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1Abstra
t
This thesis is dedicated to the study of large clusters in percolation and is divided

into four articles. Models under consideration are Bernoulli percolation, FK percolation
and oriented percolation. Key ideas are renormalization, large deviations, FKG and BK
inequalities and mixing properties.

We prove a large deviation principle for clusters in the subcritical phase of Bernoulli
percolation. We use FKG inequality for the lower bound. As for the upper bound, we use
BK inequality together with a skeleton coarse graining.

We establish large deviations estimates of surface order for the density of the maximal
cluster in a box in dimension two for supercritical FK percolation. We use renormaliza-
tion and we compare a block process with a site–percolation process whose parameter of
retention is close to one.

We prove that large finite clusters are distributed accordingly to a Poisson process in
supercritical FK percolation and in all dimensions. The proof is based on the Chen–Stein
method and it makes use of mixing properties such as the ratio weak mixing property.

We establish a large deviation principle of surface order for the supercritical oriented
percolation. The framework is that of the non–oriented case, but difficulties arise despite
of the Markovian nature of the oriented process. We give new block estimates, which
describe the behaviour of the oriented process. We also obtain the exponential decay of
connectivities outside the cone of percolation, which is the typical shape of an infinite
cluster.

Keywords: percolation, large deviations, renormalization, FK percolation, oriented
percolation
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8 Chapitre 1

Cette thèse porte sur la percolation, et plus particulièrement sur l’étude des grands
clusters. Dans ce chapitre introductif, nous expliquons le processus de percolation dans la
section 1 et donnons les différents résultats que nous avons obtenus dans les sections 2, 3,
4 et 5. La section 2 porte sur la FK percolation sur–critique dans une bôıte en dimension
deux, et contient des estimés d’ordre surfacique sur le comportement du cluster maximal et
des clusters intermédiaires. Dans la section 3, nous nous intéressons aux grands clusters en
régime sous–critique et nous donnons un principe de grandes déviations. Nous considérons
dans la section 4 les grands clusters finis dans le régime surcritique. D’après un résultat
que nous établissons, ces clusters sont distribués comme un processus spatial de Poisson.
La section 5 porte sur la percolation orientée en régime surcritique. Nous y donnons un
principe de grandes déviations pour le cluster de l’origine. La section 6 est une petite
note sur la percolation à orientation aléatoire. La section 7 donne le contenu des chapitres
suivants.1 Introdu
tion �a la per
olation
1.1 Explication physique. La situation initiale est la suivante : une pierre spongieuse est
immergée dans de l’eau, comme représenté sur la figure 1, et nous voulons savoir si le centre
de la pierre est mouillé. Broadbent et Hammersley ont défini un modèle mathématiques
qui permet de répondre à ce genre de question.

figure 1: La pierre spongieuse immergée.

1.2 Le modèle mathématiques [9]. Considérons Zd l’ensemble des vecteurs d’entiers à d
coordonnées. Nous le munissons d’une structure de graphe en mettant une arête pour
chaque couple de points (x, y) voisins. Nous notons Ld = (Zd,Ed) le graphe obtenu. Ce
graphe est infini et invariant par les translations entières.

L’espace des configurations pour la percolation sur Zd est Ω = {0, 1}Ed

. Soit ω un
élément de Ω. Une arête e de Ed est dite ouverte dans ω si ω(e) = 1, et fermée si ω(e) = 0.
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Nous modélisons donc la pierre spongieuse en assimilant les petits canals à l’intérieur de
la pierre aux arêtes du graphe Ld, un canal laissant passer l’eau uniquement si l’arête est
ouverte. La question de savoir si le centre de la pierre est mouillé revient à savoir si il y a
un chemin infini partant de l’origine 0 du graphe et ne passant que par les arêtes ouvertes.
La figure 2 représente une réalisation du processus de percolation sur Z2.

figure 2: exemple de réalisation du processus de percolation

Pour pouvoir répondre à cette question, il nous faut une mesure de probabilité. L’en-
semble Ω est muni de la tribu produit F . Soit p un paramètre compris entre 0 et 1. La
mesure de percolation Pp est la mesure sur (Ω,F) telle que les arêtes soient ouvertes avec
probabilité p, fermées avec probabilité 1− p, et ceci indépendamment les unes des autres.
C’est donc le produit tensoriel des mesures de Bernoulli pδ0 + (1− p)δ1 associées à chaque
arête.

Plus le paramètre p est grand, plus la probabilité qu’il y ait un chemin infini d’arêtes
ouvertes est grande. Pour la pierre spongieuse, cela signifie que plus il y a de petits canaux,
plus le centre de la pierre a de chance d’être atteint par l’eau.

Un cluster est une composante connexe du graphe aléatoire, dont l’ensemble d’arêtes est
constitué d’arêtes ouvertes. Nous disons qu’il y a percolation s’il existe un cluster infini,
et nous notons {0→∞} l’événement où l’origine est dans un cluster infini. La probabilité
de percolation est

θ(p) = Pp(0→∞).

1.3 Evénements croissants et domination stochastique. Nous définissons un ordre partiel
sur Ω en disant que ω1 ≤ ω2 si et seulement si ω1(e) ≤ ω2(e) pour toute arête e de Ed. Un
événement A est dit croissant si

ω1 ∈ A et ω2 ≥ ω1 ⇒ ω2 ∈ A.

Si Ac le complémentaire de A est croissant, alors A est dit décroissant. Une inégalité
fondamentale est l’inégalité FKG, qui établit que les événements croissants sont corrélés
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positivement : si A et B sont deux événements croissants, alors

P (A ∩B) ≥ P (A)× P (B).

Une fonction f de Ω dans R est dite croissante si ω1 ≤ ω2 implique f(ω1) ≤ f(ω2).
Dire qu’un événement A est croissant est alors équivalent à dire que sa fonction indicatrice
1A est croissante. Soit µ et ν deux mesures sur Ω. Nous disons que µ est dominée
stochastiquement par ν si pour toute fonction f croissante de Ω dans R, µ(f) ≤ ν(f).
Nous avons par exemple :

pour tous p, p′ ∈ [0, 1] p ≤ p′ ⇒ Pp ≤ Pp′ .2 Des estim�ees exponentielles sur le 
omportement des 
lusters dans unebô�te en FK per
olation
2.1 Le modèle FK. Le modèle FK [11] est une extension du modèle de percolation Bernoulli
dans lequel les arêtes ne sont plus indépendantes. Pour pouvoir définir ce processus sur
Zd, nous commençons par le définir dans une bôıte.

Soit donc Λ une bôıte de Zd. Nous notons E(Λ) l’ensemble des arêtes qui sont à
l’intérieur de Λ, et nous posons ΩΛ = {0, 1}E(Λ) l’ensemble des configurations dans la
bôıte. Notons ∂Λ l’ensemble des sites appartenant à la frontière de Λ :

∂Λ = {x ∈ Λ : ∃y /∈ Λ, (x, y) est une arête}.

Soit π une partition de ∂Λ. Nous appelons π–cluster une composante connexe de Λ pour
laquelle nous considérons que deux points dans la même classe de π sont reliés. Le nombre
correspondant de π–clusters dans la configuration ω est noté clπ(ω). Pour p ∈ [0, 1] et
q ≥ 1, nous posons alors

∀ω ∈ ΩΛ Φπ,p,q
Λ [{ω}] =

1

Zπ,p,q
Λ

(
∏

e∈E

pω(e)(1− p)1−ω(e)

)
qcl

π(ω),

le terme Zπ,p,q
Λ servant à renormaliser l’expression. Lorsque q = 1, les arêtes sont indépen-

dantes et nous retrouvons la mesure de Bernoulli. Ces mesures vérifient l’inégalité FKG
(c’est la raison pour laquelle nous imposons q ≥ 1).

Il y a deux conditions aux bords extrêmales : celle où tous les points de ∂Λ sont dans
une seule classe est notée w pour wired , et celle où chaque classe est constituée d’un seul
point est notée f pour free. Pour toute partition π de ∂Λ et pour toute configuration ω,
nous avons

clw(ω) ≤ clπ(ω) ≤ clf (ω),
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ainsi que les dominations stochastiques suivantes :

Φf,p,q
Λ � Φπ,p,q

Λ � Φw,p,q
Λ .

L’ensemble des mesures FK correspondant aux différentes conditions aux bords est noté
R(p, q,Λ).

Par un argument de monotonicité, les deux mesures Φf,p,q
Λ et Φw,p,q

Λ convergent faible-
ment lorsque Λ → Zd, vers des mesures sur Ω notée Φf,p,q

∞ et Φw,p,q
∞ . Ces deux mesures

sont égales sauf peut–être pour un ensemble dénombrable de valeurs de p, cet ensemble
dépendant du paramètre q. Elles ont donc un point critique commun défini par

pc = sup
{
p : Φf,p,q

∞ (0→∞) = 0
}

= sup
{
p : Φw,p,q

∞ (0→∞) = 0
}
.

Nous avons besoin de certains estimées exponentiels. Pour ce faire, nous introduisons le
point critique suivant :

pg = sup{p : ∃c > 0, ∀ x ∀ y ∈ Z2, Φp,q
∞ [x↔ y] ≤ exp(−c|x− y|)}.

Le point dual de pg est le point défini par

p̂g =
q(1− pg)

pg + q(1− pg)
≥ pc.

2.2 Résultats. Nous considérons le modèle FK sur Z2 dans le régime surcritique. Soit Λ(n)
le carré [−n, n]2. Nous disons qu’un cluster de Λ(n) traverse Λ(n) s’il intersecte tous les
côtés de Λ(n). Soit l un entier. Un cluster est l–intermédiaire si son cardinal n’est pas
maximal parmi les clusters de Λ(n), et si son diamètre dépasse l. Nous notons Jl l’ensemble
des clusters l–intermédiaire de Λ(n) et nous posons θ = θ(p) pour alléger les notations.
Soit l’événement

K(n, ε, l) =
{
∃! cluster Cm dans Λ(n) qui est maximal pour le volume,

le cluster Cm traverse Λ(n), n−2|Cm| ∈]θ − ε, θ + ε[

et n−2
∑

C∈Jl

|C| < ε}.

Nous démontrons le résultat suivant:

Théorème 1. : Soit q ≥ 1, 1 > p > p̂g et ε ∈]0, θ/2[ fixés. Il existe une constante L
telle que

−∞ < lim inf
n→∞

1

n
log inf

Φ∈R(p,q,Λ(n))
Φ[K(n, ε, L)c]

≤ lim sup
n→∞

1

n
log sup

Φ∈R(p,q,Λ(n))

Φ[K(n, ε, L)c] < 0.
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Ainsi, à des déviations d’ordre surfacique près, la configuration typique dans une grande
bôıte est un unique cluster qui touche toutes les faces du carré et qui a la même densité
que le cluster infini, et un ensemble de clusters de tailles intermédiaires dont le volume
total est aussi petit que nécessaire.

Le théorème 1 est l’adaptation en dimension deux d’un résultat de A. Pisztora [14].

2.3 Renormalisation. Soit N un entier. La renormalisation consiste à diviser la bôıte Λ(n)
en bôıtes de taille N . Nous posons

Λ(N) = {k ∈ Z2 : Nk+] −N/2, N/2] ⊂ Λ},

comme représentée à la figure 3 (pour simplifier nous supposons que nous obtenons une
partition de Λ(n)).

b b b b

b b b b

b b b b

b b b b

n

N

k ∈ Λ(N)

Λn

figure 3: le découpage d’une bôıte

Pour i appartenant à Λ(N), nous posons Bi = N i+] −N/2, N/2]. Nous allons prendre
N fixé mais assez grand pour que avec grande probabilité la configuration dans une bôıte
Bi soit proche de la configuration typique.

Considérons dans un premier temps la probabilité qu’il existe un cluster dans Λ(n) qui
soit de cardinal supérieur à (θ + ε)n2. Le cardinal d’un cluster dans Λ(n) est majoré par
le cardinal des clusters de chaque bôıte Bi, i ∈ Λ(N), intersectant le bord de Bi. Nous
notons Yi ce cardinal. Par un procédé d’isolation des bôıtes Bi, i ∈ Λ(N), nous rendons les
variables Yi indépendantes. Nous prenons N assez grand pour que l’espérance de Yi/N

2

soit inférieure à θ+ε/2. En appliquant le théorème de Cramer, la probabilité qu’un cluster
soit de cardinal supérieur (θ + ε)n2 est inférieure à exp(−cn2) pour une constante c > 0.

Pour les déviations de la densité par en–dessous, nous nous intéressons à un processus de
percolation par site sur Λ(N), qui va ensuite nous donner des informations sur le processus
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de percolation sur Λ(n). Pour i ∈ Λ(N), nous notons Ri l’événement : il existe un unique

cluster C∗i traversant Bi et tout chemin ouvert dans Bi de diamètre supérieur à
√
N/10

est inclus dans C∗i .
Soit Λ une bôıte. Nous disons qu’il y a une 1–traversée dans Λ s’il existe un cluster

dans Λ qui relie le côté gauche au côté droit. Nous définissons de la même manière les
2–traversées. Pour i, j appartenant à Λ(N) tels que |i− j|2 = |ir − jr| = 1 avec r = 1 ou 2,
nous définissons la bôıte

Di,j = [−N/4, N/4]2 + (i + j)N/2,

et l’événement
Ki,j = {∃r–traversée dans Di,j}.

Pour i ∈ Λ(N), nous définissons

Xi =






1 sur Ri ∩
⋂

i∼j

Ki,j

0 sinon.

Prenons i et j dans Λ(N), voisins et tels que Xi = Xj = 1. Comme nous pouvons le voir
sur la figure 4, les deux clusters C∗i et C∗j sont reliés par l’intermédiaire de Di,j.

figure 4: les clusters de bôıtes voisines sont inter–connectés

Dans [5], il a été démontré que pour p assez proche de 1, il existe une constante c > 0
telle que

Pp

(
∃C cluster de site dans Λ(N) tel que

N2

n2
|C| ≥ 1− ε

)
≥ 1− exp(−cn).
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Ce cluster macroscopique C de petites bôıtes implique l’existence d’un cluster micro-
scopique C contenant les clusters C∗i pour i appartenant à C. Pour N assez grand,
l’espérance du cardinal de C∗i est supérieur à θ − ε/2. Comme précédemment, le résultat
est obtenu en rendant ces variables indépendantes et en appliquant le théorème de Cramer.3 Un prin
ipe de grandes d�eviations dans le r�egime sous{
ritique
3.1 La mesure de Hausdorff. Cette mesure a été définie pour répondre à des questions du
genre : quelle est la longueur des côtes bretonnes, quelle est la surface d’un flocon de neige,
quelle est la dimension d’un mouvement brownien plan ? La mesure de Hausdorff est un
outil primordial pour l’études des fractales [7], dont nous rappelons le concept figure 5.

figure 5: représentation d’une fractale

La longueur de la fractale representée figure 5 est infinie, mais nous ne pouvons pas dire
pour autant qu’elle ait une aire. Nous voulons disposer d’une quantité qui caractérise cet
ensemble et qui étende les notions classiques de longueur et d’aire.

Soit E un sous–ensemble de Rd. Son diamètre est

diamE = sup{|x− y|2 : x, y ∈ E},

où | · |2 est la norme euclidienne. Prenons r un réel appartenant à [0, d]. Pour A ⊂ Rd, sa
mesure de Hausdorff r–dimensionnelle est

Hr(A) = sup
δ>0

inf
{∑

i∈I

(diamEi)
r : A ⊂

⋃

i∈I

Ei, sup
i∈I

diamEi ≤ δ
}
.

La dimension de Hausdorff de l’ensemble A est alors égale à la quantité

dimH A = sup{r : Hr(A) =∞}.

Même si r est la dimension de A, Hr(A) peut prendre les valeurs 0 et +∞. Pour toucher
au plus près la structure d’un ensemble, il faut parfois généraliser la définition de la mesure
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de Hausdorff, en autorisant d’autres fonctions que les fonctions puissances. Si f est une
fonction continue de R+ dans R+ avec f(0) = 0, nous définissons

Hf (A) = sup
δ>0

inf
{∑

i∈I

f(diamEi) : A ⊂
⋃

i∈I

Ei, sup
i∈I

diamEi ≤ δ
}
.

Nous pouvons par exemple prendre f(x) = x2/(lnx). La mesure Hr correspond à la
mesure Hf avec f(x) = xr.

La mesure H1 correspond à la notion de longueur dans le cadre euclidien. Si nous nous
plaçons dans un milieu non isotrope, tel que la distance entre deux points x et y soit définie
par ξ(x− y) avec ξ une norme quelconque, nous devons modifier comme suit la définition
de H1 pour garder la correspondance avec la longueur:

H1
ξ(A) = sup

δ>0
inf
{∑

i∈I

ξ(Ei) : A ⊂
⋃

i∈I

Ei, sup
i∈I

ξ(Ei) ≤ δ
}
,

où ξ(Ei) = sup{ξ(x− y) : x, y ∈ Ei}.
3.2 Nos résultats en percolations sous–critique. En régime sous–critique, la queue de la loi
du diamètre des clusters est exponentiellement décroissante : ∃c > 0 tel que ∀n ∈ N,

P
(
diamC(0) ≥ n

)
≤ exp(−cn).

Nous nous intéressons au problème plus spécifique d’estimer la probabilité que le cluster
de l’origine, mis à l’échelle 1

n , soit proche d’une certaine forme. Nous y répondons en
établissant que le cluster de l’origine vérifie un principe de grandes déviations pour la
distance de Hausdorff.

Pour x dans Rd, nous notons ⌊x⌋ le point de Zd situé juste “en dessous et à gauche” de
x. Soit ξ la norme sur R2 définie par

ξ(x) = − lim
n→∞

1

n
lnP (O → ⌊nx⌋).

Pour K un compact de Rd, nous posons

I =

{
H1

ξ(K) si le compact K est connexe et contient 0

+∞ sinon.

Nous appelons énergie de K la quantité I(K). La distance de Hausdorff entre deux com-
pacts K1 et K2 est définie par

DH(K1, K2) = max
{

max
x1∈K1

d(x1, K2), max
x2∈K2

d(x2, K1)
}
.

Nous notons K pour l’ensemble des compacts de Rd. La distance de Hausdorff induit une
topologie sur l’ensemble K.
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Théorème 2. Soit p < pc. Pour tout borélien U de K,

− inf
{
I(K) : K ∈

◦
U
}
≤ lim inf

n→∞
1

n
lnP

(
C(0)/n ∈ U

)

≤ lim sup
n→∞

1

n
lnP

(
C(0)/n ∈ U

)

≤ − inf
{
I(K) : K ∈ U

}
.

La prochaine étape sera de démontrer ce résultat pour la percolation FK.

3.3 Les squelettes. Pour prouver le principe de grandes déviations, nous approximons les
clusters par des ensembles de segments appelés squelettes, voir figure 6.

b

b

b

b

b

b

b
b

b

b

b

b

b

b

figure 6: un squelette

Pour la borne inférieure, nous prenons un squelette S proche pour la distance de Haus-
dorff de Γ et tel que I(S) ≤ I(Γ). Ensuite, pour tout segment [x, y] de S, nous imposons
que nx soit connecté à ny par un chemin ouvert qui reste proche du segment [nx, ny]. Grâce
à l’inégalité FKG, la probabilité de cet événement est supérieure à exp(−nI(S)). Nous
montrons ensuite que le cluster contenant ces chemins ouverts reste proche de l’ensemble
Γ.

Pour la borne supérieure, nous utilisons l’inégalité BK. Si le cluster de 0 n’est pas
dans un ensemble de niveau de la fonction de taux, alors tous les squelettes proches de
ce cluster ont une certaine énergie. Pour pouvoir conclure, il faut disposer d’un contrôle
sur ce nombre de squelettes. Ceci est réalisé en imposant une longueur minimale pour les
segments du squelette.

3.4 La forme typique d’un grand cluster en régime sous–critique. Peu de choses sont
connues à son sujet. Contrairement au régime sur–critique, notre principe de grandes
déviations ne nous fournit aucun contrôle sur le cardinal du cluster de l’origine. Il n’est de
plus pas certain qu’un cluster de cardinal n ait en général un diamètre de l’ordre de n.
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J’ai réalisé la simulation suivante sur un ordinateur: prenons un carré de taille 400×400,
et fixons la configuration de départ de telle sorte que toutes les arêtes soient ouvertes. A
chaque cycle, prenons aléatoirement une arête. Si elle est fermée, elle devient ouverte
avec probabilité 1

4 (nous prenons arbitrairement ce paramètre qui est inférieur à 1
2 le point

critique de Z2). Si elle est ouverte, nous vérifions que sa fermeture ne va pas faire descendre
le cardinal de C(0) en–dessous de 300. Si le cluster de l’origine reste suffisamment gros
malgré la fermeture, nous fermons cette arête avec probabilité 3

4 , sinon nous la laissons
ouverte. De cette manière, le cluster C(0) a toujours un cardinal supérieur à 300. Les
figures obtenues ont un aspect très irrégulier, de type “fractale”.

Il faudrait réussir à donner une notion à la dimension fractale de C(0), si tant est qu’elle
existe. Un premier pas serait d’estimer la variable diamC(0) conditionnellement au fait
que le cardinal de C(0) est plus grand que n. Par exemple, trouver le plus grand c tel que

P
(
diamC(0) ≥ nc | |C(0)| ≥ n

)
→ 1, lorsque n→∞.4 Les grands 
lusters sont distribu�es 
omme un pro
essus de Poisson

4.1 Le processus de Poisson spatial. Des points sont lancés au hasard dans l’espace euclidien
Rd. Pour un des lancers ω, notons N(ω,A) le nombre de points compris dans l’ensemble
A ⊂ Rd. La variable N(A) est donc une variable aléatoire discrète prenant les valeurs
0, 1, . . . ,∞. La famille des variables aléatoires

{
N(A) : A ∈ Bd

}
où Bd est l’ensemble des

boréliens de Rd, est un processus ponctuel de Rd.
On appelle processus de Poisson homogène sur Rd d’intensité λ un processus ponctuel

sur Rd tel que, pour toute famille
{
Ai : 1 ≤ i ≤ k

}
de sous–ensembles mesurables de Rd:

(i) N(Ai) est une variable de Poisson de paramètre λLd(Ai)
(ii) la famille

{
N(Ai) : 1 ≤ i ≤ k

}
est une famille de variables aléatoires indépendantes.

Cette présentation du processus spatial de Poisson est extraite de [2].
Considérons un processus de Bernoulli indexé par Zd d’intensité p′. En mettant le

réseau Zd à l’échelle 1
n , le processus de Bernoulli induit un processus ponctuel sur Rd :

pour A ⊂ Rd, nous notons N(A) le nombre de points de Zd compris dans nA. En faisant
tendre p′ vers 0 et n vers l’infini de telle sorte que np′ → λ, la suite de processus ponctuels
sur Rd converge en loi vers un processus de Poisson sur Rd d’intensité λ. Le processus de
Poisson est ainsi caractéristique de la distribution des événements rares dans l’espace.

4.2 Le processus des grands clusters finis. Dans le régime surcritique de la percolation
Bernoulli, les grands clusters finis sont des objets rares. Il existe ainsi une constante c > 0
telle que

lim
n→∞

1

nd−1
lnP

(
nd ≤ |C(0)| <∞

)
= −c. (3)
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Cela signifie que pour voir dans une bôıte un cluster de taille plus grande que n et ne
touchant pas les bords, il faut prendre une bôıte de taille exp(cn(d−1)/d). Cette taille étant
très largememt supérieure à la taille des clusters considérés, ces clusters ressemblent à des
points lorsque nous ramenons cette bôıte à une bôıte de taille 1. La discussion précédente
nous laisse à penser que ces points sont distribués comme un processus de Poisson.

Nous étudions le processus pontuel défini comme suit. Soit C un cluster fini. Son centre
de gravité est

MC =

⌊
1

|C|
∑

x∈C

x

⌋
,

où ⌊y⌋ représente le point de Zd en dessous et à gauche de y. Soit Λ une bôıte et n un
entier. Nous définissons un processus X sur Λ par

X(x) =

{
1 si x est le centre de gravité d’un cluster fini de cardinal ≥ n
0 sinon.

(4)

Pour Y processus sur Λ à valeurs dans N, la distance de variation totale entre X et Y est

||L(X)−L(Y )||TV = sup
{∣∣P (X ∈ A)− P (Y ∈ A)

∣∣, A ⊂ {0, 1}Λ
}
.

Soit λ l’espérance du nombre de points x de Λ tels que X(x) = 1. Nous prouvons le
résultat suivant:

Théorème 5. Soit p > pc. Il existe une constante c > 0 telle que : pour toute bôıte Λ,
si X est le processus défini par l’équation (4), et si Y est un processus de Bernoulli sur Λ
ayant les mêmes marginales que X, i.e. P (Y (x) = 1) = P (X(x) = 1) pour tout x de Λ,
alors pour n assez grand

||L(X)−L(Y )||TV ≤ λ exp(−cn(d−1)/d).

Comme corollaire, la loi du nombre de clusters finis de taille plus grande que n intersectant
Λ est proche d’une loi de Poisson de paramètre λ si λ n’est pas trop grand.

Nous démontrons en fait le Théorème 5 pour la percolation FK, mais en imposant des
conditions supplémentaires sur p.

4.3 La méthode Chen-Stein. La méthode Chen–Stein permet de contrôler la distance de
variation totale entre deux processus X , Y sur Λ par des moments de second ordre. Ici Y
est un processus de Bernoulli ayant les mêmes marginales que X . Pour x ∈ Λ, nous notons

px := P
(
X(x) = 1

)
= P

(
Y (x) = 1

)
,
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et pour y appartenant à Λ

pxy := P
(
X(x) = 1, X(y) = 1

)
.

Nous définissons trois coefficients b1, b2 et b3 :

b1 =
∑

x∈Λ

∑

y∈Bx

pxpy,

b2 =
∑

x∈Λ

∑

y∈Bx\x
pxy,

b3 =
∑

x∈Λ

E
∣∣∣E
(
X(x)− px|σ(X(y), y /∈ Bx

))∣∣∣.

Le théorème 2 de [1] établit que

||L(X)− L(Y )||TV ≤ 2(2b1 + 2b2 + 2b3) +
∑

x∈Λ

p2
x.

4.4 Schéma de la preuve. Le travail principal est de contrôler le terme pxy, i.e. les interac-
tions entre les différents clusters. Nous effectuons ceci de deux manières différentes, suivant
que |x − y|1 soit de l’ordre de lnn ou plus grand. Dans le second cas, nous supposons la
ratio weak mixing property , qui permet de contrôler les interactions à distance et dont voici
la définition :

Definition 6. La mesure Φ a la ratio weak mixing property si il existe c1, µ1 > 0, tels
que pour tous les ensembles Λ,∆ ⊂ Zd,

sup
{∣∣∣

Φ(E ∩ F )

Φ(E)Φ(F )
− 1
∣∣∣ : E ∈ FΛ, F ∈ F∆,Φ(E)Φ(F ) > 0

}

≤ c1
∑

x∈Λ,y∈∆

e−µ1|x−y|1 ,

Dans le cas où |x − y|1 est inférieur à K lnn pour un K donné, nous modifions la
configuration pour relier les deux clusters dont les centres de gravité sont x et y (il faut
d’ailleurs contrôler la probabilité que deux clusters aient le même centre de gravité). Cette
modification est réalisée de telle sorte que le nombre d’antécédants par cette application
soit borné par une puissance de n. Nous la représentons figure 7.



20 Chapitre 1

figure 7: les deux clusters sont reliés5 Une �etude sur la per
olation orient�ee en dimensions sup�erieures �a trois
5.1 La percolation orientée. Nous étudions à présent une autre structure de graphe sur Zd,
dans laquelle les arêtes de Zd sont toutes orientées dans le sens positif. Nous représentons
figure 8 le graphe orienté Z2.

Les arêtes sont ouvertes avec probabilité p, indépendamment les unes des autres. Il y
a percolation dans le graphe orienté s’il existe un chemin infini orienté d’arêtes ouvertes.
Pour un point x de Zd, le cluster de x, noté C(x, ω) ou C(x), est l’ensemble des points de
Zd que l’on peut atteindre à partir de x. La densité de percolation est

~θ(p) = Pp(0→∞),

et le point critique de ce modèle est

~pc = sup{p : ~θ(p) = 0}.

Le point critique ~pc est compris strictement entre 0 et 1, et de plus ~pc > pc.
Un cluster infini ne remplit pas tout l’espace comme dans le cas non–orienté, mais

ressemble plutot à un cône [6], appelé cône de percolation.

5.2 Principe de grandes déviations en percolation orientée. Dans le cadre non–orienté, un
principe de grandes déviations à été prouvé, qui a permis d’estimer la probabilité qu’un
cluster soit fini et de cardinal supérieur à n (voir [3]), et de connâıtre la forme typique d’un
tel cluster. Nous démontrons le principe de grandes déviations dans le cas de la percolation
orientée.
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0

figure 8: le graphe orienté de Z2

Nous définissons une tension de surface τ , à laquelle nous adjoignons le cristal de Wulff
Wτ correspondant, dont nous rapellerons la définition. Soit A un borélien de Rd. Son
énergie de surface I(A) est définie par

I(A) = sup
{∫

A

div f(x)dx : f ∈ C1
c (Rd,Wτ )

}
,

où C1
c (Rd,Wτ ) est l’ensemble des fonctions C1 définies sur Rd à valeurs dans Wτ ayant un

support compact et div est l’opérateur usuel de divergence. Cette expression de l’énergie
de surface est équivalente par la formule de Stokes à l’écriture plus usuelle suivante :

I(A) =

∫

∂∗A

τ(νA(x))dHd−1(x),

avec ∂∗A représentant la frontière “régulière” de A et pour x appartenant à ∂∗A, νA(x)
est le vecteur normal extérieur à A en x.

Nous notons M(Rd
+) pour l’ensemble des mesures boréliennes σ–finies sur Rd

+. Nous
le munissons de la topologie faible : c’est la topologie la plus grossière pour laquelle les
fonctions linéaires

ν ∈M(Rd
+)→

∫
f dν, f ∈ Cc(R

d,R)

sont continues, où Cc(R
d,R) est l’ensemble des applications continues de Rd vers R ayant

un support compact. Nous définissons une énergie de surface I sur M(Rd
+) en posant

I(ν) = I(A) si ν ∈M(Rd
+) est la mesure ~θ(p)1A avec A un borélien, et sinon I(ν) = +∞.

Théorème 7. Soit d ≥ 3 et p > ~pc. La suite des mesures aléatoires définies par

Cn =
1

nd

∑

x∈C(0)

δ x
n
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vérifie un principe de grandes déviations sur M(Rd
+), de vitesse nd−1 et de fonction de

taux I, I.E., pour tout borélien M de M(Rd
+),

− inf{I(ν) : ν ∈
◦
M} ≤ lim inf

n→∞
1

nd−1
lnP (Cn ∈M)

≤ lim sup
n→∞

1

nd−1
lnP (Cn ∈M) ≤ − inf{I(ν) : ν ∈M}.

L’un des principaux problèmes vient du fait que la tension de surface τ que nous définissons
pour ce modèle n’est pas strictement positive sur toute la sphère Sd−1. De plus, les
clusters ne correspondent plus à des composantes connexes du graphe, et cela entrâıne
quelques complications lorsque nous manipulons des unions de clusters dont les cardinaux
ne s’additionnent plus.

La borne supérieure est également valide en dimension deux, au contraire de la borne
inférieure. La construction pour la borne inférieure utilise des chemins de longueur n, dont
la probabilité de l’ordre de exp(−cn) n’intervient pas dans les estimés à la condition que
la dimension d soit supérieure ou égale à trois.

