de
viscosité du probleme de SF'S considéré.

Insistons sur le fait que grace a la formulation “générique” du
probleme de SFS, un unique algorithme permet de résoudre
numériquement les différentes formulations du probleme
“classique” du SFS.

De plus, nous généralisons et unifions la partie algorithmique
des travaux de Rouy et Tourin [134], Dupuis et Oliensis [47] et
Prados et Faugeras [127, 120]. Rappelons par ailleurs que la
méthode de “Fast Marching” de Sethian [138, 139] est basée sur

le schéma d’approximation de Rouy et Tourin [134].

o Nous testons nos nouvelles méthodes de SF'S.
En partant d’une sur-solution I’algorithme implicite sem-
ble étre 'un des algorithmes itératifs les plus efficaces de la
littérature du SFS.
Nos algorithmes retournent des résultats tres satisfaisants avec
des images discontinues et avec des images contenant des
ombres portées. De plus la stabilité de nos schémas et la

convergence de nos algorithmes de SE'S restent valables avec de
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telles images. D’autre part, nos algorithmes sont robustes au

bruit.

o A ce point, le calcul de la solution numérique du probleme du SFS
nécessite des donnés de Dirichlet sur le bord de I'image

et a tous les points singuliers.
e pour le chapitre 4:

o Dans la premiere partie de ce chapitre, nous modifions légerement
la notion de solutions de viscosité singulieres développée dans
[77, 26, 23, 27] de maniére & obtenir une solution de viscosité
discontinue sur le domaine {2 contenant des points singuliers
et sans nécessiter obligatoirement des données sur le
bord 0f2. Ainsi nous définissons la notion de SDVS. Nous
démontrons l'existence et 'unicité des SDVS pour une grande
partie des équations convexes d’Hamilton-Jacobi H(z,Vu) =
0. Des résultats de stabilité sont démontrés. D’autre part,
nous prouvons que ce nouveau cadre permet de caractériser les
solutions de viscosité discontinues classiques par leurs
“minima”.

o Dans la deuxieme partie de ce chapitre, nous montrons que la no-
tion de SDVS permet d’unifier les divers résultats théoriques
proposés dans la littérature du “Shape From Shading”. Plus
précisément, elle unifie le travail de Lions et al. [96, 134], de
Dupuis et Oliensis [47], de Falcone et al. [24, 55, 56] et de
Prados et Faugeras [127, 120]. Notre approche permet ainsi
de généraliser les travaux précédents a tous les Hamiltoniens
“classiques” du SF'S, en particulier a ceux du “SFS perspectif”.
Par ailleurs, la notion de SDVS que nous introduisons ici, est
beaucoup plus adaptée aux spécificitées du SFS que les
autres notions de solutions faibles utilisées dans les travaux
précédents [96, 134, 24, 55, 56, 127, 120]. Plus exactement,
cette notion ne nécessite pas obligatoirement de données

sur le bord de I'image et a tous les points singuliers.
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Cependant, pour caractériser et calculer une solution nous avons
besoin de fixer au moins un point?. De plus, lorsque l'image
contient plusieurs points singuliers, nous avons besoin de
connaitre les valeurs de la solution a tous ses “minima”
locaux pour étre capable de calculer véritablement une approx-
imation de la surface originale.

Finalement, en utilisant un résultat de stabilité, nous mon-
trons comment approcher numériquement les SDVS des
équations “classiques” du SFS. Enfin, nous prouvons la conver-

gence des approximations calculées vers les SDVS.

o Nous appliquons avec succés notre méthode a des images
synthétiques et des images réelles. De plus, nous
démontrons que ces outils peuvent étre utiles dans un grand
nombre d’applications concrétes (rectification de pages, re-

constructions 3D de visages, traitement d’images d’endoscopie).

e pour le chapitre 5:
Les difficultés rencontrées dans les chapitres 2 et 4 dans lesquels
nous traitons du probleme “classique” du SFS, sont dues en fait a la
présence (inévitable) de points singuliers. Dans le chapitre 5, nous
montrons que ces difficultés disparaissent completement lorsque nous
modélisons le probleme du SFS de maniere plus réaliste que ce qui
est habituellement fait. En particulier, la notion de points singuliers
n’a plus de sens quand nous ne négligeons pas le terme d’atténuation
en 1/r? de I’éclairage. En d’autres termes, nous montrons que le
probleme du SFS “classique” est mal posé en raison d’une trop
grande simplification dans la modélisation. Ainsi, nous démontrons
que dans la pratique le probleme du SF'S est généralement bien posé.

Plus précisément nous:

o détaillons des équations et des Hamiltoniens appropriés au

probleme du “SFS perspectif” pour des scénes Lambertiennes

2Depuis que la condition au bord ¢ doit vérifier ¢ # co.
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illuminées par une unique source de lumiere située au centre
optique, dans le cas oll nous ne négligeons pas le terme

d’atténuation en 1/r? de I’éclairage.

o développons une étude mathématique complete des équations
obtenues. Nous prouvons l'existence et 'unicité de la solu-
tion de viscosité discontinue des nouvelles équations (complétées
par les conditions aux limites de Dirichlet ou des contraintes
d’états).

o proposons des schémas monotones approximant les nou-
velles EDP. Nous prouvons que nos schémas sont stables et
cohérents et que leurs solutions convergent vers la solu-
tion de viscosité (lorsque la taille de la grille tend vers zéro).
Nous proposons deux algorithmes numériques (un implicite
et un semi-implicite). De plus, nous démontrons que les solu-

tions calculées convergent vers les solutions des schémas.

o implémentons et testons nos algorithmes.

Ainsi en pratique, notre méthode permet de retrouver toute sur-
face qui vérifie les hypotheses (5.17) uniquement a partir de son
image. En particulier, nous n’avons besoin d’aucune donnée
additionnelle ou d’hypothése de régularité. Soulignons le
fait que notre méthode fonctionne méme lorsque la surface possede
plusieurs minima et maxima locaux. Il n’y a plus aucune ambi-
guité. A notre connaissance aucune méthode précédente de SF'S n’est
capable de retourner de tels résultats. Dans ce sens, nous sommes
les premiers a fournir une solution au probleme du SF'S qui soit vrai-
ment satisfaisante!

Par ailleurs, insistons sur le fait que I’hypothese (5.17) est relative-
ment faible et qu’elle est naturellement vérifiée en pratique. Par
exemple, des que 'image a traiter contient un objet d’intérét devant
un arriere-plan, la condition est satisfaite dans un voisinage de cet
objet.

Finalement, nous montrons que notre méthode est robuste au bruit,
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aux erreurs de parametres et aux erreurs de modélisation. Puis nous
démontrons la pertinence et 1’applicabilité de notre méthode en la
testant sur une base de données d’images réelles. Aussi, les résultats

obtenus sont tres satisfaisants.






Chapter 1

Introduction and state of the

art

1.1 The “Shape from Shading” problem

The “Shape from Shading” problem (SFS) is to compute the three-dimensional
shape of a surface from the brightness of one black and white image of that
surface; see figure 1.1. This is a monocular vision problem based on the photo-

i

[ =]
—

Surface Photo Retrieve the surface(s)
which gives the same photo

Figure 1.1: The “Shape-from-Shading” problem.

metric information.

According to Durou [49, 48], in the begining of 50’s, Van Diggelen [162] was
the first to consider the 3D reconstruction problem using photometric cues.
The first resolution was suggested by Rindfleisch [131] in the 60’s. Later, Horn
[67] was the first to formulate the Shape from Shading problem simply and
rigorously as that of finding the solution of a nonlinear first-order Partial Dif-
ferential Equation (PDE) called the brightness equation. This was also Horn
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who suggested to call this problem “Shape from Shading”. Afterwards, all
the Shape from Shading methods proposed to date are based on the work of
Horn. In a first period (in the 80’s) the authors focus on the computational
part of the problem, trying to compute directly numerical solutions. Questions
about the existence and uniqueness of solutions to the problem were simply
not even posed at that time with the important exception of the work of Bruss
and Brooks [22, 16]. Nevertheless, due to the poor quality of the results, these
questions as well as those related to the convergence of numerical schemes for
computing the solutions became central in the last decade of the 20th century.
Today, the Shape from Shading problem is known to be an ill-posed prob-
lem. For example, a number of articles show that the solution is not unique
[16, 106, 107, 134, 11, 51, 127, 120]. The encountered difficulties have often

.
s

Figure 1.2: The crater illusion [115]. From picture a), we perceive two craters,
a small and a big one. But we can turn these craters into volcanoes (although
upside down) if we imagine the light source to be at the bottom of the picture
rather than at the top. This picture is actually that of a pair of ash cones in
the Hawaiian Island, not that of a pair of craters; figure b) displays the picture

correctly.

been illustrated by such concave/convex ambiguities as the one displayed in
Figure 1.2. In this figure, the ambiguity is due to a change of the estimation
of the parameters of the lighting. In fact, this kind of ambiguity can be widely
generalized. In effect, in [11], Belhumeur and colleagues prove that when the
lighting direction! and the Lambertian reflectance (albedo) of the surface are
unknown, then the same image can be obtained by a continuous family of sur-
faces (depending linearly of three parameters). In other words, they show that
neither shading nor shadowing of an object, seen from a single viewpoint re-
veals its exact 3D structure. This is the “Bas-relief Ambiguity”, see [11] and
Figure 1.3. Being aware of these difficulties, we therefore assume here that all
the parameters of the light source, the surface reflectance and the camera are

known.

'In the case of a distant light source.
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a) b)

Figure 1.3: “Bas-relief Ambiguity” [11]: Frontal and side views of a marble bas-
relief sculpture. Notice how the frontal views appear to have full 3-dimensional
depth, while the side view reveals the flattening. This demonstrates that the
image a) can be produced by two surfaces: the three-dimensional surface we
imagine by visualizing image a) and the actual bas-relief which is at the origin
of the two photos a) and b). For more details, the reader can refer to [11].

As we have specified above, the modeling of the Shape from Shading problem
introduced by Horn yields to a PDE: the brightness equation. This equation
can be roughly summarized by

E(z1,z9) = R(n(x1,x2)).

The brightness equation connects the reflectance map (R) to the brightness
image (E); see chapter 5 for more details. To our knowledge, at the exception
of the work of [3, 92, 130], all the Shape from Shading methods assume that
the scene is Lambertian. In this case, the reflectance map is the cosine of the
angle between the light vector L(z1,22) and the normal vector n(zq,zs) to

the surface:
L n

R =cos(L,n) = — - —,
L] |n]

(where R, L and n depend on (z1,xz2)).

The first explicit PDE deduced from the brightness equation and studied in the

SFES literature is the Eikonal equation:

|Vu(z)| = -1, Vz=(z1,22) €Q

where © C R? is the support of the image and I : Q — R is the brightness
of the image. This equation is obtained from the simplest modeling of the
SFS problem: orthographic camera, far and frontal light source, Lambertian
reflectance. It is the equation which has been considered the most in the SFS
literature. In section 2.1 we describe various modelings of the SF'S problem and
we detail several associated PDEs.
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In the sequel, we make a state of the art of the various Shape from Shading
methods.

1.2 Propagation and PDEs methods

As we have mentioned above, the SFS problem can be considered as that of
solving a first order PDE. Also, the first category of SFS methods consists in
solving directly the exact SFS PDE. These methods we call “propagation and
PDE methods” do not make any linearizations (at the opposite to the methods
presented in section 1.4.2). Moreover, they do not introduce any biases in the
equations contrary to the variational methods which, for example, add regu-
larization or integrability terms (section 1.3). The main difficulty encountered
by propagation and PDE methods is due to the ill-posedness of the problem.
Indeed, the classical SF'S equations are of the form

H(z,Vu(z)) =0, VzeQ,

(see section 2.1) and, by themselves, these equations are ill-posed: they can
have several solutions (see chapter 2). Also, to be able to compute a numerical
solution, we need to add constraints to the SFS equations. In these methods,
the additional constraints are boundary conditions, generally Dirichlet? bound-
ary conditions. In other words, the computed solutions are characterized by
the boundary conditions. These boundary conditions must contain enough in-
formation. Also, this information is thereby propagated “along” the solutions.

The propagation and PDEs methods can be subdivided into two classes.
The “single-pass” methods and the iterative methods. The main single-pass
methods are the following:

e the method of characteristic strips introduced in the Shape from Shading
literature by Horn [65] for solving the Eikonal equation,

e the method of propagation of the equal-height contours introduced by Bruck-
stein [21] and improved by Kimmel and Bruckstein [80] (dealing with the
Eikonal equation),

e the fast marching method introduced by Sethian [138, 139] for solving the
Eikonal equation and slightly modified by Kimmel and Sethian [81] for
the “orthographic Shape from Shading” with oblique light source.

Amongst the iterative methods let us cite in particular

2 To impose Dirichlet boundary conditions consists of fixing the values of the solutions on
the boundary...
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e the algorithm introduced by Rouy and Tourin for the Eikonal equation [134]
and its extension by Prados and Faugeras to the “orthographic SFS” with
oblique light source [127] and to the “perspective SFS” [120],

e the algorithms of Dupuis and Oliensis [47] based on the control theory and
differential games (for “orthographic SF'S” with oblique light source),

e the algorithms of Falcone et al. [24, 55, 56] based on finite elements (dealing
with “orthographic SFS” with oblique light source).

We prove in chapter 4 that all these methods compute approximation of
the same solution. In particular, the initial equal-height contours method of
Bruckstein [21] is a variant of the method of the characteristic strips of Horn
[65]. In [21], Bruckstein assumes that the initial curve is an equal-height con-
tour. By imposing such special Dirichlet boundary conditions, he drops the
Neumann boundary conditions required by the basic method of the character-
istic strips (see [82] for a nice and rigorous study of these methods). Basically
both of the above methods are Lagrangian methods. Also, these methods suffer
from unstability and topological problems, see for example [111]. To alleviate
these problems Kimmel and Bruckstein [80] propose to upgrade Bruckstein’s
method by using an Eulerian formulation of the problem. In other respects,
the connection between the front propagation problems and the Hamilton Ja-
cobi equations are well known. In particular, roughly speaking, it is proved
that the viscosity solution of the Hamilton Jacobi equation associated with a
front propagation corresponds with the evolution of the initial contour defined
by Huygens’ principle; see for example [53]. In the same way, the other meth-
ods we cite above (Sethian’s, Rouy-Tourin’s, Dupuis-Oliensis’, Falcone’s and
Prados-Faugeras’ methods) compute some approximations of the viscosity so-
lutions of the SFS equations. In particular in [141], Sethian and Vladimirsky
prove that the numerical solutions computed by the fast marching/ordered up-
wind methods converge toward the continuous viscosity solution (with Dirichlet
boundary data on the boundary of the image). In chapter 4, we generalize and
unify the results proved by Rouy and Tourin [134], by Dupuis and Oliensis [47],
by Prados and Faugeras [127, 120] and by Falcone and his coworkers [24, 55, 56].
More precisely, we show that in all cases, the authors compute approximations
of what we call the “singular discontinuous viscosity solutions” (SDVS) which
also coincide with the value functions of the associated optimal control prob-
lems. The main difference between the previous work is based on the choice of
the boundary conditions; see chapter 4 for more details.

Finally, let us remark that the approximation scheme considered by Sethian
[138, 139] is the one designed by Rouy and Tourin in [134]. Moreover, we show
that Prados and Faugeras’ schemes are extensions of the Rouy and Tourin’s
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scheme and that their solutions coincide with those of Oliensis’ scheme; see
chapter 3.

Advantages and drawbacks of the propagation/PDEs methods.

e First, contrary to the variational methods for example, let us emphasize that
this kind of methods does not introduce any biases and does not require
additional parameters other than those directly related to the modeling
of the problem.

e Except for Horn’s [65] and Bruckstein and Kimmel’s method [21, 80], these
methods can deal with various Dirichlet/Soner? boundary conditions.
More precisely, the algorithms of Rouy and Tourin [134], Dupuis and
Oliensis [47], Sethian [138, 139] and Prados and Faugeras [127, 120] can
use Dirichlet and/or Soner conditions on the boundary of the image 9
at all the singular points S and on any other part of the image (for exam-
ple, on an equal-height contour...). For instance, when we do not know
the values of the solution at any points of the image, we can impose
state constraints (i.e. Soner conditions) on 9Q U S except for one point
where we must impose a Dirichlet boundary condition. Contrary to these
methods, let us note that Horn’s [65] requires Dirichlet and Neumann
boundary conditions and that Bruckstein’s [21, 80] require the knowledge
of an equal-height contour. This last constraint is a very specific Dirich-
let condition and is much stronger than the previous ones. Note that
implicitly, Bruckstein methods [21, 80] also impose state constraints on
oNUS.

e An important drawback of iterative methods is that they require a stopping
criterium. Generally, one chooses arbitrary thresholds. From this point
of view, the single pass methods are clearly neater.

e Propagation/PDEs methods are the most efficient methods in the sense that
they are the most accurate and the fastest.

e Finally, let us emphasize that these methods [134, 139, 47, 127, 120, 24, 56, 80]
do not require regularity assumptions.

1.3 Optimization methods

It is well known that, even when the brightness image is continuous, the irra-
diance equation does not necessarily have a smooth solution [19, 18, 17, 82]. In

3also called state constraints.
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particular, because of noise, of errors on parameters (focal length, light posi-
tion, etc) and of incorrect modeling (interreflections, nonpunctual light source,
nonlambertian reflectance...), in practice with real images there never exist
smooth solutions . Also, except in the case of some singular experimental se-
tups which are physically instable, a nonsmooth surface cannot yield a smooth
image. Therefore, it can be justified not to compute an exact (weak) solution
of the irradiance equation but instead to compute a smooth surface which sat-
isfies “approximately” the irradiance equation. This leads to consider another
type of algorithms which are based on optimization methods and on variational
approaches. In this section we do not detail these numerical methods; we just
transcribe and summarize the corresponding section of the very nice paper of
Durou et al. [49]. For more details about variational approaches in Shape from
Shading, we refer the reader to Horn and Brooks’ book [66] (and references
therein), to the survey of Durou and his coworkers [44, 49] and to the key pa-
pers [148, 73, 69, 60, 97, 68, 87, 150, 90, 45, 42|, amongst others.

In the optimization methods, two basic ingredients must be chosen: the func-
tional which has to be minimized and the minimization method.

1. Choice of the functional:
First, we must choose the unknowns. Usually, authors choose the “height”

of the surface u, but they also often consider its first derivatives % and

g—;, noted respectively p and ¢. Second, the authors define the func-
tional to minimize. In general, it is a weighted sum of various functionals
corresponding to some brightness constraints, smoothness/regularity con-
straints, integrability constraints, intensity gradient constraints and/or
unit normal constraints... For example, considering only the unknowns

(p,q), we can choose the functional F:

.7:(]), Q) = fdata(pa Q) + )‘int]:int(p; Q) + )\smofsmo(p; Q)

where Fyq1, is the brightness constraint

Fiatalprq) = / _ [R0(@).(a) = E@)*d.

Fint is the integrability constraint

Fint(p,q) = /

[ dp Jq 2
() — —
T€EQ

d
8:1?2 81‘1 (.Z‘) v

and Fgmo 1s the smoothness constraint

Fsmo(ps q) = /

Vp(@)* + | Va(x)|*da.
€N
The Lagrange multipliers A;,; and Agp,, are positive constants named “in-
tegrability factor” and “smoothing factor”, respectively. We call “energy”

a discretization of the function F. Let us denote &£ an energy.
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2. Minimization of the functional:

As explained by Durou and his coworkers [43], there exist two main strate-

gies for finding numerically the minimum of a functional.

Either we minimize directly a corresponding energy &,

or  we solve the system of equations produced by VE = 0 or by the
discretization of the Euler equations.

These two strategies are represented in figure 1.4. Most of the methods

) Variational .
Functional - Euler equation
calculus
Discretization Discretization
Y Y
Energy Gradient »| System of equations
Minimization Resdlution
Solution

Figure 1.4: The two strategies allowing to minimize a functional numerically.

found in literature use the second way of processing although it has two
important drawbacks. First, to solve VE = 0 (or Euler equations) is
not equivalent to minimize globally the energy (or the functional). For
V& = 0 many more configurations are solutions (local minima/maxima
and others...). Second, it involves the resolution of big systems of non-
linear equations, which is a difficult problem (see for example [50], but see
also [89]). Concerning the first way of processing, only Szeliski [150] and
Durou and his coworkers [45, 42] minimize directly the energy. Szeliski
[150] uses a conjugate gradient descent. Even if the results presented in
[150] are convincing, no proof of convergence is given. In [45], Daniel
and Durou use a gradient descent based on line search (see [14]). Their
algorithm provably converges toward a local minimum. Finally in [42],
Durou and his coworkers propose a stochastic optimization method (sim-
ulated annealing) which seems to work well. They thus obtain a provably
convergent algorithm toward the global minimum of the energy.

Despite these advantages optimization methods have important drawbacks:
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. They require parameters. For example A;,; and Agmo. Most probably,

these parameters could be considered as unknowns. It should be there-
fore necessary to minimize the functional also with respect to these new

unknowns.

. They are iterative. A stopping criterion has therefore to be chosen. In

general, the authors choose arbitrary thresholds.

With a few exceptions [89, 45, 42], the authors cannot prove the con-
vergence of their algorithms. Moreover the number of iterations as well
as CPU times are much larger than the previous propagation methods
based on PDEs. Moreover, let us note that only the method of Durou et
al. described in [42] converges toward a global minimum of the energy
(nevertheless, the CPU time is considerably larger than other optimization
method). Also, note that in [30], Chang et al. propose to minimize their
energy using graph cuts. This minimization method is able to find a local
minimum “closer” to the global minimum than other (non global) mini-
mization techniques and the computational demand is relatively small.

. One of the most important weaknesses of the optimization methods is the

loss of the “data closeness”. At the opposite of the propagation/PDEs
methods, the image I computed from the shape reconstructed with the
optimization methods is different from the initial image. It can even be
completely different, see for example the experiment with the moulding
of the elk in [49, 48]. In particular, the optimization methods have a
tendency to over-smooth the recovered surface and so their image I*.
Finally, contrary to the propagation/PDE methods, we do not understand
exactly what the algorithms do in the sense that it is very difficult to
predict the results they return.

1.4 Other SFS methods

Besides the two previous categories (propagation/PDEs methods and optimiza-

tion methods), we can define two smaller categories: the local methods and the

linear methods. Finally, a small number of methods cannot be classified easily

in other categories (see section 1.4.3).

1.4.1 Local methods

The idea of the local methods is based on the assumption that locally (i.e, for

example on some small patches) the surface is “almost” a plane, a sphere or a

“Recently, to overcome this problem, Worthington and Hancock [166] and Chang et al.

[30] impose the brightness constraint as a hard constraint.
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paraboloid. For example, Pentland’s local approach [115] and Lee and Rosen-
feld’s approach [88] used the assumption that the surface is locally spherical
at each point. In these methods [115, 88], the shape information is recovered
from the intensity and from its first and second order derivatives. Also, in
[172], Zhang et al. show that these methods suffer of instability: they are not
robust to pixel noise. Recently, Tankus et al. [152] and Collings et al. [35] have
proposed other methods by assuming that the surface is locally represented by
quadratic functions. A limitation of these methods can be the number of it-
erations required for obtaining a solution. For example in [152], Tankus et al.
require more than 200 000 iterations for recovering the classical vase used in
the SFS literature (for example in [172]). Finally, let us indicate the original
method of Robles-Kelly and Hancock [132] based on several iterations of two
steps (integration and smoothing). From the surface normals, the first step
splits the image in patches and estimates a surface height on each patch. The
second step is a smoothing step. It consists in fitting at each pixel a local
quadratic function to the height data. In such a way, the authors obtain new
surface normals. Let us note that the numerical results displayed in [132] are
quite good.

1.4.2 The linear methods

One of the important difficulties encountered when attempting to solve the
Shape from Shading problem is the non-linearity of the equations. To get
around this difficulty, several authors propose to linearize the reflectance map.
Amongst linear methods, let us cite the work of Pentland [116], of Kozera and
Klette [84], of Ulich [161] and of Tkeda [72]. Let us note that some theoretical
results on the linear Shape from Shading problem have been demonstrated
by Kozera et al. [85] (existence and uniqueness of the solution) and Ulich
[161] (convergence of the algorithm). Nevertheless, even if the results obtained
by these methods can be qualitatively relevant (see in particular the results
returned by Tsai and Shah’s method in [172] or [49]) and even if the resolution
techniques are convincing (for example, Pentland proposes a numerical method
based on Fourier transform, see [116]), the relevance of the linearization of the
reflectance has not been proved. Also in [49], Durou et al. wonder about the
legitimity of this simplification and they support their doubts by detailing some

examples.

1.4.3 Other SFS methods

Various mathematical tools have been used in order to solve the Shape from
Shading problem. Bruss [22] proposes to work with some power series expan-
sions (at a singular point). Robles-Kelly and Hancock [132] recover a solution by
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using a graph spectral setting and eigenvector methods. Torredo [156] obtains
excellent results with a method based on Green’s Functions and inspired on the
disparity-based approach to photometric stereo. Atick, Griffin and Redlich [2]
propose a statistical approach for the recovery of faces from shading. Wei and
Hirzinger propose a solution based on neural networks [164, 32]. Because of
lack of space we do not detail these promising Shape from Shading methods.

1.5 Applicability and applications of the Shape from
Shading methods

For several reasons, the interest in the Shape from Shading problem has slightly
decreased in the middle of the 90s. First, due to the difficulty of the problem,
progress in SF'S research has been very slow. Second, until recently, the results
obtained on real images have been very disappointing. For example, in [172],
Zhang et al. acknowledge failure. Third, the various constraints imposed by
the existing solutions to the SFS problem limit their applicability. To change
this situation, we think that, from now on, it is fundamental to improve and
demonstrate the applicability of the Shape from Shading methods and to point
out potential applications.

1.5.1 TImprovement of the applicability of the SF'S methods

The first SF'S methods proposed in the literature were not robust to pixel noise
(for example, this was the case of the initial Horn’s method [67]) and showed
some instability (for example, this was the case of the local methods of Lee and
Rosenfeld [88] and of Pentland [115]). Since real images contain systematically
pixel noise, the SF'S methods must be stable and robust to these disruptions to
be applicable. The SFS methods must also be robust to errors on parameters
(focal length, position of the light source) and to errors due to the coarse model-
ing. In particular, let us note that the SFS tools we develop in this thesis show
a very high robustness to a number of errors; see sections 4.6.5 and 5.5.1. In
practice the objects of the real world contain various kinds of edges and occlud-
ing contours, therefore the Shape from Shading methods must be able to deal
with discontinuous images, nonsmooth surfaces and black shadows. Moreover to
be applicable, the algorithms must require as few parameters as possible. Also,
let us emphasize that the methods we propose here verify all these conditions.

5

They are fast, accurate, without additional parameters®. They can deal with

discontinuous images, black shadows, nonsmooth surfaces.

Sinternal camera parameters (focal length, size of pixels), lighting parameters and photo-

metric calibration parameters.
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One of the most (if not the most) important stages for improving the ap-
plicability of the Shape from Shading is to provide methods based on more
realistic modelings. Indeed, despite the richness of the literature in this area,
most of the SFS algorithms have been developed under the most basic mod-
eling assumptions. Generally, the camera performs an orthographic projec-
tion of the scene, the scene is illuminated by a single point light source lo-
cated at the infinity (most of the authors assume moreover that the direc-
tion of the light source coincides with one of the axes of the camera), its
reflectance is assumed Lambertian and its albedo is constant and fixed to 1.
Amongst the papers dealing with this setup let us cite for example the work
of [67, 22, 115, 88, 21, 64, 134, 90, 47, 157, 80, 24, 81, 127, 42]. Moreover,
let us note that the surveys [66, 172, 82, 49] consider only this setup. Very
few authors propose algorithms adapted to more realistic modelings. Kontse-
vich et al. [83] and Ononye and Smith [109] reconstruct shape from shading
from one color image. Recently, Yilmaz and Shah [170], Zhao and Chellappa
[173, 174] and Dovgard and Basri [46] relax the common constraint of con-
stant or piece-wise constant albedo [158] (for Lambertian surface) to arbitrary
albedo. Nevertheless, to this end, they introduce an important symmetric con-
straint which can restrict the applicability of their method. Let us cite also
the work of Samaras et al. [136] who consider surfaces with variable albedo in
a general setup (for reconstructions from stereo and Shape from Shading). In
other respects, Tian et al. [155, 163] describe shape recovery algorithms from
shading for non-punctual and multiple light sources. Some authors take into ac-
count the perspective [114, 91, 61, 102, 165, 137, 171, 120, 152, 124, 37, 122, 154]
while others deal with interreflections [101, 59, 163, 147]. Finally, Bakshi, Lee
and Kuo, or Ragheb and Hancock [4, 92, 130] propose some solutions for non-
Lambertian surfaces. In our work, the weakening of the modeling hypotheses
is a permanent concern. In particular, we are the first to propose a rigorous
perspective SF'S method completely based on PDEs [120]. Our method applies
with a single punctual light source located at infinity (see section 2.1.2) or close
to the optical center [124, 122] (see section 2.1.3). Finally, we take into account
the attenuation term of the lighting; (see chapter 5).

1.5.2 Applications of Shape from Shading

The main applications of the Shape from Shading methods can be classified
into four categories:

1. Modification and improvement of images:
In [167], Worthington and Hancock use Shape from Shading for coarse
view synthesis. Their aim is to generate novel object views under chang-
ing light source and/or viewer directions by using the needle-maps. In
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[129], Ragheb and Hancock propose a very efficient method for removing
highlights by using Shape from Shading.

2. Application to medical images:

Yamany and his coworkers [168, 100] use shape from shading techniques
for recovering human jaw from intra-oral intensity images. Other poten-
tial medical applications are with endoscopic images. For example, some
groups use Shape from Shading techniques in order to design an automatic
endoscope navigation and advisory system [149, 86]. Other authors use
Shape from Shading for correcting area measurements from images ob-
tained through a colposcope [38]. They want to correct the errors due to
the two-dimensional projection of the observed 3D object. Also, note that
the computer vision community has also proposed solutions to this partic-
ular problem. Let us cite the work of Okatani and Deguchi [102, 103], of
Forster and Tozzi [58] and of Tankus and Sochen [154]. In other respect,
let us note that in section 4.7.3, we also show that our method produces
relevant solutions to this kind of problems (see also [122]).

3. Face reconstruction:

The interest of the SF'S methods for some applications dealing with faces
has been demonstrated in e.g. the work of Zhao and Chellappa [173] (who
use symmetric SF'S for illumination-insensitive face recognition), by Smith and
Hancock [143] (who use SFS needle maps for face recognition), and by Choi
and coworkers [33] (who use SFS for determining the face pose). Today, one
can say that face reconstruction is a classical application of Shape from
Shading methods. Several authors have also proposed specific solutions:
for example, Atick et al. [2], Vetter et al. [13, 133] and Dovgard and Basri
[46] combine Shape from Shading techniques with statistical databases of
faces. In other respect, other authors exploit the symmetry of the faces.
In particular, let us cite the work of Zhao and Chellappa [173, 174], the
work of Shimshoni and Moses [142], the work of Yilmaz and Shah [170]
and the work of Dovgard and Basri [46]. We show in sections 4.6.2 and
5.5, that our SF'S methods produce very good results from images of faces.

4. Document restoration using SFS:
Several authors [163, 31, 36, 122, 37] propose to remove the geometric and
photometric distortions generated by the classical photocopy of a bulky
book by using Shape from Shading techniques. For pages containing few
rows of characters but a lot of graphics and pictures (separated by large
white bands, this is often the case of scientific documents), the Shape from
Shading methods can provide simple and efficient solutions. In section
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4.7.1, we consider more precisely this application, and we propose such a
solution.

1.6 Setup and numerical methods considered in our
work

From the theoretical point of view, our work takes place in the setup of the vis-
cosity solutions. Initially, it was based upon the work of Lions, Rouy and Tourin
[134, 96] who use the notion of the continuous viscosity solutions [39, 95, 41].
But here, we also exploit at the most the potential of the other existing notions
of viscosity solutions. In particular, we consider the notions of discontinuous
[76, 75] and singular [77, 26, 23, 27] viscosity solutions, and finally by slightly
modifying the previous notions, we define a new notion of viscosity solutions:
the notion of “singular discontinuous viscosity solutions” (SDVS); see chap-
ter 4. This new notion allows to generalize and unify the theoretical results
demonstrated by Lions et al. [96, 134], by Dupuis and Oliensis [47], by Falcone
et al. [24, 55, 56] and by Prados and Faugeras [127, 120]. More generally, the
viscosity setup allows also to prove the existence and the uniqueness of the SF'S
problem; see for example sections 2.2, 4.3 and 5.3.

From the algorithmic point of view, our methods are “propagation and
PDEs methods” (see section 1.2). Our numerical methods are mainly described
in chapter 3 and section 5.4.

1.7 Contributions of this thesis

Almost all the material in this thesis is new. At the end of each chapter, we
summarize for the reader’s convenience the main contributions therein.

Our work is based upon the interaction of the following three areas:
e Mathematics,

e Algorithmic,

e Modeling.

Our contributions are first in the area of Mathematics: we adapt the notion
of singular viscosity solutions (recently developed by Camilli and Siconolfi [26,

27]) for obtaining a “new”

class of viscosity solutions which is really more
suitable to the “classical” SFS problem than the previous ones. From the
computer vision point of view, this mathematical framework allows to improve
and unify all the previous theoretical work on Shape from Shading [134, 96, 47,

127, 120, 56]. From the mathematical point of view, this original framework
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allows us to obtain a new characterization of the classical discontinuous viscosity
solutions by their “minima” (see chapter 4).

Our contributions are also in the area of Algorithmic. For example, we
describe two approximation schemes and their associated algorithms for the
Hamilton-Jacobi-Bellman equations. We prove several general results about the
stability and the convergence of our methods (see chapter 3). We also prove
that this methodology applies to other equations by applying it to another SFS
equation (see chapter 5).

Last but not least, our contribution are in the Shape from Shading area,
in particular in modeling. Indeed, we are the first to provide simple and cor-
rect formulations and a rigorous theoretical study of the Shape From Shading
problem by modeling the camera as a pinhole (see chapter 2). Finally, in chap-
ter 5, we close this thesis with some theoretical and algorithmic results which
are revolutionary in the field: we prove that the Shape from Shading problem
is basically a well-posed problem and we propose an algorithm which allows to
recover the shape of Lambertian surfaces from shading without any additional
data (we just use the input image and do not need any boundary conditions)
and without additional assumptions (for example, we do not need smoothness
assumptions).






Chapter 2

“Classical” Shape From
Shading

In this document, we call “classical SFS problem” the problem consisting in
solving the PDEs obtained by the Shape from Shading modeling we describe
in the following section (section 2.1). Let us emphasize that, even though we
qualify this problem of “classical”, most of the modelings and associated results
we present in this chapter are contribution of our work. In particular, let us note
that they are the object of several communications amongts [127, 120, 123, 124].
We choose this denomination in order to contrast the modelings and the results
presented in the first parts of this thesis with the modeling and the results
presented in the last chapter (chapter 5).

2.1 Mathematical formulations of the “classical”
Lambertian SFS problem

The SF'S problem is to retrieve the three-dimensional shape of a scene from the
brightness variations in a black and white image of that scene.

The scene is represented by a surface &. Let © be an open set of R? representing
the domain of definition of the image; for example, (2 is the rectangular domain
10, X[x]0,Y[. We assume that & can be explicitly parameterized by a function
S from the closure Q of the set Q into R® by z +— S();

6 ={Sx); =zeQ}.

The image intensity is modelled as a function I from Q into the closed interval
[0,1], by
I1:Q—[0,1]:2+ I(z).
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For all z € Q the intensity I(z) is the brightness obtained at the point S(z) of
the surface G.

We assume that a single point light source illuminates the scene. Thus with
each point X in R® we associate the unit “light vector” L(X) pointing to the
light source.

Finally, we assume that the scene is Lambertian. We suppose that the albedo
is constant and equal to 1.

For all = (z1,29) in Q, let us denote n(z), a normal vector of the
surface & at the point S(z) such that

n(z) - L(S(z)) = 0.

With all hypotheses above, the brightness I(z) of the point S(z) of the surface
G is the cosine of the angle (n(x),L(S(x))). In other words:

n(z) - L(S(x)

@) ="

(2.1)

Remark 1. Through differential calculus, we can easily obtain an explicit
expression for n(x). In effect, the two columns h; and hy of the Jacobian DS(x)
are two, in general different, tangent vectors to the surface & at point S(x).
Thus their cross product provides in general a normal vector to &.

In the remaining, we study in detail three different modelings of the SF'S prob-
lem.
We deal with

1. “orthographic SFS” with a point light source at infinity,

2. “perspective SFS” with a point light source at infinity,

3. and “perspective SFS” with a point light source at the focal center.
For a more realistic modeling, the reader can see chapter 5 and [65, 82]. We
also refer the reader to the papers cited in section 1.5.1.
2.1.1 The “orthographic SFS” problem

In this subsection we revisit one of the simplest versions of the shape from
shading problem.

We assume that the light source is located at infinity. Thus, all light vectors
are parallel and we can represent the light direction by a constant vector L =
(a, B,7). We assume that the light source is above the surface, then v > 0. We
note 1 = (a, ).
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We assume that the camera performs an orthographic projection of the scene.
With this hypothesis, it is natural to define the surface & by

G = {(:cl,xg,u(xl,azg)); (z1,29) € ﬁ}

So, if the plane (0, Z7,Z3) represents the retinal plane then |u(z)| is the distance
of the points S(x) in the scene to the camera (see figure 2.1-a)).
For such a surface &, a normal vector n(z) is given by

n(z) = (—Vu(z),1).
Given these hypotheses, the brightness equation (2.1) becomes

Ve e, I(z)= —Vu@) 14y (2.2)

VIt V(@)

and therefore the shape from shading problem is, given an image I and a light
source direction L, find a function u : @ — R satisfying the equation:

Ve € Q, I(z)v/1+|Vu(z)]?+ Vu(z) - 1—vy=0. (2.3)

Note that in the case where the light source is in the same direction as the
direction of projection (it is the case considered by Rouy and Tourin in [134]),
we have L = (0,0,1), and the PDE (2.2) can be rewriten as an Eikonal equation:

Ve € Q, |Vu(z)| —

—1=0. (2.4)

2.1.2 The “perspective SF'S” problem

In this section, we assume that the camera performs a perspective projection of
the scene and that the light source is located at infinity.

A “pinhole” camera is represented by its retinal plane and its optical center.
It is characterized by its focal length f > 0; see figure 2.1-b).
We assume that the scene can be represented by a surface & defined by

6= {U(xl,xz)(xl,fcm— f);  (x1,22) € Q}
A normal vector of such a surface is given by:

() — fVu(z)

As in section 2.1.1, we represent the light by a constant unit vector L = («, 3,7),
with v > 0 (we suppose that the light source is above the surface G). We note
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optical center

Retinal plane

M = u(zxy,z9).m
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Figure 2.1:

a) Image arising from an orthogonal projection. The intensity of the
“pixel”(x1,xz9) is the intensity of the point (x1,x9,u(x1,22)) on the surface
S;

b) Image arising from a perspective projection. The intensity of the
“pixel”(z1,z2) is the intensity of the point w(z1,z2)(z1,x2,— f) on the sur-
face G;

In both cases, we assume that the camera and the light source are above the

surface.
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1= (e, f).

In this context, the irradiance equation becomes:
_f 1-Vu(z) +v (- Vu(z) + u(r))
V PIVu@)? + (2 - V() + u(x))?

I(z) (2.5)

Now, let us suppose that the surface is visible (in front of the optical center);
ie. wu verifies Vx € Q, w(x) > 0. Since equation (2.5) is homogeneous in
Vu(z) and u(x), we can simplify it by the change of variables v = In(u). Thus
the “perspective SF'S” problem consists in solving the original PDE.

(@) VP + (- Vo+ 1) = (7 1472) - Vo—y=0.  (26)

Note that this equation has been simultaneously established by us in [118, 120]
and by Tankus and his coworkers [152].

2.1.3 The “perspective SFS” with a point light source located
at the optical center

In this section, we assume that the camera performs a perspective projection of
the scene and that the scene is illuminated by a single point light source located
at the optical center. This modeling is quite relevant for many applications.
In effect, it nicely corresponds to the situation encountered in some medical
protocols like endoscopy in which the (point) light source is located very close
to the camera, because of space constraints, see section 4.7.3 for an application
of SFS in this area. This modeling also corresponds approximately to the
situation encountered when we use a simple camera equiped with a flash; see
the sections 4.7.1 and 4.7.2 for two applications (face reconstruction and page
restoration).

As in section 2.1.2, f > 0 represents the focal length. For mathematical
convenience, we change slightly the parameterization of the scene. According
to figure 2.2, we suppose that the scene is represented by a surface & defined
by

G = 71(”(33) ( v ); r€Q
V0el? 4 £2 77
For such a surface &, a normal vector n(z) at the point S(x) is given by:

fu(x)

|24 £

The single point light source is located at the optical center, so the unit light
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Optical center

Retinal plane

Surface

Figure 2.2: Perspective projection with a point light source located at the op-
tical center.
The intensity of the “pixel”(x,— f) is the intensity of the point

£
u(x)(x,— f)—=——=—= on the surface G.
N e

vector L at point S(x) is the vector

1 -
L(S(x)) = —— .
(S(z)) r” fz( ) )

The irradiance equation (2.1) then becomes:

7 |z|2 + f2 o . ) . o
() £2 [ F2Vu(@)]? + (Vu(z) - 2)?] + u(z)* —u(z) =0. (2.7)
Now, let us suppose that the surface & is visible (in front of the optical center).
So u verifies

V€ Q, u(z)>0.

In this case, equation (2.7) being homogeneous, we can rewrite it by using the
change of variables v = In(u):

I<m>\/(wf#> [ £2IVo(@)[2 + (Vo(z) - )] +1 -1 = 0.

It is equivalent to:

f2 f
+ — =0
B+ 2 Pt

This explicit PDE has been established by us in [124, 119].

I(a:)\/ f2|Vo(z)]2 + (Vu(z) - z)?
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2.2 Shape from Shading and Viscosity solutions

2.2.1 Why using viscosity solutions to solve SF'S

First, let us notice that since the beginning of the last decade of the 20th century,
several authors have demonstrated the existence of images which cannot be
yielded by smooth surfaces [19, 70]. Thus this suggests to consider the problem
in a more weak sense.

More generally, we can remark that the SFS PDEs (2.3), (2.4), (2.6) and (2.8)
do not depend on u; so they are ill-posed!. To characterize a solution, we need to
impose some constraints. Let us impose Dirichlet boundary conditions? (DBC)
for insuring uniqueness:

Vo € 9Q, wu(z) = p(z), (2.9)

@ being continuous on 9.

