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General introduction

The present thesis is made of two parts having together a common point which
is the study of kinetic equations. The first part deals with the Compton effect
which describes the interaction between photons and electrons. The second
part is about the modelling and the simulation of a satellite’s charge in the
magnetosphere environment. This second part has been realized in partner-
ship with Alcatel space and the research institute INRIA Sophia Antipolis.

First part.

The Compton effect was discovered in 1922 by Arthur Holly Compton. It
takes place when high X-ray energy photons collide with electrons. This re-
sults in deflections of the particles trajectories. The incident photons emerge
with longer wavelength due to some loss of energy during the interactions.
These deflections, together with a change of wavelength, are known as the
Compton effect.

A H. Compton found that, due to the scattering of X-rays from free electrons,
the wavelength of the scattered rays is measurably longer than that of the
incident light. His discovery was of special importance in 1922, when quantum
mechanics was debated.

X-rays are particularly used in scientific research field, in industries and in
medical field.

Many physicists like G. Cooper ([15]), H. Dreicer ([19]), A.S. Kompaneets
([28]), Ya.B. Zel’'Dovich and Levich ([40]) were interested in the Compton ef-
fect.

R.E. Caflish and C.D. Levermore ([11]), M. Escobedo and S. Mischler ([23],
[22]) studied the Compton effect at a mathematical level.



GENERAL INTRODUCTION

The first objective of this thesis is to study the Compton effect at a kinetic
level. We consider a homogeneous quantum kinetic equation, established by
par M. Escobedo, S. Mischler and M.A. Valle ([23]), describing the interaction
between the light and an electron bath. We prove existence of solutions to
the equation obtained when keeping the highest-order term with respect to
the speed of light in the relativistic model. The electrons are assumed to be
at nonrelativistic equilibrium, and the scattering of photons by electrons is
studied.

The kernel in the collision integral presents a strong singularity at energy zero.
As in [22] already, the boundedness of the photons entropy is not sufficient for
the photon distribution function to stay in an L! frame. Measure solutions for
the photon distribution functions are expected. Moreover, the singularity in
the collision kernel brings severe restrictions; existence results to the Cauchy
problem are obtained for initial data small enough and locally in time. The
entropy of the solution is controlled.

First, we recall the context in which the Compton effect has been obtained
and the consequences of its discovery in 1922 in the quantum mechanics field.
We also recall the results obtained on it by physicists and mathematicians.

Secondly, we introduce the mathematical model. We explain in detail the
derivation stated by M. Escobedo, S. Mischler and M.A. Valle (]|23]) for a ho-
mogeneous quantum kinetic equation describing the Compton effect.

Next, we establish a priori estimates as well as the existence result of an
entropy solution for the Cauchy problem.

The main difficulty to state the existence theorem comes from singularities
met in the collision kernel. To avoid these singularities, we have determined
a necessary condition in order to give a sense to the weak formulation for the
Cauchy problem and established an appropriate functional frame to the reso-
lution of the problem.

This work refers to [12].

Second part.
Since satellites have been sent in space, breakdowns have happened frequently.

Some studies ([34]) show that the particles coming from the solar wind inter-
act with the surfaces of the satellite, modify the charge of the satellite and

8



GENERAL INTRODUCTION

can cause electric discharges which can partially disable the working of the
spacecrafts. For example, a breakdown happened in 1997 to the TV satellite
Telstar. The satellite was disconnected from the earth for several days.

We also cite the satellite Turksat launched by Alcatel Space in 1996. The
breakdown was caused by a resident electrostatic discharge and the conse-
quence was only a cutting-off during one hour for the emissions.

In 1998, the satellite Radio/TV Galaxy IV launched by Hughes S & C was
hit by an intense flow of protons which caused important damages.

Satellites on the geostationary orbit are in the magnetosphere at an altitude
of 36000 km.

The earth is surrounded by a magnetic field extending beyond thousands of
km in space, composing the magnetosphere. Like a comet, the magnetosphere
resembles a water droplet facing the sun. It is a barrier to the solar wind.
Only two zones lead the ionized particles from the sun to the North and the
South poles of the magnetosphere.

Satellites in flight are in a mixture of free and charged particles. The magne-
tosphere is a collisionless plasma. Ions and electrons coming from this plasma
interact with the surfaces of the satellite, so that they modify the electrostatic
charge of the surfaces.

These particles come firstly from the solar wind. Indeed, the slow particles
ejected by the sun accumulate static electricity on the external parts of the
satellite. When an electrical discharge happens, incident currents achieve to
get into the electronic system, so that the spacecraft is ruined. The fast par-
ticles come into the satellite, and directly charge the electronic system.

These particles come secondly from the combustible ejected by plasma en-
gines (which also modify the electrostatic environment around the satellite).
These engines release a Xenon gas. The fast particles are ejected to infinity
and do not come back to the satellite. However, the slow particles can come
back to the surface of the satellite.

Two main phenomena happen : the charge phenomenon which is not danger-
ous for the device and the electrical discharge phenomenon which is important
and dangerous for the satellite because the currents can damage the electronic
system and also the solar panels.

In this thesis, we are only interested in the electrostatic charge phenomenon
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of a satellite on a geostationnary orbit.

In order to understand these interactions between the plasma and the satel-
lite, we have constructed a numerical model for the simulation of the charge
on a satellite on a geostationnary orbit. Ions and electrons must be described
following a kinetic approach. The evolution of their distribution functions are
ruled by the Vlasov-Poisson system.

O. Chanrion ([13]) studied this problem in a two-dimensional axisymmetric
frame.

The second objective of this thesis is to study the Vlasov-Poisson system in a
three-dimensional frame.

One particle method for the Vlasov equation resolution is coupled with a finite
and an infinite elements method for the Poisson equation resolution.

This work leads to the article [14].

First, we recall the physical context as well as the notations introduced in
[13]. Next, we introduce the Vlasov-Poisson system in 3D.

Secondly, we start to solve the Poisson equation by using the finite elements
method with infinite elements on the boundary of the computational domain.
As the Debye length is larger than the dimension of the satellite in the mag-
netospheric plasma, the space charge is neglected.

The current of ions and electrons received by the surfaces of the satellite are
obtained by the backtrajectories algorithm, which consists in following back
the trajectories of the particles which impact the surface of the satellite. How-
ever, the computation of the space charge around the satellite shows that it
cannot be neglected. So, we have to take into account the space charge in the
resolution of the Poisson equation.

The present thesis is made of two parts having together a common point
which is the study of kinetic equations. The first part deals with the Comp-
ton effect which describes the interaction between photons and electrons. The
second part is about the modelling and the simulation of a satellite charge in
the magnetosphere environment. This second part has been realized in part-
nership with Alcatel space and the research institute INRIA Sophia Antipolis.

First part.
The Compton effect was discovered in 1922 by Arthur Holly Compton. It

takes place when high X-ray energy photons collide with electrons. This re-
sults in deflections of the particle trajectories. The incident photons emerge

10



GENERAL INTRODUCTION

with longer wavelength due to some loss of energy during the interactions.
These deflections, together with a change of wavelength, are known as the
Compton effect.

A H. Compton found that, due to the scattering of X-rays from free electrons,
the wavelength of the scattered rays is measurably longer than that of the
incident light. His discovery was of special importance in 1922, when quantum
mechanics was debated.

X-rays are particularly used in scientific research field, in industries and in
medical field.

Many physicists like G. Cooper ([15]), H. Dreicer ([19]), A.S. Kompaneets
([28]), Ya.B. Zel’'Dovich and Levich ([40]) were interested in the Compton ef-
fect.

R.E. Caflish and C.D. Levermore ([11]), M. Escobedo and S. Mischler ([23],
[22]) studied the Compton effect at a mathematical level.

The first objective of this thesis is to study the Compton effect at a kinetic
level. We consider a homogeneous quantum kinetic equation, established by
par M. Escobedo, S. Mischler and M.A. Valle ([23]), describing the interaction
between the light and an electron bath. We prove existence of solutions to
the equation obtained when keeping the highest-order term with respect to
the speed of light in the relativistic model. The electrons are assumed to be
at nonrelativistic equilibrium, and the scattering of photons by electrons is
studied.

The kernel in the collision integral presents a strong singularity at energy zero.
As in [22] already, the boundedness of the photons entropy is not sufficient for
the photon distribution function to stay in an L' frame. Measure solutions for
the photon distribution functions are expected. Moreover, the singularity in
the collision kernel brings severe restrictions; existence results to the Cauchy
problem are obtained for initial data small enough and locally in time. The
entropy of the solution is controlled.

First, we recall the context in which the Compton effect has been obtained

and the consequences of its discovery in 1922 in the quantum mechanics field.
We also recall the results obtained on it by physicists and mathematicians.
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Secondly, we introduce the mathematical model. We explain in detail the
derivation stated by M. Escobedo, S. Mischler and M.A. Valle ([23]) for a ho-
mogeneous quantum kinetic equation describing the Compton effect.

Next, we establish a priori estimates as well as the existence result of an
entropy solution for the Cauchy problem.

The main difficulty to state the existence theorem comes from singularities
met in the collision kernel. To avoid these singularities, we have determined
a necessary condition in order to give a sense to the weak formulation for the
Cauchy problem and established an appropriate functional frame to the reso-
lution of the problem.

This work refers to [12].

Second part.

Since satellites have been sent in space, breakdowns have happened frequently.
Some studies ([34]) show that the particles coming from the solar wind interact
with the surfaces of the satellite, modify the charge of the satellite and can
cause electric discharges which can partially disable the working of the space-
crafts. For example, a breakdown happened in 1994 to the satellite Anik-E1.
The breakdown was caused by an internal electrostatic discharge.

We also cite the TV satellite Telstar breakdown happended in 1997. The satel-
lite was disconnected from the earth for several days.

In 1998, the satellite Radio/TV Galaxy IV launched by Hughes S & C was
hit by an intense flow of protons which caused important damages.

Satellites in geostationary orbit are in the magnetosphere at an altitude of
36000 km.

The earth is surrounded by a magnetic field extending beyond thousands of
km in space, composing the magnetosphere. Like a comet, the magnetosphere
resembles a water droplet facing the sun. It is a barrier to the solar wind.
Only two zones lead the ionized particles from the sun to the North and the
South poles of the magnetosphere.

Satellites in flight are in a mixture of free and charged particles. The magne-
tosphere is a collisionless plasma. Ions and electrons coming from this plasma
interact with the surfaces of the satellite, so that they modify the electrostatic
charge of the surfaces.

12



GENERAL INTRODUCTION

These particles come firstly from the solar wind. Indeed, the slow particles
ejected by the sun accumulate static electricity on the external parts of the
satellite. When an electrical discharge happens, incident currents achieve to
get into the electronic system, so that the spacecraft is ruined. The fast par-
ticles come into the satellite, and directly charge the electronic system.

These particles come secondly from the combustible ejected by plasma en-
gines (which also modify the electrostatic environment around the satellite).
These engines release a Xenon gas. The fast particles are ejected to infinity
and do not come back to the satellite. However, the slow particles can come
back to the surface of the satellite.

Two main phenomena happen : the discharge phenomenon which is a local
phenomenon and the charge phenomenon which is a global phenomenon and
a consequence of the discharge.

In this thesis, we are only interested in the electrostatic charge phenomenon
of a satellite in geostationary orbit.

In order to understand these interactions between the plasma and the satel-
lite, we have constructed a numerical model for the simulation of the satellite
charge in geostationary orbit. Ions and electrons must be described following
a kinetic approach. The evolution of their distribution functions are ruled by
the Vlasov equation which is coupled with the Poisson equation.

O. Chanrion ([13]) studied this problem in a two-dimensional axisymmetric
frame.

The second objective of this thesis is to study the Vlasov-Poisson system in a
three-dimensional frame in the whole space.

One particle method for the Vlasov equation resolution is coupled with a finite
and an infinite element method for the Poisson equation resolution.

This work leads to the article [14].

First, we recall the physical context as well as the notations introduced in
[13]. Next, we introduce the Vlasov-Poisson system in a three-dimensional
frame.

In geostationary orbit, as the Debye length is larger than the dimension of
the satellite, we usually neglect the space charge. So, we start to solve the
Laplace equation in the whole space for any geometry of the satellite by using
the finite/infinite element method.

13



GENERAL INTRODUCTION

The current of ions and electrons received by the surfaces of the satellite
are obtained by the back-trajectories algorithm, which consists in following
back the trajectories of the particles which impact the surface of the satellite.

In order to understand why we neglect the space charge p , we are inter-
ested in the charge around a sphere. In this case, we are able to compute an
analytical expression of p. Its asymptotic behaviour at infinity leads to the
asymptotic behaviour of the potential at infinity.

Next, we solve the Vlasov-Poisson system in the whole space by taking into
account the asymptotic behaviour of p at infinity. The main result is that the
space charge can be neglected in the region around the satellite which is called
the sheath and p is not negligible at infinity, i.e. in the presheath.

14
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Chapter 1

Introduction to the Compton
effect

Contents
1.1 A.H. Compton’sworks . ............... 17
1.2 Recent works linked to the Compton effect . . . . 18
1.2.1 At a physicallevel . . . . ... ... ... ... ... 18
1.2.2 At a mathematical level . . . . . .. ... ... ... 19

1.1 A.H. Compton’s works

In 1916, A.H. Compton began his studies in the field of X-rays. He developed a
theory on the intensity of X-ray reflection from crystals as a means of studying
the arrangement of electrons and atoms. In 1918, he started a study of X-ray
scattering. This led, in 1922, to his discovery of the increase of wavelenght
of X-rays due to scattering of the incident radiation by free electrons, which
implies that the scattered quanta have less energy than the quanta of the

orignal beam. This effect, nowadays is known as the Compton effect.
Picture 1.1 illustrates the Compton effect.

17



CHAPTER 1. INTRODUCTION TO THE COMPTON EFFECT

scattered photon

with impulsion p
incident photon

AV aVa U
®

with impulsion p electron <

with massm .\v
m

Figure 1.1: The Compton effect

1.2 Recent works linked to the Compton effect

1.2.1 At a physical level

In various astronomical events, such as supernovae, the analysis of time-varying
phenomena in highly ionized gases is of importance. In particular, for the
problem of nonequilibrium radiation transport in such systems, the Compton
scattering with electrons may often be the dominant mechanism for energy
transfer. Since the scattering integral for this process is extremely complicated,
one often uses a Fokker-Planck approximation. This consists in expanding the
collision integral in powers of the energy transfer through second order. It is
a valid approximation as long as the energy transfer per Compton scattering
is small.

In the limit of low electron temperatures and photon energies, this is not only
a valid approximation but is also very convenient, since the resulting equation
may be expressed in a simple analytical form. This will be called the non-
relativistic limit, though in reality it is correct through second order in v/c
and hv/mc?. On the basis of an analysis of the energy exchange rate between
Maxwellian electrons and Planckian photons, the nonrelativistic approxima-
tion is seen to break down for electron temperatures greater than 20 keV. The
Fokker-Planck approximation, however, is still valid beyond these limits; the

18



1.2. RECENT WORKS LINKED TO THE COMPTON EFFECT

errors above result mainly from the nonrelativistic development.

G. Cooper in [15] remedies this by deriving the Fokker-Planck equation for an
isotropic photon distribution without recourse to a nonrelativistic approxima-
tion. He shows that only the average energy exchange per unit time need be
known. In the case of arbitrary electron temperatures and photon energies,
this quantity must be evaluated numerically since the integrals are far too
complicated to be known analytically.

H. Dreicer presented in [19] an extension of the Boltzmann equation for plas-
mas, including interactions between the electrons and the photons which pop-
ulate the radiation field. He introduced a simple kinetic theory describing
relaxation phenomena. These interactions are handled by means of simple
electron-photon collision terms, which can be expected to coincide with the
results of a more rigorous theory whenever collective effects become unimpor-
tant. Single-photon emission and absorption as well as Compton scattering
are treated. The equation derived is specialized to the case of electrons orbit-
ing in a steady magnetic field, and is used to follow the relaxation of a test
electron which is interacting with a thermal radiation field via the emission
and absorption of cyclotron radiation.

A.S. Kompaneets studied in [28] the role of the Compton effect in the estab-
lishement of equilibrium between quanta and electrons in the nonrelativistic
approximation.

Ya. B. Zel’Dovich and V. Levich studied in [40] the process of equilibrium
of radiation in a totally ionized plasma. By solving the kinetic equation it is
shown that in the absence of absorption the photons undergo Bose condensa-
tion. The process depends essentially on the form of the initial distribution.

More recently, R.H. Steuwer explained in [38] the Compton effect and its tran-
sition to quantum mechanics.

1.2.2 At a mathematical level

R.E. Caflish and C.D. Levermore studied in [11] the Fokker-Planck equation
for the Compton scattering in a homogeneous plasma. The entropy function
was used to find the equilibrium distributions. When emission-absorption is
neglected, this is used to find equilibrium distributions that have the form of
a Planckian distribution plus a ¢ function at zero photon energy. For distribu-

19



CHAPTER 1. INTRODUCTION TO THE COMPTON EFFECT

tions below the Planckian distribution and with emission-absorption included,
a rate of entropy increase is obtained. Numerical results confirm these conclu-
sions.

More recently, M. Escobedo and S. Mischler stated in [22] existence results
for a quantum kinetic equation with a simplified regular and bounded kernel.
They studied the asymptotic behaviour of the solutions, and showed that the
photon distribution function may condensate at zero energy, asymptotically in
time.

20



Chapter 2

The Boltzmann equation

Contents

2.1 Introduction to the Boltzmann equation ... . . 21

2.2 The Cauchy problem and the asymptotic behaviour

ofthesolutions . . . ... ............... 25
2.2.1 The classical case in the homogeneous in space case 25
2.2.2  The relativistic non quantum Boltzmann equation . 27
2.2.3 A quantum relativistic Boltzmann equation . . . . . 31
2.2.4 A modified Boltzmann equation for Bose-Einstein

particles . . . . . .. ..o Lo Lo 35

2.1 Introduction to the Boltzmann equation

In this section, we briefly recall the general properties of the Boltzmann equa-

tion introduced by M. Escobedo, S. Mischler and M.A. Valle in [23].

We are interested in a gas composed of identical and indiscernible particles.
When two particles with respective impulsions p and p, in R® encounter each
other, they collide and get p’ and p!, as new impulsions after the collision. We
assume that the collisions are elastic, which means that the total impulsion and
the total energy of the system constituted by pair of particles are conserved.
More precisely, denoting by £(p) the energy of one particle with impulsion p,

21



CHAPTER 2. THE BOLTZMANN EQUATION

we assume that

{ P+, =p+ps
(2.1)
E() + &) =Ep) +Ep.)

We denote by C the set of all 4-upplets of particles (p, p,,p’, p.) € R'? satisfying
equations (2.1). The expression of the energy £(p) of a particle in function of
its impulsion p depends on the type of the particle :

)

2
E(p) =En(p) = % for a non relativistic particle,

pl? (2.2)

c2m?

Ep) =& (p) =y mc; y=1/1+ for a relativistic particle,

L €(p) = &pn(p) = c|p| for massless particle such as a photon or a neutrino.

Here, m stands for the mass of the particle and ¢ for the speed of light. The
velocity v = v(p) of a particle with impulsion p is defined by v(p) = V,E(p),
and therefore

v(p) = vpr(p) = % for a non relativistic particle,

p N .
—u(p) = 2 1 lativistic particle,
! v(p) =v.(p) m7 or a relativistic particle (2.3)

v(p) = vpn(p) = c% for a photon.
p

\

Now, we consider a gas constituted by a very large number (of order the Avo-
gadro number A ~ 10**/mol) of a single specie of identical and indiscernible
particles. The very large number of particles makes impossible (or irrelevant)
the description of the gas by the knowledge of the position and impulsion (z, p)
(with = in a domain Q@ C R® and p € R?) of all the particles of the gas. We
introduce the gas density distribution f(t,z,p) > 0 of particles which at time
t > 0 have position z € R® and impulsion p € R*. Under the hypothesis of
molecular chaos and of low density of the gas, so that particles collide by pairs
(no collision between three or more particles occurs). L. Boltzmann estab-
lished that the evolution of a classical (i.e. not quantum nor relativistic) gas
distribution function f must satisfy

of

57 Tv0)-Vaf = QU (t,,.))(p)

f(07 ) = fina

22
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where f;,, > 0 is the initial gas distribution and Q(f) is the so-called Boltz-
mann collision kernel which describes how particles change their impulsions
due to the collisions.