5.3 Autres résultats en percolation orientée. Le résultat suivant est un corollaire du principe
de grandes déviations du théorème 7.

Théorème 8. Soit d ≥ 3 et p > ~pc. Il existe une constante c > 0 telle que

lim
n→∞

1

nd−1
lnP (nd ≤ |C(0)| <∞) = −c.

A côté du principe de grandes déviations, nous prouvons que la fonction de connectivité
décrôıt exponentiellement vite en dehors du cône de percolation :

Théorème 9. Soit d ≥ 3 et p > ~pc. Soit x n’appartenant pas au cône de percolation.
Il existe alors c > 0 tel que

P (0→ nx) ≤ exp−cn.

5.4 Les événements blocs. Nous orientons notre réseau de telle sorte que les arêtes soient
dirigées vers le haut. Cela revient en dimension deux à faire une rotation d’angle π/4. Soit
K un entier. Pour x appartenant à Zd, nous notons B(x) la bôıte ] −K/2, K/2]d +Kx.
Nous définissons un événement qui décrit l’expansion horizontale des clusters.

Soit l un entier > 0. Soit D0 l’ensemble

D0(x, l) =
( ⋃

0≤i≤l

{x+ ied}
)
∪
( ⋃

1≤d−1

{x+ led ± ei}
)
.
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by B(x)

Kl

le cluster de y inter-
secte toutes les bôıtes
représentées

figure 9: L’événement R

Nous posons alors

R(B(x), l) =
{
∀ y tel que C(y) ∩B(x) 6= ∅ et |C(y)| ≥ K/2,
nous avons ∀ z ∈ D0(x, l), C(y)∩B(z) 6= ∅

}
,

comme représenté sur la figure 9.
Nous prouvons que pour l assez grand,

P (R(B(x), l))→ 1 lorsque K →∞.

Pour comprendre l’intérêt de cet événement, définissons une nouvelle structure de graphe

L̂d sur Zd. Nous mettons une arête orientée de x vers y pour tout couple (x, y) tel que
y ∈ D0(x, l). Grâce aux arêtes du type (x, x+ led ± ei) pour 1 ≤ i ≤ d− 1, la stucture de

L̂d est suffisamment riche pour que le point critique de la percolation par site sur ce graphe

soit strictement inférieur à 1. Nous disons maintenant qu’un site x de L̂d est occupé si
nous avons l’événement R(B(x), l). Si (x0, . . . , xn) est un chemin orienté de sites occupés

dans L̂d, et si y ∈ Zd est tel que son cluster intersecte B(x0) et |C(y)| ≥ K/2, alors le
cluster de y intersecte toutes les bôıtes B(xj) pour 0 ≤ j ≤ n.

5.5 Le cristal de Wulff. Soit τ une fonction continue de Sd−1 dans R+. Le cristal de Wulff
associé est défini par

Wτ = {x ∈ Rd : x · w ≤ τ(w) for all w in Sd−1}.

C’est un ensemble fermé, borné et convexe.
Dans les modèles de percolation, la fonction τ représente le coût d’une surface d’arêtes

fermées s’appuyant sur les bords d’un hyper–rectangle. Elle ne dépend que du vecteur
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normal à cet hyper–rectangle. En percolation classique, le cristal de Wulff contient 0 en
son intérieur, et sa forme varie de la sphère lorsque p est proche de pc, à l’hypercube lorsque
p tend vers 1. Dans le modèle de la percolation orientée, le cristal de Wulff est inclus dans
un cône et présente une singularité en 0.

Le cristal de Wulff correspond à la forme typique des grands clusters finis en percolation
non-orientée. Pour obtenir ce résultat, il faut disposer d’un principe de grandes déviations
et savoir que le cristal de Wulff est l’unique solution d’un principe variationnel. Le théorème
7 fournit la première partie. Malheureusement, le problème variationnel de Wulff n’est
résolu que pour des fonctions τ strictement positives. Il faudra donc reprendre la résolution
de ce problème dans notre cas pour pouvoir obtenir le cristal de Wulff comme forme d’un
grand cluster fini.6 La per
olation �a orientation al�eatoire

Durant cette thèse je me suis intéressé au modèle à orientation aléatoire décrit ci–après.
Cette recherche n’a pas abouti à montrer qu’il y a percolation dans ce modèle dès que la
symétrie est brisée.

Dans le graphe Z2, nous orientons les arêtes positivement avec probabilité p, et négative-
ment avec probabilité 1− p. Nous en donnons une réalisation figure 10.

figure 10: des arêtes orientées aléatoirement

Lorsque p = 1/2, en comparant avec le modèle classique, nous nous apercevons qu’il
n’y a pas percolation. Que pouvons–nous dire lorsque p > 1/2? Par comparaison avec
le modèle orienté, il y a percolation lorsque p > ~pc. Il est en fait conjecturé qu’il y a
des chemins orientés infinis dès que p > 1/2. Des simulations numériques semblent le
confirmer. En introduisant le dual du processus à orientation aléatoire, nous pouvons
montrer que le processus n’est pas sous–critique [10].

L’une des difficultés de ce modèle est que nous ne disposons plus de l’inégalité FKG.
Cela peut être résolu comme dans [10] en remplaçant chaque arête de Z2 par deux arêtes
orientées en sens contraire. L’arête qui est dans le sens positif est ouverte avec probabilité
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p, celle qui est dans le sens négatif est ouverte avec probabilité 1− p. En ce qui concerne
l’existence de chemins infinis, les deux modèles sont équivalents. Cependant des questions
demeurent spécifiques au modèle à orientation aléatoire. Par exemple, l’inégalité “anti–
FKG” suivante devrait être valide : pour tout x, y, z de Z2,

P (x→ y, y→ z) ≤ P (x→ y)P (y→ z).7 Organisation de la th�ese
Chacun des chapitres suivant est un article rédigé en anglais. Le chapitre 2 contient

l’article “Surface order large deviation for 2D FK percolation and Potts models”, qui est un
travail réalisé en collaboration avec Réda–Jürg Messikh et correspond à la section 2 de ce
chapitre introductif. Le chapitre 3 contient l’article “A large deviation result for Bernoulli
percolation” et correspond à la section 3. Le chapitre 4 est constitué de l’article “Poisson
approximation for large finite clusters in the supercritical FK model” et correspond à la
section 4. Le chapitre 5 contient l’article “Surface large deviations for supercritical oriented
percolation” et est consacré à l’étude de la percolation orientée en dimensions supérieures
à trois.

Cette thèse a été rédigée en utilisant les logiciels emacs et ams–TEX. Les deux livres
que j’ai utilisés pour l’utilisation de TEX sont celui de R. Séroul [15] et le TEXbook de D.
E. Knuth [12], ainsi que sa traduction française réalisée par J.–C. Charpentier.
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5. J.-D. Deuschel, Á. Pisztora, Surface order large deviations for high-density percola-

tion, Probab. Theory Relat. Fields 104 (1996), 467–482.
6. R. Durrett, Oriented percolation in two dimensions, Ann. Probab. 12 (1984), 999–

1040.
7. K. J. Falconer, The Geometry of Fractals Sets, Cambridge.
8. C. Fortuin, P. Kasteleyn and J. Ginibre, Correlation inequalities on some partially

ordered sets, Commun. Math. Phys. 22 (1971), 89–103.
9. G. R. Grimmett, Percolation, Second Edition, vol. 321, Springer, 1999.

10. G. R. Grimmett, Infinite paths in randomly oriented lattices, Random Structures
Algorithms 18 (2001), 257–266.

11. G. R. Grimmett,, The random cluster model 110 (2003), Springer, Probability on
Discrete Structures. Ed. H. Kesten, Encyclopedia of Mathematical Sciences, 73–123.

12. D. E. Knuth, The TEXbook, Addison Wesley Publishing Company.
13. Y. Kovchegov, S. Sheffield, Linear speed large deviations for percolation clusters,

Preprint (2003).
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Abstract: By adapting the renormalization techniques of Pisztora, [32], we
establish surface order large deviations estimates for FK-percolation on Z2

with parameter q ≥ 1 and for the corresponding Potts models. Our results
are valid up to the exponential decay threshold of dual connectivities which is
widely believed to agree with the critical point.

Keywords: Large deviations, FK-percolation, Potts models.

1991 Mathematics Subject Classification: 60F10, 60K35, 82B20, 82B43.1 Introdu
tion
In this paper we derive surface order large deviations for Bernoulli percolation, FK-

percolation with parameter q > 1 and for the corresponding Potts models on the planar
lattice Z2.

In dimension two, surface order large deviations behaviour and the Wulff construction
has been established for the Ising model [15, 16, 23, 24, 25, 26, 30, 31, 33, 34, 35, 36],
for independent percolation [3, 5] and for the random cluster model [4]. These works
include also more precise results than large deviations for the Wulff shape. They are
obtained by using the skeleton coarse graining technique to study dual contours which
represent the interface. In higher dimensions other methods had to be used to achieve the
Wulff construction, [8, 10, 11, 12], where one of the main tools that have been used was
the blocks coarse graining of Pisztora [32]. This renormalization technique led to surface
order large deviations estimates for FK-percolation and for the corresponding Potts models
simultaneously. The results of [32], and thus the Wulff construction in higher dimensions,
are valid up to the limit of the slab percolation thresholds. In the case of independent
percolation, this threshold has been proved to agree with the critical point [21] and recently
it has also been proved in the case q = 2 [9]. Otherwise, it is believed to be so for all the
FK-percolation models with parameter q ≥ 1 in dimension greater than two.

Our aim is to import Pisztora’s blocks techniques [32] to the two-dimensional lattice
as an alternative to the use of contours. It is also worth noting that Pisztora’s renor-
malization technique forms a building block that has been used to answer various other
questions related to percolation [6,7, 28, 29]. The main point in our task is to get rid
of the percolation in slabs which is specific to the higher dimensional case. For this we
produce estimates analogue to those of theorem 3.1 in [32] relying on the hypothesis that
the dual connectivities decay exponentially. This hypothesis is very natural in Z2, because
it is possible to translate events from the supercritical regime to the subcritical regime by
planar duality. For Bernoulli percolation, the exponential decay of connectivities is known
to hold in all the subcritical regime, see [17] and the references therein. For the random
cluster model on Z2 with q = 2 the exponential decay follows from the exponential decay of
the correlation function in the Ising model [13], and a proof has also been given when q is
greater than 25.72, see [19] and the references therein. Even if not proved, the exponential
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decay of the connectivities is widely believed to hold up to the critical point of all the
FK-percolation models with q ≥ 1. In addition to that, we use a property which is specific
to the two dimensional case, namely the weak mixing property. This property has been
proved to hold for all the random cluster models with q ≥ 1 in the regime where the con-
nectivities decay exponentially [1]. We need this property in order to use the exponential
decay in finite boxes [2].2 Statement of results

Our results concern asymptotics of FK–measures on finite boxes

B(n) = (−n/2, n/2]2 ∩ Z2,

where n is a positive integer. We will denote by R(p, q, B(n)) the set of these FK-measures
defined on B(n) with parameters (p, q) and where we have identified some vertices of the
boundary. For q ≥ 1 and 0 < p 6= pc(q) < 1, it is known [20] that there is a unique infinite
volume Gibbs measure that we will note Φp,q

∞ . It is also known that Φp,q
∞ is translation

invariant and ergodic. In the uniqueness region, we will denote by θ = θ(p, q) the density
of the infinite cluster. As the exponential-decay plays a crucial rule in our analysis, we
will introduce the following threshold1

pg = sup{p : ∃c > 0, ∀ x ∀ y ∈ Z2, Φp,q
∞ [x↔ y] ≤ exp(−c|x− y|)}, (2.1)

where |x − y| is the L1 norm and {x ↔ y} is the event that there exists an open path
joining the vertex x to the vertex y.

By the results of [22], it is known that exponential decay holds as soon as the connec-
tivities decay at a sufficient polynomial rate. We thus could replace (2.1) by

pg = sup{p : ∃c > 0, ∀ x ∀ y ∈ Z2, Φp,q
∞ [x↔ y] ≤ c/|x− y|)}.

We introduce the point dual to pg:

p̂g =
q(1− pg)

pg + q(1− pg)
≥ pc(q),

which is conjectured to agree with the critical point pc(q).
Our result states that up to large deviations of surface order, there exists a unique

biggest cluster in the box B(n) with the same density than the infinite cluster, and that
the set of clusters of intermediate size has a negligible volume. To be more precise, we say

1The notation pg comes from [19].
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that a cluster in B(n) is crossing if it intersects all the faces of B(n). For l ∈ N, we say
that a cluster is l-intermediate if it is not of maximal volume and its diameter does exceed
l. We denote by Jl the set of l-intermediate clusters. Let us set the event

K(n, ε, l) =
{
∃! open cluster Cm in B(n) of maximal volume,

Cm is crossing, n−2|Cm| ∈ (θ − ε, θ + ε),

n−2
∑

C∈Jl

|C| < ε
}

Theorem 2.2. Let q ≥ 1, 1 > p > p̂g and ε ∈ (0, θ/2) be fixed. Then there exists a
constant L such that

−∞ < lim inf
n→∞

1

n
log inf

Φ∈R(p,q,B(n))
Φ[K(n, ε, L)c]

≤ lim sup
n→∞

1

n
log sup

Φ∈R(p,q,B(n))

Φ[K(n, ε, L)c] < 0.

This result, via the FK-representation, can be used as in [32] to deduce large deviations
estimates for the magnetization of the Potts model. We omit this as it would be an exact
repetition of theorem 1.1 and theorem 5.4 in [32].

Organization of the paper: In the following section we introduce notation and give
a summary of the FK model and of the duality in the plane. In section 1, we study
connectivity properties of FK percolation in a large box B(n) and establish estimates
that will be crucial for the renormalization à la Pisztora. In section 2, we introduce the
renormalization and proof estimates on the N-block process. In section 3, we finally give
the proof of theorem 2.2.3 Preliminaries

In this section we introduce the notation used and the basic definitions.
Norm and the lattice: We use the L1−norm on Z2, that is, |x− y| =∑i=1,2 |xi− yi| for

any x, y in Z2. For every subset A of Z2 and i = 1, 2 we define diami(A) = sup{|xi − yi| :
x, y ∈ A} and the diameter of A is diam(A) = max(diam1(A), diam2(A)). We turn Z2

into a graph (Z2,E2) with vertex set Z2 and edge set E2 = {{x, y}; |x− y| = 1}. If x and
y are nearest neighbors, we denote this relation by x ∼ y.

Geometric objects: A box Λ is a finite subset of Z2 of the form Z2 ∩ [a, b] × [c, d]. For
r ∈ (0,∞)2, we define the box B(r) = Z2 ∩ Πi=1,2(−ri/2, ri/2]. We say that the box
is symmetric if r1 = r2 = r, and we denote it by B(r). For t ∈ R+, we note the set
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H2(t) = {r ∈ R2 : ri ∈ [t, 2t], i = 1, 2}. The set of all boxes in Z2, which are congruent to
a box B(r) with r ∈ H2(t), is denoted by B2(t).

Discrete topology: Let A be a subset of Z2. We define two different boundaries:

- the inner vertex boundary: ∂A = {x ∈ A| ∃y ∈ Ac such that y ∼ x};
- the edge boundary: ∂edgeA = {{x, y} ∈ E2| x ∈ A, y ∈ Ac}.

For a box Λ and for each i = ±1,±2, we define the ith face ∂iΛ of Λ by ∂iΛ = {x ∈
Λ| xi is maximal} for i positive and ∂iΛ = {x ∈ Λ| x|i| is minimal} for i negative. A path
γ is a finite or infinite sequence x1, x2, ... of distinct nearest neighbors.

FK percolation.

Edge configurations: The basic probability space for the edge processes is given by

Ω = {0, 1}E2

; its elements are called edge configurations in Z2. The natural projections
are given by pre : ω ∈ Ω 7→ ω(e) ∈ {0, 1}, where e ∈ E2. An edge e is called open in the
configuration ω if pre(ω) = 1, and closed otherwise.

For E ⊆ E2 with E 6= ∅, we write Ω(E) for the set {0, 1}E; its elements are called
configurations in E. Note that there is a one-to-one correspondence between cylinder
sets and configurations on finite sets E ⊂ E2, which is given by η ∈ Ω(E) 7→ {η} :=
{ω ∈ Ω | ω(e) = η(e) for every e ∈ E}. We will use the following convention: the set
Ω is regarded as a cylinder (set) corresponding to the “empty configuration” (with the
choice E = ∅.) We will sometimes identify cylinders with the corresponding configuration.
For A ⊂ Z2, we set E(A) = {(x, y) : x, y ∈ A, x ∼ y}. Let ΩA stand for the set
of the configurations in A : {0, 1}E(A) and ΩA for the set of the configurations outside

A : {0, 1}E2\E(A). In general, for A ⊆ B ⊆ Z2, we set ΩA
B = {0, 1}E(B)\E(A). Given ω ∈ Ω

and E ∈ E2, we denote by ω(E) the restriction of ω to Ω(E). Analogously, ωA
B stands for

the restriction of ω to the set E(B) \ E(A).

Given η ∈ Ω, we denote by O(η) the set of the edges of E2 which are open in the
configuration η. The connected components of the graph (Z2,O(η)) are called η-clusters.
The path γ = (x1, x2, ...) is said to be η-open if all the edges {xi, xi+1} belong to O(η).
We write {A ↔ B} for the event that there exists an open path joining some site in A
with some site in B.

If V ⊆ Z2 and E consists of all the edges between vertices in V , the graph G = (V,E) ⊆
(Z2,E2) is called the maximal subgraph of (Z2,E2) on the vertices V . Let ω be an edge
configuration in Z2 (or in a subgraph of (Z2,E2)). We can look at the open clusters in V
or alternatively the open V -clusters. These clusters are simply the connected components
of the random graph (V,O(ω(E))), where ω(E) is the restriction of ω to E.

For A ⊆ B ⊆ Z2, we use the notation FA
B for the σ-field generated by the finite-

dimensional cylinders associated with configurations in ΩA
B. If A = ∅ or B = Z2, then we

omit them from the notation. Stochastic domination There is a partial order � in Ω given
by ω � ω′ iff ω(e) ≤ ω′(e) for every e ∈ E2. A function f : Ω → R is called increasing if

f(ω) ≤ f(ω′) whenever ω � ω
′

. An event is called increasing if its characteristic function
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is increasing. Let F be a σ-field of subsets of Ω. For a pair of probability measures µ and
ν on (Ω,F), we say that µ (stochastically) dominates ν if for any F -measurable increasing
function f the expectations satisfy µ(f) ≥ ν(f). FK measures Let V ⊆ Z2 be finite and
E = E(V ). We first introduce (partially wired) boundary conditions as follows. Consider
a partition π of the set ∂V , say {B1, ..., Bn}. (The sets Bi are disjoint nonempty subsets
of ∂V with

⋃
i=1,...,nBi = ∂V .) We say that x, y ∈ ∂V are π-wired , if x, y ∈ Bi for an

i ∈ {1, ..., n}. Fix a configuration η ∈ ΩV . We want to count the η-clusters in V in such a
way that π-wired sites are considered to be connected. This can be done in the following
formal way. We introduce an equivalence relation on V : x and y are said to be π · η-wired
if they are η-connected or if they are both joined by η-open paths to (or identical with)
sites x′, y′ ∈ ∂V which are themselves π-wired. The new equivalence classes are called
π · η-clusters, or η-clusters in V with respect to the boundary condition π. The number of
η-clusters in V with respect to the boundary condition π (i.e., the number of π ·η-clusters)
is denoted by clπ(η). (Note that clπ is simply a random variable). For fixed p ∈ [0, 1]
and q ≥ 1, the FK measure on the finite set V ⊂ Z2 with parameters (p, q) and boundary
conditions π is a probability measure on the σ-field FV , defined by the formula

∀η ∈ ΩV Φπ,p,q
V [{η}] =

1

Zπ,p,q
V

(
∏

e∈E

pη(e)(1− p)1−η(e)

)
qcl

π(η), (3.1)

where Zπ,p,q
V is the appropriate normalization factor. Since FV is an atomic σ-field with

atoms {η}, η ∈ ΩV , formula (3.1) determines a unique measure on FV . Note that every
cylinder has nonzero probability. There are two extremal b.c.s: the free boundary condition
corresponds to the partition f defined to have exactly |∂V | classes, and the wired b.c
corresponds to the partition w with only one class. The set of all such measures called FK
(or random cluster) measures corresponding to different b.c.s will be denoted byR(p, q, V ).
The stochastic process (pre)e∈E(V ) : Ω→ ΩV given on the probability space (Ω,F ,Φπ,p,q

V )
is called FK percolation with boundary conditions π. We list some useful properties of FK
measures with different b.c.s. There is a partial order on the set of partitions of ∂V . We
say that π dominates π′, π ≥ π′, if x, y π′-wired implies that they are π-wired. We then

have Φπ′,p,q
V � Φπ,p,q

V . This implies immediately that for each Φ ∈ R(p, q, V ),

Φf,p,q
V � Φ � Φw,p,q

V .

Next we discuss properties of conditional FK measures. For given U ⊆ V and ω ∈ Ω, we
define a partition WU

V (ω) of ∂U by declaring x, y ∈ ∂U to be WU
V (ω)-wired if they are

joined by an ωU
V -open path. Fix a partition π of ∂V . We define a new partition of ∂U

to be π ·WU
V (ω)-wired if they are WU

V (ω)-wired, or if they are both joined by ωU
V -open

paths to (or identical with) sites x′, y′, which are themselves π-wired. Then, for every
FU -measurable function f ,

Φπ,p,q
V [f |FU

V ](ω) = Φ
π·W U

V (ω),p,q
V [f ], Φπ,p,q

V a.s. (3.2)
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Note that formula (3.2) can be interpreted as a kind of Markov property. A direct
consequence is the finite-energy property. Fix an edge e of E(V ) and denote by Fe

V the
σ-algebra generated by the random variables {prb; b ∈ E(V ) \ {e}}. Then

Φπ,p,q
V [e is open |Fe

V ](ω) =

{
p if the endpoints of e are π ·W e

V -wired,

p/[p+ q(1− p)] otherwise.
(3.3)

The equality (3.2) leads to volume monotonicity for FK-measures. Let U ⊂ V , for every
increasing function g ∈ FU and ΦV ∈ R(p, q, V ), we have

Φf,p,q
U [g] ≤ ΦV [g | FU

V ] ≤ Φw,p,q
U [g] ΦV a.s. ,

Φf,p,q
U [g] ≤ Φf,p,q

V [g] ≤ Φw,p,q
V [g] ≤ Φw,p,q

U [g].

Planar duality for FK-measures: Because of it’s importance in our note, we recall the
duality property for planar FK-measures, see for example [18]. To this end, we first begin
with the following simple but useful observation.

Lemma 3.4. For all 0 < p < 1, q > 0 and for any finite box B ⊂ Z2 we have that

∀ω ∈ ΩB : Φw,p,q
B [ω] = Φw,p,q

E(B)\E(∂B)[ω
∂B]

∏

e∈E(∂(B))

pω∂B(e)(1− p)1−ω∂B(e)

Proof. Each ω ∈ ΩB is the concatenation of ω∂B and ω∂B and the result follows from
(3.2) by observing that clw(ω) does not depend on ω∂B and is equal to clw(ω∂B). �

This observation states that:
- The σ-algebras F∂B and F∂B are independent under Φw,p,q

B .
- The law of ω∂B under Φw,p,q

B is the independent percolation of parameter p on E(∂B).
- The law of ω∂B under Φw,p,q

B is the wired FK-measure on E(B) \ E(∂B). To construct

the dual model we associate to a box B the set B̂ ⊂ Z2 + (1/2, 1/2), which is defined
as the smallest box of Z2 + (1/2, 1/2) containing B, see figure 1 below.

To each edge e ∈ E(B) we associate the edge ê ∈ E(B̂) that crosses the edge e. Note

that {e′ ∈ E(B̂) : ∃e ∈ E(B), ê = e
′} = E(B̂) \ E(∂B̂).

This allows us to build a bijective application from ΩB to Ω∂ bB
bB

that maps each original

configuration ω ∈ ΩB into its dual configuration ω̂ ∈ Ω∂ bB
bB

such that

∀e ∈ E(B) : ω̂(ê) = 1− ω(e).

And the duality property is:
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bc bc bc bc bc bc bc
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b b b b b b

b b b b b b

b b b b b b

b b b b b b

b b b b b b

e ∈ E(B) ê ∈ E(B̂) \ E(∂B̂)

figure 1: A box and its dual

Proposition 3.5. For all 0 < p < 1, q > 0 and for all ωd ∈ Ω∂ bB
bB

we have that

Φf,p,q
B [{ω ∈ ΩB : ω̂ = ωd}] = Φw,bp,q

E( bB)\E(∂ bB)
[ωd],

where p̂ is the dual point of p : p̂ = q(1− p)/(p+ q(1− p)).

Proof. First we observe that the number of connected components c(ω̂) of the graph

Ĝ(ω̂) = (B̂, {ê ∈ E(B̂) \ E(∂B̂) : ω̂(ê) = 1} ∪ E(∂B̂)) is equal to clw(ω̂). Similarly the
number of connected components c(ω) of the graph G(ω) = (B, {e ∈ E(B) : ω(e) = 1}) is

equal to clf (ω).

Also one may observe that the number of faces f(ω̂) of Ĝ(ω̂) is equal to clf (ω). So that
by Euler’s formula we get

clf (ω) = clw(ω̂)− |B̂|+ |E(∂B̂)|+
∑

be∈E( bB)\E(∂ bB)

ω̂(ê).



Surface Large Deviations 37

Thus, for all ω ∈ ΩB we have

qcl
f (ω)

∏

e∈E(B)

pω(e)(1− p)1−ω(e) = q|E(∂ bB)|−| bB|qcl
w(bω)×

∏

be∈E( bB)\E(∂ bB)

p(q(1− p)/p)bω(be).

Finally, the parameter p̂ such that q(1−p)/p = p̂/(1− p̂) is the one given in the proposition
and this concludes the proof. �

Corollary 3.6. For any 0 < p < 1, q > 0, any FB-measurable event A we have

Φf,p,q
B [A] = Φw,bp,q

bB
[Â],

where Â = {η ∈ Ω bB : ∃ω ∈ A, ω̂ = η∂ bB} ⊂ Ω∂ bB
bB

is the dual event of A and p̂ is given in
proposition 3.5.

proof. This is a direct consequence of proposition 3.5 and lemma 3.4. �

Remark When we translate an FB-measurable event A into it’s dual Â, we obtain an

event which is in F∂ bB
bB

. Thus by lemma 3.4, Φw,bp,q
bB

[Â] is independent of the states of the

edges in E(∂B̂).4 Conne
tivity in boxes
In this section we establish preliminary estimates on crossing events in boxes. We rely

on the exponential decay of the connectivities in the dual subcritical model. The usual
definition of the exponential decay is based on the infinite volume FK-measure Φp,q

∞ . But
we are concerned by asymptotics of finite volume measures and we would like to use the
exponential decay in finite boxes. In order to translate the exponential decay to the finite
volume measures we need a control on the effects of boundary conditions. As shown
in [1], the infinite FK-measure on Z2 satisfies the weak mixing property as soon as the
connectivities decay exponentially. That is to say for all events A,B which are respectively
FΛ measurable and FΓ measurable with Λ,Γ ⊆ Z2 then |Φp,q

∞ [A|B] − Φp,q
∞ [A]| decreases

exponentially in the distance between Λ and Γ. This weak mixing property implies, as
proved in [2], that we have exponential decay in finite boxes as soon as the exponential
decay for the infinite volume measure holds (p < pg):

Proposition 4.1. ([Theorem 1.2 of [2])] Let q ≥ 1 and p < pg. There exists two
positive constants c and λ such that for all boxes Λ ⊂ Z2 and for all x, y in Λ, we have
that

Φw,p,q
Λ [x↔ y in Λ] ≤ λ exp(−c|x− y|).
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In fact, theorem 1.2 of [2] is more general and applies to sets Λ which are not boxes and
to general boundary conditions. From this result, we get that

Lemma 4.2. Let q ≥ 1 and p < pg. There exists a positive constant c such that for all
positive integers n and for l large enough, we have

sup
n∈H2(n)

Φw,p,q
B(n) [∃ an open path in B(n) of diameter ≥ l] ≤ n2 exp(−cl).

Proof. Let us fix n and l, then we have

sup
n∈H2(n)

Φw,p,q
B(n) [∃ an open path in B(n) of diameter ≥ l]

≤ 4n2 sup
n∈H2(n)

sup
x∈B(n)

Φw,p,q
B(n) [x↔ ∂B(x, 2l) in B(n)]

≤ 32n2l sup
n∈H2(n)

sup
x∈B(n)

sup
y∈∂B(x,2l)

Φw,p,q
B(n) [x↔ y in B(n)]

≤ 32λn2l exp(−cl),

where we used proposition 4.1 in the last line. The result follows by taking l large
enough. �

As a first consequence of the exponential decay in finite boxes, we obtain:

Lemma 4.3. For p > p̂g we have,

lim
n→∞

Φf,p,q
B(n)[0↔ ∂B(n)] = θ(p, q).

Proof. Let N < n, then

Φf,p,q
B(n)[0↔∂B(N)]−Φf,p,q

B(n)[0↔ ∂B(N) , 0 = ∂B(n)]

=Φf,p,q
B(n)[0↔ ∂B(n)] ≤ Φf,p,q

B(n)[0↔ ∂B(N)].
(4.4)

Now we estimate Φf,p,q
B(n)[0↔ ∂B(N) , 0 = ∂B(n)]: by symmetry,

Φf,p,q
B(n)[0↔ ∂B(N) , 0 = ∂B(n)] ≤ 4Φf,p,q

B(n)[0↔ ∂1B(N) , 0 = ∂B(n)].
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Then for N large enough we have that

Φf,p,q
B(n)[0↔ ∂1B(N), 0 = ∂B(n)] ≤Φw,bp,q

bB(n)




∃k > 0 ∃j ∈ Z : ∃ an open

path from (−k +
1

2
,
1

2
)

to (N +
1

2
, j +

1

2
)




≤
∑

k>0, j∈Z

exp(−c(N + k + |j|))

≤ exp(−cN),

(4.5)

for a certain positive constant c. The second inequality follows from lemma 4.2.
By taking the limit n→∞ in (4.5) we get

Φp,q
∞ [0↔∂B(N)]− 4e−dN ≤ lim inf

n→∞
Φf,p,q

B(n)[0↔ ∂B(n)]

≤ lim sup
n→∞

Φf,p,q
B(n)[0↔ ∂B(n)] ≤ Φp,q

∞ [0↔ ∂B(N)],

finally by taking the limit N →∞, we get the desired result. �

Next, we define events that will be crucial in the renormalization procedure. For this,
we introduce the notion of crossing . Let B ⊂ Z2 be a finite box. For i = 1, 2 we say that
a i–crossing occurs in B, if ∂−iB and ∂iB are joined by an open path in B. In addition
to that, we say that a cluster C of B is crossing in B, if C contains a 1-crossing path and
a 2-crossing path.

For n ∈ H2(n), we set

U(n) = {∃! open cluster C∗ crossing B(n)}.

For a monotone, increasing function g : N→ [0,∞) with g(n) ≤ n, let us define

Rg(n) = U(n) ∩
{

every open path γ ⊂ B(n) with

diam(γ) ≥ g(n) is contained in C∗

}
.

And finally we set

Og(n) = Rg(n) ∩
{
C∗ crosses every sub-box

Q ∈ B2(g(n)) contained in B(n)

}
.