The SFS equations (2.3), (2.4), (2.6), and (2.8) are Hamilton-Jacobi equations.
Generally, Hamilton-Jacobi equations with DBC do not have classical solutions.
For example, the Rolles’ theorem insures that the Eikonal equation

|Vu(z)| =1 for all z in 0,1] (2.10)

with the DBC «(0) = u(1) = 0, does not have classical solutions. For solving
this PDE, we need to consider a notion of weak solutions. It then appears
natural to consider the notion of viscosity solutions of Hamilton-Jacobi equa-
tions. In effect, the notion of viscosity solutions is a very nice way of making
quantitative and operational the intuitive idea of weak solutions of first-order3
(and for that matter, second-order) PDEs. It has been introduced by Crandall
and Lions [39, 95, 41, 40] in the 80s. This theory has reached its maturity (see
the book of Barles and the book of Bardi and Capuzzo-Dolcetta [7, 5]) and the
numerical analysis of Hamilton-Jacobi equations has progressed considerably
(see [54]).

Thus, in the Shape from shading area, the first interest of the notion of viscosity
solutions of Hamilton-Jacobi equations is theoretical: it allows to characterize
the SFS solutions, and so to make the problem well-posed. But let us empha-
size that this notion does not only have a theoretical interest. In effect, Barles

!For example, the solution is not unique. In effect, if u is a solution, then for all ¢ € R,

u + ¢ is also a solution.

2Therefore we assume that the “distance” from the camera to the scene is known on the
boundary of the image. Admitedly, this hypothesis may appear a bit restrictive. We are in
the process of extending our approach to remove the requirement for boundary conditions.
This will be the subject of another report.

3In the context of the shape from shading problem we are only concerned with first-order
PDEs.
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and Souganidis [9] have proved that generally, the numerical solutions obtained
by using monotonous schemes are approximations of the viscosity solutions.
Thus, thanks to the notion of the viscosity solutions, we understand exactly
the numerical properties of our SFS algorithms.

In the following, we recall the definitions of viscosity solutions of Hamilton-
Jacobi equations and some fundamental theorems. More details about these
definitions and all proofs of these theorems can be found in Barles’s, Bardi and
Capuzzo Dolcetta’s or Lions’s books [7, 5, 95].

2.2.2 Viscosity solutions of Hamilton-Jacobi equations
Let us start with the notion of continuous viscosity solutions introduced by
Crandall and Lions [39, 95, 41].

Continuous viscosity solutions

We consider a Hamilton-Jacobi equation of the form:
H(z,u(z),Vu(z)) =0, x €Q, (2.11)
where H is a continuous real function defined by

H: OxRxRVY — R ,
(z,u,p)  +— H(z,u,p)

and where € is an open subset of RV,
H is called the Hamiltonian. The variable associated to Vu(x) is often noted p.
Let BUC(2) be the set of bounded and uniformly continuous functions on €.

Definition 2.1 (Continuous viscosity solution) v € BUC(Q) is a viscos-

ity subsolution (respectively, a viscosity supersolution) of equation (2.11) if:
Vo € CH(Q) , Yao € Q local mazimum of (u— ), H(zg,u(xg), Vo(zg)) <0
(respectively, if:

Vo € CHQ) , Vo € Q local minimum of (u — @), H(zo,u(2q), Vé(zo)) > 0

).
u 18 a continuous viscosity solution of equation (2.11) if it is both a subsolution
and a supersolution of (2.11).

Viscosity solutions are weak solutions. They are not differentiable! Neverthe-
less, this notion is consistent with the notion of classical solutions, as shown by

the next
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Theorem 2.1 Let u be differentiable on Q, a classical solution of (2.11). If
u € BUC(Q), then u is a continuous viscosity solution.

Let u be a continuous viscosity solution of equation (2.11). If u is differentiable
on S, then u is a classical solution.

We specify for the inexperienced reader that the definition of the viscosity
solutions is associated to the Hamiltonian and not to the equation. For
example, it is well known that the viscosity solutions of the Hamiltonian
H(x,p) are different from the viscosity solutions of the Hamiltonian —H (z, p).
More precisely, u is a viscosity solution of —H (x, p) iff —u is a viscosity solution
of H(x,—p). Clearly, in the classical sense, the PDEs H(z,Vu(z)) = 0 and
—H(z,Vu(z)) = 0 have the same solutions.

Example : When we consider H(x,p) = |p| — 1, the opposite two
Hamiltonians on ]0,1[ with the DBC »(0) = u(1) = 0 have a unique viscosity
solution shown in figure 2.3. Remember that there do not exist solutions in
the classical sense. Schematically, the viscosity solutions of the Hamiltonian
H(z,p) allow upward kinks whereas the viscosity solutions of the Hamiltonian
—H(z,p) allow downward kinks.

a) b)

Figure 2.3: a) solution with H(z,p) = [p| —1; b) solution with H(z,p) = 1—|p|

Even if the viscosity solutions of a PDE depend on the Hamiltonian, the
notion of viscosity solutions is consistent with strictly increasing changes of
unknown (see proposition I1.2.5 of [5]):

Proposition 2.1 (change of unknown) Letu € C(Q) be a viscosity solution
of (2.11) and ® € C*(R) be such that ®'(t) > 0. Then v = ®(u) is a viscosity
solution of

H(z, ¥(v(x)), ¥'(v(x))Vu(z) =0  zeQ,
where ¥ = 1,

Thus, in order to simplify the equations, we can perform (strictly increasing)
changes of variables. Therefore, even in the viscosity solutions framework, the
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change of variables v = Inwu used in sections 2.1.2 and 2.1.3 are completely
justified.

One of the most important interests of the viscosity solutions theory is that
it provides a set of general existence and uniqueness theorems which require
very weak hypotheses.

Let us recall that the SF'S Hamiltonians do not depend on u. Thus, to have
uniqueness we must add boundary conditions. Our choice turns to Dirichlet
conditions. Thus for the SFS problems we consider equations (2.12)

{ H(x, Vu(x)) =0 on Q (2.12)

u = @ on 0f)

with © a bounded regular and convex open set of RV, ¢ a real function defined
on 0¥ and H the adequate Hamiltonian.

The following theorem 2.2 applies in the special case where the Hamiltonian
H appearing in equation (2.12) is convex with respect to Vu. It ensures the
existence of the continuous viscosity solutions of the PDE (2.12)(hence with
Dirichlet boundary conditions).

We note H* the Legendre transform* of H:

H*(x,q) = sup {p.q — H(z,p)} < +o0.
pERN

Let us define Vz,y € Q,

Ly = i {OT°H*<s(s>,—s'<s>>ds}

€€Cq,y,To>0
where C, , is the set of £ : [0,7p] — R such that
. £(0) =1,
e {(Ty) =y,
o Vt €[0,Tp],£(t) € Q,

b gl € LOO(OaTO)
(We denote by L*°(0,7;) the set of bounded real measurable functions
defined on the interval (0,7p).)

Theorem 2.2 (Existence of continuous solutions) If
(H1) [convexity] H is convex with respect to p for all x in Q,

(H2) [uniform coercivity]

H(x,p) — +00 when |p| — +oo uniformly with respect to x € Q,

4see appendix A.
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(H3) [subsolution] inf,cgnH(z,p) <0 in Q,
(H4) [regularity] H € C(Q x RY),
(H5) [compatibility] Vz,y € 9Q, ¢(z) — ¢(y) < L(z,y);

then the function u defined in Q by:
u(@) = inf {o(y) + Lz, y)}

To
_ ngf{ O H*(5<s>,—£'<s>>ds+¢<s<n>>} (2.13)

is a continuous viscosity solution of equation (2.12) (in particular uw verifies
u(zx) = @(x) for all x in OQ).

Theorem 2.2 is a special case of theorem 5.3 in [95]. It can be interpreted as
giving compatibility constraints for the boundary conditions.

Remarks 2.

R2.1 - Under hypotheses (H1)-(H4), we have then the following necessary
and sufficient condition:

u defined by (2.13) is a viscosity solution of (2.12)
iff the hypothesis (H5) is true.

We will say that ¢ verifies the compatibility condition if (H5) is verified.

R2.2 - An other interest of the viscosity theory is its link with control theory.
For example, theorem 2.2 gives the solutions as value functions.

Theorem 2.2 allows to prove the existence of continuous viscosity solutions
of our SFS problems (see section 2.2.4). Nevertheless, let us point out that
the existence of such a solution requires a constraint on the variation of ¢ (the
compatibility condition).

Example : Let us consider again the PDE
|Vu(z)| —1=0.

The reader can verify easily that H*(x,.) is defined on the ball B(0,1) and that
for all x in © and for all ¢ in B(0,1), H*(x,q) = 1. So

L(z,y) nfly = y—z

=1
£ex
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(where
X={£|&0)==, {(To) =y, £ € L™(0,T) s.t. Vs € [0, Tp], [€'(s) <1} ).

Therefore for the Hamiltonian H(z,p) = |p| — 1 with DBC on {0,1}, the
compatibility condition is:

©(0) — (1)
¢(1) — »(0)

<L(0,1) =1-0,
<L(1,0) =0-1,
that is to say

[p(0) —e()] < 1.

Consequently, theorem 2.2 does not apply with equation

|Vu| -1 =0,
{ w(0) = 0 and u(1) = 1.5. (2.14)

So, we cannot prove that the PDE (2.14) has a continuous viscosity solution.
In effect, it is possible to prove that this PDE does not have continuous
viscosity solutions.

Come back to the SF'S problem. Let us suppose that we make a large error

on the function ¢ when we compute a numerical solution of the SFS problems.
If this error is too large then there do not exist continuous viscosity solutions. So
what do the numerical algorithms compute? In other words, how do interpret
the numerical results obtained by the algorithms?
So as soon as there do not exist continuous viscosity solutions, we need to
introduce a notion of solution weaker than this notion. Also, the notion of
discontinuous viscosity solutions provides an answer to these problems. The
notion of discontinuous viscosity solutions is due mostly to Ishii [76, 75| and
is covered in detail in the book of Barles [7]. The recent book of Bardi and
Capuzzo Dolcetta [5] synthesizes some recent results.

Discontinuous viscosity solutions

Let us consider the following equation on the closed subset Q:
F(z,u(x), Vu(z)) = 0, for z € £, (2.15)

where F, defined on Q x R x RY | is only locally bounded (F is not supposed
to be continuous). The idea is to consider both the equation and the boundary
condition. Generally F' is defined by:

H(z,u,p) for x in Q,

2.16
G(z,u,p) for z in 99, (2.16)

F(x,u,p) = {

®Let us remember that we assume that we know this function ¢, but in practice we only

can have an approximation of it.
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where H is a continuous function on 2 x Rx RY and G is a continuous function
on 9Q x R x RV, For example, in the case of the Dirichlet condition, we can

take:

H(z,u,p) forxin Q,

F(:L‘,u,p) = { (217)

u—p(z) for z in 09,

with ¢ continuous on Of2.

Definition 2.2 Let u be a locally bounded function on a set E.
Vx € E, let us note:
u*(x) = limsup u(y)

y—)-’E

us(z) = liminf u(y)

y—)-’E
u* et uy are respectively call the upper semicontinuous envelope and lower semi-

continuous envelope of u.

We recall also that v : E — R is upper (respectively, lower) semicontinuous
(u.s.c, resp. ls.c) if for any x € F and £ > 0 there exists a 6 such that for all
y € ENB(x,6), u(y) < u(x)+ ¢ (respectively, u(y) > u(x) — ). To familiarize
oneself with these notions, the reader can refer to the sections V-1 and V-2.1
of [5].

Definition 2.3 (Discontinuous viscosity solutions) A locally bounded
function, wu.s.c (respectively, l.s.c) on Q, v is a discontinuous viscosity
subsolution (respectively, supersolution) of equation (2.15) if:

Vo € CL(Q) , Vo € Q local mazimum of (v — @), Fi(xo,v(x0), Vo(xo)) < 0.
(respectively, if:
Vo € CHQ) , Yo € Q local minimum of (v — ¢), F*(xg,v(xo), V(o)) > 0.

).
A locally bounded function, u is a discontinuous viscosity solution of (2.15) if

u* is a subsolution and u, is a supersolution of (2.15).

For the Dirichlet problem (2.17) with H and ¢ continuous, it is easy to calculate
the functions F* and F,. We have:

F*(z) = Fi(x) = H(x) if z € Q,

F*( ), u(x) —(x)) if x € 09,
F,(r) = min(H (z,u, Vu),u(xz) — p(x)) if x € 0.

&
Il
=
A
=
E
8
RS
<
S

For more details, we advise the reader to read chapter 4 of Barles’ book [7].
Let us emphasize that the notion of discontinuous viscosity solutions extends
the notion of continuous viscosity solutions. In particular a continuous viscosity
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solution is a discontinuous viscosity solution. Also, the notion of discontinuous
viscosity solutions allows to define solutions when there do not exist continuous
viscosity solutions. For example, the reader will verify easily that the function
represented in figure 2.4 is a discontinuous viscosity solution of equation (2.14)

|[Vu| —1=0,
uw(0) =0 and »(1) = 1.5.

0

Figure 2.4: Example of a discontinuous viscosity solution of (2.14).

There exist many existence theorems for discontinuous viscosity solutions.
We only give here the one we need for our applications. The reader can find the
following theorem in Bardi and Capuzzo Dolcetta’s book [5] (theorem V.4.13),
it deals with Hamilton-Jacobi-Bellman equations.

Definition 2.4 Let Q be an open subset of RY and A be a set. We call
Hamilton-Jacobi-Bellman (HJB) the PDE defined as follows:

Au(zx) + Zlelg{—f(:c, a) - Vu(z) —l(z,a)} =0 VzeQ. (2.18)

where f is a function from Q x A into RN and [ is a function defined from
Q x A into R.

According to the optimal control theory (see theorem 2.3 and more generally the
book [5]), a is called the control, | is called the running cost, f is called the
dynamics and A > 0 is called the interest rate.

We associate with the HIB equations (2.18), the convex Hamiltonian

H(z,u,p) = \u+ sug{—f(a:, a)-p—IU(z,a)},
ac

which we call “HJB Hamiltonian”.

Before giving the theorem, let us state the assumptions we need:

(H6) A is a compact topological space and Q is a bounded open subset
Of RN ;
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(H7) f:Qx A— RN is continuous;
1:Qx A— R is continuous and bounded.

(H8) f and | are Lipschitz continuous in x € Q uniformly in a € A.

Theorem 2.3 Let H(x,p) = sup,cs{—f(z,a) - p — l(z,a)}; assume the hy-
potheses (H6)-(H8) are satisfied and let ¢ € BC(9N), then u defined by

t ()
wa) = int [ (). €6 s + e Ol (1(6),

(where y,, is the solution of the differential equation

{ y(t) = fly(t),(t), >0,

y(0) = =,

and t,(€) is the first time the trajectory y.(.,€) goes out of Q )
s a viscosity solution in the discontinuous sense of

H = i €2
{/\u+ (z,Vu)=0 in £, (2.19)

U= on 0f).

Remarks 3.

R3.1 - In other words, this theorem states that the value function of the
classical optimal control problem is the viscosity solution of the adequate
HJB equation.

R3.2 - We emphasize the fact that the theorem is true even if A = 0.

The HJB equations are useful for the SFS problems. As we will see below,
we can rewrite the SF'S equations as HIJB equations. The reader unfamiliar
with control theory can read appendix A in which we detail the tools allowing
to make this transformation.

2.2.3 Hamiltonians for the SFS problems and unification of the
“perspective” and “orthographic SFS”

Note: In this section, and more generally when we deal with the SF'S problem,
we fix N = 2. In particular, © is an open subset of R?.

2.2.3.1 Basic Hamiltonians for SFS

In section 2.1, we have presented several PDEs arising from various mathe-
matical formulations of the SFS problem. Let us recall that the definition of
the viscosity solutions is associated with the Hamiltonians and not with the
equations. So for each SFS equation we have to specify an Hamiltonian.
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0
1. In the case where L = | 0 |, we associate the “Eikonal” Hamiltonian
1
Hoth with the Eikonal equation (2.4):

1

th

Hiigo(z,p) = |p| = T " (2.20)
0

In the case where L = 0 |, we can also consider the Hamiltonian
1

orth .
H(oto 1)°

Hig ¢ (@) = I(z)V/1+ p]? - 1; (2.21)
Hi %’31) is a particular case of Hfz’“/t:’;, see below.

2. With equation (2.3) of the general “orthographic SFS” (L = (1,7)), we

associate the Hamiltonian® H ;{/t:’r’

Hyff(w,p) = @)/ 1+ pP? +p-1—7; (2.22)

3. With equation (2.6) of the “perspective SFS” with a constant light source

vector L = (1,7), we associate the Hamiltonian” H ’1377;

12 wp) = 1@ ©2l2 4 p+ 17— (F 1bya)-p -7 (223)

4. With the “perspective SFS” with L = (0,0,1) (the light direction corre-
sponds to the optical axis of the camera) we associate

HYye (2,p) = I(x W PP+ @ p+1)? —ap—1; (2.24)

5. And with the “perspective SFS” with a single point light source located

at the optical center, we associate the Hamiltonian® HE™;

HE"(2,p) = I(@)y/ 2] + (p - 2) + Q(x)* - Q(), (2.25)

where Q(x) = \/ﬁ

Let us remind the reader that in (2.22) and (2.23), we assume 7 > 0.

5This Hamiltonian has been introduced by Rouy and Tourin [134].
"This Hamiltonian has been established by Prados and Faugeras in [118, 120].
8This Hamiltonian has been introduced by Prados and Faugeras in [119, 124].
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2.2.3.2 A “generic” Hamiltonian for SFS

As we have seen in the previous section, the SFS problem leads to several
Hamiltonians; nevertheless we show that all these SF'S Hamiltonians are special
cases of a general one, thereby simplifying the formalization of the problem.

Explicit formulation of H,

In appendix B.1, we show that all the Hamiltonians H"** and HY*" are special

cases of the following “generic” Hamiltonian H,,
Hg(x,p) = ﬁg(xa Azp+ Vm) + Wy oD+ Cq,

with Hy(x,q) = ko\/]q> + K2,

ek, >0and K, >0,

o A, =D, R,, where

Vg

oDI:<"Om 0), i v # 0,

. . . ) cos@ sinf
o if x # 0, R, is the rotation matrix R, = . ;
—sinf@ cos@

where cosf = I%ZI and sinf = _I%I’

o ifx =0, Ry = Idyxo;
° v,, W, € R,
e ¢, €R

In appendix B.1, we detail the associated functions v,,wy, ¢y, liz, Vs, k; and
K., for all the Hamiltonians Ho"** and HY"*.

Control formulation of H,

Let us remind the reader that we call “HJB Hamiltonian”, a Hamiltonian which
has the following form (see definition 2.4):

H(x,u,p) = Au+ SHE{—f(.’L',a) Y l(x,a)}
ac

From a theoretical point of view as well as from a practical one, it is very
interesting to formulate the SFS Hamiltonians as HJB Hamiltonians. For ex-
ample, such a formulation allows to apply the existence theorem 2.3. Also, in
chapter 3, we show that the HJB formulation allows to design approximations
schemes (section 3.1) and numerical algorithms (section 3.1). Therefore it al-
lows to compute numerical approximations of the viscosity solutions of SFS
PDEs.
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We now give a HJB formulation of the “generic” Hamiltonian H,.

By using the Legendre transform® of I;Tg, we can rewrite the Hamiltonian H,

as a supremumlo:

Hy(z,p)=  sup | [Awatws]-p — [Hy (z,0) = Va-a—ci] }.
a€DomH," (x,.)

Now, let us write
Dil, = kg 'RyD.R,. (2.26)

By using the change of variables'! b= x;! 'Rya (a = Kz Ryb), we have:

Hy(z,p) = sup {[Dilpa+wg]|p — [ﬁg*(a:, keRza) — kz(*Reve) -a—cg }.
a€B(0,1)

Through differential calculus'?, we obtain

ok

Hy (2,0) = =Kz /K5 = |af?,

so that
H, (@, ks Rpa) = —k.Ko\/1 — |a?.

Then we have

Hy(z,p) = sup {—fy(z,a) p—1I4(z,a)}, (2.27)
a€B2(0,1)
with
fow,a) = — [ Dilga+wy ], (2.28)
ly(z,a) = — [ Kykgy/1—|a]? + ks(*Ryvy) - a + ¢y )

In order to apply the theory of the viscosity solutions on HJB equations, it is
important that the supremum is on a set which does not depend on z. In the
control formulation (2.27) of H,, the supremum is on the closed ball By(0,1).

Remark 4. This formulation is still valid at the points x such that x, = 0.
For most of the SF'S Hamiltonians, these points correspond to pixels in shadows.
At these points we have

Hy(x,p) =Wy -p+cz= sup {wy-p+ey )
a€B>(0,1)

9See appendix A.

10See appendix B.2.

"This change of variables is justified only if x, # 0. Nevertheless, the reader will verify
easily that the following series of identities hold even if k, = 0.

12Using the method described in appendix A.
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So

fg(xva) = — Wy,

ly(z,a) = — cq.

Thus, the approximation schemes based on this formulation and presented in
section 3.1.2 provide numerical algorithms allowing to compute solutions of
SFES for images including shadows.

2.2.3.3 SFS Hamiltonians nonnegative running cost

We start this subsection by recalling the

Definition 2.5 Let ¢ € C*(Q). We say that v is a subsolution of H(x,Vu) =
0 if

VreQ, H(z,Vi(x))<0.
So by definition, the null function 0 is a subsolution of the Hamiltonian H iff
Ve € Q, H(z,0) <0. Also, for a convex Hamiltonian H, we can verify:

Proposition 2.2 0 is a subsolution of the conver Hamiltonian H iff
Ve Q, Vg eRY, H*(z,q) >0

(where H* is the Legendre transform of H, see appendiz A). Also, if H is an
HJB Hamiltonian (with a null interest rate), 0 is a subsolution iff the running

cost s nonnegative.

Proof.

H(z,0) <0 SUPge pomi*(2,)1 0-¢ — H™(z,q) } <0
_inquDomH*(m,.){ H*(.CC,Q) } <0
inquDomH"‘(az:,.){ H*(xaQ) } >0

Vg € DomH*(x,.), H*(x,q) > 0.

rTrue

In the same way, we prove the equivalent with the nonnegativity of the running
cost of an HJB Hamiltonian.
O

Moreover, let us note that the running cost /, associated with the generic Hamil-
tonian H, verifies H}(x,q) = ly(z, Dil, ' (q — w,)).
At this stage, several reasons can suggest us to deal with such Hamiltonians:
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1. It allows to apply the theory developed by Camilli and its coworkers in
[26, 25, 23].

2. A large part of the results presented by Dupuis and Oliensis in [47] are
demonstated by using widely the positivity of the running cost (more
precisely, they used the positivity of the Legendre transform).

3. Generally, the proofs of the existence and uniqueness of the viscosity so-
lutions are easier with these Hamiltonians than with other Hamiltonians.
For example, hypothesis (H3) becomes obvious. This is also true when
we consider schemes. The proof of the stability of the schemes and the
proof of the convergence of their solutions toward the viscosity solution
(of the associated equations) are simpler; see for example proposition 3.2.

Nevertheless, let us note that, as we show in chapter 4 (see in particular
section 4.4), the work of Camilli et.al [26, 25, 23], and the work of Dupuis
and Oliensis [47] can be extended to Hamiltonians with any running cost.
We donot require anymore the nonnegativity of H*.

Since the intensity image I verifies I(x) < 1, the SFS Hamiltonians HZ:"
H ("&to}fl), HY™ and H f’(i 7(3?1) have positive running cost (they verify H(z,0) < 0).

For the Hamiltonians H;’{/t% and H?f/;, the associated running costs are not

positive. Nevertheless, by performing some changes of variables, we can design
other Hamiltonians which verify this property.

“Orthographic Hamiltonian” with nonnegative running cost
By using the change of variables!?
v(z) =1-z+ yu(x), (2.29)

the PDE (2.3) can be rewriten as

Ve € Q, I(z)/|Vu(z) — 12 ++2 + Vu(z) - 1-1=0. (2.30)

Let us note that the “change of unknown” proposition 2.1 does not apply to
the change of variables (2.29).

With equation (2.30), we associate the Hamiltonian H g’/tg:

Hpjo(@,p) = @)V Ip =17 + 72 4+ p-1- 1. (2.81)

Since H"D”/tg(x,(]) =I(z)—1and I(x) <1, Hg’/tg verifies:

Vz € Q, Hgfg(x,ﬂ) <0.

13Proposed by Dupuis and Oliensis [47].
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“Perspective Hamiltonian” with nonnegative running cost

By using the change of variable
v(z) = lf[ v =1 2] u(z), (2.32)

before the change of variables v = In(u), the PDE (2.5) can be rewritten as a
PDE which the associated Hamiltonian HY“"® verifies

Vz € Q, HY"(z,0) < 0.

Since the interest of this formulation is essentially theoretic, we do not give
more details about this Hamiltonian.

Remark:

Let us note that the two Hamiltonians H]%T/tg and HY“"® are some particular
cases of the generic SF'S Hamiltonian H, described above.

2.2.4 Existence of viscosity solutions of the “classical” SFS
problems

2.2.4.1 Existence of continuous viscosity solutions of the ‘“classical”
SF'S problems

In this section, we apply theorem 2.2 (page 60) for proving the existence of
continuous viscosity solutions of the SF'S Hamiltonians.

Let us remind the reader that the SFS Hamiltonians are special cases of
the generic Hamiltonian H,. Therefore all the properties proved for the generic
Hamiltonian are also available for all the SF'S Hamiltonians.

e At first, the generic Hamiltonian H, is convex with respect to p: (HI) is true.

e About the uniform coercivity, we have the following proposition:

Proposition 2.3 Let us consider a Hamiltonian Hy defined as in
section 2.2.3.2 such that the functions kg, ¢y, Ay, Wi, Vi (0T kg,
ce,("ReAL)™Y, Wy, 'Ryv,) are continuous and bounded on the compact
set Q. We assume that w, # 0 for all x in Q.

IfVz € Q, ["A;'w,| < ky then Hy(z,.) is coercive uniformly with respect
to x in Q.

Proof. See subsection 2.2.5. O

We can remark that if w, = 0 and &, # 0 therefore Hy(z,.) is coercive
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uniformly with respect to x in Q (by using the compacity of S(0,1) x €,
we have: 36 > 0 | Vp € S(0,1) and Vo € Q, |A,p| > §; therefore VA > 0,
|Az(Ap)| > Ad; the conclusion follows).

Using the results of the appendix B.1 and applying proposition 2.3 to the
corresponding SF'S Hamiltonians, we obtain the following statements:

o HYth H("gtohl), HP™ are uniformly coercive as soon as I(z) > 0.
bl
o H;’{/t%, H g"/tg are uniformly coercive as soon as I(z) > |1|.

|

Vo2

o Hé”oe le) is uniformly coercive if I(x) >

PETS PETS :
o HP/F, H;5™" are coercive as soon as

1

e et AP+ (PP = 1) .

I(z)? >
Hence, subject to the adequate conditions, all SF'S Hamiltonians verify
hypothesis (H2).

e Concerning hypothesis (H3), we verify that:

o for the Hamiltonians H%tkho, Hé’&%’fl), HY™, H‘g}g, H{O%fl) and HY"®
we have
inf H(z,p) < H(z,0) <0.
pER?

o for the Hamiltonian H ;{/’# (taking the derivative):

inf H(z,p) =

P P - i 1) > I
peR2 —

00 otherwise.

Since I2 < a? + 82 + 4% = 1, we have inf,cge H(z,p) < 0.

o for the Hamiltonian H ;;‘7;, we can consider the subsolution 1 described

at the page 78. We have

. pers pers
plenlfgz HP/F(CL‘,p) < HP/F(.’E, Vw(x)) <0.
o If Ky, K, Wy, c; are continuous and if A, and v, (or 'R, A, and 'R,v;)
are continuous then H, is continuous in Q x R%. Therefore as soon as the
intensity image I is continuous, all SFS Hamiltonians HZ*"® and H"*

are continuous in Q x R? (for the Hamiltonian H%’;Zz, I must also verify
I>0o0n Q). So (H4) holds.

Therefore, if the compatibility condition (H5) is satisfied on 9 (and if the
above conditions are verified), then all the SF'S problems (PDEs with DBC)

have continuous viscosity solutions.
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2.2.4.2 Existence of discontinuous viscosity solutions of the “classical”
SFS problems

In section 2.2.3.2 at the page 67, we have shown that the “generic” Hamiltonian

H, is a HJB Hamiltonian. Precisely we have shown that:

Hy(z,p) = sup {—fy(z,0)-p—Ily(z,a)},

a€B2(0,1)
with
fo(z,a) = — [ Dilga+ wy |, (2.33)
ly(z,a) = — [ Kyka/1—la|>+ ko("Ryvy) - a + ¢zl

Also we have:

o If Ky, pp and v, are continuous on €, then Dil, is continuous on Q. If
furthermore w, is continuous then f, is continuous on Q x B(0,1).

o If 1, and v, are bounded (which is true as soon as  is bounded and y, and
v, are continuous on Q) and if s, is Lipschitz continuous, then Dil, is
Lipschitz continuous. If furthermore w, is Lipschitz continuous then f,
is Lipschitz continuous with respect to x with a Lipschitz constant which
does not depend on a € By(0,1).

e If K, and v, are bounded and if x, and ¢, are Lipschitz continuous then /, is
Lipschitz continuous with respect to = (with a Lipschitz constant which
does not depend on a € B5(0,1)) and continuous on Q x B3(0,1).

o If Ky, Uy, Vg, Wy, Vi, fiz, K, and ¢, are bounded on Q then f, and [, are
bounded on Q x B(0,1).

Therefore,

o if © is bounded,

o if y, and v, are continuous on €,

o if K, and v, are bounded and

o if k,, w, and ¢, are Lipschitz continuous

then all hypotheses (H6)-(H8) of theorem 2.3 (at the page 65) are verified for
the “generic” Hamiltonian H,.

Consequently, using appendix B.1, we verify easily that as soon as the in-
tensity image I is Lipschitz continuous, the hypotheses (H6)-(H8) hold for all
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SFS Hamiltonians'®. Therefore, theorem 2.3 applies for each modeling of the
SFS problem.

Thus, if ¢ € BC(99) then for all our SFS problems (PDEs with DBC),
there exists a discontinuous viscosity solution. Let us emphasize that the com-
patibility conditions are no more required.

2.2.5 Proof of proposition 2.3 claimed in section 2.2.4

Let us remind proposition 2.3.

Proposition 2.3 Let us consider a Hamiltonian H, defined as in section 2.2.3.
such that the functions kg, ¢z, Ay', Wa, Vo (07 kg, Cz,(*RpAz) Y, We, 'Ryvy)
are continuous and bounded on the compact set Q. We assume that w, # 0 for
all x in Q.

IfVr € Q, [PA;'w,| < kg then Hy(z,.) is coercive uniformly with respect to x
in 2.

The proof of proposition 2.3 is based on the following lemma:

Lemma 2.1 Let Q be a function defined by:

Q: ExRY — R
(r,q) +— Qz,q) = |q|+W(x) ¢+ C(z),

where E is any set, C : E — R : z — C(z) is a function bounded below by
c €R, and W is a function defined by: W : E — RN : x — W(x).
If there exists € > 0 such that Vo € E, |[W(x)| <1—¢ then Q(z,.) : ¢ — Q(z,q)

is coercive uniformly with respect to x in E.

Proof of lemma 2.1. By the Cauchy-Schwarz’s inequality we have:
W(z)-q 2 —|W()llql-
Therefore, Vo € E, Vg € RV,
lgl + W (z)-q = ql(1 = [W(2)]) = |gle.

Hence Q(z,q) > |g|e + ¢, and the conclusion follows. O

Proof of proposition 2.3.

MFor the Hamiltonian H;:", we also need to impose I > 0 on Q.
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o Let us define

~

H(z,p) := kg|Agp + V| + Wy - D + 5.
We have
Vr e QVp e R, Hy(z,p) > H(z,p),
So if H(z,.) : p — H(z,p) is coercive uniformly with respect to z then

Hy(x,.) is also coercive uniformly with respect to x.

e We now consider

Q: QxR — R

1, _ .
(:0) o+ [ A wal g+ e — [Ay W] - v

— c(z)

Since we have assumed that

i) cz, A7, Wy, v, were bounded
and that
ii) LA w,| < ke, (so that, by continuity, there exists ¢ > 0

such that for all z in the compact set €, é|tA;1ww| <1l—¢).
Therefore by lemma 2.1, Q(z,.) is coercive uniformly with respect to x in
Q.

e Now, let us rewrite the uniform coercivity of Q(z,.) as follows:
VAeR, IM eR / Vg e R Vz € Q, |g| > M implies Q(x, q) > A.

Let us fix A and M; € R such that the above implication is true (with
M = M;). We can consider My € R such that for all x on Q,

1 _
My > —| A (M| + halval)

(we have assumed that v, and A,! were bounded; moreover, since
PA;'w,| > 0 and |'!A;'w,| is continuous on the compact set Q, x;!
is also bounded).

Then for all p in R?, |p| > M, implies:

Ke|Azp +Va| > ko(|Azp| — [Va])
> (rilpl = Ival
> Ky <ﬁ|M2|_|Vz|)
> g (M| + ralval) - [val)
> M.

Then:
VAER, My € R / Vp € R? Vx € Q,

A~

Ip| > M, implies H(z,p) = Q(z, ke (Azp + Vi) > A.
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In other words, H (x,.) is coercive uniformly with respect to z in Q.
The conclusion follows.

2.2.6 Characterization of viscosity solutions of the “classical”
SFS problems

In the previous section we have proved the existence of viscosity solutions of
the “classical” Lambertian SF'S problems. Nevertheless, as we will show in this
section, the “classical” Lambertian SF'S problems with DBC' (on the boundary of
the image) do not have a unique viscosity solution. For computing a numerical
solution of the SFS problems, we need to choose one solution among all. To
make this choice, we must characterize the solutions. Also, as Rouy and Tourin
have proposed in [134], we satisfy this requirement by enlarging the DBC to
the set 0QU{ z | I(z) =1 }.

2.2.6.1 Uniqueness results for continuous viscosity solutions

Let us recall the following standard definition:

Definition 2.6 We say that there is a maximum principle for the Hamilton-

Jacobi equation
H(z,u(x),Vu(x)) =0 in an open set Q, (2.34)

when we have:  “for all subsolution u and supersolution v defined on Q, u < v
on 0 involves u < v on Q7.

Let ¢ : 92 — R be a continuous function.
In the case of the continuous viscosity solutions, the maximum principle involves
the uniqueness on Q of the solution of the Dirichlet problem

{ H(z,u(z),Vu(z)) = 0 on £, (2.35)

u = @ on 0.

In other words, the maximum principle ensures that there exists at most one

continuous viscosity solution of equation (2.34) verifying u = ¢ in 9.

Proof. Let u1,us be two continuous viscosity solutions to the Dirichlet
problem (2.35). Since for all z in 99, u1(z) = us(x) (Dirichlet condition) and
u1, U2 are both subsolution and supersolution, the maximum principle implies
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that u; < ug and uy < uq on Q. The conclusion follows. O

Essentially, there exists two classical uniqueness theorems for the continuous
viscosity solutions. The first deals with the PDE(s) of the form Au(z) +
H(z,Vu(z)) = 0 with A > 0. The second deals with equations of the form
H(z,Vu(z)) = 0 with H(z,p) convex with respect to p. The first theorem is
proved in [5] (theorem I1.3.1 and remark I1.3.3).

Theorem 2.4 (uniqueness result (1)) Let Q be a bounded open subset of

RN . Let us consider the Hamilton-Jacobi equation
Au(z) + H(z, Vu(z)) =0, z € (A>0).
We assume that H satisfies

(H9) [space variable regularity]
There exists a nondecreasing function w which goes to zero at zero,
such that
Vo,y € Q, ¥peRY,  |H(z,p) — H(y,p)| < w(lz —yl(1 + |p]))-

Then there is a mazimum principle for this equation.

The second uniqueness result is due to Ishii [74] and has been proved later
in a different manner by Lions [95]. For the SFS problems, this theorem is
important. In effect as we have seen above, the equations provided by the
“classical” formulations of the SFS problems, involve Hamiltonians which do

not depend on u.

Theorem 2.5 (uniqueness result (2)) Let Q be a bounded open subset
of RN . Let us consider the Hamilton-Jacobi equation

H(z,Vu(z)) =0 Vo € Q. (2.36)
If the hypotheses (H1),(H9) and the following hypothesis are verified:

(H10) [strict subsolution]
there exists a strict subsolution u € C1(Q)NC(Q) of (2.36) (i.e. such
that H(x,Vu(z)) <0 for all z in Q);

then there is a mazimum principle for this equation.

For more general conditions, see [96]. A proof can be found in section I1.5.3 of
Bardi and Capuzzo-Dolcetta’s book [5].

These theorems apply to the SFS. In particular, by theorem 2.5, we can
characterize the continuous viscosity solutions of the “classical” SF'S problems.
Let us consider the generic Hamiltonian H, defined in section 2.2.3.2 (at the
page 67). We have:
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1. H,is convex with respect to p and therefore the hypothesis (H1) is verified
for all our SF'S Hamiltonians.

2. If we assume that x,, w, and ¢, are Lipschitz continuous and that K,
D, and v, are bounded, then the Hamiltonian H, verifies the regular-
ity hypothesis (H9). In particular, for all the SFS Hamiltonians Ho*
and HY®®| these conditions are true as soon as the intensity image I is

15

Lipschitz continuous™® (see appendix B).

3. About the existence of strict subsolutions:

e The generic Hamiltonian H, does not have a generic strict subsolution.
Nevertheless, all SFS Hamiltonians H™"* and HY“"® have one.

e Let us assume that
for all z in Q, I(z) < 1.

Then, we have:

o all constant functions are strict subsolutions of the Hamiltonians
Hygl, Hyfe, Hp'® and HY™.
In effect, all these Hamiltonians verify H(x,0) < 0.
o it is easy to verify that the function
_ 1
Pv:Q—R: z2+— ——1-2
Y

is a strict subsolution of the Rouy-Tourin Hamiltonian H}’%”/tjll

o the reader can verify that the function
.0 ) 7
P:Q—R: x+—>—ln—f—ln(fyf—l~x)
is a strict subsolution of the perspective Hamiltonian Hg/;f (we
need to impose v f —1-2 > 0,ie. L- (z,— f) < 0).

Thus, for all SF'S Hamiltonians, as soon as the intensity image I is Lipschitz
continuous and verifies

VeeQ, I(z)<1,

all the hypotheses of theorem 2.5 are verified. Therefore, under these condi-
tions, the SFS Hamiltonians H2"*" and HY*"® have a unique continuous viscosity
solution.

Remark 5. To apply theorem 2.5, a difficulty lies in the search of

"5for the Eikonal Hamiltonian Hgii" we also need to impose Vo € €, I(z) > 0.
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a strict subsolution. To get around this difficulty, we can make a change of
variables for obtaining a new Hamiltonian with A # 0 and we can try to apply
theorem 2.4. For example, we can consider the Eikonal equation (2.37) with
f strictly positive and Lipschitz. By using the Kruzkov change of variable
v(z) = 1 — e U*) (therefore Vu(z) = #@)Vv(a:), v(z) < 1), we rewrite the
Eikonal equation

Vu(z)| = f(=) (2.37)
as )
v(x) + m|Vv(x)| —-1=0, (2.38)

and theorem 2.4 applies to (2.38). This kind of tricks has been widely used by
Falcone et.al in [24, 55, 56].

2.2.6.2 Uniqueness results for discontinuous viscosity solutions

The uniqueness results for the discontinuous viscosity solutions are almost the
same as the uniqueness results for the continuous viscosity solutions. Neverthe-
less, they need stronger hypotheses; which is reasonable because discontinuous
viscosity solutions are weaker solutions than continuous viscosity solutions (the
set of the discontinuous viscosity solutions of a HJB equation contains the set of
the continuous viscosity solutions). Also, the consequences on the SF'S problem
are almost the same.

In the continuous case, the maximum principle involves the uniqueness of
the solution of the Dirichlet problem. Nevertheless in the discontinuous case,

to have uniqueness we need a stronger property (see section 2.2.3 of [128]):

Definition 2.7 Let Q be an open subset of RN, let E C Q and let F be a real
function defined on Q x R x RN .
We say that the strong uniqueness property holds on the set E for the equation

F(z,u(z),Vu(z)) =0 (2.39)

when we have:
“for all subsolution u, for all supersolution v and for all x in E, u(zx) < v(z)”.

We have the following strong uniqueness result:

Theorem 2.6 Let Q be an open subset of RN verifying (H11). Let H be a
continuous real function defined on Q x RN and let ¢ be a real continuous
function defined on 0. If H satisfies the hypotheses (H1), (H9) and (H10”)
and if H satisfies the boundary hypotheses (H12), (H13) and (H14) (described
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below) which impose properties of H on OS2 then the strong uniqueness property
holds on the set Q0 for the equation

F(x,u(z),Vu(z)) =0 for x € Q, (2.40)
which defines the following Dirichlet problem (in the discontinuous sense)

H(xz,p)  forzinQ,

u—p(x) for z in 0. (2.41)

F(z,u,p) = {
The hypothesis (H10’) is a hypothesis slightly stronger than hypothesis (H10)
of the theorem 2.5:

(H10’) [strict subsolution]
there exist u € CH(Q) N C(Q) and § < 0 such that for all x in €,

H(z,Vu(z)) <é.

The hypothesis (H11) deals with the regularity of the set :

(H11) [regularity of ]
Q is a bounded open subset of RN of class W,

The hypotheses (H12), (H13) and (H14) are the following:
There exist a constant C' > 0 and a neighborhood T" of 9Q (ie. T is an open
subset of RV such that 9Q C I') such that

(H12) [p - regularity on 0Q]

There exists a function w which goes to zero at zero, such that

Vz €T, Vp,q € RN, |H(z,p) — H(z,q)| < w(|p — q|);

(H13) Vz el, Vpe RV, H(z,p+Ap(z)) <0 = AX<CO+p));

(H14) [directional coercivity on 0%
Vp € RV, H(xz,p— An(x)) — 400 uniformly with respect to x
in IT', when A — 400;

(where n(z) is the unit outward pointing normal vector to 052).

Proof of theorem 2.6.  See theorem 4.5 and more exactly of its corollary
4.1, of Barles’book [7] in the particular case where the Hamiltonian H does not
depend on wu. O

Remarks 6.
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R6.1 - Clearly, the strong uniqueness property involves the uniqueness of the
discontinuous viscosity solution. Therefore, thanks to theorem 2.6, we can
prove the uniqueness of discontinuous viscosity solutions of (2.40) in Q.
Nevertheless, generally we do not have the uniqueness in Q! So if u; and
ug are two solutions, then for all z in Q, u;(x) = ua(x); but for all  in 99,
u1(x) can be different from wuy(x).

R6.2 - The strong uniqueness property involves the continuity of the solution
(see proposition 2 of [128]).

R6.3 - Theorem 2.6 deals with a Hamiltonian H which does not depend of u;
More general results can be found in [7].