In all the following we make the assumption that the density f only depends
on the impulsion. The collision term @Q(f) may then be expressed in all the
cases described above as :

AW = [ [ [ Wpor's) a(6) dp. do' i,

a(f) = a(N) @, pe ', 0l) = [ fi0+7/)A +7£) = fL1+ 7)1+ 7f))]

T € {-1,0,1},
(2.5)
where as usually, we denote by

f=f), fi=1f.), f'=f0), f.= 1),

and W is a non negative measure called transition rate, which may be written
as

W (D, pu, 0, P,) = w(p, pa, D', D)6 P+ — 0" = PL)0(E(P) +E(pa) = E (D) = E (1Y),
(2.6)
where ¢ represents the Dirac measure. The quantity W dp’ dp. is the tran-
sition probability per unit volume and per unit time that two particles with
incoming momenta p, p, are scattered with outgoing momenta p, p..

The character relativistic or not, of the particles is taken into account in
the expression of the energy of the particle £(p) given by (2.3). The quantum
effect appears in the expression of the term ¢(f). The case of classical particles
corresponds to the choice 7 = 0. The quantum effect is taken into account by
choosing 7 = +1. It actually corresponds to the values 7 = +h, where h is the
Planck constant. But for the sake of simplicity we have chosen this constant
to be one all along this work. Therefore, one takes 7 = 1 in the case of a gas
of Bosons and 7 = —1 for a gas of Fermions.

The function w is strongly related with the differential cross section ¢ and
is determined by the kind of interactions considered between the particles.
Here, we take w = 1. Since the particles are indistinguishable, the collisions
are reversible and the two interacting particles form a closed physical system,
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so that

W(p, ps, 0, 0,) = W(ps,p, 0, 0,) = W', P, p, ps)

+ Galilean invariance (in the non relativistic case) (2.7)

+ Lorentz invariance (in the relativistic case).

The Boltzmann equation reads then very similarly, formally at least, in all
the different contexts : classical, quantum and relativistic. In particular some
of the fundamental physically relevant properties of the solutions f may be
established formally in all the cases in the same way : conservation of the
total number of particles, mean impulse and total energy; existence of an
“entropy” which increases along the trajectories (Boltzmann’s H-theorem).
For any U = U(p), symmetries (2.7) imply the fundamental and elementary
identity

1
SQ(f)\Ifdp= Z/// 12W(p,p*,p’,pi)q(f) (U4+T,—0' W) dp dp.dp'dp,.
R R

(2.8)
By taking ¥(p) =1, p, p?, the conservation of mass, momentum and energy
of a solution f to the Boltzmann equation (2.4) is obtained

1 1
Slren | » Ja=[en| » |a=0 @9
R E(p) R E(p)
so that
1 1
f(t,p) p dp= [ fin(p) p dp. (2.10)
R E(p) R E(p)

The entropy functional is defined by
()= [ BE@) o, W)= (4TI +7f) = flnf. (21
Taking in (2.8) ¥ =1/(f) =In(1+7f) —In f, we get

D(f), (2.12)
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with

/ / / W e(f) dp dp.dy/dy,
Rli

e(f) = J(ffe QT+ ff LT +TL), (2.13)
j(s,t) = (t—s) (Int —Ins) > 0.
We deduce the H—theorem : the entropy is increasing along the trajectories,
ie.

d 1

()= 7D(f) 2 0. (2.14)

The main qualitative characteristics of f are described by the two proper-
ties that are the conservations (2.9) and the increasing entropy (2.14). It is
therefore natural to expect that as t tends to oo the function f converges to
a function f, which realizes the maximum of the entropy H(f) under the
momentum constraint (2.10).

2.2 The Cauchy problem and the asymptotic
behaviour of the solutions

2.2.1 The classical case in the homogeneous in space
case

Let us consider the case 7 = 0, i.e. the classical Boltzmann equation, which

has been the most studied in the mathematical and physical litterature.

In this section, we recall the main existence and uniqueness results on the ho-
mogeneous Boltzmann equation with cutoff ([39]).

The Boltzmann equation writes as

OF +vV,F=Q(F,F), t>0,veT? 2R,
(2.15)
F(z,v,0) = Fy(z,v),

describing the evolution of a dilute, monoatomic gas confined to a box 7" with
periodic boundary conditions. The collision operator writes as

2w pw/2
QUE, F) = / / / (F()F(}) — F)F(u)lv — v |*h(6) 6 d dun,
(2.16)
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in which the physical characteristics of the molecules constituting the gas are
given by 0 < 3 <1 and h(f) > 0.

The exponent [ is related to the decay of the intermolecular forces, and
with the given range, it corresponds to the so-called hard potentials.

An angular cutoff condition is assumed for the function h(6), i.e.

/2
/ h(0) db = hy < 0. (2.17)
0

The conservation of mass, momentum, energy and the decrease of entropy are
recalled here.

/ F(z,v,t) dz dv = / Fo(z,v) dz dv
R3xT3

R3xT3
/ F(z,v,t)v dx dv = / Fy(z,v)v dz dv
RS x T3 RExT3 (2.18)
/ Flz, v, )] dz dv = / Fo(a, v)[v? dz do
R8T R3 XT3

/ F(z,v,t)log F(z,v,t)dzdv < / Fy(z,v)log Fo(z, v)dzdv
R3x T3

R3xT3

Let the weighted spaces L? be defined by the norm

e = ([ £+ ol o) ™

for ¢ < oo, and with the usually modification for ¢ = oo.

The theorem below summarizes some main results on the spatially homo-
geneous equation.

Theorem 2.2.1

Assume that 8> 0. Let s1 > 2, f(1—1/q) < s < s1—B/q for 1 < q < 0,
and s = s1 if g = 1. Suppose that Fy = Fy(v) € Lil NL;, Fo >0, and
Fylog Fy € L.

(i) There exists a nonnegative solution F € L ([0, 00[; L., NLINC ([0, cof; Lg)
of the spatially homogeneous Boltzmann equation with initial data Fy.
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(1)

(iii)

(w)

This solution satisfies (2.18), and is unique in the class of solutions pos-
sessing moments of order higher than 2.

If ¢ =1, then
F € C([0, o0f; Lil) ﬂCl(]O,oo[;Lil),
and IF
o= Q(F,F) in L, for almost everyt > 0. (2.19)

If 1< qg< oo and s > f3, then
F e C([0,00[; Ly, N LY) NC(]0,00[; L, N L),

]

and (2.19) holds in L, NL;. Here s' < s.

If 3>0andl < g < o0, then for anyry >0, r > 0 andty > 0, there is a
constant C depending on ri, r, s1, s and ty such that the L'-moment of
order r1 and the L-moment of order r both are bounded by C, uniformly
for allt > 0.

Let w be the unique Mazwellian with the same first five moments as Fy.
Then as t — oo, the solution F' converges strongly in Lil to w, and for
s> 3; § <s, the same holds in LY.

If Fy € Lil N L1, with s; > 2 and B(1 — 1/q) < s < sy — B/q, then
the solution F' converges exponentially in time to wy in Lifl N LY, for all
sy < sy, and s' < s. This means that there is a u > 0 and a constant C,
depending on s, si, s, sy, v €]0,u[, and Fy, such that

|1F; — wollgsy < CllFo — wollgse™, for all't >0,

where ¢ = 1,q and 5 = sq, S.

2.2.2 The relativistic non quantum Boltzmann equation

Global existence for the relativistic Boltzmann equation

The existence of solutions to the relativistic Boltzmann equation in L' is proven
by M. Dudynski and M. Elkiel-Jezewska in [20)].

The relativistic Boltzmann equation writes as (¢ = 1 where ¢ is the speed
of light),
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(84 292) 7 = QUF 1), (2:20)

0

where

QULf) = QT (f.f) -

+ SR s TN 0
o = o [ /ﬁd £ £0) Blg,0)
_ B d3p*
Q (£1) = 1 L) =1@), /R 2 /S 40 f(p.) Bl0,0),

and p = (po, p) with py = (M? + p%)/2 is the particle energy, M is the
particle rest mass.
When two particles with respective impulsions p and p, encounter each other,
they collide and get p’ and p’, as impulsions after the collision.
Moreover,

cos =1—2(p—p.)(p—p)(AM* — 5)7},

where 6 is the scattering angle in the center of mass system, and
dQ) = d(cos @) do.
The collision kernel B writes as

g st/?
2

B(g,0) = a(g,0),

where ¢(g, 0) is the scattering cross section, s/2 = |p, + p| is the total energy,
and 2g = |p, — p| is the relative momentum value in the center of mass system.

The global existence of solutions to the Cauchy problem (2.20) in
C([0,00); L'(IR?® x R?)) is given by the following theorem,

Theorem 2.2.2
Let fo >0 a.e in R® x R® satisfying

/ d3x/ &p (1+po+ lInfo]) fo < C.
R3 R3
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Then there exists f € C([0,00); L'(R® x R?)) satisfying

f‘tzo = fo,

1+ 7R (f, ) € L=(0,00; L'(R’ x Bg)),

1+ £)'QF(f, f) € L*0,T; LY(R® x Bg)),
L(f) € L*(0,00; L*(R® x Bg)),

for all R, T < oo. It is a mild or equivalently a renormalized solution of
(2.20). In addition, f satisfies

sup/ d3x/ d°p 1+po+|Inf])f <C.
R3 R3

>0

Existence results and asymptotic behaviour of periodic solutions

Relativistic kinetic equations have been studied by S. R. Groot, W. A. Van
Leeuwen and Ch. G. Weert in ([27]) on a physical level. R.T. Glassey, W.A.
Strauss ([26], [25]) and H. Andreasson ([1]) studied it on a mathematical level.
Periodic and continuous solutions of the relativistic Boltzmann equation are
studied by R.T. Glassey and W.A. Strauss ([26], [25]) for initial periodic data
in the space variable and near equilibrium. We recall here the existence and
uniqueness results obtained by R.T. Glassey and W.A. Strauss in [26].

A relativistic Maxwellian is characterized as a particle distribution p(p) which
minimizes the entropy subject to constant mass, momentum and energy. It is
an equilibrium solution of (2.20) since Q(u, u) = 0, and it has the form

pw(v) =exp(a+b-p—c\/1+|[p]?), (2.21)

where a,b and ¢ > |p| are constants.

We consider a solution f(t,z,p) of (2.20) which has period 27 in each z;-
component and satisfies an initial condition f(0,z,v) = fo(z,v). We assume
that the initial distribution fo(z,v) is close to a Maxwellian u(p). The param-
eters a, b, c are chosen so that fy; and p have the same total mass, energy and
momentum,

0= [ [th-mdzau= [ [po-)dodu= [ [VIFTBP (fy-n) dodn

where the integration is over x € 2 = (0,27)% and p € R® (see [26] for more
details).
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The collision cross section o(g, 6) is assumed to satisfy

B+1

sin” 0 < 0(g,0) < cx(g° +g7°%)sin” 6,

9 (2.22)
‘8—0‘ < c3(g” +g7%)sin” 0,

Ogl —

011

where ¢, c9, c3 are positive constants,

1
0§5<§,0§ﬁ<2—25,

0<d <4, >0, >-2,
and either
) 1 1
12000 |y <min{2— §,5 — 5,52~ 28— A)},

The following theorem is stated.

Theorem 2.2.3

Let o(s,0) satisfy (2.22). Let f°(z,v) be a nonnegative continuous function
which has period 2w in each x;-component. Assume that p(v) is a Mazwellian
(2.21) and cq is a positive constant such that

Sup (@, 0) = u(o)] < eo(L +[0*) =/ u(v), (2.23)

1
where o > 5(3+ﬂ) 18 fized. If cq is sufficiently small, then there are constants

¢; and h > 0 and a unique global continuous solution f(t,z,v) of (2.20) for
0 <t < oo such that f(0,z,v) = f(x,v) and

sup |f(t,2,v) — p(v)| < e e ™ (1+[0")*?\/n(v), (2.24)

for allv € R® and t € [0, 00).

H. Andreasson in ([1]) has stated a theorem concerning the asymptotic
behaviour of solutions to the relativistic Boltzmann equation. He has proved
strong L' convergence to a global Jiittner equilibrium solution for arbitrary
initial data, periodic in the space variables, and satisfying the natural bounds
of finite energy and entropy.
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H. Andreasson applied Arkeryd’s or Lions’approaches to obtain L' conver-
gence to a local Jiittner equilibrium solution. Arkeryd’s method is based on a
nonstandard measure theorical analysis of the entropy dissipation term ([2]).
Moreover, H. Andreasson has shown that the periodicity in the space variables
implies that every local Jiittner solution is a global one.

Here is one of his results.

Theorem 2.2.4
Given a sequence (tx), ., tx /* 00, there is a subsequence (tx) and a global
Juttner equilibrium solution

J(p) = eacp(oz - ﬁupu)a (OAS Ra ﬂp. = (ﬁOaﬂ) € R4 with ﬂO > ‘ﬁ‘a

such that for T > 0, f(. +tw) — J strongly in L'(A x R® x [0,T]), and for
t>0, f(.,t+ty) — J strongly in L'(A x R?).

2.2.3 A quantum relativistic Boltzmann equation

Recall the results stated in [22] and [21]. Consider the equation describing the
dynamics of a low energy, homogeneous, isotropic photon gas which interacts
via Compton scattering with a low energy electron gas at low temperature
6 > 0, assumed to have a Maxwellian distribution of energy e F/% 1t writes

p o [”

o~ | (f'(A+ f) B(K',k;0) — f(1+ f') B(k,K';0)) dk'. (2.25)

Here f(t,k) > 0 is the density of photons which at time ¢ have energy £ > 0.
f denotes f(t,k) and f’ denotes f(¢,k').

The cross section B(k,k';)/k* represents the probability for a given particle
at energy state k to be scattered to the energy state k'. B satisfies

e’ Bk k;0) = "Bk, k';0). (2.26)
For the sake of simplicity, we take § = 1. Let
N(f) = /OO F(B) K2 dk and S(f) = /oo s(F(B).B) K2 dk (2.27)
0 0
be the total number of photons and the entropy, where
s(z,k)=(1+2z)In(l1+2) —zlnz — kz.
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We have the fundamental results,

d d
ZN(f(t) =0, and —S(f(t,)) 20, t20. (2.28)

Moreover we introduce

b(k, k') = B(k',k;1) e* k2 k2.

Assumption (2.26) on B implies that b is symmetric. We assume that b satisfies
bk, k') = ™™ o (k, k'), (2.29)

for some function n € [0,1] and some nonnegative, bounded and symmetric
function 0. We also need a more restrictive assumption on b, i.e. for some
Oxs 0*7 v > 07 v e [07 1]7

o(k,kY=o(k'—k) and 0<o.e "' <o(2) <0o*, z€R (2.30)

We perform the change of the unknown function F = k*f.
The equation (2.25) becomes

aa_f =Q(F,F) = / b(k, k') (F'(K* + F)e™ — F(k™ + F')e™™) dk'. (2.31)

Ry

Taking into account the a priori bounds given by (2.28), a natural space for
the solutions of (2.25) is the set of bounded and nonnegative measures

M'(R;) = (Cb(Ry))".

In the sequel, for a given 0 < F € M" we denote by
F=g+G,

where ¢ € L'(R,), G is a singular measure with respect to the Lebesgue
measure in R, .

Q(F, F) is well defined for all nonnegative measures F' € M*(R,).

Equation (2.31) can be written as the following system of equations,

Y - Q0.6) = Q1 (9,6) ~ QT (9:6) = (1 + g)e ™ L(F) — gL((K + F)e™),
o = Qul0.6) = Q5 (0,G) ~ Qs (9,G) = GIL(F)e * = L((K + F)e ¥)]

(2.32)
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with L(¢) = / b(k, k') ¢' dk'.

Ry

The initial datum for the Cauchy problem is
F(0,.) = g(0,.) + G(0,.) = Fyy = gin + Gin. (2.33)
When b is bounded, a natural space to look for solutions is
E={FeM[R,), F>0, M((1+k)F) < oo}
Where more general cross sections b are considered, the spaces
E,={FeM'[R,), F>0, Y, (F):=M("™F) < o0}, n>0,

are introduced.

Let M(F) := / dF (k) be the mass of F.
0
So,

d
—M(F)=0
SM(F) =0,

i.e.

M(F(t,.)) = M(F;;,) =:m, t2>0. (2.34)
We define the entropy for a general state F' = g+ G by

H(F):= H(g) — M(kQ), (2.35)
where H(g) = /OOO h(g, k) dk, and

h(z,k) = (k* +2)In(k* + 2) —rInx — k*Ink* — kz.

Moreover,
d 1
—H(F)=-D(F 2.36
(P = JD(F), (2.36)
where D(F') > 0 is the dissipation entropy rate. It is defined by :

B , Jg oG
D(F) = 2/IR+ (h(g,k) a—k§> dk

- Q/R (Q1(9,G) W(g,k) =k Qa2(g,@)) dk

33



CHAPTER 2. THE BOLTZMANN EQUATION

Furthermore, we define the Bose distributions

B, = g, + ado, (2.37)
where

1
gu(k) = g1 M > 0.

Here, ;1 and « are defined in the following way. Let N, = N(g,).
If m < Ny, then M(g,) =m and a = 0.
If m > Ny, then =0 and o = m — Nj.

Remark 2.2.1
A distribution F € C([0,00); M'(R,)) is defined in [22] as an entropy solution
of the Cauchy problem (2.81)-(2.33) if

/ F(t, K)o(t, k) dk = / Fin (k) (0, k) dk+ / [ QR F) 6 dk ds, (239)

for all ¢ € C.([0,00) X Ry), and satisfies either the entropy inegality

[ D) ds < B, ) - HEFGL)), b2nz0 (23

1

or the entropy dissipation bound
| D) < BB - HE) (2.40)
0

M. Escobedo and S. Mischler have established the three following theorems

(22]).

Theorem 2.2.5
Assume that b satisfies (2.29) with n = 0. Then for any initial datum
Fi. = gin + Gin, € &, there exists a unique entropy solution to (2.31),(2.33)
and (2.39), F = g+ G € C([0,00),&). Moreover, F satisfies (2.34) and is
such that

supp G(t,.) C supp Gi,. (2.41)

In particular, if Fy, = gin € L'(R}) then G(t,.) = 0 for every t > 0 and thus
F(t,.)=g(t,.) € L'(Ry) for every t > 0.

34



~ OF THE SOLUTIONS

Theorem 2.2.6

Assume that b satisfies (2.30). Then, for all initial datum Fy, = gin+Gin € Epr
with @' > 0, there exists a unique global entropy solution to equation (2.31)-
(2.38) and (2.39), F = g+ G € C([0,T),E)NL" (0, T; &, 1) for allT > 0 and
all 0 < 0 < min(6',n,1 —n). Moreover, it satisfies (2.41).

Theorem 2.2.7

Assume that b satisfies (2.29) for some n € [0,1) and that the initial datum
has the special shape

Then there exists an entropy solution F' = g+ady € C([0,T), &) to (2.31),(2.33)
and (2.40). Moreover, F satisfies (2.34) and
Ofa(t)fﬂma Ogg(tv)sgm tZO

The asymptotic behaviour of these global solutions are also considered.
The main result is the following.

Theorem 2.2.8

Assume that b is positive and that F;, satisfies the assumptions of one of the
existence Theorems 2.2.5, 2.2.6, or 2.2.7. Let m = M(F,), Bn = g, + oo
the Bose distribution of mass m defined in (2.37) and F € C([0,00); M) the
corresponding solution to (2.31). Then,

F(t,.) = B, weakly * in (C.(Ry)),
e (2.42)
tlir& ||g(t, ) — gu||L1((]C07OO)) =0, ky>0.

Moreover, if m < Ny or 0 < gin < go, ko can be taken as 0 .

2.2.4 A modified Boltzmann equation for Bose-Einstein
particles

In [31], X. Lu studies a homogeneous quantum Boltzmann equation for Bosons
under a cutoff assumption on the collision kernel. His frame is isotropic.

He proves a global existence and uniqueness result for L' conservative en-
tropy solutions. Moreover, their asymptotic behavior in time is considered. In
the low temperature case, some velocity concentration appears in infinite time.
In the high temperature case, there is a weak L' convergence of the solution
to the equilibrium state with the same mass and energy as the initial datum.
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Chapter 3

Modelling of the studied
problem

Contents
3.1 An initial relativistic frame ... ... ... .... 37

3.2 A simplified model linked to the Compton effect 39

3.1 An initial relativistic frame

As considered in [22], the following quantum relativistic homogeneous equation
describes the evolution of the photon distribution function in the interaction of
photons with a gas of electrons via Compton scattering. The gas of electrons is
of low energy with mass m. Photons are weakly dense and at low temperature.
This equation is written as

g_{(t, P)=Q(f,9)(P), t>0, Pe R, (3.1)

with

8c
0) ) ' pr_
U, /1R4 /134 /134 o(5:6) a(f,9) {Prpmpmnn (3.2)
X2(P2) x1(P") x2(P.°) dP' dP, dP..