The next theorem gives the desired estimates on the above mentioned events.
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Theorem 4.6. Assume p > p̂g. We have

lim sup
n→∞

1

n
log sup

n∈H2(n)

sup
Φ∈R(p,q,B(n))

Φ[U(n)c] < 0. (4.7)

Also, there exists a constant κ = κ(p, q) > 0 such that lim infn→∞ g(n)/ logn > κ implies

lim sup
n→∞

1

g(n)
log sup

n∈H2(n)

sup
Φ∈R(p,q,B(n))

Φ[Rg(n)c] < 0. (4.8)

There exists a constant κ′ = κ′(p, q) > 0 such that lim infn→∞ g(n)/ logn > κ′ implies

lim sup
n→∞

1

g(n)
log sup

n∈H2(n)

sup
Φ∈R(p,q,B(n))

Φ[Og(n)c] < 0. (4.9)

Note that in dimension two, if there is a crossing cluster then it is unique.

Proof.. As U(n)c is decreasing we have for every Φ ∈ R(p, q, B(n)) that

Φ[U(n)c] ≤ Φf,p,q
B(n)[U(n)c]

≤ Φf,p,q
B(n)[∄ 1-crossing for B(n)] + Φf,p,q

B(n)[∄ 2-crossing for B(n)]

≤
∑

i=1,2

Φw,bp,q
bB(n)

[∂−iB̂(n)↔ ∂iB̂(n) in B̂(n) \ ∂B̂(n)],

the last inequality follows from planar duality: if there is no 1-crossing in the original

lattice then ∂−2B̂(n)↔ ∂2B̂(n) in B̂(n) \ ∂B̂(n) for the corresponding dual configuration.
The same argument works for the 2-crossing. Thus, we have that

Φ[U(n)c] ≤ 2Φw,bp,q
bB(n)

[∃ an open path in B̂(n) of diameter ≥ n],

and (4.7) follows from lemma 4.2.
For the second inequality, let us note that

Rg(n)c ⊂ U(n)c
⋃
(
U(n) ∩

{
∃ an open path γ of B(n) with

diam(γ) ≥ g(n) not contained in C∗

})
.

By (4.7), we only have to deal with the second term.
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We consider the dual event of

U(n) ∩
{
∃ an open path γ of B(n) with

diam(γ) ≥ g(n) not contained in C∗

}

which is F∂ bB(n)
bB(n)

-measurable. By the remark after corollary 3.6 we can consider all the

edges of E(∂B̂(n)) as open. Then by proposition 11.2 of [17] there is a unique innermost

open circuit in B̂(n) containing γ in its interior. From this circuit, we extract an open path

living in the graph (B̂(n),E(B̂(n))\E(∂B̂(n))) of diameter greater than g(n): without loss
of generality, we can suppose that diam(γ) = diam1(γ) and that γ = ∂2B(n). Among the
vertices of the dual circuit surrounding γ, let x̂ be the highest vertex among the most on
the left, and let ŷ be the highest vertex among the most on the right. Then there is an arc

joining x̂ and ŷ in (B̂(n),E(B̂(n)) \ E(∂B̂(n))). This arc is of diameter larger than g(n).
Thus by lemma 4.2 there is a positive constant c such that for n large enough we have that

Φ

[
U(n) ∩

{
∃ an open path γ of B(n) with

diam(γ) ≥ g(n) not contained in C∗

}]
≤ n2 exp[−cg(n)].

Take α > 0 such that αc > 1. Then for g such that g(n) > 2α log n/(αc− 1) we have

lim sup
n→∞

1

g(n)
log(n2 exp[−cg(n)]) < − 1

α
,

which concludes the proof of (4.8).
To study Og(n), we remark that the number of boxes Q of B2(g(n)) contained in B(n)

is bounded by 16n4. This implies that for every Φ ∈ R(p, q, B(n)) one gets

Φ[Og(n)c] ≤ Φ[Rg(n)c] + 16n4 sup
Q∈B2(g(n))

Φ[∄ crossing in Q]

≤ Φ[Rg(n)c] + 16n4 sup
Q∈B2(g(n))

Φf,p,q
B(n)[∄ crossing in Q]

≤ Φ[Rg(n)c] + 16n4 sup
Q∈B2(g(n))

Φf,p,q
Q [∄ crossing in Q].

To deduce the last inequality, we notice that {∄ crossing in Q} is a decreasing event and
that all the Q ∈ B2(g(n)) are smaller than B(n), thus for all Q ∈ B2(g(n)) that are
included in B(n) we have that

Φf,p,q
B(n)[∄ crossing in Q] ≤ Φf,p,q

Q [∄ crossing in Q].

The first term in the r.h.s. has been treated previously. By (4.7) the second term is
bounded by n4 exp[−cg(n)] for a certain positive constant c and we conclude the proof as
before. �
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In this section we adapt the renormalization procedure introduced in [32] to the two

dimensional case. To do this, let N ≥ 24 be an integer. We say that a subset Λ of
Z2 is a N -large box if Λ is a finite box containing a symmetric box of scale-length 3N ,
i.e., if Λ = Z2 ∩ ∏i=1,2(ai, bi] where bi − ai ≥ 3N for i = 1, 2. When Λ is a N -large

box, one can partition it with blocks of B(N). We first define the N -rescaled box of Λ:
Λ(N) = {k ∈ Z2 | TNk(−N/2, N/2]2 ⊆ Λ}; where Ta is the translation in Z2 by a vector
a ∈ Z2. We turn Λ(N) into a graph by endowing it with the set of edges E(Λ(N)). Then
we define the partitioning blocks:
- If k ∈ Λ(N) \ ∂Λ(N) then Bk = TNk(−N/2, N/2]2.
- If k ∈ ∂Λ(N) then some care is needed in order to get a partition. In this case we define

the set
M(k) = {l ∈ Z2 | l ∼ k,TNl(−N/2, N/2]2 ∩ Λ 6= ∅,

TNl(−N/2, N/2]2 ∩ Λc 6= ∅},
and the corresponding blocks become

Bk = TNk(−N/2, N/2]2 ∪
⋃

l∈M(k)

(
TNl(−N/2, N/2]2 ∩ Λ

)
.

The collection of sets {Bk, k ∈ Λ(N)} is a partition of Λ into blocks included in B(N),
see figure 2

Λ

k ∈ Λ(N)

Bk

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

figure 2: The partition of Λ
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In addition to the boxes {Bk, k ∈ Λ(N)} we associate to each edge (k, l) of E(Λ(N)) the
box Dk,l. More precisely, for (k, l) ∈ E(Λ(N)) such that

∑

j=1,2

|kj − lj | = ki − li = 1,

we define
m(l,k) = TNl(⌊N/2⌋e(i)),

where (e(1), e(2)) is the canonical orthonormal base of Z2 and ⌊r⌋ denotes the integer part
of r. The point m(l,k) represents the middle of the i-th face of Bl. Then we define the
box

D(l,k) = D(k,l) = Tm(l,k)(B(⌊N/4⌋)).
Now we have all the needed geometric objects to construct our renormalized (dependent)

site percolation process on (Λ(N),E(Λ(N))). This process will depend on the original FK-
percolation process only through a number of events defined in the boxes (Bk)k∈Λ(N) and
(De)e∈E(Λ(N)). These events are:

- For all (k, l) ∈ E(Λ(N)) such that
∑

j=1,2 |kj − lj | = ki − li = 1, we define

Kk,l = {∃ i-crossing in Dk,l}, Kk =
⋂

j∈Λ(N):j∼k

Kk,j.

- For all i ∈ Λ(N), we define

Ri = {∃! a crossing cluster C∗i in Bi}∩
{
every open path γ ⊂ Bi with diam(γ) ≥

√
N

10
is included in C∗i

}
.

Finally our renormalized process is the indicator of the occurrence of the above men-
tioned events:

∀k ∈ Λ(N) Xk =

{
1 on Rk ∩Kk

0 otherwise

We also call the process {Xk,k ∈ Λ(N)} the N -block process and whenever Xk = 1, we say
that the block Bk is occupied. As explained in [32], the N -block process has the following
important geometrical property: if C(N) is a cluster of occupied blocks then there is a
unique cluster C of the underlying microscopic FK-percolation process that crosses all the
blocks {Bk, k ∈ C(N)}. Moreover, the events involved in the definition of the N -block
process become more probable as the size of the blocks increases. This leads us to the
following stochastic domination result:
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Proposition 5.1. Let q ≥ 1 and p > p̂g. Then for N large enough, every N -large
box Λ and every measure Φπ ∈ R(p, q,Λ), the law of the N -block process (Xi)i∈Λ(N) under

Φπ, stochastically dominates independent site percolation on Λ(N) with parameter p(N) =

1− exp(−C
√
N), where C is a positive constant.

Proof. According to [27], it is sufficient to establish that for N large enough and for
all i ∈ Λ(N) the following inequality holds:

Φπ[Xi = 0 | σ(Xj : |j− i| > 1)] ≤ exp(−C
√
N). (5.2)

In what follows, we use the same notation for positive constants that may differ from
one line to another. In order to prove (5.2), we consider the set

Ei = Bi ∪
⋃

j∼i

Di,j,

as drawn in figure 3.

Bi

Di,j

Ei

figure 3: The region Ei

The σ-algebra FEi

Λ is finer than σ(Xj : |j − i| > 1), thus it suffices to prove (5.2) for

Φπ[Xi = 0 | FEi

Λ ]. Clearly FEi

Λ is atomic and its atoms are of the form {η}, where η ∈ ΩEi

Λ .

So let us consider such a η ∈ ΩEi

Λ , then we have that

Φπ[Xi = 0 | η] ≤
∑

j∼i

Φπ[Kc
i,j | η] + Φπ[Rc

i | η]. (5.3)

For each i, j ∈ Λ(N) such that i ∼ j, let us fix η′ ∈ ΩBi

Ei
, η′′ ∈ Ω

Di,j

Ei
in order to construct

ηη′ ∈ ΩBi

Λ and ηη′′ ∈ Ω
Di,j

Λ , which are the concatenation of η with η′, respectively with η′′:

ηη′(e) = η′(e) for e ∈ E(Ei) \ E(Bi), ηη′(e) = η(e) for e ∈ E(Λ) \ E(Ei);
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and

ηη′′(e) = η′′(e) for e ∈ E(Ei) \ E(Di,j), ηη′′(e) = η(e) for e ∈ E(Λ) \ E(Ei).

Then, by theorem 4.9, there exist an integer N0 > 0 and a real number C > 0 such that
for all N > N0

Φπ[Rc
i | ηη′] = Φπ·W Bi

Λ (ηη′)[Rc
i ] ≤ exp(−C

√
N),

Φπ[Kc
i,j | ηη′′] = Φπ·W Di,j

Λ (ηη′′)[Kc
i,j] ≤ exp(−CN).

Finally, by averaging over all the η′ and η′′ we get from these estimates that

Φπ[Xi = 0 | η] ≤ 4 exp(−CN) + exp(−C
√
N)

≤ exp(−CN1/2),

for N large enough. �

We end this section by proving a useful estimate on the renormalized process. Let B(n)
be a N -large box, consider its N -partition and the corresponding N -block process. The
rescaled box B(n)(N) will be denoted by B. For δ > 0 we consider the event

Z(n, δ,N) =

{
∃! crossing cluster of blocks C̃

in B with |C̃| ≥ (1− δ)|B|

}
. (5.4)

Remark: The event Z(n, δ,N) has the following interesting property: the presence of

the crossing cluster of blocks C̃ induces a set of clusters {C̃i crossing for Bi : i ∈ C̃} in the
original FK-percolation process. These clusters are connected and form a crossing cluster

C̃ for B(n).

Proposition 5.5. Let p > p̂g and q ≥ 1. Then for each δ > 0 and N > 0 large enough

lim sup
n→∞

1

n
log sup

Φ∈R(p,q,B(n))

Φ [Z(n, δ,N)c] < 0.

Proof. By theorem 1.1 of [14], there exists p0 ∈ (0, 1) such that for all p > p0,

lim sup
m→∞

1

m
log sup

m∈H2(m)

P p, indpt
B(m),site

[
6 ∃ crossing cluster C̃ with

|C̃| ≥ (1− δ)|B(m)|

]
< 0. (5.6)
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Now choose N such as in proposition 5.1 and such that p(N) > p0. Then by proposition
5.1 and by (5.6) we have that

lim sup
n→∞

1

n
log sup

Φ∈R(p,q,B(n))

Φ



6 ∃ crossing cluster of blocks C̃

in B with |C̃| ≥ (1− δ)|B|




≤ lim sup
n→∞

1

n
logP

p(N), indpt
B,site



6 ∃ crossing cluster C̃ with

|C̃| ≥ (1− δ)|B|


 < 0. �

6 Proof of the surfa
e order large deviations
In this section we finally establish theorem 2.2. We begin by stating two lemmas. The

first one deals with large deviations from above. Let B(n) denote the set of clusters in
B(n) intersecting ∂B(n). Note that if the crossing cluster exists then it is in B(n).

Lemma. Let q ≥ 1 and p ∈ [0, 1]. For δ > 0, we have

lim sup
n→∞

1

n2
log sup

Φ∈R(p,q,B(n))

Φ



∑

C∈B(n)

|C| > (θ + δ)n2


 < 0.

We omit the proof as it would be an exact repetition of Lemma 5.1 in [32].
The second lemma is about large deviations from below and is of surface order, in

contrast to lemma 6.0. In section 3, we introduced the event

U(n) = {∃! open cluster C∗ crossing B(n)}.

For δ > 0, let us define the event

V (n, δ) = U(n) ∩ {|C∗| > (θ − δ)n2}.

Lemma 6.1. Let q ≥ 1 and p > p̂g. Then for each δ > 0,

lim sup
n→∞

1

n
log sup

Φ∈R(p,q,B(n))

Φ[V (n, δ)c] < 0.
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Proof.. From lemma 4.3, we have the inequality:

lim inf
n→∞

Φf
B(N)


N−2

∑

C;diam(C)≥
√

N

|C|


 ≥ θ.

Take N such that Φf
B(N)[

∑
C;diam(C)≥

√
N |C|] ≥ (θ − δ/4)N2, let B(n) be a N -large box

and consider its N -partition and the corresponding N -block process. The rescaled box
B(n)(N) will be denoted by B. By proposition 5.5, it suffices to give an upper bound on
the probability of the event

W (n) = Z(n, δ/8, N) ∩ {|C̃| ≤ (θ − δ)n2},

where N is large enough and Z(n, δ/8, N) is defined in (5.4). By remark 5.4, on the event

Z(n, δ/8, N) the crossing cluster C̃ contains all the Bi-crossing clusters C̃i, where i ∈ C̃ and
{Bi, i ∈ B} are the partitioning N -blocks. For each i ∈ B, set Yi =

∑
C;diam C≥N1/2 |C|,

where C is a cluster of Bi. Since for i ∈ C̃, Yi = |C̃i|, we obtain the following lower bound

|C̃| ≥
∑

i∈eC

Yi ≥
∑

i∈B
Yi −

∑

i∈B\eC

|Bi| ≥
∑

i∈B
◦
Yi − (δ/2)n2,

where B
◦

= B \ ∂B. Hence on W (n) we have that
∑

i∈B
◦ Yi ≤ (θ− δ/2)n2. Denote by E(n)

the event that for each i ∈ B
◦

every edge in ∂edgeBi is closed. Observing that
∑

i∈B
◦ Yi is

an increasing function, we have for each Φ ∈ R(p, q, B(n)),

Φ[W (n)] ≤ Φf
B(n)



∑

i∈B
◦
Yi < (θ − δ/2)n2

∣∣∣∣∣∣∣
E(n)


 ≤ exp(−C(δ, θ, N)n2),

where C(δ, θ, N) is a positive constant. The last inequality is an application of Cramér’s

large deviations theorem, as the variables (Yi, i ∈ B
◦

) are i.i.d. with respect to the con-
ditional measure, with an expected value larger than (θ − δ/4)N2. This completes the
proof. �

Proof of Theorem 2.2 First we prove the upper bound. By lemma 6.0, we can replace
the condition n−2|Cm| ∈ (θ − ε, θ + ε) in the definition of K(n, ε, l) by n−2|Cm| > (θ − ε)
and denote the new but otherwise unchanged event by K ′(n, ε, l). Set

T (n, ε,N) = Z(n, ε/4, N) ∩ {|C̃| > (θ − ε)n2},
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where Z(n, ε/4, N) is defined by (5.4). Fix ε < θ/2 and N such as in proposition 5.5 and

such that
√
N ≥ 32/ε.

Then by proposition 5.5 and by lemma 6.1, we have

lim sup
n→∞

sup
Φ∈R(p,q,B(n))

1

n
log Φ[T (n, ε,N)c] < 0. (6.2)

Set n ≥ 64N/ε and L = 2N , we claim that T (n, ε,N) ⊂ K ′(n, ε, L). This fact, together
with (6.2), implies the upper bound. Therefore, to complete the upper bound we will proof

that the cluster C̃ of T (n, ε,N), is the unique cluster with maximal volume and that the
L-intermediate clusters have a negligible volume. So suppose that T (n, ε,N) occurs. As
ε < θ/2 we have that L2 ≤ (θ − ε)n2, thus the clusters of diameter less than L, have a

smaller volume than C̃. To control the size of the clusters different from C̃ and of diameter
greater than L, we define the following regions:

∀ i ∈ B : Gi = {x ∈ Bi | dist(x, ∂Bi) ≤
√
N} and Qi = Bi\Gi,

G =
⋃

i∈B
Gi,

as shown in figure 4.

n ≥ 64N/ε

2
√
N ≥ 64/ε

N

Gi

Qi

figure 4: The regions Gi and Qi

Then, as n ≥ 64N/ε, we have
∑

i∈∂B

|Bi| ≤ 16nN ≤ ε

4
n2,
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and, as
√
N ≥ 32/ε

|G| ≤ 8
n2

√
N
≤ ε

4
n2.

Take a cluster C of diameter greater than L and different from C̃. Then C touches at least

two blocks. However, it may not touch the set ∪Qi where i runs over C̃; otherwise we
would have that diam(C ∩ Bi) ≥

√
N for an occupied block Bi, and therefore we would

have that C = C̃. Hence all the clusters of diameter greater than L must lie in the set
G ∪ (∪i∈C̃cBi). Let us estimate the volume of this set:

|
⋃

i∈eCc

Bi| ≤
∑

i∈∂B

|Bi|+N2|C̃c| < ε

2
n2.

Thus

|G ∪ (
⋃

i∈eCc

Bi)| ≤
3ε

4
n2.

Since (3ε/4)n2 < (θ − ε)n2, C̃ is the unique cluster of maximal volume and the L-
intermediate class JL has a total volume smaller than (3ε/4)n2. This proves that

T (n, ε, L) ⊂ K ′(n, ε, L)

and completes the proof of the upper bound.

For the lower bound, it suffices to close all the horizontal edges in B(n) intersecting the
vertical line x = 1/2. This implies that there is no crossing cluster in B(n). By (3.3) and
FKG inequality, the probability of this event is bounded from below by (1− p)n. �

We would like to thank R. Cerf for suggesting the problem and for many helpful dis-
cussions.
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Chapitre 3Large deviations for sub
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alBernoulli per
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Abstract: We consider subcritical Bernoulli percolation in dimensions two
and more. If C is the open cluster containing the origin, we prove that the
law of C/N satisfies a large deviation principle with respect to the Hausdorff
metric.

1991 Mathematics Subject Classification: 60K35

Keywords: subcritical percolation, large deviations1 Introdu
tion
Consider the cluster C of the origin in the subcritical phase of Bernoulli percolation in

Zd. This is a random object of the space Kc of connected compact sets in Rd. We let DH

be the Hausdorff distance on Kc. Let

ξ = lim
N→∞

1

N
lnP (0 is connected to Nx).

be the inverse correlation length. Assume that H1
ξ is the one-dimensional Hausdorff mea-

sure on Rd constructed from ξ.
In the supercritical regime, large deviation principles have been proved for the law of

C/N [3,4]. In two dimensions, it relies on estimates of the law of dual clusters, which are
subcritical. More precisely, let Γ be a contour in R2 enclosing an area. The probability
that a dual cluster is close for the Hausdorff distance to NΓ behaves like exp(−NH1

ξ(Γ)).
But what happens if we consider more general connected sets than contours ?

In this note we establish a large deviation principle for the law of C/N in the subcritical
regime in dimensions two and more. Let Kc denote the set of connected compact sets of
Rd quotiented by the translation equivalence. The usual distance between compact sets is
the Hausdorff distance. We denote it by DH when considered as a distance on Kc. Let
C be still the open cluster containing the origin. Write C for the equivalent class of C in
Kc. Let P be the measure and pc be the critical point of the Bernoulli percolation process.
The formulation of our large deviation principle is the following:

Theorem 1.1. Let p < pc. Under P , the family of the laws of (C/N)N≥1 on the space

Kc equipped with the Hausdorff metric DH satisfies a large deviation principle with good
rate function H1

ξ and speed N: for every borel subset U of Kc,

− inf{H1
ξ(U) : U ∈ interior(U)} ≤ lim inf

N→∞
1

N
lnP (C/N ∈ U)

≤ lim sup
N→∞

1

N
lnP (C/N ∈ U)

≤ − inf{H1
ξ(U) : U ∈ closure(U)},
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where the interior and the closure are taken with respect to the Hausdorff metric on Kc.

The proof of the lower bound relies on the FKG inequality; we use it to construct a
cluster close to a given large connected set with a sufficient high probability. Concerning
the upper bound, the proof is based on the skeleton coarse graining technique and on the
BK inequality; it follows the lines of the proof in [3] with slight adaptations.

We underline that in supercritical percolation the large deviation principles lead to
estimates of the shape of large finite clusters. In fact, there exists a shape called the Wulff
crystal, which minimizes the rate function under a volume constraint. Unfortunately, the
large deviation principle does not allow us to describe the typical shape of a large cluster
in the subcritical phase. In this regime, computing simulations of large clusters show very
irregular objects.

We note furthermore that our main result has been obtained independently by Kov-
chegov, Sheffield [11]. Their approach is quite different and makes use of Steiner trees to
approximate connected compact sets.

In the next section we recall the definition and basic results of the percolation model.
Then we define the measure H1

ξ and the space Kc. Geometric results required about
connected compact sets are given in Section 4. In Section 5 we introduce skeletons, and
use them to approximate connected compact sets. The proof of the lower bound follows in
Section 6. The coarse graining technique is given in Section 7, and the proof of the upper
bound follows in Section 8.2 The model

We consider the site lattice Zd where d is a fixed integer larger than or equal to two. We
use the euclidian norm | . |2 on Zd. We turn Zd into a graph Ld by adding edges between
all pairs x, y of points of Zd such that |x− y|2 = 1. The set of all edges is denoted by Ed.
A path in (Zd,Ed) is an alterning sequence x0, e0, . . . , en−1, xn of distinct vertices xi and
edges ei where ei is the edge between xi and xi+1.

Let p be a parameter in (0, 1). The edges of Ed are open with probability p, and
closed otherwise, independently from each others. We denote by P the product probability
measure on the configuration space Ω = {0, 1}Ed

. The measure P is the classic Bernoulli
bond percolation measure. Two sites x and y are said connected if there is a path of open
edges linking x to y. We note this event {x↔ y}. A cluster is a connected component of
the random graph.

The model exhibits a phase transition at a point pc, called the critical point: for p < pc

the clusters are finite and for p > pc there exists a unique infinite cluster. We work with
a fixed value p < pc.

The following properties describe the behaviour of the tail distribution of the law of a
cluster (for a proof see [9]).
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Lemma 2.1. Let p < pc and let C be the cluster of the origin. There exists a0 > 0 and
a1 > 0 such that for all n

P (|C| ≥ n) ≤ exp(−a0n), (2.2)

P (diam C ≥ n) ≤ exp(−a1n). (2.3)

We briefly recall two fundamental correlation inequalities. To a configuration ω, we
associate the set K(ω) = { e ∈ E2 : ω(e) = 1 }. Let A and B be two events. The disjoint
occurrence A ◦B of A and B is the event






ω such that there exists a subset H of K(ω) such that if
ω′, ω′′ are the configurations determined by K(ω′) = H
and K(ω′′) = K(ω) \H, then ω′ ∈ A and ω′′ ∈ B .






There is a natural order on Ω defined by the relation: ω1 ≤ ω2 if and only if all open
edges in ω1 are open in ω2. An event is said to be increasing (respectively decreasing) if
its characteristic function is non decreasing (respectively non increasing) with respect to
this partial order.

Suppose A and B are both increasing (or both decreasing). The Harris–FKG inequality
[7,10] says that P (A∩B) ≥ P (A)P (B). The van den Berg–Kesten inequality [1] says that
P (A ◦B) ≤ P (A)P (B).

For x, y two sites we consider {x ↔ y} the event that x and y are connected. In the
subcritical regime the probability of this event decreases exponentially: for any x in Rd,
we denote by ⌊x⌋ the site of Zd whose coordinates are the integer part of those of x. Then

Proposition 2.4. The limit

ξ(x) = − lim
N→∞

1

N
lnP (0↔ ⌊Nx⌋)

exists and is > 0, see [9, section 6.2]. The function ξ thus obtained is a norm on Rd.
In addition for every site x in Zd, we have

P (0↔ x) ≤ exp(−ξ(x)). (2.5)

Since ξ is a norm there exists a positive constant a2 > 0 such that for all x in Rd,

a2|x|2 ≤ ξ(x). (2.6)
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ξ measure and the spa
e of the large deviation prin
iple

With the norm ξ, we construct the one-dimensional Hausdorff measure H1
ξ . If U is a

non-empty subset of Rd we define the ξ-diameter of U as

ξ(U) = sup{ξ(x− y) : x, y ∈ U}.

If E ⊂ ∪i∈IUi and ξ(Ui) < δ for each i, we say that {Ui}i∈I is a δ-cover of E. For every
subset E of Rd, and every real δ > 0 we write

H1
ξ,δ(E) = inf

∞∑

i=1

ξ(Ui),

where the infimum is taken over all countable δ-covers of E. Then we define the one-
dimensional Hausdorff measure of E as

H1
ξ(E) = lim

δ→0
H1

ξ,δ(E).

For a study of the Hausdorff measure, see e.g. [6].
We denote by K the collection of all compact sets of Rd. The euclidian distance between

a point and a set E is
d(x,E) = inf{|x− y|2 : y ∈ E}.

We endow K with the Hausdorff metric DH :

∀K1, K2 ∈ K, DH(K1, K2) = max
{

max
x1∈K1

d(x1, K2), max
x2∈K2

d(x2, K1)
}

Let Kc be the subset of K consisting of connected sets. An element of Kc is called a
continuum. We define an equivalence on Kc by: K1 is equivalent to K2 if and only if K1

is a translate of K2. We denote by Kc the quotient set of classes of Kc associated to this
relation, and by DH the resulting quotient metric:

DH(K1,K2) = inf
x1,x2∈Rd

DH(K1 + x1, K2 + x2) = DH(K1,K2).

We finally define the Hausdorff measure on Kc by

∀K ∈ Kc H1
ξ(K) = H1

ξ(K),

which makes sense since H1
ξ is invariant by translation on Kc.

Now we state an essential property required by the large deviation principle.
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Proposition 3.1. The measure H1
ξ is a good rate function on the space Kc.

Proof. The lower semicontinuity is due to Golab and the proof can be found in [6,
p 39]. We follow now the proof of the proposition 5 in [3]. Let t > 0 and let (Kn, n ∈ N)
be a sequence in Kc such that H1

ξ(Kn) ≤ t for all n in N. For each n we can assume that
the origin belongs to Kn. Since the diameter of an element of Kc is bounded by a constant
time its H1

ξ-measure, there exists a bounded set B such that

K ∈ Kc, 0 ∈ K, H1
ξ(K) ≤ t⇒ K ⊂ B.

Thus, the sets Kn are subsets of B. For every compact set K0 the subset {K ∈ K :
K ⊂ K0} is itself compact with respect to the metric DH [2]. Hence (Kn)n∈N admits a
subsequence converging for the metric DH ; the same subsequence of (Kn)n∈N converges
for the metric DH . �4 Curves and 
ontinua

A curve is a continuous injection Γ : [a, b] → Rd, where [a, b] ⊂ R is a closed interval.
We write also Γ for the image Γ([a, b]). We call Γ(a) the first point of the curve and Γ(b) its
last point. Any curve is a continuum. We say that a curve is rectifiable if its H1

ξ-measure
is finite.

We state a simple lemma:

Lemma 4.1. For each curve Γ : [a, b]→ Rd,

H1
ξ(Γ) ≥ H1

ξ([ψ(a), ψ(b)]) = ξ(ψ(a)− ψ(b)).

Next, we associate to a continuum a finite family of curves in two different manners.
With the first one, we shall prove the lower bound, and with the second one, we shall prove
the upper bound.

Definition 4.2. A family of curves {γi}i∈I is said hardly disjoint if for all i 6= j, the
curve γj can intersect γi only on one of the endpoints of γi.

Proposition 4.3. Let Γ be a continuum with H1
ξ(Γ) < ∞. Then for all parameter

δ > 0, there exists a finite family {Γi}i∈I of rectifiable curves included in Γ such that
DH(Γ,∪i∈IΓi) < δ, ∪i∈IΓi is connected and the family {Γi}i∈I is hardly disjoint.

Furthermore, there exists a deterministic way to choose the Γi’s such that if Γ′ is a
translate of Γ, the resultant Γ′i’s are the translates of the Γi’s by the same vector.
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Proposition 4.4. Let Γ be a continuum with H1
ξ(Γ) < ∞. Then for all parameter

δ > 0, there exists a finite family {Γi}i∈I of rectifiable curves included in Γ such that
DH(Γ,∪i∈IΓi) < δ, with the following properties: the euclidian diameter of Γi is larger
than δ for all i in I, ∪l

i=1Γi is connected for all l ≥ 1, and the first point of Γl is in ∪k<lΓk.

Propositions 4.3 and 4.4 are corollaries of lemma 3.13 of [6] in which we have stated the
additional facts coming from the proof. �

We often think of Ld as embedded in Rd, the edges {x, y} being straight line segments
[x, y]. An animal is a finite connected subgraph of Ld containing the origin. The Hausdorff
distance between an animal and its corresponding cluster is 1

2 . So, to prove the large
deviation principle we shall consider the animal of the origin instead of the cluster. The
point is that an animal is a continuum. Hence we shall be able to apply Propositions 4.3
and 4.4 to an animal.5 The skeletons

Definition 5.1. A skeleton S is a finite family of segments that are linked by their
endpoints. We denote by E(S) the set of the vertices of the segments of S and by cardS
the cardinal of E(S). We define HS1

ξ (S) as the sum of the ξ-length of the segments of S.
A point is also considered as a skeleton.

Examples:

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

Counter-examples: the following families of two segments are not skeletons

Sometimes a skeleton S is simply understood as the union of its segments, and so is a
compact connected subset of Rd. This is the case when we write H1

ξ(S). We always have

H1
ξ(S) ≤ HS1

ξ (S). (5.2)
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If S1 and S2 are two skeletons which have a vertex in common, then S = S1 ∪ S2 is also a
skeleton, and

HS1
ξ (S) = HS1

ξ (S1) +HS1
ξ (S2). (5.3)

Lemma 5.4. For every Γ continuum with H1
ξ(Γ) < ∞, for all δ > 0, there exists a

skeleton S such that

DH(S,Γ) < δ, HS1
ξ (S) ≤ H1

ξ(Γ).

The skeleton S is said to δ-approximate Γ.

Proof. Let Γ be a continuum with H1
ξ(Γ) < ∞. Let {Γk}k∈I be the sequence of

rectifiable curves coming from proposition 4.3 with parameter δ/2. Consider Γ1. We take
t0 = 0, x0 = Γ1(0) and for n ≥ 0

tn+1 = inf
{
t > tn : |Γ1(t)− Γ1(tn)| ≥ δ/2

}
.