Proposition 2.4 A sufficient condition for the hypotheses (H13) and (H14) to
be satisfied is: H(x,p) coerciv in p uniformly with respect to = in T, a neigh-
borhood of OS.

Proof. See proposition 3 of [128]. O

As theorem 2.5 (uniqueness of the continuous viscosity solution), theorem

2.6 applies to the SFS problem. The three hypotheses (H1), (H9), and (H10’)
are (almost) the hypotheses of theorem 2.5. As in the previous section, we
prove that they are verified for the SFS Hamiltonians Ho"** and HE®"® as soon
as the intensity image is Lipschitz continuous and verifies I < 1 on Q. Con-
cerning the hypothesis (H12), we can easily prove (by computing the gradient
of Hy(x,.) : p — Hy(z,p)) that if k, and w, are bounded then Hgy(z,.) is
Lipschitz continuous (with a Lipschitz constant which does not depend on z).
Therefore (H12) is true for all SFS Hamiltonians Ho"** and HY".
Then, thanks to proposition 2.4, the strong uniqueness theorem applies as soon
as the considered Hamiltonian H(x,p) is coercive with respect to p uniformly
with respect to x in a neighborhood of 9Q. In section 2.2.4 (when we apply the
existence theorem 2.2 to the Hamiltonian H, and later to the SF'S Hamiltoni-
ans), we have described in detail the conditions for the coercivity property for
the SFS Hamiltonians HY®"® and H2*.

Conclusion: If the intensity image I is Lipschitz continuous, if I verifies
I <1 on Q and if the values of I on the boundary of the image are such that
the coercivity hypothesis holds, then there exists at most one discontinuous

viscosity solution on €.
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2.2.6.3 Characterization of the viscosity solutions of the ‘“classical”

SFS problem when the set {z | I(z) = 1} is not empty

In practice, I can reach the value 1 in an arbitrary compact set in . This
implies that there does not exist a strict subsolution and we lose uniqueness.
Let us denote

S={zeQ|I(zx)=1}.

The points of S are called the singular points. These points are the pixels of
the image corresponding to points of the surface such that the surface nor-
mal coincides with the light direction. These points have maximal brightness.
Sometimes, they are also called “critical points”.

In [134], Rouy and Tourin characterize the loss of uniqueness of the contin-
uous viscosity solution of the equation (2.12)

H(z,Vu(z)) =0 Ve
U= Vo € 09,

in the case where H is the Hamiltonian H;’{/t% and where the set S is a set
of isolated points. In their paper [96], Lions, Rouy and Tourin characterize
completely the continuous viscosity solutions, in the case where the set S is a
finite union U}, K; of disjoint connected compact sets. Nevertheless, they only
consider the particular case of the Eikonal Hamiltonian H]?Jﬁc’; In this chapter,
we generalize their result: we characterize the continuous viscosity solutions of
all our SFS Hamiltonians (H"™" and HY®"*); in particular we extend their work
to the “perspective SF'S” problem. As in [134], in this section we assume that
S = {z1,...,z,} (let us note that in chapter 4, we relax this assumption). Also,
we deal with the characterization of the discontinuous viscosity solutions of all

SFS Hamiltonians.

Case of the continuous viscosity solutions

To begin with, we generalize [134, 96] (concerning the continuous viscosity
solutions) to all the SF'S Hamiltonians H?"*" and HE"*.

Let us fix n real constants (C;);=1.,. For all SFS equations with Dirichlet
boundary conditions,

H(z,Vu(z)) =0 Ve
U= Vo € 09,

there exists at most one continuous viscosity solution u such that for all

i = l..n, u(x;) = C; (the various constants C; have just to verify the compat-

ibility conditions'®). To prove this last assertion, we just have to enlarge the

16See page 61
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DBC to the set 9Q U S and to apply theorems 2.2'7 and 2.5'®, and the results
presented in section 2.2.6.1. Thus, we just have to fix the constants Cj;, for
characterizing a viscosity solution of the SF'S problems.

In other words, globally, for characterizing a SFS (viscosity) solution, we
can ignore the set & and work in the open set Q' = Q — S. Therefore, we
consider the problem

H(z,V =0 Vze
(z, Vu(zx)) x € , (2.42)
u(z) = p(z) Vx € 0,

rather than (2.12). Thus, as soon as the intensity image I is Lipschitz contin-
uous, the problem (2.42) associated to any SFS Hamiltonian has at most one
continuous viscosity solution. All the continuous viscosity solutions of (2.12)
are then obtained from these by choosing almost arbitrarily'® the constants C;.

Remarks 7.

R7.1 - In practice, for computing a numerical solution of the SFS problem,
we must characterize the solution we want to compute, first. The charac-
terization we propose here is somewhat disappointing. In effect, it assumes
that we know the values of the solution at all the singular points and on
the boundary of the image. But the input data to a SF'S problem consists
only in general of an image. We do not have at our disposal the values of
the solution at the singular points or on the boundary of the image. Nev-
ertheless, in a first time we will assume that we know these “boundary”
data. In chapter 4, we will describe how to remove partly this constraint.

R7.2 - Another possibility is to choose among all solutions one which pos-
sesses an extra property, as in the work of M. Falcone et al. [24, 55, 56]
where the uniqueness is obtained by choosing the maximal solution. This
method has been developed by F. Camilli et al. in [26, 25]. Let us empha-
size that M. Falcone assumes (as we do in this chapter) that the solution
is known on the boundary 0€2. Let us note that in chapter 4, we define a
new mathematical framework which generalizes the tools used by Falcone
et.al and which unifies the various viscosity approaches.

" Theorem 2.2 ensures the existence of the continuous viscosity solution; see at page 60.
¥ Theorem 2.5 ensures the uniqueness of the continuous viscosity solution; see at page 77.
9Tet us recall that for ensuring the existence of a continuous viscosity solution, the com-

patibility condition must be verified.
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Case of the discontinuous viscosity solutions

The above result does not apply directly to the discontinuous viscosity solutions
of the “classical” SF'S problem. The reason of this difficulty lies on the difference
between the hypotheses (H10) and (H10’) (hypotheses dealing with the strict
subsolutions) we recall them here:

(H10) there exists u € C1(Q) N C(Q) such that

VreQ, H(z,Vu(x))<0;

(H10’) there ezist u € C1(Q)NC(Q) and § < 0 such that

Ve € Q, H(z,Vu(zr)) <é.

The uniqueness of the continuous viscosity solution only requires the hypoth-
esis (H10) (theorem 2.5), when the uniqueness of the discontinuous viscosity
solution requires the stronger hypothesis (H10’) (theorem 2.6). In the first
case, the hypothesis (H10) holds even if there are singular points on the bound-
ary of €2, whereas in the second case, the hypothesis (H10’) imposes that
Vz € Q, I(x) < 1; and so there are not singular points on 9.

Remark 8. It is important to notice that the hypothesis (H10’) is
optimal for obtaining the uniqueness of the discontinuous viscosity solution
(the hypothesis (H10) is not sufficient). In effect, for example, although the
following SF'S equation verifies the hypothesis (H10) (therefore it has a unique

continuous viscosity solution), it has several discontinuous viscosity solutions.

Example :  Let us consider the orthographic SFS problem, in dimension 1,
with a vertical light direction. Let I be the intensity image obtained from the
C! surface v represented in figure 2.5. Let us note that v and I are defined on

v(0) 1

v(1

)
0

Figure 2.5: A surface with a singular point at the boundary.

[0,1], that for all z in ]0,1], we have 0 < I(z) < 1, and that 0 is a singular
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point (I(0) = 1). Clearly, v is the unique continuous viscosity solution of

Hoztho(:c,Vu) = 0, YV € ]07 1[7
{ u(ﬁ)’c: v(0) and u(1) = v(1); (2.43)

but there exist several discontinuous viscosity solutions. In effect, the continu-
ous viscosity solutions of all the equations

H (2, Vu) =0, Va €10,1],
u(0) = wug and u(1) = v(1),

where ug < v(0), are discontinous viscosity solutions of (2.43). Some examples
of discontinuous viscosity solutions of (2.43) are shown in figure 2.6.

Proof.

For all z in )0, 1], there are not difficulties.

For z = 0:

o u(0) is always inferior to v(0) then the subsolution property?® always holds;

o since I(0) = 1, then for all test functions ¢, we have HZ:(0,V¢(0)) > 0.
Therefore the supersolution property holds at the point 0.

i~
—

Figure 2.6: Examples of some discontinous viscosity solutions when there exists
a singular point on the boundary.

20Tn the discontinuous sense, the subsolution property at a point zg in O is:
o H(zo,Ve¢(z0)) <0, where ¢ is an adequate test function;

or o u(zo) < ¢(zo), where ¢ is the boundary condition.
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As a matter of fact, this limitation is not really a problem. In effect, before
we have assumed that we know the values of the solution at all the singular
points of the image. Also it is not more absurd to assume that we know the
values of the solution on an extremely small neighbourhood of the set the sin-
gular points. Thus for characterizing a discontinuous viscosity solution, we
can specify the values of this solution on the boundary of the image and in a
neighbourhood of its singular points. Let us emphasize on the fact that, as for
the continuous case, this characterization is not satisfying in practice. Also, in
chapter 4, we will provide a better answer.

2.2.7 Noise robustness of the viscosity solutions of SF'S

Viscosity solutions also enjoy important stability properties.
Let (v:):>0 be a sequence of uniformly locally bounded functions defined on Q.
Let us define the two functions 7 and v:

Definition 2.8 Vz € Q,

v(z) = limsup v (y)
e —0,

y—x

v(z) = liminf v.(y)
e — 0,

y—r

We have the theorem (see Barles’ book [7]):

Theorem 2.7 (Stability of viscosity solutions) Let F. be a sequence of
uniformly locally bounded functions on Q x R x RN (Q being a open set of
RY ). Let us suppose that for all ¢ > 0, v, is a subsolution (respectively a su-
persolution) of F. on Q and that the functions v. are uniformly locally bounded
on €.

Then
v(z) = limsup v.(y) (respectively v(x) = liminf v.(y))
e —0, e — 0,
Yy — T y—x

is a subsolution (a supersolution, respectively) of the equation

F(z,u(z),Vu(z)) =0 on Q (respectively  F(z,u(x), Vu(z)) = 0 on Q);
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where F(X) = liminf . F.(Y) (X,)Y €EQxRxRY)

— 0,
Y - X

(F(X) = limsup . F.(Y), respectively).

—>(]7
Y - X

When the strong uniqueness property is true the previous result yields:

Corollary 2.1 Let F: QxRx RN — R be a locally bounded function verifying
the strong uniqueness property on Q (see definition 2.7). Let (F.)eso be a
sequence of functions such that

F, — F

e—0

locally uniformly with respect to the other variables. Let us be uniformly locally
bounded functions such that for all e > 0, ue is a solution (in the discontinuous
sense) of

Fo(x,u,Vu) =0 on Q.

Then, when € vanishes to zero, the sequence u. converges on ) toward a function

w which is equal to the discontinuous viscosity solution of F(x,u,Vu) =0 on
Q.

In computer vision or more generally in image processing, the images are
always corrupted by noise. So, it is very important to design schemes and algo-
rithms robust to noise. That is to say we would like that the result obtained by
the algorithm from a noisy image be close to the ideal result obtained from the
perfect image. This robustness is mathematically expressed by the continuity
of the application which, given an image I, returns the associated surface u.

In the research report [128], section 4.1.3, we have applied corollary 2.1 to
the Hamiltonian H}’{/t%‘ associated to the orthographic SFS problem. Thus, we
have proved that if the intensity image I verifies I(z) < 1 for all z in €, then the
viscosity solutions (of this SF'S problem) are robust to noise. This also applies
to the other SF'S Hamiltonians H"" and HY".

In chapter 4, section 4.3.2, we consider in details this fundamental point. In
particular, we deal with the case where the intensity image I reaches the value
1. Moreover, we also show the robustness of the Shape from Shading solutions

to errors on parameters.

2.2.8 SFS with discontinuous images; shadows

The reader has most probably noticed that the existence theorems 2.2 and 2.3,
and the uniqueness theorems 2.4 and 2.5 require regularity of the Hamiltonians
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with respect to the space variable . For the SFS Hamiltonians, these regularity
hypotheses impose to take intensity functions I which are (Lipschitz) continu-
ous.
Let us emphasize that this limitation is very constraining; in effect, generally,
edges, black shadows and occluding boundaries involve discontinuities. There-
fore the theoretical part of our method (based on the notion of the viscosity
solutions) cannot deal with such singularities, yet. Most probably, ongoing
work will shortly allow to extend the theory to discontinuous Hamiltonians in
the space variables. See the work of Ostrov [78, 112], the work of Soravia [146]
or the work of Camilli and Siconolfi [28] which only deals with the Eikonal case.
Nevertheless, as we will see in the following chapter, the numerical method
we propose does not require such a regularity of the intensity function I. In
effect, we prove that our schemes are stable (see remark at the end of section
3.1.3.1 at the page 105, the last remark at the page 107 and remark at page
108) and the associated algorithms converge (see remark at page 120) without
such hypotheses. Also, that holds for our Shape From Shading method (see
section 3.2.3). In particular in practice, our algorithms produce suitable nu-
merical solutions even when the input image has some black shadows and some
discontinuities (see section 3.2.4).
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2.3 Conclusion and contributions of chapter 2

e Contrary to most of the SFS methods (which have been developed under
the assumption of orthographic projection), in this chapter, we model the
SFS problem by assuming that the camera is a pinhole (i.e. performs
a perspective projection of the scene). We have rigorously derived the
corresponding explicit PDEs (equations (2.6) and (2.8)) and the asso-
ciated Hamiltonians H 27; and H%™°. The light source can be located
at infinity (in any direction) or at the optical center. These explicit
formulations allow in particular to prove existence and uniqueness results.
We call “classical SF'S” the problem consisting in solving the PDEs intro-

duced in this chapter.

e We have developed a complete mathematical study of the “classical”
orthographic and perspective SFS problems. After having introduced
and shown the interest of the notion of discontinuous viscosity solutions
in the Shape from Shading problem, we have proved the existence of the
viscosity solutions of the associated PDEs. We have demonstrated that
the characterization introduced by Rouy and Tourin in [134] for
the orthographic SFS is still relevant for the perspective SFS.
More precisely, the continuous viscosity solutions of the “classical” SFS
problems can be characterized by their values on the boundary of the
image and at the singular points (i.e. the points x such that I(x) = 1).
This is one of the reasons which led us to qualify as “classical” the models
and the PDEs we have described in this chapter.

e Finally, by introducing a “generic” Hamiltonian, we have unified the
“orthographic” and “perspective SFS” problems and we have sim-
plified the formalism. Moreover, we have rewritten the “generic SFS
Hamiltonian” as a Hamilton-Jacobi-Bellman Hamiltonian.

e Note: several articles stem from this chapter. A first publication has been
accepted to ECCV’02 [127], a second to ICCV’03 [120]. An article has
been submited to the International Journal of Computer Vision [123].
Another has been accepted to RFIA’04 [121]...






Chapter 3

Monotonous approximation
schemes and associated
numerical algorithms;
application to the “classical”
Shape from Shading

In this chapter, in a first time, we describe a general method for solving Hamil-
ton Jacobi equation. We also detail various tools and theoretical results allowing
to demonstrate the relevance and the applicability of this method in practice.
In a second time, we apply this method to the “classical” SF'S problem.

3.1 Monotonous approximation schemes and associ-
ated numerical algorithms; Examples for HJB
equations

3.1.1 Approximation schemes of the form S(v,z,u(z),u) =0

First, let us define the notion of approximation schemes, we use in this thesis.
Let © a open subset of RY (N € N; N > 1). We call “continuous mesh”
(or “mesh”) a map
v:Q— Pp(RY),

where Pp(RY) is the set of the finite subsets of RY. For a point z € Q, we
denote V, := v(x). V, is the set of the “neighborhoods” of . We denote



Monotonous approximation schemes; application to the “classical”
92 Shape from Shading

M the set of all the continuous meshes. An important example of meshes is
the case of the “regular meshes”. We say that a mesh v is a regular mesh
when there exists a vectorial base (Vi,...,Vy) of RV such that for all z € Q,
Ve ={xz£V;;i =1.N}. For all i = 1..N, we denote h; = |Vi|, p = (h1, ..., An)
and h = max; h;. This defines the size of the mesh. For lots of applications, it
is relevant to consider the canonical base:

Vi=[1..N], V; = h;&;.

In this case, we say that the mesh is “canonical”. For example, the canonical
mesh is generally used in the “basic” Shape from Shading problem! and in
the computation of the Connectivity Mapping of the White Matter using TDI
[93, 94]. In this particular case, the mesh is completely characterized by p. If
hi = hy = ... = hy, we let p = h; € Rt. Also, we (mis)use the notation
“Yp > 0” which stands for “Vp € RV such that Vi € 1,.., N, h; > 0”.

An approximation scheme is a functional equation of the form
Tw,z,u)=0 Vo € Q;

where T : M x Q x B(Q) — R, and B(D) is the space of bounded functions
defined on a set D. v € M corresponds to the mesh that is used in the
corresponding numerical algorithms, see section 3.1.5. u” is a solution of the
scheme T, for a fixed mesh v.

Following [9], we introduce the representations S of a scheme T as

S(w,z,u(x),u) =0 Vz € Q,

where
S: MxQxRxB(Q) — R

(v,x,t,u) — S(v,z,t,u).

Note that a representation of a scheme is also a scheme. It is in effect a way to
simplify computations, see below. For example, suppose we want to approxi-
mate a function u such that its directional derivative in the direction ¥ at point
z is equal to A\(z). We can use the following scheme S(p, z,u(z),u) = 0 in RY

(case of a canonical mesh of size p=h; = hg = ... = hy):
—
—t
S(p,x,t,u) = w - /\('%')

'Until now, except for a very few number of papers (for example [135]), all the Shape from
Shading methods are based on “canonical” meshes. This restriction is due to the structure of

data: the pixels of the image define explicitly a regular mesh.
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Remark 9. For a scheme T(v,z,u) = 0, we can come up with various
representations

S MxQxRxB(Q) —R

such that S(v,z,u(z),u) =T (v, z,u).
For example, we can take

Sl(l/,.’E,t,U) = T(V’:Eau)a

or
So(v,z,t,u) = u(z) + T(v,z,u) —1t, etc.

In the sequel, we will see that the choice of the representation S implies some
important differences in the corresponding numerical algorithm (see section
3.1.5). It also influences greatly the complexity of the proofs of stability and
convergence, see sections 3.1.3 and 3.1.4.

Here, we consider finite difference schemes. So for all schemes
S(v,z,u(x),u) =0, we assume the hypothesis (H15).

(H15) Let v be a fized mesh. For all (z,t) in QX R, the value of Sy 4 (u) 1=
S(v,z,t,u) does not depend on all the values of the function u but
only on the values that u takes on the neighborhood V, of = (i.e.
at points y € V. ). In other words, we can rewrite S(v,z,t,u) as

S, z,t, (u(y)) ey, )-

As we have remarked in the previous chapter, the Hamilton-Jacobi equations
are generally ill-posed and require boundary conditions. In our applications,
we impose Dirichlet boundary conditions. Also, here we consider “schemes with
Dirichlet conditions”. These schemes are defined by S(v, x, u(x),u) = 0, where
S is defined by

S(v,z,t,u) ifz € Qp,

1
t— () if z € bQy, (3-1)

S,z t,u) = {

where
Q={reQ|VyeV,, wehaveyc Q} ={z € Q |V, CQ},

and bQy = Q — Q. Since ¢ is defined only on 99, we assume in (3.1) that we
have extended it continuously to €2;. Let us note that this choice of boundary
conditions (Dirichlet conditions) can be modified. For example, the methods
presented here can be easily adapted to some Neumann conditions.

We now introduce the
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Definition 3.1 (monotonicity) The scheme S(v,z,u(zx),u) = 0 defined on
Q , is monotonous if Vv € M,VYx € Q,Vt € R and Yu,v € B(Q),

w<v = Sy,x,t,u) > S(v,x,t,v)
(that is to say: the scheme is nonincreasing with respect to u)

There exists essentially only one method for proving the convergence of the
solutions of schemes toward viscosity solutions, i.e. the one presented by Barles
and Souganidis in [9]. This method requires the monotonicity of the scheme;
this is why we design monotonous schemes in the sequel.

Remark 10. The representation of a scheme T'(v,z,u) = 0 by a scheme
of the form S(v,z,u(x),u) = 0 is not innocent. In particular, this formulation
suggests an iterative algorithm for computing a numerical approximation of the
solution of the scheme. Given u™ (the approximation of u” at step n), and a
point z of Qp/, the associated algorithm consists in solving the equation

S(v,z,t,u) =0 (3.2)

with respect to t. A solution of (3.2) is the updated value of u™ at z (see
section 3.1.5). In other words, it is u"*!(x). When this solution can be
obtained explicitely we talk about explicit schemes, when it cannot, we talk
about implicit schemes, see next section.

3.1.2 Decentered schemes for HJB equations

In the previous chapter, we have shown that the “classical” modeling of the
Shape from Shading problem leads to solving HJB equations. Let us remind
that these equations are of the form

Au(x) + sug){—f(:l:, a) - Vu(z) —l(z,a)} =0 Vz € Q. (2.18)
a€

Also throughout this chapter we will consider in particular the HJB equations.
To start, we present some schemes allowing to approximate these equations.
Thereby this allows to solve numerically the SFS equations. Despite the fact
that for SFS problems we only need the two-dimensional case, we consider the

general case.
In a first time, we design an “implicit” scheme and a “semi-implicit” scheme

on a canonical mesh. In a second time, we deal with irregular meshes.
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3.1.2.1 An “implicit” decentered scheme

We consider here a canonical mesh M defined by p = (hq, ..., Ay ). Since for the
canonical meshes, the meshes are characterized by p = (hy, ..., hx), we denote
the solution of the scheme u” instead of u”. We need the following notations:

Notation. Given a function g : B — R, we denote

g+: B — R g—-: B — R
e o L o9l@) i) >0, e o 4 Tela) ifg(e) <O,
0 otherwise; 0 otherwise;
Remark 11. The functions g4 and g_ are positive.

We want to design an approximation scheme of (2.18) by using only the
backward and forward approximations of the partial derivatives. Thus in order
to guarantee the monotonicity of the scheme, it appears natural to substitute
Oz;u(x) with (t_u(mhi_h?)) when —f;(x,a) > 0 and by (M) when
—fi(z,a) <0.

We therefore consider the scheme S with S (see equation (3.1)) defined as

S(pyz, t,u) = At +

{mewx“wzm“+2m@mf (Jh)—mm}

=1

sup

acA i—1

which can be rewritten as

S(p,x,t,u) =Xt +

N N (z,a i(z,a _
i=1 § i

acA

We note s;(z,a) the sign of f;(x,a) and obtain

N . =
S(patw) = M + supd S filw, o)t E L@ ORE) 0
acA 1 Si('l‘? a)h%

1=

= At + sup

al t —u(x + si(z, a)hie;)
acA

Z(—fi(x,a)) iz, a)h - l(x,a)}. (3.5)

i=1
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The scheme (3.3) is clearly nondecreasing with respect to ¢ and nonincreas-
ing with respect to u. Let us emphasize the fact that the scheme S with S
defined by (3.3) is monotonous. Also in section 3.1.3, we prove that this scheme
is stable under some mild conditions. Since the variable ¢ appears inside the
sup operator, the scheme is implicit (see remark 10).

3.1.2.2 A “Semi implicit” decentered scheme

A classical method to deal with the implicit scheme (3.3) consists in transform-
ing the scheme into a fixed point problem. We multiply S by a fictitious time
increment —A7 (with A7 > 0) and we add u(x) to both sides of the equation
S = 0. In other words, instead of considering the scheme defined by S(p, z,t,u),
we consider the one defined by the function

‘é(paxat’u) =t—u(z) + ATS’(p,.T,U(.%‘),U).

For the sake of simplicity, we write s; for s;(z,a) in the sequel. Thus we obtain
a new formulation of the scheme S(p,z,u(x),u) = 0 by defining

Sa(p,x,t,u) = t(1 + AAT) — u(z)

N =
+ Artsup {Z —fi(:c,a)u(x) —ulz + sihie) - l(:l:,a)} , (3.6)

_S'h'
acA i—1 illg

or, equivalently,

1

S3(p,x,t,u) =t + T Ar

a€A

Note that S (p,x,t,u) is nondecreasing with respect to ¢ and nonincreasing
with respect to u as soon as the function ¢ — —q + A7S(p,x,¢,u) is nonin-
creasing. Also, we can verify easily that the scheme associated to (3.6) and

(3.7) is monotonous iff A7 is small enought (A1 < (Zf‘il W)*l, for all
a in A and for all x such that f(x,a) # 0; if f(x,a) = 0, then no constraints
are required). In other words, this formulation of the decentered schemes re-
quires that some conditions be satisfied in order to be monotonous. Despite
this disadvantage, the formulation (3.6) or (3.7) is interesting because it yields
semi implicit algorithms whereas the formulation (3.3) provides totally implicit
algorithms. We use the expression “semi implicit” because the value of the sup

has to be evaluated at each point z, but it does not involve ¢t. Nevertheless in

N1 T,a AN Z,a -
sup {— (1 Ay 'f<h7)‘) u(e) — ar S IOy onzr) - Arl(w)} -
i1 ¢ i=1 !

(3.7)
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SF'S problems, we will see that the algorithms resulting from the formulation
(3.3) can be made explicit through the use of calculus.

Remarks 12.

R12.1 - Let us mention that the larger the “parameter” A7, the faster the
convergence. Therefore, if f(x,ag) # 0 (where ag is the optimal control of
(3.6)), we can choose an optimal Ar:

N —1
Aoy = (Z |fi(i;3l,ia0)|> ,

i=1
where qg is the optimal control of (3.6).
Let us remark that ap and the optimal A7,,; depend on x, but that ag does
not depend on Ar.
Thus, for all  such that f(x,ag) # 0, if we choose AT = A7y, the scheme
(3.6) becomes:

G A
SOPt Xy T, = (1+ t
2 (p,x,t,u) ( Z;-V:ﬂfj(xa%)vhj)
‘fl Z, ag |/h N 1
- + sihie;) — Iz, ag),
; S el ) T S i )

where qg is the optimal control of (3.6).
For z such that f(x,a9) =0,

u(@) A7
14+ AT 14 MAT

Sy(p,x,t,u) =t — l(x,ag)-

Therefore, for such an z, if A # 0 then the optimal (semi-implicit) scheme
is 1

S’gpt(pv z,t, u) =t- Xl(xa CL())-
If A =0 and f(x,a9) = 0, there no exist optimal A7r. In this case the

scheme is

Sa(p, x,t,u) =t —u(z) — ATl(z, ag).
R12.2 - Let us emphasize that the schemes defined with (3.6) have exactly
the same solutions as the schemes defined with (3.3).
3.1.2.3 Decentered schemes for irregular meshes

In this section, we extend the implicit decentered scheme (designed in section
3.1.2.1) to irregular meshes. Of course the extension to the semi-implicit scheme
follows trivially.
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First, let us recall that for a function u € C*(2, R) we have:
Yo e RN, V€ Q, Vu(z)- v =0d,u(x),
where dyu(x) is the directional derivative of u in the direction v:

0,u(z) = lim u(z + h?;l) —u(@)

So, if v = (v1,...,vx) is a vectorial basis of RV, we have:

toy Oy, u(x)
D | Vulz) = E
toy Oy u(x)
ty,
If we denote By, = : , we have:
Loy
Oy, u(x)
Vu(z) = B," :
Aoy u()

Thus, if we know the values of w at the points x, z + v1, ..., x + vn, it is natural
to approximate Vu(x) by:

u(z +v1) — u(x)
Vu(z) = B! :

A%

w(x + o) — u(z)

So, if we replace u(z) by ¢, it is natural to approximate —f(z,a) - Vu — l(x, a)
by
t —u(z +v1)

[tB;lf(x,a)] . : — (=, a).
t —u(z +vy)

Second, for a fixed basis of RY v = (vy,...,vx), let us denote
Sy = {)\11]1 + ...+ ANUN; ()\1, cesy )\N) € (R+)N}.
We remark that?

[Vk =1,..., N, [f’B;lf(;v,a)]k >0 <= [f(z,a) €S-

*Let us remind that if V € RY and k € [1, ..., N] we denote [V]i, the k** componant of V.

In other words, [V]r =V - ek, where e, is the k" vector of the canonical basis.
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In other words, f(z,a) € Sy iff all the componants of !B, ! f(x,a) are nonneg-
ative.
Proof. Vi=1,...,N, let f,, € R be such that

N
f(.’L',a) = Zf’uivi-
1=1
Let k € [1, ...,N], we have:
N
[tB;lf(xa a)]k = Z fvi [tB;lvi]k .
=1

Since Vi =1,...,N !Bylv; = e;, it follows:

[tB;lf(a:, a)] x = for-

Now, let us complete the hypotheses on the mesh v.
For all z € Q, let V, be the finite set of vectors {z7;y € V,}. We assume here
that for all z € €, there exists a finite family (v;)i=1._, of bases v; = (v}, ...,v%)
where Vi € [1...¢] and Vj € [1...N], v;- € V, and such that

U Sv.=RY
1=1...q

and . 5
Sy; N Sv].: 0, Vi#j.

Roughly speaking, the family of the sets Sy, defines a partition of RY. Also,
we can define:
Ai={a€ A| f(z,a) € Sy, }.

A= U A;.

i=1...q

Of course, we have:

These notations in hand, we can easily design a monotonous approximation

scheme for equation (2.18). For that, we can approximate

sup{—f(z,a) - Vu(z) — l(z,a)}
a€A

t —u(z +v})
max sup [tB;ilf(x, a)] - : —l(x,a) p . (3.8)

i=1..q qe A; .
‘ t—u(z+vly)
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In other words, we approximate Vu by one of the vectors

u(z +vt) — u(z)
B! : , i€ [l.g.

Vi

u(z + vy) — u(x)

The choice of the relevant basis v; (the good simplex) depends on the dynamic
of the optimal control. In other words, this scheme is an “upwind scheme”.
To conclude, let us remark that for all ¢ in [1...¢], the supremum of (3.8) is
restricted to the controls a in A;. Therefore

f(z,a) € Sy,

and so
Vk=1,..,N, ['By!f(z,a)], >0

The monotonicity of the scheme follows.

3.1.3 Stability of the approximation schemes

Definition 3.2 (stability) The scheme T(v,z,u) = 0 defined on Q, is stable
if for all v € M, it has a solution u” € B(Q).

Remark 13. The stability of a scheme requires the existence of a solution

but not its uniqueness.

Definition 3.3 (uniform stability) The scheme T(v,z,u) = 0 defined on €,
s uniformly stable if it is stable and if its solutions u” are bounded independently
of v.

Remark 14. Note that a scheme (3.6) is (uniformly) stable iff the
associated scheme (3.3) is (uniformly) stable.

There exists only two main methods for proving the stability of a scheme,
they use

1. the monotonicity,
2. fixed point theorems.

Here, we use the monotonicity.
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3.1.3.1 Stability of monotonous schemes

We need the definition of a subsolution of a scheme.

Definition 3.4 (subsolution of an approximation scheme)
For a fited mesh v € M, v: Q — R is a subsolution of the scheme
S(v,z,u(x),u) =0 if Vo € Q, S(v,z,v(x),v) <O0.

The stability theorem 3.1 is based on the monotonicity.

Theorem 3.1 (Stability of monotonous schemes) Let us consider a finite
difference scheme

S(v,z,u(zx),u) =0, V€ Q. (3.9)
We suppose that the scheme (3.9) verifies (H15) and the following hypothe-

§es’

(H16) Vv € M,z € Q,u € B(Q), the function Syzy:t — SV, x,t,u) is
continuous, nondecreasing and lim;— oSy zu(t) > 0.

(H17) The scheme is monotonous (see definition 3.1).

(H18) Vv € M, x € Q, the function 5‘,,@ s continuous with respect to
t, (u(y))yevm)) (we denote 5”,,@(., ) =S8, x,.,.) where S is defined
in the hypothesis (H15)).

(H19) Vv e M, there exists a subsolution of the scheme (3.9).

(H20) Yv € M, there exists M” € R such that for all subsolutions v¥ of
(3.9), Vz € Q, v*(z) < M".

Then the scheme (3.9) is stable.

Proof of Theorem 3.1. The idea of the proof is the following:
v being fixed, we construct a nondecreasing sequence of functions u, such that
for all = of Q,

S(v,z,un(x),un) <0.

In other words, we construct a nondecreasing sequence of subsolutions of
the scheme (3.9). By the hypothesis (H20), this sequence is upper bounded
therefore convergent. We note u” its limit. For all z in Q, the sequence u,
is constructed such that S(v,z,u,(z),u,—1) is zero. Thus by an argument of
continuity, we prove that the limit 4" of the sequence u, is a solution of the
scheme (3.9).

Let us now fix v € M.
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1. Recursive construction of the sequence of functions (uy)nen:

(a) Let ug be a subsolution of the scheme (3.9) (see hypothesis (H19)).

(b) Let us suppose that we have constructed the first n elements

(uk)g—0..n—1 of our sequence such that:
Vk € [0.n—2], wugs1 > ug,
and Vk € [0.n — 1] ,
Ve e Q, S(p,z,ur(x),ur) <0.

o We now construct uy:
Va € Q, un(x) is chosen in such a way that

S, z,un(x), up—1) = 0. (3.10)

Note that this is always possible, by hypothesis (H16). In effect,
we know that
S(Va z, un—l(w)a un—l) S Oa

and
lim S(v,z,t,up 1) > 0.

t—+o0
So the “intermediate values” theorem applied to the continuous
function t — S(v, z,t,u,—1) allows us to conclude.
o By (H16), the function t — S(v,x,t, u,—_1) is nondecreasing. Then
Vz € Q, up(w) > up_1(v). Therefore

Up > Up—q on K.

o Finally, u, is a subsolution of the scheme (3.9):
By the monotonicity of the scheme (hypothesis (H17)), we have
S(v,x,up(x),un) < SV,z,un(x),un—1). The property (3.10)
allows to conlude that

Ve e Q, S,z u,(z),u,) <0.

Thus we have constructed a nondecreasing sequence (uy)n>o of subsolu-
tions of the scheme (3.9).

2. Convergence and properties of the limit:
The functions u, are subsolutions of the scheme; then the hypothesis
(H20) implies that they are upper bounded. Being nondecreasing and
upper bounded, the sequence (u,)n>0 converges toward a limit. We note
this limit u”.
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Let us fix x in Q. Obviously, Vy € V,, un(y) — u”(y). Since V, is

n—-4oo

finite, then we have clearly by hypothesis (H18):

liril S, z,un(x),un—1) = S(v,z,u” (), u"”).

Moreover, for all n > 0, we have S(v,x,un(z),u,—1) = 0. Therefore,
S(v,z,u”(x),u”) = 0. u” is a solution of the scheme (3.9). Also, we have
clearly v¥ < M"Y.

Remarks 15.
R15.1 - By replacing the hypothesis (H20) by (H21)

(H21) There exists M € R such that for all v € M, all subsolutions of
(3.9) are upper bounded by M,

we have the uniform stability of the scheme.

R15.2 - Jacobi and Gauss-Seidel methods:
In the proof of theorem 3.1, we construct a sequence (, ),>o of subsolutions
by using an wupdate at all points x of Q: i.e., Vo € Q, u,(x) is chosen in
such a way that S(v,z,u,(x),un—1) = 0. As an alternative, we can update

the sequence only on part of Q.

For simplicity we assume here that v is a canonical mesh and that Q is a
bounded set. Of course, this remark can be easily extended to the irregular
meshes. Let us pave the set Q with hy X --- x hy boxes (or subsets thereof),
see figure 3.1. We order the boxes lexicographically as P!, ..., P4; since Q

S

_pt[P* P?

P'i

¥
[}

ﬁ\
o)

h1

T~ |
Figure 3.1: Partition of Q in dimension 2.

is bounded this is possible with a finite number of boxes. Also, we can
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impose that the subsets P!,..., P4 form a partition of Q (the partition is
non unique). Now, let us define the infinite periodic sequence (P, )nen by
P, = P!, where i = n [q].

For updating the sequel (u,)n>0, We can use the subset P,:

V€ Q— P, let uy(x) = up_1(2)
Vx € Py, up () is chosen in such a way that S(v, z, u,(x),u,—1) = 0.

As above, we prove that the sequence (uy,)n>0 is a nondecreasing sequence of
subsolutions of the scheme (3.9). Let us fix x € Q and denote n, the integer
such that n, € [l..¢] and = € P™. For all n in N such that n = n, (¢),
we have S(p,z,u,(x),u,—1) = 0. Thus, as above, by (H18), the sequence
(un)n>0 converges toward a solution of the considered scheme.

From a theoretical point of view we gain nothing. Nevertheless, from an
algorithmic point of view, this remark is very interesting. In effect, numer-
ically, for approximating the solution of the scheme (3.9), we compute the
sequence u,. More precisely, for a fixed v, we consider a mesh Z,

Z,:=Qn {xk = Z kihie;; k € ZN}

1=1..N

and we approximate u”(zx) by u,(xk). Thus, the sequence u, designed in
the proof of theorem 3.1 yields Jacobi-type algorithms. The sequence wu,,
constructed in this remark yields Gauss-Seidel-type algorithms. In both
cases, we prove the convergence of the algorithms. Finally, let us em-
phasize that if, mathematically, the “Jacobi method” is “better” than the
“Gauss-Seidel method” in the sense that it is more elegant, nevertheless
numerically, the opposite is true. In effect, numerically, we call “iteration”,
an update of all the pixels. An iteration of the “numerical Jacobi method”
allows to compute the approximations {un+1(zk)}x from the approxima-
tions {un(zk)}k. For the “numerical Gauss-Seidel method”, an iteration
allows to compute the approximations {u, z,|(zx)}« from the approxima-
tions {un(zk)}r (where |Z,| is the cardinal number of the set Z,). Also,
unlike the “numerical Gauss-Seidel method”, during one iteration of the
“numerical Jacobi method”, the update of the approximation of u at the
pixel x; does not use the update of the approximation of u at the previous
pixels (of the same iteration). Therefore, one iteration of the “numerical
Gauss-Seidel method” is more effective than one iteration of the “numerical
Jacobi method”.

R15.3 - In theorem 3.1, we can replace hypotheses (H16),(H19) and (H20)
by hypotheses (H16"), (H19’) and (H20’)
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(H16’) Vv € M,z € Q,u € B(Q), the function S, 5, : t — S(v,z,t,u) is

continuous, nondecreasing and {im;—, o0 Sy z,u(t) < 0.

(H19’) Vv € M, there exists a supersolution of the scheme (3.9)

(v is a supersolution of the scheme S(v,z,u(z),u) = 0 if
Vz € Q, S(v,z,v(x),v) > 0).

(H20’) Yv € M, there exists M" € R such that for all supersolutions v”

of (3.9), Vx € Q, v¥(z) > M".

In this case, the sequence u,, we design is a nonincreasing sequence of su-

persolutions of the scheme (3.9).

The interest of this remark appears in practice. In effect it allows to prove

the convergence of the algorithms with initial surfaces Uy which are super-

solutions. Also, the number of iterations required to obtain the convergence

is much smaller when Uj is a supersolution than when Uy is a subsolution;

see section 3.2.2.

R15.4 - Let us emphasize that theorem 3.1 does not impose regularity hy-

potheses with respect to the space variable x.

3.1.3.2 Stability of the implicit schemes (3.3) associated with HJB

equations

In this section, we assume that the mesh v is canonical. Also, since in this case

v is characterized by p, we identify the both notations. Let us note that the

results presented here can be easily generalized to irregular meshes. We prove

the stability of the “scheme with Dirichlet conditions”
S(p,z, u(z),u) =0

with S defined by

S(p,z,t,u) ifx €,

S t,u) =
(ot w) { t— o(x) if z € Q.

and S defined by (see section 3.1.2)

S(pyz t,u) = M+

sup

3 (filw,a))_ " +3 (filz,a), n

i=1 =1

N t—u(z — hiel) t—u(z+hie;)
acA

(3.11)

—l(:v,a)},

(3.12)



Monotonous approximation schemes; application to the “classical”
106 Shape from Shading

which can be rewritten as S(p, z,t,u) = M\t +

acA P hi h;

A stability result based on subsolutions

Proposition 3.1 Consider the scheme S described in (3.11) with S defined by
(3.12). Suppose that for all x in Q, the functions f(x,.) : a — f(zx,a) and
l(z,.) : a — l(z,a) verify the hypotheses (H6’), (H7’) and (H22) (descrided
below). Suppose also that Vp > 0, there exists a subsolution of the scheme S
and that there exists MP € R such that for all subsolutions v* of S, Vx € Q,
vP(x) < MP. Then the scheme S is stable.

Also, if MP = M € R does not depend on p then the stability is uniform.

(H6’) A is a compact topological space;

(H?T) f:A— RN is continuous;
l: A— R is continuous and bounded.

(H22) For all z € Q, we have:
there exists ay € A such that f(x,a,) # 0.

Proof of proposition 3.1. See section 3.1.3.3. O

Remarks 16.

R16.1 - Let us remind the reader that the (uniform) stability of an implicit
decentered scheme given by (3.11) implies the (uniform) stability of the
associated semi implicit scheme (3.6).

R16.2 - The difficulty for proving the stability of an implicit decentered
scheme given by (3.11) lies in the proof of the existence of subsolutions
and in the proof that the subsolutions are bounded. In the next subsec-
tion, we present some results for dealing with the HJB equation with null
interest rate (A = 0).

R16.3 - Proposition 3.1 holds for A # 0 and A = 0.

N N (x,a i(z,a R
i=1 t

(3.13)
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R16.4 - The hypotheses (H6’) and (H7’) do not impose regularity of f and
[ with respect to the space variable x. Therefore, proposition 3.1 does not
require the regularity with respect to x, to be applied.

The difficulty in applying proposition 3.1 lies in the proof of the existence of
subsolutions. In the case A = 0 which is true for the SF'S problems, things turn
out to be simpler, as shown next.

Particular case of the HIB equations with null interest rate (A = 0)

In this section we consider an HJB equation with null interest rate.
Concerning the existence of the subsolutions of the decentered schemes for
Hamiltonians H with nonnegative running cost (or equivalently such that
H(z,0) <0), we have the following result:

Proposition 3.2 Let H be an HIB Hamiltonian with null interest rate (A =0),
defined on Q x RN . Let ¢ be a bounded function defined on a neighbourhood of
0Q. If H has a nonnegative running cost | then all constant functions u on Q

such that v < mingp(x), are subsolutions of the associated decentered scheme
S defined by (3.11).

Proof. See section 3.1.3.3. O

In order to apply proposition 3.1, we also need to prove that all the subsolutions
of the scheme S are upper bounded.

Notation. For K > 0, we denote by Mg the set of canonical meshes p such
that

max h; < K min h;.
i=1..N i=1.N

In particular, if we choose p such that h; = ... = hy, then p € M;.