P and P’ (resp. P, and P!) are the momentum of the photons (resp. electrons)
before and after a collision.
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A particle is determined by the pair (X, P) € IR* x IR* of position
X = (t,x) and momentum P = (P° p). Let

PO =p" = p|, P’ =p" = p|, P! =p]:=/|p.]> + m2,

and
PP =p" = VP + mi.

Denote by s = (P + P,)? := (P° 4+ P")? — |p + p.|?, and by @ the scattering
angle, given by
(P — P).(P{— P')

cosf = (P, — P)?

The nonnegative scalar function f(¢, p) is the distribution function of photons.
g(p) is the distribution function of electrons assumed to be at non relativistic
equilibrium, i.e.

c denotes the speed of light.

The functions x1(P"°), x2(P°) and x,(P!°) are defined by

1
0 0
X1(P7) = 550 pro—yoy, X2(P) = 5{P°=p* x2(P) = Fé{l’i‘):pio}’

2/0 20

and

q(f,9) = g@)f()A+hf(p)) — f(R)glp.) 1+ hf(D)), (3.3)

where h is the Planck constant.
Here and below, the following notations are used for any function f,

fr'=fp), fo=[ftps), [f.=[f(tp)).

In equation (3.1), emission and absorption of photons have not been taken
into account, so that the transitions are produced exclusively by the Compton
scattering.

In order to simplify the formulas, m and 7 are taken equal to 1.
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3.2 A simplified model linked to the Compton
effect

M. Escobedo, S. Mischler and M.A Valle have shown in [22] how to obtain the
final expression of the collision operator Q(f, g)(p). We will explain later how
to obtain the expression of the collision integral in (3.1).

In order to simplify the model, we only keep the highest-order term with
respect to the speed of light ¢ in the collision integral Q(f,g)(P). The cross
section o(s,#) is given by the Klein Nishina formula ([27]). An equivalent
when ¢ — oo is given in the following lemma.

Lemma 3.2.1

o(s,0) ~ %r%(l +cos?d), c¢— oo. (3.4)

62

Here, e 1s the charge of the electron and rq = .
dmc?

Proof of the lemma.

The proof refers to [27]. We here give the main steps of the proof.
The cross section o(s, ) is given by the Klein-Nishina formula

U(Sae)Z%Tg(l—f)(l-i—% gl —z) + 1_(1—%5)(1—35)]2)’

-2 | 1)
with ) 5
2st (P+ P,)* —m?®c
— 1 — — t = P — PI 2-
As
5 - m?c? . 2|p| |p*|2 +m2c? — 2(p7 p*)
s m2c? + 2|p|/Ip.> + m*c — 2(p, p.)’
then
2
c—oo mC
Furthermore,
P+P)(PP—-—P —P+P,
cos9=1+( + ) < +P)

(P = P.)? ’
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CHAPTER 3. MODELLING OF THE STUDIED PROBLEM

and by taking a reference frame where p’ = 0 (see [32] for more details), we
obtain

(P+P,).(PP—P.—P+P,) B 2st
(P— P,)? ~ (s —m2)?’
So,
cosf = z.
Let

~ 1 g1-a)  [l-(1-3§)1 -2
L=+ i o)

L can be written as
L=1+2"+ Ci(2)€ + Cy(2)&* + C3(z)&,
with
Ci(z) = x(1—2*) —(1+2?),
Cy(z) = %{(1 —z)1+(1+2z)(1+3z)] —4z(1 + )},

Colz) = ~(1—2){(1— )1+ 22(1 +2)] — 21+ (14 2)(1 + 32)]}.

8
When ¢ = 00, € +0and L =1+ 22 =1+ cos®6.
Finally
1
o(s, H)C:Joo§r(2)(1 + cos® ).
O
Lemma 3.2.2

The collision integral writes as

Q) = ¢ /IR a(s, ) el g(f) (/133 . oy exp(— |p2*c|2

s |pl[p|

) dp. dpi) dp,

a(f) = e P )1+ f(p) — e P F ()1 + (D).

Proof.
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3.2. A SIMPLIFIED MODEL LINKED TO THE COMPTON EFFECT

Replacing x1(P"°), x2(P°) et x2(P!°) by their expressions, Q(f,g) writes
as

Q( / / / 5 9 f g) 5{P+P* P'—P!=0}
Rt JR* J R*
dP' dP' dP,
p* p*

(S{PO—pO}6{P/0,p10}(5{P/0,p/0}

Considering the inner integrations with respect to P?, P’ % and P! % in the for-
mer expression Q(f, g),

a C/m,s /1R3 /R3 p°p°plp.° o(e,6) alf, 9)x

x Oy, dp'dp! dp,,
where 3 is the manifold of 4-uplets (p, p, p', p,) such that,
p+p. = P +p,

[pal?
2

\p*l2

clp'| + = 5

clp| + ——

By taking the highest-order term with respect to ¢, we obtain

J=c / / / i 0(5,0) all.9) b dpdpldp.
R3 JIR3 JIR3 x 1/ %

To simplify the model, only the highest-order terms with respect to ¢ are
kept in Q(f,g)(p). The term

Indeed,

is equivalent to ——, when ¢ — oo.

pl[p|

p°p'°plp.°

s 1 s
P’ Ipllp /PP + 2/ Ip P+

When ¢ — oo,
S

VIPL? + ] + ¢

Together with (3.4), this implies that the collision operator can be approxi-
mated by

— 1.

— 0-(8’0) / /
arow=c [ [ [ S5 ar.9) b ddip.
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CHAPTER 3. MODELLING OF THE STUDIED PROBLEM

where
q(f,9) = g ) fP)A + f(p)) — f(P)glp.) (1 + f(P'))-

Then, the collision integral becomes

o(s,0 , P’
anw=c [ TD e ) ([ [ o5 o B0y ap. at) ap,
rs |PllP] R3 JIR3 2c
with
g(f) =e P f)1+ f(p) — e P f0) (1 + £ (D))
O
The collision operator can be simplified in the following way.
Lemma 3.2.3
Denote by
2 2
sea) = [ [ o eat-BDy .t a= -+ P50 w=p-p
R3 JIR3 C 2c
Then \ 12
27c c
I — _——_—
Proof.
We start by writing the following expression
pl* Pt p— PP 1
— — - = —(A - —(ps,w)).
pl+ = = IP] 5 (4=~ (py,w))

S(p,p') writes as

2
/ = R _p! 2 ! d I) _‘p*‘ d *
S(p7p) /_R3 </_RS 6{10 «=DPt+DPx—D } 6{‘;0‘_1_%:'])1‘_1_%} p* exp( 2C ) p )

And so,

/
= —o! - d *
S(pap ) /1R3 5{|p|+|p;C|2:|p/‘+\p+p;C P \2} exp( 2% ) P
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3.2. A SIMPLIFIED MODEL LINKED TO THE COMPTON EFFECT

The change of variables in polar coordinates leads to

9] 2
Ser) = | ([ dpam as.) Py 2 dl
(p,0') /0  Yam (0 o) exp(—==, ) [p:[" d|p:|

Let us evaluate the term . 6{A7@(Q*,w):0} ds,.
Since
cos Bsin @
Q, = sinfsing |, B €10,2x], ¢ €[0,n],
cos ¢

it holds that

/52 5{A—@(Q*,w):0} dQd, = 27r/0 5{A_|p*c\|w| cos =0} sin ¢ d.

By the change of variables y = cos ¢, we obtain

1
/525{14—“'%(9*@):0} dd, = —2m /_ 15{14*—“’*6"1“'11:0} dy.
Since
1
6{b—a:z:0} = _aé{z:g}a
2re !
5i o dQ, = — " | 6, 4 ,d
/52 {a-E=l(0.,w)=0} pa|[w] J St Y
_ 2mc ( A?c )
[pa[w] P |?lw|? /"
Finally,
0o Qe ‘p*|2 A2C 5
Sp,p) = / exp(— )H<1—7)|p*| d|p.|
o |p«l|w] 2c P [?|w]?
* 2mc [P«
— T, By dlp,
/;u; o lne] exp(=50) dip
27 c? exp AZC)
= — exp(———7).
ol P 2w
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CHAPTER 3. MODELLING OF THE STUDIED PROBLEM

|

Assume that the photon distribution function is isotropic. Denote by &k = |p|,
k' = |p'|, F(t,k) = k*f(t, k). The collision operator is then

Qﬂﬂ@k%:AthMﬂPQLfmé*—F%Q+F%TWd#

with
2¢3r2m? [T sin 0 A’c
bk, k") = 0 /1 29) —— —— 4k do 3.5
(k, k") e, (1 + cos®6) w exp( 2|w|2+ ) do, (3.5)
and
‘wz 2 2 2
A:kl—k+2—c, |’U}‘ =k +kl — 2kk' cos@.

The aim of chapters 4, 5 and 6 is to prove the existence of a solution F' to
the Cauchy problem

oF
57 R = QUE)LE), te[0,T], k>0, (3.6)

F(Oi k) = FO(k)7

where the initial datum Fj is given.
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Chapter 4

A priori estimates

Contents
4.1 Conservation ofthemass . . ... ... ... .... 45
4.2 H-theorem. .. ... ... 46
4.3 Boundedness of entropy and energy ... ... .. 46
4.4 Mathematical frame . . . . ... ... ... ..... 48

The following a priori estimates for (3.6) hold.

4.1 Conservation of the mass

Proposition 4.1.
Let M(F)(t) = / F(t, k) dk be the total number of photons at time t. Then,
0

—M(F)(t) = 0. (4.1)

Proof.

Proposition 4.1.1 follows from an integration of (3.6) with respect to k& and
the change of the variable k by &'.
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CHAPTER 4. A PRIORI ESTIMATES

4.2 H-theorem

Proposition 4.2.1
The entropy, defined by

H(F)(t) = /0 TR F( B) (K2 P (2, B)— F(t, k) In F( k) —k2 In k2 —kF (1, k)] dF,

18 a non-decreasing function of time.
Proof.

(k* + F)ek>

Multiply equation (3.6) by ln< fa

so that

2 %H(F) = / / bk, k') j(F(k” + Fe ™  F'(k* + F)e™) dk' dk.
0 0

Here,
Jju,v) = (v —u)(lnv —Inwu) if >0, v>0,
jlu,v) =0 if u=v=0,
j(u,v) = 400 elsewhere.
The nonnegativity of b and j implies the result. O

Nevertheless, H(F') is used to control the energy as we can verify below.

4.3 Boundedness of entropy and energy

Proposition 4.3.1
There ezists a constant C > 0 such that for any solution F to (3.6), the
following 1nequalities hold,

M(kF) < C(1 4+ M(F) — H(F)), (4.2)
|H(F)| < CM((1 + k)F). (4.3)

Proof.
A proof of Proposition 4.3.1 is given in [23]. We recall here the main steps of
(4.2).
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The proof of (4.3) is similar.
The entropy H(F') writes as

H(F) = /0+oo[(/<:2 + F)In(k* + F)— FIn F — k*Ink?*] dk — M(kF),

- M(kF) = Hy(F) - H(F)

with .
Hy(F) := / [(k2 + F) ln(k2 +F)—FInF - k?1n kz] dk.
0

We use the following lemma ([23]).

Lemma 4.3.1
(i) For every s € (0,1) and k > 0,

0 < (s+ k%) In(s + k*) — k*Ink* < s(1 + In(1 + £?)). (4.4)

(i3) There exists a positive constant Cy such that, for all s > 1 and k > 1,

0< (s+k)In(s+k*) —slns — k*Ink* < 2s(C; + In(1 + £?)). (4.5)

(#31) For all 6 € (0,1), there exists a positive constant Cs such that, for all
s>1andk € (0,1),

0<(s+k*)In(s+k*) —slns < 4, + Cs. (4.6)

Thanks to Lemma 4.3.1,

+o00 +oo
/ [(F + k*)In(F + k*) — k*In k] dk — / FInF g5y dk
0 0

+oo
= / (F+ k) In(F + k%) —k*Ink* — FIn F] Wipsy, g1y dk
0
+oo
+/ [(F + k2) ln(F + kz) - k2 In k2 — Fln F] ]I{FZL 0<k<1} dk
0
+oo
+ / [(F+ k) In(F + k%) — k* Ink?] Ljpepery dk
0

+oo
SC/ F [1+In(l1+ k%] dk+ C.
0
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CHAPTER 4. A PRIORI ESTIMATES

Because of the monotonicity of the functions s -+ —sIns and —In s,

+o0 1
—/ FInF Ty<p<iy dk = —/ Fln F T<p<1y dk
0 L Jo
- /1 Fin F Lige peexp—vay

“+o0o
_[ F]nF ]I{exp(—\/E)SFgl} dk

1 [*e°
SCI+02+M(F)+Z/ kF dk,
0

where

o0
Cy = / exp(—Vk) Vk dk < +o0.
1

Finally, we obtain (4.2). O

4.4 Mathematical frame

This work is devoted to prove an existence result for the quantum kinetic
equation (3.6) describing the Compton effect. Its kernel is kept singular as it
is derived when keeping the highest-order term with respect to the speed of
light in the relativistic model. Like in [22] already, the boundedness of the
photon entropy is not sufficient to stay in an L' frame. Indeed, a solution of
the Cauchy problem is obtained as a limit of an approximated sequence of this
problem. The boundedness of mass M (F'), energy M (kF) and entropy H (F)
are not sufficient for the limit of this sequence to stay in L' frame. Measure
solutions for the photon distribution function are expected. Moreover, the sin-
gularity in the collision kernel brings severe restrictions. Existence results to
the Cauchy problem are obtained for initial data small enough, and locally in
time. The entropy of the solution is controlled.
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Chapter 5

Main results

Contents
5.1 Recent mathematical results. .. ... ... .... 49
5.2 Owurresults ... ... ... ... ... 50
5.3 Proof of Proposition 5.2.1 ... ........... 51

5.1 Recent mathematical results
We focus on the following Cauchy problem

%_lj(t, k) = Q(F)(t, k), t€[0,T], k>0,

F(O’k) = FO(k)a

with
Q(F)(t, k) = / h b(k, k")[F'(k* + F)e™ — F(k"* + F')e™*] dk'.

As recalled in 2.2.3, M. Escobedo and S. Mischler ([22]) proved the existence
and uniqueness of a measure solution of the problem (5.1) for different types
of the cross section b.
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CHAPTER 5. MAIN RESULTS

5.2 QOur results

The cross-section b defined in (3.5) does not satisfy conditions (2.29)-(2.30).
b(k,k') is singular at £ = k' = 0. Still, we have remarked that measure
solutions are expected for the Cauchy problem. We need to give a sense to

/s | /000 B(t,k) Q(F)(r, k) dhdr,

for any continuous and bounded test function ¢. The a priori estimates of
Propositions 4.1.1-4.3.1 are not sufficient to obtain finite

‘ /St /Ooo ¢(t, k) Q(F)(r, k) dkdr |,

for any test function ¢. Denote by M!(IR,) the space of bounded measures
2

k
on IR, and by m(k) := pat In order to deal with solutions F' to (5.1) in
e —

C([0,T), M*(IR,.)), the following bound on F is required.

Proposition 5.2.1

Let F € C([0,T], M'(IR})) be such that F(7,.) # m + ady—, o € IR, for all
7 an [0,T]. If for any continuous and bounded function ¢ with second order
with respect to k in the neighborhood of 0 and for any interval J C [0,T],

‘/J/Ooo ¢(r,k) Q(F)(r, k) dk dr| < + oo,

then

*F
/ E(T,k‘) dk < 400, a.a. 7€]0,T).
0

Remark 5.2.1

The condition “F(7,.) # m + « k=, a € IRy for all T in [0,T]” is not
restrictive in the frame of the existence (and not for the uniqueness) of a
solution to the Cauchy problem. At a first possible time t, such that

F(t.,.) = m+ adg—o, we extend the solution obtained on [0,t.] by

F(r,.)=F(t.,.), 7€ [t.,T].
Remark 5.2.2

This boundedness of — 1s important to establish the local existence result de-

velopped in the following theorem.
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5.3. PROOF OF PROPOSITION 5.2.1

Let ¢1, ¢, c3 be the constants independant of Fy defined further on in Lemmas
6.1.1, 6.1.2, 6.1.3.

Theorem 5.2.1
Let T > 0 and the initial datum Fy satisfy

C_}r 00 3/2
U= </8 (1+k)F0]§k)dk+/ Fo(k)dk> eXp(TmaX{cl,?)Q: +8r3Y)
0

o c
8 1 2

C1 C1

= cye + 8T
(5.2)
Then, there exists a nonnegative solution F € C([0,T], M*(0,+00)) to the
problem (5.1), such that

F(t, k)
2

€ L0, T; M'(0, +00))

and -
/ kF(t,k)dk < d, a.a. t >0,
0

for some constant d > 0.
Moreover, if the initial datum Fy has a finite entropy, then F' is an entropy
solution in the sense that

H(F)(t) > a, a.a.t>0, (5.3)

for some constant a.

Remark 5.2.3 The solution F to the problem (5.1) in theorem 5.2.1 is meant
in a weak sense, for continuous and bounded test functions, with second order
with respect to k in the neighborhood of 0.

5.3 Proof of Proposition 5.2.1
Let ~
:/J/O o(1, k) Q(F)(7,k) dkdr.
o(r

I(¢) = / / / kk, h(k, k") [F'(k* + F)e ™ — F(k* + F")e ™" dk'dkdr

It can be written as

= Ti(¢) + To(¢) + I3(¢) + Zu(8),

o1
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with ™ (14 cos®6) sin A’c )
h(k, k) = /0 - exp(— 5o + k) .
A=K —k+ ‘Z’l L |w|? = B + K — 2Kk cos,
and,

— * m¢(7’k) I r_—k !
Ti(¢) = /J/O/O 7 h(k, k) F ke dk' dk dr,

T,(¢) = // / ‘bkk, h(k, k" [FF'(1 —e )] dk' dk dr,

Ty(¢) = // / ‘ﬁ(gk,k) (h(k, k) — h(k,0)) [F'(K* + F)e* — F)] dk' dk dr,

T(4) = / "ol k h(k,0) [(k* + F)e F](/ i—l dk') dk dr.

Lemma 5.3.1

Let F € C([0,T], M*(R,)) be such that the mass M (F)(t) is uniformly bounded
from abowve.

For any continuous and bounded function ¢ with second order with respect to

k in the neighborhood of 0,

IZ,(¢)] < o0, 1<5<3.
Proof of lemma 5.3.1.

|Z1(¢)| and |Zy(¢)| are finite because the second order with respect & of ¢
in the neighborhood of 0 deals with the singularity of A(k, k') in k = k' = 0.

Z3(¢) can be written as

// / /F’[ke‘k+F

Here again, the second order with respect to k of ¢ in the neighborhood of 0

1]¢(T, k) g: (k,~k') dv dk dk' dr.

deals with th larity of —
eals wi e singularity o £
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5.3. PROOF OF PROPOSITION 5.2.1

Thus, |Z3(¢)| is finite.

So, proving proposition 5.2.1 comes back to prove the following lemma

Lemma 5.3.2

For any continuous and bounded function ¢ vanishing in a neighborhood of
0 with respect to k,

*F
\14(¢)|<oo:>/ Sk dk < +o0, aaTelD,T)
0

Proof.
Consider
T.(6) = /J/Ooo b7, k) (F(r, k) — m(k)) (/Om% dk’) dk dr,
where 8 (r. k) . - By
Y(r, k) = 312 Xp(—g(—l + §/f) ) (e —=1).

It is sufficient to prove that for all ¢t € [0, T, there exists a neighborhood V; of
t such that for almost all s € V,,

~ F(s, k)
/0 —

is finite. We prove it ad absurdum. Let

< F(t kK
S = {t € [0,T]; /0 (k” ) dk’ =+oo},

and
F(t,.) = L(t,.) + H.(t,.) + Hq(t,.)

the decomposition at all time ¢ of the bounded measure F'(t,.). L(t,.) is the
continuous absolute Lebesgue part of F'(¢,.). H.(t,.) and Hy(t,.) are respec-
tively the continuous singular part and the discrete singular part of F'(¢,.). We
arrange the Dirac mesaures in Hy(t,.) such that

Hd(t, ) = Zaj(t)ékj,

jz1
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with the decreasing sequence of positive coefficients a;(¢). We assume that
there exists ¢ € [0, 7] such that for all neigborhood V; of ¢, |[V; N S| > 0. The
three following cases are to be considered.

e Either / Ho(t, k) dk > 0
(0]

then, / H.(t,k) dk > 0 for « > 0. The support of H. limited to

0
|a, +0o0] is include in a denumerable union of open intervals with small
arbitrarily measure. In particular, it is include in UI,, with

1 oo
/ mdk<—/ H.(t,k) dk
Ul, 2 a

H.(t,k) dk < [ m(k) dk,

I In

If for all integer n,

then

/ H,(t, k) dk < Z H,(t, k)

/ mdk<—/ H.(t, k) dk
url, 2 o

Thus, there exists an interval I Cla, 400 such that
/(H,_.(t, k) + L—m) dk > 0.
I

By continuity in time of F', this is also true for a neighborhood V; of t.
Restricting eventually V;, there exists an integer n such that

> ay(s) /H + L —m)(s, k) dk, seV,.
ji>n

We construct a continuous function v, which is equal to 1 on I, which
vanishes quickly on the boundary of I and on some small neighorhoods
of eventual k;, 1 <7 < n, being in I. For this function v, Z, = 4o00.
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e Or Hy(t, ) =0 and / Lt k) — mk)| dk > 0 :
0

—+ oo
then, / | L(t, k) — m(k) | dk > 0 for a > 0. By continuity in time of

F', we can restrict V; in order to obtain
/ |L(s, k) —m(k)| dk >0, a.a.s €V,
0

For almost all s € V;, there exists a set I, of positive measure in [, oof,
such that
a(s,k) == L(s,k) —m(k) #0, k€ I.