If tn+1 is finite then xn+1 = Γ1(tn+1). Otherwise, we take for xn+1 the last point of Γ1

if it is different from xn, and we stop the sequence of the xi’s. Since Γ1 is rectifiable
and because of lemma 4.1, this sequence is finite. We call S1 the family of the segments
[xi, xi+1] for i = 0 to n − 1. By construction S1 is a skeleton, the endpoints of Γ1 are
vertices of S1 and S1 δ/2-approximates Γ1. We construct in the same way the other Si’s
for i in I. By assumption, the Γi’s are connected by their endpoints. Since these endpoints
are vertices of Si’s, the union of the Si’s denoted by S is also a skeleton. We control the
HS1

ξ measure of S by

HS1
ξ (S) =

∑

i∈I

HS1
ξ (Si) ≤

∑

i∈I

H1
ξ(Γi) ≤ H1

ξ(Γ),

where we use (5.3) and lemma 4.1. The Hausdorff distance between S and Γ is controlled
by

DH(S,Γ) < DH(S,∪i∈IΓi) + δ/2 < sup
i∈I

DH(Si,Γi) + δ/2 < δ. �

Remark: if Γ′ is the image of Γ by a translation of vector ~u, then the skeleton S′ constructed
as above from Γ′ is the image by the same translation of the skeleton S constructed from
Γ.
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We prove in this section the lower bound stated in Theorem 1.1. By a standard argument

[5], it is equivalent to prove that for all δ > 0, all Γ in Kc,

lim inf
N→∞

1

N
lnP

(
DH(C/N,Γ) < δ

)
≥ −H1

ξ(Γ).

We introduce two notations. The r-neighbourhood of a set E is the set

V(E, r) = {x ∈ Rd : d(x,E) < r}.

Let E1, E2 be two subsets of Rd. We define

e(E1, E2) = inf
{
r > 0 : E2 ⊂ V(E1, r)

}
.

We now take Γ in Γ such that the origin is a vertex of the skeleton S constructed from Γ,
as described in the proof of lemma 5.4. This can be done because of the previous remark.
First observe that

P (DH(C/N,Γ) < δ)) ≥ P (DH(C/N,Γ) < δ))

≥ P ({e(C/N,Γ) < δ/2} ∩ {e(Γ, C/N) < δ}).

We let
G(N, δ/2,Γ) = {∃ a connected set C′ of the percolation process,

containing 0, such that DH(C′/N,Γ) < δ/2}.

We have G(N, δ/2,Γ) ⊂ {e(C/N,Γ) < δ/2}. So

P
(
DH(C/N,Γ) < δ

)
≥P
(
G(N, δ/2,Γ) ∩ {e(Γ, C/N) < δ}

)

≥P
(
G(N, δ/2,Γ)

)
×

P
(
e(Γ, C/N) < δ

∣∣G(N, δ/2,Γ)
)
.

(6.1)

We study the first term of the product. Let r be positive and let x and y be two sites.
The event that there exists an open path from x to y whose Hausdorff distance to the
segment [x, y] is less than r is denoted by x

r←→ y. We restate lemma 8 in Section 5 of
[3]:
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Lemma 6.2. Let φ(n) be a function such that limn→∞ φ(n) = ∞. For every point x,
we have

lim
n→∞

1

n
P (0

φ(n)←→ ⌊nx⌋) = −ξ(x).

Take the skeleton S which δ/4-approximates Γ, as in lemma 5.4. We have carefully
chosen Γ such that the origin is a vertex of S. We label x1, . . . , xn the vertices of S. We
note i ∼ j if [xi, xj] is a segment of S. Then

P (G(N, δ/2,Γ)) ≥ P (G(N, δ/4, S))

≥ P (⌊Nxi⌋
Nδ/4←→ ⌊Nxj⌋, ∀ i < j such that i ∼ j).

The fact that the origin is a vertex of S is used in the last inequality. Since the events last
considered are increasing, the FKG inequality leads to

P (G(N, δ/2,Γ)) ≥
∏

i<j,i∼j

P (⌊Nxi⌋
Nδ/4←→ ⌊Nxj⌋).

But by lemma 6.2

lim
1

N
ln

∏

i<j,i∼j

P (⌊Nxi⌋
Nδ/4←→ ⌊Nxj⌋) = −

∑

i<j,i∼j

H1
ξ([xi, xj])

= −HS1
ξ (S).

Hence

lim inf
1

N
lnP (G(N, δ/2,Γ)) ≥ −HS1

ξ (S) ≥ −H1
ξ(Γ). (6.3)

Now we analyze the second term P (e(Γ, C/N) < δ
∣∣G(N, δ/2,Γ)) of the product in (6.1).

First observe that the event

{e(Γ, C/N) ≥ δ} ∩G(N, δ/2,Γ)

is included in
{
∃ an open path of length ≥ Nδ/2 lying in

V(NΓ, Nδ)) \ V(NΓ, Nδ/2)
}
∩G(N, δ/2,Γ).

The two events appearing in the last intersection are independent, since they depend on
disjoint sets of bonds. So

P
(
e(Γ, C/N) ≥δ

∣∣G(N, δ/2,Γ)
)

≤P
(
∃ an open path of length ≥ Nδ/2 lying in V(NΓ, Nδ)

)

≤c1
(
H1

ξ(Γ) + δ
)
δd−1Nd exp(−a0Nδ/2),



Subcritical percolation 65

for a certain constant c1 > 0. In the last inequality, we use (2.2) and a bound of the
cardinality of V(NΓ, Nδ)∩Zd. The member on the RHS tends to 0 as N tends to infinity.
Hence

lim
N→∞

P
(
e(Γ, C/N) < δ

∣∣G(N, δ/2,Γ)
)

= 1. (6.4)

By limits (6.3) and (6.4), the inequatity (6.1) yields to the lower bound. �7 Coarse graining
Now we associate a skeleton to an animal. By a counting argument it will yield to the

desired upper bound.

Definition 7.1. Let S = {Ti}i∈I be a skeleton, and let C be an animal. We say that S
fits C if E(S) is included in the set of vertices of C, if for all i in I there exists a curve γi

such that γi is included in C and has the same endpoints than Ti, and if the family {γi}i∈I

is hardly disjoint.

Lemma 7.2. Let s > 4. For all animal C with diam(C) > s, there exists a skeleton S
such that HS1

ξ (S) ≥ a2(s/8)cardS, DH (C, S) < s, and the skeleton S fits the animal C.

Such a skeleton is said to be s-compatible with the animal C.

Proof. We recall that an animal is also a continuum. Let {Γk}k∈I be a sequence of
rectifiable curves as in proposition 4.4 with parameter s/2. Consider for example Γ1. We
take x0 = Γ1(0) and t0 = 0. For n ≥ 0, let

tn+1 = inf{t > tn : Γ1(t) ∈ Zd, |Γ1(t)− Γ1(tn)|2 ≥ s/4}.

If tn+1 is finite, then xn+1 = Γ1(tn+1). Otherwise, we erase xn, we put xn the last point
of Γ1 and we stop the sequence. Note that t1 cannot be infinite.

We call S′1 the family of the segments [xj , xj+1]. The set S′1 is a skeleton, and is called
the s-skeleton of Γ1. For the other i’s in I we construct S′i the s-skeleton of Γi in the same
way. For each i in I we have

HS1
ξ (S′i) ≥ (cardS′i − 1)a2(s/4).

Since the euclidian diameter of Γi is larger than s for each i in I, we have cardS′i ≥ 2.
Since s > 4, it follows that HS1

ξ (S′i) ≥ a2(s/8)cardS′i, for each i in I.

We now refine the skeleton S′i into another skeleton Si. For each j > i such that the
first point of Γj , say z, is in Γi but is not a vertex of S′i, we take the segment of S′i
whose endpoints x and y surround z on Γi. We replace in S′i the segment [x, y] by the
two segments [x, z] and [z, y]. When we have done this for all j we rename S′i by Si.
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The set Si is always a skeleton which satisfies DH(Si,Γi) < s/2. By triangular inequality,
HS1

ξ (Si) ≥ HS1
ξ (S′i). We denote by S the concatenation of the Si’s. By induction, S is a

skeleton. Furthermore, each vertex of S is a vertex of S′i for a certain i.
Now we check that S fulfills the good properties. We have

HS1
ξ (S) =

∑

i∈I

HS1
ξ (Si) ≥

∑

i∈I

a2(s/8)cardS′i ≥ a2(s/8)cardS,

and
DH(S,Γ) < sup

i∈I
DH(Si,Γi) + s/2 < s. �

The next statement gives the interest of such a construction. For a given skeleton S we
let A(S) be the event that S is s-compatible with an animal.

Lemma 7.3. For all scales s > 4,

P
(
A(S)

)
≤ exp{−HS1

ξ (S)}.

Proof. If S is compatible with an animal, we have the disjoint occurrences of the
events {xi ↔ xj} for all i < j such that [xi, xj] is a segment of S. The BK inequality
implies

P (A(S)) ≤
∏

i<j
[xi,xj ] is a segment of S

P (xi ↔ xj).

The last sentence of proposition 2.5 yields to the desired result. �8 The upper bound
We prove here the upper bound stated in Theorem 1.1. Consider the animal C con-

taining the origin. Let ΦH(u) = {K ∈ Kc : H1
ξ(K) ≤ u}. We prove that ∀u ≥ 0, ∀ δ > 0,

∀α > 0, ∃N0 such that ∀N ≥ N0,

P
(
DH(C/N,ΦH(u)) ≥ δ

)
≤ exp−Nu(1− α).

This is the Freidlin-Wentzell presentation of the upper bound of our large deviation prin-
ciple, see [8].

Let c be a positive constant to be chosen later, and take s = 8c lnN . ForN large enough,
DH(C/N,ΦH(u)) ≥ δ implies diam C > s. By lemma 7.2, we can take S a skeleton that
s-approximates C. We have DH(C/N, S) ≤ 8c lnN/N, so for N large enough,

P
(
DH(C/N,ΦH(u)) ≥ δ

)
≤ P

(
DH(S/N,ΦH(u)) ≥ δ/2

)
.
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Since S is an element of Kc, the inequality DH(S/N,ΦH(u)) ≥ δ/2 implies that H1
ξ(S) ≥

uN and so HS1
ξ (S) ≥ uN by (5.2).

Let a be such that a > u/a1. We have

P (HS1
ξ (S) ≥ uN)

≤ P
(
HS1

ξ (S) ≥ uN, diam C ≤ aN
)

+ P (diam C > aN).

But P (diam C > aN) < exp−a1aN by inequality (2.3). Since a > u/a1, we have
P (diam C > aN) < exp−uN .

We estimate now the term P (HS1
ξ (S) ≥ uN, diam C ≤ aN). Let A(n, u, a,N) be the

set of skeletons T such that HS1
ξ (T ) ≥ uN , E(T ) is included in Zd, cardT = n, and

there exists a connected set of sites containing the origin of diameter less than aN that is
s-compatible with the skeleton T . We have

P
(
HS1

ξ (S) ≥ uN, diam C ≤ aN
)
≤
∑

n

∑

T∈A(n,u,a,N)

P (S = T ).

The number of skeletons we can construct from n points is bounded by (nn)2. Take a
skeleton in A(n, u, a,N). All its vertices are in a box centered at 0, of side length 2(aN +
c lnN). So the cardinal of A(n, u, a,N) is less than 2dn(aN+c lnN)dn(nn)2, and moreover
n ≤ 2d(aN + c lnN)d. Hence there exists a3 > 0 such that

|A(n, u, a,N)| ≤ expa3n lnN

Take b > 0 a constant such that a3 − a2b < 0. We assume now that c > b. We have

HS1
ξ (T ) = HS1

ξ (T )(1− b/c) + b/cHS1
ξ (T )

≥ uN(1− b/c) + a2bn lnN

because HS1
ξ (T ) ≥ a2(s/8)cardT . Then by lemma 7.3, for N large enough

P (HS1
ξ (S) ≥ uN, diam C ≤ aN)

≤
∑

n

∑

T∈A(n,u,a,N)

exp−HS1
ξ (T )

≤
∑

n

∑

T∈A(n,u,a,N)

exp(−uN(1− b/c)− a2bn lnN)

≤ exp(−uN(1− b/c))
∑

n

exp((a3 − a2b)n lnN)

≤ exp−uN(1− a4/c)

for any a4 > b and N large enough. We take c such that a4/c < α and this concludes the
proof. �
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Abstract: Using the Chen-Stein method, we show that the spatial distri-
bution of large finite clusters in the supercritical FK model approximates a
Poisson process when the ratio weak mixing property holds.

Keywords: FK model, ratio weak mixing

1991 Mathematics Subject Classification: 60K35, 82B20.1 Introdu
tion
We consider here the behaviour of large finite clusters in the supercritical FK model.

In dimension two and more, their typical structure is described by the Wulff shape [4, 5,
6, 8, 9, 10, 11]. An interesting issue is the spatial distribution of these large finite clusters.
Because of their rarity, a Poisson process naturally comes to mind. Indeed, we prove that
the point process of the mass centers of large finite clusters sharply approximates a Poisson
process. Furthermore, considering large finite clusters in a large box such that their mean
number is not too large, we observe Wulff droplets distributed according to this Poisson
process.

Redig and Hostad have recently studied the law of large finite clusters in a given box
[20]. Their aim was different, in that they obtained accurate estimates on the law of the
maximal cluster in the box, but intermediate steps are similar. In the supercritical regime
they considered only Bernoulli percolation and not FK percolation.

As in [1, 13, 15, 20], our main result is based on a second moment inequality. We have
to control the interaction between two clusters. To do this, we suppose that ratio weak
mixing holds [2]. The ratio weak mixing holds for p large enough in dimension two [2], but
such a result is not available in higher dimensions. Hence, we will prove some intermediate
inequalities with the weaker assumption that weak mixing holds, or with the assumption
that p is close enough to 1 in dimensions three and more. Once we obtain these inequalities,
we apply the Chen-Stein method to get the approximation by a Poisson process.

The following section is devoted to the statement of our results. In section 3, we define
the FK model. We recall the weak and the ratio weak mixing properties and we state
a perturbative mixing result in section 4. Section 5 contains the definition of our point
process and the description of the Chen-Stein method. The core of the article is section 6,
where we study a second moment inequality. In section 7, we deal with the probability of
having a large finite cluster with its center at the origin. In section 8, we treat the case of
distant clusters and we finish the proof of Theorem 1. The proof of Theorem 3 is done in
section 9, and the proof of the perturbative mixing result is done in section 10.2 Statement of the results

We consider the FK measure Φ on the d-dimensional lattice Zd and in the supercritical
regime. The point p̂c stands for p̂g in dimension two, and for pslab

c in dimensions three and
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more. For q ≥ 1 we let U(q) be the set such that there exists a unique FK measure on Zd

of parameters p and q if p is not in U(q). By [17] this set is at most countable.
Let Λ be a large box in Zd. We fix n an integer and we consider the finite clusters of

cardinality larger than n. We call them n-large clusters. Let C be a finite cluster. The
mass center of C is

MC =

⌊
1

|C|
∑

x∈C

x

⌋
,

where ⌊x⌋ denotes the site of Zd whose coordinates are the integer part of those of x. We
define a process X on Λ by

X(x) =

{
1 if x is the mass center of a n–large cluster C

0 otherwise.

Let λ be the expected number of sites x in Λ such that X(x) = 1. We denote by L(X)
the law of a process X . For Y a process on Λ, we let ||L(X) − L(Y )||TV be the total
variation distance between the laws of the processes X and Y [7].

Theorem 2.1. Let q ≥ 1 and p > p̂c with p /∈ U(q). Let Φ be the FK measure on Zd

of parameters p and q. We suppose that Φ is ratio weak mixing. There exists a constant
c > 0 such that: for any box Λ, letting X be defined as above, and letting Y be a Bernoulli
process on Λ with the same marginals than X, we have for n large enough

||L(X)−L(Y )||TV ≤ λ exp(−cn(d−1)/d).

As a corollary, the number of large clusters in Λ is approximated by a Poisson variable.

Corollary 2.2. Let Φ be as in Theorem 2.1. Let N be the number of large finite
clusters whose mass centers are in the box Λ. Let Z be a Poisson variable of mean λ, and
let c > 0 be the same constant as in Theorem 2.1. Then for any A ⊂ Z+ and for n large
enough,

|P (N ∈ A)− P (Z ∈ A)| ≤ λ exp
(
− cn(d−1)/d

)
.

We provide next a control of the shape of the large finite clusters. Let W be the Wulff
crystal, let θ be the density of the infinite cluster, and let Ld(·) be the Lebesgue measure
on Rd. Let

W =
1

(
θLd(W)

)1/d
W

be the renormalized Wulff crystal. For l > 0, let V∞(C, l) be the neighbourhood of C of
width l for the metric | · |∞. For two sets A and B, the notation A△ B stands for the
symmetric difference between A and B.
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Theorem 2.3. Let Φ be as in Theorem 2.1. Let f : N → N be such that f(n)/n → 0
and f(n)/ lnn→∞ as n goes to infinity. Let (Λn)n be a sequence of boxes in Zd, and let
λn be the expected number of mass centers of n–large clusters in Λn. For all δ > 0, there
exists c > 0 such that if lim sup 1/n(d−1)/d lnλn ≤ c.

lim sup
n→∞

1

n(d−1)/d
lnΦ

[
Ld
(( ⋃

x∈Λn
X(x)=1

(x+W )
)
△

(
n−1

⋃

C n-large
C∩Λn 6=∅

V∞(C, f(n))
))
≥ δ
∣∣{x : X(x) = 1}

∣∣
]
< 0.

For clarity, we omit the subscript n on X .3 FK model
We consider the lattice Zd with d ≥ 2. We turn it into a graph by adding bonds between

all pairs x, y of nearest neighbours. We write E for the set of bonds and we let Ω be the
set {0, 1}E. A bond configuration ω is an element of Ω. A bond e is open in ω if ω(e) = 1,
and closed otherwise.

A path is a sequence (x0, . . . , xn) of distinct sites such that 〈xi, xi+1〉 is a bond for each
i, 0 ≤ i ≤ n− 1. A subset ∆ of Zd is connected if for every x, y in ∆, there exists a path
included in ∆ connecting x and y. If all bonds of a path are open in ω, we say that the path
is open in ω. A cluster is a connected component in Zd when we keep only open bonds. It
is usually denoted by C. Let x be a site. We write C(x) for the cluster containing x.

To define the FK measure, we first consider finite volume FK measures. Let Λ be a box
included in Zd. We write E(Λ) for the set of bonds 〈x, y〉 with x, y ∈ Λ. Let ΩΛ = {0, 1}E(Λ)

be the space of bonds configuration in Λ. Let FΛ be its σ-field, that is the set of subsets
of ΩΛ. For ω in ΩΛ, we define cl(ω) as the number of clusters of the configuration ω.

For p ∈ [0, 1] and q ≥ 1, the FK measure in Λ with parameters p, q and free boundary
condition is the probability measure on ΩΛ defined by

∀ω ∈ ΩΛ Φf,p,q
Λ (ω) =

1

Zf,p,q
Λ

( ∏

e∈E(Λ)

pω(e)(1− p)1−ω(e)
)
qcl(ω),

where Zf,p,q
Λ is the appropriate normalization factor.

We also define FK measures for arbitrary boundary conditions. For this, let ∂Λ be the
boundary of Λ,

∂Λ = {x ∈ Λ such that ∃ y /∈ Λ, 〈x, y〉 is a bond}.
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For a partition π of ∂Λ, a π–cluster is a cluster of Λ when we add open bonds between the
pairs of sites that are in the same class of π. Let clπ(ω) be the number of π–clusters in ω.
To define Φπ,p,q

Λ we replace cl(ω) by clπ(ω) and Zf,p,q
Λ by Zπ,p,q

Λ in the above formula.
There exists a countable subset U(q) in [0, 1] such that the following holds. As Λ grows

and invades the whole lattice Zd, the finite volume measures converge weakly toward the
same infinite measure Φp,q

∞ for all p /∈ U(q) [17]. We will always suppose that this occurs,
that is p /∈ U(q). We shall drop the superscript and the subscript on Φp,q

∞ , and simply
write Φ. It is known that the FK measure Φ is translation–invariant.

The measure Φ verify the finite energy property : for each p in (0, 1), there exists δ > 0
such that for every finite–dimensional cylinders ω1 and ω2 that differ by only one bond,

Φ(ω1)/Φ(ω2) ≥ δ. (3.1)

The random cluster model has a phase transition. There exists pc ∈ (0, 1) such that
there is no infinite cluster Φ–almost surely if p < pc, and an infinite cluster Φ–almost
surely if p > pc. Other critical points have been introduced in order to work with ’fine’
properties. In dimension two, we define p̂g as the critical point for the exponential decay
of dual connectivities, see [14, 17]. In three and more dimensions, let pslab

c be the limit
of the critical points for the percolation in slabs [22]. For brevity, p̂c will stand for p̂g in
dimension two, and for pslab

c in dimensions three and more. It is believed that p̂c = pc in
all dimensions and for all q ≥ 1, but in most cases we only know that p̂c ≥ pc.

We now state Theorem 17 of [12], applied to FK measures.
If q ≥ 1, p > p̂c and p /∈ U(q),

lim
1

n(d−1)/d
ln Φ

(
n ≤ |C(0)| <∞

)
= −w1, (3.2)

where C(0) is the cluster of the origin, and w1 > 0.4 Mixing properties
Let x and y be two points in Zd and let (xi)

d
i=1 and (yi)

d
i=1 be their coordinates. Write

|x− y|1 =
∑d

i=1|xi − yi|.
Definition 4.1. Following [3], we say that Φ has the weak mixing property if for some

c, µ > 0, for all sets Λ,∆ ⊂ Zd,

sup
{∣∣Φ(E | F )− Φ(E)

∣∣ : E ∈ FΛ, F ∈ F∆,Φ(F ) > 0
}

≤ c
∑

x∈Λ,y∈∆

e−µ|x−y|1 . (4.2)
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Definition 4.3. Following [3], we say that Φ has the ratio weak mixing property if for
some c1, µ1 > 0, for all sets Λ,∆ ⊂ Zd,

sup
{∣∣∣

Φ(E ∩ F )

Φ(E)Φ(F )
− 1
∣∣∣ : E ∈ FΛ, F ∈ F∆,Φ(E)Φ(F ) > 0

}

≤ c1
∑

x∈Λ,y∈∆

e−µ1|x−y|1 ,
(4.4)

Roughly speaking, the influence of what happens in ∆ on the state of the bonds in Λ
decreases exponentially with the distance between Λ and ∆.

In dimension two, the measure Φ is ratio weak mixing as soon as p > p̂g [3], but such a
result is not available in dimension larger than three. We provide a perturbative mixing
result, which is valid for all dimensions larger than three, and which is similar to the weak
mixing property.

Lemma 4.5. Let d ≥ 3 and q ≥ 1. There exists p1 < 1 and c > 0 such that: for all
p > p1, all connected sets Γ,∆ with Γ ⊂ ∆, every boundary conditions η, ξ on ∆, every
event E supported on Γ,

|Φη,p,q
∆ (E)− Φξ,p,q

∆ (E)| ≤ 2|∂∆| exp
(
− c inf

{
|x− y|1, x ∈ Γ, y ∈ ∆

})
.

We are not aware of a particular reference of this result, and we give a sketch of the proof
in Section 10.5 The Chen-Stein method

From the percolation process, we want to extract a point process describing the occur-
rence of large finite clusters. For a point x in Rd, let ⌊x⌋ denotes the site of Zd whose
coordinates are the integer parts of those of x. Assume that C is a finite subset of Zd.
Then the mass center of C is

MC =

⌊
1

|C|
∑

x∈C

x

⌋
.

Let n ∈ N. A n–large cluster is a finite cluster of cardinality larger than n. Let Λ be a box
in Zd. We define a process X on Λ by

X(x) =

{
1 if x is the mass center of a n–large cluster C

0 otherwise.
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In order to apply the Chen-Stein method, we define for x, y in Zd,

px = Φ(X(x) = 1),

pxy = Φ
(
∃C,C′ two clusters such that: C ∩ C′ = ∅,
n ≤ |C|, |C′| <∞,MC = x and MC′ = y

)
,

and we let Bx = B(x, n2) be the box centered at x of side length n2. Let λ be the expected
number of sites x in Λ such that X(x) = 1. We have λ =

∑
x∈Λ px and, because of the

translation–invariance of Φ, for each site x in Λ

λ = |Λ| · px. (5.1)

We introduce three coefficients b1, b2, b3 by:

b1 =
∑

x∈Λ

∑

y∈Bx

pxpy,

b2 =
∑

x∈Λ

∑

y∈Bx\x
pxy,

b3 =
∑

x∈Λ

E
∣∣∣E
(
X(x)− px|σ(X(y), y /∈ Bx

))∣∣∣.

Let Z1 and Z2 be two Bernoulli processes on Λ. The total variation distance between the
laws of the processes Z1 and Z2 [7] is

||L(Z1)− L(Z2)||TV = sup
{∣∣P (Z1 ∈ A)− P (Z2 ∈ A)

∣∣, A subset of {0, 1}Λ
}
.

Let Y be a Bernoulli process on Λ such that the Y (x)’s are iid and

P (Y (x) = 1) = px.

The Chen-Stein method provides a control of the total variation distance between X and
Y in terms of the bi’s. Indeed Theorem 2 of [7] asserts that

||L(X)− L(Y )||TV ≤ 2(2b1 + 2b2 + 2b3) +
∑

x∈Λ

p2
x. (5.2)
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To prove Theorem 2.1, we shall provide an upper bound on each term bi. The ratio
weak mixing property is essential to our proof of the bound of b2. Nevertheless, we believe
that one can prove the following inequality, without any mixing assumption:

Φ
[
n ≤ C(x) <∞, n ≤ C(y) <∞, C(x) ∩ C(y) = ∅

]
≤ Φ(2n ≤ C(0) <∞). (5.3)

Let us give now an upper bound on px. By [16], there exists a constant c > 0 such that:

Φ(n ≤ |C(0)| <∞) ≤ exp
(
− cn(d−1)/d

)
.

But
px ≤

∑

k≥n

Φ
(
∃C, |C| = k,MC = x

)

≤
∑

k≥n

∑

y∈B(x,2k)

Φ
(
|C(y)| = k

)

≤
∑

k≥n

(2k)d exp
(
− cn(d−1)/d

)
.

Hence there exists a constant c > 0 such that for n large enough

px ≤ exp(−cn(d−1)/d). (5.4)6 Se
ond moment inequality
In this section we bound the term pxy with the help of the ratio weak mixing property.

First we introduce a local version of pxy. We define p̃xy by

p̃xy = Φ
(
∃C,C′ two clusters such that

n ≤ |C| < n2, n ≤ |C′| < n2,MC = x, and MC′ = y
)
.

The distance between two sets Γ and ∆ ⊂ Zd is

d(Γ,∆) = inf{|x− y|1, x in Γ, y in ∆},

and it is the length of the shortest path in Zd connecting Γ to ∆.
We divide the term p̃xy into two parts. Let µ1 be the constant appearing in the definition

of the ratio weak mixing property and let K > 5/µ1. We define p̃ c
xy by

p̃ c
xy = Φ

(
∃C,C′ two clusters such that d(C,C′) ≤ K lnn,

n ≤ |C| < n2, n ≤ |C′| < n2,MC = x, and MC′ = y
)
.
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We define also p̃ d
xy by

p̃xy = Φ
(
∃C,C′ two clusters such that d(C,C′) > K lnn,

n ≤ |C| < n2, n ≤ |C′| < n2,MC = x, and MC′ = y
)
.

The superscripts c and d stand for close and distant. So p̃xy = p̃ c
xy + p̃ d

xy and we study
separately these two terms.

First we focus on p̃ d
xy. We have

p̃ d
xy ≤

∑

C,C′ distant

Φ(C and C′ are clusters),

where the sum is over the couples (C,C′) of connected subsets of Zd such that

n ≤ |C| < n2, n ≤ |C′| < n2,

MC = x,MC′ = y, and d(C,C′) > K lnn.

Let c1, µ1 be the constants appearing in the definition of the ratio weak mixing property.
Let (C,C′) be a couple appearing in the sum above. We have

∑

u∈C,v∈C′

e−µ1|u−v| ≤ n4 exp(−µ1K lnn),

so for n large enough

c1
∑

u∈C,v∈C′

e−µ1|u−v| ≤ 1.

So for n large enough

Φ(C and C′ are clusters) ≤ 2Φ(C is a cluster) · Φ(C′ is a cluster),

by the ratio weak mixing property (4.4). Hence there exists c > 0 such that for n large
enough

p̃ d
xy ≤

∑

u∈B(x,2n2),v∈B(y,2n2)

2Φ(n ≤ |C(u)| <∞) ·Φ(n ≤ |C(v)| <∞)

≤ exp(−cn).

(6.1)

Now we consider p c
xy . We have
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p̃ c
xy ≤

∑

C,C′ close

Φ(C and C′ are clusters),

where the sum is over the couples (C,C′) of subsets of Zd such that

n ≤ |C| < n2,n ≤ |C′| < n2,

MC = x,MC′ = y, and d(C,C′) ≤ K lnn.

For n large enough, the event {C and C′ are clusters} is FB(x,3n2)-measurable. So we only

consider bonds configurations in B(x, 3n2).
We give a deterministic total order on the pairs (u, v) of Zd in such a way that if

|u1 − v1|1 < |u2 − v2|1, then (u1, v1) < (u2, v2). Let (C,C′) be a pair of sets appearing in
the above sum. Take a configuration ω in B(x, 3n2) such that C and C′ are clusters in ω.
We change the configuration ω as follows.

To start with, we take the pair (u, v) such that u ∈ C, v ∈ C′ and (u, v) is the first such
pair for the order above. For 0 ≤ i ≤ d, we define ti the point whose d− i first coordinates
are equal to those of u, and the others are equal to those of v. Hence t0 = u, td = v,
and ti and ti+1 differ by only one coordinate. We consider the shortest path (u0, . . . , uk)
connecting u to v through the ti’s. It is composed of the segments [ti, ti+1] for 0 ≤ i ≤ d−1.

We open all the bonds 〈ui, ui+1〉 for i = 0 . . . k − 1. In the same time, we close all the
bonds incident to ui for i = 1 . . . k − 1 distinct from the previous bonds 〈uj , uj+1〉. Let

ω̃ be the new configuration in B(x, 3n2). We denote by C̃ the set C ∪ C′ ∪ {ui}k−1
i=1 . By

construction, C̃ is a cluster in ω̃. We have

2n ≤ C̃ < 4n+K lnn.

The number of bonds we have changed is bounded by 2dK lnn. By the finite energy
property (3.1):

Φ(ω̃) ≥ n2dK ln δΦ(ω),

for a certain constant δ in (0, 1).
Now we control the number of antecedents by our transformation. Take a configuration

ω̃ of B(x, 3n2). To get an antecedent of ω̃, we have to
(a) choose two sites u, v in B(x, 3n2), with |u− v|1 ≤ K lnn
(b) take the path connecting u to v along the coordinate axis
(c) choose the state of the bonds that have an endpoint on this path.

In step (a) we have less than (3n2)d(2K lnn)d choices. In step (b) we have just one
choice. In step (c) the number of choices is bounded by 22dK ln n. Hence for n large enough
the number of antecedents of ω̃ is bounded by n4dK .
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Finally,

∑

C,C′ close

Φ(C and C′ are clusters) ≤ n4dK · n2dK ln δ
∑

eC

Φ(C̃ is a cluster),

where the sum is over connected subsets C̃ of Zd such that 2n ≤ |C̃| < 5n and C̃ is
contained in B(x, 3n2). This sum is bounded by

|B(x, 3n2)| · Φ(2n ≤ |C(0)| < 5n).

