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Abstract

This thesis is dedicated to the study of large clusters in percolation and is divided
into four articles. Models under consideration are Bernoulli percolation, FK percolation
and oriented percolation. Key ideas are renormalization, large deviations, FKG and BK
inequalities and mixing properties.

We prove a large deviation principle for clusters in the subcritical phase of Bernoulli
percolation. We use FKG inequality for the lower bound. As for the upper bound, we use
BK inequality together with a skeleton coarse graining.

We establish large deviations estimates of surface order for the density of the maximal
cluster in a box in dimension two for supercritical FK percolation. We use renormaliza-
tion and we compare a block process with a site—percolation process whose parameter of
retention is close to one.

We prove that large finite clusters are distributed accordingly to a Poisson process in
supercritical FK percolation and in all dimensions. The proof is based on the Chen—Stein
method and it makes use of mixing properties such as the ratio weak mixing property.

We establish a large deviation principle of surface order for the supercritical oriented
percolation. The framework is that of the non—oriented case, but difficulties arise despite
of the Markovian nature of the oriented process. We give new block estimates, which
describe the behaviour of the oriented process. We also obtain the exponential decay of
connectivities outside the cone of percolation, which is the typical shape of an infinite
cluster.

Keywords: percolation, large deviations, renormalization, FK percolation, oriented
percolation
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8 CHAPITRE 1

Cette these porte sur la percolation, et plus particulierement sur 1’étude des grands
clusters. Dans ce chapitre introductif, nous expliquons le processus de percolation dans la
section 1 et donnons les différents résultats que nous avons obtenus dans les sections 2, 3,
4 et 5. La section 2 porte sur la FK percolation sur—critique dans une boite en dimension
deux, et contient des estimés d’ordre surfacique sur le comportement du cluster maximal et
des clusters intermédiaires. Dans la section 3, nous nous intéressons aux grands clusters en
régime sous—critique et nous donnons un principe de grandes déviations. Nous considérons
dans la section 4 les grands clusters finis dans le régime surcritique. D’apres un résultat
que nous établissons, ces clusters sont distribués comme un processus spatial de Poisson.
La section 5 porte sur la percolation orientée en régime surcritique. Nous y donnons un
principe de grandes déviations pour le cluster de l'origine. La section 6 est une petite
note sur la percolation a orientation aléatoire. La section 7 donne le contenu des chapitres
suivants.

1 Introduction a la percolation

1.1 Explication physique. La situation initiale est la suivante : une pierre spongieuse est
immergée dans de I’eau, comme représenté sur la figure 1, et nous voulons savoir si le centre
de la pierre est mouillé. Broadbent et Hammersley ont défini un modele mathématiques
qui permet de répondre a ce genre de question.

figure 1: La pierre spongieuse immergée.

1.2 Le modéle mathématiques [9]. Considérons Z¢ I’ensemble des vecteurs d’entiers & d
coordonnées. Nous le munissons d’une structure de graphe en mettant une aréte pour
chaque couple de points (x,y) voisins. Nous notons L¢ = (Z¢,E?) le graphe obtenu. Ce
graphe est infini et invariant par les translations entieres.

L’espace des configurations pour la percolation sur Z% est Q = {0, I}Ed. Soit w un
élément de 2. Une aréte e de E? est dite ouverte dans w si w(e) = 1, et fermée si w(e) = 0.
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Nous modélisons donc la pierre spongieuse en assimilant les petits canals a 'intérieur de
la pierre aux arétes du graphe L, un canal laissant passer I’eau uniquement si I’aréte est
ouverte. La question de savoir si le centre de la pierre est mouillé revient a savoir si il y a
un chemin infini partant de ’origine 0 du graphe et ne passant que par les arétes ouvertes.
La figure 2 représente une réalisation du processus de percolation sur Z2.

—

figure 2: exemple de réalisation du processus de percolation

Pour pouvoir répondre a cette question, il nous faut une mesure de probabilité. L’en-
semble €2 est muni de la tribu produit F. Soit p un parametre compris entre 0 et 1. La
mesure de percolation P, est la mesure sur (£, F) telle que les arétes soient ouvertes avec
probabilité p, fermées avec probabilité 1 — p, et ceci indépendamment les unes des autres.
C’est donc le produit tensoriel des mesures de Bernoulli pdy + (1 — p)dy associées a chaque
aréte.

Plus le parametre p est grand, plus la probabilité qu’il y ait un chemin infini d’arétes
ouvertes est grande. Pour la pierre spongieuse, cela signifie que plus il y a de petits canaux,
plus le centre de la pierre a de chance d’étre atteint par I'eau.

Un cluster est une composante connexe du graphe aléatoire, dont I’ensemble d’arétes est
constitué d’arétes ouvertes. Nous disons qu’il y a percolation s’il existe un cluster infini,
et nous notons {0 — oo} I’événement ou l'origine est dans un cluster infini. La probabilité
de percolation est

0(p) = Pp(0 — o0).

1.3 Evénements croissants et domination stochastique. Nous définissons un ordre partiel
sur 2 en disant que w; < wy si et seulement si wy () < wo(e) pour toute aréte e de E4. Un
événement A est dit croissant si

w1 € Aetwy>w = wy €A

Si A¢ le complémentaire de A est croissant, alors A est dit décroissant. Une inégalité
fondamentale est I'inégalité FKG, qui établit que les événements croissants sont corrélés
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positivement : si A et B sont deux événements croissants, alors
P(ANnB) > P(A) x P(B).

Une fonction f de © dans R est dite croissante si w; < wsy implique f(w1) < f(wa).
Dire qu'un événement A est croissant est alors équivalent a dire que sa fonction indicatrice
14 est croissante. Soit p et v deux mesures sur 2. Nous disons que p est dominée
stochastiquement par v si pour toute fonction f croissante de Q dans R, u(f) < v(f).
Nous avons par exemple :

pour tous p,p’ € [0, 1] p<p' =P, <P,.

2 Des estimées exponentielles sur le comportement des clusters dans une
boite en FK percolation

2.1 Le modele FK. Le modele FK [11] est une extension du modele de percolation Bernoulli
dans lequel les arétes ne sont plus indépendantes. Pour pouvoir définir ce processus sur
74, nous commencons par le définir dans une boite.

Soit donc A une boite de Z%. Nous notons E(A) l’ensemble des arétes qui sont &
I'intérieur de A, et nous posons Qx = {0,1}”®) I'ensemble des configurations dans la
boite. Notons OA ’ensemble des sites appartenant a la frontiere de A :

ON={z e A:3Jy ¢ A, (x,y) est une aréte}.

Soit 7 une partition de dA. Nous appelons m—cluster une composante connexe de A pour
laquelle nous considérons que deux points dans la méme classe de 7 sont reliés. Le nombre
correspondant de m—clusters dans la configuration w est noté cl™(w). Pour p € [0,1] et
q > 1, nous posons alors

Yw € QA 713 q[{w} ,p,q (H pw(e) 1 W(6)> qdﬂ(w)a

eelE

le terme Z "9 servant & renormaliser I'expression. Lorsque ¢ = 1, les arétes sont indépen-

dantes et nous retrouvons la mesure de Bernoulli. Ces mesures vérifient 'inégalité FKG
(c’est la raison pour laquelle nous imposons ¢ > 1).

Il y a deux conditions aux bords extrémales : celle ou tous les points de A sont dans
une seule classe est notée w pour wired, et celle ou chaque classe est constituée d’un seul
point est notée f pour free. Pour toute partition m de A et pour toute configuration w,
nous avons

”(w) < d™(w) < (w),
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ainsi que les dominations stochastiques suivantes :
Iip.q T™,D,q w,p,q
OVt L0 T L P o,

L’ensemble des mesures FK correspondant aux différentes conditions aux bords est noté
R(p. ¢, A).

Par un argument de monotonicité, les deux mesures <I>/J§’p et @Y7 convergent faible-
ment lorsque A — Z<, vers des mesures sur € notée ®LP7 et ®¥P4. Ces deux mesures
sont égales sauf peut—étre pour un ensemble dénombrable de valeurs de p, cet ensemble
dépendant du parametre ¢. Elles ont donc un point critique commun défini par

»Pyq

pe = sup {p : LP9(0 — 00) = 0} = sup {p: @70 — 00) = 0}.

Nous avons besoin de certains estimées exponentiels. Pour ce faire, nous introduisons le
point critique suivant :

pg=sup{p:Jc >0,V VyecZ® oz « y] < exp(—clz —y|)}.
Le point dual de py est le point défini par

~ _ Q(l _pg)
7 pg+Q(1_pg) -

c-

2.2 Résultats. Nous considérons le modele FK sur Z? dans le régime surcritique. Soit A(n)
le carré [—n,n])?. Nous disons quun cluster de A(n) traverse A(n) s’il intersecte tous les
cotés de A(n). Soit [ un entier. Un cluster est [—intermédiaire si son cardinal n’est pas
maximal parmi les clusters de A(n), et si son diametre dépasse I. Nous notons J; 'ensemble
des clusters [-intermédiaire de A(n) et nous posons 6 = 6(p) pour alléger les notations.
Soit 1’événement

K(n,e,l) = {EI! cluster C),, dans A(n) qui est maximal pour le volume,
le cluster C,, traverse A(n),n 2|Cy,| €]0 —&,0 + |

et n 2 Z |IC| < €}.

Cel;
Nous démontrons le résultat suivant:

THEOREME 1. : Soit ¢ > 1, 1> p > p, et e €]0,0/2] fizés. Il existe une constante L
telle que

1
—00 < liminf — log

inf ®[K(n,e, L)]]
n—oo n PeR(p,q,A(n))

1
< lim sup — log sup ®[K(n,e,L)°] < 0.
n—oo M ®eR(p,q,A(n))
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Ainsi, a des déviations d’ordre surfacique pres, la configuration typique dans une grande
boite est un unique cluster qui touche toutes les faces du carré et qui a la méme densité
que le cluster infini, et un ensemble de clusters de tailles intermédiaires dont le volume
total est aussi petit que nécessaire.

Le théoreme 1 est ’adaptation en dimension deux d’un résultat de A. Pisztora [14].

2.3 Renormalisation. Soit N un entier. La renormalisation consiste a diviser la boite A(n)
en boites de taille N. Nous posons

AN = {k € Z* : Nk+] — N/2,N/2] C A},

comme représentée a la figure 3 (pour simplifier nous supposons que nous obtenons une
partition de A(n)).

ke ADW)

figure 3: le découpage d’une boite

Pour i appartenant & AY), nous posons B; = Ni+] — N/2, N/2]. Nous allons prendre
N fixé mais assez grand pour que avec grande probabilité la configuration dans une boite
B; soit proche de la configuration typique.

Considérons dans un premier temps la probabilité qu’il existe un cluster dans A(n) qui
soit de cardinal supérieur a (0 + ¢)n?. Le cardinal d'un cluster dans A(n) est majoré par
le cardinal des clusters de chaque boite B;, i € A(N), intersectant le bord de B;. Nous
notons Y; ce cardinal. Par un procédé d’isolation des boites Bj, i € A(IN), nous rendons les
variables Y; indépendantes. Nous prenons N assez grand pour que l’espérance de Y;/N?
soit inférieure & @ +¢/2. En appliquant le théoreme de Cramer, la probabilité qu'un cluster
soit de cardinal supérieur (6 + €)n? est inférieure & exp(—cn?) pour une constante ¢ > 0.

Pour les déviations de la densité par en—dessous, nous nous intéressons a un processus de
percolation par site sur A qui va ensuite nous donner des informations sur le processus
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de percolation sur A(n). Pour i € AY)| nous notons R; I’événement : il existe un unique
cluster Cf traversant B; et tout chemin ouvert dans B; de diametre supérieur a VN /10
est inclus dans Cf".

Soit A une boite. Nous disons qu’il y a une 1-traversée dans A s’il existe un cluster
dans A qui relie le coté gauche au coté droit. Nous définissons de la méme maniere les
2-traversées. Pour i, j appartenant & AW tels que |i — j|o = |i, —j.| = 1 avec r = 1 ou 2,
nous définissons la boite

Di; = [-N/4, N/4* + (i +j)N/2,

et 'événement
K; ; = {3r-traversée dans D; j}.
Pour i € AN)| nous définissons
1 sur B3N ﬂ Ki,j
X; = invj
0 sinon.

Prenons i et j dans AXN) | voisins et tels que X; = X j = 1. Comme nous pouvons le voir
sur la figure 4, les deux clusters C;" et Cj* sont reliés par 'intermédiaire de Dj j.

figure 4: les clusters de boites voisines sont inter—connectés

Dans [5], il a été démontré que pour p assez proche de 1, il existe une constante ¢ > 0
telle que

N2
P,(3C cluster de site dans A tel que —|C| > 1—¢) > 1 —exp(—cn).
n
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Ce cluster macroscopique C de petites boites implique l'existence d’un cluster micro-
scopique C contenant les clusters C° pour i appartenant a C. Pour NN assez grand,
I'espérance du cardinal de C} est supérieur a § — /2. Comme précédemment, le résultat
est obtenu en rendant ces variables indépendantes et en appliquant le théoreme de Cramer.

3 Un principe de grandes déviations dans le régime sous—critique
3.1 La mesure de Hausdorff. Cette mesure a été définie pour répondre a des questions du
genre : quelle est la longueur des cotes bretonnes, quelle est la surface d’'un flocon de neige,

quelle est la dimension d’un mouvement brownien plan ? La mesure de Hausdorff est un
outil primordial pour ’études des fractales [7], dont nous rappelons le concept figure 5.

— _ T o

figure 5: représentation d’une fractale

La longueur de la fractale representée figure 5 est infinie, mais nous ne pouvons pas dire
pour autant qu’elle ait une aire. Nous voulons disposer d’une quantité qui caractérise cet
ensemble et qui étende les notions classiques de longueur et d’aire.

Soit F un sous—ensemble de R?. Son diameétre est

diam E = sup{|z —yl|2 : z,y € E},

oll | - | est la norme euclidienne. Prenons r un réel appartenant & [0,d]. Pour A C R, sa
mesure de Hausdorff r—dimensionnelle est

H"(A) = sup inf { Z(diamEi)r cAC U E;,sup diam F; < 5}.
§>0 1 o i€l

La dimension de Hausdorff de I'ensemble A est alors égale a la quantité
dimpyg A = sup{r: H"(A) = co}.

Meéme si r est la dimension de A, H"(A) peut prendre les valeurs 0 et +00. Pour toucher
au plus pres la structure d’un ensemble, il faut parfois généraliser la définition de la mesure
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de Hausdorff, en autorisant d’autres fonctions que les fonctions puissances. Si f est une
fonction continue de Ry dans Ry avec f(0) = 0, nous définissons

HI(A) = sup inf{Zf(diamEi) A C U E;,sup diam F; < 5}.
6>0 o1 il il

Nous pouvons par exemple prendre f(x) = 22/(Inz). La mesure H" correspond & la

mesure H/ avec f(z) = 2",

La mesure H! correspond & la notion de longueur dans le cadre euclidien. Si nous nous
placgons dans un milieu non isotrope, tel que la distance entre deux points x et y soit définie
par {(x — y) avec £ une norme quelconque, nous devons modifier comme suit la définition
de H' pour garder la correspondance avec la longueur:

H¢(A) = sup inf { > E):Ac | Eisup ¢(E) < 5},
>0 iel ier €l
ou {(E;) = sup{{(z —y) : v,y € E;}.
3.2 Nos résultats en percolations sous—critique. En régime sous—critique, la queue de la loi
du diametre des clusters est exponentiellement décroissante : dc > 0 tel que Vn € N,

P(diam C(0) > n) < exp(—cn).

Nous nous intéressons au probleme plus spécifique d’estimer la probabilité que le cluster
de l'origine, mis a 1’échelle %, soit proche d’une certaine forme. Nous y répondons en
établissant que le cluster de l'origine vérifie un principe de grandes déviations pour la
distance de Hausdorff.

Pour z dans R?, nous notons || le point de 74 situé juste “en dessous et a gauche” de
x. Soit ¢ la norme sur R? définie par

¢(x) =— lim llnP(O — |nx]).

n—oo n
Pour K un compact de R%, nous posons

T { H%(K ) sile compact K est connexe et contient 0

+o00  sinon.

Nous appelons énergie de K la quantité Z(K). La distance de Hausdorff entre deux com-
pacts K1 et Ko est définie par

Dy (K1, K3) = max { ereal){(l d(z1, Ks), xrglea%Q d(zs, Kl)}.

Nous notons K pour l’ensemble des compacts de R?. La distance de Hausdorff induit une
topologie sur I’ensemble K.
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THEOREME 2. Soit p < p.. Pour tout borélien U de K,

—inf {Z(K): K ELO{} < liminfllnP(C(O)/n ceU)

n—oo N

1
< limsup — In P(C(0)/n € U)

n—oo N

< —inf{Z(K) : K € U}.

La prochaine étape sera de démontrer ce résultat pour la percolation FK.

3.3 Les squelettes. Pour prouver le principe de grandes déviations, nous approximons les
clusters par des ensembles de segments appelés squelettes, voir figure 6.

figure 6: un squelette

Pour la borne inférieure, nous prenons un squelette S proche pour la distance de Haus-
dorff de I' et tel que Z(S) < Z(I'). Ensuite, pour tout segment [z, y| de S, nous imposons
que nx soit connecté a ny par un chemin ouvert qui reste proche du segment [nx, ny|. Grace
a 'inégalité FKG, la probabilité de cet événement est supérieure a exp(—nZ(S)). Nous
montrons ensuite que le cluster contenant ces chemins ouverts reste proche de I’ensemble
I.

Pour la borne supérieure, nous utilisons l'inégalité BK. Si le cluster de 0 n’est pas
dans un ensemble de niveau de la fonction de taux, alors tous les squelettes proches de
ce cluster ont une certaine énergie. Pour pouvoir conclure, il faut disposer d’un controle
sur ce nombre de squelettes. Ceci est réalisé en imposant une longueur minimale pour les
segments du squelette.

3.4 La forme typique d’un grand cluster en régime sous—critique. Peu de choses sont
connues a son sujet. Contrairement au régime sur—critique, notre principe de grandes
déviations ne nous fournit aucun controéle sur le cardinal du cluster de I'origine. Il n’est de
plus pas certain qu’un cluster de cardinal n ait en général un diametre de ’ordre de n.
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J’ai réalisé la simulation suivante sur un ordinateur: prenons un carré de taille 400 x 400,
et fixons la configuration de départ de telle sorte que toutes les arétes soient ouvertes. A
chaque cycle, prenons aléatoirement une aréte. Si elle est fermée, elle devient ouverte
avec probabilité i (nous prenons arbitrairement ce parametre qui est inférieur a % le point
critique de Z?). Si elle est ouverte, nous vérifions que sa fermeture ne va pas faire descendre
le cardinal de C'(0) en—dessous de 300. Si le cluster de 'origine reste suffisamment gros
malgré la fermeture, nous fermons cette aréte avec probabilité %, sinon nous la laissons
ouverte. De cette maniere, le cluster C(0) a toujours un cardinal supérieur a 300. Les
figures obtenues ont un aspect tres irrégulier, de type “fractale”.

Il faudrait réussir a donner une notion a la dimension fractale de C'(0), si tant est qu’elle
existe. Un premier pas serait d’estimer la variable diam C'(0) conditionnellement au fait
que le cardinal de C'(0) est plus grand que n. Par exemple, trouver le plus grand c tel que

P(diam C(0) > n®||C(0)] > n) — 1, lorsque n — oco.

4 Les grands clusters sont distribués comme un processus de Poisson

4.1 Le processus de Poisson spatial. Des points sont lancés au hasard dans I’espace euclidien
R?. Pour un des lancers w, notons N(w, A) le nombre de points compris dans ’ensemble
A C RY. La variable N(A) est donc une variable aléatoire discréte prenant les valeurs
0,1,...,00. La famille des variables aléatoires {N(A): A € B} ot B est 'ensemble des
boréliens de R¢, est un processus ponctuel de R¢.

On appelle processus de Poisson homogene sur R? d’intensité A un processus ponctuel
sur R? tel que, pour toute famille {Ai 1< < k} de sous—ensembles mesurables de R%:

(i) N(A;) est une variable de Poisson de parametre AL (A;)

(i4) la famille {N(A;) : 1 <i <k} est une famille de variables aléatoires indépendantes.
Cette présentation du processus spatial de Poisson est extraite de [2].

Considérons un processus de Bernoulli indexé par Z? d’intensité p’. En mettant le
réseau Z¢ & 1’échelle %, le processus de Bernoulli induit un processus ponctuel sur R? :
pour A C R, nous notons N(A) le nombre de points de Z¢ compris dans nA. En faisant
tendre p’ vers 0 et n vers 'infini de telle sorte que np’ — A, la suite de processus ponctuels
sur R? converge en loi vers un processus de Poisson sur R? d’intensité \. Le processus de
Poisson est ainsi caractéristique de la distribution des événements rares dans ’espace.

4.2 Le processus des grands clusters finis. Dans le régime surcritique de la percolation
Bernoulli, les grands clusters finis sont des objets rares. Il existe ainsi une constante ¢ > 0
telle que

. 1
nh_)ngo T In P(n? < |C(0)] < ) = —c. (3)
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Cela signifie que pour voir dans une boite un cluster de taille plus grande que n et ne
touchant pas les bords, il faut prendre une boite de taille exp(cn(d_l)/ 4). Cette taille étant
tres largememt supérieure a la taille des clusters considérés, ces clusters ressemblent a des
points lorsque nous ramenons cette boite a une boite de taille 1. La discussion précédente
nous laisse a penser que ces points sont distribués comme un processus de Poisson.

Nous étudions le processus pontuel défini comme suit. Soit C' un cluster fini. Son centre

de gravité est
1
MC = \‘— xJ,
ol 2

ot |y] représente le point de Z? en dessous et & gauche de y. Soit A une boite et n un
entier. Nous définissons un processus X sur A par

X(2) { 1 si x est le centre de gravité d’un cluster fini de cardinal > n
€Tr) =

0 sinon.

Pour Y processus sur A a valeurs dans N, la distance de variation totale entre X et Y est
1£(X) = LV)llry = sup {|P(X € A) = P(Y € A)], A € {0,1}}

Soit A l'espérance du nombre de points = de A tels que X (z) = 1. Nous prouvons le
résultat suivant:

THEOREME 5. Soit p > p.. Il existe une constante ¢ > 0 telle que : pour toute boite A,
si X est le processus défini par Uéquation (4), et siY est un processus de Bernoulli sur A
ayant les mémes marginales que X, i.e. P(Y(x) =1) = P(X(x) = 1) pour tout z de A,
alors pour n assez grand

I1£(X) — LOY)||7v < Aexp(—en(@= D/,

Comme corollaire, la loi du nombre de clusters finis de taille plus grande que n intersectant
A est proche d’une loi de Poisson de parameétre A si A n’est pas trop grand.

Nous démontrons en fait le Théoreme 5 pour la percolation FK, mais en imposant des
conditions supplémentaires sur p.

4.3 La méthode Chen-Stein. La méthode Chen—Stein permet de controler la distance de
variation totale entre deux processus X, Y sur A par des moments de second ordre. Ici Y
est un processus de Bernoulli ayant les mémes marginales que X. Pour x € A, nous notons

po=P(X(z)=1)=P(Y(z)=1),
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et pour y appartenant a A
Py = P(X(x) =1,X(y) = 1).

Nous définissons trois coefficients by, by et b3 :

by = Z Z PzPy,

zEA YyEB,

bQZZ Z Py,
z€A yeB\z

by =Y E|B(X(x) = palo(X(y).y ¢ B) ).
z€EA

Le théoreme 2 de [1] établit que

I1L(X) = LIY)|lzv < 2(2by + 2bp + 2b3) + > p3.
TzeEA

4.4 Schéma de la preuve. Le travail principal est de controler le terme p,,, i.e. les interac-
tions entre les différents clusters. Nous effectuons ceci de deux manieres différentes, suivant
que |z — yl|; soit de l'ordre de Inn ou plus grand. Dans le second cas, nous supposons la
ratio weak mixing property, qui permet de controler les interactions a distance et dont voici
la définition :

DEFINITION 6. La mesure ® a la ratio weak mixing property si il existe c1,puq > 0, tels
que pour tous les ensembles A, A C 72,

ol szwm

S c1 E e—H1|1’_y|1,

TENYEA

_ 1‘ E € Fo,F € Fa, ®(E)®(F) > 0}

Dans le cas ou |x — y|; est inférieur & KInn pour un K donné, nous modifions la
configuration pour relier les deux clusters dont les centres de gravité sont x et y (il faut
d’ailleurs controler la probabilité que deux clusters aient le méme centre de gravité). Cette
modification est réalisée de telle sorte que le nombre d’antécédants par cette application
soit borné par une puissance de n. Nous la représentons figure 7.
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figure 7: les deux clusters sont reliés

5 Une étude sur la percolation orientée en dimensions supérieures a trois

5.1 La percolation orientée. Nous étudions & présent une autre structure de graphe sur Z<,
dans laquelle les arétes de Z? sont toutes orientées dans le sens positif. Nous représentons
figure 8 le graphe orienté Z2.

Les arétes sont ouvertes avec probabilité p, indépendamment les unes des autres. Il y
a percolation dans le graphe orienté s’il existe un chemin infini orienté d’arétes ouvertes.
Pour un point x de Z%, le cluster de x, noté C(x,w) ou C(z), est I’ensemble des points de
Z% que l'on peut atteindre & partir de z. La densité de percolation est

0(p) = P, (0 — o),

et le point critique de ce modele est

—

Pe = sup{p: 6(p) = 0}.

Le point critique p. est compris strictement entre 0 et 1, et de plus p. > pe.
Un cluster infini ne remplit pas tout I’espace comme dans le cas non—orienté, mais
ressemble plutot & un cone [6], appelé cone de percolation.

5.2 Principe de grandes déviations en percolation orientée. Dans le cadre non—orienté, un
principe de grandes déviations a été prouvé, qui a permis d’estimer la probabilité qu’'un
cluster soit fini et de cardinal supérieur a n (voir [3]), et de connaitre la forme typique d’'un
tel cluster. Nous démontrons le principe de grandes déviations dans le cas de la percolation
orientée.



INTRODUCTION 21

figure 8: le graphe orienté de Z?

Nous définissons une tension de surface 7, a laquelle nous adjoignons le cristal de Wulff
W, correspondant, dont nous rapellerons la définition. Soit A un borélien de R¢. Son
énergie de surface Z(A) est définie par

Z(A) = sup {/Adivf(a:)dx fe Ccl(Rd,WT)},

ott CH(RY, W,) est 'ensemble des fonctions C! définies sur R? & valeurs dans W, ayant un
support compact et div est 'opérateur usuel de divergence. Cette expression de ’énergie
de surface est équivalente par la formule de Stokes a ’écriture plus usuelle suivante :

T(A)= [ rlwa@)ar’ @),

avec 0* A représentant la frontiere “réguliere” de A et pour z appartenant & 0*A, v4(z)
est le vecteur normal extérieur a A en x.

Nous notons M(R%) pour I’ensemble des mesures boréliennes o—finies sur R%. Nous
le munissons de la topologie faible : c’est la topologie la plus grossiere pour laquelle les
fonctions linéaires

yeM(Ri)e/fdy, f € C.(R% R)

sont continues, ot C,(R? R) est I’ensemble des applications continues de R? vers R ayant
un support compact. Nous définissons une énergie de surface Z sur M(Ri) en posant

Z(v) = Z(A) si v € M(RZ) est la mesure 0(p)14 avec A un borélien, et sinon Z(v) = +o0.