Let n(t) be such that

S a(t) < %/ | L(t, k) — m(k) | dk.

i>n(t)
Let X be the function defined by

X(s, k) = sgn(a(s,k)), seV;, kel
X(s, k) = 0 otherwise.

Let X(s,k) be the characteristic function of the complementary of the
support of H.(t,.) + Hy(t,.). Let

Gn(s) = min { /000 Fls, k) dk',n}.

kl
Then G, = n on V;. The function a belonging to L'((0,T) x IR,), let

€ > 0 be such that
1
[ral<i [ el i<z
Q 4 ‘/tXIR+

Take 9 continuous such that |[¢p| < 1, ¥ = XX outside of a set 2 of
measure smaller that ¢, and which vanishes in &4, ..., k,, we obtain

‘ /(0 T)xR (W(F = m)Gn = XX(F = m)G) de/f‘

< (2n+ 1)/ la| drdk
Q

o+ 1
< / la| drdk
4 Vt><1R+

o+ 1 ]
nt / XX(F —m) G, drdk.
an (0,T)x Ry

IN
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Thus,

4n
n—1

/ XX (F—m) G, dr dk < / Y (F—m) Gy, dr dk.
(0,T)x Ry (0,T)x Ry

Passing to the limit in the previous inegality when n — +oco leads to
I4 = 4-o00.

oo

e Or H,(t,) =0, / L(t, k) — m(k)| dk = 0 and Hy(t,.) £ 0.
Let n be such tha?t )
Zaj < Z ai.
>n
Let I be a neighborhood of k; such that ks, ..., k, ¢ I, so that

/(Hd(t, ) —ag O,) < i a.

I

Restricting [ if we need, and by continuity in time of F(¢,.), there exists
a neighborhood W, of ¢ such that

/(F(s, k) = m(k)) dk > % 0, s €W

We choose a continuous function 1 which approaches the characteristic
function of I and which is equal to 0 outside /. Then,

/Wt (/OOO W(s, k) (F(s,k) —m(k)) dk) (/0oo F(Z’,kl) dk,) ds = oo,

|

Lemmas 5.3.1-5.3.2 lead to Proposition 5.2.1.

The proof of Theorem 5.2.1 is done in the next chapter.
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Chapter 6

Proof of the existence theorem

Contents
6.1 Technical bounds on the cross-section h . . . . .. 58
6.2 Existence of a solution to the Cauchy problem. . 60

6.3 Study of the entropy and boundedness of the energy. 67
6.4 Conclusion. . . .. .. ... ..o 71

In this section, we prove theorem 5.2.1. Solutions F' € C(0,T; M'(IR,)) to
(5.1), such that
F(t, k)
k

e LT(0,T; M'(RR,))

are considered .

Compared to the existence results in [22], the main problem here is to reach

F(t, k F(t, k
the frame (k’ ) € L(0,T; M' (IR )). Hence, the function G(t, k) = %
is introduced. The problem to be solved is
% = 2c3r§7r2/ h(k,K[G'(1 + %)e"“ — %(k’ +GNe M dE!, t €[0,T), k>0,
0
F
60,1 = B0

(6.1)

with G € L(0,T; M*(IR,)). Here,

, ™ (1 + cos? 6) sin 0 A’e ,
h(k, k =/ exp(— + k') db,
e NPTERE
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2
A=k —k+ ‘1;—, \w|* = k* + k™ — 2Kk cos .
c
For the sake of simplicity, 2¢*r2n? is taken equal to 1. Using the properties of

h derived in Lemmas 6.1.1, 6.1.2, 6.1.3, we will use the equation (6.1) written
in the following special shape

¢ 00 &
%:/ h(k, K)G'e™ dk"i‘g[ / h(k, kK')G'(e™* — ™) dk’
8t 0 k 0 0o
_ / hk, K)k'e " dk'], (6.2)
. Fo(kg
\ G0 k) = ==

The proof of the theorem splits into three parts. In part 6.1, we obtain
bounds on A, that will be useful in dealing with its singularity. Part 6.2 proves
the existence of a nonnegative solution F' € C([0,T], M*(0,00)) to (5.1), such

F(t, k
that (k’ ) € L(0,T; M'(IR,)). Part 6.3 states the entropy feature of F.

6.1 Technical bounds on the cross-section h

Lemma 6.1.1
There exists a constant ¢; > 0 such that,

4ep < / h(k,KNk'e ®dk', 0<k<ecy, K'>0.
0
Proof.
Let [ be the positive limit of/ h(k, k") k'e ™ dk' when k — 0. Then,
0
o , l
/ h(k,Kk'e * dk' > 3 k < n, for some n > 0.
0
-/
Choose ¢; = mm{g, n}. 0
Lemma 6.1.2

There exists a constant co > 0 such that

Rk, k(e ™ —e ™) <ec,, O<k<ec, E>0.
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6.1. TECHNICAL BOUNDS ON THE CROSS-SECTION H

Proof.

For 0 < k' < 2¢;,

et — ¥

! -k _ -k <d
h(k,k")|e e | < T

<d, d>0.

For k' > 2¢,

™ 2 . 2,
hik, K') (e ™* — e*k') < / (1+ co‘s |9) sin 6 ei2jl4w|2+k kg
0 w
d
< m, d> 0,
A2
since — c+l€'—k§0. O
2w
Lemma 6.1.3

There exists a constant cs > 0 such that

hk,K)e ™ <e¢3, k>0, k>ec.

Proof.
A? A?
First, _2|—w|02 + k" —k <0, so that exp(—2|—w|c2 + k' — k) < 1. Then,
2T C1
hk, ke ™t < —— k>c, k<.
( ’ )6 —|k__k,|a C1, =79
Moreover,
_ 2m C1
h(k, ke * < L k>aca, K> —.
k)" Trgm Fren B2y
4
Choose ¢3 = iy O
C1

Truncated cross-section h,, will be used in the existence proof in order to avoid
the singularity of h at k = k' = 0 in the approximation procedure.
Let (h,)nemn+ be defined such that

hn(k, kl) = h(k, kl) ]I{kE[%,n]}

Remark 6.1.1 The constants ¢, ¢y and cs are linked to the function h(k, k).
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CHAPTER 6. PROOF OF THE EXISTENCE THEOREM

6.2 Existence of a solution to the Cauchy prob-
lem

Throughout the proof, fixed point arguments will be used in the closed convex
set K of nonnegative measures GG, such that

Co

/ Gt k)dk < 2, a.a. telo,T).
0

One solution is obtained as a limit of an approximated sequence.

The proof splits into three parts. The first proves the existence and uniqg-
ness of a solution to the approximated problem (6.3). The second proves the
existence of a nonnegative solution F' € C([0,7], M'(R,)) to (6.7) such that

F(t, k
% € LY(0,T; M'(R})). The third part states the passage to the limit

when n — oo in the weak formulation.

First step : proof of the existence and unicity of the truncated
equation (6.3).

Let g(t, k) : [0,T] x [0, 00[— IR™ such that / g(t, k)dk < D andn > ;—1
0

(6) m
be given. In this first step, the problem

( oo o0
% —e_k/ ho(k, k') G, dk’-i—%/ ho(k, k) (e7F — e ¢ dk’
0
X - =t / e dk/, (6.3)
\ G,(0,k) = k , k>0,

with unknown G, will be solved in K with a Banach fixed point theorem.
For u € LY(0,T; L' (IR)), define F(u) = U as the solution to

r o0 =
aa—lt]:e—’“ / o (k, k') u(t,k') dk’+g / ha(k, k) (7% — ™) g(t, k') dI
0

3 - = e dk, (6.4)

U(Ok ]gk), k> 0.
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6.2. EXISTENCE OF A SOLUTION TO THE CAUCHY PROBLEM

It follows from the exponential form of U, that
U(t,k) >0 aa.t>0, k>0.

Integrating (6.4) with respect to the variable k implies that
8 o0 - [e o]
a ; U(t, k)dk S )‘n ||u||Lf’|_°(O,T;L1(R+)) + )\n C1 ; U(t, ]f) dk.

- 1
The constants A\, and A, take into account the compact support [—,n] with
n

respect to k of h,. And so, using Gronwall’s argument, the function U belongs
to L(0,T; L' (IR,)).

Analogously, for any u, % € L;(0,400), the corresponding solutions U, U
to (6.4) satisfy

o, - o 3
AT §03/ w— | dk — 4x U — .
ot A

Hence,

/ U - U|(t, k) dk < Z_jr(l — 6_4”)/ lu—al(t, k) dk, a.a.t€[0,T].
0 0

This implies that for 7' small enough only depending on n, the map
F :u — U is a contraction from L°(0, T; L' (IR)) into itself. Then, F admits
a unique fixed point on L2 (0,7T; L' (IR*)), denoted by U.
The argument can be iterated to obtain a unique solution U = G,
in L(0,T; L' (IR)) to (6.3). O

Furthermore, G,, belongs to the convex set K. Indeed, it follows from (6.3)
and Lemma 6.1.1, that, for 0 < k£ < g—l,

m
o [& & o0

—/ Galt, k) dk g/ e_k/ hk, k') G dk' dk
8t 0 0 0

+ / ™ Gn / hy (7% —e™*) ¢ dk'dk
0 k 0

1
= (G
—20/ =" dk.
10 2
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CHAPTER 6. PROOF OF THE EXISTENCE THEOREM

Then, by Lemma 6.1.2,

2/8, Gt k) dk < / ek/ h(k, k') G dk' dk — clfs" S
at 0 0 0 0 k

/ g dk — ﬁ) dk
0 Ca

oo 21

=G,
h(k, k') G dk' dk — 01/8 = dk,
0

AN +
c\ N
® s
By
S— ?T“ 3
/N

since g € K.
And so,

o1 cq €1

Q/SWGn(t,k)dk < 4rn s”idk/ G dk'—cl/”@dk
0 0

ot o Vk o VK k
aen = G,
< Ver [ 2R dk—c 7 dk
s—iG
< —— 2c1m — —) dk + \/2cym —ndk
—ox/E(“ o Ve |
G,
V2w — dk.
" /ST\/E
Hence,
= 3/2
Q/SG(tk)dk<32” /kG dk (6.5)
ato Cl €1



6.2. EXISTENCE OF A SOLUTION TO THE CAUCHY PROBLEM

Using (6.3) and Lemmas 6.1.2 and 6.1.3 implie that

9 / kGt k) dk = / G, / ho(k, ') (e7* — e ¢’ dk' dk
at 0 0 0
_ / es / ha(k, K (7% — &%) ¢’ dk’ dk
0 0
+ / G, / ho(k, k) (e7F — ¥ ¢ dk' dk
/ g dk' dk
0

+ / / kgl dk' dk

°°|
k;

IN

< 01/8 G, dk+cs & | @, dk.
0 G2 JeL
Therefore,
Q/Mkc(t k) dk < c (/G dk+8m‘°’/wkc dk) (6.6)
8t o n\Y; >~ 01 0 n 1 Co ;_}r n . .

It follows from (6.5) and (6.6) that

o, [& >0 s 3273/ cs
—(/ (1+ k)G, dk +/ kGLdk) < cl/ Gndk + ( +87T—)/ kG, dk
at 0 % 0 C1 Co g}r

93/2 —
52 +87r9}(/8 (1+k)Gndk+/ andk>.
CQ 0 c1

8

< max{c,
C1

And so, by Gronwall’s argument,
c1

/8"(1+k) Ga(t, k) dk+/ k Gy dk

1
0 . 8

< </08_T(1 + k)G(0, k)dk + /:O kG(0, k)dk) exp(T max{c;,

8

3273/2

+ 8 —})

Hence,

€1

/ Gt k) dk < /8"(1+k)G dk—i—/ G, dk
0 0 ]

87
c1

/8”( Gdk—i——/ k G, dk.
0 8w
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CHAPTER 6. PROOF OF THE EXISTENCE THEOREM

Then,
[
0 . /
8 o) 3/ .
s+ 81)(/8 (1+k) G(0, k) d’”/ K G(0, k) di) el (e i o)
C1 0 g_}r
8
=1+,
C1
which implies that G,, € K by assumption (5.2) of Theorem 5.2.1. O

Second step : proof of the existence of a solution G,, to (6.7).

In this second step, a Schauder fixed point theorem is used to prove the
existence of a solution G,, € K to

( b &
ag" :e_k/ (i, &) G, i + G”/ Bk, B) (7 — ™) G, i’
0
3 - = / e dk', (6.7)
Ga(0, k) = (k), k>0,
\ k

such that / Go(t, k) dk < % a.ate(0,T).
0 2

Let ‘H be the map defined on K by H(g) = G, where G, € K is the
solution of (6.3).
The map H, taking its values in the convex set K, is compact for the weak *
topology of L(0,T; M'(IR.)). It is moreover continuous. Indeed, let g; — g
for the weak * topology of L (0,T; M'(IR")). Denote by (G;) = (H(g;))jen-
By the compactness of H, there is a subsequence (Gj;) of (G;) and a function
G in K such that G; — G. Moreover G is the unique solution to (6.3).
Hence, the whole sequence (G;) converges to G for the weak * topology of
LY(0,T; M'(IR,)). By the Schauder fixed point theorem, 7 admits a fixed
point, denoted by G, solution in K to (6.7).
The nonnegative function F,, = kG, is such that

oo oo oo Fn
/ Fo(t, k) dkg/ F(0,k) dk, / k) dk < aant e (0,7),
0 0 o k C2
(6.8)
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6.2. EXISTENCE OF A SOLUTION TO THE CAUCHY PROBLEM

and is solution to

F, > P
38t :kek/ o (k, K Ea dk’—i——/ (e —e ™) -2 dk
0

F
- == hn(k,k)k’ K Ak,
k Jo

Fo(0,k) = Fy(k).

(6.9)

Third step : passage to the limit in (6.9) when n tends to infinity.

In this third step, the passage to the limit when n — 400 in (6.9) is
performed, which leads to a solution F' to the genuine problem (5.1).
By (6.9), there is a measure G € L(0,T; M*(IR.)) such that F,, — kG and

F, :
- = G in LY(0,T; M'(IR,)) for the weak * topology.
As it is writen in 5.2.1, we consider continuous and bounded test functions ¢

with second order with respect to £ in the neigborhood of 0.
Multiplying (6.9) by ¢ and integrating on [0,%] x R, leads to

/OOOF(t,k)qb(t,k)dk—/O Fo(k) (0, k) dik — // sk sk)dsdk

with

t o] Fn 00 ,
A = / / Fn qzﬁ(s,k)/ Bk, ) (= — ) En are i as,
o Jo kK 0 k
t o] 0o F
B, = // ke ¢(s,k)/ (k. K) 22 dK' di d,
0 Jo 0
t oo F 0o ,
C, = —/ / 2 G5, k) [ halh, K) K e dK dk d.
0 Jo
Let U(k, k') = h(k, k") (™ —e™*). For all K > 0, A, can be written as

An = Xn,K + Xn + An,K + An,K:
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where
E, K F!
Xog = // — /U(k,k) "dk'dkds
’ o k k'
1

_ t Fn [e9) FI
X, = / / tn / Uk, k') =2 dk' dk ds
o k K’

!
Ang = // LY sk/ Uk, ) 2o ar? dk ds
: .k K
Ao = //n& /OOU(kk)—TILdk’dkds
mE T w k k' '

First, X,, — 0 thanks to the second order with respect to k of ¢ in the neig-

n—oo

borhood of 0.

Then, A, x and A, g tend to 0 when K — oo, uniformly with respect to n.
Finally, by the Stone-Weierstrass theorem, for K > 0 large enough and every
e € IR, there exist J € IN* and continuous functions

Bi,- B,y IRy — IR,

such that
J
forall 0<k< K, 0<k <K, ‘U(k,k’)—Zﬁj(k)yj(k') <e.
j=1
Let
J
Us(k, k') = B;(k)y; (k).
j=1
Then,
F, F F F F, F! F F'
_ < -n_ - -n_ -
X i X|—‘<k®k' A UJ>M< TR k”¢UJ>‘

The first term tends to 0 when J — oo uniformly with respect to n because

(rog-temoU-t)| < 2ola( [ ) suplw-vomw)

The second term tends to 0 when n — oo for all J.
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Therefore,

t e’} Fn [e] , /
/ / - ¢(s,k)/ ho(k, k') (7% — ™) F7 dk' dk ds
0 Jo k 0 k

t [e§] [e§]
[ oty [t e - et T anta as,
0 JO 0

when n tends to infinity.

The passage to the limit in B, and C,, when n — oc can be done analogously.
So, performing the passage to the limit when n — +oc in (6.9) implies that F’
is a solution to

a_F_ —k * P / - —k' F' !
= ke /0 (kK)o i+ / (k) (e — e ) 27 db
——/ Wk, K) K e di,

= Fy(k),

which also means that F' is a solution of the problem (5.1). The conti-
nuity of F' with respect to time follows from the boundedness of Q(F') in
L (0, 7); M'(IR.).

tends to

6.3 Study of the entropy and boundedness of
the energy.

In order to prove the entropy feature of F'stated in Theorem 5.2.1, the following
Lemma is established.

Lemma 6.3.1
If Fo(t,") = F(t,-) = F(t,-)dk + s, then

liminf —H (F,)(t) > —H(F)(t)— < ps, k >, (6.10)

n—0o0

F(t,-) and p, being respectively the absolute Lebesgue part and the singular
part of F(t,-).
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Proof of lemma 6.3.1.

Recall that

H(F)(t) = /Om[(k2+ﬁ(t, ) In(k*+F(t,k))—F(t, k) In F(t,k)—k*In K>~k F(t, k)] dk.

Let

h(y,k) = —(k* +y) In(k* + y) + ylny + k> In k* + ky. (6.11)
It is a convex function with respect to the variable y.
Prove that

n—oo

6 6
/ h(k, F(t, k) dk < liminf/ h(k, Fo(t,k)) dk, 6>v>0.  (6.12)
Y Y

Let 7 € IN* and O be an open neighborhood of support us such that
o—v
0] < (T)Q-
O is the denumerable union of open intervals. Denote by O; one of the intervals

where u has its bigger mass, ..., O;11 one of the intervals where p; has its bigger
mass after O;, | > 1. u, being of finite mass, for any a > 0, there is an integer

l, such that
ps(|J O <«

1>y

and for [, large enough,
/ F(t, k) dk < a.
U o!
>y
Hence,
lim F.(t,k) dk < 2a. (6.13)

n—00 U o!
>y

§— .
Let o be such that a << 7 and I; = I, \ (ONI;), with
J

I =)y + i j7>,v+<z‘+1><‘5‘—.”>[.

J
Then,
/ FE,(t, k) dk = / oy B dk— / F,dk — [ ., (Fdk+dus)—A' =T,
I; L\ Yy o U ot n=eeJn\ U ol
=1 121y 1=1
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where A’ < 2a by (6.13).

Thus,
U=[FM+&
I;
with
B:=/ Fd/f—l—/la_1 dus — A’ < 4a.
U ot L\ Uy ot
1>la 1=1
Hence,
0 — 1 _ B
lim inf h(fy—l—z /F dk) = h(y +i( ry),T/de—i—T).
e i UL L] J; ra
(6.14)

Let € > 0 be given. First, it holds that for some A, > 0,
hik,\) <e, A>A\, kel

Then, by the uniform continuity of A(k, ) on [, d] x [0, \.], it holds that

s
_,y
h(k, F,) dk—lmg F,) dk.
/7 (% ]1—>oo / -+l - )

Thanks to Jensen’s inequality,

1 0= o—v, 1
m/fih(’yﬁ—z( ), Pt 1) di 2 by + i), m/Fn(t,k) dk).

It follows from the constant sign of h(k, F},) — kF,, that

) Jj—1
§—y. 1
liminf/ bk, F) dk > Timinf Tim > |T] by + i 7),H/Fn dk)
Y i=0 K3 i
= 5 1
= lim hmlnfE L] h(y +4( ]7),‘~|/Fn dk).