Thus by (3.2), there exists c2 > w1 such that for n large enough,

p̃ c
xy ≤ exp(−c2n(d−1)/d). (6.2)

To conclude, remark that

pxy − p̃xy ≤ Φ
(
∃C a cluster such that n2 ≤ |C| <∞,MC = x

)
.

By (5.4), there exists c such that for n large enough the difference between pxy and p̃xy

is bounded by exp(−cn2(d−1)/d). So by (6.1) there exists c > 0 such that pxy ≤ p̃ c
xy +

exp(−cn). Since in (6.2) the constant c2 is strictly larger than w1, there exists c3 > w1

such that for n large enough

pxy ≤ exp(−c3n(d−1)/d). (6.3)7 A 
ontrol on px

We compare px and Φ(n ≤ |C(0)| <∞).

Lemma 7.1. If q ≥ 1, p > p̂c, and p /∈ U(q), then

lim
1

n(d−1)/d
ln px = −w1.

We note that in [20], the authors take the left endpoints of clusters instead of mass centers
and they get the same limit.

Proof of Lemma 7.1. We begin with a lower bound for px. We recall that for all x
in Zd, px = Φ(X(0) = 1). Let α > 1. Because of (3.2), we have

lim
1

n(d−1)/d
ln Φ(n ≤ |C(0)| <∞) = lim

1

n(d−1)/d
ln Φ(n ≤ |C(0)| < nα).
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Then
Φ(n ≤ |C(0)| < nα) ≤

∑

x∈B(0,nα)

Φ(n ≤ |C(0)| < nα,MC = x)

≤ |B(0, nα)|Φ(X(0) = 1).

We give next an upper bound:

Φ(X(0) = 1) = Φ(∃C a cluster,MC = 0, n ≤ |C| < nα)

+ Φ(∃C a cluster,MC = 0, nα ≤ |C| <∞)

≤
∑

x∈B(0,nα)

Φ(n ≤ |C(x)| <∞)

+
∑

k≥nα

Φ
(
∃C a cluster, |C| = k, C ∩B(0, 2k) 6= ∅

)

≤ |B(0, nα)|Φ(n ≤ |C(x)| <∞) +
∑

k≥nα

|B(0, 2k)|Φ(|C(0)| = k).

Finally, we use the limit (3.2) to get

lim
1

n(d−1)/d
ln px = lim

1

n(d−1)/d
lnΦ(n ≤ |C(0)| <∞) = −w1. �8 Proof of Theorem 2.1

We recall that Λ is a box and λ is the expected number of the mass centers in Λ of
n–large clusters. We write FBx

Λ for the σ–field FΛ\Bx . First, we bound the term

E
∣∣E
(
X(x)− px|FBx

Λ

)∣∣.

Let X̃(x) be equal to 1 if x is the mass center of a cluster C, with C such that n ≤ |C| <
n2/4, and equal to 0 otherwise. Let p̃x = Φ(X̃(x)). We have

E
∣∣E
(
X(x)− px|FBx

Λ

)∣∣ ≤ E
∣∣E
(
X(x)− X̃(x)|FBx

Λ

)∣∣

+E
∣∣E
(
X̃(x)− p̃x|FBx

Λ

)∣∣+ E
∣∣E
(
p̃x − px|FBx

Λ

)∣∣.
(8.1)

Since the quantity X(x)− X̃(x) is always positive,

E
∣∣E
(
X(x)− X̃(x)|FBx

Λ

)∣∣ = E
[
E
(
X(x)− X̃(x)|FBx

Λ

)]

= px − p̃x.
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We have also
E
∣∣E
(
p̃x − px|FBx

Λ

)∣∣ = px − p̃x.

But
px − p̃x = Φ(∃C a cluster, n2/4 ≤ |C| <∞,MC = x),

so by (5.4) there exists c > 0 such that px − p̃x ≤ exp(−cn2).

The variable X̃(x) is FB(x,n2/4)-measurable. The distance between B(x, n2/4) and the

complementary region of Bx is of order n2. If Φ is weak mixing, or by lemma 4.5 if p is
close enough to 1, there exists a constant c > 0 such that for n large enough

E
∣∣E
(
X̃(x)− p̃x|FBx

Λ

)∣∣ ≤ exp(−cn2).

Putting together the estimates of the three terms on the right-hand side of (8.1), we
conclude that there exists c > 0 such that for n large enough

E
∣∣E
(
X(x)− px|FBx

Λ

)∣∣ ≤ exp(−cn2). (8.2)

Now observe that |Λ| = λp−1
x . Using inequality (6.3) and the limit of Lemma 7.1, there

exists c > 0 such that

b2 ≤ λp−1
x exp

(
− c3n(d−1)/d

)
≤ λ exp

(
− cn(d−1)/d

)
.

Because of (8.2), there exists c > 0, c′ > 0 such that

b3 ≤ λp−1
x exp(−cn2) ≤ λ exp(−c′n2).

The term b1 is controlled by Lemma 7.1. We apply finally the Chen-Stein inequality
(5.2) to obtain Theorem 2.1. �9 Proof of Theorem 2.3

The Wulff crystal is the typical shape of a large finite cluster in the supercritical regime.
The crystal is built on a surface tension τ . The surface tension is a function from Sd−1,
the (d − 1)–dimensional unit sphere of Rd, to R+. It controls the exponential decay of
the probability for having a large separating surface in a certain direction, with all bonds
closed. We refer the reader to [9, 12] for an extended survey of this function.

In the regime p > p̂c and p /∈ U(q), the surface tension is positive, continuous, and
satisfies the weak simplex inequality. We denote by W the Wulff shape associated to τ ,

W = {x ∈ Rd, x.u ≤ τ(u) for all u in Sd−1}.
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The Wulff shape is a main ingredient in the proof of (3.2).

Let θ = Φ(0 ↔ ∞) be the density of the infinite cluster. Let f : N → N, such that
f(n)/n → 0 and f(n)/ lnn → ∞ as n goes to infinity. Let x and y be two points of Rd,
and let (xi)

d
i=1 and (yi)

d
i=1 be their coordinates. We write |x− y|∞ = max1≤i≤d |xi − yi|.

We define a neighbourhood of a cluster C by

V∞(C, f(n)) = {x ∈ Rd, ∃ y ∈ C, |x− y|∞ ≤ f(n)}.

Let (Λn)n≥0 be a sequence of boxes in Zd, and let λn be the expected number of mass
centers of n–large clusters in Λn. In Theorem 3, we consider the event

{
Ld
( ⋃

x∈Λn
X(x)=1

(x+ θLd(W)−1/dW
)
△

n−1
⋃

C n–large
C∩Λn 6=∅

V∞(C, f(n))
)
≥ δ
∣∣{x : X(x) = 1}

∣∣
}
.

(9.1)

It is included in the event

{
there exists C a n–large cluster such that MC ∈ Λn,

Ld
((
MC + θLd(W)−1/dW

)
△
(
n−1V∞(C, f(n))

))
≥ δ
}
.

Taking the logarithm of its probability and dividing by nd−1/d, we may show that for n
large it is equivalent to the logarithm divided by nd−1/d of the following quantity:

λnΦ
[
Ld
((
MC(0) + θLd(W)−1/dW

)
△
(
n−1V∞(C(0), f(n))

))
≥ δ
∣∣n ≤ |C(0)| <∞

]
.

By [9, 12], there exists c > 0 such that if

lim sup 1/n(d−1)/d lnλn ≤ c,

then the inequality in Theorem 2.3 holds. �
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We prove lemma 4.5, following the proof of the uniqueness of the FK measure for p close

enough to 1 in [18]. The difference is that we consider not just one but two independent
FK measures. The idea of using two independent copies of a measure comes from [19].

Let ∆ be a connected subset of Zd. There is a partial order � in Ω∆ given by ω � ω′

if and only if ω(e) ≤ ω′(e) for every bond e. A function f : Ω∆ → R is called increasing

if f(ω) ≤ f(ω′) whenever ω � ω
′

. An event is an element of Ω∆. An event is called
increasing if its characteristic function is increasing. For a pair of probability measures µ
and ν on (Ω∆,F∆), we say that µ (stochastically) dominates ν if for any F∆-measurable
increasing function f the expectations satisfy µ(f) ≥ ν(f) and we denote it by µ � ν. Let
Pp be the Bernoulli bond–percolation measure on Zd of parameter p. The FK measures
on ∆ dominate stochastically a certain Bernoulli measure restricted on E(∆):

Φη,p,q
∆ � Pp/[p+q(1−p)]

∣∣
E(∆)

. (10.1)

For (ω1, ω2) ∈ Ω2, we call a site x white if ω1(e)ω2(e) = 1 for all bond e incident with x,
and black otherwise. We define a new graph structure on Zd. Take two sites x and y and
label xi, yi their coordinates. If maxi=1...d |xi − yi| = 1, then 〈x, y〉 is a ⋆-bond and y is a
⋆-neighbour of x. A ⋆-path is a sequence (x0, ..., xn) of distinct sites such that 〈xi, xi+1〉 is
a ⋆-bond for 0 ≤ i ≤ n− 1.

For any set V of sites, the black cluster B(V ) is the union of V together with the set of
all x0 for which there exists a ⋆-path x0, . . . , xn such that xn ∈ V and x0, . . . , xn−1 are all
black. Let Γ, ∆ be two connected sets with Γ ⊂ ∆. The ’interior boundary’ D(B(∂∆)) of
B(∂∆) is the set of sites x satisfying:

(a) x /∈ B(∂∆)
(b) there is a ⋆-neighbour of x in B(∂∆)

(c) there exists a path from x to Γ that does not use a site in B(∂∆).
Let I be the set of sites x0 for which there exists a path x0, . . . , xn with xn ∈ Γ, xi /∈ B(∂∆)
for all i, see figure 1.
Let

KΓ,∆ =
{(
B(∂∆) ∪D(B(∂∆))

)
∩ Γ = ∅

}
.

If KΓ,∆ occurs, we have the following facts:
(a) D(B(∂∆)) is connected

(b) every site in D(B(∂∆)) is white
(c) D(B(∂∆)) is measurable with respect to the colours of sites in Zd \ I
(d) each site in ∂I is adjacent to some site of D(B(∂∆)).

These claims have been established in the proof of Theorem 5.3 in [18].
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Γ

∆

D(B(∂∆))

I

figure 1: The set I inside ∆

Pick η, ξ two boundary conditions of ∆. For brevity let P = Φη,p,q
∆ × Φξ,p,q

∆ . We shall
write X, Y for the two projections from Ω∆ × Ω∆ to Ω∆. Then for any E ∈ FΓ, we have
by the claims above

P(X ∈ E,KΓ,∆) = P(Y ∈ E,KΓ,∆) = P(Φw,p,q
I (E)1KΓ,∆

).

Hence
|Φη,p,q

∆ (E)−Φξ,p,q
∆ (E)| ≤ 2

(
1− P(KΓ,∆)

)
.

Because of inequality (10.1) and by the stochastic domination result in [21], the process
of black sites is stochastically dominated by a Bernoulli site–percolation process whose
parameter is independent of Γ, ∆, η, ξ and decreases to 0 as p goes to 1. There exists
p1 < 1 such that this Bernoulli process is subcritical for the ⋆-graph structure of Zd and
for p ≥ p1. Hence there exists c > 0 such that for p > p1, for all Γ, ∆, η, ξ,

P(KΓ,∆) ≥ 1− |∂∆| exp
(
− c d(Γ, ∂∆)

)
. �
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11. R. Cerf, Á. Pisztora, Phase coexistence in Ising, Potts and percolation models, Ann.
I. H. P. PR 37 (2001), 643–724.

12. R. Cerf, The Wulff crystal in Ising and Percolation models, Saint–Flour lecture notes,
first version (2004).

13. J.-R. Chazottes, F. Redig, Occurrence, repetition and matching of patterns in the
low-temperature Ising model, Preprint (2003).
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Abstract: We prove a large deviation principle of surface order for
supercritical oriented percolation on Zd, d ≥ 3, which leads to asymp-
totics of the finite cluster distribution.

1991 Mathematics Subject Classification: 60K35, 82B20

Keywords: oriented percolation, large deviations, Wulff crystal1 Introdu
tion
In this article we adapt the arguments of [4], in order to derive a large deviation principle

for supercritical oriented percolation. We consider oriented percolation on Zd with d ≥ 3.
We let pc be the corresponding critical point, and we let C(0) be the cluster of the origin.

Theorem 1.1. Let d ≥ 3. For every p > pc, there exists a constant c > 0 such that

lim
n→∞

1

nd−1
lnP (nd ≤ |C(0)| <∞) = −c.

This limit gives the answer to a question raised in [10] for oriented percolation in dimension
two.

Theorem 1.1 is a consequence of a large deviation principle. We shall define a tension
surface τ for the oriented percolation process, and we denote by Wτ the corresponding
Wulff crystal. With the help of the Wulff crystal, we define the surface energy I(A) of a
Borel set A as

I(A) = sup
{∫

A

div f(x) dx : f ∈ C1
c (Rd,Wτ )

}
,

where C1
c (Rd,Wτ ) is the set of C1 vector functions defined on Rd with values inWτ having

compact support and div is the usual divergence operator.
Consider M(Rd

+) the set of finite Borel measures on Rd
+. We equip M(Rd

+) with the
weak topology, that is the coarsest topology for which the linear functionals

ν ∈M(Rd
+)→

∫
f dν, f ∈ Cc(R

d,R)

are continuous, where Cc(Rd,R) is the set of the continuous maps from Rd to R having
compact support.

For ν ∈M(Rd
+), we define I(ν) = I(A) if ν is the measure with density θ1A with respect

to the Lebesgue measure, where A is a Borel subset of Rd, and I(ν) =∞ otherwise.

Theorem 1.2. Let d ≥ 3 and let p > pc. The sequence of random measures

Cn =
1

nd

∑

x∈C(0)

δ x
n
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satisfies a large deviation principle in M(Rd
+) with speed nd−1 and rate function I, i.e.,

for every Borel subset M of M(Rd
+),

− inf{I(ν) : ν ∈
◦
M} ≤ lim inf

n→∞
1

nd−1
lnP (Cn ∈M)

≤ lim sup
n→∞

1

nd−1
lnP (Cn ∈M) ≤ − inf{I(ν) : ν ∈M}.

Under the conditional probability P̂ (·) = P (· | |C(0)| < ∞) we have the enhanced large
deviation upper bound: for any Borel subset M of M(Rd),

lim sup
n→∞

1

nd−1
ln P̂ (Cn ∈M) ≤

− sup
f,δ

inf
{
I(ρ) : ρ(Rd) <∞, ∃ν ∈M |ρ(f)− ν(f)| < δ

}

where the supremum is taken over δ > 0 and the functions f : Rd → R that are bounded
and continuous.

G. R. Grimmett submitted the Wulff shape problem for oriented percolation to R. Cerf
back in 1995. One could believe that the oriented case should be easier to tackle than the
unoriented one [3]. However, we were surprised to deal with delicate proofs, despite the
Markov property of the oriented process.

In [3], the large deviation principle is stated with the conditional measure P̂ , which is
enough to prove the result of Theorem 1.1. The statement of the large deviation principle
with the percolation measure P in [4] requires no more effort. Let us keep in mind that in
the usual percolation process, the surface tension is bounded away from 0, so that there is
a linear relation between the perimeter and the surface energy.

This relation still remains for bounded Borel subsets of Rd in the oriented case. On the
other hand, when we focus on a bounded region, we find that there is no more equivalence
between the perimeter and the surface energy restricted to that region. This leads to extra
work in order to prove the I–tightness under P of the random measure Cn. Theorem 1.2
is stronger than what we need for Theorem 1.1. We establish the large deviation principle
with the measure P in order to keep the result of [4], and to highlight a difference between
the oriented case and the non–oriented one.

This article is devoted to the proof of the (weak) large deviation principle stated in
Theorem 1.2, and follows the schemes of [4]. We do not give the proofs of the enhanced
upper bound and of Theorem 1.1, as it would be a repetition of [4]. Also, we often recall
lemmas from [4].
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Beside the large deviation principle, we get other results on the percolation process by
using block arguments. We state these results in the following three theorems. In the
supercritical oriented percolation model, an infinite cluster does not fill the whole space
but looks like a deterministic cone. This cone is called the cone of percolation, and we
shall show that the percolation process inside this cone is supercritical in section 19:

Theorem 1.3. Let d ≥ 3 and p > pc. Let O be an open subset of Rd−1 such that the
cone {(tO, t) : t ≥ 0} is included in the cone of percolation. Then with probability one there
is an infinite path in {(tO, t) : t ≥ 0}.
The next result deals with the positivity of the surface tension. The relevant cone for the
surface tension is a cone orthogonal to the cone of percolation, and which we call the cone
of positivity, see figure 1.

cone of
percolation

cone of
positivity

τ > 0

τ = 0

0

figure 1: The cone of positivity

Theorem 1.4. Let d ≥ 3 and p > pc. The surface tension τ is strictly positive in the
cone of positivity and null outside.

We also prove that the connectivity function P (0→ x) decreases exponentially outside the
cone of percolation in section 20:

Theorem 1.5. Let x be not in the cone of percolation. There exists c > 0 such that

P (0→ nx) ≤ exp(−cn).

The cone of percolation is defined in section 2, and the cone of positivity is defined in
section 5.

As we have noted before, the surface tension is null in a whole angular sector. Hence,
the corresponding Wulff crystal does not contain 0 in its interior. Indeed, the Wulff crystal
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is contained in the cone of percolation, and it has a singularity at 0. Nevertheless, we prove
that Wτ has a non–empty interior. Unfortunately, the proofs that the Wulff crystal is the
unique solution which minimizes the surface energy under a volume constraint, always
rely on the strict positivity of the surface tension. Thus, to obtain the Wulff shape for
large finite clusters as in [4], one has to resolve the Wulff variational problem for a convex
function whose Wulff crystal has a positive Lebesgue measure. This problem has not been
solved yet.

Most of our results are based on a block argument, and we now describe the basic
idea which leads to the definition of our block events. The graph is oriented so that
the process goes upward. The oriented percolation process has a Markovian structure,
and we sometimes think of this process as a process indexed by the last coordinate. In
the supercritical regime, clusters tend to spread horizontally with linear speed, and most
of the block events that we consider assert that the “block process” increases in typical
configurations. In that way, we can estimate the price to pay to restrain the block process
in a given region.

We give a short review of the main points of this article. Two block events are defined
in section 3. They control the increase of the (Markovian) oriented percolation process
from below. Another block estimate, given in section 19, provides a control from above of
the increase of the oriented percolation process.

The proof of the upper bound is divided into three parts: a local upper bound, the
definition of a set of blocks which is exponentially contiguous to the cluster of the origin,
and the I–tightness of this set of blocks.

The local upper bound relies on a local estimate, provided in section 8 and in section 9.
The arguments in section 8 are similar to those in [4]. However, the result of section 9 in
which we consider the density has still a counterpart in [4], but the proof is much longer
and it relies on a static renormalization much like [20]. The point is that when we consider
a family of clusters, the clusters can intersect so that the cardinality of their union is not
the summation of their cardinals.

Because of the lack of equivalence between the perimeter and the surface energy in a
bounded domain, our proof of the I–tightness is more involved. In order to control the
proportion of bad blocks in the boundary of the block process, our definition of block
events will depend on the domain under consideration, as well as the size of the blocks.

The proof of the lower bound is also more delicate, because the percolation process does
not naturally fill a given shape. We put some seeds at the “bottom” of the shape to solve
this problem.

The following is a sequential description of our article. We first describe the oriented
percolation process and then give background results in section 2. Section 3 is devoted
to the study of two block events, and we define block processes in section 4. We define a
surface tension in section 5. In section 6 we introduce the Wulff crystal and we study the
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positivity of the surface tension. In section 7, we estimate the probability of the existence
of a separating set near a hypersurface. Section 8 is devoted to the proof of the interface
estimate, which provides the link between the surface tension and the large deviation
upper bound. Section 9 contains an alternative separate estimate, which is more relevant
for the local large deviation upper bound. In section 10, we introduce the Caccioppoli
sets, which are the natural objects for our large deviation principle. The definition of their
surface energy follows in section 11, and we give two ways for approximating Caccioppoli
sets in section 12. A local upper bound follows in section 13. In section 14 we build a
block cluster and a block measure from the cluster C(0). Section 15 is devoted to the
study of the boundary of the block cluster. The exponential contiguity between the block
measure and the measure Cn is proved in section 16, and the I–tightness of Cn is proved in
section 17. In section 18 we build with sufficiently high probability the cluster C(0) near
a given shape, in order to obtain the lower bound. We discuss the geometry of the Wulff
shape and finish the study of the positivity of the surface tension in section 19. We prove
that the connectivity function decreases exponentially outside the cone of percolation in
section 20. To finish, section 21 contains a little note on the Wulff variational problem.2 The model

Let Zd be the set of all d–vectors x = (x1, . . . , xd) of integers. For x, y ∈ Zd, we define

|x− y| =
d∑

i=1

|xi − yi|.

We let ei be the ith coordinate vector, for 1 ≤ i ≤ d. We refer to vectors in Zd as vertices,
and we turn Zd into a graph by adding an undirected edge between every pair x, y of
vertices such that |x− y| = 1. The resulting graph is denoted Ld = (Zd,Ed). The origin
of this graph is the vertex 0 = (0, . . . , 0).

We will consider the following oriented graph. Each vertex x = (x1, . . . , xd) may be
expressed as x = (x, t) where x = (x1, . . . , xd−1) and t = xd. Consider the directed graph
with vertex set Zd and with a directed edge joining two vertices x = (x, t) and y = (y, u)

whenever
∑d−1

i=1 |yi − xi| ≤ 1 and u = t + 1. As in [17], we write ~Ld
alt = (Zd, ~Ed

alt) for the
ensuing directed graph, represented in figure 2. We shall concentrate on this model for
notational convenience, but our results apply also to the conventional oriented model [8].

Let G = (V,E) be a graph. The configuration space for percolation on G is the set
Ω = {0, 1}E. For ω ∈ Ω, we call an edge e ∈ E open if ω(e) = 1 and closed otherwise.
With Ω we associate the σ–field F of subsets generated by the finite–dimensional cylinders.
For 0 ≤ p ≤ 1, we let Pp or simply P be the product measure on (Ω,F) with density p.
When the graph G has translations, the measure P is invariant under translation and is
even ergodic.
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figure 2: The graph ~L2
alt

There is a natural order on Ω defined by the relation ω1 ≤ ω2 if and only if all open
edges in ω1 are open in ω2. An event is said to be increasing (respectively decreasing) if
its characteristic function is non–decreasing (respectively non–increasing) with respect to
this partial order. Suppose the events A, B are both increasing or both decreasing. The
Harris–FKG inequality [16] says that

P (A ∩B) ≥ P (A)P (B). (2.1)

We shall compare a block process with a Bernoulli–site process with the help of stochas-
tic domination. Let µ, ν be two measures on Ω. We say that µ is stochastically dominated
by ν, which we denote by µ � ν, if µ(f) ≤ ν(f) for every bounded increasing measurable
function f : Ω → R. For p ∈ [0, 1], we let Zp be the Bernoulli site process on G with
density p.

Let ω ∈ Ω. An open path is an alternating sequence x0, e0, x1, e1, x2, . . . of distinct
vertices xi and open edges ei such that ei = [xi, xi+1〉 for all i. If the path is finite, it has
two endvertices x0, xn, and it is said to connect x0 to xn. If the path is infinite, it is said
to connect x0 to infinity. A vertex x is said to be connected to a vertex y, written x→ y,
if there exists an open path connecting x to y. For A, B ⊂ Zd, we say that A is connected
to B, or B is connected from A, if there exists a ∈ A and b ∈ B such that a → b; in this
case, we write A→ B.

For x ∈ Zd and ω ∈ Ω, we write

C(x) = C(x, ω) = {y ∈ Zd : x→ y}.

The percolation probability is defined as the function

θ(p) = P (0→∞).



96 Chapitre 5

We introduce the critical point

pc = sup{p : θ(p) = 0}.

By [2,17], we know that θ(pc) = 0.
For A ⊂ Zd−1 and n ∈ N, we define

ξA
n = {x ∈ Zd−1 : A× {0} → (x, n)}.

Let x ∈ Zd−1. We define ξA
n (x) = 1 if x ∈ ξA

n , and 0 otherwise. We let

Hn = ∪m≤nξ
0
m and Kn = {x : ξ0n(x) = ξZ

d−1

n (x)}.

We define

Hn =
⋃

x∈Hn

x+ [−1

2
,
1

2
]d−1, Kn =

⋃

x∈Kn

x+ [−1

2
,
1

2
]d−1.

We let
Ω∞ = {ξ0n 6= ∅ for all n},

and
τττ = inf{n : ξ0n = ∅}.

We state a shape theorem for oriented percolation from [2,6,7]

Proposition 2.2. Let p > pc. There exists a convex subset U of Rd−1 such that, for
any ε > 0, for almost all ω ∈ Ω∞,

(1− ε)nU ⊂ (Hn ∩Kn) ⊂ (1 + ε)nU,

for n large enough.

We shall need some exponential estimates on the supercritical oriented percolation (see
[9, 11, 18]). For A ⊂ Zd−1, we let

τττA = inf{n : ξA
n = ∅}.

Proposition 2.3. Let p > pc. There exists a strictly positive constant γ such that, for
n large enough

P (n < τττ <∞) ≤ exp(−γn),

and, for A ⊂ Zd−1,
P (τττA <∞) ≤ exp(−γ|A|).
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Proposition 2.4. Let p > pc. There exist strictly positive constants γ and δ̂ such that,
for n large enough, for all x ∈ Zd−1 such that |x| < δ̂n,

P (x /∈ Hn, τττ =∞) ≤ exp(−γn),

P (x /∈ Kn, τττ =∞) ≤ exp(−γn).

Definition 2.5. Let p > pc and let U be the convex set introduced in proposition 2.2.
The cone of percolation is the set

F = ∪t≥0{(tU, t)}.

For α > 0, we define also
F(α) = ∪t≥0{(αtU, t)}.

We shall need the following generalizations of the process ξ

Definition 2.6. Let y = (y, t) in Zd. We define

ξy
n =

{
x ∈ Zd−1 : y → (y + x, t+ n)

}
,

and
ξZ

d−1,y
n =

{
u ∈ Zd−1 : ∃x ∈ Zd−1 (x, t)→ (y + u, t+ n)

}
.

The process ξZ
d−1,y

n is the process ξZ
d−1

n translated by y.3 Blo
k events
In this section we introduce two events which describe the typical behaviour of the

oriented percolation process. The first one handles the density of a cluster in a box, the
second one shows that a large cluster typically looks like the cone of percolation F.

We let K be a positive integer. For x in Zd, we define B(x) = ] − K/2, K/2]d + Kx.
The graph structure of the set of boxes {B(x), x ∈ Zd} will be studied in the next section.

Let ε > 0, and let l be a positive integer. We introduce a region of blocks:

D0(x, l) =
( ⋃

0≤i≤l

{x+ ied}
)
∪
( ⋃

1≤i≤d−1

{x+ led ± ei}
)
.

We define

R(B(x), l, ε) =
{
∀ y such that C(y) ∩B(x) 6= ∅ and |C(y)| ≥ K/2 :

(θ − ε)Kd ≤ |C(y) ∩B(x+ led)| ≤ (θ + ε)Kd,

and ∀ z ∈ D0(x, l), C(y)∩B(z) 6= ∅
}
,
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by B(x)

Klthe cluster C(y) inter-
sects every represented
boxes

inside this region the
density of C(y) is θ

figure 3: The event R

see figure 3.

Proposition 3.1. There exists l > 0 such that for all ε > 0,

P
(
R(B(x), l, ε)

)
→ 1 as K →∞.

Proof. For A a subset of Rd and r > 0, the notation V∞(A, r) stands for the r–
neighbourhood of A for the norm | · |∞ as described in section 10. Let D be the region

D = V∞(B(x), K/2).

For z in Rd, we let F(δ̂, z) stand for z + F(δ̂). We take l large enough so that the box
B(x+ led) is included in F(δ̂, z) for every z in D. Let η, 0 < η < 1/2, and define

D′(η) = V∞(B(x), ηK).

Let η be small enough such that

∀ z ∈ D′(η), F(δ̂/2, z) ∩B(x+ ed) 6= ∅. (3.2)

Let y be such that C(y)∩B(x) 6= ∅ and |C(y)| ≥ K/2. There exists z in D′(η)∩C(y) such
that |C(z)| ≥ ηK/2. This is evident in the case y ∈ D′(η), and if y /∈ D′(η), then pick Υ a
path from y to B(x) and take for z the first point in Υ ∩ D′(η). By propositions 2.3 and
2.4, there exists γ > 0 such that for all K

P
(
|C(z)| <∞ | |C(z)| ≥ ηK/2) ≤ exp(−γηK), (3.3)



Oriented percolation 99

and for all n ∈ N, for all x ∈ Zd−1 such that |x| ≤ δ̂n,

P (x /∈ Hn ∩Kn, |C(0)| =∞) ≤ exp(−γn). (3.4)

Let E0(x) be the event

E0(x) =
{
∀ z ∈ D′(η) such that |C(z)| ≥ ηK,
∀n ≥ K/2, ∀u ∈ Zd−1 such that |u| ≤ δ̂n, we have

ξz
n(u) = ξZ

d−1,z
n (u)

}
.

By (3.3) and (3.4),

P (E0(x))→ 1 as K →∞. (3.5)

Observe that for every y with y · ed ≥ K(x · ed + 1) and for every z in D′(η), we have
the following implications:

(
Zd−1 × {0}+K(x− ed)

)
→ y ⇒

(
Zd−1 × {0}+ z

)
→ y, (3.6)

and (
Zd−1 × {0}+ z

)
→ y ⇒

(
Zd−1 × {0}+K(x+ ed)

)
→ y, (3.7)

see figure 4.

D′(η)
B(x)

Zd−1 × {0}+ (Kx+Ked)

Zd−1 × {0}+ (Kx−Ked)

figure 4: the set D′(η)

Let ε′ > 0. We partition the top of B(x + led) with hypersquares of side length ε′K.
We denote by S the collection of these hypersquares. By (3.2), we can take ε′ > 0 small
enough such that for each z in D′(η), there is a hypersquare in S included in F(δ̂, z). We
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can adapt proposition 2.3 by inversing the orientation of the graph, to obtain that for
every hypersquare s in S,

P
(
s 6← Zd−1 × {0}+ (Kx−Ked)

)
≤ exp(−cKd−1),

where c > 0 is a constant independent of K. Hence there exists c > 0 such that

P
(
∃s ∈ S such that Zd−1 × {0}+ (Kx−Ked) 6→ s

)
≤ exp(−cKd−1).

By (3.6), if E0(x) occurs, then for all y such that C(y)∩B(x) 6= ∅ and such that |C(y)| ≥
K/2, the cluster C(y) intersects B(x + ed). We repeat the same procedure for the other
boxes.

We turn now to the study of the density inside the box B(x + led). By the Birkhoff
ergodic theorem, we have P almost surely

1

Kd

∣∣∣
{
y ∈ B(led) : Zd−1 × {0} → y

}∣∣∣→ θ as K →∞.