THEOREME 7. Soitd > 3 et p > p,.. La suite des mesures aléatoires définies par

1
Co=—7 D> 0z

x€C(0)
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d—1

vérifie un principe de grandes déviations sur M(Ri), de vitesse n et de fonction de

taur Z, I.E., pour tout borélien M de M(Ri),

° 1
—inf{Z(v) : v € M} < liminf ——In P(C,, € M)

n— oo nd

< lim sup In P(C, € M) < —inf{Z(v) : v € M}.

n—oo

nd—1

L’un des principaux problemes vient du fait que la tension de surface 7 que nous définissons
pour ce modele n’est pas strictement positive sur toute la sphére S%!. De plus, les
clusters ne correspondent plus a des composantes connexes du graphe, et cela entraine
quelques complications lorsque nous manipulons des unions de clusters dont les cardinaux
ne s’additionnent plus.

La borne supérieure est également valide en dimension deux, au contraire de la borne
inférieure. La construction pour la borne inférieure utilise des chemins de longueur n, dont
la probabilité de I'ordre de exp(—cn) n’intervient pas dans les estimés a la condition que
la dimension d soit supérieure ou égale a trois.

5.3 Autres résultats en percolation orientée. Le résultat suivant est un corollaire du principe
de grandes déviations du théoreme 7.

THEOREME 8. Soit d > 3 et p > p,.. Il existe une constante ¢ > 0 telle que

. d

nh—>Holo | In P(n® < |C(0)] < 00) = —c.
A c6té du principe de grandes déviations, nous prouvons que la fonction de connectivité

décroit exponentiellement vite en dehors du cone de percolation :

THEOREME 9. Soit d > 3 et p > p.. Soit x n’appartenant pas au cone de percolation.
1l existe alors ¢ > 0 tel que
P(0 — nz) < exp —cn.

5.4 Les événements blocs. Nous orientons notre réseau de telle sorte que les arétes soient
dirigées vers le haut. Cela revient en dimension deux & faire une rotation d’angle 7/4. Soit
K un entier. Pour z appartenant & Z¢, nous notons B(z) la boite | — K/2, K/2]* + Kz.
Nous définissons un événement qui décrit ’expansion horizontale des clusters.

Soit [ un entier > 0. Soit D, ’ensemble

Dy(z,1) = ( |J {z+iea}) U( | {z+leate}).

0<i<l 1<d—1
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N I VA

Kl

le cluster de y inter-
secte toutes les boites
représentées - b

figure 9: L’événement R

Nous posons alors

R(B(z),1) = {Vy tel que C(y) N B(z) # 0 et |C(y)| > K/2,
nous avons Vz € Dy(z,1),C(y) N B(z) # 0},

comme représenté sur la figure 9.
Nous prouvons que pour [ assez grand,

P(R(B(z),l)) - 1 lorsque K — oo.

Pour comprendre l'intérét de cet événement, définissons une nouvelle structure de graphe
L4 sur Z¢. Nous mettons une aréte orientée de x vers y pour tout couple (z,y) tel que
y € Dy(z,1). Grace aux arétes du type (z,z + leq £ ;) pour 1 <14 < d — 1, la stucture de
L4 est suffisamment riche pour que le point critique de la percolation par site sur ce graphe
soit strictement inférieur a 1. Nous disons maintenant qu’un site x de L4 est occupé si
nous avons ’événement R(B(z),1). Si (zg,...,z,,) est un chemin orienté de sites occupés
dans LY, et si y € Z% est tel que son cluster intersecte B(z,) et |C(y)| > K/2, alors le
cluster de y intersecte toutes les boites B (gj) pour 0 < 5 <n.

5.5 Le cristal de Wulff. Soit 7 une fonction continue de S%~1 dans R,. Le cristal de Wulff
associé est défini par

W, ={zeR?: 2w < 7(w) for all w in 41},

C’est un ensemble fermé, borné et convexe.
Dans les modeles de percolation, la fonction 7 représente le colit d’une surface d’arétes
fermées s’appuyant sur les bords d’un hyper-rectangle. Elle ne dépend que du vecteur
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normal a cet hyper—-rectangle. En percolation classique, le cristal de Wulff contient 0 en
son intérieur, et sa forme varie de la sphere lorsque p est proche de p., a I’hypercube lorsque
p tend vers 1. Dans le modele de la percolation orientée, le cristal de Wulff est inclus dans
un cone et présente une singularité en 0.

Le cristal de Wulff correspond a la forme typique des grands clusters finis en percolation
non-orientée. Pour obtenir ce résultat, il faut disposer d’un principe de grandes déviations
et savoir que le cristal de Wulff est I'unique solution d’un principe variationnel. Le théoreme
7 fournit la premiere partie. Malheureusement, le probleme variationnel de Wulff n’est
résolu que pour des fonctions 7 strictement positives. Il faudra donc reprendre la résolution
de ce probleme dans notre cas pour pouvoir obtenir le cristal de Wulff comme forme d’un
grand cluster fini.

6 La percolation a orientation aléatoire

Durant cette these je me suis intéressé au modele a orientation aléatoire décrit ci—apres.
Cette recherche n’a pas abouti a montrer qu’il y a percolation dans ce modele des que la
symétrie est brisée.

Dans le graphe Z2, nous orientons les arétes positivement avec probabilité p, et négative-
ment avec probabilité 1 — p. Nous en donnons une réalisation figure 10.

figure 10: des arétes orientées aléatoirement

Lorsque p = 1/2, en comparant avec le modele classique, nous nous apercevons qu’il
n’y a pas percolation. Que pouvons—nous dire lorsque p > 1/27 Par comparaison avec
le modele orienté, il y a percolation lorsque p > p.. Il est en fait conjecturé qu’il y a
des chemins orientés infinis des que p > 1/2. Des simulations numériques semblent le
confirmer. En introduisant le dual du processus a orientation aléatoire, nous pouvons
montrer que le processus n’est pas sous—critique [10].

L’une des difficultés de ce modele est que nous ne disposons plus de I'inégalité FKG.
Cela peut étre résolu comme dans [10] en remplagant chaque aréte de Z? par deux arétes
orientées en sens contraire. L’aréte qui est dans le sens positif est ouverte avec probabilité
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p, celle qui est dans le sens négatif est ouverte avec probabilité 1 — p. En ce qui concerne
I’existence de chemins infinis, les deux modeles sont équivalents. Cependant des questions
demeurent spécifiques au modele a orientation aléatoire. Par exemple, 'inégalité “anti—
FKG” suivante devrait étre valide : pour tout z, y, z de Z?2,

Pl —y,y —2) < P(x = y)Py — 2).

7 Organisation de la these

Chacun des chapitres suivant est un article rédigé en anglais. Le chapitre 2 contient
I’article “Surface order large deviation for 2D FK percolation and Potts models”, qui est un
travail réalisé en collaboration avec Réda—Jiirg Messikh et correspond a la section 2 de ce
chapitre introductif. Le chapitre 3 contient I'article “A large deviation result for Bernoulli
percolation” et correspond a la section 3. Le chapitre 4 est constitué de I'article “Poisson
approximation for large finite clusters in the supercritical FK model” et correspond a la
section 4. Le chapitre 5 contient I'article “Surface large deviations for supercritical oriented
percolation” et est consacré a I’étude de la percolation orientée en dimensions supérieures
a trois.

Cette these a été rédigée en utilisant les logiciels emacs et ams—TEX. Les deux livres
que j’ai utilisés pour I'utilisation de TEX sont celui de R. Séroul [15] et le TEXbook de D.
E. Knuth [12], ainsi que sa traduction frangaise réalisée par J.—C. Charpentier.
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Abstract: By adapting the renormalization techniques of Pisztora, [32], we
establish surface order large deviations estimates for FK-percolation on Z?2
with parameter ¢ > 1 and for the corresponding Potts models. Our results
are valid up to the exponential decay threshold of dual connectivities which is
widely believed to agree with the critical point.

Keywords: Large deviations, FK-percolation, Potts models.
1991 Mathematics Subject Classification: 60F10, 60K35, 82B20, 82B43.

1 Introduction

In this paper we derive surface order large deviations for Bernoulli percolation, FK-
percolation with parameter ¢ > 1 and for the corresponding Potts models on the planar
lattice Z2.

In dimension two, surface order large deviations behaviour and the Wulff construction
has been established for the Ising model [15, 16, 23, 24, 25, 26, 30, 31, 33, 34, 35, 36|,
for independent percolation [3, 5] and for the random cluster model [4]. These works
include also more precise results than large deviations for the Wulff shape. They are
obtained by using the skeleton coarse graining technique to study dual contours which
represent the interface. In higher dimensions other methods had to be used to achieve the
Wulff construction, [8, 10, 11, 12], where one of the main tools that have been used was
the blocks coarse graining of Pisztora [32]. This renormalization technique led to surface
order large deviations estimates for FK-percolation and for the corresponding Potts models
simultaneously. The results of [32], and thus the Wulff construction in higher dimensions,
are valid up to the limit of the slab percolation thresholds. In the case of independent
percolation, this threshold has been proved to agree with the critical point [21] and recently
it has also been proved in the case ¢ = 2 [9]. Otherwise, it is believed to be so for all the
FK-percolation models with parameter ¢ > 1 in dimension greater than two.

Our aim is to import Pisztora’s blocks techniques [32] to the two-dimensional lattice
as an alternative to the use of contours. It is also worth noting that Pisztora’s renor-
malization technique forms a building block that has been used to answer various other
questions related to percolation [6,7, 28, 29]. The main point in our task is to get rid
of the percolation in slabs which is specific to the higher dimensional case. For this we
produce estimates analogue to those of theorem 3.1 in [32] relying on the hypothesis that
the dual connectivities decay exponentially. This hypothesis is very natural in Z?2, because
it is possible to translate events from the supercritical regime to the subcritical regime by
planar duality. For Bernoulli percolation, the exponential decay of connectivities is known
to hold in all the subcritical regime, see [17] and the references therein. For the random
cluster model on Z? with ¢ = 2 the exponential decay follows from the exponential decay of
the correlation function in the Ising model [13], and a proof has also been given when g is
greater than 25.72; see [19] and the references therein. Even if not proved, the exponential
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decay of the connectivities is widely believed to hold up to the critical point of all the
FK-percolation models with ¢ > 1. In addition to that, we use a property which is specific
to the two dimensional case, namely the weak mixing property. This property has been
proved to hold for all the random cluster models with ¢ > 1 in the regime where the con-
nectivities decay exponentially [1]. We need this property in order to use the exponential
decay in finite boxes [2].

2 Statement of results

Our results concern asymptotics of FK—measures on finite boxes
B(n) = (—n/2,n/2)* N 72,

where n is a positive integer. We will denote by R(p, ¢, B(n)) the set of these FK-measures
defined on B(n) with parameters (p,q) and where we have identified some vertices of the
boundary. For ¢ > 1 and 0 < p # p.(q) < 1, it is known [20] that there is a unique infinite
volume Gibbs measure that we will note ®2:9. It is also known that ®2:7 is translation
invariant and ergodic. In the uniqueness region, we will denote by 6 = 6(p, q) the density
of the infinite cluster. As the exponential-decay plays a crucial rule in our analysis, we
will introduce the following threshold®

py=sup{p:3c>0,Va VyeZ? dx < y] < exp(—clz —y|)}, (2.1)

where |z — y| is the £! norm and {x < y} is the event that there exists an open path
joining the vertex x to the vertex y.
By the results of [22], it is known that exponential decay holds as soon as the connec-
tivities decay at a sufficient polynomial rate. We thus could replace (2.1) by

pg =sup{p:3e >0,V VyeZ? di[zr —y <c/lx—yl)}.
We introduce the point dual to pg:

& _ Q(l_pg)
7 pg+Q(1_pg

) > pe(q),

which is conjectured to agree with the critical point p.(q).

Our result states that up to large deviations of surface order, there exists a unique
biggest cluster in the box B(n) with the same density than the infinite cluster, and that
the set of clusters of intermediate size has a negligible volume. To be more precise, we say

!The notation py comes from [19)].
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that a cluster in B(n) is crossing if it intersects all the faces of B(n). For [ € N, we say
that a cluster is [-intermediate if it is not of maximal volume and its diameter does exceed
l. We denote by J; the set of [-intermediate clusters. Let us set the event

K(n,el) = {EI! open cluster C,, in B(n) of maximal volume,

C,p is crossing, n=2|Cp,| € (0 —¢,0 +¢),

n2 Y 10) < g}

cel;
THEOREM 2.2. Let ¢ > 1,1 > p > p, and € € (0,0/2) be fized. Then there exists a
constant L such that

1
—oo < liminf — log O[K(n,e, L)°]

inf
n—oo 1 PcR(p,q,B(n))

1
< limsup — log sup O[K(n,e, L)°] <O0.
n—oo M PER(p,q,B(n))

This result, via the FK-representation, can be used as in [32] to deduce large deviations
estimates for the magnetization of the Potts model. We omit this as it would be an exact
repetition of theorem 1.1 and theorem 5.4 in [32].

Organization of the paper: In the following section we introduce notation and give
a summary of the FK model and of the duality in the plane. In section 1, we study
connectivity properties of FK percolation in a large box B(n) and establish estimates
that will be crucial for the renormalization a la Pisztora. In section 2, we introduce the
renormalization and proof estimates on the N-block process. In section 3, we finally give
the proof of theorem 2.2.

3 Preliminaries

In this section we introduce the notation used and the basic definitions.

Norm and the lattice: We use the £!—norm on Z2, that is, |z —y| = > im12 | —yil for
any x,y in Z2. For every subset A of Z? and i = 1,2 we define diam;(A4) = sup{|z; — v :
x,y € A} and the diameter of A is diam(A) = max(diam; (A), diamg(A4)). We turn Z2
into a graph (Z2,E?) with vertex set Z? and edge set E? = {{z,y};|z — y| = 1}. If 2 and
y are nearest neighbors, we denote this relation by = ~ y.

Geometric objects: A box A is a finite subset of Z? of the form Z? N [a, b] X [c,d]. For
r € (0,00)%, we define the box B(r) = Z* N I;=1 2(—r;/2,7;/2]. We say that the box
is symmetric if 71 = 7o = r, and we denote it by B(r). For t € RT, we note the set
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Ha(t) = {r € R? : r; € [t,2t],i = 1,2}. The set of all boxes in Z?, which are congruent to
a box B(r) with r € Ha(t), is denoted by By (t).
Discrete topology: Let A be a subset of Z2. We define two different boundaries:
- the inner vertex boundary: 0A = {x € A| Jy € A such that y ~ z};
- the edge boundary: 9°%9°A = {{z,y} € E?| 2z € A,y € A°}.

For a box A and for each i = £1,4+2, we define the ith face 9;A of A by 0,A = {z €
Al z; is maximal} for i positive and 9;A = {x € A| z}; is minimal} for i negative. A path
v is a finite or infinite sequence x1, xo, ... of distinct nearest neighbors.

FK percolation.

Edge configurations: The basic probability space for the edge processes is given by
Q = {0, I}EQ; its elements are called edge configurations in Z?. The natural projections
are given by pr : w € Q — w(e) € {0,1}, where e € E?. An edge e is called open in the
configuration w if pr.(w) = 1, and closed otherwise.

For E C E? with E # (), we write Q(E) for the set {0,1}%; its elements are called
configurations in E. Note that there is a one-to-one correspondence between cylinder
sets and configurations on finite sets £ C E?, which is given by n € Q(E) — {n} =
{w € Q| w(e) = n(e) for every e € E}. We will use the following convention: the set
Q is regarded as a cylinder (set) corresponding to the “empty configuration” (with the
choice E = ().) We will sometimes identify cylinders with the corresponding configuration.
For A C Z?, we set E(A) = {(z,y) : x,y € A, © ~ y}. Let Q4 stand for the set
of the configurations in A : {0, 1}E(4) and Q4 for the set of the configurations outside
A : {0, 1}E2\E(A). In general, for A C B C 7%, we set Q% = {0, 1}EBNEA) - Given w € Q
and E € E2, we denote by w(FE) the restriction of w to Q(E). Analogously, wg stands for
the restriction of w to the set E(B) \ E(A).

Given n € Q, we denote by O(n) the set of the edges of E? which are open in the
configuration 7. The connected components of the graph (Z2, O(n)) are called n-clusters.
The path v = (21, 29, ...) is said to be n-open if all the edges {z;,x;+1} belong to O(n).
We write {A < B} for the event that there exists an open path joining some site in A
with some site in B.

If V C Z? and E consists of all the edges between vertices in V', the graph G = (V, E) C
(Z2,E?) is called the maximal subgraph of (Z2?,E?) on the vertices V. Let w be an edge
configuration in Z? (or in a subgraph of (Z?,E?)). We can look at the open clusters in V
or alternatively the open V -clusters. These clusters are simply the connected components
of the random graph (V, O(w(E))), where w(F) is the restriction of w to E.

For A C B C Z?, we use the notation F g‘ for the o-field generated by the finite-
dimensional cylinders associated with configurations in Q4. If A = () or B = Z2, then we
omit them from the notation. Stochastic domination There is a partial order < in ) given
by w X W' iff w(e) < w'(e) for every e € E2. A function f : Q — R is called increasing if
f(w) < f(w') whenever w < w'. An event is called increasing if its characteristic function
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is increasing. Let F be a o-field of subsets of ). For a pair of probability measures p and
v on (2, F), we say that u (stochastically) dominates v if for any F-measurable increasing
function f the expectations satisfy u(f) > v(f). FK measures Let V C Z? be finite and
E = E(V). We first introduce (partially wired) boundary conditions as follows. Consider
a partition 7 of the set OV, say {Bj, ..., B,}. (The sets B; are disjoint nonempty subsets
of OV with U,_, , Bi = 0V.) We say that z,y € 9V are m-wired, if z,y € B; for an
i € {1,...,n}. Fix a configuration n € Qy. We want to count the n-clusters in V' in such a
way that 7m-wired sites are considered to be connected. This can be done in the following
formal way. We introduce an equivalence relation on V: z and y are said to be 7 - n-wired
if they are n-connected or if they are both joined by n-open paths to (or identical with)
sites 2’,y’ € OV which are themselves m-wired. The new equivalence classes are called
7 - m-clusters, or n-clusters in V' with respect to the boundary condition 7. The number of
n-clusters in V' with respect to the boundary condition 7 (i.e., the number of 7 - n-clusters)
is denoted by cl™(n). (Note that cl™ is simply a random variable). For fixed p € [0, 1]
and ¢ > 1, the FK measure on the finite set V. C 7?2 with parameters (p,q) and boundary
conditions m is a probability measure on the o-field Fy, defined by the formula

T 1 e —n(e cl™
Vi € Qy (I)V,p,q[{n}] — VAR <| | pn( )(1 —p)l 7( )) q 1 (77), (3.1)
Vv ee

where Z{"? is the appropriate normalization factor. Since Fy is an atomic o-field with

atoms {n},n € Qy, formula (3.1) determines a unique measure on Fy. Note that every
cylinder has nonzero probability. There are two extremal b.c.s: the free boundary condition
corresponds to the partition f defined to have exactly |0V classes, and the wired b.c
corresponds to the partition w with only one class. The set of all such measures called FK
(or random cluster) measures corresponding to different b.c.s will be denoted by R(p, ¢, V).
The stochastic process (pre)eer(v) : £ — Qv given on the probability space (2, F, ®779)
is called FK percolation with boundary conditions w. We list some useful properties of FK
measures with different b.c.s. There is a partial order on the set of partitions of V. We
say that m dominates «’,m > 7', if x,y 7’-wired implies that they are m-wired. We then

have <I>7‘T,/’p’q < @779, This implies immediately that for each ® € R(p, ¢, V),
(I)&p,q <P =< (1)1‘3,1941_

Next we discuss properties of conditional FK measures. For given U C V and w € €2, we
define a partition W (w) of U by declaring z,y € OU to be W (w)-wired if they are
joined by an wY-open path. Fix a partition 7 of V. We define a new partition of OU
to be m - WY (w)-wired if they are W (w)-wired, or if they are both joined by w{/-open
paths to (or identical with) sites z’,4y’, which are themselves m-wired. Then, for every
Fy-measurable function f,

P, WY (w D, ™D,
TP f|FY)(w) = " P @7 s, (3.2)
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Note that formula (3.2) can be interpreted as a kind of Markov property. A direct
consequence is the finite-energy property. Fix an edge e of E(V) and denote by Fi, the
o-algebra generated by the random variables {pry;b € E(V) \ {e}}. Then

o7 e is open |Fy](w) =

{ p if the endpoints of e are 7 - Wy -wired, (3.3)
3.3

p/[p+ q(1 — p)] otherwise.

The equality (3.2) leads to volume monotonicity for FK-measures. Let U C V, for every
increasing function g € Fy and &y € R(p, q, V), we have

o™yl < Bylg | FV] < 2p™g] Dy as.
7 lg) < @7 g] < @Y lg] < @,

Planar duality for FK-measures: Because of it’s importance in our note, we recall the
duality property for planar FK-measures, see for example [18]. To this end, we first begin
with the following simple but useful observation.

LEMMA 3.4. For all 0 < p < 1,q > 0 and for any finite box B C Z* we have that

o € Q£ O] = B o] [ 0t
e€cE(0(B))

PRrROOF. Each w € Qp is the concatenation of wgp and w?? and the result follows from
(3.2) by observing that c1"(w) does not depend on wpp and is equal to cI*(w?B). O
This observation states that:
- The o-algebras F?B and Fyp are independent under ®59.
- The law of wyp under @57 is the independent percolation of parameter p on E(9B).
- The law of w?P under @37 is the wired FK-measure on E(B) \ E(OB). To construct
the dual model we associate to a box B the set B C Z2 + (1/2,1/2), which is defined
as the smallest box of Z? + (1/2,1/2) containing B, see figure 1 below.
To each edge e € E(B) we associate the edge € € E(E) that crosses the edge e. Note
that {¢ € E(B):3e € E(B),eé=c¢} = E(B) \ E(dB).
This allows us to build a bijective application from Qp to Q%B that maps each original

configuration w € g into its dual configuration @ € Q%E such that
Vee E(B):w(e) =1—w(e).

And the duality property is:
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figure 1: A box and its dual
PROPOSITION 3.5. For all0 <p < 1,q> 0 and for all wy € Q%é we have that

5w € Qp O =wal] = RN g [l

where p is the dual point of p : p=q(1 —p)/(p+ q(1 —p)).

PROOF. First we observe that the number of connected components ¢(@) of the graph
G@) = (B,{¢ € E(B) \ E(8B) : &(¢) = 1} UE(IB)) is equal to cI“(@). Similarly the
number of connected components c(w) of the graph G(w) = (B,{e € E(B) : w(e) = 1}) is
equal to clf (w).

Also one may observe that the number of faces f(@) of G(&) is equal to clf (w). So that
by Euler’s formula we get

o (w)=c“(@)— [B|+|E@B)|+ > (@)

eeE(B)\E(8B)
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Thus, for all w € Q05 we have

clf (w w(e —w(e B)|—|B| cl* (@
@ [ pHO(1 - p)i© = gEODI-IBl @)

e€E(B)

II  plat—p)/p)*@.

€cE(B)\E(8B)

Finally, the parameter p such that ¢(1—p)/p = p/(1—D) is the one given in the proposition
and this concludes the proof. [J

COROLLARY 3.6. For any 0 < p < 1,q > 0, any Fp-measurable event A we have

SPIA] = 2 79[A),
where A = meQp:dwe A= naé} C Q%g is the dual event of A and p is given in
proposition 3.5.

PROOF. This is a direct consequence of proposition 3.5 and lemma 3.4. [
Remark When we translate an Fp-measurable event A into it’s dual A, we obtain an
event which is in .7-"]%3. Thus by lemma 3.4, ®27%[A] is independent of the states of the

edges in E(OB).

4 Connectivity in boxes

In this section we establish preliminary estimates on crossing events in boxes. We rely
on the exponential decay of the connectivities in the dual subcritical model. The usual
definition of the exponential decay is based on the infinite volume FK-measure ®2:%. But
we are concerned by asymptotics of finite volume measures and we would like to use the
exponential decay in finite boxes. In order to translate the exponential decay to the finite
volume measures we need a control on the effects of boundary conditions. As shown
in [1], the infinite FK-measure on Z? satisfies the weak mixing property as soon as the
connectivities decay exponentially. That is to say for all events A, B which are respectively
Fa measurable and Fr measurable with A,T" C Z? then |®L9[A|B] — ®29[A]| decreases
exponentially in the distance between A and I'. This weak mixing property implies, as
proved in [2], that we have exponential decay in finite boxes as soon as the exponential
decay for the infinite volume measure holds (p < py):

PROPOSITION 4.1. ([Theorem 1.2 of [2])] Let ¢ > 1 and p < py. There exists two
positive constants ¢ and X such that for all boxes A C Z? and for all x,y in A, we have
that

QP — y in Al < Nexp(—c|z — y|).
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In fact, theorem 1.2 of [2] is more general and applies to sets A which are not boxes and
to general boundary conditions. From this result, we get that

LEMMA 4.2. Let ¢ > 1 and p < py. There exists a positive constant ¢ such that for all
positive integers n and for | large enough, we have

sup Py [3 an open path in B(n) of diameter > 1] < n?exp(—cl).

PROOF. Let us fix n and [, then we have

sup I3 an open path in B(n) of diameter > []
neHz(n) .
<4n? sup  sup Dy [@ > 0B(,21) in B(n)]
neEHsz(n) x€B(n) -
<32n%l sup  sup sup Q)g’(’;’? [z <> y in B(n)]
n€Ha(n) z€B(n) yedB(x,2l) -

< 32An?lexp(—cl),

where we used proposition 4.1 in the last line. The result follows by taking [ large
enough. [J
As a first consequence of the exponential decay in finite boxes, we obtain:

LEMMA 4.3. For p > p, we have,

lim ®1:P90 < dB(n)] = 0(p, q).

PROOF. Let N < n, then
®LP10 ~OB(N)] — @410 — OB(N), 0 0B(n)]

=&31[0 — OB(n)] < @LP10 < IB(N)).

Now we estimate @é’g’g [0 OB(N), 0 <» 0B(n)]: by symmetry,

OLLU0 — OB(N), 0 B(n)] < 4DLP(0 < 9, B(N), 0« 0B(n)].
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Then for N large enough we have that

[ 3k > 03j €Z:3 an open |
_ 11
PLOSI0 < O1B(N), 0 OB (n)] <®F path from (~k + 5, 5)
oWNHggty | @)
< > exp(—e(N+k+[j])
k>0,j€Z
< exp(—cN),

for a certain positive constant c¢. The second inequality follows from lemma 4.2.
By taking the limit n — oo in (4.5) we get
®2.20 —~dB(N)] - de” N < lim inf &1P1[0 — 9B(n)]
< lim sup 4710 < 9B(n)] < ®2I[0 — IB(N)],

n—oo

finally by taking the limit N — oo, we get the desired result. [J

Next, we define events that will be crucial in the renormalization procedure. For this,
we introduce the notion of crossing. Let B C Z? be a finite box. For i = 1,2 we say that
a i—crossing occurs in B, if 0_; B and 0; B are joined by an open path in B. In addition
to that, we say that a cluster C' of B is crossing in B, if C' contains a 1-crossing path and
a 2-crossing path.

For n € Ha(n), we set

U(n) = {3! open cluster C* crossing B(n)}.