And so, by (6.14),

6 J=1 . _
liminf/ h(k,F,) dk > lim ) |Lj h(7+z‘(5 ; T, ! /F dk +
v Jee =0 I

n—oo
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Hence, for j — oo and o — 0,

6

é
liminf/ h(k, F,) dkz/ h(k, F) dk.
v

n—00
v

For 6 — oo and v — 0,

lim inf / Bk, o) (4, k) dk > / h(k, F)(t, k) dk,
0 0

i.e liminf—H(F,)(t) > —-H(F)(t), a.a.t>0.
By definition ([17]), H(F) = H(F) — M(kpus), so that,

liminf —H(F,)(t) > —H(F)(t)— < ps,k >, a.a.t> 0.

n—00

Proof of (5.3).

The proof of Proposition 4.2.1 implies that

d 1 [ [ )
GHE) =5 [ [0l ) SR + F)e ¥ Fi + Fe ) b d
0 0

(6.15)

with j defined in the proof of Proposition 4.2.1. This implies that

H(F,)(t) > H(F,(0)) = H(Fy) a.a.t>0, (6.16)
so that

H(F)(t) > H(Fo)— < ps, k> .
The control of the entropy H enables to bound the energy.
< s, k > is bounded from above. Indeed, by (4.2), (6.8) and (6.16),
/ KE (4, k) dk < c,
0

uniformly with respect to n. ]

Remark 6.3.1
F. Demengel studied the passage to the limit of functionals of bounded mea-
sures ([17] and [16]) in the following frame
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Let' Y an euclidien space with finite dimension and W a proper conver l.s.c
function from'Y into R. It is assumed that

v(0)=0, V>0,
and that there exist any constants cg, ¢y > 0, such that

co(l¢] = 1) <Y(Q) <a(l(|+1), (€Y.
The asymptotic function Vo (C) of ¥ is defined by

1
U (¢) = lim ).
t—oo t
For any bounded open set Q of R* and any bounded measure p € M(,Y),
U (p) is defined by
U(p) =Wogdr+ Ve (u), (6.17)

where = g dz + p® s the Lebesque decomposition of p. If > 0,
Voo (1*) = (W0 0 B°) |p”)].

Lemma 6.3.2
If<pmyp> — <pp>, 0€C(QY), then ¥(u) < liminf ¥(u,).

n—oo

The function h defined in (6.11) does not satisfy the assumptions of De-
mengel’s Lemma, because h not only depends on F but also on k.

6.4 Conclusion.

In this first part of this thesis, we have proven the existence of a solution to a
homogeneous quantum kinetic evolutionary problem describing the Compton
effect. Due to a strong singularity in the collision operator, the mathemati-

cal framework is the set of photon distribution functions F' such that F' and

F(t k o . .
M are bounded measures. A local in time existence theorem is proven for

small initial data. The mathematical entropy of the solutions is bounded from
below. As in many nonlinear problems, obtaining a solution as the limit of an
approximated sequence does not provide its uniqueness.

An interesting topic to study, after having proven the existence of a so-
lution to the equation (3.1), is the formation of Bose-Einstein condensates.
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By isolating in the measure solution F' of equation (5.1) its possible singular
part at energy zero, i.e. by splitting F' = a(t) dgx=0} + G, we obtain equa-
tions describing the evolution of o and . The Bose-Einstein condensates are
described by «(t) dik=0). So, the knowledge of o provides the evolution of
possible Bose condensates.

So far, Bose-Einstein condensation has been obtained asymptotically in
time from a quantum Boltzmann equation with a simplified collision kernel.
In order to study Bose-Einstein condensation, the Gross-Pitaevskii equation
may be needed.

W. Bao, L. Pareschi and P.A. Markowich in [3] have studied Bose-Einstein

condensation in a dilute gas at a numerical level.
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Part 11

Modelling and 3D simulation of
the satellite charge in plasmic
environment
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Chapter 7

The spatial plasma environment

Contents
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7.3 Plasmaengines . . . ... .. ... ..., 80

7.1 The plasmas

A plasma is a gas electrically charged. Its temperature is over 25000 degrees.
It is made of ions and free electrons. In the earth magnetosphere, the ions are
mainly H", He' and O". As the ion mass is larger than the electron mass,
ions can be considered to be motionless with respect to the electrons. The
interactions between charged particles constrain the electrons to surround the
ions.

We focus on the simulation a satellite charge in a spatial plasma environ-
ment. We refer to the modelling introduced by O. Chanrion during his thesis
([13]) in a two-dimensional axisymmetric frame. Satellites in geostationary
orbit using an electric engine with Hall effect (SPT — 100 type) are considered
here.
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CHAPTER 7. THE SPATIAL PLASMA ENVIRONMENT

7.1.1 Fundamental quantities in plasma physics
The Debye length

Consider a collection of charged particles. If one of them, called the test
charge is placed at a given position, the other will react. The nearby particles
of the opposite sign to the test charge move slightly away. The net effect is to
screen the test charge. The distance beyond which the test charge is effectively
screened, is called the Debye length.

It is proportional to the square of the ratio of the temperature over the plasma

density. It is given by
[eokT,
/\d = f0 5 )
(ne
where

® ¢ is the electric permittivity of vacuum,
e ¢ is the elementary charge,

e T, is the temperature of electrons,

e k is the Boltzmann constant,

® 1 is the plasma density.

In spatial plasma environment with high temperature and low density, the
Debye length is about thousand metres.

We introduce the Debye number which enable us to compare the Debye length
to the caracteristic length of the satellite (D),
Ad
ND —_ 5.

The individual interaction between two particles for which the distance is
larger than the Debye length is negligible. So, the far-away plasma parts in-
teract via collective interactions.

The collective interactions take place via electric and magnetic forces. These

interactions are due to the repartition of the charge density and of the electric
current in the plasma.

The Larmor radius

The characteristic dimension of a plasma which measures the effect of an exte-
rior magnetic field (of the plasma) is given by the Larmor radius. This length
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7.2. THE EARTH MAGNETOSPHERE

is defined by the curve radius of the particles trajectories in the presence of
the magnetic field. The Larmor radius writes as

PL eB )
where
e B is the magnetic field,
e v, is the velocity perpendicular to the particle velocity.

Let P
NL = BLa

be the number Larmor. It is sufficiently large near the satellite to neglect all
magnetic phenomena.

The typical characteristics of the magnetospheric plasma are

n(m=®) | 1x10°
ET.(eV) | 1.2 x 10*
Aa(m) | 8.14 x 107

n denotes the plasma density, 7. is the electron temperature, k is the Boltz-
mann constant and \; is the Debye length.

7.1.2 Sheath and presheath

When a plasma is limited by a boundary (for example a metallic wall), a sheath
is formed around this boundary. The properties of the plasma in the sheath
are particular. In the sheath, the ion and electron densities are unequal and
the potential can vary. Its characteristic spatial scale is the Debye length.

In the presheath, the plasma is quasineutral.

7.2 The earth magnetosphere

The earth magnetic field originates in its liquid core, where electric currents
are excited by fluid flows. The field intensity is about 6 x 107° tesla at the
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CHAPTER 7. THE SPATIAL PLASMA ENVIRONMENT

magnetic poles, located about 10 degrees off the geographic poles. At the sur-
face, the field resembles a dipole with added irregular components, and the
field is dipole-like up to distances of 5 r to 8 r, where r is the earth radii.
The distant field of earth is greatly modified by the solar wind, a hot outflow
from the sun, consisting of solar ions (mainly hydrogen) moving at about 400
km /s with typical density at earth’s orbit of 6 ions/cm®. The earth field forms
an obstacle to the solar wind, that confines the field lines and plasmas into an
elongated cavity, known as the earth magnetosphere. The boundary between
the two is called the magnetopause. It roughly behaves like a droplet of liquid
exposed to a supersonic flow.

Outside the magnetopause is the bow shock, where the velocity of the solar
wind abruptly drops as it approaches the magnetosphere. On the sun side
of the earth, the magnetopause distance is approximately 10 earth radii. On
the night side, it extends into a long cylindrical magnetotail at least several
hundred radii long, gradually turning into a wake.

The region between the bow shock and the magnetopause is called the mag-
netosheath. The particles in this region originate from the solar wind. The
plasma density typically decreases from the bow shock to the magnetopause;
however, it is always higher than the magnetospheric plasma density.

The magnetosphere contains magnetically trapped plasma (gas of free ions
and electrons) and is composed of several regions that create the field topol-
ogy. The magnetotail is formed by tail lobes and the plasma sheet (an open
polar cap and closed nightside auroral field lines, respectively). In the inner
magnetosphere there is plasmasphere from mid to low latitudes. Both overlap-
ping the plasmasphere and the inner plasmasheet, are radiation belts and ring
current; The geostationary orbit is also around. Closest regions to the magne-
topause are called boundary layers. Their cusps are shown on the picture 7.1.
The particles coming from the solar wind during a solar eruption come into
the magnetosphere via the cusps.

Picture 7.1 illustrates formally the mentioned regions.
Picture 7.2 shows a solar eruption.

The earth magnetosphere is a hot collisionless plasma (when solar eruption
occurs). Each volume which dimension is about the Debye length contains a
large number of particles.
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7.3 Plasma engines

Plasma engines used by space vehicles are powered by xenon, a gas which is
electrically charged.

The experiments have shown that the plasma engines are more efficient than
traditional fuel-powered ones, because elastic propulsion systems weigh a few
hundred kilogrammes, as opposed to the tonnes of liquid fuels. It results that
the rockets are more efficient and can carry more materials into space.

The only trouble is that the plasma liberated by the engine is so hot that no
materials resist its heat.

Indeed, the fast particles of xenon are ejected to infinity and do not come back,
whereas the slow particles tend to come back to the satellite.

Since the plasma ejected by the engine is hot, the satellite is usually recovered
by ceramics materials.

To sum up, satellites in geostationary orbit are in a mixture of charged
particles. These particles come first from the solar wind. The slow particles
ejected by the sun during its eruptions accumulate electricity on the external
surface of the satellite. Whereas the fast particles come into the satellite and
charge the electronic system.

These particles secondly come from the plasma ejected by the engines. The
fast xenon particles are ejected at infinity, but the slow particles come back to
the surface of the satellite.

For more details, we can refer to [34].
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Chapter 8

Interactions on the surface of a
satellite. A first model.

Contents
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In this chapter, we recall the problem introduced and studied in the one-
dimensional and in the two-dimensional axisymmetric frames by O. Chanrion

in [13].

8.1 Physical context and notations

The picture 8.1 represents a telecommunication satellite. The satellite has a
metallic structure, solar panels and antennas. The different components of the
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satellite are covered by different dielectric materials.
The characteristic lengths of a satellite and a dielectric are respectively about
ten meters and a hundred microns.

Figure 8.1: A telecommunication satellite

The satellite is a perfect conductor covered by a layer of dielectrics. The parti-
cles (ions, electrons) coming from the spatial plasma interact with the surface
of the satellite. Some of them are attracted by the surface of the satellite,
some are reemitted, and others are driven towards the perfect conductor via
conductivity.

The conductor is represented by an open set €2y covered by a finite number
dy of dielectrics, with thickness di. The dielectrics are represented by open
sets (Q)k=1.n,. The open set representing the satellite is denoted by Q and

Ny
is equal to U Q. Let Q° be its complementary in R®. For each dielectric, €

k=0
and o, are respectively the permittivity and the electrical conductivity.
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rc—‘v

/\/ /\/

“N_ : Satellite plasma environment

Figure 8.2: The satellite boundaries

Moreover, let

Ng
= U 090, the boundary between the subsets,
k=0

N,
F., =00\ (890 ﬂ ( Lj 8Qk)) the boundary between the conductor
k=1

and the vacuum,

[.—q =09 \T'., the boundary between the conductor and the dielectric,
[y, =00\ T, , the boundary between the dielectric and the vacuum,
La—a =T\ (092 U 0Q) the boundary between 2 neighbouring dielectrics.

Picture 8.2 explains the notations given before. For the sake of simplicity,
the satellite is assumed to be a sphere recovered by a single layer of dielectrics.

Let ®. be the potential of the perfect conductor.
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8.2 Electrostatic interactions

Maxwell equations drive the evolution of the charge and the conductivity.

oD
—E + rotH = J,
divD = p,

0B

E + I'OtE = 0,
divB = 0,

D=¢£ , B=uH.

E and H are the electric and magnetic fields, D and B are the electric and
magnetic displacements. J and p are the volumic densities of current and of
the electric charge. e and p are respectively the electric permittivity and the
magnetic permeability. They are constant for each dielectric. The induction

phenomena is neglected, i.e. a5 = 0. Hence, £ = —V®. By taking the
divergence of the first equation, Maxwell equations imply that,

—gdivD = divJ,
ot
divD = p,
E=-Vo,
B(t = 0) = Bo, diVBO = 0,
0B
|
ot ’

D = EE, BO = ,U'HOa

where Hj is the constant magnetic field corresponding to the constant dis-
placement B, satisfying divBy = 0. Recalling that £ = —V®, we only keep
the two first equations written as

_%p = divJ, (8.1)
—div(eV®) = p. (8.2)

Let J..; the current density outside of the satellite, which is regular in Q¢ and
in each €2 and is equal to 0 in €. Normal vectors are directed to the inside
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of the satellite and the conductor.

Moreover, the energy of particles is trapped on the surface of the dielectrics.
So, a leakage current exists via conductivity to the perfect conductor. It writes
as J, = opFy. Furthermore, the conductivity between two dielectrics is ne-
glected. By nature of the conductors, the field E is equal to 0 inside of the
conductor. On the surface of the conductor there is a current Jr, which is
equal to 0 outside of 0L .

By writing diwD in the sense of distributions, we obtain

/]RS\II divDdr = — /]R‘°’ D.VVdzr, ¥ e D(R?),

= — [ DVVWz-> [ D.V¥da,
k

Qe o

= / U divDdz + ) / U divDdz — / [D.n]¥dy,
< k Qp r

where [e] is the jump of the quantity e through the considered surfaces. There
is no charge inside the dielectrics because they are too thin. So,

divD = 0 in each €,

divD = [ekg—f:] on I'.

By writing div J in the sense of distributions with J = J..+ + Jror,

/]R3 U divJdr = — /]R3 JNUdy,
= —/ Jemt.v\lfdx _/ JF'V\Ild/Y5
R? 0

=— / Jour.VUdz — Z

kY%

J.V\Ildx—/ Jr.V¥dy,
T9%s

=/ U divJemtdx—i-Z/ 1\ didea:—i—/\Il[Jem.n]d’y—i-/ U divrJrdy,
c & Qp T Qo

where divrJr is the surfacic divergence of the current density Jr. Moreover,
Jr satisfies

divJy =0, where Ty =T, JTc .

ol'g
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Equation (8.1) becomes

a 8(Ddiel 8(1) 6(Pdiel
& (Gk 8n - 608_n> + O'ka—n - Jemt.n =0 on Fd—va (83)
0 0P .
a( — eoa—n) +divJr — Jogz.n =0o0n oy, (8.4)
) a a(I)diel aq)diel
divJr + E( - eka—n> — O o = 0onI'._g4, (8.5)

with

on dk

®(t,x) denotes the potential at point (¢, x), where t is the time variable and x
the space variable.

Equations (8.3), (8.4) and (8.5) describe the charge phenomenon of the satel-
lite.

The charges on I';_,; are neglected because the surfaces of the dielectrics are
thin and the particles are not enough energetic to go inside the dielectrics.
By integrating equations (8.4) and (8.5), and by using that

/ diUrJr = 0,
Qo

od%e B (t) — D(t,x)

we obtain
0 0P 0 OPdict OPdiel
/ |57 (—evgyy) —eeen] dr+ / (e ) — g dr=0
(8.6)
Furthermore, we suppose that there is no charge inside the dielectrics, and
that 50 50
— dy = / — dy. (8.7)
/r L, on r,, on
The equations to be solved by the potentials ®(¢,z) and ®.(t) are
AD(t,xz) = p in Q°,
o 8(I)dz‘el oP aq)dz'el
a (Gk on — GOa—n) Uka—n - Jezt.n =0 on Fd_y,
o oP o aq)diel a(bdiel
/rc_v [E(_“a—n) —Jemt.n] d’y+/FCd [E(_Gk o ) Ok } dy =0,
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O(z) = ®.(t) on Ty,
® — 0 at infinity ,

with some initial conditions at t = 0 for ® and ®. on I'._,.
p is the charge density. We will give its expression below.

Hence, the problem considered by O. Chanrion in [13] is a coupled system
for the variables ® and ®.. It is also closed. Indeed, equation (8.9) is a scalar
closure equation for the determination of ®.. The problem considered by
O. Chanrion is the following,

Ad(t,z) = p in QF,

0/ d.—d 0D o, — @ B
E(ek — 60%) t ot — Jun =0 Yz €Ty, (8.8)
o/ 00 9 o, — @ o, —®7
/ (5 (o) ~Jean] dr+ / il =g ) =] =0,
(8.9)
O(z) =P.(t) on Ty, (8.10)
®—0, |z| = oo, (8.11)

with some initial conditions at ¢t = 0 for ® and &, on I'._,.

8.3 Reemissions at the surface of the satellite

8.3.1 Secondary electron emission

When incident electrons interact with the surfaces of the satellite, there exist
some secondary electrons reemitted by the surfaces. There are two types of
reemissions.

In the first case, the electrons are diffused in an elastic way (“backscattering”)
and their energy is close to the energy of incident electrons. So, these electrons
are backscattered.

In the second case, the secondary electrons are really reemitted by the

surfaces. These electrons are at low energy and correspond to the electrons
which are extracted from the surface of the satellite.
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8.3.2 Secondary emission for ions

Ions do not enter materials the same way as electrons do, because they have
not the same mass. Their trajectories differ. However, the secondary emissions
are similar.

8.3.3 Photoemission

The surfaces which are exposed to the solar radiation emit electrons (called
photoelectrons) at low energy. This reemission is responsible of a secondary
current that has to be considered. Indeed, it is important in the charge mech-
anism.

In order to simplify the problem, all phenomena of reemissions are neglected.
We refer to O. Chanrion thesis ([13]) for the consideration of reemission effects
in the resolution of the Vlasov-Poisson system in a two-dimensional axisym-
metric frame.

8.4 Mathematical model of Vlasov-Poisson

8.4.1 The system of Vlasov-Poisson

When it is possible to neglect the binary collisions between the particles in the
case of tenuous plasma, these particles only interact via the electric field.
The Vlasov equation writes as

0 i/e %
gt/ (tvxaU)+U'wai/e(t7xav)_g”//e

EN,fije(t,z,v) =0, 1 € Q°, v e R3, t>0.

(8.12)
It describes the conservation of the ion distribution function f; (resp. the
electron distribution function f,.) along the ion trajectories (resp. electron)
with an electric field E(t,z) = —V®(t, x).
Here, v denotes the velocity of the particles,  the space variable and ¢ the
time variable. g;/. are respectively the ion and the electron charges.
In the geostationary frame, f;/. are given at infinity,

lim fi/e(t,x, v) = gi/e(v),

l|]|—+o0
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where g;/. is a Maxwellian defined by

Mije \3 Imise v
gi/e(y) =Ny ( / )2 6:Ep<_ 2 /

2
2mkT)e KTy )

By neglecting the reemissions effects, the boundary condition on the surface
of the satellite is given by

fije(t,z,v) =0, €0, ve R3 vy <0

where 7q is the inward normal vector to the satellite.

Equation (8.12), coupled with Maxwell equations which describe the evolu-
tion of the field E in presence of the charge density p and of the current J,
constitutes the fundamental equation of the hot plasma physics.

Recall the Poisson equation,
AD(t,z) = p(t,z), =z €, (8.13)
where

plt,z) = gme(t, z) — ny(t, 2)).

n. and n; are respectively the densities of electrons and ions. They write as

ni/e(t, .T) = / ]R3 fi/e(t,x,v) dv.
ve

The four boundary conditions for the Poisson equation (8.13) are

8(6k(1>c—<1> 8<I>> 0k<bc—<1>

— €= —Jemn=0, z€ly,, t>0, (814)

o\ dp on dy,
0 oD 5 5 — .
\/I;Cv [a (_608_n> _Jezt-n] d7+/1;c_d [a (—Gk dk ) —k dk d’)’ - O:
(8.15)
®(z) = .(t) on T, (8.16)
®—0, [zf| = o0, t>0, (8.17)

where d;, is the thickness of the dielectric.

O. Chanrion proved in [13] the well-posedness of the system (8.13)-(8.17) in a
one space dimensional frame.
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8.4.2 Existence and uniqueness results for the Vlasov-
Poisson system

Let us recall some of the former results on the Vlasov-Poisson system.