Thus, for all ε1 > 0, for K large enough

P
( 1

Kd

∣∣∣
{
y ∈ B(x+ led) : (Zd−1 × {0}+ (Kx−Ked))→ y

}∣∣∣ ≥ θ − ε
)
≥ 1− ε1, (3.8)

and

P
( 1

Kd

∣∣∣
{
y ∈ B(x+ led) : (Zd−1 × {0}+ (Kx+Ked))→ y

}∣∣∣ ≤ θ + ε
)
≥ 1− ε1. (3.9)

By the definition of E0(x), the density of the clusters considered in the event R is con-
trolled from below by inequality (3.6) and estimate (3.8), and is controlled from above by
inequality (3.7) and estimate (3.9). The limit (3.5) yields to the desired result. �

Let ε > 0, α > 0, and let l, r be positive integers. We introduce two regions of blocks:

D(x, l, ε, r) =
{
y : (y − x) · ed = l, B(y) ∩

(
F(1− ε) +K(x− red)

)
6= ∅
}
, (3.10)

and

F (x, l, α, r) =
{
y : 0 ≤ (y − x) · ed < l,B(y) ∩

(
F(α) +K(x− red)

)
6= ∅
}
. (3.11)

These two regions are represented on figure 5. Let V (B(x), l, ε, α, r) be the event

V (B(x), l, ε, α, r) =
{
for all y such that C(y) ∩B(x) 6= ∅ and |C(y)| ≥ K/2,
we have ∀ z ∈ F (x, l, α, r) ∪D(x, l, ε, r), B(z) ∩ C(y) 6= ∅

}
.
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Kl

Kr

} D(x, l, ε, r)

B(x)

F(α) +K(x− red)






F (x, l, α, r)

figure 5: The sets D and F

Proposition 3.12. ∀ r > 0 ∃α > 0 ∀ ε > 0 ∃l > 0 such that

lim
K→∞

P
(
V (B(x), l, ε, α, r)

)
= 1.

Proof. For simplicity we do the proof for r = 0. The integer r will be used in the
proof of the I–tightness, where we shall place a cone similar to the cone of percolation F

such that the cone contains the box B(x).
We concentrate on the region D, the region F being handled as in proposition 3.1. Let

ε > 0, and let x be in Zd. Let ε′ > 0, and let l1 be the constant given by proposition 3.1.
We define E(x) as

E(x) =
{
∀ y such that |C(y)| ≥ K/2 and C(y) ∩B(x) 6= ∅,

we have
∣∣{z ∈ C(y) ∩B(x+ l1ed) : |C(z)| ≥ K/4}

∣∣ ≥ 4ε′Kd
}
.

We claim that for ε′ small enough,

P (E(x))→ 1 as K →∞. (3.13)

Proof of (3.13). The events
{
Zd−1 × {0} → z

}
and |C(z)| ≥ K/4 are independent

(we could also use the FKG inequality), and of probability larger than θ. We adapt (3.8)
in the following way. For all ε > 0,

P
( 1

Kd

∣∣∣
{
z ∈ B(x+ l1ed) : (Zd−1×{0}+ (Kx−Ked))→ z

and |C(z)| ≥ K/4
}∣∣∣ ≥ θ2 − ε

)
→ 1,

(3.14)
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as K goes to infinity. From the estimates (3.6) and (3.5) we get the limit (3.13). �

Let ε1 > 0. Pick ε′ > 0 and K large enough such that

P
(
E(x)

)
≥ 1− ε1. (3.15)

We now introduce the event that a cluster is near the cone of percolation. Let y = (y, t)
in Zd, and let n be a positive integer. We recall that

ξy
n = {x ∈ Zd−1 : y → (y + x, t+ n)}.

We define Hy
n and Ky

n in the same way as Hn and Kn before proposition 2.2. Let n0 in
N, and let y in Zd. We define

A(y, ε, n0) =
{
∀n ≥ n0, (H

y
n ∩Ky

n) ⊃ (1− ε)nU
}
.

By proposition 2.2, for all ε > 0, there exists n0 such that

P
(
A(0, ε, n0) | |C(0)| =∞

)
≥ 1− ε′.

Let ε > 0, and take n0 such that the above inequality holds. With the help of the
exponential estimates of proposition 2.3 on the law of |C(0)|, we obtain that there exists
K0 in N such that, for all K ≥ K0,

P
(
A(0, ε, n0) | |C(0)| ≥ K/4

)
≥ 1− 2ε′.

Hence, by the ergodic theorem [22], for all ε1 > 0, for K large enough,

P
(∣∣{y ∈ B(x+ l1ed) : |C(y)| ≥ K/4 and Ac(y, ε, n0)

}∣∣ ≥ 3ε′Kd
)
≤ ε1. (3.16)

Take ε′ > 0 such that ε′ < θ/8. Putting together inequalities (3.15) and (3.16), we obtain

P (∀ y such that |C(y)| ≥ K/4 and C(y) ∩B(x) 6= ∅,
∃z ∈ B(x+ l1ed) ∩ C(y) such that A(z, ε, n0) occurs) ≥ 1− 2ε1.

(3.17)

We take l such that lK ≥ 2n0, and such that for every z in B(x+ l1ed),

D(x, l, 2ε, 0) ⊂ F(z, 1− ε). (3.18)

By the ergodic theorem, the definition of Kn, and by the inclusion (3.18), for K large
enough,

P
(
∀ z ∈B(x+ l1ed) such that A(z, ε, n0) occurs,

C(z) intersects every box in D(x, l, 2ε, 0)
)
≥ 1− ε1.

(3.19)

The estimates (3.17) and (3.19) yield that, for K large enough,

P
(
V (B(x), l, 2ε, δ̂, 0)

)
≥ 1− 3ε1. �
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aled latti
e
Let K be an integer. We divide Zd into small boxes called blocks of size K in the

following way. For x ∈ Zd, we define the block indexed by x as

B(x) =]−K/2, K/2]d +Kx.

Note that the blocks partition Rd. Let A be a region in Rd. We define the rescaled region
A as

A = {x ∈ Zd : B(x) ∩A 6= ∅}.

In general, we use underline in the notation to emphasize that we are dealing with rescaled
objects.

We define the sets Ed, Ed,∞ by

Ed = {{x, y} : x, y ∈ Zd, |x− y| = 1},

Ed,∞ = {{x, y} : x, y ∈ Zd, |x− y|∞ = 1}.

The rescaled lattice is isomorphic to Zd and we equip it with the graph structures corre-
sponding to Ld = (Zd,Ed), or Ld,∞ = (Zd,Ed,∞).

Let A be a subset of Zd. We define the inner boundary ∂inA of A as

∂inA = {x ∈ A : ∃y /∈ A |x− y| = 1}.

The residual components of A are the connected components of the graph (Ac,Ed(Ac)).
Let R be a residual component of A. The exterior boundary of R (in A) is

{x ∈ ∂inA : ∃y ∈ R, |x− y| = 1}.

The importance of the graph Ld,∞ lies in the fact that the exterior boundary of R is
Ld,∞–connected.

Let X(x) be a site process on Zd. We say that a box is good if X(x) = 1, and bad
otherwise. For A a subset of Zd, we denote by N2(A) the number of bad boxes in A (we
will use N1 as the number of good boxes later). Let ε > 0. We say that A is ε–bad, if the
proportion of bad blocks in A is larger than ε, that is if

N2(A)/|A| > ε.
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Lemma 4.1. There exists a dimension dependent constant b(d) > 0 such that, for every
bounded open set O, every integers s, t > 0, every δ, ε > 0, if X ≻ Z1−δ, then

P

(
∃ (Ai)i∈I a family of disjoint Ld,∞–connected components,

∑

i∈I

|Ai| ≥ s, for all i ∈ I, Ai ∩O 6= ∅, |Ai| ≥ t, and ∪i∈I Ai is ε–bad

)

≤ 2
∑

j≥s

exp j
(1

t
lnLd

(
V(O, d)

)
+ ln b+ Λ∗(ε, δ)

)

where

Λ∗(ε, δ) = ε ln
ε

δ
+ (1− ε) ln

1− ε
1− δ

is the Fenchel–Legendre transform of the logarithmic moment generating function of a
Bernoulli variable with parameter δ.

Proof. The inequality follows as in [4] from a counting Peierls argument and from the
theorem of Cramer [5]. �

We return to the block events R and V that we introduced in the previous section. The
events R(B(x), l, ε) and V (B(x), l, ε, α, r) depend only on edges in the set ∪|y−x|<2lB(y).
Hence we can apply the domination result of [19] to our block processes:

Lemma 4.2. Let X(x) be the indicator variable of either the event R(B(x), l, ε) or
V (B(x), l, ε, α) with ε, α, and l as in propositions 3.1 or 3.12. For every δ > 0, there
exists K0 such that for all integer K ≥ K0, the process X dominates stochastically the
Bernoulli site–process Z1−δ of intensity 1− δ.

With the help of lemma 4.2 we shall use the estimate in lemma 4.1 for the events R
and V . In [4], the author does not use this domination estimate. Indeed, he considers the
event that all blocks in a certain region A are bad. He can partition the lattice Zd into
a fixed number N of distinct classes such that in each class, the variables are mutually
independent, hence there exists a class whose intersection with the set A has a cardinality
larger than N−1|A|, and all the blocks in this intersection are bad. In our case, we can
not control the proportion of bad blocks in an intersection, thus we make appeal to the
domination result of [19].



Oriented percolation 1055 Surfa
e tension
Let x = (x1, . . . , xd) be a point of Rd and let w be a vector in the unit sphere Sd−1.

The hyperplane containing x with normal vector w is

hyp(x, w) = {y ∈ Rd : (y − x) · w = 0}.

Let A be a subset of Rd of linear dimension d − 1, that is A spans a hyperplane of Rd,
which we denote hypA. We call such a set a hyperset. By norA we denote one of the two
unit vectors orthogonal to hypA. The cylinder of basis A is the set

cylA = {x+ t norA : t ∈ R, x ∈ A}.

Let w be a unit vector and r > 0. We define

cyl−(A,w, r) = {x− tw : t > r, x ∈ A},

cyl+(A,w, r) = {x+ tw : t > r, x ∈ A}.
For r > 0, the r–neighbourhood V(A, r) of a subset A of Rd is

V(A, r) = {x ∈ Rd : inf
y∈A
|x− y| < r}.

We fix a real number ζ > 2d. We define two regions:

R−(A,w, ζ) = cyl−(A,w, ζ) ∩ V(Rd \ cylA, ζ),

R+(A,w, ζ) = cyl+(A,w, ζ) ∩ V(Rd \ cylA, ζ),

as represented on figure 6.

ζ

A

w

ζ

R−

R+

figure 6: the regions R− and R+.
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Definition 5.1. Let A be a closed hyperrectangle, let w be a unit vector and let s be
positive or infinite. We denote by W (∂A,w, s, ζ) the event that there exists a finite set

of closed edges E inside V(hypA, s) such that in the graph (Zd ∩ cylA, ~Ed
alt), there is no

oriented open path from R−(A,w, ζ) to R+(A,w, ζ).

Loosely speaking, the “boundary” of the interface E is “pinned down” at ∂A within a
distance ζ.

Proposition 5.2. Let p ∈]0, 1[. Let A be a hyperrectangle and let w be norA or −norA.
Let Φ(n) be a function from N to R+ ∪ {∞} such that limn→∞Φ(n) =∞. The limit

lim
n→∞

− 1

Hd−1(nA)
lnP

(
W (∂nA,w,Φ(n), ζ)

)

exists in [0,∞] and depends only on w. We denote it by τ(w) and call it the surface tension
in the direction w.

Proof. The proof relies on the same subadditivity argument of [4]. From now on, we
drop ζ in the notations. �

Here is a heuristical comment of the reason we alter the definition of the surface tension
given in [4]. If we use our definition of the surface tension for non–oriented percolation,
then we obtain the same function as in [4]. On the other hand, we can not use the
definition of [4] in our case, because it is too easy to find a set of edges which cuts the
cylinder cylA in two parts in the oriented case. For example, if w in Sd−1 is such that
w · ed <

√
2/2, then there is no oriented path from −∞ to +∞ in cylA. Let W ′ be the

event considered in [4]. The point is that, in [4], the event W ′ implies that for all ε > 0,
with probability tending to 1 as n goes to ∞, the number of vertices in cyl+A joined by
cyl−A is less than εnd. This property is crucial to obtain the upper bound. Now consider
the oriented case and a hyperrectangle A which is normal to e1. As previously noted, we
have P

(
W ′(∂A, e1, 2n, ζ)

)
= 1. But as we may see in figure 7, there exists α > 0 such that

with probability tending to 1 as n goes to ∞, the number of vertices in cyl+A attained
by cyl−A is larger than αnd. Thus, with the definition of [4], we would not have the large
deviation upper bound.

We derive now some basic properties of the surface tension. The surface tension τ
inherits automatically some symmetry properties from the model. For instance, if f is a
linear isometry of Rr such that f(0) = 0, f(Zd) = Zd, and f(ed = ed), then τ ◦ f = τ .
Note that there is less symmetry than in the unoriented model. Since the function τ is
not symmetric, we have to take care on the orientation of the vectors when we state the
following weak triangle inequality:

Proposition 5.3 (weak triangle inequality). Let (ABC) be a non degenerate
triangle in Rd. In the plane spanned by A, B, C, let νA be the exterior normal unit vector
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e1

A

Inside this triangle, there is
a positive density of vertices
attained by cyl−A.

cyl−A cyl+A

figure 7: why we should prevent connections from cyl−A to cyl+A.

C B

A

νA

νCνB

figure 8: the three normal vectors of a triangle.

to [BC], and let νB, νC be the interior normal unit vectors to the sides [AC], [AB], see
figure 8. Then

H1([BC])τ(νA) ≤ H1([AC])τ(νB) +H1([AB])τ(νC). (5.4)

Proof. The proof is the same as in [4], except that we have to take care about the
orientation of the vectors. �

Proposition 5.5. The homogeneous extension τ0 of τ to Rd defined by τ0(0) = 0 and

∀w ∈ Rd \ {0} τ0(w) = |w|2τ(w/|w|2)

is finite everywhere and is a convex continuous function.
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Proof. The convexity of τ0 is a consequence of the weak triangle inequality (5.4): let
(A,B,C) be a non–degenerate triangle, and let (A′, B′, C′) be the image of the triangle
(A,B,C) by the rotation of angle π/2 in the plane spanned by A, B, C (we choose
the orientation of the plane such that the triangle is oriented counter–clockwise). Let
νA be the exterior normal vector to [BC], and let νB and νC be the interior normal

vectors to the sides [AC], [AB]. Then τ0(
−−→
A′B′) = [AB]τ(νC), τ0(

−−→
C′A′) = [AC]τ(νB), and

τ0(
−−→
C′B′) = [BC]τ(νA). It follows that

τ0(
−−→
A′B′) ≤ τ0(

−−→
A′C′) + τ0(

−−→
C′B′),

and this holds for every A′, B′, C′. Then for every λ ∈ [0, 1], for all ~u, ~v,

τ0(λ~u+ (1− λ)~v) ≤ τ0(λ~u) + τ0((1− λ)~v) ≤ λτ0(~u) + (1− λ)τ0(~v).

The finiteness is checked as in [4], and the continuity is then a consequence [21]. �

Let G ⊂ Sd−1 be the set

G = {w ∈ Sd−1 : hyp(0, w) ∩ F 6= {0}},

and denote by Ĝ its corresponding cone:

Ĝ = {tw; t ≥ 0, w ∈ G}.

The two cones F and Ĝ are represented on figure 9. We call Ĝ the cone of positivity,
partly because of the next proposition.

F

Ĝ

0

figure 9: The two cones F and Ĝ
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Proposition 5.6. Let p > pc. The surface tension is equal to 0 outside G.

Proof. By proposition 2.2, for all ε > 0, ε′ > 0, there exists n0 such that, for all
n ≥ n0,

P
(
0→

(
(1 + ε)n(Rd−1 \U), n

))
≤ ε′,

and the nullity outside G follows. �6 The Wul� 
rystal and the positivity of the surfa
e tension
We begin with the definition of the Wulff set.

Definition 6.1. The Wulff crystal of τ is the set

Wτ = {x ∈ Rd : x ·w ≤ τ(w) for all w in Sd−1}.

The Wulff crystal is a closed and convex set containing 0. Since τ is bounded, the Wulff
crystal is also bounded. The nullity of τ outside the region G implies that Wτ is included
in the cone of percolation F. From Wτ we can recover the function τ :

Proposition 6.2. The surface tension τ is the support function of its Wulff crystal,
that is,

∀ ν ∈ Sd−1 τ(ν) = sup{x · ν : x ∈ Wτ}.

The crystal Wτ admits a unit outwards normal vector νWτ (x) at Hd−1 almost all points
x ∈ ∂Wτ and

τ(νWτ (x)) = x · νWτ (x) for Hd−1 almost all x ∈ ∂Wτ .

Proof. The proof in [14] relies on the strict positivity of the function τ and do not
make any assumption of convexity. Besides, the proof in [4] only relies on the convexity of
τ0. �

We want to show that the Wulff crystal has a non–empty interior. This will follow from
the positivity of the surface tension inside a sufficiently large angular sector:

Proposition 6.3. There exist ε > 0 and η > 0 such that, for each w in Sd−1, if
w · ed > −η, then τ(w) ≥ ε.

Proof. The first step is to prove that

τ(ed) > 0. (6.4)
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Proof of (6.4). Let A be the hyperrectangle [−n, n]d−1 × {0}. Let ε > 0, and let A′

be the hyperrectangle [−n/2, n/2]d−1 × {−n/4}. Consider the event

W (∂A, ed, n/8).

Because of the graph structure of ~Ld
alt, each oriented path joining A′ to A + (n/8)ed lies

inside cyl(A). Hence, the event W (∂A, ed, n/8) implies that the set A′ is not connected to
the infinity. By proposition 2.3, we conclude that

P
(
W (∂A, ed, n/8)

)
≤ exp(−γnd−1),

with γ > 0 independent of n. �

Let us return to the proof of proposition 6.3. Suppose that there exists w in Sd−1 such
that w ·ed > 0 and τ(w) = 0. Let ŵ be the image of w by the symmetry of axis ed. Because
of the symmetry properties of τ , we have τ(ŵ) = 0. By the convexity of τ0, it follows that
τ(ed) = 0, which contradicts (6.4).

Now suppose that there exists w in Sd−1 such that w · ed = 0 and τ(w) = 0. In that
case the symmetries of the graph and the convexity of τ0 imply that for all w′ in Sd−1

such that w · e = 0, we have τ(w′) = 0. We now prove that

τ(e1) > 0. (6.5)

Proof of inequality (6.5). Let A be the hyperrectangle {n} × [0, n]d−1. Let ε > 0,
and let A′ be the hyperrectangle [εn, (1 − ε)n]d−1 × {0}. We define the regions K±i ,
1 ≤ i ≤ d− 1, by

K+
i =[0, n]i−1 × {n} × [0, n]d−i

K−i =[0, n]i−1 × {0} × [0, n]d−i,

and we let

K =
⋃

1≤i≤d−1

K±i ,

see figure 10. Note that K+
1 = A.

Let K be an integer. We work with the lattice rescaled by K. We denote by C(A′) the
set of blocks intersecting C(A′) the cluster of A′. Consider the event R′(B(x, l)) defined as
the event R(B(x, l, ε)) except that we do not require any density property. We pick l > 0
such that the limit in proposition 3.1 holds. We call the blocks good or bad accordingly
to the event R′.
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A

A′

K−1n

Rd−1 × {n} n

figure 10: the set K surrounding A′

We introduce notations in order to count the good and bad blocks of the boundary. A
block B(x) is at height i if x · ed = i.

ai = number of blocks at height i that are in C(A′),

bi = number of good blocks at height i that are in ∂inC(A′),

b′i = number of good blocks at height i that are in ∂inC(A′),

and that have a neighbour at height i that is not in C(A′),

ci = number of bad blocks at height i that are in ∂inC(A′).

For i ≥ 0, let Yi be the family of blocks in C(A′) at height i. The process (Yi)i≥0 can be
view as a contact process. Boxes in Yi that are not in the boundary of C(A′) or that are
good are still in Yi+1. Hence

ai+1 ≥ ai − ci.

Moreover, a good box in ∂inC(A′) and counted in b′i gives “birth” to at least one box in
Yi+l because of the definition of the event R′(B(x), l). We have to care about the fact that
several boxes counted in b′i can give birth to the same box in Yi+l. Actually, the maximal
number of boxes giving birth to the same box is bounded by 2(d− 1). Therefore, for all i
in [0, n/K],

ai+l ≥ ai +
b′i

2(d− 1)
− ci − ci+1 − . . .− ci+l−1,

see figure 11.

Furthermore, a0 ≥
(
(1 − 2ε)n/K)

)d−1
, and ai ≤ (n/K)d−1 for all i in [0, n/K]. We

let B′k =
∑n/(Kl)

i=0 b′k+il, B
′ =

∑n/K
i=0 b′i, and we let C =

∑n/K
i=0 ci. Summing the previous
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at the bottom all
boxes are good

these boxes are bad

figure 11: examples of block configurations.

inequality over i with step l, we obtain

2C ≥ 1

2(d− 1)
B′k − (2εn/K)d−1,

for all k. But there exist k ∈ {0, . . . , l − 1}, such that B′k ≥ 1
lB
′. Hence

2C ≥ 1

2(d− 1)l
B′ − (2εn/K)d−1.

Now let b′′i = bi− b′i. For each box counted in b′′i+1, there is a box counted in b′i, and a box
counted in b′i can give no more than 2(d− 1) boxes counted in b′′i+1, thus

b′′i+1 ≤ 2(d− 1)b′i, (6.6)

see figure 12.

counted in b′icounted in b′′i

figure 12: different boundary boxes
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Denote by B the number

B =

n/K∑

i=0

bi.

From (6.6), it follows that B′ ≥ 1
4(d−1)

B, and we get that

2C ≥ 1

8(d− 1)2l
B − 2εn/K)d−1.

Hence, if A′ is not joined to K, there exists a Ld,∞ connected component of cardinality
larger than (n/(2K))d−1 intersecting [0, n]d−1 × {0}, which has a proportion of bad boxes
larger than 1/(20(d− 1)2l) for ε small enough. By a counting Peierls argument, there
exists C > 0 such that for K large enough,

P (A′ 6→ K) ≤ exp(−cnd−1).

On the other hand, because of the symmetry of the graph, P (A′ → K±i ) does not depend
on i nor on the sign. By the FKG inequality (2.1),

P (A′ 6→ K) = P
( ⋂

1≤i≤d−1

{A′ 6→ K+
i } ∩

⋂

1≤i≤d−1

{A′ 6→ K−i }
)

≥ P
(
A′ 6→ A

)2(d−1)
.

Thus

P
(
A→ A′

)
≤ exp

(
− cnd−1/(2(d− 1))

)
. �

With the help of the continuity of τ0, we get the desired positivity result of proposi-
tion 6.3. �

Corollary 6.7. The Wulff crystal Wτ has a non empty interior and a strictly positive
Lebesgue measure.

Proof. This is a straightforward consequence of the continuity of τ0, of the positivity
property stated in lemma 6.3, and of the definition of the Wulff crystal. �
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We need more flexibility on the localization of the set E which separates the cylinder of

A in two parts in definition 5.1. Let A be a hyperset in Rd and let r be positive. We denote
by S(A,w, r) the event that there exists a finite set of closed edges in cylA ∩ V(hypA, r)

such that there is no oriented open path in the graph (Zd ∩ cylA, ~Ed
alt) from cyl−(A,w, r)

to cyl+(A,w, r). From now on, we work with a fixed value of ζ larger than 2d. We now
recall some result on separating sets from [4]

Lemma 7.1. Let O be an open hyperset in Rd, let w be one of the two unit vectors orthog-
onal to hypO, and let Φ(n) be a function from N to R+∪{∞} such that limn→∞ Φ(n) =∞.
We have

lim inf
n→∞

1

nd−1
lnP

(
S(nO,w,Φ(n))

)
≥ −Hd−1(O)τ(w).

For r an integer, we let αr be the volume of the r–dimensional unit ball.

Lemma 7.2. There exists a positive constant c = c(d, ζ) such that, for each x in Rd, all
positive ρ, η with η < ρ, every w in Sd−1,

lim sup
n→∞

1

nd−1
lnP

(
S(n disc(x, ρ, w), w, nη))

)
≤ −αd−1ρ

d−1τ(w) + cηρd−2.

Lemma 7.3. Let F be a d− 1 dimensional set such that Hd−2(∂F ) <∞, and let w be
norF or −norF . We define wall(F,w, n) as the event

wall(F,w, n) = S(nF,w, lnn)∩
{ all the edges in V(cyl ∂nF, 2d) ∩ V(hypnF, lnn) are closed }.

Then

lim inf
n→∞

1

nd−1
lnP

(
wall(F,w, n)

)
≥ −Hd−1(F )τ(w).8 Interfa
e estimate

Let x be a point of Rd. The closed ball of center x and Euclidian radius r > 0 is denoted
by B(x, r). We denote by αd the volume of the d–dimensional unit ball. For w in the unit
sphere Sd−1, we define the half balls

B−(x, r, w) = B(x, r) ∩ {y ∈ Rd : (y − x) · w ≤ 0},

B+(x, r, w) = B(x, r) ∩ {y ∈ Rd : (y − x) · w ≥ 0}.
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The open B(nx, nr)–clusters are the open clusters in the configuration restricted to the
ball B(nx, nr). Let Sep(n, x, r, w, δ) be the following event: there exists a collection C of
open B(nx, nr)–clusters such that

∣∣∣
⋃

C∈C
C ∩B−(nx, nr, w)

∣∣∣ ≥ (1− δ)Ld
(
B−(nx, nr, w)

)
,

∣∣∣
⋃

C∈C
C ∩B+(nx, nr, w)

∣∣∣ ≤ δLd
(
B+(nx, nr, w)

)
.

Lemma 8.1. Let p ∈]0, 1[ and let α > 0 be a parameter. There exists c = c(p, d, ζ, α)
such that for every x ∈ Rd, every r ∈]0, 1[, every unit vector w ∈ Sd−1 with τ(ω) ≥ α, and
every δ ∈]0, 1[:

lim sup
n→∞

1

nd−1
lnP

(
Sep(n, x, r, w, δ)

)
≤ −αd−1r

d−1τ(w)(1− cδ1/2).

Proof. We adapt the proof of D. Barbato [1] to oriented percolation. Suppose that
the event Sep(n, x, r, w, δ) occurs, and let C be a collection of open B(nx, nr)–clusters
realizing it. We let E− be the set of the open edges in B−(nx, nr, w) which do not belong
to a cluster C ∈ C. Symmetrically, let E+ be the set of the open edges in B+(nx, nr, w)
which belong to a cluster C ∈ C. For h ∈ R, let π(h) be the hyperplane

π(h) = {y ∈ Rd : (y − x) · w = h}.

Let ρ = r
√

1− δ and η =
√
δr/3. The projection on the line x+Rw of the segment joining

the endpoints of an edge has length at most 1, hence

∫ ηn

0

∣∣e ∈ E+ : e ∩ π(h) 6= ∅
∣∣dh ≤ |E+|

and therefore there exists h ∈ [0, ηn] such that π(h) ∩ Zd = ∅ and

∣∣{e ∈ E+ : e ∩ π(h) 6= ∅}
∣∣ ≤ 2dδ

η
nd−1rdαd.

Let h∗ be the infimum in [0, ηn] of the real numbers h satisfying this inequality. We
can take ε > 0 small enough so that π(h) ∩ Zd ∩ B(n) = ∅ for h ∈]h∗, h∗ + ε[. The set
{e ∈ E+ : e ∩ π(h) 6= ∅} is then constant in the interval h ∈]h∗, h∗ + ε[. We fix a value
h+ in this interval. Then the above inequality holds for h+, and every edge of E+ which



116 Chapitre 5

intersects π(h+) has an endpoint in each of the two half spaces delimited by π(h+). Let
V+ be the set

V+ =
{
y ∈ Zd : (y − x) · w > h+,

y is the endpoint of an edge of E+ intersecting π(h+)
}
.

Let F+ be the set

F+ = {e ∈ ~Ed
alt : one of the endpoint of e is in V+, e does not intersect π(h+).

We define in the same way the sets V− and F−. For y ∈ Rd, w in the unit sphere Sd−1,
and r1, r2 in R ∪ {−∞,+∞}, we define

slab(y, w, r1, r2) = {z ∈ Rd : r1 ≤ (z − y) · w ≤ r2}.
We define the following subsets of B(nx, nr):

Z =cyl(n disc(x, ρ, w)),

D =Z ∩ slab(nx, w,−nη − ζ, nη + ζ),

D+ =Z ∩ slab(nx, w, 1, nη + ζ),

D− =Z ∩ slab(nx, w,−nη − ζ, 0),

∂+D =Z ∩ slab(nx+ nηw, , w,−ζ, ζ),
∂−D =Z ∩ slab(nx− nηw, , w,−ζ, ζ),

∂−D+ =Z ∩ slab(nx, , w, 1, 1 + ζ),

∂+D− =Z ∩ slab(nx, , w,−ζ, 0).

Let γ be an oriented open path in D joining ∂−D to ∂+D. Consider the last edge e of γ
intersecting π(h+). There are two possibilities: either e is an edge of a cluster C ∈ C or
not.
• In the first case the edge e is in E+. After the edge e, the path γ has to go through an

edge of F+.
• In the second case, the fact that there is no cluster C ∈ C containing e implies that

all the edges of γ before e are not in a cluster C ∈ C. Let f be the first edge of γ
intersecting π(h−). We know that f ∈ E−. Before f , the path γ has to go through an
edge of F−.
In conclusion, all open path in D joining ∂−D to ∂+D has to go through an edge of

F− ∪ F+. We perform the same surgery as in [4], and we obtain

lim sup
n→∞

1

nd−1
lnP

(
Sep(n, x, r, w, δ)

)
≤

8d2 δ

η
rdαd ln

2

1− p − αd−1ρ
d−1τ(w) + cηρd−2.
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Since we impose τ(w) > α with α > 0, there exists a constant c′′ = c′′(p, d, ζ, α) such that

lim sup
n→∞

1

nd−1
lnP

(
Sep(n, x, r, w, δ)

)
≤ −αd−1r

d−1τ(w)(1− c′′δ1/2),

for every x ∈ Rd, r ∈]0, 1[, δ ∈]0, 1[ and w in Sd−1 such that τ(w) > α. �9 An alternative separating estimate
In the proof of the local upper bound, we shall not deal directly with the event “Sep”.

We denote by ∂inB(nx, nr) the set

∂inB(nx, nr) =
{
z ∈ B(nx, nr) ∩ Zd : ∃y /∈ B(nx, nr) |z − y| = 1

}
.

Let Sepθ(n, x, r, w, δ) be the following event: there exists a collection C of open B(nx, nr)–
clusters coming from ∂inB(nx, nr), and such that

∣∣∣
⋃

C∈C
C ∩B−(nx, nr, w)

∣∣∣ ≥ (θ − δ)Ld
(
B−(nx, nr, w)

)
,

∣∣∣
⋃

C∈C
C ∩B+(nx, nr, w)

∣∣∣ ≤ δLd
(
B+(nx, nr, w)

)
.

Lemma 9.1. Let p ∈]0, 1[. For every ε > 0, there exists δ0 ∈]0, 1[ such that the following
holds. For every x ∈ Rd, every r ∈]0, 1[, every unit vector w ∈ Sd−1, and every δ ∈]0, δ0[,

lim
n→∞

1

nd−1
lnP

(
Sepθ(n, x, r, w, δ) \ Sep(n, x, r, w, δ+ ε)

)
= −∞.

Proof. The aim is to find a set of y’s in B−(nx, nr, w), such that D ∪ C satisfies the
event Sep(n, x, r, w, δ), where D is the collection of the clusters of the y’s. To do this,
we partition B−(nx, nr, w) with boxes of size K. For each box we consider box a little
smaller and included in it. A box B is good if all vertices in the smaller box joined by the
boundary of ∂B are in C. Then the set of the y’s is the union of the smaller boxes that
are included in a good box. In that way, the intersection of D∪C with B+(nx, nr, w) does
not change. In the following we give the details of this argument.