Proposition 3.3 Consider an implicit decentered scheme S defined by (3.11)
with A = 0. Assume that Q is a bounded open subset of RV .

We suppose that for all x in Q, there exists a control a, € A such that for all
i = 1..N, the sign of fi(x,a,) does not depend on x. For i =1..N, we denote
by s; the sign of fi(x,a;). Also, let us suppose that there exists € > 0 and j in
[1..N] such thatVz € Q, s;fi(z,a;) > e.

If 1 and ¢ are upper bounded (on Q x A and on a neighbourhood of 9S)) then
all the subsolutions of S are upper bounded.



Monotonous approximation schemes; application to the “classical”
108 Shape from Shading

Also, for all K > 0, there exists B > 0 such that Vp € Mg, Vv, subsolution of
S, we have v, < Bg.

Proof. See section 3.1.3.3. O

Remark 17. Let us emphasize that all the results described in this section
(section 3.1.3) do not require regularity of the Hamiltonian with respect to the
space variable x.

3.1.3.3 Proofs of propositions 3.1, 3.2 and 3.3

The proof of proposition 3.1 requires the following notations and lemmas:

Notation. Let B be a set. For a function

g: B — RN
z = (q1(2), ., 9i(2), e gn (7))

we define
g+: B — RN and g: B — RY
r = (91+(x)a--'agN+($)) r = (91_(33);--,QN_($)) ‘

Lemma 3.1 Let f: A — RN and 1: A — R be such that the hypotheses (H6’)
and (H7’) are verified. Then the function

H(p) =sup{—f(a)-p—1(a)}

a€A

18 continuous.

Proof. See lemma II1.2.11 of Bardi and Capuzzo-Dolcetta ’s book [5]. O
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Lemma 3.2 Let f: A — RN and [: A — R be such that the hypotheses (H6’)
and (H?’) are verified. Let

and o
H: RVxRV — R

(p7 q) = SUDPgea {-7(&) : ( P ) - l(a’)}
q

Then H is continuous.

Proof.  Since the hypotheses (H6’) and (H7’) hold for f, they also hold for
£, and lemma 3.1 applies to H. O

Lemma 3.3 Let S be defined by (3.11) with S defined by (3.12). For all
p>0, 2€Q and u:Q — R, the function Spau:R—=R:t— S(p,x,t,u)
is nondecreasing. If the hypothesis (H22) holds, then lim;_. o Spau(t) > 0.
Moreover if for all z in Q, the functions f(x,.) : a — f(z,a) and I(z,.) : a —
l(z,a) verify the hypotheses (H6’) and (HT’), then the functions S, . and S’p,z
are continuous.

Proof. For z € bQ2,, the result is obvious.

Let us fix  in ©,. We have S, ; , = ~p,m,u.

Since X and 31 ‘f(hﬂ are positive, the formulation (3.13) implies that S,
is nondecreasing. Because of hypothesis (H22) there exists a, € A such that
f(x,a,) # 0, therefore Zfil %ﬁ“”” > 0. By using the formulation (3.13), we
have

Y\ file, )]
Spau(t) > ()\ +y %) t + F(z,a,)
i=1 ?

N i\(Tyay))_ N i\T, Qg —
F(zr,a;) = — Z (Mu(x —hie;) + (f(hi))—l_u(x + h; e¢)> —l(z,ay).
i=1 (3 (2

Therefore lim;_, 1 o, gp,z,u(t) = +o00.
By lemma 3.2, H is continuous. Let us fix p > 0 and u : Q@ — R. The functions
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p and ¢
p: R — RN qg: R — RN
t—u(z+hier) t—u(z—hie7)
h1 h1
t = : t = :
t—u(z+hyen) t—u(z—hyen)
hN hN

are continuous. Since S,,,(t) = M + H(z,p(t),q(t)), the function S, , is
a composition of continuous functions, hence continuous. Therefore S, , is
continuous.

In the same way, we prove the continuity of §p7x. O

Proof of Proposition 3.1. We apply theorem 3.1.

Clearly the hypothesis (H15) is true (V, = {z £ h;e;, i = 1.N}). The
hypotheses (H16) and (H18) are true by lemma 3.3. Clearly (H17) is true.
Remark r15.1 allows us to deal with the uniform stability case. 0

Proof of proposition 3.2. If u is a constant function, we have

o V€,
S(p,z,u(z),u) = S(p,z,u,u)
= supgec4{—l(z,a)}
= H(z,0)
<0.
o VY €HQ,,

S(p,x,u(z),u) =u—@(x) <O0.

Proof of proposition 3.3. Let v be a subsolution of the scheme S. By
definition, for all z € €,

S(p,z,v(x),v) <0. (3.14)
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For all z in b2, (3.14) implies v(x) < ¢(z). Thus for all z in b2, v(x) < maxp.
For all z in Q,, (3.14) implies

sup{z sign(fi(z,a))fi(x,a) v(x) — v(z + sign(fi(z, a))hi &) —l(x,a)} <0.

acA hz'

In particular,

N

> st M IEINE) g0, <o,
i=1 !

Let us note w;(x) the quantity %ﬁ’am) We have

N

sz (z) < Il(z,a,) +Z wi(x) v(z + shie; ).

=1
Therefore, by considering L, an upper bound of I, we have:

v(z) < L 3 wi(2)

B E;CVZI wi(z) i=1 Zgzl w(z)

Since Zszl wy(r) > wj(z) > +, then
J

v(x + s;hi€;);

x+ s;hi€;).
+sz L )

We notice that YN, % v(x + s;hi€;) is a barycentric combination of

the {v(z + s;h;€;)}i=1..n, therefore
() < Zh; + max v(z + s:hi )
v(z ~hy + max v(z + sihie;).

Since Q is bounded and since Vi = 1..N, s; does not depend on x, then by

recursivity
N
L X
< (=h;
v(z) < (7 J)(;l By T e ¢(v)
where ) is a subset of the box [—7, T]N, and therefore v is bounded above.

We continue with I
v(z) < (=h;)NX

+ max @,
min h;

€
£ NX max; h;
€

v(z) <

If p € Mg (we can suppose that K =

; + max ¢,
min; h;

maxihi ) we have
LKNX

g

v(x) <

+ max .
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Let us denote B := % + max .
We have v < Bg. O

3.1.4 Convergence of the solutions of the approximation
schemes toward the viscosity solutions

The main method for proving the convergence of the solutions of an approxi-
mation scheme toward the viscosity solution of an Hamilton-Jacobi equation is
due to Barles and Souganidis [9] and is based on the notion of weak limits.

In this section, we consider a canonical mesh. As in the previous sections,
we denote it p. In the sequel, we suppose that p € R. In other words we suppose
that p=hy = ... = hy.

3.1.4.1 Consistency of a scheme (with an equation) and convergence

of its solutions towards discontinuous viscosity solutions

We now give the definition of the consistency of an approximation scheme ac-
cording to Barles and Souganidis [9].

Remember that in the framework of discontinuous viscosity solutions, the PDE
with Dirichlet boundary conditions must be rewritten as:

F(z,u(z),Vu(z)) =0, Ve (3.15)
where F is defined on Q x R x RV by

H(z,u,p) for x in Q, (3.16)

F(z,u,p) = { u(z) —p(x) for x on Q.

Definition 3.5 (consistency) The scheme S(p,z,u(x),u) = 0 defined on Q,
is consistent with equation (3.15) if :
Vz € Q and V¢ € C°(Q)

S(p,y,9(y) + & 0+§)

lim sup < F¥(z, ¢(z), Vo(z)),
p—0, y—z, €0 p
and
p—0, y—x, {0 p

F* and F, are defined on page 63.
Let us recall the definitions of the functions w and u:
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Definition 3.6 Vz € Q,

u(x) = lim sup u’(y)
p—0,
y—xz,y in Q

u(z) = lim inf u(y)
p—0,
y—z,y in Q

With these definitions in hand we can now formulate the following theorem:

Theorem 3.2 If an approzimation scheme S is monotonous, uniformly sta-
ble and consistent with equation (3.15) then u and w are respectively viscosity
subsolution and supersolution of this equation.

Proof. See theorem 2.1 of [9]. O

Thus, as soon as we have a strong uniqueness property (definition 2.7
on page 79), a proof of the convergence follows:

Theorem 3.3 (convergence toward the viscosity solution) Let S be a
monotonous, uniformly stable and consistent (with equation (3.15)) approzi-
mation scheme. Let us suppose that the strong uniqueness property is verified
on a subset D of Q. Then the solutions uP of the scheme S converge on D
toward the viscosity solution of (8.15) when p — 0.

Proof. By theorem 3.2, the functions @ and u are respectively viscosity sub-
solution and supersolution of the PDE (3.15). The strong uniqueness property
involves w < w on D. By definition, we have u < %, and hence:

u=wu (onD).

For all € D, we now know that the limit lim, .o u”(z) exists and is equal to
u(x) := u(x) (which is also equal to u(x)). Finally, let v be a viscosity solution
of (3.15). By definition 2.3, v* and v, is a subsolution and a supersolution,
respectively; so the strong uniqueness property involves:

Ve € D, wu(x) <wvi(x) <v*(z) < ulx)
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Therefore u = v, = v* = v on D and lim,_,o u’(z) = v(z). O

Remark 18. Note that despite the fact that we do not have uniqueness of
the viscosity solution on Q, we have it within D. Hence all viscosity solutions
coincide on D.

Another important interpretation of the result presented in theorem 3.3 is
the following:

Theorem 3.4 (existence result of a discontinuous viscosity solution)
If the hypotheses of theorem 3.3 are verified then equation (3.15) has a discon-
tinuous viscosity solution.

In other words, the existence of a solution of a HJ PDE can be obtained
directly by designing a monotonous scheme and by using the strong uniqueness
result.

3.1.4.2 Application to the decentered schemes for the HJB equations

Theorem 3.3 applies to the implicit decentered schemes S (presented in section
3.1.2)

S(p,x,t,u) if x€Q,,

3.17
t — p(x) if z € bQ2, (3:17)

S(paxatau) = {

where S is defined by

S(psz,t,u) = At +

sup {Z (fil,a))_ LM ZPE) 4 SN (f(5,a)), LT E2E) z(x,a>} .

acA i—1 p i=1 p

It also applies to HIB equations, Vo € Q, F(z,u(z), Vu(z)) = 0, where F is
defined by

A+ sup,ea{—f(z,a)-p—I(z,a)} ifzxeQ,

3.18
u — p(x) if x € 0Q. (3-18)

F(z,u,p) = {

In effect, we have following proposition:

Proposition 3.4 (consistency of the decentered schemes with HJB

equations)
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Let f : QO x A — RN and 1 : Qx A — R be two functions such that the
hypotheses (H6)-(H8) are verified. Then the scheme S(p,x,uP(x),u?) = 0 with

S(p7x7 t7 u) Z'fa;‘ E Qp’
t — p(x) if © € bR

S(p,x,t,u) = {

S, defined by (3.3):

S(pszt,u) = At +
N — N —
{ t—u(x —hie;) t—u(x+ hie)) —l(:v,a)},

sup
acA

Z(fl(waa))— h; +Z(fl(x7 a))+ h;

=1 =1

18 consistent with the HJB equation
Vr € Q, F(xz,u(x), Vu(x)) =0, (3.19)

where F is defined by

F(z,u,p) = AU+ Supge a{—f(7,a) - p—l(x,a)} ifz €,
T w- el if ¥ € 89

Proof. See section 3.1.4.3. O

We can now state the main result of this section.

Proposition 3.5 (convergence for the decentered schemes and

the HJB equations)
Consider the decentered scheme S defined by (3.17) and the associated HJB
equation (3.18). Suppose that f and | verify the hypotheses (H6)-(HS).
Suppose that there exist subsolutions of the scheme S and M € R such that
Vp > 0, Yo? subsolution of S, Yz € Q, vP(x) < M. Suppose also that the strong
uniqueness property is verified on a subset D of .
Then the solutions u” of the scheme S converge on D toward the unique re-
striction to D of the viscosity solutions of the HJB equation when p vanishes
to zero.

Proof. The monotonicity of the scheme S is clear. The uniform stability is
given by proposition 3.1. The consistency of S with the HJB equation is given
by proposition 3.4. Theorem 3.3 allows to conclude. O
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Remark 19. Since the solutions of the semi-implicit scheme (3.6) are
the same as the solutions of the implicit scheme (3.11), the conclusion of

proposition 3.5 applies also to the semi-implicit scheme.

3.1.4.3 Proof of proposition 3.4

The proof of proposition 3.4 needs the following lemmas:

Lemma 3.4 Let f : Qx A —RY and1:Q x A — R be such that the hypothe-
ses (H6)-(H8) are verified. Then the function
H(z,p) = Sgg{—f(% a)-p—I(z,a)}

18 continuous.

Proof. See lemma II1.2.11 of Bardi and Capuzzo-Dolcetta ’s book [5]. O

Lemma 3.5 Let f: Qx A —RY and1:Q x A — R be such that the hypothe-
ses (H6)-(H8) are verified. Let

|
)
X
b
!
%
=

and

H: OxRV xRV — R

(z,p,q) = SUPgea {—7(% a)- ( Z ) - l(w,a)}

Then H is continuous.

Proof. See proof of lemma 3.2. O

Proof of proposition 3.4. Instead of considering the scheme

S(p,x,up(x),up) =0 in ﬁa
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we consider the scheme
S'(p, z,uf (x),u”) =0 in Q,

such that

Sl(p,x,t, u) = pS(p7 z,t, U)

Monotonicity, stability and solutions are exactly the same for both schemes.
We prove that S’ is consistent with equation (3.19), i.e.:
Vz € Q et Vo € C°(Q)

i) imsup, .o 4z, e—0 5 (p,y,qﬁ(i)—kf,qﬂ—f) < F*(z, ¢(x), Vo(x)),

i) iminf, o,y ¢0 S (p,y,¢(&;)+§,¢+€) > F,(z,8(z), Vé(z)).
We ounly prove i), the proof of ii) being identical. We consider two cases.

1. x € Q:
For p sufficiently small and y sufficiently close to x, we have y € 2,, and

S'(p,y, o(y) +&, 0 +§)

=S(p,y,0(y) + & ¢+ )

P
= Mo(y) +§&) +
N — N _ €—>
sup {Z (Filyoa)) SWZOWZPE) | 5= gy, P =0T pE) z(y,a>} -
acA i—1 P i—1 1%

Since ¢ € G2, we have

lim ¢(y) B ¢(y B Pa)) — 8? (.73),
p—0, y—z *

=
p—0, y—z p '

and the function K

K+ () o (y <¢<y> - ¢/§y - pe*i))i:m’ (¢<y> - ¢/§y + p?ﬁ)i:m)

is continuous on M x  and

lim  K(p,y) = (a, (86_{ (x))izl..N’ (_3Z¢(x))i:1..N) .

p—0, y—=z
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Since f and [ verify the hypotheses (H6)-(H8), lemma 3.5 involves:

(p,y,d(y) +&,0+&)

lim sup
p—0, y—z, £-0

S
N N
= ) + sup {Z (fi(z,a))_ 0z d(z) + Z (fi(w,a)), (—0zd(x)) — l(z, a)}

= H(z,¢(x), Vo(x))

where H(z,u,p) = M+ supgca{—f(z,a)-p —l(z,a)}.

Since z is in Q, for all y sufficiently close to x, F(y,u,p) = H(y,u,p).
By continuity of H (by lemma 3.4), we have F*(z,u,p) = F(x,u,p) =
H(x,u,p). Thus

SI
p—0, y—z, £E—0 P

2. x € o
In the same way, by continuity of the involved functions, we have:

limsup  S(p,y,d(y) + & 0(y) + &)

p—0, y—z, £€—0
= max (H(z, ¢(z), Vo(x)), p(z) — p(x))
= F*(z, ¢(x), Vo(x)).

We deal the same way with point ii), comparing the inferior limit and F.
Thus, the scheme S’ is consistent with the equation (3.19); This ends the proof
of proposition 3.4. O

3.1.5 Numerical algorithm for monotonous schemes of the form

S, z,u(z),u) =0

In section 3.1.1, we have described the monotonous schemes of the form
S(v,x,u(x),u) = 0. In section 3.1.2, theorem 3.1 provides sufficient conditions
ensuring the stability of such schemes. Later, theorem 3.3 establishes that the
strong uniqueness property involves the convergence of the solutions u” toward
the unique viscosity solution of the associated equation (section 3.1.4). For a

fixed continuous mesh v € M, we are now going to describe an algorithm that
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computes an approximation of v¥, on a finite discret mesh X compatible with
v (see below). We also prove the convergence of our algorithm. It is important
to keep in mind that this algorithm converges toward u” but not toward the
viscosity solution.

Let us fix v € M.

Definition 3.7 We say that a set X C Q is a “finite discret mesh compatible
with v” if X is finite and if Ve € X,V, C X.

Example : Let us consider a canonical mesh v characterized by
k1hy

p = (h1,....,hy). Let us denote xp = : for £ in ZV. Now, let
kEnhn

us denote X = {zp;k € ZV} N Q. If Q is bounded, then X is a finite mesh
compatible with the canonical mesh v.

The following algorithm computes for all x € X' a sequence of approxima-
tions U of u”(x) (let us emphasize that X is a finite set):

Algorithm 3.1 1. Initialisation (n =0):
Ve e X, U = ug(x),
where ug s a subsolution of the considered scheme.

2. Choice of a point x in the discret mesh X and modification (step n+1)
of UY:  We choose

Ut = sup {V = (Vy)yex such that Vy # x, Vy,=Uy and S(p,z,Vy,V) =0}
In other words, we choose UT! such that

Ut =Up i y#e
Urtl =max {t | S(p,z,t,U") =0 }.

3. Choose the next pizel x in such a way that all points of the discret mesh
X are regularly visited and go back to 2.

Definition 3.8 The algorithm 3.1 is well-defined if for all steps, the set of Vs
defined at step (2) of the algorithm, is not empty and bounded; in other words,

iof for all steps we can compute the next approximation.

We have the following theorem:
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Theorem 3.5 If the hypotheses of theorem 3.1 are satisfied, algorithm 3.1 is
well-defined and the constructed sequence U™ is increasing and converges when
n — +o0o towards the solution u” of the considered scheme.

Proof. The elements of the sequence U™ are the restrictions to X of the
functions u,, introduced in the proof of the remark r15.2 (page 103). O
Remarks 20.

R20.1 - The algorithm we propose here is a Gauss-Seidel algorithm. The
associated Jacobi algorithm also converges (see the proof of theorem 3.1),
nevertheless it is less effective.

R20.2 - Let us emphasize the fact that in practice, the limit does not depend
on the particular path used to traverse the pixels. Nevertheless, the conver-
gence velocity strongly depends on this choice. For example, the strategy
which consists in following back and forth the path indicated in figure 3.2
is the most effective one we have tested so far®.

R20.3 - If hypotheses (H16’), (H19’) and (H20’) described in the remark
R15.3 (page 104) are verified then the conclusion of theorem 3.5 holds even
if the initial function ug (used at step 1 of algorithm 3.1) is a supersolution.

R20.4 - Since the theorem 3.1 does not impose regularity hypotheses with
respect to the space variable x, therefore such hypotheses are also not
required for ensuring the convergence of the computed solutions toward
the solutions of the schemes; see remark r15.4 at page 105.

r
r
t

*
*

AYAVYAY

Figure 3.2: Most effective path we have tested.

3Path described by Dupuis and Oliensis in [47].
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3.2 Application to the “classical” Shape from Shad-
ing problem

As in sections 3.1.3.2 and 3.1.4, for simplicity we assume that the mesh is
canonical and we identify v and p.

3.2.1 Decentered schemes for the “classical” SFS problem

In the previous section, we have described schemes allowing to approximate the
HJB equations. In sections 3.1.3 and 3.1.4, we proved theorems and propositions
which ensure the stability and the convergence (toward the viscosity solution)
of these schemes.
In this section, we show that these results apply to the “classical” Shape from
Shading problem.

3.2.1.1 Stability of the Decentered schemes for the “classical” SFS

problem

In sections 2.1 and 2.2, we show that the classical modelings of the SF'S problem
lead to solving PDEs and that the associated Hamiltonians are special cases of
a “generic” Hamiltonian H,. In section 2.2.3 we proved that the “generic”
Hamiltonian H, is a HJB Hamiltonian. Therefore the implicit (and semi im-
plicit) schemes we described in section 3.1.2 allow to approximate SFS PDEs.
Following the notations introduced in Definition 2.4 (page 64), we have A = 0,
N =2, and Q is bounded.

By using proposition 3.1 stated on page 106, we can prove the stability of
the decentered schemes with SF'S Hamiltonians.

o First, it is easy to verify that the functions fy(x,.) and ly(z, .) associated with
the generic Hamiltonian H, (see at the page 68) verify the hypotheses
(H6’) and (H7’). Also, x being fixed, we have for the generic Hamiltonian
H,,

Va€ A, fo(x,a) =0<= w,=0and £, =0

(since fy(x,0) = 0 involves* w, = 0; we conclude by using the definition
of Dil,, equation (2.26) on page 68, the fact that u, # 0 and v, # 0).

Therefore the hypothesis (H22) is true iff for all z in Q, k; # 0 or wy # 0.
Also, we have

o For H;’{/%L and Hj’ﬁg, we have w, = I, therefore, if 1 # 0 then the

hypothesis (H22) holds (I(z) can be null). In the case where 1 = 0,
the hypothesis (H22) holds iff I(x) # 0.

“See equation (2.33) on page 73.
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o For HZM" and HL"*, the hypothesis (H22) holds iff I(z) # 0.

o For H?;;’;, w, =0iff z = —Tfl. Therefore the hypothesis (H22) holds
: f
iff 1(—L1) # o.
Remark 21. In practice, for HZ and HY", and for H;f/;, HY"™
H}’z’“/t% and H;’)T/tg with 1 = 0, there are no shadows, therefore, I(x) is
never null.
e Second,

o since the intensity image I verifies I(x) < 1, proposition 3.2 (page

107) applies to the SFS Hamiltonians HZh | H(Og’%’fl), HE™, H{(igfl),

Hg/tg and HY"°. Thus for these SFS Hamiltonians, the associated

decentered schemes (3.11) have subsolutions.

o Concerning the Hamiltonian H;’z?t:’;, we prove that ug(z) := —% l-xz+

C (where C is chosen such that Vz € Q, up(z) < min, p(y)) is a
subsolution of the associated decentered scheme (3.11).

Proof.
o Vz € Q,, we have S(p, z,uo(z),uo) = S(p, z,uo(x), uo)-
Since
up(z) — ug(w — hieg) L« uo(z) —uo(x + hier) a
hy o hy o
ug(z) —up(r —heez) B up(z) —ug(w + hoes) .
ha v’ ha v’
then

S(p,,uo(x),u0) = supgea{l—F(z,a)- + f(z,a)4]- 1~ i(z,a)}
supaeA{f(:E,a) : %1 - l(xaa)}

= H(z,—31)

<0.

o Yz € b9,
S(p,m,uo(x),uo) = U0($) - (70(’7") <0.
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o We have not found subsolutions of the decentered scheme (3.11) asso-
ciated with the Hamiltonian Hf-f;’;. The subsolution (of the Hamil-
tonian Hg;’;) proposed in section 2.2.6 (at the page 78) is not a
subsolution the decentered scheme (3.11). This shows the interest
of the Hamiltonian HY*"®) and more generally the interest of the

Hamiltonians which verify H(z,0) < 0.

e Third, since
ly(z,a) = — [ Kypkze/1—|a]? + ka(*Ryvy) - a + cq,

we have: if k;, K, v, and c¢; are bounded then the running cost I, of H,
is bounded. Moreover, since

fo(z,a) = —[Dilya+w, ],

_ 1
we have: if for all 2 in Q we denote® a, = Dil;* [( ) > — ww] , then we

1
have fy(z,a,) = — L) Therefore proposition 3.3 (page 107) applies
with the generic Hamiltonian H,. Hence the subsolutions are bounded by
a same constant (uniformly for p in Mg). Obviously, as a consequence,
this result holds with all® SFS Hamiltonians H?"*" and HE®".

Consequently, proposition 3.1 applies with all SFS Hamiltonians®. There-
fore, for all SF'S Hamiltonians, the implicit (and therefore semi-implicit) decen-
tered schemes are stable (uniformly for p in My).

Remark 22. Let us emphasize that the continuity of the intensity
image I is not required for obtaining the stability of our SFS schemes.
Therefore our numerical SFS method is still relevant when the intensity image
is discontinuous and when there are shadows.

3.2.1.2 Convergence toward the viscosity solutions of SFS

In the previous subsection we have described some sufficient conditions ensuring
the stability of the implicit schemes (and therefore of the semi-implicit schemes)

5 We assume that Vz € Q xy # 0. If there exist some x such that x, = 0 and if for example
W, is a nonnull constant function (this holds for example with Hf{f; and H,%T/tg when 1# 0),
then we can choose a, = 0.

SExcept for Hg/rpéf, because we have not found subsolutions of the associated scheme.
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associated with the “classical” SFS Hamiltonians. In other words, the SFS
schemes we propose have uniformly bounded solutions. Now, we claim that
(with some weak hypotheses) these solutions converge towards the viscosity
solutions of the SFS PDEs when the size of the mesh vanishes to zero. This

assertion can be proved easily by using proposition 3.5 (stated on page 115):

1. If the intensity image I is Lipschitz continuous then hypotheses (H6)-(HS8)

are verified for all the SFS Hamiltonians”: see section 2.2.4.2 in which we
detail the conditions for which the generic Hamiltonian H, verifies the

hypotheses (H6)-(HS).

2. Questions about subsolutions have also been studied in the previous sub-

section.

3. Some conditions involving the strong uniqueness property for the SFS
equations are described at the end of section 2.2.6.

The reader will conclude without difficulty.

3.2.2 New “generic” algorithms for the “classical” Shape from
Shading

3.2.2.1 Two new “generic” algorithms for the “classical” Shape from

Shading problem

In section 3.1.2 we have described two approximation schemes of the form
S(p,x,u(x),u) = 0 (an implicit scheme and a semi-implicit one) allowing to
approximate the solutions of HIB PDEs. Since the various models of the “clas-
sical” SFS problem we present all led to HJB equations, we have at our disposal
two new approximation schemes, hence two new algorithms for computing nu-
merical solutions of each formulation of the SFS problem.

We have implemented the algorithms associated with the implicit scheme
and with the semi-implicit scheme, for the “generic SFS” Hamiltonian. Thus
the code applies to all the “classical” SFS Hamiltonians. Let us emphasize the
interest of the “generic” formulation of the SF'S problems. In effect, instead of
implementing an algorithm for each formulation of the SF'S problem, we imple-
ment only one algorithm. In particular, a single algorithm allows to compute
numerical solutions of the “perspective SFS” problem and of the “orthographic
SFS” problem.

In return, our code is clearly not optimal for a particular formulation of the
SFS problem. Nevertheless, it is very easy to optimize the code for a specific
algorithm.

"For the Hamiltonian H;t", we also need to impose I > 0 on . In practice, this is not a

problem; see the remark below.
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In other respects, let us remark that the implemention of the implicit
algorithm is more difficult than that of the semi-implicit algorithm. Also, the
cost of one iteration of the implicit scheme is greater than the cost of one
iteration of the semi-implicit scheme. Nevertheless, the number of iterations
required for reaching the convergence is much smaller for the implicit scheme
than for the semi-implicit scheme. For a quantitative comparison see section
3.2.4.

Remark 23. The algorithm proposed by Rouy and Tourin in [134] is a
particular case of the implicit algorithm with the Eikonal Hamiltonian.

The first algorithm proposed by Dupuis and Oliensis in [47] is a particular case
of the semi-implicit algorithm with the Hamiltonian H g/tg 8,

Therefore, from an algorithmic point of view, here, we generalize and unify the
work of Rouy and Tourin [134] and the work of Dupuis and Oliensis [47]. Let
us remind the reader that the implicit scheme and the semi-implicit scheme

have the same solutions; see remark rR12.2 in section 3.1.2.

3.2.2.2 Comments about initialisation

The algorithms we propose here are iterative. Also, the behaviour of the se-
quence of approximations U™ strongly depends on the choice of the initial sur-
face ug. Nevertheless, in this section, we prove that in all cases (when ug is
a subsolution and when wug is a supersolution) the sequence of approximations
(computed with the implicit or the semi-implicit algorithm) converges toward
the solutions of the scheme. Finally, we remark that the convergence velocity
stongly depends on the choice of uyg.

1. If ug is a subsolution :

e By using theorem 3.5 (stated on page 120), proposition 3.1 (stated on
page 106) and the previous subsection, the reader will verify easily
that, if ug is a subsolution®, then the numerical approximations com-
puted with the associated implicit SF'S algorithms converge toward
the solutions of the scheme associated with the SF'S Hamiltonians.

8In [47], Dupuis and Oliensis describe two schemes and algorithms for computing numerical
solutions of the “classical” SF'S problem. The first algorithm corresponds with the one asso-
ciated with the semi-implicit scheme; the second algorithm is an other semi-implicit scheme
based on the differential games instead of the control theory. Let us note that the both schemes
of Dupuis and Oliensis have exactly the same solutions. Therefore they have also the same
solutions as our implicit scheme.

9The semi-implicit schemes and the implicit schemes have exactly the same supersolutions,

the same subsolutions and the same solutions
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e Concerning the algorithms provided by the optimal semi-implicit
scheme (described in the remark r12.1 at page 97) the reader will
verify without difficulty that the hypotheses of theorem 3.1 are sat-
isfied with all SF'S Hamiltonians:

o the hypotheses (H16) and (H17) are always true,

o the hypothesis (H18) is true if for all z in Q, the functions f(z,.) :
a+— f(x,a) and l(x,.) : a — I(x,a) verify the hypotheses (H6")
and (HT"),

o the subsolutions of the semi-implicit schemes are exactly the same

as the subsolutions of the implicit schemes. Therefore, the study
of the hypotheses (H19) and (H20) has been done previously.

Thereby, if ug s a subsolution of the scheme, then the numerical ap-
proximations computed with the SFS semi-implicit algorithms con-
verge toward the solutions of the associated scheme.

Nevertheless, let us emphasize that in practice, the semi-implicit al-
gorithms starting from a subsolution are really not effective.

Remark 24. Let us note that in [134], Rouy and Tourin start the
algorithm from subsolutions.

2. If uy is a supersolution:
We prove easily that the hypotheses (H19’) and (H20’) described in the
remark R15.3 (page 104) are verified with the SFS implicit schemes and
the SFS semi-implicit schemes. Therefore, if the hypothesis (H16’) holds,
we can conclude that:

if the initial function ug is a supersolution, then the numerical
approximations computed with the SFS implicit / semi-implicit

algorithms converge toward the solutions of the associated schemes.

Clearly, the hypothesis (H16’) holds with the semi-implicit schemes. Nev-
ertheless, (H16’) is not always true with the implicit schemes. For proving
that (H16’) holds with a specific implicit scheme, we can use the following
proposition:

Proposition 3.6 Let us consider an implicit scheme S as presented in
section 3.1.2. We assume that A is a compact subset of RY, that for
all x € Q, the function f(x,.) : a — f(x,a) is a homeomorphism (we
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denote f~Y(z,.) its inverse), and that the function l(z,.) : a — l(z,a) is
continuous on A.
Therefore: If A # 0, then

tlim Spzu(t) <0,
else, if there does not exist a € A such that f(x,a) =0 or if

Iz, f~1(x,0)) >0,

then we have the same conclusion.

Remark 25.
Since for the “generic” Hamiltonian, we have H;(z,q) =
lg(xa [_fg]il(xaQ)) and f;l(xao) = [_fg]il(xao) (we note [_fg]

the opposite of the function fy), then the condition ly(z, f, *(x,0)) > 0
is equivalent to H*(z,0) > 0.

By the previous proposition and the remark 25, for all SF'S Hamiltonians
with nonnegative running cost, (H%: H(C’Oryto’fl), HY™, H{(if)fl)? "
and Hlojr/tg), the numerical approximations computed with an implicit
algorithm converge toward the solution of the adequate scheme, when wg
is a supersolution.

The reader will verify easily that this is also true for the Hamiltonian

H}’{/t% Indeed, we have,

f};/lT(xa 0) = _ﬁ 1

and

(o, ffp(@,0)) = = [VI@? =17 = T=IP] > 0

(because I(x) < 1).

Remarks 26.

R26.1 - By considering for example the Hamiltonian H;’z"”/tj’f, one can

verify that, when x converges toward a singular point xg, then

lim ly(, f, (2, 0)) = 0.

r—x(Q
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Thus, in a neighbourhood of such a point, the equation in ¢
S(p, l‘ij,t, U) =0 (3.20)

is almost degenerate. In particular, if we do not implement carefully
the resolving of the equation (3.20), it is possible that numerically, we
do not obtain solutions of the equation (3.20) (even if theorically there
exists a solution). In this case, instead of solving the equation (3.20),
we can compute the value ¢ which minimizes S(p,x;;,t,U). Another
alternative consists in corrupting slightly the values of the intensity
image, considering the image I. instead of I; where I, is the image:
I.(x) =I(z)if I(x) <1—¢,else I.(x) =1 —¢; for a small € > 0 (see
section 4.6; in particular section 4.6.2).

R26.2 - In some cases, it is easy to compute supersolutions. For exam-
ple, one can verify that

up(x) = =

= |1‘21-x+c

(where ¢ = —minyeyq, “121 -y + max,eyn, ¢(y)) is a supersolution

of the schemes (with DBC) associated with the Hamiltonian Hp/7.
Nevertheless, let us note that, in practice, we do not compute the
supersolution ug required for starting the algorithm. In effect a large
constant function ug with the appropriated boundary data does the
trick!

R26.3 - Let us note that in [47], Dupuis and Oliensis start the algorithm
from supersolutions.

About the convergence velocity

Finally, let us remark that in practice, the speed of convergence strongly depends
on the initial surface ug used at step one of the algorithm. For an optimal
velocity, we can start from a supersolution; a quantitative comparison can be
found in chapter 3.2.4.

Proof of proposition 3.6

Let us remind the reader the
Proposition 3.6 Let us consider an implicit scheme S as presented in
section 8.1.2. We assume that A is a compact subset of RV, that for all x € Q,
the function f(x,.): a — f(x,a) is a homeomorphism (we denote f~'(x,.) its
inverse), and that the function l(x,.) : a — l(z,a) is continuous on A.
Therefore: If A # 0, then
lim S,..(t) <0,

t——o0
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else, if there does not exist a € A such that f(x,a) =0 or if
Uz, f~}(x,0)) >0,

then we have the same conclusion.

Proof. We consider the case where A = 0 (the case where A\ # 0 is easier to

prove). By contradiction, let us assume that

Hm S, u(t) > 0,

t——o0

that is to say

lim sup

al t —u(z + si(z, a)h; &)
t——o0 a€A

Z(_fi(xa CL)) —si(x,a)hi

=1

—l(m,a)} > 0, (3.21)

where s;(x,a) is the sign of f;(x,a).
For all (s1,..,sy5) € {1}, we denote

Agi sy ={a€A|Vi=1.N, s;fi(xz,a) > 0}.

By (3.21) there exists (s1,..,sn5) € {£1}", such that

lim sup
tm—oo a€Asy,..,

x hi
{Z(—fi(:v,a))t_“(f;;’h’ ) —l(x,a)} >0, (3.22)

i=1

Since f(x,.) and I(x,.) are continuous, there exists a control a; maximizing the
supremum of (3.22). Therefore, we have

N
i 2; w (t — u(z + s;hie])) — l(zya;) > 0. (3.23)
We now proceed in two steps.
o Now, let us assume that
there does not exist a in A such that f(z,a) = 0. (3.24)
Therefore, by compactness of A, ., there exists € > 0 such that

N fi(z,a)
Va < Asl,..,sNa Z 287};, 2 €

=1

Therefore, for all ¢ sufficiently small (¢+ < min; u(z + s;hi€; )),

- filz,ar)
Z% (t — u(z + sihie])) < e (t = minu(w+8¢hi?i)> :
=1 it Z
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Since I(x,.) is bounded!?,

li i fl(xa at) (t e _
im ———— (t—u(z + sihie;)) — l(z,ar) = —o0.
=1

t——o0 Sihz
We obtain a contradiction with (3.23). Therefore (3.24) does not hold.

o Henceforth, we assume that there exists a in A such that f(x,a) = 0. Now,
we claim that

lim f(z,a;) =0.
t——o00

Proof. By contradiction, let us assume that there exist ¢; > 0 and a

sequence t, — —oo such that Vn

|f($7 atn)| Z €1-

So, there exists €9 > 0 such that

ZN fi(z, ar,)
Vn € N, % > 9.
i=1 v

Since {(z,.) is bounded, we obtain as above that

N
. i(x, a,
1=
This contradicts equation (3.23). 0

So limy—, o f(x,a;) = 0. Also, f(z,.) being a homeomorphism, we obtain
Jim ay = f~Y(x,0).
In other respects, since

N
lim ; %(t —u(x + s;hie;)) — l(z,a:) > 0,

t——00 S

and since for all ¢ sufficiently small (¢ < min; u(x + s;h;€;)), we have
N
3 L;’fb)(t —w(z + sihie})) <0,
8:h;
=1

then
lim —I(z,a) > 0.

t——o0

By continuity of I(x,.), we conclude that

I(x, fY(z,0)) < 0.

0Because I(z,.) is continuous on the compact set A.
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O

3.2.3 Pushing things to the limit: SFS with discontinuous im-
ages and black shadows

Among the difficulties encountered when attempting to solve the SF'S problem,
the intensity discontinuities such as those caused by black shadows are among
the most difficult to deal with. Despite the fact that the notion of viscosity
solutions provides a natural framework for dealing with non smooth surfaces!!
(with edges) this theory does not yet apply to discontinuous images? (and hence
to black shadows). Technically, when the Hamiltonian is discontinuous with
respect to the space variable z (which is the case in SFS when the intensity
image is discontinuous), the main difficulty is the loss of uniqueness of the
viscosity solution. Note that, in the particular case of the black shadows, this
difficulty is increased by the loss of coercivity of the Hamiltonian.

In order to deal with black shadows, Lions et al. [96] do not “recover”
surfaces in the areas of 0 intensity and pose the problem in terms of boundary
conditions. This is not necessary since, as noted in [56], in the black shadows
areas the surface formed by the rays of light grazing the solution surface, verify
the irradiance equation, see figure 3.3. Thus, for recovering a solution, we do
not need, as in [96], to separate the “shading areas” and the “shadow areas”

and in general'3

our generic algorithm graciously computes approximations
of the exact solutions in shading areas and the grazing rays of light in the
black shadows areas (as does the algorithm proposed by Falcone [56] for the
“orthographic SFS”), see figures 3.3 and 3.11.

Finally all the results presented in section 3.2.1.1 and section 3.2.2 (the
stability of our approximation schemes and the convergence of the numerical
solutions computed by our algorithms) hold even when the image contains dis-
continuities and black shadows, even though the theory of viscosity solutions
does not yet apply to this case, see for example the remark 17 at the page 108
and the remark 22 at the page 123. As an illustration of this, the pyramid
example displayed in figures 3.6, 3.13 and 3.15 shows the ability of our numer-
ical algorithms to deal with discontinuous images while figure 3.11 shows their
ability to deal with black shadows.

"Viscosity solutions are weak (i.e. non differentiable) solutions.

12Most probably, some recent work [112, 78, 146, 28] on the Eikonal equation will shortly
remove this limitation.

13Tf we assume that the critical points and the boundary of the image are not covered by
the shadows.
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a)

Figure 3.3: a) Original surface u; b) Solution computed by our and Falcone’s
algorithms [56].

3.2.4 Experimental results

We have implemented for the “generic Hamiltonian” H, the algorithms de-
scribed in the previous sections for approximating the solutions of the “schemes
with Dirichlet conditions”

S(p,z,t,u) ifx €,

S tu) =
(p,:c, 7u) { t— (p(l-) ifx S I)Qp,

for the implicit decentered scheme defined by

N Jer
S(p,x,t,u) = sup {Z (fi(x,a))_ t— U(xh: hie;)

a€A =1

N

+3 (i), ) z(x,a>} ,
i=1 *

and for the (optimal) semi-implicit decentered scheme defined by

. A
S , T, t, = (1+
ento) = Ot o ol
N

_ | fi(x, a0)|/h 1 l
; Zévzl |f(x, a0)|/h; Z;’V:I |fi(, a0)|/h;

where ag is the optimal control of (3.6); see remark 12 at page 97.

) ¢

u(z —I—sihie_{) — (z,a0),

Remark 27.

e In [127] and [128], we have implemented and tested the algorithm associated
with the implicit decentered scheme for the “orthographic SF'S” problem
(with the Hamiltonian H;’{/t%) in the case where 1 = («, 0).

e In [120], we have implemented and tested the algorithm associated with the
implicit decentered scheme for the “perspective SFS” problem.
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e In [127, 128, 120] we start the algorithms from subsolutions.

Let us emphasize that in this chapter we assume that we have the exact
knowledge of the Dirichlet boundary data on 9Q' = 0QU{x | I(z) = 1}.
This is required for characterizing a solution (see section 2.2.6). In other words,
in order to compute the correct solution (i.e. the original surface used for
creating the image; remember that there exist several viscosity solution), we
must provide the “height” of the solution at the boundary of the
image and at all singular points (the pixels z;; such that I(z;;) = 1).

In the following subsections, we compare the results obtained with all our
algorithms. This comparison is based on the speed of convergence and the re-
construction error (the groundtruth data is available since in these experiments,
we deal with synthetic images).

We start with the algorithms associated with the orthographic SF'S problem.
In this context, we emphasize the comparison of the implicit and semi-implicit
algorithms, and the influence of the initial surface ug on the speed of con-
vergence. We have tested our algorithms with synthetic images generated by
shapes with several degrees of regularity e.g. C* (a paraboloid, a sinusoid
and a smoothed vase, see figures 3.4, 3.5, 3.14), or C° (a pyramid, see figures
3.6, 3.15), to demonstrate the ability of our method to work with smooth and
nonsmooth objects. Next, we deal with the perspective SFS algorithms.

In all the examples, the parameters are n, the number of iterations, €1, €9
and £, the mean absolute errors between the reference and reconstructed sur-
faces measured according to the L, Lo and L., norms, respectively, 8§ the angle
of the direction of illumination with the z-axis. We denote L = (1,7) the light
vector and f the focal length.

3.2.4.1 Experimental results for the “classical orthographic SFS”
Comparison of the implicit algorithm and the semi-implicit algorithm

We tested the orthographic SFS algorithms (i.e. the algorithms associated with
the Hamiltonians H2""") with synthetic images generated by an orthographic
projection.
In all cases, we show the original object, the input image and the reconstructed
surface.