For a monotone, increasing function g : N — [0, 00) with g(n) < n, let us define

RI(n) = U(n) N

every open path v C B(n) with
diam(y) > g(n) is contained in C* [

And finally we set

0%(n) = R?(n) N {

C™ crosses every sub-box
Q € By(g(n)) contained in B(n)

The next theorem gives the desired estimates on the above mentioned events.
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THEOREM 4.6. Assume p > p,. We have

1
limsup — log  sup sup ®[U(n)°] < 0. (4.7)
n—oo T neHsy(n) PER(p,q,B(n))

Also, there ezists a constant k = k(p,q) > 0 such that liminf, . g(n)/logn > k implies

1
lim sup —— log sup sup ORI (n)°] < 0. (4.8)
n—oo 9(N) ~ nes(n) R (p,q,B(n)

There ezists a constant k' = K'(p,q) > 0 such that liminf, ., g(n)/logn > k" implies

1
limsup —— log sup sup ®[0%(n)°] < 0. (4.9)
n—oo 9(N) 7 nets(n) R (p,q,B(n)

Note that in dimension two, if there is a crossing cluster then it is unique.

PROOF.. As U(n)° is decreasing we have for every ® € R(p, q, B(n)) that

O[U(n)] < L2V (n)°]
< (I)é (n) [ﬂ 1-crossing for B(n)] + éf %[ﬂ 2-crossing for B(n)]
<

2 QP9 B(n) < 9,B(n) in B(n) \ 0B(n)],

the last inequality followAs from pAlanar dliality: if there is no 1-crossing in the original
lattice then 0_oB(n) «» 02B(n) in B(n) \ 0B(n) for the corresponding dual configuration.
The same argument works for the 2-crossing. Thus, we have that

D[U(n)] < 2@%’@’)‘][3 an open path in B(n) of diameter > n],

and (4.7) follows from lemma 4.2.
For the second inequality, let us note that

RI(n)° C Un)" U (U(ﬂ) R { H‘an open path v of B(ﬂ)‘With‘ }) |

diam(y) > g(n) not contained in C*

By (4.7), we only have to deal with the second term.
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We consider the dual event of

3 an open path « of B(n) with
Uln)ng Lo
diam(vy) > g(n) not contained in C*

which is fgi()ﬂ)—measurable. By the remark after corollary 3.6 we can consider all the

edges of E(OB(n)) as open. Then by proposition 11.2 of [17] there is a unique innermost
open circuit in B (n) containing + in its interior. From this circuit, we extract an open path
living in the graph (B(n), E(B(n))\E(0B(n))) of diameter greater than g(n): without loss
of generality, we can suppose that diam(y) = diam; () and that v <» 02 B(n). Among the
vertices of the dual circuit surrounding ~, let & be the highest vertex among the most on
the left, and let i be the highest vertex among the most on the right. Then there is an arc
joining 7 and 7 in (B(n), E(B(n)) \ E(8B(n))). This arc is of diameter larger than g(n).
Thus by lemma 4.2 there is a positive constant ¢ such that for n large enough we have that

3 an open path v of B(n) with
U(n)

® < n?exp[—cg(n)].

diam(y) > g(n) not contained in C*

Take a > 0 such that e > 1. Then for g such that g(n) > 2alogn/(ac— 1) we have

1 1
lim sup — log(n? exp[—cg(n)]) < ——,
msup — log(n” expl—cg(m)]) < —
which concludes the proof of (4.8).
To study O9(n), we remark that the number of boxes Q of Ba(g(n)) contained in B(n)
is bounded by 16n*. This implies that for every ® € R(p, ¢, B(n)) one gets
P[0Y(n)°] < ®[RY(n)°] +16n* sup  ®[F crossing in Q]
Q€Bx(g(n))
< ®[RY(n)°] + 16n*  sup @’;1&’3 [A crossing in Q]
Q€By(g(n))
< ®[RY(n)] 4+ 16n*  sup @gp’q[ﬂ crossing in Q.
Q€Bx(g(n))
To deduce the last inequality, we notice that {33 crossing in Q} is a decreasing event and
that all the @ € Ba(g(n)) are smaller than B(n), thus for all @ € Bs(g(n)) that are
included in B(n) we have that

OLP [ crossing in Q] < ®LP[A crossing in Q.

The first term in the r.h.s. has been treated previously. By (4.7) the second term is

bounded by n* exp[—cg(n)] for a certain positive constant ¢ and we conclude the proof as
before. [
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5 Renormalization

In this section we adapt the renormalization procedure introduced in [32] to the two
dimensional case. To do this, let N > 24 be an integer. =~ We say that a subset A of
72 is a N-large box if A is a finite box containing a symmetric box of scale-length 31V,
ie, if A = 7Z?n Hi:1,2(aiabi] where b; — a; > 3N for ¢ = 1,2. When A is a N-large
box, one can partition it with blocks of B(N). We first define the N-rescaled box of A:
AN) = [k € 7% | Tni(—N/2,N/2]? C A}; where T, is the translation in Z? by a vector
a € Z?. We turn AN into a graph by endowing it with the set of edges E(A(Y)). Then
we define the partitioning blocks:

- Ifk € AN\ OADN) then By = Tk (—N/2, N/2)%.
- If k € 9AY) then some care is needed in order to get a partition. In this case we define
the set
M) ={1€Z* |1~k Tnm(-N/2,N/2]* N A #£ 0,
Tha(~N/2, N/2J 01 A° £ 0},

and the corresponding blocks become

By =Tn(—N/2,N/2PU ) (Tm(=N/2,N/2* N A).
leM(k)

The collection of sets { By, k € AV} is a partition of A into blocks included in B(N),
see figure 2

k € A(N) ° ° L] L] ° ° ° ° °

figure 2: The partition of A
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In addition to the boxes { By, k € AV} we associate to each edge (k, 1) of E(A(N)) the
box Dy 1. More precisely, for (k,1) € E(AY)) such that

k-l =k — 1 =1,

j=1,2

we define ‘
m(l, k) = Tm([N/2]e!),

where (e, e(?)) is the canonical orthonormal base of Z? and |r| denotes the integer part
of r. The point m(l, k) represents the middle of the i-th face of B). Then we define the
box

D) = D1y = Trnax) (B([IN/4))).

Now we have all the needed geometric objects to construct our renormalized (dependent)
site percolation process on (AY) E(AM))). This process will depend on the original FK-
percolation process only through a number of events defined in the boxes (By)yeav) and
(De)ecr(a)- These events are:

- For all (k,1) € E(AM)) such that Y-, , [k; — ;| = k; = 1; = 1, we define

Ky = {3 i-crossing in Dy}, Ky = ﬂ Ky j-

- For allie AN we define
R; = {3! a crossing cluster C} in B;}N
N
{every open path v C B; with diam(y) > % is included in Cj'}.

Finally our renormalized process is the indicator of the occurrence of the above men-

tioned events:
1 on Ry N Ky

vk e AN Xy =
0 otherwise

We also call the process { Xk, k € A(N)} the N-block process and whenever Xy = 1, we say
that the block By is occupied. As explained in [32], the N-block process has the following
important geometrical property: if CV) is a cluster of occupied blocks then there is a
unique cluster C' of the underlying microscopic FK-percolation process that crosses all the
blocks {Byx, k € C™)}. Moreover, the events involved in the definition of the N-block
process become more probable as the size of the blocks increases. This leads us to the
following stochastic domination result:
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PROPOSITION 5.1. Let ¢ > 1 and p > p,. Then for N large enough, every N-large
box A and every measure ®™ € R(p, q, ), the law of the N-block process (Xi)jcav) under
®™, stochastically dominates independent site percolation on AN) with parameter p(N) =
1 — exp(—CV/N), where C is a positive constant.

PROOF. According to [27], it is sufficient to establish that for N large enough and for
all i € AY) the following inequality holds:

P"[X;=0]o(Xj:]j—i>1)] <exp(—~CVN). (5.2)

In what follows, we use the same notation for positive constants that may differ from
one line to another. In order to prove (5.2), we consider the set

E; = B;U UDiv.ﬁ
jei

as drawn in figure 3.

.Di’j
B;

figure 3: The region Ej;

The o-algebra Fx* is finer than o(Xj : |j — i| > 1), thus it suffices to prove (5.2) for
7 [X; =0 | F']. Clearly Fi* is atomic and its atoms are of the form {1}, where n € Q.
So let us consider such a n € in, then we have that

OT[Xi=0|n) <Y OT[K{; | n]+ ©7[R] | 7). (5.3)

ji

For each i,j € AN) such that i ~ j, let us fix o’ € Qg:, n' € Qg:’j in order to construct

ny’ € QY and " € Qf”, which are the concatenation of  with 7/, respectively with n":

my'(e) =1'(e) for e € E(E;) \ E(B;), nn'(e) =n(e) for e € E(A) \ E(Ey);
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and
" (e) =n"(e) for e € E(E;) \ E(Dyj), nn"(e) =n(e) for e € E(A) \ E(E;).
Then, by theorem 4.9, there exist an integer Ny > 0 and a real number C' > 0 such that
for all N > Ny
Bi,
O7[R{ | ] = @™ WA (I [R) < exp(~CVN),
Di,j 1"
O™[K{; | ) = @™ Wa TOMOKL ] < exp(~CN).

Finally, by averaging over all the " and n” we get from these estimates that

®"[X; =0 | 7] < 4exp(—CN) + exp(—CVN)
S eXp(—CN1/2),

for N large enough. [

We end this section by proving a useful estimate on the renormalized process. Let B(n)
be a N-large box, consider its N-partition and the corresponding N-block process. The
rescaled box B(n)®™) will be denoted by B. For § > 0 we consider the event

(5.4)

3! crossing cluster of blocks C
Z(n,o,N) = .

in B with |C| > (1 — 6)|B]

Remark: The event Z(n,d, N) has the following interesting property: the presence of
the crossing cluster of blocks C induces a set of clusters {C; crossing for B; : i € C} in the

original FK-percolation process. These clusters are connected and form a crossing cluster
C for B(n).

PROPOSITION 5.5. Letp > p, and g > 1. Then for each 6 > 0 and N > 0 large enough

1
lim sup — log sup ®[Z(n,d, N)°] < 0.
n—oo T ®eR(p,q,B(n))

PROOF. By theorem 1.1 of [14], there exists py € (0, 1) such that for all p > py,

A crossing cluster C with

Cl = (1-6)|B(m)

1 in
limsup —log  sup é”&m)dfiie

m—oo M meH,(m)

<0. (5.6)
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Now choose N such as in proposition 5.1 and such that p(N) > pg. Then by proposition
5.1 and by (5.6) we have that

1 A crossing cluster of blocks C
lim sup— log sup d _
n—oo M ®eR(p,q,B(n)) | in B with |C| > (1 —J)|B]|

A crossing cluster C with

(N), indpt <0. 0

,site

1
< limsup — log P]§

n—oo N

IC| > (1-9)/B]

6 Proof of the surface order large deviations

In this section we finally establish theorem 2.2. We begin by stating two lemmas. The
first one deals with large deviations from above. Let B(n) denote the set of clusters in
B(n) intersecting 0B(n). Note that if the crossing cluster exists then it is in B(n).

LEMMA. Let ¢ >1 and p € [0,1]. For § >0, we have

1
lim sup — log sup o E IC| > (0 +6)n*| <0.

We omit the proof as it would be an exact repetition of Lemma 5.1 in [32].
The second lemma is about large deviations from below and is of surface order, in
contrast to lemma 6.0. In section 3, we introduced the event
U(n) = {3 open cluster C* crossing B(n)}.
For § > 0, let us define the event

V(n,8) = Un) N {|C*] > (6 — 6)n?).

LEMMA 6.1. Let ¢ > 1 and p > py. Then for each § > 0,

1
lim sup — log sup o[V (n,d)°] <O0.
n—oo T ®eR(p,q,B(n))
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PrOOF.. From lemma 4.3, we have the inequality:

lim inf &

n—oo

b |INT2>, ] =6
C;diam(C)>VN

Take N such that q)é(N)[ZC;diam(C’)zx/N |IC|] > (0 — §/4)N?, let B(n) be a N-large box
and consider its N-partition and the corresponding N-block process. The rescaled box
B(n)™) will be denoted by B. By proposition 5.5, it suffices to give an upper bound on
the probability of the event

W (n) = Z(n,8/3, N)n{|C| < (6 — §)n?},

where NV is large enough and Z(n, d/8, N) is defined in (5.4). By remark 5.4, on the event

Z(n,d/8, N) the crossing cluster C contains all the Bj-crossing clusters Cj, where i € C and
{Bi, i € B} are the partitioning N-blocks. For each i € B, set Yi = 3. jiam o>n1/2 [C],

where C is a cluster of Bj. Since for i € (N}, Y; = |5’i|, we obtain the following lower bound

C1=Y vi=> V- > |B|>ZY (6/2)n

icC ieB ieB\C icB

where B= B \ OB. Hence on W (n) we have that Z‘e]%Yi < (0 —§/2)n%. Denote by E(n)
the event that for each i € B every edge in 0°4°B; is closed. Observing that Z'E%Yi is

an increasing function, we have for each ® € R(p,q, B(n)),

BW (n)] < %y | D Yi < (6—5/2)n*| E(n)| <exp(—C(3,6,N)n?),

o
ieB

where C(6,0, N) is a positive constant. The last inequality is an application of Cramér’s

large deviations theorem, as the variables (Y;,i € B ) are i.i.d. with respect to the con-
ditional measure, with an expected value larger than (6 — §/4)N2. This completes the
proof. [J

Proof of Theorem 2.2 First we prove the upper bound. By lemma 6.0, we can replace
the condition n72|C,,| € (0 — €,0 + ¢) in the definition of K (n,¢,1) by n=2|Cy,| > (0 — ¢)
and denote the new but otherwise unchanged event by K'(n,¢,1). Set

T(n,e,N) = Z(n,e/4, N)n{|C| > (8 — £)n?},
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where Z(n,e/4, N) is defined by (5.4). Fix € < #/2 and N such as in proposition 5.5 and
such that VN > 32/e.
Then by proposition 5.5 and by lemma 6.1, we have

1
lim sup sup —log ®[T'(n,e, N)] < 0. (6.2)

n—oo ®eR(p,q,B(n)) 1
Set n > 64N /e and L = 2N, we claim that T'(n,e, N) C K'(n,e, L). This fact, together
with (6.2), implies the upper bound. Therefore, to complete the upper bound we will proof

that the cluster C' of T'(n,e, N), is the unique cluster with maximal volume and that the
L-intermediate clusters have a negligible volume. So suppose that T'(n,e, N) occurs. As
e < 0/2 we have that L? < (6 — £)n?, thus the clusters of diameter less than L, have a

smaller volume than C. To control the size of the clusters different from C and of diameter
greater than L, we define the following regions:

VieB: G;={zeB;|dist(z,0B;) <VN} and Q; = B\G;i,

¢=JGi,

icB
as shown in figure 4.
n > 64N /e
N\
N
N
S = [ 2VN > 64/¢
N
N N
N
AN AN AN
AN N\ AN
N
Qi N N N
Gi /k\ oo o0
N N
N N
N
N AN

figure 4: The regions G; and Q;

Then, as n > 64N /e, we have
€

2
1"

Z |B;| < 16nN <
icoB
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and, as VN > 32/¢

n2

8§—= <
— \/N_

Take a cluster C' of diameter greater than L and different from C. Then C touches at least
two blocks. However, it may not touch the set UQ; where i runs over 6; otherwise we
would have that diam(C' N B;) > /N for an occupied block Bj, and therefore we would
have that ¢ = C. Hence all the clusters of diameter greater than L must lie in the set
G U (Ujege Bi). Let us estimate the volume of this set:

5
—n?.
4

(U Bil < X 1Bl + M€ < o
ieCc 1€8B
Thus

Gu( Byl < %nQ.

ieCe

Since (3e/4)n? < (0 — &)n2, C is the unique cluster of maximal volume and the L-
intermediate class J;, has a total volume smaller than (3¢/4)n?. This proves that

T(n,e,L) C K'(n,e, L)

and completes the proof of the upper bound.

For the lower bound, it suffices to close all the horizontal edges in B(n) intersecting the
vertical line x = 1/2. This implies that there is no crossing cluster in B(n). By (3.3) and
FKG inequality, the probability of this event is bounded from below by (1 — p)™. O

We would like to thank R. Cerf for suggesting the problem and for many helpful dis-
cussions.
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Abstract: We consider subcritical Bernoulli percolation in dimensions two
and more. If C' is the open cluster containing the origin, we prove that the
law of C' / N satisfies a large deviation principle with respect to the Hausdorff
metric.

1991 Mathematics Subject Classification: 60K35
Keywords: subcritical percolation, large deviations

1 Introduction

Consider the cluster C' of the origin in the subcritical phase of Bernoulli percolation in
Z%. This is a random object of the space K. of connected compact sets in R?. We let Dy
be the Hausdorff distance on IC.. Let

1
£= lim N In P(0 is connected to Nz).

N—oo

be the inverse correlation length. Assume that H% is the one-dimensional Hausdorff mea-
sure on R constructed from &.

In the supercritical regime, large deviation principles have been proved for the law of
C/N [3,4]. In two dimensions, it relies on estimates of the law of dual clusters, which are
subcritical. More precisely, let I' be a contour in R? enclosing an area. The probability
that a dual cluster is close for the Hausdorff distance to NT' behaves like exp(—N ’H%(F))
But what happens if we consider more general connected sets than contours 7

In this note we establish a large deviation principle for the law of C'//N in the subcritical
regime in dimensions two and more. Let K. denote the set of connected compact sets of
R? quotiented by the translation equivalence. The usual distance between compact sets is
the Hausdorff distance. We denote it by Dy when considered as a distance on C.. Let
C be still the open cluster containing the origin. Write C' for the equivalent class of C' in
IC.. Let P be the measure and p. be the critical point of the Bernoulli percolation process.
The formulation of our large deviation principle is the following:

THEOREM 1.1. Let p < p.. Under P, the family of the laws of (C/N)n>1 on the space
K. equipped with the Hausdorff metric Dy satisfies a large deviation principle with good
rate function H% and speed N: for every borel subset U of IC.,

- _ 1 _ —
—inf{H¢(U) : U € interior(d)} < liminf ~ InP(C/N €ll)

N—oo

1 — _
< lim sup NG In P(C/N € U)

N—o0

< —inf{H¢(U) : U € closure(U)},
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where the interior and the closure are taken with respect to the Hausdorff metric on ..

The proof of the lower bound relies on the FKG inequality; we use it to construct a
cluster close to a given large connected set with a sufficient high probability. Concerning
the upper bound, the proof is based on the skeleton coarse graining technique and on the
BK inequality; it follows the lines of the proof in [3] with slight adaptations.

We underline that in supercritical percolation the large deviation principles lead to
estimates of the shape of large finite clusters. In fact, there exists a shape called the Wulff
crystal, which minimizes the rate function under a volume constraint. Unfortunately, the
large deviation principle does not allow us to describe the typical shape of a large cluster
in the subcritical phase. In this regime, computing simulations of large clusters show very
irregular objects.

We note furthermore that our main result has been obtained independently by Kov-
chegov, Sheffield [11]. Their approach is quite different and makes use of Steiner trees to
approximate connected compact sets.

In the next section we recall the definition and basic results of the percolation model.
Then we define the measure H% and the space K.. Geometric results required about
connected compact sets are given in Section 4. In Section 5 we introduce skeletons, and
use them to approximate connected compact sets. The proof of the lower bound follows in
Section 6. The coarse graining technique is given in Section 7, and the proof of the upper
bound follows in Section 8.

2 The model

We consider the site lattice Z¢ where d is a fixed integer larger than or equal to two. We
use the euclidian norm |. |y on Z¢. We turn Z¢ into a graph L by adding edges between
all pairs x, y of points of Z¢ such that |z — y|o = 1. The set of all edges is denoted by E.
A path in (Z9,E9) is an alterning sequence o, €, . .. , €n_1, T, of distinct vertices x; and
edges e; where e; is the edge between x; and x;1.

Let p be a parameter in (0,1). The edges of E? are open with probability p, and
closed otherwise, independently from each others. We denote by P the product probability
measure on the configuration space Q2 = {0, 1}Ed. The measure P is the classic Bernoulli
bond percolation measure. Two sites x and y are said connected if there is a path of open
edges linking = to y. We note this event {z < y}. A cluster is a connected component of
the random graph.

The model exhibits a phase transition at a point p., called the critical point: for p < p.
the clusters are finite and for p > p. there exists a unique infinite cluster. We work with
a fixed value p < p..

The following properties describe the behaviour of the tail distribution of the law of a
cluster (for a proof see [9]).
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LEMMA 2.1. Let p < p. and let C be the cluster of the origin. There exists ag > 0 and
a1 > 0 such that for all n
P(IC| > n) < exp(—agn), (2.2)

P(diam C' > n) < exp(—ain). (2.3)

We briefly recall two fundamental correlation inequalities. To a configuration w, we
associate the set K(w) = {e € E? : w(e) = 1}. Let A and B be two events. The disjoint
occurrence A o B of A and B is the event

w such that there exists a subset H of K(w) such that if
w’',w"” are the configurations determined by K(w') = H
and K(w"”) = K(w) \ H, then v’ € A and w" € B .

There is a natural order on €2 defined by the relation: w; < ws if and only if all open
edges in w; are open in wy. An event is said to be increasing (respectively decreasing) if
its characteristic function is non decreasing (respectively non increasing) with respect to
this partial order.

Suppose A and B are both increasing (or both decreasing). The Harris—-FKG inequality
[7,10] says that P(ANB) > P(A)P(B). The van den Berg—Kesten inequality [1] says that
P(AoB) < P(A)P(B).

For z, y two sites we consider {z < y} the event that x and y are connected. In the
subcritical regime the probability of this event decreases exponentially: for any z in R?,
we denote by |z] the site of Z? whose coordinates are the integer part of those of . Then

PROPOSITION 2.4. The limit

) 1
¢(x) =— lim NlnP(OH |[Nz|)

N—o0

exists and is > 0, see [9, section 6.2]. The function & thus obtained is a norm on RY.
In addition for every site x in Z¢, we have

P(0 < x) < exp(—£(z)). (2.5)

Since ¢ is a norm there exists a positive constant as > 0 such that for all z in R?,

as|x|s < &(x). (2.6)
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3 The H; measure and the space of the large deviation principle

With the norm &, we construct the one-dimensional Hausdorff measure H%. IfUisa
non-empty subset of R we define the ¢-diameter of U as

EU) =sup{é(z —y): 2,y € U}.

If B C UjerU; and £(U;) < § for each i, we say that {U;};cr is a d-cover of E. For every
subset E of R?%, and every real § > 0 we write

Hes(E) =inf Y " &(Us),
i=1

where the infimum is taken over all countable §-covers of E. Then we define the one-
dimensional Hausdorff measure of E as

He(E) = lim He 5(F).
For a study of the Hausdorff measure, see e.g. [6].
We denote by K the collection of all compact sets of R?. The euclidian distance between

a point and a set E is
d(z,E) =inf{|x —y|s:y € E}.

We endow K with the Hausdorff metric Dy:

VKi,Ks € K, Dy (K1, Ks) = max{ max d(x1, K3), max d(xg,Kl)}
1 €K1 r2€K>

Let K. be the subset of K consisting of connected sets. An element of K. is called a
continuum. We define an equivalence on K. by: K; is equivalent to K» if and only if K3
is a translate of K. We denote by K. the quotient set of classes of K. associated to this
relation, and by Dy the resulting quotient metric:

Dy(Ki,Ks)= inf Dg(Ki+x,Ky+x9) = Dg(Ki, K»).

T1,x2ERI
We finally define the Hausdorff measure on K. by
VK € K. Hi(K) = Hi(K),

which makes sense since H% is invariant by translation on K.
Now we state an essential property required by the large deviation principle.
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PROPOSITION 3.1. The measure 'H% is a good rate function on the space K..

PROOF. The lower semicontinuity is due to Golab and the proof can be found in [6,
p 39]. We follow now the proof of the proposition 5 in [3]. Let ¢t > 0 and let (K,,n € N)
be a sequence in K. such that H¢ (K,) <tfor all n in N. For each n we can assume that
the origin belongs to K,,. Since the diameter of an element of K. is bounded by a constant
time its ’H%—measure, there exists a bounded set B such that

KeKe, 0€ K, H{(K)<t= K C B.

Thus, the sets K, are subsets of B. For every compact set Ky the subset {K € K :
K C Ky} is itself compact with respect to the metric Dy [2]. Hence (K,,)nen admits a
subsequence converging for the metric Dy; the same subsequence of (K,),cn converges
for the metric Dy. O

4 Curves and continua

A curve is a continuous injection T : [a,b] — R?, where [a,b] C R is a closed interval.
We write also I' for the image I'([a, b]). We call I'(a) the first point of the curve and I'(b) its
last point. Any curve is a continuum. We say that a curve is rectifiable if its H%—measure
is finite.

We state a simple lemma:

LEMMA 4.1. For each curve T : [a,b] — RY,

He(T) = He([(a), (b)) = (v (a) — 9 (b)).

Next, we associate to a continuum a finite family of curves in two different manners.
With the first one, we shall prove the lower bound, and with the second one, we shall prove
the upper bound.

DEFINITION 4.2. A family of curves {7;}icr is said hardly disjoint if for all i # j, the
curve vy; can intersect y; only on one of the endpoints of ;.

PROPOSITION 4.3. Let I' be a continuum with H%(F) < oo. Then for all parameter
d > 0, there exists a finite family {T;};cr of rectifiable curves included in T' such that
Dy (T, U;erl) < 8, Uierly is connected and the family {T';}icr is hardly disjoint.

Furthermore, there exists a deterministic way to choose the T';’s such that if TV is a
translate of ', the resultant I",’s are the translates of the I';’s by the same vector.
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PROPOSITION 4.4. Let I' be a continuum with H%(F) < o0o. Then for all parameter
d > 0, there exists a finite family {T';}icr of rectifiable curves included in I' such that
Dy (T, Uierly) < 0, with the following properties: the euclidian diameter of T'; is larger
than § for alli in I, U._,T; is connected for alll > 1, and the first point of Ty is in U< .

Propositions 4.3 and 4.4 are corollaries of lemma 3.13 of [6] in which we have stated the
additional facts coming from the proof. [J

We often think of L¢ as embedded in R?, the edges {z,y} being straight line segments
[z,y]. An animal is a finite connected subgraph of L¢ containing the origin. The Hausdorff
distance between an animal and its corresponding cluster is % So, to prove the large
deviation principle we shall consider the animal of the origin instead of the cluster. The
point is that an animal is a continuum. Hence we shall be able to apply Propositions 4.3

and 4.4 to an animal.

5 The skeletons

DEFINITION 5.1. A skeleton S is a finite family of segments that are linked by their
endpoints. We denote by E(S) the set of the vertices of the segments of S and by cardS

the cardinal of E(S). We define 7—651(5) as the sum of the &-length of the segments of S.
A point is also considered as a skeleton.

Examples:

Counter-examples: the following families of two segments are not skeletons

Sometimes a skeleton S is simply understood as the union of its segments, and so is a
compact connected subset of R?. This is the case when we write H%(S ). We always have

He(S) < HSE(9). (5.2)
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If S; and S5 are two skeletons which have a vertex in common, then S = S; U S5 is also a
skeleton, and

H5¢ (S) = HS¢ (S1) + H5¢ (S2). (5.3)

LEMMA 5.4. For every I' continuum with H%(F) < o0, for all 6 > 0, there exists a
skeleton S such that

Du(S,T) <6, H:(S) < He(T).
The skeleton S is said to d-approximate I'.