In [35], K. Pfaffelmoser showed the existence of global classical solutions in
three dimensions for any initial datas.

In [4], C. Bardos and P. Degond studied the Vlasov Poisson equation in
three space variables in the whole space. They showed the existence of a
smooth solution for all times with initial data localised and small enough by
using a dispersion property.

J. Batt, H. Berestycki, P. Degond and B. Perthame, in [5], studied the solu-
tions of the Vlasov-Poisson system for locally isotropic stellar dynamic models.

R. Diperna and P.L. Lions, in [18], studied the Vlasov equations in any di-
mension. They established strong and weak stability solutions for the Vlasov-
Poisson system as well as existence results for global solutions.

F. Poupaud showed in [36] the existence of solutions to the stationary
Vlasov-Poisson system. He used oversolutions, which helped to control the
concentration of the particles in the case of repulsives forces.

P.L Lions and B. Perthame in [30] studied the Vlasov-Poisson system in
three dimensions. They showed that bounds on moments of order higher than
three are preserved for solution of Vlasov-Poisson system.

8.4.3 Dimensionless Vlasov and Poisson equations

In this section, we recall the dimensionless variables and unknowns introduced
by O. Chanrion in [13].

Dimensionless quantities

Let d, €y and o the characteristic thickness, the permittivity and conductivity
of a dielectric.

Dimensionless variables and unknowns are introduced,
~ t . T v
t = — T ==, U= —

T D Vik’

e
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Py o~ o~ fi/e(t:x7v) ~ ~ g’i/e(v)
fi e t: r,v)= s Gi/e = y
/e(t: 2, 0) 7o /e(0) 7
o nije(t, ) = - . e®(t, )

1/e t; . (I) ta = )

fyelf.7) = M2 60,3 = S

~ d
dk_ _ka ~k eka 5-/6_ %a
d €0 o

and the dimensionless constants

Me Ad D oT

= = — V= — T = —

ILIJ ml ? 77 D ) d ) 60 )

with

€0 kTe 2 D th kTe
=14/ T = =4/ —.
)\d n0€2 ’ T’ ‘/eth ) ‘/e Me

The following equations are obtained,

% aaj% (t, 7, 0)+0.Vsf(t, &, 0)+V:®(L,0). Vs f(t,%,0) =0, T € Q°, 5 € R?, { > 0,
A fe(t,7,0) = 5e(9),
fo(t,2,5)=0, 2€0Q, 9 € R®, 9.7 <0, >0,
AsB(i,7) = %(ne(f, #) =gl 7)), 5, I>0,
(%(Vek (I)CN: L — g—i) + vTo} (I)CNZ L — jemt.n =0 onI'y_,,
L e I e R )

c—d

O(f,7) = ®.(t) on T, ,,

d—0, ||Z|| =00, T>0.
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Passage to the limit in a formal way

In a magnetospheric plasma in geostationary orbit, the Debye length is quite
larger than the dimensions of the satellite. Hence, the parameter 7 is large.
In order to simplify the equations, O. Chanrion performed the passage to the
limit when n* — +o0 ([13]).

He obtained a stationary Vlasov equation (for the plasma) for ions and elec-
trons and a negligible space charge p.

0.V fi(f, 2,0) — p Va®(E,0).Vs fi(},3,7) =0, 3 € Q°, 1 € R, £ >0,
||~1ﬁm filt, &) = §:(),

fi(6,,0)=0, 2€0Q, 1 € R®, 9.9 <0, £ >0,

%(Vﬂg (I)CCZ; @ - %) + vToy CCZ; 2 jegct n =020,
[ o) el [ [l )-vro o

B(&) = &.(f) on Lo,

®—0, ||z = o0, t>0.

Remark 8.4.1 These dimensionless equations are valid only when ||z|| < Aq4.

Remark 8.4.2 The variable t is linked to the conductor and the dielectrics
because the satellite is charging.

92



8.4. MATHEMATICAL MODEL OF VLASOV-POISSON

From Chapter 9 on, the results of this thesis are presented. Contrary to
O. Chanrion’s frame, no dielectric will be considered and the satellite is a per-
fect conductor. The satellite potential &, is a given constant.

Since the Debye length is larger than the dimension of the satellite in a

manetospheric plasma, we usually neglect the space charge p (from above). In
the next chapter, we start to solve the Laplace equation in the whole space.

93



A FIRST MODEL.

94



Chapter 9

An infinite element method for
the resolution of the Laplace
equation in an infinite domain

Contents
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9.4 Numericalresults .. ... .............. 103
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9.1 Introduction

Here and in the following chapters, the satellite is assumed to be a perfect
conductor without dielectrics. Moreover, the temperature 7, of electrons is
supposed to be equal to the temperature 7; of ions and is denoted by 7. Fur-
thermore, the reemission phenomenon is neglected. Finally, the potential &,
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DOMAIN

is a given constant.
The problem to be solved is
A,®(z) =0, in Q°,
&(z) = P.(:= ®(R)) on ., (9.1)

®— 0, |z|| > oo.

9.1.1 Variational formulation

Let
C ={ue H(Q); % e L*(Q°); u=0onT.,},
(L + [|l[[?)2
with
||ul|Z =/ u(z)? dx—i—[ (Vu(z))? dr.
ae Qe
Let

d(z) = ®(z) — &, 2 € Q°,

where ®, is such that v(®,) = ®. on I',_,, 7 is the trace mapping. )
We multiply equation (9.1) by a test function ¥ € C' and we integrate on Q.
We obtain the following formulation,

VO (z).VU¥(z)dr = — | V. .VU(z)dz.

Qe Qe
We use standard P; finite elements to compute the potential .
An unstructured mesh composed of tetrahedrons is introduced.
The infinite boundary condition is troublesome. Since we cannot mesh the
space up to infinity, a fictitious sphere I'y centred in O(0,0,0) with radius R,
is introduced. Instead of using finite elements coupled with integral equations,
infinite elements are used.
Let O be the open set delimited by the surface of the satellite and I';.

O. Chanrion has solved the Laplace equation (9.1) in a two-dimensional ax-
isymmetric frame by using infinite elements ([13]) on the boundary of the
computational domain and finite elements inside the computational domain.
Indeed, the shape functions for infinite elements decrease like 1/r, where r, is
the distance between the origin and a point of the mesh. The infinite element
method consists in using the linear shape functions associated to the segment,
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R
of the sphere I';. These linear shape functions are multiplied by —.
r

Our aim is to solve the Laplace equation in R® for any geometry of the
satellite.
In the next section, we introduce different methods found in the literature.
Then, we present a new approach of infinite element for the resolution of the
Laplace equation in the whole space.

9.2 Different methods used in problems with
infinite domains

Robin condition

On the infinite boundary I';, we put a Robin condition, which is written as
— 4+ —o=0. (9.2)

This condition is appropriate to the sphere case and is a classical method for
the resolution of problems with infinite domain.

Inside O, we use P, finite elements. On the boundary of O, we also use finite
tetrahedrons which are composed of a triangle 7" on I'y and the point O.

The variational formulation writes as
1
/V(I).V\If dx——/ O Udy=0, Ve H(0).
o R Joo

The terms in the elementary stiffness matrix write as,

1
/ VALV dV = —/)\i A, dS,
finite tetrahedron ROO T

where J; is the shape function associated to the vertices A; and T is the face of
the finite tetrahedron which is on the boundary of the computational domain
0.

When the satellite is a sphere, an analytical solution to the Laplace equation
is known,

R
@ = (I)c_a
r=3t
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where R is the radius of the satellite. This solution satisfies (9.2) and behaves

1

like — at infinity. This asymptotic behaviour of ® is really specific to the
r

sphere frame.

Let us introduce the different infinite element methods met in the literature.

The infinite element method has been introduced in order to treat problems
in exterior domains. It consists in generalizing finite elements in unbounded
domains. More precisely, shape functions are defined by piece on elementary
volumes, and extended at infinity.

Boundary Element Method (BEM)

G. Beer and J.O. Watson studied the boundary element method which can be
used in problems with infinite domains ([6]).

The boundary element method seems to be adapted to the analysis of prob-
lems involving infinite domains, when the problem surface can be discretized
and the conditions at infinity are automatically satisfied by the fundamental
solution. However, in some cases, one encounters problems in which the sur-
face to be discretized also extends to infinity. In that case, these problems can
be solved by truncating the boundary element mesh at a large distance, away
from the zone of interest. The disadvantage of such a scheme is that a large
number of boundary elements may be used for modelling the remote surface
and that an unknown error may be introduced if the truncation occurs too
close to the zone of interest.

This method is precise but expensive to implement.

Infinite element method

In [24], K. Gerdes and L. Demkowicz focus on the convergence study for infi-
nite element discretizations of the Laplace equation in exterior domains. Their
approximation applies to separable geometries only, combining an Ap-finite el-
ement discretization on the boundary of the domain with a spectral-like rep-
resentation in the radial direction.

An hp-infinite element is obtained by extending the curvilinear triangle given
on the fictitious sphere, in the radial direction.
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The implementation of the element stiffness matrix seems to be difficult.

In [9] and [8], P. Bettess presented an infinite element method consisting in
extending a finite element at infinity. The shape function for infinite elements
is written as a product of the finite element shape function by a decay function.
The role of the decay function is to ensure that the behaviour of the element
at infinity corresponds to the requested infinite boundary condition.

If the parent finite element shape function is written as P,(€, n), where £ and 7
are the local coordinates, and the decay function is f;(&€,n), where the subscript
denotes the node number, then

where f;(£,n) must be unity at its own node, i.e. f;(&,m:) = 1.

So N; must tend to the far field value at infinity. There is no requirement that
the decay function takes any special value at other nodes.

Similar considerations apply in three dimensions.

The ¢ coordinate would normally be in the radial direction, away from the
domain of interest, and is usually simply a constant multiplied by r, the radial
coordinate.

An infinite element is obtained by distorting isoparametric elements.

In the next section, we introduce a new infinite element method which deals
with the resolution of the Laplace equation.

9.3 A new approach of infinite element

In our study, we introduce a new method which consists in building infinite
elements from P; finite elements in the following way.

Start from a finite element O A; Ay A3, where A; Ay A3 is a flat triangle on the fic-
titious sphere I's. We then extend the face (O, A1, As), (O, Ay, A3), (O, A3, Ay)
until infinity. The point O is sent to infinity. There is a bijection which sends
the tetrahedron OA;A,A3 to the infinite element, on the other side of the face
(A1, Ag, As) (see picture 9.1).

If A1, Ao, A3 and )\g are the barycentric coordinates with respect to the points
Ay, Ay, A; and O, the point with barycentric coordinates A, such that

R2
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belongs to this infinite element.
This transformation can be written as

Ao
I P —
i .
A= TESWE i=1,2,3,

where

7'2 = R<2>o(1 - )\0)2.
We take )\ as shape functions for infinite elements.
Let K be the infinite volume between the face A;, Ay, A3 and the extension

of the 3 faces with the outside of the sphere [',.
Picture 9.1 explains this infinite element method.
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9.3. A NEW APPROACH OF INFINITE ELEMENT

I

Fictitious sphére

Q2
Satellite

Figure 9.1: An infinite element
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T.Z. Boulmezaoud presented a similar method at the numerical congress
CANUM 2003 ([10]).

I presented this new infinite element method, implemented in december
2002 at the numerical congress CANUM 2004, independently of [10]. S. Clerc
presented this method at the workshop in simulation of plasmas in may 2003,
independently of [10].

9.3.1 Computation of the terms in the elementary stiff-
ness matrix

For the computation of the term / V.V, dV, 4,5 € {1,..,3}, we consider
K

a frame of coordinates centered at O, with the axis (O, z1) orthogonal to the

triangle T'= Ay Ay As of T's.

Let y a point in 7. An homothetic transformation with center y and ratio

A > 0 is performed. This gives

T = (AR, \y), AE[l,+00], yeT. (9.3)

Thanks to the change of variable (9.3), the term / VA.VX, dV writes as
K

/ VA (2).VX.(x) dV = / MR / VA (Ay). VN () dy dA.
K AE[1,4o00[ yeT

Since the function )\i(x) = m
-0

is homogeneous of degree —1, the

vector function
Vi(z) N 2Xi(z).V ()

VN@ = T T T

is homogeneous of degree —2,
Then V(z).VX)(x) is homogeneous of degree —4.
So,

VA (Ay). VX, (Ay) = A7 VA{(y). VN (y).
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Moreover,

/KVA;(x).VA;(x) v = R“/Aeuoo / VX (). VX, (y) dy dA
- / V(). VX, (y) dy

= R / (Vi +20.VA0) (VA + 2X,.V ) (y) dS,
yeT

because \g(y) =0 for y € T
Finally, we obtain

/ VX.VX; dV = Ry area(T)VAi.VA; + 4R V/\O-V/\o/ AiAj dS
X« T

+ 2R, VALV / Aj dS + 2R V.V, / A; dS,
T T

with Vg = Ri’ n being the normal vector to the face (A;A5As3).

(e o]

The numerical method consists in using finite elements inside the computa-
tional domain O, and infinite elements on the boundary of O.
The expression of the approximate solution by finite and infinite elements is

— P. S
Qh(ta z, U) - Z.gjo(ﬁz@z (ﬂ?, U) + iezlzs¢lq>z (l’, U)'
The problem to be solved then writes as the following global linear system,

A ® = B(d.), (9.4)

where @ = (®;); is a vector with N components where N is the number of
points of the considered mesh. B is the right-hand side of (9.4). It depends
on ®.. The linear system (9.4) is solved by a conjugate gradient method.
The matrix A is a positive symmetric matrix. Indeed, the bilinear form asso-
ciated to this matrix is symmetric and coercive.

9.4 Numerical results

In order to test the infinite element method, the following two cases where
analytical solutions are available, are studied.
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9.4.1 Case of a sphere

We assume that the satellite is a sphere with radius R = 1 m. The potential

of the exact solution is ®(r) = —.
r

The numerical values are
R =25m, &, :=®(R=1)=-25000V, ng=10° m™3, kT, = 10* eV.

A mesh of an eight of a sphere is considered. The whole sphere is then obtained
by symmetry arguments.

Recall that there is no dielectric and that the reemission effect is neglected.
From a numerical point of view, we study the convergence of the infinite ele-
ment method and compare it to the Robin condition. The error in norm L? is
analyzed.

Case of infinite elements

residual logarithm with respect to the number of iterations

“log(residual)//35301 points’

.
N W“W“M’*Mww»w
¥

M""""W»ww«wwww

-10 | ”Wm

log(residual)
=

215 F

20 MNN,

-25

| | | | |
0 200 400 600 800 1000 1200
number of iterations

Figure 9.2: Residual curve for the infinite element method

The curve on Picture 9.2 represents the residual of the conjugate gradi-
ent with respect to the number of iterations in a semi-logarithmic scale. The
residual decreases, so that the conjugate gradient converges.

The curve on Picture 9.3 represents the potential ®(r) obtained numer-

ically with respect to the radius r in a semi-logarithmic scale, by using the
infinite element method. The potential of the exact solution is also plotted.
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exact potential and numerical Phi with respect to the radius r
0 T

T
'Potentiel exact! ———

-5000 // T

/

/
-10000 / g

Potential

15000 || B

20000 || g

25000 —L . . . .
0

radius

Figure 9.3: Potential with respect to the radius

The two curves overlap and the potential decreases at infinity.
Then, the problem is well conditioned by using the infinite elements.

The Robin condition :

residual logarithm with respect to the number of iterations

0
i i log(residual)//35301 points
2 ﬁv/\
N
o
e
“4r T
Ima SN
\\\;
g 6F ™
Ef N\
2
¢
g & \
N
\

10 b \

2 f \_\

" . . . . .

0 50 100 150 200 250 300

number of iterations

Figure 9.4: Residual curve with the Robin condition

The same curves are drawn by using the Robin condition on the boundary
of O instead of the infinite elements.

The two methods differ from each other by the terms of tangential gradi-
ents which are very weak for a spherical geometry. We remark a difference of
convergence between the two methods.
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exact potential and numerical Phi with respect to the radius r

T
‘Exact potential’_

-5000 |

-10000 /

Potential

-15000

20000 ||

-25000 L
4

Figure 9.5: Potential with respect to the radius

Error curve in L? norm

The error in L? norm is plotted with respect to the number of points of the
mesh in logarithmic scale, i.e. for any meshes.

Error with respect to the number of points in logarithmic scale

T T T
\ 'Error with Infinite elements’ —+—

. N

log(error)
w

6 7 8 9 10 11 12 13
log(nb points)

Figure 9.6: Error in L? norm with the Robin condition and the infinite element
method

Picture 9.6 represents the error with respect to the number of points of a
mesh. The green curve is the error with the Robin condition and the red curve
is the error using infinite elements.

We note that the error is the same for the infinite element method and
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for the Robin condition for all meshes, because the Robin condition is well
adapted to the case of a sphere.

9.4.2 Case of two sources

We consider two sources localized in (0.5,0,0) and (—0.5,0,0). For the satel-
lite, the mesh of section 9.4.1 is kept. The sources are inside the sphere with
radius R = 1. We impose the potential of the exact solution as a Dirichlet
condition on the surface of the sphere with radius 1. The exact solution is

1 1
dr)=—Y —
=331

where r; is the distance between the sources and the points of the mesh. The
L? error with respect to the radius of the sphere I'y for different meshes in
logarithmic scale is represented in picture 9.7. The error in L? norm decreases
and is given by the following quadrature formula (for a P, function, with 5
points),

2
/ ‘q)ea:act - (I)approa:imated‘ dx dy dz
K

Vol
Z | (I)exact appro:cimated | 2 (ai ) +

4
-+ gVOl( )‘@emact - (Papproa:imated|2(a'5)a

where a;, 1 = 1,..,4 are the 4 vertices of the considered tetrahedron and

as = —(a; + az + az + a4) its center of gravity.

1

In Picture 9.7 the L? errors for the infinite element method and the Robin
condition are plotted. This is done for different radii of the fictitious sphere I',
and for different meshes in logarithmic scale. Indeed, for a given mesh, R, is
given for different values. The errors obtained by using infinite elements and
the Robin condition are computed. The errors for thin and coarse meshes are
also computed.

The pink curve represents the error for infinite elements with a mesh having
35 301 points. The blue curve represents the error for infinite elements with a
mesh having 4 851 points. The orange curve corresponds to the error for the
Robin condition with a mesh having 35 301 points. We note that the error is
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log(error) in norm L2 with respect to log(rsphere)
-8 T

“126 pomls-l‘EI‘ —

'4851 points-EI' —%—
-9 ‘95301 points-EI' —5— |

'4851 points-robin’ —e—

210 F 35 301 points-robin’ —&—

e
T —
—
- 1 —
2 \*\.\.\.
\g’/ B ———
= 12
i —
EI
-14 e
-15
0.6 0.8 1 12 14 16 18 2 2.2

log(rsphere)

Figure 9.7: Error curves for infinite elements and for Robin

the same for these two curves.

The green curve corresponds to the error for infinite elements with a mesh
having 726 points and the black curve is the error for the Robin condition
with a mesh having 4 851 points. We also note that the error is the same for
these two curves.

The red curve represents the error for infinite elements with a mesh having
126 points and the yellow curve is the error for the Robin condition with a
mesh having 726 points. Th error is the same for these two curves. Finally the
turquoise curve is the error for Robin method with a mesh having 126 points.

We notice that for a given mesh, the error for infinite elements is smaller
than the error for the Robin condition. For example, with a mesh having
35 301 points, the pink curve for infinite elements is below the orange curve
for the Robin condition.

For reaching an error equal to 3.34 x 107°, the infinite elements method
requires a mesh with 126 points, whereas the Robin condition requires a mesh
with 726 points. In all the cases, the infinite element method is the best. It
can be easily checked on tables 9.1 and 9.2 which represent the error for the
infinite elements and for the Robin condition.

The Robin condition.
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R Mesh 126 points | 726 points | 4 851 points | 35 301 points
2 1,893.107* | 4,778.107° | 1,484.10~° | 7,000.10~°
3 1,944.107* | 4,977.107° | 1,237.107° 3,338.107¢
4 1,729.107* | 4,484.107° | 1,142.107° 2,994.10~¢
5 1,508.107* | 3,974.107° | 1,030.107° 2,684.1076
6 1,332.107* | 3,560.107° | 9,266.10~° 2,433.107
8 1,109.107* | 3,020.107° | 7,836.107° 2,067.107°

Table 9.1: Error with the Robin condition

Infinite elements.