The proof is quite long, and has much to do with the exponential estimates of volume
order of [20]. We partition the half–ball B−(nx, nr, w) with large boxes of fixed size. The
number of these boxes is of order nd, and we show that if a typical event arises in most of
the boxes partitioning B−(nx, nr, w), then the new event Sepθ(n, x, r, w, δ) is included in
Sep(n, x, r, w, δ+ ε

)
for a certain ε > 0 and for δ small enough.
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Let ε > 0, and let M > 0 be such that M−1
M+3 > 1− ε. Take δ > 0. Let α > 0 and β > 0.

Pick δ̂ > 0 the constant appearing in lemma 2.2, and fix an integer K > 0. For a box B,
we define

∂in
− B = {y = (y, t) ∈ ∂inB : (y, t− 1) /∈ B}.

We denote by πB the hyperplane spanned by ∂in
− B. We say that a box B of side length

K is good if the following five conditions hold:
(i) |y ∈ B : ∂inB → y| ≤ (θ + δ)Kd.
(ii) there is no open path γ in B such that |γ| > βK and πB 9 γ.
(iii) for all x in ∂in

− B such that |C(x)| ≥ βK, ξx(y) = ξπB(y) for all y = (y, t) such that
βK ≤ t < K and |y| ≤ δ̂t.

(iv) for every z ∈ ∂in
− B such that |C(z)| ≥ K, there exists ẑ ∈ C(z) such that

πB · ed + β ≤ ẑ · ed ≤ πB · ed + 2β,

and ∣∣C(ẑ) ∩ F(δ̂, βK, ẑ) ∩B
∣∣ ≥ αβdKd.

(v) for all hypersquare A of side length ≥ βK and included in ∂in
− B, τττA ≥ K.

By propositions 2.3 and 2.4 and by the Birkhoff’s ergodic theorem [22], there exists α > 0,
such that for β small enough

P (B is good)→ 1 as K →∞. (9.2)

Let η ∈]0, 1/4[. The interior of a box B of side length K is defined by

Bint(η) = B \ V(∂B, ηK),

as represented in figure 13.

πB

∂in
− B

B

Bint(η)

ηK

K

figure 13: details of a box B
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Lemma 9.3. For all η > 0, there exists β > 0 and δ0 > 0, such that the following holds.
Let δ ∈]0, δ0[. If C is a set of clusters in B coming from πB such that

|C| ∈ [θ − (M + 2)δ, θ + δ]Kd,

if B is a good box, and if y ∈ Bint(η) is such that πB → y, then y ∈ C.
Proof. Figure 14 shows what happens in a good box. Let η > 0. Take α > 0 and

β > 0 small enough such that the limit (9.2) holds. Furthermore, let β be small enough,
such that

[−β/2, β/2]d−1 ⊂ ηδ̂/2U. (9.4)

Moreover, assume that β is small enough, so that for all y ∈ Zd−1 with |y| < 4βK, we
have

(
F(δ̂/2) ∩ (Rd−1 × {t : t ≥ ηK})

)
⊂
(
F(δ̂, (y, 0))∩ (Rd−1 × {t : t ≥ ηK})

)
. (9.5)

Now let y ∈ Bint(η) such that πB → y. By condition (v) and (9.4), there exists z in ∂in
− B

such that y ∈ F(δ̂/2, z) and |C(z)| ≥ K. Because of condition (iii), since πB → y, we have
y ∈ C(z). We pick ẑ ∈ C(z), accordingly to condition (iv).

Suppose there exists ŷ in ∂in
− B(x) such that C(ŷ)∩F(δ̂, βK, ẑ) 6= ∅. Then |C(ŷ)| ≥ βK,

and |z − ŷ| ≤ 4βK. By condition (9.5) on the choice of β, y ∈ F(δ̂, ŷ). Since πB → y and
by the condition (iii), this implies that ŷ → y. Hence if y /∈ C, then F(δ̂, ẑ) ∩ C = ∅, and
the density of {y′ ∈ B(x) : ∂inB → y′} inside B is larger than θ − (M + 2)δ + αβd. On
the other hand, by condition (i), this density is less than θ + δ. By taking

δ0 =
1

2

αβd

M + 3
,

we conclude that y ∈ C. �

ηK

b

z

b y

F(δ̂, βK, ẑ)

F(δ̂, ŷ)

ẑ

b

ŷ

figure 14: in a good box
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Let η > 0. Take δ > 0 and β > 0 as in lemma 9.3, such that δ < θ/M and β < η.
Let K be large enough so that the process of good boxes stochastically dominates the
Bernoulli–site process Z1−δ/2. For n large enough, there exists a subset E of Zd such that

Ld
(
B−(nx, nr, w) \

( ⋃

x∈E

Bn(x)
))
≤ δ ε

2
|E|/nd,

and

d
( ⋃

x∈E

Bn(x), ∂inB−(nx, nr, w)
)
≥ 2K/n, (9.6)

where d(·, ·) is the distance associated to the norm | · |.
By the theorem of Cramer [5], there exists a constant c > 0 such that for n large enough,

P (the proportion of bad boxes in E is larger than δ) ≤ exp(−cnd).

Denote by E the event that the proportion of bad boxes in E is less than δ. Suppose that
E ∩ Sepθ(n, x, r, w, δ) occurs, and let E1 be

E1 = {x ∈ E : |C ∩Bn(x)| ∈ [θ − (M + 2)δ, θ + δ], Bn(x) is good}.

The family C satisfies |C| ≥ (θ − δ)Kd|E|. On the other hand, we have the bound

|C|/Kd ≤ |E1|(θ + δ) + δ|E|+ (|E| − |E1|)(θ − (M + 2)δ) + δε/2|E|.

Hence
(M − 1)|E| ≤ (M + 3)|E1|.

By the choice of M , we have |E1| ≥ (1− ε)|E|. Let

D =
⋃

x∈E1

{C(y) : y ∈ Bint(x, 2η)}.

Let x ∈ E1. Because of the structure of the graph ~Ld
alt and because of condition (9.6), every

path coming from ∂inB−(nx, nr, w) and intersecting Bn(x) has to intersect the hyperplane
spanned by ∂in

− Bn(x). Hence, if γ is a path from y ∈ Bint(x, 2η) with x ∈ E1, and which
goes outside B(x), then the part of γ outside B(x) is included in a cluster of the family C
because of the definition of a good block and of lemma 9.3, as represented on figure 15.

Thus ∣∣∣
⋃

C∈C∪D
C ∩B+(nx, nr, w)

∣∣∣ ≤ δLd
(
B−(nx, nr, w)

)
.
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ηK2ηK

γ

πB

by

figure 15: the path γ is joined by C

Now let y in B−(nx, nr, w) \ (C ∪ D). This implies that

y ∈
( ⋃

x∈E1

V(∂Bn(x), 2ηK)

)
∪
( ⋃

x∈E
X(x)=0

Bn(x)

)

∪
(
B−(nx, nr, w) \ (∪x∈EBn(x))

)
.

The volume of that set is bounded by

(
4dη + δ + ε/2

)
Ld(B−(nx, nr, w)),

and so we have
∣∣∣
⋃

C∈C∪D
C ∩B−(nx, nr, w)

∣∣∣ ≥ (1− (δ + 4dη + ε/2))Ld
(
B−(nx, nr, w)

)
.

Hence C ∪ D is a set which satisfies the event Sep(n, x, r, w, δ+ ε/2 + 4dη). �10 Geometri
 tools
We introduce here the geometric background we need to deal with the Wulff theorem.
For A and B two subsets of Rd, the distance between A and B is

d(A,B) = inf{|x− y| : x ∈ A, y ∈ B}.

For E a subset of Rd, we define its diameter as

diamE = sup{|x− y|2 : x, y ∈ E},



122 Chapitre 5

where | · |2 is the usual Euclidian norm. We shall use also the ∞–diameter defined by

diam∞E = sup{|x− y|∞ : x, y ∈ E},

where | · |∞ is the usual supremum norm. Let r > 0. The ∞–neighbourhood is defined by

V∞(E, r) =
{
x ∈ Rd : inf{|x− y|∞ : y ∈ E} ≤ r

}
.

Let k be an integer. We denote by αk the volume of the unit ball of Rk. For every A ⊂ Rd,
the k–dimensional Hausdorff measure Hk(A) of A is defined by [13]

Hk(A) = sup
δ>0

inf
{αk

2k

∑

i∈I

(diamEi)
k : A ⊂

⋃

i∈I

Ei, sup
i∈I

diamEi ≤ δ
}
.

We would like to work with a subset of Borel subsets of Rd that has good compactness
properties. As quoted in [4], it is natural to work with Caccioppoli sets which we introduce
now. See for example [12,24]. For O an open subset of Rd, let C∞c

(
O,B(0, 1)

)
be the set

of C∞ vector functions from O to B(0, 1) having a compact support included in O. We
let div be the usual divergence operator, defined for a C1 vector function f with scalar
components (f1, . . . , fd) as

div f =
∂f1
∂x1

+ · · ·+ ∂fd

∂xd
.

Definition 10.1. The perimeter of a Borel set E of Rd in an open set O is defined as

P(E,O) = sup
{∫

E

div f(x) dLd(x) : f ∈ C∞c
(
O,B(0, 1)

)}
.

The set E is a Caccioppoli set if P(E,O) is finite for every bounded open set O of Rd.

Let E be a Caccioppoli set, χE be its characteristic function, and ∇χE be the distribu-
tional derivative of χE . The reduced boundary ∂∗E consists of the points x such that
• ||∇χE ||(B(x, r)) > 0 for every r > 0
• if νr(x) = −∇χE(B(x, r))/||∇χE||(B(x, r)) then, as r goes to 0, νr(x) converges toward

a limit νE(x) such that |νE(x)|2 = 1. The vector νE(x) is called the exterior normal
vector of E at x.

For every Borel set A of Rd,

||∇χE ||(A) = Hd−1(A ∩ ∂∗E),

and for every open set O of Rd,

||∇χE ||(O) = P(E,O).
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Definition 10.2. We denote by B(Rd) the set of Borel subsets of Rd, and we denote
by △ the symmetric difference: for A and B in B(Rd),

A△B = (A ∪B) \ (A ∩B).

We say that a sequence (En)n∈N converges in L1 towards E ∈ B(Rd) if Ld(En△E) con-
verges to 0 as n goes to ∞.

The next geometric lemma will be used to control the perimeter of a set by the surface
of its projection along the last coordinate vector.

Lemma 10.3. Let O be an open ball in Rd, and let A be a Caccioppoli set. Consider the
image O′ of O by the orthogonal projection on Rd−1 × {0}. We have

Hd−1(O′) ≥
∣∣∣
∫

∂∗A∩O

ed · νA(x)dHd−1(x)
∣∣∣.

Proof. We apply the Gauss–Green theorem to the set A ∩O and we get
∫

∂∗(A∩O)

ed · νA∩O(x)dHd−1(x) = 0.

The reduced boundary ∂∗(A ∩ O) is composed of ∂∗A ∩ O plus a set included in ∂O.
Consider ∣∣∣

∫

E

ed · νO(x)dHd−1(x)
∣∣∣

for E a borelian subset of ∂O. This integral is maximal in absolute value when E is the
lower half part of ∂O, that is to say for

∂−O = {x ∈ ∂O : νO(x) · ed ≤ 0}.

Hence we have
∣∣∣
∫

∂−O

ed · νO(x)dHd−1(x)
∣∣∣ ≥

∣∣∣
∫

∂∗A∩O

ed · νA(x)dHd−1(x)
∣∣∣.

Pick r > 0 a real number such that O ∩Rd−1×−r′ is empty for r′ ≥ r. We apply now the
Gauss–Green theorem to the set of points that are between ∂−O and O′× r to obtain that

∣∣∣
∫

∂−O

ed · νO(x)dHd−1(x)
∣∣∣ = Hd−1(O′). �
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e energy
We recall that τ is the surface tension and is a function from Sd−1 to R+, and that Wτ

is the associated Wulff crystal (see definition 6.1). Now we define the surface energy of a
Borel set.

Definition 11.1. The surface energy I(A,O) of a Borel set A of Rd in an open set O
is defined as

I(A,O) = sup
{∫

A

div f(x) dLd(x) : f ∈ C1
c (O,Wτ )

}
.

For a fixed function f in C1
c (O,Wτ ), the map

A ∈ B(Rd)→
∫

A

div f(x) dLd(x)

is continuous for the L1 convergence of sets. Thus I(·, O), being the supremum of all these
maps, is lower semicontinuous. Furthermore, let τmax be the supremum of τ over Sd−1.
Since C1

c (O,Wτ ) ⊂ B(0, τmax), we have

I(A,O) ≤ τmaxP(A,O).

The next proposition asserts that the surface energy is the integral of the surface tension
over the reduced boundary.

Proposition 11.2. The surface energy I(A,O) of a Borel set A of Rd of finite perime-
ter in an open set O is equal to

I(A,O) =

∫

∂∗A∩O

τ(νA(x))dHd−1(x).

This formula for the surface energy allows us to define the function I(·, E) for E a Borel
set not necessary open.

In order to deduce the upper bound from the I–tightness and from the local upper
bound, the function I has to be a good rate function.

Proposition 11.3. For every open ball O of Rd, the functional I(·, O) is a good rate
function on B(O) endowed with the topology of L1 convergence, i.e., for every λ in R+,
the level set {

E ∈ B(O) : I(E,O) ≤ λ
}

is compact.

Proof. For every bounded open O and every λ > 0, the collection of sets {E ∈ B(O) :
P(E) ≤ λ} is compact for the topology L1. For a proof see for example theorem 1.19 in
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[15]. So we just have to prove that there exists a constant c′(O) depending on the open
ball O and another constant c > 0, such that

I(A,O) ≥ −c′(O) + cP(A,O). (11.4)

Suppose that I(A,O) is finite. By proposition 6.3, we can pick η > 0 and α > 0 such that:
if w is a unit vector of Sd−1 with τ(w) ≤ α, then w · ed ≤ −η. Define

∂∗αA =
{
x ∈ ∂∗A, τ(νA(x)) > α

}
.

Let H be the hyperplane {x : x · ed = 0}. Define O′ to be the orthogonal projection on H
of O. We have

Hd−1(O′) ≥
∣∣∣
∫

∂∗A∩O

ed · νA(x)dHd−1(x)
∣∣∣

≥
∣∣∣
∫

(∂∗A\∂∗

αA)∩O

ed · νA(x)dHd−1(x)
∣∣∣−
∣∣∣
∫

∂∗

αA∩O

ed · νA(x)dHd−1(x)
∣∣∣

≥ Hd−1
(
(∂∗A \ ∂∗αA) ∩O

)
× η −

∫

∂∗

αA∩O

τ(νA(x))dHd−1(x)

≥ Hd−1
(
(∂∗A \ ∂∗αA) ∩O

)
× η − I(A,O).

The first inequality holds because O is a ball and by lemma 10.3. Furthermore

Hd−1(∂∗αA ∩O) ≤ 1

α
I(A, ∂∗αA ∩O).

Thus
I(A,O) + ηHd−1(∂∗αAcapO) ≥ Hd−1

(
∂∗A ∩O)× η −Hd−1(O′)

which implies

I(A,O) +
η

α
I(A, ∂∗αA ∩O) ≥ ηHd−1(∂∗αA ∩O)−Hd−1(O′),

and we can conclude

I(A,O) ≥ − α

η + α
Hd−1(O′) +

ηα

η + α
Hd−1(∂∗A ∩O). �

Here is another consequence of inequality (11.4).

Corollary 11.5. If a set A has a finite energy in an open ball O, then it has a finite
perimeter in O. Hence the sets that have a finite energy in every open bounded subset of
Rd are exactly the Caccioppoli sets.
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In order to prove the large deviation principle, we use two kinds of approximation of

Caccioppoli sets. The first one is used in the proof of the local upper bound (for a proof
see [4]).

Lemma 12.1. Let A be a Caccioppoli set and let O be an open bounded subset of Rd.
For every ε > 0, δ > 0, and η ≥ 0, there exists a finite collection of disjoint balls B(xi, ri),
i ∈ I, such that: for every i in I, xi belongs to ∂∗A, ri belongs to ]0, 1[, B(xi, ri) is included
in O,

Ld
(
(A ∩B(xi, ri))△B−(xi, ri, νA(xi))

)
≤ δαdr

d
i ,

∣∣∣I(A, ∂∗ηA ∩O)−
∑

i∈I

αd−1r
d−1
i τ(νA(xi))

∣∣∣ ≤ ε,

and
∀ i ∈ I αd−1r

d−1
i τ(νA(xi)) ≤ ε.

The second result says that a Caccioppoli set can be approximated by a polyhedral set
[4]. A Borel subset of Rd is polyhedral if its boundary is included in a finite union of
hyperplanes of Rd.

Lemma 12.2. Let A be a Caccioppoli set and let O be an open bounded subset of Rd.
There exists a sequence (An) of polyhedral sets of Rd converging to A for the topology L1

over B(O), such that I(An, O) converges to I(A,O) as n goes to ∞.13 Lo
al upper bound
Lemma 13.1. Let ν ∈ M(Rd) be such that I(ν) < ∞. for every ε > 0, there exists a

weak neighbourhood U of ν in M(Rd) such that

lim sup
n→∞

1

nd−1
lnP

(
Cn ∈ U) ≤ −(1− ε)I(ν).

Proof. By definition of I, since I(ν) < ∞, there exists a Borel subset A of Rd such
that ν is the measure with density θ1A with respect to the Lebesgue measure and I(ν) =
I(A). If I(A) = 0 there is nothing to prove. Suppose that I(A) > 0. For ε > 0, set
ε′ = ε(1 + 1/I(A))−1.

Now we skip out parts of ∂∗A which contribute to the energy only a little. Let η be
positive and let ∂∗ηA be the set

∂∗ηA = {x ∈ ∂∗A : τ(νA(x)) > η}.
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There exists η > 0 such that

sup
{∫

∂∗A\∂∗

ηA

f(x) · νA(x)dHd−1(x) : f ∈ C1
c (Rd,Wτ )

}
< ε′/4.

Let c be the constant appearing in the interface lemma for the parameter η and let ε1 > 0
such that c

√
ε1 < ε′/2. Let δ0 ∈]0, 1[ be the constant given in lemma 9.1 with parameter

ε1, and such that c
√
δ0 + ε1 < ε′.

Let O be an open bounded ball of Rd, such that

I(A, ∂∗ηA ∩O) ≥ I(A, ∂∗ηA)− ε′/4.

By lemma 12.1, there exists a finite collection B(xi, ri), i ∈ I of disjoint balls such that:
for every i in I, xi belongs to ∂∗ηA, ri belongs to ]0, 1[,

Ld
(
(A ∩B(xi, ri))△B−(xi, ri, νA(xi))

)
≤ δ0/3αdr

d
i ,

∣∣∣I(A, ∂∗ηA ∩O)−
∑

i∈I

αd−1r
d−1
i τ(νA(xi))

∣∣∣ ≤ ε′/4,

and
∀ i ∈ I αd−1r

d−1
i τ(νA(xi)) ≤ ε′/4.

Let U be the weak neighbourhood of ν in M(Rd) defined by

U =
{
ρ ∈M(Rd) : ∀ i ∈ I ρ

( ◦
B −(xi, ri,νA(xi))

)
≥ (θ − δ0)αdr

d
i /2,

ρ
(
B+(xi, ri, νA(xi))

)
≤ δ0αdr

d
i /2
}
,

where as usual
◦
B − and B+ denote the interior and the closure of the half balls. Suppose

that Cn ∈ U . Define
I0 =

{
i ∈ I : 0 /∈ B(nxi, nri)

}
.

The set I \ I0 is either ∅ or a singleton. For i ∈ I0, the intersection of C(0) with the ball
B(nxi, nri) splits into a collection C(i) of B(nxi, nri)–clusters which all come from the
boundary ∂inB(nxi, nri). We conclude that

P (Cn ∈ U) ≤ P
( ⋂

i∈I0

Sepθ(n, xi, ri, νA(xi), δ0)
)
.

The events on the right–hand side are independent since the balls are compact and
disjoint. We apply the interface lemma 9.1
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lim sup
n→∞

1

nd−1
lnP (Cn ∈ U) ≤ −

∑

i∈I0

αd−1r
d−1
i τ(νA(xi))(1− c

√
δ0 + ε1)

≤ −I(A)(1− ε′) + ε′/4 + ε′/4 + ε′/4 + ε′/4

= I(ν)(1− ε),

and we are done. �14 Coarse grained image
In order to prove the I–tightness of the random measure Cn, we build an auxiliary

random measure C̃n which is exponentially contiguous to Cn, and we prove the I–tightness
for the measure C̃n. To this end, we first define for n ≥ 1,

∀x ∈ Zd Bn(x) =
1

n
B(x),

and we let

Cn = {x ∈ Zd : Cn(Bn(x)) > 0}.

We now fill the small holes of Cn which do not create any surface energy. We look at
the residual component of Cn, that is the Ld,∞–connected component of Zd \ Cn. If
diam∞ C(0) ≤ K lnn we set fill Cn = ∅; if diam∞ C(0) > K lnn, we define

fill Cn = Cn ∪ {R : R is a finite residual component of Cn, diam∞R < lnn}.

By construction, we have ∂in fill Cn ⊆ ∂inCn. If K lnn < diam∞ C(0) < ∞, then each
Ld,∞–connected component of ∂in fill Cn has cardinality strictly larger than lnn.

Let

Cn =
⋃

x∈fillCn

Bn(x).

The measure C̃n is then the measure with density θ1Cn
with respect to the Lebesgue

measure Ld.



Oriented percolation 12915 The boundary of the blo
k 
luster
In the article of R. Cerf [4], all blocks in ∂inCn were bad. In the context of oriented

percolation, we provide a control on the proportion of bad blocks in ∂inCn.

Lemma 15.1. Let O be an bounded open subset of Rd such that Hd−1(∂O) < ∞. Let
ε > 0 and let l be a positive integer. Consider the event R(B(x), l, ε), and call the blocks
good and bad accordingly. Let N1 be the number of good boundary blocks of Cn intersecting
O, and let N2 be the number of bad boundary blocks of Cn intersecting O. There exists a
constant c′(O) depending on O and a constant c > 0 depending only on l, such that

N1 ≤ c′(O)nd−1 + cN2.

Proof. The argument to prove this lemma is the same as the one we used for the
positivity of τ in (6.5). There is nevertheless some differences, because we work in a
bounded domain whereas the cluster C(0) is not restricted in that domain. For clarity, we
redo the full proof.

For i an integer, we say that a box B(x) is at height i, if x · ed = i.
Heuristically, we consider the block cluster as a process on Zd−1 indexed by the height.

If a block in the boundary of this process is good, then at time l the block gives birth
to blocks around itself, and the process “increases”. The process “decreases” when the
process goes outside O, or when a block is bad in such a way that the block disappears in
time 1. Such a block lies in the boundary of the block cluster.

We introduce notations in order to count the good and bad blocks of the boundary:

ai = number of blocks in Cn at height i intersecting O,

bi = number of good blocks in ∂inCn at height i intersecting O,

b′i = number of good blocks in ∂inCn at height i intersecting O,

and that have a neighbour at height i that is not in Cn,

ci = number of bad blocks in ∂inCn at height i intersecting O.

Because of the definition of the event R(B(x), l, ε), we have

ai+l ≥ ai+
b′i

2(d− 1)
− ci − ci+1 − . . .− ci+l−1

− 2(n/K)dHd
(
V(∂O, 3K/n)∩ (Rd−1 ×K[i, i+ l])

)
.

(15.2)

Here we have bounded the number of boxes that “disappear” outside O by two times
(n/K)d times the volume of V(∂O, 3K/n). Since we have supposed Hd−1(∂O) <∞, there
exists c′(O) <∞ such that

2(n/K)dHd
(
V(∂O, 3K/n)

)
< c′(O)(n/K)d−1.
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We let B′k =
∑∞

i=−∞ b′k+il, and B′ =
∑∞

i=−∞ b′i. We have N2 =
∑∞

i=−∞ ci. Summing
inequality (15.2) over i with step l, we obtain

c′(O)(n/K)d−1 + 2N2 ≥
1

2(d− 1)
B′k,

for all k. But there exist k ∈ {0, . . . , l − 1}, such that B′k ≥ 1
lB
′. Hence

c′(O)(n/K)d−1 + 2N2 ≥
1

2(d− 1)l
B′.

Now let b′′i = bi−b′i. For each box counted in b′′i+1 and not included in V(∂O, 3K/n), there
is a box counted in b′i. We recall that a box counted in b′i can give no more than 2(d− 1)
boxes counted in b′′i+1, and thus

b′′i+1 ≤ 2(d− 1)b′i + 2(n/K)dHd(V(∂O, 3K/n)). (15.3)

Remark that

N1 =
∞∑

i=−∞
bi.

From (15.3), it follows that

N1 ≤ 4(d− 1)B′ + c′(O)(n/K)d−1,

and we get that

2c′(O)(n/K)d−1 + 2N2 ≥
1

8(d− 1)2l
N1. �

Remark: In lemma 15.1, we could replace Cn by fill Cn.
We can now control the perimeter of Cn:

Lemma 15.4. Let O be an open bounded subset of Rd such that Hd−1(∂O) <∞. There
exists c > 0 such that for each function f(n) from n to R+ tending to ∞ as n goes to ∞,
for n large enough

P
(
P(Cn, O) > f(n)

)
≤ exp−cf(n)nd−1.

Proof. Let X(x) be the indicator function of the event R(B(x), l, ε). Let N be the
number of boundary boxes of Cn in O, and let N2 be the number of those boundary
boxes that are bad, i.e. X(x) = 0. Pick δ ∈]0, 1[, and let K0 be an integer such that
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X � Zδ. Denote by N the number of boundary blocks in fill Cn intersecting O. The event
P(Cn, O) > εn implies that

N ≥ f(n)(n/K)d−1.

But for a certain constant c > 0,

N2(1 + c) ≥ N − c′(O)(n/K)d−1,

so
N2

N
≥ 1

1 + c

(
1− c′(O)

f(n)

)
.

Thus for n large enough,
N2

N
≥ 1

2(1 + c)
·

Let b be the constant appearing in lemma 4.1. We take δ small enough so that

ln b+ Λ∗(1/(2(1 + c)), δ)

is negative. We take K large enough such that X � Z1−δ, and we apply lemma 4.1 with
s = cεnd/Kd. �

We now give a version of lemma 15.1 for the event V , in which the constant c will not
depend on l.

Lemma 15.5. Let O be a bounded open subset of Rd such that Hd−1(∂O) < ∞. Let
ε > 0, α > 0, and let l, r be positive integers. Consider the event V (B(x), l, ε, α, r), and
call the blocks good and bad accordingly. Let N1 be the number of good boundary blocks of
Cn intersecting O, and let N2 be the number of bad boundary blocks of Cn intersecting O.
There exists a constant c′(O) depending on O and a constant c > 0 independent of n, l,
and r, such that

N1 ≤ c′(O)nd−1 + cN2.

Proof. Let l̂ > 0 be the smallest integer such that

∀ j, 1 ≤ j ≤ d− 1, B(x+ l̂ ± ej) ⊂ F (x, l, α, r),

where F (x, l, α, r) is the region defined before proposition 3.12. The integer l̂ > 0 depends
only on α. When we consider the event V instead of R, we replace the first inequality in
the proof of lemma 15.1 by

ai+bl ≥ ai +
1

2(d− 1)
(b′i−ci)− ci − ci+1 − . . .− ci+l−1−

(n/K)dHd
(
V(∂O, 2K/n)∩ (Rd−1 × [i, i+ l])

)
. �

Remark: As before, we can replace Cn by fill Cn in the statement of lemma 15.5.
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ontiguity
Let us fix f ∈ Cc(Rd,R). We shall estimate |Cn(f) − C̃n(f)|, using for the blocks the

scale L = K lnn. So we work with the lattice rescaled by a factor L. Let l be the constant
given in proposition 3.1 for the event R, and let ε > 0. For y ∈ Zd, the block variable Y (y)
is the indicator function of the event R(B(y), l, ε). We write supp(f) for the support of the
function f . Since f is continuous and has a compact support, it is uniformly continuous.
We suppose that lL/n is less than 1 and small enough so that

∀x, y ∈ Rd |x− y| ≤ L/n⇒ |f(x)− f(y)| ≤ ε.

Let O be an open bounded subset of Rd containing V(supp(f), 2d), and let

A =
{
y ∈ Zd : Bn(y) ∩ supp(f) 6= ∅

}
.

Since L/n ≤ 1, for each y ∈ A, we have Bn(y) ⊂ O, thus |A|Kd ≤ ndLd(O). As in [4], we
have

|Cn(f)− C̃n(f)| ≤ 2εLd(O) + ||f ||∞
∑

y∈A

|Cn(Bn(f))− C̃n(Bn(y))|. (16.1)

We study the last term in the above quantity. If the diameter of C(0) is less than K lnn,
then the number of blocks contributing to the sum is less than (lnn + 1)d and the sum
is bounded by (lnn + 1)d(K/n)d. From now on, we suppose that the diameter of C(0)
is strictly larger that K lnn. If y ∈ A is such that Bn(y) does not intersect Cn, then
Cn(Bn(y)) = C̃(Bn(y)) = 0 and the corresponding term in the sum vanishes. So we need
only to consider the blocks Bn(y) intersecting Cn. Let y ∈ A such that Bn(y) ∩ Cn 6= ∅.
We distinguish several cases. If Y (y − led) = 0, then

|Cn(Bn(y))− C̃(Bn(y))| ≤ 1

nd
|Bn(y)|1Y (y−led)=0.

Suppose next that Y (y) = 1. Several subcases arise:
• Bn(y) 6⊂ Cn. Then we bound

|Cn(Bn(y))− C̃n(Bn(y))| ≤ 1

nd
|Bn(y)|.

By [4], the total volume of such Bn(y) is bounded by the quantity

5d+1L
d−1

n
P(Cn, O). (16.2)
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• Bn(y) ⊂ Cn and Cn(Bn(y)) = 0. These conditions implies that Bn(y) is included in
one of the small holes of Cn. Since the diameter of Bn(y) is strictly larger than the
diameters of these small holes, this case can not occur.

• Cn(Bn(y)) > 0 and Cn(Bn(y − led)) = 0. Here Bn(y) is included in V(∂Cn ∩O, l). The
total volume of such Bn(y)’s is thus bounded by

2dl
Ld−1

n
P(Cn, O). (16.3)

• (y − led) · ed ≤ 1. Only B(0) is in this case.

• Cn(Bn(y)) > 0, Cn(Bn)(y − led) > 0, and (y − led) · ed ≥ 1. The definition of the block
event associated to the variable Y implies that

|Cn(Bn(y))− C̃n(Bn(y))| =
∣∣Cn(Bn(y))− θ

nd
|Bn(y)|

∣∣ ≤ ε

nd
|Bn(y)|. (16.4)

Summing the previous inequalities (16.2), (16.3), and (16.4) over y ∈ A in (16.1), we get

|Cn(f)− C̃n(f)| ≤

εLd(O)
(
2 + ||f ||∞(1 +

1

|A|
∑

y∈A

1Y (y)=0)
)

+ ||f ||∞7d+1L
d−1

n
lP(Cn, O).