PROOF. Let T' be a continuum with H%(F) < 00. Let {I'x}rer be the sequence of

rectifiable curves coming from proposition 4.3 with parameter §/2. Consider I';. We take
to =0, zop =I'1(0) and for n >0

o1 = inf {¢t > t, : |T1() — T1(tn)| > 6/2}.

If ¢,,41 is finite then x,41 = ['1(t,41). Otherwise, we take for x, 1 the last point of I'y
if it is different from z,, and we stop the sequence of the x;’s. Since I'; is rectifiable
and because of lemma 4.1, this sequence is finite. We call S; the family of the segments
[x;, x;41] for i = 0 to n — 1. By construction S; is a skeleton, the endpoints of I'; are
vertices of S7 and Sy §/2-approximates I'y. We construct in the same way the other S;’s
for 7 in I. By assumption, the I';’s are connected by their endpoints. Since these endpoints
are vertices of 9;’s, the union of the S;’s denoted by S is also a skeleton. We control the
7‘651 measure of S by

HL(S) =D HSE(S:) < Y HETy) < HE(I),

i€l el

where we use (5.3) and lemma 4.1. The Hausdorff distance between S and I' is controlled
by

DH(S, F) < DH(S, Uie]Fi) + 5/2 < supDH(S@-,Fi) + 5/2 < 0. O
el

Remark: if IV is the image of I" by a translation of vector i, then the skeleton S’ constructed

as above from I" is the image by the same translation of the skeleton S constructed from
.
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6 The lower bound

We prove in this section the lower bound stated in Theorem 1.1. By a standard argument
[5], it is equivalent to prove that for all § > 0, all T" in .,

lim inf % In P(Dy(C/N,T) < 6) > —Hg(T).

N—o0

We introduce two notations. The r-neighbourhood of a set E is the set
V(E,r) ={z € R : d(x,E) < r}.
Let Fy, Es be two subsets of RY. We define
e(E1, Ey) = inf {7’ >0:FyC V(El,r)}.

We now take I' in T such that the origin is a vertex of the skeleton S constructed from T,
as described in the proof of lemma 5.4. This can be done because of the previous remark.
First observe that

P(Dp(C/N,T) < §)) = P(Dy(C/N,T) < 9))

>
> P({e(C/N,T) < 6/2} N {e(T, C/N) < §}).

We let
G(N,§/2,T) = {3 a connected set C’ of the percolation process,

containing 0, such that Dy (C'/N,T) < 6/2}.

We have G(N,§/2,T") C {e(C/N,T") < 6/2}. So

P(Du(C/N.T) < 6) >P(G(N,§/2,T)N{e(l',C/N) < 6})
>P(G(N,§/2,T))x (6.1)
P(e(I',C/N) < 5| G(N,§/2,T)).

We study the first term of the product. Let r be positive and let « and y be two sites.
The event that there exists an open path from z to y whose Hausdorff distance to the
segment [x, y] is less than r is denoted by z —— y. We restate lemma 8 in Section 5 of

3]:
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LEMMA 6.2. Let ¢(n) be a function such that lim,, .~ ¢(n) = co. For every point x,
we have

lim ~P(0 2% [na]) = —¢(a).

n—oo M

Take the skeleton S which ¢/4-approximates I', as in lemma 5.4. We have carefully
chosen I' such that the origin is a vertex of S. We label z1,... ,x, the vertices of S. We
note i ~ j if [z;, ;] is a segment of S. Then

P(G(N,0/2,T)) > P(G(N,d/4,9))
> P(|Nz;| «—— ¥ |[Nzj],Vi < j such that i ~ j).

The fact that the origin is a vertex of S is used in the last inequality. Since the events last
considered are increasing, the FKG inequality leads to

N6/4
i<g,ing

But by lemma 6.2

o1 N6/4

hmﬁln. H ‘P(LNZLQJ |[Nz;|) Z Hﬁ [zi,2;5])

1<7,1~) 1<J,1~]
= —H5:(S5).
Hence 1
lim inf - In P(G(N,/2,T)) > —HS(S) = —H(T). (6.3)

Now we analyze the second term P(e(I', C/N) < §| G(N, §/2,T)) of the product in (6.1).
First observe that the event

{e(I',;C/N) > 6} NG(N,6/2,T)
is included in
{3 an open path of length > N¢§/2 lying in
V(NT,N§)) \ V(NT,N§/2)} N G(N,5/2,T).

The two events appearing in the last intersection are independent, since they depend on
disjoint sets of bonds. So

P(e(T,C/N) 26| G(N,6/2,T))
<P (3 an open path of length > N§/2 lying in V(NT', N§))
<ep (He(T) + §)6 ' N¥ exp(—agN§/2),
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for a certain constant ¢; > 0. In the last inequality, we use (2.2) and a bound of the
cardinality of V(NT, N§) NZ%. The member on the RHS tends to 0 as IV tends to infinity.
Hence

Jim_ P(e(I',C/N) < 6| G(N,6/2,T)) = 1. (6.4)

By limits (6.3) and (6.4), the inequatity (6.1) yields to the lower bound. O

7 Coarse graining

Now we associate a skeleton to an animal. By a counting argument it will yield to the
desired upper bound.

DEFINITION 7.1. Let S = {T;}ics be a skeleton, and let C' be an animal. We say that S
fits C if E(S) is included in the set of vertices of C, if for all i in I there exists a curve ;
such that ~y; is included in C' and has the same endpoints than T;, and if the family {7, }icr
18 hardly disjoint.

LEMMA 7.2. Let s > 4. For all animal C with diam(C) > s, there ezists a skeleton S
such that H5¢ (S) > aa(s/8)cardS, Dy (C,S) < s, and the skeleton S fits the animal C.

Such a skeleton is said to be s-compatible with the animal C.

PROOF. We recall that an animal is also a continuum. Let {I'y}res be a sequence of
rectifiable curves as in proposition 4.4 with parameter s/2. Consider for example I';. We
take g = I'1(0) and ¢ty = 0. For n > 0, let

tpe1r = inf{t >t, :T1(t) € Z% |T1(t) — T1(tn)|2 > s/4}.

If ¢,,11 is finite, then x,,11 = I'1(t,41). Otherwise, we erase x,,, we put z,, the last point
of I'y and we stop the sequence. Note that ¢; cannot be infinite.

We call 57 the family of the segments [z, z;4+1]. The set S} is a skeleton, and is called
the s-skeleton of I'y. For the other i’s in I we construct S, the s-skeleton of I'; in the same
way. For each ¢ in I we have

HSE(S]) > (card S} — 1)az(s/4).

Since the euclidian diameter of I'; is larger than s for each 7 in I, we have card S] > 2.
Since s > 4, it follows that 7-651(5{) > as(s/8)card S;, for each i in I.

We now refine the skeleton S into another skeleton S;. For each j > i such that the
first point of I';, say z, is in I'; but is not a vertex of S}, we take the segment of S
whose endpoints x and y surround z on I';. We replace in S] the segment [x,y]| by the
two segments [z,z]| and [z,y]. When we have done this for all j we rename S; by S;.
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The set S; is always a skeleton which satisfies Dy (S;,T';) < s/2. By triangular inequality,
7'651(51) > 7—651(51’) We denote by S the concatenation of the S;’s. By induction, S is a
skeleton. Furthermore, each vertex of S is a vertex of S} for a certain 1.

Now we check that S fulfills the good properties. We have

HSE(S) = 27-651(51) > Za2(3/8)cardS£ > ay(s/8)card S,
iel iel
and

Dy (S, T) <sup Dy (S;,T;) +s/2<s. O
il

The next statement gives the interest of such a construction. For a given skeleton S we
let A(S) be the event that S is s-compatible with an animal.

LEMMA 7.3. For all scales s > 4,

P(.A(S)) < exp{—?ﬁg(S)}.

Proor. If S is compatible with an animal, we have the disjoint occurrences of the
events {x; < x;} for all i« < j such that [x;,z;] is a segment of S. The BK inequality
implies

P(A(S)) < H P(x; < xj).
i<j

[z;,x;] is a segment of S

The last sentence of proposition 2.5 yields to the desired result. [

8 The upper bound

We prove here the upper bound stated in Theorem 1.1. Consider the animal C' con-
taining the origin. Let ®x(u) = {K € K. : H¢(K) < u}. We prove that Yu > 0, ¥ > 0,
Va >0, 3Ny such that VN > Ny,

P(Dg(C/N,®x(u)) > 6) < exp—Nu(l —a).

This is the Freidlin-Wentzell presentation of the upper bound of our large deviation prin-
ciple, see [8].

Let ¢ be a positive constant to be chosen later, and take s = 8cln N. For N large enough,
Dy (C/N,®g(u)) > § implies diam C > s. By lemma 7.2, we can take S a skeleton that
s-approximates C. We have Dy (C/N,S) < 8cln N/N, so for N large enough,

P(Dy(C/N,®x(u)) > 6) < P(Dy(S/N,®p(u)) > 5/2).
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Since S is an element of K, the inequality Dy (S/N, ®(u)) > 6/2 implies that H¢(S) >
uN and so H5¢(S) > ulN by (5.2).
Let a be such that a > u/a;. We have
P(H5:(S) > uN)
< P(H5¢(S) > uN, diam C < aN) + P(diam C' > aN).
But P(diam C > aN) < exp—ajalN by inequality (2.3). Since a > u/a;, we have

P(diam C' > aN) < exp —uN.
We estimate now the term P(?-Sg(S) > uN, diam C < aN). Let A(n,u,a, N) be the

set of skeletons T such that HS¢(T) > ulN, E(T) is included in 7%, cardT = n, and
there exists a connected set of sites containing the origin of diameter less than a/N that is
s-compatible with the skeleton T'. We have

P(?-Sgl(S)zuN, diam C' < aN) §Z Z P(S=T).
n TeA(n,u,a,N)

The number of skeletons we can construct from n points is bounded by (n™)2. Take a
skeleton in A(n, u,a, N'). All its vertices are in a box centered at 0, of side length 2(aN +
cIn N). So the cardinal of A(n,u, a, N) is less than 29" (aN +cln N)9"(n™)?2, and moreover
n < 2%aN + cln N)9. Hence there exists az > 0 such that

|A(n,u,a, N)| < expasgnln N
Take b > 0 a constant such that az — asb < 0. We assume now that ¢ > b. We have
7'651(T) = 7—651 (T)(1—=0b/c)+ b/c?-Sfl(T)
>uN(1—-0b/c)+ azbnln N
because HS¢ (T') > az(s/8)card T. Then by lemma 7.3, for N large enough
P(HS¢(S) > uN, diam C' < aN)

<> > exp-HLT)

n TeA(n,u,a,N)

< Z Z exp(—uN(1 —b/c) — azbnln N)

n TeA(n,u,a,N)

< exp(—uN(1—b/c)) Zexp((ag —agb)nin N)

< exp —ulN(1 —a4/c)

for any a4 > b and N large enough. We take ¢ such that a4/c < o and this concludes the
proof. [
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Chapitre 4

Poisson approximation for large finite clus-
ters in the supercritical FK model
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Abstract: Using the Chen-Stein method, we show that the spatial distri-
bution of large finite clusters in the supercritical FK model approximates a
Poisson process when the ratio weak mixing property holds.

Keywords: FK model, ratio weak mixing
1991 Mathematics Subject Classification: 60K35, 82B20.

1 Introduction

We consider here the behaviour of large finite clusters in the supercritical FK model.
In dimension two and more, their typical structure is described by the Wulff shape [4, 5,
6, 8,9, 10, 11]. An interesting issue is the spatial distribution of these large finite clusters.
Because of their rarity, a Poisson process naturally comes to mind. Indeed, we prove that
the point process of the mass centers of large finite clusters sharply approximates a Poisson
process. Furthermore, considering large finite clusters in a large box such that their mean
number is not too large, we observe Wulff droplets distributed according to this Poisson
process.

Redig and Hostad have recently studied the law of large finite clusters in a given box
[20]. Their aim was different, in that they obtained accurate estimates on the law of the
maximal cluster in the box, but intermediate steps are similar. In the supercritical regime
they considered only Bernoulli percolation and not FK percolation.

As in [1, 13, 15, 20], our main result is based on a second moment inequality. We have
to control the interaction between two clusters. To do this, we suppose that ratio weak
mixing holds [2]. The ratio weak mixing holds for p large enough in dimension two [2], but
such a result is not available in higher dimensions. Hence, we will prove some intermediate
inequalities with the weaker assumption that weak mixing holds, or with the assumption
that p is close enough to 1 in dimensions three and more. Once we obtain these inequalities,
we apply the Chen-Stein method to get the approximation by a Poisson process.

The following section is devoted to the statement of our results. In section 3, we define
the FK model. We recall the weak and the ratio weak mixing properties and we state
a perturbative mixing result in section 4. Section 5 contains the definition of our point
process and the description of the Chen-Stein method. The core of the article is section 6,
where we study a second moment inequality. In section 7, we deal with the probability of
having a large finite cluster with its center at the origin. In section 8, we treat the case of
distant clusters and we finish the proof of Theorem 1. The proof of Theorem 3 is done in
section 9, and the proof of the perturbative mixing result is done in section 10.

2 Statement of the results

We consider the FK measure ® on the d-dimensional lattice Z? and in the supercritical

slab

regime. The point p. stands for p, in dimension two, and for p?*” in dimensions three and
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more. For ¢ > 1 we let U(q) be the set such that there exists a unique FK measure on Z<
of parameters p and ¢ if p is not in U(q). By [17] this set is at most countable.

Let A be a large box in Z?. We fix n an integer and we consider the finite clusters of
cardinality larger than n. We call them n-large clusters. Let C' be a finite cluster. The

mass center of C' is |
MC = \‘— {EJ,
a7 2=

zeC

where |z denotes the site of Z¢ whose coordinates are the integer part of those of z. We
define a process X on A by

X(z) =

{ 1 if = is the mass center of a n—large cluster C'

0 otherwise.

Let A be the expected number of sites z in A such that X (z) = 1. We denote by £L(X)
the law of a process X. For Y a process on A, we let ||[£(X) — L(Y)||rv be the total
variation distance between the laws of the processes X and Y [7].

THEOREM 2.1. Let ¢ > 1 and p > p. with p ¢ U(q). Let ® be the FK measure on Z%
of parameters p and q. We suppose that ® is ratio weak mixing. There exists a constant
¢ > 0 such that: for any box A, letting X be defined as above, and letting Y be a Bernoulli
process on A with the same marginals than X, we have for n large enough

I1£(X) — LOY)||7v < Aexp(—en(@=D/),

As a corollary, the number of large clusters in A is approximated by a Poisson variable.

COROLLARY 2.2. Let ® be as in Theorem 2.1. Let N be the number of large finite
clusters whose mass centers are in the box A. Let Z be a Poisson variable of mean X\, and
let ¢ > 0 be the same constant as in Theorem 2.1. Then for any A C Z™ and for n large
enough,

|P(N € A) — P(Z € A)| < Aexp (— en(@=D/4),

We provide next a control of the shape of the large finite clusters. Let VWV be the Wulff
crystal, let 6 be the density of the infinite cluster, and let £¢(-) be the Lebesgue measure
on RZ. Let

1

W = ﬁ

(0L1W))

be the renormalized Wulff crystal. For [ > 0, let V(C,[) be the neighbourhood of C' of
width [ for the metric | - |o. For two sets A and B, the notation A A B stands for the

symmetric difference between A and B.
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THEOREM 2.3. Let ® be as in Theorem 2.1. Let f : N — N be such that f(n)/n — 0
and f(n)/Inn — oo as n goes to infinity. Let (A,)n be a sequence of bozes in Z%, and let
An be the expected number of mass centers of n—large clusters in A,,. For all § > 0, there
exists ¢ > 0 such that if limsup 1/n(4=D/d1n )\, < c.

1
)?(?)21

U VOO(C,f(n)))) > §|{z: X(x) = 1}\} <0.
Coney

For clarity, we omit the subscript n on X.

3 FK model

We consider the lattice Z¢ with d > 2. We turn it into a graph by adding bonds between
all pairs x, y of nearest neighbours. We write E for the set of bonds and we let {2 be the
set {0, 1}E. A bond configuration w is an element of . A bond e is open in w if w(e) = 1,
and closed otherwise.

A path is a sequence (xg, ..., x,) of distinct sites such that (z;,z;+1) is a bond for each
i,0<i<n—1. A subset A of Z¢ is connected if for every z, y in A, there exists a path
included in A connecting x and y. If all bonds of a path are open in w, we say that the path
is open in w. A cluster is a connected component in Z? when we keep only open bonds. It
is usually denoted by C. Let x be a site. We write C'(x) for the cluster containing x.

To define the FK measure, we first consider finite volume FK measures. Let A be a box
included in Z?. We write E(A) for the set of bonds (x,y) with z,y € A. Let Q5 = {0, 1}E*)
be the space of bonds configuration in A. Let F, be its o-field, that is the set of subsets
of Q. For w in Q,, we define cl(w) as the number of clusters of the configuration w.

For p € [0,1] and ¢ > 1, the FK measure in A with parameters p, ¢ and free boundary
condition is the probability measure on 2, defined by

1
Yw e Qp @ﬁ’p’q(w) = : < H pw(e)(l _p>1—z.u(e)>qc1(z,u)7

where Z K’p "1 is the appropriate normalization factor.
We also define FK measures for arbitrary boundary conditions. For this, let A be the
boundary of A,
OA = {z € A such that Jy ¢ A, (x,y) is a bond}.
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For a partition w of A, a m—cluster is a cluster of A when we add open bonds between the
pairs of sites that are in the same class of w. Let cl;(w) be the number of m—clusters in w.
To define ®}”? we replace cl(w) by cl,(w) and Z{*¢ by Z2?? in the above formula.

There exists a countable subset U(q) in [0, 1] such that the following holds. As A grows
and invades the whole lattice Z%, the finite volume measures converge weakly toward the
same infinite measure ®2:9 for all p ¢ U(q) [17]. We will always suppose that this occurs,
that is p ¢ U(q). We shall drop the superscript and the subscript on ®2:9, and simply
write ®. It is known that the FK measure @ is translation—invariant.

The measure ® verify the finite energy property: for each p in (0, 1), there exists 6 > 0
such that for every finite-dimensional cylinders w; and ws that differ by only one bond,

The random cluster model has a phase transition. There exists p. € (0,1) such that
there is no infinite cluster ®—almost surely if p < p., and an infinite cluster ®—almost
surely if p > p.. Other critical points have been introduced in order to work with ’fine’
properties. In dimension two, we define p, as the critical point for the exponential decay
of dual connectivities, see [14, 17]. In three and more dimensions, let p¥!*” be the limit
of the critical points for the percolation in slabs [22]. For brevity, p. will stand for p, in
dimension two, and for pf!*P in dimensions three and more. It is believed that p, = p. in
all dimensions and for all ¢ > 1, but in most cases we only know that p. > p..

We now state Theorem 17 of [12], applied to FK measures.
Ifg>1,p>p.andp ¢ U(g),

li

mn n(d—1)/d ln(I)(n <|C(0)] < OO) = —wy, (3.2)

where C(0) is the cluster of the origin, and w; > 0.

4 Mixing properties

Let x and y be two points in Z? and let (x;)%_, and (y;)%_, be their coordinates. Write
[z =yl = > i |wi — yil-

DEFINITION 4.1. Following (3], we say that ® has the weak mixing property if for some
c, b >0, for all sets A, A C Z4,

sup {|®(E | F) — ®(E)|: E € Fa, F € Fa,®(F) > 0}
<c S emeih (4.2)

TEANYyEA
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DEFINITION 4.3. Following [3], we say that ® has the ratio weak mixing property if for
some ci, pip > 0, for all sets A, A C Z¢,

ol szem

S c1 § e—H1|1’_y|1,

TENYEA

_ 1‘ . E € Fr, F € Fa, ®(E)®(F) > o}
(4.4)

Roughly speaking, the influence of what happens in A on the state of the bonds in A
decreases exponentially with the distance between A and A.

In dimension two, the measure ® is ratio weak mixing as soon as p > p, [3], but such a
result is not available in dimension larger than three. We provide a perturbative mixing
result, which is valid for all dimensions larger than three, and which is similar to the weak
mixing property.

LEMMA 4.5. Let d > 3 and q > 1. There exists py < 1 and ¢ > 0 such that: for all
p > p1, all connected sets I'; A with I' C A, every boundary conditions n, £& on A, every
event E supported on T,

|®NPY(E) — @%p’q(Eﬂ < 2|0A| exp ( — cinf {|33 —yl,x el ye A})

We are not aware of a particular reference of this result, and we give a sketch of the proof
in Section 10.

5 The Chen-Stein method

From the percolation process, we want to extract a point process describing the occur-
rence of large finite clusters. For a point = in R, let |z] denotes the site of Z¢ whose
coordinates are the integer parts of those of z. Assume that C is a finite subset of Z¢.

Then the mass center of C' is
1
MC = \\— IEJ .
1 2

zeC

Let n € N. A n—large cluster is a finite cluster of cardinality larger than n. Let A be a box
in Z¢. We define a process X on A by

( { 1 if = is the mass center of a n—large cluster C'

0 otherwise.
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In order to apply the Chen-Stein method, we define for z,y in Z<,

pe = ®(X(z) =1),
pay = ®(3C, C’ two clusters such that: CNC’" =0,
n <|C|,|C'| < 0o, M¢ =z and Mcer = y),
and we let B, = B(x, n2) be the box centered at x of side length n2. Let \ be the expected

number of sites  in A such that X(x) = 1. We have A = ) _, p, and, because of the
translation—invariance of ®, for each site x in A

A=Al p.. (5.1)

We introduce three coefficients by, by, b3 by:

bl = Z Z DPxDPy,

rEAYEB,;
by = Z Z Py,
TEN yEB, \z
by = Y B|B(X(2) - plo(X(4),y ¢ Bu) ).

TEA

Let Z; and Z5 be two Bernoulli processes on A. The total variation distance between the
laws of the processes Z; and Z, [7] is

|1£(Z1) — L(Z2)||rv = sup {|P(Zy € A) — P(Z € A)|, A subset of {0, 1},
Let Y be a Bernoulli process on A such that the Y (z)’s are iid and
PY(x)=1)=p,.

The Chen-Stein method provides a control of the total variation distance between X and
Y in terms of the b;’s. Indeed Theorem 2 of [7] asserts that

1L(X) = L(Y)|lrv < 2(2by + 2by + 2b3) + > p2. (5.2)
TzeEA
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To prove Theorem 2.1, we shall provide an upper bound on each term b;. The ratio
weak mixing property is essential to our proof of the bound of b,. Nevertheless, we believe
that one can prove the following inequality, without any mixing assumption:

®[n < Cz) < oo,n < C(y) <oo,C(z)NC(y) =0] <P(2n < C(0) < 00). (5.3)
Let us give now an upper bound on p,. By [16], there exists a constant ¢ > 0 such that:
®(n < |C(0)] < o) <exp (— cn(d_l)/d).

But
pe <Y _®(3C,|C| =k, Mg = z)

k>n

<> > °(lcwl=k

k>n yeB(z,2k)

< Z(Qk:)dexp (- cn(d_l)/d).

k>n

Hence there exists a constant ¢ > 0 such that for n large enough

pa < exp(—enld=D/d)y, (5.4)

6 Second moment inequality

In this section we bound the term p,, with the help of the ratio weak mixing property.
First we introduce a local version of p,,. We define p,, by

Dy = @(3 C,C’ two clusters such that
n<|C|<n?n<|C|<n® Mc=uz, and Mcr = y).

The distance between two sets I' and A C Z¢ is
d(T',A) = inf{|x — y|;,xz in T,y in A},

and it is the length of the shortest path in Z¢ connecting I' to A.
We divide the term p,,, into two parts. Let 111 be the constant appearing in the definition
of the ratio weak mixing property and let K > 5/u;. We define Pay bY
Psy, = ®(3C,C" two clusters such that d(C,C") < K Inn,
n<|Cl<n®n<|C') <n? Mc =z, and Mo =y).
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We define also @fy by

Pay = ®(3C,C”" two clusters such that d(C,C”") > Knn,
n < ‘C‘ < n2,n < ‘Cl‘ < n2,MC =z, and Mg = y)

The superscripts ¢ and d stand for close and distant. So pyy = py, + ﬁmdy and we study
separately these two terms.
First we focus on ﬁgy. We have

ﬁgy < Z ®(C and C' are clusters),
C,C" distant

where the sum is over the couples (C,C’) of connected subsets of Z? such that

n <|C| <n? n<|C'| <n?
Mo =z, Mc =y, and d(C,C") > K Inn.

Let c1, u1 be the constants appearing in the definition of the ratio weak mixing property.
Let (C,C") be a couple appearing in the sum above. We have

Z e mlv=vl < ptexp(—p K Inn),
ueC,welC’

so for n large enough

1 Z e~ tlu—vl <1,

ueC,welC’

So for n large enough
®(C and C" are clusters) < 20(C' is a cluster) - ®(C’ is a cluster),

by the ratio weak mixing property (4.4). Hence there exists ¢ > 0 such that for n large
enough

Pay < > 20(n < |C(u)] < o00) - ®(n < |C(v)] < o0)
uw€B(x,2n?),v€B(y,2n?) (61)

< exp(—cn).

Now we consider p;, . We have
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Pay < Z ®(C and C' are clusters),
C,C" close

where the sum is over the couples (C,C’) of subsets of Z? such that

n <|C| <n?n <|C'| < n?
Mc =z, Mo =y, and d(C,C") < Klnn.

For n large enough, the event {C' and C” are clusters} is Fp(, 3,2)-measurable. So we only
consider bonds configurations in B(z, 3n?).

We give a deterministic total order on the pairs (u,v) of Z¢ in such a way that if
lup —v1|1 < |ug — va|1, then (u1,v1) < (ug,v2). Let (C,C’) be a pair of sets appearing in
the above sum. Take a configuration w in B(z,3n?) such that C and C’ are clusters in w.
We change the configuration w as follows.

To start with, we take the pair (u,v) such that u € C, v € C" and (u,v) is the first such
pair for the order above. For 0 < < d, we define t; the point whose d — 7 first coordinates
are equal to those of u, and the others are equal to those of v. Hence tg = u, tqy = v,
and t; and t;11 differ by only one coordinate. We consider the shortest path (ug, ..., ux)
connecting u to v through the ¢;’s. It is composed of the segments [t;, t;41] for 0 <i < d—1.

We open all the bonds (u;, u;11) for i = 0...k — 1. In the same time, we close all the
bonds incident to w; for ¢ = 1...k — 1 distinct from the previous bonds (u;,u;41). Let
& be the new configuration in B(z,3n2). We denote by C the set C' U C' U {u; kL By
construction, C is a cluster in &. We have

2n§6’<4n+K1nn.