R Mesh 126 points | 726 points | 4 851 points | 35 301 points
2 3,346.107° | 6,960.107¢ | 5,191.10°¢ | 4,748.10°6
3 4,087.107° | 1,048.10~° | 2,571.10~¢ | 1,063.1076
4 3,405.107° | 9,822.10°¢ | 2,677.10~¢ | 8,018.1077
5 2,697.107° | 8,843.107% | 2,515.107¢ | 7,296.1077
6 2,249.107° | 8,198.107% | 2,391.107% | 6,826.1077
8 2,041.107° | 8,009.107% | 2,290.107% | 6,580.10~7

Table 9.2: Error with the infinite elements

Moreover, we plotted in picture 9.8 the potential on the boundary of the

domain @O by using infinite elements and the Robin condition.

We notice

that the solutions obtained with infinite elements are more precise than the
solutions obtained with the Robin condition.
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Infinite Element Rabin
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Figure 9.8: Potential ® on the fictitious sphere
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Chapter 10

The coupling with the Vlasov
equation

Contents
10.1 The back-trajectories method . . . ... ... ... 111
10.2 Numerical approximation for the ion and the elec-
tron currents at the surface of the satellite . . . . 114
10.2.1 Theioncurrent . . . . . . . . . . .. ... .. .... 115
10.2.2 The electron current . . . . . . . .. ... ... ... 116

The potential & being computed, a back-trajectories particle method is
used to solve the Vlasov equation in R® for any geometry of the satellite.
Then, we compute the distribution function for ions and electrons and also the

ion and the electron currents received by the surface of the satellite.

10.1 The back-trajectories method

Recall the method introduced by O. Chanrion in [13].

The Vlasov equation implies that the distribution function of the particles is

constant along their trajectories, i.e.

fise(X(t),V(t)) = constant, t > 0.

The backtrajectories method consists in following the trajectories of the par-

ticles in the reverse sense with an opposite velocity, i.e. going back.
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The trajectory of a particle is defined by its position X and its velocity V,
and satisfies the following equations,

OX (1)
AN >

5 V(t), t>0,
o)
7 - Kji/e Vm¢7

(O) = X, V(O) = Vo,

where k; = —p and k. = 1.
We define 7;72““(X0, Vo), the trajectory from X (0) = X, and V(0) = V4.

We define the back-trajectories T;2%*( X, V;) reaching the final point (X, V})
by

0X (t)

—— ==V (), t>
at Vi), 0

oV (t)

7 = —Ki/e V.o,

X(0) = Xy, V(0) =V

The Liouville theorem implies that the distribution function of the particles is a
Maxwellian along all the trajectories which come from infinity and 0 elsewhere.
The conservation of the total energy gives

2q; e P(X (T 2q;7.P(X
V(t)2+ 4i/ ( ()):sz+ 4i/ ( f)'
Mije Mije
Consider a trajectory such that lim |IX(#)|| = +oo. Then

t—00; X () ETY2M (X4, V)
®(X(t)) =0 and,

V(t) = \/vf2 + 2qi/6<1>(xf).

Mi/e

Hence,

2% e .
fire( Xy, Vi) = gz‘/e(\/‘/f2 + = ‘I’(Xf)>, lim |1 X (2)]] = +oo,

Mi/e t—00; X (t)ET2R (X5, V)

fise(X5, Vi) =0 else.
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Let ”;743 (X ) be the set of velocities V; such that

lim X ()] = +oo,
t*w;X(t)ETil}‘;Ck(Xf,Vf)

for a given Xj.
So,

2qi/e
. = y 2 :
Fre(X1,V7) = g,/e(\/ VI e 0) Wy ¢y

i/e

1.e.

2e in
fe(X5, Vi) = ge(\/Vf2 e ‘I’(Xf))a Viva >0, Vi € vl (Xy),

e

(2

2e —2eP(X in
RV = oV 2exn), Il [T vy e 06,

Remark 10.1.1

In the case of ions, when the potential is negative, the conservation of the total
energy imposes that the velocity norm ||Vy|| must be greater or equal to Uy if
Ve vl (X).

In order to compute the characteristic function 1 ) we discretize

{Vy e vjl(X;
the velocity space in spherical coordinates with V, (modulus), 0, ¢, (angles
between the velocities and the normal vector 7 to the surface of the satellite).
The velocity V; is taken as the mild value on the mesh cell in the velocity
space. We numerically follow the particle trajectory. If this particle trajectory
goes out through the fictitious sphere I';, we consider that this particle comes
from infinity and
| in =1.
{v; e vyl (Xp)}
If this particle comes from a boundary of the satellite, then

| in = 0.
{v; e vyl (Xp)}
Why is this backtrajectories method interesting ?

The standard algorithm takes into account all the trajectories coming from
infinity without distinction of those arriving on the satellite. Since we are
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only interested by those arriving on the satellite (without reemission effects),
it is no use computing the trajectories of particles which will never reach the

satellite.

On the contrary, the back-trajectories algorithm only takes into account the
trajectories coming from infinity and arriving on the satellite. By doing so,
more prcision can be done in the zone where more precision is required.

The scheme 10.1 explains the difference between the direct and back-trajectories

algorithms.

STANDARD ALGORITHM

satellite

Particle trgjectories coming from infinity

BACKTRAJECTORIES ALGORITHM

satellite | —

Backward trajectories of particles coming from infinity

Figure 10.1: Standard algorithm and backtrajectories algorithm

10.2 Numerical approximation for the ion and
the electron currents at the surface of the

satellite

For a given point X on the surface of the satellite with a normal vector g
(directed inside the satellite), the currents (non dimensionless) received are



10.2. NUMERICAL APPROXIMATION FOR THE ION AND THE
ELECTRON CURRENTS AT THE SURFACE OF THE SATELLITE

—/ , e (Viya)fe(Xy, V) dVy,
VfER ;Vf.’)’9>0

/ , e (Vy-ya) fi( Xy, Vi) dVy.
VfER ;Vf.’)’9>0

10.2.1 The ion current

The ion current writes as

—e<I> / mzv2
exp Viva) exp dV,
( kTe ) VfE]R,B;VfEV_?nf(Xf)( f Q) ( QkT ) f

[N

Ji(Vy) = eng (#sze)

By passing in spherical coordinates with V,, (modulus), 6, ¢, (angles between
the velocities and the normal vector v to the surface of the satellite), we obtain
that

m;
H(Vp) =em (27rkT )
m; V2
2 —Y '
2T, ) ]I{uz"f<r,o,¢>} dV,do,ds,.

—+ oo
/ / / V2| sin(6,)] cos(6,) x

2

xexp(—

The discretization of the velocity space in spherical coordinates leads to

| N, N ety 0 e
fxen (50) e (222 ziz/”/:/g

ir=1ig=1ig=1 Vmody
V2

2kT,

X exp ( )|sm( )] €08(8:) Ty s,y 05 d¢7 dv.
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where
o _ [FT.
(A mIL
—2ed
Umin = ;
m;
Umaz = 5 V;tha
i, — 1
Vm0d1 = Nr (Umaac - 'Umin) + Umin,
Uy
Vmodz == E(Umaz - vmin) + Umin,
™ ig -1
h, = —=
1 9 + Ng T,
T
by = ——+—
2 2t Ng

10.2.2 The electron current
The electron current writes as

== (i) o ) e 0 2 (= i)

Passing in spherical coordinates,

me 5 teo 3
Je(Vy) = —e ng (27T/€T / / V | sin(6,)] cos(f.) x

) Lo .y V0.

MH

X exp ( 2kTe

By discretizing the velocity space and performing similar computations as for
J;, we obtain

J, ~ —eng (2:;} )5 ( Z Z Z /vmod2 /92 /;

ir=114g=11i4 Vimody
V2

2kT,

X exp ( )|sm( )1 €08(0) Ty ins .5y 0 Aoy V.
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where

kT,

bl

Me
0’

5 ‘/eth’
2, — 1
N,

iy

N (Vmaz — Vmin) + Umin,
™ ’ia -1
2 TN, ™
™ ig

2+E7T

(Umaa: - Umin) + Umin,
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Chapter 11

Analytical computations of the
charge density in the whole
space for a sphere

Contents
11.1 Computations of the electron and ion densities . 121
11.1.1 Electron density . . . . .. .. ... .. ... ..., 121
11.1.2 Trapping case . . . . . . . .« . v v vt i 125
11.1.3 Untrappingcase . . . . . .. ... . ... ... ... 133
11.2 The Charge density and the asymptotic behaviour 133
11.2.1 Trappingcase . . . . . . . . . . o oo 135
11.2.2 Untrapping case . . . . . . . ... ... .. 137
11.3 Curves . . . v v v v vt e e e e e e e e e e e e e e 139
11.3.1 Untrappingcase . . . . . . .. ... ... ... 139
11.3.2 Trappingcase . . . . . . . . . o v vt vttt 140

In order to understand why we neglect the charge density near the satellite,
we are interested in the charge around a sphere. In this case, we are able to
compute an analytical expression of the charge density p in the whole space.
The aim of this chapter is to compute the charge density p around a sphere
with radius R for a given potentiel field ®.

When there is no reemission, the potential ® is monotonous, so that there is
no potential barrier.
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When there is a potential barrier, we can perform similar computations but
they are more complicated.

The potential ® is assumed to be negative, so that the ions are attracted and
the electrons are repulsed. The case where ® > 0 is similar.

Denote by v, (resp. wv,) the radial (resp. perpendicular) component of the
particle velocity. Let ro > R. The space charge p is given by

p(ro, @(r0)) = %(ne(ro, ®(ro)) — ni(ro, ®(r0)))-

The particle trajectories can easily be parametrized from the conservation of
the total energy and the momentum. More precisely, by writing the conserva-
tion of the total energy and momentum, we obtain

1 1 i/e 1 1 1/e
50 () + 5 (r) + ;// B(r) = 507 (ro) + 51 (o) + :%// ®(ry),
R2
vi(ro) = — vi(r).
o

A relation between the radius and the square of the radial velocity is obtained,

2;/e®(ro)
mi/e ‘

2 21'6(1)7"
vf(r)z—:—o vio—q/i()-l-?ﬂ +Uio+

2 (11.1)
When there is no potential barrier, a particle can reach the radius r if and
only if v?(r) > 0 as this point. By using this argument for r = R and r = oo,
five types of trajectories are determined depending on their starting and final
points. They can be described as,

e v?(R) > 0 and v?(c0) > 0. For

x v.(R) > 0, it corresponds to the satellite-infinity trajectories, de-
noted by S — oo,

x v.(R) < 0, it corresponds to the infinity-satellite trajectories, de-
noted by co —+ S,

e v2(R) < 0 and v?(0c0) < 0, then it corresponds to trapped ions which

T

orbit around the satellite without meet it,

e v2(R) > 0 and v*(c0) < 0, then it corresponds to the satellite-satellite
trajectories, denoted by S — S,
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e v2(R) < 0 and v2(c0) > 0, then it corresponds to the infinity-infinity

trajectories, denoted by co — oo.

Only the trajectories of the second and the last type correspond to the trajec-
tories of the particles coming from infinity, so that their distribution function
is not equal to 0. They will be the only ones of interest for the explicit com-
putation of the densities.

11.1 Computations of the electron and ion den-
sities

11.1.1 Electron density

We have the following result.

Lemma 11.1.1

Assume that the satellite is a sphere of radius R. Then the electron density
writes as

(1o, ®(r0) = ny exp(Cor)) 10 e (IO g erf\/%(é(ro) ~a(R))
no ed(rg) e (®(ro) — 2(R)) R?
vy e e (i — e |

R2

2
_ n € _
x |1 erf\/TS_RQ = (@(ro) — B(R))].
Proof of lemma 11.1.1.

The velocity diagram for the electrons is represented in picture 11.1.

The electron density at rg is

v €

2e
ne(ro, ®(rg)) = / s, 20} ge(\/UZO + Uio - —@(7‘0)) d>v,
€3 m

where g, is the Maxwellian defined by

00) = no(er) el 3 )
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0

fe #0

o0 — OO

Je#0
oo — S =

Vo
fe#0
00 — 00

Figure 11.1: Velocity diagram for electrons
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The electron distribution function f, is not zero when

either v,, <0,

/r2 2e
[l e
2e
0<v, < \/—E@’c — ®(rp)).

The electron density becomes

0. (1[0 - %@(ro)) &y — /jge(\/uzo +ol, - %@(7«0)) &,

ne(ro, (o)) :/

vEIR3 e e
where
- T3\ , 2 2e
7= {v e R%; vro—i-(1—ﬁ)vLo+m—(<b(R)—@(r0)) > 0and vy, > 4/ —— (@, — @(ro))}.
Then

Me \ 3 e®(ro) 1m. , e 9 2
no(5)” exp(— ) /j exp(—5 1 vny) exp(—5 o rvl,) dvnyd’vu
=A- B,
with
Me \3 ed(ry) Ime 5
n0(27rk ) P(—7 )/Ueﬂgep(_ék_:r”)d“’
Me 3 6(1)(7'0) 1 me, 9 1me 2 2
B = nO(Q’TFkT) exp( T )LeXp(_EkTUT") eXp(_§kTUL°) dv,,d v,
Passing in spherical coordinates,
e®(ro)
A= . 11.3
o exp(C20)) (11.3)

Computations of B.
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B = (5rier) oG [ exp(— et
= O _—— r
Vo E @R 00) 2kT

1m,
X /Iexp(—§k—TUio) d*vy, dv,,

where

v2 + 22 (®(R) — ®(ry)) }

I:{’UJ_OERQ;"ULO‘< 0 e

Passing in polar coordinates with respect to v, ,, B writes as

B — me \3 e®(ro), [ 1m
2 : / 5 Te 2 U r d ros
™ Ny <27‘rk ) exp( k ) /\/_ 2¢ (®(R)—(r0)) eXp( 2k UTO) (U 0) oo

where

w3+ 22 (2(R)-2(r9))

2
%71 1 me
U(UTO) = /0\} (R ) ‘UJ—O‘ eXp(_§ kT|UJ-0|2) d‘rUJ-o"

The change of variables u = 4/ QTZ—EI’ lv1,| in U(v,,) leads to

kT me Ury T 2 (P(R) — ®(ro))
Vo) = o, [l_eXp(_ZkT (1) )
Thus
B me \ s (kT e®(rg) e ®(ry) — ®(R)
B 2””°<2wkT> ( ) (7 )[Al_eXp(k_T (3 1 )AQ]’
with
oo 1m
4, = / exp(— 550 ) g,
1 -2 @(R)-(r0)) Pkt A
too m R?
A :/ exp (— =02 (1+ dvy,-
NSy P gl TS—R2)> ’
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So,
B =" exp(Cph 1 - erf /(@) - 2(R)] - 2 ep(CHat)
% exp (% (@(7(%—_4;5}2))) 1- T—g [1 - erf\/ ; ing %(@(ro) @(R))]
(11.4)
(11.3) and (11.4) lead to the result. O
Remark 11.1.1 When rq — R,
ne(r0, (1)) = ne(R) := % exp(ei(TR)).

We focus now on ions. Contrary to the electrons, we have a circle and an
hyperbola for the ion velocities. There are two different cases : the case where
four points of intersection between the circle and the hyperbole exist and the
case where there is no point of intersection.

11.1.2 Trapping case

We have the following result

Lemma 11.1.2
Assume that the satellite is a sphere of radius R. Then the ion density is

(0, B(ra)) = no[% —e}(féro) n % eXp(_elj)}TO)) (1 —erf —e;I)T(ro))
1 —e®d(ry) e ®(R) — D(rg) R?
+ = exp( T )exp(ﬁ (T—éz—l) ) X 1_7“_8
+ iﬁ \/kiT (%2 ®(R) — (P(ro)>
1 2 —e®d(ry) e ®(ro) — ®(R)
-5 1-— (Q)exp( T )exp(—ﬁ (T—‘Q)Z—l) )x




CHAPTER 11. ANALYTICAL COMPUTATIONS OF THE CHARGE
DENSITY IN THE WHOLE SPACE FOR A SPHERE

Proof of the lemma.

The ion density at rq is

2e
n;i(ro, ®(r0)) = / ) Ty, 20y gi(\/vfo + vio + E@(ro)) d®v,

vEIR

The ion distribution function f; is not vanish when

v2 + (1 — T—0>vi + —e(q)(ro) —®(R)) <0,
’ b | TMe (11.5)
and v2 + v}, + ECIJ(TO) >0 and v,, >0, 79 > R.

2

Let C be the circle with equation

2e
2 2
Uro + Vi, + E(I)(TO) =0,

3

and H the hyperbola with equation

re 2e
v+ (1 - R—g)vio + o (B(ro) — 2(R)) = 0.

The coordinates of the 4 points of intersection of the circle C and the
hyperbola H are

2e [ R? R?
Upy = i\/ﬁ <¥ @(R) - (P(To)), when E (P(R) > @(To),
2e R?
Vi, = ﬂ:\/—a EQ(R)

The velocity diagram for ions is the following
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fi #0

oo — OO

Figure 11.2: Velocity diagram for ions
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The ion density at rq is

2
ni(ro, ®(rq)) = / gi(([? + =0(ro)) d*v
vEIR3; u2+i—eiq>(ro)>0 m;
2 2 2e 3
_ gi( v + vl + E@(m)) d’v,
g ()
= A- B,
with
3. 2 5\ 2 2e
G = {v € R vl + (1 . E)ULO o (®(ro) = B(R) >0,
2
vl +ol + —etb(ro) >0, vy > 0},
m;
and
2e 3
A = gi( v? + —cp(ro)) v,
vEIRS; 02+%<I>(r0)>0 m;
2 2e 3
B = gi( U?O—I—UJ_O—{——(I)(TO))dU:C—FD.
g m;
Here,

gi( v? + Q—éé(ro)) dv,

(2

Q
[l
o

gi( v? + 2—?@(7“0)) d*v,

2

S
I
S
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with

The picture 11.3 explains the sets Q and R.

Vi,

R
©) <
k

Figure 11.3: The sets Q and R
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Passing in spherical coordinates,

. m; \3/2 ed(ro)
A4 = dmng (27rkT> xXp(=—pp ) Av
where
Feo 1my
_ 2 _
A = /_M(T) of? exp(— e?) dl
2kT\3/2 e®(ry) ed(ry) ™ ed(ry)
= <m) [2 ~Sp () (L enny =)
d
an > o
erf(z) = 7= e " dt.
Then
_ 1 ed(rg) 1 ed(ro) —e®d(ry)
A=2n, [\/7? — g e )<1—erf = )} (11.6)
Computations of C.

C can be written as

2e
_ , 2 2 3
C_/le(\/UT0+ULo+mi©(T0)) d’v,

Passing in spherical coordinates,

m; \3/2 —eCD 7“0
- e ()"
¢ T\ okt

/ﬁ P k)

7ot (2(r0) = ®(R))

X /\J (%@_1> v, exp(—lﬁ
0

s mo\?) dlv.y| dvy,
m; 3/2 —e(I>
= 2m no (W) ex

1 my;
/ T.@(T _§k_TU’"°) Ay duy,,
with

vig g (2(ro)—(R))

A, = /J G4
0

osal b (5 12 o) o
_ (%) [1 exp ( 3 Z;i Uro + E((;OZ:(?)D— q’(R)))]
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Thus
B m; \3/2 (kT —e®(ry) e ®(R)— ®(ro)
¢= 27m0(27rkT) <E) exp! kT )[A?’ —OxP (k_T (;_(2)2 —1) ) A4}’
with
A = /,/—2 o ) _%%Uz") doro,
A / 1m; ( T )) p
4 \/T T 2kT o NE—ReY) T
Finally,
1 —ed(ry) —ed(ry) 1 —ed(ry)
= — 1 — ") R N
€ =no [ exp( i) (1-erf KT )~ e i) )
11.
e ®(R)— d(ro) R? T3 —e®(ry)
XeXp(kT (-1 ) 1_73(1_”f rR—R kT )}

Computations of D.

It holds that

mi \32  —ed(rg). [V 1m; |,
D =ny (—) exp(i

exp(—5 7= Ur,)
2mkT 5 5 et 2RT

1m,
X /’Rexp( 2 kTUJ_o) d UJ—O dv"'O?

Passing in polar coordinates with respect to v, ,, we obtain

—2e (1‘ )
m; \3/?2 —e(I) Ve 1m;
D = 27mo< ) exp(

exp(—=-—v: )U(v,) dv,,,
e ¢ T U (vr,) do,

where
J w3+ 22 (2(r0)—2(R))
r 1m,;
Uvn) = (ad =0 o?) duy,
(U 0) /vgozez(m) |UJ_0| exp( QkTULO) fho
kT [e (eCD(TO) 41 1m; o) ( 1m; Vit %(@(To) - cI>(R))> ]
= —_— X — _— = .
m; LSPGO P T 9% (31
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Then
m; \3/2 —e®d(r kT
D = mo (27TI€T) 2m exp( /ﬂ(’ 0)) (m,) x [V(ro) = W(ro)l,
with
—2e®(rg)
Vo 1m; ed(ro) 1m;
Virg) = SRR — 2 d,
" \/37 (B ®(R)—®(ro)) Pl 2 kTUTO) ! kT 2 kTUTO) e
k3 7'0
—2e®(rqg) 2 2e
\/ ™y 1 m; 1 m; v, + _.(q)(TO) - CI)(R))
W(T‘o) = 5 exp(———vf ) EXp\ — 57+ - e ) dvro
\/T?Te, (137(2) ®(R)—(r0)) 2]§T 0 ( 2kT (R_O2 _ 1) )
So,

V(re) = exp(e

1m; 2 .
Performing the change of variables u = 5 Z} - 7o — g Vo in W(rq), we obtain
0

1 |27kT R? e ®(ry) — (R)

Wiro) = 5\/ m; (1_¥> eXp(_k—T (8 1) )
e®(rg) 1l e 3 R?
- - L0 (2 p(R) - .

