Contribution à la théorie des interféromètres atomiques

Charles ANTOINE

Équipe de Relativité Gravitation et Astrophysique (ERGA) LERMA, Observatoire de Paris, Université Pierre et Marie Curie (sous la direction de Ch. J. BORDÉ)

Plan

- 1. Introduction
- 2. Formalisme ABCD
- 3. Séparatrices laser
- 4. Calcul du déphasage
- 5. Application
- 6. Conclusions & perspectives

Applications

mesure d'accélérations, de rotations, de champs gravitationnels
 mavigation, géodésie, géophysique

 \succ mesure de fréquences \implies horloges atomiques

> mesure de propriétés atomiques ou moléculaires

 \succ mesure de certaines **constantes de la Physique** \implies G, α ...

 $\succ \text{ test de théories fondamentales } \Rightarrow \Omega_{\text{LT}}, \text{GW, variation de } \alpha, \\ \text{principe d'équivalence...}$

 \implies sensibilité, précision et stabilité exceptionnelles

méthodes de calcul du déphasage compatibles ?

<u>Ch. Antoine</u>

Introduction (7)						
Méthodes de calcul du déphasage						
Pendant longtemps:	 calcul à la Feynman: - ondes planes - calcul perturbatif: g + γ_{perturb} 					
Bordé (1990)	 Formalisme ABCD: - vrais paquets d'ondes - calculs non-perturbatifs 					
Présent travail:	➢ notion de chemins homologues et mise en évidence d'invariants caractéristiques ⇒ effet simultané de plusieurs champs inertiels et gravitationnels (⇒ « g + γ + Ω » exact)					
	⇒ applicable à tous types d'interféromètres					
	⇒ origine des simplifications essentielles observées dans l'expression du déphasage					

Introduction (8)							
Une nécessité							
⇒ mise en évidence de corrections d'ordre supérieur							
Précision et sensibilité			1ères corrections pertinentes:				
a	actuelles:		(effets inertiels et gravitationnels)				
• gyromètre (rad.s ⁻¹ .Hz ^{-1/2})	6.10 ⁻¹⁰		7.10-10	: gradient de gravité			
• gravimètre (Δg/g)	3.10-9		1.10 ⁻¹⁰	: gradient × rotation			
• mesure de α	7.10-9		8.10 -9	: gradient de gravité			
• horloges opt. ($\Delta \upsilon / \upsilon$)	< 10 ⁻¹⁴		3.10 ⁻¹⁷	: gradient de gravité			

corrections dues à la prise en compte de la **structuration dispersive** ayant lieu dans chaque séparatrice de l'interféromètre

- 1. Introduction
- 2. Formalisme ABCD
- 3. Séparatrices laser
- 4. Calcul du déphasage
- 5. Application
- 6. Conclusion & perspectives

Formalisme ABCD **Matrices ABCD** = solution classique des équations de Hamilton $\begin{pmatrix} \vec{r}(t) \\ \vec{p}(t)/m \end{pmatrix} = \begin{pmatrix} A(t,t_0) & B(t,t_0) \\ C(t,t_0) & D(t,t_0) \end{pmatrix} \cdot \begin{pmatrix} \vec{r}(t_0) \\ \vec{p}(t_0)/m \end{pmatrix} + \begin{pmatrix} \vec{\xi}(t,t_0) \\ \vec{\phi}(t,t_0) \\ \vec{\phi}(t,t_0) \end{pmatrix}$ termes quadra. de H_{ext} termes lin. de H_{ext} \implies pas de solution analytique dans le cas général Cas particuliers: \succ cas libre \succ g seul, γ seul, Ω seul, \ll g + γ » ightarrow H_{ext} indép. du temps \implies « g + γ + Ω »

Formalisme ABCD (3)

 \boldsymbol{B}

Théorème ABCD = généralisation du théorème d'Ehrenfest

$$\psi(\vec{r}, t_1) = wp(\vec{r}, t_1; \vec{r}_1, \vec{p}_1, X_1, Y_1)$$

structure identique

$$\psi(\vec{r}, t_2) = e^{\frac{i}{\hbar}S_{cl}(t_2, t_1, \vec{r_1}, \vec{p_1})} .wp(\vec{r}, t_2 ; \vec{r_2}, \vec{p_2}, X_2, Y_2)$$

loi linéaire identique

pour les centres:

$$\begin{pmatrix} \vec{r}_{2} \\ \vec{p}_{2} / m \end{pmatrix} = \begin{pmatrix} A_{21} & B_{21} \\ C_{21} & D_{21} \end{pmatrix} \cdot \begin{pmatrix} \vec{r}_{1} \\ \vec{p}_{1} / m \end{pmatrix} + \begin{pmatrix} \vec{\xi}_{21} \\ \vec{\phi}_{21} \end{pmatrix}$$