The number of bonds we have changed is bounded by 2dK Inn. By the finite energy
property (3.1):
(I)((:U) > n2dK1n6(I)(w),

for a certain constant ¢ in (0, 1).
Now we control the number of antecedents by our transformation. Take a configuration
@ of B(z,3n?). To get an antecedent of @, we have to
(a) choose two sites u, v in B(x,3n?), with |u —v|; < KInn
(b) take the path connecting u to v along the coordinate axis
(¢) choose the state of the bonds that have an endpoint on this path.
In step (a) we have less than (3n2)¢(2K Inn)? choices. In step (b) we have just one
choice. In step (c) the number of choices is bounded by 224X " Hence for n large enough
the number of antecedents of @ is bounded by n*?X.
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Finally,

Z ®(C and C' are clusters) < ptdf . p2dKIno Z ®(C is a cluster),
C,C’ close c

where the sum is over connected subsets C' of Z? such that 2n < \5\ < 5n and C is
contained in B(x,3n?). This sum is bounded by

|B(z,3n%)|- ®(2n < |C(0)] < 5n).
Thus by (3.2), there exists co > w; such that for n large enough,

Pe, < exp(—con(@=1/4), (6.2)

To conclude, remark that
Doy — Day < @(HC a cluster such that n* < |C| < oo, M¢ = x)

By (5.4), there exists ¢ such that for n large enough the difference between p,, and ps,
is bounded by exp(—cn?(@=1/4) So by (6.1) there exists ¢ > 0 such that Doy < Dyy +
exp(—cn). Since in (6.2) the constant co is strictly larger than wy, there exists ¢z > w;
such that for n large enough

Pay < exp(—Cg»,n(d_l)/d). (6.3)

7 A control on p,
We compare p, and ®(n < |C(0)]| < 00).
LEMMA 7.1. Ifg>1, p>p., and p ¢ U(q), then

1 -
lim m lnpx = —W1.

We note that in [20], the authors take the left endpoints of clusters instead of mass centers
and they get the same limit.

PrOOF OF LEMMA 7.1. We begin with a lower bound for p,. We recall that for all =
in Z, p, = ®(X(0) = 1). Let a > 1. Because of (3.2), we have

1
i

m—G7a In®(n < |C(0)] < 00) = lim
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Then
O(n<|C(0)<n®) < Y @n<|C0) <n Mo =)
x€B(0,n%)
< |B(0,n™)[(X(0) = 1).

We give next an upper bound:

®(X(0) =1) = ®(3C a cluster, Mo = 0,n < |C] < n®)
+ ®(3C a cluster, Mo = 0,n% < |C| < o)

< Z d(n < |C(x)| < 0)
xEB(O’na)—k Z ®(3C a cluster, |C| = k,C N B(0,2k) # 0)
k>no
< |B(0,n%)[®(n < |C(z)| < 00)+ > |B(0,2k)|2(|C(0)| = k).

k>n<

Finally, we use the limit (3.2) to get

li Inp, = lim In®(n <|C0)] < o00) =—wy. O

W a—1/d pd—1)/d

8 Proof of Theorem 2.1

We recall that A is a box and A is the expected number of the mass centers in A of
n—large clusters. We write F f ? for the o—field Fa\ g, . First, we bound the term

E|E(X(z) = ps| F{) .

Let X () be equal to 1 if 2 is the mass center of a cluster C, with C' such that n < |C] <

n?/4, and equal to 0 otherwise. Let p, = ®(X(x)). We have

E|E(X(z) — p|FP*)| < B|E(X(2) — X(2)|FP=)|

- 8.1
+E|E(X(2) — ol FA®) | + E|E (Pe — pal FL®))- 5

Since the quantity X (z) — X (z) is always positive,

BIE(X(2) - X(@)|75)| = B[E(X() - K@) 5]
::px__ﬁ&-
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We have also
E‘E<ﬁaz —px\ffx)‘ = Py — Pz
But
Pz — Pz =®(3C a cluster,n2/4 <|C| < 00, M¢ = z),

so by (5.4) there exists ¢ > 0 such that p, — p, < exp(—cn?).

The variable )?(:)3) is FB(x,n2/4)-measurable. The distance between B(z, n?/4) and the
complementary region of B, is of order n?. If ® is weak mixing, or by lemma 4.5 if p is
close enough to 1, there exists a constant ¢ > 0 such that for n large enough

E‘E()N((x) —ﬁﬂff‘”)} < exp(—cn?).

Putting together the estimates of the three terms on the right-hand side of (8.1), we
conclude that there exists ¢ > 0 such that for n large enough

E|E(X(x) —pﬂff‘”)‘ < exp(—cn?). (8.2)

Now observe that |A| = Ap,!. Using inequality (6.3) and the limit of Lemma 7.1, there
exists ¢ > 0 such that

by < A\p,texp ( — 03n(d_1)/d) < dexp ( — cn(d_l)/d).
Because of (8.2), there exists ¢ > 0, ¢/ > 0 such that
by < Ap; !t exp(—cn?) < Aexp(—c'n?).

The term by is controlled by Lemma 7.1. We apply finally the Chen-Stein inequality
(5.2) to obtain Theorem 2.1. [

9 Proof of Theorem 2.3

The Wulff crystal is the typical shape of a large finite cluster in the supercritical regime.
The crystal is built on a surface tension 7. The surface tension is a function from S%1!,
the (d — 1)-dimensional unit sphere of R%, to R*. It controls the exponential decay of
the probability for having a large separating surface in a certain direction, with all bonds
closed. We refer the reader to [9, 12] for an extended survey of this function.

In the regime p > p. and p ¢ U(q), the surface tension is positive, continuous, and
satisfies the weak simplex inequality. We denote by W the Wulff shape associated to 7,

W ={z € R z.u < 7(u) for all u in S¥~1}.
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The Wulff shape is a main ingredient in the proof of (3.2).

Let § = ®(0 <> o) be the density of the infinite cluster. Let f : N — N, such that
f(n)/n — 0 and f(n)/Inn — oo as n goes to infinity. Let 2 and y be two points of R,

and let (x;)%_, and (y;)%_, be their coordinates. We write |z — y|oo = maxi<;<d |z — ¥il-
We define a neighbourhood of a cluster C' by

Voo (C, f(n)) ={z € R? Jy e C, |z — yloo < f(n)}.

Let (A,,)n>0 be a sequence of boxes in Z%, and let \,, be the expected number of mass
centers of n—large clusters in A,,. In Theorem 3, we consider the event

{£d< U @+octow)~Viw)a

TEA,
X(z)=1

n1 U VOO(C’,f(n))) 25}{1‘:X(w):1}‘}.
Connsy

It is included in the event
{there exists C' a n—large cluster such that Mo € A,,,

£d<(MC +0LYW) TV IW) A (Ve (C, f(n)))) > 5}.

Taking the logarithm of its probability and dividing by n?~1/¢, we may show that for n

large it is equivalent to the logarithm divided by n?=1/¢ of the following quantity:
An@[£d<(MC(O) +OLYW) YWY A (0 Ve (C(0), f(n)))) > §|n < |C(0)] < oo|.
By [9, 12], there exists ¢ > 0 such that if
lim sup 1/n(d_1)/d In\, <e¢,

then the inequality in Theorem 2.3 holds. [
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10 A perturbative mixing result

We prove lemma 4.5, following the proof of the uniqueness of the FK measure for p close
enough to 1 in [18]. The difference is that we consider not just one but two independent
FK measures. The idea of using two independent copies of a measure comes from [19].

Let A be a connected subset of Z?. There is a partial order < in Qa given by w < W’
if and only if w(e) < w'(e) for every bond e. A function f : Qa — R is called increasing
if f(w) < f(w') whenever w < w'. An event is an element of Qa. An event is called
increasing if its characteristic function is increasing. For a pair of probability measures p
and v on (Qa,Fa), we say that u (stochastically) dominates v if for any Fa-measurable
increasing function f the expectations satisfy u(f) > v(f) and we denote it by p = v. Let
P, be the Bernoulli bond-percolation measure on Z% of parameter p. The FK measures
on A dominate stochastically a certain Bernoulli measure restricted on E(A):

R = Polprai-p)] }IE(A)' (10.1)

For (w1, ws) € Q2 we call a site z white if wy(e)wa(e) = 1 for all bond e incident with z,
and black otherwise. We define a new graph structure on Z?. Take two sites  and y and
label x;,y; their coordinates. If max;—1. q|x; — y;| = 1, then (z,y) is a x-bond and y is a
*-neighbour of x. A %-path is a sequence (zg, ..., x,) of distinct sites such that (z;,z;+1) is
a x-bond for 0 <7 <n—1.

For any set V' of sites, the black cluster B(V') is the union of V' together with the set of
all zo for which there exists a x-path xg, ..., z, such that x,, € V and xg,...,z,_1 are all
black. Let I', A be two connected sets with I' C A. The ’'interior boundary’ D(B(0A)) of
B(0A) is the set of sites x satisfying:

(a) x ¢ B(0A)
(b) there is a x-neighbour of z in B(0A)
(c) there exists a path from x to I' that does not use a site in B(0A).
Let I be the set of sites zy for which there exists a path x, ..., z, withz,, € ', z; ¢ B(0A)
for all 4, see figure 1.
Let

Kr,a = {(B(0A)UD(B(0A)))NT = 0}.

If Kt A occurs, we have the following facts:
(a) D(B(0A)) is connected
(b) every site in D(B(0A)) is white
(c) D(B(0A)) is measurable with respect to the colours of sites in Z% \ T
(d) each site in 91 is adjacent to some site of D(B(0A)).
These claims have been established in the proof of Theorem 5.3 in [18].
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D(B(0A)) — ]

figure 1: The set I inside A

Pick 1, ¢ two boundary conditions of A. For brevity let P = ®1P7 x @%p 4, We shall
write X, Y for the two projections from QA x Qa to Qa. Then for any F € Fr, we have
by the claims above

P(X € E,Kra) =P(Y € E,Kra) = P(®7"Y(E) 1k, ).

Hence
1B (E) — q)ip’q(Eﬂ < 2(1 — P(KF,A>)-

Because of inequality (10.1) and by the stochastic domination result in [21], the process
of black sites is stochastically dominated by a Bernoulli site—percolation process whose
parameter is independent of I'; A, n, £ and decreases to 0 as p goes to 1. There exists
p1 < 1 such that this Bernoulli process is subcritical for the -graph structure of Z¢ and
for p > p1. Hence there exists ¢ > 0 such that for p > pq, for all ', A, n, &,

P(Kr,a) > 1—|0A|exp (— cd(T',0A)). O
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Abstract: We prove a large deviation principle of surface order for
supercritical oriented percolation on Zd, d > 3, which leads to asymp-
totics of the finite cluster distribution.

1991 Mathematics Subject Classification: 60K35, 82B20
Keywords: oriented percolation, large deviations, Wulff crystal

1 Introduction

In this article we adapt the arguments of [4], in order to derive a large deviation principle
for supercritical oriented percolation. We consider oriented percolation on Z¢ with d > 3.
We let p. be the corresponding critical point, and we let C'(0) be the cluster of the origin.

THEOREM 1.1. Let d > 3. For every p > p., there exists a constant ¢ > 0 such that

, 1
Jim — In P(n? < |C(0)] < o0) = —ec.

This limit gives the answer to a question raised in [10] for oriented percolation in dimension
two.

Theorem 1.1 is a consequence of a large deviation principle. We shall define a tension
surface 7 for the oriented percolation process, and we denote by W, the corresponding
Wulff crystal. With the help of the Wulff crystal, we define the surface energy Z(A) of a
Borel set A as

Z(A) :sup{/Adin(:L') dr: f € Ccl(Rd,WT)},

where C}(R%, W, ) is the set of C'! vector functions defined on R? with values in W, having
compact support and div is the usual divergence operator.

Consider M(R%) the set of finite Borel measures on R%. We equip M(R%) with the
weak topology, that is the coarsest topology for which the linear functionals

yEM(Ri)e/fdy, f € C.(R%R)

are continuous, where C.(R% R) is the set of the continuous maps from R? to R having

compact support.
For v € M(R%), we define Z(v) = Z(A) if v is the measure with density 61 4 with respect
to the Lebesgue measure, where A is a Borel subset of R¢, and Z(v) = oo otherwise.

THEOREM 1.2. Let d > 3 and let p > p.. The sequence of random measures

1
Co=—7 D> 0z

x€C(0)
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satisfies a large deviation principle in M(Ri) with speed n®' and rate function I, i.e.,
for every Borel subset Ml of M(R%),

1

—inf{Z(v) : v € M} < liminf i

n—oo

1 —
<limsup ——In P(C, € M) < —inf{Z(v) : v € M}.
n

n—oo

In P(C,, € M)

Under the conditional probability P(-) = P(- | |C(0)| < co) we have the enhanced large
deviation upper bound: for any Borel subset Ml of M(R?),

ligisolipnd_l In P(C,, e M) <
—sup inf {Z(p) : p(RY) <0, €M |p7) — 1) < 5}

where the supremum is taken over § > 0 and the functions f : R — R that are bounded
and continuous.

G. R. Grimmett submitted the Wulff shape problem for oriented percolation to R. Cerf
back in 1995. One could believe that the oriented case should be easier to tackle than the
unoriented one [3]. However, we were surprised to deal with delicate proofs, despite the
Markov property of the oriented process.

In [3], the large deviation principle is stated with the conditional measure ﬁ, which is
enough to prove the result of Theorem 1.1. The statement of the large deviation principle
with the percolation measure P in [4] requires no more effort. Let us keep in mind that in
the usual percolation process, the surface tension is bounded away from 0, so that there is
a linear relation between the perimeter and the surface energy.

This relation still remains for bounded Borel subsets of R¢ in the oriented case. On the
other hand, when we focus on a bounded region, we find that there is no more equivalence
between the perimeter and the surface energy restricted to that region. This leads to extra
work in order to prove the Z—tightness under P of the random measure C,,. Theorem 1.2
is stronger than what we need for Theorem 1.1. We establish the large deviation principle
with the measure P in order to keep the result of [4], and to highlight a difference between
the oriented case and the non—oriented one.

This article is devoted to the proof of the (weak) large deviation principle stated in
Theorem 1.2, and follows the schemes of [4]. We do not give the proofs of the enhanced
upper bound and of Theorem 1.1, as it would be a repetition of [4]. Also, we often recall
lemmas from [4].
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Beside the large deviation principle, we get other results on the percolation process by
using block arguments. We state these results in the following three theorems. In the
supercritical oriented percolation model, an infinite cluster does not fill the whole space
but looks like a deterministic cone. This cone is called the cone of percolation, and we
shall show that the percolation process inside this cone is supercritical in section 19:

THEOREM 1.3. Let d > 3 and p > p.. Let O be an open subset of R4~ such that the
cone {(tO,t) : t > 0} is included in the cone of percolation. Then with probability one there
is an infinite path in {(tO,t) : t > 0}.

The next result deals with the positivity of the surface tension. The relevant cone for the
surface tension is a cone orthogonal to the cone of percolation, and which we call the cone
of positivity, see figure 1.

N

I:l cone of
percolation
J cone of
& positivity

%

T=0

figure 1: The cone of positivity

THEOREM 1.4. Let d > 3 and p > p.. The surface tension T is strictly positive in the
cone of positivity and null outside.

We also prove that the connectivity function P(0 — x) decreases exponentially outside the
cone of percolation in section 20:

THEOREM 1.5. Let x be not in the cone of percolation. There exists ¢ > 0 such that

P(0 — nx) < exp(—cn).

The cone of percolation is defined in section 2, and the cone of positivity is defined in
section 5.

As we have noted before, the surface tension is null in a whole angular sector. Hence,
the corresponding Wulff crystal does not contain 0 in its interior. Indeed, the Wulff crystal
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is contained in the cone of percolation, and it has a singularity at 0. Nevertheless, we prove
that W, has a non—empty interior. Unfortunately, the proofs that the Wulff crystal is the
unique solution which minimizes the surface energy under a volume constraint, always
rely on the strict positivity of the surface tension. Thus, to obtain the Wulff shape for
large finite clusters as in [4], one has to resolve the Wulff variational problem for a convex
function whose Wulff crystal has a positive Lebesgue measure. This problem has not been
solved yet.

Most of our results are based on a block argument, and we now describe the basic
idea which leads to the definition of our block events. The graph is oriented so that
the process goes upward. The oriented percolation process has a Markovian structure,
and we sometimes think of this process as a process indexed by the last coordinate. In
the supercritical regime, clusters tend to spread horizontally with linear speed, and most
of the block events that we consider assert that the “block process” increases in typical
configurations. In that way, we can estimate the price to pay to restrain the block process
in a given region.

We give a short review of the main points of this article. Two block events are defined
in section 3. They control the increase of the (Markovian) oriented percolation process
from below. Another block estimate, given in section 19, provides a control from above of
the increase of the oriented percolation process.

The proof of the upper bound is divided into three parts: a local upper bound, the
definition of a set of blocks which is exponentially contiguous to the cluster of the origin,
and the Z—tightness of this set of blocks.

The local upper bound relies on a local estimate, provided in section 8 and in section 9.
The arguments in section 8 are similar to those in [4]. However, the result of section 9 in
which we consider the density has still a counterpart in [4], but the proof is much longer
and it relies on a static renormalization much like [20]. The point is that when we consider
a family of clusters, the clusters can intersect so that the cardinality of their union is not
the summation of their cardinals.

Because of the lack of equivalence between the perimeter and the surface energy in a
bounded domain, our proof of the Z—tightness is more involved. In order to control the
proportion of bad blocks in the boundary of the block process, our definition of block
events will depend on the domain under consideration, as well as the size of the blocks.

The proof of the lower bound is also more delicate, because the percolation process does
not naturally fill a given shape. We put some seeds at the “bottom” of the shape to solve
this problem.

The following is a sequential description of our article. We first describe the oriented
percolation process and then give background results in section 2. Section 3 is devoted
to the study of two block events, and we define block processes in section 4. We define a
surface tension in section 5. In section 6 we introduce the Wulff crystal and we study the
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positivity of the surface tension. In section 7, we estimate the probability of the existence
of a separating set near a hypersurface. Section 8 is devoted to the proof of the interface
estimate, which provides the link between the surface tension and the large deviation
upper bound. Section 9 contains an alternative separate estimate, which is more relevant
for the local large deviation upper bound. In section 10, we introduce the Caccioppoli
sets, which are the natural objects for our large deviation principle. The definition of their
surface energy follows in section 11, and we give two ways for approximating Caccioppoli
sets in section 12. A local upper bound follows in section 13. In section 14 we build a
block cluster and a block measure from the cluster C'(0). Section 15 is devoted to the
study of the boundary of the block cluster. The exponential contiguity between the block
measure and the measure C, is proved in section 16, and the Z—tightness of C, is proved in
section 17. In section 18 we build with sufficiently high probability the cluster C'(0) near
a given shape, in order to obtain the lower bound. We discuss the geometry of the Wulff
shape and finish the study of the positivity of the surface tension in section 19. We prove
that the connectivity function decreases exponentially outside the cone of percolation in
section 20. To finish, section 21 contains a little note on the Wulff variational problem.

2 The model

Let Z% be the set of all d-vectors = (z1,...,x4) of integers. For z, y € Z¢, we define

d
|z -yl = Z\% — ¥il.
i=1

We let e; be the ¢! coordinate vector, for 1 < ¢ < d. We refer to vectors in 7% as vertices,
and we turn Z¢ into a graph by adding an undirected edge between every pair z, y of
vertices such that |z — y| = 1. The resulting graph is denoted L = (Z4,E4). The origin
of this graph is the vertex 0 = (0,...,0).

We will consider the following oriented graph. Each vertex x = (x1,...,x4) may be
expressed as x = (x,t) where x = (x1,...,24_1) and t = x4. Consider the directed graph
with vertex set Z¢ and with a directed edge joining two vertices z = (x,t) and y = (y,u)

whenever Z?;ll lyi —x;| <1and u=t+ 1. Asin [17], we write Eglt = (Zd,ﬁglt) for the
ensuing directed graph, represented in figure 2. We shall concentrate on this model for
notational convenience, but our results apply also to the conventional oriented model [8].

Let G = (V, F) be a graph. The configuration space for percolation on G is the set
Q = {0,1}F. For w € Q, we call an edge e € E open if w(e) = 1 and closed otherwise.
With 2 we associate the o—field F of subsets generated by the finite-dimensional cylinders.
For 0 < p <1, we let P, or simply P be the product measure on (£, F) with density p.
When the graph G has translations, the measure P is invariant under translation and is

even ergodic.
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. 72
figure 2: The graph L;,

There is a natural order on () defined by the relation w; < wy if and only if all open
edges in w; are open in ws. An event is said to be increasing (respectively decreasing) if
its characteristic function is non—decreasing (respectively non—increasing) with respect to
this partial order. Suppose the events A, B are both increasing or both decreasing. The
Harris—FKG inequality [16] says that

P(ANB) > P(A)P(B). (2.1)

We shall compare a block process with a Bernoulli—site process with the help of stochas-
tic domination. Let u, v be two measures on 2. We say that p is stochastically dominated
by v, which we denote by u < v, if u(f) < v(f) for every bounded increasing measurable
function f : & — R. For p € [0,1], we let ZP be the Bernoulli site process on G with
density p.

Let w € Q. An open path is an alternating sequence z,eg, 1, €1, T2, ... of distinct
vertices x; and open edges e; such that e; = [z;,z;+1) for all 4. If the path is finite, it has
two endvertices xg, T,,, and it is said to connect zg to z,. If the path is infinite, it is said
to connect xq to infinity. A vertex x is said to be connected to a vertex y, written x — v,
if there exists an open path connecting x to y. For A, B C Z%, we say that A is connected
to B, or B is connected from A, if there exists a € A and b € B such that a — b; in this
case, we write A — B.

For z € Z and w € Q, we write

Cz)=Cz,w)={y €2z —y}.
The percolation probability is defined as the function

0(p) = P(0 — o0).



96 CHAPITRE 5
We introduce the critical point

pe = sup{p: 6(p) = 0}.

By [2,17], we know that 6(p.) = 0.
For A C Z% 1! and n € N, we define

A ={xez7¥ 1t Ax {0} — (x,n)}.
Let x € Z%~1. We define £2(x) = 1 if x € ¢4, and 0 otherwise. We let

Hn = Umgnggn and Kn = {X : fg(x) = {%dil(x)}‘

We define L1 L1
o — - 1d-1 7 A
We let
Qoo = {62 # 0 for all n},
and

7 =inf{n : £ = 0}.
We state a shape theorem for oriented percolation from [2,6,7]

PROPOSITION 2.2. Let p > p.. There exists a convex subset U of R*™1 such that, for
any € > 0, for almost all w € O,

(1-enUc (H,NK,)C (1+¢)nU,

for n large enough.
We shall need some exponential estimates on the supercritical oriented percolation (see
[9, 11, 18]). For A C Z%~!, we let
T4 = inf{n: &} = 0}.

PROPOSITION 2.3. Let p > p.. There exists a strictly positive constant v such that, for
n large enough
P(n <7 < o0) <exp(—yn),

and, for A C 7971,
P(ra < 00) < exp(—1]Al).
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PROPOSITION 2.4. Let p > p.. There exist strictly positive constants v and 5 such that,
for n large enough, for all x € Z3~t such that |x| < on,

P(x ¢ H,, T =00) < exp(—yn),
P(x ¢ K,,T=00) < exp(—yn).

DEFINITION 2.5. Let p > p. and let U be the convex set introduced in proposition 2.2.
The cone of percolation is the set

F = Ui>o{(tU,1)}.

For a > 0, we define also
F(a) = Uso{(afU, 1)}.
We shall need the following generalizations of the process &

DEFINITION 2.6. Let y = (y,t) in Z¢. We define
G=1{xeZ¥y—(y+xt+n)},

and
ffd_l’y ={uezZ™':IxeZ"! (x,t) > (y+u,t+n)}.

The process ffdflvy is the process 5?71 translated by .

3 Block events

In this section we introduce two events which describe the typical behaviour of the
oriented percolation process. The first one handles the density of a cluster in a box, the
second one shows that a large cluster typically looks like the cone of percolation F.

We let K be a positive integer. For z in Z%, we define B(z) =] — K/2, K/2]? + K.
The graph structure of the set of boxes {B(z),z € Z4} will be studied in the next section.

Let € > 0, and let [ be a positive integer. We introduce a region of blocks:

Dy(z,l)=( |J {z+iea)) U( | {z+leate}).

0<i<l 1<i<d—1
We define
R(B(z),l,e) = {Vy such that C(y) N B(z) # 0 and |C(y)| > K/2:
(0 —e)K? < |C(y) N B(z + leg)| < (0 +¢)K¢,
and Vz € Dy(z,1),C(y) N B(z) # 0},
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figure 3: The event R

see figure 3.

PROPOSITION 3.1. There exists | > 0 such that for all € > 0,

P(R(B(z),l,e)) =1 as K — oc.

PROOF. For A a subset of R? and r > 0, the notation V., (A,r) stands for the r—
neighbourhood of A for the norm | - |o as described in section 10. Let D be the region

D = Voo (B(a), K/2).

For z in RY, we let F(J, 2) stand for z + F(5). We take [ large enough so that the box
B(z + leg) is included in F(d, 2) for every z in D. Let n, 0 <n < 1/2, and define

D'(n) = Voo (B(z), nK).
Let n be small enough such that
VzeD(n), F(5/2,2)N Bz +eq) #0. (3.2)

Let y be such that C(y)NB(z) # 0 and |C(y)| > K /2. There exists z in D’'(n) NC(y) such
that |C(z)| > nK/2. This is evident in the case y € D’(n), and if y ¢ D’(n), then pick T a
path from y to B(z) and take for z the first point in Y N D’(n). By propositions 2.3 and
2.4, there exists v > 0 such that for all K

P(|C(2)| < 00 | [C(2)] = nK/2) < exp(—ynK), (3.3)
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and for all n € N, for all x € Z4~! such that |x| < on,
P(x¢ H,NK,,|C(0)] = oc0) < exp(—yn). (3.4)
Let Ey(x) be the event

Ey(z) = {Vz € D'(n) such that |C(z)| > nK,
Vn>K/2,Vue 731 such that lu| < Sn, we have
d—1
Er(n) =& *(u)}.

By (3.3) and (3.4),
P(Ey(z)) — 1 as K — oo. (3.5)

Observe that for every y with y-eq > K(z-eq + 1) and for every z in D’(n), we have
the following implications:

(Zd_l x{0}+ K(z—eq) >y = (Zd_l x {0} + 2) — y, (3.6)

and
(27t x {0} +2) »y = (Z' x{0}+K(z+eq)) — v, (3.7)

see figure 4.

71 x {0} + (Kz + Keg)

AN

D'(n)

741 x {0} + (Kz — Keg)

LS

AN /

figure 4: the set D'(n)

Let ¢/ > 0. We partition the top of B(xz + leg) with hypersquares of side length ¢'K.
We denote by S the collection of these hypersquares. By (3.2), we can take ¢’ > 0 small
enough such that for each z in D’(n), there is a hypersquare in S included in F(4,z). We
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can adapt proposition 2.3 by inversing the orientation of the graph, to obtain that for
every hypersquare s in S,

P(s # 297 x {0} + (Kz — Kea)) < exp(—eK™),
where ¢ > 0 is a constant independent of K. Hence there exists ¢ > 0 such that
P(3s € S such that 271 % {0} + (Kz — Keg) £ s) < exp(—cK9™h).

By (3.6), if Fy(z) occurs, then for all y such that C(y) N B(z) # () and such that |C(y)| >
K/2, the cluster C(y) intersects B(z + e4). We repeat the same procedure for the other
boxes.