The sum in the above quantity is controlled via the Cramer’s theorem of large deviations
[5]. The probability that the perimeter P(Cn, O) is larger than ε′n/Ld−1 for ε′ > 0 is
bounded with the help of lemma 15.4. Hence we obtain the following result:

Lemma 16.5. Let K be large enough. For every continuous function f having a compact
support, there exists a positive constant c(f) and an integer n(f) such that,

∀n ≥ n(f) ∀ ε > 0 P (|Cn(f)− C̃n(f)| > ε) ≤ c(f) exp
(
− c(f)ε

nd

(K lnn)d

)
.

This lemma implies the exponential contiguity between the measures Cn and C̃n.
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We show that the sequence of random measures C̃n is I–tight, that is there exist two

constants c > 0 and λ0 ≥ 0 such that

lim sup
n→∞

1

nd−1
lnP

(
∀ ν ∈ I−1([0, λ]) |C̃n(f)− ν(f)| > η

)
≤ −cλ, (17.1)

for every λ ≥ λ0, every η > 0 and each f ∈ Cc(R
d,R).

Let us fix η > 0 and f ∈ Cc(Rd,R). Let O be an open bounded subset of Rd containing
the support of f . Near the set Cn ∩O we shall build a set S with a control on the energy
of S in O. Let c′(O) be the constant appearing in lemma 15.1, and let ε1 < c′(O)−1.
Because of the continuity of the surface tension, there exists ε > 0, such that for all x in
∂∗(F(1 − ε)), τ(νF(1−ε)(x)) < ε1. We choose such an ε in ]0, 1

2 [. Let r > 0 be such that

[−1
2 ,

1
2 ]d is included in F(1− ε)− red, and take α > 0 as in proposition 3.12. We pick an

integer l > 0 such that

V
(
(l + r)(1− ε)U, 2d

)
⊂ l(1− ε/2)U,

where U is the convex subset of Rd−1 introduced in proposition 2.2. We let

Γ =
(
F(1− ε)− rKed

)
∩
(
Rd−1 × [−K/2, lK +K/2]

)
, (17.2)

as represented in figure 16. Observe that the top of Γ is included in the union of the boxes
in the set D(x, l, ε, r) defined in (3.10). Let X(x) be the indicator function of the event
V (B(x), l, ε, α, r).

B(0)

Γ

}
D(x, l, ε, r)

F(1− ε)− rKed

(l + 1)K

rK

figure 16: the truncated cone Γ
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We define the set S by

S = Cn ∪
⋃

x∈∂in fill Cn

X(x)=1

1

n
(Γ +Kx).

We may think of S as a try to transform Cn such that Cn locally looks like the cone of
percolation F.

Let us make a comment on the sets Γ and S. The boundary of Γ is composed of three
parts: the bottom, the side, and the top. The bottom of Γ has no surface energy because
τ(−ed) = 0. For all unit exterior normal vector w to the side of Γ, we have τ(w) < ε1.
The top of Γ is included in Cn by the definition of a good box. So the surface energy of S
comes from the surface energy of the sides of Γ’s that we add, and from bad boxes that are
in the boundary. The surface energy of the side of Γ is bounded by cKlε1 with a constant
c > 0. Since we have no control on the term lε1, the bound we get on I(S) is of the form

I(S) ≤ lε1c
′(O) + cN2.

This bound depends on the open set O and does not provide a sufficient control on the
surface energy of S. We have taken into account the surface energy of the whole sides of
all the Γ’s. To obtain a more accurate bound, we divide the set S into slabs of thickness
K, and we study the boundaries of these slabs.

We let N1 be the number of good boxes in ∂in fillCn, N2 the number of bad boxes in
∂in fillCn, and N = N1 +N2. We consider the set S floor by floor. For h ∈ N, we define

Hh,n = {Bn(x) : x · ed = h}.

Let Sh be the set

Sh = S ∩ (Rd−1 × {Kh/2}),

define Ch
n by

Ch
n = Cn ∩ (Rd−1 × {Kh/2}),

and let Oh = O∩(Rd−1×{Kh/2}). We let Nh
2 be the number of bad blocks in ∂in fillCn∩

Ch
n , and we let Nh be the number of blocks in ∂in fillCn ∩ Ch

n . We have for a certain
constant c > 0,

I(S,
◦
Hh,n ∩O) ≤ cKε1P(Sh, Oh) + cNh

2 /n
d−1.

We shall control P(Sh, Oh) by Nh. Observe that Sh is composed of a finite union ∪i∈IUi

of dilations of U together with hypersquares coming from bad boxes. Denote by Vi the set
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Vi

B

Sh

figure 17: the set Sh

∂Sh ∩Ui, and let J ⊂ I be the set of indices i such that Vi 6= ∅. Let B be the part of ∂Sh

coming from bad boxes. The boundary ∂Sh is decomposed as

∂Sh =
( ⋃

i∈J

Vi

)
∪B,

see figure 17.
There exists c > 0 such that Hd−2(B) ≤ cNh

2 /n
d−1. Therefore

P(Sh, Oh) ≤
∑

i∈J

Hd−2(Vi) + cNh
2 /n

d−1. (17.3)

We suppose that for i 6= j in J , we have Hd−2(Vi∩Vj) = 0. This is the case if U is strictly
convex. If it is not, we order the set J and for every i ∈ J we replace Vi by Vi \ (∪j≤iVj).
Let xi be the center of Ui. We define

Wi = [xi, Vi] := {xi + ty : t ∈ [0, 1], y ∈ Vi}.

We consider the set Sh as embedded in Rd−1. For the topology of Rd−1, the set U

is a symmetric convex set with non–empty interior. So, for all i 6= j in J , we have
Hd−2(Wi ∩Wj) = 0.

Let α be the constant independent of l given in proposition 3.12. By definition of a
good block,

Ch
n ⊃

⋃

i∈J

(α/2)Ui.

For i ∈ J , consider the set Zi = (∂Ch
n)∩Wi. Since Vi is a part of the boundary of Sh, the

set Zi separates topologically in Wi the sets (α/2)Ui ∩Wi and Vi. By the Gauss–Green
theorem, there exists a constant c(α) depending only on α such that

Hd−2(Zi) ≥ c(α)Hd−2(Vi), (17.4)
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Vi

Wi

∂Cn

(α/2)Uj

Uj

figure 18: The boundaries of S and of Cn

see figure 18.
Since the Zi’s are included in the Wi’s, we have for all i 6= j in J ,

Hd−2(Zi ∩ Zj) = 0.

Recalling that the Zi’ are parts of the boundary of Ch
n , there exists therefore a constant

c > 0 such that
(c/nd−2)Nh ≥

∑

i∈J

Hd−2(Zi).

Hence by (17.3) and (17.4) we have proved that

I(S,
◦
Hh,n ∩O) ≤ cK/nd−1(ε1N

h
1 +Nh

2 ), (17.5)

with c independent of n and l. Summing (17.5) over h in N, this implies that there exists
c1 > 0 independent of n and l such that

I(S,O) ≤ (ε1c1/n
d−1)N1 + (c1/n

d−1)N2. (17.6)

Furthermore, by lemma 15.5, there exists a constant c2 independent of l and n such that

N1 ≤ c′(O)nd−1 + c2N2. (17.7)

Since we have taken ε1 such that ε1c
′(O) < 1, inequalities (17.6) and (17.7) imply

I(S,O) ≤ c1 + (ε1c2c1 + c1)N2/n
d−1.
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We conclude that there exists c3 > 0 independent of O such that: for all u ≥ 1, if
N2 ≤ und−1, then

I(S,O) ≤ c3u.
Consider now the symmetric difference between S ∩ O and Cn ∩ O. We add the set Γ

only for good boundary boxes, so there exists a constant c(l) depending on l such that

Ld(S△Cn) ≤ c(l)N1/n
d.

By lemma 15.1, if we have N2 ≤ und−1 for a certain u > 0, then the above quantity tends
to 0 as n goes to infinity, and so

|Cn(f)− θ1S(f)| → 0 as n goes to ∞.

The conclusion is that for all u ≥ 1, for all η > 0, for all f ∈ Cc(Rd,R), if we have

∀ ν ∈ I−1
(
[0, c3u]

)
|Cn(f)− ν(f)| > η,

then for n large enough there is at least und−1 bad boundary boxes in Cn ∩O. Hence the
proportion of bad boxes in ∂in fillCn ∩O is larger than u/((c′(O) + c2u) ≥ 1/(c′(O) + c2).

Let b be the constant appearing in lemma 4.1. We pick ε2 > 0, such that

lnLd
(
V(O, d)

)
+ ln b+ Λ∗

(
1/(c′(O) + c2), ε2

)
< 0. (17.8)

By proposition 3.12, we can take K large enough such that the block process X dominates
stochastically the Bernoulli–site process Z1−ε2 . Hence, for K large enough, we obtain the
I–tightness property (17.1) with the help of lemma 4.1 and by the choice of ε2 in (17.8).18 Lower bound

Lemma 18.1. Let ν ∈ M(Rd
+). For every weak neighbourhood U of ν in M(Rd

+), we
have

lim inf
n→∞

1

nd−1
lnP (Cn ∈ U) ≥ −I(ν).

Proof. Heuristically, we want to show that the cluster of the origin fills a given shape
[figure 19] with a certain probability. The cluster of 0 will be restricted into that shape by
putting separating surfaces on the boundary as in [4]. Actually, the core of the proof is
to make sure that C(0) fills this given shape. The solution is to put a collection of seeds
at the bottom of the shape. We denote by S the collection of the seeds and we put a
truncated cone starting at each s in S. Furthermore, we partition the shape with boxes
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figure 19: the shape we want to obtain

of a linear size, and we take block events such that clusters spread vertically. The cluster
C(0) spreads as follows: first the origin is connected to a seed s, then the cluster spreads
in the corresponding truncated cone, and then the cluster spreads vertically with the help
of good blocks. Now we turn to the detailed proof.

If I(ν) = +∞, there is nothing to prove. Let ν ∈ M(Rd) be such that I(ν) < ∞. By
definition of I, there exists a Borel set A of Rd such that ν is the measure with density θ1A

with respect to the Lebesgue measure and I(ν) = I(A). Let U be a weak neighbourhood
of ν and let ε > 0.

Let f ∈ Cc(Rd,R). Let h be an integer such that the supports of f and U are contained
in Rd−1 × [−h, h]. Let O be an open bounded subset of Rd containing

{
(x, t) : 0 ≤ t, |x| ≤ t

}
∩
(
Rd−1 × [−h, h]

)
.

By lemma 12.2, there exists a polyhedral set D in Rd
+ such that the measure ψ with

density θ1D with respect to the Lebesgue measure belongs to U and moreover I(D,O) ≤
I(A,O) + ε.

We are going to estimate the probability that |Cn(f)− ψ(f)| is small. Let ε > 0. Since
f is continuous and has a compact support, it is uniformly continuous.

Let δ̂ be as in proposition 2.4. For a point s in Rd and ε1 > 0, we let F(δ̂/2, ε1, s) be
the set

F(δ̂/2, ε1, s) = s+ {tδ̂/2U + ted, 0 ≤ t ≤ ε1}.
Finally, for a set S of points in Rd, we define

F(δ̂/2, ε1, S) =
⋃

s∈S

F(δ̂/2, ε1, s).

We call the downward boundary of D the set

∂−D = {x ∈ ∂∗D, νD(x) · ed < 0}.
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F(δ̂/2, ε1, S)D

figure 20: a representation of S

We can take a set S included in V(∂−D, 2d/n)∩ (Zd/n) such that for each x in D \V(Rd \
D, 2ε1), the half line {x− ted : t ≥ 0} intersects F(δ̂/2, ε1, S) before leaving D, see figure
20. Furthermore |S| ≤ c where c is a constant independent of n.

We let α ∈]0, 1[ be small enough so that

Ld
(
V(∂D, 4dα)

)
≤ ε,

∀x, y ∈ Rd |x− y| ≤ α⇒ |f(x)− f(y)| ≤ ε.
We work with the lattice rescaled by a factor ⌊αn⌋. For α small, ε1 small and n large
enough, we can pick a set E1 such that

d
( ⋃

x∈E1

Bn(x),Rd \D
)
≥ 4ε1, Ld

(
D \

⋃

x∈E1

Bn(x)
)
≤ ε,

and moreover |E1| ≤ c where c is a constant independent of n. Let x in Zd, and let s in
S. We suppose that α is small enough such that, if Bn(x+ ed) ∩ F(δ̂/2, ε1, s) 6= ∅, and if
Bn(x+ 2ed) ∩ F(δ̂/2, ε1, s) = ∅, then Bn(x) ⊂ F(δ̂, ε1, s) (see figure 21).

We build a set E2 as follows. First let E2 = ∅. Then for each x in E1, we go downward
along the last coordinate axis until we get a box Bn(y) which intersects F(δ̂/2, ε1, S). We
add to E2 all the vertices between x and y − ed which are not in E1. Note that for all
z ∈ E2, we have Bn(z) ⊂ D.

Let s ∈ S. We define the downward half line of s as

N(s) = {s− ted : t ≥ 0}.

Let A′ be a closed and bounded subset of Rd, and let t∗ be the larger t ≥ 0 such that
s− ted is in A′ ∩ Zd/n. We call the last point of N(s) in A′ the vertex s− t∗ed.
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B(x)

F(δ̂/2, ε1, s)

F(δ̂, ε1, s)

b s

figure 21: a box included in F(δ̂, ε1, s)

We define the sets E3 and Γ as follows. For each s in S, we go downward along the last
coordinate axis. There is three cases
• We intersect a box Bn(x) with x ∈ E1. In this case we go upward and we add to E3

all the y’s until the box Bn(y) is included in F(δ̂, ε1, s). Let ŝ be the last point of N(s)
in Bn(x+ ed). We take for γs the segment [s, ŝ].

• We intersect the set F(δ̂/2, ε1, s
′) for s′ ∈ S. We let ŝ be the last point of N(s) in

F(δ̂/2, ε1, s
′). We define γ(s) = [s, ŝ]. We add to E3 all the boxes intersecting γs. We

represent this case on figure 22.
• In the case where we do not intersect the boxes of E1 nor the set F(δ̂/2, ε1, S), we take
x the intersection of N(s) with the set

{y = (y, t) ∈ Rd, |y| = t}.

Note that x is in Zd/n. We take for γs one of the path from 0 to x, union the segment
[x, s].
The set S′ is the subset of S for which the third case occurs. We let Γ be the following

set of edges:

Γ =
(
∪s∈S′ γs

)
.

We define D′ as

D′ = D ∪
⋃

s∈S

V∞(γs, 4ε1).

For every x in E1 ∪ E2 ∪ E3, the box Bn(x) is included for n large enough in D \ V(Rd \
D, 3ε1). The set Γ is also included in that set. Observe that the set D′ is polyhedral. By
definition of a polyhedral element, ∂D′ is the union of a finite number of d− 1 dimensional
sets F1, . . . , Fr. For 1 ≤ j ≤ r, we denote by nor(Fj, D

′) the exterior normal vector to D′

at Fj . Since the cardinal of S is bounded by a constant independent of n, the set we add
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figure 22: a construction for the lower bound

to D do not create too much energy surface for ε1 small. Thus, for ε1 small enough,

∑

1≤j≤r

Hd−1(Fj)τ(nor(Fj , D
′)) ≤ I(A) + 2ε.

Moreover, for each i in {1, . . . , r}, the relative boundary ∂Fi has a finite d−2 dimensional
Hausdorff measure.

For x in Zd, we let Y (x) be the indicator function of the event

{
for every y such that |C(y) ∩Bn(x− led)| ≥ αn, we have

|C(y) ∩Bn(x+ ed)| ≥ αn and |C(y) ∩Bn(x)| ∈ (αn)d[θ − ε, θ + ε]
}
.

We let Z(x) be the indicator function of the event

{
for every y such that |C(y) ∩Bn(x)| ≥ αn,

we have |C(y) ∩Bn(x+ ed)| ≥ αn
}
.

For s ∈ S, we write T (s) for the event

{ for every x such that Bn(x) ⊂ F(δ̂, ε1, s),we have |C(s) ∩Bn(x)| ≥ αn}.

Let E be the intersection of the events

{all bonds in Γ are open}, {Y (x) = 1, x ∈ E1},
⋂

s∈S

T (s)

{Z(x) = 1, x ∈ E2 or x ∈ E3}, wall(Fj , n), 1 ≤ j ≤ r.
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The variables Y (x), x ∈ E1, do not depend on what happen in the region Γ and on the
events T (s) for s in S. The probabilities that the variables Y and Z are equal to 1 tend
to 1 as n goes to infinity. Furthermore, the events represented by the variables Z(x) are
increasing, so we may apply the FKG inequality together with the events T (s) for s in S,
and with the event that all bonds in Γ are open. By the choice of D′, the events wall are
independent of the other events in E for n large enough. Hence, as in [4], for all ε > 0, for
α small enough,

lim inf
n→∞

1

nd−1
lnP (E) ≥ −I(D)− ε.

As in [4], the occurrence of E implies that |Cn(f)− ψ(f)| is small, and the lower bound is
proved. �19 The geometry of the Wul� shape and more exponential results

In this section, we finish the description of the surface tension we started in proposi-
tion 5.6. To do this, we first study the percolation process in a cone “included” in the cone
of percolation F, and prove an equivalent statement to theorem 1.3.

Proposition 19.1. Let η > 0 and w be a unit vector. We define

K(η, w) = {tx+ tw : t ≥ 0, x ∈ ηU}.

If w is in F
◦
, then the oriented percolation process on K(η, w) is supercritical: there exists

x in K(η, w) such that
P
(
x→∞ in K(η, w)

)
> 0.

Proof. Let w in F
◦

and η > 0. We use another rescaled lattice. We pick e′1, . . . , e
′
d,

an orthonormal basis of Rd, such that e′d = w. Let K be an integer. For x in Rd, we let
x′1, . . . , x

′
d be its coordinates in the new basis (e′1, . . . , e

′
d). Let x in Zd. We define

B′(x) = {y ∈ Rd : ∀ i, 1 ≤ i ≤ d,−K/2 < y′i ≤ K/2}.

Now let l be a positive integer and let D′ be the similar set introduced in the proof of
proposition 3.12:

D′ = B′(x) ∪
⋃

1≤i≤d

B′(x± e′i).

We define the event R1(x, l) as

V1(x, l) =
{

for all y in D such that |C(y)| ≥ K and C(y) ∩B′(x) 6= ∅,
we have ∀j, 1 ≤ j ≤ d, C(y) ∩B′(x+ lw ± ej) 6= ∅

}
.
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By proposition 3.12, there exists an integer l such that

P (V1(x, l))→ 1 as K →∞.

We also assume that l is large enough so that

B′(x) ∩K(η, w) 6= ∅ ⇒ ∀ i, 1 ≤ i ≤ d− 1 B′(x+ le′d± e′i) ⊂ K(η, w).

We call the blocks good and bad , accordingly to the event V1, and we write X(x) for the
indicator function of the event V1. Let x in Zd such that B′(x) is included in K(η, w).
We build a graph as follow: We let x be the first vertex of the graph. If y in a vertex
of the graph, we add the two vertices y + le′d ± e′1, and we put oriented edges from y to
y + le′d ± e′1. This new graph is isomorphic to the two–dimensional oriented graph Z2

+.
We study the percolation process by site X(x) on the new graph, For every p′ < 1 and for
K large enough, this process dominates stochastically the Bernoulli percolation process
by site on the oriented graph Z2

+. Hence there is an infinite path on the macroscopic
graph with strictly positive probability for K large enough. But this infinite path implies
the existence of an infinite path in the underlying microscopic graph. Thus the oriented
percolation process on K(η, w) is supercritical. �

We can now complete proposition 5.6 by proving theorem 1.4 which we restate:

Corollary 19.2. The surface tension τ is strictly positive in the whole angular sector
G.

Proof. Let w in G and take A a hyperrectangle normal to w. Let ε > 0, and let
w′ ∈ Sd−1 such that

Hd−1
({
x ∈ ∂ cylA ∩ cyl−(A,w, ε) : {x+ tw′ : t ≥ 0} ∩ ∂ cylA ∩ cyl+(A,w, ε)

})
> 0.

Let η > 0, and let A′ ⊂ Zd such that A′ is a translate of [0, ηn/K]d−1 × {0} in the new
graph given above with e′d = w′. Let α > 0. We define

NA′ =
{
αty + (t− 1)w′ : t ≥ 1, y ∈

⋃

x∈A′

B′(x)
}
.

We take ε, η, and α small enough such that

NA′ ∩ V(nA, εn) ∩ ∂ cylnA = ∅,

and
NA′ ∩ ∂ cylnA ∩ ∂ cyl+ nA 6= ∅,
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see figure 23.
We take l large enough so that

B′(x) ∩ NA′ 6= ∅ ⇒ ∀ 1 ≤ i ≤ d− 1B′(x+ le′d ± e′i) ⊂ NA′ .

We build a new graph L̃ = (Ṽ, Ẽ). First we set the vertex set at A′. Then for each x ∈ Ṽ,
we add the vertices x+ le′d ± e′i for 1 ≤ i ≤ d− 1, and we put an oriented edge between x
and the new vertices.

A vertex x in L̃ is occupied if V1(x, l) occurs. If W (∂A,w, εn) occurs, then A′ 6→ ∞ in

the graph L̃ for this percolation process. Since the probability that a vertex is occupied

can be as close to 1 as we want, and since the percolation process in L̃ is similar to the

oriented site percolation process on ~Ld
alt, by proposition 2.3, for K large enough,

P
(
A′ 6→ ∞ in L̃

)
≤ exp(−cnd−1),

for a constant c > 0. �

Therefore, by the continuity of τ , for all w in F
◦ ∩ Sd−1, there exists t > 0 such that

tw ∈ Wτ . Actually, we would like a more precise result:

Conjecture 19.3. We believe that the Wulff crystal Wτ is tangent to F at 0, see
figure 24.
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figure 24: a representation of the Wulff crystal20 Exponential de
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The next proposition asserts that the oriented percolation process is subcritical outside

the cone of percolation.

Proposition 20.1. Let ε > 0. There exists c > 0, such that for all x /∈ (1 + ε)U.

P
(
0→ (x, n)

)
≤ exp(−cn), (20.2)

or equivalently
P
(
0→ (n(1 + ε)U, n)

)
≤ exp(−cn). (20.3)

This is equivalent to theorem 1.5, and we represent in figure 25 such an improbable con-
nection.

n
F

b

x
nU

b

0

figure 25: a connection outside the cone F
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Proof. It is straightforward that (20.3) implies (20.2). Conversely, the number of
vertices in

(
n(1 + ε)U, n

)
that can be reached by 0 is bounded by a constant times nd−1

because of the graph structure of ~Ld
alt.

We turn now to the proof of (20.2). Let K be an integer. We work with the lattice
rescaled by K. Let x in Zd, and let D = V∞(B(x), K). We introduce the region of blocks

D1(x, l, ε) =
{
y : (y − x) · ed = l, B(y) ∩

(
F(1 + ε)c +Kx

)
6= ∅
}
.

Let us define the event

V1(x, l, ε) =
{
∀ y in D, such that C(y) ∩B(x) 6= ∅,

we have C(y) ∩D1(x, l, ε) = ∅
}
.

For every ε > 0, for l large enough, we have

P
(
V1(x, l, ε)

)
→ 1 as K →∞. (20.4)

Proof of limit (20.4). The proof of (20.4) is similar to the proof of proposition 3.12.
Let x in Zd, and let ε > 0. As before, the region D is the set V∞(B(x), K). The inversed
cluster of a vertex y is the set

C
←

(y) = {z ∈ Zd : z → y}.

We introduce D1 the set of vertices in Zd−1×{0}+K(x+2ed) joined by vertices in B(x):

D1 =
{
z ∈ Zd−1 × {0}+K(x+ 2ed) : ∃ y ∈ D such that

C(y) ∩B(x) 6= ∅ and z ∈ C(y)
}
.

For every z ∈ D1, we have |C←(z)| ≥ K/2. Because of the graph structure of ~Ld
alt, there

exists a deterministic set D̃1 and α > 0 such that D1 ⊂ D̃1 with D̃1 ≤ αKd−1. By
proposition 3.1, there exists l1 such that for ε′ small enough, for K large enough,

P
(
∀ z ∈ D1 : |C←(z) ∩B(x− l1ed)| ≥ 3ε′Kd

)
≥ 1− ε1. (20.5)

Now let

A1(y, ε, n0) =
{
∀n ≥ n0, (H

y
n ∩Ky

n) ⊂ (1 + ε)U
}
.



148 Chapitre 5

We let ε > 0. With the help of proposition 2.2, we can pick n0 such that

P (A1(0, ε, n0) | |C(0)| =∞) ≥ 1− ε′.

By the FKG inequality (2.1), this implies that P (A1(0, ε, n0)) ≥ 1 − ε′. By the ergodic
theorem [22], for K large enough,

P
(∣∣z ∈ B(x− l1ed) : Ac

1(z, ε, n0) occurs
∣∣ ≥ 2ε′

)
≤ ε1. (20.6)

Thus by (20.5) and (20.6)

P
(
∀ z ∈ D1, ∃s ∈ C

←
(z) ∩B(x− l1ed) such that A1(s, ε, n0) occurs

)
≥ 1− 2ε1. (20.7)

We represent on figure 26 a cluster starting in B(x), which is joined in D1 by a cluster

starting in B(x − l1ed). We take l large enough, so that for every z in D̃1, every s in
B(x− l1ed), we have

(
F(z, 1 + ε) ∩ (Rd−1 × {K(l − 1)}+Kx)

)
⊃
(
F(y, 1 + ε) ∩ (Rd−1 × {K(l − 1)}+Kx)

)
.

We suppose in addition that lK ≥ 2n0, and that for every z in B(x− l1ed),

F(z, 1 + ε) ∩D1(x, l, 2ε) = ∅.

Zd−1 × {0}+K(x+ 2ed)

b

b

b

z

y

s

B(x)

B(x− l1ed)

D̃1

figure 26: the cluster C(y) is joined by C(s) at z
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Hence suppose that the event in (20.7) occurs. Let y in D. If |C(y)| < 2K, then there is
nothing to do. So consider the case |C(y)| ≥ 2K. There exists z in D1 such that z ∈ C(y).
But for all z in D1, there exists s in B(x− l1ed)∩C

←
(z) such that A1(s, ε, n0) occurs. Thus

for all z in D1, we have
C(z) ∩D1(x, l, 2ε) = ∅,

and it follows that
C(y) ∩D1(x, l, 2ε) = ∅.

Therefore we have obtained

P
(
V1(x, l, 2ε)

)
≥ 1− 2ε1. �

Let x /∈ (1 + 3ε)U such that 0→ (nx, n), and let γ be an oriented open path from 0 to
x. Let l be such that the limit (20.4) holds. We say that a box B(y) is good if V1(y, l, ε)
occurs. Define γ as the set of boxes intersecting γ. We introduce a function f from N to
R+ by

f(i) = max
{

min{ |z− y|, (y, i) ∈ F(1 + 2ε) }, (z, i) ∈ γ
}
.

Let i be an integer. If for every z = (z, i) in γ, B(z) is good, then f(i + 1) ≤ f(i).

Moreover, the number of y in Zd−1 such that (y, i) ∈ γ is bounded by 2d. Hence there
exists a positive density of bad boxes in γ, and the proof of proposition 20.3 is finished by
using a Peierls argument. �21 A note on the Wul� variational problem

We study the following variational problem:

(W ) minimize I(E) under the constraint Ld(Wτ ) ≤ Ld(E) < +∞.

Proposition 21.1. The Wulff crystal defined in section 6 is a solution of the Wulff
variational problem (W ).

This result has already been proved under the assumption that the function τ strictly
positive, see [4] for a discussion on this subject. In fact, one may check that in the proof
in [4], the strict positivity is not required when the function τ is convex. Here we just redo
the proof that for every bounded polyhedral set A in Rd,

I(A) ≥ lim sup
ε→0

1

ε

(
Ld(A+ εWτ )− Ld(A)

)
≤ I(A). (21.2)
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Proof of (21.2). By definition, the boundary of A is the union of a finite number of
d− 1 dimensional bounded polyhedral sets Fi, i ∈ I, so that

I(A) =
∑

i∈I

Hd−1(Fi)τ(νA(Fi)),

where νA(Fi) is the unit outward normal vector to A along the interior points of the face
Fi. Let S = ∂A \ ∂∗A be the set of the singular points of ∂A; it is a d− 2 dimensional set.
We claim that, for ε small enough,

(A+ εWτ ) \ V
(
S, ε(2||τ ||∞ + 1)

)
∪
⋃

i∈I

cyl
(
Fi, νA(Fi), ετ(νA(Fi))

)
.

Indeed, let x = a+ εw where a ∈ Fi, w ∈ Wτ , and x /∈ A. There are two cases:
• w ·νA(Fi) ≥ 0. We let y be the orthogonal projection of x on the hyperplane containing
Fi. Then

|a− y| ≤ |εw| ≤ ε(||τ ||∞ + 1),

|(x− y) · νA(Fi)| = εw · νA(Fi)| ≤ ετ(νA(Fi)).

If x does not belong to V
(
S, ε(2||τ ||∞+1)

)
, then a ∈ Fi \V

(
S, ε(||τ ||∞+1)

)
and y ∈ Fi,

whence x is in cyl
(
Fi, νA(Fi), ετ(νA(Fi))

)
.

• w · νA(Fi) < 0. Since a+ εw /∈ A, there exists a polyhedral set Fj such that [a, a+ εw]
intersects Fj and τ(νA(Fj)) · w ≥ 0. Let a′ = [a, a+ εw] ∩ Fj , and let ε′ ≤ ε such that
a′ + ε′w = x. As in the first case, the point x is in cyl

(
Fj , νA(Fj), ετ(νA(Fj))

)
, or in

V
(
S, ε(2||τ ||∞ + 1)

)
.

Thus

Ld(A+ εWτ )− Ld(A) ≤ Ld
(
V
(
S, ε(2||τ ||∞ + 1)

))
+
∑

i∈I

Hd−1(Fi)τ(νA(Fi)).

Sending ε to 0, we get equation (21.2). �
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Sur les grands clusters en percolation

Résumé : Cette thèse est consacrée à l’étude des grands clusters en percolation et se
compose de quatre articles distincts. Les différents modèles étudiés sont la percolation
Bernoulli, la percolation FK et la percolation orientée. Les idées clés sont la renormalisa-
tion, les grandes déviations, les inégalités FKG et BK, les propriétés de mélange.

Nous prouvons un principe de grandes déviations pour les clusters en régime sous–
critique de la percolation Bernoulli. Nous utilisons l’inégalité FKG pour démontrer la borne
inférieure du PGD. La borne supérieure est obtenue à l’aide de l’inégalité BK combinée
avec des squelettes, les squelettes étant des sortes de lignes brisées approximant les clusters.

Concernant la FK percolation en régime sur–critique, nous établissons des estimés
d’ordre surfacique pour la densité du cluster maximal dans une bôıte en dimension deux.
Nous utilisons la renormalisation et comparons un processus sur des blocs avec un processus
de percolation par site dont le paramètre de rétention est proche de un.

Pour toutes les dimensions, nous prouvons que les grands clusters finis de la percolation
FK sont distribués dans l’espace comme un processus de Poisson. La preuve repose sur la
méthode Chen–Stein et fait appel à des propriétés de mélange comme la ratio weak mixing
property .

Nous établissons un principe de grandes déviations surfaciques dans le régime sur–
critique du modèle orienté. Le schéma de la preuve est similaire à celui du cas non–orienté,
mais des difficultés surgissent malgré l’aspect Markovien du réseau orienté. De nouveaux
estimés blocs sont donnés, qui décrivent le comportement du processus orienté. Nous
obtenons également la décroissance exponentielle des connectivités en dehors du cône de
percolation, qui représente la forme typique d’un cluster infini.

Mots clés : percolation, grandes déviations, renormalisation, percolation FK, percola-
tion orientée.
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