8 P7¢ ey Mﬂﬁ—R?(@ (B) - o(r)) |

Thus,
1 [—e®(ro)
— i -
D =m0 [\/Tr kT \/_\/kT (T°)>

e _m (Rap
xwfkT%_m<%QM)¢m»}
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Since n;(ry, ®(ry)) = A — C — D, and thanks to (11.6)-(11.7)-(11.8) that

o, 0(r0)) = o[ | ) 4 L e (“OUYy (1 ey [ 2O
o M
R R e
o (- 5 2o fﬁ_T S (2 e a0)]

-

11.1.3 Untrapping case

The diagram 11.4 is used to locate the velocities where f; is not zero. The com-
putations for getting the untrapped ion density are similar as the computations
for the trapped ion density. They lead to the following formula.

Lemma 11.1.3
Assume that the satellite is a sphere of radius R. Then the ion density is

ni(ro, ®(ro)) = no [%\/ _e(I;ﬁ(;o) + % eXP(-%)(l —erf _6‘1;(77;0))]

o e®(ro) R? e (®(ry) — ®(R))
t3 exp(— oT ) 1_E exp(—k—T (;_%_1) )

11.2 The Charge density and the asymptotic
behaviour

In this section, we deal with the charge density for trapped ions, untrapped
ions and their asymptotic behaviour. The asymptotic behaviour of p will be

used in chapter 12.
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fi 70

oo — S

S5 Veg

oo — O

Figure 11.4: Velocity diagram for the ions
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11.2.1 Trapping case

Thanks to Lemmas 11.1.1 and 11.1.2, the space charge p in the whole space
writes as

o(ro, @) = 6620[1exp(23)( —erf\/kT o — o(R))
+exp(ljr @Z;—%%(l]?)) 1—%2

X (l—erf T§R2 kT(CID @(R))))

e (1)
Y ¢ B(R) ; (11.9)
_lex( q))ep<kT7c};;_§_1;p) l—f—%
\Lr\/ (fg R)-0)
+ %”1_% exp(_k;:b) exp(—kiT %)
<t g (5 3o

When ry — +0o0 and for a given Debye length \;, the potential ® such that
p(?“(), (I)) = 0’

is an asymptotic solution. Indeed, the dimensionless Poisson equation when
ro — +oo and for a given Debye length \; writes as

2
)\dACI) p, T €

&=&, onT,,, (11.10)
® — 0 at infinity,

where the dimensionless quantities are

L Y €0 kT

.z
T = — = — = .
L Ad ngy e2
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Here, L is the reference length of the region of the space that we interest.

A2 ~
Since L is larger than the Debye length at infinity, the term L—‘; Az P

vanishes and p(®) — 0.

The asymptotic behaviour for p when @ is small and rqy — oo is studied as
follows.

The following approximations are used.

¢ —-PR
(1) ®(rp) is negligible with respect to ®(R) in the term exp (i %) )
G-

(i1) er fy/x ~ %\/5 when z — 0.

ed(ry)
kT

Let ¢ = —

Performing an expansion of the space charge p when ¢ is small and ry — oo,
we obtain after some computations that

)= e[ (2 ) sa(o 4 oo 1),

2rg 0

R2
when —- ¢. < ¢.
o

Notice that there is no analytical solution ¢ to p(ro, ¢) = 0.
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11.2.2 Untrapping case

Thanks to Lemmas 11.1.1 and 11.1.3, the space charge p in the whole space
writes as

plin, @) = S22 [exp(50) (L= erf 5 (B0) — 0()
+ exp <kiT ((D(Z(%:(I;(R))) 1-— fg

e

(1 B 6Tf\/ —R2? kT(CI)( 0) — @(R)))) (11.11)

\/_\/ — exp(— kT 1—erf )

R? e (®-— @(R)))]

- exp(——) 1—— exp p
kT r ( kT (35 — 1)

J.F. Roussel in [37], I.B. Bernstein and I.N. Rabinowitz in [7], M.J.M. Parrot,
L.R.O. Storey, L.W. Parker and J.G. Laframboise in [33] and [29] assumed

1
without proving it that the potential ® decreases as — at infinity in the trap-
r

ping case. This is proved by the following lemma.

Lemma 11.2.1
For rq large enough and for a potential ® small enough, we are in the untrap-
®(R) R?

2
o

ping case and ® behaves like
Proof.

As before, when 1y — +00 and for a given Debye length A\;, the potential
® such that

p(TO: (I)) = 07
is a asymptotic solution.
For this purpose, the asymptotic behaviour of p when ® is small and ry — oo
is studied as follows.
The same approximations as for the trapping case are used here.

Linearizing the space charge when ® is small and ry — oo lead to
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(o, ®) = eno[_eCD(R) R? (1_%erf _ecb(R))Hg] +0(i @)’

€o kT r? kT kT rd’
(11.12)
e®(rg)  e®(R)R?
. O
when T > KT 12
Consequently,

RQ
e Trapping case : if — ®(R) > @, then
To

_ﬂ[ 1 (R2 ed(R) e¢)3/2+2( e R e@(R))

plro®) === =7 %1 a7 TR RT
1 R? ed(R) ¢®(R) 1
o Y OV o=, @),
2tk N ]+O(r§’ )

R2
e Untrapping case : if — ®(R) < @, then
To

p(re, @) = enor_e (k) 7 (1—167"]‘ ¢ ¢(R)>+2 g] —i—o(l <I>>.

€ kT r2 2 kT kT re’

Notice that in the trapping case, there is no analytical solution @ to
p(ro,®) = 0. Therefore, the untrapping case is obtained at infinity. More
precisely, the solution of p(ry, ®) = 0 at infinity is

R e I

when @ is small and rq — oc.

For small ry, we have

®(ro) < —5—, (11.14)

and there are trapped ions. The condition (11.14) is satisfied in the case where
there are trapped ions because for ry small, the dimensionless Poisson equation
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gives that p is neglected (see chapter 8). Moreover, the solution of the Laplace
equation,
Ad =0, in Q°
=0, on I',,,
® — 0 at infinity
is
®.R

(I)(’I”()): ro .

11.3 Curves

In this section, we draw the curve of p with respect to the radius in order to
see its asymptotic behaviour.
The following numerical values are taken,

KT =10* eV, ®.:= ®(R) = —25000 V, ng = 10° m™, R=1m, Ay = 743 m.

11.3.1 Untrapping case

R
The exact potential for a sphere is ® = ®(R) o
0

lon and electron densities with respect to the radius)
2e+06

T
'Electron density’

1.8e+06

1.6e+06 [

1.4e+06 -

1.2e+06 -

1le+06 [

ne,ni

800000

600000

400000

200000

0

| | | |
0 5 10 15 20 25
0

Figure 11.5: Ions and electrons densities
Picture 11.5 represents the ion (red curve) and electron (green curve) den-
sities with respect to the radius (we are close to the satellite because Ay = 743

and R, = 25. We notice that the ion density presents a maximum before

139



CHAPTER 11. ANALYTICAL COMPUTATIONS OF THE CHARGE
DENSITY IN THE WHOLE SPACE FOR A SPHERE

Charge density with respect to the radius in the case where there is no trapped ion

T
‘untrapping case’

-0.005 |-
-0.01 | /
-0.015 - /

002 | | /

Charge density rho

0025 F |/

/
003 |/
2

-0.035
0

| | | |
5 10 15 20 25 30
0

Figure 11.6: Space charge

tending to its value at infinity, whereas the electron density strictly increases
to its value at infinity (case of a sphere charged negatively).

The curve in Picture 11.6 is the space charge p plotted with respect to the
radius.

11.3.2 Trapping case

We plot here the analytical curve of p as well as the densities of ions and elec-
trons with respect to the radius.

Picture 11.7 represents the trapped ion (green curve) and the electron (red
curve) densities with respect to the radius. We notice that the ion density
presents a maximum before tending to its value at infinity, whereas the elec-
tron density strictly increases to its value at infinity (case of a sphere charged
negatively).

Picture 11.8 is the space charge p plotted with respect to the radius. The
minimum of p for trapped ions is lower than the minimum of p in the previous
case.

In the next chapter, we solve the Vlasov-Poisson system by taking into
account the right-hand side p computed analytically before.
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ni,ne

rho

lon and electron densities with respect to the radius - Trapping case
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Figure 11.7: Ions and electrons densities

Charge density with respect to the radius - Trapping case
0 T

30

'Charge densww - Irappmg‘ case’

-0.005 —

-0.01 -

-0.015

-0.02 -

.0.025 L L L L L
0 5 10 15 20 25

Figure 11.8: Space charge
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Chapter 12

Solution of the stationary
Vlasov-Poisson system

Contents
12.1 Solution of the Poisson equation . ... ...... 143
12.2 A new approach for the solution of the Poisson
equation . . . . . . . i e e e e e e 144
12.3 Conclusion . . ... ... ... .. 148

In this chapter, we solve the Vlasov-Poisson system in the whole space for

a sphere.

12.1 Solution of the Poisson equation

We keep the analytical expression of p found in chapter 11 in the right-hand
side of the Poisson equation. To compute the potential ®, the following system

is solved,

A®yy1(ro) = p(Pk(ro)), 710> R,

(I)k+1(7‘0) = (I)k—}—l(R) on Fc,v, (121)

D11 — 0 at infinity.
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SYSTEM

At the first iteration, we solve

Aq)o(T()) =0, 10> R,
¢y=d.0onl._,, (12.2)
&y — 0 at infinity,

¢ R

which has a solution ®¢(r) =

r
At the second iteration, the problem to be solved is the following

A(I)l(T'()) = p((I)()), To > R,
@1 = Qc on 11c—va

®; — 0 at infinity,

but this problem is not well posed because the decrease of the space charge p
when rqg — oo is not fast enough to solve it.

1
Indeed, the asymptotic behaviour of p at infinity does not behave like —. The
To

1 1
asymptotic development shows that if ® behaves like —, then p behaves like —.
To To

So, we introduce a new approach based on a relaxation method for the
resolution of the Poisson equation.

12.2 A new approach for the solution of the
Poisson equation
Let

e ®(r) f_e<I>C
kT T kT

f=

As recalled before, the resolution of the system (12.1) gives a solution which
does not tend fast enough to zero when ry — oc.

To deal with this problem, we build a one-dimensional algorithm which takes
into account the behaviour of p at infinity.

So, we solve the following relaxated three-dimensional spherical symmetry
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EQUATION
equation with respect to the radial coordinate r.
(g (P 0) = 5 R0 =) = 5 £,
) f’““( 1) = fy, (12.3)

where L is the length of the mesh. It can be taken as equal to many Debye
lengths.

2
The coefficient 2 in the term N 5 (r) comes from the asymptotic be-

haviour of p (for the case of a sphere). The following numerical values are
taken

kT =10% eV, ®, = —25000 V, no =10° m™3, R=1m, f, = —2.5.

The value f, = —2.5 is closed to the equilibrium floating potential.
We use a finite difference method and we put the Robin condition at r = L.
At the first iteration, we solve,

(1 dy,d 2 o0y _
ﬁ%(r %f (T)> - )\_?z fi(r)=0
! o) = f, (12.4)
o 0
\ af + f°_0
The analytical solution is
— Y2
o _ 4 €
) =1 ,

We plot on a same picture the numerical solution f(r), the exact solution fo(r)

to the Laplace equation (12.4) with relaxation, as well as the curve — > and LQ
r r
with respect to the radius r in logarithmic scale. We take different values for

Debye length. We recall that & is the solution to the Laplace equation (12.2)
r

without the space charge and without relaxation and % is the solution to
r
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p(r, f(r)) = 0 at infinity (see chapter 11).

e Case \; = 100 m.

4
10

Figure 12.1: Numerical solution to the Poisson equation for \; = 100 m

The black curve represents the solution f with respect to . The blue curve
is the function r — ﬁ, which is the analytical solution of the Laplace equation
without relaxation aqld without space charge p. The green curve is the func-
tion 7 — LQ which is the solution of the equation (11.13) at infinity (case of

untrapped ions) and the turquoise curve represents the function f(r).
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e Case \; = 743 m.

Figure 12.2: Numerical solution to the Poisson equation for Ay = 743 m

e Case \y=1m.

o
10

1
10

2
10

10

Figure 12.3: Numerical solution to the Poisson equation for Ay =1 m

We notice that near the satellite, f is tangent to the solution r — Jo to the

r
Jo

Laplace equation without relaxation. Moreover, f satisfies —f(r) + = > 0.
r

At infinity, f behaves like the asymptotic solution %
r
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As expected, there are trapped ions near the satellite (r small) i.e in the
sheath and the space charge p is negligible, so that we solve the Laplace equa-
tion in the sheath.

There are untrapped ions at infinity and p is not negligible, so that we solve
the equation p(®) = 0 in the presheath.
Consequently, there is a transition between the trapping region and the un-

trapping region. The intersection between the curves f°(r) and 92 gives the
r

length of this transition. We notice on pictures 12.1-12.3 that the transition
is over than one Debye length.

12.3 Conclusion

In this second part of the thesis, we have started to simplify the model of
Vlasov-Poisson. We have neglected the space charge in the Poisson equation
near the satellite, i.e. in the sheath.

For the resolution of the Laplace equation, we have used a finite element
method inside the computational domain and infinite elements at infinity. The
example of two localized points is a good validation of our choice for infinite
element method to the computation of the potential.

In chapter 11, we have assumed that there is no potential barrier for the
computation of the space charge. Numerical results show that this hypothe-
sis is valid. As long as p has the same sign, no potential barrier can appear.
Next, we have studied the asymptotic behaviour of p at infinity. By using the
behaviour of p, we have built a new algorithm for the solution of the system
of Vlasov-Poisson in the whole space and showed that it converges after 50
iterations.

Two zones of the space have been determined : the sheath (domain around
the satellite) where there are trapped ions and the presheath where there is
no trapped ions.

The space charge p is negligible in the sheath and not in the presheath.
In conclusion, we solve the Laplace equation in the sheath and the equation
p(®) = 0 in the presheath.
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Chapter 13

Part 1

In the first part of this thesis, we have studied a quantum kinetic homogeneous
equation describing the Compton effect. This phenomenon takes place when
photons interact with electrons. We have proven a local existence theorem for
this equation.

One of the interesting perspectives of the quantum Boltzmann equation is
the study of the formation and the evolution of Bose-Einstein condensates, a
phenomenon that we briefly describe in this chapter.

13.1 Description of Bose-Einstein condensates

The Bose-Einstein condensate is a gaseous superfluid phase highlighted in 1920.
Physicists like Satyendra Nath Bose and Albert Einstein were interested in the
behaviour of matter at absolute zero. In 1924, Satyendra Nath Bose showed
that it was possible to describe the light by the statistical evolution of a gas of
particles, the photons. Albert Einstein generalized this theory to other enti-
ties. He highlighted the original behaviour of Bosons at very low temperatures.
They have a collective behaviour and are in the same quantum state.

In 1995, an american team succeeded in confining thousands of atoms dur-
ing a few minutes. Temperatures of the order of micro-kelvins were reached,

which led to a Nobel price in 1997.
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13.2 The first condensate

In 1995, one american team of Colorado, led by Eric Cornell and Carl Wieman,
succeeded in obtaining during a few seconds the first Bose-Einstein conden-
sate. It was constitued by around ten thousands atoms of Rubidium precooled
by a laser. Next, they were again cooled by evaporation in a magnetic trap.
So they reached a very low temperature close to absolute zero.

The rubidium was condensated in June 1995, then the lithium by a Hous-
ton team, then the sodium by MITT team.
Finally, many physicists succeeded in 1997 in producing a laser effect with
the atoms. They first formed a condensate and next extracted a part of the
condensated atomes.

13.3 Bose-Einstein condensates from a math-
ematical point of view

The Bose-Einstein condensates belong to the measure solutions studied in
this thesis in the sense that they are recognized by a possible Dirac at 0
in the Lebesgue decomposition of these measures. In order to study them
more precisely, it is convenient to separate this Dirac at zero energy from
the rest of the solution. So, we can describe their evolution by coupling two
equations. The Gross-Pitaevskii equation is a Schrodinger equation for the
wave function of the condensates, whereas a quantum Boltzmann equation
describes the distribution function of the part which is not condensated. W.
Bao, L. Pareschi and P.A. Markowich studied this problem in [3].
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Part 2

In the second part of the thesis, we have solved the Vlasov-Poisson system by
taking account the space charge in the whole space with a one-dimensional
numerical model, in the case where there is no reemission. The obtained re-
sults are satisfying. Indeed, we can determine in which part of the plasma
the trapped ions are. They are in the sheath. In the presheath, there are
untrapped ions and the potential behaves like 1/ r? at infinity.

The first interesting perspective would be to numerically solve the Pois-
son equation, taking into account the space charge in the whole space with
a three-dimensional model and for any geometry of the satellite. Indeed, the
back-trajectories algorithm can be used not only to compute the currents but
also to compute the space charge in the whole space. Then, using the algo-
rithm of chapter 10, we can ensure the coupling of the Vlasov and Poisson
equations. This point leads to an article in process.

The second interesting perspective would be to consider a more general
distribution function of ion and electron. As an example, we can describe the
plasma by a sum of two Maxwellians with hot and cold particles.

The third interesting perspective would be to take into account the ree-
mission effect and the space charge in the resolution of the 3D Vlasov-Poisson

systemn.

The last point is to take into account the artificial source plasma on the
satellite in the resolution of the 3D Vlasov-Poisson system.
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Résumé

On s’est intéressé dans ce travail a ’étude de deux équations cinétiques.

La premieére est une équation cinétique quantique homogene décrivant ’effet Compton. Ce
phénomeéne se produit lorsque les photons entrent en collision avec les électrons. Le noyau
dans l'intégrale de collision présente une forte singularité en 1’énergie nulle. Un résultat
d’existence locale en temps d’une solution entropique au probléme de Cauchy est obtenu
pour de petites valeurs initiales.

La deuxieme est une équation de Vlasov couplée avec ’équation de Poisson. Le systeme
de Vlasov-Poisson modélise les interactions entre plasma et satellite. Plus précisément, on
s’'intéresse au phénomene de charge électrostatique d’un satellite en orbite géostationnaire.
Les particules, essentiellement des ions et des électrons, sont décrites suivant une approche
cinétique. On considére le cas ol la dynamique des ions et des électrons obéit & une équation
de Vlasov et ot le potentiel est donné par I’équation de Poisson. Le but est d’étudier ce
probleme dans un cadre 3D dans tout I’espace. Une méthode particulaire pour la résolution
de I'équation de Vlasov est couplée & une méthode d’éléments finis et infinis pour la partie
Poisson.

Mots-clés : Equation de Boltzmann quantique, effet Compton, systéme de Vlasov-
Poisson, méthode d’éléments finis et infinis, méthode des back-trajectories, phénomene de
charge électrostatique

On a quantum kinetic linked to the Compton effect - Modelling and 3D
simulation of the satellite charge in magnetospheric plasma

Abstract

This work deals with the study of two kinetic equations.

The first equation describes the interaction between photons and electrons, called the Comp-
ton effect. The kernel in the collision integral presents a strong singularity at energy zero.
Existence results to the Cauchy problem are obtained for initial data small enough and
locally in time.

The second equation is the Vlasov equation coupled with the Poisson equation. The Vlasov-
Poisson system represents the interaction between the satellite and the magnetospheric
plasma. More precisely, we are interested in the charge phenomenon of a satellite in geo-
stationary orbit. The particles, mainly ions and electrons are described following a kinetic
approach. The evolution of their distribution functions are ruled by the Vlasov equation
which is coupled with the Poisson equation for the potential. The aim is to solve Vlasov-
Poisson in a three-dimensional frame in the whole space. One particle method for the Vlaov
equation resolution is coupled with a finite/infinite element method for the resolution of the
Poisson equation.

Keywords : Quantum Boltzmann equation, Compton effect, Vlasov-Poisson system,

finite and infinite element methods, back-trajectory method, electrostatic charging phe-
nomenon
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