First we show that the accuracy of the implicit algorithm is approximately
the same as that of the semi-implicit algorithm. This confirms the prediction of
the theory which states that an implicit scheme and its associated semi-implicit
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scheme have the same solutions, and that the computed numerical approxi-
mations converge towards the solution of these schemes. Figures 3.4 and 3.5
show the reconstructions of smooth surfaces obtained by the implicit algorithm
(associated with the Hamiltonian H%?t%) and by the semi-implicit algorithm,
starting from a subsolution and from a supersolution. Since, in practice, the
combination of the semi-implicit algorithms with the subsolutions is really not
effective, we only return the results obtained with the three other combinations.
Also, in these three other cases, we recover almost exactly the same surface.
Contrariwise, the numbers of iterations required for converging are very differ-
ent. Globally, the number of iterations required for converging with a semi-
implicit algorithm is very larger than with an implicit algorithm. For example,
when wug is a supersolution, approximately 100 iterations are required for ob-
taining the sinusoidal surface with the semi-implicit algorithm (figure 3.5-d),
when only 20 iterations are sufficient with the implicit algorithm (figure 3.5-
e). Furthermore, the number of iterations required when the approximation
sequence starts from a subsolution is very larger than when it starts from a
supersolution. For the example of the sinusoidal surface displayed in figure
3.5, the implicit algorithm requires approximately 600 iterations for converging
when wg is a subsolution; when only ~20 iterations are required when ug is a
supersolution.

Clearly, the optimal algorithm is the implicit algorithm starting from a super-
solution.

To demonstrate the ability of our method to deal with nonsmooth objects,
we have tested our algorithms with a pyramidal surface; see figure 3.6. The
previous remarks about accuracy and speed of convergence are still true for
nonsmooth surfaces.

Remarks 28.

R28.1 - In [47], Dupuis and Oliensis propose two numerical algorithms for the
orthographic SF'S. The scheme associated with their first algorithm corre-
sponds with our semi-implicit scheme. Their second algorithm, based on
the differential games, is faster than their first one because the control de-
pendency is quadratic'*.The scheme associated with this original algorithm
is still semi-implicit; therefore, it is “theoretically” less effective than our
implicit algorithm.

R28.2 - In figures 3.4, 3.5 and 3.6, we show results obtained by applying
the Gauss-Seidel method. Convergence using the Jacobi updating is much
slower. As explained by Dupuis and Oliensis [47] the expected convergence

Hsee [47], for more details...
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H iteration H €] €ITOr | €3 €ITOT | Eo €ITOTr H
30 0.0182615 | 0.0379 | 0.112334
60 0.0100561 | 0.0244 | 0.0664543
90 0.00679089 | 0.0178 | 0.050051
120 0.0049317 | 0.0128 | 0.0391274
150 0.0035902 | 0.0086 | 0.0336975
200 0.00202838 | 0.0032 | 0.0336975

Table 3.1: Errors associated to figure 3.7  (implicit algorithm starting from a

subsolution).

H iteration H €1 error ‘ €9 €ITOr | Eoo €rTOor H
8 0.0215886 | 0.0358 | 0.0881951
16 0.00840164 | 0.0157 | 0.056211
24 0.00420738 | 0.0086 | 0.0389878
32 0.00288298 | 0.0058 | 0.0335179
40 0.00234463 | 0.0042 | 0.0335179
48 0.00206178 | 0.0033 | 0.0335179

Table 3.2: Errors associated to figure 3.8  (semi-implicit algorithm starting
from a supersolution).

time for the Jacobi method is on the order of the maximum length of the
optimal path. In effect, when we perform an iteration (i.e. we once scan of
all pixels) of the Jacobi method, the information is only able to propagate
by “one pixel” along the optimal path. For a Gauss-Seidel method, the
information is able to propagate all along the optimal path in only one
iteration. Note that for obtaining convergences as fast as those we obtain,
we need to use the path indicated in the remark 3.1.5. In effect, this path
provides a homogeneous propagation'® of the information.

Figures 3.7-3.9 show the speed of convergence of the two algorithms for
two different initial conditions, i.e. a subsolution (except for the semi-implicit
scheme, as mentioned above) and a supersolution. Clearly, as shown in tables
3.1-3.3, the combination (implicit, supersolution) is the best.

Robustness to noise

We also show the stability of our method with respect to pixel noise.
Uniformly distributed white noise has been added to all pixels of the input

images and the corresponding reconstructed surfaces are shown, see figure 3.12

1% e in all directions and in all senses
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green : groundtruth
red : computed solution:

e-2)

Figure 3.4: Results for a synthetic image generated by a paraboloidal surface
sampled on a grid of size 32 x 32 with 1 = (0,0) (6 ~ 0°):

a) original surface (groundtruth), b) original image,

c) surface reconstructed from b) with the implicit algorithm starting from a
subsolution: n =18, 1 = 0.0015, e = 0.0018, g5, = 0.0021;

d) surface reconstructed from b) with the semi-implicit algorithm starting from
a supersolution: n =15, 1 = 0.0014, g9 = 0.0016, £o, = 0.0020;

e) surface reconstructed from b) with the implicit algorithm starting from a
supersolution: n =>5, 1 = 0.0015, £9 = 0.0018, £, = 0.0020;



3.2 Application to the “classical” Shape from Shading problem137

a) b)

green : groundtruth
red : computed solution

c-2)
green : groundtruth
red : computed solution

green : groundtruth
red : computed solution

e-2)

Figure 3.5: Results for a synthetic image generated by a sinusoidal surface
sampled on a grid of size 200 x 200 with 1 = (0.1,0.3) (# ~ 18.5°):

a) original surface, b) original image,

c) surface reconstructed from b) with the implicit algorithm starting from a
subsolution: =~ 700, &1 = 0.003902, &5 = 0.005762, oo = 0.00740;

d) surface reconstructed from b) with the semi-implicit algorithm starting from
a supersolution: n ~ 120, e = 0.003900, €5 = 0.005762, £o, = 0.00747;

e) surface reconstructed from b) with the implicit algorithm starting from a
supersolution: n ~ 25, e1 = 0.003905, 9 = 0.005768, 4, = 0.00747;
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a) b)

green : groundtruth
red : computed solution .

-0.4

04 02 ©

0.4
e-1) e-2)

Figure 3.6: Results for a synthetic image generated by a pyramidal surface
sampled on a grid of size 200 x 200 with 1 = (0.5,0.3) (0 ~ 35.6°):

a) original surface, b) original image,

c) surface reconstructed from b) with the implicit algorithm starting from a
subsolution: n ~ 1000, e; = 8.461e — 05, e9 = 1.6116e— 04, £, = 9.40e —04;
d) surface reconstructed from b) with the semi-implicit algorithm starting from
a supersolution: n ~ 110, e1 = 8.461le — 05, 9 = 1.6116e — 04, e, =
9.40e — 04;

e) surface reconstructed from b) with the implicit algorithm starting from a
supersolution: n ~ 50, 1 = 8.461e—05, g9 = 1.6116e — 04, €50 = 9.40e — 04;
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g) n =120

green : groundtruth
red : computed solution

Figure 3.7: Experimental results obtained with the implicit algorithm starting
from a subsolution, for a synthetic image representing Mozart’s face.

a) Original surface of size ~ 150 x 150,

b) synthetic image generated from the original surface a) with 1 = (0.2,0.1)
(0 ~ 13°),

c) to h) surface U™ at the n* iteration for n = 0, n = 30, n = 60, n = 90,
n = 120 and n = 150, respectively.

i) Final result : n = 200

j) visual comparison of the final result i) with the original surface a).

Error : €1 20.002, g9 = 0.0032, £o, = 0.034;

The errors of each iteration are given in the table 3.1.
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——

green : groundtruth
red : computed solution

Figure 3.8: Experimental results obtained with the semi-implicit algorithm
starting from a supersolution, for a synthetic image representing Mozart’s face.
a) Original surface of size ~ 150 x 150,

b) synthetic image generated from the original surface a) with 1 = (0.2,0.1)
(0 ~ 13°),

c) to h) surface U™ at the n'* iteration for n = 8, n = 16, n = 24, n = 32,
n = 40 and n = 48, respectively.

i) Final result : n < 50;

j) visual comparison of the final result i) with the original surface a).

Error : €1 =2 0.002, g5 = 0.0033, £o0 = 0.0335;

The errors of each iteration are given in the table 3.2.
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green : groundtruth
red : computed solution

Figure 3.9: Experimental results obtained with the implicit algorithm starting
from a supersolution, for a synthetic image representing Mozart’s face.

a) Original surface of size ~ 150 x 150,

b) synthetic image generated from the original surface a) with 1 = (0.2,0.1)
(0 ~ 13°),

c) to h) surface U™ at the n'® iteration forn =4, n =8, n =12, n = 16, n = 20
and n = 24, respectively.

i) Final result : n = 30;

j) visual comparison of the final result i) with the original surface a).

Error : €1 2 0.002, g9 = 0.0032, e = 0.0336;

The errors of each iteration are given in the table 3.3.



Monotonous approximation schemes; application to the “classical”

142 Shape from Shading
H iteration H €1 error €9 €ITOT | €4 €ITOr H

4 0.00281226 | 0.0046 | 0.0432186

8 0.00217095 | 0.0034 | 0.0333782

12 0.00203401 | 0.0032 | 0.0335754

16 0.00199646 | 0.0032 | 0.033603

20 0.00199058 | 0.0032 0.03361

24 0.00198982 | 0.0032 0.03361

28 0.00198976 | 0.0032 0.03361

Table 3.3: Errors associated to figure 3.9  (implicit algorithm starting from a
supersolution).

for the sinusoidal surface and 3.13 for the pyramidal surface. The Signal to
Noise Ratio (SNR) is equal to 3.2 in figure 3.12 and to 2.7 in figure 3.13. As
seen from these figures, our algorithms are very robust to intensity noise, as
also observed in [134, 47].

Remarks 29.

R29.1 - The pyramid example shows the remarkable ability of the numerical
algorithms to deal with surfaces which are only continuous as well as with
discontinuous images.

R29.2 - Figures 3.10 and 3.11 show the ability of the numerical algorithms to
deal with shadows, as predicted by the theory and pointed out in section
3.2.3.

R29.3 - The synthetic surfaces of the vase and of Mozart’s face, as
well as other surfaces are available by anonymous ftp under the
pub/tech_paper/survey directory at eustis.cs.ucf.edu (132.170.108.42).
They are associated to the paper by Zhang et al. [172].

3.2.4.2 Experimental results for “perspective SFS”

We have tested the “perspective” algorithms (i.e. the algorithms associated

with the Hamiltonians HY*"*) with synthetic images generated by using a “per-

spective” projection. The previous remarks about the speed of convergence of

the orthographic SFS algorithms still hold for the perspective SFS algorithms.

In the following results, the solutions are computed with the implicit algorithm
TS

associated with the Hamiltonian H 5;7 » starting from subsolutions (figures 3.14,
3.15 and 3.16) or from a supersolutions (figure 3.17).
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2

c)

b)

h) i)
a) Original surface, b) Synthetic image generated from
a), ¢) Original shaded surface, d) Initial reconstructed
surface, e) and f) The reconstructed surface at the
100" and 1000%" iterations, respectively. g) Final re-
sult, h) Synthetic image generated from the surface
g), i) Reconstructed surface, textured with image h),

j) Error surface (a-g).

Size of the image = 256 x 256.
Algorithm: implicit algorithm starting from a subsolution: n <

2500.

L= (o879 =

(0.8, 0.0, 0.6) ie. 6=253°.

Figure 3.10: First example of a reconstruction from an image with black shad-

ows: the case of the vase.
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c) d)

Size of the image ~ 1000 x 1000.
Algorithm: implicit algorithm starting from a supersolution:
n < 90.

Figure 3.11: Second example of a reconstruction from an image with black
shadows: the case of the Mexican hat. a) Original surface (the direction of the
visualisation light is (0,0,1)), different from L; b) Synthetic image computed
from the surface a) with L = (0.8,0.0,0.6) (the angle between the light direction
L and the camera axis is around 53°); c¢) Solution recovered by our algorithm
from the image b) (the direction of the visualisation light is (0,0,1)); d)
Surface c) illuminated by a light of direction (0.8,0.0,0.6).
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green : groundtruth
red : computed solution

Figure 3.12: Results for a noisy image generated by a sinusoidal surface sampled
on a grid of size 200 x 200 with 1 = (0.1,0.3) (6 = 18.5°).

a) Original surface, b) Original image, ¢) Noisy image;

d) Reconstructed surface from b): n ~ 25, ¢ = 0.003905, 2 = 0.005768,
€00 = 0.00747;

e) Reconstructed surface from c): n ~ 30, e = 0.003905, €3 = 0.005766,
€oo = 0.00748
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Figure 3.13: Results for a noisy image generated by a pyramidal surface sampled
on a grid of size 200 x 200 with 1= (0.5,0.3) (6 = 35.6°).

a) original surface, b) original image, c¢) noisy image;

d) surface reconstructed from b): n ~ 50, e; = 8.461e — 05, £ = 1.6116e — 04,
€00 = 0.000940;

e) surface reconstructed from c¢): n =~ 50, 1 = 0.00467, £2 = 0.00916, o, =
0.044.
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In all cases we show the original object, the input image and the surface recon-
structed by the new “perspective algorithm” (see figures 3.14, 3.15 and 3.16).
As for the orthographic algorithms, we demonstrate the stability of the per-
spective SF'S algorithms with respect to image intensity errors due to noise (see
figure 3.17, SNR~ 3.7). As seen from these figures, the algorithms are quite
robust to intensity noise.
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a)

Figure 3.14: “Perspective SFS” results for an image generated by a smooth

surface (computed by the implicit algorithm starting from a subsolution):
a) original surface, b) original image
(1=(0.2,0.2), r = 2.5, size=128 x 128),
c) surface reconstructed from b) by the “perspective algorithm”:
n =~ 1000, &; = 0.0041, £5 = 0.00485, e, = 0.00814;

a) b) “c)

Figure 3.15: “Perspective SFS” results for an image generated by a pyramidal
surface (computed by the implicit algorithm starting from a subsolution):
a) original surface, b) original image (1 = (0.2,0.2), r = 2.1, size= 100 x 100),
c) surface reconstructed from b) by the “perspective algorithm”:

n 76, e ~0.00015, ¢ & 0.0005, £ & 0.00110;
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Figure 3.16: “Perspective SFS” results for an image generated by Mozart’s face
(computed by the implicit algorithm starting from a supersolution):
a) original surface, b) original image (1 = (0.1, 0.3), sizex 200 x 200, f = 4),
c) surface reconstructed from b) by the “perspective algorithm”,

n~5 e =0.00197, e9 = 0.00338, o, = 0.00721;

green : groundtruth
red : reconstructed. solution

green : groundtruth
red : reconstructed. solution

\

Figure 3.17: “Perspective SFS” results for an image of Mozart’s face corrupted

d)

by a uniformly distributed noise.
light parameter: 1 = (0.1,0.3) (6 =18.4°); focal length: f =4.
a) original image, b) and ¢) surface reconstructed from a):
n~b, e =0.00197, g9 = 0.00338, e = 0.00721;
d) noisy image, e) and f) surface reconstructed from d):
n~7 e =0.00247, g9 = 0.0045, eoc, = 0.0116.
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3.3

Conclusion and contributions of chapter 3

e We have described some tools and a general method allowing to deal with

monotonous schemes. In particular, we have stated and proved a gen-
eral theorem ensuring the stability of these schemes. Some convergence
results for the associated algorithms follow automatically. The described
tools are mainly based on the monotonicity and on the existence of sub-
solutions or supersolutions.

In other respects, we have designed some monotonous approxima-
tion schemes adapted to (and consistent with) the Hamilton-Jacobi-
Bellman equations. We have applied our stability results to them.
Let us note that the method applies to irregular meshes and it does

not require regularity with respect to the space variable.

e We have demonstrated the practicality of our tools by applying them to the

“classical SFS” problem. We have proposed two new “generic” SFS algo-
rithms: a semi-implicit algorithm and an implicit one. We have proved
the convergence of the numerical solutions computed by our algorithms
toward the viscosity solution of the considered SF'S problem.

Let us emphasize the fact that the “generic” formulation of the SFS
problem allows to design a unique SFS algorithm which can be used
to solve numerically the various formulations of the “classical” SFS
problem.

Moreover, we have generalized and unified the algorithmic part of the
work of Rouy and Tourin [134], Dupuis and Oliensis [47] and Prados and
Faugeras [127, 120]. Let us recall that the basic fast marching method
of Sethian [138, 139] is based on the approximation scheme of Rouy and
Tourin [134].

e We have tested our new SF'S methods.

o At

Our algorithms are robust to pixel noise. When starting from a super-
solution the implicit algorithm is one of the most efficient iterative
algorithms of the SF'S literature.

In other respects, our algorithms can deal with discontinuous images
and with black shadows; let us recall that the stability of our SFS
schemes and the convergence of our SFS algorithms hold for such images.

this stage, the computation of a numerical solution of the SFS problem
requires Dirichlet data on the boundary of the image and at all

the singular points.

e Note: the algorithmic and numerical parts of our articles [120, 123, 121] are

based on the content of this chapter.






Chapter 4

A viscosity method for
“classical” Shape from
Shading without boundary
data

This chapter is the result of a friendly and profitable collaboration with Fabio
Camilli’. T would like to thank Fabio Camilli for the warm and important

exchanges that I could have with him.

The main weakness of the theoretical results presented in the previous chap-
ters is due to the fact that we need to provide data (height of the solution) on
the boundary of the image and at all the singular points. Also, in practice with
real images, we rarely have such data. In this chapter, we weaken this con-
straint. In particular, we design a viscosity framework allowing to characterize
solutions without requiring data on the boundary of the image.

4.1 Weaknesses of the previous theoretical ap-
proaches of the SFS problem

The theory of viscosity solutions was first used to solve SFS problems by Lions,
Rouy and Tourin [134, 96] in the 90s. Their work was based upon the notion
of continuous viscosity solution. Let us remind that the viscosity solutions

!Pure and Applied Mathematics Department of the University of L’Aquila, Italy

(camilli@ing.univaq.it).
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are PDE solutions in a weak sense. In particular, they are not necessarily
differentiable and can have edges. Let us emphasize that continuous viscosity
solutions are continuous (on the closure of the set where they are defined) and
that a solution in the classical sense is a viscosity solution; see chapter 2. As we
explain in section 2.2.2, a drawback of this notion is due to the compatibility
condition necessary to the existence of a solution (constraint on the variation

of the boundary conditions [95]). For example, the equation
|[Vu(z)| =1 for all z in ]0,1] (4.1)

with 4(0) = u(1) = 0, does not have classical solutions but has a continuous
viscosity solution (see figure 4.1-a)). The same equation (4.1) with «(0) = 0,
u(1) = 1.5 does not have continuous viscosity solutions (see section 2.2.2). Also,

a)

Figure 4.1: a) Continuous viscosity solution of (4.1) with «(0) = u(1) = 0; b) discon-

tinuous viscosity solution of (4.1) with »(0) = 0 and u(1) = 1.5.

let us suppose that we make a large error on the boundary condition, when we
compute a numerical solution of the SFS problems. If this error is too large
then there do not exist continuous viscosity solutions. In this case one may
wonder what the numerical algorithm of [134, 96] computes. In chapter 2, we
answer this question by proposing to use the more general idea of discontinuous
viscosity solutions. For example, equation (4.1) with u(0) = 0, u(1) = 1.5 has a
discontinuous viscosity solution; (see figure 4.1-b)). Let us remind that a “dis-
continuous viscosity solution” can have discontinuities and that a continuous
viscosity solution is a discontinuous viscosity solution.

In sections 2.2.4 and 2.2.6, we show that the classical theory of viscosity solu-
tions offers simple and general theorems of existence and uniqueness of solutions
for exactly the type of PDESs that arise in the context of SF'S. In particular the
theory allows to characterize exactly all possible continuous viscosity solutions:
given a particular Dirichlet condition on the image boundary (verifying the
compatibility condition), if the set of singular points (points of maximal inten-
sity, i.e. I(x) = 1) is empty, then there exists a unique continuous viscosity
solution satisfying the boundary conditions. If the set of singular points is
not empty there exists an infinity of continuous viscosity solutions which are
characterized by their values at the singular points. Note that this result is
general and applies equally to all the SF'S models described in section 2.1. As
a consequence, the SF'S problem is ill-posed and, in section 3.2, to compute a
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numerical approximation of a solution, we must assume that the values of the
solutions are given at the image boundary and at the singular points (see in
particular section 3.2.4). This is quite unsatisfactory, even more so since small
errors on these values create undesirable crests, see figure 4.2-b) or [127] for an

example with a real image.

u(z)

Umax

a) T b) To T C) xq x

Figure 4.2: a) original surface u; b) solution u. associated to corrupted bound-
ary conditions and to the image obtained from the original surface a) with the
Eikonal equation; ¢) maximal solution umax (in Falcone’s sense [24, 55, 56])

associated to the same image. u. and umax present a kink at xy and x;.

Falcone [24, 55, 56] proposes to not specify anymore the values of the solu-
tion at the singular points (he still requires to specify the values at the image
boundary though). In order to achieve this, he uses the notion of “maximal”
viscosity solutions developed by Camilli and Siconolfi [24, 26, 23]. Despite its
advantages, this approach is not really adapted to the SF'S problem, see for ex-
ample figure 4.2-c). In this figure, the maximal solution umax associated to the
image obtained from the original surface u shows a highly visible crest where
the surface should be smooth. Even with the correct boundary conditions,
Falcone’s method does not allow to recover the original surface, but only the
maximal surface with the same brightness I(x).

To summarize the work of Rouy et al. [134], Prados et al. [127, 120] and
Falcone et al. [24, 55, 56] suggests theories and numerical methods based on
the concept of viscosity solutions and requiring data on the boundary of the
image. At the opposite, Dupuis and Oliensis [47] consider C! solutions and
value functions. They characterize a C' solution by specifying only its val-
ues at the singular points which are local minima. In particular, they do not
specify the values of the solution on the boundary of the image. Also, they pro-
vide algorithms for approximating these solutions. Nevertheless, in practice,
because of noise, of incorrect modeling, errors on parameters or on the depth
values enforced at the singular points, there do not exist C' solutions to the
SF'S equations; also the notion of value functions is not always very intuitive.
Considering the drawbacks and the advantages of all these methods, it seems
important to consider an other class of weak solutions such that the character-
ization of Dupuis and Oliensis holds, which provides a (theoretical and numer-
ical) solution when there do not exist smooth solutions, and which unifies all

this previous work.
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As we show in the second part of section 2.2.6.3, the notion of discontinuous
viscosity solutions does not allow to impose the values of the solution at the
singular points (this does not allow to characterize the discontinuous viscosity
solutions). Therefore, this notion cannot provide an extension of the Dupuis
and Oliensis work. Moreover, the notion of singular viscosity solutions devel-
oped by Camilli and Siconolfi in [26, 23, 27] uses Dirichlet conditions all around
the boundary of the image. Thus, it does not also provide a direct extension of
the Dupuis and Oliensis work. For such an extension, we must slightly modify
these notions and we must consider a “new” type of boundary conditions (called
“state constraints” [145]). It turns out that the correct notion of viscosity so-
lution for the “classical” SFS problem is the “singular discontinuous viscosity
solution with Dirichlet boundary conditions and state constraints”. These so-
lutions can be interpreted as maximal solutions and have the great advantage
of not necessarily requiring boundary or singular points conditions. Moreover,
this notion provides a mathematical framework unifying the work of Rouy et
al. [96, 134], Prados et al. [127, 120], Falcone et al. [24, 55, 56] and Dupuis
and Oliensis [47].

4.2 Singular discontinuous viscosity solutions with
Dirichlet boundary conditions and state con-
straints (SDVS)

The notion of singular viscosity solutions was pioneered by Ishii and Ra-
maswamy [77] and has been recently upgraded by Camilli and Siconolfi
[26, 23, 27]. In this section, we slightly modify the tools developped in these pa-
pers introducing the notion of “singular viscosity solution with Dirichlet bound-
ary conditions and state constraints” (SDVS), and we prove the existence and
uniqueness of the SVDS. Some stability results are proved. Moreover, we show
that this framework allows to characterize the classical discontinuous viscosity
solutions by their “minimums”.

Let 2 be a bounded open subset of RY with smooth boundary (say W2).
In the SFS problem N = 2. So 2 is a smooth part of rectangular domain
10, X[x]0, Y[ which typically represents the domain of definition of the image.
We consider the partial differential equation (PDE):

H(z,Vu) =0, Vo € Q, (4.2)

where H : Q x RV — R is a continuous (hypothesis (H4)), conver (with respect
to p) Hamiltonian (hypothesis (H1)), and satisfies the coercitivity condition

(H2%) liminf), o H(z,p) = +o0, for any = € Q.
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Moreover we assume that

(H3’) there exists a subsolution ¢ € C1(Q) N WH>(Q) of (4.2)
(i.e: Vx € Q, H(z,Vi(z)) <0)

and

(H23) for any A € (0,1), p € RN s.t H(z,p) <0 then
H(z,\p+ (1 -2)Vy(x)) <0.

Note that the previous hypotheses hold for all the “classical” SFS Hamiltonians
considered in section 2.1 as soon as the intensity image I is continuous and
verifies I(x) > 0 for any x € Q.

We say that ¢ is a strict subsolution of (4.2) at © when H(z, Vi (z)) < 0.
We denote by S the set of singular points of H respect to v :

S={z € Q| H(z,Vi(x)) = 0},

i.e. the set where 1 fails to be a strict subsolution of (4.2). S is closed by the
continuity of Vi) and H.
We also assume that

SNoa = 0. (4.3)

Remarks 30.

R30.1 - In the case where H is an Hamilton-Jacobi-Bellman (HJB) Hamilto-
nian

H(z,p) = sup{—f(z,a) - p — l(z,a)} (4.4)
acA

with f: Qx A — RY,[:Qx A — R and the running cost [ is nonnegative,
S corresponds to the set

{x € Q| l(x,a) =0 for some a € A}.

In this case 1 = 0 is a subsolution of the equation. Yet, at the opposite to
[23], here we do not assume that [ is a nonnegative function. As it was shown
in chapter 2, the Rouy/Tourin Hamiltonian H%/t}‘ (where, lg/r(z,a) =
I(z)4/1 + |a|]? —v) and the perspective Hamiltonian H’},’“}’;, which fit in the
class of Hamiltonians given by (4.4) but with a cost of arbitrary sign, admit
a regular subsolution. Therefore, in this chapter, to each “classical” SFS
Hamiltonian we systematically associate the corresponding subsolution )

defined in section 2.2.6.1 (at the page 78).
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R30.2 - In section 2.2.6, we prove that for all the “classical” SFS equations
presented in section 2.1 the set of singular points & corresponds to the set
{x € Q| I(z) = 1} where I is the intensity image. Note that in the SFS
problem, even if we do not make this assumption, it may appear natural
to assume that & = {x1, ...z}, since the situation where S (the interior of
the set S) is not empty, is non generic?. Nevertheless, in practice, due to
some saturation or discretisation effects, several connected points can have

an intensity equal to the maximal intensity (i.e I(z) = 1).

R30.3 - As we have shown in subsection 2.2.4.1, the coercivity hypothesis
(H2’) is not systematically verified for all the SF'S Hamiltonians. Globally, it
does not hold for the pixels of the image with a low brightness, i.e. I(x) close
to 0, when the direction of the distant light source is very different to the one
of the camera. In this work, we do not weaken this hypothesis explaining
in various remarks some difficulties involved by the non coercivity.

Definition 4.1 Let u be a locally bounded function on a set E.
For any x € E, we set:
u*(x) = limsup*u(y) = sup{limsup w(z,) : z, — z},
y—x n—o00

us(z) = liminf,u(y) = inf{liminf u(z,) : =, — z}.

y—):C

u* and u, are respectively called the upper semicontinuous envelope and lower

semicontinuous envelope of u.

Recall that, if u is a locally bounded function, then «* is u.s.c and wu, is l.s.c.
(see sections V-1 and V-2.1 of [5] for more details).

We now give the definition of viscosity subsolution. The definition of vis-
cosity supersolution, which is modified respect to the standard one to solve the

uniqueness issue, is postponed to the next subsection.

Definition 4.2 (Viscosity subsolution of (4.2)) A locally bounded func-

tion u, u.s.c in S, is said a viscosity subsolution of equation (4.2) if
Vo € CHQ), Yoo € Q  local mazimum of (u — ¢), H(xo, Vé(xo)) < 0.

The regularity of 92 and the hypothesis on H imply that a viscosity subsolution
of (4.2) is Lipschitz continuous in 2. Moreover we have (see Prop. 4.3 in [26])

Proposition 4.1 The following three properties are equivalent

o
’In effect, for a given experimental setup (surface, light, camera) such that S # @, an

arbitrarily small change in the experimental parameters (for example, when the light moves)

will make <DS = (. An image such that g’ # 0 is highly unlikely.
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e wu is a viscosity subsolution of (4.2) in €;
o u is a Lipschitz continuous a.e. subsolution of (4.2) in €;

e u is Lipschitz continuous and, defined the (Clarke) generalized gradient

[34] by

ou(z) =co{p € RY : p = lim Vu(z,),
n
for a sequence x,, € Dom(Vu) converging to x},

then the inequality
H(z,p) <0

holds for any x € Q, p € Ju(zx).

Remark 31. If the Hamiltonian is noncoercive then the subsolutions
are not necessarily Lipschitz continuous. Moreover, subsolutions can yield
discontinuities at the points  where p — H(z,p) is non coercive. Nevertheless,
note that, if S is empty, only the coercivity on a neighborhood of 02 is sufficient
for ensuring the strong uniqueness, and so the continuity of the discontinuous
viscosity solution on €2. For a proof of this fact, see for example theorem 4.5
of [7] and more especially its Corollary 4.1. In this corollary, the “HNCL”
hypotheses of [7] is implied by convexity, existence of a strict subsolution and
regularity of the Hamiltonian. The coercivity hypotheses (H18) and (H20) of
[7] are only required on a neighborhood of 99Q2. The reader can also refer to [8].

With equation (4.2), we associate the Dirichlet boundary conditions (DBC)
u(zr) = p(z), VredQusS (4.5)

where ¢ is defined on 92 U S into R U {+o0}, Ls.c., bounded from below and
continuous in {x € QU S : p(z) < +o0}, with ¢ Z +00. At points x where
o(x) = 400, we say that we impose a state constraint boundary condition (see
145, 29]).

Definition 4.3 (Viscosity subsolution of (4.2)-(4.5)) A locally bounded
function u, w.s.c on Q, is said a viscosity subsolution of (4.2)-(4.5) if u is
a viscosity subsolution of (4.2) and if:

o Vzo €S, u(zo) < p(x0).

o Vxy € 0192,
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o u(xo) < (o)
o or V¢ € CH(Q) s.t. zg is a local mazimum of (u — @),
H($0, V¢($0)) <0.

Note that points z € 92 where p(x) = 400, the boundary condition is auto-
matically satisfied.

4.2.1 Singular viscosity supersolutions of (4.2)-(4.5)

Before giving the definition of the singular viscosity supersolution of (4.2)-(4.5),
we need to detail various assumptions and definitions.

The multivalued map

Let Z(x) be the multivalued map on 2 defined as:

Z(z) ={p e RY : H(z,p) < 0}. (4.6)
For all the “classical” SFS Hamiltonians, it is easy to see that:
(H24) Ve eSS, Z(z)={Vy)}.

Therefore, in the sequel, we assume that hypothesis (H24) holds.

Remarks 32.

R32.1 - Under the hypothesis (H24), the continuity of H provides a new
characterization of S:

€S < Z(z) ={Vy(z)}.

R32.2 - Assumption (H24) and proposition 4.1 imply that for a subsolution
u, Ou(z) = {Viy(z)} for z € S. Therefore a subsolution u is strictly
differentiable (see [34]) on the singular set.

By hypotheses (H2’) and (H23), the set-valued map Z(z) is continuous in Q
respect to the Hausdorff metric. Moreover, for any x € Q, the set Z(z) is
compact, convex and strictly star-shaped respect to Vi(x) and

0Z(x)={peRY | H(z,p) = 0}. (4.7)

As explained in [27], (4.7) is a geometric property which allows us to study
the equation H(x, Vu) = 0 through the level sets Z(x). Let W an open subset
of Q. If F(x,p) is any continuous function representing Z(z) in the sense that
for all x € W,

o

F(xz,p) <0 if and only if p €Z(x),
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F(x,p) =0 ifandonlyif pe€ dZ(x),

then the equation
F(x,Vu) =0, Ve e W

is equivalent to H(x,Vu) = 0 in W from a viscosity point of view. Moreover
the definition of subsolution could be equivalently expressed by the condition
Vu(z) € Z(x) in viscosity sense for any = € Q.

Let us remark that, the assumptions imposed in this section are properties
satisfied by the map Z(z). They are not directly about the Hamiltonian H.

A new Hamiltonian with the same multivalued map

Now, let us introduce the gauge function p(z,p) of Z(x). We set for any = € Q,
peRY,

p(z,p) =inf{A>0: X"1p+ (1 - X1HVy(x) € Z(x)}. (4.8)

As in [7, 6], (see also proposition 5.1 of [27]), we can prove that the function p
is L.s.c in Q x RY (continuous in (2 — S) x RY) and verifies the homogeneity

condition:
Vu>0 and Y(z,p) € QxRY, p(z,pp+ (1 - p)Vi(x)) = pp(z,p). (4.9)

Moreover, p € Z(x) if and only if p(x,p) < 1. If z € S, we have p(x, Vi)(x)) =0
and p(zx,p) is infinite for p # V(). Then the equation

pz,Vu) =1, VzeQ
defines an equation equivalent to (4.2) in  — S and singular for z € S.
Adaptation of the topology
Now, let us set, V& € Q,
r(z) =sup{r > 0| B(Vi(z),r) C Z(x)}.

In [27], Lemma 3.1 it is proved that 7(x) is continuous in Q, 7(x) is nonnegative
and r(zx) =0 if and only if x € S.

Remark 33.  For the SFS Hamiltonians Hy/®, Hg!h Hyth HE™, it is
possible to prove that Vo € Q, r(x) is finite and that r(.) is bounded on Q

(even when these Hamiltonians are not coercive)®. The proof of Lemma 3.1

of [27] is essentially based on the fact that r(.) is bounded. Thus, this result

3For the coercitivity of HZt" and H 2%, we must assume that 7 > 0 on the compact set

Q.
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applies to the previous SF'S Hamiltonians, even at the points x where they are

not coercive.

Note that by definition of r(.) and (H24) we have
o z €8S Z(x) ={ViY(z)} < r(z) =0,
e £ ¢ S<= Ir >0 s.t. B(VY(x),r) C Z(x) < r(z) > 0.

As in [26, 27], we proceed defining a semidistance on . We set for any z,y € Q,

S(z,y) = inf{/olr(é(t)) | E'@)ldt : &(t) € WH([0,1], Q)
st. £0)=zand £(1) =y}. (4.10)
Tt is easy to verify that S satisfies:
S(z,y) < S(z,2) + S(z,y) =9,z €Q,
S(z,y) = S(y,x) =,y €Q,
S(z,z) =0 z€Q

and
0< S(@,y) < lIrlodp(z,y) ,y€Q
where dg(z,y) is the Euclidean geodesic distance in € (i.e. the distance defined
as in (4.10) with r(z) = 1).
So S is a semidistance on 2, but in general not a distance since, if g € S,
the set of points which have 0 S-distance from xy is in general a subset of S

containing elements different from xy. The family of balls:
Bs(zg,R) = {x € Q| S(z9,z) < R}

induces a topology 7s in €. Note that on a neighborhood of a point z € 2 — &
the topology 75 is equivalent to the Euclidean topology. At a point x € S, it is
a weaker topology.

We denote by Bg(x) the subset

Bs(zg) = {x € Q| S(zg,z) = 0}.

Definition of singular viscosity supersolutions and solutions

Definition 4.4 (Strict subsolution of (4.2)) A function v is said to be a

strict subsolution of (4.2) in an open subset A of Q if v is a viscosity subsolution

of
p(x,Vv) <6 reA

for some 6 € ]0,1].
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Definition 4.5 ((Strict) Subtangent) For a l.s.c. function v, a Lipschitz
continuous function ¢ is called S-subtangent to v at xg € Q if xy s a minimizer
of v — ¢ in a Ts-neighborhood of xg (or equivalently, in a neighborhood A of
Bg(xzg)). The S-subtangent is called strict if the inequality

(v =¢)(x) > (v — ¢)(z0)
holds for z € A — Bs(xy).

Definition 4.6 (Singular viscosity supersolution of (4.2) at zp € Q) A
l.s.c. function v : Q@ — R is said singular viscosity supersolution of (4.2) at

xg € ), if it does not admit a S-subtangent at xy which is a strict subsolution

of (4.2) in a neighborhood of Bg(xy).

Note: It is worth noting that if o € S, the previous definition coincides with
the standard notion of discontinuous discontinuous viscosity supersolution of
equation (4.2), i.e. a locally bounded function v, Ls.c in €, is said a viscosity
supersolution if

Vo € CH(R), Yzo € Q  local minimum of (u — ¢), H(zo, Vp(xo)) > 0.

Definition 4.7 (Singular viscosity supersolution of (4.2)-(4.5)) A
locally bounded function v : Q — R, lLs.c. on Q, is said singular viscosity

supersolution of (4.2)-(4.5) if:
o Vxg € Q—S8, v is a singular viscosity supersolution of (4.2) at xy.
e Vry € 0NUS,

o v is a singular viscosity supersolution of (4.2) at xy

o or there exists © € Bg(xg) such that v(xg) > @(z) + ¥(xg) — ¥ (z).

Let us emphasize that, if the set of singular points S is empty, then the singular
supersolutions of (4.2)-(4.5) coincide with the standard discontinuous viscosity
supersolutions of (4.2)-(4.5). Let us also recall that, at the points xq where
¢(xg) = +00, the Dirichlet boundary condition corresponds to a state constraint
condition [145, 29].

Note that if zg € S, then Bg(zg) can be larger than {xo}. As the definition
of supersolution, also the boundary condition on § is adapted to the weak
topology induced by S.

Now, we can give the definition of the singular viscosity solution of (4.2)-(4.5).
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Definition 4.8 (Singular viscosity solution of (4.2)-(4.5))

A locally bounded function u : Q — R is said singular viscosity solution of (4.2)-
(4.5) if u* is a subsolution of (4.2)-(4.5) and if u. is a singular supersolution
of (4-2)-(4.5)-

We will call “singular discontinuous viscosity solutions with Dirichlet bound-
ary conditions and state constraints” (SDVS), the singular solution of (4.2)-
(4.5).

4.2.2 Existence of the singular solution of (4.2)-(4.5)

In this section, we prove the existence of SDVS by giving an explicit represen-
tation formula of it.

Let 6 : Q x RN — R be the support function of the set Z(z) = Z(x) — Vo(z),
ie.:

8(z,p) = max{pq : ¢ € Z(z)}. (4.11)

6(x, p) is continuous in © x RY convex and positively homogeneous in p and
there exists R such that

0 < é(z,p) < Rlp| VzeQ,peRY (4.12)
(see [27]).
For A C Q, we denote: Vz,y € A,
1 J—
Lata) =it { [ (0. ~¢ 0)at | ) € (0,11,
st. £(0) ==z and £(1) =y}

and we set L(z,y) := Lqo(z,y). From (4.12) it follows that 0 < L(z,y) <
Rdp(r,y) and therefore y — L(x,y) is Lipschitz continuous in Q for any fixed
x € Q (with a Lipschitz constant which does not depend on x).

Remark 34. If z € S, then Z(z) = {0} and therefore 6(x,p) = 0 for any
p € RY. Also, the inverse statement holds. Hence

6(z,p) =0,YVp e RN <=z €8S < r(z) =0.

So Vz,y € Q,
L(z,y) =0 <= S(x,y) =0.

In other words,

Vzo € Q, Bs(xg) = {x € Q: L(zg,z) = 0}. (4.13)
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Remark 35. When the Hamiltonian is not coercive, there can exist € Q
such that Z(z) is unbounded. Hence for some p € R, we can have p(z,p) = 0
and §(z,p) = +oo. So, for some (z,7) € Q x Q, we can have L(z,y) = +oo.
Note that, since L is in general nonsymmetric, it can result L(y, z) < +oo.

Let us consider the function V:
V(z) =¢(x) + min{ L(z,y) + ¢(y) —¥(y) | y € 9QUS }. (4.14)
Theorem 4.1 The function V is a singular solution of (4.2)-(4.5).

It is standard to prove that V' is a viscosity subsolution of (4.2) (see [95, 29]). To
show that V is a singular supersolution of (4.2)-(4.5), we need some preliminary

results.

Proposition 4.2 u is a subsolution of (4.2) in Q2 if and only if

uw(z) < Y(z) +uly) — (y) + L(z,y) for any x,y € Q (4.15)

Proof. See proposition 4.7 in [28]. O

Proposition 4.3 Set

Ly ={z €S| V(z) > ¢(y) + ¢(x) — ¥(y) for some y € Bs(x)}.
If xyp € Q — Ty, then Bs(.CIJ'()) Ny = 0.

Proof. Assume by contradiction that there exists x1 € Bg(xg) N Ty.
Hence there exists y € Bg(x1) such that V(z1) > o(y) + ¥(x1) — ¥(y). Since
S(zo,y) < S(zo,21) + S(21,9) =0, y € Bs(wp). By (4.13), (4.15) and z9 ¢ I'y

we have

V(x1) < V(xo) + ¥ (x1) — ¥(wo) < @(y) + (o) —¥(y) + (1) — ¥(20)

and so
Viz1) < ¢(y) +¥(z1) —¥(y)

hence a contradiction. O
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Proposition 4.4 (Dynamic programming principle) For all x € Q —T'y
and all Tg-neighborhood A of x s.t. AN (T'y U9dQ) =0,

V() = ¢(z) + min{L(z,y) + V(y) — ¢ (y)}- (4.16)
yEOA
Proof. Classic; see for example [5]. O

Proposition 4.5 Let u be a l.s.c. function, ¢g a S-subtangent to w at a point
xo and a strict subsolution of (4.2) in a Ts-neighborhood of xo. Then there exists
a function ¢ which is strict S-subtangent to u at xo and a strict subsolution of
(4.2) in a Tg-neighborhood of xy and such that for any x € Q, q € d¢(x), one
can select p € dpo(x) verifying

p(x,q) < p(z,p) + L(wo, x) (4.17)

Proof. See the proofs of proposition 6.1 of [27] and of proposition 5.1 of [26].
[l

Proof of Theorem 4.1. We argue by contradiction.

1. Let zg € © — T'y. Let us assume that there exists a function ¢g, a
neighborhood A of Bg(xg) and 6 € ]0,1] s.t. ¢g is a S-subtangent to V at
xo with ¢g(xg) = V(zp) and

p(z, Vo) <0, z€A (4.18)

in the viscosity sense.