We turn now to the study of the density inside the box B(z + leg). By the Birkhoff
ergodic theorem, we have P almost surely

1
ﬁ‘{y € B(led) 7471 % {0} — y}) — 60 as K — oco.
Thus, for all £; > 0, for K large enough

P<%‘{y € B(z+leg) : (2471 x {0} + (Kz — Keg)) — y}’ > 9_5) >1—e1, (3.8)
and

P<%‘{y € Bz +1leg) : (271 x {0} + (Kz + Keg)) — y}‘ < 9+€) >1—¢1. (3.9)

By the definition of Ey(z), the density of the clusters considered in the event R is con-
trolled from below by inequality (3.6) and estimate (3.8), and is controlled from above by
inequality (3.7) and estimate (3.9). The limit (3.5) yields to the desired result. [

Let € > 0, a > 0, and let [,  be positive integers. We introduce two regions of blocks:
D(z,l,e,r)={y:( ceq=1,By)N (F(1—e)+ K(z —req)) # 0}, (3.10)
and
Fla.lor) = {y:0< (- 2)-ea <1 B0 (Fl0) + K(z —rea) 0}, (3.1)
These two regions are represented on figure 5. Let V(B(z),[, ¢, a, ) be the event

V(B(z),l,e,a, ) = {for all y such that C(y) N B(z) # 0 and |C(y)| > K/2,
we have Vz € F(z,l,o,7)UD(z,l,¢,7),B(z) N C(y) # 0}.
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figure 5: The sets D and F

PROPOSITION 3.12. Vr >0 da>0Ve >0 3 >0 such that

lim P(V(B(),l,e,a,1)) = 1.

K—oo

PRrROOF. For simplicity we do the proof for » = 0. The integer r will be used in the
proof of the Z—tightness, where we shall place a cone similar to the cone of percolation F
such that the cone contains the box B(z).

We concentrate on the region D, the region F' being handled as in proposition 3.1. Let
€ >0, and let 2 be in Z%. Let ¢/ > 0, and let [; be the constant given by proposition 3.1.
We define E(z) as

E(z) = {Vy such that |C(y)| > K/2 and C(y) N B(z) # 0,
we have [{z € C(y) N B(z + lieq) : |C(2)| > K/4}| > 4'K?}.
We claim that for &’ small enough,
P(E(z)) -1 as K — oc. (3.13)
PROOF OF (3.13). The events {Z~! x {0} — z} and |C(z)| > K/4 are independent

(we could also use the FKG inequality), and of probability larger than #. We adapt (3.8)
in the following way. For all € > 0,

P(%‘{z € Bz + lheq) : (Z4'x {0} + (Kz — Keg)) — 2 o1
and |C(z)| > K/4}‘ > 62 —e) —1,
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as K goes to infinity. From the estimates (3.6) and (3.5) we get the limit (3.13). O
Let 1 > 0. Pick ¢’ > 0 and K large enough such that
P(E(z)) >1—e. (3.15)

We now introduce the event that a cluster is near the cone of percolation. Let y = (y,t)
in Z?, and let n be a positive integer. We recall that

Y={xeZ¥:y - (y+xt+n)}.

We define I—Tf{ and K_ﬁ in the same way as H,, and K, before proposition 2.2. Let ng in
N, and let y in Z¢. We define

A(y,e,n0) = {¥n >mno, (HI N K}) D (1 —e)nU}.
By proposition 2.2, for all € > 0, there exists ny such that
P(A(0,e,m0) | |C(0)] = 0) >1—¢.

Let ¢ > 0, and take ng such that the above inequality holds. With the help of the
exponential estimates of proposition 2.3 on the law of |C(0)], we obtain that there exists
Ky in N such that, for all K > K,

P(A(0,2,m0) | [C(0)| > K/4) > 1 -2,
Hence, by the ergodic theorem [22], for all £ > 0, for K large enough,
P(|{y € Blz+hea) : [Cy)| = K/4 and A°(y,e,n0)}| 2 3'K) e (3.16)
Take ¢’ > 0 such that ¢’ < /8. Putting together inequalities (3.15) and (3.16), we obtain
P(Vy such that |C(y)| > K/4 and C(y) N B(x) # 0,

3.17
Jdz € B(xz + l1eq) N C(y) such that A(z,e,n9) occurs) > 1 — 2¢;. (3:17)

We take [ such that [K > 2ng, and such that for every z in B(z + l1e4),
D(z,1,2¢,0) C F(z,1 —¢). (3.18)

By the ergodic theorem, the definition of K,,, and by the inclusion (3.18), for K large
enough,
P(Vz €B(z + lieq) such that A(z, e, ng) occurs,

. ) (3.19)
C(z) intersects every box in D(z,l,2¢,0)) > 1 —¢;.

The estimates (3.17) and (3.19) yield that, for K large enough,
P(V(B(z),1,2¢,6,0)) >1—3e;. O
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4 The rescaled lattice

Let K be an integer. We divide Z? into small boxes called blocks of size K in the
following way. For z € Z%, we define the block indexed by z as

B(z) =] — K/2,K/2]* + Kx.

Note that the blocks partition R%. Let A be a region in R?. We define the rescaled region
A as

A={zeZ: Blz)nA+0.

In general, we use underline in the notation to emphasize that we are dealing with rescaled
objects.
We define the sets E¢, E4> by

E = {{z,y}: z,y € Z%, |z — y| = 1},

Ed,oo = {{x,y} HUPRTIS Zda ‘.I‘ - y|OO = 1}

The rescaled lattice is isomorphic to Z¢ and we equip it with the graph structures corre-
sponding to L¢ = (Z4,E%), or L&>* = (Z* E%>),
Let A be a subset of Z¢. We define the inner boundary 0" A of A as

O"MA={zcA:Ty¢Alxr—y|l=1}.

The residual components of A are the connected components of the graph (A¢, E¢(A°)).
Let R be a residual component of A. The exterior boundary of R (in A) is

{red™A:eR,|v—yl =1}

The importance of the graph L% lies in the fact that the exterior boundary of R is
L4°°—connected.

Let X (z) be a site process on Z¢. We say that a box is good if X(z) = 1, and bad
otherwise. For A a subset of Z%, we denote by No(A) the number of bad boxes in A (we
will use N7 as the number of good boxes later). Let € > 0. We say that A is e-bad, if the
proportion of bad blocks in A is larger than e, that is if

No(A)/|A] > e.
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LEMMA 4.1. There exists a dimension dependent constant b(d) > 0 such that, for every
bounded open set O, every integers s,t > 0, every 6, > 0, if X = Z'~°, then

P(EI (A)icr a family of disjoint L% —connected components,

Z|Al| > s, forallie I,A;,NO #0,|A;| >t, and Uies A, is 6bad)
i€l
< 22expy<¥ln£ (V(0,d)) +Inb+ A (6,5))

Jjzs

where
1—¢

* —eln _
A (e,0) =eln-+ (1 6)1111_6

J

1s the Fenchel-Legendre transform of the logarithmic moment generating function of a
Bernoulli variable with parameter §.

PROOF. The inequality follows as in [4] from a counting Peierls argument and from the
theorem of Cramer [5]. O

We return to the block events R and V' that we introduced in the previous section. The
events R(B(z),l,¢) and V(B(z),l,¢,,7) depend only on edges in the set U, _z <21 B(y).
Hence we can apply the domination result of [19] to our block processes: B

LEMMA 4.2. Let X(x) be the indicator variable of either the event R(B(z),l,e) or
V(B(z),l,e,a) with €, o, and | as in propositions 3.1 or 3.12. For every 6 > 0, there
exists Ky such that for all integer K > K, the process X dominates stochastically the
Bernoulli site—process Z'=° of intensity 1 — 6.

With the help of lemma 4.2 we shall use the estimate in lemma 4.1 for the events R
and V. In [4], the author does not use this domination estimate. Indeed, he considers the
event that all blocks in a certain region A are bad. He can partition the lattice Z% into
a fixed number N of distinct classes such that in each class, the variables are mutually
independent, hence there exists a class whose intersection with the set A has a cardinality
larger than N~!|AJ, and all the blocks in this intersection are bad. In our case, we can
not control the proportion of bad blocks in an intersection, thus we make appeal to the
domination result of [19].
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5 Surface tension

Let x = (71,...,24) be a point of R? and let w be a vector in the unit sphere S4-1.
The hyperplane containing  with normal vector w is

hyp(z, w) :{yERd :(y—x)-w=0}.

Let A be a subset of R? of linear dimension d — 1, that is A spans a hyperplane of R,
which we denote hyp A. We call such a set a hyperset. By nor A we denote one of the two
unit vectors orthogonal to hyp A. The cylinder of basis A is the set

cylA={x+tnorA:t e R,z € A}.
Let w be a unit vector and r > 0. We define
cyl” (A,w,r)={x—tw:t>r,x € A},

eyl (A, w,r) ={z+tw:t>rzec A}
For r > 0, the r—neighbourhood V(A4,r) of a subset A of R? is

V(A,r)={z eR?: inf |z —y| < r}.
yeA

We fix a real number { > 2d. We define two regions:
R™(A,w,¢) = eyl™ (A, w, ) N V(R \ eyl A, ¢),

RY(A,w,¢) = cyl™ (4, w, Q) N V(R \ eyl 4, ¢),

as represented on figure 6.

figure 6: the regions R~ and R™.
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DEFINITION 5.1. Let A be a closed hyperrectangle, let w be a unit vector and let s be
positive or infinite. We denote by W(0A,w,s,() the event that there exists a finite set
of closed edges E inside V(hyp A, s) such that in the graph (Z¢ N cylA,IEglt), there is no
oriented open path from R™(A,w,() to RT(A,w,().

Loosely speaking, the “boundary” of the interface E is “pinned down” at dA within a
distance (.

PROPOSITION 5.2. Let p €]0,1]. Let A be a hyperrectangle and let w be nor A or —nor A.
Let ®(n) be a function from N to RT™ U{oco} such that lim,,_,., ®(n) = co. The limit

_ 1
nh—>r{>lo —m In P(W(@nA, w, ®(n), C))

exists in [0, 00] and depends only on w. We denote it by T7(w) and call it the surface tension
i the direction w.

PROOF. The proof relies on the same subadditivity argument of [4]. From now on, we
drop (¢ in the notations. [

Here is a heuristical comment of the reason we alter the definition of the surface tension
given in [4]. If we use our definition of the surface tension for non—oriented percolation,
then we obtain the same function as in [4]. On the other hand, we can not use the
definition of [4] in our case, because it is too easy to find a set of edges which cuts the
cylinder cyl A in two parts in the oriented case. For example, if w in S?~! is such that
w-eq < \/5/2, then there is no oriented path from —oo to +oo in cyl A. Let W’ be the
event considered in [4]. The point is that, in [4], the event W’ implies that for all ¢ > 0,
with probability tending to 1 as n goes to oo, the number of vertices in cyl™ A joined by
cyl™ A is less than en?. This property is crucial to obtain the upper bound. Now consider
the oriented case and a hyperrectangle A which is normal to e;. As previously noted, we
have P(W’(@A, e1,2n, C)) = 1. But as we may see in figure 7, there exists > 0 such that
with probability tending to 1 as n goes to oo, the number of vertices in cylt A attained
by cyl™ A is larger than an®. Thus, with the definition of [4], we would not have the large
deviation upper bound.

We derive now some basic properties of the surface tension. The surface tension 7
inherits automatically some symmetry properties from the model. For instance, if f is a
linear isometry of R” such that f(0) = 0, f(Z%) = Z%, and f(eq = eq), then 7o f = 7.
Note that there is less symmetry than in the unoriented model. Since the function 7 is
not symmetric, we have to take care on the orientation of the vectors when we state the
following weak triangle inequality:

PROPOSITION 5.3 (WEAK TRIANGLE INEQUALITY). Let (ABC) be a non degenerate
triangle in R, In the plane spanned by A, B, C, let v be the exterior normal unit vector
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figure 7: why we should prevent connections from cyl™ A to cylt A.
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figure 8: the three normal vectors of a triangle.

to [BC], and let vg, v be the interior normal unit vectors to the sides [AC], [AB], see
figure 8. Then

HY([BC))T(va) < HY[AC)T(vB) + HY([AB))7(vc). (5.4)

PROOF. The proof is the same as in [4], except that we have to take care about the
orientation of the vectors. [

PROPOSITION 5.5. The homogeneous extension 19 of T to R% defined by 79(0) = 0 and
Vwe R\ {0} 7o(w) = [wlar(w/|w]2)

is finite everywhere and is a convexr continuous function.
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PROOF. The convexity of 7y is a consequence of the weak triangle inequality (5.4): let
(A, B,C) be a non—degenerate triangle, and let (A’, B’,C") be the image of the triangle
(A, B,C) by the rotation of angle 7/2 in the plane spanned by A, B, C (we choose
the orientation of the plane such that the triangle is oriented counter—clockwise). Let
va be the exterior normal vector to [BC], and let vp and ve be the interior normal

—_ —
vectors to the sides [AC], [AB]. Then 10(A’B’) = [AB]71(vc), 10(C'A") = [AC]T(vE), and
—
70(C'B’) = [BC|1(v4). It follows that

—

—_— —_—
T()(A/B/) < T()(A/C,) + T()(C’B/),
and this holds for every A’, B’, C’. Then for every X € [0, 1], for all 4, ¥,
To( AT+ (1 — N)V) < 1o(Ad) + 10((1 — A)¥) < A1o(20) + (1 — X)70(7).

The finiteness is checked as in [4], and the continuity is then a consequence [21]. O

Let G C S9! be the set
G = {w e %" :hyp(0,w) NF # {0},
and denote by G its corresponding cone:
G = {tw;t > 0,w € G}.

The two cones F and G are represented on figure 9. We call G the cone of positivity,
partly because of the next proposition.

figure 9: The two cones F and G
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PROPOSITION 5.6. Let p > p.. The surface tension is equal to 0 outside G.

PROOF. By proposition 2.2, for all € > 0, ¢ > 0, there exists ng such that, for all
n Z no,

P<O — (1 + £)n (R \U),n)) <,

and the nullity outside G follows. [

6 The Wulff crystal and the positivity of the surface tension
We begin with the definition of the Wulff set.
DEFINITION 6.1. The Wulff crystal of T is the set

Wr={zeR%: 2w < 7(w) for all w in 41},

The Wulff crystal is a closed and convex set containing 0. Since 7 is bounded, the Wulff
crystal is also bounded. The nullity of 7 outside the region G implies that W, is included
in the cone of percolation F. From W, we can recover the function 7:

PROPOSITION 6.2. The surface tension T is the support function of its Wulff crystal,
that is,

Vve ST r(v) =sup{z-v:z e W,}.
The crystal W, admits a unit outwards normal vector vy, (x) at HY™! almost all points

r € OW, and

T(vw, () =z - vy, (x) for HP™! almost all x € OWV;.

PROOF. The proof in [14] relies on the strict positivity of the function 7 and do not

make any assumption of convexity. Besides, the proof in [4] only relies on the convexity of
T0- O

We want to show that the Wulff crystal has a non—empty interior. This will follow from
the positivity of the surface tension inside a sufficiently large angular sector:

PROPOSITION 6.3. There exist € > 0 and n > 0 such that, for each w in S%1, if
w-eq > —n, then T(w) > €.

PrRoOOF. The first step is to prove that

(eq) > 0. (6.4)
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PROOF OF (6.4). Let A be the hyperrectangle [—n,n]?"! x {0}. Let ¢ > 0, and let A’
be the hyperrectangle [~n/2,n/2]¢"! x {—n/4}. Consider the event

W(0A,eq,n/8).
Because of the graph structure of f"glw each oriented path joining A’ to A 4 (n/8)ey lies
inside cyl(A). Hence, the event W(9A, e4,n/8) implies that the set A’ is not connected to
the infinity. By proposition 2.3, we conclude that

P( W(0A,eyq, n/8)) < eXp(_,Ynd—1)’

with v > 0 independent of n. [

Let us return to the proof of proposition 6.3. Suppose that there exists w in S%~1 such
that w-eq > 0 and 7(w) = 0. Let w be the image of w by the symmetry of axis e;. Because
of the symmetry properties of 7, we have 7(w) = 0. By the convexity of 79, it follows that
7(eq) = 0, which contradicts (6.4).

Now suppose that there exists w in S9! such that w - eq = 0 and 7(w) = 0. In that
case the symmetries of the graph and the convexity of 7y imply that for all w’ in S9!
such that w - e = 0, we have 7(w’) = 0. We now prove that

(er) > 0. (6.5)

PROOF OF INEQUALITY (6.5). Let A be the hyperrectangle {n} x [0,n]9"1. Let ¢ > 0,
and let A’ be the hyperrectangle [en, (1 — )n]?~" x {0}. We define the regions K,
1<i<d-1, by
K =[0,n]""t x {n} x [0,n]?"

(2

K =[0,n)""* x {0} x [0,n)4",

(3

and we let

c= U

1<i<d—1

see figure 10. Note that K = A.

Let K be an integer. We work with the lattice rescaled by K. We denote by C(A’) the
set of blocks intersecting C'(A’) the cluster of A’. Consider the event R'(B(z,[)) defined as
the event R(B(z,[,¢)) except that we do not require any density property. We pick [ > 0
such that the limit in proposition 3.1 holds. We call the blocks good or bad accordingly
to the event R’.
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RI-1 x {n}

_\A’

figure 10: the set K surrounding A’

We introduce notations in order to count the good and bad blocks of the boundary. A
block B(z) is at height i if x - e4 = 1.

a; = number of blocks at height 4 that are in C(A’),

b; = number of good blocks at height i that are in 9“*C(A’),

b, = number of good blocks at height i that are in 9“*C(A’),
and that have a neighbour at height i that is not in C(A’),

¢; = number of bad blocks at height 4 that are in 9""C(4’).

For ¢ > 0, let Y; be the family of blocks in C'(A’) at height i. The process (Y;);>o can be
view as a contact process. Boxes in Y; that are not in the boundary of C'(A’) or that are
good are still in Y;, ;. Hence

;41 = A — C.

Moreover, a good box in 9""C(A’) and counted in b'i gives “birth” to at least one box in
Yit1 because of the definition of the event R'(B(z),l). We have to care about the fact that
several boxes counted in b can give birth to the same box in Y;;;. Actually, the maximal
number of boxes giving birth to the same box is bounded by 2(d — 1). Therefore, for all 4
in [0,n/K],
b;
Qiy] = a; + m —C —Cig1 — - — Cipl—1,

see figure 11.
Furthermore, ag > ((1 — 25)n/K))d_1, and a; < (n/K)?! for all i in [0,n/K]. We
let B, = Z.:/(()Kl) Vyrit» B = Z:L:/(I){ b;, and we let C' = Z:L:/(I){ ¢;. Summing the previous

(3
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these boxes are bad

at the bottom all |
boxes are good

figure 11: examples of block configurations.

inequality over ¢ with step [, we obtain

1
> /o d—1
2C > 72(d—1)Bk (2en/K)*™ -,

for all k. But there exist k € {0,...,l — 1}, such that B, > ;B’. Hence

1
> I d—l.
20_72(d—1)lB (2en/K)

Now let b = b; — b;. For each box counted in bj, |, there is a box counted in b}, and a box
counted in b} can give no more than 2(d — 1) boxes counted in b}, thus

i1 < 2(d—1)bj, (6.6)

see figure 12.

: /
counted in b/ counted in b;

figure 12: different boundary boxes
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Denote by B the number

From (6.6), it follows that B’ > mB, and we get that

1
20> —— B 2n/K)% 1.
¢z ga—nul =K

Hence, if A’ is not joined to K, there exists a L% connected component of cardinality
larger than (n/(2K))9~! intersecting [0, ]9~ x {0}, which has a proportion of bad boxes
larger than 1/(20(d — 1)21) for ¢ small enough. By a counting Peierls argument, there
exists C' > 0 such that for K large enough,

P(A" £ K) < exp(—cn™1).

On the other hand, because of the symmetry of the graph, P(A’ — ICZi) does not depend
on i nor on the sign. By the FKG inequality (2.1),

PA'£K)=P( () {A-AKIn () 44K

1<i<d—1 1<i<d—1

> P(A 4 AT,

Thus
P(A—A) <exp(—en®'/(2(d-1))). O

With the help of the continuity of 79, we get the desired positivity result of proposi-
tion 6.3. O

COROLLARY 6.7. The Wulff crystal VW, has a non empty interior and a strictly positive
Lebesgue measure.

Proor. This is a straightforward consequence of the continuity of 7y, of the positivity
property stated in lemma 6.3, and of the definition of the Wulff crystal. [
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7 Separating sets

We need more flexibility on the localization of the set EF which separates the cylinder of
A in two parts in definition 5.1. Let A be a hyperset in R? and let r be positive. We denote
by S(A,w,r) the event that there exists a finite set of closed edges in cyl AN V(hyp A, r)
such that there is no oriented open path in the graph (Z? Ncyl 4, Eglt) from cyl™ (A, w, )
to cyl™ (A, w,r). From now on, we work with a fixed value of ¢ larger than 2d. We now
recall some result on separating sets from [4]

LEMMA 7.1. Let O be an open hyperset in R%, let w be one of the two unit vectors orthog-
onal to hyp O, and let ®(n) be a function from N to RTU{oo} such that lim,,_,~, ®(n) = oo.
We have

liminf —— In P(S(n0, w, B(n))) > —H(O)r(w).

n—oo MY

For r an integer, we let ;. be the volume of the r—dimensional unit ball.
LEMMA 7.2. There exists a positive constant ¢ = c(d, () such that, for each x in R?, all
positive p, n with n < p, every w in 1,

In P(S(ndisc(z, p, w), w,nn))) < —aq_1p ' 7(w) + enp® 2.

lim sup

n—oo

nd—1
LEMMA 7.3. Let F be a d — 1 dimensional set such that H*"2(0F) < oo, and let w be
nor F' or —nor F'. We define wall(F,w,n) as the event

wall(F,w,n) = S(nF,w,lnn)N
{ all the edges in V(cylonF,2d) N V(hypnF,Inn) are closed }.

Then

lim inf —— In P(wall(F,w,n)) > —HIY(F)T(w).

n—oo MN¥

8 Interface estimate

Let = be a point of R?. The closed ball of center x and Euclidian radius r > 0 is denoted
by B(x,r). We denote by a4 the volume of the d-dimensional unit ball. For w in the unit
sphere S%~1, we define the half balls

B_(z,r,w) = B(z,r)N{y e R : (y — z) - w < 0},

By (z,r,w) = B(z,r)N{y € RY: (y — x) -w > 0}.
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The open B(nx,nr)—clusters are the open clusters in the configuration restricted to the
ball B(nx,nr). Let Sep(n,x,r,w,d) be the following event: there exists a collection C of
open B(nz,nr)—clusters such that

‘ U cn B_(nx,nr,w)‘ > (1-— (5)£d(B_(nx,nr, w)),
cecC

’ U cn B+(nx,nr,w)‘ < 5£d(B+(nx,m°, w)).
cecC

LEMMA 8.1. Let p €]0,1[ and let o > 0 be a parameter. There exists ¢ = ¢(p,d,(, «)
such that for every x € R, every r €]0, 1], every unit vector w € St with 7(w) > «a, and
every § €]0, 1[:

1
limsup —— In P(Sep(n,z,r,w,d)) < —ag_1r? r(w) (1 — e6Y/?).
n

n—oo

PrRoOOF. We adapt the proof of D. Barbato [1] to oriented percolation. Suppose that
the event Sep(n,x,r,w,d) occurs, and let C be a collection of open B(nx,nr)—clusters
realizing it. We let E_ be the set of the open edges in B_(nz,nr,w) which do not belong
to a cluster C' € C. Symmetrically, let E; be the set of the open edges in By (nx,nr,w)
which belong to a cluster C' € C. For h € R, let 7(h) be the hyperplane

m(h) ={y eR?: (y — z)-w = h}.

Let p = 7/1 — 6 and i = v/6r/3. The projection on the line x4+ Rw of the segment joining
the endpoints of an edge has length at most 1, hence

nn
/ le€ Ey :enm(h) # 0|dh < |E4|
0
and therefore there exists h € [0, 7n] such that 7(h) N Z¢ = ) and

[{e € By :enm(h) £ 0} < 24;6#1_11"‘104(1.

Let h* be the infimum in [0,7n] of the real numbers h satisfying this inequality. We
can take ¢ > 0 small enough so that 7(h) N Z%N B(n) = () for h €]h*,h* + ¢[. The set
{e € E; : enm(h) # (0} is then constant in the interval h €]h*, h* + ¢[. We fix a value
h, in this interval. Then the above inequality holds for Ay, and every edge of E, which
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intersects 7(h4) has an endpoint in each of the two half spaces delimited by 7(h,). Let
V4 be the set

Vi = {yEZd (y—z)-w> hy,
y is the endpoint of an edge of E intersecting m(hy)}.
Let F'. be the set

F, ={ec Eglt : one of the endpoint of e is in V,, e does not intersect w(h4).

We define in the same way the sets V_ and F_. For y € R?, w in the unit sphere S¢~1,
and 71, ro in RU {—o00, 400}, we define
slab(y, w,r1,72) = {z € R : 1) < (2 —y) - w < 13},
We define the following subsets of B(nx,nr):
Z = cyl(ndisc(z, p,w)),
D =Z nslab(nz,w, —nn — ,nn + (),

DT =Z nslab(nz, w, 1,nn + (),

D™ =Z nslab(nx, w, —nn — ¢, 0),
0t D =Z nslab(nz + nnw, ,w, —(, (),
0~ D =Z nslab(nx — nnw, ,w, —(, (),

0~ D" =Z nslab(nz, ,w, 1,1+ (),
0tD~ =Z Nslab(nz, ,w, —(,0).

Let v be an oriented open path in D joining 9~ D to 07 D. Consider the last edge e of v

intersecting 7(h*). There are two possibilities: either e is an edge of a cluster C' € C or

not.

e In the first case the edge e is in ET. After the edge e, the path v has to go through an
edge of F,.

e In the second case, the fact that there is no cluster C' € C containing e implies that
all the edges of v before e are not in a cluster C € C. Let f be the first edge of
intersecting w(h~). We know that f € E_. Before f, the path v has to go through an
edge of F'_.

In conclusion, all open path in D joining 8~ D to 7D has to go through an edge of
F_ U F,. We perform the same surgery as in [4], and we obtain

lim sup lnP(Sep(n,x,r,w,d)) <

n—oo

nd—1

— ag_1p 7 (w) 4 enp2.

8d2érdo¢dln 2
n 1—-p
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Since we impose 7(w) > « with a > 0, there exists a constant ¢’ = ¢’ (p, d, ¢, @) such that

lim sup lnP( Sep(n, z,r, w, 5)) < —ag_1rT i (w)(1 - c"51/2),

n—oo

nd—1

for every z € R4, r €]0,1[, § €]0, 1] and w in S9! such that 7(w) > a. O

9 An alternative separating estimate
In the proof of the local upper bound, we shall not deal directly with the event “Sep”.
We denote by 0" B(nxz, nr) the set
9" B(nz,nr) = {z € B(nz,nr)NZ": 3y ¢ B(nz,nr) |z —y| = 1}.