...et pour les <u>largeurs</u>:

$$\begin{pmatrix} X_2 \\ Y_2 \end{pmatrix} = \begin{pmatrix} A_{21} & B_{21} \\ C_{21} & D_{21} \end{pmatrix} \cdot \begin{pmatrix} X_1 \\ Y_1 \end{pmatrix}$$

- 1. Introduction
- 2. Formalisme ABCD
- 3. Séparatrices laser
- 4. Calcul du déphasage
- 5. Application
- 6. Conclusion & perspectives

Séparatrices laser (1)

Deux niveaux effectifs... (1)

Atome à 2 niveaux soumis à une onde laser quasi-résonnante

 \Rightarrow diagramme d'énergie-impulsion

Séparatrices laser (1)

Deux niveaux effectifs... (2)

Séparatrices laser (2)

Position du problème

+ <u>cadre usuel:</u>

iħ

 $H(\vec{x}_{op},\vec{p}_{op},t')dt'$

 $\psi(t_0)$

- approximation dipolaire (sans spin)
- processus de relaxation négligés
- approximation des ondes tournantes

$$\implies i\hbar\partial_t |\psi(t)\rangle = (H_0 + H_{ext}(\vec{r}_{op}, \vec{p}_{op}, t) + V_{em}(\vec{r}_{op}, t))|\psi(t)\rangle$$

champs inertiels et gravitationnels

$$\left[H\left(\vec{r}_{op},\vec{p}_{op},t\right),H\left(\vec{r}_{op},\vec{p}_{op},t'\right)\right]\neq0$$

Séparatrices laser (3)

Changement de référentiel

transfo. unitaires:

$$\left|\psi\right\rangle = U\left|\varphi\right\rangle$$

⇒ référentiel de moindre mouvement:

$$\partial_t \left| \varphi(t) \right\rangle = i M_{op}(t) \left| \varphi(t) \right\rangle$$

$$M_{op}(t) = \begin{pmatrix} \Delta_{op}(t) & \Omega_{0}F_{op}(t) \\ \Omega_{0}F_{op}(t) & 0 \end{pmatrix}$$

opérateur désaccord généralisé:

$$\Delta_{op}(t) = \omega - \omega_0 - \vec{k} \cdot \frac{d}{dt} \left(A(t) \cdot \vec{r}_{op} + B(t) \cdot \frac{\vec{p}_{op}}{m} + \vec{\xi}(t) \right) - \frac{\hbar k^2}{2m}$$
$$= \omega - \omega_0 - \vec{k} \cdot \frac{\vec{p}_{op}}{m} - \frac{\hbar k^2}{2m} - \vec{k} \cdot \vec{g}t - \vec{k} \cdot \left(\vec{\Omega} \times \left[\vec{r}_{op} + 2\frac{\vec{p}_{op}}{m} t \right] \right) - \vec{k} \cdot \frac{\vec{\gamma}}{\gamma} \cdot \vec{r}_{op} t - \dots$$

Séparatrices laser (4)

Méthodes de résolution

$$\partial_t \left| \varphi(t) \right\rangle = i M_{op}(t) \left| \varphi(t) \right\rangle$$

$$\left[M_{op}(t), M_{op}(t')\right] \neq 0$$

Comment résoudre le problème de double non-commutation:

- cas particuliers exactement résolubles
- développements: > linéaire (Dyson)
 - ➢ non-linéaire (Magnus...)
 - > élimination opératorielle
 - > états adiabatiques successifs

> approximations: • rotations et gradients négligés

gravité compensée

Séparatrices laser (5)

⇒ Retour dans le référentiel d'origine

Action du filtre S_1 sur $\psi(t_1)$

Structuration

du paquet d'ondes initial:

> en plusieurs paquets d'ondes

- ➤ de formes différentes:
 - changement d'amplitude
 - sélectivité en vitesse transverse
 - dispersion anormale
- avec une modification de position et d'impulsion centrales pour tous les paquets d'ondes
- > avec ajout d'une phase laser effective