Let ¢ be a strict S-subtangent to V at xp verifying the statement of
proposition 4.5. By continuity of the function x — L(xg,x) and (4.13),
we can select a neighborhood A’ of Bg(z¢) and with A’ C A satisfying

sup L(zg,z) <1 -6, (4.19)
zeA’
p<V on O0A (4.20)

and
A'N(Ty uo) = 0. (4.21)
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Since zg € 2 — 'y, we can assume the dynamic programming principle
(4.16) holds on A’, so there exists yo € A’ such that

V(wo) = ¥(x0) + Lar(xo,%0) + V(o) — ¥ (yo)-

By
V(zo) = ¢(zo) and  V(yo) > ¢(yo)

we get,
La(zo,y0) + [¢(y0) — ¥ (yo)] — [¢(z0) — ¥(z0)] < 0.
So we can select a path £ € WhH°(]0,1], A’) joining xg to yo satisfying

1
[ [ teor—€an + 2 (oteon - i) | e <o.
0

Hence there exists ¢y € [0,1] such that the functions ¢(£(¢)) and £(¢) are
differentiable at ¢; and

6(&(t0), —€(t0)) — E(t0) V(£ (to)) + %qﬁ(ﬁ(to)) <0. (4.22)

Using the chain rule for the generalized gradient (see [34]), we derive from
(4.22)

6(£(t0), =€ (t0)) < —E(t0)(90 — VY (£(to)))
for some qo € 96(&(tp))- Hence
p(&(to); q0) > 1.

Therefore by (4.17) and (4.19) the inequality

p(&(to), po) > 0

holds for a suitable py € d¢g(£(to)). This contradicts (4.18) and proposi-
tion 4.1 .

2. Let zg € T'y. By definition of 'y, we have V(zg) > p(z) + ¥(xg) — ¥(x)
for some z € Bg(xp).

3. If zp € 09, assumption (4.3) implies that Bg(xg) = {zo}. If V(zp) >
¢(xp) and the conditions of viscosity supersolution does not hold. We
can obtain a contradiction by adapting the proof of theorem V.4.13 of [5].

O

Remarks 36.
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R36.1 - T'y is the set where V takes the boundary datum ¢ in the sense of
the topology 7s.

R36.2 - In the case where the Hamiltonian is not coercive, we can have
V(z) = +oo, for some x in Q. Nevertheless, note that this difficulty is
mainly due to the state constraints. In effect if we assume that there exists
po € RY such that Vo € Q, §(x,pg) < R < +oo for some R not depend-
ing on x (this hypothesis holds for all the “classical” SFS Hamiltonians)
and if we enforce Dirichlet boundary conditions on 9Q (with £ bounded),
therefore

Vz € Q, V(z)< +oo.

4.2.3 Uniqueness results

In this section we prove the uniqueness of the SDVS. This result applies for all
the “classical” Shape from Shading equations described in section 2.1. We start

this section with a maximum principle:

Theorem 4.2 (Maximum principle) Let u,v : @ — R be respectively an
u.s.c. subsolution of (4.2) and a ls.c. singular supersolution of (4.2)-(4.5).
Let us denote

D, ={z €8 | v(2) 2 py) + ¥(x) - ¥(y) for some y € Bs(x)}.

Then
Ir%n{v —u} = agld{“lv{v —u}.
Proof. Given 6 € ]0,1[, the function ug = fu + (1 — #)y(x) is a strict

subsolution of (4.2) in © by the homogeneity of p (see (4.9)). Let us assume
that xg € Q —T, is a minimizer of (v —ug) in Q. Therefore ug is a S-subtangent
of v at xy which is also a strict subsolution of (4.2) in . This contradicts
that v is a singular supersolution at z5. So the minimizers of (v — ug) are in
OQUT,. The assertion is obtained by letting 6 go to 1. 0

In the sequel, we assume that there exists a neighborhood A of 92 and
A > 0 such that:

(H12”) |H($7p) - H(fca(])| < )‘|p - Q| Vr € A7 vaq € RN

In other words, we impose that H is Lipschitz continuous in p (with a Lipschitz
constant which does not depend on & € A) on a neighbourhood of 9. Note
that the “classical” SFS Hamiltonians H,.. and H . verify the hypothesis

pers or
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(H12”) (see section 2.2.6.2).
Using the maximum principle, we deduce the following strong uniqueness result:

Theorem 4.3 (Strong uniqueness of the SDVS with ¢ = +00 on 99)
Let u,v : Q — R be respectively an u.s.c. subsolution of (4.2)-(4.5), and a l.s.c.
singular supersolution of (4.2)-(4.5), with ¢ verifying Vz € 0, ¢(x) = 4+o0. If
H verifies (H12”) then

Ve e Q, wu(z)<uv(x). (4.23)

Proof. = We consider M = maxq(u(z) — v(x)). We argue by contradiction
and assume that M > 0. By the maximum principle (theorem 4.2), we have:

M = max(u(z) ~v(z)) = max (u(a) - v(@)).

Let x € T, and y € Bg(z) be such that v(z) > ¢(y) + ¥(z) — ¥(y). By (4.15)
and because I', C S

() > ¢(y) +P(@) = P(y) > uly) +9(x) = P(y) > ulx).
So, Vx € Ty, u(x) —v(x) < 0 and therefore

M = max(u(z) — v(z)) = max(u(z) — v(x)).
z€Q €00
In other words, M is reached at a point xzy € 0€). Henceforth, we can work
on a neighborhood A of the boundary 92 where hypothesis (H12”) holds. We
can assume that ANS = (. So in this neighborhood A, the notion of singular
viscosity solution coincides with the classical notion of discontinuous viscosity
solutions. Therefore, we can obtain a contradiction exactly as in the proof of
theorem 4.6 of [7] (let us recall that we have assumed that H is coercive in p
uniformly with respect to x). O

More generally, we have the theorem:

Theorem 4.4 (Strong uniqueness of the SDVS) Let u,v : @ — R be re-

spectively an u.s.c. subsolution of (4.2)-(4.5), and a l.s.c. singular supersolution

of (4.2)-(4.5). Then
Ve e Q, wu(z)<uv(x).

Proof. The statement can be proved combining the proofs of the previous
theorem and of theorem 4.5 (and of its Corollary 4.1) of Barles’ book [7]. O

Let us note that clearly the strong uniqueness involves the uniqueness on 2 of
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the singular viscosity solution of (4.2)-(4.5): i.e, if u; and uy are two singular
viscosity solutions of (4.2)-(4.5), then Vz € Q, ui(z) = ua(x). Moreover, it

proves that this solution is continuous on Q (u = u* = wu,), therefore it is

Lipschitz continuous on €2 (because subsolutions are Lipschitz continuous).

4.2.4 Stability of the singular solution

In this section, we show that the notion of SDVS enjoys some significative
stability properties. This stability has important and appreciable consequences

for the Shape from Shading problem.

A general stability result
We consider for n € N the equations:
H,(z,Vu) =0, VreQ (4.24)

with continuous, convex and coercive Hamiltonians Hy satisfying the hypothe-
ses (H2%),(H3’) and (H23).
We set for any = € Q:
Zu(2) = {p €R" | Hy(,p) <0},
Sn(z) = {z € Q| Hu(z, Vii(2)) = 0}.
We require the following conditions:
there exists M > 0 s.t. Z,(z) C B(0, M) for any € Q, n € N (4.25)
0 Z(z) + (1 — 0,)V(z) C Z,(x) forany z€Q,neN (4.26)
H(z,p) < 1im+inf*Hn(x,p) for any (x,p) € Q x B(0, M) (4.27)
n—-1+00o

where 6,, is a sequence converging to 1.

Remarks 37.

R37.1 - Assumption (4.25) implies that the SDVSs u,, of (4.24)-(4.5) verify
[|Vun|loo < M, for any n. So the functions w, are uniformly Lipschitz
continuous and also uniformly bounded on .

R37.2 - By (H24) and remark 32, (4.26) involves
SnCS

and

0nS(2,y) < Sn(z,y), Yo,y €Q,
where S, is the distance defined as in (4.10) with r,(z) = sup{r >
0 | B(VY(z),r) C Z,(x)} in place of 7(.). In particular, the topology
Tn, 18 stronger than the topology 7.
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We have the following stability result:

Theorem 4.5 (stability) Let u, : Q@ — R be a sequence of SDVS of (4.24)-
(4.5) (with Sy in place of S)on Q. Assume that (4.25)-(4.27) are satisfied. If u
is the SDVS of (4.2)-(4.5), then

uniformly in .

Proof. By (4.25) the sequence u, is uniformly bounded and uniformly
Lipschitz continuous in Q. Hence, all the subsequences of (u,)nen converging
toward limsup* u, and liminf, u, converge uniformly and limsup* u, and
liminf, u, are bounded and Lipschitz continuous on Q. By (4.27) it follows
that lim sup* w, is a viscosity subsolution of (4.2)-(4.5) (see for example [5],
6)).

If lim inf, u, is a singular supersolution of (4.2)-(4.5), then by theorem 4.4,
we get

lim sup® u,, < liminf, u,.

Since the reverse inequality is true by definition we get that limsup* u, =
liminf, u, and therefore the sequence w,, converges uniformly toward the SDVS
of (4.2)-(4.5). So, to conclude, it is sufficient to prove that all the limits u of
subsequences of u,, uniformly convergent are singular supersolutions of (4.2)-
(4.5):

1. Let zg € S be such that u(zg) < ¢(y) +¥(xo) — ¥(y) for any y € Bg(xzy),
otherwise the conclusion is obvious. Note that, by continuity of u, ¢ and
1, this inequality holds on a neighborhood of Bg(zy).

e By (4.26), we have
pn(,p) < Onp(z, p) (4.28)

foranyn € N, z € Q and p € RV.

o Assume for purpose of contradiction that there is a strict S-subtangent
¢ to u at xp which is also a strict viscosity subsolution of (4.2) in a
neighborhood A of Bg(xp), i.e.

(u = @)(y) > (u— ¢)(wo), for any y € A — Bs(xo),

p(y, Vo(y)) <n (4.29)

in A in the viscosity sense, for some 7 €]0,1][.
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e A standard argument in viscosity solution theory gives the existence of
a sequence T, of minimizer of u,, — ¢ verifying S(z¢,z,) — 0 (see [7],
Lemma 4.2). By the uniform convergence of (uy)necn, we have that
un(@n) < ©(y) + Y(xn) — ¢(y) for any y € B, (xn) C Bg(xy) C A
for n sufficiently large. Hence, even if x, € S,, for n sufficiently
large, u, verifies at x, the singular supersolution property. Since A
is a neighborhood of Bg, (z,), ¢ is S,-subtangent to u, at z,.

o (4.28) and (4.29) involve:

pn(y, Vo(y)) < O, Yy € A,

in viscosity sense. Hence ¢ is a strict subsolution of (4.24) for n large
enough. This contradicts u,, being a singular supersolution of (4.24)

at x,.

2. If zp € Q — S then p(z,p) > 1 if and only if H(x,p) > 0 and singular
and discontinuous viscosity supersolution coincide. Hence the previous
argument can be adapted to show that w is a viscosity supersolution also
in this case.

4.2.5 A new characterization of the discontinuous viscosity so-
lutions by their “minimums”

Let us denote by II, the set of points in Q such that a constant function cannot
be S-subtangent to u — ¢ at . If ¢ € S or Bg(z) = {x}, this means that x
cannot be a local minimum point for « — ¥. For this reason we call II, the set
of minimum points of u — . We also set

[y = {z € Q| Jy € Bs(x) verifying u(z) > ¢(y) + ¥(z) —¥(y)}.

Theorem 4.6 Let u be a (discontinuous) viscosity solution of (4.2)-(4.5) such
that u(x) < o(x) for any x € S. If I, C Ty then u is the SDVS of (4.2)-(4.5).

In other words, the SDVS is the unique (discontinuous) viscosity solution u of
(4.2)-(4.5) (verifying Vo € S,u(zr) < ¢(x)) without local minima on Q — T',,.
Of course, the reciprocal statement of theorem 4.6 holds. That is to say that
the SDVS cannot have points of local minimum (in Q) outside of T',,. In effect,
by contradiction, if u — 1 admits a constant function S-subtangent to xg & 'y,
then the function % is a S-subtangent to w at xp. Since by the definition of



4.2 Singular discontinuous viscosity solutions with Dirichlet
boundary conditions and state constraints (SDVS) 171

S, 1 is a strict subsolution of (4.2) it follows that w cannot be a (singular)
supersolution at x.

An important interpretation and consequence of theorem 4.6 is the following:

The (discontinuous) viscosity solutions of (4.2)-(4.5) can be characterized only

by their minima.

That is to say, if u is a (discontinuous) viscosity solutions of (4.2)-(4.5) then u
is the (unique) SDVS of

{ H(z,Vu) =0, VzeqQ,

u(z) = ¢(x), Ve € 0QUS,
where
$x) = pl(z), Vo €I, Ua,
and ¢(z) =+oc0, VreS-II,.
Proof of Theorem 4.6. We have just to prove that the solution w is

a singular supersolution at all the singular points which are not in T',. We
assume for simplicity that Bg(xzg) = {xo} but it is straightforward to extend
the argument to the general case.

We argue by contradiction assuming that there exists a function ¢, a neigh-
borhood A C Q@ — Ty of zp and 6 €]0, 1] such that ¢ is a S-subtangent to u at
To with

P(wo) = u(xo),
¢(x) < u(z), T €A,
¢(x) < u(x) —n, x € 0A

for some 1 > 0 and
p(x, Vo) <8 reA

in the viscosity sense. Since u is a solution of (4.2) in A we have (see [95, 5])

u(z) = P(z)+minfu(y) —P(y)+La(z,y) : y € 0A}A{u(zo) —¢(zo)+L(w, z0)}-

(4.30)
Since ¢ is not a minimum point of u—1, we can find x,, such that L(z,,z¢) — 0
for n — oo and u(xy) —Y(xy) < u(xg) — Y(xg). It follows that u(xg) — ¥(xo) +
L(zy,xo) > u(zn)—1(xy,) (since L(xy,,z9) > 0). By (4.30), we can find y, € 04
such that u(z,) = ¥(zn) + w(yn) — ¥ (yn) + L(xn, yn)- Hence

0> u(yn) - w(yn) - u(mO) + ¢($0) + L(xnayn) - L($n7$0) >
¢(yn) + 1 — PV(yn) — ¢(x0) + ¥(20) + L(Zn, Yn) — L(Tn, o). (4.31)
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Passing to a subsequence we can assume that y, — yo with yo € dA. Since
L(xy,yn) and L(xg, yn) converge to L(xg,yo) and L(x,,xq) converges to 0 , we
can find n large such that

L(xn,Yn) — L(wn,20) + 1 > L(T0,Yn)-

Substituting the previous inequality in (4.31) we get

0> ¢(yn) = ¥(yn) — d(xo) + P(x0) + L(0, Yn)-

Fixed such n, we can find £ € WH*°([0,1], A) joining zg to y, satisfying

[ (ste.~€ + o) ~ vien)) ae <o

From the previous inequality we get a contradiction to the definition of singular
viscosity supersolution as in the proof of theorem 4.1. O

4.3 Application to the “classical” Shape from Shad-
ing problem

4.3.1 Existence and uniqueness of the SDVS of the “classical”
SF'S equations

The hypotheses required for applying the theory developed in section 4.2

are

(H1) H is convex with respect to p for all x in Q.
(H4) HeCQxRN).

(H3’) There exists a subsolution 1 € C1(Q) NWLH2(Q) of (4.2)
(i.e: Yz € Q, H(z,Vi(z)) <0).
(H23) For any A € (0,1), p € RN s.t H(z,p) <0 then
H(z,Ap+ (1 - M)Vy(x)) <O0.
By using chapter 2, one can verify easily that these hypotheses hold for all the
“classical” SF'S Hamiltonians (considered in section 2.1) as soon as the intensity

image I is continuous and verifies I(z) > 0 for any = € Q.
It is also required that the following coercitivity condition holds:

(H2%) liminf), o H(z,p) = +o00, for any x € Q.
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This coercivity hypothesis is not systematically verified for all the SFS Hamil-
tonians (see subsection 2.2.4.1). Globally, it does not hold for the pixels of the
image with a low brightness (i.e. I(z) close to 0) when the direction of the
distant light source is very different to the one of the camera.

Moreover, one can verify easily that the hypotheses

(H24) Vz eS8, Z(z)={Vy(x)}
and
(H12") |H(z,p) — H(z,q)| <Alp—q| V€A, VpgeRY

hold for all the “classical” SFS Hamiltonians. So theorems 4.1 and 4.4 en-
sure* the existence and the uniqueness of the SDVS of all the “classical” SFS
equations.

4.3.2 Applications of the stability of the SDVS to the Shape
from Shading problem

In this subsection we apply theorem 4.5 to the “classical” SF'S problem.

1. Approximation of the degenerated equations by non-
degenerated equations:
The lack of uniqueness of the solution to (4.2) is a noteworthy problem
for numerical computations of a solution to the Shape from Shading
problem, since it causes numerical instability and sometimes fail of
convergence of standard approximation schemes. It is therefore usual to
regularize (4.2) by cutting the image intensity at a certain level strictly
less than 1 before applying the approximation procedure. As a first
application of Theorem 4.5, we show that the notion of SDVS is stable
respect to this type of regularization.

Given a continuous image I and £ > 0, we set®
I.(z) = min(I(x),1 —¢), VzeQ.

For a SF'S Hamiltonian H, we denote by H, the new Hamiltonian obtained
replacing I(z) by I.(x) in H. Since I, < I, the reader will verify easily
that for all the “classical” SF'S Hamiltonians,

vzeQ, VpeRY, H.(x,p)<H(z,p).

Therefore,
Vr e Q, Z(z)C Z.(x).

“Under the condition that the coercivity hypothesis (H2’) holds.
®Let us remind the reader that we assume that the intensity is between 0 and 1.
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So the condition (4.26) holds for . = 1. Moreover, it is easy to prove
that H. converge toward H (when ¢ — 0) uniformly with respect to
(z,p) € Q x K for all compact set K C RN. Therefore, theorem 4.5
applies and the singular viscosity solutions of (4.24)-(4.5) converge toward
the unique singular viscosity solution of (4.2)-(4.5).

Now, let us remark that, Ve > 0, the SFS Hamiltonian H. (associated
with I.) is not degenerate anymore (i.e S = (). So, its (unique) singular
viscosity solution is the (unique) classical discontinuous viscosity solution.
Thus, for approximating its solution, we can use the classical tools we have
developed in chapter 2.

2. Robustness of the Shape from Shading solutions to the image
regularization:
In computer vision or more generally in image processing, the images are
always corrupted by noise. To remove this noise, the images are often
regularized [159]. In other respects, most of CCD sensors slightly smooth
the images and defocus effects can strongly diffuse the brightness infor-
mation [57]. Since, we do not have taken into account these regularization
effects in the modeling, it seems important to guarantee the robustness
of our SFS methods to them.
We consider a sequence of noisy (or denoised) images I,, converging uni-
formly to I and we set wyn = ||[I = In| po(q)-

Unfortunately, in this general situation, stability does not hold. It is
possible to design counter examples for which I,, converges uniformly
toward I but the corresponding SDVSs do not converge uniformly (see
for example [10]). Here we show that if the images I,, are appropriately
regularized, we recover again the stability of SDVSs.

Let e, be a sequence such that wy,/e, — 0 for n — +o0. Set

I, = min(I,(x),1 —¢,), Vz€Q,

let H,(z,p) be the SFS Hamiltonians corresponding to the intensity I,
and Z, = {p € RN : H,(x,p) < 0}. For simplicity we assume that both
the limit equation (4.2) and the regularized equations corresponding to
the Hamiltonians H,, admit 1 = 0 as a subsolution®. We want to show
that assumption (4.26), with ¢» = 0, holds (the other assumptions of the
stability theorem being obvious).

Set S" ={zx €Q: I(zx) >1—¢,}. We distinguish two cases

5Let us recall that by an appropriate change of variables, the SFS Hamiltonians H ;E/T; and

Hf{f%’ can be reduced to this case.
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(a) If z € 8™, then I, () < 1—¢, < I(x), hence, recalling that the
SFS Hamiltonians are increasing in I, we get Z(z) C Z,(x).

(b) If z ¢ 8™, then

Wn

I(z) > I,(z) —wp > Ine, () —wp = Ine, (z) — ;6" >
Tpe, (z) — j—:umn (@) —1)>(1- j—:ﬂmn ().

Therefore, recalling that w, /e, — 0, we find that hypothesis (4.26)
is satisfied with 6, = (1 — <)L

En

Example : A typical example of a denoised sequence of images
is given by I,(x) = (I * n,)(x), where 7, is a standard mollifier, i.e.
nn(x) = nVy(nw) with 7 : RY — R a smooth, nonnegative function such
that the support of 7 is contained in the unit ball and [pn n(z)dz = 1
(we assume for simplicity that I is defined in a neighborhood of Q, so
I, can be defined in Q for n sufficiently large). I,, is a smooth function
and 0 < I,(x) < 1. Moreover I,(x) = 1 if and only if I(y) = 1 for any
y € B(z,1/n). Hence S,, = {z € Q: I, =1} is a proper subset of S. If S
reduces for example to a finite number of points, the regularized problem
is not singular. Note that H, satisfies the same hypothesis of H, i.e. it
is continuous, convex and, since I > m > 0 implies I, > m > 0, also
coercive in p.

3. Robustness of the Shape from Shading solutions to pixel noise

and errors on parameters:

As we have pointed out previously, in computer vision, the images are al-
ways corrupted by noise. It is therefore very important to design schemes
and algorithms robust to noise. That is to say we would like that the
result obtained by the algorithm from a noisy image be close to the ideal
result obtained from the perfect image. Moreover, the computer vision
algorithms use frequently various parameters. In this work, we assume
that the camera is calibrated and that the position of the light source is
known. So, for applying our algorithms, the user must input (as parame-
ters) the focal length, the size of the pixels (width, height) and a vector
representing the light source direction (following the chosen modeling).
In practice, these additional data can be not known precisely and the in-
puts provided by the user can contain important errors. Consequently, to
be applicable, the algorithms must be robust to these unavoidable errors
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on parameters. In other words, the returned results by the algorithms
with corrupted parameters must be close to the results returned with the
perfect theoretical parameters.

Mathematically, the robustness is expressed by the continuity of the appli-
cation which from an image I (a focal length f or a light source direction
L,..., respectively), returns the solution u of the associated PDE. In other
words, we would like that, for all sequences of noisy images I,, (of focal
lengths f,, or of light source directions L,,..., respectively) converging
toward an image I ( f or L,..., respectively), the sequence of recovered
solutions w, converges toward the solution u associated to I ( f or L,
respectively). In other words, if we denote H,, the Hamiltonian obtained
by replacing the parameters L, f and I by L,,, f, and I,, in H, then the
desired stability property corresponds with the convergence of the SDVSs
of (4.24)-(4.5) towards the SDVS of (4.2)-(4.5) when n — +o00. Theorem
4.5 allows to demonstrate that this property is satisfied.

Below, we sketch an example of steps for proving that theorem 4.5 applies
to SF'S problem. We consider the case, where L,, and f,, converge toward
L and f (here, we fix I,, = I). Up to a change of variables, we assume
that ¢ = 0. For a maximum of generality, we deal with the generic SFS

Hamiltonian.

(a) Let us recall that the “classical” SFS Hamiltonians are special cases
of the generic SF'S Hamiltonian

Hg(l‘,p) = ”x\/'Aacp + Vx|2 + KaZc +we ptcg

where kg, Ay, vy, Ky, w, and c, are completely described in chap-
ter 2. For all the “classical” SFS Hamiltonians, the functions
Kyy Az, Ve, Ky, W, and ¢, depend continuously on z,L and f (see
appendix B for details). Let us denote L, and f, the approxi-

mations of L and f. k2, A2, v} K7 w7, c? the approximations of

[
Koy Az, Vi, Ky, Wy, ¢ obtained by replacing L and f by Ly, f,,. H,
is the approximation of H,.
(b) Let us remind that the notion of SDVS requires the coercivity of the

Hamiltonians. So we assume that there exists 6 > 0 such that
Ve e Q, ry— A7 wy| > 6

(see proposition 2.3 at page 71). If we assume that L, — L and
fn — f then for all the “classical” SFS Hamiltonians, we have by

continuity: for all n large enough,

— -1
VreQ, &I—[tA7 “wo

z =

>
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so, the functions H,, are coercive in p uniformly with respect to z € Q
and n € N. In particular, the hypothesis (4.25) holds.

For all z € Q and p € S? (the unit sphere in R?), let us consider
g:Q xR" — R defined by

g(x,r) = H(z, Vi) +1p)

and g, the approximation of g designed from H,, (instead of H).
Clearly, there exist a(z,p), b(z,p), c(x,p), p(x,p) and v(x,p) in R
such that

g9(x,7) = ka/a(z,p)r? + b(z, p)r + c(z,p) + u(x,p)r + v(z,p).

Obviously, we have the same rewriting of g, with ay, , by, cn, un and
vn, which are the appropriate approximations. The uniform coerciv-
ity of the functions H, and function H involves that there exists
6 > 0 such that Vo € Q,p € S¥ . n €N,

(k)" an(z,p) — pn(z,p)* >6  and  wia(z,p) — p(z,p)* > 6.
Since 9 = 0 is a subsolution, we have
(kp)*cn(z,p) = vn(z,p)* <0 and  kic(z,p) — v(z,p)* <0

with a strict inequality outside of S (note that since I,, = I then
S, =S8).

Note that v and v, are non positive.

So, by using the appendix C.4, we can claim that the equation
g(x,7) = 0 has an unique solution in RT 7. Tt is given by:

— (nib(a:,p) — 2u(a:,p)z/(x,p)) + Az, p)
2 (I‘&%d(l‘,p) - ,U,(.T,p)2)

T(l’,p) =
where
A(z,p) = (k2b(z,p) — 2u(z, p)v(z,p))
— 4 (k2e(z,p) — v(z,p)?) (k2a(z,p) — p(z,p)?). (4.32)

Of course, the same result holds for the equation g, (z,7) = 0. We
denote r,(x,p) its solution. By using the adequate approximations,
we obtain the same expression as r(z, p).

"Let us fix z in Q\ S. For all our SFS Hamiltonians we have o (z) = argmin,H (z,p) and

H(z,V(z)) < 0. So, by continuity, coercivity and convexity of H, for all p # 0, the equation

(in » € R) H(z,VyY + rp) = 0 has two solutions: a positive one and a negative one. The

positive solution is the largest...



Chapter 4: A viscosity method for “classical” Shape from Shading

178

without boundary data

(d) For all z € Q\ S and p € S?, let us denote

On(z,p) =

If (z,p) is fixed in Q \ S x S%, then we have 6,(x,p) — 1, when
n — +o0o. As we explain in the sequel, the conclusion follows as soon
as we have proved that this convergence is uniform. In the following
example, we show that, with a few additional regularity hypotheses
(for example, I € C'(Q)), this step can be done by considering
some precise SF'S Hamiltonians. But this step is not obvious because
r(x,p) and r,(x, p) vanishes on S. Also, we do not have find a generic
proof.

Now let us prove that the conclusion follows as soon as 0, (z,p) — 1
uniformly when n — +o0.
Let us denote

0 = m_ll’l Hn(xap)a
 (z,p)EQ\SxSN

we have 6, — 1 when n — +oo. In other respects, by hypothesis
(H23), we have:

Vo € Q,Vg e Z(x), 3p > 1 such that pg € dZ(x).

By definition of 8,,(x,p), we have

bn (12 ) ) € 02,0,

Since 0 < 0, < by, (x, %), the hypothesis (H23) involves

So,
6,2(2)+ (1-6,)V% C  Zu(a).

So the hypothesis (4.26) holds.

Let us remind that above, we have shown that in general the hy-
potheses (4.25) also holds with the SFS equations (when the focal
length, the light source direction (...) are corrupted and when errors
vanish). (4.27) clearly holds. Therefore, theorem 4.5 applies. The
stability is then proved.
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Example : Let us consider the example of the Hamiltonian HBT;g with
L, — L. So

H(z,p)=I(x)\/1+p|>—2p-1+p-1-1

and

H,(z,p) =I(z)\/1+|p2—2p-1, +p-1, — 1.

Easily, one can verify that

r(z,p) = V1 - I(z)?

and that Vo € Q, Vp € SV,

Iz)y1—(p-1)? = (p- L)1 —I(x)* I(z)*—(p-1)°

I@)/I-(p-12=(p-D)y/1-1I()2 I(x)?—(p-1)*

Gn(x,p) =

If the brightness image I is differentiable and if VI is bounded on Q8
then, 9,0,(x,p) is bounded independantly of € Q, n € N and p on a
neighborhood of S¥V.

Proof. Let us denote s, =p-1, and s=p-1.
Note that s, — s uniformly with respect to p in a neighborhood of S¥.
Let us consider the function

T:-R — R

¥ o V=X —spV1— X (4.33)
V1—sX —sv/1-X2

V6 > 0 (and small enough), we have for all n large enough, |s,| < |s|+8 <
1, T is continuously derivable on [s+8, 1] and T” is bounded independently
of s,,°.

By the uniform coercivity assumption, there exists § > 0 such that for all
p in a neighborhood of SV and for all n large enough,

|sn| < |s| +6 < minI(z) <1.
€N

Since,
V(T o I)(z) =T'(I(2))V.I(2),

8for example, since Q is bounded, VI is bounded as soon as I € C'(Q).
9so independently of n and p in a neighborhood of SV .
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therefore V(T o I) is bounded independently of z,p and n. We can
conclude by using the fact that the function
2 2
1@’ (-
I(z)? = (p-1n)?
and its gradian are bounded independently of z in ©Q, n in N and p in a
neighborhood of S¥. O

In a same way, we prove that d,0,(z,p) is uniformly bounded. Let us
denote X = (z,p). So we have Vx6,(X) uniformly bounded. Moreover,

VXY €Dx SN, 10(X) = 0,(Y)] < [VxOulwL(X,Y),

where L(X,Y) is the Euclidean geodesic distance in Q x SV. Also, it
is well known [95] that for any fixed X € Q, Y ~— L(X,Y) is Lipschitz
continuous in Q2 x SN and that the Lipschitz constant does not depend on
X. Thus the functions 6,, are uniformly Lipschitz continuous. Therefore

the convergence of the sequence 6, is uniform.

Remark 38. In a general way, the above development is not system-
atically applicable when the images are noised and the corrupted images
I, converge toward I. For example, let us consider the Hamiltonian H g/tg
with I, — I and L = (0,0,1). So

H(z,p) = I(z)v/1+|p]* -1
and
Hy(z,p) = In(z)v/1+ [p|* - 1.
Yz € Q\ S, Vp € SV, we have
I(z) /1 —I,(x)?
I(z) J1-1(z)?

On(z,p) =

4.4 A general framework for the “classical” Shape
from Shading problem
In this section, we explain why the notion of state constraints is relevant when

we do not know the values of the solution and we describe this boundary con-
dition in a more intuitive way. Moreover, we show that the notion of SDVS
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provides a general mathematical framework unifying the previous mathematical
frameworks based on viscosity solution theory proposed in the SFS literature.

The main contribution of the notion of SDVS lies in the possibility to impose
the heights of the solution at the singular points when we know them'® and on
the possibility to “send to infinity” the boundary conditions when we do not
know them. This possibility also holds for all the points located on the boundary
of the image 9. Let us recall that in previous work [134, 127, 120, 119, 24,
55, 56], the various notions of viscosity solutions [continuous, discontinuous
or singular| are used with (finite) Dirichlet conditions on the boundary of the
images. Note that, in [96], Lions et al. have already used the notion of states
constraints, but they used it only to deal with apparent contours and in the
eikonal setup. More precisely, they use it only at the points x € 9 such that
I(x) = 0 and “% = —oo”. Here, we use the state constraints at each point of
I U S, where we do not know the value of the solution.

Let us focus on the points on the boundary 02 of the image. For simplicity,
let us assume that we know the values of the solution at all the singular points.
First, in contrast with the Dirichlet and Neumann boundary conditions, the
state constraints are interesting because they do not require any data. Let us
recall that the Dirichlet (respectively, Neumann) boundary conditions require
the knowledge of the values of the solution (respectively, the values of Vu(x) -
n(x), where n(x) is the unit inward normal vector to J2 at the point x) on
the boundary of the domain. Also, we rarely have such data at our disposal.
Second, the notion of state constraints is also interesting because it provides a
relevant solution as soon as the image is the one of a “surface” u which verifies
the supersolution constraint on 9€2. Also, as we explain below, this constraint is
very weak and it is commonly verified with real observable surface. Recall that
an equivalent way to define the viscosity supersolution constraint at a point
x € 0F2 is to require that

H(z,6) >0, V¢e D u(x) (4.34)

where

D u(z) = {5 € RY| lim inf uy) —u@) — (§y—2) 0}
y—z,yeQ ly — x|
(see for example [7, 5, 29]). This constraint can be roughly interpreted as
following: For all plane P subtangent to u at x, the gradient VP wverifies
H(z,u(x),VP) > 0. To better understand the constraint (4.34) for x in 0,
let us consider the particular case of a differentiable solution.

10This is impossible with discontinuous viscosity solutions; see the second part of section
2.2.6.3. It is possible with continuous viscosity solutions but compatibility conditions are
required. In [24, 55, 56], Falcone et al. “send” systematically the singular points “at the
infinity”.
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Proposition 4.6 Let u be a solution differentiable on Q of the HJIB equation
associated with the Hamiltonian

H(z,p) = EEE{_f (z,a).p — l(z,a)}. (4.35)

and denote by ag(u,x) the optimal control of (4.35) associated to u at the point
x (i.e. ag(u,x) is the control a € A mazimizing —f(x,a) - Vu(z) — l(z,a)). If
for x € 09,

f(z,ap(u,x)) - n(x) >0, (4.36)

where n(x) is the unit inward normal vector to OQ at the point x, then (4.34)
18 satisfied.

In other words, the surface u is a supersolution on 9Q (i.e. u verifies the state
constraints on 9Q) as soon as the dynamic of the optimal control (associated
with ) points inward of 2 at all points z on the boundary 9. In the classical
example of the Eikonal equation, the optimal control associated to a differen-
tiable function wu is

Vu(z)

V()|

f(ma CL()(’U,,.’,E)) = —CL()(U,,.’,E) = —

So in this example, u is a supersolution on OS2 as soon as for all x on 0X2,
the gradient Vu(x) points outward of Q, i.e. roughly speaking, when u(z)
“increases” when x come up to 9S2. More generally, (4.36) can be globally
interpreted as “u(x) — ¢(x) increases when x come up to 9Q”.

In other respects, let us note that proposition 4.6 shows that the no-
tion of state constraints coincides with the constraint formulated by Dupuis
and Oliensis in assumption 2.1 of [47] and introduced in the case of C! solutions.

Proof of Proposition 4.6. Let z € 9 be such that (4.36) is satisfied. We
have for ¢ <0
H(z,Vu(x)+ cn(x)) = H(x, Vu(x) + en(x)) — H(x, Vu(x))
> —f(z,a0(z,u)) - (Vu(z) + en(z)) — Uz, ao(z, u))
— (=f(&; a0(, w)) - Vu(z) = Iz, ao(z, u)))
= —f(z,a0(z,u)) - en(z) 2 0

Moreover, since u is differentiable on €2, we have
D u(z) ={¢ | £ = Vu(z) + en(x), ¢ <0}.

Thus, for any £ € D™ u(x),
H(z,£) >0
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So the constraint (4.34) holds. O

Now, let us focus on the singular points. In section 4.2.5, we have denoted by
IT, the set of points in €2 such that a constant function cannot be S-subtangent
to u — 1 at z. Let us remind that if z ¢ S or Bg(x) = {x}, this means that =
cannot be a local minimum point for u — . For this reason we have called IL,
the set of minimum points of u — 1. We have also set

[y ={z € Q| Jy € Bs(x) verifying u(z) > p(y) + ¥(z) —¥(y)}
and demonstrated

Theorem 4.6 Let u be a (discontinuous) viscosity solution of (4.2)-(4.5) such
that u(x) < o(x) for any x € S. If I, C Ty then u is the SDVS of (4.2)-(4.5).

In other words, the SDVS is the unique (discontinuous) viscosity solution u of
(4.2)-(4.5) (verifying Vz € S,u(x) < ¢(x)) without local minima on © — T',,.
Of course, the reciprocal statement of theorem 4.6 holds. As we explain in
section 4.2.5, an important interpretation and consequence of theorem 4.6 is
the following:

The (discontinuous) viscosity solutions of (4.2)-(4.5) can be characterized only

by their minima

(see section 4.2.5). Thus this result extends consistently the work of
Dupuis and Oliensis [47]. In [47], the authors characterize the C*
solutions by their values at the local minimum points. Here, we
have extended this characterization to the (discontinuous) viscosity
solutions.

Finally, let us emphasize that the notion of SDVS allows to unify the various
theories based on viscosity solutions used for solving the SF'S problem. Indeed,

o in the case where the Dirichlet Boundary Conditions (DBC) are finite on
O0US and the compatibility condition (see [95]) holds, then the SDVS of
(4.2)-(4.5) is the continuous viscosity solution used by [134, 96, 127, 120];

o in the case where the DBC are finite on Q2 and where there do not exist singu-
lar points, then the SDVS of (4.2)-(4.5) coincides with the discontinuous
viscosity solution used by [120, 119, 123] (the compatibility conditions are

no more required);

o when the DBC are finite on the boundary of the image and state constraints
are imposed at the singular points, the SDVS of (4.2)-(4.5) corresponds
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to the Camilli and Siconolfi’s singular viscosity solutions [26, 23, 27] used
by Falcone et al. [24, 55, 56];

o as we have demonstrated above the SDVSs coincide with the C! solutions of

(4.2) verifying the assumption 2.1 of Dupuis and Oliensis (when smooth
solutions exist). Therefore, when there does not exist C' solutions'!, the
notion of SDVS allows to extend consistently the work of Dupuis and
Oliensis [47] to the notion of viscosity solutions. Also, the SDVS coin-
cides with the value function (of the associated optimal control problem)
considered in [47].
Lastly, let us note that in [47], the authors introduce the SF'S Hamiltonian
H"DT/% (instead of dealing with H}’{/t#) in order to obtain a Hamiltonian
with a nonnegative Legendre transform. Also, most of their proofs are
based on this hypothesis (H*(z,q) > 0). Here, we also relax this con-
straining assumption: we can deal with all the classical SF'S Hamiltonians,
in particular with H;’z’”/t}‘.

As a consequence, all the theoretical results of Falcone et al. [24, 55, 56]12,

Rouy et al. [134, 96]'3, Prados et al. [127, 120]'* and Dupuis et al. [47] are

automatically extended to the “perspective SFS” (use Hp'"® and Hff/;f)

Finally, one can conjecture that by using the work of [78, 112, 146, 28], the no-

tion of SDVS can be extended to solve SE'S problem with discontinuous images.

This would be very difficult without the tool of viscosity solutions.

4.5 Minimal and global viscosity solutions

The SDVS allows to send the boundary conditions at +oo, thereby obtaining
the “maximal” solution. So for obtaining the “minimal” solution, it can seem
natural to send them at —oco. Nevertheless with such boundary conditions there
do not exist solutions. In other respects, the viscosity solutions of the equation
H(z,Vu) =0 are different from the viscosity solutions of —H (z, Vu) = 0. For
example, the opposite two equations on |0, 1[ associated with Hy(z,p) = |p| —1
constrained by u(0) = w(l) = 0 have a unique viscosity solution given by
figure 4.3. By schematizing, the solution of H(x, Vu) = 0 allows upward kinks
when —H (z, Vu) = 0 allows downward kinks. Moreover, it is well known that:

HTet us recall that, because of noise, of errors on parameters (focal length, light position,
etc) and of incorrect modeling (interrecflections, nonpunctual light source, nonlambertian
reflectance...) there never exists such smooth solutions in practice.

12Who only deal with “orthographic Shape from Shading”.

3Who only deal with “orthographic SFS” by using H}’{/tqif

"Who deal with Hg/7: and Hp/y.

13Who deal with “orthographic SFS” by using ng/tg. Nevertheless let us note that their

work deals more generally with convex Hamiltonians with nonnegative Legendre transform.
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[u solution of — H(x,p)] <= [—wu solution of H(z, —p)].

Thus it is natural to define the “minimal” solution of H(x,p) by the opposite of
the SDVS of H(x,—p). Obviously, the Hamiltonians H(x, —p) associated with
all the SFS Hamiltonians are particular cases of the generic SF'S Hamiltonian.
Therefore all the previous theorical and algorithmic results hold for the “mini-
mal” SFS solutions.

The interest of the notion of the “minimal” solution is twofolds: first it allows to
recover surfaces which are “globally” concave (whereas SDVSs are “globally”
convex). The second interest of these “minimal” solutions lies on a possible
extension of the “global algorithm” of Oliensis [108, 47].

a) solution with H; b) solution with —H;

Figure 4.3: solutions of H versus —H; minimal solutions

4.6 Numerical approximation of the SDVS of the
“classical” Shape from Shading problem

This section explains how to compute a numerical approximation of the
SDVS of the generic SFS equation. This requires four steps. First we deal
with the state constraints. Second, we “regularize” the equation. Third,
we approximate the “regularized” SFS equation by approximation schemes.
Finally, from the approximation schemes, we design numerical algorithms.

4.6.1 Management of the state constraints

In this section, we explain how to deal with the state constraints in practice.
In particular, we show that, in this setup, the state contraints can always be
rewritten as Dirichlet boundary conditions.
Let u be the SDVS of equation (4.2)-(4.5):

H(z,Vu)=0 VzeQ,
u(z) =p(r) VYredQusS
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In section 4.2, we have seen that w is Lipschitz continuous and then bounded
on 2. Let M € R an upper bound of u on € such that

VeeQ, u(r)<M-1.
Now, let us consider ¢ the real function defined on Q2 U S by

¢(x) = min(M, p(x)),

and let @ be the SDVS of equation

H(z,Vu)=0 VzreQ,
u(z) =@p(xr) VredUsS.

Following these notations, we have

Proposition 4.7 i and u coincide on €2, i.e.

Vr € Q, u(z) = u(z).

Proof. Thank to the strong uniqueness of the SDVS (theorem 4.3), it is
sufficient to prove that @ is an SDVS of (4.2)-(4.5). Let us recall that the
uniqueness of the SDVS only holds on € but not on Q. Also, % and u can take
different values at some points of 9f).

First, since ¢ < ¢, by the maximum principle (theorem 4.2) we have,

Ve € Q, u(zr) < u(x).
e 7* is a subsolution of (4.2)-(4.5):

o 4* is a subsolution of (4.2) on 2 — S;

o for all zp in 92 U S such that @*(xg) < @(xg) we have trivially
@*(z0) < p(xo)-

o for all zp in 99 such that a*(zg) > P(xg), u* verifies the subsolution
property.

e i, is a supersolution of (4.2)-(4.5):

o 1y is a supersolution of (4.2) on Q2 — S;

o Let y € 9Q U S be a point such that @.(y) > ¢(y) = min(p(y), M).
So 4(y) > M or a.(y) > ¢(y). But a.(y) > M is impossible
(because, for all z € Q, i(z) < u(z) < M — 1, then for all y € Q
Ux(y) < M —1 < M). Therefore @,(y) > ¢(y)-
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o Let zyp € QU S. If there exist y € Bg(xp) such that u.(y) > &(y).
then by the previous item, u.(y) > ¢(y). Else, the singular viscosity
property holds for @, at xg.