Let Sepy(n, z,r, w, d) be the following event: there exists a collection C of open B(nz,nr)—
clusters coming from 9" B(nz,nr), and such that

‘ U cn B_(nx,nr,w)‘ > (0 — 5)£d(B_(nx,m°, w)),
cecC

’ U cn B+(nx,nr,w)‘ < 5£d(B+(nx,m°, w)).
cecC

LEMMA 9.1. Let p €]0,1[. For everye > 0, there ezists dg €]0, 1] such that the following
holds. For every x € R?, every r €0, 1], every unit vector w € S, and every & €]0, 5|,

lim ——— In P(Sepy(n,z,r,w,d8)\ Sep(n, z,r,w,5 +¢)) = —oo.

n—oo N

PROOF. The aim is to find a set of y’s in B_(nx,nr,w), such that D U C satisfies the
event Sep(n,x,r,w,d), where D is the collection of the clusters of the y’s. To do this,
we partition B_(nxz,nr,w) with boxes of size K. For each box we consider box a little
smaller and included in it. A box B is good if all vertices in the smaller box joined by the
boundary of OB are in C. Then the set of the y’s is the union of the smaller boxes that
are included in a good box. In that way, the intersection of DUC with B, (nx,nr,w) does
not change. In the following we give the details of this argument.

The proof is quite long, and has much to do with the exponential estimates of volume
order of [20]. We partition the half-ball B_(nz, nr,w) with large boxes of fixed size. The
number of these boxes is of order n, and we show that if a typical event arises in most of
the boxes partitioning B_ (nx,nr,w), then the new event Sepy(n,x,r, w,d) is included in
Sep(n, z,r,w,d + e) for a certain € > 0 and for § small enough.



118 CHAPITRE 5

Let & > 0, and let M > 0 be such that 4774 > 1 —e. Take § > 0. Let & > 0 and § > 0.
Pick 4 > 0 the constant appearing in lemma 2.2, and fix an integer K > 0. For a box B,
we define ‘

0""B={y=(y,t) € 0B : (y,t — 1) ¢ B}.
We denote by mp the hyperplane spanned by 0" B. We say that a box B of side length
K is good if the following five conditions hold:

(i) [y € B:0™B — y| < (0 +6)K.

(@) there is no open path v in B such that |y| > K and 7 = 7.

(i) for all  in 9™ B such that |C(x)] > 8K, £*(y) = ™5 (y) for all y = (y,t) such that
BK <t< K and |y| < dt.
(w) for every z € "B such that |C(z)| > K, there exists Z € C(z) such that

Tp-ea+PB<Z-eq<mp-eq+20,

and R
|IC(2)NF(5,8K,2) N B| > apf’K*.

(v) for all hypersquare A of side length > 3K and included in 0B, 74 > K.
By propositions 2.3 and 2.4 and by the Birkhoff’s ergodic theorem [22], there exists a > 0,

such that for § small enough
P(Bis good) — 1 as K — oo. (9.2)

Let n €]0,1/4[. The interior of a box B of side length K is defined by
B™(n) = B\ V(9B,1K),

as represented in figure 13.

B

o

figure 13: details of a box B
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LEMMA 9.3. For alln > 0, there exists B > 0 and 9 > 0, such that the following holds.
Let 6 €]0,9¢[. If C is a set of clusters in B coming from wp such that

IC| € [0 — (M +2)5,0 + 5K,
if B is a good box, and if y € B™(n) is such that mg — vy, then y € C.

ProoFr. Figure 14 shows what happens in a good box. Let n > 0. Take o > 0 and
G > 0 small enough such that the limit (9.2) holds. Furthermore, let 5 be small enough,
such that

[~5/2,3/2)7" € né/2U. (9.4)

Moreover, assume that 3 is small enough, so that for all y € Z4~! with |y| < 48K, we
have

(F(5/2) N (R x {t: ¢t >nK})) C (F(O, (y,0) N (R x {t:¢>nK})). (9.5

Now let y € B (n) such that mp — y. By condition (v) and (9.4), there exists z in 0""B
such that y € F(6/2,2) and |C(z)| > K. Because of condition (i), since 71 — y, we have
y € C(z). We pick z € C(z), accordingly to condition ().

Suppose there exists 7 in 9 B(xz) such that C(y) NF(d, BK,Z) # (. Then |C(y)| > BK,
and |z — y| < 4BK. By condition (9.5) on the choice of 3, y € F(6,¥). Since 7p — y and
by the condition (i), this implies that § — y. Hence if y ¢ C, then F(5,2) NC = ), and
the density of {3y € B(z) : "B — y'} inside B is larger than 6 — (M + 2)§ + a8 On
the other hand, by condition (7), this density is less than 6 4+ §. By taking

1 ap?
50 =3 ’
2M+3

we conclude that y € C. O
N%[\ Fep
- N nk
F(3,8K,%)
z

FaReT

figure 14: in a good box
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Let n > 0. Take § > 0 and B > 0 as in lemma 9.3, such that § < §/M and 8 < 7.
Let K be large enough so that the process of good boxes stochastically dominates the
Bernoulli-site process Z1~9/2. For n large enough, there exists a subset E of Z¢ such that

£d<B_(n:)3,m°, w)\ (| Bn@))) < 5%|E\/nd,

zEE

and
d( U Bn(g),ai”B_(nx,nr,w)) > 2K/n, (9.6)

where d(-, -) is the distance associated to the norm | - |.
By the theorem of Cramer [5], there exists a constant ¢ > 0 such that for n large enough,

P(the proportion of bad boxes in E is larger than §) < exp(—cn?).

Denote by £ the event that the proportion of bad boxes in E is less than §. Suppose that
E N Sepy(n,z,r,w,d) occurs, and let £, be

E,={z€E:|CNB,(z)|€[0— (M+2)4,0+ 6], B,(z) is good}.
The family C satisfies |C| > (6 — ) K?|E|. On the other hand, we have the bound
Cl/K® < |Eq[(8+ ) + 0| E| + (|E| — |E1[)(8 — (M +2)5) + d2/2|E].
Hence
(M = 1)|E] < (M +3)|E, .
By the choice of M, we have |E{| > (1 —¢)|E|. Let

D= |J{CWy):ye B™(x,20)}.
zel,
Let x € E,. Because of the structure of the graph Eglt
path coming from 8 B_ (nxz, nr,w) and intersecting B,,(x) has to intersect the hyperplane
spanned by " B,,(z). Hence, if v is a path from y € B™(z, 2n) with z € E,, and which
goes outside B(z), then the part of v outside B(z) is included in a cluster of the family C
because of the definition of a good block and of lemma 9.3, as represented on figure 15.
Thus

and because of condition (9.6), every

U C N By(nz,nr, w)‘ < LY B_(nz,nr,w)).
ceCuD
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figure 15: the path ~ is joined by C

Now let y in B_(nz,nr,w) \ (CUD). This implies that

y € < U V(aBn@),QnK)) u( U Bn(@)

zEE, zeE
X(z)=0

U (B-(na,nr,w) \ (UsepBa(x))).
The volume of that set is bounded by
(4dn + 6 +¢/2) LY(B_ (nz, nr,w)),
and so we have

U C N B_(nx, nr,w)‘ > (1—(d+4dn+ 5/2))£d(B_(nx,nr, w)).
CecuD

Hence C UD is a set which satisfies the event Sep(n,x,r,w,d + /2 + 4dn). O

10 Geometric tools

We introduce here the geometric background we need to deal with the Wulff theorem.
For A and B two subsets of R?, the distance between A and B is

d(A,B) =inf{|lx —y|:z € A,y € B}.
For E a subset of R%, we define its diameter as

diam E = sup{|z —y|2 : z,y € E},
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where | - |2 is the usual Euclidian norm. We shall use also the co—diameter defined by
diamy, F = sup{|z — y|eo : ,y € E},
where | - |s is the usual supremum norm. Let r > 0. The co-neighbourhood is defined by
Voo (E,7) = {z € R :inf{|z — y|loo : y € E} <1}

Let k be an integer. We denote by aj, the volume of the unit ball of R*. For every A C R,
the k—dimensional Hausdorff measure H*(A) of A is defined by [13]

g

H*(A) = sup inf { ok

Z(diamEi)k A C U E;,supdiam E; < (5}.
6>0

icl ier €l

We would like to work with a subset of Borel subsets of R? that has good compactness
properties. As quoted in [4], it is natural to work with Caccioppoli sets which we introduce
now. See for example [12,24]. For O an open subset of R, let C°(O, B(0,1)) be the set
of C* vector functions from O to B(0, 1) having a compact support included in O. We
let div be the usual divergence operator, defined for a C! vector function f with scalar
components (f1,..., fq) as

dfr Ofa

DEFINITION 10.1. The perimeter of a Borel set E of R* in an open set O is defined as
P(E,0) = sup{/ div f(x) dL(x) : [ € C*(0, B(0,1)) ).
E

The set E is a Caccioppoli set if P(E,O) is finite for every bounded open set O of R?.

Let E be a Caccioppoli set, xg be its characteristic function, and Vg be the distribu-

tional derivative of xg. The reduced boundary 0* E consists of the points z such that

e ||Vxe||(B(x,r)) >0 for every r > 0

o ifv.(z) =—Vxe(B(z,r))/||VxEe||(B(x,r)) then, as r goes to 0, v,.(x) converges toward
a limit vg(x) such that |vg(x)|2 = 1. The vector vg(x) is called the exterior normal
vector of E at x.

For every Borel set A of RY,

IVxE[[(A) = HTH AN E),
and for every open set O of RY,

IVxE[l(0) =P(E, O).
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DEFINITION 10.2. We denote by B(R?) the set of Borel subsets of R?, and we denote
by A\ the symmetric difference: for A and B in B(R?),

AAB = (AUB)\ (AN B).

We say that a sequence (E,)nen converges in L' towards E € B(R?) if LYE,AE) con-
verges to 0 as n goes to oo.

The next geometric lemma will be used to control the perimeter of a set by the surface
of its projection along the last coordinate vector.

LEMMA 10.3. Let O be an open ball in R?, and let A be a Caccioppoli set. Consider the
image O’ of O by the orthogonal projection on R~1 x {0}. We have

HHO) > )/ eq - va(z)dH (z)].
o* ANO
PrROOF. We apply the Gauss—Green theorem to the set AN O and we get
/ ed - Vano(x)dH¥ (x) = 0.
8% (ANO)

The reduced boundary 0*(A N O) is composed of 9*A N O plus a set included in 0O.
Consider

‘/Eed vo(x)dH¥ ()

for £ a borelian subset of 0. This integral is maximal in absolute value when E is the
lower half part of 0O, that is to say for

0-0={x €90 :vo(x)- eq <0}.

Hence we have
‘/ ed Vo(x)de_l(x)’ > ’/ ea - va(z)dH' " (z)].
a_0 * ANO

Pick 7 > 0 a real number such that O "R~ x —¢’ is empty for 7/ > r. We apply now the
Gauss—Green theorem to the set of points that are between 9_O and O’ x r to obtain that

) /ao eq - Vo(x)de_l(ZU)) =H¥YH0). O
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11 Surface energy

We recall that 7 is the surface tension and is a function from S?~! to R*, and that W,
is the associated Wulff crystal (see definition 6.1). Now we define the surface energy of a
Borel set.

DEFINITION 11.1. The surface energy Z(A, O) of a Borel set A of R% in an open set O
is defined as

1(4,0) = sup{/ div f(x) dL(x) : f € CHO W) .
A
For a fixed function f in C}(O, W,), the map
A€ B(RY) — / div f(z) dL%(x)
A

is continuous for the L' convergence of sets. Thus Z(-, O), being the supremum of all these
maps, is lower semicontinuous. Furthermore, let Tmax be the supremum of 7 over S%1.

Since C1 (O, W,) C B(0, Timax), We have
Z(A,0) < TmaxP(4A, O).

The next proposition asserts that the surface energy is the integral of the surface tension
over the reduced boundary.

PROPOSITION 11.2. The surface energy Z(A, O) of a Borel set A of R? of finite perime-
ter in an open set O is equal to

Z(A,0) = / T(va(z))dH ().

d* ANO
This formula for the surface energy allows us to define the function Z(-, E') for E a Borel
set not necessary open.
In order to deduce the upper bound from the Z—tightness and from the local upper
bound, the function Z has to be a good rate function.

PROPOSITION 11.3. For every open ball O of RY, the functional Z(-,0) is a good rate
function on B(O) endowed with the topology of L' convergence, i.e., for every X in RY,
the level set

{E € B(O):I(E,0) < )\}
18 compact.

PROOF. For every bounded open O and every A > 0, the collection of sets {E € B(O) :
P(E) < A} is compact for the topology L. For a proof see for example theorem 1.19 in
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[15]. So we just have to prove that there exists a constant ¢’(O) depending on the open
ball O and another constant ¢ > 0, such that

I(A,0) > —c'(0) + cP(4,0). (11.4)

Suppose that Z(A, O) is finite. By proposition 6.3, we can pick 7 > 0 and a > 0 such that:
if w is a unit vector of S9! with 7(w) < «, then w - eg < —7. Define

oA ={x €A, 7(va(z)) > a}.

Let H be the hyperplane {z : x - eq = 0}. Define O’ to be the orthogonal projection on H
of O. We have

HITHO') > )/*Amo €d - VA(:E)de_l(ZL')‘
= ) /( “ A\§* A)NO - VA(x)de_l(x)) B ) /*AﬂO ca-va@)HT @)

> M (@7 AN\ 2A) N O) x i — /a*mo Fa(@))dH (@)

> HITL((9* A\ 0L A) N O) x n—I(A,0).
The first inequality holds because O is a ball and by lemma 10.3. Furthermore
H*%%Am@)géﬂnngmoy
Thus
I(A, O) + gH* (85 AcapO) > HIH(0* AN O) x n — HH(O')

which implies
I(A,0) + 17(4,0: AN 0) > yH~1(9* AN O) — H1(0),
(8

and we can conclude

T(A,0) > — K1 0) + L HI1(9*An0). O
n+a n+a

Here is another consequence of inequality (11.4).

COROLLARY 11.5. If a set A has a finite energy in an open ball O, then it has a finite
perimeter in O. Hence the sets that have a finite energy in every open bounded subset of
R? are exactly the Caccioppoli sets.
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12 Approximation of sets

In order to prove the large deviation principle, we use two kinds of approximation of
Caccioppoli sets. The first one is used in the proof of the local upper bound (for a proof
see [4]).

LEMMA 12.1. Let A be a Caccioppoli set and let O be an open bounded subset of R®.
For everye >0, 6 > 0, and n > 0, there exists a finite collection of disjoint balls B(x;,;),
i € I, such that: for everyi in I, x; belongs to 0* A, r; belongs to |0, 1], B(xz;, ;) is included
in O,

LY(AN B(wi,r3))AB_ (4,15, va(25))) < Sogry,

T(4,0,400) = 3 aaari " r(va(@))| <e,
il
and
Viel ad_lrf_lT(l/A(a:',-)) <e.

The second result says that a Caccioppoli set can be approximated by a polyhedral set
[4]. A Borel subset of R? is polyhedral if its boundary is included in a finite union of
hyperplanes of R¢.

LEMMA 12.2. Let A be a Caccioppoli set and let O be an open bounded subset of R®.
There exists a sequence (A,) of polyhedral sets of RY converging to A for the topology L'
over B(O), such that Z(A,,,O) converges to Z(A,O) as n goes to co.

13 Local upper bound

LEMMA 13.1. Let v € M(RY) be such that Z(v) < co. for every e > 0, there exists a
weak neighbourhood U of v in M(R?) such that

InP(C, eU) < —(1—e)Z(v).

lim sup

P pd—1
PROOF. By definition of Z, since Z(r) < oo, there exists a Borel subset A of R? such
that v is the measure with density 614 with respect to the Lebesgue measure and Z(v) =
Z(A). If Z(A) = 0 there is nothing to prove. Suppose that Z(A) > 0. For ¢ > 0, set
g =e(1+1/Z(A))~ L.
Now we skip out parts of 9*A which contribute to the energy only a little. Let n be
positive and let 9; A be the set

OpA={x € d"A:7(va(z)) > n}.
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There exists n > 0 such that
sup {/ Fl@) - vale)di' ) : e CARL WD)} <</,
9* A\ A

Let ¢ be the constant appearing in the interface lemma for the parameter n and let £y > 0
such that ¢,/e1 < €’/2. Let 0y €]0, 1| be the constant given in lemma 9.1 with parameter

€1, and such that ¢\/dy + &1 < €.
Let O be an open bounded ball of R?, such that

T(A,0;AN0) > T(A,0;A) - /4.

By lemma 12.1, there exists a finite collection B(x;,7;), @ € I of disjoint balls such that:
for every i in I, z; belongs to 0y A, r; belongs to |0, 1],

LY(AN B, 1)) AB_ (4,15, v4(;))) < 60/3car?,
)I(A, 9:AN0) =Y ad_lrg—%(ymi))‘ < &'/4,
i€l

and
Viel ag1ritr(va(z;)) <€/4.

Let U be the weak neighbourhood of v in M(R%) defined by

U = {p EM®RY:Viel p(B_(wiriwvalz:) > (0 — do)aard/2,

p(By(mi, ri,valz;))) < 500zd7’§1/2},

where as usual é _ and B, denote the interior and the closure of the half balls. Suppose
that C,, € U. Define
Iy = {z €l:0¢ B(nxi,nri)}.

The set I\ I is either () or a singleton. For i € Iy, the intersection of C'(0) with the ball
B(nx;,nr;) splits into a collection C(i) of B(nz;, nr;)—clusters which all come from the
boundary 9 B(nz;,nr;). We conclude that

P(C,elU) < P( ﬂ Sepg(n,xi,m,1/,4(%),50)).
i€l

The events on the right—-hand side are independent since the balls are compact and
disjoint. We apply the interface lemma 9.1
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1
lim sup i InP(C, elU) < — Z g 18 (va(x)) (1 — e/do + 1)
n— 00 iclo
<-Z(A)(1—¢&)+e/a+e/a+E 4+ € /4
— 7)1 o),

and we are done. O

14 Coarse grained image

In order to prove the Z-tightness of the random measure C,, we build an auxiliary
random measure C,, which is exponentially contiguous to C,,, and we prove the Z-tightness
for the measure C,,. To this end, we first define for n > 1,

VeeZ' Bu(z)= Bl
n

and we let
C,={zxecz:C,(B,(z)) >0}

We now fill the small holes of C,, which do not create any surface energy. We look at
the residual component of C , that is the L%*-connected component of Z¢ \ C,. If
diam., C(0) < K Inn we set fillC,, = 0; if diam,, C'(0) > K Inn, we define

fillC,, =C,, U{R: R is a finite residual component of C,,diam,, R < Inn}.

By construction, we have 9 fillC,, C 9"C,,. If Klnn < diam,, C(0) < oo, then each
L4%—connected component of 9" fillC, has cardinality strictly larger than Inn.

Let

C, = U B, ().

zefllC,,

The measure C, is then the measure with density f1c with respect to the Lebesgue
measure L.
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15 The boundary of the block cluster

In the article of R. Cerf [4], all blocks in 0°C,, were bad. In the context of oriented
percolation, we provide a control on the proportion of bad blocks in 9""C,,.

LEMMA 15.1. Let O be an bounded open subset of R? such that H¥~1(00) < co. Let
e >0 and let | be a positive integer. Consider the event R(B(z),l,€), and call the blocks
good and bad accordingly. Let N1 be the number of good boundary blocks of C,, intersecting
O, and let N be the number of bad boundary blocks of C,, intersecting O. There exists a
constant ¢'(O) depending on O and a constant ¢ > 0 depending only on 1, such that

Ny < (0)n%! 4 cNy.

PrROOF. The argument to prove this lemma is the same as the one we used for the
positivity of 7 in (6.5). There is nevertheless some differences, because we work in a
bounded domain whereas the cluster C(0) is not restricted in that domain. For clarity, we
redo the full proof.

For ¢ an integer, we say that a box B(z) is at height i, if x - eq = i.

Heuristically, we consider the block cluster as a process on Z?~! indexed by the height.
If a block in the boundary of this process is good, then at time [ the block gives birth
to blocks around itself, and the process “increases”. The process “decreases” when the
process goes outside O, or when a block is bad in such a way that the block disappears in
time 1. Such a block lies in the boundary of the block cluster.

We introduce notations in order to count the good and bad blocks of the boundary:

a; = number of blocks in C,, at height ¢ intersecting O,

b; = number of good blocks in 9""C,, at height i intersecting O,

b, = number of good blocks in 9""C,, at height i intersecting O,
and that have a neighbour at height ¢ that is not in C,,,

¢; = number of bad blocks in (?an at height ¢ intersecting O.

Because of the definition of the event R(B(z),1, ), we have

/
i
—C —Ciy1 — .. — Citl-1

2(d—1) (15.2)
—2(n/K)*H*(V(90, 3K /n) N (R x K[i,i+1])).
Here we have bounded the number of boxes that “disappear” outside O by two times

(n/K)9 times the volume of V(90, 3K /n). Since we have supposed H~1(00) < oo, there
exists ¢’(O) < oo such that

Qiy1 = a;+

2(n/K)"H*(V(00,3K/n)) < ' (0)(n/K)* 1.
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We let B, = >>° b,y and B' = 37* ;. We have No = > ¢;. Summing

1=—00 i=—o00 “%° 1=—00

inequality (15.2) over ¢ with step [, we obtain

d(0)(n/K)¥™! + 2N, >

]‘ /
= mBka

for all k. But there exist k € {0,...,] — 1}, such that B}, > %B’. Hence

/ —1 1 /
¢(0)(n/K)¥! + 2Ny > mB .

Now let bj = b; —b;. For each box counted in b ; and not included in V(90, 3K /n), there
is a box counted in b;. We recall that a box counted in b; can give no more than 2(d — 1)
boxes counted in b7, ;, and thus

Yo <2(d = )Y+ 2(n/K)*HY(V (00, 3K /n)). (15.3)

Remark that

N1= io: bl

1=—00

From (15.3), it follows that
N, <4(d—1)B' +(0)(n/K)%1,

and we get that

1
/ d—1 > .
2 (0)(n/K)*™H 2N 2 g V. O

Remark: In lemma 15.1, we could replace C,, by fillC,,.
We can now control the perimeter of C,;:

LEMMA 15.4. Let O be an open bounded subset of RY such that H~1(00) < oo. There
exists ¢ > 0 such that for each function f(n) from n to Ry tending to oo as n goes to oo,
for n large enough

P(P(Cy,0) > f(n)) < exp —cf(n)n?~t.

PROOF. Let X (z) be the indicator function of the event R(B(z),l,c). Let N be the
number of boundary boxes of C),, in O, and let Ny be the number of those boundary
boxes that are bad, i.e. X(z) = 0. Pick ¢ €]0,1[, and let Ky be an integer such that
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X = Z°. Denote by N the number of boundary blocks in fillC, intersecting O. The event
P(C,,0) > en implies that
N > f(n)(n/K)" .

But for a certain constant ¢ > 0,
Ny(14¢) >N —(0)(n/K)% 1,

SO N 1
2
N 21 )

Thus for n large enough,
No S 1

N —2(1+¢)
Let b be the constant appearing in lemma 4.1. We take § small enough so that

Inb+ A*(1/(2(1 + ¢)), 6)

is negative. We take K large enough such that X = Z'79, and we apply lemma 4.1 with
s=cend/K? O

We now give a version of lemma 15.1 for the event V', in which the constant ¢ will not
depend on [.

LEMMA 15.5. Let O be a bounded open subset of R? such that H~1(00) < co. Let
e>0,a>0,and let I, r be positive integers. Consider the event V(B(z),l,e,a, 1), and
call the blocks good and bad accordingly. Let Ny be the number of good boundary blocks of
C,, intersecting O, and let Ny be the number of bad boundary blocks of C,, intersecting O.

There exists a constant ¢'(O) depending on O and a constant ¢ > 0 independent of n, [,
and r, such that

N; < (0)n4! 4 ¢cNy.

PROOF. Let 1 > 0 be the smallest integer such that
Vil<j<d—1, B(z+l+e;)CF(zl a,r),

where F(z,[, o, ) is the region defined before proposition 3.12. The integer >0 depends
only on a. When we consider the event V instead of R, we replace the first inequality in
the proof of lemma 15.1 by

/
a, 7> a;+ (b;—ci) — ¢ — Cig1 — « oo — Cipl—1—

2(d—1)
(n/K)*HH(V(00, 2K /n) N (RT! x [i,i+1])). O

Remark: As before, we can replace C,, by fillC,, in the statement of lemma 15.5.
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16 Exponential contiguity

Let us fix f € C.(R%R). We shall estimate |C,(f) — Cn(f)|, using for the blocks the
scale L = K Inn. So we work with the lattice rescaled by a factor L. Let [ be the constant
given in proposition 3.1 for the event R, and let £ > 0. For y € Z%, the block variable Y (y)
is the indicator function of the event R(B(y), 1, ). We write supp(f) for the support of the
function f. Since f is continuous and has a compact support, it is uniformly continuous.
We suppose that [L/n is less than 1 and small enough so that

Yo,y €RY Jo—yl < L/n=[f(z) - fy)| <e
Let O be an open bounded subset of R? containing V(supp(f), 2d), and let
A={yeZ":B,(y) Nsupp(f) # 0}.

Since L/n < 1, for each y € A, we have B,(y) C O, thus |[A|K? < n?L%(0). As in [4], we
have
Calf) = ()] < 26L90) + [ Flloe 3 1Ca(Balf) — Cu(Ba®).  (16.1)
yeA
We study the last term in the above quantity. If the diameter of C(0) is less than K Inn,
then the number of blocks contributing to the sum is less than (Inn + 1)¢ and the sum
is bounded by (Inn + 1)4(K/n)?. From now on, we suppose that the diameter of C(0)
is strictly larger that K'lnn. If y € A is such that B, (y) does not intersect C,, then
Cn(Bn(y)) = C(Bn(y)) = 0 and the corresponding term in the sum vanishes. So we need
only to consider the blocks B, (y) intersecting C,. Let y € A such that B,(y) N C, # 0.
We distinguish several cases. If Y (y —leq) = 0, then

Ca(Ba(w) = CBa®)] < [ Bu(w)lTy(y-ten=o:

Suppose next that Y'(y) = 1. Several subcases arise:
e B,(y) ¢ Cp. Then we bound

C(Bu(y)) = Cu(Ba(y)] < %\Bn(y)\-

By [4], the total volume of such B, (y) is bounded by the quantity

d—1
5d+1L—P(Cn, 0). (16.2)

n
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e B,(y) C C, and C,(B,(y)) = 0. These conditions implies that B, (y) is included in
one of the small holes of C',. Since the diameter of B, (y) is strictly larger than the
diameters of these small holes, this case can not occur.

e C(Bn(y)) > 0 and Cp(By(y — leq)) = 0. Here B, (y) is included in V(9C,, N O,1). The
total volume of such B, (y)’s is thus bounded by

Ld—l
n

24 P(Cy, O). (16.3)

o (y—leq)-eq < 1. Only B(0) is in this case.
o Co(Bn(y)) >0, Co(Bn)(y —leq) > 0, and (y — leq) - eq > 1. The definition of the block
event associated to the variable Y implies that

Co(Bal®) ~ CalBaw))| = [Ca(Baly) ~ IBa)l] < S1Bu)] (160

Summing the previous inequalities (16.2), (16.3), and (16.4) over y € A in (16.1), we get

1 L1

5£d(0)(2 + [ f oo (1 + 4 Z 1Y(g):0>) + HfHoo7d+1Tl73(Cm 0).

yeA

The sum in the above quantity is controlled via the Cramer’s theorem of large deviations
[5]. The probability that the perimeter P(C,,, Q) is larger than &'n/L?~! for &’ > 0 is
bounded with the help of lemma 15.4. Hence we obtain the following result:

LEMMA 16.5. Let K be large enough. For every continuous function f having a compact
support, there exists a positive constant c(f) and an integer n(f) such that,

d

Yn>n(f) Ve>0 P(Cu(f)—Cu(f)>¢) < c(f)exp ( - c(f)e(}(?ﬁ)d)

This lemma implies the exponential contiguity between the measures C,, and Cp.
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17 The Z-tightness

We show that the sequence of random measures 5n is Z—tight, that is there exist two
constants ¢ > 0 and Ag > 0 such that

lim sup PV eZN0,N) [Culf) —v(f)]>n) < —ch (17.1)

n—oo

nd—1

for every A > \g, every n > 0 and each f € C.(R% R).