Séparatrices laser (7)

Structuration de la distribution en impulsion : lame π

Séparatrices laser (8)

Modélisation *ttt* champ fort généralisée (1)

Séparatrices laser (8)

Modélisation ttt champ fort généralisée (2)

Effet Borrmann généralisé (1)

Effet Borrmann généralisé (2)

Séparatrices laser (8)

Modélisations simplifiées antérieures

- 1. Introduction
- 2. Formalisme ABCD
- 3. Séparatrices laser
- 4. Calcul du déphasage
- 5. Application
- 6. Conclusion & perspectives

Calcul du déphasage (1)

Méthode antérieure de calcul du déphasage

En 3 étapes:

- 1) identifier les bras
- 2) calculer la phase accumulée par chacun des bras
- 3) en prendre la différence: $\Delta \phi = \Delta \phi_{action} + \Delta \phi_{laser} + \Delta \phi_{sep}$

Origine véritable du déphasage ?

Origine des compensations observées ?

$$\Delta \phi_{action} + \Delta \phi_{sep} \approx 0$$

ОШ

Méthode de calcul plus pertinente ?

Calcul du déphasage (2)

Vision statique antérieure

Vision statique de deux bras indépendants

Calcul du déphasage (2)

Vision dynamique

Vision dynamique d'une seule entité à plusieurs bras

schéma ttt \implies

interf. ato. = succession de tranches temporelles

Calcul du déphasage (3)

Tranches temporelles

➢ valable pour toute géométrie d'interféromètre

lorsqu'une interaction agit sur un seul bras,
 le k correspondant à l'autre bras est pris nul

Calcul du déphasage (4)

Exemple 1: fontaine atomique

Calcul du déphasage (5)

Ex. 2: Ramsey-Bordé asymétrique

Calcul du déphasage (6)

Ex. 3: Ramsey-Bordé symétrique

- 2 tranchestemporelles
- 3 interactions instantanées équivalentes

Chemins homologues

Signal de franges:

somme des signaux de sortie correspondant à chaque paire de bras

1) <u>Déphasage</u>

- 2) Amplitude et contraste
- 3) Distributions statistiques décrivant la source matérielle
- 4) Intégration sur le volume de détection

Calcul du déphasage (8)

Théorème des 4 points finaux

⇒ mise en évidence d'un invariant (symplectique) équivalent à l'étendue en optique

 \implies partie principale du déphasage:

$$\hbar \delta \phi = \left(\vec{p}_{\alpha 2} - \vec{p}_{\beta 2} \right) \cdot \vec{Q}_2 - \left(\vec{p}_{\alpha 1} - \vec{p}_{\beta 1} \right) \cdot \vec{Q}_1 - \left(m_\beta - m_\alpha \right) c^2 \tau$$
points milieux:
$$\vec{Q}_i = \frac{\vec{r}_{\alpha i} + \vec{r}_{\beta i}}{2}$$

2

Calcul du déphasage (9)

Déphasage global

Simplification si:

point milieu de fin de tranche

_

point milieu de début de tranche suivante

$$\Delta \phi_{\beta \alpha} =$$

 $\left(\vec{k}_{\beta_i}\right)$

$$-\sum_{i=1}^{N} \left[\left(\varphi_{\beta i} - \varphi_{\alpha i} \right) + \left(\omega_{\beta i} - \omega_{\alpha i} \right) t_{i} + \left(m_{\beta i} \right) \right]$$

interprétation: ligne de points milieux avec interactions effectives

 $-m_{\alpha i})c^2\tau_i$

Calcul du déphasage (10)

Ligne de points milieux équivalente

⇒ méthode efficace d'obtention du déphasage

Calculated dephasage (1)
Compensation essentielle

$$\underline{\phi}_{action} + \Delta \phi_{sep} \approx 0$$
Origine? invariant symplectique précédent
Validité? Si géométrie symétrique et masses identiques:

$$\Delta \phi_{action} + \Delta \phi_{sep} = 0 - \frac{\vec{k}_{\alpha final} + \vec{k}_{\beta final}}{2} \cdot (\vec{r}_{\beta final} - \vec{r}_{\alpha final})$$
non-fermeture de l'interféromètre
(due aux termes quadratiques de
H_{ext} \Longrightarrow rotations, gradients...)