Therefore i, is a supersolution of (4.2)-(4.5) for all points xy €
oNUS.

O

Therefore, equations (4.2)-(4.5) with some state constraints (i.e. such that for
some r € QU S p(x) = +00) can rewritten as equations without state con-
traints; i.e with (finite) Dirichlet boundary conditions on the whole set QU S.
So in practice, we always consider (finite) Dirichlet boundary conditions: when
we know the values of the solution on 92 we can transfer these informations
in ¢; when we do not have these data and we want to compute the solution
of with state contraints, we impose ¢ to be a “great” constant. In our (C++)
code, this constant is fixed as the value of FLT_MAX. Let us emphasize that by
modifying ¢ in such a way, we do not change the solution of (4.2)-(4.5) neither
the approximation computed by our algorithm.

4.6.2 Regularization of the generic SFS equation

For an intensity image I and ¢ > 0, let us consider the truncated image I,
defined by I.(z) = min(I(x),1 — ). By using the stability result of theorem
(4.5), we have proved in section 4.3.2 that for all SFS Hamiltonians, the clas-
sical discontinuous viscosity solution'® associated with the image I, converges
uniformly toward the singular viscosity solution associated with the image I,
when ¢ — 0. Thus for approximating this equation, we can use the tools we
have developed in chapter 3.

4.6.3 Approximation schemes for the nondegenerate SF'S equa-
tions

Let us consider the “regularized” generic SFS equation. In chapter 3, we design
SFS monotonous approximation schemes which are always stable (existence of
a solution). Moreover, we also prove that (as soon as the intensity image is
Lipschitz continuous and the Hamiltonian is coercive) the solutions of these
schemes converge toward the unique (classical) discontinuous viscosity solution
of the adequate nondegenerate SFS equation when the mesh size vanishes.

1 . . . .
Sequation associated with I, is no more degenerate.
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4.6.4 Numerical algorithms for the generic SFS problem

In chapter 3, we design algorithms that compute some numerical approxima-
tions of the solutions of the considered schemes. Moreover, we prove that the
computed numerical approximations converge toward the solution of the con-
sidered schemes.

4.6.5 Examples of SFS results obtained from synthetic images

Let us recall that our method does not necessarily require boundary data (ex-
cept at least at one point'” in 9QUS ). Figure 4.4 shows some reconstructions
of the Mozart face when using the exact boundary data on the boundary of
the image and at all singular points (Fig.4.4-c), when using the exact boundary
data at all the singular points and state constraints on the boundary of the
image (Fig.4.4-d), and with no boundary data, except for the tip of the nose
(Fig.4.4-e). Let us remark that, as the theory predicted, our algorithms show an
exceptional robustness to noise and errors on the parameters; This robustness
is even bigger when we send the boundary to infinity (apply the state constraints).
Figure 4.5 displays a reconstruction of Mozart’s face from an image perturbed
by additive uniformly distributed white noise (SNR ~ 5) by using the implicit
algorithm (see [119]) with the wrong parameters 1. = (0.2,—-0.1) and f. = 10.5
(focal length) and without any boundary data. The original image Fig.4.5-a)
has been synthetized with 1 = (0.1,—0.3) and f = 3.5. The angle between the
initial light vector L and the corrupted light vector L. is around 13°.

4.7 Toward applications of Shape from Shading

Now that we have removed the requirement of the knowledge!® of the data
on the boundary of the image 02, we can apply our method to real images.
Also, we can suggest some applications of our SFS method. Note that, here,
we do not provide complete descriptions, but we hope that the results will
convince the reader of the applicability of our SFS method to real problems.
Let us emphasize that all the results we present in this section are obtained

from real images:

Note: When we apply SFS methods to real images we assume that the
camera is geometrically and photometrically calibrated. In our experiments of
sections 4.7.1 and 4.7.2 we know the focal length (5.8 mm) and approximately
the pixel size (0.0045 mm; CCD size = 1/2.7”) of our cheap digital camera

"Let us remind the reader that the boundary condition ¢ must verify ¢ # co.
18t us emphasize that we must at least choose the pixel (a singular point) which will have

the mimimal depth...
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Figure 4.4: Reconstruction of Mozart’s face with and without boundary data.
a) original surface; b) image generated from a) [size ~ 200 x 200]; c) recon-
structed surface from b) with the implicit algorithm (TA) after only 3 iterations,
using the exact boundary data on the boundary of the image and at all sin-
gular points; d) reconstructed surface by the TA (after 3 iterations) with state
constraints on the boundary of the image; e) reconstructed surface by the TA
(after 3 iterations) with state constraints on the boundary of the image and at
all the singular points except at the one on the nose.
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Figure 4.5: Reconstruction of Mozart’s face from a noisy image with the wrong
parameters . = (0.2,—-0.1) and f. = 10.5.

a) Image generated from Mozart’s face represented in Fig.4.4-a) with 1 =
(0.1,—0.3) and f = 3.5 [size ~ 200 x 200]; b) noisy image (SNR ~ 5); ¢) re-
constructed surface from b) after 4 iterations of the implicit algorithm, using
the incorrect parameters 1. = (0.2,—0.1) and f. = 10.5, and with state con-
straints on the boundary of the image and at all the singular points except at
the singular point on the nose.

(Pentax Optio 330GS). In section 4.7.3, we choose some arbitrary reasonable
parameters. Also, note that there exists classical methods to calibrate photo-
metrically a camera [98, 99]. In our tests, we do not use them, but we make
some educated guesses for gamma correction (when the photometric properties
of the images seem incorrect).

4.7.1 Document restoration using SF'S

In this section, we propose a reprographic system'® to remove the geometric and
photometric distortions generated by the classical photocopy of a bulky book.
A first solution has been proposed by Wada and coworkers [163] who deal with
scanner images involving a complex optical system (with a moving light). Here,
the acquisition process we use is a classical camera®®. The book is illuminated
by a single light source located at infinity or close to the optical center (follow-
ing the models we describe in section 2.1.3). Note that Cho et al. [31] propose

21

a similar system but they use two light sources The acquired images are

then processed using our SFS method to obtain the shape of the photographed

19Suggested to us by Durou (private communication); see [36].

2ONote that a camera snapshot is practically instantaneous, whereas a scan takes several
seconds.

21We can also note that the numerical method proposed by [31] requires that global varia-

tions of depth only exist along one direction. Our method does not require this hypothesis.



4.7 Toward applications of Shape from Shading 191

page. Let us emphasize that, for obtaining a compact experimental system, the
camera must be located relatively close to the book. Therefore the perspective
model is especially relevant for this application. Also, the distortion due to the
perspective clearly appears in the image a) of figure 4.8.

In our SF'S method we assume that the albedo is constant. In this application,
this does not hold because of the printed parts. Before recovering the surface
of the page, we therefore localize the printed parts by using image statistic
(similar to Cho’s [31])22 and we erase them automatically by using e.g. the
inpainting algorithm of Tschumperlé and Deriche [160]. This step can produce
an important pixel noise. Nevertheless, this is not a problem for us because, as
figure 4.7-b) shows, our SFS method is extremely robust to pizel noise: figure
4.7-b) displays the result produced by our algorithm (after 10 iterations) using
the image of a text page with its pigmented parts, Fig.4.7-a). In this test,
characters are considered as noise. Note that one could say that such a restora-
tion system (based on SFS) is flawed because it does not use the information
provided by the rows of characters. This is partially true but nevertheless, for
pages containing few rows of characters but a lot of graphics and pictures (sep-
arated by large white bands??), such a SFS method could provide a simple and
efficient solution.

Once we have recovered the three-dimensional shape of the page, we can flatten
the surface by using e.g. the algorithm of Brown and Seales?* [20]. Note that
at each step of this restoration process (3D reconstruction and flattening) we
keep the correspondences with the pixels in the image. Thus, at the final step,
we can restore the printed parts.

To prove the applicability of this method, we have tested it on a page mapped
on a cylindric surface?® (we have used our cheap camera and flash in an approxi-
mately dark room). Figure 4.8 shows the original image in a), the reconstructed
surface (after 10 iterations) (textured by the ink parts of a)) in b) and an ortho-
graphic projection of the reconstructed surface, in ¢). Figure 4.8-c) indicates
that our method allows to remove the perspective and photometric distortions.

4.7.2 Face reconstruction from SFS

The interest of the SFS methods for some applications dealing with faces has
been demonstrated in e.g. the work of Zhao and Chellappa [173] (who use
symmetric SFS for illumination-insensitive face recognition), by Smith and Hancock

[143] (who use SFS needle map for face recognition), and by Choi and coworkers

22Most probably, we can also achieve this step by using the excellent work of Bell and
Freeman [12] who propose a learning-based approach.

23This is often the case for scientific documents.

24Not yet implemented, because of time.

25For emphasizing the perspective effect.
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b)

a

Figure 4.6: Singular points of the profile of a face. a) Singular points (6) for a
homogeneous horizontal light; b) Singular point for a point light source at the
optical center.

[33] (who use SFS for determining the face pose). In this section we propose a
very simple protocol based on SFS for face reconstruction. We use one camera
equipped with a basic flash in an approximately dark place. As shown in figure
4.6, the interest of this method lies in the fact that, with such a protocol, the
generated image should contain a unique singular point (if the distance of the
face to the camera and the focal length are sufficiently small). Therefore, the
propagation of the height information starts from this unique singular point.

We have tested our generic algorithm on a real image of a face?® located at
~700 mm of the camera in an approximately dark place (see Fig.4.9-a)). Figure
4.9-b) shows the surfaces recovered by our generic algorithm (after 5 iterations)
with the perspective SF'S model with a point light source at the optical center.
As in the previous application, the albedo is not constant over the whole image.
Therefore we removed the eyes and the eyebrows in the image by using e.g. the
inpainting algorithm of Tschumperlé and Deriche [160]. Moreover, note that
this step can be automated by matching the image?” to a model image already
segmented. Figure 4.9 shows in c) the surface recovered from the image obtained
after the inpainting process.

4.7.3 Potential applications to medical images

In this section, we are interested in applying our SFS method to some medical
images. Our interest is motivated by the work of Craine et al. [38], Okatani
and Deguchi [103], Forster and Tozzi [58], Smithwick and Seibel [144], Yeung
et al. [169], Gillies et al. [149, 86] and Yamany et al. [168]. For illustrating the
relevance of the “perspective SFS” modeling with the light source located at

26Glightly made-up to be more Lambertian.
2"We can use for example the very robust multi-modal and non-rigid matching method

proposed by Hermosillo and Faugeras in [62].
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Figure 4.7: a) Real image of a page of text [size ~ 800 x 800]; b) Surface
recovered from a) by our generic algorithm (without removing the printed parts

of a)).

infinity, we apply our algorithm to an endoscopic image of a normal stomach?®
(see figure 4.10-a)). In fact, for producing such an image, the light source must
be very close to the camera, because of space constraints. In figure 4.10-b),
we show the result obtained (after 3 iterations) by our generic algorithm in
the perspective case with the light source at the optical center. In figure 4.10-
b), the surface is visualized with a light source located at the optical center.
This reconstruction looks quite good. To further show the quality of the recon-
struction, we display in c), the surface b) with a different illumination. Finally,
notice that the stomach wall is not perfectly Lambertian (see Fig.4.10-a)). This
suggests the robustness of our SFS method to departures from the Lambertian
hypothesis.

28Suggested by Tankus and Sochen (private communication) and downloaded from
http://www.gastrolab.net/.



Chapter 4: A viscosity method for “classical” Shape from Shading
194 without boundary data

Figure 4.8: a) real image of a page containing pictures and graphics [size ~
2000 x 1500], b) surface (textured by the printed parts of a)) recovered from
a) by our generic algorithm (after having removed and inpainted the ink parts
of a)). ¢) An orthographic projection of the surface b): the geometric (and
photometric) distorsions are significantly reduced.

Figure 4.9: Face reconstruction from SFS: a) Real face image [size ~ 450 x600];

b) surface recovered from a) by our generic algorithm with the perspective
model with the light source located at the optical center; c) surface recovered
by our generic algorithm with the same modeling hypotheses after the inpainting
process.
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LT

-

b) | c)

Figure 4.10: Reconstruction of a normal stomach: a) Original image of a
normal stomach [size~ 200 x 200]; b) surface recovered from a) by our generic
algorithm with the perspective model and with the light source located at the
optical center; c) surface b) visualized with a different illumination.

4.8 Conclusion and contributions of chapter 4

e In the first part of this chapter, we have slightly modified the notion of sin-
gular viscosity solutions developped in [77, 26, 23, 27] in order to obtain a
discontinuous viscosity solution on a domain {2 containing some singu-
lar points without necessarily requiring data on the boundary 0f).
Thereby we have defined the notion of SDVS. We have demonstrated the
existence and the uniqueness of the SDVS for a wide class of convex
Hamilton-Jacobi equations H(x,Vu) = 0. Some stability results have
been proved. In other respects, we have shown that this new framework
allows to characterize the classical discontinuous viscosity solu-

tions by their “minima”.

e In the second part of this chapter, we have shown that the notion of SDVS
allows to unify the various theoretical results proposed in the Shape from
Shading literature. More precisely, it unifies the work of Lions et al.
[96, 134], of Dupuis and Oliensis [47], of Falcone et al. [24, 55, 56] and of
Prados and Faugeras [127, 120]. Thus, it also allows to generalize this
previous work to all the “classical” SFS Hamiltonians, in particular to the
“perspective SFS” ones.

Moreover, let us point out that the notion of SDVS is really more
adapted to the SFS specifications than the other classical notions
of weak solutions used in chapter 2 and in [96, 134, 24, 55, 56, 127, 120].
In particular, it does not necessarily require data on the boundary
of the image and at all the critical points. Nevertheless, let us note
that for characterizing and computing a solution we need to fix at least

one point??. Also, when the image contains several singular points, to

29Gince the boundary condition ¢ must verify ¢ # co.
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be able to compute an approximation of the original surface, we need to

know the depth of all its points of local “minima”.

Finally, using a stability result, we have shown how to approximate
numerically the SDVS of the “classical” SFS equations. Also, we
have proved the convergence of the computed approximations toward the
SDVS.

e We have successfully applied our SFS method to real images and we have
suggested that it may be useful in a number of real-life applications.

e Note: our ECCV’04 paper [124] is extracted from this chapter. Several other
communications have been based on its content; let us cite for example
[126, 125]. Some journal articles are in preparation.



Chapter 5

Toward more realistic
modelizations.

Shape from Shading: a
well-posed problem?

Before starting the main parts of this chapter, let us emphasize on the ill-
posedness of the “classical” formulation of the Shape from Shading problem.
As we have underlined in the introduction (chapter 1), the resolving of the
Shape from Shading problem is confronted with some ambiguities. In particu-
lar, when the lighting and the reflectance of the scene are unknown, its exact
3D structure cannot be recovered. This difficulty is well illustrated by the
concave/convex ambiguity displayed in figure 1.2 and by the “Bas-relief Ambi-
guity” demonstrated by Belhumeur and his coworkers [11]; see figure 1.3. Also,
it is reasonable to assume that we know all the parameters of the light source,
the surface reflectance and the camera. Nevertheless this knowledge is not suf-
ficient to get rid of some concave/convex ambiguities. In effect, even though we
assume complete control of the experimental setup, we are hampered by this
kind of difficulty. For example, let us focus on the “Eikonal” framework; i.e. we
assume that the camera performs an orthographic projection of the scene, that
the surface is Lambertian and that the light source direction® is the same as
that of the axis of the camera. In this setup, a concave/convex duality clearly
appears, see Figures 5.1 and 5.2. The surfaces represented in Figure 5.1-a) and
in Figure 5.1-b) yield the same image. This also holds for the more complex sur-
faces represented in Figures 5.2-a),5.2-b), 5.2-¢) and 5.2-d). In these figures, the

'We consider here that the light source is at infinity.
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various surfaces have been obtained from the surfaces a) by applying horizontal
symmetries. Today, this concave/convex ambiguity is completely understood.

Figure 5.1: Concave/convex duality in the Eikonal framework: The surfaces a)
and b) yield the same image.

It is due to the existence of the singular points that we have described in section
2.2.6. Let us remind that these points are the pixels of the image corresponding
to points of the surface such that the surface normal coincides with the light
direction. These points x have maximal brightness: I(x) = 1. In effect, the
presence of the singular points is due to the modeling. In particular it is due
to the fact that the authors assume that the scene is illuminated by a single
point light source located at infinity (or to the fact that they neglect the 1/r2
attenuation term in the brigthness equation, see section 5.1). Also, this kind
of ambiguity holds for all the “classical” SFS modelings. In particular, it holds
for the orthographic SFS (see section 2.1.1) as well as for the perspective SFS
(see sections 2.1.2 and 2.1.3) problem. In particular, it holds even when the
light source direction does not coincide with the camera axis.  Nevertheless,
in contradiction with all these results, we are going to prove now that the Shape
from Shading problem can be well-posed. Not surprisingly, this new result is
obtained by considering a more realistic image formation model.

These last ten years, various authors have attempted to improve the ap-
plicability of the Shape from shading methods by modeling the physics of the
problem, in particular the illumination process, in a more realistic manner. In
a similar vein, Bakshi, or Lee and Kuo [4, 92] propose a solution for some non-
Lambertian Shape from Shading problems. Some authors take into account the
interreflections [147, 59]. Other authors deal with multiple light sources [155].
Finally, various solutions have been proposed for taking into account the per-
spective effect [114, 91, 61, 165, 171, 120, 152, 124, 37, 153]. Looking at some
recent Shape from Shading surveys?, one may have the feeling that the work of
[4, 92, 147, 59, 155, 114, 91, 61, 165, 171, 120, 152, 124, 37, 153] has appeared

*For example [172, 49].
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c) d)

Figure 5.2: Consequences of the concave/convex duality in the Eikonal frame-
work. Examples of more complex surfaces. The surfaces a), b), ¢) and d) yield
the same image...
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too early, insofar as the existing Shape from Shading methods dealing with the
traditional framework, i.e. Lambertian surface + light source at infinity + or-
thographic projection, are quite unsatisfactory® even with very simple synthetic
images verifying the modeling hypotheses. Also, since we are not able to solve
the simplest version of the SFS problem, it seems unreasonable to attempt to
solve this problem by modeling it in a more complex way. Here, we hope to
remove this feeling.

One of the reasons why SFS is ill-posed is the over-simplification in the
modeling. Now, we are going to prove that by using more realistic hypotheses
than the classical ones, the Shape from Shading becomes well-posed (modulo
some weak a priori on the creases of the solution near the boundary). As a
consequence it becomes easier to solve. In detail, we assume that the camera is
a pinhole and that the light source is located at the optical center. Nevertheless,
contrary to the modeling of section 2.1.3 (which is also the modeling associated
to the report [122]), now, we do not neglect the 1/r? attenuation term (see
section 5.1). As proved in section 5.3, this “new” term makes the problem
better posed. In particular, the notion of singular points does not make sense
anymore and the concave/convex duality disappears.

This chapter first describes a complete theoretical study of the Shape from
Shading problem in this particular setup (section 5.3). Second, it proposes an
ortginal and rigorous numerical method allowing to approximate numerically
the solutions of the problem. We detail a stable and consistent approxima-
tion scheme and we describe a provably convergent numerical algorithm (sec-
tion 5.4). Finally, we demonstrate the practical relevance of our method by
displaying some experimental results (section 5.5).

5.1 More realistic modeling of the SFS problem

In order to obtain a more realistic modeling of the SFS problem, we are going
to recall the image formation process. To do this, we will upstream the light
ray from the optical system to the light source. For more details we refer to
[65].

o  We start with the relationship between the image brightness and the sur-

face radiance. This relationship is well-known, see for example [65]:

7 (d\?
Ei=L,~ |- 4 1
4(f> cos” a (5.1)

where FE; is image irradiance, which is assumed to be equal to the image
brightness. L, denotes the surface radiance*. d is the diameter of the

3See the results shown in [172, 49].
“Ie. the radiance of the surface in the direction of the viewer (the optical center).
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(e]

(¢]

lens, f is the focal length and « is the angle between optical axis and the
line of sight to a surface point of a corresponding image point. Because

4« is easily derived from the image coordinates and can be

the term cos
compensated for, image brightness is substantially proportional to surface

irradiance.

Next we assume that the scene is illuminated by a single point light source
and that there are not interreflections. In this case, the relationship be-
tween the radiance L, of a point of the surface (in the view direction) with
the surface normal (at this point) and the light source direction is gen-
erally described by the Bi-directional Reflectance Distribution Function
(BRDF):

L, =F(0;,60,,¢,)E; , (5.2)

where Ej is the irradiance of the surface and the angles 6;,6, and ¢, are
described in Figure 5.3. In this figure N is the object surface normal, L
is the direction to the light source, and V is the direction to the viewer.
#; is the angle between L and N, and 6, is the angle between V and IV,
respectively. ¢, is the azimuthal angle between L and V with respect to

the surface normal V.

Light Source

N~

Camera

Object Surface

Figure 5.3: The surface local coordinate system (see [103, 65]).

A fundamental example: An ideal Lambertian surface is one that
appears equally bright from all viewing directions and reflects all incident
light, absorbing none. Its BRDF is then a constant (1 , see [65]) and we
have:

L,=—E,. (5.3)

Finally, we describe the irradiance E of the surface point. We have (see
[65]):
cos 0;

Bo=1Ip —

(5.4)
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where Ij is the intensity of the light source and r is the distance between
the light source and the considered surface point.

In summary, combining (5.1),(5.2) and (5.4), the brightness image is given

by:
cos 0;

E; = a1 F(6;,0r,¢r) 7 (5.5)

where o1 is a constant coefficient related to the parameters of imaging
system and the intensity of the light source.
For a Lambertian surface, the brightness image is then:

cos 0;
rz ’

E; = oy (5.6)

o9 being a constant coefficient.

Remark 39.  In the case where the light source is located far from the
surface®, the variations of the brightness of the image is essentially due
to those of cos8; and we can assume that r is constant. In this case the

brightness image is given by:
Ei = 03 F(ei,ew,@n) COS@Z', (5.7)

where o3 is a constant coefficient. For a Lambertian surface, the bright-

ness image is even simpler:
EZ' = 04 COS 92 (5.8)

(04 being a constant coefficient).
In effect, this setup corresponds exactly to the one of the “classical” Shape

from Shading problem we have considered in chapter 2.

Let us recall that in the Shape from Shading literature, the surface is always
assumed Lambertian (except, to our knowledge, for very few papers [4, 102, 92])
and the light source is unique, reduced to a point and located at infinity (except
for an extremely small number of papers [102, 163, 31]). To simplify even
more the problem, the authors usually assume that the camera performs an
orthographic projection of the scene. As Okatani and Deguchi [102] and as in
section 2.1.3, in this chapter we model the camera as a pinhole (therefore we
assume that the camera performs a perspective projection of the scene) and we
assume that the scene is illuminated by a single point light source located at
the optical center (hence not at infinity). Let us remind that this modeling is

%i.e. the normal vector N(z) (or cos ;(x)) “varies more than” the distance 7(z), when the

point x parameterizes the surface.
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quite relevant for many applications. In particular, we show in section 4.7 that
it nicely corresponds to the situation encountered in some medical protocols
like endoscopy and to the situation encountered when we use a simple camera
equiped with a flash; see section 4.7, for more details. Finally, let us emphasize
that, contrary to the “classical” modeling of the SF'S problem, in the sequel we

do not neglect the ;15 term.

5.2 New mathematical formulation of the SF'S prob-

lem

In this section, we formulate the problem as that of solving a Partial Differential
Equation (PDE). More precisely, we describe some Hamilton-Jacobi equations
arising from equation (5.6) and we detail the associated Hamiltonians.
Exactly as in section 2.1, let us pose Q be an open subset of R?. Let us remind
that ©Q represents the image domain, e.g., the rectangle |0, X[x]0,Y[. The
surface & is parameterized by the function S : Q — R3:

f u(x) (2, — )

as in section 2.1.3. Let us recall that f > 0 denotes the focal length, see Figure
2.2.
As in section 2.1.3, we show that for such a surface &, a normal vector n(z) at

S(x) =

the point S(z) is given by:

fu(x) fu(x)
Remark 40. It is possible to parameterize differently the surface &; for

example, we can define
S(x) = u(z)(z,— f), Vz € Q.
In this case, we have

n(z) = ( fVu(z), u(z)+z- Vu(z)).

For y € R®, we denote L(y) the unit vector representing the light source di-
rection at the point y. Since we assume that the light source is located at the
optical center, the vector L(S(z)) is equal to®:

L(S(z)) = 1/y/|z* + f* (=, f).

5We choose L(S(x)) such that its third coordinate is positive.
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Now, let us assume that the surface is Lambertian. If we denote I(z) = E;(:) ,
the brightness equation (5.6) becomes:
cos 0;
I(x) = =2 (5.9)
T
Since cos 8; is the dot product
cosd; = L(S(x)) - n(z)
n(z)|
and
r= fu(z),
we obtain from (5.9) the following PDE:
1
I(z) = wz) (5.10)

VIFVu@)? + (Vu(e) - 2)2/Q(x)? +u(x)? fu(x)®’

where Q(z) = / f2/(|z|> + f2). For convenience we rewrite Equation (5.10)
as:

) 72 VI Vu(@)? + (Vu(e) - 2)°)/Q(2) + u(x)”
u(z)

If we assume that the surface G is visible, i.e. in front of the optical center, u

—u(z) 2+ I(x =0. (5.11)

is strictly positive, see Figure 2.2. This allows us to simplify equation (5.11) by
using the change of variables v = In(u):

e 4 1)y V@ + (Vol@) o) + Q) =0, (512)

where J(z) = I(gszm'; is a positive function. To this equation, we associate the
Hamiltonian

Hp(z,u,p) = —e > + J(x)/ 2[p|> + (p- 2)? + Q(x)*.

Remark 41.  In the case where we parameterize G by S(z) = u(z)(z, — f),
we obtain the equation

—e ) 4 J(2)y/ VU@ F (Vola) o+ 12=0,  (5.13)

instead of (5.12), and the Hamiltonian

Hp(z,u,p) = —e 2 + J(z)y/ F2|p|2 + (p -z + 1)2

"We assume that all the parameters of the camera (diameter of lens, focal length...), of the

light source and of the surface (albedo) are known. Therefore o2 and hence I(x) are known.
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instead of Hp. All the results presented in this chapter can be obtained with
either equation (5.12) or (5.13) and the associated Hamiltonians. Since the
Hamiltonian H is mathematically simpler than H7 8 therefore in the sequel,

we work only with the first one and its associated equation.

In [102, 103], Okatani and Deguchi do not formalize the problem with PDEs
(in particular equation (5.12)), and the associated Hamiltonians Hp. Let us
emphasize that stating the problem as that of solving PDEs is a fundamental
preliminary step for a theoretical study, for example for proving the uniqueness
of the solution.

5.3 Shape From Shading can be a completely well-
posed problem!

5.3.1 Related work

To our knowledge, only Okatani and Deguchi [102] deal with the model consid-
ered here (pinhole camera and light source at the optical center).

In [102], Okatani and Deguchi do not address at all the theoretical question
of existence and uniqueness of a solution. Also, they do not write the adequate
Hamilton-Jacobi equation (as we do in section 5.2). They only propose a nu-
merical method based on the propagation of the iso-distance contours, turning
the static equation (5.5) into an evolution equation.

In the previous chapters, we have yet considered this modeling (pinhole
camera and light source at the optical center), but in effect, we have dealt
with equation (5.8) but not with equation (5.6). We have neglected the 1/r>
term. By simplifying the modeling, one can think simplify the problem. On
the contrary, we make it more complex. In effect, as explained in chapter
2 by ignoring the 1/r2 attenuation term the problem becomes ill-posed: the
uniqueness of the solution does not hold. To obtain a unique solution (more
exactly, a characterization) one needs to specify Dirichlet boundary conditions
on the boundary of the image and at all the singular points (as in the case of a

distant point light source), see section 2.2.6.
To get around this difficulty? in chapter 4, we have obtained the uniqueness

of a maximal solution by using sophisticated mathematical tools. In particu-

8For example, For some fixed (z,u), Hr(x,u, p) reaches its minimum at p = 0. Also, the
application \ +— Hp(x,u, A\p) is nondecreasing for A € RT. These properties do not hold for

the Hamiltonian HF.
9In the SFS problem, we rarely know the values of the solution on the boundary of the

image.
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lar, the tools we have developped in chapter 4 allow to “send to infinity” the
boundary conditions (at the singular points and at the boundary of the im-
age) when we do not know them. Even if we obtain excellent numerical results
with real images with a unique singular point (see section 4.7) this method
presents some difficulties when there exist several singular points. Aware of
the major role played by the singular points, Oliensis and Dupuis [108] and
Kimmel and Bruckstein [79] propose some “global” methods (based on the na-
ture of these particular points) allowing to recover some (very) smooth and
constrained surfaces'® (in the case where these surfaces exist). Okatani and
Deguchi, in [104, 105], use the isophotes of the image for classifying part of the
singular points. They also suggest how to use the informations they obtain for
improving the global methods of Dupuis and Oliensis [108] and of Kimmel and

Bruckstein [79].

Note that although the papers [108, 79, 104, 105] are based on an ortho-
graphic camera and a single distant light source, this work can be easily ex-
tended to the more realistic modelings described in chapter 2 by using the
tools developed in chapter 4. Nevertheless, despite their advantages, these
global methods [108, 79, 104, 105] have an important weakness. In effect, in
practice, because of noise, of errors on the parameters (focal length, light po-
sition, etc...) and of incorrect modeling (interrecflections, spatially extended
light source, non-lambertian reflectance...) the SFS equations (such as those
described in [108, 79, 122]) do not have smooth solutions! Also, the global
methods proposed in [108, 79, 104] are quite disappointing when applied to real
images. These global methods tend to return satisfying results only with simple
synthetic images.

Opposite to all the previous work [108, 79, 104, 105] and the study of chapters
2 and 4, let us stress that the notion of singular points does not make any sense
as soon as we do not neglect the 1/r? attenuation term. This is particularly
relevant in the framework considered here, i.e. a pinhole camera with a single
light source located at the optical center. As a result of a more realistic
modeling, the difficulties described above completely disappear.

The results presented in the next section are based on the classical notion
of viscosity solutions of the Hamilton-Jacobi PDEs [95, 41, 40, 5, 7].

0They consider C? surfaces with second order derivatives satisfying some properties: for
example, Kimmel and Bruckstein [79] consider surfaces represented by Morse functions (with

non-degenerate Hessians).
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5.3.2 Well-posedness of the SF'S problem

Let us assume that  is bounded, a very reasonable assumption since the CCD
sensors have finite size. In this case, it is well known that Hamilton-Jacobi
equations, in particular the SF'S equation

—e2ul) 4 J(z \/ £2|Vu(x)]? + (Vu(z) - z)2 + Q(z)2 =0, YzeQ, (5.14)

do not have a unique (discontinuous) viscosity solution [95, 7, 5]. To overcome
this difficulty we need to add some a priori. In the viscosity framework, the
authors generally add boundary conditions. The main classical boundary con-
ditions are Dirichlet’s, Neumann’s [95, 7, 5] or Soner’s state contraints [145, 29].
For the Shape from Shading problem, the authors generally consider Dirich-
let boundary conditions [134, 55, 56, 127, 120, 123, 119]. With such boundary
conditions, equation (5.14) becomes

{ e~ 2= 4+ J(2)/ 2| Vu(@)]2 + (Vu(z) - )2 + Q(x)2 =0, VreQ,

u(z) = ¢(x), Va € 09,
(5.15)

where ¢ is a real continuous function defined on 9€2. In this case, the following

theorem ensures the uniqueness of the (discontinuous) viscosity solution.

Theorem 5.1 ! Let Q be bounded and smooth enough'?, and H : Qx RxR? —
R, continuous. If ¢ is continuous and if the hypotheses (H25)-(H9’) and the
boundary hypotheses (H12’)-(H13")-(H14’) (described below) hold, then we have
a strong uniqueness property for equation

{ H(z,u(z), Vu(z)) =0, VzeQ, (5.16)

u(z) = p(x), Vo € 02
(in the discontinuous viscosity sense) on €2 .

Let us recall that the strong uniqueness property (on a subset D of Q) is the
following:

If w and v are a (discontinuous) viscosity subsolution and supersolution,
respectively, then

u<wv onD

Let us remind that the strong uniqueness property involves the uniqueness of
the (discontinuous) viscosity solution. Also, since the set of classical solutions
is a subset of the (discontinuous) viscosity solutions, therefore the uniqueness

'See theorem 4.5 and corollary 4.1 of Barles’ book [7].
Qe wre.
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of the (discontinuous) viscosity solution implies the uniqueness of the solution
in the classical sense. Let us also recall that the strong uniqueness property
involves the continuity of the (discontinuous) viscosity solution. Finally, note
that in theorem 5.1, the strong uniqueness holds on € and not on Q.

The hypotheses (H25) and (H9’) are:

(H25) H(x,u,p) — H(z,v,p) > vr(u —v),(yr > 0)
forallz €Q, —-R<v<u<R,andpcR (Y0 < R < +0).

(H9") |H(z,u,p) — H(y,u,p)| < mr(|lz —y|(1+|pl))
forallz,y € Q, —R<u <R andp € R?,

where mpg(t) — 0 when t — 0.

The boundary hypotheses (H12’), (H13’) and (H14’) are the following:
There exists a subset T of R® which is a neighborhood of OQ such that

(H12’) for all 0 < R < 400, there exists mpg(t) — 0 when t — 0 such that
|H (z,u,p) — H(z,u,q)| <mg(p —ql)

forallz €T, —~R<u <R and p,q € R%.

(H13’) for all 0 < R < 400, there exists Cr > 0 such that
H(z,u,p+ An(x)) <0= A< Cr(1+|p|),

for all (z,u,p) €T x [-R, R] x R%.

(H14’) VR, R, € R,
H(z,u,p— M(z)) — +o00  when A — 400,
uniformly for (z,u,p) in T x [-Ry, R1] x B(0, Ry).

In hypotheses (H13’) and (H14’), n(x) is the unit outward pointing normal
vector to 0€.

Application of theorem 5.1 to the SFS Hamiltonian Hp:
We have the

Proposition 5.1 i) The hypothesis (H25) holds for Hp, for all brightness
image 1;

ii) if the intensity image I is differentiable and I and VI are bounded on <,
then (H9’) holds for Hp;
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iii) if the intensity image I is upper bounded on a bounded neighborhood T
of 092, then the hypothesis (H12’) holds for Hp;

iv) if there exists a neighborhood T' of O and 6 > 0 such that
Veel, ¢6<I(zx)

then hypotheses (H13) and (H14’) are verified with Hp.

Proof. See section 5.6 at page 258. O

So as soon as I is differentiable and such that there exist 6 > 0 and M verifying
6 < I(zx) < M and |VI(z)| < M (for all z in a bounded neighborhood of ),
therefore by proposition 5.1, the Shape From Shading equation (5.15) has a
unique (discontinuous) viscosity solution. In other words, if we know on the
boundary of the image the depth of the surface which has produced the image,
we are able to recover uniquely this surface. This surface corresponds to the
viscosity solution of (5.15). Let us emphasize that this result holds indepen-
dently of the local properties of the original surface. More precisely, this result
holds even if the function u representing the original surface has local minima
and maxima on ). This is in contrast with the difficulties encountered with all
the other “classical” SFS equations presented in chapter 2. In effect, for the
other “classical” SFS equations, the local minima and maxima'® of u create
singular points. So, even though we know the values of the solution on 9f2, the
problem is still ill-posed. In particular some concave/convex ambiguities can
appear. In order to recover a “global solution” [108, 79] we need to introduce
some extra regularity hypotheses (we must consider at least C? solutions with
nondegenerate Hessians, but let us recall that in practice such smooth solutions
never exist) and to come up with a (very difficult) classification of the singular
points [104]. Finally, if we want to characterize or compute a viscosity solution
of such degenerate equations, we require the knowledge of the solution at the
points of the local minima, see theorem 4.6 and its corollary in chapter 4 (at
page 170). With the new modeling this kind of difficulty completely disappears.

In chapter 4 we have shown that the idea of state contraints provides a more
convenient notion of boundary conditions than Dirichlet’s or Neumann’s'*. Let

13In fact, we must consider the local minima and maxima of u — 1, where v is an adequate
subsolution; see chapter 4. For most of the SF'S Hamiltonians, an adequate subsolution 1 is

the null function.
'Tet us recall that, already in [47], Dupuis and Oliensis have introduced some similar tools

in the case of the C"! solutions. Also in [96], Lions, Rouy and Tourin used the notion of state

constraint for dealing with occluding contours.
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us recall that the “state contraint” is a boundary condition which is reduced to
H(z,u(x),Vu(z)) >0 on 09,

in the viscosity sense (see for example [7, 29]) and that this constraint corre-
sponds to the Dirichlet’s conditions

Ve € 0Q, wu(x)=p(x) with ¢(x) =+o0
in the viscosity sense. In the sequel we will write this constraint as
u(z) = +oo, Vz € .

As we explain in chapter 4, the interest of the notion of state constraints is
twofolds. 1) In contrast with the Dirichlet and Neumann boundary conditions,
the state constraints do not require any data. Let us recall that the Dirichlet
(respectively, Neumann) boundary conditions require the knowledge of the ex-
act values of the solution (respectively, the exact values of Vu(x) - n(x), where
n(x) is the unit inward normal vector to 92 at the point x) on the boundary of
the image. This is quite unrealistic because in the Shape from Shading problem,
we rarely have such data at our disposal. 2) The notion of state constraints
provides a relevant solution as soon as the image is obtained from a surface
represented by u verifying that for all z € 09,

H(z,u,&) >0, V¢e€ D u(x), (5.17)

see chapter 4, for more details and the proof of the fact that a function w verifies
the constraint (5.17) as soon as

VpH(z,u, Vu(z)) - n(x) < 0.

For the Hamiltonian Hp, a function u verifies the constraint (5.17) as soon as
—fe(z,Vu(x)) - n(x) < 0 (where f. is defined below in section 5.4.1), i.e. as
soon as

Vu(zx) - ['Dil,n(x)] < 0. (5.18)

Since in this case the eigen values of Dil, are strictly positive, the previous
assumption holds roughly when u(z) “increases when x comes up to 9€2”.

Remark 42. The reader may wonder at this stage how constraining this
condition really is. It is in fact not a strong constraint since for example, as
soon as the image to be processed contains an object of interest in front of a
background, the condition is satisfied in a neighbourhood of the object where

u(x) increases rapidly.



5.3 Shape From Shading can be a completely well-posed
problem! 211

In order to prove the uniqueness of the solution in the case of state constraints,

we have the theorem?!®

Theorem 5.2 Let Q be bounded and smooth enough'®, and H : QxRxR? — R,
continuous. If the hypotheses (H25)-(H9’) hold and the boundary hypotheses
(H12’)-(H13’) hold, then we have a strong uniqueness result for equation

H(z,u(x),Vu(z)) =0, VreQ,
u(zr) = +oo, Vx € 00

(in the discontinuous viscosity sense) on Q.

By using theorem 5.2, we prove (as we have done for theorem 5.1) that the
Shape From Shading equation

{ —e 2@ + J(2)y/ F2Vu(z)]2 + (Vu(z) - 2)2 + Q(x)2 =0, Vz€Q,

u(z) = +o0, Vo € 09
(5.19)

has a unique (discontinuous) viscosity solution, as soon as § < I(x) < M and

|VI(z)] < M. Thus we have a unique solution of (5.14) without requiring
boundary data (as must be done with classical Neumann or Dirichlet boundary
conditions). This solution corresponds to the actual surface producing the im-
age as soon as this surface roughly increases when x gets close to the boundary
of the image!”. If this condition does not hold the resulting solution corresponds
to the actual surface on the largest subset © of €2 for which (5.18) holds on 90.
As in the case of Dirichlet boundary conditions (theorem 5.1), let us emphasize
that this uniqueness result and the correspondence of the solution with the ac-
tual surface hold even when the actual surface has local minima and maxima on
Q. In particular, we do not need to impose constraints at the singular points'®.
In other words the concave/convex ambiguities linked to the presence of the
singularities completely disappear. Finally, if we know a priori that the original
surface “increases” toward 02 then the SFS problem is completely well-posed
and there are no ambiguities. Of course, this conclusion does not hold for all
the other “classical” SF'S equations.

Remarks 43.

R43.1 - We have discussed the uniqueness of the solution of the SF'S equations
(5.15) and (5.19) but we have not considered the problem of the ezistence

15 Theorem 4.6 of Barles’ book [7].

150 € W,

!"The exact condition is the condition (5.18).

'8Let us recall that the notion of singular points does not have sense in this setup!
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of a solution. In fact, using some stability results, we prove below that
equations (5.15) and (5.19) always have a solution. In particular, thanks
to the strong uniqueness result, we prove in section 5.4.3 that the solutions
of the schemes we propose in section 5.4.3 converge toward a function which
is a (discontinuous) viscosity solution of (5.15) (or (5.19), see section 5.4.2).

R43.2 - In large segments of the Shape from Shading literature, the authors
state that the Shape from Shading problem is ill-posed and suggest that
in order to solve it (numerically and/or theoretically) one has to resort to
regularization. For example,

1.the minimization approaches [66, 42] add regularization terms in the
SFS equations.

2.0liensis and Dupuis [108, 47] need regularity hypotheses for charac-
terizing a “global solution”. They work in a set of constrained C?
solutions.

Contrary to this previous work, we prove here that regularization is not
required for ensuring the well-posedness of the SFS problem and for com-
puting a numerical approximation of its solution. In particular,we can
characterize nonsmooth solutions and we do not need to add regularization

terms in the equations.

5.4 A provably convergent numerical method

In [102, 103], Okatani and Deguchi describe a numerical method based on the
propagation of the equal-distance contours. As Bruckstein and Kimmel [21, 80]
for the Eikonal equation, they design an evolution equation and propose to
solve it by using a level-set method [111, 110, 140]. Although the method of
Okatani and Deguchi is rigorous, it suffers from an important drawback because
it requires an initial equal-distance contour and uses the distance function of
this contour. The consequences are twofolds. First, it decreases the applicabil-
ity of the method since such data (initial equal-distance contour and distance
function of this contour) is usually not available. Second because these data,
when available, are noisy they in fact may perturb the reconstruction! In effect,
as we show in section 5.3, in the modeling framework of this chapter (pinhole
camera and light source located at the optical center, considering the attenua-
tion term in 1/r2) the Shape from Shading problem is well posed!®. Also, the
characterization of the solution (and therefore its computation) does not require
additional data. Let us note that when the initial equal-distance contour and

9Here, we consider the SFS problem with state constraints on the boundary of the image.
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distance function of this contour are exact, the numerical solution returned by
the algorithm of Okatani and Deguchi is an approximation of the solution of
equation (5.19) (equation completed with the state constraints). Nevertheless,
when the imposed initial data contain errors, the reconstructed surface does
not correspond with the solution of (5.19), neither with a solution of (5.15), for
some . This kind of difficulties shows the interest of the theoretical analyses
such as those presented in section 5.3.