Let us fix n > 0 and f € C.(R%,R). Let O be an open bounded subset of R? containing
the support of f. Near the set C}, N O we shall build a set S with a control on the energy
of S'in O. Let ¢/(O) be the constant appearing in lemma 15.1, and let e; < ¢/(O)~1.
Because of the continuity of the surface tension, there exists € > 0, such that for all z in
O*(F(1 —¢€)), T(vpa—e)(z)) < €1. We choose such an ¢ in 0, 3[. Let r > 0 be such that

1 11d ;

[—5,5]¢ is included in F(1 — €) — req, and take o > 0 as in proposition 3.12. We pick an

integer [ > 0 such that
V(l+7r)(1—e)U,2d) Cl(1-¢/2)U,
where U is the convex subset of R¢~! introduced in proposition 2.2. We let
I'=(F(l—¢)—rKeq) N (R x [-K/2,IK + K/2]), (17.2)

as represented in figure 16. Observe that the top of I is included in the union of the boxes
in the set D(z,l,e,r) defined in (3.10). Let X (x) be the indicator function of the event
V(B(z),l,e,a,r).

———— \ &\ y }Q(x,l,e,r)
T
(I+1)K
B(0)
rK F(l—¢)—rKeq

figure 16: the truncated cone I
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We define the set S by

1
S=C,U — .
n U ~(I'+ Kz)
z€d M fillC,,
X(z)=1

We may think of S as a try to transform C), such that C), locally looks like the cone of
percolation F'.

Let us make a comment on the sets I' and S. The boundary of I' is composed of three
parts: the bottom, the side, and the top. The bottom of I' has no surface energy because
7(—eq) = 0. For all unit exterior normal vector w to the side of I', we have 7(w) < ;.
The top of I is included in C), by the definition of a good box. So the surface energy of S
comes from the surface energy of the sides of I'’s that we add, and from bad boxes that are
in the boundary. The surface energy of the side of I' is bounded by cKle; with a constant
¢ > 0. Since we have no control on the term le1, the bound we get on Z(.S) is of the form

I(S) < l€1Cl(O) + CN2.

This bound depends on the open set O and does not provide a sufficient control on the
surface energy of S. We have taken into account the surface energy of the whole sides of
all the I'’s. To obtain a more accurate bound, we divide the set S into slabs of thickness
K, and we study the boundaries of these slabs.

We let N; be the number of good boxes in 9" fill C.,, Ny the number of bad boxes in
0" fillC,, and N = N; + Ny. We consider the set S floor by floor. For h € N, we define

Hyn ={Bn(z) :x-eq=h}.

Let S" be the set
St =8N R x {Kh/2}),

define C" by
Ch =, n(R¥! x {Kh/2}),

and let O" = ON (R4~ x {Kh/2}). We let N} be the number of bad blocks in 8" fill C,, N
Ch and we let N be the number of blocks in 9" fillC,, N C*. We have for a certain

n
constant ¢ > 0,

I(S, Hnn N O) < cKeyP(S", 0") + eNJ /nd.

We shall control P(S",0") by N". Observe that S is composed of a finite union U;¢c;U;
of dilations of U together with hypersquares coming from bad boxes. Denote by V; the set
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B

figure 17: the set S”

0S" NU;, and let J C I be the set of indices i such that V; # (). Let B be the part of 9S"
coming from bad boxes. The boundary 9S” is decomposed as

68h=<UVi>u3,

iceJ

see figure 17.
There exists ¢ > 0 such that H?=2(B) < ¢NJ/n?~1. Therefore

P(S", 0" <> HTE(V;) + Ny /nt (17.3)
i€J
We suppose that for i # j in J, we have H?~2(V;NV;) = 0. This is the case if U is strictly

convex. If it is not, we order the set J and for every i € J we replace V; by Vi \ (U;j<;V;).
Let x; be the center of U;. We define

Wi =[xz, Vi] i={a; +ty: t €[0,1],y € V; }.

We consider the set S* as embedded in R?~!'. For the topology of R¢~! the set U
is a symmetric convex set with non—empty interior. So, for all i # j in J, we have
HI2(W; nW;) = 0.

Let a be the constant independent of [ given in proposition 3.12. By definition of a
good block,

ch o | J(a/2)us.
icJ
For i € J, consider the set Z; = (OC") N W;. Since V; is a part of the boundary of S”, the

set Z; separates topologically in W; the sets (a/2)U; N W; and V;. By the Gauss—Green
theorem, there exists a constant ¢(«) depending only on « such that

HY2(Z;) > e(a)HET2(V), (17.4)
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figure 18: The boundaries of S and of C,

see figure 18.
Since the Z;’s are included in the W;’s, we have for all i # j in J,

HI"2(Z;n Z;) = 0.

Recalling that the Z;’ are parts of the boundary of C”, there exists therefore a constant
¢ > 0 such that

(e/n*?)N" =Y "H*3(Z)).
i€J
Hence by (17.3) and (17.4) we have proved that
I(S, Hnn N O) < cK/n= (e, N + NI, (17.5)

with ¢ independent of n and I. Summing (17.5) over h in N, this implies that there exists
c1 > 0 independent of n and [ such that

7(S,0) < (e1e1/n YNy + (c1 /") No. (17.6)
Furthermore, by lemma 15.5, there exists a constant ¢, independent of [ and n such that
Ni < (0)n% ! 4 ¢y Ny. (17.7)

Since we have taken e such that €1¢/(0) < 1, inequalities (17.6) and (17.7) imply

I(S, O) S C1 —+ (610201 —+ Cl)Ng/nd_l.
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We conclude that there exists c3 > 0 independent of O such that: for all v > 1, if
Ny < un® 1 then
Z(S,0) < c3u.

Consider now the symmetric difference between SN O and C,, N O. We add the set I’
only for good boundary boxes, so there exists a constant ¢(I) depending on [ such that

LYSAC,) < ¢(l)Ny /nc.

By lemma 15.1, if we have Ny < un®"! for a certain u > 0, then the above quantity tends
to 0 as n goes to infinity, and so

ICh(f) —01s(f)| — 0 as n goes to co.
The conclusion is that for all v > 1, for all n > 0, for all f € C.(R%,R), if we have
Vv e I7H([0,czul) [Culf) —v(f) >,

then for n large enough there is at least un®~! bad boundary boxes in C,, N O. Hence the
proportion of bad boxes in 9 fillC,, N O is larger than u/((c'(O) + cau) > 1/('(O) + c3).
Let b be the constant appearing in lemma 4.1. We pick €5 > 0, such that

In £%(V(0,d)) +1Inb + A*(1/(c'(O) + ¢2),£2) < 0. (17.8)

By proposition 3.12, we can take K large enough such that the block process X dominates
stochastically the Bernoulli-site process Z'~¢2. Hence, for K large enough, we obtain the
Z-tightness property (17.1) with the help of lemma 4.1 and by the choice of 5 in (17.8).

18 Lower bound

LEMMA 18.1. Let v € M(R%). For every weak neighbourhood U of v in M(R%), we
have

InP(C, eU) > —I(v).

St

PRrROOF. Heuristically, we want to show that the cluster of the origin fills a given shape
[figure 19] with a certain probability. The cluster of 0 will be restricted into that shape by
putting separating surfaces on the boundary as in [4]. Actually, the core of the proof is
to make sure that C(0) fills this given shape. The solution is to put a collection of seeds
at the bottom of the shape. We denote by S the collection of the seeds and we put a
truncated cone starting at each s in S. Furthermore, we partition the shape with boxes
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a connection from
0 to a seed

\aseedseS

figure 19: the shape we want to obtain

of a linear size, and we take block events such that clusters spread vertically. The cluster
C'(0) spreads as follows: first the origin is connected to a seed s, then the cluster spreads
in the corresponding truncated cone, and then the cluster spreads vertically with the help
of good blocks. Now we turn to the detailed proof.

If Z(v) = +oo, there is nothing to prove. Let v € M(R?) be such that Z(v) < co. By
definition of Z, there exists a Borel set A of R¢ such that v is the measure with density 61 4
with respect to the Lebesgue measure and Z(v) = Z(A). Let U be a weak neighbourhood
of v and let € > 0.

Let f € C.(R? R). Let h be an integer such that the supports of f and U are contained
in R4~ x [~h, h]. Let O be an open bounded subset of R¢ containing

{(x,t):0<t,|x| <t} (R x [—h, R]).

By lemma 12.2, there exists a polyhedral set D in Ri such that the measure v with
density #1p with respect to the Lebesgue measure belongs to ¢ and moreover Z(D, 0) <
Z(A,0O)+e.

We are going to estimate the probability that |C,,(f) — ¥ (f)| is small. Let € > 0. Since
J is continuous and has a compact support, it is uniformly continuous.

Let & be as in proposition 2.4. For a point s in R? and e > 0, we let F(5/2 £1,8) be
the set R R

F(0/2,e1,5) = s+ {td/2U + teq,0 <t < e }.

Finally, for a set S of points in R?, we define

F(6/2,61,5) = | F(3/2.21,59).

ses

We call the downward boundary of D the set

0"D ={x€0"D,vp(x)-eq < 0}.
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Half line intersecting
D F<5/27 €1, S)

oD —

se S

figure 20: a representation of S

We can take a set S included in V(8™ D, 2d/n) N (Z%/n) such that for each = in D\ V(R®\
D, 2¢ey), the half line {z —teq : t > 0} intersects F(d/2,¢1,.5) before leaving D, see figure
20. Furthermore |S| < ¢ where ¢ is a constant independent of n.

We let a €]0, 1] be small enough so that

L4YV(0D,4da)) < e,

Vo,y €RY |z —y| <a=|f(z)- fy)| <e

We work with the lattice rescaled by a factor |an]|. For « small, ¢; small and n large
enough, we can pick a set £, such that

d( |J Bu(@),R'\ D) >4ey, L£YD\ |J Bu(a)) <¢,

zelb, z€EE,

and moreover [E;| < ¢ where c is a constant independent of n. Let x in Z%, and let s in
S. We suppose that « is small enough such that, if B, (z + ed) N F(5/2 e1,8) # 0, and if
By (z +2ed) NF(5/2,e1,s) = 0, then B, (z) C F(5 €1, ) (see figure 21).

We build a set E, as follows. First let £, = (). Then for each z in E;, we go downward
along the last coordinate axis until we get a box B,,(y) which intersects F(6/2,e1,5). We
add to £, all the vertices between z and y — ey which are not in £/,. Note that for all
z € E,, we have B,,(z) C D. B

Let s € S. We define the downward half line of s as

N(s) ={s—teq:t>0}.

Let A’ be a closed and bounded subset of R?, and let t* be the larger t > 0 such that
s —teq is in A’ NZ%/n. We call the last point of N(s) in A’ the vertex s — t*ey.
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F(5/2,e1,s)

<

F(g, €1, S)

S

figure 21: a box included in F(ES\, £1,8)

We define the sets 5 and I' as follows. For each s in S, we go downward along the last
coordinate axis. There is three cases

e We intersect a box B, (z) with z € E;. In this case we go upward and we add to Ej
all the y’s until the box By, (y) is included in F(d,¢e1,s). Let 5 be the last point of N(s)
in By, (z + eq). We take for 7s the segment [s, 3].

e We intersect the set F(5/2,e1,s") for s’ € S. We let 5 be the last point of N(s) in
F(6/2,e1,5"). We define v(s) = [s,5]. We add to E5 all the boxes intersecting v,. We
represent this case on figure 22. R

e In the case where we do not intersect the boxes of £, nor the set F(§/2,¢1, ), we take
x the intersection of N(s) with the set

{y=(y.t) eR% |y| =1t}.

Note that x is in Z?/n. We take for 5 one of the path from 0 to z, union the segment

[z, s].

The set S’ is the subset of S for which the third case occurs. We let T be the following
set of edges:

I'= (USGS’ ’75)

We define D’ as

D' =DU U Voo (Vs 4€1).
seS

For every z in E; U E, U E5, the box B, (z) is included for n large enough in D\ V(R? \
D, 3e1). The set I is also included in that set. Observe that the set D’ is polyhedral. By
definition of a polyhedral element, D’ is the union of a finite number of d — 1 dimensional
sets F1,...,F.. For 1 <j <r, we denote by nor(F;, D’) the exterior normal vector to D’
at F}. Since the cardinal of S is bounded by a constant independent of n, the set we add
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} B,

F(5/2,¢1,5
e H

L
%

oD Vs

Ay

figure 22: a construction for the lower bound

to D do not create too much energy surface for £; small. Thus, for £; small enough,

> HTN(Ey)r(nor(Fy, D)) < Z(A) + 2.

1<j<r

Moreover, for each i in {1,... 7}, the relative boundary 0F; has a finite d — 2 dimensional
Hausdorff measure.
For z in Z?, we let Y (z) be the indicator function of the event

{ for every y such that |C(y) N By (z — leq)| > an, we have
IC(y) N By(z + eq)| > an and |C(y) N By (z)| € (an)¥[0 —<,0 + €]}

We let Z(z) be the indicator function of the event

{ for every y such that |C(y) N B, (z)| > an,
we have |C(y) N Byp(z + eq)| > an}.

For s € S, we write T'(s) for the event
{ for every z such that B,(z) C F(8,e1, s), we have |C(s) N By ()| > an}.
Let & be the intersection of the events

{all bonds in ' are open}, {Y(z)=1,z € E,}, ﬂ T(s)
seS
{Z(z)=l,z € Eyorz € E;}, wall(Fj,n),1<j<r
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The variables Y (), z € E;, do not depend on what happen in the region I and on the
events T'(s) for s in S. The probabilities that the variables Y and Z are equal to 1 tend
to 1 as n goes to infinity. Furthermore, the events represented by the variables Z(z) are
increasing, so we may apply the FKG inequality together with the events T'(s) for s in S,
and with the event that all bonds in I" are open. By the choice of D’, the events wall are
independent of the other events in £ for n large enough. Hence, as in [4], for all £ > 0, for
a small enough,

o 1
llTer_l)gf o InP(€) > -I(D) —e.

As in [4], the occurrence of £ implies that |C,,(f) — ¢(f)]| is small, and the lower bound is
proved. [J

19 The geometry of the Wulff shape and more exponential results

In this section, we finish the description of the surface tension we started in proposi-
tion 5.6. To do this, we first study the percolation process in a cone “included” in the cone
of percolation F, and prove an equivalent statement to theorem 1.3.

PRrROPOSITION 19.1. Let n > 0 and w be a unit vector. We define
K(nw)={tz+tw:t >0,z € nU}.

If w is in ]%‘, then the oriented percolation process on K(n,w) is supercritical: there exists
x in K(n,w) such that
P(z — oo in K(n,w)) > 0.

PROOF. Let w in F and n > 0. We use another rescaled lattice. We pick €f,... €,
an orthonormal basis of R?, such that e/, = w. Let K be an integer. For z in RY, we let
xy, ..., be its coordinates in the new basis (e],...,e/). Let z in Z?. We define

B'(z)={yeR?:Vi1<i<d-K/2<y, <K/2}.

Now let [ be a positive integer and let D’ be the similar set introduced in the proof of
proposition 3.12:

D'=B(x)u |J Bz+e).
1<i<d

We define the event Ry(z,1) as

Vi(z,1) = {for all y in D such that |C(y)| > K and C(y) N B'(z) # 0,
we have Vj,1 < j < d,C(y) N B'(z+ 1w £ e;) #0}.
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By proposition 3.12, there exists an integer [ such that
P(Vi(z,l)) =1 as K — oc.
We also assume that [ is large enough so that
B'(z)NK(nw)#0=Vi,1<i<d-1 B(z+led+e))C K(nw).

We call the blocks good and bad, accordingly to the event V;, and we write X (x) for the
indicator function of the event V;. Let z in Z? such that B’(z) is included in K (1, w).
We build a graph as follow: We let z be the first vertex of the graph. If y in a vertex
of the graph, we add the two vertices y + le’d £ ¢/, and we put oriented edges from ¥ to
y + le'd + ¢}. This new graph is isomorphic to the two-dimensional oriented graph _Zi.
We study the percolation process by site X () on the new graph, For every p’ < 1 and for
K large enough, this process dominates stochastically the Bernoulli percolation process
by site on the oriented graph Z%r. Hence there is an infinite path on the macroscopic
graph with strictly positive probability for K large enough. But this infinite path implies
the existence of an infinite path in the underlying microscopic graph. Thus the oriented
percolation process on K (1, w) is supercritical. [
We can now complete proposition 5.6 by proving theorem 1.4 which we restate:

COROLLARY 19.2. The surface tension T is strictly positive in the whole angular sector
G.

PROOF. Let w in G and take A a hyperrectangle normal to w. Let ¢ > 0, and let
w’ € 8971 such that

Hd_l({x €dcylANcyl” (A, w,e) : {z+tw : t > O}ﬂ@cylAﬂcyl+(A,w,€)}) > 0.

Let n > 0, and let A" C Z¢ such that A" is a translate of [0,7n/K]?"! x {0} in the new
graph given above with e/, = w’. Let a > 0. We define

Ny = {aty—f— t—Dw':t>1,y€ U B’(g)}.
zeAl

We take e, n, and o small enough such that
NgNV(nA,en)NdcylnA =0,

and
NaNdcylnANdcylt nA # 0,
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figure 23: the set Ny

see figure 23.
We take [ large enough so that

B'(z)"Na #0=V1<i<d—1B'(z+le;+e'i) C Ny.

We build a new graph L= (lN/, IE) First we set the vertex set at A’. Then for each z € )7,
we add the vertices x + lefi +e! for 1 <i<d-—1, and we put an oriented edge between x
and the new vertices.

A vertex z in L is occupied if Vi (x,1) occurs. If W(OA,w,en) occurs, then A" 4 oo in
the graph L for this percolation process. Since the probability that a vertex is occupied
can be as close to 1 as we want, and since the percolation process in L is similar to the
oriented site percolation process on ng by proposition 2.3, for K large enough,

P(A" 4 > in ]1:) < exp(—en?™1),

for a constant ¢ > 0. O

Therefore, by the continuity of 7, for all w in Fn S4=1 there exists ¢t > 0 such that
tw € W,. Actually, we would like a more precise result:

CONJECTURE 19.3. We believe that the Wulff crystal W, is tangent to F at 0, see
figure 24.
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figure 24: a representation of the Wulff crystal

20 Exponential decrease of the connectivity function

The next proposition asserts that the oriented percolation process is subcritical outside
the cone of percolation.

PROPOSITION 20.1. Let € > 0. There exists ¢ > 0, such that for all x ¢ (1 +¢)U.
P(0— (x,n)) < exp(—cn), (20.2)

or equivalently
P(0— (n(1+¢)U,n)) < exp(—cn). (20.3)

This is equivalent to theorem 1.5, and we represent in figure 25 such an improbable con-
nection.

nU

AN

P

figure 25: a connection outside the cone F
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PRrROOF. It is straightforward that (20.3) implies (20.2). Conversely, the number of
vertices in (n(l +¢)U, n) that can be reached by 0 is bounded by a constant times n¢~1

because of the graph structure of Eglt'
We turn now to the proof of (20.2). Let K be an integer. We work with the lattice
rescaled by K. Let z in Z¢, and let D = V. (B(z), K). We introduce the region of blocks

Dy(z.l,e)={y: (y—2z) - ea=1By N (Fl+e)+Kz) #0}.

Let us define the event

Vi(z,l,e) = {Vy in D, such that C(y ) B(z) # 0,
we have C(y) N Dy (z,l,£) = 0}.

For every ¢ > 0, for [ large enough, we have

P(Vi(z,le)) > 1 as K — oc. (20.4)

PROOF OF LIMIT (20.4). The proof of (20.4) is similar to the proof of proposition 3.12.
Let  in Z%, and let € > 0. As before, the region D is the set V. (B(z), K). The inversed
cluster of a vertex y is the set

Cly)={ze2%: z—y}.
We introduce D; the set of vertices in Z?~! x {0} + K (z + 2e4) joined by vertices in B(z):

= {z € 277! x {0} + K(x 4+ 2e4) : 3y € D such that
C(y)NB(z) # 0 and z € C(y)}.

For every z € Dy, we have \6 (z)] > K/2. Because of the graph structure of L4 ay¢» there

exists a deterministic set 151 and a > 0 such that D; C D1 with D1 < aK4-1, By
proposition 3.1, there exists [; such that for ¢ small enough, for K large enough,

P(VzeD;:|C(2) N Bz —leg)| >3'KY) >1—¢. (20.5)

Now let L
Aq(y,e,n0) = {Vn >no, (HI NK}) C (1+¢)U}.
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We let ¢ > 0. With the help of proposition 2.2, we can pick ng such that
P(A1(0,e,m0) | |C(0)] =00) >1—¢.

By the FKG inequality (2.1), this implies that P(A;(0,e,n9)) > 1 —¢’. By the ergodic
theorem [22], for K large enough,

P(|z € B(z — lieq) : Af(z,€,n0) occurs| > 2¢") < 5. (20.6)
Thus by (20.5) and (20.6)
P(VzeDy,3s € 6(2) N B(z — lieq) such that A;(s,e,ng) occurs) > 1—2e1.  (20.7)

We represent on figure 26 a cluster starting in B(z), which is joined in D; by a cluster

starting in B(z — lieq). We take [ large enough, so that for every z in Dj, every s in
B(z — l1e4), we have

(F(z,1+e)N (R x {K(I -1} + Kz)) D (F(y,1+¢) N (R x {K( - 1)} + Kz)).
We suppose in addition that [K > 2ng, and that for every z in B(z — l1eq),

F(z,1+¢)NDy(z,1,2) = 0.

737t x {0} + K (z + 2eq)

r

Blz — lieq) —

figure 26: the cluster C(y) is joined by C(s) at z
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Hence suppose that the event in (20.7) occurs. Let y in D. If |C(y)| < 2K, then there is
nothing to do. So consider the case |C(y)| > 2K. There exists z in D; such that z € C(y).
But for all z in Dy, there exists s in B(x —l1e4) NC(z) such that A;(s,e,ng) occurs. Thus
for all z in D;, we have

C(z) N Dy(z,1,2¢) =10,

and it follows that
Cly)ND,(z,1,2) = 0.

Therefore we have obtained

P(Vi(z,1,2¢)) >1—2¢. O

Let x ¢ (14 3¢)U such that 0 — (nx,n), and let v be an oriented open path from 0 to
x. Let [ be such that the limit (20.4) holds. We say that a box B(y) is good if Vi (y,l,¢)
occurs. Define « as the set of boxes intersecting 7. We introduce a function f from N to
R4 by a
f(i) = max { min{ |z — y|, (y, i) € F(1 +2¢) }, (z,%) € 7}
Let i be an integer. If for every z = (z,i) in v, B(z) is good, then f(i + 1) < f(i).
Moreover, the number of y in Z4~! such that (y,i) € v is bounded by 2¢. Hence there

exists a positive density of bad boxes in 7, and the proof of proposition 20.3 is finished by
using a Peierls argument. [

21 A note on the Wulff variational problem

We study the following variational problem:
(W) minimize Z(E) under the constraint £LYW,) < LYE) < +oo.

ProprosITION 21.1. The Wulff crystal defined in section 6 is a solution of the Wulff
variational problem (W).

This result has already been proved under the assumption that the function 7 strictly
positive, see [4] for a discussion on this subject. In fact, one may check that in the proof
in [4], the strict positivity is not required when the function 7 is convex. Here we just redo
the proof that for every bounded polyhedral set A in R,

Z(A) > limsup % (LYA+eW,) — LYA)) < I(A). (21.2)
e—0
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PROOF OF (21.2). By definition, the boundary of A is the union of a finite number of
d — 1 dimensional bounded polyhedral sets F;, ¢ € I, so that

I(A) =) HITHE)T(va(F),

icl

where v4(F;) is the unit outward normal vector to A along the interior points of the face
F;. Let S = 0A\ 0* A be the set of the singular points of 0A; it is a d — 2 dimensional set.
We claim that, for € small enough,

(A4+eW) \ V(S,e(2||7]|e + 1)) U U cyl (Fy,va(F;),eT(va(Fy))).

Indeed, let x = a 4+ ew where a € F;, w € W,, and x ¢ A. There are two cases:
o w-vy(F;) > 0. We let y be the orthogonal projection of x on the hyperplane containing
Fi. Then
la —y| < lew| < e(||7[ec + 1),

((z = y) - va(Fi)| = ew - va(F)| < eT(va(F)).

If z does not belong to V(S,e(2[|7]|sc +1)), then a € F;\V(S,e(||7]|sc+1)) and y € F;,
whence z is in cyl (Fy, va(F;),et(va(F))).

o w-vy(F;) <0. Since a +ecw ¢ A, there exists a polyhedral set F; such that [a,a + ew]
intersects Fj; and 7(v4(Fj)) - w > 0. Let @’ = [a,a + cw] N F}, and let ¢’ < ¢ such that
a +¢&'w = x. As in the first case, the point z is in cyl (Fj, va(Fj),er(va(F}))), or in
V(S,e(2]|7]|o0 + 1)).

Thus

LYA+eW,) — LYA) < LY V(S 2217l + 1)) + D HTHEF)T(va(F)).

i€l

Sending ¢ to 0, we get equation (21.2). O
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Sur les grands clusters en percolation

Résumé : Cette these est consacrée a I’étude des grands clusters en percolation et se
compose de quatre articles distincts. Les différents modeles étudiés sont la percolation
Bernoulli, la percolation FK et la percolation orientée. Les idées clés sont la renormalisa-
tion, les grandes déviations, les inégalités FKG et BK, les propriétés de mélange.

Nous prouvons un principe de grandes déviations pour les clusters en régime sous—
critique de la percolation Bernoulli. Nous utilisons I'inégalité FKG pour démontrer la borne
inférieure du PGD. La borne supérieure est obtenue a ’aide de I'inégalité BK combinée
avec des squelettes, les squelettes étant des sortes de lignes brisées approximant les clusters.

Concernant la FK percolation en régime sur—critique, nous établissons des estimés
d’ordre surfacique pour la densité du cluster maximal dans une boite en dimension deux.
Nous utilisons la renormalisation et comparons un processus sur des blocs avec un processus
de percolation par site dont le parametre de rétention est proche de un.

Pour toutes les dimensions, nous prouvons que les grands clusters finis de la percolation
FK sont distribués dans I’espace comme un processus de Poisson. La preuve repose sur la
méthode Chen—Stein et fait appel a des propriétés de mélange comme la ratio weak mizring
property.

Nous établissons un principe de grandes déviations surfaciques dans le régime sur—
critique du modele orienté. Le schéma de la preuve est similaire a celui du cas non—orienté,
mais des difficultés surgissent malgré 1’aspect Markovien du réseau orienté. De nouveaux
estimés blocs sont donnés, qui décrivent le comportement du processus orienté. Nous
obtenons également la décroissance exponentielle des connectivités en dehors du cone de
percolation, qui représente la forme typique d’un cluster infini.

Mots clés : percolation, grandes déviations, renormalisation, percolation FK, percola-
tion orientée.
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