Calcul du déphasage (13)

Formule exacte du signal de franges

valable pour:

- H_{ext} au plus quadratique (dépendant du temps et 3D)
 ⇒ Accélération + gradient + rotations : exact
 ⇒ Gradient de gradient : perturbatif
 - Touto gáomátnia d'intorfáromàtro
- Toute géométrie d'interféromètre
- Deux types de modélisations des séparatrices:
 - ⇒ simplifiées (temporelles et spatiales)
 - ⇒ **ttt champ fort généralisée** (temporelle)
- Tous types de **sources** matérielles
- Tous types de processus de détection

- 1. Introduction
- 2. Formalisme ABCD
- 3. Séparatrices laser
- 4. Calcul du déphasage
- 5. Application
- 6. Conclusion & perspectives

Application (1)

Interféromètres de Ramsey-Bordé symétriques

> gyromètres

- gravimètres et accéléromètres
- ➢ gradiomètres...

⇒ Stanford, Yale, Hanovre, Paris, Florence, projet spatial européen HYPER...

Application (2)

Déphasage global avec modélisations simplifiées des séparatrices laser

$$\Delta \phi = \vec{k} \cdot \left[1 + A \left(T + T' \right) - 2A \left(T \right) \right] \cdot \vec{r_1}$$

+ $\vec{k} \cdot \left[B \left(T + T' \right) - 2B \left(T \right) \right] \cdot \left(\frac{\vec{p_1}}{m} + \frac{\hbar \vec{k}}{2m} \right)$
+ $\vec{k} \cdot \left[\vec{\xi} \left(T + T' \right) - 2\vec{\xi} \left(T \right) \right] - \left(\varphi_1 - 2\varphi_2 + \varphi_3 \right)$

⇒ Généralisation des formules antérieures: gyrométrie et gravimétrie pures (Bordé 2001 & 2002)

On retrouve bien sûr les **résultats perturbatifs usuels:** déphasage Sagnac:

$$\Delta \phi = \frac{2m}{\hbar} \mathbf{\Omega} * Aire$$

et formule de Wolf-Tourrenc (1999)

Application (3)

 $A, B, \vec{\xi}$?

Des termes correctifs non-négligeables

expression analytique (pour H_{ext} indép. du temps)

développements de Taylor en ΩT et γT² …
…à l'ordre voulu !

 \implies mise en évidence de termes directs (\mathbf{g}, Ω et γ) et croisés pour toute orientation et toute géométrie

⇒ Gyro – gradio - gravimètres

Exemple de terme correctif pour gyromètres:

$$\frac{7}{3}k_{x}T^{2}\Omega_{z}v_{y}\gamma_{y}T^{2}$$

<u>État du nuage</u>	Т	<u>Valeur relative</u>
Thermique (Yale)	0,003 s	1.10 ⁻¹¹
Froid (Paris)	0,03 s	1.10-9
Ultra-froid (HYPER)	3 s	9.10 -6

Application (4)

Avec modélisation ttt champ fort généralisée

Application (5)

 \triangleright

Cas particulier: effet Borrmann généralisé

résonance parfaite pour toutes les séparatrices et faible dispersion en vitesse du nuage atomique initial

Conclusions

étude et modélisation des séparatrices laser temporelles

 \implies structuration dispersive en présence de H_{ext}

nouvelle méthode de calcul du déphasage
 simplifications essentielles (invariants symplectiques)

 expression analytique très générale du signal de franges pour une large variété d'interféromètres atomiques

> développement d'outils plus théoriques:

- \implies méthode de l'élimination opératorielle
- \implies méthode des états adiabatiques successifs
- ⇒ autre approche du formalisme ABCD basée sur l'utilisation des opérateurs intégrales premières

Perspectives

- \implies tester la validité des corrections mises en évidence
- ⇒ estimer numériquement les erreurs dues aux différentes approximations (processus de relaxation, multiples ordres de diffraction...)
- ⇒ étudier et modéliser la structuration dispersive des séparatrices dans le cas spatial
- ⇒ appliquer la modélisation à d'autres géométries d'interféromètres (interféromètres multi-dim.)
- ⇒ généraliser le formalisme ABCD:
 - ➢ à tout Hamiltonien ⇒ opérateurs intégrales premières
 - \succ à 4D \Longrightarrow temps propre comme var. conj. de la masse

Merci

antoinec@ccr.jussieu.fr