We next propose a new numerical method. Contrary to [102, 103] it does
not require an initial equal-distance contour. Moreover, our method is provably
convergent: We prove that our numerical schemes are stable, consistent and that
their solutions converge toward the unique viscosity solution of the problem. Let
us note that Okatani and Deguchi do not even consider such questions whose
practical importance should not be underestimated because, for example, they
allow to certify algorithms, to guarantee their robustness and to describe their
limitations. . .

From another point of view (although we have not implemented their
method and hence have not made comparison tests), our numerical method
based on control theory (and computing directly the solution of the stationary
equation) is most probably much more efficient than theirs that solves an

evolution equation by a level-sets method.

In the following we first describe a control formulation of the Hamiltonian
Hp (section 5.4.1) and we explain how to deal with the boundary conditions
(section 5.4.2). From this control formulation of Hr we design two monotonous
approximation schemes and we prove their stability, consistence and conver-
gence (section 5.4.3). Finally, we propose numerical algorithms which compute
numerical approximations of the solutions of our new schemes (section 5.4.4).

5.4.1 Control formulation of the Hamiltonian Hy

Let us consider the function He : Q x R? +— R? given by:

He(z,p) = J(@)v/ £2p? + (p- 2)% + Q(x)2.
We therefore have
HF(.’IT,’LL,p) = _67211‘ + HC(x’p)'

In section 2.2.3 (page 67), we have described a “generic” SFS Hamiltonian H,
we recall here:

Hg(l‘,p) = Hg(vaacp + Vav) + Wz p+Cq,

with ﬁg(x, q) = kz/|q? + K2,
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® ;>0 and K, >0,

e A, =D, R,, where

oD$:<"Om 0), i Vi 70,

Vg

cosf@ sinf
o if x # 0, R, is the rotation matrix R, = . ;
—sinf@ cos6

where cosf = %2' and sinf = —%,

o ifx =0, R, = Idyxo;
o v,,w, € R,
e ¢c; €R

As in appendix B.1 (at page 277), we prove that H¢ is the particular case of

H, corresponding to:

pe = f  vy=+/ 2+ |z|?

ky = J(x) szwﬁ ( =Q(z))

Therefore we can use the control formulation of H, detailed in section 2.2.3 (at

page 67):
Hy(z,p) = sup {—fy(z,a) p—1I4(z,a)},
a€B2(0,1)
with
fo(z,a) = —[Dilya+w, ],
ly(z,a) = — [ Kpkz/1— a2+ ka(*Ryva) - a+ ¢l

where Dil, = ky 'Ry D R,.

If we denote f. and [, the functions f, and [/, associated with H¢, we have

Hp(z,u,p) = —e >+ sup {—fe(z,a) p—l(z,a)} (5.20)
acB2(0,1)
where
fe(z,a) = —Dilya,

(5.21)

le(z,a) = —I(x) f2/1 - |al?
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5.4.2 Management of the boundary conditions

Exactly as in section 4.6.1 (at page 185), we prove that the state contraints
can always be rewritten as Dirichlet boundary conditions. The main argument
of the proof is based on the fact that all the viscosity solutions of (5.19) are
bounded by the same constant (see lemma 5.3 of section 5.6 at page 260). More
precisely, we prove that the discontinuous viscosity solution of (5.19) (equation
with state contraints) coincides with the discontinuous viscosity solution of
(5.15) (equation with Dirichlet’s contions) with ¢(x) = M (Vz € 09). In
practice we therefore always consider Dirichlet boundary conditions. If we
happen to know the values of the solution on 92 we constrain ¢ accordingly
otherwise we choose ¢ to be a “large” constant.

5.4.3 Two new approximation schemes

In this section, we propose two finite difference approximation schemes on a
regular mesh. Note that as in chapter 3, the schemes we describe here can be
easily extended to irregular meshes.

Let us just recall that an approximation scheme is a functional equation of
the form

T(p,x,u) =0 Vz € Q;

where T : M x Q x B(Q) — R, M = Rt x Rt and B(D) is the space of
bounded functions defined on a set D. p = (hy, hy) € M defines the size of the
mesh that is used in the corresponding numerical algorithms. Moreover, as in
chapter 3, we use the representations S of a scheme T as

S(p,x,u(x),u) =0 Vz € Q,

where
S: MxQxRxB(Q) — R
(pz,t,u) — S(p,z,t,u).

and we consider “schemes with Dirichlet boundary conditions”, i.e. schemes
such that:

S(p,z,t,u) ifx €Q,,

5.22
t— (x) if z € Q,, (5:22)

S(p,x,t,u) :{
where
Q,={zeQ|Vie{l1,2}, x+hie; €Q} and 5HQ,=0Q-Q,.

Note that we assume in (5.22) that we have extended ¢ continuously to bQ2,.
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Design of the approximation schemes

Let us recall that there exists more or less a standard method ensuring the
convergence of the solutions of schemes toward viscosity solutions, i.e. the one
presented by Barles and Souganidis in [9]. This method requires the mono-
tonicity of the scheme; this is why, as in chapter 3, we design a monotonous
scheme in the sequel. We recall the definition:

Definition 3.1 (monotonicity) The scheme S(p,z,u(x),u) = 0 defined on
Q is monotonous if Vp, Vr € Q ¥Vt € R and Yu,v € B(Q),

u<wv = S(p,CL‘,t,U)ZS(p,J),t,U)
(that is to say: the scheme is nonincreasing with respect to u).

For proving the stability of our scheme, we apply the general theorem 3.1 given
at page 101. This requires that the function ¢ — S(p,z,t,u) is nondecreasing.
As in chapter 3, we approximate Heo(x, Vu(z)) by:

2 (@, a)hie;
Ho(z, Vu(z) ~ sup{Z(—fxx,a))“(x)‘“(“51( a)h )—lc@va)}

a€A | ;I —Si(ZE,a)hi

2 2
= su £z, a)] u(x) — 7|f¢(:c,a)|u x+ si(z,a)hie;) — l(x,a
_aeg{<; hz > ( ) Zz:; hz ( + ’L( 9 )h’L ’L) ZC( Y )}7

(5.23)

where here, f;(z,a) is the i™® componant of f.(x,a), where s;(x,a) is its sign
and where A is the closed unit ball B(0,1).
We can therefore approximate Hp(z,u(x), Vu(z)) by:

Hp(z,u(z), Vu(z)) ~ —e 2 u(z)
2 \fi(z,a 2 (2, a .
+ sup { (Z W) u(z) — Z Wu(aj + si(z,a)h;e]) — lc(x,a)} .

acA i=1
(5.24)

So, we can formulate a first representation (with Dirichlet boundary conditions) Simpi
based on the function:

Simpl(pv z, ta u)

2 2
= —e 2 "4sup { (Z |fz(;:77‘b)‘> t— Z W}fi’cmu(x + si(w, a)hie;) — lo(x, a)}
i=1 ! i=1

acA 7

=—e 2ty sup

2 t —u(x + si(z, a)hie;)
acA

Z(_fi(l', a)) B gy - lc(:v,a)} . (5.25)

i=1
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Remarks 44.

R44.1 - The function t — Sinp(p,z,t,u) is obviouly nondecreasing. The
representation Sy, is also clearly monotonous.

R44.2 - This first representation should provide a very fast algorithm.

As in chapter 3 for HIB equations, here we can provide another (more
explicit) representation. We multiply (5.25) by a fictitious time increment A7
(A7 > 0 can depend on z, AT = A7(x)), add u(x) and —u(z) and obtain:

S(p,x,u(x),u) = u(.’lﬁ) — Are? u(=)

2\ filz,a 2 \filz.a R
+sup {— (1 - ATZ |fz(h7’)|) u(x) — ATZ V(hi’)‘u(:v + si(xz,a)h;€;) — Arlc(:v,a)} .
i=1 (] (2

a€A i=1
(5.26)

We can also choose a second representation (with Dirichlet boundary conditions)
Ssemi based on the function:

Seemi(p,z,t,u) =t — Are™2

2 | filz,a 2\ fi(z,a R
+sup {— (1 — ATZ LfZ(hi’)') u(z) — ATZ “c(hi’)‘u(x + si(xz,a)h;€;) — Atl(x, a)}
i=1 ! !

acA i—1

=t—Are 2 —u(x)+AT sup
acA

& (z,a)hie;
{Z(—fi(x,a»“("’) S —zc(x,a>}.

=1
(5.27)

Remark 45. The function t — Ssemi(p, x,t,u) is obviously nondecreasing.
But the representation Ssen,; is not always monotonous.

Let us denote now ag the optimal control?? of (5.23). For all x such that ag # 0,

let us introduce
: ‘f( )| -
I\ Ty ag
ATopt = (ig_l T) .

Remark 46. ap and the optimal A7,,; depend on z.

The reader will easily verify that the scheme Ssemi(p,z,u(x),u) = 0 1is

20The a in A for which the maximum of (5.23) is reached
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monotonous iff AT < AT,y. Let us mention that the larger the “parame-

ter” A, the faster the convergence. When we choose AT = A7y, Ssemi can
be rewritten?!:

1

S (p,w,tu) =t — e 2t
s by by N

e >im | fi(@, ao)l /1y

2

B |fi(z,a0)|/h;
25 1wl

1
l
31 |55z, a0)l /Ry

u(z + sshie;) — oz, ap).

(5.28)

In summary the representation S, is always monotonous, the represen-

opt

tation Sgemi is monotonous iff A7 < Ar7,,, the representation S, .

is always
monotonous and it is the most effective monotonous representation of the form

Ssemi-

Remark 47. The reader will verify that the numerical method we describe
here can be applied to all equations of the form:

G(u(zx)) + H(z,Vu(z)) =0,

where G is a nondecreasing function and H is a convex Hamiltonian (with

respect to p).

Stability of our approximation schemes

Thanks to the monotonicity properties we can apply theorem 3.1 which proves
the stability of our new schemes. Here, let us just recall that an approximation
scheme is “(uniformly) stable” when it has (uniformly) bounded solutions; (see
page 100 for the definition of the stability).

Remark 48. By construction Ssemi(p, z,u(x),u) = ATSimpi(p, z, u(x), u).
So the schemes Ssem; and Sin have exactly the same subsolutions, superso-
lutions and solutions. Therefore, Ssem; is (uniformly) stable iff S;,,p is (uni-
formly) stable.

The following proposition ensures the stability of our schemes.

Proposition 5.2 If there exist § and M such that Yz € Q, M > I(z) > 6 > 0,
then all the hypotheses of theorem 3.1 ((H15), (H16), (H17), (H18), (H19),
(H20)) hold. Therefore the schemes Simpi and Ssemi are uniformly stable.

2144 does not depend on A7.
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Proof. See section 5.6 at page 261. O

Moreover, let us note that we have also

Proposition 5.3 If the hypotheses of proposition 5.2 are verified then the hy-
potheses (H16), (H19’) and (H20’) hold.

Proof. See section 5.6 at page 262. O

Therefore the schemes Sip, and Sgenm; are also stable when starting from a
supersolution (see remark R15.3, page 104). This remark is very important
because it ensures the convergence of the associated algorithm when starting
from a supersolution. In practice we have noticed that the numerical algorithm
converges much faster toward the solution of the scheme when we start from a

supersolution than when we start from a subsolution.

Remark 49. The (uniform) stability of the schemes Sj,, and Ssem; does
not require regularity of the brigthness image I.

Convergence toward the viscostity solutions

In the previous section we have proved that the schemes Sj,;; and Ssem; are
uniformly stability. That is to say, for all fixed mesh size p, the schemes have
solutions (i.e there exists of a function u s.t. Vo € Q, S(p,z,u(z),u) = 0) and all the
solutions are bounded independently of p. In this section we prove furthermore
that the solutions of these schemes converge toward the unique (discontinuous)
viscosity solution of the considered equation ((5.15) or (5.19)), when the size of
the mesh p vanishes.

First, by using proposition 3.4 (at page 115), the schemes Simp and Ssemi
are consistent (following Barles and Souganidis’s definition [9]; see definition 3.5 at page
112) as soon as f. and I, are continuous on A x Q and Lipschitz continuous
with respect to x € Q and [, is bounded. More precisely, it is consistent as soon
as the brightness image I is Lipschitz continuous (the expressions of f. and [. are
detailed on page 214).

Now let us assume that €2 is bounded, that the brightness image I is Lip-
schitz continuous (hence upper bounded) and that there exists § such that
Vz € Q,I(xz) > 6 > 0, then by proposition 5.2, the schemes Siyp and Ssemi are
uniformly stable. By construction, these schemes are monotonous. Moreover
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we have just seen that they are consistent with the SFS equations (5.15) and
(5.19). Finally, in section 5.3 we have proved that the strong uniqueness prop-
erty holds on Q. Therefore, we can apply theorem 3.3 (given at the page 113),

we remind here:

Theorem 3.3 (Convergence toward the viscosity solution)

Let S be a monotonous, uniformly stable and consistent®?

approrimation
scheme. Let us suppose that the strong uniqueness property is verified on a
subset D of Q. Then the solutions of the scheme S converge on D toward the

viscosity solution of the considered equation when p — 0.

The solutions of the schemes Sy, and Ssem; hence converge on €2 toward the
unique viscosity solution of considered equation ((5.15) or (5.19)) when the mesh

size vanishes.

Remark 50. It is worth noting that this result (theorem 3.3) also proves
the existence of the viscosity solution of equation (5.15). More precisely, this
theorem shows that, when the mesh size vanishes, the solutions of our schemes
converge toward a function which is a (discontinuous) viscosity solution of
equation (5.15) (equation with Dirichlet Boundary Conditions). Similarly
combining section 5.4.2 with theorem 3.3 allows to prove the existence of
a (discontinuous) viscosity solution of equation (5.19) (equation with state

constraints).

5.4.4 A numerical algorithm

Let rho be a canonical mesh.
We now describe an algorithm that computes an approximation of the solutions
of the scheme (5.27) for all p > 0. We also prove its convergence. It is important
to keep in mind that the approximations computed by our algorithm converge
toward solutions of the scheme but not toward the viscosity solution.

For a fixed p > 0, let us denote

® Tp — (klhl,kghz) for k in Zz, Ty5 = (Zhl,jhg) for l,] € Z,
e Q:= {k € Z? such that x; € Q}.

We call “pixel” a point z; in Q. Since Q is bounded; therefore the number of
pixels is finite. The following algorithm computes for all k£ € @ a sequence of
approximations U} of u(xy):

22Consistent with the considered equation.



5.4 A provably convergent numerical method 221

Algorithm 5.1
1. Initialisation (n =0):
VEeQ,  Up=uy(zy),
where ugy s a subsolution or a supersolution of the considered scheme.

2. Choice of a pizel x, and modification (step n+ 1) of U}':
Choose

U™ =sup {V = (Vi)ieq such that V1 #k, V,=U" and S(p,zk, Vi, V) = 0}.
In other words, we choose UT! such that

Urtt=upr  if 1#£Ek,
Ut = max { t | S(p,xx,t,U™) =0 }.

3. Choose the next pizel xi in such a way that all pixels are regularly visited
and go back to 2.

This algorithm is exactly the same as algorithm 3.1 described at page 119.
Therefore all the remarks of sections 3.1.5 and 3.2 about paths and speed of
convergence still hold for this new method (the schemes described in the pre-
vious section are monotonous schemes of the form S(p,z,u?(x),u?) = 0). For
example, in practice, for an optimal velocity, we should start from a superso-
lution. Also, since all the hypotheses of theorem 3.1 (as well as the equivalent
hypotheses adapted to supersolutions) hold for our two representations Sjmp
and Ssems, theorem 3.5 ensures that the approximations converge toward the
solutions of our new schemes. Moreover, let us remind that, when the intensity
image is discontinuous, the viscosity solutions theory does not apply yet, but
we can prove that the numerical approximation computed by our algorithms

converge.

Details of the step 2 for the semi-implicit algorithm

Step 2 requires two stages. We suppose that we work with pixel x;; and for
simplicity we drop wht upper index n, i.e. write U;; instead of Us-

1. First we need to compute:

M = sup _fc(l'ij; a) . P[-jv,li(jij:(l)752(ﬂ?ijaa) _ lc(l'ij; a)} 7

acA
Us,j —Uitsy,j
$1,82 __ —s1Ax11
PU,i,j - Ui,j—Ui,jtsy ’

—s9Ax12

with
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and where s;(z,a) is the sign of f;(z,a). To this end, we divide the set
A into four subsets A, 5, = {a € A | (s1(zij,a), s2(xij,a)) = (s1,52)},
S$1,82 € {:|:1}

A= U Ag

s1,52==%1

and we compute the optimal control a)'”** for each subset:

ag’®* =arg sup {—fg(xij,a) . Pé’l{’sf - lc(x,-j,a)} .
aEAsl,52
This must be done carefully. In particular, we must separate the cases
where ag"'®? verifies f;(zj,a5"*>) = 0 for some i € {1,2} (i.e ag"™ €
OAs, s,) and the cases where ay'*> € IntAy, 5,. To simplify this step, we
use convexity arguments and differential calculus.

Moreover, if we write

M

= g, aSh®) - P e wa ) sy
81,82 — C b

c\Tij, Qg i Tijs do
it follows that M = max, s,e(+1} Ms,so-

Remark 51. Various simple tricks (for example based on the fact
that the intersection Ny, s,e(+1}As;,s, i nOt empty) allow to decrease the
computational complexity of this step, but because of space we do not
detail them here. The interested reader will most probably discover very
easily most of them...

. Second, we need to solve with respect to ¢ the equation

t—Are ' 4 ¢c=0, (5.29)
where ¢ is the constant coefficient:

c = =Uj+Ar 21613 {_fc(xz'j, a) - P[j,li(jij’a)’SQ(xij’a) _ lc(Iz’j, a)(}.?)())

= U, ; — AT fo(zij,a0) - Pé,li(jij,ao)m(a:ij,ao) — A7 1o (zij, aol5.31)
(which is also equal to
¢ =—Atopt [ fe(wi5,a0) - ?Jl,z(‘,zjﬁ’%)’”(%’ao) + le(zi5, a0) |

with Q?},i; = (81Ui+sl’j/A.’L‘11, 32Ui7j+32/A$12), when A7 = Aoyt )-

For solving equation (5.29), we use Newton’s method. This method can
be easily improved by using some acceleration technique (see for example
[15]). Let g : R — R be the C'*° function defined by

gt) =t—Are 4 ¢
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and let (t*)ren be the sequence defined by:

0 = U,
el gk g(*) (5.32)

Proposition 5.4 For all AT > 0 and ¢ in R, equation (5.29) has a unique
solution t. Also, the sequence designed by (5.32) converges toward this

solution.

Proof. g is continuous, lim;, o g(t) = —oco and lim; 4 g(t) = +00.
So equation (5.29) has always a solution. For all ¢ in R, we have

g(t)=1+2A7e7 % > 1. (5.33)

g is therefore strictly increasing and the solution of (5.29) is unique. Let
us denote ¢ this solution.

Lemma 5.1 Vk > 1, tF < ¢kt <7,

By lemma 5.1, (#*);>1 is an increasing and bounded sequence, hence con-

vergent. By continuity of h : 7 — 7 — 5,((:)) the limit of (tF)g~; is a fixed
point of h, so it is equal to .

Proof of Lemma 5.1. First let us assume that ¢! < ¢.
Proof by recursion:

(a) ' <1

(b) let us assume that t* < 7. Since g is a nondecreasing function we
have g(t*) < 0. By (5.33), —%t’;)) > 0. Therefore tFt1 > ¢k,
Graphically, (t*1,0) is on the tangent to the graph of g at (t*, g(¢1,))-
Since g is strictly concave?®, (t**1 0) is above the graph of g and so
above (tF1 g(t**1). Hence g(t*t!) < 0 and therefore t**t1 < 7
(because g is strictly increasing).

In short: t* < th+l < 7.

The proof that t! <7 is based on the same ideas. O

O

Bg"(t) = —4ATe % < 0.
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Examples of supersolutions of our schemes

In this section, we describe two examples of supersolutions of the schemes pre-
sented in section 5.4.3.

Let us recall that the implicit scheme (5.25) and the semi-implicit scheme (5.27)
(and of course (5.28)) have exactly the same solutions, subsolutions and super-
solutions.

We have the

Proposition 5.5 The constant function ug : Q — R defined by
1 2
uo(x) = —iln (6 £%)
where 6 = min(I(x)) > 0, and the function vy : Q — R defined by
1 ) 1
vo(z) = _5111 (I(z) ) = — ilnI(:v) +1In f

are two supersolutions of the implicit scheme (5.25).

Proof. Let us consider the case of vg. For all € Q, we have

(S sttt LB .

=1

S’impl(pv z, UO(-T), U()) = —6_2 vo(x)

+sup
acA

where A = B(0,1). Since 0 € A, f(z,0) =0 and I(z,0) = —I(x) f2, we have

Simpl(p,l',vo(x),vo) > —3_2 vo(z) + I(.I‘) £2 0.

So vy is a supersolution of the scheme (5.25).
In the same way, we prove that ug is a supersolution of the scheme (5.25). O

5.5 Experimental results

Let us emphasize that in all the experiments that follow, we have
only imposed state constraints on the boundary of the images 0S). In
particular, we do not have imposed Dirichlet boundary conditions on
092, Of course, we have not imposed Dirichlet boundary conditions
at the singular points. Let us recall that in our framework, the
notion of singular points does not make sense anymore! In other

words, in these experiments we have not used any boundary data.
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We have implemented the algorithm associated with the optimal semi-

implicit approximation scheme. The reader familiar with the numerical meth-
ods presented in chapter 3 will easily see that the implementation of this new
semi-implicit algorithm is almost a direct extension of the implementation of
the “generic” semi-implicit algorithm described in chapter 3. We only have
to implement Newton’s method detailed in subsection 5.4.4 in order to solve
equation (5.29) and we need to slightly change the update step... We have not
implemented yet the algorithm associated to the implicit scheme.
Since our new semi-implicit algorithm is #terative, to start the process we need
an initial surface Uy. Of course, as usual, the choice of this initial surface is
very important. As we show in section 5.4.4, starting from a supersolution
ensures the convergence of the computed numerical approximations toward the
solution of the associated scheme. In section 5.4.4, we have given two examples
of supersolutions: the constant function

1
up(z) = —Eln (6 %),
where § = min(I(z)) > 0, and the function

vo(z) = — (%lnI(x) +1n f> .

Figure 5.4 displays the supersolution vy associated to image of the classical

‘f'f‘.

v

-20

a) Image; b) supersolution vy associated to the image a); c) solution
(groundtruth).

Figure 5.4: Example of initial supersolution for the image of Mozart’s Face.

Mozart’s face?t.

We have tested our algorithm with the two supersolutions.
As the theory predicts, in both cases, we obtain the same numerical solutions
(i.e two extremely close solutions, with the same order of errors; the difference
between the surfaces is invisible). But the number of iterations required for
obtaining the convergence is very different. Indeed, starting from the superso-

lution wq is significatively faster than starting from the constant supersolution

?4See Zhang et al. [172] (Computer Vision Lab. of the university of Central Florida).
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ug. On average, if we start from wg, the convergence is reached after around
500 iterations, when if we start from v, less than 60 iterations are sufficient
(the number of iterations is reduced by one order of magnitude!). This result
could be easily anticipated since the supersolution vg is very much closer to the
solution than the supersolution ug, as figure 5.4 shows. Figures 5.10 and 5.11
illustrate the difference of the evolutions in the two cases: when the algorithm
starts from ug and when it starts from vg. In other respects, let us note that
exactly as for the algorithms presented in chapter 3, it is clear that the implicit
version of this algorithm will allow to reduce again the number of iterations by
one order of magnitude (on average, the implicit algorithm should converge in
less than 10 iterations). In the results displayed in the sequel, n corresponds
to the number of iterations. Our algorithms being iterative, they also require
a stopping criterion. We choose to stop the iterations when the difference be-
tween the successive reconstructions is negligible. In practice, we have fixed a
thresholds of s = 107'% and we stop the process when

1 . .
NI D ORI GL5) = UG )| < s,
,J

where NM is the number of pixels.

Let us also note the very high efficiency of Newton’s method (summarized by
equation (5.32) of section 5.4.4) for solving the equation (5.29). On average,
the numerical solution of equation (5.29) is computed in 5 iterations; our
stopping criterion is [tF+1 — t*¥| < 10720,

5.5.1 Experiments with synthetic images

We have tested our semi-implicit algorithm on several synthetic images provided
by various types of surfaces. In such tests, we can compare the reconstructed
surfaces with the groundtruth. In all the examples, the errors noted £1, &9
and e,, are the mean absolute errors between the reference and reconstructed
surfaces measured according to the L1, Ly and Ly, norms, respectively. They
are measured with the logarithm of the depth modulation in the coordinate
system of the camera, i.e. the approximations of the solution v of equation
(5.12). Let us remind that the parameter f corresponds to the focal length.

Experiments on various synthetic images

In this first series of results, we show the original object (i.e. the groundtruth)
from two points of view (in a) and b)), the input image obtained from the
original object (in ¢)), the reconstructed surface from the same two points of
view as the original object (in d) and e)). In f), we display the superposition of
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the reconstructed surface and the original object in the same point of view as e)
. The groundtruth is always displayed in blue and the color of the reconstructed
solution is gold (this holds for all the experiments with synthetic images). Let
us recall that one of the most significant improvements of our method is that
it can recover surfaces containing several local mimima (and maxima) without
any additional data®.

We have first tested our algorithm with images synthetized from such sur-

faces: in particular the “hills surface” diplayed in Figure 5.5-ab) and the field
of bumps displayed in figure 5.6-ab). The second rows of these figures show
the surfaces returned by our algorithm (starting from the supersolution vg) af-
ter convergence. The results are visually excellent and the computed errors
€1,€2,E00 are very small. Let us emphasize that these solutions have been com-
puted without any boundary data and that in this case, none of the classical
propagation/PDE’s methods ([67, 134, 47, 80, 81, 123, 124] among others can
return a satisfying solution. At this stage, let us remind the reader that to be
able to recover the original surface, this surface must verify the state constraints
(described in section 5.3.2, page 210) on the boundary of the image. The hills
surface and the field of bumps verify this constraint. In particular, the example
of the hills surface shows how weak this constraint is.
The classical Mozart’s face associated to the paper by Zhang et al. [172] (Com-
puter Vision Lab. of the university of Central Florida) is today an unavoidable
test. We have also applied our algorithm to this surface, see Figure 5.7. In [124]
we needed to fix the height of the singular point on the nose for obtaining a
relatively satisfying solution. Here we do not need this information. Note that
the reconstruction errors of Mozart’s face are mainly located in the part of the
image corresponding to the background of the scene. These errors are due to
the large discontinuity of the groundtruth along the apparent contours of the
face. Indeed, since we compute some approximations of the viscosity solution
which is continuous (due to the strong uniqueness), we are not able to recover
discontinuous surfaces. Let us note that the theory we have developped as-
sumes that the intensity image is continuous. Also, the surfaces and the images
of Figure 5.5 and Figure 5.6 are continuous and smooth.

In order to test the ability of our algorithm to deal with discontinuous images
we have applied it to synthetic images generated by shapes containing edges.
First, we use a surface containing (decreasing and increasing) edges such that

all its maxima?26

are smooth, see Figure 5.8. In this case, the reconstruction
is perfect. Second, we use a more complex surface containing (decreasing and

increasing) edges with nonsmooth (local and global) maxima?®, see Figure 5.9.

25We only use the image.
26 More precisely, we should consider the local minima of the depth modulation. The minima

of depth modulation are approximately the maxima of the visualized surface.
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iteration (n) H €1 error €9 €ITOT | €4, €rror H
0 3.58725 3.58753 3.68509
60 0.554503 | 0.558744 0.8996
120 0.205832 0.218589 | 0.683311
180 0.097647 | 0.111971 | 0.625567
240 0.0436155 | 0.0544579 | 0.593743
300 0.023504 0.029243 | 0.578646
360 0.0211661 | 0.0328685 | 0.576906
420 0.0213052 | 0.03496 | 0.576906
540 0.0213343 | 0.0350149 | 0.576906
600 0.0213343 | 0.0350149 | 0.576906
660 0.0213343 | 0.0350149 | 0.576906
720 0.0213343 | 0.0350149 | 0.576906

Table 5.1: Evolution of the errors associated to Figure 5.10: (Mozart’s face)

with the number of iterations, starting from the supersolution uy.

In this second case, the reconstructed surface is satisfying but not perfect. The
size of the images of the hills, of the field of bumps, of the Mozart’s face and of
surfaces containing edges are respectively: 300x300, 400x400, 250 x 250, 250 %
250, 250 x 250.

Robustness of our method

The second part of the experiments is aimed at demonstrating the robustness
of our method to various errors on the parameters. For these tests, we have
used Mozart’s face image.

In the series of figures associated to these experiments (Figures 5.13, 5.14, 5.15,
5.16, 5.17), we show:

e in the first row, the reconstruction obtained without noise and with the
exact input parameters, as a reference;

e in the other rows, some reconstructions obtained with corrupted images

and/or with errors on some parameters;
¢ in the first column, the input images when they have been corrupted;

e in the second and third column, the reconstructed surfaces from two points
of view.
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d) e) £)
a) and b) original surface (groundtruth);
c) image obtained from the original surface a):  f = 20mm, size= 300 x 300;

d) and e) surface reconstructed from the image ¢): n ~ 65, 1 ~ 0.00152397,
g9 >~ 0.0019405, €40 ~ 0.00655214;

f) superposition of the original surface (groundtruth) with the reconstructed
surface (displayed in d) and e)).

Figure 5.5: Example of results for an image of a surface with several local

minima: the “hill surface”.
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a) and b) original surface (groundtruth);

)
c¢) image obtained from the original surface a):  f = 23mm, size= 400 x 400;
d) and e) surface reconstructed from the image c¢): n ~ 70, &1 ~ 0.00136196,
g2 =~ 0.00170217, eoo =~ 0.00579273;

f) superposition of the original surface (groundtruth) with the reconstructed

surface (displayed in d) and e)).

Figure 5.6: Example of results for the “field of bumps” image.
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d) e) £)

a) and b) original surface;

)
c¢) image obtained from the original surface a):  f = 25mm, size= 250 x 250;
d) and e) surface reconstructed from the image c¢): n ~ 50, 1 ~ 0.0201287,
g2 =~ 0.0332239, £ ~ 0.109705;

f) superposition of the original surface (groundtruth) with the reconstructed

surface (displayed in d) and e)).

Figure 5.7: Result for the image of Mozart’s face.
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a) and b) original surface;

)
c¢) image obtained from the original surface a):  f = 23mm, size= 250 x 250;
d) and e) surface reconstructed from the image c): n ~ 60, 1 ~ 0.00098814,
€2 =~ 0.00139067, eoo =~ 0.0094318;

f) superposition of the original surface (groundtruth) with the reconstructed

surface (displayed in d) and e)).

Figure 5.8: Result for an image containing discontinuities.
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and b) original surface (groundtruth);

c¢) image obtained from the original surface a):  f = 23mm, size= 250 x 250;
d) and e) surface reconstructed from the image c¢): n ~ 85, 1 ~ 0.00356152,
g2 =~ 0.00407986, eoo =~ 0.0265672;

f) superposition of the original surface (groundtruth) with the reconstructed

a

)
)

surface (displayed in d) and e)).

Figure 5.9: Results for another image containing discontinuities.



Chapter 5: Toward more realistic modelizations.
234 Shape from Shading: a well-posed problem?

g) n=420 h) n=480 i) n=>540

Figure 5.10: Evolution of the reconstructed surface for the image of Mozart’s
face, starting from the supersolution ug (for errors, see Table 5.1)
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m) n=60 n) n="70 0) n=80

Figure 5.11: Evolution of the reconstructed surface for the image of Mozart’s
face, starting from the supersolution vg (for errors, see Table 5.2).
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iteration (n) H €1 error €9 €ITOr | €4, error H
0 0.0302943 | 0.0460551 | 0.180416
2 0.0220833 | 0.0312264 | 0.137289
4 0.0158622 | 0.0215666 | 0.124512
6 0.0133733 | 0.0177039 | 0.120779
10 0.0126053 | 0.0183098 | 0.111928
15 0.0133472 | 0.0213313 | 0.106305
20 0.0147987 | 0.0247051 | 0.108798
25 0.0165059 | 0.0277196 | 0.109686
30 0.0174543 | 0.0292335 | 0.109704
35 0.0185734 | 0.0309366 | 0.109705
40 0.0188836 | 0.0313961 | 0.109705
50 0.0201287 | 0.0332239 | 0.109705
60 0.0206475 | 0.0339851 | 0.109705
70 0.0208931 | 0.0343325 | 0.109705
80 0.0209713 | 0.0344363 | 0.109705

Table 5.2: Evolution of the errors associated to Figure 5.11: (Mozart’s face)

with the number of iterations, starting from the supersolution vg.
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g) n=32 h) n=40 i) n=>50

20 20

j) n=60 k) n=70 1) n=80

Figure 5.12: Evolution of the reconstructed surface from the image of the “field

of bumps”, starting from the supersolution vy (for errors, see Table 5.3).
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iteration (n) H €1 error €9 €rror €00 €ITOT H
0 0.00134159 | 0.00167079 | 0.00474082
2 0.042826 0.0488785 0.117484
4 0.0276274 0.033543 0.10354
8 0.0147751 0.0197772 0.0751836
16 0.00667883 | 0.0105963 0.0485785
24 0.0039321 | 0.00657979 | 0.0332412
32 0.00273465 | 0.00440412 | 0.0225997
40 0.00205176 | 0.00310148 | 0.0152853
50 0.00160707 | 0.00222596 | 0.0116531
60 0.00142766 | 0.00183524 | 0.00877063
70 0.00136196 | 0.00170217 | 0.00579273
80 0.00134347 | 0.00167312 | 0.00474082
90 0.00134163 | 0.00167086 | 0.00474082
100 0.00134159 | 0.00167079 | 0.00474082

Table 5.3: Evolution of the errors associated to Figure 5.12: (“field of bumps”)
with the number of iterations, starting from the supersolution vg.

e in the last column, the superpositions of the reconstructed surface with

the groundtruth.

We show the stability of our method with respect to five types of errors:

1.

image intensity errors due to noise. Uniformly distributed white noise has
been added to all pixels of the input images and the corresponding recon-
structed surfaces are shown, see Figure 5.13. The Signal to Noise Ratio
(SNR) is equal to 10.63, 5.32 and 2.65 in images Fig.5.13-e), Fig.5.13-i),
and Fig.5.13-m), respectively. As seen from this figure, our algorithm is
quite robust to intensity noise.

. gamma factor. Most of the usual image acquisition devices do not have

a linear intensity response. The actual response is usually well approxi-
mated by a power law, whose exponent is the gamma factor. If v =1 the
response is linear. Typical values of v range between 0.5 and 2.5. Figure
5.14 shows the reconstruction results when the algorithm is run on the
original image raised to the power 0.5 and 2. The result corresponding
to v = 0.5 is flatter than the real surface whereas the form of the surface
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reconstructed with v = 2 if amplified. Let us note that even if quanti-
tavely the numerical errors are important (due to the global and large
deformation of the surface), these results are qualitatively very good.

. errors made on the parameters of the imaging system, on the calibration

of the intensity of the light source and on the albedo of the surface. As
explained in section 5.1, these parameters are contained in the constant
coefficient o9 of equation (5.6)

cos 6;
2

E; =09

Thus, for simulating errors on these parameters we distort the image by
a linear transformation.

From the theoretical point of view, if we make an error on the oy param-
eter, the input image is therefore I, = Al instead of I (where A = 22 >0
and where o, is the distorted parameter). Also, the algorithms compute
some approximations of the solution of equation

) £2 VI Vu(@)P” + (Vu((w))~ z)*]/Q(x)* + u()”

=0
(5.34)

—u(z) "2 + I(z

instead of equation (5.11).
Let u the viscosity solution of (5.11) (with state constraints). Clearly, u
is the solution of equation (with state constraints)

2
\/ [P+ (T2 /@) + (47
—du(z) "2 + Al £ VA ﬁu(m) ( ﬁ) =0,

VA

so it is the solution of equation (with state constraints)

- (@>_2 +1, fZ\/[ I 1 (T )2 + (M)

u(z)
VA 2y

u(z)

By proposition 2.1 (change of unknown), u) = Y is the viscosity solu-
tion of equation®’ (5.34). In other words, errors on the oy parameter just
involve changes of scale.

In practice, the experiments confirm this theoretical remark. Figure 5.15
shows two examples of reconstructions with such distortions. The inten-
sities I of the images Fig.5.15-e) and Fig.5.15-i) correspond to 1.2I and
0.81, where I is the intensity of the original image Fig.5.15-a). Of course,
due to these changes of scale, the absolute errors 1, €9, €0o.

2"With state constraints.
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image ‘ noise/SNR ‘ iteration €1 error €9 €ITOr | £, €IrTor H
Fig.5.13-e) 10.63 ~ 50 0.0266365 | 0.0386745 | 0.574023
Fig.5.13-i) 5.32 ~ 50 0.0358871 | 0.0450536 | 0.569604
Fig.5.13-m) 2.65 ~ 50 0.0554078 | 0.0612147 | 0.560532

Table 5.4: Errors associated to Figure 5.13 for the noisy images of Mozart’s

face.

4.

incorrect estimation of the focal length f of the camera. We show in
Figure 5.16 that errors of 10mm (40%) on the focal length parameter f
do not affect much the reconstructed surface. The image used in these
experiments is the image Fig.5.7-c). The focal length used for synthetizing
this image is f = 25mm. The last two rows of Figure 5.16, show the

reconstructions for f. = 15mm and f. = 35mm.

modeling errors. In practice with real images, the light source is never
located exactly at the optical center. For example when we use a camera
equipped with a flash (situation corresponding quite nicely to the model-
ing hypotheses), the light source is generally located at several centimeters
from the optical center. Note nevertheless that the distance between the
flash and the optical center is usually inferior to 10cm. For testing the
robustness of our method to this kind of errors, we have synthetized a
series of images of Mozart’s face with the light source located at 10cm
and 20cm, above, under, to the right and to the left of the optical center,
see Figure 5.18. In Figures 5.19 and 5.20, we show the reconstructions
obtained from these images. In Fig.5.19 we display the reconstructed sur-
faces from a frontal point of view; in Fig.5.20 we display the same surfaces
from the side. As the reader can see, in all cases, the reconstructed sur-
faces are very good when the the light source is located at 10 ¢m. When
the light source is located at 20 c¢m, the distortions are more important,
but the results are still quite good. In Figures 5.18, 5.19 and 5.20 Py is
the position of the light source in the coordinate system of the scene. Let
us recall that the optical center is located at O = (0,0,0).

In Figure 5.17, we display the results for some images of Mozart’s face corrupted

by pixel noise, gamma corrections, albedo errors, and obtained with the wrong

focal length f. In addition to the accumulation effect, let us note that the errors

imposed are quite important. Surprisingly, the algorithm produces relatively

satisfying results given the large difference between the original image and the

input images.
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n)

a) original image; b) and ¢) surface reconstructed from image a);

e) noisy image with a SNR = 10.63; {) and g) surface reconstructed from image e);

i) noisy image with a SNR = 5.32; j) and k) surface reconstructed from image i);
m) noisy image with a SNR = 2.65; n) and o) surface reconstructed from image m);
In the last column, we display the superpositions of the reconstructed surfaces with
the groundtruth.

For errors, see Table 5.4.

Figure 5.13: Results for the noisy images of Mozart’s face.
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a) original image; b) and c) surface reconstructed from image a);
e) image distorted with v = 0.5 (I, = /T);

f) and g) surface reconstructed from image e): n ~ 45, ¢; ~ 0.0559719,
g9 =~ 0.0568014, £, ~ 0.079711;

i) image distorted with v = 2 (I, = I?);

j) and k) surface reconstructed from image i): n =~ 50, e ~ 0.126682,
€9 =~ 0.146416, o, ~ 3.60861;

In the last column, we display the superpositions of the reconstructed surfaces
with the groundtruth.

Figure 5.14: Results for the images of Mozart face distorted by gamma dis-
tortions v = 0.5 and v = 2, i.e. instead of the real image I we used v/T and
I2.
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a) original image; b) and c) surface reconstructed from image a) with the

correct constant coefficient o;

e) distorted image I, = 1.2I; f) and g) surface reconstructed from image e);
n >~ 40, e1 ~ 0.0719292, €9 ~ 0.077584, £, =~ 0.668079;

i) distorted image I, = 0.81; j) and k) surface reconstructed from image i);

n ~ 50, e1 ~ 0.130974, e9 ~ 0.134119, £, =~ 0.46533;

In the last column, we display the superpositions of the reconstructed surfaces
with the groundtruth.

Figure 5.15: Results for the images of Mozart’s face distorted by some intensity
scaling corresponding to a distortion of the constant coefficient o (this contains
the albedo distortion).
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a) and b) surface reconstructed from image Fig.5.7-¢) with the correct focal length

parameter f = 25mm;

n ~ 54, &1 ~ 0.0213, g2 ~ 0.0350, £, ~ 0.577;

¢) and d) surface reconstructed from image Fig.5.7-c) with the distorted focal length
parameter f. = 15mm;

n ~ 45, 1 ~ 0.507348, 5 ~ 0.507873, €, ~ 1.22922;

e) and f) surface reconstructed from image Fig.5.7-c) with the distorted focal length
parameter f. = 35mm;

n ~ 60, e; ~ 0.369157, ¢5 ~ 0.370821, e, ~ 0.457924;

In the last column, we display the superposition of the reconstructed surface with the
groundtruth.

Figure 5.16: Results obtained from Mozart’s face image with distorted focal
length parameter f.
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a) original image; b) to d) surface reconstructed from image a) with all the correct

parameters;

e) image a) distorted by noise with a SN R equal to 4.04, by a gamma distortion v = 2
and by an albedo distortion o, = 1.20;

f) to h) surface reconstructed from image e) with a wrong focal length parameter
fe = 15mm (the correct parameter is f = 25mm): n ~ 40, ¢; ~ 0.610511,
£9 ~ 0.61432, £, ~ 4.2899;

i) image a) corrupted by noise with a SNR equal to 3.36, by a gamma distortion
v = 0.5 and by an albedo distortion . = 0.80;

j) to 1) surface reconstructed from image i) with a wrong focal length parameter f. =
45mm: n ~ 50, &1 ~ 0.5105, e ~ 0.5432, £, ~ 2.2899.

In the last column, we display the superpositions of the reconstructed surfaces with
the groundtruth.

Figure 5.17: Results for the image of Mozart’s face distorted by pizel noise, by

gamma 7y distortions, by albedo o errors, and with a wrong focal length f.
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P =1

w

0,+20,0

P, = (0,-20,0)

P is the position of the light source in the coordinate system of the scene. The
optical center is located at O = (0,0,0)